
HAL Id: tel-01313326
https://hal.science/tel-01313326v1

Submitted on 9 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance and Energy Consumption Characterization
and Modeling of Video Decoding on Multi-core

Heterogenous SoC and their Applications
Yahia Benmoussa

To cite this version:
Yahia Benmoussa. Performance and Energy Consumption Characterization and Modeling of Video
Decoding on Multi-core Heterogenous SoC and their Applications. Multimedia [cs.MM]. Université
de Bretagne Occidentale, 2015. English. �NNT : �. �tel-01313326�

https://hal.science/tel-01313326v1
https://hal.archives-ouvertes.fr

Performance and Energy
Consumption Characterization

and Modeling of Video
Decoding on Multi-core

Heterogenous SoC
and their Applications

Thèse soutenue le 16 Juin 2015
devant le jury composé de :
Frank Singhoff
Professeur, UBO Brest / Président du jury
Daniel Menard
Maitre de conférences, HDR, Université de Rennes 1 / Rapporteur
Daniel Chillet
Maitre de conférences, HDR, Enssat / Rapporteur
Smail Niar
Professeur, Université de Valencienne / Examnateur
Mouloud Koudil
Professeur, École Supérieure d'Informatique/ Examinateur
Eric SENN
Maitre de conférences, HDR, UBS Lorient / Directeur de thèse
Jalil Boukhobza
Maitre de conférences, UBO Brest / co-encadrant
Djamel Benazzouz
Professeur, Université de Boumerdes / Co-directeur de thèse

THESE / UNIVERSITE DE BRETAGNE OCCIDENTALE
sous le sceau de l’Université Européenne de Bretagne

pour obtenir le titre de
DOCTEUR DE L’UNIVERSITE DE BRETAGNE OCCIDENTALE

Mention : Informatique
École doctorale SICMA

Présentée par
Yahia BENMOUSSA

Préparée au Lab-STICC - Laboratoire des Sciences et
Techniques de l'Information, de la Communication et de
la Connaissance. Brest/Lorient

To my mother, my father and all my family.

i

Foremost, I would like to express my gratitude to Jalil Boukhobza for his valuable

help and feedback during this thesis. My sincere thanks also goes to Eric Senn and

Djamel Benazzouz for their supports.

Many thanks to my thesis committee for accepting to evaluate this work.

I must also acknowledge the Lab-STICC, the computer science department of the

University of Western Brittany in Brest and the M’Hamed Bougara University of

Boumerdes for their financial support.

Special thanks to Yassine Hadjadj-Aoul from University of Rennes for his numer-

ous comments and suggestions, Michael Lanoe for his help in using Open-PEOPLE

platform, and Richard Jouet from Laudren Electronics for his technical help in instru-

menting embedded boards used in my thesis experimentations.

Finally, I would like to thank to all those who helped me to achieve this work.

ii

Abstract

To meet the increasing complexity of mobile multimedia applications, the System on Chip

(SoC) equipping modern mobile devices integrate powerful heterogeneous processing elements

among which General Purpose Processors (GPP), Digital Signal Processors (DSP), hardware

accelerator are the most common ones.

Due to the ever-growing gap between battery lifetime and hardware/software complexity

in addition to application computing power needs, the energy saving issue becomes crucial

in the design of such systems. In this context, we propose a study aiming to enhance the un-

derstanding of the energy consumption behavior of video decoding on these kinds of systems.

Accordingly, an end-to-end methodology for characterizing and modeling the performance

and the energy consumption of video decoding on GPP and DSP is proposed. The character-

ization step is based on an exhaustive experimental methodology for evaluating, at different

abstraction levels, the performance and the energy consumption of video decoding. It was

achieved on embedded platforms on which were executed a wide range of video decoding

configurations. This step highlighted the importance to consider different parameters which

may pertain to different abstraction levels in evaluating the overall energy efficiency of a given

system.

The measurements obtained in this step were used to build empirically performance and

energy models for video decoding on both GPP and DSP. The proposed models gave very

accurate estimation (R2 = 97%) of both the performance and the energy consumption of video

decoding in terms of a rich set of parameters including the video quality and the processor

frequency. Moreover, based on a multi-level characterization and sub-model decomposition

approaches, we show how the developed models, unlike classic empirical models, are easily

and rapidly generalizable to other platforms.

Some possible applications using the developed models, in the context of adaptive video

decoding, were proposed. In general, it consists to use the capability of the proposed perfor-

mance model to predict the decoding time of a given video quality in dimensioning/scheduling

the processing resources.

Due to the increasing demand on High Definition (HD), the characterization methodology

was extended to consider HD video decoding on both parallel multi-cores and hardware video

accelerator. This part highlighted the potential of parallelism video decoding to increase the

energy efficiency of video decoding and point out some open issues in this domain.

iii

Résumé

Pour répondre à la complexité croissante des applications multimédia mobiles, les systèmes

sur puce équipant les appareils mobiles modernes intègrent des unités de calcul puissantes et

hétérogène. Parmi ces units de calcul, on peut trouver des processeurs à usage général, des

processeur de traitement de signal et des accélérateurs matériels.

En raison de l’écart toujours croissant entre la durée de vie des batteries et la demande

de plus en plus importante en puissance de calcul, l’économie d’énergie devient un enjeu

crucial dans la conception des systèmes mobiles. Cette problématique est accentuée par

l’augmentation de la complexité des logiciels et architectures matériels utilisés. Dans ce

contexte, nous proposons une étude visant à améliorer la compréhension des considérations

énergétiques du décodage vidéo sur ce genre de systèmes.

Nous proposerons ainsi une méthodologie pour la caractérisation et la modélisation des

performances et de la consommation d’énergie du décodage vidéo, aussi bien sur des pro-

cesseurs à usage général de type ARM que sur un processeur de traitement de signal. L’étape

de caractérisation est basée sur une méthodologie expérimentale pour évaluer de faon ex-

haustive et à différents niveaux d’abstraction, les performances et la consommation d’énergie

du décodage vidéo. Cette caractérisation a été réalisée sur des plates-formes embarquées sur

lesquels ont été exécutés un large éventail de configurations du décodage vidéo. Cette étape a

souligné l’importance d’examiner différents paramètres qui peuvent se rapporter à différents

niveaux d’abstraction dans l’évaluation de l’efficacité énergétique globale d’un système donné.

Les mesures obtenues dans cette étape ont été utilisées pour construire empiriquement

des modèles de performance et de consommation d’énergie pour le décodage vidéo à la fois

sur des processeurs à usage général type ARM et sur un processeur de traitement de signal.

Les modèles proposés peuvent estimer avec une grande précision (R2 = 97%) la performance

et la consommation d’énergie de décodage vidéo en fonction d’un nombre de paramètres

comprenant la qualité de la vidéo et la fréquence du processeur. En plus, en se basant sur

une caractérisation multi-niveaux et une approches de modélisation par décomposition en

sous-modèles, nous montrons comment les modèles développés, contrairement aux modèles

empiriques classiques, sont facilement et rapidement généralisables à d’autres plates-formes.

Nous proposerons également certaines applications possibles des modèles développés, dans

le cadre du décodage vidéo adaptatif. En général, cela consiste à exploiter la capacité du

modèle de performance proposé pour prédire le temps de décodage d’une qualité vidéo donnée

afin de mieux dimensionner les ressources de calculs dans un but de réduire leur consommation

d’énergie.

iv

En raison de la croissance de l’utilisation des vidéos de haute définition (HD), la méthodologie

de caractérisation a été étendu pour considérer le décodage vidéo HD aussi bien sur les ar-

chitectures multi-coeurs parallèles que sur les accélérateurs vidéo matériels. Cette partie a

souligné le potentiel de décodage vidéo parallèle pour augmenter l’efficacité énergétique du

décodage vidéo et met en exergue les principaux défis rencontrés dans cet axe.

v

Contents

List of Figures xi

List of Tables xiv

List of Abbreviations & Notations xiv

List of Publications xviii

1 Introduction 1

1.1 Context . 2

1.1.1 Increase in mobile devices power consumption 2

1.1.2 New trends in mobile video applications usage : Implications on

power consumption . 3

1.1.2.1 Increase in mobile video traffic 3

1.1.2.2 Ubiquitous video applications 4

1.1.3 Complex multimedia mobile devices 5

1.1.3.1 Multi-core and heterogeneous processing 6

1.1.3.2 Sophisticated embedded operating systems 7

1.2 Problem statement : Energy consumption modeling of processor-based

video systems . 8

1.2.1 Low level modeling . 9

1.2.2 High level modeling . 10

1.3 Thesis scope and approach . 10

1.4 Thesis contributions . 11

1.4.1 Experimental methodology . 11

1.4.2 Energy characterization methodology 12

1.4.3 Energy modeling methodology 13

vi

1.4.4 Applications . 14

1.5 Outline . 14

2 Background and related works 16

2.1 Introduction . 18

2.2 Background . 18

2.2.1 Concepts on video encoding and decoding 18

2.2.1.1 Principles of MPEG standards 18

2.2.1.2 Video quality assessment metrics 21

2.2.1.3 Video playback QoS assessment metrics 21

Deadline miss rate (DMR) 22

Decoded frames per second (FPS) 22

Latency . 22

2.2.2 Energy consumption in electronic circuits 23

2.2.2.1 Static vs dynamic energy consumption 23

2.2.2.2 Dynamic voltage and frequency scaling (DVFS) 24

2.2.2.3 Dynamic Power management (DPM) 24

2.2.3 Discussion . 25

2.3 Principles of energy saving in video decoding 25

2.3.1 Frequency scaling: Performance vs energy consumption 27

2.3.1.1 Frame-by-frame based DVFS 27

2.3.1.2 Average workload based DVFS 27

2.3.1.3 Video-aware DVFS : Challenges and issues 28

2.3.2 Parallel multi-core video decoding 29

2.3.3 Specialized processing . 30

2.3.3.1 Hardware video codecs 30

2.3.3.2 Graphical processing unit 31

2.3.3.3 Digital signal processor 33

2.3.4 Discussion . 33

2.4 Performances and energy consumption characterization of video decoding 34

2.4.1 Video decoding performances characterization 34

2.4.1.1 Application level . 34

2.4.1.2 System level . 35

vii

2.4.1.3 Architecture level . 35

2.4.2 Video decoding energy consumption characterization 36

2.4.2.1 Application level . 36

2.4.2.2 System level . 37

2.4.2.3 Architecture level . 37

2.4.3 Discussion . 38

2.5 Performances and energy consumption modeling of video decoding . . . 40

2.5.1 Video decoding performances modeling 40

2.5.1.1 Frame based models 40

Empirical models . 40

Statistical models . 41

Metadata-based models 42

2.5.1.2 Interval-based models 42

2.5.1.3 Memory-aware performance models 44

2.5.2 Video decoding energy consumption modeling 45

2.5.2.1 Application level . 45

2.5.2.2 System level . 46

2.5.2.3 Architecture level . 47

2.5.3 Discussion . 47

2.6 Conclusions . 49

3 Methodology 50

3.1 Introduction . 51

3.2 Characterization methodology . 52

3.2.1 Video complexity characterization 53

3.2.2 Operating-system level characterization 54

3.2.3 Video-frame level characterization 56

3.2.4 Video sequence level characterization 56

3.3 Modeling methodology . 57

3.3.1 Video rate Sub-model . 58

3.3.2 Power sub-model . 59

3.3.3 Decoding-time sub-model . 59

3.3.4 Models validation . 60

viii

3.4 Experimental methodology . 60

3.4.1 Hardware setup . 61

3.4.1.1 MistralEVM3530 . 61

3.4.1.2 PandaBoard . 62

3.4.2 Power consumption measurement 62

3.4.2.1 Open-PEOPLE platform 62

3.4.2.2 Power consumption measurement methodology 65

3.4.2.3 Boards instrumentation 66

Mistral OMAP3530EVM 66

PandaBoard . 67

3.4.3 Software setup . 67

3.4.3.1 Video encoder . 67

3.4.3.2 Operating system . 68

Dynamic power management 69

Frequency scaling . 69

3.4.3.3 Video decoder framework 70

Elimination of the I/O interference 71

Overhead calculation . 72

3.5 Conclusion . 73

4 Performance and Energy Consumption Characterization 74

4.1 Introduction . 75

4.2 Video complexity characterization . 75

4.3 Video decoding performance and energy characterization 76

4.3.1 Operating-system level . 77

4.3.1.1 ARM processor . 78

4.3.1.2 DSP processor . 80

4.3.1.3 C-states transition overhead 80

Discussion . 82

4.3.2 Video-frame level . 83

4.3.2.1 Inter-processor communication time overhead 85

4.3.2.2 Inter-processor communication energy overhead 87

4.3.2.3 Discussion . 88

ix

4.3.3 Video-sequence level . 88

4.3.3.1 Decoding time . 88

4.3.3.2 Power consumption . 90

4.3.3.3 Energy consumption 92

4.3.3.4 Discussion . 92

4.4 Conclusion . 94

5 Performance and Energy Consumption Modeling of Video Decoding 96

5.1 Introduction . 97

5.2 Video rate sub-model . 98

5.2.1 Parameters discussion . 99

5.3 Power sub-model . 99

5.3.1 Static power sub-model . 100

5.3.2 Dynamic power sub-model . 100

5.3.2.1 ARM video decoding 100

5.3.2.2 DSP video decoding 100

5.3.2.3 Dynamic power modeling 102

5.3.3 Parameters discussion . 102

5.4 Decoding time sub-model . 103

5.4.1 Parameters discussion . 105

5.5 Energy model . 106

5.6 Models validation . 106

5.6.1 Models accuracy on OMAP3530 107

5.6.1.1 Decoding time model 107

5.6.1.2 Energy model . 108

5.6.2 Models generalization: OMAP4460 SoC case study 110

5.6.2.1 Decoding time model 110

5.6.2.2 Energy model . 111

5.7 Conclusion . 113

6 Applications and open issues 114

6.1 Introduction . 115

6.2 Energy-aware video decoding in adaptive streaming 115

6.2.1 Motivational example . 115

x

6.2.2 Energy aware scheduling of video decoding on heterogeneous

multi-core SoCs . 116

6.2.2.1 Principles . 117

6.2.2.2 Implementation . 117

6.2.2.3 Evaluation . 119

6.2.3 Video-quality aware DVFS . 120

6.2.3.1 Problem description 120

6.2.3.2 Proposed solution . 121

6.3 Energy efficiency of high definition video decoding 123

6.3.1 Motivation . 123

6.3.2 Experimental evaluation . 124

6.3.2.1 Hardware and software setup 124

6.3.2.2 Performance measurement 125

6.3.2.3 Energy consumption measurement 126

6.3.3 Experimental results . 126

6.3.3.1 Video decoding performances 126

6.3.3.2 Video decoding energy consumption 128

6.4 Discussion . 132

6.4.1 Per-core frequency scaling . 132

6.4.2 Processing migration on asymmetric multi-cores 133

6.5 Conclusion . 134

7 Conclusions and future works 135

Bibliography 153

xi

List of Figures

1.1 SoC consumer portable power consumption trends [1] 2

1.2 Evolution of mobile video traffic . 3

1.3 Energy consumption in a mobile device (Video playback) 4

1.4 Ubiquitous wireless video streaming to different mobile devices over di-

verse wireless access networks . 4

1.5 Evolution of possessor frequencies . 5

1.6 Heterogeneous cores in mobile SoC . 6

1.7 Energy efficiency vs processor type [2] 7

1.8 Energy modeling methodologies and levels 10

1.9 Thesis contributions . 12

2.1 Structure of a video sequence . 19

2.2 Principles of video encoding/decoding 20

2.3 Video decoding performance metrics 22

2.4 Frequency scaling in video decoding . 26

2.5 Just-in-time DVFS . 27

2.6 Workload averaging DVFS . 27

2.7 Energy model convexity . 28

2.8 Energy efficiency of parallel video decoding 29

2.9 GPP vs specialized processors energy efficiency 32

2.10 Video decoding complexity vs frame size (MPEG2 vs H.264/AVC) [3] . 41

2.11 Impact of memory latency on performance scaling [4] 44

3.1 Overview of the modeling methodology 51

3.2 Characterization and modeling methodology 55

3.3 Mistral EVM3530 Board (left) and PandaBoard ES (right) 62

3.4 A view on Open-PEOPLE rack . 63

xii

3.5 Open-PEOPLE platform architecture 64

3.6 Power consumption measurement using a shunt resistor 65

3.7 Sampling rate of the energy consumption measurement 66

3.8 PandaBoard-ES Instrumentation . 67

3.9 Used video test sequences . 68

3.10 GStreamer DSP video decoding plug-in 70

3.11 GStreamer GPP and DSP video decoding pipes 72

4.1 Characterization methodology . 75

4.2 Mapping between the video qpavg and the bit-rates 76

4.3 Cortex A8 power consumption . 78

4.4 Power consumption of standby mode 79

4.5 TMS320C64x DSP power consumption 79

4.6 ARM idle mode transition latency . 80

4.7 ARM standby mode transition latency 81

4.8 DSP standby mode transition latency 81

4.9 OMAP3530 power consumption . 82

4.10 ARM and DSP video frames decoding 84

4.11 Profiling result of ARM and DSP video decoding 86

4.12 ARM and DSP video decoding performance 89

4.13 ARM and DSP video decoding power consumption 91

4.14 ARM and DSP video decoding energy consumption 93

5.1 Modeling methodology . 97

5.2 Rate model fitting . 99

5.3 OMAP3530 static power . 100

5.4 ARM and DSP video decoding time in terms of f and qp 103

5.5 Performance scaling behavior . 106

5.6 Measured vs predicted video decoding time (OMAP3530) 108

5.7 Measured vs predicted video decoding energy consumption (OMAP3530) 109

5.8 Difference between ARM and DSP energy consumption (OMAP3530) . 109

5.9 Multi-linear regression of the video decoding time (OMAP4460) 110

5.10 Measured vs predicted video decoding time (OMAP4460) 111

5.11 Cortex A9 power consumption model 112

xiii

5.12 Measured vs predicted video decoding energy consumption (OMAP4460) 112

6.1 Adaptive streaming . 116

6.2 Video-quality and energy aware video decoding on heterogeneous SoCs 117

6.3 Embedding video chunks in MP4 file 118

6.4 Dynamic processor switching solution design using GStreamer 119

6.5 Impact of dynamic processor switching on video decoding power con-

sumption . 120

6.6 Video-quality aware DVFS . 120

6.7 Performance and energy consumption models building 122

6.8 i.MX6 SoC power domains . 125

6.9 Performance of HD video decoding (i.MX6) 127

6.10 Processor usage of HD video decoding 127

6.11 Energy consumption of HD video decoding (i.MX6 SoC) 128

6.12 VPU HD Video decoding power consumption 129

6.13 Parallel multi-core HD video decoding energy consumption 130

6.14 Power consumption of little and big core in Exynos 5422 SoC 133

xiv

List of Tables

2.1 Video frame complexities . 26

2.2 Summary of studies on performance and energy characterization of video

decoding . 39

2.3 Summary of studies on performance and energy modeling of video decoding 48

3.1 Mobile devices using OMAP SoCs . 61

3.2 Power measurement materiel . 63

3.3 Hardware and software setup summary 71

4.1 Mapping between qp and the bit-rate 77

4.2 Summary of OMAP3530 measured power consumption 82

4.3 ARM and DSP decoding time overhead 85

4.4 Results of video decoding profiling . 86

4.5 ARM and DSP decoding energy overhead 87

4.6 Energy efficiency vs Processor type vs video quality 94

5.1 Model fitting results of the bit-rate model 98

5.2 Model fitting results of the dynamic power model 101

5.3 Multi-linear regression of 1/t in terms of f and qp 104

5.4 Summary of the model constant parameters 107

5.5 Performance model R2 . 108

5.6 Energy model R2 . 108

6.1 HD video decoding performances (fps) (i.MX6) 126

6.2 HD video decoding energy consumption (mJ/Frame) (i.MX6) 128

xv

List of Abbreviations & Notations

Abbreviations

ARM Advanced RISC Machines

ASIC Application Specific Integrated Circuit

CBR Constant Bit Rate

CISC Complex Instruction Set Computing

CMOS Complementary Metal-Oxide Semiconductor

DASH Dynamic Adaptive Streaming over HTTP

DCT Discrete cosine transform

DMA Direct Memory Access

DMR Deadline Miss Rate

DPM Dynamic Power Management

DSP Digital Signal Processor

DVFS Dynamic Voltage and Frequency Scaling

EOS Embedded Operating System

ES Embedded System

FPS Frames Per Second

GPP General Purpose Processor

GPU Graphical Processing unit

HD High Definition

HEVC High Efficiency Video Coding

IDCT Inverse Discrete cosine transform

IPC Inter Process Communication

IPTV Internet Protocol television

MB Macroblock

MPEG Moving Picture Experts Group

xvi

OMAP Open Multimedia Applications Platform

OS Operating System

PSNR Peak Signal-to-Noise Ratio

QoS Quality of Service

qp Quantization parameter

RISC Reduced Instruction Set Computing

SD Standard Definition

SIMD Single Instruction Multiple Data

SoC System on Chip

VBR Variable Bit Rate

VPU Video Processing Unit

WFI Wait For Interrupt

Notations

a Rate model exponent

Ceff Effective capacitance

Edyn Dynamic energy

Estatic Static energy

E,Etot Total energy (static + dynamic)

E(. . .) Energy model

farm Frequency of the ARM processor

fdsp Frequency of the DSP processor

f Processor frequency

I Current intensity

Pdyn Dynamic power

Pidle Idle state power

Pstatic Static power

P, Ptot Total power (static + dynamic)

P (. . .) Power model

qmin Minimum step-size

qpavg Average quantization parameter

qp Quantization parameter

q Step-size

xvii

Q(. . .) Rate model

Rdisplay Video display rate

rmax Maximum bit-rate

Rshunt Shunt resistor

r Bite-rate

t Time

T (. . .) Time model

V, vdd Voltage

Vshunt Voltage across a shunt resistor

xviii

List of publications

Journals

• Y. Benmoussa, J. Boukhobza, E. Senn, Y. Hadjadj-Aoul, D. Benazzouz. A

Methodology for Performance/Energy Consumption Characterization and Mod-

eling of Video Decoding on Heterogeneous SoC and its Applications. Journal of

Systems Architecture. Volume 61, issue 1. January 2015.

• Y. Benmoussa, J. Boukhobza, E. Senn, D. Benazzouz. On the Energy Effi-

ciency of Parallel Multi-core vs Hardware Accelerated HD Video Decoding. ACM

SIGBED Review, Volume 11 Issue 4 (Special issue on Ewili’14 Workshop). De-

cember 2014.

• Y. Benmoussa, J. Boukhobza, E. Senn, D. Benazzouz, Y. Hadjadj-Aoul. DyPS

: Dynamic Processor Switching for Energy-Aware Video Decoding on Multi-core

SoCs. ACM SIGBED Review, Volume 11 Issue 1 (Special issue on Ewili’13

Workshop). February 2014.

International conferences

• Y. Benmoussa, E. Senn, J. Boukhobza, Michael Lanoe, D. Benazzouz. Open-

PEOPLE, A Collaborative Platform for Remote & Accurate Measurement And

Evaluation of Embedded Systems Power Consumption. MASCOTS : IEEE 22th

International Symposium On Modeling, Analysis and Simulation of Computer

and Telecommunication Systems. Paris, France. September 2014.

• Y. Benmoussa, J. Boukhobza, E. Senn, D. Benazzouz. DSP vs GPP : A Perfor-

mance/Energy Characterization and Evaluation of Video Decoding. MASCOTS

: IEEE 21st International Symposium On Modeling, Analysis and Simulation of

Computer and Telecommunication Systems. San Fransisco, USA. August 2013.

xix

• Y. Benmoussa, J. Boukhobza, E. Senn, D. Benazzouz. Energy Consumption

Modeling of H.264/AVC Video Decoding for GPP and DSP. 16th Euromicro

Conference on Digital System Design. Santander, Spain. . September 2013.

National conferences

• Y. Benmoussa, J. Boukhobza, E. Senn, D. Benazzouz. Evaluation of the Perfor-

mance/Energy Overhead in DSP Video Decoding and its Implications. Colloque

du GDR SoC SiP. Lyon, France. June 2013.

• Y. Benmoussa, J. Boukhobza, L. Lagadec, D. Benazzouz, Y. Hadjadj-Aoul. Be-

havioral System Level Power Consumption Modeling of Mobile Video Streaming

Applications. Colloque du GDR SoC SiP. Paris, France. June 2012.

xx

CHAPTER 1

Introduction

Contents

1.1 Context . 2

1.1.1 Increase in mobile devices power consumption 2

1.1.2 New trends in mobile video applications usage : Implications

on power consumption . 3

1.1.3 Complex multimedia mobile devices 5

1.2 Problem statement : Energy consumption modeling of

processor-based video systems 8

1.2.1 Low level modeling . 9

1.2.2 High level modeling . 10

1.3 Thesis scope and approach 10

1.4 Thesis contributions . 11

1.4.1 Experimental methodology 11

1.4.2 Energy characterization methodology 12

1.4.3 Energy modeling methodology 13

1.4.4 Applications . 14

1.5 Outline . 14

1

This thesis addresses the important issue of the energy consumption of video decod-

ing on low power mobile System on Chip (SoC). It aims to enhance the understanding

of the energy saving consideration and implications of video decoding on modern SoC

equipping mobile devices.

In this chapter, we present the context which has motivated us to address this issue.

Then, we define the scope we are targeting and the position of our work compared to

other studies. Finally, we point out various important results obtained in this thesis.

1.1 Context

1.1.1 Increase in mobile devices power consumption

Mobile devices such as smart-phones and tablets are more and more used in everyday

life. One of the most important issue faced by the hardware and software designers of

these mobile devices is the drastic increase of their energy consumption.

In fact, the increase in mobile applications usage combined with the explosion of the

power consumption of the hardware make the energy consumption issue very critical.

As illustrated in Fig. 1.1, the International Technology Road-map for Semiconductors

(ITRS) forecasts that the power consumption of the SoC equipping mobile devices will

increase with a factor of 2.5 during the next decade [1]. In a context where lithium

battery technologies are not evolving fast enough to absorb the ever-growing energy

requirements of such mobile architectures [7], the autonomy of the mobile devices may

be drastically impacted.

2010 2012 1014 2016 2018 2020 2022 2024

9

8

7

6

5

4

3

2

1

Logic dynamic power

Memory dynamic power

Logic static power

Memory static power

Power (w)

Figure 1.1: SoC consumer portable power consumption trends [1]

2

18

9

Exabytes/Month

Mobile File Sharing (2.9 %)

Mobile M2M (5.7 %)

Mobile Web/Data (11.7 %)

Mobile Audio (10.6 %)

Mobile Video (69.1 %)

2013 2014 2015 2016 2017 2018

Figure 1.2: Evolution of mobile video traffic

1.1.2 New trends in mobile video applications usage : Implications on

power consumption

The following section presents the new trends in mobile video application usage and

their relation with the energy consumption issue.

1.1.2.1 Increase in mobile video traffic

One of the most popular applications running on mobile devices is video playback. This

is due to the growing use of video-sharing platforms (e.g. YouTube, Netflix, Dailymo-

tion), social networks (e.g. Facebook, Twitter), mobile IPTV and video-conferencing.

As illustrated in Fig. 1.2, it is expected that the video data will represent 70% of the

overall Internet mobile traffic in the next few years [8]. Moreover, according to a recent

study [9] achieved on 200 millions of mobile users, the average video watching time is

52 minutes per day.

This new trend in using video content further accentuates the energy consump-

tion issue. In fact, modern video codecs use more and more complex and aggressive

compression algorithms to fit the ever growing demand on video. While they allow to

achieve high compression ratios, they increase the demand on processing resources and

thus on the energy consumption at the decoder side. For example, according to [10, 11],

the processing resources are responsible of more than 60% of the power consumption

during the video playback of a H.264/AVC video as shown in Fig. 1.3.

3

0

50

100

150

200

250

300

350

400

B
a
ck
lig
h
t

G
S
M

C
P
U

R
A
M

L
C
D

R
e
st

P
o
w
e
r
(m
W
)

0%
33%
67%
100%

G
P
U

Figure 1.3: Energy consumption in a mobile device (Video playback)

1.1.2.2 Ubiquitous video applications

The increase in mobile traffic highlighted in the previous section is boosted by the

ubiquitous video applications. These applications are executed in a heterogeneous en-

vironment. As illustrated in Fig. 1.4, the video content may be accessed from various

mobile devices with different processing and displaying video capabilities. Moreover,

the network technologies for transporting the video content may have different band-

width capacities which range from tens of Kbits to tens of Mbits per second.

To cope with these different capabilities of the mobile devices, the most important

video content providers (ex. Youtube and Netflix) support the dynamic quality adap-

Figure 1.4: Ubiquitous wireless video streaming to different mobile devices over diverse

wireless access networks

4

1985 1990 1995 2000 2005 2010 1015

3162

1000

316

100

32

10

Frequency (MHz)

Figure 1.5: Evolution of possessor frequencies

tation of video decoding [12], a technique allowing the video decoder to adjust the video

quality at run time. The video quality is no longer a fixed parameter defined statically

by the video content provider. It is up to the video decoder to select it depending on

its capabilities.

In addition to network bandwidth and displaying capabilities of the mobile device,

the energy budget constraint start to be considered as one of the criteria determining

the video quality to retrieve from the network [13]. For example, the video decoder

may consider the remaining energy budget (battery level) when selecting the video

playback quality to increase its autonomy. Switching to a lower video quality playback

may allow thus to extend the autonomy.

1.1.3 Complex multimedia mobile devices

The above discussed new trends of mobile users make the mobile device manufacturers

competing for providing products designed toward multimedia applications and energy

efficiency. In fact, multimedia capabilities available on modern mobile devices are

close to those of personal computers while consuming much less energy. To make this

possible, modern smart-phones and tablets integrates sophisticated embedded systems

(ES). These ES includes multi-cores and heterogeneous processing resources running

complex embedded operating systems (EOS).

5

Figure 1.6: Heterogeneous cores in mobile SoC

1.1.3.1 Multi-core and heterogeneous processing

The processing capabilities of embedded processors equipping mobile devices have been

growing considerably. The clock frequency of current mobile processors exceeds 1 GHz

in almost all standard mobile devices. However, the performance of microprocessors

tends to stall due to power and frequency wall limitation [14], it is no longer possible to

continuously increase processor frequencies. This can be illustrated in Fig. 1.5 showing

the processor frequency stall starting from the beginning of last decade [14]1.

To continue to scale performance without drastic power dissipation, manufacturers

began to include more processor cores within a System on Chip (SoC). These cores may

be general purpose processors (GPP) or specialized processing units. Figure 1.6 shows

the components of a typical SoC equipping a modern mobile device. It includes multiple

GPP cores in addition to Digital Signal Processor (DSP), a Graphical Processing Unit

(GPU) and Application Specific Integrated Circuit (ASIC).

In general, the more a processor is specialized, the more it is energy efficient. Indeed,

the use of parallelism in these processors in addition to optimized execution flows

increase their performance without requiring higher voltages and frequencies [15]. This

makes them an energy-efficient choice in energy constrained devices [16, 17]. This is

illustrated in Fig. 1.7, showing the energy consumption (Million of OPeration per

1The data are extracted from the CPUDB project (http://cpudb.stanford.edu) maintaining a

database of hundreds of processor characteristics. The project is mainly focusing on CISC processors;

however, the trends are the same for RISC processors equipping mobile devices

6

Figure 1.7: Energy efficiency vs processor type [2]

Second / mW) of different type of processors including CPU (GPP), GPU, DSP and

dedicated circuits (ASIC).

Video decoding application can be implemented on GPP, DSP, GPU, or hardware

accelerated video codecs. Each of these processing resources has advantages an draw-

backs. For example, hardware video codecs are very energy-efficient [2], however they

are not flexible and require a long time to market for new video standards chips design.

On the other hand, GPP are not energy efficient while they are easy to program. GPU

and DSP provide a balance between energy efficiency and flexibility.

Thus, within a single hardware platform, several heterogeneous processing config-

uration choices are available including GPP, DSP and ASIC. Each of these elements

has different processing capabilities and energy consumption levels.

1.1.3.2 Sophisticated embedded operating systems

The increasing complexity of mobile device architectures imposes the use of sophisti-

cated embedded operating systems (EOS) comparable in complexity and functionality

to desktop or server ones. In fact, they provide an abstraction mechanism for sharing

and managing hardware resources such as processors, storage, multimedia devices and

implement almost all standard OS functionalities such as process scheduling, memory

management and Input/Output (I/O) support. This central role of the OS in manag-

ing mobile devices makes it a very important component to consider when analyzing

the energy consumption properties.

From the power consumption viewpoint, the OS is both a source of energy con-

7

sumption and an energy saving enabler. Indeed, like all the applications running on

a mobile device, OS tasks use some part of processing resources and thus contribute

in consuming the energy budget [18]. On the other hand, the OS is the component

which has the best knowledge of hardware resources utilization which makes it ideal

for implementing energy saving policies.

For example, in case of a video application, the OS may be highly involved in the

video decoding process to manage the I/O with external video specialized processor

(hardware video codec or DSP) or to schedule the decoding over multiple processor

cores. These tasks are sources of additional energy consumption. On the other hand,

the OS is able to save energy by idling the processors or lowering its frequency during

low activity periods in the video decoding process.

1.2 Problem statement : Energy consumption modeling of
processor-based video systems

In general, an energy model allows understanding and predicting the energy consump-

tion in terms of well identified factors or parameters. Understanding how much a

given parameter impacts the energy consumption can help in tuning it to reduce the

consumed energy. This is especially true when the effects of interactions between the

different parameters are understood. On the other hand, the prediction of the amount

of consumed energy is extremely useful to dimension the energy budget and estimate

the autonomy.

As highlighted previously, the processing resources are a major source of energy

consumption in the context of video decoding applications. However, in case of com-

plex processor-based system, well understanding the energy consumption properties

should consider in addition to the processing resources, the executed operating system

and applications. For example, the above sections show that the energy consumption

considerations of video applications are present across different mobile device compo-

nents.

Ideally, an energy model for the above described systems should consider all the

relevant parameters and should estimate accordingly the consumed energy accurately.

However, in practice, this is hard to achieve for complex systems and these objectives

may be fulfilled partially. Actually, realistic energy consumption models for complex

system can consider only a subset of parameters. On the other hand, they may induce

8

some errors in their predictions as compared to real energy consumption values. The

questions which can raise is how to select the most relevant parameters and how to

make the developed model as accurate as possible?

Answering these questions depend mainly on the considered abstraction level of the

targeted system. As we will discuss hereafter, there exist two main approaches: 1) Low

level modeling and 2) High level modeling.

1.2.1 Low level modeling

The energy models at the lower levels (ex. Register Transfer Level (RTL), cycle,

Instruction) can provide very accurate estimation because they are able to represent low

level details such as fabrication technology, pipelining, parallelism or memory hierarchy.

At these levels, the energy modeling is achieved at hardware design phase to allow

hardware architects to explore the energy efficiency of processor architectures early by

testing the impact of different hardware configurations. For this purpose, simulation

tools are usually used to estimate the energy consumption of these complex systems

including hardware and software.

These simulation tools are very flexible and allow representing a wide range of

configuration and parameters at different levels of details. As illustrated in Fig. 1.8,

the lower are the represented architecture details, the higher is the accuracy of energy

modeling. In general, they are based on architecture simulators which feed low level and

fine grained analytical power models with timing information to estimate the overall

consumed energy [19].

To model application and/or operating system level parameters on these simulation

frameworks, one should execute them on the simulators and estimate accordingly the

consumed energy.

The drawback of energy simulators is that they are hard to build and require a very

deep knowledge of the targeted microprocessors micro-architecture. Moreover, they are

far from representing a complete modern low power SoC. For example, for estimating

the energy consumption of video application, there is no energy simulation framework

supporting a complete heterogeneous SoC including a GPP, DSP, GPU and hardware

video codec.

9

Figure 1.8: Energy modeling methodologies and levels

1.2.2 High level modeling

Models at a higher levels do not rely on detailed microarchitectural knowledge of a

particular processor. They may consider the targeted processors as a black-box which

sacrifices some accuracy in order to avoid relying on detailed knowledge of the hardware

implementation [20].

Since these models do not consider low level details, they may be built rapidly

upon real platforms based on coarse grained experimental measurements. This lets the

model developer focuses on high level parameters related to the executed applications

and/or operating system.

For example, modeling the impact of scaling the processor frequency on the en-

ergy consumption of video decoding may be easily derived from energy measurement

data achieved on a real platform. However, the use of energy simulator to estimate

the impact of frequency scaling is not straightforward and may need a considerable

integration effort [21].

The drawback of high level models is that they are decoupled from low level details

which limits their generality and portability. In fact, an energy model built for a given

hardware is difficult to be generalized to other platforms because there is not explicit

mapping between the developed model and low level parameters.

1.3 Thesis scope and approach

In this thesis, we aim to model the energy consumption of video decoding executed

on complex embedded systems including embedded operating systems and heteroge-

10

neous processing elements. Accordingly, we propose a high level modeling approach

considering a set of parameters at application and operating system and architecture

levels.

At architecture level, we study the impact on the energy consumption of differ-

ent processing configuration available on heterogeneous SoC. We particularly focus on

modeling the energy consumption of video decoding on two widely used microproces-

sor architectures on mobile SoC : GPP (ARM) and DSP. We explore also the energy

efficiency of video decoding using parallel core and hardware accelerated codecs. At

operating system level, we focus on studying the impact on the energy efficiency of

the processor clock frequency and the inter-processor communication mechanism im-

plemented by the OS for scheduling video decoding task on heterogeneous processors.

At application level, we consider the impact of the video quality (bit-rate and reso-

lution) and the scene complexity on the energy consumption of video decoding. The

considered video codec is H.264/AVC, a widely used compression video standard.

To model the energy consumption at the considered levels, we chose to use a high

level methodology based on extensive experimental power measurement achieved on

real embedded platforms. This is motivated by our desire to build fast energy model

which represents very accurately real life scenarios.

As discussed previously, high level models may be hard to be generalized to other

architecture since they do not consider low level details. However, we believe that one

can find the middle ground and achieve a balance between the advantages of high level

approaches and simulation based ones. In our opinion, we could make the experimental

based energy models more portable using a deep characterization methodology at all the

considered levels to map the developed model with comprehensive relevant parameters.

1.4 Thesis contributions

Figure 1.9 illustrates the main steps executed in this thesis. The different proposed

contributions we will list below are represented by the dashed-rectangles.

1.4.1 Experimental methodology

An experimental methodology for energy consumption measurement of embedded sys-

tems was implemented. Open-PEOPLE (Open-Power and Energy Optimization PLat-

form and Estimator), a high accuracy power measurement platform, was used to mea-

11

Figure 1.9: Thesis contributions

sure the energy consumption of a set of embedded boards containing SoC similar to

those used in mobile devices.

The advantage of the proposed experimental methodology is that it uses a common

framework (measurement tools + embedded operating system + video decoder) for

evaluating the performance and the energy consumption of video decoding. This allows

accurate energy evaluation and objective comparison between the different targeted

architectures including GPP, DSP, multi-cores and hardware codecs. This contribution

is published in [22, 23].

1.4.2 Energy characterization methodology

A performance and energy characterization of video decoding was achieved based on an

extensive experimental measurement methodology. In these experimentations , single

core and multi-core ARM processors, DSP and hardware video codecs architectures

were considered. On these different processor architectures, the processor frequency

and video quality (Standard Definition (SD) and High Definition (HD) quality) pa-

rameters were considered.

12

An extensive characterization achieved on GPP and DSP processors for decoding

SD video quality revealed that the performance-energy trade-off highly depends on the

decoded video quality and the type of processor architecture. It was highlighted that

the scheduling overhead over heterogeneous processor impacts the energy efficiency of

video decoding when achieved on external specialized processor. Thus, depending on

the video quality, it may be more energy efficient to decode a video on a GPP rather

than a DSP. This contribution is published in [22, 5].

On the other hand, a performance and an energy characterization of HD video

decoding on various processing configuration including of mono-core, multi-core GPP

and hardware codec was achieved. It was shown that parallel HD video decoding on

multi-core processors reduces considerably the gap between the energy consumption

of hardware accelerated decoder and software-based ones. It is thus an interesting

solution achieving a balance between the software flexibility and hardware codec energy

efficiency. This contribution is published in [24].

1.4.3 Energy modeling methodology

Based on the results of the performance and the energy characterization of video de-

coding on GPP (ARM) and DSP, it was proposed:

• A performance analytical model for video decoding which considers both clock

frequency and video quality parameters. This model describes also the impact of

the off-chip memory access latency on performance variation of video decoding

when varying the processor clock frequency. This contribution is published in

[25]

• An energy consumption model for video decoding which estimates analytically the

consumed energy as a function of the processor clock frequency, the video bit-rate

and a set of comprehensive architecture, system and video related parameters.

The developed model has a very good energy consumption prediction properties

(R2 = 97%) for the two type of processors. This contribution is published in [25]

• A methodology to generalize and port the proposed energy model to other ARM

processor architectures. This contribution is published in [26].

13

1.4.4 Applications

Based on the conclusions emerged from the characterization and the modeling method-

ologies, a set of applications are proposed:

• A set of guidelines for online performance and energy models building method-

ology where the model parameters calculation roles are identified within a video

systems including the video encoder, the video decoder and the execution plat-

form. We explain how to use such a model to build a proactive DVFS algorithm

for energy aware adaptive video decoding in a context of adaptive video decoding.

This contribution is published in [26].

• An energy-aware video decoding scheduling technique on heterogeneous SoC

which was implemented on top of a video decoder. This scheduling technique

consists in selecting the best energy-efficient processor in the context of video

quality adaptive video decoding. This contribution is published in [27].

1.5 Outline

This thesis report is organized as follows:

Chapter 2, presents an overview of the most important state-of-the-art works study-

ing the impact of the processor architectures on energy efficiency of video decoding.

Then, the most common approaches and tools for high level energy modeling and

estimation of video decoding are presented.

Chapter 3, is dedicated to explain the used methodology. It contains details about

the characterization, the modeling steps in addition to a description of the experimental

hardware/software setups used to achieve the experiments.

Chapter 4 contains the detailed description of the measured results of the per-

formance and energy consumption characterization methodology of video decoding ac-

cording to the execution of the above methodology. Conclusion on the energy efficiency

of video decoding on GPP/DSP architecture can be found also in this section.

In chapter 5, the previous characterization results are used to build a performance

and energy models for video decoding. This chapter includes also a model validation

and generalization discussions.

Chapter 6 proposes some applications of the results emerged from the characteri-

zation and the modeling phases and discusses some open issues related to parallel and

14

hardware accelerated High Definition video decoding.

Chapter 7 draws the conclusions on this study and leaves space for discussion on

some future works.

15

CHAPTER 2

Background and related works

Contents

2.1 Introduction . 18

2.2 Background . 18

2.2.1 Concepts on video encoding and decoding 18

2.2.2 Energy consumption in electronic circuits 23

2.2.3 Discussion . 25

2.3 Principles of energy saving in video decoding 25

2.3.1 Frequency scaling: Performance vs energy consumption . . . 27

2.3.2 Parallel multi-core video decoding 29

2.3.3 Specialized processing . 30

2.3.4 Discussion . 33

2.4 Performances and energy consumption characterization

of video decoding . 34

2.4.1 Video decoding performances characterization 34

2.4.2 Video decoding energy consumption characterization 36

2.4.3 Discussion . 38

2.5 Performances and energy consumption modeling of video

decoding . 40

2.5.1 Video decoding performances modeling 40

2.5.2 Video decoding energy consumption modeling 45

16

2.5.3 Discussion . 47

2.6 Conclusions . 49

17

2.1 Introduction

This chapter is divided into three parts: first, a background on video decoding and basic

concepts on energy consumption are presented. Then, some principles and techniques

for saving energy of video decoding are introduced. Finally, the most important studies

related to performance and energy characterization and modeling of video decoding are

described.

2.2 Background

2.2.1 Concepts on video encoding and decoding

In this section, we describe the principles of video codecs and show how they allow

reducing video data size at a cost of a drop in the video quality. Then, we discuss some

metrics for evaluating the video quality as well as the quality of service (QoS) of the

video playback. Then we introduce from a high level point of view some principles of

saving the energy consumption of video decoding. We will show that it is usually a

question of balancing the energy efficiency with the video QoS.

2.2.1.1 Principles of MPEG standards

MPEG Video coding standards are a set of techniques for compressing video data to

ease their transportation and storage. All of these standards (MPEG2, H.264/AVC,

HEVC) make use of temporal (inter-frame) and spatial (intra-frame) redundancy to

compress video data. Hereafter, we describe a general concepts shared by all MPEG

video standards.

An MPEG video sequence is composed of a set of frames (see Fig. 2.1). Each

frame may contain several slices and each slice contains several macroblocks (MB =

16 x 16 pixels). There exists three main types of slices: I, P, and B. In a I slice, the

MB are predicted based on other intra-frame MB (intra-prediction). An I slice is thus

independent from the slices in other frames. In a P-slice, the MB are predicted based

on an intra-frame MB or an inter-frame MB in a past frame. Finally, B-slices use

bidirectional inter-prediction where a MB may be predicted based on another MB in

a previous or future frame.

As illustrated in Fig. 2.2, while encoding a video, the first step is the prediction

phase which aims to find a correlation between the MB to be encoded (current MB)

18

Figure 2.1: Structure of a video sequence

and a reference MB. As explained before, the reference MB may be in the same frame

(intra-prediction) or in a past or future frame (inter-prediction). The operation of

searching the reference MB (the ”best matched” MB) is called motion estimation. The

coordinates of the reference MB are stored in a motion vector (MV). The data obtained

from subtracting the current MB from the reference MB is called a residual MB. The

MV and the residual MB allows reconstructing the current MB. Matrix (a) in Fig. 2.2

is an example of (8x8) block extracted from of a residual MB.

In the second step, the residual MB are then transformed into another domain in

which they are represented by transform coefficients. After the transformation, the

data should be decorrelated and separated into compact group of data with minimal

interdependence where most of the information should be concentrated into a small

number of values. The transform operation can be achieved, for example, using Discrete

Cosine Transform (DCT) or Wavelet transform.

The coefficients obtained from the transform operation (see matrix (b)) are quan-

tized to remove insignificant values, leaving a small number of significant coefficients

that provide a more compact representation of the residual data. The quantization

reduces the precision of the transform coefficients according to a quantization parame-

ter (qp). For example, the original coefficient values in matrix (b) are divided by a qp

in the matrix (c) and rounded to the nearest integer. Typically, the result is a block

in which most or all of the coefficients are zero (see matrix (d)), with a few non-zero

coefficients. Setting qp to a high value means that more coefficients are set to zero,

19

Figure 2.2: Principles of video encoding/decoding

resulting in high compression at the expense of poor decoded image quality. Setting

qp to a low value means that more non-zero coefficients remain after quantization,

resulting in better image quality at the decoder but also in lower compression.

All the obtained data from these steps (transform coefficient, MV, qp) are then

compressed using an entropy encoder. This operation is reversible and no data is lost.

At this step, the compressed data are ready to be sent to the decoder.

At the video decoder, firstly, the entropy decoding is executed to extract the MV,

the residual data and the qp. The inverse quantization is then executed to obtain the

transform coefficients. Notice that, only the coefficients concentrating the most relevant

information are rescaled. The information associated to the null coefficient are thus lost

(see matrix (e)). Consequently, the inverse transform based on the rescaled coefficient

is not identical to the original video date (compare matrix (a) and (f)).

20

2.2.1.2 Video quality assessment metrics

The video encoding/decoding is a lossely process inducing a drop in the video visual

quality. In general, the higher is the compression ratio, the lower is the obtained video

quality. As explained in the previous section, the quality of the encoded video can

be selected by tuning the quantization parameters. The higher is the value of qp, the

lower is the video quality and vice versa.

In the case of a constant bit rate encoding mode1 (CBR), the video bit-rate may

provide indication on the video quality. For example, a video encoded at a 1024 Kb/s

has a higher quality than one encoded at 512 Kb/s. In fact, the lower is the bit-rate

constraint, the more aggressive is the quantization phase which results in a higher

quality drop.

There exists other metrics which provide more accurate estimation of the video

quality. For example, PSNR (Peak Signal to Noise Ratio) [28] is used to measure the

quality of reconstruction of lossy compression codecs. The signal in this case is the

original data, and the noise is the error introduced by compression. When comparing

compression codecs, PSNR is an approximation to human perception of reconstruction

quality.

2.2.1.3 Video playback QoS assessment metrics

In addition to the drop in video quality related to data loss in video encoding algorithm,

the visual perception of the video content may be impacted by factors related to the

quality of service (QoS) of the video playback process [29].

Figure 2.3 illustrates a typical video playback process. First, the video frames are

retrieved from a source (network, file system, etc). Then, the video frames may be

buffered in an input buffer to decouple the video decoding process from the fluctuation

in the network bandwidth or the I/O system. The video decoder processes each frame

and transmits it to the displaying process. The decoding time may vary considerably

from a frame to another while the displaying process should display the decoded frames

at a constant speed corresponding to the video sequence displaying rate Rdisplay. To

decouple the constant displaying speed from the fluctuation in the decoding time, an

output buffer may be used between the decoder and the displaying device.

1Constant bit rate encoding means that the rate at which the encoder output data should be

produced is constant

21

Figure 2.3: Video decoding performance metrics

Hereafter, we present some metrics for evaluating the QoS of the above described

video decoding process.

Deadline miss rate (DMR)

Video decoding is a soft real time application. During the decoding process, each frame

should be displayed before a deadline, otherwise, a deadline miss occurs. The higher

is the deadline miss rate (DMR), the lower is the perceived quality by the end-user.

The DMR is an important parameter to be considered to assess the quality of

the video playback quality. It may occur due to insufficient processing resources for

decoding the video frames or to insufficient network resources in case the video content

is retrieved from the network.

Decoded frames per second (FPS)

The average number of decoded frames per second (FPS) is another metric for evalu-

ating the quality of video playback. A FPS higher or equal than the displaying rate is

a necessary condition (but not sufficient) to avoid the deadline miss.

If the FPS is at least equal to Rdisplay, a video decoding with zero DMR can be

guaranteed if an output buffer may be inserted between the decoder and the displaying

process to decouple variations in the decoding time from the constant displaying rate

to avoid deadline miss [30].

Latency

The use of buffers in the decoding process increases the video quality playback, however

it may induce an additional latency which represents the difference between the frame

22

availability time and the frame displaying time. A long latency (few seconds) may be

allowed in case of non -live video (Youtube, movie playback, etc). On the other hand,

the latency should be kept as minimal as possible in case of live application such as

video conferencing.

2.2.2 Energy consumption in electronic circuits

We introduce in this section some background on the energy consumption of video de-

coding. We start by describing the different source of power consumption in electronic

circuits. Then we explain the performance-energy trade-off in video decoding using

dynamic frequency scaling and point out the impact of the processor architecture on

the performance energy efficiency of video decoding.

2.2.2.1 Static vs dynamic energy consumption

The energy consumption (in Joule) of an electronic CMOS circuit is the amount of the

power P consumed during a time t.

E = P.t (2.1)

P , the total power consumption (in Watt), is the sum of the static power Pstatic and

dynamic power Pdyn given by Eq. 2.2 and 2.3 respectively :

Pstatic = Lg(VddIsub + |Vbs|Ij + VddIg),

Isub = K3e
K4Vdde

K5Vbs,

Ig = K6e
K7Vdd

(2.2)

Isub is the sub-threshold current, Vdd is the supply voltage and Lg , Vbs , Ij , K3 , K4

, K5 , K6 and K7 are constants which depend on the circuit fabrication technology [31].

Pdyn = Ceff .V
2.f (2.3)

f is the clock frequency and Ceff is the circuit effective capacitance [32].

The static power does not depend on the executed program. It relies on the cir-

cuit fabrication technology and area. Below 65-nm circuits feature size, it becomes

significant and poses new low-power design challenges [33].

23

On the other hand, the dynamic power relies on Ceff = A.C, where C is the circuit

capacitance and A is the activity factor2. In a microprocessor, the Ceff parameter

represents the average capacitance of all the processor blocks (control unit, cache,

inter-connect) which depends on the type of instructions executed and on the data

accessed [34].

We introduce hereafter two system level techniques to save the dynamic and static

power consumption: dynamic voltage and frequency scaling (DVFS) and Dynamic

Power management (DPM) respectively.

2.2.2.2 Dynamic voltage and frequency scaling (DVFS)

DVFS is a technique which consists in adapting dynamically the frequency of the

processor according to the executed workload to save the dynamic energy. To each

frequency value corresponds a voltage level. The power state represented by voltage-

frequency pairs is called a P-state.

For the sake of simplicity, we consider that the processor frequency is proportional

to the voltage (i.e. V ∝ f) as assumed in [35, 36] then the dynamic energy is :

Edyn = K.f 3.t (2.4)

where K is a constant parameter . If the frequency is divided by 2, the execution time

may be doubled but the power consumption is divided by 8, which explains the energy

reduction. As we will discuss in next sections, DVFS strategies are based on a trade-off

between energy consumption and performance.

2.2.2.3 Dynamic Power management (DPM)

In contrast to P-states, which are execution power saving states (During a P-state, the

processor is still executing instructions), a processor can save more energy by disabling

almost all clocks or shutting down some blocks during inactivity periods. Such kind of

power states are called C-states. The technique consisting to use processor C-states to

save power is called Dynamic Power Management (DPM) [37].

2The activity factor is a constant parameter representing the average switching activity in the

circuit. Its values range from 0 to 1

24

2.2.3 Discussion

In the above sections, we have introduced some general principles of video encoding

and decoding and explained all the steps of these processes. Then, we have presented

some metrics for evaluating the perceived visual quality of the video. These quality

metrics may be related to the lossy nature of encoder/decoder application or to the

underlying video delivery and decoding system.

In the models developed in this thesis, we use the bit-rate (combined with the above

presented quantization parameters3) to express the video quality drop due to data loss.

The use of the bit-rate is motivated by the fact that it is easy to extract from a video

content4. This is useful for online estimation of the performance and/or the energy

of video decoding. In what follows, we use the terms ”video quality” and ”bit-rate”

interchangeably.

On the other hand, the average decoded FPS is used to express the capacity of the

underlying system for video decoding. As highlighted previously, the FPS allows to

evaluate if the necessary condition for decoding a video is met or not. In what follows,

we denote the FPS property as ”video decoding performance”. One can highlight

that video performance may be modeled at per-frame basis in case of low latency

applications. This may need a low level characterization of different decoding steps

presented previously. This is out of the scope of this work.

Finally, we have discussed the basis of the energy consumptions in electronic circuits

and introduced DVFS and DPM, two system level techniques for saving the static and

the dynamic energy.

The advantage of DPM is that it allows to save both the dynamic and static power

consumption. However, it may induce a non-negligible latency due to the entering/ex-

iting C-state modes (see section 4.3.1). Thus, in what follows, we will focus on the

impact on the frequency scaling (DVFS) on both the performance and the energy

consumption of video decoding.

2.3 Principles of energy saving in video decoding

We will discuss in this section the energy saving techniques of video decoding at both

system and architectural levels. We will show that, usually, energy saving of video

3See section 3.2.1 for more details.
4Bit-rate information is usually present in almost all video containers such as MP4 file format

25

Fi Ci(MC)

F1 12.5

F2 50

F3 37.5

F4 25

Table 2.1: Video frame

complexities

Figure 2.4: Frequency scaling in video decoding

decoding consists in achieving a balance between the video QoS (see section 2.2.1.3)

and the energy consumption.

To explain this, we consider an example where we suppose a video decoding ap-

plication executed by a processor supporting variable voltage and frequency scaling.

The frequency values belong to the interval]0, fmax] and are expressed as α.fref where

fref = 1GHz is considered as the frequency reference value and α a scaling factor.

A video sequence to be decoded is composed of four sequential and independent

frames Fi (1 ≤ i ≤ 4). Each frame Fi should be decoded before the deadline Di = i.D

where D = 1
25
s = 40ms is the period corresponding to 25 frames/s displaying rate. The

frame complexities Ci, listed in the Table 2.1, are expressed in terms of the required

number of processor mega-cycles (MC) to be decoded. We denote the total number of

cycles required to decode all the frames Ctotal =
∑4

i=1Ci.

The time to execute C processor cycles at α.fref frequency is assumed as follows5 :

Tα(C) =
C

α.fref
(2.5)

According to the Eq. 2.5 and the energy consumption model defined in Eq. 2.4, the

energy consumption of decoding C cycles using the frequency αfref is thus :

Edynα(C) = K.(α.fref)
2.C (2.6)

5Actually, the execution time does not scale linearly with the frequency due to the latency of the

off-chip memory access. Refer to section 2.3.1.3 for more details regarding this issue.

26

Figure 2.5: Just-in-time DVFS Figure 2.6: Workload averaging DVFS

We will use this simplified dynamic power model to explain the principle of energy

saving of video decoding using DVFS.

2.3.1 Frequency scaling: Performance vs energy consumption

According to the frame decoding complexities given in Table 2.1, and the Eq. 2.5, the

clock frequency allowing all the frames to be decoded before their deadline is f = 5
4
fref .

The energy consumption in this case is E = K.f 2.(5
4
)2(C1 +C2 +C3 +C4) ' 195K.f 2.

As illustrated in Fig. 2.4, running constantly at this clock frequency results in early

frame decoding (F1, F3 and F4) leading to slack times. These slack times may be used

to reduce the energy if the frequency is reduced using DVFS. We explain hereafter two

DVFS strategies to achieve this objective.

2.3.1.1 Frame-by-frame based DVFS

According to Eq. 2.5, if the frames F1, F2, F3 and F4 are decoded using the frequencies

12.5
40
fref , 50

40
fref , 37.5

40
fref and 25

40
fref , they will be ready to be displayed just before their

deadline as illustrated in Fig. 2.5. Lowering the frequency allows to decrease the total

energy to E = K.f 2
ref .Ctotal.((

12.5
40

)2C1 + (50
40

)2C2 + (37.5
40

)2C3 + (25
40

)2C4) ' 122K.f 2
ref .

This represents 38% energy saving as compared to running at constant frequency.

In order to use a frame-by-frame DVFS, the decoder needs to have a prior knowledge

of the video frame complexities. We will discuss the frame-based performance models

in section 2.5.1.1.

2.3.1.2 Average workload based DVFS

The averaging DVFS energy saving is based on the convexity of the E(f) model (see

E(f) graph in Fig. 2.7) and Jensen’s inequality [38]. In fact, applying this inequality

27

Figure 2.7: Energy model convexity

on a convex dynamic energy model results in :

Edyn(f) ≤ Edyn(f) (2.7)

This inequality means that the processing at the mean frequency is more energy efficient

than processing at small number of discrete processing rate levels [39].

To explain this approach, we consider in the previous example that the frequency

is set to the constant average frequency favg = 1
4
(12.5

40
fref + 50

40
fref+ 37.5

40
fref + 25

40
fref) =

25
32
fref .

The total energy consumption is Eaveraging = K.(25
32

)2f 2
ref (C1 + C2 + C3 + C4) =

76K.f 2
ref . As compared with the ”just in time” optimal policy (122K.fref .D), the av-

eraging DVFS allows more energy saving. However, as illustrated in Fig. 2.6, although

the four frame are decoded withing 4D time, the deadline of the frame F3 is missed.

This is explained by the fact that the frequency is set based on the average perfor-

mance, not at a frame-by-frame basis. The deadline miss can be avoided if a buffer is

inserted between the decoder and the displaying device but at a cost of an additional

latency [40].

As we will discuss in section 2.5.1.2, the advantage of averaging DVFS is that it

needs an average performance model rather than an accurate frame-based one.

2.3.1.3 Video-aware DVFS : Challenges and issues

Saving the energy consumption of video decoding using DVFS supposes that the video

decoder has knowledge of the upcoming workload complexity. However, the video

workload may vary considerably depending on various parameters such as the video

quality and scene complexity. This makes the workload prediction one of the most

challenging issues in video-aware DVFS.

28

Figure 2.8: Energy efficiency of parallel video decoding

On the other hand, assuming that the upcoming video workload can be predicted

using a given performance model, the video decoder has to select the appropriate

frequency allowing to save the energy without impacting the video QoS. One issue

which can be faced at this step is considering the impact of the off-chip memory access

latency. In fact, video decoding is a memory-bound application which means that

it makes use of lot of instructions accessing to the external memory. However, in

processor architectures, the bus used for accessing the external memory is clocked at a

frequency which is independent from that of the processor. Thus, the impact of scaling

the processor frequency on the performance may depend considerably on the rate of

the external memory access made by the decoder [41]. Consequently, given a number

of a processor cycles, the execution time cannot be calculated simply using the Eq. 2.5

used for estimating the expected frame decoding times in the above examples. This

adds an additional complexity to implement video-aware DVFS.

2.3.2 Parallel multi-core video decoding

With the raise of multi-core SoCs, processor performances have increased without the

need to use high clock frequencies allowing thus to save energy. This is particularly

true for video decoding. To explain this principle, we consider the previous example in

case of a multi-core processor as illustrated in Fig. 2.8. We suppose that each frame

can be decomposed into two independent parts which are decoded in parallel using two

identical processors. This allows to achieve the same performances at 5
8
fref , which is

the half of the required frequency when using one processor.

The energy consumption in this case is Earch = 2.K.f 2.(5
8
)2(C1

2
+C2

2
+C3

2
+C4

2
) = 1

4
E.

29

This means 75% energy saving but without a loss in the performances. In this case,

the cost in term of energy consumption is an increasing static power consumption due

to the use of two processors.

The parallelism of video decoding on multi-core processors can be achieved at a

frame, slice or macro-block levels [42]. At a frame level, the frames may be decoded

in parallel on different processing units. The drawback of such an approach is that it

does not scale very well because the number of independent frames (ex. B frames) is

limited at a given time. On the other hand, a higher scalability is possible at a slice

level. However, this depends on the encoder setting to enable multi-slice frames. At

a macro-block level, there is greater opportunity of parallelism but it is inefficient to

execute on parallel multi-core processor due to the communication overhead. As we

will discuss hereafter, this level of parallelism can be implemented more efficiently on

specialized processor6.

2.3.3 Specialized processing

In this section, we will discuss from a high level point of view, different ways to use spe-

cialized processors for video decoding. We will particularity discuss hardware codecs,

Graphical Processing Unit and Digital Signal Processors.

2.3.3.1 Hardware video codecs

In general, a specialized processor is more energy efficient than a GPP [43]. In fact, in

[44, 2], the authors show that the energy inefficiency is intrinsic to the programmable

nature of general purpose processors. This is due to the control and the communication

overheads in executing an instruction in a GPP. For example, according to these studies,

only few pJ are needed to execute an addition operation on 45nm processor while 70pJ

is needed to execute the entire instruction. This makes the specialized processors two

orders of magnitude more energy efficient than GPP [2].

In case of video codecs, thanks to customized architecture design, hardware-codecs

can provide better energy consumption properties than general purpose processors. In

fact, a considerable energy saving can be achieved by eliminating instruction fetching

characterizing the programmable nature of GPP’s. In [44, 45], the authors show that

6The term specialized processor refers to non general purpose such as hardware codec, GPU or

DSP.

30

specialized processing units achieve most of their efficiency gains by tuning data stor-

age and compute structures and their connectivity to the data-flow and data-locality

patterns in the codec.

Practically, hardware video codecs architecture designs are based on hard-wired

functional block for executing different video codec modules. Each functional block

makes use of intensive parallelism in data processing. This allows to decode HD video

at very low clock frequency (few MHz) while consuming around tens of mW [46, 47, 48].

From the GPP point of view, the hardware codec is considered as an external

device handled by a driver in the operating system. Decoding a video sequence needs

a minimum control from the GPP side to manage the I/O from and to the hardware

codec. For example, sending the frame location address to the codec, executing cache

maintenance operations7 or handling hardware interrupt (see Fig. 2.9-a).

A frame decoding is considered, from the GPP point of view, as an I/O operation

generating a system latency caused by handling the I/O control. Since all the video

decoding process is implemented in the hardware codec, this control is executed at

a coarse granularity (it occurs at the beginning and at the end of the frame decod-

ing). This reduce the communication overhead and off-loads the GPP during all frame

decoding phases.

The drawback of hardware video codecs is that they are not flexible and cannot be

adapted to the evolution in video standards [49]. For example, hardware accelerators

for the new MPEG HEVC (High Efficiency Video Coding) standards are still not widely

used on mobile devices at the time of writing this thesis.

2.3.3.2 Graphical processing unit

Graphical Processing Units (GPU) are processing units specialized in graphic comput-

ing. They support instruction set for accelerating geometric calculations such as the

rotation and translation of vertices into different coordinate systems.

Because most of these computations involve matrix and vector operations, GPUs

become more and more used for executing non graphical processing such as simulation,

high performance computing [50] and especially video decoding [51, 52, 53].

7The fact that both the specialized processor and the GPP have their proper cache memory and

communicate using a shared memory imposes to manage cache coherency each time data are shared

between the hardware codec and the GPP.

31

Figure 2.9: GPP vs specialized processors energy efficiency

In general, using a GPU for decoding a video consists in off-loading the GPP from

some codec module by executing them on the GPU. The remaining modules are still

executed on the GPP (see Fig. 2.9-b). In fact, the GPU has a limited instruction

set which does not allow to execute efficiently the full codec [51]. Usually, motion

compensation and color space conversion are better handled by the GPU where the

inverse quantization, the inverse DCT and the entropy decoding are handled better by

32

the GPP [51].

Since a video decoding process cannot be handled entirely by the GPU, many

I/O operations are required between the GPP and the GPU within each frame phase.

Indeed, the control logic is executed at a fine granularity in the GPP to synchronize

between the modules executed in the GPU and those executed on the GPP. This may

have an impact on both performance scaling and energy consumption [45]. For this

reason, almost all GPU manufacturers do not propose pure GPU video decoding in their

SoC. They, instead, propose video decoding solutions relying on hardware accelerator

integrated in their GPU. We can cite as an example Intel HD Graphics, Nvidia Pure

Video and AMD Unified Video Decoder.

2.3.3.3 Digital signal processor

Digital signal processors (DSP) are specialized in signal processing operations. They

support specialized instruction set such as MultiplyAccumulate (MAC) and Fused Mul-

tiplyAdd (FMA) operations, which are used extensively in all kinds of matrix oper-

ations. They also make use of parallelism by supporting Single Instruction Multiple

Data (SIMD), Very Long Instruction Word (VLIW) and superscalar architecture.

Unlike the GPU, the DSPs have an advanced instruction set and are able to run

complex programs. For example, a DSP is even able to run its own operating system

[54]. As like the hardware codec, a DSP is able to implement a full video codec leading

to a limited coarse grained control from the GPP side (see Fig. 2.9-c).

In [55, 15], the authors explain, from an architecture point of view, the source of

energy efficiency of DSPs. The benefit of using them in energy constrained mobile

devices highlighted in [16], especially for video decoding [56]. In fact, in addition to

performance speed-up, DSP-based video codecs allows to enhance the energy efficiency

of video decoding.

2.3.4 Discussion

The above sections highlighted two important points: first, the performance and the

energy consumption properties should be considered together to evaluate the energy

efficiency of video decoding systems. Second, the parameters which impact the per-

formance and the energy consumption are numerous and may be localized at different

levels: application, system and architecture.

33

Accordingly, we will survey, in the next sections, the studies focusing on characteriz-

ing and modeling both the performance and the energy consumption of video decoding

at these levels. Thus, at application and system levels, we consider mainly the impact

of the video quality, the processor frequency and the operating system overhead on the

performance and the energy consumption of video decoding.

On the other hand, at architecture level, we consider the video decoding on differ-

ent processor architectures: GPP, muti-core GPP and specialized processors including

hardware codec and DSP. Low level design of these architectures will not be considered.

However, we will focus on the impact of off-chip memory access latency on performance

scaling (as highlighted in section 2.3.1.3) and show how this is important to consider

in DVFS policies for video decoding. We highlight that GPUs will not be considered

in the remaining related works survey as well as in our study. In fact, as explained

previously, video decoding on this kind of processors requires a fine grained a low-level

GPP/GPU partitioning of the video codec modules. This represents too low level

details as compared to the scope of this thesis.

2.4 Performances and energy consumption characterization of
video decoding

2.4.1 Video decoding performances characterization

The performance characterization of video decoding has been addressed by several

studies. The objective was to identify the most processing-intensive part in the decod-

ing process and understand the source of performance drop. We consider hereafter,

application, system and architectural levels.

2.4.1.1 Application level

In [57], the video complexities of different video qualities are analyzed. For each video

quality, different video sequences were used. The results show how the performance

varies when increasing the quality of the video. Moreover, for the same video quality,

it is shown that the decoding performance may vary considerably depending on the

scene complexity of the video. A per-frame performance analysis shows also that the

variation in the decoding time depends on the frame type (I frames are more complex

to decode than B and P frames).

In [58], the characterization is executed at a finer granularity. The authors measured

34

the execution time of the basic H.264/AVC decoding modules. They show that motion

compensation is the most time-consuming module, taking over 40% of the total CPU

time. The entropy decoding takes about 22% of the total CPU time, whereas the

inverse quantization and transform takes only 7%. The deblocking filter requires a

large amount of computation as well, taking the remaining 20% of processing time.

Moreover, they analyzed the performance breakdown of the different decoding modules

when decoding higher video quality.

2.4.1.2 System level

In [59], the authors analyzed the impact on the performance of the complete flow of the

communication between a GPP and a specialized processor (DSP). They measured the

Inter-processor communication (IPC) overhead due to handling hardware interrupt and

data transfer. They propose accordingly a technique to estimate the IPC performance

at run-time and dynamically adjust the IPC strategies under environmental parameters

and system resource constraints.

On the other hand, in [60] and [61], performance consideration of DSP decoding are

analyzed according to cache coherency maintenance and DMA transfers. The authors

show that significant performance increase can be achieved by modifying the decoder

design so as to minimize the communication between the GPP and the DSP.

2.4.1.3 Architecture level

In [62], the authors used Simplescaler simulator [63] to characterize H.264/AVC video

decoding workload using different architecture configurations. They focused mainly

on the cache miss and instruction level parallelism (ILP) behaviors. They highlighted

that there is a direct relation between the ILP parallelism and the cache performance.

In fact, they showed that during video decoding, an important time is spent in a stall

status waiting for data to be fetched from the main memory. This increases the number

of cycles per instruction and consequently decreases the IPC.

In [64, 65], the authors analyzed the performance of the memory access while decod-

ing the video. They focused mainly on the ratio of cache miss while decoding various

type of multimedia workload. One observation they have highlighted is the increase of

the number of memory access instructions while increasing the video quality.

In the same way, in [58], the authors focused on characterizing the memory bound

35

instruction but considered in addition the impact of performance scaling when using

DVFS. Based on the cache miss statistics, they showed that entropy decoding and in-

verse transform/quantization are entirely computation-bound in H.264 decoding. On

the other hand, motion compensation is memory intensive. The obtained data are

used to explain the performance scaling when using DVFS by pointing out the rela-

tive performance scaling of the different decoding modules of video decoding. In fact,

they showed that the speed-up of the motion estimation is lower than one of the inverse

transform or entropy decoding. The reason is that in memory bound instructions, most

of the CPU time is spent on waiting for the memory accesses which are independent

from the clock frequency.

In [66], the authors focused on performance scaling of parallel video decoding on mu-

ticore processors and have discussed various parallelization possibilities. They showed

that slice-level parallelism has two main limitations. First, using many slices increases

the bit-rate and, second, not all sequences contain many slices since the encoder de-

termines the number of slices per frame. In this study was also analyzed frame-level

parallelism, which uses the fact that some frames (B frames) are not used as reference

frames and can therefore be processed in parallel. It was shown that this approach

is not very scalable because usually there are no more than three B frames between

consecutive P frames. On the other hand, they show that MB level parallelism is very

scalable without needing any requirements from the encoder side. However, the au-

thors highlighted the need to reduce communication and synchronization overhead to

avoid a performance drop.

2.4.2 Video decoding energy consumption characterization

2.4.2.1 Application level

In [67], the authors analyzed the energy consumption of different video codecs including

H.264/AVC. Various experiments have been performed to investigate the effects of

codec parameters such as the bit-rate and the resolution on the consumed energy.

Experimental results show that increasing the resolution increases considerably the

energy consumption. Whereas, increasing bit rate gives a better picture quality without

inducing too much energy consumption.

In [68], the authors analyzed how video quality scalability impacts the energy con-

36

sumption. In addition to the video resolution (spatial scalability) and the bit-rate

(PSNR scalability) studied in the above cited work, they consider the impact of the

frame rate (temporal scalability). Their results match the previous conclusion: the

video resolution is the most important video parameters that impact the energy con-

sumption. Based on these results, the authors proposed a strategy for rescaling video

quality settings on the decoder to save the energy.

2.4.2.2 System level

In [48], the authors analyzed the cost of multimedia framework and the operating

system overhead in software and hardware based video decoder. The authors showed

that, the interfacing overheads of the operating systems and software frameworks that

hide the implementation details can be significant regardless of the implementation of

video decoding.

In a more recent study [69], the authors analyzed the energy consumption of mul-

timedia processing on heterogeneous SoC including an ARM processor, a DSP and

a GPU. One observation they highlighted is that the power consumption of two or

more cores running concurrently is lower than the sum of the power when each core

is running alone. This is due to cores idling when completing the assigned task. As a

result, the average power consumption might become lower (we have made the same

observation in our experimentation. See section 4.3.3.2).

2.4.2.3 Architecture level

In [69], the authors evaluated the performance and energy benefits of utilizing the

integrated GPU and DSP cores to off-load or share CPU compute-intensive tasks. The

evaluation is conducted on three representative mobile platforms, TI’s OMAP3530,

Qualcomm’s Snapdragon S2, and Nvidia’s Tegra2, using common computation tasks in

mobile applications including video decoding. The authors show that when off-loading

a processing on specialized processors, the execution time reduction is greater than the

increased power consumption. As a result, the overall energy consumption is reduced.

Moreover, they highlighted that compute-intensive algorithms usually have a mixture

of subtasks which exhibit a wide range of characteristics. Each type of cores would

be more efficient for some, but not all, of the subtasks. By proportionally assigning

the subtasks based on the cores characterization results, the overall performance and

37

energy of a mobile application can be optimized.

In [48], the energy efficiency of software and hardware video decoder is analyzed.

The authors showed the energy efficiency of hardware accelerated video decoding as

compared to software based ones especially for high resolutions. However, they high-

lighted that monolithic hardware codecs suffer from increasing complexity and less

flexibly for multi-standard support. As a result, they suggest finer-grained video accel-

erators where basic codec module are hard-wired and the control/scheduling is executed

by a GPP with a small energy footprints.

On the other hand, in [70], the authors focused on the energy efficiency of parallel

video decoding on multi-core processor. They have evaluated the energy saving as

compared to mono-core decoding and showed that using four ARM cores allows to

reduce the energy consumption of HD video decoding up to 63 % as compared to using

a single core.

2.4.3 Discussion

Table 2.2 summarizes the above cited related works on performance and energy char-

acterization of video decoding. For each study, we have specified the parameters which

were considered and the level to which they correspond.

Although these works cover a wide range of parameters corresponding to different

abstraction levels of a video decoder, it is difficult to extract a clear and a single view

point on the performance and energy consumption properties of video decoding in

terms of video quality on various type of architectures. In fact, each study scope is

restricted to a subset of parameters and/or levels. For example, in [58], application,

system and architecture parameters are considered for performance characterization,

but only for a x86 processor. On the other hand, in [48], different architectures were

considered but the processor frequency parameter was not covered.

In addition, comparing the results of these studies is not possible since they may

use in their experimentation hardware architecture with different technologies and het-

erogeneous software stacks.

In the performance and energy characterization part of this thesis, we propose

a unified methodology based on an accurate performance and energy consumption

measurement. In this methodology, we cover a wide range of application and system

parameters (representative video qualities, frequency scaling, IPC). Moreover, different

38

P
er

fo
rm

an
ce

ch
ar

ac
te

ri
za

ti
on

le
ve

l

A
p
p
li
ca

ti
on

S
y
st

em
A

rc
h
it

ec
tu

re

[5
7]

V
id

eo
q
u
al

it
y,

fr
am

es
ty

p
e

[5
8]

P
er

-m
o
d
u
le

co
m

p
le

x
it

y

[5
9]

In
te

r-
p
ro

ce
ss

or
co

m
m

u
n
ic

at
io

n

[6
0]

,[
61

]
M

ai
n
te

n
an

ce
of

ca
ch

e
co

h
er

en
cy

,
D

M
A

tr
an

sf
er

s

[6
2]

In
st

ru
ct

io
n

le
ve

l
p
ar

al
le

li
sm

,
ca

ch
e

m
is

s

[6
4,

65
]

V
id

eo
q
u
al

it
y

ca
ch

e
m

is
s

ra
te

[5
8]

V
id

eo
q
u
al

it
y

p
ro

ce
ss

or
fr

eq
u
en

cy
m

em
or

y
-b

ou
n
d

in
st

ru
ct

io
n

ra
te

[6
6]

L
ev

el
of

p
ar

al
le

li
sm

(M
B

,
S
li
ce

,
F

ra
m

e)
M

u
lt

i-
co

re
p
ro

ce
ss

or
s

[T
h
is

st
u
d
y
]

V
id

eo
q
u
al

it
y

p
ro

ce
ss

or
fr

eq
u
en

cy
,

IP
C

A
R

M
,

S
D

P
,

m
u
lt

i-
co

re
s

p
ro

ce
ss

or
s.

E
n
er

gy
ch

ar
ac

te
ri

za
ti

on
le

ve
l

A
p
p
li
ca

ti
on

S
y
st

em
A

rc
h
it

ec
tu

re

[6
7]

V
id

eo
q
u
al

it
y

(b
it

-r
at

e,
re

so
lu

ti
on

)

[6
8]

V
id

eo
q
u
al

it
y

(b
it

-r
at

e,
re

so
lu

ti
on

,
fr

am
e

ra
te

)

[4
8]

V
id

eo
q
u
al

it
y

M
u
lt

im
ed

ia
fr

am
ew

or
k

an
d

sy
st

em
ov

er
h
ea

d
H

ar
d
w

ar
e

v
s

so
ft

w
ar

e
co

d
ec

[6
9]

S
ch

ed
u
li
n
g,

P
ro

ce
ss

or
id

li
n
g

P
ro

ce
ss

or
ty

p
e

(A
R

M
,

G
P

U
,

D
S
P

)

[7
0]

E
n
er

gy
b
re

ak
d
ow

n
ov

er
h
om

og
en

ou
s

m
u
lt

i-
co

re
s

p
ro

ce
ss

or
s

[T
h
is

st
u
d
y
]

V
id

eo
q
u
al

it
y

P
ro

ce
ss

or
fr

eq
u
en

cy
,

IP
C

A
R

M
,

D
S
P

,
h
ar

d
w

ar
e

co
d
ec

,
M

u
lt

i-
co

re
p
ro

ce
ss

or
s.

T
ab

le
2.

2:
S
u
m

m
ar

y
of

st
u
d
ie

s
on

p
er

fo
rm

an
ce

an
d

en
er

gy
ch

ar
ac

te
ri

za
ti

on
of

v
id

eo
d
ec

o
d
in

g

39

low-power and mobile processor architectures were evaluated including GPP (ARM),

DSP, multi-core and hardware accelerator. The execution of video decoding on these

processor architectures is achieved using a single multimedia framework which allows to

fully compare the different obtained results. As far as we know, there is no equivalent

study in the literature which considers at the same time all the considered parameters

and architectures.

2.5 Performances and energy consumption modeling of video
decoding

2.5.1 Video decoding performances modeling

As discussed previously in section 2.3, video decoding energy saving should consider

both the performance and the energy consumption aspects. In fact, the decoder should

be able to estimate the upcoming workload to dimension the processing resources and

thus, to save energy. In this section, we first start describing some proposed models for

video decoding at both a video frame and an interval basis. We list then some works

focusing on studying the impact of off-chip memory access on the performance scaling

in the context of the use of DVFS.

2.5.1.1 Frame based models

The frame-based performance models aim to predict the video decoding complexity on

a frame basis. As discussed in section 2.3.1.1, those models are useful for energy saving

techniques in the case of video applications requiring low latency. We distinguish in

the literature different approaches for frame-based performance modeling.

Empirical models

In [71, 72], authors used the linear relationship between an MPEG2 frame size and

its decoding time as observed in [73] (see Fig. 2.10-a). In order to predict the frame

decoding time, they proposed to maintain performance statistics per frame type (I, P,

B) then the decoding time and frame length are correlated online to guide the selection

of the appropriate processor frequency.

However, the used linear complexity model is no longer valid in the case of new

video compression standards which use aggressive techniques to reach high compression

ratios. For example, starting from MPEG4 standards, a distinction of frame types does

40

Figure 2.10: Video decoding complexity vs frame size (MPEG2 vs H.264/AVC) [3]

not even exist. Instead, every frame type can include different types of (I, B, or P)

MBs, and each MB requires different amount of processing. It is thus difficult to achieve

accurate estimation for the current frame decoding complexity merely from its size as

illustrated in Fig. 2.10-b.

To overcome this issue, authors in [74] proposed an enhanced complexity model

which take into account, in addition to the frame size, the number of MBs of a given

type (I, P or B). These parameters are assigned weights to fit the frames complexity

model. The developed model was used in a frame-by-frame DVFS strategy for MPEG4

video decoding.

Statistical models

To predict video decoding workload, some studies proposed to use sophisticated statis-

tical adaptive filter tools to deal with the high variability of the decoding complexity

from one frame to another.

In [75], authors proposed a frame-based prediction DVFS using Kalman filter. The

proposed solution captures time-varying workload characteristics by adaptively reduc-

ing the prediction error via feedback control. On the other hand, in [3], they used

Particle Filter which is known to be more powerful in dealing with even nonlinear/non-

Gaussian time-varying workloads [3]. In the proposed solution, a function which cor-

relates the frame size and its decoding time for each frame is fed to the particle filter

to refine the estimates using its error-covariance feature. The proposed method was

implemented in both MPEG2 and H.264 players and was validated on an ARM-based

real testbed.

41

Metadata-based models

Video complexity metadata is information sent by the encoder to assist the decoder to

predict the video workload for better processing resource allocation. This information

is the result of an offline complexity analysis when encoding the video [76].

In [77], authors analyzed the computational complexity of a software-based H.264/AVC

baseline profile decoder. Their approach is based on determining the number of basic

computational operations required by a decoder to perform the decoding module (in-

verse transform, reconstruction, entropy decoding, etc). The frequency of use of each

of the required decoding subfunctions is empirically derived using bitstreams generated

from two different encoders for a variety of contents, resolutions and bit rates. Using

the measured frequencies sent by the encoder as a metadata, estimates of the decoder

time complexity for various hardware platforms can be determined.

In [78], a complexity model for H.264/AVC video decoding is derived by decom-

posing the entire decoder into several decoding modules (DM), and identifying the

fundamental operation unit (termed complexity unit or CU) in each DM. The com-

plexity of each DM is modeled by the product of the average complexity of one CU and

the number of CUs required. The model is shown to be highly accurate for software

video decoding both on Intel Pentium mobile 1.6-GHz and ARM Cortex A8 600-MHz

processors, over a variety of video contents at different spatial and temporal resolu-

tions and bit rates. Assuming the complexity information are sent by the encoder, the

authors further show how to use this model to predict the required clock frequency

and hence perform dynamic voltage and frequency scaling (DVFS) for energy efficient

video decoding

2.5.1.2 Interval-based models

At the interval based granularity, the performance model aims to predict the average

performance of decoding a set of frames. As explained in section 2.3.1.2, this suites

applications accepting latency in the decoding process.

In [79], the authors proposed an algorithm (PAST) implemented on a Unix work-

station which consists in monitoring the workload for a past interval and assumes the

next one will be like the previous. In this study, this performance model is used to set

the frequency based on the amount of time spent in idle state.

In [80], the authors propose to use a weighted moving average (WMA) filter to

42

predict the future interval workload. They consider N previous intervals weighted by

factors which are reduced smoothly we go back in time as described in Eq. 2.8.

wi+1 =

∑1
k=N Kwi−N+k∑N

k=1(k)
(2.8)

The use of WMA filter ensures that prediction is aligned with the variations in the

workload rather than being merely shifted in time. More complete comparative study

on averaging filters which includes in addition the Least Mean Square filter (LMS) is

presented in [81].

In [82], the authors apply the averaging filters proposed in the above works to

MPEG video decoding. Then, they compare the PAST policy with the exponential

weighted moving average filter (EWMA) described in the Eq. 2.9.

wi+1 = α.wi−i + (1− α).wi. (2.9)

The coefficient α represents the degree of weighting decrease, a constant smoothing

factor between 0 and 1. A higher α discounts older observations faster.

The results obtained in this study show that using EWMA allows to save more

energy in case of a video workload than the simple PAST policy proposed in [79].

However, the impact on the video quality of service was not evaluated.

In [83], the authors used auto regressive models [84], which is a formal mathematical

modeling tool allowing to calculate the weight of the averaging filters. In this study,

they consider an MPEG video workload and claim better energy saving as compared

to moving average technique.

In [85], the authors achieved more extended experiments on MPEG video decoding

while using moving average filters discussed above. Moreover, they consider the quality

of service (QoS) expressed in terms of the number of deadline misses. They highlighted

that weighted averaging technique needs to tune the weights to have a good result.

Moreover, they show that the tuned weights may not work for other applications or

even the same application with different input. Based on these observations and the

QoS of the video decoding, they claim that the simple PAST policy is better in case of

video decoding.

43

Figure 2.11: Impact of memory latency on performance scaling [4]

2.5.1.3 Memory-aware performance models

Many DVFS studies assume that if the predicted workload takes Ci processor cycles,

then the execution time of this workload will be Ci
f

. This assumption is true only in

case of CPU bound programs. However, video decoding is both CPU and memory

bound and thus, due to the off-chip memory access latency and the processor stall, the

execution time does not scale linearly with the frequency [86].

This issue was observed first in [87, 71, 85, 88, 4] where the authors highlighted the

effect of the memory latency on performance scaling using DVFS. They highlight the

importance of considering this constraint in the frequency setting policy. For example,

in [4], the authors show (see Fig. 2.11) that the programs included in SPEC CPU2000

benchmark8 [89], react differently to the processor frequency scaling depending on their

memory access rate.

Several studies considered this behavior in their proposed DVFS policies. In [90],

the authors observe that in program phases with high rate of memory access, the

frequency of the processor can be lowered without severe losses in performance. Ac-

cordingly, they propose an online solution using event counters available in some pro-

cessors. Their solution consists in monitoring the memory access and scaling down the

frequency if some threshold is reached. This allows to save energy without impacting

severely the performance.

In [41, 91], the authors proposed an on-line memory-aware frame-by-frame DVFS.

First, they observe that, in MPEG video decoding application, the execution time of

8The SPEC CPU2000 benchmarks are intended to exercise the CPU itself, the memory hierarchy

to evaluate how much memory do they actually use.

44

memory bound instructions tend to be constant from a frame to another. They propose

to separate a frame decoding time into two parts: a frame-dependent part and a frame-

independent part. The frame independent part remains constant regardless of the frame

type and tends to correspond to the memory-bound instructions. On the other hand,

the frame dependent part highly relies on the type of each frame and corresponds to

the CPU bound instruction. The amount of memory bound executed instruction is

calculated based on the number Layer 2 cache miss rate provided by a processor event

counter. The execution time of the CPU-bound instruction is estimated using a moving

average filter. The combination of the two information is used to estimate the frame

decoding time and to adjust the processor frequency accordingly.

2.5.2 Video decoding energy consumption modeling

We discuss hereafter the existing approaches used to model and estimate the energy

consumption of video decoding at different levels.

2.5.2.1 Application level

In [78], the authors proposed an energy consumption model for H.264/AVC video

decoding based on empirical performance and power models. The performance model

estimates the complexity of a frame video decoding (number of cycles) in terms of

the aggregation of basic operations executed at each decoding module. On the other

hand, the power model was built empirically on Intel and ARM platforms. It estimates

the consumed power in terms of the processor clock frequency and a set of platform

dependent constant parameters. By using the proposed energy model, the authors

estimate the amount of energy to be saved using DVFS and showed that the predicted

values are very close to the measured ones.

In [92], the authors investigate the power-rate constrained video adaptation for

video streaming applications. Towards this goal, the authors developed a video decod-

ing complexity model with the focus on quality scalability, which can be translated to

the power consumption model for mobile processor. In this study, the proposed model

allows to estimate the power scalability in term of quality scalability expressed in bit-

rate, which makes the power-rate constrained scalable video adaptation analytically

tractable. Accordingly, the authors propose to solve the power-rate optimized mobile

video streaming problem, so as to maximize the video quality given the limited access

45

network bandwidth and battery lifetime for mobile devices.

All the above studies consider the clock frequency parameter to estimate the power

scalability. However, they make the assumption that decoding time scales linearly

with the frequency which is not true as discussed in section 2.5.1.3. As far as we know,

there are no studies considering the impact of the memory access latency in the energy

consumption model of video decoding.

There exits other video decoding energy consumption modeling studies considering

other types of processor architectures. In [93], it is proposed a power consumption

model for H.264/AVC video decoding using hardware accelerator on popular mobile

platforms. Their proposed model is expressed as the product of the power functions

of video spatial resolution (i.e., frame size) and temporal resolution (i.e., frame rate).

The authors have demonstrated that the proposed model is applicable to different video

hardware accelerator on other platforms.

On the other hand, in [94], the multi-objective energy-video-quality issue is ad-

dressed based on experimental measurement on a DSP decoder. This study aims to

find the video bit-rate and resolution maximizing the video quality without reducing

the mobile device autonomy. In this study, the performances are modeled empirically

and the power consumption values are extracted from the used processor data-sheet.

2.5.2.2 System level

In [95], the authors proposed power and energy models of three basic services of the

embedded OS : the scheduling, the context switch and inter-process communication

(IPC). Their modeling methodology was then applied on a video decoding use case to

estimate the energy consumption. In this work, based on energy characterization on

a real embedded platform, the authors estimated the energy consumption overhead of

the context switch, the IPC and the scheduling as 27%, 4% and 2% respectively.

In [96], the authors propose an energy estimation methodology for a full embedded

system including an OS, various processor architecture, memories and bus. Their

proposed energy estimation framework is interfaced with different energy modeling

tools. For example, Softexplorer [97] is used to estimate the energy consumption of

program execution on ARM processor and DSP. In this study, the energy consumption

of a full video decoding process is estimated with an error rate of 10%.

46

2.5.2.3 Architecture level

Architecture level Energy modeling aims to evaluate at early design phase the impact

of architecture choices on the energy efficiency of video decoding. Usually, simulators

are used to estimate the energy consumption of a running application without using

physical measurement tools. For example, Wattch [19], based on SimplerScalar proces-

sor simulator framework [63], uses a suite of parameterizable power models for different

hardware structure. It is based on a per-cycle resource usage count generated through

cycle accurate simulations. In the same way and more recently, the McPAT framework

[98] is proposed to estimate the energy consumption of multi-core architectures.

For example, in [99], the authors proposed the estimation of the energy saving

achieved using the parallelization of video coding over a number of cores ranging from

8 to 24. For this purpose, they use the Sniper architecture simulator to estimate

performance of the video coding. The obtained timing information are then fed to

McPAT simulator to estimate the consumed energy. This study shows also that the

use of frequency scaling on the multi-core processor allows 50% energy saving.

2.5.3 Discussion

Table 2.3 summarizes the above cited related works on performance and energy mod-

eling of video decoding.

In case of video decoding performance modeling, the different studies were classified

according to the complexity prediction granularity: frame or interval. As discussed in

section 2.3.1, the use of each model type depends mainly on whether or not a decoding

latency is accepted.

We paid a particular attention to highlight the performance model applicability

on realistic system where the off-chip memory access delay makes the performance

prediction corresponding to a given frequency non-trivial. This is highlighted in Table

2.3 in the ”Off-chip memory access awareness” column.

In this thesis, we propose an average performance model (interval-based) which

takes into consideration the impact of off-chip memory access. The added value of the

proposed model as compared to the previous studies [90, 41, 91], is that it integrates in

addition the video quality parameter. In fact, the proposed model is able to describe

how the performance scaling varies in terms of both the processor frequency and the

video quality. This may be useful to develop DVFS policies in a context of adaptive

47

P
er

fo
rm

an
ce

m
o
d
el

in
g

G
ra

n
u
la

ri
ty

M
o
d
el

ty
p

e
off

-c
h
ip

m
em

or
y

ac
ce

ss
aw

ar
en

es
s

[7
1,

72
]

F
ra

m
e

E
m

p
ir

ic
al

(F
ra

m
e

si
ze

)
n
o

[7
4]

F
ra

m
e

E
m

p
ir

ic
al

(F
ra

m
e

si
ze

,
ty

p
e

of
M

B
)

n
o

[7
5]

F
ra

m
e

S
ta

ti
si

ca
l

(K
al

m
an

fi
lt

er
)

n
o

[3
]

F
ra

m
e

S
ta

ti
si

ca
l

(P
ar

ti
cl

e
fi
lt

er
)

n
o

[7
7,

78
]

F
ra

m
e

M
et

ad
at

a
n
o

[4
1,

91
]

F
ra

m
e

E
m

p
ir

ic
al

(H
ar

d
w

ar
e

en
ve

n
t

co
u
n
te

rs
)

Y
es

[8
0]

In
te

rv
al

S
ta

ti
si

ca
l

(M
A

fi
lt

er
)

n
o

[8
1]

In
te

rv
al

S
ta

ti
si

ca
l

(W
M

A
fi
lt

er
)

n
o

[8
2]

In
te

rv
al

S
ta

ti
si

ca
l

(E
W

M
A

fi
lt

er
)

n
o

[8
3]

In
te

rv
al

S
ta

ti
st

ic
al

(A
u
to

re
gr

es
si

ve
)

n
o

[9
0]

In
te

rv
al

E
m

p
ir

ic
al

(H
ar

d
w

ar
e

en
ve

n
t

co
u
n
te

rs
)

Y
es

[T
h
is

st
u
d
y
]

In
te

rv
al

E
m

p
ir

ic
al

Y
es

E
n
er

gy
m

o
d
el

in
g

le
ve

ls
p
ar

am
et

er
s

A
p
p
li
ca

ti
on

S
y
st

em
A

rc
h
it

ec
tu

re
m

et
h
o
d
ol

og
y

[7
8]

V
id

eo
q
u
al

it
y

(A
R

M
,x

86
)

em
p
ir

ic
al

[9
2]

V
id

eo
q
u
al

it
y

sc
al

ab
il
it

y
A

R
M

em
p
ir

ic
al

[9
3]

V
id

eo
q
u
al

it
y

H
ar

d
w

ar
e

co
d
ec

em
p
ir

ic
al

[9
4]

V
id

eo
q
u
al

it
y

sc
al

ab
il
it

y
D

S
P

em
p
ir

ic
al

[1
00

]
IP

C
,

C
on

te
x
t

sw
it

ch
,

sc
h
ed

u
li
n
g

A
R

M
S
im

u
la

ti
on

[9
6]

IP
C

,
C

on
te

x
t

sw
it

ch
,

sc
h
ed

u
li
n
g

A
R

M
/D

S
P

S
im

u
la

ti
on

[9
9]

P
ro

ce
ss

or
fr

eq
u
ec

y
H

om
og

en
ou

s
m

u
lt

i-
co

re
p
ro

ce
ss

or
S
im

u
la

ti
on

[T
h
is

st
u
d
y
]

V
id

eo
q
u
al

it
y

P
ro

ce
ss

or
fr

eq
u
en

cy
,

IP
C

A
R

M
,

S
D

P
,

m
u
lt

i-
co

re
A

R
M

,
h
ar

d
w

ar
e

co
d
ec

em
p
ir

ic
al

T
ab

le
2.

3:
S
u
m

m
ar

y
of

st
u
d
ie

s
on

p
er

fo
rm

an
ce

an
d

en
er

gy
m

o
d
el

in
g

of
v
id

eo
d
ec

o
d
in

g

48

video decoding.

We have also referenced different studies for energy consumption modeling of video

decoding. One conclusion which can raise from surveying these studies is that appli-

cation level energy models are usually built empirically based on energy measurement.

On the other hand, when it comes to describe the energy consumption into low level

system and architecture parameters, it is more suitable to use a simulation frameworks

which provides flexibility to tune the parameters and analyze accordingly their impact

on the energy consumption. They can thus provide energy estimation for a wide range

of configurations. However, simulation frameworks are hard to build and the exist-

ing tools may not cover exhaustively a full embedded multimedia system including a

hardware codec, multi-core processor and DSP.

In this thesis, we present an experimental study based energy modeling method-

ologies. The proposed energy model is mainly empirical based, however, thanks to

multi-level characterization; it is able to describe the energy consumption in term of

comprehensive parameters which can be mapped to properties at application, system

and architecture levels. The proposed model achieves a balance between the prediction

accuracy and the level of the described details.

2.6 Conclusions

In this chapter we have described the energy saving issue of video decoding from

different abstraction levels. We have highlighted also the importance to consider both

the performance and the energy consumption properties to save the energy of video

decoding. For this purpose, we have surveyed and classified the most important studies

in the literature focusing on the characterization and the modeling of the performance

and the energy consumption of video applications. The positioning of the different

thesis contributions were defined as compared to these surveyed studies.

These contributions will be described in detail in the next four chapters. In chapter

3, 4 and 5, we propose a unified methodology for performance and energy consumption

characterization and modeling of video decoding on ARM processors and DSP. In this

step, we consider the video qualities ranging from qcif to 4cif resolution. In chapter

6, we describe some possible usages of the obtained results then we will present a

preliminary study on the energy efficiency of High Definition video decoding using

hardware codec and parallel multi-core processors.

49

CHAPTER 3

Methodology

Contents

3.1 Introduction . 51

3.2 Characterization methodology 52

3.2.1 Video complexity characterization 53

3.2.2 Operating-system level characterization 54

3.2.3 Video-frame level characterization 56

3.2.4 Video sequence level characterization 56

3.3 Modeling methodology . 57

3.3.1 Video rate Sub-model . 58

3.3.2 Power sub-model . 59

3.3.3 Decoding-time sub-model . 59

3.3.4 Models validation . 60

3.4 Experimental methodology 60

3.4.1 Hardware setup . 61

3.4.2 Power consumption measurement 62

3.4.3 Software setup . 67

3.5 Conclusion . 73

50

3.1 Introduction

In this chapter, we describe the methodology that we used to model the performance

and energy consumption of video decoding. As illustrated in Fig. 3.1, the proposed

methodology is composed of three main parts :

• Characterization methodology.

• Modeling methodology.

• Experimental methodology.

The characterization methodology focuses on defining the different experimental

test scenarios and the performance/energy consumption metrics to be measured. We

ensured that this methodology is independent from any underlying experimental envi-

ronment to make it generalizable to other hardware/software platforms.

The modeling methodology is based on the obtained measurement results of the

characterization part. It consists in building comprehensive performance and energy

mathematical models using regression analysis and model fitting.

Figure 3.1: Overview of the modeling methodology

51

Finally, the experimental methodology describes the execution of the characteriza-

tion methodology on a hardware/software platforms. In this part, we focus mainly on

explaining the energy measurement tools, the hardware instrumentation and the soft-

ware configuration we have used to achieve accurate measurement of the performance

and the energy consumption.

In this chapter, we focus on standard definition video decoding on GPP (ARM) and

DSP mono-core. High definition video decoding on multi-cores processor and hardware

accelerator will be addressed in section 6.

In sections 3.2 and 3.3, we will start by describing receptively the characteriza-

tion and the modeling parts regardless of any underlying software/hardware platform.

Then, we describe in section 3.4 the experimental methodology on a specific target

platforms including representative low power SoCs, embedded OS, video decoder and

measurement tools.

3.2 Characterization methodology

We consider a video decoding process on a given hardware architecture containing a

GPP and a DSP within a SoC. Each processor supports DVFS and different discrete

clock frequencies. The value of the clock frequency is denoted f .

A video sequence v consists of a set of video frames. It is characterized by a

displaying-rate Rdisplay (expressed in Frames/s), a bit-rate r (expressed in Kb/s), a

spatial resolution s (size of a frame in terms of pixels number) and a complexity c,

which represents complexity characteristics of the video. The video complexity may

be temporal (motion intensity from a frame to another) or spacial (texture of frames).

The videos are encoded using H.264/AVC, a widely adopted coding standard [101].

H.264/AVC allows encoding a video according to different qualities and profiles. A

quality is defined by a bit-rate and a resolution. On the other hand, a profile is defined

by the set of tools used in the coding algorithm. In our experimentations, we used the

restricted base profile; a basic coding scheme which is suitable for use in processing-

resources constrained embedded devices [101].

We define a video decoding configuration as a set of constant and variable param-

eters. The constant parameters are: the type of the processor architecture, the video

resolution and the complexity. For a given video sequence and a mobile device, these

parameters are not supposed to change. On the other hand, the variable parameters

52

are the video bit-rate r and the processor clock frequency f . The bit-rate may vary

depending on the network bandwidth capabilities and the processor frequency is driven

by system frequency scaling policy.

The characterization of the performance and energy consumption of video decoding

aims to evaluate and analyze the impact of the above-cited parameter on the perfor-

mance and energy consumption of video decoding. For this purpose, we follow the

different characterization steps listed below and illustrated in Fig. 3.2.

1. Video complexity characterization.

2. Operating system level characterization.

3. Video frame level characterization.

4. Video sequence level characterization.

The first step is achieved at the video encoding phase while the remaining ones are

executed at the video decoding phase (on an embedded hardware platform).

3.2.1 Video complexity characterization

The main objective of this step is to extract information related to the complexity of the

used video. Unlike the video quality properties such as the bit-rate or the resolution,

the video complexity information is not available to the decoder.

However, the video encoder is able to evaluate the video scene and motion com-

plexity at the encoding phase, more precisely, at the transform phase (refer to section

2.2.1). In fact, the more a video is complex, the less compact are the transformed

coefficients.

If the encoder is configured to encode the video in a constant bit-rate (CBR), it

tunes dynamically the quantization parameters to fit the targeted bit-rate (refer to

section 2.2.1). The more a video has a complex scene and motion, the less compact

are the transformed coefficients and the higher are the values of the used quantization

parameters1.

Thus, to extract the video complexity information, we kept trace of the mapping

between each bit-rate and the average quantization parameter used by the encoder to

1Increasing the value of the quantization parameter allows to increase the number of transform

coefficients set to zero

53

encode the videos. We define the average quantization parameter qpavg used to encode

a video sequence as :

qpavg =

∑N
i=1 qpi
N

(3.1)

where qpi is the quantization parameter associated to the frame i and N is the number

of frames. Therefore, the information about the video complexity can be provided by

the couple c = (r, qpavg) where r is the bit-rate associated to the video.

3.2.2 Operating-system level characterization

This step is a kind of a calibration operation which aims to measure the power con-

sumption related to the different states of the used processors regardless of any video

decoding process.

As introduced in section 2.2.2.1, modern processors are characterized by two kinds

of power states: P-states and C-states. The P-states are voltage/frequency pairs that

set the speed and power consumption of the processor. The transition between the

different P-states is implemented using the DVFS technique. On the other hand, C-

states are idle power saving states, in contrast to P-states, which are execution power

saving states. During a P-state, the processor is still executing instructions, whereas

during a C-state, the processor is idle, meaning that nothing is executing.

Within a video decoding process, the operating system may intervene to make the

used processors transiting to idle or lower power states in order to save energy. This

depends on the dynamic power management configured in the operating system and

the impact that it can have on the performance of the decoding process.

To investigate performance and energy considerations related to those states, the

power consumption of both the GPP processor and the DSP at the different supported

C-states and P-states are measured regardless of any video decoding process. The ob-

jective is to have a set of reference power consumption values that helps to understand

and quantify the energy consumption of different video decoding process phases at the

frame-level fine granularity (see Fig. 3.2).

Moreover, at this phase, the overhead due to the transition of the processor to lower

power mode is measured in order to evaluate its impact on the performance and decide

whether to use or not this kind of power saving during the video decoding process.

54

d
y
n

a
m

ic

p
o

w
e

r
m

o
d

e
l

f
:
c
lo

c
k
 f
re

q
u
e
n
c
y

E
 :
 E

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

T
 :
 d

e
c
o
d
in

g
 t
im

e

q
p
=

Q
(r

)
p
=

P
(q

p
,f
)

t=
T

(q
p
,f
)

(q
p
,r

)
s
ta

ti
c

p
o

w
e

r
m

o
d

e
l

C
o
d
e
d
 v

id
e
o
s

V
id

e
o

 e
n

c
o

d
e

r

R
a

w
 v

id
e

o
s

(T
,r

,f
)

(E
,r

,f
)

r
:
b
it
-r

a
te C

h
a
ra

c
te

ri
z
a
ti
o
n
 a

c
ti
o
n

M
o
d
e
l

M
o
d
e
lin

g
 a

c
ti
o
n

(1
)

(2
)

(T
,r

,f
)

(E
,r

,f
)

(q
p
,r

)

E
n
e
rg

y
 a

n
a
ly

ti
c
a
l

m
o
d
e
l
E

(r
,f
)

H
a
rd

w
a
re

,
s
o
ft
w

a
re

,
v
id

e
o
s

M
o
d
e
l

v
a
lid

a
ti
o
n

(m
o
d
e
l,
 c

h
a
ra

c
te

ri
z
a
ti
o
n
)

d
e
p
e
n
d
e
n
c
y

S
e

q
u

e
n

c
e

 l
e

v
e

l
F

ra
m

e
 l
e

v
e

l

V
id

e
o

 c
o

m
p

le
x
it
y

c
h

a
ra

c
te

ri
z
a

ti
o

n

R
a

te

 m
o

d
e

l

a
v
e

ra
g

e
-p

o
w

e
r

m
o

d
e

l

d
e

c
o

d
in

g
-t

im
e

m
o

d
e

l

E
n
e
rg

y
,
p
e
rf

o
rm

a
n
c
e
,

a
n
d
 v

id
e
o
 c

o
m

p
le

x
it
y

d
a
ta

O
p

e
ra

ti
n

g
 s

y
s
te

m
 l
e

v
e

l

p
e

rf
o

rm
a

n
c
e

 a
n

d
 p

o
w

e
r

c
h

a
ra

c
te

ri
z
a

ti
o

n

(3
)

(4
)

(5
)

M
a

p
p

in
g

 o
f

m
o

d
e

ls
 p

a
ra

m
e

te
rs

 o
n

 v
id

e
o

s
 a

n
d

 a
rc

h
it
e

c
tu

re
 p

ro
p

e
rt

ie
s

 V
id

e
o

 d
e

c
o

d
in

g
 p

e
rf

o
rm

a
n

c
e

 a
n

d
 e

n
e

rg
y
 c

h
a

ra
c
te

ri
z
a

ti
o

n

V
id

e
o

 d
e

c
o

d
e

r

T
a

rg
e

t
e

x
e

c
u

ti
o

n
 p

la
tf

o
rm

E
m

b
e

d
d

e
d

 O
S

q
p
 :
 q

u
a
n
ti
z
a
ti
o
n
 p

a
ra

m
te

r

M
o

d
e

l
fi
tt

in
g

a
n

d
 l
in

e
a

r

 r
e

g
re

s
s
io

n

(6
)

(7
)

C
h
a
ra

c
te

ri
z
a
ti
o
n
 m

e
th

o
d
o
lo

g
y

M
o
d
e
lli

n
g
 m

e
th

o
d
o
lo

g
y

F
ig

u
re

3.
2:

C
h
ar

ac
te

ri
za

ti
on

an
d

m
o
d
el

in
g

m
et

h
o
d
ol

og
y

55

3.2.3 Video-frame level characterization

This level relies on the preceding operating system level characterization, which helps

in identifying transitions of the processor to active/idle phases during the decoding

process. The objective of this step is to understand how the processing elements are

used and where goes the energy when decoding a single frame in order to explain the

global performance and energy consumption of video decoding. This is particularly

useful to understand complex video decoding processes involving both GPP and DSP.

For this purpose, the elementary video frame decoding is characterized at a fine

granularity in terms of system metrics such as the amount of buffer transfers, the

GPP/DSP communication latency.

We also evaluated during this step the overhead of video decoding when using both

GPP and DSP. As discussed in section 2.4.1.2, decoding a video comes down to a

sequence of frame processing periods. Each period is composed of a set of actions

consisting in retrieving the coded frame from the input buffer, decoding it and trans-

ferring it to the output buffer. The actual frame decoding step is thus a sub-part of

a frame processing period. In the frame processing period, we define the overhead as

the actions which are not a part of the frame decoding step. For example, in case of

DSP decoding, this may be related to cache coherency maintenance and inter-processor

communication.

3.2.4 Video sequence level characterization

In this step, the number of decoded frames per second (FPS) of H.264/AVC decoding

of the overall video sequence is evaluated on both GPP and DSP. This evaluation

covers different bit-rate, resolution, and processor clock frequency configurations. The

considered performance criteria is the video displaying rate of the decoded video. In

fact we considered that a decoding rate which is lower than the displaying rate of

the coded video is not sufficient for playing-back the video with respect to real-time

constraints.

The overall energy consumption is then calculated by multiplying the sum of the

elementary measured power values by the decoding time. The average energy per frame

(mJ/frame) is then obtained by dividing the overall energy by the total frame number.

Each used video was decoded using GPP and DSP processors. This decoding was

repeated for all the available clock frequencies. For each bit-rate, resolution and clock

56

frequency, the decoding time and the energy consumption were measured.

As shown in Fig. 3.2 (block 4), the results of this phase are triplet data sets (T, r, f)

and (E, r, f) describing the decoding time and energy variation in terms of r and f .

These data are used in the modeling phase, described hereafter, to build a power and

performance model for video decoding.

3.3 Modeling methodology

In our modeling methodology, we used a top-down model decomposition approach in

which the energy model is decomposed as a function of two sub-models: a decoding-

time model T and an average power model Pavg.

E(r, f) = Pavg(r, f).T (r, f) (3.2)

Pavg is then decomposed into a dynamic Pavgdyn and a static Pavgstat power models :

Pavg(qpavg, f) = Pavgdyn(r, f) + Pavgstat(r, f) (3.3)

As discussed previously in section 3.2.1, we propose to use the mapping between the

bit-rate r and the average quantization parameter (qpavg) to add the video complexity

information to our model. For this purpose, we first use the video (qpavg) instead of the

bit-rate (r) as a model parameter for the power and performance models. Therefore,

the model described in Eq. (3.2) giving the energy in terms of the clock frequency f

and the bit-rate r becomes:

Pavg(qpavg, f) = Pavgdyn(qpavg, f) + Pavgstat(qpavg, f) (3.4)

To obtain an energy model as a function of the clock frequency and the bit-rate, we

used a rate model Q which describes qpavg in terms of the bit-rate r and some video

complexity related coefficients.

E(r, f) = (Pavgstat(Q(r), f) + Pavgdyn(Q(r), f)).T (Q(r), f). (3.5)

The energy model described in Eq. (3.2) is thus decomposed into: 1) a rate model,

2) a static/dynamic power model and 3) a time model. Then, based on these sub

models, the energy model is built. A model fitting and regression analysis is performed

57

on the characterization results to develop a mathematical form for the related models

(see block (5) in Fig. 3.2).

To validate the accuracy of each model, we compare the data predicted by the

models with the measured ones (see block (6) in Fig. 3.2). Finally, based on the

characterization results, we try to map the abstract parameters of the developed models

onto the properties of the used platform (see block (7) in Fig. 3.2). We will show in

section 5 how this can help to generalize the developed models on other platforms.

Details on development/validation of the sub-models and the experimental mea-

surement are described below.

3.3.1 Video rate Sub-model

In order to express the video bit-rate as a function of the quantization parameters, we

used the model proposed in [102]. The authors of this paper assume that the video

bit-rate can be described as follows:

r = (
q

qmin
)
−a
.rmax (3.6)

where q is the step-size which is defined as follows [101]:

q = 2(qpavg−4)/6 (3.7)

a is an exponent which represents how fast the video rate changes in term of the step-

size parameter. qmin is the lowest step-size parameter used to encode the video with

the highest bit-rate rmax.

By substituting Eq. (3.7) in (3.6) we obtain the following rate model :

qpavg = 4 + 6.ln2(qmin.(
r

rmax
)−1/a) = Q(r) (3.8)

Using the values (r, qpavg) returned by the encoder, the parameters qmin, rmax and a

can be calculated using model fitting for each coded video.

58

3.3.2 Power sub-model

The measured power consumption is the sum of the static and the dynamic power

values. Actually, the static power is defined as :

Pstatic = Lg(VddIsub + |Vbs|Ij + VddIg),

Isub = K3e
K4Vdde

K5Vbs,

Ig = K6e
K7Vdd

(2.2)

where Lg , Vbs , Ij , K3 , K4 , K5 , K6 and K7 are constants which depend on the circuit

fabrication technology. To model a static power consumption of a microprocessor, one

solution is to define all these constant parameters by fitting the measured values with

the above described models.

In this work, we consider the static power as a platform dependent parameter. We

do not aims to model it as a function of the above cited low level details. Instead, we

estimate it based on the processor data-sheet [103] providing the value of the static

power corresponding to each voltage level.

The dynamic power consumption values are obtained by subtracting the static

power consumption from the total power consumption. Knowing the V and f val-

ues, the obtained data are then fitted with the model Ceff .V
2.f to extract the Ceff

parameter (see Eq. 2.3).

In some cases, the static and dynamic power values cannot be known separately.

For example, some processor data-sheet do not provide information about the static

power consumption. To overcome this issue, the total power consumption (static +

dynamic) can be fitted with the following model as suggested in [78].

Ptot = af b + c (3.9)

Both of the above described methods will be used in our study.

3.3.3 Decoding-time sub-model

In our methodology, the objective of the decoding-time modeling is to estimate the

execution time of video decoding in terms of video quality and processor frequency. As

proposed in [78], one approach consists in estimating the decoding complexity in term

59

of processor cycles C, then the decoding time t is calculated by dividing the estimated

cycles by the processor frequency as described in Eq. 3.10 :

t = T (C) =
C

f
(3.10)

However, as highlighted in section 2.3.1.3, the performance scaling when varying

the processor frequency highly depends on the off-chip memory latency. Thus, the

processor cycles cannot be converted directly into decoding time.

For this reason, to develop the video decoding time model T , we have measured the

decoding time corresponding to each video quality and processor frequency. Then, we

used an observation on the experimental results (see section 4.3.3.1) which reveals a

linear relation between 1/t (where t is the decoding time) and both the clock frequency

f and the quantization parameters qpavg. This linear relation was validated using a

multi-linear regression of 1/t in terms of f and qpavg.

3.3.4 Models validation

To validate the built models, we use the R2 statistical metric to verify the accuracy

of the predicted data as compared to the measured ones. If we suppose mi are a set

of measured data and pi are the corresponding predicted values by a given model M ,

then :

R2 = 1−
∑

i(mi −mi)
2∑

i(mi − pi)2
(3.11)

R2 will give information about the goodness of fit of a model. In other words, it tells

how well a given model approximates the real measured data. The more R2 is close to

1, the higher accurate is the related model.

3.4 Experimental methodology

As highlighted in the beginning of this chapter, we propose in this section a method-

ology to execute the characterization steps on a given software/hardware platform. In

addition to the description of the hardware and the software we have used in the ex-

perimentation, we explain the hardware instrumentation and software configurations

we have used to make the power consumption measurement as accurate as possible.

60

3.4.1 Hardware setup

In our experimentations, we have used the Open Multimedia Applications Platform

(OMAP) SoC manufactured by Texas Instrument (TI). This is motivated by our desire

to use hardware platforms which are representative of those used in mobile devices. In

fact, OMAP SoCs were used in many popular mobile devices as illustrated in Table

3.1.

In what follows, we describe the MistralEVM3530 and the Panda development

boards which contain the OMAP 3530 and OMAP 4460 respectively.

3.4.1.1 MistralEVM3530

The power measurements were conducted on the OMAP3530EVM board (shown on

Fig. 3.3) containing the low-power OMAP3530 SoC. This SoC is based on a 65-nm

technology and consists of a Cortex A8 ARM processor supporting ARMv7 instruction

set and a TMS320C64x DSP.

The OMAP3530 supports 6 P-states and 7 C-states. The P-states correspond to

different frequencies ranging from 125 MHz to 720 MHz for the ARM and from 90 MHz

to 520 MHz for the DSP. On the other hand, the C-states ranges from C0 to C6. C0 is

the active state, C1 is the idle state (clock gating) and C2 is the state corresponding to

the deactivation of almost all the SoC blocks retaining the data in registers and cache

memory. Starting from C3 state and above, the SoC blocks are switched off and their

data are saved in the external memory.

SoC Family Mobile device

OMAP3X
Nokia N900

Motorola Droid

OMAP4X

Samsung Galaxy Nexus

Amazon Kindle Fire

Archos Tablet

Motorola Droid 3

Table 3.1: Mobile devices using OMAP SoCs

61

3.4.1.2 PandaBoard

The PandaBoard is a low-power and low-cost single-board computer development

platform based on the Texas Instruments OMAP4430 SoC. In our experimentations,

we used the newer version (PandaBoard-ES) based on the OMAP4460 SoC. The

OMAP4460 SoC is based on a 45nm technology and contains a dual-core Cortex A9

ARM processors. Each core supports four clock frequencies: 350 MHz, 700 MHz, 920

MHz and 1.2 GHz.

Figure 3.3: Mistral EVM3530 Board (left) and PandaBoard ES (right)

3.4.2 Power consumption measurement

In this section, we describe the used material and the achieved instrumentation to

measure accurately the energy consumption on the above described boards.

3.4.2.1 Open-PEOPLE platform

The power consumptions is measured using the Open-PEOPLE platform [23], a multi-

user and multi-target power and energy estimation and optimization platform. As

illustrated in Fig. 3.4, the platform includes a set of accurate power measurement

instruments (see Table 3.2) hosted in a rack in which we can integrate the embedded

boards that we want to measure.

The advantage of using Open-PEOPLE platform is that the power measurement

can be achieved remotely thanks to a set of software hosted in a server which automates

the management of the measurement equipment and the embedded boards.

62

Figure 3.4: A view on Open-PEOPLE rack

The user who wants to utilise the platform should use a dedicated software. Its role

is to manage the authentication process with the server, upload the power measurement

test case (an archive file), monitor its execution status then download the results (see

Fig. 3.5).

The test case archive is a self-contained archive consisting of the actual power

measurement test case. It includes an XML configuration file and eventual additional

resources. In the configuration file, the user can specify:

• the targeted embedded board and the measurement points.

• the sampling rate

• the cross-compiled binaries for remote execution.

• the cross-compiled Linux kernel to be executed remotely.

Any additional resources (libraries, data files, etc) can be added to the archive to

be installed on the remote target. The platform is able to integrate any board using

Linux OS and uboot boot loader.

Equipment Sampling rate Precision Description

N6705A DC 100 KS/s 1.5 mV/15 µA High precision Power Analyzer

NI PCI-4472 100 KS/s 1.19 µV High precision digitizer

NI PCI-5105 60 MS/s 7.3 mV High density digitizer

Agilent M9149A N/A N/A Switch multiplexer

Table 3.2: Power measurement materiel

63

F
ig

u
re

3.
5:

O
p

en
-P

E
O

P
L

E
p
la

tf
or

m
ar

ch
it

ec
tu

re

64

Figure 3.6: Power consumption measurement using a shunt resistor

In this thesis, the use of the Open-PEOPLE platform was a real added value. In fact,

our experimentations required huge amount of tests corresponding to the combination

of different processor architecture, processor frequencies, video bit-rate and resolution.

In addition, an extensive software configuration was necessary to install DSP driver,

customize and profile the Linux kernel and the GStreamer video decoder. Thanks to

the flexibility of the Open-PEOPLE platform, all these configurations were achieved

remotely from offices located in Université de Bretagne Occidentale in Brest (France).

3.4.2.2 Power consumption measurement methodology

The power consumption depends on the voltage V and the current intensity I.

P = V.I (3.12)

To measure the power consumption of a given component, we used a shunt resistor

in series with the component we want to measure. Then we measured Vshunt and Vc, the

voltage across a shunt resistor Rshunt and the component respectively (see Fig. 3.6).

The current intensity is I = Vshunt
R

, therefore, P = Vc.Vshunt
R

. To avoid a high voltage

drop across the target circuit (which may affect a correct operating of the circuit), the

shunt resistor should have a low value (usually, some tens of milliOhms). Consequently,

the voltage around Rshunt is very low. It thus requires a very sensitive equipment in

order to be measured accurately.

The energy consumption is the amount of consumed power within an time interval.

E(t) =

∫ t

0

P (t)dt (3.13)

In practice, to measure the energy consumption, the integral formula is approximated

65

Figure 3.7: Sampling rate of the energy consumption measurement

by a discrete sampling measurement.

E(t) =
n∑
i=0

Pi.∆t (3.14)

∆t is the sampling interval and Pi is the measured power at the ith interval. The higher

is the sampling rate (1/∆t), the more accurate is the energy consumption measure-

ment. As illustrated in Fig. 3.7, measuring with a high sampling rate allows evaluating

accurately the energy consumption with a short-time variation. In the field of embed-

ded systems, this may correspond to events like a frequency switching, a context switch

in process scheduling or inter-processor communication in SoC. As we will discuss in

section 4.3.2.2, the use of high sampling rate will help in measuring the energy overhead

in inter-processor communication.

3.4.2.3 Boards instrumentation

We describe hereafter the different steps for integrating physically the target boards in

the Open-PEOPLE platform.

Mistral OMAP3530EVM

The OMAP3530EVM board is already instrumented for power consumption measure-

ment. It has an on-board shunt resistors and provides jumpers for measuring the

voltage. These shunt resistors allow to measure the power consumption of the (ARM

+ DSP) processors, the memory and the core of the SoC.

Because there is one shunt resistor for the ARM and the DSP, the measured power

consumption is the sum of the power consumptions of both the ARM processor and

the DSP. In case of ARM video decoding, the measured power represents the ARM

dynamic consumption plus the ARM and DSP static power. In case of DSP video

decoding, both the ARM and the DSP are involved. In fact, the ARM controls the

66

Figure 3.8: PandaBoard-ES Instrumentation

DSP which executes the actual video decoding process. The measured power is thus

the sum of the static and the dynamic power values of both the ARM and the DSP.

In what follows, Pstatic, is the sum of the ARM and the DSP static power. The ARM

and the DSP dynamic powers are denoted Pdynarm and Pdyndsp , respectively. The total

power consumption of the ARM and the DSP is denoted Ptot.

PandaBoard

The Pandaboard does not provide initially power consumption measurement points.

Thus, some instrumentation was done on this board to allow power consumption mea-

surement. Firstly, in the board schematics, we looked for some appropriate resistors

to plug the digitizer sensors. Only some inductors between the power supply and the

ARM, the memory and core subsystems were found. The card was breakdown by

removing the inductors and replacing them by the equivalent inductors plus a shunt

resistor with well-known value (0.05 Ohm). These new inserted inductors and shunt

resistor were placed on external annex board where the digitizer sensors were plugged

around the inserted shunt resistors. See Fig. 3.8.

3.4.3 Software setup

We describe hereafter the different software tools we have used in our experimentations.

3.4.3.1 Video encoder

To encode the used test video sequence, we used x264 encoder [104], a popular and

open source H.264/AVC video encoder.

67

Figure 3.9: Used video test sequences

A set of representative raw video sequences (with different scene complexities, bit-

rate and resolutions) were selected and encoded with different constant bit-rates using

the H.264/AVC encoder. Thus, the following well-known YUV raw video sequences

were used: City, Soccer and Harbor were encoded in H.264/AVC base-line profile (see

Fig. 3.9). These sequences represent respectively a low, a medium and a high video

complexity. As illustrated in Fig. 3.9, each video is available in three resolutions (qcif

(176x144), cif (352x288) and 4cif (704x576)).

After each coding operation, the values of qp used in the encoding process were

extracted from the encoder log and the average quantization parameter qpavg was then

calculated accordingly.

3.4.3.2 Operating system

On this hardware platform, the Linux operating system version 2.6.32 provided in the

Mistral EVM BSP (Board support package). It is a standard Linux OS integrating

additional drivers for some specific devices such as the DSP and the LCD screen. The

68

DPM and DVFS drivers installed in the kernel are also specific to the OMAP3530 SoC.

Dynamic power management

To investigate the power consumption at diffrent C-state levels of both the ARM pro-

cessor and DSP, we configured the cpuidle driver in the Linux kernel. Then, in order to

trigger transition to low power mode of the ARM processor, we execute the following

script [105] :

$ echo 1 > /sys/devices/platform/omap/omap_uart .0/ sleep_timeout

$ echo 1 > /sys/devices/platform/omap/omap_uart .1/ sleep_timeout

$ echo 1 > /sys/devices/platform/omap/omap_uart .2/ sleep_timeout

$ echo 1 > /sys/kernel/debug/pm_debug/sleep_while_idle

$ sleep 1

The first three lines of the code allow to disable the UART device which prevents the

processor to idle. The last line tells to the driver to transit the processor to deep low

power mode when idling.

The DSP was running the DSPBios operating system and was driven from the

Linux/GPP side using a driver named DSPlink. The DSP power management feature

(activation/deactivation of the DSP) was handled using Local Power Manager (LPM)

driver [106].

$ /usr/share/ti/ti-lpm -utils/lpmON.xv5T

$ /usr/share/ti/ti-lpm -utils/lpmOFF.xv5T

The lpmON.xv5T and lpmOFF.xv5T binaries allow to activate and deactivate the DSP

processor respectively.

Frequency scaling

To control the ARM and the DSP clock frequencies, we used cpufreq driver for the

OMPA3530 SoC [107]. The user-space governor, a frequency scaling policy allowing

to control the clock frequency at the application level, was activated. A file system

interface is provided by the kernel to allow the selection of the frequency scaling policy

and the frequency value. The below script contains the commands to select the user-

space governor and to set up the processor frequency.

$ echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

$ echo 125000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

69

Figure 3.10: GStreamer DSP video decoding plug-in

$ echo 250000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

$ echo 500000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

$ echo 550000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

$ echo 720000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

The corresponding DSP frequencies (90 MHz, 180 MHz, 360 MHz, 400 MHz, 430 MHz,

520 MHz) are set automatically by the driver when setting the ARM frequency.

3.4.3.3 Video decoder framework

On the previously described embedded boards, the H.264/AVC video decoding task

was achieved using GStreamer [108], a multimedia development framework. The use

of GStreamer permits an accurate GPP/DSP decoding comparison thanks to its mod-

ular design allowing to execute both the GPP and the DSP video decoders into the

same software environment. The ARM decoding, was performed using ffdec h264, an

open-source plug-in based on the widely used ffmpeg/libavcodec library compiled with

the support of the NEON SIMD instruction set. According to [109], NEON boosts

performance by 60-150% for video codecs. For DSP decoding, we used TIViddec2, a

proprietary GStreamer H.264/AVC baseline profile plug-in provided by Texas Instru-

ment. Its internal design is illustrated in the right side of Fig. 3.10. The video frames

are moved from the encoded video buffer (input buffer which contain the coded frames)

to a circular buffer by a queuing thread. The video decoder-thread invokes the DSP

decoder via the dsplink DSP driver. The DSP codec executes a cache invalidation

70

operation so that it can see the right data in the shared memory, decodes the frame

and transfers it to the decoded frame buffer using DMA. Table 3.3 gives a complete

summary of the hardware and the software setups.

Table 3.3: Hardware and software setup summary

A
p
p
lication

s

GStreamer
ARM plug-in ffdec h264

DSP plug-in TIViddec

Operating System

GPP Linux 2.6.32

ARM DSPBios

ARM/DSP DVFS driver cpufreq

DSP driver DSPLink

DSP power management driver LPM

M
istralE

V
M

3530

DSP
Model TMS320C64x

Frequencies (MHz) 90, 180, 360, 400, 430, 520

ARM
Model Cortex A8 + NEON

Frequencies (MHz) 125, 250, 500, 550, 600, 720

SoC
Model OMAP3530

Voltages levels 0.975, 1.05, 1.2, 1.27 , 1.35, 1.35

P
an

d
aB

oard

ARM
Model Cortex A9 + NEON

Frequencies (MHz) 350, 700, 920, 1200

SoC
Model OMAP4460

Voltages levels (V) Unknown

Elimination of the I/O interference

GStreamer is multi-threaded application. The buffering operations (transfers of the

video frames from the file system to the input buffer in the memory) may interleave

with the video decoding operations. This makes the performance and the energy con-

sumption related only to the decoding phase difficult to measure. In fact, the file

system I/O operations may impact the accuracy of the measured video decoding time

and power consumption. To avoid this situation, we developed a customized video

decoder using the GStreamer API. As shown in Fig. 3.11, the decoding thread was

kept initially in a pause state while the video stream was copied in an input buffer

(GStreamer queue element) by the buffering thread. The transmission of the QoS

messages containing the buffer level information were activated in a GStreamer queue

element. These messages were then monitored by a handler that wakes-up the decoding

thread when the entire video stream is held in the input buffer. On the other hand, the

71

Figure 3.11: GStreamer GPP and DSP video decoding pipes

decoded frames were redirected to /dev/null in order to disable the processing related

to the frames copy from the output buffer to the display driver memory or to a file.

In Fig. 3.11, the GStreamer pipes reproducing the above experimentations are

shown. filesrc, queue and filesink are the GStreamer modules allowing to read a video

file, buffer it into a memory and send it to a destination location. These modules are

shared between the GPP and DSP pipes and we suppose that they generate the same

load in the DSP and the GPP decoding process. The measured phases are steps 2, 3

and 4. Step 5 is negligible since no video frame copy is performed there due to the use

of redirection to /dev/null.

Overhead calculation

To calculate the time overhead of video decoding, the ARM frame decoding time was

measured by displaying timestamps information at the beginning and at the end of the

function named avcodec decode video2() in libavcodec library. In case of DSP decoding,

the tracing was enabled in the DSP API as described in [110]. Enabling the tracing does

not impact the frame decoding time since no debug information is displayed within the

decoding process. The timing information were provided as a function of the number

of clock cycles which were converted into time duration by dividing it through the DSP

clock frequency [110].

72

Similarly, the energy overhead is calculated by subtracting the sum of the frame

decoding energy values from the overall video decoding energy. The frame decoding

energy is obtained by multiplying the average frame decoding power consumption by

the frame decoding time already calculated. In fact, we have noticed that the average

power consumption corresponding to the frame decoding phase is constant for a given

video resolution.

3.5 Conclusion

In this chapter, we described an end-to-end characterization and modeling methodology

for performance and energy consumption of video decoding on GPP ARM processor

and DSP. The methodology starts from the encoding phase until the decoding phase

while considering different levels of abstraction.

The proposed methodology is generic and can be applied on any video decoding plat-

form. As a study case, we have shown how to execute it on the low power OMAP3530

and OMAP4460 SoC including both an ARM GPP and a DSP. The obtained results

on executing the characterization methodology on the OMAP3530 will be discussed in

chapter 4. In chapter 5, we will discuss how to build a comprehensive performance and

energy models from the characterization results. We will also show how to make use

the conclusions from the experimentations conducted on the OMAP3530 platform to

build fast performance and energy models on other architectures. We will consider the

OMAP4460 as a study case.

73

CHAPTER 4

Performance and Energy Consumption

Characterization

Contents

4.1 Introduction . 75

4.2 Video complexity characterization 75

4.3 Video decoding performance and energy characterization 76

4.3.1 Operating-system level . 77

4.3.2 Video-frame level . 83

4.3.3 Video-sequence level . 88

4.4 Conclusion . 94

74

4.1 Introduction

The objective of this chapter is to describe the results of the performance and the energy

consumption characterization of video decoding executed according to the methodology

discussed in chapter 3.

As illustrated in Fig. 4.1, the characterization methodology is executed at both the

encoding and the decoding phases while considering different levels of abstraction.

At the encoding phase, we focus on characterizing the video scene complexity of the

used sequences regardless of any performance or energy consumption metrics. The ob-

jective is to extract relevant video complexity information for the used video sequences.

On the other hand, at the decoding phase, we focus on collecting data related to the

performance and the energy consumption of video decoding while considering different

videos and processing configurations (video quality, processor frequency) executed on

both ARM processor and DSP.

As illustrated in Fig. 4.1, the output of this characterization phase will be used in

the modeling phase which will be discussed in the next chapter.

4.2 Video complexity characterization

To characterize the video complexity, the quantization parameters used to encode a

video using various bit-rates are extracted from the encoder. The average quantization

parameter is then calculated based on the per-frame qp. The obtained values represent

Figure 4.1: Characterization methodology

75

0 1000 2000 3000 4000 5000
0

10

20

30

40

Bit−rate

Harbor
Soccer
City

QCIF

0 1000 2000 3000 4000 5000
10

20

30

40

50

Bit−rate

Harbor
Soccer
City

CIF

0 1000 2000 3000 4000 5000
10

20

30

40

50

Bit−rate

Harbor
Soccer
City

4CIF

Figure 4.2: Mapping between the video qpavg and the bit-rates

the overall complexity of the complete used video sequences.

Table 4.1 shows the correspondence between the resolution, the bit-rate, and the

quantization parameters extracted for the considered sequences. The plots of the data

in this Table (see Fig. 4.2) show that for the same resolution and bit-rate, the average

quantization parameter qpavg of the City, Soccer and Harbor videos are in an increasing

order. This is explained by the fact that the Harbor video sequence is more complex

than Soccer which is more complex than City1. In fact, the encoder considers dynam-

ically the variation in the scene complexity and accordingly sets the used quantization

parameters. The rule is that, given a constant target bit-rate, the more complex the

video is, the lower is the used quantization parameters.

Thus, the couples (r, qpavg) extracted from the encoder and associated to each

sequence can provide information about the scene complexities of the used videos. At

this step, we keep trace of this information and will use it later when modeling both

the performance and the energy consumption of video decoding.

4.3 Video decoding performance and energy characterization

The aim of this part of the experiment is to characterize the impact of the video qual-

ity, the processor type and the processor frequency on both the performance and the

energy consumption of video decoding. As explained previously in the methodology,

three levels are considered: operating system, frame and video sequence levels. The

first two steps aim to characterize the performance and the energy consumption at fine

granularity to help the understanding of where goes the processor cycles and power

budget during the decoding process. This helps to explain the performance and en-

ergy consumption behavior of both DSP and ARM video decoding. For example, we

1In the characterization methodology, we have selected these videos as representative of low,

medium and high complexities

76

Table 4.1: Mapping between qp and the bit-rate

Average quantization parameters qpavg

City Soccer Harbor

Bit-rate(Kb/s) qcif cif 4cif qcif cif 4cif qcif cif 4cif

64 32.81 42.74 51.00 38,22 48,81 51 37,78 45,84 51

128 27.69 36.79 49.38 31,65 41,55 50,99 33,94 41,56 50,7

256 23.06 31.83 41.52 25,57 35,43 45,27 30,07 37,78 45,5

512 18.49 27.28 35.76 19,84 29,76 39,09 25,83 34,12 41,26

1024 13.51 23.07 31.27 14,22 24,38 33,75 20,66 30,21 37,48

1536 10.43 20.71 29.14 10,89 21,47 30,87 16,84 27,64 35,18

2048 7.97 18.92 27.83 8,25 19,35 29,01 13,72 25,65 33,53

2560 5.69 17.50 26.86 5,87 17,77 27,61 11,08 23,98 32,21

3072 3.51 16.33 26.09 3,59 16,49 26,5 8,75 22,55 31,11

3584 1.31 15.34 25.45 1,8 15,41 25,6 6,51 21,27 30,15

4096 0.44 14.48 24.89 1,05 14,45 24,85 4,37 20,11 29,31

4608 0.22 13.70 24.40 0,91 13,6 24,17 2,31 19,03 28,56

5120 0.14 12.99 23.94 0,82 12,83 23,57 0,95 18,01 27,88

will show how the information extracted at these levels allows explaining the different

energy consumption behavior for ARM and DSP decoding process depending on the

video quality. On the other hand, at the video sequence level, the performance and

the energy consumption properties are aggregated in average metrics which are the

average number of decoded frames per second (FPS) and the average milli-Joules per

frame (mJ/frame). As we will describe in chapter 5, these two metrics will be used in

the modeling phase to build both the performance and the energy models.

4.3.1 Operating-system level

In this section, we will focus on characterizing the power consumption of the different

power states (P-states and C-states) supported by the ARM processor and the DSP

in the OMAP3530 target platform. This characterization is achieved regardless of any

video decoding process. As we will discuss in the next section, this helps to define a

set of reference values to understand the power consumption variation during the video

decoding process.

77

0 5 10 15 20
0

0,1

0,2

0,3

0,4

0,5

0,6

P
ow

er
(W

)

ARM idle
ARM active

Time (s)

720 Mhz
600 Mhz

550 Mhz

500 Mhz

250 Mhz

Active

idle

ARM Active/idle
power consumption

Figure 4.3: Cortex A8 power consumption

We will also investigate the impact of the transition between the different power

modes on the performance. Accordingly, we discuss the opportunity of using these

power modes during the video decoding process.

4.3.1.1 ARM processor

As already discussed in section 3.4.3.2, the Cortex A8 support 6 P-states and 7 C-

states. In what follows, we will measure the power consumption corresponding to the

P-states : 125 MHz, 250 MHz, 500 MHz, 550 MHz, 600 MHz and 720 MHz. On the

other hand, we will focus on C1 (idle) and C2 states (switch-off with data retention)

power consumption. The other C-states (switch-off without data retention) are usually

used during long inactivity period (see section 3.4.1.1).

Figure 4.3 shows both the active and idle power consumption of the ARM processor

corresponding to the six available clock frequencies. The power consumption in the

active state is almost 35% larger than the one of the idle state. This is due to the

Wait For Interrupt (WFI) ARM instruction called when entering the idle state. WFI

puts the processor in a low power state by disabling most of the clocks in the processor

while keeping it powered up. Note that the WFI power consumption is not equal to

the processor static power, which corresponds to the state where all the clocks are

gated. Actually, it corresponds to the C1 state where the processor is not executing

instructions but can return to an executing state almost instantaneously.

More energy saving can be achieved using lower C-states. Figure 4.4 shows the

power consumption level of the OMAP3530 SoC (ARM and DSP) during standby

78

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500

Po
w

e
r

(W
)

Time (ms)

ARM power

Standby
(C2)

idle at 500Mhz
(C1)

Standby power mode

Processor wakeup

Figure 4.4: Power consumption of standby mode

mode corresponding to C2 state (refer to section 3.4.1.1 for more detail on C2 state).

One can observe that deeper C2 reduces drastically the power consumption (around 10

mW) as compared to idle state. The level of power consumption in this state is below

the static power consumption the OMPA3530 SoC (see the data in the last column of

Table 4.22). This is due to the fact that during this state, some SoC blocks are powered

off which eliminates both static and dynamic power.

2The static power consumption values corresponding to the different voltage levels are extracted

from the OMPAP3530 data-sheet [103].

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ow

er
(W

)

ARM + DSP idle

Time (s)

DSP
activation DSP

deactivation

720 Mhz

600 Mhz

550 Mhz

500 Mhz

250 Mhz

125 Mhz

ARM and DSP idle
power consumption

Figure 4.5: TMS320C64x DSP power consumption

79

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 5 10 15 20 25 30 35 40 45 50

Po
w

e
r

(W
)

Time (ms)

ARM power

Active state

Idle state

Transition
latency

Figure 4.6: ARM idle mode transition latency

4.3.1.2 DSP processor

Like the ARM processor, the used DSP supports idle state and standby low power state

to save power when the DSP is no longer used. To measure the power consumption of

the DSP at the idle state, the total power consumption is measured, before and after

deactivating the DSP. The DSP idle power is the difference between the two previous

measured values. Figure 4.5 shows the variation of the power consumption during the

above described calibration process. Depending on the clock frequency, the DSP idle

power ranges from 20 mW (at 125 MHz) to 200 mW (at 720 MHz). On the other

hand, the power consumption at standby mode is around 10 mW including the ARM

processor.

4.3.1.3 C-states transition overhead

In the previous section, we have measured the power consumption corresponding to

the different power state levels of both ARM and DSP processor. These power states,

especially standby modes, allow saving considerably the power consumption during in-

activity time, however they may induce additional latency. The transition to idle state

is triggered by the Linux operating system scheduler during inactivity time. Usually, it

consists calling the WFI instruction. On the other hand, lower C-states require more

elaborated operations implemented in the cpuidle driver which depends on the under-

lying platform. In fact, the idle driver needs to know exactly the platform specific

instruction for shutting down the different SoC blocks and saving/restoring their data.

In what follows, we will focus on measuring the latencies of the power states tran-

80

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

Po
w

e
r

(W
)

Time (ms)

ARM power

C2 state
(Standby)

C1 State
(idle)

Transition overhead

Figure 4.7: ARM standby mode transition latency

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 5 10 15 20 25 30 35 40 45 50

Po
w

e
r

(W
)

Time (ms)

DSP Power

Standby

idle
Transition latency

Figure 4.8: DSP standby mode transition latency

sitions and discuss the use of these states during video decoding process.

Figure 4.6 illustrates a zoom on the power consumption variation during a transition

from the active state to the idle state of the ARM processor. We can observe that the

transition is very fast. It consumes approximately few milliseconds. On the other hand,

the transition to standby mode illustrated in Fig. 4.7 consumes more time (around

10 ms). In general, the deeper is the power state; the higher is the transition latency

time. In fact, at idle mode, only the clock frequency is gated for some processor blocks

while in standby mode, some circuits are switched off and their execution context is

saved to avoid data loss.

The transition latency from the standby mode of the DSP is illustrated in Fig.

4.8. On can observe that the transition latency time is much higher than of the ARM

processor (around 40ms). This is due to the fact that the transition to standby mode is

initiated by the ARM processor via a dedicated driver [106], then a standby command

is sent to the DSP where it is executed by DSPBios DSP operating system.

81

Vdd farm fdsp Pactarm Pidlearm Pidledsp Pstatic

V MHz W

1.35 720 520 0.5965 0.4342 0.2312 0.0308

1.35 600 430 0.4997 0.3801 0.1778 0.0308

1.27 550 400 0.4087 0.3089 0.1490 0.0251

1.2 500 360 0.3276 0.2476 0.1217 0.0201

1.05 250 180 0.1238 0.0913 0.0498 0.0138

0.975 125 90 0.0421 0.0275 0.0224 0.0109

Table 4.2: Summary of OMAP3530 measured

power consumption

125 250 550 600 720
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frequency (MHz)

P
ow

er
 (

W
)

ARM dynamic power (Active)

ARM dynamic power (idle)

DSP dynamic power (idle)

Static Power (ARM + DSP)

OMAP 3530 Power consumption

Figure 4.9: OMAP3530

power consumption

Discussion

Table 4.2 summarize the power consumption levels corresponding to the different power

states of the ARM and DSP processors,

First, we can notice that the dynamic power represents the major part of the total

power as compared to the static power consumption. This can be explained by the

fact that the OMAP3530 SoC is based on 65 nm technology. One might expect that

the ratio of the static power will be more important in case of lower feature size (ex.

45 nm, 32nm or 28nm). On such a platform, power saving based on clock gating and

frequency scaling may save considerable amount of power consumption. For example,

at 720 MHz, the power consumption can be reduced by 30% when transiting to idle

mode and by 85% when scaling down the frequency to 125 MHz.

Second, notice that much more power can be saved using standby modes for both

ARM and DSP processors. In fact, the power consumption can be reduced to only 10

mW. However, these modes require more latency to come-back to active state. This

latency is around 10 ms for the ARM processor and 20 ms for the DSP. Knowing that

a video frame decoding time is generally executed in few tens of ms, it is clear that

such a level of latency is too long to be used in a context of video decoding. Thus,

in all the following video decoding experiment, we have deactivated the cpuidle driver

which disables the transition to standby modes.

Finally, the power consumption levels measured in these steps provide precious

reference power information on the amount of consumed power corresponding to each

processor state. These reference values will be used to understand and profile the power

consumption of video decoding at a frame level granularity as described in the next

82

section.

4.3.2 Video-frame level

The objective of this step is to understand where goes the consumed energy at a frame

granularity and how much energy is consumed in the processing overhead as defined

in section 3.2.3. For this purpose, we have analyzed at a frame granularity the video

decoding process.

Analyzing the power consumption at a fine granularity is not easy. In fact, the

measured power samples using the digitizer are not synchronized with the timing in-

formation we can get from the video decoder. Thus, to map between a given decoding

step and its corresponding measured power consumption phase, we refer to the power

reference values extracted in the previous section. For example, based on the decoding

time of one frame and the active power consumption of the processor, we can identify

precisely the corresponding power consumption phase in the measured data.

This mapping is achieved manually. Thus, we focused on a sample of 16 frames

extracted from the Harbor sequence. These frames are coded in 4cif (4 Mb/s), cif

(1 Mb/s) and qcif (128 Kb/s) resolutions. We used 720 MHz clock frequency for the

ARM and DSP processors. More extended experiments using other configurations are

described at the video sequence level in the next section. As already highlighted in

the methodology, we have used a high sampling rate (100K) for power consumption

measurement so that to allow a fine grained power consumption measurement during

the video decoding process.

Figure 4.10-a and Fig. 4.10-b show the power consumption levels of 4cif and

qcif DSP video decoding. The DSP frame decoding phase is represented by the strip

varying between 0.7 W and 1.1 W corresponding to [32 ms, 62ms] (see Fig. 4.10-a)

and [6.2 ms, 7.5ms] (see Fig. 4.10-b) intervals. This phase is terminated by a burst of

DMA transfers of the decoded frame macro-blocks from the DSP cache to the shared

memory. This phase corresponds to the intervals [56 ms, 62ms] (see Fig. 4.10-a) and

[7.2 ms, 7.5ms] (see Fig. 4.10-b) and is illustrated by an increase in memory power

consumption. When the DSP terminates the frame decoding, it returns to the GPP

the execution status and enters into idle state. This event occurs, for example, at 25

ms in Fig. 4.10-a. The ARM wake-up latency is represented by the power level of 0.66

W which is the sum of the power consumption of both ARM and DSP in idle state

83

0 10 20 30 40 50 60 70 80 90 100

0,2

0,4

0,6

0,8

1

1,2

P
ow

er
(W

) Memory
DSP + ARM

Time (ms)

Decoded frame
transfer using DMA

Memory power increase
due to frame copy.

Overhead

DSP idle/
ARM idle

DSP idle/
ARM active

DSP Decoding

(a) DSP frame decoding (4cif) power consumption

Frame processing period

DSP active/ARM idle

0 2 4 6 8 10 12 14

0,2

0,4

0,6

0,8

1

1,2

P
ow

er
(W

)

Memory

DSP + ARM

Overhead

Time (ms)

Memory power increase due to frame
copy.

Decoded frame
transfer using DMA

DSP active/ARM idleDSP idle/ARM idle

DSP idle/ARM active

(b) DSP frame decoding (qcif) power consumption
Frame processing period

DSP
Decoding

0 20 40 60 80 100 120 140
0

0,2

0,4

0,6

0,8

P
ow

er
(W

) Memory
ARM + DSP

Time (ms)

Memory power increase due to frame copy.

Frame decoding

Ovearhead

(c) ARM frame decoding (4cif) power consumption

Frame processing period

0 1 2 3 4 5 6 7 8 9 10
0

0,2

0,4

P
ow

er
(W

)

m
Memory
ARM + DSP

Frame decoding

Time (ms)

Frame processing period

(d) ARM frame decoding (qcif) power consumption

Overhead

Figure 4.10: ARM and DSP video frames decoding

84

(0.43 W +0.23 W) as described in Table 4.2. The ARM wake-up is represented by

the power transition to 0.83 W level which is the sum of the ARM active state (0.59

W) and the DSP idle state (0.23 W). Then, the ARM sends the parameters (the next

frame to decode) to the DSP codecs and triggers a DSP decoding function.

Figure 4.10-c and 4.10-d show the power consumption variation in case of 4cif and

qcif ARM decoding. Like the DSP decoding, the frame decoding phase is characterized

by an increase in the power consumption. The decoded frame copy does not appear

clearly as in the case of DSP decoding since the frames are decoded in the ARM cache

and evicted when no space is left in the cache. We can also notice that the frame

decoding time is lower than the frame decoding period, which is due to a GStreamer

overhead.

4.3.2.1 Inter-processor communication time overhead

We can observe that the amount of time spent in frame decoding as compared to the

total video decoding time varies according to the video resolution. For example, in

case of qcif DSP decoding (Fig. 4.10-b), the frame decoding time represents almost

50%. The complete measured time and energy overhead (as described in section 3.2.3)

are given in Table 4.3.

Table 4.3: ARM and DSP decoding time overhead

Resolution
ARM decoding time(ms/frame) DSP decoding time (ms/frame)

Processing Total Overhead (%) Processing Total Overhead (%)

qcif (128kb) 2.19 2.87 10.04 1.97 4.16 52.64

cif (1024kb) 10.85 12.04 9.88 6.016 8.36 28.11

4cif (5120 kb) 47.23 52.39 9.86 23.73 25.93 8.48

The time overhead percentages are 52%, 28% and 8% of the total frames decoding

time in case of qcif, cif and 4cif DSP decoding. On the other hand, it is almost

constant (10%) in case of ARM decoding. We note that the overhead is not negligible

as compared to the total decoding time. For example, the total qcif DSP decoding

time is higher than the one of ARM although the frames are processed faster by the

DSP.

The above obtained results are verified through an application and system profiling

performed on the ARM and DSP video decoding using Oprofile tool [111], a system-

85

Functions qcif cif 4cif

ARM

libavcodec 42% 66% 75%

omap3 pm idle 26.5% 13% 5%

libc 4.5% 4% 4.6%

libgstreamer 2.5% 2% 2%

other 31.5% 15% 18%

DSP

omap3 pm idle 61% 69% 84%

libc 8% 6% 4%

libgstreamer 2.6% 2% 1.15%

dsplinkk 0.8% 1.14% 0.6%

other 27,6% 23% 11%

Table 4.4: Results of video decoding profiling

Figure 4.11: Profiling result of ARM and DSP video decoding

wide profiler for Linux systems.

Table 4.4 shows the obtained results. In the case of ARM video decoding, most of

the decoding time is spent in the execution of the libavcodec library, which implements

the H.264/AVC GStreamer plug-in. Although the decoder is configured to run in best

effort mode (the synchronization with the displaying process is deactivated), there is an

amount of time spent in idle state corresponding to the execution of the omap3 pm idle

kernel function. This can be explained by the thread blocking states while synchroniz-

ing the different GStreamer pipe elements. One can observe that the idle time ratio

decreases when the video resolution increases. Indeed, frames with higher resolution

are decoded in a longer time (refer to section 4.3.3.1) leading to shorter idle times.

86

In the case of DSP video decoding, most of the time, the ARM processor is in idle

state waiting for the DSP to decode the video frames. This explains the increase of

idle time ratio when increasing the video resolution. In fact, as in the case for ARM

decoding, the frames with higher resolution are decoded by the DSP in a longer time

than low resolution leading to a longer ARM idle time. The control of the DSP from

the ARM side corresponds to the call of the DSPlink driver implemented in dsplinkk

kernel module listed in Table 4.4. The actual video decoding process does not appear

in the profiling results since it is executed on the DSP side.

4.3.2.2 Inter-processor communication energy overhead

In this section, we focus on analyzing the energy consumption at the different phases

of video decoding. Firstly, one can observe that during the frame decoding process,

the power consumption varies considerably depending on the state of the processors.

In case of DSP video decoding, while the DSP is waiting for the next frame to be sent

by the ARM processor (inactivity period), it enters into idle state. During this time,

the DSP consumes about 0.23 W at 520 MHz (refer to Table 4.2) without executing

any task. During this phase, the DSP power consumption can be considerably reduced

to 0.01 W if it is put into standby mode, however, this may impact considerably the

performance due to the high latency of entering/exiting this mode. The standby latency

is almost equal to few tens of milli-seconds which is approximately the time required

to decode one 4cif frame. (see section 4.3.1.3).

In case of ARM video decoding, during overhead phase, the power consumption

corresponds to the values of the idle state. As discussed above for the DSP, more

energy saving may be achieved at this phase if the ARM processor is configured to

enter in standby state. However, this may impact considerably the performance.

Table 4.5: ARM and DSP decoding energy overhead

Resolution
ARM decoding energy (mJ/Frame) DSP decoding energy (mJ/frame)

Processing Total Overhead (%) Processing Total Overhead (%)

qcif (128kb) 1.20 1.54 10.01 1.71 2.33 30.48

cif (1024kb) 6.18 6.87 9.97 5.35 6.72 20.38

4cif (5120 kb) 27.39 28.4 3.55 21.59 22.16 2.5

87

The energy overheads corresponding to this phase for both ARM and DSP video

decoding are listed in Table 4.5. We can observe that it is higher in case of DSP

decoding because the ARM/DSP communication contributes to a significant part of

the energy consumption especially in case of low video resolutions. For example, in

case of qcif decoding, the DSP is not used for more than 50% of the time, but still

consumes idle power.

4.3.2.3 Discussion

We can conclude from this section that the overhead due to the video decoder frame-

work and the operating system may contribute considerably in using the processing

resources and consuming the energy. This is especially true is case of the video de-

coding is executed on an external processor (DSP) requiring an extra processing to

manage the inter-processor communication. We have noticed also that the overhead

rate highly depends on the video quality. For example, in case of low video quality, we

have observed that most of time and energy are spent in inter-processor communication

which leads to a drop in the energy efficiency.

In the next section, we will use these observations to explain the overall performance

and energy consumption balance of video decoding on both ARM processor and DSP.

4.3.3 Video-sequence level

In this section, we analyze the average performance and the energy consumption of

the video decoding at a video sequence level (a set of frames). At a second phase, we

come back to the low level details discussed above to explain the performance and the

energy consumption properties of ARM and DSP decoding and discuss particularly the

impact of the video quality.

4.3.3.1 Decoding time

We analyze the video decoding performance in term of the number of frame decoded

per second (frames/s) which is equal to N/t. N is the total number of frames (300

in our tests) and t is the decoding time. Figure 4.12 shows a comparison between

ARM and DSP video decoding performance in case of 4cif, cif and qcif resolutions for

the considered video sequences. The dark (red) flat surface represents the acceptable

reference video displaying rate (30 Frames/s).

88

20
0

40
0

60
0

0
20

00
40

00
60

00
05010
0

15
0

20
0

25
0

30
0

35
0

40
0

qc
if
A
R
M

an
d
D
S
P
de

co
di
ng

(H
ar
bo

ur
)

Frames/s
A
R
M

D
S
P

Fr
eq

ue
nc

y
B
itr
at
e
(K

b/
s)

20
0

40
0

60
0

0
20

00
40

00
60

00
05010
0

15
0

20
0

25
0

30
0

35
0

40
0

qc
if
A
R
M

an
d
D
S
P
de

co
di
ng

(S
oc

ce
r)

Frames/s

A
R
M

D
S
P

Fr
eq

ue
nc

y
B
itr
at
e
(K

b/
s)

20
0

40
0

60
0

0
20

00
40

00
60

00
05010
0

15
0

20
0

25
0

30
0

35
0

40
0

qc
if
A
R
M

an
d
D
S
P
de

co
di
ng

(C
ity

)

Frames/s

A
R
M

D
S
P

Fr
eq

ue
nc

y
B
itr
at
e
(K

b/
s)

0
20
0

40
0

60
0

80
0

0
20
00

40
00

60
0

02040608010
0

12
0

14
0

16
0

18
0

ci
fA
R
M
an
d
D
S
P
de
co
di
ng

(H
ar
bo
ur
)

Frames/s

A
R
M

D
S
P

B
itr
at
e
(K
b/
s)

Fr
e
q
u
e
n
cy

0
20
0

40
0

60
0

80
0

0
20
00

40
00

60
00

05010
0

15
0

20
0

ci
fA
R
M
an
d
D
S
P
de
co
di
ng

(S
oc
ce
r)

Frames/s

A
R
M

D
S
P

B
itr
at
e
(K
b/
s)

Fr
e
q
u
e
n
cy

0
20
0

40
0

60
0

80
0

0
20
00

40
00

60
00

02040608010
0

12
0

14
0

16
0

ci
fA
R
M
an
d
D
S
P
de
co
di
ng

(C
ity
)

Frames/s

A
R
M

D
S
P

B
itr
at
e
(K
b/
s)

Fr
e
q
u
e
n
cy

20
0

40
0

60
0

0
10

00
20

00
30

00
40

00
50

00
60

00

010203040506070

B
itr
at
e
(K
b/
s)

4c
if
A
R
M
an

d
D
S
P
de

co
di
ng

(H
ar
bo

ur
)

Frames/s

A
R
M

D
S
P

Fr
eq

ue
nc
y

20
0

40
0

60
0

0

20
00

40
00

60
00

020406080

B
itr

at
e

(K
b/

s)

4c
if

A
R

M
 a

nd
 D

S
P

 d
ec

od
in

g
(S

oc
ce

r)

Frames/s

A
R

M

D
S

P

F
re

qu
en

cy

20
0

40
0

60
0

0

20
00

40
00

60
00

020406080

B
itr

at
e

(K
b/

s)

4c
if

A
R

M
 a

nd
 D

S
P

 d
ec

od
in

g
(C

ity
)

Frames/s

A
R

M

D
S

P

F
re

qu
en

cy

F
ig

u
re

4.
12

:
A

R
M

an
d

D
S
P

v
id

eo
d
ec

o
d
in

g
p

er
fo

rm
an

ce

89

The first observation which can be made, in the case of qcif and cif resolutions, is

that the video is decoded at a higher rate than the displaying rate (30 frames/s) even

for low clock frequencies and regardless of the video bit-rate and the processor type.

The ratio between the actual decoding speed and the displaying rate increases for high

clock frequencies and low bit-rates.

In the case of 4cif resolution, a decoding rate higher than 30 Frames/s can be

performed by the DSP starting from 180 MHz frequency (i.e. 250 MHz ARM fre-

quency) for low bit-rates and starting from 430 MHz frequency (i.e. 600 MHz ARM

frequency) for high bit-rates (see Table 4.2 for all the mapping between ARM and DSP

frequencies).

The performances of the ARM processor and the DSP are almost equivalent in case

of qcif resolution. However, the ARM decoding speed is 43% higher than the one of

DSP in case of 64 Kb/s bit-rate while the DSP decoding speed is 14% higher than

one of the ARM in case of 5120 Kb/s bit-rate. For cif and 4cif resolutions, The DSP

decoding is almost 50 % faster than the one of the ARM in case of cif resolution and

100% in case of 4cif. This ratio decreases drastically for low bit-rates.

4.3.3.2 Power consumption

Figure 4.13 illustrates the variation of the average power consumption of the ARM

and the DSP video decoding according to the video resolution and bit-rate in case

of the Harbor video (the Soccer and City video sequence gave similar results). We

notice that the power consumption depends mainly on the clock frequency, which is

explained by the dominance of the dynamic power model as compared to the static one.

For example, at 720 MHz, the static power is 30,8 mW (see Table 4.2) which represents

3.4% and 2.8% of qcif video ARM and DSP decoding total power consumption (540

mW and 700 mW respectively).

We can also observe that, unlike the ARM decoding average power consumption,

the DSP power consumption increases when the video resolution increases. The DSP

power consumption is thus 30%, 40%, and 50% higher than the ARM’s in case of qcif,

cif and 4cif resolutions, respectively. This can be explained by the results obtained in

section 4.3.2 regarding the overhead evaluation. In fact, we found that the percentage

of time overhead (overhead ratio) is almost constant in case of ARM decoding. On

the other hand, in case of DSP video decoding, the overhead ratio decreases when the

90

0
200

400
600

800

0

2000

4000
6000
0

0.5

1

qcif decoding average power consumption (Harbour)

P
ow
er
(W
)

DSP
ARM

Bite−rate Frequency

0
200

400
600

800

0

2000

4000
6000

0

0.5

1

cif decoding average power consumption (Harbour)

P
ow
er
(W
) DSP

ARM

FrequencyBite−rate

0
200

400
600

800

0

2000

4000
6000

0

0.2

0.4

0.6

0.8

4cif decoding average power consumption (Harbour)

P
ow
er
(W
)

DSP
ARM

Bite−rate Frequency

Figure 4.13: ARM and DSP video decoding power consumption

video resolution increases. A frame level power characterization (see previous sections)

showed that the overhead phases correspond to a decreased power consumption due

to entering the idle state (see to Fig. 4.10). Consequently, the higher is the overhead,

the lower is the average power consumption. The same observation was highlighted in

[69] in case of parallel mutli-core video decoding (see section 2.4.2.2).

91

4.3.3.3 Energy consumption

Previous results showed a very large variation of the DSP/ARM performance and

power consumption, which depends on the clock frequency, the video bit-rate and the

resolution. The energy consumption is the combination of the power consumption and

the decoding time properties. Figure 4.14 shows the energy consumption of the ARM

and the DSP video decoding (mJ/Frame) in case of 4cif, cif and qcif resolutions for

Soccer, Harbor and City video sequences.

The DSP qcif video decoding consumes 100% more energy than the ARM in case of

low bit-rate and 20% for high bit-rates. This is explained by a lower performance and

a higher power consumption of the DSP decoding as compared to the ARM because of

the system overhead (see Table 4.5). On the other hand, the DSP 4cif video decoding

consumes less energy than the ARM although it consumes 60% more power. This is

due to a better DSP decoding performance, which can be 100% higher than the one

of the ARM. In case of cif resolution, we noticed a crossing between the ARM and

the DSP energy consumption levels. In fact, for low bit-rate starting from 1Mb/s,

the ARM consumes less energy than the DSP. Similarly, the inverse is true for high

bit-rates videos.

4.3.3.4 Discussion

The analysis of video decoding results shows that the overall performance and the

energy efficiency of the DSP as compared to the ARM processor depend mainly on the

decoded video quality (bit-rate and resolution). In fact, the DSP video decoding is the

best performance and energy efficient choice in case of 4cif resolution and the use of

ARM decoding is better in case of qcif resolution and cif resolution with a bit-rate

less than 1Mb/s.

Table 4.6 summarizes the previous results and provides some guidelines for selecting

the processor type (ARM Cortex A8 or DSP TMS320C64x) which offers the best

performance and energy properties for decoding a video according to the bit-rate and

the mobile device type.

On the other hand, the analysis of the experimental results according to the pro-

cessor clock frequency reveals that in many cases, even if the clock frequency is scaled

down, the video can still be decoded while meeting the displaying deadlines. For exam-

ple, in case of 64 Kb/s qcif resolution, when using the maximum frequency (720 MHz),

92

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

0
10

00
20

00
30

00
40

00
50

00
60

00

012345

qc
if

de
co

di
ng

 e
ne

rg
y

co
ns

um
pt

io
n

(H
ar

bo
ur

)

mJ/Frame
A

R
M

D
S

P

F
re

qu
en

cy
B

itr
at

e
(K

b/
s)

0
20

0
40

0
60

0
80

0
0

20
00

40
00

60
00

012345

qc
if

de
co

di
ng

 E
ne

rg
y

co
ns

um
pt

io
n

(S
oc

ce
r)

mJ/Frame

A
R

M
D

S
P

F
re

qu
en

cy
B

itr
at

e(
K

b/
s)

0
20

0
40

0
60

0
80

0
0

20
00

40
00

60
00

012345

qc

if
de

co
di

ng
 E

ne
rg

y
co

ns
um

pt
io

n
(C

ity
)

mJ/Frame

A
R

M
D

S
P

F
re

qu
en

cy
B

itr
at

e(
K

b/
s)

0
20

0
40

0
60

0
80

0
0

20
00

40
00

60
00

0246810

ci
f d

ec
od

in
g

E
ne

rg
y

co
ns

um
pt

io
n

(H
ar

bo
ur

)

mJ/Frame

A
R

M
D

S
P

F
re

qu
en

cy
B

itr
at

e
(K

b/
s)

0
20

0
40

0
60

0
80

0
0

20
00

40
00

60
00

0246810

ci
f d

ec
od

in
g

E
ne

rg
y

co
ns

um
pt

io
n

(S
oc

ce
r)

mJ/Frame

A
R

M
D

S
P

F
re

qu
en

cy
B

itr
at

e
(K

b/
s)

0
20

0
40

0
60

0
80

0
0

20
00

40
00

60
00

0246810

ci

f d
ec

od
in

g
E

ne
rg

y
co

ns
um

pt
io

n
(C

ity
)

mJ/Frame

A
R

M
D

S
P

F
re

qu
en

cy
B

itr
at

e
(K

b/
s)

0
20

0
40

0
60

0
80

0
0

20
00

40
00

60
00

05101520253035

4c
if

de
co

di
ng

 e
ne

rg
y

co
ns

um
pt

io
n

(H
ar

bo
ur

)

mJ/Frame

A
R

M
D

S
P

B
itr

at
e

(K
b/

s)
F

re
qu

en
cy

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

0
10

00
20

00
30

00
40

00
50

00
60

00

051015202530

4c
if

de
co

di
ng

 E
ne

rg
y

co
ns

um
pt

io
n

(S
oc

ce
r)

mJ/Frame

A
R

M
D

S
P

F
re

qu
en

cy
B

itr
at

e
(K

b/
s)

0
20

0
40

0
60

0
80

0
0

20
00

40
00

60
00

010203040

4c

if
de

co
di

ng
 E

ne
rg

y
co

ns
um

pt
io

n
(C

ity
)

mJ/Frame

A
R

M
D

S
P

F
re

qu
en

cy
B

itr
at

e
(K

b/
s)

F
ig

u
re

4.
14

:
A

R
M

an
d

D
S
P

v
id

eo
d
ec

o
d
in

g
en

er
gy

co
n
su

m
p
ti

on

93

Table 4.6: Energy efficiency vs Processor type vs video quality

qcif cif 4cif
Performance Energy Performance Energy Performance Energy

< Mb/s ARM ARM DSP ARM DSP DSP

> Mb/s ARM ARM DSP DSP DSP DSP

the video can be decoded 10x faster than the displaying rate on the ARM processor.

This is a typical configuration where an energy saving can be achieved by scaling down

the processor clock frequency.

4.4 Conclusion

In this chapter, we have analyzed the performance and the energy consumption of

video decoding on a GPP (ARM) and a DSP at operating system, frame and sequence

levels.

At the operating system level, it was shown the potential of power saving provided

by the different power states of the used ARM processor and the DSP. On the other

hand, we have shown that, although standby modes allow considerable power saving,

they are not suitable to be used in a context of video decoding due to high latency

which may impact considerably the performance.

At a frame level, it was highlighted the importance of considering all the decoding

steps while analyzing the performance and the energy efficiency of video decoding. In

fact, some processing tasks, related to the decoding framework and/or the operating

system, which does not belong to the actual video decoding, may contribute consider-

ably in using the processing resources and in consuming the energy.

At a video sequence level, this is interpreted by a high variation in the energy

consumption efficiency depending on the video quality. For example, it was shown

that DSP processing is not always more energy efficient than the GPP as one may

expect [2].

The proposed methodology gave a particular attention to achieve accurate and

precise performance and the energy consumption measurement. In fact, the use of

the same multimedia framework allowed to compare objectively different video codec.

94

On the other hand, the high-precision power consumption measurement tools used in

the experimentation allows to measure fine-grained details necessary to understand the

overall performance and energy consumption balance.

The obtained results are specific to the used platform (OMAP3530). However, the

proposed characterization methodology provides a comprehensive experimental steps

allowing the understanding of the performance and the energy consumptions behavior

on modern SoC regardless of any low level details. Thus, it can be generalized to other

platforms based on different processor architectures.

In the next section, based on the measured data obtained from this characterization

step, we will build empirically a mathematical performance and energy models. Our

objective is use the conclusions from the characterization step to make the developed

models comprehensive and generalizable to other platforms.

95

CHAPTER 5

Performance and Energy Consumption Modeling of

Video Decoding

Contents

5.1 Introduction . 97

5.2 Video rate sub-model . 98

5.2.1 Parameters discussion . 99

5.3 Power sub-model . 99

5.3.1 Static power sub-model . 100

5.3.2 Dynamic power sub-model . 100

5.3.3 Parameters discussion . 102

5.4 Decoding time sub-model 103

5.4.1 Parameters discussion . 105

5.5 Energy model . 106

5.6 Models validation . 106

5.6.1 Models accuracy on OMAP3530 107

5.6.2 Models generalization: OMAP4460 SoC case study 110

5.7 Conclusion . 113

96

5.1 Introduction

The results obtained in chapter 4 provide experimental-based information on the per-

formance and energy consumption of video decoding using ARM Cortex A8 processor

and DSP TMS320C64 at different abstraction level details. In this chapter, we aim

to synthesize these information within a unified mathematical performance and energy

models for both the studied target processors and investigate the generalization of these

to other processor types.

As described in Fig. 5.1 and discussed previously in section 3.3, the proposed

modeling methodology is based on a sub-model decomposition approach. The key idea

behind this approach is to model separately a set of characterization data then to

combine them to construct a comprehensive energy model.

First, we first describe how to build a rate, performance and power sub-models

(for ARM Cortex A8 processor and DSP TMS320C64). Then, we show how the com-

bination of these sub-models allows to build an accurate energy analytical model for

both GPP and DSP video decoding. Finally, we investigate the generalization of the

developed models to other platforms. In this latter part, we show how to use the

Figure 5.1: Modeling methodology

97

resolution Video a rmax (Kb/s) qmin R2

qcif

Harbor 1.031 475.5 10.15 0.9615

Soccer 0.993 177.5 18.14 0.9978

City 1.026 75.72 54.74 0.9726

cif

Harbor 1.393 1422 14.54 0.9937

Soccer 1.084 327.9 32.84 0.996

City 1.353 106.3 47.53 0.9972

4cif

Harbor 1.538 644.3 63.24 0.9913

Soccer 1.25 552.7 54.06 0.9855

City 1.34 115 147 0.9805

Table 5.1: Model fitting results of the bit-rate model

conclusions from the extensive experimentation described in chapter 4 allows reducing

the time to build performance and energy models for video decoding on other pro-

cessor types. We use the OMAP4460 SoC as a study case to validate the proposed

generalization methodology. Although the OMAP4460 belongs to the same SoC family

(OMAP) as the OMAP3530, it uses a different Cortex A9 processor (vs Cortex A8 for

the OMAP3530) which is based on 45nm technology (vs 65 nm for OMAP3530).

5.2 Video rate sub-model

The first sub-model we built aims to represent the video properties (quality and com-

plexity) within the expected final energy model. In addition to the video quality metric,

we will show that this model is also able to represent the video scene complexity which

may differ from a video sequence to another. First, a model fitting is performed on

the characterization results of the video encoding (see section 4.2). The (qp, r) values

obtained from the encoder (refer to Table 4.1) are fitted with the model described in

Eq. 3.8. The a, rmax and qmin parameters are approximated accordingly using Matlab

model fitting toolbox.

qpavg = 4 + 6.ln2(qmin.(
r

rmax
)−1/a) (3.8)

Table 5.1 shows the model fitting results. This model has a very good precision

especially for high resolution videos (R2 values around 97%). Figure 5.2 illustrates

98

0 1000 2000 3000 4000 5000
0

10

20

30

40

q
p

qcif−Harbour

Predicted

Bit−rate

�Measured

0 1000 2000 3000 4000 5000
0

10

20

30

40

Bit−rate (Kb/s)

qp

qcif−Soccer Predicted
Measured

0 1000 2000 3000 4000 5000
0

10

20

30

40

Bit−rate (Kb/s)

qp

qcif−City Predicted
Measured

0 1000 2000 3000 4000 5000
10

20

30

40

50

Bit−rate (Kb/s)

q
p

cif−Harbour

Predicted
Measured

0 1000 2000 3000 4000 5000
10

20

30

40

50

qp

cif−Soccer Predicted
Measured

0 1000 2000 3000 4000 5000
10

20

30

40

50

Bit−rate (Kb/s)

qp

cif−City
Predicted
Measured

0 1000 2000 3000 4000 5000
20

30

40

50

Bit−rate (Kb/s)

q
p

4cif−Harbour

Predicted
Measured

0 1000 2000 3000 4000 5000
20

30

40

50

Bit−rate (Kb/s)

qp
4cif−Soccer

Predicted
Measured

0 1000 2000 3000 4000 5000
20

30

40

50

Bit−rate (Kb/s)

qp

4cif−City Predicted
Measured

Figure 5.2: Rate model fitting

graphically the precision of the model in case of Harbor, soccer and City videos.

5.2.1 Parameters discussion

All the parameters extracted in this model are only related to the video. The parameter

a is an exponent which controls how fast the video rate changes in terms of the step-

size parameter. On the other hand, rmax and qmin depend on the video complexity.

The more complex the video is, the higher is its corresponding rmax parameter and

the lower is qmin [102]. Indeed, one can observe from Table 5.1 that the more the

decoded video is complex (Harbor has the highest complexity and City has the least

complexity), the higher is the value of rmax and the lower is the value of qmin. The

value of the parameter a seems to be independent from the video complexity.

5.3 Power sub-model

In this section, we model the average power consumption of the ARM and the DSP

during video decoding (see Fig. 4.13). Actually, two sources of power consumption

were measured in the experimentation. Thus, we estimate separately each one of these

sources in order to develop a model for the total power consumption.

99

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
0

0.01

0.01

0.02

0.02

0.03

0.03

0.04

OMAP3530 static
power

Voltage (V)

Power (W)

Figure 5.3: OMAP3530 static power

5.3.1 Static power sub-model

The static power consumption of a microprocessor depends exclusively on the voltage

and the circuit fabrication technology. The running application does not influence

it. Thus, in order to estimate the static power, we used the model provided by the

OMAP3530 data-sheet [103] plotted in Fig. 5.3. We highlight that the values extracted

from the data-sheet correspond to the sum of static power of the ARM processor and

the DSP.

5.3.2 Dynamic power sub-model

The dynamic power is calculated by subtracting the static power estimated above from

the total power consumption measured in the experimentations.

5.3.2.1 ARM video decoding

In case of ARM video decoding, the dynamic power can be represented mathematically

as follows:

Pdyn = Ceffarm .V
2.farm = Ptotarm − Pstatic (5.1)

where Ceffarm is the average effective capacitance of the ARM processor during the

video decoding.

5.3.2.2 DSP video decoding

In case of DSP video decoding, both ARM and DSP processors are involved in the

decoding process. Thus, the dynamic power can can be represented analytically as

100

Resolution Video Ceffarm Ceffarm−dsp

qcif

Harbor 4.20E-007 5.48E-007

Soccer 4.19E-007 5.53E-007

City 4.17E-007 5.51E-007

cif

Harbor 4.28E-007 6.03E-007

Soccer 4.23E-007 6.05E-007

City 4.21E-007 6.04E-007

4cif

Harbor 4.18E-007 6.47E-007

Soccer 4.17E-007 6.46E-007

City 4.15E-007 6.44E-007

Table 5.2: Model fitting results of the dynamic power model

follows :

Pdyn = Ceffdsp .V
2.fdsp + Ceffarm .V

2.farm = Ptotarm + Ptotdsp − Pstatic (5.2)

where Ceffdsp is the average effective capacitance of the DSP.

Actually, Eq. (5.2) can be simplified using the linear relation between the ARM

clock frequencies and those of the DSP1. In fact, the linear regression analysis on the

frequency values listed in Table 4.2 leads to :

fdsp = 0.72.farm (5.3)

Therefore, Eq. 5.2 becomes :

Pdyn = (Ceffarm + 0.72.Ceffdsp).V
2.farm = Ptotarm + Ptotdsp − Pstatic (5.4)

1In case this condition is not verified, one should model separately the power consumption of the

DSP and the ARM processors to obtain the model for the total power consumtion. This needs two

separate power measurement points on the board for the two processors.

101

5.3.2.3 Dynamic power modeling

From the above section, in both ARM and DSP video decoding, the dynamic power

consumption should follow the model described in Eq. :

Pdyn = Ceff .V
2.f (2.3)

Based on the values of Ptol (from power measurement) and Pstatic from the OMAP3530

data-sheet, we calculate the value of Pdyn = (Ptot − Pstatic). Knowing the values of V

and f , we execute a model fitting on Eq. 2.3 to calculate the corresponding Ceff

parameters. Table 5.2 shows the obtained results for Harbor, Soccer and City video

sequences.

Column Ceffarm represents the effective capacitance of the ARM processor in case

of ARM video decoding. On the other hand, the column Ceffarm−dsp represents the

effective capacitance of ARM + DSP processors when using the DSP to decode a

video.

5.3.3 Parameters discussion

The effective capacitance parameter Ceff of the processing resources is the parameter

which determines the power consumption level. Actually, this parameter fluctuates

depending on the executed instructions. The values calculated in the above power

models represent the average power consumption over the overall video decoding time.

At system level, one technique for reducing the Ceff of the processor is to enter the

idle state while the processor is not used. In fact, in this state, almost all clocks are

deactivated which reduces the overall circuit effective capacitance. Thus, the higher is

the time spent in idle mode, the lower is the average Ceff .

This can be veried by the correlation between the calculated Ceff and the profiling

results discussed in section 4.3.2. In fact, we have noticed that the time spent by

the DSP/ARM processors in active or idle state highly depends on the decoded video

resolution. In the developed energy model, this is reflected by a various values of the

Ceff parameter (see Table 5.2). The more the processor (GPP or DSP) spends time

in idle state, the smaller is its effective capacitance.

102

100 200 300 400 500 600 700 0

10

20

30

40

0

50

100

150

200

250

300

350

400

qcif ARM and DSP decoding (Harbour)

F
ra

m
es

/s

ARM

DSP

qp
Frequency

100 200 300 400 500 600 700 10

20

30

40

50

0

50

100

150

200

cif ARM and DSP decoding (Harbour)

F
ra

m
es

/s

ARM

DSP

qp
Frequency

100 200 300 400 500 600 700 20

30

40

50

60

0

10

20

30

40

50

60

70

qp

4cif ARM and DSP decoding (Harbour)

F
ra

m
es

/s

ARM

DSP

Frequency

Figure 5.4: ARM and DSP video decoding time in terms of f and qp

5.4 Decoding time sub-model

To model the video decoding time, we use the linear relation observed between (1/t)

and both f and qpavg as illustrated in Fig. 5.4. A multi-linear regression analysis

using Matlab verfyed the observation. The results of this regression showed that the

decoding time can be described by Eq. 5.5. The values of the coefficients αo, α1, α2

and α3, obtained by the multi-linear regression analysis, are shown in Table 5.3.

103

1/t = αo + α1.f + α2.qpavg + α3.f.qpavg (5.5)

The obtained results, in Table 5.3, clearly show the accuracy of the proposed model

as it can be seen from the high R2, which are calculated for each test defined by a

video sequence, a resolution and a processor type (ARM or DSP).

To have a decoding-time model as a function of the bit-rate, the qp parameter in the

above model can be expressed in terms of bit-rate using the rate-model (3.8). Equation

(5.5) becomes :

1/t = αo + α1.f + (α2 + α3.f).(4 + 6.ln2(qmin.(
r

rmax

−1/a

)) (5.6)

Table 5.3: Multi-linear regression of 1/t in terms of f and qp

Resolution Video Processor α0 α1 α2 α3 R2

qcif

Harbor
ARM 2.040e+00 1.895e-04 2.166e-01 7.994e-06 0.973

DSP 2.756e+00 2.178e-04 6.841e-02 4.021e-06 0.991

Soccer
ARM 3.482e+00 2.165e-04 1.733e-01 7.352e-06 0.992

DSP 2.795e+00 2.300e-04 4.703e-02 3.795e-06 0.996

City
ARM 3.332e+00 1.195e-04 1.365e-01 6.325e-06 0.989

DSP 2.385e+00 1.908e-04 3.573e-02 2.911e-06 0.991

cif

Harbor
ARM -1.680e+00 -1.943e-05 1.395e-01 4.825e-06 0.978

DSP -1.945e-01 5.243e-05 9.438e-02 3.877e-06 0.994

Soccer
ARM 3.356e-02 3.622e-05 9.569e-02 3.342e-06 0.991

DSP 1.181e+00 8.893e-05 3.783e-02 2.950e-06 0.996

City
ARM 3.128e-02 3.021e-05 8.775e-02 3.229e-06 0.990

DSP 1.021e+00 6.320-05 2.803e-02 3.120e-06 0.991

4cif

Harbor
ARM -1.078e+00 -1.995e-05 5.405e-02 1.559e-06 0.991

DSP -4.915e-01 1.458e-06 2.906e-02 1.850e-06 0.998

Soccer
ARM -1.749e-01 6.355e-06 3.101e-02 9.765e-07 0.902

DSP 6.244e-03 3.984e-05 1.502e-02 9.909e-07 0.865

City
ARM -1.591e-01 5.505e-06 2.913e-02 6.564e-07 0.952

DSP 5.564e-03 7.654e-05 2.277e-02 6.097e-07 0.926

104

5.4.1 Parameters discussion

The performance model described in Eq. 5.5 describes the linear relationship between

the reverse of the decoding time (1
t
) and qp. This linear relationship is defined by α0,

α1, α2 and α3 coefficients.

α0 coefficient is not coupled to f neither qp. This means that α0 represents the

time spend in executing task which does not depend on f and/or qp. For example, the

idle transition latency or ARM-DSP communication overhead which may occur within

the decoding process.

On the other hand, we can observe from the analytical model given by Eq. (5.5)

that 1/t depends on the frequency f , qp and the correlation existing between f and qp

weighted with the coefficient α3. We show hereafter that how we can interpret these

constant parameters in terms of the performance of the memory hierarchy.

We have shown in section 2.5.1.3 that a program react differently to a frequency

scaling depending on the rate of memory access. In the proposed performance model,

this is represented by a two-way interactions multi-linear model (non-null α3) [112].

In fact, a non-null α3 value means that the decoding speed-up when scaling the clock

frequency f is not the same for all the video qualities but depend on the related qp

parameters.

The explanation of this behavior is related to the impact of the off-chip memory

access latency on the performance scaling in the context of the use of DVFS. Indeed,

it is well established that the memory access rate increases for high quality video

(low qp value) [57, 65, 64]. However, unlike cpu-bound instructions, memory-bound

instructions execution time do not scale when varying the clock frequency [58] due

to the memory wall problem [113, 4]. Consequently, when increasing the processor

frequency, the performance of decoding low quality video tends to scale better than

when decoding higher quality. This is illustrated graphically by a twisted surface

around qp and f axis in Fig. 5.4. This figure can be compared with Fig. 2.11 given in

[4] where the authors observed this behavior in SPEC CPU2000 benchmarks.

At a constant qp, 1/t varies by a factor of (α1 + α3.qp) in terms of f . This factor

reaches its minimum value when qp = 0, which corresponds to a lossless H.264/AVC

coding. On the other hand, at a constant f , 1/t varies by a factor of (α2 + α3.f)

in terms of qp. This factor reaches its minimum value when f is minimal. This can

be explained by the fact that when f decreases, the difference between the processor

105

Figure 5.5: Performance scaling behavior

frequency and the memory frequency decreases. Consequently, the decoding time is not

impacted considerably when the memory-bound instruction rate varies. Theoretically,

this factor can be null (which means that the decoding time is independent from qp) in

one of these cases: 1) the size of the cache memory is large enough to hold the entire

video sequence or 2) the processor is clocked at the same frequency as the memory.

However, these configurations are not realistic. Thus, the decoding time depends on

the combination of α1, α2 and α3. Figure 5.5 illustrates the graphical interpretation of

the scaling factor α1 + α3.qp and α2 + α3.f discussed above.

5.5 Energy model

Based on the dynamic power model, the static power model and the decoding time

model described respectively in Eq. (2.3) and Eq. (5.5), the video decoding energy

consumption can be calculated as follows :

E =
Ceff .V

2.f + Pstatic

αo + α1.f + (α2 + α3.f).(4 + 6.ln2(qmin.(
r

rmax

−1/a))
(5.7)

This model describes the energy consumption in terms of clock frequency f and

bit-rate r in addition to the constant parameters Ceff , α0, α1, α2, α3, qmin , rmax

and a. Table 5.4 summarizes the mapping of the extracted parameter to architecture,

system and video properties.

5.6 Models validation

We have analyzed, in the previous, sections the accuracy of each developed sub-model

(rate, time and power). The objective of this section is :

106

Table 5.4: Summary of the model constant parameters

Parameter
Architecture System Video

What does the parameter reflect ?
related related related

α1 x - Memory hierarchy

α2 x - Memory-bound/CPU-bound

α3 x instructions rate

a x
- How fast the video bit-rate

varies when changing qp

qmin, rmax x - Video complexity

Ceff x
- Scheduling.

- Dynamic Power Management

• To analyze the accuracy of the performance and energy analytical models (Eq.s

5.6 and 5.7) resulted from the combination of the sub-models (Eq.s 2.3, 3.8 and

5.5).

• To investigate the generalization and validity of these models on another execu-

tion platform. We used the OMAP4460 SoC as a case study. We show how the

sub-models decomposition approach proposed in this study reduces the effort of

building the performance and the energy consumption models of video decoding

for other platform.

• To provide some guidelines for online performance and energy estimation of video

decoding on a given target execution platform.

5.6.1 Models accuracy on OMAP3530

5.6.1.1 Decoding time model

Table 5.5 shows the accuracy of the performance model described in Eq. 5.6 (Frames/s

in terms of f and the bit-rate) obtained from the combination of the rate sub-model

described in Eq. 3.8 (qpavg in terms of the bit-rate) and the multi-linear time sub-model

described in Eq. 5.5 (Frames/s in terms of f and qpavg). The calculated R2 coefficients

are about 98%. Figure 5.6 shows the comparison between the predicted performance

values and the measured ones.

107

0
200

400
600

800 0
1000

2000
3000

4000
5000

0

20

40

60

80

100

120

140

160

Measured

Predicted

Bit−rate (Kb/s)
Frequency (Mhz)

CIF video decoding performance on
ARM (Harbour)

Frames/s

0
200

400
600

800 0 1000 2000 3000 4000 5000

0

20

40

60

80

100

120

140

160

180

Predicted

Measured

Bit−rate (Kb/s)

CIF video decoding performance on
DSP (Harbour)

Frequency (Mhz)

Frames/s

Figure 5.6: Measured vs predicted video decoding time (OMAP3530)

Table 5.5: Performance model R2

Video Processor
Energy model R2

qcif cif 4cif

Harbour
ARM 0.9851 0.9840 0.9886

DSP 0.9750 0.9789 0.9787

Soccer
ARM 0.9753 0.9813 0.9811

DSP 0.9699 0.9701 0.9687

City
ARM 0.9749 0.9803 0.9801

DSP 0.9699 0.9689 0.9797

Table 5.6: Energy model R2

Video Processor
Energy model R2

qcif cif 4cif

Harbour
ARM 0.9851 0.9840 0.9886

DSP 0.9750 0.9789 0.9787

Soccer
ARM 0.9753 0.9813 0.9811

DSP 0.9699 0.9701 0.9687

City
ARM 0.9749 0.9803 0.9801

DSP 0.9699 0.9689 0.9797

One can highlight an important observation, the combination of the same rate

model (Eq. 3.8, which depends exclusively on the video properties), with the multi-

linear time sub-model (Eq. 5.5, which depends on the execution platform), allows to

build an accurate performance model for both ARM and DSP processors. We will

verify this observation for the OMAP4460 platform in section 5.6.2.

5.6.1.2 Energy model

Table 5.6 shows the calculated R2 values of the energy model (Eq. 5.7) as compared

to the measured values. They vary around 97% for almost all the video sequences for

both ARM and DSP (see Fig. 5.7).

To show the accuracy of the energy model for both ARM and DSP, we used it to

predict analytically the bit-rates for which the ARM processor is more energy efficient

than the DSP in case of cif video resolutions. Figure 5.8 shows the surface correspond-

ing to the Edsp−Earm function. One can observe that for the frequency f = 720MHz,

the Edsp − Earm is null for the bit-rate 1024 kb/s. This corresponds exactly to the

108

0

5x 10
5

0

5000
0

5

10

DSP−qcif energy decoding

E
ne

rg
y

(m
J/

F
ra

m
e) Predicted

Fitted

Bit−rateFrequency

0 2 4 6

x 10
5

0

50000

1

2

3

4

ARM−qcif energy decoding

E
n

e
rg

y
 (

m
J
/F

ra
m

e
) Predicted

Bit−rate
Frequency

Measured

Figure 5.7: Measured vs predicted video decoding energy consumption (OMAP3530)

0

2

4

6
x 10

5

0
1000

2000
3000

4000
5000

−1

0

1

2

E
ne

rg
y

(m
J/

fr
am

e)

Bit−rate (Kb/s)Frequency

(ARM/DSP) predicted energy difference: CIF−Harbour

E − E
DSP

DSP is more
efficient

ARM is more
efficient

ARM

Bit−rate=1024
(qp=30)

Figure 5.8: Difference between ARM and DSP energy consumption (OMAP3530)

results of the experimental measurement shown in Fig. 4.14 for cif decoding where we

can notice the crossing between the energy surface at the bit-rate 1024 kb/s.

109

0

500

1000

1500

20

30

40

50

0

100

200

300

Multi−linear model

(grid)

Mesured
 performances (points)

QP
Frequency (Mhz)

Frames/s

Multi−linear regression results on Cortex A9 (OMAP 4460)
(CIF Harbour) (all measured data)

Figure 5.9: Multi-linear regression of the video decoding time (OMAP4460)

5.6.2 Models generalization: OMAP4460 SoC case study

The methodology could not be complete if one do not give how it can be applied to

other platforms. To validate the methodology on another architecture, we used the

OMAP4460 SoC [114] on a Pandaboard [115]. This SoC is based on 45nm technology

(vs 65 nm for the OMAP3530) and contains a double core Cortex A9 processor. Each

processor supports four frequencies : 350 MHz, 700 MHz, 920 MHz and 1.2 GHz. Dur-

ing the experiments executed on this platform, only one core was activated2. On this

board was used the same software environment as for the OMAP3530: Linux Operat-

ing system and GStreamer video decoder. The board needed some instrumentation to

allow a separate power measurement of the Cortex A9 processor. More details on the

board instrumentation can be found in [23].

5.6.2.1 Decoding time model

Multi-linear regression using the model of Eq. 5.5 was performed on the measured FPS

in terms of the frequency and the qpavg for the OMAP4460 platform. The calculated R2

coefficient was around 97% for all tested videos. Figure 5.9 illustrates the accuracy of

the multi-linear model. When applying the rate model constants obtained previously

in section 5.2, we obtained the performance model illustrated in Fig. 5.10 (Frames/s

2Energy efficiency of parallel multi-core video decoding will be introduced in chapter 6.

110

0
500

1000
1500 0

1000 2000
3000 4000

5000

0

50

100

150

200

250

300

Measured

Predicted

Frequency (Mhz)
Bit−rate (Kb/s)

 Video decoding performance on
Cortex A9 (OMAP4460)(Harbor)

Frames/s

Figure 5.10: Measured vs predicted video decoding time (OMAP4460)

in terms of the frequency and the bit-rate). The model accuracy is around 96% for all

tested videos.

5.6.2.2 Energy model

To obtain the energy model of the video decoding, the average power consumption

values of video decoding corresponding to each frequency should be known. In the

case of OMAP4460 SoC, we were not able to decompose the power consumption model

into a static and a dynamic power models. This is due to the non availability of

the static power in the OMAP4460 data sheet. To overcome this issue, the average

power consumption (static + dynamic) of video decoding corresponding to the different

frequencies was fitted with the model af b + c as suggested in [78]. The 512 Kb/s CIF

video quality was used to measure the average power consumption values corresponding

to each frequency. As highlighted in section 5.3, in case of ARM video decoding,

the average power consumption is not impacted by the video quality. Therefore, the

measured values can approximate the average power consumption for the other video

qualities. Figure 5.11 shows the results of the power model fitting.

Based on the average power model and the performance model of the previous

section, the energy was calculated analytically and compared to the measured energy

values according to our methodology described in section 3.2.4. Figure 5.12 shows the

surfaces representing the measured and the modeled energy values (mJ/frame). The

111

200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

P(f) = a*fb + c

b = 2.055
 c = 0.06283

Frequency (Mhz)

Power (W)

a= 3.75 e 10⁻⁷

Figure 5.11: Cortex A9 power consumption model

0

500

1000

1500 0
1000

2000
3000

4000
5000

6000

0

5

10

15

20

25

Predicted

Measured

Bit−rate (kb/s)Frequency (Mhz)

CIF decoding energy consumption on ARM Cortex A9
(OMAP 4460) (Harbor)

mJ/Frame

Figure 5.12: Measured vs predicted video decoding energy consumption (OMAP4460)

accuracy of the model (R2) was about 95%.

The results of this study helped in building an accurate energy model of video de-

coding on the Cortex A9 processor in a much faster delay. In fact, the video complexity

characterization data (a, qmin and Rmax parameters) calculated in the first experimen-

tation set (for the OMAP3550) were reused. The power consumption values of video

decoding corresponding to the different processor frequencies can be measured using

a simple oscilloscope. It was shown that this average value combined with the per-

formance model allowed to estimate accurately the energy regardless of the processor

112

fabrication technologies: 45nm for the OMAP4460 and 65nm for the OMAP3530.

Although the proposed energy model is built empirically, based on the used sub-

model decomposition approach, it can easily and efficiently be reused to build an accu-

rate performance and energy models for other platforms. This presents an interesting

advantage as compared to classical empirical energy models discussed in section 2.5.2.1

which may need a lot of effort to be rebuilt for other platforms.

5.7 Conclusion

In this chapter, comprehensive performance and energy analytical models were build

based on the experimental results of the characterization phase. One of the strengths of

the proposed analytical model is that it describes the performance and the energy con-

sumption of the video decoding while distinguishing between the architecture, system

and video related parameters. This was used to ease and speed up the generalization

of the proposed models to other architectures by clearly identifying the parameters

which depend on the underlying execution platform and those depending on the video

content.

In the remaining of this thesis report, we investigate some applications of the results

obtained from the characterization and the modeling of video decoding. Then, we

explore the performance and energy consumption considerations in the new mobile

architectures including multi-core processors and hardware accelerated video codecs.

113

CHAPTER 6

Applications and open issues

Contents

6.1 Introduction . 115

6.2 Energy-aware video decoding in adaptive streaming . . . 115

6.2.1 Motivational example . 115

6.2.2 Energy aware scheduling of video decoding on heterogeneous

multi-core SoCs . 116

6.2.3 Video-quality aware DVFS 120

6.3 Energy efficiency of high definition video decoding 123

6.3.1 Motivation . 123

6.3.2 Experimental evaluation . 124

6.3.3 Experimental results . 126

6.4 Discussion . 132

6.4.1 Per-core frequency scaling . 132

6.4.2 Processing migration on asymmetric multi-cores 133

6.5 Conclusion . 134

114

6.1 Introduction

In this chapter we present various ways to use the obtained results from the charac-

terization and the performance/energy modeling of the video decoding . Then, we

comment some issues that we plan to investigate as future works.

We, first, give some propositions for energy saving of video decoding in the context

of adaptive quality video decoding. In fact, one of the strength of the proposed models

is that they describe the variation of the performance and the energy consumption

of video decoding in terms of video quality and processor frequency for both GPP

(ARM) processor and DSP. We show that this is useful to select the best processing

resources configuration (processor type and/or processor frequency) according to the

desired video quality.

Secondly, we discuss the energy consumption issue in case of high definition quality

which was not covered in the above discussed characterization and modeling study.

We focus particularly on evaluating the energy efficiency of parallel multi-core and

hardware accelerated video decoding. This is a preliminary work addressing the energy

efficiency versus flexibility balance in video decoding.

6.2 Energy-aware video decoding in adaptive streaming

In this section, we first introduce through a motivational example, the adaptive video

streaming and highlight the opportunity of saving energy in the context of dynamic

video quality adaptation [12]. Then we present two techniques for saving energy in

adaptive video decoding. The first one intervenes at the scheduling phase for selecting

the best energy efficient processor according to the video quality. The second one, pro-

poses a video-quality aware DVFS where the processor frequency is selected according

to the video quality to minimize the consumed energy while guaranteeing the video

decoding QoS.

6.2.1 Motivational example

To cope with the network bandwidth fluctuation and the heterogeneous mobile device

capabilities, more and more video content providers such as Youtube and Netfilix,

support adaptive video streaming [12]. As illustrated in Fig. 6.1, in adaptive video

streaming, a video stream S is divided into sequential and independent elementary

115

Figure 6.1: Adaptive streaming

segments S1, S2, . . .Sn. Each segment Si represents a few seconds video sequence and

is coded into different video qualities Q1, Q2 . . .Qm. A video segment Si having the

quality Qj is represented by a chunk Sij. For example, a two minutes video sequence

may be divided into 60 segments of 2 seconds duration each. Each segment may be

coded into 512 Kb/s, 1 Mb/s, 2 Mb and 4 Mb/s bit-rate video qualities. The video

decoder may then switch dynamically between the different video qualities according

to the network bandwidth variation or its battery level.

In this context, adaptive video streaming poses a new challenge to energy aware

video decoding. In fact, the video decoder should take into consideration at run time

the dynamic variation of the video quality in dimensioning its processing resources to

save energy.

6.2.2 Energy aware scheduling of video decoding on heterogeneous multi-

core SoCs

In general, process scheduling over heterogeneous SoC provides interesting opportuni-

ties for saving energy [116]. In fact, the scheduler may consider both the performance

and energy consumption properties of the underlying processing resources while assign-

ing a processor to a given task. For example, in process scheduling over the big.LITTLE

ARM SoC used recently in mobile device, the I/O-bound tasks are executed on little

and energy efficient Cortex A7 cores, while processor-bound tasks are executed on big

Cortex A15 core [117].

Based on this principle, we propose in what follows, a scheduling technique over AR-

M/DSP cores. This scheduling technique takes into consideration the video workload

characteristics to select the best energy efficient core for decoding a video.

116

Figure 6.2: Video-quality and energy aware video decoding on heterogeneous SoCs

6.2.2.1 Principles

In section 4.3.3.3, we highlighted that when a video is decoded in an external specialized

processor such as a DSP, a non-negligible part of the decoding time and the consumed

energy is spent in the overhead due the I/O. We mentioned that if the actual video

decoding workload is not very high (For example in case of low video quality), the

overhead becomes significant and lead to a drastic drop in the performance and energy

efficiency as compared to ARM video decoding. Through an example illustrated in Fig.

6.2-a which shows the combination of energy models developed for the ARM and the

DSP, an optimal energy model may be obtained if the low video qualities are decoded

on the ARM and the high video qualities on the DSP.

This is particularly interesting in the above introduced adaptive video decoding con-

text. As illustrated in Fig. 6.2-b, when a video decoder adapts dynamically the quality

of the video, it may decide accordingly on which processor it is decoded depending on

the video quality.

6.2.2.2 Implementation

Based on the above discussed proposition, a basic video decoder was implemented on

the OMAP3530 SoC to take into consideration the video quality to decide on which

processor a video should be decoded. The scheduling decision criteria which was im-

plemented is based on the observation that cif, 4cif video decoding is more energy

efficient on the DSP processor while qcif video decoding is more energy efficient on the

ARM processor (see chapter 4).

117

Figure 6.3: Embedding video chunks in MP4 file

To implement this scheduling policy, we have used GStreamer framework. In the

proposed solution, we reproduced a typical adaptive streaming scenario where a video

content was coded in different qualities and divided into small chunks. To simplify the

implementation, we encapsulated these different chunks in one MP4 file1 as illustrated

in Fig. 6.3.

Then, a GStreamer pipe (see section 3.4.3.3) is built to decode the video chunks

contained in the mp4 file. The corresponding GStreamer pipe (see section 3.4.3.3)

consists of the following elements:

• filesrc : for reading the video file.

• qtdemux : for extracting the video content (H.264/AVC coded data) from the

MP4 files.

• ffdec h264 or TIViddec2 : for decoding the coded H.264/AVC data using the

ARM processor or the DSP.

• xvimagesink : for displaying the video content.

As illustrated in Fig. 6.4: a video file is read using filesrc element (1) then its

video content is extracted (2) using qtdemux demuxer. This element raises a ”new

pad”2 event (3) when it detects a new video chunk. According to the ”pad” properties

(in our case, the resolution of the transported video), a dedicated event handler plugs

dynamically (4) the demuxer to the ffdec h264 or TIViddec2 decoder element. The

next detected pads are queued in a list (5). When a video chunk is totally played, an

”End Of Stream” (EOS) message is sent via the communication bus (6). Each time

an EOS is sent, a message listener treats it by retrieving a pad from the list (7) and

plugs it to a decoder element (ARM or DSP decoder) according to the video quality

1Actually, in adaptive streaming, each video chunk is coded in a separate container file. A manifest

XML file which provides to the decoder the description (location and quality) of each chunk.
2In GStreamer framework, a pad is software component allowing to connect pipe elements

118

(8). The processor switching is achieved at this step. The selected decoder is then

connected to the xvimagesink display element. All these functionalities are controlled

from the application using an API provided by the GStreamer framework.

6.2.2.3 Evaluation

The player with the proposed scheduling policy achieved a transparent processor switch-

ing according to the decoded video resolution. Figure 6.5 shows the power consumption

plots resulting from decoding consecutive (cif, 4Mb/s) and (qcif, 512 Kb/s) chunks

when disabling (Fig. 6.5-a) and enabling (Fig. 6.5-b) the processor switching. We can

observe that switching to ARM decoding in case of qcif resolution allows reducing con-

siderably the power consumption. A 30% energy saving was achieved in this example

as compared to the static scheduling on DSP, without impact on the performance.

The proposed scheduling policy selects dynamically the appropriate processor for

decoding a video according to its resolution. However, it can easily be extended to

Figure 6.4: Dynamic processor switching solution design using GStreamer

119

0 500 1000 1500 2000 2500 3000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Time (s)

P
ow

er
 (

W
)

Video decoding without processor switching

cif video qcif video

Video quality adaptation

0 500 1000 1500 2000 2500 3000
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time (ms)

P
ow

er
 (

W
)

Video decoding with processor switching

cif video qcif video

Video quality adaptation
and processor switching
(DSP −> ARM)

Figure 6.5: Impact of dynamic processor switching on video decoding power consump-

tion

Figure 6.6: Video-quality aware DVFS

take into consideration the bit-rate (see Table 4.6) or any other video property.

6.2.3 Video-quality aware DVFS

In this section, we provide some guidelines on how to use the developed performance

models to select the processor frequency for a given video quality in case of adaptive

video decoding.

6.2.3.1 Problem description

As shown in section 4.3.3.1, the video decoding performance highly depends on the

video quality. Thus, the required processing resource configuration may vary when the

video quality changes. For example, in case of the use of DVFS, an adaptive video

decoder should react to a video quality changes to adjust the processor frequency

accordingly. Figure 6.6 illustrates such a scenario, where the video quality can change

dynamically. Based on a video-quality aware performance model, the video decoder

120

should adjust dynamically the processor frequency.

We can highlight that the frequency adjustment can be achieved at a frame or

average decoding rate basis. In the latter case, in order to decouple the constant frames

displaying speed from the frame-to-frame workload variation, a buffer may be inserted

between the decoder and the displaying device as suggested in [40] and presented in

section 2.3.1.2.

6.2.3.2 Proposed solution

In the context of the above situation, we provide a possible use of the proposed per-

formance model to drive the processor frequency in case of adaptive video decoding.

One of the advantages of the performance model described in Eq. (5.6) is that it

distinguishes between the architecture/system related parameters and the video pa-

rameters.

1/t = αo + α1.f + (α2 + α3.f).(4 + 6.ln2(qmin.(
r

rmax

−1/a

)) (5.6)

Accordingly, we propose hereafter a methodology (illustrated in Fig. 6.7) were both

the video encoder and the video decoder collaborate to ease the online performance

model building. The objective is to have a video decoding performance model which

allows to select the adequate processor frequency for a given video quality.

First, since a, qmin and Rmax parameters are video dependent, one can suggest

to calculate their values at the encoding phase and send them to the decoder as a

metadata, such as proposed in the studies presented in section 2.5.1.13 (see step 1 in

Fig. 6.7).

Then, if the video parameters (a, qmin and Rmax) are known, the video decoder

can calculate qpavg for the corresponding video sequence using the rate model described

in Eq. (3.8) (step (2) in Fig. 6.7).

Assuming the multi-linear model described in Eq. 5.5, online performance model

building becomes easier. For example, an adaptive linear filtering technique [119] may

be used to calibrate α0, α1, α2 and α3 parameters online. The parameters adjustment

(step (3) in Fig. 6.7) is driven by the error of prediction fed from online performance

3The use of metadata for energy aware video decoding is subject to an active discussions in the

Green Metadata standardization initiative conducted by MPEG [118]

121

a
,q

m
in
,R

m
a
x

V
id

e
o
 e

n
c
o

d
e
r

q
p

a
vg
=

4
+
6
.l
n

2
(q

m
in
(

r

R
m
a
x

)−
1 a
)

B
it
-r

a
te

a
d
a
p
ti
v
e
 f
ilt

e
ri
n

g

q
p

a
vg

V
id

e
o
 d

e
c
o

d
e
r

E
x
e
c
u
ti
o
n
 p

la
tf
o
rm

R
a
te

 m
o
d

e
l

P
a
ra

m
e

tr
ic

p
e
rf

o
rm

a
n
c
e
 m

o
d
e
l

f

F
re

q
u
e
c
y
 s

e
tt
in

g
 p

o
lic

y

a
d
ju

s
te

d

p
e
rf

o
rm

a
n
c
e

m
o
d

e
l

q
p

a
vg

M
e
a
s
u
re

d
 d

e
c
o
d

in
g

 p
e

rf
o
rm

a
n
c
e

Σ

P
re

d
ic

te
d
 d

e
c
o
d

in
g

p
e
rf

o
rm

a
n
c
e

2

4

+

-

5

1

3

1 t
=

α
0
+
α

1
f
+
α

2
q
p

a
vg
+
α

3
fq

p
a
vg

F
ig

u
re

6.
7:

P
er

fo
rm

an
ce

an
d

en
er

gy
co

n
su

m
p
ti

on
m

o
d
el

s
b
u
il
d
in

g

122

calculation of video decoding. In this calibration phase, the decoder has to alternate

between different video decoding configurations (video quality and processor frequency

) to calibrate the model parameters. The largest are the decoded configuration, the

more accurate is the calibrated model.

Once the performance model is calibrated (ex. the error rate is below a given

threshold), it can be used within a DVFS policy (step (4) in Fig. 6.7) to set proactively

the processor frequency for future video sequences depending on the video quality (step

(5) in Fig. 6.7).

The model parameters calibration phase provides to this technique a kind of auto-

learning capabilities. This may present a interesting advantage as compared to the

previously proposed reactive feedback systems presented in 2.5.1.2. In fact, these latter

techniques need to continuously monitor the performance of video decoding to adjust

accordingly the processor frequency. However, as highlighted in [85], the tuning of such

system is not always easy and may depend on the video workload.

The above described methodology provides a guideline to build video-quality aware

DVFS. Its main advantage is that it is based on well validated performance model

allowing a proactive frequency scaling according to the video quality. As a future

work, we plan to implement it within a video decoder and evaluate the energy saving

in case of real adaptive video decoding scenario.

6.3 Energy efficiency of high definition video decoding

6.3.1 Motivation

The video qualities targeted previously ranges from qcif (176 x 144) to 4cif (704 x 576)

resolutions. However, currently, due to the increase of bandwidth capacity and mobile

terminal displaying capabilities, there is more and more demand on high definition

(HD) video (1280 x 720).

HD video quality requires a huge processing which cannot be provided by single

ARM or DSP processors. Currently, most of modern smartphones and tablets use

hardware accelerator to decode HD videos. However, the drawback of hardware video

codecs is that they are not flexible. In fact, video standards evolve quickly and hardware

codec do not adapt to those changes [49]. For example, hardware accelerators for the

new MPEG HEVC (High Efficiency Video Coding) standards are still not available on

mobile devices at the date of writing this document.

123

With the advent of multi-core architecture, parallel decoding on multiple ARM core

may be an attractive solution to fit with the HD decoding processing requirement. The

question which may raise in a context of the use of modern SoC including more and

more cores is how much energy efficient is the parallel HD video decoding on multiple

cores as compared to Hardware codec. In other words, may parallel video decoding

on multi-core ARM conciliate between the flexibility of software codec and the energy

efficiency of the hardware codecs ?

In the following section we will describe a preliminary experimental study where

we compare the performance and the energy efficiency of parallel video decoding as

compared to the use of hardware codec.

6.3.2 Experimental evaluation

We have used the same environment described in 3.4. To evaluate parallel and hard-

ware video decoding, we have integrated a new embedded board and achieved some

additional configuration on the video decoder.

6.3.2.1 Hardware and software setup

We used in our experiment the SABRE development board containing the low-power

i.MX6 Quad-core SoC. This SoC consists of the Quad Cortex A9 ARM processors and

a set of specialized processing units such as a Graphical Processing Unit (GPU) and

a Video Processing Unit (VPU) (see Fig. 6.8). Each Cortex A9 processor supports 3

frequencies: 400 MHz, 800 MHz and 1000 MHz. The VPU is a hardware accelerator

implementing H.264/AVC encoding/decoding standard. It is clocked at 264 MHz and

supports full HD video decoding up to 60 Hz rate. In what follows, the VPU term

serves to designate the video hardware accelerator.

On this hardware platform, the Linux kernel version 3.0.17 was used with cpufreq en-

abled to drive the ARM cores frequency scaling. The userspace governor was activated

to allow the control of the clock frequency at the application level. The H.264/AVC

video decoding was achieved using GStreamer. The ARM decoding, was performed us-

ing ffdec h264 plug-in based on the libavcodec. For the hardware accelerated decoding,

we used vpudec, a proprietary GStreamer H.264/AVC plug-in provided by Freescale.

The libavcodec library supports both slice and frame multi-threaded decoding. To

fully make use of the available processors, we use slice-based multi-threaded decoding

124

Figure 6.8: i.MX6 SoC power domains

in our experiments. In fact, in slice-based parallelism, each slice can be decoded inde-

pendently from each other one. On the other hand, in frame-based parallelism, there

may exist some dependencies between the frame which limits the number of parallel

threads (see section 2.3.2).

The ffdec h264 plug-in does not allow to select explicitly which method to use and

the automatic selection mechanism tends to select systematically the frame-level multi-

threading. To fix this issue, the plug-in was forced to use the slice-level method by

setting active thread type = FF THREAD SLICE in the pthread.c source file.

As a test video, we used the well-known Big Buck Bunny sequence. We encoded

it in 720p resolution (1280x720), 2Mb/s bit-rate and 24Hz rate using x264 encoder.

We configured the encoder to set the number of slices per frame to 4 by means of the

–slices option. The objective is to fully make use of the 4 available ARM processors

on the i.MX6 SoC while decoding the video.

6.3.2.2 Performance measurement

We started by measuring the performance of video decoding using a single core, dual-

core, quad-core decoding at all the available clock frequencies (400, 800 and 1000 MHz)

and the VPU decoding. The number of cores used for decoding the video was selected

by setting the value of max threads parameter of the ffdec h264 plug-in. The VPU

and multi-core video decoding is selected by choosing the corresponding GStreamer

plug-in: (ffdec h264 or vpudec). For each configuration, we measured the number of

decoded frames per second (FPS).

125

400 MHz 800 MHz 1000 MHz

1 core 7,16 13,71 17,03

2 cores 12,30 (x 1.71) 24,55 (x 1.79) 28,02 (x 1.64)

4 cores 18,35 (x 2.56) 33,36 (x 2.43) 39,80 (x 2.33)

VPU 90,57 (x 12.64) 90,61 (x 6.60) 91,05 (x 5.34)

Table 6.1: HD video decoding performances (fps) (i.MX6)

6.3.2.3 Energy consumption measurement

The used SABRE board has two power domains which can be measured separately.

The ARM power domain includes the four ARM cores plus the cache memory and

the SoC power domain includes the VPU and other specialized graphical and image

processing units [120]. At each power domain was inserted Rshunt, a 0.02 Ω shunt

resistor (see Fig. 6.8).

The power consumptions is then measured using the Open-PEOPLE framework

[23], used previously is our experimentation (see section 3.4.2.1). In case of multi-core

ARM video decoding, only the ARM power domain consumption is measured. On the

other hand, the sum of the ARM power domain and the SoC power are measured in

case of VPU decoding since both the ARM cores and the VPU are involved in the

decoding process.

6.3.3 Experimental results

We discuss hereafter the measured performance and energy consumption of video de-

coding on ARM processors and hardware accelerator.

6.3.3.1 Video decoding performances

Table 6.1 shows the performance results of the video decoding. We can observe that

in case of multi-core decoding, the decoding speed is higher than the displaying rate

using 2 cores or 4 cores starting from 800 MHz clock frequency. In case of VPU video

decoding, the decoding speed is (x 3.75) higher than the displaying rate regardless of

the ARM cores frequency4. This is illustrated in Fig. 6.9 where the flat red (dark)

surface represents the displaying rate (24 Frames/s).

4The frequency of the VPU frequency (264 MHz) remains constant when varying the frequency of

the ARM cores

126

Figure 6.9: Performance of HD video decoding (i.MX6)

The values between parentheses in Table 6.1 represent the performance scaling

factor as compared to mono-core video decoding. We can observe that using four

ARM cores allows only x2.4 performance increase. This is mainly due to the unbalanced

workload. In fact, the video encoder divides each frame into equal-sized slices. However,

the decoding workload depends on the slice scene complexity. Thus, a decoding thread

assigned to a given slice may terminate before the other ones. During this time, it goes

into a blocked state waiting for the other threads to terminate.

Notice that, the scaling factor is much higher (from x5 to x12) in case of VPU

decoding. This is due to MB level parallelism implemented in the VPU.

The measured processor usage values5 illustrated in Fig. 6.10 confirm these obser-

5processor usage = (
∑

i Ti)/Texe where Ti is the time that the ith thread got a processor core

1 core 2 cores 4 cores VPU
0

50

100

150

200

250

300
Processor usage

P
er

ce
nt

ag
e

(%
)

Figure 6.10: Processor usage of HD video decoding

127

Figure 6.11: Energy consumption of HD video decoding (i.MX6 SoC)

400 MHz 800 MHz 1000 MHz

1 core 19.16 27.24 33.85

2 cores 15.46 (x 0.80) 22.57 (x 0.82) 26.16 (x 0.77)

4 cores 13.55 (x 0.70) 20.30 (x 0.74) 25.12 (x 0.74)

VPU 6.41 (x 0.33) 6.53 (x 0.23) 6.61 (x 0.18)

Table 6.2: HD video decoding energy consumption (mJ/Frame) (i.MX6)

vations. In fact, in case of single-core video decoding (one thread), the processor usage

is 100% which means that the decoding thread is all time in active state. However, it

is around 160% and 260%6 in case of dual-core and quad-core decoding respectively.

However, when using the VPU, the processor usage is about 15% because the ARM

cores are in idle mode almost all the time waiting for the frame to be decoded by the

VPU.

6.3.3.2 Video decoding energy consumption

Table 6.2 shows the energy consumption of video decoding using the ARM cores and

the VPU. The values between parentheses in Table 6.1 represent the energy saving

factor as compared to single core decoding using the same frequency.

As expected, for a given clock frequency, increasing the number of cores allows to

(active time), Texe is the decoding time.
6The processor usage is higher than 100% because the sum of the the times spent by the threads

in different cores is higher than the total decoding time

128

5 10 15 20 25 30
0

0.5

1

1.5

2

Time (s)

P
ow

er
 (

W
)

ARM−core

Video decoding

SoC

VPU Power consumption

a) Hardware accelerated HD video decoding
(ARM : 400 Mhz / VPU : 264 Mhz)

0 10 20 30 40

0

0,5

1

Time (ms)

P
ow

er
 (

W
)

Video frame
decoding

VPU Power consumption

ARM−coreARM
idle

ARM
active

SoC

b) Frame−by−frame hardware accelerated (VPU) HD
video decoding (ARM : 400 Mhz, VPU : 264 Mhz)

Figure 6.12: VPU HD Video decoding power consumption

reduce the energy consumption (see Fig. 6.11). For example, as compared to mono-

core decoding, the optimal multi-core configuration (4 cores, 800 MHz)7 deceases the

energy by a factor of x0.74 while increasing the performance by a factor of x2.43.

On the other hand, the energy saving is much higher in case of VPU video decod-

ing (0.23 scaling factor) as compared to mono-core decoding at 800 MHz and x0.36 as

compared to the optimal multi-core video decoding (4 cores, 800 MHz). This can be

explained by both a high decoding performance and a very low power consumption of

the VPU. As illustrated in Fig. 6.12-a, we can observe that the decoding of the 480

video frames terminates in almost 5 seconds. During this decoding phase, the power

7The configuration which consumes the lowest amount of energy with a decoding speed higher than

24 fps

129

5 10 15 20 25 30
0

0.5

1

1.5

2

Time (s)

P
ow

er
 (

W
)

ARM−core

Video decoding

a) Parallele (4 cores) HD video decoding
(400 Mhz)

5 10 15 20 25 30
0

0.5

1

1.5

2

Time (s)

P
ow

er
 (

W
)

ARM−core

Video decoding

b) Parallele (4 cores) HD video decoding
(800 Mhz)

5 10 15 20 25 30
0

0.5

1

1.5

2

Time (s)

P
ow

er
 (

W
)

ARM−core

Video decoding

c) Parallele (4 cores) HD video decoding
(1000 Mhz)

Figure 6.13: Parallel multi-core HD video decoding energy consumption

130

consumption of the SoC power domain increases with only 0.2 W which corresponds

to the VPU power consumption. This low value can be explained by the low fre-

quency (264 MHz) of the VPU. During this time, the ARM cores power consumption

is negligible. In fact, as illustrated in Fig. 6.12-b showing the frame-by-frame power

consumption variation, the ARM cores are almost all the time in idle state waiting for

the VPU to decode a video frame. In the idle state, the ARM cores execute the WFI

(Wait For Interrupt) instruction where most of the processor clocks are gated to reduce

the power consumption.

Unlike the VPU decoding, multi-core video decoding cannot conciliate the perfor-

mance and the energy efficiency. As illustrated in Fig. 6.13, at 400 MHz frequency

(see Fig. 6.13-a), the power consumption is low (= 0.3 mW), but the decoding time is

very long. On the other hand, at higher frequencies, the decoding time decreases but

the power consumption increases considerably (see Fig. 6.13-b and c).

We can highlight that the unbalanced workload over the processor cores may be

source of energy inefficiency. In fact, during a thread waiting time, the processor core

continues to consume energy while doing nothing (see section 6.4 for more detailed

comments).

The main conclusions we can draw from the above experimentations are twofold.

First, when considering the overall system energy balance, the gap between the energy

consumption of software and hardware accelerated video decoding is not so important

as one may expect. In fact, while the difference between raw energy consumption of

GPP and specialized processor is expected to be about two orders of magnitude (see

section 2.3.3), we have noticed that the ratio between a hardware accelerated and 1

core ARM processor video decoding is 1/5 (see Table 6.2).

Second, the gap between the energy consumption of software hardware accelerated

video decoding can be bridged using parallel decoding on GPP processors. In fact, a

trivial parallel video decoding setup (4 cores, 800 MHz) without using any optimization

leads to a ratio of only 1/3 between software and hardware decoding energy consump-

tion. One may expect that the use of optimizations allows further reduction of this gap.

To achieve this objective, it is necessary to develop performances and energy models

considering this kind of multi-core architectures. In the following section, we discuss

the main challenges and issues for developing such performance and energy models.

131

6.4 Discussion

The developed models in this thesis considered sequential video decoding on hetero-

geneous processing with different instruction set architectures (GPP and DSP). The

application of the proposed models consists in either scaling the frequency of the used

processors or the decoding migration between the DSP or the GPP. Both approaches

are based on performance models related to a video sequence (a set of frames).

The use of parallel processing on muti-cores architecture allows to deal with high

processing requirement of HD video decoding. However, to enhance the energy effi-

ciency of the used cores, it is necessary to have fine-grained performance models to

adjust the processing resources at small video unit basis. In fact, the decoder should

be able to predict the decoding workload at a slice or frame basis and take an opti-

mization decision accordingly. The new trends in multi-cores architecture offer two

possible optimization strategies :

6.4.1 Per-core frequency scaling

We have shown that the parallelization of video decoding over multiple cores may lead

to unbalanced workload (see section 6.3). The waiting time due to early decoding

termination on a given core is a source of energy inefficiency. One approach to fix this

issue is to set the clock frequency of each core depending on the assigned decoding

workload (a slice or a frame).

In [121], the author shows that per-core DVFS enhances the energy efficiency of

various benchmark workload. This needs to be investigated more deeply in case of

video decoding. The main challenge faced to implement such strategy in case of video

decoding is to predict the future workload accurately at a frame or slice granularity. In

this context, the new possibilities offered by the Green Metadata standard may help

in driving the decoder processing capabilities very accurately using assisting metadata

sent by the encoder [118]. Currently, the standard support sending metadata at a video

sequence and a frame basis. It would be interesting to study the impact of per-core

DVFS in case of slice-based parallel video decoding to evaluate the relevance of sending

metadata at a slice basis.

132

Figure 6.14: Power consumption of little and big core in Exynos 5422 SoC

6.4.2 Processing migration on asymmetric multi-cores

New trends in mobile multi-cores architecture are more and more moving toward the

use of single instruction set architecture asymmetric cores. For example, the last

big.LITTLE ARM architecture proposes a SoC based on four cortex A7 energy efficient

cores and four Cortex A15 high throughput cores. In addition to the parallelism, the

principle of energy saving on these architectures is to move low workload on little energy

efficient core and high workload on the big cores. As compared to per-core frequency

scaling, this approach has two advantages [122] : 1) The workload migration from

one core to another has a lower overhead than scaling the core frequency. 2) Moving

a workload to an energy efficient core is more energy efficient than simply scaling

down the processor frequency. In fact, thanks to an optimized design (simpler pipe

architecture, smaller cache memory, ...), the little cores offer better energy saving

opportunities. For example, Fig. 6.14 illustrates the large gap between the power

consumption of both little as compared to big cores in the Samsung Exynos 5422 Octa

core SoC.

To leverage the energy efficiency of parallel video decoding on such kinds of ar-

chitectures, the main faced challenges are to develop performance models which help

the decoder to select which type of core to use to process a given workload. Although

the decoder may be assisted by metadata information, it should have the capability to

interpret them differently and accurately on the available heterogeneous architectures.

This assumes the development of mechanism to map matadata workload information

onto different target architectures.

133

6.5 Conclusion

In this chapter, we showed how to use the obtained results for enhancing the energy

efficiency of adaptive video decoding. We have particularly proposed a proof of concept

of a scheduling approach for saving energy of video decoding on heterogeneous SoC.

Then, guidelines were provided for building a DVFS governor for driving the processor

frequency in case of adaptive video decoding. Both proposed solutions need more

extensive experimentation to be validated. We plan to address those issues in future

works.

As a complementary work, we addressed in this chapter the issue of the energy

efficiency of High Definition video decoding which was not covered in the proposed

characterization and modeling methodology. We particularly focused on two architec-

tures which are hardware accelerator and parallel multi-cores. The experimentations

results suggest that parallel multi-cores video decoding is a promising technique which

may have energy consumption close to hardware decoder if further optimization are

used. Accordingly, we have pointed out the main challenges for enhancing the energy

efficiency on parallel video decoding on such kind of multi-cores architecture.

134

CHAPTER 7

Conclusions and future works

This thesis focused on the energy consumption issue of video decoding which is one of

the most energy intensive applications running on mobile devices. Due to ever growing

of both mobile video traffic and the power consumption of the hardware, this issue is

addressed actively by the community. The objective of our work is to contribute to this

effort to bridge the gap between the explosion of power consumption and the mobile

device autonomy.

In this this work, we aimed to enhance the understanding of the power consump-

tion behavior of video decoding on modern heterogeneous SoCs. Accordingly, it was

proposed an end-to-end methodology for characterizing and modeling the performance

and the energy consumption of video decoding applications on heterogeneous SoC.

The proposed methodology is based on extensive performance and energy consump-

tion measurement. This was motivated by our desire to build performance and energy

models which represent as close as possible real life scenario. In addition, we gave

a particular attention in our work to derive from the achieved experimentation the

maximum information for making the developed models reusable and generalizable to

other platforms different from those used in the experimentations.

For this purpose, our works was divided into two phases : characterization and

modeling. The characterization part was achieved on different processing configurations

including mono core GPP processor, DSP, multi-cores ARM processors and hardware

video codec. On these architecture configurations, a large set of system and video

parameters was covered. For example, the system overhead was evaluated and its

impact on the overall performance and energy consumption was analyzed. Moreover,

a wide range of video configurations was tested including different representative video

135

sequences coded into low, standard and high definition qualities.

The contribution of the characterization part of this work is twofold. First, the use

of a unified methodology executed within a common multimedia framework allowed

to evaluate in the same condition the performance and the energy consumption of

decoding different video qualities on various processing architectures. Second, the

multi-level characterization of the video decoding process highlighted the importance

to consider different parameters which may pertain to different abstraction levels in

evaluating the overall energy efficiency of a given system.

For instance, it was shown that considering jointly the system energy overhead and

the video quality may lead to configurations where the GPP is more energy efficient

than a DSP for video decoding. On the other hand, the analysis of the overall energy

balance of parallel muti-core HD video decoding as compared to hardware codec, shows

that the gap between the two approaches is not much important as it was expected.

The modeling part of this thesis covered two processor architectures : ARM proces-

sors and DSP. Based on the obtained characterization empirical results, mathematical

performance and energy models were developed. Using a sub-model decomposition ap-

proach, the proposed models describe the performance and the energy consumption in

terms of the video bit-rate and the clock frequency in addition to a set of comprehensive

constant parameters related to the video complexity and the underlying architecture.

The developed models are very accurate (R2 = 97%) for both GPP and DSP video

decoding.

Moreover, it was shown that the combination of these different sub-models allows

to build an accurate high level performance and energy model for video decoding. This

result was used to provide a reduced complexity and fast energy model building and

generalization methodology for a given target architecture. The key idea is to identify

clearly the model parameters depending on the video and those depending on the

underlying system and architecture. Only the latter should be calculated again when

the target architecture changes.

Finally, some propositions for using the results of this study were proposed. Partic-

ularly, We explain how to use the proposed models (which consider the video quality

and the processor frequency parameters) to dimension the processing resource in the

context of adaptive video. These propositions are guidelines which need to be investi-

gated more deeply as we will discuss hereafter in the future works that we plan.

136

Future works

The results of this thesis allowed to highlight interesting applications and open issues

which need a deeper investigation. Hereafter, are listed some of them that we are

planning to address in the future.

Video quality aware frequency scaling

We have provided guidelines for online video decoding performance model construction

(see section 6.2) to adapt the processor frequency according to the video quality. One

of the most challenging issue to implement such technique is the calibration of the

model parameters to fit the target architecture.

Under the assumption that the multi-linear relationship of the model (which was

verified for 3 processor architectures including a DSP), the regression coefficients can

be calculated online using appropriate techniques such as adaptive filtering or neu-

ral network based regression. The objective is to provide to the video decoder some

auto-learning capabilities for predicting the upcoming workload based on the workload

history.

Performance scalability vs memory performance

One of the strength of the proposed performance model is that it describes analytically

how the performance scaling varies when changing the video quality.

Based on previous studies in the literature reporting a relationship between the

memory access rate and cache miss ratio, from one side, and the video quality from

the other side, we have expressed the abstract model parameters in terms of memory

hierarchy properties (see section 5.4.1). This mapping has been done a posteriori and

need to be verified rigorously using experimentation. This was not possible on real

platform used in our experimentation since it is not possible to modify their memory

configuration.

As a future work, we plan to explore this issue using architecture simulators of-

fering much more flexibility for configuring such low level details. According to our

preliminary investigations, the GEM5 simulator [123] suits very well our needs. In

fact, it supports cycle accurate DVFS simulation of various processor and memory

architectures.

137

Generalization to other video codecs

In this study we focused on H.264/AVC, however, the methodology can be extended to

H.265 (HEVC), the successor of H.264/AVC. In fact, although H.265 has introduced a

lot of changes in the internal coding algorithms, it is still based on the same principles

used in almost all MPEG codecs family. The high level video related parameters used

in this study (qp, bit-rate, step-size) are still valid in H.265 standard. Thus, the

characterization and the modeling methodology can be executed without any changes

since they are independent from the codec internal details. However, the regression

analysis may lead to different analytical forms of the rate and performance models.

This will be the focus of some future investigations.

Energy efficiency of parallel video decoding

We have presented in this thesis a preliminary experimental study to evaluate the

energy efficiency of parallel multi-core HD video decoding as compared to hardware

codec. Indeed, the hardware codec is more energy efficient than the parallel GPP

cores, however, the gap separating the two approaches is not much important. One

may expect to reduce it if some optimizations are achieved in the decoding process.

The objective is to conciliate the flexibility of the software codecs and energy efficiency

of the hardware accelerated.

From our point of view, a load balancing strategy combined with a per-core DVFS

scaling and/or thread migration over heterogeneous asymmetric cores is a promising

technique to save energy of parallel video decoding. This is one of the open issues we

plan to investigate in our future works.

Participation to the MPEG Green meta-data standardization

Finally, we would like to conclude this work by highlighting the ever growing interest of

the mobile device industry for the energy saving considerations of video applications.

This has been concertized recently by the MPEG Green meta-data standardization

initiative [118] grouping the most important actors in the mobile devices industry.

This may be an interesting opportunity to federate the research works in the field of

energy consumption of video applications and to encourage the use of their results in

real industry products.

In this context, a collaboration work is in progress with the GreenVideo FUI project

138

[124] to use the results obtained in this thesis in an experimental video decoder. Par-

ticularly, we are working on integrating the proposed performance model in a DASH

video player supporting Green meta-data. This player is developed by Thomson Video

Network, one of the industrial partners involved in the GreenVideo project.

139

Bibliography

[1] International Technology Roadmap for Semiconductors. Design. http://www.

itrs.net/Links/2012ITRS/2012Chapters/2012Overview.pdf, 2012.

[2] M. Horowitz. Computing’s energy problem (and what we can do about it). In

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE

International, pages 10–14, Feb 2014.

[3] Jae-Beom Lee, Myoung-Jin Kim, Sungroh Yoon, and Eui-Young Chung.

Application-support particle filter for dynamic voltage scaling of multimedia ap-

plications. Computers, IEEE Transactions on, 61(9):1256–1269, Sept 2012.

[4] Georgios Keramidas, Vasileios Spiliopoulos, and Stefanos Kaxiras. Interval-based

models for run-time DVFS orchestration in superscalar processors. In Proceedings

of the 7th ACM International Conference on Computing Frontiers, CF ’10, pages

287–296, New York, NY, USA, 2010. ACM.

[5] Y. Benmoussa, J. Boukhobza, E. Senn, and D. Benazzouz. Evaluation of the

performance/energy overhead in dsp video decoding and its implications. In

Digital System Design (DSD), 2013 Euromicro Conference on, 2013.

[6] Yahia Benmoussa, Jalil Boukhobza, Yassine Hadjadj Aoul, Löıc Lagadec, and

Djamel Benazzouz. Behavioral system level power consumption modeling of mo-

bile video streaming applications. In GDR SoC SIP Workshop, 2012.

[7] Michel Broussely and Graham Archdale. Li-ion batteries and portable power

source prospects for the next 5-10 years. Journal of Power Sources, 136(2):386–

394, October 2004.

[8] Cisco. Cisco visual networking index: Global mobile data traffic forecast update.

http://bit.ly/bwGY7L, 2013.

140

http://www.itrs.net/Links/2012ITRS/2012Chapters/2012Overview.pdf
http://www.itrs.net/Links/2012ITRS/2012Chapters/2012Overview.pdf
http://bit.ly/bwGY7L

[9] OOYALA. Ooyala Global Video Index Q2 2013. http://go.ooyala.com/

wf-video-index-q2-2013.html, 2013.

[10] A. Carroll and G. Heiser. An analysis of power consumption in a smartphone.

Proceedings of the USENIX Annual Technical Conference, pages 21–28, 2010.

[11] Aaron Carroll and Gernot Heiser. The systems hacker’s guide to the galaxy

energy usage in a modern smartphone. In Proceedings of the 4th Asia-Pacific

Workshop on Systems, APSys ’13, pages 5:1–5:7, New York, NY, USA, 2013.

ACM.

[12] Thomas Stockhammer. Dynamic adaptive streaming over HTTP : standards

and design principles. Proceedings of the second annual ACM conference on

Multimedia systems, pages 133–144, 2011.

[13] R. Trestian, O. Ormond, and G.-M. Muntean. Enhanced power-friendly access

network selection strategy for multimedia delivery over heterogeneous wireless

networks. Broadcasting, IEEE Transactions on, 60(1):85–101, March 2014.

[14] Shekhar Borkar. Thousand core chips: A technology perspective. In Proceedings

of the 44th Annual Design Automation Conference, DAC ’07, pages 746–749.

ACM, 2007.

[15] D. Markovic, V. Stojanovic, B. Nikolic, M.A. Horowitz, and R.W. Brodersen.

Methods for true energy-performance optimization. Solid-State Circuits, IEEE

Journal of, 39(8):1282–1293, 2004.

[16] A. Wang and A. Chandrakasan. Energy-efficient DSPs for wireless sensor net-

works. Signal Processing Magazine, IEEE, 19(4):68–78, 2002.

[17] C. H. (Kees) Van Berkel. Multi-core for mobile phones. Proceedings of the

Conference on Design, Automation and Test in Europe, pages 1260–1265, 2009.

[18] B. Ouni, C. Belleudy, S. Bilavarn, and E. Senn. Embedded operating systems

energy overhead. In Design and Architectures for Signal and Image Processing

(DASIP), 2011 Conference on, pages 1–6, Nov 2011.

141

http://go.ooyala.com/wf-video-index-q2-2013.html
http://go.ooyala.com/wf-video-index-q2-2013.html

[19] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-

level power analysis and optimizations. In Computer Architecture, 2000. Pro-

ceedings of the 27th International Symposium on, pages 83–94, 2000.

[20] Gilberto Contreras and Margaret Martonosi. Power prediction for intel xscale R©

processors using performance monitoring unit events. In Low Power Electronics

and Design, 2005. ISLPED’05. Proceedings of the 2005 International Symposium

on, pages 221–226. IEEE, 2005.

[21] V. Spiliopoulos, A. Bagdia, A. Hansson, P. Aldworth, and S. Kaxiras. Introducing

dvfs-management in a full-system simulator. In Modeling, Analysis Simulation

of Computer and Telecommunication Systems (MASCOTS), 2013 IEEE 21st In-

ternational Symposium on, pages 535–545, Aug 2013.

[22] Yahia Benmoussa, Jalil Boukhobza, Eric Senn, and Djamel Benazzouz. Gpp vs

dsp: A performance/energy characterization and evaluation of video decoding.

In Proceedings of the 2013 IEEE 21st International Symposium on Modelling,

Analysis & Simulation of Computer and Telecommunication Systems, MASCOTS

’13, pages 273–282. IEEE Computer Society, 2013.

[23] Yahia Benmoussa, Eric Senn, Jalil Boukhobza, Mickael Lanoe, and Djamel Be-

nazzouz. Open-PEOPLE, a collaborative platform for remote & accurate mea-

surement and evaluation of embedded systems power consumption. in Proceedings

of the IEEE 22nd International Symposium On Modeling, Analysis And Simula-

tion Of Computer And Telecommunication Systems, 2014.

[24] Yahia Benmoussa, Jalil Boukhobza, Eric Senn, and Djamel Benazzouz. On the

energy efficiency of parallel multi-core vs hardware accelerated hd video decoding.

SIGBED Rev., 11(4), February 2014.

[25] Y. Benmoussa, J. Boukhobza, E. Senn, and D. Benazzouz. Energy consumption

modeling of h.264/avc video decoding for gpp and dsp. In Digital System Design

(DSD), 2013 Euromicro Conference on, pages 890–897, Sept 2013.

[26] Yahia Benmoussa, Jalil Boukhobza, Eric Senn, Yassine Hadjadj-Aoul, and

Djamel Benazzouz. A methodology for performance/energy consumption char-

142

acterization and modeling of video decoding on heterogeneous soc and its appli-

cations. Journal of Systems Architecture, 61(1):49 – 70, 2015.

[27] Yahia Benmoussa, Jalil Boukhobza, Eric Senn, Yassine Hadjadj-Aoul, and

Djamel Benazzouz. Dyps: Dynamic processor switching for energy-aware video

decoding on multi-core socs. SIGBED Rev., 11(1):56–61, February 2014.

[28] Quan Huynh-Thu and Mohammed Ghanbari. Scope of validity of psnr in im-

age/video quality assessment. Electronics letters, 44(13):800–801, 2008.

[29] ClemensC. Wst, Liesbeth Steffens, WimF.J. Verhaegh, ReinderJ. Bril, and Chris-

tian Hentschel. Qos control strategies for high-quality video processing. Real-

Time Systems, 30(1-2):7–29, 2005.

[30] Zhijian Lu, J. Lach, M. Stan, and K. Skadron. Reducing multimedia decode

power using feedback control. Computer Design, 2003. Proceedings of the 21st

International Conference on, pages 489–496, 2003.

[31] Ravindra Jejurikar, Cristiano Pereira, and Rajesh Gupta. Leakage aware dynamic

voltage scaling for real-time embedded systems. In Proceedings of the 41st Annual

Design Automation Conference, DAC ’04, pages 275–280, New York, NY, USA,

2004. ACM.

[32] T.D. Burd and R.W. Brodersen. Energy efficient CMOS microprocessor design.

System Sciences, Proceedings of the Twenty-Eighth Hawaii International Confer-

ence on, 1:288–297, 1995.

[33] N.S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J.S. Hu, M.J. Irwin,

M. Kandemir, and V. Narayanan. Leakage current: Moore’s law meets static

power. Computer, 36(12):68–75, 2003.

[34] Konstantin Moiseev, Avinoam Kolodny, and Shmuel Wimer. Timing-aware

power-optimal ordering of signals. ACM Trans. Des. Autom. Electron. Syst.,

13(4):65:1–65:17, October 2008.

[35] Jacob R. Lorch and Alan Jay Smith. Improving dynamic voltage scaling algo-

rithms with pace. SIGMETRICS Perform. Eval. Rev., 29(1):50–61, June 2001.

143

[36] D. Meisner, C.M. Sadler, L.A. Barroso, W. Weber, and T.F. Wenisch. Power

management of online data-intensive services. In Computer Architecture (ISCA),

2011 38th Annual International Symposium on, pages 319–330, June 2011.

[37] Tajana Simunic, Luca Benini, Peter Glynn, and Giovanni De Micheli. Dynamic

power management for portable systems. In Proceedings of the 6th Annual Inter-

national Conference on Mobile Computing and Networking, MobiCom ’00, pages

11–19, New York, NY, USA, 2000. ACM.

[38] Frank Hansen and Gert Kjærg̊ard Pedersen. Jensen’s inequality for operators

and löwner’s theorem. Mathematische Annalen, 258(3):229–241, 1982.

[39] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In

Proceedings of the 36th Annual Symposium on Foundations of Computer Science,

FOCS ’95, pages 374–, Washington, DC, USA, 1995. IEEE Computer Society.

[40] V. Gutnik and A.P. Chandrakasan. Embedded power supply for low-power dsp.

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 5(4):425–

435, 1997.

[41] Kihwan Choi, R. Soma, and M. Pedram. Fine-grained dynamic voltage and

frequency scaling for precise energy and performance tradeoff based on the ra-

tio of off-chip access to on-chip computation times. Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, 24(1):18–28, Jan 2005.

[42] Cor Meenderinck, Arnaldo Azevedo, Mauricio Alvarez, Ben Juurlink, and Alex

Ramirez. Parallel scalability of h. 264. In Proceedings of the first Workshop on

Programmability Issues for Multi-Core Computers, 2008.

[43] M. Horowitz, E. Alon, D. Patil, S. Naffziger, Rajesh Kumar, and K. Bernstein.

Scaling, power, and the future of cmos. In Electron Devices Meeting, 2005. IEDM

Technical Digest. IEEE International, pages 7 pp.–15, Dec 2005.

[44] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov,

Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz.

Understanding sources of inefficiency in general-purpose chips. SIGARCH Com-

put. Archit. News, 38(3):37–47, 2010.

144

[45] Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi Venkatesan, Christos

Kozyrakis, and Mark A Horowitz. Convolution engine: balancing efficiency &

flexibility in specialized computing. In Proceedings of the 40th Annual Interna-

tional Symposium on Computer Architecture, pages 24–35. ACM, 2013.

[46] Ke Xu, Tsu-Ming Liu, Jiun-In Guo, and Chiu-Sing Choy. Methods for pow-

er/throughput/area optimization of H.264/AVC decoding. Journal of Signal

Processing Systems, 60(1):131–145, 2010.

[47] K. Iwata, T. Irita, S. Mochizuki, H. Ueda, M. Ehama, M. Kimura, J. Take-

mura, K. Matsumoto, E. Yamamoto, T. Teranuma, K. Takakubo, H. Watanabe,

S. Yoshioka, and T. Hattori. A 342 mw mobile application processor with full-hd

multi-standard video codec and tile-based address-translation circuits. Solid-

State Circuits, IEEE Journal of, 45(1):59–68, Jan 2010.

[48] Olli Silvén and Tero Rintaluoma. Energy efficiency of video decoder implemen-

tations. In Mobile Phone Programming, pages 421–439. Springer, 2007.

[49] Gerard J.M. Smit, André B.J. Kokkeler, Pascal T. Wolkotte, and Marcel D.

van de Burgwal. Multi-core architectures and streaming applications. In Proceed-

ings of the 2008 international workshop on System level interconnect prediction,

SLIP ’08, pages 35–42. ACM, 2008.

[50] Michael Macedonia. The gpu enters computing’s mainstream. Computer,

36(10):106–108, 2003.

[51] Guobin Shen, Guang-Ping Gao, Shipeng Li, Heung-Yeung Shum, and Ya-Qin

Zhang. Accelerate video decoding with generic gpu. Circuits and Systems for

Video Technology, IEEE Transactions on, 15(5):685–693, 2005.

[52] Bart Pieters, Dieter Van Rijsselbergen, Wesley De Neve, and Rik Van de Walle.

Performance evaluation of h. 264/avc decoding and visualization using the gpu. In

Optical Engineering+ Applications, pages 669606–669606. International Society

for Optics and Photonics, 2007.

[53] Huifang Deng, Chunhui Deng, and Jingjing Li. Gpu-based real-time decoding

technique for high-definition videos. In Intelligent Information Hiding and Mul-

145

timedia Signal Processing (IIH-MSP), 2012 Eighth International Conference on,

pages 186–190. IEEE, 2012.

[54] Texas Instruments. Tms320 dsp/bios users guide. reference spru423b, 2002.

[55] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen. Low-power CMOS digital

design. IEEE Journal of Solid-State Circuits, 27(4):473 –484, 1992.

[56] Suhwan Kim and Marios C Papaefthymiou. Reconfigurable low energy multiplier

for multimedia system design. In VLSI, 2000. Proceedings. IEEE Computer

Society Workshop on, pages 129–134. IEEE, 2000.

[57] M. Alvarez, E. Salami, A. Ramirez, and M. Valero. A performance characteri-

zation of high definition digital video decoding using H.264/AVC. pages 24–33,

October 2005.

[58] Matthew J. Holliman, Eric Q. Li, and Yen kuang Chen. Mpeg decoding workload

characterization. Proceedings of Workshop on Computer Architecture Evaluation

Using Commercial Workloads, 2003.

[59] Shiao-Li Tsao and Sung-Yuan Lee. Performance evaluation of inter-processor

communication for an embedded heterogeneous multi-core processor. Journal of

Information Science and Engineering, 28(3):537–554, 2012.

[60] P. Ramachandra and M. R. Satish. H.264 main profile video decoding imple-

mentation techniques on OMAP3430IVA. Signal Processing (ICSP), IEEE 10th

International Conference on, pages 271–274, 2010.

[61] S. Kant, U. Mithun, and P. S S B K Gupta. Real time H.264 video encoder

implementation on a programmable dsp processor for videophone applications.

Consumer Electronics, 2006. ICCE ’06. 2006 Digest of Technical Papers. Inter-

national Conference on, pages 93–94, 2006.

[62] Tse-Tsung Shih, Chia-Lin Yang, and Yi-Shin Tung. Workload characterization of

the h. 264/avc decoder. In Advances in Multimedia Information Processing-PCM

2004, pages 957–966. Springer, 2005.

[63] T. Austin, E. Larson, and D. Ernst. Simplescalar: an infrastructure for computer

system modeling. Computer, 35(2):59–67, 2002.

146

[64] Nathan T. Slingerland and Alan Jay Smith. Cache performance for multimedia

applications. In Proceedings of the 15th International Conference on Supercom-

puting, ICS ’01, pages 204–217, New York, NY, USA, 2001. ACM.

[65] Z. Xu, S. Sohoni, Rui Min, and Y. Hu. An analysis of cache performance of

multimedia applications. Computers, IEEE Transactions on, 53(1):20–38, Jan

2004.

[66] Cor Meenderinck, Arnaldo Azevedo, Ben Juurlink, Mauricio Alvarez Mesa, and

Alex Ramirez. Parallel scalability of video decoders. J. Signal Process. Syst.,

57(2):173–194, November 2009.

[67] Chu-Hsing Lin, Jung-Chun Liu, and Chun-Wei Liao. Energy analysis of multi-

media video decoding on mobile handheld devices. In Multimedia and Ubiquitous

Engineering, 2007. MUE’07. International Conference on, pages 120–125. IEEE,

2007.

[68] Hendrik Eeckhaut, Harald Devos, and Dirk Stroobandt. The energy scalability

of wavelet-based, scalable video decoding. In PATMOS, pages 363–372, 2007.

[69] Yi-Chu Wang and Kwang-Ting Cheng. Energy and performance characterization

of mobile heterogeneous computing. In Signal Processing Systems (SiPS), 2012

IEEE Workshop on, pages 312–317. IEEE, 2012.

[70] Elias Baaklini, Santhosh Rethinagiri, Hassan Sbeity, and Smail Niar. Scalable

row-based parallel h.264 decoder on embedded multicore processors. Signal, Im-

age and Video Processing, pages 1–15, 2014.

[71] Johan Pouwelse, Koen Langendoen, and Henk Sips. Dynamic voltage scaling on a

low-power microprocessor. Proceedings of the 7th annual international conference

on Mobile computing and networking, pages 251–259, 2001.

[72] Johan Pouwelse, Koen Langendoen, Inald Lagendijk, and Henk Sips. Power-

aware video decoding. In in 22nd Picture Coding Symposium, Seoul, Korea,

pages 303–306, 2001.

[73] Andy C. Bavier, A. Brady Montz, and Larry L. Peterson. Predicting mpeg

execution times. SIGMETRICS Perform. Eval. Rev., 26(1):131–140, June 1998.

147

[74] Ying Tan, P. Malani, Qinru Qiu, and QingWu. Workload prediction and dynamic

voltage scaling for mpeg decoding. In Design Automation, 2006. Asia and South

Pacific Conference on, pages 6 pp.–, Jan 2006.

[75] Sung-Yong Bang, Kwanhu Bang, Sungroh Yoon, and Eui-Young Chung. Run-

time adaptive workload estimation for dynamic voltage scaling. Trans. Comp.-

Aided Des. Integ. Cir. Sys., 28(9):1334–1347, September 2009.

[76] M. Mattavelli, S. Brunetton, and D. Mlynek. Implementing real-time video de-

coding on multimedia processors by complexity prediction techniques. In Con-

sumer Electronics, 1998. ICCE. 1998 Digest of Technical Papers. International

Conference on, pages 264–265, June 1998.

[77] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro. H.264/AVC baseline

profile decoder complexity analysis. Circuits and Systems for Video Technology,

IEEE Trans on, 13(7):704–716, 2003.

[78] Zhan Ma, Hao Hu, and Yao Wang. On complexity modeling of H.264/AVC

video decoding and its application for energy efficient decoding. IEEE Trans on

Multimedia, 13(6):1240 –1255, December 2011.

[79] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for

reduced cpu energy. In Proceedings of the 1st USENIX Conference on Operat-

ing Systems Design and Implementation, OSDI ’94, Berkeley, CA, USA, 1994.

USENIX Association.

[80] Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing algorithm for

dynamic speed-setting of a low-power cpu. In Proceedings of the 1st Annual

International Conference on Mobile Computing and Networking, MobiCom ’95,

pages 13–25, New York, NY, USA, 1995. ACM.

[81] Amit Sinha and Anantha P Chandrakasan. Dynamic voltage scheduling using

adaptive filtering of workload traces. In VLSI Design, 2001. Fourteenth Interna-

tional Conference on, pages 221–226. IEEE, 2001.

[82] T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of dy-

namic voltage scaling algorithms. In Low Power Electronics and Design, 1998.

Proceedings. 1998 International Symposium on, pages 76–81, Aug 1998.

148

[83] Xiaotao Liu, Prashant Shenoy, and Weibo Gong. A time series-based approach

for power management in mobile processors and disks. In Proceedings of the 14th

International Workshop on Network and Operating Systems Support for Digital

Audio and Video, NOSSDAV ’04, pages 74–79, New York, NY, USA, 2004. ACM.

[84] George Edward Pelham Box and Gwilym Jenkins. Time Series Analysis, Fore-

casting and Control. Holden-Day, Incorporated, 1990.

[85] Dirk Grunwald, Charles B. Morrey, III, Philip Levis, Michael Neufeld, and

Keith I. Farkas. Policies for dynamic clock scheduling. In Proceedings of the

4th Conference on Symposium on Operating System Design & Implementation -

Volume 4, OSDI’00, pages 6–6, Berkeley, CA, USA, 2000. USENIX Association.

[86] Rustam Miftakhutdinov, Eiman Ebrahimi, and Yale N. Patt. Predicting per-

formance impact of dvfs for realistic memory systems. In Proceedings of the

2012 45th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO-45, pages 155–165, Washington, DC, USA, 2012. IEEE Computer Soci-

ety.

[87] Thomas L. Martin and Daniel P. Siewiorek. The impact of battery capacity and

memory bandwidth on cpu speed-setting: A case study. In Proceedings of the

1999 International Symposium on Low Power Electronics and Design, ISLPED

’99, pages 200–205, New York, NY, USA, 1999. ACM.

[88] T.L. Martin and D.P. Siewiorek. Nonideal battery and main memory effects on

cpu speed-setting for low power. Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, 9(1):29–34, Feb 2001.

[89] Spec2000. www.spec.org/cpu2000/analysis/memory/, 2014.

[90] Andreas Weissel and Frank Bellosa. Process cruise control: Event-driven clock

scaling for dynamic power management. In Proceedings of the 2002 International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems,

CASES ’02, pages 238–246, New York, NY, USA, 2002. ACM.

[91] J. Choi and H. Cha. Memory-aware dynamic voltage scaling for multimedia

applications. Computers and Digital Techniques, IEE Proceedings -, 153(2):130–

136, March 2006.

149

[92] Zhan Ma, F.C.A Fernandes, and Yao Wang. Power-rate-quality optimized scal-

able video adaptation. In Information Sciences and Systems (CISS), 2012 46th

Annual Conference on, pages 1–6, March 2012.

[93] Xin Li, Zhan Ma, and F.C.A. Fernandes. Modeling power consumption for

video decoding on mobile platform and its application to power-rate constrained

streaming. Visual Communications and Image Processing (VCIP), 2012 IEEE,

pages 1 –6, 2012.

[94] Eduardo Jurez, Fernando Pescador, Pedro J. Lobo, A. Groba, and C. Sanz.

Distortion-energy analysis of an OMAP-Based H.264/SVC decoder. Mobile Mul-

timedia Communications, (77):544–559, January 2012.

[95] Bassem Ouni, Ccile Belleudy, and Eric Senn. Accurate energy characterization

of os services in embedded systems. EURASIP Journal on Embedded Systems,

2012(1), 2012.

[96] Saadia Dhouib, Eric Senn, Jean-Philippe Diguet, Dominique Blouin, and Johann

Laurent. Energy and power consumption estimation for embedded applications

and operating systems. Journal of Low Power Electronics, 5(4):416–428, 2009.

[97] Eric Senn, Johann Laurent, Nathalie Julien, and Eric Martin. Softexplorer: Es-

timation, characterization, and optimization of the power and energy consump-

tion at the algorithmic level. In Enrico Macii, Vassilis Paliouras, and Odysseas

Koufopavlou, editors, Integrated Circuit and System Design. Power and Timing

Modeling, Optimization and Simulation, volume 3254 of Lecture Notes in Com-

puter Science, pages 342–351. Springer Berlin Heidelberg, 2004.

[98] Sheng Li, Jung-Ho Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and N.P.

Jouppi. Mcpat: An integrated power, area, and timing modeling framework for

multicore and manycore architectures. In Microarchitecture, 2009. MICRO-42.

42nd Annual IEEE/ACM International Symposium on, pages 469–480, 2009.

[99] Muhammad Shafique and Jörg Henkel. Low power design of the next-generation

high efficiency video coding. In ASP-DAC, pages 274–281, 2014.

[100] Young-Hwan Park, Sudeep Pasricha, Fadi J Kurdahi, and Nikil Dutt. System

level power estimation methodology with h. 264 decoder prediction ip case study.

150

In Computer Design, 2007. ICCD 2007. 25th International Conference on, pages

601–608. IEEE, 2007.

[101] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the

H.264/AVC video coding standard. IEEE Trans on Circuits and Systems for

Video Technology, 13(7):560 –576, July 2003.

[102] Zhan Ma, Meng Xu, Yen-Fu Ou, and Yao Wang. Modeling of rate and perceptual

quality of compressed video as functions of frame rate and quantization step-size

and its applications. IEEE Trans on Circuits and Systems for Video Technology,

22(5):671 –682, May 2012.

[103] Texas Instruments. OMAP3530 Power Estimation Spreadsheet. http:

//processors.wiki.ti.com/index.php/OMAP3530_Power_Estimation_

Spreadsheet, 2012.

[104] Loren Merritt and Rahul Vanam. x264: A high performance H.264/AVC encoder.

2006.

[105] OMAPPEDIA. Power management debug and profiling.

http://www.omappedia.org/wiki/Power Management Debug and Profiling,

2012.

[106] Texas Instruments. Local Power Manager Driver. http://software-dl.ti.

com/dsps/dsp_public_sw/sdo_sb/targetcontent/lpm/index.html, 2012.

[107] Venkatesh Pallipadi and Alexey Starikovskiy. The ondemand governor: past,

present and future. Proceedings of Linux Symposium, pages 223–238, 2006.

[108] Chase Maupin Don Darling and Brijesh Singh. Gstreamer on texas instruments

OMAP35x processors. Proceedings of the Ottawa Linux Symposium, pages 69–78,

2009.

[109] ARM. The ARM NEON general-purpose SIMD.

www.arm.com/products/processors/technologies/neon.php, 2012.

[110] Texas Instruments. Codec Engine Profiling - Embedded Processors Wiki. http:

//processors.wiki.ti.com/index.php/Codec_Engine_Profiling, 2013.

151

http://processors.wiki.ti.com/index.php/OMAP3530_Power_Estimation_Spreadsheet
http://processors.wiki.ti.com/index.php/OMAP3530_Power_Estimation_Spreadsheet
http://processors.wiki.ti.com/index.php/OMAP3530_Power_Estimation_Spreadsheet
http://software-dl.ti.com/dsps/dsp_public_sw/sdo_sb/targetcontent/lpm/index.html
http://software-dl.ti.com/dsps/dsp_public_sw/sdo_sb/targetcontent/lpm/index.html
http://processors.wiki.ti.com/index.php/Codec_Engine_Profiling
http://processors.wiki.ti.com/index.php/Codec_Engine_Profiling

[111] John Levon and Philippe Elie. Oprofile: A system profiler for linux. url-

http://oprofile.sf.net, 2004.

[112] Mathworks. Linear regression with interaction effects.

fr.mathworks.com/help/stats/linear-regression-with-interaction-effects.html,

2014.

[113] J. Choi and H. Cha. Memory-aware dynamic voltage scaling for multimedia

applications. Computers and Digital Techniques, IEEE Proceedings, 153(2):130

– 136, march 2006.

[114] Texas Instruments. OMAP4 mobile applications platform. http://www.ti.com/

lit/ml/swpt034b/swpt034b.pdf, 2012.

[115] PandaBoard Project. Pandaboard. http://www.pandaboard.org, 2013.

[116] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel

Emer. Scheduling heterogeneous multi-cores through performance impact esti-

mation (pie). SIGARCH Comput. Archit. News, 40(3):213–224, June 2012.

[117] Kisoo Yu, Donghee Han, Changhwan Youn, Seungkon Hwang, and Jaechul Lee.

Power-aware task scheduling for big.little mobile processor. In SoC Design Con-

ference (ISOCC), 2013 International, pages 208–212, Nov 2013.

[118] The Moving Picture Experts Group. MPEG systems technolo-

gies part 11: Energy-efficient media consumption (green metadata).

http://mpeg.chiariglione.org/sites/default/files/files/\standards/

parts/docs/w14344-v2-w14344.zip, 2014.

[119] Xiaorui Wang, Kai Ma, and Yefu Wang. Adaptive power control with online

model estimation for chip multiprocessors. Parallel and Distributed Systems,

IEEE Transactions on, 22(10):1681–1696, 2011.

[120] i.MX 6Dual/6Quad Power Consumption Measurement, Freescale Semiconductor,

2012.

[121] Wonyoung Kim, M.S. Gupta, Gu-Yeon Wei, and D. Brooks. System level analysis

of fast, per-core dvfs using on-chip switching regulators. In High Performance

152

http://www.ti.com/lit/ml/swpt034b/swpt034b.pdf
http://www.ti.com/lit/ml/swpt034b/swpt034b.pdf
http://www.pandaboard.org
http://mpeg.chiariglione.org/sites/default/files/files/\standards/parts/docs/w14344-v2-w14344.zip
http://mpeg.chiariglione.org/sites/default/files/files/\standards/parts/docs/w14344-v2-w14344.zip

Computer Architecture, 2008. HPCA 2008. IEEE 14th International Symposium

on, pages 123–134, Feb 2008.

[122] Krishna K Rangan, Gu-Yeon Wei, and David Brooks. Thread motion: fine-

grained power management for multi-core systems. In ACM SIGARCH Computer

Architecture News, volume 37, pages 302–313. ACM, 2009.

[123] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh

Sardashti, et al. The gem5 simulator. ACM SIGARCH Computer Architecture

News, 39(2):1–7, 2011.

[124] Green video project. http://greenvideo.insa-rennes.fr, 2014.

153

http://greenvideo.insa-rennes.fr

