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Abstract

In many machine learning and pattern recognition tasks, there is always a need for appropriate
metric functions to measure pairwise distance or similarity between data, where a metric
function is a function that defines a distance or similarity between each pair of elements
of a set. In this thesis, we propose Triangular Similarity Metric Learning (TSML) for
automatically specifying a metric from data.

A TSML system is loaded in a siamese architecture which consists of two identical
sub-systems sharing the same set of parameters. Each sub-system processes a single data
sample and thus the whole system receives a pair of data as the input. The TSML system
includes a cost function parameterizing the pairwise relationship between data and a mapping
function allowing the system to learn high-level features from the training data.

In terms of the cost function, we first propose the Triangular Similarity, a novel similarity
metric which is equivalent to the well-known Cosine Similarity in measuring a data pair.
Based on a simplified version of the Triangular Similarity, we further develop the triangular
loss function in order to perform metric learning, i.e. to increase the similarity between two
vectors in the same class and to decrease the similarity between two vectors of different
classes. Compared with other distance or similarity metrics, the triangular loss and its
gradient naturally offer us an intuitive and interesting geometrical interpretation of the metric
learning objective.

In terms of the mapping function, we introduce three different options: a linear mapping
realized by a simple transformation matrix, a nonlinear mapping realized by Multi-layer
Perceptrons (MLP) and a deep nonlinear mapping realized by Convolutional Neural Networks
(CNN). With these mapping functions, we present three different TSML systems for various
applications, namely, pairwise verification, object identification, dimensionality reduction
and data visualization. For each application, we carry out extensive experiments on popular

benchmarks and datasets to demonstrate the effectiveness of the proposed systems.






Résumé

Dans de nombreux problemes d’apprentissage automatique et de reconnaissance des formes,
il y a toujours un besoin de fonctions métriques appropriées pour mesurer la distance ou la
similarité entre des données. La fonction métrique est une fonction qui définit une distance
ou une similarité entre chaque paire d’éléments d’un ensemble de données. Dans cette these,
nous proposons une nouvelle methode, Triangular Similarity Metric Learning (TSML), pour
spécifier une fonction métrique de données automatiquement.

Le systeme TSML proposée repose une architecture Siamese qui se compose de deux
sous-systemes identiques partageant le méme ensemble de parametres. Chaque sous-systeme
traite un seul échantillon de données et donc le systeme entier regoit une paire de données en
entrée. Le systtme TSML comprend une fonction de cofit qui définit la relation entre chaque
paire de données et une fonction de projection permettant 1’apprentissage des formes de haut
niveau.

Pour la fonction de cofit, nous proposons d’abord la similarité triangulaire (Triangular
Similarity), une nouvelle similarité métrique qui équivaut a la similarité cosinus. Sur la base
d’une version simplifiée de la similarité triangulaire, nous proposons la fonction triangulaire
(the triangular loss) afin d’effectuer I’apprentissage de métrique, en augmentant la similarité
entre deux vecteurs dans la méme classe et en diminuant la similarité entre deux vecteurs de
classes différentes. Par rapport aux autres distances ou similarités, la fonction triangulaire et
sa fonction gradient nous offrent naturellement une interprétation géométrique intuitive et
intéressante qui explicite 1’objectif d’apprentissage de métrique.

En ce qui concerne la fonction de projection, nous présentons trois fonctions différentes:
une projection linéaire qui est réalisée par une matrice simple, une projection non-linéaire qui
est réalisée par Multi-layer Perceptrons (MLP) et une projection non-linéaire profonde qui est
réalisée par Convolutional Neural Networks (CNN). Avec ces fonctions de projection, nous
proposons trois systemes de TSML pour plusieurs applications: la vérification par paires,
I’identification d’objet, la réduction de la dimensionnalité et la visualisation de données. Pour
chaque application, nous présentons des expérimentations détaillées sur des ensembles de
données de référence afin de démontrer 1’efficacité de notre systemes de TSML.






Table of contents

List of figures XV
List of tables xvii
1 Introduction 1
1.1 ConteXt . . . . . . o e e e e 1
1.2 Definitions and Prerequisites . . . . . . . . .. ... ... ... ... 2
1.3 Applications . . . . . . . . .. e e 3
1.3.1 Pairwise Verification . . . . . ... ... ... .. ......... 4
1.3.2 Dimensionality Reduction and Data Visualization . . . . . . . . .. 4
1.4 Contribution . . . . . . . . . . e e e e 5
1.5 Outline . .. ... . . . . . e 5
2 Literature Review: Siamese Neural Networks and Metric Learning
2.1 Introduction . . . . . . . . . . ...
2.2 Siamese Neural Networks . . . . . .. .. .. ... ... .. ........ 10
2.2.1 Perceptron . . . . . . .. ... 10
2.2.2 Multi-Layer Perceptrons . . . . . . . .. ... ... ... .. ... 12
2.2.3 Siamese Multi-Layer Perceptrons . . . . . . . ... ... ... .. 16
2.2.4  Convolutional Neural Networks . . . . . ... ... ... ..... 18
2.2.5 Siamese Convolutional Neural Networks . . . .. ... ... ... 27
23 MetricLearning . . . . . . ... 28
2.3.1 Distance Metric Learning . . . . . ... ... ... ... .. ... 29
2.3.2  Similarity Metric Learning . . . . . . .. ... ... ... ... 37
2.3.3 Other Advances in Metric Learning . . . . . . ... ... ... .. 42
24 Conclusionand Open Problems . . . . . . ... ... ... ... ...... 45
3 Triangular Similarity Metric Learning 47

3.1 Introduction . . . . . . . . . . . . ., 47



xii

Table of contents

3.2 Triangular Similarity . . . . . . .. ... Lo
3.3 Triangular Loss Function . . . . . . .. ... ... ... ..........
3.4 Relation to Traditional Neural Networks . . . . . . ... ... ... ....
3.4.1 Relation to the Mean Squared Error Function . . . . .. ... ...
3.4.2 Non-Convexity and Backpropagation . . . .. ... .. ......
3.4.3 Batch Gradient Descent or Stochastic Gradient Descent . . . . . . .
3.4.4 Various Mapping Functions . . . . . .. ... ... ... .....
3.5 Visualization of the Objective . . . . . . . . ... ... ... ........
3.5.1 Example I: TwoClasses . . . . . . ... ... .. ... ......
3.5.2 Example2: FourClasses . . . . . ... .. .. ... ........
3.6 Conclusion . . . . . . ...

Applications on Pairwise Verification

4.1 Introduction . . . . . . . . ...

4.2 Pairwise Face Verification . . . .. ... ... ... ... ... ...
4.2.1 The LFW Protocols and Related Work . . . . . . .. ... ... ..
4.2.2 Linear Triangular Similarity Metric Learning . . . . . . . ... ..
4.2.3 The LFW Dataset and Face Descriptors . . . . . . ... ... ...
4.2.4 Experimental Settings . . . . ... .. ... ... ...
425 Resultsand Analysis . . . . . .. ... ... o

4.3 Pairwise Kinship Verification . . . . . .. ... ... ... ... ... ...
4.3.1 The KinFaceW Protocols and Related Work . . . . . ... ... ..
4.3.2 The KinFaceW Dataset and Face Descriptors . . . . . . ... ...
4.3.3 Experiments and Analysis . . . . . ... ... ... ... ..

4.4 Linearity in Pairwise Verification . . . . . . . ... ... ... ... ...
4.4.1 Linear and Nonlinear Triangular Similarity Metric Learning . . . .
4.4.2 Stochastic Gradient Descent . . . . . . ... ... ... .. ....
4.4.3 Datasets and Feature Vectors . . . . . . ... ... ... .. ....
4.44 Experiments and Analysis . . . . . ... ... oo

4.5 Conclusion . . . . . . . . .

Applications on Classification and Dimensionality Reduction

5.1 Introduction and Related Work . . . . . . . ... ... ... ... ... ..

5.2 Classification and Visualization on Small-scale Data . . . . . ... .. ..
5.2.1 Multi-layer Perceptrons . . . . . ... ... ...
5.2.2 The Extended Yale B Dataset and Face Descriptors . . . . . . . ..

5.2.3 Dimensionality Reduction in Face Classification . . . .. ... ..

65
65
66
67
68
71
74
76
80
81
82
84
88
89
91
93
94
103



Table of contents xiii
5.2.4 Dimensionality Reduction in Data Visualization. . . . . . . . . .. 118

5.3 End-to-end Data Visualization on Large-scale Data . . . . . .. ... ... 119
5.3.1 The MNIST Dataset and Convolutional Neural Networks . . . . . . 122

5.3.2 Dimensionality Reduction in Data Visualization. . . . . . . . . .. 125

54 Conclusion . . . ... L 134

6 Conclusion and Perspectives 135
6.1 Conclusion . . . . .. .. .. 135

6.2 Perspectives . . . . . . ... e e 137
References 139
Appendix A Derivatives 153
A.1 Derivative of the vectornorm . . . . . . . . . ... ... ... ... 153
A.2 Derivative of the bilinear similarity . . . . . . .. ... ... ... .. ... 154
A.3 Derivative of the parameterized vectornorm . . . . . . . .. ... ... .. 155
A.4 Derivative of the Cosine Similarity . . . . . . ... ... ... ....... 156
A.5 Derivative of the linear triangularloss . . . . .. ... ... ... ..... 157
Appendix B Learning on Similar Pairs Only 159
B.1 Introduction . . . . . . .. ... 159
B.2 Cosine Similarity Metric Learning . . . . . . . .. ... ... .. ..... 159
B.3 Logistic Similarity Metric Learning . . . . . . . . ... ... ... .... 160
B.4 Experimentand Analysis . . . . .. ... ... Lo 163
B.4.1 Experimental Setting . . . . . ... ... ... ... ... ..... 163

B.4.2 Resultsand Analysis . . . . . .. ... ... L oL 163

B.4.3 Learning on Similar PairsOnly . . . ... ... ... .. ..... 164






List of figures

1.1

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4

Diagram of Metric Learning . . . . . . . ... ... ... ... 3
Aperceptron . . . ..o L L e e 11
Activation functions . . . . . . ... Lo 12
Diagramofan MLP . . . . . . .. .. . ... 13
Diagramof a Siamese MLP . . . . . . . . ... ... ... L. 17
Fully-connected input layer and convolutional input layer . . . . . . . . .. 20
Convolutional layer with three feature maps . . . . . . .. ... ... ... 21
Diagram of apooling layer . . . . . .. . .. .. ... ... ... 22
Diagramof acomplete CNN . . . . .. . ... ... .. ... ....... 23
Diagramof LeNet-5. . . . . . . . . . ... 24
Diagram of a Siamese CNN . . . . . . . . ... ... ... ... .. 27
Diagram of LMNN . . . . . . ... .. 32
Mlustration of Triangular Similarity . . . . . . ... ... ... ... .... 49
[lustration of simplified Triangular Similarity . . . . . . .. ... ... .. 51
Diagram of Metric Learning . . . . . . . ... ... ... ... 53
Geometrical interpretation of the triangular gradient . . . . . . . . . .. .. 53
AnMLP foratoyproblem . . ... ... ... ... ............ 58
Example 1 of TSML: twoclasses . . . . . . .. ... ... .. ... .... 60
Example 2 of TSML: four classes (2-d projections) . . . . . ... ... .. 61
Example 2 of TSML.: four classes (3-d projections) . . . . ... ... ... 62
Ideal final states: polygons . . . . . . . . . ... ... ... .. ..., 63
Ideal final states: polyhedrons . . . . . .. ... ... ... ... ..... 63
ROC curve of TSML-fusionon LFW-a . . . . . ... .. ... ... .... 81
ROC curves of different methods on KinFaceW-I . . . . .. ... ... .. 87
ROC curves of different methods on KinFaceW-1I . . . . . . ... ... .. 87

Dotplots illustrating pairwise similarity matrices . . . . . . . . . . ... .. 96



xXvi

List of figures

4.5
4.6
4.7

5.1
5.2
53
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

B.1

Learning curves of TSML models on the LFW data . . . . . . ... .. .. 98
Performance comparison between TSML and TSML-Sim . . . . . . . . .. 101
ROC curves of TSML-Linear-Sim on LFW-funneled . . . . ... ... .. 103
The MLP used in TSML-MLP . . . .. .. ... ... ... ... .. ... 109
Index matrix for mini-batch gradient descent of TSML-MLP . . . . . . .. 111
Example images in the Extended Yale B dataset . . . . . .. ... ... .. 113
Classification performance of TSML-MLP on Extended Yale B . . . . . . . 116
Face images that TSML-MLP failed to recognize . . . . . ... ... ... 116
Visualization of data from Extended YaleB . . . . .. ... ... ... .. 118
[lustration of dimensionality reduction via TSML-MLP . . . .. ... .. 120
Example images in the MNIST handwritten digits dataset . . . . . . .. .. 122
Diagram of the proposed CNN architecture . . . . . . .. ... ... ... 123
Mapping results after tiny-scale training (2-dimensional) . . . . . .. . .. 126
Results after tiny-scale training with different data size and initialization. . . 126
Mapping results after large-scale training (2-dimensional) . . . . . . . . . . 127
An unfolded view of the MNIST test data (2-dimensional) . . ... .. .. 128
Mapping results before and after unfolding (3-dimensional). . . . . . . .. 129
An unfolded view of the MNIST test data (4-dimensional) . . .. ... .. 130
Mapping results of the MNIST testdataby DrLIM . . . . . ... ... .. 132
Accuracy-versus-K curve for LSMLonLFW-a . . . . ... ... ... .. 165



List of tables

1.1

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
53
54
5.5

B.1
B.2

Summary of notations . . . . . ... ... 7
Connection scheme between the layers S2 and C3 of LeNet-5. . . . . . .. 25
Distribution of individuals and images in LFW . . . . . .. .. ... ... 72
Face verification performance of TSMLon LFW-a . . . . . ... ... .. 77
Face verification performance of TSML-Simon LFW-a . . . . . . . . . .. 77
Time cost of CSML-Sim-I and TSML-Sim-I . . . . . . ... ... ... .. 77
Face verification performance of TSML-fusionon LFW-a . . . . . . . . .. 80
Kinship verification performance on KinFaceW-I and KinFaceW-II . . . . . 85
Participants in the FG 2015 Kinship Verification Evaluation . . . . . . . . . 85
FG 2015 Kinship Verification Evaluation on KinFaceW-I . . . . . ... .. 86
FG 2015 Kinship Verification Evaluation on KinFaceW-I1I.. . . . . . . . .. 86
Distribution of individuals and speech utterances in NIST i-vector . . . . . 94
Proportion of triplets {x;,y;,z;} satisfying that cos(x;,y;) > cos(x;,z;) . .. 95

Face verification performance of TSML and TSML-Sim on LFW-funneled . 100
Spearker verification performance of TSML and TSML-Sim on NIST i-vector 100

Comparison of state-of-the-art methods on LFW-funneled . . . . . . . . .. 102
Comparison of methods using single face descriptor on LEFW-funneled . . . 102
Face identification performance on Extended YaleB. . . . . . . .. .. .. 117
Significance testing between MLP and TSML-MLP . . . . . ... ... .. 117
Comparison on training time of different methods . . . . . . ... ... .. 131
Comparison on classification accuracy of different methods . . . . . . . .. 133
Comparison summary of different methods . . . . . . ... ... ... .. 134
Face verification performance of LSMLon LFW-a . . . . ... ... ... 162

Face verification performance of LSML-simon LFW-a . . . . . . . .. .. 162






Chapter 1

Introduction

1.1 Context

"No two leaves are exactly alike." — Gottfried Wilhelm Leibniz

This dictum of Leibniz reveals that differences are ubiquitous in this world. Besides, we
can also realize another fact that he must have compared a lot of leaves, as well as other
objects. In other words, the ubiquity of comparison holds for everyone. Usually, for the
same comparison, different people may have different judgement of similarity, since they
have their own evaluation standards. However, to facilitate exchanges and communications
in many collaboration affairs, we have to set up commonly accepted evaluation standards for
people in a certain group.

In mathematics, the numerical measurement of a common evaluation standard is called
a metric. In many machine learning and pattern recognition tasks, there is always a need
for appropriate metric functions to measure pairwise distance or similarity between data,
where a metric function is a function that defines a distance between each pair of elements
of a set. For example, in a Cartesian coordinate system, we can use the Euclidean metric to
measure the straight-line distance between two points which are usually represented by two

position vectors. Formally, for two vectors x and y, the Euclidean distance between them is

|x—y|l = /(x—y)T (x—y). However, in some machine learning applications, a common
metric such as the Euclidean distance may be not proper to measure the semantic distance
between two objects. In other words, from the point of view of feature representation, we
may think that the vector representations of the two objects do not suit the Euclidean space.

Consequently, a technique called Metric Learning has been developed to improve the
collocation of feature representations and distance metrics. Continuing with the example

of the Euclidean distance, a mapping function f(-) is introduced and the distance between
two vectors x and y is measured by || £(x) — £(y)|| = /(f(x) — £F(¥))T (f(x) — £(y)). With




2 Introduction

this mapping function f(-), the pairwise distance between vectors can be better measured
by the new metric function || f(x) — f(y)|| than by ||x —y||. The procedure of specifying
the mapping function f(-) is thus defined as Metric Learning. Similarly, from the point of
view of feature representation, the objective of Metric Learning is to learn a new vector
representation f(x) (as a substitute of x) that better suits the Euclidean space.

The principal aim of this thesis is to study Metric Learning techniques. We will outline
the most important existing approaches to Metric Learning and present a novel method called
TSML, short for Triangular Similarity Metric Learning. We will develop a geometrical
interpretation of TSML based on the well known triangle inequality theorem. We will focus
on investigating the effectiveness of TSML on different applications such as face verification,

speaker verification, object classification and data visualization.

1.2 Definitions and Prerequisites

In the previous section, we have used the example of Euclidean metric to illustrate what
is Metric Learning. Formally, an acknowledged definition is that Metric Learning is the
task of learning a metric function over objects' [87, 13]. A metric has to obey four axioms:
non-negativity, identity of indiscernibles, symmetry and triangle inequality. In practice,
Metric Learning algorithms may ignore one or two axioms and learn a pseudo-metric.

This acknowledged definition does not indicate the way of learning. In this thesis, we
restrict the definition of Metric Learning as learning a metric function from data pairs, which
is the commonest manner in current Metric Learning algorithms.

Figure 1.1 presents the general diagram of a Metric Learning algorithm. A pair of data
samples (X;,y;) is given as inputs, indicating the i, training pair from a data set. We are
going to learn a mapping function f(-) in the "black box", which realizes a projection and
results in two outputs (a;,b;). We call the space of all the inputs as the original space and
call the space of all the outputs as the target space. After the mapping, the distance or
similarity between two outputs can be measured by a certain metric, and a cost function or
loss function is defined based on this metric. Generally, if the pair of inputs is labeled as
being similar, the objective of minimizing this cost function is to make the outputs closer
to each other; otherwise, for a dissimilar pair of inputs, the objective is to make the outputs
more dissimilar/different, i.e. to separate the dissimilar pair in the target space.

In Fig. 1.1, one may notice that the same function f(-) with the same parameter W is
used to process both inputs. This symmetric architecture is called the siamese architecture.
Particularly, when the mapping function f(-) is realized by neural networks, this technique

Uhttps://en.wikipedia.org/wiki/Similarity_learning#Metric_learning
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Fig. 1.1 Diagram of Metric Learning.

is also called Siamese Neural Networks. Through the whole text of this thesis, we regard
Siamese Neural Networks and Metric Learning as the same technique. Their only difference
is that Siamese Neural Networks refer to the symmetric structure of parallel neural networks
but Metric Learning emphasizes the pairwise relationship (i.e. the metric) in the data space.
In other words, Siamese Neural Networks concern the mapping function f(-) that represents
the power (i.e. the complexity) of a system, and Metric Learning mainly concerns the cost
function that desires the data relationship in the target space. Nevertheless, an efficient and
effective Metric Learning system should be a collaboration of both since the cost function
also controls the learning procedure of the mapping.

1.3 Applications

Whenever the notion of pairwise metric between data samples plays an important role, a
task can benefit from Metric Learning [13]. For example, in classification tasks, a k-Nearest
Neighbor (kNN) classifier [34] needs a metric to identify the nearest neighbors; for many
clustering algorithms such as k-means Clustering [110] and Spectral Clustering [124, 164],
their performance depends on the quality of distance or similarity measurement between
data points. Therefore Metric Learning has been applied to diverse problems such as image

classification [121], visual tracking [104], image annotation [59] in the domain of computer
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vision, as well as document ranking [119], visual localization [92], image retrieval [25] in
the domain of content-based information retrieval. In the following, we introduce two fields

of application that we focus on in this thesis.

1.3.1 Pairwise Verification

The task of pairwise verification is to verify whether two data samples are semantically
similar with each other, i.e. having the same content of interest. Generally, a pair of data
samples containing the same semantic content of interest is called a similar pair; otherwise,
two samples containing different concerned semantic contents are called a dissimilar pair
or a different pair. According to different definitions of the concerned semantic similarity,
we study three different problems respectively, namely, pairwise face verification, pairwise

kinship verification and pairwise speaker verification.

* Pairwise face verification: the task of pairwise face verification is to determine

whether two given face images are of the same person or not.

* Pairwise kinship verification: a kinship is defined as a relationship between two
persons who are biologically related with overlapping genes, thus the task of pairwise
kinship verification is to determine whether there is a kin relation between a pair of

given face images.

» Pairwise speaker verification: the task of pairwise speaker verification is to determine

whether two spoken utterances are of the same person or not.

In all the pairwise verification tasks, we usually use the verification accuracy or its contrary,

the verification error, to evaluate a Metric Learning method.

1.3.2 Dimensionality Reduction and Data Visualization

When we set the dimension of the target space lower than the dimension of the original space
(see Fig. 1.1), Metric Learning techniques perform dimensionality reduction on the inputs.
Furthermore, if the target space is a visualizable space, i.e. the dimension of the target space
is lower than 3 so that one can see the objects in it, this particular kind of dimensionality
reduction is also called data visualization.

In general, when a dimensionality reduction technique projects the original data to a
lower dimensional target space, some information of the raw data is discarded. Therefore,
besides reducing the dimensionality, maintaining the most useful information for a specific

task always plays an important role in practice. For example, in a classification task, the
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classification accuracy usually decreases as the dimension of the target space reduces, so
the capability of accurate classification is an important criterion of a good dimensionality

reduction technique.

1.4 Contribution

The major contribution of this thesis is that we discovered the Triangular Similarity and
invented the triangular loss as a metric learning cost function. By incorporating various
mapping function with the triangular loss, we constructed different TSML systems and
applied them to the above two applications, i.e. pairwise verification and dimensionality

reduction.

* Recent benchmarks such as the dataset ’Labeled Faces in the Wild’ (LFW) [75] and the
dataset ’Kinship Face in the Wild” (KinFaceW) [112] established a challenging study
of seeking effective learning algorithms which have the ability to discover principles
from small numbers of training examples. In these tasks of pairwise verification,
we found that under the setting of limited training data, a linear system generally
performed better than nonlinear systems because the nonlinear machines were more
prone to over-fitting the small training set. On the two popular datasets, our linear

TSML system achieved competitive verification performance with the state-of-the-art.

* Without the constraint of limited training, we presented the nonlinear systems to
realize flexible dimensionality reduction on data of images, i.e. the Extended Yale B
dataset [51] and the MNIST handwritten digits dataset [96]. We succeeded in projecting
the original high dimensional image features or the raw images into visualizable
spaces while maintaining accurate classification in the target space. Moreover, taking
advantage of classical manifold learning theories, the nonlinear TSML systems offered

a new perspective of data visualization that significantly advanced the state-of-the-art.

1.5 OQOutline

In the following chapter (Chapter 2), we will outline some of the most important Metric
Learning techniques as well as the advances in Siamese Neural Networks. Furthermore, we
will discuss a few open problems in designing a good Metric Learning approach in a siamese
architecture.

In Chapter 3, we will then focus on presenting our own approach, the Triangular Similarity

Metric Learning (TSML). We will first introduce the definition of Triangular Similarity and
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then explain the triangular loss function, followed by a geometrical interpretation of the cost
function and its gradient function.

After having described the methodology, we will move to the applications. In Chapter 4
we will show the effectiveness of our method on the applications of pairwise verification by
experimental comparison with other state-of-the-art methods. We will investigate the effects
of several anti-over-fitting strategies by experimental justification.

In Chapter 5, we will apply the proposed method for classification and data visualization
on small-scale data and large-scale data, respectively. We will integrate the triangular loss
function with neural networks such as Multi-layer perceptrons (MLP) and deep Convolutional
Neural Networks (CNN) to realize nonlinear mapping. A particular application of classical
manifold learning theories will also be presented.

Finally, Chapter 6 will conclude this thesis with a short summary and draw some perspec-
tives for future research.

Throughout this thesis, we use standard matrix notations to present mathematical objects.

A summary of common used notations is given in Table 1.1.
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Table 1.1 Summary of notations

Notation Description

A Matrix; or a set of matrices and vectors

Ajj The (i, j):;, element of the matrix A

A; Indexed matrix for some purpose, e.g. the i;;, matrix
A0 Indexed matrix for some purpose, e.g. the i;;, matrix
a Vector (column vector), a = [ay,a,...,a,)"

a; The i;;, element of the vector a

a; Indexed vector for some purpose, e.g. the i;;, vector
al) Indexed vector for some purpose, e.g. the i;;, vector
a Scalar

N Scalar

e Natural exponent to the power N

log(N) orIn(N)  Natural logarithm of the scalar N

7) Function

716 Derivative of the function f(-)

% Partial derivative of the cost J over the parameter A
Aa Differential of the parameter vector a

AA Differential of the parameter matrix A

AT Transpose of the matrix A

tr(A) Trace of the matrix A

I The identity matrix

a®b Element-wise multiplication between two vectors a and b
|a|| L2-norm (Euclidean norm) of the vector a
a’=a’a Square of the vector a

|A|l Frobenius norm of the matrix A

AxB Convolution operation (2-d) between two matrices A and B







Chapter 2

Literature Review: Siamese Neural
Networks and Metric Learning

2.1 Introduction

We have mentioned in the previous chapter that we regard Siamese Neural Networks and
Metric Learning as two names of the same technique. As their names suggest, the phrase
"Siamese Neural Networks" concerns the symmetric structure of parallel neural networks
used for mapping but the term "Metric Learning" emphasizes the pairwise relationship (i.e.
the metric) in the data space. Actually, while most current Metric Learning methods specify
a linear metric, Siamese Neural Networks can be considered as the pioneer of learning
a nonlinear metric. In this chapter we will review related literature on Siamese Neural

Networks and Metric Learning, respectively.

For Siamese Neural Networks, we will start from introducing a classical type of neural
networks, Multi-Layer Perceptrons (MLP). After that, we will present an advanced type
of neural networks, Convolutional Neural Networks (CNN) that are of more complex and
powerful architectures. Besides, we will show their siamese variants, the Siamese MLP and

the Siamese CNN, respectively.

For Metric Learning, we will focus on learning a linear metric since most of current
Metric Learning algorithms are linear. We divide current Metric Learning methods into
two main families: learning a distance metric or a similarity metric. We will review typical
exemplars in each family and also some other advances in Metric Learning.

At last, we will summarize the natural connections between Siamese Neural Networks
and Metric Learning as well as the difference between them, followed by a discussion on a

few open problems of designing a good architecture and choosing a good metric.
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2.2 Siamese Neural Networks

The word "siam" was the ancient name of Thailand, and the adjective "siamese" means
someone or something from Thailand'. Its usage of indicating a symmetric structure derives
from the phrase "Siamese twins" which refers to the most famous pair of conjoined twins,
Chang and Eng Bunker?, from Thailand.

Neural Networks (NN) denote a machine learning technique inspired by the human
brain and its capability of accomplishing simple and complex tasks by communications and
cooperations between a great amount of neurons, each performing a very simple operation.
Like the human brain, an NN is a trainable structure consisting of a set of inter-connected
units, each implementing a very simple function, and together eventually realizing a complex
classification or regression function. The set of parameters used to configure a certain
function is usually called the set of weights in an NN, which can be efficiently learned by the
Backpropagation algorithm [142].

Combining the two together, a Siamese NN is a special type of NN that consists of two
identical sub-networks sharing the same set of weights. We begin this section by introducing
the basic components of an NN.

2.2.1 Perceptron

The most well known type of neural unit is called a perceptron which was introduced by
Rosenblatt [141]. Its basic structure is illustrated in Fig. 2.1. With n numerical inputs
X = [x1,X2,...,%,]7 and one output y, the value of y is defined as a function of the sum of

weighted inputs w’ x and an additional bias term b:
y=@(W'x+b), 2.1)

where w = [wi,wy,... ,wn]T denotes weights for all the inputs, and wix = Yl wix; is the
weighted sum. The function ¢(+) is usually called an activation function.

In order to use Backpropagation as the learning algorithm for an NN, the activation
function has to be differentiable. Commonly used activation functions include the linear
function, the sigmoid function, the tanh function (i.e. the hyperbolic tangent function) and
the ReLLU (Rectified Linear Unit) function. The four types of activation functions and their

derivatives are listed as below.

Ihttps://en.wikipedia.org/wiki/Siamese
Zhttps://en.wikipedia.org/wiki/Chang_and_Eng_Bunker
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¢ Linear function:

o(t) =t, (2.2)
o'(t)=1. (2.3)
* Sigmoid function:
1
o) =1 (2.4)
o'(t) = o(t)[1 - o(1)]. (2.5)
¢ Tanh function:
e —et
o) = = (2.6)
¢'(t) = 1—¢*(1). (2.7)
¢ ReLU function:
¢(t) = max(0,1), (2.8)
1,t>0;
¢'(1) = (2.9)
0,7<0.

Note that the ReLU function is actually not differentiable at the point 0. Hence in

practical implementations, ¢'(0) is usually set to 0.

Figure 2.2 shows curves of the four activation functions. The linear function (Fig. 2.2
(a)) is often used in an NN for linearly separable problems. In contrast, it is the nonlinear
activation function that allows an NN to compute nontrivial problems using only a small
number of nodes. The sigmoid non-linearity is shown in Fig. 2.2 (b). It takes a real-valued
number and "squashes" it into range between 0 and 1. In particular, large negative numbers

become 0 and large positive numbers become 1. The sigmoid function has been frequently
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Fig. 2.2 Four typical activation functions in a perceptron.

used because of its nice interpretation as the firing rate of a neuron: from not firing at all (i.e.
0) to fully-saturated firing at an assumed maximum frequency (i.e. 1). Unlike the sigmoid
function, the tanh function squashes a real-valued input to the range [—1, 1] where its output
is zero-centered (Fig. 2.2 (c)). Therefore in practice the tanh function is usually preferred to
the sigmoid function [100]. However, the ReLLU activation function was argued to be more
biologically plausible [54] than the widely used sigmoid and tanh functions. As of the year
2015, the ReL.U activation function has been the most popular activation function for deep
neural networks [99].

2.2.2 Multi-Layer Perceptrons

By combining several interconnected perceptrons together, Multi-Layer Perceptrons (MLP)

are able to approximate arbitrary nonlinear mappings and thus have been the most popular
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Layer1 Layer 2 Layer 3

Fig. 2.3 Diagram of a 3-layer MLP. A node with the sign } represents a preceptron.

kind of NN since the 1980°s [142]. It finds applications in diverse fields such as image
recognition [181] and speech recognition [106, 21].

A classical MLP consists of an input layer, one or more hidden layer(s) and an output
layer of neurons. An MLP is a feed-forward neural network, i.e. the activation of the neurons
is propagated layer-wise from the input to the output layer [43]. Figure 2.3 illustrates the
structure of a 3-layer MLP consisting of an input layer, an output layer and only one hidden
layer, where a node with the sign } represents a preceptron described in the previous section.
We use an input vector X to represent the inputs and let W denote the weights of the MLP,
i.e. all the parameters between any two adjacent layers, namely, W :{W(l), b(]), W(z), p(? }.
With an mapping function f(-), this MLP produces an output vector f(x, W).

Generally, in a multi-class classification problem, the size of the output layer (i.e. the
output dimension), is fixed to the number of classes in this problem. The objective of such an
MLP is to make the network outputs approximating predefined target values (or ground truth)
for different classes. In practice, the error 8 between the output f(x, W) and a predefined
target vector g is used to update the network parameters via the Backpropagation algo-
rithm [142]. Moreover, these predefined target values are typically binary for classification
problems. For example, for a 4-class classification problem, we set unit vectors [1,0,0, O]T,
[0,1,0,0]7, [0,0,1,0]7, [0,0,0,1]7 as target vectors for the 4 classes, respectively.

Training an MLP: Backpropagation

The Backpropagation algorithm [142] is the most common and maybe the most universal

training algorithm for feed-forward NNs. The word "backpropagation” is the abbreviation
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for "backward propagation of errors". Hence the Backpropagation algorithm can be divided
into two phases: (1) a forward phase from the input layer to the output layer to compute
errors; (2) a backward phase from the output layer to the input layer to update the weights.
In the following paragraphes, we take the 3-layer MLP in Fig. 2.3 as an example to introduce

the two phases.

A forward phase is first taken to compute errors for some training data. Formally, for
any given input sample Xx;, assuming its output through the MLP is a; = f(x;, W). At the first
step, from the input layer to the hidden layer, with the parameter matrix WU and the bias

vector b"), values in the hidden layer are computed as
h = 0(z!") = (Wx; + b)), (2.10)

At the second step, from the hidden layer to the output layer, with the parameter matrix w®

and the bias vector b(z), the output values are calculated as

a; = ¢(z.”) = p(Wh; +b?). 2.11)

1

The function ¢(+) here is an activation function in a perceptron (see Section 2.2.1). Finally,
cost function of this MLP is simply the Mean Squared Error (MSE) between the computed
outputs and their desired targets for all training samples:

(a; —g;)%, (2.12)

=

1 1
J==) Ji=—
N ; " 2N
where N is the number of all possible training samples, g; is the target vector for the output a;.
Remind that g; is usually hand-crafted unit vectors. For example, for a 3-class classification
problem, we set unit vectors [1,0,0]7, [0,1,0]7, [0,0,1]7 as target vectors for the 3 classes,
respectively. Minimizing the cost function leads to an optimal solution of correctly classifying

the training data, which is realized by the backward phase.

A backward phase is then taken to update the set of parameters W : {W(z) , b®? , w , b }.

Taking derivative of Equation (2.12), the gradient for the i;;, training sample is:

aJ;
oW

Ja
oW’

(ai—g;) (2.13)

and the derivative on the output layer, with respect to zgz) = WPh,; +b®, is:

8 = (p’(zfz)) © (a;i — &), (2.14)

1
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where the notation © means element-wise multiplication and the function ¢’(-) here is the
derivative of an activation function ¢(-). Subsequently, the derivative on the hidden layer,
with respect to zgl) = W(l)X,' + b(l), is:

8" = '@y o (W), (2.15)

The differentials of the network parameters are computed as:

AW =T (2.16)
Ab® =87, (2.17)
AWD = 85T (2.18)
Ab) =, (2.19)

1

After that, the parameters W : {W(z) , b2 , wb) , b(l)} can be iteratively updated by using the

following function:

N
WeW-u) AW, (2.20)
i=1

where U is the learning rate in an online gradient descent learning algorithm, A;W indicates
the differentials in Equations (2.16-2.19). For the iterative updating algorithm, the starting
values of the weights W have a significant effect on the training process. Empirically,
weights should be chosen randomly but in such a way that the activation function is primarily
activated in its linear region [100, 53]. After adequate training iterations, an optimal W will

be reached as a proper solution to the predefined cost function (Equation (2.12)).

Training an MLP: gradient descent

Gradient descent is the way of realizing Backpropagation and minimizing functions [9].
Given a function defined by a set of parameters, gradient descent starts with an initial set of
parameter values and iteratively moves toward a set of parameter values in order to minimize
the function. This iterative minimization is achieved using calculus, taking proportional steps
in the negative direction of the function gradient (e.g. Equation (2.20)).

At each iteration, if it requires a complete pass through the entire training data set to
compute an average gradient, this type of learning is referred as batch gradient descent,
where "batch" indicates the entire training set. Alternatively, if a single training sample
is chosen from the training set at each iteration, it is called stochastic gradient descent.

Stochastic gradient descent is generally preferred due to the following three reasons [100]:
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Advantages of Stochastic Gradient Descent

1. Stochastic gradient descent is usually much faster for a single iteration.
2. Stochastic gradient descent can be used for tracking changes.

3. Stochastic gradient descent may result in better solutions.

Firstly, since stochastic gradient descent trains on a single sample in each iteration but
batch gradient descent requires the entire training set, stochastic gradient descent is most
often much faster in iterative updating. Besides, stochastic gradient descent is particularly
useful to model a function changing when the underlying local data distribution changes
gradually over time. Since batch gradient descent always considers the whole training data,
it captures the global distribution and produces a mean solution. In this case, stochastic
gradient descent usually yields better approximation results and thus is preferred for online
learning.

Besides the need of online learning, offline learning is still useful in some applications,
e.g. for small and medium scale problems, the entire training data always obey a certain
distribution. In this case, some advanced optimization algorithms, such as the Conjugate
Gradient Descent (CGD) algorithm [115] and the Limited-memory Broyden Fletcher Gold-
farb Shanno (L-BFGS) algorithm [108], can help batch gradient descent to automatically
accelerate the learning speed and produce good results very quickly.

Nowadays, it is more likely to get a large scale problem with a redundant training set,
thus one may prefer stochastic gradient descent or its variant, mini-batch gradient descent.
Like stochastic gradient descent, mini-batch gradient descent is also designed for online
learning. In particular, it takes several training samples in each iteration. Usually, as the
trade-off between stochastic gradient descent and batch gradient descent, mini-batch gradient

descent is the best choice among the three for online optimization problems [100].

2.2.3 Siamese Multi-Layer Perceptrons

Despite MLP has been the most popular kind of NN since the 1980’s [142] and the siamese
architecture has been first presented in 1993 [24], most Siamese NNs utilized Convolutional
Neural Networks (CNN) for image analysis [24, 32, 43]. Until recently, a few works studied
Siamese MLPs: Chen and Salman [31] applied a Siamese MLP to extract speaker-specific
information (2011); Yih et al. [177] employed it to measure the similarity between texts
(2011); Berlemont et al. [18] used it for gesture recognition (2015); Zheng et al. [182]
adopted it for face identification (2015).

A Siamese MLP is a symmetric architecture consisting of two MLPs, where they actually
share the same set of parameters W (Fig. 2.4). Like the standard MLP minimizes the MSE
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Fig. 2.4 Diagram of a Siamese MLP.

error function to get a proper classification solution, different kinds of cost functions may
be designed in the Siamese MLP for different applications. For example, Berlemont et
al. proposed a cost function based on the Cosine Similarity metric in their Siamese MLP
and employed it to recognize and reject inertial gestures [18]; Zheng et al.developed a
triangular loss function for the Siamese MLP to realize dimensionality reduction and data

visualization [182].

Compared with the standard MLP (Fig. 2.3), instead of constraining the outputs ap-
proaching some predefined target values (Section 2.2.2), the Siamese MLP defines a specific
objective: (1) for an input pair from the same class, making the pairwise similarity between
their outputs larger or making the pairwise distance between the outputs smaller; (2) for
an input pair from different classes, making the pairwise similarity between their outputs
smaller or making the pairwise distance between the outputs larger. By this objective, there
is no need to handcraft target vectors for training classes. Consequently, unlike the classical
MLP fixes the size of the output layer (i.e. the output dimension) to the number of classes in
a certain problem, dimension of the target space can be arbitrarily specified by the Siamese
MLP.

Another advantage of the Siamese MLP over the classical MLP is that the Siamese MLP
is able to learn on data pairs instead of fully labeled data. In other words, the Siamese

MLP is applicable for weakly supervised cases where we have no access to the labels of
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training instances: only some side information of pairwise relationship is available. This
is a meaningful setting in various applications where labeled data are more costly than the
side information [13]. Examples include users’ implicit feedback on the internet (e.g. clicks
on search engine results), citations among articles or links in a social network, kinship
relationship between individuals [114].

Training a Siamese MLP is almost the same to the training procedure of a standard MLP.
The only difference is that a Siamese MLP takes pairs of training samples into account in

each iteration while a standard MLP takes single data samples.

2.2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a specialized kind of neural networks for pro-
cessing data that have a known grid-like topology [16]. The word "convolutional" indicates
that the networks employ a mathematical operation called convolution. As images are the
most common grid-like data (i.e. 2-dimensional data), CNNs are widely used for image
and video analysis [96, 127, 91]. Besides images, CNNs are also able to process other
2-dimensional input such as speech time-series [95]. See [98] for a more in-depth history of
CNN applications.

Compared with an MLP, a CNN is a more complex type of neural networks since it
includes more kinds of neuron layers. And the complexity makes CNNs known as an
important technique in the history of deep learning [99]. The layers in an MLP are also
called fully-connected layers (see Fig. 2.3) since any two adjacent layers are fully connected.
A typical CNN consists of a number of convolutional and pooling layers optionally followed

by some fully-connected layers.

Convolutional layer

A fully-connected layer receives a single vector as an input and transform it through per-
ceptrons (see Fig. 2.3). Consequently, it is difficult to apply it directly to process an image
which is usually represented by a matrix of pixels. A compromised way is stretching the
matrix as a vector, 1.e. concatenating the rows or columns of the matrix, before delivering it
to the fully-connected layer. However, this would cause two problems: (1) realigning the
matrix ignores local correlations of neighboring pixels in an image, but the local correlation
carries rich texture information that is important in detection or recognition tasks; (2) the
input dimension will be too high. Even for a 100 x 100 small image, the size of the input

layer (i.e. the layer receives the image) is 10,000. As the next layer is fully connected to the
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input layer, the number of parameters (i.e. the number of connections) would be very large

and thus the MLP is too complex to train and is more inclined to get over-fitting.

In contrast, a convolutional layer alleviates these problems. For the first problem of
ignoring local correlations, the convolutional layer directly takes a matrix as an input without
breaking the existing grid-like topology in an image. For the second problem, the convo-
lutional layer uses two basic ideas: local receptive fields and shared weights to reduce the
complexity of the NN (i.e. to reduce the number of parameters).

Figure 2.5 illustrates the input layers in an MLP and a CNN, respectively. Concretely, an
MLP takes a vector as the input, and each node in the first hidden layer has connections with
all the nodes in the input layer (See Fig. 2.5 (a) and Fig. 2.3). A CNN receives a matrix as the
input, but connects a hidden node to a small region of nodes in the input layer. This region is
called the local receptive field for the hidden node. For example, in Fig. 2.5 (b), we define
a convolutional input layer to process 10 x 12 matrices and use a 5 x 5 sliding window to
transform the local receptive fields to the hidden nodes. In this example, the sliding window
moves towards the right or downwards with a step size 1, thus we have the hidden layer with
the size 6 x 8. It is worth knowing that unlike the size of a hidden layer in an MLP can be
arbitrarily specified, the size of a hidden layer in a CNN is conditioned by three factors: the
size of the former convolutional layer, the size of the sliding window and the step size.

Moreover, the sliding window uses the same mapping function for all the hidden nodes,
i.e. all the mappings between a local receptive field and a hidden node share the same weights.
This idea is called shared weights or parameter sharing® [126]. A probable principle behind
this idea is that natural images have the property of being stationary, meaning that the basic
statistical features (e.g. edges or textures) detected from one part of the image are also useful
to represent any other parts. For instance, the two local receptive fields in Fig. 2.5 (b) are
processed by the same mapping function which performs a convolution operation. Let X
denote the input matrix and X (/) denote the local receptive filed with the upper left corner
at position (i, j), e.g. the two sub-matrices in Fig. 2.5 (b) are X and X6, respectively.
With a weight matrix W and a bias term b, the output value y delivered to the hidden layer is:

y=@(WxXW) +p), (2.21)

where the function @(-) is an activation function that we often use in a perceptron (Sec-
tion 2.2.1) and the operator * represents a convolution operation [16]. Comparing this
function with the mapping function in a perceptron (Equation (2.1)), there are two differ-

ences: (1) the inputs and weights are matrices instead of vectors; (2) the inner product

3http://deeplearning.net/tutorial/lenet.html
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Fig. 2.5 Comparison of input layers: fully-connected layer (MLP) vs. convolutional layer
(CNN). Size of the local receptive field (i.e. the square window) is 5 x 5.
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Fig. 2.6 Convolutional layer with three feature maps.

between two vectors is substituted by the 2-dimensional convolution operator between two
matrices. Especially, since this convolutional mapping function has the capacity of detecting
a certain feature, it is usually called a feature map. In practical image analysis, only one
feature is not enough to describe the content of an image, hence we need multiple features
maps in a CNN. Figure 2.6 shows an example of 3 feature maps from the convolutional input
layer to the hidden layer. These 3 feature maps are defined by @;(-) (i = 1,2,3), respectively.
We can say that each function learns a feature map on the input image, resulting in 3 pages
of hidden units in the following layer.

In summary, taking advantage of the ideas of local receptive fields and shared weights, a
convolutional layer realizes local feature detection and avoids the problem of overlarge input
that a fully-connected layer may be hard to handle. Furthermore, the convolution operation
has a property of invariance to local translation, which plays an important role in detecting
local features since we care more about whether a feature is present rather than where its

exact position is [16].

Pooling layer

One may notice that after the convolution operation, the size of the hidden layer is still very
large. To further reduce the computational complexity, a pooling layer or a sub-sampling
layer is usually used immediately after a convolutional layer. Concretely, a pooling operation
in a hidden layer summarizes the information in a local region and delivers the summarized

statistic to the next hidden layer. The local region is usually called a pool. For example, in
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Fig. 2.7 Diagram of a pooling layer.

Fig. 2.7, a page of hidden units are divided into non-overlapped 2 x 2 pools and an output is
generated from each pool. Overall, the three 6 x 8 pages in the pooling layer are downsampled
to three 3 X 4 pages in the second hidden layer. This example employs non-overlapping
pooling, but it is worth knowing that like in the convolutional layer, overlapping regions are
also allowed by using a sliding window.

Let X : {X;;} denote the matrix in a pool, common used pooling functions include:

* Max pooling: taking the maximal element in X as the output,

y = max(X) = maxX;;. (2.22)
i.j

* Average pooling: taking the average value of all the elements {X; j} as the output,
1
y=5 LX) (2.23)
i,j

where N is the number of elements in X.

* L2-norm pooling: taking the I, norm of all the elements {X;;} as the output [45],
1
y=(LX3)2, (2.24)
i,j

please note that it is not the /; norm of a matrix, but the Frobenius norm [132]. These

functions carry no parameters to perform pooling, however, there are also pooling
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Fig. 2.8 A complete CNN architecture.

functions with trainable parameters [96, 49]. A pooling operation with parameters is
also considered as a kind of feature map.

Overall architecture

After collecting all necessary components, we can now present a complete CNN architecture.
Following the previous convolutional and pooling layers, an output layer is simply linked to
the second hidden layer with fully connections (see Fig. 2.8). Just like in an MLP (Fig. 2.3),
a ground truth (i.e. a target vector) g is also set up for the values in the output layer.

Despite that a CNN realizes a more complex transformation than an MLP, the objective
of the CNN is still to make the outputs f(X, W) approximating predefined target values. The
error & between the output f(X, W) and the target vector g is used to update the network
parameters via the Backpropagation algorithm [142].

Training a CNN

Like training an MLP, we also use Backpropagation and gradient descent (Section 2.2.2)
to train a CNN. The only required supplements are the derivatives of the pooling and
convolutional functions.

For a pooling layer, since it usually does not carry any parameters to perform learning,
the backward phase for a pooling operation is very simple. For example, in the forward phase,
a max pooling function simply delivers the maximal value in a pool to the next layer, thus it
is the neuron unit having this maximal value to receive the error during the backward phase.
Accordingly, if we have average pooling in the forward phase, the error would be averagely

distributed to all the units in the pool. For a convolutional layer, a depth description of the



24 Literature Review: Siamese Neural Networks and Metric Learning

C3: f. maps 16@10x10 Pseudo-Output
C1: feature maps S4: f. maps 16@5x5
gnézg; 6@28x28 S2: f. maps C5: 1
:f. : layer .
6@14x14 I 120 ng' layer ?LOJTPUT

‘ Full coanection ‘ Gaussian connections
Subsampling Full connection

Convolutions Subsampling Convolutions

Fig. 2.9 Diagram of LeNet-5 [96].

convolution operator and its derivative is referred to [16, 22, 43]. But it is worth knowing that
the backward phase for a convolution operation is also a convolution with a spatially-flipped

operator.

A foundation stone: LeNet-5

We have known that a CNN architecture comprises several kinds of neuron layers. Therefore
configuring each component, i.e. determining the number of layers, the number of feature
maps, the size of local receptive fields, the size of pools, is a complex task. In other words,
designing a CNN for a given practical problem indeed becomes an art. Fortunately, the
founder of CNN, Yann LeCun, has offered us delicate exemplars such as LeNet-5 [96].
LeNet is a series of successful CNN applications developed by Yann LeCun since the early
1990’s [94, 96], and it has inspired the creation of many successive CNN architectures such
as AlexNet [86], ZF Net [179], GoogleNet [159] and VGGNet [151].

Now we review the principal architecture of LeNer-5 in Fig. 2.9. Note that the naming
style in LeNet-5 is different from ours in previous sections. For two adjacent layers, a name
of "convolutional", "pooling" or "fully-connected" is given to the former layer in our case
(see Fig. 2.8) but LeNet-5 gives the name to the latter layer. As a result, the first convolutional
layer is the input layer in our definition instead of the first hidden layer in LeNet-5. However,
this difference does not matter since the name actually indicates the operation between the
two layers.

LeNet-5 is composed of 7 layers, not counting the input layer. There are three convolu-
tional layers at the 1st, 3rd and 5th layers, denoted by C1, C3 and CS5. Particularly, C1 and
C3 are followed by two sub-sampling layers (i.e. pooling layers) S2 and S4. After C5, two
more layers are defined to implement classification.

For all the three convolutional layers, C1, C3, C5, the size of local receptive fields is

always 5 x 5. Each feature map is learned on one or more pages of hidden units in the



2.2 Siamese Neural Networks 25

Table 2.1 Connection scheme between the layers S2 and C3 of LeNet-5: a cross indicates a
connection between the indexed pages in S2 and C3.

$) 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 X X X X X X X X X X
2 X X X X X X X X X X
3 X X X X X X X X X X
4 X X X X X X X X X X
5 X X X X X X X X X X
6 X X X X X X X X X X

previous layer. Taking a feature map learned on 3 previous pages for example, three 5 x 5
weight matrices would be used to perform convolution on the three pages in the previous
layer, respectively. And then the results are added to a trainable bias. Such a feature map
contains 76 (25 x 3 + 1) parameters.

For all the sub-sampling layers, the size of pools is always 2 x 2. Especially, LeNet-
5 adopts a parametric sub-sampling operation: the four inputs in a pool are added, then
multiplied by a trainable coefficient, and added to a trainable bias; finally, the result is passed
through a sigmoid function. Thus each feature map of sub-sampling has 5 connections

between hidden units but only 2 parameters.

Layer C1 performs a convolution operation with 6 feature maps on a 32 x 32 input image,
resulting in 6 pages of hidden units in the first hidden layer. Since each feature map here
has 26 (25 + 1) parameters, C1 contains 156 (6 x 26) trainable parameters and 122,304
(28 x 28 x 156) connections.

On each of the 6 hidden pages, Layer S2 learns a feature map of sub-sampling. The 2 x 2
pool area is non-overlapping, thus we observe image down-sampling from 28 x 28 in C1
to 14 x 14 in S2. S2 contains 12 (6 x 2) trainable parameters and 5,880 (14 x 14 x 6 x 5)

connections.

Layer C3 is a convolutional layer with 16 feature maps. Each feature map is learned
on several pages of hidden units in the previous layer S2. Table 2.1 shows the connection
scheme between the layers S2 and C3. A cross indicates a connection between the indexed
pages in S2 and C3. For example, the first page (i.e. the first feature map) in C3 is learned
on the first three pages of hidden units in S2. This non-complete connection scheme forces
different feature maps in C3 to extract different features from S2 [96]. The number of
page connections between the two layers is 60. Thus C3 has 1,516 (60 x 25 + 16) trainable
parameters and 151,600 (10 x 10 x 1,516) connections between hidden units.
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Layer S4 is a sub-sampling layer with 16 feature maps. The sub-sampling operation from
C3 to S4 is similar to that between C1 and S2. Thus S4 has 32 (16 x 2) trainable parameters
and 2,000 (5 x 5 x 16 x 5) connections.

Layer C5 performs the last convolution operation on the previous layer S4 with 120
feature maps. And each feature map is learned on all the pages in S4. Since the size of
hidden pages in S4 is also 5 x 5, exactly the same with the size of the local receptive fields in
LeNet-5, S4 and C5 are actually fully-connected with each other. Particularly, C5 contains
48,120 (120 x (25 x 16 4 1)) trainable parameters/connections.

The 6th layer F6 is a fully-connected layer having a modified tanh activation function. It
contains 84 hidden units and thus 10, 164 (84 x (120+ 1)) trainable parameters/connections.
Actually, we may consider this layer as the output layer because LeNet-5 directly uses the
results of this layer to calculate the final cost. To distinguish this layer from the "OUTPUT"
layer in Fig. 2.9, we call F6 the pseudo-output layer. The 7th layer, the "OUTPUT" layer
in Fig. 2.9, is composed of Euclidean Radial Basic Function (RBF) units which store
classification decision costs for each class.

Let x=[x1,x2,--- ,xg4]” denote the output of F6, the cost of recognizing a digit as the
number j €{0,1,2,3,4,5,6,7,8,9} is calculated as:

Cj=(x—w,)%, (2.25)

where w; is a vector containing 84 values which form a 7 x 12 bitmap representing a stylized
image of the number j. And this vector w; plays the role of a target vector for the layer F6,
just like the vector g does in an MLP (Fig. 2.3) or in an ordinary CNN (Fig. 2.8). This design
has considered the shape similarity between characters with different meanings, e.g. the
uppercase 'O’, lowercase '0’, and zero, have a similar shape of a circle and thus will obtain
similar outputs in layer F6. Lecun et al. argued that this design of using such distributed
codes would be particularly useful in a document recognition system [96] rather than in
a system for recognizing isolated digits. Based on the costs in Equation (2.25), an error
function is further defined to include a weight decay factor to control the learning procedure
of the network parameters [96]. Computing the gradient of the error function with respect to
all the weights in all the layers of LeNet-5 is done by Backpropagation [142].

Similar with LeNet-5, most CNN systems employ more than one hidden layers to model
high-level abstractions in image data. Hence CNN is a key exemplar of deep learning
algorithms. In fact, CNN played an important role in the history of deep learning and it was
the first deep model to perform well, long before arbitrary deep models were considered
viable. It is the CNN that "carried the torch" for the rest of deep learning and paved the way

to the acceptance of neural networks in general [16].
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Fig. 2.10 Diagram of the Siamese CNN presented in Chopra’s method [32].

2.2.5 Siamese Convolutional Neural Networks

The first works on Siamese CNN were presented around the year 1993. While Baldi
and Chauvin [6] applied a Siamese CNN to verify the authenticity of two fingerprints,
Bromley et al. independently proposed Time Delay Neural Networks (TDNN) for signature
verification [24], i.e. to decide if two signatures belong to the same person. About 10 years
later (2005), a more complex Siamese CNN architecture was presented by Chopra et al. [32]
to process face images in an identity verification task, i.e. face verification. After that, similar
deep Siamese CNNs were used in different applications such as dimensionality reduction [62]

and video analysis [122].

Figure 2.10 shows the siamese architecture used in Chopra’s method for face verifica-
tion [32]. Like a Siamese MLP (Fig. 2.4), a Siamese CNN is a symmetric architecture
consisting of two CNNs, where they actually share the same set of weights W. After re-
ceiving two images X and X as the inputs, the two CNNs produce two outputs Gy (X)
and Gy (X;) in the target space. The distance between the two outputs is measured by the

Euclidean distance:
Ew(X1,X0) = ||Gw (X1) — Gw(X2)]|, (2.26)
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where the metric function Ey (X1,X>) is also called an "energy function" in [32, 97].

Moreover, this pairwise distance in the target space is expected to approximate the
"semantic" distance between the raw images: two images of the same class are supposed
to yield a small distance in the target space while two images from two different classes
should have a large distance. To achieve this goal, a loss function is defined based on this
distance metric and the standard Backpropagation algorithm is used to learn the parameters
of the CNN. The CNN architecture used in [32] mainly followed LeNet-5. Concretely, the
first 6 layers of LeNet-5 were transplanted into the Siamese CNN: C1-S2-C3-S4-C5-F6, but
the feature map functions of convolution and pooling were configured by different size of
parameters.

Like the Siamese MLP (see Section 2.2.3), the Siamese CNN maintains the two advan-
tages over the single-track neural networks (e.g. the standard MLP, the standard CNN): (1)
there is no need to handcraft target vectors for each class, thus dimension of the target space
can be arbitrarily specified; (2) the siamese architecture allows weakly supervised training
since learning can be performed on data pairs instead of fully labeled data.

Apart from the Siamese MLP and the Siamese CNN, other types of neural networks can
be involved in a siamese architecture to perform pairwise comparisons. For example, Nair
and Hinton [123] presented Siamese Restricted Boltzmann Machines (RBM) for pairwise

face verification.

2.3 Metric Learning

When referring to Siamese Neural Networks in the previous section, we mainly concerned
the mapping function, i.e. which type of neural networks should be used for data mapping
from the original space to the target space. We have also noticed another important factor
that the cost function or the loss function plays an important role in learning a good mapping.
The study on choosing a proper metric and developing a metric-based cost function is Metric
Learning. Actually, a mapping function defines the complexity of a system and a cost
function draws the objective of a system.

However, the two functions depend on each other, and an effective Metric Learning
system should be a combination of them both. Concretely, specifying a metric contains the
idea of learning a data mapping. Given a certain metric, a good data mapping makes the
pairwise relationship between data pairs to be better measured by the same metric in the target
space than in the original space. From a global view on the complete system, the chosen
metric and the mapping function can be reformulated as a single function, representing a new

metric for the original data, with which one can distinguish different classes easier.
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In this section, we will present different types of metrics for feature vectors and review a
few Metric Learning methods in the current literature. Besides feature vectors, there are also
some works on structured data such as strings, DNA sequences [12]. For readers interested
in a broader scope on Metric Learning, we recommend a recent survey which has provided
an up-to-date and critical review of current Metric Learning methods [13, 14].

Strictly speaking, a metric has to obey four axioms: non-negativity, identity of indis-
cernibles, symmetry and triangle inequality. In practice, Metric Learning algorithms may
ignore one or two axioms and learn a pseudo-metric. For example, Euclidean Distance and
Cosine Similarity are two common functions to measure the distance or similarity between
two vectors, however, Euclidean Distance is a standard metric obeying the four axioms but
Cosine Similarity does not have the triangle inequality property and it violates the axiom of
identity of indiscernibles.

According to different metrics used on feature vectors, one can divide Metric Learning
into two main families: distance metric learning and similarity metric learning. One may
doubt the difference between a distance and a similarity, the Cosine Similarity is actually
related to the Euclidean distance under normalized length conditions*. However, this relation
is hard to become an equivalency because the length condition may be ignored in practical
applications. Actually, the Cosine Similarity, or its relaxed variant the bilinear similarity,
has been found as a particularly useful metric for text retrieval [136, 135, 29, 28] and face
verification [125, 26].

Before going into detail of these Metric Learning methods, we need to declare two ways
of representing a data pair: (1) using a triplet (x;,y;,s;) to denote the i, pair in a data set,
where s; = 1 (respectively s; = —1) indicates a similar (respectively dissimilar) pair; (2) using
a pair (x;,X;) to denote the i, and j,, samples in a data set, forming a pair of samples, and
the similarity of this pair would be indicated by additional notation. We mainly use the first

style in this thesis.

2.3.1 Distance Metric Learning

As the name suggests, distance metric learning methods use a distance metric, mainly
the Euclidean distance, to measure the pairwise relationship between two feature vectors.
Currently, most Metric Learning methods learn a linear mapping function f(-) because a
linear projection is more convenient to optimize and less prone to over-fitting. Assuming that

x and y represent two vectors in the original space, a and b denote their linear projections in

“https://en.wikipedia.org/wiki/Cosine_similarity
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the target space, the pairwise distances before and after mapping can be measured by:

d(x,y) = lx—yl| = /(x—y)T (xy). 227)

d(a,b) = |[Wx— Wy = / (Wx—Wy)" (Wx—Wy), 2.28)

where W is the transformation matrix of the linear projection, i.e. a = f(x,W) = Wx,
b= f(y,W)=Wy.
In some works [173, 55, 52], Equation (2.28) is written as:

dw(x,y) = \/(WX—Wy)T(WX—WY) = \/(X—y)TWTW(X—y)
=/ (x—y)TA(x—y) 229
= dA(va)7

where A is a positive semi-definite matrix that can be decomposed as W/ W. This dis-
tance metric dj (X,y) is in a similar formulation with the Mahalanobis distance®. Thus the
procedure of specifying the matrix A is considered as learning a Mahalanobis distance.
Generally, the objective of a distance metric learning method is to minimize the distance
between a similar pair (x;,y;) € S and to separate a dissimilar pair (x;,y;) € D with a large
distance, where S (respectively D) denotes a set of similar (respectively dissimilar) pairs
for training. Towards this objective, researchers have proposed various cost functions and
optimization algorithms to find good solutions, i.e. to specify an optimal matrix A or W.
Especially, specifying a positive semi-definite matrix A is often formulated as a convex
problem that has a global optimum and can be solved by iterative algorithms based on matrix
decomposition operations [173, 147, 52, 169]. In contrast, learning a linear transformation

matrix W is probably non-convex and solved by ordinary gradient descent in the elements of
the matrix W [55].

Mahalanobis Metric for Clustering (MMC)

The first work of Metric Learning has been presented by Xing et al. [173], namely, Maha-
lanobis Metric for Clustering (MMC). The cost function of MMC is defined as:

J= Y di(x.y), st Y da(xiy)> 1. (2.30)
(xi,y;)€S (xi,y;,)€D

>https://en.wikipedia.org/wiki/Mahalanobis_distance
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The objective of this cost function is to minimize the Euclidean distance between a similar
pair and to make the distance between a dissimilar pair larger than 1. This cost function has
been proven to be convex, which enables the authors to derive efficient algorithm to find a
global optimal solution [173]. A simple optimization algorithm was proposed, relying on
iterative eigenvalue decompositions.

This method is straightforward to follow and can be efficiently computed; but relying
on matrix decompositions constrains it to only small dimensional problems because the
decomposition of high dimensional matrix is computationally expensive. Moreover, the
MMC method focuses on batch learning (i.e. offline learning), where the whole training set
must be ready as a batch.

Pseudo-metric Online Learning Algorithm (POLA)

Pseudo-metric Online Learning Algorithm (POLA) [147] is the first work designed for online
learning, i.e. having only one or a few samples for training at each iteration. Based on the
idea of MMC, POLA introduces a margin factor, the minimum separation between all pairs
of similar and dissimilar samples, to the cost function. Concretely, the width of the margin is

2 and a threshold b is defined in two constraints:

» for a similar pair (x;,y;) € S, the distance between them should be no more than b — 1:
di(xiayi) S b— 1’

» for a dissimilar pair (x;,y;) € D, the pairwise distance should be no less than b + I:
di(xi,yi) >b—+1.

Let s; = 1 denote a similar pair and s; = —1 denote a dissimilar pair, the two constraints can

be rewritten as a single constraint:
si(b—di (xi,y;)) > 1. (2.31)
And the cost function is an adaptation of the hinge loss,
Ji =max(0, 1+ s,-(di(x,-,yi) —b)), (2.32)

where J; is the cost of the i;; sample pair during online learning. Like MMC, POLA relies on
matrix decomposition to perform gradient descent, thus it is hard to handle high dimensional
problems. Moreover, its perfect assumption of separating all the data with an absolute margin

2 limits its application in practice [13].
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Fig. 2.11 Schematic illustration of one input’s neighborhood before training (left) vs. after
training (right) for the LMNN method. The distance metric is optimized so that: (1) its K=3
target neighbors lie within a smaller radius after training; (2) differently labeled inputs lie
outside this smaller radius by some finite margin. Bold arrows in the left picture indicate the
directions of gradients for different neighbors [169].

Large Margin Nearest Neighbors (LMNN)

When POLA has an overcritical assumption of separating all the training pairs with a margin,
Large Margin Nearest Neighbors (LMNN), introduced by Weinberger et al. [167, 169],
pushes the constraints to a few selected training data only. In addition, apart from training
on data pairs (x;,X;), LMNN learns the distance metric also on triplets of data samples, i.e.
a group of three samples (x;,X;,X;) € T which includes a similar pair (x;,x;) € S and a
dissimilar pair (X;,X;) € D. Usually, with respect to the similar pair, the isolated sample x;,

in the triplet is called an imposter.

Concretely, the cost function of LMNN is composed of two items, a pulling force and a

pushing force:

* Pulling: to pull each similar pair closer,

=Y, di(xi,x)), (2.33)

(X,‘,Xj)GS

note that unlike other methods usually take all possible similar pairs in training, the set
S here only contains similar pairs in local neighborhoods: for each training sample x;,

it is paired with its K nearest neighbors only (e.g. K = 3 in Fig. 2.11).
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* Pushing: to push an imposter far away from the other two similar samples in a triplet,
the distance between the two samples should be less than the distance between the

imposter and the two samples, i.e. for a triplet (x;,X;,X;) € T, we have
da (xi,X;) + 1 < d3 (xi,%z), (2.34)
hence the cost of the pushing part is:

Jpush = Z max(0, di(x,-,xj) +1 —dﬁ(xi,xk)), (2.35)

(%X, x;) €T

remind that the function max(0, -) denotes the hinge loss function that POLA also
used (Equation (2.32)). Minimizing the pushing part aims to move the imposter (the
red and blue points in Fig. 2.11) from the neighborhood of x;.

Combining the two parts J,,,;; and J 5, has competing effects — to attract target neighbors
on one hand and to repel impostors on the other hand (see Fig. 2.11). A weighting coefficient
u € [0, 1] balances this goal:

J= (1 - »"L)qull + .u-lpusir (236)

The authors provided a solver based on sub-gradient descent and eigenvalue decomposition
to minimize the above cost function. In summary, LMNN involves two main ideas to
learn a distance metric: (1) besides data pairs, introducing data triplets into training; (2)
in order to perform local optimization, selecting data pairs S and triplets T by enclosing
target neighbors. Taking advantage of the two ideas, LMNN generally performs very well in

practice for supervised classification and clustering problems.

Neighborhood Component Analysis (NCA)

Different from the above methods directly optimize the pairwise distances, Neighborhood
Component Analysis (NCA) [55] introduces an idea of transforming the pairwise Euclidean
distance to a probability of being neighbors. In the target space, for a pair of vectors
Wx; = f(x;, W) and Wx; = f(x;, W), the Euclidean distance between them is dw(X;,X;)
(see Equation (2.28)). NCA defines the probability of the two vector being neighbors as:

e—d%v(xi,xj)

pl] = 7d%)v(xiaxk) I pll = O' (2.37)

Yisi€
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And the probability that the i, vector will be correctly classified is:

Y, pij (2.38)

(X,‘,Xj)GS

where (x;,X;) € S includes all the vectors in the same class with x;. The objective of NCA
is to maximize the expected number of correctly classified points. Two candidates for the

objective function have been proposed:

N N
E=)Y pi or E=Y In(p), (2.39)
i=1 i=1
where N is the number of points in the training set. Note that maximizing an objective
function is equivalent to minimizing its reverse cost function —FE. Efficiently computed
gradient functions aE have also been provided in [55] to perform ordinary gradient descent
(the same as we used for MLP training, see Section 2.2.2).

Compared with MMC and POLA, NCA learns the transformation matrix W and does
not rely on matrix decomposition, thus it can handle large dimensional problems. However,
NCA performs non-convex optimization as it uses the exponential function to transform an
Euclidean distance to a probability, so its solution may be a local optimum. Besides, NCA
needs to hold the whole training set at the very beginning to calculate the pairwise probability
pij, thus it is hardly intractable for online learning, i.e. knowing only one or a few training
samples at each iteration.

Maximally Collapsing Metric Learning (MCML)

Shortly after NCA, Globerson and Roweis [52] proposed an alternative convex formulation to
deal with the probability p;; (Equation (2.37)). Their method is called Maximally Collapsing
Metric Learning (MCML), as they have made a strong assumption on collapsing classes:

* the distance between a similar pair is ideally to be O, the ideal probability of a similar

pair being together is 1: 5;; = 1;
* the distance between a dissimilar pair should be infinite, so the ideal probability of a
dissimilar pair being well separated is 0: s;; = 0.

Under this assumption, they employed the Kullback-Leibler (KL) divergence to match the
computed probability of each pair to its ideal target:

N

N N N Sz
J= Z Z KL(Sij’pij) = Z Z Sljll’l ] (2.40)
J

i=1j=1 i=1j=1 Pij
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If and only if p;; equals s;;, the yielded cost can be 0. Note that the dissimilar pairs have no

contribution to the cost since s;; is set to 0, so this equation can be rewritten as:

e—di(xi,Xj)
J=Y —nlpj)= Y —l”(m)a (2.41)
(X,‘7Xj)€S (X,‘,Xj)ES Zk#ie ATk
which can be separated into two parts as:
N 2
J= Y di(xix))+ Y in(} e dabix), (2.42)

(Xi,Xj)ES i=1 k75l'

where minimizing the first part reduces the distance between similar points, and minimizing

the second part enlarges the distance between points from different classes.

Especially, the matrix A = WY W is positive semi-definite and the cost function is convex:
the first part is naturally convex as it involves Euclidean distance only; the second part is a
log-sum-exp function of affine functions of the matrix A and is therefore also convex [23].
An iterative optimization algorithm based on eigenvalue decomposition was presented to find

the global optimal solution for such a convex cost function [52].

Information-Theoretic Metric Learning (ITML)

Continuing the study on probability inference, Davis et al. [39] proposed Information-
Theoretic Metric Learning (ITML) by incorporating the LogDet divergence into the cost
function as a regularization factor®. Instead of measuring the probability of a pair being
similar in NCA and MCML, ITML parameterizes the probability of a sample x belonging to
a set of multivariate Gaussian distribution:

|
p(x,A) = ze—%dﬁ<x#>, (2.43)

where g is the mean of the Gaussian distribution, Z is a normalizing constant and A~! can
be regarded as the covariance matrix of the distribution. In practice, to prevent over-fitting, a
parameter matrix A is initialized with a predefined matrix Ag and is constrained to be close

to it during learning. The "closeness" of the two matrices is measured by the KL divergence

®Regularization refers to a process of introducing additional information in order to solve an ill-posed
problem or to prevent over-fitting. Especially, the L2-norm regularization (i.e. the Frobenius norm) is also
called "weight decay", in particular in the setting of neural networks
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of the two Gaussians parameterized by Ay and A:

KL(p(x. A0)p(x.A)) = [ plx.Ao)og e ax. @44

which can be represented as the LogDet divergence:

1 _ _
KL(p(x,A0)[p(x,A)) = 5Dia(A, Ao) = 1r(AAg D —log(det(AA,")) —d,  (2.45)
where d is the dimension of the input x. Note that if and only if A = A, the above equation
results in the minimum O.

As usual, the objective of ITML is to make the distance between a similar pair smaller
and to make the distance between a dissimilar pair larger. Formally, two thresholds u and [

are specified to restrict the distances:

dx(x;,y;) <u (x3,y;) €S,
1;( 1 yl) — ( l yl) " S l), (246)
dA(Xiayi) Zl (Xi7Yi) ED,
In some cases, there may not exist a feasible solution that perfectly fits all the training
data. To prevent such a scenario from occurring, slack variables are incorporated into the
formulation:
J= Z &,
(Xi7Yi) 6SLJD
2.47
d/i<xiayi) §u+8i (XiﬂYi) ES? ( )
s.t. 5 (u <,
dA(Xiayi) Zl_gi (Xi7yi) GDa
Combining the above equations with the LogDet divergence regularization factor, here is
the final cost function of ITML.:

J= Z 8i+A'Dld(A7A0>7
(X,‘,Y,‘)GSUD

2.48)
dy (xi,y;) <u+g (x;,y;) €S, (
st f;(’y)— P (i) w<1),

dA<Xi7yi) > 1—8,' (Xl'ayi) S Da

In practice, A is often set to I (the identity matrix) and thus the regularization aims at keeping
the learned distance close to the Euclidean distance. The key feature of the LogDet divergence
is that it is finite if and only if A is positive semi-definite. In other words, minimizing the
cost function provides an automatic and cheap way of keeping A to be positive semi-definite.

Therefore, this method does not require costly eigenvalue computations or semi-definite
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programming. Benefiting form this advantage, the LogDet divergence has been adopted in

many other works on Metric Learning [78, 137].

Logistic Discriminative Metric Learning (LDML)

Guillaumin et al. [60] proposed Logistic Discriminative Metric Learning (LDML) to model
the probability of two vectors being similar by using the sigmoid function (Section 2.2.1).
Let a triplet (x;,Y;,s;) denote the iy, pair in the training set, where s; = 1 (respectively s; = 0)
indicates a similar pair (respectively a dissimilar pair), the probability of x; and y; being

similar is parameterized by:

Di (2.49)

- 1 + e(dx(xiy)—b)’

where b is a bias scalar. We can see that the larger the pairwise distance di (x;,y;) is, the
smaller the probability is. The cost function is simply the inverse maximum log-likelihood

of all possible training pairs:

J==) [siln(pi) + (1 —=s;)In(1 - p;)], (2.50)

=

i=1

where N is the number of training pairs. This equation is smooth and convex, the maximum
likelihood estimations for the matrix A and the bias b are obtained by using a projected
gradient method [19]. In practice, LDML has shown its effectiveness on the problem of
pairwise face verification [60].

2.3.2 Similarity Metric Learning

Besides distances, similarities are another kind of metrics widely used to measure pairwise
relationship between two feature vectors. Actually, a similarity metric is a pseudo-metric as
it may violate the axiom of the triangle inequality. However, for metric learning applications,
similarities were preferred over distances in many practical situations, such as information

retrieval [S] and document analysis [152, 172].

Like the Mahalanobis distance, a general similarity metric can be also parameterized by
a matrix A. For any two vectors x and y in the original space, the similarity between their
projections in the target space is measured by:

x” Ay
N(x,y)’

sa(x,y) = (2.51)
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when the matrix A is supposed to be positive semi-definite, we have A = W’ W, and the
matrix W acts as a linear transformation matrix that maps the original space (e.g. X) to the

target space (e.g. a = Wx):

xX'WIWy  (Wx)' Wy

_ : 2.52
N(x,y) N(x,y) (2:32)

SW(X7Y) =

where N(x,y) in the two equations is a normalization term to map the similarity function
to a particular interval, e.g. [-1,1]. Specifically, when N(x,y) = 1, sw(X,y) is the bilinear
similarity function [29]; when N(x,y) = VvV (Wx)TWx\/(Wy)T Wy, sw(X,y) is the Cosine
Similarity function [125]. Generally, the objective of a similarity metric learning method

is to increase the similarity between a similar pair and to decrease the similarity between a

dissimilar pair.

Similarity Learning Algorithm (SiLLA)

Similarity Learning Algorithm (SiLA) is the first work proposed by Qamar ez al. [136] to
learn a similarity metric for k-Nearest Neighbors (KNN) classification. They have presented
the general formulation of similarity metric learning (Equation (2.51)), but they actually
restricted themselves to the Cosine Similarity in the experimental evaluations.

SiLLA does not impose any constraint on the matrix A, it is not required to be positive,
or even symmetric. Instead, the only constraint on A is that its Frobenius norm equals 1,
i.e. |A]| = 1. Similar with LMNN (Section 2.3.1), SiLA also learns a metric from triples.
Remind that a triplet (x;,X;,X;) € T comprises a pair of similar vectors (x;,X;) € S and a
dissimilar pair (x;,X;) € D. With respect to the similar pair (x;,X;), the isolated sample X is
called an imposter or an outlier.

The cost for the i;;, sample is defined as a hinge loss:

Ji= max(O, Y— ( Z SA(X,',X]') — SA<X,',Xk))), (2.53)

(xi,Xj,x;) €T

where the set of triplets 7; is composed of selected nearest neighbors of the i;;, sample (like
target neighbors in LMNN), and the positive constant Y is the margin separating the similar

pairs from the outliers. The overall cost for all the samples is:
N
J=4/Y. 72, (2.54)
i=1

where N is the number of all training samples.
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Different from LMNN relying on sub-gradient descent and eigenvalue decomposition
for an offline optimization, SiLA optimizes the similarity metric with an online learning
algorithm based on voted perceptrons [48]. Compared with several distance metric learning
methods such as LMNN and ITML, SiLLA has demonstrated that the Cosine Similarity is
preferred over the Euclidean distance on several data collections such as Iris and Balance
from the UCI dataset [20].

Generalized Cosine Learning Algorithm (gCosLA)

The same authors of SiLA, Qamar and Gaussier, proposed Generalized Cosine Learning
Algorithm (gCosLA) [135], which works directly on the Cosine Similarity. But different
from SiLA, gCosLA learns a positive semi-definite matrix A. Remind that for any two
vectors X and y in the original space, the pairwise Cosine Similarity metric between them is

defined as:
x' Ay

sa(x,y) = :
A(%.Y) VxTAx/yT Ay

The basic assumption of gCosL A is that the similarity between a similar pair should be

(2.55)

always larger than the similarity between a dissimilar pair. Formally, assuming that we are
given three vectors X,y,z, where x and y are similar, but dissimilar with z, a margin of width

27 is defined to separate them:

SA(X,y) —sa(x,z) > 27. (2.56)

By introducing another threshold b, the equation can be rewritten as two constraints for

similar pairs (X;,y;) € S and dissimilar pairs (x;,y;) € D, respectively:

SA (X, Y; >b+ ) Xi,Yi €S7
A( Yz) Y ( YZ) (257)
SA(Xivyi) Sb_’}/v (Xi7Yi> eD.
If we use [; = 1 (respectively /; = —1) to denote that a pair of data (x;,y;) being similar
(respectively dissimilar), we can write a single-line constraint as:
li(b—sa(xi,¥,)) +7 <0, (2.58)

and the cost function of gCosLA is:

N
Z max(0,1;(b— sa(xi,¥;)) +7), (2.59)



40 Literature Review: Siamese Neural Networks and Metric Learning

where the function max(0, -) denotes the hinge loss function and N is the number of training
pairs. The authors followed POLA and proposed both online and batch learning algorithms
to solve the above minimization problem. Compared with SiLA, gCosLA is generally more

accurate on classification problems.

Online Algorithm for Scalable Image Similarity (OASIS)

Chechik et al. [28, 29] proposed an Online Algorithm for Scalable Image Similarity (OASIS)
that learns a bilinear similarity with a focus on large-scale problems. Formally, the normal-
ization term in Equation (2.51) is set to 1, and the bilinear similarity between two vectors X;
and x; is:

sa(Xi,X;) = X; AX;. (2.60)

OASIS shares two common issues with SiLA: (1) the matrix A is not required to be positive
semi-definite; (2) the learning procedure is performed on triplets of vectors. For a triplet

(xi,Xj,Xg) € T, where X; and X; are similar, but dissimilar with X, a constraint is defined as:
SA(Xi,XJ‘) —SA(X,',Xk) Z 1, (261)
and the cost function is simply the sum of the hinge loss for each triplet:

J= Y max(0,1—sa(xi,X;) + 54 (Xi, X)) (2.62)

(x;,xj.x¢) €T

This equation is similar with the pushing part of the LMNN method [169] (Section 2.3.1).

In order to minimize this loss, OASIS employs the Passive-Aggressive algorithm [35]
iteratively to optimize the matrix A. Experiments comparing OASIS with distance metric
learning methods such as LMNN demonstrated the superiority of learning the bilinear
similarity over learning a distance metric for the problem of image retrieval. Unfortunately,
the authors did not compare OASIS with SiLA or any other similarity metric learning
methods. However, since the bilinear similarity has no need to compute a normalization term
(Equation (2.51)), we believe that OASIS is naturally efficiently computable.

Cosine Similarity Metric Learning (CSML)

Besides SiLA and gCosL A, Cosine Similarity Metric Learning (CSML) [125] is another
method focusing on learning a Cosine Similarity metric. Different from SiLA and gCosLA

that optimize the matrix A, CSML explicitly learns the transformation matrix W (note that
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WTW = A). Firstly, the Cosine Similarity metric between a pair of vectors (x;,y;) is:

(Wx)! Wy, (Wx)! Wy,
swixi,¥;) = e = T 263
VOV Wiy Jowy) T wy, TSI
The cost function of CSML is defined as:
J=- sw(xi,y;) +a sw(xi,y;) + B|[W —Wo||%. (2.64)
Y

(Xi7yi)€S (Xivyi)ED
This cost function intuitively presents the objective of CSML:

* Minimizing the first part — Yy, v )esSw(Xi,¥;) aims to increase the similarity between

each similar pair.

* Minimizing the second part &}, y.)ep sw(X;,y;) aims to decrease the similarity be-
tween each dissimilar pair, the coefficient & weights the contribution from the dissimi-

lar pairs, with respect to the contribution from the similar pair (the first part).

* The third part B||W — Wy || acts as a regularization factor, like the LogDet divergence
regularization factor in ITML (Section 2.3.1), it restricts the learned matrix W close to
a predefined matrix Wy. The coefficient B weights its effect to the whole cost function.
In practice, this part guarantees the CSML algorithm to obtain a better matrix W than

W) to specify the pairwise similarity.

CSML was applied for pairwise face verification and a batch gradient descent algorithm, i.e.
the Conjugate Gradient Descent (CGD) [115], was adopted to optimize the matrix W. The
gradient of the cost function is calculated by:

8‘] aSW<Xi7Y'> aSW(Xiay')
o= ), e Y — =+ B(W - W), (2.65)
aW (xiay[)es aW (th,')ED aW
where
dsw(Xi,y;) 1 (Wx,)T Wy, r o (Wx)TWy, T
L= “Wx; — Wy, )X; + (——5— Wy, — Wxy)y; |.
ow Wl Wyl W2 X e il

(2.66)
The proof of this partial derivative of the Cosine Similarity function is referred to Appendix
A. Note that CSML performs non-convex optimization resulting in a local optimal solution,
however, experiments in [125] showed that CSML achieved competitive performance on the

problem of face verification.
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2.3.3 Other Advances in Metric Learning

Besides the above methods mainly based on the Mahalanobis distance or the Cosine Similar-
ity, many interesting advances have been made to Metric Learning. For example, investigating
other metrics such as the xz—distance [82] and the Fisher information distance [165] for mea-
suring feature vectors; involving both distance metric learning and similarity metric learning
in a single task [26]; examining the effect of regularization factors such as LogDet divergence
regularization [39] and Fantope regularization [90] in metric learning for robust classification;
apart from the usual pairwise and triplet constraints, introducing quadruplet-wise (Qwise)
constraints [89] to exploit fine data relationship such as class ranking; studying nonlinear
transformations instead of the common used linear matrices in the above methods [62]; or

developing specific metrics for other kind of data such as histogram data [82] and strings [12].

Relevant Component Analysis (RCA)

Relevant Component Analysis (RCA) [148, 7] provides a simple way to specify a transfor-
mation matrix W, which performs well in both distance metric learning and similarity metric
learning. Firstly, the proposed RCA algorithm computes the within chunklet covariance

matrix for a set of training data:

X], )(Xi — [,L]) , (2.67)

|| Ms

where N is the number of all samples, n is the number of chunklets, n; counts the number of
samples in the j;;, chunklet, and pt ; denotes the mean of the j;;, chunklet. It is noteworthy that
the idea of "within chunklet" involves similar pairs only for learning a metric. By applying
Cholesky decomposition [132] or eigenvalue decomposition [26], the transformation matrix
is simply W = Cc:.

On one hand, Bar-Hillel et al. [7] has proven that RCA gives an optimal solution to the
problem of minimizing within class Euclidean distances. On the other hand, under Gaussian
assumptions, RCA can be interpreted as the maximum-likelihood estimator of the within
class covariance matrix [65, 64], which is usually combined with the Cosine Similarity
metric to measure the similarities between data [26, 8]. In general, RCA has been empirically
justified to be effective in learning either the Euclidean distance metric [7] or the Cosine

Similarity metric [26, 8].
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Dimensionality Reduction by Learning an Invariant Mapping (DrLIM)

Dimensionality Reduction by Learning an Invariant Mapping (DrLIM) [62] proposed to
learn a nonlinear distance metric in a Siamese CNN architecture (Section 2.2.5), where the
so called "energy function" (i.e. a specific kind of cost function) was indeed developed on
the Euclidean distance. Concretely, the parameter set W that configures the distance metric
is no longer a single matrix for a linear mapping, but a set of transformation matrices and

bias vectors that realizes a nonlinear mapping:

dw(x,y) = [f(x, W) = f(y,W)|| = \/(f(X»W) — Sy, W) (f(x, W) — f(y,W)). (2.68)

Let s; = 1 (respectively s; = 0) denote a similar pair (respectively a dissimilar pair), the cost

of the i;, training pair is:

1

J,':Siz

1
d\2V<Xi7 yl) + (1 - Si) Emax2<07m - dW(Xia yi))7 (269)
where m defines a margin in the hinge loss function. Similar with other distance metric
learning methods (Section 2.3.1), we can see that the first half of this equation aims to
minimize the distance between a similar pair in the target space, and the second half aims to
separate a dissimilar pair with a margin m. Being a Siamese NN, the DrLLIM method can be

efficiently trained via the Backpropagation algorithm [142] in an online mode (Section 2.2.2).

Multiple Metrics Large Margin Nearest Neighbor (M?-LMNN)

All the above distance or similarity metric learning methods learn a single matrix A or W for
a certain problem, Multiple Metric Large Margin Nearest Neighbor (M?-LMNN) [168, 169]
pioneered the study of learning multiple metrics via a single formulation. Formally, for any

two given vectors X and y, several Mahalanobis distances may be specified:

dAi(x,y):\/(x—y)TAi(x—y), i=1,...,K, (2.70)

where K defines the number of metrics that need to be learned. In practice, these K learned
distances da, (X,y), ..., da,(X,y) can be sorted or averaged as the final measurement of
distance, in order to determine nearest neighbors and label test samples. Although introducing
more metrics into learning leads to a higher computational cost, M?>-LMNN significantly
improved the classification performance over standard LMNN that learns a single metric.
Besides LMNN, other Metric Learning methods have also benefited from learning multiple
metrics [131, 36, 71].
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Similarity Metric Learning over the Intra-personal Subspace (Sub-SML)

When classical methods chose to learn either a distance metric or a similarity metric, Cao et
al. [26] proposed to simultaneously learn a Mahalanobis distance metric and a bilinear
similarity metric for the problem of face verification. They call their method Sub-SML, short
for Similarity Metric Learning over the Intra-personal Subspace.

Concretely, the distance is parameterized by a matrix A as da (X,y) (Equation (2.28)) and
the bilinear similarity is parameterized by another matrix B as sg(x,y) (Equation (2.60)). A

generalized similarity containing them both is defined as:

8(AB) (X7 Y) =SB (X7 Y) - dA (X7 y) . (271)

Let [; = 1 (respectively /; = —1) denote that a pair of vectors (x;,y;) being similar (respectively

dissimilar), the cost of this pair is defined as a hinge loss:
Ji =max(0,1 —liga p)(Xi,¥:)), (2.72)

which can be explained as two constraints:

* when/; =1, we have 1 —g(4 p) (x;,¥;) <0, which means that the generalized similarity

of a similar pair should be larger than 1;

* when /; = —1, we have 1 + g5 B)(Xi,¥;) < 0, which means that the generalized simi-
larity of a dissimilar pair should be less than —1.

In other words, a default margin of width 2 (from -1 to 1) is set. Combining the cost of all
training pairs with a regularization factor based on Frobenius norms, the cost function of
Sub-SML is

N
A
J= Y max(0,1 ~ligam (3)) + S (A -TP+[B-1),  @73)
i=1

where N is the number of all training pairs and I is the identity matrix. The formulation is a
convex optimization problem that guarantees the existence of its global solution. Moreover,
the authors provided the dual formulation of the Sub-SML cost which can be efficiently
solved by an accelerated gradient-based algorithm [10].
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2.4 Conclusion and Open Problems

In this chapter, we have reviewed the literature of Siamese Neural Networks and Metric
Learning. Generally, the study of Siamese Neural Networks focuses on designing a good
architecture of neural networks, i.e. specifying a mapping function. In contrast, Metric
Learning emphasizes learning a good metric, i.e. formulating a cost function. However,
Siamese Neural Networks and Metric Learning are not isolated from each other. On one
hand, a Siamese NN requires a metric-based cost function, e.g. on the Euclidean distance
in [32, 62]. On the other hand, most Metric learning methods take a linear mapping function
as the default setting [173, 147, 169, 55, 52, 39, 60, 136, 135, 29, 125, 7, 26].

Therefore, we regard Siamese Neural Networks and Metric Learning as a unifying study
of designing a good architecture to learn a good metric. So far, we have known many
exemplars in this chapter: for a mapping function, the depth of the architecture can be
shallow or deep, namely, shallow linear transformations (most methods in Section 2.3),
multi-layer neural networks (e.g. the MLP in Section 2.2.3) or deep neural networks (e.g.
the CNN in Section 2.2.5); for a cost function, we have a lot of candidates based on either a
distance metric (Section 2.3.1) or a similarity metric (Section 2.3.2).

Can we build up a general system with these components, providing perfect solutions
to all the practical problems? Apparently, the answer to this question would be negative
since most problems are data-driven and the effectiveness of a method is mainly verified by
empirical evaluations. For designing a good Metric Learning system, a few problems remain

open.

A mapping function: linear vs. nonlinear

The selection of a linear or nonlinear function for a problem reveals the trade-off between
under-fitting and over-fitting to the given training data. Problems in a "well-represented"”
feature space are linearly separable, so a linear function has less risk of over-fitting than the
nonlinear one. However, when it is difficult to craft discriminative feature representations for
a problem, the linearity also limits the function’s capacity of realizing complex mappings
and thus under-fitting occurs, i.e. the linear model can not capture the underlying trend of the
training data.

Over-fitting 1s always the biggest challenge for nonlinear mappings: they fit the training
data well but fail to predict the test data correctly, since the nonlinearity also captures the
noise of the training data. Therefore, extra generalization terms such as weight decay [100],
dropout [153] are required to reduce the influence of over-fitting. Besides, nonlinear formula-

tions cost more computational resource in a machine than linear ones.



46 Literature Review: Siamese Neural Networks and Metric Learning

In practice, according to the principle of Occam’s razor [116], if a linear solution and a
nonlinear solution are equally effective to a problem, the linear one should be preferred due

to its simplicity.

A cost function: convex vs. non-convex

Even we have chosen a linear mapping function, we still have to determine the convexity
of a cost function. Generally, a convex cost function holds a global optimal solution but a
non-convex function has more than one local optima.

Relatively, the major advantage of a convex formulation is that it can be efficiently solved
by convex optimization [23] algorithms and the only solution sounds unique to the users.
However, a local optimum of solvable non-convex functions may be also a good solution to
practical problems, e.g. the cost functions of NCA [55] and CSML [125] are non-convex
(Section 2.3). Recent theoretical and empirical results strongly suggest that local optima
are not a serious issue in general [99]: regardless of initial conditions, a non-convex system

nearly always reaches local solutions of very similar quality.

Mapping function vs. Cost function: which one plays a more important role?

The last question is that between the design of an architecture and the formulation of a
metric-based cost, which one plays a more important role in a Metric Learning system? We
believe that there is no simple answer, and an effective Metric Learning system should be a
collaboration of both.

But it should be noted that the trend of deep learning [15, 99, 16, 107] has attracted more
and more attention to constructing deep architectures for non-trivial, large-scale problems.
Configuring the structure of a system and designing an effective deep architecture is indeed
an art: we need to carefully choose the type of layers, the number of layers, the number
of nodes in each layer, the connectivity mode among the layers, the choice of activation
functions, etc.

Consequently, when we develop our own Metric Learning system, we take into account
both the mapping function and the cost function. In following chapters, we will first propose
a novel similarity-based cost function naturally related to the triangle inequality theorem
and explain its objective by geometrical illustration. We will then integrate the cost function
with three different mapping functions, namely, a linear transformation, an MLP or a CNN,
respectively. We will evaluate these linear and nonlinear systems in different applications such
as pairwise face verification, speaker verification, kinship verification, object classification

and data visualization.



Chapter 3

Triangular Similarity Metric Learning

3.1 Introduction

In the previous chapter, we have reviewed the literature of linear Metric Learning methods
and also their non-linear variants, i.e. Siamese Neural Networks. We have concluded that
a good Metric Learning system should be a collaborative product of designing a mapping
architecture and formulating a metric-based cost function.

The current literature has offered us many exemplars: for a mapping function, the depth
of the architecture can be shallow or deep, namely, shallow linear transformations [13],
multi-layer neural networks [142, 31, 177, 18] or deep neural networks [6, 24, 32, 62, 122];
for a cost function, we have a lot of options based on a distance metric [173, 147, 169, 55, 52,
39, 60], a similarity metric [136, 135, 29, 125] or a hybrid metric concerning both distance
and similarity [7, 26].

In general, more works in the current literature focused on learning a distance metric
rather than learning a similarity metric. Among all the few similarity metric learning methods,
most of them concerned the Cosine Similarity metric [136, 135, 125] or its relaxed variant,
the bilinear similarity [28, 29]. In this thesis, we contribute to the study on similarity metric
learning and propose an alternative metric which is equivalent to the Cosine Similarity metric
but has a nicer geometrical interpretation of learning the similarity. This novel metric is
naturally related to the well-known triangle inequality theorem, so we call it the Triangular
Similarity. Moreover, we will develop an efficient and effective cost function to learn a
Triangular Similarity metric. By examining its gradient, we will discover that the cost
function can be easily enrolled in a linear or nonlinear architecture of neural networks.

This chapter focuses on introducing and illustrating the methodology of our Triangular
Similarity Metric Learning (TSML) approach, the main contributions of this chapter are

summarized as below:
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* We propose the Triangular Similarity and illustrate its equivalence to the Cosine

Similarity in measuring a data pair.

* We develop the triangular loss function and show its connection to the Mean Squared

Error (MSE) function of traditional neural networks.

* We visualize the mapping objective of the proposed TSML system.

3.2 Triangular Similarity

For any two given vectors a and b, the Triangular Similarity between them is measured by:

1, a b
tri(a,b) = < ||—+ —|, (3.1
27 |lall bl
apparently, the value of this similarity lies in the range [0, 1]. This function results in 1 if and
only if the two vectors a and b are towards the same direction, and yields O if and only if the
directions of the two vectors are exactly opposite.

Now we relate the Triangular Similarity to the Cosine Similarity:

1 a b
trifab) = ||+
ri@ )= 3 e oy

1 a b 7, Q b
- 5\/ S * o1 Gl * I

1 a . , b, a’b
_ - + +2
z\/ ol o Tl 62

a’b
[al[|[b]]

2+2

2+42cos(a,b)

_[14cos(a,b)
_,/—2 7

where cos(a,b) is the standard Cosine Similarity function. We can see that the relation

= N =

between tri(a,b) and cos(a,b) is a consecutive and bijective function! f(z) = \/(1+2z)/2
in its effective domain z > —1, indicating that they are equivalent in measuring a similarity.

'In mathematics, a bijective function is a function between the elements of two sets, where every element of
one set is paired with exactly one element of the other set, and every element of the other set is paired with
exactly one element of the first set.
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cos(a,b) = cosé

. 1,.
tri(a,b) = E”C”

Fig. 3.1 Equivalence between Triangular Similarity and Cosine Similarity. While the Cosine
Similarity simply calculates the cosine of the angle 0 between the two vectors, the Triangular
Similarity measures the half length of the directed chord (the blue line). The three vectors ﬁ,

ﬁ and € compose an isosceles triangle. The two similarity functions compose a one-to-one
correspondence thus the equivalence is confirmed.

A more intuitive interpretation of the relationship between the two similarities is illus-
-
’ lall

on the unit circle, i.e. a circle with a radius of one. And their sum determines a directed

trated in Fig. 3.1. In a Cartesian coordinate system and ﬁ represent two vectors lying
chord on the circle (the blue line), denoted by a new vector ¢. The Cosine Similarity simply
calculates the cosine of the angle 6 between the two vectors, and the Triangular Similarity
halves the length of the directed chord. When the angle 0 decreases from 7 to 0, the value of
the Cosine Similarity increases from the minimum —1 to the maximum 1, and the value of
the Triangular Similarity raises from O to 1. Note that the three vectors H%l’ H%\l and their
sum € compose an isosceles triangle, that is why we call this similarity measurement as the

Triangular Similarity.

3.3 Triangular Loss Function

For both the Cosine Similarity and the Triangular Similarity, the scale of the factors ||al|
and ||b
up numerical instability problems [67] especially when ||a]| and ||b|| are too small. This

, 1.e. the length of the vectors, should be taken care of. Otherwise, it may raise
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hidden problem can be avoided or relieved by many strategies. For example, adopting
regularization terms to prevent ||al| and ||b|| from degenerating to 0 [18], normalizing the
inputs by a whitening transformation [77, 185] so that all the input variables have unit
variance [100], or simply performing an L2 normalization to let all the vectors have unit
length [26, 150]. Empirical experiences showed that these strategies usually bring up to
faster convergence [100] and better performance [26, 185] on machine learning applications.

In this work, we propose a soft L2 normalization to constrain the length of the vectors.
Different from the above strategies that perform normalization as a preprocessing step before
feeding the inputs in the metric learning system, we constrain the length of the vectors to a
constant r by a regularization function:

min (||a]| — )2+ (||b]| — )% (3.3)

Minimizing the above function is able to make the values of ||a|| and ||b|| approaching a
predefined scalar r, but in fact not all the vector lengths can be exactly r, so we consider it as
a soft length normalization.

With the indicative assumption of ||a|| = ||b|| = r, we can simplify the Cosine Similarity

and the Triangular Similarity. For the Cosine Similarity, its function can be rewritten as:

T
b 1
a 2Tb

cos(@B) = qmer ~ 7

(3.4)
where a’b is the bilinear similarity. This approximation indicates that when vectors have
approximate lengths, the bilinear similarity can be an equally effective but more efficient
substitute of the Cosine Similarity in practical applications [28, 29, 41, 26]. Analogously,
the Triangular Similarity can be simplified as:

tri(a,b)——||—+—|| N—II +bl. (3.5
27l IIb]

Instead of the isosceles triangle in Fig. 3.1, the above simplified Triangular Similarity
concerns a normal triangle lying around a circle with a radius of r (see Fig. 3.2 (a)). This
triangle is determined by the two vectors a and b, completed with their sum ¢ = a+b as the
third side. Additionally, the two vectors a and b determine another triangle where the third
side is the difference of a and b, i.e. ¢ = a—b (Fig. 3.2 (b)). With respect to the operations
of sum or subtraction, we name the two triangles as the positive triangle and the negative

triangle, respectively.
Like all the similarity metric learning methods, the objective of learning a Triangular

Similarity metric is to increase the similarity between a similar pair and to decrease the
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cos(a,b) = cosé cos(a,b) = cosé

. 1 . 1
tri(a,b) = EHCH tri(a,—b) = EHCH

(a) Positive Triangle (b) Negative Triangle

Fig. 3.2 The simplified Triangular Similarity concerns normal triangles lying around a circle
with a radius of r. A pair of vectors a and b determines two triangles: the positive triangle
(left) illustrates the Triangular Similarity between a and b; the negative triangle illustrates
the Triangular Similarity between a and —b.

similarity between a dissimilar pair. An intuitive geometrical interpretation of the objective

is provided in Fig. 3.2.

* When a and b are labeled as being similar, increasing the pairwise similarity means
minimizing the inter-vector angle 8, which can be realized by maximizing the length
of the third side ¢ in the positive triangle (Fig. 3.2 (a)).

* When a and b are a dissimilar pair, we need to separte the two vectors with a larger
angle 6. This can be also achieved by maximizing the length of the third side ¢ in the
negative triangle (Fig. 3.2 (b)).

The cost function

Finally, let s; = 1 (respectively -1) denote a pair of vectors a; and b; being similar (respectively
dissimilar). With the soft length normalization factors (||a;|| —r)2, (||b;|| —r)?, and the lengths
of the three sides, ||a;||, ||b;||, ||ci||, the triangular loss of this pair is defined as:

Ji= 5[ (il =r)* + (Ibill = r)* [ +r

~

2l + [Ibil| — fleill ), (3.6)

| =

where r is a constant constraint for the vector length; ¢; = a; + s;b;, representing the simplified

Triangular Similarity in a positive triangle or a negative triangle. It is interesting to find that
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the second part of this equation naturally obeys the triangle inequality theorem: the sum of
the lengths of two sides of a triangle must always be greater than the length of the third side,
ie. [[ag +[bif] —[leil] = 0.

Moreover, the coefficients of the two parts are set to % and r, in order to further simplify
the formulation of Equation (3.6) as:

1 1
Ji=§||ai||2+§||bi||2—”||ci||+r2- 3.7)

The gradient function

In Metric Learning systems, the vectors a; and b; are outputs of a certain mapping function
f(-) parameterized by a set of parameters (see Fig. 3.3). We now deduce the gradient of the
triangular loss function (Equation (3.7)) with respect to the parameter set W.

First of all, the derivative of the vector norm is (see the proof in Appendix A):

dljal| dlal]| da  a Jda

= = . 3.8
OW — oa oW |ja] oW (3:8)
Thus the derivative of the triangular loss is:
aJ; a oa; tb db; ¢ de¢;
OW ~ “9W ' TOW ' ||ci|| oW
da; ob; ¢; da;+s;b;

=a; b; — 3.9
oW TP oW T el ow (39)

aa,' SiCi 8bl-
- “"‘ruciuW“bl"’nqu)aw

Since the partial derivatives g&’, and - a are controlled by the speciﬁc mapping function
f(+), the minimal cost can be obtained at the ZEro gradlent when a; = r—r H o ” and b; = rih H o H In
other words, the gradient function has rH || and rH || as targets for a; and b;, respectively.
Figure 3.4 illustrates that: for a similar pair (when s; = 1), a; and b; are mapped to the same
vector in parallel with the third side of the positive triangle (the red solid line); for a dissimilar
pair (when s; = —1), a; and b; are mapped to two opposite vectors in parallel with the third
side of the negative triangle (the blue solid line).

Most importantly, this gradient function confirms that though the Triangular Similarity
in the cost function is only a simplified version as we have assumed the vectors having
approximate lengths, we can still achieve the objective of closing a similar pair and separating
a dissimilar pair: (1) for two similar vectors, the gradient defines an identical target between

them; (2) for two dissimilar vectors, the gradient projects them to opposite directions.
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Fig. 3.3 The siamese architecture of Metric Learning.

Fig. 3.4 The minimal cost can be obtained at the zero gradient when a; = rﬁ and b; = rﬁ:
for a similar pair (when s; = 1), a; and b; are mapped to the same vector along the red solid
line; for a dissimilar pair (when s; = —1), a; and b; are mapped to two opposite vectors along

the blue solid line.
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3.4 Relation to Traditional Neural Networks

As we have mentioned in previous chapters, the structure of our Metric Learning method
is indeed the symmetric architecture in Siamese Neural Networks [24, 32]. The mapping
function f(-) in Fig. 3.3 can be realized by any traditional neural networks, from linear single
layer perceptrons [141] to nonlinear Multi-layer Perceptrons (MLP) [142], to deep nonlinear
Convolutional Neural Networks (CNN) [96]. Furthermore, besides the common relation
of the mapping function, the proposed triangular loss function also has natural connection
to the Mean Squared Error (MSE) function, i.e. the most commonly used cost function in
traditional neural networks [142, 95, 100].

3.4.1 Relation to the Mean Squared Error Function

For classification problems, the Mean Squared Error (MSE) loss function must be the earliest
and the most popular cost function used in traditional neural networks, either in an MLP [142]
or in a CNN [96]. It simply measures the difference between a computed output of a network
and its desired target.

Formally, when we are given a training sample x; and its predefined target g;, we first
compute its output by the mapping function, i.e. a; = f(x;, W), where W denotes the set of
parameters in the mapping function. The error with respect to this training sample is defined
as the squared Euclidean distance between a; and g;:

1

Ji=(ai—g)%, (3.10)

and the partial derivative of the cost J; with respect to the set of parameters W is:

8],- 8a,~

W:(ai_gi)m' (.11

Usually, these predefined target values are typically binary for classification problems.
For example, for a 4-class classification problem, we usually set unit vectors [1,0,0,0]7,
[0,1,0,0]7, [0,0,1,0]7, [0,0,0,1]7 as target vectors for the 4 classes, respectively. Note that
the dimension of the output vectors equals the number of classes.

Comparing this function with the gradient function of the triangular loss (Equation (3.9)),
we find that the gradient function of the triangular loss is exactly a double copy of the MSE
gradient: (1) the single output a; in traditional neural networks is paired with a partner b; to
learn the pairwise relationship between data in a siamese architecture; (2) the hand-crafted

target g; is replaced by temporal targets rHﬁ—fH and r‘T’c—ci' which are automatically specified
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by the two vectors a; and b; themselves. This is indeed an advantage that the dimension
of the output vectors is no longer required to be equal to the number of classes, and thus
the proposed metric learning system is applicable for flexible dimensionality reduction.
Furthermore, with the similar gradient formulations, typical optimization techniques and
practical tricks of training neural networks [129] can be directly applied to optimize our

triangular loss function. More details will be given as below.

3.4.2 Non-Convexity and Backpropagation

Different from most Metric Learning methods [173, 147, 169, 52, 39, 60, 29, 7, 26] that
each holds a convex cost function and adopts a linear mapping function, our triangular loss

function is non-convex and the mapping function can be either linear or nonlinear.

Generally, a global optimal solution is guaranteed to a linear and convex optimization
problem [23, 11]. In contrast, among more than one local optima in a non-convex problem,
there is no theories or formula to guarantee that the cost function will certainly converge to
a good solution [100]. However, recent theoretical and empirical results strongly suggest
that local optima are not a serious issue in general [99]: regardless of initial conditions, a

non-convex system nearly always reaches local solutions of very similar quality.

Taking advantage of the connection between the triangular loss and the MSE cost,
like the traditional neural networks, we directly employ the standard Backpropagation
algorithm [142] to perform gradient descent. The update equation for gradient descent can

be written as:

9J®)
“How

where U is the learning rate in an online gradient descent learning algorithm, J () is the cost

Wi =W, (3.12)

at the #,, iteration. By successive training iterations, the parameters W is iteratively adjusted

until reaching a relatively stable status, i.e. a local optimal solution.

Backpropagation can be very slow particularly for multi-layer networks where the cost
surface is typically non-quadratic, non-convex, and high dimensional with many local
minima and/or flat regions. The convergence may be quite slow, or even does not occur at all.
However, a number of tricks such as normalizing the inputs, choosing good learning rates,
initializing the weights, can greatly improve the chances of finding a good solution while
also decreasing the convergence time often by orders of magnitude. Lecun et al. [100] have
discussed these tricks and have examined the underlying theories of efficient Backpropagation.
Nowadays, the popularity of deep learning [15, 99, 16, 107] has also demonstrated the

effectiveness of deep non-linearity.
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3.4.3 Batch Gradient Descent or Stochastic Gradient Descent

Once we have defined a cost function and its gradient, the Back-propagation algorithm [142]
applies gradient descent techniques to minimize the overall error for all the training data
iteratively. There are mainly three modes to perform gradient descent: stochastic gradient
descent, batch gradient descent, or the trade-off between them, mini-batch gradient descent.
Concretely, stochastic gradient descent uses only one training sample in each iteration while
batch gradient descent uses all training samples in each iteration. Mini-batch gradient descent,
as the name suggests, takes several training samples in each iteration.

Stochastic gradient descent is generally preferred for large-scale Backpropagation. Stochas-
tic gradient descent is most often much faster than batch gradient descent particularly on large
redundant datasets. The reason is simple to show that stochastic gradient descent computes
the gradient based on only one training sample while batch gradient descent has to average

the gradient over all the training samples.

Stochastic gradient descent is particularly useful to model a function changing over
time, a quite common scenario in industrial applications where the data distribution changes
gradually over time (e.g. due to wear and tear of the machines). Since batch gradient descent
always considers the whole training data, it is difficult to detect and follow the changes and
thus it may result in rather bad solutions. In contrast, stochastic gradient descent, as a kind of

online learning algorithm, can track the changes and yield good approximation results.

Despite the advantages of stochastic gradient descent, there are still reasons to use
batch gradient descent [100]. Batch gradient descent can be involved in some advanced
optimization algorithms to accelerate the learning speed, such as the Conjugate Gradient
Descent (CGD) algorithm [115] and the Limited-memory Broyden Fletcher Goldfarb Shanno
(L-BFGS) algorithm [108]. With these acceleration techniques that is hard to operate in
stochastic gradient descent, the accelerated batch gradient descent can be much faster for
small and medium scale problems, i.e. offline learning problems where the whole training
set is ready as a batch. Besides, compared with the stochastic gradient descent technique,

these advanced algorithms have no need to manually pick a learning rate.

Nowadays, we are more likely to face a large scale problem with an overlarge training
set, it may be impossible to load all the training data into memory in a single iteration. In this
case, one may prefer stochastic gradient descent or its variant, mini-batch gradient descent.
Like stochastic gradient descent, mini-batch gradient descent is also applicable for online
learning. And as the trade-off between stochastic gradient descent and batch gradient descent,
mini-batch gradient descent is even a better choice than stochastic gradient descent for many

online optimization problems [100].
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In summary, a proper choice of a gradient descent mode depends on the practical con-
ditions in a problem, such as the data scale, the underlying distribution of the data. More

detailed discussion in practical applications will be given in later chapters.

3.4.4 Various Mapping Functions

Last but not least, like traditional neural networks, we can incorporate various mapping
functions with our triangular loss function for different applications. We simply give three
typical options for the mapping function and summarize their characteristics here.

For a simple and general problem where we already have discriminative feature repre-
sentations for objects, the Triangular Similarity with a linear mapping may be enough to
describe the concerned semantic similarity between objects. In this case, according to the
principle of Occam’s razor [116], we prefer a linear single layer of perceptrons [141], i.e. a
matrix, as the mapping function due to its simplicity.

If the data have some nonlinear underlying distribution that a linear similarity metric is
unable to capture, we can adopt Multi-layer Perceptrons (MLP) [142] to perform nonlinear
projections on the inputs of feature vectors.

For data that have a known grid-like topology [16] and do not have an effective vector rep-
resentation, such as images and speech time-series, the Convolutional Neural Networks [96]
may be the desirable choice for the mapping function to automatically extract features on the

2-dimensional inputs.

3.5 Visualization of the Objective

The objective of our triangular loss function seems too ideal for a dissimilar pair: in Fig. 3.4,
the two vectors of a dissimilar pair (when s; = —1), a; and b;, are mapped to be exactly
opposite to each other. However, in a limited space which contains a large quantity of classes,
it is impossible to have all the dissimilar pairs oppositely separated. For example, when there
are 3 different vectors in the 2-dimensional space, we can find at least one pair of vectors with
the angle less than 180° (i.e. non-ideally opposite). However, the triangular loss function
is able to balance the pairwise angles for all the data pairs and result in a relatively stable
solution. In this section, in order to have an intuitive sense of the triangular loss function, we
visualize the mapping results of some toy data.

We randomly select some points from different Gaussian distributions, i.e. normally
distributed data, in the 2-dimensional input space. Similar and dissimilar pairs are generated

as training data for our Triangular Similarity Metric Learning (TSML) system. We use a
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Fig. 3.5 Diagram of a 3-layer MLP, with only one input layer, one hidden layer and one
output layer. Adjacent layers are fully connected and the activation function is the tanh
function. TSML employs this 3-layer MLP as the mapping function.

3-layer MLP as the mapping function to project the original normally distributed data into a
target space of 2-dimension or 3-dimension.

Figure 3.5 shows the naive MLP to realize the mapping from the input to the output, size
of the only hidden layer is set to 10. Size of the output layer is set to 2 or 3, indicating the 2-
dimensional or 3-dimensional target space, respectively. Adjacent layers are fully connected
and the activation function is the tanh function. For a pair of inputs, the triangular loss is
calculated on their outputs and Equation (3.9) is used in the Backpropagation algorithm to
update the weights of this MLP. The length parameter r in Equation (3.9) is simply set to 1.
As the scale of this toy problem is quite small, we employ the advanced L-BFGS algorithm
to perform batch gradient descent. Specifically, we used a MATLAB implementation of
L-BFGS provided by Mark Schmidt [144].

3.5.1 Example 1: Two Classes

We first illustrate an example of data originating from two Gaussian distributions. In the
original 2-dimensional space, centers of the two classes are at (0,1) and (1,0), respectively.
The standard variation on each dimension is simply set to 0.1 for the two groups of normally

distributed data. We randomly generate 10 points for each class as the training data, and 100
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points for each class as the test data. Figure 3.6 (a) plots the raw training data (left) and test
data (right), respectively.

Since the TSML method performs learning on data pairs, we collect all the possible pairs
between the training data. For the 20 training samples, the number of all sample pairs is
simply 190 =20 x (20 — 1) /2, where 100 of them are dissimilar pairs and the rest 90 are
similar pairs.

To initialize the parameters of the MLP, we use a simple normalized random initialization
method in [53], which is considered to be helpful for the tanh networks. The initialized
MLP produces outputs for all the data samples and yields a new data distribution in the
2-dimensional target space, shown in Fig. 3.6 (b). Comparing it with the raw distribution,
we can see that the center of each class has been moved and data in each class have been
assembled by a certain degree.

Iterative learning is performed by the TSML method on all the training pairs. We obtain
an optimal model when the algorithm reaches convergence. Like the initialized model,
the optimal model projects all the data samples into the 2-dimensional target space. And
the results after learning is shown in the bottom picture, Fig. 3.6 (c). The objective of the
triangular loss has been perfectly achieved: (1) the lengths of all the vectors are approaching
the predefined parameter r = 1; (2) every similar pair are closed with an intersection angle of
0°, i.e. points in the same class are mapped to an identical position; (2) every dissimilar pair
are separated maximally with an intersection angle of 180°, and thus the two classes locate
oppositely on two sides of the origin (0,0).

3.5.2 Example 2: Four Classes

We now present a more complex example of four classes of normally distributed data. In the
original 2-dimensional space (see Fig. 3.7 (a)), the centers of the four classes are at (0,0.5),
(0,1.3), (0,—1.3), (0,—0.5), respectively. The standard derivation on each dimension is
still set to 0.1. For each class, the number of training samples is 10, and the number of test
samples is 100. Training pairs are generated by the 40 training samples in order to perform
nonlinear metric learning. Normalized initialization is taken and the dimension of the target
space is first set to 2.

Figure 3.7 (b) shows the projection using the initialized model, and Fig. 3.7 (c) illustrated
the projection using the optimal model learned by the proposed TSML method. Comparing
these two projections, we conclude this optimal solution as: (1) although the lengths of all the
vectors can not reach 1, they are roughly equal; (2) points in the same class are mapped to the
same position; (3) in the 2-dimensional coordinate system, the four different classes occupy

a quadrant each, sharing the 360° around the origin. Thus any two neighboring classes have
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Fig. 3.6 Illustration of the 2-class toy problem, showing the distribution of the training data
(left column) and the test data (right column) at different stages.
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