N

N

Triangular Similarity Metric Learning: a Siamese
Architecture Approach
Lilei Zheng

» To cite this version:

Lilei Zheng. Triangular Similarity Metric Learning: a Siamese Architecture Approach. Computer
Science [cs|. UNIVERSITE DE LYON, 2016. English. NNT: 2016LYSEI045 . tel-01314392v1

HAL Id: tel-01314392
https://hal.science/tel-01314392v1

Submitted on 11 May 2016 (v1), last revised 28 Sep 2017 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/tel-01314392v1
https://hal.archives-ouvertes.fr

UNIVERSITE

= INSA

El

N°d’ordre NNT : 2016LYSEIO45

THESE de DOCTORAT DE L'UNIVERSITE DE LYON
opérée au sein de
I'INSA LYON

INFORMATIQUE ET MATHEMATIQUES

Soutenue publiguement le 10/05/2016, par :

Ecole Doctorale N° 512

Spécialité de doctorat : Informatique

Lilei ZHENG

Triangular Similarity Metric Learning:
a Siamese Architecture Approach

Devant le jury composé de :

DORIZZI, Bernadette

MARCHAND-MAILLET,
Stéphane

THOME, Nicolas
PUECH, William

BASKURT, Atilla
IDRISSI, Khalid

GARCIA, Christophe

Prof.
Prof.

Maitre de
conférences, HDR

Prof.

Prof.

Maitre de
conférences, HDR

Prof.

Télécom SudParis

University of Geneva

Université Pierre et Marie Curie
Université de Montpellier

INSA-LYON
INSA-LYON

INSA-LYON

Présidente

Rapporteur

Rapporteur

Examinateur

Co-Directeur
de thése

Directeur de thése

Examinateur

Département FEDORA - INSA Lyon - Ecoles Doctorales — Quinquennal 2016-2020

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE
CHIMIE DELYON M. Stéphane DANIELE
CHIMIE http://www.edchimie-lyon.fr Institut de Recherches sur la Catalyse et I'Environnement de Lyon
IRCELYON—UMR 5256
Sec : Renée EL MELHEM Equipe CDFA
Bat Blaise Pascal 3¢ etage 2 avenug Albert Einstein
secretariat@edchimie-lyon.fr 69626 Villeurbanne cedex
Insa : R. GOURDON directeur@edchimie-lyon.fr
ELECTRONIQUE, M. Gérard SCORLETTI
E.E.A. ELECTROTECHNIQUE, AUTOMATIQUE Ecole Centrale de Lyon
http://edeea.ec-lyon.fr 36 avenue Guy de Collongue
69134 ECULLY
Sec : M.C. HAVGOUDOUKIAN Tél : 04.72.18 60.97 Fax : 04 78 43 37 17
Ecole-Doctorale.eea@ec-lyon.fr Gerard.scorletti@ec-lyon.fr
EVOLUTION, ECOSYSTEME, Mme Gudrun BORNETTE
E2M2 MICROBIOLOGIE, MODELISATION CNRS UMR 5023 LEHNA
http://e2m2.universite-lyon.fr Université Claude Bernard Lyon 1
. Bat Forel
Sec : Safia AIT CHALAL 43 bd du 11 novembre 1918
Bat Darwin - UCB Lyon 1 69622 VILLEURBANNE Cédex
04.72.43.28.91 Tél : 06.07.53.89.13
Insa : H. CHARLES e2m2@ univ-lyon1.fr
Safia.ait-chalal@univ-lyon1.fr
INTERDISCIPLINAIRE SCIENCES- Mme Emmanuelle CANET-SOULAS
EDISS SANTE . INSERM U1060, CarMeN lab, Univ. Lyon 1
http://www.ediss-lyon.fr Batiment IMBL
S?C : Safia AIT CHALAL 11 avenue Jean Capelle INSA de Lyon
Hopital Louis Pradel - Bron 696621 Villeurbanne
04 72 68 49 09 Tél : 04.72.68.49.09 Fax :04 72 68 49 16
Insa : M. LAGARDE Emmanuelle.canet@univ-lyon1.fr
Safia.ait-chalal@univ-lyon1.fr
INFORMATIQUE ET Mme Sylvie CALABRETTO
INFOMATHS | MATHEMATIQUES LIRIS - INSA de Lyon
http://infomaths.univ-lyonl.fr Bat Blaise Pascal
i 7 avenue Jean Capelle
Sec :Renée EL MELHEM 69622 VILLEURBANNE Cedex
Bat Blaise Pascal Tél : 04.72. 43. 80. 46 Fax 04 72 43 16 87
3¢ etage Sylvie.calabretto@insa-lyon.fr
infomaths@univ-lyon1.fr
MATERIAUX DE:: LYQN M. Jean-Yves BUFFIERE
Matériaux http://ed34.universite-lyon.fr INSA de Lyon
MATEIS
Sec : M. LABOUNE Batiment Saint Exupéry
PM:71.70 -Fax:87.12 7 avenue Jean Capelle
Bat. Salnp Exupery 69621 VILLEURBANNE Cedex
Ed.materiaux@insa-lyon.fr Tél : 04.72.43 71.70 Fax 04 72 43 85 28
Ed.materiaux@insa-lyon.fr
MECANIQUE, ENERGETIQUE, GENIE M. Phﬂippe BOISSE
MEGA CIVIL, ACOUSTIQUE INSA de Lyon
http://mega.universite-lyon.fr Laboratoire LAMCOS
Batiment Jacquard
Sec : M. LABOUNE 25 bis avenue Jean Capelle
PM: 71.70 -Fax :87.12 69621 VILLEURBANNE Cedex
Bat. Saint Exupery Tél : 04.72 .43.71.70 Fax:04 72 43 72 37
mega@insa-lyon.fr Philippe.boisse@insa-lyon.fr
ScSo* Mme Isabelle VON BUELTZINGLOEWEN
ScSo http://recherche.univ-lyon2.fr/scso/

Sec : Viviane POLSINELLI
Brigitte DUBOIS

Insa : J.Y. TOUSSAINT

viviane.polsinelli@univ-lyon2.fr

Université Lyon 2

86 rue Pasteur

69365 LYON Cedex 07

Tél: 04.78.77.23.86 Fax:04.37.28.04.48

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

Mise a jour

01/2016

nhedin
Texte tapé à la machine

nhedin
Texte tapé à la machine
Mise à jour 01/2016

nhedin
Texte tapé à la machine

Triangular Similarity Metric Learning:
a Siamese Architecture Approach

2R

— BNIVERSITE

w ELYON

Lilei Zheng

Laboratoire d’InfoRmatique en Image et Systemes d’information (LIRIS)
INSA-Lyon

This dissertation is submitted for the degree of
Doctor of Philosophy

Université de Lyon March 2016

I would like to dedicate this thesis to my loving parents and my dear wife Liangfen.

g B LS, HR ETRRER.
— JEJR CEEED
"The road ahead will be long, and our climb will be steep."
— Qu Yuan (340-278 BC), Li Sao

Acknowledgements

I would like to acknowledge the China Scholarship Council (CSC) and the Laboratoire
d’InfoRmatique en Image et Systemes d’information (LIRIS) to support my thesis.

All my respect and thanks to my supervisors, Khalid Idrissi and Atilla Baskurt, as well as
Stefan Duffner and Christophe Garcia. Khalid and Atilla, thank you for admitting me into
this great lab LIRIS and for guiding my study in the last three years. I have been always
enjoying my life here. Stefan, thank you for sharing me your research ideas and experience.
It is you that have taught me a lot of research skills and have brought me the good luck of
"paper acceptances". Christophe, thank you for your patience and encouragement on me,
you have opened the door of metric learning to me and have been always cheering me up to
discover the world behind the door. I will always remember your words, "the key of success
is focusing on the work."

Thanks to Yigiang Chen, Bonan Cuan, Ying Zhang for their valuable comments to my
work. Thanks to all the friends and colleagues in LIRIS! J’aime LIRIS, J aime Lyon!

Abstract

In many machine learning and pattern recognition tasks, there is always a need for appropriate
metric functions to measure pairwise distance or similarity between data, where a metric
function is a function that defines a distance or similarity between each pair of elements
of a set. In this thesis, we propose Triangular Similarity Metric Learning (TSML) for
automatically specifying a metric from data.

A TSML system is loaded in a siamese architecture which consists of two identical
sub-systems sharing the same set of parameters. Each sub-system processes a single data
sample and thus the whole system receives a pair of data as the input. The TSML system
includes a cost function parameterizing the pairwise relationship between data and a mapping
function allowing the system to learn high-level features from the training data.

In terms of the cost function, we first propose the Triangular Similarity, a novel similarity
metric which is equivalent to the well-known Cosine Similarity in measuring a data pair.
Based on a simplified version of the Triangular Similarity, we further develop the triangular
loss function in order to perform metric learning, i.e. to increase the similarity between two
vectors in the same class and to decrease the similarity between two vectors of different
classes. Compared with other distance or similarity metrics, the triangular loss and its
gradient naturally offer us an intuitive and interesting geometrical interpretation of the metric
learning objective.

In terms of the mapping function, we introduce three different options: a linear mapping
realized by a simple transformation matrix, a nonlinear mapping realized by Multi-layer
Perceptrons (MLP) and a deep nonlinear mapping realized by Convolutional Neural Networks
(CNN). With these mapping functions, we present three different TSML systems for various
applications, namely, pairwise verification, object identification, dimensionality reduction
and data visualization. For each application, we carry out extensive experiments on popular

benchmarks and datasets to demonstrate the effectiveness of the proposed systems.

Résumé

Dans de nombreux problemes d’apprentissage automatique et de reconnaissance des formes,
il y a toujours un besoin de fonctions métriques appropriées pour mesurer la distance ou la
similarité entre des données. La fonction métrique est une fonction qui définit une distance
ou une similarité entre chaque paire d’éléments d’un ensemble de données. Dans cette these,
nous proposons une nouvelle methode, Triangular Similarity Metric Learning (TSML), pour
spécifier une fonction métrique de données automatiquement.

Le systeme TSML proposée repose une architecture Siamese qui se compose de deux
sous-systemes identiques partageant le méme ensemble de parametres. Chaque sous-systeme
traite un seul échantillon de données et donc le systeme entier regoit une paire de données en
entrée. Le systtme TSML comprend une fonction de cofit qui définit la relation entre chaque
paire de données et une fonction de projection permettant 1’apprentissage des formes de haut
niveau.

Pour la fonction de cofit, nous proposons d’abord la similarité triangulaire (Triangular
Similarity), une nouvelle similarité métrique qui équivaut a la similarité cosinus. Sur la base
d’une version simplifiée de la similarité triangulaire, nous proposons la fonction triangulaire
(the triangular loss) afin d’effectuer I’apprentissage de métrique, en augmentant la similarité
entre deux vecteurs dans la méme classe et en diminuant la similarité entre deux vecteurs de
classes différentes. Par rapport aux autres distances ou similarités, la fonction triangulaire et
sa fonction gradient nous offrent naturellement une interprétation géométrique intuitive et
intéressante qui explicite 1’objectif d’apprentissage de métrique.

En ce qui concerne la fonction de projection, nous présentons trois fonctions différentes:
une projection linéaire qui est réalisée par une matrice simple, une projection non-linéaire qui
est réalisée par Multi-layer Perceptrons (MLP) et une projection non-linéaire profonde qui est
réalisée par Convolutional Neural Networks (CNN). Avec ces fonctions de projection, nous
proposons trois systemes de TSML pour plusieurs applications: la vérification par paires,
I’identification d’objet, la réduction de la dimensionnalité et la visualisation de données. Pour
chaque application, nous présentons des expérimentations détaillées sur des ensembles de
données de référence afin de démontrer 1’efficacité de notre systemes de TSML.

Table of contents

List of figures XV
List of tables xvii
1 Introduction 1
1.1 ConteXt o e e e e 1
1.2 Definitions and Prerequisites 2
1.3 Applications e e 3
1.3.1 Pairwise Verification 4
1.3.2 Dimensionality Reduction and Data Visualization 4
1.4 Contribution e e e e 5
1.5 Outline e 5
2 Literature Review: Siamese Neural Networks and Metric Learning
2.1 Introduction
2.2 Siamese Neural Networks 10
2.2.1 Perceptron 10
2.2.2 Multi-Layer Perceptrons 12
2.2.3 Siamese Multi-Layer Perceptrons 16
2.2.4 Convolutional Neural Networks 18
2.2.5 Siamese Convolutional Neural Networks 27
23 MetricLearning 28
2.3.1 Distance Metric Learning 29
2.3.2 Similarity Metric Learning 37
2.3.3 Other Advances in Metric Learning 42
24 Conclusionand Open Problems 45
3 Triangular Similarity Metric Learning 47

3.1 Introduction, 47

xii

Table of contents

3.2 Triangular Similarity Lo
3.3 Triangular Loss Function
3.4 Relation to Traditional Neural Networks
3.4.1 Relation to the Mean Squared Error Function
3.4.2 Non-Convexity and Backpropagation
3.4.3 Batch Gradient Descent or Stochastic Gradient Descent
3.4.4 Various Mapping Functions
3.5 Visualization of the Objective
3.5.1 Example I: TwoClasses
3.5.2 Example2: FourClasses
3.6 Conclusion

Applications on Pairwise Verification

4.1 Introduction

4.2 Pairwise Face Verification
4.2.1 The LFW Protocols and Related Work
4.2.2 Linear Triangular Similarity Metric Learning
4.2.3 The LFW Dataset and Face Descriptors
4.2.4 Experimental Settings
425 Resultsand Analysis o

4.3 Pairwise Kinship Verification
4.3.1 The KinFaceW Protocols and Related Work
4.3.2 The KinFaceW Dataset and Face Descriptors
4.3.3 Experiments and Analysis

4.4 Linearity in Pairwise Verification
4.4.1 Linear and Nonlinear Triangular Similarity Metric Learning
4.4.2 Stochastic Gradient Descent
4.4.3 Datasets and Feature Vectors
4.44 Experiments and Analysis oo

4.5 Conclusion

Applications on Classification and Dimensionality Reduction

5.1 Introduction and Related Work

5.2 Classification and Visualization on Small-scale Data
5.2.1 Multi-layer Perceptrons
5.2.2 The Extended Yale B Dataset and Face Descriptors

5.2.3 Dimensionality Reduction in Face Classification

65
65
66
67
68
71
74
76
80
81
82
84
88
89
91
93
94
103

Table of contents xiii
5.2.4 Dimensionality Reduction in Data Visualization. 118

5.3 End-to-end Data Visualization on Large-scale Data 119
5.3.1 The MNIST Dataset and Convolutional Neural Networks 122

5.3.2 Dimensionality Reduction in Data Visualization. 125

54 Conclusion L 134

6 Conclusion and Perspectives 135
6.1 Conclusion 135

6.2 Perspectives e e 137
References 139
Appendix A Derivatives 153
A.1 Derivative of the vectornorm 153
A.2 Derivative of the bilinear similarity 154
A.3 Derivative of the parameterized vectornorm 155
A.4 Derivative of the Cosine Similarity 156
A.5 Derivative of the linear triangularloss 157
Appendix B Learning on Similar Pairs Only 159
B.1 Introduction 159
B.2 Cosine Similarity Metric Learning 159
B.3 Logistic Similarity Metric Learning 160
B.4 Experimentand Analysis Lo 163
B.4.1 Experimental Setting 163

B.4.2 Resultsand Analysis L oL 163

B.4.3 Learning on Similar PairsOnly 164

List of figures

1.1

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4

Diagram of Metric Learning 3
Aperceptrono L L e e 11
Activation functions Lo 12
Diagramofan MLP 13
Diagramof a Siamese MLP L. 17
Fully-connected input layer and convolutional input layer 20
Convolutional layer with three feature maps 21
Diagram of apooling layer 22
Diagramof acomplete CNN 23
Diagramof LeNet-5. 24
Diagram of a Siamese CNN 27
Diagram of LMNN 32
Mlustration of Triangular Similarity 49
[lustration of simplified Triangular Similarity 51
Diagram of Metric Learning 53
Geometrical interpretation of the triangular gradient 53
AnMLP foratoyproblem 58
Example 1 of TSML: twoclasses 60
Example 2 of TSML: four classes (2-d projections) 61
Example 2 of TSML.: four classes (3-d projections) 62
Ideal final states: polygons, 63
Ideal final states: polyhedrons 63
ROC curve of TSML-fusionon LFW-a 81
ROC curves of different methods on KinFaceW-I 87
ROC curves of different methods on KinFaceW-1I 87

Dotplots illustrating pairwise similarity matrices 96

xXvi

List of figures

4.5
4.6
4.7

5.1
5.2
53
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

B.1

Learning curves of TSML models on the LFW data 98
Performance comparison between TSML and TSML-Sim 101
ROC curves of TSML-Linear-Sim on LFW-funneled 103
The MLP used in TSML-MLP 109
Index matrix for mini-batch gradient descent of TSML-MLP 111
Example images in the Extended Yale B dataset 113
Classification performance of TSML-MLP on Extended Yale B 116
Face images that TSML-MLP failed to recognize 116
Visualization of data from Extended YaleB 118
[lustration of dimensionality reduction via TSML-MLP 120
Example images in the MNIST handwritten digits dataset 122
Diagram of the proposed CNN architecture 123
Mapping results after tiny-scale training (2-dimensional) 126
Results after tiny-scale training with different data size and initialization. . . 126
Mapping results after large-scale training (2-dimensional) 127
An unfolded view of the MNIST test data (2-dimensional) 128
Mapping results before and after unfolding (3-dimensional). 129
An unfolded view of the MNIST test data (4-dimensional) 130
Mapping results of the MNIST testdataby DrLIM 132
Accuracy-versus-K curve for LSMLonLFW-a 165

List of tables

1.1

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
53
54
5.5

B.1
B.2

Summary of notations 7
Connection scheme between the layers S2 and C3 of LeNet-5. 25
Distribution of individuals and images in LFW 72
Face verification performance of TSMLon LFW-a 77
Face verification performance of TSML-Simon LFW-a 77
Time cost of CSML-Sim-I and TSML-Sim-I 77
Face verification performance of TSML-fusionon LFW-a 80
Kinship verification performance on KinFaceW-I and KinFaceW-II 85
Participants in the FG 2015 Kinship Verification Evaluation 85
FG 2015 Kinship Verification Evaluation on KinFaceW-I 86
FG 2015 Kinship Verification Evaluation on KinFaceW-I1I.. 86
Distribution of individuals and speech utterances in NIST i-vector 94
Proportion of triplets {x;,y;,z;} satisfying that cos(x;,y;) > cos(x;,z;) . .. 95

Face verification performance of TSML and TSML-Sim on LFW-funneled . 100
Spearker verification performance of TSML and TSML-Sim on NIST i-vector 100

Comparison of state-of-the-art methods on LFW-funneled 102
Comparison of methods using single face descriptor on LEFW-funneled . . . 102
Face identification performance on Extended YaleB. 117
Significance testing between MLP and TSML-MLP 117
Comparison on training time of different methods 131
Comparison on classification accuracy of different methods 133
Comparison summary of different methods 134
Face verification performance of LSMLon LFW-a 162

Face verification performance of LSML-simon LFW-a 162

Chapter 1

Introduction

1.1 Context

"No two leaves are exactly alike." — Gottfried Wilhelm Leibniz

This dictum of Leibniz reveals that differences are ubiquitous in this world. Besides, we
can also realize another fact that he must have compared a lot of leaves, as well as other
objects. In other words, the ubiquity of comparison holds for everyone. Usually, for the
same comparison, different people may have different judgement of similarity, since they
have their own evaluation standards. However, to facilitate exchanges and communications
in many collaboration affairs, we have to set up commonly accepted evaluation standards for
people in a certain group.

In mathematics, the numerical measurement of a common evaluation standard is called
a metric. In many machine learning and pattern recognition tasks, there is always a need
for appropriate metric functions to measure pairwise distance or similarity between data,
where a metric function is a function that defines a distance between each pair of elements
of a set. For example, in a Cartesian coordinate system, we can use the Euclidean metric to
measure the straight-line distance between two points which are usually represented by two

position vectors. Formally, for two vectors x and y, the Euclidean distance between them is

|x—y|l = /(x—y)T (x—y). However, in some machine learning applications, a common
metric such as the Euclidean distance may be not proper to measure the semantic distance
between two objects. In other words, from the point of view of feature representation, we
may think that the vector representations of the two objects do not suit the Euclidean space.

Consequently, a technique called Metric Learning has been developed to improve the
collocation of feature representations and distance metrics. Continuing with the example

of the Euclidean distance, a mapping function f(-) is introduced and the distance between
two vectors x and y is measured by || £(x) — £(y)|| = /(f(x) — £F(¥))T (f(x) — £(y)). With

2 Introduction

this mapping function f(-), the pairwise distance between vectors can be better measured
by the new metric function || f(x) — f(y)|| than by ||x —y||. The procedure of specifying
the mapping function f(-) is thus defined as Metric Learning. Similarly, from the point of
view of feature representation, the objective of Metric Learning is to learn a new vector
representation f(x) (as a substitute of x) that better suits the Euclidean space.

The principal aim of this thesis is to study Metric Learning techniques. We will outline
the most important existing approaches to Metric Learning and present a novel method called
TSML, short for Triangular Similarity Metric Learning. We will develop a geometrical
interpretation of TSML based on the well known triangle inequality theorem. We will focus
on investigating the effectiveness of TSML on different applications such as face verification,

speaker verification, object classification and data visualization.

1.2 Definitions and Prerequisites

In the previous section, we have used the example of Euclidean metric to illustrate what
is Metric Learning. Formally, an acknowledged definition is that Metric Learning is the
task of learning a metric function over objects' [87, 13]. A metric has to obey four axioms:
non-negativity, identity of indiscernibles, symmetry and triangle inequality. In practice,
Metric Learning algorithms may ignore one or two axioms and learn a pseudo-metric.

This acknowledged definition does not indicate the way of learning. In this thesis, we
restrict the definition of Metric Learning as learning a metric function from data pairs, which
is the commonest manner in current Metric Learning algorithms.

Figure 1.1 presents the general diagram of a Metric Learning algorithm. A pair of data
samples (X;,y;) is given as inputs, indicating the i, training pair from a data set. We are
going to learn a mapping function f(-) in the "black box", which realizes a projection and
results in two outputs (a;,b;). We call the space of all the inputs as the original space and
call the space of all the outputs as the target space. After the mapping, the distance or
similarity between two outputs can be measured by a certain metric, and a cost function or
loss function is defined based on this metric. Generally, if the pair of inputs is labeled as
being similar, the objective of minimizing this cost function is to make the outputs closer
to each other; otherwise, for a dissimilar pair of inputs, the objective is to make the outputs
more dissimilar/different, i.e. to separate the dissimilar pair in the target space.

In Fig. 1.1, one may notice that the same function f(-) with the same parameter W is
used to process both inputs. This symmetric architecture is called the siamese architecture.
Particularly, when the mapping function f(-) is realized by neural networks, this technique

Uhttps://en.wikipedia.org/wiki/Similarity_learning#Metric_learning

1.3 Applications 3

:)(I yi Qe Original Space
Black Box Black Box
@ IV
aI:f(X”W) bl:f(y”W) i gt Space

Cost / Loss Function

T
I
v

Attract smilar pairs
Separate dissimilar pair

Fig. 1.1 Diagram of Metric Learning.

is also called Siamese Neural Networks. Through the whole text of this thesis, we regard
Siamese Neural Networks and Metric Learning as the same technique. Their only difference
is that Siamese Neural Networks refer to the symmetric structure of parallel neural networks
but Metric Learning emphasizes the pairwise relationship (i.e. the metric) in the data space.
In other words, Siamese Neural Networks concern the mapping function f(-) that represents
the power (i.e. the complexity) of a system, and Metric Learning mainly concerns the cost
function that desires the data relationship in the target space. Nevertheless, an efficient and
effective Metric Learning system should be a collaboration of both since the cost function
also controls the learning procedure of the mapping.

1.3 Applications

Whenever the notion of pairwise metric between data samples plays an important role, a
task can benefit from Metric Learning [13]. For example, in classification tasks, a k-Nearest
Neighbor (kNN) classifier [34] needs a metric to identify the nearest neighbors; for many
clustering algorithms such as k-means Clustering [110] and Spectral Clustering [124, 164],
their performance depends on the quality of distance or similarity measurement between
data points. Therefore Metric Learning has been applied to diverse problems such as image

classification [121], visual tracking [104], image annotation [59] in the domain of computer

4 Introduction

vision, as well as document ranking [119], visual localization [92], image retrieval [25] in
the domain of content-based information retrieval. In the following, we introduce two fields

of application that we focus on in this thesis.

1.3.1 Pairwise Verification

The task of pairwise verification is to verify whether two data samples are semantically
similar with each other, i.e. having the same content of interest. Generally, a pair of data
samples containing the same semantic content of interest is called a similar pair; otherwise,
two samples containing different concerned semantic contents are called a dissimilar pair
or a different pair. According to different definitions of the concerned semantic similarity,
we study three different problems respectively, namely, pairwise face verification, pairwise

kinship verification and pairwise speaker verification.

* Pairwise face verification: the task of pairwise face verification is to determine

whether two given face images are of the same person or not.

* Pairwise kinship verification: a kinship is defined as a relationship between two
persons who are biologically related with overlapping genes, thus the task of pairwise
kinship verification is to determine whether there is a kin relation between a pair of

given face images.

» Pairwise speaker verification: the task of pairwise speaker verification is to determine

whether two spoken utterances are of the same person or not.

In all the pairwise verification tasks, we usually use the verification accuracy or its contrary,

the verification error, to evaluate a Metric Learning method.

1.3.2 Dimensionality Reduction and Data Visualization

When we set the dimension of the target space lower than the dimension of the original space
(see Fig. 1.1), Metric Learning techniques perform dimensionality reduction on the inputs.
Furthermore, if the target space is a visualizable space, i.e. the dimension of the target space
is lower than 3 so that one can see the objects in it, this particular kind of dimensionality
reduction is also called data visualization.

In general, when a dimensionality reduction technique projects the original data to a
lower dimensional target space, some information of the raw data is discarded. Therefore,
besides reducing the dimensionality, maintaining the most useful information for a specific

task always plays an important role in practice. For example, in a classification task, the

1.4 Contribution 5

classification accuracy usually decreases as the dimension of the target space reduces, so
the capability of accurate classification is an important criterion of a good dimensionality

reduction technique.

1.4 Contribution

The major contribution of this thesis is that we discovered the Triangular Similarity and
invented the triangular loss as a metric learning cost function. By incorporating various
mapping function with the triangular loss, we constructed different TSML systems and
applied them to the above two applications, i.e. pairwise verification and dimensionality

reduction.

* Recent benchmarks such as the dataset ’Labeled Faces in the Wild’ (LFW) [75] and the
dataset ’Kinship Face in the Wild” (KinFaceW) [112] established a challenging study
of seeking effective learning algorithms which have the ability to discover principles
from small numbers of training examples. In these tasks of pairwise verification,
we found that under the setting of limited training data, a linear system generally
performed better than nonlinear systems because the nonlinear machines were more
prone to over-fitting the small training set. On the two popular datasets, our linear

TSML system achieved competitive verification performance with the state-of-the-art.

* Without the constraint of limited training, we presented the nonlinear systems to
realize flexible dimensionality reduction on data of images, i.e. the Extended Yale B
dataset [51] and the MNIST handwritten digits dataset [96]. We succeeded in projecting
the original high dimensional image features or the raw images into visualizable
spaces while maintaining accurate classification in the target space. Moreover, taking
advantage of classical manifold learning theories, the nonlinear TSML systems offered

a new perspective of data visualization that significantly advanced the state-of-the-art.

1.5 OQOutline

In the following chapter (Chapter 2), we will outline some of the most important Metric
Learning techniques as well as the advances in Siamese Neural Networks. Furthermore, we
will discuss a few open problems in designing a good Metric Learning approach in a siamese
architecture.

In Chapter 3, we will then focus on presenting our own approach, the Triangular Similarity

Metric Learning (TSML). We will first introduce the definition of Triangular Similarity and

6 Introduction

then explain the triangular loss function, followed by a geometrical interpretation of the cost
function and its gradient function.

After having described the methodology, we will move to the applications. In Chapter 4
we will show the effectiveness of our method on the applications of pairwise verification by
experimental comparison with other state-of-the-art methods. We will investigate the effects
of several anti-over-fitting strategies by experimental justification.

In Chapter 5, we will apply the proposed method for classification and data visualization
on small-scale data and large-scale data, respectively. We will integrate the triangular loss
function with neural networks such as Multi-layer perceptrons (MLP) and deep Convolutional
Neural Networks (CNN) to realize nonlinear mapping. A particular application of classical
manifold learning theories will also be presented.

Finally, Chapter 6 will conclude this thesis with a short summary and draw some perspec-
tives for future research.

Throughout this thesis, we use standard matrix notations to present mathematical objects.

A summary of common used notations is given in Table 1.1.

1.5 Outline

Table 1.1 Summary of notations

Notation Description

A Matrix; or a set of matrices and vectors

Ajj The (i, j):;, element of the matrix A

A; Indexed matrix for some purpose, e.g. the i;;, matrix
A0 Indexed matrix for some purpose, e.g. the i;;, matrix
a Vector (column vector), a = [ay,a,...,a,)"

a; The i;;, element of the vector a

a; Indexed vector for some purpose, e.g. the i;;, vector
al) Indexed vector for some purpose, e.g. the i;;, vector
a Scalar

N Scalar

e Natural exponent to the power N

log(N) orIn(N) Natural logarithm of the scalar N

7) Function

716 Derivative of the function f(-)

% Partial derivative of the cost J over the parameter A
Aa Differential of the parameter vector a

AA Differential of the parameter matrix A

AT Transpose of the matrix A

tr(A) Trace of the matrix A

I The identity matrix

a®b Element-wise multiplication between two vectors a and b
|a|| L2-norm (Euclidean norm) of the vector a
a’=a’a Square of the vector a

|A|l Frobenius norm of the matrix A

AxB Convolution operation (2-d) between two matrices A and B

Chapter 2

Literature Review: Siamese Neural
Networks and Metric Learning

2.1 Introduction

We have mentioned in the previous chapter that we regard Siamese Neural Networks and
Metric Learning as two names of the same technique. As their names suggest, the phrase
"Siamese Neural Networks" concerns the symmetric structure of parallel neural networks
used for mapping but the term "Metric Learning" emphasizes the pairwise relationship (i.e.
the metric) in the data space. Actually, while most current Metric Learning methods specify
a linear metric, Siamese Neural Networks can be considered as the pioneer of learning
a nonlinear metric. In this chapter we will review related literature on Siamese Neural

Networks and Metric Learning, respectively.

For Siamese Neural Networks, we will start from introducing a classical type of neural
networks, Multi-Layer Perceptrons (MLP). After that, we will present an advanced type
of neural networks, Convolutional Neural Networks (CNN) that are of more complex and
powerful architectures. Besides, we will show their siamese variants, the Siamese MLP and

the Siamese CNN, respectively.

For Metric Learning, we will focus on learning a linear metric since most of current
Metric Learning algorithms are linear. We divide current Metric Learning methods into
two main families: learning a distance metric or a similarity metric. We will review typical
exemplars in each family and also some other advances in Metric Learning.

At last, we will summarize the natural connections between Siamese Neural Networks
and Metric Learning as well as the difference between them, followed by a discussion on a

few open problems of designing a good architecture and choosing a good metric.

10 Literature Review: Siamese Neural Networks and Metric Learning

2.2 Siamese Neural Networks

The word "siam" was the ancient name of Thailand, and the adjective "siamese" means
someone or something from Thailand'. Its usage of indicating a symmetric structure derives
from the phrase "Siamese twins" which refers to the most famous pair of conjoined twins,
Chang and Eng Bunker?, from Thailand.

Neural Networks (NN) denote a machine learning technique inspired by the human
brain and its capability of accomplishing simple and complex tasks by communications and
cooperations between a great amount of neurons, each performing a very simple operation.
Like the human brain, an NN is a trainable structure consisting of a set of inter-connected
units, each implementing a very simple function, and together eventually realizing a complex
classification or regression function. The set of parameters used to configure a certain
function is usually called the set of weights in an NN, which can be efficiently learned by the
Backpropagation algorithm [142].

Combining the two together, a Siamese NN is a special type of NN that consists of two
identical sub-networks sharing the same set of weights. We begin this section by introducing
the basic components of an NN.

2.2.1 Perceptron

The most well known type of neural unit is called a perceptron which was introduced by
Rosenblatt [141]. Its basic structure is illustrated in Fig. 2.1. With n numerical inputs
X = [x1,X2,...,%,]7 and one output y, the value of y is defined as a function of the sum of

weighted inputs w’ x and an additional bias term b:
y=@(W'x+b), 2.1)

where w = [wi,wy,... ,wn]T denotes weights for all the inputs, and wix = Yl wix; is the
weighted sum. The function ¢(+) is usually called an activation function.

In order to use Backpropagation as the learning algorithm for an NN, the activation
function has to be differentiable. Commonly used activation functions include the linear
function, the sigmoid function, the tanh function (i.e. the hyperbolic tangent function) and
the ReLLU (Rectified Linear Unit) function. The four types of activation functions and their

derivatives are listed as below.

Ihttps://en.wikipedia.org/wiki/Siamese
Zhttps://en.wikipedia.org/wiki/Chang_and_Eng_Bunker

2.2 Siamese Neural Networks 11

40 >y

Ji

¢ Linear function:

o(t) =t, (2.2)
o'(t)=1. (2.3)
* Sigmoid function:
1
o) =1 (2.4)
o'(t) = o(t)[1 - o(1)]. (2.5)
¢ Tanh function:
e —et
o) = = (2.6)
¢'(t) = 1—¢*(1). (2.7)
¢ ReLU function:
¢(t) = max(0,1), (2.8)
1,t>0;
¢'(1) = (2.9)
0,7<0.

Note that the ReLU function is actually not differentiable at the point 0. Hence in

practical implementations, ¢'(0) is usually set to 0.

Figure 2.2 shows curves of the four activation functions. The linear function (Fig. 2.2
(a)) is often used in an NN for linearly separable problems. In contrast, it is the nonlinear
activation function that allows an NN to compute nontrivial problems using only a small
number of nodes. The sigmoid non-linearity is shown in Fig. 2.2 (b). It takes a real-valued
number and "squashes" it into range between 0 and 1. In particular, large negative numbers

become 0 and large positive numbers become 1. The sigmoid function has been frequently

12 Literature Review: Siamese Neural Networks and Metric Learning

5 1.2¢
4
1,
3
2 0.8t
1 0.6/
0
1 , , 0.4t
-2 0.2}
-3
0
-4
5L
5 -4 -3 2 -1 0 1 2 3 4 5 5 -4 -3 -2-10 1 2 3 4 5
(a) Linear Function (b) Sigmoid Function
1.2 5
1
0.8 4t
0.6
0.4 3t
0.2
0 2t
-0.2
-0.4 1t
-0.6
-0.8 0
-1
B T I L S S ——
5 -4 -3-2-10 1 2 3 4 5 5 -4 -3-2-10 1 2 3 4 5
(c) Tanh Function (d) ReLLU Function

Fig. 2.2 Four typical activation functions in a perceptron.

used because of its nice interpretation as the firing rate of a neuron: from not firing at all (i.e.
0) to fully-saturated firing at an assumed maximum frequency (i.e. 1). Unlike the sigmoid
function, the tanh function squashes a real-valued input to the range [—1, 1] where its output
is zero-centered (Fig. 2.2 (c)). Therefore in practice the tanh function is usually preferred to
the sigmoid function [100]. However, the ReLLU activation function was argued to be more
biologically plausible [54] than the widely used sigmoid and tanh functions. As of the year
2015, the ReL.U activation function has been the most popular activation function for deep
neural networks [99].

2.2.2 Multi-Layer Perceptrons

By combining several interconnected perceptrons together, Multi-Layer Perceptrons (MLP)

are able to approximate arbitrary nonlinear mappings and thus have been the most popular

2.2 Siamese Neural Networks 13

Layer1 Layer 2 Layer 3

Fig. 2.3 Diagram of a 3-layer MLP. A node with the sign } represents a preceptron.

kind of NN since the 1980°s [142]. It finds applications in diverse fields such as image
recognition [181] and speech recognition [106, 21].

A classical MLP consists of an input layer, one or more hidden layer(s) and an output
layer of neurons. An MLP is a feed-forward neural network, i.e. the activation of the neurons
is propagated layer-wise from the input to the output layer [43]. Figure 2.3 illustrates the
structure of a 3-layer MLP consisting of an input layer, an output layer and only one hidden
layer, where a node with the sign } represents a preceptron described in the previous section.
We use an input vector X to represent the inputs and let W denote the weights of the MLP,
i.e. all the parameters between any two adjacent layers, namely, W :{W(l), b(]), W(z), p(? }.
With an mapping function f(-), this MLP produces an output vector f(x, W).

Generally, in a multi-class classification problem, the size of the output layer (i.e. the
output dimension), is fixed to the number of classes in this problem. The objective of such an
MLP is to make the network outputs approximating predefined target values (or ground truth)
for different classes. In practice, the error 8 between the output f(x, W) and a predefined
target vector g is used to update the network parameters via the Backpropagation algo-
rithm [142]. Moreover, these predefined target values are typically binary for classification
problems. For example, for a 4-class classification problem, we set unit vectors [1,0,0, O]T,
[0,1,0,0]7, [0,0,1,0]7, [0,0,0,1]7 as target vectors for the 4 classes, respectively.

Training an MLP: Backpropagation

The Backpropagation algorithm [142] is the most common and maybe the most universal

training algorithm for feed-forward NNs. The word "backpropagation” is the abbreviation

14 Literature Review: Siamese Neural Networks and Metric Learning

for "backward propagation of errors". Hence the Backpropagation algorithm can be divided
into two phases: (1) a forward phase from the input layer to the output layer to compute
errors; (2) a backward phase from the output layer to the input layer to update the weights.
In the following paragraphes, we take the 3-layer MLP in Fig. 2.3 as an example to introduce

the two phases.

A forward phase is first taken to compute errors for some training data. Formally, for
any given input sample Xx;, assuming its output through the MLP is a; = f(x;, W). At the first
step, from the input layer to the hidden layer, with the parameter matrix WU and the bias

vector b"), values in the hidden layer are computed as
h = 0(z!") = (Wx; + b)), (2.10)

At the second step, from the hidden layer to the output layer, with the parameter matrix w®

and the bias vector b(z), the output values are calculated as

a; = ¢(z.”) = p(Wh; +b?). 2.11)

1

The function ¢(+) here is an activation function in a perceptron (see Section 2.2.1). Finally,
cost function of this MLP is simply the Mean Squared Error (MSE) between the computed
outputs and their desired targets for all training samples:

(a; —g;)%, (2.12)

=

1 1
J==) Ji=—
N ; " 2N
where N is the number of all possible training samples, g; is the target vector for the output a;.
Remind that g; is usually hand-crafted unit vectors. For example, for a 3-class classification
problem, we set unit vectors [1,0,0]7, [0,1,0]7, [0,0,1]7 as target vectors for the 3 classes,
respectively. Minimizing the cost function leads to an optimal solution of correctly classifying

the training data, which is realized by the backward phase.

A backward phase is then taken to update the set of parameters W : {W(z) , b®? , w , b }.

Taking derivative of Equation (2.12), the gradient for the i;;, training sample is:

aJ;
oW

Ja
oW’

(ai—g;) (2.13)

and the derivative on the output layer, with respect to zgz) = WPh,; +b®, is:

8 = (p’(zfz)) © (a;i — &), (2.14)

1

2.2 Siamese Neural Networks 15

where the notation © means element-wise multiplication and the function ¢’(-) here is the
derivative of an activation function ¢(-). Subsequently, the derivative on the hidden layer,
with respect to zgl) = W(l)X,' + b(l), is:

8" = '@y o (W), (2.15)

The differentials of the network parameters are computed as:

AW =T (2.16)
Ab® =87, (2.17)
AWD = 85T (2.18)
Ab) =, (2.19)

1

After that, the parameters W : {W(z) , b2 , wb) , b(l)} can be iteratively updated by using the

following function:

N
WeW-u) AW, (2.20)
i=1

where U is the learning rate in an online gradient descent learning algorithm, A;W indicates
the differentials in Equations (2.16-2.19). For the iterative updating algorithm, the starting
values of the weights W have a significant effect on the training process. Empirically,
weights should be chosen randomly but in such a way that the activation function is primarily
activated in its linear region [100, 53]. After adequate training iterations, an optimal W will

be reached as a proper solution to the predefined cost function (Equation (2.12)).

Training an MLP: gradient descent

Gradient descent is the way of realizing Backpropagation and minimizing functions [9].
Given a function defined by a set of parameters, gradient descent starts with an initial set of
parameter values and iteratively moves toward a set of parameter values in order to minimize
the function. This iterative minimization is achieved using calculus, taking proportional steps
in the negative direction of the function gradient (e.g. Equation (2.20)).

At each iteration, if it requires a complete pass through the entire training data set to
compute an average gradient, this type of learning is referred as batch gradient descent,
where "batch" indicates the entire training set. Alternatively, if a single training sample
is chosen from the training set at each iteration, it is called stochastic gradient descent.

Stochastic gradient descent is generally preferred due to the following three reasons [100]:

16 Literature Review: Siamese Neural Networks and Metric Learning

Advantages of Stochastic Gradient Descent

1. Stochastic gradient descent is usually much faster for a single iteration.
2. Stochastic gradient descent can be used for tracking changes.

3. Stochastic gradient descent may result in better solutions.

Firstly, since stochastic gradient descent trains on a single sample in each iteration but
batch gradient descent requires the entire training set, stochastic gradient descent is most
often much faster in iterative updating. Besides, stochastic gradient descent is particularly
useful to model a function changing when the underlying local data distribution changes
gradually over time. Since batch gradient descent always considers the whole training data,
it captures the global distribution and produces a mean solution. In this case, stochastic
gradient descent usually yields better approximation results and thus is preferred for online
learning.

Besides the need of online learning, offline learning is still useful in some applications,
e.g. for small and medium scale problems, the entire training data always obey a certain
distribution. In this case, some advanced optimization algorithms, such as the Conjugate
Gradient Descent (CGD) algorithm [115] and the Limited-memory Broyden Fletcher Gold-
farb Shanno (L-BFGS) algorithm [108], can help batch gradient descent to automatically
accelerate the learning speed and produce good results very quickly.

Nowadays, it is more likely to get a large scale problem with a redundant training set,
thus one may prefer stochastic gradient descent or its variant, mini-batch gradient descent.
Like stochastic gradient descent, mini-batch gradient descent is also designed for online
learning. In particular, it takes several training samples in each iteration. Usually, as the
trade-off between stochastic gradient descent and batch gradient descent, mini-batch gradient

descent is the best choice among the three for online optimization problems [100].

2.2.3 Siamese Multi-Layer Perceptrons

Despite MLP has been the most popular kind of NN since the 1980’s [142] and the siamese
architecture has been first presented in 1993 [24], most Siamese NNs utilized Convolutional
Neural Networks (CNN) for image analysis [24, 32, 43]. Until recently, a few works studied
Siamese MLPs: Chen and Salman [31] applied a Siamese MLP to extract speaker-specific
information (2011); Yih et al. [177] employed it to measure the similarity between texts
(2011); Berlemont et al. [18] used it for gesture recognition (2015); Zheng et al. [182]
adopted it for face identification (2015).

A Siamese MLP is a symmetric architecture consisting of two MLPs, where they actually
share the same set of parameters W (Fig. 2.4). Like the standard MLP minimizes the MSE

2.2 Siamese Neural Networks 17

X)/ R Original Space
MLP MLP
o [W £

e T e s

Cost / Loss Function

T
I
v

Closer asimilar pair
Separate adissimilar pair

Fig. 2.4 Diagram of a Siamese MLP.

error function to get a proper classification solution, different kinds of cost functions may
be designed in the Siamese MLP for different applications. For example, Berlemont et
al. proposed a cost function based on the Cosine Similarity metric in their Siamese MLP
and employed it to recognize and reject inertial gestures [18]; Zheng et al.developed a
triangular loss function for the Siamese MLP to realize dimensionality reduction and data

visualization [182].

Compared with the standard MLP (Fig. 2.3), instead of constraining the outputs ap-
proaching some predefined target values (Section 2.2.2), the Siamese MLP defines a specific
objective: (1) for an input pair from the same class, making the pairwise similarity between
their outputs larger or making the pairwise distance between the outputs smaller; (2) for
an input pair from different classes, making the pairwise similarity between their outputs
smaller or making the pairwise distance between the outputs larger. By this objective, there
is no need to handcraft target vectors for training classes. Consequently, unlike the classical
MLP fixes the size of the output layer (i.e. the output dimension) to the number of classes in
a certain problem, dimension of the target space can be arbitrarily specified by the Siamese
MLP.

Another advantage of the Siamese MLP over the classical MLP is that the Siamese MLP
is able to learn on data pairs instead of fully labeled data. In other words, the Siamese

MLP is applicable for weakly supervised cases where we have no access to the labels of

18 Literature Review: Siamese Neural Networks and Metric Learning

training instances: only some side information of pairwise relationship is available. This
is a meaningful setting in various applications where labeled data are more costly than the
side information [13]. Examples include users’ implicit feedback on the internet (e.g. clicks
on search engine results), citations among articles or links in a social network, kinship
relationship between individuals [114].

Training a Siamese MLP is almost the same to the training procedure of a standard MLP.
The only difference is that a Siamese MLP takes pairs of training samples into account in

each iteration while a standard MLP takes single data samples.

2.2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a specialized kind of neural networks for pro-
cessing data that have a known grid-like topology [16]. The word "convolutional" indicates
that the networks employ a mathematical operation called convolution. As images are the
most common grid-like data (i.e. 2-dimensional data), CNNs are widely used for image
and video analysis [96, 127, 91]. Besides images, CNNs are also able to process other
2-dimensional input such as speech time-series [95]. See [98] for a more in-depth history of
CNN applications.

Compared with an MLP, a CNN is a more complex type of neural networks since it
includes more kinds of neuron layers. And the complexity makes CNNs known as an
important technique in the history of deep learning [99]. The layers in an MLP are also
called fully-connected layers (see Fig. 2.3) since any two adjacent layers are fully connected.
A typical CNN consists of a number of convolutional and pooling layers optionally followed

by some fully-connected layers.

Convolutional layer

A fully-connected layer receives a single vector as an input and transform it through per-
ceptrons (see Fig. 2.3). Consequently, it is difficult to apply it directly to process an image
which is usually represented by a matrix of pixels. A compromised way is stretching the
matrix as a vector, 1.e. concatenating the rows or columns of the matrix, before delivering it
to the fully-connected layer. However, this would cause two problems: (1) realigning the
matrix ignores local correlations of neighboring pixels in an image, but the local correlation
carries rich texture information that is important in detection or recognition tasks; (2) the
input dimension will be too high. Even for a 100 x 100 small image, the size of the input

layer (i.e. the layer receives the image) is 10,000. As the next layer is fully connected to the

2.2 Siamese Neural Networks 19

input layer, the number of parameters (i.e. the number of connections) would be very large

and thus the MLP is too complex to train and is more inclined to get over-fitting.

In contrast, a convolutional layer alleviates these problems. For the first problem of
ignoring local correlations, the convolutional layer directly takes a matrix as an input without
breaking the existing grid-like topology in an image. For the second problem, the convo-
lutional layer uses two basic ideas: local receptive fields and shared weights to reduce the
complexity of the NN (i.e. to reduce the number of parameters).

Figure 2.5 illustrates the input layers in an MLP and a CNN, respectively. Concretely, an
MLP takes a vector as the input, and each node in the first hidden layer has connections with
all the nodes in the input layer (See Fig. 2.5 (a) and Fig. 2.3). A CNN receives a matrix as the
input, but connects a hidden node to a small region of nodes in the input layer. This region is
called the local receptive field for the hidden node. For example, in Fig. 2.5 (b), we define
a convolutional input layer to process 10 x 12 matrices and use a 5 x 5 sliding window to
transform the local receptive fields to the hidden nodes. In this example, the sliding window
moves towards the right or downwards with a step size 1, thus we have the hidden layer with
the size 6 x 8. It is worth knowing that unlike the size of a hidden layer in an MLP can be
arbitrarily specified, the size of a hidden layer in a CNN is conditioned by three factors: the
size of the former convolutional layer, the size of the sliding window and the step size.

Moreover, the sliding window uses the same mapping function for all the hidden nodes,
i.e. all the mappings between a local receptive field and a hidden node share the same weights.
This idea is called shared weights or parameter sharing® [126]. A probable principle behind
this idea is that natural images have the property of being stationary, meaning that the basic
statistical features (e.g. edges or textures) detected from one part of the image are also useful
to represent any other parts. For instance, the two local receptive fields in Fig. 2.5 (b) are
processed by the same mapping function which performs a convolution operation. Let X
denote the input matrix and X (/) denote the local receptive filed with the upper left corner
at position (i, j), e.g. the two sub-matrices in Fig. 2.5 (b) are X and X6, respectively.
With a weight matrix W and a bias term b, the output value y delivered to the hidden layer is:

y=@(WxXW) +p), (2.21)

where the function @(-) is an activation function that we often use in a perceptron (Sec-
tion 2.2.1) and the operator * represents a convolution operation [16]. Comparing this
function with the mapping function in a perceptron (Equation (2.1)), there are two differ-

ences: (1) the inputs and weights are matrices instead of vectors; (2) the inner product

3http://deeplearning.net/tutorial/lenet.html

20 Literature Review: Siamese Neural Networks and Metric Learning

O
O
O—
@)
@)
O
O
Fully-connected layer First hidden layer
(Input layer)
(a) Input layer in an MLP

Convolutional layer First hidden layer
(Input layer)
(b) Input layer in a CNN

Fig. 2.5 Comparison of input layers: fully-connected layer (MLP) vs. convolutional layer
(CNN). Size of the local receptive field (i.e. the square window) is 5 x 5.

2.2 Siamese Neural Networks 21

10x12 3@6x8

000000000000
000000000000
000000000000 |
000000000000 #:() . |
000000000000 *| | DOOOO0O00
000000000000 ¢.(| | OOOOOOOG
000000000000 >l ©OOOOOO0
000000000000 ¢.(I) olololelelelele
000000000000 00000000
000000000000 'elelelelelele)e

Convolutional layer First hidden layer

(Input layer)

Fig. 2.6 Convolutional layer with three feature maps.

between two vectors is substituted by the 2-dimensional convolution operator between two
matrices. Especially, since this convolutional mapping function has the capacity of detecting
a certain feature, it is usually called a feature map. In practical image analysis, only one
feature is not enough to describe the content of an image, hence we need multiple features
maps in a CNN. Figure 2.6 shows an example of 3 feature maps from the convolutional input
layer to the hidden layer. These 3 feature maps are defined by @;(-) (i = 1,2,3), respectively.
We can say that each function learns a feature map on the input image, resulting in 3 pages
of hidden units in the following layer.

In summary, taking advantage of the ideas of local receptive fields and shared weights, a
convolutional layer realizes local feature detection and avoids the problem of overlarge input
that a fully-connected layer may be hard to handle. Furthermore, the convolution operation
has a property of invariance to local translation, which plays an important role in detecting
local features since we care more about whether a feature is present rather than where its

exact position is [16].

Pooling layer

One may notice that after the convolution operation, the size of the hidden layer is still very
large. To further reduce the computational complexity, a pooling layer or a sub-sampling
layer is usually used immediately after a convolutional layer. Concretely, a pooling operation
in a hidden layer summarizes the information in a local region and delivers the summarized

statistic to the next hidden layer. The local region is usually called a pool. For example, in

22 Literature Review: Siamese Neural Networks and Metric Learning

10x12 3@6x8 3@3%x4
000000000000
'e]elolelolelolelo]elo]e)
QOO00000000000 |
000000000000 ¥:(1) | —
'e]elolelolelolelo]elo]e) "| | DOOOT0O00 -
00000000000 Q| ¢.() | | ©OOOOOOO L 5006
'e]elolelolelolelo]elo]e) " OOOOOOO0 = Ngtetete
'e]elelelelelololelolele AL elolelelelele) =
‘oJelolo]elolo]elolole)e — 1000000
QOO0000000000 QQQQngg
Convolutiona layer Pooling layer Second hidden layer
(Input layer) (First hidden layer)

Fig. 2.7 Diagram of a pooling layer.

Fig. 2.7, a page of hidden units are divided into non-overlapped 2 x 2 pools and an output is
generated from each pool. Overall, the three 6 x 8 pages in the pooling layer are downsampled
to three 3 X 4 pages in the second hidden layer. This example employs non-overlapping
pooling, but it is worth knowing that like in the convolutional layer, overlapping regions are
also allowed by using a sliding window.

Let X : {X;;} denote the matrix in a pool, common used pooling functions include:

* Max pooling: taking the maximal element in X as the output,

y = max(X) = maxX;;. (2.22)
i.j

* Average pooling: taking the average value of all the elements {X; j} as the output,
1
y=5 LX) (2.23)
i,j

where N is the number of elements in X.

* L2-norm pooling: taking the I, norm of all the elements {X;;} as the output [45],
1
y=(LX3)2, (2.24)
i,j

please note that it is not the /; norm of a matrix, but the Frobenius norm [132]. These

functions carry no parameters to perform pooling, however, there are also pooling

2.2 Siamese Neural Networks 23

10x12 >f 3@6x8 3@3x4 f(X,YV)’fé:il
000000000000 O [0}
000000000000 o) 15}
000000000000 //////T/)o o
leJe]elelelele]olelolole K ALIN ; 0O 15}
000000000000 " | POOOO000 A | : o) 15}
000000000000 #,() [| POOOOOO aR | o) o
000000000000 * DOOOOOO ;;0888 O o
000000000000 4,0 | | LOOOOOO =833 o) 15}
000000000000 00000000 — 9 15}
0O0000000000 olelelelelelele o) 15}

Convolutional layer Pooling layer Fully-connected layer Output layer
(Input layer) (First hidden layer) (Second hidden layer)

Fig. 2.8 A complete CNN architecture.

functions with trainable parameters [96, 49]. A pooling operation with parameters is
also considered as a kind of feature map.

Overall architecture

After collecting all necessary components, we can now present a complete CNN architecture.
Following the previous convolutional and pooling layers, an output layer is simply linked to
the second hidden layer with fully connections (see Fig. 2.8). Just like in an MLP (Fig. 2.3),
a ground truth (i.e. a target vector) g is also set up for the values in the output layer.

Despite that a CNN realizes a more complex transformation than an MLP, the objective
of the CNN is still to make the outputs f(X, W) approximating predefined target values. The
error & between the output f(X, W) and the target vector g is used to update the network
parameters via the Backpropagation algorithm [142].

Training a CNN

Like training an MLP, we also use Backpropagation and gradient descent (Section 2.2.2)
to train a CNN. The only required supplements are the derivatives of the pooling and
convolutional functions.

For a pooling layer, since it usually does not carry any parameters to perform learning,
the backward phase for a pooling operation is very simple. For example, in the forward phase,
a max pooling function simply delivers the maximal value in a pool to the next layer, thus it
is the neuron unit having this maximal value to receive the error during the backward phase.
Accordingly, if we have average pooling in the forward phase, the error would be averagely

distributed to all the units in the pool. For a convolutional layer, a depth description of the

24 Literature Review: Siamese Neural Networks and Metric Learning

C3: f. maps 16@10x10 Pseudo-Output
C1: feature maps S4: f. maps 16@5x5
gnézg; 6@28x28 S2: f. maps C5: 1
:f. : layer .
6@14x14 I 120 ng' layer ?LOJTPUT

‘ Full coanection ‘ Gaussian connections
Subsampling Full connection

Convolutions Subsampling Convolutions

Fig. 2.9 Diagram of LeNet-5 [96].

convolution operator and its derivative is referred to [16, 22, 43]. But it is worth knowing that
the backward phase for a convolution operation is also a convolution with a spatially-flipped

operator.

A foundation stone: LeNet-5

We have known that a CNN architecture comprises several kinds of neuron layers. Therefore
configuring each component, i.e. determining the number of layers, the number of feature
maps, the size of local receptive fields, the size of pools, is a complex task. In other words,
designing a CNN for a given practical problem indeed becomes an art. Fortunately, the
founder of CNN, Yann LeCun, has offered us delicate exemplars such as LeNet-5 [96].
LeNet is a series of successful CNN applications developed by Yann LeCun since the early
1990’s [94, 96], and it has inspired the creation of many successive CNN architectures such
as AlexNet [86], ZF Net [179], GoogleNet [159] and VGGNet [151].

Now we review the principal architecture of LeNer-5 in Fig. 2.9. Note that the naming
style in LeNet-5 is different from ours in previous sections. For two adjacent layers, a name
of "convolutional", "pooling" or "fully-connected" is given to the former layer in our case
(see Fig. 2.8) but LeNet-5 gives the name to the latter layer. As a result, the first convolutional
layer is the input layer in our definition instead of the first hidden layer in LeNet-5. However,
this difference does not matter since the name actually indicates the operation between the
two layers.

LeNet-5 is composed of 7 layers, not counting the input layer. There are three convolu-
tional layers at the 1st, 3rd and 5th layers, denoted by C1, C3 and CS5. Particularly, C1 and
C3 are followed by two sub-sampling layers (i.e. pooling layers) S2 and S4. After C5, two
more layers are defined to implement classification.

For all the three convolutional layers, C1, C3, C5, the size of local receptive fields is

always 5 x 5. Each feature map is learned on one or more pages of hidden units in the

2.2 Siamese Neural Networks 25

Table 2.1 Connection scheme between the layers S2 and C3 of LeNet-5: a cross indicates a
connection between the indexed pages in S2 and C3.

$) 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 X X X X X X X X X X
2 X X X X X X X X X X
3 X X X X X X X X X X
4 X X X X X X X X X X
5 X X X X X X X X X X
6 X X X X X X X X X X

previous layer. Taking a feature map learned on 3 previous pages for example, three 5 x 5
weight matrices would be used to perform convolution on the three pages in the previous
layer, respectively. And then the results are added to a trainable bias. Such a feature map
contains 76 (25 x 3 + 1) parameters.

For all the sub-sampling layers, the size of pools is always 2 x 2. Especially, LeNet-
5 adopts a parametric sub-sampling operation: the four inputs in a pool are added, then
multiplied by a trainable coefficient, and added to a trainable bias; finally, the result is passed
through a sigmoid function. Thus each feature map of sub-sampling has 5 connections

between hidden units but only 2 parameters.

Layer C1 performs a convolution operation with 6 feature maps on a 32 x 32 input image,
resulting in 6 pages of hidden units in the first hidden layer. Since each feature map here
has 26 (25 + 1) parameters, C1 contains 156 (6 x 26) trainable parameters and 122,304
(28 x 28 x 156) connections.

On each of the 6 hidden pages, Layer S2 learns a feature map of sub-sampling. The 2 x 2
pool area is non-overlapping, thus we observe image down-sampling from 28 x 28 in C1
to 14 x 14 in S2. S2 contains 12 (6 x 2) trainable parameters and 5,880 (14 x 14 x 6 x 5)

connections.

Layer C3 is a convolutional layer with 16 feature maps. Each feature map is learned
on several pages of hidden units in the previous layer S2. Table 2.1 shows the connection
scheme between the layers S2 and C3. A cross indicates a connection between the indexed
pages in S2 and C3. For example, the first page (i.e. the first feature map) in C3 is learned
on the first three pages of hidden units in S2. This non-complete connection scheme forces
different feature maps in C3 to extract different features from S2 [96]. The number of
page connections between the two layers is 60. Thus C3 has 1,516 (60 x 25 + 16) trainable
parameters and 151,600 (10 x 10 x 1,516) connections between hidden units.

26 Literature Review: Siamese Neural Networks and Metric Learning

Layer S4 is a sub-sampling layer with 16 feature maps. The sub-sampling operation from
C3 to S4 is similar to that between C1 and S2. Thus S4 has 32 (16 x 2) trainable parameters
and 2,000 (5 x 5 x 16 x 5) connections.

Layer C5 performs the last convolution operation on the previous layer S4 with 120
feature maps. And each feature map is learned on all the pages in S4. Since the size of
hidden pages in S4 is also 5 x 5, exactly the same with the size of the local receptive fields in
LeNet-5, S4 and C5 are actually fully-connected with each other. Particularly, C5 contains
48,120 (120 x (25 x 16 4 1)) trainable parameters/connections.

The 6th layer F6 is a fully-connected layer having a modified tanh activation function. It
contains 84 hidden units and thus 10, 164 (84 x (120+ 1)) trainable parameters/connections.
Actually, we may consider this layer as the output layer because LeNet-5 directly uses the
results of this layer to calculate the final cost. To distinguish this layer from the "OUTPUT"
layer in Fig. 2.9, we call F6 the pseudo-output layer. The 7th layer, the "OUTPUT" layer
in Fig. 2.9, is composed of Euclidean Radial Basic Function (RBF) units which store
classification decision costs for each class.

Let x=[x1,x2,--- ,xg4]” denote the output of F6, the cost of recognizing a digit as the
number j €{0,1,2,3,4,5,6,7,8,9} is calculated as:

Cj=(x—w,)%, (2.25)

where w; is a vector containing 84 values which form a 7 x 12 bitmap representing a stylized
image of the number j. And this vector w; plays the role of a target vector for the layer F6,
just like the vector g does in an MLP (Fig. 2.3) or in an ordinary CNN (Fig. 2.8). This design
has considered the shape similarity between characters with different meanings, e.g. the
uppercase 'O’, lowercase '0’, and zero, have a similar shape of a circle and thus will obtain
similar outputs in layer F6. Lecun et al. argued that this design of using such distributed
codes would be particularly useful in a document recognition system [96] rather than in
a system for recognizing isolated digits. Based on the costs in Equation (2.25), an error
function is further defined to include a weight decay factor to control the learning procedure
of the network parameters [96]. Computing the gradient of the error function with respect to
all the weights in all the layers of LeNet-5 is done by Backpropagation [142].

Similar with LeNet-5, most CNN systems employ more than one hidden layers to model
high-level abstractions in image data. Hence CNN is a key exemplar of deep learning
algorithms. In fact, CNN played an important role in the history of deep learning and it was
the first deep model to perform well, long before arbitrary deep models were considered
viable. It is the CNN that "carried the torch" for the rest of deep learning and paved the way

to the acceptance of neural networks in general [16].

2.2 Siamese Neural Networks 27

Ew
A
|Gw (X1) — Gw (Xa)|
A A
Gw (X1) Gw(X2)
Gw(X) Gw(X)
. —< \\4 > .
Convolutional Convolutional
Network Network
A A
X1 X2

Fig. 2.10 Diagram of the Siamese CNN presented in Chopra’s method [32].

2.2.5 Siamese Convolutional Neural Networks

The first works on Siamese CNN were presented around the year 1993. While Baldi
and Chauvin [6] applied a Siamese CNN to verify the authenticity of two fingerprints,
Bromley et al. independently proposed Time Delay Neural Networks (TDNN) for signature
verification [24], i.e. to decide if two signatures belong to the same person. About 10 years
later (2005), a more complex Siamese CNN architecture was presented by Chopra et al. [32]
to process face images in an identity verification task, i.e. face verification. After that, similar
deep Siamese CNNs were used in different applications such as dimensionality reduction [62]

and video analysis [122].

Figure 2.10 shows the siamese architecture used in Chopra’s method for face verifica-
tion [32]. Like a Siamese MLP (Fig. 2.4), a Siamese CNN is a symmetric architecture
consisting of two CNNs, where they actually share the same set of weights W. After re-
ceiving two images X and X as the inputs, the two CNNs produce two outputs Gy (X)
and Gy (X;) in the target space. The distance between the two outputs is measured by the

Euclidean distance:
Ew(X1,X0) = ||Gw (X1) — Gw(X2)]|, (2.26)

28 Literature Review: Siamese Neural Networks and Metric Learning

where the metric function Ey (X1,X>) is also called an "energy function" in [32, 97].

Moreover, this pairwise distance in the target space is expected to approximate the
"semantic" distance between the raw images: two images of the same class are supposed
to yield a small distance in the target space while two images from two different classes
should have a large distance. To achieve this goal, a loss function is defined based on this
distance metric and the standard Backpropagation algorithm is used to learn the parameters
of the CNN. The CNN architecture used in [32] mainly followed LeNet-5. Concretely, the
first 6 layers of LeNet-5 were transplanted into the Siamese CNN: C1-S2-C3-S4-C5-F6, but
the feature map functions of convolution and pooling were configured by different size of
parameters.

Like the Siamese MLP (see Section 2.2.3), the Siamese CNN maintains the two advan-
tages over the single-track neural networks (e.g. the standard MLP, the standard CNN): (1)
there is no need to handcraft target vectors for each class, thus dimension of the target space
can be arbitrarily specified; (2) the siamese architecture allows weakly supervised training
since learning can be performed on data pairs instead of fully labeled data.

Apart from the Siamese MLP and the Siamese CNN, other types of neural networks can
be involved in a siamese architecture to perform pairwise comparisons. For example, Nair
and Hinton [123] presented Siamese Restricted Boltzmann Machines (RBM) for pairwise

face verification.

2.3 Metric Learning

When referring to Siamese Neural Networks in the previous section, we mainly concerned
the mapping function, i.e. which type of neural networks should be used for data mapping
from the original space to the target space. We have also noticed another important factor
that the cost function or the loss function plays an important role in learning a good mapping.
The study on choosing a proper metric and developing a metric-based cost function is Metric
Learning. Actually, a mapping function defines the complexity of a system and a cost
function draws the objective of a system.

However, the two functions depend on each other, and an effective Metric Learning
system should be a combination of them both. Concretely, specifying a metric contains the
idea of learning a data mapping. Given a certain metric, a good data mapping makes the
pairwise relationship between data pairs to be better measured by the same metric in the target
space than in the original space. From a global view on the complete system, the chosen
metric and the mapping function can be reformulated as a single function, representing a new

metric for the original data, with which one can distinguish different classes easier.

2.3 Metric Learning 29

In this section, we will present different types of metrics for feature vectors and review a
few Metric Learning methods in the current literature. Besides feature vectors, there are also
some works on structured data such as strings, DNA sequences [12]. For readers interested
in a broader scope on Metric Learning, we recommend a recent survey which has provided
an up-to-date and critical review of current Metric Learning methods [13, 14].

Strictly speaking, a metric has to obey four axioms: non-negativity, identity of indis-
cernibles, symmetry and triangle inequality. In practice, Metric Learning algorithms may
ignore one or two axioms and learn a pseudo-metric. For example, Euclidean Distance and
Cosine Similarity are two common functions to measure the distance or similarity between
two vectors, however, Euclidean Distance is a standard metric obeying the four axioms but
Cosine Similarity does not have the triangle inequality property and it violates the axiom of
identity of indiscernibles.

According to different metrics used on feature vectors, one can divide Metric Learning
into two main families: distance metric learning and similarity metric learning. One may
doubt the difference between a distance and a similarity, the Cosine Similarity is actually
related to the Euclidean distance under normalized length conditions*. However, this relation
is hard to become an equivalency because the length condition may be ignored in practical
applications. Actually, the Cosine Similarity, or its relaxed variant the bilinear similarity,
has been found as a particularly useful metric for text retrieval [136, 135, 29, 28] and face
verification [125, 26].

Before going into detail of these Metric Learning methods, we need to declare two ways
of representing a data pair: (1) using a triplet (x;,y;,s;) to denote the i, pair in a data set,
where s; = 1 (respectively s; = —1) indicates a similar (respectively dissimilar) pair; (2) using
a pair (x;,X;) to denote the i, and j,, samples in a data set, forming a pair of samples, and
the similarity of this pair would be indicated by additional notation. We mainly use the first

style in this thesis.

2.3.1 Distance Metric Learning

As the name suggests, distance metric learning methods use a distance metric, mainly
the Euclidean distance, to measure the pairwise relationship between two feature vectors.
Currently, most Metric Learning methods learn a linear mapping function f(-) because a
linear projection is more convenient to optimize and less prone to over-fitting. Assuming that

x and y represent two vectors in the original space, a and b denote their linear projections in

“https://en.wikipedia.org/wiki/Cosine_similarity

30 Literature Review: Siamese Neural Networks and Metric Learning

the target space, the pairwise distances before and after mapping can be measured by:

d(x,y) = lx—yl| = /(x—y)T (xy). 227)

d(a,b) = |[Wx— Wy = / (Wx—Wy)" (Wx—Wy), 2.28)

where W is the transformation matrix of the linear projection, i.e. a = f(x,W) = Wx,
b= f(y,W)=Wy.
In some works [173, 55, 52], Equation (2.28) is written as:

dw(x,y) = \/(WX—Wy)T(WX—WY) = \/(X—y)TWTW(X—y)
=/ (x—y)TA(x—y) 229
= dA(va)7

where A is a positive semi-definite matrix that can be decomposed as W/ W. This dis-
tance metric dj (X,y) is in a similar formulation with the Mahalanobis distance®. Thus the
procedure of specifying the matrix A is considered as learning a Mahalanobis distance.
Generally, the objective of a distance metric learning method is to minimize the distance
between a similar pair (x;,y;) € S and to separate a dissimilar pair (x;,y;) € D with a large
distance, where S (respectively D) denotes a set of similar (respectively dissimilar) pairs
for training. Towards this objective, researchers have proposed various cost functions and
optimization algorithms to find good solutions, i.e. to specify an optimal matrix A or W.
Especially, specifying a positive semi-definite matrix A is often formulated as a convex
problem that has a global optimum and can be solved by iterative algorithms based on matrix
decomposition operations [173, 147, 52, 169]. In contrast, learning a linear transformation

matrix W is probably non-convex and solved by ordinary gradient descent in the elements of
the matrix W [55].

Mahalanobis Metric for Clustering (MMC)

The first work of Metric Learning has been presented by Xing et al. [173], namely, Maha-
lanobis Metric for Clustering (MMC). The cost function of MMC is defined as:

J= Y di(x.y), st Y da(xiy)> 1. (2.30)
(xi,y;)€S (xi,y;,)€D

>https://en.wikipedia.org/wiki/Mahalanobis_distance

2.3 Metric Learning 31

The objective of this cost function is to minimize the Euclidean distance between a similar
pair and to make the distance between a dissimilar pair larger than 1. This cost function has
been proven to be convex, which enables the authors to derive efficient algorithm to find a
global optimal solution [173]. A simple optimization algorithm was proposed, relying on
iterative eigenvalue decompositions.

This method is straightforward to follow and can be efficiently computed; but relying
on matrix decompositions constrains it to only small dimensional problems because the
decomposition of high dimensional matrix is computationally expensive. Moreover, the
MMC method focuses on batch learning (i.e. offline learning), where the whole training set
must be ready as a batch.

Pseudo-metric Online Learning Algorithm (POLA)

Pseudo-metric Online Learning Algorithm (POLA) [147] is the first work designed for online
learning, i.e. having only one or a few samples for training at each iteration. Based on the
idea of MMC, POLA introduces a margin factor, the minimum separation between all pairs
of similar and dissimilar samples, to the cost function. Concretely, the width of the margin is

2 and a threshold b is defined in two constraints:

» for a similar pair (x;,y;) € S, the distance between them should be no more than b — 1:
di(xiayi) S b— 1’

» for a dissimilar pair (x;,y;) € D, the pairwise distance should be no less than b + I:
di(xi,yi) >b—+1.

Let s; = 1 denote a similar pair and s; = —1 denote a dissimilar pair, the two constraints can

be rewritten as a single constraint:
si(b—di (xi,y;)) > 1. (2.31)
And the cost function is an adaptation of the hinge loss,
Ji =max(0, 1+ s,-(di(x,-,yi) —b)), (2.32)

where J; is the cost of the i;; sample pair during online learning. Like MMC, POLA relies on
matrix decomposition to perform gradient descent, thus it is hard to handle high dimensional
problems. Moreover, its perfect assumption of separating all the data with an absolute margin

2 limits its application in practice [13].

32 Literature Review: Siamese Neural Networks and Metric Learning

BEFORE | local neighborhood | AFTER

- O Clus1 g
. Class 2
‘ Class 3
< Epull
impostors _ Epush

target neighbors

Fig. 2.11 Schematic illustration of one input’s neighborhood before training (left) vs. after
training (right) for the LMNN method. The distance metric is optimized so that: (1) its K=3
target neighbors lie within a smaller radius after training; (2) differently labeled inputs lie
outside this smaller radius by some finite margin. Bold arrows in the left picture indicate the
directions of gradients for different neighbors [169].

Large Margin Nearest Neighbors (LMNN)

When POLA has an overcritical assumption of separating all the training pairs with a margin,
Large Margin Nearest Neighbors (LMNN), introduced by Weinberger et al. [167, 169],
pushes the constraints to a few selected training data only. In addition, apart from training
on data pairs (x;,X;), LMNN learns the distance metric also on triplets of data samples, i.e.
a group of three samples (x;,X;,X;) € T which includes a similar pair (x;,x;) € S and a
dissimilar pair (X;,X;) € D. Usually, with respect to the similar pair, the isolated sample x;,

in the triplet is called an imposter.

Concretely, the cost function of LMNN is composed of two items, a pulling force and a

pushing force:

* Pulling: to pull each similar pair closer,

=Y, di(xi,x)), (2.33)

(X,‘,Xj)GS

note that unlike other methods usually take all possible similar pairs in training, the set
S here only contains similar pairs in local neighborhoods: for each training sample x;,

it is paired with its K nearest neighbors only (e.g. K = 3 in Fig. 2.11).

2.3 Metric Learning 33

* Pushing: to push an imposter far away from the other two similar samples in a triplet,
the distance between the two samples should be less than the distance between the

imposter and the two samples, i.e. for a triplet (x;,X;,X;) € T, we have
da (xi,X;) + 1 < d3 (xi,%z), (2.34)
hence the cost of the pushing part is:

Jpush = Z max(0, di(x,-,xj) +1 —dﬁ(xi,xk)), (2.35)

(%X, x;) €T

remind that the function max(0, -) denotes the hinge loss function that POLA also
used (Equation (2.32)). Minimizing the pushing part aims to move the imposter (the
red and blue points in Fig. 2.11) from the neighborhood of x;.

Combining the two parts J,,,;; and J 5, has competing effects — to attract target neighbors
on one hand and to repel impostors on the other hand (see Fig. 2.11). A weighting coefficient
u € [0, 1] balances this goal:

J= (1 - »"L)qull + .u-lpusir (236)

The authors provided a solver based on sub-gradient descent and eigenvalue decomposition
to minimize the above cost function. In summary, LMNN involves two main ideas to
learn a distance metric: (1) besides data pairs, introducing data triplets into training; (2)
in order to perform local optimization, selecting data pairs S and triplets T by enclosing
target neighbors. Taking advantage of the two ideas, LMNN generally performs very well in

practice for supervised classification and clustering problems.

Neighborhood Component Analysis (NCA)

Different from the above methods directly optimize the pairwise distances, Neighborhood
Component Analysis (NCA) [55] introduces an idea of transforming the pairwise Euclidean
distance to a probability of being neighbors. In the target space, for a pair of vectors
Wx; = f(x;, W) and Wx; = f(x;, W), the Euclidean distance between them is dw(X;,X;)
(see Equation (2.28)). NCA defines the probability of the two vector being neighbors as:

e—d%v(xi,xj)

pl] = 7d%)v(xiaxk) I pll = O' (2.37)

Yisi€

34 Literature Review: Siamese Neural Networks and Metric Learning

And the probability that the i, vector will be correctly classified is:

Y, pij (2.38)

(X,‘,Xj)GS

where (x;,X;) € S includes all the vectors in the same class with x;. The objective of NCA
is to maximize the expected number of correctly classified points. Two candidates for the

objective function have been proposed:

N N
E=)Y pi or E=Y In(p), (2.39)
i=1 i=1
where N is the number of points in the training set. Note that maximizing an objective
function is equivalent to minimizing its reverse cost function —FE. Efficiently computed
gradient functions aE have also been provided in [55] to perform ordinary gradient descent
(the same as we used for MLP training, see Section 2.2.2).

Compared with MMC and POLA, NCA learns the transformation matrix W and does
not rely on matrix decomposition, thus it can handle large dimensional problems. However,
NCA performs non-convex optimization as it uses the exponential function to transform an
Euclidean distance to a probability, so its solution may be a local optimum. Besides, NCA
needs to hold the whole training set at the very beginning to calculate the pairwise probability
pij, thus it is hardly intractable for online learning, i.e. knowing only one or a few training
samples at each iteration.

Maximally Collapsing Metric Learning (MCML)

Shortly after NCA, Globerson and Roweis [52] proposed an alternative convex formulation to
deal with the probability p;; (Equation (2.37)). Their method is called Maximally Collapsing
Metric Learning (MCML), as they have made a strong assumption on collapsing classes:

* the distance between a similar pair is ideally to be O, the ideal probability of a similar

pair being together is 1: 5;; = 1;
* the distance between a dissimilar pair should be infinite, so the ideal probability of a
dissimilar pair being well separated is 0: s;; = 0.

Under this assumption, they employed the Kullback-Leibler (KL) divergence to match the
computed probability of each pair to its ideal target:

N

N N N Sz
J= Z Z KL(Sij’pij) = Z Z Sljll’l] (2.40)
J

i=1j=1 i=1j=1 Pij

2.3 Metric Learning 35

If and only if p;; equals s;;, the yielded cost can be 0. Note that the dissimilar pairs have no

contribution to the cost since s;; is set to 0, so this equation can be rewritten as:

e—di(xi,Xj)
J=Y —nlpj)= Y —l”(m)a (2.41)
(X,‘7Xj)€S (X,‘,Xj)ES Zk#ie ATk
which can be separated into two parts as:
N 2
J= Y di(xix))+ Y in(} e dabix), (2.42)

(Xi,Xj)ES i=1 k75l'

where minimizing the first part reduces the distance between similar points, and minimizing

the second part enlarges the distance between points from different classes.

Especially, the matrix A = WY W is positive semi-definite and the cost function is convex:
the first part is naturally convex as it involves Euclidean distance only; the second part is a
log-sum-exp function of affine functions of the matrix A and is therefore also convex [23].
An iterative optimization algorithm based on eigenvalue decomposition was presented to find

the global optimal solution for such a convex cost function [52].

Information-Theoretic Metric Learning (ITML)

Continuing the study on probability inference, Davis et al. [39] proposed Information-
Theoretic Metric Learning (ITML) by incorporating the LogDet divergence into the cost
function as a regularization factor®. Instead of measuring the probability of a pair being
similar in NCA and MCML, ITML parameterizes the probability of a sample x belonging to
a set of multivariate Gaussian distribution:

|
p(x,A) = ze—%dﬁ<x#>, (2.43)

where g is the mean of the Gaussian distribution, Z is a normalizing constant and A~! can
be regarded as the covariance matrix of the distribution. In practice, to prevent over-fitting, a
parameter matrix A is initialized with a predefined matrix Ag and is constrained to be close

to it during learning. The "closeness" of the two matrices is measured by the KL divergence

®Regularization refers to a process of introducing additional information in order to solve an ill-posed
problem or to prevent over-fitting. Especially, the L2-norm regularization (i.e. the Frobenius norm) is also
called "weight decay", in particular in the setting of neural networks

36 Literature Review: Siamese Neural Networks and Metric Learning

of the two Gaussians parameterized by Ay and A:

KL(p(x. A0)p(x.A)) = [plx.Ao)og e ax. @44

which can be represented as the LogDet divergence:

1 _ _
KL(p(x,A0)[p(x,A)) = 5Dia(A, Ao) = 1r(AAg D —log(det(AA,")) —d, (2.45)
where d is the dimension of the input x. Note that if and only if A = A, the above equation
results in the minimum O.

As usual, the objective of ITML is to make the distance between a similar pair smaller
and to make the distance between a dissimilar pair larger. Formally, two thresholds u and [

are specified to restrict the distances:

dx(x;,y;) <u (x3,y;) €S,
1;(1 yl) — (l yl) " S l), (246)
dA(Xiayi) Zl (Xi7Yi) ED,
In some cases, there may not exist a feasible solution that perfectly fits all the training
data. To prevent such a scenario from occurring, slack variables are incorporated into the
formulation:
J= Z &,
(Xi7Yi) 6SLJD
2.47
d/i<xiayi) §u+8i (XiﬂYi) ES? ()
s.t. 5 (u <,
dA(Xiayi) Zl_gi (Xi7yi) GDa
Combining the above equations with the LogDet divergence regularization factor, here is
the final cost function of ITML.:

J= Z 8i+A'Dld(A7A0>7
(X,‘,Y,‘)GSUD

2.48)
dy (xi,y;) <u+g (x;,y;) €S, (
st f;(’y)— P (i) w<1),

dA<Xi7yi) > 1—8,' (Xl'ayi) S Da

In practice, A is often set to I (the identity matrix) and thus the regularization aims at keeping
the learned distance close to the Euclidean distance. The key feature of the LogDet divergence
is that it is finite if and only if A is positive semi-definite. In other words, minimizing the
cost function provides an automatic and cheap way of keeping A to be positive semi-definite.

Therefore, this method does not require costly eigenvalue computations or semi-definite

2.3 Metric Learning 37

programming. Benefiting form this advantage, the LogDet divergence has been adopted in

many other works on Metric Learning [78, 137].

Logistic Discriminative Metric Learning (LDML)

Guillaumin et al. [60] proposed Logistic Discriminative Metric Learning (LDML) to model
the probability of two vectors being similar by using the sigmoid function (Section 2.2.1).
Let a triplet (x;,Y;,s;) denote the iy, pair in the training set, where s; = 1 (respectively s; = 0)
indicates a similar pair (respectively a dissimilar pair), the probability of x; and y; being

similar is parameterized by:

Di (2.49)

- 1 + e(dx(xiy)—b)’

where b is a bias scalar. We can see that the larger the pairwise distance di (x;,y;) is, the
smaller the probability is. The cost function is simply the inverse maximum log-likelihood

of all possible training pairs:

J==) [siln(pi) + (1 —=s;)In(1 - p;)], (2.50)

=

i=1

where N is the number of training pairs. This equation is smooth and convex, the maximum
likelihood estimations for the matrix A and the bias b are obtained by using a projected
gradient method [19]. In practice, LDML has shown its effectiveness on the problem of
pairwise face verification [60].

2.3.2 Similarity Metric Learning

Besides distances, similarities are another kind of metrics widely used to measure pairwise
relationship between two feature vectors. Actually, a similarity metric is a pseudo-metric as
it may violate the axiom of the triangle inequality. However, for metric learning applications,
similarities were preferred over distances in many practical situations, such as information

retrieval [S] and document analysis [152, 172].

Like the Mahalanobis distance, a general similarity metric can be also parameterized by
a matrix A. For any two vectors x and y in the original space, the similarity between their
projections in the target space is measured by:

x” Ay
N(x,y)’

sa(x,y) = (2.51)

38 Literature Review: Siamese Neural Networks and Metric Learning

when the matrix A is supposed to be positive semi-definite, we have A = W’ W, and the
matrix W acts as a linear transformation matrix that maps the original space (e.g. X) to the

target space (e.g. a = Wx):

xX'WIWy (Wx)' Wy

_ : 2.52
N(x,y) N(x,y) (2:32)

SW(X7Y) =

where N(x,y) in the two equations is a normalization term to map the similarity function
to a particular interval, e.g. [-1,1]. Specifically, when N(x,y) = 1, sw(X,y) is the bilinear
similarity function [29]; when N(x,y) = VvV (Wx)TWx\/(Wy)T Wy, sw(X,y) is the Cosine
Similarity function [125]. Generally, the objective of a similarity metric learning method

is to increase the similarity between a similar pair and to decrease the similarity between a

dissimilar pair.

Similarity Learning Algorithm (SiLLA)

Similarity Learning Algorithm (SiLA) is the first work proposed by Qamar ez al. [136] to
learn a similarity metric for k-Nearest Neighbors (KNN) classification. They have presented
the general formulation of similarity metric learning (Equation (2.51)), but they actually
restricted themselves to the Cosine Similarity in the experimental evaluations.

SiLLA does not impose any constraint on the matrix A, it is not required to be positive,
or even symmetric. Instead, the only constraint on A is that its Frobenius norm equals 1,
i.e. |A]| = 1. Similar with LMNN (Section 2.3.1), SiLA also learns a metric from triples.
Remind that a triplet (x;,X;,X;) € T comprises a pair of similar vectors (x;,X;) € S and a
dissimilar pair (x;,X;) € D. With respect to the similar pair (x;,X;), the isolated sample X is
called an imposter or an outlier.

The cost for the i;;, sample is defined as a hinge loss:

Ji= max(O, Y— (Z SA(X,',X]') — SA<X,',Xk))), (2.53)

(xi,Xj,x;) €T

where the set of triplets 7; is composed of selected nearest neighbors of the i;;, sample (like
target neighbors in LMNN), and the positive constant Y is the margin separating the similar

pairs from the outliers. The overall cost for all the samples is:
N
J=4/Y. 72, (2.54)
i=1

where N is the number of all training samples.

2.3 Metric Learning 39

Different from LMNN relying on sub-gradient descent and eigenvalue decomposition
for an offline optimization, SiLA optimizes the similarity metric with an online learning
algorithm based on voted perceptrons [48]. Compared with several distance metric learning
methods such as LMNN and ITML, SiLLA has demonstrated that the Cosine Similarity is
preferred over the Euclidean distance on several data collections such as Iris and Balance
from the UCI dataset [20].

Generalized Cosine Learning Algorithm (gCosLA)

The same authors of SiLA, Qamar and Gaussier, proposed Generalized Cosine Learning
Algorithm (gCosLA) [135], which works directly on the Cosine Similarity. But different
from SiLA, gCosLA learns a positive semi-definite matrix A. Remind that for any two
vectors X and y in the original space, the pairwise Cosine Similarity metric between them is

defined as:
x' Ay

sa(x,y) = :
A(%.Y) VxTAx/yT Ay

The basic assumption of gCosL A is that the similarity between a similar pair should be

(2.55)

always larger than the similarity between a dissimilar pair. Formally, assuming that we are
given three vectors X,y,z, where x and y are similar, but dissimilar with z, a margin of width

27 is defined to separate them:

SA(X,y) —sa(x,z) > 27. (2.56)

By introducing another threshold b, the equation can be rewritten as two constraints for

similar pairs (X;,y;) € S and dissimilar pairs (x;,y;) € D, respectively:

SA (X, Y; >b+) Xi,Yi €S7
A(Yz) Y (YZ) (257)
SA(Xivyi) Sb_’}/v (Xi7Yi> eD.
If we use [; = 1 (respectively /; = —1) to denote that a pair of data (x;,y;) being similar
(respectively dissimilar), we can write a single-line constraint as:
li(b—sa(xi,¥,)) +7 <0, (2.58)

and the cost function of gCosLA is:

N
Z max(0,1;(b— sa(xi,¥;)) +7), (2.59)

40 Literature Review: Siamese Neural Networks and Metric Learning

where the function max(0, -) denotes the hinge loss function and N is the number of training
pairs. The authors followed POLA and proposed both online and batch learning algorithms
to solve the above minimization problem. Compared with SiLA, gCosLA is generally more

accurate on classification problems.

Online Algorithm for Scalable Image Similarity (OASIS)

Chechik et al. [28, 29] proposed an Online Algorithm for Scalable Image Similarity (OASIS)
that learns a bilinear similarity with a focus on large-scale problems. Formally, the normal-
ization term in Equation (2.51) is set to 1, and the bilinear similarity between two vectors X;
and x; is:

sa(Xi,X;) = X; AX;. (2.60)

OASIS shares two common issues with SiLA: (1) the matrix A is not required to be positive
semi-definite; (2) the learning procedure is performed on triplets of vectors. For a triplet

(xi,Xj,Xg) € T, where X; and X; are similar, but dissimilar with X, a constraint is defined as:
SA(Xi,XJ‘) —SA(X,',Xk) Z 1, (261)
and the cost function is simply the sum of the hinge loss for each triplet:

J= Y max(0,1—sa(xi,X;) + 54 (Xi, X)) (2.62)

(x;,xj.x¢) €T

This equation is similar with the pushing part of the LMNN method [169] (Section 2.3.1).

In order to minimize this loss, OASIS employs the Passive-Aggressive algorithm [35]
iteratively to optimize the matrix A. Experiments comparing OASIS with distance metric
learning methods such as LMNN demonstrated the superiority of learning the bilinear
similarity over learning a distance metric for the problem of image retrieval. Unfortunately,
the authors did not compare OASIS with SiLA or any other similarity metric learning
methods. However, since the bilinear similarity has no need to compute a normalization term
(Equation (2.51)), we believe that OASIS is naturally efficiently computable.

Cosine Similarity Metric Learning (CSML)

Besides SiLA and gCosL A, Cosine Similarity Metric Learning (CSML) [125] is another
method focusing on learning a Cosine Similarity metric. Different from SiLA and gCosLA

that optimize the matrix A, CSML explicitly learns the transformation matrix W (note that

2.3 Metric Learning 41

WTW = A). Firstly, the Cosine Similarity metric between a pair of vectors (x;,y;) is:

(Wx)! Wy, (Wx)! Wy,
swixi,¥;) = e = T 263
VOV Wiy Jowy) T wy, TSI
The cost function of CSML is defined as:
J=- sw(xi,y;) +a sw(xi,y;) + B|[W —Wo||%. (2.64)
Y

(Xi7yi)€S (Xivyi)ED
This cost function intuitively presents the objective of CSML:

* Minimizing the first part — Yy, v)esSw(Xi,¥;) aims to increase the similarity between

each similar pair.

* Minimizing the second part &}, y.)ep sw(X;,y;) aims to decrease the similarity be-
tween each dissimilar pair, the coefficient & weights the contribution from the dissimi-

lar pairs, with respect to the contribution from the similar pair (the first part).

* The third part B||W — Wy || acts as a regularization factor, like the LogDet divergence
regularization factor in ITML (Section 2.3.1), it restricts the learned matrix W close to
a predefined matrix Wy. The coefficient B weights its effect to the whole cost function.
In practice, this part guarantees the CSML algorithm to obtain a better matrix W than

W) to specify the pairwise similarity.

CSML was applied for pairwise face verification and a batch gradient descent algorithm, i.e.
the Conjugate Gradient Descent (CGD) [115], was adopted to optimize the matrix W. The
gradient of the cost function is calculated by:

8‘] aSW<Xi7Y'> aSW(Xiay')
o=), e Y — =+ B(W - W), (2.65)
aW (xiay[)es aW (th,')ED aW
where
dsw(Xi,y;) 1 (Wx,)T Wy, r o (Wx)TWy, T
L= “Wx; — Wy,)X; + (——5— Wy, — Wxy)y; |.
ow Wl Wyl W2 X e il

(2.66)
The proof of this partial derivative of the Cosine Similarity function is referred to Appendix
A. Note that CSML performs non-convex optimization resulting in a local optimal solution,
however, experiments in [125] showed that CSML achieved competitive performance on the

problem of face verification.

42 Literature Review: Siamese Neural Networks and Metric Learning

2.3.3 Other Advances in Metric Learning

Besides the above methods mainly based on the Mahalanobis distance or the Cosine Similar-
ity, many interesting advances have been made to Metric Learning. For example, investigating
other metrics such as the xz—distance [82] and the Fisher information distance [165] for mea-
suring feature vectors; involving both distance metric learning and similarity metric learning
in a single task [26]; examining the effect of regularization factors such as LogDet divergence
regularization [39] and Fantope regularization [90] in metric learning for robust classification;
apart from the usual pairwise and triplet constraints, introducing quadruplet-wise (Qwise)
constraints [89] to exploit fine data relationship such as class ranking; studying nonlinear
transformations instead of the common used linear matrices in the above methods [62]; or

developing specific metrics for other kind of data such as histogram data [82] and strings [12].

Relevant Component Analysis (RCA)

Relevant Component Analysis (RCA) [148, 7] provides a simple way to specify a transfor-
mation matrix W, which performs well in both distance metric learning and similarity metric
learning. Firstly, the proposed RCA algorithm computes the within chunklet covariance

matrix for a set of training data:

X],)(Xi — [,L]) , (2.67)

|| Ms

where N is the number of all samples, n is the number of chunklets, n; counts the number of
samples in the j;;, chunklet, and pt ; denotes the mean of the j;;, chunklet. It is noteworthy that
the idea of "within chunklet" involves similar pairs only for learning a metric. By applying
Cholesky decomposition [132] or eigenvalue decomposition [26], the transformation matrix
is simply W = Cc:.

On one hand, Bar-Hillel et al. [7] has proven that RCA gives an optimal solution to the
problem of minimizing within class Euclidean distances. On the other hand, under Gaussian
assumptions, RCA can be interpreted as the maximum-likelihood estimator of the within
class covariance matrix [65, 64], which is usually combined with the Cosine Similarity
metric to measure the similarities between data [26, 8]. In general, RCA has been empirically
justified to be effective in learning either the Euclidean distance metric [7] or the Cosine

Similarity metric [26, 8].

2.3 Metric Learning 43

Dimensionality Reduction by Learning an Invariant Mapping (DrLIM)

Dimensionality Reduction by Learning an Invariant Mapping (DrLIM) [62] proposed to
learn a nonlinear distance metric in a Siamese CNN architecture (Section 2.2.5), where the
so called "energy function" (i.e. a specific kind of cost function) was indeed developed on
the Euclidean distance. Concretely, the parameter set W that configures the distance metric
is no longer a single matrix for a linear mapping, but a set of transformation matrices and

bias vectors that realizes a nonlinear mapping:

dw(x,y) = [f(x, W) = f(y,W)|| = \/(f(X»W) — Sy, W) (f(x, W) — f(y,W)). (2.68)

Let s; = 1 (respectively s; = 0) denote a similar pair (respectively a dissimilar pair), the cost

of the i;, training pair is:

1

J,':Siz

1
d\2V<Xi7 yl) + (1 - Si) Emax2<07m - dW(Xia yi))7 (269)
where m defines a margin in the hinge loss function. Similar with other distance metric
learning methods (Section 2.3.1), we can see that the first half of this equation aims to
minimize the distance between a similar pair in the target space, and the second half aims to
separate a dissimilar pair with a margin m. Being a Siamese NN, the DrLLIM method can be

efficiently trained via the Backpropagation algorithm [142] in an online mode (Section 2.2.2).

Multiple Metrics Large Margin Nearest Neighbor (M?-LMNN)

All the above distance or similarity metric learning methods learn a single matrix A or W for
a certain problem, Multiple Metric Large Margin Nearest Neighbor (M?-LMNN) [168, 169]
pioneered the study of learning multiple metrics via a single formulation. Formally, for any

two given vectors X and y, several Mahalanobis distances may be specified:

dAi(x,y):\/(x—y)TAi(x—y), i=1,...,K, (2.70)

where K defines the number of metrics that need to be learned. In practice, these K learned
distances da, (X,y), ..., da,(X,y) can be sorted or averaged as the final measurement of
distance, in order to determine nearest neighbors and label test samples. Although introducing
more metrics into learning leads to a higher computational cost, M?>-LMNN significantly
improved the classification performance over standard LMNN that learns a single metric.
Besides LMNN, other Metric Learning methods have also benefited from learning multiple
metrics [131, 36, 71].

44 Literature Review: Siamese Neural Networks and Metric Learning

Similarity Metric Learning over the Intra-personal Subspace (Sub-SML)

When classical methods chose to learn either a distance metric or a similarity metric, Cao et
al. [26] proposed to simultaneously learn a Mahalanobis distance metric and a bilinear
similarity metric for the problem of face verification. They call their method Sub-SML, short
for Similarity Metric Learning over the Intra-personal Subspace.

Concretely, the distance is parameterized by a matrix A as da (X,y) (Equation (2.28)) and
the bilinear similarity is parameterized by another matrix B as sg(x,y) (Equation (2.60)). A

generalized similarity containing them both is defined as:

8(AB) (X7 Y) =SB (X7 Y) - dA (X7 y) . (271)

Let [; = 1 (respectively /; = —1) denote that a pair of vectors (x;,y;) being similar (respectively

dissimilar), the cost of this pair is defined as a hinge loss:
Ji =max(0,1 —liga p)(Xi,¥:)), (2.72)

which can be explained as two constraints:

* when/; =1, we have 1 —g(4 p) (x;,¥;) <0, which means that the generalized similarity

of a similar pair should be larger than 1;

* when /; = —1, we have 1 + g5 B)(Xi,¥;) < 0, which means that the generalized simi-
larity of a dissimilar pair should be less than —1.

In other words, a default margin of width 2 (from -1 to 1) is set. Combining the cost of all
training pairs with a regularization factor based on Frobenius norms, the cost function of
Sub-SML is

N
A
J= Y max(0,1 ~ligam (3)) + S (A -TP+[B-1), @73)
i=1

where N is the number of all training pairs and I is the identity matrix. The formulation is a
convex optimization problem that guarantees the existence of its global solution. Moreover,
the authors provided the dual formulation of the Sub-SML cost which can be efficiently
solved by an accelerated gradient-based algorithm [10].

2.4 Conclusion and Open Problems 45

2.4 Conclusion and Open Problems

In this chapter, we have reviewed the literature of Siamese Neural Networks and Metric
Learning. Generally, the study of Siamese Neural Networks focuses on designing a good
architecture of neural networks, i.e. specifying a mapping function. In contrast, Metric
Learning emphasizes learning a good metric, i.e. formulating a cost function. However,
Siamese Neural Networks and Metric Learning are not isolated from each other. On one
hand, a Siamese NN requires a metric-based cost function, e.g. on the Euclidean distance
in [32, 62]. On the other hand, most Metric learning methods take a linear mapping function
as the default setting [173, 147, 169, 55, 52, 39, 60, 136, 135, 29, 125, 7, 26].

Therefore, we regard Siamese Neural Networks and Metric Learning as a unifying study
of designing a good architecture to learn a good metric. So far, we have known many
exemplars in this chapter: for a mapping function, the depth of the architecture can be
shallow or deep, namely, shallow linear transformations (most methods in Section 2.3),
multi-layer neural networks (e.g. the MLP in Section 2.2.3) or deep neural networks (e.g.
the CNN in Section 2.2.5); for a cost function, we have a lot of candidates based on either a
distance metric (Section 2.3.1) or a similarity metric (Section 2.3.2).

Can we build up a general system with these components, providing perfect solutions
to all the practical problems? Apparently, the answer to this question would be negative
since most problems are data-driven and the effectiveness of a method is mainly verified by
empirical evaluations. For designing a good Metric Learning system, a few problems remain

open.

A mapping function: linear vs. nonlinear

The selection of a linear or nonlinear function for a problem reveals the trade-off between
under-fitting and over-fitting to the given training data. Problems in a "well-represented"”
feature space are linearly separable, so a linear function has less risk of over-fitting than the
nonlinear one. However, when it is difficult to craft discriminative feature representations for
a problem, the linearity also limits the function’s capacity of realizing complex mappings
and thus under-fitting occurs, i.e. the linear model can not capture the underlying trend of the
training data.

Over-fitting 1s always the biggest challenge for nonlinear mappings: they fit the training
data well but fail to predict the test data correctly, since the nonlinearity also captures the
noise of the training data. Therefore, extra generalization terms such as weight decay [100],
dropout [153] are required to reduce the influence of over-fitting. Besides, nonlinear formula-

tions cost more computational resource in a machine than linear ones.

46 Literature Review: Siamese Neural Networks and Metric Learning

In practice, according to the principle of Occam’s razor [116], if a linear solution and a
nonlinear solution are equally effective to a problem, the linear one should be preferred due

to its simplicity.

A cost function: convex vs. non-convex

Even we have chosen a linear mapping function, we still have to determine the convexity
of a cost function. Generally, a convex cost function holds a global optimal solution but a
non-convex function has more than one local optima.

Relatively, the major advantage of a convex formulation is that it can be efficiently solved
by convex optimization [23] algorithms and the only solution sounds unique to the users.
However, a local optimum of solvable non-convex functions may be also a good solution to
practical problems, e.g. the cost functions of NCA [55] and CSML [125] are non-convex
(Section 2.3). Recent theoretical and empirical results strongly suggest that local optima
are not a serious issue in general [99]: regardless of initial conditions, a non-convex system

nearly always reaches local solutions of very similar quality.

Mapping function vs. Cost function: which one plays a more important role?

The last question is that between the design of an architecture and the formulation of a
metric-based cost, which one plays a more important role in a Metric Learning system? We
believe that there is no simple answer, and an effective Metric Learning system should be a
collaboration of both.

But it should be noted that the trend of deep learning [15, 99, 16, 107] has attracted more
and more attention to constructing deep architectures for non-trivial, large-scale problems.
Configuring the structure of a system and designing an effective deep architecture is indeed
an art: we need to carefully choose the type of layers, the number of layers, the number
of nodes in each layer, the connectivity mode among the layers, the choice of activation
functions, etc.

Consequently, when we develop our own Metric Learning system, we take into account
both the mapping function and the cost function. In following chapters, we will first propose
a novel similarity-based cost function naturally related to the triangle inequality theorem
and explain its objective by geometrical illustration. We will then integrate the cost function
with three different mapping functions, namely, a linear transformation, an MLP or a CNN,
respectively. We will evaluate these linear and nonlinear systems in different applications such
as pairwise face verification, speaker verification, kinship verification, object classification

and data visualization.

Chapter 3

Triangular Similarity Metric Learning

3.1 Introduction

In the previous chapter, we have reviewed the literature of linear Metric Learning methods
and also their non-linear variants, i.e. Siamese Neural Networks. We have concluded that
a good Metric Learning system should be a collaborative product of designing a mapping
architecture and formulating a metric-based cost function.

The current literature has offered us many exemplars: for a mapping function, the depth
of the architecture can be shallow or deep, namely, shallow linear transformations [13],
multi-layer neural networks [142, 31, 177, 18] or deep neural networks [6, 24, 32, 62, 122];
for a cost function, we have a lot of options based on a distance metric [173, 147, 169, 55, 52,
39, 60], a similarity metric [136, 135, 29, 125] or a hybrid metric concerning both distance
and similarity [7, 26].

In general, more works in the current literature focused on learning a distance metric
rather than learning a similarity metric. Among all the few similarity metric learning methods,
most of them concerned the Cosine Similarity metric [136, 135, 125] or its relaxed variant,
the bilinear similarity [28, 29]. In this thesis, we contribute to the study on similarity metric
learning and propose an alternative metric which is equivalent to the Cosine Similarity metric
but has a nicer geometrical interpretation of learning the similarity. This novel metric is
naturally related to the well-known triangle inequality theorem, so we call it the Triangular
Similarity. Moreover, we will develop an efficient and effective cost function to learn a
Triangular Similarity metric. By examining its gradient, we will discover that the cost
function can be easily enrolled in a linear or nonlinear architecture of neural networks.

This chapter focuses on introducing and illustrating the methodology of our Triangular
Similarity Metric Learning (TSML) approach, the main contributions of this chapter are

summarized as below:

48 Triangular Similarity Metric Learning

* We propose the Triangular Similarity and illustrate its equivalence to the Cosine

Similarity in measuring a data pair.

* We develop the triangular loss function and show its connection to the Mean Squared

Error (MSE) function of traditional neural networks.

* We visualize the mapping objective of the proposed TSML system.

3.2 Triangular Similarity

For any two given vectors a and b, the Triangular Similarity between them is measured by:

1, a b
tri(a,b) = < ||—+ —|, (3.1
27 |lall bl
apparently, the value of this similarity lies in the range [0, 1]. This function results in 1 if and
only if the two vectors a and b are towards the same direction, and yields O if and only if the
directions of the two vectors are exactly opposite.

Now we relate the Triangular Similarity to the Cosine Similarity:

1 a b
trifab) = ||+
ri@)= 3 e oy

1 a b 7, Q b
- 5\/ S * o1 Gl * I

1 a . , b, a’b
_ - + +2
z\/ ol o Tl 62

a’b
[al[|[b]]

2+2

2+42cos(a,b)

_[14cos(a,b)
_,/—2 7

where cos(a,b) is the standard Cosine Similarity function. We can see that the relation

= N =

between tri(a,b) and cos(a,b) is a consecutive and bijective function! f(z) = \/(1+2z)/2
in its effective domain z > —1, indicating that they are equivalent in measuring a similarity.

'In mathematics, a bijective function is a function between the elements of two sets, where every element of
one set is paired with exactly one element of the other set, and every element of the other set is paired with
exactly one element of the first set.

3.3 Triangular Loss Function 49

cos(a,b) = cosé

. 1,.
tri(a,b) = E”C”

Fig. 3.1 Equivalence between Triangular Similarity and Cosine Similarity. While the Cosine
Similarity simply calculates the cosine of the angle 0 between the two vectors, the Triangular
Similarity measures the half length of the directed chord (the blue line). The three vectors ﬁ,

ﬁ and € compose an isosceles triangle. The two similarity functions compose a one-to-one
correspondence thus the equivalence is confirmed.

A more intuitive interpretation of the relationship between the two similarities is illus-
-
’ lall

on the unit circle, i.e. a circle with a radius of one. And their sum determines a directed

trated in Fig. 3.1. In a Cartesian coordinate system and ﬁ represent two vectors lying
chord on the circle (the blue line), denoted by a new vector ¢. The Cosine Similarity simply
calculates the cosine of the angle 6 between the two vectors, and the Triangular Similarity
halves the length of the directed chord. When the angle 0 decreases from 7 to 0, the value of
the Cosine Similarity increases from the minimum —1 to the maximum 1, and the value of
the Triangular Similarity raises from O to 1. Note that the three vectors H%l’ H%\l and their
sum € compose an isosceles triangle, that is why we call this similarity measurement as the

Triangular Similarity.

3.3 Triangular Loss Function

For both the Cosine Similarity and the Triangular Similarity, the scale of the factors ||al|
and ||b
up numerical instability problems [67] especially when ||a]| and ||b|| are too small. This

, 1.e. the length of the vectors, should be taken care of. Otherwise, it may raise

50 Triangular Similarity Metric Learning

hidden problem can be avoided or relieved by many strategies. For example, adopting
regularization terms to prevent ||al| and ||b|| from degenerating to 0 [18], normalizing the
inputs by a whitening transformation [77, 185] so that all the input variables have unit
variance [100], or simply performing an L2 normalization to let all the vectors have unit
length [26, 150]. Empirical experiences showed that these strategies usually bring up to
faster convergence [100] and better performance [26, 185] on machine learning applications.

In this work, we propose a soft L2 normalization to constrain the length of the vectors.
Different from the above strategies that perform normalization as a preprocessing step before
feeding the inputs in the metric learning system, we constrain the length of the vectors to a
constant r by a regularization function:

min (||a]| —)2+ (||b]| —)% (3.3)

Minimizing the above function is able to make the values of ||a|| and ||b|| approaching a
predefined scalar r, but in fact not all the vector lengths can be exactly r, so we consider it as
a soft length normalization.

With the indicative assumption of ||a|| = ||b|| = r, we can simplify the Cosine Similarity

and the Triangular Similarity. For the Cosine Similarity, its function can be rewritten as:

T
b 1
a 2Tb

cos(@B) = qmer ~ 7

(3.4)
where a’b is the bilinear similarity. This approximation indicates that when vectors have
approximate lengths, the bilinear similarity can be an equally effective but more efficient
substitute of the Cosine Similarity in practical applications [28, 29, 41, 26]. Analogously,
the Triangular Similarity can be simplified as:

tri(a,b)——||—+—|| N—II +bl. (3.5
27l IIb]

Instead of the isosceles triangle in Fig. 3.1, the above simplified Triangular Similarity
concerns a normal triangle lying around a circle with a radius of r (see Fig. 3.2 (a)). This
triangle is determined by the two vectors a and b, completed with their sum ¢ = a+b as the
third side. Additionally, the two vectors a and b determine another triangle where the third
side is the difference of a and b, i.e. ¢ = a—b (Fig. 3.2 (b)). With respect to the operations
of sum or subtraction, we name the two triangles as the positive triangle and the negative

triangle, respectively.
Like all the similarity metric learning methods, the objective of learning a Triangular

Similarity metric is to increase the similarity between a similar pair and to decrease the

3.3 Triangular Loss Function 51

cos(a,b) = cosé cos(a,b) = cosé

. 1 . 1
tri(a,b) = EHCH tri(a,—b) = EHCH

(a) Positive Triangle (b) Negative Triangle

Fig. 3.2 The simplified Triangular Similarity concerns normal triangles lying around a circle
with a radius of r. A pair of vectors a and b determines two triangles: the positive triangle
(left) illustrates the Triangular Similarity between a and b; the negative triangle illustrates
the Triangular Similarity between a and —b.

similarity between a dissimilar pair. An intuitive geometrical interpretation of the objective

is provided in Fig. 3.2.

* When a and b are labeled as being similar, increasing the pairwise similarity means
minimizing the inter-vector angle 8, which can be realized by maximizing the length
of the third side ¢ in the positive triangle (Fig. 3.2 (a)).

* When a and b are a dissimilar pair, we need to separte the two vectors with a larger
angle 6. This can be also achieved by maximizing the length of the third side ¢ in the
negative triangle (Fig. 3.2 (b)).

The cost function

Finally, let s; = 1 (respectively -1) denote a pair of vectors a; and b; being similar (respectively
dissimilar). With the soft length normalization factors (||a;|| —r)2, (||b;|| —r)?, and the lengths
of the three sides, ||a;||, ||b;||, ||ci||, the triangular loss of this pair is defined as:

Ji= 5[(il =r)* + (Ibill = r)* [+r

~

2l + [Ibil| — fleill), (3.6)

| =

where r is a constant constraint for the vector length; ¢; = a; + s;b;, representing the simplified

Triangular Similarity in a positive triangle or a negative triangle. It is interesting to find that

52 Triangular Similarity Metric Learning

the second part of this equation naturally obeys the triangle inequality theorem: the sum of
the lengths of two sides of a triangle must always be greater than the length of the third side,
ie. [[ag +[bif] —[leil] = 0.

Moreover, the coefficients of the two parts are set to % and r, in order to further simplify
the formulation of Equation (3.6) as:

1 1
Ji=§||ai||2+§||bi||2—”||ci||+r2- 3.7)

The gradient function

In Metric Learning systems, the vectors a; and b; are outputs of a certain mapping function
f(-) parameterized by a set of parameters (see Fig. 3.3). We now deduce the gradient of the
triangular loss function (Equation (3.7)) with respect to the parameter set W.

First of all, the derivative of the vector norm is (see the proof in Appendix A):

dljal| dlal]| da a Jda

= = . 3.8
OW — oa oW |ja] oW (3:8)
Thus the derivative of the triangular loss is:
aJ; a oa; tb db; ¢ de¢;
OW ~ “9W ' TOW ' ||ci|| oW
da; ob; ¢; da;+s;b;

=a; b; — 3.9
oW TP oW T el ow (39)

aa,' SiCi 8bl-
- “"‘ruciuW“bl"’nqu)aw

Since the partial derivatives g&’, and - a are controlled by the speciﬁc mapping function
f(+), the minimal cost can be obtained at the ZEro gradlent when a; = r—r H o ” and b; = rih H o H In
other words, the gradient function has rH || and rH || as targets for a; and b;, respectively.
Figure 3.4 illustrates that: for a similar pair (when s; = 1), a; and b; are mapped to the same
vector in parallel with the third side of the positive triangle (the red solid line); for a dissimilar
pair (when s; = —1), a; and b; are mapped to two opposite vectors in parallel with the third
side of the negative triangle (the blue solid line).

Most importantly, this gradient function confirms that though the Triangular Similarity
in the cost function is only a simplified version as we have assumed the vectors having
approximate lengths, we can still achieve the objective of closing a similar pair and separating
a dissimilar pair: (1) for two similar vectors, the gradient defines an identical target between

them; (2) for two dissimilar vectors, the gradient projects them to opposite directions.

3.3 Triangular Loss Function 53

LX Y. J— Original Space
Mapping Mapping
Function < W R Function
f(Q f(
aI:f(X“W) bl:f(y“W) s et Space

Cost/ Loss Function ~ J(0)I

T
I
v

Attract asimilar pair
Separate adissimilar pair

Fig. 3.3 The siamese architecture of Metric Learning.

Fig. 3.4 The minimal cost can be obtained at the zero gradient when a; = rﬁ and b; = rﬁ:
for a similar pair (when s; = 1), a; and b; are mapped to the same vector along the red solid
line; for a dissimilar pair (when s; = —1), a; and b; are mapped to two opposite vectors along

the blue solid line.

54 Triangular Similarity Metric Learning

3.4 Relation to Traditional Neural Networks

As we have mentioned in previous chapters, the structure of our Metric Learning method
is indeed the symmetric architecture in Siamese Neural Networks [24, 32]. The mapping
function f(-) in Fig. 3.3 can be realized by any traditional neural networks, from linear single
layer perceptrons [141] to nonlinear Multi-layer Perceptrons (MLP) [142], to deep nonlinear
Convolutional Neural Networks (CNN) [96]. Furthermore, besides the common relation
of the mapping function, the proposed triangular loss function also has natural connection
to the Mean Squared Error (MSE) function, i.e. the most commonly used cost function in
traditional neural networks [142, 95, 100].

3.4.1 Relation to the Mean Squared Error Function

For classification problems, the Mean Squared Error (MSE) loss function must be the earliest
and the most popular cost function used in traditional neural networks, either in an MLP [142]
or in a CNN [96]. It simply measures the difference between a computed output of a network
and its desired target.

Formally, when we are given a training sample x; and its predefined target g;, we first
compute its output by the mapping function, i.e. a; = f(x;, W), where W denotes the set of
parameters in the mapping function. The error with respect to this training sample is defined
as the squared Euclidean distance between a; and g;:

1

Ji=(ai—g)%, (3.10)

and the partial derivative of the cost J; with respect to the set of parameters W is:

8],- 8a,~

W:(ai_gi)m' (.11

Usually, these predefined target values are typically binary for classification problems.
For example, for a 4-class classification problem, we usually set unit vectors [1,0,0,0]7,
[0,1,0,0]7, [0,0,1,0]7, [0,0,0,1]7 as target vectors for the 4 classes, respectively. Note that
the dimension of the output vectors equals the number of classes.

Comparing this function with the gradient function of the triangular loss (Equation (3.9)),
we find that the gradient function of the triangular loss is exactly a double copy of the MSE
gradient: (1) the single output a; in traditional neural networks is paired with a partner b; to
learn the pairwise relationship between data in a siamese architecture; (2) the hand-crafted

target g; is replaced by temporal targets rHﬁ—fH and r‘T’c—ci' which are automatically specified

3.4 Relation to Traditional Neural Networks 55

by the two vectors a; and b; themselves. This is indeed an advantage that the dimension
of the output vectors is no longer required to be equal to the number of classes, and thus
the proposed metric learning system is applicable for flexible dimensionality reduction.
Furthermore, with the similar gradient formulations, typical optimization techniques and
practical tricks of training neural networks [129] can be directly applied to optimize our

triangular loss function. More details will be given as below.

3.4.2 Non-Convexity and Backpropagation

Different from most Metric Learning methods [173, 147, 169, 52, 39, 60, 29, 7, 26] that
each holds a convex cost function and adopts a linear mapping function, our triangular loss

function is non-convex and the mapping function can be either linear or nonlinear.

Generally, a global optimal solution is guaranteed to a linear and convex optimization
problem [23, 11]. In contrast, among more than one local optima in a non-convex problem,
there is no theories or formula to guarantee that the cost function will certainly converge to
a good solution [100]. However, recent theoretical and empirical results strongly suggest
that local optima are not a serious issue in general [99]: regardless of initial conditions, a

non-convex system nearly always reaches local solutions of very similar quality.

Taking advantage of the connection between the triangular loss and the MSE cost,
like the traditional neural networks, we directly employ the standard Backpropagation
algorithm [142] to perform gradient descent. The update equation for gradient descent can

be written as:

9J®)
“How

where U is the learning rate in an online gradient descent learning algorithm, J () is the cost

Wi =W, (3.12)

at the #,, iteration. By successive training iterations, the parameters W is iteratively adjusted

until reaching a relatively stable status, i.e. a local optimal solution.

Backpropagation can be very slow particularly for multi-layer networks where the cost
surface is typically non-quadratic, non-convex, and high dimensional with many local
minima and/or flat regions. The convergence may be quite slow, or even does not occur at all.
However, a number of tricks such as normalizing the inputs, choosing good learning rates,
initializing the weights, can greatly improve the chances of finding a good solution while
also decreasing the convergence time often by orders of magnitude. Lecun et al. [100] have
discussed these tricks and have examined the underlying theories of efficient Backpropagation.
Nowadays, the popularity of deep learning [15, 99, 16, 107] has also demonstrated the

effectiveness of deep non-linearity.

56 Triangular Similarity Metric Learning

3.4.3 Batch Gradient Descent or Stochastic Gradient Descent

Once we have defined a cost function and its gradient, the Back-propagation algorithm [142]
applies gradient descent techniques to minimize the overall error for all the training data
iteratively. There are mainly three modes to perform gradient descent: stochastic gradient
descent, batch gradient descent, or the trade-off between them, mini-batch gradient descent.
Concretely, stochastic gradient descent uses only one training sample in each iteration while
batch gradient descent uses all training samples in each iteration. Mini-batch gradient descent,
as the name suggests, takes several training samples in each iteration.

Stochastic gradient descent is generally preferred for large-scale Backpropagation. Stochas-
tic gradient descent is most often much faster than batch gradient descent particularly on large
redundant datasets. The reason is simple to show that stochastic gradient descent computes
the gradient based on only one training sample while batch gradient descent has to average

the gradient over all the training samples.

Stochastic gradient descent is particularly useful to model a function changing over
time, a quite common scenario in industrial applications where the data distribution changes
gradually over time (e.g. due to wear and tear of the machines). Since batch gradient descent
always considers the whole training data, it is difficult to detect and follow the changes and
thus it may result in rather bad solutions. In contrast, stochastic gradient descent, as a kind of

online learning algorithm, can track the changes and yield good approximation results.

Despite the advantages of stochastic gradient descent, there are still reasons to use
batch gradient descent [100]. Batch gradient descent can be involved in some advanced
optimization algorithms to accelerate the learning speed, such as the Conjugate Gradient
Descent (CGD) algorithm [115] and the Limited-memory Broyden Fletcher Goldfarb Shanno
(L-BFGS) algorithm [108]. With these acceleration techniques that is hard to operate in
stochastic gradient descent, the accelerated batch gradient descent can be much faster for
small and medium scale problems, i.e. offline learning problems where the whole training
set is ready as a batch. Besides, compared with the stochastic gradient descent technique,

these advanced algorithms have no need to manually pick a learning rate.

Nowadays, we are more likely to face a large scale problem with an overlarge training
set, it may be impossible to load all the training data into memory in a single iteration. In this
case, one may prefer stochastic gradient descent or its variant, mini-batch gradient descent.
Like stochastic gradient descent, mini-batch gradient descent is also applicable for online
learning. And as the trade-off between stochastic gradient descent and batch gradient descent,
mini-batch gradient descent is even a better choice than stochastic gradient descent for many

online optimization problems [100].

3.5 Visualization of the Objective 57

In summary, a proper choice of a gradient descent mode depends on the practical con-
ditions in a problem, such as the data scale, the underlying distribution of the data. More

detailed discussion in practical applications will be given in later chapters.

3.4.4 Various Mapping Functions

Last but not least, like traditional neural networks, we can incorporate various mapping
functions with our triangular loss function for different applications. We simply give three
typical options for the mapping function and summarize their characteristics here.

For a simple and general problem where we already have discriminative feature repre-
sentations for objects, the Triangular Similarity with a linear mapping may be enough to
describe the concerned semantic similarity between objects. In this case, according to the
principle of Occam’s razor [116], we prefer a linear single layer of perceptrons [141], i.e. a
matrix, as the mapping function due to its simplicity.

If the data have some nonlinear underlying distribution that a linear similarity metric is
unable to capture, we can adopt Multi-layer Perceptrons (MLP) [142] to perform nonlinear
projections on the inputs of feature vectors.

For data that have a known grid-like topology [16] and do not have an effective vector rep-
resentation, such as images and speech time-series, the Convolutional Neural Networks [96]
may be the desirable choice for the mapping function to automatically extract features on the

2-dimensional inputs.

3.5 Visualization of the Objective

The objective of our triangular loss function seems too ideal for a dissimilar pair: in Fig. 3.4,
the two vectors of a dissimilar pair (when s; = —1), a; and b;, are mapped to be exactly
opposite to each other. However, in a limited space which contains a large quantity of classes,
it is impossible to have all the dissimilar pairs oppositely separated. For example, when there
are 3 different vectors in the 2-dimensional space, we can find at least one pair of vectors with
the angle less than 180° (i.e. non-ideally opposite). However, the triangular loss function
is able to balance the pairwise angles for all the data pairs and result in a relatively stable
solution. In this section, in order to have an intuitive sense of the triangular loss function, we
visualize the mapping results of some toy data.

We randomly select some points from different Gaussian distributions, i.e. normally
distributed data, in the 2-dimensional input space. Similar and dissimilar pairs are generated

as training data for our Triangular Similarity Metric Learning (TSML) system. We use a

58 Triangular Similarity Metric Learning

HIDDEN
10

INPUT OUTPUT
2 2o0r3

®

e
R LN

T T

Fully-connected Fully-connected

Fig. 3.5 Diagram of a 3-layer MLP, with only one input layer, one hidden layer and one
output layer. Adjacent layers are fully connected and the activation function is the tanh
function. TSML employs this 3-layer MLP as the mapping function.

3-layer MLP as the mapping function to project the original normally distributed data into a
target space of 2-dimension or 3-dimension.

Figure 3.5 shows the naive MLP to realize the mapping from the input to the output, size
of the only hidden layer is set to 10. Size of the output layer is set to 2 or 3, indicating the 2-
dimensional or 3-dimensional target space, respectively. Adjacent layers are fully connected
and the activation function is the tanh function. For a pair of inputs, the triangular loss is
calculated on their outputs and Equation (3.9) is used in the Backpropagation algorithm to
update the weights of this MLP. The length parameter r in Equation (3.9) is simply set to 1.
As the scale of this toy problem is quite small, we employ the advanced L-BFGS algorithm
to perform batch gradient descent. Specifically, we used a MATLAB implementation of
L-BFGS provided by Mark Schmidt [144].

3.5.1 Example 1: Two Classes

We first illustrate an example of data originating from two Gaussian distributions. In the
original 2-dimensional space, centers of the two classes are at (0,1) and (1,0), respectively.
The standard variation on each dimension is simply set to 0.1 for the two groups of normally

distributed data. We randomly generate 10 points for each class as the training data, and 100

3.5 Visualization of the Objective 59

points for each class as the test data. Figure 3.6 (a) plots the raw training data (left) and test
data (right), respectively.

Since the TSML method performs learning on data pairs, we collect all the possible pairs
between the training data. For the 20 training samples, the number of all sample pairs is
simply 190 =20 x (20 — 1) /2, where 100 of them are dissimilar pairs and the rest 90 are
similar pairs.

To initialize the parameters of the MLP, we use a simple normalized random initialization
method in [53], which is considered to be helpful for the tanh networks. The initialized
MLP produces outputs for all the data samples and yields a new data distribution in the
2-dimensional target space, shown in Fig. 3.6 (b). Comparing it with the raw distribution,
we can see that the center of each class has been moved and data in each class have been
assembled by a certain degree.

Iterative learning is performed by the TSML method on all the training pairs. We obtain
an optimal model when the algorithm reaches convergence. Like the initialized model,
the optimal model projects all the data samples into the 2-dimensional target space. And
the results after learning is shown in the bottom picture, Fig. 3.6 (c). The objective of the
triangular loss has been perfectly achieved: (1) the lengths of all the vectors are approaching
the predefined parameter r = 1; (2) every similar pair are closed with an intersection angle of
0°, i.e. points in the same class are mapped to an identical position; (2) every dissimilar pair
are separated maximally with an intersection angle of 180°, and thus the two classes locate
oppositely on two sides of the origin (0,0).

3.5.2 Example 2: Four Classes

We now present a more complex example of four classes of normally distributed data. In the
original 2-dimensional space (see Fig. 3.7 (a)), the centers of the four classes are at (0,0.5),
(0,1.3), (0,—1.3), (0,—0.5), respectively. The standard derivation on each dimension is
still set to 0.1. For each class, the number of training samples is 10, and the number of test
samples is 100. Training pairs are generated by the 40 training samples in order to perform
nonlinear metric learning. Normalized initialization is taken and the dimension of the target
space is first set to 2.

Figure 3.7 (b) shows the projection using the initialized model, and Fig. 3.7 (c) illustrated
the projection using the optimal model learned by the proposed TSML method. Comparing
these two projections, we conclude this optimal solution as: (1) although the lengths of all the
vectors can not reach 1, they are roughly equal; (2) points in the same class are mapped to the
same position; (3) in the 2-dimensional coordinate system, the four different classes occupy

a quadrant each, sharing the 360° around the origin. Thus any two neighboring classes have

60 Triangular Similarity Metric Learning
15} 1.5}
°
I .
0.5¢ 0.5¢
; - a5
o® A
-0.5 -0.5
_1, _1,
-15 A -15 ‘
-1 0 1 -1 0 1
(a) The raw data
15 15(
1t 1!
«® «®
057 o® 0.5} ®
0 0
0.5 -0.5
_1> _1,
-1.5—— : ~1.5—— :
-1 0 1 -1 0 1
(b) After normalized initialization
15 1.5(
1t 1l
0.5 0.5¢
0 . o 0 . g
-0.5 -0.5
_1> _l,
_15 L L _1.E 1 1
-1 0 1 -1 0 1

(c) After convergence

Fig. 3.6 Illustration of the 2-class toy problem, showing the distribution of the training data
(left column) and the test data (right column) at different stages.

3.5 Visualization of the Objective 61

1.5} ® 1.5¢
8
1 1l
0
0.5 °® 0.5
0 0
-0.5 -0.5
_1, _1,
-15 A -15 ‘
-1 0 1 -1 1
(a) The raw data
1.5¢ 1.5
1 1l
05} 3 0.5 9
0 & 0 &
p)
-0.5 4 -0.5 @
-1 -1
-15—— : ~15—— A
-1 0 1 -1 0 1
(b) After normalized initialization
1.5 1.5(
1 1}
e , o0
0.5/ T 0.5}
0 0
@-"': g
-0.5 e 05
........ & @
_1, _1,
-1.5—— : ~1.5—— A
-1 0 1 -1 0 1

(c) After convergence

Fig. 3.7 Illustration of the 4-class toy problem, showing the distribution of the projections of
the training data (left column) and the test data (right column) in the 2-dimensional target
space.

62 Triangular Similarity Metric Learning

Fig. 3.8 Illustration of the 4-class toy problem, showing the distribution of the projections of
the training data (left column) and the test data (right column) in the 3-dimensional target
space.

an intersection angle of 90°. Especially, the four classes of the training data (see the left part
in Fig. 3.7 (c)) can be considered as four vertexes of a square. After all, the TSML method
has accomplished the mission of closing similar pairs and separating dissimilar pairs.

We know that three points can only determine a surface but four points are enough
to construct a body. Thus for this 4-class example, we also view its projection in the 3-
dimensional target space, we simply set the size of the output layer to 3. Figure 3.8 shows the
optimal projection learned by the TSML method. We can see that points of the same class
have been concentrated into one cluster and different clusters have been maximally separated.
Ideally on the training data, the four clusters construct a regular tetrahedron with the origin
as the polyhedron center (see the left part in Fig. 3.8). We regard this regular tetrahedron as
the ideal final state in the 3-dimensional space for the 4-class toy problem.

Final States: Polygons and Polyhedrons

When there is no variance in each class of the training data, any toy problem can reach an
ideal optimal solution via the proposed TSML method. And we can anticipate that the ideal
final state of n clusters is an n-side regular polygon in the 2-dimensional space, or a convex
polyhedron in the 3-dimensional space. Examples of some learned geometrical objects are
shown in Fig. 3.9 and Fig. 3.10. For instance, the ideal final state of 5 clusters is a pentagon

or a double-pyramid.

3.6 Conclusion 63

05 05 05
0 0 0
-0.5 05 -05
-1 a -1
-1 -05 0 05 1 -1 -05 0 05 1 -1 -05 0 05 1

(a) Projection of 3 clusters (b) Projection of 4 clusters (c) Projection of 5 clusters

Fig. 3.9 Ideal projections by the proposed TSML method, showing regular polygons in the
2-dimensional space.

1
0.5+
0
-0.5
Zf\\\\\\5\\\\\\\(/////K///’/ﬂ1
0 0

(a) Projection of 4 clusters (b) Projection of 5 clusters (c) Projection of 6 clusters

Fig. 3.10 Ideal projections by the proposed TSML method, showing convex polyhedrons in
the 3-dimensional space.

3.6 Conclusion

In this chapter, we first proposed the Triangular Similarity, a novel similarity measurement
equivalent to the Cosine Similarity in measuring a data pair. With the soft length normaliza-
tion strategy, we showed how to simplify the Triangular Similarity and the Cosine Similarity.
Based on the simplified Triangular Similarity, we further developed the triangular loss in or-
der to perform metric learning, i.e. to increase the similarity between two vectors in the same
class and to decrease the similarity between two vectors of different classes. After that, by
examining the gradient function of the triangular loss, we found that its gradient has similar
formulation with the gradient function of the Mean Squared Error (MSE), which has been
widely used in neural networks for classification problems. As a result, it allows us to employ

the standard Backpropagation algorithm to perform optimization for the proposed TSML

64 Triangular Similarity Metric Learning

system. Moreover, compared with other metric learning methods, an intuitive geometrical
interpretation of the metric learning objective is given.

We also used toy problems of normally distributed data to show the TSML system’s
capability of learning optimal projections. Concretely, the proposed learning system is able
to assemble data of the same class to a single point, and also maximally separate different
classes by projecting them with a balanced distribution around the origin of the target space.
Taking the 4-class toy problem for example, the four classes are mapped to the vertexes
of a square in the 2-dimensional space, or to the vertexes of a regular tetrahedron in the
3-dimensional space. Either the square or the regular tetrahedron has the origin as the center.

In the following chapters, we will apply the proposed TSML system to practical applica-
tions such as pairwise face verification, object classification and data visualization, in order

to demonstrate its effectiveness for processing different kinds of datasets.

Chapter 4

Applications on Pairwise Verification

4.1 Introduction

We first apply the Triangular Similarity Metric Learning (TSML) method to a series of
pairwise verification problems. The objective of pairwise verification is to verify a pair of
data if they are from the same class or not. Formally, two samples of the same class are called
a similar pair; otherwise, two samples from two different classes are called a dissimilar pair
or a different pair. The objective of pairwise verification reveals the need of measuring the
difference or similarity between a pair of samples, which naturally leads us to the study of
metric learning [13], i.e. methods that automatically learn a metric from a set of data pairs.

The definition of similarity or dissimilarity differs from one application to another. Taking
the comparison of two face images for example: (1) in the task of face verification, two face
images of the same person are considered to be similar; (2) in the task of gender verification,
two face images capturing two males or two females is a similar pair; (3) in the task of kinship
verification, a similar pair of face images must indicate a blood relationship between the two
persons in the images, such as father and son, mother and daughter. Hence, a good metric
learning method must be able to capture the intrinsic relationship between the concerned
semantic contents of two objects.

Compared with the traditional identification task in which a decision of acceptance or
rejection is made by comparing a sample to models (or templates) of each class [118, 138],
pairwise verification is more challenging because of the impossibility of building robust
models with enough training data for each class [75]. Actually, there may be only one
training sample available for some classes in the experimental setting of pairwise verification.
Besides, individuals in training and testing should be mutually exclusive, i.e. the testing set
comprises only unseen samples that are not part of the training set. This strict experimental

setting has been adopted in popular benchmarks such as the dataset ’Labeled Faces in the

66 Applications on Pairwise Verification

Wild” (LFW) [75]! for pairwise face verification and the dataset *Kinship Face in the Wild’
(KinFaceW) [112]? for pairwise kinship verification.

Both the setting of limited training data for some classes and the setting of mutually
exclusive training and test sets bring up to significant over-fitting problems: a model fits the
training data easily but fails to predict the test data well. Thus we prefer the linear version of
our TSML system for these pairwise verification problems since the linear one is able to fit
the training data and it suffers less influence from over-fitting compared with the nonlinear
ones. Empirically, state-of-the-art metric learning methods learned linear mappings to
realize generalization [125, 8, 150, 26]. We will also demonstrate that without any additional
regularization factor, a linear mapping generally achieves superior performance than a slightly
deeper nonlinear mapping on the problems of pairwise verification.

The contribution of this chapter is that we apply the linear TSML system on different
applications to show its effectiveness for the specific problem of pairwise verification:

* we apply the linear TSML method on the LFW dataset in terms of the evaluation of

pairwise face verification.

* we apply the same TSML method for pairwise kinship verification on the KinFaceW
dataset.

* we establish our own pairwise speaker verification protocol and demonstrate that

TSML is also effective to process speech data besides the above face images.

* we compare the linear TSML to its nonlinear variants in order to investigate the

importance of the linearity on the problem of pairwise verification.

4.2 Pairwise Face Verification

Pairwise face verification belongs to the category of face recognition. Actually, early face
recognition datasets and protocols focused on another problem of identification where identity
information about a set of individuals is collected as the training data. At test time, one
needs to specify the identity information for new images, i.e. whether the individual in a test
image has appeared in the training set or not; and if so, which identity in the training set is
represented by the test image. In order to assess the performance of identity classification,

identification datasets [117, 51, 149] require most of the test images to have captured the

Uhttp://vis-www.cs.umass.edu/lfw/index.html
Zhttp://www.kinfacew.com/index.html

4.2 Pairwise Face Verification 67

individuals in the training data, and it is optional to have a few unseen test images as strangers
to the training set.

In contrast, the problem of pairwise verification is to analyze two face images and decide
whether they represent the same person or two different people. It is usually assumed that
neither of the face images shows a person from any previous training set. Compared with
identification, pairwise verification poses a more general problem of finding a universally
effective solution to measure the concerned semantic similarity or difference between two
face images with unconstrained individual assembly. Many well-known benchmarks have
used pairwise verification as the evaluation protocol [140, 75, 170] but the LFW dataset [75]
must be the most popular one since it has provided detailed evaluation standards and various

protocols for different evaluation purposes.

4.2.1 The LFW Protocols and Related Work

With respect to pairwise face verification, the LFW dataset holds the setting of limited training
data for some classes and the setting of mutually exclusive training and test sets. Originally,
the LFW dataset proposed a restricted training protocol where only a few specified data pairs
are allowed for training, a challenging setting in order to seek effective learning algorithms
which have the ability to discover principles from a small number of training examples,
Jjust like the human beings [93]. Besides the restricted protocol, the unrestricted protocol is
also provided to allow the creation of additional training pairs by combining the images in
LFW [75].

Recently, as many researchers started using additional training data from outside LFW
to improve performance or even inhibited the use of training data to realize unsupervised
learning, new protocols were developed to maintain fair comparisons among methods [74].

Since the LFW dataset was released in 2007, more than 70 papers have been published and
several commercial systems have reported their performance on this benchmark. Generally,
methods using additional labeled training data achieved higher accuracies than those relying
on LFW only. In particular, recent deep learning techniques have approached the accuracy
of 100% under the LFW evaluation standard. Almost all the published methods employed
deep Convolutional Neural Networks (CNN) to process face images and to learn robust
face representation on additional large labeled training datasets, such as the DeepFace
from Facebook using the non-public SFC dataset [161]; the DeeplID family (DeeplD [157],
DeeplID2 [155], DeepID2+ [158], DeepID3 [156]) using the CelebFaces dataset [109] 3
or/and the WDRef dataset [30]; the Face++ systems using the Megvii Face Classification

3http://mmlab.ie.cuhk.edu.hk/projects/CelebA html

68 Applications on Pairwise Verification

Database [47, 186]; the FaceNet from Google using a 260-million image dataset [145], the
Tencent-BestImage commercial system using their BestImage Celebrities Face dataset*.

However, with limited training data, these deep methods are more prone to over-fitting
and thus result in inferior performance in a test evaluation. Actually, under the restriction
of no outside labeled training data, tremendous efforts have been put on developing robust
face descriptors [162, 1, 81, 38, 171, 76, 150, 8, 30, 146, 130, 143, 103] and metric learn-
ing methods [169, 39, 59, 125, 72, 178, 26, 8, 69, 71]. Popular face descriptors include
eigenfaces [162], Gabor wavelets [38], SIFT [111, 81], Local Binary Patterns (LBP) [1], etc.
Especially, LBP and its variants, such as center-symmetric LBP (CSLBP) [66], multi-block
LBP (MBLBP) [180], three patch LBP (TPLBP) [171] and over-complete LBP (OCLBP) [8],
have been proven to be effective at describing facial texture. Since face verification needs
an appropriate way to measure the difference or similarity between two images, many re-
searchers have been studying metric learning which aims at automatically specifying a metric
from data pairs. Readers are referred to the Chapter 2 for the literature review of major metric
learning methods.

Besides, other efforts have been made to face frontalization (i.e. pose alignment) [17,
176, 102, 187, 63] or multiple descriptor fusion [36, 130, 4], in order to further improve face

verification performance on the LFW dataset.

4.2.2 Linear Triangular Similarity Metric Learning

As we have discussed in Section 4.1, the definition of pairwise verification, as well as the
restricted protocols in the LFW dataset, has posed a problem of limited training data for
some classes and of mutually exclusive training and test sets. These settings make more
variations between the training set and the test set, and thus over-fitting is more inclined to
happen for a learning algorithm.

For the possible over-fitting problem, we propose to use a linear mapping in our TSML
system since the linearity indicates a certain degree of generalization which can reduce the
influence of over-fitting. Empirically, state-of-the-art metric learning methods also learned
linear mappings to realize generalization [8, 150, 26], such as the most relevant work to ours,
the Cosine Similarity Metric Learning [125] method. In this section, we present our linear
Triangular Similarity Metric Learning system and analyze its superiority over the CSML
method.

With the iy, training pair (x;,y;) from the LFW dataset, a linear mapping parameterized
by a matrix W produces two outputs (a;,b;) where a; = Wx; and b; = Wy,. In Chapter 3.3,

“http://bestimage.qq.com/

4.2 Pairwise Face Verification 69

we have defined the triangular loss of this pair as:

1 1
Ji = 5 llail|? 5 il |* = rlleil + 7, (4.1)

2 2
where r is a constant constraint on the vector length; ¢; = a; + s;b;, representing the simplified
Triangular Similarity in a positive triangle (s; = 1) or a negative triangle (s; = —1). And the

gradient of this linear function is:

aJ; Wx; + 5;Wy; Wx; + 5;Wy,;

—— = (Wx;—r x! + (Wy, — sir r
ow ~ W w8 T R Y
C; T C; T
= (a;— ; + (bi —sirg—)y; -
(@1 = g% (b= sy

The derivation of this equation can be proven in two ways: one is simply based on matrix
derivatives and provided in Appendix A; the other is by regarding the linear system as
a single-layer neural networks of linear perceptrons and following the chain rule of the

Backpropagation algorithm [142] to calculate error propagation.

Comparison with Cosine Similarity Metric Learning

As the proposed linear TSML method has natural relation to the CSML method in [125], we
compare them here and show that the gradient function of TSML is simpler than the gradient
function of CSML. Remind that the CSML cost on a pair of vectors (a;,b;) is defined as:

a’b;

s.#, (4.3)
lal bl

Ji = —sicos(a;,b;) = —
where s; is the similarity label of a data pair as in Equation (4.1). We can see that minimizing
the CSML cost aims at minimizing the Cosine Similarity between a dissimilar pair and also
maximizing the similarity between a similar pair (see discussion on CSML in Chapter 2).
Moreover, it is shown in Appendix A that the gradient of the CSML cost is:

af; S ((Wx;)T Wy,

IW — [[Wx;|[[Wy, [™ [[Wx;|?
Si [(ain,-

[ENLAIENIE

(Wx;)" Wy,

Wi = Wyt + (S
l

Wy, — Wx;)y!]
4.4)

T
a; b;
a; —b)x] + (b —a;)y] |.
[[b|
Comparing the gradient functions of TSML and CSML, i.e. Equation (4.2) vs. Equation (4.4),
we find that the gradient of TSML needs fewer matrix multiplications than that of CSML,
this makes TSML more efficient than CSML during gradient descent.

70 Applications on Pairwise Verification

Concretely, except from the four fundamental operations of arithmetic, i.e. addition,
subtraction, multiplication and division on scalar forms, matrix multiplications are the major
consumptions in computing the gradients. We can see that the two gradient functions have
common parts such as the computation of Wx; and Wy,, but they differ in the computation
of vector inner products: CSML (Equation (4.4)) requires to compute three inner products,
namely, (WX)iTWXi, (Wy)l-TWyl- and (Wx)l-TWyl-; TSML (Equation (4.2)) only needs to
compute one inner product, (Wx; +s;Wy;)? (Wx; + 5;Wy,). As a result, TSML runs faster
than CSML in practical computing. A runtime comparison experiment of CSML and TSML
will be presented in Section 4.2.5 to show that TSML is more efficient than CSML while

they are actually equally effective on the problem of face verification.

Overall Cost and Gradient

If we have more than one training pair in each iteration for gradient descent, we average the

cost on all training pairs as the overall cost:

1

J=—
N :

Mz

1 &1 1
Ji= N;[§|Iai||2+ Ellbill2 —rlleill +77], (4.5)

Il
—

i

where N is the number of all possible similar pairs and dissimilar pairs for training. And the

corresponding gradient function is:

—lﬁ + (b — sir——)yT). (4.6)
N5 el zH leil|

It is noteworthy that in this overall case, we can not obtain the optimal solution by simply
computing the zero gradient. Indeed, a specific vector a; appears in more than one training
pairs (with different b; each), that means taking zero gradient would set many different
targets for a;. Hence it is impossible for a; to satisfy all the targets at the same time. In fact,
a; will be moved towards a balanced point of all the targets rather than any one of them. And
an optimal solution minimizes and balances the cost from all the training pairs.

We have adopted the linear mapping as a kind of weapon to fight against the possible
over-fitting problem in the pairwise face verification task. Additionally, following [125, 26],
we add a regularization term to the cost function as another means to prevent the occurrence

of over-fitting:

Ly i a2+ Ll e+ 2+
== 25 laill" 4 S bi||” = rilei|| 47
N&2 2

A
ﬂW—Ww, (4.7)

4.2 Pairwise Face Verification 71

where Wy is a predefined constant matrix. Moreover, Wy is also the initialization for W,
i.,e. W is set to be Wy before optimization. A positive parameter A adjusts the effects of
the regularization term: the larger the parameter A is, the closer W is to W. And the best
W, denoted by W,, which performs the best on a validation set, is selected by tuning the
parameter A. This regularization guarantees the learned optimal transformation matrix W,
to realize a better mapping than the initial matrix Wq does [125]. The gradient of the final

cost is: N

— == —r——)X; + (b; —sir——)y; | + A(W —Wj). 4.8
With this cost function and its gradient, we can apply Backpropagation algorithm [142] in
either a stochastic gradient descent mode or a batch gradient descent mode, to find an optimal

solution.

4.2.3 The LFW Dataset and Face Descriptors

The LFW dataset contains numerous annotated images from the web. The standard protocol
only allows to use the View 2 subset of LFW for performance evaluation. In View 2, to
do 10-fold cross validation, all the 5749 people in the dataset are divided into 10 subsets
where the individuals are mutually exclusive. The total number of images for all the people
is 13,233, however, the number of images for each individual varies from 1 to 530. Table 4.1
summarizes the data distribution of individuals and images in the 10 subsets.

To encourage fair and meaningful comparisons, LFW fixed the sample pairs in each fold
for test evaluation. Specifically, 600 image pairs are provided in each fold of the LFW dataset,
where 300 are similar and the other 300 are dissimilar [75]. Whatever the training conditions
are, the recorded test evaluation is always the mean decision accuracy of the 10-fold cross
validation, accompanied by its standard error in the 10 repetitions.

Under the constraint of no outside labeled training data, LFW defined two different
training settings: the restricted setting in which only the fixed sample pairs are available
for training; in contrast, under the unrestricted setting, it is possible to generate an arbitrary
number of sample pairs since it is permitted to use the identity information.

Instead of using the original LFW images in experiments, the LFW web site provides
two additional versions where the faces have been aligned. The first is referred to as LFW-
funneled [73]. The alignment method in [73] was shown to improve classification rates
over some of the early landmark-based face alignment methods, but was less effective than
the later landmark methods, such as that in the second version, the LFW-a dataset [160].

However, works using the LFW-funneled data are in the category with no outside data, but

72 Applications on Pairwise Verification

Table 4.1 Distribution of individuals and images in the 10 subsets, where the individuals in
different subsets are mutually exclusive. Ind.: individuals, Im.: images.

Index 1 2 3 4 5 6 7 8 9 10 Total

No.ofInd. 601 555 552 560 567 527 597 601 580 609 5749
No. of Im. 1369 1367 1089 1324 1016 1166 1690 1222 1207 1783 13233

works on the LFW-a dataset are categorized as with label-free outside data because LFW-a
has used a trained commercial alignment system to align face images.

In this section, we use the images of the LFW-a version, the original size of each 8-bit
grayscale image is 250 x 250. Following [125, 8, 26], at the preprocessing step, we simply
crop an image to remove the background, leaving a 150 x 80 (height x width) face image.
The next step after preprocessing is extracting facial features from the cropped images.

Face Descriptors

To represent a face image in the LFW-a dataset, we use four different face descriptors: Gabor
wavelets [38], LBP [1], SIFT [111] and OCLBP [8]. Additionally, since the operation of
square-rooting has been demonstrated to be useful for face verification [125, 8, 26], square
roots of all the face descriptors are also evaluated. Details of feature extraction are listed as
below.

Gabor wavelets: we extract Gabor wavelets with 5 scales and 8 orientations on each
downsampled image. The downsampling rate is 10x 10 for all the 15080 images, thus the
dimension of an extracted Gabor vector is 4800 (= 5x8x15x8).

Local Binary Patterns: we use the uniform LBP [128] to represent face images. The
uniform LBP is denoted as LBP[”,%r, where u2 stands for "uniform’, (p,r) means to sample p
points over a circle with a radius r. The dimension of an uniform pattern is 59. Concretely,
each 150x 80 image is divided into non-overlapping 10 x 10 blocks and uniform LBP patterns
LBPg"z1 are extracted from all the blocks. We concatenate all the LBP patterns into a single
feature vector, whose dimension is 7080 (= 15x8x59).

SIFT: we directly use the feature data provided by [60]. The SIFT descriptors were
computed at fixed points on the face (corners of the mouth, eyes, and nose) located by a
facial feature detector in [46]. They computed 128-dimensional SIFT descriptors at 3 scales,
centered on 9 points, leading to a 3456 (=3 x 9 x 128) dimensional face vector.

Over-complete Local Binary Patterns: besides LBP, we also used a variant of LBP,
OCLBP, to improve the overall performance on face verification [8]. Unlike LBP, OCLBP
adopts overlapping to adjacent blocks. Formally, the configuration of OCLBP is denoted

4.2 Pairwise Face Verification 73

as S: (a,b,v,h,p,r): an image is divided into a x b blocks with vertical overlap of v and
horizontal overlap of &, and then uniform pattern LBPI“)?, are extracted from all the blocks.
Moreover, OCLBP is composed of several different configurations. For example, Oren et
al. [8] used three configurations: S: (10,10,3,7,8,1),(14,14,1,1,8,2),(18,18,1,3,8,3).
The three configurations consider three block sizes: 10 x 10,14 x 14,18 x 18, and half
overlap rates along the vertical and horizontal directions.

Concretely, they shift the images to produce overlaps. For instance, a cropped 150 x 80
image is divided into 15 x 8 = 120 blocks with the size 10 x 10. Shifting the image to the
left by a step 10 x % =5 also produces 120 blocks; and shifting downwards produces another
120 blocks. Hence there are totally 360 blocks under the configuration S : (10, 10, %, %, 8,1).
Similarly, there are 198 blocks under the configuration S : (14, 14, %, %, 8,2) and 135 blocks
under the configuration S : (18,18, %, %, 8,3). In summary, the dimension of their OCLBP
vectors is 40,887 ((360 + 198 + 135) x 59).

In our work, we shift the block window to produce overlaps. Taking the 10 x 10 block
window for example, with the shifting step 10 x % = 5 to the left and downwards, the total
number of 10 x 10 blocks is (122 — 1) x (8 — 1) = 435. Similarly, shifting the 14 x 14
window produces 231 blocks and shifting the 18 x 18 window produces 128 blocks. The
dimension of our OCLBP vectors is 46,846 ((435+231+ 128) x 59).

Apparently, the two forms of OCLBP contains LBP as a subpart. Comparing the ex-
perimental results using the two different OCLBP, we found no significant difference. For
example, WCCN gets 86.83% using our 46,846-d OCLBP, which is very close to 87.23%

in [8] using the 40,887-d OCLBP.

Preprocessing: Dimensionality Reduction

Usually, automatic learning is performed on thousands of feature vectors. Directly taking
the original facial vectors for learning causes computational problem. For example, the
time required for multiplications between 46846-d OCLBP vectors would be unacceptable.
Therefore, before learning, we apply Whitened Principle Component Analysis (WPCA) for
dimensionality reduction [125, 8] as a preprocessing step. On the one hand, performing PCA
reduces the original dimension; on the other hand, whitening makes new feature vectors
more discriminative for face verification: the PCA reduced feature is normalized by the
eigenvalues over all the dimensions, thus the negative influences of the large eigenvectors are
reduced while the discriminating details of the smaller eigenvectors are enhanced [42]. In
addition, normalizing the inputs by a whitening transformation [77, 185] makes all the input
variables uncorrelated and having unit variance, which usually leads to faster convergence

for gradient descent [100].

74 Applications on Pairwise Verification

In our experiments, following [26], all the original feature vectors are transformed to new
vectors with dimension 300. The transformation matrix of WPCA is computed only using
similar pairs from a training set, namely, 4800 feature vectors. Usually, data selection for
WPCA does not significantly affect the performance after transformation. The only point
worth noting is that we should select enough data, for example, under the experimental
setting in this work, an appropriate number of feature vectors for whitening is more than
1000 [125, 26]. In our experiments, we use a MATLAB implementation of PCA provided by
the PhD toolbox>.

4.2.4 Experimental Settings

We apply the linear TSML method for face verification on the LFW dataset [75]. In this
section, we introduce the scheme of our verification system in detail. All the experiments
are performed under the LFW restricted configuration with label-free outside data: aligned
images of the LFW-a dataset are adopted; only the provided 6000 pairs of data are used in

evaluation (see Section 4.2.3).

Restricted Training

We experiment only on the restricted configuration of LFW, i.e. training and evaluating only
on the specified 3000 similar pairs and 3000 dissimilar pairs. Concretely, all data of the
restricted configuration are separated into 3 partitions: a training set, a validation set and a
test set. We learn a model on the training set, choose the best model that achieves the highest
performance on the validation set, and report the performance on the testing set using the
best model.

We perform cross-validation on the 10 folds: there are overall 10 experiments, in each
repetition, 4800 pairs from 8 folds are used for training, 600 pairs from another fold are used
for validation and 600 pairs from the last fold are used for testing. For example, the first
experiment uses subsets (1,2,3,4,5,6,7,8) for training, subset 9 for validation and subset 10
for testing; the second experiment uses (2,3,4,5,6,7,8,9) for training, subset 10 for validation
and subset 1 for testing. At last, we report the mean accuracy (+standard error of the mean)
of the 10 experiments.

Batch Gradient Descent

Under the setting of restricted training, in each of the 10 folds cross-validation, only 4800

pairs of 300-dimensional vectors are used for training. For this small training scale, advanced

>http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/PhDface/index.html

4.2 Pairwise Face Verification 75

algorithms such as the Conjugate Gradient Descent (CGD) algorithm [115] and the Limited-
memory Broyden Fletcher Goldfarb Shanno (L-BFGS) algorithm [108] can be used to
perform batch gradient descent. Compared with the standard stochastic gradient descent
algorithm, these advanced algorithm have no need to manually pick a learning rate and
they are usually much faster in convergence. In our experiments, we used a MATLAB
implementation of L-BFGS provided by Mark Schmidt [144] to minimize either the triangular
loss function or the CSML cost function.

Matrix Initialization

In Equations (4.7) and (4.8), we need to specify the initialization matrix W before starting
gradient descent. In our experiments, we use two kinds of initialization: the first one is the
commonly used identity matrix I [125, 26], the second one is the Within Class Covariance
Normalization (WCCN) matrix T that provides a better start. We directly set W = Wy =1
or W = Wy = T before learning, and then optimize W by the L-BFGS algorithm.

WCCN has been well studies as Relevant Component Analysis (RCA) (see discussion on
RCA in Chapter 2) [148, 7] or Intra-personal Subspace [166]. It has been used for object
classification [7], speaker recognition [65] and face recognition [166]. Recently, it was
introduced to improve the discrimination for pairwise face verification [8]. At first, a within
class covariance matrix C is defined as:

t
)

i=1

1 1 & T

; Z ; Xij— ij ”1)) 4.9)
where 7 is the number of different classes, m; is the number of instances in the ith class, x;;
is the jth instance in the ith class and ; is the mean of the ith class. Decomposition on
the matrix C produces eigenvalues Ay,...,A; and eigenvectors V = {vy,...,v;}. And the
WCCN matrix is:

—_
—_

T =diag(, *,...,A, >)V'. (4.10)

Under the restricted configuration of LFW, since we have no class information of any image,
we regard each similar pair as a mini-class of its own for computing WCCN transformation [8].
It is worth noting that all the eigenvalues and eigenvectors are retained, i.e. we do not perform

dimensionality reduction in this step.

Learning and Evaluation

Once we set up the initialization, we use the advanced optimization algorithm L-BFGS [108]

to compute the optimal solution. Let W, denote the optimal matrix and (a,b) represents

76 Applications on Pairwise Verification

a pair of output vectors. Similarity between the two vectors can be measured by either
the Triangular Similarity or the Cosine Similarity as we have proven their equivalence in
Chapter 3. In our experiments, the final decision is made by comparing to a threshold y: if
cos(a,b) > v, a and b are similar; otherwise, they are dissimilar. We record the percentage
of right decisions on the validation set, i.e.

number of right decisions

= . 4.11
deeuracy total number of pairs ()

After that, we select the best matrix W, and the best threshold 7 that obtain the best accuracy
on the validation set. At last, we report accuracy on the testing set using the best A, and 7.
For the proposed TSML method, we have only two parameters to tune in the experiments:
the regularization term A and the decision threshold 7. The tuning range of A was from 10~*
to 1073 with a step size of 2 x 107; the tuning range of y was from —1 to 1 with a step size

of 0.001. Without loss of generality, the length parameter r in Equation (4.8) is set to 1.

4.2.5 Results and Analysis

At the beginning, we directly perform evaluation on the 300-d whitened feature vectors,
i.e. using the identity matrix I to realize a linear mapping. We consider this evaluation
as the baseline. We also implemented state-of-the-art methods With-Class Covariance
Normalization (WCCN) [26, 8] and CSML [125] in our experiments as a comparison.
Concretely, four different methods were included in the first experiment:

* Baseline: evaluating directly on the whitened feature vectors, i.e. using the identity
matrix I to realize a linear mapping;

* WCCN [26, 8]: performing WCCN on the whitened feature vectors and using the
WCCN matrix T to realize a linear mapping;

* CSML-I: performing CSML on the whitened feature vectors with initialization matrix
Wy = I and using the learned transformation matrix W, to realize a linear mapping;

* TSML-I: performing TSML on the whitened feature vectors with initialization matrix
Wy = I and using the learned transformation matrix W, to realize a linear mapping.

Table 4.2 summarizes experimental results of the above four methods. We can see that all
the three methods, WCCN, CSML-I, TSML-I, have obtained better results than the baseline,
which means that all of them have learned a better transformation than the simple identity

matrix. Generally, WCCN achieves the best performance on all the different kinds of features.

77

4.2 Pairwise Face Verification

PbS1°81 %8681 %8861 %0€'81 P1T0OC %6681 %61°0C WL 61 adwy oy
CLOFSY YL | 98°0FVO VL | ¥90FSLYL | vV OF69 VL | 6L 0FLLYL | COTFVL YL | TO0F6LEL | TLOFIV EL || I"WIS-TINS.L
8L'0F96°06 | OL'0FEITO6 | €OTFO0LE6 | CO0FCV 16 | TTTFILE6 | 9L°0F9TTC6 | OV IF91°C6 | €T TF8E 16 || ITWIS-TINSO
jooramenbs | (eursuwo | joororenbs | [eurSuo | jooromnbs | [pwiSuo | jooromenbs | qeurSuo oo

1oqeH LAIS d9100 dqd1 POIISIN

uawaroldwy Aoy :idwy "[oy uoneingyuod
POIOLIISAI AY) JOpUN B-AA T UO [-WIS-TIAS.L PUB [-WIS-TINSD JO SPUOIISI[[IW UT (UBIW Y} JO JOIId PIEPUBISTF) 1S0D QWIL], ' d[qRL

LSOFSEE] | TSOFT808 | €7 0F0L S8 | 8S0FE8YY | €V 0FO0I'L8 | SL'OF86T8 | 8'0F8S°S8 | 08'0F0+'C8 || L-WIS-TINS.L
Ly 0F00°€8 | ¥S0F€9°08 | ¥P'0+80°98 | L9OFO0S T8 | OV 0OFCO'L8 | €L'0FLTS8 | TS 0F01'S8 | 89'0F€9°C8 || T"WIS-TINSL
CS'0F8S°€8 | 19°0FT9°I8 | CTE0FC8S8 | €5°0F+00°S8 | 97°0F8I°L8 | OLOFST'S8 | I90FLI'S8 | ¥L'0F88C8 || L-WIS-TINSD
V' OFESES | ¥SOFSY I8 | LEOFSO6'S8 | ISOFELY8 | 0S0FE0 LY | 09°0FLTS8 | 09°0FLI'SY | TLOFSI'€8 || [TWIS-TINSD
C9'0FCS I8 | TO0F8IBL | STOFLIP8 | 6£°0FCLTY | LEOFERIY | ISOFSLER | £€°0FECT8 | 6£0F01708 NOOM
j00121enbs | (eurSuo | joororenbs | [eurSuo | jooromnbs | [eurSuo | jooramnbs | qeurSuo oo
10qeD LAIS 49100 g1 PO
‘00¢ St

$I0109A 2INJBIJ PAUNIYA 3} JO UOISUSWIT "NOIM-WIS-TINSL T-WIS-TINSL ‘NOIM-WIS-TINSD T-WIS-TINSD ‘NDDOM spoyiout
JUQISLJIP 9AY Sursn uoneINS[Huod PIJOLISAI Ay} IIpUN B-A\ T UO (UBSW Y} JO JOIID PIBPURIST) (%) AOBINOOE UOTIBOYLIOA 908, €'Y 9[qR],

S9°0F+TS'I8 | T9°0F89°8L | STOFLIPS | 6€°0FCLT8 | LEOFESI8 | ISTOFSL'ES | €€0FETYS | 6€°0F0V°08 | NOOM
W OFLTO6L | 6S0FLTOL | Ly'OFOP I8 | 9S°0FS808 | ev'0F8EH8 | ISOFETT8 | 9S°0F08°18 | 6V 0FSE8L || I"TINSL
69'0+00°08 | SSOFE08L | SEOFLET | C€0F09° I8 | LSOF80S8 | €V 0F8ST8 | 66 0F8LT8 | £€0F0E°6L || I'TINSO
CEOFSTLL | SYOF8TSL | 6V 0FCSLL | TVOF889L | ¥ OFSS I8 | STOFEY 08 | 8E'OFEL6L | 6V 0FLI'LL || Sul[esed
1001 a1enbs 7 [eUISLIO 1001 a1enbs 7 [eUISLIO 1001 a1enbs 7 [eUISLIO j001 axenbs 7 [eUISLIO oo
1oqeH LAIS 44’100 dq1 POt

"00€ ST SI0JOQA AINJBAJ PAUAIYM Y} JO uoIsuawWI("[-TINSL ‘T-TINSD ‘NDDM ‘Qulfaseq oy} :Spoyjow

JUQIQJIP INOJ SUISN UONBINSHUOD PIIOLNSAI Y JOpUN B-Ap T UO (UBAW Y} JO JOLID PIepueISTF) (9) AJBINOOR UONIBOYLIdA 908 7' 9[qeL

78 Applications on Pairwise Verification

For example, WCCN obatins the highest accuracy of 86.83% using the square-rooted OCLBP

face descriptor .

Learning on Similar Pairs Only

Why does WCCN obtain better results than CSML and TSML? The major difference between
WCCN and the other two methods is that WCCN concerns only intra-personal variance but
ignores the inter-personal information [166, 8, 26]. In other words, WCCN performs learning
on similar pairs only but CSML and TSML take into account both similar and dissimilar
pairs. Indeed, according to the setting of mutually exclusive training and testing in LFW,
the identities in the validation and testing set are different from those in the training set,
hence the discriminative information learned between individuals in the training set is not
a good prediction of that between individuals in the testing set, i.e. a kind of over-fitting
occurs. It is also shown in Appendix B that under the configuration of restricted training,
similar pairs generally contribute more to the gradient than dissimilar pairs, resulting in better
performance on pairwise face verification.

Consequently, like WCCN, we now train CSML and TSML on similar pairs only. More-
over, since the WCCN transformation matrix performs so well, we take it as another ini-
tialization besides the identity matrix. In summary, we experiment with four new different

methods for pairwise face verification on LFW-a:

e CSML-Sim-I: training CSML on similar pairs only with initialization matrix Wy = I

and using the learned transformation matrix W, to realize a linear mapping;

e CSML-Sim-T: training CSML on similar pairs only with initialization matrix Wo =T

and using the learned transformation matrix W, to realize a linear mapping;

e TSML-Sim-I: training TSML on similar pairs only with initialization matrix Wy = I

and using the learned transformation matrix W, to realize a linear mapping;

e TSML-Sim-T: training TSML on similar pairs only with initialization matrix Wy =T

and using the learned transformation matrix W, to realize a linear mapping.

Table 4.3 summarizes experimental results of WCCN and the above four methods.
Compared with WCCN, the metric learning methods CSML-Sim-1, CSML-Sim-T, TSML-
Sim-I and TSML-Sim-T further improve the decision accuracies. For example, TSML-Sim-T
gets 85.58%, which outperforms the 84.23% of WCCN on the square-rooted LBP.

Interestingly, comparing the two different kinds of initialization (Table 4.3: CSML-Sim-I
vs. CSML-Sim-T, TSML-Sim-I vs. TSML-Sim-T), we observe that all of them obtain

4.2 Pairwise Face Verification 79

comparable results. Remind that TSML-Sim-I takes the identity matrix as initialization and
TSML-Sim-T takes the WCCN matrix as initialization. We deduce that either of the two
initialization matrices is acceptable for the linear metric learning methods. The difference is
that different initializations imply different lower bounds: for example, TSML-Sim-I sets the
results of the baseline as the lower bound, and TSML-Sim-T sets the results of WCCN as the
lower bound. However, though the two initializations set different lower bounds for learning,

they may have comparable upper bounds, so we have observed similar results.

Efficiency of TSML

Comparing the TSML approaches with the CSML approaches, one may notice that they
actually perform equally well on all kinds of face descriptors (Table 4.3). For example, on
the square-rooted OCLBP descriptor, CSML-Sim-I, CSML-Sim-T, TSML-Sim-I and TSML-
Sim-T obtain verification accuracies of 87.03%, 87.18%, 87.02% and 87.10%, respectively.
However, our proposed linear TSML (Equation (4.8)) is theoretically more efficient than
CSML. In order to prove that, we carry out a runtime comparison between CSML [125] and
the proposed TSML.

We perform the efficiency comparison on all the 300-d whitened features: with fixed
regularization parameter A = 0, we calculate the gradient of CSML-Sim-I and TSML-Sim-I
on the training set for only once and record their time consumption, respectively. Like
the reported accuracy on face verification, we report the average time (+standard error of
the mean) spent for 10 repetitions. This comparison was performed on a machine with a
4-core CPU, 8 GB RAM and 64-bit operating system. Table 4.4 summarizes the time cost
on each feature in milliseconds. Generally, TSML relatively improves the efficiency by
about 20% over CSML. For example, on the square-rooted OCLBP, calculating the gradient
of CSML-Sim-I for once averagely costs 93.71 milliseconds, in contrast, calculating the

gradient of TSML-Sim-I averagely costs only 74.77 milliseconds.

Comparison with the State-of-the-Art

Fusion on different descriptors generally leads to performance gain [125, 8, 26, 178, 69].
Therefore we perform fusion on the similarity scores of the proposed TSML approaches and
compare it with the state-of-the-art methods (Table 4.5).

After learning a linear model, one can produce similarity scores for all the pairs of vectors
on all possible descriptors. For each pair of vectors, all the corresponding similarity scores

compose a new short vector which can be used to predict the final decision: a pair of vectors

80 Applications on Pairwise Verification

Table 4.5 Face verification accuracy (%) (£standard error of the mean) on LFW-a under the
restricted configuration using different methods.

’ Method H Accuracy ‘

DML-eig-fusion [178] 85.65+0.56
CSML-fusion [125] 88.00+0.37
PAF [176] 87.77+0.51
WCCN-fusion [8] 91.10+0.59
Sub-SML-fusion [26] 89.73+0.38
DDML-fusion [69] 90.68+1.41
LM3L [71] 89.57+1.53
TSML-fusion (this work) || 89.80+0.47

is similar or not. We consider it as a two-class classification problem and employ a linear
support vector machine (SVM) [27] to perform the classification.

Since LBP is a subpart of OCLBP [8], we abandon LBP and collect similarity scores
on the other three descriptors and their square roots for fusion. Both of the two methods,
TSML-Sim-I and TSML-Sim-T, are used to produce similarity scores. Thus we have totally
12 similarity scores for each pair, representing a new feature vector. After that, we train an
SVM model on the validation set and make prediction on the test set. The fusion result of the
proposed methods is 89.80%, which occupies the third position among the state-of-the-art
methods under the restricted configuration (Table 4.5 and Fig. 4.1). Available ROC curves of
more approaches are present in the result page of the LFW data set®.

Other methods that perform well on the face verification problem (Table 4.5), for example
WCCN-fusion, rely on a fusion of high-dimensional features (i.e. the 96520-d Scattering
descriptor), or they are naturally slower because they perform more complex optimization,
e.g. DDML-fusion [69] integrates deep neural networks with distance metric learning. Apart
from fusion on multiple features, employing specific advanced processing steps to face
verification can also produce promising results, such as the facial landmark extraction and
3D model fitting in PAF [176].

4.3 Pairwise Kinship Verification

The objective of pairwise kinship verification is to determine whether there is a kin relation
between a pair of given face images. The kinship is defined as a relationship between two

persons who are biologically related with overlapping genes. There are four different types of

Ohttp://vis-www.cs.umass.edu/lfw/results. html#ImageRestrictedLF

4.3 Pairwise Kinship Verification 81

Image-Restricted, Label-Free Outside Data

(] _
©
(] _|
=
G i
o
o
g | s
5 o3l TSML fusion (this work) — _
| CSML fusion, aligned
0.2 DML-eig fusion —— |
01+ Sub-SML fusion —— _
‘ DDML fusTion o

0 L
0 01020304050.60.70809 1

false positive rate

Fig. 4.1 ROC curves of the proposed TSML-fusion method (red line) and the other state-
of-the-art methods on LFW under the restricted configuration with label-free outside data
(LFW-a).

close kin relations: Father-Son (F-S), Father-Daughter (F-D), Mother-Son (MS) and Mother-
Daughter (M-D). Comparing with face verification [75], kinship verification via faces is a
relatively new problem in face analysis, but it can find many potential applications such as
family album organization, genealogical research, missing family members search, and social
media analysis. To conduct research along this direction, Lu et al. [114] constructed the
Kinship Face in the Wild (KinFaceW) dataset for studying the problem of kinship verification

from unconstrained face images.

4.3.1 The KinFaceW Protocols and Related Work

Following the LFW dataset [75], the KinFaceW dataset holds the setting of limited training
data for some classes and the setting of mutually exclusive training and test sets. Three
different settings are defined: (1) unsupervised setting, i.e. no labeled kin relation information

is used; (2) image-restricted setting, i.e. only the given kin relation information is used in the

82 Applications on Pairwise Verification

training splits; (3) image-unrestricted setting, i.e. the identity information of the person is
available to potentially form additional dissimilar/negative pairs for training.

Generally, all the metric learning methods used in face verification are also applicable for
this kinship verification task. For example, Lu et al. [114] proposed Neighborhood Repulsed
Metric Learning (NRML) as one of the earliest method applied on kinship verification
and demonstrated that its performance was comparable to that of human observers. After
that, the authors also investigated other approaches for kinship verification [174, 175, 71].
Two competitions have been organized to fairly evaluate and compare different kinship
verification algorithms: one was held in conjunction with the International Joint Conference
on Biometrics 2014, Clearwater, Florida, USA [113]; the other one was held in conjunction
with the IEEE International Conference on Automatic Face and Gesture Recognition 2015,
Ljubljana, Slovenia [112]. We participated in the second competition with the proposed

linear TSML system and achieved the best performance under the image-restricted setting.

4.3.2 The KinFaceW Dataset and Face Descriptors

The KinFaceW dataset provides two kinship subsets: KinFaceW-I and KinFaceW-II. All
the face images were collected from Internet, including some public figures as well as their
parents or children. Face images were captured under uncontrolled environments in the
two subsets with no restriction in terms of pose, lighting, background, expression, age,
ethnicity, or partial occlusion. For ease of use, the data providers [114] manually labeled the
coordinates of the eyes position of each face image, aligned and cropped facial regions into
64 x 64 to remove background.

There are four kin relations in the two subsets: Father-Son (F-S), Father-Daughter (F-D),
Mother-Son (M-S), and Mother-Daughter (M-D). In KinFaceW-I, there are 156, 134, 116,
and 127 pairs of kinship images for these four relations, respectively. For KinFaceW-II, each
relation contains 250 pairs of kinship images. Apart from that the numbers of images in each
subset are different, the major difference of KinFaceW-1 and KinFaceW-II is that any two
relative faces were acquired from different photos in KinFaceW-I but most relative faces in
KinFaceW-II were captured from the same photo. In other words, environment conditions
such as lighting differ more significantly between face pairs in KinFaceW-I than that in
KinFaceW-II.

For the image-restricted setting, in addition to the similar pairs for each relation, equal
numbers of dissimilar pairs were also provided for training. A dissimilar pair or a negative
pair is generated by randomly combining each parent face image with a child image who is not
his/her true child. Hence KinFaceW-I actually provides 1066 (=2 x (156 + 1344116+ 127))

data pairs for training and testing, and KinFaceW-II contains 2000 pairs of similar or

4.3 Pairwise Kinship Verification 83

dissimilar face images. Finally, all the data pairs are recommended to be split into five
non-overlapping folds to perform a 5-fold cross validation. For the image-unrestricted setting,
more dissimilar pairs can be generated but the similar pairs are held the same. Like in the
previous section of face verification, we focus on the image-restricted setting here.

Face Descriptors

To represent a face image in the KinFaceW dataset, we use four different face descriptors:
LBP [1], Histogram of Gradients (HOG) [37], OCLBP [8] and Fisher Vectors [150]. Eval-
uation is directly performed on square roots of all the descriptors because the operation
of square-rooting has been demonstrated to be useful [125, 8, 26, 150]. Details of feature
extraction are listed as below.

Local Binary Patterns: we use the uniform LBP [128] to represent face images. The
uniform LBP is denoted as LBP;‘,?r,
points over a circle with a radius r. The dimension of an uniform pattern is 59. Concretely,

where u2 stands for "uniform’, (p,r) means to sample p

each 64 x64 image is divided into non-overlapping 8 x 8 blocks and uniform LBP patterns
LBP’g?l are extracted from all the blocks. We concatenate all the LBP patterns into a single
feature vector, whose dimension is 3776 (= 8x8x59).

Histogram of Gradients: we first divide each 64 <64 image into non-overlapping 4 x 4
blocks, and then split the original image into non-overlapping 8 x 8 blocks. The 2-scale
block division produces 320 (= 16 x 16 + 8 x 8) blocks in total. Subsequently, we extract a
9-dimensional HOG feature for each block and concatenate them into a single feature vector,
whose dimension is 2880 (= 320 x 9).

Over-complete Local Binary Patterns: we also used a variant of LBP, OCLBP, to
improve the overall performance [184]. Unlike LBP, OCLBP adopts overlapping to adjacent
blocks. Formally, the configuration of OCLBP is denoted as S : (a,b,v,h, p,r): an image
is divided into a x b blocks with vertical overlap of v and horizontal overlap of A, and
uniform pattern LBP;‘,?, are extracted from all the blocks. Moreover, for the 64 x 64 images
in the KinFaceW dataset, our OCLBP is composed of several different configurations:
S: (8,8,%, %,8, 1),(12,12, %, %,8,2), (16,16, %, %,8,3). Concretely, the three configurations
consider three block sizes: 8 x 8,12 x 12,16 x 16 with half overlap rates along both the
vertical and horizontal directions. We shift the block window to produce overlaps. Taking the
8 x 8 block window for example, with the shifting step 8 x % =4 to the left and downwards,
the total number of 8 x 8 blocks is (& — 1) x (& — 1) = 225. Similarly, shifting the 12 x
12 window produces 100 blocks and shifting the 16 x 16 window produces 49 blocks.
The dimension of our OCLBP vectors is 22,066 ((225 + 100 +49) x 59), where 59 is the
dimension of the uniform LBP in each block.

84 Applications on Pairwise Verification

Fisher Vectors: Fisher Vector (FV) faces [150] is one of the state-of-the-art descriptors
used in image classification, so we adopt it here for kinship verification. The FV construction
starts by extracting dense SIFT [111] from images. Specifically, for the 64 x 64 images
in the KinFaceW dataset, 12 x 12 pixels patches are sampled with a stride of one pixel
and for each patch a 128-dimensional SIFT representation is computed. After that, all the
SIFTs are passed through square-rooting and L2 normalization to let all the vectors have
unit length. Following [150], this process is repeated at five scales, with a scaling factors of
/2 on each image, resulting in an 128 x 4397 dimensional feature vector. Moreover, PCA
is applied to the square-rooted SIFTs, reducing its dimensionality from 128 to 64. Since
introducing spatial information has been proved to be useful for improving the performance
of image descriptor [150], we augment the PCA-SIFT vectors with their spatial coordinates:

- - %; % — %], where (x,y) is the patch center of the corresponding SIFT vector, w and & are
the width and height of the face image. Finally, the size of the dense features for each image
1s 66 x 4397. To simplify reproducibility, we use the VLFEAT package [163] to perform
non-linear FV encoding on these dense feature vectors. We first use the vi_gmm command in
the VLFEAT package to train a Gaussian Mixture Model with 512 Gaussians on the dense
features. Based on the GMM, we call the vi_fisher command to compute the FV coefficients
for each image. The dimension of an FV face is 67,584. Once again, to improve the final

performance, all the FV faces are passed through square-rooting and L.2 normalization.

4.3.3 Experiments and Analysis

We apply the same linear TSML method in Section 4.2.2 for kinship verification on the
KinFaceW dataset [114]. All the experiments are carried out under the image-restricted
configuration: only the specific pairs of training data are used in evaluation. A MATLAB
implementation of L-BFGS [108, 144] is used to perform batch gradient descent for opti-
mizing the triangular loss function, where the mapping matrix is initialized with the WCCN
matrix (see Section 4.2.4). Due to limited data in the KinFaceW dataset, no validation set is
separated and the best decision accuracy on the testing set is recorded. We report the average
accuracy of a 5-fold cross validation as the final score for each method.

We first applied WPCA to whiten the raw feature vectors and reduce the vector dimension
to 100, we evaluated on the whitened feature vectors and regarded it as the baseline solu-
tion [125, 8]. The transformation matrix of WPCA is computed using all the samples in the
training set. We also implemented state-of-the-art methods WCCN [26, 8] as a comparison.

Concretely, three different methods are included in this experiment:

4.3 Pairwise Kinship Verification 85

Table 4.6 Kinship verification accuracy (%) on (a) KinFaceW-I and (b) KinFaceW-II under
the restricted configuration using different methods with different features.

(a) Results on KinFaceW-I

| Feature || Method | F-S [F-D | M-S | M-D | Mean |
Square- Baseline 78.20 | 69.05 | 72.01 | 74.13 | 73.35
rooted WCCN 82.08 | 75.34 | 76.68 | 77.99 | 78.02

LBP TSML-Sim-T | 82.08 | 75.73 | 77.12 | 77.99 | 78.23
Square- Baseline 77.26 | 69.39 | 69.75 | 79.61 | 74.00
rooted WCCN 83.04 | 73.50 | 74.09 | 83.47 | 78.53
HOG || TSML-Sim-T | 82.73 | 73.49 | 75.40 | 83.47 | 78.77
Square- Baseline 77.89 | 70.14 | 71.92 | 78.04 | 74.50
rooted WCCN 81.75 | 77.22 | 77.95 | 82.70 | 79.91
OCLBP || TSML-Sim-T | 82.08 | 77.61 | 78.39 | 82.30 | 80.09
Square- Baseline 78.84 | 76.50 | 77.10 | 80.24 | 78.17
rooted WCCN 82.72 | 80.63 | 81.87 | 84.58 | 82.45
FV TSML-Sim-T | 83.04 | 80.63 | 82.30 | 84.98 | 82.74

(b) Results on KinFaceW-I1

| Feature | Method | F-S | F-D | M-S [M-D | Mean |
Square- Baseline 76.40 | 67.80 | 73.60 | 73.00 | 72.70
rooted WCCN 84.80 | 78.20 | 81.80 | 78.20 | 80.75

LBP TSML-Sim-T | 84.80 | 78.40 | 82.00 | 79.40 | 81.15
Square- Baseline 75.80 | 67.40 | 74.00 | 72.20 | 72.35
rooted WCCN 83.80 | 77.00 | 81.00 | 78.80 | 80.15
HOG || TSML-Sim-T | 84.60 | 77.60 | 81.00 | 80.00 | 80.80
Square- Baseline 78.60 | 70.20 | 75.60 | 75.00 | 74.85
rooted WCCN 87.60 | 79.80 | 82.40 | 81.40 | 82.80
OCLBP || TSML-Sim-T | 87.80 | 80.40 | 83.60 | 81.80 | 83.40
Square- Baseline 81.40 | 72.60 | 77.60 | 79.60 | 77.80
rooted WCCN 89.20 | 83.20 | 86.20 | 85.00 | 85.90
FV TSML-Sim-T | 89.40 | 83.60 | 86.20 | 85.00 | 86.05

Table 4.7 Participants in the FG 2015 Kinship Verification Evaluation. Our team is labeled as
LIRIS, indicating results of the TSML-Sim-T method.

Team Country Label

Politecnico di Torino Italy Polito

LIRIS, University of Lyon France LIRIS
Universidad de Las Palmas de Gran Canaria Spain ULPGC

Nanjing University of Aeronautics and Astronautics China ~ NUAA
Bar Ilan University Israel BIU

86 Applications on Pairwise Verification

Table 4.8 Kinship verification accuracy (%) on KinFaceW-I under the restricted configuration.

| Team [FS | F-D | M-S | M-D | Mean |
Polito 85.30 | 85.80 | 87.50 | 86.70 | 86.30
LIRIS 83.04 | 80.63 | 82.30 | 84.98 | 82.74

ULPGC 71.25 | 70.85 | 58.52 | 80.89 | 70.01
NUAA 86.25 | 80.64 | 81.03 | 83.93 | 82.96
BIU 86.90 | 76.48 | 73.89 | 79.75 | 79.25
SILD (LBP) || 78.22 | 69.40 | 66.81 | 70.10 | 71.13
SILD (HOG) || 80.46 | 72.39 | 69.82 | 77.10 | 74.94

Table 4.9 Kinship verification accuracy (%) on KinFaceW-II under the restricted configuration
in the FG 2015 Kinship Verification Evaluation.

| Team || F-S | F-D | M-S | M-D | Mean |
Polito 84.00 | 82.20 | 84.80 | 81.20 | 83.10
LIRIS 89.40 | 83.60 | 86.20 | 85.00 | 86.05
ULPGC || 85.40 | 75.80 | 75.60 | 81.60 | 80.00
NUAA 84.40 | 81.60 | 82.80 | 81.60 | 82.50
BIU 87.51 | 80.82 | 79.78 | 75.63 | 80.94
SILD (LBP) || 78.20 | 70.00 | 71.20 | 67.80 | 71.80
SILD (HOG) || 79.60 | 71.60 | 73.20 | 69.60 | 73.50

* Baseline: performing WPCA on the raw feature vectors;
* WCCN: performing WCCN on the whitened feature vectors;

* TSML-Sim-T: training TSML on similar pairs only with initialization matrix Wy =T,
where T is the WCCN matrix.

Tables 4.6 summarizes all the experimental results on the two datasets KinFaceW-I and
KinFaceW-II. The proposed TSML method using FV faces achieves superior performance
on the problem of kinship verification. For example, TSML-Sim-T obtains 86.05% on the
KinFaceW-II dataset, which has even surpassed the human ability [114]. The other method,
WCCN, has also achieved better results than the baseline model.

Comparison with the State-of-the-Art

The proposed TSML method is compared with state-of-the-art methods in the FG 2015
Kinship Verification in the Wild Evaluation [112]. Table 4.7 shows the five teams participating
in this evaluation, note that our team is labeled as LIRIS, indicating results of the TSML-

Sim-T method. Tables 4.8 and 4.9 present the verification accuracies of different methods

4.3 Pairwise Kinship Verification 87

Image-Restricted, F-S subset in KinFace\W-| Image-Restricted, F-D subset in KinFace\W-|

“[——siLD (LBP)
——SILD (HOG)
BIU {LBP}
——BIU (HOG)
— NUAA
-—-LRIS
Polito

——SILD(LBP)
——SILD(HOG)
BIU(LBP}
——BIU{HOG)
—MNUAA
——-LRIS
Polito

frue positive rate
frue positive rate

: ULPGC ULPGC
a o1 02 03 0.4 05 06 a7 0.8 05 1 DD o1 02 03 04 as 06 a7 0.8 05 1
false postive rate false postive rate
(a) F-S (b) F-D

Image-Restricted, W-S subset in KinFace-I Image-Restricted, M-D subsetin KinFaceWy-
T T —y= . 1 T

A=

true positive rate
o
frue positive rate

5 R : T ——SILD{LBP) | —SILD{LBP] ||
04 : : ——SILD (HOG) || ——SILD{HOG) ||
: : : BIU (LBP) BIU (LBP)

Al e R EETN S ——BIUHOG) H ——BIUHOG)
02 b : ToNUAA TNUAR
——-LRIS ——-LRIS
01 f : H H : Palito f : : Polita

: : : ULPGC ‘ ULPGC
DD D‘W DIE DIB lei DIS D‘E D‘? D‘E D‘B 1 DD D‘1 D‘E D‘E Dld D‘S DIE D‘? D‘B D‘B 1
false postive rate false postive rate

(c) M-S (d) M-D
Fig. 4.2 ROC curves of different methods under the image-restricted setting on KinFaceW-I.

Image-Restricted, F-S subset in KinFace\W-I Image-Restricted, F-D subset in KinFaceW-Il
1 T = 1 =
=7 i ——
09 : e O S g]

true positive rate
o
o

true positive rate
o
@

RN S e : STTADIER B OSEff R p— o
04 : : : ——SILD (HOG) || 04 : ——SILD{HOG) ||
: BIU (LBP) BIU (LBP}
03 Pt ——BIJ{HOG) H 03t /4 ——BIU{HOG) H
ool ; — NUAA DZHM ——NUAA
——-LRIS ——-LRIS
0.1 2 Palita H il Polita
i H ULPGC ULPGC
0 L H i L i T T T 0 i i i i i i T T T
02 03 04 05 06 0F 08 09 1 0 01 02 03 04 05 06 07 08 03 1
false postive rate false postive rate
(a) F-S (b) F-D
Image-Restricted, M-5 subset in KinFacsW-Il , Image-Restricted, M-D subset in KinFaceW-|l
1 nal]
1 o0&l]
a o 07 I;
2 d F gL+ 4
2 g7
3 ——SILD(LBP)] RS ——SLD(LBP) i
= ——SILD (HOG) || s ——SILD (HOG) ||
E] BIU (LBP} 2 BIU (LBP}
——BIUHOG) K 03 ——BIUiHOG) f
——NUAA . —NUAA
——-LRIS ——-LRIS
Polito i o1 Polito
H ULPGC H ULPGC
o i i i H i T T T o i i 1 i T T :
0 01 02 03 04 05 06 OF 08 03 1 0 01 02 03 04 05 06 07 08 03 1
false postive rate false postive rate

(c) M-S (d) M-D
Fig. 4.3 ROC curves of different methods under the image-restricted setting on KinFace W-II.

88 Applications on Pairwise Verification

on the two data sets, Fig. 4.2 and Fig. 4.3 picture ROC curves for all the results. We can
see that compared with the baseline SILD method [80], all participated methods show better
verification performance on the two data sets. In this image-restricted experiment, TSML-
Sim-T (i.e. the team LIRIS) achieves the first place (86.03%) on KinFaceW-II and the third
place (82.74%) on KinFaceW-I. This results indicates the effectiveness of linear TSML on

kinship verification as well as that on face verification in the previous section.

4.4 Linearity in Pairwise Verification

In previous two sections, we have shown the effectiveness of the linear TSML approach
for pairwise face verification and pairwise kinship verification, where the two tasks deal
with face images of human individuals. For the restricted setting on training, we argued
that linearity indicates the property of generalization which reduces the risk of over-fitting.
Though the linear model indeed achieves competitive performance with state-of-the-art
methods, this argument has not been supported by experimental justification. In this section,
we will directly compare linear models and nonlinear models by experiments.

Furthermore, previous experiments restricted the TSML systems to face images only, one
may doubt that if the proposed method is also effective on other kinds of data. Therefore
besides face verification, we will introduce another task of pairwise speaker verification, that
takes speech utterances as the input.

Another interesting question is that compared with existing data-restricted experimental
protocols, how much performance gain can be obtained by unrestricted training? In order to
perform fair comparison of the restricted and unrestricted protocols, we will utilize stochastic
gradient descent instead of the advance L-BFGS algorithm we used before. This is because
the L-BFGS is only applicable for batch gradient descent in small-scale training and thus
limits itself to the data-restricted setting only, but stochastic gradient descent can be applied
for both restricted and unrestricted training.

The contributions of this section with respect to our previous work are the following:

* we establish a pairwise speaker verification protocol based on the data from the NIST
2014 i-Vector machine learning challenge, which is the first protocol for pairwise
speaker verification. Both the pairwise face verification protocol of the LFW dataset
and this speaker verification task aim at verifying identity information by individuals’

biometric features.

» we present the TSML method in both linear and non-linear formulations for pairwise

identity verification problems, i.e. pairwise face verification and pairwise speaker

4.4 Linearity in Pairwise Verification 89

verification. A comprehensive evaluation comparing the different formulations has
shown that the linear model should be preferred due to its superior performance and its

simplicity.

* we also study the influence of limited training data. Generally, compared with unlimited
training, the limited case suffers from over-fitting. However, we find that with limited
data, training the models on similar pairs only considerably reduces the effect of

over-fitting.

4.4.1 Linear and Nonlinear Triangular Similarity Metric Learning

Firstly, we introduce the general TSML formulations. Given the i, pair (X;,y;) from a
training set, a TSML system delivers it through a certain mapping function and produces
two outputs (a;,b;). Assuming the mapping function is parameterized by a set of weights W,
we have a; = f(x;, W) and b; = f(y;, W). Let s; = 1 (respectively -1) denote that this pair is

similar (respectively dissimilar), the general triangular loss for this pair is defined as:

Ji= 3 JailP 4 30> e+, @.12)
where r is a constant constraint on the vector length; and ¢; = a; + s;b;. When the set of
weights W is simply a transformation matrix, it is a linear TSML system; when the set of
weights W represents nonlinear neural networks such as MLP, it is a nonlinear TSML system.
Whichever system we choose for learning a metric, the gradient of the triangular loss with

respect to the parameter set W is the same:

al;
oW

3al~
IW

ms
oW’

Ci
i

SiCi
el

)

—I—(b,-—r

) (4.13)

(ai —r
From the point of view of neural networks, different mapping functions are considered as
different combinations of neurons in network layers. We study three kinds of mapping

functions here:

Single layer of linear neurons

The simplest neurons are the linear neurons without bias term which only involve a parameter
matrix W. For a given input z € R?, the output is simply f (z, W) = Wz, which is exactly

the case we have discussed in Section 4.2.2. According to Equation (4.2), differential of the

90 Applications on Pairwise Verification

parameter matrix with respect to the i, pair is:
aJ; ¢ ¢
ﬁ = (a,- — rm)XIT + (b,‘ — sirm)y?. 4.14)
1 1
Single layer of nonlinear neurons

Besides the parameter matrix W, nonlinear neurons involve a bias term, and a nonlinear

activation function, e.g. the tanh function [100]. For a given input z € R?, the output is:
f(z,W) =tanh(Wz+h), (4.15)
where h denotes the bias term of the neurons. This equation can be rewritten as:
f(Z ,W') =tanh(W'z'), (4.16)

where z' = [z;1] and W = [W h]. Remind that derivative of the tanh function is tanh’(z) =
1 —tanh?(z). Based on the differential of the linear case in Equation (4.14), differential of
the parameters W' : {W h} here is:

o
oW’

33,- SiCi 8bi
—+(bi—r—)=—
IW’ |7 oW’
el se, (4.17)

c.
=(1-a,0a)0 (ai—rm)[xi; 1T+ (1=b;0b) ® (b; _rm)[Yi; 17,
1 1

C;

= (ai — I’—)

i

where the notation © means element-wise multiplication. Details of this equation is referred
to the chain rule used in Backpropagation [100].

Multiple layers of nonlinear neurons

A single layer of neurons is hard to represent the power of nonlinear mapping. But by
combining several interconnected nonlinear neurons together, Multi-Layer Perceptrons
(MLP) are able to approximate arbitrary nonlinear mappings and thus have been the most
popular kind of neural networks since the 1980’s [142]. Thus we adopt a 3-layer MLP,
containing one input layer and two layers of nonlinear neurons, to realize the nonlinear
mapping.

With a parameter set W : {W(l),h(l),W(z),h(z)}, for a given input z € R?, the output
through the 3-layer MLP is:

f(z, W) = tanh(W® tanh(Wz+n)) +h?). (4.18)

4.4 Linearity in Pairwise Verification 91

Similarly with Equation (4.17), according to the chain rule in the Backpropagation algo-
rithm [100], we can calculate differentials for each parameter {W(l) , hV , w®) h(z)} with
respect to a training pair. More details are referred to the discussion on MLP and Backpropa-
gation in Chapter 2. For all the three linear and nonlinear TSML systems, we employ the

same stochastic gradient descent to update their weights until reaching an optimal solution.

4.4.2 Stochastic Gradient Descent

Since all the three types of mapping functions have similar cost and gradient functions, we
employ the same algorithm to perform optimization. The proposed method is based on
stochastic gradient descent and is summarized in Algorithm 1. More advanced optimization
algorithms such as the Conjugate Gradient Descent (CGD) algorithm [115] and the Limited-
memory Broyden Fletcher Goldfarb Shanno (L-BFGS) algorithm [108] could be used as well
but their analysis would go beyond the scope of this section. We adopt early-stopping [134] to
prevent over-fitting problem, thus a small set is separated from the training data for validation,
and the model with the best performance on the validation set is retained for evaluation on the
test set. In addition, we use a momentum [100] term to speed up training. The momentum A
is empirically set to be 0.99 for all the experiments. Note that the input vectors will be passed
through L2 normalization before training, i.e. the length of input vectors are normalized to 1.

Without loss of generality, the length parameter r in the triangular loss function is set to 1.

Initializing the weights

For the linear mapping, like in [125, 26, 184], we initialize the transformation matrix with the
identity matrix. For the nonlinear mappings, we use the normalized random initialization [53]
that is considered to be helpful for the tanh networks. Concretely, weights of each layer are

initialized with an uniform distribution as:

V6 V6

\/nj+nj+1 ’ \/nj+nj+1 ’

(WO h0)} ~ U= (4.19)

where {W(j Y)} denotes the parameters between the j,, and (j+ 1), layers; nj and nj;
represent the number of nodes in the two layers, respectively.

92 Applications on Pairwise Verification

Algorithm 1: Stochastic Gradient Descent for TSML

input : Training set; Validation set;

output: Parameter set W,

paramters: Learning rate o0 = 10_4; Momentum A = 0.99; Iterative tolerance
P, = 4 x 10%; Validation frequency F, = 10%;

% initialization
if linear mapping then
| Wo <L %I is the identity matrix
if nonlinear mapping then
| randomly initialize Wy according to Equation (4.19);
AWq < 0;
Perform L2 normalization on the training set;
Perform L2 normalization on the validation set;
% optimization by back propagation
forr=1,2,...,F do
% select training data for each epoch
Randomly select a similar pair and a dissimilar pair from the training set;
% forward propagation
Calculate the cost J according to Equation (4.12);
% back propagation
Calculate the gradient %
% updating using momentum
AW, = AAW, | + 55—
W, — W,_1 +aAW,;
% checking on the validation set regularly
if (A mod F;) == 0 then
| compute the Decision Accuracy according to Equation (4.20);

according to Equation (4.13);

% output the best matrix on the validation set
W, + the W; gives the best result on the validation set;
return W,.

4.4 Linearity in Pairwise Verification 93

4.4.3 Datasets and Feature Vectors

In order to validate the generality of the proposed TSML method, we carry out pairwise
identity verification experiments on two datasets in different domains: the LFW image
dataset for pairwise face verification [75] and the NIST i-vector dataset for pairwise speaker

verification [58].

The LFW dataset

Recently, high-dimensional Fisher Vector (FV) faces, which combine dense feature sampling
with improved Fisher Vector encoding, have achieved striking results on pairwise face
verification [150]. We have also confirmed its superiority for the problem of pairwise kinship
verification (see Section 4.3.3). Thus we use FV to represent face images in the current
experiments.

The LFW dataset is the one we have used in Section 4.2. However, instead of using
the LFW-a images [160], we concern cropped 150 x 150 ’funneled’ images of LFW [73]
because data of FV faces are directly provided by [150] on the LFW-funneled images’ (Data
for the setting 3). The process of extracting FV descriptors is referred to Section 4.3.3,
dimension of a FV vector is 67,584. Moreover, following [125, 8], in order to transform the
high dimensional FV vectors into a new space of a tractable scale, we apply WPCA to reduce

the vector dimension to 500.

The NIST i-vector dataset

For speaker recognition, most popular features are developed on generative models such
as Gaussian Mixture Model-Universal Background Model (GMM-UBM) [139]. Building
on the success of GMM-UBM, Joint Factor Analysis (JFA) proposes powerful tools to
model the inter-speaker variability and to compensate for channel/session variability in the
context of GMMs [83]. Moreover, inspired by the joint factor analysis, a new feature called
i-vector is developed [40]. Unlike JFA models the speaker variability in the high dimensional
space of GMM supervectors, i-vectors are extracted in a low dimensional space named total
variability space. Taking advantage of the low dimensionality of the total variability space,
many machine learning techniques can be directly applied to speaker verification [88].

We use the data of the NIST 2014 Speaker i-Vector Challenge [58], which consist of
i-vectors derived from conversational telephone speech data in the NIST Speaker Recognition
Evaluations (SRE’s) from 2004 to 2012. Each i-vector, the identity vector, is a vector of 600
components. Along with each i-vector, the amount of speech (in seconds) used to compute

Thttp://www.robots.ox.ac.uk/~vgg/software/face_desc/

94 Applications on Pairwise Verification

Table 4.10 Distribution of individuals and speech utterances in the 10 subsets, where the
individuals are mutually exclusive. Ind.: individuals, Utt.: utterances.

Index 1 2 3 4 5 6 7 8 9 10 Total

No.ofInd. 496 496 496 496 496 496 496 496 496 494 4958
No. of Utt. 3660 3664 3568 3741 3702 3566 3605 3636 3744 3686 36572

the i-vector is supplied as metadata. Segment durations were sampled from a log normal
distribution with a mean of 39.58 seconds. This dataset consist of a development set for
building models and a test set for evaluation.

We only select the development data of this Challenge and establish an experimental
protocol of pairwise speaker verification. There are 36,572 speech utterances in total in
this experiment, belonging to 4,958 different speakers. The number of utterances for a
single speaker varies from 1 to 75. Like in LFW, we also split the data into 10 subsets to
perform a 10-fold cross validation. Table 4.10 shows the distribution of individuals and

speech utterances in the 10 subsets.

4.4.4 Experiments and Analysis
A. Experimental Setup

We carried out experiments on the LFW image dataset for pairwise face verification [75]
and on the NIST i-vector dataset for pairwise speaker verification [58]. On both of the two
datasets, we performed cross-validation on 10 folds: there are overall 10 experiments, in
each repetition, sample pairs from 9 folds are used for training, and sample pairs from the
remaining fold are used for testing. As we have announced in Section 4.4.2, some training
data are separated as an independent validation set to do early-stopping.

Fixed testing: to perform evaluation on the test set for each experiment, it is better to fix
the sample pairs in each fold so that we can compare different approaches on the same test
data. Specifically, 600 image pairs are provided in each fold of the LFW dataset, where 300
are similar and the other 300 are dissimilar [75]. In the NIST i-vector dataset, there are more
samples for each individual than in the LFW dataset, so we generate more sample pairs for
each fold, namely, 1200 similar pairs and 1200 dissimilar pairs.

Restricted and unrestricted training: following [75], we adopted two different training
settings in our experiments: the restricted setting in which only the fixed sample pairs are
allowed for training; in contrast, under the unrestricted setting, it is possible to generate more

training pairs since it is permitted to use the identity information.

4.4 Linearity in Pairwise Verification 95

Table 4.11 Proportion of the triplets {x;,y;,z;} satisfying that cos(x;,y;) > cos(X;,Z;), using
1230 randomly selected triplets. The mapping is linear and trained on data of LFW under the
restricted setting.

’ Status H Before mapping \ After mapping ‘
| Proportion || 92.85% | 96.34% |

Maximal decision accuracy: like the minimal Decision Cost Function (minDCF) in [58],
we define a Decision Accuracy (DA) function to measure the overall verification performance
on a set of data pairs:

number of right decisions (Y
DA(Y) = y

4.20
total number of pairs ()
where the threshold ¥ is used to make a decision on the Cosine Similarity values: cos(a,b) >y
means (a,b) is a similar pair, otherwise it is dissimilar. The maximal DA (maxDA) over
all possible threshold values is the final score recorded. We report the mean maxDA scores

(£standard error of the mean) of the 10 experiments.

B. Learning a better metric

From the point of view of feature representation, the objective of Metric Learning is to learn a
new vector representation f(xX) as a substitute of the original representation x that better suits
a specific metric, e.g. the Triangular Similarity or the Cosine Similarity in this work. In this
section, we illustrate the similarity changes before and after mapping. Concrete experiments
will be given in later sections.

Taking the task of pairwise face verification for example, the original inputs are FV
vectors representing pairs of face images, e.g. (x;,y;). By minimizing the cost on some
training data, we obtain an optimal mapping function f(z, W,) that produces new vector
representations in the target space, e.g. (a;,b;). According to the defined objective, similarity
values between similar face images in the target space should be larger than that in the
original space (i.e. cos(a;,b;) > cos(x;,y;) when s; = 1), while similarity values between
dissimilar face images in the target space should be smaller than that in the original space (i.e.
cos(aj,b;) < cos(x;,y;) when s; = —1). Thus it is easier to distinguish a similar pair from a
dissimilar pair in the target space than in the original space, which leads to better verification
performance. For pairwise speaker verification, we simply substitute the FV face vectors
with the i-vectors representing speech utterances.

We use two dotplot figures to illustrate the pairwise similarity values between vectors
before and after mapping for face images from the LFW dataset (Fig. 4.4). The mapping

96 Applications on Pairwise Verification

1200 i 1200[; = [h

1000 1000| ¢ -

Face Image Index
Face Image Index

0 200 400 600 800 1000 1200 0 200 400 600 7 800 1000 1200

Face Image Index Face Image Index
(a) Before mapping (b) After mapping

Fig. 4.4 Dotplots illustrating pairwise similarity matrices between vectors (a) before mapping
and (b) after mapping for some face images from the LFW dataset. Dark points mean high
similarity and light points mean low similarity. The mapping is linear and trained on data of
LFW under the restricted setting.

function here is the linear one: f(z) = Wz and the pairwise similarity values are calculated
by the Cosine Similarity: cos(a,b) = Ha‘j“rﬁ. We train this linear model on the LFW data
under restricted setting. Figure 4.4 (a) shows the pairwise similarity matrix before mapping,
i.e. in the original space; Fig. 4.4 (b) shows the pairwise similarity matrix after mapping, i.e.

in the target space. Note that high similarity values are represented by dark pixels.

We select individuals with 30-100 images from the LFW dataset and order these images
in a sequence such that images from the same individuals are grouped together. There are
1230 images in total for all the 29 individuals. We can see that each dotplot figure contains
dark square regions along the diagonal, showing the high within-individual similarity values.
In contrast, regions away from the diagonal represent the between-individual similarity
values which are explicitly brighter. This implies that in both of the two dotplots, most of the

dissimilar pairs have smaller similarity values than the similar pairs.

Comparing the dark blocks in the two dotplot figures (e.g. region 1), there are clear
holes within the dark blocks in the original space (Fig. 4.4 (a)). But after mapping into the
target space, the dark blocks are more salient along the diagonal (Fig. 4.4 (b)), which implies
that the within-individual similarities have been strengthened by the mapping. Besides,

comparing the non-diagonal regions (e.g. region 2) in the two dotplot figures, it is strange

4.4 Linearity in Pairwise Verification 97

that some of the between-individual similarities have also been strengthened despite our
objective to weaken them.

However, it is indeed easier to distinguish a similar pair from a dissimilar pair in the
target space than in the original space. To verify this, we define a triplet {x;,y;,z;} where x;
and y; represent two face images of the same individual, z; represents a face image from a
different individual. Ideally, we suppose that the within-individual similarity cos(x;,y;) is
always larger than the between-individual similarity cos(x;,z;). We randomly select 1230
triplets from the similarity matrices in Fig. 4.4. Table 4.11 shows that the proportion of
the triplets {x;,y;,z;} satisfying cos(x;,y;) > cos(x;,z;). We can see that the proportion has
been significantly increased by the mapping (from 92.85% to 96.34%), which implies the
effectiveness of the proposed TSML mapping.

Figure 4.4 and Table 4.11 have shown that we can learn a better metric for the training
data. By using early stopping, we guarantee the learned metric to be also effective on the
validation and test sets. Figure 4.5 (a) shows the learning curve of the linear model used
in Fig. 4.4. The blue line shows the learning curve on the validation set, and the red line
denotes the learning curve on the test set. According to early-stopping, only the results at the
peak of the validation learning curve are retained as performance reporting. We can see that
all the recorded accuracies of the training, validation and test sets are higher than that at the
beginning, in other words, a better metric is indeed obtained for all the data.

However, when the learning curve of the training set rises quickly to the top (i.e. 100%),
the learning curves of the validation and test sets only climb up a little. The large gap between
the accuracies of the training and test sets is so called the over-fitting gap. In the following
sections, we will present several techniques to reduce the over-fitting gap and improve the
verification performance on the test set.

C. Experimental results

At the beginning, we directly calculated maxDA scores on the whitened feature vectors, i.e.
the 500-dimensional FV vectors for the LFW dataset and 600-dimensional i-vectors for the
NIST i-vector dataset. We consider this evaluation as the baseline. According to the different
neuron models defined in Section 4.4.1, we evaluated three metric learning approaches in the

experiments:
* TSML-Linear: using a single layer of linear neurons without bias term;
* TSML-Nonlinear: using a single layer of nonlinear neurons with a bias term;

* TSML-MLP: using two layers of nonlinear neurons with bias terms;

98 Applications on Pairwise Verification

100+ 100
<
3 90 84 50 87.00
2 ——Training [
1 84.00
g 80 85.83 — Validation
— Test
70 1 1 1 1 1 1 T |
0 0.5 1 15 2 2.5 3 35 4
Iteration Number % 10°
(a) Learning curve of TSML-Linear
100 10
£ 90 87.00
% S pmtvyysons AR "N ——Training [
S 80 83.17 — Validation
— Test
70 | | | | | | T |
0 0.5 1 15 2 2.5 3 35 4
Iteration Number % 10°
(b) Learning curve of TSML-Nonlinear
100¢ 100
g\{ 90
2 — Training
o
S 80 W — Validation
— Test
70 1 1 1 1 1 1 T |
0 0.5 1 15 2 2.5 3 35 4
Iteration Number % 10°

(c) Learning curve of TSML-MLP

Fig. 4.5 Learning curves of different TSML models. Curves on the training, validation
and test sets are represented by black, blue and red lines, respectively. All the models are
trained on the LFW data under the restricted setting. According to early stopping, the vertical
line indicates the model having the best performance on the validation set. Without any
additional regularization techniques, the more complex the learning model is, i.e. having
more parameters, the larger the over-fitting gap is.

4.4 Linearity in Pairwise Verification 99

All these models are trained on both similar and dissimilar pairs. Results on the LFW-
funneled dataset and the NIST i-vector dataset are summarized in Tables 4.12 and 4.13,
respectively. We also re-implement the state-of-the-art WCCN method as a comparison.

The first phenomenon we can observe is that unrestricted training produces better results
than restricted training. More training data bring up an accuracy improvement of about 5%,
e.g. from 86.23% to 91.43% by TSML-Nonlinear on the LFW dataset. We have known since
mid-seventies [154, 93, 99] that many methods increase in accuracy with increasing training
data until they reach optimal performance. Generally, more training data better capture the
underlying distribution of the whole dataset and thus reduce the over-fitting gap between
training and test.

The second observation is that the linear model, TSML-Linear, performs better than the
nonlinear models, TSML-Nonlinear and TSML-MLP. For example, TSML-Linear obtains
an accuracy of 89.78% but TSML-MLP only gets 84.88% on the Nist i-vector dataset.
Specifically, more parameters (i.e. additional bias terms or/and more layers of neurons) and
the nonlinearity make the two nonlinear models more powerful to adapt themselves to the
training data. However, without any additional anti-over-fitting techniques, generalization to
the test data is not guaranteed. Figure 4.5 shows the learning curves of the three models in
restricted training, we can see that all of them easily fit the training data. Especially, with the
most parameters, TSML-MLP is the strongest learning machine that reaches the accuracy
of 100% on the training data with the fewest iterations, but it performs the worst on the test
data. More regularization techniques, such as Weight decay [100] and Dropout [153], can
be introduced to reduce the risk of over-fitting for such a slightly deeper nonlinear model,
but their analysis would go beyond the scope of this thesis. In contrast, with the same
experimental setting, linearity naturally indicates the property of generalization and thus

makes TSML-Linear better fit to the unseen data, i.e. the validation and test sets.

D. Learning on similar pairs only for restricted training

In previous sections [184], we have shown that learning on similar pairs only improves the
verification performance under the restricted training. Hence we train the proposed three
models on similar pairs only, namely, TSML-Linear-Sim, TSML-Nonlinear-Sim and TSML-
MLP-Sim. The results are also shown in Tables 4.12 and 4.13. Figure 4.6 compares the
performance of TSML and TSML-Sim on the LFW-funneled dataset and the NIST i-vector
datset, respectively, where "TSML’ denotes the three standard models that trains on both
similar and dissimilar pairs, "TSML-Sim’ means learning on similar pairs only.

From the right bars in the two figures, under the unrestricted configuration, we can see
that the TSML-Sim models perform comparable with the TSML models. This implies that

100 Applications on Pairwise Verification

Table 4.12 Mean maxDA scores (£standard error of the mean) of pairwise face verification
on the LFW-funneled dataset. *-Sim’ means learning on similar pairs only.

Approaches Restricted Training Unrestricted Training
Baseline 84.83+0.38

WCCN [8, 26] 91.10+0.45 91.174+0.36
TSML-Linear 87.95£0.40 92.03+0.38
TSML-Nonlinear 86.23+0.39 91.43+0.52
TSML-MLP 84.10+0.45 89.30£0.73
TSML-Linear-Sim 91.90+£0.52 92.40+0.48
TSML-Nonlinear-Sim 90.58+0.52 91.474+0.37
TSML-MLP-Sim 88.98+0.64 89.03+0.58

Table 4.13 Mean maxDA scores (+standard error of the mean) of pairwise speaker verification

on the NIST i-vector dataset. -Sim’ means learning on similar pairs only.

Approaches Restricted Training Unrestricted Training
Baseline 87.78+0.39

WCCN [8, 26] 91.69+0.29 91.974+0.33
TSML-Linear 89.78+0.25 93.97+0.20
TSML-Nonlinear 87.43+0.31 93.11+£0.20
TSML-MLP 84.88+0.24 90.21+0.36
TSML-Linear-Sim 92.94+0.15 93.99+0.24
TSML-Nonlinear-Sim 91.2940.25 93.434+0.23
TSML-MLP-Sim 89.59+0.45 90.83+0.30

during training, only the similar pairs are adequate for learning a better metric. Moreover,
under the restricted configuration, i.e. when the training data are limited, the TSML-sim
models largely outperform the TSML models (see the left bars in Figure 4.6), which strongly
evidences the substantial contribution of the similar pairs. In other words, it is the lack of
enough dissimilar pairs that causes over-fitting problems for the TSML models.
Concretely, the setting of equal quantity of similar and dissimilar pairs is problematic
for restricted training. Assuming a n-class problem with two samples in each class, the
number of all possible similar pairs is n. But the number of all possible dissimilar pairs
is 2n(n — 1), which is exponentially larger than the number of similar pairs. However, the
restricted configuration requires the number of dissimilar pairs is the same as the number
of similar pairs. For example, we select only 300 similar pairs and 300 dissimilar pairs in

each subset of the LFW dataset. As a consequence, learning on such limited dissimilar pairs

4.4 Linearity in Pairwise Verification 101

94.00

92.00

90.00

OTsML
@ TSML-Sim

maxDA

88.00

86.00
84.00

82.00

Restricted Unrestricted

(a) Results on LFW-funneled

94.00

92.00

90.00

OTSML

88.00 ETSML-Sim

maxDA

86.00
84.00

82.00

Restricted Unrestricted

(b) Results on NIST i-vector

Fig. 4.6 Performance comparison between TSML and TSML-Sim on the LFW-funneled
dataset and the NIST i-vector dataset. "TSML’ denotes the four models that trains on both
similar and dissimilar pairs, "TSML-sim’ means learning on similar pairs only.

causes serious over-fitting problems to the TSML models, that is why they perform worse
than the TSML-Sim models. In contrast, when the training is unrestricted, enough dissimilar
pairs can be covered during training. All similar pairs will be duplicated for many times but

it does not matter.

In short, restricted training on equal quantity of similar and dissimilar pairs does not
accord with the ratio of similar and dissimilar pairs in practice. The similar pairs indeed
deliver more positive contributions to learning a better metric. Apart from our suggestion of
learning on similar pairs only, this goal can be achieved by other techniques such as shifting
the Cosine Similarity boundary [183], using hinge loss functions to filter invalid gradient
descent from dissimilar pairs [69] or weighting the gradient contributions from similar and
dissimilar pairs [125, 70].

102 Applications on Pairwise Verification

Table 4.14 Comparison of TSML-Linear-Sim with other state-of-the-art results under the
restricted configuration with no outside data on LFW-funneled.

Method Accuracy
V1-like/MKL [133] 79.35+0.55
APEM (fusion) [102] 79.06+1.51
MRF-MLBP [3] (no ROC) 79.08+0.14
SVM-Fisher vector faces [150] 87.47+1.49
Eigen-PEP (fusion) [103] 88.97+1.32

Hierarchical-PEP (fusion) [101] 91.10£1.47
MRF-Fusion-CSKDA [4] (no ROC) 95.89+1.94

TSML-Linear-Sim (this work) 91.90+0.52

Table 4.15 Comparison of TSML-Linear-Sim with other methods using single face descriptor
under the restricted configuration with no outside data on LFW-funneled.

Method Feature Accuracy
MRF-MLBP [3] multi-scale LBP 79.08+0.14
APEM [102] SIFT 81.884+0.94
APEM [102] LBP 81.974+1.90
Eigen-PEP [103] PEP 88.47+0.91
Hierarchical-PEP [101] PEP 90.40+1.35
SVM [150] Fisher Vector faces 87.47+1.49
WCCN [8] Fisher Vector faces 91.10+0.45

TSML-Linear-Sim Fisher Vector faces 91.90+0.52

E. Comparison with the state-of-the-art

We compared the proposed TSML-Linear-Sim method with several state-of-the-art methods
on the LFW dataset under the image-restricted configuration with no outside data [74]. The
comparison is summarized in Table 4.14, and the corresponding ROC curves are shown in
Fig. 4.7. The curves of MRF-MLBP [3] and MRF-Fusion-CSKDA [4] are missing because
the curve data are not provided on the public result page®. We can see that MRF-Fusion-
CSKDA occupies the first place and the proposed TSML-Linear-Sim takes the second one
with a large gap (91.90% vs. 95.89%). This is because MRF-Fusion-CSKDA employed
multi-scale binarized statistical image features and made a fusion on multiple features [4].
However, the proposed TSML-Linear-Sim method is linear and simple as it has only utilized
a single feature, the FV vectors.

8http://vis-www.cs.umass.edu/Ifw/results html#ImageRestrictedNo

4.5 Conclusion 103

Image Restricted, No Outside Data

-—
-

0.9r

0.8r

0.7
L
0.6
[}
=
% 0.5
o
o
S 04
|_

0.3}

! - - - Linear—-TSML-sim (this work)
0.2 —— Eigen—PEP (fusion)
—— SVM-Fisher vector faces
0.1 —— APEM (fusion)
V1-like/MKL
0 1 1 1 1 J
0 0.2 0.4 0.6 0.8 1

False Positive Rate

Fig. 4.7 ROC curves of Linear-TSML-Sim (red dashed line) and other state-of-the-art
methods on the LFW dataset under the restricted configuration with no outside data.

Thus we collected the results of methods using a single feature in Table 4.15. Especially,
we also applied another state-of-the-art approach WCCN [8] on the FV vectors as a compari-
son. We can see that the proposed TSML-Linear-Sim method achieves the best performance
(91.90%) among all the methods using a single feature. Especially, TSML-Linear-Sim
significantly surpasses the conventional Support Vector Machine (SVM) method [150] on
the FV vectors by 4.43% points (from 87.47% to 91.90%).

4.5 Conclusion

In this chapter, we have applied the proposed linear TSML method to a series of pairwise
verification problems such as pairwise face verification, pairwise kinship verification and
pairwise speaker verification. We presented a simple but effective solution of learning a
linear model on similar pairs only.

We first pointed out that the setting of limited training data for some classes and the

setting of mutually exclusive training and test sets make such a pairwise verification task

104 Applications on Pairwise Verification

suffering from over-fitting problems. By extensive experimental validation, we presented

several strategies and confirmed their effectiveness on reducing the risk of over-fitting:

* More training pairs: compared with restricted training only allows to use the specified
training pairs in a dataset, unrestricted training covers enough dissimilar pairs and thus

protect the models from over-fitting to a small portion of training data.

 Linearity: deep structure of more parameters and the nonlinearity make nonlinear
models more powerful to adapt themselves to the training data. However, without any
additional anti-over-fitting techniques, generalization to the test data is not guaranteed.
In contrast, linearity acts like a simple generalization strategy that makes the linear

model better fit to unseen data in the validation and test sets.

* Learning on similar pairs only for restricted training: under the data-restricted
setting, training on equal quantity of similar and dissimilar pairs does not accord with
the ratio of similar and dissimilar pairs in practice. Instead of getting more training data,
we have shown that discarding the dissimilar pairs is a good way to avoid over-fitting

to the few dissimilar pairs and to learn a better metric.

» Early stopping: when we use stochastic gradient descent for optimization, we employ
early stopping to guarantee the learned metric to be also effective on the validation
and test sets. Since both the validation and test sets are unseen data in the training set,
evaluation results on the two sets are usually correlated and the model achieving the

best performance on the validation set usually performs well on the test set.

* Regularization factor: when we use batch gradient descent by an advanced optimiza-
tion algorithm such as L-BFGS, we put in a regularization factor to prevent over-fitting.
Concretely, for linear models, the regularization factor constrains the learned matrix to
be close to a specified initialization matrix (see Section 4.2.2); for nonlinear models,
Weight decay [100] is usually adopted to control the weights of neural networks, in
order to reduce the large over-fitting gap between training and test.

With these strategies, the nature of learning a good metric makes the TSML method effective
on all the different pairwise verification tasks. It presented competitive performance with the
state-of-the-art methods in all the experiments. Especially, it has achieved the best result on
the KinFaceW-II dataset in the FG 2015 Kinship Verification Evaluation [112].

Chapter 5

Applications on Classification and
Dimensionality Reduction

5.1 Introduction and Related Work

In the previous chapter, we have applied linear Triangular Similarity Metric Learning (TSML)
for a specific task of pairwise verification, which is different from traditional classification
tasks. In machine learning and statistics, classification or identification is a classical problem
of identifying to which of a set of categories a new observation belongs, on the basis of a
training set of data containing observations (or instances) whose category membership is
known [2]".

Compared with the setting of inadequate training data for some categories (i.e. classes)
and the setting of mutually exclusive training and test sets in pairwise verification, a traditional
classification task usually assumes enough training data for every class and most of test data
belonging to a certain category in the training set. One of the earliest and simplest methods
for classification is the k-Nearest Neighbors (kKNN) classifier [34]. kNN classifies each
unlabeled example by the majority label of its k nearest neighbors in the training set. Despite
its simplicity, kNN often yields competitive results on many practical problems. Since
performance of kNN classification heavily depends on the metric used to compute distances
or similarities between examples, many metric learning methods have been proposed to
improve classification performance of kNN [169, 55, 136, 52, 39, 60].

Generally, though the application changes from verification to identification, the objective

of learning a metric from data pairs remains the same. In other words, we will still aim at

Uhttps://en.wikipedia.org/wiki/Statistical_classification

106 Applications on Classification and Dimensionality Reduction

specifying a mapping function to project data from the original space to the target space, and
minimizing the triangular loss for all data pairs in the target space.

Especially, when we set the dimension of the target space lower than that of the original
space, the process of mapping performs dimensionality reduction. Moreover, if the target
space is a visualizable space, i.e. the dimension of the target space is lower than 3 so that
one can see the objects in it, this particular kind of dimensionality reduction is also called
data visualization. However, performing dimensionality reduction usually causes loss of
information in the original data, thus we will face a challenging problem of keeping accurate
classification while reducing the target dimension.

In Chapter 3, we have visualized data mapping of some toy data from specific Gaussian
distributions. In this chapter, we will use our TSML models for classification and dimen-
sionality reduction on practical data, including both small-scale and large-scale datasets.
Concretely, we utilize the triangular loss function as the objective function for all different
problems. In terms of the mapping function, we employ neural networks to perform nonlinear
mappings: Multi-layer Perceptrons (MLP) for small-scale data; deep Convolutional Neural
Networks (CNN) for large-scale data. Before introducing the details of our own methods, we

first review the related literature of using neural networks for dimensionality reduction.

Neural Networks and Dimensionality Reduction

Using neural networks for dimensionality reduction is an old idea which has its origins in the
late 1980’s and early 1990’s. The first work may be the Auto-Associate Neural Networks
(AANN) [33, 56], a special type of MLP where the input and output layers have the same
number of neurons, and the middle hidden layer has fewer neurons than the input and output
layers. The objective of AANN is to reproduce the input pattern at its output. Thus it
actually learns a mapping on the input patterns into a lower-dimensional space and then
an inverse mapping to reconstruct the input patterns. Since it does not need the input data
to be labeled, the middle hidden layer learns a compact representation of the input data
in an unsupervised manner [43]. However, researchers have found that the dimensionality
reduction by the AANN is quite similar with the well-known Principal Components Analysis
(PCA) technique [44].

More recently, a more mature and powerful AANN, the deep autoencoder networks [68]
have presented an effective way of initializing the network parameters that leads the low-
dimensional coding much better than PCA. For all the layers in the deep networks, the authors
proposed a restricted Boltzmann machine to pretrain the network parameters layer-by-layer,
followed by a fine-tuning procedure for optimal reconstruction via the Backpropagation
algorithm [142].

5.2 Classification and Visualization on Small-scale Data 107

Different from the unsupervised dimensionality reduction by the above AANNs, we
intend to employ the neural networks to perform dimensionality reduction in a supervised
manner using siamese architectures. Siamese Neural Networks have first been presented
by Bromley et al. [24] using Time Delay Neural Networks (TDNN) on the problem of
signature verification. This idea was then adopted by Chopra et al. [32] who used Siamese
Convolutional Neural Networks (CNN) for face verification, i.e. to decide if two given face
images belong to the same person or not. Recently, Berlemont et al. [18] also successfully
employed the Siamese Neural Networks for inertial gesture recognition and rejection.

Remainder of this chapter is organized as follows: Section 5.2 incorporates MLP with
the triangular loss function for classification and dimensionality reduction on small-scale
datasets. Section 5.3 illustrates how to use our CNN-based TSML model and a hybrid
training algorithm to realize end-to-end data visualization on large-scale data. Finally, we

draw our conclusions in Section 5.4.

5.2 C(lassification and Visualization on Small-scale Data

Since the 1980’s [142], Multi-layer Perceptrons (MLP) have been a popular solution to object
classification problems such as image recognition [181] and speech recognition [106, 21]. It
has been demonstrated that MLPs are able to approximate arbitrary nonlinear mappings and
thus can easily fit to a set of training data [100]. However, good generalization to a set of test
data is not guaranteed so that MLPs are usually sensitive to over-fitting problems in practice.

A classical MLP consists of an input layer, one or more hidden layer(s) and an output
layer of perceptrons. There is no theoretical rule but only empirical tricks for configuring the
structure of an MLP, i.e. the values of hyperparameters, including the number of hidden layers,
the size of each hidden layer and the type of activation functions. These hyperparameters
determine the power of the MLP and should be carefully selected for a practical problem.
Thus developing the right MLP is indeed an art of balance between under-fitting and over-
fitting. Generally, in a multi-class classification problem, apart from the hyperparameters, the
size of the input layer is determined by the dimension of input feature vectors; and the size
of the output layer is fixed to the dimension of predefined target vectors. Target values are
typically binary for classification problems. For example, for a 3-class classification problem,
we usually set unit vectors [1,0,0]7,[0,1,0]7,[0,0,1]7 as target vectors for the 3 classes. In
other words, the output dimension of an MLP is usually constrained to the number of classes
in the problem.

In this work, we present TSML-MLP as a semi-supervised learning method for classi-

fication. It performs learning on similar and dissimilar data pairs while the classical MLP

108 Applications on Classification and Dimensionality Reduction

trains on fully labeled training samples. TSML-MLP incorporates the proposed triangular
loss function with two MLPs in a siamese architecture, to relax the constraint on the output
dimension, making flexible dimensionality reduction to the input data. The two MLPs in
TSML-MLP actually share the same set of parameters. Compared with the classical MLP
that constrains the outputs approaching some predefined target values, TSML-MLP defines a
specific objective: (1) for an input pair from the same class, making the pairwise similarity
between their outputs larger; (2) for an input pair from different classes, making the pairwise
similarity between their outputs smaller. With such an objective, the dimension of the target
space can be arbitrarily specified.

More interestingly, TSML-MLP has this advantages without losing its superior ability of
accurate classification. In our experiments, we compare the TSML-MLP with the classical
MLP for face identification on the Extended Yale B dataset [S51]. In addition, we employ
a statistical significance testing method called Bootstrap Resampling [84] to evaluate the
comparison between TSML-MLP and the classical MLP. The testing results show that
TSML-MLP achieves comparable performance with the classical MLP on the problem of
face identification.

Overall, the main contributions of this work are summarized as below:

* we show the capability of TSML-MLP for dimensionality reduction and data visual-
ization in 2-d and 3-d spaces. We find that TSML-MLP projects the original input data
to the vertexes of a regular polyhedron.

* we demonstrate that TSML-MLP has the above advantages without losing its superior
ability of accurate classification. It achieves comparable performance with the standard

MLP on face classification.

5.2.1 Multi-layer Perceptrons

We use the same MLP either as an independent classifier or as the mapping function in the
siamese architecture of TSML-MLP. Figure 5.1 shows the structure of the MLP to realize
the mapping from the input to the output, size of the only hidden layer is set to 100. Size
of the input layer is 262 to receive the whitened feature vectors. Adjacent layers are fully
connected and the activation function is the tanh function. Size of the output layer is larger
than 2, depending on the model and its application.

The MLP classifier

For a given input sample x;, assuming its output on the MLP is a;. Formally, the output is a
function of the input and the weights W of the MLP: a; = f(x;, W). The objective function

5.2 Classification and Visualization on Small-scale Data 109

HIDDEN
100

INPUT OUTPUT
262 >2

Fully-connected Fully-connected

Fig. 5.1 Diagram of the 3-layer MLP used for face classification.

of an MLP classifier is simply the Mean Squared Error (MSE) between the computed outputs

and their desired targets for all training samples:

1

oy L (ai—g)”, (5.1)

M=

J=
1

i

where N is the number of all possible training samples, g; is the target vector for the output
sample a;. Remind that g; is usually hand-crafted unit vectors. For example, for a 3-class
classification problem, we usually set the unit vector [1,0,0]” as target vector for the first
class. Thus, index of the largest element in an output a; indicates the class that it belongs to.

TSML-MLP

As we have mentioned in previous chapters, the proposed TSML methods takes a pair of
samples as the input and requires no hand-crafted targets. For the i, pair (x;,y;) from a
training set, the mapping function f(-) produces two outputs (a;,b;) where a; = f(x;, W)
and b; = f(y;, W). The objective of TSML-MLP is to minimize the triangular loss function:

1 1
Ji = 3 il S il = rllei| + 72, (5.2)

where r is a constant constraint on the vector length; ¢; = a; + s;b;, representing the simplified
Triangular Similarity and s; = 1 (respectively s; = —1) means that the two vectors a; and b;

are a within-class pair (respectively a between-class pair). Minimizing such a function makes

110 Applications on Classification and Dimensionality Reduction

a within-class pair closer and separates a between-class pair as much as possible. After the

mapping, a kNN classifier is used to perform classification on all the outputs.

Difference between MLP and TSML-MLP

From Chapter 3, we have known that the classical MLP and TSML-MLP have similar
gradient formulations, so that we can employ the same Backpropagation algorithm [142] for
training them. However, there are also apparent differences between them on both the input
and output layers.

For each training vector Xx;, the classical MLP needs to know which class x; belongs to.
In contrast, TSML-MLP takes a more flexible constraint: it only needs the side information —
whether two input vectors x; and y; are of the same class or not. The relationship between

the two constraints can be summarized as:

* when we know the class labels of x; and y;, we know whether they are of the same
class or not;

* however, even we know whether x; and y; are of the same class or not, we may have

no idea about the class labels of x; and y;.

As a result, TSML-MLP is applicable with the second constraint while the classical MLP
is not, i.e. TSML-MLP can learn on side information only. More important, we will
demonstrate that the relaxation of constraint would not cause classification accuracy loss to
experiments.

On the output layer, the classical MLP fixes the output dimension equal to the number
of classes. However, TSML-MLP has no constraint on the output dimension. Therefore,
for a problem with more than 3 classes, TSML-MLP is applicable for data visualization,
i.e. projecting the input data into 2-d or 3-d spaces; but the classical MLP can only make a
projection into a space with dimension more than 3. In following sections, we will illustrate

the effect of TSML-MLP on dimensionality reduction and data visualization.

Batch Gradient Descent or Stochastic Gradient Descent

Once we have defined an error function and its gradient, the Backpropagation algorithm [142]
applies gradient descent to minimize the overall error for all training data iteratively. Typical
gradient descent algorithms include stochastic gradient descent, batch gradient descent, and
the trade-off between them, mini-batch gradient descent.

Particularly, stochastic gradient descent uses only one data sample for training in each

iteration and mini-batch gradient descent takes several data samples as a small batch in each

5.2 Classification and Visualization on Small-scale Data 111

— s — |

R=[D/S]

Fig. 5.2 Index matrix for mini-batch gradient descent of TSML-MLP. The first row stores the
S within-class pairs, followed by all the between-class pairs. The empty positions in the end
of the matrix can be optionally filled with some between-class pairs.

training iteration. These two algorithms are quite similar and useful for online learning appli-
cations but the latter is usually preferred because it yields smoother gradient change. Batch
gradient descent uses all training samples in each iteration so it is only available for offline
training. Some advanced optimization algorithms can help batch gradient descent to accel-
erate the learning speed, namely, the Conjugate Gradient Descent (CGD) algorithm [115]
and the Limited-memory Broyden Fletcher Goldfarb Shanno (L-BFGS) algorithm [108].
Compared with stochastic and mini-batch gradient descent, the advantage of these advanced
algorithms is that they have no need to manually pick a learning rate.

For the proposed TSML-MLP, the advanced batch gradient descent algorithms maybe
only suitable for small-scale problems, because TSML-MLP takes data pairs for learning,
and the number of all training sample pairs is exponentially larger than the number of all
training samples. Specifically, for a problem of N training samples, the number of all possible
sample pairs is N(N — 1)/2. Therefore, for medium and large-scale problems, it is difficult
to load all the training pairs as a whole batch, we have to use stochastic gradient descent or
mini-batch gradient descent.

Commonly, a probable mini-batch contains equivalent number of within-class pairs and
between-class pairs [32, 184]. However, the actual ratio of within-class pairs and between-
class pairs is not equivalent. For example, for m classes each with n training samples, the
number of within-class pairs is mn(n —1)/2 and the number of all between-class pairs is
mn(mn —n) /2. Thus the ratio between within-class pairs and between-class pairs is n(',’n;JI),
i.e. one within-class pair is accompanied by % between-class pairs. Consequently,
instead of taking equivalent number of within-class pairs and between-class pairs in a mini-

batch, we propose the following strategy to choose data pairs for a mini-batch:

112 Applications on Classification and Dimensionality Reduction

Algorithm 2: Optimization of the TSML-MLP

input : Training set; Number of training data N;
output: Parameters P

% initialization

Random initialization to the set of parameters P;

% optimization by back propagation

if N is large then

% this is a large-scale problem (N > 1000)

Set learning rate p = 107%;

Generate mini batches that each contains 1 similar pair and R dissimilar pairs
(Figure 5.2);

| Employ mini-batch gradient descent to update P;

else

% this is a small-scale problem

Generate a whole batch which contains all similar and dissimilar pairs;

| Employ batch gradient descent (the advanced L-BFGS algorithm) to update P;
9 output the final set of parameters

return P.

* Count the training samples and denote the number as N, hence there are totally
N(N —1)/2 sample pairs.

* Count the within-class pairs and denote the number as S, then the number of between-
class pairsis D=N(N—1)/2—S.

* Let R = [D/S], i.e., the smallest integer not less than D/S.

* Make an index matrix with R+ 1 rows and S columns (Figure 5.2), put the indexes of
the S within-class pairs in the first row and put the indexes of all the between-class

pairs in the following rows.

* (Optional) Randomly pick some between-class pairs to fill the remain empty position
in the end of the matrix.

 Take the indexes in each column as a mini-batch, which contains a single within-class
pair and R between-class pairs.

In general, we summarize the optimization procedure for the proposed TSML-MLP in
Algorithm 2. For a large-scale problem, mini-batch gradient descent is used in optimization;
for a small-scale problem, batch gradient descent is adopted. Particularly, the scale of a

problem is small or large depends on the machine capacity we used. In our case, we usually

5.2 Classification and Visualization on Small-scale Data 113

Fig. 5.3 Example images of an individual in the Extended Yale B dataset. These frontal-face
images were captured under various lighting conditions.

consider a problem with more than 1,000 training samples as a large-scale problem, since
the number of all possible similar and dissimilar pairs is at least 499, 500.

5.2.2 The Extended Yale B Dataset and Face Descriptors

We perform experiments on the Extended Yale B dataset [51]. It contains 2,414 frontal-face
images of 38 individuals. These images were captured under various lighting conditions.
All the images have been cropped and normalized, with the same size 192x168. Figure 5.3
provides some example images of an individual in the dataset. We can see that the lighting
directions in different images are significantly varied. For instance, it is difficult to recognize
the face in the middle of Figure 5.3 since it hides in deeply dark.

We divide the whole dataset into three non-overlapping subsets: training, validation and
testing. We learn a model on the training set, choose the best set of parameters that achieves
the highest performance on the validation set, and report the classification performance on

the testing set using the best parameters. Especially, we take a small-scale training set in

114 Applications on Classification and Dimensionality Reduction

the experiments: for each individual, only one out of ten images are used for training, 1.e.
there are 263 face images in the training set. And the size ratio of the training, validation and
testing sets is 1:3:6. All the experiments are repeated 10 times with randomly shuffled data,
and the mean accuracy (= standard error of the mean) are reported.

Face Descriptors

Popular face descriptors for face detection and face recognition include eigenfaces [162],
Gabor wavelets [38], haar-like features [105], SIFT [81], Local Binary Pattern(LBP) [1],
etc. Recently, Barkan et al. [8] proposed Over-complete Local Binary Patterns (OCLBP),
a new variant of LBP that significantly improved the face verification performance. Thus
we adopt the OCLBP feature as the major face descriptor in our experiments. Besides, we
also use Gabor wavelets and the standard LBP to represent the face images as a comparison.
Following [8, 184], both the original face descriptors and their square roots are evaluated in
the experiments.

Gabor wavelets: we extract Gabor wavelets with 5 scales and 8 orientations on each
downsampled image. The downsampling rate is 10x 10 for all the 192x 168 images, thus the
dimension of an extracted Gabor vector is 12,160 (= 5x8x19x16).

Local Binary Patterns: we use the uniform LBP [128] to represent face images. The
uniform LBP is denoted as LBP’;E,, where u2 stands for "uniform’, (p,r) means to sample p
points over a circle with a radius r. The dimension of an uniform pattern is 59. Concretely,
each 192x 168 image is divided into non-overlapping 16 x 16 blocks and uniform LBP
patterns LBPg‘.z1 are extracted from all the blocks. We concatenate all the LBP patterns into a
feature Vector; whose dimension is 7,788 (= 12x11x59).

Over-complete Local Binary Patterns: unlike LBP adopts non-overlapping blocks,
OCLBP adopts overlapping to adjacent blocks. Formally, the configuration of OCLBP is
denoted as S : (a,b,v,h, p,r). An image is divided into a x b blocks with vertical overlap of v
and horizontal overlap of 4, and then uniform pattern LBPZ?, are extracted from all the blocks.
Moreover, the OCLBP is composed of several different configurations: S; : (16, 16, %, %, 8,1),
S»: (24,24, %, %, 8,2), S3:(32,32, %, %, 8,3). The three configurations consider three block
sizes: 16 x 16,24 x 24,32 x 32, and adopt half overlap rates along the vertical and horizontal
directions.

We shift the block window to produce overlaps. Taking the 16 x 16 block window for
example, with the shifting step 16 x % = 8 to the left and downwards, the total number
of 16 x 16 blocks is (192 — 1) x (188 — 1) = 460. Similarly, shifting the 24 x 24 window
produces 195 blocks and shifting the 32 x 32 window produces 110 blocks. The dimension

of our OCLBP vectors is 45, 135 ((460+ 195+ 110) x 59).

5.2 Classification and Visualization on Small-scale Data 115

The input layer of an MLP equals to the dimension of input feature vectors, so high
dimensional feature vectors make the MLP having an unnecessary large size of weights. To
avoid this problem, we apply whitened PCA to reduce the vector dimension. Since the size of
the training set is small (only 263 samples), we keep all the variance during dimensionality
reduction. Thus the reduced dimension is 262, and these 262-d feature vectors are taken as
inputs to the classical MLP or TSML-MLP.

5.2.3 Dimensionality Reduction in Face Classification

We evaluate three different methods in our experiments: kNN, MLP and the proposed TSML-
MLP. Different from the classical MLP, it is hard for TSML-MLP to directly make class
predictions on its output. We apply kNN on its output to perform class identification. This is
also the reason why we evaluate the kNN method as a comparison. Specifically, kNN in our
experiments uses the Cosine Similarity function to measure pairwise distance between data

and the number of nearest neighbors k is set to 1.

Output dimension of TSML-MLP

Empirically, size of the hidden layer is set to 100 for both the classical MLP and TSML-MLP.
As the number of different classes in the Extended Yale B dataset is 38, the output dimension
of the classical MLP is fixed to 38. In contrast, TSML-MLP allows flexible output dimension,
thus we shift the output dimension from 2 to 250 and record the influence on the identification
accuracy. Note that the input dimension is 262, so we keep the output dimension less than 262
in order to perform dimensionality reduction. Figure 5.4 shows the identification accuracy
curve of TSML-MLP method on the square-rooted OCLBP feature. We can see that the
curve rises rapidly when the output dimension increases from 2 to 10, but then climbs up

much slower. The optimal solution is with an output dimension more than 80.

Comparison with the classical MLP

Table 5.1 summarizes the results of different methods on different face descriptors on the
Extended Yale B dataset. The output dimension of TSML-MLP is set to 80. Compared with
kNN, TSML-MLP has brought significant improvement on face identification. Compared
with the classical MLP, TSML-MLP achieves comparable results. For example, on the square-
rooted LBP features, TSML-MLP obtains an accuracy of 96.34%, seems slightly better than
the result of the classical MLP, 96.28%. Besides, methods using square-rooted features
always obtain better performance than those using the original features. This phenomenon is

consistent with that on the problem of face verification [184].

116 Applications on Classification and Dimensionality Reduction

> 0.9796 0.9833 0.9842 0.9842 0.9842 0.9840 0.9840 0.9841
% 1 09241 o4 o _o----- ©---6---6---=--0-=-=-=-=-=-=-= O- === °
1
3 ' !
308 ! .
< ,' 1
& 0.6 !
@ !)
2 0.4F, -
= 1
5026 !
s F).1934 '
O | | | | 1 | | | | |
210 30 50 80 100 120 150 200 250

Output Dimension

Fig. 5.4 Identification accuracy curve of TSML-MLP on the square-rooted OCLBP feature,
with respect to the increasing output dimension.

Fig. 5.5 Face images that TSML-MLP using square-rooted OCLBP failed to recognize.

5.2 Classification and Visualization on Small-scale Data

117

Table 5.1 Face identification accuracy (%) on the Extended Yale B dataset. Generally,
TSML-MLP = MLP > kNN. The output dimension of TSML-MLP is set to 80.

| Method | NN | MLP [TSML-MLP |
Gabor original 69.37(+4.32) | 79.72(+3.49) | 79.70(%+3.44)
square-rooted || 80.32(40.43) | 92.48(40.27) | 92.62(+0.28)
LBP original 79.06(£0.42) | 92.15(£0.41) | 92.27(+0.39)
square-rooted || 84.78(40.51) | 96.28(40.30) | 96.34(4+0.31)
OCLBP original 82.50(40.54) | 96.41(40.28) | 96.59(+0.31)
square-rooted || 86.11(40.55) | 98.33(£0.17) | 98.42(£0.16)

Table 5.2 Significance testing between MLP and TSML-MLP. A p-value smaller than 0.05
or 0.01 indicates a significant difference. Results confirm no significant difference between
MLP and TSML-MLP.

| Method | MLP | TSML-MLP | p-value |
Gabor original 79.72(+3.49) | 79.70(£3.44) | 0.4982
square-rooted || 92.48(40.27) | 92.62(+0.28) | 0.3559
LBP original 92.15(£0.41) | 92.27(+0.39) | 0.4150
square-rooted || 96.28(40.30) | 96.34(4+0.31) | 0.4486
OCLBP original 96.41(£0.28) | 96.59(+0.31) | 0.3364
square-rooted || 98.33(£0.17) | 98.42(4+0.16) | 0.3341

To confirm the comparison, we employ the Bootstrap Resampling approach [84] to
evaluate the pairwise statistical significance between the two methods. Note that the smaller
the p-value, the larger the significance. Usually, we consider a p-value smaller than 0.05 or
0.01 to indicate a significant difference. The significance testing results in Table 5.2 are all in
the range [0.3, 0.5], showing that there is no significant performance difference between the
classical MLP and TSML-MLP. We also test the significance between TSML-MLP and kNN,
the p-value is always 0 on all the difference features, demonstrating that TSML-MLP has
significantly improve the performance over the ANN method.

Comparing the three different face descriptors, the results on OCLBP are significantly
better than those on Gabor wavelets and those on LBP. For example, TSML-MLP using
square-rooted OCBLP achieves an average accuracy of 98.42% on the 10 repeated experi-
ments. Figure 5.5 shows the face images that TSML-MLP failed to recognize. Most of the
failure examples are rather dark so that it is difficult to extract effective facial texture features
from them. However, there are also some failure examples in good lighting condition. This
is probably because we apply kNN as the classifier and the final decision relies on the test
sample’s nearest neighbor in the training set. Since the training data are randomly selected, a

good nearest neighbor for each test sample is not guaranteed.

118 Applications on Classification and Dimensionality Reduction

0.2

0.15

0.1

0.05

~0.2 -0.1 0 0.1 0.2 02 02

(a) By Whitened PCA

(b) By TSML-MLP

Fig. 5.6 Visualization of dimensionality reduction into the 2-d or 3-d spaces using (a)
Whitened PCA and (b) TSML-MLP.

Running time: however, in the completely supervised manner, MLP trains on all data
samples but TSML-MLP takes all possible data pairs in training, so TSML-MLP runs much
slower than MLP. For example, on the square-rooted OCLBP face descriptors, calculating
the gradient once for all the data samples by the classical MLP costs only 0.0040 seconds on
average, but calculating the gradient once for all the data pairs by TSML-MLP needs about
0.7340 seconds. The increase of time consumption exists for all metric learning methods in
classification problems. Fortunately, this is affordable on the small-scale dataset used in the
current work. The running time was recorded on a machine with a 4-core CPU, 8 GB RAM

and 64-bit operating system.

5.2.4 Dimensionality Reduction in Data Visualization

In this subsection, we apply TSML-MLP to illustrate data visualization on a few data from
the Extended Yale B dataset. We select the first 4 classes each with 7 face images, totally

5.3 End-to-end Data Visualization on Large-scale Data 119

28 face images. These images are represented by 262-d OCLBP feature vectors. For data
visualization, all the input vectors are projected into the 2-d and 3-d spaces, respectively. In
addition, we also visualize the projection of whitened PCA as a comparison in Figure 5.6.

Figure 5.6 (a) shows the data distribution in the 2-d and 3-d target spaces using whitened
PCA, points with different colors are from 4 different classes. We can see that points
of different classes are mixing in both the 2-d and 3-d spaces. In contrast, TSML-MLP
successfully separates the points of different classes (Figure 5.6 (b)). More interestingly,
points of the same class concentrate tightly at a certain position, standing as a vertex of a
square in the 2-d space or a regular tetrahedron in the 3-d space. Note that both the square and
the regular tetrahedron take the origin point as the center. Thus all the between-class pairs
share exactly the same angle: (1) in the 2-d space, the angle between two points from different
classes is 90°; (2) in the 3-d space, the between-class angle is about 109.47°. In summary,
the objective of our TSML-MLP has been satisfied perfectly: separating the between-class
pairs and concentrating the within-class pairs.

Figure 5.7 pictures a more detailed procedure of data projection by TSML-MLP using
the mini-batch gradient descent algorithm (Section 5.2.1). At the beginning, TSML-MLP
is initialized with random parameters, so we observe mixed data classes around the origin
point in Figure 5.7 (a). Towards the objective of closing the within-class pairs and separating
between-class pairs, the points scatter away after 1000 iterations. Successively, after 3000
iterations, data from different classes have found their own optimal positions, and we can see
clear blank boundaries between different classes. Finally, after 20000 iterations, data of the
same class concentrate at each optimal position in Figure 5.7 (d).

However, this data visualization is performed on a quite small amount of data and can
not be directly applied on a large-scale dataset. In the following section, we will present a
more powerful model than the MLP, i.e. the deep CNN model, to realize nonlinear mappings.
We will also propose a hybrid training algorithm to train this model efficiently.

5.3 End-to-end Data Visualization on Large-scale Data

In all the previous works, hand-crafted features such as LBP, OCLBP are used to represent a
face image. In contrast, end-to-end learning has received much attention recently because it
requires no hand-crafted feature extraction algorithms but can be trained to predict outputs
from low-level inputs without extracting features. For example, for speech recognition,
Recurrent Neural Networks (RNN) learn to map directly from acoustic signals to phonetic
sequences [57]; for image classification, Convolutional Neural Networks (CNN) are able to

directly classify raw pixels into high-level concepts such as object categories [86].

Applications on Classification and Dimensionality Reduction

120
I
08
06
04f
02f
o
-0
-0.4
-0.
0.4
= 05 0 05 1
(a) Random Initialization
1
08F
.
06 .
o 0 .
0.4
° L]
02f
.
0 .
-0
.
-0.4 .
-0.§ °.
-0.4
= 05 0 05 1
(b) After 1000 iterations
I
08 .
06 o, o®
0.4f °* °
° .
0.2F L
o
-02
-0.4
04
0.8
= 05 0 05 1
(c) After 3000 iterations
I
08
06 EEEEEE R *
04 ! !
02 ! !
or ! ,’
! 1
-0.2 : I
1
-0.4 . ;
-0.6 S---___ !
TTo--d
0.4
= 05 [) 05 1

(d) After 20000 iterations

Fig. 5.7 Illustration of dimensionality reduction into the 2-d or 3-d spaces using TSML-MLP.

5.3 End-to-end Data Visualization on Large-scale Data 121

CNN is the most popular choice for end-to-end learning on images since it is originally
designed to receive an image as input. Like an MLP classifier, a classical CNN classifier is
only available for constrained dimensionality reduction because the size of the output layer
(i.e. the output dimension) is fixed to the number of classes in a classification problem. In
this work, we integrates the proposed triangular loss function with two CNNSs in a siamese
architecture, to relax the constraint on the output dimension, making flexible dimensionality
reduction to the input data. We name this method as TSML-CNN. Specially, we directly map
raw handwritten digit images in the MNIST dataset into visualizable spaces, i.e. dimension
of the target space is lower than 3 so that one can see the objects in it. This particular kind of
dimensionality reduction is so called end-to-end data visualization.

Like the relationship between MLP and TSML-MLP, in a completely supervised manner,
a CNN trains on all data samples and a TSML-CNN takes all possible data pairs in training,
so a TSML-CNN runs much slower than a CNN classifier. Time consumption of training
TSML-CNN on a large-scale dataset may be even unbearable. Therefore, we propose hybrid
training to accelerate learning: (1) training a TSML-CNN on a small portion of training data
to initialize the positions of different classes in the target space; (2) taking the initialized
positions as class labels for all the data samples, and training a classical CNN on these
re-labeled data. On the final outputs, we can apply kNN to perform class identification.
We carry out experiments on the MNIST handwritten digits dataset [96], projecting all the
original 28 x 28 images into the 1-dimensional, 2-dimensional or 3-dimensional spaces.

Overall, the main contributions of this work are the following:

* we present TSML-CNN to perform flexible dimensionality reduction and thus to realize
end-to-end data visualization for a large-scale dataset. Moreover, we will introduce a

hybrid training strategy to accelerate model training.

* we show that the proposed method realizes end-to-end data visualization without losing
its superior ability of accurate classification. It achieves competitive performance on

class identification in low dimensional and visualizable spaces.

* we demonstrate that the Triangular Similarity based objective provides us two different
perspectives to visualize the mapping results: one is on the unit sphere (hypersphere) in
a specific low dimensional target space, the other is on the unfolded plane (hyperplane)

in an even lower space.

122 Applications on Classification and Dimensionality Reduction

0000000000LLOD0O0OO

NG HhTFPP~O
AN ooN-LWV~O
U~ YUYW D~
Nl &y = O —
N3 snALw v~
-3 N K LN~
NN QIR RO~
v N LN~
R~V —
v oo p~
W~ ™Y < we~—
P~ s\ L WP —

D RA W —

\7997992%799999944

Fig. 5.8 Example images of handwritten digits in the MNIST dataset [96].

5.3.1 The MNIST Dataset and Convolutional Neural Networks

The MNIST handwritten digits dataset [96]% is a popular benchmark for classification by
neural network based algorithms. There are 70,000 8-bit grayscale images in total, where
60,000 images are separated as the training data and the remaining 10,000 images are used
for testing. All the images are of the same size 28 x 28, capturing a digit from O to 9 with
various writing styles. Figure 5.8 shows some example images of handwritten digits in the
MNIST dataset.

The CNN architecture

CNNss are a specialized kind of neural networks for processing data that have a known grid-
like topology [16], i.e. 2-dimensional data such as images and speech time-series [96, 127,
91, 98]. A CNN architecture comprises several kinds of neuron layers and has considerable
capacity for data modeling. Designing a CNN is a complex task relying on rich empirical
knowledge of configuring hyperparameters, i.e. determining the number of layers, the number
of feature maps, the size of local receptive fields, the size of pools. In this work, we employ
the CNN architecture recommended by [79]3 to process the images of the MNIST dataset.
In particular, this CNN architecture is similar with that in LeNet-5 [96] but of different
hyperparameters. Figure 5.9 illustrates the layers in this CNN architecture.

Zhttp://yann.lecun.com/exdb/mnist/
3http://caffe.berkeleyvision.org/

5.3 End-to-end Data Visualization on Large-scale Data 123

INPUT
28x 28 Cl:20@24x24 S2:20@12x12 C3:50@8x8 S4:50@4x4 OUTPUT
F5:500 F6:22
. L O0— o
- AN O
N O
N N K (@)
AN (e}
* NN (0]
SN AN oo
AN . |_’\ . NN o (e}
N
| /SO/|1
Convolutiona Sub-sampling Convolutional Sub-sampling | Fully-connected

(Linear)
Fully-connected

(ReLU)

Fig. 5.9 Diagram of our proposed CNN architecture.

This CNN is composed of 6 layers, not counting the input layer. There are two convolu-
tional layers at the 1st and 3rd layers, denoted by C1 and C3. Particularly, C1 and C3 are
followed by two sub-sampling layers (i.e. pooling layers) S2 and S4.

For all the convolutional layers, the size of local receptive fields is always 5 X 5. And a
feature map is learned on one or more pages of units in the previous layer. Taking a feature
map learned on twenty previous pages for example, twenty 5 x 5 weight matrices would be
used to perform convolution on each page in the previous layer, then the results are added to
a trainable bias. Such a feature map contains 501 (25 x 20 4 1) parameters. If there is only

one previous page, the number of parameters is simply 26 (25 +1).

For all the sub-sampling layers, the size of pools is always 2 x 2. Especially, we adopt a
nonparametric sub-sampling operation, i.e. the max pooling: the four inputs in a pool are
compared and the maximum is delivered to the following layer. And each feature map of

sub-sampling has 4 connections between hidden units.

Layer C1 performs a convolution operation with 20 feature maps on the 28 x 28 input
image, resulting in 20 pages of hidden units in the first hidden layer. C1 contains 520
(20 x 26) trainable parameters and 299,520 (24 x 24 x 520) connections.

On each of the 20 hidden pages, Layer S2 learns a feature map of sub-sampling. The
2 x 2 pool area is non-overlapping, thus we observe image down-sampling from each 24 x 24
page in C1 to a smaller page of size 12 x 12 in S2. S2 contains no parameters and 11,520
(12 x 12 x 20 x 4) connections.

Layer C3 is a convolutional layer with 50 feature maps. Each feature map is learned on
all the pages in the previous layer S2. Thus C3 has 25,050 (50 x 501) trainable parameters
and 1,603,200 (8 x 8 x 25,050) connections between hidden units.

124 Applications on Classification and Dimensionality Reduction

Layer S4 is a sub-sampling layer with 50 feature maps. The sub-sampling operation from
C3 to S4 is similar to that between C1 and S2. Thus S4 has no trainable parameters and
3,200 (4 x 4 x 50 x 4) connections.

The 5th layer F5 is a fully-connected layer having a ReLU activation function [54]. It con-
tains 500 hidden units and thus 400,500 (500 x (800 + 1)) trainable parameters/connections,
where 800 is the number of hidden units in S4.

The 6th layer F6 is also a fully-connected layer but performing a simple linear mapping
into the target space. The size of this layer depends on the choice of the target space. For
example, if we want to realize a mapping into the 3-dimensional space, we set the size of this
layer to 3. We regard this layer as the output layer as we use the element values in this layer

as the final vector representation for the input image.

TSML-CNN

Let a matrix X denote an input image and a vector a represent the output vector, the above
CNN accomplishes a deep nonlinear mapping f(-) that a = f(X, W) where W indicates
all the parameters in this CNN. Involving the CNN in our proposed siamese architecture,
TSML-CNN simply takes a pair of images X; and Y; from a training set and produces two
outputs a; = f(X;, W) and b; = f(X;, W). Similar with TSML-MLP, TSML-CNN calculate
the triangular loss on the two outputs by Equation (5.2).

We have known that training a siamese network converges much slower than training
a classical single-track network of the same size (see Section 5.2). Especially, in the large
training set of the MNIST dataset, the 60,000 training samples indicate 1.8 billion training
pairs in total, thus time consumption of training TSML-CNN is unaffordable although the
MNIST dataset is redundant.

TSML-Hybrid: Hybrid training

To maintain the advantage of flexible dimensionality reduction of TSML-CNN but train it
more efficiently, we propose a hybrid training algorithm, namely TSML-Hybrid that includes

the following four stages:

1. Tiny-scale training: select only a few training samples from each class and train TSML-
CNN on corresponding similar and dissimilar training pairs. In practice, the similar
pairs play an important role in controlling vector lengths, thus we usually select at least
2 training samples from each class in order to generate both similar and dissimilar pairs.
With a few training data only, TSML-CNN gets convergence to an optimal solution

very quickly, and outputs of different classes evenly scatter in the target space.

5.3 End-to-end Data Visualization on Large-scale Data 125

2. Transplanting: set the centers of different classes in the target space as new labels for
each class; take the learned parameters in TSML-CNN as initialization for a standard
CNN. This operation can be considered as transplanting the CNN in TSML-CNN to a
new single-track CNN. It is noteworthy that with the transplanting, the single-track
CNN no longer requires hand-crafted target vectors and thus inherits the ability of
flexible dimensional reduction from TSML-CNN.

3. Large-scale training: take the new labels as target vectors for each class and train the
standard CNN on all training samples. The Mean Squared Error (MSE) function (Equa-
tion (5.1)) computes cost between output vectors and their desired targets. Compared
with the number of possible data pairs, the number of data samples is much smaller
thus efficient convergence can be reached.

4. (Optional) Length normalization: apply L2 normalization to make all the output vectors
having unit length in the target space. The Cosine Similarity (as well as the Triangular
Similarity) does not use the length information of vectors to distinguish two vectors, so
performing length normalization removes length information of vectors and produces
a more concise mapping result. This operation is especially interesting and useful for
data visualization. Concretely, without the degree of freedom on length, the mapping
outputs distribute on a sphere or hypersphere in the target space. According to the
manifold learning theory that a hypersphere with a point removed is homeomorphic
with a hyperplane [120], we can unfold the hypersphere into the lower dimensional

space so that we have a new perspective to view the mapping result.

Compared to directly training a siamese network such as TSML-CNN, the proposed hybrid
algorithm greatly improves the efficiency of training but does not suppress the classification

performance. We will provide more results in the following experimental section.

5.3.2 Dimensionality Reduction in Data Visualization

In this section, we use the above hybrid training algorithm, TSML-Hybrid, to realize data
visualization of the MNIST data. We accomplish end-to-end data mapping into 2-dimensional,

3-dimensional and 4-dimensional spaces, respectively.

Case study 1: 2-dimension

In tiny-scale training, we randomly select 2 training sample from each of the 10 classes in
the MNIST dataset. We train TSML-CNN on these data pairs with the output dimension

equal to 2. The learned model projects the 20 training samples into the target space as in

126 Applications on Classification and Dimensionality Reduction

1.5¢ 1.5¢
1 % 3 1
®
° 8

0.5 ¢ 'Y 0.5

0 52 o 0

-0.5 1® °. -0.5

> e

1 4 9 -1
-1.5 - - -1.5 : :
-1 0 1 -1 0 1

(a) Data distribution (b) Polygon connecting the data

Fig. 5.10 After tiny-scale training, (a) the training points evenly scatter around the origin; (b)
centers of different classes stand as vertexes of a polygon in the 2-dimensional space.

1.5 1.5 1.5
2 3
1 1 2 1 9 1
8‘ L4 3 'Y D 4 y & ‘
5,) ° &8 8
05 0.5 o 0.5 ® P
\ e 2
0 0 e 8 0
18)% s
-0.5 ° 6 -0.5 6 1 05 3@ '
" e . o S
7 [6 2
-1 9 0 -1 5| o -1 ?
-1.5 -15 -1.5
-1 0 1 -1 0 1 -1 0 1
(a) 20 samples (b) 30 samples (c) 60 samples

Fig. 5.11 Results after tiny-scale training with different data size and initialization.

Fig. 5.10 (a), where numbers beside the points denote the digits they represent. The positions
of the digits shown in this figure depend on the random initialization of TSML-CNN. We
observe no evident relation between adjacent digits in our experiments: Fig. 5.11 shows other
mapping results with different data size and initialization, though the order of the 10 digits
varies, the overall distribution is always approximating a circle.

After the tiny-scale training, an expected status of the training data has been reached, the
20 samples evenly distribute along a certain circle around the origin. Furthermore, connecting

the centers of every class results in a 10-sided polygon (Fig. 5.10 (b)).

In large-scale training, the class centers in Fig. 5.10 are set as labels (i.e. target vectors)

for their classes respectively. Minimizing the MSE cost function makes all the training

5.3 End-to-end Data Visualization on Large-scale Data 127

1.5 . 1.5

-1.5 ; : -15 . .
-1 0 1 -1 0 1

(c) Training data (d) Test data
Fig. 5.12 After large-scale training, either (a) the training data or (b) the test data assemble
around different class centers. By length normalization, all the data are further projected
onto the unit circle in (c¢) and (d).

samples close to these centers as much as possible. The final distribution after training is
shown in Fig. 5.12 (a) and (b). We can see that data of each class scatter in a local small area
in the 2-dimensional space, assembling around the labeled class center. Since we always use
the Cosine Similarity to measure similarity between a pair of data, we can normalize the
data vectors to have unit length without losing any discriminative information. After length
normalization, all the data locate on the unit circle in the 2-dimensional space (see Fig. 5.12
(¢) and (d)).

In manifold learning theory, a circle with a point removed is homeomorphic with a real
line. In other words, as the length information is useless in distinguishing a pair of points on

a circle, the circle can be represented by the degree of freedom on angle only. In Figure 5.13,

128 Applications on Classification and Dimensionality Reduction

200
150
100
50
0 - i L ol wlull sy, - P L1
0 1 2 3 4 5 6
kNN classification: 94.76%
[N T 1@ DRSS I D ecuene oo
| | | L 1 | 1
0 1 2 3 4 5 6

Fig. 5.13 The lower picture gives an unfolded view of the 2-dimensional MNIST test data
from the 1-dimensional space; the upper picture provides the histogram of the data in 10
classes.

we unfold the circle to an interval [0,27] in the lower picture and present the histogram of
each class in the upper picture. We can see that each class has a sharp peak and adjacent
classes are divided with clear valleys, which means that data in the same class have been
well concentrated and data in different classes have been well separated. More surprisingly,
kNN classification on the 1-dimensional data yields an accuracy of 94.76%. In conclusion,
with only one mapping, we have obtained two views of data visualization on the test data, i.e.
Fig. 5.12 (d) and Fig. 5.13.

Case study 2: 3-dimension

When we set the output dimension to 3, a different model is learned on the same 20 training
samples. Firstly, the well-trained TSML-CNN projects the 20 training samples into the
3-dimensional space, comprising a convex polyhedron with 10 vertexes. Specifically, most
planes of this polyhedron are triangular planes, planes with more than 3 sides may be possible
but only in ideal situations. The mapping results and the convex polyhedron are shown in
Fig. 5.14 (a) and (b).

Similar with the unit circle in the case of 2-dimension, the final CNN model produces a
unit sphere carrying all the 3-dimensional data (see Fig. 5.14 (c) and (d)). More interestingly,
a sphere with a point removed is homeomorphic with a plane. In other words, considering the
sphere as the earth, the plane is like the world map. Figure 5.14 (e) illustrates the unfolded

map for the test data. On this map, different classes of data locate as 10 isolated continents.

5.3 End-to-end Data Visualization on Large-scale Data

129

OF kNN classification: 98.05%

0 1 2 3 4
(e) Unfolded view of the test data

9

8

Fig. 5.14 Mapping results of the 3-dimensional MNIST test data before and after unfolding.

130 Applications on Classification and Dimensionality Reduction

Fig. 5.15 An unfolded view of the 4-dimensional MNIST test data in the 3-dimensional
space.

Note that the leftmost part of the map and the rightmost part are actually connected in the
3-dimensional space. The length and width of this map are 27 and 7, respectively. In
addition, kNN classification accuracy of the 2-dimensional data is 98.05%, much higher than
that of the 1-dimensional data.

Case study 3: 4-dimension

In fact, we can not see the 4-dimensional space but only a subspace of it. Fortunately, the
proposed method provides such a subspace of the target space, i.e. the unit hypersphere.
Similarly, unfolding this 4-dimensional hypersphere results in a part of the 3-dimensional
space (see Fig. 5.15). The length, width and height of this partial space are 27, & and 7,
respectively. Like the other cases above, we observe clear boundaries between different
classes. But one may notice that a few data of the two classes at the leftmost side are mapped
to the rightmost side, although they are actually together in the 4-dimensional space. To make
better data visualization, a probable solution can be duplicating the 3-dimensional mapping
results to make the visualization locally complete. In terms of classification, since the kNN

classifier makes prediction on the majority label of k-nearest neighbors in the training set,

5.3 End-to-end Data Visualization on Large-scale Data 131

Table 5.3 Comparison on training time (in seconds) of different methods. —’ means no
available result. View 1: before unfolding; View 2: after unfolding.

Methods 1-dim. 2-dim. 3-dim. 10-dim. Mean
CNN classifier [79] — — — 968.33 968.33
DrLIM [62] — 9632.10 9579.83 9556.59 9589.51
TSML-Hybrid (view 1) — 1111.64 1113.89 1119.19

TSML-Hybrid (view 2) 1111.64 111389 1121.10 111792 1167

the above situation of data separation has little influence on the classification performance.

The kNN classifier obtains an classification accuracy of 98.66% on the 3-dimensional data.

Comparison with the state-of-the-art

The most related work with ours is Dimensionality Reduction by Learning an Invariant
Mapping (DrLIM) [62], which proposed a contrastive loss function to measure cost of data
pairs. Different with our triangular loss function concerning the Cosine Similarity (or the
Triangular Similarity), the contrastive loss function was based on the Euclidean distance.
The objective of the contrastive loss is to minimize the distance between a similar pair and to
separate any two dissimilar data with a distance margin. With the same CNN architecture
used in TSML-Hybrid, DrLLIM projects the MNIST test data into the 2-dimensional and
3-dimensional spaces as in Fig. 5.16. However, while DrLIM provides only one perspective
to see the mapping results, TSML-Hybrid takes advantage of the triangular loss and offers
two views of visualizing the output data.

Running time: using the deep learning tool Caffe [79] in CPU mode only, we carried
out all the experiments on a machine with a 2.3 GHz dual-core CPU, 4GB RAM and 64-
bit operating system. In general, as DrLLIM and TSML-Hybrid have the same deep CNN
architecture, performing gradient descent once for either the triangular loss or the contrastive
loss costs almost the same time. However, the hybrid training strategy helps TSML-Hybrid
to train a model much faster. Concretely, the tiny-scale training costs about 150 seconds
and the large-scale training costs about 960 seconds, hence tuning the above TSML-Hybrid
models averagely costs 1110 seconds (see Table 5.3). For DrLLIM that directly performs
large-scale training on data pairs, the convergence speed slows down significantly than that
of other methods, the average training time for each DrLLIM model is about 9600 seconds.

Classification accuracy: a comparison on classification performance is summarized in
Table 5.4. The classical CNN classifier — the present CNN followed by a Euclidean loss layer
or softmax loss layer — is set as the baseline for classification. The proposed TSML-Hybrid

method offers two views of the target space. Take a target space of dimension 10 for example,

132 Applications on Classification and Dimensionality Reduction

9

3 L
8
27 ri
1 | B] 6
B 5

0 L
{4
-1t 5
=27 2
—3t kNN classification: 94.16% 1
0

-3 -2 -1 0 1 e 3

(a) In 2-dimensional space

(b) In 3-dimensional space

Fig. 5.16 Mapping results of the MNIST test data by DrLLIM in (a) 2-dimensional and (b)
3-dimensional spaces.

5.3 End-to-end Data Visualization on Large-scale Data 133

Table 5.4 Comparison on classification accuracy of different methods. ’—’ means no
available result. View 1: before unfolding; View 2: after unfolding.

Methods 1-dim. 2-dim. 3-dim. 10-dim.

CNN classifier [79] — — — 98.97%
DrLIM [62] — 94.16% 97.28% 98.35%
TSML-Hybrid (view 1) — 94.76% 98.05% 99.02%

TSML-Hybrid (view 2) 94.76% 98.05% 98.66% 98.87%

View 1 is the result of TSML-Hybrid with the output layer size equal to 10; View 2 is
the result of an output dimension 11 and then unfolded into the 10-dimensional space by
coordinate transformation.

Firstly, we evaluate all the methods in the 10-dimensional space because the output of
CNN is determined by the number of classes. Comparing these results we find that our
TSML-Hybrid method obtains comparable classification results with the CNN classifier
(98.97%) in the 10-dimensional space (99.02% and 98.87% in the two views respectively).
However, DrLIM relatively performs worse than the other three (98.35%). This is because
DrLIM trains on a limited number of data pairs and does not fully make use of all the labeled
data samples.

Concerning the lower dimensional spaces, the CNN classifier failed for dimensionality
reduction because the dimension of the handcrafted target vectors was fixed. DrLIM and
TSML-Hybrid relaxes this constraint by metric learning and realizes classification in the
visualizable spaces. Generally, TSML-Hybrid (View 2) gets better results than DrLIM and
TSML-Hybrid (View 1) in these low dimensional spaces. For DrLLIM and TSML-Hybrid
(View 1), the classification accuracy decreases as the target dimension is reduced and a
large decline occurs when the target dimension changes from 3 to 2. By using coordinate
transformation, TSML-Hybrid (View 2) delays the decline till the dimension reduced from 2
to 1. Therefore, the View 2 is preferred if the classification performance is mainly concerned.
Actually, better classification results have been published on the MNIST dataset* since the
dataset was released in 1998. However, to the best of our knowledge, our results are the best
in the visualizable spaces.

Comparison summary: a summary of comparison of the three methods is given in
Table 5.5. Like the traditional CNN, the proposed TSML-Hybrid method employs a super-
vised training algorithm to perform efficient and effective optimization. Compared with the
state-of-the-art method DrLLIM, TSML-Hybrid has shown its superiority on both speed and
classification result.

“http://yann.lecun.com/exdb/mnist/

134 Applications on Classification and Dimensionality Reduction

Table 5.5 Comparison summary of different methods.

CNN DrLIM TSML-Hybrid
Training mode Supervised Semi-supervised Supervised
Training speed Slower
Data visualization — 2/3-d 1/2/3-d
Classification accuracy Lower

5.4 Conclusion

In this chapter, we have studied the nonlinear variants of our TSML method by applications
on both small-scale and large-scale datasets. Specifically, we had the triangular loss to define
the pairwise data relationship in a target space and employed neural networks to realize
nonlinear mappings.

Firstly, we integrated the commonly used neural networks, MLP, with the triangular loss,
referred as TSML-MLP, for the problem of face identification on a small-scale dataset. We
found that TSML-MLP behaved like the classical MLP in terms of classification performance.
The major advantage of TSML-MLP is that unlike MLP requiring hand-crafted target vectors,
TSML-MLP generates targets automatically and thus allows flexible dimensionality reduction
into the target space. However, TSML-MLP costs more time for training because it learns on
data pairs whose number are exponentially larger than that of data samples.

The increase of time cost may be unaffordable for experiments on large-scale datasets,
thus we proposed a hybrid training algorithm to change the way of learning: (1) training a
naive model on a few data pairs to produce target vectors; and then (2) training a mature
model on all the data samples to achieve the goal of both dimensionality reduction and
accurate classification. So that the training of the metric learning system can be as efficient
as the traditional neural networks. We introduced CNN as the deep mapping function to
project an image to a point in low dimensional spaces. More interestingly, the triangular loss
enables us to benefit from classical manifold learning theories and visualize the output data
in an even lower dimensional space. For example, we succeeded in mapping thousands of
images in the MNIST dataset to the 1-dimensional space, i.e. a real interval, but having a

competitive classification accuracy.

Chapter 6

Conclusion and Perspectives

6.1 Conclusion

In this thesis, we proposed a novel metric learning method based on the Triangular Similarity,
referred as Triangular Similarity Metric Learning (TSML). We accomplished a thorough
study of TSML by both theoretical analysis and experimental justification on different
applications such as verification, classification and dimensionality reduction.

At the very beginning, we reviewed the literature of linear Metric Learning methods and
also their non-linear variants, i.e. Siamese Neural Networks. We concluded that Siamese
Neural Networks and Metric Learning can be regarded as a unifying study of designing a
good architecture to learn a good metric from data pairs. In other words, a good Metric
Learning system should be a collaborative product of formulating an effective metric-based
cost function and designing a proper mapping function.

In terms of the cost function, we first proposed the Triangular Similarity, a novel similarity
measurement which is equivalent to the Cosine Similarity. Based on a simplified version
of the Triangular Similarity, we further developed the triangular loss function in order to
perform metric learning, i.e. to increase the similarity between two vectors in the same
class and to decrease the similarity between two vectors of different classes. After that,
by examining the gradient function of the triangular loss, we found that its gradient has a
similar formulation with the gradient function of the Mean Squared Error (MSE) that is
widely used in neural networks for classification problems. Consequently, it allows us to
employ the standard Backpropagation algorithm to perform optimization for the proposed
TSML systems. Moreover, compared with other distance or similarity metrics, the triangular
loss and its gradient naturally offer us an intuitive geometrical interpretation of the metric

learning objective.

136 Conclusion and Perspectives

In terms of the mapping function, we introduced three different options: a linear mapping
realized by a simple transformation matrix, a nonlinear mapping realized by Multi-layer
Perceptrons (MLP) and a deep nonlinear mapping realized by Convolutional Neural Networks
(CNN). With these mapping functions, we presented three different TSML systems for various
applications, namely, pairwise verification, object identification, dimensionality reduction
and data visualization. For each application, we carried out extensive experiments on popular

benchmarks and datasets to demonstrate the effectiveness of the proposed systems.

TSML-Linear for pairwise verification

We applied the proposed linear TSML system, referred as TSML-Linear, to a series of
pairwise verification problems such as pairwise face verification, pairwise kinship verification
and pairwise speaker verification. For all these tasks on pairwise verification, we first pointed
out that the setting of limited training data for some classes and the setting of mutually
exclusive training and test sets make such a kind of task suffering from over-fitting problems.

By extensive experimental validation, we presented several strategies and confirmed
their effectiveness on reducing the risk of over-fitting. These strategies includes using more
training pairs; using a linear model to keep generalization; learning on similar pairs only
for restricted training; separating a validation set to perform early stopping; introducing
additional regularization factors to strengthen generalization. With these strategies, the
nature of learning a good metric of the TSML method makes itself effective on all the
different pairwise verification tasks. Generally, one of the proposed approaches, TSML-
Linear-Sim, has presented competitive performance with the state-of-the-art methods in all
the experiments. Especially, it has achieved the best result on the KinFaceW-II dataset in the
FG 2015 Kinship Verification Evaluation [112].

TSML-MLP for face identification

We applied the MLP-based nonlinear TSML system, referred as TSML-MLP, to a typical
classification problem of face identification on a small-scale dataset. As the used triangular
loss function automatically generates target vectors for input data pairs, the major advantage
of TSML-MLP is that the target dimension can be arbitrarily specified and thus flexible
dimensionality reduction is allowed. However, TSML-MLP learns on data pairs when a
classical MLP trains on data samples, TSML-MLP costs more time for training because
the number of data pairs is exponentially larger than that of data samples. In terms of
classification performance, we found that TSML-MLP acted like the classical MLP that both

6.2 Perspectives 137

of them achieved competitive classification performance on state-of-the-art face descriptors
such as Over-complete Local Binary Patterns (OCLBP).

TSML-Hybrid for end-to-end data visualization

We applied the CNN-based nonlinear TSML system, referred as TSML-CNN, to a large-scale
problem of data visualization. TSML-CNN inherits the ability of flexible dimensionality
reduction from TSML-MLP. However, on large-scale datasets, the traditional way of training
on data pairs requires tremendous computational resources that TSML-CNN is hard to afford.

Hence we proposed a hybrid training algorithm, referred as TSML-Hybrid to change the
way of learning: (1) training a TSML-CNN model on a few data pairs to produce target
vectors; (2) transplanting the structure and weights of the TSML-CNN model into a new
single-track CNN; (3) training the single-track CNN on all the data samples to achieve the
goal of both dimensionality reduction and accurate classification. We demonstrated that the
hybrid training is much faster than directly training a siamese model.

We applied this system for end-to-end data visualization on the MNIST dataset, i.e.
projecting an image to a point in low dimensional spaces. Taking advantage of the fact that
the triangular loss concerns the Cosine Similarity rather than the Euclidean distance, the
length information of vectors can be ignored because the Triangular Similarity only uses
the direction information to distinguish different vectors. Therefore, we employed manifold
learning techniques to remove one more dimension from the CNN outputs and provided a
new perspective to view the data distribution. The proposed TSML-Hybrid system achieved
significantly better performance than the state-of-the art method for classification in low

dimensional spaces.

6.2 Perspectives

TSML for applications on other kind of data

The proposed TSML systems mainly processed extracted image features or directly the
raw images. For example, in both face verification and kinship verification tasks, TSML-
Linear aimed at learning a better metric on face descriptors such as OCLBP, Fisher Vectors
(FV); in face identification, TSML-MLP performed classification on the OCLBP features
of face images as well; in end-to-end data visualization, TSML-Hybrid employed CNN to
directly process images of hand-written digits. Only in pairwise speaker verification, we
presented some work on identity vectors (i-vector). Hence one of the future directions is to

develop TSML systems for more biometric data such as iris, voice, fingerprint, hand and

138 Conclusion and Perspectives

signature [50, 85], or for structured data such as strings [12], text documents [177] and 3D
objects [61]. According to our experience, much efforts will be made in crafting feature
representation or designing a deep architecture to automatically learn features from raw data,
and developing generalization techniques to reduce the risk of over-fitting.

TSML in an unsupervised mode

All the proposed TSML systems performed learning in a supervised mode, but unsupervised
learning is always an interesting and challenging problem in machine learning. Human and
animal learning is largely unsupervised: we discover the structure of the world by observing
it, not by being told the name of every object [99]. It will be very interesting to see if
unsupervised TSML systems can achieve comparable performance with the reported results

by supervised models in this thesis.

References

[1] Ahonen, T., Hadid, A., and Pietikdinen, M. (2004). Face recognition with local binary
patterns. In Computer Vision-ECCV 2004, pages 469—-481. Springer.

[2] Alpaydin, E. (2014). Introduction to machine learning. MIT press.

[3] Arashloo, S. R. and Kittler, J. (2013). Efficient processing of mrfs for unconstrained-pose
face recognition. In Biometrics: Theory, Applications and Systems (BTAS), 2013 IEEE
Sixth International Conference on, pages 1-8. IEEE.

[4] Arashloo, S. R. and Kittler, J. (2014). Class-specific kernel fusion of multiple descriptors
for face verification using multiscale binarised statistical image features. Information
Forensics and Security, IEEE Transactions on, 9(12):2100-21009.

[5] Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern information retrieval, volume 463.
ACM press New York.

[6] Baldi, P. and Chauvin, Y. (1993). Neural networks for fingerprint recognition. Neural
Computation, 5(3):402—-418.

[7] Bar-Hillel, A., Hertz, T., Shental, N., and Weinshall, D. (2005). Learning a mahalanobis
metric from equivalence constraints. Journal of Machine Learning Research, 6(6):937—
965.

[8] Barkan, O., Weill, J., Wolf, L., and Aronowitz, H. (2013). Fast high dimensional vector
multiplication face recognition. In Computer Vision (ICCV), 2013 IEEE International
Conference on, pages 1960-1967. IEEE.

[9] Battiti, R. and Brunato, M. (2014). The LION Way: Machine Learning plus Intelligent
Optimization. LIONlab, University of Trento, Italy.

[10] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM journal on imaging sciences, 2(1):183-202.

[11] Bellet, A. and Habrard, A. (2015). Robustness and generalization for metric learning.
Neurocomputing, 151(1):259-267.

[12] Bellet, A., Habrard, A., and Sebban, M. (2012). Good edit similarity learning by loss
minimization. Machine Learning, 89(1-2):5-35.

[13] Bellet, A., Habrard, A., and Sebban, M. (2013). A survey on metric learning for feature
vectors and structured data. arXiv preprint arXiv:1306.6709.

140 References

[14] Bellet, A., Habrard, A., and Sebban, M. (2015). Metric Learning, volume 9 of Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers
(USA), Synthesis Lectures on Artificial Intelligence and Machine Learning, pp 1-151.

[15] Bengio, Y. (2009). Learning deep architectures for Al. Foundations and trends® in
Machine Learning, 2(1):1-127.

[16] Bengio, Y., Goodfellow, I. J., and Courville, A. (2015). Deep learning. Book in
preparation for MIT Press.

[17] Berg, T. and Belhumeur, P. N. (2012). Tom-vs-pete classifiers and identity-preserving
alignment for face verification. In BMVC, volume 2, page 7. Citeseer.

[18] Berlemont, S., Lefebvre, G., Duffner, S., and Garcia, C. (2015). Siamese neural
network based similarity metric for inertial gesture classification and rejection. In 7/th
IEEE International Conference on Automatic Face and Gesture Recognition.

[19] Bertsekas, D. P. (1976). On the goldstein-levitin-polyak gradient projection method.
Automatic Control, IEEE Transactions on, 21(2):174—184.

[20] Blake, C. and Merz, C. J. (1998). UCI repository of machine learning databases.

[21] Bourlard, H. and Wellekens, C. J. (1990). Links between markov models and mul-
tilayer perceptrons. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
12(12):1167-1178.

[22] Bouvrie, J. (2006). Notes on convolutional neural networks.

[23] Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university
press.

[24] Bromley, J., Bentz, J. W., Bottou, L., Guyon, 1., LeCun, Y., Moore, C., Sickinger, E.,
and Shah, R. (1993). Signature verification using a "siamese" time delay neural network.
International Journal of Pattern Recognition and Artificial Intelligence, 7(04):669—688.

[25] Bruno, E., Moenne-Loccoz, N., and Marchand-Maillet, S. (2006). Asymmetric learning
and dissimilarity spaces for content-based retrieval. In Image and Video Retrieval, pages
330-339. Springer.

[26] Cao, Q., Ying, Y., and Li, P. (2013). Similarity metric learning for face recognition.
In Computer Vision (ICCV), 2013 IEEE International Conference on, pages 2408-2415.
IEEE.

[27] Chang, C.-C. and Lin, C.-J. (2011). Libsvm: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27.

[28] Chechik, G., Shalit, U., Sharma, V., and Bengio, S. (2009). An online algorithm for
large scale image similarity learning. In Advances in Neural Information Processing
Systems, pages 306-314.

[29] Chechik, G., Sharma, V., Shalit, U., and Bengio, S. (2010). Large scale online learning
of image similarity through ranking. The Journal of Machine Learning Research, 11:1109—
1135.

References 141

[30] Chen, D., Cao, X., Wen, F., and Sun, J. (2013). Blessing of dimensionality: High-
dimensional feature and its efficient compression for face verification. In Computer Vision
and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3025-3032. IEEE.

[31] Chen, K. and Salman, A. (2011). Extracting speaker-specific information with a
regularized siamese deep network. In Advances in Neural Information Processing Systems,
pages 298-306.

[32] Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric discrimina-
tively, with application to face verification. In Computer Vision and Pattern Recognition,
IEEE Conference on, volume 1, pages 539-546. IEEE.

[33] Cottrell, G. W. and Metcalfe, J. (1990). Empath: face, emotion, and gender recognition
using holons. In Advances in Neural Information Processing Systems, pages 564-571.
Morgan Kaufmann Publishers Inc.

[34] Cover, T. M. and Hart, P. E. (1967). Nearest neighbor pattern classification. Information
Theory, IEEE Transactions on, 13(1):21-27.

[35] Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006). Online
passive-aggressive algorithms. The Journal of Machine Learning Research, 7:551-585.

[36] Cui, Z., Li, W., Xu, D., Shan, S., and Chen, X. (2013). Fusing robust face region
descriptors via multiple metric learning for face recognition in the wild. In Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3554-3561.
IEEE.

[37] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition (CVPR), 2005 IEEE Computer Society
Conference on, volume 1, pages 886—893. IEEE.

[38] Daugman, J. G. (1988). Complete discrete 2-d gabor transforms by neural networks
for image analysis and compression. Acoustics, Speech and Signal Processing, IEEE
Transactions on, 36(7):1169-1179.

[39] Davis, J. V., Kulis, B., Jain, P., Sra, S., and Dhillon, I. S. (2007). Information-theoretic
metric learning. In Proceedings of the 24th International Conference on Machine Learning,
pages 209-216. ACM.

[40] Dehak, N., Kenny, P., Dehak, R., Dumouchel, P., and Ouellet, P. (2011). Front-end
factor analysis for speaker verification. Audio, Speech, and Language Processing, IEEE
Transactions on, 19(4):788-798.

[41] Deng, J., Berg, A. C., and Fei-Fei, L. (2011). Hierarchical semantic indexing for large
scale image retrieval. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 785-792. IEEE.

[42] Deng, W., Hu, J., and Guo, J. (2005). Gabor-eigen-whiten-cosine: a robust scheme
for face recognition. In Analysis and Modelling of Faces and Gestures, pages 336-349.
Springer.

[43] Duffner, S. (2008). Face image analysis with convolutional neural networks.

142 References

[44] Dunteman, G. H. (1989). Principal components analysis. Number 69. Sage.

[45] Estrach, J. B., Szlam, A., and Lecun, Y. (2014). Signal recovery from pooling repre-
sentations. In Proceedings of the 31st International Conference on Machine Learning
(ICML-14), pages 307-315.

[46] Everingham, M., Sivic, J., and Zisserman, A. (2006). Hello! my name is... buffy”—
automatic naming of characters in tv video. In BMVC, volume 2, page 6.

[47] Fan, H., Cao, Z., Jiang, Y., Yin, Q., and Doudou, C. (2014). Learning deep face
representation. arXiv preprint arXiv:1403.2802.

[48] Freund, Y. and Schapire, R. E. (1999). Large margin classification using the perceptron
algorithm. Machine learning, 37(3):277-296.

[49] Garcia, C. and Delakis, M. (2004). Convolutional face finder: A neural architecture
for fast and robust face detection. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 26(11):1408-1423.

[50] Garcia-Salicetti, S., Beumier, C., Chollet, G., Dorizzi, B., Jardins, J., Lunter, J., Ni,
Y., and Petrovska-Delacrétaz, D. (2003). BIOMET: A multimodal person authentication
database including face, voice, fingerprint, hand and signature modalities. In Audio-and
Video-Based Biometric Person Authentication, pages 1056—1056. Springer.

[51] Georghiades, A. S., Belhumeur, P. N., and Kriegman, D. J. (2001). From few to many:
[llumination cone models for face recognition under variable lighting and pose. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 23(6):643—660.

[52] Globerson, A. and Roweis, S. T. (2005). Metric learning by collapsing classes. In
Advances in neural information processing systems, pages 451-458.

[53] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedfor-
ward neural networks. In International conference on artificial intelligence and statistics,

pages 249-256.

[54] Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks.
In International Conference on Artificial Intelligence and Statistics, pages 315-323.

[55] Goldberger, J., Hinton, G. E., Roweis, S. T., and Salakhutdinov, R. (2004). Neighbour-
hood components analysis. In Advances in neural information processing systems, pages
513-520.

[56] Golomb, B. A., Lawrence, D. T., and Sejnowski, T. J. (1991). Sexnet: A neural network
identifies sex from human faces. In Advances in Neural Information Processing Systems,
pages 572-579.

[57] Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recognition with recur-
rent neural networks. In Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 1764—1772.

References 143

[58] Greenberg, C. S., Bansé, D., Doddington, G. R., Garcia-Romero, D., Godfrey, J. J.,
Kinnunen, T., Martin, A. F., McCree, A., Przybocki, M., and Reynolds, D. A. (2014). The
NIST 2014 speaker recognition i-vector machine learning challenge. In Odyssey: The
Speaker and Language Recognition Workshop.

[59] Guillaumin, M., Mensink, T., Verbeek, J., and Schmid, C. (2009a). Tagprop: Discrimi-
native metric learning in nearest neighbor models for image auto-annotation. In Computer
Vision, 2009 IEEE 12th International Conference on, pages 309-316. IEEE.

[60] Guillaumin, M., Verbeek, J., and Schmid, C. (2009b). Is that you? metric learning
approaches for face identification. In Computer Vision, 2009 IEEE 12th International
Conference on, pages 498-505. IEEE.

[61] Hachani, M., Zaid, A. O., and Puech, W. (2014). 3D non-rigid pattern recognition based
on structural analysis. In Image Processing (ICIP), 2014 IEEE International Conference
on, pages 3131-3135. IEEE.

[62] Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning
an invariant mapping. In Computer vision and pattern recognition, 2006 IEEE computer
society conference on, volume 2, pages 1735-1742. IEEE.

[63] Hassner, T., Harel, S., Paz, E., and Enbar, R. (2014). Effective face frontalization in
unconstrained images. arXiv preprint arXiv:1411.7964.

[64] Hatch, A. O., Kajarekar, S. S., and Stolcke, A. (2006). Within-class covariance
normalization for svm-based speaker recognition. In Interspeech.

[65] Hatch, A. O. and Stolcke, A. (2006). Generalized linear kernels for one-versus-all clas-
sification: application to speaker recognition. In Acoustics, Speech and Signal Processing,
2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, volume 5,
pages V-V. IEEE.

[66] Heikkild, M., Pietikdinen, M., and Schmid, C. (2006). Description of interest regions
with center-symmetric local binary patterns. In Computer Vision, Graphics and Image
Processing, pages 58—69. Springer.

[67] Higham, N. J. (2002). Accuracy and stability of numerical algorithms. Siam.

[68] Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313(5786):504-507.

[69] Hu, J., Lu, J., and Tan, Y.-P. (2014). Discriminative deep metric learning for face
verification in the wild. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pages 1875-1882. IEEE.

[70] Hu,J., Lu, J., and Tan, Y.-P. (2015a). Deep transfer metric learning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 325-333.

[71] Hu,J., Lu, J., Yuan, J., and Tan, Y.-P. (2015b). Large margin multi-metric learning for
face and kinship verification in the wild. In Computer Vision—-ACCV 2014, pages 252-267.
Springer.

144 References

[72] Huang, C., Zhu, S., and Yu, K. (2012). Large scale strongly supervised ensemble
metric learning, with applications to face verification and retrieval. arXiv preprint
arXiv:1212.6094.

[73] Huang, G. B., Jain, V., and Learned-Miller, E. (2007a). Unsupervised joint alignment
of complex images. In Computer Vision, 2007 IEEE 11th International Conference on,
pages 1-8. IEEE.

[74] Huang, G. B. and Learned-Miller, E. (2014). Labeled faces in the wild: Updates and
new reporting procedures. Dept. Comput. Sci., Univ. Massachusetts Amherst, Amherst,
MA, USA, Tech. Rep, pages 14-003.

[75] Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller, E. (2007b). Labeled faces
in the wild: A database for studying face recognition in unconstrained environments.
Technical report, Technical Report 07-49, University of Massachusetts, Amherst.

[76] Hussain, S. U., Napoléon, T., and Jurie, F. (2012). Face recognition using local
quantized patterns. In British Machive Vision Conference, pages 11—pages.

[77] Hyvirinen, A. and Oja, E. (2000). Independent component analysis: algorithms and
applications. Neural networks, 13(4):411-430.

[78] Jain, P., Kulis, B., Dhillon, I. S., and Grauman, K. (2009). Online metric learning
and fast similarity search. In Advances in neural information processing systems, pages

761-768.

[79] Jia, Y., Shelhamer, E., Donahue, J., Karayeyv, S., Long, J., Girshick, R., Guadarrama, S.,
and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In
Proceedings of the ACM International Conference on Multimedia, pages 675-678. ACM.

[80] Kan, M., Shan, S., Xu, D., and Chen, X. (2011). Side-information based linear
discriminant analysis for face recognition. In BMVC, volume 11, pages 125-1.

[81] Ke, Y. and Sukthankar, R. (2004). Pca-sift: A more distinctive representation for local
image descriptors. In Computer Vision and Pattern Recognition, 2004 IEEE Computer
Society Conference on, volume 2, pages II-506. IEEE.

[82] Kedem, D., Tyree, S., Sha, F., Lanckriet, G. R., and Weinberger, K. Q. (2012). Non-
linear metric learning. In Advances in Neural Information Processing Systems, pages
2573-2581.

[83] Kenny, P., Ouellet, P., Dehak, N., Gupta, V., and Dumouchel, P. (2008). A study of
interspeaker variability in speaker verification. Audio, Speech, and Language Processing,
IEEE Transactions on, 16(5):980-988.

[84] Koehn, P. (2004). Statistical significance tests for machine translation evaluation. In
EMNLP, pages 388-395. Citeseer.

[85] Krichen, E., Mellakh, M. A., Garcia-Salicetti, S., and Dorizzi, B. (2004). Iris identifica-
tion using wavelet packets. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the
17th International Conference on, volume 4, pages 335-338. IEEE.

References 145

[86] Krizhevsky, A., Sutskever, 1., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing systems,

pages 1097-1105.

[87] Kulis, B. (2012). Metric learning: A survey. Foundations and Trends in Machine
Learning, 5(4):287-364.

[88] Larcher, A., Lee, K. A., Ma, B., and Li, H. (2014). Text-dependent speaker verification:
Classifiers, databases and RSR2015. Speech Communication, 60:56-77.

[89] Law, M., Thome, N., and Cord, M. (2013). Quadruplet-wise image similarity learning.
In Proceedings of the IEEE International Conference on Computer Vision, pages 249-256.

[90] Law, M., Thome, N., and Cord, M. (2014). Fantope regularization in metric learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1051-1058.

[91] Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D. (1997). Face recognition:
A convolutional neural-network approach. Neural Networks, IEEE Transactions on,
8(1):98-113.

[92] Le Barz, C., Thome, N., Cord, M., Herbin, S., and Sanfourche, M. (2015). Exemplar
based metric learning for robust visual localization. In Image Processing (ICIP), 2015
IEEE International Conference on, pages 4342-4346. IEEE.

[93] Learned-Miller, E., Huang, G., RoyChowdhury, A., Li, H., and Hua, G. (2015). Labeled
faces in the wild: A survey.

[94] LeCun, B. B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel,
L. D. (1990). Handwritten digit recognition with a back-propagation network. In Advances
in neural information processing systems. Citeseer.

[95] LeCun, Y. and Bengio, Y. (1995). Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10).

[96] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324.

[97] LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F. (2006). A tutorial on
energy-based learning. Predicting structured data, 1.

[98] LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010). Convolutional networks and
applications in vision. In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE
International Symposium on, pages 253-256. IEEE.

[99] LeCun, Y. A., Bengio, Y., and Hinton, G. E. (2015). Deep learning. Nature, 521:436—
444,

[100] LeCun, Y. A., Bottou, L., Orr, G. B., and Miiller, K.-R. (2012). Efficient backprop. In
Neural networks: Tricks of the trade, pages 9-48. Springer.

146 References

[101] Li, H. and Hua, G. (2015). Hierarchical-PEP model for real-world face recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4055—-4064.

[102] Li, H., Hua, G., Lin, Z., Brandt, J., and Yang, J. (2013). Probabilistic elastic matching
for pose variant face verification. In Computer Vision and Pattern Recognition (CVPR),
2013 IEEE Conference on, pages 3499-3506. IEEE.

[103] Li, H., Hua, G., Shen, X., Lin, Z., and Brandt, J. (2015). Eigen-pep for video face
recognition. In Computer Vision-ACCV 2014, pages 17-33. Springer.

[104] Li, X., Shen, C., Shi, Q., Dick, A., and Van den Hengel, A. (2012). Non-sparse linear
representations for visual tracking with online reservoir metric learning. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1760-1767.
IEEE.

[105] Lienhart, R. and Maydt, J. (2002). An extended set of haar-like features for rapid
object detection. In Image Processing, 2002 International Conference on, volume 1, pages
1-900. IEEE.

[106] Lippmann, R. P. (1989). Review of neural networks for speech recognition. Neural
Computation, 1(1):1-38.

[107] Lipton, Z. C. (2015). A critical review of recurrent neural networks for sequence
learning. arXiv preprint arXiv:1506.00019.

[108] Liu, D. C. and Nocedal, J. (1989). On the limited memory BFGS method for large
scale optimization. Mathematical Programming, 45(1-3):503-528.

[109] Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV).

[110] Lloyd, S. P. (1982). Least squares quantization in PCM. Information Theory, IEEE
Transactions on, 28(2):129-137.

[111] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Inter-
national journal of computer vision, 60(2):91-110.

[112] Lu,J., Hu, J., Liong, V. E., Zhou, X., Bottino, A., Islam, I. U., Vieira, T. F., Qin, X.,
Tan, X., Chen, S., et al. (2015). The FG 2015 kinship verification in the wild evaluation.
In 11th IEEE International Conference on Automatic Face and Gesture Recognition.

[113] Lu, J., Hu, J., Zhou, X., Zhou, J., Castrillén-Santana, M., Lorenzo-Navarro, J., Kou,
L., Shang, Y., Bottino, A., and Figuieiredo Vieira, T. (2014a). Kinship verification in
the wild: The first kinship verification competition. In Biometrics (IJCB), 2014 IEEE
International Joint Conference on, pages 1-6. IEEE.

[114] Lu, J., Zhou, X., Tan, Y.-P., Shang, Y., and Zhou, J. (2014b). Neighborhood repulsed
metric learning for kinship verification. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 36(2):331-345.

References 147

[115] Luenberger, D. G. (1973). Introduction to linear and nonlinear programming, vol-
ume 28. Addison-Wesley Reading, MA.

[116] MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cam-
bridge university press.

[117] Martinez, A. M. (1998). The AR face database. CVC Technical Report, 24.

[118] Matas, J., Hamouz, M., Jonsson, K., Kittler, J., Li, Y., Kotropoulos, C., Tefas, A.,
Pitas, 1., Tan, T., Yan, H., et al. (2000). Comparison of face verification results on the
XM2VTES database. In Pattern Recognition, 15th International Conference on, volume 4,
pages 858-863. IEEE.

[119] McFee, B. and Lanckriet, G. R. (2010). Metric learning to rank. In Proceedings of the
27th International Conference on Machine Learning, pages 775-782.

[120] Mendelson, B. (1990). Introduction to topology. Courier Corporation.

[121] Mensink, T., Verbeek, J., Perronnin, F., and Csurka, G. (2012). Metric learning
for large scale image classification: Generalizing to new classes at near-zero cost. In
Proceedings of the 12th European Conference on Computer Vision, pages 488-501.
Springer.

[122] Mobahi, H., Collobert, R., and Weston, J. (2009). Deep learning from temporal
coherence in video. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 737-744. ACM.

[123] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pages 807-814.

[124] Ng, A. Y., Jordan, M. L., Weiss, Y., et al. (2002). On spectral clustering: Analysis and
an algorithm. Advances in neural information processing systems, 2:849—-856.

[125] Nguyen, H. V. and Bai, L. (2011). Cosine similarity metric learning for face verifica-
tion. In Computer Vision-ACCV 2010, pages 709-720. Springer.

[126] Nielsen, M. (2015). Neural Networks and Deep Learning.

[127] Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., and Barbano, P. E. (2005).
Toward automatic phenotyping of developing embryos from videos. Image Processing,
IEEE Transactions on, 14(9):1360-1371.

[128] Ojala, T., Pietikdinen, M., and Méenpéad, T. (2002). Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 24(7):971-987.

[129] Orr, G. B. and Miiller, K.-R. (2003). Neural networks: tricks of the trade. Springer.

[130] Ouamane, A., Messaoud, B., Guessoum, A., Hadid, A., and Cheriet, M. (2014). Multi
scale multi descriptor local binary features and exponential discriminant analysis for robust

face authentication. In Image Processing (ICIP), 2014 IEEE International Conference on,
pages 313-317. IEEE.

148 References

[131] Parameswaran, S. and Weinberger, K. Q. (2010). Large margin multi-task metric
learning. In Advances in neural information processing systems, pages 1867—1875.

[132] Petersen, K. B., Pedersen, M. S., et al. (2008). The matrix cookbook. Technical
University of Denmark, 7:15.

[133] Pinto, N., DiCarlo, J. J., and Cox, D. D. (2009). How far can you get with a modern
face recognition test set using only simple features? In Computer Vision and Pattern
Recognition, 2009 IEEE Conference on, pages 2591-2598. 1EEE.

[134] Prechelt, L. (2012). Early stopping - but when? In Neural Networks: Tricks of the
Trade, pages 53—67. Springer.

[135] Qamar, A. M. and Gaussier, E. (2009). Online and batch learning of generalized cosine
similarities. In Data Mining, 2009 IEEE International Conference on, pages 926-931.
IEEE.

[136] Qamar, A. M., Gaussier, E., Chevallet, J.-P., and Lim, J. H. (2008). Similarity learning
for nearest neighbor classification. In Data Mining, 2008 IEEFE International Conference
on, pages 983-988. IEEE.

[137] Qi, G.-J., Tang, J., Zha, Z.-J., Chua, T.-S., and Zhang, H.-J. (2009). An efficient sparse
metric learning in high-dimensional space via 11-penalized log-determinant regularization.
In Proceedings of the 26th Annual International Conference on Machine Learning, pages
841-848. ACM.

[138] Reynolds, D. A. (1995). Speaker identification and verification using gaussian mixture
speaker models. Speech communication, 17(1):91-108.

[139] Reynolds, D. A., Quatieri, T. F., and Dunn, R. B. (2000). Speaker verification using
adapted gaussian mixture models. Digital signal processing, 10(1):19—41.

[140] Rizvi, S., Phillips, J., Moon, H., et al. (1998). The FERET verification testing protocol
for face recognition algorithms. In Automatic Face and Gesture Recognition, 1998 IEEE
International Conference on, pages 48-53. IEEE.

[141] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386.

[142] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal
representations by error propagation. Technical report, DTIC Document.

[143] Sanderson, C. and Lovell, B. C. (2009). Multi-region probabilistic histograms for ro-
bust and scalable identity inference. In Advances in Biometrics, pages 199-208. Springer.

[144] Schmidt, M. (2012). Minfunc: unconstrained differentiable multivariate optimization
in matlab. URL: http://www.di.ens.fr/mschmidt/Software/minFunc.html.

[145] Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding
for face recognition and clustering. arXiv preprint arXiv:1503.03832.

[146] Seo, H. J. and Milanfar, P. (2011). Face verification using the LARK representation.
Information Forensics and Security, IEEE Transactions on, 6(4):1275-1286.

References 149

[147] Shalev-Shwartz, S., Singer, Y., and Ng, A. Y. (2004). Online and batch learning of
pseudo-metrics. In Proceedings of the twenty-first international conference on Machine
learning, page 94. ACM.

[148] Shental, N., Hertz, T., Weinshall, D., and Pavel, M. (2002). Adjustment learning and
relevant component analysis. In Computer Vision—-ECCV 2002, pages 776—790. Springer.

[149] Sim, T., Baker, S., and Bsat, M. (2002). The CMU pose, illumination, and expression
(PIE) database. In Automatic Face and Gesture Recognition, 2002 IEEE International
Conference on, pages 46-51. IEEE.

[150] Simonyan, K., Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2013). Fisher vector
faces in the wild. In British Machine Vision Conference.

[151] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

[152] Sivic, J. and Zisserman, A. (2009). Efficient visual search of videos cast as text
retrieval. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(4):591—
606.

[153] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929-1958.

[154] Stone, C. J. (1977). Consistent nonparametric regression. The annals of statistics,
pages 595-620.

[155] Sun, Y., Chen, Y., Wang, X., and Tang, X. (2014a). Deep learning face representation
by joint identification-verification. In Advances in Neural Information Processing Systems,
pages 1988-1996.

[156] Sun, Y., Liang, D., Wang, X., and Tang, X. (2015). DeeplID3: Face recognition with
very deep neural networks. arXiv preprint arXiv:1502.00873.

[157] Sun, Y., Wang, X., and Tang, X. (2014b). Deep learning face representation from
predicting 10,000 classes. In Computer Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on, pages 1891-1898. IEEE.

[158] Sun, Y., Wang, X., and Tang, X. (2014c). Deeply learned face representations are
sparse, selective, and robust. arXiv preprint arXiv:1412.1265.

[159] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1-9.

[160] Taigman, Y., Wolf, L., Hassner, T., et al. (2009). Multiple one-shots for utilizing class
label information. In BMVC, pages 1-12.

[161] Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). Deepface: Closing the
gap to human-level performance in face verification. In Computer Vision and Pattern
Recognition (CVPR), 2014 IEEE Conference on, pages 1701-1708. IEEE.

150 References

[162] Turk, M., Pentland, A. P, et al. (1991). Face recognition using eigenfaces. In
Computer Vision and Pattern Recognition, 1991 IEEE Computer Society Conference on,
pages 586-591. IEEE.

[163] Vedaldi, A. and Fulkerson, B. (2010). VLFeat: An open and portable library of
computer vision algorithms. In Proceedings of International Conference on Multimedia,
pages 1469-1472. ACM.

[164] Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing,
17(4):395-416.

[165] Wang, J., Sun, K., Sha, F., Marchand-Maillet, S., and Kalousis, A. (2014). Two-stage
metric learning. In Proceedings of the 31th International Conference on Machine Learning
(ICML), Beijing, China, pages 370-378.

[166] Wang, X. and Tang, X. (2004). A unified framework for subspace face recognition.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(9):1222—1228.

[167] Weinberger, K. Q., Blitzer, J., and Saul, L. K. (2005). Distance metric learning for
large margin nearest neighbor classification. In Advances in neural information processing
systems, pages 1473-1480.

[168] Weinberger, K. Q. and Saul, L. K. (2008). Fast solvers and efficient implementations
for distance metric learning. In Proceedings of the 25th International Conference on
Machine Learning, pages 1160-1167. ACM.

[169] Weinberger, K. Q. and Saul, L. K. (2009). Distance metric learning for large margin
nearest neighbor classification. The Journal of Machine Learning Research, 10:207-244.

[170] Wolf, L., Hassner, T., and Maoz, 1. (2011). Face recognition in unconstrained videos
with matched background similarity. In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 529-534. IEEE.

[171] Wolf, L., Hassner, T., and Taigman, Y. (2008). Descriptor based methods in the wild.
In Workshop on Faces in’Real-Life’Images: Detection, Alignment, and Recognition.

[172] Xie, L., Zheng, L., Liu, Z., and Zhang, Y. (2012). Laplacian eigenmaps for automatic
story segmentation of broadcast news. Audio, Speech, and Language Processing, IEEE
Transactions on, 20(1):276—289.

[173] Xing, E. P,, Jordan, M. L., Russell, S., and Ng, A. Y. (2002). Distance metric learning
with application to clustering with side-information. In Advances in neural information
processing systems, pages 505-512.

[174] Yan, H., Lu, J., Deng, W., and Zhou, X. (2014a). Discriminative multimetric learning
for kinship verification. Information Forensics and Security, IEEE Transactions on,
9(7):1169-1178.

[175] Yan, H.-C., Lu, J., and Zhou, X. (2014b). Prototype-based discriminative feature
learning for kinship verification.

References 151

[176] Yi, D., Lei, Z., and Li, S. Z. (2013). Towards pose robust face recognition. In
Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages
3539-3545. 1EEE.

[177] Yih, W.-t., Toutanova, K., Platt, J. C., and Meek, C. (2011). Learning discriminative
projections for text similarity measures. In Proceedings of the Fifteenth Conference on
Computational Natural Language Learning, pages 247-256. Association for Computa-
tional Linguistics.

[178] Ying, Y. and Li, P. (2012). Distance metric learning with eigenvalue optimization. The
Journal of Machine Learning Research, 13(1):1-26.

[179] Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional
networks. In Computer Vision-ECCV 2014, pages 818-833. Springer.

[180] Zhang, L., Chu, R., Xiang, S., Liao, S., and Li, S. Z. (2007). Face detection based on
multi-block LBP representation. In Advances in biometrics, pages 11-18. Springer.

[181] Zhang, Z., Lyons, M., Schuster, M., and Akamatsu, S. (1998). Comparison between
geometry-based and gabor-wavelets-based facial expression recognition using multi-layer

perceptron. In IEEFE International Conference on Automatic Face and Gesture Recognition,
pages 454-459. IEEE.

[182] Zheng, L., Duffner, S., Idrissi, K., Garcia, C., and Baskurt, A. (2015a). Siamese
multi-layer perceptrons for dimensionality reduction and face identification. Multimedia
Tools and Applications.

[183] Zheng, L., Idrissi, K., Garcia, C., Duffner, S., and Baskurt, A. (2015b). Logistic
similarity metric learning for face verification. In Acoustics, Speech and Signal Processing,
2015 IEEE International Conference on. IEEE.

[184] Zheng, L., Idrissi, K., Garcia, C., Duffner, S., and Baskurt, A. (2015c). Triangular
similarity metric learning for face verification. In //th IEEE International Conference on
Automatic Face and Gesture Recognition.

[185] Zheng, L., Leung, C.-C., Xie, L., Ma, B., and Li, H. (2012). Acoustic texttiling for
story segmentation of spoken documents. In Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, pages 5121-5124. 1EEE.

[186] Zhou, E., Cao, Z., and Yin, Q. (2015). Naive-deep face recognition: Touching the
limit of LFW benchmark or not? arXiv preprint arXiv:1501.04690.

[187] Zhu, Z., Luo, P., Wang, X., and Tang, X. (2014). Recover canonical-view faces in the
wild with deep neural networks. arXiv preprint arXiv:1404.3543.

Appendix A

Derivatives

A.1 Derivative of the vector norm

Given a column vector x has n elements X = [x{,x2,...,x,]7, the L2 norm of the vector
denotes the vector length, prove that

alxl _ x
—_ = (A.1)
ox |||
Proof: we start the proof from the right side,
x| ovxTx d(xTx)?
ox dJx 0x
_ 1(XTX>_%8(XTX) 1 | d(xTx)
ox 2(xTx)2 OJX
1 d(xTx)
S 2lx|| ox
where x'x = ;’:lxiz. The derivative of this inner product with respect to the vector x is

simply a vector of derivatives on each elements:

Ix"x) IYL,xy _ OYL\x

ox ox dxy,x2,...,x,)7
:[8):?:1)9‘2 aZ?zlxiz 82?:1X%]T
x1 0 x T xy,
= [2}61,2}62,-" ,2xn]T

= 2X.

154 Derivatives

Putting the above equations together:

x| 1 d(x'x) 1 X

= = 2X = —.
Jx 2fx|| ox 2|[x]] x|

QED.

A.2 Derivative of the bilinear similarity

The bilinear similarity is parameterized by a matrix A as (AX)TAy [29], prove that

d(Ax)" Ay rr
—— =A(x X'). A2
A (xy’ +yx') (A2)
Proof: assumlng x and y are n-dimensional column vectors that x = [x1,x2,...,x,]” and
y=[v1,y2,- ,yn] the transformation matrix A is of size m X n, where a; denotes the i,

row in the matrix and g;; is the element at the intersection of the i;;, row and the j;; column.
For the inner product between Ax and Ay, its derivative with respect to the matrix A is
simply a matrix of derivatives on each elements:

[0(Ax)"Ay d(Ax)T Ay d(Ax)T Ay |
dayj daip T dai,
T 0Ax)TAy d(Ax)T Ay J(Ax)” Ay
—a (A;) Ay = das das T dagy
A . .
d(Ax) Ay 9(Ax)T Ay d(Ax)T Ay
8am1 Bamz e aamn

Specifically, as we have AX = [Y{_ | @1xXk, Y4 1 G2kXks - - - s Lp—1 dmiXk]T s the (i, j),, element
in this derivative matrix can be unfolded as:

J(Ax)T Ay
3611']'
_ O YR ALkXhes YR | @okXks -+ s Yo 1 Aok k) [| Q1Y es Yo A2V - -+ » by Gk V)
8a,~j
_ Y AikXk g Q1kVk + L QX Y1 oYk + -+ Y| ke Xk Lf— | Amk Yk
8aij
I (Xi_) unXr Xy—) dikYk)
8a,-j
i Zk 1 kxk Z . Zk 14 zkyk)
= dai; K 0 dai;

n
=Xj Z AikYk T Yj Z Ak Xk,
k=1 k=1

A.3 Derivative of the parameterized vector norm 155

this equation can be rewritten as a vectorization implementation:

J(Ax) Ay
— — = X;a;y t+y;aXx,
8a,-j

where a; is the i;; row of the matrix A. Hence the derivative matrix is:

xXjaly +yiaix xay +ya1x ... Xx;a1y +yn,aix
JAX) Ay | Xy +yimX xnapy+ymX ... XAy + yaarX
8A -
| X1amy +yi1apX X8,y +Y2a,X ... XpapY +YndmX
xXja1y xa1y ... xpa1y yiailxX yailx ... ypaix
| X1y xnaxy ... Xpay i yiazX yrarX ... Ypa2X
| X1dmY X2AmY ... Xpdny yiamX Y2apX ... YpdpX
_aly 41X
ay arXx
= XY
2,y a,,X
= Ayx’ + Axy’
= A(yx" +xy").

QED.

A.3 Derivative of the parameterized vector norm

If the vector norm is parameterized by a matrix W: ||[Wx||, prove that

J||Wx|| Wxx"

oW W] (A3)

Proof: we start from the right side:

I|Wx|| d((Wx) Wx)? 1 IWx)Wx 1 d(Wx)TWx

1
oW oW 2 ((WX)TWX)% OW 2|[(Wx)| oW ~’

156 Derivatives

according to Equation (A.2), we know that ‘9(“3‘—‘);%‘ = W(xx! +xx7) = 2Wxx’, thus

J||Wx|| 1 IWx)'Wx 1 WeT — Wxx!
IW 2[(Wx)| IW 2[[(Wx)|| W]

QED.

A.4 Derivative of the Cosine Similarity

The Cosine Similarity is parameterized by a matrix W as:

(x.y) = WO Wy
s =
W W] Wyl
prove that
Isw(X,y) —1 (Wx)" Wy r (Wx)"Wy T
= [(Wx —Wy)x" + (——=—5—Wy—Wx)y' |. (A4)
IW [[Wx|[[[Wy[™ [[Wx|? [Wy||?

Proof: let u(W) denote (Wx)” Wy and v(W) denote |Wx||||Wy||, from Equation (A.2), we

know that % = W(xy” +yx"). According to Equation (A.3), the derivative of v(W) is:

W) _ AWRIIW] _ o IWS] o 9|
oW oW JW JW
Wxx! Wyy!
+ [|Wx .
= WYl IV Ry
Thus, the derivative of sw(X,y) is
Pswixy) 5w 1 du(W) u(W) dv(W)
OW — IW »(W) aW y(W)2 W
L1 2uW) u(W) (W),
S v(W) dW »(W) IW
1 (Wx)” Wy Wxx! Wny
= [W(xy’ +yx’) - (|| Wy +
g wy)= Tovaiw ™Y g W)
1 (Wx)” Wy T (Wx)” Wy
= [Wxy’ + Wyx’ — - I Wxx| — " Wyy
Wl Wy TWAlP Wy Y]
—1 (Wx)" Wy r, (Wx)"Wy T
= Wx - Wy)x' + (——5—Wy—Wx)y |
W Twyl W e]

QED.

A.5 Derivative of the linear triangular loss 157

A.5 Derivative of the linear triangular loss

In Chapter 3, given a pair of vectors (a,b), the triangular loss is defined as:

1 1
7= lall>+ S b = rlel] + 7,

where r is a constant constraint on the vector length; ¢ = a 4 sb, representing the simplified
Triangular Similarity in a positive triangle (s=1) or a negative triangle (s=-1). Especially,
with a linear mapping function f(-): a = Wx and b = Wy, prove that

aJ

C .7 C .7
—=(a—r—)x' +(b—sr— . (A.5)
aw ~ B e sy

Proof: replacing a, b with Wx, Wy, respectively, the linear triangular loss is

1 1
T = S+ 3 [Wy | Wx -+ sWy]| + 7

1 1
= E(WX)TWX—I— E(Wy)TWy — r||Wx + sWy|| + %,

According to Equation (A.2), we have

T
w = W(xx! +xx!) = 2Wxx
2(Wy)!' W
=W(yy” +yy’) =2Wyy’.

According to Equation (A.3), we have

J|Wx+sWy|| J||W(x+sy)|| W(x +sy)(x+sy)”
oW B oW T [Wx+sWy]|

Consequently, the derivative of the linear triangular loss is

dJ 1dWx)!Wx 19(Wy)! Wy 9||Wx+sWy]||
OW 2 oW 2 ow oW
1 1 W(X+sy)(X+s

= EZWXXT + EZWny —r (waﬁiwy”y)
W(x+sy) T o W(x+sy) §7
|IWx + sWy|| |IWx + sWy||
Wx + sWy Wx+sWy | »
~ T Wx + sWy]| Wt swy] Y

= Wxx! +Wyy! —r

= (Wx)XT + (Wy —sr

158 Derivatives

Moreover, substituting Wx, Wy with a, b, respectively, the above equation can be rewritten
as:

aJ Wx+sWy | Wx+sWy |
= =Wx—r—F—)X +(Wy—sr————
ow HWx+sWyH) (Wy HW)H—SWyH)y
a+sb r a+sb . 1
=@—-r———)x +(b—sr——
(Ha+sb||) (||a+sb||)y
C C
=(a—r—)x! +(b—sr—)y’.
el]|

QED.

Appendix B

Learning on Similar Pairs Only

B.1 Introduction

This appendix is a short version of our paper "Logistic Similarity Metric Learning for
Face Verification" [183] published in the proceedings of 40th International Conference on
Acoustics, Speech and Signal Processing (ICASSP) 2015.

In this work, based on the Cosine Similarity Metric Learning (CSML), we develop a new
method called Logistic Similarity Metric Learning (LSML) for pairwise face verification.
Specifically, we introduce a parameter K to shift the similarity decision boundary, formulate
the cost using the logistic loss function, and produce a probability estimation of a pair
of faces being similar. We performed extensive experiments on the LFW-a dataset [75]
under restricted configuration with label-free outside data. The proposed method achieved
competitive performance over the state-of-the-art linear methods. Moreover, we propose a
faster way to achieve the same goal: learning on similar pairs only. Learning on similar
pairs has one thing in common with shifting the boundary that both of them make the similar
training pairs contribute more to the gradient than the dissimilar training pairs. And the latter
has fewer parameters to tune and requires less data for training. However, this should be

under the linear constraint to prevent the probable large over-fitting problem in training.

B.2 Cosine Similarity Metric Learning

In the task of face verification, two face images of the same person are called a similar pair;
otherwise, two face images of different persons are called a dissimilar pair or a different pair.
By representing the face images as vectors, the verification of faces becomes a problem of

measuring similarity between vectors.

160 Learning on Similar Pairs Only

Before introducing the CSML method, we present some important notations: a triplet
(x;,y;,5;) represents a pair of instances, where x; and y; are two vectors, and s; = 1 (respec-
tively -1) means that the two vectors are similar (respectively dissimilar). A linear metric
learning method defines a linear transformation f(z,A) = Az on the raw feature vectors
and produces another triplet (a;,b;,s;), where a; = f(x;,A) = Ax; and b; = f(y;,A) = Ay,.
The objective of CSML is employing this transformation to make similar vectors closer and

separate dissimilar vectors: an optimal matrix A makes cos(a;,b;) = 1 for a pre-defined

similar pair (x;,y;) while making cos(a;,b;) = —1 for a dissimilar pair, where the cosine
similarity cos(a;,b;) is:
cos(aiby) = 2D B.1)
AR EYTT '
The cost function of CSML is [125]:
1 & A 2
Jesmr = ZZ_sicos(ai’bi)+§|‘A_A0|’ , (B.2)
i=1
with gradient function:
8JCSML 1 & a—SiCOS(ai b,)
=- ’ A(A—A
A “nk oa THA-AY
- B.3
1 & Si ain,- T aTb,- ()

' T
= Z ,—Zl ”alH ||bl|| [(||aiH2ai - bi)Xi + (“{)Wbl - ai)Yi] + l(‘A - AO);
where n is the number of all similar and dissimilar pairs from the training data, A is the
regularization parameter, and A is any matrix that we want A to be regularized with: we set
A to be Ay before optimizing the cost; hence during the optimization, the larger the parameter
A is, the closer A is to Ag. Usually, we specify A as the identity matrix I. More discussion
on CSML can be found in Chapter 2 and the proof of the CSML gradient is in Appendix A.

B.3 Logistic Similarity Metric Learning

Minimizing the CSML cost function (Equation (B.2)) implies making cos(a;,b;) > 0 for
a similar pair and making cos(a;,b;) < 0 for a dissimilar pair at the same time. In other
words, CSML sets 0 as the decision boundary for this binary decision problem. However, in a
limited space which contains a large quantity of classes, it’s impossible that all the dissimilar
pairs have negative cosine similarity values. For example, when there are more than 4 classes
in the 2-dimensional space, we can find at least one pair of classes with the angle less than

90° (i.e. cosine similarity value larger than 0). Thus the assumption of setting cos(a;,b;) < 0

B.3 Logistic Similarity Metric Learning 161

for all the dissimilar pairs is only feasible if the dimension of the output feature space is large
enough. However, for a large number of classes, this high-dimensional output space may
lead to many local minima and over-fitting.

Therefore, we introduce a positive constant K to shift the decision boundary. Moreover,
following [60, 69] that employed the logistic loss function in distance metric learning to
create a decision gap between the similar pairs and dissimilar pairs [97], we incorporate the

logistic loss function with the cosine similarity cost function as:

si(cos(a;,b;) — K)
T

1 ¢ A

=) In(1+exp(—)+ lIA—Aol?, (B.4)
n= 2

where the constant 7 is the sharpness parameter which is set to 0.1 in our experiments. The

corresponding gradient function is:

1 & 1 8 —sicos(a;,b;)

— 1_ —
T 121 JA

—I-A,(A—A()), (B.5)

where h; = 1+ exp(_w) and the partial derivative % is the same as in

Equation (B.3).

Now we relate the LSML method to the task of face verification. At first, we collect
labeled similar/dissimilar pairs of vectors which represent pairs of face images, i.e. (X;,y;,5i),
as training data. By initializing the linear transformation matrix A with the identity matrix,
we can calculate the initial cost and gradient using Equations (B.4) and (B.5). After that,
we employ the advanced L-BFGS [108] optimization algorithm to automatically update the
transformation matrix A until the overall cost gets convergency. Specifically, we used a
MATLAB implementation of L-BFGS provided by Mark Schmidt [144]. Finally, we will get
an optimal solution A, which produces a local minimal cost on the current training data, and
we use A, to transform all (x;,y;) to the outputs (a;,b;), remind that a; = f(x;,A,) = A,X;
and b; = f(y;,As) = A,y;. Formally, we call A, the optimal metric that have been learned.

Naturally, we model the probability p; that an output pair (a;,b;) is similar by the standard
logistic function, i.e. the sigmoid function:

1

Pi= b K"
i 1—|—exp(—ws(a“Tb’) K)

(B.6)

If p; exceeds a pre-defined threshold y, we label the pair (a;,b;) as similar, otherwise we
assign it as dissimilar. The parameter Y is tuned on a validation set, and then the best

parameter is selected for test evaluation.

Learning on Similar Pairs Only

162

SY'OFSSE8 | ¥V OFCCI8 | €€ 0F8L S8 | 9P 0F00°S8 | 8P°0FSE'L8 | 890FSES8 | COO0FLY' S8 | 8L'OF8I'E8 || WISTINST
0S°0FSS€8 | 66°0F8C I8 | ¥7'0F86'S8 | LY'OFLOS8 | LVOFSEL8 | OL'0FEV' S8 | 9S°0FCE S8 | ELOFLTEY || WISTINSD
eV'0+8C°¢8 | OL'0F86°08 | LEOFLL S8 | OV’ 0OFLI V8 | 6V°0FSSL8 | 69°0F8Y'S8 | 0SOFLI'SE | 99°0F85°¢8 TINS'T
1001 arenbs 7 [eur3uo j001 axenbs 7 [eursuo j001 arenbs 7 [euI3uo jo01 arenbs 7 [euisuo oo
10qeDH) LAIS 44100 d4q1 PO

WIS-TINS T=WIS-TINSD="TINS T ‘@ouewojrad ay3 Surredwo)) ‘398
Sururen oY) woay sared Jerwirs oY) AJUO UO SUIBI[WIS-TINST PUB WIS-TINSD "00E ST SI0109A 2INJBdJ PAUIYM Y} JO UOISUWI(] “BIEp
9PISINO I3IJ-[9qe] PIM UONRINIPUOD PIIOLIISAI IpUN B-AA T UO (UBSW) JO JOLIS PIEPURIST) AOBINJOL UONBIYLIdA 908 7" 2[qeL

eV’ 0+8C°¢€8 | 0L°0F86°08 | LEOFLLSS | V' 0FLIYVS | 6£°0FESLE | 69°0F8Y°'S8 | 0STOFLI'SS | 99°0F8S°¢8 | 'TINST
S9'0FCS I8 | T90F8IBL | STOFLI'P8 | 6£°0FCLTY | LEOFERIY | ISOFSLER | €€°0FECTHS | 6£0F0708 || NOOM
[S°0F8€08 | 660FCS8L | LEOF8BTY | L¥'0F8818 | 8S0FLI P8 | SS0FTIT8 | LV OFC6C8 | SSOFLY 6L || "TINSD
CEOFSTLL | SYOF8TSL | 6V 0FCS'LL | TYOF889L | ¥ OFSS I8 | STOFEY 08 | 8E'0FEL6L | 6V 0FLI'LL || Sul[eseq
j001d1enbs | qeurSuo | joororenbs | [eurSuo | jooromnbs | [euSuo | jooramenbs | qeurSuo oo
JoqeH LAIS dd7100 dd1 PO

QUISEG < TINSD<NDIM <TINST ‘@duewiojrad oy) Surredwo)) ‘(¢ ST SI0JOA AINJLAJ PAUAIYM Y} JO UOISUWI(] “BIBP
IPISINO AAIJ-[9ge[YIIM UONBINSYUOD PAJOLNSAI JOpUn B-pAp T UO (UBIW JY) JO JOLID PIEPUB)STF) AJBINOOR UONBIYLIIA 0B [9[qeRL

B.4 Experiment and Analysis 163

B.4 Experiment and Analysis

B.4.1 Experimental Setting

Actually, the experimental setting here is very similar with that in Chapter 4 for pairwise
face verification on the LFW-a dataset. This dataset contains most kinds of facial variations
in face pose, facial expression, illumination and partial occlusions, etc, and it has been the
most popular benchmark for face verification. All of our experiments are performed under
the LFW restricted configuration with label-free outside data: only the provided 6000 pairs
of data are used for training and evaluation.

We only use View 2 subset of LFW for experimental performance evaluation. There are
5749 people in the dataset which are divided into mutually exclusive 10 folds: the person in
any fold would not appear in the other fold. The total number of images in LFW is 13233,
however, the number of images for each person varies from 1 to 530.

We perform a 10-fold cross-validation on the aligned LFW-a data [160]: in each experi-
ment, we select 8 out of the 10 folds as the training set, the other 2 folds are used for validation
and testing respectively. For example, the first experiment uses subsets (1,2,3,4,5,6,7,8) for
training, subset 9 for validation and subset 10 for testing; the second experiment uses
(2,3,4,5,6,7,8,9) for training, subset 10 for validation and subset 1 for testing. After 10

repetitions, we report the mean accuracy (£standard error of the mean).

Feature vectors

We use four face descriptors to represent the face images: Gabor wavelets [38], LBP [1],
SIFT [81] and OCLBP [8]. For Gabor and LBP, we used exactly the same setting as in [125],
dimension of Gabor and LBP is 4,800 and 7,080, respectively. For SIFT, we directly used the
3,456-d feature data provided by [60]. For OCLBP, the high dimensional variant of LBP, we
used the same setting as in [184], dimension of the OCLBP descriptor is 46,846. Compared
with LBP using non-overlapping shifting window, OCLBP allows overlapping to adjacent
windows, therefore OCLBP is with much higher dimension than LBP and describes more
detailed facial texture. Additionally, square-roots of all the descriptors are also evaluated.

Moreover, following [26], we reduce the dimension of all the raw feature vectors to 300 by
whitened PCA.

B.4.2 Results and Analysis

We perform experiments with CSML [125] and LSML for face verification on LFW-a under

the LFW restricted configuration with label-free outside data. Especially, we implemented

164 Learning on Similar Pairs Only

the state-of-the-art method WCCN [8] as a comparison. In the experiments, we have three
parameters to tune: the decision threshold ¥, the regularization term A and the shifting
parameter K (only for LSML). The tuning range of y was from 0 to 1 with a step size of 0.001
for all the experiments. The tuning range of A was from 2 x 1073 to 10 x 10~ with a step
size of 1073 for CSML. For LSML, the tuning range of A was from 15 x 1073 to 20 x 1073

with a step size of 1073 and the tuning range of K was from 0 to 0.8 with a step size of 0.1.

Comparison with the state-of-the-art

To set a baseline, we first perform evaluation on the 300-d whitened feature vectors, i.e.
setting the transformation matrix A as the identity matrix. Results on different features are
listed in the first row of Table B.1.

Comparing CSML with the baseline, we can see significant performance gain for all
the features. For instance, on the square-rooted OCLBP, CSML obtains a performance
gain from 81.55% to 84.67% over the baseline. WCCN [8], further increases the accuracy
to 86.83% on the same feature. And the proposed LSML method performs the best on
all the features (the fourth row in Table B.1). For example, LSML achieves 87.55% on
the square-rooted OCLBP. In summary, comparing the performance of the four methods,
LSML>WCCN>CSML>Baseline.

Effectiveness of the shifting parameter K

Figure B.1 shows the accuracy-versus-K curve of the proposed LSML method using the
square-rooted OCLBP. We tune the shifting parameter from O to 0.8, and record the mean
accuracy and its standard error on the 10-fold experiments. The regularization parameter A
is kept as 17 x 1073, We can see that the curve rises rapidly when the decision boundary is
shifted from 0, and arrives the peak 87.55% at K = 0.5.

This curve illustrates that shifting the decision boundary towards the positive side can
adjust the cost from the similar training pairs and the dissimilar training pairs, which leads to

considerable improvement of verification performance.

B.4.3 Learning on Similar Pairs Only

From another perspective on the logistic loss function (Equations (B.4) and (B.5)), shifting the
decision boundary also means making similar pairs contribute more to the gradient than the
dissimilar pairs. To verify this, we sum up the gradient coefficient (1 — }%) in Equation (B.5)
for similar pairs and dissimilar pairs, respectively. Generally, the coefficients are all positive

numbers in the range [0, 1] and larger coefficients imply more contribution to the gradient. In

B.4 Experiment and Analysis 165

0.9

187.55(+0.49)%
0.88" ‘ |

0.861

Accuracy

LSML

-0 O 01 02 03 04 05 06 0.7 038
K

Fig. B.1 Accuracy-versus-K curve for the proposed LSML method using the square root
of OCLBP. The regularization parameter A = 17 x 1073, The peak 87.55+0.49% is at
K=0.5.

the example of Figure B.1, when K = 0, the sum of the gradient coefficients for the similar
training pairs is 523.0 and that for the dissimilar pairs is 1200.1; when K = 0.5, we get
2186.0 and 19.7 correspondingly. This means that with the decision boundary shifted from 0
to 0.5, the contribution of the similar pairs to the gradient has been increased dramatically.

Thus we propose an argument that under the linear constraint, learning on similar
pairs only can find a proper decision boundary automatically. Coincidentally, the WCCN
computation is only based on pairs from the same class [8]. Concretely, we perform learning
only on the similar pairs from the training set for CSML and LSML, namely CSML-sim and
LSML-sim: the cost and gradient functions are kept the same but the dissimilar training pairs
are abandoned. For LSML-sim, we keep the shifting parameter K to be 0 and the sharpness
parameter 7' to be 1. The results are reported in the last two rows of Table B.2. We can see
that the two methods achieve almost the same performance with the standard LSML method
over all the features. For example, on the square-rooted SIFT descriptor, LSML, CSML-sim
and LSML-sim obtain 85.77%, 85.98% and 85.78%, respectively.

Compared with the LSML that shifts the boundary by tuning a parameter K and trains
on both similar and dissimilar pairs, fewer parameters and less training data lead to faster
training for CSML-sim and LSML-sim. However, it is worth noting that it should be under
the linear constraint, otherwise training on similar pairs only is prone to a large over-fitting

problem.

UNIVERSITE
= I N SA

FOLIO ADMINISTRATIF

ElA

THESE DE L’'UNIVERSITE DE LYON. OPEREE AU SEIN.DE L'INSA LYON

NOM : ZHENG DATE de SOUTENANCE : 10/05/2016
(avec précision du nom de jeune fille, le cas échéant)

Prénoms : Lilei

[TITRE : Triangular Similarity Metric Learning: a Siamese Architecture Approach

NATURE : Doctorat Numéro d'ordre : 2016LYSEI045
Ecole doctorale : INFORMATIQUE ET MATHEMATIQUES (ED512)

Spécialité : Informatique et applications

RESUME :

Dans de nombreux problémes d’apprentissage automatique et de reconnaissance des formes, il y a toujours un besoin dg
fonctions métriques appropriées pour mesurer la distance ou la similarité entre des données. La fonction métrique est ung
fonction qui définit une distance ou une similarité entre chaque paire d’éléments d’'un ensemble de données. Dans cette thése
nous proposons une nouvelle methode, Triangular Similarity Metric Learning (TSML), pour spécifier une fonction métrique de
données automatiquement.

Le systtme TSML proposée repose une architecture Siamese qui se compose de deux sous-systemes identiques
partageant le méme ensemble de paramétres. Chaque sous-systéme traite un seul échantillon de données et donc le systémg
entier regoit une paire de données en entrée. Le systtme TSML comprend une fonction de colt qui définit la relation entrsg
chaque paire de données et une fonction de projection permettant I'apprentissage des formes de haut Niveau.

Pour la fonction de colt, nous proposons d’abord la similarité triangulaire (Triangular Similarity), une nouvelle similaritg
métrique qui équivaut a la similarité cosinus. Sur la base d’une version simplifiée de la similarité triangulaire, nous proposons |2
fonction triangulaire (the triangular loss) afin d’effectuer I'apprentissage de métrique, en augmentant la similarité entre deu)
vecteurs dans la méme classe et en diminuant la similarité entre deux vecteurs de classes différentes. Par rapport aux autreg
distances ou similarités, la fonction triangulaire et sa fonction gradient nous offrent naturellement une interprétatior
géométrique intuitive et intéressante qui explicite I'objectif d’apprentissage de métrique.

En ce qui concerne la fonction de projection, nous présentons trois fonctions différentes: une projection linéaire qui es
réalisée par une matrice simple, une projection non-linéaire qui est réalisée par Multi-layer Perceptrons (MLP) et une projection]
non-linéaire profonde qui est réalisée par Convolutional Neural Networks (CNN). Avec ces fonctions de projection, nous
proposons trois systémes de TSML pour plusieurs applications: la vérification par paires, I'identification d’objet, la réduction de
la dimensionnalité et la visualisation de données. Pour chaque application, nous présentons des expérimentations détailléeq
sur des ensembles de données de référence afin de démontrer I'efficacité de notre systemes de TSML.

MOTS-CLES : architecture Siamese; reconnaissance des formes; apprentissage métriques; Multi-layer Perceptrons;
Convolutional Neural Networks

Laboratoire (s) de recherche : Laboratoire d’InfoRmatique en Image et Systemes d’information (LIRIS)
Directeur de thése: IDRISSI, Khalid
Président de jury : DORIZZI, Bernadette

Composition du jury :

DORIZZI, Bernadette Prof. Télécom SudParis Présidente
MARCHAND-MAILLET, Stéphane Prof. University of Geneva Rapporteur

[THOME, Nicolas MCF, HDR Université Pierre et Marie Curie Rapporteur

PUECH, William Prof. Université de Montpellier Examinateur
BASKURT, Atilla Prof. INSA-LYON Co-Directeur de thése
IDRISSI, Khalid MCF, HDR INSA-LYON Directeur de thése

GARCIA, Christophe Prof. INSA-LYON Examinateur

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Context
	1.2 Definitions and Prerequisites
	1.3 Applications
	1.3.1 Pairwise Verification
	1.3.2 Dimensionality Reduction and Data Visualization

	1.4 Contribution
	1.5 Outline

	2 Literature Review: Siamese Neural Networks and Metric Learning
	2.1 Introduction
	2.2 Siamese Neural Networks
	2.2.1 Perceptron
	2.2.2 Multi-Layer Perceptrons
	2.2.3 Siamese Multi-Layer Perceptrons
	2.2.4 Convolutional Neural Networks
	2.2.5 Siamese Convolutional Neural Networks

	2.3 Metric Learning
	2.3.1 Distance Metric Learning
	2.3.2 Similarity Metric Learning
	2.3.3 Other Advances in Metric Learning

	2.4 Conclusion and Open Problems

	3 Triangular Similarity Metric Learning
	3.1 Introduction
	3.2 Triangular Similarity
	3.3 Triangular Loss Function
	3.4 Relation to Traditional Neural Networks
	3.4.1 Relation to the Mean Squared Error Function
	3.4.2 Non-Convexity and Backpropagation
	3.4.3 Batch Gradient Descent or Stochastic Gradient Descent
	3.4.4 Various Mapping Functions

	3.5 Visualization of the Objective
	3.5.1 Example 1: Two Classes
	3.5.2 Example 2: Four Classes

	3.6 Conclusion

	4 Applications on Pairwise Verification
	4.1 Introduction
	4.2 Pairwise Face Verification
	4.2.1 The LFW Protocols and Related Work
	4.2.2 Linear Triangular Similarity Metric Learning
	4.2.3 The LFW Dataset and Face Descriptors
	4.2.4 Experimental Settings
	4.2.5 Results and Analysis

	4.3 Pairwise Kinship Verification
	4.3.1 The KinFaceW Protocols and Related Work
	4.3.2 The KinFaceW Dataset and Face Descriptors
	4.3.3 Experiments and Analysis

	4.4 Linearity in Pairwise Verification
	4.4.1 Linear and Nonlinear Triangular Similarity Metric Learning
	4.4.2 Stochastic Gradient Descent
	4.4.3 Datasets and Feature Vectors
	4.4.4 Experiments and Analysis

	4.5 Conclusion

	5 Applications on Classification and Dimensionality Reduction
	5.1 Introduction and Related Work
	5.2 Classification and Visualization on Small-scale Data
	5.2.1 Multi-layer Perceptrons
	5.2.2 The Extended Yale B Dataset and Face Descriptors
	5.2.3 Dimensionality Reduction in Face Classification
	5.2.4 Dimensionality Reduction in Data Visualization

	5.3 End-to-end Data Visualization on Large-scale Data
	5.3.1 The MNIST Dataset and Convolutional Neural Networks
	5.3.2 Dimensionality Reduction in Data Visualization

	5.4 Conclusion

	6 Conclusion and Perspectives
	6.1 Conclusion
	6.2 Perspectives

	References
	Appendix A Derivatives
	A.1 Derivative of the vector norm
	A.2 Derivative of the bilinear similarity
	A.3 Derivative of the parameterized vector norm
	A.4 Derivative of the Cosine Similarity
	A.5 Derivative of the linear triangular loss

	Appendix B Learning on Similar Pairs Only
	B.1 Introduction
	B.2 Cosine Similarity Metric Learning
	B.3 Logistic Similarity Metric Learning
	B.4 Experiment and Analysis
	B.4.1 Experimental Setting
	B.4.2 Results and Analysis
	B.4.3 Learning on Similar Pairs Only

