
HAL Id: tel-01315389
https://hal.science/tel-01315389

Submitted on 13 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact and Inexact Methods for Graph Similarity in
Structural Pattern Recognition PhD thesis of Vincenzo

Carletti.
Vincenzo Carletti

To cite this version:
Vincenzo Carletti. Exact and Inexact Methods for Graph Similarity in Structural Pattern Recognition
PhD thesis of Vincenzo Carletti.. Computer Vision and Pattern Recognition [cs.CV]. Université de
Caen; Universita degli studi di Salerno, 2016. English. �NNT : �. �tel-01315389�

https://hal.science/tel-01315389
https://hal.archives-ouvertes.fr

	
	
	
	

	

THESE

Pour obtenir le diplôme de doctorat

Spécialité Informatique et Applications	

Préparée au sein de l’Université de Caen, Normandie

 En partenariat international avec l’Université de Salerne, Italie

Exact and Inexact Methods for Graph Similarity in Structural Pattern
Recognition

Présentée et soutenue par	

Vincenzo CARLETTI

Thèse dirigée par Luc BRUN, laboratoire GREYC, et Mario VENTO, Université de Salerne 	
	

	 	 	 	 	 	 ED	SIMEM	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

Thèse soutenue publiquement le 21/04/2016
devant le jury composé de

Luc BRUN / France	 Professeur des Universités / GREYC /
ENSICAEN	 Directeur de thèse	

Mario VENTO / Italie	 Professeur des Universités / Université de
Salerne	 Codirecteur de thèse	

Antoine TABBONE / France	 Professeur des Universités / Université de
Nancy	 Rapporteur	

Francesc SERRATOSA / Espagne	 Professeur des Universités / Université
Rovira i Virgili	 Rapporteur	

Carlo SANSONE/ Italie	 Professeur des Universités / Université de
Naples	 Examinateur	

Nikolai PETKOV / Pays Bas	 Professeur des Universités/ Université de
Groningen	 Examinateur	

ii

Contents

1 Introduction 3
1.1 Graphs in Pattern Recognition 4
1.2 Searching for Similarities 6
1.3 Thesis Overview . 8

2 Preliminaries 11
2.1 Graph Definitions 12

2.1.1 Labeled and Attributed Graphs 12
2.1.2 Subgraphs and Supergraphs 13
2.1.3 Bipartite Graphs 14

2.2 Graph Matching . 16
2.2.1 Exact Graph Matching 16
2.2.2 Inexact Graph Matching 17

2.3 Assignment Problems 19
2.3.1 Assignment as a Perfect Matching 20
2.3.2 Linear Sum Assignment Problem 21
2.3.3 Quadratic Assignment Problem 22

2.4 Graph Edit Distance 25

3 Similarity by Subgraph Isomorphism 29
3.1 Introduction . 30

3.1.1 Subgraph Isomorphism Algorithms 31
3.1.2 Chapter overview 33

3.2 VF2: heritage of a successful approach 34
3.2.1 Representation of the problem 35

3.2.1.1 Exploring the space 36

iii

3.2.2 Feasibility Rules 38
3.2.2.1 Extension to directed graphs . . . 41

3.2.3 Generating new states 43
3.2.3.1 Avoiding cycles 44

3.3 VF3: a novel subgraph isomorphism algorithm . . . 45
3.3.1 Pattern preprocessing 45

3.3.1.1 A new total order relationship . . . 45
3.3.1.2 State structures precalculation . . 48
3.3.1.3 Example 48

3.3.2 Nodes Classification 50
3.3.3 A new candidate selection 54

3.4 Experiments and Results 58
3.4.1 Experimental Setup 58

3.4.1.1 Environment 58
3.4.1.2 Algorithms 59
3.4.1.3 MIVIA Dataset 61
3.4.1.4 Additional Datasets 63

3.4.2 Results . 64

4 Similarity by Graph Edit Distance 87
4.1 Introduction . 88

4.1.1 Linear Sum Assignment Methods 88
4.1.2 A Quadratic Assignment Approach 90
4.1.3 Chapter overview 91

4.2 Edit paths and assignments 92
4.2.1 Independent edit path 93
4.2.2 Restricted edit path 95
4.2.3 ε-assignment 97

4.3 Graph Edit distance as a bipartite graph assignment 99
4.3.1 LSAP for ε-assignments 99
4.3.2 Bipartite GED 101

4.4 Graph Edit Distance as a Quadratic Assignment
Problem . 105
4.4.1 Simultaneous assignments and quadratic cost 105
4.4.2 QAP for ε-assignments, restricted edit paths

and GED 109

iv

4.5 Solving the Quadratic Assignment Problem 113
4.5.1 Adapting IPFP to solve the GED 114

4.6 Experiments and Results 119
4.6.1 Datasets . 119
4.6.2 Results . 121

5 Conclusions 125

Bibliography 127

v

vi

List of Figures

1.1 Example of vector-based representation. 5

1.2 Example of graph-based representation. 6

1.3 Example of graph embedding. 8

2.1 Example of subgraphs. 13

2.2 Example of bipartire graph. 14

2.3 Example of perfect matching. 15

2.4 Example of edit path. 27

3.1 Graphs used in the examples of VF2 and VF3. . . . 35

3.2 Example of state space exploration performed by
VF2. 37

3.3 Example of isomorphic subgraphs obtained induced
by the nodes in the Core sets. 38

3.4 Example of Core and Terminal sets in VF2. 42

3.5 Example of coverage tree produced by VF3. 50

3.6 Example of state space exploration performed by
VF3. 51

3.7 Example of Core and Terminal sets in VF3. 55

3.8 Example candidate selection in VF3. 56

3.9 Time and memory usage on unlabelled bounded va-
lence graphs . 67

3.10 Time and memory usage on unlabelled 2D open
meshes . 68

3.11 Time and memory usage on unlabelled 3D open
meshes . 69

vii

3.12 Time and memory usage on unlabelled 4D open
meshes . 70

3.13 Time and memory usage on unlabelled random graphs 71
3.14 Time and memory usage on bounded valence graphs

with 8 labels uniformly assigned 72
3.15 Time and memory usage on 2D open meshes with

8 labels uniformly assigned 73
3.16 Time and memory usage on 3D open meshes with

8 labels uniformly assigned 74
3.17 Time and memory usage on 4D open meshes with

8 labels uniformly assigned 75
3.18 Time and memory usage on random graphs with 8

labels uniformly assigned 76
3.19 Time and memory usage on bounded valence graphs

with 8 labels non uniformly assigned 77
3.20 Time and memory usage on 2D open meshes with

8 labels non uniformly assigned 78
3.21 Time and memory usage on 3D open meshes with

8 labels non uniformly assigned 79
3.22 Time and memory usage on 4D open meshes with

8 labels non uniformly assigned 80
3.23 Time and memory usage on random graphs with 8

labels non uniformly assigned 81
3.24 Time usage on the additional random graphs dataset. 82
3.25 Time usage on the additional random graphs dataset. 83
3.26 Time usage on the additional random graphs dataset. 84
3.27 Time usage on biological graphs. 85

4.1 Example of local structure of a node used as bag of
patterns. 90

4.2 Independent edit path transformation from G1 to G2 94
4.3 General framework to compute the GED as a LSAP. 104
4.4 General framework to compute the GED as a GED. 111
4.5 Illustration of the 3 cases relating β and t0. 118
4.6 Analysis of complexity on the extended MAO dataset.122

viii

List of Tables

3.1 The three main approaches to face the subgraph
isomorphism and their state of the art algorithms . 31

3.2 Example of label and degree frequencies computed
by VF3. 49

3.3 Example of probabilities computed by VF3. 49
3.4 Example of Core and Termina sets computed by

VF3 at each depth first search level. 50
3.5 Example of classification function used in VF3. . . 53
3.6 Details about the mesh graph dataset structure . . 62
3.7 Subgraph isomorphism datasets composition. 64

4.1 Definition of the quadratic function used to com-
pute the GED. 112

4.2 GREYC’s Chemistry Dataset 121
4.3 Accuracy and complexity score in approximating

the GED. 124

ix

x

Acknowledgements

I would like to express my special appreciation and thanks to my
Italian advisor Professor Mario Vento. Every time I felt lost, He
has been a beacon of light guiding me through the darkness. His
huge experience and passion have always been sources of inspi-
ration and motivation. I consider Him as my scientific father. I
would like to thank Him also for the opportunities, the time He
has granted me during my PhD.

Another special thanks is addressed to my French advisor, Pro-
fessor Luc Brun. His experience and knowledge have helped me
significantly in developing the research topics I was interested in
at the ENSICAEN. I would like to thank Him also for the patience
He had in helping me.

A thanks to Prof. Pasquale Foggia, He has been my scientific
coach. He gave me the opportunity to glean from His huge expe-
rience and culture. I hope to have been a good rookie and make
His effort be payed back.

I would like to give a thanks to Prof. Gennaro Percannella
and Prof. Pierluigi Ritrovato for all the precious help and the
suggestions they gave me during my PhD.

Then I would like to thank all the friends who have made my
PhD easier to face. First of all, Alessia Saggese for all the help
she gave me in writing papers and this manuscript and for all the
weekends we worked together with a mug of hot chocolate. Nicola
Strisciuglio, we started the PhD together and we have shared pains
and pleasures of this path. He has been an unlimited source of
interesting discussions (and distractions). Rosario Di Lascio we
worked together on several software projects during these years,

xi

he is a great project manager. Despite he does not like very much
scientific research, we become good friends. Benoit Gaüzère who
gave me a great help when I was in France and who has been a
good research and running partner. I would like to thank him also
for his important contribution to this thesis. Antonio Greco and
Raffaele Iuliano for their contribution in relieving the days of hard
work. All of them are first good friends, then great colleagues.

A special thanks to my family. Words cannot express how
grateful I am to all of them for the sacrifices they made on my
behalf. They gave me motivation and support to pursue all my
dreams.

A thanks to Valentina, she is an amazing partner. I’m very
grateful for the love she give me every day and the patience she
has to accept all the sacrifices required to achieve my goals.

A thanks to my brothers in-law. Pasquale who shares with me
many passions, first of all those for scientific research and wine,
and Ivan who is always able to encourage and motivate me. They
have supported me by stroking my dreams and adding a pinch of
craziness to my life.

Finally, I would like to thank all my dear friends for the pres-
ence and the support they gave me during this years.

xii

”Only the children know what they are looking for.”
- Antoine de Saint-Exupéry

2

Chapter 1

Introduction

”Nature uses only the longest threads to weave her patterns, so
that each small piece of her fabric reveals the organization of the

entire tapestry.”
- Richard P. Feynman

4 1. Introduction

1.1 Graphs in Pattern Recognition

In the famous book Pattern Classification [1], the authors have
defined Pattern Recognition as the ”act of taking in raw data and
making an action based on the category of the pattern”. Such
a definition implicitly refers to the ability of a system to create
abstractions and recognize the similarity between them and the
raw data retrieved from the world.

Let us provide a biological example. Easily, human brain is
a pattern recognition system whose main task is recognizing ob-
jects belonging to the real world and discriminate among them.
To this aim, it retrieves information from the real world and cre-
ates abstractions. Objects are, then, recursively decomposed in
terms of parts and the relationships between these parts. This
decomposition is enriched with other data coming from the senses
such as shape, color, smells, taste, sounds and so on. When a new
object comes in, the brain searches for the closest model trying to
categorize it to something that is already known. If none of the
models fits with the object, a new model will be produced. More-
over, human brain is able to recognize objects by using just a little
part of these information, e.g. distinguish an apple from an orange
by using their smell or taste only. This is due to the capability of
leaving out all the useless details and creating general models. Ob-
viously, this example is a simplified view of human brain, but it is
useful to highlight a critical point of pattern recognition systems:
the representation.

The way we decide to represent objects has a strong impact on
the quality of the abstraction the system is able to build. A good
abstraction should be complete enough to take into account the
fundamental features to characterize objects belonging to a given
category, but still sufficiently general to avoid leaving out objects
slightly different from the model. Furthermore, the representation
affects another important aspect of a pattern recognition system,
i.e the similarity measure adopted to compare objects and models.
It is trivial to understand that different similarity measures can
correspond to a given representation and their complexities depend

1.1. Graphs in Pattern Recognition 5

on the representation itself.

a

b

c

Figure 1.1: Example of vector-based representation. The model (a) and the
real world objects (b) and (c) have been represented as vectors of numerical
features. In this case, a set of suitable features could be: height, width, depth,
number of windows, number of doors, number of rooms.

Among all the possible representations, vectors are the most
adopted. Objects are described as vectors by extracting a finite
set of numerical features, as shown by the example in Figure 1.1.
Vectors provide many benefits, first of all the possibility to define a
metric space by using the Euclidean distance and then to take ad-
vantage of many instruments provided by the vector space theory.
On the other hand, if the problem requires to consider the rela-
tionships among the objects, vector-based representation could not
provide a satisfying description of the world. In this case, a better
representation is based on graphs, i.e. combinatorial structures
that are naturally composed of objects and relationships among
them.

The use of graph-based representations dates back to the early
70s, when the main application was the classification of visual pat-
terns. Indeed, visual objects were reduced in their sub-parts and

6 1. Introduction

then represented in terms of parts and connections among them,
as shown by the example in Figure 1.2. In general, graphs are more
expressive than vectors, but the Euclidean metric is not directly
applicable on them because of their mathematical properties. In
order to deal with this lack different approaches have been pro-
posed in the last decades. We are going to discuss them in the
next section.

a

b

c

Figure 1.2: Example of graph-based representation. The model (a) and the
real world objects (b) and (c) have been represented as graphs. In this case,
each node is a sub-part of the house: roof, door, window, wall, three; all the
connected parts are linked by an edge in the graph.

1.2 Searching for Similarities

The definition of efficient similarity measures between graphs is a
key problem in Structural Pattern Recognition. A recent paper
by Vento [2] provides a complete overview of all the approaches
proposed to deal with the problem of using graphs-based repre-
sentation in Pattern Recognition. Some of these aim to avoid

1.2. Searching for Similarities 7

computing the similarity directly into the graph space by moving
to other representations. For instance, Graph Kernels extend the
concept of inner product to the graph space by defining a suited
kernel function able to catch the similarity between graphs. Severe
limitations in practical application are imposed by the fact that
most of graph kernels require a set of graphs that is known a pri-
ori. Other methods like Graph Embedding, extensively described
in different papers [3, 4, 5], aim to connect the two representa-
tions by transforming graphs in points within a suitable vector
space. An important benefit is that, under certains hypotesis, the
similarity of graphs is guaranteed to be preserved, in the sense
that the more similar two graphs are, the closer the correspond-
ing points in the vector space are. Graph embedding is promising
but there is still an open question about the advantages of using
both representation instead of using directly graphs or vectors.
Indeed, graphs have been introduced when the compact represen-
tation provided by vectors is not expressive to model the problem.
So can a proper vector representation of graphs be sufficiently ex-
pressive when vector representations extracted directly form the
data are not?

Although both approaches have been proven to be feasible
for pattern recognition problems, often they are not able to
model properly the semantic and structural information carried by
graphs. So, the most suited solution, to exploit both the seman-
tic and structural information, is to face the problem directly on
graphs. Graph matching provides different solutions to compare
the structure and the semantic information of two graphs and then
to obtain a measure of their similarity. On one hand, exact graph
matching is applied when the problem requires to have an exact
correspondence between the structures, e.g. when a substructure
is searched inside a bigger one (subgraph isomorphism problem).
On the other hand, inexact graph matching is more suited when
an error tolerant measure is required. Let us consider many real
situations where raw data from which the graphs have been ex-
tracted are affected by noise; in this cases, structural deformations
can happens so an exact approach may not be adopted.

8 1. Introduction

a

b

c

Figure 1.3: Example of graph embedding. The objects are firstly represented
as graphs, then a set of features are extracted from the graphs. Different kind
of features can be used both structural, such as the centralities, and semantic.

This thesis has been devoted in exploring two different methods
to compute the similarity between graphs: the first is based on the
subgraph isomorphism an exact graph matching problem where
the aim is to search where and how many times a substructure is
present inside a bigger one; the second, inexact, is a new method to
compute the graph edit distance, the most flexible graph similarity
measure that quantifies the distortion required to transform one
graph into another one.

1.3 Thesis Overview

The Thesis has been structured as follows:

Chapter 2 provides all the theoretical foundations about graphs,
graph matching, graph edit distance and assignment prob-
lems, required to understand the contents of the following
chapters. The reader familiar with these concepts can skip
this section.

1.3. Thesis Overview 9

Chapter 3 describes a novel exact graph matching algorithm for
computing both graph isomorphism and subgraph isomor-
phism. The attention has been focused on the latter be-
cause of its relevance in several practical application. So,
the algorithm has been compared with other state of the
art algorithms on real biological datasets and on the MIVIA
graph dataset for graph and subgraph isomorphism.

Chapter 4 describes an innovative method to compute the graph
edit distance based on the quadratic assignment problem.
To this aim a novel quadratic cost function has been defined
to take into account the whole structure of the graph. The
new formulation has been compared with the framework pro-
posed by H.Bunke and K.Riesen [6, 7] on chemoinformatics
datasets.

Chapter 5 summarizes all the methods and results obtained by
the two approaches and discusses about pros and cons.
Moreover, some hypothesis of the future applications and
challenges in the next years are provided.

10 1. Introduction

Chapter 2

Preliminaries

”He that breaks a thing to find out what it is has left the path of
wisdom.” - J.R.R. Tolkien

12 2. Preliminaries

2.1 Graph Definitions

A graph is a mathematical structure G = (V,E) composed of
two finite sets: a node (or vertices) set V that represents the
objects in the domain and an edge set E ⊆ V × V wich encodes
relationships among the objects. Each edge e ∈ E is a couple of
nodes e = (u, u′), and the nodes connected are said to be adjacent.
The set adj(u) = {u′ ∈ V |∃(u, u′) ∈ E} of the nodes adjacent to u
is commonly named neighborhood and its size |adj(u)| is the degree
of u. It is trivial to understand the degree can be equivalently
defined as the number of edges of a node.

If the couple (u, u′) is ordered the edge e is said to be directed
in the sense that it is possible to identifiy a direction from u to
u′, otherwise the edge is undirected. A graph is directed if it has
at least one directed edge. On the base of the definition provided
for the neighborhood, if the edge (u, u′) is directed u′ will be ad-
jacent to u, but not the inverse. In this case, since a node can
have outgoing and incoming edges (incident edges), it is usual to
distinguish among incoming degree, outgoing degree (the degree)
and total degree of a nodes.

2.1.1 Labeled and Attributed Graphs

As discussed in Chapter 1 graphs can bring semantic information.
Labeled and attributed graphs are characterized by the presence of
semantic data on nodes and edges. In particular, a labeled graph
is a tuple G = (V,E, µ, ν) where:

• L is a finite alphabet of nodes and edges labels.

• µ : V → L is a node labeling function.

• ν : E → L is an edge labeling function.

Similarly, if we do not consider just a finite alphabet but a set of
structured information A, an attributed relational graph (ARG) is
a tuple G = (V,E, α, γ), where:

2.1. Graph Definitions 13

• α : V → A is a node attribute function.

• γ : E → A is an edge attribute function.

2.1.2 Subgraphs and Supergraphs

Intuitively, a subgraph is a substructure contained in a wider graph
having a subset of the nodes and edges that belongs to the con-
tainer. Thus, given a graph H = (V ′, E ′), it is a subgraph of the
graph G = (V,E) iff V ′ ⊆ V and E ′ ⊆ E. If so, G will be the
supergraph of H.

Moreover, it is easy to note that given a graph G we can obtain
a subgraph H by extracting a subset V ′ of V and putting in E ′

all the edged of E whose endpoint are both in V . In this case, H
is called subgraph induced on the node set V ′.

In the following sections, in particular those concerning graph
edit distance, we talk about structural subgraphs. They are sub-
graphs extracted only from the structure of a graph, without con-
sidering labels or attributes. Therefore, given a labeled graph G,
a structural subgraph of G is a subgraph extracted from the unla-
beled graph associated to G. It is trivial to undestand a structural
subgraph is always an unlabelled graph.

A B

D C

B

(a) Graph G.

A B

C

(b) Subgraph
of G

(c) Structural
subgraph of G

Figure 2.1: In Figure an example of a subgraph (b) and a structural sub-
graph (c) extracted from G.

14 2. Preliminaries

2.1.3 Bipartite Graphs

A bipartite graph G = (U, V,E) is a graph whose node set can be
partitioned in two disjoint subsets U and V such that each edge
in E connects a node in U to a node in V (see Figure 2.2). If a
non negative weight c(e) is associated to every edge e ∈ E of a
bipartite graph it will be called weighted bipartite graph.

1

3

2

4

5

7

6

8

U V

Figure 2.2: Example of bipartire graph.

An important concept that will be widely used in the following
sections is those of Bipartite Matching. It has not to be confused
with the graph matching that is explained in Section 2.2.

Definition 1. Bipartite Matching A matching M in a bipartite
graph G is a subset of the edges such that every node of G involves
at most one edge of the matching. The cardinality of the matching
is the size |M |.

Definition 2. Maximal Matching A matching M is called
maximal if it cannot be enlarged by any edge of the graph.

Definition 3. Maximum Matching A matching M is called
maximum if it has as many edges as the maximum cardinality.
A maximal matching may not be maximum, but every maximum
matching is maximal.

2.1. Graph Definitions 15

Definition 4. Perfect Matching A matching M is called perfect
if every node in G is matched, i.e. it corresponds to an edge in M
(see Figure 2.3).

1

3

2

4

A

C

B

D

Figure 2.3: Example of perfect matching.

16 2. Preliminaries

2.2 Graph Matching

In structural pattern recognition an important problem consists
in finding a mapping, between the nodes of two graph, that satis-
fies a given set of structural constraints. Such a problem is com-
monly known as Graph Matching and comprises a large family of
problems whose goal is to find structural correspondences between
graphs. A detailed description of all these problems has been pro-
vided in two interesting papers of Vento and Foggia [8, 9]. In
particular, the papers identify two main categories: exact graph
matching where the mapping function has to preserve the struc-
ture of the graphs and inexact graph matching where structural
deformations are accepted. It is important to point out that most
of the graph matching problems are NP-complete and require in
the worst case an exponential complexity.

2.2.1 Exact Graph Matching

Exact graph matching requires that the mapping between the
nodes of two graph must preserve the adjacency, i.e. if an edge
connects two edges of the first graphs they must be mapped to
nodes that are linked by an edge. In its strongest form the exact
graph matching is known as graph isomorphism and requires to
preserve all the structure of both the graphs (see Definition 5). If
the constraint of non-adjacency preserving is removed the second
graph can have extra edges that are not present in the first graph,
such kind of matching is called monomorphism.

Definition 5. Structure Preserving Mapping Given two
graphs G1 = (V1, E1) and G2 = (V2, E2). A mapping ϕ : V1 → V2

is said to be:

• Adjacency Preserving iff
∀(i, j) ∈ E1 ∃(ϕ(i), ϕ(j)) ∈ E2

• Non-Adjacency Preserving iff
∀(i, j) /∈ E1 (ϕ(i), ϕ(j)) /∈ E2

2.2. Graph Matching 17

• Structure Preserving iff ϕ is both Adjacency and
Non-Adjacency Preserving

In structural pattern recognition subgraphs are used to repre-
sent patterns of interest to search for inside wider structures, such
as the search for a specific amino acid inside a group a proteins.
Therefore, the first graph is smaller than the second graph, in this
case it is possible to find an isomorphism or a monomorphism by
mapping the first graph on a subgraph of the second. Both are
subgraph isomorphism, but, to be rigorous, the former is usually
called induced subgraph isomorphism.

In some situations, we are interested in searching for common
structures between two graphs. Usually, the size of these struc-
tures is fixed to a given value k, but we may even search for the
largest common structure. Such a problem is known as maximum
common subgraph and is one of the hardest exact graph match-
ing problem. In order to be thorough, when we are searching for
structural subgraphs (see Section 2.1.2), we will talk of structural
common subgraph problem.

It is important to note that, in general, exact graph matching
problems are NP-complete. It has been proved for the subgraph
isomorphism. Therefore, many algorithms aim to reduce the com-
plexity by focusing the attention on a specific kind of graphs.
There is not an algorithm which performs better then the oth-
ers for all the possible families of graphs and in the worst case, i.e.
when the graphs are symmetric, all the algorithms have a factorial
computational complexity.

2.2.2 Inexact Graph Matching

In some real situations the variability of the patterns, the noise in
the acquisition process or other causes, produce deformations in
the observed graphs. So, two graphs may have a structure that is
almost the same, but with some extra or missing nodes and edges.
In this case, the constraints imposed by the exact graph matching
are too strong to find out a mapping between the two graphs. The
most adopted solution is to make the matching process tolerant

18 2. Preliminaries

in respect to deformations by introducing the concept of matching
cost to penalize structural differences. The closer are the struc-
tures of the two graphs, the lower is the cost to match them. A
well known method to define the matching cost is the graph edit
distance that assigns a cost to each operation needed to transform
the first graph in the second one then sum all these costs to obtain
the overall transformation cost. This method will be described in
details in Section 2.4.

Once the cost has been defined, the problem remains how to
find out a mapping that minimize such cost. A classical approach
to perform the matching is based on transposing the problem in
a state space representation where each state is a partial map-
ping. Then the A* algorithm searches for the optimal mapping by
exploiting an heuristic cost function that depends on the kind of
graphs is dealing with. Other completely different methods, based
on the concept of continuous optimization, cast graph matching,
that is a discrete optimization problem, into a continuous, nonlin-
ear optimization problem, then an optimization algorithm is used
to find the solution.

It is easy to understand that, as for the exact graph match-
ing, the complexity needed to compute the optimal mapping is
exponential. For this reason, the attention of the scientific com-
munity has been mainly focused on the definition of methods that
compute a suboptimal mapping in a polynomial. A recent note-
worthy method, proposed by Riesen and Bunke [7]. computes the
suboptimal mapping by approaching the inexact matching as an
assignment problem.

2.3. Assignment Problems 19

2.3 Assignment Problems

Every time we are dealing with the problem of assigning n item
to other n items we are engaging an assignment problem. Let
us think, as example, to the problem of deciding the best way to
deliver a set of services to a set of servers in order to obtain the
minimum overall response time. In this case, we can represent the
problem as a bipartite graph where one set of nodes is composed
of services and the other is composed of server. We can attribute
a cost to each connection between the two sets that is related to
the amount of request expected for a given service if delivered on
a given server. The aim is to map each service to each server by
respecting the global constraint.

In a more formal way, an assignment is usually represented as a
bijective mapping ϕ : X→Y between two finite sets X = {xi}i and
Y = {yi}i of size |X| = |Y| = n. By assigning the n elements of X
to the n elements of Y we get an assignment ϕ corresponding to a
permutation (ϕ(1), . . . , ϕ(n)), where the first element is assigned
to ϕ(1), the second to ϕ(2) and so on. Every permutation ϕ
corresponds to an n× n permutation matrix Xϕ = xij where:

xij =

{
1 if j = ϕ(i)

0 otherwise
(2.1)

Definition 6. Permutation Matrix A matrix xij is said to
be a Permutation Matrix iff it is compatible with the assignment
constraints:

n∑
i=1

xij = 1 (2.2)

n∑
j=1

xij = 1 (2.3)

xij ∈ {0, 1} (2.4)

The assignment constraints ensure that xij is a binary matrix

20 2. Preliminaries

and that the mapping function defined by ϕ(i) = i iff xij = 1 rep-
resents a one-to-one mapping from X to Y. It easy to understand
that give two sets of items there are several possible assignments,
indeed, if Sn is the set of all possible assignments of n items then
|Sn| = n!. The only way to discriminate among them and define
what is an optimal assignment, is to introduce a cost function
Cϕ : ϕ→ R. Thus, the best assignment ϕ∗ can be defined as the
assignment with the minimum cost:

ϕ∗ = argmin
ϕ

Cϕ (2.5)

On the base of the cost function Cϕ we can have two different
kind of assignment problem: the Linear Sum Assignment Problem
(LSAP), whose solution can be computer in cubic time and the
Quadratic Assignment Problem (QAP) that is NP-Hard.

2.3.1 Assignment as a Perfect Matching

The concept of perfect matching on a bipartite graph, described
in Section 2.1.3, offers another way to represent an assignment. In
particular, if we consider the two sets of the assignment problem
as node sets of a bipartite graph, it will be quite easy to imag-
ine the strong relationship between an assignment and a perfect
matching. A bipartite graph can have more than a perfect match-
ing and finding the number of different perfect matchings is an
NP-complete problem, as discussed in [10].

Luckily, the necessary and sufficient condition for the existence
of a perfect matching has been provided by the marriage theo-
rem 2.3.2, formulated by Philip Hall in 1935 [10]. The name of
this theorem comes from the nice interpretation that was given by
Hall of the perfect matching problem. Let us consider a set U of
ladies and a set V of men, each edge (u, v) ∈ E represents the
lady u is friend of the man v. So, a perfect matching corresponds
to a marriage of all the ladies and men where a couple can only be
married if the partners are friends. In particular, Theorem 2.3.2
states that each lady can marry one of her friends and assuming in

2.3. Assignment Problems 21

addition that |U | = |V |, i.e. the ladies and the men are in the same
quantity, all ladies and men can marry (the perfect matching).

Theorem 2.3.1. Let G = (U, V,E) be a bipartite graph. It is
possible to match every vertex of U with a vertex of V if and only
if for all subsets U ′ ⊆ U :

|U ′| ≤ |adj(U ′)| (Hall’s condition) (2.6)

Theorem 2.3.2. Let G = (U, V,E) be a bipartite graph with |U | =
|V |. There exists a perfect matching (marriage) in G iff G fulfills
Hall’s condition.

The Hall’s theorem does not provide an efficient method for
finding a perfect matching, but many approaches have been pro-
posed, like those proposed by Hopcroft and Karp [11] that is able
to find out the perfect matching with a time complexity of O(n5/3).

The problems we will introduce in the following sections are
quite different from the problem of deciding if there exists or not
an assignment, but the goal is to find the optimal assignment
that minimizes a given cost function. This problem is known as
weighted perfect matching problem, where the aim is to find a per-
fect matching where the sum of all the weights assigned to the
involved edges is a minimum (or a maximum).

2.3.2 Linear Sum Assignment Problem

Given a matrix C ∈ Rn×n
+ such as Ci,j = c(xi → yj) = c(yj →

xi) corresponds to the cost of assigning the element xi ∈ X to
the element yj ∈ Y. The corresponding Linear Sum Assignment
Problem (LSAP) consists in finding an optimal permutation

ϕ̂ ∈ argmin
ϕ∈Φn

n∑
i=1

Ciϕ(i) (2.7)

where Φn is the set of all permutations of {1, . . . , n}

22 2. Preliminaries

Generally, the LSAP is equivalently defined in terms of permu-
tation matrices, as follows:

min
x

∑
i

∑
j

Cijxij (2.8)

s.t.
n∑
i=1

xij = 1 (2.9)

n∑
j=1

xij = 1 (2.10)

xij ∈ 0, 1 (2.11)

where xij is a mapping matrix under the assignment constraints.
This last formulation may be simplified in:

min
x∈Rn2

ctx (2.12)

where c and x denote the “vectored” versions of respectively the
matrix C encoding mapping costs and the permutation matrix.
Note that Equation 2.12 justifies the L(linear) of the LSAP prob-
lem.

The resolution of LSAP has been widely studied and several
algorithms exist to solve this kind of problems. Among them,
we can cite the Hungarian, Kuhn-Munkres or Volgerant-Junker
algorithm [12, 13, 14] which finds an optimal solution in O(n3)
time complexity. This algorithm has been generalized in many
directions, we refer the reader to [10] for more details.

2.3.3 Quadratic Assignment Problem

The QAP was proposed by Koopmans and Beckmann [15] in or-
der to provide a mathematical formalization for the problem of
allocating a set of facilities, i.e. X, to a set of locations, i.e. Y, by
minimizing the overall cost.

Differently from the Linear Sum Assignment Problem, in this
case, the formulation takes into account even the relationships

2.3. Assignment Problems 23

among the objects in the same set. For instance, coming back to
our example, we have to consider the amount of traffic among the
services and the time needed to transfer data among the servers.

The quadratic assignment problem is composed of three ma-
trices A,B,C ∈ Rn×n

+ , such as:

• Ai,k is the flow between the element xi and the element xk
in X

• Bj,l is the distance between the element yj and the element
yl in Y

• Ci,j corresponds to the cost of assigning the element xi ∈ X

to the element yj ∈ Y

The corresponding Quadratic Assignment Problem (QAP) con-
sists in finding an optimal permutation

ϕ̂ ∈ argmin
ϕ∈Φn

n∑
i=1

n∑
k=1

AikBϕ(i)ϕ(k) +
n∑
i=1

Ciϕ(i) (2.13)

where Φn is the set of all permutations of {1, . . . , n}
As for the LSAP, also the QAP is generally defined as a con-

strained optimization problem:

min
∑
i

∑
j

∑
k

∑
l

AikBjlxijxkl +
∑
i

∑
j

Cijxij (2.14)

s.t.
n∑
i=1

xij = 1 (2.15)

n∑
j=1

xij = 1 (2.16)

xij ∈ {0, 1} (2.17)

where xij is a mapping matrix under the assignment constraints.
A most general formulation of the quadratic assignment prob-

lem was provided by Lowler [16], such a formulation considers

24 2. Preliminaries

four-dimensional tensor Dijkl of coefficients instead of the two ma-
trices A and B. Then Equation 2.13 can be rewritten as:

min
ϕ∈Φn

∑
i

∑
j

Di,j,ϕ(i),ϕ(j) +
∑
i

Ci,ϕ(i) (2.18)

In particular, from the Lowler’s formulation it is easy to obtain
a quadratic form of the QAP:

min
x∈Φn

xTDx+ CxT (2.19)

s.t. Mx = 1 (2.20)

x ∈ {0, 1} (2.21)

where Mx = 1 and x ∈ {0, 1} is the matrix form to represents
the assignment constraints. Such formulation will be used in the
successive Sections to describe the solving algorithms and the QAP
formulation of the graph edit distance.

Differently from LSAP, for which there exist efficient methods
to compute the solution in polynomial time, the QAP has been
demonstrated to be an NP-hard problem [10]. It means that it
is even impossible to find an approximate solution within some
constant factor from the optimum value in polynomial time.

2.4. Graph Edit Distance 25

2.4 Graph Edit Distance

Graph edit distance is a flexible graph dissimilarity measure that
belongs to the family of inexact graph matching methods. In par-
ticular, it measures the deformation between two graphs by con-
sidering the cost assigned to the sequence of elementary graph edit
operations needed to transform the first graph in the second one.
As defined in Definition 7, an elementary graph operation e is the
simplest alteration which may be performed on a graph, such add
or remove a node. A transformation is composed of a set of edit
operations sequentially applied to a graph, namely an edit path P
(see definition 8).

Definition 7. Elementary graph edit operations An elemen-
tary graph edit operation (or edit operation) is one of the following
operation applied on a graph:

• Node/Edge removal. Such removals are defined as the re-
moval of the considered element from sets V or E.

• Node/Edge insertion. On labeled graphs, a node/edge inser-
tion also associates a label to the inserted element.

• Node/Edge substitution if the graph is a labeled one. Such
an operation modifies the label of a node or an edge and thus
transforms the node or edge labeling functions.

Definition 8. Edit path

• An edit path of a graph G is a sequence of elementary oper-
ations applied on G, where node removal and edge insertion
have to satisfy the following constraints:

1. A node removal implies a first removal of all its incident
edges,

2. An edge insertion can be applied only between two ex-
isting or already inserted nodes.

26 2. Preliminaries

• An edit path between two graphs G1 and G2 is an edit path
of G1 whose last graph is G2.

If G1 and G2 are unlabeled we assume that no node nor edge
substitutions are performed.

It is possible to assign a cost to each simple operation by a
set of operation dependant cost functions. More precisely, let x
denotes an elementary operation, we distinguish the following cost
functions:

• Node (cvd(x)) and edge removal (ced(x))

• Node (cvi(x)) and edge (cei(x)) insertion,

• Node (cvs(x)) and edge (ces(x)) substitution on labeled
graphs.

By extension, we will consider that functions cvd and cvi (resp. ced
and cei) apply on the set of nodes (resp. set of edges) of a graph.
Hence, the cost cvd(v) denotes the cost of the elementary operation
“removing node v”. Moreover, we can assume that a substitution
transforming one label into the same label has zero cost:

∀l ∈ L, cvs(l→ l) = ces(l→ l) = 0

where l → l′ denotes the substitution of label l into l′ on some
edge or node.

Given the cost of each elementary edit operation, then the
cost of an edit path γ(P) is the sum of these elementary costs
(equation 2.22).

γ(P) =
∑
e∈P

c(e) (2.22)

Among all the possible transformations P(G1, G2) that involve
two graphs G1 and G2, we are interested in the cheapest one whose
cost is the graph edit distance d(G1, G2) between G1 and G2 (equa-
tion 2.23).

d(G1, G2) = min
P∈P(G1,G2)

γ(P) (2.23)

2.4. Graph Edit Distance 27

a

d b

c

a

d b

c

add-edge(d,c)

a

d b

c

del-edge(b,c)

a

d b

c

add-node(e)

e

a

d b

c e

add-edge(b,e)

a

d b

c e

add-edge(c,e)

G1

G2

a

d b

c

a

d b

c e

G1 G2

Figure 2.4: A possible edit path to transform the graph G1 into the graph
G2. If we assume that all the edit operation have an unitary cost, the overall
cost of the transformation is equal to 5.

An edit path from G1 to G2 with minimal cost is called an optimal
path.

28 2. Preliminaries

Chapter 3

Similarity by Subgraph
Isomorphism

”It’s better to look ahead and prepare, than to look back and
regret.”

- Jackie Joyner-Kersee

30 3. Similarity by Subgraph Isomorphism

3.1 Introduction

As introduced in Chapter 1, structural representations are widely
employed in many application fields, such as biology, chemistry,
social networks, databases and knowledge discovery and so on. Be-
cause they work on data that are naturally composed of objects
connected with each other, let us think about proteins composed
of molecules connected to other molecules whose properties are re-
lated to the kind of connections they have. The analysis of these
data often requires to determine if, how many times and where
a substructure of interest is inside. Coming back to the example
of proteins in biology, the interest is in searching for a particu-
lar molecular structures, inside a protein, providing information
about some property the latter could show. But we could even
find similar problems in the other fields, for instance, in the case
of social networks where people, organization and other social en-
tities are linked by social relationships, such as kinship, friendship,
affiliation and so on. Here the aim can be the search for social pat-
terns to discovery new relationships between the entities that are
not evident in the initial network.

All these problems share a strong relationship with subgraph
isomorphism, an exact graph matching problem that consists in
finding all the possible isomorphisms between a pattern graph and
a target graph. Unfortunately, subgraph ismorphism has been
proven to be NP-complete [8]. The computational complexity in
the worst case, i.e. when the two structures are symmetric, is
factorial. Despite this limit is intrinsic and can not be defeated,
it is often possible to reduce the computational complexity in the
average case. The cornerstone to achieve this goal is the knowledge
about the domain and the structure of the graphs the algorithm
is going to face. Indeed, specific heuristics can provide advantages
on given kind of graphs but disadvantages on others. There is
no strategy that has been demonstrated to be the best in all the
situations. This has contributed, in the last decades to the birth of
many algorithms whose aim have been to face effectively subgraph
isomorphism in specific applications.

3.1. Introduction 31

3.1.1 Subgraph Isomorphism Algorithms

A complete description of all the scientific literature concerning
subgraph isomorphism in Pattern Recognition has been discussed
in the survey of Conte et al. [8] then revised by Foggia et al.
in a more recent paper [9]. Among all the algorithms that have
been established during the years, we have identified three main
paradigms (see Table 3.1): Tree Search based, Constraing Pro-
gramming based and Graph Indexing based.

The tree search approach comprises many algorithms coming
from the field of artificial intelligence that deal with the problem
by moving it in a state space representation where each state rep-
resents a partial matching. The solution is obtained by searching
inside the space usually by adopting a depth-first search with back-
tracking. The algorithms belonging to this family incrementally
build a solution. At each new state, a pair of nodes is added to the
current solution, after checking if the addition is consistent with
the constraints of the subgraph isomorphism and with the specific
heuristic used by the algorithm. If a point where no other pair can
be added is reached, they backtrack, removing the previous pair
and trying a new one. The most known tree search based algo-
rithms are Ullman [17] and VF/VF2 [18] that have been the state
of the art for almost ten years. But, recently, new algorithms have
arisen in literature, among them RI [19] is noteworthy because has
demonstrated to outperform VF2 in many situations.

The constraing programming approach has been firstly pro-

Approach Algorithms
Three Search Ullman [17], VF/VF2 [18], RI/RI-DS [19]
Constraing Pro-
gramming

McGregor [20], Larrosa and Valiente[21],
Zampelli [22], Solnon [23], Ullman [24]

Graph Indexing GraphQL [25], QuickSI [26], GADDI [27],
SPath [28], TurboIso [29]

Table 3.1: The three main approaches to face the subgraph isomorphism
and their state of the art algorithms

32 3. Similarity by Subgraph Isomorphism

posed by McGregor [20] in the 1979, then improved during the
years by Larrosa and Valiente[21], Zampelli [22], Solnon [23] and
Ullman [24]. The constraint programming algorithms deals with
subgraph isomorphism by using a diametrically opposite method,
with respect to those based on tree search. The latter start from an
empty mapping and then add new couples until there are no more
nodes to map. On the contrary constraint programming algo-
rithms work by filtering, among all the possible couples, those are
surely not contained in the solution. In particular, they first com-
pute a domain of compatibility for each node of the pattern; then
the domains are iteratively reduced by propagating constraints on
the structure of the mapping, until only few candidate matchings
remain, that can be easily enumerated. The main drawback of this
approach is generally the amount of memory required to achieve
the matching. Tree search based algorithms can require a memory
that grows linearly with respect to the size of the pattern graph;
those based on constraint programming have, in the worst case, a
quadratic space complexity due to the fact that they need to store
the domains of compatibility.

Finally, the graph indexing approach comprises algorithms
that extend the pure database approach whose aim is to retrieve
from a graph database all those who contain a given pattern. Pure
graph indexing algorithms deal with the problem to test if a pat-
tern graph is inside a target graph, without identifying where and
how many times. A common way to address the problem is to
compute a graph index, that is a vector or a tree of features rep-
resentative of the structural and semantic information of a graph;
then it is used to test the presence of the pattern inside each tar-
get graphs. So, the online query processing cost is moved to the
off-line index construction phase. The more representative is the
index the higher is its precision in retrieving the desired target
and its computational cost. It worth to point out that the index,
generally, does not provide any guarantee about the isomorphism.
Two not isomorphic structures may have the same index. Graph
indexing based algorithm generalize this approach to the case of
subgraph isomorphism. The index is used to search for all the

3.1. Introduction 33

subgraphs in the target graph that have the same index; then the
solution is refined by checking the isomorphism constraints and
removing all the inconsistent matchings. Recent algorithms based
on Graph Indexing are: GraphQL [25], QuickSI [26], GADDI [27],
SPath [28] and TurboIso [29].

3.1.2 Chapter overview

In this Chapter we will describe VF3, a new algorithm that is able
to deal with different exact graph matching problem due to its
general structure. Despite that, in this Thesis we have focused the
attentions on the subgraph isomorphism, so we discuss in details
how the algorithm deals with it. In Section 3.2 we will firstly
discuss the structure of VF2 that has been inherited by VF3, then
in Section 3.3 we will discuss what has been improved by VF3.
Finally, in Section 3.4 we will compare VF3 with VF2 and other
state of the art algorithm.

34 3. Similarity by Subgraph Isomorphism

3.2 VF2: heritage of a successful ap-

proach

VF2 [18] is a very flexible algorithm able to deal with different
exact graph matching problems on several kind of graphs. It is
based on a state space representation where each state is a partial
mapping between the two given graphs. All the states whose map-
ping is complete, i.e. it can not be further extended by adding new
couples of nodes, are possible solutions. But, only those satisfy-
ing the constraints imposed by the specific problem are considered
as goal states. As an example, if the algorithm is searching for a
subgraph isomorphism, a state corresponding to a mapping that
involves all the nodes of the smallest graph and satisfies the struc-
ture preserving constraints (see Section 2.2) is considered to be a
goal state.

Therefore, the aim is to start from an empty state, representing
a void mapping, then explore the state space by increasing itera-
tively the number of couples involved by the mapping until a goal
state is reached, if it exists.

The state space is naturally represented as a graph, so it can
be explored in different ways, VF2 adopts a depth-first strategy
with backtracking, as other tree search based algorithms, because
of it efficiency in terms of space and time. But the real innovation
of VF2 has been the introduction of feasibility rules to prune, in
advance, unfruitful search paths combined with a memory efficient
representation of the state space. These two elements have allowed
it to have a space complexity that is linear with respect to the size
of the smaller graph and a time complexity that is quadratic in
the average case. It worth to point out that a recent paper of
N. Dahm and H. Bunke [30] has reconfirmed the effectiveness of
feasibility rules in terms of search space reduction and complexity.
Nevertheless, the exponential nature of the subgraph isomorphism
problem and the wide variety of application fields raise the need for
an algorithm that is generic with respect to the specific contexts,
but easy to specialize, by using simple heuristics if possible, in
order to reduce the explored search space and consequently the

3.2. VF2: heritage of a successful approach 35

A B

D C

1 2

35

G1

B 4

(a) Pattern graph.

G2

D C

A B

1 3

46

D 5

B 2

(b) Target graph.

Figure 3.1: Graphs used in the following examples about VF2 and VF3.
On the left the pattern graphs the algorithm is searching for inside the target
graph, on the right.

time to find the solutions.

3.2.1 Representation of the problem

As introduced above, the process of finding an exact matching
between two graphs can be solved by means of a State Space Rep-
resentation (SSR). More formally, given the graphs G1 = (V1, E1)
and G2 = (V2, E2), each state s, in the state space S, represents
a partial mapping M(s) between V1 and V2, that involves only
a subset of all the node couples in the goal mapping M . So
that, each partial mapping M(s) ≡ M1(s) ×M2(s) is composed
of a set of ordered node couples (u, v), where u ∈ M1(s) ⊆ V1

and v ∈ M2(s) ⊆ V2. Recalling the fact that a subgraph can
be extracted from a graph by considering a subset of its nodes
(see Section 2.1.2), it is trivial to imagine that the subsets M1(s)
and M2(s) induce two subgraphs G1(s) = (M1(s), B1(s)) and
G2(s) = (M2(s), B2(s)), respectively of G1 and G2. Where, in-

36 3. Similarity by Subgraph Isomorphism

tuitively, the sets B1(s) and B2(s) contain only the edges of G1(s)
and G2(s) connecting the nodes in M1(s) and M2(s). Therefore,
if these subgraphs satisfy the constraints of the wanted matching
then the state s will be consistent. For instance, if the algorithm
is searching for a graph isomorphism then s will be consistent iff
G1(s) and G2(s) are isomorphic. An example of the sets described
above is shown in Figure 3.2 and Figure 3.3.

3.2.1.1 Exploring the space

According to the representation described in previous Section, the
matching process is a search inside the SSR where the algorithm
starts form a state s0, that represents a void mapping M(s0) = ∅
and searches for one or more goal states sg, where M(sg) ≡ M .
Each new state s′ is generated from a parent state s by adding a
new ordered couple (u, v), where u, v /∈M(s). The state transition
from s to s′ corresponds to the addition of the node u to G1(s)
and the node v to G2(s).

It is easy to undestand that if we generate all the possible
state, through an exhaustive exploration, we will find all the goal
states, if at least one exists. But, due to the combinatorial nature
of the problem, the computational cost of exhaustive exploration
is factorial with respect to the size of the graphs. Nevertheless,
just the consistent states will lead the algorithm toward a solution
and the number of such states is substantially smaller than the
whole size of the state space. Indeed, a non consistent state s will
not generate any consistent states. This is due to the fact that,
if G1(s) is not isomorphic with G2(s) then G1(s′) and G2(s′) ob-
tained by adding u to G1(s) and v to G2(s) will not be isomorphic.
Therefore, it is possible to focus the search process on consistent
states only.

As shown in Algorithm 1, VF2 explores the search space ac-
cording to a depth-first search strategy with backtracking. At each
iteration, the algorithm searches for a new candidate couple (u, v)
to generate a new state s′ = s ∪ (u, v). But it is not explored as
soon as the new couple is added. Before that, VF2 checks, first,

3.2. VF2: heritage of a successful approach 37

S2 S6

S0

S3 S4

S10

S7

S5

S8

S1

S9

S11

S12 S13

S14

State Mapping

S0 M(S0) = ∅
S1 M(S1) = {(1, 1)}
S2 M(S2) = {(1, 2)}
S3 M(S3) = {(1, 3)}
S4 M(S4) = {(1, 4)}
S5 M(S5) = {(1, 6)}
S6 M(S6) = {(1, 6)}
S7 M(S7) = {(1, 6), (2, 1)}
S8 M(S8) = {(1, 6), (2, 3)}
S9 M(S9) = {(1, 6), (2, 4)}
S10 M(S10) = {(1, 6), (2, 4), (3, 1)}
S11 M(S11) = {(1, 6), (2, 4), (3, 3)}
S12 M(S12) = {(1, 6), (2, 4), (3, 3), (4, 1)}
S13 M(S13) = {(1, 6), (2, 4), (3, 3), (4, 2)}
S14 M(S14) = {(1, 6), (2, 4), (3, 3), (4, 2), (5, 1)}

Figure 3.2: In the figure are considered the two graphs in Figure 3.1, it shows
all the states found by VF2 during the exploration. The states represented by
dashed lines are those generated but not explored because they are unfeasible.
On the other hand, the states represented by solid lines are those consistent.
S14 is a goal state because is both complete and consistent. Note that the
numbering depends on the order the states are generated by the algorithm.
Finally, in the table is shown Core set for each state, the consistent mappings
are highlighted by using a bold text.

38 3. Similarity by Subgraph Isomorphism

A B

C

1

2

3

C

BA

3

46

G1(S11) G2(S11)

Figure 3.3: The figures is referred to the example in Figure 3.2. It shows the
two isomorphic subgraphs induced by the nodes that are inside the mapping
at the state S11. It is cleat that S11 is consistent because it satisfies the
constraints imposed by the graph isomorphism problem.

if the the state s′ is consistent, then, if it has at least a consistent
descendant Indeed, it the last condition is not verified, it is sure
that we will not found any goal state by exploring it, so s′ can be
cut off. To this aim, VF2 uses a set of look-ahead rules through
which the algorithm is able to determine if a new couple is feasi-
ble to generate a consistent state before it is explored. It worth to
point out that the conditions checked by these rules are necessary,
but not sufficient to satisfy the matching constraints. But such a
strategy allows the algorithm to reduce significantly the number
of states that are explored.

All the main aspects that have been introduced in this section
will be explained in details in the followings.

3.2.2 Feasibility Rules

The concept of feasibility is a key point of VF2 and the whole
structure of this algorithm is based on it. Indeed, the idea of
feasible node couple is directly related to that of state consis-
tency. Since the algorithm has to explore consistent states only,
the transaction function s′ = s ∪ (u, v), used to generate a new
state s′ from a consistent state s, must ensure that the addition

3.2. VF2: heritage of a successful approach 39

Algorithm 1 Structure of the matching procedure used by VF2. The inputs
provided to the procedure are the start state s and the two graphs G1, G2.
The procedure returns true if the solution exists, false otherwise.

1: function Match(s, G1, G2)
2:

3: if IsGoal(s) then
4: return True
5: end if
6:

7: if IsDead(s) then
8: return False
9: end if

10:

11: Set u = ε ∧ v = ε
12: (u′, v′) = GetNextCandidate(s, (u, v), G1, G2)
13: while u′ 6= ε ∧ v′ 6= ε do
14: if IsFeasible((u′, v′), G1, G2) then
15: s′ = s ∪ (u′, v′)
16: if Match(s′, NG1 , G1G1, G2) is True then
17: return True
18: end if
19: end if
20: (u′, v′) = GetNextCandidate(s, (u′, v′), G1, G2)
21: end while
22: return False
23: end function

of the pair (u, v) will lead the algorithm toward a new consistent
state. So that, before generating a new state VF2 analyses the
feasibility of a candidate pair (u, v) by using a feasibility function
F (s, u, v) that takes into account both structural and semantic
information of each node:

F (s, u, v) = Fsem(s, u, v) ∧ Fstr(s, u, v) (3.1)

The semantic term Fsem(s, u, v) of the function depends only on
the attributes of the two nodes and is used to evaluate if the se-

40 3. Similarity by Subgraph Isomorphism

mantic information of the two nodes is equivalent. The structural
term Fstr(s, u, v) is more complex because it analyses the neigh-
bourhood of each node by considering the consistency of three
different subsets: the neighbours that are already in the mapping
set M(s) of the current state s, the neighbours that are not into
M(s) but are connected with nodes in M(s) and those are not into
M(s) and are not connected nodes in M(s). To this aim, VF2 for
each states uses two distinct sets, one for each graph: the core sets,
M1(s) ⊆ V1(s) and M2(s) ⊆ V1(s), to store the nodes already in
M(s) and the terminal sets, T1(s) ⊆ V1(s) and T2(s) ⊆ V1(s), con-
taining the nodes connected to those are inside the core set. Then,
the structural term of the feasibility function can be evaluated by
considering three different rules, one for each subset defined above:

Fstr(s, u, v) = Rcore(s, u, v) ∧Rterm(s, u, v) ∧Rnew(s, u, v) (3.2)

Rcore(s, u, v) is the main rule used to evaluate if the algorithm is
going towards a new consistent state or not by adding the new
couple (u, v). The rule checks if all the constraints imposed by the
matching problem the algorithm is facing are respected. E.g. in
case of isomorphism Rcore(s, u, v) ensures that adding the node u
to the subgraph G1(s) and the node v to the subgraph G2(s) than
G1(s′) and G2(s′) are still isomorphic.

Rcore(s, u, v) ⇐⇒
∀u′ ∈ adj(G1, u) ∩M1(s)

∃!v′ ∈ adj(G2, v) ∩M2(s) : (u′, v′) ∈M(s)

∧∀v′ ∈ adj(G2, v) ∩M2(s)

∃!u′ ∈ adj(G1, u) ∩M1(s) : (u′, v′) ∈M(s)

(3.3)

Differently from Rcore, the other two rules define conditions that
are necessary but not sufficient to determine if a state is consistent.
Nevertheless, they are useful to reduce the number of explored
state by looking ahead. Indeed, Rterm(s, u, v) and Rnew(s, u, v)
are used to look for the consistency respective one and two steps
after the current state with the aim to determine if among all the
descendants of s there will be or not at least a goal state. So, if they

3.2. VF2: heritage of a successful approach 41

are false we are sure that the algorithm will not found any goal
state by exploring s. An important consideration about the look
ahead rules is related to the computational complexity, indeed,
the more the algorithm looks far the more the computational cost
of the rule increases. Therefore, in order to limit such a cost the
two look ahead rules just consider the cardinality of the sets used
to analyse the consistency.

Rterm(s, u, v) ⇐⇒
|adj(G1, u) ∩ T1(s)| ≤ |adj(G2, v) ∩ T2(s)| (3.4)

Rnew(s, u, v) ⇐⇒
|adj(G1, u) ∩ Ṽ1(s)| ≤ |adj(G2, v) ∩ Ṽ2(s)|

(3.5)

In Equation 3.5 two new sets have been introduced, Ṽ1(s) ⊆ V1(s)

and Ṽ2(s) ⊆ V2(s), to represents the nodes that are neither in
M(s) nor into the terminal sets.

3.2.2.1 Extension to directed graphs

The feasibility rules can be easily extended for directed graphs
by considering different sets for the edge directions, respectively
Prec(G1, u), Prec(G2, v) for incoming edges and Succ(G1, u),
Succ(G2, v) for outgoing edges. The terminal sets T1(s) and T2(s)
will be divided each one in two subsets: T in1 (s), T out1 (s), T in2 (s)
and T out2 (s). In this case, the rule Rcore(s, u, v) is composed of
two subrules Rsucc(s, u, v) and Rpred(s, u, v) used to check the con-
sistencies on both the directions. Similarly, the look-ahead rules
should be adapted to consider separately the two kind of edges.

Rcore(s, u, v) ⇐⇒ Rsucc(s, u, v) ∧Rpred(s, u, v) (3.6)

Rsucc(s, u, v) ⇐⇒
∀u′ ∈ Succ(G1, u) ∩M1(s)

∃!v′ ∈ Succ(G2, v) ∩M2(s) : (u′, v′) ∈M(s)

∧∀v′ ∈ Succ(G1, v) ∩M1(s)

∃!u′ ∈ Succ(G2, u) ∩M2(s) : (u′, v′) ∈M(s)

(3.7)

42 3. Similarity by Subgraph Isomorphism

T1(S0) M1(S0) T2(S0) M2(S0)

T1(S6) M1(S6) T2(S6) M2(S6)

A

1

B

C

2

3

A

6

B

C

4

3

D1
D5

D5

A B

C

1

2

3

A B

C

6

4

3
B

D

2

5

T1(S11) M1(S11)

B

D5

D1

2

T2(S11) M2(S11)

Figure 3.4: The Core sets (solid lines) and the Terminal set (dashed lines)
related to the state S0, S6 and S11 in VF2 , (see Figure 3.2).

3.2. VF2: heritage of a successful approach 43

Rpred(s, u, v) ⇐⇒
∀u′ ∈ Pred(G1, u) ∩M1(s)

∃!v′ ∈ Pred(G2, v) ∩M2(s) : (u′, v′) ∈M(s)

∧∀v′ ∈ Pred(G1, v) ∩M1(s)

∃!u′ ∈ Pred(G2, u) ∩M2(s) : (u′, v′) ∈M(s)

(3.8)

Rterm(s, u, v) ⇐⇒
|Pred(G1, u) ∩ T1(s)| ≤ |Pred(G2, v) ∩ T2(s)|
∧|Succ(G1, u) ∩ T1(s)| ≤ |Succ(G2, v) ∩ T2(s)|

(3.9)

Rnew(s, u, v) ⇐⇒
|Pred(G1, u) ∩ Ṽ1(s)| ≤ |Pred(G2, v) ∩ Ṽ2(s)|
∧|Succ(G1, u) ∩ Ṽ1(s)| ≤ |Succ(G2, v) ∩ Ṽ2(s)|

(3.10)

For simplicity of notations we will refer to undirected graphs only
on the following sections.

3.2.3 Generating new states

Exploring a state requires to generate all its direct descendants.
To this aim VF2 defines two sets P1(s) and P2(s), shown in Equa-
tion 3.11 and Equation 3.12, where to search for a new couple
(u, v). If the terminal sets are not empty, the algorithm will search
for the next candidate inside these, otherwise it will explore the set
of nodes that are outside the terminal sets and the core set, rep-
resented by the sets Ñ1(s) and Ñ2(s). After a new couple (u, v),
candidate to be added in the current mapping M(s), has been
found then VF2 check for its feasibility by using the above men-
tioned rules.

P1(s) =

{
T1(s), if T1(s) 6= 0 ∧ T2(s) 6= 0

Ñ1(s), otherwise
(3.11)

P2(s) =

{
T2(s), if T1(s) 6= 0 ∧ T2(s) 6= 0

Ñ2(s), otherwise
(3.12)

44 3. Similarity by Subgraph Isomorphism

To be thorough, in Equation 3.13 and Equation 3.14 is shown
the extension of the sets P1(s) and P2(s) in the case of directed
graphs.

P1(s) =

T out1 (s), if T out1 (s) 6= 0 ∧ T out2 (s) 6= 0

T in1 (s), if T in1 (s) 6= 0 ∧ T in2 (s) 6= 0

Ñ1(s), otherwise

(3.13)

P2(s) =

T out2 (s), if T out1 (s) 6= 0 ∧ T out2 (s) 6= 0

T in2 (s), if T in1 (s) 6= 0 ∧ T in2 (s) 6= 0

Ñ2(s), otherwise

(3.14)

3.2.3.1 Avoiding cycles

The depth-first search, as all the algorithms aiming to explore
graphs, has to deal with the cycles. It means, in the case of the
state space, to avoid the generation of states that have been al-
ready discovered. In particular, a state s whose partial mapping
M(s) contains k couples is reachable from k! different paths. A set
that contains all the explored states is usually employed to face
the problem, but this solution is unsuitable for large graphs.

Since the problem concerns graphs only another possibility is
to reshape the state space as a tree. This can be obtained by defin-
ing an arbitrary total order relationship (denoted by ≺) over the
second graph that states the order the nodes have to be explored.
The strategy is feasible because the order of the couples belonging
to a goal state is not relevant to the correctness of the solution. In-
deed, the mapping just defines and association between two nodes
of two different graphs, but not an order relationship among them.

Therefore, during the search of a new candidate couple, VF2
has to take into account the existing order relationship and then
it ignores any pair vi ∈ P2(s) if this set already contains a node
vj ≺ vi. This simple strategy allows the algorithm to generate
each state only once.

3.3. VF3: a novel subgraph isomorphism algorithm 45

3.3 VF3: a novel subgraph isomor-

phism algorithm

After more than ten years, the problems the subgraph isomor-
phism is applied to changed and the structural and semantic char-
acteristics of the graphs involved too. In several new applications
VF2 is no more competitive with the state of the art, as it has been
shown in some recent papers [23, 19, 31, 32, 33]. Therefore, new
strategies are needed to be able to compete with the challenges
that recently arose.

VF3 is new algorithm that has been designed with the intent
to improve VF2 by preserving its structure based on a SSR, a
DFS with backtracking and a set of feasibility rules. In this re-
spect, VF3 has introduced a pattern preprocessing step based on a
new total order relationships, a new procedure to select the candi-
date couple and, finally, a set of class-based look-ahead rules that
improve the pruning power of those original.

3.3.1 Pattern preprocessing

3.3.1.1 A new total order relationship

As described in the previous section, VF2 defines an arbitrary
order relationship on the second graph to deal with the problem
of cycles in the state space. But VF3 has the additional aim to
prepare a node exploration sequence for the patter graph, that is
successively used to preprocess the pattern graph and prepare in
advance all the structure needed to explore the graph.

Differently from RI, the new order relationship used by VF3
does not takes into account only the structural features of the
pattern graph, but tries to combine them with the structural and
semantic ones of the target graph. In fact, the basic idea is giving
priority to the nodes with the lowest probability to find a feasible
candidate and the highest number of connections with the nodes
already inserted in the sequence. In this way, the algorithm will
explore first the nodes with highest number of constraints. So that,

46 3. Similarity by Subgraph Isomorphism

let us enter into details and define the basic concepts. The proce-
dure GenerateNodeSequence has the aim of exploring the graph G1

and generating a node exploration sequence NG1 by applying the
order relationships. It needs to know, for each node u ∈ G1, the
probability Pfeasible(u) to find a feasible candidate v ∈ G2. This
probability is obtained by combining Plab(L) and Pdeg(d) that are
respectively the probability to find a node with label L and the
probability to find a node with degree d in G2. In the case of the
subgraph isomorphism Pfeasible(u) can be calculated as defined in
Equation 3.15.

Pfeasiblesubiso(u) = Plab(lab(u)) ·
∑

d′≥deg(u)

Pdeg(d
′) (3.15)

It is interesting to note that in the case of the graph isomorphism,
the structural constraint given by the degree is stronger and v ∈ G2

will be compatible to u ∈ G1 if deg(u) = deg(v). This constraint
affects the definition of Pfeasible(u), as shown in Equation 3.16.

Pfeasibleiso(u) = Plab(lab(u)) · Pdeg(deg(u)) (3.16)

Once the probability has been computed, there is another infor-
mation used by the procedure to take into account the structural
constraints that came from the nodes already in NG1 . To this aim,
we have introduced the concept of node mapping degree, namely
the degreeM. Given a node u′ ∈ G1, it is defined as the number
of incoming and outgoing edges between u′ and all the nodes that
are inside NG1 . So, at each step, when a new node is inserted in
NG1 , the procedure has to update the constraint of all the node
u′ /∈ NG1 .

Now, we are ready to describe how GenerateNodeSequence
works. In Figure 2 is shown each step of this procedure. The idea
is to use the degreeM (degM in Figure 2) first as ordering criterion,
then if two or more nodes share the same degreeM the choice will
be to take that has the lowest probability to be mapped, so if more
nodes have even the same probability the procedure takes the one
with highest degree. Obviously, more nodes could share the same

3.3. VF3: a novel subgraph isomorphism algorithm 47

degreeM, degree and probability, in this case the procedure just
selects randomly. At the beginning NG1 is empty, so all the nodes
have degreeM equal to zero, then node with the lowest probability
to be mapped is selected to be inserted in NG1 .

Algorithm 2 Procedure to generate an exploration sequence. The inputs
provided to the procedure are the graph G1 whose nodes have to be ordered
and the probabilities to find a feasible pair Pfeasible for each node of G1. The
output provided is NG1 , a node exploration sequence over G1.

1: function GenerateNodeSequence(G1,Pfeasible)
2: ∀n ∈ G1 set degM(n) = 0
3: Extract n0 = min

n∈G1

Pfeasible(n) ∧max
n∈G1

deg(n)

4: Add n0 in NG1

5: Update the set degM
6: for all n ∈ G1 ∧ n /∈ NG1 do
7: ni = max

n∈G1

degM(n) ∧ min
n∈G1

Pfeasible(n) ∧max
n∈G1

deg(n)

8: Add ni in SG1

9: ∀n ∈ G1 ∧ n /∈ NG1 update degM(n)
10: end for
11: return NG1

12: end function

It worth to point out that the exploration sequence generated
by the procedure represents a fixed traversing path used by VF3 to
visit the fist graph. Each position of the sequence corresponds to
a specific level of the depth-first search. Therefore, all the states
at the level i will be generated by adding to those at the level
i − 1 couples that shares the same node of the pattern graph.
For instance, if we consider an arbitrary node sequence NG =
{1, 2, 4, 3}, each state s, at the second level, is generated by adding
a couple that have 2 as first node. In order to make more clear
how the whole process works, a complete example is provided in
Section 3.3.1.3.

48 3. Similarity by Subgraph Isomorphism

3.3.1.2 State structures precalculation

Having a fixed exploration sequence for the first graph provides a
side benefit to the algorithm. Indeed, by using such sequence, VF3
is able to pre-process the graph before starting the matching and
compute, at every level of DFS, the state of each set (terminal
sets and core set). Additionally, during the pre-processing, the
algorithm is capable to generate a coverage tree used successively
to improve significantly the selection of a new node couple.

Algorithm 3 shows the procedure used to pre-process the first
graph. It explores iteratively the neighbourhood of each node u
in the sequence SG1 . If a neighbour u′ is not yet in the terminal
set T1 of G1, it will be inserted in T1 and u will become the parent
of u′. Since, one of the aims of such procedure is to compute
the state of T1 at each level of DFS, when a node is inserted in
the set the procedure will take note of the level the node has
been inserted. This information can be easily obtained by the
procedure recalling the relationship between the level of DFS and
the position of a node in the sequence SG1 . Finally, the coverage
tree is effortless obtained by using the parent set returned by the
procedure. Obviously, the first node in the sequence has a dummy
parent, generally identified as a null node.

3.3.1.3 Example

In this Section we are going to provide a simple, but effective ex-
ample to clarify how sorting and preprocessing are performed by
VF3. As discussed above, the first step the generation of an ex-
ploration sequence NG1 ; to this aim, it computes label and degree
frequencies on the target graph G2 and then it calculates the prob-
ability to find a feasible pair for all the nodes in G1. In Table 3.2
and Table 3.3 are shown the frequencies and probabilities concern-
ing the graphs in Figure 3.1. At the beginning NG1 is empty, so
the first node to insert is selected only on the base of the probabil-
ity. Referring to Table 3.3 the node 3 has the lowest probability,
then the algorithm will choose it first. Thus, NG1 = {3}, all the
other nodes are connected to 3, so they have the same degM .

3.3. VF3: a novel subgraph isomorphism algorithm 49

Algorithm 3 Procedure to preprocess the first graph G1 given an exploration
node sequece SG1

. It returns the set of parents for each node in the sequence.

1: function PreprocessFirstGraph(G1,SG1 ,T1)
2: i = 0
3: for all u ∈ SG1 do
4: for all u′ ∈ adj(u) do
5: if u′ /∈ T1 then
6: Put u′ in T1 at level i
7: Parent(u′) = u
8: end if
9: i = i+ 1

10: end for
11: end for
12: return Parent
13: end function

Label Frequency
A 0, 16
B 0, 34
C 0, 16
D 0, 34

Degree Frequency
1 0
2 0, 34
3 0, 34
4 0, 34

Table 3.2: Label and degree frequencies extracted from G2.

Node Degree Label Total
1 0, 66 0, 16 0, 11
2 1 0, 34 0, 34
3 0, 34 0, 16 0, 05
4 1 0, 34 0, 34
5 0, 66 0, 34 0, 22

Table 3.3: Probabilities for the nodes in G1.

Among them 1 and 5 have the highest degree, but 1 has the low-
est probability, so it is selected. Now, NG1 = {3, 1}, 2 and 5 have
the highest degM , but 5 is chosen because of its higher degree.
Finally, the 2 and 4 are inserted in the sequence. The resulting

50 3. Similarity by Subgraph Isomorphism

A

C

B1

3

2 D D4 5

Figure 3.5: Coverage tree produced by VF3 using the exploration sequence
NG1

= {3, 1, 5, 2, 4}.

exploration sequence is NG1 = {3, 1, 5, 2, 4}.
Once the sequence is ready, VF3 can explore the graph G1 in

order to prepare the terminal sets (see Table 3.4) and generate the
coverage tree shown in Figure 3.5. Note that the maximal depth
is equal to the size of G1. At the end of this process, VF3 is

Level Core Set Terminal Set
0 ∅ ∅
1 {33} {14, 22, 42, 51}
2 {33, 14} {22, 42, 51}
3 {33, 14, 51} {22, 42}
4 {33, 14, 51, 22} {42}
5 {33, 14, 51, 22, 42} ∅

Table 3.4: Core and Terminal sets of G1 for each level of the depth search.
For each node in the terminal set has been indicated the class it belongs to.

finally ready to start the matching.

3.3.2 Nodes Classification

In Section 3.2.2 we have described a set of rules, namely the feasi-
bility rules, used by VF2 to be more effective in exploring the state
space by looking ahead for the consistency of a new state. Such
rules can be further strengthened by partitioning the sets used by
the algorithms in several subsets, each of them containing all the
nodes belonging to a given class. A node class contains all the

3.3. VF3: a novel subgraph isomorphism algorithm 51

S1

S0

S2

S3

S4 S5

S6

State Mapping

S0 M(S0) = ∅
S1 M(S1) = {(3, 3)}
S2 M(S2) = {(3, 3), (1, 6)}
S3 M(S3) = {(3, 3), (1, 6), (5, 1)}
S4 M(S4) = {(3, 3), (1, 6), (5, 1), (2, 2)}
S5 M(S5) = {(3, 3), (1, 6), (5, 1), (2, 4)}
S6 M(S6) = {(3, 3), (1, 6), (5, 1), (2, 4), (4, 2)}

Figure 3.6: In the figure are considered the two graphs in Figure 3.1, it
shows all the states tryed by VF3 during the exploration. Similarly to Fig-
ure 3.2, the states represented by dashed lines are those generated but not
explored because they are unfeasible. While, the states represented by solid
lines are those consistent. S6 is a goal state because is both complete and
consistent. The numbering depends on the order the states are generated by
the algorithm. The Core set for each state is shown in the table, the consistent
mappings are highlighted by using a bold text. It worths to note that thanks
to the node classification and the new candidate selection procedure, VF3 is
able to generate far less unfeasible couples.

52 3. Similarity by Subgraph Isomorphism

nodes with particular semantic and structural features such that
if two nodes of G1 and G2 can generate a feasible couple they will
be assigned to the same class. In particular, in the case of graph
isomorphism, it is possible to use both the degree and the label
of a node to define a class. So, if we consider the graph G1 hav-
ing the following set of distinct node degrees deg(G1) = {1, 4, 5},
then the set associated to it by the algorithm, when a generic
state s is explored, will be: M1(s) = M1

1 (s) ∪ M4
1 (s) ∪ M5

1 (s),

T1(s) = T 1
1 (s) ∪ T 4

1 (s) ∪ T 5
1 (s), Ṽ1(s) = Ṽ 1

1 (s) ∪ Ṽ 4
1 (s) ∪ Ṽ 5

1 (s).
Using such sets the rules described in the previous subsection will
become more selective due to the fact that they can check sepa-
rately the consistency on each subset.

In general, it is possible to identify a Node Classification Func-
tion that assigns each node to a class ci ∈ C = {c1, c2, . . . , cn}, we
call this function ψ : V ∈ G → C, In this way the algorithm will
be able to divide the set used to explore the space state in distinct
subsets, one for each class ci ∈ C. The function ψ must have the
following properties:

1.
⋂n
i=1Ci = ∅, where Ci = {u ∈ V : ψ(u) = ci}.

2. Given u ∈ G1 and v ∈ G2, F (s, u, v)⇒ ψ(u) = ψ(v) ∀s ∈ S.

The first property ensures that the set C is composed of non over-
lapped classes in order to obtain distinct and non overlapped state
subsets. Moreover, since the algorithm will analyse each class sub-
set separately, the second property guarantees that we are not
going to exclude feasible pairs, and so consistent states, by per-
forming such partition.

It worths pointing out that, in the case of subgraph isomor-
phism, the first property of ψ disallows us to use the degree as
structural information to classify the nodes. Indeed, it will hap-
pen that a node is assigned to more classes. In order to clarify
this drawback, let us consider a generic node u ∈ G1 it may be
properly mapped to all the nodes in G2 whose degree is greater
or equal then u. Then, all of these nodes must share the same
class ci of u, but they are even compatible to all the nodes in G1

3.3. VF3: a novel subgraph isomorphism algorithm 53

Label Class
D 1
B 2
C 3
A 4

Table 3.5: Function ψ used to classify the nodes in the example. A class for
each label in G2 has been considered.

having a degree that is less or equal then u. So, even these nodes
must belong to the class ci. Now let us consider the node u′ ∈ G1

whose degree is greater then u and belongs to the class cj. All the
nodes in G2 that may be mapped to u′ must be assigned to cj, but
these nodes may be even mapped to u. Thus, if a node cannot
be assigned to two distinct classes, then u and u′ will belong to
the same class ci = cj. Extending this line of reasoning to all the
nodes of G1 and G2, we will get that only a class can exist.

Given the set of classes C, the sets used by VF3 for the graph
G1 can be defined as follows:

M1(s) = M c1
1 (s) ∪M c2

1 (s) ∪ · · · ∪M cn
1 (s)

T1(s) = T c11 (s) ∪ T c21 (s) ∪ · · · ∪ T cn1 (s)

Ṽ1(s) = Ṽ c1
1 (s) ∪ · · · ∪ Ṽ c2

1 (s) ∪ Ṽ cn
1 (s)

(3.17)

Similarly, it is possible to divide the sets used for the graph G1.
Once these sets have been obtained the feasibility rules can be
defined as:

Rterm(s, u, v) ⇐⇒
|adj(G1, u) ∩ T c11 (s)| ≤ |adj(G2, v) ∩ T c12 (s)|
∧|adj(G1, u) ∩ T c21 (s)| ≤ |adj(G2, v) ∩ T c22 (s)|

∧ · · · ∧ |adj(G1, u) ∩ T cn1 (s)| ≤ |adj(G2, v) ∩ T cn2 (s)|

(3.18)

54 3. Similarity by Subgraph Isomorphism

Rnew(s, u, v) ⇐⇒
|adj(G1, u) ∩ Ṽ1

c1
(s)| ≤ |adj(G2, v) ∩ Ṽ2

c1
(s)|

∧|adj(G1, u) ∩ Ṽ1

c2
(s)| ≤ |adj(G2, v) ∩ Ṽ2

c2
(s)|

∧ · · · ∧ |adj(G1, u) ∩ Ṽ1

cn
(s)| ≤ |adj(G2, v) ∩ Ṽ2

cn
(s)|

(3.19)

In the Equation 3.5 two new sets have been introduced, Ṽ1(s) ⊆
V1(s) and Ṽ2(s) ⊆ V2(s), to represents the nodes that are neither
in M(s) nor into the terminal sets.

3.3.3 A new candidate selection

Recalling the procedure used by VF2; it searches for the next
candidate couple inside the sets P1(s) and P2(s). These two sets
contain all the nodes that are the terminal sets. In many situa-
tions, especially if the target graph is considerably larger then the
pattern, just a little part of these sets contains nodes suitable to
compose a feasible couple. To this reason, the algorithm could
check for the feasibility or, even worse, backtrack several times,
more than is necessary.

The intent of the new candidate selection procedure is to reduce
the set where the algorithm explores. Indeed, when it has to search
for a candidate to couple a node u, the algorithm can analyze
only the neighborhood of those nodes in the core set M(s) that
are connected to it. This is, generally, a little subset of all the
nodes connected to all the nodes in M(s), as it is done in VF2.
An example of the difference between VF2 and VF3 is shown in
Figure 3.8.

By using the coverage tree computed during the preprocessing
of the pattern graph, VF3 is able to reduce significantly the size
of the set explored to search for a candidate node. The procedure
GetNextCandidate, shown in Figure 4, starts form the current pair
(u, v) and searches for a new pair (u′, v′). Firstly, the procedure
gets the next node u′ of the sequence SG1 , if it exists, and retrieves
the parent pu′ from the set Parent generated by the procedure

3.3. VF3: a novel subgraph isomorphism algorithm 55

T1(S0) M1(S0) T2(S0) M2(S0)

T1(S1) M1(S1) T2(S1) M2(S1)

C

3

B

A

2

1

C

3

D5

A D

C

1

5

3

A D

C

6

1

3B

B

4

2

T1(S3) M1(S3)

B

D5

B4

2

T2(S3) M2(S3)

B4

B

A

2

6

D1

B4

Figure 3.7: Core sets (solid lines) and Terminal sets (dashed lines) related
to the state S0, S1 and S3 in VF3 (see Figure 3.6). The classes considered to
divide the Terminal sets are defined in Table 3.5.

56 3. Similarity by Subgraph Isomorphism

A D

C

6

1

3

B

D5

B4

2

T2(S3) M2(S3)

Figure 3.8: Recalling the terminal sets in Figure 3.7, the figure shows the
subset of the Terminal set T2(S3) used to search for the candidate nodes in
G2 to couple with 2, the next node in the sequence NG1

. It is possible to note,
as described in details in Section 3.3.3, that VF3 does not take into account
the whole Terminal set T2(S3), but just the nodes connected to 3, the parent
node of 2 in the coverage tree (see Figure 3.5)

PreprocessFirstGraph. If the parent is a null node ε then two
situations would have happened: the node u′ is the first in the
sequence or u′ belongs to another connect component of the graph.
In both these cases, the procedure has to pick the pair node for
u′ outside the terminal sets of G2, i.e. in the set of Ñ2(s). If the
parent of u′ is not a real node the procedure will search for the pair
of u′ among the unmapped neighbours of the node ṽ, the pair of pu′
in M(s). Once an available neighbourhood v′ has been found the
procedure will return the couple (u′, v′) as next candidate to check
for the feasibility. If there are no more available neighbours of ṽ to
be coupled with u′ then the procedure will return an empty couple
(ε, ε). When it happens VF3 has the only option to backtrack and
remove the couple (u, v) from the current state s.

3.3. VF3: a novel subgraph isomorphism algorithm 57

Algorithm 4 Procedure to generate the next candidate couple. The inputs
provided are the current state s, the current node u of G1, the exploration
sequence SG1

and the graphs G1 and G2. The procedure will return a can-
didate couple (u′, v′) to be checked for the feasibility or a null couple (ε, ε) if
there are no more couple to explore.

1: function GetNextCandidate(s, u, SG1 , G1, G2)
2: u′ = GetNextInSequence(SG1 , u)
3: if u′ = ε then
4: return (ε, ε)
5: end if
6: pu′ = Parent(u′)
7: if pu′ 6= ε then
8: ṽ = ψ(pu′) . ṽ is the pair of pu′ in M(s)
9: while v′ ∈M(s) ∨ ψ(v′) 6= ψ(u′) do

10: Put v′ in adjexp(ṽ)
11: Pick v′ from adj(ṽ, G2)− adjexp(ṽ)
12: end while
13: else
14: while v′ ∈M(s) ∨ ψ(v′) 6= ψ(u′) do

15: Put v′ in Ñ2exp(s)

16: Pick v′ from Ñ2(s)− Ñ2exp(s)
17: end while
18: end if
19: if v′ 6= ε then
20: return (u′, v′) . Next pair has been found
21: else
22: return (ε, ε) . An empty pair is returned
23: end if
24: end function

58 3. Similarity by Subgraph Isomorphism

3.4 Experiments and Results

A complete characterization of a graph matching algorithm re-
quires to analyze its behavior, in terms of time and memory usage,
on a large variety of graphs. Our main intent has been to show
that VF3 represents a completely new algorithm able to outper-
form VF2 and to be competitive with the state of the art in several
situations. So that, we have compared VF3 with VF2, RI [19] and
LAD [23] by using the new version of MIVIA [34, 35, 36] sub-
graph isomorphism dataset, a dataset of biological graphs com-
posed of proteins and contact maps and a synthetic dataset of
large and dense random graphs. VF3 has been tested over more
than 100000 graphs organized in different families and having dif-
ferent size, density and label distributions. The experiments have
required about 7000 running hours.

In this Section, we are going to describe the experimental setup
used to perform the comparison: platforms, datasets and algo-
rithms considered and then we will comment the results obtained.

3.4.1 Experimental Setup

3.4.1.1 Environment

Experiments on graphs are very time consuming. On one hand,
because the search for patterns on large graphs can require much
time. On the other hand, performing a time benchmark that pro-
vides significant results requires to run a single algorithm per ma-
chine. To deal with this problem, we have conducted the time
benchmarks on batch of homogeneous virtual machines hosted by
VMWare ESXi 5. Each of them is equipped with Ubuntu Server
running on two AMD Opteron Processors 6376 2300Mhz, 2Mb of
cache and 8Gb or RAM. It is important to point out that the way
clock signals are kept on virtual machines is a critical point. Phe-
nomena like time drifting or lost clocks can introduce bias in the
measures. In our case, it has been faced by following the sugges-
tions provided by VMWare Team to use correctly the virtual clock
signal generated by the hypervisor. In order to be more robust

3.4. Experiments and Results 59

with respect to different biases introduced by the operating sys-
tem each single measure has been taken several time. Given that
dealing with large or regular graphs can require a large amount of
time we have set a timeout of 30 minutes. Only for the additional
synthetic random graphs dataset we let RI and VF3 work without
timeout in order to understand better the behaviour on graphs
very hard to face.

Luckily, memory benchmarks have not the same limitations
and more algorithms can run concurrently on the same machine.
This task has been performed on Ubuntu Server by using Val-
grind, a well known software library to profile the memory usage
of a process. The aim of this benchmark has been to measure the
maximum amount of data memory, stack and heap, used by the
algorithm during the matching. Valgring, in particular its tool
Massif, has allowed us to measure the data memory only with
an accuracy of 99% in getting the memory peak. Since some al-
gorithm is memory hungry when it faces large graphs, we have
limited to 1 Gb the maximum amount of memory available to
each competitor.

3.4.1.2 Algorithms

We have introduced in Section 3.1.1 two state of the art algo-
rithms we have taken into account in our experiments: RI [19]
and LAD [23]. Both are are specialized in solving the subgraph
isomorphism but using two different approaches. Recalling the
classification we have provided in the state of the art, RI is based
on a Tree Search approach, while LAD is a Constraint Program-
ming algorithm. We have selected these two algorithms because of
the following reasons. First, they are both very recent algorithms
belonging to different approaches. Then, they have demonstrated
to be more than one order of magnitude faster than VF2 in solv-
ing the subgraph isomorphism. Finally, their source code is easy
to obtain. Therefore, we were able to add the code needed to
properly perform our benchmarks.

60 3. Similarity by Subgraph Isomorphism

3.4.1.2.1 RI RI is based on a static pattern preordering pro-
cedure, namely Greatest Constraint First, that aims to produce a
exploration sequence on the first graph and a coverage tree used by
the searching algorithm. Such procedure orders the nodes of the
pattern graph by considering only the structural constrains pro-
vided by the nodes already sorted. Once the exploration sequence
is ready, the matching algorithm generates all the possible paths in
the search space by using a DFS with backtracking. All the path
that are not consistent with the constraints of subgraph isomor-
phism are pruned. The pruning is based only on the check of basic
semantic and structural constraints without any look-ahead. Sim-
ilarly to VF2, RI has a complexity linear in space and quadratic
in time in the average case.

Before discussing the results, a first difference that can be re-
alized between RI and VF3 is in the ability of pruning the state
space. On one hand, RI is less effective in pruning then VF2 and
VF3 because it does not use any look-ahead or backjump rule. On
the other hand, this leak is balanced both by the fact that time
required to elaborate each state is considerably reduced and by the
sorting procedure. Indeed, the latter is able, in the average case,
to provide a good exploration sequence that reduces the number
of states explored by RI.

3.4.1.2.2 LAD Similarly to other Constraint Programming
algorithms, LAD works basically by filtering the starting search
tree composed of all the possible couples. The filter is applied it-
eratively by the algorithm since no other couples can be removed.
This stop condition may be verified in two different situations: all
the nodes belonging to the pattern have been mapped with at least
one node in the target graph (there is at least one solution), or at
least one pattern node has not any correspondence with a target
node (no solutions exist).

The filter used in LAD is based on a set of global constraints
derived from those of subgraph isomorphism. At each step, the
algorithm selects a node couple and checks that the constraints
are satisfied for all the neighbors of the two nodes. This check is

3.4. Experiments and Results 61

performed by using a bipartite mapping whose aim is to verify that
all the neighbors of the first node can have at least one pair in the
target. If such condition is not satisfied the couple will discarded.

The space complexity of LAD is quadratic in the average case,
while the time complexity is between N2 and N4, where N is the
size of the smaller graph.

LAD works in a completely different way with respect to RI,
VF2 and VF3 and its state space size and pruning power can not
be easily compare to the others. In many situations it is faster than
VF2 in finding all the solutions, even though the space required is
generally higher.

3.4.1.3 MIVIA Dataset

For the most part the experiments have been conducted on the
MIVIA dataset due to its completeness. Indeed, it is a synthetic
dataset composed both of unlabelled and labelled graphs belonging
to different families, each of them related to specific mathematical
model. Moreover, for each target graph there are three patterns
having a size that is respectively the 20%, 40% and 60% of the
target one.

It worths pointing out that, due to the time needed to perform
the experiments, we have not used the entire datasets, but only
the hardest part of it. In particular, we have used only patterns
large the 20% of their respective targets.

3.4.1.3.1 Bounded Valence Graph These are graphs whose
total degree (ongoing and outgoing) is lower than a given thresh-
old, namely the valence. If the number of edges is equal for all the
nodes, they are commonly called fixed valence graph. The dataset
includes the latter kind of graphs, that have been generated by
inserting random edges, by using an uniform distribution, with
the constraint that the valence of a node cannot exceed a selected
value. Three different values of valence v have been considered (3,
6 and 9) with graph from 20 to 1000 nodes, but the dataset can
be further extend by using the generators provided by the authors

62 3. Similarity by Subgraph Isomorphism

together with the datasets.
In addition to fixed valence graph, the dataset contains even

irregular bounded valence graphs, where the average valence of the
nodes is bounded, so the single nodes may have a valence which is
quite different from the average. It is clear that, in this case, the
degree is not bounded by a constant value. The irregularities are
obtained by moving the edges of fixed valence graphs according to
a random distribution with uniform probability.

The dataset contains 6000 matching couples for the subgraph
isomorphism problem, for each kind of labelling.

3.4.1.3.2 Regular Meshes Graphs The dataset includes
connected 2D, 3D and 4D meshes as regular graphs, in order to
provide a kind of graph that represent a worst case for general
graph matching algorithms.

A mesh is a graph in which each node, except those in the
border, is connected respectively with its k neighborhood nodes.
k depends on the type of grid considered: 4 for 2D, 6 for 3D and
8 for 4D meshes.

Moreover, similarly to the bounded valence graphs, the dataset
contains a set of irregular mesh-connected graph, obtained by
adding a certain number of edges to the regular meshes. The
nodes connected by each new edge have been randomly selected
according to a uniform distribution.

The composition of the dataset is shown in details in Table 3.6.

mesh k size range # of couples per labeling

2D 4 [16− 1024] 4000
3D 6 [27− 1000] 3200
4D 8 [16− 1296] 2000

Table 3.6: Details about the mesh graph dataset structure

3.4.1.3.3 Random Graphs These are graphs where the
edges connect nodes without any structural regularity. The model

3.4. Experiments and Results 63

used to generate such kind of random graphs has been formu-
lated by Erodős and Rényi in [37]. In the graphs belonging to the
dataset it is assumed that the probability that exists an edge, con-
necting two nodes, is independent on the nodes themselves. The
probability distribution is assumed to be uniform and is strongly
related to the desired density by means of the parameter η ∈ [0, 1],
where 0 represents a graph without edges and 1 is the case of a
complete graph.

In the dataset are considered three different values of the edge
density η (0.01, 0.05, 0.1) and 3000 matching couples for each
labelling distribution. The size of the graphs is between 20 and
1000 nodes.

It is important to note that the higher is the density the harder
is for a graph matching algorithm to process the graphs.

3.4.1.4 Additional Datasets

In addition to the MIVIA dataset we have considered other two
datasets.

The first is a biological dataset composed of graphs extracted
from real molecular structures of proteins. Such a dataset has
been proposed during the International Contest on Graph Match-
ing Algorithms for Pattern Search in Biological Databases hosted
by the 22nd International Conference of Pattern Recognition [33].
The intent in this choice has been to understand how VF3 would
have performed with respect to the winner of contest. In particu-
lar, the dataset we have used contains proteins from 500 to 10000
nodes and contact maps from 99 to 700 nodes.

The second is a synthetic dataset composed only of random
graphs (unlabelled and labelled), generated by using the Erodős
and Rényi model. Differently from the MIVIA dataset, the graphs
contained in this one are considerably more large and dense. In
particular, the size is from 300 to 8000 node and the values of
η considered are 0.2, 0.3 and 0.4. We have taken into account
this dataset to evaluate better the behaviour of VF3 on very hard
graphs.

64 3. Similarity by Subgraph Isomorphism

It is important to point out that, in this case we have not
set a timeout so, due to the long time required to perform the
experiments, on these datasets we have only measured the time
usage, but not the memory. Moreover, not all the algorithms have
been able to find a the solution in an acceptable time. Indeed, we
have no measures of VF2 and Lad on the unlabelled graphs.

Dataset Graph Size Labelling Matching
Couples

Bounded Valence (Regular
and Irregular)

[20− 1000] Unlabelled, 8
labels

30000

Mash Grids 2D/3D/4D
(Regular and Irregular)

[16− 1296] Unlabelled, 8
labels

46000

Random (Regular and Ir-
regular)

[20− 1000] Unlabelled, 8
labels

15000

Proteins [500− 1000] 5 labels 1800
Contact Maps [99− 800] 21 labels 1800
Extended Regular Random [300− 8000] Unlabelled, 8

labels
2500

Table 3.7: Summary of the datasets used to perform the experiments .

3.4.2 Results

Finally we reach the showdown, now we need to understand if
VF3 is really able to substitute VF2 and, above all, if is able to
compete with the state of the art. As discussed in the previous
Section, we have performed a wide analysis in order to show both
strong points and weakness of VF3.

Before discussing the results, it worths to point out that the
limits we have set in memory and time have made some algorithm
unable to solve all the instances. In these situations we have not
been able to get the correct measure then we have discarded the
latter from all the algorithms. At the same time, we have keept
track of all the instances that each algorithm has not been able to
solve. Indeed, they provide useful information about the graphs
have been hard to face for each competitor. Therefore, with the

3.4. Experiments and Results 65

aim to complete the data provided, each figure has been anno-
tated with additional labels representing the number of instances,
for a given target size, that the algorithm has not been able to
solve. Moreover, in order to avoid the figures appear confused we
have not labelled the sizes where the algorithm has solved all the
instances.

Another preliminary remark to make is about VF3. We let
the algorithm to generate a class for each different label and, as
described in Section 3.3.2, we are not able to use structural in-
formation in the classification function. Thus, the latter does not
affect the results on unlabeled graphs and, in this case, VF3 is ba-
sically rewarded by the sorting procedure, the preprocessing and
the new procedure to select candidate couples. On labeled graphs
the function can be both an advantage and a disadvantage. In-
deed, even though the new look-ahead class-based rules provide
a stronger pruning of unfeasible states, when the number of dif-
ferent labels increases (e.g. for the case of scale free and small
world graphs with 256 different labels) the classification requires
an additional amount of memory.

Analyzing the time usage on the MIVIA dataset, RI appears
to outperform the other algorithms. But, entering into details
and considering the number of unsolved instances, it is clearly a
partial conclusion. Indeed, despite VF3 is slower then RI, it is able
to solve more instances. The low time usage shown by RI is due
to its simpler state consistency check, that differently from VF3
does not use any kind of look-ahead. It is based only on checking
the semantic and structural feasibility of a new state. On the
one hand, without using the look-ahed, RI is able to save time
in processing a single state, but, on the other hand, it performs
worse than VF3 when the the graphs become more dense and
large. This behaviour is more evident by analyzing the results on
the additional random graphs dataset where VF3 outperforms RI
on very large and dense graphs.

As previously highlighted, on unlabeled graphs, VF3 is penal-
ized by the fact that the classification function does not provide
any benefit, because it takes into account only semantic informa-

66 3. Similarity by Subgraph Isomorphism

tion. In addition, the sorting procedure can use only the structure
of the graphs. Nevertheless, VF3 outperforms its predecessors; the
difference in time usage is generally more than one order of mag-
nitude and it always solves more instances. Compared with the
other two competitors, VF3 is not the faster but it is very close
to RI and is generally able to solves matchings that the others are
not. On labeled graphs, VF3 can rely on very strong look-ahead
rules and a more selective procedure to generate new states. It re-
sults in a wider gap with respect to VF2. The distance between RI
and VF3 is reduced and the latter is even now able to solve more
instances than the former, especially with a non uniform labelling.

A noteworthy strong point of VF3 is the memory usage. Sim-
ilarly to VF2, its space complexity is linear and its behavior is
stable irrespective of kind of graphs it is facing. Their memory
usage depends only on the size. The main motivation lies into the
depth-first approach together with an optimized structure that al-
low both VF2 and VF3 to share many of the information used
to explore the search space. But, as already discussed, differ-
ently to VF2, VF3 needs an additional space to manage classes
and strengthen the feasibility rules. Even so, VF3 and VF2 have
almost the memory usage and generally on small graphs VF3 re-
quires less memory. We can justify the advantage of VF3 with
respect to the other competitors, especially to VF2, as due to the
reduced number of states explored.

Observing the results achieved VF3, has demonstrated to
be suitable in different situations, especially on large and dense
graphs, and able to compete with the algorithms in the state of
the art. And it is clear that, in most of the cases, VF3 outperforms
VF2 in time and memory. Therefore, we can claim that it is ready
to inherit the position of VF2 in the state of the art.

3.4. Experiments and Results 67

0 200 400 600 800 1000
Target Size

10−5

10−4

10−3

10−2

10−1

100

101

102

Se
co

nd

1

55 90
116

1

1

59 93 116

1

67
109

129

47 82

110

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000
Target Size

104

105

106

107

108

109

B
yt

es

2

4 70 73 75

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.9: Time and memory usage on unlabelled bounded valence graphs.
Note that the figures are annotated with additional labels. They represents
the number of instances, for a given target size, that the algorithm has not
been able to solve due to the limits we have set in memory and time. If a size
is not labelled then all the instances have been solved.

68 3. Similarity by Subgraph Isomorphism

0 200 400 600 800 1000 1200
Target Size

10−5

10−4

10−3

10−2

10−1

100

101

102

103

Se
co

nd
30

144 264

36
161

275

101 220
291

12
107 236

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000 1200
Target Size

103

104

105

106

107

108

109

B
yt

es

31 78 77

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.10: Time and memory usage on unlabelled 2D open meshes. Note
that the figures are annotated with additional labels. They represents the
number of instances, for a given target size, that the algorithm has not been
able to solve due to the limits we have set in memory and time. If a size is
not labelled then all the instances have been solved.

3.4. Experiments and Results 69

0 200 400 600 800 1000
Target Size

10−5

10−4

10−3

10−2

10−1

100

101

102

Se
co

nd

7

61

10

68

1

23 105

2

30

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000
Target Size

104

105

106

107

108

109

B
yt

es

2 42 118

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.11: Time and memory usage on unlabelled 3D open meshes. Note
that the figures are annotated with additional labels. They represents the
number of instances, for a given target size, that the algorithm has not been
able to solve due to the limits we have set in memory and time. If a size is
not labelled then all the instances have been solved.

70 3. Similarity by Subgraph Isomorphism

0 200 400 600 800 1000 1200 1400
Target Size

10−5

10−4

10−3

10−2

10−1

100

101

102

103

Se
co

nd

7

180

7

192

19

238

1

123

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000 1200 1400
Target Size

103

104

105

106

107

108

109

B
yt

es

23 199

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.12: Time and memory usage on unlabelled 4D open meshes. Note
that the figures are annotated with additional labels. They represents the
number of instances, for a given target size, that the algorithm has not been
able to solve due to the limits we have set in memory and time. If a size is
not labelled then all the instances have been solved.

3.4. Experiments and Results 71

0 200 400 600 800 1000
Target Size

10−5

10−4

10−3

10−2

10−1

100

101

102

103

Se
co

nd

82 141 182

92
121 150

1
1

1

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000
Target Size

104

105

106

107

108

109

B
yt

es

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.13: Time and memory usage on unlabelled random graphs. Note
that the figures are annotated with additional labels. They represents the
number of instances, for a given target size, that the algorithm has not been
able to solve due to the limits we have set in memory and time. If a size is
not labelled then all the instances have been solved.

72 3. Similarity by Subgraph Isomorphism

0 200 400 600 800 1000
Target Size

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Se
co

nd

5

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000
Target Size

104

105

106

107

108

109

B
yt

es

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.14: Time and memory usage on bounded valence graphs with 8
labels uniformly assigned. Note that the figures are annotated with additional
labels. They represents the number of instances, for a given target size, that
the algorithm has not been able to solve due to the limits we have set in
memory and time. If a size is not labelled then all the instances have been
solved.

3.4. Experiments and Results 73

0 200 400 600 800 1000 1200
Target Size

10−6

10−5

10−4

10−3

10−2

10−1

100

Se
co

nd

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000 1200
Target Size

103

104

105

106

107

B
yt

es

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.15: Time and memory usage on 2D open meshes with 8 labels
uniformly assigned. Note that the figures are annotated with additional labels.
They represents the number of instances, for a given target size, that the
algorithm has not been able to solve due to the limits we have set in memory
and time. If a size is not labelled then all the instances have been solved.

74 3. Similarity by Subgraph Isomorphism

0 200 400 600 800 1000
Target Size

10−6

10−5

10−4

10−3

10−2

10−1

100

Se
co

nd

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000
Target Size

104

105

106

107

B
yt

es

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.16: Time and memory usage on 3D open meshes with 8 labels
uniformly assigned. Note that the figures are annotated with additional labels.
They represents the number of instances, for a given target size, that the
algorithm has not been able to solve due to the limits we have set in memory
and time. If a size is not labelled then all the instances have been solved.

3.4. Experiments and Results 75

0 200 400 600 800 1000 1200 1400
Target Size

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Se
co

nd

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000 1200 1400
Target Size

103

104

105

106

107

108

B
yt

es

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.17: Time and memory usage on 4D open meshes with 8 labels
uniformly assigned. Note that the figures are annotated with additional labels.
They represents the number of instances, for a given target size, that the
algorithm has not been able to solve due to the limits we have set in memory
and time. If a size is not labelled then all the instances have been solved.

76 3. Similarity by Subgraph Isomorphism

0 200 400 600 800 1000
Target Size

10−6

10−5

10−4

10−3

10−2

10−1

100

Se
co

nd

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000
Target Size

104

105

106

107

108

B
yt

es

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.18: Time and memory usage on random graphs with 8 labels
uniformly assigned. Note that the figures are annotated with additional labels.
They represents the number of instances, for a given target size, that the
algorithm has not been able to solve due to the limits we have set in memory
and time. If a size is not labelled then all the instances have been solved.

3.4. Experiments and Results 77

0 200 400 600 800 1000
Target Size

10−5

10−4

10−3

10−2

10−1

100

101

102

Se
co

nd

1

33 81 142

1

38
87 148

2

68 147
195

1

28 78 136

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000
Target Size

104

105

106

107

108

109

B
yt

es

3

52 70 74

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.19: Time and memory usage on bounded valence graphs with
8 labels non uniformly assigned. Note that the figures are annotated with
additional labels. They represents the number of instances, for a given target
size, that the algorithm has not been able to solve due to the limits we have
set in memory and time. If a size is not labelled then all the instances have
been solved.

78 3. Similarity by Subgraph Isomorphism

0 200 400 600 800 1000 1200
Target Size

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Se
co

nd

22

27
1

18
103

11

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000 1200
Target Size

103

104

105

106

107

108

109

B
yt

es

8
4

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.20: Time and memory usage on 2D open meshes with 8 labels
non uniformly assigned. Note that the figures are annotated with additional
labels. They represents the number of instances, for a given target size, that
the algorithm has not been able to solve due to the limits we have set in
memory and time. If a size is not labelled then all the instances have been
solved.

3.4. Experiments and Results 79

0 200 400 600 800 1000
Target Size

10−5

10−4

10−3

10−2

10−1

100

101

102

103

Se
co

nd

3

38

5

71

48
199

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000
Target Size

104

105

106

107

108

109

B
yt

es

6 2

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.21: Time and memory usage on 3D open meshes with 8 labels
non uniformly assigned. Note that the figures are annotated with additional
labels. They represents the number of instances, for a given target size, that
the algorithm has not been able to solve due to the limits we have set in
memory and time. If a size is not labelled then all the instances have been
solved.

80 3. Similarity by Subgraph Isomorphism

0 200 400 600 800 1000 1200 1400
Target Size

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Se
co

nd

123
168

15
275

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000 1200 1400
Target Size

103

104

105

106

107

108

109

B
yt

es

2
26

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.22: Time and memory usage on 4D open meshes with 8 labels
non uniformly assigned. Note that the figures are annotated with additional
labels. They represents the number of instances, for a given target size, that
the algorithm has not been able to solve due to the limits we have set in
memory and time. If a size is not labelled then all the instances have been
solved.

3.4. Experiments and Results 81

0 200 400 600 800 1000
Target Size

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Se
co

nd

1
16

31 48

LAD
RI
VF2
VF3

(a) Time usage.

0 200 400 600 800 1000
Target Size

104

105

106

107

108

B
yt

es

LAD
RI
VF2
VF3

(b) Memory usage.

Figure 3.23: Time and memory usage on random graphs with 8 labels
non uniformly assigned. Note that the figures are annotated with additional
labels. They represents the number of instances, for a given target size, that
the algorithm has not been able to solve due to the limits we have set in
memory and time. If a size is not labelled then all the instances have been
solved.

82 3. Similarity by Subgraph Isomorphism

1000 1500 2000 2500 3000 3500 4000 4500 5000
Target Size

101

102

103

104

105

Se
co

nd

RI
VF3

(a) Unlabelled Random Graphs with η = 0.2.

0 1000 2000 3000 4000 5000 6000 7000 8000
Target Size

10−4

10−3

10−2

10−1

100

101

102

103

104

105

Se
co

nd

LAD
RI
VF2
VF3

(b) Labelled Random Graphs with η = 0.2.

Figure 3.24: Time usage on random graphs. Note that on unlabelled graphs
VF2 and Lad are not plotted becouse we were not able to get measures.

3.4. Experiments and Results 83

0 500 1000 1500 2000 2500 3000
Target Size

10−1

100

101

102

103

104

105

106

Se
co

nd

RI
VF3

(a) Unlabelled Random Graphs with η = 0.3.

0 1000 2000 3000 4000 5000
Target Size

10−3

10−2

10−1

100

101

102

103

104

105

Se
co

nd

LAD
RI
VF2
VF3

(b) Labelled Random Graphs with η = 0.3.

Figure 3.25: Time usage on random graphs. Note that on unlabelled graphs
VF2 and Lad are not plotted becouse we were not able to get measures.

84 3. Similarity by Subgraph Isomorphism

200 400 600 800 1000 1200 1400 1600
Target Size

101

102

103

104

105

106

Se
co

nd

RI
VF3

(a) Labelled Random Graphs with η = 0.4.

0 500 1000 1500 2000 2500
Target Size

10−3

10−2

10−1

100

101

102

103

104

Se
co

nd

LAD
RI
VF2
VF3

(b) Unlabelled Random Graphs with η = 0.4.

Figure 3.26: Time usage on unlabelled random graphs. Note that on unla-
belled graphs VF2 and Lad are not plotted becouse we were not able to get
measures.

3.4. Experiments and Results 85

0 2000 4000 6000 8000 10000
Target Size

10-4

10-3

10-2

10-1

100

S
e
co

n
d
s

LAD
RI
VF2
VF3

(a) Proteins.

100 200 300 400 500 600 700 800
Target Size

10-5

10-4

10-3

10-2

S
e
co

n
d
s

LAD
RI
VF2
VF3

(b) Contact Maps.

Figure 3.27: Time usage on biological graphs representing respectively pro-
teins structures (a) and proteins contact maps (b).

86 3. Similarity by Subgraph Isomorphism

Chapter 4

Similarity by Graph Edit
Distance

”My big thesis is that although the world looks messy and
chaotic, if you translate it into the world of numbers and shapes,

patterns emerge and you start to understand why things are the
way they are.”

- Marcus du Sautoy

88 4. Similarity by Graph Edit Distance

4.1 Introduction

Graph edit distance (GED) is the most employed error tolerant
method to compute the similarity between two graphs; it is fre-
quently used when the aim is to apply statistical pattern recogni-
tion methods, such as LVQ, K-NN and so on, directly on graphs.
But, computing the exact value of GED is a NP-hard problem
that is commonly addressed by using A∗, a search algorithm whose
complexity is exponential and then unsuitable for large graphs.

Even though, the complexity required to compute the GED
is unsuitable for large graphs, in most of real world problems an
approximation is often sufficient and, under certain conditions,
it can be computed in a polynomial time. For this reason, the
interest of the scientific community has been focused in defining
efficient methods that provide efficient approximations of GED.

In particular, a recent successful method proposed by K.Riesen
and H.Bunke [6, 7] approximates the GED by solving a weighted
bipartite matching problem. Moreover, several improvements and
applications of this methods have been proposed in the last
years [38, 39, 40, 41, 42, 43, 43, 44].

In the following sections we will discuss this approach in details
because it represents the state of the art and is the starting point
of our method.

4.1.1 Linear Sum Assignment Methods

The graph edit distance between two graphs can be approximated
by solving a weighted bipartite matching problem. The reason of
this lies into the fact that an edit path may be deduced from a
sequence of edit operations applied on nodes only. As we will see
in the following sections, this is possible because of the relation-
ship between assignments and some particular kinds of edit paths,
i.e. the restricted edit paths. Indeed, any mapping between the
nodes of two graphs induces an edit path which substitutes all
mapped nodes together with all their incident edges and inserts
or removes the non-mapped nodes/edges. Conversely, given an

4.1. Introduction 89

edit path between two graphs, such that each node and each edge
is substituted only once, one can define a mapping between the
substituted nodes and edges of both graphs.

Therefore, with the intent to provide an introduction to the
framework that will be detailed below, let us discuss how the GED
is computed as a weighted bipartite matching (see Figure 4.3).
First, the nodes of two graphs G1 and G2 are arranged in two dif-
ferent node sets of a bipartite graph, then the aim is to find the
optimal assignment between the two sets. Each mapping between
two nodes represents an edit operation of node addition, deletion
or substitution on G1 and is penalized by a non negative cost. The
cost of the assignment is, then, defined as the sum of the costs of its
corresponding mappings. Under mild assumptions, starting from
the optimal node assignment it is possibile to deduce, in a non
ambiguous way, an edit path. The cost of this path is an approxi-
mate GED. In order to understand where is the approximation, it
is important to point out that the operations on the edges are not
directly considered. But, they are generally included in the cost
of mapping two nodes. Because of this, the cost of the optimal as-
signment is an approximation of the real one, hence the edit path
deducted is not minimal but short and provides an overestimated
GED.

The method proposed by K.Riesen and H.Bunke [6, 7] faces the
weighted bipartite matching problem as a Linear Sum Assignment
Problem (LSAP) by using a polynomial time solver, such as the
Hungarian Algorithm [45, 10]. In order to define the cost to map
two nodes, a bag of patterns is attached to each node; it takes into
account both the label and the structure around it. Each possible
substitution is then penalized by a cost that measures the affinity
between the bags. Similarly, node removals and insertions are
penalized by a cost measuring the importance of the bag.

So that, the definition of the bags of patterns is a key point,
as well as the associated measure of affinity. Incident edges have
been initialy proposed in [6, 7], and the cost between two nodes
(or bags) is itself defined as the cost of the linear sum assignment
of the patterns within the bags, following the same framework as

90 4. Similarity by Graph Edit Distance

the one defined for the nodes. The cost of substituting, removing
and inserting the patterns depends on the original cost function
used to penalize the edit operations.

Although the bipartite GED provides a good approximation it
is still an overestimation. As shown by several works, the overesti-
mation can only be marginally reduced, for instance by considering
more global information than the one supported by incident edges
[40, 44] (see Figure 4.1), or by modifying the resulting edit path by
means of genetic algorithms [41], see [43] for more details. These
methods provide an interesting compromise between time com-
plexity and approximation quality, but they are inherently limited
to compute linear approximations of the GED.

a

b h

g

c

f

d

e

i

l

k = 3

k = 0

k = 1

k = 2

Figure 4.1: Example of local structure of a node used in [44] as bag of
patterns. The cost to map two nodes is the exact edit distance between their
local structures of size k. The parameter k represents the distance from the
considered node in terms of path length. Note that, in the current example,
when k = 3, the local structure of the node is the whole graph. This is a
extreme situation where the entire structure of the graph has been considered
to compute the distance.

4.1.2 A Quadratic Assignment Approach

A complete representation of the GED as a bipartite matching can
be obtained only by considering both node and edge assignments

4.1. Introduction 91

simultaneously. Indeed, operations on edges can only be deduced
from operations performed on their two incident nodes. For in-
stance, an edge can be substituted to another one only if its inci-
dent nodes are substituted. This pairwise constraint on nodes is
closely related to the one involved in graph matching. It is known
that graph matching problems, and more generally problems that
incorporate pairwise constraints, can be cast as a quadratic as-
signement problem (QAP) [46, 16, 47, 48, 10]. QAPs are NP-hard
and so different relaxation algorithms have been proposed to find
an approximate solution, such as Soft-Assign [49, 50, 51], Integer
Projected Fixed Point (IPFP) [52], or Graduated NonConvexity
and Concavity Procedure [53]. Even if computing the GED is gen-
erally not equivalent to solve a graph matching problem, it may
also be formalized as a QAP. So far, this aspect has only been
considered through the definition of fuzzy paths by [54]. Thus,
the strong relationships between the GED and the QAP have not
yet been fully analyzed.

4.1.3 Chapter overview

In this chapter, we will describe in details how we have extended
the LSAP with insertions and removals [6, 7] to a quadratic prob-
lem. To this aim, in Chapter 2 we have provided some established
results about edit paths. These results are used to formalize the re-
lation between the LSAP (Section 4.3) or the QAP (Section 4.4),
and the edit paths. In particular, in the next sections, we will
show that, under the assumption of working with restricted edit
paths, the GED may be computed by solving a QAP. Then, in
Section 4.5, we will describe two algorithms commonly used to
solve the QAP, Soft-Assign and IPFP, and our improved version
of IPFP algorithm adapted to the minimization of quadratic func-
tionals to approximate the GED. Finally, in Section 4.6, we will
validate experimentally our approach and we will show that it gen-
erally provides a more accurate approximation than the state of
the art.

92 4. Similarity by Graph Edit Distance

4.2 Edit paths and assignments

As introduced before, the approach proposed by Riesen and
Bunke [7] mainly consists in finding an optimal assignment be-
tween the sets of nodes of the graphs according to a given set of
edit operation costs. This problem can be faced as a linear sum
assignment problem (LSAP) where the sets to be mapped corre-
spond to the two node sets respectively of G1 and G2.

The original definition of LSAP consists in mapping two sets
having the same number of elements. Trivially transposing LSAP
to the assignment of graphs will restrict the application of such
approach to graphs having the same size. However, in order to
compare graph in a more general way, the formulation of LSAP
must include the removal and the insertion of elements between
the two sets. Such operations on elements then correspond to
insertion and deletion of nodes within the edit path.

Hence, let X and Y be two finite sets, with |X| = n and |Y| =
m. Without loss of generality, we assume that X= {1, . . . , n} and
Y= {1, . . . ,m}. Each element of X can be assigned to an element
of Y. Such a mapping represents a possible substitution. Also
each element of X can be removed, and each element of Y can be
inserted into X. In order to represent insertions, X is augmented
by m dummy elements EX = {ε1, . . . , εm}, such that j can only be
inserted into Y by assiging εj to j. Similarly, the set Y is augmented
by n dummy elements EY = {ε1, . . . , εn}, such that i∈X is removed
by assigning it to εi. In other terms, it is not possible to assign an
element i∈X to an element εk ∈EY with k 6= i, and similarly any
assignment from εj ∈EX to k ∈Y with k 6= j is forbidden.

Let Xε =X∪EX and Yε =Y∪EY be the two augmented sets,
which thus have the same size n+m. We assume without
loss of generality that symbols εi and εj represent integers, i.e.
EX = {n + 1, . . . , n + m} and EY = {m + 1, . . . ,m + n}. It is now
possible to define assignments that take into account removal, sub-
stitution, and insertion of elements. In the following sections we
better formalize the relationship between edit paths and assign-
ments in order to compute the GED as an assignment problem.

4.2. Edit paths and assignments 93

It worths to point out that in order to make the Section easier
to read, propositions and corollaries have been provided without
proofs. However, they may be found in [55].

4.2.1 Independent edit path

An independent edit path between two labeled graphs G1 and G2

is an edit path such that:

1. No node nor edge is both substituted and removed,

2. No node nor edge is simultaneously substituted and inserted,

3. Any inserted element is never removed,

4. Any node or edge is substituted at most once,

An important thing to note is that an independent edit path is
not minimal in the number of operations. Indeed, it is still al-
lowed to replace one substitution by one removal followed by one
insertion (but such an operation can be performed only once for
each node or edge thanks to condition 3). However, we forbid use-
less operations such as the substitution of one node followed by
its removal (condition 1) or the insertion of a node with a wrong
label followed by its substitution (condition 2). In the following
we will only consider independent edit paths that we simply call
edit paths.

Proposition 1. The elementary operations of an independent edit
path between two graphs G1 and G2 may be ordered into a sequence
of removals, followed by a sequence of substitutions and terminated
by a sequence of insertions.

Proposition 2. Let P be an edit path between two graphs G1 and
G2. Let us further denote by R, S and I the sequence of node
and edge Removals, Substitutions and Insertions performed by P ,
the order in each sequence being deduced from the one of P (see
Figure 4.2). Then:

94 4. Similarity by Graph Edit Distance

• the graph Ĝ1 obtained from G1 by applying removal opera-
tions R is a sub graph of G1,

• the graph Ĝ2 obtained from G1 by applying the sequence of
operations (R, S) is a sub graph of G2,

• Both Ĝ1 and Ĝ2 correspond to a same common structural
sub graph of G1 and G2.

G1

Ĝ1

G2

Ĝ2

R

S

Figure 4.2: Edit path of Proposition 2.

One should note that it may exist several structural isomor-
phisms between Ĝ1 and Ĝ2. The set of substitutions S fixes one
of them, say f such that the image of any element of Ĝ1 by f
have the same label than the one defined by the substitution.
More precisely, let us suppose that we enlarge the set of substitu-
tions S by 0 cost substitutions so that all the nodes and edges of
Ĝ1 = (V̂1, Ê1, µ1, ν1) are substituted. In this case, we have:{

∀v ∈ V̂1, µ2(f(v)) = lv
∀e ∈ Ê1, ν2(f(e)) = le

Where lv and le correspond to the labels defined by the substitu-
tions of v and e and µ2 and ν2 define respectively the node and
edge labeling functions of G2.

Corollary 1. Using the same notations than in Proposition 2, the
cost γ(P) of an edit path is defined by:

γ(P) =
∑

v∈V1\V̂1

cvd(v) +
∑

e∈E1\Ê1

ced(e) +
∑
v∈V̂1

cvs(v) +
∑
e∈Ê1

ces(e)

+
∑

v∈V2\V̂2

cvi(v)+

∑
e∈E2\Ê2

cei(e)

4.2. Edit paths and assignments 95

Remark 1. Using the same notations than Proposition 2 if both
G1 and G2 are undirected we have:

γ(P) = γv(P) + γe(P)

with

γv(P) =
∑

i∈V1\V̂1

cvd(i) +
∑
i∈V̂1

cvs(i) +
∑

k∈V2\V̂2

cvi(k)

γe(P) =
1

2

 ∑
(i,j)∈Ê1

ces((i, j)) +
∑

(i,j)∈E1\Ê1

ced((i, j)) +
∑

(k,l)∈E2\Ê2

cei((k, l))

Indeed, if both graphs G1 and G2 are undirected both (i, j) and

(j, i) belong to E1 while encoding a single edge e. The removal
or the substitution of the edge e is thus counted twice in γe(P).
In the same way (k, l) and (l, k) represent the same edge e of
E2 \ Ê2 which is thus inserted twice in γe(P). The factor 1

2
of

γe(P) removes this double couting of edge operations.

Corollary 2. If all costs do not depend on the node/edge involved
the cost of an edit path P is equal to:

γ(P) = (|V1| − |V̂1|)cvd + (|E1| − |Ê1|)ced + Vfcvs + Efces

+ (|V2| − |V̂2|)cvi + (|E2| − |Ê2|)cei

where Vf (resp. Ef) denotes the number of nodes (resp. edges)
substituted with a non zero cost and cvd, ced, cvs, ces, cvi, and cei
denote the constant costs of the associated functions.

Moreover, in this case minimizing the cost of the edit path is
equivalent to maximizing the following formula:

M(P)
not.
= |V̂1|(cvd + cvi) + |Ê1|(ced + cei)− Vfcvs − Efces

Note that similar results have been discussed by Bunke in [56].

4.2.2 Restricted edit path

A restricted edit path is an independent edit path in which any
node or any edge cannot be removed and then inserted. The term

96 4. Similarity by Graph Edit Distance

restricted should be understood as edit path with the minimal
number of operations. It is worth to point out that the cost of a
restricted edit path may not be minimal (among all edit paths) if
the cost of a removal operation followed by an insertion is lower
than the cost of the associated substitution. However, such a
drawback may be easily solved by setting a new substitution cost
equal to the minimum between the old substitution cost and the
sum of the costs of a removal and an insertion. In this case all non-
zero cost substitutions, for nodes and edges, may be equivalently
replaced by a removal followed by an insertion.

Proposition 3. If G1 and G2 are simple graphs, there is a one-
to-one mapping between the set of restricted edit paths between G1

and G2 and the set of injective functions from a subset of V1 to
V2. We denote by ϕ0, the special function from the empty set onto
the empty set.

Proposition 4. Let P be a restricted edit path not associated with
ϕ0 (hence with some substitutions). Let us denote by ϕ : V̂1 → V2

the injective function associated to P and let us denote ϕ(V̂1) by
V̂2. We further introduce the following two sets:{

R12 = {(i, j) ∈ E1 ∩ (V̂1 × V̂1) | (ϕ(i), ϕ(j)) 6∈ E2}
I21 = {(k, l) ∈ E2 ∩ (V̂2 × V̂2) | (ϕ−1(k), ϕ−1(k)) 6∈ E1}
• The set of substituted/removed/inserted nodes by P are re-

spectively equal to: V̂1, V1 \ V̂1 and V2 \ V̂2.

• The set of edges substituted/removed/inserted by P are re-
spectively equal to:

– Removed: E1 \ Ê1 =(
E1 ∩

(
((V1 \ V̂1)× V1) ∪ (V1 × (V1 \ V̂1))

))
∪R12

– Inserted: E2 \ Ê2 =(
E2 ∩

(
((V2 \ V̂2)× V2) ∪ (V2 × (V2 \ V̂2))

))
∪ I21

– Substituted: Ê1 =
(
E1 ∩ (V̂1 × V̂1)

)
\R12

with Ê2 = ϕ(Ê1) =
(
E2 ∩ (V̂2 × V̂2)

)
\ I21

4.2. Edit paths and assignments 97

4.2.3 ε-assignment

An importart concept required to discuss the relationships be-
tween graph edit distance and bipartite graph assignment prob-
lems is the ε-assignment. It represents a bijective mapping
ψ :Xε→Yε (see Section 4.2), here a permutation, such that for
each element of Xε one of the four following cases occurs:

1. Substitutions: ψ(i) = j with (i, j)∈X×Y.

2. Removals: ψ(i) = εi with i∈X.

3. Insertions: ψ(εj) = j with j ∈Y.

4. Finally ψ(εj) = εi allow to complete the bijective property of
ψ, and then should be ignored. This occurs when i∈X and
j ∈Y are both substituted.

Let Ψε(X,Y) be the set of all ε-assignments from X to Y. In
other terms, an ε-assignment is a bijection (or permutation) with
additional constraints. The corresponding (n+m)× (m+n) per-
mutation matrix can be decomposed as follows:

X =

1 · · ·m ε1 · · · εn

1

Xsub Xrem ...
n
ε1

Xins Xε ...
εm

(4.1)

where matrix Xsub ∈{0, 1}n×m encodes node substitutions,
Xrem ∈{0, 1}n×n encodes node removals, and Xins ∈{0, 1}m×m en-
codes node insertions. Matrix Xε ∈{0, 1}m×n is an auxiliary ma-
trix (see case 4), it ensures that X is a permutation matrix. Due
to the constraints on dummy nodes (cases 2 and 3 above) matrices
Xrem and Xins always satisfy:

∀(i, j) ∈ {1, . . . , n}2, i 6= j, xrem
i,j = 0

∀(i, j) ∈ {1, . . . ,m}2, i 6= j, xins
i,j = 0.

(4.2)

98 4. Similarity by Graph Edit Distance

Definition 9 (ε-assignment matrix). A (n+m)× (m+n) matrix
satisfying equations 4.1 and 4.2 is called an ε-assignment matrix.
The set of all (n+m)× (m+n) ε-assignment matrices is denoted
by An,m.

The auxiliary matrix Xε in Eq. 4.1 suggests the definition of
an equivalence relation between ε-assignment matrices.

Definition 10. Two ε-assignment matrices X1 and X2, defined
by the two sequences of block matrices (Xsub

1 ,Xrem
1 ,Xins

1 ,Xε
1) and

(Xsub
2 ,Xrem

2 ,Xins
2 ,Xε

2), are equivalent iff

(Xsub
1 = Xsub

2) ∧ (Xrem
1 = Xrem

2) ∧ (Xins
1 = Xins

2).

The set of ε-assignment matrices up to this equivalence relation is
denoted by A∼n,m.

Proposition 5. There is a one-to-one relation between A∼n,m and
the set of injective functions from a subset of X to Y.

So, ε-assignment matrices on Xε and Yε, and injective functions
defined on a subset of X onto Y, are in one-to-one correspondence.

It is now possible to link ε-assignments to edit paths. Con-
sider two simple graphs G1 and G2, with node sets V1 and V2

respectively. An ε-assignment from V1 to V2 can be defined by
constructing the sets V ε

1 and V ε
2 . According to the above propo-

sition, there is a one-to-one correspondence between ε-assignment
matrices on V ε

1 and V ε
2 , and injective functions defined on a sub-

set of V1 onto V2. By using Proposition 3, we can connect such a
mapping to a restricted edit path between G1 and G2. Recalling
the equivalence relation (Definition 10), we can state that there is
a one-to-one correspondence between ε-assignment matrices and
restricted edit paths; this shows that restricted edit paths can be
deduced from ε-assignments.

4.3. Graph Edit distance as a bipartite graph assignment 99

4.3 Graph Edit distance as a bipartite

graph assignment

4.3.1 LSAP for ε-assignments

Let X= {1, . . . , n} and Y= {1, . . . ,m} be two sets. These two sets
are augmented by dummy elements as described in the previous
section, i.e. Xε =X∪EX and Yε =Y∪EY. An ε-assignment from
X to Y, i.e. a bijective mapping from Xε onto Yε, represents a set
of edit operations.

The selection of a relevant ε-assignment is realized through the
design of a pairwise cost function adapted to edit operations. To
this, each possible mapping of an element i∈Xε to an element
j ∈Yε is penalized by a non-negative cost ci,j. All costs can be
encoded by a (n+m)× (m+n) matrix (having the same structure
as ε-assignment matrices) [6, 7]

C =

1 · · ·m ε1 · · · εn

1

Csub Crem ...
n
ε1

Cins 0m,n
...
εm

(4.3)

where the matrix Csub ∈ [0,+∞)n×m encodes substitution costs,
Crem ∈ [0,+∞)n×n encodes removal costs, and Cins ∈ [0,+∞)m×m

encodes insertion costs. According to cases 2 and 3 considered in
the definition of an ε-assignment (see Section 4.2.3, off-diagonal
values of Crem and Cins are typically set to a large value ω,
such that max{ci,ψ(i) | ∀i∈Xε,∀ψ ∈Ψε(X,Y)}�ω<+∞, in order
to avoid forbidden mappings. Moreover, according to case 4, the
mapping of any εi to an εj should not induce any cost, so the
last block of C is set to the null matrix 0m,n. As it is possible
to deduce from the decomposition in Section 4.2.3 the cost of an

100 4. Similarity by Graph Edit Distance

ε-assignment ψ can then be measured by the following sum:

n+m∑
i=1

ci,ψ(i) =
∑
i∈X̂

ci,ψ(i)︸ ︷︷ ︸
substitutions

+
∑
i∈X\X̂

ci,εi︸ ︷︷ ︸
removals

+
∑
εj∈EX

cεj ,ψ(εj)︸ ︷︷ ︸
insertions

.

where X̂= {i∈X | ∃j ∈Y, ψ(i) = j}.
An optimal ε-assignment is then defined as one having a min-

imal cost (several optimal ε-assignment may exist) among all ε-
assignments:

ψ̂ ∈ argmin

{
n+m∑
i=1

ci,ψ(i) | ψ ∈Ψε(X,Y)

}
(4.4)

which is a LSAP (Section 2.3). It can thus be rewritten as a binary
programming problem (Eq. 2.12)

x̂ ∈ argmin
{
cTx | x∈ vec[A∼n,m]

}
, (4.5)

where x = vec(X)∈{0, 1}(n+m)2 is the vectorization of
the ε-assignment matrix X associated with ψ (Eq. 4.1),
c = vec(C)∈ [0,+∞)(n+m)2 is the vectorization of the cost ma-
trix C, and vec[A∼n,m]⊂{0, 1}(n+m)2 is the set of all vectorized
ε-assignment matrices.

The optimal solution of the LSAP defined by Eq. 4.5 can be
computed by any algorithm that solves LSAPs, such as Hungarian-
type algorithms. Note that mappings in Ψε, or matrices in An,m,
are much more constrained than bijective mappings or permuta-
tion matrices. These constraints, i.e. forbidden assignments, are
satisfied in [6, 7] through the large ω values in the cost matrix.
This is a classical trick used in LSAPs to avoid some specific as-
signments of elements [10]. While these assignments are avoided,
the corresponding large ω values are still treated by the algorithms.
A better way to take into account the additional constraints would
be to modify the algorithms such that forbidden assignments are
not treated at all. This is the choice we made in our experimen-
tations. This improves the time complexity.

4.3. Graph Edit distance as a bipartite graph assignment 101

4.3.2 Bipartite GED

It is now possible to define a framework to approximate the GED,
based on ε-assignments and the corresponding LSAP [6, 7, 40, 43].
Within this framework, a resulting approximate GED is called a
bipartite GED.

Let G1 and G2 be two graphs, with node sets V1 and V2 re-
spectively. The computation of a bipartite GED from G1 to G2 is
performed in four main steps detailed below.

Step 1 - construction of the bags of patterns. For each
node of each graph a bag of patterns is constructed. It represents a
part of the graph connected to a specific node by some structured
subgraphs, such as incident edges [6, 7] or walks [40]. A set of
bags of patterns is then obtained for each graph. Let B1 and B2

be the ones associated to G1 and to G2 respectively. We have thus
|B1|= |V1| and |B2|= |V2|. The idea is then to find an optimal
ε-assignment from B1 to B2, according to a given pairwise cost
matrix.

Step 2 - construction of the cost matrix. Each possible
mapping of a bag bi ∈B1 to a bag bj ∈B2 is penalized by a cost
measuring the affinity between the two bags. This cost is initially
defined as the cost of editing bi such that it is transformed into bj,
i.e. the cost of an optimal ε-assignment of the elements of the two
bags [6, 7, 40, 43]. Moreover, the bags of B1 can be removed, and
the bags of B2 can be inserted into B1, which is penalized by a cost
measuring the relevance of the bag. In order to approximate the
GED, all theses costs depends on the original edit cost functions
defined in Section 2.4. They are encoded by a cost matrix C
(Eq. 4.3). Note that in this step |V1| × |V2| LSAP are solved to
compute the costs of assigning bags of B1 to bags of B2.

Step 3 - construction of an ε-assignment between the
nodes. Given the cost matrix C computed in the previous step,

102 4. Similarity by Graph Edit Distance

an optimal ε-assignment from B1 to B2 is then computed by solv-
ing again a LSAP. The computed optimal assignment hence pro-
vides an optimal mapping ψ ∈Ψε(V1, V2).

Step 4 - construction of a restricted edit path. The ε-
assignment ψ can be interpreted as a partial edit path between
the graphs G1 and G2. Indeed, it is only composed of edit oper-
ations involving nodes. Therefore this partial edit path has to be
completed with edit operations applied on edges. This set of edit
operations is directly induced by the set of edit operations oper-
ating on nodes, defined by the mapping computed in the previous
step. The substitution, removal or insertion of any edge depends
thus on the edit operations performed on its incident nodes. The
cost of the complete edit path is finally defined by the sum of edit
operations on nodes and edges. This cost only corresponds to an
approximation of the GED between G1 and G2 since the map-
ping computed during Step 3 may not be optimal. Therefore, this
cost corresponds to an overestimation of the exact GED, known
as bipartite GED.

The definition of the cost matrix C in Step 2 is a keypoint of
the framework. The initial approach proposed in [6, 7] defines bag
of patterns as the corresponding node itself and its direct neighbor-
hood, i.e. the set of incident edges and adjacent nodes. The cost
of assigning a bag bi ∈B1 to a bag bj ∈B2 is then defined as the
substitution cost of the associated node i∈V1 and j ∈V2, plus the
cost associated to an optimal ε-assignment between the two sets
composed of their incident edges and their adjacent nodes. Using
such bags of patterns can be discriminant enough, in which case
the bipartite GED provides a good approximation of the GED.
But this approach lacks of accuracy in some cases, in particular
when the direct neighbourhood of the nodes is homogeneous in
the graph. When considering such graphs, the cost associated
to each pair of bags does not differ sufficiently, and the optimal
ε-assignment depends more on the traversal of the nodes by the
LSAP solver than on the graph’s structure.

4.3. Graph Edit distance as a bipartite graph assignment 103

In order to improve the accuracy of the bipartite GED, the
information attached to each node needs to be more global, for in-
stance by considering bags of walks up to a length k [40], instead of
the direct neighbourhood. This approach follows the same scheme
as the one used in [6, 7], except that patterns associated to a node
are defined as walks of length k starting at this node. Considering
bags of such patterns allow to extend the amount of information
associated to the nodes, which leads to a better approximation of
the GED. However, the use of bags of walks induces some draw-
backs. First, the set of computed walks suffers from the tottering
phenomenon which leads to consider irrelevant patterns, especially
when considering high values of k. These irrelevant patterns affect
the cost of the ε-assignment, and thus the quality of the approx-
imation of the GED. In addition, the mapping cost between two
bags of walks can only be approximated, which induces another
loss of accuracy.

These drawbacks can be avoided by using bags of subgraphs
rather than bags of walks, such as all subgraphs centered on a
given node and up to a radius k [44]. The cost associated to the
mapping of two bags of such patterns is defined as the edit distance
between the two k-subgraphs centered on the respective nodes.
Despite the fact that we can control the size of these subgraphs
thanks to the parameter k, this approach requires significantly
more computational time than the previous ones. However, the use
of accurate sub-structures allows to obtain a better approximation
of the GED.

104 4. Similarity by Graph Edit Distance

a

d b

c

1

3 2

4 5

a

b

c

d

ε

1

2

3

4

5

ε

G1 G2

G1 G2

a

b

c

d

ε

1

2

3

4

5

ε

G1 G2

φ = {(a, 1), (b, 3), (c, 4), (d, 2), (ε, 5)}

LSAP

a

d b

c

a

d b

c e

a

d b

c e

a

d b

c e

G1

add-node(e) add-edge(b,e) add-edge(c,e)

d(G1,G2) = c(add-node) + c(add-edge) + c(add-edge) = 3

Cost Matrix (C)

Figure 4.3: General framework to compute the GED as a LSAP.

4.4. Graph Edit Distance as a Quadratic Assignment Problem 105

4.4 Graph Edit Distance as a

Quadratic Assignment Problem

The bipartite GED is a good candidate approximation of the GED,
but it is based on the construction of a restricted edit path which
generally does not have a minimal cost. Costs on edges can only be
deduced from operations performed on their two incident nodes.
This last point cannot be taken into account by the approach
based on the LSAP, which considers information about edges sep-
arately in each node. In order to obtain a complete description of
the GED, the model must consider simultaneously node and edge
assignments. To this aim, a suitable formalization it is provided
by the quadratic assignment problem [6, 7].

In this section, we propose to extend the linear model to a
quadratic one based on ε-assignments, and we show that this
model corresponds to the cost of a restricted edit path.

4.4.1 Simultaneous assignments and quadratic
cost

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs, and let ψ ∈
Ψ(V ε

1 , V
ε

2) be an ε-assignment (Section 4.2.3). When a pair (i, j) ∈
V ε

1 × V ε
1 is assigned by ψ to a pair (ψ(i), ψ(j)) ∈ V ε

2 × V ε
2 , one of

the following cases occurs:

1. Edge substitution: (ψ(i), ψ(j))∈E2 with (i, j)∈E1.

2. Edge removal: (ψ(i), ψ(j)) 6∈E2 with (i, j)∈E1.

3. Edge insertion: (ψ(i), ψ(j))∈E2 with (i, j) 6∈E1.

4. Finally (ψ(i), ψ(j)) 6∈E2 with (i, j) 6∈E1 allows to complete
the bijection property.

Each possible simultaneous mapping of nodes i, j ∈V ε
1 onto respec-

tively nodes k and l in V ε
2 , is penalized by a non-negative cost dik,jl

which depends on the underlying edit operation described by one

106 4. Similarity by Graph Edit Distance

of the above mentioned cases. The overall cost of edges associated
to a simultaneous node assignment is then measured by:

d(ψ) =
n+m∑
i=1

n+m∑
j=1

diψ(i),jψ(j), (4.6)

where cost values are defined as follows.
Let us recall that all mappings from a node of V ε

1 to a node of
V ε

2 are not allowed. Indeed, as described in Section 4.2.3), i→ εj
with i∈V1 and j 6= i, and reciprocally εk→ l with l∈V2 and k 6= l
are forbidden. So, a simultaneous node mapping involving at least
one of these two cases is also forbidden. We denote a forbidden
mapping by 6→. The cost is set to a (large) value ω in this case,
as discussed in Section 4.3.1,

For any other simultaneous node mapping (i→ k, j→ l), with
i, j ∈V ε

1 and k, l∈V ε
2 , its cost depends on the presence or the ab-

sence of edges (i, j)∈E1 and (k, l)∈E2:

• If (i, j)∈E1 and (k, l)∈E2 then dik,jl is the cost of the edge
assignment (i, j)→ (k, l), i.e. edge substitution.

• If (i, j)∈E1 and (k, l) 6∈E2 then dik,jl is the cost of removing
the edge (i, j).

• If (i, j) 6∈E1 and (k, l)∈E2 then dik,jl is the cost of inserting
the edge (k, l).

• Else, the simultaneous mapping must not influence the over-
all cost and so its cost is always set to 0.

By using the edit cost functions defined in Section 2.4, the cost of
an allowed simultaneous node mapping is then defined by

ce(i→ k, j→ l) = ces ((i, j)→ (k, l)) δ(i,j)∈E1δ(k,l)∈E2

+ ced (i, j) δ(i,j)∈E1(1− δ(k,l)∈E2)

+ cei (k, l) (1− δ(i,j)∈E1)δ(k,l)∈E2

(4.7)

where δe∈E = 1 if e∈E and 0 else. Since graphs do not have self-
loops, we have dik,ik = 0 for all i∈V ε

1 and k ∈V ε
2 . Remark also

4.4. Graph Edit Distance as a Quadratic Assignment Problem 107

that the symmetry of ce(i → k, j → l) depends both on the edit
operations and on the directed edges, when the two graphs are
directed.

Finally, the cost of a simultaneous node mapping is given by

dik,jl =

{
ω if (i 6→ k) ∨ (j 6→ l)

ce(i→ k, j→ l) else
(4.8)

Let x∈ vec[A∼n,m]⊂{0, 1}(n+m)2 be the vectorization of the ε-
assignment matrix associated to ψ. All costs can be represented
by a (n+m)2×(n+m)2 matrix D = (dik,jl)i,k,j,l. Where dik,jlxikxjl
will be equivalent to diψ(i),jψ(j) if xik =xjl = 1, and 0 else. In this
way, each row and each column of D, and x, have the same orga-
nization of pairwise indices, and then the total cost of the simul-
taneous node assignment can be written in quadratic form as:

d(ψ) =
n+m∑
i=1

m+n∑
k=1

n+m∑
j=1

m+n∑
l=1

dik,jlxikxjl = xTDx,

The cost matrix D can be decomposed as follows into blocks:

D =

D1,1 · · · D1,n D1,ε1 · · · D1,εm

...
. . .

...
...

. . .
...

Dn,1 · · · Dn,n Dn,ε1 · · · Dn,εm

Dε1,1 · · · Dε1,n Dε1,ε1 · · · Dε1,εm

...
. . .

...
...

. . .
...

Dεm,1 · · · Dεm,n Dεm,ε1 · · · Dεm,εm

(4.9)

where each block Di,j ∈ [0,+∞)(m+n)×(m+n) defines the cost of as-
signing i and j of V ε

1 to respectively k and l for all k, l∈V ε
2 , i.e.

[Di,j]k,l = dik,jl. Remarking that blocks Di,j are organized in four
main blocks corresponding to the nature of nodes i and j (dummy
nodes or not). Each block Di,j is itself decomposed into four blocks

108 4. Similarity by Graph Edit Distance

as follows:

Di,j =

j1 · · · jm jε1 · · · jεn

i1

Di,j
1,1 Di,j

1,2

...
im
iε1

Di,j
2,1 Di,j

2,2

...
iεn

(4.10)

where Di,j
1,1 ∈ [0,+∞)m×m, Di,j

1,2 ∈ [0,+∞)m×n, Di,j
2,1 ∈ [0,+∞)n×m

and Di,j
2,2 ∈ [0,+∞)n×n. The different values taken by the elements

of D, depending on the values of the indices, are reported in Ta-
ble 4.1.

Proposition 6. If both G1 and G2 are undirected, then:

∀(i, k, j, l) ∈ V ε
1 × V ε

2 × V ε
1 × V ε

2 , dik,jl = djl,ik.

Proof. If both G1 and G2 are undirected, then δ(i,j)∈E1 = δ(j,i)∈E1 ,
δ(k,l)∈E2 = δ(l,k)∈E2 and :

ces((i, j)→ (k, l)) = ces((j, i)→ (l, k))
ced(i, j) = ced(j, i)
cei(k, l) = cei(l, k)

Hence, if none of i, j, k or l are equal to ε, the first line of Table 4.1
will remain unchanged. Moreover, if ε ∈ {i, j, k, l}, then permuting
indices (i, k) and (j, l) will lead to the following permutations of
the lines of Table 4.1 (after the appropriate renaming of variables):

(2,3)(4)(5,9)(6,11)(7,10)(8,12)(13)(14,15)(16)

One can check that in each case dik,jl = djl,ik.

Remark 2. If the rows of matrix D correspond to (i, k) and the
columns to (j, l), then under the hypothesis of Proposition 6, D is
symmetric and we get DT = D.

4.4. Graph Edit Distance as a Quadratic Assignment Problem 109

In order to provide a complete representation of edit operations
we need also to consider those performed on nodes. This can be
measured by the linear sum cTx defined in Section 4.3.1, where
c = vec(C) ∈ [0,+∞)(n+m)2 represents the cost of edit operations
on nodes (Eq. 4.3):

csub
i,k = cvs(i→ k)

crem
i,k =

{
cvd(i) if k= i

ω else

cins
i,k =

{
cvi(k) if i= k

ω else

(4.11)

4.4.2 QAP for ε-assignments, restricted edit
paths and GED

According to the following result, summing the quadratic and the
linear costs defined above leads to the cost of a restricted edit
path.

Proposition 7. Let ∆ = D if both G1 and G2 are undirected and
∆ = D+DT else. Note that using Proposition 6, ∆ is symmetric.
Any non-infinite value of 1

2
xT∆x + cTx corresponds to the cost of

a minimal edit path. Conversely the cost of any minimal edit path
may be written as 1

2
xT∆x + cTx with the appropriate x.

In worths pointing out that the prof of Proposition 7 is dis-
cussed in details in [55].

So that, the determination of a restricted edit path with a
minimal cost is equivalent to searching for an optimal ε-assignment

x̂ ∈ argmin

{
1

2
xT∆x + cTx | x∈ vec[A∼n,m]

}
(4.12)

In other terms, for the class of graphs under consideration, i.e.
simple graphs, we have

GED(G1, G2) = min

{
1

2
xT∆x + cTx | x∈ vec[A∼n,m]

}
(4.13)

110 4. Similarity by Graph Edit Distance

This is a QAP, see [16, 10] for more details on QAPs. In particular,
QAPs are NP-hard and exact algorithms can solve QAPs of small
size only. So, many heuristics able to find suboptimal solutions in
short computing time have been explored.

Remark 3. Note that the functional involved in the QAP defined
by Eq. 4.12 can be rewritten as a general quadratic term:

1

2
xT∆x + cTx =

1

2
xT∆x + xTdiag(c)x = xT

(
1

2
∆ + diag(c)

)
x

(4.14)
where diag(c) is the diagonal matrix with c as diagonal. So the
GED can be equivalently defined by

GED(G1, G2) = min
{

xT∆x | x∈ vec[A∼n,m]
}

(4.15)

where ∆ = 1
2
∆ + diag(c) represents the cost of both node and edge

edit operations. As graphs are simple, they have no self-loops and
then the diagonal elements of ∆ are all equal to 0. So the diagonal
of ∆ is always equal to c.

4.4. Graph Edit Distance as a Quadratic Assignment Problem 111

a

d b

c

1

3 2

4 5

a

b

c

d

ε

1

2

3

4

5

ε

G1 G2

G1 G2

a

b

c

d

ε

1

2

3

4

5

ε

G1 G2

d(G1,G2)

QAP

Cost Function

Figure 4.4: General framework to compute the GED as a GED.

112 4. Similarity by Graph Edit Distance

case block nodes in V ε
2 d(i,j),(k,l)

1 Di,j
1,1 k, l

ces((i, j)→ (k, l))δ(i,j)∈E1δ(k,l)∈E2 +
ced(i, j)δ(i,j)∈E1(1− δ(k,l)∈E2) +
cei(k, l)(1− δ(i,j)∈E1)δ(k,l)∈E2

2 Di,j
1,2

k, εj ced(i, j)δ(i,j)∈E1

else ω

3 Di,j
2,1

εi, l ced(i, j)δ(i,j)∈E1

else ω

4 Di,j
2,2

εi, εj ced(i, j)δ(i,j)∈E1

else ω

5 Di,εl
1,1

k, l cei(k, l)δ(k,l)∈E2

else ω

6 Di,εl
1,2 k, ε 0

7 Di,εl
2,1

εi, l 0
else ω

8 Di,εl
2,2

εi, ε 0
else ω

9 Dεk,j
1,1

k, l cei (k, l) δ(k,l)∈E2

else ω

10 Dεk,j
1,2

k, εj 0
else ω

11 Dεk,j
2,1 ε, l 0

12 Dεk,j
2,2

ε, εj 0
else ω

13 Dεk,εl
1,1

k, l cei (k, l) δ(k,l)∈E2

else ω

14 Dεk,εl
1,2

k, ε 0
else ω

15 Dεk,εl
2,1

ε, l 0
else ω

16 Dεk,εl
2,2 ε, ε 0

Table 4.1: Elements of matrix D according to the configuration of its indices.
We consider that i, j ∈V1, k, l∈V2, εk, εl ∈E1, and εi, εj ∈E2. Epsilon values
without indices mean any ε-value.

4.5. Solving the Quadratic Assignment Problem 113

4.5 Solving the Quadratic Assignment

Problem

Now it is possible to discuss how to approximate the GED by
solving the QAP defined by Eq. 4.12. The latter can be rewritten
as the following binary quadratic programming problem:

argmin

{
S(x)

def.
=

1

2
xT∆x + cTx | Ax = 1n, x∈{0, 1}n

}
(4.16)

where Ax = 1n, with x∈{0, 1}n and A∈{0, 1}n×n, is the ma-
trix version of the bijectivity constraints given by Def. 6, see
[10, 45] for more details. Also, we suppose that c∈ [0,+∞)n, and
∆∈ [0,+∞)n×n is assumed to be symmetric. Note that Eq. 4.12 is
equivalent to Eq. 4.16, with additional constraints on x (Eq. 4.2)
imposed by ω values in the expression of ∆ (Eq. 4.8 and Proposi-
tion 7) and c (Eq. 4.11).

QAPs are generally NP-hard, which depends on the structure
of the cost matrix ∆ = 1

2
∆ + diag(c) (see previous section), and so

most algorithms find approximate local or global optimal solutions
by relaxing the bijectivity constraints on the solution, which leads
to find a continuous solution instead of a discrete one:

argmin {S(x) | Ax = 1, x∈ [0,+∞)n} . (4.17)

While this relaxed problem is also NP-hard, several polynomial-
time algorithms have been designed to converge close to a local
or global solution in a short computing time. The ones based on
linearization of the cost function S are known to be particularly
efficient. They transform the relaxed problem into a sequence of
convex problems, such that a given initial solution is improved it-
eratively by decreasing the cost function up to a fixed point. Then,
the final continuous solution is binarized and used as a solution of
the QAP. But as shown experimentally in [52] in the context of
graph matching, the continuous optimum is not necessarily close
to the global discrete optimum. Indeed the relaxed problem is
equivalent to the original QAP when ∆ is positive definite, which

114 4. Similarity by Graph Edit Distance

is generally not the case in most situations. In order to try to over-
come this problem, it seems to be more efficient to find a discrete
solution as close as possible to a continuous one, at each itera-
tion and then derive the discrete solution from it. This is done by
Sof-Assign [49, 50, 51] or Integer Projected Fixed Point (IPFP)
[52].

4.5.1 Adapting IPFP to solve the GED

IPFP is an iterative optimization algorithm for constrained op-
timization problems proposed by Leordeanu et al. [52]. In the
original version, the algorithm is designed to solve a generic QAP
by maximizing the cost function. Thus, in order to compute effi-
ciently the GED, we have firstly adapted the algorithm to search
for the minimum and then we have reduced its computational
complexity by improving different steps.

Given an initial continuous (or discrete) candidate solution x0,
the idea of [52] is to iteratively improve (here reduce) the corre-
sponding quadratic cost in two steps at each iteration:

1. Compute a discrete linear approximation bk+1 of the
quadratic cost S around the current solution xk by solving
a LSAP.

2. Compute the next candidate solution xk+1 by solving the
relaxed problem, reduced to compute the extremum of S
between xk and bk+1 included.

The iteration of these steps converges to an optimum of the relaxed
problem, which is either continuous or discrete but generally not
the global one. This last point depends on the initialization. The
whole process is detailed in Algorithm 5.

At each iteration, in the first step, the cost S is linearly ap-
proximated. The differential of S in xk in the direction h is given
by:

DS(xk) · h = xTk∆h + cTh (since ∆ is symmetric).

4.5. Solving the Quadratic Assignment Problem 115

Algorithm 5 Optimized IPFP.

1: function IPFPmin(x0,c,∆,kmax)
2: k ← 0, L← cTx0, Sk ← 1

2
xT0 ∆x0 + L

3: repeat
4: bk+1 ← argmin{(xTk∆ + cT)b | b∈A∼n,m}
5: L′ ← cTbk+1

6: Sbk+1
← 1

2
bTk+1∆bk+1 + L′

7: α← R(bk+1)− 2Sk + L
8: β ← Sbk+1

+ Sk −R(bk+1)− L
9: t0 ← −α/(2β)

10: if (β ≤ 0) ∨ (t0 ≥ 1) then
11: xk+1 ← bk+1, Sk+1 ← Sbk+1

, L← L′

12: else
13: xk+1 ← xk + t0(bk+1 − xk)
14: Sk+1 ← Sk − α2/(4β)
15: L← cTxk+1

16: end if
17: k ← k + 1
18: until (xk+1 = xk) ∨ (k ≥ kmax)
19: return (xk+1, Sk+1)
20: end function

Hence the first-order Taylor expansion of S around the current
solution xk is given by:

S(b) ≈ S(xk) +
(
xTk∆ + cT

)
(b−xk)

≈ S(xk) +R(b)−R(xk)
(4.18)

where R(x) = (xTk∆ + cT)x and b≥0. Keeping xk fixed, S(xk)
and R(xk) are constant, and so the minimization of S(b) is ap-
proximatively equivalent to the minimization of R(b):

bk+1 ∈ argmin
{(

xTk∆ + cT
)
b | Ab = 1, b≥0n

}
. (4.19)

This is a linear programming problem with totally unimodular
constraint matrix A and the right-hand side vector of the linear
system Ab = 1 is integer valued. So, by standard tools in linear

116 4. Similarity by Graph Edit Distance

programming, there is an integer optimal solution, here binary and
equal to the solution of the LSAP [45, 10]:

bk+1 ∈ argmin
{(

xTk∆ + cT
)
b | Ab = 1, b∈{0, 1}n×n

}
(4.20)

In our experiments, this problem is solved by the O(n3) version
of the Hungarian algorithm [47, 10], modified such that forbidden
assignments represented by ω values in ∆ and c are not treated.
The resulting assignment bk+1 determines a direction of largest
possible decrease of S in the first-order approximation. Let us
additionally note that the first order approximation of S(b) is
lower than S(xk) since R(bk+1) ≤ R(xk). However we cannot yet
conclude since this is only an approximation.

The second step of each iteration of Algorithm 5 consists in
minimizing the quadratic function S in the continuous domain
along the direction given by bk+1. This can be done analytically.
Let xt = xk + t(bk+1−xk), with t∈ [0, 1], be a parameterization of
the segment between xk and bk+1. The evolution of S on this
segment is provided by:

S(xt) = S(xk + t(bk+1−xk))

= 1
2

[xk + t(bk+1 − xk)]T ∆[xk + t(bk+1 − xk)] + cT [xk + t(bk+1 − xk)]

= 1
2
xT
k ∆xk + cTxk + txT

k ∆(bk+1 − xk) + 1
2
t2(bk+1 − xk)T ∆(bk+1 − xk)

+ tcT (bk+1 − xk)

= S(xk) + t[xT
k ∆(bk+1 − xk) + cT (bk+1 − xk)] + 1

2
t2(bk+1 − xk)T ∆(bk+1 − xk)

= S(xk) + tR(bk+1 − xk) + 1
2
t2(bk+1 − xk)T ∆(bk+1 − xk)

= S(xk) + αt+ βt2

where

α = R(bk+1 − xk) = R(bk+1)−R(xk) ≤ 0

= R(bk+1)− xT
k ∆xk − cTxk = R(bk+1)− 2(1

2
xT
k ∆xk + cTxk) + cTxk

= R(bk+1)− 2S(xk) + cTxk

β = 1
2

(bk+1 − xk)T ∆(bk+1 − xk)

= 1
2
bT
k+1∆bk+1 − xT

k ∆bk+1 + 1
2
xT
k ∆xk

= 1
2
bT
k+1∆bk+1 + cTbk+1 −R(bk+1) + 1

2
xT
k ∆xk

= S(bk+1) + S(xk)−R(bk+1)− cTxk

The main advantage of the above expression for the calculation
of α, and not used in the original algorithm [52], is that R(bk+1)

4.5. Solving the Quadratic Assignment Problem 117

is already computed by the LSAP algorithm that computes bk+1.
Moreover S(xk) and cTxk may be stored from the previous iter-
ation of the algorithm. Note that since α = R(bk+1) − R(xk) we
have α ≤ 0. For β, the improvement is a bit more tedious. We
have indeed to compute S(bk+1). Hence the gain is not obvious
compared to the direct computation of (bk+1− xk)

T∆(bk+1− xk)
as done in the original algorithm [52]. Note, however, that S(bk+1)
will also be used in a following step, so computations are factor-
ized. The problem is thus transformed into finding the optimal
value

t0 = argmin
{
S(xt) = S(xk) + αt+ βt2 | t∈ [0, 1]

}
. (4.21)

The derivative of S(xt) cancels at t0 = −α/(2β). Then as shown
in Fig. 4.5, we have:

• If β > 0

– If t0 ≤ 1, S(xt0) is the minimum of S(xt), in particular
it is lower than S(xk) and S(bk+1). Moreover:

S(xt0) = S(xk)−
α2

2β
+
α2

4β
= S(xk)−

α2

4β

– If t0 ≥ 1, then S ′(xt) < 0 ∀t ∈ [0, 1], and the minimal
value of S(xt) is S(x1) = S(bk+1).

• If β ≤ 0, since α ≤ 0, S(xt) decreases between t = 0 and
t = 1. Its minimal value is thus S(x1) = S(bk+1).

So, if either β < 0 or β > 0, but t0≥ 1, the minima of S(xt) within
the range t∈ [0, 1] is obtained for t0 = 1, i.e. xt0 = bk+1 (lines 11-
12). Note that in this case the new solution is discrete. In the
remaining case (lines 13-16), S(xt) passes by a minimal value lower
than S(xk) and S(bk+1). In both cases xt0 is taken as the solution
xk+1 for the next iteration. Hence, as in the original algorithm [52],
S(xk) decreases at each iteration, and since ∆ and c are positive,
S is bounded bellow 0 and the algorithm converges.

118 4. Similarity by Graph Edit Distance

1

1

S(xt0)

t

S(xt)

(a) β ≥ 0, t0 ≤ 1
1

1

t

S(xt)

(b) β ≥ 0, t0 ≥ 1
1

1

t

S(xt)

(c) β < 0

Figure 4.5: Illustration of the 3 cases relating β and t0.

The whole process is iterated until a fixed point is reached, in
which case xk+1 is ensured to be a minimum of the relaxed problem
defined by Eq. 4.17. When a minimum of the original problem
defined by Eq. 4.16 is requested as for the GED, the discrete vector
closest to the minimum of the relaxed problem is selected. The
minimum of the relaxed problem is not guaranteed to be global.
This depends on the initial vector x0, which influences both the
value of the resulting cost and the number of iterations required
to reach the convergence. For the approximation of the GED, we
have tested several initializations based on the LSAP, as described
in the following section. We have observed that the exact GED is
often obtained, meaning that the optimal solution of the original
problem can be reached by the algorithm.

4.6. Experiments and Results 119

4.6 Experiments and Results

The experiments have been mainly devoted to demonstrate the
effectiveness of the QAP approach with respect to the ones based
on LSAPs. In particular, our intent has been to prove that the
accuracy of the bipartite GED can be considerably improved by a
formulation which considers nodes and edges simultaneously. To
this aim, we compare our approach with three LSAP methods of
the state of the art [7, 40, 44] on four molecular datasets obtained
form real chemistry problems. As discussed in Section 4.3.2, each
of them differs on the definition of the cost between elements.

In addition to these methods we have included in our experi-
ment the A∗ algorithm, with the intent to have a reference about
the exact GED. However, A∗ is restricted to very simple graphs
and it wasn’t possible to compute exact GEDs for two over the
four used datasets.

In order to provide comparable computational times, all the
experiments have been performed by using Matlab on the same
macchine equipped with an Quadcore Intel Xeon E5310 1,60GHz,
4Mb of cache and 32 Gb of RAM.

4.6.1 Datasets

The molecular datasets used in our experiments are provided by
GREYC and LCMT laboratories. Both are UMR research units
placed under the joint responsibility of University of Caen Basse-
Normandie and ENSICAEN. Each dataset is composed of graphs
extracted from a different kind of molecules: Alkane, Acyclic,
MAO and PAH. These datasets are available on the following web
page: http://iapr-tc15.greyc.fr/links.html. We have finally gen-
erated a synthetic dataset by extending MAO, in order to have
larger graphs, its composition is described below.

4.6.1.0.1 Alkane Dataset The Alkane database is a purely
structural database, only carbons, with a problem of regression.
Also this dataset contains acyclic but not labeled graphs. The

120 4. Similarity by Graph Edit Distance

number of graph contained is 150, and size of graphs is between 1
and 10 vertices.

4.6.1.0.2 Acyclic Dataset The Acyclic database is con-
cerned with the determination of the boiling point using regres-
sion and is composed by acyclic molecules with hetero atoms.
All graphs are labeled and acyclic. Acyclic dataset contains 183
graphs, with a size between 3 and 11 vertices.

4.6.1.0.3 MAO Dataset The MAO database is composed by
68 molecules belonging to two classes: molecules which inhibit the
monoamine oxidase and those which do not. The average size of
graphs is about 18 vertices.

4.6.1.0.4 PAH Dataset The PAH database is composed by
cyclic unlabeled graphs. There are only carbons molecules, all
bounds are aromatics. Few acyclic bounds connect some atoms to
cycles. The idea is to find cancerous or not cancerous molecules.

4.6.1.0.5 Extended MAO Dataset In the molecular
dataset we do not have graphs larger than 30 nodes, but it is im-
portant to understand how our IPFP is able to scale with respect
to the size. To this aim, we have generated a synthetic dataset
with the same node and edge labels distribution and same ratio
between the number of edges and the number of nodes as MAO
dataset, but that is generalized to different graph sizes. For each
node size, from 10 to 100 nodes, we have generated 100 couples of
pattern and target graphs. Each target graph has been generated
by removing one node and substituting another one from the as-
sociated source graph. The overall edit distance between source
and target graphs is then defined by the cost associated to this
two node operations together with the induced edit operations on
edges. The graph edit distance between each pair of graphs is
around 10.

4.6. Experiments and Results 121

Dataset Number
of
graphs

Mean
size

Mean
degree

Min
size

Max
size

Alkane 150 8.9 1.8 1 10
Acyclic 183 8.2 1.8 3 11
MAO 68 18.4 2.1 11 27
PAH 94 20.7 2.4 10 28

Table 4.2: GREYC’s Chemistry Dataset

4.6.2 Results

IPFP approach allows to drastically improve the accuracy of the
approximation with respect to LSAP approaches while keeping a
reasonable computational time. In order to confirm this, we have
considered three relevant information in the comparison: the av-
erage edit distance (d), the average approximation error (e) with
respect to the exact graph edit distance and the average compu-
tational time (t) required to get the graph edit distance for a pair
of graphs. For these three measures, lower values correspond to
better results. Indeed, since approximation approaches overesti-
mate graph edit distance, a lower average edit distance can be
considered as better than an higher one. Moreover, as regard the
average error, due to the computational complexity required by A*
algorithm, the exact graph edit distance has not been computed
on PAH and MAO datasets that are composed of larger graphs.
Then, it has not been possible to compute the error, but a useful
information about the accuracy can be obtained by the average
edit distance. Moreover, It is worth to point out that, in order
to avoid some bias, the results have been computed using random
permutations of the adjacency matrices before computing graph
edit distances.

Results shown in Table 4.3 also highlight the importance of the
initialization step. Since the functional of QAP formulation is not
convex, different initializations can lead to different local minima.
Obviously, initializations close to the global minimum have an

122 4. Similarity by Graph Edit Distance

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90 100

p
e
rc

e
n

ta
g
e

Percentage of perfect approximation

time (s)

mean error

50

100

ti
m

e
,
a
v
e
ra

g
e
 e

rr
o
r

Figure 4.6: Analysis of complexity on the extended MAO dataset.

higher probability to reach it than initializations far from it. This
behavior is observed in the results where better approximations
are obtained by using the approach giving the best approximation
considering LSAP framework. Moreover, less iterations are re-
quired to reach convergence since the algorithm is initialized close
to the minima. This phenomenon explains the low differences of
computational time between the different approaches. Note that
we didn’t test the method presented in [44] due to its high com-
putational time. In conclusion, these results show that the QAP
approach is a relevant approach to approximate graph edit dis-
tance and it outperforms methods based on LSAP formulation
while keeping an interesting computational time with respect to
the one required to compute an exact graph edit distance. This
confirms our initial observation.

In Figure 4.6 shows how our IPFP approach scales with respect
to the size of the graphs. The dashed green line corresponds to the

4.6. Experiments and Results 123

computational time required to compute an approximation of the
graph edit distance, the plain blue line to the average approxima-
tion error and the dotted red line corresponds to the percentage
of pairs for which the exact graph edit distance is computed using
IPFP. The x axis corresponds to the size of the graphs. The y
axis on the left of Figure 4.6 represents simultaneously the mean
execution times and the average error using a same scaling. So,
for instance, 0.5 should be read as 0.5 seconds on the dashed green
line and as an average error of 0.5 on the plain blue curve. The
y axis on the right corresponds to the percentage of exact graph
edit distances computed by our algorithm and should be used for
the analysis of the dotted red curve. As we can see, the accuracy
of the approximation using IPFP is stable for all tested sizes. The
average error for each dataset remains about 5 to 10 % of the exact
graph edit distance which corresponds to a good approximation.
Moreover, the percentage of perfect approximation shows that we
are able to compute the exact graph edit distance for 75% to 91%
pairs of graphs. From a computational point of view, the dashed
green curve seems to describe a polynomial function with respect
to the size of graphs. Considering a bounded number of iterations,
this observation is conform with the cubic complexity associated
to the algorithm used to resolve LSAP problems, which is used in
each iteration of the IPFP algorithm.

124 4. Similarity by Graph Edit Distance

T
a
b
le

4
.3
:

A
cc

u
ra

cy
an

d
co

m
p

le
x
it

y
sc

o
re

s.
d

is
th

e
av

er
a
g
e

ed
it

d
is

ta
n

ce
,
e

th
e

av
er

a
g
e

er
ro

r
a
n

d
t

th
e

av
er

a
g
e

co
m

p
u

ta
ti

on
al

ti
m

e.

A
lg

or
it

h
m

A
lk

an
e

A
cy

cl
ic

M
A

O
P

A
H

d
e

t
d

e
t

d
t

d
t

A
∗

15
1.

29
17

6.
02

[7
]

35
18

'
10
−

3
35

18
'

10
−

3
10

5
'

10
−

3
13

8
'

10
−

3

[4
0]

33
18

'
10
−

3
31

14
'

10
−

2
49

'
10
−

2
12

0
'

10
−

2

[4
4]

26
11

2.
27

28
9

0.
73

44
6.

16
12

9
2.

01

I
P
F
P

R
a
n

d
o
m

in
it

22
.6

7.
1

0.
00

7
23

.4
6.

1
0.

00
6

65
.2

0.
03

1
63

0.
04

I
P
F
P

in
it

[7
]

22
.4

7.
0

0.
00

7
22

.6
5.

3
0.

00
6

59
0.

03
1

62
.2

0.
04

I
P
F
P

In
it

[4
0
]

20
.5

5
0.

00
6

20
.7

3.
4

0.
00

5
33

.6
0.

01
6

52
.5

0.
03

7

Chapter 5

Conclusions

”I’ve seen people spend days, if not months, researching and
gathering data, but only at the end did they finally figure out

what they were really looking for; then they have to redo a lot of
stuff. If after a day or so you force yourself to put together your

tentative conclusions, then you’ll have guidance for the rest of
your research.”

- Robert Pozen

126 5. Conclusions

The definition of efficient methods to compute the similarity
between graphs is a relevant open problem in structural pattern
recognition, where the well known metrics applied on vectors are
not suitable. To this aim, the work done in this Thesis has been
devoted on improving the state of the art problems by propos-
ing two new algorithms. In particular, the first one, described
in Chapter 3, is based on exact graph matching and deals with
the problem of stating if a pattern graph is contained inside a
target one, i.e. the subgraph isomorphism problem. The second,
described in Chapter 4, is based on the inexact graph matching
and computes the similarity between two graphs by using a new
formulation of the graph edit distance.

The first algorithm, VF3, is a new version of the well known
VF2, that has been the state of the art for more then ten years.
It has been proven to be competitive with respect to the state of
the art thanks to its efficiency both in time and in memory. VF3
has been presented as an algorithm to solve the subgraph isomor-
phism, but similarly to VF2 it can be applied to all the exact
graph matching problems (e.g. Graph isomorphism, monomor-
phism, maximum common subgraph and so on). Moreover, VF3
has a more flexible structure and may be easily adapted to specific
applications by defining different sorting procedures and classifica-
tion functions. Nevertheless, VF3 is not an arrival point, many re-
search directions are open. Among them the most interesting one
is the design of an algorithm able to exploit the advantages pro-
vided by parallel architectures in order to deal with larger graphs.

Concerning the inexact graph matching approach, we have pro-
posed a new formulation to compute an approximated value of the
graph edit distance. Such a formulation is based on the quadratic
assignment and uses the strong relationship between the graph
edit distance and ε-assignments. A new algorithm to approximate
the graph edit distance has been realized by specializing the IPFP,
a generic solver for quadratic assignment problems. Then, it has
been compared with the state of the art. The results are promising,
indeed, a more accurate approximation has been achieved without
impacting significantly the execution time. Moreover, it is still

127

possible to improve the accuracy and reduce the time required to
approximate the graph edit distance as a quadratic assignment by
considering other solvers and further improvement of the IPFP
algorithm.

128 5. Conclusions

Bibliography

[1] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification
(2Nd Edition). Wiley-Interscience, 2000.

[2] M. Vento, “A long trip in the charming world of graphs for
Pattern Recognition,” Pattern Recognition, pp. 1–11, Jan. 2014.
[Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0031320314000053

[3] K. Riesen, M. Neuhaus, and H. Bunke, “Graph embedding in vec-
tor spaces by means of prototype selection,” in Graph-Based Rep-
resentations in Pattern Recognition. Springer Berlin Heidelberg,
2007, vol. 4538, pp. 383–393.

[4] A. Torsello and E. R. Hancock, “Graph embedding using tree edit-
union,” Pattern Recognition, vol. 40, no. 5, pp. 1393 – 1405, 2007.

[5] D. Emms, R. Wilson, and E. Hancock, “Graph embedding us-
ing quantum commute times,” in Graph-Based Representations in
Pattern Recognition. Springer Berlin Heidelberg, 2007, pp. 371–
382.

[6] K. Riesen, M. Neuhaus, and H. Bunke, “Bipartite graph
matching for computing the edit distance of graphs,” Graph-
Based Representations in . . . , pp. 1–12, 2007. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-540-72903-7{ }1

[7] K. Riesen and H. Bunke, “Approximate graph edit distance com-
putation by means of bipartite graph matching,” Image and Vision
Computing, vol. 27, pp. 950–959, 2009.

http://linkinghub.elsevier.com/retrieve/pii/S0031320314000053
http://linkinghub.elsevier.com/retrieve/pii/S0031320314000053
http://link.springer.com/chapter/10.1007/978-3-540-72903-7{_}1

130 BIBLIOGRAPHY

[8] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of
graph matching in Pattern Recognition,” International Journal of
Pattern Recognition and Artificial Intelligence, vol. 18, no. 3, pp.
265–298, 2004.

[9] P. Foggia, G. Percannella, and M. Vento, “Graph Matching and
Learning in Pattern Recognition on the last ten years,” Journal
of Pattern Recognition and Artificial Intelligence, vol. 28, no. 1,
2014.

[10] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Prob-
lems. SIAM, 2009.

[11] J. E. Hopcroft and R. M. Karp, “A n5/2 algorithm for maxi-
mum matchings in bipartite,” in Switching and Automata Theory,
1971., 12th Annual Symposium on, Oct 1971, pp. 122–125.

[12] H. W. Kuhn, “The hungarian method for the assignment
problem,” Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp.
83–97, 1955. [Online]. Available: http://dx.doi.org/10.1002/nav.
3800020109

[13] J. Munkres, “Algorithms gor the assignment and trasportation
problems.” Journal of the Society for Industrial and Applied Math-
ematics, vol. 5, pp. 32–38, 1957.

[14] R. Jonker and A. Volgenant, “A shortest augmenting path
algorithm for dense and sparse linear assignment problems,”
Computing, vol. 38, no. 4, pp. 325–340, 1987. [Online]. Available:
http://dx.doi.org/10.1007/BF02278710

[15] T. Koopmans and M. J. Beckmann, “Assignment problems
and the location of economic activities,” Cowles Foundation
for Research in Economics, Yale University, Cowles Foundation
Discussion Papers 4, 1955. [Online]. Available: http://
EconPapers.repec.org/RePEc:cwl:cwldpp:4

[16] E. L. Lawler, “The quadratic assignment problem,” Management
Science, vol. 9, no. 4, pp. pp. 586–599, 1963.

[17] J. R. Ullman, “An algorithm for subgraph isomorphism,” J. Assoc.
Comput. Mach., vol. 23, pp. 31–42, 1976.

http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1007/BF02278710
http://EconPapers.repec.org/RePEc:cwl:cwldpp:4
http://EconPapers.repec.org/RePEc:cwl:cwldpp:4

BIBLIOGRAPHY 131

[18] L. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 26, pp.
1367–1372, 2004.

[19] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro, “A
subgraph isomorphism algorithm and its application to biochemi-
cal data,” BMC Bioinformatics, vol. 14, 2013.

[20] J. McGregor, “Relational consistency algorithms and their appli-
cation in finding subgraph and graph isomorphisms,” Information
Sciences, vol. 19, no. 3, pp. 229 – 250, 1979.

[21] J. LARROSA and G. VALIENTE, “Constraint satisfaction algo-
rithms for graph pattern matching,” Mathematical Structures in
Computer Science, vol. 12, pp. 403–422, 8 2002.

[22] S. Zampelli, Y. Deville, and C. Solnon, “Solving subgraph iso-
morphism problems with constraint programming,” Constraints,
vol. 15, no. 3, pp. 327–353, 2010.

[23] C. Solnon, “Alldifferent-based filtering for subgraph isomor-
phism,” Artificial Intelligence, vol. 174, no. 12–13, pp. 850 – 864,
2010.

[24] J. Ullmann, “Bit-vector algorithms for binary constraint
satisfaction and subgraph isomorphism,” Journal of Experimental
Algorithmics (JEA), vol. 15, no. 1, 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1921702

[25] H. He and A. Singh, “Graphs-At-A-Time: Query Language And
Access Methods For Graph Databases,” Proceedings of the 2008
ACM SIGMOD international . . . , pp. 405–417, 2008.

[26] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verifica-
tion hardness: An efficient algorithm for testing subgraph isomor-
phism,” Proc. VLDB Endow., vol. 1, no. 1, pp. 364–375, Aug.
2008.

[27] S. Zhang, S. Li, and J. Yang, “GADDI: Distance Index Based
Subgraph Matching In Biological Networks,” . . . of the 12th Inter-
national Conference on . . . , 2009.

http://dl.acm.org/citation.cfm?id=1921702

132 BIBLIOGRAPHY

[28] P. Zhao and J. Han, “On Graph Query Optimization In Large
Networks,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2,
pp. 340–351, Sep. 2010.

[29] W. Han, J.-h. Lee, and J. Lee, “Turbo Iso: Towards Ultra-
fast And Robust Subgraph Isomorphism Search In Large Graph
Databases,” . . . of the 2013 international conference on . . . , pp.
337–348, 2013.

[30] N. Dahm, H. Bunke, T. Caelli, and Y. Gao, “Efficient subgraph
matching using topological node feature constraints,” Pattern
Recognition, Jun. 2014.

[31] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee, “An in-
depth comparison of subgraph isomorphism algorithms in graph
databases,” Proc. VLDB Endow., vol. 6, no. 2, pp. 133–144, Dec.
2012.

[32] V. Carletti, P. Foggia, and M. Vento, “Performance Comparison of
Five Exact Graph Matching Algorithms on Biological Databases,”
New Trends in Image Analysis and Processing - ICIAP, 2013.

[33] V. Carletti, P. Foggia, M. Vento, and X. Jiang, “Report on the first
contest on graph matching algorithms for pattern search in biologi-
cal databases,” in Proc. of the 10th IAPR-TC15 Intl. Workshop on
Graph-based Representations in Pattern Recognition (GbR2015),
ser. LNCS, no. 9069, 2015, pp. 178–187.

[34] P. Foggia, C. Sansone, and M. Vento, “A Database of Graphs for
Isomorphism and Subgraph Isomorphism Benchmarking,” 2001,
pp. 176–187.

[35] M. De Santo, P. Foggia, C. Sansone, and M. Vento, “A Large
Database of Graphs and Its Use for Benchmarking Graph Iso-
morphism Algorithms,” Pattern Recogn. Lett., vol. 24, no. 8, pp.
1067–1079, May 2003.

[36] V. Carletti, P. Foggia, and M. Vento. (2015) A large
database of graphs for benchmarking graph isomorphism
algorithms. [Online]. Available: http://mivia.unisa.it/datasets/
graph-database/arg-database/

http://mivia.unisa.it/datasets/graph-database/arg-database/
http://mivia.unisa.it/datasets/graph-database/arg-database/

BIBLIOGRAPHY 133

[37] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang,
“Complex networks: Structure and dynamics,” Physics Reports,
vol. 424, no. 4-5, pp. 175–308, Feb. 2006.

[38] S. Fankhauser, K. Riesen, and H. Bunke, “Speeding up
graph edit distance computation through fast bipartite match-
ing,” Graph-based representations in . . . , pp. 102–111, 2011.
[Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-642-20844-7{ }11

[39] F. Serratosa, “Fast computation of Bipartite graph matching,”
Pattern Recognition Letters, vol. 45, pp. 244–250, aug 2014.
[Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0167865514001330

[40] B. Gaüzère, S. Bougleux, K. Riesen, and L. Brun, “Approximate
Graph Edit Distance Guided by Bipartite Matching of Bags of
Walks,” in Structural, Syntactic and Statistical Pattern Recogni-
tion, ser. Lecture Notes in Computer Science. Springer, 2014,
vol. 8621, pp. 73–82.

[41] K. Riesen, A. Fischer, and H. Bunke, “Improving Approximate
Graph Edit Distance Using Genetic Algorithms,” in Structural,
Syntactic and Statistical Pattern Recognition, ser. Lecture Notes
in Computer Science. Springer, 2014, vol. 8621, pp. 63–72.

[42] ——, “Combining Bipartite Graph Matching and Beam Search for
Graph Edit Distance Approximation,” Artificial Neural Networks
in Pattern . . . , pp. 117–128, 2014. [Online]. Available: http:
//link.springer.com/chapter/10.1007/978-3-319-11656-3{ }11

[43] M. Ferrer, F. Serratosa, and K. Riesen, “A First Step Towards
Exact Graph Edit Distance Using Bipartite Graph Matching,” in
Graph Based Representations in Pattern Recognition. Springer,
2015, vol. 9069, pp. 77–86.

[44] V. Carletti, B. Gauzere, B. L., and M. Vento, “Approximate graph
edit distance computation combining bipartite matching and exact
neighborhood substructure distance.” in Graph Based Represen-
tations in Pattern Recognition. Springer, 2015.

http://link.springer.com/chapter/10.1007/978-3-642-20844-7{_}11
http://link.springer.com/chapter/10.1007/978-3-642-20844-7{_}11
http://linkinghub.elsevier.com/retrieve/pii/S0167865514001330
http://linkinghub.elsevier.com/retrieve/pii/S0167865514001330
http://link.springer.com/chapter/10.1007/978-3-319-11656-3{_}11
http://link.springer.com/chapter/10.1007/978-3-319-11656-3{_}11

134 BIBLIOGRAPHY

[45] G. Sierksma, Linear and Integer Programming: Theory and Prac-
tice, 2nd ed., ser. Advances in Applied Mathematics. CRC Press,
2001.

[46] T. Koopmans and M. Beckmann, “Assignment Problems and the
Location of Economic Activities,” Econometrica, vol. 25, no. 1,
pp. 53–76, 1957.

[47] E. L. Lawler, Combinatorial Optimization: Networks and Ma-
troids. New York: Holt, Rinehart and Winston, 1976.

[48] E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto,
P. Hahn, and T. Querido, “A survey for the quadratic assign-
ment problem,” European Journal of Operational Research, vol.
176, pp. 657–690, 2007.

[49] S. Gold, E. Mjolsness, and A. Rangarajan, “Clustering with a
domain-specific distance measure.” Advances in Neural Informa-
tion Processing Systems, vol. 6, pp. 96–103, 1994.

[50] S. Gold and A. Rangarajan, “A graduated assignment algorithm
for graph matching.” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 18(4), pp. 377–388, 1996.

[51] ——, “Softmax to softassign: Neural network algorithms for com-
binatorial optimization.” Journal of Artificial Neural Networks,
vol. 2(4), pp. 381–399, 1996.

[52] M. Leordeanu, M. Hebert, and R. Sukthankar, “An Integer Pro-
jected Fixed Point Method for Graph Matching and MAP Infer-
ence.” Neural Information Processing Systems, 2009.

[53] Z. Y. Liu and H. Qiao, “GNCCP - Graduated Nonconvexity and
concavity procedure,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 36, no. 6, pp. 1258–1267, 2014.

[54] M. Neuhaus and H. Bunke, “A quadratic programming approach
to the graph edit distance problem,” in Graph-Based Represen-
tations in Pattern Recognition, ser. LNCS, 2007, vol. 4538, pp.
92–102.

BIBLIOGRAPHY 135

[55] S. Bougleux, L. Brun, V. Carletti, P. Foggia, B. Gaüzère,
and M. Vento, “A quadratic assignment formulation of
the graph edit distance,” NormaSTIC, FR 3638 CNRS,
Normandie, France, Tech. Rep., 2015. [Online]. Available:
https://bougleux.users.greyc.fr/TR/TR.pdf

[56] H. Bunke, “On a relation between graph edit distance and max-
imum common subgraph,” Pattern Recognition Letters, vol. 18,
pp. 689–694, 1997.

https://bougleux.users.greyc.fr/TR/TR.pdf

136 BIBLIOGRAPHY

Résumé

Les graphes sont utilisés dans de nombreux domaines applicatifs tels que la biologie, les réseaux

sociaux, les bases de données,... Les graphes permettent de décrire un ensemble d’objets ainsi que

leurs relations. L’analyse de ces objets réclame souvent de mesurer la similarité entre les graphes.

Toutefois, en raison de son aspect combinatoire, ce problème est NP complet et est généralement

résolu en utilisant différentes heuristiques.

Dans cette thèse nous avons exploré deux approches pour calculer la similarité entre graphes.

La première est basé sur l’appariement exact. Nous avons conçu l’algorithme VF3 qui recherche des

motifs dans les graphes. La seconde approche est basée sur un appariement inexact qui calcule une

approximation efficace de la distance d’édition entre graphes en la modélisant comme un problème

de minimisation quadratique.

Abstract

Graphs are widely employed in many application fields, such as biology, chemistry, social networks,

databases and so on. Graphs allow to describe a set of objects together with their relationships.

Analysing these data often requires to measure the similarity between two graphs. Unfortunately,

due to its combinatorial nature, this is a NP-Complete problem generally addressed using different

kind of heuristics.

In this Thesis we have explored two approaches to compute the similarity between graphs. The

former is based on the exact graph matching approach. We have designed, VF3, an algorithm aimed

to search for pattern structures within graphs. While, the second approach is an inexact graph

matching method which aims to compute an efficient approximation of the Graph Edit Distance

(GED) as a Quadratic Assignment Problem (QAP).

Rameau index:

1. Graphes, Théorie des

2. Reconnaissance des formes (informatique)

3. Isomorphismes (mathématiques)

GREYC

ENSICAEN

Bâtiment F

6 Boulevard du Maréchal Juin

CS 45053

14050 CAEN cedex 4

	Introduction
	Graphs in Pattern Recognition
	Searching for Similarities
	Thesis Overview

	Preliminaries
	Graph Definitions
	Labeled and Attributed Graphs
	Subgraphs and Supergraphs
	Bipartite Graphs

	Graph Matching
	Exact Graph Matching
	Inexact Graph Matching

	Assignment Problems
	Assignment as a Perfect Matching
	Linear Sum Assignment Problem
	Quadratic Assignment Problem

	Graph Edit Distance

	Similarity by Subgraph Isomorphism
	Introduction
	Subgraph Isomorphism Algorithms
	Chapter overview

	VF2: heritage of a successful approach
	Representation of the problem
	Exploring the space

	Feasibility Rules
	Extension to directed graphs

	Generating new states
	Avoiding cycles

	VF3: a novel subgraph isomorphism algorithm
	Pattern preprocessing
	A new total order relationship
	State structures precalculation
	Example

	Nodes Classification
	A new candidate selection

	Experiments and Results
	Experimental Setup
	Environment
	Algorithms
	MIVIA Dataset
	Additional Datasets

	Results

	Similarity by Graph Edit Distance
	Introduction
	Linear Sum Assignment Methods
	A Quadratic Assignment Approach
	Chapter overview

	Edit paths and assignments
	Independent edit path
	Restricted edit path
	-assignment

	Graph Edit distance as a bipartite graph assignment
	LSAP for -assignments
	Bipartite GED

	Graph Edit Distance as a Quadratic Assignment Problem
	Simultaneous assignments and quadratic cost
	QAP for -assignments, restricted edit paths and GED

	Solving the Quadratic Assignment Problem
	Adapting IPFP to solve the GED

	Experiments and Results
	Datasets
	Results

	Conclusions
	Bibliography

