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Abstract

In this work, we address the application of emergent structures, known as lattices,
for the digital communications problem. Endowed with interesting properties such as
periodicity and linearity, lattices have recently gained considerable attention as they
solved the decades-old problem of achieving full capacity on the AWGN channel. Mo-
tivated by these promising results, this work is dedicated to the analysis of the lattice
coding performance for point-to-point communications under different scenarios: the
studies are carried out over both AWGN and Rayleigh fading channels. After intro-
ducing infinite lattices, along with their constructions and sphere decoding algorithm,
we tackle the lattice shaping problem that selects a finite number of lattice points.
A lattice code decoder that takes into account the shaping region is proposed, and
lattices of 8 and 16 dimensions are compared to short packet LTE: lattice coding is
proven to achieve better performance in terms of Frame Error Rate for high spectral
efficiencies, provided that near-optimal sphere decoding is performed. Due to the high
complexity of the sphere decoding algorithm for higher dimensions, lattices based on
multilevel constructions are studied. More precisely, the multilevel lattice construction
using a set of nested binary linear Reed-Muller codes is proposed for both Gaussian and
Rayleigh block fading channels. On the AWGN channel, the construction is carried out
over standard binary partition chains of dimensions 1, 2 and 4. For each dimension,
we show how to obtain the sufficient number of levels, together with the component
codes’ rates assigned to each level. We also show how increasing the dimension affects
the global lattice performance. For the Rayleigh block fading channel, we resort to
algebraic number theory as it was proven to provide the maximum possible diversity.
Once the algebraic lattice is built, a rotation and base reduction operations allow us
to obtain a rotated version of the integer lattice, and thus carry out the construction
by mimicking the AWGN case.





Résumé

Nous vivons dans un monde qui devient de plus en plus connecté. En fait, selon le
projet METIS [1], d’ici l’année 2020, les systèmes de communication futures se doivent
de répondre à des défis importants, par exemple:

• Un volume de données 100 fois plus grand dans chaque région

• 10 à 100 fois plus de dispositifs connectés

• 10 à 100 fois plus de données consommées par utilisateur

Toutefois, la réponse à ces exigences considérables ne vient pas sans être confrontée à
certaines limitations.

Les communications numériques

En 1948, Claude Shannon avait démontré que cette limitation est la capacité du canal
[78], définie comme étant la quantité d’information maximale qu’on peut envoyer en
se servant d’un système de communication numérique. La valeur exacte de la capacité
C a été donnée sur un canal gaussien discret pour une valeur determinée du rapport
signal sur bruit (SNR) par la formule suivante:

C = log2(1 + SNR) bits/2 dim (1)

La capacité du canal signifie la chose suivante: si le taux de transmission des
données est inférieur à la capacité, il est théoriquement possible de transmettre
l’information avec une probabilité d’erreur négligeable en utilisant les bons codes cor-
recteurs d’erreurs. Mais si le taux de tranmssion est supérieur à C, aucun code ne peut
garantir une transmission fiable.

Depuis 1948, on a vu l’apparition de plusieurs codes correcteurs d’erreurs tels que
les codes de Hamming, les codes algébriques, les codes LDPC et plus récemment les



turbo codes et les codes polaires. Jusqu’à présent, seule la capacité du cas particulier
d’un canal gaussien contraint par une modulation binaire est atteinte en utilisant les
codes polaires.

D’autre part, il existe en fait des strucutres linéaires et périodiques, nommées
réseaux de points ou lattices en anglais, qui ont été démontrées d’atteindre la capacité
sur un canal gaussien [85, 30]. De ce fait, les lattices font depuis quelques années,
l’objet de plusieurs études liées à leur utilisation pour la transmission numérique.

Les réseaux de points

Un réseau de points est un ensemble de centre de sphères régulièrement répartis dans
l’espace euclidien à n dimensions Rn. Utilisés en mathématiques pour des travaux
liés à la théorie des nombres, les formes quadratiques et la géométrie des nombres, les
réseaux de points servent aussi en chimie où les cristallographes étudient les lattices
à trois dimensions afin de les lier aux propriétés physiques de certains cristaux. En
cryptographie, les lattices sont utilisés pour construire certains des algorithmes les plus
forts. En communications numériques, ils servent à construire des modulations sur le
canal gaussien et les canaux à évanouissements.

A l’origine, les mathématiciens se sont intéréssés aux lattices pour résoudre un
problème assez ancien: l’empilement de sphères. Ce problème consiste à trouver la
manière optimale qui nous permet d’entasser le plus grand nombre de sphères identiques
dans un espace donné. Sur un canal gaussien, ce problème est équivalent à trouver,
pour un code linéaire donné, le nombre maximal de mots de code ayant une certaine
distance minimale. Pour un espace à deux dimensions, l’empilement de sphères optimal
est fourni par ce qu’on appelle le lattice hexagonal, alors que le lattice nommé fcc (face-
centered cubic) nous donne le meilleur empilement de sphères dans un espace à trois
dimensions. Le problème d’empilement de sphères peut être généralisé à un espace de
dimension n.

En communications numériques, les réseaux de points ont suscité beaucoup d’intérêt
depuis que les modulations codées ont été développées en 1980. En fait, il a été démon-
tré que les modulations multi-dimenssionnelles obtenues à travers les réseaux de points
permettent de tranmsettre à des débits plus élevés avec une réduction considérable de
la probabilité d’erreur.

Motivé par la reconnaissance des lattices comme outils prometteurs pour les trans-
missions numériques, ce travail de thèse est dédié à l’analyse des performances des
réseaux de points sous différents scénarios: les études sont menées aussi bien sur le



canal gaussien que sur les canaux à évanouissements de Rayleigh, en se limitant au cas
des systèmes de communication point-à-point.

L’encodage des réseaux de points est effectué soit par l’encodage direct d’un vecteur
d’entiers en utilisant la matrice génératrice du réseau, soit en ayant recours à un schéma
de modulation codée. Dans cette thèse, nous nous intéressons au premier cas dans les
chapitres 1 et 2, qui par suite forment la première partie, et la deuxième méthode
d’encodage est étudiée dans les chapitres 3 et 4 qui forment la seconde partie du
manuscrit.

Structure du manuscrit

Ce manuscrit est constitué de quatre chapitres et trois annexes. Les chapitres sont
organisés de la façon suivante.

Le chapitre 1 est une introduction aux réseaux de points. On commence par une
revue historique des différentes études menées sur les lattices depuis les années 1970.
En fait, le premier travail remarquable sur l’utilisation des lattices pour atteindre la
capacité sur un canal gaussien est dû à de Buda et date de 1975 [27]. Plus précisément,
de Buda a prouvé qu’il existe des constellations sphériques pouvant atteindre une ca-
pacité égale à log( P

σ2 ) bits par 2 dimensions sur le canal gaussien (ce qui est bien proche
de la valeur maximale) en se servant de ce qu’on appelle le lattice decoding. Ce travail
était à l’origine de nombreuses études consacrées aux différents aspects du problème
de l’utilisation des réseaux de points pour la transmission numérique, par exemple:

• Les travaux de Poltyrev en 1994 [69] qui ont produit la notion de la capacité
généralisée, atteinte en se servant de constellations infinies.

• Urbanke et Rimoldi ont montré en 1998 [85] que les réseaux de points finis peuvent
atteindre la capacité maximale sur un canal gaussien en utilisant le lattice code
decoding (décodage optimal).

• En 2004, Erez et Zamir [30] ont prouvé que les constellations finies de lattices
peuvent atteindre la capacité sur un canal gaussien avec un décodage sous-optimal,
le lattice decoding.

Cette revue historique est suivie d’une énumération des principaux paramètres utiles
pour une meilleure compréhension des lattices et de leurs caractéristiques. Ainsi, un
lattice Λ peut être généré par sa matrice génératrice, dont les colonnes sont les vecteurs
de base de Λ. Le lattice sera donc l’ensemble des points résultant de la multiplication



de cette matrice par un vecteur d’entiers, noté b. Un paramètre très important est la
région de Voronoi d’un point x de Λ, qui en fait consiste en tous les points réels qui sont
plus proches de x que de n’importe quel autre point de Λ. En connaissant la région
de Voronoi d’un lattice, on peut déterminer son volume. De plus, une translation de
Λ d’un certain vecteur a donne ce qu’on appelle un coset de Λ.

La liste des paramètres d’un lattice nous permet ensuite de passer à l’explication des
principales constructions d’un réseau de points à partir des codes correcteurs d’erreurs
binaires linéaires [26]. Selon le nombre de codes employés, on distingue plusieurs types
de constructions: la construction A employant un seul code et utilisée pour obtenir
les lattices les plus denses pour une dimension inférieure ou égale à 8, avec un gain
de codage maximal égal à 4. La construction D utilisée en ayant recours à plusieurs
codes correcteurs d’erreurs qui doivent obligatoirement être imbriqués afin d’obtenir
un lattice. Cette construction, permet d’obtenir des lattices de grandes dimensions
ayant un gain de codage plus élevé. La construction B est un cas particulier de la
construction D, où le nombre de codes employés est égal à 2. La construction D’ est
pareil à la construction D, sauf qu’elle consiste á utiliser les matrices de parité au lieu
des matrices génératrices et permet ainsi d’obtenir les parity-check lattices à partir des
codes LDPC imbriqués.

On s’intéresse en particulier à la construction D, et le principe de construction des
réseaux de type Barnes-Wall (BW) à partir des codes de Reed-Muller (RM) imbriqués
est éxpliqué. On utilise ici le fait que les codes de Reed-Muller sont bien connus pour
leur construction récursive, reposant sur la construction de "grands" codesRM à partir
de codes plus petits.

Concernant le décodage des réseaux de points, le dédocage à maximum de vraisem-
blance d’un réseau est effectué en cherchant parmi tous les points du réseau, celui qui
est le plus proche, en terme de distance euclidienne, du point reçu. L’algorithme de
décodage par sphères permet de limiter la recherche aux points du réseau se trouvant
à l’intérieur d’une sphère de rayon R centrée au point reçu. Bien entendu, le choix
du rayon est un point crucial de l’algorithme: une valeur trop élevée de R entraîne
un grand nombre de points à l’intérieur de la sphère, ce qui diminue la vitesse de
recherche, tandis qu’avec une valeur trop faible de R, on risque de ne trouver aucun
point du réseau à l’intérieur de la sphère. C’est pourquoi, afin d’être sûrs de toujours
trouver un point du réseau à l’intérieur de la sphère, il faut prendre R égal au rayon de
recouvrement du réseau. En pratique, on peut adapter R à la variance du bruit, notée
σ2: pour de faibles rapports signal sur bruit (SNR), on a besoin d’un grand rayon, pour
des SNRs plus élevés, un petit rayon suffit puisque le point reçu est normalement très
proche du point transmis. Cet algorithme de décodage peut être utilisé d’une façon



très efficace, aussi bien sur le canal gaussien que sur les canaux à évanouissement de
Rayleigh, et sa complexité est indépendante de la taille de la constellation utilisée.
Néanmoins, sa complexité limite son utilisation à des dimensions du réseau inférieures
ou égales à 32.

Le décodage par sphères est enfin employé pour montrer les performances des
réseaux de points les plus connus pour des dimensions égales à 1, 2 ,4, 8 et 16, représen-
tées par les réseaux A1, A2, D4, E8 et BW16 respectivement. Les performances sont
illustrées en taux d’erreur par mot par 2 dimensions, utlisé pour comparer des constel-
lations de dimensions différentes, en fonction du rapport volume sur bruit. On montre
aussi le taux d’erreur correpodant aux réseaux entiers de mêmes dimensions. Ainsi,
il est facile de remarquer l’amélioration des performances avec l’augmentation de la
dimension.

Jusqu’à ce point, les lattices ont été décrits en tant que constellations infinies.
Toutefois, nous savons qu’en pratique, la transmission des données nécessite la déter-
mination d’un ensemble fini de points. C’est pourquoi, dans le deuxième chapitre on
s’intéresse à une opération essentielle liée aux lattices: le shaping ou la mise en forme.

Dans le chapitre 2, on traite donc le problème du shaping, qui consiste à définir
un ensemble déterminé des points du lattice pour former un lattice code. Ce dernier
est le résultat de l’intersection du réseau infini avec une zone de shaping, notée B.
Selon la forme de B, on peut distinguer plusieurs mécanismes de shaping. La forme la
plus simple est celle d’un hypercube, et on effectue dans ce cas un shaping hypercube.
Le gain de shaping est la réduction en SNR nécessaire pour atteindre une certaine
probabilité d’erreur par rapport à l’utilisation d’un shaping hypercube. Ce gain est
limité par 1.53 dB, une valeur atteinte en utilisant un shaping hypersphère. Toutefois,
ce dernier est complexe à implémenter. Le but du shaping est d’éviter la transmission
de l’information avec une puissance trop élevée, en s’assurant que seuls les points du
réseau appartenant à la zone de shaping B sont considérés pour la transmission.

Nous avons vu que l’encodage d’un réseau de points peut s’effectuer directement en
multipliant la matrice génératrice par un vecteur d’entier b. Or ceci pourrait aboutir
à des points du réseau ayant une très grande énergie. Le shaping consiste donc à
transformer le vecteur b en un autre vecteur bs, de sorte que la multiplication de ce
dernier par la matrice génératrice fournit un point du réseau xs à l’intérieur de la zone
de shaping. Dans ce mauscrit, nous détaillons deux mécanismes de shaping: le shaping
hypercube et ce qu’on appelle le nested shaping [80]. Ce dernier est le mécanisme qui
nous permet d’avoir un gain proche de celui du shaping optimal avec une complexité
abordable.



Le nested shaping est un mécanisme impliquant deux lattices: un certain lattice
Λ, et un sous-lattice de Λ noté Λs. Si G est la matrice génératrice de Λ, une matrice
génératrice de Λs sera prise en dilatant G d’un facteur L. Ce mécanisme consiste à
faire le suivant: afin de minimizer l’amplitude de xs, il faut trouver, dans le réseau
Λs, le point le plus proche de x. Ceci est possible en appliquant un décodage par
sphères au point x à l’intérieur de réseau Λs. Les points du réseaux transmis seront
donc uniformément distribués à l’intérieur de la région de Voronoi de Λs.

Pour montrer les performances de cette méthode de shaping, ainsi que de celles
d’un simple shaping hypercube, on les applique au réseau E8, le réseau le plus dense
dans 8 dimensions, et on les compare à une constellation QAM non codée pour des
efficacités spectrale de 1, 2, 3 et 4 bits/dimension. Au début, on remarque que sans
aucune opération de shaping, la QAM est plus performante pour toutes les efficacités
spectrales, ce qui est normal car les pointss du réseaux E8 transmis pourraientt avoir
une très grande énergie. En appliquant un shaping hypercube, on obtient des courbes
très proches des performances de la QAM, ce qui est normal car la QAM n’est autre
qu’un lattice entier Z2 auquel on a appliqué un shaping cubique. L’amélioration des
performances qu’on remarque pour des SNR élevés sont donc dûs au gain de codage de
E8 par rapport au lattice entier, puisque E8 est plus dense. Ensuite, en appliquant un
nested shaping, on remarque que les performances s’amérliorent encore plus et le gain
augmente avec l’efficacité spectrale. Par contre, pour 1 bit/dim, on voit que la QAM
est toujours plus performante. Ceci est dû à la partie décodage.

En fait, du côté récepteur, on a deux façons de décoder: soit on prend en con-
sidértion la zone de shaping et on effectue dans ce cas-là du lattice code decoding,
soit on ne prend pas en compte cette région et on effectue un simple lattice decoding.
La différence réside dans le fait que seul le premier permet de s’assurer que les mots
décodés tombent à l’intérieur de B. Nous avons vu que le décodage des lattices est
effectué en utilisant l’algorithme de décodage par sphères. Or avec ce dernier, on ne
peut pas préciser les bornes de la zone de shaping car on ne connaît pas les vecteurs bs
et on ne peut pas surveiller les coordonnées pour voir si les points décodés appartiennet
à la region de shaping ou pas. Par conséquent, les vecteurs estimés par le décodage
par sphères peuvent correspondre à des points de lattice n’appartenant pas à la zone
de shaping. C’est pourquoi, nous avons proposé une modification de l’algorithme de
décodage afin de vérifier que tous les mots décodés appartiennet bien à la constellation
voulue.

L’algorithme consiste en fait à remplacer le sphère décodeur par un list sphère
décodeur, qui prend en paramètres le point reçu, la matrice génératrice du lattice et
la taille désirée de la liste. Les vecteurs à la sortie du décodeur sont rangés du plus



proche au plus loin en termes de distance euclidienne par rapport au point reçu. On
commence par le premier vecteur de la liste et on lui applique une opération de shaping
inverse pour en déduire le vecter entier initial. Ensuite, on prend le vecteur obtenu et
on effectue une deuxième opération de shaping. Si ce qu’on obtient est égal au vecteur
pris à la sortie du list sphère décodeur, donc ce vecteur correspond bien à un point du
lattice à l’intérieur de la zone de shaping, sinon on prend le deuxième vecteur de la
liste et ainsi de suite.

En regardant les performances du nouveau décodeur, on remarque une améliora-
tion par rapport au décodeur initial, sutout pour les petites efficacités spectales. Par
exemple, pour 1 bit/dim, le décodeur proposé permet de gagner environ 1 dB pour un
taux derreur de 10−4. Ce gain diminue en augmentant l’efficacité spectrale, et devient
négligeable pour 4 bits/dim. Donc en augmentant l’efficacité spectrale, on diminue la
probabilité d’avoir des mots décodés à l’extérieur de la zone de shaping avec un simple
lattice decoding.

Jusqu’ à maintenant, les performances du lattice ont été uniquement comparées à
des constellations QAM non codées, on procède donc à une comparaison avec un schéma
de modulation codée existant qui est celui de la LTE à courtes trames. Notre choix
de courtes trames est basé sur le fait que leur utilisation possède certains avantages,
comme par exemple diminuer la latence et augmenter la fiabilité de transmission. En
LTE, le plus petit nombre de bits d’information qu’on peut utiliser est 40 bits. Le code
utilisé est un turbo code possédant un rendement 1

3 . Ce rendement peut être varié
grâce à un simple rate matching. Les modulations utlisées sont la 4-QAM, la 16-QAM
et la 64-QAM. Concernant les lattices, deux cas on été utilisés dans la comparaison:
le premier est celui du Gosset lattice E8, et le second est un lattice de 16 dimensions,
le BW16. Pour E8 on a 8 composantes réelles par mot de code, ce qui correspond
à 4 composantes complexes. Ainsi, si on mesure la taille de trame par nombre de
composantes complexes, on aura une taille de 4 pour E8 et 8 pour BW16.

Le but est donc de comparer le schéma LTE et lattice codes ayant des proches
efficacités spectrales, ainsi qu’un nombres de bits transmis identique. Par exemple,
pour 1 bit/dim, la LTE comprend une 16 QAM et un turbo code de rendement 1

2 .
Dans ce cas, on a une trame de 24 symboles complexes. Pour cela, il faut transmettre
6 trames E8 ou 3 trames BW16. De manière similaire, on choisit les rendements de
code et les modulations qui nous permettent d’obtenir des efficacités spectrales de 1,5
,2 et 2,4 bits/dim, ainsi que les tailles de trames LTE correspondantes.

Les simulations présentant le taux d’erreur par trame en function du SNR montrent
que pour la premier cas de 1bit/dim, la LTE est la plus performante. Cependant, il
ne faut pas oublier qu’entre la taille de trame LTE et celle de E8 et BW16 il y a un



facteur de 6 et 3 respectivement, ce qui fait perdre en performance pour les lattices. En
passant à une efficacité spectrale plus grande, le lattice à 16 dimensions commence à
devenir plus performant, pareil pour 2 bits/dim. En arrivant à une efficacité spectrale
plus élevée, ce qui correspond à une seule trame BW16 et 2 trames E8, on voit que la
LTE est moins performante que les deux lattices. Il en ressort que sur le canal gaussien
pour les hautes efficacités spectrales, les schémas reposant sur des réseaux de points
de type E8 ou BW16 offrent de meilleures performances que les constellations QAM
associées à un turbo code. Ceci constitue un résultat intéressant puisque la tendance
actuellement c’est d’aller vers les hautes efficacités spectrales.

Une autre remarque qui ressort de ces comparaisons réside dans le fait qu’une
augmentation de la dimension du lattice permet de diminuer le taux d’erreur. Ainsi,
pour mieux exploiter les lattices, on a intérêt à augmenter leur dimension. Toutefois,
avec une grande dimension, la complexité de l’algorithme de décodage par sphères
devient très grande et il est donc impossible de l’utiliser. C’est pourquoi, il faut avoir
recours à d’autres méthodes d’encodage des réseaux de points.

En fait, au lieu d’être directement obtenu par sa matrice génératrice, un lattice
peut aussi être obtenu par une modulation codée, donc en employant un ou plusieurs
codes correcteurs d’erreurs. Comme indiqué précédemment, la constrction A est une
méthode qui permet de générer un lattice Λ à partir d’un seul code linéaire C. En
fait, d’une manière générale, ce code est défini sur un corps fini Fp (avec p premier),
et le réseau Λ est l’ensemble des points dont le modulo-p appartient au code C. Pour
les lattices à petites dimensions, on utilise des codes binaires (p = 2). Par exemple, le
lattice E8 est obtenu en utilisant le code de Hamming étenduH(8, 4, 4). Toutefois, dans
ce cas-là, la distance euclidienne minimale qu’on peut obtenir est 2 maximum. Pour
construire des bons lattices de plus grandes dimensions, il faut que la valeur de p soit
plus grande, ce qui ajoute beaucoup de complexité au décodage. Pour cette raison, afin
d’utiliser toujours des codes binaires, on fait appel à une construction multi-niveaux
qui implique non pas un seul, mais plusieurs codes correcteurs d’erreurs binaires pour
construire des lattice de plus grandes dimensions. Ceci n’est autre que la construction
D.

Le chapitre 3 traite de la construction multi-niveaux des réseaux de points sur le
canal gaussien. On commence par une explication des parties intégrales de la construc-
tion multi-niveaux:

• La partition des lattices

• Le choix des codes



• Le décodage

La partition des lattices est expliquée par l’exemple suivant: Prenons le réseau des
entiers à une dimension Z. 2Z, l’ensemble des entiers pairs, est un sous-lattice de Z.
Par défintion, la partition Z/2Z est le nombre de décalages qu’il faut appliquer à 2Z
pour obtenir Z. Comme Z est l’union des entiers pairs et des entiers impairs, c’est
donc l’union de 2Z et 2Z + 1. Il s’ensuit que la partition Z/2Z est égale à l’ensemble
formé de deux éléments {0, 1}, c’est donc une partition binaire. Pareil pour le réseau
des entiers à deux dimensions Z2, qui est l’union du lattice RZ2 et du décalage de ce

dernier par le vecteur (1, 1), avec R =
1 1

1 −1

 un paramètre de rotation. Z2/RZ2

est donc aussi une partition binaire.

En généralisant à une chaîne de lattices imbriqués Z, 2Z, 4Z jusqu’à 2rZ, on obient
une chaîne de lattices partitions à une dimension. Comme pour Z/2Z, on peut vérifier
que les autres partitions sont aussi binaires. D’une manière générale, on prend une
chaîne de lattices partitions binaires de dimension n, telle que chaque partition est
formée de deux vecteurs, 0 et et ai. Les codes utilisés possèdent un alphabet égal à
l’ordre des partitions. Donc dans le cas des partitions binaires, les codes sont eux-
mêmes binaires, et chaque bit détermine le sous-groupe qui sera envoyé. Le lattice
L résultant de cette construction multi-niveaux menée sur une chaîne de partitions
Λ1/Λ2/ · · · /Λr où chaque partition Λi/Λi+1 est associée au code Ci(N, ki), peut être
décrit par la formule suivante:

L = a1C1 + · · ·+ ar−1Cr−1 + z avec z ∈ (Λr)N (2)

Si n est la dimension des partitions et N est la longueur des codes utilisés, la dimension
de L sera égale à nN .

À la réception, le décodeur est aussi un décodeur multi-niveaux où chacun des codes
est decodé séparément, et le décodage sur un niveau dépend des niveaux précédents.
Ce type de décodage conduit à une réduction considérable de la complexité par rap-
port à un décodage de maximum de vraisemblance. Les performances de ce schéma
de codage/décodage multi-niveaux dépend fortement du choix des codes. Dans nos
constructions, nous avons choisi d’employer les codes de Reed-Muller binaires vu qu’ils
sont imbriqués par nature. Comme on a vu précédemment, les codes de Reed-Muller
sont à l’origine utilisés pour former les fameuses lattices de Barnes-Wall. Dans ce type
de lattices, le choix des codes est basé sur la règle de la distance équilibrée. Cette façon
de construire a permis d’obtenir des bons lattices pour des dimensions allant jusqu’à
32, mais au-delà ce n’est plus le cas.



Comme nous nous intéressons à un décodeur multi-niveaux où chaque code est
décodé séparément, nous suivons une autre règle qui consiste à adapter le rendement
de chaque code au niveau auquel il est associé. C’est la regle de capacité qui consite à
choisir les codes de sorte que leurs rendements s’approchent de la capacité du niveau
correpondant.

Une fois on a décrit les principes de la construction multi-niveau, on procède par
l’explication de la construction des réseaux utilisant des codes de Reed-Muller binaires
avec des partitions de dimensions n = 1, 2 puis 4. Pour chaque valeur de n on déter-
mine le nombre de niveaux nécessaires et leurs capacités respectives. Les simulations
montrant les performances de réseaux de dimension 1024 montrent que augmenter n,
et donc le nombre de niveaux, permet d’améliorer les performances en termes de taux
d’erreur par mot, et ceci est d’autant plus vrai que la taille du réseau L est élevée.

Enfin, ce chapitre se termine par la description d’une méthode d’estimation des LLR
en se servant de la distribution de von Mises. Le principal intérêt de cette méthode
est qu’elle permet de remplacer la somme infinie nécessaire au calcul exact de LLR,
par une fonction cosinus, et par suite diminuer la complexité. Les résultats montrent
que les performances avec la distribution de von Mises sont pratiquement identiques à
celles du calcul exact des LLR dans le cas d’un décodeur à deux niveaux sur le canal
gaussien.

Dans le chapitre 4, on s’intéresse au codage multi-niveaux des réseaux de points,
mais cette fois-ci sur le canal à évanouissements de Rayleigh par bloc. Sur ce type
de canal, les meilleurs lattices sont ceux qui fournissent la diversité maximale, et par
diversité on veut dire le nombre de composantes différentes entre deux signaux distincts
de la constellation. Un outil efficace pour la construction de tels réseaux est la théorie
des nombres algébriques. Pour obtenir un lattice algébrique, noté Λg, il faut donc
se familiariser avec certaines notions algébriques, la première étant celle des corps
de nombres. En fait, à partir d’un corps de nombre K = Q(θ), on peut déduire
l’anneau des entiers et la base correspondante. Le réseau sera obtenu en effectuant un
plongement canonique de cette base dans l’espace des nombres réels ou complexes. Afin
d’atteindre la diversité maximale, il faut se servir de corps de nombres complètement
réels, c.à.d. où tous les plongements canoniques possèdent des images réelles.

Toutefois, le lattice algébrique obtenu de cette façon ne possède pas de forme déter-
minée. La forme la plus simple qu’on puisse lui donner est la forme cubique. Ceci
revient à transformer Λg en une version du lattice entier tourné. Pour se ramener à ce
cas, des opérations de rotation et de réduction de base doivent être effectuées.



Une fois ce réseau obtenu, on procède avec la construction multi-niveaux en em-
ployant des codes de Reed-Muller binaires. Comme dans le chapitre précédent, le
rendement des codes appliqués à chaque niveau est choisi en appliquant la règle de
capacité. Les résultats obtenus en termes de taux d’erreur par mot montrent que aug-
menter la dimension du réseau en utilisant la même chaîne de partitions, c.à.d. en
augmentant la longueur N des codes employés, avait pour conséquence de dégrader
les performances, et ce aussi bien sur les chaînes de partitions à deux dimensions que
celles à quatre dimensions. Par ailleurs, ne pas appliquer la règle de capacité et donc
utiliser des codes dont le rendement dépasse la capacité du niveau auquel ils sont as-
sociés entraîne une dégradation des performances, en particulier lorsque la dimension
du réseau augmente. Enfin, comme pour le cas gaussien, augmenter n permet aussi
d’améliorer les performances en termes de taux d’erreur par mot.

Conclusions

En conclusion, cette thèse nous permet de tirer les résultats suivants:

• Pour les lattices à petites dimensions:

- Le shaping est une opération indispensable afin de réduire la puissance de
transmission.

- Le codage par réseaux de points est un bon choix pour la transmission des
courtes trames, surtout en grandes efficacités spectrales, comparé à un schéma
de QAM codée par Turbo codes.

• Pour la construction multi-niveaux:

- Augmenter le nombre de niveaux permet d’améliorer les performances.

- En appliquant la règle de capacité avec un décodeur multi-niveaux, on ob-
tient des taux d’erreur par mot qui restent pratiquement invariants avec
l’augmentation de la dimension des lattices.

Perspectives

Sachant que la construction multi-niveaux a été réalisée sans aucune contrainte de
puissance, nous considérons, en premier lieu, l’application d’une mise en forme hy-
percube afin d’obtenir des constellations finies qui satisfont une certaine contrainte de



puissance. Le résultat sera ensuite comparé aux constellations QAM pour différentes
efficacités spectrales.

Tout au long de cette thèse, les lattices multi-niveaux sont le résultat de la Con-
struction D employant des codes linéaires binaires imbriqués. C’est pourquoi, nous
envisageons d’éliminer cette contrainte de codes imbriqués, et employer ce qui a été
récemment proposé dans [46] en tant que Construction πA. L’élimination de cette
contrainte permet de simplifier l’affectation des rendements, et par suite la construc-
tion des réseaux. En plus, la Construction πA entraîne plus de flexibilité puisqu’elle
permet d’utiliser des codes définis sur des corps différents. Cette construction a été
montrée d’atteindre la capacité sur un canal gaussien avec le décodeur multi-niveaux
sous-optimal.

Une autre perspective serait aussi l’implémentation des lattices pour des applica-
tions multi-utilisateurs, comme ça a déjà été fait dans le schéma Compute-and-forward
[66].
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Introduction

Communication represents an essential and fundamental human need. People
have always longed to stay connected in order to survive, build relationships
and simply get more out of life. Before technology took over, the human com-

munication evolved from primitive means such as smoke signals, homing pigeons and
signaling flags, to more developed methods that made communication much easier:
that’s when telephones, radios and televisions were invented. Nowadays, technology
has significantly changed, and the human communication has expanded at a scale never
before imagined.

The generations of mobile technology have evolved from analogue to LTE within
less than two decades, each generation being motivated by the need to address the gaps
of its predecessor. With the demands for wireless data services growing exponentially,
LTE needs to be enhanced, and the 5th generation of mobile technology (5G), that is
expected to be operational around 2020, needs to hold the potential of fulfilling the
society’s ever-growing requirements.

Communication systems

The basic block diagram of a communication system, used to reliably transmit infor-
mation from source to sink over a noisy channel, is shown in Figure 1. In this thesis, we
are interested in the channel encoding and modulation blocks, with obviously the cor-
responding channel decoder and demodulator at the receiver side. Generally speaking,
channel encoding consists in introducing some redundancy in the information sequence
of length k, and thus convert it into a codeword c = (c1, · · · , cn) of length n > k.
Modulation is the operation thanks to which the codeword c is converted into a point
x ∈ Rn that can be physically transmitted over the communication link, and result in
the received vector y at the channel output.
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Figure 1 – Basic block diagram of a digital communications system.

For any given communication channel, the maximal rate at which information can
be sent with vanishing error probability is known as the channel capacity, and is de-
noted by C. On the discrete Additive White Gaussian Noise (AWGN) channel model,
the received vector is: y = x + w, where w is a vector of n independent and identically
distributed (i.i.d.) Gaussian noise variables. Shannon proved that achieving the quan-
tity C on the AWGN channel is possible by using a set of independent, random and
i.i.d. distributed codewords with n→∞. This result marked the beginning of a revo-
lution in channel coding, as it stimulated the design of various codes: algebraic codes,
convolutional codes, trellis codes, LDPC codes, turbo codes and polar codes. Polar
codes are the first provably capacity-achieving codes for the class of binary memoryless
symmetric channels (BMS) [8].

Lattices

On the other hand, there exist some interesting entities, known as lattices, endowed
with a periodic and linear structure, that began to be applied to the communication
problem in the early 1970’s. Defined as a discrete additive subgroup of Rn, lattices are
the Euclidean space counterpart of linear codes in the Hamming space. Just like linear
codes, lattices can be expressed by a generator matrix that encodes integer vectors
to x ∈ Rn. Thus, lattices combine channel encoding and modulation into one single
operation. One of the reasons why lattices are expected to play a prominent role in
future communication systems is the fact that they solved the decades-old problem of
achieving full capacity on the AWGN channel.

Motivated by the recognition of lattice coding as a promising approach for digital
transmissions, this work is dedicated to the analysis of lattice coding performance under



different scenarios: the studies are carried out over both AWGN and Rayleigh fading
channels, with restriction to the point-to-point communication type.

Lattice encoding is performed either by straightforward encoding of an integer vec-
tor into a lattice point using the lattice generator matrix, or by resorting to a coded
modulation scheme. In the latter, the lattice is obtained by lifting one or more linear
codes into the Euclidean space. In this thesis, we focus on the former lattice encoding
method in Chapters 1 and 2, which hence form the first part of the thesis, and the
latter encoding operation is studied in Chapters 3 and 4 that belong to the second
part.

In the first part, one of the challenges met while employing lattices for digital
transmissions is addressed. This challenge consists in finding a finite set of lattice
points to be used while avoiding signals with high transmission power. This operation
is known as lattice shaping. The shaping operation is studied, with a focus on the
decoding process where the receiver is bound to check whether the estimated lattice
points belong to the initially considered set or not.

The second part is motivated by the need for building lattices of higher dimensions in
order to increase the lattice coding gain [26]. Therefore, we resort for multilevel lattice
coding that provides the ability to build such lattices with the ease of working with
binary codes. For this type of lattice construction, many problems should be tackled
depending on the considered channel conditions. This work includes constructions over
both AWGN and Rayleigh block fading channels, where a set of nested binary linear
error-correcting codes is assigned to the different levels. The component codes choice,
as well as the implemented decoding algorithm are a crucial point in the system’s
performance.

Thesis outline and contributions

The manuscript is divided into four chapters. The contents and contributions of each
one of them are summarized in the following.

Chapter 1 serves as an introduction to lattices. We first provide a historical
overview, showing how lattices have been investigated in the digital communication
world since the early 1970’s. The main lattice parameters are then described, pro-
viding the reader with some notions that will be of interest for the remainder of the
thesis. We then recall the lattice constructions using binary error-correcting codes,
known as Constructions A, B, D and D’, and show how Construction D is applied to
build Barnes-Wall lattices using nested binary linear Reed-Muller codes. We also re-



call the sphere decoding algorithm that can be efficiently employed, on both Gaussian
and Rayleigh fading channels, to decode lattices of dimensions up to 32. Finally, the
normalized word error rate performance over the AWGN channel is studied for the
best-known lattices.

Chapter 2 introduces a central operation that forms an effective means of guarantee-
ing minimal transmission power by turning the infinite lattice into a lattice constellation
with finite number of lattice points. This operation is referred to as lattice shaping.
We first describe the lattice shaping operation and detail two shaping mechanisms,
hypercube and nested shaping, that are applied to the 8-dimensional Gosset lattice
E8 and compared to the uncoded QAM constellation for different spectral efficiencies.
Then, we move to the decoding part of the transmission system and propose a modified
version of the sphere decoding algorithm that takes into account the inevitable shaping
operation at the transmitter. The novel results in this chapter were published in [7],
and they include:

– A lattice code decoder based on re-shaping that helps reduce the error rate.

– Performance improvement at high spectral efficiencies, in terms of Frame Error
rate, compared to LTE baseline of short frame length, using lattices of small
dimensions.

In Chapter 3, the focus is switched towards building lattices by means of multiple
levels of nested binary error-correcting codes, i.e., construction D. We first recall the
notions that lie at the core of our multilevel construction: lattice partitions and the
capacity rule. Then, following the construction guidelines provided by Forney et al. in
[42], we explain the steps for building a lattice using binary Reed-Muller codes over
lattice partitions of dimensions n = 1, 2 and 4. For each value of n, several issues
are addressed, namely the sufficient number of levels and their respective capacities
(thus the upper-bound on the code rates to be used). We provide the capacity curves,
system model and simulation results for each case. At the end of this chapter, results
related to an LLR estimation method using the von Mises distribution are explained.
The method aims at a reduction in complexity by replacing the infinite sums in the
exact LLR calculation formula by a cosine function. These results were the object of
two publications [6] and [5].

While the work in Chapter 3 is carried out over the AWGN channel, Chapter 4
is dedicated to multilevel lattice coding on the Rayleigh block fading channel. The
lattice construction in this case is based on algebraic number theory, which is a key
enabler for providing maximum diversity. We therefore begin by listing and explain-
ing some number-theoretical concepts, paving the way to their implementation in the
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algebraic lattice construction. The multilevel design is then developed for two and
four-dimensional lattice partitions. The novelty in this chapter, submitted to [4], in-
cludes:

– Applying the multilevel lattice coding scheme to algebraic lattice partition chains
built from totally real algebraic number fields.

– Lattices built using multilevel construction show a word error rate performance
that barely degrades when increasing the lattice dimension.

Finally, conclusions on the different ideas discussed in the manuscript are derived
in a final chapter, along with some further research perspectives on the applied studies.

The manuscript contains three appendices. Some methods are developed in details
and placed in appendix for further reference. Also included are Sage commands for
readers interested in implementing the examples listed in Chapter 4.





CHAPTER

1 Lattices

1.1 Introduction

G enerally speaking, a lattice is an arrangement of sphere centers having a peri-
odic structure in the n-dimensional Euclidean space. Used in mathematics for
works related to number theory, quadratic forms and the geometry of num-

bers, lattices also have connections with chemistry, since crystallographers study three-
dimensional lattices and relate them to the physical properties of common crystals. In
cryptography, lattices are the cornerstone of some of the strongest key algorithms. In
digital communications, they serve as a tool for building modulations over both the
Additive White Gaussian Noise (AWGN) and the fading channels.

The study of lattices began with the sphere packing problem, which has long been a
topic of interest for mathematicians. On the AWGN channel, this problem is equivalent
to maximizing the codewords for a given minimum distance of a linear code. The
sphere packing problem consists in finding out how densely a large number of identical
spheres can be packed together in a given space, in other words, it consists in finding
the best way to pack oranges in a box, or even a huge warehouse. In two dimensions
for example, there are several, efficient and non-efficient, ways to do that. Figures 1.1a
and 1.1b show a rectangular and hexagonal two-dimensional arrangements respectively.
It is clear that the hexagonal packing is much more efficient, since we have less space
wasted between the spheres. Moving to three dimensions, we have the orange packing
shown in Figure 1.2, where the centers of the oranges fall on the so-called face centered
cubic fcc lattice. The question does not stop here, and we can generalize the sphere
packing problem to n dimensions.

A sphere packing is called a lattice if the centers of the spheres form a discrete
group closed under addition in Rn. In the twentieth century, mathematicians have
developed dense sphere packings based on lattices for higher dimensions (for example,
the Barnes-Wall lattice [10] and the Leech lattice [59]). The book of Conway and Sloane
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(a) Rectangular arrangement (b) Hexagonal arrangement

Figure 1.1 – Two-dimensional packings.

Figure 1.2 – Orange packing in 3 dimensions.

[26] is a good reference for what is known about this topic, it also serves as a bridge
between the communications world and the mathematically oriented literature about
lattices. In digital communications, lattices have attracted a great deal of interest ever
since coded modulation schemes were developed in 1980. In fact, it was shown that
high-dimensional modulations carved out of lattices can be used for transmissions at
high rates with a significant improvement in error performance.

After a brief history on lattices and their evolution throughout time in Section
1.2, we introduce, in Section 1.3, the main notions and parameters that will help us
get a better understanding about lattices and their characteristics. In Section 1.4 we
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explain the lattice constructions using error-correcting codes, followed by a description
of the sphere decoding algorithm in Section 1.5. We then give some simulation results
showing the performance on the AWGN channel, in terms of Normalized Word Error
Rate, of the most-known lattices in Section 1.6. Finally, the chapter is concluded in
Section 1.7.

Note that throughout the thesis, the term "log" denotes the binary logarithm log2.

1.2 Lattices in digital communications: A Brief
History

In 1948, Shannon’s seminal work A Mathematical Theory of Communication [78] inau-
gurated the long road to channel capacity, i.e., the maximal rate at which information
can be reliably transmitted over a communications channel. In his paper, Shannon
showed that for any transmission rate R smaller than the channel capacity C, small er-
ror probability can be arbitrarily approached using intelligent coding techniques. Con-
versely, if R is greater than C, no coding technique can achieve reliable transmission.
Shannon proved that the capacity of a discrete AWGN channel with noise variance σ2

per dimension and power constraint P per dimension is given by the explicit formula:

C = log(1 + P

σ2 ) bits per 2 dimensions (b/2D). (1.1)

Unfortunately, Shannon’s theorem is not a constructive proof: it merely proves that
such codes exist, but does not give a method to construct them, or show how complex
it might be to implement them.

Ever since the paper was published, information theorists have been challenged to
find structured codes that can achieve Shannon’s capacity at affordable complexity.
The following years, the 1970’s and 1980’s in particular, were therefore marked by
the blossoming of information theory. Lattices were already known at that time. In
fact, the interest in lattice theory arose in the second half of the nineteenth century,
while its contribution was mainly restricted to mathematical purposes. Particularly,
significant examples include the works on the geometry of numbers and quadric forms
of Minkowski [65], Zolotarev [53] and Voronoi [88]. This theory, however, had to be
confronted with some hostility and the notions that were developed at the time were
tucked away until they regained consideration around the 1930s.

Even though Shannon’s work had no mention of lattices, it indicated that there exist
sphere packings in high dimensions with sufficiently high density that can approach
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the channel capacity. Lattices have then emerged as a powerful tool for the design of
structured codes for the AWGN channel. The application of lattices to this type of
channels originated in the work of de Buda [27], where it was asserted that lattices
can approach the capacity of an AWGN channel. In fact, based on the Minkowski-
Hlawka theorem, de Buda showed the existence of spherical lattices that can achieve a
rate of log( P

σ2 ) b/2D, which is quite close to the maximal rate. Loeliger [63] reproved
this result by deriving a version of the Minkowski-Hlawka theorem based on standard
averaging for linear codes applied to lattices (Construction A). Note that these two
results were proved under lattice decoding, i.e., decoding to the nearest lattice point in
the infinite lattice (without taking into account the shaping boundaries of the lattice).

In another paper [28], de Buda proved that lattice codes can actually achieve the
full rate of log(1 + P

σ2 ), and for that he considered a "thick-shell" shaping, rather than
a spherical shaping, along with a lattice code decoder. Later, a mistake in [28] was
pointed out by Linder et al. in [61], and the thick shells were replaced with thin shells.
However, because of this thin bounding region, the corresponding codes lose some of
their structure, and we’d be talking more about random spherical codes rather than
lattice codes.

In [69], Poltyrev brought forth the notion of AWGN-good lattices while considering
a channel without restrictions. However, in this case, talking about transmission rate
is meaningless, because with no restrictions the rate can be increased without any
limit. That’s why, Poltyrev introduced the notion of generalized capacity, defined in
[69] as the maximal codeword density that can be reliably recovered. He also proved
the achievability of log( P

σ2 ) b/2D.

For the power-constrained AWGN channel, Urbanke and Rimoldi [85] proved that
maximal capacity can be achieved through lattice codes provided that the decoder
uses lattice code decoding (takes into consideration the shaping region). This was also
proved by Forney in [39]. Thus, they left open the question of whether lattice decoding
can achieve the channel capacity on an AWGN channel. The answer was given later
by Erez and Zamir in [30] where they proved that lattice coding and decoding can
indeed achieve the capacity of the Gaussian channel. In fact, with two nested lattices
(one used for coding and the other for shaping), an MMSE factor at the receiver, a
random dither at the transmitter and a mod-Λ decoding of the scaled received vector,
the SNR can be enhanced by ”one” to achieve the full Gaussian capacity log(1 + P

σ2 )
b/2D. A few years later, Ling and Belfiore proposed a scheme in [62] using a discrete
Gaussian distribution, that requires neither shaping nor dithering, and which, under
lattice decoding, achieves the capacity of the Gaussian channel.
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Forney published a series of work through the 1980s and 1990s where he addressed
several lattice-related problems. He provided a long survey about coset codes and
discussed the relation between lattices and binary codes in [36] and [37]. He extended
the idea of Voronoi-shaped codebooks introduced by Conway and Sloane in [25] to the
high SNR regime and multidimensional constellations [38], [41]. He introduced Trellis
shaping in [35]. In [42], he proposed the modulo-lattice channel and showed that
multilevel lattices based on binary lattice partition chains can achieve the generalized
capacity [69] or the sphere bound if the codes on each level are carefully chosen.

More recently, versions of lattices inspired by analogies to constructions of binary
linear error-correcting codes started to appear. For instance, a form of lattice codes,
inspired from LDPC codes, was proposed in [79]: Low-density lattice codes, the cor-
responding decoder was described in [93]. Low-density parity-check lattices were in-
troduced in [73]. Built from nested LDPC codes, these lattices are endowed with a
sparse parity-check matrix. Convolutional lattice codes, also known as signal codes,
were introduced in [77]. Construction D was used on Turbo codes to build efficient
turbo lattices [74], [73], and polar lattices using a multilevel structure were introduced
in [91], [92].

Lattices have been extensively used in different applications such as the design
of codes for the Rayleigh channels [22], multilevel flash memories [57], the Gaussian
or Rayleigh wiretap channel [17] [24], relaying communications [67, 31, 81], wireless
networks suffering from interference [66] and the multiple access relay channel [58].

Motivated by the interesting results of studies carried out on lattice coding theory,
this thesis serves as a tool for harnessing lattices. More specifically, efficient lattice
designs are described and employed over both AWGN and Rayleigh fading channels.

After this overview on lattices and the different related studies, we now consider
their most important features and characteristics.

1.3 Definitions and Parameters

In this section, we introduce the main lattice parameters that we judge important in
order to understand what is a lattice, its characteristics and what it represents. For
more details, we refer the reader to [26]. Note that we will adopt the column vector
convention.
Let us first begin by giving the definition of a lattice:
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Definition 1.3.1. Lattice
An n-dimensional lattice Λ is a discrete subgroup of the real Euclidean p-space Rp,
where n ≤ p. For example, the set of integers Z is a discrete subgroup of R, so Z is a
one-dimensional lattice.
Λ can also be defined as the set of all integer linear combinations of n independent
vectors in Rp: g1,g2, · · · ,gn. Every point x ∈ Λ can be written as:

x = g1b1 + g2b2 + ...+ gnbn; bi ∈ Z.

This is referred to as a Z-module generated by the vectors {gi}ni=1.

Being an additive group, Λ contains the origin 0, and since the topology of a group
is invariant with the translation of any of its elements, we can study the properties of
the origin point 0, and generalize to any point x ∈ Λ.

Definition 1.3.2. Coset
The coset of a lattice is the set of points obtained after a specific vector is added to
each lattice point:

Λa = a + Λ = {a + x : x ∈ Λ, a ∈ Rn}.

Note that the coset itself is not a lattice, since it is not closed under addition and
reflection, and it does not contain the origin.

Definition 1.3.3. Lattice constellation
An n-dimensional lattice constellation is the finite set (Λ + a) ∩ R of points in a
translate Λ + a of an infinite n-dimensional lattice Λ that lies in a certain bounding
region R ∈ Rp.

Definition 1.3.4. Sublattice
A subset Λ′ of Λ that is also a lattice is called sublattice. The quotient group Λ/Λ′ has
then a finite order M = |Λ/Λ′|, and Λ is the disjoint union of M cosets of Λ′

Λ = ∪a∈AΛ′ + a

where A is the set of M coset representatives for the cosets of Λ′ in Λ. The notion of
sublattices will be seen in more details in Chapter 3.

Definition 1.3.5. Lattice basis
The set of vectors g1,g2, · · · ,gn forms the basis of the lattice Λ.

Definition 1.3.6. Generator matrix
The vectors g1,g2, · · · ,gn form the columns of the p × n lattice generator matrix G,
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which can be then written as:

G =
(
g1 · · · gn

)
=


g11 · · · gn1

... ...
g1p · · · gnp

 (1.2)

Hence, any lattice point x is a column vector that equals: x = Gb, with
b = (b1, · · · , bn)T a point in Zn.

When G is the identity matrix, we obtain the integer lattice Λ = Zn, also called the
cubic lattice or Z lattice. Any lattice can be viewed as a linear transformation, by the
generator matrix, of the integer lattice:

Λ = GZn. (1.3)

Definition 1.3.7. Gram matrix
The Gram matrix Gr is defined by:

Gr = GTG. (1.4)

The elements of Gr correspond to all the possible inner products (gi,gj) between all
generating vectors. The Gram matrix is a symmetric, positive-definite matrix, since
the elements of the diagonal represent the square norm of the basis vectors elements.

Proposition 1. Change of basis
There are different ways of choosing a basis for a given lattice as shown in Figure
1.3, where the represented two-dimensional lattice can have for example {g1,g2} or
{g1,g′2} as a basis.
Two matrices G and G′ generate the same lattice, if and only if:

G′ = GT

where T is a unimodular matrix, i.e., an integer matrix with det(T) = ±1.

Since a lattice basis is not unique, a question that may occur to our minds is : What
is the best lattice basis. The answer is that, in general, the best basis for a given lattice
is the basis that has the following properties:

• The basis vectors g1,g2, · · · ,gn have the shortest Euclidean norm.

• the basis vectors are nearly orthogonal.
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Figure 1.3 – Hexagonal lattice.

Definition 1.3.8. Fundamental Region
The parallelotope consisting of the points

r1g1 + · · ·+ rngn (0 ≤ ri < 1) (1.5)

is a fundamental parallelotope. Figure 1.3 shows the fundamental parallelotope de-
termined by the two vectors g1 and g2 of a two-dimensional lattice. A fundamental
parallelotope is an example of a fundamental region for the lattice, that is, a building
block which when repeated many times covers the whole space with only one lattice
point in each copy.

The fundamental parallelotope of a lattice is not unique, since it is determined by
the choice of the basis. However, the volume of the fundamental region is uniquely
determined by Λ. If G is a full rank matrix (n = p), the fundamental volume is equal
to the absolute value of the determinant of G:

V(Λ) = | det(G)|. (1.6)

Note that the Normalized volume of an n-dimensional lattice Λ is defined as V(Λ) 2
n

and may be regarded as the volume of Λ per 2 dimensions.

Definition 1.3.9. Determinant of a lattice
The determinant of Λ is defined to be the determinant of the Gram matrix:

det(Λ) = det(Gr). (1.7)

Hence, according to the previous notions, it is necessary to remember that there
are different ways to represent the same lattice. Therefore, knowing the Gram or the
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generator matrix does not allow us to determine the corresponding lattice. A lattice’s
invariants, such as the volume or the dimension can help, but two equal determinants
do not necessarily correspond to similar lattices.

Definition 1.3.10. Similarity
Two lattices are similar (or equivalent) if one of them is obtained from another by a
rotation, reflection or a change of scale. The corresponding generator matrices G and
G′ are related by the following formula:

G′ = cUGB

where c is a nonzero constant, U is a matrix with integer entries and determinant ±1,
and B is a real orthogonal matrix (with BBT = In).

Definition 1.3.11. Voronoi region
The Voronoi region V(x) of a lattice point x is the set of points closer to x than to
any other lattice point:

V(x) = {z ∈ Rp, ||z− x|| ≤ ||z− x2|| ∀x2 ∈ Λ}. (1.8)

The Voronoi regions thus span the Euclidean space entirely, filling the space between
the packing spheres. The periodic aspect of a lattice makes all the Voronoi cells a shifted
version of the fundamental Voronoi cell (V0), that is the Voronoi cell associated to the
origin (x = 0). The Voronoi region of the hexagonal lattice is shown in Figure 1.3.

Definition 1.3.12. Minimum distance
The notation dmin(Λ) is used to denote the length of the shortest nonzero vector of the
lattice Λ. It also refers to the minimum Euclidean distance between lattice points.

Definition 1.3.13. Coding gain
The nominal coding gain γ(Λ) of the lattice Λ is defined by:

γ(Λ) := d2
min

V(Λ) 2
n

. (1.9)

Also known as the Hermite constant [26], the coding gain depends only on the invariants
of a lattice. Notice that γ(Zn) = 1, which means that γ(Λ) compares the coding gain
of a given lattice Λ to that of the integer lattice having the same dimension. It is a
good indicator for the performance of Λ over an AWGN channel: the higher the coding
gain, the lower the error probability.

Definition 1.3.14. Covering radius
The covering radius of a lattice Λ in Euclidean space, denoted by ρ(Λ), is defined as
the smallest radius ρ such that the closed spheres of radius ρ centered at all lattice
points cover the entire space, which is also the outer radius of the Voronoi region, as
shown in Figure 1.4.
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0 

𝑟(Λ) 

𝜌(Λ) 
Voronoï region 

Figure 1.4 – The covering and packing radii with respect to the Voronoi region.

Definition 1.3.15. Packing radius
The packing radius of a lattice Λ, denoted by r(Λ), is defined as the largest radius r
such that spheres of radius r placed at lattice points intersect only at their boundaries.
As Figure 1.4 shows, r(Λ) is the inner radius of the Voronoi region.
If d2

min is the minimal squared distance between distinct lattice points, the packing
radius of Λ is given by:

r = 1
2

√
d2
min. (1.10)

Definition 1.3.16. Kissing number
The kissing number of a lattice K(Λ) is defined as the number of nearest neighbours
to any lattice point x. In the sphere packing problem, K(Λ) would be the number of
spheres touching a specific sphere.

Definition 1.3.17. Lattice density
Lattice density ∆ is the fraction of the space that is occupied by the packing spheres,
it is therefore the ratio of the volume of one sphere of radius r over the fundamental
volume:

∆ = volume of one sphere of radius r
fundamental volume = Vn × ρn

V(Λ)
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where Vn is the volume of an n-dimensional sphere of radius 1

Vn = πn/2

Γ(n2 + 1) =


πn/2

Γ(n2 + 1) n is even

2nπ n−1
2 (n−1

2 )!
n! n is odd

where Γ(x) is Euler’s gamma function: Γ(x) =
∫∞

0 ux−1e−udu.

In the remainder of the work, we will deal with full rank lattices, i.e., p = n. In
this case, G is a square matrix, and we have det(Λ) = det(G)2.

1.4 Lattice Construction

Constructing lattices from error-correction codes is a classically studied topic [26].
Lattices are obtained by "lifting" one or more q-ary codes into the Euclidean space,
which allows them to inherit some of the underlying codes’ properties. Depending
on the structure of these codes, lattice constructions can be categorized into different
types. In this section, we describe the most popular lattice constructions known as
Constructions A, B, D and D’, used with binary (q = 2) codes of length n to construct
lattices in Rn. Note that another construction called Construction C is not to be
considered here since it results in a sphere packing that is generally not a lattice.

1.4.1 Construction A

Let C be an (n, k, d) binary code that maps k information bits into binary codewords
of length n. The parameter d is the minimum distance of the code, i.e., the Hamming
minimum weight (number of ones) over all non-zero codewords. Construction A is a
method of generating a lattice by "lifting" a linear binary code C to the Euclidean space
[94]. x = {x1, · · · , xn} is an integer lattice point if and only if its modulo-2 reduction
belongs to C. We can thus write:

Λ = {x ∈ Zn : x mod2 ∈ C}. (1.11)

This is equivalent to writing:
Λ = C + 2Zn. (1.12)

When the generator matrix of the code C has a systematic form [Ik|P ], the lattice
Λ obtained from C via Construction A will have a generator matrix of the form:

G =
Ik 0

P 2In−k

 (1.13)
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a minimum distance of:
dmin(Λ) = min{2,

√
d}

Its coding gain is:

γ(Λ) =

4 k
n if d ≥ 4

(dmin(Λ))2

4 4 k
n if d < 4

and the kissing number:

K(Λ) =


2dBd if d < 4
2n+ 16B4 if d = 4
2n if d > 4

where Bd denotes the number of codewords in C with minimum weight d.

Checkerboard Lattices that are the densest lattices known in dimensions n = 3, 4 and
5, denoted by Dn, can be constructed with single parity check codes SPC(n, n−1, 2) via
Construction A. Moreover, the densest lattices in dimensions n = 6, 7 and 8 denoted
by E6, E7 and E8 are also obtained using Construction A.

Example 1.4.1. Obtaining the Gosset lattice E8 from Hamming code H(8, 4, 4)
The Hamming code H(8, 4, 4) has the systematic generator matrix:

GH =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1︸ ︷︷ ︸

I4

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0︸ ︷︷ ︸

P


So the generator matrix of E8 is, according to (1.13):

GE8 =
I4 0

P 2I4



1.4.2 Construction B

Let C1(n, k, d) and C2(n, n−1, 2) be two linear codes that satisfy the condition C1 ⊆ C2.
A lattice Λ is constructed by taking all the vectors x = (x1, · · · , xn) that have their
modulo 2 reduction in C1, and the sum

i=n∑
i=1

xi divisible by 4. We can thus write:

Λ = C1 + 2C2 + 4Zn. (1.14)
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Example 1.4.2. The Barnes-Wall lattice BW16 is constructed using the first order
Reed-Muller code C1 = (16, 5, 8) and the SPC code C2 = (16, 15, 2).

Example 1.4.3. Another example is the densest lattice known in dimension 24, the
Leech lattice Λ24 obtained using the (24, 12, 8) Golay code and the SPC code (24, 23, 2).

1.4.3 Construction D

Construction D is useful for constructing lattices of high coding gains. In fact, Con-
struction A produces lattices with a coding gain less or equal to 4, and Construction
B is limited to the class of codes with dmin = 8.

First explained in [9], Construction D generalizes what was proposed by Barnes and
Wall in [10]. It uses a family of nested binary linear codes to produce a lattice packing
in Rn.

Let C1 ⊆ · · · ⊆ Ca be a set of nested binary linear codes, where each code C` has
parameters (n, k`, d`) for 1 ≤ ` ≤ a. We denote by c1, · · · , ck` the k` vectors that
generate the `th code. A lattice Λ obtained using Construction D is the set of vectors
of the form:

x =
a∑
`=1

2`−1
k∑̀
j=1

u
(`)
j cj + z (1.15)

where z ∈ 2aZn and u(`)
j ∈ {0, 1}.

Λ can also be described using the code formula [42]:

Λ = C1 + 2C2 + · · ·+ 2a−1Ca + 2aZn. (1.16)

Its determinant is:

det(Λ) = 2
an−

i=a∑
i=1

ki

(1.17)

and the minimal distance is written as:

dmin(Λ) = min

2,
√
d`

2`−1


If d` ≥ 4`

β
, for 1 < ` < a and β = 1 or 2, then the squared minimum distance of Λ is at

least 4
β
, and its coding gain satisfies:

γ(Λ) ≥ β−14Σα`=1
k`
n .

It is clear that when a = 1, Construction D reduces to the case of a Construction
A. A typical example is that of the Gosset lattice E8 seen earlier. When a = 2, C2 is



20 CHAPTER 1. LATTICES

the SPC code (n, n − 1, 2) and Construction D reduces to the case of a Construction
B.

This construction is used to build performing lattices of relatively high dimensions,
namely the Barnes-Wall lattices obtained by applying Construction D to a family of
Reed-Muller codes, as explained later in Section 1.4.5.

1.4.4 Construction D’

Similarly to Construction D, Construction D’ can produce lattices with high coding
gains, but while dealing with sets of parity checks rather than generator sets of codes.
In fact, Construction D’ converts a set of parity-checks defining a family of codes into
congruences for a lattice [26].

Let C1 ⊇ · · · ⊇ Ca be a set of nested binary linear codes. Let h1, · · · ,hn be a basis
in Fn2 , such that each code C` for 1 ≤ ` ≤ a is defined by r` = n − k` parity-check
vectors h1, · · · ,hr` . We define the lattice Λ as the set of vectors x ∈ Zn that satisfy
the congruences:

hj.x ≡ 0 (mod2`+1) (1.18)

for all ` = 1, · · · , a and ra−`−1 + 1 ≤ j ≤ ra−`.

The parity check matrix H of the lattice Λ is:

H = [h1, · · · ,hr0 , 2hr0+1, · · · , 2hr1 , · · · , 2ahra−1+1, · · · , 2ahra ]T . (1.19)

It is known that Λ has a determinant [19]:

det(Λ) = 2
`=a∑̀
=1
r`

(1.20)

Example 1.4.4. Let a = 3 and C1, C2 and C3 be three nested codes whose duals are
generated by {1001}, {1001, 1101} and {1001, 1101, 1010} respectively. In that case,
we have h1 = {1001},h2 = {1101} and h3 = {1010}. The parity check matrix of the
lattice Λ obtained via Construction D’ is:

H =


1 0 0 1
2 2 0 2
4 0 4 0


A vector x is in Λ if and only if HxT ≡ 0 (mod23).

Construcion D’ is applied to a nested set of LDPC codes to obtain what is known as:
low density parity check lattices [73].
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1.4.5 Barnes-Wall lattices and Reed-Muller codes

We now explain the Construction D of the famous Barnes-Wall lattices using a set of
nested binary linear Reed-Muller codes. Reed-Muller codes are among the oldest known
codes and have found widespread applications. They were discovered by Muller and
provided with a decoding algorithm by Reed in 1954 [71]. These codes were initially
given as binary codes, but modern generalizations to q-ary codes exist. We will restrict
our investigation to the binary case.

Reed-Muller codes RM(N, k, d) are a class of linear block codes over GF(2), where
N is the length of the codeword, k is the length of the information block and d is
the minimum Hamming distance. Conventionally, Reed-Muller codes are denoted by
RM(r,m) with 0 ≤ r ≤ m, and the following relations between N, k and d:

• N = 2m

• k =
m

0

+
m

1

+ · · ·+
m
r


• d = 2m−r

The 0th order Reed-Muller code RM(0,m) is defined to be the repetition code
{0, 1} of length 2m.

Reed-Muller codes are famous for their recursive construction, which means that
large Reed-Muller codes can be constructed from smaller ones. In fact, RM codes
can be generated using the Plotkin (|u|u + v|) structure explained in more details in
Appendix A. Thus, for any r ≥ 2, the rth order Reed-Muller code RM(r,m) is defined
recursively by:

RM(r,m) =

Z
2r
2 r = m

(u,u + v),u ∈ RM(r,m− 1) and v ∈ RM(r − 1,m− 1) r 6= m

(1.21)

Example 1.4.5. Considering the even weight code C1 = RM(1, 2) = (4, 3, 2) and
the repetition code C2 = RM(0, 2) = (4, 1, 4), we can construct the extended Ham-
ming code C = RM(1, 3) = (8, 4, 4). This code, along with the repetition code
RM(0, 3) = (8, 1, 8), give us the first-order Reed-Muller code RM(1, 4) = (16, 5, 8),
and so on.

Figure 1.5 illustrates the graphical representation of the decomposition process for
the code RM(3, 6). The latter is repeatedly split into two codes RM(r,m − 1) and



22 CHAPTER 1. LATTICES

3,6 

2,5 3,5 

3,4 2,4 1,4 

2,3 1,3 0,3 

1,2 0,2 

Figure 1.5 – Decomposition of code RM(3, 6).

RM(r− 1,m− 1), which correspond to u and v respectively; once a terminal node is
reached, the code is not decomposed any further. We can choose to end the decompo-
sition at either RM(0,m) or RM(1,m) codes. We show in Appendix B that ending
this process at a first-order RM code significantly improves the decoding algorithm.

The connection between Reed-Muller RM codes and lattices dates back to 1983
[9], where RM codes employed in a multilevel scheme resulted in interesting structures
commonly known as Barnes-Wall lattices. This relation was also addressed by Forney
in [37], where he explained the construction of BW lattices, their sublattices and their
code formulas in real and complex forms.

Barnes-Wall lattices are N -dimensional complex, or 2N -dimensional real lattices,
that exist when N = 2m. Using the lattice Construction D, they are built from nested
Reed-Muller codes according to the following code formula:

BW (m) =
∑

1≤r′≤m
m−r′ odd

RM(r′,m+ 1)2
r′−1

2 + 2m/2Z2N for m even

BW (m) =
∑

1≤r′≤m
m−r′ even

RM(r′,m+ 1)2
r′−1

2 + 2
m+1

2 Z2N for m odd
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For example:
BW32 = BW (4) = RM(1, 5) + 2RM(3, 5) + 4Z32

and
BW64 = BW (5) = RM(1, 6) + 2RM(3, 6) + 4RM(5, 6) + 8Z64.

Having at our disposal methods to construct efficient multidimensional lattices,
consideration will now be given to the universal lattice decoding algorithm: the sphere
decoder.

1.5 The Sphere Decoder algorithm

The sphere decoder is an algorithm that aims at finding the closest lattice point (in the
sense of minimum Euclidean distance) of a given point in Rn. Based on the Finke-Pohst
enumeration [32] which searches for the closest lattice point within a sphere of radius
R around the received vector y, the sphere decoding algorithm was later improved by
Boutros and Viterbo in [87] by dynamically updating the search radius. If x is the
transmitted vector, the sphere decoder is an ML decoder when trying to decode x
from observation y. This universal algorithm is suitable for both AWGN and Rayleigh
fading channels.

The strength of the sphere decoder stems from the fact that it eliminates the ex-
haustive search among all the points of the lattice constellation. Even though the
complexity of the algorithm is independent of the size of the constellation used for
transmission, it is limited by the dimension of the lattice (affordable complexity up to
dimension equal to 32).

1.5.1 The sphere decoding algorithm

In the Gaussian channel case, the ML decoding of an n-dimensional lattice Λ requires
searching for the lattice point that is the closest to the received vector, i.e., the lattice
point that minimizes the following metric:

m(y|x) = ||y− x||2 =
n∑
i=1
|yi − xi|2 (1.22)

where x is the transmitted lattice point, y = x + w is the received vector and
w = (w1, · · ·wn) is the noise vector with real zero-mean independent Gaussian ran-
dom variables with variance σ2. As aforementioned, the lattice points can be written
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Figure 1.6 – The geometrical representation of the Sphere Decoding algorithm.

as: {x = Gb}, with G the lattice generator matrix, and b = (b1, · · · , bn)T is the integer
component vector.

The sphere decoding algorithm consists in finding the closest lattice point without
actually searching all the lattice points: it reduces the search to lattice points that lie
within a search radius R, as shown in Figure 1.6 . Note that a lattice point Gb lies
inside a sphere of radius R centered at y if and only if:

R2 ≥ ||y−Gb||2. (1.23)

The search for the closest point consists in computing minimum and maximum bounds
for each component of the integer vector, and checking all lattice points inside the
sphere of radius R by calculating increasingly each vector component interval. The
algorithm begins with a QR decomposition of the lattice generator matrix:

G = QR (1.24)

where R is an n × n upper triangular matrix and Q is an n × n orthogonal matrix.
The condition (1.23) can therefore be written as:

R2 ≥ ||y−QRb||2 = ||Q∗y−Rb||2

where (.)∗ denotes the Hermitian matrix transposition.

Writing z = Q∗y yields:

d2 ≥
n∑
i=1

zi − n∑
j=i

ri,jbj

2

(1.25)

where ri,j is an (i, j) entry of R. Expanding the above inequality gives:

R2 ≥ (zn − rn,nbn)2 + (zn−1 − rn−1,n−1bn−1 − rn−1,nbn)2 + · · · . (1.26)
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It is clear from (1.26) that the first term depends only on bn, the second depends on
{bn−1, bn}, and so on. The first necessary condition for the lattice point to lie inside
the sphere of radius R is R2 ≥ (zn − rn,nbn). This condition gives the interval of bn:⌈

−R + zn
rn,n

⌉
≤ bn ≤

⌊
R + zn
rn,n

⌋
(1.27)

where dxe denotes the nearest integer greater than x, and bxc denotes the nearest
integer smaller than x.

After choosing a possible value for bn in the interval (1.27), we move to the
(n− 1)th term bn−1. We first set R2

n−1 = R2 − (zn − rn,nbn)2, and the second con-
dition R2

n−1 ≥ (zn−1 − rn−1,n−1bn−1 − rn−1,nbn)2 leads to bn−1 belonging to the interval:⌈
−Rn−1 + zn−1 − rn−1,nbn

rn−1,n−1

⌉
≤ bn−1 ≤

⌊
Rn−1 + zn−1 − rn−1,nbn

rn−1,n−1

⌋
. (1.28)

In a similar way, after having chosen some possible values for (bi+1, · · · , bn), we
can obtain the general intervals of the component bi based on the condition
R2
i ≥ (zi −

n∑
j=i

ri,jbj)2:


−Ri + zi −

n∑
j=i+1

ri,jbj

ri,i

 ≤ bi ≤


Ri + zi −

n∑
j=i+1

ri,jbj

ri,i

 . (1.29)

When a point inside the sphere is found, its distance from y is saved:

R2
new = R2 −R2

1 + (y1 − r1,1s1)2.

Note that the possible choices for (bi+1, · · · , bn) might result in a void interval for bi.
In this case, another choice for bi+1 should be done, up to bn until a valid interval is
obtained. The algorithm is formalized as in Algorithm 1.

The choice of the search radius is a crucial step of the algorithm: if R is too large,
we obtain too many points and the search speed decreases, whereas if R is too small,
we don’t obtain any point at all. In order to make sure to find at least one lattice
point inside the sphere, we should take R equal to the covering radius of the lattice
(see definition 1.3.14). In practice, we adjust the radius to the noise variance σ2: for
small SNRs, a large radius is needed, whereas for high SNRs, a small radius is sufficient
since the received point is normally close to the decoded lattice point. This point was
addressed in [44], where the radius was calculated using the formula:

R2 = 2nσ2. (1.30)
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Algorithm 1 Search for the closest lattice point to y inside the sphere of radius R
Input: y,Q,R, z = Q∗y, R
Output: b̂

1: k = n,R′n = R, z′n = zn

2: Set bounds for b̂k: UB(b̂k) =
⌊
R′k+zk
rk,k

⌋
, b̂k =

⌈−R′k+zk
rk,k

⌉
− 1

3: Increase b̂k : b̂k = b̂k + 1
4: if b̂k ≤ UB(b̂k) then
5: Go to 9
6: else
7: Go to 14
8: end if
9: if k = 1 then

10: Go to 20
11: else
12: k = k − 1, z′k = zk −

n∑
i=k+1

rk,isi, R
′
k =

√
R
′2
k+1 − (z′k+1 − rk+1,k+1b̂k+1)2 and go to

2
13: end if
14: k = k + 1
15: if k = n+ 1 then
16: Terminate algorithm
17: else
18: Go to 3
19: end if
20: Save b̂ and its distance from y: R′2n −R

′2
1 + (z′1 − r1,1b̂1)2 and go to 3.

1.5.2 The sphere decoder with fading

Let us now consider the transmission over an independent Rayleigh flat fading channel.
With perfect channel state information (CSI) given at the receiver and no inter-symbol
interference, the received signal can be written as:

y = α� x + w (1.31)

where � denotes the component-wise vector multiplication, x is the sent lattice point,
and the noise vector w has real, independent, Gaussian distributed random variables
with zero-mean and variance σ2. The fading coefficients α = {α1, · · · , αn} have unit
second moment and are assumed to be independent from one symbol to the next. In
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this case, ML decoding requires minimizing the following metric:

m(y|x, α) = ||y− α� x||2 =
n∑
i=1
|yi − αixi|2 (1.32)

If G if the generator matrix of the lattice Λ, then we can consider a new lattice Λc

with generator matrix:
Gc = diag(α1, · · · , αn)×G. (1.33)

This new lattice Λc can be seen as a lattice in which each point was compressed or
enlarged by a factor αi. Let x(c) be a point ∈ Λc, x(c) can then be written as:

x(c) = (x(c)
1 , · · · , x(c)

n ) = (α1x1, · · · , αnxn)

and the metric to minimize becomes:

m(y|x, α) =
n∑
i=1
|yi − x(c)

i |2.

The received point y can thus be decoded by applying the same lattice decoding algo-
rithm presented previously to the new lattice Λc. The decoded lattice point x̂(c) has
the same integer vector b as x̂ ∈ Λ.

The additional complexity encountered when dealing with the Rayleigh fading chan-
nel case comes from the fact that to each received signal y corresponds a different lattice
Λc, thus a new QR decomposition.

The choice of the search radius is more critical here. In fact, when the transmission
takes place in the presence of a deep fading, too many points may fall inside the sphere,
which slows the decoding process down. To offset this problem, it is important to adapt
R to the fading coefficients αi.

1.6 Infinite lattices on the AWGN channel

As already seen in the previous section, the AWGN channel is given by the relation:

y = x + w

When dealing with infinite lattices, the common notion of signal-to-noise ratio (SNR)
is not relevant. It is therefore replaced by the so-called Volume-to-Noise Ratio defined
as [42]

VNR = V(Λ)2/n

2πeσ2 (1.34)



28 CHAPTER 1. LATTICES

0 1 2 3 4 5 6 7
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

VNR [dB]

W
E

R
/2

D

 

 

Z
Z

2

A
2

Z
4

D
4

Z
8

E
8
 

Z
16

BW
16

Figure 1.7 – Performance of some of the most popular lattices on the AWGN channel
in terms of Normalized Word Error Rate.

Table 1.1 provides some features of the most-known lattices for dimensions up to 256.
Among the main ones, we note the hexagonal lattice A2, the Schlafli lattice D4, the
Gosset lattice E8 and the Barnes-Wall lattice BW16. This list of lattices is used for
transmission over the AWGN channel, and the resulting performances are shown in
Figure 1.7. In this figure, the Normalized Word Error Rate (NWER) is plotted as
a function of the VNR, the NWER being the Word Error Rate per 2 dimensions
(WER/2D) [82], i.e., WER× 2

n
, suitable for comparing constellations having different

dimensions. A word is erroneous when at least one symbol is erroneous. The lattices
are also compared to the corresponding integer lattices Zn having the same dimension.

It is easy to notice the improvement achieved when the lattice dimension increases.
This is coherent with the fact that the coding gain, i.e., the lattice performance in
comparison to that of the corresponding integer lattice Zn improves with the dimension
n, as seen in Table 1.1. Note that unlike dense lattice packings, integer lattices Zn
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Table 1.1 – Features of the most-known lattices for dimensions up to 256.

n Λ K(Λ) ∆ γ(Λ)dB
1 Λ1 = A1 2 1 0
2 Λ2 = A2 6 0.90690 0.62
3 Λ3 = D3 12 0.74048 1
4 Λ4 = D4 24 0.61685 1.51
5 Λ5 = D5 40 0.46526 1.81
6 Λ6 = E6 72 0.37295 2.22
7 Λ7 = E7 126 0.29530 2.58
8 Λ8 = E8 240 0.25367 3.01
9 Λ9 272 0.14577 3.01
10 Λ10 336 0.09202 3.14
11 K11 432 0.06043 3.3
12 Λ12 648 0.04173 3.51
12 K12 756 0.04945 3.64
13 K13 918 0.02921 3.72
14 Λ14 1422 0.02162 3.96
15 Λ15 2340 0.01686 4.21
16 Λ16 = BW16 4320 0.01471 4.52
17 Λ17 5346 0.008811 4.6
18 Λ18 7398 0.005928 4.75
19 Λ19 10668 0.004121 4.91
20 Λ20 17400 0.003226 5.12
24 Λ24 196560 0.001930 6.02
32 Λ32 208320 – 6.02
32 BW32 146880 – 6.02
32 Q32 261120 – 6.28
36 Λ36 234456 – 6.19
48 Λ48 – – 7.53
64 BW64 9694080 – 7.53
64 Q64 2611200 – 7.78
64 P64c – – 8.09
128 BW128 1260230400 – 9.03
128 P128b – – 10.02
128 ηE8 – – 10.16
256 BW256 325139443200 – 10.54
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maintain the same volume, thus equal performance ∀n. This proves that the sphere
packing density is a key point for finding good lattices for transmission over the AWGN
channel.

1.7 Conclusion

After recalling some fundamentals concerning lattice-related studies, we listed some
basic concepts that enabled a better understanding of lattice theory. We explained af-
terwards the various lattice constructions using error-correcting codes. The ML lattice
decoding algorithm denoted the sphere decoder was presented. Simulations were fi-
nally shown for unbounded lattices on the Gaussian channel, with respect to the VNR,
which therefore does not reflect the performance of a lattice as a codebook.

Until now, the lattices were described in their infinite version. However, we know
that in practice, data transmission requires sending a finite number of points. There-
fore, consideration will hereafter be given to an essential operation related to lattices:
lattice shaping. The next chapter will be dedicated to the description of the modifica-
tion brought to both encoding and decoding parts.
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CHAPTER

2 Lattice Shaping

2.1 Introduction

As introduced in Chapter 1, lattices are infinite discrete subsets of Rn. However,
in practice, the amount of information to be sent per channel use is finite,
and so should be the number of lattice points considered for transmission.

Therefore, the use of a lattice for digital transmissions requires 2 important tasks:

• Encoding: Associating the information bits to the symbols of the lattice code.

• Shaping: Defining a finite set of lattice points to create what is known as a lattice
code or a lattice constellation. A lattice code, denoted by ΛB, can be defined as
the intersection between a lattice Λ and a compact bounding region of Rn called
the shaping region and denoted by B.
Note that in this Chapter, probabilistic shaping, as proposed for lattices in [62],
will not be considered.

Depending on the shape of B, the error rate performance may vary. A simple choice
for B is to give it the form of a hypercube, and thus perform hypercube shaping. The
gain related to the reduction in required signal-to-noise ratio to achieve a certain error
probability with respect to using hypercube shaping and same spectral efficiency is
called the shaping gain and is upper bounded by 1.53 dB [35], which is reached when
B is a hypersphere. Unfortunately, hypersphere shaping is too complex to implement.
If B is a hypercube, the shaping gain is obviously 0 dB. Note that the shaping gain
can even be negative, if the shape of B is worse than a hypercube. By shaping a
lattice, we aim at preventing the transmitted power from being too large by making
sure that only lattice points close to the origin are transmitted. A survey of popular
shaping techniques was proposed by Sommer, Feder and Shalvi in [80] and applied to
low-density lattice codes to improve the shaping gain. Among them, the best shaping
gain is achieved by the so-called nested shaping.
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The encoding task (mapping the information bits to the lattice symbols lying in
B) is also an issue since the cardinal of the lattice code increases exponentially with
the dimension of the lattice and with the spectral efficiency. A simple look-up table
mapping is not possible and possibly new encoding schemes have to be considered.
Note that the bounding region and the encoding scheme can be entangled.

At the receiver side, we distinguish two types of decoders for lattice codes: the
lattice decoder and the lattice code decoder. A lattice decoder is simply a decoder in
the infinite lattice: there is no checking whether the estimated transmitted symbol lies
inside the shaping region or not. This decoder will be denoted as naive lattice decoder.
A lattice code decoder, on the contrary, takes into consideration the shaping region
and thus ensures that the decoded lattice point falls inside the boundaries of B.

This chapter is organized as follows: in Section 2.2 we describe the different shap-
ing mechanisms of a lattice on the AWGN channel, namely the hypercube shaping
and the nested shaping. In Section 2.3, we focus on the decoding part and propose
a modification of the lattice code decoder algorithm that achieves an improved error
rate performance even for low spectral efficiencies and/or low lattice dimensions. Sim-
ulations are computed on both AWGN and Rayleigh fading channels. At the end of
this section the decoder is compared to the LTE baseline. The chapter is concluded in
Section 2.4.

2.2 Shaping mechanisms

A basic block diagram of a system employing lattice constellations is shown in Fig-
ure 2.1. In this case, the lattice is sent in its infinite version, there is no shaping
boundary that determines the region to which the sent lattice points must belong.
Nevertheless, the vector of integers b generally has its components drawn from a cer-
tain interval. If the number of information bits per dimension is a power of 2, the
mapping between these bits and the information integers is straightforward. Other-
wise, it is possible to apply a non-uniform mapping like for example in [54, 68]. We
assume hereafter that the information integers of vector b are uniformly drawn from
the interval (0, · · · , L − 1), L being a positive integer. The spectral efficiency is thus
defined as η = log2(L) bits per real dimension.

To study the performance of a lattice sent over the AWGN channel, we compare
the Word Error Rate per 2 dimensions, as a function of the channel signal-to-noise
ratio (SNR), of the Gosset lattice E8 seen in Section 1.4.1 and the uncoded QAM
constellation having the same spectral efficiency.
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Lattice E8 is the best known lattice in 8 dimensions, in the sense of having the high-
est packing density (see Section 1.6). It consists of the vectors x = (x1, x2, · · · , x8)T ,
where xi are all integers, or all halves of integers, and x1 + · · ·+x8 is even. A generator
matrix of lattice E8 is [26]:

2 −1 0 0 0 0 0 0.5
0 1 −1 0 0 0 0 0.5
0 0 1 −1 0 0 0 0.5
0 0 0 1 −1 0 0 0.5
0 0 0 0 1 −1 0 0.5
0 0 0 0 0 1 −1 0.5
0 0 0 0 0 0 1 0.5
0 0 0 0 0 0 0 0.5



.

If x is the sent lattice point, the received vector y is written as: y = x+w, where w
is a vector of n = 8 independent samples drawn from a centered Gaussian distribution
with variance σ2. The SNR is defined as:

SNR = E
(

(x− t)T (x− t)
nσ2

)
. (2.1)

where the translation vector t shall be equal to the codewords expectation: t = E(x).
Hence, the expectation of the sent symbols is zero. Note that the shifting operation is
not mentioned in Figure 2.1, since it does not affect the error rate performance on an
AWGN channel, provided that the SNR is calculated as in (2.1).

The simulation results are depicted in Figure 2.2 for a spectral efficiency η = 1, 2, 3
and 4 bits/dim, corresponding to integer vectors b drawn from the intervals
[0, 1], [0, 3], [0, 7] and [0, 15] respectively. The search for the closest lattice point was
computed using the sphere decoder algorithm described in Section 1.5. The use of E8

is clearly not an interesting choice in this case, the QAM constellation outperforms the
8-dimensional lattice for all values of η. This can be explained by the fact that too
many E8 lattice points with high energy are being used for transmission, thus the per-
formance of the lattice is degraded. To improve the error rate performance, a shaping
has to be processed in order to lower the number of high energy symbols.

The shaping operation is explained in Figure 2.3. Suppose we have a two-
dimensional lattice with integer components {b1, b2} that may take any value in the set
{0, 1, 2, 3}. The number of total lattice points is then 42 = 16 points. In the no-shaping
case, the lattice codewords are any of the 16 lattice points belonging to a parallelogram
as illustrated in Figure 2.3 (In fact, this is not necessarily a parallelogram, the shape
is defined by the lattice generator matrix). If a shaping mechanism is applied, the 16



36 CHAPTER 2. LATTICE SHAPING

Bit 

labelling  

Lattice 

Encoding 

Lattice 

Decoding 

Bit 

reconstruction 

Input bits 

𝐛 ∈ 0, … , 𝐿 − 1 𝑛 

Output bits 

𝐱 = 𝐆𝐛 

𝐲 = 𝐱 + 𝐰 𝐛  

𝒘 

Figure 2.1 – Basic block diagram of a system employing lattice constellations.
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Figure 2.2 – Gosset lattice E8 performance without shaping at the encoder.

lattice points are those belonging to a specific shaping domain, say a sphere, resulting
in an average power that is lower than the no-shaping case. This gain in average power
increases when the boundaries of the integer components bi increase, since the lattice
points inside the parallelogram may have average energy that is much higher than those
inside the sphere. This is consistent with the simulations of Figure 2.2 where the gap
between E8 and the uncoded QAM increases with η.
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Figure 2.3 – Sent lattice points with and without shaping.

Hence, the key idea in the shaping operation is to choose a shaping region B, and
send any lattice point belonging to that one and only region. The straightforward
linear encoding of an integer information vector b by the lattice point x = Gb might
not fall within B associated to the lattice code ΛB. Consequently, the shaping opera-
tion consists in finding another vector of integers, denoted by bs, such that its linear
encoding xs = Gbs is guaranteed to fall inside the shaping region. The new transmis-
sion scheme on the AWGN channel is depicted in Figure 2.4. At the receiver side, the
received vector y is decoded using the MMSE lattice decoding proposed by Erez and
Zamir in [30], where it was proven that the addition of an MMSE factor is one of the
requirements for achieving the full Gaussian channel capacity with lattice decoding.
The MMSE coefficient is equal to:

MMSE = SNR
1 + SNR . (2.2)

We now describe the shaping methods presented by Sommer et al in [80]. These
methods assume that H = G−1 is a lower triangular matrix with ones on the diagonal.

2.2.1 Hypercube shaping

First, we consider the hypercube shaping based on Tomlinson-Harashima precoding
[83]. This method uses a hypercube shaping domain, and it finds the vectors bs such
that the components of the shaped codewords xs are uniformly distributed. The shap-
ing operation is:

bsi = bi − Liki i = 1, 2, · · · , n. (2.3)
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where ki is an integer chosen in a way to ensure that each element xsi of the codeword
xs lies within the interval [−Li

2 ,
Li
2 ), which is a hypercube. The value of ki is given by

[80]:

ki =
⌊

1
Li

(
bi −

i−1∑
l=1

Hi,lxsl

)⌉
.

Then the ith element of the lattice codeword xs is given by:

xsi = bsi −
i−1∑
j=1

Hi,jxsj .

At the decoder, the information integers bi are recovered from bsi by a simple modulo
operation:

bi = bsimodLi

The assumption of hypercube shaping not only forces a reduced average power, but
also has practical advantages, for example, the complexity of the shaping operation
is generally low. However, as we have stated earlier, there is no shaping gain under
hypercube shaping.

2.2.2 Nested shaping

Nested lattice Let’s consider two lattices Λ and Λs such that Vol(Λs) ≥ Vol(Λ).
Λs is called the coarse lattice and Λ is called the fine lattice. If Λ and Λs are nested
lattices, it means that Λs is a sublattice of Λ (Λs ⊂ Λ):

∀ x ∈ Λs, x ∈ Λ.
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0 

Figure 2.5 – Two nested lattices: the hexagonal lattice A2 and a scaled version of A2

of factor 3.

A simple choice for Λs is to take a scaled version of the lattice Λ of factor L. An
example of two nested lattices is shown in Figure 2.5, where the fine lattice Λ is the
hexagonal lattice A2 (blue dots) and the coarse lattice Λs is a scaled version of A2 of
factor three (black squares).

Using vector notations for (2.3), the new vector of integers bs is written as:

bs = b− Lk. (2.4)

Applying linear encoding to Equation (2.4) yields to:

xs = x− LGk. (2.5)

The nested shaping mechanism is explained as follows: The operation consists
in minimizing the amplitude of the transmitted symbol xs, which is equivalent to
minimizing the amplitude of (x − LGk). In order to do so, we must find the closest
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Figure 2.6 – Simulation results for hypercube and nested shaping applied to the Gosset
lattice E8.

coarse lattice point LGk to the fine lattice point x, which can be done by applying a
sphere decoder on x in the lattice having the generator matrix LG, which is the coarse
lattice Λs. As a result, the transmitted lattice points will be uniformly distributed
along the Voronoi region of the coarse lattice. In conclusion, the resulting scheme is
equivalent to nested lattice coding [30], [25], where the shaping domain of a lattice is
chosen to be the Voronoi region of the coarse lattice, that is a scale version of the fine
lattice.

2.2.3 Comparison

We now compare the two shaping mechanisms described above by applying each of
them to the 8-dimensional Gosset lattice E8. The simulation results are shown in
Figure 2.6 for spectral efficiencies of η = 1, 2, 3 and 4 bits/dimension.

With nested shaping at the transmitter, the E8 lattice outperforms the QAM con-
stellation except for a low spectral efficiency η = 1 bit/dim. The shaping gain increases
with the spectral efficiency and can reach up to 1.1 dB with η = 4 bits/dim and a Word
Error Rate per 2 dimensions of 10−4. In fact, for η = 1 bit/dim, the total number of
transmitted lattice points is 28 = 256 points, which is a very small number compared
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to the 88 or 168 lattice points that can be transmitted with η = 3 and η = 4 bit-
s/dim respectively. This explains why in the former case a shaping mechanism may
not provide a good performance.

Concerning the hypercube shaping, it was implemented by taking Li = L ∀i, i.e.,
all integer components bi have the same constellation size L. Simulations show that E8

with hypercube shaping is also outperformed by the uncoded QAM for η = 1 bit/dim.
Note that the uncoded QAM constellation is the infinite integer lattice with hypercube
shaping. For higher values of η, E8 with hypercube shaping is almost as good as the
QAM for low SNRs, but starts to have smaller error rates for high SNR.

We remind that the search for the closest lattice point was implemented by the
previously seen sphere decoder. In Section 1.5, the sphere decoder algorithm was
described for lattices having an infinite number of elements. However, as explained
above, we generally deal with a lattice constellation whose integer vectors take their
components inside a given interval: bi = [0, · · · , L−1]n, for i = 1 · · · , n. Therefore, we
must consider the bounds of this interval in the algorithm. Without implementing a
specific shaping technique the minimum and maximum values (0 and L−1) of the lattice
point coordinates are known. They can be used in the sphere decoder implementation
to check for the bounds of b as proposed in [72].

When applied with a shaping operation, sphere decoding is not ML decoding since
the closest lattice point found may lie outside B. Figure 2.6 shows that this is not
an issue for high dimensions and high spectral efficiencies, but a loss in error rate is
observed otherwise. To get ML performance in the low dimension and low spectral
efficiency case, sphere decoding must be performed inside the region B. However, in
this case, the coordinates are modified in such a way that it becomes too complex to
restrict the solution of the sphere decoder to the shaping region.

In the following, we propose a modification of the lattice code decoder algorithm
to overcome this problem and thus achieve improved error rate performance even for
low spectral efficiencies and / or low lattice dimensions.

2.3 Proposed receiver algorithm

The proposed receiver is based on re-shaping and does not depend on the shaping
technique, provided it is known at the receiver side. However, since nested shaping
achieves a quasi-optimal shaping with an affordable complexity, it will be used as an
illustrative example throughout the remainder of this section.
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2.3.1 Proposed algorithm

We have seen that decoding at the receiver side consists first in finding the closest
lattice point to y, then applying a modulo−L operation to its integer coordinates to
have an estimation of the initial integer information vector b. As mentioned before,
a lattice code decoder gives better performance than a naive lattice decoder but it is
complex to implement within a sphere decoding algorithm, as the boundaries of the
code are unknown to the receiver when using a shaping operation. So we suggest to
re-shape the result of the lattice sphere decoder in order to check whether it belongs
to the lattice code or not. Moreover, replacing the sphere decoder by a list sphere
decoder (LSD) [45] with a list of size ls enables the re-shaping of a maximum of ls
points, increasing the chance to get a decoder output within the shaping region.

The proposed decoding algorithm is resumed in Algorithm 2.

Algorithm 2 Search for the closest lattice point to y inside the Voronoi region of ΛS

Input: y,G, ls, L

Output: b̂
1:
{
b̂(1)
s , · · · , b̂(ls)

s

}
= LSD(y,G, ls)

2: for i = 1 : ls do
3: b̂(i) = b̂(i)

s mod L

4: if
(
LSD(b̂(i), LG, 1) == b̂(i)

s

)
then

5: return b̂ = b̂(i)

6: end if
7: end for

The inputs of the proposed algorithm are the received observation y, the generator
matrix G of the lattice Λ, the list size parameter ls and the constellation size for each
integer L. The notation LSD(a,B, c) denotes the processing of the list sphere decoder
on the observation a, in the lattice described by the generator matrix B and which
returns the c coordinate vectors of the lattice points which are the closest to a and
sorted in the ascending order. On line 1, the list sphere decoder LSD(y,G, ls) returns
the list of coordinates of the ls closest points to y in the lattice Λ. We begin with the
first point in the list, and obtain its initial coordinate estimate through the modulo-L
operation on line 3. Then, reshaping the result consists in applying a sphere decoding
operation in the shaping lattice Λs (line 4). If the result is equal to the coordinates
output by the LSD, it means that the candidate belongs to the shaping region. In this
case, there is no need to proceed further. If the equality in line 4 is not satisfied, it
means that the decoded point lies outside B and so the next point in the list has to
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Figure 2.7 – Performance of the proposed modified decoder.

be processed. Of course, the higher the list size ls, the higher the chance to find the
closest point to the observation inside the shaping region, and thus the closer the ML
approximation.

2.3.2 Simulation results

Simulation results of the Word Error Rate (WER) per 2 dimensions (WER/2D) are
plotted in Figure 2.7 as a function of the SNR defined in Equation (2.1). Encoding
in E8 is performed with a nested shaping. For the decoding, two lattice decoding
algorithms are compared: the first one is the MMSE lattice decoding scheme and the
second is the proposed algorithm described previously. Note that the MMSE lattice
decoding proposed in [30] is a combination of MMSE estimation, dithering and nested
lattice codes. The dithering was not taken into account in the simulations of Figure
2.7, as it was judged unnecessary in [94]. When we apply the proposed algorithm
with ls = 10, the performance is improved: we now obtain a coding gain for all the
simulated spectral efficiencies. For 1 bit/dim, our proposed algorithm can achieve a
gain of almost 1 dB at a WER/2D = 10−3 over the MMSE lattice decoder. This gain
decreases for higher values of η, since in that case, the shaping region B is larger, and



44 CHAPTER 2. LATTICE SHAPING

4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR[dB]

W
E

R
/2

D

 

 

QAM
E

8
 + MMSE lattice decoder

E
8
 + proposed decoder

Figure 2.8 – Performance of the proposed modified decoder for η = 1 bit/dim.

the probability of having estimated lattice points outside B using a lattice decoder
instead of a lattice code decoder decreases.

Figure 2.8 shows more clearly what happens for η = 1 bit/dim. Comparing both
decoding techniques to the uncoded QAM, we notice that the latter is only outper-
formed by an E8 lattice decoded with the proposed lattice code decoder. Moreover,
the lattice performance is improved by almost 1.6 dB over the MMSE lattice decoding
for WER/2D=10−4.

2.3.3 Influence of the list size

The complexity and the performance of the proposed decoder depend on the list size
ls. The influence of the list size is depicted in Figure 2.9, where list sizes of 1, 3, 5, 10
and 15 are applied to an E8 lattice with η = 1 bit/dim. Note that parameter ls has
a major influence for low spectral efficiencies. Note also that ls = 1 corresponds to
the naive lattice decoder. It is clear from the simulation results that the higher the
list size, the better the error rate. However, as from a certain size (here equal to 10),
the performances stop improving, showing that opting for a longer size is unnecessary.
Note also that the increase in complexity induced by implementing a LSD instead of a
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Figure 2.9 – Impact of the list size ls on the decoder’s performance.

single output sphere decoder is not a major issue since in all our simulations, the search
radius is such that a much higher number of lattice points than ls were collected.

2.3.4 Shaping on the Rayleigh fading channel

We now assume that the lattice code is used over a fast Rayleigh fading channel, with
perfect channel state information at the receiver. The received vector is then:

y = Hx + w.

where H = diag(hi) for i = 1, · · · , n is the matrix of random independent fading
components hi.

As already pointed out in Section 1.5.2, when dealing with lattice codes over fading
channels, the decoding process can simply be carried out over the new lattice Λc having
the generator matrix:

Gc = H.G = diag(h1, · · · , hn)×G.

Still taking lattice E8 as an example, the simulation results are shown in Figure 2.10,
where the WER per 2 dimensions is plotted as a function of the channel SNR. We notice
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a difference in each curve’s behaviour between a low (η = 1) and a high (η = 4) spectral
efficiency. For η = 4 bits/dim, lattice codes with nested shaping at the encoder begin
to outperform the lattice with no shaping, which does not happen for lower spectral
efficiencies. This can be due to the fact that for low spectral efficiencies, a fewer number
of E8 lattice points is considered for transmission, i.e., the points are more bounded,
in a way that nested shaping does not have a lot to add to the system’s performances.
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(c) η = 3 bit/dim
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Figure 2.10 – Performance of the proposed lattice code decoder on the Rayleigh fading
channel.

2.3.5 Comparison with short packets LTE

The use of short packets is seen as a key enabler to fulfill the needs of future wire-
less and mobile communication demands [2], namely low-latency and high reliability
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transmissions. In fact, emergent Machine-Type Communications (MTC) are featuring
an ever-increasing number of devices, whereas the data from each device may be very
small.

The use of short packets has a direct impact on the physical layer, especially on
the forward-error correction code (FEC) performance. Modern FEC schemes such as
Turbo codes or low-density parity check (LDPC) codes can achieve high coding gains
close to the theoretical limits provided that the code length is long enough. Using
long FECs with short packet transmissions requires spreading the FEC codeword on
a relatively high number of packets. Such an approach preserves the coding gain but
dramatically affects in turn the latency.

The alternative is to match the code length to the packet size and the modulation
order. It is then desirable to implement the best possible FEC scheme for a given small
code length. If the design of capacity-approaching (or even achieving) FEC codes is
now well understood in the asymptotic (long blocklength) regime, as demonstrated by
the discovery of Polar codes [8], recent theoretical work by Polyanskiy [70] has shown
that there is a severe back-off from capacity at short blocklengths.

In this section, we compare the performance on the AWGN channel, in terms of
Frame Error Rate (FER), of two systems using E8 and BW16 lattice codes respectively,
to the LTE baseline using the LTE turbo code [3]: The generator of the Turbo encoder
whose generator is given by G = [1,g0/g1], where g0 = [1011] and g1 = [1101].
Knowing that the mother code rate of the LTE encoder is 1/3, a puncturing pattern
will be employed as proposed in [60]. The parameters used for the LTE baseline have
been chosen to achieve comparable spectral efficiencies in bits per real dimension, and
are described in Table 2.1.

Using E8, the n = 8 real coordinates are equivalent to n/2 = 4 complex symbols.
Thus, the frame length will hereafter be measured as the number of complex symbols
to be sent, and will be denoted F using an ad hoc subscript. The obtained frame length
using lattice E8 is then FE8 = n/2 = 4 complex symbols. Similarly, FBW16 = n/2 = 8
complex symbols. Concerning the LTE baseline, the frame length depends on the
interleaver length, the code rate and the constellation size. For example, for the first
row in Table 2.1, we have K = 48 uncoded bits, thus K

R
= 48 × 2 = 96 coded bits,

which corresponds to FLTE = 96
M

= 24 complex symbols. The value of K is fixed in a
way to have comparable frame lengths with E8 and BW16. Note that K = 40 is the
smallest frame length in LTE.

Simulation results of the Frame Error Rate (FER) are plotted in Figure 2.11 as a
function of the SNR expressed in dB. The performance curves show how the lattice
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Table 2.1 – Code and modulation parameters used for lattice coding and the LTE
baseline

BW16

L FBW16 η

2 8 1
3 8 1.585
4 8 2
5 8 2.32

E8

L FE8 η

2 4 1
3 4 1.585
4 4 2
5 4 2.32

LTE baseline
K R M -QAM FLTE η

48 1/2 16−QAM 24 1
48 1/2 64−QAM 16 1.5
64 2/3 64−QAM 16 2
40 4/5 64−QAM 8.3 2.4

coding scheme turns into an interesting approach while increasing the spectral effi-
ciency. The simulations were run for schemes having comparable spectral efficiencies
and the same amount of transmitted data bits. Observing the performance at a FER
of 10−4, we notice that a lattice coding scheme using BW16 provides a gain of 2 dB
over the LTE baseline having the smallest frame length K = 40 uncoded bits. The
gain is a result of the joint near-optimal decoding of the lattice, which is made possi-
ble through the sphere decoder thanks to the linearity of the lattice. Moreover, it is
clear that increasing the lattice dimension also has a significant impact on the system’s
performance. Therefore, dealing with higher-dimensional lattices, of dimensions even
higher than 16, is a point worth considering.

2.4 Conclusion

This chapter focuses on the lattice shaping operation over both AWGN and Rayleigh
fading channels. We have seen that shaping is mandatory when using lattices for
transmission over the AWGN channel in order to minimize the average transmission
power. More importantly, the chapter proposes a lattice code decoder algorithm based
on re-shaping, that outputs a lattice point inside the shaping boundaries, thus resolving
the naive lattice decoding issue where the decoded lattice points may fall outside the
shaping domain.

When dealing with a Rayleigh fading channel, the lattice points are modified in
such a way that the shaping gain exists for higher values of the spectral efficiency.
Indeed, simulations applied to the Gosset lattice E8 have shown that nested shaping
noticeably improves the system’s performance as for a spectral efficiency equal to η = 4
bits/dim.
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Figure 2.11 – Frame error rate comparison between E8, BW16 and short frame LTE
Turbo code.

To this point, lattices were obtained by straightforward encoding of an integer
vector b to a lattice point x = Gb, the lattice decoding being processed using the
popular sphere decoder algorithm. This encoding/decoding scheme, applied to lattices
of low dimensions can no longer be implemented at affordable complexity for moderate
to high-dimensional lattices. Consequently, attention will hereafter be devoted toward
methods for constructing lattices of higher dimension n, specifically constructions using
error-correcting codes.
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CHAPTER

3 Multilevel Lattice
Coding

3.1 Introduction

Results of Chapter 2 have shown us that the use of lattices for information trans-
mission must be complemented by a shaping operation in order to reduce the
average transmission power. A near-to-optimal shaping using a sphere decoder

was implemented and applied to lattices of low dimensions.

In order to improve the lattice performance, we now wish to build lattices of higher
dimensions, for which however the sphere decoding algorithm is no longer a practical
solution. In this case, instead of straightforward encoding of an integer vector to a
lattice point, we will resort to lattice encoding using Coded Modulation. In fact, as
mentioned in Section 1.4, lattices can be constructed using one or more q-ary error-
correcting codes, with q prime, which allows them to inherit the underlying codes’
properties. When restricting the construction to one code, i.e. using Construction A,
q needs to be large enough in order to have a good lattice [29], which in turn increases
the decoding complexity. Therefore, instead of working with one code over Fq, we can
use multilevel structures that provide the ability to construct the desired lattices with
the ease of working with F2.

Multilevel Coding (MLC) was first introduced by Imai and Harawaki in [49] as an
interesting approach for coded modulation. MLC is a method for constructing long,
powerful lattice codes using nested component codes defined over a smaller alphabet.
This approach of combining coding and modulation through MLC was proven to pro-
vide a power and bandwidth-efficient scheme, which was investigated in an important
body of literature [36, 37, 23, 47, 48, 90, 89, 50, 92].
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The MLC scheme is based on a combination of several error-correcting codes, with
one independent code associated to subsets of a signal constellation at each level.
Each level represents a sub-channel induced by a subset partition, and the component
codes operate at different rates that can be assigned according to various design rules.
This approach is flexible in the choice of codes, given that it allows the use of block,
convolutional or concatenated codes.

In retrospect, Constructions B through D’ used for building dense lattices (see
section 1.4) can be viewed as a multilevel coding approach. For instance, Barnes-Wall
lattices are the result of an MLC construction where component codes are Reed-Muller
codes and the Leech lattice results from choosing the component codes to be Golay
codes. This idea was enlightened by Forney et al. in [42], where the authors provided
guidelines for multilevel codes design that were found to be useful in practice. Their
multilevel construction, which is equivalent to lattice Construction D, was based on
binary lattice partition chains and a good choice of binary codes, and was shown to
provide an interesting scheme to approach the Poltyrev capacity.

For the receiver side, Imai and Hirakawa also introduced the multistage decoder
(MSD). The MSD procedure consists in decoding each component code individually
starting from the lowest level (which corresponds to the most powerful code), and
proceeding by taking into consideration decisions made in prior stages. While it may
seem suboptimal (since decoding errors are passed to higher levels), this process induces
a considerable reduction in complexity compared to the maximum-likelihood decoder.
Moreover, it was shown that the resulting lattice can still be capacity-achieving using
MSD, if and only if the individual component codes are properly chosen [48].

In this chapter, our interest shall be focused on the multilevel lattice coding scheme
over the AWGN channel. We first introduce basic multilevel lattice coding concepts
related to lattice partitions and construction D in Section 3.2. Then, we explain the
appropriate component codes choice using capacity rule in Section 3.3. In Section 3.4,
the famous Reed-Muller codes are implemented in our different multilevel designs. For
these designs, we choose to employ one, two and four dimensional standard binary
partition chains, for which we give the capacity curves, system models and simulation
results. In Section 3.5, we propose a method for LLR approximation in an MLC scheme
based on the von Mises distribution. The chapter is concluded in Section 3.6.
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3.2 Lattice partitions and construction D

Multilevel coding is based on partitioning a signal constellation into subsets. Assume a
signal set S0, the partitioning operation consists in dividing S0 intoM non-overlapping
subsets such that the union of these subsets forms S0. We will only consider the case
where all the subsets have equal number of elements. If S1 is a subset of S0 then the
resulting partition is denoted by S0/S1, and the cardinal of S0/S1, denoted by |S0/S1|,
is called the partition order and is equal to M .

Analogously, if Λ′ is a sublattice of the n-dimensional lattice Λ, then the quotient
group Λ/Λ′ is called a lattice partition, and Λ is the disjoint union of M cosets of Λ′:

Λ = ∪a∈A(Λ′ + a) (3.1)

where A is the set of all the coset representatives for the cosets of Λ′ in Λ.

A lattice partition chain Λ1/, · · · /Λr is obtained by a repeated partitioning of sub-
sets, i.e., using a chain of nested lattices Λr ⊆ Λr−1 ⊆ · · · ⊆ Λ1 with quotient groups
Λ1/Λ2, · · · ,Λr−1/Λr. We will restrict our attention to lattice partition chains in which
all subset partitions at any given level have the same order, i.e., |Λi/Λi+1| = M ∀i.

If |Λi/Λi+1| = M = 2m, then m bits can be used to represent the different cosets of
Λi+1 in Λi. Thus, each of the M coset representatives is a vector, in the set A, labeled
with m bits.

For example, the set of integers Z is a one-dimensional lattice that can be divided
into even and odd integers, which correspond to the subsets 2Z and 2Z+1 respectively.
Therefore, Z/2Z is a partition of order 2 and it is called a binary partition. 2Z can in
turn be divided into two subsets 4Z and 4Z + 2, and so on until the partition chain
Z/2Z/ · · · /2rZ is obtained. The coset representatives for each partition level 2i−1Z/2iZ
belong to the set A = {0, 2i−1}.

In the MLC scheme, each partitioning level Λi/Λi+1 is associated to a code Ci(N, ki),
which selects a sequence of coset representatives for the cosets of Λi+1 in Λi. For ex-
ample, with the one-dimensional integer partition Z/2Z, the code C1 takes its elements
in the set {0, 1}, and C1 is thus a binary code. In the remainder of the chapter, we will
restrict ourselves to binary partitions, and therefore to binary component codes.

When dealing with nested binary linear codes C1 ⊆ C2 ⊆ · · · ⊆ Cr−1, the multilevel
construction is tantamount to the previously seen "construction D" (see Section 1.4).
The result is a lattice L consisting of all the vectors of the form:

a1C1 + · · ·+ ar−1Cr−1 + z (3.2)
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where ai, for i = 1, · · · , r − 1, is a coset representative for the partition Λi/Λi+1, and
z ∈ (Λr)N .

The lattice L admits a volume:

V(L) = V(Λr)N

2
r−1∑
i=1

ki

= 2
−N

r−1∑
i=1

Ri

V(Λr)N = 2−NRCV(Λr)N . (3.3)

where RC denotes the sum rate of component codes.

The question we shall now address is how to choose the right binary codes.

3.3 Appropriate code choice: Capacity Rule

The crucial point for the design of a multilevel coding scheme is the assignment of code
rates for each coding level. The capacity rule, proposed in [47], [89] and [40], states
that the capacity C of a digital modulation scheme can be achieved if the rate Ri, at
the individual coding level i, is chosen to approach the capacity Ci of the equivalent
channel.

Consequently, computing the capacity of each level is an essential requirement
for the considered multilevel approach. The idea is, given a lattice partition chain
Λ1/ · · · /Λr, to obtain the capacity curve of each partition level Λi/Λi+1, and thus fix
a maximum value for the component codes’ rates that are allowed to be used. We
hereafter explain how to compute the capacity of the channel associated to any lattice
partition Λ/Λ′.

Equation 3.1 shows that any vector x ∈ Λ can be written as:

x = x′ + a

where x′ ∈ Λ′ and a ∈ A. Hence, we can write [42]:

a = x modΛ′.

For example, if Λ/Λ′ = Z/2Z, we have a = x mod2Z, which in this case is equivalent
to:

a = x mod2 =

0 if x is even
1 if x is odd

.

Given a lattice partition Λ/Λ′, the Λ/Λ′ channel is defined as a mod-Λ′ channel,
i.e., a channel with a mod-Λ′ operation at the receiver front end, and whose input
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is restricted to discrete lattice points drawn from the set (Λ + a) ∩ R(Λ′) for some
translate vector a, i.e., the set containing elements of a translate Λ + a of Λ that fall
in a fundamental region R(Λ′) of Λ′. The capacity of the Λ/Λ′ channel for a noise
variance σ2 per dimension is [42]:

C(Λ/Λ′, σ2) = C(Λ′, σ2)− C(Λ, σ2). (3.4)

C(Λ, σ2) is defined as the capacity of a mod-Λ channel, whose input is any point drawn
from a fundamental region R(Λ) of Λ, and that has a mod-Λ operation at the receiver
front end. Hence, if y = x + w is a vector at the input of the mod-Λ channel, with x the
transmitted vector and w a white Gaussian noise vector of variance σ2 per dimension,
then y is first subject to a mod-Λ operation, which results in:

y′ = y modΛ = (x + w) modΛ = x modΛ + w modΛ.

We set w′ = w modΛ. w′ is referred to as the Λ-aliased white Gaussian noise vector,
i.e., the white Gaussian noise after the mod-Λ operation.

For an n-dimensional lattice Λ, the capacity C(Λ, σ2) is defined as [42]:

C(Λ, σ2) = logV(Λ)− h(Λ, σ2). (3.5)

where h(Λ, σ2) is the differential entropy of the Λ-aliased noise over the fundamental
region R(Λ) of Λ.

Let fσ2 be the probability density function (PDF) of the Gaussian noise w ∈ Rn of
mean zero and variance σ2:

fσ2(w) = (2πσ2)−n/2e−||w||2/2σ2
.

The Λ-aliased Gaussian function, i.e., the function that maps w to w′, with w′ drawn
from a fundamental region of Λ is:

fΛ,σ2(w′) =
∑
k∈Λ

fσ2(w′ + k) = (2πσ2)−n/2
∑
k∈Λ

e−||w′+k||2/2σ2 w′ ∈ R(Λ). (3.6)

Thus, we say that the noise element w is "wrapped" into w′ and fΛ,σ2(w′) is equivalent
to the Wrapped normal distribution (WN ) [64].

Going back to our example, we have Λ = Z and R(Z) = [−1/2, 1/2]. The Z-aliased
probability density function, shown in Figure 3.1, is:

fZ,σ2(w′) =
k=+∞∑
k=−∞

fσ2(w′ + k) k ∈ Z. (3.7)



56 CHAPTER 3. MULTILEVEL LATTICE CODING

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

w’

f Z
,σ

2

Figure 3.1 – Z-aliased Gaussian density function fZ,σ2(w′).

Clearly, fΛ,σ2(w′) is Λ-periodic, in other words:

fΛ,σ2(w′) = fΛ,σ2(w′ + λ)

for any λ ∈ Λ.

The differential entropy of the Λ-aliased noise is written as:

h(Λ, σ2) = −
∫
R(Λ)

fΛ,σ2(w′)logfΛ,σ2(w′)d(w′).

And the capacity of the Λ/Λ′ channel in Equation 3.4 is:

C(Λ/Λ′, σ2) = h(Λ, σ2)− h(Λ′, σ2) + log
(
V (Λ′)
V (Λ)

)
.

As an extension, a lattice partition chain Λ1/Λ2/, · · · /Λr has a capacity computed
as follows:

C(Λ1/Λr, σ
2) = C(Λ1/Λ2, σ

2) + C(Λ2/Λ3, σ
2) + · · ·+ C(Λr−1/Λr, σ

2)
= C(Λr, σ

2)− C(Λ1, σ
2). (3.8)

For example, for the binary lattice partition Z/2Z is a mod-2Z (or simply mod-2)
channel with a mod-2 operation at the receiver front end. The capacity of this channel
is given by:

C(Z/2Z, σ2) = C(2Z, σ2)− C(Z, σ2) = h(Z, σ2)− h(2Z, σ2) + 1.
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3.4 Multilevel Lattice construction using Reed-
Muller codes

Reed-Muller codes are good candidates for creating lattice constellations via MLC,
given their nested nature and good performance [56, 55]. The relation between Reed-
Muller codes and lattices was already mentioned in Section 1.4.5, where nested RM
codes were employed to obtain the famous Barnes-Wall lattices. In this case, the
component codes’ rates are chosen using what is known as the balanced distance rule.
The rule states that at each level i, the minimum Euclidean distance di of the signal
points and the minimum Hamming distance δi of each code Ci are related by the
following formula:

d2 > min{d2
i δi}

where d2 is the squared minimum Euclidean distance of multilevel codewords.

Since we wish to maximize the minimum Euclidean distance, the natural solution
would be to choose the product d2

i δi to be equal for all the levels. Since di is imposed
by the choice of the lattice partition chain, it is the Hamming distance that leads to
choosing one code over another.

Even though this strategy has offered the densest known lattices for dimensions
up to 32, it may not provide the best performance for lattices of moderate to high
dimensions. In this section, we follow the multilevel lattice construction provided
by Forney et al. in [42], while employing binary Reed-Muller codes of length N as
component codes: the code rates at each level are chosen based on the capacity rule.
The multilevel design is studied over lattice partition chains of various dimensions n.
The issues addressed for each dimension are related to the choice of lattices, the number
of code levels and the appropriate code rates.

The multilevel design consists in building a lattice L, of dimension equal to nN ,
that achieves a target error probability Pe → 0 at a VNR(L, σ2) as close as possible to
1 (0 dB), where VNR(L, σ2) is the volume-to-noise ratio defined in Equation (1.34). A
lattice L satisfying this condition approaches the Poltyrev capacity [69].

Combining Equation (3.3) in Equation (1.34), the log of VNR can be written as:

log(VNR(L, σ2)) = log
(
V(L)2/nN

2πeσ2

)

= log2−2Rc
n V(Λr)2/n

2πeσ2

= −2
n
Rc + 2

n
log(V(Λr))− log(2πeσ2). (3.9)
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As seen in Section 3.2, the multilevel construction is implemented over the lattice
partition chain Λ1/Λ2/ · · · /Λr, where each partition Λi/Λi+1 is associated to a code
Ci of rate Ri = ki

N
. The total error probability for a lattice L described as in (3.2) is

upper-bounded by:
Pe(L, σ2) ≤

r∑
i=1

Pe(Ci, σ2) + Pe(Λr, σ
2). (3.10)

Which means that in order to have a very small overall decoding error probability, we
should choose Λr such that Pe(Λr, σ

2) → 0 and codes Ci with error probabilities that
also tend to zero. According to [42] the desired lattice L is obtained when the following
conditions are met:

1. The lattice Λ1 is such that VNR(Λ1, σ
2) is too small that C(Λ1, σ

2) ≈ 0. More
specifically, VNR(Λ1, σ

2) < 0 dB.

2. The lattice Λr is such that Pe(Λr, σ
2) ≈ 0.

3. The code Ci approaches the capacity of the Λi/Λi+1 channel.

We hereafter explain in details the choice of Λ1,Λr and the code rates Ri for mul-
tilevel constructions over 1, 2 and 4 dimensional binary lattice partition chains.

3.4.1 One-dimensional lattice partitions

We consider the one-dimensional lattice partition chain Z/2Z/ · · · /2rZ. As already
mentioned, each partition 2i−1Z/2iZ is a binary partition, i.e., 2i−1Z/2iZ = GF(2) for
all i, and it has coset representatives chosen from the set Ai = {0, 2i−1}.

The set of nested binary linear codes Ci(N, ki) for 1 ≤ i ≤ r − 1 are chosen such
that Ci has a rate Ri = ki

N
that is close to the capacity C(2i−1Z/2iZ). In order to

determine the sufficient number of levels, capacity curves must be available. The
curves are plotted in Figure 3.2 which shows that for any value of the noise variance
per dimension σ2, we have two effective levels, i.e., two levels whose capacity is not
too close to either 0 or 1, which leaves us with the two-level construction Z/2Z/4Z.
This is in conformity with [42], where the authors have pointed out that coding over
Z/2Z/4Z suffices for practical use.

The next step is to find the value of σ2 for which VNR(L, σ2) ≈ 0 dB. On one hand,
condition 1 states that VNR(Z, σ2) must be less than 0 dB. On the other hand, even
though the point is to have a powerful code at the first level, i.e., a code of relatively
high redundancy, we know that achieving a high redundancy comes at the expense of
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Figure 3.2 – Capacity curves for the one-dimensional lattice partition chain
Z/2Z/ · · · /2rZ.

bandwidth expansion. Consequently, the goal is to choose a compromising value of
σ2 that allows us to approach VNR(L, σ2) = 0 dB while achieving a reasonable code
redundancy.

The code redundancy ρ(C) in bits per 2 dimensions is defined as [42]:

ρ(C) = log(VNR(L, σ2))− log(VNR(Λ1, σ
2)). (3.11)

Table 3.1 displays, for different possible values of VNR(Z, σ2), the corresponding
noise variance per dimension σ2, the capacities C1 and C2 associated to the channels
Z/2Z and 2Z/4Z respectively, the code redundancy ρ(C) and VNR(L, σ2). The latter
can be deducted from equation (3.9) by taking n = 1 and log(V(4Z)) = 2.

For σ2 = 0.1041, the various factors are combined in a way that is well-suited for
constructing the lattice L. This value of σ2 makes it possible to both have a low code
redundancy ρ(C), and use a powerful code C1, with rate R1 ≤ 0.56. Using two nested
binary linear codes C1 ⊆ C2, we build the lattice L using a multilevel Construction D
as follows:

L = C1 + 2C2 + 4ZN . (3.12)
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Table 3.1 – The two-level construction constants for different value of σ2 (n=1).

VNR(Z, σ2) (dB) σ2 C1 C2 ρ(C) (b/2D) VNR(L, σ2) (dB)
0 0.0585 0.8477 0.9998 0.3 0.92
-1 0.0737 0.7516 0.9988 0.5 0.5033
-1.5 0.0827 0.6956 0.9976 0.6 0.3473
-2.5 0.1041 0.5687 0.9912 0.88 0.1504
-3 0.1168 0.5012 0.9846 1.02 0.0966

Note that N must be taken sufficiently large in order to find a good range of rates that
allow us to approach the different levels’ capacity.

The system model of the corresponding multilevel coding/multistage decoding
scheme is depicted in Figure 3.3. The transmitted lattice point x ∈ L, obtained
according to Equation (3.12), is sent over the AWGN channel. At the receiver side,
the received observation y is first subject to a mod-2 operation:

y mod2 = (x + w) mod2 = (c1 + 2c2 + z + w) mod2 = (c1 + w) mod2.

Hence, the first level serves as a decoder for only the first code C1. The soft information
is fed to the Reed-Muller soft-input decoder, which in turn outputs the codeword ĉ1.
The soft information of each of the N components of c1, solely dependent on the
received observation y, is computed as follows:

LLR = ln
(

Pr(yj|c1,j = 0)
Pr(yj|c1,j = 1)

)
= ln


∑
c∈2Z

e
−|yj−c|

2

2σ2

∑
c′∈2Z+1

e
−|yj−c′|2

2σ2

 . (3.13)

where yj and c1,j, for j = 1, · · ·N , denote the jth component of y and c1 respectively.
The soft-input decoder algorithm for Reed-Muller codes is described in Appendix B.

The decoder proceeds with the second level, whose job is to decode the second code
C2. To this aim, it begins by subtracting the obtained codeword ĉ1, resulting in the
vector :

y(1) = y− ĉ1

which depends on both the received observation and the decoded word of the previous
level. For this reason, a good choice of C1 is very important, since decoding errors in
the first level are passed to the second one.

Similarly, y(1) is this time subject to a mod-4 operation in order to keep what is
only associated to C2, and the decoder outputs the second decoded codeword ĉ2 thanks
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Figure 3.3 – MLC encoding and MSD decoding schemes for a two-level lattice con-
struction (n=1).

to the soft information:

LLR = ln
Pr(y(1)

j |c2,j = 0)
Pr(y(1)

j |c2,j = 1)

 = ln


∑
c∈4Z

e
−|y(1)

j
−c|2

2σ2

∑
c′∈4Z+2

e
−|y(1)

j
−c′|2

2σ2

 . (3.14)

The last stage of the decoding process corresponds to the uncoded part of the lattice
construction. Once the decoded codeword ĉ2 is subtracted, we search in 4ZN for the
closest point to the vector:

y(2) = y(1) − 2× ĉ2.

Now that all three parts of the equation (3.12) are available, the deduced decoded
lattice point is then:

x̂ = ĉ1 + 2ĉ2 + ẑ where ẑ ∈ 4ZN .

Figure 3.4 shows the Word Error Rate plotted as a function of the VNR for a 2-level
lattice construction using binary Reed-Muller codes of length N = 1024. The rates of
the component codes are R1 = 0.377 and R2 = 0.9453, corresponding to RM(4, 10)
and RM(7, 10) respectively. Also shown is the performance of the Barnes-Wall lattice
having the same dimension. For N = 1024, the lattice BW1024 is produced with a 5-
level construction, which obviously violates the capacity rule. Knowing that the same
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Figure 3.4 – Performance comparison of a Barnes-Wall lattice and a 2-level lattice
construction built according to capacity rule for a code length N = 1024.

multistage decoding was used for both cases, it is clear that opting for the capacity
rule in lieu of Barnes-Wall lattices leads to a considerable performance improvement.
If we set Pe = 10−5, then the gap to the Poltyrev capacity, is 3.8 dB. This gap is due
to the capacity losses of component codes.

3.4.2 Two-dimensional lattice partitions

We now consider the lattice partition chain Z2/D2/2Z2/2D2/ · · · /2rZ2/2rD2, where
D2 is the checkerboard lattice of dimension 2. In the complex domain, this lattice
partition chain is equivalent to Z[j]/(1 + j)Z[j]/ · · · /2rZ[j] (where j2 = −1). The

lattice (1 + j)Z[j] can be viewed as a rotated version of Z[j], with R =
1 1

1 −1

 the

scaled rotation operator. That’s why, it is also common to find this lattice partition
noted as Z2/RZ2/2Z2/2RZ2/ · · · .

The capacity curves in this case are depicted in Figure 3.5, which shows that for
a two-dimensional lattice partition chain, the number of effective levels increases to 4.
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As a result, the multilevel construction will be carried out over the lattice partition
chain Z2/RZ2/2Z2/2RZ2/4Z2.

In order to proceed with the lattice construction, we need to determine the coset
representatives for each partition level Λi−1/Λi. This can be done with the help of Fig-
ure 3.6, where points belonging to the nested lattices 4Z2 ⊆ 2RZ2 ⊆ 2Z2 ⊆ RZ2 ⊆ Z2

are visualized in the plane Z2. Since binary lattice partitions are being used, we know
that Λi−1/Λi = {0, ai}, in other words, the lattice Λi−1 is the union of two cosets of Λi:
Λi itself and Λi + ai where ai is a lattice point in Λi−1 but not in Λi. The relations
between the different subsets are then:

• Z2 = RZ2 ∪ (RZ2 + (1, 0)).

• RZ2 = 2Z2 ∪ (2Z2 + (1, 1)).

• 2Z2 = 2RZ2 ∪ (2RZ2 + (2, 0)).

• 2RZ2 = 4Z2 ∪ (4Z2 + (2, 2)).
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Figure 3.6 – The integer two-dimensional lattice Z2 and its sublattices.

Thus, the lattice L can be described using the following code formula:

L = a1C1 + a2C2 + a3C3 + a4C4 + (4Z2)N .

The system model illustrated in Figure 3.7 shows the multilevel construction over the
two-dimensional lattice partition chain, resulting in a lattice L of dimension 2N . The
sent lattice points x ∈ L are of the form:

x = (1, 0)c1 + (1, 1)c2 + (2, 0)c3 + (2, 2)c4 + z.

where z is a point in (4Z2)N . At the receiver, each of the four underlying codes
is decoded separately using log likelihood ratios that are calculated similarly to the
previous case of the one-dimensional partition. At level i associated to the partition
Λi−1/Λi, the soft information is:

LLR = ln
Pr(y(i−1)

j |ci,j = 0)
Pr(y(i−1)

j |ci,j = 1)

 = ln


∑

c∈Λi
e
−||y(i−1)

j
−c||2

2σ2

∑
c′∈Λi+ai

e
−||y(i−1)

j
−c′||2

2σ2

 . (3.15)

Note that for the first level i = 1, y(i−1) = y.
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Table 3.2 – The four-level construction constants for different value of σ2 (n=2).

VNR(Z2, σ2)
(dB)

σ2 C1 C2 C3 C4 ρ(C) (b/2D) VNR(L, σ2)
(dB)

0 0.0585 0.726 0.9696 0.9996 1 0.3 0.92
-1.5 0.0827 0.5 0.89 0.9955 1 0.6 0.35
-3 0.1168 0.2754 0.727 0.969 0.999 1.02 0.0966
-4 0.1471 0.158 0.583 0.924 0.997 1.3377 0.0269
-5 0.1852 0.077 0.422 0.845 0.991 1.6647 0.01

To determine the value of σ2 for which VNR(L, σ2) ≈ 0 dB, we proceed similarly to
the previous case, and calculate in Table 3.2 for different possible values of VNR(Z2, σ2),
the corresponding variance per dimension σ2, the level capacities Ci for i = 1, 2, 3, 4,
the code redundancy ρ(C) and VNR(L, σ2) calculated as in Equation 3.9) with n = 2:

log(VNR(L, σ2)) = −RC + log(V(4Z2))− log(2πeσ2).

By looking at Table 3.2, we notice that in order to be able to code over 4 levels,
VNR(Z2, σ2) must be less than -3 dB, otherwise, C(2RZ2/4Z2) ≈ 1. For this reason,
we choose to set VNR(Z2, σ2) = −4 dB, which also allows us to have a good trade-off
between the final lattice VNR(L, σ2) on one hand, and the code redundancy ρ(C) on
the other hand.

An example is illustrated in Figure 3.8, where the Word Error Rate is plotted as
a function of the VNR for a lattice L constructed using binary Reed-Muller codes of
length N = 512. The respective code rates are: R1 = 0.0898, R2 = 0.2539, R3 =
0.7461 and R4 = 0.98 corresponding to RM(2, 9),RM(3, 9),RM(5, 9) and RM(7, 9)
respectively. Note that the resulting lattice L is of dimensions n × N = 1024. The
figure also shows the performance of a lattice of equal dimension 1024, but constructed
using a 2-level Construction D over a one-dimensional binary partition chain. It is clear
that for lattices of equal dimensions, increasing the number of levels through coding
over lattice partition chains of higher dimensions, improves the system’s error rate.
This gain is about 0.3 dB for a WER equal to 10−3.

3.4.3 Four-dimensional lattice partitions

We keep increasing the lattice partition chain dimension in order to illustrate the impact
of n on the global lattice performance. In four dimensions, the chain of binary lattice
partitions is Z4/D4/RZ4/RD4/2Z4/2D4/2RZ4/ · · · , where D4 is the four-dimensional
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Figure 3.7 – MLC encoding and MSD decoding schemes for a four-level lattice con-
struction (n=2).

checkerboard lattice. RZ4 and RD4 are rotated versions of Z4 and D4 respectively, and
R is the scaled rotation operator that operates on each pair of coordinates as follows:

R =


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 .

The lattices D4 and RD4 can be deduced from Z4 via construction A, using the parity-
check code C(4, 3, 2) and the repetition code C(4, 1, 4) respectively. Hence, they can be
written as:

D4 = (4, 3, 2) + 2Z4.

RD4 = (4, 1, 4) + 2Z4.

Finding the coset representatives for the four-dimensional lattice partition chain
is not as simple as for the previous cases. We know that for each binary partition
Λi−1/Λi, the coset representatives take their values in the set A = {0, ai}. In order
to find ai, we are going to use Table 3.3 where the minimal algebraic and Euclidean
norms are indicated for each lattice. In fact, the coset representative ai must meet the
following conditions:
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Figure 3.8 – Performance comparison between two lattices of dimension 1024 resulted
from multilevel construction over one and two-dimensional lattice partition chains re-
spectively.

Table 3.3 – Minimal algebraic and Euclidean norms of the four-dimensional lattices
forming the lattice partition chain Z4/D4/RZ4/RD4/2Z4/2D4.

Lattice Λ Algebraic Norm N(Λ) Euclidean Norm d2(Λ)
Z4 1 1
D4 2 2
RZ4 4 2
RD4 8 4
2Z4 16 4
2D4 32 8

• ai ∈ Λi−1 and ai /∈ Λi.

• N(ai) = N(Λi−1).

• d2(ai) = d2(Λi−1).

Let’s start with the first partition Z4/D4. We know that all the vectors in Z4 having
an Euclidean norm equal to 1 are not in D4 because the minimal Euclidean norm in
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D4 is 2. Thus, a1 is a lattice point in Z4 having one and only one of its components
equal to 1 (or -1). For instance, we can take a1 = (1, 0, 0, 0).

In a similar way, we conclude the following coset unions:

• Z4 = D4 ∪ (D4 + (1, 0, 0, 0))

• D4 = RZ4 ∪ (RZ4 + (1, 0, 1, 0))

• RZ4 = RD4 ∪ (RD4 + (1, 1, 0, 0))

• RD4 = 2Z4 ∪ (2Z4 + (1, 1, 1, 1))

Figure 3.9 shows that the capacities C(Z4, σ2) and C(D4, σ
2), in bits/dimension,

are closer to each other compared to capacity difference between the rest of the lattices.
This suggests that two consecutive partitions such as D4/RZ4 and RZ4/RD4 will have
quasi equal capacities. This is confirmed in the capacity curves depicted in Figure
3.10, which also shows that for a multilevel lattice construction over a four-dimensional
lattice partition chain, the number of effective levels increases to 5.

Shown in Figure 3.11 is the block diagram of the multilevel encoding/multistage
decoding scheme for a five-level lattice construction over the four-dimensional lattice



3.4. MULTILEVEL LATTICE CONSTRUCTION USING REED-MULLER CODES
69

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1/σ2

C
h
a
n
n
el

ca
p
a
ci
ty

(b
it
s/
d
im

)

Z4/D
4

D
4
/RZ4

RZ4/RD
4

RD
4
/2Z4

2Z4/2D
4

2D
4
/2RZ4

2RZ4/2RD
4

Figure 3.10 – Capacity curves for the four-dimensional lattice partition chain
Z4/D4/RZ4/RD4/2Z4/2D4/2RZ4/ · · · .

partition. The lattice L consists of all the vectors of the form:

x = a1C1 + a2C2 + a3C3 + a4C4 + a5C5 + z.

where z ∈ 2D4.

By the same reasoning as that applied for n = 1 and 2, we use Table 3.4 to choose
the value of σ2 that allows us to build a lattice L having VNR(L, σ2) → 0, while
providing a modest code redundancy. We set VNR(Z4) = −1 dB, which corresponds
to σ2 = 0.0737. Simulations are applied to Reed-Muller codes of length N = 256 with
codes rates 0.36, 0.63, 0.85, 0.96 and 0.99 associated to levels 1 through 5 respectively.
The results are depicted in Figure 3.12 along with lattices obtained with one and
two-dimensional lattice partition chains. Another comparison of the three multilevel
lattice constructions investigated in this Section is shown in Figure 3.13, where L has
a dimension n×N = 4096.

The simulations shed the light on the way the partition dimension n affects the
system’s global performance. It is clear that increasing n leads to lower decoding error
probabilities. Moreover, the higher the dimension of the resulting lattice L, the higher
the impact of n. This proves that, although it is generally desirable to choose lattice
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Figure 3.11 – MLC encoding and MSD decoding schemes for a five-level lattice con-
struction (n=4).

Table 3.4 – The five-level construction constants for different value of σ2 (n=4).

VNR(Z4, σ2)
(dB)

σ2 C1 C2 C3 C4 C5 ρ(C) (b/2D) VNR(L, σ2)
(dB)

0 0.0585 0.541 0.91 0.94 0.998 0.999 0.3 0.92
-1 0.0737 0.356 0.8 0.86 0.991 0.995 0.5 0.5
-2 0.1041 0.198 0.644 0.72 0.968 0.98 0.88 0.15
-3 0.1168 0.091 0.458 0.543 0.91 0.94 1.1 0.0984
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Figure 3.12 – Simulation results for an obtained lattice L of dimension 1024.

partitions of low dimension so as to reduce the number of decoding levels, this factor
does actually matter in the described MLC scheme. For instance, for a lattice L of
dimension 4096, using two-dimensional lattice partitions achieves a gain of almost 0.6
dB for WER=10−3 over using the one-dimensional chain Z/2Z/4Z, while building L
over lattice partitions of dimension n = 4 provides a gain of 0.9 dB over n = 1 for the
same error rate.

3.5 LLR estimation using the von Mises distribu-
tion

In the last section of this chapter, we present results related to the log-likelihood ratio
estimation at each level of the multistage decoding scheme for n = 1. (The results can
be generalized to n=2 and 4). The exact LLR calculation, computed as in Equations
(3.13) and (3.14), induces infinite sums. We therefore propose an LLR approximation
based on the von Mises distribution in order to alleviate this problem. This result was
the subject of an article published in the Electronics letters journal [6].
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n=1 N=4096
n=2 N=2048
n=4 N=1024

Figure 3.13 – Simulation results for an obtained lattice L of dimension 4096.

3.5.1 The von Mises distribution

The von Mises distribution, also known as the circular normal distribution or Tikhonov
distribution, is appropriate for modelling a random variable of circular nature. It can
be considered as the circular analogue of the normal distribution.

The von Mises distribution, shown in Figure 3.14, is defined as [34] [86]:

f(θ, η, κ) = eκ cos(θ−η)

2πI0(κ) , (3.16)

where θ ∈ any interval of length 2π, η is the mean direction, κ ≥ 0 is the concentration
parameter and

In(κ) = 1
2π

∫ 2π

0
eκ cos ξ cos(nξ)dξ

is the order n modified Bessel function. The mean direction η is analogous to the mean
of the Gaussian distribution, while the concentration parameter κ is analogous to the
inverse of the variance in the Gaussian distribution (See figure 3.14).

An approximation of the von Mises and the Wrapped Normal distributions has been
proposed in [33], by setting µ = η and σ2 = −2 ln(Q(κ)), where Q(κ) = I1(κ)

I0(κ) .
Conversely, the von Mises distribution will have a mean µ and a concentration param-



3.5. LLR ESTIMATION USING THE VON MISES DISTRIBUTION 73

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

θ

f
(θ
,µ

,κ
)

κ =0 
κ =1
κ =2
κ =4

Figure 3.14 – PDF of the von Mises distribution for µ = 0 and different values of κ.

eter:
κ = Q−1(exp(−σ

2

2 )) (3.17)

It follows that the noise vector w′ of Equation (3.6), which was shown to follow a
Wrapped Normal distribution, also behaves according to a von Mises distribution with
µ = 0 and κ computed as in (3.17). Therefore, according to (3.16), each element yj of
the received vector has the conditional PDFs:

Pr(yj|xj = 1) = eκ cos(πyj−π)

2πI0(κ)

Pr(yj|xj = 0) = eκ cos(πyj)

2πI0(κ)

and the LLR estimation is:

LLR = ln
(

Pr(yj|xj = 0)
Pr(yj|xj = 1)

)
= κ(cos(πyj)− cos(πyj − π). (3.18)

To illustrate the performance of the proposed LLR approximation method, we here-
after compare it with 2 other methods: the exact LLR calculation using the Wrapped
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Figure 3.15 – LLR curves for 3 different methods of LLR estimation.

Normal distribution seen in Equation (3.6)and a method that we refer to as distance
approximation explained in what follows.

For the case of n = 1 (one-dimensional lattice partition chain), we have seen that the
received vector y was first subject to a mod-2 operation, meaning that it can be defined
over an interval of length 2, say [−1, 1]. The distance approximation method consists
in defining two threshold (-0.5 and 0.5 in this case) and computing the Euclidean
distance that separates each component yj of y from each of the thresholds. The
minimum distance is the value of the corresponding LLR. The LLR signs are fixed
according to Figure 3.15.

3.5.2 Simulation results

We apply the proposed LLR estimation to a soft-decision multistage decoder of two
levels. The underlying binary linear codes are the Reed-Muller codes RM(3, 9) and
RM(6, 9) of length 512, and rates 0.36 and 0.96 respectively. At the receiver, the
computed LLRs are fed to a soft-input decoder and the Word Error Rate is calculated.
No power constraint was considered in the simulations shown in Figure 3.16: The WER
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Figure 3.16 – Word Error Rate Vs VNR for multiple methods of LLR estimation.

is plotted as a function of the VNR. For each VNR value, a different concentration
parameter κ is calculated as in Equation (3.17) by means of a look-up table.

Figure 3.16 shows the impact of the LLR estimation method on the decoder’s per-
formance. It is clear that opting for the simple distance approximation method is not
the best option as it is likely to degrade these performances. As for the proposed
method, simulation results show that no loss in error rate can be observed compared
to the exact log-likelihood ratio computation. Although both methods may provide
close decoding performances, the von Mises distribution has the advantage to be easily
implementable since the infinite sums involved in the log-likelihood ratio expression
are replaced by a cosine function and a lookup table.

3.6 Conclusion

This chapter presents an encoding/decoding scheme suitable for building lattice codes
of moderate to high dimensions over the AWGN channel. The approach is based on
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combining coding and modulation through multilevel coding, as opposed to the simple
straightforward mapping of the integer vector to the lattice point using the lattice
generator matrix.

After recalling the main multilevel lattice construction concepts, such as lattice
partitions, construction D and channel capacities, we implemented the construction
inspired form [42] using Reed-Muller codes. We have explained how to choose the
sufficient number of levels and how to select the appropriate binary codes for standard
binary lattice partitions of dimensions n = 1, 2 and 4. Simulation results have shown
the gain in performance obtained while increasing n.

Additionally, seeing that the LLR calculation fed to the soft-input decoders in-
volved infinite sums, we proposed a new LLR calculation method based on the von
Mises distribution. Simulations showed that this method provides close decoding per-
formance compared to the exact LLR calculation, with the advantage of being easily
implementable since the infinite sums were replaced by a simple cosine function.

We shall now proceed by examining the multilevel lattice construction over the
Rayleigh block fading channel. On this type of channels, the focus is shifted towards
lattices of high diversity. For that, algebraic number theory will be of particular in-
terest, since it was shown to be a key enabler for constructing lattices over fading
channels.







CHAPTER

4 Multilevel Code Design
for Rayleigh Block
Fading Channels

4.1 Introduction

Having described the multilevel lattice construction over the AWGN channel, we
now resort to more precise and complex channel models, and thus consider the
use of lattice constellations for transmissions over communication links that

suffer from time-varying channel conditions, i.e., fading channels. This calls for a new
code design capable of improving the loss occurred by this type of channels.

On the Gaussian channel, the goodness of a lattice constellation is judged by re-
lying on the sphere packing problem [26], i.e., how to pack, as densely as possible,
a large number of identical spheres within a containing space (see Section 1.1). On
this type of channels, sphere packings with high density are known to provide the best
and most popular lattices (for example, lattices D4, E8,Λ16,Λ24). When dealing with
fading channels, the crucial point lies in providing the maximum diversity [20], where
diversity is the number of different component values of any two distinct elements in
the constellation. According to the Chernoff bound on the pairwise error probability,
the performance of lattice constellations on fading channels also depends on another
parameter: the minimum product distance. Consequently, providing both the maximal
diversity and the minimum product distance needed in the transmission system helps
mitigate the fading effect that is likely to disrupt the communication. Lattices used
over the Gaussian channel are not a good choice for fading channels, since they have a
very small diversity.

Algebraic number theory was shown to be an effective mathematical tool that makes
it possible to design good lattices for the fading channels. Extended work has been
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done on single antenna fading channels to study algebraic lattice codes defined over
algebraic number fields [11],[12],[13],[15]. In [43], Giraud and Belfiore showed that
totally real algebraic number fields are a powerful tool for constructing lattices over
the Rayleigh fading channel as they provide the maximum possible diversity. In [22],
the authors have introduced lattices that are good for both Gaussian and Rayleigh
fading channels by finding a trade-off between the sphere packing density of a lattice
and its degree of diversity. Knowing that the initial search for lattices providing full
diversity was performed with no restrictions on the shape of the lattice, resulting in a
loss in average energy, the authors in [14] have presented families of rotated Zn lattices
using the theory of ideal lattices.

The purpose of this chapter is twofold. We first present an overview on algebraic
number theory by introducing the relevant concepts and results that will be of use for
our algebraic lattice construction. The exposition will be clarified by means of simple
examples that illustrate the different notions. The second part consists in describing
the implementation of the resulted lattices in a multilevel coding scheme. On the
Rayleigh fading channel, this operation needs to be accompanied by the appropriate
procedures: the lattice rotation and base reduction.

The chapter begins by introducing the two main parameters for constructing lat-
tices on fading channels in Section 4.2. Then we provide an overview on algebraic
number theory in Section 4.3, which describes the algebraic lattice design for Rayleigh
fading channels and introduces the notion of ideals among which the special category of
principal ideals will be of interest in order to set the ground for our MLC design. The
latter is detailed in Section 4.4 and applied to two-dimensional and four-dimensional
binary lattice partition chains. The chapter is concluded in Section 4.5.

4.2 Modulation diversity and product distance

The symbol error probability is upper-bounded by:

Pe ≤
1
M

∑
i 6=j

P (xi → xj) (4.1)

where M is the total number of symbold of length N forming the constellation, and
P (xi → xj) is the pairwise error probability, i.e., the probability of detecting xj when
xi has been sent (i 6= j).
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According to the Chernoff bound, the pairwise error probability is upper-bounded by
[84]:

P (xi → xj) ≤
N∏
n=1

1
1 + SNR|xin−xjn|2

4

(4.2)

where xi,n is the nth component of the symbol xi.

We denote by fi,j the number of components for which xi is different than xj. For
high SNRs, the dominant terms in the sum of Equation (4.1) are those corresponding
to F = min(fi,j), in other words, the couples (xi,xj) having the minimum number of
distinct components. F is called the diversity order of the signal constellation, i.e.,
the minimum number of distinct components between any two different constellation
points. Among the terms having the same diversity order F , the overall error proba-
bility is dominated by those having the minimum product distance, denoted by dp,min,
where the product distance is:

d(fi,j)
p (xi,xj) =

fi,j∏
n=1
|xin − xjn|.

Hence, good signal constellations have high order diversity F and minimum product
distance dp,min.

The increase in modulation diversity can be achieved thanks to a certain rotation
of the signal constellation [16], as shown in Figure 4.1 for the 4-QAM constellation.
The figure shows that the rotation is performed in such a way that for any value of
channel fading that hits one of the symbols, the latter does not collapse with any of
the other points of the constellation, as it is the case for the unrotated QAM.

It’s easy to see that even a small rotation is sufficient to achieve maximal diversity,
however, in order to minimize the error probability, it is important to also maximize
the minimum product distance between any two points. In this example, a rotation of
13 degrees maximizes dp,min. For a 16 QAM, the angle is π

8 . The optimum rotation
angle for a four-dimensional lattice can be found in [52]. However, as we go higher
in dimensions, determining the best rotation becomes a rather complicated task. An
efficient tool to construct multidimensional constellations with maximal diversity is
algebraic number theory.

4.3 Algebraic Number Theory

Generally speaking, algebraic number theory is the study of the arithmetic of algebraic
number fields and related objects, which involves using techniques from algebra and
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Figure 4.1 – Example of increasing modulation diversity (a) F =1, (b) F=2.

finite number theory. In order to explain how a lattice can be constructed using
number theory, we need to provide some basic mathematical concepts. Therefore, we
dedicate this section to listing the essential notions and definitions, while giving simple
illustrative examples. For more details, we let the reader refer to [18] and [75].

Let Z be the ring of rational integers, and let Q be the field of rational numbers.
The scope of this section is, starting from these two sets, to become familiar with some
number-theoretical concepts, mainly:

• A number field K and its ring of integers OK .

• The integral basis of K.

• Canonical embeddings of an algebraic number field into the set of complex numbers
C.

• Constructing algebraic lattices from totally real number fields.

• Ideal lattices.

• Rotated Zn lattices.

4.3.1 Algebraic number fields

Before going into the details, let us remind the definitions of a ring and a field.

Definition 4.3.1. A ring
Let S be a set together with two operations + and ×:
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+ : S, S → S

a, b→ a+ b

× : S, S → S

a, b→ a× b

S is said to be ring if it satisfies the following conditions:

1. Additive associativity: ∀a, b, c ∈ S, (a+ b) + c = a+ (b+ c).

2. Additive commutativity: ∀a, b ∈ S, a+ b = b+ a.

3. There exists a neutral element 0, such that: ∀a ∈ S, a+ 0 = a.

4. ∀a ∈ S, there exists an inverse −a such that: −a+ a = 0.

5. Multiplicative associativity: ∀a, b, c ∈ S, (a× b)× c = a× (b× c).

6. The operation × is distributive over + :

∀a, b, c ∈ S, a× (b+ c) = (a× b) + (a× c) and (b+ c)× a = (b× a) + (c× a).

A ring may also satisfy some other optional conditions:

7. Multiplicative commutativity: ∀a, b ∈ S, a× b = b× a.

8. There exists an element 1 ∈ S such that 1.a = a, ∀a ∈ S.

9. ∀a 6= 0 ∈ S, there exists an element a(−1) ∈ S such that:

∀a 6= 0 ∈ S, a× a(−1) = a(−1) × a = 1.

Definition 4.3.2. A Field
A ring satisfying all additional conditions 7-9 is called a field, whereas a ring satisfying
conditions 8 and 9 is called a skew field (or a division ring).

One can easily verify that Z and Q are respectively a ring and a field. As a first step,
we define some basic algebraic structures until we get to grasp the notion of what is
known as a number field.

Definition 4.3.3. Field extension
Let K and K ′ be two fields. If K ′ ⊆ K, we say that K is a field extension of K ′.

Starting from Q, we can build a field extension K by taking an element not in Q, say√
2, and adding all its multiples and powers to Q. That way, we obtain a field that

contains both Q and
√

2, and we denote it by Q(
√

2). We say that K = Q(
√

2) is a
field extension of Q.
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Definition 4.3.4. Finite extension
The dimension of K as a vector space over Q is called the degree of K over Q and is
denoted by [K|Q]. If [K|Q] is finite, we say that K is a finite extension of Q.

Definition 4.3.5. Number field
A number field is a field extension of Q of finite degree.

Still with K = Q(
√

2), K has a structure of a vector space over Q. Any point x ∈ K
can be written as x = a+ b

√
2 with a, b ∈ Q. Thus, Q(

√
2) is a vector space over Q of

dimension 2, so it is a number field of degree 2.

Definition 4.3.6. Algebraic number
Let x be an element of K, x is called an algebraic number if it is a root of a monic
polynomial with coefficients in Q. The monic polynomial of lowest degree whose root
is x is called the minimum polynomial of x, and is denoted Mx.

In our example, the minimal polynomial of
√

2 over Q is M√2 = X2 − 2.
√

2 is the
solution of a polynomial with integer coefficients.

√
2 is therefore said to be an algebraic

number.

Definition 4.3.7. Algebraic extension
If all the elements of K are algebraic, we say that K is an algebraic extension of Q.

It is clear to see that any x ∈ K = Q(
√

2) is a root of the polynomial
Mx(X) = X2 − 2aX + a2 − 2b2 with (a, b) ∈ Q). Thus, Q(

√
2) is an algebraic ex-

tension of Q.

Theorem 4.3.1. If K is a vector space over Q, there is an algebraic number θ ∈ K
such that K is generated by the powers of θ, θ is called the primitive element and we
write K = Q(θ). If degree(K)= n, then (1, θ, · · · , θn−1) is a basis of K, and the degree
of the minimal polynomial of θ is n.

Definition 4.3.8. Ring of integers
We define the ring of integers of a number field K, denoted by OK , as the set of all
algebraic integers of K, where an algebraic integer is a root of a monic polynomial with
coefficients in Z.

In this example, it is clear that the algebraic integers are the set OK = Z[
√

2] =
{a + b

√
2, a, b ∈ Z}. Note that OK is a ring since it is closed under all operations

except for the inversion. For example, (2 + 2
√

2)−1 =
√

2−1
2 does not belong to Z[

√
2].
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4.3.2 Integral basis and Canonical Embedding

We will now take a look at the structure of the ring of integers OK and define its
integral basis. We will also become familiar with the embedding of a number field K
into C, the field of complex numbers, which will allow us to define two invariants of
K: the discriminant and the signature.

For the number field K = Q(
√

2), we have seen that the corresponding ring of
integers is OK = Z[

√
2] = {a+ b

√
2, a, b ∈ Z}, which means that OK has a basis given

by {1,
√

2} over Z. OK is referred to as a Z-module. As a generalization, if K is a
number field of degree n, the ring of integers OK constitutes a Z-module of rank n,
i.e., it has a basis of n vectors over Z.

Let {ω1, ω2, · · · , ωn} be a basis of K. If {ωi} is also a generator of the Z-module
OK , then it is called an integral basis of K. In that case, any element x in OK can be
written as x = ∑n

i=1 aiωi, with ai ∈ Z.

We will now see how K can be represented, or embedded into C.

Definition 4.3.9. Embedding
Let K and K ′ be two algebraic extensions of Q. We introduce the map φ : K → K ′ as a
Q-homomorphism if for each a ∈ Q we have φ(a) = a. IfK ′ = C, the Q-homomorphism
φ : K → C is called an embedding of K into C. The embedding is an injective map
which, for each a, b ∈ K, satisfies:

• φ(a+ b) = φ(a) + φ(b)

• φ(a.b) = φ(a).φ(b)

• φ(1) = 1

Theorem 4.3.2. Let K = Q(θ) be a number field of degree n over Q. There are
exactly n distinct embeddings σi : K → C (i = 1, · · · , n). Each embedding is defined
by σi(θ) = θi, where θi are the distinct zeros in C of the minimum polynomial of the
primitive θ over Q.

Note that σ1(θ) = θ1 = θ, which means that σ1 is the identity map: σ1(K) = K.
By taking any element x ∈ K, we have x = ∑n

j=1 ajθ
j with aj ∈ Q, and applying the

embedding σi we get:

σi(x) = σi(
n∑
j=1

ajθ
j) =

n∑
j=1

σi(aj)σi(θj) =
n∑
j=1

ajθ
j
i

which shows that the image of any element x by σi is given entirely by θi.
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By means of these embeddings, we define two quantities that will be relevant in the
following algebraic lattice construction: the norm and the trace.

Definition 4.3.10. Norm and Trace
Let x ∈ K. The elements σi(x) for i = 1, · · · , n are called the conjugates of x, and

N(x) =
n∏
i=1

σi(x) , Tr(x) =
n∑
i=1

σi(x)

are respectively the norm and trace of x.

Theorem 4.3.3. For any x ∈ K, we have N(x) and Tr(x) ∈ Q. If x ∈ OK, then
N(x) and Tr(x) ∈ Z.

Going back to our example withK = Q(
√

2), we have seen that the minimal polynomial
is X2 − 2, which roots are θ1 =

√
2 and θ2 = −

√
2. Thus, we have σ1(θ) =

√
2 and

σ2(θ) = −
√

2. For x ∈ K, x = a+ b
√

2, we have:

σ1(x) = a+ bσ1(
√

2) = a+ b
√

2 σ2(x) = a+ bσ2(
√

2) = a− b
√

2.

The norm and trace of x are respectively N(x) = σ1(x)σ2(x) = a2 − 2b2 and
Tr(x) = σ1(x) + σ2(x) = 2a.

Definition 4.3.11. Discriminant
Still with K = Q(θ) of degree n, let {ω1, · · · , ωn} be the basis of K. We define the
discriminant of this basis to be:

dK = det2[σj(ωi)ni,j=1]

Theorem 4.3.4. The discriminant of any basis for K = Q(θ) is non-zero. If all the
conjugates of θ are real, then the discriminant of any basis is positive.

Example: Let us compute the discriminant of Q(
√

2):

dK = det2

σ1(1) σ1(
√

2)
σ2(1) σ2(

√
2)

 = det2

1
√

2
1 −

√
2

 = 8.

Let’s now take another example of an algebraic number field and apply the different
notions seen so far.

We have K = Q(
√

5). An integral basis for K is not {1,
√

5} as one may conclude
from the previous example. In order to determine the integral basis of OK , we refer to
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[51], where it was stated that, in general, for K = Q(
√
d), with d a squarefree integer,

we have:

OK =


Z[
√
d] if d ≡ 2, 3 mod 4

Z[1 +
√
d

2 ] if d ≡ 1 mod 4

It follows that, any point in x ∈ OK can be written as:

x =


a+ b

√
d for a, b ∈ Z, b 6= 0 if d ≡ 2, 3 mod 4

a+ b(1 +
√
d

2 ) for a, b ∈ Z, b 6= 0 if d ≡ 1 mod 4

Thus, a basis for OK is {1, 1+
√

5
2 }. The minimal polynomial of 1+

√
5

2 isX2−X−1, whose
roots are θ1 = 1+

√
5

2 and θ2 = 1−
√

5
2 . Thus, we have σ1(θ) = 1+

√
5

2 and σ2(θ) = 1−
√

5
2 ,

and the discriminant of K is:

dK = det2

σ1(1) σ1(1+
√

5
2 )

σ2(1) σ2(1+
√

5
2 )

 = det2

1 1+
√

5
2

1 1−
√

5
2

 = 5

Definition 4.3.12. Signature
Let σ1, · · · , σn be the n embeddings of K into C. We suppose that r1 is the number of
embeddings with image in R, and 2r2 the number of embeddings with signature in C.
We then have:

n = r1 + 2r2.

The pair (r1, r2) is called the signature of K. If r2 = 0 we have a totally real algebraic
number field. If r1 = 0 we have a totally complex algebraic number field. In all other
cases, we speak about complex algebraic number fields. Note that K = Q(

√
2) is a

totally real number field with n = r1 = 2.

Let’s now consider the algebraic number field K = Q(
√
−3).

√
−3 has a minimal

polynomial equal to X2 + 3, which has two complex roots. The signature of K is
therefore (0,1). K = Q(

√
−3) is an example of a totally complex algebraic number

field.

Definition 4.3.13. Canonical Embedding
Definition: Let us arrange the embeddings σi in a way that σi(x) ∈ R for 1 ≤ i ≤ r1,
and σj+r2(x) is the complex conjugate of σj(x) for r1 + 1 ≤ j ≤ r1 + r2. We call
canonical embedding σ : K → Rr1 × Cr2 the homomorphism defined by

σ(x) = (σ1(x), · · · , σr1(x), σr1+1(x), · · · , σr1+r2(x)) ∈ Rr1 × Cr2 .

If we identify Rr1 × Cr2 with Rn, the canonical embedding can be rewritten as
σ : K → Rn

σ(x) = (σ1(x), · · · , σr1(x),Reσr1+1(x), Imσr1+1(x), · · · ,Reσr1+r2(x), Imσr1+r2(x)).

where Re and Im indicate the real and imaginary part, respectively.
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The canonical embedding is the means by which we will obtain the desired algebraic
lattices. Looking closely at canonical embeddings, we see that they consist in mapping
an element in an algebraic number field K of degree n to a vector in the n-dimensional
Euclidean space. We now finally get to the final step of the algebraic construction of
lattice with the following theorem:

Theorem 4.3.5. Let K be an algebraic number field of degree n, with basis
{1, ω1, · · · , ωn} and discriminant dK. The n vectors σ(ωi), i = 1, · · ·n are linearly
independent, and thus they define a full rank lattice Λ whose generator matrix is given
by:

G =



σ1(ω1) σ1(ω2) · · · σ1(ωn)
... ... ...

σr1(ω1) σr1(ω2) · · · σr1(ωn)
Reσr1+1(ω1) Reσr1+1(ω2) · · · Reσr1+1(ωn)
Imσr1+1(ω1) Imσr1+1(ω2) · · · Imσr1+1(ωn)

... ... ...
Reσr1+r2(ω1) Reσr1+r2(ω2) · · · Reσr1+r2(ωn)
Imσr1+r2(ω1) Imσr1+r2(ω2) · · · Imσr1+r2(ωn)



.

The columns of G form the basis of Λ, whose volume is given by:

V(Λ) = | det(G)| = 2−r2
√
|dK |.

Consequently,
det(Λ) = 2−2r2|dK |.

4.3.3 Totally real algebraic number fields

Let’s first take a look at the relation between a lattice point x ∈ Λ and an element
x =

n∑
i=1

biωi, with bi ∈ Z, in the ring of integers OK . Any non-zero lattice point
x = (x1, x2, · · · , xr1 , xr1+1, · · · , xr1+r2)T can be written as:

x =
n∑
i=1

vibi
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with vi = σ(ωi) the basis vectors of Λ.
Each component of x can be written as: xj =

n∑
i=1

biσj(ωi) thus:

x = (
n∑
i=1

biσ1(ωi), · · · ,
n∑
i=1

biReσr1+1(ωi),
n∑
i=1

biImσr1+1(ωi), · · · ,
n∑
i=1

biImσr1+r2(ωi)

= (σ1(
n∑
i=1

biωi), · · · , σr1(
n∑
i=1

biωi),Reσr1+1(
n∑
i=1

biωi), Imσr1+1(
n∑
i=1

biωi), · · · , Imσr1+r2(
n∑
i=1

biωi))

= (σ1(x), · · · ,Reσr1+1(x), Imσr1+1(x), · · · , Imσr1+r2(x))
= σ(x).

This correspondence between a lattice point x and an algebraic integer x in OK
will help us compute the diversity of algebraic lattices. If we take a look at the above
equation, we see that the first r1 components of x are nonzero, since x 6= 0, which
means that bi 6= 0(∀i = 1, · · · , n), and thus

n∑
i=1

biωi 6= 0. The minimum number of
nonzero elements in the remaining 2r2 components is r2 since the real and imaginary
part of any component cannot be null together. This implies that the diversity of
the algebraic lattice is F ≥ r1 + r2. Now if we take the special case of the element
x = 1 ∈ OK , we find exactly r1 + r2 nonzero components (σj(1) = 1 for any j). Hence,
we can confirm the following theorem:

Theorem 4.3.6. An algebraic lattice exhibits a diversity [22]

F = r1 + r2.

In the case of a totally real algebraic number field (r2 = 0), the maximum degree
diversity is attained F = r1 = n and the lattice generator matrix becomes:

G =


σ1(ω1) σ1(ω2) · · · σ1(ωn)
σ2(ω1) σ2(ω2) · · · σ2(ωn)

...
σn(ω1) σn(ω2) · · · σn(ωn)

 .

Since our main concern is to achieve the maximal diversity, lattices constructed from
totally real algebraic number fields will be of prime interest for us in the remainder of
the chapter. In this case, the product distance of an arbitrary lattice point x from 0
is:

d(n)
p (0,x) =

∏
xj 6=1
|xj| =

∏
xj 6=0
|σj(x)| = |N(x)|.

Since x =
n∑
i=1

biωi is a non-zero element of OK , N(x) 6= 0 and thus d(n)
p (0,x) ≥ 0.

The minimal product distance of the algebraic lattice is dp,min = 1, resulted from the
elements of OK whose norm is equal to 1, called the units of OK .
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An example of totally real algebraic number fields are Q(
√

2) and Q(
√

5) seen previ-
ously. Let us now show the algebraic lattice construction of a totally complex number
field, and for that we will reconsider the example of K = Q(i

√
3). We have the integral

basis (1, 1 + i
√

3
2 ), and the two embeddings are:

σ1(i
√

3) = i
√

3 and σ2(i
√

3) = −i
√

3.

The lattice generator matrix is then:

G =
Reσ1(1) Reσ1(1 + i

√
3

2 )
Imσ2(1) Imσ2(1 + i

√
3

2 )

 =
1 1

2
0

√
3

2

 .
The fundamental volume is | det(G)| =

√
3

2 , and the diversity is F = r2 = 1. Note that
this example represents the hexagonal lattice A2.

To summarize, we have seen that the key ingredient to build a lattice from an
algebraic number field K = Q(θ) is the existence of a Z-basis in OK , the lattice
construction is then carried out according to the following steps:

1. Choose a number field K = Q(θ) of degree n and find its integral basis, which
identifies its ring of integers OK .

2. Compute the n embeddings σ1, · · · , σn from the roots of the minimal polynomial
Mθ.

3. Compute the lattice generator matrix using the canonical embeddings.

In the remainder of the chapter, we will restrict ourselves to totally real algebraic
number fields in order to ensure maximum diversity.

As seen previously, a multilevel construction is based on a lattice partition chain
Λ0/Λ1/ · · · /Λr where each partition Λi/Λi+1 is induced by the sublattice Λi+1 of Λi. We
have just learned how, on a Rayleigh fading channel, we can proceed to build the first
algebraic lattice of the lattice partition chain using the ring of integers OK . In order to
go ahead in our multilevel construction, we need to take a subset of OK that is also a
free Z-module of rank n and use it to build the corresponding algebraic lattice (which
naturally will be a sublattice of the former lattice). This subset is what is known as
the ideal of OK , and the corresponding algebraic lattice is called ideal lattice.

Hence, the MLC scheme on a Rayleigh fading channel requires going a little bit
further in algebraic number theory so as to get a better understanding of ideals and
their related characteristics. This will constitute the objective of the next paragraph.
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4.3.4 Ideal lattices

In the sequel, K is a number field of rank n, and OK is its ring of integers.

Definition 4.3.14. Ideal
An ideal I of OK is a subset of OK closed under addition, such that for any x ∈ OK ,
xI ⊆ I. We say that I is stable under multiplication.

Among the ideals of a ring, some can be generated by one algebraic integer α ∈ OK ,
and we can write I = αOK . An ideal obtained this way is denoted by I = (α) and it
is called a principal ideal. This category of ideals will be of particular importance for
the remainder of the chapter.

In order to build the algebraic lattice Λ′ from I, we need to have the integral basis
of I. We have ωi for i = 1, · · · , n the integral basis of OK . If x is a non-zero element
of I, we can write xOK ⊂ I ⊂ OK , which means that I is included in a set of rank n,
and at the same time includes a set of rank n. Thus, I is a set of rank n, and therefore
endowed with a Z-basis γi for i = 1, · · · , n. We can write I = γ1Z + γ2Z + · · ·+ γnZ.

In Theorem 4.3.5, we can replace the integral basis of OK by that of I so we can
obtain the algebraic lattice Λ′ after applying the canonical embedding σ to I. Λ′ = σ(I)
is a sublattice of the algebraic lattice Λ = σ(OK), and its generator matrix is written
as:

G′ =



σ1(γ1) σ1(γ2) · · · σ1(γn)
... ... ...

σr1(γ1) σr1(γ2) · · · σr1(γn)
Reσr1+1(γ1) Reσr1+1(γ2) · · · Reσr1+1(γn)
Imσr1+1(γ1) Imσr1+1(γ2) · · · Imσr1+1(γn)

... ... ...
Reσr1+r2(γ1) Reσr1+r2(γ2) · · · Reσr1+r2(γn)
Imσr1+r2(γ1) Imσr1+r2(γ2) · · · Imσr1+r2(γn)



.

The generator matrix G′ of Λ′ can certainly be obtained from the generator matrix G
of Λ. In the case where I is a principal ideal, we have γi = {αωi} for i = 1, · · · , n.

The norm and determinant of I = αOK can be easily calculated. In this case, the
norm of I is equal to the absolute value of the algebraic norm of its generating element:
N(I) = |N(α)| and the volume is:

vol(Λ′) = | det(G′)| = N(I)vol(Λ) = 2−r2N(I)
√
|dK |.

So far, we have offered an extensive study on the construction of algebraic lattices.
However, a problem that we haven’t considered yet is the very important lattice shap-
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ing. In fact, the lattices were built without imposing any shaping conditions, which
leads to a loss in the system’s performance as seen in Chapter 2. We already know
that opting for a hypersphere shaping is not an easy task, that’s why a good and sat-
isfying trade-off would be a cubic shaping which provides a good shaping gain along
with an affordable complexity. The idea is therefore to stretch the algebraic lattice
into another, a Zn lattice for instance. This construction, explained in [21] [14], will
be described in what follows using the notion of ideal lattices.

An ideal lattice is a lattice whose generator matrix is written as: M = AG′, where
A is a diagonal matrix used to turn the lattice Λ into a rotated Zn lattice. The elements
of this matrix are functions of a totally positive algebraic number α, i.e., α ∈ K such
that α and its conjugates σi(α) are all positive. In order to obtain M, we introduce
the notion of a twisted canonical embedding σα : K → Rn as:

σα(x) = (√α1σ1(x),√α2σ2(x), · · · ,√αnσn(x)).

where αi = σi(α) for i = 1, · · · , n. The generator matrix M of the lattice ΛI = σα(I)
is written as:

M =



√
α1σ1(γ1) · · · √α1σ1(γn)
√
α2σ2(γ1) · · · √α2σ2(γ1)

... ... ...
√
αnσn(γ1) · · · √αnσn(γn)



=


√
α1 0

. . .
0 √

αn


︸ ︷︷ ︸

A

G′.

and the determinant of the lattice is:

det(ΛI) = N(α)N(I)2|dK | (4.3)

The elements of the corresponding Gram matrix Gr = MTM can be easily computed:

grij =
n∑
k=1

√
αkσk(γi)

√
αkσk(γj)

=
n∑
k=1

αkσk(γiγj)

= Tr(αγiγj).

An ideal lattice is uniquely identified by this trace form of the Gram matrix .

The objective now is to build an ideal lattice ΛI that is equivalent to a rotated Zn

lattice, for n ≥ 2. The corresponding Gram matrix is therefore the identity matrix In,
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and the generator matrix M is such that MTM = In, i.e., M is an orthogonal matrix.
We know that the determinant of Zn is 1, and thus if the Gram matrix is a scaled
version of Zn, its determinant will be equal to det(Gr) = cn, with c an integer. This
allows us to write, using Equation (4.3.4):

N(α)N(I)2|dK | = cn. (4.4)

The problem consists in doing the following: for a number field K of degree n and an
ideal I ⊆ OK , choose the value of α that satisfies condition (4.4). The next section
will explain how to do that.

4.3.5 Construction of Zn lattices

Let us take the simple case of building a 2-dimensional Z lattice, and for that we take
a totally real algebraic number field K = Q(

√
d) with d a square-free positive number.

For I = OK , Equation (4.4) becomes:

N(α)|dK | = c2.

The problem is therefore to look for a totally positive number α such that N(α) = c2

|dK |
.

This is solved using the following lemma.

Lemma 1. Let m be an algebraic norm in K. If we can find a unit u such that
N(u) = −1, then we can also find an algebraic number α such that N(α) = m and
σi(α) > 0 ∀ i.

Proof. Let β be an algebraic number of given norm m. Four different scenarios might
occur:
If σ1(β) > 0 and σ2(β) > 0, all we have to do is take α = β.
If σ1(β) > 0 and σ2(β) < 0, we take α = β.u.
If σ1(β) < 0 and σ2(β) > 0, we take α = −β.u.
And finally, If σ1(β) < 0 and σ2(β) < 0, we take α = −β.

Example 4.3.1. Let us consider the field K = Q(
√

5), whose discriminant is dK = 5.
In order to obtain Z2, we should find the element α that satisfies

N(α)dK = N(α).5 = c2 with c ∈ Z.

The natural solution is to look for α such that N(α) = 5. We know that β =
√

5 has
norm of 5, but it is not a totally algebraic number since σ2(

√
5) < 0. On the other

hand, we have u = −1+ 1+
√

5
2 with N(u) = −1. So according to Lemma 1, we can take

α =
√

5.u = 3− 1+
√

5
2 , and easily check that:
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σ1(α) = 3− 1 +
√

5
2 > 0 σ2(α) = 3− 1−

√
5

2 > 0

N(α) = σ1(α)σ2(α) = 5 det(Gr) = det(MTM) = 52.

With the overview on algebraic number theory provided in this section, the various
visited notions can now be collected to begin the description of the MLC/MSD scheme
on the Rayleigh block fading channel.

4.4 Multilevel Construction using binary Reed-
Muller codes

We assume a block fading channel, i.e., a channel whose gain remains constant over a
block of length N and changes for different block lengths based on a Rayleigh distri-
bution. We also assume perfect channel state information (CSI) at the receiver. The
received observation y is given by:

y = Hx + w. (4.5)

where H = diag(hi) for i = 1, · · · , n is the diagonal matrix of n independent positive
real-valued fading coefficients hi following a Rayleigh distribution, x ∈ L is the trans-
mitted lattice point and w is the zero-mean noise vector of variance σ2 per dimension.
The matrix form of Equation 4.5 is then:

y11 · · · y1N
...

yn1 · · · ynN

 =


h1 0

. . .
0 hn

×

x11 · · · x1N

...
xn1 · · · xnN

+


w11 · · · w1N

...
wn1 · · · wnN

 .

The lattice L is built via multilevel construction D, which, as explained in Chapter 3,
is induced by a lattice partition chain Λ1/ · · · /Λr. On the Gaussian channel, the top
lattice Λ1 for partition chains of different dimensions n was chosen to be a version of
Zn. On the Rayleigh fading channel, the multilevel construction must be carried out
on algebraic lattices that provide maximum diversity n. For this reason, the top lattice
is the algebraic lattice built from a totally real algebraic number field K = Q(θ) of
dimension n.

Once K is defined, the top lattice will be generated by the ring of integers
OK = Z[θ], the generator matrix being noted by Gn. OK is later partitioned into
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subsets, and the result is a principal ideal I1 = θOK , which is also partitioned into
subsets in order to give the ideal I2 = θI1 = θ2OK , and so on until reaching the last
lattice of the partition chain. The latter is then written as:

OK/I1/I2/ · · · /Ir.

The choice of K, and thus OK , is a key point in the multilevel construction on
fading channels. However, building the algebraic lattice generated by OK (and the
principal ideals forming the partition chain) does not suffice to build efficient trans-
mission schemes on this type of channels, since problems of shaping and finding the
orthogonal basis must also be addressed. To this end, the generator matrix Gn is
carefully adjusted until the desired lattice is obtained, where the desired lattice is a
rotated version of Zn. Adjusting Gn includes multiplying by the appropriate rotation
and base reduction matrices.

In summary, the final lattice L is obtained by the following step-by-step construc-
tion:

1. Choose the number field K = Q(θ).

2. Write the lattice generator matrix Gn.

3. Find an element α such that the matrix M = A×Gn corresponds to a lattice
admitting a cubic shaping. The matrix A is the diagonal matrix whose elements
are

√
σi(α) for i = 1, · · · , n.

4. Find the base reduction matrix Un that leads to a lattice generated by an orthog-
onal basis. The new Gram matrix must be of the form: (AGnUn)TAGnUn = cIn.

5. The final determinant is normalized to 1, and the rotated Zn generator matrix is:

On = 1√
c
AGnUn.

Finding the matrix On sets the ground for a multilevel construction com-
puted by mimicking the Gaussian case of Chapter 3. In fact, on the Rayleigh
block fading channel, the construction is carried out on the lattice partition chain
OnΛ1/OnΛ2/ · · · /OnΛr, where Λ1/ · · · /Λr is the same binary partition chain employed
for the AWGN channel. Hence, the capacity curves depicted in Section 3.4 are still
valid, and the component code rates can be taken equal to those used on the Gaussian
channel.

At the receiver side, a list sphere decoder is performed on the received vector y
inside the lattice generated by HOnZn, so as to output the list of closest lattice points,
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in terms of Euclidean distance, to the transmitted vector x. This list is then employed
in the LLR calculation as in Equation 3.15. At each level i the soft-information of each
component of the received vector yi−1 is written as:

LLR = ln
(

Pr(y(i−1)|ci = 0)
Pr(y(i−1)|ci = 1)

)
= ln


∑

c∈HOnΛi+1

e
−||y(i−1)−c||2

2σ2

∑
c′∈HOnΛi+1+ai

e
−||y(i−1)−c′||2

2σ2

 .

Outage probability For slow-varying fading channels, we define the notion of chan-
nel outage capacity where outage is the event that occurs when the channel is poor due
to deep fades. In that case, no scheme can communicate reliably above a certain rate,
leading to a loss in transmitted data. A new parameter is introduced called outage
probability and denoted by Pout, which is the probability that the system can be in
outage. Let us derive the formula giving Pout for a system of diversity F = n.

In order to define the outage probability, we can follow the sphere-bound rule em-
ployed by Forney et al. in [42] for the AWGN channel, where he states that in order
for the error probability to be small, the lattice VNR must satisfy the condition:

VNR > 1⇒ σ2 <
V (L)2/nN

2πe . (4.6)

The error probability is large otherwise.

On the Rayleigh fading channel, the total lattice volume is altered by the fading coef-
ficients {hi}ni=1, resulting in V(L)fading written as:

V(L)fading = (
n∏
i=1

hNi )× V(L).

The VNR for a noise variance per dimension σ2 becomes:

VNRfading = [V(L)fading]2/nN
2πeσ2

=
n∏
i=1

h
2/n
i × VNR.

Following the same condition in (4.6), the outage probability can be defined by:

Pout = Pr(VNRfading < 1) = Pr(
n∏
i=1

h
2/n
i <

1
VNR). (4.7)

In this section, we detail the different steps of multilevel lattice construction over
two and four-dimensional lattice partition chains. Simulation results for each case are
compared to the channel outage probability.
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4.4.1 Two-dimensional lattice partition chain

All totally real algebraic extensions provide maximum diversity, but for n = 2,
K = Q(

√
5) also has the minimal absolute discriminant [22], in other words, it gives

the rotated constellation having the minimal energy. However, K = Q(
√

5) does not
lead to binary partitions [75], thus this number field requires the use of non-binary
codes. Since we wish to restrict our construction to binary Reed-Muller codes, we
choose the number field having the second minimal absolute discriminant for n = 2,
which is K = Q(

√
2).

Once we choose the number field and its corresponding ring of integers, the next
step towards the construction of the algebraic lattice is to find the integral basis. In
Section 4.3.2, it was shown that OK = Z[

√
2] = {a + b

√
2, a, b ∈ Z} and therefore

Z[
√

2] has a basis over Z equal to B = {1,
√

2}. Applying the canonical embeddings
σ1, σ2 to B, we get the lattice generator matrix:

G2 =
1

√
2

1 −
√

2


whose discriminant is dK = det(GT

2 G2) = 8 6= c2, with c an integer. Thus, the lattice
Λg whose generator matrix is G2 does not correspond to a scaled version of Z2.

Going back to Equation (4.4), the necessary condition for obtaining a scaled version
of Z2 is to find an element α such that:

N(α).dK = N(α).23 = c2.

This leads the search for a totally real algebraic number α whose norm is equal to 2.
Following lemma 1, we have the unit u = 1 +

√
2 ∈ K with

N(u) = σ1(u)σ2(u) = (1 +
√

2)(1−
√

2) = −1.

We also know that β =
√

2 is such that N(β) = 2 and σ1(β) =
√

2 > 0, σ2(β) =
−
√

2 < 0. Thus, the value we are seeking is: α = β.u =
√

2 + 2. The new lattice is
generated by:

M = AG2 =
√σ1(α) 0

0
√
σ2(α)

1
√

2
1 −

√
2


=

√

2 +
√

2 0
0

√
2−
√

2

1
√

2
1 −

√
2

 .
And the new Gram matrix is:

Gr = MTM =
4 4

4 8
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which is still not the Gram matrix of a scaled version of Z2. In order to have the appro-
priate Gram matrix, a base reduction must be performed. This operation is computed
using a mathematics software including number theoretical features. Appendix C con-
tains the commands in "Sage" that lead to the reduction matrix U2:

U2 =
1 −1

0 1

 .
It is easy to verify that:

(AG2U2)T (AGU) =
4 0

0 4

 = Gr(2Z2).

Finally, the determinant is normalized to 1, so as to be equivalent to that of a rotated
Z2 lattice. To this aim, the new matrix is divided by a factor of 2, and the final lattice
generator matrix is:

O2 = 0.5×AG2U2.

with
OT

2 O2 = I2.

The final matrix O2 is the key ingredient for the multilevel construction on the
Rayleigh block fading channel. The lattice partition chain Z[

√
2]/I1/I2/I3/I4 is now

transformed into O2Z2/O2RZ2/O22Z2/O22RZ2/O24Z2. The coset representatives for
each partition are those of the binary lattice partition chain Z2/RZ2/2Z22/RZ2/4Z2

(see Section 3.4.2) multiplied by the matrix O2.

One can easily verify that:

(O2R)T (O2R) =
2 0

0 2

 = Gr(RZ2)

Similarly, (O22)T (O22) = Gr(2Z2), (O22R)T (O22R) = Gr(2RZ2), and so on.

Simulation results are shown in Figure 4.2, where the word error rate is plotted as
a function of the VNR for lattices using codes of lengths N = 256, 512 and 1024. The
WER are also compared to the channel outage probability defined as:

Pout = Pr(h1h2 <
1

VNR).

The component codes are binary Reed-Muller codes, where each code’s rate was
chosen according to the same capacity rule explained in Section 3.4. The lattice L
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Figure 4.2 – The multilevel design performance over the Rayleigh block fading channel
for n = 2.

is the result of a four-level construction. Simulation results show that the WER for
the different word lengths is almost the same, in other words, increasing the lattice
dimension does not degrade the error rate. For WER=10−1, the gap to the channel
outage probability is about 0.6 dB.

In Figure 4.3, we show the performance of also three different lattices in which
codes of lengths N = 256, 512 and 1024 are employed. For N = 256, the lattice is the
same as in Figure 4.2. However, for N = 512 and 1024, the component codes assigned
to each of the four levels do not have rates that respect the capacity rule. Figure 4.3
first shows that violating the capacity rule degrades the global lattice performance.
This can clearly be noticed by making a comparison with the curves corresponding to
N = 512 and 1024 in Figure 4.2. Moreover, the different word error rates are now
clearly spaced; the error rate increases with the code length N . For WER = 10−1,
2.4 dB separate a lattice L obtained with N = 256 from that obtained with codes of
length N = 1024, against 0.3 dB in Figure 4.2.
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Figure 4.3 – The multilevel design performance over the Rayleigh block fading channel
for n = 2 without respecting the capacity rule.

4.4.2 Four-dimensional lattice partition chain

For the same reason explained in the two-dimensional case, we choose to work in the
algebraic number field K = Q(θ) with θ =

√
2 +
√

2. In that case, the basis of K is
B = {1, θ, θ2, θ3}, and the minimal polynomial of θ of degree n is:

Mθ = X4 − 4X2 + 2.

The conjugates of θ, which are the roots ofMθ, are also the canonical embeddings σi(θ)
for i = 1, · · · , 4. Thus we have:

σ1(θ) =
√

2 +
√

2 = θ σ2(θ) =
√

2−
√

2 = θ′

σ3(θ) = −
√

2 +
√

2 = −θ σ4(θ) = −
√

2−
√

2 = −θ′.

The algebraic lattice is generated by:

G4 =


1 σ1(θ) σ1(θ2) σ1(θ3)
1 σ2(θ) σ2(θ2) σ2(θ3)
1 σ3(θ) σ3(θ2) σ3(θ3)
1 σ4(θ) σ4(θ2) σ4(θ3)

 .
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where σ(θi) = (σ(θ))i. G4 is then equal to:

G4 =


1 θ θ2 θ3

1 θ′ θ′2 θ′3

1 −θ (−θ)2 (−θ)3

1 −θ′ (−θ′)2 (−θ′)3

 .

The discriminant of K is dK = det(GT
4 G4) = 211 6= c4, with c an integer. The next

step is therefore to find the totally real algebraic number α such that N(α) = 2, so as
to obtain dK = 212 = 84. However, for n = 4, finding α does not come as naturally
as for only 2 dimensions. That’s where the software Sage comes in handy and gives
the exact value of α. The command lines in Appendix C explain how the software can
pick the right combination of units ∈ K, and at the end output α that can be written
in function of θ as follows:

α = 2θ3 + 4θ2 − θ − 2.

The new lattice generator matrix is:

M = AG4 =



√
σ1(α) 0 0 0
0

√
σ2(α) 0 0

0 0
√
σ3(α) 0

0 0 0
√
σ4(α)




1 θ θ2 θ3

1 θ′ θ′2 θ′3

1 −θ θ2 −θ3

1 −θ′ θ′2 −θ′3

 .

and the Gram matrix:

Gr = MTM =


24 40 80 136
40 80 136 272
80 136 272 464
136 272 464 928

 .

shows that a base reduction must be performed. According to Sage (Appendix C, in
order for the lattice to be generated by an orthogonal basis, M must be multiplied by
the matrix U4 equal to:

U4 =


−3 1 −1 −3
0 −4 −3 3
1 0 0 1
0 1 1 −1

 .
We can now verify that:

(AG4U4)T (AG4U4) = 8I4 = Gr(2
√

2Z4).

Normalizing by 1
2
√

2 :

O4 = 1
2
√

2
AG4U4.
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With the matrix O4 computed, the final lattice is indeed a rotated version of Z4.
The multilevel construction can hereafter be performed over the binary lattice parti-
tion chain O4Z4/O4D4/O4RZ4/O4RD4/O42Z4/O42D4. The coset representatives are
equal to those of Z4/D4/RZ4/RD4/2Z4/2D4 multiplied by O4.

Using the capacity curves shown in Section 3.4.3, we proceed with the 5-level mul-
tilevel construction using codes of lengths N = 256, 512 and 1024. Simulation results
are shown in Figure 4.4 where the WER is also plotted as the function of the VNR
and compared to the channel outage probability written as:

Pout = Pr((h1h2h3h4)1/2 <
1

VNR).

The same observation made earlier applies to the four-dimensional lattice, i.e., in-
creasing the codeword length barely degrades the system’s performance. In fact, for
WER=10−1, the outage probability is at 1.6 dB, 1.7 dB and 2 dB from the curves
corresponding to N = 256, 512 and 1024 respectively. On the other hand, Figure 4.5
compares lattices employing component codes of the same lengths, but where the code
rates violate the capacity rule for the cases of N = 512 and N = 1024. The gap
between the different error curves is more visible in this case, and for WER=10−1, Pout
is at 1.1 dB and 2.8 dB from N = 512 and N = 1024 respectively. The codes choice is
thus a crucial point in the resulting lattice performance.

Moreover, increasing n does have the impact of improving the final lattice L per-
formance. This is illustrated in the simulation results of Figure 4.6 where two lattices
of same dimension 2048, constructed over two and four-dimensional lattice partition
chains, are compared in terms of WER. The gain achieved with n = 4 is equal to 3 dB
for a word error rate of 3.10−2.

4.5 Conclusion

This chapter describes a multilevel lattice coding scheme on the Rayleigh block fading
channel. Coding on this type of channels calls for a new code design capable of miti-
gating the loss in performance due to the fading effect. The chapter offers an overview
on the algebraic number theoretical notions, paving the way to their implementation
in the multilevel code design.

The design was applied to the construction of algebraic lattices from 2 and 4-
dimensional algebraic number fields. For each dimension n, the algebraic lattices
underwent a rotation, base reduction and normalization operations so as to become
equivalent to a rotated Zn lattice. This allowed for a construction similar to the one
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Figure 4.4 – The multilevel design performance over the Rayleigh block fading channel
for n = 4.
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Figure 4.5 – The multilevel design performance over the Rayleigh block fading channel
for n = 4 without respecting the capacity rule.
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Figure 4.6 – Two lattices of dimension 2048 obtained with two and four-dimensional
lattice partition chains.

applied in the Gaussian case. In fact, the same capacity curves, thus the same number
of effective levels and maximum component code rates seen in Chapter 3 remain valid
for this case.

Simulation results have shown that even though the gap of the WER from the
channel outage probability was not reduced when increasing n, the performance of a
lattice L of dimension 2048 was improved by 2 dB between a two and a four-dimensional
lattice partition chain. This gain in performance however comes at the expense of
increasing the system’s complexity, as a result of an increased number of levels.







Conclusions and
perspectives

Conclusions

The tremendous growth of wireless communication systems calls for new transmis-
sion designs capable of guaranteeing reliable data transmissions over limited resources.
Lattice codes are structured signal constellations proven to achieve the capacity of the
AWGN channel [30]. Motivated by these attractive properties, this thesis serves as a
tool for harnessing lattices. More specifically, efficient lattice designs are described and
employed over both AWGN and Rayleigh fading channels.

The first chapter of the thesis serves as an introduction to lattices: We provide a
brief history on the development of lattice coding theory in digital communications and
list the most important lattice parameters. Then, we explain Constructions A, B, D
and D’ that produce lattices using error-correction codes, followed with a description
of the universal sphere decoder algorithm used to efficiently decode lattices of small
dimensions.

The second chapter is focused on lattices produced by straightforward encoding an
integer vector to a lattice point using the lattice generator matrix. Once obtained,
the infinite lattice is subject to a shaping operation, and the resulting lattice code (or
lattice constellation) performance is determined by the shaping domain. The decoding
process can either take into account the shaping region or not. In the former case,
we talk about lattice code decoding, and in the latter we talk about (naive) lattice
decoding. In this chapter, we opt for the nested shaping mechanism, which employs
two nested lattices: the fine lattice and the coarse lattice, and the lattice code is the set
containing the fine lattice points that are inside the Voronoi region of the coarse lattice.
This shaping mechanism helps achieve a good shaping gain with affordable complexity.
A lattice code decoder was proposed, which performs a reshaping operation on a list
of decoded lattice points, to check whether they belong to the shaping boundaries or
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not. Simulation results applied to the 8-dimensional Gosset lattice E8 have shown that
the proposed lattice code decoder increases the shaping gain, an increase that however
becomes less significant as we go higher with the spectral efficiency. We also compare
the lattice code scheme, using both lattices E8 and BW16, to the LTE baseline where
the frame length is determined by the modulation, code rate and the size of uncoded
bits. Simulation results show that for high spectral efficiencies, the lattice code can
achieve a better performance in terms of frame error rate.

In Chapter 3, we were interested in increasing the lattice dimension in order to
achieve better coding gains, and for that we had to resort to coded modulation, more
specifically, for multilevel coding. This chapter aims at explaining the construction of
efficient, capacity-approaching (Poltyrev capacity) lattices on the AWGN channel using
nested binary Reed-Muller codes, where the component codes’ rates are chosen based
on the capacity rule. The construction is performed on standard binary partitions of
dimensions n = 1, 2 and 4. Simulation results show that for lattices having the same
dimension, increasing n (thus, the number of levels) improves the overall performance
in terms of word error rate.

In the last chapter, the multilevel lattice coding is extended to the Rayleigh block
fading channel. This type of channels requires lattices that achieve maximum diversity,
and therefore an overview on algebraic number theory was necessary, since it is known
that algebraic number theory is an effective tool for designing good lattices for the
fading channels. After introducing number-theoretical concepts that are relevant for the
algebraic lattice construction, the latter was subject to a rotation and base reduction
operations that allowed us to obtain rotated versions of the binary lattice partition
chains used in Chapter 3. Therefore, the construction on the Rayleigh block fading
channel is carried out by mimicking the Gaussian case. Computing the word error rate
for lattices obtained using the followed multilevel construction shows that increasing
the lattice dimension (i.e. increasing the component codes’ length) barely degrades
the global performances. Indeed, using component code rates that exceed the different
levels’ capacities, and thus violate the capacity rule which forms the cornerstone of our
lattice construction, shows a clear increase in the WER with the lattice dimension.

Perspectives

Knowing that the multilevel lattice coding was performed without any power con-
straint, we consider, as a perspective, the application of a hypercube shaping in order
to design finite multilevel lattice constellations that satisfy a certain power constraint.
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This results in truncated versions of the constructed lattices, that can later be com-
pared to QAM constellations for different spectral efficiencies.

In this thesis, multilevel lattices are the result of a Construction D in which the
different component codes form a set of nested binary linear codes employed on the dif-
ferent levels of a lattice partition chain. Therefore, as another perspective, we consider
to remove the requirement of nested codes, and perform what was recently proposed
in [46] as Construction πA (and its generalization to Construction πD). The removal of
such requirement makes the rate allocation and hence the lattice construction easier.
In addition, Construction πA makes the construction also more flexible by allowing the
codes to be over different fields. This construction was shown to achieve the AWGN
capacity under the suboptimal multistage decoding. A possible future work is therefore
to perform Construction πA for building lattices on the Rayleigh block fading channel.

In addition to their linear structure and potential to achieve the AWGN channel
capacity, lattices are known to have salient structural properties well-suited for multiple
access channels. This was shown through the promising Compute-and-Forward scheme
[66] that allows us to harness the multiple access interference through the use lattice
coding. This framework is applicable to any relaying channel. That said, we propose
for future work, the implementation of the multilevel lattice scheme of Chapter 4 in
multi-user applications.





APPENDIX

A The |u|u + v|
construction

Let C1(N, k1, d1) and C2(N, k2, d2) be two binary codes, and let u and v be two code-
words in C1 and C2 respectively. We form the following linear code:

C = |C1|C1 + C2| = {|u|u + v| : u ∈ C1,v ∈ C2}

which encoder can be represented as in Figure A.1.

Theorem A.0.1. |u|u + v| is a (2N, k1 + k2,min{2d1, d2}) binary code.

Proof. Length(C) = 2N : The length of the codewords is 2N by construction.
Dimension(C) = k1 + k2: If |u|u + v| = |u′|u′ + v′| then u = u′ and v = v′, so the
assignment (u,v) 7→ |u|u + v| gives a bijection between C1×C2 and |C1|C1 +C2|. There-
fore, the size of C is the same as C1×C2, which is 2k12k2 = 2k1+k2 . Thus the number of
codewords is k1 + k2.
Minimum distance(C) = min{2d1, d2}:
If x = |u|u + v| and y = |u′|u′ + v′| are distinct codewords, then we have

Figure A.1 – Encoder for C(N, k, d) generated by |u|u + v| construction.
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d(x,y) = d(u,u′) + d(u + v,u′ + v′), by the definition of distance.
If v = v′ then d(u + v,u′ + v′) = d(u,u′), so d(x,y) = 2d(u,u′) ≥ 2d1.
If v 6= v′ then

d(x,y) = w(u− u′) + w(u + v− u′ − v′)
= w(u′ − u) + w(u + v− u′ − u)

According to the triangle inequality: w(x + y) ≤ w(x) + w(y). So

d(x,y) ≥ w(u′ − u + u + v− u′ − v′)
= w(v− v′)
≥ d2

This shows that d(|C1|C1 + C2|) ≥ min{2d1, d2}.
If d(u,u′) = d1 then d(|u|u + v|, |u′|u′ + v|) = 2d(u,u′) = 2d1.
If d(v,v′) = d2 then d(|u|u + v′|, |u|u + v′|) = d(v,v′) = d2.
So we have equality.



APPENDIX

B Soft-input decoding
for Reed-Muller codes

Different decoding algorithms were designed for the Reed-Muller codes, the first was the
majority algorithm developed by Reed in [71]. Later on, the recursive construction of
Reed-Muller codes has allowed the employment of a decoding technique that splits the
original RM(r,m) code, over and over, into two different codes of shorter length until
reaching a previously chosen set of terminal nodes. In [76], the authors have described
a soft-decision decoding procedure for RM codes, in which the code decomposition
stops at repetition RM(0,m) and even-weight RM(m− 1,m) codes.

We assume that the transmitted bits bi for i = 1, · · · , N are mapped to symbols
ci = (−1)bi . Any RM codeword c belongs then to {−1,+1}N , and is a concatenation
of the codes {u,u � v}. The transmission is carried out over an AWGN channel, the
received vector y consists of two halves y′ and y′′, which correspond to the corrupted
versions of u and u� v, respectively. At the receiver, the soft-input information for
each element of y is given by:

ρi = ln(q(ci)) = lnPr(yi|ci = +1)
Pr(yi|ci = −1)

The decoder begins by decoding v = RM(r − 1,m − 1), and then proceeds with
u = RM(r,m− 1).

For decoding v, both parts of the received vector y′ and y′′ are needed (v = u.(u.v)).
The soft-decision metric is computed as follows:

ρvi = ln(q(vi)) = lnPr(yi|vi = +1)
Pr(yi|vi = −1) (B.1)

It is obvious that vi = +1 if both ui and uivi have the same sign, and vi = −1 otherwise.
Consequently, equation (B.1) can be written as:

ρvi = ln1 + q(ci).q(ci+N/2)
q(ci) + q(ci+N/2)
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If v̂ is the hard decision of ρ(v), then u has two LLRs: one derived from y′, and the
second from v̂.y′′. The soft-decision metric is:

ρui = lnPr(yi|v̂i, ui = +1)
Pr(yi|v̂i, ui = −1)

which can be approximated by:

ρui = 1
2(ρi + v̂i.ρi+N/2)

The decoding algorithm is presented below. This algorithm takes as input the received
vector y, the order r and dimension m of the considered RM code, and an integer
υ = {0, 1} which determines the order of the codes that are not decomposed further.
The decoder is based on soft-decision ML decoding of parity-check and either repetition
of biorthogonal codes. If the one of the terminating notes is not yet reached, the RM
code is decomposed and recursively decoded using the decoder itself. In the final step,
the decoder outputs the solution. For example, in figure B.1, we present simulation

Algorithm 3 Recursive Decoding of RM(r,m)
Input: y, r,m, υ
Output: ĉ

1: if r = υ or r = m− 1 then
2: ML decoding of RM(r,m)
3: Go to 10
4: else
5: Calculate ρvi = ln1+q(ci).q(ci+N/2)

q(ci)+q(ci+N/2) for i = 1, · · · , N2
6: v̂← decode y′ according to RM(r − 1,m− 1).
7: Calculate ρui = 1

2 .(ρi + v̂iρi+N/2) for i = 1, · · · , N2
8: û← decode y′′ according to RM(r,m− 1).
9: end if

10: Solution: ĉ = (û, ûv̂).

results for RM(4, 9), where the Word Error Rate is plotted as function of Eb/N0, Eb
being the energy per transmitted information bit. The figure shows that numerical
performance improve by taking υ = 1 instead of υ = 0, i.e., if we perform ML decoding
on first-order RM codes, instead of repetition codes.
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Figure B.1 – Recursive decoding of RM(4, 9) for υ = 0 and 1.
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C Commands in Sage

Dimension 2

\\Define the minimal polynomial

K.<w>=NumberField(x^2 - 48*x + 544);
theta=K.ideal(2).prime_factors()[0].gens_reduced()[0];
theta.minpoly()

x^2 - 2

\\Find the fundamental unit and its conjugates

K.<w>=NumberField(x^2-2);
g2=(K.ideal(2).prime_factors()[0]).gens_reduced()[0];
Gu=K.unit_group();
su=Gu.gens_values();uf=su[1];
print g2.complex_embeddings();
print uf.complex_embeddings();

-1.41421356237310, 1.41421356237310]
-0.414213562373095, 2.41421356237309

\\Find alpha

g2pos=uf*g2;alpha=g2pos;
g2vec=g2pos.complex_embeddings();
print g2vec
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trlat=[sqrt(g2vec[0]),sqrt(g2vec[1])];
did=Matrix(RR,diagonal_matrix(trlat));

[0.585786437626905, 3.41421356237309]

\\w=sqrt(2)

g2pos

w+2

\\Find U and the final Gram matrix

idb=K.integral_basis();
gen=did*Matrix(RR,K.inkowski_embedding(idb));
gr=gen.transpose()*gen;
gram=Matrix([[gr[i,j].round() for i in [0..1]] for j in [0..1]],sparse=False);
U=gram.LLL_gram();
gram_red=U.transpose()*gram*U;
gram_red

[16 0]
[0 16]

U

[ 1 -1]
[ 0 1]

Dimension 4

\\Find the fundamental units

Gu=K.unit_group();
su=Gu.gens_values();uf1=su[1];uf2=su[2];uf3=su[3];
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print g2.complex_embeddings()
print uf1.complex_embeddings()
print uf2.complex_embeddings()
print uf3.complex_embeddings()

[-1.84775906502257, -0.765366864730180, 0.765366864730180, 1.84775906502257]
[2.41421356237309, -0.414213562373095, -0.414213562373095, 2.41421356237309]
[-0.847759065022573, 0.234633135269820, 1.76536686473018, 2.84775906502257]
[0.566454497350521, -1.17958042710327, 0.351153302357085, 4.26197262739567]

\\Find alpha and all its conjugates

alpha=g2*uf2*uf3;
print alpha.complex_embeddings()

[0.887325194919154, 0.211829556901869, 0.474461944113370, 22.4263833040656]

\\w= sqrt(2+sqrt(2))

alpha

2*w^3 + 4*w^2 - w - 2

\\The diagonal matrix M

alphavec=alpha.complex_embeddings()
trlat=[sqrt(alphavec[i]) for i in [0..3]]
did=Matrix(RR,diagonal_matrix(trlat));did

[0.941979402598143 0.000000000000000 0.000000000000000 0.000000000000000]
[0.000000000000000 0.460249450735000 0.000000000000000 0.000000000000000]
[0.000000000000000 0.000000000000000 0.688811980233627 0.000000000000000]
[0.000000000000000 0.000000000000000 0.000000000000000 4.73565025145076]
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U

[-3 1 -1 -3]
[ 0 -4 -3 3]
[ 1 0 0 1]
[ 0 1 1 -1]

\\The matrix O

O=gen*U;

O

0.137949689641472 0.693519922661074 -0.587937801209680 0.392847479193551]
[-0.392847479193551 0.587937801209679 0.137949689641472 -0.693519922661074]
[-0.587937801209679 -0.392847479193551 -0.693519922661074 -0.137949689641471]
[ 0.693519922661074 -0.137949689641472 -0.392847479193550 -0.587937801209680]

\\The Gram matrix

OO.transpose()*OO

[ 1.00000000000000 -1.38777878078145e-16 4.99600361081320e-16 -6.10622663543836e-16]
[-1.38777878078145e-16 1.00000000000000 -2.22044604925031e-16
5.27355936696949e-16]
[ 4.99600361081320e-16 -2.22044604925031e-16 1.00000000000000
-5.82867087928207e-16]
[-6.10622663543836e-16 5.27355936696949e-16 -5.82867087928207e-16
1.00000000000000]
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