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Abstract

Cellular networks have been traditionally designed to keep the network infras-
tructure always operational. This is done in order to ensure ubiquitous service
availability and enough capacity to serve the peak of usage of the customers. Re-
cently, the concern about the energy efficiency of this paradigm has increased, and a
different approach has concentrated the research efforts of industry and academy. In
this new paradigm, the infrastructure is dynamically adapted to the temporal and
spatial traffic variations, reducing the energy wastage. The majority of these studies
make the adaptation of the infrastructure unnoticeable to the users. However, with
the appropriate interactivity and incentives, some users may be willing to offer their
cooperation to the network.

In this thesis we consider the user cooperation in the design and control of energy
efficiency techniques. We consider a specific type of cooperation in which the users
are able to offset the start of their services for a bounded and known-in-advance
delay. Based on proactive interaction with the users, the network may ask them to
delay the start of their services if an energy efficiency technique is applied in the
area where they are located (e.g. a base station is switched off). Thus, a portion of
the traffic is shifted and the network can optimize the resource utilization in order
to consume less energy.

First, we present an overview and classification of the literature covering the
main domains of the thesis, namely energy efficiency in cellular networks and user
demand shaping. We describe as well the most recent cellular network architecture
- LTE. Then, we propose two different strategies to control the network resources
depending on the cooperation of the users and their delay tolerance, and we evalu-
ate the impact of such cooperation schemes in different energy efficiency techniques.
Afterwards, we propose a theoretical framework for the analytical evaluation of the
proposed strategies. We obtained the theoretical bounds of the attainable energy
savings when employing different energy efficiency techniques, and we investigated
the trade-off between the waiting time bounds proposed to the users and the energy
gains. We observed that increased delay tolerance leads to more energy gains, and
that the gains have an upper bound determined by the system serving capacity. We
also noted that delaying opportunistically the user services depending on the system
conditions is more beneficial than systematically delaying all of them. Finally, we
evaluated the strategies under more realistic conditions using system level simula-
tions. We corroborated the theoretical trends and we observed that the attainable
gains are limited by the duration of the network reconfiguration process.
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Résumé

Les réseaux cellulaires fonctionnent traditionnellement en maintenant l’infra-
structure du réseau toujours opérationnelle, de manière à satisfaire non-seulement
la disponibilité du service, mais aussi les capacités réseaux nécessaires pour gérer
les pics de charge utilisateur. Ce paradigme est limité en terme d’efficacité énergé-
tique et une approche différente est actuellement prise dans le cadre des recherches
industrielles et académiques. Dans ce nouveau paradigme, l’infrastructure est dy-
namiquement adaptée en fonction des variations temporelles et spatiales du trafic,
réduisant de ce fait les pertes d’énergie.

Dans cette thèse, nous prenons en compte la coopération de l’utilisateur dans la
mise en œuvre et le contrôle des techniques d’efficacité énergétique. Nous considérons
un type spécifique de coopération où l’utilisateur est capable de décaler l’utilisation
de son service pendant un temps fixé et borné, et connu à l’avance. En utilisant
une interaction proactive avec les utilisateurs, le réseau peut alors leur demander
de décaler l’utilisation de leur service si une technique d’efficacité énergétique est
appliquée dans leur zone de localisation (ex : une station de base étant désactivée).
Ainsi, une portion du trafic n’est pas générée et le réseau peut optimiser l’utilisation
des ressources, rester une plus longue période en utilisant un ensemble de ressources
limité, et donc entrainer une moindre consommation d’énergie.

Nous présentons d’abord une vue d’ensemble et une classification de le littérature
des domaines abordées dans le cadre de cette thèse : l’efficacité énergétique dans les
réseaux cellulaires et l’adaptation du trafic. Ensuite, nous proposons deux stratégies
différentes pour contrôler les ressources du réseau, fonction de la coopération des uti-
lisateurs et de leur tolérance aux délais, et nous évaluons l’impact d’un tel schéma
de coopération pour différentes techniques d’efficacité énergétique. Après ça, nous
proposons un modèle théorique afin d’évaluer analytiquement les stratégies propo-
sées. Nous obtenons alors les limites théoriques d’économie d’énergie atteignables
par utilisation de différentes stratégie d’efficacité énergétique and nous évaluons le
compromis entre les limites du temps d’attente proposé aux utilisateurs, et les éco-
nomies d’énergie atteignables. Nous avons observés qu’une augmentation dans la
tolérance au délai entraine un meilleur gain énergétique, et que ce gain a une limite
maximale déterminée par la capacité du système. Nous avons aussi noté que retar-
der de manière opportuniste le service de l’utilisateur en fonction des conditions du
système est plus bénéfique que de les retarder tous systématiquement. Finalement,
nous avons évalué par simulation les stratégies sous des conditions plus réalistes. La
simulation confirme les tendances observées avec le modèle théorique et nous avons
noté que les gains atteignables sont limités par les temps d’adaptation du système
lors des phases de reconfiguration.
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1
Introduction

1.1 CONTEXT AND MOTIVATIONS

Traditionally cellular networks have been dimensioned for providing seamless
coverage and delivering maximal performance, with little regard to the energy con-
sumption. Recently, the focus has been moved to seek ways to increase the energy
efficiency by better adapting the resources to the users behaviour. However, the
users energy concerns are focused on their battery operated equipments, without
paying attention to the impact their services have on the network energy consump-
tion and the associated environmental consequences.

In some other fields this paradigm is already shifting, making the users aware
of the impact their services have, and interacting with them in order to use the
resources more efficiently and to achieve mutual benefits. For example, this is one
of the pillars of the development of the Smart Grid. The strategy, called demand re-
sponse, stands for managing the customers electricity demand in response to supply
conditions, e.g. reduce the consumption in critical periods in order to balance the
power generation and consumption, or to adapt the consumption to the electricity
market prices. To do so, a communication line is established between suppliers and
consumers, allowing them to interact and to take decisions to optimize their services.
This approach does not substantially change the total energy demand since a large
fraction of the energy saved during the load reduction period is consumed at a more
opportune period, shifting the demand in time [YQST13].

A closer example in cellular networks, following the same paradigm, is called
demand shaping. The purpose is to influence the user or application behaviour
in order that the traffic is generated (or not) in certain periods and/or conditions
[HSJW+12]. This technique is mostly studied to anticipate and alleviate the periods
of congestion, i.e. when the network resources are not enough to satisfy a given QoS
target level, for the ongoing services or the estimated incoming requests. Further-
more, this strategy is useful as well to balance the load between network equipments
and to optimize the resource utilization of current deployed resources [DRSW06].

Energy efficiency in cellular networks has become a central point in recent re-
search efforts as it became evident that the operation of the Information and Com-
munications Technology (ICT) sector is responsible for the generation of a non-
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negligible part of the global Green House Gas (GHG) emissions and global electric-
ity consumption, contributing in 2007 with 1.3% and 3.9% of the total, respectively.
Moreover, cellular networks represented at the time 15% of the ICT GHG con-
tribution and 8.5% of the ICT electricity consumption [MML+10]. More recent
studies show that the relative share of the ICT sector in the total worldwide elec-
tricity consumption has increased to 4.6% in 2012 [VLL+14]. This effect can be
pronounced further with the deployment of new technologies, such as Long Term
Evolution (LTE) and high-capacity dense deployments to cope with the increasing
traffic demand [Cis14].

The biggest contributor to this energy footprint is the access part of the cellular
network, composed mainly of base stations, which represents 57% of the total cel-
lular network energy consumption [HHA+11]. The base stations were traditionally
designed to be always operational, while consuming significant amounts of energy
even when not carrying any traffic. In current standards the control information is
transmitted periodically to maintain the service availability. Moreover, the access
network is dimensioned to have enough capacity to support high traffic peaks which
rarely occurs, as the traffic varies in time and space following the daily patterns
of the customers and required services. Thus, the combination of these traditional
approaches leads to resource underutilization and considerable energy wastage.

To operate the access network in a more energy-efficient way, a management
paradigm consists in adapting the radio resources to the temporal and spatial traffic
variations. Recently, a large number of studies, including efforts from industry and
academia, have been proposed toward this idea of resource adaptation. The first
step is designing base station components to be more efficient when using them,
or to be deactivated when they are not needed. For example, the development
and integration of adaptive transceivers and smart antennas in the base station.
The adaptive transceivers allow to adapt the base station power requirements to
the signal load and deactivate some components when there is no information to
transmit [GFW+11]. The smart antennas allow to concentrate the radio resources
in a effective area and automatically adjust the required parameters to follow the
spatial variations of the traffic, increasing the energy efficiency [CPB+13].

A further step, is the development of high level energy-efficient techniques and
protocols to exploit this hardware flexibility as much as possible at the different
network levels: from the base station radio resource management, organizing the
way the data should be transmitted in order to minimize the input power needed
for transmission; to the reconfiguration of the entire access network, deactivating
as much network resources as possible, e.g. switching off some antennas, sectors,
entire bases stations or groups of them, and executing the required compensation
techniques to avoid compromising the service availability [MSES12].

2
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1.2 GOALS AND OBJECTIVES

The majority of existing works on energy efficiency in cellular networks follow
the classical approach of optimizing the access network under the condition of hav-
ing minimal to no effect on the users. For example, a radio resource management
technique uses radio fast deactivation only in periods where no data is transmit-
ted, still requiring to transmit control and reference signals, which limits its benefits
[FMM+11]. Furthermore, the network reconfiguration strategies base the decision of
activating and deactivating the resources on load thresholds, which are often chosen
based on strict quality constraints, in order to make the reconfigurations unnotice-
able to the active users, and to prevent the dissatisfaction of expected incoming
arrivals [GO13]. This results in reconfigurations happening only in very low load
levels, which reduces the periods of low energy consumption and the effectiveness of
the strategies.

Recent studies show that users can be more tolerant and cooperative if they are
aware of the network status. The acceptance can be reinforced if they are informed
about the possible benefits their cooperation can bring to them (e.g. discounts,
later improved service quality) or the deterrents their non-efficient usage can cause
(e.g. surcharges, poor service quality) [SBM+12b, HSJW+12] . This can ultimately
lead to adapting the spatial and temporal usage patterns to more efficient ones for
both, the network and the customers. Thus, approaches combining high interaction
between the user equipment and the operator management entities can result in
more efficient network optimizations for minimizing the energy consumption.

The objective of this thesis is to evaluate the potential energy gains a network
operator can achieve with the active cooperation of its customers. In particular, we
consider the case in which the users are willing to offset the start of their services for
a given bounded delay. Thus, the aim of this thesis is to study if such tolerance can
impact positively the execution of the energy efficiency techniques, improving their
performance towards minimizing the energy consumption of the cellular network.
Furthermore, we investigate the trade-off between the waiting time bounds proposed
to the users and the attainable energy reductions.

However, we will not discuss the exact mechanisms of how the information should
be presented to the users, neither the incentives and motivations influencing their
participation. The implementation of the interactive mechanisms is also out of the
scope of this work. Our analysis is focused on investigating the potential gains
if the requests can actually be shifted, assuming complete knowledge of the users
willingness, and controlling the energy saving strategies accordingly.

3



1

1.3. NOVELTY AND CONTRIBUTIONS

1.3 NOVELTY AND CONTRIBUTIONS

This thesis contributes on the enhancement of energy efficiency in cellular net-
works by reducing the energy consumption of the access network. The novelty of our
proposal lies in considering the willingness of the users to cooperate in the control
loop of the energy saving strategies, with the intention of extending the periods of
low energy consumption.

In particular, this thesis provides the following contributions:
• We present the basis of user awareness and cooperation for cellular network

energy efficiency. Specifically, we introduce the concept of Delay Tolerant User
(DTU), employed to designate the cooperative users willing to offset the start
of their services for a given bounded delay. Such cooperation is verified to be
helpful for optimizing the network resource utilization and reducing the energy
consumption.

• We propose two strategies controlling the energy saving techniques and consid-
ering the delay tolerance of the users. The strategies react to load variations
deactivating some access network resources when possible, and rely on the
delay tolerance of the users to extend the periods of low energy consumption.

• We quantify the potential energy reductions attainable with the usage of the
proposed strategies. We apply the strategies to different energy saving tech-
niques, such as capacity adaptation and standalone or coordinated cell switch-
ing, and we estimate the power and energy consumption of the network if
different levels of delay are proposed to the cooperating users.

1.4 METHODOLOGY AND DOCUMENT STRUCTURE

First, we overview the existing literature in the context of this thesis. The main
concepts and the relevant scientific publications are presented in Chapter 2. We
present the most recently deployed cellular network technology: Long Term Evolu-
tion (LTE) and the power consumption models of the different base stations forming
an LTE access network. Afterwards, we describe the different approaches on energy
efficiency in cellular networks and provide a general classification for them. Finally,
we review the different studies considering the user awareness and cooperation for
optimization purposes in cellular networks.

Second, we propose two strategies considering the delay tolerance of users to
reduce the energy consumption of cellular networks, which are described, modelled
and evaluated analytically in Chapter 3. We model a portion of the access network
when using an energy efficiency strategy as a system which can be in different
states depending on the active network resources. We characterize these states as a
function of the number of simultaneous users the system can serve. The traffic and
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system dynamic are modelled using Markov Chains (MC). We calculate the steady
state probability distribution of each MC which represents the long term behavior of
the modelled system. We deduce the required set of MCs representing the dynamic of
the system when considering the DTU traffic, and applying the proposed strategies.
Using the steady state probability distributions we quantify the average power and
energy consumption of the system. We do this based on the power consumption
models proposed in the literature, which we adapt to the considered energy efficient
strategies. Then we infer the theoretical bounds of the energy savings, comparing
the DTU-aware strategies energy performance to the consumption of the traditional
strategies.

Third, we implement and evaluate the proposed strategies in a system level sim-
ulator, as described in Chapter 4. We developed our simulation platform based on
the LTE module of the Network Simulator 3 (ns-3), which allowed us to consider
a more realistic scenario for the LTE access network functioning. We implement a
coordinated cell switching algorithm controlled by the proposed DTU-aware strate-
gies, where we account for the impact the reconfigurations have on the users and on
the performance of the strategies. We simulate the behavior of the network under
several scenarios and compared the performance to the theoretical results.

Finally, we present in Chapter 5 the final conclusions of this thesis. We summarize
the thesis outcome and identify the prospective work directions.

5
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2 LTE and existing energy
efficiency approaches

2.1 INTRODUCTION

In this chapter we present an overview of the most recent cellular network ar-
chitecture - LTE, and the efforts of the research community to improve its energy
efficiency at different network management levels. We present studies that address
efficient network resource utilization, making the users aware of the impact of their
services, and how such techniques can be used for improving the energy efficiency.
Figure 2.1 presents a detailed map of the concepts that will be explained in this
chapter, and we also position our proposal regarding the different categorized do-
mains.

In Section 2.2, we describe the architecture of LTE. We highlight the need for
structural models for the access network elements and the importance on the esti-
mation of their power consumption. We present one of the recent and widely used
Base Station (BS) component model as well as the corresponding individual and
integrated power consumption figures.

Recently, a large number of studies have been proposed toward the idea of radio
resource adaptation to operate the access network in a more energy efficient way.
In Section 2.3 we present and explain our literature classification in this subject,
based on the time scale at which the different approaches affect the access network.
We describe in detail the proposed categories and we classify and characterize some
of the most representative strategies we found in the literature. In Section 2.4 we
analyse the operation and design of the Network Reconfiguration Strategy (NRS),
which is the category of energy efficiency strategies we mainly focus in this thesis.

The majority of existing works towards energy efficiency in cellular networks
follows the classical approach of optimizing the access network under the condition of
having minimal to no effect on the customers. Other studies show that the customer
behavior can be influenced toward a more efficient usage of the network resources.
Section. 2.5 overviews these strategies mainly developed to avoid congestion, which
is indirectly related to energy efficiency. We also present several studies in this
field directly designed for this purpose. In Section. 2.6 we summarize the important
points discussed in this chapter and we relate them to the proposal of this thesis.
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2

2.1. INTRODUCTION

Figure 2.1: Summary of this chapter. Green boxes define the domains, which we
further classify into categories. Blue boxes identify our proposal in this thesis. Gray
boxes are studied in detail and used for the definition and evaluation of our proposal.
The arrows indicate specialization (light arrows) or parametrization (bold arrows).
Each domain is described in a dedicated section, with a detailed discussion of its
classification.
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Figure 2.2: Evolution of cellular systems. Approximated release/deployment dates
and typical user downlink rates.

2.2 LTE ARCHITECTURE AND POWER CONSUMPTION

The roadmap to LTE:
During the 80s, analog wireless telephone networks were introduced worldwide,

representing the first generation of what is now called cellular networks. All along
these three decades of evolution, variety of specifications, standards and products
have been developed [DLLX02]. Each new generation of cellular standards is charac-
terized by more capacity, higher data rates and broader groups of services (Fig. 2.2).
The voice call service, for which the cellular networks were initially conceived, now
coexists with multiple data services, such as text messaging, mobile internet access
and multimedia Internet-based services. The adoption of mobile data services was
initially slow, but at the end of the 2000s, the data use started to increase dramat-
ically. The evolution of the technologies allowing higher data rates (e.g. 3G, 3.5G)
and the emergence of user-friendly and application-driven end devices boost the data
traffic. This trend rapidly congested the networks, leading to the clear requirement
of increasing the cellular networks capacity for the generations to come.

Thus, the specification of the fourth cellular network generation focuses in pro-
viding a peak data rate of at least 600 Mbps on the downlink and 270 Mbps on the
uplink, in the wider bandwidth. These requirements were published in 2008 by the
International Telecommunication Union (ITU) in order to drive the development
of the new technologies [Int08]. However, some technologies under development at
the time did not fulfil these requirements, but still represent a significant improve-
ment from the 3G. Thus, the so called 3.9 generation was established with two main
technologies: Worldwide Interoperability for Microwave Access (WiMAX) (IEEE
802.16) and Long Term Evolution (LTE). Latter, in 2010, the ITU allowed the use
of the term 4G to describe LTE, WiMAX and any other technology with substan-
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Figure 2.3: LTE architecture.

tially better performance than the 3G systems [Int10]. Further versions of these
technologies, i.e. IEEE 802.16m and LTE-Advanced, are considered the real 4G of
cellular system, as they satisfy the ITU requirements.

Within these two technologies, LTE has by far the greater support amongst
network operators and equipment manufacturers and is likely to be the world’s
dominant mobile communication technology for some years to come [Cox12]. This
is mostly due to the fact that WiMAX lacks backwards compatibility with previous
cellular network generations, while LTE is fully compatible with most of the widely
deployed 2G and 3G standards.

LTE network architecture:
The simplified reference LTE network architecture we will consider throughout

this document, is depicted in Fig. 2.3. Two different domains are identified: the cus-
tomer domain, composed by the User Equipment (UE), and the operated domain
composed by the core network and the radio access network. The core network
is called the Evolved Packet Core (EPC), while the access network is denoted as
Evolved Universal Terrestrial Radio Access Network (E-UTRAN). The EPC com-
municates with packet data networks in the outside of the LTE network, such as the
Internet or private corporate networks.

The UE is composed of three elements: the Mobile Termination (MT) which
handles all the communication functions, the Terminal Equipment (TE) which gen-
erates and consumes the data streams, and the Universal Integrated Circuit Card
(UICC) which is a circuit card identifying the subscriber. It runs an application
called Universal Subscriber Identity Module (USIM) which keeps information about
the user’s phone number, home network identity and security keys.

The EPC is a packet only core network and offer connectivity and inter-system
mobility with legacy access networks. The main logical nodes of the EPC are: the
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Packet Data Network Gateway (PGW), the Serving Gateway (SGW) and the Mo-
bility Management Entity (MME). The PGW provides connectivity from the UE
to external networks. It is in charge of the UE IP address allocation and perform
per-user-based packet filtering. The SGW routes and forwards UE data packets,
manages and stores UE contexts, support the local UE mobility procedures, and
provides connectivity between LTE and other technologies (2G/3G). The MME is
in charge of all the control plane functions related to subscriber and session manage-
ment. This includes the UE tracking and paging procedures, the establishment of
the connection and security procedures between the network and UE (e.g. authenti-
cation, identification, access control, etc.) and the establishment, maintenance and
release of UE service sessions. The MME also controls the other elements of the
network, by means of signalling messages that are internal to the EPC.

The E-UTRAN is only composed of several types of one logical element: the
Evolved Node B (eNB), which is the equivalent of the Base Station (BS) of previous
technologies. However, LTE removed the Radio Network Controller (RNC) present
in previous cellular generations, hence distributing the control of the access network
between the eNBs. Throughout this document we will refer to the term eNB and
BS indistinctly.

The E-UTRAN host several functions [3GP09] [3GP10c]:
• Radio resource management (RRM), which covers all functions related to ra-

dio bearer control, radio admission control, connection mobility control and
dynamic allocation of radio resources (scheduling) to UEs in both uplink and
downlink.

• Subscriber and equipment trace and positioning
• Connection setup and release
• Measurement and reporting configuration for mobility and scheduling.
• IP header compression and encryption of user data stream
• Routing of user plane data towards SGW and the other way around
• Scheduling and transmission of paging messages (originated from the MME )
• Self Configuring and Self-Organising Networks (SON) functionality, which cov-

ers coverage and capacity optimization, inter-cell interference coordination,
mobility robustness optimization, load balancing and energy savings proce-
dures

BS reference architecture and power consumption:
As stated by Han et al. [HHA+11], the access network and its principal (and

unique in LTE) component, the BS, is the most power consuming part of cellular
networks. However, quantifying the individual power contribution of each BS is not
a trivial task for several reasons: first, in order to protect their industrial designs,
equipment manufacturers are not likely to reveal the architecture of their products,
to the point of forbidding the operators to explore their devices components, which
prevents the fully understanding of their power contribution. Second, manufacturers
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Figure 2.4: LTE BS architecture [AGD+11].

have different designs, such that a power model may be valid only for a single brand
or type of BS. Third, architectures and technologies continually evolve, limiting the
long-term applicability of power models, e.g., a particular model may only be valid
for a certain generation of BSs [HAH11].

Considering these issues, the research community, including efforts from industry,
academy and manufacturers, agreed in a general common architecture for a LTE BS
without revealing competitive technical differences. This is one of the contributions
of the project EARTH to the research community. Moreover, actual measurements
of the power consumption allowed to the project members to quantify and model
the power consumption of the different types of LTE BSs. These results and derived
models are presented by Holtkamp [HAH11], and were also published as part of
the EARTH project deliverables [EAR12c], and in abbreviated form by Auer et al.
[AGD+11]. Since then, these models have been widely adopted as reference models
when evaluating power and energy reduction strategies in cellular networks, and
they are used in the following chapters of this manuscript as well.

The general architecture of an LTE BS is showed in Fig. 2.4. This reference
architecture aims to define a high-level block diagram with the main radio hardware
components that can be generalized to all BS types. A BS may contain one or
multiple Transceiver (TRX), each of which serves one antenna. A TRX chain has
the following components:

• Antenna Interface (AI)
• Power amplifier (PA)
• Radio Frequency (RF) small-signal transceiver module
• Baseband (BB) engine: receiver (uplink) and a transmitter (downlink) section
• DC-DC power supply
• Active Cooling system
• AC-DC unit (Main supply) for connection to the electrical power grid
A BS site has one or more sets of antennas, through which it communicates

with the UEs in one or more sectors. A sector can contain several antennas, e.g.,
when using MIMO [4GA12]. In cellular networks, the word cell can be used in two
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(a) Macro BS (b) Micro BS

(c) Pico BS (d) Femto BS

Figure 2.5: BS power consumption breakdown for the different types of LTE BSs.
Source: [EAR12b].

different ways: to refer to a group of sectors controlled by the same BS, which is the
convention used in USA; or as a synonym of sector, as used in Europe [Cox12]. We
will use the latter definition and we will refer to a sector and a cell indistinctly.

Different types of BS are considered in the literature, depending – among other
features – on the radiated power at the antenna Pout, which determines the BS
coverage range [3GP10a]. BS covering a wide area (e.g., >500m) are referred as
Macro BS. Medium range coverage (e.g., 250m) is provided by Micro BS, while
local area coverage (e.g., 100m) is provided by Pico BSs. Short range and indoor
coverage is provided by Femto BSs.

The different types of BS imply different component selection within the general
architecture of Figure 2.4. Energy efficiency also varies among BS types, for exam-
ple small BS (pico and femto) may use more efficient and dedicated components,
while large BSs (macro and micro) may require more reconfigurability, for example
using more programmable and less energy efficient integrated circuits (e.g. FPGA)
[DDG+12]. A further evolution of the wide range BS is the Remote Radio Head
(RRH) BS. In this type of BS the PA is located close to the AI and is connected to
the BB by means of an optical link, allowing a physically distributed antenna archi-
tecture and avoiding the power losses in the RF feeder cables. Usually, the cooling
system is avoided in this type of BS as the PA is cooled by natural air circulation.
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Figure 3. Power consumption for various BS types as a function of the load, Pout/Pmax. An LTE system with 10 MHz system bandwidth
and 2 ! 2 MIMO configuration is considered. Macro BSs employ three sectors per site. Legend: PA: power amplifier, RF: small signal
RF transceiver, BB: baseband processor, DC: DC-DC converters, CO: active cooling (only applicable to macro BS), MS: mains power
supply.
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demands. The traffic model presented in this
section is based on the UMTS Forum’s mobile
traffic forecast [10]. 

DEPLOYMENT AREAS OF EUROPE
The deployment areas of a given country or
region may be classified into dense urban, urban,
suburban, and rural areas. The ratio of different
deployment areas in Europe and their associated
population densities, depicted in Figs. 4a and 4b,
hardly depends on the particular countries. How-
ever, the Nordic countries (Finland, Norway, and
Sweden) and Russia are substantially less densely
populated than the European average and are
therefore omitted from Fig. 4. Note that in cen-
tral districts of a metropolis, the population den-
sity can exceed even 20,000 citizens/km2, but due
to their negligible covered area, these are omit-
ted from the presented model.

According to the current situation in Europe,
the coverage of mobile broadband is focusing on
the population and not on the amount of area
covered [9]. That is, second-generation (2G) area

coverage approaches 100 percent, while 3G cover-
age is below 40 percent. This implies that sparsely
populated areas are exclusively served by 2G net-
works, which practically allows us to skip sparsely
populated areas also for LTE deployment.

LONG-TERM LARGE-SCALE TRAFFIC MODELS
The following methodology captures the long-
term and large-scale variations of traffic demand:
• Define the average served data rates rk for a

given terminal type k.
• Identify the fraction of subscribers sk from the

entire population.
• From the subscriber base, determine the per-

centage of active subscribers (t) over time t.
• Given the population densities for the respec-

tive deployments, the scenario specific average
data rates per area unit in megabits per square
kilometer can be derived.

Terminal and Subscriber Mixes — Emerging terminal
types such as tablets and smartphones comple-
ment PC generated mobile broadband traffic,

Figure 3. Power consumption for various BS types as a function of the load, Pout/Pmax. An LTE system with 10 MHz system bandwidth
and 2 ! 2 MIMO configuration is considered. Macro BSs employ three sectors per site. Legend: PA: power amplifier, RF: small signal
RF transceiver, BB: baseband processor, DC: DC-DC converters, CO: active cooling (only applicable to macro BS), MS: mains power
supply.
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demands. The traffic model presented in this
section is based on the UMTS Forum’s mobile
traffic forecast [10]. 

DEPLOYMENT AREAS OF EUROPE
The deployment areas of a given country or
region may be classified into dense urban, urban,
suburban, and rural areas. The ratio of different
deployment areas in Europe and their associated
population densities, depicted in Figs. 4a and 4b,
hardly depends on the particular countries. How-
ever, the Nordic countries (Finland, Norway, and
Sweden) and Russia are substantially less densely
populated than the European average and are
therefore omitted from Fig. 4. Note that in cen-
tral districts of a metropolis, the population den-
sity can exceed even 20,000 citizens/km2, but due
to their negligible covered area, these are omit-
ted from the presented model.

According to the current situation in Europe,
the coverage of mobile broadband is focusing on
the population and not on the amount of area
covered [9]. That is, second-generation (2G) area

coverage approaches 100 percent, while 3G cover-
age is below 40 percent. This implies that sparsely
populated areas are exclusively served by 2G net-
works, which practically allows us to skip sparsely
populated areas also for LTE deployment.

LONG-TERM LARGE-SCALE TRAFFIC MODELS
The following methodology captures the long-
term and large-scale variations of traffic demand:
• Define the average served data rates rk for a

given terminal type k.
• Identify the fraction of subscribers sk from the

entire population.
• From the subscriber base, determine the per-

centage of active subscribers (t) over time t.
• Given the population densities for the respec-

tive deployments, the scenario specific average
data rates per area unit in megabits per square
kilometer can be derived.

Terminal and Subscriber Mixes — Emerging terminal
types such as tablets and smartphones comple-
ment PC generated mobile broadband traffic,

Figure 3. Power consumption for various BS types as a function of the load, Pout/Pmax. An LTE system with 10 MHz system bandwidth
and 2 ! 2 MIMO configuration is considered. Macro BSs employ three sectors per site. Legend: PA: power amplifier, RF: small signal
RF transceiver, BB: baseband processor, DC: DC-DC converters, CO: active cooling (only applicable to macro BS), MS: mains power
supply.
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demands. The traffic model presented in this
section is based on the UMTS Forum’s mobile
traffic forecast [10]. 

DEPLOYMENT AREAS OF EUROPE
The deployment areas of a given country or
region may be classified into dense urban, urban,
suburban, and rural areas. The ratio of different
deployment areas in Europe and their associated
population densities, depicted in Figs. 4a and 4b,
hardly depends on the particular countries. How-
ever, the Nordic countries (Finland, Norway, and
Sweden) and Russia are substantially less densely
populated than the European average and are
therefore omitted from Fig. 4. Note that in cen-
tral districts of a metropolis, the population den-
sity can exceed even 20,000 citizens/km2, but due
to their negligible covered area, these are omit-
ted from the presented model.

According to the current situation in Europe,
the coverage of mobile broadband is focusing on
the population and not on the amount of area
covered [9]. That is, second-generation (2G) area

coverage approaches 100 percent, while 3G cover-
age is below 40 percent. This implies that sparsely
populated areas are exclusively served by 2G net-
works, which practically allows us to skip sparsely
populated areas also for LTE deployment.

LONG-TERM LARGE-SCALE TRAFFIC MODELS
The following methodology captures the long-
term and large-scale variations of traffic demand:
• Define the average served data rates rk for a

given terminal type k.
• Identify the fraction of subscribers sk from the

entire population.
• From the subscriber base, determine the per-

centage of active subscribers (t) over time t.
• Given the population densities for the respec-

tive deployments, the scenario specific average
data rates per area unit in megabits per square
kilometer can be derived.

Terminal and Subscriber Mixes — Emerging terminal
types such as tablets and smartphones comple-
ment PC generated mobile broadband traffic,

Figure 3. Power consumption for various BS types as a function of the load, Pout/Pmax. An LTE system with 10 MHz system bandwidth
and 2 ! 2 MIMO configuration is considered. Macro BSs employ three sectors per site. Legend: PA: power amplifier, RF: small signal
RF transceiver, BB: baseband processor, DC: DC-DC converters, CO: active cooling (only applicable to macro BS), MS: mains power
supply.
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(d) Femto BS

Figure 2.6: LTE BS power consumption depending on the signalling load. Source:
[AGD+11].

A further evolution of the RRH are the Active Antenna Systems where the RF is
also collocated directly next to the radiating antenna elements [4GA12].

The BS power consumption breakdown for the different LTE BS types are de-
picted in Fig. 2.5. These values are calculated when the BS is working at full
load. However, a part of the power consumption varies depending on the signal
load. In the literature this part is often called the dynamic power consumption
[HBB11] [ARF10]. In LTE systems, the downlink transmission scheme uses or-
thogonal frequency-division multiplexing (OFDM). Thus, the radiated power at the
antenna Pout depends on the BS physical resource allocation in the downlink and the
corresponding generated signals. The evaluation presented by Auer et al. [AGD+11]
and depicted in Fig. 2.6, shows that mainly the PA scales with the BS signal load
and the corresponding output power. Moreover, this largely depends on the BS type,
mainly impacting the Macro and Micro BS, because the PA represents a considerable
part of their total power consumption. The work presented by Auer et al. [AGD+11]
provides a linear power model that relates Pout with the total power needed by the
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2
Figure 2.7: Energy efficiency strategies classification.

BS to operate (Pin). This work was extended by Desset et al. [DDG+12] provid-
ing power models for the different BS components and types to further capture the
evolution of the E-UTRAN and the combination of different BS architectures.

2.3 ENERGY EFFICIENT ACCESS NETWORKS

The existing approaches on energy efficiency rely on the adaptation of the op-
erated part of the cellular network to the traffic load variations, in order to avoid
unnecessary energy consumption. For example, changing the BS transmission set-
tings according to the traffic levels, or even changing the access network layout, i.e.
determining which BSs should remain active and which can be deactivated.

The following surveys, cited in chronological order of publication, show the evolu-
tion and the increased interest of the research community in adaptive cellular access
networks: Correia et al. [CZB+10], Hasan et al. [HBB11], Suarez et al. [SNB12],
Budzisz et al. [BGR+14], Rao et al. [RF14], and De Domenico et al. [DCC14].
Deliverables of research projects, such as EARTH, are also a condensed literature
source in this field [EAR12c] [EAR12d]. We developed a new classification of the
energy efficient approaches, using as criteria the time scale in which the different
strategies operate. This criteria indirectly determines the part of the network the
strategies affect.

Figure 2.7 summarize the main categories of our classification. We found that
the improvements concerning the hardware itself affects the cellular network in a
long time scale, i.e. months, years, as it implies the integration of new hardware
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to the network. Some of the studies in this category denoted as Hardware Up-
grades (HU) are described in Section 2.3.1. Fast adaptation mechanisms affect the
network in a short time scale, in the order of milliseconds to seconds, reacting to in-
stantaneous load variation. This category includes the Radio resource management
(RRM) strategies, which decide for each instant which of the hardware resources
the BS should use. Some of the RRM strategies designed for power consumption
reduction are described in Section 2.3.2. Finally, approaches operating in a medium
time scale, affect the access network in the order of tens of seconds, minutes to hours.
They are denoted as Network Reconfiguration Strategy (NRS) and adapt the access
network to temporal and spatial load variations. We overview this category in Sec-
tion 2.3.3, while a more detailed review about the main characteristics of the NRS as
well as their design factors and representative literature is presented in Section 2.4.

2.3.1 Hardware Upgrades (HU)

Traditionally, the BSs were designed to be always operational, i.e. all the com-
ponents are active all the time. In order to satisfy the increasing capacity need,
more and more BS will be deployed in the coming years [And13], which increase
the energy consumption of the whole access network. The first step to face this
situation and control the energy consumption to sustainable levels, is designing BS
components to be more efficient when using them or to be deactivated when they
are not needed. These HU are integrated to the BSs and remain unchanged for long
periods after the BS deployment, in some cases throughout the lifespan of the BS. A
further step, explained in Section 2.3.2 and 2.3.3, is the development of higher level
management techniques and protocols to exploit these features as much as possible.

The most consuming element in macro and micro BSs is the PA. The energy
efficiency of the PAs can be optimized for full signal load and maximum output
power, thanks to the use of signal conditioning techniques: Digital Pre-Distortion
(DPD) increases the PA linearity and Crest Factor Reduction (CFR) reduces the
Peak-to-Average Rower Ratio (PAPR) [Xu10]. However, when the signal load de-
creases different levels of output power are possible, and the PA not always requires
the high levels of input power needed in the full load regime.

Gonzalez et al. [GFW+11] propose an adaptive transceiver chain for macro BSs.
The architecture of the PA, RF and the DC-DC power supply is designed to allow
signal load adaptivity as well as fast component deactivation. This architecture re-
quires an additional component: the Digital Signal Processing and Control (DSPC).
It analyses the signals coming from the BB unit and controls the other elements of
the transceiver chain to adapt their operation to the instantaneous signal load. The
PA is adjusted to the signal load using adaptive clipping, which generates different
levels of PAPR, allowing the reduction of the required power supply voltage to reach
an efficient operating point for the carried signal load [FBZ+10]. The PA and the
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RF are enabled to fast activate and deactivate some of the transmit blocks during
empty symbol periods. The DC-DC power supply is optimized to provide the set of
voltages required by the adaptive PA, and it is able to switch between them rapidly
and efficiently. Experiments for the validation of the adaptive transceiver chain are
presented by EARTH [EAR12e], showing significant power consumption reductions
for the different load regimens.

Another hardware upgrade for LTE systems is the use of adaptive or "smart"
antenna systems. One of the characteristics of these systems is the use of multiple
antennas per sector, also known as Multiple-Input and Multiple-Output (MIMO).
When all antennas are active, several transmission modes are possible, which allow
serving UEs under different radio conditions and take advantage of the multipath
rich environment. The BS scheduler has the capability to optimally select the MIMO
scheme that suits the UE channel conditions. The presence of several antennas
allows to improve the performance in poor signal conditions, in order to exploit
spatial diversity: the same signal stream is transmitted from each antenna but with
different coding/frequency applied, increasing the robustness of the received signal
due to redundancy. In good signal conditions the spatial multiplexing creates a
number of independent transmission channels between the transmitter and receiver,
which enables two or more different signal streams to be transmitted simultaneously,
which increases the throughput and the transmission energy efficiency.

Another characteristic of the smart antennas is the Beamforming, i.e. to adapt
the radiation patterns of the transmitted radio signals. When beamforming is used
in medium time scale (minutes to hours) the purpose is to change the shape of the
cell and its coverage area by means of modifying the beam tilt in elevation, beam
pointing and beam width in azimuth. The purpose is to dynamically adapt the link
budget of the BS in order to achieve higher level of spectral efficiency in a given area,
during a given period. Beamforming algorithms that are active on a small time scale
(ms–scheduling) allow concentrating the antenna radiated power on a per-user basis,
using adaptive weights in the antenna configuration parameters which are updated
thanks to the UE feedback, reducing interference and overall power consumption
requirements [CPB+13].

While new BSs are designed to be more power efficient, another trend in the
access network research is the use of alternative energy sources to power them.
Coupling cellular BSs to Renewable Energy (RE) sources can reduce the power grid
electricity consumption, support the cellular network in case of power grid failure
and allow cellular coverage in areas with no/limited power grid connectivity (i.e.
islands, deserts, etc.). The main constraint in the use of RE for powering BSs is the
electricity generation intermittence. For example, the solar panels performance is
determined by the sunlight intensity, cloud coverage, smog, air density, etc; the wind
energy production can be affected by the air temperature, mechanical obstructions,
altitude, etc [HNP13]. To ensure the reliability of the BS using RE, backup methods
are usually employed. Batteries are used to store the excess in the energy production,
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and to provide the required energy in periods of production deficit. Another solution
is to employ backup diesel generators for the off-grid BS operation in periods when
RE is not available. In places with power grid connection, the BS can operate in one
or both modes, on-grid and off-grid, depending on the conditions and the operator
policies. The effective deployment of RE BSs strongly depends on local information.
Some studies in this field focus in finding the appropriated dimensioning of the RE
hardware infrastructure (photovoltaic panels, wind turbines, etc.) depending on the
location conditions. For example, Paudel et al. [PSN+11] studied the deployment of
RE powered BSs in Nepal, and Moury et al. present a study made for Bangladesh
[MNH12]. Piro et al. [PMF+13] present a general analysis about the benefits a
cellular operator can achieve integrating RE infrastructure in their networks. The
study shows promising long term cost and CO2 emission reductions, encouraging
operators towards this practice. Han et al. [HA14] present an overview of research
issues related to optimal usage of RE powered BSs. For example, offloading the users
to RE powered BSs, prioritizing the RE powered BSs in cooperative transmissions
schemes, or adapting the BSs link budget and the access network layout depending
on the RE availability.

2.3.2 Radio Resource Management (RRM)

The purpose of the RRM algorithms and protocols is to efficiently utilize the
limited spectrum and the BS hardware resources, using adaptive techniques while
satisfying the users Quality of Service (QoS) needs [PK09]. The RRM strategies
determine when and which of the physical resources (transceiver chains, antennas,
subcarriers, transmission power, etc.) the BS should use to send the traffic over the
wireless link.

One energy efficient RRM strategy is the Power Control (PC). This technique
adapts the transmission power radiated at the antenna depending on the channel
conditions. Besides reducing the power consumption, this technique is also beneficial
to link adaptation and interference reduction. Kivanc et al. [Kiv03] propose a sub-
carrier allocation strategy which reduces the overall power consumption by means
of a power control strategy.

As presented in Section 2.2, the major power consumption of an operational
BS is independent of the transmission power. Thus, recent energy efficient RRM
techniques take into consideration the new flexible hardware features explained in
Section 2.3.1. The downlink Discontinuous Transmission (DTX) consists in an in-
terruption of signal transmission, allowing the momentary component deactivation
of the transceiver chain or a part of it. If the interruption is short enough, it can
be unnoticeable to a receiver. Frenger et al. [FMM+11] were the first to apply this
concept to a LTE OFDM subframe. During the periods where there is no data to
transmit DTX is applied. However, the control signals are transmitted frequently
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within each subframe, with service availability and synchronization purposes. Hence,
the authors went a step further by proposing the scheduling of Multicast and Broad-
cast Single Frequency Network (MBSFN) sub frames in periods of low load. The
MBSFN have reduced control signal overhead which increase the overall attainable
power reductions if DTX is used. Holtkamp et al. [HAH11] propose a downlink
resource allocation scheme that combines PC and DTX, such that downlink power
consumption is minimized while still upholding the required user QoS .

The adaptation of the number of active antennas is another RRM strategy con-
sidered for power and energy reductions. Kim et al [KC09] consider to switch the
transmission mode between MIMO and SIMO antenna schemes in the UE to reduce
their energy consumption when lower data rates can be used. A more general ap-
proach for the BSs is presented by Skillermark et al. [SF12], where the concept of
antenna muting is proposed: one or several antennas of a MIMO system can be de-
activated, reducing the power consumption of the BS but impacting the achievable
capacity due to the reduction of the set of transmission modes the BS can use.

Gupta et al. [GS12] propose the addition of a Traffic Shaping Module (TSM) to
the RRM schedulers to reduce the BS power consumption. The purpose of the TSM
is to buffer data to further transmit it in bursts, thus providing longer DTX periods
between burst. On the contrary, the capacity adaptation technique spreads the
data in time, in order to reduce the instantaneous needed bandwidth and adapting
the operating point of the PA to the signal load to reduce the power consumption.
Results presented by EARTH [EAR12d] show that the performance of this two traffic
shaping schemes depends on the traffic conditions and the considered deployment.

2.3.3 Network Reconfiguration Strategies (NRSs)

The purpose of a Network Reconfiguration Strategy (NRS) is to adjust the access
network configuration to temporal and spatial load variations, in order to reduce the
overall energy consumption. The difference between the RRM techniques and the
NRSs is the time scale at which the reconfiguration is done and the network scope
it impacts. The RRM techniques react to almost instantaneous load variations, in
the order of milliseconds (e.g. LTE OFDM subframe), and they affect only the cell
applying the technique, without requiring reactions of the neighboring cells. NRSs
react on a longer time scale, e.g. several seconds or minutes to hours, and may
require coordination and cooperation of a group of cells to preserve coverage and
service availability.

The NRSs are denoted with different terms in the literature. For example, cell/BS
switching (on/off) [MCCM12, OSK13], cell/BS sleep mode [ESC11, GWOF13], cell
breathing [MMS10], cell zooming [NWGY10], cell wilting and blossoming [CFC+11],
dynamic sectorization [HG11], among others. However, all these approaches share
the same principle for energy efficiency in the access network, which is to deactivate
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(partially or completely) unneeded radio resources (e.g. cells, complete BSs, group of
BSs, complete access networks) when possible, in order to adapt the active resources
to the traffic demand in a specific geographic area. The traffic demand can vary
in two dimensions: temporal and/or spatial. Human activity is the principal factor
affecting the temporal variation of the traffic load. Naturally, during the late night
periods the load is very low, while during the day the usage increases considerably,
with some noticeable periods of very high load. The latter are often called the
busy hour and cellular operators select, position and configure their BSs to have
enough capacity to be able to afford the traffic in these scarce periods. Mobility
and customer routines are the principal reasons for the load spatial variation. BSs
located in business areas exhibit different load patterns than the BSs located in
residential areas. Moreover, social places such a shopping centers or restaurants,
and social events such as concerts or sport encounters, create temporary customer
concentrations where the load served by the cellular networks is very high.

The design of a NRS has three challenges: minimize the access network energy
consumption, guarantee the service availability over the area, and minimize the
perceived degradation of the user experience. The general procedure of the execution
of a NRS is as follows. Firstly, the required information about the afforded traffic
load is retrieved by means of measurement, historical data or estimations. Then,
this information is processed to determine if there is the need or the opportunity
of executing a reconfiguration in the access network. If so, the different available
reconfiguration options are evaluated and the appropriated configuration is selected
depending on the target performance level.

A network reconfiguration is needed when the current network state cannot sat-
isfy acceptable levels of performance. If the load increases, some cells may need to
be activated, as there is the risk of not satisfying the pre-defined and acceptable
service quality for the active users in the network and the expected new arrivals.
If the load decreases, some cells could be deactivated, as the load can be handled
by some other cells which remain actives. This cell activation/deactivation is usu-
ally done conservatively in the literature, triggering the reconfiguration process on
load thresholds that are still manageable by the network, in order to prevent an
unaffordable trend.

Once the reconfiguration need is identified, the NRS algorithms should determine
which of the different reconfiguration options is the most appropriated to perform
given the pre-defined performance target and the system constraints. Depending
on the scope that the algorithm controls (i.e. the number of cells), the hardware
degrees of freedom (i.e. the number of configurable parameters), and the user and
load spatial distribution, a large number of reconfiguration possibilities may be
available. The impact of the different reconfigurations is evaluated estimating the
values for different performance metrics if the reconfiguration was applied, either
considering the current state of the network, or estimating the future states given
the load trend. This is usually formulated as an optimization problem where the
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objective is to find the set of reconfiguration parameters that minimizes the network
energy consumption, while satisfying all the performance metric constraints.

In this thesis we mainly focus on this type of techniques. Thus, in the next
section we present in more detail the different NRSs we found in the literature as
well as the main hypothesis and design factors for their formulation and evaluation.

2.4 NETWORK RECONFIGURATION STRATEGIES ANALYSIS

A Network Reconfiguration Strategy (NRS) adapts the access network layout
and capacity depending on the traffic conditions. To do so, the set of active radio
resources changes over the time. The NRSs determine which resources should be
activated or deactivated and when a given configuration should be applied. An
important criteria to determine when designing or studying a NRS is the scope of
application. This will determine which resources the NRS can control, e.g. some
NRSs control the state of the transmitters and cells within a single BS, while some
other NRSs control multiple BSs of the deployment or even all BSs of the considered
access network.

When multiple BSs are considered, the architecture and deployment arrangement
determine the degrees of freedom the NRS can have, e.g. when the BSs are densely
deployed allowing cell overlapping, the number of candidate cells for deactivation
is high, as well as the complexity of the reconfiguration decision process; while in
a coverage constrained scenario, the set of candidates is small but techniques for
preserving the service availability should be employed. Section 2.4.1 describe more
in detail these issues as well as how they are addressed in the reviewed literature.

A reconfiguration decision is taken when the current access network configuration
cannot satisfy the required performance, either in terms of energy consumption, or
in terms of service quality. A system with all resources activated but no customer
activity is not optimal in terms of energy, while a system with just a few resources
activated but high demanding customer activity is not optimal in terms of service
quality. Thus, a trade-off between these performance metrics should be found by the
NRSs. In Section 2.4.2 we describe how these metrics are defined in the literature.

Section 2.4.3 present the different criteria we found in the literature which de-
termine the NRS operation. For example, which entities are capable of taking a
reconfiguration decision, how the traffic variations are considered, how frequent the
system is evaluated to determine a reconfiguration need and how the different recon-
figuration possibilities are evaluated to choose the most suitable given the system
state.

We present in Annex A a complementary detailed table with a summary of the
reviewed literature, pointing for each work the different criteria the authors consider
within the classification provided in the following sections.
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2.4.1 Scope of application

The type of BSs in the network, as well as their architectural and logical config-
uration, define different points to consider when designing and evaluating NRSs. In
this section, we first present the studies concerning NRSs acting on a local BS scope,
i.e. controlling only the parameters of a single BS site. Afterwards, we present the
strategies acting on a global access network scope. We divide the types of deploy-
ment depending on the number of access network layers the NRS should control:
if the deployment is homogeneous, the NRS affects only one access network layer,
while in heterogeneous deployments the NRS can control multiple access network
layers. Each of these categories is further divided depending on the architectural
characteristics of the different deployments and the approaches found in the litera-
ture to apply NRSs on them. In Table 2.1 we present a summary of the criteria we
use to characterize the scope and deployment types considered in the literature, as
well as the references to the representative reviewed works for each of them.

2.4.1.1 Standalone BS

Some studies focus on the design of NRSs for individual BSs in order to adapt
its resources to the local traffic condition within the BS scope, without interac-
tion with the rest of the network, i.e. no actions are requested or performed by
neighboring BSs, and no considerations are made about the impact of the recon-
figuration in the network global scope. The BS resources controlled by the NRS
vary depending on the technology and the available hardware. For example, Saker
et al. [SES09, SE10, SEC10] and Elayoubi et al. [ESC11] present a general ana-
lytical model of a NRS strategy intended for adapting the number of active GSM
transmitters and 3G active carriers depending on the traffic afforded by the entire
BS. Each of these resources is seen as a portion of capacity, and the authors fo-
cus on providing activation/deactivation policies to maintain the probability of user
dissatisfaction low, e.g. triggering the activation of another resource in loads still
manageable by the current active ones, in order to conservatively prevent lack of
capacity when serving the time varying traffic.

Tomaselli et al. [TSPB13] go a step further and test their proposed NRS in a
controlled test bed environment, considering an operational BS. The authors set up
such BS with three overlapped cells, which are deactivated or activated depending
on the number of active UEs in the system. The authors show that the reactivity
of LTE BS hardware is adequate to perform fast activation/deactivation of the
cells and that the access network management equipment can be used to implement
automatic cell switching schemes, as it provides traffic and cell status monitoring, as
well as the required interfaces for implementing the switching procedures. However,
the impact in the QoS of the served UEs was not investigated by the authors.
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Table 2.1: Summary of the reviewed NRSs literature, classified by the NRS scope
of application, as well as other related relevant criteria.

Criteria
Representative

references

Sc
op

e
of

ap
pl
ic
at
io
n

Standalone BS

[SES09] [SE10]
[SEC10] [ESC11]
[TSPB13] [HG11]

[HHA+13] [HAB+13]

Homogeneous
deployment

Without cell overlapping

[CCMM08]
[CCMM09]

[ACCM09] [SKB10]
[STKB11] [RRAF13]
[GO12] [GWOF13]
[HSL13] [TGA13]

With cell
overlapping

Considering overlap
minimization

[ZGY+09] [OK10]
[OKLN11] [NWGY10]

[Niu11] [MMS10]
[CZZN10] [GZN12]

[GWOF13] [CLHS14]

Considering cell role
differentiation

[CCMM09] [SMES12]
[MSES12]

[GWOF13][HMJ11]
[MCCM11] [CFC+11]
[STKB11] [CFGU12]
[MCCM12] [CJXH13]
[OSK13] [SNB14]

Heterogeneous
deployment

Considering multiple RATs [SES09]
Considering
multiple
domains

Inter-operator
cooperation

[HMJ12] [MM13]
[OKLN11]

Customer-operator
cooperation

[SNB14]

Some other research work consider not only the BS capacity issues of deactivat-
ing/activating a resource, but also the spatial implications of it. For example, Hevizi
et al. [HG11] consider a BS covering a given area with a set of different cells/sectors,
each of them configured with directional antennas, taking care of a portion of the
BS covered area in an almost not overlapped fashion. The authors propose a NRS
in which depending on the traffic load served by the entire BS, some of these sec-
tors may be deactivated. To maintain the BS coverage the remaining active sectors
should reconfigure, mainly changing their beam form and other antenna parameters
in order to enlarge or shrink the spatial coverage of the radio resources.

Cellular operators offer almost universal service availability in urban and subur-
ban areas, and the NRSs should be able to continue ensuring it when operating in
such scenarios. However, there are some other critical scenarios where the priority
is not the universal service availability but the energy consumption. Heimerl et al.
[HHA+13, HAB+13] design and implement a high range BS with minimal energy
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consumption using virtual coverage: the BS is activated only on demand to satisfy
users request. The system was deployed in rural Papua, Indonesia, contributing to
bring service availability in zones with difficult access to electricity, i.e. an off-grid
village powered only by solar panels and diesel generators.

2.4.1.2 Homogeneous deployments

Homogeneous deployments are composed of several BSs of the same technology,
belonging to a unique layer, controlled exclusively by one operator. They are de-
ployed over the service area to provide universal coverage and support seamless
mobility. Depending on the arrangement of the BSs and the radio configurations,
the cells of an homogeneous access network may overlap.

In the case of a Non-Overlapping configuration, cells are set up according to care-
ful radio resource planning in order to not overlap their coverage zones. In this kind
of deployments the critical factor to consider by the NRSs is the service availability.
The deactivation of a resource in this coverage-limited scenario may compromise the
service availability and/or the minimal service quality if the appropriated comple-
mentary actions are not performed, e.g. the execution of a coverage preservation
technique (Section 2.4.2.1). Chiaraviglio et al. [CCMM08, CCMM09] evaluates the
feasibility of a deactivation scheme estimating the propagation limits of the remain-
ing active cells depending on their radio characteristics (e.g. transmission power).
If these limits are over a minimal required threshold, the deactivation pattern is
feasible as the coverage is maintained. This estimation is widely used in the litera-
ture to check if the coverage constraints are met when cells may be deactivated in
a Non-Overlapping deployment configuration, e.g. [SKB10, STKB11, RRAF13]. In
addition to the propagation limits, a minimal signal quality within the cells bound-
aries is established by some authors for considering the coverage constraint satisfied
in a Non-overlapping deployment. For example, Guo et al. [GO12, GWOF13] and
Han et al. [HSL13] consider that a deactivation scheme is acceptable if the SINR
is above a certain minimum threshold, which is required for a predefined minimal
data throughput in the cell boundaries of the cells that will remain active.

In the Overlapping case, the coverage area of different cells can intersect, normally
using different parts of the wireless spectrum and/or smart coordination in order to
avoid interference and support seamless mobility between cells. In this scenarios,
the coverage can be maintained in different ways, which makes the deactivation/ac-
tivation schemes more complicated to select. We identify two kind of approaches in
the literature for doing this selection when considering overlapping scenarios.

The first kind of approaches aims at minimizing the overlapping condition con-
sidering all cells as candidates for the deactivation. For example, Oh et al. [OK10,
OKLN11] investigate the optimal BS density and parameters to transform an over-
lapped scenario in a non-overlapped one. The authors also present an estimation
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of the overlapping reduction attainable in a real deployment – a portion near the
city center of Manchester, United Kingdom. The authors sequentially deactivate
the BS with the minimum distance to the nearest active neighbor, and show that
using the same fixed cell size for all BSs, a considerable number of BSs can be de-
activated (between 10% and 70% depending on the radio configuration), while still
maintaining the coverage constraints dictated by propagation limits. However, in
dense urban scenarios, such as the city center of Manchester, the access network
is dimensioned accounting the traffic spatial distribution in the busy hour, which
results in different overlapping BSs types with a large variety of cell sizes. Thus, the
uniform deployment proposed by the authors may cause traffic imbalance, neglect-
ing the traffic spatial variations. Another strategy for minimizing the overlapping
is presented by Zhou et al. [ZGY+09] and Niu et al. [NWGY10, Niu11]. The au-
thors propose to dynamically adapt the cell sizes in order to distribute the traffic
between the overlapped cells, concentrating the traffic in cells with high load, which
makes possible to deactivate the low loaded ones. Such strategy account the traffic
spatial distribution but may require coordination in order to avoid congestion and
user dissatisfaction in the cells which remain active.

The second kind of approaches divide the cells into two sets: critical cells, which
will remain active to maintain coverage, and flexible cells, which can be deactivated
when required [BGR+14]. This can be done in a fixed way, i.e. the NRS should
only chose when and which flexible BSs should be activated/deactivated; or in a
variable way where the set of critical and flexible cells may change depending on the
network conditions. These approaches are sometimes taken when considering small
BSs, e.g. Micro, Pico or Femto BSs deployed under the coverage of a Macro BSs.
Moreover, it is usually assumed that the Macro BS is the critical one guaranteeing
coverage. For example, Saker et al. [SMES12] study the impact of the deployment
of Pico cells under the Macro coverage to increase the capacity of the network. For
reducing the energy consumption, the authors consider that only the Pico cells are
candidate to be deactivated in periods of low load. However, as pointed by Micallef
et al. [MSES12] and Guo et al. [GWOF13], in zones when the density of small
cells is high or when they are conscientiously deployed, the required coverage can be
provided by them, and may be convenient to deactivate the Macro BSs when appro-
priated for minimizing the energy consumption. Samdanis et al. [STKB11] propose
to dynamically select which BSs are critical and which are flexible depending on the
spatial load distribution. The authors select the high loaded BSs as critical BSs,
as they have less probability to be deactivated. This approach is also used when
considering distributed NRSs where the cells decide themselves their status. For
example, in the NRS proposed by Oh et al. [OSK13] the neighboring cells transac-
tionally agree in their roles, either a cell is allowed to be flexible and deactivate, or
it is allowed to remain active to take care of the traffic and coverage.

Capone et al. [CFGU12] go a step further and propose an overlapped deployment
architecture for future networks, in which high range BSs are deployed only with
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signalling and control purposes and hence they cannot be deactivated. In this archi-
tecture a dense small cells layer is deployed with service purposes, and each cell is
activated or deactivated depending on the user activity detected by the high range
BS. If the implementation barriers are overcome (e.g. synchronization, backhaul ar-
chitecture constrains and bottlenecks), this approach can be highly efficient, as the
cell reactivity dimension is reduced, i.e. the small cell coverage may also represent
small number of users to serve and to react to, which makes the energy consumption
more proportional to the carried traffic. Moreover, only few high energy consuming
BSs will be needed in the network, reducing the fixed part of the access network
energy consumption.

2.4.1.3 Heterogeneous deployments

The NRSs considering heterogeneous deployments may control or make use of
different layers of access nodes, which may belong to different technologies or ad-
ministrative domains. The principal factor the NRSs needs to consider in this kind
of deployment is the traffic distribution between the different layers, which is often
conditioned by the capacity difference between layers, the user attachment capability
and/or the administrative rights.

Some studies focus on allowing the interoperability between different Radio Ac-
cess Technology (RAT) (e.g. 2G/3G/4G). In this case all layers are under the
administrative control of one operator, and the BSs are often collocated, which
facilitates the NRS control. For example, Saker et al. [SES09] studied the load dis-
tribution between 2G and 3G technologies to minimize energy consumption while
preserving the QoS. The authors point that legacy technologies are less energy ef-
ficient, consuming more energy while providing less capacity. Thus, the intuitive
and more efficient approach in such heterogeneous deployment is to deactivate the
2G BSs as much as possible. This highlights the importance of having compliance
between the cellular generations to be able to successfully apply such NRS without
compromising the service availability for the users using a given technology.

When considering different administrative domains two cases are considered in
the literature: the studies considering that the NRS can control BSs from differ-
ent operated access networks, i.e. inter-operator cooperation; and the studies that
consider the NRS can make use of some customer BSs (e.g. Home Evolved Node B
(HeNB) or WiFi access points) to offload the operator traffic, i.e. customer-operator
cooperation. Issues about migration of the energy consumption and quality of ser-
vice of the customers should be considered in the design of NRS treating with this
type of network inter cooperation.

In the case of inter-operator cooperation, we found two different approaches for
applying NRSs in the reviewed literature. On one hand, Oh et al. [OKLN11] and
Hossain et al. [HMJ12] apply the NRS in this heterogeneous scenario as if it was

26



CHAPTER 2. LTE AND EXISTING ENERGY EFFICIENCY APPROACHES

2

a big overlapped homogeneous scenario taking in consideration all the BSs of the
different operators. Thus, BSs belonging to different operators can be active at the
same time. On the other hand, Marsan et al. [MM13] considers to progressively
deactivate and activate the complete set of BSs belonging to a given network, so that
BSs belonging to a given operator are either all operative or all inoperative. The
first approach is more complex, as it intends to be more dynamic, which may need
strong interactivity between the different access networks. The second approach only
requires the operators to agree on predefined switching schedules. However, as it is
pointed by Marsan et al. [MM13], a large number of open issues affecting the NRSs
need to be additionally considered for this kind of heterogeneous deployments, e.g.
control complexity, UE roaming possibility, consumer and commercial protection
policies, etc.

In the case of customer-operator cooperation, the operator has the objective of
relocating the traffic to customer’s BSs when needed in order to deactivate some of
his cells. For example, Suarez et al. [SNB14] consider a heterogeneous deployment
composed of operator Macro BSs and customer Femto BSs or HeNBs. The authors
rely in the traffic distribution between the two types of cells to create Macro cell
deactivation opportunities,. To do so, they consider changing the cell size of the
operated BSs and establishing user association policies for the HeNBs. The QoS of
the HeNB owners is preserved as the authors consider they can limit the amount of
resources available for public use, i.e. the amount of resources available for oper-
ator traffic offload. Thus, the number of Macro cells that the NRS can deactivate
depends not only of the density of deployed HeNB, but it is also proportional to the
cooperation willingness of their owners.

2.4.2 Objectives and constraints

NRSs primary objective is to adapt the access network configuration depending
on the traffic load. Usually, the load is measured or estimated on a per-cell basis,
aggregating the individual cell measurements a posteriori if more high-level metrics
are required, e.g. site load, cell cluster load, geographic area load, or the load
afforded by the entire deployment. The load is calculated either by observation or
estimation of one or multiple parameters. For example, the number of active users in
a cell, the aggregated traffic generated by the active users - measured as throughput
or as number of request. The downlink resource block occupation is also a load
metric used in the literature.

The ultimate objective of the NRSs is to increase the energy efficiency of the
system in consideration. Such energy efficiency is characterized in the literature
using different metrics. For example:

• Energy or power reduction compared to a baseline, which is usually the Always
On paradigm in which all the cells of the modelled system are permanently
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active.
• Relation between network performance and energy consumption, e.g., bit-

s/Joule, etc.
• Relation between network coverage and power consumption, e.g., km2/W,

subscriber/W, etc.
The first metric is widely used and is also presented in terms of number of deactivated
cells. This is often the case when considering equivalent power consumption for the
modelled cells, i.e. only one type of BS is considered. The last two metrics are often
used when considering the overall performance given a non uniform deployment, i.e.
with different cell sizes and/or BS types, which can result in different performances
depending on the approach taken for cell deactivation and coverage preservation,
e.g. different realizations of a NRS with different criteria for the selection of the
critical and the flexible cells.

The NRSs should respect two general constraints when deciding to change the
access network configuration: the service availability should be ensured over the
service area of the operator, and the service quality should be over the predefined
acceptable standards. In the following sections we present how these parameters are
characterized in the literature and the techniques employed to satisfy them when
applying NRSs.

2.4.2.1 Service availability and coverage

In the reviewed literature, the coverage of a cell can be defined using two different
but complementary criteria: the propagation limits and the signal quality. When
considering only the propagation limits, the coverage of a cell is the geographical
area where the BS can establish effective communication with the UEs. This is,
UEs placed in this area receive pilot and control signals from the cell and are able
to connect to it. When additionally considering the signal quality in the definition,
the coverage area of a cell is reduced to the geographical area where the UEs can
effectively establish communication achieving a minimal level of quality of service.

When applying a NRS, the resulting access network configuration should ensure
that all geographical points of the operator service area are covered by at least one
cell. This is often simplified to be equivalent to ensure that all considered UEs in
the system are covered by at least one cell. Nevertheless, some algorithms define
a flexibility margin, considering that a given configuration is acceptable if a given
percentage of UEs are covered, e.g. 95% or 98% are often selected as acceptable
values.

In some critical conditions, the coverage metric is expressed as purely Service
availability. For example, Heimerl et al. [HHA+13, HAB+13] elaborate mechanisms
to offer coverage on demand in zones with limited energy resources. The BS will be
available only when a request arrives, without transmitting any signal otherwise.
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However, in urban scenarios, deactivating a cell may create an unacceptable cov-
erage hole in the network where the service is unavailable for the users. In order
to avoid this, the cells that remain active may reconfigure to compensate the cov-
erage in the required area. Activating a cell may create interference with the BSs
already covering the zone, which is solved by changing the compensating BSs cover-
age (de-compensate). Both cases require modifications in the hardware parameters
to achieve the target coverage configuration. The flexibility in the coverage changes
depends on the BS hardware and the propagation conditions of the service area
environment. Two main parameters are considered in the literature to achieve this
coverage change:

• Transmission power: Controlling the intensity of the transmitted signals, in-
creasing or decreasing the propagation limits.

• Antenna configuration: Controlling the radio beam geometry to direct the
signals to specific spatial areas.

In the case of homogeneous overlapping networks the coverage may be guaran-
teed without compensation needs. An example is the configuration presented by
Saker et al. [SMES12] and Micallef et al. [MSES12] in which Pico BSs are deployed
under the coverage of a Macro BS, which is always active. The Pico cells are deac-
tivated without considering coverage issues, reacting only to capacity requirements.
However, it may also be considered that BSs deployed for capacity duties can also
benefit from the coverage compensation techniques to capture the spatial variations
of the load. For example, Cardoso et al. [CPB+13] propose to change the coverage
parameters of the cells in order to direct the radio resources to the areas in need
of increased capacity in a given moment. This approach presents a further level of
adaptation to load spatial variations.

Some authors consider as well that coverage compensation actions can be avoided,
using instead strategies to improve the cell-edge UE performance, such as Coordi-
nated Multi-Point transmission/reception (CoMP) and relays. For example, Cao et
al. [CZZN10], Han et al. [HSL13] and Guo et al. [GO13] propose to use CoMP
schemes to provide the minimal required coverage and capacity to the UEs located
in the area of an absent cell. Such UEs may detect different neighbor active cells but
having poor signal conditions. The principle behind the proposal is that the signals
transmitted from the different neighboring active cell can be combined. Thus, the
UEs perceived performance is increased to satisfactory levels.

2.4.2.2 Service quality

The Quality of Service (QoS) metrics represent the perceived performance by the
UEs when using a given service. The QoS can be either measured or estimated by
one or several of the following parameters:

• Throughput: rate of successfully transmitted information, usually measured
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in bits per second (bit/s or bps).
• Delay: this parameter usually refers to the end-to-end delay, i.e., the time that

the user needs to transfer a packet to a destination, crossing the network. But
it can also refer to the radio interface delay, which consider only the time the
packet takes for crossing the radio protocol stack.

• Packet delay variation or Jitter: variation in the reception time between con-
secutive packets.

• Packet loss: proportion of packet which fails to reach their destination
• Bandwidth: portion of the spectrum used to transmit information (Hz). Some-

times used to denote the maximal throughput the channel can support (bit/s
or bps)

• Spectral efficiency: throughput divided by the used bandwidth to transmit the
information (bit/s/Hz)

An important figure in the presentation of the metrics and the formulation of the
system constraints when applying NRSs is the Outage, which represents the ratio of
users that do not reach the minimum acceptable level of the QoS metric to the ones
than are satisfied. This metric is sometimes called Blocking probability depending
on the system model and the considered technology. The execution of NRS should
keep the outage considerably low, i.e. below a predefined threshold, in order to
avoid general user dissatisfaction.

When considering mobility and/or network reconfigurations, two important met-
rics are evaluated in the NRS studies: the Dropping probability and the Handover
failure rate. The dropping probability expresses a measure of the possibility that
the ongoing user sessions quality degrades considerably, until reaching unacceptable
levels. For example, Samdanis et al. [STKB11] uses the dropping probability to
determine if it is acceptable to perform a given reconfiguration considering that
the traffic is distributed to neighboring cells that may not have enough capacity to
serve the ongoing services. When considering system level approaches, the handover
failure rate express the ratio of UEs which do not finish the handover procedure to
the users that complete it successfully. For example, Marsan et al. [MCCM11]
and Conte et al. [CFC+11] take this into account for the design of progressive cell
switching, which ensures the smooth transfer of users from/to the neighboring cells
when a cell is activated or deactivated.

2.4.3 Algorithm design factors

Once the system model is established and the performance metrics have been
selected and modelled, the system evaluation and decision processes should be de-
fined. In particular three main aspects should be considered. First, how often and
with which system load information accuracy the system is evaluated to identify
the need of a reconfiguration. These two factors are often related. On one hand
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Table 2.2: Summary of the reviewed NRSs literature, classified by the time frame
in which the strategies are applied, as well as other related relevant criteria.

Criteria Representative references

T
im

e
fr
am

e

Offline Binary daily planning [CCMM08] [CCMM09] [MMS10]
[ACCM09] [MM13]

Variable daily planning [CZZN10] [OK10] [MCCM12]
[SMES12] [GWOF13] [HSL13]

[OKLN11] [RRAF13]

Online Slow reaction [SE10] [SEC10] [ESC11] [GO12]
[CJXH13] [GO13] [DUGK14] [SKB10]

[STKB11] [MCCM11][CFC+11]
Fast reaction [ZGY+09] [NWGY10] [Niu11] [SES09]

[GZN12] [OSK13] [SMES12]
[HHA+13] [HAB+13] [TSPB13]

[CFGU12] presumed: [HG11] [HMJ11]
[HMJ12] [OSK13] [CLHS14]

we found techniques that base the decision purely on load information coming from
traffic statistics. These NRSs may execute the decision process only a few times,
calculating the optimal configurations and reconfiguration instants for a given pe-
riod, e.g. a day or a week. On the other hand, the NRSs reacting to the actual
load variations in the system tends to decide the configuration and reconfigure more
frequently. Second, the control scope of the NRS should be established, defining
which entities will take the decisions and based on which information. This will
define the scope of the impact caused by a given reconfiguration decisions, as well as
the number of variables to consider in the decision process. And last but not least,
the decision process should be defined, determining how to take the best decision
depending on the system state and considering all the configuration possibilities. In
the following sections we describe the different approaches we found in the literature
for these three design factors.

2.4.3.1 Time frame and traffic estimation

A NRS algorithm may be differentiated depending on how the traffic variations
are considered, how frequent the system is evaluated and for how long a given
configuration will be applied. Table 2.2 summarizes the main categories we identified
for characterizing the different approaches. The references to the representative
literature are presented as well. Offline strategies determine when and for how long
to apply a given access network configuration based in traffic statistics, while Online
strategies determine which configuration to apply given the actual traffic conditions
and possibly the near future trends. These categories are further described in the
following presenting some relevant examples as well.

Offline:
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In this type of algorithm the reconfigurations are performed based on a prede-
fined schedule. This schedule is the algorithm output, taking as inputs previously
measured and processed information such as traffic statistics. Offline algorithms
have low complexity and low processing overhead. However, they present the risk
of over- or under-estimating the load during unexpected events, e.g. a short period
of sudden traffic increase. Due to spatial and temporal load variations, different
switching schedules may be required at different locations in the network, e.g. in
business areas, the periods of low load are longer during the weekend than during
the week [MM13].

This kind of algorithms is particularly suitable for BS hardware with low dy-
namism. For example, most of the 2G and 3G BSs deployed nowadays were not
designed for dynamic switching, and turning them off comes at the cost of long wake-
up times. Moreover, too frequent switching can considerably shorten their lifespan.
The early works on NRSs considered these constraints in the strategy design, and
based the switching decisions on historical data. For example, Chiaraviglio et al.
[CCMM09], Micallef et al. [MMS10] and Ajmone-Marsan et al. [ACCM09, MM13]
propose to reconfigure the access network once per day, which produces two system
states: minimal energy consumption in the period of the day where very low load
is expected, e.g. the late night and early morning, and full consumption the rest of
the day.

More adaptive schedules are presented by Cao et al. [CZZN10], Oh et al. [OK10,
OKLN11], Marsan et al. [MCCM12], Han et al. [HSL13], Guo et al. [GWOF13],
Rengarajan et al. [RRAF13] and Saker et al. [SMES12] . The authors propose to
define several periods during the day, and depending on the expected peak load level
over each period, a given configuration is associated and scheduled for that period.

Online:
Online algorithms estimate the load and other required inputs based on measure-

ments of the current system state. The resource switching decisions closely follow
the variations of the traffic load, making the adaptation of the access network more
energy efficient and allowing the reactivity to unexpected load fluctuations. How-
ever, the constant measurement and reconfiguration make online algorithm more
complex and costly in terms of processing. Moreover, they often require informa-
tion and coordination from several access network elements in order to estimate the
impact of the reconfiguration, and the required actions to perform (e.g. handover
users, compensate coverage, etc.).

The important criteria to consider by the online NRS is to determine if a re-
configuration is needed or worth given the current system state, and if the chosen
configuration will satisfy near future system state conditions. Thus, two periods are
identified in the execution of online strategies, which also determine the degree of
reactivity and adaptation to load fluctuations: the decision period and the steady
state period. Four processes are identified in the decision period: measurement,
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coordination (if any), decision and reconfiguration.
An online algorithm is considered having Slow reaction when the decision pro-

cess is time consuming. The studies considering this time frame require that the
reconfiguration decision is carefully taken. It should be also verified if the resulting
configuration will be maintained for acceptable and long enough steady state peri-
ods. For doing this, the measurement periods have to be large enough to collect a
statistically significant amount of information to support the decision process. For
example, in the strategy proposed by Guo et al. [GO12, GO13], each BS continu-
ously monitors its load level, and the NRS take the reconfiguration decisions each
15 minutes based in average load values of the previous 15 minutes period. Simi-
larly, Chen et al. [CJXH13] monitor the load for 30 minutes in order to determine
the appropriated component carrier scheme to apply. However, no study about the
suitability of the strategy for the next period is made by these authors. Contrary,
Dawoud et al. [DUGK14] developed a prediction scheme that collect the traffic in-
formation during the measurement period and process it to predict the future traffic
trend and select the appropriated configuration accordingly.

Concerning the reconfiguration process, Saker et al. [SE10, SEC10] and Elayoubi
et al. [ESC11] select the length of the reconfiguration and steady state periods based
on estimations in order to avoid too frequent switching for the constrained hardware
the authors consider. Samdanis et al. [SKB10, STKB11] discuss about performing
progressive reconfiguration process which are time consuming but no estimation of
the time frame in which the algorithms will be executed is provided. However,
some authors focus on the design such progressive reconfigurations. Marsan et al.
[MCCM11] studied the progressive cell deactivation process, in which the trans-
mission power of the cell of interest is reduced progressively by a given amount in
different time steps. The authors estimates the number of UEs that will perform
handover depending on their position, and each time step is selected appropriately
by estimating the time needed by the UEs to successfully perform the required han-
dover procedure to attach to a neighboring cell. The process is shown to be time
consuming for the small cells considered by the authors, taking up to 1 minute de-
pending on the layout of the network and considering uniformly distributed users.
The work is complemented by Conte et al. [CFC+11] designing the complementary
activation process as well.

Fast reaction algorithms have very short decision periods. The measurement
process is done instantaneously, i.e. the algorithm takes a sample of the current state
of the system, and the decision process is triggered using this input to determine
the most appropriate network configuration satisfying the performance targets. For
example, Tomaselli et al. [TSPB13] evaluate in a test bed a fast measurement
scheme making the hardware reactive to the instantaneous variation in the number
of active users in the BS.

The factor that determines the adaptivity of fast reaction algorithms is the steady
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state period. The NRS is more more adaptive to load variations when the steady
state periods are short, but frequent switching can be detrimental to the service
quality, as the constant variation of the radio conditions impacts the signal quality
perceived by the UEs. Two approaches were identified in the literature to avoid the
constant switching: predefine the length of the steady state periods, or apply the
algorithms in periods of low load variability. In the first case, Niu et al. [NWGY10,
Niu11] propose fixed steady state periods, while Gong et al [GZN12] propose a
tunable parameter that determines the length of the steady state period and the
reactivity of the strategy. However, too long steady state periods also come with
the risk of underestimating the load. In order to tackle this trade-off, protection
margins are selected in the literature, for which the optimal network configuration
is obtained using as inputs modified values of the measured system load or the
configurations performance. For example, Zhou et al. [ZGY+09] uses a protection
margin in which the configuration is selected for load corresponding to the current
load scaled by a predefined factor. Instead, Oh et al. [OSK13] modify the decision
condition itself, adding an hysteresis margin to the reconfiguration threshold, which
reduces the level of load for which a given configuration is acceptable. In the second
case, Micallef et al. [MSES12] suggest to apply their NRS only in periods of low
load variability, i.e. during the 12-hour period representing low traffic, in order that
the reconfigurations are rarely triggered once a first low consumption configuration
was established.

Some other studies design their NRSs to support constant switching. For exam-
ple, Heimerl et al. [HHA+13, HAB+13] implemented a fast reaction system in their
BS for critical energy conditions. The BS activate once a user request is detected,
and deactivate when no requests are ongoing. In the futuristic access network ar-
chitecture proposed by Capone et al. [CFGU12], the small cells providing services
to the users are activated and deactivated when commanded by the controller cell.
In order to serve the users without delay, these small cells should be highly re-
active when activating as well as when deactivating, in order to make the energy
consumption closely proportional the network usage.

In some of the reviewed literature, neither the time frame in which the decision
mechanisms are executed, nor the length of the steady states are discussed. But in
some cases, a fast reaction time frame can be presumed given the NRS scope and/or
the formulation of the reconfiguration process. For example, Hevizi et al. [HG11]
base the reconfiguration decisions on the instantaneous number of users with queuing
information in the BS, which implies an almost instantaneous decision period. In
the distributed NRSs proposed by Hossain et al. [HMJ11, HMJ12] and Oh et al.
[OSK13], each flexible BS decides its status based on the instantaneous load of itself
and its neighbors.
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Table 2.3: Summary of the reviewed NRSs literature, classified by the type of control
scheme used by the strategies, as well as other related relevant criteria.

Criteria Representative references

C
on

tr
ol

sc
he

m
e

Centralized
Offline [CCMM08] [CCMM09]

[MMS10] [CZZN10] [OKLN11]
[MCCM12] [MM13] [RRAF13]
[HSL13] [GWOF13] [SMES12]

Online Local scope [CJXH13] [CFGU12]
Global scope [GO12] [GO13] [ZGY+09]

[NWGY10] [Niu11] [SKB10]
[STKB11] [GZN12] [MSES12]

[CLHS14] [DUGK14]

Distributed Non cooperative Empty cell [ZGY+09] [NWGY10] [Niu11]
Standalone scope [SES09] [SE10] [SEC10]

[ESC11] [TSPB13] [HG11]
[HHA+13] [HAB+13]

Cooperative [GO12] [GO13] [OK10] [OSK13]
[HMJ11] [HMJ12]

2.4.3.2 Control Scheme

When considering the different NRS in the literature, the scope of control as
well as the scope of the information used for the decision process may be different,
which defines different control schemes. We classified the literature depending on the
control scheme as shown in Table 2.3. Centralized NRSs represent algorithms having
complete information about the entire system state and selecting the configuration of
any cell accordingly. In Distributed NRSs each cell in the considered access network
has the needed information and decision mechanisms to choose its own configuration
in a given moment.

Centralized:
In this control scheme, only one entity – a controller, is in charge of collecting

the metrics information, processing it and executing the reconfiguration of any cell
participating in the NRS. This means that the controller have full information of
the system state, and it can choose the appropriated configuration as well as the
time when it need to be executed. However, the processing overhead of this kind of
NRS scales with the number of involved entities, i.e. with the number of cells, BSs
or access networks controlled by the NRS, and the number of metrics needed to be
considered for the decision process.

Centralized control is often related to offline algorithms [CCMM08, CCMM09,
MMS10, CZZN10, OKLN11, MCCM12, MM13, RRAF13, HSL13, GWOF13, SMES12].
This is because the overhead of the load measurement is avoided. Moreover, offline
decision algorithms will be executed limited number of times, e.g. once per day
or once per week, in order to obtain the required reconfiguration schedule, without
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constraints associated to the execution time of the optimization problems.
Centralized online algorithms aim to generate the optimal solution for the network

configuration, as the controller has a global view of the network. However, depend-
ing on the scope and the granularity of the information to consider, the complexity
of such algorithms varies. When the scope is local, e.g. only a few BSs, centralized
online algorithms are highly efficient. For example, Chen et al. [CJXH13] divide
the network in clusters with centralized control, i.e. one of the BSs is in charge of
collecting the information about the cluster state and deciding their configurations.
This reduces the control scope to a few BSs, which considerably reduce the com-
plexity for the decision process. Similar approach is considered by Capone et al.
[CFGU12] for their futuristic network architecture. The authors consider that the
high range BS is in charge of controlling the small cells under its coverage, and to
decide when they need to be activated or deactivated depending on the position of
the active users.

When the control scope is extended to a complete access network, the complexity
of the algorithms augments. Several approaches referring to this case were found in
the literature, depending on the granularity of the information considered for the
decision process. Guo et al. [GO12, GO13] use a global vision of the network system
state, considering the aggregated afforded load and selecting the set of active BSs
from predefined patterns. This optimization is not highly complex as the decision
space is reduced when considering activation patterns. On the contrary, when full
information about each cell load and coverage is used, the algorithms are highly
complex. In this case, the authors define heuristics to reduce the decision space
and rapidly find a (sub)optimal network configuration, and/or trigger the decision
process periodically in time frames adjusted to the algorithm complexity.

For example, Micallef et al. [MSES12] and Samdanis et al. [SKB10, STKB11]
iteratively select the state of each cell in the network depending only in their load
condition without considering how the load is distributed. Even though this can
be costly, each cell is evaluated only one time during the decision process and the
authors apply the NRS only in periods of very low load variability, so that the de-
cision process will be triggered only a few times during the time the NRS is active.
Dawoud et al. [DUGK14] considers a similar heuristic for the deactivation of the
cells but using as an input traffic prediction for the next period of 10 minutes, so
that the variability of the load and the load distribution is accounted. Chang et al.
[CLHS14] propose an algorithm for finding the global scope network configuration
in polynomial time, depending on the number of involved BSs. Furthermore, the
authors propose to trigger the decision process periodically in intervals of one hour.
Zhou et al. [ZGY+09], Niu et al. [NWGY10, Niu11] consider full knowledge about
the afforded load in a per UE basis. The authors focus in determining the optimal
cell size and UE redistribution for emptying the larger amount of cells and be able
to deactivate them. This implies a high complexity leading to hard to solve opti-
mization problems, especially if considering wide areas with large number of BSs.
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In this case, the authors propose distributed versions of the algorithms to reduce
the complexity.

Distributed:
In the distributed schemes, each cell or BS participating in the NRS can take its

own activation/deactivation decision, either because it only consider its own local
conditions, or because it has exchanged useful information with its neighbors and the
reconfiguration is acceptable. Thus, two categories were defined depending on the
considered factors for the reconfiguration decision: non-cooperative and cooperative.

In the non-cooperative case, no interaction with the neighboring cells is per-
formed. On one hand, some studies consider each cell deactivates itself when empty.
However, the strategies using this approach rely on the UEs cell selection to concen-
trate the load only in a few cells, creating the required deactivation opportunities
for the other cells. For example, the distributed versions of the algorithms of Zhou
et al. [ZGY+09] and Niu et al. [Niu11] propose a modified UE association policy
prioritizing the attachment of the UEs to the moderate and high loaded cells. To do
so, the cells broadcast to the UEs their load condition, which is used by the UEs as
indicator to select the appropriated cell to connect. This strategy is conducive for
overlapped scenarios were the UEs have high probability to have more than one cell
that can provide acceptable QoS. Even thought this is a distributed approach for
the cell deactivation, the mechanisms to decide the activation of a cell are not dis-
cussed by the authors. Such mechanism may require either a centralized controller
which will remove the distributed attribution, or neighboring cell actions which will
transform the distributed approach in cooperative.

On the other hand, we have the case when the NRS scope is limited to a stan-
dalone BS. According to our categorization, the NRSs controlling a standalone BSs
are centralized, as the NRS controller has full information about the system state,
i.e. about the complete BS, and it can control all BS resources. However, the
ultimate goal of this type of NRSs is to be applied at several BS in the network
in order to maximize the attainable energy reductions. Thus, the approaches pre-
sented in Section 2.4.1.1 can be considered as the main contributions to distributed
non-cooperative control [SES09, SE10, SEC10, ESC11, TSPB13, HG11, HHA+13,
HAB+13] .

In the cooperative case, each cell exchanges information with some other cells and
takes the reconfiguration decisions that have the most positive impact for itself and
its pairs. Some strategies divide the access network into fixed groups, and the cells
within each group negotiate their configuration depending on the load and coverage
of each one, and the impact that its activation or deactivation may have in the
group. Finally, the cells transactionally agree on a given satisfactory configuration
for the group. For example Guo et al. [GO13] present a strategy in which an
non-overlapping access network is divided into a group of three BSs according to
predefined coverage preservation schemes. Each BS belonging to a group estimates
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the impact of taking a given action depending on the load conditions. This impact
is quantified and each BS will execute the most profitable action, e.g. the value of
taking a given action is over a given decision threshold. The cell can be influenced to
take a given action manipulating the threshold, either to ensure a given fixed level
of performance, or to improve the performance using learning mechanisms. The
authors also present a version of their distributed algorithm in which the groups
are not fixed. Each BS exchange information with all its neighbors BSs and try to
pair with the most convenient neighbor, i.e. the one which complementary action
represents the most benefit, e.g. one BS with high positive impact taking the decision
to deactivate itself with a BS with high positive impact taking the decision of extend
its coverage.

Similar approach is taken by Oh et al. [OK10, OSK13] but considering an over-
lapping scenario where deactivating a cell impacts only the capacity of the neigh-
boring cells to afford the combined load. A given cell will request to deactivate
when the amount of transferred traffic to the neighbors BS is reasonable, i.e. bellow
the acceptable threshold of each of them. The cell will deactivate only if it receives
positive response of all its neighbors. An active BS with sleeping neighbors will send
an activation request to one of them when the traffic in the shared coverage zone
increases over a given threshold. Hossain et al. [HMJ11, HMJ12] propose to extend
the periods of neighbors deactivation allowing the traffic distribution between active
cells by means of coverage adjustment. An overloaded cell with sleeping neighbors,
proceed first to try to distribute the traffic between the active neighbors. If the
overloaded cell determines that an active neighbor can afford the resulting load, i.e.
the total traffic is bellow a given threshold, it sends a coverage extension request. If
none of the active neighbors can satisfy the constraint, the overloaded cell proceed
to request the activation of the sleeping neighbor.

To avoid conflicts, i.e. non compatible neighbor actions being executed at the
same time, some mechanism should be defined. For example, Oh et al. [OSK13]
propose a transactional mechanism in which once a partnership is defined, or an
action is confirmed, the neighboring BSs are blocked, i.e. they are not allowed
to perform or even request any action until the cell executing the blocking action
confirm them that the process finished.

2.4.3.3 Decision algorithm

The way NRSs choose the appropriated reconfiguration among all possibilities
varies considerably, as it depends among other factors on the decision problem for-
mulation, i.e. how the impact of a given configuration is quantified, and the scope
of the decision, i.e. which elements can/should be configured. Numerical methods
can be used to generalize the application of the NRSs and provide as output wide-
scope networks dimensioning given the energy efficiency target, e.g. cell density.
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Table 2.4: Summary of the reviewed NRSs literature, classified by the type of deci-
sion algorithm they use, as well as other related relevant criteria.

Criteria Representative references

D
ec
is
io
n
al
go

ri
th
m

Numerical derivation [TGA13]

Exhaustive
search

Local Scope [HHA+13] [HAB+13] [SES09]
[SE10] [SEC10] [ESC11]
[TSPB13] [HG11] [GO12]
[GO13] [OK10] [OSK13]

[SMES12]

Global Scope Predefined patterns [CCMM08] [CCMM09]
[ACCM09] [HSL13]

[HMJ11][HMJ12] [MCCM12]
Variable patterns [GWOF13]

Greedy
algrithms

Cell state selection [MMS10] [DUGK14] [MSES12]
[SKB10] [STKB11] [CJXH13]

[OKLN11]
User association selection [ZGY+09] [NWGY10] [Niu11]

Other
formulations

Dynamic programming [CLHS14] [RRAF13] [GZN12]
Linear programming [CZZN10]

When the needed output of the decision process is the set of active/deactivated
cells, the optimization problems are defined considering the specific characteristics
of the system, e.g. location of the cells, radio configurations, location of the users,
user association policies, etc. There are different ways to solve such optimization
problems depending on the NRS control scope and configuration options. Table 2.4
summarizes the different techniques we found in the literature and the associated
representative references. The use of exhaustive search algorithms may be suitable
for fixed and reduced decision spaces, while the usage of greedy algorithm heuristics
can systematically reduce the searching space until finding a (sub)optimal decision.
These different optimization techniques as well as some other approaches depending
on the problem formulation are presented in the following.

Numerical derivation:
Some authors obtain numerically the required wide-scope access network config-

uration given the traffic conditions. For example, Tsilimantos et al. [TGA13] deter-
mine the the proportion of active cells given some performance target constraints.
The authors use stochastic geometry for their analysis to derive the optimal density
of active BSs, which provide a general view of any NRS applied in any network
with a given activation policy and BS and traffic density. However, no switching
dynamic is studied, i.e. which cells should be activated or deactivated for a given
configuration.

Exhaustive search:
Using exhaustive search, all possible system configurations are systematically

tested and the optimal solution for the given system state and performance target
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are obtained. The applicability of a NRS using exhaustive search depends on the
number of possible configurations the system can adopt. In the reviewed literature
this depends on the scope of the NRS.

When considering a local scope, the activation/deactivation decision is taken lo-
cally by the BS, either because the NRS considers a standalone system, i.e. only
the BS of interest; or because the BS is participating in a distributed NRS. In both
cases, the degrees of freedom for the reconfigurations are limited to the operation
states of the BS. In the standalone case it can vary from binary activation/deacti-
vation, e.g. the complete BS [HHA+13, HAB+13] or a given BS RAT [SES09], to
multiple system operational states depending on the number of active resources, e.g.
the number of carriers or transmitters [SE10, SEC10, ESC11] or the number of cells
[TSPB13, HG11]. In the distributed case, the cells are able to chose between more
options than the deactivation/activation decision, which lightly increases the space
state of the exhaustive search, e.g. the cells can decide to extend coverage [GO13]
or to distribute the traffic to the neighbors [OK10, OSK13].

When considering a global scope, which includes the entire considered access net-
work, the authors reduce the degree of freedom of the system in order to efficiently
apply an exhaustive search algorithm. This is done defining a finite and restricted
number of configurations using switching patterns. Thus, the number of reconfigu-
ration possibilities is considerably reduced and the decision process can efficiently
select the optimal option using the exhaustive search technique. We found two dif-
ferent approaches depending on how this patterns are established: predefined or
variable.

When considering predefined patterns two strategies can be found found in the
literature. On one hand, some algorithms use wide scope regular switching patterns,
i.e. the activated and deactivated cells are chosen for the entire access network
according to regular patterns guaranteeing a given global performance. Chiaraviglio
et al. [CCMM09] and Ajmone-Marsan et al.[ACCM09] consider that the network
can switch between two operational states, while Han et al. [HSL13] and Marsan
et al. [MCCM12] consider a set of multiple regular patterns, which attain different
network performance levels, and the NRS can choose between them depending on
the estimation of the traffic load afforded by the entire network. Notice that these
solutions are executed in a global scope and capture and react only to temporal load
variations affecting the entire considered network. On the other hand, Hossain et
al. [HMJ11, HMJ12] define groups of cooperating cells in the access network, and
each group can be configured depending on switching patters, i.e. the same cells are
activated/deactivated depending on the group configuration. Using this approach,
different realization of the NRS are possible in the access networks, i.e. in each
group of cells, which can ultimately account for the spatial traffic variations in the
network.

Guo et al. [GWOF13] consider variable switching patterns to be selected us-
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ing exhaustive search. The authors define an uniform deactivation policy, which
will be evaluated in all the cells, and any cell satisfying the given condition will
be deactivated. This generates different network patterns depending on the spatial
distribution of the traffic in a given moment. Thus, the NRS will decide using ex-
haustive search which of the predefined policies may satisfy the performance target.
However, this strategy has a mayor drawback, as the performance of a given policy
will vary depending on the state of the system when the policy was applied, i.e. the
spatial traffic distribution. Thus, further information should support the establish-
ment of the deactivation policies, e.g. the impact of the deactivation of a cell in the
neighboring cells.

Greedy algorithm heuristic:
The reconfiguration decision space becomes very large when a given configuration

of the access networks requires the decision of each cell state, e.g. activated or deac-
tivated, as well as its radio configuration parameters, e.g. selecting the transmission
power or the antenna beam form. In this case, heuristics can be used to find rapidly
a suboptimal configuration achieving good performance given the system state. In
the reviewed literature, some authors use greedy algorithms following the heuristic
of choosing the best option for each step of analysis, regardless to the other steps
outcome. In NRSs this is translated in systematically evaluating if the application
of a given policy satisfies a given local performance target and choose the policy
generating more benefits.

In the case of cell state selection, all cells are analyzed sequentially, and each
analysis determines either the state of the cell of interest, or the state of the cells
associated to it, e.g. neighboring cells. When the next cell is analyzed, the set
of possible configurations is reduced, as it considers the system after applying the
activation/deactivation decisions taken in the analysis of the previous cells. The
algorithm stops when a decision was taken for all cells of the deployment, which may
produce an optimal set of active/deactivated cells or a suboptimal with acceptable
performance. The order in which cell analysis is performed depends on the approach
taken by the NRS. For example, Micallef et al. [MMS10, MSES12] propose to
deactivate low loaded cells, i.e. the afforded traffic is under a given threshold, no
matter how the load is distributed. Thus, the authors choose randomly the least
loaded cell to analyze and mark it for deactivation. Afterwards, the system state
is recalculated without that cell moving on to the next one. The algorithm stops
either when no more cell are considered low loaded, or when the deactivation of the
remaining low loaded ones violates the performance constraints. A similar approach
is considered by Dawoud et al. [DUGK14] but using predicted traffic conditions for
the analysis of each cell.

Samdanis et al. [SKB10, STKB11] propose to concentrate the traffic in the high
loaded cells. Thus, their greedy algorithms first sort the cells by load level and
start the analysis from the most loaded one. The analysis of each cell consists
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in examining the set of neighboring cells, starting from the less loaded one, and
verifying if the analysed cell can satisfy the selected neighbor coverage and traffic.
If it is the case the neighboring cell is marked for deactivation. After examining
all neighboring cells, the newly most loaded cell is analysed. The algorithm stops
when no more cells can be deactivated without violating the coverage and outage
conditions. Similarly, Chen et al. [CJXH13] concentrate the traffic in the most
loaded component carriers of a BS cluster, but only considering the local condition
of each component carrier.

Oh et al. [OKLN11] intend to maintain the access network coverage with an
uniform cell configuration, reducing the cell density. Thus, the authors order the
cells using inter-cell distance as criteria, and analyse the cell with minimum distance
to its nearest neighbor. The analysis consists in examining if its deactivation would
not violate the coverage constraint.

Zhou et al. [ZGY+09] and Niu et al. [NWGY10, Niu11] applies a greedy algo-
rithm to determine the cell user association in an overlapping scenario which provides
the most empty cells in a deployment. Each active UE is analysed by looking the
possible cells to associate to, and the algorithm decides the association to the most
loaded cell satisfying the QoS requirements. The algorithm ends when all UEs are
associated to a cell, and the empty cells are deactivated.

Other formulations:
Some authors define the cell configuration decision as a dynamic programming

problem in which a complex problem is solved breaking it down into a collection
of simpler overlapped sub-problems, and the sub-solutions are recursively combined
to find the optimal solution. Chang et al. [CLHS14] intends to determine the cell
configuration satisfying coverage an minimizing the energy consumption. To do so,
the authors define the decision process as a mixed integer optimization problem,
which cannot be efficiently solved. Thus, the authors break the problem into two
sub-problems that are solved in tandem. The first sub-problem consists in finding
the optimal cell parameters that minimize the area power consumption, while the
second sub-problem consists in minimizing the overlapping between active cells.
Rengarajan et al. [RRAF13] aim to find the optimal cell configuration and user
association allowing to deactivate the larger number of cells in the access network.
The decision process is defined as a non-convex problem as well, so the following
sub-problem division is considered: determine the optimal BS transmit powers given
a user association policy, and find a complementary user association policy that
enables the reduction of the network power consumption. The authors iteratively
search the policy evolution that leads to the optimal decision. Gong et al. [GZN12]
take a temporal dynamic programming problem approach in which the goal is to find
the set of successive configuration decisions leading to have the optimal performance
over a given period. This is done looking the optimal policy at the end of the period
and finding recursively the set of actions that can lead to that policy. However,
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given the authors formulation, the problem cannot be solved efficiently. Thus, some
heuristics are considered by the authors to influence the selection of the action in
each sub-period. Cao et al. [CZZN10] defines the configuration decision problem as
a linear programming problem in which the authors intend to find the combination
of active fixed cells and relays to satisfy a given performance target given by linear
objective functions and constrains.

2.4.4 Demand management

In the previous sections we have described the operation of the different NRSs
depending on deployment and traffic conditions, and we have shown how the different
strategies characterize these conditions to take the network reconfiguration decisions.
The majority of the strategies consider than an active user represents a given amount
of generated traffic, with a service quality, which has to be satisfied instantaneously
and at all cost. Thus, the algorithms are designed to match the activation and
deactivation of resources to the immediate traffic demand.

The opposite technique is to explicitly adapt the traffic demand to match the
resource availability. On one hand, the network can employ user-unaware strate-
gies, in which the radio resources are activated/deactivated according to the energy
requirements, but regardless to the user activity. Even when this approach may
cause user dissatisfaction due to degraded service quality, it is a solution to decrease
the energy consumption of the networks using demand adaptation.

On the other hand, in this thesis we propose another category of demand adap-
tation techniques for NRSs. In our approach the network interacts with the users,
profiting of their cooperation to shape the traffic generation, and thus perform the
resource adaptation in a more flexible fashion. In the next section we present how
this traffic shaping has been address in the literature to better utilize the network
resources, and how some authors address energy efficiency issues using these tech-
niques.

2.5 USER DEMAND SHAPING

Strictly speaking, the term demand shaping refers to strategies that aim to influ-
ence the demand to match planned supply. In wireless networks these techniques are
mostly studied to anticipate and alleviate the periods of congestion, i.e., when the
radio resources are not enough to satisfy the QoS of the served users and incoming
requests; or to balance the load and the utilization of resources within the network.
The demand shaping strategies aim to influence the user or application behavior in
order that the traffic is generated, or mostly not generated, in certain periods and/or
network conditions. Several types of demand shaping in wireless environments has
been identified in the literature. We classify them in two types, according to the
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principal factors driving the shaping: purely-temporal shaping, and spatio-temporal
shaping. Some representative studies for each category are described in the following
sections.

In Section 2.5.3 we present some of the studies performed to measure and quantify
the willingness of the users to participate actively and consciously in cellular services
using demand shaping. In Section 2.5.4 we describe some of the few studies we found
in the literature, which were conducted in this field with energy efficiency purposes.
Finally, we discuss how avoiding congestion thanks to demand shaping techniques
has an indirect impact in the long term energy efficiency of the networks.

2.5.1 Purely-temporal shaping

Purely temporal shaping techniques influence the user/application behavior in
order to reduce the traffic in congestion periods. The idea is to shift the traffic from
peak or busy hours to off-peak periods. Operators are interested in this technique
as they dimension their networks according to busy hour demand. If the traffic in
busy hours increases, the operators need to deploy new resources to satisfy the user
demand with acceptable QoS. If this trend continues uncontrollably, the operator
will arrive either at unsustainable and no-profitable deployments, or at the limit of
the technology capacity.

A way of performing temporal shaping is adapting the price of the services de-
pending on the time and network status. This strategy is called Time Dynamic
Pricing (TDP) [SJWHC12]. Schoenen et al. [SY13] propose to persuade the user
(using pricing surcharge) to not use the service in congestion periods. The authors
model using Markov chains and Pietri Nets the dynamic of the traffic demand, and
adapt the user arrival rate when the system is in congestion depending on a control
function that accounts the surcharge in the price if the service is used. This con-
trol function is derived from previous empirical work (presented in Section 2.5.3)
supporting the intuitive postulate: if the price increases considerably the users are
more likely to not use the service. However, the impact of the session deferral is not
studied.

Ha et al. [HSJW+12] focused on elastic data services and present the architecture,
implementation and field tests of the strategy involving all entities of a cellular
network. The UE front-end allows the user to choose to use the service right away for
a given price (dynamically calculated by the operator, higher in congestion periods)
or schedule it for later use with a discount in the price. In this way, the deferral of the
traffic is considered, as users who scheduled the service are prioritized at the moment
of the service starting. We will refer to this strategy as request shift. The authors
state that in order to establish time-dependent prices, operators should survey users
and monitor their traffic patterns, with and without TDP activated. This data is
then used to estimate the willingness of the users to shift their traffic in time in
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exchange for a monetary discount, and if so, how much. Then, the time-dependent
prices for the next day are calculated, which establishes a closed loop for the price
control, with the objective of reducing the utilization in congestion periods. Similar
approach is presented by Gabale et al. [GDK+13] for cellular downlink traffic. In
addition to the request shift strategy presented before, the authors study another
type of temporal shaping, called delivery shift. This strategy consist on processing
the user request right away, and providing a longer-time-frame estimate of when
the content will be delivered. This is, shifting the completion of the service instead
of the start of it. Obviously, this strategy is not suitable for real time applications
such a voice or video calls, but it can be appropriated for data synchronization, bulk
transfers or video content delivery.

Another way of implicit temporal traffic shaping is the QoS aware RRM schedul-
ing, which exploits the UE information on a per flow basis. Proebster et al. [PKWV12]
design a scheduler which estimates the traffic flow delay requirement depending on
the application and the system information reported by the UE, e.g., if the appli-
cation is in the background or the foreground of the screen. The scheduler then
uses this information to prioritize the flows of the applications according to their
window state and their delay budget. As a result, the transmission of the uncritical
information is shifted in time.

2.5.2 Spatio-temporal shaping

Spatio-temporal shaping techniques aim to profit of the spatial diversity of the
wireless environment and BS deployment to achieve user and network benefits. To
do so, some temporal shaping is required as well, mostly delaying the generation
and/or transmission of the traffic until reaching a given area.

Dawson et al. [DRSW06] propose mechanisms to maximize the BS utilization,
shifting the traffic to underutilized, and otherwise unnecessary operational, cells.
The authors propose dynamic pricing based on policies that account the geographical
position of the cells, their utilization and operational cost. When the UE is identified
to be under the coverage of a underutilized or low-cost cell, the user is notified of
the possible discounts that can be currently applied if the service is performed from
the current location. Moreover, the authors propose the entities and automated
mechanisms to support such strategy. There is an implicit temporal shaping in this
strategy, as it also encourages the users to defer their non-critical services if they
are under the coverage of a high-cost or congested cell. Making the user aware of
the spatial characteristics of the network, stimulates his mobility to underutilized
cells, creating some behavior patterns. For example, after several times of using the
service, most users will learn that discounts are usually available in a specific time
and place, i.e. specific cells in the frequented areas.

Schoenen et al. [SYW11] propose to explicitly motivate users to change of lo-
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cation to achieve better signal quality than the one available in their current posi-
tion. The benefit is mutual, as users will obtain higher data rates or improve some
other QoS metric, while the operator increases the spectral efficiency in his network
[BSY12]. This last is achieved reducing the number of radio resources dedicated
to serve the users, as for example in a OFDM scheme, the operator has to provide
more resources to cell edge users compared to cell center users in order to provide
fair capacity share. This study implies some temporal shifting too, as the movement
to another location probably will take some time. However, the expected benefits
with the application of these strategies are dominated by spatial characteristics more
than temporal ones. For example, moving to improve spectral efficiency can benefit
in both, low load periods and congestion periods.

Celis et al. [CDML14] proposed a less explicit mechanism to achieve similar
objectives. The authors developed and implemented in an operational 3G network,
a cellular application that aims to efficiently utilize the network resources. When
a user wants to use bulk data services (e.g. download a video or transfer a file), a
request is transferred through the network, and the network itself decides when it
is the right moment to perform the transfer. The network perform such decision
based on: network profiles (e.g., historical cell load data, current network status,
cells load, etc.), UE instantaneous information (e.g., current location and signal
strength) and user-specific profiles. These last contain user mobility information as
well as the characteristic of her/his subscription. The objective is to exploit the user
and network information to deferral the user requests until the network conditions
are suitable for it. In this study, this change of conditions comes from mobility, e.g.
the user moved to a zone with better signal strength.

Another spatio-temporal demand shaping strategy is considered in the context
of WiFi offload. The wide coverage ranges of cellular networks contribute to its
ubiquitous nature. But the proliferation and deployment of WiFi BSs make available
both access networks in most of the locations frequented by the users. Moreover,
most of the current cellular UEs have also a WiFi interface. Thus, opportunistically
using the WiFi BSs when available is an efficient way to exploit the spatial diversity
of wireless networks and most of all to reduce the traffic in the cellular network.
This is already the case with some current UE applications, where the user can
select to send synchronization or backup traffic (e.g. Dropbox, Google+, DSphoto,
etc.) only over WiFi. A different approach is presented by Ra et al. [RKN10]. The
authors developed and implemented an online algorithm in the UEs that chooses at
every instant whether to use any of the available interfaces (i.e. WiFi or cellular) to
transfer data and, if so - which of them; or to delay the transmission in anticipation
to a more efficient connection becoming available in the future, without increasing
delay indefinitely. The final objective is to deal with the energy-delay trade-off, as is
stated that the cellular interface consumes more battery for transmission than the
WiFi one. The algorithm is compared with a static delay algorithm in which, an
initial delay is establish for the start of the service. If no WiFi BS is found within
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this delay, the transfer starts using the cellular network. The length of the initial
delay depends on the application type and its delay tolerance, and on the knowledge
about the WiFi availability. Similar concept is evaluated by Lee et al. [LLY+13].
However, in their work the use of the WiFi interface is always preferred and each
data transfer is associated with a completion deadline. Whenever the UE gets under
the coverage of a WiFi BS the data transfer is resumed. If the transfer does not
finish within its deadline, the cellular network completes the transfer.

2.5.3 User willingness

Surveys and field trials have been performed by the research community to test
the readiness of the users to the demand shaping paradigm.

Schoenen et al. performed several surveys to test the willingness of the users to
use a cellular system under demand shaping control. The first survey was conducted
in the summer of 2011 among 60 university students [SBM+12a], while the second
one was conducted in autumn of 2011 among around 100 students [SBM+12b]. No
seasonal correlation is expressed by the authors. The first survey tests the following
points for the voice call, video streaming applications:

• Which is the maximum distance (d) in meters, the user is willing to walk in
return for a discount of (m) percent (d ∈ [0, 50] and m ∈ [20, 80]).

and for web browsing and bulk downloading applications:
• Which is the maximum distance (d) in meters, the user is willing to walk in

return for a speed up of aX in the connection (d ∈ [0, 50] and a ∈ [2, 4]).
In the second survey the authors introduced the notions of surcharge, i.e. paying
more if the user still uses the service given the conditions. The survey questioned
about the following points for the voice call, video streaming and data applications:

• Which is the maximum surcharge, expressed in price multiplier s, the user is
willing to pay to use the service right away no matter the network conditions
(s ∈ [1, 5]).

• Which is the maximum distance (d) in meters, the user is willing to walk in
return for a discount of (m) percent (d ∈ [0, 100] and m ∈ [20, 80]).

• Which is the maximum distance (d) in meters, the user is willing to walk for
avoiding to pay a surcharge, expressed in percentage (n) of the service price
(d ∈ [0, 100] and n ∈ [20, 100]).

• Which is the maximum distance (d) in meters, the user is willing to walk in
return for a speed up of aX (d ∈ [0, 100] and a ∈ [2, 4]).

• Which is the maximum amount of time (t) in minutes, the user is willing to
wait before using the service in return for a discount of (m) percent (t ∈ [0, 60]
and m ∈ [20, 80])

• Which is the maximum amount of time (t) in minutes, the user is willing to
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wait before using the service for avoiding to pay a surcharge, expressed in
percentage (n) of the service price (t ∈ [0, 60] and n ∈ [20, 100]).

The results confirm the general intuitive trend: the acceptance drops with effort
(distance d or waiting time t) and stronger incentives or deterrents are followed
with more cooperation. Voice call users are more willing to move than data and
video users. The opposite is observed when considering temporal shifting: data
and video users are more willing to wait to start their services than voice users.
Moreover, voice users are more willing to tolerate shorter delays than the video and
data users. However, a significant portion of the polled users (between 40% and
80%, depending on the control variables, i.e. incentives or deterrents) are able to
tolerate the minimum delay proposed of 10-15 minutes in the start of their voice
services. Finally, the authors fit the data with exponential expressions relating the
trade-off between the control variables, i.e. distance, waiting time, discounts and
surcharges, and the type of service.

In the first survey the authors included a last question to measure the concern the
users have about the wireless carbon footprint of their services, which might motivate
them to move or wait even without explicit financial incentive or deterrent, just by
the spirit of being ”greener”. The results show that more than 50% of the polled
users were above the indicator expressing moderated concern. This is an encouraging
point to study use-aware demand shaping algorithms for network energy efficiency
purposes. However, this direction is not further investigated by the authors of the
study.

Ha et al. [HSJW+12] implemented a TDP infrastructure in an operative cellular
network to perform field trials. The authors recruited 50 participants and evaluated
their 3G data usage under Time Independent Pricing (TIP) service fares e.g. flat
rate, during 3 months. Afterwards, they evaluated the data consumption using a
static time dependent pricing (Static-TDP) during 3 weeks. Three different tariffs
were offered to the users during the day: full fare, 10% of discount and 40% of
discount. The last part of the experiment tested the dynamic time dependent pricing
(Dynamic-TDP) in which the users data price is calculated depending on the usage
and network status, which varies among the day. For both TDP strategies the price
is presented to the users in real time using the application developed by the authors,
warning them by means of a color code the price of using their data applications in
each instant. The results shows that the users participating in the trial shifted their
data usage from high to low price periods. Correlated to this, users decreased the
peak-to-average hourly traffic ratio, spreading their traffic over the day. Moreover,
the total daily usage increased, probably because users consume more data when is
cheaper. The authors state that this last result is an excellent incentive for operators
searching to maximize their profits. Extensions of this work are presented by Joe-
Wong et al. [JwHSC15], increasing the experiment duration to more than a year
and simultaneously controlling the two groups (to avoid the learning-effect). Similar
results are obtained in that last study.
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2.5.4 Applications in green networking

Although the demand shaping strategies in wireless networks were developed
mainly to relieve congestion and better utilize the network resources, they are also
useful for other purposes. Among them, some studies consider the energy efficiency
of the network components, either as a side effect, or as a design characteristic.

For operators, the uncontrolled traffic growing in busy hours and the congestion,
is an economical concerning. However, this have an indirect consequence in the
energy consumption of the networks. Operators dimension their networks according
to busy hour peak traffic. If the network is constantly in congestion in these periods,
operators need to increase the capacity, mostly adding more BSs, increasing oper-
ators expenses and the network energy consumption. Alleviating the congestion in
peak hours using demand shaping techniques can ultimately contribute to the en-
ergy efficiency of the network, delaying the deployment of more energy consuming
BSs.

The first studies directly focused in energy issues that worth mentioning are
those performed for the energy efficiency of UEs. Most of the UEs are powered by
batteries, thus, their functioning time is limited by the battery charge level, which
obviously decreases depending on the usage of the UE. Spatio-temporal demand
shaping strategies intend to extend the functioning periods of UEs, reducing their
power consumption. In particular the delay-aware WiFi offload techniques developed
by Lee et. al [LLY+13] and Ra et al. [RKN10], envisage the preservation of the UEs
battery charge, minimizing the time the UE transmit using the 3G interface. In
fact, while the power consumption on the two kinds of radios can be comparable,
the achievable data rates on these interfaces differ significantly. For the same amount
of data, the 3G interface would take longer to transmit, consuming more power in
total. Thus, shaping the traffic in order to use opportunistically the WiFi interface
can preserve the UE battery charge.

Other studies focus on the purely-temporal demand shaping of the downlink
traffic in the BSs. Gupta et al. [GS12] propose a RRM scheduler with packet
shaping in order to reduce the BS energy consumption. The authors propose to
buffer the data before transmit it. The data is transmitted once the transmission
condition is fulfilled (e.g., having enough data, buffered data arriving to deadline,
etc.). Thus, the data is shaped in bursts. The power consumption reduction comes
from the fact, that if the data is transmitted in bursts, the inter-burst periods are
longer, i.e. the periods when there is no data to transmit. This allows to take more
advantage of the adaptability of the hardware, specifically the fast deactivation,
producing longer cell DTX periods, and further reducing the power consumption of
the BS.

Gabale et al. [GS14] propose an energy aware RRM scheduler with purely-time
traffic shaping and delivery shift. The authors consider a cellular system in which

49



2

2.6. SUMMARY AND DISCUSSION

the BSs are powered by both renewable energy and non renewable energy sources.
The objective of the energy aware scheduler is to maximize the data transmitted in
periods when renewable energy is available, while satisfying the service completion
deadline offered to the users. Thus, reducing the power consumption from polluting
sources.

The proposal of this thesis goes a step further and aims to contribute to the
energy efficiency in the entire access network scope. We propose a new purely-
temporal demand shaping category, in which the users are aware about the energy
efficiency techniques applied in the network. Depending on the network status, the
users are persuaded to delay the start of their services, which may allow the network
to remain in a low energy consumption state.

2.6 SUMMARY AND DISCUSSION

In this chapter we introduced the fourth generation of cellular network technology
with highest penetration on the market, namely LTE. We presented the architecture
and power consumption model of its access network components: the Base Station
(BS)s. We presented some of the strategies that are devised in the literature to
reduce the energy consumption of the BSs and more generally, of the whole access
network. We classified these strategies in three categories depending on the time
scale they affect the access network. Hardware upgrades are incorporated to the
networks in a long time scale (months, years) but represent technological innovation
that substantially contribute to the energy efficiency of the network. Moreover, in
combination with some other management techniques, the reduction of the power
consumption can be prolonged. These management techniques constitute the other
categories in our classification. RRM strategies reacts in a short time scale (millisec-
onds, seconds) adapting the radio resources of the individual BSs to the load carried
by them. NRS reacts in a medium time scale adapting the active/inactive BSs to
the temporal and spatial load variation within the whole access network or a part
of it. NRS are naturally more complex as often involves multiple entities to control.
However they provide the highest energy reductions, as complete cell or BSs can
be deactivated. For this reason we delved in the wide NRS literature identifying
the design characteristics and methods used in the elaboration and evaluation of
NRS algorithms. Finally, we presented some of the user demand shaping concepts
used in cellular networks to avoid congestion, highlighting important findings that
encourage their usage for energy efficient networking.

In the next chapters we present our contribution towards that direction, combin-
ing energy efficiency strategies with demand shaping techniques and user network-
awareness, in order to further reduce the energy consumption of the access network.
We propose a proactive user-network interaction in which the network require the
users cooperation when applying an energy efficiency strategy in a given area. The
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users cooperate delaying the start of their services for a given bounded time, which
offset the traffic generation, and allow the network to remain for longer periods us-
ing limited resources and consuming less energy. In the next chapter we describe
two strategies following the proposed paradigm, and we present their analytical
evaluation.
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Exploiting user

delay-tolerance to save
energy in cellular networks:

An analytical approach

3.1 INTRODUCTION

In this chapter we present our proposed strategies for the energy efficiency of
cellular networks. These strategies combine user demand shaping techniques with
energy efficient dynamic management of the access network. In particular, we shape
the user traffic generation in order to create opportunities to apply energy efficiency
techniques in the access network and thus reduce the energy consumption.

In Section 3.2 we motivate our choice concerning the demand shaping technique:
the request shifting, in which the start of users services is offset for a given (bounded)
time. In Section 3.3 we present the general hypothesis on the system model of a
cellular access network using radio resource adaptation, and the traffic and capacity
assumptions we made for the evaluations.

The two strategies that we developed are studied in Section 3.4 and Section 3.5.
The main difference between the strategies is how the users are considered depending
on the access network state, which directly impacts the way the resources are used.
The first strategy considers the choice of the users to participate or not in the
cooperative scheme. The management decisions are taken based on the conditions
of the users willing to delay their services, and giving priority to the utilization
of dynamic resources, i.e. resources that can be deactivated/activated, while the
service of the impatient users is ensured using a set of resources which are available
even when the dynamic resources are not active. We denote these last resources as
static resources. The second strategy makes no distinction between users, and the
delay of the service requests is made in an opportunistic fashion, i.e. only when it
is required by the system load conditions. Thus, this strategy serves users giving
priority to the utilization of the currently available resources, relying on the shifting
of user traffic to delay the activation of the dynamic resources. For each strategy, we
present the mathematical model of the traffic dynamic and we analyze the strategy
functioning in scenarios where different energy efficiency techniques are applied,
showing the trade-off between the strategy parameters. In Section 3.6 we compare
the performance of the strategies in common scenario and we quantify the daily
energy consumption reductions. Finally, in Section 3.7 we summarize and discuss
the principal findings of the work presented in this chapter.
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3.2 MOTIVATION

When considering dynamic adaptation of the access network such as RRM tech-
niques or NRSs, the network capacity in a given zone changes. For elastic and
best-effort services, the completion shifting technique can be beneficial, as the traf-
fic can be split and partially shifted to the moment when more capacity is available
(e.g., due to the activation of more resources), and/or prioritized (e.g. in low capac-
ity periods) to met the completion deadlines. This is not the case when considering
real time applications such as voice and video calls. Real time applications establish
sessions and the network should maintain a constant bit rate during the whole du-
ration of the service, which establishes strict constraints in the application of energy
efficiency techniques. On one hand, the capacity change due to the deactivation
of network resources can considerably affect the service quality, degrading the QoS
of ongoing sessions and eventually causing call dropping. On the other hand, the
activation of resources is traditionally performed keeping unnoticeable the network
changes to the users, triggering the resource activation process in traffic levels which
are still affordable. Thus, the duration of the periods of low energy consumption
is bounded, which limits the energy savings resulting from the application of RRM
and NRS.

The request shifting seems to be a good solution to address these constraints. If
the users are able to wait a predefined and known-in-advance time to perform their
real time calls, the network could delay the activation of resources, remaining for
longer periods in low capacity, and in low energy consumption states. This idea
is also supported by the studies of Schoenen et al. [SBM+12a] [SBM+12b], Ha et
al. [HSJW+12] and Joe-Wong et al. [JwHSC15] already presented in Section 2.5.3.
These studies showed that users can change their usage patterns to better match
network requirements. Moreover, the users are willing to delay the start of their
real-time services for a given time. In addition, the impact of their services in the
environment was identified as a recognizable concern.

It is important to note that, contrary to these studies, we will not address the
details about the incentives needed to influence the cooperation of the users and
make them willing to delay their network access; neither how it should be imple-
mented or presented to them. Our intention is to estimate the potential gains, in
terms of energy consumption reduction, if real-time requests can actually be shifted.
Thus, our approach establishes the relationships and trade-offs between the time the
request can be shifted or delayed and the possible energy gains if the access network
can remain in low capacity and low energy consumption states.

In this chapter we approach this idea from a theoretical point of view. We use
well known user traffic distributions and we present the developed strategies to
control the access network resources based on the user estimated behavior. Finally
we obtain the theoretical bounds of the benefits that can be achieved combining
traffic shifting and dynamic resource management for energy efficiency.
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3.3 GENERAL ASSUMPTIONS

In this thesis, we are studying a cellular network able to use radio resource adap-
tation in a given set of its BSs. We focus on the subsystem composed by these BSs
and the UEs in the area covered by them. We use a centralized control scheme,
so that the decisions are taken locally for the group of concerned base stations. In
this section we give a general description of the system model which is common to
the two proposed strategies. We provide specific details on the energy efficiency
strategies used for the numerical evaluations later in this chapter.

The system is modelled to be in one of two operational states, depending on the
active available resources. The system is in all-On state when all components of
the access network are operational and available. In this state the system has an
available maximum capacity denoted by Cmax. The system is in min-On state when
only a given subset of radio resources provides coverage and satisfies a minimum load
level. Such resources are denoted as static resources. In this state the system has
a capacity Csta which varies depending on the strategy. The set of radio resources
that can be deactivated are denoted as dynamic resources and provide the system
with Cdyn resources such that:

Cmax = Csta + Cdyn (3.1)

The system switches between states depending on the level of load, i.e. the switch-
ing is triggered when the level of load reach a certain predefined threshold. The
conditions for the selection of the different thresholds depend on the employed man-
agement strategy. In this chapter we assume that the state switching is done in-
stantaneously, i.e., the reconfiguration periods are not considered in the evaluations.
Coverage and system availability issues are assumed assured by the radio planing
and the design of the specific energy efficiency strategy we will use for each evalua-
tion scenario.

We evaluate the system under homogeneous traffic, considering only one type
of service offered to the users. Thus, the system load varies proportionally to the
number of ongoing users session. We model the users’ dynamic using ergodic and ho-
mogeneous continuous time Markov Chains (MC). The parameters used to describe
these processes are the following: the session interarrival time is exponentially dis-
tributed with parameter λ. The session service time is exponentially distributed
with parameter µ. The system capacity is fixed and depends on the set of resources
the MC considers. Finally, the method of service is FIFO. We assume that during
the entire service time, a session consumes a fixed average number of resources which
is the same for all users, i.e. independent of their position. Thus, we can express
the offered load and the system capacity in terms of simultaneous active sessions.

The users participating in the demand shaping and willing to offset the start of
their services are called Delay Tolerant User (DTU). The system proposes to the
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DTU a maximal initial delay denoted by D. Users not willing to wait under any
circumstance are called Non-Delay Tolerant User (N-DTU).

3.4 STRATEGY ONE: PERSISTENT DTU

3.4.1 Strategy description

This strategy assumes that the user willingness to cooperate with the network is
predefined, and the network knows which users are DTU and which ones are N-DTU.
When a given user requests a service, the decision to serve her/him depends on the
system state and the type of user. When the system is in min-On state, the DTU
arrivals are put on hold, i.e. the service request is accepted by the network, but
the start of the service is delayed. N-DTU arrivals are served right away if possible,
i.e. if the load is under the capacity limit in this system state (Csta), and blocked
otherwise. When the system is in all-On state, all arrivals (DTU and N-DTU) are
served immediately if there is enough available capacity left, and blocked otherwise.
The switching between system states is done depending on thresholds in the number
of users in the system. The system turns to all-On state when the number of waiting
DTUs reaches the predefined threshold Umax. Then, the Umax DTUs on hold and
all new arrivals are served by the recently activated dynamic resources, while users
already in service continue to be served by the static resources. To ensure the service
after the initial delay, the system should not accept more DTU than the dynamic
capacity (Cdyn), which gives an upper bound for the value of Umax. The system turns
to min-On state whenever the number of active users falls below another predefined
threshold Umin. The Umin−1 users with ongoing services are taken over by the static
resources.

An example of this strategy is illustrated in Fig. 3.1. The two values of Umin
illustrate the functioning of the system in varying traffic conditions (i.e. different
arrival rates of N-DTU, limiting the number of users that can be absorbed when
switching to min-On state). From t0 to t1 the DTU arrivals are put on hold. At t1
the system switches to all-On state as Umax is reached. At t2, the system returns to
min-On state, as the Umin − 1 users can be absorbed by the static resources.

The selection of the strategy thresholds depends on the traffic conditions, the
maximum delay defined by the network (D) and the desirable system quality of
service. Thus, Umax and Umin should be selected in order to ensure the service of
the DTUs before D. Likewise, the system should be capable of continuing serving
the ongoing sessions when it turns to min-On state, in order to keep low the call
dropping levels. These points are treated in the following section.
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Time
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Figure 3.1: Load dynamic example of Strategy One. White periods: system
in min-On state – Serving N-DTUs and Delaying DTUs. Dark gray periods: system
in all-On state – No delay.

3.4.2 Mathematical model

We modelled the strategy presented in the previous section with two MCs. The
general representations of the MCs state space are depicted in Figure 3.2 and are
explained and solved in the first part of this section. The following parts describe
the different criteria used for the selection of the strategy thresholds, namely the
waiting time and quality of service constraints.

3.4.2.1 Markov chains

The state space of the MCs is S = {(i, j)} where i represents the number of users
in the system while j indicates the dependency of the system state. If the system
is in all-On state, j = 1, otherwise the system is in min-On state and j = 0. If
the MC state is independent of system state, j = −1. The possible values of i are
constrained by the strategy thresholds, as well as the resource capacity.

The two type of system resources are independent and they are represented sep-
arately. Thus, the strategy is modelled using the two MCs depicted in Fig. 3.2. The
DTU and N-DTU interarrival rate is represented by λ and λ1 respectively. In this
strategy, the service rate is 0 for the DTU when waiting and iµ otherwise, for each
state of the two MCs.

Dynamic resources:
The MC depicted in Figure 3.2(a) represents the traffic behaviour of the users

associated to the dynamic resources, i.e. when the system is in all-On state serving
all type of users, and when it is inmin-On state and DTUs are waiting. Furthermore,
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Figure 3.2: Markov Chain of the user dynamic using Strategy One, Batch size b = 3.

the system state transitions are represented in this MC as well, as they depend on
the dynamic resource utilization:

• The switch all-On −→ min-On: the state is (Umin, 1) and a departure occurs
• The switch min-On −→ all-On: the number of waiting users reaches Umax

The balance equations of the MC modelling the dynamic resources are:

(λ+ λ1 + iµ)p(i,1) = (i+ 1)µp(i+1,1) if i = Umin

(λ+ λ1 + iµ)p(i,1) = (i+ 1)µp(i+1,1) + (λ+ λ1)p(i−1,1) if Umin <i < Umax

(λ+ λ1 + iµ)p(i,1) = (i+ 1)µp(i+1,1) + (λ+ λ1)p(i−1,1) + λp(i−1,0) if i = Umax

(λ+ λ1 + iµ)p(i,1) = (i+ 1)µp(i+1,1) + (λ+ λ1)p(i−1,1) if Umax <i < Cdyn

iµp(i,1) = (λ+ λ1)p(i−1,1) if i = Cdyn

λp(i,0) = Uminµp(Umin,1) if i = 0
λp(i,0) = λp(i−1,0) if 0 <i < Umax

(3.2)
From Equations (3.2) we can deduce the transition matrix Qdyn. The MC is irre-

ducible and consists of positive recurrent states. The unique steady-state probability
vector πdyn = {p(i,j)} is given by:

πdynQdyn = 0 (3.3)
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Cdyn∑
i=Umin

p(i,1) +
Umax−1∑
i=0

p(i,0) = 1 (3.4)

Static resources:
The MC depicted in Figure 3.2(b) represents the static resources which are always

available. These resources serve N-DTUs which arrive individually with an interar-
rival rate λ1. Additionally, when the system switches to min-On state, all ongoing
sessions served by the dynamic resources are absorbed by the static resources. This
can be seen as a batch arrival to the static resources. The size of this batch is given
by:

b = Umin − 1 (3.5)

The batch arrival rate represents how often the system switches to min-On state.
This arrival rate is not necessarily exponentially distributed, as it depends on the
behavior of the dynamic resources. However, in order to be consistent with the
intended Markovian analysis, we approximate it by the following equation:

λ′ = p(Umin,1)Uminµ (3.6)

where p(Umin,1) is the probability that the dynamic resources are serving Umin sessions
and Uminµ is the probability that a departure occurs, triggering the switching to
min-On state and transferring the b sessions to the static resources.

The balance equations of the MC modelling the static resources is:
(λ′ + λ1)p(i,−1) = iµp(i+1,−1) if i = 0

(λ′ + λ1 + iµ)p(i,−1) = (i+ 1)µp(i+1,−1) + λ1p(i−1,−1) if 0 <i < b

(λ′ + λ1 + iµ)p(i,−1) = (i+ 1)µp(i+1,−1) + λ1p(i−1,−1) + λ′p(i−b,−1) if b ≤i < Csta

iµp(i,−1) = λ′
Csta−1∑

n=Csta−b
p(n,−1) + λ1p(i−1,−1) if i = Csta

(3.7)
From Equation (3.7) we can deduce the transition matrix Qsta. The MC is irre-

ducible and consists of positive recurrent states. The unique steady-state probability
vector πsta = {p(i,−1)} is given by:

πstaQsta = 0 (3.8)
Csta∑
i=0

p(i,−1) = 1 (3.9)

3.4.2.2 Waiting time

As stated in Section 3.3 we define a maximal initial delay (D). For each user
arriving in the system, the probability of waiting more than D should be controlled.
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In this strategy, DTUs will wait for their services if they arrive when the system is
in min-On state, and they will be served when the system turns to all-On state. To
do so, the number of waiting users should reach the threshold Umax, as explained in
Section 3.4.1.

Then, the waiting time Wi of the user i arriving to the system, when there are
already i − 1 users waiting, is the sum of the interarrival times of the remaining
Umax − i users that should arrive to turn the system to all-On state. We model the
interarrival time as an exponentially distributed variable. The sum of this kind of
random variables is another random variable which follows an Erlang Distribution
[Wik]. Thus, the distribution of Wi with shape k and rate λ is given by:

fWi
(Wi; k, λ) = λkWi

k−1e−λWi

(k − 1)! for Wi, λ ≥ 0 (3.10)

where
k = Umax − i (3.11)

The Complementary Cumulative Distribution Function (CCDF) of Wi is given by:

F̄Wi
(Wi; k, λ) =

k−1∑
n=0

1
n!e
−λWi(λWi)n (3.12)

The waiting time is conditioned on the states during which the user enters the
system. The user i has a probability p(i−1,0) of entering the system while it is in
state (i−1, 0), i.e. i−1 users are already waiting. And the probability to wait more
than D is obtained from the CCDF of the waiting time (3.12). Thus, the probability
that the user i waits more than D after entering to the system is given by:

P (Wi > D) = p(i−1,0)F̄Wi
(D; k, λ) (3.13)

Generalizing for all the users that can experience some delay, the probability that
they wait more than D for starting their services is given by:

γ =
Umax−1∑
i=1

P (Wi > D) (3.14)

Our objective is to keep γ under acceptable levels. Thus, the selection of the thresh-
olds have to satisfy the following constraint:

γ ≤ γmax (3.15)

where γmax is the target probability. For example, if γmax = 0.05, at least 95% of
the users entering in the system should wait less than D. In 5% of the cases the
user may encounter longer delays.
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3.4.2.3 Quality of service

While the DTUs are willing to offset the start of their services, once their services
started, the system should ensure their continuity. Thus, the system dimensioning
not only has to control the waiting time, but also keep an acceptable level of Quality
of Service (QoS). The dissatisfaction metric we use is a linear combination of the
user dropping and blocking probabilities, pdrop and pblock respectively [Lag00]:

δ = βpdrop + (1− β)pblock (3.16)

A new arrival will be blocked with probability pblock when the system is not able to
serve it, i.e. the system is already using all the available resources. This happens
when the dynamic resources are in the state (Cdyn, 1) with probability p(Cdyn,1) or
when the static resources are in the state (Csta,−1) with probability p(Csta,−1). An
user with an active call can be dropped with probability pdrop if the system switches
to min-On state and there are not enough resources to absorb him. Given the
dynamic of the strategy and generalizing for all users in the batch, this probability
is given in Equation (3.17) where p(u,−1) is the probability of having u sessions using
the static resources and the factor at the right represents the dropped proportion of
the batch in the state (u,−1).

pdrop =
Csta∑

u=Csta−b+1
p(u,−1)

u+ b− Csta

b
(3.17)

In order to keep an acceptable QoS, these two probabilities should be controlled.
As a trade-off parameter, we use β = 0.9, e.g. user dropping is heavily penalized.
Please note that a higher value of the dissatisfaction metric leads to worst perfor-
mance of the system, e.g. a system which can guarantee δ = 0 is perfect, whereas
a system with δ = 1 is non-working. Thus, we define the maximum acceptable
value for the metric as δmax, and the dimensioning of the strategy should satisfy the
constraint:

δ ≤ δmax (3.18)

3.4.3 Numerical evaluation

In this section we present the numerical evaluation of the presented DTU-aware
strategy adapted to a NRS. We consider three different deployment scenarios allow-
ing to perform cell switching. They are described in the first parts of this section.
After we show how to adapt the model presented in the preceding sections to these
characteristics and how to estimate the average power consumption of the system
when using the DTU-aware strategy. Finally, we provide the optimal results in
terms of power consumption and we show how the power reductions depend on the
strategy parameters.
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Table 3.1: System parameters for the evaluation of Strategy One
Parameter Macro Micro

BS power consumption [AGD+11]
NTRX 6 2

Pmax [W] 20 6.3
P0 [W] 130 56

∆P 4.7 2.6
Psleep [W] 75 39

Transmission Bandwidth 10 MHz
Antenna configuration 2x2 MIMO

Downlink [3GP10b]
NRB 50
NRB

sc 12
EPRE [dBm] 15 10

Session characterization
NAS

RB 10
W 20

BS session capacity (C) 100
Average service time [s] (µ−1) [PP05] 81.083

3.4.3.1 Deployment scenarios

We consider a homogeneous access network in which the BSs are deployed allow-
ing coverage overlapping. Three configurations are identified:

• Full redundancy: Two BSs are covering the same area using all radio re-
sources, e.g. two BS in a heavy traffic hotspot using a frequency reuse scheme
or carrier aggregation, or two BS from different operators on the same site.
We consider the case where both BSs are Macro BSs.

• Partial redundancy: The coverage area of a BS is overlapped by the neigh-
boring BSs, e.g. in an urban dense deployment. We consider the case of a
Macro BS partially overlapped by its three Macro BSs neighbors.

• Heterogeneity: BSs of different types overlap their coverage, e.g. small BSs
in hotspots to boost the capacity. In particular, we consider the case of six
Micro BSs under the coverage of a Macro BS. We also consider the illustrative
scenario where six Macro BSs are under the coverage of a long-range BS that
we denoted as Mega BS.

3.4.3.2 Radio resource adaptation

We consider that a subset of BSs in the deployment can be switched to Sleep Mode
(SM). A BS enters in SM when all of its cells are turned to a low power consumption
state. In particular, we assume that some of the BSs are using the component
deactivation hardware upgrade presented in Section 2.3.1 for this purpose. We
consider that no control signals are transmitted during the period when the BS is in
SM, so the power consumption remains in low state during the entire period. A BS
capable of entering in SM is denoted as Sleep-Capable Base Station (SC-BS). Given
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the characteristics of the considered deployments, we assume that the coverage in
the area is ensured by the remaining active BSs which overlap the area of a SC-BS in
SM. Furthermore, the BSs which remain active provide the required radio resources
for guaranteeing a minimum capacity in the area. This dynamic system matches to
the system model presented in Section 3.3:

• The system is in min-On state when the SC-BSs are in SM. The Csta static
resources are provided by the BSs that remain active.

• The system is in all-On state when the SC-BSs are operational and providing
Cdyn. The available capacity Cmax is the sum of the resources provided by all
BSs covering the area.

3.4.3.3 Capacity estimation

We consider that the maximal number of concurrent sessions depends on the
downlink physical resource allocation of the cell. In LTE systems the downlink
transmission scheme uses Orthogonal Frequency-Division Multiplexing (OFDM).
The smallest physical resource that can be allocated to a session is a Resource Block
(RB). This corresponds to a given number of subcarriers in the frequency domain and
one subframe (i.e. 1 ms) in time domain. We denote as NRB the number of resource
blocks of the entire downlink bandwidth, W is the number of considered subframes
in the periodic allocation, and NAS

RB is the number of resource blocks per active
session. We model NAS

RB as a constant number to represent an average behaviour of
the users in the cell. In reality this number depends on the UE channel condition
and the adequate modulation and coding scheme used for reliable communication.
Thus, the session capacity of the considered BS downlink resource grid is given by
Equation (3.19). The capacities (Csta and Cmax) of the different scenarios varies
depending on the number of active BSs in each system state.

C = NRBW

NAS
RB

(3.19)

3.4.3.4 Power consumption

The BS power consumption model we use was developed in the context of the
EARTH Project and introduced by Auer et al. [AGD+11]. This model relates Pout
(the output power radiated at the antenna) and Pin (the total power needed by the
BS to operate) for each type of LTE BS. The power model is well approximated by:

Pin =

NTRX(P0 + ∆PPout) 0 < Pout < Pmax

NTRXPsleep Pout = 0
(3.20)

where NTRX is the number of transceiver chains, P0 represents the power consump-
tion of an empty BS, ∆P is the slope of the load-dependent power consumption,
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Pmax represents the maximum transmission power achievable by the BS and Psleep
represents the power consumption of the BS in SM. However, in our model the
condition of sleep mode power consumption is not conditioned by Pout, but by the
explicit system state as it will be explained in the following. The different parameter
values we consider for the evaluation are given in Table 3.1. We model the power
consumption of the Mega BS as a Macro BS due to a lack of appropriate model.

In order to have a better approximation of Pin we calculate Pout as a function
of the number of active sessions in the BS. This is possible because Pout depends
on the BS physical resource allocation. The BS determines the downlink transmit
power per data RB (PRB), which is constant on average in each modulated symbol
and depends of the energy per resource element (EPRE) fixed in the BS.

The calculation of the average output power is dependent only on the number
of allocated RBs and does not depend on their time/frequency distribution. Thus,
Pout is given by Equation (3.21), where NRB is the number of resource blocks of the
entire downlink bandwidth and α(i, C) ∈ [0; 1] is a factor representing the fraction
of assigned resources depending on the number of concurrent sessions.

Pout(i, C) = α(i, C)NRBPRB (3.21)

For the considered model, α is given by (3.22) where i is the number of active sessions
in the BS and C the session capacity of the considered BS downlink resource grid.

α(i, C) = i

C
(3.22)

Combining Equations (3.21) and (3.20) provides Pin as a function of the number
of sessions in service. We denote the BS power consumption when serving i users
as Pin(i). When the BS is in sleep mode, the power consumption Pin is independent
of the number of sessions on hold and is constant. In this case we denote it as
Pin(sleep).

In order to estimate the average power consumption of the BS, we use the steady
state probabilities of the corresponding MC which models its traffic behaviour.
When considering a SC-BS representing the dynamic resources of the system, the
average power consumption is given by:

P dyn
in =

Cdyn∑
i=Umin

p(i,1)Pin(i) +
Umax−1∑
i=0

p(i,0)Pin(sleep) (3.23)

Considering the always active BSs, representing the static resources of the system,
the average power consumption is given by:

P sta
in =

Csta∑
i=0

p(i,−1)Pin(i) (3.24)
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3.4.3.5 Scenario considerations

For the considered scenarios, the aggregated offered load of the system is given
by:

A = λsys
µ

(3.25)

The parameter µ is fixed and its value is given in Table 3.1, thus the different offered
load levels we consider are result of the variation of the interarrival time distribution.
The proportion of DTU in the system is denoted with the parameter η. Thus, the
respective system arrival rates for DTU and N-DTU users are:

λDTU = ηλsys (3.26)

λN-DTU = (1− η)λsys (3.27)

The different scenarios are composed of several SC-BSs and Always Active BSs as
shown in Table 3.2. We denote as n andm the number of SC-BSs and Always Active
BSs in the scenario respectively. In the case of m BSs taking care of the load of
the SC-BS when entering in SM, we consider that given the regular patterns of the
considered scenarios, the batch of users is evenly distributed between the m Always
Active BSs. Thus, the batch size is given by:

b =
⌈
Umin − 1

m

⌉
(3.28)

In the scenarios where n SC-BSs can enter in SM, the Always Active BSs receive
batch arrivals more frequently. Thus, the batch arrival is given by:

λ′ = np(Umin,1)Uminµ (3.29)

We consider that the load varies homogeneously in the scenario. However, the
N-DTU arrivals are served by any type of BSs, while the DTU arrivals are only
considered by the SC-BSs. Thus, the parameters for the model are:

λ = λDTU

n
(3.30)

λ1 = λN-DTU

n+m
(3.31)

3.4.3.6 Optimization

For a given scenario, offered load (A), maximal tolerable delay (D) and proportion
of DTU (η), we are only interested in the combination of strategy parameters that
minimize the total scenario average power consumption, while satisfying the waiting
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Table 3.2: Scenarios for the evaluation of Strategy One.
Full Partial HeterogeneityRedundancy Redundancy

Scenario 1 2 3 4 5 6
SC-BSs type Macro BS Macro BS Macro BS Micro BS Mega BS Macro BS

n 1 1 1 6 1 6
Cdyn 100 100 100 600 100 600

AA-BSs type Macro BS Macro BS Micro BS Macro BS Macro BS Mega BS
m 1 3 6 1 6 1
Csta 100 300 600 100 600 100
Cmax 200 400 700 700 700 700

Maximum system load for strategy suitability
η = 1.0 0.5Cmax 0.25Cmax 0.14Cmax 0.9Cmax 0.14Cmax 0.9Cmax
η = 0.5 0.66Cmax 0.4Cmax 0.24Cmax 0.95Cmax 0.24Cmax 0.95Cmax
η = 0.2 0.83Cmax 0.63Cmax 0.45Cmax 5.82Cmax 0.45Cmax 5.82Cmax

time and the dissatisfaction constraints. Thus, we perform an exhaustive search of
the parameters generating the MCs that solve the following optimization problem:

minimize
Umin,Umax

nP dyn
in +mP sta

in

subject to γ ≤ γmax

δ ≤ δmax

Umax ≤ Cdyn

Umin ≤ Umax

(3.32)

Thus, for each combination of Umin and Umax the corresponding MC is generated
and solved. The performance parameters, i.e. the probability the users wait more
than D (γ) and the dissatisfaction metric (δ), are calculated based in the resulting
steady state probabilities. Finally, the constraints are evaluated and for each set of
strategy thresholds Umin and Umax satisfying the constraints, we choose the optimal
as the one with the minimal scenario average power consumption.

3.4.3.7 Results

In this section we present the optimal results obtained through numerical eval-
uation for the scenarios summed up in Table 3.2. We present the impact of the
strategy parameters on its performance using Scenario 4 as reference. Afterwards,
we discuss the capacity difference between scenarios and how it affects the numerical
evaluation and the suitability of the DTU-aware strategy. Detailed result graphics
for the other suitable scenarios are given in Annex B.

Impact off the strategy parameters
Figure 3.3 presents the results for the Scenario 4, considering four different D

proposed to the users, and full user cooperation (η = 1). The strategy is compared
to the scenario in which all the BSs remain operational affording the same load
repartition than the proposed strategy. This last strategy is labelled as Always On.
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Figure 3.3: Results for the Scenario 4, η = 1,γmax = 0.05, δmax = 0.05.

Figure 3.3(a) presents the average power consumption and Figure 3.3(b) presents
the power gain respect to the baseline scenario, i.e. the proportion of average power
that is saved when using the proposed strategy. Finally, Figure 3.3(c) presents the
optimal strategy thresholds for achieving these results and the repartition of the
operation probabilities for the dynamic resources. We observe power gains up to
35% when using the proposed strategy. Notice that the power gain is due to the
fact that the SC-BSs switch to SM. However, the power consumption in SM is still
relatively high. In the case of Macro BSs it represents 58% of the power consumed
by an operational BS without carrying traffic, and 70% in the case of Micro BSs.
These values are expected to decrease with the constant technology innovations.
Thus, greater gains can be envisaged when more load proportional hardware will be
used.

In general we observe that increasing D until a given upper bound increases the
probability that the dynamic resources are deactivated, as shown in Figure 3.3(c).
Note however that the maximum D providing additional benefits is upper-bounded
for a given A. The optimization problem we use identifies the combination of thresh-
olds that minimizes the average power consumption while satisfying the delay con-
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Figure 3.4: Power gain variation for different levels of η. Scenario 4, fixed δmax = 0.05
and γmax = 0.05.

straint. In some cases, for a given A, there are no combination of thresholds that
can provide better performance for a larger D. Thus, users wiling to wait more time
do not provide further gains for the system given the performance constraints. For
example, in Fig. 3.3(c), when the offered load is at 50% of the system capacity, the
optimal thresholds (and the performance of the strategy) are the same for D = 120s
and D = 150s. Thus, it makes no sense to ask users to wait longer than 120s for this
level of load. In very low loads, less arrivals occur and the system needs to activate
the dynamic resources more often to satisfy the delay constraint. For example, this
is the case of D = 60s in Figure 3.3(c) where the performance of the strategy is
worse for a normalized offered load of 0.05 than for 0.2.

Figure 3.4 shows the variation of the power gain if the proportion DTU η changes
in the system. The maximal gain is observed in the lowest loads and decreases
with η. However, while the system offered load increases, the gains increase when η
decreases. This is because the activation of the dynamic resources is governed by the
DTU traffic. If the DTU arrivals decrease, in low loads the system should activate the
dynamic resources to satisfy the delay constraint as explained before. When the load
increases, the strategy becomes efficient and the dynamic resources are operating
with less load if η decreases, which explains the overall better performance when
η = 0.5 in Figure 3.4. However, when η is small the gain decreases as the dynamic
resources are in low load regimen, and the resources are activated often to satisfy
the delay constraint of the DTUs.

Figure 3.5 and Figure 3.6 show that when the dissatisfaction and delay constrains
are relaxed, the strategy provides more benefits to the system in terms of power
consumption reduction. We also confirm that in low loads, the performance of the
strategy is bounded by the delay constraint. Contrary to the dissatisfaction metric,
more power savings are achieved for these levels of load when the delay constraint
is relaxed. The opposite is observed in increased level of loads, where the strategy
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Figure 3.5: Power gain variation for different levels of δmax. Scenario 4, fixed η = 0.5
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Figure 3.6: Power gain variation for different levels of γmax. Scenario 4, fixed η = 0.5
and δmax = 0.05.

performs similarly for different delay constraints, but obviously perform better for
higher levels of tolerated dissatisfaction.

Resource capacity impact
The modelled DTU-aware strategy controls the dynamic resources of the system

maximizing their utilization while taking benefits of their adaptability to reduce the
overall power consumption. Thus, the strategy is active and stable when the offered
load experienced by the dynamic resources is under their capacity. The maximum
system offered load for which the strategy is active depends of η as well, as the it is
distributed between both type of resources. These values are given in Table 3.2.

In order that the application of the strategy provides benefits to the system, it
should be active and representing gains in system offered loads beyond the capacity
of the static resources. Otherwise, the system can afford the load using only the
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static resources, and the prioritization of the utilization of the dynamic resources
by the proposed strategy is not worth. As observed in Table 3.2 and in Figure 3.7
Scenarios 2, 3 and 5 do not meet this condition. Thus, the strategy is not suitable for
them. We still evaluate their performance for the offered loads in which the strategy
is active, as observed in Figure 3.7. The power gain is inferior to the contribution
in power consumption of the dynamic resources, e.g. for the Scenario 2, the average
power reduction when using the DTU-strategy is 10%, while the consumption of
the dynamic resources represents 25% of the total consumption when active. In this
case is better to completely turn off the dynamic resources, and only activate them
in case of congestion of the static resources. The DTU-aware strategy proposed in
the next section follows this approach.
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Figure 3.8: Load dynamic example of the Strategy Two. White periods:
system in min-On state – No delay. Light gray periods: system in min-On state –
Delaying users. Dark gray periods: system in all-On state – No delay.

3.5 STRATEGY TWO: OPPORTUNISTIC DTU

3.5.1 Strategy description

This strategy makes no distinction between the user types (DTU or N-DTU).
The delay in the start of the services is then conditioned on the number of users
in the system and not by a persistent user choice. When the system is in min-
On state and the number of active users is below Csta, all arrivals are served right
away. Users will wait only in periods of congestion of the static resources. This is,
users will be accepted in the system even if (instantaneously) there are not enough
available resources to serve them. Thus, the start of their service will be shifted
until the needed resources become available. This condition can be satisfied either
due to the liberation of some static resources, or by the activation of the dynamic
ones. We define a threshold in the number of users TDTU > Csta. During the periods
where the number of users is in-between Csta and TDTU, i.e. when there are some
users waiting, the system will stay in min-On state. The actual switching to all-On
state depends on the number of waiting users and it will occur when the threshold
TDTU is reached. To ensure the service after the initial delay, the system should not
accept more users than the capacity. Thus, TDTU is bounded by Cmax. The system
is switched to min-On state when no more extra capacity is needed, i.e. when the
number of users falls below Csta.

An example of this strategy is depicted in Figure 3.8. In the period from t1 to t2
the system is in min-On state and above its capacity, thus some users are on hold.
At the end of this period, the system load descends under Csta which means that
the service of the waiting users started without the need of turning the system to
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all-On state. On the contrary, at t4 the system has to switch to all-On state (TDTU
is reached) to serve the waiting users and the new arrivals.

Users waiting in the system will be served either because some static resources
become available, i.e. some user departures occur, or because the system increases
its capacity to Cmax (TDTU was reached and the Cdyn resources were added). Thus,
the selection of TDTU is critical to ensure the service before the maximal delay D.
In the following section, we present the MC modelling this strategy and the analysis
of the selection of TDTU providing an user waiting time less than D.

3.5.2 Mathematical model

We model this strategy using the MC which state space is depicted in Figure 3.9.
This MC is explained and solved in the first part of this section. The following parts
describe the different criteria used for the selection of the strategy threshold in order
to bound the waiting of the users and ensuring the quality of service for them.
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Figure 3.9: Markov Chain of the user dynamic using Strategy Two.

3.5.2.1 Markov chain

This strategy is modelled using the MC depicted in Fig. 3.9. Only one arrival rate
λ is represented as there is no predefined distinction between N-DTUs and DTUs.
In this strategy, users will wait only in congestion periods when the system is in
min-On state. The model represents this in the states (i, 0) when Csta ≤ i ≤ TDTU.
In these states, the service rate is limited to Cstaµ as the system is only capable of
serving up to Csta simultaneous users when in min-On state. Thus, some arrivals
are delayed. The service rate is iµ otherwise. The system state transitions are
represented with the thicker arrow in Fig. 3.9 and they are:
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• The switch all-On −→ min-On: the state is (Csta +1, 1) and a departure occurs
• The switch min-On −→ all-On: the number of users in the system surpasses
TDTU

The balance equations of the MC modelling the system user dynamic this strategy
are:

λp(i,0) = iµp(i+1,0) if i = 0
(λ+ iµ)p(i,0) = (i+ 1)µp(i+1,0) + λp(i−1,0) if 0 <i < Csta

(λ+ iµ)p(i,0) = λp(i−1,0) + iµp(i+1,0) + (i+ 1)µp(i+1,1) if i = Csta

(λ+ Cstaµ)p(i,0) = (i+ 1)µp(i+1,0) + λp(i−1,0) if Csta <i < TDTU

(λ+ Cstaµ)p(i,0) = λp(i−1,0) if i = TDTU

(λ+ iµ)p(i,1) = (i+ 1)µp(i+1,0) if i = Csta + 1
(λ+ iµ)p(i,1) = (i+ 1)µp(i+1,1) + λp(i−1,1) if Csta + 1 <i < TDTU + 1
(λ+ iµ)p(i,1) = (i+ 1)µp(i+1,1) + λp(i−1,1) + λp(TDTU,0) if i = TDTU + 1
(λ+ iµ)p(i,1) = (i+ 1)µp(i+1,1) + λp(i−1,1) if TDTU + 1 <i < Cmax

iµp(i,1) = λp(i−1,1) if i = Cmax
(3.33)

From Equation (3.33) we can deduce the transition matrix Qtwo. The MC is irre-
ducible and consists of positive recurrent states. The unique steady-state probability
vector πtwo = {p(i,j)} is given by:

πtwoQtwo = 0 (3.34)
TDTU∑
i=0

p(i,0) +
Cmax∑

i=Csta+1
p(i,1) = 1 (3.35)

3.5.2.2 Waiting time

In this strategy a waiting user has two possible ways of being served. We consider
the user i arriving when there are already m users waiting in the system, i.e. there
are n = Csta + m users already in the system. The service of the user i will take
place either when m departures occur, i.e. the user is in front of the waiting queue;
or when the system arrives to the state (TDTU + 1, 1) and the switching to all-
On state is performed. Thus, there are different sequences of events (arrivals and
departures) which can lead the user i to be served, and the service will take place
after the sequence of event that occurs first, i.e. the sequence that takes the minimum
amount of time to happen. Moreover, in each state, the next event will take place
after a time te which is the minimum between the time a new arrival occurs and
the time an ongoing service finishes. As the interarrival time and the service time
are exponentially distributed, the minimum between these two random variables is
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another random variable which is exponentially distributed as well, and it is given
by:

fte(te;φ) = φe−φte te ≥ 0 (3.36)
where

φ = Cstaµ+ λ (3.37)

Each event is an arrival or a departure with probability pA = λ/φ or pD = µ/φ
respectively. We consider a set of events Sda containing na arrivals and nd departures,
such as there are lda sequences of these events that can lead the user i to be served.
Notice that lda = 0 if there are no possible combinations of the set of events leading
the user to be served. Thus, the occurrence probability of Sda is given by:

pSd
a

= lda(pAnapD
nd) (3.38)

The time after which a sequence of Sda occurs (TSd
a
) is the sum of the time each

event takes (te). As te is exponentially distributed, the sum of this kind of random
variable is a random variable which follows an Erlang Distribution [Wik] and is given
by:

fT
Sd

a
(TSd

a
; k, φ) =

φkTSd
a

k−1e
−φT

Sd
a

(k − 1)! for TSd
a
, φ ≥ 0 (3.39)

where
k = na + nd (3.40)

The Complementary Cumulative Distribution Function (CCDF) of TSd
a
is given by:

F̄T
Sd

a
(TSd

a
; k, φ) =

k−1∑
n=0

1
n!e
−φT

Sd
a (φTSd

a
)n (3.41)

The waiting times are conditioned on the states during which the user enters
the system. The user i has a probability p(i−1,0) of entering the system while in
state (i − 1, 0). The probability she/he waits more than D if she/he is served by
the sequence of events Sda is obtained from the CCDF of TSd

a
(3.41). Thus, the

probability that the sequence of events Sda leads the user i to wait more than D
after entering the system is given by:

P (TSd
a
> D) = p(i−1,0)pSd

a
F̄T

Sd
a
(D; k, φ) (3.42)

Generalizing for all possible sequences of events and denoting with Wi the waiting
time of the user i, the probability that the user i waits more than D after entering
the system is given by:

P (Wi > D) =
h∑
a=0

m∑
d=0

P (TSd
a
> D) (3.43)
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where h represents the maximum number of arrivals that a sequence leading the user
to be served can contain, and it is calculated using Equation (3.44). Note that if m
departures occur, the user is served as he/she is in the front of the waiting queue.
However, the dynamic for being served by the dynamic resources when switching
to all-On state is not that simple, as it is dependent on the number of users in
the system. A sequence containing departures, needs to be compensated by more
arrivals, in order that the number of users in the system reach TDTU and lead the
user to be served by the system in all-On state. Thus, the calculation of h accounts
for the worst case sequence.

h = TDTU − Csta +m (3.44)

Generalizing to all users that can experience some delay, the probability that
they wait more than D for starting their services is given by:

γ =
TDTU∑

i=Csta+1
P (Wi > D) (3.45)

Our objective is to keep γ under acceptable levels. Thus, the selection of TDTU has
to satisfy the following constraint:

γ ≤ γmax (3.46)

where γmax is the target probability. For example, if γmax = 0.05, at least 95% of
the users entering the system will wait less than D. In 5% of the cases the user may
encounter longer delays.

3.5.2.3 Quality of service

This strategy switches to min-On state when the Csta resources are enough to
serve the users in the system. Thus, no drop of ongoing communication is expected.
In the same way, new arrivals are delayed and not blocked when the system is over
the capacity in min-On state. The system will refuse to serve a new arrival only
when the capacity of the system is reached. Thus, the dissatisfaction metric used in
this strategy is the blocking probability when the system is in all-On state, and is
given by:

δ = pblock = p(Cmax,1) (3.47)

In order to keep an acceptable QoS, this probability should be controlled. Thus,
we define the maximum acceptable value for the metric as δmax, and the dimensioning
of the strategy should satisfy the constraint:

δ ≤ δmax (3.48)
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3.5.3 Numerical evaluation

In this section we present the numerical evaluation of the proposed DTU-aware
strategy adapted to two different energy efficiency strategies which take action in a
standalone BS scope, optimizing the operation of the BS with advanced and adaptive
hardware. Afterwards, we show how to adapt the model presented in the preceding
sections to these characteristics and how to quantify the average power consumption
when using the DTU-aware strategy. Finally, we provide the optimal results in terms
of power consumption for different levels of offered load.

3.5.3.1 Deployment

The reference scenario is a flat deployment of 3-sectorised Macro BSs with 10MHz
of bandwidth and 2x2 MIMO antennas, each of them transmitting up to 20W of
output power. Each BS is using adaptive transceiver chains and smart antennas (see
Section 2.3.1). We consider a BS site density corresponding to dense urban scenario
with 500 meters of inter site distance. We analyse a network region composed of
five BS sites.

3.5.3.2 Radio resource adaptation

We consider two scenarios depending on the radio resource adaptation technique
that is used:

• Dynamic sectorization: it corresponds to a NRS in which the number of
active sectors/cells of the BS varies depending on the traffic conditions [HG11].

Table 3.3: System Parameters for the evaluation of Strategy Two.
Deployment [EAR12b]

Deployment Type Urban
Inter Site Distance [m] 500

Site Area [Km2] 0.2165
Number of BS sites 5

BS type Macro 3-sector Reconfigurable
Transmission Bandwidth [MHz] 10

Antenna configuration 2x2 MIMO
Total Resource Blocks 50

BS power consumption [AGD+11]
NTRX 6, 4, 2

Pmax [W] 20
P0 [W] 130

∆P 4.7
Traffic characterization

System capacity [Mbps/Km2] [EAR12c] 115
Session target throughput [kbps] 500
System session capacity (Cmax) 235

Average service time [s] (µ−1) [PP05] 81
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Some cells of the BS are deactivated, reducing the overall power consumption.
The remaining active cells are modified using the beamforming capabilities of
the smart antennas to compensate coverage. This BS dynamic behaviour fits
to the system model presented in Section 3.3:
– The system is inmin-On state when some sectors of the BS are not active.

The Csta resources are provided by the sectors that remain active.
– The system is in all-On state when all the BS sectors are operational.

The available capacity Cmax is the sum of the resources provided by all
the BS sectors.

• Capacity adaptation: it corresponds to a RRM strategy in which the num-
ber of usable RB are limited, allowing the adaptation of the PA operation
point, reducing the power consumption of the cells [EAR12d]. In order to fit
to the system model presented in Section 3.3, we consider the case in which
the transceiver chain switches only between two operating points:
– The system is in min-On state when the number of RB is limited. The
Csta resources are provided by the usable RBs.

– The system is in all-On state when the cell can use all the bandwidth
providing a total capacity of Cmax.

3.5.3.3 Capacity estimation

The infrastructure of LTE allows the operators to provide data based services
with real-time quality of service constraints, such as video calls. The system capacity
(Cmax) we consider is obtained from a similar scenario in the literature and is given
in Table 3.3. This capacity is calculated in order to provide a minimum quality
of service for high definition video transmission. However, we consider a minimum
of 500 kbps as the target for an acceptable video session quality [Mic]. When a
video session is in progress, it uses a given number of allocated resource blocks
in the LTE downlink. This number depends on the coding rate and modulation
scheme which vary with the link quality reported by the UE. Considering static
uniformly distributed users we account for the average behaviour assuming that
each video call uses in average approximately the same number of RB. Therefore,
we consider that the capacity and the offered load are linear functions of the number
of simultaneous sessions. The system session capacity is given in Table 3.3. These
values are obtained considering homogeneous traffic demand. Thus, the capacity
and the load are uniformly distributed between BSs. The values of Csta depend on
the applied radio resource adaptation strategy and the considered parameters for
each of them. The scenarios we evaluated are summarized in Table 3.5 and the
description of the parameters are given in the following section.
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3.5.3.4 Power consumption

The BS power consumption model we use for the evaluation of the strategies is
based in the model of Auer et al. [AGD+11], which we already used in Section 3.4.3.4.
However, we adapt it to the power efficient strategies we are considering. The
parameters values for the baseline model are given in Table 3.3, while the strategies
specific parameters and equations are given in this section.

Dynamic sectorization
When using the dynamic sectorization some transceiver chains are completely

deactivated and their power consumption is near zero Watt. Thus, the BS power
consumption depends on the number of active transceiver chains NTRX. Further-
more, C is the maximum number of sessions the BS can serve with the NTRX active
resources. Thus, the BS power consumption is given by:

PNTRX
in (i, C) = NTRX(P0 + ∆PPout(i, C)) (3.49)

We remind the assumptions made in the Section 3.4.3.4, where we have considered
that the calculation of the average output power is dependent only on the number
of allocated RBs and does not depend on their time/frequency distribution. Thus,
the output power is given by Equation(3.50), where NRB is the number of resource
blocks of the entire downlink bandwidth and α(i, C) ∈ [0; 1] is a factor representing
the fraction of assigned resources depending on the number of concurrent sessions,
which is calculated using Equation (3.51).

Pout(i, C) = α(i, C)NRBPRB (3.50)

α(i, C) = i

C
(3.51)

We denote the number of active transceiver chains when the system is in min-
On state or in all-On state as Nmin and Nall respectively. Thus, the average power
consumption is given by:

Pin =
Csta∑
i=0

p(i,0)P
Nmin
in (i, Csta)+

TDTU∑
i=Csta+1

p(i,0)P
Nmin
in (Csta, Csta)+

Cmax∑
i=Csta+1

p(i,1)P
Nall
in (i, Cmax)

(3.52)
Capacity adaptation
When using the capacity adaptation strategy, the power consumption of the BS

depends on the number of usable cell RBs, as the PA is optimized to operate below a
maximal signal load level. Depending on the used operating point (n), the maximal
signal load is limited to φn and its power consumption is reduced by a factor denoted
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Table 3.4: Adaptive transceiver chain operating points (n) and their associated
maximal signal load (φ) and power reduction factor (θ). Source: [EAR12d].

n 1 2 3 4 5 6
φn 1 0.79 0.63 0.5 0.39 0.31
θn 0 0.06 0.09 0.13 0.18 0.23

as θn. The different values for these parameters are shown in Table 3.4 Thus, the
BS power consumption is given by:

P θ,φ
in (i) = (1− θ)NTRX(P0 + ∆PPout(i, φ)) (3.53)

In this case the output power also depends on the fraction of assigned RBs which is
proportional to the number of concurrent sessions, represented by the factor α(i, φ) ∈
[0; 1] given in Equation (3.55).

Pout(i, φ) = α(i, φ)NRBPRB (3.54)

α(i, φ) = i

φCmax
(3.55)

When in all-On state the system will use the operating point n = 1, while when
in min-On state different cases are evaluated as shown in Table 3.5. In general, the
average power consumption is given by:

Pin =
Csta∑
i=0

p(i,0)P
θn,φn
in (i) +

TDTU∑
i=Csta+1

p(i,0)P
θn,φn
in (Csta) +

Cmax∑
i=Csta+1

p(i,1)P
θ1,φ1
in (i) (3.56)

3.5.3.5 Optimization

For a given scenario, offered load (A) and maximal tolerable delay (D), we are
only interested in the combination of parameters that minimize the total scenario
average power consumption, while satisfying the waiting time and the dissatisfaction
constraints. Thus, we perform an exhaustive search of the parameters that solves
the following optimization problem:

minimize
TDTU

Pin

subject to γ ≤ γmax

δ ≤ δmax

TDTU ≤ Cmax

(3.57)

Thus, for all the possible values of TDTU, the corresponding MC is generated and
solved. The performance parameters, i.e. the probability the users wait more than
D (γ) and the dissatisfaction metric (δ), are calculated based in the resulting steady
state probabilities. Finally, the constraints are evaluated and for each TDTU satis-
fying them, we choose the optimal as the one with the minimal scenario average
power consumption.
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Table 3.5: Scenarios for the evaluation of Strategy Two. Cmax = 235.
Scenario 1 2 3 4

Power efficient strategy Dyn Sect Dyn Sect Cap Adap Cap Adap
min-On state parameters Nmin = 1 Nmin = 2 θ2 = 0.06, φ2 = 0.79 θ4 = 0.13, φ4 = 0.5
all-On state parameters Nall = 3 Nall = 3 θ1 = 0, φ1 = 1 θ1 = 0, φ1 = 1

Csta 70 176 141 94

3.5.3.6 Results

In this section we present the optimal results obtained through numerical evalu-
ation for the scenarios summed up in Table 3.5. We use Scenario 1 as reference to
present the strategy performance and major findings. The same trends are observed
for the other scenarios, scaling the power gain depending on the energy efficiency
strategy applied in each scenario. Results for the other scenarios are given in An-
nex C.

Figure 3.10 presents the optimal results in terms of average power consumption
for the Scenario 1, considering four different D proposed to the users. The strategy
is compared to two baselines. The first baseline is the scenario in which the system
persistently works using all the resources, and it is labelled as Always On. The
second baseline is the scenario in which the dynamic resources are activated when
the number of active sessions reaches Csta, so that no user is delayed. The later
baseline is labelled as D = 0s. Figure 3.10(a) presents the scenario average power
consumption and Figure 3.10(b) presents the power gain regarding to the scenario
without delay. Finally, Figure 3.10(c) presents the optimal strategy thresholds and
the resulting system operation probability.

The gains regarding the Always On scenario strategy for loads below to Csta are
proportional to the power consumption of the dynamic resources when active. This
is not surprising as they are not activated as they are not needed. Thus, even the
strategy without any delay is efficient for these levels of load representing a power
gain of up to 65% regarding the Always On baseline for the Scenario 1.

The benefits of delaying the start of the user services become evident in loads close
to Csta and above, e.g., when the system offered load represents 20% of the capacity,
i.e. 0.25 in Figure 3.10. We observe up to 47% of power gain under increased delay
tolerance for this scenario, compared to the strategy without delay. This is because
the system has larger probability to remain in min-On state as the users can wait,
even when affording higher offered load levels, e.g. larger than Csta. This is shown in
Figure 3.10(c) where the probability of operation is dominated by the min-On and
delaying system state for normalized loads above to 0.25 and inferior to 0.35. For
loads superior to 45% of the system capacity the gains are negligible, as the static
resources are not enough to serve all arrivals, even if they can wait, so the dynamic
resources are active all the time. Notice that when using the baseline D = 0s, the
probability of activation of the dynamic resources starts to increase for normalized
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Figure 3.10: Results for the Scenario 1,γmax = 0.05, δmax = 0.05.

load levels above to 0.21. In the case of the DTU-aware strategy with D = 60s,
this is the case for loads above 0.30. Thus, 9 percentage points of further system
load can be served without activating at all the dynamic resources, thanks to the
proposed DTU-aware strategy.

For normalized load levels of 0.25 and 0.45 the optimal thresholds are the same.
However, the probability distribution is different given the level of offered load. In
the first case, all waiting users are served by the static resources, so that TDTU is
never reached (the probability that the system is in all-On state is 0). In the second
case, the system is most of the time in all-On state to serve the increased offered
load. What is more important to notice, is that TDTU is the same for all values of
D. This is because in the formulation of the optimization problem we search for the
thresholds that minimize the power consumption under the constraint of a maximal
delay. For these levels of offered load, there are no other values for the threshold
that can ensure performance better that the one attained at D = 10s. Thus, users
willing to wait more time do not represent further gains for the system.
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Figure 3.11: System configurations: (a) all the BSs are operational and using the
same configuration (b) SC-BS is in SM and the EC-BSs extend their coverage mod-
ifying the antenna tilt.

3.6 COMPARATIVE EVALUATION

In this section we compare the performance of the two strategies presented in this
chapter in the same scenario. In Section 3.6.1 we describe the deployment and energy
efficiency strategy selected for the evaluation, as well as the traffic characterization
and capacity estimations of the scenario. We evaluate the proposed strategies for
different traffic levels following a daily pattern characteristic of an European country.
Finally, we present the results in Section 3.6.2 showing the power and energy gains
of the strategies and their efficiency depending on the different periods of the day.

3.6.1 Scenario

3.6.1.1 Deployment

The reference deployment is a homogeneous non-overlapping hexagonal deploy-
ment of sectorised BSs proposed by Guo et al. [GO13]. Each BS site is composed
of six adaptive antennas, each one representing a sector. Two different kinds of
sectors can be distinguished, as depicted in Figure 3.11(a): the inner sectors with
antenna tilt θINN and the outer sectors with antenna tilt θOUT. Further details are
summarized in Table 3.6.
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Table 3.6: System parameters for the numerical comparision between strategies.
Deployment [GO13]

Deployment type Hexagonal Macro
Inter Site Distance [m] 500

Site Area [Km2] 0.2165
Number of BS sites 7

BS type 6-sector Reconfigurable
Sectors operation frequency [MHz] 2600 inner, 800 outer

Bandwidth [MHz] 10
Antenna configuration 1x2 MIMO

Antenna tilt normal θOUT = 3◦ θINN = 12◦

expanded θOUT′ = 0◦ θINN′ = 9◦

Baseline BS power consumption [AGD+11]
NTRX 6

Pmax [W] 20
P0 [W] 130

∆P 4.7
Psleep [W] 75

Traffic characterization
Session target throughput [Mbps] 1

Site capacity [Mbps] [GO13] 33 (all-On state)
10 (min-On state)

Site session capacity Cmax = 33
Csta = 10

Session duration [s] [PP05] (µ−1) 81

3.6.1.2 Radio resource adaptation

We consider that the central BS of the deployment (Figure 3.11(a)) can be
switched to Sleep Mode (SM). This BS is denoted as Sleep-Capable Base Station
(SC-BS) in the following. As we consider a non-overlapping scenario, the deactiva-
tion of the SC-BS will create a coverage hole in the area. Thus, the surrounding
active BSs need to apply a coverage preservation technique to ensure the service
availability and a minimal capacity in the affected area. The neighboring BSs in
charge of compensating the absence of a sleeping BS are called Expand-Capable
Base Station (EC-BS). In the considered adaptive deployment, the EC-BSs expand
themselves changing the tilt of their inner and outer sector to θINN′ and θOUT′ re-
spectively. Thus, the EC-BSs compensate the coverage of the SC-BS as depicted in
Fig 3.11(b). Please note that with this configuration, the coverage compensation is
done without the need of increasing the transmission power of the EC-BSs [GO13].

This dynamic system partially fits to the system model presented in Section 3.3:
the system is in min-On state when the SC-BS is in SM. The Csta static resources
are provided by the expanded EC-BSs. However, as no redundancy or overlapping
is considered, when the SC-BS is turned on the EC-BSs shrinks, removing their
resources from the coverage area of the SC-BS. Some of the users with ongoing
communications may need to perform handover to the SC-BS and continue being
served by it, as it offers the better signal condition for them given their location.
Strategy Two considers this, as no explicit access control is performed for the users,
and no distinction of resources is made for their services. Thus, when the system
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Figure 3.12: Base station site daily traffic profile for a European dense urban scenario
[EAR12b].

turns to all-On state, waiting users and users with ongoing communication are
considered in the same way. However, the way that Strategy One was modelled
does not take this into consideration. Thus, additional assumptions are made in
order to compare the strategies in this scenario. First, we only consider the case
where η = 1. Thus, when using Strategy One, the EC-BSs will only serve the batch
arrivals from the SC-BS and no other traffic will be held by them. We also assume
that all these sessions will finish before the SC-BS is activated again. Finally, we
consider that the system capacity when in all-On state corresponds to the capacity
provided by the SC-BS.

3.6.1.3 Capacity estimation

The different system capacities are obtained from [GO13] and correspond to
the data rate perceived in the worst-case user location for the reference system.
When the system is in all-On state, the capacity Cmax corresponds to the data rate
perceived at the cell edge of the outer sectors of the SC-BS (Fig. 3.11(a)). When
the system is in min-On state, the capacity Csta is the data rate perceived at the
cell edge of the expanded outer sectors of the EC-BSs (Fig. 3.11(b)). Thus, we focus
our evaluation in the dynamic part of the deployment, i.e. the area covered by the
SC-BS when active. Similar assumptions to the ones made in Section 3.5.3.3 are
made about the user session characterization and the parameters are summarized
in Table 3.6.

3.6.1.4 Traffic profile

The traffic profile used for the evaluation correspond to an European dense urban
scenario with a population density of 3000 citizen/km2, served uniformly by three
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cellular operators. The percentage of data subscribers for this scenario is 75%.
We used the typical European data traffic profile to determine the level of user
activity throughout a complete day [EAR12b]. Considering uniform distribution
of the users and the parameters in Table 3.6, the resulting BS site user density is
163 data subscribers/site/operator. Thus, for each BS site in our reference system,
the traffic load varies according the profile depicted in Fig. 3.12. For example, the
number of active users in the busy hour (21h) accounts 16% of the subscribers, i.e.
26 active users/site/operator.

3.6.1.5 Power consumption

We evaluated the average power consumption of the SC-BS when applying the
two proposed DTU-aware strategies. For Strategy One, this corresponds to Equation
(3.23). For Strategy Two, the power consumption is calculated using Equation
(3.49), considering the power consumption when the system is in min-On state
equal to Pin(sleep).

3.6.2 Results

The objective of the DTU-aware strategies is to maximize the probability that
the SC-BS is in SM. Figure 3.13 and Figure 3.14 show the performance of the pro-
posals when the delay tolerance varies. These figures present the optimal strategies
thresholds and the resulting probability repartition of the SC-BS operation mode,
considering different D proposed to the users. Figure 3.15 presents the optimal re-
sults in terms of average power consumption for a complete day. The strategy is
compared to two baselines. The first baseline is the scenario in which the SC-BS is
always active, labelled as Always On. The second baseline is the scenario in which
no delay is experienced by the users and the SC-BS is activated when the number
of active sessions served by EC-BSs reaches 0.8Csta, so that no user is blocked when
the system is in min-On state.

As expected, Strategy Two has a better overall performance, allowing the SC-BS
to remain in SM until offered load levels above Csta (e.g., 12 erlangs, D = 20, 30, 40s).
In the busy hours (offered load levels larger than 23 erlangs) the benefits of the delay
tolerance of the users is negligible as the SC-BS should remain active all the time
to absorb the traffic load. In Strategy One, the fact that the SC-BS must wake
up to serve DTUs limits considerably its performance, compared to Strategy Two
where DTUs can be served by EC-BSs. Note that all users in Strategy Two must be
tolerant to delay, but they will effectively experiment delays only when the system
is in a given state upon arrival. Thus, we see that opportunistically delaying users is
better in terms of energy consumption than systematically delaying a part (or even
all) of them.
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Figure 3.13: Sleep-capable base station operation probability and strategy thresh-
olds depending on the traffic load. Strategy One in a dense urban scenario. Four
fixed maximum tolerable delay (D), η = 1, γmax = 0.05, δmax = 0.05.
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Figure 3.14: Sleep-capable base station operation probability and strategy threshold
depending on the traffic load. Strategy Two in a dense urban scenario. Four fixed
maximum tolerable delay (D) are considered altogether with the baseline strategy
(D = 0s) and γmax = 0.05, δmax = 0.05.

Figure 3.15 shows the results regarding the daily power consumption evaluation
made for the SC-BS when the different DTU-aware strategies are applied. These
results consider fast activation/deactivation and Psleep = 75W . As expressed before
in Section 3.4.3.7, it is likely in the future to have SM with lower power consumption
which will further increase the gain presented in this section. Figure 3.15(b) shows
up to 48% of power consumption reduction compared to the Always On strategy
if the DTU-aware strategies are used. In low traffic periods, the baseline D = 0s
shows considerable gains, outperforming Strategy One. For the rest of the day, the
two DTU-aware strategies have a better performance than the baseline D = 0s as
shown in Figure 3.15(c). However, Strategy One needs users to tolerate higher delays
(D=90,120s) to provide a daily benefit for the operator, as exposed in Table 3.7.
Finally, Strategy Two is the most advantageous as it better uses the system resources,
the users are asked to wait only when needed, the waiting time is smaller and the
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Figure 3.15: Daily SC-BS power consumption evaluation for the different strategies,
γmax = 0.05 and δmax = 0.05.
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Table 3.7: Average daily energy consumption E depending on the strategies. Energy
reduction factor compared to the Always On strategy (ξON) and compared to the
Traditional Sleep Mode Strategy (ξBL).

Strategy E[kWh] ξON ξBL
Always On 22.60 0.00 -0.12

Baseline D=0 20.13 0.11 0.00
One D=30s 21.65 0.04 -0.08
One D=60s 20.45 0.10 -0.02
One D=90s 19.23 0.15 0.04
One D=120s 18.34 0.19 0.09
Two D=10s 18.70 0.17 0.07
Two D=20s 18.13 0.20 0.10
Two D=30s 17.43 0.13 0.13
Two D=40s 17.17 0.21 0.15

strategy represents 15 % of more daily energy savings than the baseline D = 0s,
with an energy reduction of 21% compared to the Always On strategy.

3.7 SUMMARY AND DISCUSSION

In this chapter, we presented an analytical formulation and evaluation of the
potential power and energy gains that can be achieved with the combination of
demand management techniques and energy efficiency strategies in cellular access
networks. We first exposed the motivation of choosing request shifting as a demand
management strategy, as it can increase the flexibility of the traditional energy
efficiency strategies. As we analyse the problem from a theoretical point of view, we
introduced the general system model and the dynamic resource management used
in the formulation of our strategies. We also presented the traffic characterization
we perform, using well known traffic distributions and assumptions.

Afterwards we described, analysed and evaluated the two strategies we proposed,
which combine traffic shifting and energy efficiency techniques. These strategies are
based on switching between system states depending on the carried traffic. Thresh-
olds in the load are defined to trigger the reconfigurations and users are accepted
in the system even when they are not served right away. We defined two type of
resources: static and dynamic. The first are available when needed to ensure the
service availability and a minimal access network capacity. The second can be acti-
vated/deactivated when required, with certain degree of freedom depending on the
used hardware and energy efficiency strategy.

Our first proposed strategy has the objective of maximizing the utilization of the
dynamic resources. To do so, users are asked to wait when the dynamic resources
are not active, time in which impatient requests are served by the static resources.
When the dynamic resources are active all users are served indistinctly. However,
this strategy requires an explicit differentiation about the user tolerance to delays,
and we observed that the benefits of this strategy varies with the proportion of
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traffic that can be delayed. The decisions of activating the dynamic resources are
dependent on the waiting users, as the waiting time should be bounded. Decisions
to deactivate them depend on the availability of the static resources to serve the
ongoing communications, in order to avoid user dissatisfaction. We observed that
the higher the waiting time constraint, the higher the energy gain. However, as
the access network has limited capacity, this maximal delay has an upper limit
as the service needs to be ensured after the waiting time. The drawback of this
strategy is the tight link between DTUs and the dynamic resources. The latter are
always activated if there are DTUs in the system, no matter if there are enough
static resources to serve them. This makes the strategy inefficient for low loads, i.e.
loads below to the capacity of the static resources, situation in which considerable
gains can be achieved by simply deactivating the dynamic resources and serving all
users without delay. However, the benefits of the strategy are evident when the
load is beyond the static resources capacity, as it allows to distribute and balance
the load between both types of resources. Thus, the dynamic resources can be
deactivated and the activation can be shifted in time due to the cooperation of the
users, maximizing the low energy consumption periods.

This strategy is also suitable in the case where there are no static resources. For
example, in an off-grid battery limited system, the BSs should minimize the time it
is active, or conversely maximize the periods when it is deactivated. This is achieved
by Strategy One which offsets the start of the services until having enough requests
to justify the activation. The ideal deactivation condition should be when no user
is active in the system (as there are no static resources to take care of ongoing
communications). However, in this kind of critical systems, the targeted level of
quality of service is more flexible and some communication drops can be tolerable
or even necessary/unavoidable by the operator. Thus, the selection of the strategy
parameters may depend not only on traffic conditions but also on other system
characteristics (e.g., battery level).

The second strategy we developed makes no distinction between the different
type of users, as the waiting condition only depends on the system state and not
on a persistent user choice. Thus, all users are considered DTUs, but they will
wait only in a given condition, i.e. when the static resources are exhausted. All
users are served immediately if the load is below the static resource capacity and
the activation of the dynamic resources is done based on load thresholds. Using
traditional techniques the threshold values are below the static resources capacity,
to avoid any user dissatisfaction caused by the congestion of the limited available
resources. The basis of the strategy we proposed is to push the activation threshold
beyond this capacity, thanks to the delay tolerance of the users. Thus, we can extend
the periods when the system can remain using only the static resources, delaying
the activation of the dynamic resources or even avoiding it, e.g. in the case of a
short period of increased traffic. As well as in the previous strategy, the condition
to activate the resources depends on the number of waiting users in the system.
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We observed that the waiting times are small, as users can be served by the static
resources and not solely by the activation of the dynamic resources. The drawback of
this strategy is that urgent traffic is not explicitly considered. In practical systems,
this type of traffic can be prioritized on a scheduling level, as the static resources are
operational. However, this may have some impact on the waiting users if any. This
strategy overcomes the limitations of the persistent DTU strategy and the energy
gains are maximized in periods of low load. Moreover, the range of loads where the
strategy represents benefits is extended compared to the traditional strategies.

In the last part of this chapter we evaluated the performance of the strategies for
different levels of load representing the daily traffic variation in a typical European
cellular network. We observed that in almost 80% of the day the strategies can bring
some benefits compared to the Always On paradigm in the evaluated scenario. This
means that for 80% of the day the considered access network is over-provisioned
for the evaluated traffic profile, which highlight the importance of the dynamic
radio resource adaptation to make the access network energy consumption more
proportional to the carried traffic. The daily energy consumption is reduced by 11%
if a traditional strategy is used. Reductions up to 19% are observed if a persistent
DTU strategy is employed with a maximal delay of 2 minutes, and up to 21% if an
opportunistic DTU strategy is used, with a maximal delay of 40 seconds.

In Chapter 2 we show that several strategies are proposed in the literature towards
the idea of resource adaptation for energy efficiency. In this chapter we presented a
generic and simple model of the traffic dynamics of the access networks when using
these techniques. The traffic assumptions we made allow to easily adapt the model
to different energy efficiency strategies, based in the notion of capacity variation
depending on the available radio resources. We considered throughout this chapter
four different scenarios: BS switching in a homogeneous overlapped deployment,
BS capacity adaptation and BS dynamic sectorization in a standalone BS scope,
and coordinated BS switching in a homogeneous non-overlapped deployment. Thus,
we presented different use cases in which the proposed strategies can be applied
when having the appropriated hardware flexibility. Each set of parameters for each
energy efficiency technique, represents a different system dynamics and consequently
a different energy consumption modelling and energy gain quantification regarding
the traditional approaches. We showed with the evaluation of the different scenarios,
that independently of the used energy efficiency technique, there are further gains
to be made with the user side cooperation in the form of initial delay tolerance.

The results presented in this chapter represent the theoretical bounds for the
possible gain in the evaluated scenarios. We can expect that these gains vary when
considering more realistic system characteristics, e.g. location dependent radio con-
ditions, heterogeneous traffic and distributions, mobility, etc. Moreover, the strate-
gies represent changes in the radio environment for a given area and users in it. In
the next chapter we present the implementation of the strategies in a system level
simulator, allowing us to evaluate them in a more realistic radio environment.
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System level evaluation

4.1 INTRODUCTION

In this chapter we describe the implementation and evaluation of the DTU-aware
strategies in a system level simulator, which allowed us to consider a more realis-
tic scenario for the LTE access network functioning. In Section 4.2 we elaborate
in the motivations of using this approach for the sake of having more realistic ap-
proximations of the gains attainable by the DTU-aware strategies. In particular
we are interested in combining the DTU-aware mechanisms with a fast-reaction cell
switching algorithm in order to further increase its energy reductions.

We developed our simulation platform based on the LTE module of the Network
Simulator 3 (ns-3). In Section 4.3 we present the main reasons driving this decision
and we describe some relevant points of the model used for our evaluation. We
present the general architecture of the simulation models implemented in the ns-
3 platform, which emulates a functional and operative LTE network. The LTE
compliant data protocol stack implemented in ns-3 is discussed as well. We rely
on the handover algorithms designed for supporting user mobility to ensure the
continuity of services when applying cell switching algorithms. Thus, we describe
the corresponding handover protocol implemented in the LTE module of ns-3.

In Section 4.4 we present the scenario and algorithms we implemented for the
evaluation of the DTU-aware strategies in the simulation environment. First, we
describe the considered system model and coordinated cell switching algorithm.
We present as well the spatial characterizations we use for the execution of the
DTU-aware strategies, e.g. the definition of a DTU zone in the deployment, which
limits the execution of the DTU-aware algorithms to the given area in which the
coordinated cell switching is applied. Afterwards, we remind the operation of the
DTU-aware strategies and we describe the corresponding algorithms implemented
in the simulator. We also describe how the traffic is generated considering a pseudo
voice application for the simulated UEs, and a tunable call arrival and service time
generator following a given random variable distributions. We present as well the
algorithms corresponding to the traffic monitoring functionality, which allow to trig-
ger the reconfigurations depending on the applied DTU-aware strategy. Finally, we
define the metrics we use for the evaluation of the performance of the strategies,
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comprising the QoS perceived by the UEs, the experienced waiting time resulting
from the strategies application and the average power consumed by the access net-
work.

In Section 4.5 we present the system level evaluation examining the performance
of the DTU-aware strategies. We present the simulated scenario and the scenario-
specific system characterization in terms of capacity and coordinated cell switching.
Finally, we present the results of the simulations showing the strategies dynamics,
the effectiveness in maintaining acceptable levels of QoS and waiting times, and
in reducing the average power consumption of the system in study. We show as
well the impact of the cell switching reconfiguration time in the attainable power
reductions. Finally in Section 4.6 we summarize and discuss the main findings of
the work presented in this chapter.

4.2 MOTIVATION

In the previous chapter we presented two DTU-aware strategies to further reduce
the energy consumption of the access network when energy efficiency techniques
are employed. We approached the problem from a theoretical point of view, where
we made several assumptions and simplifications about the cellular access network
functioning, e.g. instantaneous reconfiguration and fixed radio resources per service.
Thus, we decided to move towards a more realistic scenario, using a system level
simulator modelling a functional LTE access network. Two main motivations drove
this decision. First, we wanted to investigate the impact the dynamic resource man-
agement has on UEs’ QoS and on the general access network behavior, and how it
affects the performance of the DTU-aware strategies. Second, we wanted to evalu-
ate the behavior and effectiveness of the DTU-aware strategies in online conditions,
taking into consideration the system and traffic time dependent variations. We also
want to investigate the time needed to perform the network reconfigurations with-
out affecting considerably the user’s perceived QoS and waiting time. These points,
among other secondary motivations, are discussed in the following paragraphs.

The radio link quality of the UEs under the coverage of a given BS depends,
among other parameters, on their relative position to the serving BS and to the
neighboring BSs interfering with the serving signal. LTE BSs have different data
transmission modes in order to achieve reliable communication in a variety of radio
link conditions, taking advantage of the OFDM multi-user diversity, which allows
the allocation of resources in a per-UE basis. To do so, a closed control loop is
established between the BS and the UE. The UE reports a KPI indicating the
quality of the channel to the BS, which chooses the appropriate modulation and
coding scheme for transmission. When considering energy efficiency strategies, the
radio environment conditions become highly dynamic. Thus, the channel conditions
perceived by the UEs can vary during the time they are within a cell. These changes
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are well studied and considered in the design of the access network protocols, as
traditionally they were the result of the mobility of the users. However, when
using radio resource adaptation, the channel conditions change even if the UE is
static. Using system level simulations we can investigate how to perform the radio
environment reconfigurations having the least impact on users QoS with ongoing
communications, as well as how the current access network protocols reacts to it,
e.g. the handover protocols designed for mobility.

We decided to focus on the cell switching technique as it is the energy efficiency
strategy that provides the higher gains, as shown in Chapter 3. When a cell is
deactivated, users need to perform handover to the remaining active cells in order
to continue their communications, or to simply have network availability in case
no service is ongoing. This process implies control signalling exchange between the
three involved entities: the UE, the source cell, i.e. the cell to which the UE is
initially attached, and the target cell, i.e. the cell to which the UE needs to attach.
If the deactivation of the source cell is done suddenly, the control information can
be lost, compromising the handover protocol. Thus, this process needs to be done
progressively, which is time consuming. Our approach is based on the idea of ex-
tending the periods of low energy consumption thanks to the delay tolerance of the
users, i.e. when the cells are not active. However, a maximal waiting time is pro-
posed to the users, and extra delay in the start of their services can be experienced
when considering the reconfiguration periods. Moreover, the low energy consump-
tion periods start when the deactivation process finishes. Thus, it is possible that
the waiting periods and deactivation periods overlap, reducing the length of the low
consumption periods if the reconfiguration takes too long.

Simulator choice:
An online evaluation of the DTU-aware strategies can provide some insights of

the points discussed above, and the trade-off to be made in order to maximize the
energy gain resulting of the application of the strategies. A discrete event simula-
tor appears convenient for our purpose, as it allows to evaluate the behavior of the
system in time. Several LTE simulators were developed in the academia and are
available for free download and use. For example, the LTE Vienna simulator [IV]
developed by the Vienna University of Technology, or the LTE-Sim platform [Tel]
developed by the Telematics Lab of the Politecnico di Bari. The models conceived
for these simulators are specific to the evaluation of LTE protocols. General pur-
pose network simulators incorporate LTE modules in their implementations as well.
For example, the LTE specialized module of the OPNET simulator (commercial),
SimuLTE of the OMNEST/OMNeT++ simulation platform (open source) [Omn],
or the LTE Module of the Network Simulator 3 (ns-3) (open source) [NS3]. It is
worth to mention that the last one utilizes estimations for the physical layer model
which are derived from the LTE Vienna simulator and it has the active development
collaboration from the LTE-Sim team. Thus, we decided to use the LTE module of
ns-3 for our evaluation, which will be presented in the following section.
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4.3 NS-3 LTE SIMULATION PLATFORM

The ns-3 platform is an open-source discrete-event network simulator and is pub-
licly available for research, development, and use. The platform is split over nu-
merous modules containing one or more models for real-world network devices and
protocols. The LTE module was initially developed by the Centre Tecnologic de
Telecomunicacions de Catalunya under the name of LENA [Cen] and was further
integrated to the public release of ns-3. We use the ns-allinone-3.21 version [NS3],
which at the time of writing is the latest release. The main reasons for using this
simulator are the following:

• It is a discrete-event simulator allowing to investigate the behavior of the
network entities, traffic and protocols given the logical sequence of events in
time;

• It allows the simulation of access networks with multiple BSs and several UEs
connected to each BS;

• It implements core network interfaces, protocols and algorithms providing re-
alistic data transmission between the UEs and remote hosts located in external
networks;

• It allows the implementation of different applications in the end nodes, i.e.
in the UEs and remote hosts; which allows the simulation of different traffic
dynamics within the LTE network;

• It comprises an adequate model approximation of the radio channel conditions
in a cellular environment;

• It implements radio resource scheduling with a granularity of one resource
block, allowing a better estimation of the instantaneous transmitted power;

• It allows to manipulate the radio environment in simulation time. In particu-
lar, the cell transmission power can be changed allowing the simulation of cell
switching techniques;

• It implements automatic inter-cell handover algorithms ensuring the continuity
of the communication when the UE detects a more suitable cell to connect,
e.g. during a cell switching procedure.

In the following sections we show an overview of the general characteristics of
the ns-3 LTE module simulation model. In Section 4.3.1 we present the entities
modelled in the simulation platform which allow to approximate the functioning of
a LTE network. For our evaluations, we consider the UEs establish communication
sessions with some host in a external network. In Section 4.3.2 we present how is the
flow of data traffic within the simulated entities. Finally, we rely in the standard
handover procedures for ensuring the continuity of the UE sessions when a cell
switching is applied. Thus, the handover algorithms implemented in the simulator
are presented in Section 4.3.3.
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Figure 4.1: LTE-EPC simulation model.

4.3.1 General architecture

The general architecture of the model implemented in the ns-3 LTE module is
depicted in Fig. 4.1 and is divided into two major parts. The LTE model comprises
the radio protocol stack implemented in the BS nodes and in the UE nodes. The
Evolved Packet Core (EPC) model includes the core network interfaces, protocols
and entities, which are implemented in the Serving Gateway (SGW), the Packet
Data Network Gateway (PGW) and Mobility Management Entity (MME) nodes,
and in the BS nodes. The SGW and PGW functional entities are simplified and
implemented within a single node, which is unique for each simulation, i.e. no inter-
SGW mobility is supported by the simulator. The MME is a logical node inside
the SGW/PGW. The BSs are interconnected with each other by means of a point-
to-point link and communicate between them using the X2 interface. Each BS is
connected to the SGW/PGW by means of a point-to-point link and communicate
using the S1 interface. The simulator allows to simulate topologies comprising up
to tens of BSs and hundreds of UEs. It is highly configurable allowing to choose the
desired parameters for the protocols and algorithms compatible with the standards,
for both the LTE and the EPC models. The main objective of the EPC model is the
simulation of end-to-end IPv4 connectivity over the LTE model. This is, between the
UEs and remote hosts situated in external IP networks. However, it also supports
the UE inter-cell mobility thanks to the X2 interface which allows the execution of
automatic handover algorithms.
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Figure 4.2: LTE-EPC data plane protocol stack [NS3].

4.3.2 Data plane protocol stack

The data plane protocol stack implemented in the simulator is depicted in Fig. 4.2
and is briefly overviewed in this section. Any ns-3 application can be installed on
an end node, as long as it uses UDP or TCP over IPv4. The LTE core network is an
IP network in which each BS is connected to the SGW/PGW using a point-to-point
link. The S1-U protocol stack is in charge of tunnelling the IP packets between
the external IP network and the corresponding BS to which the communicating
UE is attached. The IP packets from/to the end-nodes are encapsulated in GPRS
Tunnelling Protocol (GTP) packets containing the information of the BS or PGW
of interest, which are sent over the local network using an UDP socket.

The radio protocol stack is in charge of sending/receiving the end-user IP packets
over the radio interface. In first instance, the IP packets are encapsulated in Packet
Data Convergence Protocol (PDCP) packets. The simulator implements a simple
PDCP protocol which only transfers the data to the other layers and maintain
the protocol sequence numbers. Thus, the data is transferred to the RLC layer
without additional processing featured for the PDCP layer in the standards (e.g.
header compression, ciphering, etc.). The Radio Link Control (RLC) layer receives
the data and ask for transmission opportunities to the inferior layers. When the
Medium Access Control (MAC) layer permits transmission, the RLC layer segments
or concatenates the data coming from the PDCP layer forming RLC packets which
are sent to the MAC layer.

The MAC layer determines how and when the data will be transmitted. It is in
charge of multiplexing the data coming from the RLC layer into Transport Block
(TB). The size of the TBs, i.e. the amount of data that can be aggregated in each
of them, depends on the Modulation and Coding Scheme (MCS) to be used for the
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transmission. The smallest unit of resource allocation in the Physical layer (PHY)
is the Resource Block (RB) and the channel conditions on each of them is different
depending on the UE location and interfering signals. The MCS and the TB size for
each RB are mapped from the Channel Quality Indicator (CQI) reported by the UE.
The CQI is itself obtained by mapping the spectral efficiency calculated by the UE
using the perceived Signal-to-Interference-plus-Noise Ratio (SINR) and a modified
Shannon formula accounting the difference between the theoretical bound and the
performance of real MCS [PBM11]. The CQI is reported periodically by the UE
and provides an overall estimation of the perceived radio conditions.

4.3.3 Handover procedure

The simulator implements handover procedures compliant with the LTE stan-
dard. The UEs report periodically information about the cells they can detect
given their position. The KPIs measured by the UEs are the Reference Signal Re-
ceived Quality (RSRQ) and the Reference Signal Received Power (RSRP) for each
detected cell. The RSRP is the linear average received power of the signals carry-
ing cell-specific reference signals over the entire bandwidth. Thus, it measures the
strength of the cell-specific signal. The RSRQ is the ratio between the RSRP and
the total received power including all cells interference and noise. Thus, this is a
measure of cell-specific signal quality. The handover procedure in LTE is BS driven,
thus, the involved BSs decide when to trigger the handover and direct its execution.
There are two event-based handover triggers implemented in the simulator.

A2-A4-RSRQ handover algorithm:
This algorithm defines an acceptable signal strength threshold. The UE will stay

in the current serving cell if the RSRQ is above this threshold. Thus, two events
should occur to trigger the handover:

• Event A2: The RSRQ of the serving cell becomes worse than the threshold,
i.e. the UE is experiencing poor signal quality from the serving cell.

• Event A4: The RSRQ of a neighbor cell becomes better than a threshold, i.e.
a suitable neighboring cell is detected.

Strongest cell handover algorithm:
This algorithm triggers the handover as soon as a better cell is detected. Regard-

ing the specification, the event that should occur to trigger the handover is:
• Event A3: the RSRP of a neighbor cell becomes better than the RSRP of the

serving cell.
To avoid frequent unnecessary handover, the algorithm defines two parameters: the
hysteresis, which represents how much the neighboring RSRP should be better than
the serving cell RSRP in order to trigger the handover; and the time-to-trigger, which
is the amount of time that must elapse after the hysteresis threshold is reached in
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Figure 4.3: Sequence diagram of the handover procedure implemented in NS-3.
Source: [NS3].
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Figure 4.4: System configurations and identification of the DTU zone.

order to finally trigger the handover if the triggering condition was maintained. After
the handover is triggered, the procedure presented in the Figure 4.3 is executed. If
some of the timers expire, the handover is considered failed.

4.4 DTU-AWARE STRATEGIES IN NS-3

In this section we present the setup of the simulation environment that allow us
to evaluate the performance of the DTU-aware strategies using a system level ap-
proach. In Section 4.4.1 we describe the access network deployment configuration we
consider for the simulations, as well as the BSs role and behavior in the coordinated
cell switching algorithm we implement. Section 4.4.2 present the details about the
systematic design of the DTU-aware strategies in combination with the coordinated
cell switching. Section 4.4.3 provides some complementary information about the
traffic generated by the UEs in the simulations, as well as how the BSs monitor
this traffic in order to take the switching decisions. Finally, Section 4.4.4 describe
the metrics we use to evaluate the performance of the DTU-aware strategies in the
simulation environment.

4.4.1 System model

We consider a group of neighboring BSs of a flat hexagonal access network, de-
picted in Figure 4.4(a). Following the model imposed by the simulator and depicted
in Figure 4.1, all the BSs are connected to an unique SGW/PGW and intercon-
nected between them using point-to-point links. Each BS is able to dynamically set
its downlink transmission power. We consider a cell switching algorithm and, as in
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the previous chapter, three types of BSs are identified. A BS designated to enter
in sleep mode is denoted as Sleep-Capable Base Station (SC-BS). A BS designated
to compensate the coverage of the SC-BSs when sleeping, is called Expand-Capable
Base Station (EC-BS). Finally, a BS which does not participate in the dynamic
algorithm is denoted as Normal Base Station (N-BS). The execution of the cell
switching algorithm is controlled by one of the BSs, which has complete knowledge
of the load of the participating BSs. The two system states are differentiated as
well. The system is in all-On state when all the BSs are operational. In this state
the system has an available maximum capacity denoted by Cmax. The system is
in the min-On state when the SC-BSs are sleeping. In this state the system has a
capacity Cmin < Cmax, provided by the coverage compensation made by the EC-BS
(Figure 4.4(b)). In a multi-cell environment, each cell is identified by a parameter
called Cell ID. In this chapter we focus the evaluation on omnidirectional micro BSs
containing only one cell. Thus, we will refer to BSs and cells indistinctly. In the
group of BSs of interest, the set of SC-BSs, EC-BSs and N-BSs are identified and
ΘSC , ΘEC and ΘN , respectively.

DTU Zone: The area covered by the BSs in ΘSC and ΘEC when the system is
in all-On state is defined as the DTU zone. When the system is in min-On state, i.e.
the SC-BSs are in sleep mode, users located in this area could be asked to collaborate
with the network, delaying the start of their services. For simplicity, we approximate
the coverage area of the corresponding BSs using a circular model, with center in
the BS position and with a radius r = ISD

2 , were ISD is the Inter Site Distance in
the hexagonal deployment. An example is depicted in Figure 4.4(c). The system is
designed to support a maximal delay (D) for users in the DTU zone. In case some
delay of the users service is required, the network informs them that the waiting
time will not be longer than D, and the cell switching algorithm is configured to
satisfy this constraint. The exact mechanisms and protocols that can be used to
perform this interaction between the users and the network are not discussed in this
thesis. Thus, we adopted an over-the-top approach in which the state of the network
and the belonging to the DTU zone are verified each time a UE intends to start a
service. Afterwards, the control decision to start or delay the service is delegated to
the network.

Coordinated cell switching:
We consider a coordinated BS switching algorithm in which all involved BSs start

the reconfiguration at the same time. Moreover we consider a 6/7 configuration as
presented by Ajmone-Marsan et al.[ACCM09], in which the central EC-BS covers
the area of the 6 neighboring SC-BSs when they are switched into sleep mode, as
depicted in Figure 4.4(b). In this BS configuration we assume that the EC-BS is the
controller of the DTU-aware cell switching algorithm, as it has complete knowledge
of the DTU zone when in min-On state, and it is in direct neighbor relation with
all SC-BSs.
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The transitions between system states (all-On→ min-On and min-On→ all-On)
are performed progressively. When the cell-switching controller decides to switch
to min-On state, each SC-BS decreases its transmission power by X dBm every tx
seconds. Simultaneously, the EC-BS increase their transmission power by Y dBm
every ty seconds until reaching the maximal transmission power. Once each SC-BS
has no more users associated, it turns into sleep mode.

In each transmission power change, a batch of users may need to handover to the
EC-BS. Too long power steps (i.e. X and Y ) or too short time steps (i.e. tx and ty)
could produce handover failures. The handover protocol could be compromised, in
the first case due to bad signal condition of the source BS (i.e. too late handover) and
in the second case due to signalling overhead of a big number of user performing
handover. Conversely, too long time steps or too short power steps will produce
unnecessary long reconfiguration periods. Thus, a trade off between power steps
and time step is needed to minimize the reconfiguration periods and to let the users
successfully perform handover if needed.

When the objective is to switch to all-On state, the opposite procedure is per-
formed. The SC-BSs start the procedure increasing the power to the initial level
that we assume equal to the level in which no more users were associated to the BS
in the previous reconfiguration process. Afterwards, each SC-BS increases the trans-
mission power by Z dBm every tz seconds while the EC-BS shrinks concurrently,
decreasing the transmission power by W dBm each tw seconds.

We consider that the time between the moment the SC-BS takes the decision of
turning into sleep mode and the actual moment when it is deactivated, is negligible.
The same assumption applies for the opposite procedure, i.e. activating the SC-BS.
In general, this time may depend on the type of BS and its hardware architecture.
In the case that that the activation/deactivation time is non-negligible, it should be
taken into consideration in the design of the DTU-aware strategies, e.g. proposing
to the users larger delays than the used for the threshold derivation.

4.4.2 DTU-aware strategies implementation

In this section, we remind the operation of the strategies in Section 4.4.2.1 and
we present the implemented algorithm for each of them. Finally, in Section 4.4.2.2
we discuss the use of the theoretical optimal strategy thresholds in the system level
evaluations, and how the results may differ from the theoretical bounds.

4.4.2.1 DTU-aware strategies algorithms

The cell switching strategies adapt the resources depending on the load level (L).
Considering general cell switching strategies, when the system is in all-On state and
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Table 4.1: Threshold equivalence between the generic terms used for the evalua-
tion using the simulator and the specific thresholds of each strategy defined for the
theoretical model.

Simulations Theoretical
General Strategy One Strategy Two

L1 Umin Cmin
LDTU Umax TDTU

the load decreases, closer to a given threshold L1, the reconfiguration to min-On
state is triggered. L1 should be chosen appropriately so that the current system
load can be absorbed by the EC-BS along with the new (estimated) arrivals. When
the system is in min-On state and the load increases, surpassing the switching on
threshold L2, the reconfiguration to all-On state is triggered. The choice of L2 is
usually done assuming that a new arrival will be blocked if the resources in min-On
state are exhausted. Thus, L2 < Cmin in order to trigger the reconfiguration before
a blocking situation could arrive [HMJ11] [GO13].

When a DTU-aware strategy is employed, we consider that a part of the users are
willing to cooperate with the network and they are able to delay the start of their
services. Following the strategies proposed in the previous chapter, when the system
is in min-On state, some users will be served instantaneously and some others will be
put on hold, so none of them will be blocked, as long the system capacity (Cmax) is
not reached. Thus, when using a DTU-aware strategy, we introduce a different wake
up reconfiguration threshold denoted as LDTU. When the number of active users in
the system (including waiting users) surpasses this threshold, the reconfiguration is
triggered to all-On state. As previously demonstrated, it is critical for LDTU to be
appropriately selected so that the waiting time of the users is bounded and inferior
to D.

We consider the two DTU-aware cell switching strategies proposed in the previous
chapter. The first strategy always delays DTU services if they are in the DTU zone
when the system is in min-On state. The second strategy only delays DTU requests
when there are not enough resources to serve them (i.e. L > Cmin), serving them
otherwise. The threshold equivalence with the theoretical model is given in Table 4.1
for both strategies.

Each strategy adapts the threshold configuration depending on the system con-
ditions and D. Afterwards, the dynamic cell switching algorithm is put into action,
tracking the load variations (user session arrival or departure) and reacting accord-
ingly. The controller EC-BS identifies three kind of events, namely, Load notifica-
tion, Arrival, Departure, and may react differently to them depending on the used
strategy.

In both strategies, when the system is in all-On state, the only triggering event
is the Load Notification. The controller EC-BS collects the load information from
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the SC-BSs, calculates the aggregated load (L) and performs the switching to min-
On state when it is appropriated (L < L1). When the system is in min-On state
the strategies react differently. The EC-BS controller has complete and real time
information about the load in the DTU zone as it is under its coverage. Thus, the
EC-BS reacts to each Arrival or Departure event. Strategy One follows Algorithm 1.
In this algorithm, all DTU arrivals located in the DTU zone are delayed if the system
is in min-On state. Once the number of waiting DTUs (nDTU) reaches the switching
threshold (LDTU), the system switches to all-On state and starts serving all waiting
users among new arrivals.

Strategy Two follows Algorithm 2. In this strategy, DTU arrivals are delayed
only if the DTU zone is congested. This happens when the number of active users
in the DTU zone (N) surpass the capacity of the EC-BS (Cmin). Departure events
allow to serve waiting users in a FIFO manner. When N surpasses the switching
threshold the system reconfiguration is triggered. The system state changes when
the reconfiguration is finished. Thus, arrivals during reconfiguration periods are
treated by the algorithm as if the system were in the previous state.

Algorithm 1: Algorithm of the Strategy One implemented for the system level
evaluation
Data: L1, LDTU, State, Event, UE
if State is all-On and Event is Load Notification then

Calculate number of active users in the DTU zone (L);
if L < L1 then

Perform reconfiguration to min-On state ;
if State is min-On and Event is Arrival then

if UE is in the DTU zone and UE cooperates then
nDTU+ = 1 ;
if nDTU < LDTU then

Push the UE in the waiting queue;
else

Push the UE in the waiting queue;
Perform reconfiguration to all-On state ;
Serve all UEs in the waiting queue;
nDTU = 0

else
Start UE service ;

4.4.2.2 Threshold selection

The thresholds for the DTU-aware strategies are selected depending on the esti-
mated offered load and the maximal tolerated delay proposed in the DTU zone for
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Algorithm 2: Algorithm of the Strategy Two implemented for the system level
evaluation.
Data: L1, LDTU, State, Event, UE
if State is all-On and Event is Load Notification then

Calculate number of active users the DTU zone (L);
if L < L1 then

Perform reconfiguration to min-On state ;
if State is min-On then

Calculate number of active users in the DTU zone (N);
if Event is Arrival then

if UE is in the DTU zone then
N+ = 1;
if N > Cmin and UE cooperates then

nDTU+ = 1 ;
if N ≤ LDTU then

Push the UE in the waiting queue;
else

Push the UE in the waiting queue;
Perform reconfiguration to all-On state ;
Serve all UEs in the waiting queue;
nDTU = 0

else
Start UE service ;

else
Start UE service ;

if Event is Departure then
N− = 1;
if UE is in the DTU zone and nDTU > 0 then

Start service UE in the front of the queue ;
nDTU− = 1 ;
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the system in study. As we consider the same traffic distributions, we evaluate the
system using the models developed in Chapter 3 to obtain the optimal thresholds
which minimize the average power consumption, while satisfying the delay and sys-
tem QoS constraints. However, considerable differences are expected regarding the
theoretical estimations.

On one hand, the Markov Chain models presented in Chapter 3 are evaluated in
steady state condition and the results constitute the average behavior of the system
given the modelled conditions. This is, the solution of the balance equations repre-
sents the long term behavior of the system, which corresponds to running infinitely
long simulations of it. When using a system level simulator we are interested in
finite simulation lengths and in estimating the average behavior of the system (i.e.
the metrics of interest) from limited amount of simulation replications. The thresh-
old estimations made using the theoretical model may not represent the optimal for
each simulated scenario as the average behavior in the short-term evaluation can
differ considerably from the long term average behavior. However, limited period
of execution of the strategies emulates better the application for which they are de-
veloped, as the traffic conditions of cellular networks are highly variable along time,
which makes impossible to maintain the same thresholds for long periods.

On the other hand, the introduction of the reconfigurations in the simulation
model change the dynamic modelled in Chapter 3. However, as the traffic model is
the same, the thresholds obtained from the theoretical evaluations constitute a good
basis for the strategy evaluations. Furthermore, this approach allow us to estimate
the error margin between the theoretical bounds and the more realistic simulated
scenario.

4.4.3 Traffic management

In this section we describe how the traffic is generated by the simulated UEs
and how this traffic is monitored by the network in order to take the cell switching
decisions.

4.4.3.1 Traffic generation

Before the simulation starts, the inter-arrival time and the duration of the desired
service are generated for the simulated UEs, obtaining realizations of their respective
distributions. The offered load is a parameter of the simulation which determines
the mean values required for obtaining the realizations of the distributions. For
this evaluation we used the exponential distribution for both cases in agreement
with the evaluation presented in Chapter 3. But the implementation can be easily
enhanced to consider another distributions. Some random UEs are selected to start
their services at the beginning of the simulation to emulate a warm-up period for
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the traffic following a given offered load. When a UE finishes its service, a new
arrival time and service duration is generated for it. This allows to generate traffic
with a given intensity no matter the length of the simulated time. It is important to
notice that the arrival time is the time in which the UE attempts to use the service.
The actual starting time of the service may differ from this value, depending on the
DTU-aware algorithm and the system state.

The service required by the UEs is a voice call. No implementation of voice
services over LTE is given in ns-3. Thus, we implemented a pseudo voice service
as follows. For each call we configure two applications sending packets over a UDP
socket. One of them is located on the UE node sending packets to a Remote Host
(RH) on the Internet. The other application is located in the RH sending packets to
the UE of interest. This setup emulates a two-way communication between the UE
and the RH. Each application sends packets of a specified size periodically during the
service time. We consider the end nodes are using the Codec G.711 [Cis] to encode
the voice packets, which generates a payload of 160 Bytes each 20 ms. Considering
the protocol overhead associated to the voice service, the UDP packet size of the
pseudo voice call is 179 Bytes and is sent every 20 ms during the service time. A
Packet Sink application is configured in each of the end nodes to receive and consume
the packets, thus avoiding overflow.

4.4.3.2 Traffic monitoring

The DTU-aware cell switching decisions are taken based on a load measurement
function implemented over the top of the module. In practice, the cell switching
controller, i.e. the EC-BS, could receive this information via the X2 interface, using
the Resource Status Update procedure [3GP10c]. However, this procedure is not
fully implemented in the used version of ns-3. Thus, we used a simplified traffic
monitoring function in which the EC-BS is aware of each arrival or departure in the
BS cluster, creating each time a Load Notification event. Thus, when the system is
in all-On state, the EC-BS has perfect information about the aggregated load of the
SC-BSs to decide if a switch to min-On state is suitable. Perfect information about
the position of the UEs is assumed as well. Thus, the EC-BS can detect if the UE
is in the DTU-zone testing a simple geometric condition for all the positions of the
BSs in ΘSC and ΘEC :

(UEx − BSx)2 + (UEy − BSy)2 < (ISD2 )2 (4.1)

were UEx and UEy are the coordinates of the position of the UE in the deployment
and BSx and BSy correspond to those of the corresponding BS.
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4.4.4 Evaluation metrics

In order to evaluate the operation of the DTU-aware strategies we defined some
performance metrics:

Call QoS: This metric is calculated on a per-call basis and it aims to identify if
a call provided a minimal level of QoS to consider the user satisfied. When using
system level simulations in the literature, the target QoS for a voice call corresponds
to a given maximal radio interface latency. A voice user is in outage (not satisfied)
if the radio interface latency of the call is greater than 50 ms [Ngm08] [EAR12a].
Thus, we calculate the average PDCP packets latency for the call duration. If it is
greater than 50 ms the call is considered in outage.

System QoS: This metric is calculated over the entire simulation time and pro-
vides a measure of the proportion of blocked and dropped calls due to the the
DTU-aware algorithms and the resulting dynamic system conditions. A call is con-
sidered blocked if it is in outage and during the call at least one of the following
condition was satisfied:

• No reconfiguration is in progress, the system is in all-On state and the number
of ongoing calls is greater than Cmax.

• No reconfiguration is in progress, the system is inmin-On state and the number
of ongoing calls is greater than Cmin.

A call is considered dropped if it is in outage and a reconfiguration was in progress
during the service time. Finally, we calculate the proportions of blocked pdrop and
dropped pblock calls during the simulation, and the system dissatisfaction metric is
given by:

δ = βpdrop + (1− β)pblock (4.2)

As in Chapter 3 we use a linear combination of the two types of dissatisfaction
conditions choosing a trade-off parameter. For the evaluation we use β = 0.9, i.e.
call dropping is heavily penalized.

Waiting time: This metric is calculated on a per-call basis and represents the
difference between the arrival time, i.e. the time in which the UE intends to start a
call, and the actual starting time of the call.

Power consumption: The average power consumption is calculated over the
entire simulation time for each BS. We calculate the instantaneous output power as:

Pout = nschedRB

NRB
Pmax (4.3)

where Pmax is the corresponding transmission power of the BS at the time the
subframe was scheduled, nschedRB is the number of allocated RBs in the subframe and
NRB is the total number of RBs available for transmission given the bandwidth.
Finally, we calculate the BS power consumption using a modified version of the
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EARTH model [AGD+11] considering that the BS enters in sleep mode only when
it finishes the reconfiguration process, i.e. when Pmax = 0.

Pin =

NTRX(P0 + ∆PPout) 0 ≤ Pout ≤ Pmax

NTRXPsleep Pmax = 0
(4.4)

4.5 EVALUATION

We simulated the 19 micro BSs of the system model described in Section 4.4.1
and depicted in Fig. 4.4. We consider static UEs, sparsely and uniformly distributed
on a grid fashion with 50 meters of separation between them. We focus the evalu-
ation in the dynamic part of the access network, i.e. the SC-BSs and the EC-BS.
Thus, we only consider the UEs positioned in the area covered by them. The param-
eters of the simulation are summarized in Table 4.2. Some preliminary evaluations

Table 4.2: System parameters for the system level evaluation of the strategies
Scenario (NS-3 LTE module [NS3])
Deployment type Hexagonal Micro

Inter Site Distance [m] 250
Number of BS sites 19
Antenna model Isotropic
Path Loss model Friis
Bandwidth [MHz] 5

Transmission Power [dBm] 38 (Expanded)
32 (Normal)

Frequency reuse One
Scheduler Round Robin

Handover Algorithm
A3 RSRP

hysteresis 1dB
time to trigger 256ms

User distribution Uniform grid
User density 330 users/Km2

Mobility Constant position
Algorithm parameters

DTU zone session capacity Cmax = 30
Csta = 10

γ 0.05
δ 0.05
β 0.9

Base station power consumption [AGD+11]
NTRX 2

Pmax [W] 6.3 (Expanded)
1.6 (Normal)

P0 [W] 56
∆P 2.6

Psleep [W] 0
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4(a) all-On state

(b) min-On state

Figure 4.5: Radio environment maps of the simulated scenario for the corresponding
system states. The position of the BSs and UEs are indicated with white points and
the corresponding identifiers are depicted at their right. Black font for the BS Cell
ID and white font for the UEs IMSI.
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were performed in the simulator in order to obtain the needed parameters for the
estimation of the DTU-aware strategy thresholds and the tuning of the cell switch-
ing algorithms. These evaluations are described in Section 4.5.1. Afterwards, the
algorithms were configured and the DTU-aware strategies were put into action and
evaluated in different scenarios. The results are presented in Section 4.5.2.

4.5.1 Preliminary evaluations

We performed two preliminary evaluations. First, we estimated the capacity
of the system for the different states, i.e. when the system is in min-On state
and the EC-BS is covering all the DTU zone, and when it is in all-On state and
all the SC-BSs are operational. These parameters were needed for obtaining the
strategies optimal thresholds for the considered deployment and DTU zone. Second,
we derive the power reduction/increase profile of the coordinated cell switching, in
order to ensure that the UEs can successfully complete the handover procedure when
activating or deactivating the SC-BSs. Details about these evaluations are presented
in the following.

4.5.1.1 Capacity estimation

We performed a preliminary evaluation of the scenario to determine the system
capacity in terms of simultaneous ongoing calls depending on the system state. Ra-
dio environment maps of the system on both states are obtained from the simulator
and are presented in Figure 4.5, showing as well the position of the simulated UEs
labelled with their respective International Mobile Subscriber Identity (IMSI). We
evaluated the system with static radio configuration in each state and affording dif-
ferent offered load levels. Afterwards, we estimated the percentage of satisfied calls.
The simulated time varies between offered load scenarios, as the simulations were
set to finish when each of the UE performed at least two calls. Each simulation
was repeated 30 times using different seeds and the mean along with the 95 percent
confidence interval is plotted in Figure 4.6 for the different offered load levels and
system states. It is important to notice that when the system is in all-On state,
some of the UEs are located at the cell edge, experiencing a very bad signal quality
due to the high level of interference and the regularity of the UEs distribution pat-
tern. The IMSIs of the affected UEs are: 8, 19 38, 40, 56, 57, 58, 64, 65, 66, 70 and
110; corresponding to 11% of the UEs in the evaluation. We are not interested in
considering these UEs in our study as they will not be satisfied under any simulation
condition, even if they were alone in the system. Thus, these UEs are excluded of
all evaluations presented in this chapter. When using system level simulations, a
reasonable measure of the voice system capacity is defined as the number of users in
the system when more than 95% of the users are satisfied [Ngm08]. Thus, we choose
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Figure 4.6: Capacity evaluation: percentage of satisfied calls depending on the
offered load for the different system states

the values for the parameters Cmax = 30 and Cmin = 10, given the results presented
in Figure 4.6.

4.5.1.2 Coordinated cell switching power profile

The coordinated cell switching algorithm described in Section 4.4.1 was imple-
mented with tunable time and power steps. The mobility of UEs between cells due to
the cell switching is handled using the automatic handover algorithm implemented
in the ns-3 module and described in Section 4.3.3, i.e. we do not manually trigger
any handover procedure in the execution of the cell switching algorithm. However,
the simulator does not implement a handover recovery procedure, stopping the sim-
ulation when a handover procedure fails (one of the timers depicted in Figure 4.3
expires), as it is considered as a fatal execution error. Therefore, we adopted a
conservative approach for the cell switching algorithm, in which we looked for the
power profile that does not cause any handover failure for the simulated scenario.

We simulated the system affording an offered load of 10 erlangs during 30 minutes,
and we performed several switching during the simulated time. Each simulation
was repeated 30 times using different seeds. We tried the power decrease/increase
proposed by Marsan et al. [MCCM11] and Conte et al. [CFC+11]. The proposed
profile consist in doubling or halving the transmission power Pmax (in Watts) in
each power step when switching a BS On or Off, respectively. However, contrary
to their algorithm, we do not trigger any handover procedure before performing the
Pmax change. Thus, we experienced several handover failures due to random access
procedure failure, which indicates that there are too many UEs performing handover
at the same time to a given BS.
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Table 4.3: Power profile of the coordinated cell switching reconfiguration process for
the system level evaluation

all-On→min-On min-On→all-On
Pmax (dBm) t (s) Pmax (dBm) t (s)

SC-BSs -1 0.5 +1 0.5
EC-BSs +0.5 1 -3 1

Finally, we choose the power profile presented in Table 4.3. For this profile we did
not observe any handover failure and the time steps produces the shortest reconfig-
uration periods. For the SC-BSs we change Pmax 1 dBm each step, which generates
a reasonable batch of UEs performing handover at the same time. Smaller power
steps are chosen for the EC-BS during the cell expansion. In this way the interfer-
ence impact remains low, the UEs have a considerable hysteresis margin to trigger
the handover, and the batch of UEs performing handover remains small. Contrary,
for the shrink procedure, the batch of UEs executing the handover procedure is dis-
tributed between the SC-BSs, which diminishes the risks of handover failures due to
the random access procedure. The time steps should be long enough to ensure that
all handover procedures complete with success. The values were selected considering
two aspects: First, the UE PHY in LTE reports the KPIs required for handover trig-
gering (RSRP and RSRQ) to the upper layers each 200ms, and the reported value is
an average of all the measurements performed during the period [3GP12]. Second,
the handover algorithm is set with a time to trigger of 256ms. Thus, the chosen
time steps allow to reflect the change in the radio conditions in the report, which
may trigger adequately the handover procedure and let enough time to complete it.

4.5.2 Strategies evaluation

In this section we focus the evaluation on the execution of the DTU-aware cell
switching algorithms. Thus, we assume that for each simulation, the algorithm
thresholds were selected depending on accurate load estimations. We assume com-
plete user cooperation. The simulated time for each scenario is 30 minutes, which is
a reasonable period in which the network traffic can be stable around a given offered
load level. Each simulation was repeated 50 times using different and independent
seeds and the mean along with the 95 percent confidence interval is plotted for ev-
ery parameter. We simulate the system when affording three representative offered
loads given the capacity estimation presented in Section 4.5.1.1. The first offered
load is equal to 7 erlangs, which is below the capacity in min-On state (Cmin). The
second offered load is equal to Cmin, namely 10 erlangs. The last load is equal to
14 erlangs, which is superior to Cmin, but still allows the system to benefit from the
DTU-aware strategies. The DTU-aware strategies are compared to two baselines
strategies, simulated using the same offered load and usage patterns, which are gen-
erated before the simulation starts. The first baseline is the system operating using
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the Always On strategy in which no cell switching algorithm is activated and the
system is in all-On state during the entire simulation. The second baseline corre-
sponds to a modest algorithm in which the cell switching is configured in order to
serve the users without any delay in the start of their services, switching when the
load corresponds to 0.8Cmin, in order to avoid any blocking condition. This strategy
is denoted as Baseline D=0s in the rest of this section.

4.5.2.1 User dynamics

In Figure 4.7 we present some examples of the offered load and system dynamics
during the simulated time. Each plot corresponds to a simulation affording a given
offered load and using a given resource management strategy, i.e. the Always On
strategy, the Baseline D=0s, and the two proposed DTU-aware algorithms with
different proposed maximum delay (D). All plots correspond to simulations using
the same random seed. Thus, we highlight the different algorithm reactions to
the same traffic distribution. From the Always On plots we can observe that the
instantaneous load is highly variable, fluctuating around the expected offered load
level for the entire simulated time. For an offered load of 7 erlangs, the Baseline
strategy presents long periods of low power consumption followed by very short
periods in all-On state. When the load increases this tend is reversed, turning into
small (and inefficient) sleeping periods. When using the Strategy One, the frequency
of entering in sleep mode is reduced when the load increases. However, the length
of the sleeping periods is relatively uniform for the same maximal tolerated delay
in the DTU zone. The simple dynamic of a waiting queue without service until
turning on the SC-BSs, makes Strategy One more predictable and suitable for less
dynamic hardware. The dynamic of the strategy Two is more complex, as waiting
users can be served by the system in min-On state, causing diversity in the lengths
of the sleeping periods. Strategy Two is the most efficient in low loads. For example,
when the system is experiencing an offered load of 7 erlangs, the users can be served
without the need of turning On the SC-BSs throughout the simulation.

4.5.2.2 Quality of service

The DTU-aware strategies aim to reduce the energy consumption of the access
network without causing excessive user dissatisfaction. Two situations can degrade
the perceived QoS given the dynamic of our scenario: the system is in congestion and
there are not enough resources to serve a user (call blocking), or the communication
is interrupted due to the cell switching transition (call dropping). The trade-off
parameter between the two types of dissatisfaction conditions was set to β = 0.9,
heavily penalizing the call dropping. For both strategies the user dissatisfaction
metric is maintained low in the simulated scenarios, as presented in Figure 4.8.
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Figure 4.7: DTU zone dynamic examples. Three different offered load scenarios
using the same random seed, each one simulated applying the different strategies:
Always On, Baseline D=0s, Strategy One D=150s and Strategy Two D=60s. Gray
lines: users waiting. Black lines: users with ongoing communications. Dotted
horizontal lines: strategy thresholds. White periods: the system is in all-On state.
Light gray periods: the system is in min-On state (the SC-BSs are sleeping)

114



CHAPTER 4. SYSTEM LEVEL EVALUATION

4

7 10 14
0

0.02
0.04
0.06
0.08
0.1

δmax

Offered Load (erlangs)

Pr
op

or
tio

n
of

di
ss
at
isfi

ed
us
er
s

D=0s D=60s D=90s D=150s

(a) Strategy One

7 10 14
0

0.02
0.04
0.06
0.08
0.1

δmax

Offered Load (erlangs)

Pr
op

or
tio

n
of

di
ss
at
isfi

ed
us
er
s

D=0s D=20s D=40s D=60s

(b) Strategy Two

Figure 4.8: Proportion of dissatisfied users in the system when applying the DTU-
aware strategies as well as the Baseline D=0s. Mean values and 95% confidence
interval.

The dynamic of the Baseline and the Strategy Two, make them more likely to
experience call dropping, as the cells switch more frequently, following closely the
load variations. However, the average proportion of dissatisfied users is in most of the
cases below the target of 5% selected for the strategy threshold calculation (δmax).
However, the dissatisfaction metric obtained from the simulations is different from
the defined in the theoretical model, as we are explicitly considering the dropping
of users due to the cell switching reconfigurations. Thus, δmax is only presented as
a reference in this section.

4.5.2.3 Waiting time

The target probability for the waiting time constraint was set to γmax = 0.05, for
the calculation of the strategy thresholds (Section 3.4.2.2 and Section 3.5.2.2). The
95th percentile of the call waiting time in the system during the simulated time is
depicted in Figure 4.9, showing that in all the considered scenarios the constraint was
respected: 95% of the users experienced a waiting time inferior to the one predefined
in the DTU zone. The remaining 5% of the users experience slightly higher delays
as can be seen in Figure 4.10. In the last figure we can also see that the higher
the proposed delay, the higher the proportion of users that experience some delay.
This is explained as higher delays aim to enlarge the sleeping periods, increasing
the probability a user enters into the system in a sleeping period. However, in most
of the evaluated scenarios, around 80% of the users did not experience any delay
in the start of their calls. Thanks to the simple dynamic of Strategy One when
in min-On state, higher delays can be proposed to the users, but with stronger
guarantees of respecting the waiting time constraints. However, when the offered
load increases (e.g. 14 erlangs), the system is unlikely to be in min-On state during
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Figure 4.9: 95th percentile of the call waiting time when applying the DTU-aware
strategies. Mean values and 95% confidence interval.

the simulated time, resulting in less users being delayed (Figure 4.10). Strategy Two
is more complex when in min-On state and delay users users more actively, as they
can be served under multiple conditions, i.e. departures or system state switching.

4.5.2.4 Reconfigurations impact

The reconfiguration when switching to min-On state takes approximately 12
seconds. This time is calculated from the moment the process is triggered until
the moment the last BS switches to sleep mode. The time each BS takes for this
process depends on the UE distribution, as BSs having more UEs close to them may
need more time and power steps in order to satisfy the conditions for triggering the
handover procedure. In our scenario this case corresponds to the BS with Cell ID 2
in Figure 4.5(a). Conversely, the reconfiguration to all-On state takes approximately
12.5 seconds, as the BSs need a period to adjust the transmission power to the initial
value before continuing with the progressive switching On.

Figure 4.11 presents the number of switching between system states during the
simulations and Figure 4.12 shows the proportion of simulated time the system is
in each state, as well as the time spent performing the reconfigurations. These re-
sults confirms the intuition that the reconfigurations limit the performance of the
strategies, as the system spends a non negligible part of the time reconfiguring, lim-
iting the periods in which it can be in min-On state. This is more evident for the
Baseline and the Strategy Two configured with small delays, for which the system
switches considerably more often as shown in Figure 4.11. Strategy Two is particu-
larly affected when the offered load level is 10 erlangs, which also corresponds to the
switching off threshold of the strategy. The instantaneous load varies around this
value and the strategy makes the system to switch to all-On state more often to
satisfy the small delay constraint. Moreover, the switching off threshold is rapidly
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Figure 4.10: Cumulative distribution function of the waiting time when applying
the DTU-aware strategies. The red dashed line represents the target of 95% set for
the calculation of the strategies thresholds (1− γmax)
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Figure 4.11: Number of transitions between system states during the simulations
when applying the DTU-aware strategies as well as the Baseline D=0s. Mean values
and 95% confidence interval.

reached back. However, for longer delays, e.g. D=60s, the number of reconfigura-
tions is reduced, and the system spends more time in min-On state.

4.5.2.5 Power consumption

Results about the average power consumption of the system are presented in Fig-
ure 4.13. The results in each figure correspond to the three resource management
strategies: the Always On, the Baseline D=0s and the DTU-aware strategies con-
figured with a given D. For each scenario, the results of the theoretical estimations
are presented as well. These results were obtained solving the corresponding models
as in Chapter 3, and they are represented with a white mark in each bar.

As expected for the Baseline and the DTU-aware strategies, the simulation results
differ from the theoretical estimations. The differences are non negligible, represent-
ing up to 13% for the Baselines (OL=10erlangs), up to 14% for the Strategy One
(D=60s, OL=7erlangs) and up to 32% for Strategy Two (D=40s, OL=10erlangs).
This is mainly due to three reasons. First, the simulation model considers the re-
configuration periods that ensure that the handover procedures are completed when
activating and deactivating the cells, while the theoretical evaluation assumes in-
stantaneous reconfiguration. As showed in Figure 4.12 the system spends a non
negligible part of the simulated time switching between system states, which re-
duces the time it can be in min-On state and saving power. Second, the results of
the theoretical estimation represent the long term behavior of the system given the
modelled conditions, as discussed in Section 4.4.2.2. The relatively short simulated
time may not be representative of this long term behavior, even when the average
results presented in this section are estimated over a relatively large number of in-
dependent simulation replications. Third, the calculation of the power consumption
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Figure 4.12: Proportion of the simulated time the system is in the different states.
Mean values and 95% confidence interval.
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in the theoretical estimation is based in the assumption that each call represents a
fixed number of resource blocks in the downlink over a given period, while in the
simulations this number is highly dependent on the BS MAC scheduler and on the
radio link conditions of the UEs. As the granularity of the simulator allow us to
calculate the resource allocation in a per-subframe basis, the power consumption
when the BSs are operative varies in time among BSs.

Despite the observed differences, considerable power reductions are observed com-
pared to the Always On strategy. The results show up to 78% of power reduction
for an offered load of 7 erlangs and using Strategy Two and up to 35% when using
Strategy One. For 10 and 14 erlangs, reductions up to 45% and 17% are achieved
respectively. Moreover, considerable reductions are observed compared the Baseline
strategy, mostly with Strategy Two. It outperforms the Baseline for all considered
offered load levels, exhibiting the best performance for a D=60s when affording 10
erlangs, with a difference of 30 percentage points of additional power reductions.
Strategy One configured with D=150s shows a further reduction of 11% compared
to the Baseline as well.

4.5.2.6 Importance of the load estimation

Our evaluation is focused on the execution of the DTU-aware cell switching algo-
rithm, assuming a correct estimation of the offered load experienced by the system.
In Table 4.4 we show the impact of the load estimation and threshold selection in
satisfying the delay constraints. For example, using Strategy One and for an offered
load of 10 erlangs, the thresholds are selected to propose to the users a maximum
delay of 90 seconds in the DTU zone. If, instead, the offered load is 9 erlangs,
the users are susceptible to wait up to 30 seconds more than the proposed by the
operator, as the thresholds were selected for a different offered load. The opposite
effect is observed for Strategy Two: if the load is overestimated, users will wait less,
while if the load is underestimated the users can experiment 15 seconds of extra
delay. Thus, the accuracy of the load estimation is an important factor to consider
in the implementation of dynamic cell switching algorithms with delay constraints.
Moreover, mechanisms allowing to detect excessive delay surpassing and to adapt
the strategies accordingly should be considered as well.

4.6 SUMMARY AND DISCUSSION

In this chapter we presented a simulation framework for evaluating the proposed
DTU-aware strategies in scenarios approximating the real functioning of al LTE
network. We presented the motivations and objectives of the system level evaluation,
and described the concepts and algorithms needed for this purpose. We based our
implementation on the LTE module of ns-3, which is a complete simulator with a

120



CHAPTER 4. SYSTEM LEVEL EVALUATION

47 10 14
0

200
400
600
800

Offered Load (erlangs)

Po
w
er

C
on

su
m
pt
io
n

(W
at
t)

AOn BL DTU

(a) Strategy One, D=60s

7 10 14
0

200
400
600
800

Offered Load (erlangs)

AOn BL DTU

(b) Strategy One, D=90s

7 10 14
0

200
400
600
800

Offered Load (erlangs)

AOn BL DTU

(c) Strategy One, D=150s

7 10 14
0

200
400
600
800

Offered Load (erlangs)

Po
w
er

C
on

su
m
pt
io
n

(W
at
t)

AOn BL DTU

(d) Strategy Two, D=20s

7 10 14
0

200
400
600
800

Offered Load (erlangs)

AOn BL DTU

(e) Strategy Two, D=40s

7 10 14
0

200
400
600
800

Offered Load (erlangs)

AOn BL DTU

(f) Strategy Two, D=60s

Figure 4.13: Average power consumption of the dynamic part of the access network.
Comparison of each DTU-aware strategy with the baselines scenarios (Always On
and Baseline D=0s). Mean values and 95% confidence interval. The white mark in
each bar represents the theoretical estimation made with the model of Chapter 3.
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Table 4.4: Threshold selection for different offered loads and the impact in the max-
imum waiting time (D). The same thresholds define different D if the experienced
offered load differ.

Offered Load
(erlangs)

Thresholds
D (s)

L1 LDTU

Strategy One
9 7 14 120
10 7 14 90
11 7 14 70

Strategy Two
9 10 20 25
10 10 20 40
11 10 20 55

sufficient level of granularity, which allows us to obtain acceptable approximations
of the power gain attainable with the use of the strategies.

We evaluated the DTU-aware strategies in combination with a coordinated cell
switching algorithm. We simulated an access network constituted of a regular hexag-
onal deployment of Micro BSs with UEs uniformly distributed under their coverage,
and we analyzed the system affording three different offered load levels. For each
scenario, we simulated four different algorithms defining the radio resource manage-
ment of the affected BSs: the Always On paradigm, the coordinated cell switching
without delay and the two proposed DTU-aware strategies. For the sake of having
adequate thresholds for the DTU-aware strategies, we used the same traffic distri-
butions as in Chapter 3 and we derived using the simulator, the system session
capacities for the deployment in study. Finally, we calculated the optimal thresh-
olds using the theoretical model presented in Chapter 3. We corroborated that
these thresholds were able to maintain the waiting time constraints established for
the strategy during the limited periods of simulated time.

We leveraged standard handover algorithms designed for supporting user mobility
in order to ensure the continuity of the services during the cell switching algorithm
execution. Thus, we used a progressive reconfiguration technique performed at each
system state transition in order to avoid compromising the handover protocol, while
also avoiding user dissatisfaction. This process is time consuming. Moreover, due to
constraints imposed by the simulator, we had to design a cell switching algorithm
with zero tolerance to handover failures, which may produce even longer reconfig-
uration periods. This affects the power reductions attainable by the DTU-aware
strategies, leading to simulation results that do not attain the theoretical bounds
derived in Chapter 3. However, this is a constraint of the cell switching algorithm
and not of the DTU-aware strategies. This is confirmed with the simulation re-
sults of the baseline strategy, which performance also considerably differ from the
theoretical bounds due to the reconfiguration periods.

The results of the system level evaluation show the expected tends: higher delay
allow higher power reductions and Strategy Two performs better than Strategy One,
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given the opportunistic condition of the user collaboration and the cell switching.
Even though the gains are reduced compared to the theoretical bounds, the DTU-
aware strategies can represent up to 78% of reduction regarding to the Always On
strategy and up to 30% of reduction regarding the baseline strategy.
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5 Conclusions and
perspectives

5.1 THESIS OUTCOME

In this thesis we have studied the ways to improve the energy efficiency in cellular
networks. In particular, we investigated methods to reduce the energy consumption
of the access network considering the active cooperation of the users. The access
network is composed of a large number of base stations, which represent the mayor
energy consumers of the entire system. Recently, industry and academy have fo-
cused their efforts on reducing this energy consumption, driven by ecological and/or
economic factors, e.g. trying to reduce the environmental impact, or attempting to
decrease the operational expenses related to energy consumption.

Several strategies have been proposed towards a more energy-efficient manage-
ment of the access network, where the main objective is to adapt the availability
and utilization of radio resources to the temporal and spatial traffic variations. To
do so, hardware upgrades and network management techniques have been proposed,
attempting to deactivate the underutilized radio resources when possible to save
energy. Most of the studies base their design in having minimal to no impact on
users services. However, with the appropriate interactivity and incentives, the users
may cooperate with the network, which may give extra flexibility to the cellular op-
erators to optimize the resource utilization and ultimately the energy consumption
of their networks

This thesis considered a specific type of user cooperation to design and control
energy-efficient strategies impacting the access network. We proposed to offset the
start of some users services for a given bounded delay. We called such cooperative
users Delay Tolerant User (DTU). Our proposal is based on a user-network inter-
action, in which the network may ask the users to wait to start their services if an
energy-efficiency strategy could be executed in the area in which they are located.

We divided the access network resources in two categories: static and dynamic.
The former are always operational as they are needed by the network to guarantee
the service availability and a minimum capacity. The later provide extra capacity
to the network and can be activated/deactivated depending on the policies of the
employed energy efficiency technique. We proposed two strategies to control these

125



5

5.1. THESIS OUTCOME

resources considering the delay tolerance of the users in the network, and we evalu-
ated them to estimate the attainable energy gains the user cooperation can bring to
the access network. We evaluated the strategies analytically, deriving the theoretical
bounds of the attainable gains, and using system level simulations, considering more
realistic conditions.

The first proposed strategy intends to maximize the utilization of dynamic re-
sources. For this purpose, the network proposes the users to delay the start of their
services when the dynamic resources are not active, accumulating service requests
until having enough of them to justify the activation. The static resources are used
to serve the impatient users, i.e. users without willingness to cooperate with the
network, and to ensure the continuity of ongoing sessions when the dynamic re-
sources are deactivated. The deactivation of the dynamic resources is done when
the currently served traffic can be absorbed by the static resources. The activation
is performed to serve the waiting users, ensuring the predefined upper bound of the
delay proposed to them. We showed that this activation condition has a drawback:
the dynamic resources will be systematically activated if there are cooperative users
in the system. Thus, the possible gains are limited when affording low load levels,
i.e. lower than the static resources capacity. In such case is better to serve all users
without delay using the static resources. However, we showed that the strategy
represents considerable benefits when the load increases, as it allows to distribute
the load between the two types of resources and to extend the periods of low energy
consumption thanks to the delay tolerance of the users.

The second proposed strategy intends to maximize the utilization of static re-
sources, using the dynamic ones only when they are needed, i.e. when the static
resources are insufficient. To do so, all users are served indistinctly if the load is
inferior to the static resources capacity. When this limit is surpassed, the network
will delay the start of the incoming user services, which allows the system to op-
erate using only the static resources and consuming low levels of energy. In this
strategy the waiting users have two possibilities to be served: either because some
static resources become available given the completion of some services, or because
the dynamic resources are activated. We showed that this strategy can provide long
periods of low energy consumption, as the activation of the dynamic resources is
delayed, or even avoided, in case of short periods of increased traffic.

We corroborated analytically and using system level simulations that longer de-
lays proposed to the users provide higher energy gains. We explained how the
capacity of the access network and the quality of service constraints limit the dura-
tion of the maximal delay that can be proposed to the users. Longer delays lead to
higher number of users to be served when activating the dynamic resources. If this
number exceeds the system capacity, the users may experience degradation in their
quality of services, which is undesirable, especially when they had already waited
for being served.
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We considered different energy efficiency techniques in our evaluations and we
showed using system level simulations that time-consuming reconfiguration periods
impact the performance of the energy efficiency strategies, reducing the time the
network can remain in low energy consumption. Although this limitation affects the
performance of the proposed strategies, we corroborated that still further gains are
attainable with the proposed user cooperation scheme.

5.2 FUTURE WORK

In this section, we identify several points that may be the subject of future work
for extending the contributions of this thesis.

The theoretical model presented in Chapter 3 can be enhanced to obtain a more
accurate representation of the cellular access network using radio resource adapta-
tion techniques, e.g. accounting for the impact of the reconfigurations in the system
model. To do so, one may extend the state space of the proposed Markov chains,
including transitional states representing the traffic and system dynamics during
the reconfiguration periods. The estimation of the dissatisfaction and waiting time
metrics should be adapted to consider the transitional states. Such model exten-
sion can provide a better estimation of theoretical bounds of the employment of the
proposed DTU-aware strategies.

The system model presented in this thesis considers that the access network can
be in one of two operational states, depending on the available resources. However,
this number of states can be larger when considering more flexible techniques, and
the network can activate or deactivate progressively the available resources, depend-
ing on the traffic. The model can be extended to consider these cases, adapting the
Markov chain state space accordingly, e.g. adding a new set of serving and waiting
states for each new capacity level resulting from the activation of a new resource.
However, the complexity of the waiting time estimation in such multilevel model
may be non-trivial and should be further investigated.

In Chapter 4 we presented the short-term evaluation of the proposed strategies
using system level simulations. These evaluations were made assuming perfect load
estimation for the selection of the switching thresholds, which remained unchanged
in all predefined execution times. However, the traffic level can vary rapidly, and
the thresholds should be adapted to these variations in order to satisfy the quality
of service and waiting time constraints of the users in the system. For example,
using advanced traffic prediction techniques to accurately estimate the load and es-
tablish the initial strategy settings. Afterwards, a closed control loop may be used
to adapt and correct the thresholds and the steady state periods, depending on the
measured metrics, e.g. quality of service, experienced waiting time, energy consump-
tion. Moreover, the usage of learning mechanisms can assist this control process.
The developed simulation platform allows to evaluate different traffic conditions as
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well. For example, using another interarrival and service time distribution for the
generation of the traffic (e.g. log-normal), and considering the user mobility in the
scenarios.

Another point to consider is the definition of the scope of application of the
strategies within a given access network, i.e. the definition of the DTU zone(s), the
participating base stations and the differentiation of static and dynamic resources.
This is highly dependent on the deployment characteristics and the radio resources
adaptation technique employed to reduce the energy consumption. In this thesis
we considered regular access network deployment, whereas real networks may differ
from these characteristics. We also used regular patterns for the radio resource
adaptation, which may not be convenient for all deployments. Thus, further studies
need to be made in order to define the deployment-specific use cases of the DTU-
aware strategies. These should consider the hardware flexibility and the performance
targets desired by the operator, e.g. the optimal energy efficiency strategy to employ,
or the optimal selection of the DTU zones to achieve a trade-off between energy
reductions and number of participating base stations.

A further research direction is the adaptation of the strategies to the highly
heterogeneous traffic served by the access network, i.e. different type of services with
different resource utilization and quality of service constraints. Thus, the waiting
policies will not only depend on the system state, but also on the type of service
the customer intends to use. An interesting research direction is to investigate the
trade-off between delay tolerance and service quality, e.g. offering a given limited
quality of service to small-delay cooperative users, while offering upgraded services
to high-delay tolerant ones. This kind of progressive cooperation can contribute
to balance the resource utilization to further delay the activation of the dynamic
resources.

Another point that needs to be considered is the management and impact of the
impatient traffic. Two possible directions are envisaged: resource reservation and/or
traffic prioritizing. The persistent DTU-aware strategy presented in this thesis con-
siders the resource reservation for impatient users. However, further studies need
to be made to define efficient traffic distribution and resource activation depending
on both types of traffic: delay tolerant and impatient. When considering oppor-
tunistic DTU-aware strategy, the impatient traffic needs to be prioritized in periods
when the system is operating with limited resources. However, such immediate re-
source utilization may impact the quality of service of ongoing sessions as well as the
waiting time of the cooperative users. This impact should be further studied, e.g.
optimizing the selection of the activation and deactivation thresholds considering
estimations of the impatient traffic as well.

The strategies presented in this thesis are based on the interaction between the
users and the network to achieve more efficient utilization of the network resources.
The different mechanisms used to implement this interaction should be investigated
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and developed. For example, one can envisage protocols and procedures in which a
front-end application running in the UEs constantly communicates with a resource
management controller in the network. This front-end application informs the user
about the status of the network and the different options she/he has for using the
network services, and the incentives or deterrents she/he can receive depending on
the chosen usage. Depending on the customer usage decisions and the network state,
the controller should decide if a reconfiguration is needed or if the parameters of
the strategies should be adapted, e.g. adapt the thresholds or the services waiting
policies.

5.3 PERSPECTIVES

In this thesis we show how the user awareness and cooperation can help to fur-
ther reduce the energy consumption when employing energy efficiency techniques
in the access network. To further exploit this potential, the access network should
become highly dynamic. For example, dividing the control and data plane as pro-
posed by Capone et al. [CFGU12] can be a good solution to increase the adaptivity
of the access network resources. The deployment of low power, long range access
technologies offers the possibility of providing control over broad areas, while the
deployment of highly reactive small cells, available upon control request, provides
the data services. The DTU-aware strategies protocols and procedures can be de-
signed to operate in the control plane, to interact with the user and establish the
cooperation mechanisms, as well as to control the activation and deactivation of the
small cell for providing services depending on the user chosen usage.

Cellular operators have two main reasons for decrease the energy consumption
of their networks. First, they aim to reduce their operational costs, as a non neg-
ligible part of them are dedicated to pay the electricity bill. Second, they intend
to reduce the negative environmental impact of the operation of their networks,
which is mainly produced in the generation process of the consumed electricity. The
proposed strategies can contribute to these operators goals in different ways. The
operators can permanently use the DTU-aware strategies in some given areas in
order to reduce the overall energy consumption. For example, creating permanent
DTU-zones in areas with potential underutilized BSs.

A way to reduce the ecological impact of the cellular networks operation, is to
power the BSs with renewable energy sources such as solar panels or wind turbines.
However, the energy generation of these sources is highly dependent on external
environmental factors, which makes the availability of the energy highly variable
and intermittent. The operators can rely on the proposed DTU-aware strategies, in
order to adapt the network resources either to reduce the energy consumption from
the electricity grid when the renewable energy is not available; or to optimize the
renewable energy utilization in the case of off-grid BSs.
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A further contribution to the financial goals of cellular operators reside in the
context of their inclusion in the Smart Grid market. One of the pillars of the de-
velopment of the Smart Grid is the dynamic management of the energy resources.
When the Smart Grid detects an imbalance in the energy consumption and gener-
ation, it may ask the consumers to reduce their consumption in exchange of some
financial incentives. The operators can opportunistically activate the DTU-aware
strategies in some critical areas when the Smart Grid ask for these ancillary services,
reducing the energy consumption and increasing their profit.
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Table A.1: Summary of the reviewed literature for Network Reconfiguration Strategies.
Article Contribution Technol-ogy Deployment Time

frame
Control Perfor-mance

constraint
Coverage

Preservation
Claimed
gain

Optimiza-
tion

Evalua-
tion

[ACCM09] Estimate the energy savings of
general BS switch-off schemes

using analytical models. Point the
trade-off between duration of the
switch-off and the amount of

switched cells

General Homogeneous
Non-Overlapping

Offline Central-
ized

N/A Transmission Power Daily
25%-30%

Exhaustive
search global

scope
Numeri-

cal
analysis

[CCMM08]
[CCMM09]

Introduce the concept of dynamic
radio coverage planning to reduce
the power consumption of cellular

networks

UMTS Homogeneous
Non-Overlapping and

Overlapping

Offline Central-
ized

Throughput Transmission Power Daily
30%-40%

Exhaustive
search global

scope
Numeri-

cal
analysis

[SES09] Propose load balancing techniques
between radio access technologies

creating opportunities to
deactivate cells

GSM,
UMTS

Heterogeneous
Standalone BS

Online Dis-
tributed

Standalone
Channel

Availability
N/A Instanta-neous

10%-50%
Exhaustive
search localscope

Numeri-
cal

analysis

[ZGY+09] Present a greedy optimization
algorithm executed periodically to
determine the configuration of the

access network

General Homogeneous
Overlapping

Online Central-
ized,
Dis-

tributed

Throughput N/A N/A Greedy
algorithm

Simula-
tion

[SE10]
[ESC11]

Propose conservative guard periods
to avoid QoS degradation and
unnecessary switching when

applying a cell switching algorithm

GSM,
UMTS,
HSDPA

Standalone BS Online Dis-
tributed

Standalone
Throughput N/A N/A Exhaustive

search localscope
Numeri-

cal
analysis

[SEC10] Introduce Semi-Static Sleep Mode
to avoid frequent switching

GSM
HSDPA

Standalone BS Online Dis-
tributed

Standalone
Throughput N/A Daily 15% Exhaustive

search localscope
Numeri-

cal
analysis

[MMS10] Present a Site/Cell switching
scheme in overlapping scenarios

exploiting the cell-breathing effect

HSDPA Homogeneous
Overlapping

Offline Central-
ized

Throughput Antenna
Configuration

Daily
25%-35%

Greedy
algorithm

Simula-
tion

[SKB10] Propose the concept of energy
partitions: subset of BSs applying
a coordinated and cooperative
algorithm where the load and
coverage information is shared
among BSs using SON schemes

LTE Homogeneous
Non-Overlapping

Online Central-
ized

Throughput Transmission Power,
Antenna

Configuration

N/A Greedy
algorithm

Simula-
tion

[OK10] Show the trade-off between
network density and energy savings
when applying a simple switching

off algorithm

FDMA Homogeneous
Overlapping

Offline Dis-
tributed

Throughput None Daily
10%-20%

Exhaustive
search localscope

Numeri-
cal

Analysis

[CZZN10] Study the impact of CoMP and
relaying techniques to extend

coverage and further reduce the
energy when a cell switching

strategy is applied

LTE Homogeneous
Overlapping

Offline Central-
ized

Coverage None, Relying,
CoMP

Instanta-neous
3%-45%

Linear
programming

Numeri-
cal

Analysis

[NWGY10,
Niu11]

Suggest to prioritize the
association of users to cells with
higher load in order to switch off
the low loaded ones. Propose to

reserve some bandwidth in order to
react to fast variations of the load

General Homogeneous
Overlapping

Online Central-
ized,
Dis-

tributed

Bandwidth None, Antenna
Configuration,
Relying, CoMP

20%-50% Greedy
algorithm

Simula-
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(c) Dynamic resources operation probability and strategy thresholds depending on A and D

Figure B.1: Results for the Scenario 1, η = 1,γmax = 0.05, δmax = 0.05.
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Figure B.2: Power gain variation for different levels of η. Scenario 1, fixed δmax =
0.05 and γmax = 0.05.
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Figure B.3: Power gain variation for different levels of δmax. Scenario 1, fixed η = 0.5
and γmax = 0.05.
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Figure B.4: Power gain variation for different levels of γmax. Scenario 1, fixed η = 0.5
and δmax = 0.05.
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(c) Dynamic resources operation probability and strategy thresholds depending on A and D

Figure B.5: Results for the Scenario 6, η = 1,γmax = 0.05, δmax = 0.05.
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Figure B.6: Power gain variation for different levels of η. Scenario 6, fixed δmax =
0.05 and γmax = 0.05.
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Figure B.7: Power gain variation for different levels of δmax. Scenario 6, fixed η = 0.5
and γmax = 0.05.
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Figure B.8: Power gain variation for different levels of γmax. Scenario 6, fixed η = 0.5
and δmax = 0.05.
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Figure C.1: Results for the Scenario 2,γmax = 0.05, δmax = 0.05.
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Figure C.2: Results for the Scenario 3,γmax = 0.05, δmax = 0.05.
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Figure C.3: Results for the Scenario 4,γmax = 0.05, δmax = 0.05.
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