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Résumé

Transport Processes at the earth magnetopause

The thin interface between the solar wind flowing around the Earth and the inner magnetosphere
is a key region for mass, momentum and energy transfer. Yet, it is very controversial to identify
the procress of such transfer as well as any quantitative measure of their efficiency. This transition
region, called the magnetopause, is the loci of importants gradient in the particle density, bulk
flow velocity, magnetic field direction and magnitude. We review in this thesis the nonlinear
particle dynamics in such thin current sheet and the anomalous transport resulting from the
Kelvin-Helmholtz instability (chapter 1), the diffusion process resulting from electromagnetic
fluctuations (chapter 2), the collisionless magnetic reconnection process in asymmetric current
sheets (chapter 3), and some new perspectives on magnetic reconnection (chapter 4).

Processus de transports à la magnétopause terrestre

La fine interface entre le vent solaire en écoulement autour de la Terre et sa magnétosphère
interne est une région clé pour le transfert de masse, d’impulsion et d’énergie. L’identification
de processus de transport ainsi qu’une mesure quantitative de leur efficacité est encore un sujet
controversé. Cette région de transition que l’on appelle la magnétopause est le lieu d’importants
gradients de la densité de particules, de la vitesse du flot moyen, et de la direction et/ou du
module du champ magnétique. Dans ce manuscrit, nous revenons sur la dynamique non linéaire
des particules dans une telle couche de courant ainsi que sur le transport anormal qui résulte de
l’instabilité Kelvin-Helmholtz (chapitre 1), sur les processus de diffusion associés aux fluctuations
électromagnétiques (chapitre 2), sur les processus de reconnection magnétique non-collisionnelle
dans les couches de courant asymetriques (chapitre 3), ainsi que sur de nouvelles perspectives
sur la reconnection magnétique (chapitre 4).
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Introduction

I started my PhD work using test-particle simulations to investigate the structure

of particle distribution functions in different regions of the Earth magnetosphere.

To do so, we use a prescribed electric and magnetic field and calculate the particle

orbits. Using various statistical methods, we build distribution functions, and try to

find analytical models to describe the obtained structures, as well as their occurence

in satellites data. This implies to understand the appearance of chaos in particle

dynamics and their non-integrability : the statistical treatment means that one has

to know how a particle orbit is representative of other particles in a close subset of

the phase space. A major criticism of the test-particle approach is that in plasma

with β ∼ 1 (ratio of kinetic to magnetic pressure) the self-consistency is important.

This work is not detailed in this thesis because at the end of my PhD work, I started

to work with self-consistent electromagnetic codes.

I started my own research work in trying to revisit the results obtained with test-

particle calculations with a self-consistent code. More specifically, I was interested

in the physics of the magnetopause, the transition region between the cold dense

solar wind flowing around the Earth and its hot tenuous plasmas magnetized by the

planetary magnetic field. In such transition region, thin current sheets are associated

to gradients of the magnetic field, density, temperatures,... As a result, when the

gradient scales are of the order of the Larmor radius, particle dynamics is generally

no more adiabatic. I was interested in understanding how such non-adiabatic motion

were associated to electromagnetic structures. To do so, I used a hybrid code (ions

are treated as macro-particles with a Particle-In-Cell technique, and electrons are

treated as a massless fluid) that I wrote during and after my post-doc in GSFC with

Thomas Moore and Michael Hesse.

I started to work on the Kelvin-Helmholtz instability that can develop on the

flank of the magnetopause, because of the velocity shear between the shocked solar

and the stagnant plasma of the inner magnetosphere. In magnetized plasmas, this

instability has a threshold in which the magnetic field can play a stabilizing role,

depending on its direction. This work is detailed in chapter 1 where we investigate

the development of the electromagnetic fluctuations as well as the non-linear particle

dynamics in the current sheet. We tried to exhibit the kinetic structures observed in

such topologies, as well as the efficiency of the mass exchange process. From these
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studies, it appeared that the electromagnetic fluctuations play an important role.

More specifically, these fluctuations are the sources of anomalous transport across the

magnetic field that is necessary to the mass transfer across the boundary. It took me

a while to understand that the problem of anomalous diffusion (i.e. not associated

to any collisions) was the most important point to investigate in this context. In

chapter 2, we detail how we understand the concept of diffusion, the way to evaluate

a diffusion coefficient in self-consistent simulations, as well as the relative importance

of electric and magnetic fluctuations (as well as their coupling). The beginning of an

analytical work is also proposed. Concomitantly, Nicolas Aunai started a PhD thesis

on collisionless magnetic reconnection that Gérard Belmont and I supervised. His

work will be presented in chapter 3. Using the same hybrid code, he investigated the

nature and structure of the electric field in the reconnection region, and exhibited

its relations with the particle dynamics and the associated fluid moments. He also

investigated how reconnection develops in asymmetric current sheet to quantify the

relative importance of the heating process and the acceleration process. In chapter 4,

I present a collaborative work with Gérard Belmont and Nicolas Aunai on a kinetic

equilibrium that can be used in hybrid simulations to study asymmetric current

sheets. In this chapter, I will also present preliminary numerical results of magnetic

reconnection in a topology encountered in laser-induced magnetic reconnection. This

work is devoted to the preparation of laboratory experiments using laser in High

Energy Density Plasmas.
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Kelvin-Helmholtz instability at the Earth

magnetopause

The origin of magnetospheric plasma has been extensively studied using both

in situ observations, theoretical models and numerical simulations. The ionosphere

and the solar wind being the two possible sources, their relative importance are still

discussed.

Several observations have demonstrated that the ionosphere supplies plasma to

the Earth magnetosphere (MSP) (e.g. [?], [?]). Using 3D multi-fluid simulations

for different Interplanetary Magnetic Field (IMF) directions, [?] showed that under

southward IMF, the convection of ionospheric plasma out of the polar cap region is

the major contribution to the plasma sheet population.

Mass entry process from the solar wind can also supply magnetospheric plasma

and many observations have been collected at the magnetopause (MP). The occur-

rence of high-speed plasma flows has been interpreted as a signature of reconnection

processes (e.g. [?], [?]) associated to mass transport.

At the Earth MP, the strong velocity shear between the magnetosheath (MSH)

plasma (the shocked solar wind flowing in the anti-solar direction) and the quasi-

stagnant plasma of the inner MSP can be the source of a Kelvin-Helmholtz instabil-

ity. This instability can be associated with magnetic reconnection (see [?]), but could

also result in mass exchange process through the MP by a diffusive process, without

invoking magnetic reconnection. We investigate this question more in details in this

chapter. In section 1.1, we give insights on the MP structure and dynamics result-

ing from the collection of many satellites observations, in section 1.2, we present the

results obtained with a test-particle approach, and in section 1.3, we present the

results obtained with hybrid self-consistent simumlations.
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8 1. Kelvin-Helmholtz instability at the Earth magnetopause

1.1 Structure and dynamics of the Earth magnetopause

Using ISEE 1 and 2 measurements, [?] showed that the average thickness of the

low-latitude dayside MP is about 800 km. The average MP speed in the normal

direction is a few tens of kilometers per second, and β (the ratio of kinetic pressure

over magnetic pressure) is about 1, this value being larger (smaller) in the MSH

(MSP) (see e.g. [?]).

The magnetic topology of the MP is of primary importance as it controls the

mass loading process from the solar wind in the inner MSP. The first model of open

magnetosphere proposed by [?] invokes, at least locally, a component of the magnetic

field normal to the MP. Examining explorer 12 magnetic field measurements, [?]

showed that in most MP crossings, the magnetic field component normal to the MP

is very weak, and the magnetopause is thus essentially a tangential discontinuity (i.e.

the magnetic field is always tangential to the MP). Studying the MP polarization, [?]

also identified it as a tangential discontinuity, and showed a rotation of the magnetic

field from its asymptotic values on both sides of the MP.

When the MSP is closed, the magnetic flux pile-up against MP —first predicted

by [?]— and the resulting plasma depletion layer are observed (e.g. [?]). The

absence of magnetic flux pile-up is sometimes interpreted as a consequence of the

open structure of the MP (see e.g. [?]). The characteristics of the Earth MP

are reported in appendix I, as well as the dimensionless parameters used in the

forthcoming computations.

The Kelvin-Helmholtz instability appears in a fluid flow in the presence of a

shear velocity. In the classical hydrodynamical framework, there is no instability

threshold for non-viscous fluid and a velocity shear is always unstable (see e.g. [?]).

In magnetized plasmas, the magnetic tension of the magnetic field lines tends to

limit their bending and thus has a stabilizing effect. It yields an instability threshold

(minimum value of the velocity shear) which depends on the parameters of the shear

flow. It can easily be shown that, in the incompressible case, the wave vector of the

instability in the direction normal to the interface is purely imaginary. The resulting

perturbation is a surface wave localized at the interface. The incompressible case

with an infinitely thin layer can be easily carried out analytically, and is reported in

[?].

The solutions of these equations have been discussed for different magnetospheric

cases by [?]. Let’s just emphasize two particular cases : (i) when the magnetic field
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is normal to the velocity shear, the flow is unstable whatever the value of the shear,

(ii) when the magnetic field is parallel to the velocity shear and densities are equal

on each side of the interface, the instability criterion is ∆v > 2vA.

A major question arising from the development of a KH instability is its ability to

trigger any kind of exchange : mass, momentum or energy. To investigate this large

scale problem, fluid simulations have been extensively used. Using compressible 2D

MHD code, [?] showed that up to 2 % of the energy flux can cross the magnetic

boundary. [?] also showed that the anomalous tangential stress associated with

the instability ensures a momentum transport across the discontinuity that can

reach a few percents. But of course, the question of mass exchange can hardly be

investigated with the same formalism : Any Eulerian description of a plasma can

put forward the existence of low or high density structures in the system, but cannot

unambiguously make any relation between such structures and an associated mass

exchange process. To do so, a Lagrangian description is needed to track the plasma

(that can be described in a fluid way or in a kinetic one). It can easily be done

using test-particle, PIC self-consistent codes, and could also be done using Smooth

Particle Hydrodynamics (or more precisely SPMHD) codes, see e.g. [?]. We treat

this problem using test-particles (section 1.2) in a topology given by a MHD code,

as well as hybrid simulations (section 1.3).

1.2 Test-particle calculations of mass-exchange process

In the incompressible case, [?] showed that the growth rate of the instability is

such as γ ' k∆v. The explicit form of the gradient in the normal direction has to be

kept to take into account the thickness of the interface. [?] studied the growth rate of

the unstable mode depending on the wave vector k. He showed that compressibility

yields a bell-shaped curve, that is to say, γ increases with k until a maximum value

and then decreases to zero. Denoting a the half thickness of the interface, γ is

maximum for 2ka ' 1. An enhancement of the plasma compressibility leads to a

decrease of both the growth rate γ and the associated wave vector k. Most of the

simulations done by Miura have been done with a length L of the simulation box

such as the most unstable mode had a wavelength equal L. It has the advantage

to save CPU time as the instability destabilizes quickly. For a larger box size, the

most unstable mode can also grow, but with several wavelengths in the simulation

box. As put forward by [?], the time evolution of the KH instability can give rise
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to vortex pairing. As a consequence, small scale eddies feed larger scale ones, this

being called the inverse cascade, by opposition with the classical turbulent direct

cascade, which is most often from large to small scales.

Figure 1.1: Schematic of the initial structure of the MP : rotation of π rad of the

magnetic field direction associated to a velocity shear, from [?].

In [?], hereinafter refered as paper B, we use a 2D
1
2 MHD code (see [?]), to com-

pute the magnetic field in the KH instability region. This code solves the classical

MHD equations with a polytropic law for the closure equation. Due to numerical

resistivity, the magnetic Reynolds number RM cannot be larger than 8000. The

simulations of this study are performed with RM = 2000. The initial geometry of

the MP used for MHD simulations is sketched in Fig. 1.1 : the density is uniform,

the magnetic field magnitude is constant, its direction rotates through the MP, and

there is a velocity shear across the MP. The time evolution of the KH instability can

be appreciated in Fig. 2 of paper B, where inverse cascade is clearly depicted.

Single particle dynamics

In [?], refered hereinafter as paper A, we put forward the kind of orbits associated

to this electric and magnetic topology and in paper B, we explore whatever particles

can cross the associated current sheet, and when so, exhibit the associated signatures

in the distribution functions. Hence, we use static magnetic maps from MHD results

without any electric field to keep a conservative system, and follow the particle
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motion in such topology across the MP. The case of particle tracking in a time

evolving electromagnetic field is quite tough and is discussed in paper B.

Single particle dynamics in such bended magnetic field is discussed in paper A.

Depending on the particle energy value (a dimensionless parameter κRS is proposed

to structure the different dynamical regimes), a particle can experience Speiser,

transient or 8-like orbits in the vicinity of the current sheet. Considering an infinitely

thin current sheet with BX = +1 for y > 0 and BX = −1 for y < 0 :

◦ Speiser orbits. The particle experiences a half cyclotron turn in the y > 0

half-space around the BX > 0 component following a half cyclotron turn in

the y < 0 half-space around the BX < 0 component.

◦ Transient orbits (considering a small BZ component). A slower gyration

around the small BZ component is associated to the Speiser orbits. Because

the fast meandering sequence can only exist if there is a component of the

particle velocity in the Y Z plane, this sequence cannot last more than half a

cyclotron time associated to BZ .

◦ 8-like orbits (with a negligible BZ component). The particle can stay indefi-

nitely trapped in the current sheet. The succession of 2 half cyclotron turns

draws a “eight”.

Fig. 1.2 illustrates the three kinds of orbits that can be observed (upper panel),

as well as the way they can be combined (lower panel). Furthermore, particles can

be trapped in the current sheet, certainly as a consequence of the absence of normal

component of the magnetic field in the current sheet. In paper B, test-particle

calculations are done in dimensionless way, but mainly concern the protons as their

Larmor radius are of the order of the MP thickness. We investigate the efficiency of

the crossing process, depending on the initial particle energy, pitch angle, as well as

the obtained pitch angle distribution (PAD) after scattering. But the first important

thing is to evaluate the efficiency of the crossing process.

Efficiency of the crossing process

The number of particles crossing the MP of course depends on the initial number

of particles in the simulation as well as the length of the box along the discontinuity.

We thus define the crossing rate (CR) as the ratio between the number of crossing
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Figure 1.2: Different orbit types in a tangential discontinuity : adiabatic, Speiser-

like and 8-like (upper panel). KH instability essentially allows transitions between

these different types of motion, from [?].

particles to the number of particles located at less than 2 Larmor radius from the

MP. As a matter of fact, particles that are initially too far from the MP will never

reach it, since the magnetic field is uniform and unbended. In fact, particles can

slowly drift toward the discontinuity because of the magnetic fluctuations. This is

the problem of particle diffusion in magnetic fluctuations that will be discussed more

in details in chapter 2.

Fig. 5 of paper B shows that the CR is not depending on the initial particle

energy. This essentially comes from the way the CR is defined (the larger the particle

energy, the larger the associated Larmor radii, the wider the strip considered for the
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normalization). Fig. 1.3 depicts the CR depending on the initial pitch angle. The

CR is larger at small pitch angle, decreases until the initial pitch angle reach π/6

rad, and then gently increases. This shows that field-aligned particles preferentially

cross the MP. If one wants to characterize the PAD after crossing, the value of the

particles pitch angle after crossing are important. From Fig. 7 and 8 of paper B,

it clearly appears that particles crossing the MP are essentially scattered in the

perpendicular direction.

Figure 1.3: Crossing rate of particles depending on their initial pitch-angle, from

[?].

This suggests that if such particles have to be observed by a satellite, such

anisotropy is a key parameter. Nonetheless, a satellite observes at a given point

(and at a given time) the whole plasma, composed of crossing and non-crossing

particles. Of course, if the non-crossing particles are the dominant population, this

peculiar PAD will not be observable. This is an important point for which a clear

assertion is difficult ; with test-particle calculations, the particles time-of-flight is

not considered. Hence, the characteristic time scale needed to build this PAD is

not considered, neither the characteristic time scale associated with its destruction

because of kinetic instability.

Entry gates associated to KH instability

Another problem that can be addressed with a test-particle approach is the locus

(or loci) of the “entry gates”. When the KH instability develops, the interface gets

corrugated, and the problem is no more invariant in the direction along the interface.

As a consequence, vortices form, collapse, merge, and reform. We cannot investigate
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Figure 1.4: Color-coded number of particles crossing the MP. Initial and finel posi-

tion are depicted in the XY plane, from B.

properly this problem, because it necessitates long simulations and large domains to

allow the inverse cascade to occur. Furthermore, as said above, this formalism is not

well suited to study the time evolution of the system. Fig. 1.4 depicts the number of

crossing particles (in color code) according to the location of the associated entry and

exit of the MP. This figure shows that the islands of escaping particles are localized

near the edge of each wave front, while they end up narrowly localized near the steep

part of the wave profile on the other side of the MP. This point was raised in paper

B without any clues for its origin. An explanation can now be suggested.

Fig. 1.5 is a schematic view of the magnetic field lines around the MP. The MP

is the locus where the Z component of the magnetic field lines changes sign. In

Fig. 1.5, it is the thick dashed line 0. On each side of the MP, the magnetic field

lines have also an out-of-plane component, but their projection in the XY plane are

depicted by line 1 and line 2. They are less bended than line 0 because the magnetic

tension is more effective as the shear velocity (and the source of bent) is smaller.
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Figure 1.5: Schematic description of the crossing process at the MP, because of FLR

effect.

Let’s consider a particle on line 2. The projection of its Larmor radius is indicated

by a solid thick line, and in region C, it does not encompass line 0. In region A

and B, line 1 and 2 tend to be less bent. As a result, the flux tubes of region A

and B are pinched. Panel 2 of Fig. 4 of paper B indicates the magnetic pressure.

In region C, the magnetic pressure is larger, meaning that the associated Larmor

radius is smaller, and hence does not allow to cross the MP. On the other hand,

in region B, the magnetic pressure is smaller, hence associated to a larger Larmor

radius. The entry gates are hence located where the particles can encompass the

MP during their non-adiabatic motion.

This study put forward that protons can cross the MP, because of FLR effects,

and stimulated by the development of a KH instability. The larger the particle

energy, the larger the number of crossing particles. The efficiency of this process

almost not depends on the initial particle pitch angle, but essentially produces per-

pendicular distributions. Furthermore, the entry gates are essentially located near

the edges of the wave front. The same kind of inquiry is now proposed in [?] using

a self-consistent hybrid code.

1.3 Hybrid simulations of mass-exchange process

The previous study was based on the use of test-particle calculations. This

light, flexible and fast technique allows to investigate various problems. But as

mentioned, a long standing criticism is that such approach is not self-consistent. In
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plasmas where β is not very small, this can be questionable. As a consequence, I

started to work on a hybrid code. I got this one during my short post-doc in GSFC

in 1999. This is the code originally written by Winske and Quest (see [?]). It is

based on a predictor-corrector scheme (see [?]) to solve the electric and magnetic

field. I have totally rewritten this code (in C language) : it is now 3D, parallelized

under MPI, and quite versatile regarding the initial and boundary conditions. It is

called heckle while a companion (fully kinetic PIC) code should also be develloped,

named jeckle1. Details on the equations, approximations, numerical scheme, initial

and boundary conditions are in appendix K.

Up to now, few studies have been dedicated to the problem of mass exchange

through the MP because of KH instability using PIC codes. Using 2D
1
2 hybrid

simulations, [?] studied the time evolution of a mixing index, providing insights on

the total surface close to the instability where particles, initially from both sides of

the discontinuity, are mixed. [?] also used 2D hybrid simulations to demonstrate the

existence of small-scale structures (on the order of the ion Larmor radius) possibly

related to such flux transfer events. [?] extended this investigation and focused on

mass transport, showing that the mixing is quicker and larger than that due to

finite Larmor radius overlapping at the interface. [?] obtained similar results with

3D hybrid simulations for the same geometry, but showed that a rotation of the

magnetic field stabilizes the system, and leads to a less efficient mass transport.

The MP plasma being collisionless, the origin of diffusion cannot be classical vis-

cosity, and many studies (see e.g.[?], [?]) have been dedicated to diffusion processes

in collision-less plasma. On the whole, it is commonly admitted that diffusion is

less efficient than magnetic reconnection to ensure mass loading of the inner magne-

tosphere from the shocked solar wind. Furthermore, diffusion is a quite stationary

process while magnetic reconnection is more oftenly an impulsive process. For the

mass exchange problem, one can wonder whatever a fast impulsive and localized

process (magnetic reconnection) is actually more efficient than a slow, stationary

and non-localized process (diffusion). The studies by [?] and [?] investigated the

coupling of the KH instability with smaller scale process, and the resulting turbu-

lence. As a result, in [?], hereinafter refered as paper C, we investigate the time

evolution of the electric and magnetic field and the associated particle dynamics (in

1I’m heckle and jeckle, all rolled into one, people say I’m lots of fun, ’cause I am heckle and

jeckle ,buh dum buh duh dum buh duh bah dee dum bah dee dum buh duh dum buh duh bah dee

dum...
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a self-consistent way) to study the nature and efficiency of the crossing process.

In paper C, the approach is similar as in paper B. We take as initial condition a

discontinuity between 2 counter-moving plasmas, and an associated rotation of the

magnetic field of π rad on the finite thickness of the discontinuity. This topology

is depicted in Fig. 1 of paper C. For the plasma, we have on both sides of the

discontinuity a Maxwellian with the same density and the same temperature and

a sheared flow velocity. There is no gradient on the magnetic field magnitude and

the pressure balance is hence satisfied. This fluid equilibrium is not a kinetic one ;

during the first steps of the simulation, small magnetosonic waves (containing the

excess of energy) propagate perpendicular to the mean magnetic field. As detailed

in paper C (by inspection of the heat flux) an equilibrium is reached before the

triggering of the KH instability.

Efficiency of the crossing process

The hybrid formalism is nice for this problem because one can follow each macro-

particle. From eq. (K.9) and (K.10), it is clear that the dynamics of macro-particles

is the same as the one of particles. In fact, the electric and magnetic field involved

in eq. (K.9) and (K.10) are the mean ones. The electric field results from the Ohm’s

law for the electrons. Hence, this fluid equation cannot take into account any kind of

binary collisions (the classical form of the collisional term being an approximation).

But in the present case, the plasma is collisionless, meaning that macro-particle

dynamics and particle dynamics are exactly the same.

One can unambiguously identify each particle and their initial position. Hence

it is an easy task to enumerate how many particles cross the MP2, and build the

associated distribution function.

A first remark is that, as depicted in Fig. 4 of paper C, the number of crossing

particles increases through time, in a monotonic way, but at a rate that can gently

change through time. In Fig. 1.6, it is clearly demonstrated that the rate of crossing

particles (its derivative is represented in solid thick line) increases with the width

of the k-spectrum. As discussed in the previous section, the wave front of the KH

instability gets steeper while the instability develops, until their sharp structures

collapse eventually resulting in vortex-pairing. This is in qualitative agreement with

2The MP is defined as in paper B ; this is the loci where the Z component of the magnetic field

changes sign
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Figure 1.6: Color-coded Y component of the magnetic field depending on the kX

mode (after spatial Fourier transformation) and time. The solid thick line is the

time evolution of the derivative of the crossing rate, from [?].

the mechanism detailed in Fig. 1.5 ; when the wave front get steeper, the magnetic

tension is larger, and amplify the crossing mechanism. Once the vortex crashes,

the flux tubes get temporarily more rectilinear and the crossing process gets less

efficient. The entry gates are the same as the one described in paper B, showing

that test-particle and hybrid formalism can provide the same results.

Distribution functions associated to KH instability

One can also build the distribution function of the crossing particles to see if

some peculiar structures appear. Such distributions are depicted in Fig. 1.7. The

left panel clearly shows that there is no favored direction in the perpendicular plan,

meaning that the distribution is gyrotropic. On the other hand, in the V‖−V⊥ plan,

a very clear “Lima-bean” structure appears. The mean parallel velocity of this

distribution can be calculated, and several computation showed that the velocity
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Figure 1.7: Color-coded phase space density of crossing particles : (left) in the

perpendicular plane (right) in the parallel-perpendicular plane, from [?].

increases with the thickness of the MP, in a very linear way as depicted in Fig. 9 of

paper C. To unambiguously demonstrate this, we perform several simulations with

varying velocity shear, magnetic field magnitude, density or β value. None of these

parameters influence the crossing process.

Simple analytical model

A heuristic interpretation of the penetration process can be obtained with a rough

picture of the magnetic field reversal. As a matter of fact, details of the magnetic

profile (hyperbolic tangent in the present case) is not necessary and knowledge of

the asymptotic value of the magnetic field in each side and at the center of the

discontinuity is enough to drive the essential features. The associated process is

depicted in Fig. 1.8. One considers side 1 and 2 with a constant magnetic field in

the +Z direction and -Z direction respectively, and neglects the drift effect of the

electric field : the associated fluid velocity being tangential to the discontinuity, it

does not play a significant role in this process. At the interface (the reversal sheet),

one also considers a constant magnetic field, in the +X direction.

Let’s consider a particle, initially on side 2, with a positive parallel velocity.

Starting from an initial position with a positive Z value, this particle, because of its

parallel velocity, goes toward the Z = 0 plane. Furthermore, because of the magnetic

field and its perpendicular velocity, the particle gyrates around a magnetic field line,
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Figure 1.8: Schematic view of the typical orbit followed by a particle crossing the

magnetic field reversal, from [?].

with a constant Larmor radius. With the appropriate initial position (as chosen in

Fig. 1.8), this particle skims the interface between side 2 and the reversal sheet.

Because of magnetic fluctuations, this particle can step aside in the reversal sheet.

This point is marked A in Fig. 1.8, and for simplicity, chosen to be in the Z = 0

plane. To reach side 1 at point marked B, the Larmor radius in the reversal sheet has

to be equal to the half thickness of the discontinuity λ. At point A, the perpendicular

velocity needed in the calculation of the Larmor radius is in the -Z direction, that

is the parallel velocity in side 2. Because there is no electric field, the kinetic energy

of the particle is constant, and the parallel velocity in side 1 is equal to the parallel

velocity in side 2 (that turns to be a perpendicular velocity in the reversal sheet).

From the mean parallel velocity V‖ of the “Lima bean”, one can compute

ζ =
V‖

ΩC
(1.1)

where ΩC is the gyropulsation corresponding to the asymptotic magnetic field mag-

nitude. This is the average distance traveled along the magnetic field by the particles

during a cyclotron turn. Hence, the crossing particles are the ones for which the ζ

value is equal or larger than λ. This distribution results from a filtering effect on an
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initially Maxwellian distribution function for which only particles with ζ > λ cross

the interface. This is illustrated in Fig. 13 of paper C.

—————

Paper C hence puts clearly in evidence the way a particle can cross the MP. The

results obtained with an hybrid formalism are quite similar to the results obtained

with test-particle calculations. Nevertheless, there is a standing problem that dras-

tically influences the efficiency of the mechanism. Far from the discontinuity, the

particle motion is the superposition of a gyromotion around the magnetic field lines

directed along Z and a drift in the X direction. Both motions cannot influence or

modify the distance of a particle (or let say its guiding center) to the discontinuity.

Hence, even if a particle satisfy ζ > λ, it will not have any chance to cross the MP

if it is too far from it. An important problem is hence also to wonder how particles

can get close (or far) from the MP.

A first answer is the existence of a fluid drift. As an example, considering the

density gradient in the X direction (the far MP is tenuous compared to the dense

near one) and the Z direction of the magnetic field, a gradient drift appears in the Y

direction, that can bring particles close to the MP. This mechanism certainly exists,

but its efficiency is very small if considering the average value of the magnetic field

magnitude and the associated density gradient.

Another possibility is the existence of a diffusion process across the mean mag-

netic field. This can result from the development of small-scales magnetic fluctua-

tions. This is the so-called magnetic turbulent diffusion. As discussed for example

by [?] and [?], KH instability can trigger the appearance of small scales structures

in a turbulent way, and this turbulence can be associated to anomalous diffusion.

This point will be discussed in chapter 2.

As a conclusion of this chapter, in the absence of magnetic reconnection, particles

can cross the MP because of finite Larmor radius effects. When this is the case,

a filtering effects results in producing a “Lima bean”, initially localized close to

the most bended edges of the surface wave. The associated pitch-angle scattering

produces a population essentially in the perpendicular direction. But for that issue,

a particle needs to get close to the MP. The most efficient mechanism seems to be

the magnetic turbulent diffusion. The way to investigate this with self-consistent

simulations as well as its efficiency is investigated in chapter 2.
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Particle diffusion by electromagnetic

fluctuations in magnetized plasmas

It was clear from the previous chapter that particles can cross the magnetopause

because of finite Larmor radius (FLR) effects. To do so, the particles have to be

close to the magnetopause (MP), i.e. at about a Larmor radius from it. For particles

initially far from the MP, we need to identify a possible transport mechanism to

drive them close to it. The solar wind plasma being magnetized, this mechanism

has to be a transport process across the magnetic field. We investigate in this

chapter how magnetic fluctuations can diffuse particles across the magnetic field.

We also investigate the influence of the associated electric fluctuations, as well as

their possible coupling. In section 2.1, we discuss the different definitions of the

diffusion process and introduce the way to calculate it and in section 2.2 we discuss

the electric and magnetic contributions to the diffusion coefficient.

2.1 How to calculate the perpendicular diffusion coeffi-

cient ?

In a static and uniform magnetized plasma, the motion of a charged particle is

completely determined by its gyropulsation ωC and its Larmor radius ρL. When

spatial and/or temporal fluctuations exist, the particle dynamics is modified, pos-

sibly leading to spatial diffusion. Noting ∆Y the displacement in a given direction

Y perpendicular to the local mean magnetic field during a time ∆t, and 〈· · · 〉 the

average on all the particles, the quantity 〈∆Y 2〉 allows a quantization of how effi-

ciently a population is spreading in space (in the Y direction). More specifically, if

one can define

lim
∆t→∞

〈∆Y 2〉
2∆t

= κ⊥ (2.1)

κ⊥ is called the diffusion coefficient in real space. Similar ratios can be calculated

in velocity space to evaluate diffusion in energy or pitch angle.

23



24 2. Particle diffusion by electromagnetic fluctuations

Particle diffusion in collisionless plasmas is important for cosmic ray modulation

in interstellar media (see e.g. [?]), particle transport in tokamaks (see e.g. [?]),

or filling up the magnetosphere with solar wind particles (see e.g. [?]). The first

major analytical treatment of this problem by [?] put forward the two possible

contributions : particles can spread by following braided magnetic field lines, or

by departing from the magnetic field lines to which they were initially attached.

The first mechanism can be studied focusing on the topological properties of the

magnetic field lines (see e.g. [?]). When this is the only contribution, the particles

follow the magnetic field lines like “beads on a string”. This has been recently

addressed by [?] where the braided nature of the magnetic field lines is captured by

the calculation of the magnetic field line diffusion coefficient D⊥. The perpendicular

diffusion coefficient κ⊥ linearly depends on D⊥. This is the so-called Field Line

Random Walk (FLRW) model. It should be emphasized that this mechanism cannot

be responsible for the filling up of solar wind plasma on magnetospheric field lines

without magnetic reconnection. The second mechanism needs a careful investigation

of particle dynamics. It has been done up to now using mainly test-particles.

An ansatz for the perpendicular diffusion coefficient was proposed by [?] (BAM

from the names of its authors). In this model, the stochastic behavior of particles is

contained in a single and self-explanatory parameter ν⊥ : the perpendicular decor-

relation time (associated with the perpendicular velocity). The two models BAM

and FLRW provide lower and upper limits, respectively, for the numerical results

of test-particle simulations (see e.g. [?]). The Non Linear Guiding Center (NLGC)

model of [?] could be considered as an achievement of this task as suggested by the

nice agreement between analytical model and test-particle simulations. It is worth

noticing however that NLGC model needs 3 parameters not determined a priori.

Another question raises from these studies ; comparisons have always been done

with test-particles simulations in magnetostatic turbulence. This questions the im-

portance of self-consistency and the role of electric fluctuations (and the coupling

with magnetic fluctuations).

We hence addressed this problem using the heckle code. The first goal is to

measure 〈∆Y 2〉 and see if particle transport across the magnetic field is a diffusive

(proportional to t), sub-diffusive (proportional to tα with α < 1) or superdiffusive

(proportional to tα with α > 1) process. The second is to evaluate how the diffusion

coefficient can depends on the type of fluctuations and its level. We address this

problem in [?], referenced in appendix as paper D.
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Methodology associated to the self-consistent approach

The first way to trigger magnetic and electric fluctuations is naturally the Kelvin-

Helmholtz (KH) instability. It was clear in chapter 1 that during the development of

the KH instability, magnetic fluctuations can grow, their spectra and level depending

on the vortex pairing as illustrated in Fig. 1.6. To make some comparisons, we

determined another way to do so. After several tries, we chose an agyrotropic

instability as it is the way to generate magnetic fluctuations (and the associated

electric fluctuations) in a magnetized plasma in a time scale very small compared to

the diffusion time scale, and having stationnary statistical properties. This kind of

runs are called 2B because we used two ‘beams” in the direction perpendicular to

the magnetic field, and details can be found in paper D.

The concept of diffusion comes in when, in a medium, the scales larger than some

characteristic scale can be modeled in a closed way, the smaller scales being supposed

sufficiently chaotic so that their effect on the large ones can be estimated correctly

by their only statistically averaged properties, without any deterministic description

of them. The basic notion of “molecular diffusion”, invoked in hydrodynamics, can

conveniently be taken as a reference, and the other types of diffusion extrapolated

from it. In molecular diffusion, the characteristic scale is the collisional mean free

path. Taking averages over dimensions large with respect to it, and therefore over a

large number of collisions, one can calculate the way the individual particles separate

from each other in average because of them and the consequences this separation has

on the mean flow, i.e. on the flow integrated over a large number of such particles.

Fluid moments such as density, velocity, and higher moments are defined at a

fluid scale lF , meaning that they result from an average on a volume l3F . If some

diffusion process takes place because of phenomena at scales larger than lF , it can

be classified as turbulent fluid diffusion and it can be fully described by the fluid

equations without introducing any extra term. On the other hand, if some diffusion

occurs because of phenomena at scales smaller than lF , it cannot be described by

the ideal fluid theories and some non-ideal terms have to be added, involving in

particular the diffusion coefficients. The way to estimate these extra-terms consists

in first determining the probability distribution finction (PDF), i.e. the distribution

function integrated over velocity space and divided by the total number of particles

in the system. As outlined by [?], this distribution is indeed the organic link between

the fluid term associated to dissipation and the value 〈∆Y 2〉.
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Of course, a particle displacement in a given Y direction is a direct consequence

of its velocity in this direction. Furthermore, a diffusion process is a departure from

a “mean flow”, meaning that if v is the particle velocity, and V is the fluid velocity

averaged at the particle position on a volume l3F , hence, the turbulent displacement

is associated to v − V . As a consequence, the value of 〈∆Y 2〉 depends on the scale

lF at which V is defined. A diffusion coefficient is thus defined at a given scale,

and it is the way to statistically consider the consequences of the particle motion

at smaller scales. In paper D, the scale lF at which is defined the fluid velocity is

the grid size, which is a fraction (generally 0.2) of the proton inertial length (that is

close to the proton Larmor radius since β ∼ 1). Hence, the diffusion coefficient κ⊥

calculated in this paper is associated to irreversible transport due to the phenomena

that are at scales smaller than the proton inertial length.

These remarks are important because they outline the necessity to define for a

given value of a particle velocity v the associated value V . As an example, prior the

develomnent of the KH instability, there is a mean fluid flow. The associated particle

transport is balistic, with ∆Y = V∆t. In the absence of any magnetic fluctuation,

this would be the only contribution to transport, and one could falsely conclude

to a superdiffusive transport with 〈∆Y 2〉 = V 2t2. This outlines the clear necessity

to define, at a given scale, the associated local mean velocity in order to properly

define ∆Y 2. For this reason, we disagree with the results obtained in self-consistent

simulations by [?] and [?].

∆Y has to be the difference in the particle position during ∆t calculated in the

local frame where the fluid is at rest. Of course, the definition of this frame is non-

local and non-stationary. Calling V (t) the fluid velocity1 at position Y (t) at time t,

the particle displacement free of large scale fluid motion ∆Y during time ∆t = t is

∆Y = Y (t)− Y ?(t)− Y (0) (2.2)

where Y ?(t) is the position of the fluid particle at time t that was located at Y (0)

at t = 0. It is obtained from the time integration of dtY
?(t) = V (t) with the initial

condition Y ?(0) = Y (0).

Overall features of the diffusion process

As mentioned above, the first step is to calculate the PDF of ∆Y . In Fig. 2.1,

the PDF of ∆Y in KH run is displayed. It very clearly appears that this PDF is

1As said above, this velocity results from a local average of particle position in a volume l3F .
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Figure 2.1: Probability density function of ∆Y in the KH run. The solid line is a

Gaussian fit. From [?].

Gaussian, as it is the case for Brownian systems. Furthermore, Fig. 2.2 displays the

time evolution of the mean square value 〈∆Y 2〉 for the same KH run. One observes

that 〈∆Y 2〉 is piecewise linear with small variation of the slopes that are associated

to the vortex pairing. A conclusion of these 2 figures is that the associated process is

clearly diffusive (or Brownian), the slope of 〈∆Y 2〉 (divided by 2) being the diffusion

coefficient. This is in total contradiction with the super-diffusive process invoked in

the study of [?], which is obviously a consequence of the importance of considering

eq. (2.2) to calculate the perpendicular diffusion coefficient κ⊥.

Carrying the same kind of calculations with a 2B runs, we reached the same

conclusion about the Brownian nature of the diffusion process. As an example, Fig.

2.3 displays the time evolution of 〈∆Y 2〉 for a weakly magnetized plasma. By doing

so, we magnify the FLR effects resulting in the large oscillations observable at small

t that damp at larger t because of phase mixing.

The calculation of κ⊥ is a consequence of the development of magnetic fluctua-

tions in both KH and 2B runs. As a consequence, it is interesting to identify the kind

of modes that exist in such fluctuating plasmas. For KH runs, the initial velocity

shear prevents the development of any “classical” linear modes. Furthermore, in KH
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Figure 2.2: Time evolution of 〈∆Y 2〉 associated to the particle motion in the KH

run. Solid thick line is a linear fit. From [?].

Figure 2.3: Time evolution of 〈∆Y 2〉 associated to the particle motion in the 2B

run. Solid thick line is a linear fit. From [?].

runs, the vortex pairing results in a non-stationary situation. We also compute the

k-spectrum of the power spectral density of the longitudinal magnetic fluctuations

and found a clear power-law spectrum with an increase of the slope at kρL ∼ 2π,

eventually associated to dissipation. On the other hand, for the 2B runs, the mag-

netic fluctuations are stationary, with a flat spectrum (wide band white noise), and
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clearly associated to the linear Ion Bernstein Waves as illustrated in Fig. 5 of paper

D.

As a conclusion, these runs show that we find a diffusive process associated

to particle transport by magnetic fluctuations in very different physical situations.

Nonetheless, this do not perclude the fact that in some situations, particle transport

could be sub- or super-diffusive. It clearly outlines the importance to properly

compute the diffusion coefficient. More specifically, the turbulent particle transport

defined at a given scale has to be free of any motion existing at a larger scale.

This challenges the results obtained in test-particle calculation. In this kind of

calculations, as particles are not considered as a whole, a fluid velocity (or let say a

velocity averaged at a given scale) cannot be computed. To make clear this problem,

we have in mind (in a close future) to compute test-particle simulations in static

magnetic fluctuations. Defining a grid, one can compute in each associated cell the

mean velocity through time. For an isotropic case, this velocity value should be null.

If not, a correlation between the particle mean displacement ∆Y 2 and the existence

of such non-null fluid velocity could suggest that super-diffusive behaviour could be

also or partly the consequence of the reminiscence of a mean fluid velocity.

2.2 Electric and magnetic contributions to κ⊥

The logical continuation of this work is to identify the relative importance of

electric and magnetic fluctuations as well as their coupling in particle diffusion.

Furthermore, in the existing simple analytical models, the diffusion coefficient de-

pends on the particle velocity either in a linear or in a quadratic way. We also want

to investigate the way κ⊥ depends on the particle perpendicular velocity v⊥. This

work has been published in [?], refered hereinafter as paper E.

To investigate the role of the electromagnetic fluctuations and the importance

of the term Y ? from eq. (2.2) in the calculation of the perpendicular diffusion

coefficient, we compute κ⊥ with eq. (2.1) and ∆Y with eq. (2.2) with different

components of the electromagnetic fluctuations and different values of V (t). The

different situations are detailed in Tab. 2.1. The first row is the type of particles

(macro-particles or passive tracers, detailed hereinafter), the second row is the elec-

tromagnetic fields used to compute the particle motion, the third row is the value

of V (t) used in eq. (2.2) and the fourth row is the tags used in the following figures.

All the runs are similar to the 2B runs of [?], and the parameters of the agyrotropic
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Part. type E.M. Fields V Tag

passive tracers B, E 0 A

passive tracers B 0 B

passive tracers B0, E 0 C

macro-particles B, E 0 D

macro-particles B, E E×B E

macro-particles B, E Vp F

Table 2.1: The first row is the type of particles, the second row is the electromagnetic

fluctuations considered for their motion, the third row is the value of V (t) in eq.

(2.2) i.e. the velocity fluctuations and the fourth row is the name of the population.

instability are such as the level of fluctuations is about δB ∼ 0.11. Another set of

runs with δB ∼ 0.21 gives qualitatively the same results.

Contributions of the electric and magnetic fields to κ⊥

To investigate the respective role of electric and magnetic contributions as well

as their coupling, we follow the particle motion in electric fluctuations (their motion

is calculated considering only the electric part of the Lorentz force, population C),

magnetic fluctuations (their motion is calculated considering only the magnetic part

of the Lorentz force, population B) and both electric and magnetic fluctuations

(their motion is calculated considering the whole Lorentz force, population A) as

reported in Tab. (2.1). The particles to consider can hence not be macro-particles

because of the self-consistency of the code. To do so, we use passive tracers ; their

motion are calculated in the self-consistent time evolving electromagnetic field, but

have no back-action on these electromagnetic fields as the macro-particle do. The

obtained results are depicted in Fig. 2.4. The κ⊥ value is calculated for a given

subset of the perpendicular particle velocity v⊥ to investigate how κ⊥ depends on

v⊥.

The curve for population B passes through the origin, its derivative at the origin

is close to zero, grows with v⊥, and at larger values is close to a linear relation. This

emphasizes the point that κ⊥ does not explicitly depend on v⊥ with a single power

law, even if it might be the case in some ranges of v⊥. One can notice in particular
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Figure 2.4: Perpendicular diffusion coefficient κ⊥ depending on the particle prepen-

dicular velocity v⊥. Triangles are associated to population A (magnetic, electric

and velocity fluctuation), circles to population B (magnetic and velocity fluctua-

tions) and squares to population C (electric and velocity fluctuations). The solid

thick line is obtained by summing B and C. From [?].

that a quadratic model is better suited at low energy and a linear model at high

energy. The simple analytical models where κ⊥ is linear (see [?]) or quadratic (see

[?]) with v⊥ can therefore not adequately describe the diffusion coefficient for a wide

range of particle velocities. The linear model invokes a correlation length and the

quadratic one a correlation time. As shown in paper D, these arguments cannot

be general. It is worth recalling in particular that, in our numerical experiments,

the magnetic fluctuation power spectrum is flat : according to the Wiener-Kintchine

theorem, it corresponds to a coherence length close to zero (or to the grid size).

The results for population C are totally different. κ⊥ reaches its maximum value

for v⊥ close to zero, decreases for increasing v⊥ and goes to zero. The fact that

the electric part of the Lorentz force does not depend on the particle velocity can

qualitatively explain why κ⊥(0) 6= 0.

The result for population A is a mix between B and C : κ⊥ is non-zero at v⊥ = 0

and grows with v⊥. To facilitate the comparison, the sum of curves B and C is

depicted in solid line in Fig. 2.4. The increase of curve A seems weaker than for

curve B, but, apart from a slight overestimation, the addition of B and C is equal

to A : electric and magnetic contributions to the diffusion coefficient are associated

to very different mechanisms, but act together in a very linear way. This supports
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the point that both contributions can be studied independently.

Nature of the electromagnetic fluctuations

We discuss in paper D the nature of the electromagnetic fluctuations for 2B

runs. We put forward that at low level of magnetic fluctuations, the associated

modes were the Ion Bernstein Wave (IBW). But it is not so clear that at a higher

level of fluctuations, the nature of theses fluctuations is the same : one gets farther

from the linear theory where the amplitude of the fluctuations is small compared to

the zero order level. Fig. 2.5 depicts the ω− k spectrum of the Z component of the

magnetic field. The obtained pattern is not as clear as the usual IBW, but one can

recognize the energy deposited on the 3 first cyclotron harmonics, mostly along the

fast mode. It will be the purpose of a future work to investigate the importance of

the nature of the modes for particle diffusion.

Figure 2.5: Power spectral density in the “pulsation-wave number” plane for the Z

component of the magnetic field. Low energies are color coded in purple and high

energies are color coded in black/red with a linear scaling. From [?].
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Contributions of the velocity fluctuations to κ⊥

The role of the velocity fluctuations for the diffusion process can be investigated

by varying the term V (t) in eq. (2.2). If V (t) is null, there is no correction, and

the particle diffusion is also a consequence of the fluctuations of the velocity field

defined at the scale of the grid. On the other hand, if V (t) is the fluid velocity

defined at the scale of the grid, the associated particle diffusion coefficient is free

of these fluctuations. An intermediate situation is to consider only the zero-order

fluid veolcity fluctuations, associated to the cross-field drift E × B/B2. In our

case, it turns to be the first order drift given by δE × B0/B
2
0 . For this purpose,

Fig. 2.6 depicts κ⊥ as a function of v⊥ for population D (circles, with full velocity

fluctuations), E (triangles, without the cross field part of the velocity fluctuations)

and F (squares, without any velocity fluctuations). All these results involve both

magnetic and electric fluctuations. The curve obtained for population D is very

similar to the one obtained for population A : the only difference is the nature of the

particles, namely passive tracers for population A and macro-particles for population

D.

Figure 2.6: Perpendicular diffusion coefficient κ⊥ depending on the particle perpen-

dicular velocity. Circles are associated to population D (full velocity fluctuations),

triangles to population E (velocity fluctuations without their cross field part) and

squares to population F (no velocity fluctuations). From [?].
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A striking point between Fig. 2.4 and Fig. 2.6 is the apparent similarities

between the results obtained for population B and F. It contributes to identify

mainly four issues in these results :

◦ The κ⊥ associated to magnetic fluctuations is a growing function of v⊥ with

κ⊥(0) = 0.

◦ The κ⊥ associated to electric fluctuations is non-null for v⊥ = 0.

◦ The κ⊥ associated to both magnetic and electric fluctuations is somewhat the

sum of the two previous ones.

◦ The contribution of the velocity fluctuations to κ⊥ seems close to the one of

the electric fluctuations.

Qualitative explanations

The main observed features can be understood, at least qualitatively, by inspec-

tion of the particle dynamics. The particle motion is essentially a cyclotron motion

around a guiding center. The guiding center motion can be estimated analytically

as shown in many plasma textbooks. Several contributions can be exhibited like

detailed in [?]. Noting b the unit vector along the magnetic field (Z direction in

our case), and uE the cross field drift velocity (uE = E×B/B2), the perpendicular

guiding center velocity (considering only zero and first order terms) is

vGC⊥ = uE+
b

ωC
×
[
v2
⊥
∇B

B
+ v‖

(
∂tb + v‖∂Zb + uE .∇b

)
+
(
∂tuE + v‖∂ZuE + uE .∇uE

)]
(2.3)

The four issues listed above can be answered with the help of eq. (2.3) :

• First issue: Why is κ⊥ associated to magnetic fluctuations a growing function

of v⊥ with κ⊥(0) = 0 ? The second term is the well-known gradient drift velocity

and is the only one playing a role for population B (other terms are either null or

involve the electric field). Hence, for v⊥ going to zero, the associated perpendicular

guiding center drift is also going to zero, as well as the associated κ⊥. This is why

for population B in Fig. 2.4, κ⊥(0) ∼ 0. The reason why κ⊥ depends on v⊥ is more

indirect: it may come from the term b×∇B. This term depends on v⊥ because the

mean square deviation of the magnetic fluctuations seen by the particle depends on

its Larmor radius.
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• Second issue: Why is κ⊥ associated to electric fluctuations different from zero

for v⊥ = 0 ? None of the terms of eq. (2.3) associated to δE depend on v⊥.

Accordingly, curve C in Fig. 2.4 is such as κ⊥(0) 6= 0. Nonetheless, second order

terms in the expression of vGC (not written in eq. 2.3) would involve both v⊥ and

δE. This could explain why κ⊥ is not constant but a decreasing function of v⊥.

• Third issue: Why is the diffusion coefficient associated to both magnetic and

electric fluctuations somewhat the sum of the one associated to magnetic fluctuation

and the one associated to electric fluctuations ? All the terms involving the electric

field depend on the term uE . At small level of fluctuations, uE ∼ (δE × b)/B0

(considering only the first order contributions) which does not depend on δB. In

the same way, terms involving δB are free of δE. The linearity originates in the

small level of fluctuations and the fact that the largest contributors to the guiding

center velocity (and hence to κ⊥) are first order terms.

• Fourth issue: Why is the contribution of velocity fluctuations to κ⊥ is close

to the one of electric fluctuations ? A particle velocity vp is the sum of its guiding

center velocity vGC and the gyromotion vΩ. If one averages these motions over

several gyropulsations, one gets

vp = vGC (2.4)

κ⊥ depends on the square of this velocity,

v2
p = v2

GC + v2
Ω + vGC .vΩ (2.5)

During few gyropulsations, vGC is somewhat constant in both modulus and direc-

tion. Accordingly, the last term in eq. (2.5) is null. Hence, the first term in the

right hand side of eq. (2.5) contains all the contributions of the electric fluctuations

and only one of the magnetic fluctuations (the gradient drift). The second term

depends only on the magnetic fluctuations (and on v⊥). Hence, the contributions of

the electric fluctuations are the same as the contributions of the fluid fluctuations

if neglecting the gradient drift in the first term. This could explain why the role of

electric fluctuations and velocity fluctuations are similar. If so, this means that the

magnetic fluctuations mainly act through the second term of the right hand side of

eq. (2.5). These remarks are in agreement with explanations for the first and second

issues. For the first issue, vΩ depends on both v⊥ and δB. The associated diffusion

coefficient for population B is such as κ⊥(0) ∼ 0 and κ⊥ grows with v⊥. For the

second issue, vΩ does not depend on δE, meaning that this term has no contribution

to κ⊥ for population C.
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An important consequence is that in eq. (2.3), a mean first order velocity can be

associated to the magnetic field structure. Hence, a mean velocity (of smaller order)

can also result from magnetic fluctuations. As a consequence, even in magnetostatic

fluctuations, a fluid velocity can appear with consequences on the particle motion.

As mentioned above, this can wrongly be interpreted as super diffusion. Hence,

it seems also important in magnetostatic fluctuations to evaluate the contribution

of a mean fluid velocity in the particle motion to properly calculate the diffusion

coefficient. This point has never been considered in test-particle calculations, and is

the topic of a future work.

—————

Several conclusions can be drawn from this study. First, the physical meaning

of the diffusion process has been clarified, because several authors use this name

for different meaning. In our work, the diffusion process is the irrerversible one

that quantifies the way individual particle can depart from the motion associated

to a mean flow, defined at a given scale. As a consequence, to properly calculate a

diffusion coefficient, the particle velocity has to be free from this mean flow motion

for the calculation of the diffusion coefficient. Furthermore, electric and magnetic

fluctuations do not contribute in the same way to particle diffusion. The particle

diffusion coefficient associated to magnetic fluctuations is a growing function of the

particle velocity (that is null for a zero particle velocity), while this coefficient is

a slightly decreasing function of the particle velocity for electric fluctuations. I

started an analytical work to calculate the diffusion coefficient. The first results

show that the perpendicular diffusion coefficient depends on the PDF of the magnetic

fluctuation, and not on the characteristic quantities of its spectrum (total energy,

slope, minimum and maximum wave number...). These results need to be finalized,

and compared with numerical simulations.
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Fluid vs kinetic approach of collisionless

magnetic reconnection

Magnetic reconnection has already been invoked in the previous chapters. It is

an important process in space and astrophysical plasmas because several questions in

astrophysics are tied in to acceleration/heating processes : production/energization

of extra-galactic cosmic rays, acceleration of jets in accretion disks, heating of stellar

winds... Because of the very high level of energy involved, one has to search for

non-classical processes which cannot be described by the simple theories. In most

cases, these processes pertain to one (or more) of the 3 categories : shock, magnetic

reconnection and turbulence. A common point between these categories is that they

all involve a wide range of scales, from the electron kinetic ones, to the large MHD

ones. The choice of a treatment is hence very hard, and necessitates to use some

approximations.

We discussed in chapter 2 the particle diffusion by electromagnetic fluctuations,

and put forward that the development of electric and magnetic fluctuations are

associated to particle transport in a non-classical way, i.e. not necessarily associ-

ated to a density gradient. The occurrence of turbulence can be strongly corre-

lated to magnetic reconnection (see e.g. [?]) meaning that turbulence can modify

magnetic reconnection and that magnetic reconnection can affect the turbulence

(cascade/dissipation).

Kinetic signatures of magnetic reconnection have been studied in previous papers

(see e.g. [?], [?], [?]), without worrying about how to make it appears. In this

chapter, we address the way magnetic reconnection can occur in collisionless plasmas

as well as the consequences for the plasma structure and dynamics. The work

presented in this chapter has been done with Nicolas Aunai during his PhD thesis

between 2007 and 2011, that Gerard Belmont and I supervised. A peculiar effort is

devoted to comparisons with the signatures and associated mechanisms presented

in [?]. An extension of this work is presented in chapter 4.

In section 3.1, we present the framework of magnetic reconnection (collisional

37
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and collisionless) as well as what we know from observations (mostly from satellites

data). In section 3.2, we present the way protons are accelerated by the electric field

in the vicinity of magnetic reconnection region, and the relation with the electric

field magnitude. In section 3.3, we revisit the problem of energy budget in and out

of the reconnection region, and more particularly when the initial current sheet is

asymmetric as is the case in the Earth MP. In this chapter, we will try to outline

the relation between the kinetic description we used (with the hybrid code) and the

fluid one.

3.1 The framework of magnetic reconnection

A very classical definition of magnetic reconnection is that magnetic reconnec-

tion in magneto-fluids is the process by which magnetic field lines break and rejoin

in a lower energy state. The excess energy appears as kinetic energy of the plasma

downstream of the reconnection point. The mean features of magnetic reconnection

are here, but the formulation is misleading. Magnetic reconnection can be a station-

ary process in which the magnetic energy and plasma kinetic energy are constant

through time.

If one considers a volume around the reconnection region, then most of the

incoming energy will be magnetic, and most of the outgoing energy will be kinetic.

Still, this is not the definition of magnetic reconnection, but one of its most important

consequences. Namely, magnetic reconnection is the process by which two magnetic

field lines initially different can connect. This concept can be generalized to flux

tubes, and of course have consequences for the plasma embedded inside. It is thus

clearly a topological definition that demand to define the concept of magnetic field

line and its motion.

The velocity of a magnetic field line is the one of the frame in which the associated

electric field is null. This purely Electro-Magnetic definition gives

VEM =
E×B

B2
(3.1)

One recognizes the cross drift velocity. This definition is a direct consequence of the

non-relativistic form of the Lorentz transform of the electric field value. Wherever

this motion can be defined, magnetic field lines can move, wiggle, braid... but cannot

break down. Reconnection can only exist where this motion cannot be defined.
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What does that mean for the plasma ? The momentum equation of particles

(whatever protons or electrons), in the absence of any spatial gradient and in sta-

tionary case (i.e. for modes at very low wave number and pulsation) reduces to

E + Vs ×B = 0 (3.2)

where Vs is the velocity of specie s. As a consequence, the plasma follows the

magnetic field lines motion (frozen field hypothesis) in the absence of small spatial

and temporal scales. It means that the motion of the magnetic field lines is the

same as the motion of the plasma. As a consequence, closed magnetic structures

like the Earth magnetosphere (both ends of each magnetic field lines are anchored

in the ionosphere for a dipolar magnetic field) are synonymous of “particleproof”

boundary : neither magnetic flux, nor particles can penetrate in this magnetically

closed structure. This is an important point because, while it is quite hard to

infer the magnetic topology of the magnetic field lines from in situ observations,

it is easier to measure the energized plasma. One hence needs to unambiguously

link these energetic plasma to the energetization process associated to magnetic

reconnection.

The condition of existence of magnetic reconnection is simple : let’s consider two

points P1 and P2 on a given magnetic field line at a given time. Hence, P1P2×B = 0.

If magnetic reconnection occur, then dt(P1P2×B) 6= 0. With the Maxwell-Faraday

equation, this equation gives

(∇×E‖)× b 6= 0 (3.3)

where b is the unit vector along the magnetic field.

The electric field can be obtained from the momentum equation of both species.

Of course, eq. (3.2) cannot be associated to magnetic reconnection. One must go

beyond ideal MHD to find the conditions for magnetic reconnection to occur. The

electric field can be obtained from the momentum equation of a specie of the plasma.

For electrons, this equation writes for a collisional plasma with a conductivity σ

E = −Vi ×B +
1

en
(J×B−∇.Pe)−

m

e

dVe

dt
+
ne

σ
J (3.4)

In eq. (3.4), the two first terms cannot trigger magnetic reconnection (the associated

electric field has no component parallel to the magnetic field). For a barotropic

electron population, the third term can neither do so, unless the electron pressure
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tensor is not diagonal. This means that the associated electron distribution function

has to be agyrotrop (the two directions in the plan perpendicular to the magnetic

field direction are not equivalent). The fourth term can make magnetic reconnection,

but as it is proportional to the electron mass, the associated reconnection electric

field might be very small. The Fifth term is also able to make magnetic reconnection,

providing a sufficiently large resistivity.

The electric field, wrongly called the “reconnection rate” (it is not a rate) quan-

tifies the time variation of the magnetic flux newly connected. It is generally dimen-

sionless, normalized to the product of the upstream Alfvén speed multiplied by the

upstream magnetic field. Fig. 3.1 helps to understand the 2-dimensional topology

of magnetic reconnection. The plasma is flowing from the upstream region toward

the reconnection region at the cross-field velocity in the Y direction. The magnetic

field lines are pinched at the center where they reconnect. These peculiar magnetic

field lines (dotted lines in Fig. 3.1) are called the separatrices. The green solid lines

represent the plasma flow, that flows out of the reconnection region in the X direc-

tion. In white regions, the conditions of ideal MHD are satisfied. In green region,

electrons are magnetized while protons are not. In this “proton decoupling region”

the plasma is described by Hall MHD. In orange region, both protons and electrons

are decoupled from the magnetic field. In this “electron diffusion region”, even the

electrons can hardly be described by fluid theory.

Figure 3.1: Schematic view of the reconnection region, from [?].
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The scales of magnetic reconnection

The three regions described above are each associated to still open questions :

◦ At the electron scale, what is the origin of the reconnection electric field ?

When writing a generalized Ohms law, which terms can account for the recon-

nection electric field ?

◦ At the proton scale, what is the magnetic field lines structure and dynamics ?

What is the associated electric field ? What is the energy budget downstream

of the reconnection region ? What are the efficiency of the acceleration or

heating processes ?

◦ At MHD scale, what is the global topology ? Is there a way to control the

reconnection rate and the geometry ? What is the importance of the 3D

geometry : how to translate the 2D results in 3D ?

Each of these questions are interesting, but cannot be addressed with the same

kind of numerical tools. At the electron scales, electrons have to be described ki-

netically because the way to close the hierarchy of fluid equation is not easy. It

can be done using full PIC codes (both electrons and protons are treated as macro-

particles) or Vlasov codes (not very popular in the astrophysics community). On

the other hand, at MHD scales, 3D fluid codes are necessary to properly describe

the large scale dynamics and the associated complicated topology. To investigate

the second item, we used the heckle code in its 2
1
2 version.

3.2 Particle acceleration by the Hall electric field

The way the plasma is accelerated and/or heated during the reconnection process

is yet unclear. The first model by [?] and [?], the so-called Sweet-Parker model is

applicable for collisional system. The finite resistivity of the media is the source of

the electric field in the generalized Ohm’s law (last term of eq. 3.4). This electric

field is in the current direction, and the positive work of this force on the particles is

responsible for their energization. In this model, the reconnected electric field, and

hence the reconnection rate, depends on the resistivity of the media. In the Earth

magnetosphere, the resistivity is almost null (the mean free path of a proton is about

1 A.U.), and the reconnection rate of the Sweet-Parker model is hence almost null.
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Later, the Petschek model (see [?]) introduced an interesting idea : the loci of

the reconnection process is not the same as the loci of the particle energization.

In the Sweet-Parker model, the reconnection rate is very small mainly because the

electron decoupling region is very small (on the order of the electron skin depth).

While protons are accelerated in this zone, this makes a bottleneck that drastically

limit the reconnection rate. The idea of Petschek is that the region of acceleration

of particles could be larger than the electron decoupling region where magnetic

field lines reconnect. In the Petschek’s model, the existence of slow-mode shocks

along the two separatrices is the cause of the plasma acceleration. Later-on, neither

observations nor numerical simulations were able to justify the existence of such

structure.

Yet, the idea of Petschek is interesting, and the best scenario is now that mag-

netic reconnection occurs in the electron decoupling region, and that protons are

accelerated in the proton decoupling region. As a result, it is an open question to

identify the origin of particles acceleration from a micro-physical point of view. The

physical large-scale picture is that the newly reconnected magnetic field lines are

highly bent (see the magnetic field lines downstream of the separatrix in Fig. 3.1).

As a result, the associated high magnetic tension results in a violent spring force

that brings the magnetic field lines in a more rectilinear shape. Once protons are

frozen to these magnetic field lines, they are also accelerated. But in the proton

decoupling region, protons are not tied to magnetic field lines...

Hall mediated collisionless magnetic reconnection

In the sweet-Parker model, the outflow speed is the Alfvén speed of the input re-

gion, because the magnetic perturbations are essentially Alfvénic. Furthermore, the

outgoing flux of particles linearly depends on the thickness of the proton decoupling

region. As the apex angle of the separatrices is small, this thickness is also small,

hence resulting in a limited reconnection rate. A major step was accomplished by [?]

in understanding collisionless magnetic reconnection. At higher frequency, the com-

pressional Alfvén mode turns to be the whistler mode. It is suggested in this paper

that the speed of the plasma jet downstream of the reconnection X point linearly

depends on the inverse of the current sheet thickness. As a result, the reconnection

rate, proportional to the product of the outflow speed by the current sheet thickness

is a constant that explain a fast reconnection rate.
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This model has another important consequence : while the Alfvén mode is lin-

early polarized, the associated magnetic perturbation develops in the plane of po-

larisation. The whistler mode being circularly polarized, the associated magnetic

perturbation gets out of this plane. The important consequence for magnetic recon-

nection is that in the vicinity of the separatrix in the proton decoupling region, the

magnetic field lines get out of the plane, as illustrated in Fig. 3.2 from [?].

Figure 3.2: Development of the out-of plane magnetic component associated to the

Hall effect during reconnection from [?]. The arrows represent the electron velocity

In panel (a) of Fig. 3.2, the magnetic field line holds in the polarization plane,

and the electron velocity, at the origin of the associated current, is indicated by the

perpendicular vertical arrows. The magnetic field being frozen in the electron fluid,

the magnetic field line is dragged out of this plane in panel (b). The electron velocity

being locally perpendicular to the magnetic field line, a component of the electron

velocity develops that convects the magnetic field line away from the reconnection

region as indicated in panel (c).

If one represents a second magnetic field line close to the second separatrix, the

development of the out-of-plane magnetic component forms a quadrupolar structure

(see Fig. 3.3). The quadrupolar structure of the Hall magnetic field is a key parame-

ter of fast reconnection. This point is the main conclusion of the GEM challenge (see

[?]) : in 2001, a wide bunch of simulators addressed the same problem of magnetic
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reconnection (box size, initial and boundary conditions) with various codes, namely

resistive MHD, Hall MHD, hybrid and full PIC. The main result of this challenge is

that the reconnection rate is almost the same with various codes as long as the Hall

effect is included.

This Hall component of the magnetic field is important because it is associated

to an electric field. This is illustrated in Fig. 3.3 from the PhD thesis of N. Aunai. It

can be seen that the Hall electric field is localized close to the separatrix in the proton

decoupling region, mainly in the Y direction toward the mid-plan. Because of the

small angle of the separatrices, it also exists a small component of the electric field,

in the +X direction for positive X values, and in the −X direction for negative

X values. It was suggested by [?] that this electric field could play a role in the

energization of protons. Using cluster 2 data, [?] also suggested that this electric

field could be responsible for the protons acceleration.

Figure 3.3: Schematic of the reconnection region from the PhD thesis of N. Aunai.

Fluid description of the protons

In [?], hereinfater refered as paper F, we addressed this problem with the heckle

code. An important and original aspect of this paper is the fluid consequences of

the kinetic process for protons. Following a fluid particle initially upstream of the

reconnection region, it is accelerated and heated when crossing the separatrix. With

the kinetic description of the protons, each term of the proton Ohm’s law can be

calculated. The results are depicted in Fig. 3.4. Left panel is the projection along

the X direction and right panel is a projection in the Y direction of the different

terms of the Ohm’s law. The abscissa is the curvilinear abscissa along the fluid
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path described in Fig. 3 of paper F. From this figure, it is clear that most of the

pressure gradient is opposed to the electric field, hence limiting the flow acceleration.

As protons are deflected toward the mid-plane, the pressure inside the jet rises, so

that the pressure difference with the upstream region is able to dynamically balance

the electric field force and maintain the structure open and steady. It has to be

noted that in the X direction, the pressure gradient is essentially coming from the

off-diagonal term PXY unlike almost fluid models where the pressure is assumed

scalar.

Figure 3.4: Each term of the proton Ohm’s law are color coded depending on the

curvilinear abscissa in the X (left panel) and Y (right panel) direction, from [?].

Kinetic structure of the proton fluid

Of course, the structure of the proton pressure tensor depends on the formalism.

Within the fluid framework, it is a consequence of the closure equation. For most of

the fluid studies, the pressure tensor is at least diagonal, and even isotropic in many

cases. In the hybrid framework, the full proton pressure tensor is a consequence

of the particle dynamics, and closely depends on the distribution function. The

structure of these proton distribution functions are depicted in Fig. 6 of paper F, for

various Y location, namely upstream and downstream of the separatrix. Essentially,

these distribution consist of a cold Maxwellian upstream of the separatrix, and 2

cold beams downstream, the relative weight of each beams depending on the Y
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location. These distribution functions are depicted in the VxVy plan, and can be

easily understood by close inspection of particle dynamics.

Figure 3.5: From [?] : (upper panel) Proton trajectory superposed to the X com-

ponent of the electric field and (lower panel) zoom of this proton orbits with the

electric (red arrows) and magnetic (blue arrows) forces felt by the particle.

In Fig. 3.5, it appears that this particle orbit has 3 sequences : an adiabatic drift

from the lobe toward the separatrix, a bounce motion between the 2 separatrices,
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and another adiabatic drift motion farther away from the reconnection region. The

bounce motion could look very similar to the Speiser orbits. But the close inspection

proposed in the lower panel of Fig. 3.5 clearly shows that in the vicinity of the

separatrices, the particle motion results from the electric force and not from the

magnetic one. This orbit is hence not a Speiser-like one ; the proton is bouncing

between the separatrix and is accelerated by the electric field. A Fourier analysis

proves that this electric field is essentially electrostatic.

From the upper panel of Fig. 3.5, one can understand the distribution func-

tion; at the mid-plane, the distribution function is the superposition of particles

accelerated at the upper separatrix (Vy < 0) and particles accelerated at the lower

separatrix (Vy > 0). Both have Vx > 0. For symmetry reasons, each beam has the

same density. For a lower observation point (closer to the lower separatrix), these

two populations are still observable, but the one with Vy > 0 is denser, because some

of these particles have bounced prior reaching the separatrix.

Concluding remarks

This peculiar structure of the distribution functions is at the origin of the proton

pressure tensor. It thus appears that this process is clearly a self-consistent one :

particles are accelerated by the electrostatic Hall electric field mainly localized on

the separatrix, and the resulting gradient of the proton pressure tensor limits the

magnitude of this accelerating electric field.

Several conclusions can be drawn from this study :

◦ During magnetic reconnection, protons are accelerated essentially by the Hall

electrostatic field on the separatrix. As a consequence, the reconnection elec-

tric field (in the Y direction) seems to play a secondary role for protons ac-

celeration. The Speiser mechanism is hence void. This is a consequence of

the appearance of a Hall electric field never considered in early test-particle

calculations.

◦ These peculiar proton distribution functions limit the magnitude of the electric

field, and hence the energetization process. As a result, the reconnection rate

is kept at a finite value.

◦ While there is an angle between the two separatrices, the bouncing motion

between the two separatrices accelerates the protons essentially in the Y di-



48 3. Fluid vs kinetic approach of magnetic reconnection

rection, and part of this velocity turns to be converted in the X direction

when protons get farther from the reconnection region. It has important con-

sequences for the competing balance between acceleration and heating that we

discuss in the last section of this chapter.

This study puts forward the importance of the self-consistent nature of mag-

netic reconnection. It also outlines the importance of the closure equation in fluid

simulations, since it controls the pressure tensor structure, and hence the limited

value of the Hall electric field. As a general feature, the proton outflow in fluid

simulations is generally Alfvénic. This can be a consequence of a larger value of the

Hall electric field while not limited by the gradient of the off-diagonal terms of the

proton pressure tensor. On the other hand, the reconnection rate are somewhat the

same in each cases because the outflow channel is wider in PIC simulations.

The quadrupolar structure of the Hall magnetic field as well as the quadrupolar

structure of the off-diagonal term of the proton pressure tensor has been studied in

[?], using cluster 2 data. This study clearly puts forward that if one considers cor-

rectly a small guide field in the current direction, these two quadrupolar structures

are observed, and can thus be used as a proxy of the Hall-mediated reconnection

region.

3.3 Energy budget for asymmetric magnetic reconnec-

tion

It was clear from section 3.2 that protons are energized when going through the

reconnection region, because the Hall electric field is mainly located on the sepa-

ratrices. Close to the X line, the small aperture of the separatrices results in an

enhancement of the particle velocity essentially in the normal direction (along Y ).

During the forthcoming bounces, this small aperture results in a progressive en-

hancement of the particle velocity in the X direction. Far from the reconnection

region, the magnetic field lines are essentially in the X direction. Hence, a gain in

the X component of the particle velocity will be associated to acceleration while

a gain in the Y direction will be associated to heating. The purpose of Ref. [?],

hereinafter cited as paper G, is to investigate the balance between acceleration and

heating of the plasma through the reconnection region. Furthermore, for asymmetric

reconnection, this balance can be modified, and can depend on the field asymme-
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tries. A recent study addressed this problem ([?]) and found that in both cases, the

incoming energy of the Poynting flux is equally distributed between bulk flow energy

and thermal energy of the protons downstream of the reconnection region. These

results were obtained with MHD simulations. We thus want to address this problem

with a hybrid code to properly treat the kinetic nature of the proton energization,

as described in the previous section.

The three energy equations

This study is based on two runs, named A and B : run A is the classical symmetric

case, while run B is the asymmetric case for which a density gradient (densities equal

to 1 and 0.25 on side 1 and 2, respectively) is associated to a temperature gradient

such as the pressure balance is satisfied with a tangent hyperbolic profile of the

magnetic field. The details of the simulations are in paper G. The energy equations

for the electromagnetic, bulk and thermal components have to be written, to outline

the different terms and their coupling :

∂M

∂t
+ ∇.Π = Sm (3.5)

∂K

∂t
+ ∇.(KU) = Sk (3.6)

∂u

∂t
+ ∇.(q + H) = Su (3.7)

Eq. (3.5) is the conservation equation for the electromagnetic energy, eq. (3.6) is

the conservation equation for the bulk flow energy and eq. (3.7) is the conservation

equation for thermal energy (the same equation holds for protons and electrons).

In eq. (3.5), M is the magnetic energy (the electric energy is negligible because

the speed of light is infinite compared to the Alfvén speed), Π is the Poynting flux

and Sm = −J.E. In eq. (3.6) K is the bulk flow energy (negligible for the massless

electrons), U is the mean velocity and Sk = nqE.U − (∇.P).U. In (3.7), u is the

thermal energy, i.e. the half trace of the full pressure tensor P, q is the reduced

heat flux and H is the enthalpy (the sum of the thermal energy flux and the work

of the pressure force).

For each of these equations, the first term in the left hand side is the explicit

derivative with respect to time, the second term in the left hand side is the diver-

gence of the associated flux, and the right hand side is the sum of source and sink

terms. Hence, the spatial integration of the right hand side of eq. (3.6) and (3.7)
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on a contour containing the proton decoupling region gives the sources of bulk and

thermal energies, respectively. For both symmetric (run A) and asymmetric (run

B) cases, the time evolution of this value is depicted in the 2 upper panels of Fig.

3.6. The red lines are the bulk energy flux and the black line are the thermal en-

ergy flux. It clearly appears that we are far from an equipartition of the magnetic

energy : the kinetic particle energy downstream of the reconnection region is domi-

nantly in the thermal part, the bulk flow being smaller. This situations is magnified

in the asymmetric case.

Figure 3.6: From [?] : The left panels are for the symmetric case, and the right

panels for the asymmetric case. The upper panels depict the time evolution of the

bulk energy sources (red line) and thermal energy sources (black line). The middle

panels depict the time evolution of the ingoing and outgoing bulk energy fluxes.

The lower panels depict the time evolution of the ingoing and outgoing heat flux

and enthalpy fluxes.
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Computed source terms of the energy equations

From the two upper panels of Fig. 3.6, it is clear that the source of bulk energy

is larger than the one of thermal energy, this being more pronounced in the asym-

metric case. This is quite different from the MHD results previously published and

is a clear consequence of the kinetic nature of the proton energization. The middle

panels indicates that the ingoing bulk energy flux is negligible, and that the out-

going one is somewhat equal to the source term of thermal kinetic energy depicted

in the upper panels. The lower panels show that the ingoing and outgoing heat

fluxes are negligible, and that the outgoing enthalpy flux is larger than the incoming

one, in accordance with the enhancement of the thermal energy downstream of the

reconnection region.

The conclusion of this study is that the main energy flux in the reconnection

region is the Poynting flux. A small part of this Poynting flux gets out of the

reconnection region, while the main outgoing flux is the enthalpy flux. Hence, the

plasma downstream of the reconnection region is mainly heated, and accelerated in

a less efficient way.

—————

Several conclusions rise from this chapter :

◦ The reconnection electric field partly contributes to the energization process

of protons, but the Hall electric field localized on the separatrices is the main

source of particle energization. Speiser-like orbits are not observed in the

proton decoupling region.

◦ The protons are accelerated by the Hall electric field, its value being limited

by the proton pressure tensor associated to the counter beams distribution

function.

◦ These signatures are observed in-situ by the cluster spacecraft in the close

magnetotail of the Earth.

◦ The energy gained by the protons is more preferentially thermal than in bulk

form.

We investigated the fast collisionless magnetic reconnection in both symmetric and

asymmetric cases. A natural evolution of this work will be to consider a small guide
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field to study how it can affect the proton energization. Former studies like [?]

already showed that when considering a guide field, the magnetic topology of the

reconnection region is not simply the superposition of the Hall magnetic field with

the guide field. The normal component of the magnetic field, when subtracting the

guide field, is not quadrupolar, and preferentially in the direction of the guide field.

As a consequence, one can expect that the Hall electric field is also modified, as well

as the bounce motion of protons between the potential wells along the separatrices.

Another promising evolution of this work will be to compare the fast magnetic

reconnection mechanism in space plasma (with β ∼ 1) with the case of laboratory

plasma. Since less than a decade, magnetic reconnection can also occur in laboratory

plasma, at higher β value (about 100 or more). A small collisionality has also to be

considered. This will be developed in the next chapter.
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New perspectives on magnetic reconnection

To study the onset of magnetic reconnection, one needs the prescription of an

initial magnetic field prior magnetic reconnection occurs. For test-particle calcula-

tions, one imposes the reconnected magnetic field structure, and the only constraint

is to satisfy ∇.B = 0. For self-consistent fluid simulations, one needs a fluid equilib-

rium, meaning that the first 3 moments of the distribution function (at least) have

to be known, and the associated magnetic field profile has to be such as to satisfy

a pressure balance across the current sheet. For self-consistent kinetic simulations,

this is the whole distribution function that has to be known, and that has to satisfy

the Vlasov equation. We investigate in section 4.1 such class of models more in

details as they are of primary importance for magnetic reconnection study. We also

present in section 4.2 preliminary results on the onset and dynamics of magnetic

reconnection in an original topology.

4.1 Kinetic equilibrium for an asymmetric tangential

layer

The study of magnetic reconnection using self-consistent simulations needs the

prescription of an initial equilibrium. Hence, the profile of the magnetic field and

the associated distribution function has to satisfy the Vlasov equation (even if this

equilibrium is unstable, as is the Harris sheet with the tearing mode, see [?]). If such

an equilibrium is not exact, some energy will be in excess in the system. This energy

will hence feed the eigen modes of the system and waves will grow in the simulation.

In the case of a current sheet, this has been clearly observed in our simulations

of magnetic reconnection in tangential layer discussed in chapter 3. These waves

are low frequency (probably fast magnetosonic modes) and generally propagating

perpendicularly to the magnetic field.

It exists very few kinetic equilibria because the set of associated integro-differential

equations is, on a mathematical point of view, awful. The study of [?] is the first one

and contains most of the ideas used in the subsequent studies. First of all, a kinetic

53
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equilibrium must satisfy the Vlasov equation ; the distribution function f(r,v, t)

has to satisfy :

df

dt
= 0 (4.1)

along a particle orbit. As a result, an easy way to satisfy eq. (4.1) is to find a

distribution function that only depends on the constants of motion. In his work,

[?] took a Maxwellian form of the distribution function and found the analytical

form of its parameters to satisfy the Maxwell equations. The resulting system being

under-determined, hypotheses on the electric field and on the charge carriers yield

to the “classical” Harris sheet. An important property of the Harris sheet is to be

surrounded by vacuum.

The so-called Harris sheet is well suited for the study of a plasma sheet where

the magnetic pressure in the empty lobes counter balance the kinetic pressure of the

field reversal sheet. Nonetheless, the existence of a small component of the magnetic

field normal to the current sheet plane makes void this configuration to study the

stability of the magnetotail, as this small component overthrow the equilibrium and

strongly stabilizes the tearing mode as shown by [?]. Furthermore, this analytical

model is unable to describe an asymmetric current sheet like the magnetopause.

To properly describe a magnetopause, an analytical model should consider the

existence of a tearing in the magnetic field direction (see e.g. [?]), as well as a

gradient in the density profile. This discontinuity is asymmetric because it is the

boundary between the dense cold shocked solar wind and the hot tenuous plasma

of the magnetosphere. The first analytical model of such an asymmetric sheet was

proposed by [?]. With two cyclic coordinates (the canonical momenta in the two

directions normal to the gradient direction) and without electric field (the Hamilto-

nian is conserved for such conservative system), there are three constants of motion.

With a distribution function separating the Hamiltonian from the two others con-

stants, it is shown that some solutions exist (three are discussed) for which density

and magnetic field gradients are co-located and of the same width.

Later on, [?] proposed a generalization of the work of [?] with a different ana-

lytical parametric form of the distribution function. This study yields a wider class

of analytical solutions. Nonetheless, these solutions cannot include a drift velocity

away from the discontinuity, nor the existence of asymmetries in the density profile.

An important point is also that all these models are associated to a null electric field.

Later on, [?] and [?] proposed semi-analytical models lying on the existence of three
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populations (one in each side of the discontinuity and one in the middle) modeled

as the product of a Maxwellian with an error function. Unfortunately, none of these

models are suitable for the initialization of self-consistent kinetic computations.

The model proposed by [?] in article H is similar to the former one in the sense

that it works with an analytical shape of the distribution function depending on the

constants of the motion. This analytical model lies on a different parametrization

of the distribution functions, with a wider choice on their free parameters. First,

the magnetic field profile is imposed (as well as the associated total current). The

magnetic field is the same as the one of the Harris sheet (in the X direction with a

gradient in the Y direction), associated to a vector potential Az = ln[cosh(y/2λ)]. A

different choice would allow to use the same method. The three constants of motion

are

H =
m

2
(ẋ2 + ẏ2 + ż2), Px = mẋ, Pz = mż + qAz (4.2)

We will ignore Px as it does not depend on the Y coordinate ; It will be fixed by the

asymptotic value of the distribution function. We note g(H,Pz), the distribution

function in the new space which is equal to the distribution function f(r,v, t).

It is important to say that g(H,Pz) depends on the Y coordinate through the

Az value. Furthermore, the energy constraint H > (Pz − qAz)/2m, means that all

the points of the distribution function are inside the parabola depicted in Fig. 4.1.

In other words, f depends on y because g depends on Az. Else, the function Az(y)

is even, meaning that an asymmetric equilibrium is not possible if g is single-valued.

An asymmetric solution therefore essentially relies on the existence of bi-valued

functions g.

Overview of the method

One notes s the side of the layer, which can be l (left of the layer) or r (right

of the layer). The index of the population p is 1 or 2, side s = l is asymptotically

populated by p = 1 population, and s = r is asymptotically populated by p = 2.

Then, on each sides,

gs = g1se
−E/kBT1 + g2se

−E/kBT2 (4.3)

assuming for gps the form

gps = gps∞ +

N∑
i=1

gpsie
−ksiδPz (4.4)
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Figure 4.1: For each value of the normal coordinate y, the distribution function f(v)

is determined in the entire v space by the value of the function g(E, pz) in only the

part of the (E,Pz) plane that is inside the drawn parabola. This parabola has its

apex in pz = Az(y) and, therefore, moves with y. The distribution function can thus

vary in y, since the parabola explores different regions of the (E, pz) plane. From

[?].

with δPz = Pz+
√

2mH. This arbitrary form results from many tries and errors, and

allows to properly converge. The main advantage is that it makes easy the calcula-

tion of the moments of the distribution function, and gives for the Y Y component

of the pressure

Pps = Pps∞ +
N∑
i=1

gpsiPpsie
−ksiAz (4.5)

This allows an analytical treatment of the pressure balance condition. The unknowns

of the problem are the gpsi and ksi. Few tries showed a weak dependence of the

results on the ksi values, and we choose them to vary between 0.5 and 3. Hence,

this problem has 4N unknowns, and needs 4N equations. The constraints on the

system are :
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◦ A pressure balance in each side s, resulting on 2N constraints

g1s0P1s0 + g2s0P2s0 = B2/2µ0 (4.6)

g1siP1si + g2siP2si = 0 (4.7)

◦ In the central parabola, the functions g1s and g2s should be equal for s = l

and s = r to ensure the continuity of the distribution function. Because of

their analytical form, this cannot be exact, and we only impose the equality

of their M first derivatives at δPz = 0, yielding the 2M + 2 constraints

(gpl0 − gpr0) +

N∑
i=2

(gpli − gpri) = −(gpl∞ − gpr∞) (4.8)

kd1(gpl0 − gpr0) +
N∑
i=2

(kdligpli − kdrigpri) = 0 (4.9)

for an order of derivation d ranging from 0 to M . The system hence possesses

2N + 2M + 2 equations and 4N unknowns.

To do not over-constrain the problem, N and M should be such as N ≥M + 1.

The equality N = M +1 leads to a null determinant of the matrix associated to this

linear problem. Furthermore, the wider is this inequality, the larger are the degrees

of freedom for the distribution profiles.

For paper H, we have N = 10 and M = 4 which let enough degrees of freedom

to impose the shape of the gradient on one side of the layer. We choose to impose

the profile of the pressure of population 2, that has to be asymptotically equal to 0

in side 1, and a given P∞ value in side 2. Details of the P2 structure are found in

paper H.

Fig. 4.2 depicts the analytical P2 profile (solid thick line) and the associated

P1 profile (dashed thick line), depending on A?. The pressure profile of Fig. 4.2

is analytically imposed, and is very close to the ones obtained by convergence of

the numerical method. On Fig. 4.2 different profiles are depicted, associated to

different parametrizations of P2, and being only constrained by its positiveness.

One can note that there is always a local maximum located at A? = 0, and a local

minimum located at A? > 0 (on the dense side).
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Figure 4.2: Pressure of population 2 as produced by the simple model, in function of

the symmetrized vector potential A? = Azsigny), for 6 values of the parameter P̃p.

The particular value marked by a thicker line corresponds to the value of P̃p used in

the following results. The dashed line corresponds to the pressure of population 1

for the same particular P̃p. The sum of both gives the total pressure (upper curve)

which is imposed in all cases. From [?]

Numerical simulation of this kinetic equilibrium

In a yet unpublished study, we investigate with heckle whether this profile is

a robust kinetic equilibrium. Answering the criticism of a referee of this paper,

we included in the model a small electron temperature with Te/Tp = 0.1. As the

density is not uniform (depicted hereinafter), the electron temperature can neither

be uniform to insure the pressure balance across the discontinuity. This might seem

incompatible with the isothermal hypothesis, but the density gradient is in the Y

direction while the electron transport is in the X direction (tangential to the layer).

For this investigation, we have three runs :
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◦ Run A is initialized with locally Maxwellian distributions for which the mo-

ments are hyperbolic tangent functions satisfying the pressure balance condi-

tion.

◦ Run B is initialized with the distribution function given by the above method.

◦ Run C is initialized with Maxwellian distribution functions for which the mo-

ments are those used in run B.

We consider an asymmetric current sheet with a density asymptotically equal to 1

and 4 on both sides. The simulations are approximately 1D with a box length ∼ 35

proton inertial length and an adequate time step to satisfy the CFL condition. The

total pressure is depicted in Fig. 4.3, depending on the Y position. The four curves

are associated to different times, namely t = 0, 1, 5 and 10. As mentioned above,

some fluctuations associated to eigenmodes appear and grow with time for a system

initially not in a kinetic equilibrium. It is clear from Fig. 4.3 that neither case A,

nor case C are kinetic equilibrium, while case B is.

Figure 4.3: Total pressure through the current sheet. The data are averaged in the

X direction and plotted as a function of Y for different times and each runs.

An interesting feature of this equilibrium is the density profile. In Fig. 4.4, it

is depicted with the dashed line, while the density profile used in run A and C is
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Figure 4.4: Initial density profile for Run A (solid line) and for run B and C (dashed

line).

depicted with the solid line. It is noticeable that this profile is not monotonic, which

is a common feature of the different equilibria obtainable with this method. More

specifically :

◦ There is always a maximum located at A? = 0

◦ This density profile is never monotonic

◦ There is always a “depletion layer” in the dense side

◦ The density profile is always thicker than the imposed current profile

This work is quite recent, and yet, this equilibrium has not been used as an initial

state to study magnetic reconnection. It will be interesting to note how a nice initial

kinetic equilibrium impacts the development of magnetic reconnection.

Another important point is that until now, analytic and numerical models are

mostly confronted to in situ spacecraft measurements. Nevertheless, since 15 years,

different laboratory experiments have been designed to study the development of

magnetic reconnection in laboratory. This point is discussed in the next section.

4.2 Fast reconnection in laser induced HEDP

Up to now, few laboratory studies have been dedicated to magnetic reconnection.

Nonetheless, laboratory experiments can be very complementary to data analysis

using spacecraft measurements. The interesting point with spacecraft data is that
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the electron scales are large enough to be observed in-situ. As a result, a very wide

range of scales can be investigated, as illustrated by the inspection of turbulence in

the solar wind (see e.g. [?]). On the other hand, one can neither choose the position

of the spacecraft, nor the conditions of the solar wind. In other words, data collected

from spacecraft measurements are not reproducible.

Laboratory experiments have several advantages, as well as drawbacks. Labora-

tory experiments are generally reproducible, can be instrumented in various way to

collect the desired informations, and with initial and boundary conditions imposed

by the observer. Furthermore, they are generally far less expensive than spacecraft

missions. On the other hand, the scales are quite different, and the resolution of the

instruments can be limited to get the needed informations.

For magnetic reconnection, it exists several magnetic devices specifically designed

to study the onset and dynamics of magnetic reconnection. These experiments can

have a toroidal geometry like the MRX1 experiments of Princeton (see e.g. [?]) or

the VTF2 of the MIT (see e.g. [?]). The basic concept is to generate a set of two

closed flux tubes by toroidal magnetic coils, and let them reconnect. Other devices

like the LAPD3 experiments of Berkley (see e.g. [?]) creates linear flux tubes that

can possibly reconnect because of their twisting.

For astrophysical applications, laser experiments can also provide an interesting

tool. A review of these experiments using intense laser is proposed in [?]. The first

experiment on magnetic reconnection using intense laser is the one of [?]. The basic

idea is very simple : a short intense beam shots a target. A plasma plume is hence

created on its surface. Calling Z the axis of the laser, and XY the plane of the

target, this plume is associated to a gradient of the electron density that is mainly

axial (along Z) and the associated electron temperature gradient that is radial in

the XY plane. The resulting electric field is essentially given by the gradient of

the electron pressure. Using the Maxwell-Faraday equation, an associated magnetic

field is growing in the poloidal direction. This is illustrated in Fig. 4.5. This regime

is called “High Energy Density Plasmas”.

It clearly appears in Fig. 4.5 that the magnetic topology is propitious to magnetic

reconnection associated to an X point, located where the two magnetic flux tubes

meet. The structure and dynamics of the magnetic reconnection process depends

1Magnetic Reconnection eXperiment
2Versatile Toroidal Facility
3Los Angeles Plasma Device
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Figure 4.5: Schematic of the laser beam interracting with the target. The density

gradient is axial, the temperature gradient is radial, and the associated magnetic

field lines are poloidal.

on the characteristic parameters. To ease the comparison with the magnetic recon-

nection widely studied in the solar wind, a comparison between these parameters in

HEDP and solar wind is proposed in appendix J.

The two most importants points are for sure the dimensionless parameters β and

Lundqvist number. In HEDP, the plasma is weakly collisional. The Spitzer-Härm

resistivity is finite, and associated to a Lundqvist number of the order of few hun-

dreads. This is a big difference with the collisionless magnetic reconnection occuring

in the solar wind. Furthermore, it is interesting because numerical simulations can-

not run with a null resistivity (generally, the numerical resistivity is associated to

a Lundqvist number not larger than few thousands). The other point is that in

HEDP, the β plasma parameter can be up to few hundreads. The system is hence

dominated by the plasma pressure.

A collaboration is growing between LULI, CEA, LPP and LESIA to investigate

magnetic reconnection using laser experiments. Nothing has been published yet,

but some numerical simulations have already been done with the heckle code. We

use initial conditions very similar to the ones of [?] and [?] ; two closed flux tubes

generated by the Biermann-Battery effects described hereabove. With an initial

radial velocity, each of these flux tubes expand and get in contact. Then, because

of the small resistivity, magnetic reconnection can occur. We present the very first

hybrid simulation using β = 1 and L = 1000. We are currently investigating a range

of larger β values.



4.2. Fast reconnection in laser induced HEDP 63

The interesting thing with laser experiments is that one can control the initial

magnetic topology through the choice of the targets, their relative position as well

as the intensity of the laser shot. As a rough picture, the Z value of the targets can

control the kinetic pressure, the intensity of the laser shot can control the magnitude

of the magnetic field, and the relative position of the 2 targets can control the

magnetic field structure. More clearly, the “classical” configuration is the one with

the two targets in the same plane. If not, as depicted in Fig. 4.6, two angles Φ

and Ψ can be defined. Φ is the angle around the Y axis cartooned in the left panel,

and Ψ is the angle cartooned in the right panel, cartooned in the right panel. For

Φ 6= 0, the out-of-plane magnetic field has a quadrupolar structure. For Ψ 6= 0, the

out-of-plane magnetic field has the structure of a constant guide field.

Figure 4.6: Schematic description of the relative positions of the two targets when

setting an angle Φ around the Y axis (left panel) or an angle Ψ around the X axis

(right panel).

In the case Φ 6= 0, depending on the sign of Φ, the quadrupolar structure of

the magnetic field can be in the same direction as the Hall magnetic field, or in

the opposite direction. We thus run the heckle code with different values of the

Φ angle, positive and negative. As initial conditions, we have in the simulation

box two magnetic bubbles as illustrated in Fig. 4.7. The main advantage of this

configuration is that we can study in the same run two opposite values of the Φ

angle in a periodic simulation. We call 0 the lower reconnection site and 1 the upper

one.

In Fig. 4.7 the two quadrupolar structures can be observed. The upper one is

in the same direction as the Hall one, and the lower one is in the opposite direction.

It is important to note that when the Φ angle increases, by geometric effects, the

distance between the two outer edges of each flux tubes also increases. Focusing on

region 0, Fig. 4.8 displays the Z component of the magnetic field (Hall component)

at t = 0 (upper panel) and t = 20 (lower panel). As will be displayed in Fig. 4.9,
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Figure 4.7: Z component of the magnetic field at t = 0 for Φ = 20o (upper part)

and Φ = −20o (lower part).

t = 20 is just before the reconnection onset. It is very clear on Fig. 4.8 that the

initial quadrupolar structure of the magnetic field is destroyed and a new one in the

opposit direction (i.e. in the same direction as the Hall component) appears. It is

important to note that this Hall component of the magnetic field develops prior the

onset of magnetic reconnection.

The time evolution of the reconnected flux for Φ = −20o is depicted in Fig.

4.9, in dotted line for region 0 and dashed line for region 1. The two solid lines

are the linear interpollations. Their slopes are equal to the electric field at the X

line, namely the reconnection rate. One can notice several things. First, the time

of the reconnection onset depends on the region. We define the time lag ∆T as

the difference between the onsets of reconnection for positive and negative values of
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Figure 4.8: Z component of the magnetic field at (upper panel) t = 0 and (lower

panel) t = 20 for Φ = −20o.

Φ. Interestingly, the onset of reconnection is always later for negative Φ than for

positive Φ. The second important remark is that the two reconnection rates (given

by the slope of the reconnected flux) are differents, namely 0.13 and 0.10.

In Fig. 4.9, one can observe that the reconnected flux has a slope that slightly

varies during time. This slope being the reconnection rate, the time evolution of this

values (which is very close to the Z component of the electric field in the reconnection

region) is displayed in Fig. 4.10. The 2 shaded rectangles display before and after

reconnection, namely when the reconnected flux is constant. This clearly displays

a “batman ears” structure that can be observed for whatever values of Φ (positive

or negative). This is a new feature that has not been observed in simulations like

the ones of the GEM. Furthermore, the begining of the first ear and the end of the

second correspond with the onset and extinction of reconnection.

Fig. 4.11 displays for the same run (region 0 and Φ = −20o) the time evolution of
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Figure 4.9: Time evolution of the reconnected flux in region 0 (dotted line) and in

region 1 (dashed line). The solid lines are the linear interpollation, which slopes are

the reconnection rate.

Figure 4.10: Time evolution of the reconnection electric field (Z component) for

bubble 0 with Φ = 20o. The two shaded rectangles indicate befaore and after

reconnection.

the maximum value of the Z component of the magnetic field. This value is always
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very close to the separatrix as displayed in Fig. 4.8 and is the Hall component as

outlined by its quadrupolar structure. The important feature to notice, as already

outlined is that when reconnection occur, the Hall component of the magnetic field

is already well developped. Up to now, it was believed that the Hall component

of the magnetic field was a consequence of the reconnection process : the electrons

are drastically accelerated in the Z direction by the reconnection electric field in the

electron decoupling region. When the electrons get magnetized in the ion decoupling

region, they transport the magnetic field in the Z direction. It was thus believed

that Hall magnetic field and reconnection were “simultaneous”. The above results

would suggest that the Hall component of the magnetic field is a cause and not a

consequence of magnetic reconnection.

Figure 4.11: Time evolution of the maximum value of the Hall magnetic field among

the separatrices for bubble 0 with Φ = 20o. The two shaded rectangles indicate

befaore and after reconnection.

We had 6 different runs with Φ spaning between 0o and 24o (with negative and

positive values for region 0 and 1, respectively). For each runs, we calculate the mean

reconnection electric field and the time lag ∆T . Fig. 4.12 displays the reconnection

electric field depending on the Φ angle as a circle, the surface of the circle being

proportional to ∆T . It clearly appears that ∆T enhances with Φ, at least for small

Φ values. This shows that it takes a longer time to trigger reconnection when the

initial Z component of the magnetic field is in the opposite direction as the Hall
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component that appears before reconnection.

Figure 4.12: Reconnection electric field depending on the Φ angle. The surfaces of

the cicrcles are proportional to the ∆T value.

Yet, it is a preliminary work, but there are two observations that leads to the

same conclusion :

◦ The time lag ∆T increases with the Φ value, meaning that it takes a longer

time to trigger reconnection in situation where the quadrupolar structure of

the Z component of the magnetic field is in the direction opposite to the Hall

one.

◦ The Z component of the magnetic field is already well developped at the onset

of reconnection.

Both remarks lead to the same conclusion : the quadrupolar structure of the Hall

magnetic field is a cause and not a consequence of collisionless magnetic reconnection.

It is yet unclear what is on the origin of this component. Of course, as already

discussed, it is associated to a Z component of the electron current, electrons being

the main magnetic field carriers in this region where ions are demagnetized. But

as can be seen on Fig. 4.10 and Fig. 4.11, Bz is already well developped prior

reconnection onset, and the reconnection electric field is very weak. Hence, the

electron current in the Z direction cannot result from the reconnection electric field.
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Furthermore, in Fig. 4.12, we have not discussed (and not understand) why the

reconnection rate decreases at large Φ angle values.

In April 2014, we will have a one week experiment on the phellix laser in GSI

to investigate these features. Comparisons with observations are not so easy in laser

experiments as we can only measure integrated quantities. As an example, to mea-

sure the Hall magnetic field, we use proton radiography. Hence, we can only measure

the value of the magnetic field integrated along the path of the proton beam. Even

in optimizing the position of the proton source, we need some decorrelation tools to

see if the measured signatures are in agreement with the numerical predictions.

—————

We pointed out in this chapter a new method for the kinetic initialization of a

thin asymmetric current sheet. This method will be used in forthcoming studies

to investigate magnetic reconnection in such topologies and it will be interesting to

study how the dynamics of magnetic reconnection is affected by the initial equilib-

rium.

We also start to address the problem of magnetic reconnection onset in an original

topology. This numerical work is important to prepare laboratory measurements

of the reconnection process between two laser induced magnetic flux tubes. The

interesting difference with the topology generally used (see the GEM challenge, [?])

is that the reconnection is not triggered artificially at t = 0, but triggers later on.

This should help to understand what are the causes, and what are the consequences

in this self-consistent process.
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Conclusions

The two major topics of my research works are particle diffusion and magnetic

reconnection. Yet, we are far from understanding these processes, as well as their

coupling. Several studies are already on their way among which :

◦ Invsetigate anomalous diffusion using particle-test. The goal is to revisit the

problem treated in published studies, and see if any structured mean flow can

exist that can falsly looks like super-diffuion, because of the associated ballistic

effects.

◦ Go farther in the beginning of the analytical model presented in chapter 2.

This include to investigate higher level of magnetic fluctuations to see if the

lineraity of the electric and magnetic effects still holds.

◦ Invsetigate the nature of the electromagnetic fluctuations, depending on the

way the system is forced. The PDF of the magnetic fluctuations does not

contain the same informations as the associated spectrum. It could question

the validity of the random phase oftenly used.

◦ Invsetigate the dynamics of reconnection in non-coplanar situations. It means

to play with the two possible angles between the flux tubes as described in

chapter 4. For that issue, we expect to get significant informations from Labo-

ratory experiments. The first one on phellix at GSI (Darmstadt) is scheduled

in April 2014.

I also started to study other topics, as a result of new collaborations. At LPP,

with Jean-Luc Raimbault, we started to investigate magnetic thruster for spatial

propulsion. With Andrea Ciardi, I started to investigate the structure of shocks in

Z pich experiments (in collaboration with Imperial college). With Stefano Gabicci

and Andrea Ciardi, we start a collaboration on the streaming instability in the

interstellar media associated to the flow of low energy cosmic rays (below 10 GeV).
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Earth Magnetpause characteristic scales

Magnetosheath Magnetosphere

Magnetic field B ∼ 60 nT B ∼ 60 nT

Electric field E ∼ 6 mV.m−1 E ∼ 0.6 mV.m−1

Electron Density n ∼ 50 × 106 m−3 n ∼ 5 × 106 m−3

Temperature Ti ∼ 200 eV Ti ∼ 2 keV

Te ∼ 50 eV Te ∼ 600 eV

Kinetic pressure Pi ∼ 10 × 106 keV.m−3 Pi ∼ 10 × 106 keV.m−3

Pe ∼ 3 × 106 keV.m−3 Pe ∼ 3 × 106 keV.m−3

Magnetic pressure PM ∼ 10 × 106 keV.m−3 PM ∼ 10 × 106 keV.m−3

Characteristic lengths λDi ∼ 20 m λDi ∼ 200 m

λDe ∼ 10 m λDe ∼ 100 m

ρLi ∼ 30 km ρLi ∼ 100 km

ρLe ∼ 400 m ρLe ∼ 1.5 km

c/ωPi ∼ 30 km c/ωPi ∼ 100 km

c/ωPe ∼ 700 m c/ωPe ∼ 2 km

Characteristic frequencies fCi ∼ 1Hz fCi ∼ 1Hz

fCe ∼ 1.5 kHz fCe ∼ 1.5 kHz

fPi ∼ 1.5 kHz fPi ∼ 500 Hz

fPe ∼ 60 kHz fPe ∼ 20 kHz

Characteristic velocities VA ∼ 200 km.s−1 VA ∼ 600 km.s−1

Vthi ∼ 200 km.s−1 Vthi ∼ 600 km.s−1

Vthe ∼ 4000 km.s−1 Vthe ∼ 15×103 km.s−1

Cs ∼ 200 km.s−1 Cs ∼ 600 km.s−1

Table I.1: The Earth magnetopause thickness is ∼ 800 km.
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HEDP characteristic scales

HED Plasmas Space Plasmas

Magnetic field 100 T 60 nT

density 1027 m−3 107 m−3

Temperature 400 eV 200 eV

Resistivity (Spitzer) 10−7 Ωm 0

Lundqvist Numb. 200 ∞
Beta parameter 100 1

Ion cyclotron freq. 1.7 GHz 1 Hz

Ion skin depth 10 µm 30 km

Alfvén speed 20 km.s−1 200 km.s−1

Sound speed 200 km.s−1 200 km.s−1

Ion thermal speed 300 km.s−1 200 km.s−1

Table J.1: Characteristic scales in HEDP and solar wind at ∼ 1 AU.
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The heckle code

Normalization

The relevant quantities are normalized as

m = m̃ mp (K.1)

q = q̃ e (K.2)

N = Ñ No (K.3)

B = B̃ B0 (K.4)

mp is the proton mass, e the elementary charge, and n0 et B0 the standard particle

density and magnetic field. Hence

v = ṽ VA (K.5)

t = t̃ Ω−1
C (K.6)

l = l̃ cΩ−1
P (K.7)

E = Ẽ VAB0 (K.8)

where ΩC and ΩP are the proton cyclotron pulsation and proton plasma pulsation,

respectively. Hereinafter, normalized quantities are written omitting tildas.

Equations

The macroparticle motion is obtained by integration of

dtxs,h = vs,h (K.9)

msdtvs,h = qs(E + vs,h ×B− ηJ) (K.10)

Where s index is standing for the specie of particle and h index for the index of the

particle. Density and fluid velocity result from the summation

N(x) = Σs,hqsS(x− xs,h)

V(x) = Σs,hvs,hS(x− xs,h)/Σs,hS(x− xs,h)
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S(x) is the first order shape factor. Neglecting the transverse component of the

displacement current, and assuming quasineutrality, the Maxwell equations are

∂tB = −∇×E

J = ∇×B

and the needed Ohm’s law is

E = −V ×B +N−1(J×B−∇.Pe) + ηJ− η′∆J

where η is resistivity and η′ is hyperviscosity.

The electron pressure tensor Pe can be either isotherm (Pe = NTe) or adiabatic.

In fact, we also consider the possibility of a heat flux q = −κ∇Te. Assuming the

“entropy” of the plasma is S = Pen
−γ with γ = 5/3, the equations can be written

∂ts+ ue.∇S = (γ − 1)κn−γ∇(Snγ−1)

ue being the electron flow (ue = V − J/N).

Few definitions

In direction i (standing for x, y and z), one defines the thermal velovity V 2
T i =

〈V 2
i 〉/2 = kBTi/m. For isotrop and gyrotrop plasma, V 2

T = V 2
Tx = V 2

Ty = V 2
Tz.

Magnetic pressure & energy :

EB =
B2

2

Generalized momentum :

ps = msvs + qsA

Kinetic pressure :

Ps = nsmsV
2
Ts = nsTs

Thermic energy :

ETs =
3

2
nsTs =

〈
nsmsv

2
s

2

〉
=

3

2
nsmsV

2
Ts

Plasma Beta :

β =
∑
s

βs =
∑
s

2nsmsV
2
Ts

B2
=
∑
s

2nsTs
B2
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Thermal Larmor radius :

ρLs =
2msVTs
B

=
2

B

(
Ts
ms

)1/2

=

(
2βs
nsms

)1/2

Thermal velocity :

VTs =

(
Ts
ms

)1/2

=

(
βsB

2

2nsms

)1/2

Alfven velocity :

VA =
B

n1/2
=

(
2
∑

s nsmsV
2
Ts

β
∑

s ns

)1/2

=

(
2
∑

s nsTs
β
∑

s ns

)1/2

The “Buneman” pusher (Boris 1970)

The main equation is

vn+1/2 − vn−1/2

∆t
=

q

m

[
En +

(
vn+1/2 + vn−1/2

2

)
×Bn

]
Defining

vn−1/2 = v− − qEn

m

∆t

2
, vn+1/2 = v+ +

qEn

m

∆t

2

Hence, the equation to solve is

v+ − v−

∆t
=

q

2m
(v+ + v−)×Bn

Θ is the rotation angle between v+ and v−,

∣∣∣∣tan
Θ

2

∣∣∣∣ =
|v+ − v−|
|v+ + v−|

= t =
qBn
m

∆t

2
Defining the intermediate v′ quantity as

v′ = v− + v− × t , v+ = v− + v′ × s

To get |v+| = |v−|, one needs s =
2

1 + t2
.

Lets summerize :

F =
q∆t

2m
, G =

2

1 +B2
nF

2

s = v + FEn

u = s + F (s×Bn)

v = s +G(u×Bn) + FEn
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The algorithm

predictor :

• vn+1/2 = vn−1/2 +
q∆t

mp

[
En +

vn+1/2 + vn−1/2

2
×Bn

]
• xn+1 = xn + ∆tvn+1/2

• Nn+1/2 = Σsqs(Sn + Sn+1)/2, Vn+1/2 = Σs(Sn + Sn+1)vn+1/2/2Nn+1/2

• Bn+1/2 = Bn −
∆t

2
∇×En, and Jn+1/2 = ∇×Bn+1/2

• Pn+1/2 with the appropriate law.

• En+1/2 = −Vn+1/2×Bn+1/2+
1

Nn+1/2

(
Jn+1/2 ×Bn+1/2 −∇Pn+1/2

)
+ηJn+1/2

• En+1 = −En + 2En+1/2

• Bn+1 = Bn+1/2 −
∆t

2
∇×En+1, and Jn = ∇×Bn+1

corrector :

• vn+3/2 = vn+1/2 +
q∆t

mp

[
En+1 +

vn+3/2 + vn+1/2

2
×Bn+1

]
• xn+2 = xn+1 + ∆tvn+3/2

• Nn+3/2 = Σsqs(Sn+1+Sn+2)/2, Vn+3/2 = Σs(Sn+1+Sn+2)vn+3/2/2Nn+3/2

• Bn+3/2 = Bn+1 −
∆t

2
∇×En+1, and Jn+1/2 = ∇×Bn+1/2

• Pn+1/2 with the appropriate law.

• En+3/2 = −Vn+3/2×Bn+3/2+
1

Nn+3/2

(
Jn+3/2 ×Bn+3/2 −∇Pn+3/2

)
+ηJn+3/2

• En+1 =
1

2
(En+1/2 + En+3/2)

• Bn+1 = Bn+1/2 −
∆t

2
∇×En+1, and Jn = ∇×Bn+1

Initialization

The magnetic field is initialized with the needed profile. The electric field results

from the Ohm’s law, and thus need not to be prescribed. The resistivity is increased

near walls if not periodic. Protons (alfas... ) and electrons temperature are analyt-

ically determined on the grid points.

The density profile is prescribed analytically. The weight of macro-particles is the

same for all particles of specie s. The number of particles injected in each cell is

linear to the local density divided by the integrated density over the whole box. To
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work properly, we generally use 100 particles per cells.

A drift velocity is calculated to hold J = ∇ × B. We use the classical relation

Js/Ts = const for each species s including electrons.

The particle velocity is determined using the Box & Muller algorithm. a and b

standing for random numbers between 0 and 1 with a normal distribution, the

particle velocity in direction i is√
−2 ln(a)Tsi

ms
cos(2πb)

Grid definition

This code uses a simple grid representation (no Yee lattice). There is 2 grids, shifted

from a half grid size. They are called G1 and G2.

In one direction (both X Y and Z directions are equivalents), lets call L the size of

the domain, N the number of grid cells and ∆ the grid size. Of course,

∆ =
L

N

The G1 grid has N + 1 grid points associated to N cells. Grid point labelled 0 is

located at X = 0 and grid point labelled N is located at X = L.

The G2 grid has N + 2 grid points associated to N + 1 cells. Grid point labelled 0

is located at X = −∆/2, and grid point labelled N + 1 is located at X = L+ ∆/2.

Only the magnetic field is defined on G1. All others quantities (electric field, electron

pressure and temperature, density, fluid density, current density) are defined on G2.

This choice is of course motivated by the centered form of the Maxwell-Faraday equa-

tion and the leap-frog scheme to push the particles. This results in an interpollation

for the electron pressure tensor when integrating the Ohm’s law.

Boundary conditions

Because of the definition of the 2 grids, the magnetic field results from the shape of

the electric field ; only the electric field needs a boundary conditions when the code

is non-periodic.
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Calling N the normal direction to the boundary, and T the tangential direction, We

set for the electric field

dNEN = 0,ET = 0

For the density, it is simply dNn = 0.

For the current density and fluid velocity, we use fluid conditions to keep the plasma

in the domain, and thus anihilate the flux,

JN = 0, dNJT = 0

To limit wave reflections at the boundaries of the domain, we set a small resistivity,

increased near the walls : multiplied by 5 two grid points before the limit of the do-

main, multiplied by 25 one grid point before the limit of the domain, and multiplied

by 125 on the boundary of the domain.

Constraints on the code

◦ The parameters used in classical run for β = 1 are ∆L = 0.4 and ∆t = 0.005.

◦ Grid size : it has to resolve correctly the cyclotron turn of particles. If this

value is too large, any bulk velocity in perpendicular direction will be converted

in velocity of gyromotion (perpendicular heating). Take at least 3 grid size for

the thermal larmor radius.

◦ Time step : it has to satisfy the CFL condition for the faster mode : generally

the whistler mode (at least in parallel direction). For this mode, ω ∝ k2,

meaning that time step has to evolve as the square of the grid size... The CFL

associated to particle velocity is far less constraining.

◦ There is no clear lower limit for the grid size, except that at one point it will

cost to much in time step.

◦ As there is no Maxwell-Gauss equation associated to neutrality, the plasma

pulsation is not resolved.

◦ A smooth is used for the moments associated to particles : density and fluid

velocity. If not, the energy conservation is generally better, but the code can

turn instable, generally because the density gets too low at some given points.
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Yet, the only clear acceptable way to manage this is to feed the simulation to

prevent density holes.

◦ A small resistivity is also used. It is supposed to have some nice consequences

on the stability... We use a value of 0.0001, but its role is note that clear.


