
HAL Id: tel-01327769
https://hal.science/tel-01327769v1

Submitted on 13 Jun 2016 (v1), last revised 28 Sep 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic Snippets via Query-Biased Ranking of Linked
Data Entities

Mazen Alsarem

To cite this version:
Mazen Alsarem. Semantic Snippets via Query-Biased Ranking of Linked Data Entities. Information
Retrieval [cs.IR]. INSA de Lyon; UNIVERSITÄT PASSAU, 2016. English. �NNT : �. �tel-01327769v1�

https://hal.science/tel-01327769v1
https://hal.archives-ouvertes.fr

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de

INSA de Lyon
et délivré en partenariat international avec

UNIVERSITÄT PASSAU

Ecole Doctorale N° ED 512
InfoMaths

Spécialité de doctorat :

Discipline : Informatique

Soutenue publiquement le 30/05/2016, par :

Mazen ALSAREM

Semantic Snippets via Query-Biased
Ranking of Linked Data Entities

Devant le jury composé de :

Boughanem, Mohand Professeur Université Paul Sabatier Rapporteur
Pasi, Gabriella Professeur University of Milano-Bicocca Rapporteur
Sack, Harald Professeur Universität Potsdam Examinateur
Granitzer, Michael Professeur Universität Passau Examinateur
Gandon, Fabien Directeur de Recherche INRIA Examinateur
Soulé-Dupuy, Chantal Professeur Université Paul Sabatier Invitée

Calabretto, Sylvie Professeur INSA de Lyon Directrice de thèse
Kosch, Harald Professeur Universität Passau Directeur de thèse
Portier, Pierre-Edouard Maître de conférences INSA de Lyon Co-directeur de thèse

Lehrstuhl für Verteilte Informationssysteme

Fakultät für Informatik und Mathematik

Universität Passau

Doctoral Thesis

Semantic Snippets via Query-Biased

Ranking of Linked Data Entities

Conducted as cotutelle-de-thèse in cooperation with

Laboratoire LIRIS

INSA de Lyon

Doctoral School InfoMaths

Lyon, France

M.Sc. Mazen Alsarem

May 2016

Dedicated to my wife Salam and my daughter Julia.

This work is also dedicated to Syrian people in their noble and
peaceful quest for freedom, human rights and justice.

iii

Acknowledgements

Prima facea, I would like to express my sincere gratitude to my advisors Prof. Sylvie

Calabretto, and Prof. Harald Kosch for their continuous support of my PhD study and

research, for their patience and tenacity over the last years. Their guidance and immense

knowledge helped me in all the time of research and writing of this thesis. I could not

have imagined having a better advisors for my Ph.D study.

I would like to express my sincere gratitude to my co-advisor Dr. Pierre-Edouard Portier

for his constant support, guidance and motivation. It would never have been possible for

me to take this work to completion without his incredible support. I benefited greatly

from our many fruitful discussions.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Harald

Sack, Prof. Gabriella Pasi, Prof. Mohand Boughanem, Dr. Fabien Gandon, and Prof.

Michael Granitzer, for their interest in my work, their input and insightful comments.

My special thanks go to Prof. Chantal Soul-Dupuy, for her support since my master

degree, and for her participation in my thesis committee.

I would like to say thanks the Université Franco-Allemande (UFA) for the financial and

scientific support. I would also thank all the MDPS members for all the discussions and

the fun that we have had.

I also thank Dr. Tobias Mayer and Dr. David Coquil who generously gave up a lot of

time to help me.

I thank my fellow labmates: Albin Petit, Diana Nurbakova, Vincent Primault, Azhar

Ait Ouassarah and Merza Klaghstan, for the stimulating discussions and for the sleepless

nights we were working together before deadlines.

I would like to give special thanks to my close friends Vincent Barrellon, Manel Charfi,

Zeina Torbey and Georges Takkouz for all the fun we have had in the last years.

I would also like to thank my family in Syria, and my step family all around the world.

They were always supporting me and encouraging me with their love and best wishes.

Finally, a special thanks from the heart to my lovely wife Salam for her support. You

help me to regain hope after despair, resume life after obstructions, restart journeys

after detours, revive strength after defeat and resurrect dreams after rejection. Thank

you.

v

Abstract

In our knowledge-driven society, the acquisition and the transfer of knowledge play a

principal role. Web search engines are somehow tools for knowledge acquisition and

transfer from the web to the user. The search engine results page (SERP) consists

mainly of a list of links and snippets (excerpts from the results). The snippets are used

to express, as efficiently as possible, the way a web page may be relevant to the query.

As an extension of the existing web, the semantic web or “web 3.0” is designed to convert

the presently available web of unstructured documents into a web of data consumable by

both human and machines. The resulting web of data and the current web of documents

coexist and interconnect via multiple mechanisms, such as the embedded structured

data, or the automatic annotation.

In this thesis, we introduce a new interactive artifact for the SERP: the “Semantic

Snippet”. Semantic Snippets rely on the coexistence of the two webs to facilitate the

transfer of knowledge to the user thanks to a semantic contextualization of the user’s

information need. It makes apparent the relationships between the information need

and the most relevant entities present in the web page.

The generation of semantic snippets is mainly based on the automatic annotation of

the LOD1’s entities in web pages. The annotated entities have different level of impor-

tance, usefulness and relevance. Even with state of the art solutions for the automatic

annotations of LOD entities within web pages, there is still a lot of noise in the form

of erroneous or off-topic annotations. Therefore, we propose a query-biased algorithm

(LDRANK) for the ranking of these entities. LDRANK adopts a strategy based on the

linear consensual combination of several sources of prior knowledge (any form of con-

textual knowledge, like the textual descriptions for the nodes of the graph) to modify a

PageRank-like algorithm.

For generating semantic snippets, we use LDRANK to find the more relevant entities in

the web page. Then, we use a supervised learning algorithm to link each selected entity

to excerpts from the web page that highlight the relationship between the entity and

the original information need.

In order to evaluate our semantic snippets, we integrate them in ENsEN (Enhanced

Search Engine), a software system that enhances the SERP with semantic snippets.

Finally, we use crowdsourcing to evaluate the usefulness and the efficiency of ENsEN.

Keywords: Semantic Snippets, Entity Ranking, Web of Data.

1Linking Open Data

Résumé

Dans notre société fondée sur la connaissance, l’acquisition et le transfert de connais-

sances jouent un rôle principal. Les moteurs de recherche sur le Web sont en quelque

sorte des outils d’acquisition et de transfert des connaissances du Web à l’utilisateur. La

page de résultats d’un moteur de recherche (Search Engine Results Page - SERP) se com-

pose principalement d’une liste de liens et de snippets (extraits à partir des résultats).

Les snippets sont utilisés pour exprimer, aussi efficacement que possible, la façon dont

une page Web peut être pertinente pour la requête.

Le Web sémantique ou “Web 3.0” est conçu pour transformer le Web de documents non

structurés en un Web de données exploitable à la fois par les machines et les humains. Le

Web de données obtenu et le Web de documents actuel coexistent et sont interconnectés

via de multiples mécanismes, tels que les données structurées integrées dan les pages

Web, ou l’annotation automatique.

Dans cette thèse, nous introduisons un nouvel artefact interactif pour le SERP: le “Snip-

pet Sémantique”. Les snippets sémantiques s’appuient sur la coexistence des deux Webs

pour faciliter le transfert des connaissances aux utilisateurs grâce à une contextualisa-

tion sémantique du besoin d’information de l’utilisateur. Ils font apparâıtre les relations

entre le besoin d’information et les entités les plus pertinentes présentes dans la page

Web.

La génération des snippets sémantiques repose principalement sur l’annotation automa-

tique des entités de LOD dans les pages Web. Les entités annotées ont des niveaux

d’importance, d’utilité et de pertinence différents. Les solutions de l’état de l’art pour

l’annotation automatique des entités LOD dans les pages Web génèrent encore beau-

coup de bruit sous la forme d’annotations erronées ou hors sujet. Par conséquent, nous

proposons un algorithme biaisé-requête (LDRANK) pour l’ordonnancement de ces en-

tités. LDRANK adopte une stratégie basée sur la combinaison consensuelle linéaire de

plusieurs sources de connaissances a priori (toute forme de connaissances contextuelles,

comme les descriptions textuelles des noeuds du graphe) pour modifier un algorithme de

type PageRank. Pour générer des snippets sémantiques, nous utilisons LDRANK pour

trouver les entités les plus pertinentes dans la page Web. Ensuite, nous employons un al-

gorithme d’apprentissage supervisé pour lier chaque entité sélectionnée à des extraits de

la page Web qui mettent en évidence la relation entre l’entité et le besoin d’information

original.

Afin d’évaluer nos snippets sémantiques, nous les intégrons dans ENsEN (Enhanced

Search Engine), un système logiciel qui améliore le SERP avec des snippets sémantiques.

Enfin, nous utilisons le crowdsourcing pour évaluer l’utilité et l’efficacité de ENsEN.

Mots-clés: Semantic Snippets, Ordonnancement d’entités, Web de Données.

Zusammenfassung
In unserer heutigen Wissensgesellschaft spielen der Erwerb und die Weitergabe von Wis-

sen eine zentrale Rolle. Internetsuchmaschinen fungieren als Werkzeuge für den Erwerb

und die Weitergabe von Wissen aus dem Web an den Nutzer. Die Ergebnisliste einer

Suchmaschine (SERP) besteht grundsätzlich aus einer Liste von Links und Textauszügen

(Snippets). Diese Snippets sollen auf möglichst effiziente Weise ausdrücken inwiefern eine

Webseite für die Suchanfrage relevant ist. Als Erweiterung des bestehenden Internets,

überführt das semantische Web - auch genannt “Web 3.0” - das momentan vorhandene

Internet der unstrukturierten Dokumente in ein Internet der Daten, das sowohl von

Menschen als auch Maschinen verwendet werden kann. Das neu geschaffene Internet der

Daten und das derzeitige Internet der Dokumente existieren gleichzeitig und sie sind über

eine Vielzahl von Mechanismen miteinander verbunden, wie beispielsweise über einge-

bettete strukturierte Daten oder eine automatische Annotation. In dieser Arbeit stellen

wir ein neues interaktives Artefakt für das SERP vor: Das “Semantische Snippet”. Se-

mantische Snippets stützen sich auf die Koexistenz der beiden Arten des Internets um

mit Hilfe der Kontextualisierung des Informationsbedürfnisses eines Nutzers die Weiter-

gabe von Wissen zu erleichtern. Sie stellen die Verbindung zwischen dem Informations-

bedürfnis und den besonders relevanten Entitäten einer Webseite heraus. Die Erzeu-

gung semantischer Snippets basiert überwiegend auf der automatisierten Annotation von

Webseiten mit Entitäten aus der Linking Open Data Cloud (LOD). Die annotierten En-

titäten besitzen unterschiedliche Ebenen hinsichtlich Wichtigkeit, Nützlichkeit und Rel-

evanz. Selbst bei state-of-the-art Lösungen zur automatisierten Annotation von LOD-

Entitäten in Webseiten, gibt es stets ein großes Maß an Rauschen in Form von fehler-

haften oder themenfremden Annotationen. Wir stellen deshalb einen anfragegetriebe-

nen Algorithmus (LDRANK) für das Ranking dieser Entitäten vor. LDRANK setzt

eine Strategie ein, die auf der linearen Konsensuskombination (engl. linear consensual

combination) mehrerer a-priori Wissensquellen (jedwede Art von Kontextwissen, wie

beispielsweise die textuelle Beschreibung der Knoten des Graphen) basiert um damit

den PageRank-Algorithmus zu modifizieren. Zur Generierung semantischer Snippets

finden wir zunächst mit Hilfe von LDRANK die relevantesten Entitäten in einer Web-

seite. Anschließend verwenden wir ein überwachtes Lernverfahren um jede ausgewählte

Entität denjenigen Abschnitten der Webseite zuzuordnen, die die Beziehung zwischen

der Entität und dem ursprünglichen Informationsbedarf am Besten herausstellt. Um

unsere semantischen Snippets zu evaluieren, integrieren wir sie in ENsEN (Enhanced

Search Engine), ein Softwaresystem das SERP um semantische Snippets erweitert. Zum

Abschluss bewerten wir die Nützlichkeit und die Effizienz von ENsEN mittels Crowd-

sourcing.

Schlagwörter: Semantische Snippets, Ranking von Entitäten, Web of Data.

Contents

Acknowledgements v

Abstract vii

Résumé ix

Zusammenfassung xi

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Context . 5

1.2 Background . 6

1.2.1 The “Web” . 6

1.2.2 Web of Data . 6

1.2.3 Co-existence of the two web (web of documents and web of data) . 8

1.2.4 Web Information Retrieval . 10

1.2.5 Search User Interface . 12

1.3 Statement of the Problem . 14

1.4 Research Questions . 15

1.5 Application Scenarios . 16

1.5.1 Application Scenario 1: General Vs. Specific user information need 16

1.5.2 Application Scenario 2: Answering directly (in SERP) hard ques-
tions . 19

1.6 Summary of Contributions . 24

1.6.1 Query-biased Ranking for Linked Data Entities 24

1.6.2 “Semantic Snippets” and the Enhanced Search Engine (ENsEN) . 25

1.7 Structure of the Thesis . 27

2 A Query-biased Ranking for LOD Entities 29

2.1 Introduction and Context . 30

2.2 Related Works . 31

2.2.1 Comparative study . 33

xiii

2.2.2 Selected approaches from the literature 38

2.2.3 Conclusion . 49

2.3 Our Algorithm (LDRANK) . 50

2.3.1 Context . 50

2.3.2 Prior Knowledge Derived from the Ranking Provided by the Web
Search Engine Result Page . 51

2.3.3 Prior Knowledge Derived from an Iterative Latent Semantic Anal-
ysis of the Textual Data Describing the Entities 51

2.3.4 Belief Aggregation Strategy . 53

2.3.5 LDRANK . 54

2.4 Evaluation . 54

2.4.1 Introduction . 54

2.4.2 Build the evaluation dataset . 55

2.4.3 Experiments . 58

2.4.4 Results and discussion . 59

2.5 Conclusion . 59

3 The Semantic Snippets 61

3.1 Introduction . 62

3.2 Related Work . 63

3.2.1 Enhancing Snippets for the Semantic Web 63

3.2.2 Enhancing Snippets for the Web of documents 64

3.3 Elements composing a Semantic Snippet 66

3.4 Semantic Snippet as an Interactive Artifact 67

3.5 Semantic Snippets’ Generation . 69

3.6 Learning to rank documents’ excerpts . 71

3.6.1 Background . 71

3.6.2 Related Work . 76

3.6.3 Feature Engineering . 78

3.6.4 Training Dataset . 81

3.6.5 Re-Balancing the Training Dataset 82

3.6.6 First Results . 83

3.6.7 Results using other regrouping strategies 83

3.6.8 Feature Selection . 84

3.6.9 Selected Features . 85

3.6.10 Conclusion . 86

4 Enhanced Search Engine (ENsEN) 87

4.1 Introduction . 88

4.2 Software Design and Architecture . 88

4.2.1 External Services . 88

4.2.2 High-level Architecture . 90

4.2.3 Internal Components . 90

4.2.4 Data Model . 99

4.2.5 Workflow . 101

4.3 User Interface . 103

4.3.1 Visual Design . 104

4.3.2 ENsEN design and Crowdsourcing 104

4.4 Implementation . 106

4.4.1 Technological and architectural choices 106

4.4.2 Hardware Configurations . 108

4.5 Crowdsourcing Evaluation of ENsEN . 108

4.5.1 Methodology . 108

4.5.2 Results Analysis . 111

4.6 Conclusion . 116

5 Conclusion 117

5.1 Research summary . 118

5.2 Future Work and Perspectives . 120

5.2.1 LDRANK: Exploring more prior knowledge sources 120

5.2.2 Semantic Index . 122

5.2.3 SERP from documents to concepts 123

5.2.4 Personalization and Recommendation 124

5.2.5 ENsEN from prototype to product 125

A Crowdsourcing Microtask Example for the Evaluation of ENsEN’s
search interface. 127

A.1 Introduction . 128

A.2 Microtask . 129

A.3 Used topics and questions . 134

Bibliography 137

Publications List 147

List of Figures

1.1 Structured Data Rankers . 11

1.2 Google results for “dinosaurs” query . 17

1.3 Google results for “dinosaurs communications” query 18

1.4 ENsEN results for “dinosaurs communications” query 19

1.5 Google results for “school produced the most justices for Supreme Court
justices” query . 20

1.6 ENsEN results for “school produced the most justices for Supreme Court
justices” query . 21

1.7 Most related concepts of “Supreme Court of the United States” 22

1.8 Entity description of “Harvard Law School” 23

1.9 Most related concepts of “Harvard Law School” 24

1.10 Elements of a semantic snippet. 26

1.11 Elements of a Entity description . 26

2.1 A simple two-state Markov chain. 39

2.2 Directed graph representing a web of six pages. 40

2.3 The Markov chain matrix for the example graph. 40

2.4 The Markov chain stochastic matrix for the example graph 41

2.5 The stochastic-primitive matrix for the example graph 41

2.6 Paper Object Relationship Graph . 46

2.7 DING: The two-layer model of the web of data 48

2.8 Comparison of the NDCG scores for the four different strategies (EQUI,
HIT, SVD and LDRANK) . 58

2.9 Comparison of the execution time for the four different strategies 59

3.1 The semantic snippet layout . 66

3.2 The Entity Description panel . 68

3.3 Example of the generated datasets . 82

3.4 The unbalance of the dataset . 82

4.1 ENsEN Context and High-level Architecture (Component Diagram) . . . 90

4.2 ENsEN Full Detailed Component Diagram 91

4.3 Example of a generated RDF graph . 94

4.4 ENsEN Data Model Diagram . 100

4.5 ENsEN Activity Diagram . 102

4.6 ENsEN Homepage, the query page . 104

4.7 SERP of ENsEN . 105

4.8 ENsEN Deployment Diagram . 107

xvii

4.9 Participants’ expertise for searching on the web, based on the accuracy
of their answers to the questionnaire . 111

4.10 Accuracy of the answers depending on the level of expertise (A,B,C,D,E)
of the participants for the web search domain 111

4.11 Accuracy of the answers per system . 112

4.12 Accuracy of the answers by topic and for each of the two systems 113

4.13 Overall evaluation of the effectiveness and the ease of use for the factual
questions . 114

4.14 Overall evaluation of the effectiveness and the ease of use for the questions
with a list answer . 114

4.15 Ages of the participants . 115

4.16 Participants’ search habits in terms of the kind of queries they are most
likely to perform . 115

4.17 Preferred elements of the GUI . 116

5.1 The research dependency . 120

A.1 Google interface . 129

A.2 ENsEN interface . 130

A.3 ENsEN concept description interface . 130

List of Tables

1.1 LOD cloud statistics 3,4,5 . 7

2.1 Comparative study: summary of dimensions and approaches 36

2.2 The stochastic matrix of the last example 39

2.3 Comparative study: Summary of dimensions and approaches 43

3.1 Results for learning to select sentences apt to explain the relationship
between an entity and the user’s information need 83

3.2 Results for dataset-2 . 84

3.3 Results for dataset-3 . 84

3.4 Feature selection results for (i) the filter approach with the information
gain metric, and for (ii) the wrapper approach with two greedy strategies
for exploring the space of features’ subsets (values are the F1 score for
the positive class (F1-True)) . 85

3.5 Feature selection results using the forward selection wrapper approach
with the logistic regression algorithm and while the number of initial
features varies from 0 to 10 according to their information gain score . . . 85

5.1 The summary of ENsEN’s response time per step (log of 3 queries and 5
results per query) . 126

xix

Chapter 1

Introduction

1

Chapter 1. Context and Background 3

Preface

When seen up close, dangers are controllable: when you begin to

climb the mountain of your dreams, pay attention to the surroundings.

There are cliffs, of course. There are almost imperceptible cracks in

the mountain rock. There are stones so polished by storms that they

have become as slippery as ice. But if you know where you are placing

each footstep, you will notice the traps and how to get around them.

[Manual for Climbing Mountains, Paulo Coelho]

Chapter 1. Context and Background 5

1.1 Context

In the knowledge-driven society, the acquisition and the transfer of the knowledge play a

principal role. If a user tries to acquire new knowledge, she needs information about the

problem, the domain and the concepts around the problem. Understanding a problem

requires building an internal representation of the acquired information as a knowledge

structure (a set of concepts and relations). Building this structure is based on the

information about how these concepts are inter-related and their degree of relevance to

the problem.

Due to the high amount of information available (especially on the web), retrieving and

presenting the suitable information is a laborious task that search engines (SE) try to

handle. The search engine results page (SERP) is somehow a tool for the knowledge

acquisition and transfer, it collects and transfers information from the web to the user.

The elements of a SERP (mainly snippets) help the user in conceptualizing the answer

to satisfy the information need. A snippet (as an excerpt from a web page determined

at query-time, found under the page’s title of each entry in a SERP) is used to express,

as efficiently as possible, the way a web page may be relevant to the query.

A 2010 eye tracking study by [Marcos and González-Caro, 2010] shows that users spend

more time looking at the snippet than looking at other parts of the result (e.g. title,

URL,. . .).

By making explicit the reason a document seems to meet, at least partially, the infor-

mation need of a user, the snippet alleviates the semantic mismatch between relevance

and ‘aboutness’. Indeed, for most existing approaches the snippet is made of a short

and continuous excerpt that contains the query’s keywords. Thus, the snippet offers an

explanation of the way the document is about the keywords. Given this, the user will

more adequately evaluate the relevance of the document to her information need.

With current web search engines, this process still requires an extra effort from the user,

finding the main subject of a web page, the most important concepts mentioned in the

document and how they are related to each other and to her information need. The user

still needs to contextualize her information need in each document.

In this thesis, we make use of the co-existence of the web of documents and the web

of data to enhance the user experience when interacting with the SERP. For a better

understanding of the context, some topics and technologies at the frontier between these

two webs are clarified in the next section.

Chapter 1. Context and Background 6

1.2 Background

As the principal domain of our thesis is enhancing the search interface using both webs

(web of documents and web of data), we introduce in this section a general background

regarding the web of documents, the web of data, how they co-exist, the web information

retrieval and the search user interface.

While this chapter gives a rather broad overview and details some selected topics, specific

and extended information on related work is given in the corresponding sections of the

subsequent chapters.

1.2.1 The “Web”

Nowadays, the World Wide Web (WWW), commonly known as the “Web” is considered

as the greatest and most widely used information system. Moreover the web knew several

historical progressive stages (or versions): in 1989, the idea of the web (as “web 1.0”)

was introduced by Tim Berners-Lee as a global hypertext space in which any network

accessible information would be referred to by a single Universal Document Identifier

(UDI). It was a readable (read-only) version with limited interactions between sites and

users, entirely made up of static web pages with no interactive content, connected by

hyperlinks. Then a richer interactive version “the web 2.0” was introduced. It is based

on the users collaboration and the information sharing, with very efficient search engines.

As the interactivity of the web evolves gradually over time, we cannot determine exactly

where web 1.0 ends and web 2.0 begins. Finally, the semantic version “the web 3.0” was

proposed as an extension of the existing WWW with a target to convert the presently

available web of unstructured documents to a web of information/data consumable by

both human and machines.

From technological and structural point-of-view, the web evolved from a graph of doc-

uments and hyperlinks, i.e. the “web of documents”, to a more informative and finer

grained graph of entities and typed links, i.e. the “web of data”.

1.2.2 Web of Data

The last version of the web (the Semantic Web (SW)) was described by its inventor

Tim Berners-Lee as “an extension of the current web in which information is given

well-defined meaning, better enabling computers and people to work in cooperation.”

[Berners-Lee et al., 2001]. Likewise, the W3C defines the Semantic Web as a vision

of providing a common framework that allows data to be shared and reused across

Chapter 1. Context and Background 7

Year Size

2006 LD introduced by Berners-Lee, 0 dataset
2007 28 datasets
2008 45 dataset
2009 94 dataset
2010 203 dataset, 26 billion RDF triples
2011 295 dataset, 30 billion triples
2012 300 dataset
2014 1014 dataset, 558 data sources

Table 1.1: LOD cloud statistics 3,4,5

application, enterprise, and community boundaries 1. The W3C issued a set of standards

in order to promote common data formats and exchange protocols on the SW; the most

important standard is the Resource Description Framework (RDF), which is a metadata

model for web resources description.

In 2006, Tim Berners-Lee wrote his “Linked Data - Design Issues” [Berners-Lee, 2006],

where he introduced for the first time the term “Linked Data (LD)” as a method of

publishing structured data on the web. This method consists of a list of four principles

about how to share and connect related data across the web using URIs, HTTP, and

RDF: (1) Use URIs as names for things, (2) Use HTTP URIs so that people can look

up those names, (3) When someone looks up a URI, provide useful information, using

the standards (RDF, SPARQL), and (4) Include links to other URIs. So that they can

discover more things.

The LD increases the data value by providing standardized mechanisms for describing

the data and linking them to other datasets. Linking the datasets together using web

technologies, and according to LD principles, creates a huge RDF graph called the “web

of data”. The term web of data is largely interchangeable with the term Semantic Web.

The origins of the web of data lie in the efforts of the W3C Semantic Web research

community and particularly in the activities of the Linking Open Data (LOD) project

[Heath and Bizer, 2011]. The LOD cloud2 gathers most of the datasets published on

the web using the Linked Data principles. At the time of writing this thesis, it encloses

about 1014 datasets describing 8 million entities, with 56.11% of the datasets linked to

at least one other dataset. Table 1.1 shows some historical information about the LOD

Cloud 3 4 5 [Schmachtenberg et al., 2014] .

1”W3C Semantic Web Activity”. World Wide Web Consortium (W3C). November 7, 2011.
2http://lod-cloud.net/
3State of the LOD Cloud 2011: http://lod-cloud.net/state/
4State of the LOD Cloud 2014: http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
5Mannheim Linked Data Catalog: http://linkeddatacatalog.dws.informatik.uni-mannheim.de

Chapter 1. Context and Background 8

The biggest and most referenced dataset in this cloud is DBpedia. DBpedia is a huge LD

dataset extracted from Wikipedia [Bizer et al., 2007], its last version (2014) describes

about 4.58 million entities in up to 125 different languages. It is considered as a highly

connected Dataset due to its 3 billion RDF triples and the 50 million links towards other

RDF datasets6.

1.2.3 Co-existence of the two web (web of documents and web of data)

The web of documents has a relatively low degree of explicitly structure data. It contains

documents, with anchored links between them. Since it was designed for the human

consumption, the semantics of its contents are implicit. On the other hand, the primary

objects of the web of data are “things” (or entities) with typed links between them. In

contrast to the web of document, it was designed for both machines and humans, the

semantics of its contents and links are explicit, and it has a high degree of structure

based on the RDF data model.

Nowadays, these two webs coexist. Furthermore, they are highly connected via multiple

mechanisms. In the next sections, we mention the most common methods used to

connect them.

1.2.3.1 Embedding of structured data in the web of documents

The Linked Data publishing recipes separate the raw-data representations (RDF/XML,

Turtle, N3, etc.) and the human-readable representations (HTML), but embedding

structured Data directly into HTML allows us to navigate from the web of documents

towards the web of data. This mechanism allows the definition and the use of a set

of attributes to augment the presentation-oriented (HTML) documents with structured

data, allowing the user agents to extract triples from web pages.

This mechanism covers methods like:

RDFa, a W3C Recommendation to add a set of attribute-level extensions to HTML,

in order to mark words or phrases to be treated as semantic entities.

Microformats also extend conventional HTML tags with semantic information; they

make use of (X)HTML attributes like “class” or “rel” to embed structured Data.

Finally, Microdata is a very recent HTML 5 proposition that extends Microformats

and addresses its shortcomings. In Microdata, items are created within an itemscope,

every item is assigned some properties (itemprop) and relationships (itemref).

6DBpedia Version 2014 released: http://blog.dbpedia.org/?p=77

Chapter 1. Context and Background 9

1.2.3.2 Extracting structured data from web pages and publishing it on the

web of data

The primary requirement in this category is to have tools that generate RDF from

existing data sources, and then upload the RDF data into a triple store, to make it

accessible through the web. This approach is employed by the DBpedia project, among

others, the project uses PHP scripts to extract structured data from the infobox in the

Wikipedia pages, and then this data is converted to RDF and stored in an OpenLink

Virtuoso repository accessible via an SPARQL endpoint. The Open University in the UK

also applies this approach in the project “LUCERO”7 in order to expose and publish its

organizational information in LOD [Zablith et al., 2011]. If the information is represented

in formats such as XML, CSV, Microsoft Excel, or BibTEX, it can be converted into

RDF using an RDFizing tool8.

1.2.3.3 Wrappers

Large numbers of web applications have started to make their data available on the web

through web APIs. These APIs provide diverse query and retrieval interfaces and return

results using a number of different formats. Thus, they make them inaccessible to generic

data browsers and invisible to the search engines. To overcome these limitations, the

Linked Data wrappers can be applied for the purpose of assigning URIs to the entities,

when one of these URIs is requested from the web of data, the wrapper redirects (rewrite)

the client’s request to a request against the underlying API and the results of the API

request are transformed to RDF and sent back to the client.

1.2.3.4 Automatic Annotation

Finally, the Automatic Annotation that provides a solution for linking unstructured

information sources to entities in the web of data. This approach goes through two

phases: it starts by performing a Named Entity Recognition (NER) where the NLP

technologies are used to analyze, locate and classify fragments of the text into predefined

categories such as the names of persons, organizations, etc.

The next phase is to apply the Entity Linking (EL) or the named entity disambiguation

(NED) in order to determine the identity of entities mentioned in the text. As a result,

the named entities are then linked to the URIs of web of data entities.

7http://lucero-project.info/
8http://www.w3.org/wiki/ConverterToRdf

Chapter 1. Context and Background 10

As a key use-case, the DBpedia project has developed DBpedia Spotlight [Mendes et al.,

2011] that employs the DBpedia dataset in conjunction with NLP strategies in order

to associate entities with words in a text document. In this context, words are more

precisely called, surface forms. It is highly configurable with whitelists and blacklists of

types of entities obtained from the hierarchy of classes of the DBpedia Ontology, with

contextual disambiguation, and a confidence score associated with each result. Other

systems adopting this approach are AlchemyAPI9, which similar to DBpedia Spotlight,

it finds entities in various LOD datasets and thus includes a co-reference resolution step,

OpenCalais10, SemanticAPI from Ontos11,. . .

1.2.4 Web Information Retrieval

The web of documents is very important source of information. This massive collection

of documents and the need for indexing and retrieving all the contained information en-

couraged the Information Retrieval (IR) researchers to adapt and invent new approaches

able to handle the enormous amount of information on the web. It gave the birth to the

“Web Information Retrieval (WIR)” domain.

Most conventional approaches in WIR are based on link analysis (PageRank of Google,

Hits, samba, etc.), where the ranking of the retrieved documents (web pages) is based on

the incoming and outgoing documents’ links. For instance, the PageRank (PR) [Page

et al., 1999] was proposed by Google to rank documents using their popularity.

The explosively growing size of the web of data including more and more comprehensive

information, introduced a new problem: how to find, exploit and consume this vast

amount of data? Generally speaking, retrieving and ranking relevant information is a

fundamental issue in the IR, but when we deal with a huge amount of data, the manner

how the results are presented, filtered or ranked became more important. In the web of

data context, ranking became more delicate, as the nature of the information items to

be ranked and their relations are very different from the case on the web of documents.

Consequently, existing ranking algorithms have been adapted to the web of data and

some others new strategies have started to be proposed and implemented.

[Roa-Valverde and Sicilia, 2014] identified several aspects related to the way ranking

approaches in the web of data are designed. These aspects are imposed by the new

information needs in the web of data and can be summarized as follows:

9
www.alchemyapi.com

10www.opencalais.com
11www.ontos.com

www.alchemyapi.com
www.opencalais.com
www.ontos.com

Chapter 1. Context and Background 11

Figure 1.1: Structured Data Rankers ([Roa-Valverde and Sicilia, 2014]).

• Dealing with larger and heterogeneous information.

• Integrate both structured and unstructured information.

• Query execution.

• Consolidation of results.

According to these aspects, they classified the structured data rankers in a tree of classes

(figure 1.1) with two main configurations: first, applying individual rankers based on a

single relevance criterion. Second, combining individual rankers, either as hybrid ranker

(i.e. integrate multiple ranking criteria) or as composite ranker by combining various

ranking scores produced by different ranking algorithms.

As an example, Swoogle proposed by [Ding et al., 2004] is classified as [Individual Ranker

: Heuristics : Link-based analysis : Markov models]. The authors of this work try to

exploit the semantic of relationships during the ranking process, so they offer a modified

version of PageRank that considers the different types of predicates between entities.

In the last years, the entity-oriented search became more and more necessary. Many

commercial giants started to provide this kind of search service, such as Google Knowl-

edge Graph, Facebook Graph, Bing Snapshot, WolframAlpha and Yandex Islands. All

begun in 2010 when Yahoo! researchers discovered by analyzing their search log that

there is a significant bias towards entity-centric queries [Pound et al., 2010], more than

half of queries focus on an entity or an entity type. Besides, 14.3% of the queries contain

a context entity or type. Therefore, they introduced the term “Ad-hoc Object Retrieval

(AOR)” also commonly called the “entity search” as a task to provide a ranking of RDF

entities in terms of their relevance to an entity that is explicitly named in the query. A

wide range of retrieval approaches is used to achieve this task, such as using a ranking

functions based on BM25MF [Campinas et al., 2012] or on a language model [Neumayer

Chapter 1. Context and Background 12

et al., 2012], applying a supervised learning-to-rank approach [Zablith et al., 2011], or

even adapting PageRank algorithm to rank entities like in [Hu and Du, 2012].

1.2.5 Search User Interface

At the present time, web search engines are the portals of the web. The web exploration

usually begins with a query issued in a search engine with some query reformulations

if needed. Web search engines take the user information need as a keyword query and

try to satisfy this need by interrogating the index, retrieving the documents that are

relevant to the query, then showing them in the Search User Interface (SUI).

Users interact with web search engines via the SUI, the role of SUI is to help users

in the expression of their information need, to understand search results and to select

among the returned results. In the SUI, either the search engine shows full documents,

or else the user is presented with a summary of the content of each document called the

“Textual Snippet” [Hearst, 2011] that helps the user in making the decision about the

relevance of this result. The quality of these textual snippets can significantly affect the

perceived relevance of the search results, making it a critical success factor of the SUI.

The current standard results display in SUI is a vertical list of titles (along with the

URL), and Textual Snippets referred to as SERP (Search Engine Results Page).

Usually, a textual snippet is an excerpt drawn from the full text of the document, and

that contains the query’s terms (often highlighted). In some cases, some metadata is

also shown.

The textual snippets are used by almost every text search engine as a complement of the

ranking proposed by the system (system relevance); their principal role is to economize

the time and efforts needed to find the relevant document (web page) from the user

point-of-view (user relevance).

To enhance the user satisfaction when interacting with a Snippet, the query-biased snip-

pets are proposed. They suggest to show the query terms in the context in which they

appear in the document, it improves the user’s judgment about the relevance of a result.

There are a lot of other factors that also enhance the user satisfaction, like highlighting

the query terms, or showing some deep links to parts of the document. Additionally, in

some cases, user information need can be satisfied directly in the SERP, thus, transform

the search engine into an “answer engine” [Nielsen, 2004].

Since the middle of the 20th century, most efforts to improve information retrieval have

focused on methods of matching text representations with query representations, and

Chapter 1. Context and Background 13

on methods of enriching the SERP. Recently, however, researchers have undertaken the

task of understanding the human, or user, role in IR. The basic assumption behind

these efforts is that we cannot design effective IR systems without some knowledge of

how users interact with them. Therefore, this line of research that studies users in the

process of directly consulting an IR system is called interactive information retrieval

(IIR).

In the IIR, Multiple methods were proposed to enhance the search result, including:

Query Reformulation, the complex query languages, the “Advanced” Search, Sugges-

tions, Clustering, Categorization, Visualization and the enhanced snippets (or enhanced

surrogates).

Having good snippets (or a good SERP) is considered as an important aspect in the IIR

and in increasing the user satisfaction, especially to facilitate quick review of retrieval

results and access to useful information. A good snippet should allow searchers to make

informed decisions about the content of the object being represented, decisions like:

Should I read this document? Can I safely ignore it? Is it different from these other

retrieved documents?

Hass et al. introduced in [Haas et al., 2011] the notion of enhanced search results where

they extend the SERP from a list of “ten blue links” with snippets of text, to include

multimedia objects, specific key value pairs, and interactive elements. Using structured

data or metadata associated with web documents they propose more relevant and more

compelling representations of search results. The weakness of their work is its assumption

that web pages contain metadata describing its content. The tendency to adopt largely

this approach by web search engines to enhance their SERP is due to the immediate

promise of this method as it is closer to the traditional expectations of search engine

processing and the fact that collecting metadata embedded inside HTML pages requires

minimal changes to the existing crawling infrastructure. Adopting this approach by the

most popular websites is due to the fact that their business needs the intermediation

of the web search engines. Therefore, they provide the meta-data for their web pages

to satisfy the SE requirements to enhance their results presentation and improve their

popularity. Another method that applies techniques to promote user interaction with

search results is the work of [White et al., 2002].

Enhancing the SERP with the intention of improving the user satisfaction can be also

achieved by changing the form of search result displays. In [Dumais et al., 2001] au-

thors found that users perform search tasks faster if results are grouped in categories

in the interface. In addition to common approaches for providing more relevant textual

snippets like in [Varadarajan and Hristidis, 2005].

Chapter 1. Context and Background 14

1.3 Statement of the Problem

“A problem is a chance for you to do your best.” – Duke Ellington

In an ideal world, when a WIR system (or a web search engine) shows the SERP to the

user as an answer to her query, the user identifies easily, directly, rapidly the web pages

most likely to fulfill her information need.

However, this is not the case with the current search engines (over the web of docu-

ments). In fact, the current SERPs (consisting mainly of textual snippets) have limited

expressiveness of the relation between the user information need and the result’s con-

tent. In like manners, they are semantically poor with neither conceptual summary of

the result, nor explanation why the user got this result.

Consequently, these SERPs are not ideal in discovering the relevance or the usefulness

of the results, especially in the case of the exploratory search, where users do not have

a very clear information need. In 2014, a study [Jiang et al., 2014] of the user behavior

based on the searching, the clicking and the browsing suggested that:

“Users cannot perfectly predict whether a result is useful or not purely based on the

abstract returned by a search engine.”

Moreover, as they applied the study over different types of search tasks, they found that:

“The lower click accuracy in tasks looking for intellectual products indicates that the

result abstracts provided in current search engines are probably optimized for factual

search only, which is difficult to satisfy users searching for other types of information.”

We can summarize the statement of this thesis as the following:

“Considering the fact that the web of data became a huge store of structured

and linked data, how can we combine the information from this web with the

information from the web of documents to enhance the user experience when

interacting with a SERP? How can we make these SERPs more expressive,

semantically rich and helpful for the users?”

In this thesis, our primary assumption is that the retrieval effectiveness and the user

satisfaction on the WIR systems can be improved by semantically enhancing the SERP

with the assistance of the web of data as a source of structured and linked data.

Chapter 1. Context and Background 15

1.4 Research Questions

“Never try to solve all the problems at once, make them line up for you

one-by-one.” – Richard Sloma

Solving the above problem includes addressing the following questions:

– Question 1: In an IR system, can we introduce a new, interactive, richer and more

informative Artifact to the SERP that replace the traditional textual snippets? Can we

employ the automatic annotation of the Linked Data entities over the results’ text in the

construction of this Artifact?

The textual snippets proposed by the traditional search engines are excerpts from the

documents that often contain the keywords of the user’s query highlighted in their

context. They are semantically poor because of the lake of, or not existing semantic

representation of the document, the query, and the relation between them. They are

also non-interactive artifacts.

Replacing these snippets by new interactive artifacts can help the users in organizing

the information, structuring their investigation of an information resource, or in making

a decision.

The new artifact must be richer and more expressive in reflecting not only the context

of the query’s keywords but also where and how the user information need is linked to

the most relevant information in the document.

As we saw (Section 1.2), the Automatic Annotation is an important method to inter-

connect the web of documents and the web of data. Applying the automatic annotation

over the text of a search result will return a huge set of annotated entities. Can we use

these entities in the construction of the new artifact? If yes, this will lead us to the next

question.

– Question 2: As the automatic annotation allows the identification of an immense

amount of entities in the text, how can we choose the most relevant ones? In other

words, how to overcome the problem of the noisiness and off-topic of the annotations?

And how to select the relevant entities according to the original query?

The annotated entities have different levels of relevance (pertinence to the information

need) and usefulness (utility in a given context). Even with latest technologies in this

domain, we still have annotation errors (i.e., link a word or a surface-form to the wrong

entity), and off-topic errors (i.e., correctly annotated but the entity is not related to the

context), thus introduce a considerable quantity of noise in the extracted data.

Chapter 1. Context and Background 16

For these reasons, ranking and selecting the most relevant entities (extracted from the

web of data) is a crucial aspect to be able to use them in the proposed artifact. Further

aspects to examine are: how to identify the relevance from the user point of view?

– Question 3: How to objectively measure the impact of the new proposed artifact on

the user experience?

Measuring if the new interactive artifact has enhanced the user experience or not is

crucial. This evaluation must be generic and representative enough to cover all the

aspects of presenting and interacting with the new artifact.

1.5 Application Scenarios

“If I’m going to sing like someone else, then I do not need to sing at all.” –

Billie Holiday (American jazz singer)

In the following, we present some application scenarios that illustrate the need for the

work developed during this thesis.

1.5.1 Application Scenario 1: General Vs. Specific user information

need

Sam has a homework to do about “dinosaurs’ communications”, he does not know a

lot about dinosaurs, and nothing about their communication, so he decided to do some

research on the web. He has the possibility to search about the “dinosaurs”, then about

“dinosaurs communications”, or search directly about “dinosaurs communications”.

– In the first scenario, he starts the search session by typing “dinosaurs” in a search

engine like Google, he hopes to find a summary about dinosaurs to have a general idea

about them. However, as this query is too generic, the search engine gives back many

documents and information causing an information overload in the SERP (see Figure

1.2). As a consequence, Sam must read all the snippets in the SERP and even read too

many pages in order to build his summary.

We have to notice here, that this type of summary is typically the abstract (short text

that describes the entity) of an entity (like dinosaur12) in the web of data.

The next step is to reformulate the query by adding the keyword “communications” (see

Figure 1.3), then to decide which results are the best from his point-of-view (POV). This

decision depends only on the small text associated with each result (the textual snippet),

12 http://live.dbpedia.org/resource/Dinosaur

http://live.dbpedia.org/resource/Dinosaur

Chapter 1. Context and Background 17

Figure 1.2: Google results for “dinosaurs” query

hoping that these results contain what he was searching for, i.e. an explanation about

dinosaurs’ communications.

– In the second scenario, Sam starts the search session directly with the query “dinosaurs

communications” (see Figure 1.3). The problem, in this case, is that he will suffer from

what we call the information limitation, i.e. the query is specific enough to limit the

retrieved information only on the query’s topic. So, he will get results about how the

dinosaurs communicate, but no general information about the dinosaurs, so for each

result he must find some general information about dinosaurs (that may not be included,

such as the first result13) then about how they communicate.

1.5.1.1 A solution

As a solution, our proposed system ENsEN (Enhanced Search Engine) is able to find,

the most important concepts in a result (regarding the query), associating each concept

with a textual and factual summary built by combining the result’s content with infor-

mation from other trusted, external sources.

13http://www.livescience.com/32271-how-did-dinosaurs-communicate.html

Chapter 1. Context and Background 18

Figure 1.3: Google results for “dinosaurs communications” query

Returning to our scenario, Sam types “dinosaurs communications” in this search engine,

he will get results talking about dinosaurs communications, see Figure 1.4. However, in

the results, “dinosaurs” and “communications” are considered as important concepts.

Therefore, ENsEN includes them in the generated snippets with summaries that Sam

needed to understand the subject and satisfy his information need. In addition, ENsEN

provides a list of the most important concepts related to the last two concepts, with

a textual context that explains how these two concepts are related and where (on the

result page). In this SERP, Sam will get the definition of dinosaurs (a) and commu-

nication (b). He will get also a list of top related concepts to his query (c), such as

“Bellows”, “Guttural”, and “Corythosaurus”, to enrich his knowledge of the subject.

In addition, the system shows that the excerpt (d) “The chambered headcrests on some

dinosaurs such as Corythosaurus and Parasaurolophus might have been used to am-

plify grunts or bellows.” is one of the best to contextualize the query, however, the

term “communication” is not present in this excerpt.

Finally, by knowing the most important concepts (regarding the query) in each result

(e), it will be easier for Sam to identify the most relevant result, economizing a lot of

time and efforts.

Chapter 1. Context and Background 19

Figure 1.4: ENsEN results for “dinosaurs communications” query

1.5.2 Application Scenario 2: Answering directly (in SERP) hard ques-

tions

Sam’s professor asked him to search (on the web) an answer to the question “what school

produced the most justices for Supreme Court justices?”.

Sam does not even know what is the “Supreme Court justices”. Therefore, he started his

search session by typing “school produced the most justices for Supreme Court justices”

in Google. Google returned the relevant results in SERP with some snippets (see Figure

1.5).

Chapter 1. Context and Background 20

Figure 1.5: Google results for “school produced the most justices for Supreme Court
justices” query

Sam reads these snippets hoping to find the answer, but, unfortunately, no answer there,

so he made a decision about the most relevant result (from his POV) and clicked on it.

So, he had two expensive solutions: either he reads the whole page to find the answer,

or he uses the browser search-in-the-page functionality with keywords like “Supreme

Court justices”, “most”, “school”. It is possible that Sam does not find the answer on

this page. In this case, he must go back to the SERP and visit another page, or he can

re-formulate the query to get different results.

Chapter 1. Context and Background 21

Figure 1.6: ENsEN results for “school produced the most justices for Supreme Court
justices” query

1.5.2.1 A solution

Our system (ENsEN) will return the SERP presented in Figure 1.6, in which, Sam is

able to find the most important concepts in each result with respect to the query, each

concept is associated with a textual context also relevant to the user’s query. In this

SERP, ENsEN shows that “Supreme Court of the United States” is the most important

concept, giving Sam the definition of this term, and its most related concepts (Figure

1.7).

Chapter 1. Context and Background 22

Figure 1.7: Most related concepts of “Supreme Court of the United States”

ENsEN shows also that the next two most important concepts are “United States” and

“Harvard Law School”, so Harvard may be the answer to Sam’s question.

Actually, in the context of the concept “Harvard Law School” (Figure 1.8), Sam will

find the needed answer:

“The ones that produced the most justices are Harvard(15), Yale(6), and Columbia(2).”

Not only the answer but also in which result this answer is, i.e. “The Most Popular Law

Schools of Supreme Court Justices — TIME”, with the possibility to go directly to the

corresponding paragraph in the result.

Chapter 1. Context and Background 23

Figure 1.8: Entity description of “Harvard Law School”

In addition, ENsEN’s SERP will give Sam enough elements to explore more information

about the subject, such as Harvard’s most related concepts (Figure 1.9), how they are

related, in which context the query concepts were mentioned.

Chapter 1. Context and Background 24

Figure 1.9: Most related concepts of “Harvard Law School”

To summarize, ENsEN will give Sam the answer for his question directly in the SERP.

So, no need to visit or search again in the results, and it will give him the needed means

to explore more about his information need.

1.6 Summary of Contributions

“Each of us is a unique strand in the intricate web of life and here to make

a contribution.” – Deepak Chopra

In this thesis, we propose a novel interactive artifact for the SERP called the “Semantic

Snippet”. The semantic snippets facilitate the knowledge transfer and acquisition. It is

a semantic entity-based artifact, and it tries to assist the user in her conceptualization

process during a search session.

Our proposed approach to solving the problems mentioned above can be decomposed

into the following contributions:

1.6.1 Query-biased Ranking for Linked Data Entities

The result of applying the automatic annotation on a text is a vast list of annotated

entities with a lot of noisy and off-topic ones. Ranking these entities and selecting the

most relevant ones with respect to the user information need (second research question) is

a crucial issue. Therefore, we propose a query-biased algorithm (LDRANK) for ranking

Chapter 1. Context and Background 25

the entities of an RDF graph. This algorithm is well adapted to our context, where we

suppose that the entities were discovered in a web page found by a web search engine

as an answer to a user’s query.

LDRANK (Linked Data Rank) is an algorithm to rank the entities of poorly con-

nected graphs for which textual data can be associated with the nodes. It uses the

explicit structure of the graph through a PageRank-like algorithm and the implicit re-

lationships that can be inferred from the text associated with the entities through an

original variation of the Singular Value Decomposition (SVD).

1.6.2 “Semantic Snippets” and the Enhanced Search Engine (ENsEN)

In this contribution, we introduce our new semantic and interactive artifact of the SERP

called “semantic snippets”. This new artifact replaces the traditional textual snippets

in the search interface.

The semantic snippets focus on LD entities integration to enhance the knowledge transfer

process. It tries to employ the Linked Data from the highly connected Open Data (LOD)

graph to contextualize the user information need and even contextualize the results; this

contextualization improve (as proved in the experiments) the usefulness of the results

for the user.

Chapter 1. Context and Background 26

Figure 1.10: Elements of a semantic snippet.

The semantic snippet that we propose consists of five

elements illustrated in Figure 1.10:

(1) the result’s title;

(2) the original textual snippet proposed by the search

engine (excerpt from the result) but annotated with

entities from the web of data;

(3) the new textual snippet, it is also an excerpt from

the result but it was selected using machine learning

methods with semantic and textual features;

(4) the primary concepts, best entities annotated in

the result that represent the best the relation between

the “user information need” and the “result’s content”.

The analysis and the selection of the primary concepts

is presented in the first contribution (Chapter 2);

(5) the entity description (Figure 1.11), for each pri-

mary concept, the semantic snippet shows an info panel

called the entity description. This panel aims to ex-

plain the entity and contextualize it in the text and

among the other entities. It consists of (a) a short

textual description (abstract), (b) a picture, (c) a tex-

tual context section (best excerpts where it was men-

tioned), (d) related concepts section (which entities it

is related to) and finally (e) a graphical representation

of the RDF subgraph centered around this entity.
Figure 1.11: Elements of

a Entity description

In order to better convince the reader of the usefulness and efficiency of the proposed

artifacts, we integrate them at the core of ENsEN 14 (Enhanced Search Engine):

a software system that enhances a SERP with semantic snippets (presented in chapter

4). Given the query, we obtain the SERP (we used Google in the experiments). For

each result of the SERP, we build the proposed data structure that we use as input to

14ENsEN: a live demonstration is available on-line http://liris.cnrs.fr/drim/projects/ensen/

 http://liris.cnrs.fr/drim/projects/ensen/

Chapter 1. Context and Background 27

execute LDRANK (and LDSVD) to obtain a ranking of the entities. The top-ranked

entities will be used in the Primary Concepts component. From an SPARQL endpoint,

we do a 1-hop extension of the top-ranked entities in order to increase the number of

triples among which we will then search for the more important ones. To do this, we

build a 3-way tensor from the extended graph that we analyze in order to associate to

each top-ranked entity a set of triples that will appear within its description (Entity

Description).

Finally, we used a machine learning approach (see Section 3.6) to select an excerpt

from the web page to be the new textual snippet and short excerpts to be part of the

description of each top-ranked entity.

In this approach, we introduce how to use the machine learning to rank and select

the documents’ excerpts. We are interested in documents, which are the results of a

query issued to an information retrieval system. Each of these documents come with a

list of annotated entities found by DBpedia spotlight and a corresponding RDF graph

extracted from Linked Data.

This approach is a supervised learning one, where we learn to select documents’ excerpts

that expose the relevance of an entity (from the most important entities in the document

that has been selected using LDRANK) to the user’s information need. We propose a

classifier that is able to predicate if a sentence (excerpt) expose the relation (Information

need, Entity, Document).

Different classifiers were trained using the training set, and their prediction performance

was evaluated using the cross-validation. A feature selection study also has been applied

to enhanced the prediction and the performance.

1.7 Structure of the Thesis

This thesis is organized in five chapters. In the current chapter (Chapter 1), we introduce

the context of our thesis, some background information and the research questions that

we try to answer.

The Chapter 2 describes our first contribution, the entity ranking algorithm (LDRANK).

The proposed interactive artifact (the semantic snippet) is presented in Chapter 3, where

we also discuss the machine learning approach to select the textual snippets (Section

3.6). The developed system (ENsEN) is presented in Chapter 4.

As we handle different domains in this thesis, there is no Related Work chapter. We

chose to discuss the corresponding related works with each contribution.

Chapter 1. Context and Background 28

Each chapter starts with an introduction, which motivates the corresponding research

questions by referring to related work, and concludes with a summary of main findings

and contributions.

Finally, we conclude this thesis (Chapter 5) by summarizing our main findings and

contributions and answering the research questions raised in this chapter. Further, we

outline future works made possible by the findings of this thesis in order to allow different

professionals to continue research in this direction.

Chapter 2

A Query-biased Ranking for LOD

Entities

29

Chapter 2. A Query-biased Ranking for LOD Entities 30

2.1 Introduction and Context

In this contribution, we introduce LDRANK, a query-biased algorithm for ranking the

entities of a sub-graph of the Linked Open Data (LOD) cloud1. LDRANK makes use of

any available textual data that can be associated with the nodes of the graph. We apply

LDRANK to graphs derived from the automatic detection of LOD entities within the

top web pages returned by a web search engine given a user’s information need expressed

through a query made of a set of keywords.

As to this matter, numerous solutions exist for the automatic detection of LOD entities

in plain text, such as DBpedia Spotlight [Mendes et al., 2011] (configurable via white and

black lists to filter by types of entities as defined in the class hierarchy of the DBpedia

ontology, including a contextual disambiguation phase, and providing a confidence score

for each association of a surface form with a potential entity) ; AlchemyAPI2 (similar

to DBpedia Spotlight, it makes use of multiple LOD datasets and therefore it possesses

a co-reference resolution step), OpenCalais2, SemanticAPI de Ontos2, etc.

In our context, we use DBpedia Spotlight, and the textual data associated with the

nodes of the graph comes from the DBpedia’s abstract of the entity, and also from

excerpts of the web page centered on the surface forms where the entity was detected.

To point towards the specificity of the LDRANK algorithm, we follow with a brief

description of the relationship between conventional approaches for the ranking of web

pages and state of the art proposals for the ranking of the web of data’s entities.

In the context of the web of documents, a hyperlink indicates a relationship between

information carried by two web pages. Although these indications are in general coarse-

grained, they revealed themselves as essential for the most-effective algorithms used to

rank web pages PageRank [Page et al., 1999], HITS [Kleinberg, 1999], SALSA [Lempel

and Moran, 2001].

In the web of data context, the links (materialized by triples: subject / predicate /

object) represent named relationships between data entities. These links make a web

of data from interrelated datasets: the Linked Data cloud. The vast majority of rank-

ing strategies for the web of data (see the next section) relies on adaptations of the

PageRank [Page et al., 1999] algorithm.

With LDRANK, we adopt a strategy based on the linear consensual combination of

several sources of prior knowledge to modify a PageRank-like algorithm. Here, prior

knowledge means any form of contextual knowledge apart from the structure of the

1http://lod-cloud.net/
2
www.alchemyapi.com ; www.opencalais.com ; www.ontos.com

http://lod-cloud.net/
www.alchemyapi.com
www.opencalais.com
www.ontos.com

Chapter 2. A Query-biased Ranking for LOD Entities 31

RDF graph. For example, textual descriptions for the nodes of the graph would qualify

as a source of prior knowledge. Each such source is used to compute a probability

distribution over the entities. Such a distribution gives a prior importance to each

entity.

In the next section 2.2, we present the related works about Semantic Search and Entity

Ranking. Then, we study these related works using a comparison schema (consisting of

a set of dimensions and classes) designed after studying the latest works and surveys

in the domain. This schema helps us to position LDRANK against the most recent

approaches. Next we present in details our approach, and its evaluation.

2.2 Related Works

Search technologies are today very much interested in the Semantic search, where one of

the main tasks is to rank linked data entities or other semantic web resources. Semantic

search aims to enhance and enrich the traditional information retrieval methods by going

beyond keywords matching, and simple link analysis.

Semantic search becomes a very dynamic research area thanks to the emergence of

the web of data, and the metadata embedded in the web of documents. The analysis

of these embedded data allows discovering more relationships between the embedded

entities. These relations were not explicit in the text, or not in a machine readable

format. However, this type of search raises new challenges, such as: (1) How to modelize

the query : in the semantic search, the query can be more than a list of keywords, it can

be expressed as a set of entities or even as a structured query. (2) What is the definition

of a “document”: in a semantic search system, the document can take multiple forms,

such as semantic resource, physical file, entity and its aggregated information, the result

of a SPARQL query. (3) The ranking approach.

In this work, we are interested in answering the last question, viz. how to rank the

semantic resources? In particular (and according to our context), how to rank the

annotated entities according to the user information need of which we have a partial

knowledge through the user query.

Entity ranking is the process of finding and sorting entities according to their relevance

to the user’s information need. It is a data oriented search approach where results can

come from combining information from multiple sources instead of a single one. This

research domain is at the frontier of two communities: information retrieval and semantic

web.

Chapter 2. A Query-biased Ranking for LOD Entities 32

Lastly, two extensive surveys, [Roa-Valverde and Sicilia, 2014] and [Jindal et al., 2014],

focused on the semantic search domain. In the first survey [Roa-Valverde and Sicilia,

2014], the authors formalize the problem of ranking linked data, they provide a complete

overview of ranking methodologies on the web of data. They select the most relevant

algorithms according to their impact in this field and describe them in details. They

describe the challenges of ranking on the web of data, the rank operator that reflect

the strategy of relevance, and how the different approaches (or implementations of the

rank operator) can be classified. They identify two main configurations for choosing a

Ranker (ranking algorithm), Individual rankers based on a single relevance criterion, and

Combined rankers where multiple ranking criteria are integrated into a hybrid ranker,

or multiple ranking scores are combined into a composite ranker.

In order to classify the individual rankers, the authors identified four dimensions or

aspects:

(1) Queries: Ranking approaches consider user queries in the computing of the scores,

or not;

(2) Features: A Feature is an aspect that exists in the data that makes possible to

establish a comparison between items belonging to a data source;

(3) Granularity: It refers to the granularity of the data source to be ranked (i.e., entity,

identifier, relationships, dataset, document);

(4) Heuristics: A heuristic makes reference to a particular mechanism that guide the

score computation process.

The second survey [Jindal et al., 2014] classifies the ranking approaches for the Semantic

search on the web into three categories considering their stage of ranking:

(1) Entity ranking : In terms of entity-oriented search, where the objective is to retrieve

entities that match the query.

(2) Relationship ranking : That determines a relative importance of relationships found

with respect to a user’s query context.

(3) Semantic document ranking : In terms of document-oriented search, ranking the

documents according to the presence of the most relevant entities along with the most

relevant relationships among those entities.

We notice that the second survey [Jindal et al., 2014] studies only one of the dimensions

proposed by the first survey [Roa-Valverde and Sicilia, 2014] which is the Ranking gran-

ularity. However, it provides a deep discussion of this dimension, in addition to studying

more works in the corresponding domain.

Chapter 2. A Query-biased Ranking for LOD Entities 33

2.2.1 Comparative study

Given these two surveys, complemented by other works, [Butt et al., 2015], [Hildebrand

et al., 2007], [Koumenides and Shadbolt, 2014], and [Yumusak et al., 2014], we propose

the following comparison schema, presented in Table 2.1, where we define the primary

dimensions of a semantic ranking approach, to position the main works in this domain.

We do not present or study the domain in an exhaustive way; we rather provide a

detailed outline and reflective examples from the literature.

2.2.1.1 Studied dimensions

The dimensions that we propose in order to study and compare the works are the

following:

1. Query dependency

Query dependency makes reference to the way in which the user query is considered

in the ranking. An algorithm is “query-independent” (also known as “static”,

“absolute” or “global”) if it ranks the items regardless of the user query, it relies

on the internal structure of the dataset. These approaches are implemented on the

complete dataset irrespective of the query.

On the opposite, a “query-dependent” algorithm (also called “dynamic” or “fo-

cused”) ranks the items regarding the user input. Often, in the query-dependent

approaches, the ranking model is applied only to the retrieved set of items; thus

it gives a relative order for these items.

It is possible to find algorithms that combine both static and dynamic strategies

as in [Anyanwu et al., 2005].

2. Granularity One of the most important aspects when ranking information is

the nature of the items to rank, i.e. the granularity of what is being ranked, it

determines the amount of information represented by each item, like a document

or an individual entity.

We use the following scale of granularities:

(1) Document : It refers to the “semantic web document (SWD)” which is an atomic

data transfer packet on the semantic web. It is both a web page addressable by

a URL and an RDF graph containing semantic web data. Its content is either an

ontology (schema or model) or a conventional RDF data. The document-centric

approaches list the URIs or the labels of the matched documents and/or parts of

document in order of their relevance.

Chapter 2. A Query-biased Ranking for LOD Entities 34

(2) Entity : An entity is a self-contained unit of information that has relationships

with other entities [Delbru et al., 2010], such as a person, a place or an event. The

entity-centric approaches consolidate available data about the entity from multiple

documents and list them as a profile of the entity.

(2) Relationship: An RDF predicate defines a typed relationship between two

entities. The relationship-centric approaches find most relevant relationships be-

tween input entities. In this kind of approaches, using structured queries is a very

common practice.

3. Scope of the dataset

The Semantic search techniques can be classified into those that explore a schema

defined by an ontology, and those that explore data generated according to this

schema.

The “ontology-search techniques” find the classes and properties within specific

ontology or across ontologies (non-specific ontology). However the “linked-data-

search techniques” focus on the retrieval of entities (or relationships among en-

tities) in knowledge bases (KBs). These KBs can be restricted to one domain

(Domain-based KB), or generic one (Cross-domain KB). Some approaches search

only in the LOD cloud (which is a cross-domain KB).

In addition to the KBs, the “linked-data-search techniques” also search for entities

in the meta-data embedded in a web document (Embedded RDF) or in an RDF

graph which is the result of an automatic annotation process (AA-RDF). In both

cases, the entities can belong to a domain-based KB, a cross-domain KB or even

to the LOD cloud.

4. Domain

Some semantic search techniques are specific to a particular domain. Other tech-

niques stay generic: they can apply to any dataset independently of its domain.

5. Algorithm’s type

The ranking algorithms follow in general three schools, (1) link-based analysis, (2)

learning to rank analysis, or (3) combination of measures such as graph theory

measures (e.g. centrality, Density,etc.), entropy (e.g. information gain), semantic

similarity, etc.

Link analysis was proposed as a method to rank hypertext documents considering

the hyperlinks to incorporate structural features during the ranking. Semantic

search techniques adapted these algorithms to semantic structure.

Most of the approaches in this category are PageRank-based, they consider mainly

the popularity of an item in the dataset proposing to modify the original algorithm

Chapter 2. A Query-biased Ranking for LOD Entities 35

using different sources of knowledge. Some ranking strategies, analyze only the

result data (that matches the query introduced by the user), we class them under

the “Dynamic Modified PageRank” category. Authority-based approaches also

exist. The authority is a measure of trustworthiness and it is used mainly in HITS

[Kleinberg, 1999], and its variations.

A recent trend for semantic ranking is the adaptation of learning-to-rank ap-

proaches from the machine learning domain. They integrate the semantic features

in the learning process.

Some techniques mix the last approaches with other measures, such as the infor-

mativeness, the coverage and the user feedback. They propose to combine them

in different ways, and often with different weights (Weighted Combination of mea-

sures).

The informativeness represents the amount of information carried by each item in

the dataset, that helps to identify and rank it. For example, we can think of the

entropy [Shannon, 2001].

The coverage depends on the query and measures how much of a query’s terms

or structure is covered by an item. The coverage-based techniques apply some

adapted versions of the Vector Space Model and BM25, that calculate the similar-

ity between a query and the matched item.

The user feedback is also considered as a ranking factor, using the view count or

the query log.

In the context of ranking relationships, the classical information retrieval tech-

niques are not applicable as (in contrast to the case of documents or entities)

there is no way to determine how good a query matches a relationship. To over-

come this problem, information theory techniques were proposed relying on how

predictable a result might be for users, forming the “Discovery search” approaches.

Other techniques were also proposed, such as the ones based on the language

models (LM).

In the next Table (2.1), we show a total of 17 ranking approaches, and we compare them

by focusing on the dimensions mentioned above.

Chapter 2. A Query-biased Ranking for LOD Entities 36

D
im

e
n
s
io

n
C

la
s
s

OntologyRank

PopRank

SemRank

ReConRank

AKTiveRank

NAGA

Hartetal.

TripleRank

RareRank

DBpediaRanker

DING

Tononetal.

Sig.ma

RankingComplexRelations

DaliandFortuna

DWRank

RankProperties

Q
u
e
r
y

D
e
p

e
n
d
e
n
c
y

Q
u
e
r
y

in
d
e
p

e
n
d
e
n
t

x
x

x
x

x
x

x
x

x
x

x
Q

u
e
r
y

d
e
p

e
n
d
e
n
t

x
x

x
x

x
x

x
G

r
a
n
u
la

r
it

y
D

o
c
u
m

e
n
t

x
x

E
n
t
it

y
(
R

e
s
o
u
r
c
e
)

x
x

x
x

x
x

x
x

x
x

x
x

R
e
la

t
io

n
s
h
ip

x
x

x
x

x
x

x
x

S
c
o
p

e
o
f

t
h
e

D
a
t
a
s
e
t

S
p

e
c
ifi

c
O

n
t
o
lo

g
y

x
x

x
x

N
o
n
-s

p
e
c
ifi

c
O

n
t
o
lo

g
y

x
D

o
m

a
in

-b
a
s
e
d

K
B

x
x

C
r
o
s
s
-d

o
m

a
in

K
B

x
x

x
x

x
x

x
x

x
x

x
x

L
O

D
x

x
x

x
E

m
b

e
d
d
e
d

R
D

F
x

x
A

A
-R

D
F

D
o
m

a
in

S
p

e
c
ifi

c
x

x
I
n
d
e
p

e
n
d
e
n
t

x
x

x
x

x
x

x
x

x
A

lg
o
r
it

h
m

’s
t
y
p

e
M

o
d
ifi

e
d

P
a
g
e
R

a
n
k

x
x

x
x

x
x

D
y
n
a
m

ic
M

o
d
ifi

e
d

P
R

x
D

is
c
o
v
e
r
y

S
e
a
r
c
h

x
W

e
ig

h
t
e
d

C
o
m

b
in

a
t
io

n
o
f

m
e
a
s
u
r
e
s

x
x

x
x

x
x

x
H

it
s

b
a
s
e
d

x
x

x
L

e
a
r
n

t
o

R
a
n
k

x
x

x
x

L
a
n
g
u
a
g
e

m
o
d
e
l

(
L

M
)

x

T
a
b
l
e
2
.1
:

C
om

p
a
ra

ti
ve

st
u

d
y
:

su
m

m
a
ry

o
f

d
im

en
si

o
n

s
a
n

d
a
p

p
ro

a
ch

es

Chapter 2. A Query-biased Ranking for LOD Entities 37

2.2.1.2 Analysis

Table 2.1 shows that the studied approaches include different ranking criteria, like link

analysis, learning-to-rank... Most of the Semantic search approaches are query indepen-

dent and targeting entities (and sometimes their relationships). In general, the studied

works rank items of cross-domain Linked Data datasets, and when an approach rank

ontology’s items, the used ontology is often a specific one.

From an algorithmic point of view, most of the approaches are based on a modification of

PageRank. These modifications propose (generally) to replace the random component

of PageRank represented by the uniformed teleportation matrix (all the nodes have

the same probability to be attained through a teleportation) by a biased teleportation

matrix representing some prior knowledge about the importance of the nodes.

In the case of OntologyRank, they propose to use the different types of links between

the semantic documents as prior knowledge in order to modify the PageRank. In the

same way, PopRank proposes to consider the link types by integrating different weights

(according to the type), which they named the “popularity propagation factors”. As

RareRank handles domain-specific dataset, they propose a non-random surfer model, or

what they call a rational searcher guided by link analysis (e.g the citation), and content

analysis (e.g. indirect links between documents with similar or closely related topics).

DING also assign weights to links and applies PageRank to the weighted dataset graph.

The previous approaches are query-independent, and the application of the ranking algo-

rithm is off-line on the whole dataset. However, other approaches, such as ReConRank,

propose to apply the modified PageRank only on the result set, so they send the query,

retrieve the resulted items, and then they apply the algorithm. We call this kind of

algorithms “Dynamic modified PageRank”.

Similar approaches were proposed but based on the other famous link-analysis algorithm

Hits, like TripleRank, where the authors represent the triples in a tensor, and then they

apply the PARAFAC decomposition, which can be seen as a multi-modal counterpart

to web authority ranking with HITS.

Another category is the learning-to-rank approaches applied to the web of data (e.g. [Dali

et al., 2012]). These approaches rely on the availability of relevance judgments for

learning.

Some other approaches tried to merge multiple measures and methods in order to com-

pute the item’s score. They often use a weighted combination of these measures. The

combined measures can be structural like in AKTIVERank (class match, density, se-

mantic similarity, betweenness), others approaches (e.g. SemRank) used measures from

Chapter 2. A Query-biased Ranking for LOD Entities 38

the information theory that rely on the predictability of a result (based on the informa-

tion gain and the likelihood that a user could have guessed that such a result exists).

A set of similarity measures (resource similarity, resource label-abstract similarity) are

combined in DBpediaRanker to find the relevance with respect to the user query.

Studying the last six dimensions allows us also to distinguish and choose the approaches,

the most related to our context. As aforementioned, our context is the query-based

ranking of entities in an RDF graph, generated by an automatic annotation process over

a web page returned by a search engine given a user’s query. These entities belong to the

LOD graph, which is a cross-domain knowledge base. Besides, these annotated entities

are domain-independent. LDRANK proposes a dynamic modification of PageRank since

it considers the query in the ranking, see Table 2.3 for the LDRANK positioning.

Consequently, we identified five approaches as similar, depending on their shared dimen-

sion with LDRANK.

2.2.2 Selected approaches from the literature

The identified related approaches (and LDRANK) are PageRank-based; thus, we present

a short background about link analysis and PageRank, and then we discuss in details

the selected approaches. Finally, we compare ourselves to them.

2.2.2.1 Background

In this background, we recall the main topics related to the link analysis and PageRank.

Link analysis

Link analysis refers to the techniques that handle the ranking problems by exploiting

the link structures. These links may be between actors in social networks, citation links

in scholarly publications or hyperlinks among web pages.

These techniques become very successful for locating authoritative and quality docu-

ments thanks to their reasonable assumptions, and superior performances. Since 1998,

two ranking techniques, PageRank [Page et al., 1999] and HITS [Kleinberg, 1999] be-

came the center of interest in IR. The PageRank algorithm is the technology proposed

by Google that dominates the world of search engines. The HITS algorithm has been

used to identify authority and hub web pages on the web.

Chapter 2. A Query-biased Ranking for LOD Entities 39

Original PageRank

Before presenting the original PageRank model, we must mention some mathematical

(and graph theory) definitions:

The Markov Chain (see Chapter four in [Langville and Meyer, 2011]): It is a random

process that undergoes transitions from one state to another on a state space (Figure

2.1). It must possess a property that the probability distribution of the next state

depends only on the current state and not on the sequence of events that preceded it.

A Markov chain is characterized by a stochastic matrix, see Table 2.2.

Figure 2.1: A simple two-state Markov chain.

A E
∑

A 0.6 0.4 1

E 0.7 0.3 1

Table 2.2: The stochastic matrix of the last example

A nonnegative matrix: a nonnegative matrix is a matrix in which all the elements

are equal to or greater than zero.

A stochastic matrix: it is a square matrix with each row consisting of non-negative

real numbers whose sum is unity. A key property of a stochastic matrix is that it has a

principal left eigenvector corresponding to its largest eigenvalue 1.

An irreducible adjacency matrix: An adjacency matrix of a directed graph is ir-

reducible if and only if such directed graph is strongly connected, i.e. every node is

reachable from every other node.

A primitive matrix: A square stochastic matrix A is primitive if it is non-negative

and its nth power is positive for some natural number n. In other words, for some n ≥ 1

the matrix An has no entries equal to 0.

An aperiodic chain: An aperiodic chain is an irreducible Markov chain with a primi-

tive transition matrix.

Chapter 2. A Query-biased Ranking for LOD Entities 40

The power iteration method: the power iteration is an eigenvalue iterative algorithm,

where given a matrix A, the algorithm will produce a number λ (the eigenvalue) and a

nonzero vector v (the eigenvector), such that Av = λv.

The original algorithm as described in [Page et al., 1999], is based on the random walk

and theory of Markov Chains. A random surfer visits web pages by following the hyper-

links among them, and the process can be modeled as a Markov Chain with one state

for each web page, where the hyperlink structure of the web is a directed graph, the

nodes represent web pages, and the directed arcs represent hyperlinks. For example3,

consider the small document collection consisting of six web pages linked as in Figure

2.2.

A Markov chain is characterized by a stochastic matrix P whose element pij is the

probability of moving from state i (page i) to state j (page j) in one time-step, see

Figure 2.3. This matrix is not stochastic, some rows of the matrix, such as row 2,

contain all zeros. This occurs whenever a node contains no outlinks; many such nodes

exist on the web. Such nodes are called dangling nodes.

Figure 2.2: Directed graph representing a web of six pages.

Figure 2.3: The Markov chain matrix for the example graph.

In order to make this matrix a stochastic, one solution is to replace all zero rows, 0T ,

with
1

n
eT , where eT is the row vector of all ones and n is the order of the matrix (see

Figure 2.4).

In the Brin and Page model, they force the transition probability matrix P, which is

built from the hyperlink structure of the web, to be stochastic and primitive using the

3example from [Langville and Meyer, 2011]

Chapter 2. A Query-biased Ranking for LOD Entities 41

Figure 2.4: The Markov chain stochastic matrix for the example graph.

damping factor α and the idea of teleport operation. They use then this primitive

transition probability matrix to make the Markov chain an aperiodic chain, on which

they apply the power method that converges to a stationary vector called the PageRank

vector.

So, the stochastic P matrix is transformed as follows:

P̄ = αP + (1− α)E,

where 0 ≤ α ≤ 1, and E =
1

n
eeT , e is n-vector of all ones.

We call E the teleport operator that represent a random jump. When performing the

random jump action, the surfer is jumping to a page chosen randomly according to

the random jump distribution vector (the teleport operator). When we apply the last

adjustment on the example, this gives the next result (Figure 2.5).

Figure 2.5: The stochastic-primitive matrix for the example graph.

From web graph point of view, a complete set of outgoing links from each web page to

all others is added, therefore from each node there is a probability, called teleport, to

reach all other nodes in the web graph.

In classic PageRank, the teleport operator is uniform but authors of the algorithm

suggest taking other distribution vectors as a tool for personalization.

Finally, the computation of the PageRank can be done using the power iteration method

that converges toward the PageRank vector.

PageRank Modifications

The teleportation in the original PageRank is uniform, i.e., from a web page, the walker

has the same probability to go to any other page. This uniform treatment is considered

as unrealistic, especially in the case of the web of data, where the links are typed.

Chapter 2. A Query-biased Ranking for LOD Entities 42

Therefore, many approaches propose to modify the original algorithm and the random

walker model. The researchers in this domain propose other models like the “topic-

sensitive PageRank”, “Rational Surfer” and the “intelligent surfer”.

Most of these modifications modify the teleport operator, by adding weights according

to a prior knowledge about the graph.

In the next section, we present the selected works (highlighted in Table 2.3) and how

they modified the PageRank to be suitable to rank entities of the web of data.

Chapter 2. A Query-biased Ranking for LOD Entities 43

D
im

e
n
s
io

n
C

la
s
s

LDRANK

OntologyRank

PopRank

SemRank

ReConRank

AKTiveRank

NAGA

Hartetal.

TripleRank

RareRank

DBpediaRanker

DING

Tononetal.

Sig.ma

Rankingcomplexrelations

DaliandFortuna

DWRank

RankProperties

Q
u
e
r
y

D
e
p

e
n
d
e
n
c
y

Q
u
e
r
y

in
d
e
p

e
n
d
e
n
t

x
x

x
x

x
x

x
x

x
x

x
Q

u
e
r
y

d
e
p

e
n
d
e
n
t

x
x

x
x

x
x

x
x

G
r
a
n
u
la

r
it

y
D

o
c
u
m

e
n
t

x
x

E
n
t
it

y
(
R

e
s
o
u
r
c
e
)

x
x

x
x

x
x

x
x

x
x

x
x

x
R

e
la

t
io

n
s
h
ip

x
x

x
x

x
x

x
x

S
c
o
p

e
o
f

t
h
e

D
a
t
a
s
e
t

S
p

e
c
ifi

c
O

n
t
o
lo

g
y

x
x

x
x

N
o
n
-s

p
e
c
ifi

c
O

n
t
o
lo

g
y

x
D

o
m

a
in

-b
a
s
e
d

K
B

x
x

C
r
o
s
s
-d

o
m

a
in

K
B

x
x

x
x

x
x

x
x

x
x

x
x

x
L

O
D

x
x

x
x

x
E

m
b

e
d
d
e
d

R
D

F
x

x
A

A
-R

D
F

x
D

o
m

a
in

S
p

e
c
ifi

c
x

x
I
n
d
e
p

e
n
d
e
n
t

x
x

x
x

x
x

x
x

x
x

A
lg

o
r
it

h
m

’s
t
y
p

e
M

o
d
ifi

e
d

P
a
g
e
R

a
n
k

x
x

x
x

x
x

x
D

y
n
a
m

ic
M

o
d
ifi

e
d

P
R

x
D

is
c
o
v
e
r
y

S
e
a
r
c
h

x
W

e
ig

h
t
e
d

C
o
m

b
in

a
t
io

n
o
f

m
e
a
s
u
r
e
s

x
x

x
x

x
x

x
H

it
s

b
a
s
e
d

x
x

x
L

e
a
r
n

t
o

R
a
n
k

x
x

x
x

L
a
n
g
u
a
g
e

m
o
d
e
l

(
L

M
)

x

T
a
b
l
e
2
.3
:

C
om

p
a
ra

ti
ve

st
u

d
y
:

S
u

m
m

a
ry

o
f

d
im

en
si

o
n

s
a
n

d
a
p

p
ro

a
ch

es

Chapter 2. A Query-biased Ranking for LOD Entities 44

2.2.2.2 Selected approaches

In the Table 2.3, we added our algorithm LDRANK in order to compare it and its

context, to the works of the state-of-the-art. This comparison helped us to select the

related works the most similar to ours. In this section, we will discuss the selected

approaches in details, focusing on the aspects we are interested in, such as the algorithm

type and the ranking factor.

(1) OntologyRank

Swoogle [Ding et al., 2004] is a semantic web search engine and a metadata search

provider. Swoogle uses the OntologyRank as ranking algorithm, where the authors

use cross-references between semantic web documents (SWDs) to define a graph and

compute a score for each ontology in a manner analogous to PageRank used by the

Google web search engine.

In this work, they consider an SWD as a web document in which the information is

partitioned into smaller fragments. An SWD contains information that is modeled as an

ontology or part of it. Authors distinguish between two kinds of documents, which they

refer to as Semantic Web Ontologies (SWOs) and Semantic Web DataBases (SWDBs).

A document is an SWO when a significant portion of its statements add new properties

or constraints that define new terms or extend terms defined in other SWDs. On the

other hand, an SWDB introduces individuals and makes assertions without adding or

extending any term. OntologyRank calculates the relevance of SWDs taking into account

four kinds of relationships among documents:

1. imports: SWD2 imports SWD1.

2. uses-term: SWD2 uses some of SWD1’s terms without importing it.

3. extends: SWD2 extends the definitions of terms defined by SWD1.

4. asserts: SWD2 makes assertions about the individuals defined by SWD1.

They found that the PR model is not appropriate for the semantic web, the links have

semantics and no longer equiprobable. Therefore, they suggest that the surfer in the

semantic web should not be purely random, but rather rational. As an example: if an

SWD imports some SWO, then clearly that link must be followed, the present SWD

would not make any sense without the SWO it imports. Thus, OntologyRank propose

to modify PageRank, such that instead of uniforming the probability of following any

link in the graph (as in the original PR), OntologyRank assigns unequal probability

of following links according to their types. Therefore, they assign different weights to

Chapter 2. A Query-biased Ranking for LOD Entities 45

the four categories of inter SWD relations. This kind of analysis is independent of the

user’s information need, which make this algorithm (as the original PR) a static ranking

algorithm.

We can characterize this method as simple, because it does not exploit the provenance,

the content, neither the context. This simplicity makes this algorithm very efficient, but

it may introduce some limitations depending on the usage (e.g. the limited amount of

relationships that are examined during the ranking process).

(2) PopRank [Nie et al., 2005]

PopRank is a query-independent, link analysis model to rank objects within a particular

domain. It is also a PageRank-based algorithm that takes into account the semantic of

the relationships among different objects, by assigning a popularity propagation factor

to each type of object relationship. The various popularity propagation factors for these

heterogeneous relationships were assessed with respect to their impact on the global

popularity ranking.

The main use case of PopRank is ranking objects within a collection of authors, confer-

ences, and journals. The algorithm considers both the web popularity of an object, and

the object relationships to calculate its popularity score.

From the authors’ point-of-view, the objects are contained over the web, the information

about an object is usually rendered as a block of web pages. Thus, the web popularity

can be computed by considering the PageRank scores of web pages containing the object

and the importance of the web page blocks. If a page is popular, its object information

is more likely to be read. The web popularity is used to denote the probability that

a web user reads the information about an object. Therefore, the authors propose the

“Random Object Finder” model, where the surfer starts his random walk on the web,

and then he follows the object relationship links. Once he finds the first object on the

web, he never hits back but eventually gets annoyed and will restart his random walk

on the web again to find another seed object.

As OntologyRank, PopRank extends PageRank by adding different weights to each link

depending on the type of relationship, like a citation between two papers, a paper is

written by an author, publishing a paper in a conference, and so on. They call this

weight the “popularity propagation factor (PPF)”.

Chapter 2. A Query-biased Ranking for LOD Entities 46

Figure 2.6: Paper Object Relationship Graph [Nie et al., 2005].

In Figure 2.6, we show an example of a small graph containing some links pointing

to a paper object, where we need three propagation factors PPF (γ1, γ2 , and γ3)

for the three different types of relationships: cited-by, authored-by, and published-by,

respectively.

The ranking proposed by PopRank is also independent of the user’s information needs,

i.e. it is a static ranking algorithm.

(3) ReConRank [Hogan et al., 2006]

On the contrary to the last two algorithms, ReConRank is a query-dependent ranking

algorithm. ReConRank only analyzes result data that matches the query introduced by

the user. Authors argue that the static strategy followed by PageRank is non-feasible

for three reasons:

- The size of the dataset might be excessively large.

- The updating of the RDF data would suppose the ranking to be recomputed.

- The scores are not correlated with user queries, which means that returned results

might not be the most relevant from the user point of view.

In this work, the authors introduce three algorithms: ResourceRank, ContextRank and

ultimately ReConRank. They are the same algorithm but applied to different graphs;

ResourceRank ranks the resources of the resulted graph, ContextRank is applied on

the graph’s context (provenances), and finally ReConRank calculates the ranking score

relying on a unique unified graph of resources and provenances.

ResourceRank is a PageRank-like algorithm that aims at ranking RDF resources. It

considers the resources as nodes in the graph. As PageRank, ResourceRank follows an

iterative computation over a connectivity matrix that is derived from the graph struc-

ture. The difference from PageRank is that in the first iteration, PageRank initializes all

nodes with an equal score. However, ResourceRank assigns to each node the ratio of all

links that it receives as in-links. In addition, ResourceRank includes weightings during

the computation, which can be manipulated in order to tune the ranking function.

ContextRank tries to improve the ranking quality by introducing provenance informa-

tion. It defines a context as the provenance or source of data. It can be considered as

Chapter 2. A Query-biased Ranking for LOD Entities 47

an extension to ResourceRank in order to include the provenance (the context) during

the ranking computation.

ReConRank computes the ranking of result data (that match a user query) which can

be considered as a topical subgraph. This subgraph contains two types of resources, first

the resources matching the query, i.e. nodes directly linked to the particular root node

(the query), and second the context, i.e. the neighbor resources that can be reached after

a specific number of desired hops in the graph. Thus, the ranking value of an entity (or

resource) is not only dependent on its own importance, but also the importance of its

context (or provenances).

(4) RareRank [Wei et al., 2011]

In RareRank, the authors are interested in one specific domain: scientific publications.

Therefore they propose to replace the random surfer model by another model more

informed, they call it the “Rational Research Model”. They argue that for this specific

domain, there is less randomness than for web search.

This algorithm is used in the Semantic Web Search Engine (SWSE)4 in three

steps: the data is crawled from the web, and then it is transformed into a directed

labeled graph, and finally the RareRank algorithm is applied to compute ranking scores

for resources.

Contrary to the last algorithms, RareRank uses not only the link information (e.g., a

citation between two publications) but also the content information. The content infor-

mation analysis refers to the existence of related information between two objects (re-

sources) not connected by a physical link. This content information is modeled through

the use of an ontology, which allows the navigation from a document to another even

when there were no explicit link between them.

The computation of RareRank is based on the principle of PageRank. But in the case

of RareRank, the authors use two transition graphs. The first is the ontology schema

graph that designates the relations between ontological classes and the weights assigned

to these relations. Weights in the ontology schema graph are customizable parameters.

They essentially reflect the users’ search preferences and the semantics of a domain.

They can be estimated automatically using sophisticated approaches, such as monitoring

community of users’ search activities by collecting user click-through data.

Moreover, the second is the knowledge base graph that consists of the instances (or the

entities) and their relationships instantiated from the schema ontology. The weight of a

relation between two instances (A,B) is determined by the weight of the relation between

4http://swse.deri.org/

Chapter 2. A Query-biased Ranking for LOD Entities 48

the classes of the instances in the schema graph, and how many instances of the same

type as B are linked to by A.

As for PageRank, the ranking vector is computed by applying the power iteration method

to the transition probability matrix.

(5) DING [Delbru et al., 2010]

In DING (or Dataset rankING), the authors modelize the web of data with two layers (see

Figure 2.7); the Dataset layer and the Entity layer, where entities and their relationships

are grouped in datasets, and the union of datasets and their relationships form the web

of data. The entities are inter-linked by the RDF links (intra-dataset links) while the

datasets are connected by the inter-dataset links. The inter-dataset links between two

datasets are aggregated to form a weighted linkset on the dataset layer.

Figure 2.7: The two-layer model of the web of data. Dashed edges on the entity layer
represent inter-dataset links [Delbru et al., 2010].

The weights of the linksets can be seen as an estimation of the probability to go from a

dataset to another following a certain kind of link. In order to compute these weights,

the authors propose a new measure similar to the TF-IDF in information retrieval, which

is the Link Frequency / Inverse Dataset Frequency (LF-IDF). This measure takes into

account both the number of links contained in a linkset and the general importance of

the label involved in the link. This measure promotes the links with a high frequency

in a certain dataset and low dataset frequency in the dataset collection. For example,

dbpprop:reference links defined by DBpedia will have a higher weight than links such as

rdfs:seeAlso.

DING offers an adaption of PageRank to the web of data that exploits the locality

of entities in their dataset and the inter-dataset relationships, where the final score is

calculated in three steps:

1. Dataset ranking: the authors use the random surfer model applied to the

weighted dataset graph (i.e. a modified PageRank) in order to calculate the dataset

rank score.

Chapter 2. A Query-biased Ranking for LOD Entities 49

2. Entity ranking: DING also calculates the ranking of the entities within a dataset.

Thus, they propose two different ranking methods according to the existence of

Spam within the dataset or not. If the dataset has a high chance of Spam, a robust-

ness against Spam method is needed. Therefore, the authors apply the Weighted

EntityRank method, which is based on PageRank and exploits the internal enti-

ties and intra-links of a dataset in order to compute the importance of an entity

node within a dataset. When one can assume that the dataset is Spam-free, an-

other more efficient method is used, The Weighted LinkCount, which is a weighted

in-degree counting links algorithm.

3. Global entity ranking: the authors argue that the EntityRank and LinkCount

represent good solutions for local entity ranking. However, an approach that com-

bines them with the Dataset ranking in order to take into account the particularity

of each dataset will give better results. In this case, the Dataset rank represents

the probability of selecting the dataset, and the local entity rank (EntityRank or

LinkCount) represents the probability of selecting an entity within this dataset.

However, this approach introduces a problem, that the global ranking favors the

smaller datasets, e.g. a small dataset that receives even a single link is likely to

possess its top entities’ score way above many of the top ones from bigger datasets.

Therefore, they propose to normalize the local ranks based on the dataset size.

2.2.3 Conclusion

By studying these last approaches, we noticed that although some works (like ReCon-

Rank) rank RDF items embedded in the web pages, none of them handle the case of

ranking entities in an RDF graph produced by an automatic annotation process. We

also notices that most of the entity ranking algorithms that deal with ranking in a con-

text similar to ours are based on a modification of PageRank. These methods adapt

PageRank for the web of data and share basically the same idea, i.e. search for a source

of prior knowledge about the importance of the graph’s nodes, then propose a specific

modification based on this prior knowledge.

The studied approaches do not explore how to benefit from available textual descriptions

of the contexts where the entities appear. In addition, they are not able to integrate

complementary sources of prior knowledge (e.g. the ranking produced by a web search

engine, and the textual evidences provided by the content of the web pages, etc.)

Thus, our proposed algorithm LDRANK introduces a new prior knowledge based on

an iterated latent semantic analysis of the textual data that can be used to describe

the nodes. But, what really distinguishes LDRANK from existing approaches is that it

Chapter 2. A Query-biased Ranking for LOD Entities 50

offers a generic solution in which we can combine several sources of prior knowledge to

transform the stochastic transition matrix into an ergodic Markov chain whose steady

state is the final ranking, i.e. LDRANK proposes a generic solution to adapt PageRank

to the web of data.

2.3 Our Algorithm (LDRANK)

2.3.1 Context

LDRANK computes a ranking of the entities of an RDF graph. It expects descriptive

textual data to be associated with each entity. LDRANK also depends on the knowledge

of an information need expressed as a query made of a set of keywords.

We focus on the use case of ranking LOD entities automatically found in a web page

returned by a web search engine given a user’s query. Today, many solutions are available

to detect LOD entities in plain text (e.g., DBpedia Spotlight, AlchemyAPI, etc.). We

built our evaluation dataset using DBpedia Spotlight (cf. section 2.4.2.1).

Apart from the explicit structure of the graph, LDRANK uses two sources of prior

knowledge about the importance of the entities: (i) the ranking provided by a web search

engine for the web pages within which the entities have been detected, and (2) implicit

relationships discovered through an iterated latent semantic analysis of the descriptive

texts associated with the entities.

LDRANK is well adapted to graph that are sparse (i.e., with few explicit links between

the entities) and noisy (i.e., with a high proportion of nodes irrelevant to the information

need). The evaluation dataset introduced in section 2.4.2.1 is made of such sparse and

noisy graphs.

The core of LDRANK comprises three key components. First, LDRANK uses the ex-

plicit structure of the graph through a PageRank-like algorithm. Second, it uses the

implicit relationships that can be inferred from the text associated with the entities

through an original variation of the Singular Value Decomposition (SVD) algorithm.

Finally, LDRANK also takes into account the ranking of the web pages where the

entities were found thanks to a scoring function first introduced by Fafalios and Tz-

itzikas [Fafalios and Tzitzikas, 2014].

Both the SVD-based textual analysis and the use of the ranking obtained from a web

search engine, result in probability vectors that express some prior knowledge (or belief)

about the importance of the entities (see sections 2.3.2 and 2.3.3). These probability

Chapter 2. A Query-biased Ranking for LOD Entities 51

vectors are then combined through a consensual linear opinion aggregation strategy first

introduced by Carvalho and Larson [Carvalho and Larson, 2013] (see section 2.3.4). This

process results in a unique probability distribution over the entities.

This later probability distribution is used to influence the convergence of a PageRank-

like algorithm towards a stable probability distribution, i.e. the eigen vector of eigen

value unity for the Markov process modeling the graph structure that links the entities

together. This distribution is the final ranking for the entities (see section 2.3.5).

2.3.2 Prior Knowledge Derived from the Ranking Provided by the

Web Search Engine Result Page

Algorithm H (Hit Score). This algorithm computes a probability vector (hitdistrib)

that represents prior knowledge about the importance of the entities. This knowledge

is derived from the ranking of the web pages in which they were detected. This ranking

is returned by a web search engine to answer the user’s information need expressed as

a query made of a set of keywords. This strategy was first introduced by Fafalios and

Tzitzikas [Fafalios and Tzitzikas, 2014].

H1. A ← the list of the top web pages as ranked by a web search engine to answer a

query made of keywords.

H2. E ← the set of detected entities in these web pages (e.g., the result of applying

DBpedia Spotlight).

H3. docs(e) ≡ the documents of A that contain the detected entity e.

H4. rank(a) ≡ the rank of document a in A.

H5. hitscore(e) ≡
∑

a∈docs(e)(size(A) + 1)− rank(a)

H6. hitdistrib[e]← hitscore(e)/
∑

e′∈E hitscore(e
′)

H7. [End.]

2.3.3 Prior Knowledge Derived from an Iterative Latent Semantic

Analysis of the Textual Data Describing the Entities

Chapter 2. A Query-biased Ranking for LOD Entities 52

Algorithm S (Iterative SVD). This algorithm computes a probability vector (svddistrib)

that represents prior knowledge about the importance of the entities based on an analysis

of the textual data associated to each entity.

S1. [Initial matrix.] R← the sparse entity-stem matrix (i.e., entities in rows, stems in

columns) in Compressed Column Storage (CCS) format5.

S2. [Initial important entities.] info need← a set of entities, viz. the union of (i) the

entities detected in the text of the query and (ii) the entity with the best hitscore

(for the case when no entities were detected in the query). We assume that these

entities are likely to be close to the information need of the user.

S3. [First SVD.] (U, S, V T)← svdLAS2A(R,nb dim) Compute the singular value de-

composition (SVD) of R at rank k = nb dim. Since R is very sparse, we use the

las2 algorithm developed by Michael W. Berry [Berry, 1992] to compute the de-

composition: Rk = UkSkV
T
k with Uk and Vk orthogonal, Sk diagonal, such that

‖R − Rk‖F is minimized (i.e., from the perspective of the Frobenius norm, Rk is

the best rank-k approximation of R).

S4. [Entities’ coordinates in the reduced space.] SUT ← SUT In the new k-dimensional

space, this operation scales the coordinates of the entities (i.e., the rows of U) by

their corresponding factor in S. Thus, we obtain the coordinates of the entities in

the reduced space (i.e., the columns of SUT).

S5. prev norms← euclidean norms of the entities in the reduced space.

S6. [Updated matrix.] R′ ←R where the rows corresponding to the entities of info need

have been multiplied by the stress parameter (since R is in CCS format, it is more

convenient to do this operation on the transpose of R).

S7. [Second SVD.] (U ′, S′, V ′T)← svdLAS2A(R′, nb dim)

S8. [Updated entities’ coordinates in the reduced space.] SUT ′ ← S′U ′T

S9. norms← updated euclidean norm of the entities in the reduced space.

S10. [Drift of the entities away from the origin of the reduced space.]

svdscore(e) ≡ norms[e]− prev norms[e].

S11. svddistrib[e]← svdscore(e)/
∑

e′ svdscore(e
′)

S12. [End.]

5http://netlib.org/linalg/html_templates/node92.html

http://netlib.org/linalg/html_templates/node92.html

Chapter 2. A Query-biased Ranking for LOD Entities 53

We shall now introduce the essential property of the SVD on which relies Algorithm S.

For a strong dimensional reduction (i.e., for small values of k), the transformation SkU
T

tends to place near the origin of the k-dimensional reduced space, the entities that, in

the row space of R, were orthogonal to many other entities. Indeed, the SVD can be

seen as an optimization algorithm: to minimize the error due to the impossibility for an

entity to be orthogonal to more than k non co-linear entities, this entity should be placed

as close to the origin as possible. A similar argument can be used to show that entities

co-linear to many other entities in the row space of R will also tend to be near the origin

of the k-dimensional space. Thus, the entities far from the origin in the reduced space

tend to have “interesting” (i.e., discriminative) relationships with other entities also far

from the origin. Furthermore, the entities that are in the direction of greatest variation

of the data in the original space are those well aligned with the axis corresponding to the

biggest singular value in the reduced space (i.e., the axis that suffered from the greatest

extension). Therefore, these entities tend to remain far from the origin of the reduced

space. Thus, the principle of algorithm S is to artificially increase the importance of the

entities semantically close to the query in order to force them in the direction of the

greatest variation of the data, and to observe among the other entities those which, after

this transformation, move the most away from the origin of the reduced space. With the

argument stated above, these entities may therefore be qualified as potentially related

to the information need in an interesting/discriminative way.

We obtained the best experimental results with a reduction to the one dimensional line

(i.e., with nb dim = 1 in steps S3 and S7 of Algorithm S), and with a stress factor (step

S6 of Algorithm S) of 1000.0.

2.3.4 Belief Aggregation Strategy

We consider hitdistrib (from Algorithm H), svddistrib (from Algorithm S), and the

equiprobable distribution (equidistrib) as three experts’ beliefs (or prior knowledge)

about the importance of the entities. To aggregate these beliefs, we apply the algo-

rithm of Carvalho and Larson [Carvalho and Larson, 2013] that computes iteratively

an optimal linear combination of multiple probability vectors. At each step of this it-

erative algorithm, the expert i re-evaluates the distribution that represents her opinion

as a linear combination of the distributions of all the experts. In this linear combina-

tion, the weight associated by expert i to the distribution of expert j is proportional to

the distance between the two distributions. The authors define this distance such that

the process converges towards a consensus. We will refer to this resulting consensual

probability vector by the name finaldistrib.

Chapter 2. A Query-biased Ranking for LOD Entities 54

2.3.5 LDRANK

The PageRank [Page et al., 1999] algorithm transforms the adjacency matrix (M) of

a network of web pages into a matrix H which is both stochastic (i.e., each row of H

sums to 1) and primitive (i.e., there is an integer k for which Hk > 0), thus assuring

the existence of a stationary vector (i.e., the positive eigenvector corresponding to the

eigenvalue 1). This stationary vector is a probability vector that can be interpreted

as representing the importance of each web page by rigorously modeling the intuitive

proposition according to which an important web page is referenced by important web

pages. Moreover, this stationary vector can be computed efficiently with the power

iteration algorithm by taking into account the sparsity of the stochastic matrix.

In the original version of the PageRank algorithm, no assumption is made about the

probability of importance of the web pages before the link analysis takes place. In

other words: first, the matrix M is transformed into a stochastic matrix S by replacing

each null row by the equiprobable distribution (equidistrib); second, the matrix S is

transformed into a primitive matrix H by a linear combination with the so-called tele-

portation matrix (T): H = αS + (1 − α)T with each row of T being the equiprobable

distribution (equidistrib).

In algorithm LDRANK, instead of using the equiprobable distribution, we use the con-

sensual distribution (finaldistrib) introduced above (see section 2.3.4). We obtained

the best experimental results for 0.6 ≤ α ≤ 0.8. Moreover, we set at 1E − 10 the value

of the convergence threshold controlling the termination of the power iteration method

that computes the stationary vector.

LDRANK is available online under an open-source license6.

2.4 Evaluation

2.4.1 Introduction

In this section, we show that LDRANK produces rankings of a significantly better quality

than the ones produced by comparable strategies from the state of the art.

6Source code available online under an open-source license http://liris.cnrs.fr/drim/projects/

ensen/

http://liris.cnrs.fr/drim/projects/ensen/
http://liris.cnrs.fr/drim/projects/ensen/

Chapter 2. A Query-biased Ranking for LOD Entities 55

2.4.2 Build the evaluation dataset

LDRANK is meant to solve the problem of ranking LOD entities automatically detected

in web pages. These web pages were themselves returned by a web search engine to

answer a user’s query expressed as a set of keywords. To our knowledge, there is no

evaluation dataset adapted to this context (i.e., query-biased ranking of LOD entities

automatically detected in plain text). Therefore, we used a crowdsourcing approach to

build our evaluation dataset (available online7).

In the next sections, we describe the process through which we obtained our dataset,

then how we use it to evaluate LDRANK.

2.4.2.1 Data Collection

We now describe the data collection process. We start with 30 queries randomly selected

from the “Yahoo! Search Query Tiny Sample” dataset offered by the Yahoo! Webscope

project8. We submit the queries to the Google search engine. For each query, we

keep the top-5 web pages. For each one of the 150 HTML web pages, we extract the

main raw textual content with the algorithm proposed by Kohlschtter, Fankhauser, and

Nejdl [Kohlschütter et al., 2010]. After this process, we keep on average 467 words by

web page. Then, we use the DBpedia Spotlight [Mendes et al., 2011] service to detect

LOD entities in these texts. On average, 81 entities are found in each web page.

For each web page, we build an RDF graph by issuing SPARQL queries over the DBpedia

dataset to discover all the RDF triples that link the entities detected in the web page.

For each entity of the graph, we associate a text which is the concatenation of the entity

abstract as defined in DBpedia and of a 300 characters text window centered on excerpts

of the web page at the locations where the entity has been detected. Finally, we process

this text by removing stop words and by reducing the words to their stems.

2.4.2.2 Microtasks Generation

We have to evaluate the relevance of the annotated entity to the user’s information

need as expressed by the initial query. After the processing described in the previous

section, the text we keep for each web page is too lengthy to be the object of a single

crowdsourcing task (i.e., it would be too much work for a single worker to verify the

relevance of all the detected entities in a web page). Therefore, we divide this task

7http://liris.cnrs.fr/drim/projects/ensen/
8http://webscope.sandbox.yahoo.com/catalog.php?datatype=l

http://liris.cnrs.fr/drim/projects/ensen/
http://webscope.sandbox.yahoo.com/catalog.php?datatype=l

Chapter 2. A Query-biased Ranking for LOD Entities 56

into smaller “microtasks”. In our case, a microtask consists in scoring the relevance

of the annotated entities in a single sentence. Thus, we split the text of a web page

into sentences by applying the ICU BreakIterator algorithm9. On average, there are 22

sentences by document. Moreover, if a sentence still contains more than 10 annotated

entities, the work will be split over multiple microtasks.

We used the CrowdFlower10 crowdsourcing platform. This platform distributes the

work to about 5 millions contributors in roughly 154 countries while maintaining quality

metrics for each contributor. The design of a microtask is specified in CML, an XML

language provided by CrowdFlower. For each microtask, we give the contributor a short

list of instructions about how to complete the work (we tested many formulations until

we found a suitable one understood by all contributors). We provide the contributor with

a topic made of a title (viz., the initial query from which were obtained the web pages

where we discovered LOD entities) and a short text (viz., the sentence that contains

the entities that the worker will have to evaluate, extended with the previous and the

following sentences to add some context and ease the task of the worker).

For each entity in the sentence, we ask the worker to rank it on the following ordinal

scale (this scale was used by Järvelin and Kekäläinen when they introduced the DCG

graded relevance [Järvelin and Kekäläinen, 2000]: “irrelevant” (0), “marginally relevant”

(1), “fairly relevant” (2), and “highly relevant” (3). Moreover, the worker is helped in

his task with a short text that describes the general meaning of the entity (viz. the

beginning of its DBpedia abstract). For each microtask we collect 10 judgments. A

microtask is paid $.01.

2.4.2.3 Quality Control

We only accept contributors that have already completed over a hundred microtasks with

a high overall accuracy. This accuracy is a quality factor provided by the CrowdFlower

platform. To measure the accuracy of a contributor, CrowdFlower introduces test-

questions. Contrary to a normal question, a test-question is accompanied by its correct

answer given by the designer of the question. Thus, it is considered a good practice to

include test-questions during the design of a task.

We give a contributor at most 30 minutes to provide her answer. Also, contributors

have to spend at least 10 seconds on a task before giving an answer. We measured the

agreement between contributors with the Krippendorff’s alpha coefficient [Krippendorff,

2012]. By default, this coefficient uses a binary distance to compare answers. However,

9http://icu-project.org/apiref/icu4c/classicu_1_1BreakIterator.html
10http://www.crowdflower.com/

http://icu-project.org/apiref/icu4c/classicu_1_1BreakIterator.html
http://www.crowdflower.com/

Chapter 2. A Query-biased Ranking for LOD Entities 57

this metric has been designed to accept other distances if required. Thus, to take into

account the fact that we used an ordinal scale encoding both correctness (i.e., = 0 VS

> 0) and relevance (i.e., from 1 to 3), we used an ad-hoc symmetric distance:

d 0 1 2 3

0 0.00 0.50 0.75 1.00

1 0.50 0.00 0.25 0.50

2 0.75 0.25 0.00 0.25

3 1.00 0.50 0.25 0.00

With these parameters, we obtained an alpha of 0.22. According to Landis and Koch’s

scale [Landis and Koch, 1977], this can be considered a fair agreement (the scale was

designed for Fleiss’ kappa, but Krippendorff’s alpha is in most ways compatible with

Fleiss’ kappa). However, by comparison with existing works that applied crowdsourcing

in an information retrieval context, we could expect a higher alpha. For example, Jeong

et al. obtained a Fleiss’ kappa of 0.41 (i.e., moderate agreement) for a search engine that

appeals to the wisdom of crowds to answer questions. However, Alonso et al. obtained

a Krippendorff’s alpha between 0.03 and 0.19 for a more subjective task: deciding if

a tweet is or is not interesting. Thus, to better understand the characteristics of our

dataset, we also tried to isolate the contributors that often disagreed with the majority.

In fact, by removing the contributors that disagree with the majority in more than 41.2%

of the cases, we obtained a Krippendorff’s alpha of 0.46. Then, 96.5% of the tasks have

at least 3 judgments, 66% of the tasks have at least 5 judgments, and only 0.7% of the

tasks have only 1 judgment.

2.4.2.4 Aggregation of the Results

We used the majority voting for aggregating the results within each sentence. We tested

two different methods to break ties: (i) the maximum of the mean of the contributers’

accuracy (the accuracy of a contributor is the aforementioned metric provided by the

CrowdFlower platform), or (ii) the highest value. We discovered later that these two

choices result in very similar outcomes when we use the dataset to compare query-biased

entity ranking algorithms. We used the same majority voting strategy to aggregate the

results at the level of a web page.

The dataset we just described will be used in the next section 2.4.3 to evaluate LDRANK

and to compare it to the state of the art.

Chapter 2. A Query-biased Ranking for LOD Entities 58

2.4.3 Experiments

We compared four ranking strategies, each one of them is based on a different source of

prior knowledge used to inform a PageRank-like algorithm:

• the traditional version in which there is no available prior knowledge about the im-

portance of the entities. This absence of knowledge is rendered as an equiprobable

distribution (we name this strategy EQUI);

• the version modified with the hitscore as prior knowledge (due to Fafalios and

Tzitzikas [Fafalios and Tzitzikas, 2014], see section 2.3.2, we named it HIT);

• the version modified with our new source of prior knowledge based on the iterative

application of the SVD (see section 2.3.3, we named this strategy SVD);

• LDRANK that uses the consensual combination of the three previous sources of

prior knowledge.

In order to compare the four strategies (EQUI, HIT, SVD and LDRANK), we used

the NDCG (Normalized Discounted Cumulative Gain) metric. The DCG (Discounted

Cumulative Gain) at rank r is defined as: DCGr = rel1 +
∑r

i=1
reli
log2i

. (with reli repre-

senting the estimated relevance of the result to the rank i, the relevance is represented

in a discrete scale which generally contains much less values than the total number of

the results, we use a scale of four gradations, see section 2.4.2). The NDCG at rank r is

equals to the DCG at rank r normalized by the DCG of an ideal ranking at rank r.

Figure 2.8: Comparison of the NDCG scores for the four different strategies (EQUI,
HIT, SVD and LDRANK)

Chapter 2. A Query-biased Ranking for LOD Entities 59

Figure 2.9: Comparison of the execution time for the four different strategies (with
processor: 2.9 GHz Intel Core i7, and memory: 8 GB 1600 MHz DDR3)

2.4.4 Results and discussion

The results are presented in Figure 2.8. We can see that the SVD and HIT strategies

obtain similar performances. However, they are clearly outperformed by their consen-

sual combination (LDRANK). Moreover, since we systematically take into account the

sparsity of the data, we obtain good execution times (see Figure 2.9). The SVD strategy

takes more time than the HIT strategy since it has to compute the SVD. The additional

time spent by the combined strategy (LDRANK) is due to the time necessary to con-

verge towards a consensus. Finally, we did similar experiments by considering the edges

of the graph bidirectional. Indeed, the direction of an RDF predicate is often arbitrary

in practice. The relative performance and accuracy of the algorithms were similar, but

the absolute NDCG scores were slightly better.

It should be noted that through these experiments, beside introducing a new efficient

ranking strategy based on an original use of the SVD dimensionality reduction, we are

also offering evidence that different strategies based on a modification of the teleportation

matrix for the PageRank algorithm can profitably be combined when considered as

various sources of prior knowledge about the importance of the entities.

2.5 Conclusion

We proposed a new algorithm, LDRANK, for ranking the entities of a graph coming from

the web of data. This graph can be sparse and noisy. However, descriptive textual data

Chapter 2. A Query-biased Ranking for LOD Entities 60

is associated to its nodes. Also, the ranking must be performed given the knowledge of

an information need expressed as a set of keywords. Such graphs appear in particular as

the result of the automatic detection of LOD entities in a web page (e.g., with DBpedia

Spotlight). In our approach we take into account both the explicit structure provided

by the web of data, and the implicit relationships that can be discovered by an analysis

of the textual content of the web page.

LDRANK being a variation of the PageRank algorithm, we represent the structure

of the graph with a stochastic transition matrix. To make the corresponding Markov

chain ergodic, we do a convex combination of the transition matrix with a rank-1 matrix

corresponding to the linear consensual combination of the sources of prior knowledge. We

should note that the prior knowledge matrix is of rank 1 because the prior importance of

a node is obtained without knowledge about the graph’s structure, and thus it remains

independent of the previous state. Since the Markov chain is now ergodic (i.e., each

state is aperiodic and positive recurrent), we can use iterative algorithms (e.g., the

power iteration method) that converge to its steady state. Moreover, since the prior

knowledge is kept as a rank-1 matrix, LDRANK can still benefit from the sparsity of

the stochastic transition matrix. Finally, as usual for PageRank-based algorithms, we

interpret the steady state as a ranking of the graph’s nodes.

We built a dataset, using crowdsourcing, in order to evaluate our algorithm. We found

that LDRANK computes a ranking of a significantly better quality than the rankings

produced by the approaches of the state of the art.

In this context, the good accuracy of LDRANK made possible the generation of generic,

useful and usable semantic snippets (Chapter 3). Thus, it opens the way to new ap-

plications that will benefit from a symbiosis between the web of data and the web of

documents.

Chapter 3

The Semantic Snippets

61

Chapter 3. The Semantic Snippets 62

3.1 Introduction

The variability and the complexity of the information (explicit or implicit) available on

the web, places a burden on both the IR researchers and IR system designers. Many

studies (such as [Callan et al., 2007, Kelly, 2009]) insist that the search success and the

searcher’s satisfaction with a system depend not only on the quality of the IR model

or the efficacy of the system, but it also depends on what interactive features a system

offers and how it encourages searchers to employ these features. Indeed, the success and

satisfaction depend on offering support for the searchers’ personal strategies. They also

depend on letting the searcher understand how the system operates.

The area of interactive information retrieval (IIR) studies the searchers’ behavior. The

most common method for information seeking and retrieval on the web is the query-

based search engines. Query-based systems force searchers to pull information out of

the web by expressing a request.

IIR focuses on encouraging and improving users’ interactions with an IR system. IIR

systems propose both novel interfaces and novel interactive functionalities that help

the users to organize the information, to structure their investigation of an information

resource, or to make interactive decisions. Designing interfaces that support more diffi-

cult interactive decisions, such as refining a query, is challenging for researchers. Many

studies proposed new interactive artifacts or some enhancements on existing ones.

The rise of Linked Data(and the ontologies), as part of the semantic web initiative offers

new important sources of information that can be used to propose new methods and

interactive artifacts in IIR.

We propose to benefit from the revolution of the semantic web and Linked Data, to

improve a traditional artifact in the search interface, the snippet1. Thus, we present the

Semantic Snippets, a new semantic and interactive artifact that facilitates the knowledge

transfer (collecting and transferring information from the web to the user) by introducing

new elements in the SERP that semantically contextualize the user information need in

each result.

We propose to analyze the results returned by a web search engine using information

from the result itself (web of document) and structured data from the web of data (via

Automatic Annotation), then to generate semantic snippets that we integrate into the

final SERP.

To our knowledge, at the moment of writing this thesis, there are no works focused on

generating snippets from the automatic detection of LD entities in the text of the web

1In some works, in this domain, the authors call it the surrogate

Chapter 3. The Semantic Snippets 63

pages, and not restricted to an a priori fixed domain of knowledge but generic enough

to suit any web page. This missing approach would be highly beneficial since it could

provide rich snippets for all the web pages, even the ones (viz., the vast majority of them)

that lack any embedded structured metadata. We make the hypothesis that an efficient

query-biased ranking algorithm for LD entities detected automatically in web pages will

make possible the generation of generic semantic snippets. It seems that today there

is a clear need for this algorithm, to allow the emergence of applications that enhance

the snippets and the SERPs. Therefore, in chapter 2, we studied approaches in the

query-biased ranking domain, pointing out that none of them were well adapted to our

context, and we proposed the LDRANK algorithm.

In the following sections, we discuss the state of the art in the domain of enhancing

snippets for the web of documents and the web of data. Then, we describe the elements of

the semantic snippet, the semantic snippet as an interactive artifact, and its generation.

Finally, we present in details the machine learning methodology that we applied to

support the generation of semantic snippets.

A full description of the system that generates the semantic snippets is presented in

chapter 4.

3.2 Related Work

We first mention works that generate snippets for native RDF documents. Next, we in-

troduce works that generate snippets for traditional web pages by relying either on em-

bedded structured metadata (e.g., RDFa, microformats, etc.) or on ad-hoc scripts that

extract structured information from a few pre-determined domains (e.g., en.wikipedia.

org, youtube.com, etc.).

3.2.1 Enhancing Snippets for the Semantic Web

Many approaches tried to enhance SERPs’ snippets. [Ge et al., 2012], and [Penin et al.,

2008] focus on the generation of snippets for ontology search. [Bai et al., 2008] generate

snippets for a semantic web search engine.

In [Penin et al., 2008], the authors first identify a topic thanks to an off-line hierar-

chical clustering algorithm. Next, they compute a list of RDF sentences (i.e., sets of

connected RDF statements) semantically close to the topic. Finally, using a similarity

measure based on WordNet, they rank the selected RDF statements by considering both

en.wikipedia.org
en.wikipedia.org
youtube.com

Chapter 3. The Semantic Snippets 64

structural properties of the RDF graph and lexical features of the terms present in the

ontology (by way of a WordNet-based similarity measure).

In [Ge et al., 2012], the authors first transform the RDF graph into a term association

graph in which each edge is associated with a set of RDF sentences. Their goal is to

produce a compact representation of the relationships existing between the terms of

the query. These relationships are to be found in the RDF graph. To do this, they

decompose the term association graph into maximum r-radius components to avoid long

distance relationships between query terms. Next, they search sub-snippets in these

components (i.e., connected subgraphs that link some of the query terms). Finally, they

select some of the sub-snippets to form the final snippet.

In [Bai et al., 2008], the authors first assign a topic to the RDF document. To do

this, they use a property such as p:primaryTopic if it exists, otherwise they rely on a

heuristic based on the comparison of the URI of the candidates topic-nodes with the

text of the URL of the RDF document. In this regard, it seems interesting to note

how they use the properties: for each property, they define its relative importance

to other properties of a given schema, they also introduce the notion of correlative

properties (e.g. foaf:name and foaf:family) and exclusive properties (e.g. foaf:name

and foaf:surname). Finally, they use this ranking algorithm to give the user a set of

relationships between the query-related statements and the topic-related statements.

To sum up, we are in harmony with [Ge et al., 2012] and [Bai et al., 2008] regarding the

great opportunities offered by highly structured RDF data from which one can find non-

trivial relationships among the query terms, and between the query terms and the main

concepts of the document. Moreover, we join Penin et al. [Penin et al., 2008] when they

stress the necessity to design a ranking algorithm for RDF statements that considers

both the structure of the RDF graph and lexical properties of the textual data.

3.2.2 Enhancing Snippets for the Web of documents

The previous works exploit native RDF documents, but, in general, the LD entities

can either come from: (i) a LD dataset (e.g. by way of SPARQL queries), (ii) semantic

annotations embedded in a web page (i.e., by using RDFa, Microdata, or Microformats2),

or (iii) automatic detection of entities in the web page (for example through DBpedia

Spotlight [Mendes et al., 2011]).

2
www.w3.org/TR/xhtml-rdfa-primer/ ; microformats.org/ ; www.w3.org/TR/microdata/

www.w3.org/TR/xhtml-rdfa-primer/
microformats.org/
www.w3.org/TR/microdata/

Chapter 3. The Semantic Snippets 65

Among the approaches that offer to enhance the snippets on the web of documents

using the web of data, [Haas et al., 2011] and [Steiner et al., 2010], do not rely on the

automatic annotation, they use only explicit embedded annotations.

[Haas et al., 2011] employed structured metadata (i.e., RDFa and several microformats)

and information extraction techniques (i.e., handwritten or machine-learned wrappers

designed for the top hostnames, e.g., en.wikipedia.org, youtube.com,. . .) to enhance

the snippets with multimedia elements, key-value pairs, and interactive features. By

combining metadata authored by the documents’ publishers with structured data ex-

tracted by ad-hoc wrappers designed for a few top host names, they can build enriched

snippets for many results of a typical query. They chose explicitly not to use directly the

LOD graph to avoid the problem of the transfer of trust between the web of documents

and the web of Data. Indeed, they argue that the quality of the editorial processes

that produce the web of Data from the web of documents (e.g. the transformation

from Wikipedia to DBpedia) cannot be controlled. Therefore, from their point of view,

using the LOD through an automatic entity detection process to enhance the snippet

would come with a risk considered too important of introducing uncontrolled noise in

the results.

Also, Google Rich Snippet (GRS) [Steiner et al., 2010] is a similar initiative that relies

exclusively on structured metadata authored by the web pages’ publishers. Google

introduced rich snippets on May 2009 as a means of displaying structured data in the

SERP with the objective of highlighting the searched-for properties to the user in a

visually outstanding way [Steiner et al., 2010].

Google Rich Snippets uses its own restricted vocabulary and supports only a few data

types:

1. Product: Information about a product, including price, availability, and review

ratings.

2. Recipe: Recipes that can be displayed in web searches and Recipe View.

3. Review: A review of an item such as a restaurant, movie, or store.

4. Event: An organized event, such as musical concerts or art festivals, that people

may attend at a particular time and place.

5. Software Application: Information about a software application, including its

URL, review ratings, and price.

We agree with both [Haas et al., 2011] and [Steiner et al., 2010], about the importance

of the embedded data in the SERP enhancement. However, a study made in 2013 [Bizer

en.wikipedia.org
youtube.com

Chapter 3. The Semantic Snippets 66

et al., 2013] on the over 40 million websites of the Common Crawl corpus3 showed that

there is a lake of rich embedded structured data on the web. Only 5.64% of the websites

contained embedded structured data, however, nearly 50% of the top 10,000 websites of

the Alexa list of popular websites4 had structured data.

Moreover, the authors of the study say that: “The topics of the [structured] data [. . .]

seem to be largely determined by the major consumers the data is targeted at (Google,

Facebook, Yahoo!, and Bing)”. Therefore, there is still a clear need for a high quality

process that, given a document relevant to a Web search query, can select the most

relevant resources among those automatically discovered within the document (e.g.,

through state of the art NLP algorithms), and this, whatever the document’s provenance

may be. An efficient algorithm for ranking the resources of a LOD graph while taking

into account their textual context could serve this purpose.

3.3 Elements composing a Semantic Snippet

In this section, we present the elements of the proposed semantic snippets to make it

clear to the reader what enhancements we propose, and in what it is different from

traditional textual snippets.

The Semantic Snippet is more informative, more expressive, richer and (in contrast to

the traditional snippet) interactive. It is made of five elements (see Figure 3.1):

Figure 3.1: The semantic snippet layout

1. The title of the document, which is also a link to the corresponding web page.

3http://commoncrawl.org
4http://www.alexa.com/topsites

http://commoncrawl.org
http://www.alexa.com/topsites

Chapter 3. The Semantic Snippets 67

2. The original snippet of the target search engine, enhanced with annotation

of the top-ranked entities5 belonging to it, highlighted and linked to a human

readable description of the entity (a web page describing the entity).

3. The main sentence, selected by machine learning to represent, as faithfully as

possible the relationship between the query, the document and the top-ranked

entities (see section 4.2.3.4).

4. The primary concepts, made of the top-ranked entities chosen by LDRANK,

they are clickable, and when the user clicks on the name of the entity, we provide

her with an Entity Description.

5. The entity description is a GUI panel, shown on-demand (see figure 3.2), that

regroups different elements describing the entity. It starts with the entity’s abstract

and a picture, and then the context of the entity (see section 4.2.3.4), the related

entities (see section 4.2.3.4) and finally a graphical representation of the subgraph

centered around this entity.

3.4 Semantic Snippet as an Interactive Artifact

As the semantic snippet (and the resulted SERP) is an interactive artifact, and the

interaction with the user plays the leading role, we discuss here how we selected and

designed the interactive components of the interface.

The semantic snippet (and the resulted SERP) presents a vast amount of information

in the same place in an interactive way. Therefore, it can be analyzed under the “infor-

mation seeking mantra” proposed by Ben Shneiderman [Shneiderman, 1996].

The information seeking mantra is a list of high-level guidelines for designing information

visualization applications. It was presented as inspirational guidelines rather than a pre-

scriptive guide. It proposes to have the next elements in the interface of any information

visualization system:

• Overview first: gain an overview of the entire collection.

• Zoom: zoom in on items of interest.

• Filter: filter out uninteresting items.

5The term “top-ranked entities” describes the selected entities (the top ones) from the result of
LDRANK applied to the corresponding web page (see section 4.2.3.3).

Chapter 3. The Semantic Snippets 68

Figure 3.2: The Entity Description panel

Chapter 3. The Semantic Snippets 69

• Details-on-demand: select an item or group and get details when needed.

• Relate: view relationships among items.

• History: keep a history of actions to support undo, replay and progressive refine-

ment.

• Extract: allow extraction of sub-collections and the query parameters.

The correspondence between these guidelines and the interactivity of the semantic snip-

pets is listed hereafter:

• Overview first: listing the results (the semantic snippets) and the top-ranked

entities.

• Zoom: zoom in on a snippet and show more details about it (more text or more

top-annotated entities), show more on a given entity by clicking on it.

• Filter: filter out the results using the top-ranked entities.

• Details-on-demand: select an entity and get all the details about it, in addition

to “load more” results when needed.

• Relate: view the relationships among entities (Entity Description - Related Con-

cept), and between an entity and the text (Entity description - Context).

For now, we do not support the History functionality. Thus, we do not have a user pro-

file that would enable us to keep the history of the user’s actions and to support actions

such as undo, replay, and progressive refinement. We also do not support the Extract

functionality. However, these functionalities are among the future improvements we

envision for the system (see section 5.2.5).

3.5 Semantic Snippets’ Generation

Given the query, we obtain the SERP from the search engine. For each result of the

SERP, we extract the text, annotate it to have a list of the LD entities. We transform

this list into an RDF graph by connecting the entities using RDF links.

Each entity is associated with a text (abstract and windows from the text), thus, we

have an RDF graph enriched by textual data. We use this data structure as an input to

LDRANK algorithm to obtain a ranking of the entities. The top-ranked entities (using

LDRANK) will be employed in the Primary Concepts component (see Section 3.3).

Chapter 3. The Semantic Snippets 70

Then, we extend the RDF graph using a SPARQL endpoint to increase the number

of triples among which we will then search for the most important ones (using tensor

analysis). That allows us to associate each top-ranked entity with a set of relevant triples

that will appear within its description (Entity Description).

Finally, we used a machine learning approach (see next section) to select an excerpt

from the web page for the textual snippet and short excerpts for the description of each

top-ranked entity.

Chapter 3. The Semantic Snippets 71

3.6 Learning to rank documents’ excerpts

We propose to use a machine learning strategy to discover web pages’ excerpts likely to

highlight interesting relationships between the user’s information need and the entities

from the top of the LDRANK ranking. In other words, we use the text of the web pages

where the entities have been found to contextualize the entities. Thus, we are building

a bridge between the web of data and the web of documents.

We reduce the problem of associating an entity with excerpts from a web page to a

binary classification problem. Thus, for each web page’s excerpt with a surface form of

an entity discovered by LDRANK, one should decide whether or not this excerpt is likely

to highlight an interesting relationship between the entity and the user’s information

need.

We start this section by giving some background information about the learning algo-

rithms we used (section 3.6.1). Section 3.6.2 introduces existing works that address

similar issues. In section 3.6.3, we describe the features we used for learning. Then,

in section 3.6.4, we explain how we obtained the training dataset. We describe in sec-

tion 3.6.5, how we managed the imbalanced dataset to make the two classes comparable.

In section 3.6.6, we discuss the results obtained with different learning algorithms while

using all of the features. Then, in section 3.6.8, we introduce the strategies that we

applied to limit the number of useful features while preserving the quality of the classifi-

cation. In the same section, we discuss the new results (after feature selection). Finally,

in section 3.6.10 we stress the importance of the features derived from LDRANK.

3.6.1 Background

3.6.1.1 Supervised Machine Learning

Supervised machine learning is the process of learning a function from examples. This

function should, with a high probability, have a low generalization error (i.e. it will

be able to predict on new data). The process of applying supervised ML to a problem

consists of the next steps:

1. Considering the problem, we start by identifying the required data.

2. Data preprocessing.

3. Definition of the training set.

4. Algorithm selection.

Chapter 3. The Semantic Snippets 72

5. Training.

6. Evaluation with test set.

7. If the Evaluation gives good results, we got our Classifier. If not, we can go back to

the Training step and do some parameter tuning, or we can go back to any other

step and try to change our method to work (e.g. choosing a different algorithm).

The first step is to collect labeled data. Depending on the problem at hand, it can be

challenging to collect enough labeled data so that the function selected by the learning

algorithm will have with a high probability a low generalization error (cf. the Probably

Approximately Correct (PAC) theory of learning proposed by Leslie Valiant [Valiant,

1984]). As introduced later, we use a crowdsourcing- based collecting strategy to solve

this problem.

Next is the data preparation and preprocessing, such as handling the missing data, out-

liers detection. If domain experts are available, then they could choose which fields

(attributes, features) are the most informative. If not, we can measure everything avail-

able hoping that the informative and relevant features can be isolated later. In this

case, the collected dataset may contain noise and missing feature values, and therefore,

it requires significant preprocessing.

The Definition of the training set is the process where we take all the collected data and

try to optimize it as a training dataset. Optimizing the collected dataset can be done

by handling the main two aspects of the data, i.e. the features and the instances.

The features optimization step is based on the method of Feature subset selection, i.e.

the process of identifying and removing as many irrelevant and redundant features as

possible. This method will reduce the dimensionality of the data. Dimensionality re-

duction is often crucial since with fewer features, the learning-algorithm will need less

data to discover , with a greater probability, a function with low generalization error.

In the case of features dependency, a method called feature construction/transformation

can be used (see section 3.6.1.4), one constructs new features from the basic feature set,

and the newly generated features may lead to the creation of more concise and accurate

classifiers.

The second aspect for optimizing the dataset is Instance Selection, where one tries to

handle the noise, and at the same time, attempts to maintain a small generalization

error while minimizing the sample size. Thus, Instance selection reduces the size of the

data and enables a learning algorithm to function effectively with very large datasets.

Chapter 3. The Semantic Snippets 73

The choice of a specific learning algorithm (see section 3.6.1.2) is critical. Classifiers’

evaluation is based on a given metric, e.g. prediction accuracy (the percentage of correct

prediction divided by the total number of predictions). The two main techniques to

evaluate a classifier and calculate its accuracy are: (1) split the training set and use two-

thirds of the data for the training and the other third for estimating performance, (2)

Cross-Validation, where the training set is divided into mutually exclusive and equally-

sized subsets and for each subset, the classifier is trained on the union of all the other

subsets. The average of the error rate of each subset is an estimate of the error rate of

the classifier.

In the Intelligent Systems domain, the Supervised classification is considered as one

of the most common approaches. Thus, a large number of classifiers have been devel-

oped based on Artificial Intelligence (Logical/Symbolic techniques), Perception-based

techniques and Statistics (Bayesian Networks, Instance-based techniques).

In the next section, we present a short background about the classifiers that we consider

as relevant to our context.

3.6.1.2 Classification Algorithms

Logistic Regression Logistic regression is a discriminative approach to build a prob-

abilistic classifier. The idea is to directly fit a model of the conditional distribution

(p(y/x) where y is the dependent variable, i.e. the label to predict, and x is the inde-

pendent variable, i.e. the vector of features), whereas, with a generative approach, one

first creates a model in the form of a joint distribution, p(y,x) before conditioning on

the independent variables.

Logistic regression is more adapted to binary classification than linear regression since

the dependent variable is supposed to follow a Bernoulli distribution instead of a Gaus-

sian distribution. It is a linear model since it depends on a linear combination of the

independents variables. But this combination is mapped to [0,1] through the logistic

function. The decision rule can be determined with a threshold on the output probabil-

ity (i.e. the dependent variable) to for example 0.5.

The Naive Bayes Classifier This classifier is based on the Bayesian theorem and is

particularly suited when the dimensionality of the inputs is high. Despite its simplicity,

Naive Bayes can often outperform more sophisticated classification methods. The Naive

Bayes classifier tries to reduce this complexity by making a conditional independence

assumption that reduces the number of parameters to be estimated when modeling

P(X—Y) [Mitchell, 1997].

Chapter 3. The Semantic Snippets 74

C4.5 This algorithm has been developed by Ross Quinlan to generate a decision tree.

It comes from an earlier system called ID3 and is followed in turn by C5.0. C4.5 builds

decision trees from a set of training data using information entropy. J48 is an open source

Java implementation of the C4.5 algorithm in the Weka data mining tool [Quinlan, 1993].

Radial basis function networks (RBF) RBF networks were introduced into the

neural network literature by [Broomhead and Lowe, 1988]. The RBF network model is

motivated by the locally tuned response observed in biologic neurons. The theoretical

basis of the RBF approach lies in the field of interpolation of multivariate functions.

Support Vector Machines (SVMs) SVM is a popular machine learning method

for classification, regression, and other learning tasks. It has been shown to be highly

effective at traditional text categorization. The basic idea behind the training procedure

is to find a hyperplane, that not only separates the document vectors in two classes, but

for which the separation, or margin, is as large as possible. LIBSVM is an open source

Java implementation of the SVM algorithm in Weka [Pang et al., 2002].

3.6.1.3 Imbalanced Classes Problem

A dataset is imbalanced if the classification categories are not approximately equally

represented. Data sets with imbalanced class distributions are quite common in many

real applications, and the degree of imbalance varies from one application to another. In

[KrishnaVeni and Sobha Rani, 2011], the authors summarize the most commonly used

techniques to handle this problem as the following:

• Undersampling. This method removes examples from the majority class to

make the data set balanced. The drawback of the undersampling method is that

it discards potentially useful information that could be important for classifiers.

• Oversampling. Oversampling is a sampling approach that balances the data set

by replicating the examples of the minority class. It is also called upsampling.

The advantage of this method is that there is no loss of data as in undersampling

technique. The disadvantage of this technique is it may lead to overfitting and can

introduce an additional computational cost.

• Cost-Sensitive Training. Cost Sensitive Learning (CSL) is another commonly

used approach. It uses an asymmetric cost function to balance artificially the

training process.

Chapter 3. The Semantic Snippets 75

• One Class Learning. When negative examples greatly outnumber the positive

ones, certain discriminative learners have a tendency to over fit. A recognition-

based approach provides an alternative to discrimination where the model is cre-

ated based on the examples of the target class alone. This approach attempts

to measure the amount of similarity between a query object and the target class,

where the classification is accomplished by imposing a threshold on the similarity

value.

An important mixed approach is SMOTE; it is a sampling method designed to address

the problem of imbalanced classes. It combines two methods, the under-sampling of the

frequent classes and over-sampling of the minority class. In [Chawla et al., 2002], the

authors compared SMOTE to other alternative sampling techniques on several real world

problems using several classification algorithms. They showed that SMOTE performs

better than methods like Rippers loss ratio or Naive Bayes, and it can improve the

accuracy of classifiers for a minority class.

3.6.1.4 Features Selection

Features selection can improve the prediction performance by providing faster and more

cost-effective prediction by selecting a subset of the features. This selection also gives

the prediction more flexibility against overfitting. It is used to find an “optimal” subset

of features such that the overall accuracy of classification is increased while the data size

is reduced and the comprehensibility is improved.

Feature selection approaches can divided into two categories:

Filters Approach The methods of this approach select the optimal subset of features

as a preprocessing step, independently of the chosen classifier. A filter method scores

and ranks each feature on a particular metric, then it selects the top-k features as the

new machine learning features set.

For example, one can use the information gain method. It measures the information car-

ried by a single attribute: InfoGain(Class,Attribute) = H(Class)−H(Class|Attribute),
where H is the information entropy.

Thus, the information gain is the reduction in the entropy of the random variable rep-

resenting the class achieved by learning the value of the attribute under consideration.

Filters can be used to reduce the dimensionality and overcome overfitting. They are

faster than other approaches, and they provide generic feature selection. On the other

side, filters methods have three main weaknesses: (1) they do not consider features

Chapter 3. The Semantic Snippets 76

redundancy, i.e. two redundant features will have the same score, and will be selected

(or not) together. (2) they do not detect dependencies between features. (3) they do

not propose an ideal subset of features, leaving this task to users.

Wrappers Approach This type of methods need the knowledge of a chosen learning

algorithm to score subsets of features. The used score is the prediction performance of

a subset. The main idea is to build a space of all possible combinations of features, and

search this space using the prediction performance as a guide. Many search strategies

can be used (best-first, branch-and-bound, ...), the validation is usually done by cross-

validation in order to assess the prediction performance of the selected subset.

Wrappers methods can be of two types:

(1) forward selection where we start with a small subset of features and progressively

add more features.

(2) backward elimination where we start with all features, and iteratively eliminate the

weaker ones.

This iterative strategy for building subsets of features allows wrappers to take into ac-

count dependencies between features. This was not possible with filter-based approaches.

The only drawback of wrappers is the performance: the search space being the power-set

of the features, an exhaustive search would be prohibitively costly, therefore heuristics

must be used to approximate the optimal solution. Trivial greedy heuristics are often

proposed.

When the feature selection is integrated with the training, we speak of embedded

wrappers.

We can note that, with the wrapper methods, there is no need to define the initial

number of features.

3.6.2 Related Work

We start by mentioning the works that address a problem similar to ours, viz. selecting

web pages’ excerpts given a user’s query. It should be noted that our context also

includes a semantic layer made of the LOD entities discovered in the web page and

ranked with LDRANK. For this reason, our problem differs from the ones of the state

of the art. However, it remains close enough so that we will benefit from situating our

proposal in the setting of these related works. Thus, we introduce the related works

that rely on a supervised learning strategy to address the problem of the selection of

web pages’ excerpts given a user’s query.

In [Wang et al., 2007], to design their features, the authors use both the content of the

web page and the contextual information that can be obtained from the values of the

Chapter 3. The Semantic Snippets 77

anchors for the hyperlinks pointing to the web page. In this work, the granularity of

the excerpt is the sentence. They measure the relevance of a sentence by counting the

number of occurrences of terms that are also present in the query. They measure the

importance of a sentence by counting: (i) the number of occurrences of terms that are

among the most frequent in the web page, (ii) the number of occurrences of terms that

are also present in the web page’s title, and (iii) the number of occurrences of terms that

are also present in the anchors of the web page’s incoming links.

The authors compare two learning strategies. For the first strategy, they reduce the

problem of selecting the best sentences to a binary classification problem that they

can solve by training an SVM classifier. To take into account the imbalanced number of

instances in each of the two classes, the authors split into two components the parameter

that sets the penalty for the classification’s errors. Thus, they can use a different factor

for each of the two classes. For the second strategy, they adopt a learning-to-rank

approach. They learn a ranking function that, for a given web page of the training

dataset, should place in top positions the relevant and important sentences. To do this,

they use the SVM ranking algorithm.

The authors validate their approach on the dataset provided by the web track of TREC-

2003. They randomly select ten queries. For each query, they keep ten relevant pages,

five irrelevant pages chosen among the top-ranked ones (from the point of view of the

BM25 model for information retrieval), and five irrelevant pages selected randomly. For

each page, two human workers wrote a summary by keeping the best sentences (usually

three of them) given the query and its context (i.e., a detailed description offered by the

TREC dataset).

For the two strategies introduced above, the authors use a Gaussian kernel for the SVM.

The gaussian’s standard deviation is fixed with a 3-folds cross-validation approach. They

used the following quality metrics: precision, recall, and F1-measure. The best results

are attained when taking into account the context (through the incoming hyperlinks’

anchors) and when using a learning-to-rank strategy.

In [Metzler and Kanungo, 2008], the authors take an approach similar to the one in-

troduced above. However, they compare three kinds of learning-to-rank algorithms

(Ranking-SVM, Support Vector Regression, and Gradient Boosted Decision Tree). Also,

they add some features that are independent of the query (e.g., sentence’s length and

position within the page). Finally, they experiment on a much larger dataset (viz.

TREC Novelty Track 2002, 2003, and 2004). The best results were achieved by using

the Gradient Boosting Regression Tree (GBRT) algorithm.

Chapter 3. The Semantic Snippets 78

In [Ageev et al., 2013], the authors improve on the results obtained in [Metzler and

Kanungo, 2008] (see above). Thus, they also use the GBRT algorithm. However, they

introduce behavioral features (e.g., the time spent by the mouse cursor over a text frag-

ment, the time during which a text fragment was visible on screen, etc.). To build a

training dataset with these additional features, they used the Amazon MTurk crowd-

sourcing platform. The experiment was introduced to the worker in the form of a game:

he had to answer correctly, in a limited time, to as many questions as possible. Moreover,

in order to efficiently register the behavioral features, the authors did some preprocess-

ing on the dataset. First, they kept only the web page’s sentences that contained at

least one of the query’s terms. Next, they split the sentences with a flying window of

at least three words (the exact number of words is a parameter of their proposal), and

they keep only the fragments where at least one of the query’s terms is present.

Finally, in [Lehmann et al., 2012], the authors propose the DeFacto algorithm to check

the veracity of a LOD RDF triple by discovering web pages’ fragments that confirm

the fact expressed by the triple. At the core of this work, there is again a supervised

machine learning approach. This proposal is based on BOA, a system designed by the

authors of [Lehmann et al., 2012] in one of their previous work. BOA associate a natural

language pattern to an RDF predicate. First, during a preprocessing step, the authors

remove all but the sentences that contain the subject/object’s labels of the predicate

of which the veracity is being checked. The learning features include the presence of a

BOA pattern in the sentence, the distance between the subject’s label and the object’s

label, etc. Furthermore, this work introduces a set of metrics to quantify the trust one

can have in a web page given the RDF triple that is being checked. We will not detail

this part of their work since it is not related to our problem.

From this study of the related works, we gained some insights about which features to

select in our context. In the next section, we introduce these features.

3.6.3 Feature Engineering

Specific to our approach is the use of LOD entities detected in a web page. As introduced

previously, to each entity we associate a label, a summary (obtained from the DBpedia

abstract of the entity), the entity’s neighbors in the RDF graph built from the entities

detected in the web page, and the score computed by LDRANK.

We designed features among which some of them are using the data coming from this

semantic layer. We now introduce the features we used as raw data for a supervised

learning algorithm that, given a selected entity, will find the sentences conducive to

Chapter 3. The Semantic Snippets 79

explaining the relationship between the selected entity and the user’s information need

(as expressed by his query). We group the features into four categories:

• independent of the query and of the selected entity,

• dependent on the query, but independent of the selected entity

• dependent on the selected entity

• dependent on other LOD entities detected in the sentence.

3.6.3.1 Features Independent of the Query and of the Selected Entity

This category of features exposes the sentence’s readability, content, and location. It

reflects how these aspects affect the selection of the sentence. It consists of the following

features:

• (LEN) The sentence’s length.

• (SSS) The number of short sub-sentences (i.e., the sub-sentences separated by

punctuation marks with a length of less than four words).

• (SS, SE) The nature of the sentence’s first character (alphabetic, numeric, other)

and last character (dot, dots, etc.).

• (HL) The presence of hyperlinks in the sentence, a binary feature that equals to 1

if the text contains a hyperlink.

• (D) The presence of a date in the sentence, a binary feature that equals to 1 if the

text contains a date.

• (SL) The sentence’s position in the web page, normalized by the total number of

sentences.

• (LS) Is it the last sentence? A binary feature that equals to 1 if S is the last

sentence in the document.

• (NCH) The ratio of non-alphabetic to alphabetic characters.

3.6.3.2 Features Dependent on the Query but Independent of the Selected

Entity

This category of features captures the relevance of a sentence to the query independently

of the selected entity. It consists of the following features:

Chapter 3. The Semantic Snippets 80

• (QT) The number of terms shared between the query and the sentence.

• (QR) The number of annotated entities shared between the query and the sentence.

• (KTKR) The number of entities detected in the sentence and among the top-k

entities ranked by LDRANK.

3.6.3.3 Features Dependent on the Selected Entity

This category of features reflects how much this sentence is related (relevant) to a par-

ticular entity. It consists of the following features:

• (SEL) The number of terms shared between the entity’s label and the sentence.

• (SEA) The number of terms shared between the entity’s summary and the sen-

tence.

• (SEN) The number of neighbors to the selected entity that are present in the

sentence.

• (SENL) The number of terms shared between the sentence and the labels of the

selected entity’s neighbors.

• (SEP) The relative position of the entity in the sentence (normalized by the sen-

tence’s length).

• (SES) The LDRANK score for the selected entity (normalized by the maximum

LDRANK score obtained by an entity in the same page).

3.6.3.4 Features Dependent on LOD entities Detected in the Sentence

As aforementioned, we annotate the text of the documents (each sentence) using DBpe-

dia Spotlight, this annotation tool return a list of annotated entities in the documents.

Then, we build an RDF graph from these entities, and we rank them using LDRANK.

This category reflects the effect of having annotated entities in the sentence, the struc-

ture of the generated RDF graph and the entities’ ranking (LDRANK). It consists of

the following features:

• (AE) The number of entities detected in the sentence.

• (TKE) The number of entities ranked among the top-k by LDRANK.

Chapter 3. The Semantic Snippets 81

• (AET) The number of terms shared between the sentence and the labels of the

entities detected in the sentence.

• (TEL) The number of terms shared between the sentence and the labels of the

top-k entities (from the point of view of LDRANK).

• (AES) Average LDRANK score for the entities detected in the sentence (normal-

ized by the maximum LDRANK score obtained by an entity of the same page).

• (AEL) Given the RDF graph built from the web page: the number of predicates

that connect together the entities detected in the sentence.

3.6.4 Training Dataset

For training purposes, we used the dataset already introduced in section 2.4.2. We only

have to interpret this dataset from another perspective: “the relevance of an entity given

a sentence and an information need expressed by a query” becomes “the aptness of a

sentence to highlight a relationship between a detected entity and the user’s information

need”.

Furthermore, we aggregate the judgments to reduce the problem to binary classification:

a score of 0 (i.e., irrelevant) means that the sentence should not be selected, the other

scores (1 for “marginally relevant”, 2 for “fairly relevant” and 3 for “highly relevant”)

all mean that the sentence should be selected.

In Figure 3.3, we present an excerpt from the generated dataset, for example, we have

the instance:

Q0D0S0C http://dbpedia.org/resource/William Ewart Gladstone.

It represents the resource William Ewart Gladstone that has been annotated in the

first sentence S0 in the first result (or document) D0 when using the query Q0 ; this

instance has been classified by the workers (aggregated result) as Relevant. Thus, we

can say (from the new perspective) that the sentence S0 in the document D0 is relevant

to the resource William Ewart Gladstone in the context of Q0.

Chapter 3. The Semantic Snippets 82

Figure 3.3: Example of the generated datasets

We did experiments with other aggregation strategies, but the best results were obtained

with the one introduced above (see section 3.6.7 from more results of other aggregation

strategies).

Figure 3.4: The unbalance of the dataset

3.6.5 Re-Balancing the Training Dataset

The training dataset includes 15841 instances of entities detected in web pages (see

Figure 3.4). 9936 of them belong to sentences apt to illustrate the relationship be-

tween the entity and the information need. Thus, 5905 instances of entities appear in

Chapter 3. The Semantic Snippets 83

a context which is not appropriate to explain the relationship between the entity and

the information need. Thus, the positive class represents 62.7% of the total number

of instances in the training dataset. We correct this slight imbalance by applying the

SMOTE (Synthetic Minority Over-Sampling Technique) algorithm to grow the minority

class with synthetic data, and also reduce the size of the majority class. The application

of SMOTE over our dataset makes the two classes quasi-equals with 49.3% of the class

relevant and 51.7% for the other class.

3.6.6 First Results

We did experiments with five supervised learning algorithms: logistic regression, naive

Bayes (with a Gaussian distribution as a conditional distribution for numeric attributes),

the J48 implementation of the decision tree algorithm C4.5, Radial Basis Function Net-

work (RBF) and SVM (LIBSVM implementation, with a Radial Basis Function core

with the nu-SVC version of the algorithm, and with a value of 0.5 for the nu parame-

ter which sets a lower bound over the fraction of classification errors caused by a too

large margin). We adopted a ten folds cross-validation approach. We used the Weka

platform [Hall et al., 2009]. We used F1-score metric for the evaluation of the positive

class (F-True), for both classes (F-All), and the area under the ROC curve. Table 3.1

presents the results of this experiment.

F-True F-All ROC

Logistic Regression 0.802 0.588 0.658
Naive Bayes 0.759 0.633 0.644

J48 0.772 0.659 0.652
LIBSVM 0.802 0.537 0.588

RBF 0.802 0.584 0.631

Table 3.1: Results for learning to select sentences apt to explain the relationship
between an entity and the user’s information need

3.6.7 Results using other regrouping strategies

We tried other strategies to re-group workers’ answers (from the crowd-sourcing). So

instead of considering irrelevant as false and grouping the [marginally relevant, fairly

relevant, highly relevant] as true (relevant), we generated two datasets: (1) dataset-2

where we grouped [irrelevant , marginally relevant] as false (irrelevant) and [fairly rele-

vant, highly relevant] as true (relevant); and (2) dataset-3 where we grouped [irrelevant

, marginally relevant, fairly relevant] as false (irrelevant), moreover we kept only highly

Chapter 3. The Semantic Snippets 84

F-True F-All ROC F-false

Logistic Regression 0.528 0.604 0.655 0.675

Naive Bayes 0.357 0.523 0.634 0.695

J48 0.689 0.697 0.772 0.704

LIBSVM 0.606 0.644 0.644 0.68

RBFClassifier 0.528 0.606 0.654 0.679

Table 3.2: Results for dataset-2

F-True F-All ROC F-false

Logistic Regression 0.557 0.594 0.64 0.632

Naive Bayes 0.351 0.511 0.624 0.676

J48 0.638 0.645 0.679 0.653

LIBSVM 0.616 0.614 0.614 0.613

RBFClassifier 0.553 0.592 0.638 0.632

Table 3.3: Results for dataset-3

relevant as true (relevant). The results presented in the tables 3.2 and 3.3 shows that

the adopted strategy (in section 3.6.4) gives better results than the others strategies.

3.6.8 Feature Selection

Given these first result, we try to reduce the number of the useful feature while main-

taining the quality of the prediction. We are inclined to do feature selection for various

reasons. First, with fewer features the prediction will consume less memory and can be

faster. Computing the features’ values can be expensive. Therefore, execution time can

be gained during the prediction. Moreover, using only a subset of the original features

can reduce estimation error and avoid over-fitting. Finally, in our case, we are especially

interested in verifying indirectly the effectiveness of LDRANK: if the LDRANK-based

features remain, it will be a good indication in favor of the usefulness of LDRANK.

We initially used a filter-based feature-selection approach. It means that we filter the

features before using a specific supervised learning algorithm. Thus, we used the infor-

mation gain (InfoGain) metric to rank the features. We tried two strategies: (i) keeping

only the top-10 features, (ii) cutting at a nosedive in the features’ ranking based on their

information gain score (which led us to retain only 16 features, see the “Infogain (top)”

line in Table 3.4).

We then used a wrapper approach for feature selection. In this case, we use the chosen

learning algorithm as a black box, and we explicitly seek to minimize the error rate.

Thus, naively, one should explore the whole space of features’ subsets, and for each

point in this space, one should execute the chosen learning algorithm. The advantages

of this kind of approach over the blind filter-based one are (i) to be adapted to a specific

Chapter 3. The Semantic Snippets 85

J48 N.Bayes Logistic SVM RBF

All var. 0.772 0.759 0.802 0.802 0.802
Infogain (top 10) 0.799 0.785 0.803 0.799 0.801

Infogain (nosedive) 0.792 0.771 0.803 0.801 0.801
Wrapper back. best-first 0.772 0.802 0.804 0.802 0.801
Wrapper back. greedy 0.787 0.802 0.802 0.802 0.802

Table 3.4: Feature selection results for (i) the filter approach with the information
gain metric, and for (ii) the wrapper approach with two greedy strategies for exploring
the space of features’ subsets (values are the F1 score for the positive class (F1-True))

Nb var start 10 6 4

Nb var end 16 13 19
F-True 0.804 0.804 0.803
F-All 0.588 0.587 0.589
ROC 0.658 0.658 0.659

Table 3.5: Feature selection results using the forward selection wrapper approach
with the logistic regression algorithm and while the number of initial features varies

from 0 to 10 according to their information gain score

learning algorithm, and (ii) to take into account the dependencies between features.

However, the cost of applying such an approach naively would be prohibitive. Thus, the

search space will often be explored guided by a greedy heuristic. Two classic strategies

will be considered: (i) the forward selection for which we start with a small subset of

features that we grow progressively, and (ii) the backward elimination for which we start

with all the features before removing the weakest one by one. We tested a naive greedy

strategy (gradient descent without backtracking, see the line “Wrapper (Backward) -

Greedy” in Table 3.4), and a greedy strategy with the possibility of backtracking by

allowing the choice of at most two consecutive points of the search space that do not

improve on the error rate (see the line “Wrapper (Backward) - Best First ” in Table 3.4).

We obtained the best results with the logistic regression algorithm. Thus, for this

algorithm, we applied a forward selection wrapper approach. We made the number

of initial features vary from 0 to 10 in ascending order of their information gain (see

Table 3.5).

3.6.9 Selected Features

Thanks to this feature selection strategy, we reduce the number of features to 13:

1. (TEL) The number of terms shared between the sentence and the labels of the k

best entities (LDRANK).

Chapter 3. The Semantic Snippets 86

2. (SES) The LDRANK score of the selected entity (normalized by the maximum of

the LDRANK scores obtained by the entities in the same page).

3. (SEL) The number of terms shared between the entity’s label and the sentence.

4. (SEA) The number of terms shared between the entity’s summary and the sen-

tence.

5. (SEN) The number of neighbours of the entity that are present in the sentence.

6. (SENL) The number of terms shared between the labels of the neighbours of the

selected entity and the sentence.

7. (SEP) The position of the entity in the sentence (normalized by the sentence’s

length).

8. (SE) The nature of the last character (dot, dots, etc.) of the sentence.

9. (QT) The number of terms shared between the query and the sentence.

10. (AE) The number of entities annotated in the sentence.

11. (AET) The number of terms shared between the sentence and the labels of the

entities annotated in the sentence.

12. (SL) The position of the sentence in the web page (normalized by the total number

of sentences).

13. (LS) Is it the last sentence? (binary feature)

We notice that we find among the selected features: (i) those based on LDRANK, and

(ii) those depending on the semantic layer offered by the LOD entities detected in the

web pages.

3.6.10 Conclusion

To conclude, we designed features based: (i) on the query, (ii) on the text of the web

page, and (iii) on the entities ranked by our LDRANK algorithm. We applied a process

of feature selection. First, we used the information gain metric to select a small subset

of features. Next, we used this subset as a starting set for a forward selection wrap-

per approach. We observed that the features based on LDRANK were systematically

selected. We consider it an indirect element of proof for the usefulness of LDRANK.

Chapter 4

Enhanced Search Engine

(ENsEN)

87

Chapter 4. Enhanced Search Engine (ENsEN) 88

4.1 Introduction

In this chapter, we present ENsEN 1 (Enhanced Search Engine), a software system that

we built to generate Semantic Snippets.

By introducing ENsEN, our intention is to convince of the usefulness and efficiency of

LDRANK.

We start by describing in details the software design and the architecture of ENsEN,

then we present a user evaluation of ENsEN by crowdsourcing.

4.2 Software Design and Architecture

This section describes in details (i) the external services that ENsEN uses to enhance

the search results, (ii) the system architecture and how it can be decomposed into

components and subcomponents, (iii) the data model we use to interchange data inside

the system, (iv) and finally the full workflow of the system.

In order to give standard description of the system design, we adopted the Unified Mod-

eling Language (UML)2 for all the diagrams of this section (e.g. Component diagram,

Activity diagram, Deployment diagram...).

4.2.1 External Services

ENsEN relies on multiple external service providers exploiting the web of documents,

the web of data, and even lexical sources such as WordNet (see Figures 4.1 and 4.2). In

the following, we describe these services and how ENsEN employs them.

Google Custom Search. It is a service proposed by Google to give the user the

possibility of creating a search engine for a website, a blog, or a collection of websites.

In ENsEN, we are interested in this service because it allows us to retrieve the SERP for

a given query and customize the look and feel of search results. Custom Search Engine

comes in two flavors: (1) Custom Search Engine: it is free but limited by the number

of possible queries per day, and (2) Google Site Search: a paid service (per query). As

ENsEN is a prototype for academic purposes, we used the free version to retrieve the

results list as input to our system of snippets generation.

1a live demonstration is available online http://liris.cnrs.fr/drim/projects/ensen/
2UML v2.0: http://www.uml.org/

http://liris.cnrs.fr/drim/projects/ensen/
http://www.uml.org/

Chapter 4. Enhanced Search Engine (ENsEN) 89

WordNet. a lexical database for English. It contains nouns, verbs, adjectives and

adverbs grouped into sets of cognitive synonyms (synsets). WordNet consists of 117000

synsets; these synsets are interlinked by conceptual-semantic and lexical relations giving

us a network of meaningfully related words and concepts. The main relation among

words in WordNet is the synonymy (words that denote the same concept and are in-

terchangeable in many contexts) [Miller, 1995], [Oram, 2001]. ENsEN uses WordNet to

extend the query by adding synonyms to its keywords.

The DBpedia Knowledge Base. As Wikipedia has grown into one of the central

knowledge sources, maintained by thousands of contributors, the DBpedia project lever-

ages this gigantic source of knowledge by extracting structured information from it and

by making this information accessible on the web as a general knowledge base. The

English DBpedia describes 4.58 million things, with 4.22 million classified in a con-

sistent ontology. DBpedia also provides localized versions in 125 languages [Lehmann

et al., 2014]. ENsEN uses and interacts with DBpedia indirectly using the two following

services (Spotlight and SPARQL Endpoint).

DBpedia Spotlight. It applies named entity extraction (entity detection and name

resolution or disambiguation) on a text in order to annotate mentions of DBpedia re-

sources, with the objective of providing a solution for linking unstructured information

sources to the Linked Open Data cloud through DBpedia [Mendes et al., 2011], [Daiber

et al., 2013]. DBpedia Spotlight associates with each entity a relevance score. This score

is calculated by a disambiguation model using individual scores: (1) P (entity) the prob-

ability of the entity, (2) P (surfaceform|entity) the probability of the entity knowing

the surface form and (3) P (context|entity) the probability of the entity knowing the

context (text around the surface form).

Score(e, sf, context) = P (e)× P (sf |e)× P (context|e).

ENsEN uses the DBpedia Spotlight API to annotate and extract structured data from

the unstructured text of a web page.

DBpedia SPARQL Endpoint. DBpedia can be queried via an SPARQL Endpoint;

it is a web interface over OpenLink Virtuoso (a multi-purpose and multi-protocol Data

Server). ENsEN uses this web interface to query DBpedia using SPARQL queries to

find relations between the annotated resources and to build a connected RDF graph.

ENsEN also uses it to get more information about a resource, such as its abstract, label,

etc.

Chapter 4. Enhanced Search Engine (ENsEN) 90

Figure 4.1: ENsEN Context and High-level Architecture (Component Diagram)

4.2.2 High-level Architecture

At a high level, our architecture follows and adapts the generic architecture used by

most of the systems enhancing a given search engine (see Figure 4.1). The architecture

is document-centric and extensible, it consists of four high-level components, each of

which communicates with the external world and with other components (using APIs)

in order to achieve its (required) task.

Since the primary purpose of a component diagram is to show the structural relationships

between the elements of a system, and with the external components, we selected it to

represent our architecture. The detailed architecture is shown in Figure 4.2.

4.2.3 Internal Components

Now, follows a brief description of each component (and sub-component) of ENsEN:

Chapter 4. Enhanced Search Engine (ENsEN) 91

F
ig
u
r
e
4
.2
:

E
N

sE
N

F
u

ll
D

et
a
il

ed
C

o
m

p
o
n

en
t

D
ia

g
ra

m

Chapter 4. Enhanced Search Engine (ENsEN) 92

4.2.3.1 Search Interface

The search interface is a User Interface (UI) component; it serves as a communication

layer between the system and the user. This component has three principal functions:

(1) transfer the user’s query to the system’s internal components; (2) show the generated

semantic snippets to the users; (3) capture and react to users’ interactions.

4.2.3.2 Results Extraction

As a black box, the Results Extraction component takes a keyword query and returns

the text of each result. More details will be discussed in the workflow section 4.2.5.

The primary processes (sub-components) of the Results Extraction are the following:

SE Interrogation. Its role is to communicate with a web search engine (in the imple-

mentation we used Google SE) and retrieve the SERP, from which it extracts the URLs

of the results. It can use an API provided by the SE. Otherwise, it has to extract the

results’ URLs directly from the HTML code of the SERP.

HTML Docs Retrieval. It retrieves a web page using its address (URL) and extracts

the actual HTML code of the page. The HTML documents are retrieved using the HTTP

protocol.

Text Extraction. It applies the Boilerpipe algorithm [Kohlschütter et al., 2010] to

obtain the web page’s textual content by detecting and removing the surplus “clutter”

(boilerplate, templates) around the main textual content.

4.2.3.3 Results’ Analysis

This component encapsulates the core process of our system and its preprocessing steps;

its objective is to generate for each result a ranked (considering the query) list of linked

data entities. Besides, it creates for each result an extended RDF graph that interlink

the entities and represent the result.

Query Extension. ENsEN is a keyword SE. Queries often consist of two or three

words. This process extends the query by adding synonyms retrieved from WordNet

synsets.

Chapter 4. Enhanced Search Engine (ENsEN) 93

Text Annotation. In this process, we use the automatic annotation service of DBpe-

dia Spotlight to obtain a set of DBpedia entities. In the same way, we find entities from

the terms of the extended query. The input of this process is the text (to be annotated);

the output is a list of entities in which each entity has a relevance score (sent by DBpedia

spotlight).

RDF Graph Generation. This process generates an RDF graph from a set of en-

tities, by issuing SPARQL queries to an endpoint connected to the DBpedia dataset.

These queries introduce all the triples (statements) where subject and object are in the

input set of entities. The retrieved triples (also called RDF links) allow to transform

the set of entities into an RDF graph.

Example: Tim Berners-Lee3, England4, London5 and World Wide Web Foundation6

are entities in the input set, we can generate the corresponding RDF graph (see Fig-

ure 4.3) using the following query:

1 /* Define Prefix */

2 PREFIX dbp: <http :// dbpedia.org/property/>

3 PREFIX dbr: <http :// dbpedia.org/resource/>

4 PREFIX dbo: <http :// dbpedia.org/ontology/>

5 PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

6

7 /* Construct a graph from the results statements */

8 CONSTRUCT { ?subject ?predicate ?object }

9 where

10 {

11 ?subject ?predicate ?object.

12 /* restrict the graph to the entities of the input set*/

13 FILTER(

14 (

15 ?subject IN

16 (dbr:Tim_Berners -Lee , dbr:England ,

17 dbr:London , dbr:World_Wide_Web_Foundation)

18)

19 and

20 (

21 ?object IN

3http://dbpedia.org/resource/Tim_Berners-Lee
4http://dbpedia.org/resource/England
5http://dbpedia.org/resource/London
6http://dbpedia.org/resource/World_Wide_Web_Foundation

http://dbpedia.org/resource/Tim_Berners-Lee
http://dbpedia.org/resource/England
http://dbpedia.org/resource/London
http://dbpedia.org/resource/World_Wide_Web_Foundation

Chapter 4. Enhanced Search Engine (ENsEN) 94

22 (dbr:Tim_Berners -Lee , dbr:England ,

23 dbr:London , dbr:World_Wide_Web_Foundation)

24)

25).

26 }

27 }

dbr:World_Wide_Web_Foundation dbr:Tim_Berners-Lee

dbp:keyPeople

dbp:founder

dbo:keyPerson

dbo:foundedBy

dbr:Englanddbp:birthPlace

dbo:birthPlace

dbr:London

dbp:birthPlace

dbo:birthPlace

rdfs:seeAlso

dbp:capital

dbo:capital

dbp:subdivisionName

dbo:isPartOf

rdfs:seeAlso

Figure 4.3: Example of a generated RDF graph

Each entity in the generated graph is associated with a short text. This text is obtained

by merging the entity’s DBpedia’s abstract (extracted using a SPARQL query) and

windows of text (in the current implementation we use windows of 300 characters)

extracted from the web page and centered around the entity’s surface forms (associated

to the entity by DBpedia Spotlight).

Entity Ranking. This component represents the core of our system. It encapsulates

the application of our algorithm LDRANK presented in the chapter 2.

The inputs of this process are the user’s query (as keywords and annotated entities) and

the results extracted from the SERP and processed to obtain for each result the raw

Chapter 4. Enhanced Search Engine (ENsEN) 95

textual data and an RDF graph of the entities detected in the text. Moreover, additional

textual data is associated with the entities if these RDF graphs.

Before applying LDRANK, some preprocessing steps are needed. We remove all the stop

words and use a stemming process 7 on the query’s keywords and the text associated

with each entity. Then we generate two matrices: (1) the matrix [Entity X Entity] that

represents the connectivity of the entities in the RDF graph, and (2) the matrix [Term

X Entity] that represents the terms’ frequencies for the text associated with the entities.

We also detect the entities present in the stemmed query. These two matrices, and the

information relative to the query represent the input of our algorithm. We then apply

the LDRANK algorithm that ranks the entities of each result. Finally, we select the

top-k entities to represent the result.

RDF Graph Extension. This process takes a poorly-connected graph and extends

it by adding triples from Linked Data. However, a systematic 1-hop extension of all the

nodes would produce a graph too large and too noisy. To address this problem, we do

a 1-hop extension of only the top-ranked entities (according to LDRANK). We should

note that multi-hop also can be used, but in this process, 1-hop extension is enough as

our main objective is to find direct relationships between the entities annotated in the

text, and to describe these entities by key-value information. We achieve this extension

by issuing the next query to a DBpedia SPARQL endpoint and add the resulting RDF

triples to the original RDF graph:

1 /* Construct a graph from the results statements */

2 CONSTRUCT { ?subject ?predicate ?object }

3 where

4 {

5 ?subject ?predicate ?object.

6 /* restrict the graph to the top -ranked

7 entities [E1, E2, E3...] */

8 FILTER(

9 ?subject IN

10 (E1 , E2 , E3...)

11).

12 }

13 }

We do this extension for many reasons:

(1) The original generated graph is poorly connected. Therefore, we need the extension

7http://snowball.tartarus.org/

http://snowball.tartarus.org/

Chapter 4. Enhanced Search Engine (ENsEN) 96

to make it more connected.

(2) We would not benefit much from the LOD if we did not extend the graph to find

facts not present in the original document. The original generated graph represents how

the entities that have been annotated in the text are connected. With this extension,

we collect more information about the entities (especially the textual RDF triples) that

we use for the generation of an entity’s description. We increase the number of triples

among which we will then search for the more important ones to be shown (see Triples

Selection in 4.2.3.4).

(3) We use the structured data from the extended RDF graph as features in our machine

learning processes (see Sentence Selection 4.2.3.4 and Entity Contextualization 4.2.3.4)

that learn how to select sentences from the document to describe an entity or summarize

a document.

4.2.3.4 Semantic Snippets Generation

This high-level component encapsulates the processes of generating the semantic snippets

using the data produced by the Results Analysis.

Filters Building. We use the newly acquired knowledge of the most important entities

to semantically restrict the list of results. We only keep the results within which the

top-ranked entities appear (see left panel in the figure 4.7).

Sentence Selection. As mentioned in Section 3.3, our snippets include a short ex-

cerpt. This excerpt represents as faithfully as possible the relationship between the

Query, the Document, and the Top-ranked entities. To select this excerpt, we use a

machine learning approach that we discussed in chapter 3.6. This component represents

the implementation of our machine learning approach; it takes the query (keywords and

entities), the text and the top-ranked entities for each result. Then it splits the text into

sentences using the algorithm Boundary Analysis 8. For each sentence, we generate the

features mentioned in 3.6.8, then we apply the machine learning classifier. The classifier

return for each sentence a score that we use to rank the sentences of each web page

(result) and select the best one for the excerpt.

Entity Description Generation. It generates for each top-ranked entity a full de-

scription (see figure 3.2). It is based on an RDF subgraph centered around the entity.

8developed by ICU project http://site.icu-project.org/

Chapter 4. Enhanced Search Engine (ENsEN) 97

This subgraph is generated thanks to the Triples Selection process. It is also based on

the entity’s context, built by the Entity Contextualization.

Triples Selection. Each top-ranked entity is associated with a set of explanatory

triples that represent the best this entity. In this process, we introduce the tensor

decomposition analysis (TDA) that ranks and selects the most relevant triples in an

RDF graph given an entity.

An RDF graph consists of triples, as in [Franz et al., 2009], we propose to represent

the RDF graph by a 3-way tensor (denoted T). The three modes of the tensor are

associated respectively with the subject, the object and the predicate of the triples

that constitute the graph. Thus, for each predicate, there is one horizontal slice that

represents the adjacency matrix of the subgraph only made of the triples that link the

resources (the entities) thanks to that predicate. To analyze the tensor, we start by

applying a PARAFAC [Kolda and Bader, 2009] tensor decomposition algorithm to the

tensor. This decomposition computes a representation of the tensor as a sum of rank-one

tensor (a rank-one three-way tensor is the outer product of three vectors), i.e.

T =
R∑

r=1

sr ◦ or ◦ pr

If there are nr resources and np predicates, the lengths of each sr, or and pr vectors

are respectively nr, nr and np. The components of the vectors sr and or represent, for

the number r factor, the importance of each resource as it plays respectively the part of

subject and object in relations involving the high-scored predicates of pr.

We should also note that there is no efficient way to compute the number of factors for a

tensor decomposition. In [Franz et al., 2009], the authors used an implementation of the

CORCONDIA heuristic-based algorithm [Andersson and Bro, 2000] to find a suitable

number of factors. However, although we generate tensors in similar way, we discovered

that the CORCONDIA heuristic did not apply well to our tensors. Thus, we found by

experiment that, with the data we generate, the optimal number of factors is close to

10. Therefore, we test multiple decompositions with a number of factors varying around

10, and we keep the decomposition that offers the best fit, i.e. for which the recomposed

tensor is closer to the original one.

The TDA results can be interpreted as groups, where each group has a set of ranked

list of the predicates, subjects and objects of the graph. The high-scored predicates

represent factors in the graph; they describe important sub-graphs. The high-scored

subjects represent hubs in the corresponding subgraph. The high-scored objects repre-

sent authorities.

Chapter 4. Enhanced Search Engine (ENsEN) 98

So, for each top-ranked entity (according to LDRANK), we select the factors to which

it contributes the most (as a subject or as an object), and for each one of these factors

we select the triples with the best-ranked predicates.

Thus, we can associate to each top-ranked entity a set of triples. We use this subgraph

to build the entity’s description.

Entity Contextualization. As aforementioned in the introduction of this chapter,

the primary objective of the semantic snippets is to facilitate the knowledge transfer to

the user. In order to take advantage of the way humans approach knowledge acquisition,

we can assist the user in its answer’s conceptualization by providing information about

individual concepts and their context. The proposed context consists of the excerpts

(from each result), where the considered entity was mentioned. Considering the limited

space in the user interface and the possibility to have multiple contextual excerpts, we

need to rank these excerpts and limit the context to the top ones. As we already ranked

each document’s sentences using machine learning (see section 4.2.3.4), we employ the

same ranking to select the excerpts that will provide a context to the entity.

Related Entities. We associate each entity with two types of related entities; the

ones related directly by an RDF link, and the ones related indirectly because they are

mentioned in similar context (viz. they appear in the same sentences).

As for the previous component (viz. entity contextualization), considering (i) the limited

screen space offered by the UI, and (ii) the possibility of many related entities, we use

the LDRANK ranking to limit the number of related entities.

For each selected related entity, we show its label and the excerpts where it appears near

the entity currently under consideration.

Summarization. Since for a same query, the results may cover many topics, the task

of summarizing the results can be studied as multi-topic multi-document summarization.

We generate query-dependent summaries centered on the topics of the main entities

detected by LDRANK. The summaries, made of excerpts from the web pages where the

entities were detected, are thus expressed in natural language.

To summarize documents containing multiple topics, we first need to define the topics

and then rank them. In our case, a topic is defined by a set of entities. For each topic,

we generate a summary by extracting the sentences specific to this topic, i.e. sentences

contain the topic’s entities.

Chapter 4. Enhanced Search Engine (ENsEN) 99

As we have multiple topics, we score each one, and we show them in the order (most

significant first), this ranking is query-focused; therefore it is based on the LDRANK

ranking, and the search engine results ranking.

In order to define the score (importance) of a topic, we aggregate the importance of its

entities: Score topic(t) =
∑

ei
Score entity(ei) : e ∈ t

An entity’s score is proportional to its normalized rank in the document (according to

the LDRANK ranking) and the rank in the search results’ list, of documents within

which this entity has been detected.

Score entity(e) =
∑

Di

LDRANK order(e)

|Di|
× SE order(Di) : e ∈ Di

Where |Di| is the number of entities annotated in Di.

The final summary will consist of the selected sentences for each topic (in order of their

importance). The entities appearing in the topic’s summary are highlighted by the UI.

UI Generation. It is a user interface generating process that aggregates the output of

the previous components (filters, textual snippet, and entity’s description) and generates

the corresponding UI elements.

4.2.4 Data Model

As shown in figure 4.4, ENsEN data model consists of four main (data) tables (Query,

Document, Entity, and Summary) and four secondary (data) tables (Sentence, Annota-

tion, Topic, and Tensor). In the following we describe these data tables:

Chapter 4. Enhanced Search Engine (ENsEN) 100

Figure 4.4: ENsEN Data Model Diagram

Query. It represents the user’s query by (i) the Extended Text (from the Query Ex-

tension process), (ii) the Entities annotated by the Text Annotation process, (iii) the

Results set retrieved by the SE Interrogation process and (iv) a Summary (textual) that

summarizes the content of all the results (from the Summarization process).

Document. It represents the data structure for a result, and groups all its related

data, that were either extracted from the web (of documents or data) or generated by

the system.

Chapter 4. Enhanced Search Engine (ENsEN) 101

At the beginning of a search session, this table contains the information from the web

of documents, i.e., the URL, the Title, the HTML code, the extracted Text split into

Sentences and the SE Snippet returned by the search engine.

After the annotation phase, the table’s content is extended to include: the annotated

Entities, the RDF graph and its extended version the Extended RDF graph. Apply-

ing LDRANK permit to add to this structure a list of Ranked entities and finally the

mathematical representation of the graph, i.e., the Tensor.

Entity. It modelizes a Linked Data resource; thus it has a URI, a Label, an Abstract

and a list of related resources (Related entities).

Sentence. Each document’s text can be split into sentences, each sentence contains

(thanks to DBpedia Spotlight) a set of Annotations.

Annotation. It is associated with an Entity, annotated in a sentence as Surfaceform

(the original text snippet from which the association was induced) with a relevance

Score.

Summary. The summarization process generates a Textual summary for each query.

This summary consists of a ranked list of Topics.

Topic. It is defined as a group of Entities, annotated in a same Sentence and it has a

relevance Score (see Summarization in section 4.2.3.4).

4.2.5 Workflow

We present now the workflow and the activities that produce a semantic snippet from a

query, and we highlight the role played by the LDRANK algorithm in this process.

From an architectural point of view, the snippet generation process follows the following

steps (see Figure 4.5).

We should note that the activities are in bold, and the components are in Italic.

The user enters the query; the Search Interface sends this query to the Results Ex-

traction process where (using the query) the SE Interrogation process gets the results

from the search engine as a SERP (Search Engine Result Page). For each result (i.e.

Chapter 4. Enhanced Search Engine (ENsEN) 102

Figure 4.5: ENsEN Activity Diagram

Chapter 4. Enhanced Search Engine (ENsEN) 103

a SERP’s entry), first the HTML Docs Retrieval retrieves the HTML code from the

web, if it was not able to retrieve the HTML it moves to the next result, else the Text

Extraction extracts the text from this HTML.

In the same way, if there is not enough text, the system moves to the next result.

Otherwise, the Text Annotation calls DBpedia spotlight to annotate the text, and

the system associates a text with each annotated entity (see section 4.2.3.3).

In parallel with the text annotation, the Query Extension uses WordNet to find syn-

onyms and extend the query, and then the system applies again Text Annotation to

annotate the extended query in order to discover LD entities that are likely to be

semantically close to the query, these entities will used by the LDRANK algorithm.

The system ignores results with too few annotated resources (this threshold K is a system

parameter). Otherwise, the Entity ranking process calls LDRANK to rank the entities

annotated in the text of the results.

In parallel with the application of LDRANK, the RDF Graph Generation uses the list

of the annotated entities to build the RDF graph by discovering the existing RDF

links between the entities.

The RDF Graph Extension uses the top-ranked entities (by Entity ranking) to extend

the RDF graph and build the corresponding tensor.

At this point, we have all that we need to build the semantic snippet and the new SERP:

we have the query (text and entities) and the documents (text, ranked annotated entities,

extended RDF graph and the corresponding tensor).

The Semantic Snippet Generation component takes this data and starts generating

the semantic snippet. First, it uses a trained classifier to select the main sentence

(Sentence Selection), and then for each entity, the system extracts its subgraph

using Triples Selection, find the Related Entities and do the Entity Contextualization

forming the entity description.

Finally, we use the top-ranked entities in each result, to generate the filters and the

summary, and, eventually, to generate the UI for the new SERP.

4.3 User Interface

In Chapter 3, we introduced the elements of a Semantic Snippet (Section 3.3), and how

our design follows the “information seeking mantra” guidelines (Section 3.4). In this

section we describe the whole system’s UI, especially the enhanced SERP.

Chapter 4. Enhanced Search Engine (ENsEN) 104

ENsEN’s SERP has an interactive visual design, where we try to expose a great amount

of information within a unified interface.

4.3.1 Visual Design

Our system is a web Application; this application has two main modules (pages): Query

module and Results module. The query module (see Figure 4.6) was inspired by the

design of the most used search engines (Google, Yahoo, etc.). In this interface we provide,

in addition to the logo, simple input to enter the query and a simple go button.

Figure 4.6: ENsEN Homepage, the query page

The results module (see Figure 4.7) consist of three panels:

(1) the main panel in the middle encapsulates the generated semantic snippets,

(2) the restriction panel at the left side encapsulates the filters and the summary,

(3) the infobox panel at the right is used to show the Entity’s Description (presented in

section 3.3).

4.3.2 ENsEN design and Crowdsourcing

In order to put the user-friendliness factor at the core of our visual design, we considered

users’ feedback to guide our design. Thus, we asked the workers via the crowdsourcing

platform (in addition to evaluating the design) to propose some interface enhancements

“In your opinion, what (and how) can we enhance in the ENsEN’s interface?” , and to

Chapter 4. Enhanced Search Engine (ENsEN) 105

Figure 4.7: SERP of ENsEN

send us an open text feedback “Please, give us any additional feedback about the user

interface of ENsEN”.

Most of the feedbacks were positives and encouraging, like “I like the variety of concepts”,

“Interesting Interface”, “It is a nice search engine” and “It is very promising”.

However, we got a lot of feedbacks about the long response time (“The Response time

should improve”, or “More speed please”), which is not related to the design but a result

of using a server with limited resources.

Some workers found that the interface is too complex “Maybe it is a bit unclear” ,

“Interesting but complicated”, or “the interface is sometimes confusing”. Their feedbacks

helped us to improve the system, and we understand that the workers found the interface

complicated because, as one of the workers said “ENsEN is not like Google. Its new and

not familiar yet. It will take time to use and understand this interface”.

In general, the workers were very interactive and sent us a lot of propositions, like:

• “Make it simple”

• “Try to make it faster and underline key words”

• “The color Red in EnsEN can be psychological bad, red is a hot color, needs others

like blue or green”

• “Images are nice, yes ... but many images , colorful on one page usually mean

Ads, so I ignore them”

• “Do some filtering”

Chapter 4. Enhanced Search Engine (ENsEN) 106

4.4 Implementation

This section describes the design and implementation of our system (ENsEN). We imple-

mented the ENsEN’s prototype at LIRIS 9 laboratory. This prototype was tested by the

laboratory research scientists internally, and used in all our crowdsourcing campaigns.

It is also opened to external users for more testing.

This section starts with description of the current deployment architecture and explains

our technological and architectural choices, as well as the current hardware configura-

tions. We end by a description of potential extensions, and required improvements to

transfer the current prototype into a more robust product.

4.4.1 Technological and architectural choices

As shown in the deployment diagram (Figure 4.8), our prototype follows the high-level

architecture described in Section 4.2.2.

ENsEN is a web application; it was implemented to run over an Apache Tomcat10

application server. Our application server is installed in a virtual machine under Linux

Debian v6.0.10.

The current implementation uses the MVC (model-view-controller) software architec-

tural pattern. In addition to the clear separation between the information, how to

handle it, and how to present it, it provides a high level of flexibility and extensibility.

The web application (server-side) is implemented in Java, but in order to get high

performance, the core algorithms have been implemented in C (for LDRANK) and

Python (for the Tensor Decomposition Analysis).

The Search Interface is the front-end component of ENsEN. It was implemented using

the latest technologies in web development: JSP for the server side and HTML5, CSS3,

JavaScript, Ajax, jQuery, and Bootstrap11 for the client side.

The system queries Google’s index using the Google Custom Search API 12, and retrieves

the web pages using the HTTP protocol.

The system annotates the text by querying the DBpedia spotlight REST web service

that answers in a custom JSON format. DBpedia spotlight is installed locally with the

9 Laboratoire d’InfoRmatique en Image et Systmes d’information (LIRIS): http://liris.cnrs.fr
10 Apache Tomcat: http://tomcat.apache.org/
11 Bootstrap is a sleek, intuitive, and powerful first front-end framework for faster and easier web

development.
12 Google Custom Search: https://developers.google.com/custom-search/

http://liris.cnrs.fr
http://tomcat.apache.org/
https://developers.google.com/custom-search/

Chapter 4. Enhanced Search Engine (ENsEN) 107

Figure 4.8: ENsEN Deployment Diagram

Chapter 4. Enhanced Search Engine (ENsEN) 108

English dataset. However, the SPARQL endpoint is a remote one with also an English

DBpedia dataset.

We use Apache Jena13 to manage the RDF graphs, and to issue queries to the SPARQL

endpoint.

WordNet14 [Fellbaum, 2006], a large lexical database of English, was used for the lexical

expansion of query.

The machine learning classifiers are implemented using the Weka15 library for Java.

Most of the development was done using IntelliJ IDEA16, and Apache Subversion17 for

the versioning.

4.4.2 Hardware Configurations

The ENsEN application and DBpedia Spotlight server run on a virtual machine with:

CPU Cores 8 CPUs x 1.87 GHz

Processor Type Intel(R) Xeon(R) CPU E7520

Memory 31 GB

OS Debian v6.0.10

4.5 Crowdsourcing Evaluation of ENsEN

We aim to evaluate the effectiveness and usefulness of our semantic snippets generation

system, ENsEN, by comparing it to a traditional search interface, such as Google.

4.5.1 Methodology

We adopt a crowdsourcing approach with the CrowdFlower platform (see section 2.4.2

for the description of this platform).

13 Apache Jena: A free and open source Java framework for building Semantic web and Linked Data
applications (https://jena.apache.org).

14 WordNet: https://wordnet.princeton.edu/
15 Weka is a collection of machine learning algorithms for data mining tasks: http://www.cs.waikato.

ac.nz/ml/weka/
16 IntelliJ IDEA is an IDE for enterprise, mobile and web development with Java, Scala, and Groovy

from JetBrains: https://www.jetbrains.com/idea/
17 Apache Subversion is an open source version control system https://subversion.apache.org/

https://wordnet.princeton.edu/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
https://www.jetbrains.com/idea/
https://subversion.apache.org/

Chapter 4. Enhanced Search Engine (ENsEN) 109

4.5.1.1 Task design

As our objective is to compare the interface and the quality of our system ENsEN with

the ones of Google, the main task in this crowdsourcing campaign is to answer search

questions like, “What division (weight) did the boxer Floyd Patterson win?” using both

systems, then to evaluate and compare the two interfaces. Therefore, the first half of

a participant’s tasks has to be answered using the Google search engine, and the other

half must use ENsEN.

The requirements that guided us while designing the task are the following:

• The main requirement is to answer the search questions and to evaluate the inter-

faces.

• We need to evaluate the workers’ knowledge of search user interfaces in order to

analyze the results according to the workers’ levels of expertise.

• In addition to the workers’ evaluation of the interface when answering a given

search question, we need to have their overall evaluation of the system.

• We are also interested in analyzing the results according to the workers demo-

graphic information.

• We also want to benefit from this contact with the workers (as ENsEN’s users) to

ask for any ideas about how to enhance the system.

In order to satisfy these requirements, we designed tasks made of the following parts:

• Entry questionnaire is a background information survey used to evaluate the

worker’s knowledge of search interfaces.

• Search tasks is the main part, where we ask the worker to answer search ques-

tions.

• Overall Preference: Once the worker answered all of the questions, we ask for

an overall comparison of the two search interfaces.

• About you: a short demographic survey.

• Feedback: At the end, we give the worker the possibility to express her feedback,

impressions and any propositions.

The search questions have been extracted from the TREC 2004 QA dataset. We ran-

domly chose 8 topics. Each topic includes three questions with their corresponding

Chapter 4. Enhanced Search Engine (ENsEN) 110

answers. Two questions are factual, and the third expects an answer in the form of a

list. (see all the topics and the questions in the Appendix A.3).

To determine the participant’s expertise in the domain of web search, we used questions

such as:

To find the pages that include an exact sentence, we should:

(i) surround the sentence with quotation marks,

(ii) simply type the sentence as it is,

(iii) place an asterisk at the end of the sentence?

A full task example is presented in the Appendix A.2.

4.5.1.2 Quality control

We collected 11 judgments for each of the 8 topics. We only accept the judgments for

which the answer was provided within less than 30 min.

We keep only the best participants in terms of their score (metric) on the CrowdFlower

platform. We briefly described this metric in section 2.4.2, it is based on an analysis

of the answers to the test questions (i.e., questions for which the designer provided the

correct answer).

We also applied a traditional method for controlling the quality in a crowdsourcing

campaign, i.e., the Test Questions.

A test question is a search question that we ask using the crowdsourcing platform, and for

which we provide the answer, allowing the system to control the workers’ performance.

The test questions can be used in so called Quiz Mode, i.e. to keep only the “good”

workers before offering them to enter the main task (the Normal Mode). They can also

be used during the main task to monitor the workers’ performance and update their

scores.

In our campaign, for each of the 8 topics, we generate a test question where the par-

ticipants must answer using the Google search engine. Before they can be paid for

answering questions, the participants must go through the Quiz Mode.

In this mode, the participants must answer the test questions, and if they make more

than 50% of errors, they will be denied the access to the normal paid mode.

In normal mode, a page consists of two tasks offered to the participants: the first task

they must answer with Google, the other one with ENsEN.

The work necessary to complete such a page (made of two tasks) is paid $0.25.

Chapter 4. Enhanced Search Engine (ENsEN) 111

4.5.2 Results Analysis

First, we found that most of the participants have a low experience in searching on the

web (see Figure 4.9), 43.2% of the participants have an accuracy less than 0.25, and

only 21.6% have a very good experience.

Figure 4.9: Participants’ expertise for searching on the web, based on the accuracy
of their answers to the questionnaire

But, we found that the accuracy of the answers does not depend on the level of expertise

(see Figure 4.10).

Figure 4.10: Accuracy of the answers depending on the level of expertise (A,B,C,D,E)
of the participants for the web search domain

We observed that the accuracy of the answers is most often comparable for the two

systems (see Figure 4.11).

Chapter 4. Enhanced Search Engine (ENsEN) 112

Figure 4.11: Accuracy of the answers per system

However, for some topics which obtained the lowest scores of accuracy, such as Topic 1

(Rhodes scholars) and Topic 7 (Crip gang), which are probably more difficult, ENsEN

is significantly better than Google (see Figure 4.12).

Chapter 4. Enhanced Search Engine (ENsEN) 113

Figure 4.12: Accuracy of the answers by topic and for each of the two systems

Chapter 4. Enhanced Search Engine (ENsEN) 114

Moreover, when we analyzed the answers per question type (i.e., factual questions Vs.

list questions), we noticed that, even if the participants prefer the Google GUI, they feel

that it is easier to find the correct answer using ENsEN (see Figures 4.13 and 4.14).

Figure 4.13: Overall evaluation of the effectiveness and the ease of use for the factual
questions

Figure 4.14: Overall evaluation of the effectiveness and the ease of use for the ques-
tions with a list answer

We also analyzed the collected data about the participants’ age and their search habits

(i.e., do they mostly use exploratory, informational, navigational or transactional queries?).

And we found that most of the workers (86%) are between 20 and 40 years, and use

mainly informational queries (67.68%). See Figures 4.15 and 4.16 for full results of this

investigation.

Chapter 4. Enhanced Search Engine (ENsEN) 115

Figure 4.15: Ages of the participants

Figure 4.16: Participants’ search habits in terms of the kind of queries they are most
likely to perform

Finally, when we asked the participants about the elements of the ENsEN’s interface

they found the most useful, we discovered that the GUI elements that show the best

entities discovered by LDRANK were highly valued (see Figure 4.17).

Chapter 4. Enhanced Search Engine (ENsEN) 116

Figure 4.17: Preferred elements of the GUI

4.6 Conclusion

In this chapter, we built a complete system for generating semantic snippets. The

experiments show the utility of these snippets to the final user. At the same time, this

system proves the efficacy of the last two contributions, i.e. the ranking algorithm and

the trained classifier.

In addition, the fact that we got good results in the experiments proves that integrating

the web of data and the web of documents can be an interesting and useful approach.

Our proposal is only a step towards more efficient search systems. We can go farther by

proposing extensions and applications. In the next chapter we discuss that in details.

Chapter 5

Conclusion

117

Chapter 5. Conclusion 118

In the following conclusion, we summarize the context of our research, starting by a

reminder of the principal research questions that we asked in the introduction, then

recalling our contributions that aimed to answer these questions.

In a second time, we open the reflection about the future work, by listing the opportu-

nities we see for the entity ranking and the semantic snippets generation, revealing the

short-terms (and long-term) improvements we see for ENsEN.

5.1 Research summary

In this thesis, we have investigated the possibility of combining the linked data from

the web of data, with the information from the web of documents for the purpose of

enhancing user experience when interacting with a SERP. To do this, we introduced a

new query-biased ranking algorithm for entities of the web of data.

Before summarizing the contributions of this thesis, we restate the three research ques-

tions that guided us:

1. In an IR system, can we introduce a new, interactive, richer and more informative

artifact to the SERP to replace traditional textual snippets? Can we employ the

automatic annotation of Linked Data entities over the results’ text for the con-

struction of this artifact?

2. Given that automatic annotation identifies many entities in the text, how can we

choose the most relevant ones? In other words, how to filter out the many irrelevant

annotated entities? And how to select the relevant entities according to the original

query?

3. How to objectively measure the impact of the new proposed artifact on the user

experience?

We now review our two main contributions in terms of the research challenges (questions)

stated above.

• We propose LDRANK (Chapter 2), a query-biased ranking algorithm for the LOD

entities discovered in the results of a traditional search engine through a process of

automatic annotation. It consists in a modified PageRank algorithm that combines

multiple sources of prior-knowledge through a linear consensual combination.

This algorithm considers the query, the explicit structure of the graph, the latent

Chapter 5. Conclusion 119

semantic analysis of the texts associated with the entities, and the ranking provided

by a web search engine. The produced ranking is used to select the most relevant

entities at the core of our enhanced semantic snippets.

This contribution answers the second research question: we can choose the most

relevant entities with LDRANK, and then select the top-ranked ones.

• The second contribution (Chapter 3) proves (as an answer to the first question)

that we can build high-quality semantic snippets while using linked data entities

coming from the automatic annotation of the text of the web pages listed in a

SERP.

• We take a machine-learning-based approach (Section 3.6) to discover within the

web page excerpts that explain an interesting relationship between the most im-

portant entities and the user’s information need.

• As an answer to the third question, we present in Chapter 4 the ENsEN system

that integrates the proposed algorithms in a system for generating Semantic Snip-

pets that enrich the SERP. We also propose an evaluation methodology based on

crowdsourcing to objectively measure the impact of the new proposed artifact.

In Figure 5.1, we illustrate our contributions and their research dependency. The pro-

posed system ENsEN (Chapter 4) depends on an IR system (Search Engine) to retrieve

the results for a given query. Then it generates the Semantic Snippets for the results.

These snippets are presented in our second contribution (Chapter 3) as a new semantic

and interactive artifact. This artifact consists of two main elements, the Primary Con-

cepts, and the Contextualizing Excerpts.

The selection of the primary concepts is achieved by our proposed algorithm LDRANK

presented as our first contribution in Chapter 2. This algorithm modify the PageRank

algorithm by applying a Belief Aggregation Strategy (Section 2.3.4) on two prior knowl-

edge sources; the first one (Entity Hit Ranking) is generated by applying the work of

Faflios and Tzitzikas (Section 2.3.2) which itself is a modification of PageRank, and the

second one generated by our proposed algorithm LDSVD (Section 2.3.3) that applies a

Text Analysis process on the result’s text using SVD.

The contextualizing excerpts (shown in the Main Sentence and the Entity Description)

were selected by a learning-to-rank process (Section 3.6) that analyzes the text and the

LD annotated entities (via the Automatic Annotation) in order to rank and select the

most relevant sentences.

Chapter 5. Conclusion 120

Figure 5.1: The research dependency

5.2 Future Work and Perspectives

We discuss some of the perspectives while focusing on two main aspects, the performance

and the quality of the results.

5.2.1 LDRANK: Exploring more prior knowledge sources

One particular direction for the future work is the exploration of more sources of prior

knowledge in the ranking of LOD entities.

In the first contribution (LDRANK), we integrated two sources; the ranking proposed

by our algorithm LDSVD and the ranking proposed by Entity Hit Score [Fafalios and

Tzitzikas, 2014].

Chapter 5. Conclusion 121

As the combination strategy that we employ, i.e. the Belief Aggregation, is generic and

accept multiple sources, we believe that exploring other prior knowledge sources may

enhance the final ranking. Next, some additional sources that could be explored:

• Entities’ types ranking:

In the public knowledge graphs such as DBpedia or Freebase, entities are associated

with types (using predicates such as “rdf:type”). However, an entity is usually not

associated to a single generic type but rather to a set of more specific types which

may be relevant or not given the document context. For example, the entity “Tom

Hanks” in DBpedia has about 40 types, such as “Person”, “Agent”, “Actor”, “Film

Maker”, “Artist”, and “Intellectual”.

Some types may be too generic to be interesting (e.g., Person), while other may be

interesting but already known to the user (e.g., Actor), or may be irrelevant given

the current browsing context (e.g., Intellectual). We estimate that an entity with

a relevant type is more relevant, and this kind of information can be considered as

a good prior knowledge source. Thus, we can consider the relevance of an entity’s

type in our algorithm LDRANK.

In [Tonon et al., 2016], the authors propose an entity type ranking approach using

a knowledge graph and the entity textual context. They suggest several methods

exploiting the entity type hierarchy, collection statistics such as the popularity

of the types or their co-occurrences, and the graph structure that semantically

interconnects the related entities.

Other works that may also be interesting are: [Zaragoza et al., 2007], they rank

entities of different types as a response to an open (ad-hoc) query, and [Rodŕıguez

and Egenhofer, 2003] where the authors propose a model for semantic similarity

across different ontologies. This similarity model provides a systematic way to

detect similar entity classes across ontologies. It is based on a matching process

for each specification components in the entity class representations (i.e., synonym

sets, distinguishing features, and semantic neighborhoods).

• Ranking model from LDRANK’s state of the art:

In the LDRANK’s state of the art, we reviewed a set of entity ranking models.

These models can be also considered as prior knowledge about the nodes impor-

tance. Among them, PopRank and ReConRank are the most adapted.

PopRank : It is a query-independent, link analysis model to rank objects within a

particular domain. It takes into account the semantic of the relationships among

different objects, by assigning a popularity propagation factor to each type of ob-

ject relationship. Even if the ranking proposed by PopRank is independent of the

user’s information needs, it can be a relevant prior knowledge source.

Chapter 5. Conclusion 122

ReConRank : It is a query-dependent ranking algorithm that ranks resources in a

topical subgraph. This subgraph consists of resources matching the query (nodes

directly linked to the query), and of a context (neighbor resources that can be

reached after a specific number of hops in the graph).

5.2.2 Semantic Index

The Semantic Snippets generation process is completely online, therefore, we believe

that an index will enhance the system’s performance, and at the same time will help in

personalizing the resulting snippets.

As in our approach the documents (the results) are represented by their text and their

annotated entities, we think that a semantic index is necessary.

In semantic based IR, sets of words, names, noun phrases are mapped into the concepts

they represent. A document is represented as a set of concepts or entities. To achieve

this, external semantic structures for mapping document representations to concepts are

needed. In our case, we use LOD cloud as a semantic structure and DBpedia Spotlight

to map the document representations to entities in LOD.

The indexing approaches on the semantic based IR consists mainly of two phases:

(1) Concepts Detection and Extraction that gives for each document a set of representing

concepts, and

(2) index Construction that groups all the preprocessing and analyzing operations al-

lowing the construction of the semantic index.

Many works tried to handle this problem, they basically combine the knowledge represen-

tation and natural language processing techniques to accomplish the semantic indexing

task.

In the following, we mention some of these proposed models.

(1) “Semantic Indexing”:

This model store in the index more information about the indexed documents, to enable

a system to retrieve documents based on the words, regarded as lexical strings, or based

on the semantic meaning of the words. In [Mihalcea and Moldovan, 2000], the authors

designed an IR system which performs a combined word-based and sense-based indexing

and retrieval. They applied a disambiguation process relying on contextual information

and identifying the meaning of the words based on WordNet senses. Therefore, the index

is created using the words as lexical strings (to ensure a word-based retrieval), and the

semantic tags (for the sense-based retrieval).

Chapter 5. Conclusion 123

(2) “Conceptual indexing”:

On the contrary to the last model, where the index contains only some semantic tags

that explain the sense of the indexed terms, this model is conceptual-based where the

built index consists of concepts annotated in the documents.

It was introduced by [Woods, 1997], at Sun Microsystems Laboratories. They create

some custom ontological taxonomies based on subsumption and morphology for the

purpose of indexing and retrieving documents. In 2005, [Baziz et al., 2005a] and [Baziz

et al., 2005b] also worked on the conceptual indexing, they build what they call the “Doc-

ument Semantic Core” that represents the documents’ content by the semantic network.

They start by extracting the concepts (mono and multiword) from a document, driven

by external general purpose ontology (WordNet). Then, they build the best semantic

network by achieving a global disambiguation of the extracted concepts regarding the

document. Thus, selected concepts senses represent the nodes of the semantic network

while the similarity measure values between them represent the arcs.

(3) RDF-based semantic indexing :

Thanks to the developments in the semantic web, researchers proposed a novel semantic

indexing technique suitable for knowledge management applications. This technique

represents the main concepts of a document in a RDF model, where several techniques

could be used to transform a text document into RDF. [Amato et al., 2013] propose an

approach that captures the semantic nature of a given document, commonly expressed

in natural language, by retrieving the RDF triples (using NLP processing techniques,

such as NER and POS tagging) and to semantically index the documents on the basis of

the meaning of the triples’ elements (i.e. subject, predicate, object). They also propose

to exploit this index by actual web search engines to improve the retrieval effectiveness

with respect to the adopted query keywords or for automatic topic detection tasks.

In our case, and as we already applied the automatic annotation, we can use the resulted

RDF graphs to index the documents. And as we have an algorithm to rank the entities

of these graphs, we can, either integrate the resulted ranking in the index, or use the

ranking to optimize this index.

5.2.3 SERP from documents to concepts

The LDRANK algorithm does not consider the inter-document (global) entity impor-

tance, nor the inter-document entity redundancy. These two aspects may be very inter-

esting, and may enhance the quality of the ranking.

By breaking the document unit of information into smaller units (such as the concepts),

we can group fro all the resulting documents (or a limited number of the results) the

Chapter 5. Conclusion 124

concepts to build a huge knowledge graph. This graph can by analyzed using our pro-

posed algorithm LDRANK to select the globally most relevant entities, independently

of where they have been annotated.

Sometimes when a user employs a search engine in order to find some information, her

first goal is to find this information no matter the document that contains it, retrieving

the document or the information context comes in second place.

Therefore, we think that we may improve the user satisfaction, if we transform the

SERP from being a viewer for an ordered list of results, to becoming a browser for

concepts. These concepts are ranked using LDRANK, contextualized by documents’

excerpts selected using machine learning and enriched using external information.

5.2.4 Personalization and Recommendation

As aforementioned, we do not support the whole functionalities proposed by the “The

information seeking mantra”. The History functionality can not be proposed because

we do not have yet a user profile. Having a user profile allows for keeping the history of

the user’s actions and support actions like undo, replay, and progressive refinement. As

our approach is entity-based, we can imagine the user profile to take the form of a RDF

graph. This graph consists of entities extracted from the user’s history. These entities

are linked by triples extracted from the web of data or by applying NLP techniques over

the documents in the user’s history.

In addition, the user profile is necessary for other functionalities like the personalization

and the recommendation.

Personalized IR is a popular topic in traditional web. The personalization aims at

improving the user’s experience by incorporating the user subjectivity into the retrieval

system.

In [Sah and Wade, 2013], the authors propose a novel personalized search and explo-

ration mechanism for the web of Data based on concept-based results categorization.

The proposed personalization encloses the results re-ranking, the query refinement and

concept lenses (results with the same concepts) suggestion.

Also in [Gauch et al., 2003], the authors employ the personalization to propose an in-

formation navigation based on a user profile structured as a weighted concept hierarchy.

This profile may be built by the user by creating her own concept hierarchy, or using

a reference ontology by “watching over the user’s shoulder” while they browse. In this

study, they show that these automatically created profiles reflect the user’s interests

quite well and they are able to produce moderate improvements when applied to search

results.

Chapter 5. Conclusion 125

In our work, the ranking process of chapter 2 can be extended to take the user profile

as an additional source of prior knowledge.

In addition, we can apply the personalization at the machine learning level by also

introducing the user’s profile into the features. The sentence selection may then be

more relevant.

As several research works have shown the great potential of linked data to compute

semantic similarities [Blanco et al., 2013, Damljanovic et al., 2012, Passant, 2010, Zadeh

and Reformat, 2012], these similarity measures are heavily used for the recommendation.

Recommender systems suggest results and entities to the user that are not necessarily

in the results list, but that may be interesting for her. This kind of system takes into

account the user’s history, priorities, and goals.

Thus, we can extend our model to include recommendations based on the user profile

and the results of LDRANK. We can recommend entities or even documents depending

on the similarity with the query and/or the results.

5.2.5 ENsEN from prototype to product

The ENsEN’s architecture consists of separate components that interact using APIs.

This type of architecture allows us to add as many extensions as we want. In addition

to the extensions, we can propose some short-term, and long-term improvements for

the current components transforming our system ENsEN, from a prototype to a real

commercializable product.

In the following, we present the proposed enhancements and extensions for ENsEN:

5.2.5.1 Enhance the performance by pre-treatment techniques

ENsEN runs 100% online, in order to understand better the system’s performance, we

studied its actual response time step by step. Therefore, we issued 3 different queries,

in each one we generated the semantic snippets for the first five results. The results of

this study are presented in Table 5.1.

We notice that the most expensive process is the Tensor Decomposition, applied to

analyze the RDF graph and generate a set of semantic features to be used in the machine

learning process, it takes 37.85% of the total response time.

This time can be economized by applying the features selection methodology presented

in Section 3.6.8, where we prove that the features generated by the tensor decomposition

can be ignored.

Chapter 5. Conclusion 126

Operation Time (ms) % Functionality
Google 2449 2.55% Send the query to Google and receive the results list

Extract HTML 20743 21.60% Retrieve the documents by URLs
Extract Text 2400 2.50% Parse the HTML and extract the main text

Annotate 5487 5.71% Use DBpedia Spotlight to annotate the text
Build the RDF Graph 6734 7.01% Use DBpedia Endpoint to connect the entities as an RDF graph

LDRANK 8987 9.36% Apply the ranking algorithm LDRANK
Tensor decomposition 36343 37.85% Apply the tensor decomposition to analyze the RDF graph

Build ML Features 6167 6.42% Analyze the sentences and prepare the input (the features) for the
machine learning

Find Main Sentence 5104 5.32% Apply the machine learning process
Annotate SE Snippet 1600 1.67% Use DBpedia Spotlight to annotate the SE’s textual snippets

All operations 96014 100%
Grouped results

Preprocessing 37813 39.38% Operations before LDRANK (prepare the algorithm’s input)
LDRANK 8987 9.36%

Tensor decomposition 36343 37.85%
Snippet UI generation 12871 13.41%

Table 5.1: The summary of ENsEN’s response time per step (log of 3 queries and 5
results per query)

We notice also that the preprocessing phase takes almost 40% of the total response time.

Thus, applying all the preprocessing operation off-line (i.e. indexing phase), can also

economize this 40%.

The off-line phase will consist of crawling the web, then for each web page, applying the

preprocessing operation, finally, we build the semantic index presented in Section 5.2.2.

The off-line phase can significantly enhance the system’s performance, we estimate the

resulted economy at almost 80% of the actual ENsEN’s response time.

5.2.5.2 History and Extract

In the ENsEN interactive design (Section 3.4), we showed how our system implements

almost all the guidelines of the “information seeking mantra” [Shneiderman, 1996], ex-

cept the history and the extract.

The history is the functionality of keeping a trace of the user’s actions to support the

undo, the replay and the progressive refinement. Integrating the user’s profile and the

history functionality (presented in Section 5.2.4), will enhance the global user satisfac-

tion.

The extract functionality allows the extraction of results, documents or RDF graphs.

This exported information can then be used by other systems. Following the information

seeking mantra, this functionality will be very useful to the user.

Appendix A

Crowdsourcing Microtask

Example for the Evaluation of

ENsEN’s search interface.

127

Appendix A: Crowdsourcing Microtask Example 128

A.1 Introduction

In this appendix, we give an example of the microtasks used in the evaluation of our

system ENsEN (Chapter 4). We also indicate the topics and the questions selected

from TREC 2004 QA track in order to generate the search tasks for the crowdsourcing

microtasks.

Appendix A: Crowdsourcing Microtask Example 129

A.2 Microtask

Evaluation Of Search Engines’ User Interfaces

Instructions

Overview

Welcome to our search user interface study.

Searching is one of the most prominent action on the web. Search engines are very

popular (e.g., Google handles more than three billion queries each day). A search user

interface should allow the users to express their information need through a query,

and to understand the results of their search. Today’s typical search interfaces are

vertical ranked lists of results.

The design of search user interfaces has developed dramatically over the years, there-

fore we propose to evaluate a new kind of interface (ENsEN) and to compare it to a

typical one (Google).

You will have to provide answers to search tasks (e.g., ”What division (weight) did

the boxer Floyd Patterson win?”). For half of them you will be using the Google user

interface, while for the other half you will be using the ENsEN user interface. Finally,

you will be asked to evaluate and compare the two user interfaces.

We first introduce the main characteristics of the two user interfaces. Then, we will

give you guidelines about how to fulfill this job.

Figure A.1: Google interface

Google

On the following picture, we can see that

the Google’s user interface consists of

a ranked list of web pages’ titles that

are followed by an excerpt from the web

page. This excerpt is also called a snip-

pet.

The components of the Google’s search

user interface:

1- The entry form (also called the search

box): where you enter your query as a

list of keywords.

2- The result’s title that links to the cor-

responding web page.

3- The result’s URL.

4- An excerpt from the document.

5- A list of links to subparts of the web page.

PS: Google uses a bold face for each occurrence of a query’s keyword within the

excerpt.

Appendix A: Crowdsourcing Microtask Example 130

Figure A.2: ENsEN interface

ENsEN

ENsEN is a software system that en-

hances a traditional search user inter-

face with more meaningful data (see the

following picture). To do this, ENsEN

identifies the best concepts in each result

and uses them to offer a more informa-

tive view of the web page.

The components of ENsEN’s search

user interface:

1- The keywords composing the query:

users can remove each keyword using the

x button.

2- The entry form: where users enter

their query as a list of keywords, or reformulate an existing query by adding or

removing keywords.

3- The related concepts: a ranked list of the best concepts over all the results.

4- Each concept of this list can be clicked to see a small description along with selected

excerpts from documents within which it was found.

5- The result’s title, also a link to the corresponding web page.

6- A sentence from the web page selected for its capacity to explain the relationship

between the query and this result.

7- A ranked list of the best concepts found within the web page.

8- Each concept of this list can be clicked to see a small description along with selected

excerpts from the web page.

9- The excerpt proposed by Google.

Figure A.3: ENsEN concept description
interface

ENsEN: The concept description inter-

face:

1. The name of the concept.

2. A definition of the concept.

3. A few selected sentences within which

this concept appeared.

4. An icon that can be clicked to see the

sentence in the context of its web page.

5. A few facts about the concept.

Appendix A: Crowdsourcing Microtask Example 131

Guidelines

How to do this job?

A- Entry questionnaire is a background information survey used to evaluate your

knowledge of search user interfaces.

B- Search tasks is the main part the job. You are asked to answer a few search tasks.

For half of them you will be using the Google user interface, while for the other half

you will be using the ENsEN user interface. You will also be asked to evaluate the

user interface you used to answer the task.

C- Overall Preference: Once you answered all the tasks, we will ask you for an overall

comparison of the two search user interfaces.

D- About you: a short demographic survey.

E- Feedback: at the end we give you the possibility to express your feedback, your

impressions and any propositions.

Entry questionnaire (background information)

In this part, we would like you to answer a few questions to evaluate your degree of

expertise with the Google web search engine.

What must you enter into the Google’s search box in order to find an

exact phrase?

- Simply enter the exact phrase into Google’s search box.

- Use * on either side of the phrase.

- Put the phrase in quotes.

- Start the phrase with a slash mark.

What is the quickest way to find the definition of computer using Google?

- Use your web browser to navigate to www.dictionary.com.

- Enter into Google’s search box: ’define:computer’

- Enter into Google’s search box: ’What is a computer?’

- Enter into Google’s search box: ’computer definition’

What do you type into the Google search box if you only want to search

the contents of a specific website?

- There is no easy way to do that.

- Enter into Google’s search box: ’admission site:www.stanford.edu’

- Go directly to Stanford’s web site and use their search box.

- Enter into Google’s search box: ’admission inurl:Standford’

You want to search about ’virus’, but you don’t want results related to

’computer virus’. What must you enter into the Google’s search box?

- There is no easy way to do that.

- Enter into Google’s search box: ’virus, not computer’

- Enter into Google’s search box: ’virus -computer’

- Enter into Google’s search box: ’virus, 0 computer’

- Enter into Google’s search box: ’only the word virus’

Appendix A: Crowdsourcing Microtask Example 132

How do you evaluate your knowledge of search engines?

Bad 1 - 2 - 3 - 4 - 5 Very Good

A self-rating question about your ability to find information on the web using a search

engine.

Search tasks

The topic is ”Crip gang”

In this part, you are asked to complete a few search tasks.

Task 1: find the correct answer.

What is their gang color?

Please, use the ENsEN search user interface. You have up to three minutes.

Please select your answer.

- Yellow

- Red

- Blue

- Black

Task 2: find a list of answers.

Which cities have Crip gangs?

Please, use the ENsEN search user interface. You have up to three minutes.

Please, list of answers. (Comma separated list of answer’s elements. Please no URL).

Task 3: find the correct answer with possible query reformulation

Please, start with the keyword ethnic Crip gangs with the ENsEN user interface, in

order to answer the question What ethnic group/race are Crip members?. If you

don’t find the answer, you can reformulate the query. Please, provide us with the

entire sequence of queries you used to find the answer.

Your first query must be: ethnic Crip gangs. You have three minutes.

The answer is:

- Gang

- African-American

- Young Gangster

- Violence

I used the following queries:

- ethnic Crip gangs

-

After task evaluation

How easy was it to find the correct answer?

Very easy 1 - 2 - 3 - 4 - 5 Very hard

How do you evaluate the difficulty of this task?

Very easy 1 - 2 - 3 - 4 - 5 Very hard

Were you satisfied with the user interface?

Not at all 1 - 2 - 3 - 4 - 5 Very satisfied

Appendix A: Crowdsourcing Microtask Example 133

Overall Preference

Which search user interface did you prefer?

Google 1 - 2 - 3 - 4 - 5 ENsEN

In your opinion, what is the most important component of the ENsEN

user interface?

- The related concepts.

- The result’s title.

- The excerpt from the web page.

- The concepts’ descriptions.

- Something else.

What is your overall evaluation of Google’s user interface?

Bad 1 - 2 - 3 - 4 - 5 Very Good

What is your overall evaluation of ENsEN’s user interface?

Bad 1 - 2 - 3 - 4 - 5 Very Good

Would you use ENsEN in the future for similar search tasks?

- Yes

- no

About you

in this part, you are asked to answer some demographic questions about you.

Your age?

- older than 60

- older than 40

- older than 30

- older than 20

- younger than 20

In general, your queries are:

- Informational queries: Queries that cover a broad topic (e.g., Colorado or trucks)

for which there may be thousands of relevant results.

- Navigational queries: Queries that seek a single website or web page of a single

entity (e.g., Youtube or delta air lines).

- Transactional queries: Queries that reflect the intent of the user to perform a par-

ticular action, like purchasing a car or downloading a screen saver.

- Exploratory queries: Queries about unfamiliar domain, need to learn more about

the topic.

Feedback

In your opinion, what and how can we enhance in the ENsEN’s interface?

Please, give us any additional feedback about the user interface of ENsEN:

Appendix A: Crowdsourcing Microtask Example 134

A.3 Used topics and questions

In the following, we present the 8 selected topics from TREC 2004 QA track, with three

questions for each topic:

Topic 1: Crip gang

- What is their gang color?

- Which cities have Crip gangs?

- What ethnic group/race are Crip members?

Topic 2: Fred Durst

- What is the name of Durst’s group?

- What are titles of the group’s releases?

- What record company is he with?

Topic 3: Hale Bopp comet

- How often does it approach the earth?

- In what countries was the comet visible on its last return?

- When was the comet discovered?

Topic 4: James Dean

- When did James Dean die?

- What movies did he appear in?

- Which was the first movie that he was in?

Topic 5: Rhodes scholars

- How long does one study as a Rhodes scholar?

- Name famous people who have been Rhodes scholars.

- Where do Rhodes scholars study?

Topic 6: Black Panthers

- Who founded the Black Panthers organization?

- Who have been members of the organization?

- Where was it founded?

Topic 7: Insane Clown Posse

- What is their style of music?

- Who are the members of this group?

- What is their biggest hit?

Appendix A: Crowdsourcing Microtask Example 135

Topic 8: Prions

- What are prions made of?

- What diseases are prions associated with?

- Who discovered prions?

Bibliography

Ageev, M., Lagun, D., and Agichtein, E. (2013). Improving search result summaries by

using searcher behavior data. In Proceedings of the 36th international ACM SIGIR

conference on Research and development in information retrieval, pages 13–22. ACM.

Alonso, O., Marshall, C., and Najork, M. (2014). Crowdsourcing a subjective label-

ing task: A human-centered framework to ensure reliable results. Technical report,

Microsoft Research.

Amato, F., Gargiulo, F., Mazzeo, A., Moscato, V., and Picariello, A. (2013). An rdf-

based semantic index. In Natural Language Processing and Information Systems,

pages 315–320. Springer.

Andersson, C. A. and Bro, R. (2000). The n-way toolbox for matlab. Chemometrics

and Intelligent Laboratory Systems, 52(1):1–4.

Anyanwu, K., Maduko, A., and Sheth, A. (2005). Semrank: ranking complex rela-

tionship search results on the semantic web. In Proceedings of the 14th international

conference on World Wide Web, pages 117–127. ACM.

Bai, X., Delbru, R., and Tummarello, G. (2008). Rdf snippets for semantic web search

engines. In On the Move to Meaningful Internet Systems: OTM 2008, pages 1304–

1318. Springer.

Baziz, M., Boughanem, M., and Aussenac-Gilles, N. (2005a). Conceptual indexing based

on document content representation. In Context: nature, impact, and role, pages 171–

186. Springer.

Baziz, M., Boughanem, M., and Traboulsi, S. (2005b). A concept-based approach for

indexing documents in ir. In INFORSID, volume 2005, pages 489–504.

Berners-Lee, T. (2006). Linked data-design issues (2006). http://www.w3.org/

DesignIssues/LinkedData.html. [Online; accessed 2016-03-01].

Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001). The semantic web. Scientific

american, 284(5):28–37.

137

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

Bibliography 138

Berry, M. W. (1992). Large-scale sparse singular value computations. International

Journal of Supercomputer Applications, 6(1):13–49.

Bizer, C., Auer, S., Kobilarov, G., Lehmann, J., and Cyganiak, R. (2007). Dbpedi-

aquerying wikipedia like a database. In Developers track presentation at the 16th

international conference on World Wide Web, WWW16, pages 8–12.

Bizer, C., Eckert, K., Meusel, R., Mühleisen, H., Schuhmacher, M., and Völker, J.

(2013). Deployment of rdfa, microdata, and microformats on the web–a quantitative

analysis. In The Semantic Web–ISWC 2013, pages 17–32. Springer.

Blanco, R., Cambazoglu, B. B., Mika, P., and Torzec, N. (2013). Entity recommendations

in web search. In The Semantic Web–ISWC 2013, pages 33–48. Springer.

Broomhead, D. S. and Lowe, D. (1988). Radial basis functions, multi-variable functional

interpolation and adaptive networks. Technical report, DTIC Document.

Butt, A. S., Haller, A., and Xie, L. (2015). A taxonomy of semantic web data retrieval

techniques. In Proceedings of the 8th International Conference on Knowledge Capture,

page 9. ACM.

Callan, J., Allan, J., Clarke, C. L. A., Dumais, S., Evans, D. A., Sanderson, M., and

Zhai, C. (2007). Meeting of the minds: An information retrieval research agenda.

SIGIR Forum, 41(2):25–34.

Campinas, S., Delbru, R., and Tummarello, G. (2012). Effective retrieval model for

entity with multi-valued attributes: Bm25mf and beyond. In Knowledge Engineering

and Knowledge Management, volume 7603 of Lecture Notes in Computer Science,

pages 200–215. Springer Berlin Heidelberg.

Carvalho, A. and Larson, K. (2013). A consensual linear opinion pool. In Proceedings

of the Twenty-Third international joint conference on Artificial Intelligence, pages

2518–2524. AAAI Press.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote:

synthetic minority over-sampling technique. Journal of artificial intelligence research,

pages 321–357.

Daiber, J., Jakob, M., Hokamp, C., and Mendes, P. N. (2013). Improving efficiency

and accuracy in multilingual entity extraction. In Proceedings of the 9th International

Conference on Semantic Systems (I-Semantics).

Dali, L., Fortuna, B., Duc, T. T., and Mladenić, D. (2012). Query-independent learning

to rank for rdf entity search. In The Semantic Web: Research and Applications, pages

484–498. Springer.

Bibliography 139

Damljanovic, D., Stankovic, M., and Laublet, P. (2012). Linked data-based concept

recommendation: Comparison of different methods in open innovation scenario. The

Semantic Web: Research and Applications, pages 24–38.

Delbru, R., Toupikov, N., Catasta, M., Tummarello, G., and Decker, S. (2010). Hi-

erarchical link analysis for ranking web data. In The Semantic Web: Research and

Applications, pages 225–239. Springer.

Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R. S., Peng, Y., Reddivari, P., Doshi, V.,

and Sachs, J. (2004). Swoogle: A search and metadata engine for the semantic web.

In Proceedings of the Thirteenth ACM International Conference on Information and

Knowledge Management, CIKM ’04, pages 652–659, New York, NY, USA. ACM.

Dumais, S., Cutrell, E., and Chen, H. (2001). Optimizing search by showing results in

context. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’01, pages 277–284, New York, NY, USA. ACM.

Fafalios, P. and Tzitzikas, Y. (2014). Post-analysis of keyword-based search results using

entity mining, linked data, and link analysis at query time. In Semantic Computing

(ICSC), 2014 IEEE International Conference on, pages 36–43. IEEE.

Fellbaum, C. (2006). Wordnet(s). In Brown, K., editor, Encyclopedia of Language &

Linguistics (Second Edition), pages 665 – 670. Elsevier, Oxford, second edition edition.

Franz, T., Schultz, A., Sizov, S., and Staab, S. (2009). Triplerank: Ranking semantic

web data by tensor decomposition. In The Semantic Web-ISWC 2009, pages 213–228.

Springer.

Gauch, S., Chaffee, J., and Pretschner, A. (2003). Ontology-based personalized search

and browsing. Web Intelligence and Agent Systems, 1(3-4):219–234.

Ge, W., Cheng, G., Li, H., and Qu, Y. (2012). Incorporating compactness to gen-

erate term-association view snippets for ontology search. Information Processing &

Management, pages 513–528.

Haas, K., Mika, P., Tarjan, P., and Blanco, R. (2011). Enhanced results for web search.

Proceedings of the 34th international ACM SIGIR conference on Research and devel-

opment in Information - SIGIR ’11, page 725.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.

(2009). The weka data mining software: an update. ACM SIGKDD explorations

newsletter, 11(1):10–18.

Hearst, M. (2011). User interfaces for search. Citeseer. pages 21–55.

Bibliography 140

Heath, T. and Bizer, C. (2011). Linked data: Evolving the web into a global data space.

Synthesis lectures on the semantic web: theory and technology, 1(1):1–136.

Hildebrand, M., Ossenbruggen, J. V., and Hardman, L. (2007). An Analysis of Search-

based User Interaction on the Semantic Web. Information Systems, pages 1386–3681.

Hogan, A., Harth, A., and Decker, S. (2006). Reconrank: A scalable ranking method

for semantic web data with context.

Hu, H. and Du, X. (2012). Combining n-gram retrieval with weights propagation on

massive rdf graphs. In Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th

International Conference on, pages 1181–1185.

Järvelin, K. and Kekäläinen, J. (2000). Ir evaluation methods for retrieving highly

relevant documents. In Proceedings of the 23rd annual international ACM SIGIR

conference on Research and development in information retrieval, pages 41–48. ACM.

Jeong, J.-W., Morris, M. R., Teevan, J., and Liebling, D. J. (2013). A crowd-powered

socially embedded search engine. In ICWSM.

Jiang, J., He, D., and Allan, J. (2014). Searching, browsing, and clicking in a search

session: Changes in user behavior by task and over time. In Proceedings of the 37th In-

ternational ACM SIGIR Conference on Research & Development in Information

Retrieval, SIGIR ’14, pages 607–616, New York, NY, USA. ACM.

Jindal, V., Bawa, S., and Batra, S. (2014). A review of ranking approaches for semantic

search on web. Information Processing & Management, 50(2):416–425.

Kelly, D. (2009). Methods for evaluating interactive information retrieval systems with

users. Foundations and Trends in Information Retrieval, 3(12):1–224.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal

of the ACM (JACM), 46(5):604–632.

Kohlschütter, C., Fankhauser, P., and Nejdl, W. (2010). Boilerplate detection using

shallow text features. In Proceedings of the third ACM international conference on

Web search and data mining, pages 441–450. ACM.

Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM

review, 51(3):455–500.

Koumenides, C. L. and Shadbolt, N. R. (2014). Ranking methods for entity-oriented

semantic web search. Journal of the Association for Information Science and Tech-

nology, 65(6):1091–1106.

Bibliography 141

Krippendorff, K. (2012). Content analysis: An introduction to its methodology. Sage

Publications.

KrishnaVeni, C. and Sobha Rani, T. (2011). On the classification of imbalanced datasets.

IJCST, 2:145–148.

Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for

categorical data. biometrics, pages 159–174.

Langville, A. N. and Meyer, C. D. (2011). Google’s PageRank and beyond: The science

of search engine rankings. Princeton University Press.

Lehmann, J., Gerber, D., Morsey, M., and Ngomo, A.-C. N. (2012). Defacto-deep fact

validation. In The Semantic Web–ISWC 2012, pages 312–327. Springer.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hell-

mann, S., Morsey, M., van Kleef, P., Auer, S., et al. (2014). Dbpedia-a large-scale,

multilingual knowledge base extracted from wikipedia. Semantic Web Journal, 5:1–29.

Lempel, R. and Moran, S. (2001). Salsa: the stochastic approach for link-structure

analysis. ACM Transactions on Information Systems (TOIS), 19(2):131–160.

Marcos, M.-C. and González-Caro, C. (2010). Comportamiento de los usuarios en la

página de resultados de los buscadores. un estudio basado en eye tracking. El profe-

sional de la información, 19(4):348–358.

Mendes, P. N., Jakob, M., Garćıa-Silva, A., and Bizer, C. (2011). Dbpedia spotlight:

Shedding light on the web of documents. In Proceedings of the 7th International

Conference on Semantic Systems, I-Semantics ’11, pages 1–8, New York, NY, USA.

ACM.

Metzler, D. and Kanungo, T. (2008). Machine learned sentence selection strategies for

query-biased summarization. In SIGIR Learning to Rank Workshop, pages 40–47.

Mihalcea, R. and Moldovan, D. (2000). Semantic indexing using wordnet senses. In Pro-

ceedings of the ACL-2000 workshop on Recent advances in natural language processing

and information retrieval: held in conjunction with the 38th Annual Meeting of the

Association for Computational Linguistics-Volume 11, pages 35–45. Association for

Computational Linguistics.

Miller, G. A. (1995). Wordnet: A lexical database for english. Communications of the

ACM, 38(11):39–41.

Mitchell, T. M. (1997). Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45.

Bibliography 142

Neumayer, R., Balog, K., and Nørv̊ag, K. (2012). On the modeling of entities for ad-hoc

entity search in the web of data. In Proceedings of the 34th European Conference

on Advances in Information Retrieval, ECIR’12, pages 133–145, Berlin, Heidelberg.

Springer-Verlag.

Nie, Z., Zhang, Y., Wen, J.-R., and Ma, W.-Y. (2005). Object-level ranking: bringing

order to web objects. In Proceedings of the 14th international conference on World

Wide Web, pages 567–574. ACM.

Nielsen, J. (2004). When search engines become answer engines. Jakob Nielsens Alertbox,

pages 1–5.

Oram, P. (2001). Wordnet: An electronic lexical database. christiane fellbaum (ed.).

cambridge, ma: Mit press, 1998. pp. 423.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation

ranking: bringing order to the web. Technical report, Stanford InfoLab.

Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs up?: sentiment classification

using machine learning techniques. In Proceedings of the ACL-02 conference on Em-

pirical methods in natural language processing-Volume 10, pages 79–86. Association

for Computational Linguistics.

Passant, A. (2010). Measuring semantic distance on linking data and using it for re-

sources recommendations.

Penin, T., Wang, H., Tran, T., and Yu, Y. (2008). Snippet generation for semantic web

search engines. In The Semantic Web, pages 493–507. Springer.

Pound, J., Mika, P., and Zaragoza, H. (2010). Ad-hoc object retrieval in the web of data.

In Proceedings of the 19th International Conference on World Wide Web, WWW ’10,

pages 771–780, New York, NY, USA. ACM.

Quinlan, J. R. (1993). C4. 5: programs for machine learning, volume 1. Morgan kauf-

mann.

Roa-Valverde, A. J. and Sicilia, M.-A. (2014). A survey of approaches for ranking on

the web of data. Information Retrieval, 17(4):295–325.

Rodŕıguez, M. A. and Egenhofer, M. J. (2003). Determining semantic similarity among

entity classes from different ontologies. Knowledge and Data Engineering, IEEE

Transactions on, 15(2):442–456.

Sah, M. and Wade, V. (2013). Personalized concept-based search and exploration on

the web of data using results categorization. In The Semantic Web: Semantics and

Big Data, pages 532–547. Springer.

Bibliography 143

Schmachtenberg, M., Bizer, C., and Paulheim, H. (2014). Adoption of the linked data

best practices in different topical domains. In The Semantic Web - ISWC 2014 - 13th

International Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014.

Proceedings, Part I, pages 245–260.

Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE

Mobile Computing and Communications Review, 5(1):3–55.

Shneiderman, B. (1996). The eyes have it: a task by data type taxonomy for information

visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages

336–343.

Steiner, T., Troncy, R., and Hausenblas, M. (2010). How google is using linked data

today and vision for tomorrow. Proceedings of Linked Data in the Future Internet,

700.

Tonon, A., Catasta, M., Prokofyev, R., Demartini, G., Aberer, K., and Cudré-Mauroux,

P. (2016). Contextualized ranking of entity types based on knowledge graphs. Web

Semantics: Science, Services and Agents on the World Wide Web.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM,

27(11):1134–1142.

Varadarajan, R. and Hristidis, V. (2005). Structure-based query-specific document sum-

marization. In Proceedings of the 14th ACM International Conference on Information

and Knowledge Management, CIKM ’05, pages 231–232, New York, NY, USA. ACM.

Wang, C., Jing, F., Zhang, L., and Zhang, H.-J. (2007). Learning query-biased web

page summarization. In Proceedings of the sixteenth ACM conference on Conference

on information and knowledge management, pages 555–562. ACM.

Wei, W., Barnaghi, P., and Bargiela, A. (2011). Rational research model for ranking

semantic entities. Information Sciences, 181(13):2823–2840.

White, R. W., Ruthven, I., and Jose, J. M. (2002). Finding relevant documents using

top ranking sentences: An evaluation of two alternative schemes. In Proceedings of

the 25th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, SIGIR ’02, pages 57–64, New York, NY, USA. ACM.

Woods, W. A. (1997). Conceptual indexing: A better way to organize knowledge.

Technical report, Sun Microsystems, Inc., Mountain View, CA, USA.

Yumusak, S., Dogdu, E., and Kodaz, H. (2014). A short survey of linked data ranking.

In Proceedings of the 2014 ACM Southeast Regional Conference, ACM SE ’14, pages

48:1–48:4, New York, NY, USA. ACM.

Bibliography 144

Zablith, F., Fernandez, M., and Rowe, M. (2011). The ou linked open data: Production

and consumption. elearning approaches for the linked data age. In Extended Semantic

Web Conference.

Zadeh, P. D. H. and Reformat, M. Z. (2012). Fuzzy semantic similarity in linked data

using the owa operator. In Fuzzy Information Processing Society (NAFIPS), 2012

Annual Meeting of the North American, pages 1–6. IEEE.

Zaragoza, H., Rode, H., Mika, P., Atserias, J., Ciaramita, M., and Attardi, G. (2007).

Ranking very many typed entities on wikipedia. In Proceedings of the sixteenth ACM

conference on Conference on information and knowledge management, pages 1015–

1018. ACM.

Abbreviations

AOR Ad-hoc Object Retrieval

CCS Compressed Column Storage

DCG Discounted Cumulative Gain

EL Entity Linking

ENsEN Enhanced Search Engine

GBRT Gradient Boosting Regression Tree

GRS Google Rich Snippet

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IIR Interactive Information Retrieval

IR Information Retrieval

LD Linked Data

LDRANK Linked Data Ranking Algorithm

LDSVD Linked Data Singular Value Decomposition

LOD Linking Open Data

NDCG Normalized Discounted Cumulative Gain

NED Named Entity Disambiguation

NER Named Entity Recognition

145

Abbreviations 146

NLP Natural Language Processing

RBF Radial Basis Function Networks

RDF Resource Description Framework

SE Search Engines

SERP Search Engine Results Page

SMOTE Synthetic Minority Over-Sampling Technique

SPARQL SPARQL Query Language for RDF

SUI Search User Interface

SVD Singular Value Decomposition

SVMs Support Vector Machines

SW Semantic Web

SWD Semantic Web Document

SWDB Semantic Web DataBase

SWO Semantic Web Ontology

UDI Universal Document Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WIR Web Information Retrieval

WWW World Wide Web

Publications List

PUBLICATIONS DIRECTLY RELATED TO THE THESIS (in chronolog-

ical order)

1. M. Alsarem : A Generic Approach Based on Linked Data to Enhance Web In-

formation Retrieval and Increase User Satisfaction. In : Conférence en Recherche

d’Information et Applications, CORIA13, RJCRI13. pp. 299-304, 2013.

2. M. Alsarem, P. E. Portier, S. Calabretto, H. Kosch : Making Use of Linked Data for

Generating Enhanced Snippets. In: Proceedings of the 11th Extended Semantic

Web Conference, ESWC14, The Semantic Web: ESWC 2014 Satellite Events (pp.

275-279). Springer International Publishing, 2014, (Demo paper).

3. M. Alsarem, P. E. Portier, S. Calabretto, H. Kosch : Ordonnancement d’entités

appliqué à la construction de snippets sémantiques. In: Conférence en Recherche

d’Information et Applications, CORIA15, 2015.

4. M. Alsarem, P. E. Portier, S. Calabretto, H. Kosch : Ranking Entities in the

Age of Two Webs, an Application to Semantic Snippets. In: Proceedings of the

12th Extended Semantic Web Conference, ESWC15, The Semantic Web. Latest

Advances and New Domains. Springer International Publishing. p. 541-555, 2015.

5. M. Alsarem, P. E. Portier, S. Calabretto, H. Kosch : Ordonnancement d’entités

pour la rencontre du web des documents et du web des données. In : Document

Numérique VOL 18/2-3, pp.123-154, 2015.

6. M. Alsarem, P. E. Portier, S. Calabretto, H. Kosch : SEMashup: Making Use of

Linked Data for Generating Enhanced Snippets. In: Proceedings of the AI Mashup

Challenge 2014, co-located with 11th Extended Semantic Web Conference (ESWC

2014), (short paper).

PUBLICATIONS UNDER REVIEW

147

Publications List 148

1. M. Alsarem, P. E. Portier, S. Calabretto, H. Kosch : Query-biased Ranking of

LOD Entities for Semantic Snippets. Submitted to: Information Processing and

Management journal (under review).

	Acknowledgements
	Abstract
	Résumé
	Zusammenfassung
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Background
	1.2.1 The ``Web''
	1.2.2 Web of Data
	1.2.3 Co-existence of the two web (web of documents and web of data)
	1.2.4 Web Information Retrieval
	1.2.5 Search User Interface

	1.3 Statement of the Problem
	1.4 Research Questions
	1.5 Application Scenarios
	1.5.1 Application Scenario 1: General Vs. Specific user information need
	1.5.2 Application Scenario 2: Answering directly (in SERP) hard questions

	1.6 Summary of Contributions
	1.6.1 Query-biased Ranking for Linked Data Entities
	1.6.2 ``Semantic Snippets'' and the Enhanced Search Engine (ENsEN)

	1.7 Structure of the Thesis

	2 A Query-biased Ranking for LOD Entities
	2.1 Introduction and Context
	2.2 Related Works
	2.2.1 Comparative study
	2.2.2 Selected approaches from the literature
	2.2.3 Conclusion

	2.3 Our Algorithm (LDRANK)
	2.3.1 Context
	2.3.2 Prior Knowledge Derived from the Ranking Provided by the Web Search Engine Result Page
	2.3.3 Prior Knowledge Derived from an Iterative Latent Semantic Analysis of the Textual Data Describing the Entities
	2.3.4 Belief Aggregation Strategy
	2.3.5 LDRANK

	2.4 Evaluation
	2.4.1 Introduction
	2.4.2 Build the evaluation dataset
	2.4.3 Experiments
	2.4.4 Results and discussion

	2.5 Conclusion

	3 The Semantic Snippets
	3.1 Introduction
	3.2 Related Work
	3.2.1 Enhancing Snippets for the Semantic Web
	3.2.2 Enhancing Snippets for the Web of documents

	3.3 Elements composing a Semantic Snippet
	3.4 Semantic Snippet as an Interactive Artifact
	3.5 Semantic Snippets' Generation
	3.6 Learning to rank documents' excerpts
	3.6.1 Background
	3.6.2 Related Work
	3.6.3 Feature Engineering
	3.6.4 Training Dataset
	3.6.5 Re-Balancing the Training Dataset
	3.6.6 First Results
	3.6.7 Results using other regrouping strategies
	3.6.8 Feature Selection
	3.6.9 Selected Features
	3.6.10 Conclusion

	4 Enhanced Search Engine (ENsEN)
	4.1 Introduction
	4.2 Software Design and Architecture
	4.2.1 External Services
	4.2.2 High-level Architecture
	4.2.3 Internal Components
	4.2.4 Data Model
	4.2.5 Workflow

	4.3 User Interface
	4.3.1 Visual Design
	4.3.2 ENsEN design and Crowdsourcing

	4.4 Implementation
	4.4.1 Technological and architectural choices
	4.4.2 Hardware Configurations

	4.5 Crowdsourcing Evaluation of ENsEN
	4.5.1 Methodology
	4.5.2 Results Analysis

	4.6 Conclusion

	5 Conclusion
	5.1 Research summary
	5.2 Future Work and Perspectives
	5.2.1 LDRANK: Exploring more prior knowledge sources
	5.2.2 Semantic Index
	5.2.3 SERP from documents to concepts
	5.2.4 Personalization and Recommendation
	5.2.5 ENsEN from prototype to product

	A Crowdsourcing Microtask Example for the Evaluation of ENsEN's search interface.
	A.1 Introduction
	A.2 Microtask
	A.3 Used topics and questions

	Bibliography
	Publications List

