
HAL Id: tel-01321286
https://hal.science/tel-01321286

Submitted on 25 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Mining Approach to Temporal Debugging of
Embedded Streaming Applications

Oleg Iegorov

To cite this version:
Oleg Iegorov. Data Mining Approach to Temporal Debugging of Embedded Streaming Applications.
Embedded Systems. Université Grenoble Alpes, 2016. English. �NNT : �. �tel-01321286�

https://hal.science/tel-01321286
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Oleg Iegorov

Thèse dirigée par Jean-François Méhaut
et codirigée par Miguel Santana

préparée au sein Laboratoire d’Informatique de Grenoble
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Data Mining Approach to
Temporal Debugging
of Embedded Streaming Applications

Thèse soutenue publiquement le 8 avril 2016,
devant le jury composé de :

M Raymond Namyst
Professeur à l’Université de Bordeaux, Président

M Sebastian Fischmeister
Associate Professor à l’Université de Waterloo, Rapporteur

Mme Maguelonne Teisseire
Directrice de recherche à IRSTEA, Rapporteur

M Marc Plantevit
Maı̂tre de Conférences à l’Université Claude Bernard Lyon 1, Examinateur

M Jean-François Méhaut
Professeur à l’Université Grenoble Alpes, Directeur de thèse

M Miguel Santana
Directeur du centre SDT à STMicroelectronics, Co-Directeur de thèse

M Alexandre Termier
Professeur à l’Université de Rennes 1, Co-Encadrant de thèse

M Vincent Leroy
Maı̂tre de conférence à l’Université Grenoble Alpes, Co-Encadrant de thèse

Contents

Contents iii

List of Figures v

List of Tables vi

Acronyms vii

1 Introduction 1

1.1 Context and Motivation . 2

1.2 Aim and Scope . 5

1.3 Significance of the Study . 6

1.4 Overview of the Contribution . 6

1.5 Scientific Context . 7

1.6 Organization of the Thesis . 7

2 Background 9

2.1 Multimedia Embedded Systems . 10

2.2 Hardware Perspective: System-on-Chip 12

2.3 Software Perspective: Dataflow Computational Model 14

2.4 Scheduling Perspective: Hard Real-Time Constraints 15

2.5 Temporal Bugs in Embedded Streaming Applications 16

2.6 Complexities of Temporal Debugging . 17

2.7 Execution Tracing Technology . 18

2.8 Conclusion . 20

3 Detecting Anomalous Zones in Execution Traces 23

3.1 Propagation of Execution Delay in Dataflow Graphs 23

3.2 Mining Actors’ Periods from Execution Traces 25

3.2.1 Clustering Event’s Occurrences . 27

3.2.2 Detecting Violations of Event’s Period 32

3.3 Conclusion . 34

4 Mining Abnormal System Activity from Execution Traces 35

4.1 Detection of Abnormal System Activity as a Pattern Mining Task 36

4.2 Minimal Contrast Sequence Mining . 40

4.2.1 Direct Mining of Minimal Contrast Sequences 44

4.2.2 Indirect Mining of Minimal Contrast Sequences 44

iii

Contents iv

4.2.3 Mining Minimal Contrast Sequences with Constraints 54

4.3 Considerations on Contrast Pattern Mining from Execution Traces 59

4.3.1 Apriori Pruning on Trace Datasets 61

4.3.2 BackScan Pruning on Trace Datasets 62

4.3.3 Contrast Pruning on Trace Datasets 64

4.3.4 Can Bioinformatics Help Mining Contrast Sequences from
Execution Traces? . 65

4.4 Conclusion . 68

5 Use Cases 71

5.1 Description of Use Cases . 72

5.2 Detection of Anomalous Zones . 74

5.2.1 GStreamer Use Case . 74

5.2.2 TSRecord Use Case . 76

5.2.3 DVBTest Use Case . 77

5.3 Mining Suspicious System Activity . 78

5.3.1 GStreamer Use Case . 79

5.3.2 TSRecord Use Case . 82

5.3.3 DVBTest Use Case . 83

5.3.4 Discussion . 84

5.4 Conclusion . 87

6 Related Work 89

6.1 Temporal Debugging Without Execution Traces 89

6.2 Temporal Debugging With Execution Traces 91

7 Conclusion 97

7.1 Contributions . 98

7.2 Limitations . 100

7.3 Perspectives . 100

Bibliography 103

List of Figures

1.1 An example of trace visualization using a Gantt chart 4

2.1 Examples of multimedia consumer electronic devices 10

2.2 STMicroelectronics’ STiH412 MPSoC . 13

2.3 Comparison of physical sizes of a conventional PC motherboard and an
MPSoC found in iPad 3 . 13

2.4 An example of a dataflow graph . 15

2.5 An example of a Cyclo-Static Dataflow graph 15

3.1 Valid periodic schedule for the Cyclo-Static Dataflow graph from Figure 2.5 24

3.2 Illustration of the propagation of execution delay in a dataflow graph . . . 25

3.3 An excerpt from an execution trace showing the effects of OS preemption
on an event’s execution . 27

3.4 Similarity matrix for the event’s occurrences from Figure 3.3 28

3.5 Gaussian-tapered kernel used in SATM . 29

4.1 A running example of Dpos and Dneg datasets. 39

4.2 Two excerpts from an execution trace showing two executions of a dataflow
actor . 42

4.3 Example output of the trace generation tool 43

4.4 A Venn diagram showing the relations between the sets of sequential
patterns. 45

4.5 A frequent sequence tree for the Dpos dataset from Figure 4.1 48

4.6 Performance results for the PrefixSpan algorithm 50

4.7 Performance results for the Bide algorithm 53

4.8 Performance results for the ConSGapMiner algorithm run with max gap
fixed to 0 . 56

4.9 Performance results for the ConSGapMiner algorithm run with various
max gap values . 57

4.10 Performance results for the SATM algorithm run with variousmax length
values . 59

4.11 Performance results for the ConSGapMiner algorithm run on protein and
trace datasets . 61

4.12 Performance results for the PrefixSpan algorithm run on a dataset with
identical transactions . 62

4.13 Performance results for the Bide algorithm run on synthetic trace datasets
generated with various noiseRate values 63

v

4.14 Performance results for the Bide algorithm run on a trace dataset and a
randomly generated dataset . 64

4.15 Performance results for the Bide algorithm run on trace datasets with
various average transaction lengths . 65

4.16 Performance results for the Bide algorithm run on trace datasets with
various number of transactions . 66

5.1 Dataflow graph of the GStreamer application 72

5.2 Dataflow graph of the GStreamer application with the intruder actor . . . 73

5.3 Dataflow graph of the TSRecord application 73

5.4 Dataflow graph of the DVBTest application 74

5.5 Dataflow graph of the GStreamer application with the actors’ periods
detected by SATM . 75

5.6 Inter-occurrence interval distribution of the demux actor 75

5.7 Inter-occurrence interval distribution of the avdec h264 actor 76

5.8 Inter-occurrence interval distribution of the sys write actor 77

5.9 Dataflow graph of the DVBTest application with the actors’ periods de-
tected by SATM . 77

5.10 Inter-occurrence interval distribution for the ViBE actor 79

5.11 The number of minimal contrast sequences mined for the GStreamer use
case . 80

5.12 The number of minimal contrast sequences mined for the TSRecord use
case . 82

5.13 The number of minimal contrast sequences mined for the DVBTest use case 84

5.14 Performance results for the SATM mining algorithm run on the three use
cases . 86

6.1 A screenshot of STLinux Trace Viewer showing the visualization of a
1 millisecond slice of an execution trace. 92

6.2 A screenshot of STLinux Trace Viewer showing the visualization of a
1 second slice of an execution trace. 93

List of Tables

2.1 An example of an execution trace . 20

4.1 Characteristics of protein datasets . 60

4.2 Performance results of the Bide algorithm on protein and trace datasets . 61

vi

Acronyms

ASIC Application-Specific Integrated Circuit. 12, 15

CE Consumer Electronics. 2, 10

CPU Central Processing Unit. 12, 92

CSDF Cyclo-Static Dataflow. 15

DAC Digital-to-Analog Converter. 12

DAG Directed Acyclic Graph. 14

DSP Digital Signal Processor. 12

ESL Electronic System-Level. 14

FPS Frames Per Second. 16

FSM Finite State Machine. 14

GPU Graphics Processing Unit. 12

HD High Definition. 11, 15

HEVC High Efficiency Video Coding. 12

IP Intellectual Property. 12, 19

IP network Internet Protocol network. 73, 74

JTAG Joint Test Action Group. 18, 19

MCS Minimal Contrast Sequence. 40, 44, 52, 54

MoA Model-of-Architecture. 14

MoC Model-of-Computation. 2, 14

MPEG The Moving Picture Experts Group. 14

MPSoC Multiprocessor System-on-Chip. 2, 12, 17, 62

OS Operating System. 17, 19, 26

PC Personal Computer. 13

QCoD Quartile Coefficient of Dispersion. 32

QoS Quality-of-Service. 2, 6, 11, 15, 18, 33, 36

QVC Quartile Variation Coefficient. 32

RISC Reduced Instruction Set Computing. 12

SATM Streaming Application Trace Miner. 6, 26, 36, 71, 93

SDF Synchronous Dataflow. 15

SoC System-on-Chip. 12

WCET Worst-Case Execution Time. 16, 17, 24

vii

Acronyms viii

Chapter 1
Introduction

Imagine it is a Sunday night, and you are at home watching some good movie streaming

from Netflix on your new home cinema system. The movie is interesting, the picture

is impeccable, so is the sound. Then, suddenly, the picture freezes for a fraction of a

second, and the movie continues. Nothing horrible happened, your home cinema system

is still there and working properly, and you have a thought that your WiFi connection

may not be that great (although you are aware that such situations never happen when

you are streaming movies on your laptop). After a minute again, a slight stutter in the

video occurs, and the movie goes on. After several such hiccups your movie experience is

somewhat spoiled, and you are no more enjoying the whole Sunday night movie session

as you were supposed to.

Without realizing it, you may have just experienced the effects of temporal bugs present

in the software running on the embedded system enclosed in a shiny set-top box from

your home cinema system. Temporal bugs are elusive, they do not make you immediately

throw the entire home cinema away, however, they significantly degrade user experience

of using multimedia devices. As a matter of fact, temporal bugs are an annoyance not

only to the users of multimedia devices, but even more so to the developers of embedded

software running on those devices. Indeed, there is no widely adopted tools or techniques

to debug temporal issues in embedded software, which makes temporal debugging a

complex and highly time-consuming part of embedded software development.

In this thesis, we intend to help software developers in resolving temporal bugs at the

stage when the embedded system has not yet been delivered, and it is not too late to

modify the source code of the software running on it. We propose a temporal debugging

approach which automates the process of discovering the origins of temporal bugs by

applying data mining algorithms on execution traces of embedded systems found in

multimedia devices.

1

Chapter 1. Introduction 2

1.1 Context and Motivation

It would be hard to imagine the life of a modern person without Consumer Electronics

(CE) devices. In a matter of decades, bulky and expensive portable radios and cathode

ray tube TV sets have transformed into sleek and affordable smartphones and LCD pan-

els. According to the Consumer Electronics Association, the global sales of consumer

electronics reached $1.024 trillion in 2014 1 with multimedia CE devices (smartphones,

tablets, TVs, etc.) being the biggest players on the market. The main goals of mul-

timedia consumer electronics consist in providing entertainment and giving access to

communication media (e.g. the Internet, telephone networks, television, etc.). These

goals dictate the way such devices operate on the software level: they run streaming

applications which apply the same transformations on the incoming batches of data.

For example, the video decoding functionality of set-top boxes, smartphones, or tablets

consists in applying the same decoding algorithm to transform the encoded video stream

into a set of ordered frames and display them on the screen. The constantly growing

demand on the aforementioned multimedia devices fuels rapid evolution and high com-

petitiveness of the consumer electronics market. Companies struggle to introduce new

features to each new generation of their CE devices, make their products more attrac-

tive to consumers, and be the first among competitors to deliver their products to the

market.

If we disassemble a modern multimedia CE device, we will most probably find an embed-

ded system as its main electronic component. The most common choice of an embedded

system platform for CE devices nowadays is a Multiprocessor System-on-Chip (MPSoC),

which integrates all the electronic components, including multiple processing units, into

a single chip. Among the examples of modern MPSoCs are Apple’s A9X chip found in

Apple iPad Pro tablets and Qualcomm’s Snapdragon 810 chip found in Google Nexus 6P

smartphones. Each new generation of MPSoCs aims at making CE devices smaller, more

performant, consume little power, and have an affordable price tag.

From the software perspective, Dataflow Model-of-Computation (MoC) has been widely

adopted as a programming paradigm for streaming applications. With Dataflow MoC,

applications are modeled as a directed graph, where data flow between computational

components (called actors) through communication channels. Each actor works on its

own local data and exchanges data with other actors only through communication chan-

nels. This makes Dataflow MoC particularly well suited for the parallel processing nature

of MPSoC platforms.

A distinguishing characteristic of embedded systems is the presence of real-time require-

ments imposed on them. MPSoCs found in multimedia CE devices are no exception. In

fact, such systems not only require streaming applications running on them to produce

a correct output (e.g. a correctly decoded video frame), but also to deliver the output

on time, i.e. before the deadline, to ensure a high Quality-of-Service (QoS) of the entire

1http://www.cta.tech/CorporateSite/media/About-Media/2015-Global-Technology-Market-

Update_CES-2015_press.pdf

http://www.cta.tech/CorporateSite/media/About-Media/2015-Global-Technology-Market-Update_CES-2015_press.pdf
http://www.cta.tech/CorporateSite/media/About-Media/2015-Global-Technology-Market-Update_CES-2015_press.pdf

Chapter 1. Introduction 3

system (e.g. a video frame must be decoded in 33 milliseconds to respect 30 frames per

second QoS constraint). Modern multimedia CE devices are increasingly required to

provide hard real-time performance, when not a single deadline can be missed, so that

the devices are more pleasant to use and, hence, are more competitive on the market.

Debugging is an essential step in the software development process. Programmers are

well trained in resolving functional bugs, i.e. bugs that make systems produce wrong

output values or crash. Situations when a piece of software produces correct output val-

ues but delivers them later than expected is a result of temporal bugs, sometimes also

referred to as performance bugs. In the context of real-time systems, we will call a tem-

poral bug an anomalous system activity which causes the output to be delivered late,

that is, after the real-time deadline. If streaming applications running on a multimedia

CE device cannot produce smooth output, users will not tolerate this and rather buy

a competitor’s product which ensures a better user experience. This makes temporal

debugging of embedded software equally important to resolving functional bugs.

Temporal bugs are usually very hard to resolve. The first reason is that the traditional

debugging approach based on setting breakpoints and stepping through the applica-

tion’s source code inspecting the system’s state, which is extremely helpful for resolving

functional bugs, is often useless for temporal debugging. Indeed, the act of halting the

program’s execution changes temporal behavior of the entire system. Another aspect

that complicates the process of temporal debugging is the necessity to consider the entire

system’s execution context, as temporal bugs often originate from resource sharing in-

teractions between unrelated execution threads. Finally, temporal bugs have a tendency

to appear at the last stages of embedded system development, when use cases of running

various combinations of embedded software on an already manufactured chip are tested.

Temporal debugging must be, therefore, performed under a great time pressure, so that

the entire embedded system is not delayed from being released to the market.

Execution profiling has a long history of being an invaluable technique to optimize

software performance. A profiling tool gathers various metrics during a program’s exe-

cution, e.g. execution cycles, cache misses, etc., and allows programmers to detect the

most significant parts of the code with respect to the chosen metrics. Unfortunately,

information provided by profiling tools is often not enough to resolve temporal bugs. A

profiler would show where the cycles were spent or which function calls result in a large

number of cache misses, but there would be no information on how these statistics are

related to the temporal bugs, and whether optimizing performance of the detected parts

of the code would make temporal bugs disappear.

Execution tracing technology can be considered as an alternative to software profiling

for runtime behavior analysis of embedded systems. A tracer is able to record system

activity during software execution on various granularity levels: from high-level events

such as function calls to low-level ones such as executions of individual instructions. A

developer would then open a trace file and analyze the timestamped sequence of executed

events in order to get an insight into what happened on the chip while the software

was running. Recent advances in both software and hardware allowed to significantly

Chapter 1. Introduction 4

reduce the intrusiveness of execution tracing, i.e. the overhead imposed on the system

performance by the tracer. It is, therefore, possible nowadays to record a full log of

non-perturbed system activity for post-mortem analysis. At the same time, the amount

of information contained in execution traces is simply overwhelming, even when the

system was traced for a very short period of time.

Visual exploration of execution trace data is the most common way to perform temporal

debugging of embedded software. For example, trace visualization tools based on Gantt

charts (see Figure 1.1) make it easier to analyze the order of executed events during a

given time interval. Despite the addition of a visual component to the task of temporal

debugging, manual analysis of execution traces remains a daunting task. A software

developer is confronted with too much system activity at any given moment of time to

be able to grasp it and, what is even more, to find suspicious patterns of system behavior

related to the temporal bugs. As a result, there is currently a great need for novel tools

to automate the process of temporal debugging.

Data mining is a research field that is concerned with automatic discovery of potentially

useful and comprehensible patterns from large data sets. Data mining involves four

common classes of tasks: cluster analysis, classification, anomaly detection, and pattern

mining. Cluster analysis seeks to find groups of closely related observations so that

observations that belong to the same cluster are more similar to each other than obser-

vations that belong to other clusters. Classification assigns observations from the data

set to target categories, or classes, with the goal of accurately predicting the target class

for each observation. Anomaly detection is the task of identifying observations whose

characteristics are significantly different from the rest of the data. Finally, pattern min-

ing seeks to discover interesting relations between individual observations. Thanks to

Figure 1.1: An example of trace visualization using a Gantt chart 2. The Y-axis
shows active execution threads. The X-axis shows the duration of individual events

executed in the context of the corresponding threads.

2http://www.stlinux.com/stworkbench/interactive_analysis/stlinux.trace/kptrace_

perspective.html

http://www.stlinux.com/stworkbench/interactive_analysis/stlinux.trace/kptrace_perspective.html
http://www.stlinux.com/stworkbench/interactive_analysis/stlinux.trace/kptrace_perspective.html

Chapter 1. Introduction 5

their generality, data mining algorithms have been successfully applied in diverse areas:

retail industry, biological data analysis, banking, transportation, and many others. At

the same time, the universality of data mining algorithms often requires a significant

effort from a domain expert to interpret the obtained results.

1.2 Aim and Scope

In this thesis, we aim to automate the process of temporal debugging of embedded

streaming applications. More precisely, we are interested in proposing a data mining

approach which, given an execution trace, would return a specific and concise description

of system activity explaining the origin of the QoS problem.

We do not address the task of verification of real-time properties of embedded appli-

cations performed in the design stage of software development. Instead, our focus is

on the final stages of software development process, when various combinations of pro-

grams are tested on an already manufactured chip imitating real use cases run on the

final embedded system.

Next, we assume that it is possible to the developer to obtain an execution trace which

captures unaltered system activity during a particular usage scenario of the embedded

system. Moreover, the trace must be complete enough to contain the footprints of

problematic system behavior. In other words, rather than containing a log of function

calls from a specific software component, a trace must cover as much system activity as

possible without, however, inducing the tracing program to become intrusive.

We do not pretend to replace already existing techniques used for temporal debugging

purposes, e.g. profilers or trace visualization tools. Instead, our intention is to enable

embedded software developers to use these tools in a more systematic way. For example,

profilers can still be used in the beginning of the debugging process to decide which parts

of the system must be traced. Visualization tools, on the other hand, could help to better

understand the context of the detected suspicious system activity at the final step of

temporal debugging.

Finally, our goal is not to develop a generic data mining algorithm that can be applied on

any execution trace and whose results would require a considerable effort to be filtered

and analyzed. Instead, we would like our temporal debugging approach to strike a fine

balance between specificity and generality, so that it returns a precise description of the

probable origin of the QoS problem but remains general enough to be applicable in a

wide variety of contexts where temporal debugging needs to be performed.

Chapter 1. Introduction 6

1.3 Significance of the Study

Temporal debugging of embedded streaming applications remains a tedious, unsystem-

atic, and highly time-consuming process. Software developers are faced with a lack of

appropriate tools and techniques to resolve temporal bugs under the tight time con-

straints present at the last stages of software development process. An approach that

would allow to get an insight into the origins of temporal bugs by simply “clicking on

a button” is of high need. It would not only relieve software developers of the stress of

looking for a needle in a haystack of raw trace data but would also allow consumer elec-

tronics companies to respect time to market, hence, to increase their chances of success

in the highly competitive market of CE devices.

1.4 Overview of the Contribution

In this thesis, we propose Streaming Application Trace Miner (SATM) – a novel approach

to help understand the causes of QoS violations in multimedia CE devices. In practice,

SATM is a data analysis workflow that makes use of statistical methods and data mining

algorithms with the aim to automate the process of temporal debugging of embedded

streaming applications.

SATM takes as input (1) an execution trace captured during an embedded system’s

usage scenario where the target application exhibits low QoS and (2) a list of execution

events which represent the actors of the target application’s dataflow graph 3. The

output of SATM consists of a set of system activities related to the origin of the QoS

problem and represented as patterns of execution events.

Our approach operates in two distinct stages:

I. Detection of the anomalous parts of the execution trace. The peculiarity of temporal

bugs, which makes them difficult to debug, is that they tend to occur much earlier than

the moment of time when the QoS of the target application starts to degrade. For

example, a delayed output of a video frame (QoS problem) may be caused by a network

buffer overflow (temporal bug) which takes place earlier in time when the encoded frame

is being received from the network. Therefore, the goal of this step consists in finding

the parts of the execution trace where the system’s behavior first starts to diverge from

its normal operation. SATM achieves this task in a completely automatic fashion using

a one-dimensional clustering algorithm and a few statistical metrics.

II. Discovery of suspicious system activities. Once the origin of the QoS issue is tracked

down to particular parts of the trace, SATM detects patterns of execution events which

characterize the abnormal system activities in the most concise way. Such patterns are

discovered using a minimal contrast sequence mining algorithm.

3strictly speaking, the presence of this list does not influence the way SATM operates, but rather
the accuracy of the output results.

Chapter 1. Introduction 7

1.5 Scientific Context

This thesis was funded by a CIFRE ANRT partnership between STMicroelectronics

and the LIG (Laboratoire d’Informatique de Grenoble) laboratory of the University of

Grenoble, France. The industrial part of this work was carried out in the SDT (Software

Development Tools) team of STMicroelectronics. The role of the SDT team consists in

providing the company’s customers with development and debugging tools tailored to

the company’s embedded platforms. The scientific part of this work was conducted

in SLIDE (ScaLable Information Discovery and Exploitation) and CORSE (Compiler

Optimizations and Runtime SystEms) teams of the LIG laboratory. SLIDE’s research

targets efficient large-scale data processing with data mining algorithms. One of the

research axes of the CORSE team aims at proposing novel debugging techniques for

multi-core embedded platforms.

1.6 Organization of the Thesis

The rest of this document is divided into six chapters, as follows:

• In Chapter 2, we present the context of multimedia embedded systems and articu-

late both the importance as well as the difficulty of temporal debugging. We also

identify fundamental properties of these systems that allowed us to automate the

process of temporal debugging, as explained in the following chapters.

• In Chapter 3, we present the first stage of our temporal debugging approach SATM.

In Section 3.1, we provide theoretical underpinnings of the way suspicious parts of

execution traces are detected. We then proceed, in Section 3.2, with the explana-

tions of how this goal is achieved in practice.

• In Chapter 4, we not only discuss how the problem of temporal debugging from

execution traces can be expressed as a pattern mining task (Section 4.1) and

how abnormal system activity can be mined with pattern mining algorithms (Sec-

tion 4.2), but we also make an important contribution to the theoretical analysis of

sequential pattern mining algorithms applied on trace-like data sets (Section 4.3).

• In Chapter 5, we present three real-world use cases of streaming applications ex-

hibiting low QoS (Section 5.1) and show how SATM has been applied to find

abnormal parts in their execution traces (Section 5.2), as well as pinpoint patterns

of events related to the origins of temporal bugs (Section 5.3).

• In Chapter 6, we review the existing approaches for debugging temporal issues in

embedded applications, both the ones that work without execution traces (Sec-

tion 6.1), as well as those requiring execution traces (Section 6.2).

• In Chapter 7, we conclude by reviewing the results of this thesis and defining the

future perspectives.

Chapter 2
Background

Temporal bugs exhibit themselves as visual or sound artifacts which are familiar to all

users of multimedia devices: a briefly frozen video playback or a crack in the sound are

among the examples. Such bugs do not crash the system, as the user is still able to use

the device, however, their presence is very likely to make the user give up on the device.

As a matter of fact, temporal bugs are an annoyance not only to the users of multi-

media devices but even more so to the developers of embedded software running on

those devices. Indeed, software developers are well trained to resolve functional bugs

which manifest themselves as wrong output values and which often crash the system.

There exists a set of widely used tools to perform functional debugging, such as GDB,

Valgrind and all sorts of visual debuggers available in popular integrated development

environments. Temporal bugs, however, are conceptually different from the functional

ones as they do not result in wrong output values, nor do they crash the system.

Definition 2.1. A temporal bug is a non-fulfillment of the timing requirements of

the system. In the context of multimedia embedded software, temporal bugs violate

real-time behavior of applications by preventing them to produce output on time, i.e.

before the scheduled deadline.

There are several aspects that make temporal bugs difficult to deal with. Firstly, in

contrast to functional debugging, there are no standard tools to perform temporal de-

bugging. Secondly, temporal bugs have a tendency to appear at the last stage of software

development cycle, when various combinations of multimedia applications are run on the

already manufactured chip, mimicking the real device usage, just before the whole mul-

timedia system is delivered to the client. Therefore, a lack of standard debugging tools

coupled with a great time pressure to resolve temporal bugs is a major source of stress

for embedded software developers.

In order to facilitate the process of temporal debugging, we must first understand the

nature of temporal bugs: why they appear, what makes them so elusive to debug,

9

Chapter 2. Background 10

and which technology may potentially help to resolve them. This chapter serves this

purpose. We introduce multimedia embedded systems as well as the requirements that

the market of CE devices is imposing on them in Section 2.1. We then discover how

the enforced requirements are met on the hardware level (Section 2.2), on the software

level (Section 2.3), as well as how these requirements dictate the way the software must

be executed on the hardware (Section 2.4). Next, we find out why running several

multimedia applications on the same embedded system may result in temporal bugs

(Section 2.5), and why temporal debugging usually cannot be performed with the state-

of-the-art debugging tools (Section 2.6). Finally, we learn about an extremely useful

technology for temporal debugging which is software execution tracing (Section 2.7),

before concluding that there currently exists a high demand on tools for automatic

extraction of temporal bug-related information from execution traces (Section 2.8).

2.1 Multimedia Embedded Systems

All of us use multimedia embedded systems in our everyday life. In fact, these systems

are enclosed in the most common CE devices, such as smartphones, tablets, cameras and

set-top boxes, that is, if a CE device is disassembled, a multimedia embedded system

can be easily identified as its main electronic component. However, an embedded system

is more than electronics: besides digital and analog circuits, special purpose sensors

and actuators it also comprises software that controls all the hardware elements. Both

hardware and software parts of an embedded system are designed to deliver a specific

set of functionalities to the user. In the case of multimedia embedded systems such

functionalities include audio/video decoding, 3D gaming, and web browsing.

Multimedia embedded systems have numerous requirements that must be fulfilled to

meet user expectations. We present a summary of these requirements below.

Figure 2.1: Examples of multimedia consumer electronic devices: a tablet, a set-top
box and a smartphone.

Chapter 2. Background 11

• Functionality. New generations of multimedia embedded systems must provide

new features and better performance than the previous ones in order to keep the

user’s interest in CE devices. Taking set-top box market as an example, a support

of Full High Definition (HD) video content became a must several years ago, while

Ultra HD 4K is starting to become a desirable feature, and systems that support

Ultra HD 8K resolution have already appeared on the market.

Besides new features, users want to perform more and more tasks simultaneously

on their multimedia devices; for example, to watch one TV program and record

another one to watch later, or to browse the Web and display a movie in an inset

window in the corner of the screen (picture-in-picture feature).

• Low energy consumption. Even with a constant increase in built-in battery capac-

ities, embedded systems in CE devices must consume as little energy as possible,

so that users do not need to constantly worry that the battery runs off in the

most inappropriate moment. In case of devices that are permanently plugged in

an electrical outlet, like set-top boxes, their influence on the electricity bill should

be as small as possible.

• Small physical size. Besides practical benefits of being able to fit into a pocket or

a bag, a small size of a CE device adds valuable points to its overall attractiveness

to the users. The size of multimedia embedded systems, which are the main

components of CE devices, has the direct influence on the size of the final product.

• Low cost. In order to reach the mass market, a CE device must be based on an

inexpensive multimedia embedded system. If new features come with an unafford-

able price tag, customers would rather choose to wait for a cheaper alternative or

decide that those features are not necessary for them at all.

• Short time-to-market. The market of multimedia devices is extremely competitive.

If it takes a particular company a long time to introduce a new feature to its CE

device, e.g. because software bugs slow down the release date of the final product,

then the competitors will enjoy the biggest part of the market. It is, thus, essential

for the manufacturers of integrated circuits, as well as for the embedded software

developers to respect stringent temporal constraints.

• High quality of service (QoS). If a CE device meets all the requirements listed

above but does not provide high-quality output, then customers will simply not

use the device. Instead, they will prefer a rival’s product which may lack some

features or have a bigger size but instead provides a better usage experience.

For multimedia embedded systems, the QoS consists in a smooth browsing and

audio/video playback without any visual or sound artifacts, like frame glitches or

audio cracks.

The following three sections show how these six requirements are met on the hardware

level, on the software level, and in the way the software is executed on the hardware in

multimedia embedded systems.

Chapter 2. Background 12

2.2 Hardware Perspective: System-on-Chip

A System-on-Chip (SoC) integrates all the components of an electronic system, such as

a Central Processing Unit (CPU), memory modules, and numerous digital peripherals

into a single chip. Tight integration of the components allows, on the one hand, to

reduce the size of the electronic system, and on the other hand, significantly lower its

energy consumption thanks to short wiring. The widespread use of Reduced Instruction

Set Computing (RISC) CPUs also contributes to low energy consumption of SoCs. At

the same time, the cost of manufacturing a single SoC is significantly lower than fab-

ricating its components separately and assembling them inside a CE device. Designing

and manufacturing such complex systems as SoCs from scratch would take prohibitively

big amount of time. In order to address the time-to-market constraint, SoC manufactur-

ers build their systems with reusable Intellectual Property (IP) cores supplied by such

companies as ARM, Xilinx, Synopsys, and others. An IP core is a block of logic that

describes the design of a particular system’s component (a CPU, a Digital-to-Analog

Converter (DAC), a memory controller, etc.) ready to be implemented on the target

platform. All these benefits of SoCs resulted in their adoption as a hardware standard

for embedded systems. Indeed, it is common nowadays to hear people using the terms

“embedded system” and “system-on-chip” interchangeably.

The continuing customer demand for increased performance made embedded systems

industry introduce chips with several programmable processors to be run in parallel,

and a System-on-Chip has evolved into a Multiprocessor System-on-Chip (MPSoC). A

distinctive property of such systems is that they are inherently heterogeneous, i.e. the

processors found in an MPSoC are of different types 1 and have different roles depending

on the embedded system’s nature [84]. Moreover, an MPSoC designed for a smartphone

will contain a different set of processors than the one designed for, say, a network router.

As an illustrative example, consider Figure 2.2 which shows a recent STMicroelectronics’

STiH412 MPSoC designed for set-top boxes. It supports Ultra HD 4K decoding at

up to 2160p30 2, triple HD decoding at 1080i60/1080p30, up to three HD concurrent

transcodings making possible to target up to three tablets or smartphones, and many

other features. In order to provide all this high-end functionality, the STiH412 MPSoC

contains numerous processors, among them a dual-core ARM Cortex-A9 CPU [1], a

quad-core ARM Mali-400 GPU [2], a dedicated processor for Ultra HD HEVC decoding,

and others.

The presence of multiple processors, some of which are usually multi-core (CPUs and

GPUs), in MPSoCs allows not only to increase the performance of a single application

by parallelizing its execution, but also to run concurrently several data- and calculation-

heavy applications in order to meet the functionality requirement of CE devices. A typ-

ical MPSoC is a striking example of how semiconductor companies succeed in squeezing

1Usually, a combination of several CPUs, Digital Signal Processors(DSPs), Graphics Processing
Units(GPUs) and various types of Application-Specific Integrated Circuits(ASICs).

2The first number (2160 or 1080) denotes the vertical resolution, i.e. the number of pixels along the
vertical axis; the letter p stands for progressive scan, the letter i stands for interlaced video; the second
number (30 or 60) signifies the frame rate.

Chapter 2. Background 13

Figure 2.2: Block diagram of STMicroelectronics’ STiH412 MPSoC for set-top boxes.

as much processing power as possible into a single chip. Figure 2.3 provides an illustra-

tion of how the size of a conventional Personal Computer (PC) motherboard compares

to the size of iPad3’s MPSoC, both having roughly the same number of components.

Besides introducing several processors, designers of MPSoCs use all existing hardware-

based optimizations to speed-up computations and data access: speculative execution,

branch prediction, shared caches, etc.

Figure 2.3: Comparison of physical sizes of a conventional PC motherboard (left) and
an MPSoC found in iPad 3 (right). This image is roughly to scale 3.

In conclusion, the adoption of SoC and later MPSoC platforms as the hardware solution

for multimedia embedded systems not only helped to meet the cost, size, and power

consumption requirements of CE devices, but also allowed to run more powerful appli-

cations in a concurrent way in order to meet constantly growing functionality demands

of customers.

3http://www.extremetech.com/computing/126235-soc-vs-cpu-the-battle-for-the-future-

of-computing

http://www.extremetech.com/computing/126235-soc-vs-cpu-the-battle-for-the-future-of-computing
http://www.extremetech.com/computing/126235-soc-vs-cpu-the-battle-for-the-future-of-computing

Chapter 2. Background 14

2.3 Software Perspective: Dataflow Computational Model

New generations of multimedia embedded systems usually introduce changes to the

platform’s hardware: new components are added, old components are replaced with more

performant ones, and so on. Embedded software, thus, needs to be either updated or

completely rewritten in order to harness new computational resources of the underlying

hardware. At the same time, market competition requires that the software is ready

promptly after the new chip comes out of the factory. In the end, it is the combination

of hardware and software that constitutes an embedded system.

To address the time-to-market requirement, embedded systems manufacturers have

adopted the Electronic System-Level (ESL) design which encompasses concurrent design

of hardware and software parts of an embedded system. Having the formal descriptions

of the target application as well as of the target chip, ESL tools are able to synthe-

size an application specification written in a high-level language (such as C/C++) to

an implementation which will be ready to run on the target hardware as soon as it is

released [33].

Software-wise, ESL synthesis tools rely on computational models (MoC, for Model-of-

Computation) for the description of the desired functional and non-functional require-

ments of the target application; hardware-wise, it is a Model-of-Architecture (MoA)

which is required for the description of the platform design. A MoC defines semantics

of the target application: which components it can contain, how the components can be

interconnected, and how they interact. In other words, a MoC describes how to specify

and execute algorithms. Every programming language has at least one underlying MoC.

The most popular MoC for sequential programming paradigm is a Finite State Machine

(FSM) MoC where a program has a global state which is modified sequentially by the

modules. However, applications that typically run on SoCs do not conform to such com-

putational model, as they apply same transformations on a stream of arriving batches of

data. A global state, thus, does not exist because each piece of data in the stream has its

own, independent state. These applications are called streaming applications4. Indeed,

if we take video decoding as an example, the same decoding algorithm (e.g. MPEG-4)

is applied on each encoded frame from the incoming data stream in order to produce a

video stream ready to be displayed on the screen of a multimedia device.

A computational model that is particularly well adapted to design streaming applications

is the Dataflow MoC [45]. Dataflow represents a program as a set of computational

modules (called actors) which exchange batches of data (called tokens) through First-In

First-Out communication channels. From a graphical point of view, a dataflow program

can be represented as a Directed Acyclic Graph (DAG) where actors are vertices and

communication channels are edges. Each actor may itself be a DAG or a procedure that

applies transformations on the input data (Figure 2.4). An actor can start its execution

as soon as enough data tokens are available on the incoming communication channel(s).

4In the rest of this thesis we will use the terms “streaming application” and “multimedia application”
interchangeably

Chapter 2. Background 15

Frontend Demuxer Collator Parser Decoder Manifestor ViBE

Figure 2.4: An example of a dataflow graph

A prominent property of the Dataflow MoC is that the actors operate only on local

data (cf. the global state of the FSM MoC). This property makes dataflow applications

inherently parallel, as each actor can execute independently and concurrently with other

actors as long as its input is available. Given the parallel nature of MPSoCs, the Dataflow

MoC is a de facto standard for embedded multimedia software design.

There exists a great variety of dataflow computational models, among them are the

Synchronous Dataflow (SDF), the Cyclo-Static Dataflow (CSDF), and many others [64].

Figure 2.5 presents a simple CSDF graph containing three actors a1, a2, a3 and two com-

munication channels e1, e2. Each time an actor is invoked, it produces a specific number

of tokens to its outbound communication channel and consumes a specific number of

tokens from the inbound communication channel, as specified in the square brackets.

Consider actor a2. The first time a2 is invoked, it consumes 1 token and produces 1

token. The next time it is invoked, it consumes 3 tokens and produces 1 token, the next

time it consumes 1 token and produces 3 tokens, then 1 token is consumed and 1 token

is produced again, and so on.

a1

[5, 3, 2]

a2

[1, 3, 1] [1, 1, 3]

a3

[4, 1]

e1 e2

Figure 2.5: An example of a Cyclo-Static Dataflow graph

2.4 Scheduling Perspective: Hard Real-Time Constraints

Multimedia applications conceived to run in modern consumer electronic devices process

high volumes of arriving data streams with sophisticated algorithms in order to provide

a high-quality output, that is, a high QoS. For example, customers want their set-top

boxes to decode an HD video stream coming from an Internet TV provider (functionality

requirement) and to reproduce it smoothly and perfectly synchronized with audio and

subtitles (QoS requirement).

One approach to ensure the output quality of an embedded multimedia application

would be to use an ASIC, so that the application’s algorithm is implemented completely

in hardware, hence, the QoS is guaranteed on the hardware level. However, the diversity

of applications a modern CE device must support, as well as the desire of application

developers to use their software on a wide set of multimedia platforms require the use of

software-based solutions. This implies that all the complexity of multimedia algorithms

as well as application scheduling must be addressed on the software level. As shown

in the previous section, Dataflow MoC provides an efficient way of designing embedded

Chapter 2. Background 16

multimedia applications. Scheduling, in its turn, must guarantee the real-time function-

ing of the applications. In fact, multimedia embedded systems is an example of real-time

systems: their correct behavior depends not only on the operations they perform being

logically correct, but also on the time at which they are performed. A real-time system

must guarantee its response within specific time constraints, referred to as deadlines.

For example, a video codec running on a CE device must not only correctly decode each

encoded frame but should also output 30 of them per second, that is, respect a deadline

of 30 Frames Per Second (FPS). If a set-top box correctly decodes video frames but is

not able to do this fast enough, it cannot be called a multimedia device.

Historically, multimedia embedded systems were considered as soft real-time systems:

occasional deadline misses which resulted in frame drops or audio/video desynchroniza-

tions were not critical to the functioning of a system and were either ignored or played

a role of a trigger to downgrade the quality of the media (e.g. downscale video reso-

lution or reduce the frame rate). In modern CE devices, however, the QoS reduction

is not a choice, as the customers will not tolerate a low-resolution video playback on

their TVs or presence of frame glitches if the device is assumed to output high-quality

video without visual artifacts. As a result, new multimedia standards as well as high

market competition motivate hard real-time scheduling of multimedia applications, so

that application’s output is never delivered later than a specific deadline [19].

The majority of hard real-time scheduling algorithms deal with applications modeled as

a set of independent periodic or sporadic tasks [23]. Such models, however, do not com-

ply with dataflow applications where the time an actor can start its execution depends

on the availability of data tokens produced by other actors to its inbound communica-

tion channel(s). Therefore, the actors in Dataflow MoCs do not necessarily conform to

periodic or sporadic task models. At the same time, it was analytically proven that em-

bedded streaming applications modeled with Dataflow MoCs can be scheduled as a set

of strictly periodic tasks [13] [14], meaning that each actor is scheduled as a task which

is invoked at strict moments of time defined by its period. This means that a variety of

hard real-time scheduling algorithms can be applied on an embedded streaming appli-

cation given its dataflow model and Worst-Case Execution Times(WCETs) of each of

its actors (computed with static analysis tools or profiling on the target platform [82]).

As a result, if each task of a multimedia embedded application is invoked with a pe-

riod calculated by a hard real-time scheduling algorithm, then the whole application is

guaranteed to never miss the deadline.

2.5 Temporal Bugs in Embedded Streaming Applications

Hard real-time scheduling of streaming applications provides QoS guarantees for mul-

timedia embedded systems. In return, it requires that the two following conditions are

met:

Chapter 2. Background 17

1. Careful WCET analysis is performed as a preliminary step. It consists in calculat-

ing the upper bound on each actor’s execution time given the available resources

on the target hardware.

2. Scheduling is performed offline, i.e. before the target application actually executes.

This way, the hard real-time scheduling algorithm can guarantee the availability

of processing resources when a critical situation arises.

Unfortunately, each of these conditions is very difficult to meet on multimedia embedded

systems.

Firstly, it is complicated to accurately predict an application’s execution time on MPSoCs

because these chips are conceived to be efficient rather than predictable. As was stated

in Section 2.2, a whole assortment of optimizations are used in MPSoCs in order to im-

prove the average-case performance of embedded software: from instruction prefetching

to multi-level caches. This makes an accurate estimation of the WCET troublesome on

MPSoC platforms.

Secondly, embedded multimedia systems are dynamic systems which are supposed to run

multimedia applications upon a user request. In other words, it is the user who decides

which combinations of applications (called use cases) to run, and at which moments of

time. In these conditions, the offline scheduling of an application would need to take into

account every possible temporal combination of any imaginable use case the application

can be a part of, which is clearly unmanageable given the variety of software supported

by modern CE devices.

Having these two restrictions of embedded multimedia systems, it comes as no surprise

that the deadlines assigned by a hard real-time scheduling algorithm to an application’s

actors can be violated during the execution of various use cases on an MPSoC. Such

violations are called temporal bugs to emphasize the fact that temporal constraints are

not respected. As stated in Section 2.4, the temporal aspect is equally important for a

real-time system as the functional one: its output is not only expected to be correct,

but also to be delivered on time. Therefore, both temporal and functional debugging of

real-time systems are equally important.

2.6 Complexities of Temporal Debugging

Temporal bugs are notorious for being hard to debug. They do not cause the system to

crash, but make the quality of the output unacceptable. Temporal bugs often originate

from unexpected interactions between the target application and other applications or

Operating System (OS) processes running concurrently on an MPSoC. The difficulty

of temporal debugging primarily stems from the failure of interactive debugging 5 –

the most popular debugging technique in software development – to handle this type

5also known as start/stop debugging or “stop ’n’ stare” debugging

Chapter 2. Background 18

of bugs. An interactive debugger, for example GDB [72], allows to stop program ex-

ecution at user-specified breakpoints and inspect the state of the system. Interactive

debugging of embedded systems is possible thanks to dedicated debugging ports, e.g.

JTAG or Serial Wire, available on the development/evaluation boards used by the pro-

grammers to develop embedded software. Through such ports, a debugger running on

the programmer’s host machine can start, stop the embedded system, set breakpoints

on instructions, and step through an embedded application’s code [67]. Unfortunately,

quite often this technology is of little use to resolve temporal bugs, as we explain with

the two following observations.

• Interactive debugging relies on bug reproducibility. At the same time, it is highly

unlikely that the same temporal bug occurs at the same moment of time when

a use case is executed again. The reason is the non-deterministic nature of par-

allel applications [73], but more importantly, unpredictable scenarios of resource

sharing among the applications from a particular use case. Moreover, stopping

the system in order to inspect its state changes the real-time behavior of the

system [74]. Therefore, a temporal bug may be simply non-reproducible if an

interactive debugger is used.

• In case the bug is reproducible with an interactive debugger, there is no information

on where to set a breakpoint and how to inspect system state. System activity

responsible for a temporal bug may occur at any moment of time before the drop

in QoS, and the developer has no means to know which particular variable must

be inspected in order to understand the nature of the observed temporal bug.

Given these deficiencies of the interactive debugging, there exists an alternative debug-

ging technique which consists in analyzing system states after the program has finished

its execution, i.e. perform the debugging in a post-mortem fashion. Such technique is

possible thanks to the execution tracing technology which we discuss next.

2.7 Execution Tracing Technology

Execution tracing consists in capturing system events during a program’s execution and

storing them into a text file (called a trace) on the developer’s host machine. Once

the program has finished its execution, the developer analyzes the trace in order to

understand system behavior building up to the observed QoS problem.

In its simplest form, execution tracing is purely software based. It consists in instru-

menting various software components by adding print statements in their source code

in order to log the system’s progress through the software code. More modern solutions

implement libraries and kernel modules to automate code instrumentation through tra-

cepoints [61], kprobes [43], kernel markers and so on. These are hooking mechanisms

that provide static instrumentation which can be enabled at runtime. Some operating

Chapter 2. Background 19

systems, e.g. Linux or STLinux [5], offer these tracing solutions to software developers

through their native tracing tools, e.g. LTTng [25] [4] for Linux or KPTrace [68] [3] for

STLinux. But also, development frameworks such as GStreamer [76] come with pre-

instrumented code allowing programmers to choose the necessary level of tracing. With

these solutions, code instrumentation becomes transparent to programmers relieving

them of rewriting the source code of software components. Unfortunately, purely soft-

ware based tracing can add a considerable performance overhead to embedded software

due to the latency introduced by the instrumentation code.

Starting from the early 2000s, some of the biggest semiconductor IP suppliers, such as

ARM, ARC, MIPS and others, started to address the problem of the intrusiveness of

software based tracing by introducing specific IP blocks which enabled purely hardware

based tracing of SoC’s components [79] [39] (e.g. CoreSight architecture from ARM 6

or SmartRT unit from ARC 7). Once included in the final design of a SoC, such circuits

capture a sequence of executed instructions and data accesses, compress this information

and store it in on-chip memory modules before transferring the trace to the host machine

either through the JTAG interface, or a dedicated trace port. The fact that tracing is

performed in hardware makes it completely non-intrusive. At the same time, the amount

of information contained in such traces is very large, as system activity is captured

with instruction-level granularity. Indeed, with purely hardware based tracing software

developers have no means to specify the particular events they wants to trace, i.e. to

collect execution traces with event-level granularity.

To address the drawbacks of both aforementioned tracing approaches, there is a recent

trend among the IP core suppliers to enable hardware assisted software based tracing

(e.g. System Trace Macrocell from ARM 8). With such solutions, software developers

are allowed to specify events to be traced by reusing existing operating system’s built-in

tracing frameworks as well as performing application-level code instrumentation [53].

Instrumented events are then communicated to the dedicated hardware components

through an OS driver, so that only instructions related to the instrumented code are

captured, timestamped, stored in on-chip buffers, and finally transferred back to the

host machine. This approach significantly reduces runtime overhead introduced by code

instrumentation and makes execution tracing an invaluable technique to record an em-

bedded system’s activity without altering its temporal behavior.

Once a system trace is transferred to the host machine, it is the software developer’s

responsibility to analyze it. Essentially, a trace is a timestamped list of events executed

on a particular SoC component. Consider Table 2.1 which shows a short excerpt from a

KPTrace-generated trace obtained from a single core of ARM’s Cortex-A9 CPU found

in STiH416 MPSoC while it was running a video decoding application. Each line of the

trace contains an event executed by the processor at a given timestamp. For example,

line 6 denotes that a function call (type K) CPureSwQueueBuffer::ReleaseDisplayNode was

6http://www.arm.com/products/system-ip/debug-trace/
7https://www.synopsys.com/dw/ipdir.php?ds=arc-real-time-trace
8https://www.arm.com/products/system-ip/debug-trace/trace-macrocells-etm/coresight-

system-trace-macrocell.php

http://www.arm.com/products/system-ip/debug-trace/
https://www.synopsys.com/dw/ipdir.php?ds=arc-real-time-trace
https://www.arm.com/products/system-ip/debug-trace/trace-macrocells-etm/coresight-system-trace-macrocell.php
https://www.arm.com/products/system-ip/debug-trace/trace-macrocells-etm/coresight-system-trace-macrocell.php

Chapter 2. Background 20

made by the process 1598 at timestamp 943920294.747273. Line 8 shows that a context

switch (type C) has occurred, so that process 2569 started its execution at timestamp

943920294.747415.

Line Timestamp Process ID Type Event info

1 943920294.747078 0 C 0 1825
2 943920294.747086 1825 K ”stm display output handle interrupts”
3 943920294.747165 1825 K ”stm display output get connection status”
4 943920294.747198 1825 C 1825 0
5 943920294.747261 0 C 0 1598
6 943920294.747273 1598 K ”CPureSwQueueBuffer::ReleaseDisplayNode”
7 943920294.747294 1598 K ”CHqvdpLitePlaneV2::PresentDisplayNode”
8 943920294.747415 1598 C 1598 2569
9 943920294.747625 2569 I 33
10 943920294.747635 2569 I 260

Table 2.1: An example of an execution trace

The increasing complexity of modern MPSoCs as well as of the use cases run on these

chips make manual trace analysis a daunting task [83]. Software developers are con-

fronted with too much system activity at any given moment of time in order to be able

to grasp it and, what is even more, to find suspicious system behaviors related to the

QoS problems. The size of a trace file largely depends on the number of traced events,

the duration of tracing and the number of traced hardware components. In our experi-

ence, however, we have dealt with approximately 1GB of raw trace data generated per

2 minutes of execution on a dual-core ARM CPU. Therefore, the need for techniques to

automate execution trace analysis in order to perform temporal debugging of multimedia

embedded systems is higher as ever.

2.8 Conclusion

In this chapter, we have discussed what is hidden inside a modern multimedia embedded

system, both hardware- and software-wise. This knowledge is essential to understand

the nature of temporal bugs in multimedia systems, hence, to be able to come up with

a technique to help developers in resolving this type of bugs.

All the components of multimedia embedded systems are there to answer the stringent

requirements dictated by the consumer electronics market. On hardware level, SoCs,

which have evolved to MPSoCs, deliver an unprecedented performance and rich func-

tionality to modern multimedia devices while constantly shrinking their size as well

as preserving their low price and energy consumption. On software level, the short

time-to-market requirement is met by designing multimedia software using dataflow

computational models, so that the tasks of manufacturing an MPSoC and developing

applications to be run on it can be performed in parallel. Last but not least, the com-

ponents of a multimedia application must be executed strictly periodically, so that the

output of the whole system is never delivered late, and the quality of multimedia meets

the high demands of the users of CE devices.

Chapter 2. Background 21

As we studied the innards of a modern multimedia embedded system, it became much

clearer where the temporal bugs which degrade user experience are coming from. A

large variety of possible combinations of multimedia applications as well as the presence

of operating system processes that all run concurrently result in situations where a

particular application fails to deliver its output on time. Hence, a QoS problem appears.

Finally, we have seen that standard debugging tools fall short to resolve temporal bugs,

and execution traces can be a valuable source of information to use in temporal de-

bugging. However, it remains up to software developers to navigate the masses of data

contained in execution traces, and there is currently a great need to help developers in

extracting pertinent to temporal bugs knowledge from execution traces.

Chapter 3
Detecting Anomalous Zones in Execution

Traces

Execution tracing is a powerful technology to capture system activity on literally any

granularity level: from function calls to memory accesses. It enables embedded software

developers to record the events executed on an MPSoC in order to perform post-mortem

analysis of system behavior. Such kind of analysis is especially useful when developers

need to improve the QoS of a particular application. However, the process of identi-

fication of system activity that reduces the application’s QoS, that is, the process of

temporal debugging, is an extremely complex task. One of the main difficulties in tem-

poral debugging is the absence of a starting point, i.e. a pair of particular events in

program execution between which the analysis must be performed. Making an analogy

with interactive debugging, it is like if the developer did not know where to set a break-

point, and then had no clue on which variables to look at in order to spot anomalous

values.

In this chapter, we show that, given an execution trace of a multimedia embedded system

and a dataflow graph of the application with low QoS, it is possible to automatically

track down the parts of the trace that contain abnormal system activity explaining the

origin of the temporal bug. In Section 3.1, we provide an analytical explanation of how

this can be done. In Section 3.2, we explain how the detection process is implemented in

our temporal debugging approach SATM using parameter-less clustering (Section 3.2.1)

as well as some statistical metrics (Section 3.2.2).

3.1 Propagation of Execution Delay in Dataflow Graphs

In this section, we argue that a streaming application with low QoS (i.e. a streaming

application whose output was delayed at least once during system execution) that was

modeled with the Dataflow MoC and scheduled under hard real-time constraints must

23

Chapter 3. Detecting Anomalous Zones in Execution Traces 24

contain at least one actor that does not respect its period at runtime. We introduce the

notion of execution delay propagation that justifies this argument.

Hard real-time scheduling of a dataflow graph G consists in finding out how to execute

graph actors ai, i = 1..N as a set of strictly periodic tasks τi given actors’ worst-case

execution times on the target platform (WCETi). Each τi is defined by a tuple τi =

(Si, Di, Pi), where Si ≥ 0 is the start time of τi, Di ≥WCETi is its deadline and Pi ≥ Di

is its period, so that τi is invoked at t = Si+mPi,m = 0, ..,∞ and executes for no longer

than Di
1.

A periodic schedule for G is called valid if it can be repeated infinitely, i.e. the invo-

cation rate qi of an actor-producer ai is aligned with the invocation rate qi+1 of the

corresponding actor-consumer ai+1, so that the communication channel between them

has bounded buffer capacity. This means that the schedule must derive task periods Pi,

such that

q1P1 = q2P2 = · · · = qN−1PN−1 = qNPN = α (3.1)

where each qi can be directly found from production and/or consumption properties of

actors in the dataflow graph G [46] [17]. The product qiPi designates the duration of an

actor ai’s iteration, and, as can be seen from Equation 3.1, has the same value α for all

the actors in G. Let’s denote by ai+1 the actor that consumes the tokens produced by

ai. A valid periodic schedule guarantees that if

Si+1 = Si + qiPi (3.2)

then ai+1 will always find the required number of input tokens each time it is invoked

[13].

Having the dataflow graph presented in Figure 2.5 and given the following actors’ worst-

case execution times: wcet1 = 5, wcet2 = 3, wcet3 = 2, a valid periodic schedule would

derive start times S1 = 0, S2 = 24, S3 = 48, invocation rates q1 = 3, q2 = 6, q3 = 4,

periods P1 = 8, P2 = 4, P3 = 6, and, hence, iteration duration α = 24 (see Figure

3.1). Deadlines Di, wceti ≤ Di ≤ Pi, are calculated based on the amount of available

resources on the target hardware platform [14].

S1=0 5 8 S2=24 S3=48 72
Time

a3

a2

a1

iteration α=24

Figure 3.1: Valid periodic schedule for the CSDF graph from Figure 2.5

Proposition. A dataflow actor which has not respected its period after at least one

invocation at runtime, i.e. the execution time was superior to its period, causes the

execution delay to propagate through the dataflow graph resulting in the delayed output

of the very last actor, that is, the delayed output of the whole application.

1In the rest of this section, the modeling term actor and its scheduling counterpart term task will
be used interchangeably

Chapter 3. Detecting Anomalous Zones in Execution Traces 25

Proof. Let’s denote tki the time of the kth invocation of an actor ai. Periodic scheduling

of the dataflow graph G implies that

tk+1
i = tki + Pi. (3.3)

If at eth invocation, ai’s execution time exec timeei turned out to be exec timeei > Pi,

then te+1
i = tei + exec timeei > tei + Pi. It follows that ∀c ≥ e: tc+1

i > tci + Pi , i.e. the

subsequent invocation times of ai are shifted by delayei = exec timeei − Pi > 0. As the

result, the subsequent iteration of ai is delayed as well.

It can be seen from Equations 3.1 and 3.2 that the start time of ai+1’s pth iteration

is equal to the start time of ai’s (p + 1)th iteration. Thus, if ai’s (p + 1)th iteration is

delayed, then ai+1’s pth is delayed as well. The same applies to all the aj , i ≤ j ≤ N ,

which means that the pth iteration of aN is shifted by delayei , hence, application’s output

is delayed by delayel .

Figure 3.2 helps to understand the notion of execution delay propagation using the

schedule from Figure 3.1. As a1’s eth invocation took longer than P1 to execute, delaye1 =

exec timee1 − P1 was introduced to the pipeline, which propagated through a2 and a3

actors resulting in the delayed output of the application.

iteration iteration

Time
te1

expected
output

delayed
output

a3
P3 delaye1

a2
P2 delaye1

a1
P1 P1 delaye1

exec timee−1
1 exec timee1 exec timee+1

1

Figure 3.2: Illustration of the propagation of execution delay in a dataflow graph

The proposition shows that in order to explain the reason the application output was

delayed, it is essential to find the most upstream actor in the application’s dataflow

graph which had not respected its period at least once.

3.2 Mining Actors’ Periods from Execution Traces

In order to identify delayed invocations of an actor, one needs first to determine the

actor’s period. Although it is possible that the person who performs the debugging is

aware of the periods of all the dataflow actors (e.g. because the scheduling is hard-

coded into the program, or the information from the scheduler is easily accessible), we

argue that automatic extraction of the actors’ periods from the execution trace provides

multiple benefits. Firstly, it relieves the developer from the need to manually navigate

through the trace looking for the parts where the period of a given actor is not respected.

Secondly, it makes SATM suitable to the developers who are unaware of the periods

computed by the scheduling algorithm, which is often the case in industry where the

Chapter 3. Detecting Anomalous Zones in Execution Traces 26

performance debugging teams are separated from the software coding teams. Therefore,

the first stage in SATM consists in mining actors’ periods from the execution trace.

The most upstream actor, that is, the one situated the closest to the dataflow pipeline’s

head, that exhibits significant delays in its invocation rate is signaled for further analysis

addressed in Chapter 4.

We firstly provide the necessary formalism. Let E = {e1, e2, .., em} be a set of all sys-

tem and application events that the developer has decided to trace. An event can be

a particular interrupt, like Interrupt168, or a function call executed in the context of

a specific thread, e.g. sys read[process23], or else a context switch from one thread

to another, like switch to[process23, process351]. Each line of a trace file contains a

timestamped occurrence of an event e that started its execution at timestamp ts: occ =

(ts, e); ts ∈ N, e ∈ E . A trace D, thus, can be represented as a sequence of events’ occur-

rences D = 〈occ1, occ2, . . . , occl〉 = 〈(ts1, e1), (ts2, e2), ..., (tsl, el)〉 where ∀i ∈ [1, l] tsi ∈
N, ei ∈ E , and the events’ occurrences are ordered by the timestamps. For example,

〈(1, Interrupt168),(4, sys read [process23]), (6, switch to[process23, process351])〉 is

a simple trace of length l = 3.

The mapping between a dataflow actor and the corresponding event in the execution

trace is done in the following way. If a given actor is represented by a single function,

then each appearance of this function in the trace is considered as an actor’s occurrence.

In case the actor was programmed as a software module, the appearance of the first

function executed in the context of this module represents the actor’s occurrence. In

the following, we explain how SATM detects the period of a given event.

A näıve approach to find the period of a given event, or conclude that the event shows

aperiodic behavior during the application’s execution, would consist in extracting all

the occurrences of the event from the execution trace and comparing the time intervals

between the successive event’s occurrences. However, the preemptive behavior of mul-

titasking OSs running on MPSoCs does not allow to apply this approach to discover

events’ periods. As an OS can preempt the event’s execution in favor of other processes

and system tasks, the trace may contain several event’s occurrences that semantically

belong to a single scheduled event’s invocation. Consider Figure 3.3 which presents a

visualization of an excerpt from an execution trace captured in a time window from 15

to 22 seconds from the beginning of trace recording. In this excerpt, we can observe

executions of an event ei showed as filled rectangles. Suppose that we know beforehand

that the event’s period calculated by the scheduling algorithm is equal to 2.5 seconds,

and it was always met during the execution. The trace contains 11 occurrences of ei in

this time window. So, if we apply the aforementioned näıve approach by extracting time

intervals between consecutive event’s occurrences, which are {0.3, 0.5, 0.3, 1.4, 0.6, 0.4,

1.5, 0.5, 0.3, 0.3}, the lack of a constant value among them would signal non-periodic

invocation rate of the event ei, which is wrong. In fact, such simple comparison fails

to infer that short intervals are caused by the preemption, while the significantly longer

ones correspond to the invocation rate of the event. Therefore, we need a preprocess-

ing step to automatically group event’s occurrences that are temporally close to each

Chapter 3. Detecting Anomalous Zones in Execution Traces 27

Time, s

ei

15.2 15.5 16 16.3 17.7 18.3 18.7 20.2 20.7 21 21.3

Pi=2.5 Pi=2.5

Figure 3.3: An excerpt from an execution trace showing the occurrences of an event
ei as filled rectangles and its invocations scheduled with a period Pi = 2.5 seconds as

hollow rectangles.

other. With respect to the Figure 3.3, such preprocessing would consist in grouping

filled rectangles into the hollow ones.

The next two sections show how SATM performs automatic grouping of event’s occur-

rences by applying a parameter-less clustering, and how it detects the event’s period

once the event’s occurrences have been grouped.

3.2.1 Clustering Event’s Occurrences

Grouping similar objects is the goal of cluster analysis or clustering, a branch of data

mining. Cluster analysis groups objects based only on the information found in the

data that describes the objects and their relationships. Such data is represented as

a set of attributes, and the size of this set is called the dimensionality of data. The

goal of clustering is that the objects within a group are similar to each other and dif-

ferent from objects in other groups [75]. In our case, the objects are the occurrences

of a particular event in the execution trace. Each occurrence has a single attribute:

its timestamp. Therefore, the relationship between the occurrences is expressed as the

difference between their timestamps. This way, the less time has passed between two

occurrences, the more similar they are. Our goal is to cluster temporally close occur-

rences into the same group which will denote a single event’s occurrence for the future

analysis. The requirement that we impose on clustering is its fully automatic behavior,

i.e. no user-defined parameters are allowed. Interestingly, the vast body of clustering

algorithms deals with high-dimensional data and various manually set thresholds, leav-

ing automatic one-dimensional clustering without proper attention. In [22] Cooper et

al. propose an algorithm for one-dimensional clustering of digital photo collections. In

their case, objects were individual photos characterized by a single attribute: the time

they were taken. The goal was, therefore, to group photos that were taken close in time

into photo collections without user intervention. With only a slight enhancement, we

were able to apply their time-based similarity analysis to accurately and automatically

cluster an event’s occurrences, as we explain next.

Building a similarity matrix

The first step in clustering event’s occurrences consists in building their similarity ma-

trix S. For this, we firstly extract all the N occurrences of the target event e from

the execution trace and sort them in the ascending order of their timestamps: 〈(ts1, e),

Chapter 3. Detecting Anomalous Zones in Execution Traces 28

(ts2, e), . . . , (tsN , e)〉, ts1 < ts2 < · · · < tsN . The similarity matrix S will then have the

dimension N ×N and contain the similarity measures between each pair of occurrences

computed as S(i, j) = exp(−|ti− tj |). The bigger values, thus, will indicate more similar

occurrences. It is easy to see that S is a symmetric matrix. Figure 3.4 shows a similarity

matrix for the event’s occurrences from the Figure 3.3 as well as its representation as a

heat map, where the darker the cell is – the more similar corresponding occurrences are.

Figure 3.4: Similarity matrix for the event’s occurrences from Figure 3.3

Discovering clusters’ borders using novelty scores

Once the similarity matrix is constructed, SATM proceeds to detect the boundaries

between the groups of similar event’s occurrences by computing the novelty score for

each event’s occurrence. The novelty score quantifies the similarity of the groups of

occurrences seen both before and after the given occurrence [30]. This way, if a given

occurrence has a big novelty score, it signifies that the next occurrence belongs to a differ-

ent cluster. It is worth mentioning that a cluster can, of course, consist of a single event’s

occurrence. Consider the heat map for the similarity matrix from Figure 3.4 where one

can easily distinguish three dark-colored clusters of similar occurrences. Indeed, the

boundaries between the clusters of event’s occurrences are the centers of checkerboard

patterns along the main diagonal. We would, thus, expect the novelty scores of the

occurrences occ4, occ7 and occ11 to have bigger values than the novelty scores of other

occurrences.

Foote [30] proposed a method to compute novelty scores by correlating a Gaussian-

tapered checkerboard kernel along the main diagonal of a similarity matrix. Correlation

here denotes the sum of the element-by-element product of the given kernel and the

extracted submatrix of the same size (see Equation 3.4). In order to understand how

such correlation allows to detect clusters’ boundaries, let’s consider the following example

of a gaussian-tapered kernel of size 4× 4, as well as its decomposition into two terms:

1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

 =

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

−

0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

Chapter 3. Detecting Anomalous Zones in Execution Traces 29

The first term measures self-similarity of the upper-left and lower-right 2×2 regions of a

submatrix it is correlated to. The result of such correlation will have a small value if both

regions are self-similar, i.e. the temporal differences between the occurrences in each

region are small. The second term measures the cross-similarity between the same two

regions. The result of its correlation with a given diagonal submatrix of the similarity

matrix will have a small value if the regions are substantially similar to each other. The

difference of the two values will have a big value if the upper-left and lower-right 2× 2

regions are self-similar but different from each other.

Kernels can be smoothed to avoid edge effects using windows that taper towards zero

at the edges. Figure 3.5 presents the kernel we used in SATM.

Finally, the correlation is achieved using the following formula:

νi =

p∑
l,m=−p

S[i+ l, i+m]g[l,m], (3.4)

where g is the kernel, p is its size, and i is the index of the current event’s occurrence

for which the novelty score is calculated.

It is important to note that all the elements of a similarity matrix situated further

than p positions away from the main diagonal are never used in the computation of

the novelty score. Therefore, to reduce storage and computation requirements of the

similarity matrix building step, SATM computes only S[i + q][i + r], ∀q, r, 0 ≤ q ≤ p,

0 ≤ r ≤ p portion of the similarity matrix S for every event’s occurrence occi, 0 < i ≤ N .

Applying Formula 3.4 on every element situated on the main diagonal of the similarity

matrix S will give us the novelty score for each event’s occurrence. The next goal is

to identify the occurrences with significantly high novelty score; these occurrences will

denote clusters’ boundaries. Cooper et al. [22] use a manually chosen threshold to do

that. We, on the other hand, wanted the clustering step to be completely automatic.

Detecting significantly high novelty scores using Otsu’s method

Back in 1979, Nobuyuki Otsu proposed a method to automatically transform gray-level

images to binary ones [60], which is since widely used in computer vision and image

processing. Otsu’s method allows to detect if a given gray-level pixel is closer to being

white or black. Interestingly, this method can be applied to any problem requiring

to automatically find a threshold between two groups of objects, so that the variance

between the objects in the same group is minimal.

0.1 0.5 −0.5 −0.1
0.5 1 −1 −0.5
−0.5 −1 1 0.5
−0.1 −0.5 0.5 0.1

Figure 3.5: Gaussian-tapered kernel used in SATM

Chapter 3. Detecting Anomalous Zones in Execution Traces 30

Consider our problem of detecting event’s occurrences with significantly high novelty

scores, which we will call the boundary occurrences. Each boundary occurrence will be

the last element of a cluster it forms with the preceding occurrences (or the only element

of a cluster if the preceding occurrence has a significantly high novelty score as well).

Using a gaussian-tapered kernel, we have computed the novelty score for each event’s

occurrence. Otsu’s method now allows to iterate through all possible thresholds between

these novelty scores, and choose such threshold that would split the novelty scores into

two groups: one with boundary occurrences, and another one with the remaining non-

boundary ones, such that the variance among the elements in each group is minimal.

Consider the novelty scores computed with Equation 3.4 for the event’s occurrences from

Figure 3.3 using the kernel from Figure 3.5: 0.78, 1.50, 0.92, 2.66, 1.49, 1.09, 2.73, 1.35,

1.00, 0.81, 2.73. If we take a threshold equal to 1.4 the sum of variances of the two

groups of novelty scores is 2.229. On the other hand, a threshold equal to 1.7 gives the

value 0.598 which is smaller, hence, this threshold is better.

In practice, SATM starts from the threshold equal to the minimum value of the novelty

score and iterate with a step of 0.1 2 until the maximal value of the novelty score is

reached. The threshold with the minimal value is chosen, and all the occurrences with

the novelty score higher than the threshold are treated as boundary occurrences.

Clustering on different temporal granularities

Different events execute in the embedded system at different temporal granularities. For

example, a network interrupt will have thousands of occurrences during a few minutes of

trace capture, while a process that dumps data from memory to the external hard drive

executes once per several minutes. It is, thus, important that the clustering of the event’s

occurrences is performed on various temporal granularities, so that a set of clusters found

on the most appropriate granularity level can be chosen. The most appropriate would

be a level where the sum of similarity measures between each pair of elements from

the same cluster has the highest value, while the sum of similarity measures between

each pair of elements from the adjacent clusters has the lowest value. Cooper et al. [22]

exploit scale-space theory in order to perform such multi-scale clustering.

Scale-space theory is a basic tool to analyze structures at different scales; it is used

extensively in signal processing and computer vision communities. This theory was

developed on the premise that the human eye perceives same objects differently on

different scales. For example, as you read this text, you consider every letter as a

separate entity, as a single cluster. At the same time, it will not be problematic for

you to count the number of words in a given line, as you would force your retina to

slightly blur the letters in a single word so that the spaces between the words are easily

detectable. The letters of the same word will be, thus, clustered into the same group to

facilitate the detection of spaces. The same applies on a coarser level, if you are asked to

count the number of paragraphs on a single page. Detecting objects on different scales

2such step value is sufficient thanks to the smoothing applied in constructing the similarity matrix S,
as well as using multiple temporal granularities discussed in the next subsection.

Chapter 3. Detecting Anomalous Zones in Execution Traces 31

is completely natural to us. Computers, on the other hand, cannot do this without

user-specified details on how to reproduce any given image on different scales. The

scale-space theory provides a solution to this problem. In short, its main idea is to use

gaussian space smoothing on various scales to blur images and remove detail and noise.

Returning to our problem of detecting the clusters of event’s occurrences at different

temporal granularities, we apply Cooper et al’s approach for “blurring” temporal differ-

ences between individual elements. It consists in constructing a similarity matrix S for

each chosen temporal granularity K using the following formula:

SK(i, j) = exp(−|ti − tj |
K

), (3.5)

For execution traces, a good choice of granularities is: nanosecond, microsecond, mil-

lisecond, and second. Tracing tools do not normally capture temporal differences inferior

to a nanosecond, and it is highly unlikely that an event is executed so rarely that its

clusters cannot be correctly detected on the minute scale. The value of K would depend

on the temporal resolution of the trace tool. If the timestamps in the execution trace are

given in nanosecond resolution, then K = {1, 103, 106, 109}; if it has millisecond reso-

lution, then K = {1/106, 1/103, 1, 103}, and so on. Once SATM constructs a similarity

matrix S for each K, it detects clusters of event’s occurrences at every scale K using

the method described previously in this section. Having the clusters’ boundaries on

each scale BK = {b1, . . . , bnK}, the last action is to determine which temporal resolution

results in the most pronounced clusters. It is done using a confidence score computed

for each scale K:

C(BK) =

|BK |−1∑
l=1

bl+1∑
i,j=bl

SK(i, j)

(bl+1 − bl)2

−
|BK |−2∑
l=1

bl+1∑
i=bl

bl+2∑
j=bl+1

SK(i, j)

(bl+1 − bl)(bl+2 − bl+1)

(3.6)

The first term quantifies the average within-class similarity between the event’s oc-

currences within each cluster. The second term quantifies the average between-class

similarity between the event’s occurrences in adjacent clusters. By negating the sec-

ond term, the confidence measure combines each cluster’s average self-similarity and

the dissimilarity with the adjacent cluster(s). The temporal granularity K on which

the clusters’ boundaries have the highest confidence score is chosen as the final set of

clusters.

Chapter 3. Detecting Anomalous Zones in Execution Traces 32

Complete algorithm for temporal clustering of event’s occurrences

Finally, we provide the description of the algorithm to cluster event’s occurrences based

on the work of Cooper et al. [22] which is used in our temporal debugging approach

SATM.

Function ClusterActorOccurrences(T , e, K): Cluster the occurrences of e found in

the trace T using the best temporal resolution from K.
Data: T : execution trace, e: target event, K a list of temporal resolutions to

consider.

Result: B: a set of clusters’ boundaries.

foreach occurrence of e in T : occi = (tsi, e) do

insert tsi in the sorted in the ascending order array Occ

end

foreach k ∈ K do

Sk = similarity matrix for Occ (see Formula 3.5)

νk = set of similarity scores for Occ (using Formula 3.4 with the kernel from

Figure 3.5)

Bk - clusters’ boundaries computed with OtsuMethod(νk) [60]

end

B = argmin(C(Bk)) (see Formula 3.6)
Algorithm 1: Algorithm for clustering event’s occurrences.

3.2.2 Detecting Violations of Event’s Period

Once the event’s occurrences found in the execution trace are clustered, SATM proceeds

to discover the event’s period. It collects the values of time intervals between the pairs of

consecutive event’s clusters and measures how different from each other these intervals

are. In statistical terms, having a distribution of time intervals, SATM determines its

central tendency and measures its dispersion. On the one hand, this allows to find the

event’s period (equal to the central tendency if the dispersion is small), or conclude that

the event is not periodic (if the dispersion is large). On the other hand, the parts of the

trace where the event does not respect its period (outliers of the distribution) can be

easily detected.

As a measure of the distribution’s central tendency we use the median which is equal to

the middle element of the distribution. An appealing property of the median is its high

resistance to outliers: for a distribution where half of the elements have the same value

V , and another half - arbitrarily big values, the median returns V as the value of central

tendency. As the measure of dispersion we use the Quartile Coefficient of Dispersion

(QCoD), also known as Quartile Variation Coefficient (QVC) [89]. It is a dimensionless

measure, i.e. it has no units, and thus we can use the same dispersion threshold for

distributions with different central tendency values. Quartile coefficient of dispersion is

defined as

Chapter 3. Detecting Anomalous Zones in Execution Traces 33

QCoD =
Q3 −Q1

Q3 +Q1
, (3.7)

where Q1 and Q3 are the first and the third quartiles accordingly.

In case the value of QCoD for the distribution of time intervals between the event’s

clusters is small enough to consider the event as a periodic one 3, we proceed to detect

the gaps in the event’s periodicity, i.e. time intervals that are much bigger than the

event’s period. The precise “much bigger” value can be obtained from the inter-quartile

rule for outliers [77]: distribution elements that fall above Q3+3∗IQR can be considered

as outliers, where IQR = Q3−Q1 is the inter-quartile range.

Consider the following timestamps of the clustered occurrences of an actor a represented

in the execution with the event e: t1 = 45, t2 = 75, t3 = 104, t4 = 134, t5 = 164, t6 = 352,

t7 = 382, t8 = 413, t9 = 443, t10 = 538, t11 = 568. A corresponding distribution of time

intervals between the adjacent occurrences is

σ = {30, 29, 30, 30, 188, 30, 31, 30, 95, 30},

and the median equals to 30. Next, we decide if this value can be considered as the

event’s period, i.e. whether most of the time intervals tend to be equal to the median,

using QCoD dispersion measure (Equation 3.7). Q1 = 30, Q3 = 31, and QCoD =

1/61 × 100% ≈ 1.6%. A small value of QCoD implies that the distribution σ is well

centered on its median, even with the presence of two big outliers. Hence, we infer that

the event e is periodic with the period equal to 30. We then apply the inter-quartile rule,

which detects 95 and 188 to be outliers in σ, as these values fall above Q3 +3∗IQR = 34.

Assume that a is the most upstream actor from the application’s dataflow graph which

has outliers in its distribution of occurrences in the execution trace. It is essential to

discover the cause of the presence of these outliers, which, as proved in Section 3.1,

result in the reduced QoS of the multimedia embedded system.

Having the timestamps of a’s (clustered) occurrences and the list of its outliers, an

execution trace D can be split into two sets: Dneg, where the target actor is invoked

periodically (outlier-negative), and Dpos, where its period is broken (outlier-positive).

Using the example above, Dneg = { [0, t1]; [t1,t2]; [t2,t3]; [t3,t4]; [t4,t5]; [t6,t7]; [t7,t8];

[t8,t9]; [t10,t11]; [t11,tlast] }, Dpos = {[t5,t6]; [t9,t10]} where [ti, tj] denotes the part of

the trace between the timestamps ti and tj and is called a subtrace, while tlast is the

timestamp of the last event in the trace D.

In the next chapter, we deal with the problem of detecting system activities that charac-

terize the Dneg parts of the execution trace, but not the Dpos ones. We argue that such

system activities represent strong pointers to the temporal bug present in the system

from which the execution trace was obtained, and are an extremely useful information

for the developers performing temporal debugging.

3based on our experience in characterizing events found in execution traces, QoCD < 10% is a good
indicator of the event’s periodicity

Chapter 3. Detecting Anomalous Zones in Execution Traces 34

3.3 Conclusion

In this chapter, we presented a method to extract anomalous zones from an execution

trace that need to be analyzed in order to perform temporal debugging of multimedia

embedded systems.

As we have argued in Section 3.1, the QoS of a multimedia embedded system is degraded

when the last actor in the target application’s dataflow graph aN does not respect its

deadline, hence, delivers delayed output. This can be caused either by the delayed

input from the next-to-last aN−1 actor, or, in case the input was available in time, by

some anomalous system activity during the aN actor’s last execution. We then showed

how the most upstream actor that has not respected its deadline is detected in out

temporal debugging approach SATM using a combination of parameter-less clustering

(Section 3.2.1) and a few statistical measures (Section 3.2.2).

The cluster analysis is an essential part of SATM due to the fact that an actor’s period

cannot be found directly from the trace because of the preemptive behavior of the OSs

running on MPSoCs. To group the actor’s occurrences in the execution trace on the

temporal axis, we have enriched the algorithm proposed by Cooper et al. [22] with Otsu’s

method [60], and have got a clustering algorithm that does not need any manually set

parameters. In practice, SATM clusters actor’s occurrences with high accuracy. The

reason of this is twofold. On the one hand, the actor’s period is normally quite bigger

than its worst-case execution time. On the other hand, valid use cases usually do

not overutilize the resources of the underlying embedded platform. Hence, no heavy

preemption takes place, and the actor’s occurrences related to a single invocation are

compactly grouped on the temporal axis.

Once the actor’s occurrences are clustered, the quartile coefficient of dispersion is used

to determine the actor’s period, in case the actor exhibits periodic behavior. If the given

actor has missed its deadline at least once, the corresponding part(s) of the execution

trace are extracted and are used to detect the system activity correlated to the deadline

miss. The goal of the next chapter is to show how such system activity can be discovered

using data mining algorithms.

Chapter 4
Mining Abnormal System Activity from

Execution Traces

Temporal debugging is a notoriously difficult task, primarily because a software devel-

oper is not allowed to pause a program’s execution in order to inspect the state of the

system. Fortunately, the developers can get a log of the entire system’s activity during

a problematic system execution thanks to the tracing technology. On the other hand, a

huge amount of raw data in the execution trace makes searching for abnormal system

activity related to the temporal bug incredibly hard. In Chapter 3, we showed how to

detect the parts of the trace where the buggy system activity is present, using the do-

main knowledge on both software and hardware aspects of embedded systems found in

consumer electronic devices. At the next step, ideally, the developer herself notices some

unusual system behavior after examining the suspicious parts of the trace. However, in

order to do this, the developer must possess a deep understanding of the whole system.

Firstly, she needs to know exactly what constitutes normal system activity at execution

time; that is, have a knowledge about each component of the underlying system (OS

processes, drivers, all the running applications, etc.). Secondly, the developer must be

able to differentiate a harmlessly diverged system activity from the one that may result

in delayed output of the target application. On top of that, the multi-core components

of modern MPSoCs make manual analysis of the totality of system behavior even more

difficult as several execution threads must be analyzed simultaneously. For these rea-

sons, developers need a tool that can detect unusual system behavior in the suspicious

parts of an execution trace in an automatic way.

In this chapter, we investigate how the task of discovering unusual system behavior

correlated to the observed temporal bug can be accomplished using sequential pattern

mining algorithms. In Section 4.1, we establish a relationship between the problems

of temporal debugging and contrast pattern mining. Next, in Section 4.2, we consider

different ways to mine contrast patterns, focusing on their extraction from the set of

frequent patterns in Dpos dataset. At the same time, we evaluate the performance of

35

Chapter 4. Mining Abnormal System Activity from Execution Traces 36

running the relevant state-of-the-art pattern mining algorithms on execution trace data.

Finally, in Section 4.3, we take a closer look at the execution trace data from the data

mining perspective in order to understand why mining the complete set of contrast

patterns from real-world traces turns out to be such a hard task.

4.1 Detection of Abnormal System Activity as a Pattern

Mining Task

In Chapter 3, we showed how SATM detects anomalous parts of an execution trace

relying on the domain knowledge of the embedded systems from consumer electronic

devices. As a result of its first stage, SATM splits the original trace into two sets of

subtraces: Dpos containing the anomalous parts of the trace, and Dneg containing the

normal parts of the trace. The goal of the second stage of SATM is to automatically find

what makes the dataset Dpos different from the dataset Dneg. In other words, we would

like to understand which system activity is present in anomalous parts of the trace, but

not in the normal ones.

We proceed from the principle, that if the system behaves in a certain way only in the

subtraces from Dpos, then this behavior is correlated to the reason the system exhibits

low QoS. Note that one cannot state definitely if such behavior is itself an origin of

temporal bugs, or a consequence of some system activity that either occurred while

all the components of the application had correct temporal behavior, or comes from

the untraced parts of the system. However, due to the tendency to appear only in

the anomalous parts of the trace, such suspicious system activity provides an extremely

valuable information to software developers, so that they can know which particular part

of the system is involved in the temporal bug. Consider, for example, a situation where

some process is constantly writing data to a shared data structure in the subtraces from

Dpos but not in the subtraces from Dneg. Once this behavior is detected as an abnormal

one, it is necessary to verify what is the reason that the particular process performs

those writes. The problem can then be assigned to a particular group of developers,

making temporal debugging a methodical process rather than a trial-and-error one.

A relevant way of characterizing abnormal system behavior consists in discovering (or,

mining) unusual combinations of raw system events appearing in the execution trace.

A particular combination of system events can be considered unusual if it appears most-

ly/only in the anomalous parts of the trace (i.e. subtraces from Dpos dataset), and

not during the normal system operation (i.e. the Dneg dataset). Each subtrace can

be viewed as an ordered collection of events executed on the target system. The task

of discovering groups of features that appear together in a given set of collections of

features is addressed by the subfield of data mining called pattern mining.

Originally, pattern mining was introduced as a task of uncovering interesting patterns

of the products purchased together by customers in a supermarket [8]. That is why, the

terms used in pattern mining field come from the market basket analysis. An item (e) is

Chapter 4. Mining Abnormal System Activity from Execution Traces 37

a particular entity represented symbolically, like a specific product available for purchase

in a supermarket. A complete set of available items (e.g. products in the supermar-

ket) is called an alphabet (I : ei ∈ I, i ∈ [1, |I|], where |I| is the size of the alphabet).

A transaction (T : (e1, e2, . . . , e|T |), ei ∈ I, i ∈ [1, |T |]) denotes a collection of items

having some semantic relation to each other (e.g. items bought by a single customer

at a particular visit to the supermarket, or all items bought in the supermarket during

a particular time span). A transaction is considered sparse when the ratio of distinct

items occurring in it to the size of the alphabet is small. Conversely, a transaction is

dense when this ratio is big. A transactional database (DB = {T1, T2, . . . , T|DB |})
is a set of all recorded transactions. A pattern (p : (e1, e2, . . . , e|p|), ei ∈ I, i ∈ [1, |p|]) is

a group of items that is tested against some interestingness measure in the given trans-

actional database DB . A pattern containing l items (i.e. |p| = l) is called an l-pattern.

In case the interestingness measure is expressed as the frequency with which a pattern

occurs in the transactional database DB , the support (supDB(p) = |{T} | occ(p, T)1|)
denotes the number of transactions containing a specific pattern. If in order to be in-

teresting, a pattern must be frequent in the transaction database DB , then the mining

process needs minimum support threshold (min sup), so that only such patterns p

that supDB (p) ≥ min sup are mined. It is common to express the support in percent-

ages, denoting the relative number of transactions containing the target pattern. For

example, min sup = 100% means that we are interested only in the patterns occurring

in all the transactions from a given dataset.

Mining the patterns that satisfy a given interestingness measure is a non-trivial task. If

mining is performed in a näıve way, one needs to consider the complete search space,

that is, all possible patterns, and then verify the value of interestingness measure for each

member of the search space across all the transactions. Such approach is, obviously, too

computationally expensive even for transactional databases with relatively small number

of short transactions and modest size of the alphabet. Fortunately, data mining field

enjoyed an important number of algorithms which improved computational complexity

of pattern mining task while allowing to mine different kinds of patterns with various

interestingness measures [6]. High diversity of the application areas of pattern mining

algorithms is explained by the ability of these algorithms to mine interesting patterns

from any symbolic dataset. In the rest of this section, we express the task of detecting

anomalous system behavior from two sets of execution traces as a pattern mining task.

Transforming an execution trace represented as a set of subtraces into a transactional

database is a straightforward task. The only necessary preprocessing consists in drop-

ping events’ timestamps from each subtrace. This way, Dpos and Dneg datasets can be

viewed as transactional databases where each transaction contains an ordered collection

of system events.

The task of discovering abnormal system activity in the Dpos dataset then becomes a

task of mining patterns of system events that appear in transactions from Dpos, but not

in transactions from Dneg. Looking for patterns that represent the differences between

1the precise definition of occ(p, T) function depends on the type of the pattern p

Chapter 4. Mining Abnormal System Activity from Execution Traces 38

the given datasets is the goal of contrast pattern mining [26]. Contrast patterns

proved to be useful in various applications, such as capturing discriminative gene group

interactions, building accurate classifiers, constructing clusters without distance func-

tions, and others.

The choice of the type of contrast patterns is crucial. On the one hand, patterns must be

informative enough to express system behavior correlated to the observed temporal bug.

On the other hand, they should not be too complex to mine from real-world execution

trace data. Consider the following list of pattern types which can be used to represent a

contrast between Dpos and Dneg datasets, ordered by increasing expressibility, but also

mining complexity:

• An itemset A is, at its name suggests, a set of items: A = {e1, e2, . . . , eN}, ei ∈ I,

i ∈ [1, N]. Therefore, there is no order relation between the items, and a single

item can appear only once in an itemset.

• A sequence S is a totally ordered collection of items where each item can appear

multiple times: S = 〈e1, e2, . . . , eN 〉, ei ∈ I.

• An episode E is a partially ordered collection of items where each item can appear

multiple times. For example, an episode 〈e1, {e2, e3}〉 means that both e2 and e3

must occur after e1, but no order is imposed between e2 and e3.

• A temporally annotated episode T is an episode enriched with the information on

when a particular item started and finished its execution. That is, each ei ∈ T is

expressed as a tuple (e, ts, tf), where e denotes ei’s corresponding system event,

while ts and tf denote the timestamps at which ei started and finished its execution.

Given a single transaction, the number of all possible patterns in it increases with the ex-

pressibility of the patterns’ type. This means that there will exist much more sequential

patterns than itemsets, much more episodes than sequential patterns, and much more

temporally annotated episodes than general episodes. The least computationally expen-

sive task, therefore, is contrast itemset mining. However, the inherent order of events in

execution traces cannot be captured with itemset patterns. It is, therefore, not possible

to express interleavings of events’ executions, such as deadlocks, with itemsets. Sequen-

tial patterns, on the other hand, allow to capture various execution scenarios where the

order as well as the number of occurrences of a particular event is important. If con-

trast sequence mining was a comparatively easy task, it would be even better to mine

contrast episodes. Episodes are well adapted to parallel nature of embedded hardware,

as they allow to express both the order between sequentially executed events, as well as

concurrency of system events run on different cores. Finally, the temporally annotated

episodes would allow to mine contrasts characterized by the duration of events’ execu-

tion, or the latency between events’ executions. Unfortunately, as we will see in the rest

of this chapter, mining contrast sequences from execution traces is already an extremely

complex task. In this thesis, therefore, we focus on mining contrast sequential patterns,

or simply, contrast sequences.

Chapter 4. Mining Abnormal System Activity from Execution Traces 39

Next, we present some definitions necessary to formally describe the pattern mining

problem one needs to solve in order to detect anomalous behavior in execution traces.

Figure 4.1 shows a running example of the Dpos and Dneg datasets which we will use

throughout this chapter to familiarize the reader with pattern mining terms.

Dpos Dneg

e1 e2 e3 e4 e5 e6 e7 e8 e1 e2 e3 e4 e5 e6 e7 e8 e9
T1 : 〈 b, c, a, d, b, a, d, b 〉 T1 : 〈 b, c, d, b, a, d, a, d, b 〉
T2 : 〈 c, a, b, a, d, e, b, d 〉 T2 : 〈 c, e, b, d, a, d, b, a, b 〉

Figure 4.1: A running example of Dpos and Dneg datasets.

Definition 4.1. Given a dictionary of items I, a sequence s is an ordered list of items,

denoted as s = 〈e1, e2, . . . , em〉 where ei ∈ I for 1 ≤ ei ≤ m.

Definition 4.2. A sequence s′ = 〈a1, a2, . . . , an〉 is a subsequence of another sequence

s = 〈b1, b2, . . . , bm〉, denoted as s′ @ s, if there exist integers 1 ≤ i1 < i2 < · · · < in ≤ m
such that a1 = bi1 , a2 = bi2 , . . . , an = bin . Similarly, s is a supersequence of s′,

denoted as s A s′. If s A s′, then s is said to contain s′.

Definition 4.3. Given a transactional database DB and a sequence s, the support of

s in DB , denoted as supDB (s), is the number of transactions T ∈ DB that contain s:

supDB (s) = |{T}| such that T A s.

Definition 4.4. Given a transactional database DB and a thresholdmin sup ∈ [1, |DB |],
sequence s is called frequent in DB w.r.t. min sup if supDB (s) ≥ min sup. Similarly,

s is called infrequent in DB w.r.t. a threshold max sup if supDB (s) ≤ max sup.

Example 4.1. Consider the Dpos dataset from Figure 4.1. I = {a, b, c, d, e}; transac-

tion T1 = 〈b,c,a,d,b,a,d,b〉 is a 8-sequence; 〈a,b〉 @ T1; T1 A 〈b,c〉; supDpos(〈a,b〉) = 2;

supDpos(〈b,c〉) = 1. Given min sup = 2, 〈a,b〉 is frequent in Dpos, while 〈b,c〉 is infre-

quent in Dpos.

In order to complete our specification of the contrast patterns to be mined from execution

traces, we need to consider another aspect - their conciseness. There is no doubt that

for a developer, the easiest patterns to analyze are the shortest ones, i.e. those with

the smallest number of items. If the contrast between anomalous and normal parts of

a trace can be expressed with a 3-pattern, then adding more items to this pattern will

make the task of analyzing the specific faulty system behavior harder. Therefore, we are

interested in mining the set of minimal contrast sequences, i.e. such contrast sequences

that do not contain shorter contrast sequences in them (see Definition 4.5 further on).

Finally, we need to define an interestingness measure to distinguish contrast patterns

from the non-contrast ones. Contrast patterns are often defined as patterns whose sup-

ports differ significantly among datasets under contrast (Dpos and Dneg, in our case).

There exist three common interestingness measures to express “supports differ signifi-

cantly” for a given candidate pattern p [26]:

Chapter 4. Mining Abnormal System Activity from Execution Traces 40

• growth rate α [27]:
supDpos (p)

supDneg (p) > α;

• support difference β [15]: supDpos(p)− supDneg(p) > β;

• two thresholds (min sup and max sup) [41]: supDpos(p) > min sup, and

supDneg(p) < max sup.

Two thresholds allow to express the contrasting property of a candidate pattern in

the most precise way, which is important in order to understand the performance of

contrast pattern mining algorithms presented further in this chapter. Therefore, the

final definition of a minimal contrast pattern can be written as the following:

Definition 4.5. Given Dpos and Dneg transactional databases, as well as min sup ∈
[1, |Dpos|] and max sup ∈ [1, |Dneg|] thresholds, a minimal contrast sequence is such

a sequence s that supDpos(s) ≥ min sup, supDneg(s) ≤ max sup, and 6 ∃s′ ∈ MCS such

that s′ @ s, where MCS denotes the set of all minimal contrast sequences.

Example 4.2. Consider Dpos and Dneg datasets from Figure 4.1. Let min sup = 2 and

max sup = 0. Then, 〈a, b, d〉 ∈ MCS , as supDpos(〈a, b, d〉) = 2, supDneg(〈a, b, d〉) = 0,

while 〈a, b, a, d〉 is a contrast sequence, but it is not minimal, as 〈a, b, d〉 @ 〈a, b, a, d〉.

In this section, we showed how the task of discovering the differences between two sets

of subtraces can be addressed by mining minimal contrast sequences from them. As

explained, after the original execution trace is split into two sets of subtraces, the only

operations necessary to prepare datasets for mining consist in dropping the timestamps

of the tracepoints, and encoding the tracepoints themselves as integers, so that the same

tracepoints are encoded as same integers. In the next section, we examine the methods

to mine the complete set of MCS from Dpos and Dneg datasets.

4.2 Minimal Contrast Sequence Mining

This section plays a dual role. From the one hand, we introduce the state-of-the-art

sequential pattern mining algorithms that can be applied to mine minimal contrast se-

quences. From the other hand, we evaluate the performance of these algorithms on

execution trace data. It is important to note that we have implemented parallel versions

of all the algorithms presented in this chapter in Java programming language and eval-

uated them on a server machine equipped with two Intel Xeon E5-2650 v2 processors

(32 cores in total) and 128GB of RAM. For evaluation purposes, we have developed a

synthetic trace generation tool. It allows to create datasets of specified complexity which

preserve the essential properties of real-world execution traces coming from multimedia

embedded systems.

Chapter 4. Mining Abnormal System Activity from Execution Traces 41

Synthetic trace generation tool

As explained in Chapter 2, the runtime behavior of an embedded streaming applica-

tion consists in periodic invocations of its dataflow actors. An actor’s execution can be

observed in a trace as a sequence of tracepoints (or, events) run by the actor’s source

code. If we encode every tracepoint as an integer and drop the timestamps, the origi-

nal trace can be represented as a sequence of integers containing actors’ executions as

its subsequences. It is important to remember that during real-world use cases, the

computational resources of an MPSoC are shared among various applications’ and also

system’s threads running simultaneously; moreover, not all system tasks are invoked

periodically. Therefore, any actor’s execution can be preempted in favor of some other

application’s or system’s activity at any moment of time. These facts can be observed

in an execution trace when a given sequence of events appears repetitively in the trace

(which represents a particular actor’s execution), but is interleaved with some unrelated

(or noisy) events. As an example, consider Figure 4.2 which shows two small excerpts

from an execution trace of the GStreamer application (see Section 5.1 for more details

on the application and the way its trace was obtained). Two executions of the demux

actor are highlighted in bold. As we can see, both executions are preempted with some

unrelated system activity (the second one is preempted more heavily).

As we have seen in Chapter 3, Dpos and Dneg datasets are obtained by splitting the trace

into subtraces (or, transactions) using the event corresponding to the most upstream

faulty dataflow actor. In theory, each actor of the application’s dataflow graph can

be scheduled with a different period. In practice, however, it is common for adjacent

actors to be scheduled with the same period. Therefore, if we try to model a real-world

execution trace of an embedded streaming application, each transaction in Dpos and

Dneg can be represented as the same sequence of tracepoints mixed with random events.

Our synthetic trace generation tool incorporates the knowledge on real-world execution

traces of embedded streaming applications described above. The tool allows to gener-

ate Dpos and Dneg datasets of various complexities by configuring the following set of

parameters:

• alphabetSize – the number of distinct events appearing in the trace;

• commonSequenceLength – the number of events in the sequence common to all the

transactions;

• numTransactionsDpos - the total number of transactions in the Dpos dataset;

• numTransactionsDneg - the total number of transactions in the Dneg dataset;

• noiseRate - a real number from the interval [0, 1] representing the probability that

a given event in the execution trace will be followed by some random noisy event;

• mcsLength - the length of the contrast sequence to be inserted into the Dpos dataset

and to be removed from the Dneg dataset.

Chapter 4. Mining Abnormal System Activity from Execution Traces 42

Timestamp;DebugCategory;DebugLevel;source_file;line;function

9468623319;LOG;qtdemux;qtdemux.c;3777;gst_qtdemux_combine_flows
9468633974;LOG;qtdemux;qtdemux.c;3807;gst_qtdemux_combine_flows
9468638945;DEBUG;GST_MEMORY;gstmemory.c;88;_gst_memory_free

9468645018;LOG;qtdemux;qtdemux.c;6233;qtdemux_parse_samples
9468651723;TRACE;GST_REFCOUNTING;gstobject.c;273;gst_object_unref

9468654964;DEBUG;qtdemux;qtdemux.c;6244;qtdemux_parse_samples
9468664013;LOG;qtdemux;qtdemux.c;6270;qtdemux_parse_samples
9468674850;LOG;qtdemux;qtdemux.c;6356;qtdemux_parse_samples
9468687881;DEBUG;qtdemux;qtdemux.c;6459;qtdemux_parse_samples
9468718535;LOG;qtdemux;qtdemux.c;4325;gst_qtdemux_loop
9468723949;LOG;GST_SCHEDULING;gstpad.c;3758;gst_pad_chain_data_unchecked

9468728766;LOG;qtdemux;qtdemux.c;3604;gst_qtdemux_prepare_current_sample
9468739686;LOG;qtdemux;qtdemux.c;6233;qtdemux_parse_samples
9468751020;LOG;qtdemux;qtdemux.c;6622;qtdemux_parse_samples
9468756514;DEBUG;basetransform;gstbasetransform.c;1563;default_prepare_output_buffer

9468762275;DEBUG;qtdemux;qtdemux.c;4214;gst_qtdemux_loop_state_movie
9468772093;LOG;qtdemux;qtdemux.c;4235;gst_qtdemux_loop_state_movie

9532237498;LOG;qtdemux;qtdemux.c;3777;gst_qtdemux_combine_flows
9532256379;LOG;adapter;gstadapter.c;341;gst_adapter_push

9532277147;LOG;qtdemux;qtdemux.c;3807;gst_qtdemux_combine_flows
9532294784;LOG;adapter;gstadapter.c;256;update_timestamps

9532316032;LOG;qtdemux;qtdemux.c;6233;qtdemux_parse_samples
9532339010;DEBUG;qtdemux;qtdemux.c;6244;qtdemux_parse_samples
9532344612;LOG;adapter;gstadapter.c;262;update_timestamps

9532353386;LOG;qtdemux;qtdemux.c;6270;qtdemux_parse_samples
9532387517;DEBUG;audiodecoder;gstaudiodecoder.c;1332;gst_audio_decoder_push_buffers

9532417173;LOG;qtdemux;qtdemux.c;6356;qtdemux_parse_samples
9532443726;DEBUG;audiodecoder;gstaudiodecoder.c;1349;gst_audio_decoder_push_buffers

9532460651;DEBUG;qtdemux;qtdemux.c;6459;qtdemux_parse_samples
9532473863;LOG;audiodecoder;gstaudiodecoder.c;1371;gst_audio_decoder_push_buffers

9532501299;LOG;adapter;gstadapter.c;835;gst_adapter_take_buffer

9532519113;TRACE;GST_REFCOUNTING;gstobject.c;273;gst_object_unref

9532543000;TRACE;GST_REFCOUNTING;gstobject.c;247;gst_object_ref

9532547375;LOG;adapter;gstadapter.c;850;gst_adapter_take_buffer

9532562718;LOG;qtdemux;qtdemux.c;4325;gst_qtdemux_loop
9532578395;TRACE;GST_REFCOUNTING;gstminiobject.c;360;gst_mini_object_ref

9532596995;LOG;qtdemux;qtdemux.c;3604;gst_qtdemux_prepare_current_sample
9532611281;LOG;adapter;gstadapter.c;561;gst_adapter_flush_unchecked

9532624635;LOG;qtdemux;qtdemux.c;6233;qtdemux_parse_samples
9532641737;LOG;adapter;gstadapter.c;581;gst_adapter_flush_unchecked

9532657344;LOG;qtdemux;qtdemux.c;6622;qtdemux_parse_samples
9532671155;TRACE;GST_REFCOUNTING;gstminiobject.c;440;gst_mini_object_unref

9532689358;DEBUG;qtdemux;qtdemux.c;4214;gst_qtdemux_loop_state_movie
9532703116;LOG;adapter;gstadapter.c;590;gst_adapter_flush_unchecked

9532719228;LOG;qtdemux;qtdemux.c;4235;gst_qtdemux_loop_state_movie

Figure 4.2: Two excerpts from an execution trace showing two executions of the
demux dataflow actor (corresponding events are in bold) preempted with unrelated

events (in normal font).

At first, the tool randomly generates a sequence containing commonSequenceLength

events represented as integers from the interval [1, alphabetSize]. This sequence is repli-

cated numTransactionsDpos and numTransactionsDneg times to create the basis of Dpos

Chapter 4. Mining Abnormal System Activity from Execution Traces 43

and Dneg transactional databases respectively. The tool then randomly generates a con-

trast sequence of length mcsLength and inserts this sequence into all the transactions

from the Dpos dataset. The position of insertion is chosen randomly, but remains the

same for all the transactions in Dpos. The noisy events are injected into Dpos and Dneg

datasets in the following way. The first event of a transaction is considered. A noisy

event is inserted after the first event with probability equal to noiseRate. The second

event of the transaction is then considered. It can be either the second event from the

original transaction, or the noisy event injected after the first event. Again, a noisy

event is injected after the second event with probability noiseRate, and so on. This way,

a given pair of adjacent events from the sequence shared by all the transactions can be

separated by S =
∑∞

i=1 noiseRate
i noisy events after this step. Observe that S is a sum

of an infinite geometric series where noiseRate < 0, thus, S = 1
1−noiseRate . The average

transaction length after injecting the noise is equal to commonSequenceLength × S, or

Average transaction length =
commonSequenceLength

1− noiseRate
. (4.1)

Finally, our synthetic trace generation tool removes the occurrences of the contrast

sequence from the transactions in the Dneg dataset. Figure 4.3 provides an example

of Dpos and Dneg datasets generated by the tool given the following parameters: al-

phabetSize=25, commonSequenceLength=20, numTransactions=4, noiseRate=0.3, mc-

sLength=3.

contrast sequence: 8 1 12
common sequence: 7 10 4 6 15 19 14 8 14 19 8 8 10 11 6 18 18 17 20 9

Dpos dataset:

transaction #1: 7 10 4 6 1 1 1 16 15 6 15 14 19 14 8 8 1 4 8 12 6 14 20 19 8 1 8 10 11 8
15 6 18 18 7 17 20 9

transaction #2: 7 10 4 6 15 4 1 19 14 11 9 8 3 6 8 1 19 13 16 12 16 14 20 6 19 5 8 8 7 10
11 11 10 6 18 14 11 6 18 17 13 20 9

transaction #3: 7 10 4 6 15 19 14 8 8 2 1 12 14 19 16 8 8 10 11 6 9 18 18 12 17 20 10 9
transaction #4: 7 10 12 4 6 15 19 14 8 8 8 20 17 1 17 9 11 1 19 10 12 12 14 7 1 19 3 8 8

10 17 4 20 11 6 8 18 18 17 20 9

Dneg dataset:

transaction #1: 7 13 10 4 6 15 19 14 14 8 14 11 19 18 1 20 20 8 1 6 15 3 4 8 10 11 20 6
18 6 18 17 19 20 8 5 9

transaction #2: 7 18 7 10 4 6 19 15 19 14 4 15 10 15 8 14 19 8 8 8 9 20 10 11 9 15 10 6
18 10 18 17 20 9

transaction #3: 7 10 4 6 11 15 19 19 14 8 9 14 14 19 8 11 8 10 11 6 12 18 18 8 9 13 18 7
17 18 20 5 2 11 13 9

transaction #4: 7 10 4 6 15 7 19 14 8 11 5 14 2 11 19 4 8 8 7 10 11 6 18 15 18 20 17 20 9

Figure 4.3: Example output of the trace generation tool

In the rest of this section, we consider three ways of mining minimal contrast sequences

from execution traces. The first two are able to return the complete set of MCS , either

Chapter 4. Mining Abnormal System Activity from Execution Traces 44

by mining the target patterns directly from the datasets, or extracting them from other

types of patterns. The third one allows to reduce the complexity of the task by mining an

incomplete set of minimal contrast sequences, by allowing the user to control either the

maximum number of events allowed to occur in the transactions between the elements

of a contrast sequence, or the maximum length of minimal contrast sequences.

4.2.1 Direct Mining of Minimal Contrast Sequences

A direct approach to mine the complete MCS set consists in considering all sequential

patterns from Dpos and Dneg datasets, verifying their supports separately in Dpos and

Dneg, and returning only such sequences s that supDpos(s) ≥ min sup and supDneg(s) ≤
max sup.

Unfortunately, this approach is not computationally feasible even for unrealistically small

execution traces. The problem comes, firstly, from the combinatorial number of can-

didate sequential patterns in a single transaction 2; and secondly, from the fact that

the main technique in pattern mining allowing to significantly prune the search space

of candidate patterns known as the Apriori principle [8] (see Definition 4.6) can not be

used in contrast pattern mining [27]. Moreover, techniques for efficient direct mining of

contrast itemsets can not be applied for mining contrast sequences [20]. Up until today,

there has not been proposed any algorithm for an efficient direct mining of contrast

sequential patterns (cf. contrast string mining from Section 4.2.3).

4.2.2 Indirect Mining of Minimal Contrast Sequences

By definition, the set of contrast sequences lies in the intersection of the sets of frequent

sequences in Dpos and infrequent sequences in Dneg (see Section 4.1). The set of minimal

contrast sequences is a proper subset of the set of contrast sequences (see Figure 4.4).

Therefore, the set of minimal contrast sequences can be mined in the following way:

1. Mine all frequent sequences in Dpos.

2. Filter out sequences frequent in Dneg in order to get the set of contrast sequences.

3. Extract minimal contrast sequences from the set of contrast sequences.

Frequent sequence mining is an active research area that has produced numerous algo-

rithms and approaches to efficiently navigate the search space of sequential patterns. As

can be seen from Figure 4.4, it is also possible, in theory, to extract the MCS set from

the set of infrequent in Dneg sequences. However, the task of mining infrequent sequen-

tial patterns has not been addressed in the literature due to potentially huge number of

sequences not present in a given transactional database. Therefore, in this section, we

2There are 2n subsequences in a sequence of length n

Chapter 4. Mining Abnormal System Activity from Execution Traces 45

focus on the extraction of minimal contrast sequences from the set of frequent sequential

patterns in Dpos.

frequent sequences
in Dpos

infrequent sequences
in Dneg

contrast
sequences

minimal contrast
sequences

Figure 4.4: A Venn diagram showing the relations between the sets of sequential
patterns.

Frequent sequence mining

Frequent sequential patterns proved to be extremely useful nuggets of information for

the analysis of various types of data: weblogs, biological sequences, purchase and sales

histories, network traffic, etc. Such patterns, due to their utility, have been studied ex-

tensively in the data mining community during the last two decades. Two main strategies

to mine frequent sequential patterns from a transactional database are presented below.

• Candidate generate-and-test approach (GSP [7] and SPADE [88] algorithms): gen-

erate candidate 3 sequential patterns of size l + 1 from the frequent sequential

patterns of size l and test their support to prune the infrequent ones.

• Pattern-growth approach (the PrefixSpan [63] algorithm): having a frequent se-

quential l-pattern s, all the frequent sequences having s as prefix (see Defini-

tion 4.7) are explored before the other frequent sequential l-patterns are consid-

ered.

Independently of the way the search space is explored, all sequential pattern mining

algorithms use the Apriori property in order to avoid generating a combinatorial number

of candidate patterns [35]:

Definition 4.6. Apriori property. Every nonempty subsequence of a frequent se-

quential pattern is a frequent sequential pattern.

This way, if a candidate pattern does not pass the frequency test, all of its supersequences

will likewise fail the frequency test and, thus, can be pruned from the search space.

3a candidate pattern is a pattern from the search space considered by the mining algorithm

Chapter 4. Mining Abnormal System Activity from Execution Traces 46

Example 4.3. Consider Dpos dataset from Figure 4.1. Let min sup = 2. 1-sequence

〈e〉 is infrequent in Dpos as supDpos(〈e〉) = 1. Therefore, none of its supersequences, e.g.

〈a, b, e〉 A 〈e〉 or 〈e, c〉 A 〈e〉 can be frequent in Dpos.

In practice, pattern-growth approach proved to be more space- and computationally

efficient than candidate generate-and-test one [63]. Therefore, in this thesis, we consider

the state-of-the-art pattern-growth algorithm called PrefixSpan [63] to mine the complete

set of frequent sequential patterns. We firstly introduce a set of definitions necessary to

understand the workings of the PrefixSpan algorithm.

Definition 4.7. Given a sequence s = 〈e1, e2, . . . , en〉, a sequence s′ = 〈e′1, e′2, . . . , e′m〉,
(m ≤ n) is called a prefix of s, denoted as s′ @p s , if e′i = ei for i ≤ m.

Definition 4.8. Given a sequence s and 1-sequence e1, e1 @ s, the subsequence from

the beginning of s to the first appearance of item e1 in s is called the first instance

of 1-sequence e1 in s. Recursively, we can define the first instance of a (i+ 1)-sequence

〈e1, e2, . . . , ei, ei+1〉 from the first instance of the i-sequence 〈e1, e2, . . . , ei〉 (where i ≥ 1)

as the subsequence from the beginning of s to the first appearance of item ei+1 which

also occurs after the first instance of the i-sequence 〈e1, e2, . . . , ei〉.

Note that the first instance of s′ in s is always a prefix of s.

Definition 4.9. Given sequence s = 〈e1, e2, . . . , en〉. Let p = 〈e1, e2, . . . , em〉 (m < n)

be a prefix of s: p @p s. Sequence q = 〈em+1, em+2, . . . , en〉 is called the suffix of s with

regard to prefix p, denoted as q @s s.

Definition 4.10. Let s be a sequential pattern in the transactional database DB . The

s-projected database, denoted DB |s, is a collection of suffixes of transactions in DB

with regard to the first instances of s.

Example 4.4. Consider Dpos dataset from Figure 4.1. 〈c,a,b,a,d〉 @p T2. The first

instance of 〈a,b〉 in T1 is 〈b,c,a,d,b〉. 〈e,b,d〉 @s T2. Finally, Dpos|〈a,b,d〉 = {〈b〉, 〈e,b,d〉}.

The problem of mining frequent sequential patterns can be decomposed into a set of

subproblems:

1. Let {s1, s2, . . . , sn} be the complete set of frequent 1-sequences in a transactional

database DB. The complete set of frequent sequences in DB can be divided into

n disjoint subsets. The ith subset (1 ≤ i ≤ n) is the set of frequent sequences with

prefix si.

2. Let α be a frequent l-sequence and {β1, β2, . . . , βm} be the set of all frequent

(l+1)-sequences with prefix α. The complete set of frequent sequences with prefix

α, except for α itself, can be divided into m disjoint subsets. The jth subset

(1 ≤ j ≤ m) is the set of frequent sequences with prefix βj .

Chapter 4. Mining Abnormal System Activity from Execution Traces 47

Based on this observation, PrefixSpan considers sequential pattern mining as a divide-

and-conquer problem (Algorithm 2). Given a frequent 1-sequence s1, the algorithm

proceeds to discover all the frequent sequences having s1 as a prefix. Once all such

frequent sequences are mined, the next frequent 1-sequence s2 is considered, and so

on. Similarly, upon generating a frequent l-sequence α, PrefixSpan continues to mine

all frequent sequences having α as prefix before considering other frequent l-sequences

sharing the same prefix of length (l − 1) with α.

Algorithm PrefixSpan(min sup,SDB)
input : min sup: minimum support threshold, SDB: transactional database.
output: The complete set of frequent sequential patterns
PrefixSpan(〈〉, SDB)

Subroutine PrefixSpan(α,S|α)
input : α: sequential pattern, S|α: the α-projected database.
B ← frequent w.r.t min sup length-1 sequences in S|α
foreach b ∈ B do

α′ ← append b after the last element of α
output α′

S|α′ ← projected database for α′

PrefixSpan(α′,S|α′)

end
Algorithm 2: PrefixSpan algorithm

Assume that there exists a lexicographical ordering ≤ among the items in the dictionary.

Conceptually, PrefixSpan algorithm considers the search space of sequential patterns as a

lexicographic tree which can be constructed in the following way. The root node of the

tree is labeled with ∅. Recursively, we can extend a node at level l in the tree (denoting

an l-sequence) by adding one item after its last element. This way, we get a child node

at the next level l + 1. The children of a node are generated and arranged according

to the chosen lexicographical ordering. PrefixSpan traverses the lexicographical tree

in a depth-first manner and prunes the entire subtrees rooted at infrequent sequential

patterns (cf. Apriori property from Definition 4.6), constructing this way a lexicographic

frequent sequence tree. Figure 4.5 shows a lexicographic frequent tree for the Dpos

dataset from Figure 4.1 given min sup = 2.

Once the complete set of frequent sequences in the Dpos transactional database is mined,

we need to filter out such sequences which are also frequent in the Dneg transactional

database, in order to obtain the set of contrast sequences. This can be done by taking

each sequence s, such that supDpos(s) ≥ min sup, and marking it as a contrast one

only if supDneg(s) ≤ min sup. In Figure 4.5, contrast sequences are circled. Notice

that all the descendants of a contrast sequence in the lexicographic sequence tree are

its supersequences, hence, are not minimal. It is possible to avoid generation of such

non-minimal contrast sequences if we enrich the PrefixSpan algorithm with the contrast

pruning 4.

4contrast pruning was firstly introduced by Ji et al. [41] and adopted in the ConSGapMiner algorithm
which we will present in Section 4.2.3

Chapter 4. Mining Abnormal System Activity from Execution Traces 48

∅

a

aa

aab aad

aadb

ab

aba

abab abad

abadb

abb abd

abdb

ad

adb

adbd

add

b

ba

bab

babd

bad

badb

badbd

badd

bb

bbd

bd

bdb

bdbd

bdd
c

ca

caa

caab caad

caadb

cab

caba

cabab cabad

cabadb

cabb cabd

cabdb

cad

cadb

cadbd

cadd

cb

cba

cbab cbad

cbabd

cbb cbd

cbdb

cd

cdb

cdbd

cdd

d

db

dbd

dd

Figure 4.5: A frequent sequence tree for the Dpos dataset from Figure 4.1 given
min sup = 2. Contrast sequences (with respect to the Dneg dataset) are circled.

Definition 4.11. Contrast pruning. For each sequence s = 〈a1, a2, . . . , an〉 such

that supDpos(s) ≥ min sup, verify its support in Dneg. If supDneg(s) ≤ min sup, then

output s as a contrast sequence, and stop growing it (i.e. prune all its descendants in

the lexicographic sequence tree).

This way, the whole subtrees rooted at contrast sequences are pruned reducing the

number of candidate sequences. Algorithm 3 shows how contrast pruning can be eas-

ily integrated into the PrefixSpan algorithm, making it essentially a contrast sequence

mining algorithm.

Algorithm ContrastPrefixSpan(min sup,max sup,Dpos,Dneg)
input : min sup: min support threshold for the Dpos dataset, // global constant

max sup: max support threshold for the Dneg dataset, // global constant
Dpos: database of anomalous subtraces,
Dneg: database of normal subtraces // global constant

output: The complete set of contrast sequential patterns
ContrastPrefixSpan(〈〉, Dpos)

Subroutine ContrastPrefixSpan(α,Dpos|α)
input : α: sequential pattern, Dpos|α: the α-projected Dpos database.
B ← frequent w.r.t min sup length-1 sequences in Dpos|α
foreach b ∈ B do

α′ ← append b after the last element of α
if α′ is infrequent w.r.t. max sup in Dneg then

output α′

return

end
else

Dpos|α′ ← projected Dpos database for α′

ContrastPrefixSpan(α′,Dpos|α′)

end

end
Algorithm 3: ContrastPrefixSpan algorithm

Chapter 4. Mining Abnormal System Activity from Execution Traces 49

The set of contrast sequences returned by the ContrastPrefixSpan algorithm, however, is

still not minimal. Consider Figure 4.5. Due to the depth-first tree traversal, there is no

way to know that, for example, 〈a,b,a,d〉 will be a supersequence of a contrast sequence

〈a,b,d〉, as 〈a,b,a〉-rooted subtree is traversed before the 〈a,b,d〉-rooted one due to the

chosen lexicographic order of items. Extraction of minimal contrast sequences from the

non-minimal ones can be done by sorting all contrast sequences by length and checking

if each of them contains any contrast sequences of smaller size.

We next show the experimental results of running the PrefixSpan algorithm on synthetic

trace data (see Figure 4.6). We test both the original version of PrefixSpan as well as the

one enriched with contrast pruning, which we refer to as ContrastPrefixSpan. In the first

case, the reported computational complexity applies to the mining of all frequent sequen-

tial patterns in the Dpos dataset. In the second case, it applies to the mining of the set

of (non-minimal) contrast sequences between Dpos and Dneg datasets. The experiments

were conducted in the following way. We fixed the values of all the parameters of the

synthetic trace generator except commonSequenceLength parameter, whose values are

shown on the bottom X-axis (the upper X-axis shows the corresponding average transac-

tion lengths computed using Equation 4.1). For each value of commonSequenceLength,

we generated 9 traces with our synthetic trace generation tool, ran PrefixSpan and Con-

trastPrefixSpan on them, and reported the number of candidate sequential patterns as

well as the running time with box-and-whisker plots where the ends of the whiskers show

minimum and maximal values among 9 traces, boxes represent the interquartile range

and the lines connect median values. This approach of generating 9 synthetic traces

for a given set of parameters’ values and reporting the results with a box-and-whisker

plot was applied to all the experiments presented further in this chapter. Moreover,

all the algorithms tested in this chapter were run with min sup = 100% for the Dpos

dataset and max sup = 0% for the Dneg dataset. Notice that such combination of values

represents the most restrictive case of sequential pattern mining among all other pairs

of values assigned to min sup and max sup and, hence, result in the fewest number of

candidate patterns.

Analyzing the results presented in Figure 4.6, the first observation we can make is that

the running time of PrefixSpan is well correlated to the number of candidate patterns

tested by the algorithm. Indeed, the running time of the algorithms that mine sequen-

tial patterns from a lexicographic tree grows proportionally to the number of candidate

patterns. The second observation is that the PrefixSpan algorithm fails to efficiently

mine the complete MCS set even from small trace datasets. Even though contrast prun-

ing allows to eliminate a significant number of candidate patterns, the computational

complexity grows exponentially with the average transaction length. This implies that

the total size of search space needed to be explored by the algorithm is still too large to

allow an efficient mining of contrast sequences from industrial trace data.

Closed frequent sequence mining

Mining and analysis of the complete set of frequent patterns are both daunting tasks.

There are two aspects to this problem: a big number of mined frequent patterns makes

Chapter 4. Mining Abnormal System Activity from Execution Traces 50

 10000

 100000

 1×10
6

 1×10
7

 1×10
8

 1×10
9

 1×10
10

 14 16 18 20 22 24 26 28 30

 20 25 30 35
#

 C
a

n
d

id
a

te
 p

a
tt
e

rn
s

Common Sequence Length

Average transaction length

PrefixSpan
ContrastPrefixSpan

 100

 1000

 10000

 100000

 1×10
6

 1×10
7

 1×10
8

 14 16 18 20 22 24 26 28 30

 20 25 30 35

R
u

n
n
in

g
 t

im
e
,

m
s

Common Sequence Length

Average transaction length

PrefixSpan
ContrastPrefixSpan

Figure 4.6: Computational complexity of the PrefixSpan algorithm on synthetic trace
data generated with the following parameters: alphabetSize = 20, numTransactionsDpos

= 10, numTransactionsDneg = 30, noiseRate = 0.2, mcsLength = 3.

their analysis hard, while a high time complexity of the mining task does not allow to

discover frequent patterns from big datasets. Both these aspects are addressed by a

class of algorithms which reduce the complexity of frequent pattern mining by discov-

ering a condensed and lossless representation of frequent patterns called closed frequent

patterns [62].

Definition 4.12. Given a transactional database DB , a sequence s is closed if there

exists no supersequence s′ (i.e. s @ s′) having the same support in DB (i.e. supDB (s) =

supDB (s′)).

Example 4.5. Consider the Dpos dataset from Figure 4.1. 〈b,a,b〉 is not a closed

sequence, as 〈b,a,d,b,d〉 A 〈b,a,b〉 and supDpos(〈b,a,d,b,d〉) = supDpos(〈b,a,b〉) = 2. At

the same time, 〈b,a,d,b,d〉 is a closed sequence, because 6 ∃s A 〈b,a,d,b,d〉, such that

supDpos(s) = supDpos(〈b,a,d,b,d〉) = 2.

There exist two state-of-the-art closed frequent sequence mining algorithms: CloSpan

proposed by Yan et al. [85] and BIDE proposed by Wang et al. [80]. We chose the BIDE

algorithm for the task of mining closed frequent sequences from the Dpos dataset, as it

has smaller space and runtime complexity than the CloSpan algorithm [80].

Chapter 4. Mining Abnormal System Activity from Execution Traces 51

The BIDE algorithm can be viewed as an extension of the PrefixSpan algorithm pre-

sented earlier in this chapter. It uses the same depth-first traversal of the lexicographical

tree in order to navigate the search space of sequential patterns. The name of the algo-

rithm is derived from the adopted BI-DirEctional closure checking scheme which allows

to determine if a candidate sequential pattern is closed without consulting the set of

already mined closed sequential patterns. This allows to reduce the space complexity

of the frequent sequence mining task, as the algorithm does not require to keep the al-

ready mined closed sequences in main memory. At the same time, the BackScan pruning

scheme adopted in the BIDE algorithm complements the Apriori-based pruning of the

search space and permits to further reduce the number of candidate patterns, therefore,

to decrease the computational complexity of the mining task. We next introduce the

BackScan pruning method, as knowing its operation is necessary to understand the per-

formance results of running BIDE on execution trace data discussed in Section 4.3 5.

BackScan is based on the concepts of the first instance of a sequence with respect to its

supersequence (see Definition 4.8), i-th last-in-first appearance of an element in a given

sequence, and i-th semi-maximum period of a sequence s with respect to its superse-

quence.

Definition 4.13. For a sequence t containing an n-sequence s = 〈e1, e2, . . . , en〉, the

i-th last-in-first appearance with respect to s in t is denoted as LFi and defined

recursively as:

1. if i = n, it is the last appearance of ei in the first instance of s in t;

2. if 1 ≤ i < n, it is the last appearance of ei in the first instance of s in t while LFi
must appear before LFi+1.

Definition 4.14. For a sequence t containing an n-sequence s = 〈e1, e2, . . . , en〉, the

i-th semi-maximum period of s in t is defined as:

1. if 1 < i ≤ n, it is the piece of t between the end of the first instance of 〈e1, e2, . . . , ei−1〉
in t and the LFi of s in t.

2. if i = 1, it is the piece of t locating before the 1st last-in-first appearance with

respect to s in t.

Example 4.6. Consider transaction T1 in the Dpos dataset from Figure 4.1. T1’s first

element e1 = b, second element e2 = c, etc. Given s = 〈a,b,d〉, s @ T1, LF3 with respect

to s in T1 is e7, LF2 is e5, LF1 is e3 (and not e6). 1st semi-maximum period of s in

T1 is 〈b,c〉, 2nd is 〈d〉, and 3rd is 〈a〉. If we consider transaction T2, s @ T2, then 1st

semi-maximum period of s in T2 is 〈c〉, 2nd is 〈〉, and 3rd is 〈a〉.

The BackScan pruning method can be informally described as follows. Given a sequence

s = 〈e1, e2, . . . , en〉, we firstly identify all the first instances of s in the transactions t

5The interested reader can consult the original work by Wang et al [80] to get a detailed explanation
of the bi-directional closure scheme which we will not present in this thesis.

Chapter 4. Mining Abnormal System Activity from Execution Traces 52

which contain s. Then, within each first instance of s, all n semi-maximum periods are

computed. We check if there exist an integer i (1 ≤ i ≤ n) and an item e′ which appears

in each of the i-th semi-maximum periods of s in transactions from DB . If such an item

exists, then s along with all its supersequences q having s as prefix (s @p q) can be safely

pruned. This idea stems from the fact that all such q along with s can not be closed, as

for s′ = 〈e1, e2, . . . , ei−1, e
′, ei, . . . en〉, the following is true: supDB (s′) = supDB (s) and

s @ s′.

Example 4.7. Consider the Dpos dataset from Figure 4.1 and its frequent sequence tree

from Figure 4.5. 1st semi-maximum period of 1-sequence 〈a〉 is 〈b,c〉 in T1 and 〈c〉 in

T2. Therefore, the whole subtree rooted in 〈a〉 is pruned with BackScan, as any frequent

sequence with prefix 〈a〉 will be discovered from the node 〈c,a〉 in the frequent sequence

tree. Indeed, as can be seen in Figure 4.5, 〈a〉’s subtree is embedded as a child of 〈c〉’s
subtree rooted in 〈c,a〉.

To sum up, BIDE explores the lexicographic tree of sequential patterns in the depth-

first manner and performs both the bi-directional closure check as well as the BackScan

pruning check on each candidate sequential pattern in order to determine if the candidate

pattern is closed, and in case it is not – if its whole subtree can be pruned.

Extraction of minimal contrast sequences from the set of closed frequent in Dpos se-

quences (CFSDpos) is less intuitive than from the set of all frequent sequences pre-

sented in the previous section. We analyzed BackScan and contrast prunings and came

to the conclusion that a closed contrast sequence cannot be pruned on the premise

that all its descendants in the lexicographic sequence tree are non-minimal contrast

sequences. In order to see why contrast pruning cannot be applied if closed sequen-

tial patterns are mined, consider the following example. Dpos = {〈d,a,b,c〉, 〈a,b,c,d〉},
Dneg = {〈b,a,d,c〉, 〈d,c,b,a〉}, and min sup = 1, max sup = 0. The set of MCS contains

two sequences 〈a,b〉 and 〈c,d〉. The set of CFSDpos is {〈a,b,c〉, 〈d〉, 〈a,b,c,d〉, 〈d,a,b,c〉}.
Upon generating the candidate sequence 〈a,b,c〉, BIDE will detect that it is closed with

supDpos(〈a,b,c〉)= 2 and will grow it further to find that 〈a,b,c,d〉 is also closed but with

supDpos(〈a,b,c,d〉)= 1. If we add the contrast pruning, then 〈a,b,c〉’s subtree will be

pruned as 〈a,b,c〉 is contrasting and, hence, all supersequences of it will not be minimal

contrast sequences. Therefore, 〈a,b,c,d〉 will not be generated, and 〈c,d〉 ∈ MCS is not

contained in any output sequence, hence, is lost. Therefore, the MCS set has to be

extracted from the CFSDpos set as a post-processing step. It is a non-trivial task, as one

needs to test subsequences of each closed frequent sequence. In case CFSDpos contains

a significant number of sequences, this task is very computationally costly because of

the combinatorial number of subsequences in a single sequence. Another option would

be to output the set of closed contrast sequences instead of the set of minimal contrast

sequences. This will require simply checking the support of every s ∈ CFSDpos to keep

only the contrast ones. The downside of this option is, of course, the increased amount

of manual analysis required from the developers to perform on each output sequence.

Chapter 4. Mining Abnormal System Activity from Execution Traces 53

 100
 1000

 10000
 100000

 1×10
6

 1×10
7

 1×10
8

 1×10
9

 1×10
10

 1×10
11

 10 20 30 40 50 60 70

 20 30 40 50 60 70 80

#
 C

a
n
d

id
a

te
 p

a
tt
e

rn
s

Common Sequence Length

Average transaction length

Bide
ContrastPrefixSpan

 10

 100

 1000

 10000

 100000

 1×10
6

 1×10
7

 10 20 30 40 50 60 70

 20 30 40 50 60 70 80

R
u

n
n
in

g
 t

im
e
,

m
s

Common Sequence Length

Average transaction length

Bide
ContrastPrefixSpan

Figure 4.7: Comparison of the computational complexities of the Bide algorithm and
of the ContrastPrefixSpan algorithm run on the same synthetic traces described in

Figure 4.6

Figure 4.7 shows computational complexity of running the Bide algorithm on Dpos

datasets which we used for the experiments on the PrefixSpan algorithm (see Fig-

ure 4.6). We also plotted the performance results for the ContrastPrefixSpan algo-

rithm in order to facilitate the comparison of Bide’s and PrefixSpan’s performances

on synthetic trace data. As we can see, Bide prunes much more candidate patterns

than ContrastPrefixSpan, and is able to mine traces twice as big as those mined by

ContrastPrefixSpan in less time. Nevertheless, it is important to note that patterns

mined by the Bide algorithm are closed frequent sequences in the Dpos dataset, hence,

minimal contrast sequences must be extracted from them in a post-processing step,

which can be quite computationally expensive. The main conclusion we can make from

Figure 4.7, however, is that even with an aggressive pruning performed by the BackScan

technique, Bide will not be able to efficiently mine the full set of closed frequent se-

quential patterns from industrial trace data even with min sup = 100%. Therefore, the

investment one puts into developing an efficient approach to extract the set of MCS

from closed frequent sequences will not be justified for the final goal of an efficient MCS

set mining from trace data.

Chapter 4. Mining Abnormal System Activity from Execution Traces 54

In addition to closed frequent patterns, there exists another condensed representation of

frequent patterns called maximal frequent patterns. A pattern p is maximal, if there

does not exist any frequent pattern q, such that q contains p. Despite the existence of

efficient algorithms to mine the set of maximal frequent itemsets (e.g. state-of-the-art

MaxMiner algorithm [16]), the problem of mining maximal frequent sequences received

very little attention in the literature due to its high complexity. Luo and Chung [52]

proposed to mine maximal sequences by sampling, therefore, making the output set

incomplete. Fournier-Viger et al. [31] proposed to use a slightly changed BackScan

pruning from the BIDE algorithm in order to mine maximal frequent sequences. The

change consists in pruning a candidate sequence s if there exists an item that appears in

at least min sup number of i-th semi-maximum periods of s rather than in all i-th semi-

maximum periods. Notice that when min sup = |Dpos|, as used in the experiments

above, the set of maximal frequent sequences is equal to the set of closed frequent

sequences, hence, such change in the BackScan pruning technique does not result in any

performance improvement compared to the BIDE algorithm.

Finally, sequential generator patterns (or, sequence generators) can be considered as

“reverse”-closed sequences. A sequence s is a generator if there does not exist any sub-

sequence of s that has the same support as s [32] [86]. Minimal contrast sequences, thus,

can be directly identified during sequence generators mining without a post-processing

stage. Unfortunately, the pruning technique adopted in sequential generator pattern

mining is too restrictive for efficient mining of such patterns, as it allows to prune a

candidate sequence only if there exists a subsequence with exactly the same projected

database.

4.2.3 Mining Minimal Contrast Sequences with Constraints

As we have seen in Section 4.2.2, the state-of-the-art sequence mining algorithms do not

succeed in tackling the complexity of mining minimal contrast sequences from execution

trace data. In this section, we consider adding constraints to the final MCS set in order

to reduce the complexity of the task.

Firstly, we use the maximum gap constraint which defines the maximal number of items

that may appear between the elements of a sequential pattern in a transaction (see

Definition 4.15). We start with the most restrictive situation when the maximum gap

is equal to 0, i.e. when the elements of a sequential pattern must appear contiguously

within the transactions. In such case, sequential patterns are called strings, and we

find out how contrast strings can be mined. Then, we leave the choice of the maximum

gap constraint to the user. Secondly, we use the maximum length constraint, which

determines the upper limit on the number of elements in a sequential pattern, and

discover the influence of this constraint on the complexity of mining minimal contrast

sequences from execution traces.

Definition 4.15. The maximum gap constraint is specified by a positive integer

max gap. Given two sequences s′ = 〈a1, a2, . . . , an〉 and s = 〈b1, b2, . . . , bm〉, n < m, if

Chapter 4. Mining Abnormal System Activity from Execution Traces 55

there exist integers 1 ≤ i1 < i2 < . . . in ≤ m, such that a1 = bi1 , a2 = bi2 , . . . , an = bin
and ik+1 − ik ≤ max gap, ∀k ∈ [1, n − 1], then s′ is a subsequence of s with respect to

the maximum gap constraint max gap.

Example 4.8. Consider the transaction T1 = 〈b,c,a,d,b,a,d,b〉 from the Dpos dataset in

Figure 4.1. Having max gap = 2, 〈c,b,a〉 @ T1 and 〈b,b,a〉 6@ T1 with respect to the gap

constraint.

Mining minimal contrast strings

The problem of mining contrast strings from a set of sequential databases was introduced

by Chan et al. [20]. Their approach is similar to the indirect mining of minimal contrast

sequences introduced in Section 4.2.2, but uses a suffix tree instead of the prefix tree to

navigate the search space. The suffix tree structure is known to allow fast extraction

of strings from sequential databases at the cost of the large amount of space required

to store it. Indeed, the algorithm proposed by Chan et al. needs to construct a suffix

tree which represents all the existing strings in the Dpos sequential database. The

frequent strings are then discovered from the constructed tree, and only the contrast

ones from Dneg are kept in the final extraction step. Later, [29] and [81] improved both

computational and space complexity of Chan et al’s algorithm.

In order to evaluate the computational complexity of minimal contrast string mining on

synthetic trace data we decided not to implement the algorithms cited in the previous

paragraph, but rather use the ConSGapMiner algorithm which allows to mine minimal

contrast sequences with user-defined maximum gap constraint and which we present

later in this section. By making maximum gap constraint equal to 0, ConSGapMiner

algorithm can be applied to mine minimal contrast strings.

Figure 4.8 shows that mining minimal contrast strings has linear computational com-

plexity with respect to the size of transactions, hence, is significantly faster than mining

the complete set of contrast sequences. However, it is important to remember that

the set of returned patterns consists of strings, i.e. sequences whose elements appear

contiguously in the dataset. Consider the example trace dataset from Figure 4.3. Re-

gardless of the chosen values for min sup and max sup thresholds, minimal contrast

string algorithm will never return the injected contrast sequence. Therefore, despite its

appealing computational complexity, minimal contrast string mining cannot be applied

to detect anomalous system activity from execution traces.

Mining minimal contrast sequences with user-defined maximum gap
constraint

The notion of minimal contrast sequences was introduced by Ji et al. in [41] 6. The

authors proposed an algorithm called ConSGapMiner that allows to mine minimal con-

trast sequences with respect to the maximum gap constraint, which we will refer to as

gap-constrained sequences, or simply sequences, if the gap constraint is implied from

the context.
6the authors used the term distinguishing instead of contrasting

Chapter 4. Mining Abnormal System Activity from Execution Traces 56

 10
 100

 1000
 10000

 100000
 1×10

6 1×10
7 1×10
8 1×10
9 1×10

10 1×10
11

 10 20 30 40 50 60 70

 20 30 40 50 60 70 80
#

 C
a

n
d

id
a

te
 p

a
tt
e

rn
s

Common Sequence Length

Average transaction length

ConSGapMiner
with max_gap=0

Bide

 10

 100

 1000

 10000

 100000

 1×10
6

 1×10
7

 10 20 30 40 50 60 70

 20 30 40 50 60 70 80

R
u

n
n
in

g
 t

im
e
,

m
s

Common Sequence Length

Average transaction length

ConSGapMiner
with max_gap=0

Bide

Figure 4.8: Comparison of the computational complexities of the Bide algorithm and
of the ConSGapMiner algorithm with max gap fixed at 0 run on the same synthetic

traces described in Figure 4.6

Conceptually, ConSGapMiner adopts the same technique of indirect mining of minimal

contrast sequences that we presented in Section 4.2.2, exploring the space of frequent in

Dpos sequences via depth-first traversal of the lexicographic sequence tree, and keeping

in memory only those sequences which are infrequent in Dneg. ConSGapMiner uses

both the Apriori pruning and the contrast pruning introduced in Section 4.2.2 (see

Definition 3) to avoid growing the patterns that will not be prefixes of any s ∈ MCS . The

authors pay special attention to the problem of support calculation of gap-constrained

sequences using bitset and boolean operations. We omit the details of these operations

as they do not aim at pruning the search space, hence, reducing the number of candidate

sequences. Finally, due to the depth-first tree traversal of the lexicographic sequence

tree, the post-processing step is used to extract minimal contrast sequences from the set

of mined contrast sequences. Note that with max gap = ∞, ConSGapMiner performs

exactly the same search space prunings as ContrastPrefixSpan (see Algorithm 3).

Figure 4.9 shows that the ConSGapMiner algorithm outperforms or matches the com-

putational complexity of the BIDE algorithm on synthetic execution traces only for

the smallest values of max gap parameter. Given such poor performance results, the

Chapter 4. Mining Abnormal System Activity from Execution Traces 57

ConSGapMiner algorithm can be applied to mine minimal contrast sequences from ex-

ecution traces only with very small values of max gap parameter. In this case, we run

into the same problem as with minimal contrast string mining: the target contrast se-

quence has a high chance of not being returned in the result set. Indeed, considering the

example trace dataset from Figure 4.3, the value of max gap must be set to at least 6

in order for the algorithm to mine the target contrast sequence with min sup of 100%.

 100
 1000

 10000
 100000

 1×10
6 1×10
7 1×10
8 1×10
9 1×10

10 1×10
11 1×10
12

 10 20 30 40 50 60 70

 20 30 40 50 60 70 80

#
 C

a
n

d
id

a
te

 p
a
tt

e
rn

s

Common Sequence Length

Average transaction length

Bide
max_gap=2
max_gap=3
max_gap=4

 10

 100

 1000

 10000

 100000
 1×10

6
 1×10

7
 1×10

8

 10 20 30 40 50 60 70

 20 30 40 50 60 70 80

R
u

n
n

in
g
 t
im

e
,
m

s

Common Sequence Length

Average transaction length

Bide
max_gap=2
max_gap=3
max_gap=4

Figure 4.9: Comparison of the computational complexities of the Bide algorithm and
of the ConSGapMiner algorithm (tested with various max gap values) run on the same

synthetic traces described in Figure 4.67.

In order to improve the performance of mining gap-constrained contrast sequences, an

interesting possibility would be to mine gap-constrained closed contrast sequences. Un-

fortunately, as we found out, the BackScan pruning is not compatible with the max-

imum gap constraint. In order to understand why, consider the following example.

Dpos = {〈a,d,b,c〉, 〈a,d,b,c〉}, Dneg = {〈a,e,d,b,c〉, 〈a,d,b〉}, min sup = 2, max sup = 0,

and max gap = 1. The gap-constrained MCS set contains a single sequence 〈a,b,c〉.
If we use BackScan pruning while exploring the lexicographic tree of frequent in Dpos

sequences, 〈a,b,c〉 will never be output. Observe, that upon generating the candidate

sequence 〈a,b〉, BackScan check will detect that item d always appears in 〈a,b〉’s 2nd

7we show only the minimum number of candidate patterns and running time for max gap = 3 on
the traces with commonSequenceLength = 65, as the running time on the other 8 synthetic traces was
prohibitively large (more than 24 hours).

Chapter 4. Mining Abnormal System Activity from Execution Traces 58

semi-maximum period. Therefore, 〈a,b〉 with its subtree will be pruned, as all the fre-

quent sequences having 〈a,b〉 as prefix will be contained in the frequent sequences having

〈a,d,b〉 as prefix. At the same time, sequence 〈a,d,b,c〉 is not contrasting. Therefore, if

BackScan pruning is used, the output set of contrast sequences is empty. At the same

time, Li and Wang [47] reported to mine closed frequent sequences with maximum gap

constraint. However, their definition of closeness is different from the state-of-the-art

one (see Definition 4.12). In fact, the authors consider a sequence as a closed one only

if it is not a contiguous subsequence of a sequence that has the same support. There-

fore, their version of BackSpace pruning strategy allows to prune a candidate sequence

only if there exists an item constantly appearing before its first element (i.e. in the 1st

semi-maximum period), and not between a given pair of consecutive elements (i.e. i-th

semi-maximum period, see Definition 4.14). Such pruning is obviously too restrictive,

and does not allow to substantially reduce the number of candidate sequences.

Mining minimal contrast sequences with maximum length constraint

Candidate sequence pruning based on maximum length constraint can be integrated to

the already familiar depth-first exploration of the frequent sequence tree. Such pruning

basically allows to cut the frequent sequence tree at max length level by pruning all

candidate sequences once the number of their elements exceeds max length. In practice,

we enriched the ContrastPrefixSpan algorithm with the max length pruning, and once

the algorithm returned the set of contrast sequences, we applied the post-processing step

described in Section 4.2.2 to filter out all non-minimal contrast sequences. We refer to

this mining algorithm as SATM in the rest of this chapter. The performance results of

mining the max length-constrained MCS set with SATM are presented in Figure 4.10.

Note that SATM runs slower than Bide for the same number of candidate patterns (e.g.

see the results for a trace with the common sequence length set to 35 in Figure 4.10).

This observation can be explained by the database projection technique used in both

PrefixSpan and Bide algorithms. This technique allows to speed-up the discovery of

locally frequent items used to extend a particular candidate pattern as the candidate

patterns grow in length. Therefore, having the same number of candidate patterns, Bide

needs to scan a smaller part of the dataset than SATM, as Bide’s candidate patterns

will have bigger length (no max length pruning in Bide).

Experimental results show that by introducing the max length constraint, we make the

process of mining the constrained MCS set from execution traces have linear computa-

tional complexity, i.e. the mining algorithm’s running time is expected to have a linear

growth with the increasing average transaction length in execution trace data. At the

same time, none of the contrast sequences having max length or less elements is lost.

Given the fact that we are interested only in minimal contrast sequences, we can expect

that the anomalous system activity is represented in the execution trace by less than N

events, where N is a value of max length allowing the mining algorithm to terminate in

a reasonable time. Therefore, we adopt the max length-constrained minimal contrast

sequence mining algorithm SATM as the last step of our temporal debugging approach.

Chapter 4. Mining Abnormal System Activity from Execution Traces 59

 10
 100

 1000
 10000

 100000
 1×10

6 1×10
7 1×10
8 1×10
9 1×10

10 1×10
11

 10 20 30 40 50 60 70

 20 30 40 50 60 70 80
#

 C
a

n
d

id
a

te
 p

a
tt
e

rn
s

Common Sequence Length

Average transaction length

Bide
max_length=2
max_length=5

 10

 100

 1000

 10000

 100000

 1×10
6

 1×10
7

 10 20 30 40 50 60 70

 20 30 40 50 60 70 80

R
u

n
n
in

g
 t

im
e
,

m
s

Common Sequence Length

Average transaction length

Bide
max_length=2
max_length=5

Figure 4.10: Comparison of the computational complexity of the Bide algorithm
and of the SATM algorithm (tested with various max length values) run on the same

synthetic traces described in Figure 4.6

4.3 Considerations on Contrast Pattern Mining from

Execution Traces

State-of-the-art sequential pattern mining algorithms fail at the task of an efficient

discovery of the complete set of minimal contrast sequences from execution traces of

multimedia embedded systems. Of course, implementing distributed versions of these

algorithms and running them on a computer cluster would increase their performance.

Before doing this, however, it is a wise solution to firstly verify the maximal size of

execution trace data that is mineable by parallelized versions of the algorithms on a

server machine. Such step would allow to assess the complexity of the task and decide

if a distributed version would be able to handle real data. This was our motivation to

implement the parallel versions of the state-of-the-art sequential pattern mining algo-

rithms and use a synthetic trace generator to test their performance. As we showed

in Section 4.2, the obtained results were disappointing. Indeed, as Figure 4.7 shows,

the Bide algorithm run with min sup = 100% required more than an hour to mine all

closed frequent sequences from a trace with the average transaction length of 80 events.

Moreover, the algorithm’s running time grew exponentially with respect to the average

Chapter 4. Mining Abnormal System Activity from Execution Traces 60

transaction length. The ConSGapMiner algorithm, in its turn, needed too much time to

mine a constrained MCS set even with small max gap values, as shown in Figure 4.9.

These results were very surprising to us, as sequential pattern mining algorithms are

known to be successfully applied in various research and industrial fields in order to

discover valuable patterns from real data of much bigger size than synthetic traces used

in Section 4.2. In this section, therefore, we aim at understanding what precisely makes

it so hard to mine minimal contrast sequences from trace data.

We firstly take a closer look at the data used in the literature to evaluate sequential pat-

tern mining algorithms. For historic reasons, sequential pattern mining algorithms were

tested on market basket-like datasets. Such datasets are characterized by a big number

of short, sparse transactions. Moreover, the goal of such evaluations is to show to which

extent a particular algorithm allows to decrease min sup threshold while still allowing

to efficiently mine the set of frequent sequential patterns. Trace datasets obtained by the

method described in Chapter 3, however, are conceptually different from market basket-

like datasets. Indeed, Dpos and Dneg trace datasets are characterized by very long, dense

transactions, while the total number of transactions in both datasets is relatively small.

Moreover, with trace data, we are interested only in frequent patterns from the Dpos

dataset mined with big values of min sup, because anomalous behavior is supposed to

characterize the majority of the faulty parts of an execution trace. Fortunately, state-

of-the art sequential mining algorithms are also often evaluated on biological sequential

databases having long and dense transactions, just like our trace data. However, the

reported performances on biological sequence data looked drastically different from the

ones we get with synthetic trace data. We, therefore, proceeded to compare the perfor-

mances of sequential pattern mining algorithms on biological sequences and synthetic

traces sharing the same parameters.

For the experiments, we took the first protein family pair, namely DUF1694 and

DUF1695 8, used to evaluate ConSGapMiner algorithm [41]. Table 4.1 shows the char-

acteristics of these protein families. We then generated nine sets of synthetic Dpos and

Dneg datasets having the same characteristics. We then ran both Bide and ConSGap-

Miner algorithms on protein data as well as on synthetic trace data and compared the

results 9. The Bide algorithm was run with min sup = 100% to mine all frequent closed

sequences from Dpos datasets. Likewise, the ConSGapMiner algorithm was run with

min sup = 100% and max sup = 0% in order to mine contrast sequences between Dpos

and Dneg datasets for various values of max gap. Table 4.2 and Figure 4.11 show the

performance results of Bide and ConSGapMiner algorithms correspondingly.

Protein family name alphabet size # transactions av. transaction length

DUF1694(Dpos) 20 16 123

DUF1695(Dneg) 20 5 186

Table 4.1: Characteristics of protein datasets

8available at http://pfam.xfam.org/
9for synthetic trace data, we picked the median values of the number of generated candidate patterns

and the running time among 9 generated pairs of Dpos and Dneg datasets.

http://pfam.xfam.org/

Chapter 4. Mining Abnormal System Activity from Execution Traces 61

As can be observed in Table 4.2, the difference in computational complexity of the Bide

algorithm run on biological sequence data and trace data is flagrant. The same can be

said about the ConSGapMiner algorithm (see Figure 4.11). It is, therefore, not only the

size but some structural peculiarity of trace data that makes it hard to be mined with

state-of-the-art sequential pattern mining algorithms. In the rest of this section, we take

a closer look at trace data and analyze the reasons why Apriori, BackScan, and contrast

prunings are not effective enough to allow mining the complete set of minimal contrast

sequences from industrial trace data.

Origin of the Dpos dataset # candidate patterns (×106) Running time (s)

Protein 5.3 4.3

Trace 28,887.3 12,414.8

Table 4.2: Performance results of the Bide algorithm on protein and trace datasets

 100

 1000

 10000

 100000

 1×10
6

 1×10
7

 1×10
8

 1×10
9

 0 10 20 30 40 50

#
 C

a
n
d
id

a
te

 p
a

tt
e

rn
s

max_gap

Trace data
Protein data

 10

 100

 1000

 10000

 100000

 1×10
6

 0 10 20 30 40 50

R
u

n
n
in

g
 t

im
e
,

m
s

max_gap

Trace data
Protein data

Figure 4.11: Performance results for the ConSGapMiner algorithm run on protein
and trace datasets

4.3.1 Apriori Pruning on Trace Datasets

Recall that transactions obtained with splitting the original execution trace by the target

actor’s invocations share a sequence of events representing the executions of actors having

the same period as the target actor. Assume that every transaction in the Dpos dataset

consists only of this common sequence, without any noisy events between its elements.

If the common sequence has N elements, then the sequential pattern search space will

Chapter 4. Mining Abnormal System Activity from Execution Traces 62

contain 2N frequent sequences, even with min sup equal to 100%. Therefore, the Apriori

pruning will not prevent sequential pattern mining algorithms to eliminate any of those

2N candidates which is obviously too big of a number even for relatively small values of

N . Moreover, adding “noisy” events to transactions will make the number of candidate

patterns to grow even further. To provide an idea of how costly is generation of 2N

patterns, Figure 4.12 shows the running time of PrefixSpan algorithm which, as explained

in Section 4.2.2, relies only on the Apriori pruning and, hence, needs to explore all 2N

candidate patterns.

 100

 1000

 10000

 100000

 1×10
6

 14 16 18 20 22 24 26 28 30

R
u

n
n

in
g

 t
im

e
,
m

s

Common sequence length

PrefixSpan

Figure 4.12: Performance results for PrefixSpan run on a the Dpos dataset containing
identical transactions of various lengths; alphabetSize=20, numTransactionsDpos=10,

noiseRate = 0.0

4.3.2 BackScan Pruning on Trace Datasets

It is easy to understand why Apriori pruning does not allow to improve computational

complexity of mining frequent sequential patterns from the datasets having long and

dense transactions. However, if the Apriori pruning is coupled with the BackScan prun-

ing, as done in the Bide algorithm, then the set of frequent closed sequential patterns

can be efficiently mined from such datasets, as reported in [80]. In an idealistic (and,

unfortunately for embedded software programmers, unrealistic) case when every single

instruction is executed on an MPSoC platform with the same period, all the transactions

will be represented as the same sequence of events of length N . In this case, Bide will

test only N candidate sequences, as all the 1-patterns, except the one appearing first

in the transactions, will be pruned with BackScan. In reality, however, the common

sequence shared among all the transactions in a trace dataset is mixed with a very big

number of events which occur seemingly random in the dataset. Therefore, we need to

consider not only the length of the common subsequence but also the amount of such

noisy events in order to understand the reason BackScan fails to efficiently prune the

search space in trace datasets.

Figure 4.13 shows how the computational complexity of the Bide algorithm changes

depending on the amount of noisy events present in transactions from the Dpos dataset.

The exponential growth of both the number of candidate patterns and the running time

Chapter 4. Mining Abnormal System Activity from Execution Traces 63

 10
 100

 1000
 10000

 100000
 1×10

6
 1×10

7
 1×10

8
 1×10

9
 1×10

10

 0 0.1 0.2 0.3 0.4 0.5 0.6

40 44 50 57 67 80 100

#
 C

a
n
d

id
a

te
 p

a
tt
e

rn
s

noise rate

Average transaction length

Bide

 10

 100

 1000

 10000

 100000

 1×10
6

 1×10
7

 0 0.1 0.2 0.3 0.4 0.5 0.6

40 44 50 57 67 80 100

R
u

n
n

in
g

 t
im

e
,

m
s

noise rate

Average transaction length

Bide

Figure 4.13: Computational complexity of the Bide algorithm on synthetic trace
datasets generated with various noiseRate values; commonSequenceLength=40, alpha-

betSize=20, numTransactionsDpos=10.

suggests that the cause of Bide’s bad performance on trace data lies in random noisy

events. However, when we generated a dataset having the same parameters, but where

each transaction consisted of a completely random sequence of events, Bide showed

a very good performance (see Figure 4.14). Indeed, randomly generated transactions

no longer share long common sequences, and the Apriori pruning, being a part of the

Bide algorithm, allows the explored prefix tree to be relatively shallow, while BackScan

further enhances the performance of the algorithm on such data.

This is how we arrived at a conclusion, that it is the combination of a rather long common

subsequence between all the transactions in the Dpos dataset and the presence of noisy

events that makes the Bide algorithm fail to efficiently mine the set of closed frequent

sequences from trace data. Indeed, in the protein dataset DUF1694 presented earlier

in Section 4.3 the longest common subsequence among protein sequences has only 14

elements 10, which allowed Bide to show a good performance on this dataset. To confirm

our findings, we ran Bide on synthetic traces with various average transaction lengths,

where the increase in transaction length resulted both from augmenting the common

10We used a heuristic algorithm for finding the longest common subsequence available at
http://search.cpan.org/˜vmoiseev/Algorithm-MLCS-1.02/lib/Algorithm/MLCS.pm

http://search.cpan.org/~vmoiseev/Algorithm-MLCS-1.02/lib/Algorithm/MLCS.pm

Chapter 4. Mining Abnormal System Activity from Execution Traces 64

 1
 10

 100
 1000

 10000
 100000

 1×10
6 1×10
7 1×10
8 1×10
9 1×10

10

 0 0.1 0.2 0.3 0.4 0.5 0.6

8 15 31 47 183 1092 21070
#

 C
a

n
d

id
a

te
 p

a
tt
e

rn
s

noise rate

Average transaction length

Bide on trace data
Bide on random data

 10

 100

 1000

 10000

 100000

 1×10
6

 1×10
7

 0 0.1 0.2 0.3 0.4 0.5 0.6

40 44 50 57 67 80 100

R
u

n
n

in
g

 t
im

e
,

m
s

noise rate

Average transaction length

Bide on trace data
Bide on random data

Figure 4.14: Comparison of the computational complexity of the Bide algorithm run
on a trace dataset and a randomly generated dataset.

sequence length, and adding more noisy events. Indeed, as can be seen in Figure 4.15,

Bide shows an exponential growth in computational complexity with respect to the

average sequence length. Finally, increasing the number of transactions in the Dpos

dataset does not result in the reduced number of candidate patterns (see Figure 4.16).

All in all, this was a very surprising finding, as pattern mining literature does not report

an exponential growth of the computational complexity of closed frequent sequence

mining algorithms with respect to the dataset size.

4.3.3 Contrast Pruning on Trace Datasets

Contrast pruning introduced by Ji et al. [41] (see Definition 3) is effective in case there ex-

ists a big number of relatively short contrast sequences between Dpos and Dneg datasets.

Indeed, their presence would allow to prune a lot of branches of the prefix tree which

start close to the root, hence, significantly reduce the part of the search space needed

to be explored by the mining algorithm. At the same time, Dpos and Dneg datasets

obtained from execution traces do not contain a big number of short contrast sequences.

The first reason is that transactions in Dpos are highly similar to those in Dneg, as they

come from the same use case execution session. The second reason is that, normally, the

Chapter 4. Mining Abnormal System Activity from Execution Traces 65

 1000

 10000

 100000

 1×10
6

 1×10
7

 1×10
8

 1×10
9

 1×10
10

 1×10
11

 20 30 40 50 60 70 80 90 100

#
 C

a
n

d
id

a
te

 p
a
tt

e
rn

s

Average transaction length

Bide

 10

 100

 1000

 10000

 100000

 1×10
6

 1×10
7

 1×10
8

 20 30 40 50 60 70 80 90 100

R
u
n
n

in
g
 t

im
e

,
m

s

Average transaction length

Bide

Figure 4.15: Performance of the Bide algorithm on trace datasets generated with
alphabetSize=20, numTransactDpos=10, and average transaction lengths defined by
the following pairs of values of commonSeqLength and noiseRate parameters: (20;0.3),

(25;0.35), (30;0.4), (35;0.45), (40;0.5), (45;0.6).

number of transactions in Dneg is significantly bigger than in Dpos. Indeed, transactions

from the Dpos dataset represent anomalous parts of the execution trace, which are much

less numerous than the normal parts. Therefore, short sequences that are frequent in

Dpos and represent random combinations of noisy events will have a high probability to

occur in some transactions from Dneg, too. These two properties of frequent sequences

in execution trace data are, from the one hand, an important hindrance to efficient

mining of minimal contrast sequence, but from the other hand, is a good news for a

developer, as the output is expected to be very compact and contain only sequences

strongly correlated to the observed temporal bug.

4.3.4 Can Bioinformatics Help Mining Contrast Sequences from

Execution Traces?

As we found out earlier in this chapter, the structural similarity of transactions in Dpos

and Dneg datasets combined with the external characteristics of trace data, such as the

size of the alphabet, the number and the length of transactions, make the state-of-the-

art sequential pattern mining algorithm exhibit unacceptable performance on execution

Chapter 4. Mining Abnormal System Activity from Execution Traces 66

 100000

 1×10
6

 1×10
7

 1×10
8

 1×10
9

 1×10
10

 0 5 10 15 20 25 30 35 40

#
 C

a
n

d
id

a
te

 p
a
tt

e
rn

s

Number of transactions

Bide

Figure 4.16: Performance of the Bide algorithm on trace datasets with various num-
ber of transactions. alphabetSize=20, commonSeqLength=35, noiseRate=0.45, average

transaction length = 64.

trace data. A reader familiar with the problem of biological sequence analysis, however,

may point that biological sequences (or, bio-sequences) representing protein, DNA, or

RNA macromolecules have similar properties to trace data. Indeed, protein macro-

molecules, for example, can be represented as long sequences of 20 different types of

amino acid residues. Moreover, proteins belonging to the same family are structurally

similar to each other. Therefore, a group of proteins belonging to the same family is

essentially a dataset of long, dense, and similar to each other sequences. In this section,

we take a brief look at bio-sequences as well as at the task of finding similarities and

differences between groups of bio-sequences, in order to understand if the algorithms

from bioinformatics can be applied to mine minimal contrast sequences from trace data.

The main interest of comparing bio-sequences for biologists is to understand if a group

of proteins (or else DNAs, RNAs) originate from a common ancestor. If a group of

proteins share a common subsequence (called a conserved subsequence) then there is

a high chance that such subsequence has a particular functional role, making proteins

similar. A plethora of techniques was proposed in bioinformatics field in order to identify

such subsequences, most notably global and local sequence alignment algorithms [55].

While sequence alignment allows to visually compare a pair or a group of bio-sequences,

this task becomes prohibitively expensive if input sequences grow in size and in quantity.

At the same time, pattern mining algorithms provide a more efficient alternative for

grouping bio-sequences into families. If a common pattern is discovered in a set of

biologically related sequences, it is possible that the presence of this particular pattern is

important for the biological function of the corresponding macromolecule [18]. Contrast

pattern mining, in its turn, finds its utility in bioinformatics when a pair of protein

families must be compared in order to understand which functionalities, expressed as

conserved sequences, make those families different [48]. Contrast patterns then can be

used either to represent discriminating functionalities between two protein families or

to classify an unlabeled protein to the most appropriate family.

Chapter 4. Mining Abnormal System Activity from Execution Traces 67

It can be seen that the characteristics of bio-sequences as well as the goal of contrast

conserved subsequence mining are highly similar to our problem of abnormal system

activity detection in given parts of the execution trace. But can pattern mining algo-

rithms developed for biological data be used in our context of execution trace data?

The answer, unfortunately, is no. In fact, pattern mining algorithms used in bioinfor-

matics field incorporate some properties specific to biological sequences in order to deal

with the computational complexity of extracting conserved subsequences from a group

of bio-sequences. A short list of such properties is presented below.

1. Pattern similarity. The definition of similarity between patterns mined from biolog-

ical sequences is different from the strict symbolic and order similarity we require

from minimal contrast sequences mined from trace data. Two subsequences of

different bio-sequences way be considered equal even if an item at position i in one

subsequence is not the same item found at position i in another subsequence. The

reason of this is that, in case of proteins, an amino acid can mutate (i.e. become

another amino acid), or swap positions while still preserving the functional role of

the given region within a protein. That is why, pattern mining algorithms found

in bioinformatics literature rely on amino acid substitution matrices to assess how

much a particular mutation or swapping of amino acids change the functional role

of a protein’s region [18].

2. Constraints on mined patterns. It is important to restrict the considered area of

protein sequences in order to correctly detect possible amino acid substitutions in

a given pattern. Therefore, biological sequence mining algorithms impose various

constraints on patterns, such as regular expressions, maximum gap, size of sliding

window, etc [70] [58]. These constraints allow to considerably reduce patterns’

search space, without introducing a risk of missing functional regions in a given

set of bio-sequences. For example, if the elements of a pattern appear scattered

over the input sequences, then this pattern does not represent a functional region.

3. Heuristic algorithms. Biologists are often interested in the most significant func-

tional regions of a given set of macromolecules. Therefore, there exists a variety

of scoring functions to determine which patterns are the most significant among

all existing patterns. That is why heuristic pattern mining algorithm are widely

used in bioinformatics field in order to efficiently mine only the most significant

patterns with respect to a given scoring function.

Incorporation of domain knowledge into bio-sequence pattern mining algorithms make

them particularly efficient on real biological data. On the other hand, none of the prop-

erties of pattern mining from bio-sequences listed above make sense for execution trace

data. Firstly, the same event can have different properties depending on the particular

context it was executed in. Hence, there is no analogy for bio-sequence substitutional

matrices that can be constructed for trace data. Secondly, the elements of a contrast

pattern can appear in any part of a transaction, because the relative positions of a pair

Chapter 4. Mining Abnormal System Activity from Execution Traces 68

of events within a trace are not a reliable indicator of their semantic relationship. Fi-

nally, the full set of minimal contrast patterns must be output, as their significance can

be assessed only by the developer, and not using some scoring function. In conclusion,

bio-sequence pattern mining algorithms can not be directly applied to mine minimal

contrast sequences from execution traces, as trace data do not share same properties

with bio-sequence data.

4.4 Conclusion

In this chapter, we discussed the problem of contrasting two sets of traces: Dpos con-

taining anomalous parts of the original system’s execution trace and Dneg capturing its

normal behavior, both obtained with the method presented in Chapter 3.

In Section 4.1, we expressed the problem of detecting anomalous system behavior in

the Dpos dataset as a pattern mining task. More specifically, we argued that minimal

contrast sequences mined between Dpos and Dneg datasets is a good representation of

anomalous system behavior, as they allow to reveal fine-grained system activity charac-

teristic of traces in the Dpos dataset but not of those in the Dneg dataset.

In Section 4.2, we explained how minimal contrast sequences can be mined using state-

of-the-art sequential pattern mining algorithms. In order to compare the performances

of these algorithms, we developed a synthetic trace generation tool. In Section 4.2.1, we

argued that a direct extraction of the MCS set from the set of all possible sequences of

execution events is a computationally infeasible task even for the smallest, non-realistic

traces. We then proceeded to show how the MCS set can be extracted from the set

of frequent in the Dpos dataset sequential patterns (Section 4.2.2). To perform this

task, we introduced the state-of-the-art frequent sequence mining algorithms, and then

tested their performance on synthetic trace datasets. We then concluded that such

algorithms do not allow to efficiently extract the full MCS set from execution trace

data. Therefore, in Section 4.2.3, we considered adding constraints to the final MCS set

in order to reduce computational complexity of pattern mining task. First, we analyzed

the mining of minimal contrast strings, i.e. sequences whose elements must appear

contiguously in the execution trace. It showed a good performance on trace data but

allowed to mine only a very limited set of patterns from the execution traces. Second,

we left the choice of the maximum number of events allowed to appear between the

elements of a sequential pattern (the max gap constraint) to the user. We then evaluated

ConSGapMiner – a state-of-the-art algorithm to mine minimal contrast sequences with

the max gap constraint. This algorithm showed poor performance on synthetic traces

even for the smallest values of the max gap parameter, which made it unsuitable for

mining suspicious system activities from execution traces. Finally, we considered the

task of mining the MCS set with the max length constraint, which limits the maximum

number of elements in a sequential pattern. As it showed a good performance for

relatively big values of max length and was not supposed to lose a big fraction of possible

Chapter 4. Mining Abnormal System Activity from Execution Traces 69

suspicious system activities, we decided to adopt such way of mining minimal contrast

sequences as the final stage of SATM.

Curious about the gap between the reported in the literature performance of sequen-

tial pattern mining algorithms and our own experience on trace data, we analyzed the

computational complexity of these algorithms in Section 4.3. As we found out, the com-

bination of a long common subsequence shared by the traces, as well as the presence

of a big number of noisy elements in each trace makes pruning techniques adopted in

sequential pattern mining algorithms fail to cope with search space explosion. We also

concluded that a rich set of algorithms developed for mining patterns from biological

sequences is, unfortunately,not applicable to mine MCS from execution trace data.

Chapter 5
Use Cases

In Chapters 3 and 4, we presented our novel approach for temporal debugging of em-

bedded streaming applications which we called SATM. Its main goal is to automate the

process of resolving temporal bugs, so that given a minimal input from the developer

(an execution trace of the system and a dataflow graph of the target application), SATM

returns a precise sequence of executed events related to the origin of the QoS problem.

Such automatic approach is of great value for software developers, as temporal bugs have

a tendency to manifest themselves at the final stages of software development, when a

stringent delivery deadline of the entire embedded system imposes a great pressure on

the developers to come up with a fix as quickly as possible. The currently most popular

way to perform temporal debugging consists in manual analysis of executed events using

trace visualization tools. This process usually requires a profound expertise and a lot of

time in order to unearth a suspicious system activity.

As we showed in Chapter 3, SATM can pinpoint problematic zones in an execution trace,

as long as the target application complies with the properties of embedded streaming

software (dataflow model of programming, periodic scheduling). At the same time,

detection of anomalous system activity in the extracted parts of the execution trace

is an extremely complicated task. Indeed, in Chapter 4 we found out that the state-

of-the-art pattern mining algorithms are not able to efficiently extract a complete set

of execution event sequences representing the most succinct contrasts between different

parts of a trace.

In this chapter, we show that despite the theoretical complexity of the temporal debug-

ging problem, SATM still fulfills its goal of discovering abnormal system activity from

real-world execution traces. We present three use cases of streaming applications ex-

hibiting temporal bugs and show how SATM was successfully applied on their execution

traces.

71

Chapter 5. Use Cases 72

5.1 Description of Use Cases

In this section, we present three use cases which we considered in order to test the

proposed temporal debugging approach. The first one was created by ourselves using

GStreamer – an open-source multimedia framework widely adopted in embedded sys-

tems. The other two are industrial use cases coming from STMicroelectronics. We next

introduce each of these use cases.

GStreamer use case

GStreamer is a popular dataflow-based framework for creating streaming multimedia

applications [76]. As GStreamer is an open-source software, there exists a variety of

freely available components that can be easily plugged together to form complex dataflow

applications. Examples of popular applications based on GStreamer include Totem (the

default movie player for GNOME desktop), Pitivi video editor and others 1. It is, of

course, also possible to combine proprietary components using the GStreamer framework

which made it a widely adopted standard to program embedded streaming applications,

which put a particular accent on QoS properties.

Our goal of creating a multimedia application using the GStreamer framework and then

manually injecting a temporal bug in it was to get an execution trace of a real-world

streaming application containing an anomalous sequence of events known in advance.

This way, we were able to evaluate the ability of SATM to pinpoint the problematic

system activity.

We assembled a simple audio/video-decoding application using the existing components

coming with the GStreamer development toolkit. Figure 5.1 shows the dataflow graph of

the created application with the name of components as available in gst-plugins-good

library 2. This application essentially takes a media file, demultiplexes its audio and

video elementary streams, transfers them to the respective decoders for actual decoding

(faad and avdec h264 actors on Figure 5.1), and finally sends the decoded frames to the

default audio and video rendering devices.

filesrc demux

queue0

queue1

faad audiosink

avdec h264 videosink

Figure 5.1: Dataflow graph of the GStreamer application

In order to introduce temporal bugs into the created media application, we decided to

plug in our custom intruder component just before the video decoder actor, as shown in

Figure 5.2. The goal of this component is to introduce a delay to the dataflow graph at

random moments of time, so that the application produces a stuttering video because of

1http://gstreamer.freedesktop.org/apps/
2http://gstreamer.freedesktop.org/modules/gst-plugins-good.html

http://gstreamer.freedesktop.org/apps/
http://gstreamer.freedesktop.org/modules/gst-plugins-good.html

Chapter 5. Use Cases 73

late decoded frames. This is done in the following way. Intruder implements 3 random

bit generators named A, B and C. Each of them calls a specific function depending on

the value of the generated bit (e.g. A1, B0). These functions are instrumented, hence,

their executions are captured in the trace. If a sequence “010” is generated (i.e. a

sequence of A0, B1 and C0 function calls is observed in the trace), then intruder sleeps

for a significant amount of time, so that the delay propagates through the downstream

actors resulting in late video frame display, thus, reducing the application’s QoS.

filesrc demux

queue0

queue1

faad audiosink

intruder avdec h264 videosink

Figure 5.2: Dataflow graph of the GStreamer application with the intruder actor

The Gstreamer framework provides an extensive tracing functionality. It is possible to

choose between 8 levels of execution tracing, where the highest one logs all memory

dump messages and the lowest one writes to the trace only fatal errors. We decided to

trace our GStreamer-based application on level 7, which results in tracing all function

calls and log messages, but without including the information about the current state of

the working memory. This way, we ran our media application for 1 minute on a Linux

machine and obtained an execution trace containing 1,201,855 timestamped events with

the alphabet size (i.e. number of distinct events) of 1363.

TSRecord use case

This use case consists of a single application called TSRecord designed for set-top

boxes equipped with STiH416 MPSoC, and whose goal is to receive a video stream

from an Internet Protocol network (IP network) and record it onto secondary stor-

age in the same format it was received. This application represents an important

functionality of set-top boxes to record a TV program for later viewing. Given the

simplicity of TSRecord, its dataflow graph contains a single actor called write, as

shown in Figure 5.3. An observed QoS problem concerned high-definition videos

which contained numerous missing frames once recorded onto an external USB

hard drive. The trace provided by STMicroelectronics software developers has the

alphabet of 111 elements and a total of 725,689 recorded events during 4 minutes

of execution tracing.

Write

Figure 5.3: Dataflow graph of the TSRecord application

Chapter 5. Use Cases 74

DVBTest use case

DVBTest is a streaming application widely used by STMicroelectronics software

developers to test the decoding and encoding of video streams received from var-

ious transmission medias (satellite, IP network, cable, etc.). Figure 5.4 shows

its dataflow graph which consists of 7 actors. The QoS problem in this use case

concerned video streams coming from an IP network, as they contained missing

frames once decoded with DVBTest. This problem appeared right after a particu-

lar software upgrade. The obtained trace contains 534,779 events recorded during

2 minutes of DVBTest execution, and has the alphabet size of 135 distinct events.

Frontend Demuxer Collator Parser Decoder Manifestor ViBE

Figure 5.4: Dataflow graph of the DVBTest application

5.2 Detection of Anomalous Zones

In this section, we apply SATM on the three use cases presented in Section 5.1

in order to detect the anomalous parts in their execution traces. The goal of

this section is twofold. First, we show the importance of clustering actor’s inter-

occurrence intervals for the task of discovering the actor’s period. Second, we

report the first actors in dataflow graphs having a significant amount of outlier

intervals, which are subsequently used to split the execution trace into Dpos and

Dneg datasets.

5.2.1 GStreamer Use Case

Recall that we introduced the GStreamer use case as a “semi-synthetic” one: hav-

ing injected temporal bugs ourselves, we know beforehand that the first actor

having significant violations of its period is the avdec h264 actor. Indeed, as the

intruder actor sleeps for a significant amount of time every once in a while, the

delay propagates through the downstream actors, namely avdec h264 and then

videosink, and causes the output of the entire application to be delivered late.

At the same time, all other actors, intruder included, must always respect their

periods.

SATM succeeded in finding the periods of all the GStreamer actors, as shown

in Figure 5.5. Without clustering, however, actors do not appear to be invoked

periodically, as we show further.

Consider Figure 5.6 which presents two distributions of inter-occurrence intervals

of the demux actor: the one of unprocessed intervals extracted from the adjacent

Chapter 5. Use Cases 75

filesrc

70 ms

demux

70 ms

queue0

70 ms

queue1

40 ms

faad

70 ms

audiosink

70 ms

intruder

40 ms

avdec h264

40 ms

videosink

40 ms

Figure 5.5: Dataflow graph of the GStreamer application with the actors’ periods
detected by SATM

occurrences of the demux actor in the execution trace, and the other one of clus-

tered intervals. Without clustering, the intervals tend to be equal to 2 ms with the

value of the QCoD metric equal to 43%. Such a high rate of dispersion signifies

that the values of temporal intervals between the demux ’s invocations are highly

scattered, i.e. demux does not appear to be invoked periodically. At the same

time, we know beforehand that this actor, in fact, executes periodically. There-

fore, the conclusion one makes analyzing the demux ’s invocations as they appear

in the trace is erroneous. However, if the intervals are clustered prior to period de-

tection, then the demux actor tends to be invoked every 70 ms with QCoD equal

to 1.1%. A small dispersion rate tells that this actor appears in the execution

trace as a highly periodic event once its occurrences are clustered.

 0

 2

 4

 6

 8

 10

 12

 14

 16

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

#
 I

n
te

rv
a
ls

 (
x
1
0

0
)

Interval Length (ms)

w/ clustering
w/o clustering

Figure 5.6: Inter-occurrence interval distribution of the demux actor

Next, consider Figure 5.7 which shows the distributions of inter-occurrence inter-

vals of the avdec h264 actor. Similar to the demux actor, in case the clustering

is not applied, the QCoD metric has a high value of 35.7%, signaling that the

intervals between the avdec h264 ’s invocations are highly scattered around the

median of 40 ms. At the same time, if clustering is applied before the dispersion

is measured, QCoD becomes equal to 3.1%, showing that the intervals between

the avdec h264 ’s invocations are very close to its central tendency equal to 40 ms.

This way, although the medians of both distributions are equal to each other,

we cannot conclude that avdec h264 is a periodic actor if its intervals were not

previously clustered.

Chapter 5. Use Cases 76

After applying the inter-quartile rule for outliers SATM detected 241 intervals

between the avdec h264 ’s invocations which were significantly bigger than the

detected period of 40 ms (see the intervals falling into the range [80 ms, 130 ms]

in Figure 5.7). Being the most upstream actor having numerous outlier intervals,

avdec h264 was used to split the execution trace into the Dpos and Dneg datasets.

As the result, Dpos had 241 subtraces with the average number of events per

subtrace equal to 1574 (the maximal number of events in a subtrace was 2802),

while Dneg had 1187 subtraces with the average number of events per subtrace

equal to 628 (the maximal number of events in a subtrace was 1888).

 0

 1

 2

 3

 4

 5

0 10 20 30 40 50 60 70 80 90 100
110

120
130

140

#
 I

n
te

rv
a

ls
 (

x
1

0
0

)

Interval Length (ms)

w/ clustering
w/o clustering

Figure 5.7: Inter-occurrence interval distribution of the avdec h264 actor

5.2.2 TSRecord Use Case

Recall that the TSRecord application presented in Section 5.1 has only one actor

called write. Figure 5.8 shows the distributions of both clustered and non-clustered

intervals between write’s invocations in the execution trace. The value of QCoD is

equal to 0.6% when the clustering is not applied, and is equal to 0.2% when SATM

clusters the inter-occurrence intervals of the actor, while the median is equal to

100 ms in both cases. As we can observe, the write actor appears to be highly

periodic even if no clustering is applied (see Figure 5.8(a)). Indeed, TSRecord is

a “lightweight” use case with very little application or system activity occurring

on the underlying hardware. Therefore, the write actor does not compete with

other application or system threads for computational resources, and a limited

preemption is observed in the execution trace. SATM then applied the quartile

rule for outliers and detected 26 intervals whose values greatly exceeded the found

period of 100 ms (clearly visible in Figure 5.8(b)). Finally, SATM split the original

execution trace with respect to the outlier intervals and returned a Dpos dataset

having 26 subtraces with 1025 events on average (the maximum subtrace length is

2216), as well as a Dneg dataset having 2287 subtraces with 293 events on average

(the maximum subtrace length is 1064).

Chapter 5. Use Cases 77

 0

 5

 10

 15

 20

 25

0 10 20 30 40 50 60 70 80 90 100
110

120
130

140
150

160
170

180
190

200

#
 I

n
te

rv
a

ls
 (

x
1

0
0

)

Interval Length (ms)

w/ clustering
w/o clustering

(a)

 1

 10

 100

 1000

 10000

0 10 20 30 40 50 60 70 80 90 100
110

120
130

140
150

160
170

180
190

200

#
 I

n
te

rv
a
ls

 (
lo

g
 s

c
a
le

)

Interval Length (ms)

w/ clustering
w/o clustering

(b)

Figure 5.8: Inter-occurrence interval distribution for sys write actor: (a) with Y-axis
showing the number of intervals multiplied by 100; (b) with Y-axis in log scale.

5.2.3 DVBTest Use Case

Figure 5.9 presents the actors’ periods discovered by SATM from the execution

trace of the DVBTest use case. Note that the Demuxer actor was not instrumented

by the developers and, hence, was not present in the execution trace.

Frontend

200 ms

Demuxer

—

Collator

34 ms

Parser

34 ms

Decoder

17 ms

Manifestor

34 ms

ViBE

100 ms

Figure 5.9: Dataflow graph of the DVBTest application with the actors’ periods
detected by SATM

Consider Figure 5.10 which shows the distribution of the inter-occurrence intervals

of the ViBE (Video Backend) actor whose role is to send video frames to the

display of the multimedia device. As we can see in Figure 5.10(a), SATM did

not simply merge smaller intervals with the bigger ones in case they occur in each

other’s vicinity, but instead grouped intervals of different lengths into substantially

longer ones having a uniform length of 100 ms. The observed clustering results

seem counterintuitive but can be easily understood knowing the operation of a

Chapter 5. Use Cases 78

video decoder. One of the important functionalities of a video decoding application

is the adjustment of the number of decoded video frames sent to the display in a

given interval of time. The problem comes from the difference between the number

of frames decoded per second, known as the frame rate, and the number of frames

rendered on the screen per second, known as the refresh rate of the display. Vertical

synchronization (vsync) technique is used in video decoding applications to deal

with this problem 3. Depending on the video decoding frame rate and the display’s

refresh rate, vsync chooses which frames to drop or, conversely, retain from sending

to the display for an additional cycle. Returning to the results of clustering the

ViBE actor’s inter-occurrence intervals, we can observe in Figure 5.10(a) (for the

case when clustering was not applied) that most of the time this actor is invoked

every 17 ms, meaning that a decoded frame is sent to the display every 17 ms.

However, one fifth of the frames are retained from being sent to the display for

additional 17 ms. This way, the ViBE actor appears in the trace with the following

intervals: 17 ms, 17 ms, 17 ms, 17 ms, 34 ms, 17 ms, 17 ms, 17 ms, 17 ms,

34 ms, 17 ms, and so on. The clustering algorithm adopted in SATM was able

to detect this pattern of the ViBE actor’s invocations and grouped them into

17 + 17 + 17 + 17 + 34 ≈ 100 ms intervals. Indeed, the low value of QCoD equal

to 0.8% shows that this actor can be observed in the execution trace every 100ms.

ViBE was also the first actor in the DVBTest dataflow graph which had a number

of intervals significantly bigger than the detected period of 100 ms (the outlier

intervals are clearly visible in Figure 5.10(b)). Therefore, SATM used the clustered

intervals between this actor’s occurrences in order to split the original execution

trace into the Dpos and Dneg datasets. As a result, the Dpos dataset consists of

66 subtraces having 729 events on average (the maximum number of events in a

subtrace is 1630); and the Dneg dataset consists of 972 subtraces with an average of

500 events per subtrace (4474 being the maximum number of events in a subtrace).

5.3 Mining Suspicious System Activity

Having detected the anomalous parts of an execution trace, SATM proceeds in

mining minimal contrast sequences (i.e. the MCS set), which will describe what

makes those parts of the trace anomalous. As we argued in Chapter 4, the most

appropriate way to mine the MCS set is to use a “hybrid” algorithm which com-

bines the PrefixSpan algorithm with the contrast pruning from the ConSGapMiner

algorithm and introduces the max length constraint. In the rest of this section,

we will refer to this mining algorithm as SATM.

In this section, we present both quantitative and qualitative analysis of applying

SATM to mine the MCS set from the GStreamer, TSRecord and DVBTest use

3http://hardforum.com/showthread.php?t=928593a

http://hardforum.com/showthread.php?t=928593a

Chapter 5. Use Cases 79

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 10 20 30 40 50 60 70 80 90 100
110

120
130

140
150

160
170

180

#
 I

n
te

rv
a

ls
 (

x
1

0
0

)

Interval Length (ms)

w/ clustering
w/o clustering

(a)

 1

 10

 100

 1000

 10000

0 10 20 30 40 50 60 70 80 90 100
110

120
130

140
150

160
170

180

#
 I

n
te

rv
a
ls

 (
lo

g
 s

c
a
le

)

Interval Length (ms)

w/ clustering
w/o clustering

(b)

Figure 5.10: Inter-occurrence interval distribution for the ViBE actor: (a) with Y-
axis showing the number of intervals multiplied by 100; (b) with Y-axis in log scale.

cases. In Sections 5.3.1, 5.3.2 and 5.3.3, we report the number of minimal contrast

sequences returned by SATM for the three use cases and then provide an analysis

of the mined sequences in order to see if they succeed in indicating a system

activity correlated to the observed QoS issue. Finally, in Section 5.3.4, we discuss

the influence of the max length, min sup and max sup thresholds on both the

quantity and the quality of the MCS set and then suggest a strategy to pick the

values for these three thresholds so that to SATM returns the most concise and

precise MCS set in minimal execution time.

5.3.1 GStreamer Use Case

Figure 5.11 presents the number of mined minimal contrast sequences with respect

to the values of the min sup threshold (for the Dpos dataset) and the max sup

threshold (for the Dneg dataset).

As we can see, even with the most extreme values of min sup and max sup (100%

and 0% correspondingly) SATM mines 10 minimal contrast sequences. These

Chapter 5. Use Cases 80

84

86

88

90

92

94

96

98

100

0 1 2 3 4 5 6 7 8 9 10

m
in

_
su

p
,

%

max_sup, %

746 25839 49622 56747 71145 79761 87256 98444 111543 126353 128255

746 25725 49386 56288 71126 79742 87237 98425 111522 126332 128238

737 22297 43443 48677 62468 69193 76078 84790 94423 105111 103403

737 15517 21190 12926 12575 7877 6040 6633 5504 6064 7460

736 15503 21061 12836 12452 7684 5914 6348 5202 5731 7024

736 15489 21048 12802 12423 7590 5841 6270 5153 5703 6994

736 15488 21048 12801 12423 7590 5841 6270 5153 5703 6994

736 15488 21048 12801 12423 7585 5788 6120 4927 5482 6599

10 28 64 60 97 209 82 90 94 94 94

 0

 20000

 40000

 60000

 80000

 100000

 120000

#
 o

f
M

C
S

Figure 5.11: The number of minimal contrast sequences mined for the GStreamer
use case (with max length = 3).

sequences are presented below (the lines in red correspond to the functions called

by the intruder actor):

1. 〈 TRACE;intruder;gstintruder.c;268;gst_intruder_chain;C0,
LOG;pulse;pulsesink.c;660;gst_pulsering_stream_request_cb;autoaudiosink0 〉

2. 〈 TRACE;intruder;gstintruder.c;252;gst_intruder_chain;A0,
TRACE;intruder;gstintruder.c;268;gst_intruder_chain;C0,

LOG;;pulse;pulsesink.c;1621;gst_pulseringbuffer_commit;autoaudiosink0 〉

3. 〈 TRACE;intruder;gstintruder.c;252;gst_intruder_chain;A0,
TRACE;intruder;gstintruder.c;268;gst_intruder_chain;C0,

LOG;;pulse;pulsesink.c;1568;gst_pulseringbuffer_commit;autoaudiosink0 〉

4. 〈 TRACE;intruder;gstintruder.c;252;gst_intruder_chain;A0,
TRACE;intruder;gstintruder.c;268;gst_intruder_chain;C0,

LOG;;pulse;pulsesink.c;1559;gst_pulseringbuffer_commit;autoaudiosink0 〉

5. 〈 TRACE;intruder;gstintruder.c;252;gst_intruder_chain;A0,
TRACE;intruder;gstintruder.c;268;gst_intruder_chain;C0,

LOG;;pulse;pulsesink.c;1550;gst_pulseringbuffer_commit;autoaudiosink0 〉

6. 〈 TRACE;intruder;gstintruder.c;252;gst_intruder_chain;A0,
TRACE;intruder;gstintruder.c;263;gst_intruder_chain;B1,

LOG;;pulse;pulsesink.c;1568;gst_pulseringbuffer_commit;autoaudiosink0 〉

7. 〈 TRACE;intruder;gstintruder.c;252;gst_intruder_chain;A0,
TRACE;intruder;gstintruder.c;263;gst_intruder_chain;B1,

LOG;;pulse;pulsesink.c;1559;gst_pulseringbuffer_commit;autoaudiosink0 〉

Chapter 5. Use Cases 81

8. 〈 TRACE;intruder;gstintruder.c;252;gst_intruder_chain;A0,
TRACE;intruder;gstintruder.c;263;gst_intruder_chain;B1,

LOG;;pulse;pulsesink.c;1550;gst_pulseringbuffer_commit;autoaudiosink0 〉

9. 〈 TRACE;intruder;gstintruder.c;252;gst_intruder_chain;A0,
TRACE;intruder;gstintruder.c;263;gst_intruder_chain;B1,

LOG;;pulse;pulsesink.c;660;gst_pulseringbuffer_commit;autoaudiosink0 〉

10. 〈 TRACE;intruder;gstintruder.c;252;gst_intruder_chain;A0,
TRACE;intruder;gstintruder.c;263;gst_intruder_chain;B1,

TRACE;;intruder;gstintruder.c;268;gst_intruder_chain;C0 〉

Notice that the 10th minimal contrast sequence in the above list is exactly the

sequence of function calls performed by the intruder actor that causes the delayed

output of the application.

As the min sup value goes down, the number of mined minimal contrast sequences

increases, meaning that the developer needs to do more work in order to analyze

the returned sequences of events. The target contrast sequence mentioned above 4,

however, is always present in the mined MCS set. The same holds true when we

increase the value of the max sup parameter. This means that, with SATM, dis-

covering the origin of the temporal bugs introduced into the GStreamer application

is always possible regardless of the chosen values of the min sup and max sup pa-

rameters. At the same time, a drastic growth of the number of minimal contrast

sequences observed when min sup goes down can be explained with the following

observation. All the events called by the intruder actor are never executed by other

GStreamer actors. Given the fact that intruder is always invoked just before the

avdec h264 actor (see the dataflow graph in Figure 5.2), which was used to split

the original trace into the Dpos and Dneg datasets, the normal subtraces (i.e. from

the Dneg dataset) contain intruder -specific events close to the end, right before

the next occurrence of the avdec h264 actor which starts a new subtrace. This is

not the case for subtraces found in the Dpos dataset, as an intruder ’s invocation

is not followed by the appearance of the avdec h264 actor but other, upstream

actors continuing to execute normally. Therefore, SATM returns a big number of

sequences of the form 〈intruder -specific event; other events〉 which never occur in

Dneg due to the way the original trace is split into subtraces.

To sum up, the temporal debugging of the GStreamer use case with SATM consists

in analyzing only 10 short sequences of raw system events, in case the thresholds’

values are chosen correctly. In Section 5.3.4 we will suggest a strategy to quickly

find such values.

4we will call a target sequence the one that characterizes the QoS problem in the best way among
all the returned sequences

Chapter 5. Use Cases 82

5.3.2 TSRecord Use Case

Consider Figure 5.12 which shows the number of minimal contrast sequences mined

by SATM from the TSRecord’s execution trace. As we can observe, there exist

combinations of min sup and max sup values for which no contrast sequences are

returned (see the white zone in Figure 5.12). This happens due to the wrongly-

detected outlier intervals in the period detection step of SATM: some intervals

are signaled as deviating too much from the period, while there is no detected

anomalous activity in the corresponding parts of the trace, hence, white horizontal

zones; and some intervals are signaled as normal ones, while the discovered abnor-

mal sequence of events is present in the corresponding parts of the trace, hence,

white vertical zones. The most restrictive pair of the min sup and the max sup

thresholds for which SATM succeeds in mining contrast sequences is 94% and 1%

correspondingly. In this case, we get 66 sequences of length 2 or 3. Each of these

sequences contains at least one occurrence of switch to45(usb-storage) (to

which we refer further as event X) or Interrupt182(GICehci hcd:usb3) (event

Y), and some sequences include both of them. The same is observed when max sup

is increased to 2% or 3%. However, when max sup is set to a value in the interval

[4%, 17%] (and min sup is kept at 94%), only 2 minimal contrast sequences are

mined, both of them being length-1 sequences: 〈X〉 and 〈Y 〉. The same picture

is observed for all other combinations of min sup and max sup values: no matter

how big is the returned MCS set, either it includes two length-1 sequences 〈X〉
and 〈Y 〉, or every minimal contrast sequence contains an occurrence of 〈X〉 or 〈Y 〉.

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

m
in

_
su

p
,

%

max_sup, %

93 365 372 348 194 202 221 214 226 236 250 187 166 210 198 199 223 239 257 241 266 233 235 249 251 177

54 307 314 295 138 146 165 158 170 180 192 129 108 148 140 143 164 180 198 182 207 174 176 190 192 118

42 245 253 237 80 88 107 103 115 125 137 75 54 94 104 104 113 117 129 135 135 135 137 151 153 83

42 245 253 237 80 88 107 103 115 125 137 75 54 94 104 104 113 117 129 135 135 135 137 151 153 83

6 228 230 231 74 82 101 97 109 119 129 67 47 87 99 99 103 105 117 121 121 121 123 137 139 69

6 228 230 231 74 82 101 97 109 119 129 67 47 87 99 99 103 105 117 121 121 121 123 137 139 69

2 186 186 201 46 54 58 61 73 83 93 58 47 87 97 97 101 101 113 115 115 115 117 125 127 57

2 186 186 201 46 54 58 61 73 83 93 58 47 87 97 97 101 101 113 115 115 115 117 125 127 57

 130 118 156 8 16 20 29 41 51 61 26 15 55 65 65 69 69 81 83 83 83 83 85 85 39

 130 118 156 8 16 20 29 41 51 61 26 15 55 65 65 69 69 81 83 83 83 83 85 85 39

 90 110 151 6 6 10 17 29 38 47 22 13 53 63 63 67 67 79 81 81 81 81 81 81 35

 90 110 151 6 6 10 17 29 38 47 22 13 53 63 63 67 67 79 81 81 81 81 81 81 35

 74 99 145 6 6 6 6 6 6 6 6 6 6 16 16 20 20 32 34 34 34 34 34 34 28

 74 99 145 6 6 6 6 6 6 6 6 6 6 16 16 20 20 32 34 34 34 34 34 34 28

 74 98 145 2 2 2 4 4 4 4 4 4 4 4 4 8 8 20 22 22 22 22 22 22 18

 74 98 145 2 2 2 4 4 4 4 4 4 4 4 4 8 8 20 22 22 22 22 22 22 18

 72 96 145 2 2 2 2 2 2 2 2 2 2 2 2 6 6 18 20 20 20 20 20 20 16

 72 96 145 2 2 2 2 2 2 2 2 2 2 2 2 6 6 18 20 20 20 20 20 20 16

 66 90 144 2 2 2 2 2 2 2 2 2 2 2 2 6 6 18 20 20 20 20 20 20 16

 66 90 144 2 2 2 2 2 2 2 2 2 2 2 2 6 6 18 20 20 20 20 20 20 16

 66 89 143 2 2 2 2 2 2 2 2 2 2 2 2 6 6 18 20 20 20 20 20 20 16

 66 89 143 2 2 2 2 2 2 2 2 2 2 2 2 6 6 18 20 20 20 20 20 20 16

 66 89 133 2 2 2 2 2 2 2 2 2 2 2 2 2 2 14 14 14 14 14 14 14 16

 66 89 133 2 2 2 2 2 2 2 2 2 2 2 2 2 2 14 14 14 14 14 14 14 16

 10

 10

 10

 0

 50

 100

 150

 200

 250

 300

 350
#
 o

f
M

C
S

Figure 5.12: The number of minimal contrast sequences mined for the TSRecord use
case (with max length = 3).

As we can infer from their names, both events X and Y are related to the USB port

activity. Therefore, according to SATM, the cause of the observed QoS issue was

somehow correlated to the transfer of data to the external USB hard drive. The

fact that there is no USB port activity during long intervals of time (subtraces in

Chapter 5. Use Cases 83

the Dneg dataset), was enough for the software developers at STMicroelectronics

to understand the real cause of the degraded QoS. It was related to somewhat no-

torious behavior of the Linux page cache: the data is not written to the secondary

storage immediately after calling the write system call, but is put into the part of

main memory called page cache; it is then the responsibility of the pdflush kernel

thread, invoked by default by the operating system every 5 seconds, to initiate

the writing of the data stored in the page cache to the secondary storage. The

peculiarity of pdflush operation is the complete blocking of those pages from the

page cache that contain data to be sent to the secondary storage. Therefore, if

TSRecord tries to write the newly received data from network buffers to one of

such pages, it becomes blocked until pdflush finishes its operation. The amount

of memory required to store 5 seconds of a high-definition video can easily exceed

the size of network buffers. Therefore, some network packets are lost due to the

network buffers overflow, hence, some video frames are dropped in the recorded

stream. A possible fix of this problem is to reduce the pdflush invocation inter-

val 5. Note that the pdflush event itself was not contained in minimal contrast

sequences mined by SATM. This is due to the fact that this event often occurs

in the non-anomalous parts of the trace, before write becomes blocked. However,

pdflush triggers numerous calls to X = switch to45(usb-storage) and Y =

Interrupt182(GICehci hcd:usb3), and this knowledge helped the developers to

isolate pdflush as the real cause of low QoS of the TSRecord application.

5.3.3 DVBTest Use Case

Similar to the previous two use cases, we use a heat map depicted in Figure 5.13

to show the number of minimal contrast sequences mined by SATM from the

DVBTest’s execution trace. As with the TSrecord use case, the most restric-

tive pair of thresholds which results in a non-empty MCS set is not min sup =

100%, max sup = 0% but min sup = 84%, max sup = 1%. In the latter

case, SATM mined 57 contrast sequences, each of them being a length-3 se-

quence that contains a length-2 subsequence composed of two identical events

CPureSwQueueBufferInterface::SelectPictureForNextVSync:Keep same

node on display, to which we refer further on as event X. When max sup is in-

creased to be equal to 2%, only one minimal contrast sequence is returned: 〈X,X〉.
If max sup is increased further, 〈X,X〉 is always present in the returned set, but

other sequences having a single occurrence of X start being output.

A contrast sequence 〈X,X〉 indicates that the temporal bugs have something to

do with the retainment of the frame in the queue buffer. As was explained in

Section 5.2.3, an already decoded video frame can be retained in a queue buffer

for an additional display refresh cycle if this is required for vertical synchronization.

5www.westnet.com/˜gsmith/content/linux-pdflush.htm

www.westnet.com/~gsmith/content/linux-pdflush.htm

Chapter 5. Use Cases 84

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

m
in

_
su

p
,

%

max_sup, %

 72 1 3 3 4 4 4 4 5 5 24 36 56 314 29 42 29 67 86 144 440 753 1552 2210 2547

 72 1 3 3 4 4 4 4 5 5 17 28 34 268 25 36 18 44 56 108 254 512 1174 1818 2175

 65 1 3 3 4 4 4 4 5 5 5 5 5 215 11 17 17 42 47 99 238 458 1094 1614 1944

 65 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 8 20 123 214 744 1028 1276

 65 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 8 20 53 120 600 847 886

 65 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 7 11 15 26 312 502 573

 64 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 7 7 7 15 41 73 258

 64 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 7 7 7 8 24 26 92

 63 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 7 7 7 8 23 24 55

 63 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 7 7 7 7 19 20 24

 63 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 7 11

 63 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 7 10

 63 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 7 9

 63 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 7 9

 63 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 7 9

 62 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 7 9

 60 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 7 9

 60 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 7 9

 57 1 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 7 9

 1 1 1 1 1 1 2 4

 1 1

 1 1

 1 1

 1 1

 0

 500

 1000

 1500

 2000

 2500

#
 o

f
M

C
S

Figure 5.13: The number of minimal contrast sequences mined for the DVBTest use
case (with max length = 3).

The double appearance of X, however, signifies that the frame is retained for two

additional refresh cycles. In fact, if we look at subtraces in the Dpos dataset, we

can notice that event X often appears more than two times in the same subtrace.

Such prolonged retentions of a single frame in the queue buffer leads to a situation

where the new frames cannot be placed into the buffer, hence, no frames are sent

to the display during several refresh cycles, and a video glitch is observed. At the

same time, during normal DVBTest execution (subtraces in the Dneg dataset) a

single frame is either not placed in the queue buffer at all, or is retained for only

1 additional cycle (i.e. X does not appear in the subtrace or appears only once).

That is why, a length-2 sequence 〈X,X〉 was signaled as a minimal contrast one.

Once informed about this contrast sequence, the developers in STMicroelectronics

quickly realized that there was a bug in the algorithm that computes the number

of cycles a given frame needs to stay in the queue buffer.

5.3.4 Discussion

As we have seen in the previous three sections, if the MCS set returned by SATM

for a given configuration of min sup and max sup threshold values is not empty,

then the target minimal contrast sequence can be found in it. We consider that

using SATM with min sup < 50% and max sup > 25% is irrelevant, hence, have

not tested such pairs of parameter values. Indeed, as explained in Section 4.1, a

pattern can be called a contrast one if it appears frequently in the Dpos dataset

and, at the same time, rarely in the Dneg dataset. That said, we are still left

with the problem of choosing the values for max length, min sup and max sup

parameters, so that both the effort to uncover the target minimal contrast sequence

from the list of all the returned sequences as well as the running time of the mining

Chapter 5. Use Cases 85

algorithm are minimized. This section’s goal is to provide a justified answer to

this problem.

Consider Figure 5.14 which shows the running times of SATM with respect to the

values of min sup and max sup parameters (max length was still fixed at 3) for

all three use cases. Taking also into account Figures 5.11, 5.12 and 5.13, we can

notice that both the size of the returned MCS set and the algorithm’s running time

go up as the min sup’s value decreases. This observation can be explained by the

way the mining algorithm obtains the MCS set from all possible sequences. Recall

that the adopted strategy consists in extracting minimal contrast sequences from

the set of frequent sequences in the Dpos dataset (see Section 4.2.2). Therefore, the

lower the min sup value, the bigger the number of candidate sequential patterns,

hence, the running time spent verifying their supports in the Dneg dataset, and

also the bigger the number of minimal contrast sequences.

The influence of the max sup threshold’s value on the size of the returned MCS

set as well as on the algorithm’s running time is less obvious than of the min sup

threshold. It is easy to see that a bigger value of max sup results in more contrast

sequences being mined. However, one cannot predict the number of minimal

contrast sequences with respect to the value of max sup. In order to understand

why, consider the following example datasets: Dpos = {〈x, a, b〉, 〈x, a, b〉, 〈x, a, b〉},
Dneg = {〈a, b〉, 〈x, a, b〉, 〈a, b, x〉, 〈a, b〉}. In this case, if both max length and

min sup are assigned to value 3 while max sup = 0, then the returned MCS set

is empty. If the max sup’s value is increased to 1, then two minimal contrast

sequences are returned: 〈x, a〉 and 〈x, b〉. However, if the max sup’s value is

increased again to be equal to 2, there is only one minimal contrast sequence in

the given datasets: 〈x〉.

As max sup is increased, which makes the mining algorithm return more contrast

sequences, one expects the running time of the mining algorithm to decrease,

as contrast pruning removes more patterns from the search space. However, as

we can see in Figure 5.14, there is no noticeable decrease in running time for

bigger values of max sup. This can be explained with the small value of the

max length parameter. Indeed, as we fixed the max length threshold to 3, the

depth of the search space tree is limited to 3 levels, making contrast pruning

much less effective than if the max length threshold was not used. At the same

time, contrast pruning helps to reduce the running time spent in the extraction

of minimal contrast sequences from all mined contrast sequences, performed as a

post-processing step.

Finally, the influence of the max length threshold on the mining algorithm’s run-

ning time was already presented in Section 4.2.3: the algorithm’s computational

complexity grows exponentially with the increase of the max length threshold’s

value.

Chapter 5. Use Cases 86

84

86

88

90

92

94

96

98

100

0 1 2 3 4 5 6 7 8 9 10

m
in

_
su

p
,

%

max_sup, %

 0

 50

 100

 150

 200

 250

 300

 350

 400

ru
n
n
in

g
 t
im

e
,
s

(a) GStreamer use case

48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

m
in

_
su

p
,

%

max_sup, %

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

ru
n
n
in

g
 t
im

e
,
s

(b) TSrecord use case

48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

m
in

_
su

p
,

%

max_sup, %

 0

 10

 20

 30

 40

 50

 60

ru
n
n
in

g
 t
im

e
,
s

(c) DVBTest use case

Figure 5.14: Performance results for the SATM mining algorithm run on the three
use cases

Chapter 5. Use Cases 87

Having discussed the influence of min sup, max sup and max length parameters

on the computational complexity of the mining algorithm, as well as on the effort

to analyze the returned MCS set, we now present a strategy to choose the val-

ues for these three thresholds. The value for the max length parameter must be

chosen first. We propose to gradually increase the value of max length until the

performance of the mining algorithm run on the target Dpos and Dneg datasets

becomes prohibitively big; min sup and max sup parameters in their turn re-

main fixed at 100% and 0% correspondingly. The maximal acceptable value of

max length will depend on the characteristics of the datasets as well as on the

available computational resources. Once such value of max length is found, one

needs to find the most constrained values of min sup and max sup thresholds for

which the returned MCS set is not empty. In other words, the top left corner

of the non-white rectangle of the heat map must be experimentally found (e.g.

94% and 1% in Figure 5.12, 84% and 1% in Figure 5.13, or 100% and 0% in

Figure 5.11). Note that it does not make much sense to test all the min sup’s

values from 100% down to 1% with max sup being fixed at 0%, before running

the mining algorithm with bigger values of max sup. Similarly, it is unjustified

to run SATM with all possible max sup’s values while min sup is fixed at 100%,

without trying first to lower down the min sup’s value. Once a combination of

min sup and max sup values resulting in a non-empty MCS set is found, the re-

turned minimal contrast sequences must be analyzed by a software developer. If

the number of returned sequences is too big, a good solution could be to try to

increase the value of max sup parameter, hoping that noisy contrast sequences

disappear, leaving a smaller number of more precise sequences.

5.4 Conclusion

In this chapter, we evaluated our proposed temporal debugging approach SATM on

three use cases. The first use case consisted of a GStreamer-based media decoding

application whose execution was deliberately perturbed by ourselves. The second

and the third use cases came from STMicroelectronics and contained industrial

embedded streaming applications exhibiting low QoS.

As we showed in Section 5.2, SATM successfully detected anomalous zones in the

provided execution traces of each use case, in a fully automatic manner. The clus-

tering step in its turn proved to be extremely important for the period detection

of the applications’ actors. In Section 5.3.1, we presented the results of mining

suspicious system activity in the detected anomalous zones using SATM, and also

explained how the reported minimal contrast sequences allowed to understand the

origin of the temporal bugs. Finally, we proposed a strategy to choose the values

for three parameters used by SATM to mine the set of minimal contrast sequences,

so that the relevant system activity is detected as quickly as possible.

Chapter 5. Use Cases 88

All in all, SATM proved to fulfill its task of automatic detection of system activ-

ity related to the origins of the QoS problems in real-world embedded streaming

applications.

Chapter 6
Related Work

Temporal and functional debugging of embedded software are two conceptually

different problems which need to be addressed with different tools and techniques.

Software developers are well trained in functional debugging, as the appropriate

tools have been available for them for decades. Indeed, learning to set breakpoints

in the application’s source code and inspect the system state using GDB-like de-

buggers has always been an important part of any programming course. Unfortu-

nately, as we explained in Section 2.6, stopping system execution is not an option

when the temporal behavior of the entire system must be analyzed.

In this chapter, we examine how temporal debugging of embedded streaming appli-

cations is performed in the absence of generally accepted solutions. In Section 6.1,

we review the techniques to perform temporal debugging in case system execution

traces are not available to software developers. As we explained in Section 2.7, un-

til relatively recently execution tracing was an expensive and, more importantly,

a highly intrusive process, which could easily perturb temporal behavior of the

entire system. In Section 6.2, we take a look at more recent temporal debugging

techniques which have emerged after the advances in both embedded software and

hardware made the process of execution tracing easy and non-intrusive.

6.1 Temporal Debugging Without Execution Traces

The literature dedicated to temporal debugging of streaming applications without

using execution traces is extremely scarce. The proposed debugging approaches

make use of interactive debuggers but try to alleviate their intrusiveness with

rather exotic techniques. Some authors suggested to perform temporal debug-

ging of real-time applications using execution time prediction [56]. This way, an

application is monitored with a conventional interactive debugger using virtual

89

Chapter 6. Related Work 90

time predicted by a cache simulator, so that the debugger is not aware of the real

wall-clock time altered by its presence. Other authors [9] [10] proposed using a

complete system simulation which provides a timing model for streaming appli-

cations, so that the system’s temporal behavior is not altered by the attached

interactive debugger.

Given the lack of software solutions specifically tailored to temporal debugging,

programmers relied on performance profiling tools in order to get some insight into

the causes of violations of temporal constraints in their embedded applications. A

profiler gathers various performance metrics (e.g. time and memory complexity,

frequency of specific function calls, etc.) during a program’s execution and pro-

vides a summary of hotspots, i.e. the most prominent sections of code with respect

to the chosen metric(s). The goal of profiling tools is to assist a programmer in

deciding which parts of the application’s code require optimizations, so that the

performance of the whole system can be improved.

There exist several types of profiling 1:

• Software based profiling requires injecting instrumentation code into the pro-

gram’s source code before or during compilation. At runtime, the profiler

counts the number of times each instrumented block of code is executed and

reports the gathered statistics once the program terminates [34]. The prob-

lem with software based profiling is that the injected instrumentation code

changes the program, therefore, alters the temporal behavior of the entire

embedded system [65].

• Hardware based profiling [11] uses on-chip performance counters in order to

monitor specific events occurring during program’s execution: CPU cycles,

cache misses, memory reads/writes, particular instruction executions, and

many others. The number of events that can be tracked simultaneously,

however, is limited by the number of performance counters available on the

target hardware. For example, the ARM Cortex-A9 CPU [1] found in STMi-

croelectronics’ STiH412 MPSoC (see Figure 2.2) has only 6 event counters 2.

The role of the profiling tool is then to collect the values from the performance

counters for the particular application components and provide a summary of

the hotspot areas of code. In contrast to software based profiling, hardware

based profiling introduces only a marginal performance overhead. Indeed,

the only thing a profiler needs to do at runtime is to read from time to

time the values stored in the hardware performance counters [21], instead of

interrupting the program’s execution every time a particular event occurs.

1We do not discuss simulation based profiling in this thesis, as it is much slower and less precise
than software/hardware based profiling and has a very limited usage for debugging software on complex
SoCs that have been already put into production

2http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka4237.html

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka4237.html

Chapter 6. Related Work 91

There are two ways hardware based profiling can be performed: either in a

counting, or in a sampling mode [54]. With the counting mode, the hardware

counter is increased each time a given event occurs. The developer, thus,

only gets the total number of a particular event’s executions as the result

of profiling. From the other hand, the sampling mode [12] allows to get

information on the precise code segment that caused each event. This is

possible due to the support of hardware interrupts on a counter overflow.

When the number in a counter reaches a predefined value, hardware interrupt

is generated, and information about the part of code that caused the last

event is collected.

Although profilers are actively used nowadays for performance optimization, they

are far from being sufficient to resolve temporal bugs. Indeed, profiling tools re-

port aggregate values for performance metrics without providing any details on

the cause of the observed values, and more importantly on their relation to tem-

poral bugs. This results in a trial-and-error temporal debugging, where software

developers optimize the performance of the reported hotspots hoping that such

optimizations will eliminate temporal anomalies.

To sum up, temporal debugging was an extremely tedious and approximate process

before tracing technology became mainstream in embedded systems community

and favored the emergence of more advanced temporal debugging solutions.

6.2 Temporal Debugging With Execution Traces

Thanks to an active participation of both the suppliers of IP cores and the kernel

space software developers, it is possible nowadays to trace execution of the whole

embedded system in a convenient and non-intrusive way (see Section 2.7 for more

details). Therefore, embedded software developers now have a way to inspect

system behavior once the execution has finished, i.e. in a post-mortem fashion.

This is particularly good news with respect to the temporal debugging problem,

as the whole history of system execution can be navigated back and forth until

suspicious activity causing temporal bugs is detected.

Anyone who has seen a real execution trace of an embedded system knew immedi-

ately that trace analysis is not a simple task. A very long timestamped sequence

of events coming from different parts of a system, which is essentially an execution

trace, is not the most analysis-friendly type of data. Fortunately, there exists a

plethora of trace visualization tools which can make the process of trace analysis

much more productive and pleasant.

Chapter 6. Related Work 92

Trace visualization

A common approach to perform trace analysis consists in searching for a particular

part of the trace with grep-like tools and then manually inspecting system activity

in that part using trace summarization and visualization tools [69]. Many different

techniques have been proposed to visualize execution traces [37][71][28], but the

most popular one consists in displaying the timeline of system execution with a

Gantt chart [24][36][59]. Consider Figure 6.1 which shows a 1 millisecond slice of

an execution trace displayed with STLinux Trace Viewer – a trace visualization

tool based on Gantt chart representation developed in STMicroelectronics. The

visualization includes a list of threads, as can be seen on the left side of the figure,

and a timeline view of the events executed on the processor in the context of these

threads. Black arrows denote context switches from one thread to another, while

the green arrows show the interrupts executed in the context of the active thread.

The length of the rectangles in the timeline view corresponds to the duration of a

particular thread invocation, and the colors denote execution of different functions

(the white color means that the executed function was not instrumented).

Figure 6.1: A screenshot of STLinux Trace Viewer showing the visualization of a
1 millisecond slice of an execution trace.

Trace visualization tools can be very helpful for a fine-grained analysis of a very

specific part of a trace. In case temporal debugging must be performed, however,

the developer normally does not know which segment of a trace contains faulty

system behavior. Therefore, the totality of the execution trace must be analyzed.

Consider Figure 6.2 which shows the visualization of a 1 second slice of the same

trace presented in Figure 6.1. Note that this trace slice represents only a 1/343th

of the original trace file. Moreover, it shows the activity of a single CPU core.

Chapter 6. Related Work 93

Even if the faulty system behavior was present in this part of the trace, it would

be still very difficult to spot it manually.

Figure 6.2: A screenshot of STLinux Trace Viewer showing the visualization of a
1 second slice of an execution trace.

Manual visual analysis of execution traces does not scale and is usually very hard

when performed with the goal of system-level temporal debugging. Therefore, the

current trend is to automate the process of trace based temporal debugging to

relieve software developers from the burden of poking around large amounts of

information [83].

Data mining in execution traces

The general goal of data mining field is automatic knowledge discovery from big

amounts of data (see Section 4.1 for more details). As data mining algorithms are

usually oblivious of the provenance of the provided data and, hence, have been

successfully applied in various domains, it is a logical idea to use such algorithms

on execution traces in order to get some insights into the origins of temporal bugs.

In this section, we compare the most relevant data mining approaches for temporal

debugging of embedded streaming applications to our Streaming Application Trace

Miner (SATM) .

Lo et al. [49] address the same data mining problem as we do: discovering contrast

patterns from program execution traces for debugging purposes. Different from

our approach, the authors propose to mine contrast closed iterative patterns.

An iterative pattern [50] is essentially a sequential pattern. At the same time,

the support of an iterative pattern p in a sequential database DB includes not

Chapter 6. Related Work 94

only the number of transactions T , such that T A p, but also the number of non-

overlapping instances (or, iterations) of p in each transaction T . For example,

given DB = {T1 : 〈A,B,A,C,B〉, T2 : 〈C,A,B〉}, the support of an iterative

pattern p = 〈A,B〉 in DB is supDB(p) = 3 and not 2, as p has two iterations in

T1. An algorithm to mine frequent closed iterative patterns was proposed in [50].

In the Experimental section of their work, Lo et al. [49] report that they were

not able to mine the full set of contrast closed iterative patterns from program

execution traces due to the high computational complexity of the task. Instead,

the authors mine such called contrast closed unique iterative patterns, that is,

contrast closed iterative patterns where each distinct element can occur only once.

Such patterns are obviously too restrictive and would not allow to express con-

trast sequences containing several identical elements, such as the contrast sequence

reported for the DVBTest use case in Section 5.3.3.

The work of Yu et al. [87] presents an approach to debug applications’ performance

problems which is conceptually similar to SATM. The authors introduce the notion

of cost propagation in the systems consisting of interacting components, akin to

our delay propagation, in order to discover a component which is responsible

for the performance bug. Their approach mines a number of execution traces

capturing both “good” and “bad” application performances to find event patterns

that are inherent to the “bad” traces and that originate from a set of predefined

suspicious components. Similarly, Hsu et al. [38] mine contrast patterns from

two sets of execution traces using a suspiciousness metric computed for individual

traced events.

In contrast to [87] [38], SATM does not require any assumptions on the location

of the performance bug or on the type of events related to the bug. Instead, we

address a specific context, which is embedded streaming software, by including its

specificities (periodic execution, real-time deadlines) in the core of SATM.

The work of Lagraa et al. [44] applied data mining algorithms on execution traces

of streaming applications run on simulated MPSoC based platforms in order to

resolve memory contention bugs. Their approach detects individual instructions

that exhibit abnormally high latency and mines patterns of execution events that

frequently occur in the vicinity of these instructions. At the same time, if the

system’s low QoS does not originate from memory contention, memory access

latency becomes useless to locate an anomalous part of the execution trace.

Cueva et al. [51] propose to resolve temporal bugs in embedded streaming appli-

cations using periodic patterns mined from execution traces. This was the first

work that took into account periodic nature of streaming applications in order to

mine more meaningful patterns from execution traces.

A periodic pattern is an itemset (i.e. a set of events) that appears periodically in a

system execution trace and whose elements occur temporally close to each other.

Chapter 6. Related Work 95

In order to define an exact threshold value for “temporally close”, the authors

propose to split the execution trace into subtraces using either a time interval or

a particular event, so that events occurring in the same subtrace are considered

temporally close to each other. The period of a pattern is then defined as the

number of subtraces that separate two consecutive pattern’s occurrences. The

authors proposed the PerMiner algorithm to mine all frequent periodic patterns in

the execution trace. Once a complete set of frequent periodic patterns is mined,

the developer has to manually analyze it and select the patterns having gaps in

their period.

The work of Cueva et al. [51] made a valuable contribution to data mining field by

introducing an efficient way of mining periodic patterns. There are, however, sev-

eral limitations to use periodic patterns for temporal debugging purposes. Firstly,

the periods of all the periodic patterns must align with the way the execution trace

was split into subtraces. For example, if a time interval of 10ms was used to split

an execution trace, and a pattern has a period of 7ms or 23ms, then such pattern

will not be mined by PerMiner. Secondly, the set of mined periodic patterns must

be analyzed in its entirety in order to spot unusual patterns or the ones having

gaps in their period. Such manual verification can be difficult if a big number of

periodic patterns was mined.

Kengne et al. [42] propose to discover anomalies in streaming applications by

applying distance metrics on normal and buggy execution traces. The idea of

their approach consists in enabling software developers to automatically detect a

high-level problem present in a given execution trace, under condition that there

exists a distance metric specific to the observed anomaly. At the same time,

no information is given to the developer on the cause of the observed anomaly.

Moreover, both the list of metrics characterizing possible anomalies as well as the

trace corresponding to a normal application’s execution are required as the input

from the developer.

Chapter 7
Conclusion

The process of temporal debugging of multimedia embedded systems often feels

like looking for a needle in a haystack. Searching for a tiny, shiny object in a big

pile of dried grass is a daunting task; but at least you know what you are looking

for. From the other hand, given a sequence of tens of thousands of events present in

a typical execution trace of an embedded system, software developers usually have

no idea which particular set of events in that trace would provide them an insight

into the origins of the system’s low QoS. Software developers, however, should not

be blamed for the lack of understanding of the fine-grained behavior of the whole

embedded system captured in an execution trace. The problem is rather with

the current lack of appropriate tools and techniques to perform execution trace

analysis for temporal debugging purposes.

Next, consider consumer electronics devices that enclose multimedia embedded

systems in their sleek bodies: mobile phones, tablets, set-top boxes, and many

others. The market of such devices is extremely competitive and dynamic: dozens

of companies (among them are such giants as Apple, Samsung, LG, etc.) struggle

to propose the best product among the competitors, and launch it on the market

as soon as possible. At the same time, even the most stylish, powerful device

with small energy consumption and an affordable price tag will not stand up to

competition if its software contains temporal bugs. Indeed, customers simply do

not buy multimedia devices exhibiting low QoS (which is often an indicator of the

presence of temporal bugs), as it greatly reduces user experience, that is, makes

the device not pleasant to use. Moreover, temporal bugs tend to appear at the last

stages of the software development process, when the device has already left the

manufacturing facility, but some use cases of running various applications cause

the device to exhibit low QoS.

97

Chapter 7. Conclusion 98

As a result, if one couples the urgency of temporal debugging to the lack of ap-

propriate tools to perform this task, he/she can easily empathize with embedded

software developers in their exasperation of dealing with this type of bugs.

We believe that data mining research and embedded software debugging has a

potential to be a new fruitful meeting point between computer science and soft-

ware engineering. With the recent advances in the execution tracing technology,

it became possible to unintrusively capture the whole embedded system’s activity

for later analysis. At the same time, data mining subfield of computer science

has showed its universality for automatic discovery of useful information from big

amounts of data in diverse areas: from the traffic control to web-based recommen-

dation systems.

7.1 Contributions

In this thesis, we have proposed to automate the search of suspicious system

activity in execution traces of multimedia embedded systems exhibiting low QoS

using data mining algorithms. The following list summarizes the contributions of

this work:

I. A data mining approach to temporal debugging of embedded streaming applica-

tions.

The aim of this doctoral work was to propose a debugging tool that, given a precise

input, would return a specific and concise description of system activity related to

the origin of the system’s low QoS. We achieved this goal with Streaming Appli-

cation Trace Miner (SATM) – our data mining approach to temporal debugging

of embedded streaming applications. SATM takes an execution trace of the em-

bedded system as well as the list of dataflow actors of the application showing

low QoS and returns a set of execution event sequences which represent suspicious

system activities related to the origin of temporal bugs. The operation of SATM

is divided into two distinct stages.

During the first stage (Section 3.2), SATM narrows down the search area in the exe-

cution trace. To achieve this in a completely automatic fashion, SATM relies on the

notion of execution delay propagation (our third contribution). Implementation-

wise, SATM uses the one-dimensional clustering algorithm proposed in [22] which

we enriched with Otsu algorithm [60] to eliminate any parameter setting required

from the developer. In order to find the outlier clusters, we applied a simple outlier

detection technique used in boxplot diagrams [77].

During the second stage (Section 4.2), SATM mines minimal contrast sequences

between the anomalous parts of the execution trace detected in the first stage

Chapter 7. Conclusion 99

and the rest of the trace. To make this stage computationally feasible, we in-

troduced the max length parameter to the PrefixSpan algorithm [63] which we

further enriched with the contrast pruning from [41].

In Chapter 5, we validated SATM on three real-world use cases. The first use case

involved a media application programmed with the GStreamer framework where

we manually injected temporal bugs. The other two were industrial use cases

coming from STMicroelectronics. In all three cases, SATM was able to pinpoint

a concise sequence of events which directly pointed at the cause of the temporal

bugs.

II. Analysis of the computational complexity of state-of-the-art pattern mining al-

gorithms applied on execution trace data.

While investigating numerous pattern mining algorithms in order to find the one

which would allow to mine minimal contrast sequences from execution traces (sec-

ond stage of SATM), we were encountering the same problem, again and again:

the algorithms would not show the promised in the literature performance, even

on the smallest, synthetic execution traces. After months of fruitless attempts, we

started to look closer at our data and realized that the problem comes from the

intrinsic characteristics of trace data, rather than its sheer size. More precisely,

high computational complexity of pattern mining algorithms run on trace data

comes from two facts: (1) embedded streaming applications exhibit highly repet-

itive behavior, hence, their traces share a long common sequence of events, and

(2) there are a lot of random events between the elements of the aforementioned

sequence due to the shared computational resources of MPSoC platforms. We

identified this as an interesting new research problem in the pattern mining field

which merits being investigated further.

III. The notion of execution delay propagation in dataflow graphs.

We studied the common properties of streaming applications run on embedded

systems in order to find an automatic way of detecting abnormal parts of exe-

cution traces where the system first starts to deviate from its normal behavior.

After an extensive analysis of both the dataflow programming model used to de-

sign streaming applications, as well as the real-time environment of multimedia

embedded systems, we have come up with a notion of execution delay propaga-

tion. As we explained in Section 3.1, according to this notion, once a particular

actor from the application’s dataflow graph misses its real-time deadline, the dif-

ference between the expected and the observed times of sending its output to the

subsequent actor propagates through the downstream actors resulting in delayed

output of the whole application. This understanding allowed us to make the first

step towards tracking down the elusive temporal bugs in embedded streaming

applications.

Our first and third contributions have been published in [40].

Chapter 7. Conclusion 100

7.2 Limitations

Although SATM is based on a solid theoretical foundation and showed its utility

for temporal debugging of real streaming applications, we can identify several

limitations of our approach:

1. SATM is tailored to solve a particular type of problems dictated by the industrial

nature of this work.

The goal of this doctoral work was to propose a temporal debugging approach

for the software developed in STMicroelectronics. Therefore, SATM incorporates

some properties specific to embedded streaming applications (dataflow program-

ming model, strictly periodic execution, delay propagation), hence, in situations

where temporal bugs must be found in the software that does not have these

properties, SATM cannot be applied.

2. Usage of the max length parameter in minimal contrast sequence mining step

limits the applicability of SATM.

Indeed, in cases where the most concise representation of abnormal system activity

consists of more than max length events, SATM will not be able to discover such

system activity. As explained in Chapter 4, our research showed that the task

of mining the complete set of minimal contrast sequences from execution trace

data is prohibitively expensive using state-of-the-art pattern mining algorithms.

By introducing the max length parameter we tried to find a balance between the

time required to perform the mining step and the expressiveness of the returned

patterns.

7.3 Perspectives

From our experience of performing research in the industrial context we have ob-

served yet another example of how both computer science and software engineering

can benefit from each other. Software debugging can become a more methodical

process if more research is done on the application of data mining algorithms on

system traces. At the same time, data mining subfield of computer science can be

enriched with conceptually new algorithms and techniques aiming at knowledge

extraction from the not yet thoroughly investigated data type which is system

traces. In this thesis, we have done a step forward in both of these directions. We

envision to continue our work in the following directions:

1. Automate the choice of values for min sup, max sup and max length parameters

during minimal contrast sequence mining.

Even though we advertised SATM in this thesis as an automatic approach to tem-

poral debugging, it is still not completely automatic. Minimal contrast sequence

mining algorithm used in the second stage of SATM requires the setting of values

Chapter 7. Conclusion 101

for min sup, max sup and max length parameters. In Section 5.3.4, we have pro-

posed a strategy to manually find the best values for these parameters. It would

be beneficial to automate this search, so that the developer only analyzes the re-

turned contrast sequences and chooses to continue the mining process, or to stop

it if the cause of the system’s low QoS has been identified.

2. Apply a more advanced outlier detection method for more accurate identifica-

tion of anomalous parts of the execution trace.

As we have seen in Section 5.3, in practice, the first stage of SATM is prone to

returning some false positive and false negative anomalous parts of the execu-

tion trace. The problem comes from the simplicity of SATM’s outlier detection

mechanism. Indeed, Tukey’s intuition [77] to use 3 inter-quartile ranges for out-

lier identification works well for quick analysis of normally distributed data using

box plot diagrams. At the same time, it may fail to correctly separate regular

observations from outliers when the data is skewed or not normally distributed. A

more advanced outlier detection method [75] could alleviate this problem. More-

over, reducing the number of false positives and negatives will make the process of

choosing the values for min sup and max sup parameters in the contrast mining

algorithm more intuitive.

3. Investigate the further applications of data mining algorithms on trace data for

software debugging purposes.

During this thesis, we have briefly collaborated with the AMfoRS team 1 from

the TIMA laboratory and the Convecs team 2 from the LIG laboratory. Both

collaborations targeted an application of pattern mining algorithms on simulation

traces produced by model checking software. While working with the AMfoRS

team, we co-supervised the internship of a first year Master’s student and helped

him to apply a frequent closed pattern mining algorithm [78] to characterize simu-

lation traces of program executions which violated system’s temporal properties 3.

We succeeded to detect the system’s activities which characterized the causes of

temporal properties violations, but the size of simulation traces was rather small

(a single trace had ∼15-25 events). The second, more recent collaboration is

also aimed at debugging simulation traces produced by model checking software.

However, a considerable size of collected simulation traces caused the running of

state-of-the-art pattern mining algorithms on them too costly.

These two collaborations have strengthened our belief that data mining algorithms

is an invaluable technique for software debugging process. It is, therefore, very

important to continue the investigation of possible areas of application of data

mining algorithms in software engineering. Indeed, a PhD thesis of Gianluca

Barbon started in October 2015 4 aims to continue our collaboration with the

1http://tima.imag.fr/tima/en/amfors/amforsoverview.html
2http://convecs.inria.fr/
3For more information on the way such traces were generated, see [66].
4http://www.theses.fr/en/s141898

http://tima.imag.fr/tima/en/amfors/amforsoverview.html
http://convecs.inria.fr/
http://www.theses.fr/en/s141898

Chapter 7. Conclusion 102

Convecs team in searching for the ways data mining algorithms could help in

debugging counterexamples generated by model checking software.

4. Continue the search of novel pattern mining algorithms for execution trace data.

As we concluded in Chapter 4, the state-of-the-art pattern mining algorithms fail

to efficiently mine execution traces due to structural peculiarities of this type of

data. It is, therefore, important to continue the research on novel algorithms which

would make pattern mining on execution trace data feasible. With this goal in

mind, we have started a collaboration with one of the authors of [57] to verify if

their sequence mining algorithm based on constraint programming can make the

task of discovering minimal contrast sequences more efficient.

Bibliography

[1] ARM Cortex-A9 CPU. http://www.arm.com/products/processors/

cortex-a/cortex-a9.php.

[2] ARM Mali-400 GPU. http://www.arm.com/products/multimedia/mali-

gpu/ultra-low-power/mali-400.php.

[3] KPTrace for STLinux. http://www.stlinux.com/devel/traceprofile/

kptrace.

[4] LTTng tracing framework for linux. https://lttng.org/.

[5] STLinux distribution and development environment. http://www.stlinux.

com.

[6] Charu Aggarwal and Jiawei Han, editors. Frequent Pattern Mining. Springer,

2014.

[7] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In

Data Engineering, 1995. Proceedings of the Eleventh International Conference

on, pages 3–14. IEEE, 1995.

[8] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining

association rules. In Proc. 20th int. conf. very large data bases, VLDB, volume

1215, pages 487–499, 1994.

[9] Lars Albertsson. Temporal debugging and profiling of multimedia applica-

tions. In Electronic Imaging 2002, pages 196–207. International Society for

Optics and Photonics, 2001.

[10] Lars Albertsson and Peter S Magnusson. Using complete system simulation

for temporal debugging of general purpose operating systems and workloads.

In Modeling, Analysis and Simulation of Computer and Telecommunication

Systems, 2000. Proceedings. 8th International Symposium on, pages 191–198.

IEEE, 2000.

[11] Glenn Ammons, Thomas Ball, and James R Larus. Exploiting hardware

performance counters with flow and context sensitive profiling. ACM Sigplan

Notices, 32(5):85–96, 1997.

103

http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/multimedia/mali-gpu/ultra-low-power/mali-400.php
http://www.arm.com/products/multimedia/mali-gpu/ultra-low-power/mali-400.php
http://www.stlinux.com/devel/traceprofile/kptrace
http://www.stlinux.com/devel/traceprofile/kptrace
https://lttng.org/
http://www.stlinux.com
http://www.stlinux.com

Bibliography 104

[12] Jennifer M Anderson, Lance M Berc, Jeffrey Dean, Sanjay Ghemawat,

Monika R Henzinger, Shun-Tak A Leung, Richard L Sites, Mark T Van-

devoorde, Carl A Waldspurger, and William E Weihl. Continuous profiling:

where have all the cycles gone? ACM Transactions on Computer Systems

(TOCS), 15(4):357–390, 1997.

[13] Mohamed Bamakhrama and Todor Stefanov. Hard-real-time scheduling of

data-dependent tasks in embedded streaming applications. In Proceedings of

the ninth ACM international conference on Embedded software, pages 195–

204. ACM, 2011.

[14] Mohamed Bamakhrama and Todor Stefanov. Managing latency in embedded

streaming applications under hard-real-time scheduling. In Proceedings of

the eighth IEEE/ACM/IFIP international conference on Hardware/software

codesign and system synthesis, pages 83–92. ACM, 2012.

[15] Stephen D Bay and Michael J Pazzani. Detecting change in categorical data:

Mining contrast sets. In Proceedings of the fifth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 302–306. ACM,

1999.

[16] Roberto J Bayardo Jr. Efficiently mining long patterns from databases. In

ACM Sigmod Record, volume 27, pages 85–93. ACM, 1998.

[17] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peperstraete. Cycle-

static dataflow. Signal Processing, IEEE Transactions on, 44(2):397–408,

1996.

[18] Alvis Brazma, Inge Jonassen, Ingvar Eidhammer, and David Gilbert. Ap-

proaches to the automatic discovery of patterns in biosequences. Journal of

computational biology, 5(2):279–305, 1998.

[19] Reinder J Bril, Christian Hentschel, Elisabeth FM Steffens, Maria Gabrani,

G van Loo, and Jean HA Gelissen. Multimedia qos in consumer terminals. In

Signal Processing Systems, 2001 IEEE Workshop on, pages 332–343. IEEE,

2001.

[20] Sarah Chan, Ben Kao, Chi Lap Yip, and Michael Tang. Mining emerg-

ing substrings. In Database Systems for Advanced Applications, 2003.(DAS-

FAA 2003). Proceedings. Eighth International Conference on, pages 119–126.

IEEE, 2003.

[21] Thomas M Conte, Burzin A Patel, Kishore N Menezes, and J Stan Cox.

Hardware-based profiling: An effective technique for profile-driven optimiza-

tion. In Int’l Journal of Parallel Programming. Citeseer, 1996.

[22] Matthew Cooper, Jonathan Foote, Andreas Girgensohn, and Lynn Wilcox.

Temporal event clustering for digital photo collections. ACM Transactions

Bibliography 105

on Multimedia Computing, Communications, and Applications (TOMCCAP),

1(3):269–288, 2005.

[23] Robert I Davis and Alan Burns. A survey of hard real-time scheduling for

multiprocessor systems. ACM Computing Surveys (CSUR), 43(4):35, 2011.

[24] J Chassin de Kergommeaux, Benhur Stein, and Pierre-Eric Bernard. Pajé, an

interactive visualization tool for tuning multi-threaded parallel applications.

Parallel Computing, 26(10):1253–1274, 2000.

[25] Mathieu Desnoyers and Michel R Dagenais. The lttng tracer: A low impact

performance and behavior monitor for gnu/linux. In OLS (Ottawa Linux

Symposium), volume 2006, pages 209–224. Citeseer, 2006.

[26] Guozhu Dong and James Bailey. Contrast Data Mining: Concepts, Algo-

rithms, and Applications. Chapman & Hall/CRC, 1st edition, 2012.

[27] Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns: Dis-

covering trends and differences. In Proceedings of the fifth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 43–

52. ACM, 1999.

[28] Damien Dosimont, Generoso Pagano, Guillaume Huard, Vania Marangozova-

Martin Huard, and Jean-Marc Vincent. Efficient analysis methodology for

huge application traces. In High Performance Computing & Simulation

(HPCS), 2014 International Conference on, pages 951–958. IEEE, 2014.

[29] Johannes Fischer, Volker Heun, and Stefan Kramer. Optimal string mining

under frequency constraints. In Knowledge Discovery in Databases: PKDD

2006, pages 139–150. Springer, 2006.

[30] Jonathan Foote. Automatic audio segmentation using a measure of audio

novelty. In Multimedia and Expo, 2000. ICME 2000. 2000 IEEE International

Conference on, volume 1, pages 452–455. IEEE, 2000.

[31] Philippe Fournier-Viger, Cheng-Wei Wu, and Vincent S Tseng. Mining max-

imal sequential patterns without candidate maintenance. In Advanced Data

Mining and Applications, pages 169–180. Springer, 2013.

[32] Chuancong Gao, Jianyong Wang, Yukai He, and Lizhu Zhou. Efficient min-

ing of frequent sequence generators. In Proceedings of the 17th international

conference on World Wide Web, pages 1051–1052. ACM, 2008.

[33] Andreas Gerstlauer, Christian Haubelt, Andy D Pimentel, Todor P Stefanov,

Daniel D Gajski, and Jürgen Teich. Electronic system-level synthesis method-

ologies. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 28(10):1517–1530, 2009.

Bibliography 106

[34] Susan L Graham, Peter B Kessler, and Marshall K McKusick. An execution

profiler for modular programs. Software: Practice and Experience, 13(8):671–

685, 1983.

[35] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and

techniques (Second Edition). Elsevier, 2006.

[36] Michael T Heath, Jennifer Etheridge, et al. Visualizing the performance of

parallel programs. Software, IEEE, 8(5):29–39, 1991.

[37] Danny Holten, Bas Cornelissen, and Jarke J Van Wijk. Trace visualization

using hierarchical edge bundles and massive sequence views. In Visualizing

Software for Understanding and Analysis, 2007. VISSOFT 2007. 4th IEEE

International Workshop on, pages 47–54. IEEE, 2007.

[38] Hwa-You Hsu, James A Jones, and Alessandro Orso. Rapid: Identifying bug

signatures to support debugging activities. In Proceedings of the 2008 23rd

IEEE/ACM International Conference on Automated Software Engineering,

pages 439–442. IEEE Computer Society, 2008.

[39] Xiao Hu and Shuming Chen. Applications of on-chip trace on debugging em-

bedded processor. In Software Engineering, Artificial Intelligence, Network-

ing, and Parallel/Distributed Computing, 2007. SNPD 2007. Eighth ACIS

International Conference on, pages 140–145. IEEE, 2007.

[40] Oleg Iegorov, Vincent Leroy, Alexandre Termier, Jean-François Méhaut, and

Miguel Santana. Data mining approach to temporal debugging of embedded

streaming applications. In Proceedings of the 12th International Conference

on Embedded Software, pages 167–176. IEEE Press, 2015.

[41] Xiaonan Ji, James Bailey, and Guozhu Dong. Mining minimal distinguish-

ing subsequence patterns with gap constraints. Knowledge and Information

Systems, 11(3):259–286, 2007.

[42] Christiane Kamdem Kengne, Noah Ibrahim, Marie-Christine Rousset, and

Maurice Tchuente. Distance-based trace diagnosis for multimedia applica-

tions: Help me ted! In Semantic Computing (ICSC), 2013 IEEE Seventh

International Conference on, pages 306–309. IEEE, 2013.

[43] R Krishnakumar. Kernel korner: kprobes-a kernel debugger. Linux Journal,

2005(133):11, 2005.

[44] Sofiane Lagraa, Alexandre Termier, and Frédéric Pétrot. Data mining mpsoc

simulation traces to identify concurrent memory access patterns. In Proceed-

ings of the Conference on Design, Automation and Test in Europe, pages

755–760. European Design and Automation Association, 2013.

Bibliography 107

[45] Edward Lee, Thomas M Parks, et al. Dataflow process networks. Proceedings

of the IEEE, 83(5):773–801, 1995.

[46] Edward A Lee and David G Messerschmitt. Synchronous data flow. Proceed-

ings of the IEEE, 75(9):1235–1245, 1987.

[47] Chun Li and Jianyong Wang. Efficiently mining closed subsequences with gap

constraints. In SDM, pages 313–322. SIAM, 2008.

[48] Xiaoqing Liu, Jun Wu, Feiyang Gu, Jie Wang, and Zengyou He. Discrim-

inative pattern mining and its applications in bioinformatics. Briefings in

bioinformatics, page bbu042, 2014.

[49] David Lo, Hong Cheng, Jiawei Han, Siau-Cheng Khoo, and Chengnian Sun.

Classification of software behaviors for failure detection: a discriminative pat-

tern mining approach. In Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 557–566. ACM,

2009.

[50] David Lo, Siau-Cheng Khoo, and Chao Liu. Efficient mining of iterative

patterns for software specification discovery. In Proceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery and data mining,

pages 460–469. ACM, 2007.

[51] Patricia López Cueva, Aurélie Bertaux, Alexandre Termier, Jean François

Méhaut, and Miguel Santana. Debugging embedded multimedia application

traces through periodic pattern mining. In Proceedings of the tenth ACM

international conference on Embedded software, pages 13–22. ACM, 2012.

[52] Congnan Luo and Soon Myoung Chung. Efficient mining of maximal sequen-

tial patterns using multiple samples. In SDM, pages 415–426. SIAM, 2005.

[53] Roberto Mijat. Better Trace For Better Software With CoreSight

STM (White paper). ARM, 2010. https://www.arm.com/files/pdf/

Better_Trace_for_Better_Software_-_CoreSight_STM_with_LTTng_-

_19th_October_2010.pdf.

[54] Shirley V Moore. A comparison of counting and sampling modes of using

performance monitoring hardware. In Computational Science—ICCS 2002,

pages 904–912. Springer, 2002.

[55] David W Mount and David W Mount. Bioinformatics: sequence and genome

analysis, volume 2. Cold spring harbor laboratory press New York:, 2001.

[56] Frank Mueller and David B Whalley. On debugging real-time applications.

In ACM SIGPLAN Workshop on Language, Compiler, and Tool Support for

Real-Time Systems, 1994.

https://www.arm.com/files/pdf/Better_Trace_for_Better_Software_-_CoreSight_STM_with_LTTng_-_19th_October_2010.pdf
https://www.arm.com/files/pdf/Better_Trace_for_Better_Software_-_CoreSight_STM_with_LTTng_-_19th_October_2010.pdf
https://www.arm.com/files/pdf/Better_Trace_for_Better_Software_-_CoreSight_STM_with_LTTng_-_19th_October_2010.pdf

Bibliography 108

[57] Benjamin Negrevergne and Tias Guns. Constraint-based sequence mining

using constraint programming. In Integration of AI and OR Techniques in

Constraint Programming, pages 288–305. Springer, 2015.

[58] Andrew F Neuwald, Jun S Liu, David J Lipman, and Charles E Lawrence.

Extracting protein alignment models from the sequence database. Nucleic

Acids Research, 25(9):1665–1677, 1997.

[59] Daniel K Osmari, Huy T Vo, Claudio T Silva, Joao LD Comba, and Lauro

Lins. Visualization and analysis of parallel dataflow execution with smart

traces. In Graphics, Patterns and Images (SIBGRAPI), 2014 27th SIBGRAPI

Conference on, pages 165–172. IEEE, 2014.

[60] Nobuyuki Otsu. A threshold selection method from gray-level histograms.

Automatica, 11(285-296):23–27, 1975.

[61] Myeong-Chul Park, Young-Joo Kim, In-Geol Chun, Seok-Wun Ha, and Yong-

Kee Jun. A gdb-based real-time tracing tool for remote debugging of soc

programs. In Advances in Hybrid Information Technology, pages 490–499.

Springer, 2007.

[62] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering

frequent closed itemsets for association rules. In ICDT’99, pages 398–416.

Springer, 1999.

[63] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen,

Umeshwar Dayal, and Mei-Chun Hsu. Prefixspan: Mining sequential pat-

terns efficiently by prefix-projected pattern growth. In icccn, page 0215. IEEE,

2001.

[64] Maxime Pelcat, Slaheddine Aridhi, Jonathan Piat, and Jean-François Nezan.

Dataflow model of computation. In Physical Layer Multi-Core Prototyping,

pages 53–75. Springer, 2013.

[65] Ramesh V Peri, Sanjay Jinturkar, and Lincoln Fajardo. A novel technique

for profiling programs in embedded systems. In ACM Workshop on Feedback-

Directed and Dynamic Optimization, 1999.

[66] Laurence Pierre, Luca Ferro, Zeineb Bel Hadj Amor, Philippe Bourgon, and

Jérôme Quévremont. Integrating psl properties into systemc transactional

modeling—application to the verification of a modem soc. In Industrial Em-

bedded Systems (SIES), 2012 7th IEEE International Symposium on, pages

220–228. IEEE, 2012.

[67] Kevin Pouget, Patricia Lopez Cueva, Matheus Santana, and Jean-François

Méhaut. Interactive debugging of dynamic dataflow embedded applications.

In Parallel and Distributed Processing Symposium Workshops & PhD Forum

(IPDPSW), 2013 IEEE 27th International, pages 345–354. IEEE, 2013.

Bibliography 109

[68] Carlos Prada-Rojas, Frederic Riss, Xavier Raynaud, Serge De Paoli, and

Miguel Santana. Observation tools for debugging and performance analy-

sis of embedded linux applications. In Conference on System Software, SoC

and Silicon Debug-S4D, 2009.

[69] Carlos Prada-Rojas, Miguel Santana, Serge De-Paoli, Xavier Raynaud, et al.

Summarizing embedded execution traces through a compact view. In Con-

ference on System Software, SoC and Silicon Debug S4D, 2010.

[70] Isidore Rigoutsos and Aris Floratos. Combinatorial pattern discovery in bio-

logical sequences: The teiresias algorithm. Bioinformatics, 14(1):55–67, 1998.

[71] James Roberts. Tracevis: an execution trace visualization tool. In In Proc.

MoBS 2005. Citeseer, 2005.

[72] Richard Stallman, Roland Pesch, Stan Shebs, et al. Debugging with gdb. Free

Software Foundation, 51:02110–1301, 2002.

[73] Darlene Stewart, W Morven Gentleman, et al. Non-stop monitoring and

debugging on shared-memory multiprocessors. In Software Engineering for

Parallel and Distributed Systems, 1997. Proceedings., Second International

Workshop on, pages 263–269. IEEE, 1997.

[74] Daniel Sundmark. Deterministic replay debugging of embedded real-time sys-

tems using standard components. Mälardalen University, 2004.

[75] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data

Mining, (First Edition). Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2005.

[76] Wim Taymans, Steve Baker, Andy Wingo, Ronald S Bultje, and Stefan Kost.

Gstreamer application development manual (1.5. 0.1). 2008.

[77] John W Tukey. Exploratory data analysis. 1977.

[78] Takeaki Uno, Tatsuya Asai, Yuzo Uchida, and Hiroki Arimura. An efficient

algorithm for enumerating closed patterns in transaction databases. In Dis-

covery science, pages 16–31. Springer, 2004.

[79] Bart Vermeulen, Neal Stollon, Rolf Kühnis, Gary Swoboda, and Jeff Rearick.

Overview of debug standardization activities. Design & Test of Computers,

IEEE, 25(3):258–267, 2008.

[80] Jianyong Wang, Jiawei Han, and Chun Li. Frequent closed sequence mining

without candidate maintenance. Knowledge and Data Engineering, IEEE

Transactions on, 19(8):1042–1056, 2007.

Bibliography 110

[81] David Weese and Marcel H Schulz. Efficient string mining under constraints

via the deferred frequency index. In Advances in Data Mining. Medical Ap-

plications, E-Commerce, Marketing, and Theoretical Aspects, pages 374–388.

Springer, 2008.

[82] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,

Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Rein-

hold Heckmann, Tulika Mitra, et al. The worst-case execution-time problem

– overview of methods and survey of tools. ACM Transactions on Embedded

Computing Systems (TECS), 7(3):36, 2008.

[83] Felix Wolf, Felix Freitag, Bernd Mohr, Shirley Moore, and Brian JN Wylie.

Large event traces in parallel performance analysis. Architecture of Computing

Systems, ARCS 2006 (19a. Frankfurt-Main, Alemanya), 2006.

[84] Wayne Wolf, Ahmed Amine Jerraya, and Grant Martin. Multiprocessor

system-on-chip (mpsoc) technology. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 27(10):1701–1713, 2008.

[85] Xifeng Yan, Jiawei Han, and Ramin Afshar. Clospan: Mining closed sequen-

tial patterns in large datasets. In SDM, pages 166–177, 2003.

[86] Shengwei Yi, Tianheng Zhao, Yuanyuan Zhang, Shilong Ma, and Zhanbin

Che. An effective algorithm for mining sequential generators. Procedia Engi-

neering, 15:3653–3657, 2011.

[87] Xiao Yu, Shi Han, Dongmei Zhang, and Tao Xie. Comprehending performance

from real-world execution traces: A device-driver case. In Proceedings of

the 19th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’14, 2014.

[88] Mohammed J Zaki. Spade: An efficient algorithm for mining frequent se-

quences. Machine learning, 42(1-2):31–60, 2001.

[89] Daniel Zwillinger and Stephen Kokoska. Standard Probability and Statistical

Tables and Formula. Chapman & Hall, Boca Raton, 2000.

Abstract

Debugging streaming applications run on multimedia embedded systems found in modern con-

sumer electronics (e.g. in set-top boxes, smartphones, etc) is one of the most challenging areas of

embedded software development. With each generation of hardware, more powerful and complex

Systems-on-Chip (SoC) are released, and developers constantly strive to adapt their applications

to these new platforms. Embedded software must not only return correct results but also deliver

these results on time in order to respect the Quality-of-Service (QoS) properties of the entire

system. The non-respect of QoS properties lead to the appearance of temporal bugs which

manifest themselves in multimedia embedded systems as, for example, glitches in the video or

cracks in the sound. Temporal debugging proves to be tricky as temporal bugs are not related to

the functional correctness of the code, thus making traditional GDB-like debuggers essentially

useless. Violations of QoS properties can stem from complex interactions between a particular

application and the system or other applications; the complete execution context must be, there-

fore, taken into account in order to perform temporal debugging. Recent advances in tracing

technology allow software developers to capture a trace of the system’s execution and to analyze

it afterwards to understand which particular system activity is responsible for the violations of

QoS properties. However, such traces have a large volume, and understanding them requires

data analysis skills that are currently out of the scope of the developers’ education.

In this thesis, we propose SATM (Streaming Application Trace Miner) - a novel temporal de-

bugging approach for embedded streaming applications. SATM is based on the premise that

such applications are designed under the dataflow model of computation, i.e. as a directed graph

where data flows between computational units called actors. In such setting, actors must be

scheduled in a periodic way in order to meet QoS properties expressed as real-time constraints,

e.g. displaying 30 video frames per second. We show that an actor which does not eventually

respect its period at runtime causes the violation of the application’s real-time constraints. In

practice, SATM is a data analysis workflow combining statistical measures and data mining al-

gorithms. It provides an automatic solution to the problem of temporal debugging of streaming

applications. Given an execution trace of a streaming application exhibiting low QoS as well as

a list of its actors, SATM firstly determines exact actors’ invocations found in the trace. It then

discovers the actors’ periods, as well as parts of the trace in which the periods are not respected.

Those parts are further analyzed to extract patterns of system activity that differentiate them

from other parts of the trace. Such patterns can give strong hints on the origin of the problem

and are returned to the developer. More specifically, we represent those patterns as minimal

contrast sequences and investigate various solutions to mine such sequences from execution trace

data.

Finally, we demonstrate SATM’s ability to detect both an artificial perturbation injected in

an open source multimedia framework, as well as temporal bugs from two industrial use cases

coming from STMicroelectronics. We also provide an extensive analysis of sequential pattern

mining algorithms applied on execution trace data and explain why state-of-the-art algorithms

fail to efficiently mine sequential patterns from real-world traces.

111

Résumé

Débogage des applications de streaming qui s’exécutent sur les systèmes embarqués multimédia

(trouvés dans les bôıtes décodeurs, smartphones, et autres appareils électroniques grand public)

est l’un des domaines les plus exigeants dans le développement du logiciel embarqué. Les nou-

velles générations du materiél embarqué introduisent des nouveaux systèmes sur une puce, qui

fait que les développeurs du logiciel doivent adapter leurs logiciels aux nouvelles platformes. Le

logiciel embarqué doit non seulement fournir des résultats corrects mais aussi le faire à temps

réél afin de respecter les propriétés de qualité de service (Quality-of-Service, QoS) du système.

Lorsque les propriétés QoS ne sont pas respectées, les bugs temporels font son apparition. Ces

bugs se manifestent comme, par exèmple, des glitches dans le flux vidéo ou des craquements dans

le flux audio. Le débogage temporel est en général difficile à effectuer car les bugs temporels

n’ont pas souvent de rapport avec l’exactitude fonctionnelle du code des applications, ce qui

fait les outils de débogage traditionels, comme GDB, peu utiles. Le non-respect des propriétés

QoS peut originer des interactions entre les applications ou entre les applications et les proces-

sus systèmes. Par conséquent, le contexte d’exécution entier doit être pris en compte pour le

débogage temporel. Les avancements récents en collecte des traces d’exécution permettent les

développeurs de recueillir des traces et de les analyser après la fin d’exécution pour comprendre

quelle activité système est responsable des bugs temporels. Cependant, les traces d’exécution

ont une taille conséquente, ce qui demande aux devéloppeurs des connaissainces en analyse de

données qu’ils normalement ne possèdent pas.

Dans cette thèse, nous proposons SATM - une approche novatrice pour le débogage temporel

des applications de streaming. SATM repose sur la prémisse que les applications sont conçues

avec le modèle dataflow, i.e. peuvent être représentées comme un graphe orienté où les données

coulent entre des unités de calcul (fontions, modules, etc.) appelées ”acteurs”. Les acteurs

doivent être ordonnés de manière périodique afin de respecter les propriétés QoS représentées

par les contraintes de temps-réél, e.g. une affichage des 30 trames vidéo par seconde. Nous

montrons qu’un acteur qui ne respecte pas de façon répétée sa période pendant l’exécution de

l’application cause la violation des contraintes temps-réél de l’application. Pratiquement, SATM

est un workflow d’analyse de données venant des traces d’exécution qui combine des mesures

statistiques avec des algorithmes de fouille de données. SATM fournit une méthode automatique

du débogage temporel des applications de streaming. Notre approche prend en entrée une trace

d’exécution d’une application ayant une basse QoS ainsi qu’une liste de ses acteurs, et tout

d’abord détecte des invocations des acteurs dans la trace. SATM ensuite découvre les périodes

des acteurs ainsi que les séctions de la trace où la période n’a pas été respectée. Enfin, ces séctions

sont analysées afin d’extraire des motifs de l’activité système qui différencient ces sections des

autres séctions de la trace. Tels motifs peuvent donner des indices sur l’origine du problème

temporel dans le système et sont rendus au devéloppeur. Plus précisément, nous représentons

ces motifs comme des séquences contrastes minimales et nous étudions des différentes solutions

pour fouiller ce type de motifs à partir des traces d’exécution.

Finalement, nous montrons la capacité de SATM de détecter une perturbation temporelle injectée

artificiellement dans un framework multimédia GStreamer, ainsi que des bugs temporels dans

les deux cas d’utilisation des applications de streaming industrielles provenant de la société

STMicroelectronics. Aussi, nous fournissons une analyse extensive des algorithmes de fouille de

motifs séquentiels appliqués sur les données venant des traces d’exécution, et nous expliquons

quelle est la raison que les algorithmes de pointe n’arrivent pas à fouiller les motifs séquentiels à

partir des traces d’exécution de façon efficace.

112

	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Context and Motivation
	1.2 Aim and Scope
	1.3 Significance of the Study
	1.4 Overview of the Contribution
	1.5 Scientific Context
	1.6 Organization of the Thesis

	2 Background
	2.1 Multimedia Embedded Systems
	2.2 Hardware Perspective: System-on-Chip
	2.3 Software Perspective: Dataflow Computational Model
	2.4 Scheduling Perspective: Hard Real-Time Constraints
	2.5 Temporal Bugs in Embedded Streaming Applications
	2.6 Complexities of Temporal Debugging
	2.7 Execution Tracing Technology
	2.8 Conclusion

	3 Detecting Anomalous Zones in Execution Traces
	3.1 Propagation of Execution Delay in Dataflow Graphs
	3.2 Mining Actors' Periods from Execution Traces
	3.2.1 Clustering Event's Occurrences
	3.2.2 Detecting Violations of Event's Period

	3.3 Conclusion

	4 Mining Abnormal System Activity from Execution Traces
	4.1 Detection of Abnormal System Activity as a Pattern Mining Task
	4.2 Minimal Contrast Sequence Mining
	4.2.1 Direct Mining of Minimal Contrast Sequences
	4.2.2 Indirect Mining of Minimal Contrast Sequences
	4.2.3 Mining Minimal Contrast Sequences with Constraints

	4.3 Considerations on Contrast Pattern Mining from Execution Traces
	4.3.1 Apriori Pruning on Trace Datasets
	4.3.2 BackScan Pruning on Trace Datasets
	4.3.3 Contrast Pruning on Trace Datasets
	4.3.4 Can Bioinformatics Help Mining Contrast Sequences from Execution Traces?

	4.4 Conclusion

	5 Use Cases
	5.1 Description of Use Cases
	5.2 Detection of Anomalous Zones
	5.2.1 GStreamer Use Case
	5.2.2 TSRecord Use Case
	5.2.3 DVBTest Use Case

	5.3 Mining Suspicious System Activity
	5.3.1 GStreamer Use Case
	5.3.2 TSRecord Use Case
	5.3.3 DVBTest Use Case
	5.3.4 Discussion

	5.4 Conclusion

	6 Related Work
	6.1 Temporal Debugging Without Execution Traces
	6.2 Temporal Debugging With Execution Traces

	7 Conclusion
	7.1 Contributions
	7.2 Limitations
	7.3 Perspectives

	Bibliography

