
HAL Id: tel-01302047
https://hal.science/tel-01302047

Submitted on 13 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Vehicle Routing Problems with Resources
Synchronization

Sohaib Afifi Lafifi

To cite this version:
Sohaib Afifi Lafifi. Vehicle Routing Problems with Resources Synchronization. Operations Research
[math.OC]. Université de Technologie de Compiègne, 2015. English. �NNT : �. �tel-01302047�

https://hal.science/tel-01302047
https://hal.archives-ouvertes.fr

par Sohaib LAFIFI

Problèmes de Tournées de Véhicules avec

Synchronisation de Ressources

Thèse présentée pour l’obtention du grade

de Docteur de l’UTC

Soutenue le : 25 septembre 2014
Spécialité : Technologie de l’Information et des Systèmes

A thesis presented for the degree of Doctor
UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE

Technologies de l’Information et des Systèmes
HeuDiaSyC, UMR CNRS 7253

Vehicle Routing Problems with Resources
Synchronization

By Sohaib LAFIFI

Thesis defense: 25 september 2014

Jury

Jacques Carlier Université de Technologie de Compiègne Examiner
Duc-Cuong Dang University of Nottingham Invited
Laure Devendeville Université Picardie Jules Verne Examiner
Nacima Labadie Université de Technologie de Troyes Reporter
Corinne Lucet Université Picardie Jules Verne Examiner
Aziz Moukrim Université de Technologie de Compiègne Supervisor
Marc Sevaux Université de Bretagne-Sud Reporter

http://www.utc.fr/
http://www.utc.fr/formation_ecole_doctorale/tech_information_systemes.php
http://www.hds.utc.fr/

UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE

Abstract
Technologies de l’Information et des Systèmes

HeuDiaSyC, UMR CNRS 7253

Doctor of UTC

by Sohaib LAFIFI

Title: Vehicle Routing Problems with Resources Synchronization

This dissertation focuses on vehicle routing problems, one of the major aca-
demic problems in logistics. We address NP-Hard problems that model some real
world situations particularly those with different temporal constraints including
time windows, visit synchronization and service balance.

The aim of this research is to develop new algorithms for the considered prob-
lems, investigate their performance and compare them with the literature ap-
proaches. Two cases are carried out. The first case studies the Vehicle Routing
Problem with Time Windows (VRPTW). We propose new lower bound meth-
ods for the number of vehicles. Then we present a Particle Swarm Optimization
algorithm dealing with the Solomon objective. The second case studies the Vehi-
cle Routing Problem with Time Windows and Synchronized Visits (VRPTWsyn).
Both exact methods and heuristics are proposed and compared to the literature
approaches.

keywords: Vehicle Routing Problems, Synchronization, Metaheuristics, Exact
Methods.

Thesis supervisor: Aziz Moukrim

http://www.utc.fr/
http://www.utc.fr/formation_ecole_doctorale/tech_information_systemes.php
http://www.hds.utc.fr/
sohaib.afifi@hds.utc.fr

UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE

Résumé
Technologies de l’Information et des Systèmes

HeuDiaSyC, UMR CNRS 7253

Docteur de l’UTC

par Sohaib LAFIFI

Titre: Problèmes de Tournées de Véhicules avec Synchronisation
des Ressources

Cette thèse porte sur la résolution de problèmes de transport qui intègrent des
contraintes temporelles considérant les fenêtres de temps, la synchronisation des
visites et l’équilibrage des services. Ces problèmes trouvent plusieurs applications
dans le monde réel.

L’objectif de nos recherches est l’élaboration de nouvelles méthodes de résolu-
tion pour les problèmes considérés en examinant leur performance avec une étude
comparative par rapport aux différentes approches de la littérature. Deux vari-
antes sont traitées. Le premier cas étudie le Problème de Tournées de Véhicules
avec Fenêtres de Temps (VRPTW). Nous proposons de nouveaux prétraitements et
bornes inférieures pour déterminer le nombre de véhicules nécessaires en s’inspirant
de travaux menés en ordonnancement (raisonnement énergétique) et d’autres prob-
lèmes combinatoires comme la clique maximum et les problèmes de bin-packing.
Nous présentons également un algorithme d’optimisation par essaim particulaire
qui traite de la minimisation du nombre de véhicules puis de celle du temps de
trajet total. Le deuxième cas étudie le Problème de Tournées de Véhicules avec
des Fenêtres de Temps et des Visites Synchronisées (VRPTWSyn). Nous pro-
posons plusieurs méthodes basées sur des approches heuristiques et des formu-
lations linéaires avec l’incorporation d’inégalités valides pour tenir compte de la
contrainte de synchronisation.

Mots-clés : Problèmes de tournées de véhicules, Synchronisation, Metaheuris-
tiques, Méthodes exactes.

Directeur de thèse : Aziz Moukrim

http://www.utc.fr/
http://www.utc.fr/formation_ecole_doctorale/tech_information_systemes.php
http://www.hds.utc.fr/
sohaib.afifi@hds.utc.fr

To my parents

sisters and brothers . . .

v

Acknowledgements

Thank God for the wisdom and perseverance that he has been bestowed upon
me during this research project.

I would like to express my special appreciation and thanks to my advisor
Professor Aziz Moukrim, he has been a tremendous mentor for me. I would like to
thank him for encouraging my research and for allowing me to grow as a research
scientist. His advices on research as well as on my career have been priceless.

Besides my advisor, I would like to thank the rest of my thesis committee:
Jacques Carlier, Laure Devendeville, Nacima Labadie, Corinne Lucet and Marc
Sevaux for their encouragement, insightful comments and questions.

This work was supported by the Regional Council of Picardy and the European
Regional Development Fund (ERDF), under PRIMA project with Aziz Moukrim
and in collaboration with Corinne Lucet and Laure Devendeville from Laboratoire
MIS at Université Picardie Jules Verne.

To my family, I am particularly thankful. Words cannot express how grateful I
am to my mother and father for all the sacrifices that they’ve made on my behalf.
Their prayer for me was what sustained me thus far.

Last but not least, I would also like to thank all of my friends and labmates
who supported me and assisted me to strive towards my goal.

vii

Contents

Page

Acknowledgements vii

Contents ix

List of Figures xiii

List of Tables xv

List of Algorithms xvii

Preface xix

Publications xxi

Symbols and Notation xxiii

Introduction 1

ix

Contents x

1 Field of Study 5

1.1 Combinatorial optimization . 6

1.1.1 Algorithm complexity . 7

1.1.2 Problem complexity . 8

1.1.3 Solution methods . 9

1.2 Vehicle routing problems . 10

1.2.1 Some variants of VRP . 10

1.2.2 Solution methods . 12

1.3 Conclusion . 15

2 Bounding Methods On The Number Of Vehicles For VRPTW 17

2.1 Trivial lower bounds . 19

2.2 Lower bounds inspired from Energetic Reasoning 19

2.3 Bin-packing lower bounds and Energetic Reasoning 20

2.4 Lower bounds based on problem decomposition techniques 21

2.5 Preprocessing . 22

2.6 Numerical results . 26

2.7 Conclusion . 29

3 Particle Swarm Optimization for VRPTW 31

3.1 PSO based algorithm . 32

3.1.1 Solution representation and evaluation 32

3.1.2 Crossover and position update 33

3.2 Initialization algorithm . 37

x

Contents xi

3.3 Best insertion heuristic . 38

3.4 Local search . 39

3.5 Parameter configuration and experimentation 41

3.6 Conclusion . 46

4 Exact methods for VRPTWSyn 47

4.1 Problem definition . 48

4.2 Literature . 49

4.3 Problem formulation . 51

4.4 New reduced formulation . 53

4.5 Constraint programming model . 55

4.6 Preprocessing . 57

4.7 Additional cuts . 57

4.7.1 Incompatibilities and clique cuts 57

4.7.2 Subtour eliminations . 59

4.7.3 MIP overall algorithm . 59

4.8 Experimentation . 60

4.8.1 Travel time . 62

4.8.2 Preferences . 63

4.8.3 Workload balance . 63

4.9 The efficiency of the cuts . 66

4.10 Conclusion . 67

xi

List of Figures xii

5 Heuristic Solutions for VRPTWSyn 71

5.1 Simulated annealing based iterative local search algorithm 73

5.1.1 Constructive heuristic . 74

5.1.2 Diversification process . 78

5.1.3 Local search procedure . 79

5.2 Experimentation . 81

5.2.1 Parameter settings . 82

5.2.2 Efficiency of the neighborhood structure 84

5.2.3 Comparative results . 85

5.3 Conclusion . 90

Conclusions and future works 93

Appendices 99

A Paper: New Lower Bounds on the Number of Vehicles for VRPTW 101

B Detailed results for Chapter 2 119

C Detailed results for Chapter 3 129

Bibliography 133

xii

List of Figures

1.1 Euler diagram for P , NP , NP -complete, and NP -hard set
of problems . 8

1.2 Example of a solution to a vehicle routing problem 11

1.3 Some variants of VRP . 12

3.1 Example of a sequence evaluation. 34

3.2 Example of the 2-opt* move exchange of links (i, j), (u, v) for links
(i, v), (u, j). 40

3.3 Example of the Or-opt move moving sequence (i, i+1) after cus-
tomer j. 40

3.4 Example of the swap move, between customers c and f. 41

3.5 Example of the shift move, on the customer f. 41

4.1 Example of VRPTWSyn solution. 49

4.2 MIP solver overall algorithm for VRPTWSyn. 60

4.3 Comparison of the Computational times for the travel time. 67

4.4 Comparison of the Computational times for the sum of negative
preferences. 67

xiii

List of Figures xiv

4.5 Comparison of the Computational times for the workload balance. . 68

5.1 Cross synchronization. 77

5.2 2-opt*: exchange of links (1, 2), (5, 6) for links (1, 6), (5, 2) 79

5.3 Or-opt: moving visit 3 between the depot and visit 1 80

5.4 Tradeoff between performance and computational time for different
parameter settings when minimizing the total travel time. 83

5.5 Tradeoff between performance and computational time for different
parameter settings when minimizing the sum of negative preferences. 84

5.6 Success rates of the neighborhoods in minimizing the total travel
time. 85

5.7 Success rates of the neighborhoods in optimizing the preference. . . 86

5.8 Computational times to reach the travel time equivalent to the one
in the literature. 90

5.9 Computational times to reach the sum of preferences equivalent to
the one in the literature. 91

xiv

List of Tables

2.1 Average lower bound results and CPU times for Solomon [81] instances 27

2.2 Average lower bound results and CPU times for Gehring and Homberger
[37] instances . 28

3.1 Results on Solomon and Desrosiers [82] instances. 43

3.2 Results on Homberger and Gehring [46] instances with 200 customers. 43

3.3 Results on Homberger and Gehring [46] instances with 400 customers. 44

3.4 Results on Homberger and Gehring [46] instances with 600 customers. 44

3.5 Results on Homberger and Gehring [46] instances with 800 customers. 44

3.6 Results on Homberger and Gehring [46] instances with 1000 cus-
tomers. 45

4.1 Characteristics of the benchmark instances. 61

4.2 Comparison of the solutions and computational times for the total
travel time. 64

4.3 Comparison of the solutions and computational times for the sum
of negative preferences. 65

4.4 Comparison of the solutions and computational times for the work-
load balance. 66

xv

List of Tables xvi

4.5 Comparative of the efficiency of the cuts using the reduced model
on the preference objective. 68

5.1 Comparison of the solutions and computational times for the total
travel time. 87

5.2 Comparison of the solutions and computational times for the sum
of negative preferences. 88

5.3 Comparison of the solutions and computational times for the fair-
ness objective. 89

B.1 Results on Solomon and Desrosiers [82] instances with 25 customers.120

B.2 Results on Solomon and Desrosiers [82] instances with 50 customers.121

B.3 Results on Solomon and Desrosiers [82] instances with 100 customers.122

B.4 Results on Homberger and Gehring [46] instances with 200 customers.123

B.5 Results on Homberger and Gehring [46] instances with 400 customers.124

B.6 Results on Homberger and Gehring [46] instances with 600 customers.125

B.7 Results on Homberger and Gehring [46] instances with 800 customers.126

B.8 Results on Homberger and Gehring [46] instances with 1000 cus-
tomers. 127

C.1 Results on Solomon and Desrosiers [82] instances. 129

C.2 Results on Homberger and Gehring [46] instances with 200 customers.130

C.3 Results on Homberger and Gehring [46] instances with 400 customers.130

C.4 Results on Homberger and Gehring [46] instances with 600 customers.130

C.5 Results on Homberger and Gehring [46] instances with 800 customers.131

C.6 Results on Homberger and Gehring [46] instances with 1000 cus-
tomers. 131

xvi

List of Algorithms

2.1 Solving disjunctions . 24

2.2 Reducing Time windows . 25

3.1 PSO basic algorithm . 33

3.2 Split algorithm for VRPTW. 35

3.3 Cross algorithm for VRPTW. 36

3.4 Local search for VRPTW. 39

4.1 CP model for VRPTWSyn. 56

5.1 SA-ILS algorithm for VRPTWSyn. 73

5.2 BestInsertion algorithm for VRPTWSyn. 77

5.3 Algorithm to diversify a solution. 78

5.4 Local search for VRPTWSyn. 81

xvii

Preface

This work was supported by the Regional Council of Picardy and the European
Regional Development Fund (ERDF), under PRIMA project in collaboration
with Corinne Lucet and Laure Devendeville from Laboratoire MIS at Université
Picardie Jules Verne.

The following sections of this thesis are substantially based upon work pub-
lished or submitted for publication elsewhere, or include collaborative work:

1. Parts of Chapter 2 are based on the publication:

Sohaib Afifi et al. “New Lower Bounds on the Number of Vehicles for the
Vehicle Routing Problem with Time Windows”. In: CPAIOR 2014, Cork,
Ireland. Vol. 8451. Lecture Notes in Computer Science. Springer, 2014,
pp. 422–437

2. Chapter 3 includes collaborative work with Rym Nesrine Guibadj

3. Chapter 4 includes collaborative work with Ali-Bey Amar during his intern-
ship

4. Parts of Chapter 5 are based on the publications:

Sohaib Afifi et al. “A Simulated Annealing Algorithm for the Vehicle Routing
Problem with Time Windows and Synchronization Constraints”. In: LION
7, Catania, Italy. Vol. 7997. Lecture Notes in Computer Science. Springer,
2013, pp. 259–265

Sohaib Afifi et al. “Heuristic Solutions for the Vehicle Routing Problem with
Time Windows and Synchronized Visits”. Submitted to Optimization Let-
ters, 2014

xix

Publications

Journal article

• Sohaib Afifi et al. “Heuristic Solutions for the Vehicle Routing Problem with
Time Windows and Synchronized Visits”. Submitted to Optimization Let-
ters, 2014

In proceedings

• Sohaib Afifi et al. “A Simulated Annealing Algorithm for the Vehicle Routing
Problem with Time Windows and Synchronization Constraints”. In: LION
7, Catania, Italy. Vol. 7997. Lecture Notes in Computer Science. Springer,
2013, pp. 259–265

• Sohaib Afifi et al. “New Lower Bounds on the Number of Vehicles for the
Vehicle Routing Problem with Time Windows”. In: CPAIOR 2014, Cork,
Ireland. Vol. 8451. Lecture Notes in Computer Science. Springer, 2014,
pp. 422–437

Seminar and communication

• Sohaib Afifi et al. “Un algorithme de recuit simulé pour le problème de
tournées de véhicules avec fenêtres de temps et contraintes de synchronisa-
tion”. (In french) ROADEF 14ième, Troyes, France. 2013

xxi

Symbols and Notation

V Set of customers

E Set of arcs

PSync Set of synchronization pairs (see Chapter 4)

Q Vehicle capacity

tmax Maximum route length

δij Distance between nodes i and j

For a customer i:

ei The earliest start time

li The latest start time

si Service duration

qi Customer demand

xxiii

Introduction

In today’s business world in which many activities and exchanges are carried, either

industrial or private, operations costs and resources consumption become a major

concern. Optimizing those resources takes a very important place in decision-

making companies, including those operating in the field of transport and logistics.

Considerable efforts are being made to reduce the costs and consumptions, both

materials and humans.

In this context, we wish to focus on Vehicle Routing Problem (VRP), one

of the major academic field in logistics. VRP is a widely studied combinatorial

optimization problem in which the aim is the determination of optimal tours for

a group of vehicles serving a set of customers respecting some side constraints.

After decades since its first definition by Dantzig and Ramser [24], it is still one

of the most attractive problems because of its various practical applications and

all the challenges it exposes. Dozens of variants have been treated in order to

take into consideration the real-world constraints. In this thesis, we are interested

in two variants which deal with extra temporal constraints. The capacitated Ve-

hicle Routing Problem with Time Windows (VRPTW) and the Vehicle Routing

Problem with Time Windows and Synchronized constraints (VRPTWSyn).

An optimization problem is easy to solve in the case where we can enumerate

and evaluate all the possible solutions naively. However, in practice, enumerating

1

Introdution

all the solutions needs an exponential calculation time. The challenge is to pro-

pose better, faster and smarter approaches. Chapter 1 gives an overview on the

optimization field and some essential definitions. We also discuss some known and

major methods used to deal with the vehicle routing problems in general.

After presenting the field of Study, the thesis is divided into two parts. The

first part covers the capacitated Vehicle Routing Problem with Time Windows

(VRPTW). It concerns a very well-known variant of VRP where each customer

has a time window constraint and a demand to be delivered by capacitated vehicles.

Defined first by Fisher et al. [36], it became among the most studied variants of

routing problems due to its wide range of applications. Common examples are

newspaper delivery, beverage and food delivery and commercial and industrial

waste collection [41]. This part contains two chapters, Chapters 2 and 3.

After presenting the problem, reviewing the literature and giving a mathemat-

ical formulation, Chapter 2 presents a study of lower bounds on the number of

vehicles required to serve all the customers. Our method is an adaptation of En-

ergetic Reasoning. This algorithm, originally developed for scheduling problems,

allows the detection of infeasibilities and the adjustment of the time windows dur-

ing which the task execution is permitted. We proposed some procedures to define

the minimal necessary time succeeding or preceding the service of each customer.

The objective is to find a strong relaxation of the problem to a Parallel Machine

Scheduling Problem. Then, an extension of the energetic reasoning is proposed

using the bin-packing problem with conflicts. In comparison with the results of

the literature, we were able to prove the optimality of the number of vehicles for

the majority of the instances thanks to the preprocessing proposed.

Then, in Chapter 3, we present a solution for VRPTW which deals with the

Solomon objective (Minimizing the number of vehicles used then the total travel

cost [82]). We present a Particle Swarm Optimization algorithm for VRPTW.

PSO is a swarm intelligence technique which takes inspiration from the collective

behavior of wild animals in the nature. The proposed PSO works with permutation

2

Introdution

encoding and uses an adapted split. A combination with a set partitioning problem

and a neighborhood-based local search framework is used.

The second part deals with a relatively new variant of VRP which extends

from the last one and studies the combination of some extra temporal constraints.

A synchronization constraint requires more than one vehicle to serve a customer

at the same time. The problem is therefore called the VRP with time windows

and synchronized visits (VRPTWSyn). Such a requirement appears frequently in

vehicle routing applications in various domains, ranging from individual health

care services to dispatching technicians for on-site reparation/maintenance. Nev-

ertheless, only few studies have been dedicated to the synchronization aspect of

vehicle routing.

Chapter 4 introduces the problem and explores the idea of using efficiently

some exact methods on the vehicle routing problem with time windows and syn-

chronized visits (VRPTWSyn). A new linear model is proposed and compared

to the classical one after strengthening them with some cuts and preprocessing

techniques. Then, we propose a new approach based on constraint programming

where we consider the problem as a scheduling one. A detailed discussion and

comparisons are presented at the end of the chapter.

In Chapter 5, we develop a simulated annealing based iterative local search

algorithm (SA-ILS) that incorporates several techniques to deal with VRPTWSyn.

Experiments conducted on the instances from the literature show that our SA-ILS

is fast and outperforms the existing approaches. To the best of our knowledge,

this is the first time that dedicated local search methods have been proposed and

evaluated on this variant of VRP.

At the end, we finish with a general conclusion including a synthesis of the con-

tributions presented in this dissertation and some perspectives and future works.

3

1 | Field of Study

If you can’t explain it simply, you don’t understand

it well enough.

Albert Einstein

1.1 Combinatorial optimization . 6

1.1.1 Algorithm complexity 7

1.1.2 Problem complexity . 8

1.1.3 Solution methods . 9

1.2 Vehicle routing problems . 10

1.2.1 Some variants of VRP 10

1.2.2 Solution methods . 12

1.3 Conclusion . 15

This chapter is intended to recall the basics of optimization in general and

especially the vehicle routing problems. It provides an overview on all the issues

addressed in the thesis. We begin by presenting some essential definitions of a

combinatorial optimization problem, the vehicle routing one and some related

5

Field of Study Chapter 1

terminologies. Then, we present general methods for solving these problems. At

the end of this chapter, we give a comprehensive idea on all issues involved and

treated in this thesis with some definitions and motivations. The chapter ends

with a discussion on the exact and heuristic methods used in the literature.

1.1 Combinatorial optimization

Combinatorial optimization is a subset of mathematical optimization that con-

sists of finding optimal solutions for complex problems. In many such problems,

exhaustive search is not feasible. While some problems are relatively well un-

derstood and admit solution to optimality in polynomial time, many other are

NP-Hard and need some sophisticated techniques. Combinatorial optimization

is very related to operations research, algorithm theory, and computational com-

plexity theory. It has important applications in several fields, including artificial

intelligence, machine learning, mathematics and software engineering.

Definition 1.1. An optimization combinatorial problem (COP) Φ = (Ω, f) can be

defined using:

• A set of variables X = {x1, . . . , xn}.

• Every variable xi is associated to a domain Di.

• A set of constraints between the variables.

• An objective function to minimize (or to maximize) f : D1 × · · · × Dn → R.

A feasible solution to the problem Φ is an element s ∈ Ω such that:

s = {v1, . . . , vn|vi ∈ Di and all the constraints are verified}.

The resolution of a COP with a minimization objective function (resp. maximiza-

tion) consists in finding s∗ such that ∀s ∈ Ω, f (s∗) ≤ f (s) (resp. f (s∗) ≥ f (s)).

The set Ω is called the search space.

6

Chapter 1 Field of Study

1.1.1 Algorithm complexity

The formal definition of an algorithm is introduced by Turing [90]. This definition

is based on the notion of a formal language using an abstract machine called the

Turing machine. Simply, an algorithm A is a finite list of well-defined instructions

for calculating a function in order to solve a problem Φ. The time and space are

the most well-known complexity measures. The first is often presented by the

number of instructions an algorithm needs. We consider that every instruction is

done by a simple elementary operation (e.g. a test, an addition, a multiplication

…).

Definition 1.2. A complexity CA of an algorithm A on a problem Φ of size n

is defined using the number of instructions required to solve any instance of the

problem Φ.

CA is often expressed asymptotically to n using the O notation. A is said

to be of complexity O(g(n)) if ∃M > 0, ∃n0 such that ∀n ≥ n0, CA ≤ Mg(n).

According to g the most used algorithmic complexities are:

• O(1): constant and independent of the size of Ω.

• O(log n): logarithmic to the size of Ω.

• O(n): linear to the size of Ω.

• O(nc) (c ≥ 2 a constant): polynomial to the size of Ω.

• O(an) (a > 1 a constant): exponential to the size of Ω.

A practical case where the complexity is polynomial to the size of the problem

and in the same time to the input values, e.g. g(n) = npvq where v is a value of

the input and q is a constant. The algorithm is said Pseudo-polynomial.

7

Field of Study Chapter 1

1.1.2 Problem complexity

There are two types of problems:

• The optimization problem: min{ f (s)|s ∈ Ω}.

• And its corresponding decision problem: Is there a solution s ∈ Ω with the

value f (s) ≤ k ?

Decision problems are one of the central objects of study in computational com-

plexity theory. A decision problem is a special type of computational problem

whose answer is either yes or no. There are different classes of decision problems.

C
om

pl
ex

it
y

P ̸= NP P = NP

NP-hard

NP-complete

P

NP

NP-hard

P = NP
=

NP-complete

Figure 1.1 – Euler diagram for P , NP , NP -complete, and NP -hard set
of problems

NP is the class of decision problems, where it can be proven in polynomial time,

that the answer is “yes”, if this is the case. The optimization problem with a

corresponding decision problem in the NP class can be solved by answering

the decision problem a polynomial number of times.

P is the class of decision problems in NP that can be solved in polynomial time.

8

Chapter 1 Field of Study

NP -complete is a subset of NP . An instance of a problem in NP can be

converted in polynomial time to an instance of a problem inNP -complete.

(The problems in NP are polynomial reducible to the problems in NP -

complete). This means that the problems in NP are not more difficult

than the problems in NP -complete. The optimization problem with a

corresponding NP -complete decision problem is NP -hard.

It has not yet proven that P = NP nor P ̸= NP . For all the problems in

NP -complete there have not yet been found polynomial solution methods, and

hence it is so far conjectured that P ̸= NP .

1.1.3 Solution methods

In this section we will try to present an overview of the methods used to solve

some COP from the NP -hard class. These methods are usually categorized

into two subsets: exact methods (e.g. linear programing, tree methods …) and

Approximate methods (e.g. heuristics, meta-heuristics …).

1.1.3.a Exact methods

Exact algorithms are methods which guarantee to find an optimal solution and to

prove its optimality for every instance of a COP. Among the exact methods are

branch-and-bound (B&B), dynamic programming, Lagrangian relaxation based

methods, and linear and integer programming based methods such as branch-and-

cut, branch-and-price and branch-price-and-cut.

However, their problem is that the run-time often increases dramatically with

the instance size and often only small or moderately sized instances can be prac-

tically solved to provable optimality. In this case, the only possibility for larger

instances is to trade optimality for run-time, yielding heuristic algorithms.

9

Field of Study Chapter 1

1.1.3.b Approximate methods

With the approximate method, the guarantee of finding optimal solutions is sac-

rificed for the sake of getting good solutions in a limited time.

Metaheuristics include, among others, simulated annealing, tabu search, it-

erated local search, variable neighborhood search, and various population-based

methods such as evolutionary algorithms, scatter search, memetic algorithms, and

various estimation of distribution algorithms.

Recently there have been very different attempts to combine ideas and methods

from these two streams. Some approaches using MP combined with metaheuristics

have begun to appear regularly in the metaheuristics literature. This combination

can go two-ways, both in MP used to improve or design metaheuristics and in

metaheuristics used for improving known MP techniques. Even though the first

of these two directions is by far more studied and refereed in some papers as

Matheuristics.

1.2 Vehicle routing problems

In this section, we consider only the problems concerning the distribution of goods

between depots and final users (customers). These problems are generally known

as Vehicle Routing Problems or Vehicle Scheduling Problems.

1.2.1 Some variants of VRP

The vehicle Routing Problem (VRP) is a widely studied combinatorial optimiza-

tion problem in which the aim is the determination of the optimal set of routes to

be performed by a fleet of vehicles in order to serve a given set of customers.

10

Chapter 1 Field of Study

Figure 1.2 – Example of a solution to a vehicle routing problem

Typical applications of this type are, for instance, waste collection, street

cleaning, school bus routing, transportation of handicapped persons, salespeople

transportation …

Several variants and specializations of the vehicle routing problem exist. We

first present a basic variation called Capacitated Vehicle Routing Problem (CVRP).

In the CVRP, all the customers have deterministic demands known in advance and

may not be split. The vehicles are identical with a capacity restriction. They start

from and return to a single central depot. The objective is to minimize the total

cost which can be a weighted function of the number of routes and their length

or travel time in order to serve all the customers. In other words, a solution of

CVRP is a set of routes which all begin and end in the depot, and which satisfies

the constraint that all the customers are served only once. The transportation

cost can be improved by reducing the total traveled distance and by reducing the

number of required vehicles.

The majority of the real world problems are often much more complex than

the classical VRP. It may usually be augmented by constraints, for example, time

intervals in which each customer has to be served. In the last sixty years many

11

Field of Study Chapter 1

real-world problems have required extended formulation that resulted in the mul-

tiple depot VRP, periodic VRP, split delivery VRP, stochastic VRP, VRP with

backhauls, VRP with pickup and delivering and many others.

Figure 1.3 – Some variants of VRP

1.2.2 Solution methods

1.2.2.a Exact methods

Many exact approaches for the VRP and its variants were inherited from the

extensive and successful work done for the TSP. Here are some of these methods:

a.1) Branch-and-bound: The branch and bound method has been extensively

used to solve many VRP variants. This method sill represents the state-of-the-art

with respect to exact solution methods. Laporte and Nobert [60] gave a complete

and detailed analysis of the branch-and-bound algorithms proposed until 1990.

12

Chapter 1 Field of Study

a.2) Branch-and-cut: These methods have been extremely successful in finding

optimal solutions for large instances.

Branch and cut involves running a branch and bound algorithm and using

cutting planes to tighten the linear programming relaxations. For an extensive

and comprehensive description of these methods and successful applications on

VRP variants, see [11, 67].

a.3) Dynamic programming: Dynamic programming (DP) has been applied to

several types of VRPs. The idea behind dynamic programming is quite simple. In

general, to solve a given problem, we need to solve different parts of the problem

(subproblems), then combine the solutions of the subproblems to reach an overall

solution. Often when using a more naive method, many of the subproblems are

generated and solved many times. The dynamic programming approach seeks

to solve each subproblem only once, thus reducing the number of computations.

DP has been used successfully to solve some VRPs to optimality or to obtain very

sharp bounds on the value of their optimal solutions. Some examples can be found

in [28, 71, 80].

a.4) Set covering based ILP formulations Over the years, several integer linear

programming formulations have been suggested for VRP. Among these, set par-

titioning formulations cover a wide range of problems. Unfortunately, due to the

large number of variables they contain, it will be rarely practicable to use them

to derive optimal solutions. The idea is to enumerate all the feasible routes for

example and then select a minimum cost set of routes such that each customer

is included in some route. The formulation of set covering is equivalent to the

original set partitioning one since we have assumed that the distance matrix sat-

isfies the triangle inequality. Hence each customer will be visited exactly once

in the optimal solution. Many exact methods based on these formulations were

13

Field of Study Chapter 1

developed by [26, 27, 45, 79]. The survey of Desrosiers et al. [29] is an excellent

source for column generation based approaches.

1.2.2.b Approximate methods

In many cases, exact methods are not capable to solve VRP instances with more

than 50 − 100 nodes in reasonable time, which is generally needed in real-life

applications [44]. Many works in the literature decided to sacrifice the guarantee

of optimality in order to achieve good solutions in reasonable calculation time.

Actually this is the tendency. A simple query at scopus with the keywords “vehicle

routing” and “heuristic” shows more than 2000 papers. The methods used can be

categorized into two sets: simple heuristics and metaheuristics.

b.1) Constructive heuristics and local searches: Many constructive heuristics

have been developed for VRP and its variants in order to efficiently generate

very good solutions keeping in mind some interesting characteristics like their

short calculation time, simplicity and flexibility. The common idea is to start

from an empty solution and then repeatedly extend it until a complete solution

is constructed. Heuristics rules are used in the extension part. Some example of

powerful heuristics can be found in the review of Cordeau et al. [21]. On the other

hand, local searches have been exhaustively used in combination to the heuristics

and been proved to be effective for finding good solutions. It is mainly used to

move from a solution to its neighborhood through some defined operations like

moving clients or exchanging paths. There are dozens of successful local search

methods for the VRP and its variants. The reader is refereed to the reviews [14,

15, 40] for some examples.

b.2) Metaheuristics: Several metaheuristics have been proposed for the variants

of VRP. The objective is to use many components and explore a large solution

14

Chapter 1 Field of Study

space even by allowing deteriorating or infeasible solutions. Despite they use more

calculation time in general, they hit better solutions and identify local optima.

For the VRP and its variants, we count for example the following metaheuristics:

Simulated annealing (SA), Tabu search (TS), Genetic algorithms (GA), Ant sys-

tems (AS). While some algorithms start from an initial solution and try to move

iteratively using neighborhoods, others use a population of solutions and generate

at every iteration a new solution based on some recombinations so that at the end

the best part are kept during generations. A good survey on the most popular

metaheuristics for VRP can be found in the chapter of Gendreau et al. [38].

1.3 Conclusion

After 60 years of its first definition, the vehicle routing problem (VRP) was and

still is one of the most challenging fields of combinatorial optimization because

of its various practical applications and considerable hardness. Dozens of meth-

ods were proposed including exact and heuristic techniques. Many variants have

been created for the problem in order to take into consideration the real-world

constraints. It is remarkable that one of the most important variants are those

which deal with extra temporal constraints. In the following chapters, we study

and propose some techniques for the well known vehicle routing problem with time

windows and for another variant which takes into account some synchronization

constraints.

15

2 | Bounding Methods On The Number Of

Vehicles For VRPTW

An approximate answer to the right question is

worth far more than a precise answer to the wrong

one.

John Tuley

2.1 Trivial lower bounds . 19

2.2 Lower bounds inspired from Energetic Reasoning 19

2.3 Bin-packing lower bounds and Energetic Reasoning 20

2.4 Lower bounds based on problem decomposition techniques . . . 21

2.5 Preprocessing . 22

2.5.0.c Preprocessing based on Energetic Reasoning . 22

2.5.0.d Preprocessing based on shaving techniques . . 23

2.6 Numerical results . 26

2.7 Conclusion . 29

17

Bounding Methods On The Number Of Vehicles For VRPTW Chapter 2

This chapter covers a very well-known variant of VRP where each customer has

a time window constraint when he can accept visits and a demand to be delivered

by a capacity limited vehicle. The problem is known as the capacitated Vehicle

Routing Problem with Time Windows (VRPTW). In this chapter we present a

study of lower bounds on the number of vehicles required to serve all the customers.

This work includes collaborative work with Rym Nesrine Guibadj. A preliminary

version has been published first in the thesis of Guibadj [42] and then in the paper:

Sohaib Afifi et al. “New Lower Bounds on the Number of Vehicles for the

Vehicle Routing Problem with Time Windows”. In: CPAIOR 2014, Cork, Ireland.

Vol. 8451. Lecture Notes in Computer Science. Springer, 2014, pp. 422–437

The sections of this chapter include an overview of the paper and additional

contributions to the work. We present at the end a comparison between all the

methods. The preprint version of the paper is attached in Appendix A

The main objective of this work is to define the number of vehicles needed to

visit all the customers within a VRPTW problem. This objective is very impor-

tant to evaluate the fixed costs for operating the fleet. We provide an analysis

of several lower bounds based on incompatibility between customers and on vehi-

cle capacity constraints. We also develop an adaptation of Energetic Reasoning

algorithm for VRPTW with a limited fleet. The main idea is to focus on some

time-intervals and exploits time constraints, incompatibility graph, bin packing

models and decomposition techniques in order to obtain new valid lower bounds

for the fleet size. Time windows can be later adjusted based on those approaches.

Experiments conducted on the standard benchmarks show that our algorithms

outperform the classical lower bound techniques and give the minimum number

of vehicles for 377 out of 468 instances.

Despite the extensive literature on the problem, there were only few attempts

to propose lower bounds for VRPTWwhen the objective is to minimize the number

18

Chapter 2 Bounding Methods On The Number Of Vehicles For VRPTW

of vehicles. To the best of our knowledge, the most competitive results are offered

by Kontoravdis and Bard [56]. Most of the works use some trivial lower bounds.

2.1 Trivial lower bounds

An obvious lower bound for VRPTW can be obtained considering the vehicle as a

bin with size Q and each customer demand as an item with size qi. A lower bound

can be computed using Equation (2.1) or any other stronger lower bound for the

associated bin packing problem.

LBCapacity =

⌈
n

∑
i=1

qi/Q

⌉
(2.1)

Another lower bound can be deduced from the incompatibility constraints.

Customers i and j are incompatible and denoted i||j, if they cannot be in the

same route due to their time window constraints or if the sum of their demands

is greater than the vehicle capacity.

We define the graph of incompatibilities between customers as Ginc = (V, EV)

where EV = {(i, j) ∈ V ×V : i||j}. Therefore, the minimum number of routes to

be used is equal to the size of the maximum clique extracted from Ginc.

LBClique = MaximumClique(Ginc) (2.2)

2.2 Lower bounds inspired from Energetic Reasoning

Energetic Reasoning is one of the known propagation techniques applied gener-

ally on some scheduling problems. We briefly present the main idea behind the

energetic reasoning.

19

Bounding Methods On The Number Of Vehicles For VRPTW Chapter 2

Given a time interval [t1, t2], the approach is first based on the computation

of the part of the jobs that must be processed between t1 and t2. This part of a

job i is called work and denoted W(i, t1, t2). The total work over [t1, t2] is then

calculated by considering it as the sum of all the works and denoted W(t1, t2).

The instance is said to be infeasible if the total work between t1 and t2 is greater

than the available energy m× (t2 − t1).

Starting from a limited number of vehicles m defined by the trivial methods,

the instance of mVRPTW is transformed into a PMSP instance. Then we apply

the same satisfiability test on the relaxed instance. If the instance is infeasible

then m + 1 is a valid lower bound. The process is iterated until no infeasibility is

detected. The lower bound found is denoted LBER.

Baptiste et al. [10] have proved that the only relevant time intervals [t1, t2]

that need to be considered are those where t1 ∈ T1 and t2 ∈ T2 such as t1 < t2,

T1 = {ei, i ∈ V} ∪ {li, i ∈ V} ∪ {ei + si, i ∈ V} and T2 = {li + si, i ∈ V} ∪ {ei +

si, i ∈ V} ∪ {li, i ∈ V}. Therefore, the satisfiability test algorithm runs in O(n3).

2.3 Bin-packing lower bounds and Energetic Reasoning

The Energetic Reasoning approach can be extended and enforced using bin packing

modeling. For each interval [t1, t2], one can consider the bin packing instance

defined by bins of size t2 − t1 and items of weights W(i, t1, t2). The instance is

feasible if all the sub-instance of bin-packing are feasible using m bins. This can be

improved furthermore embedding the graph of incompatibilities into this instance.

The two lower bounds are denoted respectively LBERBPP and LBERBPPC.

20

Chapter 2 Bounding Methods On The Number Of Vehicles For VRPTW

2.4 Lower bounds based on problem decomposition tech-

niques

In this section, we try to integrate all the constraints and solve the problem for

some subset of clients using an exact method. Lets S ⊂ V be a set of clients

from the graph G where all the travel costs satisfy the triangle inequality since

δi,k + sk + δk,j ≥ δi,j ∀i, j, k ∈ V and qi ≥ 0 ∀i ∈ V.

Property 1. If k is the minimum number of vehicles needed to serve the customers

of the subset S such as S ⊂ V then k is a valid lower bound of the number of

vehicle needed to serve all the customers in the set V.

Using the model presented in the paper, we try to solve the problem defined

by the graph GS = (S+, ES+) for every subset S ⊂ V. We denote the set of

clients subsets by Ω. Since the number of subset is exponential, Ω should be

reduced to include just the most interesting ones. Thus, we use the same intervals

defined in Section 2.2 to trap the clients as following: for every interval [t1, t2], if

W(i, t1, t2) > 0 then the client i is inserted into the subset which represents that

interval. We consider only the subsets that have a cardinality bigger than the best

lower bound found so far.

Ω = { St1,t2 | St1,t2 = {i |W(i, t1, t2) > 0}

and |St1,t2 | > LBbest } (2.3)

Every execution should be stopped once it hits an upper bound smaller than or

equal to the best overall lower bound found so far.

21

Bounding Methods On The Number Of Vehicles For VRPTW Chapter 2

2.5 Preprocessing

We describe the preprocessing steps applied on VRPTW. The objective is to im-

prove the efficiency of the bounding algorithms. First, travel times δi,j between

any customers i and j are updated to eliminate the waiting time at customer j:

δi,j ← max(δi,j, ej − (li + si)) ∀i ∈ V ∀ j ∈ V+ (2.4)

Then, time windows’ width is reduced using the following basic conditions:

ei = max{ei, e0 + δ0,i} ∀i ∈ V (2.5)

li = min{li, l0 − δi,0} ∀i ∈ V (2.6)

ei = max{ei, min
(j,i)∈V

{ej + δj,i}} ∀i ∈ V (2.7)

ei = max{ei, min{li, min
(i,j)∈V

{ej − δi,j}}} ∀i ∈ V (2.8)

li = min{li, max{li, max
(j,i)∈V

{lj + δj,i}}} ∀i ∈ V (2.9)

li = min{li, max
(i,j)∈V

{lj − δi,j}} ∀i ∈ V (2.10)

The travel time δij is set to infinity if j cannot be served after i due to its time

window. This aims to reduce the number of potential successors of customer i.

i f (ei + si + δi,j > lj) then δi,j ← ∞ ∀i ∈ V+ ∀ j ∈ V+ \ {i} (2.11)

2.5.0.c Preprocessing based on Energetic Reasoning

We define a slack of an activity i on a time interval [t1, t2] as the available energy

that can be used to process i. We denote by Slack(i, t1, t2) the slack of V\{i}. It

22

Chapter 2 Bounding Methods On The Number Of Vehicles For VRPTW

is calculated according to the following equation:

Slack(i, t1, t2) = m · (t2 − t1)−W(t1, t2) + W(i, t1, t2) (2.12)

According to these definitions, the slack allows adjusting the time-bounds

of activities. If the right work of the activity i ∈ V is strictly greater than

Slack(i, t1, t2), the activity cannot be right-shifted, i.e., it cannot start at its latest

start time. Hence, only a part of activity i, smaller than or equal to the slack

Slack(i, t1, t2) can be processed on [t1, t2]. More precisely, the adjustment scheme

can be defined as follows:

Proposition 1. Release date adjustments

∀i ∈ V, if Wle f t(i, t1, t2) > Slack(i, t1, t2) then ei ← max(ei, t2−Slack(i, t1, t2))

Proposition 2. Latest start time adjustments

∀i ∈ V, if Wright(i, t1, t2) > Slack(i, t1, t2) then

li ← max(li, t1 − si − Slack(i, t1, t2))

2.5.0.d Preprocessing based on shaving techniques

Better adjustments can be obtained by using ”shaving techniques” [18]. The prin-

ciple of this process is to assign restricted values to a variable. If an inconsistency

arises, the assigned values are suppressed from the variable domain. We apply two

types of shaving techniques on VRPTW: the first one aims to solve disjunctions by

eliminating arcs and reducing the number of decision variables (see Algorithm 2.1)

and the second tries to reduce the time windows of customers using a dichotomy

strategy (see Algorithm 2.2).

23

Bounding Methods On The Number Of Vehicles For VRPTW Chapter 2

Algorithm 2.1: Solving disjunctions
Data: I: VRPTW instance;
UB an upper bound for I;

1 begin
2 m← UB− 1;
3 foreach i ∈ V do
4 foreach (i, j) ∈ E where δi,j is big do
5 fix (i, j) to 1 on the conflict matrix;
6 if not feasible then
7 fix (i, j) to 0;
8 δi,j ← ∞;
9 else
10 unfix (i, j)

11 foreach (i, j) ∈ E where Tij is small do
12 fix (i, j) to 0 on the conflict matrix;
13 if not feasible then
14 fix (i, j) to 1;
15 else
16 unfix (i, j)

24

Chapter 2 Bounding Methods On The Number Of Vehicles For VRPTW

Algorithm 2.2: Reducing Time windows
Data: I: VRPTW instance;
UB an upper bound for I;

1 begin
2 m← UB− 1;
3 foreach i ∈ V do

// Dichotomy
4 repeat
5 EST ← ei, LST ← li;
6 if EST = LST then next i ;

// Try to adjust to the right
7 ei = EST + LST−EST

2 , LST = li;
8 if not feasible then
9 ei = EST, li = LST − LST−EST

2 ;
10 improved← true;
11 else
12 ei = EST, li = LST;
13 if improved then continue;

// Try to adjust to the left
14 ei = EST, li = LST − LST−EST

2 ;
15 if not feasible then
16 ei = EST + LST−EST

2 , li = LST;
17 improved← true;
18 else
19 ei = EST, li = LST;

20 until (no improvement);

25

Bounding Methods On The Number Of Vehicles For VRPTW Chapter 2

2.6 Numerical results

We tested our algorithms on the well known instances of Solomon [81] and Gehring

and Homberger [37]. The benchmark comprises 6 sets (R1, C1, RC1, R2, C2,

RC2). Each data set contains 25, 50, 100, 200, 400, 600, 800 and 1000 customers

who have specific euclidean coordinates. Customers’ locations are determined

using a random uniform distribution for the problem sets R1 and R2, but are

restricted to be within clusters for the sets C1 and C2. Sets RC1 and RC2 have a

combination of clustered and randomly placed customers. Sets R1, C1 and RC1

have a short scheduling horizon with tight time windows, while R2, C2 and RC2 are

based on wide time windows. Our algorithms are coded in C++ using the Standard

Template Library (STL) for data structures and IBM Ilog Cplex 12.6 for the linear

programming. All the experiments were conducted on an Intel Xeon 2.67GHz.

Table 2.1 and Table 2.2 compare the performance of our Energetic Reason-

ing bounds: LBER, LBERBPP, LBERBPPC and LBSubSets to the elementary bounds

present in the literature: LBClique, LBCapacity and LBBP. The column BestUB

represents the overall best-published upper bounds. The maximum of the lower

bounds is reported in column BestLB. In AvgGAP, we present the average gap

between BestUB and BestLB. Detailed results are presented in Appendix B.

In general, the proposed techniques give the minimum number of vehicles of

377 instances among the 468 instances tested and give near optimal solution for

the rest. Beside the results of the methods presented and discussed in Appendix A,

the SubSets method improves the lower bounds of 11 instances of 25 customers,

17 for 50 customers, 10 for 100 customers and 1 for 200 or 400 customers. The

method needs huge cpu time one considering the bigger instances.

26

Chapter 2 Bounding Methods On The Number Of Vehicles For VRPTW

D
at
a
Se

t
n

C
la

ss
ic

al
N

ew
B

es
tL

B
B

es
tU

B
A

vg
G

A
P

C
li

qu
e

C
ap

ac
it

y
B

P
E

R
E

R
B

P
P

E
R

B
P

P
C

Su
bS

et
s

L
B

C
P

U
L

B
C

P
U

L
B

C
P

U
L

B
C

P
U

L
B

C
P

U
L

B
C

P
U

L
B

C
P

U

C
1

25
1.
89

0
3

0.
02

2
0

3
0

3
0

3
0

3
0

3
3

0
C
2

25
1

0
1

0.
02

1
0

1.
13

0
1.
13

0
1.
13

0
1.
13

0
1.
13

1.
13

0
R
1

25
3.
58

0
2

0.
02

3.
25

0
3.
92

0
3.
92

0.
01

4
0.
34

4.
5

20
0.
83

4.
5

4.
67

0.
17

R
2

25
1

0
1

0.
01

1
0

1.
09

0
1.
09

0
1.
09

0.
04

1.
27

0.
01

1.
27

1.
27

0
R
C
1

25
2.
75

0
3

0.
01

2.
25

0
3.
13

0
3.
13

0
3.
13

0.
04

3.
25

0
3.
25

3.
25

0
R
C
2

25
1

0
1

0.
01

1
0

1
0

1
0

1
0.
04

1.
25

0
1.
25

1.
25

0

C
1

50
3

0
5

0.
03

4
0

5
0

5
0

5
0

5
0

5
5

0
C
2

50
1

0
2

0.
02

2
0

2
0

2
0

2
0

2
0

2
2

0
R
1

50
5.
25

0
4

0.
02

5.
17

0
6.
33

0.
02

6.
33

0.
09

6.
42

64
.4
1

6.
67

66
35

.4
2

6.
67

7.
42

0.
75

R
2

50
1

0
1

0.
02

1.
18

0
1.
27

0.
01

1.
27

0.
06

1.
27

2.
39

1.
55

70
94

.0
8

1.
55

2
0.
45

R
C
1

50
4.
25

0
5

0.
03

4.
13

0
5.
25

0.
01

5.
25

0.
06

5.
25

15
.3

6.
25

56
31

.2
8

6.
25

6.
5

0.
25

R
C
2

50
1.
13

0
1

0.
03

1
0

1.
13

0.
01

1.
13

0.
06

1.
13

2.
48

1.
88

11
68

5.
6

1.
88

2
0.
13

C
1

10
0

4.
89

0
10

0.
03

8
0

10
0

10
0

10
0

10
0

10
10

0
C
2

10
0

1.
38

0
3

0.
03

3
0

3
0

3
0

3
0

3
0

3
3

0
R
1

10
0

7.
92

0
8

0.
03

8.
33

0
10

.4
2

0.
11

10
.4
2

0.
48

10
.4
2

36
7.
74

10
.7
5

12
52

1.
39

10
.7
5

11
.9
2

1.
17

R
2

10
0

1.
18

0
2

0.
03

2
0

2.
09

0.
07

2.
09

0.
32

2.
09

29
.1
8

2.
27

82
26

.6
1

2.
27

2.
73

0.
45

R
C
1

10
0

6.
38

0
9

0.
03

7.
63

0
9.
63

0.
1

9.
63

0.
47

9.
63

10
3.
78

10
.3
8

12
42

5.
09

10
.3
8

11
.5

1.
13

R
C
2

10
0

1.
13

0
2

0.
03

2
0

2.
13

0.
11

2.
13

0.
45

2.
13

35
.4
8

2.
5

12
95

7.
95

2.
5

3.
25

0.
75

Ta
bl
e
2.
1
–
Av

er
ag

e
lo
we

r
bo

un
d
re
su
lts

an
d
C
PU

tim
es

fo
r
So

lo
m
on

[8
1]

in
st
an

ce
s

27

Bounding Methods On The Number Of Vehicles For VRPTW Chapter 2

D
at
a
Se

t
n

C
la

ss
ic

al
N

ew
B

es
tL

B
B

es
tU

B
A

vg
G

A
P

C
li

qu
e

C
ap

ac
it

y
B

P
E

R
E

R
B

P
P

E
R

B
P

P
C

Su
bS

et
s

L
B

C
P

U
L

B
C

P
U

L
B

C
P

U
L

B
C

P
U

L
B

C
P

U
L

B
C

P
U

L
B

C
P

U

C
1

20
0

8.
8

0
18

0.
09

15
0

18
.3

0.
39

18
.3

1.
86

18
.3

45
6.
89

18
.4

54
38

.0
7

18
.4

18
.9

0.
5

C
2

20
0

2.
1

0
6

0.
1

6
0

6
0

6
0

6
0

6
0

6
6

0
R
1

20
0

10
.4

0
18

0.
09

7.
3

0
18

.2
0

18
.2

0
18

.2
0

18
.2

0
18

.2
18

.2
0

R
2

20
0

1.
6

0
4

0.
09

2
0

4
0

4
0

4
0

4
0

4
4

0
R
C
1

20
0

6.
8

0
18

2.
5

6.
5

0
18

0
18

0
18

0
18

0
18

18
0

R
C
2

20
0

1.
9

0
4

0.
09

2
0

4
0.
14

4
0.
76

4
15

1.
09

4
36

04
.4
9

4
4.
3

0.
3

C
1

40
0

16
.9

0.
01

36
0.
4

26
.5

0.
01

36
.5

2.
64

36
.5

12
.5
6

36
.5

14
40

.0
6

36
.7

72
07

.5
2

36
.7

37
.6

0.
9

C
2

40
0

2.
5

0.
01

11
0.
4

11
0.
01

11
.2

2.
43

11
.2

12
.3
8

11
.2

14
40

.0
4

11
.2

72
04

.9
3

11
.2

11
.6

0.
4

R
1

40
0

17
.9

0.
01

36
0.
4

11
.7

0.
01

36
.4

0
36

.4
0

36
.4

0
36

.4
0

36
.4

36
.4

0
R
2

40
0

2.
4

0.
01

8
0.
38

2.
7

0.
01

8
0

8
0

8
0

8
0

8
8

0
R
C
1

40
0

12
.8

0.
01

36
0.
38

10
.8

0.
01

36
0

36
0

36
0

36
0

36
36

0
R
C
2

40
0

3.
1

0.
01

8
0.
39

2.
8

0.
01

8
1.
07

8
5.
6

8
72

0.
02

8
36

08
.1
6

8
8.
4

0.
4

C
1

60
0

24
.2

0.
03

56
1.
02

40
.4

0.
02

56
.4

4.
81

56
.4

30
.8
3

56
.4

10
80

.1
4

56
.4

54
06

.3
5

56
.4

57
.2

0.
8

C
2

60
0

4.
3

0.
02

17
1.
1

15
.9

0.
02

17
.1

5.
54

17
.1

28
.7
6

17
.1

10
80

.1
17

.1
54

03
.1
2

17
.1

17
.4

0.
3

R
1

60
0

28
.1

0.
03

54
1.
16

13
.9

0.
02

54
.5

0
54

.5
0

54
.5

0
54

.5
0

54
.5

54
.5

0
R
2

60
0

4.
3

0.
02

11
1.
15

3.
4

0.
02

11
0

11
0

11
0

11
0

11
11

0
R
C
1

60
0

19
.7

0.
05

55
1.
21

12
.2

0.
02

55
0

55
0

55
0

55
0

55
55

0
R
C
2

60
0

4.
7

0.
02

11
1.
21

2.
9

0.
02

11
3.
49

11
18

.4
7

11
72

0.
08

11
36

06
.2
4

11
11

.4
0.
4

C
1

80
0

34
.4

0.
07

72
2.
38

49
.3

0.
05

72
.8

16
.3
1

72
.8

93
.6
9

72
.8

14
41

.3
4

72
.8

72
00

.4
3

72
.8

75
2.
2

C
2

80
0

5.
7

0.
05

22
2.
43

21
0.
05

22
.2

44
.6
1

22
.2

22
1.
16

22
.2

32
42

.1
6

22
.2

16
20

2.
36

22
.2

23
.3

1.
1

R
1

80
0

35
.3

0.
07

72
2.
81

15
.8

0.
06

72
.8

0
72

.8
0

72
.8

0
72

.8
0

72
.8

72
.8

0
R
2

80
0

5.
3

0.
06

15
2.
67

3.
5

0.
05

15
0

15
0

15
0

15
0

15
15

0
R
C
1

80
0

27
.5

0.
41

72
10

0.
27

14
.9

0.
06

72
0

72
0

72
0

72
0

72
72

0
R
C
2

80
0

6.
6

0.
06

15
2.
61

3.
5

0.
05

15
9.
03

15
44

.3
8

15
72

0.
56

15
36

00
.1
2

15
15

.4
0.
4

C
1

10
00

44
.6

0.
32

90
4.
77

58
0.
1

91
32

.2
5

91
17

7.
37

91
14

43
.4
5

91
72

00
.3
9

91
94

.1
3.
1

C
2

10
00

7.
9

0.
09

28
4.
4

25
.1

0.
08

28
.1

63
.5
6

28
.1

27
5.
5

28
.1

21
63

.6
4

28
.1

10
80

7.
33

28
.1

28
.8

0.
7

R
1

10
00

44
.5

0.
13

91
4.
96

19
.5

0.
1

91
.9

0
91

.9
0

91
.9

0
91

.9
0

91
.9

91
.9

0
R
2

10
00

6.
5

0.
1

19
5.
03

4
0.
09

19
0

19
0

19
0

19
0

19
19

0
R
C
1

10
00

31
.5

0.
79

90
5.
72

17
.7

0.
12

90
0

90
0

90
0

90
0

90
90

0
R
C
2

10
00

7.
8

0.
11

18
5.
68

4.
1

0.
09

18
8.
58

18
40

.5
7

18
36

0.
82

18
18

01
.3

18
18

.2
0.
2

Ta
bl
e
2.
2
–
Av

er
ag

e
lo
we

r
bo

un
d
re
su
lts

an
d
C
PU

tim
es

fo
r
G
eh
rin

g
an

d
H
om

be
rg
er

[3
7]

in
st
an

ce
s

28

Chapter 2 Bounding Methods On The Number Of Vehicles For VRPTW

2.7 Conclusion

In this chapter, we introduced an overview of several combinatorial optimization

methods which can be used to get lower bounds for the Vehicle Routing Problem

with Time Windows (VRPTW). Some of them were presented in details in the pa-

per attached in Appendix A. Investigating the concept of Energetic Reasoning, we

were able to propose new lower bounding techniques based on the transformation

of m-VRPTW instance to PMSP. The numerical results confirm the contribution

brought by the new proposed techniques. With a very fast computing time, we

were able to provide the exact number or a reasonable approximation of the min-

imum number of vehicles required to visit all the customers. This suggests that

our lower bounds techniques can quickly produce a good estimation of the fleet

size. A challenging area for future research is to develop an exact method using

the proposed lower bound procedures. A new method based on the problem de-

composition was also tested and proved its efficiency on the instances up to 400

customers. As a future work, we plan to test these several approaches on more

complex variants of VRPTW, those with non homogeneous vehicles for example

or on the instances of the Pickup and Delivery with Time Windows. Since this

problem has a considerable number of incompatibilities between the customers due

to the precedence constraints, this may be promising when solving our bin-packing

problems.

29

3 | Particle Swarm Optimization for

VRPTW

All art is but imitation of nature.

Lucius Annaeus Seneca

3.1 PSO based algorithm . 32

3.1.1 Solution representation and evaluation 32

3.1.2 Crossover and position update 33

3.2 Initialization algorithm . 37

3.3 Best insertion heuristic . 38

3.4 Local search . 39

3.5 Parameter configuration and experimentation 41

3.6 Conclusion . 46

31

Particle Swarm Optimization for VRPTW Chapter 3

3.1 PSO based algorithm

In this chapter, we present a Particle Swarm Optimization algorithm for VRPTW.

PSO is a swarm intelligence technique which takes inspiration from the collective

behavior of wild animals in the nature. The proposed PSO works with permu-

tation encoding and uses an adapted split to transform it into a valid solution.

A particle position update and a combination with a neighborhood-based local

search framework are used.

PSO was first proposed by Kennedy and Eberhart [53] for optimization prob-

lem in continuous space. It uses a set of particles called swarm S. Each particle

represents one candidate solution and moves through the search space by the ad-

justment of its trajectory according to its previous best performance and the his-

torical best performance in its neighborhood. This allows high operating efficiency

and fast convergence speed. Each particle i memorizes its best known position as

xlbest
i . The best known position for the swarm is denoted as xgbest. Our PSO

algorithm is presented in Algorithm 3.1. Details about solution representation,

position update, initialization algorithm and local searches are described in the

next sections.

3.1.1 Solution representation and evaluation

A position in PSO is a permutation π = (s1, s2, . . . sn) of all accessible customers in

V. Algorithm 3.2 presents a splitting procedure that transforms the permutation

into a solution of VRPTW in a similar manner to the split of Prins [76] and Labadi

et al. [57]. This algorithm splits the so called giant tour into a minimum number

of routes so that the total distance is also minimized. The main idea is to calculate

the shortest path which minimizes first the number of arcs then the total distance

where an arc represents a feasible path (a potential route). First, we construct

an auxiliary graph Π containing the nodes {s0, s1, s2, . . . sn} where s0 = 0. Each

32

Chapter 3 Particle Swarm Optimization for VRPTW

Algorithm 3.1: PSO basic algorithm
Input: S a swarm of N particles;
Output: xgbest best position found;

1 initialize and evaluate each particle in S (see Section 3.2);
2 iter ← 1;
3 while iter ≤ itermax do
4 foreach xi in S do
5 update xi (see Section 3.1.2);
6 if rand(0, 1) < pls then
7 apply local search on xi (see Section 3.4);
8 evaluate xi (see Section 3.1.1);
9 determine xlbest

j ∈ S to be updated ;
10 if (update is applied) then
11 iter ← 1;
12 else
13 iter ← iter + 1;

arc in the graph Π represents a feasible route. i.e. if there exists an arc (si, sj)

between si and sj where i < j, it represents the feasible route visiting the customers

si+1, . . . sj in this order. The cost of this arc is the travel time of such a route to

which we add a big M in order to prioritize the minimization of the number of

routes. The fitness of the permutation is determined by calculating the shortest

path from s0 to sn using Ballman’s algorithm [12]. An example is illustrated in

Figure 3.1.

3.1.2 Crossover and position update

The original PSO algorithm was designed to deal with continuous function. Thus,

it is not suitable for combinatorial problems with a discrete solution space. We

have experimented different position updating strategies. The particle position

update in our PSO is a recombination of three positions xlbest
i , xgbest and xi ac-

cording to inertia, cognitive and social parameters. This takes inspiration from

the works of [23] and [65]. The first tested approach was to use a crossover in a

33

Particle Swarm Optimization for VRPTW Chapter 3

Figure 3.1 – Example of a sequence evaluation.

similar way to the genetic one, a subsequence of size l may be extracted from each

position and combined into the new position. A set X of extracted customers

would be used to avoid duplications. With respect of three parameters inertia, c1

and c2, the size l is equal to:

• li ← inertia · n when considering xi.

• ll ← n · (1− inertia) · r1·c1
r1·c1+r2·c2

when considering xlbest
i where r1, r2 are two

real numbers generated randomly between [0, 1[with a uniform distribution.

• lb ← n− li − ll when considering xgbest.

34

Chapter 3 Particle Swarm Optimization for VRPTW

Algorithm 3.2: Split algorithm for VRPTW.
Input: π, the permutation;
Output: cost, the solution cost;

1 V0 ← 0;
2 for i← 1 to n do Vi ← +∞;
3 for i← 1 to n do
4 time← 0; load← 0; distance← 0;
5 j← i; stop← f alse ;
6 repeat
7 load← load + qsj ;
8 if i = j then
9 time← max(δ0,sj , esj) + ssj + δsj,0;
10 distance← δ0,sj + δsj,0;
11 else
12 time← max(cost− δsj−1,0 + δsj−1,sj , esj);
13 distance← distance− Tsj−1,0 + δsj−1,sj ;
14 if time > lsj or load > C then
15 stop← true;
16 else
17 time← time + ssj + δsj,0;
18 distance← distance + δsj,0;
19 if Vi−1 +M+ distance < Vj then
20 Vj ← Vi−1 +M+ distance ;
21 j← j + 1 ;
22 until stop or (j > n);
23 cost← Vn ;

We noticed that this type of cross is inefficient when optimizing the fleet size.

Indeed, when splitting the resulting particle we often obtain solution with a greater

number of routes. Moreover, we spent more time in the local search procedure

to improve the quality of this solution. We develop a new update strategy which

takes into consideration the number of vehicles and tries to inherit at most the

same number from the parent. The algorithm, described in Algorithm 3.3, builds

the offspring from the three parents by inheriting the best routes. First, a random

parent is selected according to the weights described before (li for xi, ll for xlbest
i

and lb for xgbest). Then, from the solution presented by its parents, the best route

35

Particle Swarm Optimization for VRPTW Chapter 3

Algorithm 3.3: Cross algorithm for VRPTW.
Input: xi, xlbest

i , xgbest the selected parents.
Output: s the offspring;

1 f orbidi, f orbidl, f orbidb ← f alse;
2 repeat
3 r ← U (0, n); /* generate a random number */
4 switch r ∈ do
5 case [0, li[and f orbidi = f alse
6 rbest← the best route in Split(xi) ;
7 f orbidi ← true ;
8 f orbidl, f orbidb ← f alse;
9 break;
10 case [li, li + ll[and f orbidl = f alse
11 rbest← the best route in Split(xlbest

i) ;
12 f orbidl ← true ;
13 f orbidi, f orbidb ← f alse;
14 break;
15 case [li + ll, n[and f orbidb = f alse
16 rbest← the best route in Split(xgbest) ;
17 f orbidb ← true ;
18 f orbidi, f orbidl ← f alse;
19 break;

20 add rbest to s ;
21 remove c from xi, xlbest

i , xlbest
i ∀c ∈ rbest ;

22 until stop condition;
23 Insert remaining customers using Best insertion;

r with the minimal travel time per client (according to the function: TDr/Sizer)

is considered and added to the offspring where Sizer denoted the number of clients

on the route r. This should privilege condensed routes. All the customers on this

route should be removed from the two other parents as well. For the purpose of

varying the offspring, the selected parent is not considered for the next step. This

strategy avoids transmitting routes always from the same parent and introduces

some diversity [50]. The algorithm stops by serving all the customers or by hitting

the maximum number of routes of the parents. In the latter case, the remaining

customers are inserted using the best insertion heuristic described in Section 3.3.

36

Chapter 3 Particle Swarm Optimization for VRPTW

After moving to the new position xi, the algorithm will search for an appro-

priate particle j in the swarm and update xlbest
j . The update rule is similar to

[23]:

1. The fitness of the new position is better than the worst local best xlbest
worst.

2. If there exists a particle j in S such that xlbest
j is similar to xi, then replace

xlbest
j with xi, otherwise replace xlbest

worst.

3.2 Initialization algorithm

The initial population of PSO is generated randomly. A small part is generated

using an iterative Destruction/Repair algorithm as follows. Starting from a ran-

dom initial solution, a random number of customers are removed. Then, a best

insertion algorithm is applied to repair the solution. These two steps are repeated

until n2 iterations are performed without improvement. This routine is described

in Section 3.3. After n iterations without improvement the route with the mini-

mum number of customers is the destructed part. During the algorithm, all the

routes are saved in a pool T with their fitness TDk ∀k ∈ T . The 0− 1 linear

program described by (3.1), (3.2) and (3.3) presents a set covering problem. The

objective is to find a VRPTW solution at minimum cost using the collected routes

in the pool. θk indicates whether route k is selected (θk = 1) in the solution or

not. Constraints (3.2) guarantee that each customer is served at least once, where

aik indicates that route k contains customer i.

min ∑
k∈T

(Mθk + θkTDk) (3.1)

37

Particle Swarm Optimization for VRPTW Chapter 3

subject to:

∑
k∈T

θkaik ≥ 1 ∀i ∈ V (3.2)

θk ∈ {0, 1} ∀k ∈ T (3.3)

The solution may contain duplicated customers. Despite it can be considered

as an upper bound, it should be repaired and cleaned up. The 0− 1-LP presented

by (3.4 – 3.8) is used for this purpose. Cp,k represents the customer at position p

in the route k. Variable zk
p,q indicates whether the arc between the position p and

q is to be considered. Constraints (3.5) ensure that every customer is served only

once (Ai defines the set of positions of customer i). Constraints (3.6) ensure that

zk
p,q = 1 if ξk

p = ξk
q = 1 and ξk

r = 0 ∀r|p < r < q.

min ∑
p,q,k

zk
p,qTCp,k Cq,k (3.4)

subject to:

∑
(p,k)∈Ai

ξk
p = 1 ∀i ∈ V (3.5)

2 + zk
p,q +

q−1

∑
r=p+1

ξk
r ≥ ξk

p + ξk
q ∀k ∈ T ∀p, q < Sizek and p < q (3.6)

ξk
p, zk

p,q ∈ {0, 1} ∀k ∈ T ∀p, q < Sizek (3.7)

Ai = {(p, k) such that Cp,k = 1} ∀i ∈ V (3.8)

3.3 Best insertion heuristic

The best insertion algorithm is a constructive heuristic which repairs a partial

solution by inserting the customers one by one into the best evaluated positions.

In order to evaluate an insertion in a constant complexity, we record for each served

38

Chapter 3 Particle Swarm Optimization for VRPTW

customer i in route t its waiting time Waiti and the maximum delay allowed for

the start of its service noted by MaxShifti. The insertion of customer c after

the position p in the route k is evaluated using the function: InsertionCostp,k
c =

δp,c + δc,p+1− δp,p+1. The feasible insertion that minimizes the cost is performed.

3.4 Local search

Whenever a solution (new position) is found, it has a pls probability of being

improved using a local search. Our local search contains five neighborhoods and

is executed in a parallel way as shown in Algorithm 3.4. Each neighborhood

operator is selected with a given probability Pw. The algorithm ends by exploring

at least each neighborhood once. The probabilities of choosing the neighborhoods

are adjusted according to their success during the PSO algorithm. This helps

to identify operators suited for each structure of the instances. We noticed, for

example, that the Or-opt rarely improve the solution for instances with small

time windows. In this case, its probability should be reduced compared to other

operators.

Algorithm 3.4: Local search for VRPTW.
Input: X : the solution to improve
Output: X the new solution if improved

1 W0 ← {2-opt*,Or-opt, Swap, Shift,Destruction/Repair};
2 W ←W0;
3 repeat
4 Select a random neighborhood w from W according to its probability Pw;
5 if w(X) = true then
6 W ←W0;
7 Adjust probabilities ;
8 else
9 W ←W\{w};
10 until W = ∅;

39

Particle Swarm Optimization for VRPTW Chapter 3

2-opt* operator:

We explore the possibility of exchanging two links with two others from different

routes to find a local improvement. Figure 3.2 illustrates an example of such

operator. The 2-opt* move is tested on a random set of customers and the best

one is selected and applied.

Figure 3.2 – Example of the 2-opt* move
exchange of links (i, j), (u, v) for links (i, v), (u, j).

Or-opt operator:

In this operator, we look for the possibilities of moving a sequence of (1, 2 or 3)

customers to another position in the same route. In a similar way to 2-opt*, we

test it on a random selection at the beginning then the best move is applied. An

example is illustrated in Figure 3.3.

Figure 3.3 – Example of the Or-opt move
moving sequence (i, i+1) after customer j.

Swap operator:

This operator is applied on the permutation of customers. It evaluates the possibil-

ity of exchanging the position of two customers in this set. The first improvement

of the particle is considered.

40

Chapter 3 Particle Swarm Optimization for VRPTW

Figure 3.4 – Example of the swap move, between customers c and f.

Shift operator:

Similarly to the Swap operator, it is also applied on the permutations. It evaluates

the possibility of moving a customer into another position on the particle. The

first improvement is also considered in this local search.

Figure 3.5 – Example of the shift move, on the customer f.

Destruction/repair operator:

This move is similar to the initialization algorithm and uses the same Best Insertion

heuristic described in Section 3.3. It evaluates the possibility of removing a random

number of customers from a solution and then rebuilding it with the best insertion

algorithm. The destruction/repair heuristic runs iteratively and stops after n

iterations without improvements.

3.5 Parameter configuration and experimentation

We first tested our algorithms on the well known instances of Solomon and Desrosiers

[82]. The benchmark comprises 6 sets (R1, C1, RC1, R2, C2, RC2). Each data

set contains 25, 50 and 100 customers which have specific euclidean coordinates.

Customers’ locations are determined using a random uniform distribution for the

41

Particle Swarm Optimization for VRPTW Chapter 3

problem sets R1 and R2, but are restricted to be within clusters for the sets C1

and C2. Sets RC1 and RC2 have a combination of clustered and randomly placed

customers. Sets R1, C1 and RC1 have a short scheduling horizon with tight time

windows, while R2, C2 and RC2 are based on wide time windows. Later, an ex-

perimentation has been done on bigger instances. Homberger and Gehring [46]

generated many other instances using the same characteristics and considering a

larger number of customers. Their benchmark contains 10 instances for each type

and includes sets with 200, 400, 600, 800 and 1000 customers. Our algorithms are

coded in C++ using the Standard Template Library (STL) for data structures

and IBM Ilog Cplex 12.6 as MIP solver. All experiments were conducted on an

Intel Xeon 2.67GHz.

We present preliminary results of our method compared to the literature on

the instances of Solomon and Desrosiers [82] in Table 3.1 and for the large scale

instances of Homberger and Gehring [46] in Tables 3.2 to 3.6. Detailed results are

presented in Appendix C. The first column displays the instance set. The next

columns compare the average of the best results including the number of vehicles

(NV) and the total distance (TD) as well as the Cpu time. We refer by CNV and

CTD the sum of the results over all the instances. The state-of-the-art methods

shown are coded as:

• ALNS for the ALNS of Pisinger and Ropke [73],

• EP-GEC for the Two-Stage Heuristic with Ejection Pools and Generalized

Ejection Chains of Lim and Zhang [64],

• BP for the branch-and-price of Prescott-Gagnon et al. [75],

• ArcEA for the Arc-guided evolutionary algorithm of Repoussis et al. [78],

• HGSADC for the hybrid genetic algorithm of Vidal et al. [93],

• EAMA for the penalty-based edge assembly memetic algorithm of Nagata

et al. [68].

42

Chapter 3 Particle Swarm Optimization for VRPTW

We decided to reuse most of the parameter values that were chosen in the

similar work of Dang et al. [23]. The parameters c1 and c2 are equal hence the

probability of moving to local or global best is similar.

• N, the population size, is set to 40,

• K, the part of the population initialized using the heuristic, is set to 5,

• itermax, the maximum number of iterations without improvements, is set to

n,

• pls, the local search probability, is set to 1− iter
itermax ,

• c1 and c2 are set to 0.5,

• inertia parameter is set to 0.1.

Table 3.1 – Results on Solomon and Desrosiers [82] instances.

Data ALNS BP ArcEA HGSADC EAMA PSO
NV TD NV TD NV TD NV TD NV TD NV TD

C1 10 828.38 10 828.38 10 828.38 10 828.38 10 828.38 10 828.38
C2 3 589.86 3 589.86 3 589.86 3 589.86 3 589.86 3 589.86
R1 11.92 1 212.39 11.92 1 210.34 11.92 1 210.34 11.92 1 211.49 11.92 1 210.34 11.92 1 212.79
R2 2.73 957.72 2.73 955.74 2.73 952.08 2.73 952.05 2.73 951.03 2.73 952.97
RC1 11.5 1 385.78 11.5 1 384.16 11.5 1 384.72 11.5 1 384.81 11.5 1 384.16 11.5 1 384.17
RC2 3.25 1 123.49 3.25 1 119.44 3.25 1 119.45 3.25 1 119.4 3.25 1 119.24 3.25 1 119.37

CNV 405 405 405 405 405 405
CTD 57 332 57 240 57 216 57 196 57 187 57 238
Cpu 2.5 30 17.9 2.68 5 20.32

Table 3.2 – Results on Homberger and Gehring [46] instances with 200 cus-
tomers.

Data EP-GEC BP ArcEA HGSADC EAMA PSO
NV TD NV TD NV TD NV TD NV TD NV TD

C1 18.9 2 726.11 18.9 2 718.77 18.9 2 721.9 18.9 2 718.41 18.9 2 718.41 18.9 2 727.29
C2 6 1 834.24 6 1 831.59 6 1 833.36 6 1 831.59 6 1 831.64 6 1 833.41
R1 18.2 3 639.6 18.2 3 615.69 18.2 3 640.11 18.2 3 613.16 18.2 3 612.36 18.2 3 664.39
R2 4 2 950.09 4 2 937.67 4 2 941.99 4 2 929.41 4 2 929.41 4 2 937.46
RC1 18 3 205.51 18 3 192.56 18 3 224.63 18 3 180.48 18 3 178.68 18 3 294.72
RC2 4.3 2 574.1 4.3 2 559.32 4.3 2 554.33 4.3 2 536.2 4.3 2 536.22 4.3 2 546.34

CNV 694 694 694 694 694 694
CTD 169 296 168 556 169 163 168 092 168 067 170 036
Cpu 93.2 53 90 8.4 4.1 60.06

43

Particle Swarm Optimization for VRPTW Chapter 3

Table 3.3 – Results on Homberger and Gehring [46] instances with 400 cus-
tomers.

Data EP-GEC BP ArcEA HGSADC EAMA PSO
NV TD NV TD NV TD NV TD NV TD NV TD

C1 37.6 7 229.04 37.6 7 182.75 37.6 7 179.71 37.6 7 170.47 37.6 7 175.72 38 7 438.68
C2 11.7 3 942.93 11.9 3 874.58 11.7 3 898.02 11.6 3 952.95 11.7 3 899 12 3 859.65
R1 36.4 8 489.53 36.4 8 420.52 36.4 8 413.23 36.4 8 402.57 36.4 8 403.24 36.4 9 154.6
R2 8 6 271.57 8 6 213.48 8 6 149.49 8 6 152.92 8 6 148.57 8 6 221.34
RC1 36 8 005.25 36 7 940.65 36 7 931.66 36 7 907.14 36 7 922.23 36.3 8 517.48
RC2 8.5 5 431.15 8.6 5 269.09 8.4 5 293.74 8.5 5 215.21 8.4 5 297.86 8.9 5 290.76

CNV 1 382 1 385 1 381 1 381 1 381 1 396
CTD 393 695 389 011 395 936 388 697 388 466 404 825
Cpu 295.9 89 180 34.1 16.2 243.01

Table 3.4 – Results on Homberger and Gehring [46] instances with 600 cus-
tomers.

Data EP-GEC BP ArcEA HGSADC EAMA PSO
NV TD NV TD NV TD NV TD NV TD NV TD

C1 57.4 14 103.61 57.4 14 106.03 57.3 14 236.86 57.4 14 058.46 57.4 14 067.34 58.1 14 468.13
C2 17.4 7 725.86 17.5 7 632.37 17.4 7 729.8 17.4 7 594.41 17.4 7 605.07 17.8 8 108.57
R1 54.5 18 381.28 54.5 18 252.13 54.5 18 781.79 54.5 18 023.18 54.5 18 186.24 54.8 21 086.39
R2 11 12 847.31 11 12 808.59 11 12 804.6 11 12 352.38 11 12 330.49 11 13 052.17
RC1 55 16 274.17 55 16 266.14 55 16 767.72 55 16 097.05 55 16 183.95 55.1 18 744.25
RC2 11.5 10 935.91 11.7 10 990.85 11.4 11 311.81 11.5 10 511.86 11.4 10 586.14 12.1 11 171.88

CNV 2 068 2 071 2 066 2 068 2 067 2 089
CTD 802 681 800 797 816 326 786 373 789 592 866 313
Cpu 646.9 105 270 99.4 25.3 280.55

Table 3.5 – Results on Homberger and Gehring [46] instances with 800 cus-
tomers.

Data EP-GEC BP ArcEA HGSADC EAMA PSO
NV TD NV TD NV TD NV TD NV TD NV TD

C1 75.4 25 026.42 75.4 25 093.38 75.2 25 911.44 75.4 24 876.38 75.2 25 151.83 77 26 310.85
C2 23.4 11 598.81 23.5 11 569.39 23.4 11 835.72 23.3 11 475.05 23.4 11 447.27 24.5 12 529.77
R1 72.8 31 755.57 72.8 31 797.42 72.8 32 734.57 72.8 31 311.38 72.8 31 492.81 72.8 38 018.25
R2 15 20 601.22 15 20 651.81 15 20 618.21 15 19 933.39 15 19 914.97 15 21 180.79
RC1 72 31 267.84 72 33 170.01 72 33 795.61 72 29 404.32 72 31 278.28 73 33 518.75
RC2 15.6 16 992.79 15.8 16 852.38 15.5 17 536.54 15.4 16 495.82 15.4 16 484.31 16.2 17 228.95

CNV 2 742 2 745 2 739 2 739 2 738 2 785
CTD 1 372 427 1 391 344 1 424 321 1 334 963 1 357 695 1 487 873
Cpu 1 269.4 129 360 215 27.6 301.29

To discuss the effectiveness of our algorithm we refer to http://www.sintef.

no/ which contains an updated list of all the best solutions found in the literature.

Concerning the number of vehicles, our algorithm found 262 from the 356 best

known solutions. This includes all the instances with up to 200 customers. It

found difficulties with the big instances. The algorithm found 83 solutions from

the best total travel results. We believe that further research and calibration on

44

http://www.sintef.no/
http://www.sintef.no/

Chapter 3 Particle Swarm Optimization for VRPTW

Table 3.6 – Results on Homberger and Gehring [46] instances with 1000 cus-
tomers.

Data EP-GEC BP ArcEA HGSADC EAMA PSO
NV TD NV TD NV TD NV TD NV TD NV TD

C1 94.4 41 699.32 94.3 41 783.27 94.2 43 111.6 94.1 41 572.86 94.1 41 748.6 96.8 44 350.18
C2 29.3 16 589.74 29.5 16 657.06 29.3 16 810.22 28.8 16 796.45 29.1 16 534.36 31.1 18 041.28
R1 91.9 48 827.23 91.9 49 702.32 91.9 51 414.26 91.9 47 759.66 91.9 48 369.71 92.6 55 772.58
R2 19 30 164.6 19 30 495.26 19 30 804.79 19 29 076.45 19 29 003.42 19 31 378.11
RC1 90 44 818.54 90 45 574.11 90 46 753.61 90 44 333.4 90 44 860.6 90.1 54 116.96
RC2 18.3 25 064.88 18.5 25 470.33 18.4 25 588.52 18.2 24 131.13 18.3 24 055.31 19 27 079.26

CNV 2 429 2 432 3 428 3 420 3 424 3 486
CTD 2 071 643 2 096 823 2 144 830 2 036 700 2 045 720 2 307 383
Cpu 1 864.4 162 450 349 35.3 294.63

our PSO algorithm may improve the solution qualities presented in this work.

45

Particle Swarm Optimization for VRPTW Chapter 3

3.6 Conclusion

The Vehicle Routing Problem with Time Windows (VRPTW) consists in deter-

mining the routing plan of vehicles with identical capacity in order to supply the

demands of a set of customers with predefined time windows. This complex multi-

constrained problem has been widely studied due to its industrial, economic and

environmental implications.

Motivated by the potential applications, this variant is considered to be one

of the main challenging problems in vehicle routing. This chapter presented a

new PSO algorithm for VRPTW. It incorporates many new components which

deal with VRPTW specific objective. This includes the sequence evaluation, an

adapted position update and dedicated local search operators. The numerical re-

sults show the competitiveness of these components and their combination. Nev-

ertheless we consider these results, which are preliminary, quite encouraging for

further improvements. Another further research issue relates to the application

of our PSO algorithm on other objective functions especially the one which takes

into consideration only the minimization of the total travel time as the main goal.

46

4 | Exact methods for VRPTWSyn

We can not solve our problems with the same level

of thinking that created them.

Albert Einstein

4.1 Problem definition . 48

4.2 Literature . 49

4.3 Problem formulation . 51

4.4 New reduced formulation . 53

4.5 Constraint programming model 55

4.6 Preprocessing . 57

4.7 Additional cuts . 57

4.7.1 Incompatibilities and clique cuts 57

4.7.2 Subtour eliminations . 59

4.7.3 MIP overall algorithm 59

4.8 Experimentation . 60

4.8.1 Travel time . 62

4.8.2 Preferences . 63

4.8.3 Workload balance . 63

4.9 The efficiency of the cuts . 66

47

Exact methods for VRPTWSyn Chapter 4

4.10 Conclusion . 67

The vehicle routing problem (VRP) [89] is a widely studied combinatorial op-

timization problem in which the aim is to design optimal tours for a set of vehicles

serving a set of clients or customers geographically distributed and respecting some

side constraints. We are interested in a particular variant of VRP, the VRP with

time windows and synchronized visits (VRPTWSyn).

In this chapter, we present new and improved exact methods for VRPTWSyn.

Our aim is to compare several approaches on the problem. The classical model

is first used. Then, we propose a new reduced formulation which uses fewer vari-

ables and constraints. We apply some cutting planes and preprocessing techniques

on both models. A constraint programming model is also given and tested on

VRPTWSyn. A comparison discussion with the literature methods is presented

at the end of this chapter.

4.1 Problem definition

In this problem, similarly to VRPTW presented in Chapter 3, each customer is

associated with a time window, e.g. a time interval representing the availability of

the customer to start receiving the vehicle service. This means that if the vehicle

arrives too soon it should wait until the opening of the time window to serve the

customer, while late arrivals are not allowed. Additionally, for some customers,

more than one visit are allowed, e.g., two visits from two different vehicles, are

required to complete the service. Visits associated to a particular customer also

need to be synchronized, e.g. having the same start time. Figure 4.1 presents an

example of a solution to the problem with 7 customers, 2 points of synchronization

and 9 visits to be done with 3 vehicles.

48

Chapter 4 Exact methods for VRPTWSyn

Figure 4.1 – Example of VRPTWSyn solution.

4.2 Literature

VRPTWSyn was first studied in [17] with an application in home-care services for

elders. In such services, some operations may require more than one staff to be

accomplished, for example the ones demanding heavy lifts or requiring different

sets of skills. Timing and coordination are crucial for the success of the operations

and the associated temporal constraints must be taken into account during the

construction of the schedule.

As an extension of VRP, VRPTWSyn is clearly NP-Hard [62]. To the best of

our knowledge, there were only few attempts in the literature to solve this variant

of the problem [16, 17] and its generalizations [30, 77]. In those methods, solutions

are obtained by approximately or optimally solving integer linear programs. Thus,

good solutions often require extensive computational times.

In detail, Bredström and Rönnqvist [17] studied the role of the synchroniza-

tion constraints found in real world applications and proposed a mathematical

formulation of VRPTWSyn. Three objectives of optimization were considered: (i)

minimizing the total travel time; (ii) maximizing the sum of preferences, this is due

to the fact that each customer may like or dislike being served by a specific vehicle;

(iii) minimizing the difference between the longest and the shortest service times

among the vehicles in order to optimize the workload balance. For convenience,

we shall call the three objectives respectively travel cost, service reward and attri-

bution fairness. In practical applications, they can be addressed simultaneously,

49

Exact methods for VRPTWSyn Chapter 4

e.g. by aggregating them into a single objective using a set of weights. To avoid

negative weights in the aggregation, the minimization of the sum of the negative

preferences, e.g. dislike measures, is used instead of the maximization of service

reward. The authors proposed a variant of the local-branching approach [34] to

solve the problem. A set of benchmark instances was created to evaluate the meth-

ods. For analytical purposes, e.g. identify the strengths and weaknesses of the

approaches, the three objectives were studied independently on those instances.

As a continuity of [17], the same authors proposed in [16] a branch-and-price

algorithm focusing on the first two objectives, the cost and reward. The ap-

proach is influenced by the fleet assignment techniques of [48]. In the root node,

the synchronization constraints are relaxed and the linear model is basically a

set partitioning formulation. Then, during the solving steps, the constraints are

strengthened with a branch-and-bound. This was done by repeatedly adjusting

the arrival times of the vehicles at the customers’ and by branching on time win-

dows. The branch-and-price algorithm was able to solve 44 out of 60 proposed

instances to optimality. Later, Labadie et al. [58], in a preliminary work, proposed

an iterative local search algorithm for the problem and presented some results on

the small and medium sized instances.

In [77], a similar application in home-care services was studied with a particular

focus on the reward objective. The authors proposed a clustering scheme based on

the customer’s preferences and a branch-and-price algorithm to solve the problem.

The algorithm was able to find good approximate solutions for instances that were

not solved to the optimality. The synchronization constraints were modeled as

generalized precedence constraints and then reinforced through branching. This

approach was tested on the standard instances of [17], as well as on real-world

instances collected from two Danish municipalities.

Later, Dohn et al. [30] presented a generalization of VRPTWSyn, the Vehicle

Routing Problem with Time Windows and Temporal Dependencies (VRPTWTD).

50

Chapter 4 Exact methods for VRPTWSyn

In addition to the standard synchronization, more general requirements are stud-

ied, such as the maximum/minimum overlap and/or gap between the starting

time or ending time of visits. On the objective, only travel cost was considered. A

branch-and-cut-and-price algorithm was proposed to solve the generalized prob-

lem and was tested on a set of instances derived from the 56 well-known instances

of Solomon’s benchmark for VRPTW [81]. Note that the results reported in both

papers [30] and [77] are general statistics, such as the number of instances being

solved to the optimality by the proposed method. Readers interested in other

variants or applications are referred to [32, 63, 95]. General perspectives of tem-

poral constraints for vehicle routing can be also found on the survey [31] and on

the paper [58].

4.3 Problem formulation

The problem is modeled using an oriented graph G = (V+, E), where V+ =

{0, . . . , n + 1} is the vertex set and E is the arc set. Vertices 0 and n + 1 are the

departure and arrival points respectively. The other vertices V = {1, . . . , n} are

the visit points where each one is associated to a customer. A customer can have

multiple visit points depending on the number of vehicles needed to deliver the

service. For example, if two visit points i and j are associated to the same customer,

then the points are superposed and required to be visited by two distinct vehicles.

These two visits must be synchronized and we use [i, j] ∈ PSync to denote the set of

synchronizations. Also, for each i we denote by Psync
i = {j ∈ V+ such that [i, j] ∈

PSync} the set of visits to be synchronized with visit i.

A travel time δij is associated to each arc (i, j) ∈ E. For convenience, we

associate an infinite travel time δi,i = +∞ (δi,j = +∞) to non-existent arcs. Each

visit point i is associated with a service time si and a time window [ei, li] where

ei and li specify the earliest and the latest possible starting time of the service

(li ≥ ei ≥ 0). For a given customer, these data are identical for all the associated

51

Exact methods for VRPTWSyn Chapter 4

visit points. The departure and arrival points are also associated with a time

window [E, L] ([e0, l0] = [en+1, ln+1] = [0, tmax] and s0 = sn+1 = 0).

The fleet of vehicles is denoted by the set K = {1, . . . , m}. Related to reward

objective, Pre fik defines the negative preference of the assignment of vehicle k to

the service of the customer at point i. Let xijk ∈ {0, 1} ∀k ∈ K ∀(i, j) ∈ E be the

binary routing variables. xijk = 1 if a vehicle k travels along arc (i, j), 0 otherwise.

Let tik be the scheduling variables which represent the time when vehicle k starts

the service i, this variable is equal to 0 if visit i is not performed by k. We have

the following linear formulation [17].

min ω1 ∑
k∈K

∑
(i,j)∈E

δijxijk + ω2 ∑
k∈K

∑
(i,j)∈E

Pre fikxijk + ω3W (4.1)

∑
k∈K

∑
j:(i,j)∈E

xijk = 1 ∀i ∈ V (4.2)

∑
j:(0,j)∈E

x0jk = ∑
j:(j,n+1)∈E

xin+1k = 1 ∀k ∈ K (4.3)

∑
j:(i,j)∈E

xijk − ∑
j:(j,i)∈E

xjik = 0 ∀k ∈ K ∀i ∈ V (4.4)

tik + (δij + si)xijk ≤ tjk + li(1− xijk) ∀k ∈ K ∀(i, j) ∈ E (4.5)

ei ∑
j:(i,j)∈E

xijk ≤ tik ≤ li ∑
j:(i,j)∈E

xijk ∀k ∈ K ∀i ∈ V (4.6)

ei ≤ tik ≤ li ∀k ∈ K ∀i ∈ {0, n + 1} (4.7)

∑
k∈K

tik = ∑
k∈K

tjk ∀[i, j] ∈ PSync (4.8)

∑
(i,j)∈E

sixijk − ∑
(i,j)∈E

sixijl ≤ W ∀k ∈ K ∀l ∈ K \ {k} (4.9)

xijk ∈ {0, 1} ∀k ∈ K ∀(i, j) ∈ E (4.10)

tik ≥ 0 ∀k ∈ K ∀i ∈ V+

W ≥ 0

The objective (4.1) is to minimize either the total travel time, the sum of

52

Chapter 4 Exact methods for VRPTWSyn

assigned negative preferences or the difference in the attribution of the workload.

While constraints (4.2) ensure that each visit point is served by exactly one vehicle,

constraints (4.3) ensure that every vehicle starts from the departure and returns

to the arrival. Constraints (4.4) guarantee that the same vehicle enters and leaves

a given customer. The connectivity of each tour is set by in constraints (4.5) and

the time windows are respected with constraints (4.5), (4.6) and (4.7). Constraints

(4.8) ensure that synchronized visits start simultaneously. Inequalities (4.9) record

the gap between the longest and shortest service times of the fleet according to

the minimization objective. Finally, (4.10) are the variables definition constraints.

4.4 New reduced formulation

The formulation presented in Section 4.3 uses O(m · n2) binary variables and

O(m · n2) constraints, where n is the number of customers and m the number of

vehicles. In this section, we propose a new linear formulation for VRPTWSyn.

It uses only O(n2) binary variables and O(n2) constraints. Let zij, (i, j) ∈ E be

the flow variable. It is equal to one if a vehicle travels along arc (i,j) and zero

otherwise and let yik(k ∈ K, i ∈ V) equal to one if costumer i is served by the

vehicle k and zero otherwise. ξi records the start of the service at the visit i. We

have the following mixed-integer linear programming model:

Objective function

min ω1 ∑
(i,j)∈E

δijzij + ω2 ∑
k∈K

∑
i∈V

Pre fikyik + ω3W (4.11)

53

Exact methods for VRPTWSyn Chapter 4

Basic constraints

1 ≤ ∑
j∈V

z0j ≤ m (4.12)

∑
j∈V+\{o}

zij − ∑
j∈V+\{d}

zji = 0, ∀i ∈ V (4.13)

∑
j∈V

z0j − ∑
i∈V

zin+1 = 0 (4.14)

∑
k∈K

yik = 1, ∀i ∈ V (4.15)

yik − yjk ≤ 1− zij, ∀(i, j) ∈ E, ∀k ∈ K (4.16)

yjk − yik ≤ 1− zij, ∀(i, j) ∈ E, ∀k ∈ K (4.17)

yjk ≤ 3− (z0i + z0j + yik), ∀i, j ∈ V, ∀k ∈ K (4.18)

Time constraints

ei ≤ ξi ≤ li, ∀i ∈ V+ (4.19)

ξi + (si + δij)zij ≤ ξ j + li(1− zij), ∀(i, j) ∈ E, ∀k ∈ K (4.20)

∑
i∈V

siyip − ∑
i∈V

siyiq ≤ W ∀p ∈ K, ∀q ∈ K \ {p} (4.21)

ξi − ξ j = 0 ∀[i, j] ∈ PSync (4.22)

zij ∈ {0, 1}∀(i, j) ∈ E (4.23)

ξi ∈ R+, ∀i ∈ V+

W ∈ R+

The objective function (4.11) is to minimize the local travel time, the sum

of negative preferences or the difference on workload. Constraints (4.12) ensure

that there are at least one vehicle and at most m vehicles stating from the depot.

Constraints (4.13) and (4.14) are the flow conservation equations enforcing route

54

Chapter 4 Exact methods for VRPTWSyn

continuity so that every vehicle starts from the departure and returns to the arrival.

Constraints (4.15) ensure that each customer is served by exactly one vehicle.

(4.16) and (4.17) ensure that if the arc (i, j) is used then the visits i and j are

done by the same vehicle. Constraints (4.18) guarantee that if there are two

clients reached directly from the depot then they must be served by two different

vehicles. (4.19) and (4.20) are the time window constraints. They also eliminate

the sub-tours. Constraints (4.21) calculate the maximum difference of the vehicle

workloads. Constraints (4.22) ensure that synchronized visits start simultaneously.

Finally, (4.4) are the variables definition constraints.

4.5 Constraint programming model

In this section, we present a constraint programing (CP) model for VRPTWSyn.

Unfortunately, there is no standard language or presentation for this type of mod-

eling which support the scheduling layer [70]. We use a syntax close to the one

used for the implementation. Equivalent versions of the constraints exist in many

other CP solvers. Our model uses the interval variables as decision variables [59].

Each variable has some proprieties, which include the time window [a, b], the mini-

mum length of the interval d and a boolean o used to indicate whether the interval

must be obligatory or optional to be scheduled. We assign for each visit i a set of

k optional interval variables Visitik. A visit is done by the vehicle k if the interval

variable Visit∗ik is present and scheduled.

For each vehicle k, the n interval variables Visit∗ik ∀i ∈ V are grouped by a

sequence variable Routek (Line 4). A NoOverlapSequence constraint is applied

to the sequence to ensure that the intervals respect a time lag between them

which corresponds to the travel time between each pair of visits δij (Line 8). An

alternative constraint is used to ensure that exactly one interval is executed for

each visit which should be then represented by the variable Visiti (Line 5). Finally

55

Exact methods for VRPTWSyn Chapter 4

a start-at-start constraint is used to make sure that each pair of synchronized tasks

start simultaneously (Lines 6 and 7).

We add k artificial but obligatory interval variables each represents the start

of every route in order to take into consideration the arc outgoing from the depots

(Line 9). The algorithm is configured to branch first on the sequence variables then

on the intervals and to use the multi-point search strategy in order to diversify

the solutions.

Algorithm 4.1: CP model for VRPTWSyn.

Variables:
1 Visit∗ik = Interval(ei, li, si, optional) ∀i ∈ V, k ∈ K ;
2 Departurek = Interval(0, 0, 0, obligatory) ∀k ∈ K ;
3 Visiti = Interval(ei, li, si, obligatory) ∀i ∈ V ;
4 Routek = Sequence(∪i∈V Visit∗ik ∪Departurek) ∀k ∈ K ;

Constraints:

5 Alternative(Visiti,
∪

k∈K Visit∗ik) ;

6 StartAtStart(Visiti, Visitj) ∀[i, j] ∈ PSync ;
7 PresenceOf(Visit∗ik) + PresenceOf(Visit∗jk) ≤ 1 ∀[i, j] ∈ PSync ∀k ∈ K ;

8 NoOverlapSequence(Routek, δ) ∀k ∈ K ;
9 First(Departurek, Routek) ∀k ∈ K ;

The CP constraints used in the model are described as follows:

Alternative(i, J) models an exclusive alternative between the intervals in J. If

interval i is present then exactly one interval in J is present and i starts and

ends together with this chosen one.

StartAtStart(i, j) states that whenever both interval variables i and j are present,

they should start at the same time.

PresenceOf(i) states whether the interval variable i is present or not.

56

Chapter 4 Exact methods for VRPTWSyn

NoOverlapSequence(s, M) states that all the present intervals in the sequence s

are pairwise non-overlapping and a minimal distance Mi,j is to be maintained

between the end of i and the start of j.

First(i, s) states that whenever an interval variable i is present, it must be ordered

first in the sequence variable s.

4.6 Preprocessing

Based on the characteristics of the time windows and the distances, we deduce a

set of precedence relationships between the visits. For example, if two visits i and

j have li < ej + sj + δji, then i has to precede j in any route. As a consequence,

arc (j, i) is removed from E and its associated variables xjik∀k ∈ K and zji are set

to 0 while δji is set to ∞.

Since the problem considers a limited number of vehicles, the time windows are

adjusted using the energetic reasoning algorithm presented earlier in Section 2.5.

4.7 Additional cuts

In this section, we present some cuts and valid inequalities added to the three

models in order to accelerate their solution.

4.7.1 Incompatibilities and clique cuts

By definition, two visits i and j are said to be incompatible if they cannot be done

by the same vehicle. In other word, the incompatibility can be summarized in the

following conditions where R represents a route and Cost(R) the travel cost of the

57

Exact methods for VRPTWSyn Chapter 4

route R:

[i, j] ∈ PSync (4.24)

(ei + si + δi,j > lj) ∧ (ej + sj + δj,i > li) (4.25)

(Cost(R1) > ln+1) ∧ (Cost(R2) > ln+1) (4.26)

where R1 = (0, i, j, n + 1) ∧ R2 = (0, j, i, n + 1)

We denote by i||j the incompatibility between the visits i and j. Using these

conditions, we build the graph of incompatibilities between visits defined as:

GV
inc = (V, EV) where EV = {(i, j) ∈ V × V : i||j}. Based on this graph we

extract all the maximal cliques and for each clique C we add the cut presented

by Equation (4.27) for the classical model, Equation (4.28) for the reduced model

and Equation (4.29) for the CP model.

∑
i∈C

 ∑
j:(i,j)∈E

xijk

 ≤ 1 ∀k ∈ K (4.27)

∑
i∈C

yik ≤ 1 ∀k ∈ K (4.28)

∑
i∈C

PresenceOf(Visitik) ≤ 1 ∀k ∈ K (4.29)

58

Chapter 4 Exact methods for VRPTWSyn

4.7.2 Subtour eliminations

The following cuts are applied only on the MIP models. We first relax the con-

straints (4.5) or (4.20) depending on the model. Then, we try to replace them with

stronger ones known as the generalized subtour elimination constraints (GSECs)

[35]. Since a feasible solution of VRPTWSyn should be a set of open directed

paths, after relaxing the constraints (4.5) or (4.20), it may contain some cycles

that should be eliminated. Hence, we use the inequality presented by (4.30) for

the classical model and (4.31) for the reduced model where S represents a cycle.

∑
i,j∈S

xijk ≤ |S| − 1 ∀k ∈ K (4.30)

∑
i,j∈S

zij ≤ |S| − 1 (4.31)

4.7.3 MIP overall algorithm

The overall algorithm is presented in Figure 4.2. The incomplete model (i.e. while

relaxing the constraints (4.5) and (4.20)) is first solved to optimality and the solu-

tion is then checked for the existence of subtours. This can be done by determining

all the strongly connected components in the resulting subgraph associated to each

tour. We note that in a directed graph, a pair of vertices is said to be strongly

connected to each other if there is a path in both directions that links them to-

gether. Consequently, a directed graph is called strongly connected if there is a

path in each direction between each pair of vertices in the graph. Since in our case,

the graph is directed and the depots are separated, thus the strongly connected

components determined for a specific tour represent the vertices of the subtours.

We note that it is possible to test the strong connectivity of a graph, or to find

59

Exact methods for VRPTWSyn Chapter 4

its strongly connected components, in a polynomial time using Tarjan’s algorithm

[84]. This algorithm is applied on each tour of the obtained solution to determine

the subtours. The corresponding subtour elimination constraints are then added

to the model and the resolution is recalled. The process is iterated until no subtour

is detected. In this case, we added all the missing constraints previously relaxed

and we solve the new enforced model for the last time.

Figure 4.2 – MIP solver overall algorithm for VRPTWSyn.

4.8 Experimentation

We tested our algorithm on the standard instances of [17]. The benchmark, which

was generated to simulate the scheduling problem in homecare services, comprises

60

Chapter 4 Exact methods for VRPTWSyn

Table 4.1 – Characteristics of the benchmark instances.

Instance n m syn ∑ si/m (h) S(h) M(h) L(h)

1 20 4 2 4.9 1.5 2.1 2.9
2 20 4 2 4.2 1.7 2.2 3.0
3 20 4 2 5.3 1.5 2.4 3.0
4 20 4 2 5.9 1.8 2.9 3.9
5 20 4 2 5.0 1.3 2.1 3.2

6 50 10 5 4.7 1.4 2.3 3.1
7 50 10 5 5.0 1.6 2.5 3.4
8 50 10 5 6.2 1.5 2.4 3.2

9 80 16 8 6.1 1.5 2.3 2.9
10 80 16 8 5.1 1.6 2.6 3.6

10 data sets. These sets are grouped in 3 categories based on the number of clients.

Each set has 5 varieties of instances that are named after the width of the time

windows. In each instance, about 10% of the visits need to be pairewisly synchro-

nized. An overview of the characteristics of the instances is found in Table 4.1. In

this table, columns n, m and syn show respectively the number of visits, the num-

ber of vehicles and the number of synchronizations. The other column headers are

∑ si/m for the average service duration per vehicle and S, M, L for the average

widths of the time windows associated with instances of the three varieties small,

medium and large time windows respectively. Note that the two other varieties

are instances with fixed appointments and the ones with no time windows at all.

Thus those two are out of the scope of VRPTWSyn research [16]. The time unit

of the table is in hours.

Our algorithm is coded in C++ using the Standard Template Library (STL)

for data structures, IBM Ilog Cplex 12.6 for the linear programming and IBM

Ilog CP optimizer 12.6 for the constraint programming. The program is compiled

with GNU GCC in a Linux environment and all experiments were conducted

on an Intel Xeon 2.67GHz. Our configuration is similar to the computational

environment used by Bredström and Rönnqvist [16, 17]. According to the protocol

proposed in [16], all the methods were tested with the three varieties S, M and L

61

Exact methods for VRPTWSyn Chapter 4

as mentioned earlier. We consider the three objectives separately: minimizing the

total travel time, minimizing the sum of negative preferences and minimizing the

maximal difference in service times of the vehicles.

Tables 4.2 to 4.4 report our results and compare them with the existing meth-

ods in the literature. Column Best shows the best known solution collected from all

methods (including ours) for each instance. A star mark (*) is used in Best to in-

dicate that a solution has been found and proved to be optimal. The other column

are: BP for the results of the branch-and-price algorithms presented in [16]; MIP

for the results of the reduced linear model solver reported in Section 4.4; VMIP

for the classical formulation and finally CP for the constraints programming based

approach. Columns Sol and CPU report respectively the best solution found by

each method and the associated computational time. LB is used with the MIP

based methods to report the lower bound found. Bold numbers in Sol indicate

that the solution quality reaches the best found. The time unit in those tables for

the objective values like travel time or fairness is in hours, and for computational

time is in seconds.

4.8.1 Travel time

We first present a comparison between the methods when considering the opti-

mization of the travel time (see Table 4.2). Among 30 instances BP found 23 of

the best solutions while MIP was able to find all the solutions (30). On the other

hand the VMIP method which uses the classical formulation found difficulties to

reach feasible solutions for the large instances. We also found that CP is not effi-

cient on this objective compared to the other methods. In term of cpu time, MIP

looks to be the fastest to find the best solutions. We also noticed that CP finds

some difficulties to solve the instances of type S, which remains true for the later

results.

62

Chapter 4 Exact methods for VRPTWSyn

4.8.2 Preferences

When considering the preferences (see Table 4.3), CP found all the best solutions

of the 30 instances within a reasonable cpu time. MIP misses most of them even

one from the small instances while VMIP acts better. From the literature BP

method found 24 of the best solutions and missed the big instances with 80 visits.

4.8.3 Workload balance

Concerning the third objective, it is clear that the CP model is the most adapted

for the fairness. It finds all the best solutions of the 30 instances. Using the

reduced model, its relaxation seems to be weak compared to the one of the classical

formulation. All the lower bounds are equal to 0 and it could find only 2 solutions

from the best while MIP found 14 solutions.

63

Exact methods for VRPTWSyn Chapter 4

Ta
bl
e
4.
2
–
C
om

pa
ris

on
of

th
e
so
lu
tio

ns
an

d
co
m
pu

ta
tio

na
lt
im

es
fo
r
th
e
to
ta
lt
ra
ve
lt
im

e.

B
P
1

B
P
2

V
M
IP

M
IP

C
P

In
st
an

ce
B
es
t

So
l

LB
C
P
U

So
l

LB
C
P
U

So
l

LB
C
P
U

So
l

LB
C
P
U

So
l

C
P
U

1S
3.
55

*
3.
55

3.
55

1.
96

3.
55

3.
55

1.
12

3.
55

3.
55

2
3.
55

3.
55

0.
02

3.
55

2.
29

1M
3.
55

*
3.
55

3.
55

22
1.
93

3.
55

3.
55

3.
69

3.
55

3.
55

11
.2
9

3.
55

3.
55

0.
06

3.
55

2.
9

1L
3.
39

*
3.
39

3.
39

10
7.
41

3.
39

3.
39

11
.9
1

3.
39

3.
39

82
.2
4

3.
39

3.
39

0.
09

3.
39

2.
12

2S
4.
27

*
4.
27

4.
27

3.
28

4.
27

4.
27

0.
56

4.
27

4.
27

0.
11

4.
27

4.
27

0.
02

4.
27

1.
37

2M
3.
58

*
3.
58

3.
58

8.
12

3.
58

3.
58

3.
2

3.
58

3.
58

1.
96

3.
58

3.
58

0.
09

3.
58

6.
36

2L
3.
42

*
3.
42

3.
42

2.
72

3.
42

3.
42

7.
41

3.
42

3.
42

36
8.
25

3.
42

3.
42

0.
16

3.
42

13
.6
3

3S
3.
63

*
3.
63

3.
63

14
.1
7

3.
63

3.
63

3.
84

3.
63

3.
63

2.
79

3.
63

3.
63

0.
03

3.
63

4.
67

3M
3.
33

*
3.
33

3.
33

17
.5
7

3.
33

3.
33

4.
31

3.
33

3.
33

5.
95

3.
33

3.
33

0.
04

3.
33

1.
64

3L
3.
29

*
3.
29

3.
29

42
.7
8

3.
29

3.
29

1.
44

3.
29

3.
29

14
1.
24

3.
29

3.
29

0.
14

3.
29

2.
19

4S
6.
14

*
6.
14

6.
14

14
.0
2

6.
14

6.
14

1.
54

6.
14

6.
14

28
.5
2

6.
14

6.
14

0.
06

6.
14

3.
02

4M
5.
67

*
5.
67

5.
67

27
.5
3

5.
67

5.
67

2.
55

5.
67

5.
67

10
06

.2
5.
67

5.
67

0.
28

5.
67

3.
22

4L
5.
13

*
5.
13

5.
13

9.
74

5.
13

5.
13

7.
69

5.
23

4.
17

36
00

5.
13

5.
13

5.
51

5.
13

1.
25

5S
3.
93

*
3.
93

3.
93

2.
84

3.
93

3.
93

2.
9

3.
93

3.
93

18
.3
9

3.
93

3.
93

0.
04

3.
93

0.
94

5M
3.
53

*
3.
53

3.
53

57
.0
4

3.
53

3.
53

9.
1

3.
53

3.
53

4.
6

3.
53

3.
53

0.
03

3.
53

13
9.
15

5L
3.
34

*
3.
34

3.
34

9.
11

3.
34

3.
34

5.
15

3.
34

3.
34

53
3.
43

3.
34

3.
34

0.
16

3.
34

27
.1
5

6S
8.
14

*
8.
14

8.
13

36
00

8.
14

8.
14

19
7

8.
75

7.
75

36
00

8.
14

8.
14

0.
43

8.
2

61
8.
25

6M
7.
7*

7.
71

7.
67

36
00

7.
7

7.
7

36
00

-
6.
37

36
00

7.
7

7.
7

32
.1
4

7.
85

15
6.
89

6L
7.
14

*
7.
14

7.
14

32
79

7.
14

7.
13

36
00

-
5.
23

36
00

7.
14

6.
86

36
00

7.
54

16
1.
15

7S
8.
39

*
8.
39

8.
39

14
.7
2

8.
39

8.
39

16
9

12
.9

7.
78

36
00

8.
39

8.
39

6.
91

8.
56

21
51

.7
3

7M
7.
48

*
7.
67

7.
36

36
00

7.
56

7.
41

36
00

-
6.
31

36
00

7.
48

7.
48

89
6.
02

7.
63

13
43

.4
9

7L
6.
88

6.
88

6.
87

36
00

6.
88

6.
86

36
00

-
5.
05

36
00

6.
88

6.
36

36
00

6.
95

18
.2
1

8S
9.
54

*
9.
54

9.
54

93
1

9.
54

9.
54

85
0

-
8.
78

36
00

9.
54

9.
54

24
.4
3

10
.1

25
6.
53

8M
8.
54

*
8.
54

8.
53

36
00

8.
54

8.
54

34
90

-
7.
09

36
00

8.
54

8.
54

75
6.
77

8.
94

23
0.
02

8L
8.
11

8.
62

7.
91

36
00

8.
11

7.
94

36
00

-
6.
07

36
00

8.
11

7.
39

36
00

8.
23

27
0.
13

9S
11

.9
5

-
11

.7
36

00
12

.2
1

11
.6
8

36
00

-
10

.0
5

36
00

11
.9
5

11
.7
3

36
00

12
.5
3

11
20

.4
3

9M
10

.9
3

11
.7
4

10
.7
9

36
00

11
.0
4

10
.7
9

36
00

-
7.
88

36
00

10
.9
3

9.
7

36
00

11
.6
8

26
78

.7
3

9L
10

.6
4

11
.1
1

10
.3
7

36
00

10
.8
9

10
.3
7

36
00

-
6.
61

36
00

10
.6
4

9.
24

36
00

11
.2
2

27
76

.3
5

10
S

8.
54

*
-

8.
4

36
00

9.
13

8.
43

36
00

-
7.
41

36
00

8.
54

8.
54

17
89

.5
7

9.
62

58
9.
86

10
M

7.
67

8.
54

7.
5

36
00

8.
1

7.
52

36
00

-
5.
34

36
00

7.
67

6.
98

36
00

8.
15

12
23

.5
7

10
L

7.
84

-
7.
05

36
00

-
7.
05

36
00

-
4.
16

36
00

7.
84

5.
76

36
00

8.
4

17
93

.6
7

64

Chapter 4 Exact methods for VRPTWSyn

Ta
bl
e
4.
3
–
C
om

pa
ris

on
of

th
e
so
lu
tio

ns
an

d
co
m
pu

ta
tio

na
lt
im

es
fo
r
th
e
su
m

of
ne
ga

tiv
e
pr
ef
er
en
ce
s.

B
P
|

V
M
IP

M
IP

C
P

In
st
an

ce
B
es
t

So
l

LB
C
P
U

So
l

LB
C
P
U

So
l

LB
C
P
U

So
l

C
P
U

1S
-1
14

.0
3*

-1
14

.0
3

-1
14

.0
3

1.
27

-1
14

.0
3

-1
14

.0
3

1.
31

-1
14

.0
3

-1
14

.0
3

10
.7
4

-1
14

.0
3

0.
64

1M
-1
17

.8
*

-1
17

.8
-1
17

.8
1.
68

-1
17

.8
-1
17

.8
1.
54

-1
17

.8
-1
17

.8
23

.8
5

-1
17

.8
0.
33

1L
-1
18

.5
1*

-1
18

.5
1

-1
18

.5
1

2.
55

-1
18

.5
1

-1
18

.5
1

24
.4
3

-1
18

.5
1

-1
18

.5
1

44
.8
7

-1
18

.5
1

0.
42

2S
-9
2.
09

*
-9
2.
09

-9
2.
09

0.
6

-9
2.
09

-9
2.
09

0.
43

-9
2.
09

-9
2.
09

19
.4
8

-9
2.
09

0.
23

2M
-1
04

.8
1*

-1
04

.8
1

-1
04

.8
1

2.
3

-1
04

.8
1

-1
04

.8
1

38
.5
3

-1
04

.8
1

-1
04

.8
1

98
.6
6

-1
04

.8
1

0.
32

2L
-1
07

.6
4*

-1
07

.6
4

-1
07

.6
4

6.
44

-1
07

.6
4

-1
07

.6
4

79
5.
11

-1
07

.6
4

-1
07

.6
4

16
24

.4
5

-1
07

.6
4

1.
14

3S
-9
9.
49

*
-9
9.
49

-9
9.
49

1.
66

-9
9.
49

-9
9.
49

0.
69

-9
9.
49

-9
9.
49

4.
41

-9
9.
49

0.
25

3M
-1
06

.5
9*

-1
06

.5
9

-1
06

.5
9

2.
01

-1
06

.5
9

-1
06

.5
9

2.
31

-1
06

.5
9

-1
06

.5
9

66
.5
2

-1
06

.5
9

0.
8

3L
-1
07

.8
7*

-1
07

.8
7

-1
07

.8
7

2.
63

-1
07

.8
7

-1
07

.8
7

7.
13

-1
07

.8
7

-1
07

.8
7

26
7.
63

-1
07

.8
7

1.
01

4S
-1
00

*
-1
00

-1
00

1.
72

-1
00

-1
00

1.
12

-1
00

-1
00

1.
87

-1
00

0.
82

4M
-1
06

.7
2*

-1
06

.7
2

-1
06

.7
2

2.
36

-1
06

.7
2

-1
06

.7
2

56
.0
4

-1
06

.7
2

-1
06

.7
2

13
6.
55

-1
06

.7
2

0.
33

4L
-1
09

.2
7*

-1
09

.2
7

-1
09

.2
7

5.
04

-1
09

.2
7

-1
09

.2
7

86
4.
37

-1
07

.1
-1
14

.2
5

36
00

-1
09

.2
7

1.
1

5S
-7
6.
29

*
-7
6.
29

-7
6.
29

0.
64

-7
6.
29

-7
6.
29

0.
13

-7
6.
29

-7
6.
29

2.
1

-7
6.
29

0.
63

5M
-7
6.
29

*
-7
6.
29

-7
6.
29

1.
28

-7
6.
29

-7
6.
29

2.
42

-7
6.
29

-7
6.
29

16
.8
7

-7
6.
29

0.
45

5L
-8
4.
21

*
-8
4.
21

-8
4.
21

2.
21

-8
4.
21

-8
4.
21

43
.9
6

-8
4.
21

-8
4.
21

67
.2
5

-8
4.
21

0.
8

6S
-3
70

.0
6*

-3
70

.0
6

-3
70

.0
6

15
0.
63

-3
70

.0
6

-3
70

.1
10

58
.2
2

-2
88

.0
8

-3
94

.8
5

36
00

-3
70

.0
6

28
.9

6M
-3
79

.8
8*

-3
79

.8
8

-3
79

.8
8

24
7.
88

-
-3
94

.6
2

36
00

-3
52

.2
-4
02

.0
5

36
00

-3
79

.8
8

47
.9
6

6L
-3
87

.2
*

-3
87

.2
-3
87

.2
47

4.
15

-
-4
03

.8
2

36
00

-3
13

.6
3

-4
04

.9
4

36
00

-3
87

.2
8.
38

7S
-4
01

.1
1*

-4
01

.1
1

-4
01

.1
1

29
1.
29

-4
01

.1
1

-4
07

.4
3

36
00

-3
08

.7
5

-4
13

.8
3

36
00

-4
01

.1
1

86
.8
9

7M
-4
06

.1
7*

-4
06

.1
7

-4
06

.1
7

86
.7

-
-4
13

.2
2

36
00

-2
45

.5
8

-4
16

.1
6

36
00

-4
06

.1
7

7.
68

7L
-4
07

.4
8*

-4
07

.4
8

-4
07

.4
8

71
0.
62

-
-4
15

.9
7

36
00

-2
37

.9
9

-4
16

.7
5

36
00

-4
07

.4
8

10
.3

8S
-3
80

.7
6*

-3
80

.7
6

-3
80

.7
6

13
5.
39

-2
88

.6
3

-3
93

.9
1

36
00

-1
78

.5
7

-4
11

.8
6

36
00

-3
76

.4
2

13
1.
18

8M
-4
03

.5
7*

-4
03

.5
7

-4
03

.5
7

29
0.
77

-
-4
14

.4
1

36
00

-2
35

.6
-4
22

.8
1

36
00

-4
03

.5
7

24
8

8L
-4
07

.4
8*

-4
07

.4
8

-4
07

.4
8

36
2.
18

-
-4
23

.0
1

36
00

-2
08

.9
8

-4
26

.0
3

36
00

-4
07

.4
8

16
3.
11

9S
-5
83

.0
3

-5
52

.6
5

-6
33

.9
1

36
00

-
-6
61

.5
5

36
00

-3
35

.5
7

-6
95

.6
6

36
00

-5
83

.0
3

14
58

.2
9

9M
-6
54

.4
3

-4
63

.8
2

-6
61

.7
7

36
00

-
-6
84

.0
5

36
00

-3
20

.4
2

-7
01

.6
7

36
00

-6
54

.4
3

15
63

9L
-6
69

.9
7

-6
63

.4
7

-6
37

.0
9

36
00

-
-6
93

.4
8

36
00

-3
06

.2
9

-7
03

.7
5

36
00

-6
69

.9
7

13
44

.7
3

10
S

-6
75

.9
0

-6
75

.8
1

-6
76

.1
4

36
00

-
-6
88

.0
3

36
00

-3
93

.1
9

-7
08

.9
4

36
00

-6
75

.9
0

24
03

.7
2

10
M

-6
86

.7
7

-6
85

.3
1

-6
87

.9
36

00
-

-7
05

.2
8

36
00

-3
43

.1
9

-7
10

.0
8

36
00

-6
86

.7
7

63
0.
79

10
L

-6
91

.8
6

-6
91

.3
4

-6
93

.9
8

36
00

-
-7
09

.7
5

36
00

-3
67

.3
7

-7
10

.4
9

36
00

-6
91

.8
6

34
6.
85

65

Exact methods for VRPTWSyn Chapter 4

Table 4.4 – Comparison of the solutions and computational times for the work-
load balance.

VMIP MIP CP

Instance Best Sol LB CPU Sol LB CPU UB CPU

1S 0* 0 0 51.01 0.04 0 3600 0 13.95
1M 0* 0 0 435.57 0.04 0 3600 0 11.36
1L 0* 0 0 3025.43 0.06 0 3600 0 4.06
2S 0.01* 0.01 0.01 132.06 0.05 0 3600 0.01 15.84
2M 0.01 0.01 0 3600 0.02 0 3600 0.01 2.54
2L 0.01 0.01 0 3600 0.05 0 3600 0.01 8.87
3S 0.01* 0.01 0.01 1868.16 0.04 0 3600 0.01 3.13
3M 0.01* 0.01 0.01 2690.94 0.01 0 3600 0.01 1.46
3L 0.01 0.01 0 3600 0.06 0 3600 0.01 1.19
4S 0.06* 0.06 0.06 1399.77 0.06 0 3600 0.06 2.77
4M 0.02 0.02 0 3600 0.03 0 3600 0.02 14.17
4L 0.02 0.03 0 3600 0.02 0 3600 0.02 4.52
5S 0.01 0.01 0.01 1168 0.08 0 3600 0.01 0.67
5M 0.01 0.01 0 3600 0.09 0 3600 0.01 4.5
5L 0.01 0.03 0 3600 0.04 0 3600 0.01 2.31
6S 0.01 0.55 0 3600 2.01 0 3600 0.01 1595.76
6M 0.01 0.55 0 3600 2 0 3600 0.01 575.75
6L 0.01 - 0 3600 2.02 0 3600 0.01 819.01
7S 0.03 0.3 0 3600 2.39 0 3600 0.03 596.91
7M 0.01 1.27 0 3600 3.3 0 3600 0.01 245.18
7L 0.01 - 0 3600 - - 3600 0.01 519.16
8S 0.05 - 0 3600 2.03 0 3600 0.05 436.32
8M 0.04 - 0 3600 - - 3600 0.04 216.83
8L 0.03 - 0 3600 - - 3600 0.03 697.88
9S 0.08 - 0 3600 - - 3600 0.08 1050.03
9M 0.06 - 0 3600 - - 3600 0.06 1118.03
9L 0.06 - 0 3600 - - 3600 0.06 915.6
10S 0.03 - 0 3600 - - 3600 0.03 1164.32
10M 0.03 - 0 3600 - - 3600 0.03 1075.03
10L 0.01 - 0 3600 - - 3600 0.01 993.47

4.9 The efficiency of the cuts

In this section, we present and discuss the efficiency of the used cuts. The model

solvers were first run without any cuts, then compared with all the cuts activated.

As an example, Table 4.5 presents a comparison of these two runs when dealing

with the preference objective using the reduced model.

Column GAP shows the gap corresponding to the results of the version with

cuts compared to the basic one. It is computed as 100× (WithCuts−Withoutcuts)/|WithCuts|).

Using the cuts in this case improves both the lower bounds and the upper bounds

by 1.89% and 7.56% in average respectively. The improvements are particularly

66

Chapter 4 Exact methods for VRPTWSyn

 0

 600

 1200

 1800

 2400

 3000

 3600

6S 6M 6L 7S 7M 7L 8S 8M 8L 9S 9M 9L 10S 10M 10L

C
PU

 (s
ec

on
ds

)

Instance

BP
MIP

VMIP
CP

Figure 4.3 – Comparison of the Computational times for the travel time.

 0

 600

 1200

 1800

 2400

 3000

 3600

6S 6M 6L 7S 7M 7L 8S 8M 8L 9S 9M 9L 10S 10M 10L

C
PU

 (s
ec

on
ds

)

Instance

BP
MIP

VMIP
CP

Figure 4.4 – Comparison of the Computational times for the sum of negative
preferences.

high for the instances with small time windows. This is due to the high density of

the incompatibility graph which yields to more clique constraints. Similar results

were found for the remaining cases.

4.10 Conclusion

In this chapter, we explored the idea of using efficiently some exact methods on the

vehicle routing problem with time windows and synchronized visits (VRPTWSyn).

A new linear model has been proposed which uses fewer variables and constraints.

67

Exact methods for VRPTWSyn Chapter 4

 0

 600

 1200

 1800

 2400

 3000

 3600

6S 6M 6L 7S 7M 7L 8S 8M 8L 9S 9M 9L 10S 10M 10L

C
PU

 (s
ec

on
ds

)

Instance

MIP
VMIP

CP

Figure 4.5 – Comparison of the Computational times for the workload balance.

Without Cuts With Cuts GAP %
UB LB UB LB UB LB

S -160.03 -267.52 -177.32 -262.74 -9.75 1.82
M -167.32 -273.41 -178.19 -269.00 -6.10 1.64
L -141.51 -277.67 -151.92 -271.63 -6.86 2.22

All -157.02 -272.86 -169.87 -267.80 -7.56 1.89

Table 4.5 – Comparative of the efficiency of the cuts using the reduced model
on the preference objective.

The new model has been tested and compared to the classical one on the three

objectives which minimize the local travel time, the sum of negative preferences

or the difference on workloads. The results confirm the benefits of using fewer

variables and constraints especially when considering the total travel time. Unlike

the classical formulation, the model is capable of solving large instances. Some

additional cuts and preprocessing have been also applied to both models.

A new approach has been also tested on VRPTWSyn based on constraints

programming. The problem has been modeled as a scheduling one and enforced

using some preprocessing and incompatibility constraints. This new approach

produced a significant improvement especially when dealing with the second and

the third objectives. Further research will focus on developing a hybrid method

68

Chapter 4 Exact methods for VRPTWSyn

using the main keys found on both studies and improve the performance of the

MIP algorithms by using more sophisticated cuts. A study of a multi-objective

approach using the CP solver is also planned as well as the support of visitors

with different qualifications. This can be provisionally managed by assigning very

small preference values to the unqualified visitors.

69

5 | Heuristic Solutions for VRPTWSyn

Originality is nothing but judicious imitation.

Voltaire

5.1 Simulated annealing based iterative local search algorithm . . . 73

5.1.1 Constructive heuristic 74

5.1.2 Diversification process 78

5.1.3 Local search procedure 79

5.1.3.a 2-opt* . 79

5.1.3.b Or-opt . 80

5.1.3.c Replacement 80

5.1.3.d Single-move . 80

5.2 Experimentation . 81

5.2.1 Parameter settings . 82

5.2.2 Efficiency of the neighborhood structure 84

5.2.3 Comparative results . 85

5.3 Conclusion . 90

71

Heuristic Solutions for VRPTWSyn Chapter 5

In this chapter, we present a simulated annealing based iterative local search

algorithm (SA-ILS) for the Vehicle Routing Problem with Time Windows and

Synchronized Visits (VRPTWSyn). This problem described in Chapter 4, is a

variant of the vehicle routing problem (VRP), in which a time window is associated

with each client service and some services require simultaneous visits from different

vehicles to be accomplished. The algorithm features a set of local improvement

methods to deal with various objectives of the problem. Experiments conducted

on the benchmark instances from the literature clearly show that our method is

fast and outperforms the existing approaches especially when considering the total

travel time or the sum of preferences as objective. It produces all known optimal

solutions of the benchmark in very short computational times, and improves the

best results on some remaining instances of the benchmark.

Motivated by the potential applications and by the challenge of computational

time, we propose, in this work, a simulated annealing based iterative local search

algorithm (SA-ILS) for solving VRPTWSyn. Our SA-ILS incorporates several lo-

cal search methods dedicated to the problem. It produces high quality solutions

in a very short computational time compared to the other methods of the litera-

ture. New best solutions are discovered. A statistical report on the performance

of each local search operator on each objective is also given to provide the insights.

The remainder of the chapter is organized as follows. In Section 5.1, the detailed

description of the proposed SA-ILS algorithm is given. The results of the experi-

mental studies are reported in Section 5.2. Finally, some concluding remarks are

drawn in the Section 5.3.

72

Chapter 5 Heuristic Solutions for VRPTWSyn

Algorithm 5.1: SA-ILS algorithm for VRPTWSyn.
Output: Xbest, the best solution found so far by the algorithm;

1 X ← BestInsertion(∅);
2 X ← LocalSearch(X);
3 Xbest ← X;
4 reheat← 0;
5 repeat
6 T ← T0;
7 iter ← 0;
8 Xlbest ← X;
9 repeat
10 X′ ← Diversification(X, 1, d);
11 X′ ← LocalSearch(X’);
12 ∆← Fitness(X′)− Fitness(X);
13 iter ← iter + 1;
14 T ← α× T;
15 r ∼ Uni f (0, 1);
16 if (r < e−

∆
T) then

17 X ← X′;
18 if (Fitness(X) < Fitness(Xlbest)) then
19 iter ← 0;
20 Xlbest ← X;
21 if (Fitness(X) < Fitness(Xbest)) then
22 Xbest ← X;
23 reheat← 0;

24 until (iter = itermax);
25 X ← Diversification(X, n

2 , n);
26 reheat← reheat + 1;
27 until (reheat = rhmax);

5.1 Simulated annealing based iterative local search algo-

rithm

Our motivation in this work is to propose a fast dedicated heuristic solution for

VRPTWSyn. The global scheme of our approach is a Simulated Annealing algo-

rithm (SA) [54]. SA is a stochastic local search which is often used to address

73

Heuristic Solutions for VRPTWSyn Chapter 5

discrete optimization problems. The main idea of a Simulated Annealing algo-

rithm is to occasionally accept degraded solutions in the hope of escaping the

current local optimum. The probability of accepting a newly created solution is

computed as e−
∆
T , where ∆ is the difference of fitness between the new solution

and the current one and T is a parameter called the current temperature. This

parameter is evolved during the search by imitating the cooling process in metal-

lurgy. Successful applications of SA in VRP and its variants can be found in [9,

19, 22, 92].

Our SA-ILS is summarized in Algorithm 5.1. The algorithm is implemented

with a reheating mechanism, due to Lines 4, 26 and 27. The simulated annealing

routine is from Line 9 to Line 24. In the algorithm, we use Fitness() to denote the

process of computing the objective value according to Equation (4.1). The other

functions: BestInsertion(X), Diversi f ication(X, dmin, dmax) and LocalSearch(X′)

are described as follows.

5.1.1 Constructive heuristic

The procedure BestInsertion(X) described in Algorithm 5.2 is a constructive

heuristic to build a solution from scratch (X = ∅) or from a partial solution.

A solution is called partial if some visits are not routed. In each iteration of

BestInsertion(X), a visit is heuristically selected to be inserted in a route so that

the increasing cost is minimized. The algorithm is stopped when no more insertion

are possible. The obtained solution can be either complete, i.e. a feasible solution

with all the visits being routed, or still partial, i.e. an infeasible solution. This

can happen for the instances of VRPTWSyn [17], particularly for the ones with

small or strict time windows. In that case, unrouted visits are put in a pool for

later attempts and a penalty cost proportional to the number of visits in the pool

is added to the objective value.

74

Chapter 5 Heuristic Solutions for VRPTWSyn

In order to evaluate each insertion cost in constant time, a calculation of

possible positions to insert visits is first performed. Then, information for each

visit is archived and updated during the process as follows. For each visit i, we

use Waiti to memorize the waiting time in case the arrival takes place before the

beginning of the time window, MaxShifti to compute the maximal delay of the visit

and LMaxShifti for the maximal delay of the visit considering only the route where

it belongs and ignoring the synchronization constraints. Supposing that Arrivali
and Starti are the arrival time and the starting time of the service respectively, it

holds that

Waiti = Starti −Arrivali (5.1)

Because of the synchronization constraints, Starti for some visits may be de-

layed so that the client is served simultaneously by the assigned vehicles. For a

given route r, we also use function r(p) to denote the visit at position p in the

route. We now notice that LMaxShiftr(p) is equal to the sum of the Waitr(p+1)

and MaxShiftr(p+1), unless there is a time window bound.

LMaxShiftr(p) ← min(br(p) − Startr(p),Waitr(p+1) +MaxShiftr(p+1)) (5.2)

If two visits need to be synchronized, the minimal value of LMaxShift is taken

for both of them.

if [i, j] ∈ PSyncMaxShifti ← min(LMaxShifti,LMaxShiftj) (5.3)

Therefore, an insertion of a visit k in a route r between p and p + 1 will be

considered to be valid if the generated shift: Shiftr,p
k is smaller than the sum of

75

Heuristic Solutions for VRPTWSyn Chapter 5

Waitr(p+1) +MaxShiftr(p+1).

Shiftr,p
k ← δr(p)k +Waitk + sk + δkr(p+1) − δr(p)r(p+1) (5.4)

As mentioned earlier, the insertion with the least cost is applied in each iter-

ation. The insertion cost is considered to be δr(p)k + δkr(p+1) − δr(p)r(p+1) for the

case of minimizing the travel cost, Pre fkr when minimizing the preference, and the

newW (denotedW r,p
k) if optimizing the workload balance. For general objective,

the insertion cost of a visit k at a position p in the route r, denoted by Costr,p
k , is

calculated as follows.

Costr,p
k ← ω1(δr(p)k + δkr(p+1) − δr(p)r(p+1)) + ω2Pre fkr + ω3W

r,p
k (5.5)

When an insertion is applied, the update is propagated through different routes

because of the synchronization constraints. The propagation may loop infinitely

if the cross synchronizations are not prohibited, e.g. visiting u then v by the first

vehicle, visiting i then j by the second vehicle, and finally realizing that u and j

are the same client as well as v and i, e.g. [r(u), r(j)] , [r(v), r(i)] ∈ PSync (see

Figure 5.1). To avoid such issues, transitive closures [5] are computed to filter out

cross synchronizations from the set of possible positions for insertion (see Line 6 in

the Algorithm 5.2). The reduced solutionRSync(X) refers to a structure equivalent

to the solution X with only the synchronization visits. This computation takes

O(s3) where s is the number of synchronizations. Therefore, the complexity of

constructing a solution completely from scratch is O(n ·max{s3, n2}).

In addition, the computation of possible positions for insertions and the eval-

uation of insertion costs is accelerated using the preprocessed data of the input

instance. Based on characteristics of the time windows, we deduce a set of prece-

dence relationships between the visits. For example, if two visits i and j have

76

Chapter 5 Heuristic Solutions for VRPTWSyn

Algorithm 5.2: BestInsertion algorithm for VRPTWSyn.
1 Procedure BestInsertion(X: a solution)
2 Ω← the set of unrouted visits ;
3 while Ω ̸= ∅ do
4 foreach k ∈ Ω do
5 if ∃j ∈ V/[k, j] ∈ PSync then
6 calculate positions from the reduced solution RSync(X) ;
7 else
8 consider all the positions in X ;
9 foreach (r, p) ∈ positions do

// r is the route and p the position within this route
10 if Insertionr,p

k is feasible then
11 Insertions← Insertions ∪ (k, (r, p),Costr,p

k) ;

12 if Insertions ̸= ∅ then
13 Best← best(Insertions);
14 Insert Best.k in the position Best.(r, p) ;
15 Propagate the updates;
16 Ω← Ω \ Best.k ;
17 else
18 Update the penalties ;
19 break ;

bi < aj + sj + δji, then i has to precede j in any route. As a consequence, arc (j, i)

is removed from A, or δji is set to ∞.

u v

p q

Figure 5.1 – Cross synchronization.

77

Heuristic Solutions for VRPTWSyn Chapter 5

5.1.2 Diversification process

The function Diversi f ication(X, dmin, dmax) (see Algorithm 5.3) first removes a

number (randomly generated between dmin and dmax) of visits from the current

solution (between 0 and d in our case) and runs a local search procedure (described

in Section 5.1.3) to optimize the partial solution. A reconstruction phase is then

processed using the above constructive heuristic. This iterative approach is similar

to the destruction/repair operator used in [13]. The aim is to obtain a new solution

from the current one without losing much of the quality, thanks to the constructive

heuristic.

Algorithm 5.3: Algorithm to diversify a solution.
Input:
X, a solution;
dmin, dmax, parameters of the diversification;
Output: X′, a new solution derived from X;

1 X′ ← X;
2 d ∼ U (dmin, dmax);
3 remove randomly d clients from routes of X′;
4 X′ ← LocalSearch(X’);
5 X′ ← BestInsertion(X’);

In addition, a dynamic priority management is also administered to identify

critical visits. Each visit is associated with a priority number initialized to 0. This

number is increased by 1 unit whenever the insertion of the visit cannot be done.

Visits having the highest priority, i.e. frequently caused infeasible solutions, are

in fact critical. Therefore, they need to be inserted during the early stages of the

constructive heuristic. With this dynamic management, the search is guided back

to the feasible space whenever it hits the infeasible one. In general, we remarked

that the portion of explored infeasible solutions over feasible ones varies from one

instance to another. This solely depends on the size of the time windows, e.g.

the algorithm hits infeasible solutions more frequently with instances having small

time windows.

78

Chapter 5 Heuristic Solutions for VRPTWSyn

5.1.3 Local search procedure

The following neighborhoods were adapted to the synchronization constraints and

used in our local search procedure:

5.1.3.a 2-opt* (Exchanges the tails of two routes [74])

In a 2-opt operator, the possibilities of exchanging two links with two others in

the same route are explored to find a local improvement. For the case of multiple

vehicles, we use 2-opt* to denote the same principle of exchange but related to two

distinct routes. This operator consequently implies the exchanges of paths between

two routes. It is particularly suitable for our case since it is hardly possible for the

classical 2-opt to find an improvement due to the preserved order of visits from

the time windows. Our 2-opt* is implemented as follows.

Figure 5.2 – 2-opt*: exchange of links (1, 2), (5, 6) for links (1, 6), (5, 2)

A subset of d visits is randomly selected and for each couple of visits {r(i), r′(j)},

we consider the arcs (r(i), r(i + 1)) and (r′(j), r′(j + 1)). If the exchange of these

two arcs for (r(i), r′(j + 1)) and (r′(j), r(i + 1)) ensures the feasibility then the

associated cost is recorded. The feasibility check is handled by the same process as

the one used in the constructive heuristic to avoid cross synchronizations. There-

fore, the exchange cost is evaluated in a constant time for each couple {r(i), r′(j)}.

After testing all the possible couples, the best one is then memorized and the im-

proving exchange is applied.

79

Heuristic Solutions for VRPTWSyn Chapter 5

5.1.3.b Or-opt (Relocation of visits in the same route [82])

In this operator, we look for the possibilities of relocating a sequence of (1, 2 or 3)

visits from its original place to another one in the same route. The implementation

of this operator is similar to 2-opt* operator: a random selection at the beginning

with a feasibility check. The best move is applied. Although this operator does

not directly improve the objective when minimizing the sum of preferences, it

compacts the routes and makes room for further insertions.

Figure 5.3 – Or-opt: moving visit 3 between the depot and visit 1

5.1.3.c Replacement (Exchanges between the routed and unrouted visits)

In this operator, we try to insert unrouted visits by mean of exchanging them with

routed visits. The operator is implemented with a full enumeration. That is to say

for each routed visit we try to exchange its position with all the unrouted visits.

Among the feasible exchanges that improve the objective, the best one is applied.

5.1.3.d Single-move (Change the position of the routed visits)

This operator tries to move every routed visit from its current position to another

position so that the objective value is improved. Similar to replacement, a full

enumeration is considered and the best improving move is applied. Unlike Or-opt,

the operator looks for potential positions in all routes and only one routed visit is

considered at a time.

80

Chapter 5 Heuristic Solutions for VRPTWSyn

Our LocalSearch(X) function is described in Algorithm 5.4. At each iteration,

a random neighborhood w is chosen from the set W of unexplored neighborhoods,

initialized to {2-opt*, Or-opt, Replacement, Single-move} denoted W0. Neighbor-

hood w is then removed from W and applied on the current solution. If at least

one improvement is detected by the current neighborhood w, the set of unexplored

neighborhoods will be set back to W0. The procedure is terminated when W is

empty.

Algorithm 5.4: Local search for VRPTWSyn.
Input: X : the solution to improve
Output: X the new solution if improved

1 W0 ← {2-opt* , Or-opt , Replacement , Single−move};
2 W ←W0;
3 repeat
4 Select a random neighborhood w from W;
5 if w(X) = true then /* perform the local search */
6 W ←W0;
7 else
8 W ←W\{w};
9 until W = ∅;

5.2 Experimentation

We tested our algorithm on the same instances introduced by [17] and presented

in Section 5.2. The benchmark comprises 10 sets grouped in 3 categories based on

the number of customers. Each set has 3 varieties of instances, those are named

after the width of the time windows: S (small), M (medium) and L (large) time

windows. Our algorithm is coded in C++ and all experiments were conducted on

an Intel Xeon 2.67GHz, the same configuration used in Chapter 4 and the work

of Bredström and Rönnqvist [17].

81

Heuristic Solutions for VRPTWSyn Chapter 5

5.2.1 Parameter settings

Our algorithm has five following parameters:

• T0, the initial temperature of the cooling schedule

• α, a parameter that controls the speed of the cooling schedule

• d, an integer that influences the degree of the diversification process

• itermax, the number of iterations without improvements to initiate a reheat-

ing phase

• rhmax, the maximal number of reheating phases

We first identify and fix the parameters that do not much influence the outcome

of our algorithm and the runtime. After some small experiments, those parameters

are chosen as follows. By recording the maximum number of iterations and phases

needed to achieve the best solutions, values of itermax and rhmax are fixed to

8× n and 3 respectively. Parameter d is fixed to n/m as the average number of

visits per vehicle, this is the common setting mentioned and used in [13].

The two remaining parameters required to be tuned are: the initial tempera-

ture T0 and the control parameter α of the cooling schedule. Note that selecting

the rightful set of those parameters is a common issue for simulated annealing.

The manual exploration of all the combinations of the settings is tedious and gen-

erally hard to interpret. For this reason, we limited our exploration to subset of

possible settings and on a subset of training instances as follows.

The initial temperature T0 were tested with values 0.1, 0.5, 1, 10, 100. For

parameter α, we used values 0.9, 0.95, 0.99, 0.995, 0.999. This results 25 different

combinations of the pair {T0, α} for the test. The training set is picked from the

instances of the benchmark with more than 50 clients. For each combination of

82

Chapter 5 Heuristic Solutions for VRPTWSyn

the settings, the algorithm was executed 10 times per instance. Two following

quantitative measures are used to compare the combinations: the relative gap

to the best solutions found, denoted by rpe and the average computation time,

denoted by cpu.

 65

 70

 75

 80

 85

 90

 95

 100

 105

-38 -37.5 -37 -36.5 -36 -35.5 -35 -34.5

C
P

U
 (

se
c)

rpe to the literature best solution (%)

10-0.995

1-0.9

10-0.9

0.1-0.99

0.1-0.995

10-0.99

1-0.995

10-0.95 1-0.95

0.1-0.9

0.1-0.95

1-0.99

Figure 5.4 – Tradeoff between performance and computational time for different
parameter settings when minimizing the total travel time.

Examples of the outcome results for the case of minimizing the total travel

time and the negative preferences are illustrated in Figures 5.4 and 5.5. In order

to find the best configuration, we first calculate the ideal point which give both

the best values for cpu and rpe. Then the best combinations is selected among the

configuration points so that the euclidean distance to the ideal point is minimized.

Note that this step requires rpe and cpu to be normalized into the [0, 1] interval.

Using this technique, we adopt the following parameter settings: {T0 = 0.1, α =

0.99} when minimizing the travel cost, {T0 = 1, α = 0.95} when working the

preference and {T0 = 1, α = 0.99} if optimizing the workload balance. The

83

Heuristic Solutions for VRPTWSyn Chapter 5

 78

 80

 82

 84

 86

 88

 90

 92

-0.58 -0.57 -0.56 -0.55 -0.54 -0.53 -0.52 -0.51 -0.5 -0.49 -0.48 -0.47

C
P

U
 (

se
c)

rpe to the literature best solution (%)

10-0.99

0.1-0.99

0.1-0.95

1-0.95

10-0.9

1-0.99

1-0.9

0.1-0.995

10-0.995

1-0.995

10-0.95

0.1-0.9

Figure 5.5 – Tradeoff between performance and computational time for different
parameter settings when minimizing the sum of negative preferences.

same approach can be used to find the appropriate parameters for the general

(aggregated) objective function.

5.2.2 Efficiency of the neighborhood structure

Local search is the essential ingredient in modern design of metaheuristics. In our

SA-ILS, it is also the most expensive component. After our observation, more

than 90% of the runtime is spent in the local search. Therefore, it is important to

understand the contribution of each neighborhood to the success of the search. For

this purpose, we record for each neighborhood the success rate, i.e. the number of

attempts with improved outcome over the total number of attempts. Figures 5.6

and 5.7 present the average success rate (in percent) for each neighborhood and

the overall local search, denoted by LS, on each category of instances related to

84

Chapter 5 Heuristic Solutions for VRPTWSyn

the time windows while optimizing the two objectives, the travel time and the

preference.

We noticed that some neighbors had difficulties with specific instances. For

example, the success rate of Or-opt is often below 2.5% for instances with small

time windows. For this reason, we adapt the following strategy to identify and

permanently drop useless neighborhood during the execution of the algorithm:

after 100 attempts, if a neighborhood has a poor success rate, i.e. below a thresh-

old, it is permanently removed, i.e. it is no longer considered initializing W in

Algorithm 5.4. The threshold is actually fixed to 10%.

 0

 10

 20

 30

 40

 50

 60

 70

LS OrOpt 2Opt* Exchange SingleMove

Su
cc

es
s

ra
te

 %

Neighbors

S
M
L

Figure 5.6 – Success rates of the neighborhoods in minimizing the total travel
time.

5.2.3 Comparative results

With the parameters found in the previous sections, our algorithm is then tested

on the whole benchmark. In addition, since our approach is heuristic and it serves

the purpose of being fast, the runtime for our algorithm is also limited to 200

seconds, compared to the 1 hour limit commonly used by the exact approaches.

Tables 5.1 to 5.3 report our results and compare them with the existing methods in

85

Heuristic Solutions for VRPTWSyn Chapter 5

 0

 10

 20

 30

 40

 50

 60

LS OrOpt 2Opt* Exchange SingleMove

Su
cc

es
s

ra
te

 %

Neighbors

S
M
L

Figure 5.7 – Success rates of the neighborhoods in optimizing the preference.

the literature and the exact methods presented earlier in Chapter 4. Column Best

shows the best known solution collected from all methods (including ours) for each

instance. A star mark (*) is used in Best to indicate that the solution has been

proved to be optimal by an exact method. The other column are: VMIP, MIP

and CP for the results of the methods presented in Chapter 4; BP for the results

of the branch-and-price algorithms presented in [16] and finally SA-ILS for our

simulated annealing based iterative local search algorithm. Columns Sol and CPU

report the best solution found by each method and the associated computational

time. Bold numbers in Sol indicate that the solution quality reaches Best. The

time unit in those tables for the objective values like travel time or fairness is in

hours, and for the computational time is in seconds.

86

Chapter 5 Heuristic Solutions for VRPTWSyn

Ta
bl
e
5.
1
–
C
om

pa
ris

on
of

th
e
so
lu
tio

ns
an

d
co
m
pu

ta
tio

na
lt
im

es
fo
r
th
e
to
ta
lt
ra
ve
lt
im

e.

D
at
a

B
es

t
B
P

V
M
IP

M
IP

C
P

SA
-I
LS

So
l

C
P
U

So
l

C
P
U

So
l

C
P
U

So
l

C
P
U

So
l

C
P
U

1S
3.
55

*
3.
55

1.
12

3.
55

2
3.
55

0.
02

3.
55

2.
29

3.
55

0
1M

3.
55

*
3.
55

3.
69

3.
55

11
.2
9

3.
55

0.
06

3.
55

2.
9

3.
55

0
1L

3.
39

*
3.
39

11
.9
1

3.
39

82
.2
4

3.
39

0.
09

3.
39

2.
12

3.
39

0.
01

2S
4.
27

*
4.
27

0.
56

4.
27

0.
11

4.
27

0.
02

4.
27

1.
37

4.
27

0
2M

3.
58

*
3.
58

3.
2

3.
58

1.
96

3.
58

0.
09

3.
58

6.
36

3.
58

0.
01

2L
3.
42

*
3.
42

7.
41

3.
42

36
8.
25

3.
42

0.
16

3.
42

13
.6
3

3.
42

0.
01

3S
3.
63

*
3.
63

3.
84

3.
63

2.
79

3.
63

0.
03

3.
63

4.
67

3.
63

0.
02

3M
3.
33

*
3.
33

4.
31

3.
33

5.
95

3.
33

0.
04

3.
33

1.
64

3.
33

0.
03

3L
3.
29

*
3.
29

1.
44

3.
29

14
1.
24

3.
29

0.
14

3.
29

2.
19

3.
29

0.
02

4S
6.
14

*
6.
14

1.
54

6.
14

28
.5
2

6.
14

0.
06

6.
14

3.
02

6.
14

0.
02

4M
5.
67

*
5.
67

2.
55

5.
67

10
06

.2
5.
67

0.
28

5.
67

3.
22

5.
67

0.
05

4L
5.
13

*
5.
13

7.
69

5.
23

36
00

5.
13

5.
51

5.
13

1.
25

5.
13

0.
59

5S
3.
93

*
3.
93

2.
9

3.
93

18
.3
9

3.
93

0.
04

3.
93

0.
94

3.
93

0.
03

5M
3.
53

*
3.
53

9.
1

3.
53

4.
6

3.
53

0.
03

3.
53

13
9.
15

3.
53

0.
03

5L
3.
34

*
3.
34

5.
15

3.
34

53
3.
43

3.
34

0.
16

3.
34

27
.1
5

3.
34

0.
02

6S
8.
14

*
8.
14

19
7

8.
75

36
00

8.
14

0.
43

8.
2

61
8.
25

8.
14

3.
99

6M
7.
7*

7.
7

36
00

-
36

00
7.
7

32
.1
4

7.
85

15
6.
89

7.
7

7.
96

6L
7.
14

*
7.
14

36
00

-
36

00
7.
14

36
00

7.
54

16
1.
15

7.
14

5.
01

7S
8.
39

*
8.
39

16
9

12
.9

36
00

8.
39

6.
91

8.
56

21
51

.7
3

8.
39

4.
62

7M
7.
48

*
7.
56

36
00

-
36

00
7.
48

89
6.
02

7.
63

13
43

.4
9

7.
48

8.
5

7L
6.
88

6.
88

36
00

-
36

00
6.
88

36
00

6.
95

18
.2
1

6.
88

6.
76

8S
9.
54

*
9.
54

85
0

-
36

00
9.
54

24
.4
3

10
.1

25
6.
53

9.
54

6.
6

8M
8.
54

*
8.
54

34
90

-
36

00
8.
54

75
6.
77

8.
94

23
0.
02

8.
54

7.
08

8L
8.
02

8.
11

36
00

-
36

00
8.
11

36
00

8.
23

27
0.
13

8.
02

8.
49

9S
11

.9
1

12
.2
1

36
00

-
36

00
11

.9
5

36
00

12
.5
3

11
20

.4
3

11
.9
1

87
.6
1

9M
10

.9
3

11
.0
4

36
00

-
36

00
10

.9
3

36
00

11
.6
8

26
78

.7
3

10
.9
3

61
.8
1

9L
10

.4
3

10
.8
9

36
00

-
36

00
10

.6
4

36
00

11
.2
2

27
76

.3
5

10
.4
3

67
.6
6

10
S

8.
54

*
9.
13

36
00

-
36

00
8.
54

17
89

.5
7

9.
62

58
9.
86

8.
57

78
.2
5

10
M

7.
63

8.
1

36
00

-
36

00
7.
67

36
00

8.
15

12
23

.5
7

7.
63

93
.4

10
L

7.
38

-
36

00
-

36
00

7.
84

36
00

8.
4

17
93

.6
7

7.
38

63
.1

87

Heuristic Solutions for VRPTWSyn Chapter 5

Ta
bl
e
5.
2
–
C
om

pa
ris

on
of

th
e
so
lu
tio

ns
an

d
co
m
pu

ta
tio

na
lt
im

es
fo
r
th
e
su
m

of
ne
ga

tiv
e
pr
ef
er
en
ce
s.

B
P
|

V
M
IP

M
IP

C
P

SA
-I
LS

In
st
an

ce
B
es
t

So
l

C
P
U

So
l

C
P
U

So
l

C
P
U

So
l

C
P
U

So
l

C
P
U

1S
-1
14
.0
3*

-1
14
.0
3

1.
27

-1
14
.0
3

1.
31

-1
14
.0
3

10
.7
4

-1
14
.0
3

0.
64

-1
14
.0
3

0.
04

1M
-1
17
.8
*

-1
17
.8

1.
68

-1
17
.8

1.
54

-1
17
.8

23
.8
5

-1
17
.8

0.
33

-1
17
.8

0.
01

1L
-1
18
.5
1*

-1
18
.5
1

2.
55

-1
18
.5
1

24
.4
3

-1
18
.5
1

44
.8
7

-1
18
.5
1

0.
42

-1
18
.5
1

0.
07

2S
-9
2.
09
*

-9
2.
09

0.
6

-9
2.
09

0.
43

-9
2.
09

19
.4
8

-9
2.
09

0.
23

-9
2.
09

0.
25

2M
-1
04
.8
1*

-1
04
.8
1

2.
3

-1
04
.8
1

38
.5
3

-1
04
.8
1

98
.6
6

-1
04
.8
1

0.
32

-1
04
.8
1

0.
04

2L
-1
07
.6
4*

-1
07
.6
4

6.
44

-1
07
.6
4

79
5.
11

-1
07
.6
4

16
24
.4
5

-1
07
.6
4

1.
14

-1
07
.6
4

0.
24

3S
-9
9.
49
*

-9
9.
49

1.
66

-9
9.
49

0.
69

-9
9.
49

4.
41

-9
9.
49

0.
25

-9
9.
49

0.
19

3M
-1
06
.5
9*

-1
06
.5
9

2.
01

-1
06
.5
9

2.
31

-1
06
.5
9

66
.5
2

-1
06
.5
9

0.
8

-1
06
.5
9

0.
01

3L
-1
07
.8
7*

-1
07
.8
7

2.
63

-1
07
.8
7

7.
13

-1
07
.8
7

26
7.
63

-1
07
.8
7

1.
01

-1
07
.8
7

0.
37

4S
-1
00
*

-1
00

1.
72

-1
00

1.
12

-1
00

1.
87

-1
00

0.
82

-1
00

0.
11

4M
-1
06
.7
2*

-1
06
.7
2

2.
36

-1
06
.7
2

56
.0
4

-1
06
.7
2

13
6.
55

-1
06
.7
2

0.
33

-1
06
.7
2

0.
07

4L
-1
09
.2
7*

-1
09
.2
7

5.
04

-1
09
.2
7

86
4.
37

-1
07
.1

36
00

-1
09
.2
7

1.
1

-1
09
.2
7

1.
9

5S
-7
6.
29
*

-7
6.
29

0.
64

-7
6.
29

0.
13

-7
6.
29

2.
1

-7
6.
29

0.
63

-7
6.
29

0.
14

5M
-7
6.
29
*

-7
6.
29

1.
28

-7
6.
29

2.
42

-7
6.
29

16
.8
7

-7
6.
29

0.
45

-7
6.
29

0.
01

5L
-8
4.
21
*

-8
4.
21

2.
21

-8
4.
21

43
.9
6

-8
4.
21

67
.2
5

-8
4.
21

0.
8

-8
4.
21

0.
09

6S
-3
70
.0
6*

-3
70
.0
6

15
0.
63

-3
70
.0
6

10
58
.2
2

-2
88
.0
8

36
00

-3
70
.0
6

28
.9

-3
70
.0
6

3.
66

6M
-3
79
.8
8*

-3
79
.8
8

24
7.
88

-
36
00

-3
52
.2

36
00

-3
79
.8
8

47
.9
6

-3
79
.8
8

5.
9

6L
-3
87
.2
*

-3
87
.2

47
4.
15

-
36
00

-3
13
.6
3

36
00

-3
87
.2

8.
38

-3
87
.2

9.
58

7S
-4
01
.1
1*

-4
01
.1
1

29
1.
29

-4
01
.1
1

36
00

-3
08
.7
5

36
00

-4
01
.1
1

86
.8
9

-4
01
.1
1

0.
79

7M
-4
06
.1
7*

-4
06
.1
7

86
.7

-
36
00

-2
45
.5
8

36
00

-4
06
.1
7

7.
68

-4
06
.1
7

4.
23

7L
-4
07
.4
8*

-4
07
.4
8

71
0.
62

-
36
00

-2
37
.9
9

36
00

-4
07
.4
8

10
.3

-4
07
.3
4

1.
57

8S
-3
80
.7
6*

-3
80
.7
6

13
5.
39

-2
88
.6
3

36
00

-1
78
.5
7

36
00

-3
76
.4
2

13
1.
18

-3
80
.7
6

11
.1
4

8M
-4
03
.5
7*

-4
03
.5
7

29
0.
77

-
36
00

-2
35
.6

36
00

-4
03
.5
7

24
8

-4
03
.3
6

11
.3
7

8L
-4
07
.4
8*

-4
07
.4
8

36
2.
18

-
36
00

-2
08
.9
8

36
00

-4
07
.4
8

16
3.
11

-4
07
.4
8

10
.7
2

9S
-6
05
.4
6

-5
52
.6
5

36
00

-
36
00

-3
35
.5
7

36
00

-5
83
.0
3

14
58
.2
9

-6
05
.4
6

20
0.
04

9M
-6
58
.6
8

-4
63
.8
2

36
00

-
36
00

-3
20
.4
2

36
00

-6
54
.4
3

15
63

-6
58
.6
8

71
.4
6

9L
-6
70
.3
9

-6
63
.4
7

36
00

-
36
00

-3
06
.2
9

36
00

-6
69
.9
7

13
44
.7
3

-6
70
.3
9

20
0.
02

10
S

-6
75
.8
1

-6
75
.8
1

36
00

-
36
00

-3
93
.1
9

36
00

-6
75
.6
6

24
03
.7
2

-6
75
.7
4

64
.7
3

10
M

-6
86
.7
7

-6
85
.3
1

36
00

-
36
00

-3
43
.1
9

36
00

-6
86
.7
7

63
0.
79

-6
86
.7
7

15
5.
32

10
L

-6
91
.8
6

-6
91
.3
4

36
00

-
36
00

-3
67
.3
7

36
00

-6
91
.8
6

34
6.
85

-6
91
.8
6

16
2.
04

88

Chapter 5 Heuristic Solutions for VRPTWSyn

Table 5.3 – Comparison of the solutions and computational times for the fairness
objective.

Data Best VMIP MIP CP SA-ILS

Sol CPU Sol CPU Sol CPU Sol CPU

1S 0* 0 51.01 0.04 3600 0 13.95 0 0.8
1M 0* 0 435.57 0.04 3600 0 11.36 0 0.4
1L 0* 0 3025.43 0.06 3600 0 4.06 0 0.61
2S 0.01* 0.01 132.06 0.05 3600 0.01 15.84 0.01 0.08
2M 0.01 0.01 3600 0.02 3600 0.01 2.54 0.01 0.7
2L 0.01 0.01 3600 0.05 3600 0.01 8.87 0.01 0.07
3S 0.01* 0.01 1868.16 0.04 3600 0.01 3.13 0.01 0.02
3M 0.01* 0.01 2690.94 0.01 3600 0.01 1.46 0.01 0.9
3L 0.01 0.01 3600 0.06 3600 0.01 1.19 0.01 0.8
4S 0.06* 0.06 1399.77 0.06 3600 0.06 2.77 0.06 0.98
4M 0.02 0.02 3600 0.03 3600 0.02 14.17 0.02 1.17
4L 0.02 0.03 3600 0.02 3600 0.02 4.52 0.02 1.8
5S 0.01 0.01 1168 0.08 3600 0.01 0.67 0.01 0.9
5M 0.01 0.01 3600 0.09 3600 0.01 4.5 0.01 0.39
5L 0.01 0.03 3600 0.04 3600 0.01 2.31 0.01 3.4

6S 0.01 0.55 3600 2.01 3600 0.01 1595.76 0.08 27.74
6M 0.01 0.55 3600 2 3600 0.01 575.75 0.05 36.99
6L 0.01 - 3600 2.02 3600 0.01 819.01 0.05 57.56
7S 0.03 0.3 3600 2.39 3600 0.03 596.91 0.08 29.54
7M 0.01 1.27 3600 3.3 3600 0.01 245.18 0.08 29.97
7L 0.01 - 3600 - 3600 0.01 519.16 0.08 44.68
8S 0.05 - 3600 2.03 3600 0.05 436.32 0.09 28.91
8M 0.04 - 3600 - 3600 0.04 216.83 0.08 24.22
8L 0.03 - 3600 - 3600 0.03 697.88 0.09 38.86

9S 0.08 - 3600 - 3600 0.08 1050.03 0.16 187.73
9M 0.06 - 3600 - 3600 0.06 1118.03 0.14 200.06
9L 0.06 - 3600 - 3600 0.06 915.6 0.11 200.03
10S 0.03 - 3600 - 3600 0.03 1164.32 0.08 143.37
10M 0.03 - 3600 - 3600 0.03 1075.03 0.1 200.21
10L 0.01 - 3600 - 3600 0.01 993.47 0.08 200.12

From these results, we notice that SA-ILS finds 23 known optimal solutions

from 24 when minimizing the total travel time and all the optimal solutions (24)

when minimizing the sum of preference in very short computational times com-

pared to the other methods. Some solution qualities for the remaining instances

are also better than the ones found by the other methods. In addition, Figures 5.8

and 5.9 illustrate the comparison between the computational times required by

the methods to reach their best solutions and the ones required by our method to

achieve the same solution quality.

For the total travel time, the algorithm strictly improved the best known

solutions for 4 instances of the data sets. Those instances are 8L, 9M, 9L and

10L. For the sum of negative preferences, we could improve 1 instance (9M). For

89

Heuristic Solutions for VRPTWSyn Chapter 5

those two objectives, the improved solutions have been discovered by our methods

within 3 minutes.

To summarize, our SA-ILS is clearly fast and efficient in optimizing these two

objectives.

For the fairness objective, SA-ILS finds all the best known solutions for the

instances with 20 visits. It finds some difficulties for the larger instances where

CP still dominates all the other methods.

 0

 600

 1200

 1800

 2400

 3000

 3600

6S 6M 6L 7S 7M 7L 8S 8M 8L 9S 9M 9L 10S 10M 10L

C
P

U
 (

se
co

n
d
s)

Instance

SA-ILS

MIP
VMIP

CP

Figure 5.8 – Computational times to reach the travel time equivalent to the one
in the literature.

5.3 Conclusion

In this chapter, we have proposed a new algorithm to address VRPTWSyn. The

approach is based on a Simulated Annealing mechanism with and ILS based diver-

sification and an adaptive multiple neighborhoods. To the best of our knowledge,

this is the first time that dedicated local search heuristics have been proposed and

evaluated on this variant of VRP. The experiments conducted on the standard

90

Chapter 5 Heuristic Solutions for VRPTWSyn

 0

 600

 1200

 1800

 2400

 3000

 3600

6S 6M 6L 7S 7M 7L 8S 8M 8L 9S 9M 9L 10S 10M 10L

C
P

U
 (

se
co

n
d
s)

Instance

SA-ILS

MIP
VMIP

CP

Figure 5.9 – Computational times to reach the sum of preferences equivalent to
the one in the literature.

benchmark [17] for VRPTWSyn clearly demonstrate the efficiency and the com-

petitiveness of our approach compared to the existing methods in the literature

especially when considering the total travel time or the sum of preferences as ob-

jective. The results also confirm that destruction/repair operator and local search

heuristics can be efficiently adapted to support the synchronization constraints.

As a future work, we plan to develop efficient hybrid methods to solve VRPTWSyn

since there are still unsolved instances in the benchmark. In particular, having an

efficient algorithm being able to produce a high quality feasible solutions in short

computational times, such as our SA-ILS, is a significant advantage. This can, for

example, be used as a warm start for the exact methods. Another obvious chal-

lenge will be to tackle larger problems, derived from those of VRPTW for example

or to adapt the algorithm for more generalized cases especially those described in

[30].

étxc

91

Conclusions and future works

In this dissertation, we explored the idea of developing efficient methods to solve

two main problems that model many real world issues in the field of the vehicle

routing problems. The solution proposed approaches include both exact methods

and heuristics and propose either lower bounds or upper bounds. To evaluate

these methods, numerical experimentations and comparison with the best results

in the literature were provided.

After giving some essential definitions and notations in the first chapter, the

dissertation included two parts where each focused on one of the variants of the

vehicle routing problem.

The first part investigated a well known problem referred as the capacitated

Vehicle Routing Problem with Time Windows (VRPTW) and included two chap-

ters. In Chapter 2 we presented an improved version of our published paper

which proposes new lower bounds techniques on the number of vehicles needed

to serve all the VRPTW customers. We provided an analysis of several lower

bounds based on the incompatibility between customers and on vehicle capacity

constraints. We also developed an adaptation of Energetic Reasoning algorithm

and used decomposition techniques to reduce the size of the problem. The numer-

ical results confirmed the contribution brought by our proposed approaches within

a very fast computing time. Chapter 3 proposed a Particle Swarm Optimization

method that deals with the Solomon objective which consists on minimizing the

93

Conclusions and future works

number of vehicles and then the total travel time. We tested our method on the

instances of the literature which include up to 1000 customers. We showed how

the combination of the initial phase using a destruction/repair heuristic with a Set

Partitioning problem improved the results. It reached competitive results espe-

cially for the instances of Solomon and Desrosiers [82]. As a future work we intend

to study in depth the parameters settings and the performance of the algorithm

notably when considering big instances.

In the second part of the dissertation, we focused on a new variant of VRPTW

and studied a new type of temporal constraints. We considered the synchronization

constraints which require more than one vehicle to serve a customer at the same

time. The problem is called the Vehicle Routing Problem with Time Windows and

Synchronized Visits (VRPTWSyn). Chapter 4 covered three exact methods and

compared them with the existing ones from the literature. After using the classi-

cal model, a new reduced formulation was proposed. Both methods were executed

using a branch-and-cut like scheme in which the subtours elimination constraints

were used. Later, a constraint programming model, which explores the scheduling

characteristics of the problem, was also proposed. A comparison was presented

at the end between all the methods while dealing the three different problem

objectives. At the end, a new approach based on a Simulated Annealing mecha-

nism with and ILS based diversification and an adaptive multiple neighborhoods

was proposed for VRPTWSyn in Chapter 5. The experiments conducted on the

standard benchmark clearly demonstrated the efficiency and the competitiveness

of the algorithm compared to the existing methods especially when considering

the total travel time or the sum of preferences as an objective. The results also

confirmed that destruction/repair operator and local search heuristics can be effi-

ciently adapted to support the synchronization constraints.

94

Conclusions and future works

Future works

The primary goal of this thesis was the study of new solution approaches for the

vehicle routing problem with or without synchronization. The observations made

in these works present some interesting open questions. In the following, we outline

some directions for future research.

We have seen various fast algorithms that propose tight lower bounds for

VRPTW. Some of them might even be fast enough to be embedded in a search

framework. This constitutes an encouraging first step towards the development of

an effective branch-and-bound or a constraint programming procedure for solving

VRPTW. The development of such an exact solution approach is a part of our

ongoing research. Future research also needs to be focused on investigating similar

techniques to more complex vehicle routing problems such as those requiring non

heterogeneous fleet with different capacities or/and different availabilities, or those

containing customers with multiple time windows. This can be modeled using as

many nodes as time windows for each customer. Only one node will be visited

among the nodes associated with a given customer. An adaptation to the Pickup

and Delivery with Time Windows would also be a promising path. Aiming to

satisfy transportation requests, each requiring both pickup and delivery under

capacity, time window and precedence constraints may considerably enforce the

incompatibility graph and consequently the lower bounds that use the Bin-packing

relaxation.

A future work will be conducted to further improve the proposed PSO algo-

rithm for VRPTW. More sensitivity analyses on the parameters are planned. The

use of a more sophisticated set partitioning based approach which can be extended

to a branch-and-price scheme is also investigated. This may yield better solutions

when considering the number of vehicles. A more sophisticated and dedicated

local search routine to the algorithm is likely to improve the result. In addition

to that, several neighborhood searches, which benefit from the relaxation of the

95

Conclusions and future works

problem to explore more solution areas [94], can be applied to the problem. Many

relaxation schemes should be tested and compared.

Regarding the algorithms dedicated to the synchronization case, we were re-

stricted to problems with up to 80 customers. An obvious challenge will be to

tackle larger problems, derived from those of VRPTW for example. It will be

interesting to study how the use of more sophisticated cuts can have an impact on

the efficiency of the algorithms, by simply starting with the cuts tested on similar

variants. This may include for example the Comb Inequalities, Box Inequalities,

Path-Box Inequalities and path inequalities [11].

We also plan to develop efficient hybrid methods combining the fast heuristic

with the exact algorithms proposed in both chapters (Chapters 4 and 5). Us-

ing solutions from the SA-ILS as warm start for the exact methods should be a

promising technique. We are also investigating the use of the exact methods for

the repair phase within the SA-ILS algorithm.

The proposition of a multi-objective algorithm which deals with all the pre-

sented criteria would be an interesting area, dealing with the travel cost, the sum

of preferences and the workload balance in the same time. The support of visitors

with different qualifications is contemplated. It is promising to study how this can

be done in practice and increase the application of this problem to more real-life

cases.

It is known how these types of problems have experienced tremendous growth

of applications in recent years. However, variability in data affects considerably

the quality of the solutions. Indeed, for example, some real life logistics systems

demands might arrive randomly and continuously in time or when deliveries need

to be made to external visitors. Therefore, there is a real need to develop rout-

ing tools that manage uncertain cases. Robust extensions of both problems are

being discussed and studied by considering some cases where the travel times or

the demands may belong to an uncertainty set. Hence, our plans fall into the

96

Conclusions and future works

development of a framework of robust programming, where a solution is said to

be feasible only if it is feasible for all realizations of the uncertain data.

97

Appendices

§

99

A | Paper: New Lower Bounds on the

Number of Vehicles for VRPTW

101

New Lower Bounds on the Number of Vehicles
for the Vehicle Routing Problem with Time

Windows

Sohaib AFIFI, Rym Nesrine GUIBADJ and Aziz MOUKRIM

Université de Technologie Compiègne
Laboratoire Heudiasyc, UMR 7253 CNRS, 60205 Compiègne, France
{sohaib.afifi,rym-nesrine.guibadj,aziz.moukrim}@hds.utc.fr

Abstract. The Vehicle Routing Problem with TimeWindows (VRPTW)
consists in determining the routing plan of vehicles with identical capac-
ity in order to supply the demands of a set of customers with predefined
time windows. This complex multi-constrained problem has been widely
studied due to its industrial, economic and environmental implications.
In this work, we are interested in defining the number of vehicles needed
to visit all the customers. This objective is very important to evaluate
the fixed costs for operating the fleet. In this paper, we provide an anal-
ysis of several lower bounds based on incompatibility between customers
and on vehicle capacity constraints. We also develop an adaptation of
Energetic Reasoning algorithm for VRPTW with a limited fleet. The
proposed approach focuses on some time-intervals and exploits time con-
straints, incompatibility graph and bin packing models in order to obtain
new valid lower bounds for the fleet size. Experiments conducted on the
standard benchmarks show that our algorithms outperform the classical
lower bound techniques and give the minimum number of vehicles for
339 out of 468 instances.

Keywords: vehicle routing, time windows, lower bounds, energetic rea-
soning.

1 Introduction

In today’s business world, transportation costs become a major share of the total
logistic expenses of companies. That is why many companies try to improve their
transportation by using rational manners and effective tools. The objective of
these problems is to make a vehicle scheduling strategy in order to minimize
the number of routes and the corresponding total travel distance or cost. In the
literature such problems are referred to as routing problems.

The vehicle routing problem with time windows (VRPTW) [10] is among
the most studied variants of routing problems due its wide range of applications.
Common examples are newspaper delivery, beverage and food delivery, commer-
cial and industrial waste collection [13]. In VRPTW, a set of customers must

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

102

be served by a fleet of vehicles located in a single depot. A quantity of goods
should be delivered to each customer whose service takes an amount of time.
Each customer is associated with a time window that represents the interval of
time when the customer is available to receive the service. This means that if the
vehicle arrives too soon, it should wait until the opening of the time window to
serve the customer while too late arrival is not allowed. Since deliveries cannot
be split, a customer must be served by a single vehicle. All vehicles are identical
and have a maximum capacity Q. The aim is to plan the minimal number of
routes starting and ending in a unique depot in order to serve all the customers
while respecting all the time windows and capacity constraints.

VRPTW was first introduced by Solomon [25]. Both exact and heuristic al-
gorithms have been proposed to solve VRPTW. Most of the exact methods focus
on the variant of the problem where the number of available vehicles is not fixed.
A review on the exact methods up to 2002 is reported in [7]. Kallehauge in [17]
gave a detailed analysis of existing formulations. More recently, Baldacci et al.
[3] reviewed mathematical formulations, relaxations and recent exact methods.
They reported the computational comparison between the methods proposed in
[15], [8] and [2] that are considered as the most effective exact methods in the
literature. These approaches have significantly improved the quality of the lower
bounds for instances with up to 100 customers. The key factor of their success
is the effective combination between the set partitioning formulation and the
column generation based algorithms.

Since, VRPTW is an NP-Hard problem [21], the computational times for
exact methods can be very high, even for instances with a moderate size. This
has been the motivation for some researches to focus on approximate methods.
It is worth pointing out that the literature concerning VRPTW is split accord-
ing to the objective considered. While exact methods usually minimize the total
traveled distance, most heuristics consider a hierarchical objective which first
minimizes the number of vehicles used and then the total distance. Thus, a so-
lution that employs fewer vehicles is always better than a one using more, even
if its total traveled distance is worse. A good survey of heuristic methods is re-
ported in the papers of Bräysy and Gendreau [5] [6]. Among the best performing
heuristics are the hybrid genetic algorithm of [16], the column generation heuris-
tic of [1] and the memetic algorithm of [20]. A new optimization framework was
later developed by Ursani et al. [27] for the distance minimization objective only.
This framework is an iterative procedure between optimization and deteriora-
tion phases and uses a genetic algorithm as an optimization methodology. In
the recent paper of Vidal et al. [28], a hybrid genetic solver is developed to deal
with a large class of time-constrained vehicle routing problem. A third stream of
research focuses on solving VRPTW as a multi-objective problem in which both
vehicles and cost are considered depending on the needs of the user [26] [24].

The goal of this paper is to use scheduling methods via Energetic Reason-
ing in order to develop new lower bounding procedures for VRPTW. This is
mainly based on constraint propagation concept. The objective is to reduce the
computational effort by removing some values from the variables of the problem

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

103

because a given subset of the constraints cannot be satisfied. The remained of
the paper is organized as follows. Section 2 briefly describes the problem. In Sec-
tions 3 and 4, the detailed description of the proposed lower bound methods is
given and in Section 5 the results of a computational study are reported. Finally,
Section 6 provides some concluding remarks.

2 Problem formulation

In the following, we present a mixed integer formulation for VRPTW. The prob-
lem is modeled using an oriented graph G = (V +, E), where V + = {0, 1, 2, ..., n}
is the vertex set representing the set of customers V = {1, 2, ..., n} and the depot
0. E = {(i, j) : i ̸= j, i, j ∈ V +} is the edge set. The capacities of all vehicles are
equal and are denoted by Q. A demand qi, a service time si and a time window
[ei, li] are associated to each vertex i ∈ V . Vehicle v cannot arrive later than li
and if it arrives earlier than ei, it must wait before the service can start. Each
edge (i, j) ∈ E is associated with a travel cost δi,j which satisfies the triangle in-
equality. Each vehicle must start and finish its tour at the depot. Each customer
must be served within a predefined time window and assigned to exactly one
vehicle. The total size of deliveries for customers assigned to the same vehicle
must not exceed the vehicle capacity Q and the travel cost/time C(R) of each
tour R must not exceed l0 which is the latest possible arrival time to the depot.

The model involves three types of variables: the binary routing variables
xij ∈ {0, 1} (i, j ∈ V +), the scheduling variables wi ≥ 0 (i ∈ V) and the vehicle
load variables yi (i ∈ V). The routing variables xij is one if a vehicle traverses
the arc (i, j) ∈ E. The scheduling variable wi denotes the time the vehicle arrives
at customer i ∈ V . yi denotes the vehicle load at departure from customer i.
The formulation is as follows:

min
∑
i∈V

x0i (1)

subject to:∑
j∈V +

xij = 1 ∀i ∈ V (2)

∑
j∈V +

xij −
∑
j∈V +

xji = 0 ∀i ∈ V + (3)

wj ≥ wi + xij(max(δi,j + si, ej − li))− (1− xij)(li − ej) ∀i, j ∈ V (4)

ei ≤ wi ≤ li ∀i ∈ V (5)

yj ≥ yi + qj − (1− xij)Q ∀i, j ∈ V (6)

qi ≤ yi ≤ Q ∀i ∈ V (7)

xij ∈ {0, 1} ∀i, j ∈ V + (8)

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

104

The objective function (1) is to minimize the total number of vehicles used to
serve all the customers. Constraints (2) and (3) define the routing network and
the constraints (4) and (5) guarantee the connectivity of each tour and ensure
that the time windows are respected. We assume that the time windows are
adjusted such that ei = max(ei, δ0,i) and li = min(li, l0 − (δi,0 + si)) ∀i ∈ V .
Constraints (6) and (7) ensure that the vehicle’s capacity is not exceeded. Also
constraints (6) eliminate subtours in a manner similar to (4). Finally, (8) are
integral constraints.

3 Classical lower bounding techniques

There were only few attempts to propose lower bounds for VRPTW when the
objective is to minimize the number of vehicles. To the best of our knowledge,
the most competitive results are currently offered by Kontoravdis and Bard
[19]. In this section, we briefly review the main features of their lower bounding
heuristics.

3.1 A lower bound based on incompatibilities between customers

The first lower bound is deduced from the incompatibility constraints. Let i and
j be two customers. If there is no feasible route containing i and j then they
define an incompatible pair denoted by i||j. Such a situation occurs if one of the
following conditions is verified:

1. Customers i and j cannot be in the same route due to their time window
constraints:
(ei + si + δi,j > lj) ∧ (ej + sj + δj,i > li)⇒ i||j.

2. The travel cost of any tour with i and j exceeds the cost limit l0:
(C(R1) > l0) ∧ (C(R2) > l0) where R1 = (0, i, j, 0) ∧R2 = (0, j, i, 0)⇒ i||j.

3. The sum of the demands is greater than the vehicle capacity:
qi + qj > Q⇒ i||j.

Using these conditions, we build the graph of incompatibilities between cus-
tomers defined as: GV

inc = (V,EV) where EV = {(i, j) ∈ V × V : i||j}. Based
on this graph the minimum number of routes to be used, denoted LBClique, is
equal to the size of the maximum clique extracted from GV

inc.

3.2 A lower bound based on vehicle capacity constraints

The second bound is based on a relaxation of time window constraints. When
considering only the capacity constraints, VRPTW can be reduced to a Bin
Packing Problem (BPP). Each vehicle is considered as a bin with fixed size Q
and each customer demand as an item with size qi that should be put in a bin.
Any lower bound LBCapacity on the number of bins required to pack all the
items is considered as a valid lower bound for VRPTW.

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

105

3.3 A lower bound based on the amount of needed travel time

This lower bound consists of calculating the minimum number of bins LBBP of
capacity l0 to pack n +m items. The size θi of an item i, 1 ≤ i ≤ n, represents
the necessary amount of time that a vehicle needs to serve customer i and to
travel to its closest neighbor. This time is defined by:

θi ← min
j∈V +

{max(δi,j + si, ej − li)} (9)

The sizes of the other m items correspond to the m least travel times from the
depot to the first served customers where m = max(LBClique, LBCapacity).

4 New lower bounds inspired from Energetic Reasoning

In this section, we first present a brief overview of Energetic Reasoning, then we
discuss its adaptation to VRPTW.

4.1 Energetic Reasoning

Energetic Reasoning (ER) is one of the most powerful propagation algorithms.
It has been originally developed by Erschler et al. [9] for Cumulative Schedul-
ing Problems (CuSP). The idea is to propose a smart way to simultaneously
consider time and resource constraints in a unique reasoning. In this context,
the energy is generally defined by multiplying the time duration by the resource
quantity of a given time interval. Considering the quantities of energy supplied
by the resources and consumed by the tasks within given intervals, the energetic
approach aims to develop satisfiability tests to ensure that a given schedule is
feasible. Since its inception, Energetic Reasoning has gained popularity and has
been used for solving more complex scheduling problems [23].

In order to keep the same notation used for vehicle routing problem, we
describe the CuSP as follows. We consider a set V of n activities to be scheduled
on a resource of quantity m. Each activity i has a release time ei, a latest start
time li and a processing time si. Moreover, the activity i requires a constant
amount bi of resource throughout its processing. We will deal here only with the
case where bi = 1, ∀i ∈ V . This is equivalent to the problem of scheduling n
activities on m identical parallel machines. For ease of presentation, we denote
this problems as PMSP.

Given a time interval [t1, t2], with t1 < t2, the part of an activity i that must
be processed between t1 and t2 is called work of i in the time interval [t1, t2]. To
compute this work, the activities are either left-shifted or right-shifted on their
time window, which means that, they can start either at their release date ei, or
at their latest start time li. Thus, the work of an activity i over [t1, t2] is equal
to the minimum between its left work and its right work. For convenience, the
left work, the right work and the work of an activity i over [t1, t2] are denoted

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

106

respectively Wleft(i, t1, t2), Wright(i, t1, t2) and W (i, t1, t2). They are formally
defined as follows:

Wleft(i, t1, t2) = min{ t2 − t1, si,max(0, ei + si − t1)} (10)

Wright(i, t1, t2) = min{ t2 − t1, si,max(0, t2 − li)} (11)

W (i, t1, t2) = min(Wleft(i, t1, t2),Wright(i, t1, t2)) (12)

Finally, we define the total work over [t1, t2] as the sum of the works of

all the activities W (t1, t2) =
∑i=n

i=1 W (i, t1, t2) and the available energy in the
considered interval as E(t1, t2) = m ∗ (t2 − t1). If the total work is greater than
the available energy then no feasible solution exists.

Proposition 1 satisfiability test
if ∃[t1, t2], W (t1, t2) > E(t1, t2) then the instance is infeasible.

Note that one crucial point to apply efficiently Energetic Reasoning is to de-
termine the relevant time-intervals on which it may be useful to check feasibility
conditions. Baptiste et al. [4] have proved that the only relevant time intervals
[t1, t2] that need to be considered are those where t1 ∈ T1 and t2 ∈ T2 such as
t1 < t2, T1 = {ei, i ∈ V } ∪ {li, i ∈ V } ∪ {ei + si, i ∈ V } and T2 = {li + si, i ∈
V } ∪ {ei + si, i ∈ V } ∪ {li, i ∈ V }. Therefore, the satisfiability test algorithm
runs in O(n3). The detailed steps are summarized in Algorithm 1.

Algorithm 1: satisfiability test of Energetic Reasoning

Data: I : PMSP instance;
1 begin
2 initialization;
3 T1 = {ei, i ∈ V } ∪ {li, i ∈ V } ∪ {ei + si, i ∈ V };
4 T2 = {li + si, i ∈ V } ∪ {ei + si, i ∈ V } ∪ {li, i ∈ V };
5 foreach t1 ∈ T1 do
6 foreach t2 ∈ T2 such as t1 < t2 do
7 W ← 0;
8 foreach i ∈ V do
9 W ←W +W (i, t1, t2);

10 if W > m ∗ (t2 − t1) then
11 Infeasible instance ;

4.2 From VRPTW to PMSP

Our approach is to relax a VRPTW instance, where a limited number of vehicles
is given, in order to obtain a PMSP instance. Once the transformation is per-
formed, we apply the same satisfiability test on the relaxed m-VRPTW instance,

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

107

using Algorithm 1. Starting from a trivial valuem = max(LBClique, LBCapacity),
feasibility tests are carried out to detect an infeasibility (if in at least one of the
time intervals, the minimum number of vehicles found exceeds m). If an infea-
sibility is detected, then m + 1 is a valid lower bound. The process is iterated
until no infeasibility is detected.

A trivial relaxation of an m-VRPTW instance can be done by ignoring travel
times, customer demands and vehicle capacities. We obtain a PMSP where the
vehicles are considered as m identical parallel machines, the number of activities
is equal to the number of customers n and each activity i has to be processed
for si units of time by only one machine. The processing of activity i cannot be
started before its release date ei or after its lastest start time li.

In vehicle routing problems, travel times are not negligible compared to the
service times. Ignoring the travel time would undervalue the energy consumed.
Therefore, few adjustments could be performed and Energetic Reasoning be-
comes inefficient. Better results are obtained by considering the time that a
vehicle needs to travel in order to visit each customer.

First, the travel time δi,j between the customers i and j is updated to elim-
inate the waiting time at the customer j.

δi,j ← max(δi,j , ej − (li + si)) ∀i ∈ V ∀ j ∈ V + (13)

Then, the number of potential successors of customer i is reduced. This is per-
formed by eliminating the transition δi,j if j cannot be served after i due to its
time window:

if(ei + si + δi,j > lj) then δi,j ←∞ ∀i ∈ V + ∀ j ∈ V + \ {i} (14)

Before giving the detail of our travel evaluation procedure, we note by I ′ the
instance derived from the m-VRPTW instance I. We associate I ′ with a graph
G′ = (V ′, E′) after performing the following transformations:

1. We introduce m artificial departure vertices Vd and m artificial arrival ver-
tices Va. Then, we define the set V ′ = V ∪ Vd ∪ Va with V = {1, ..., n},
Vd = {n+ 1, ..., n+m} and Va = {n+m+ 1, ..., n+ 2×m}.

2. The set of arcs is defined by E′ = E ∪ {(i, j) : i ̸= j, i ∈ V ∪ Vd, j ∈ V ∪ Va}.
3. The distance matrix ∆ = (δi,j) is extended to ∆′ = (δ′i,j) which is associated

to E′ such as:

δ′i,j =


δi,j (i, j ∈ V),
δ0,j (i ∈ Vd, j ∈ V),
δi,0 (i ∈ V, j ∈ Va),
∞ (i ∈ V ′, j ∈ Vd) or (i ∈ Va, j ∈ V ′)

(15)

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

108

to

from
1 2 3 4 0

1  1 2 4 3

2    1 5

3     6

4     2

0 3 5 6 2 

i [ei,li] si

1 [2,3] 2

2 [6,6] 2

3 [7,7] 2

4 [9,10] 2

0 [0,14] 0

b) The customers data

1

2

3

4

s01

δ12

δ14

δ13

δ02

δ01

δ03

δ20

δ30

δ24

 Departure Arrival δ40

a) Illustration of an m-VRPTW instance with 4 customers and 2 vehicles

c) The distance matrix 

 1 2 4   3 3

   1   5 5

      6 6

      2 2

3 5 6 2    

3 5 6 2    

       

       

arrival

vertices

departure

vertices

d
ep

ar
tu

re

v
er

ti
ce

s

ar
ri

v
al

v
er

ti
ce

s

c) Reducing the rows d) Reducing the columns

i' [e'i,l'i] s'i

1 [2,3] 3

2 [6,6] 3

3 [6,6] 9

4 [9,10] 4

5 [0,0] 2

6 [0,0] 3

7 [0,14] 0

8 [0,14] 0

d) The extended distance matrix ’

 0 1 3   2 2

   0   4 4

      0 0

      0 0

1 3 4 0    

0 2 3 0    

       

       

 0 0 3   2 2

   0   4 4

      0 0

      0 0

1 3 3 0    

0 2 2 0    

       

       

e) Reducing the rows f) Reducing the columns

1

2

3

4

s’1

6

5

h) Illustration of the resulting PMSP

Activities

corresponding to

the artificial

departure vertices

7

8

Activities

corresponding

to the artificial

arrival vertices

g) The activities data of the resulting PMSP

Fig. 1. An example of m-VRPTW instance relaxed to PMSP instance.

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

109

The set of vertices V ′ in G′ denotes the n + 2 × m activities assigned to
I ′. The artificial departure activities corresponding to Vd have a time window
equal to [0, 0] and durations equal to the m smallest travel time from the depot
to customers {δmin

0,1 , ..., δmin
0,m }. This supposes that the vehicles must leave the

depot immediately in order to visit the m first customers. The artificial arrival
activities corresponding to Va have the largest possible time window [0, l0] and
no processing time. For the remaining activities, the range of the possible start
dates is equal to the customer’s time window [ei, li], while the processing time
is equal to the sum of the service time si with the minimal travel time that the
vehicle will necessary perform to reach the next customer.

[e′i, l
′
i] =


[0, 0] i ∈ Vd,

[0, l0] i ∈ Va,

[ei, li] i ∈ V

(16)

s′i =


δmin
0,i−n i ∈ Vd,

0 i ∈ Va,

si +minj∈V ′{δ′i,j} i ∈ V

(17)

Each row i , i ∈ V ′ of the extended matrix ∆′ is updated by subtracting the
smallest element from the remaining ones (18). This means that the minimal
travel time after serving customer i is subtracted from the total distance of any
solution since every solution must include only one customer from this row. This
process is called reducing the rows. It was introduced by [22] in order to solve
the well known Traveling Salesman Problem.

δ′i,j =

{
δ′i,j −minj∈V ′{δ′i,j} ∀i ∈ V j ∈ V ′,

max(0, δ′i,j − δmin
0,i−n) ∀i ∈ Vdj ∈ V ′ (18)

Next, we apply the same argument to the resulting matrix, by considering
the minimal travel time to arrive from any customer j to customer i (19). This
time is added at the beginning of activity i. For this reason, the bounds of the
corresponding time window are shifted (20) (21). After these reducing operations,
the matrix∆′ contains at least one zero in each row and each column. The Figure
1 illustrates the relaxation of an m-VRPTW instance with 4 customers and 2
vehicles.

s′i ← s′i +minj∈V ′{δ′j,i} ∀i ∈ V ′ (19)

e′i ← max(0, e′i −minj∈V ′{δ′j,i}) ∀i ∈ V ′ (20)

l′i ← max(0, l′i −minj∈V ′{δ′j,i}) ∀i ∈ V ′ (21)

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

110

According to the evaluation procedure of travel times, we distinguish two
possible lower bounds LBEReval1

and LBEReval2
. The former is obtained if the

travel times to the successors are considered before the remaining travel times
from the predecessors whereas the latter is obtained by reversing the order of
the considered travels. LBER denotes the maximum between LBEReval1

and
LBEReval2

.

4.3 Bin-packing lower bounds and Energetic Reasoning

We extend Energetic Reasoning, using the Bin-Packing Problem with Conflicts
(BPPC), to get tighter lower bounds for VRPTW. In each time-interval [t1, t2],
we compute the mandatory parts of activities and then we deduce an associated
bin-packing instance. The decision version of BPPC that we use can be formu-
lated as follows: given a set of items with different weights and a graph where
the vertices represent the items and the edges represent the conflicts between
the pairs of items; is there a packing of these items in less than m bins with a
capacity T ?

We now state the link between a necessary condition for the existence of
m-VRPTW solution and the existence of BPPC solution. Let I ′(V ′, Ginc,m)
denote a relaxed instance of m-VRPTW where V ′ is the set of activities, m
the number of available vehicles and Ginc the graph of incompatibilities be-
tween activities. Let [t1, t2] be a time-interval, we assume that the corresponding
mandatory parts of activities have been computed: W (i, t1, t2),∀i ∈ V ′. Then,
BPPC(I ′, Ginc, t1, t2) denotes the packing instance which is associated to the
scheduling instance I ′ in the time-interval [t1, t2]. BPPC(I ′, Ginc, t1, t2) is made
ofm bins and n′ items of sizeWi = W (i, t1, t2), ∀i ∈ {1, ..., n}. The size of the bin
is equal to the length of the time-interval T = t2−t1. Then, deciding whether all
mandatory parts of the activities can be scheduled within [t1, t2] in I ′ is equiv-
alent to determine for BPPC(I ′, Ginc, t1, t2) if all items can be packed into the
available bins.

Property 1. If there exists a time-interval [t1, t2], such that BPPC(I ′, Ginc, t1,
t2) has no solution, then there is no solution to the initial problem I ′(V , Ginc,
m).

Since this lower bound is based on NP-hard relaxation of m-VRPTW, it is
naturally much time consuming than LBER. Therefore, we did not lunch it on all
the previously defined time intervals. An interval [t1, t2] is selected if its conflict
sub graph density is greater than or equal 80% or if the ratio of activities works
to the available energy is close to 1 i.e. W (t1, t2)/[m ∗ (t2 − t1)] > 0.9.

As stated in Section 4.2, Energetic Reasoning uses two procedures to deter-
mine the processing time of activities. The new obtained lower bound LBERBPPC

represents the maximum between LBERBPPC eval1 and LBERBPPC eval2. In the
same way and by ignoring the conflict constraints, we can obtain a quicker lower
bound LBERBPP .

The example in Figure 2 illustrates the contribution of bin packing lower
bounds in the improvement of Energetic Reasoning results. We consider a VRPTW

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

111

1

2

4

3

a) m-VRPTW instance with its associated incompatibility graph

b) Energetic Reasoning: LBER=3

6

8

5

1 2

3 4

5 6

8

7

7

1 2

3 4

5 6

8

7

1 2

3 4

5 6

8

7

7

i [ei,li] si

1 [2,3] 3

2 [6,7] 3

3 [2,3] 3

4 [6,7] 3

5 [2,3] 3

6 [6,7] 3

7 [2,3] 3

8 [3,3] 2

t1 =2 t2 =10
t1 =2 t2 =10 t1 =2 t2 =10

c) Energetic Reasoning with Bin Packing:

LBERBPP=4

d) Energetic Reasoning with Bin

Packing and conflicts:

LBERBPPC=5

Fig. 2. Illustration of Energetic Reasoning lower bounds.

instance with 8 customers defined by their time windows and service times. We
suppose that the vehicle capacity is large enough to satisfy all customers de-
mands and that customer 8 cannot be served with any other customer. The
results obtained by LBCapacity and LBClique are equal to 1 and 2 respectively.
When analyzing the interval [t1, t2], the Energetic Reasoning LBER gives 3. This
result is improved by applying Bin Packing lower bound and taking into account
the conflicts between customers (LBERBPP = 4 and LBERBPPC = 5).

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

112

5 Numerical results

We tested our algorithms on the well known instances of Solomon [25], Gehring
and Homberger [11]. The benchmark comprises 6 sets (R1, C1, RC1, R2, C2,
RC2). Each data set contains 25, 50, 100, 200, 400, 600, 800 and 1000 customers
who have specific euclidean coordinates. Customers’ locations are determined
using a random uniform distribution for the problem sets R1 and R2, but are
restricted to be within clusters for the sets C1 and C2. Sets RC1 and RC2 have
a combination of clustered and randomly placed customers. Sets R1, C1 and
RC1 have a short scheduling horizon with tight time windows, while R2, C2
and RC2 are based on wide time windows. Our algorithms are coded in C++
and all experiments were conducted on an Intel(R) Core(TM) 2 Duo 2.93GHz.

Finding a clique with the greatest cardinality involves the use of an exact
method with exponential worst case performance. Nevertheless, our experiments
on the standard benchmarks show that the maximum clique can be identified
in a fraction of a second using the exact method described in [18]. For the Bin
Packing Problem, we use the heuristic algorithm developed by [14] to get good
lower bounds in a reasonable computational times. When conflicts are considered
in solving Bin Packing, we apply the approach proposed in [12]. For performance
purpose, we launch this algorithm with a time out of 3 hours.

Table 1 and Table 2 compare the performance of our Energetic Reasoning
bounds: LBER, LBERBPP and LBERBPPC to the elementary bounds present in
the literature: LBClique, LBCapacity and LBBP . The column BestUB represents
the overall best-published upper bounds. The maximum of the lower bounds is
reported in column BestLB. In AvgGAP , we present the average gap between
BestUB and BestLB.

In general, the proposed techniques give the minimum number of vehicles
of 339 instances among the 468 instances tested and give near optimal solu-
tion for the rest. The average performance of LBCapacity is consistently better
than LBClique, but LBClique outperforms LBCapcaity in 5 instances in C1, 25
instances in R1, 4 instances in RC1 and 1 instance in RC2 by a margin of 128.
This is due to the structure of the data sets which does not favor time and
capacity incompatible pairs. On the other hand, the three new lower bounds:
LBER, LBERBPP and LBERBPPC produced consistent results across all data
sets. Compared to the classical lower bound techniques: LBClique, LBCapacity

and LBBP , they give better bounds for 23 instances.
When Energetic Reasoning is combined to BPP (LBERBPP) and BPPC

(LBERBPPC), the results outperform the bounds produced by LBER in 3 in-
stances. This is due to the fact that the incompatibilities are considered at each
examined time interval. These results confirm that the association of ER and
BPPC is very efficient for VRPTW. We believe that ERBPPC will clearly out-
perform ER on highly constrained data set with more incompatible pairs. To
conclude, the overall performance of the new lower bounding procedures has
been encouraging. The use of Energetic Reasoning improves many lower bounds
and gives good results for both capacity constrained problems and time con-
strained problems.

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

113

6 Conclusion

In this paper, we introduced several combinatorial optimization methods which
can be used to get lower bounds for the Vehicle Routing Problem with Time
Windows (VRPTW). Investigating the concept of Energetic Reasoning, we were
able to propose new lower bounding techniques based on the transformation of
m-VRPTW instance to PMSP. The numerical results confirm the contribution
brought by the new proposed techniques. With a very fast computing time, we
were able to provide the exact number or a reasonable approximation of the
minimum number of vehicles required to visit all the customers. This suggests
that our lower bounds techniques can quickly produce a good estimation of the
fleet size. A challenging area for future research is to develop an exact method
using the proposed lower bound procedures.

Acknowledgments

This work is partially supported by the Regional Council of Picardie and the
European Regional Development Fund (ERDF), under PRIMA project. It is also
partially supported by the National Agency for Research (project ATHENA,
Reference ANR-13-BS02-0006-01).

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

114

D
a
ta

S
e
t

n
C
la
s
s
ic
a
l

N
e
w

B
e
s
tL

B
B
e
s
tU

B
A
v
g
G
A
P

C
li
q
u
e

C
a
p
a
c
it
y

B
P

E
R

E
R
B
P
P

E
R
B
P
P
C

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

C
1

2
5

1
.8
9

0
3

0
2

0
3

0
3

0
3

0
3

3
0

C
2

2
5

1
0

1
0

1
0

1
.1
3

0
1
.1
3

0
1
.1
3

0
1
.1
3

1
.1
3

0
R
1

2
5

3
.5
8

0
2

0
3
.2
5

0
3
.9
2

0
3
.9
2

0
.0
1

4
0
.2
6

4
4
.7
5

0
.7
5

R
2

2
5

1
0

1
0

1
0

1
.0
9

0
1
.0
9

0
1
.0
9

0
.0
4

1
.0
9

1
.2
7

0
.1
8

R
C
1

2
5

2
.7
5

0
3

0
2
.2
5

0
3
.1
3

0
3
.1
3

0
3
.1
3

0
.0
3

3
.1
3

3
.2
5

0
.1
3

R
C
2

2
5

1
0

1
0

1
0

1
0

1
0
.0
1

1
0
.0
8

1
1
.5

0
.5

C
1

5
0

3
0

5
0

4
0

5
0

5
0

5
0

5
5

0
C
2

5
0

1
0

2
0

2
0

2
0

2
0

2
0

2
2

0
R
1

5
0

5
.2
5

0
4

0
5
.1
7

0
6
.3
3

0
.0
2

6
.3
3

0
.0
9

6
.4
2

7
6
.4
1

6
.4
2

7
.4
2

1
R
2

5
0

1
0

1
0

1
.1
8

0
1
.2
7

0
.0
1

1
.2
7

0
.0
6

1
.2
7

0
.2
3

1
.2
7

2
0
.7
3

R
C
1

5
0

4
.2
5

0
5

0
4
.1
3

0
5
.2
5

0
.0
1

5
.2
5

0
.0
5

5
.3
8

8
9
.8
8

5
.3
8

6
.5

1
.1
3

R
C
2

5
0

1
.1
3

0
1

0
1

0
1
.1
3

0
.0
1

1
.1
3

0
.0
5

1
.1
3

0
.2
8

1
.1
3

2
0
.8
8

C
1

1
0
0

4
.8
9

0
1
0

0
8

0
1
0

0
1
0

0
1
0

0
1
0

1
0

0
C
2

1
0
0

1
.3
8

0
3

0
3

0
3

0
3

0
3

0
3

3
0

R
1

1
0
0

7
.9
2

0
8

0
8
.3
3

0
1
0
.4
2

0
.1
1

1
0
.4
2

0
.4
5

1
0
.4
2

3
6
4

1
0
.4
2

1
1
.9
2

1
.5

R
2

1
0
0

1
.1
8

0
2

0
2

0
2
.0
9

0
.0
7

2
.0
9

0
.3
1

2
.0
9

2
7
.2

2
.0
9

2
.7
3

0
.6
4

R
C
1

1
0
0

6
.3
8

0
9

0
7
.6
3

0
9
.6
3

0
.1

9
.6
3

0
.4
5

9
.6
3

9
9
.5
2

9
.6
3

1
1
.5

1
.8
8

R
C
2

1
0
0

1
.1
3

0
2

0
2

0
2
.1
3

0
.1
1

2
.1
3

0
.4
4

2
.1
3

3
3
.1
6

2
.1
3

3
.2
5

1
.1
3

T
a
b
le

1
.
A
v
er
a
g
e
lo
w
er

b
o
u
n
d
re
su
lt
s
a
n
d
C
P
U

ti
m
es

fo
r
S
o
lo
m
o
n
in
st
a
n
ce
s

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

115

D
a
ta

S
e
t

n
C
la
s
s
ic
a
l

N
e
w

B
e
s
tL

B
B
e
s
tU

B
A
v
g
G
A
P

C
li
q
u
e

C
a
p
a
c
it
y

B
P

E
R

E
R
B
P
P

E
R
B
P
P
C

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

C
1

2
0
0

8
.8

0
1
8

0
1
5

0
1
8
.3

0
.4
1

1
8
.3

1
.8
2

1
8
.3

4
2
9
.4
1

1
8
.3

1
8
.9

0
.6

C
2

2
0
0

2
.1

0
6

0
6

0
6

0
6

0
6

0
6

6
0

R
1

2
0
0

1
0
.4

0
1
8

0
7
.3

0
1
8
.2

0
1
8
.2

0
1
8
.2

0
1
8
.2

1
8
.2

0
R
2

2
0
0

1
.6

0
4

0
2

0
4

0
4

0
4

0
4

4
0

R
C
1

2
0
0

6
.8

0
1
8

0
6
.5

0
1
8

0
1
8

0
1
8

0
1
8

1
8

0
R
C
2

2
0
0

1
.9

0
4

0
2

0
4

0
.1
5

4
0
.7
5

4
1
4
0
.5
6

4
4
.3

0
.3

C
1

4
0
0

1
6
.9

0
.0
1

3
6

0
.0
1

2
6
.5

0
.0
1

3
6
.5

2
.8

3
6
.5

1
2
.4
7

3
6
.5

2
8
8
0
.1
2

3
6
.5

3
7
.6

1
.1

C
2

4
0
0

2
.5

0
.0
1

1
1

0
.0
1

1
1

0
.0
1

1
1
.2

2
.6

1
1
.2

1
2
.3
1

1
1
.2

2
8
8
0
.0
9

1
1
.2

1
1
.6

0
.4

R
1

4
0
0

1
7
.9

0
.0
1

3
6

0
.0
1

1
1
.7

0
.0
1

3
6
.4

0
3
6
.4

0
3
6
.4

0
3
6
.4

3
6
.4

0
R
2

4
0
0

2
.4

0
.0
1

8
0
.0
1

2
.7

0
.0
1

8
0

8
0

8
0

8
8

0
R
C
1

4
0
0

1
2
.8

0
.0
1

3
6

0
.0
1

1
0
.8

0
.0
1

3
6

0
3
6

0
3
6

0
3
6

3
6

0
R
C
2

4
0
0

3
.1

0
.0
1

8
0
.0
1

2
.8

0
.0
1

8
1
.1
1

8
5
.5
5

8
1
4
4
0
.0
4

8
8
.4

0
.4

C
1

6
0
0

2
4
.2

0
.0
3

5
6

0
.0
2

4
0
.4

0
.0
2

5
6
.4

5
.3
5

5
6
.4

3
1
.2
5

5
6
.4

2
1
6
0
.3
2

5
6
.4

5
7
.2

0
.8

C
2

6
0
0

4
.3

0
.0
2

1
7

0
.0
1

1
5
.9

0
.0
2

1
7
.1

5
.9
2

1
7
.1

2
8
.7
2

1
7
.1

2
1
6
0
.3
1

1
7
.1

1
7
.4

0
.3

R
1

6
0
0

2
8
.1

0
.0
3

5
4

0
.0
1

1
3
.9

0
.0
2

5
4
.5

0
5
4
.5

0
5
4
.5

0
5
4
.5

5
4
.5

0
R
2

6
0
0

4
.3

0
.0
2

1
1

0
.0
1

3
.4

0
.0
1

1
1

0
1
1

0
1
1

0
1
1

1
1

0
R
C
1

6
0
0

1
9
.7

0
.0
4

5
5

0
.0
2

1
2
.2

0
.0
2

5
5

0
5
5

0
5
5

0
5
5

5
5

0
R
C
2

6
0
0

4
.7

0
.0
2

1
1

0
.0
1

2
.9

0
.0
2

1
1

3
.6
3

1
1

1
8
.3
8

1
1

1
4
4
0
.1
6

1
1

1
1
.4

0
.4

C
1

8
0
0

3
4
.4

0
.0
8

7
2

0
.0
5

4
9
.3

0
.0
5

7
2
.8

1
8
.3
6

7
2
.8

9
7
.4
5

7
2
.8

4
3
2
2
.5

7
2
.8

7
5

2
.2

C
2

8
0
0

5
.7

0
.0
5

2
2

0
.0
4

2
1

0
.0
4

2
2
.2

4
8
.5
5

2
2
.2

2
2
8
.2
5

2
2
.2

9
7
2
2
.1
8

2
2
.2

2
3
.3

1
.1

R
1

8
0
0

3
5
.3

0
.0
6

7
2

0
.0
5

1
5
.8

0
.0
5

7
2
.8

0
7
2
.8

0
7
2
.8

0
7
2
.8

7
2
.8

0
R
2

8
0
0

5
.3

0
.0
5

1
5

0
.0
4

3
.5

0
.0
4

1
5

0
1
5

0
1
5

0
1
5

1
5

0
R
C
1

8
0
0

2
7
.5

0
.4
1

7
2

0
.0
5

1
4
.9

0
.0
4

7
2

0
7
2

0
7
2

0
7
2

7
2

0
R
C
2

8
0
0

6
.6

0
.0
5

1
5

0
.0
4

3
.5

0
.0
4

1
5

8
.9
6

1
5

4
5
.7

1
5

2
1
6
0
.5
2

1
5

1
5
.4

0
.4

C
1

1
0
0
0

4
4
.6

0
.3
4

9
0

0
.0
9

5
8

0
.0
9

9
1

3
5
.2
2

9
1

1
8
5
.6
4

9
1

4
3
2
4
.8

9
1

9
3
.9

2
.9

C
2

1
0
0
0

7
.9

0
.1
1

2
8

0
.0
9

2
5
.1

0
.0
7

2
8
.1

6
7
.8
1

2
8
.1

2
8
4
.2
1

2
8
.1

6
4
8
4
.5
9

2
8
.1

2
8
.8

0
.7

R
1

1
0
0
0

4
4
.5

0
.1
3

9
1

0
.0
9

1
9
.5

0
.0
8

9
1
.9

0
9
1
.9

0
9
1
.9

0
9
1
.9

9
1
.9

0
R
2

1
0
0
0

6
.5

0
.0
9

1
9

0
.0
8

4
0
.0
7

1
9

0
1
9

0
1
9

0
1
9

1
9

0
R
C
1

1
0
0
0

3
1
.5

0
.7
9

9
0

0
.0
8

1
7
.7

0
.0
8

9
0

0
9
0

0
9
0

0
9
0

9
0

0
R
C
2

1
0
0
0

7
.8

0
.1

1
8

0
.0
8

4
.1

0
.0
7

1
8

8
.2
1

1
8

4
0
.3
2

1
8

1
0
8
0
.5
7

1
8

1
8
.2

0
.2

T
a
b
le

2
.
A
v
er
a
g
e
lo
w
er

b
o
u
n
d
re
su
lt
s
a
n
d
C
P
U

ti
m
es

fo
r
G
eh

ri
n
g
a
n
d
H
o
m
b
er
g
er

in
st
a
n
ce
s

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

116

Bibliography

[1] Alvarenga, G. B., Mateus, G. R., and De Tomi, G. (2007). A genetic and set
partitioning two-phase approach for the vehicle routing problem with time windows.
Computers & Operations Research, 34(6):1561 – 1584.

[2] Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and
pricing strategies for the vehicle routing problem. Operations Research, 59(5):1269–
1283.

[3] Baldacci, R., Mingozzi, A., and Roberti, R. (2012). Recent exact algorithms for
solving the vehicle routing problem under capacity and time window constraints.
European Journal of Operational Research, 218(1):1–6.

[4] Baptiste, P., Le Pape, C., and Nuijten, W. (1999). Satisfiability tests and time-
bound adjustments for cumulative scheduling problems. Annals of Operations Re-
search, 92:305–333.

[5] Bräysy, O. and Gendreau, M. (2005a). Vehicle routing problem with time win-
dows, part i: Route construction and local search algorithms. Transportation science,
39(1):104–118.

[6] Bräysy, O. and Gendreau, M. (2005b). Vehicle routing problem with time windows,
part ii: Metaheuristics. Transportation science, 39(1):119–139.

[7] Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M. M., and Soumis, F.
(2001). The vehicle routing problem. chapter VRP with Time Windows, pages
157–193. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

[8] Desaulniers, G., Lessard, F., and Hadjar, A. (2008). Tabu search, partial elemen-
tarity, and generalized k-path inequalities for the vehicle routing problem with time
windows. Transportation Science, 42(3):387–404.

[9] Erschler, J., Lopez, P., and Thuriot, C. (1991). Raisonnement temporel sous con-
traintes de ressources et problèmes d’ordonnancement. Revue d’Intelligence Artifi-
cielle, 5(3):7–36.

[10] Fisher, M. L., Jörnsten, K. O., and Madsen, O. B. (1997). Vehicle routing with
time windows: Two optimization algorithms. Operations Research, 45(3):488–492.

[11] Gehring, H. and Homberger, J. (1999). A parallel hybrid evolutionary meta-
heuristic for the vehicle routing problem with time windows. In Proceedings of
EUROGEN99, volume 2, pages 57–64.

[12] Gendreau, M., Laporte, G., and Semet, F. (2004). Heuristics and lower bounds
for the bin packing problem with conflicts. Computers & Operations Research,
31(3):347–358.

[13] Golden, B. L., Assad, A. A., and Wasil, E. A. (2002). Routing vehicles in the real
world: applications in the solid waste, beverage, food, dairy, and newspaper indus-
tries. The Vehicle Routing Problem, SIAM Monographs on Discrete Mathematics
and Applications, Philadelphia, pages 245–286.

[14] Haouari, M. and Gharbi, A. (2005). Fast lifting procedures for the bin packing
problem. Discrete Optimization, 2(3):201–218.

[15] Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008). Subset-row
inequalities applied to the vehicle-routing problem with time windows. Operations
Research, 56(2):497–511.

[16] Jung, S. and Moon, B. R. (2002). A hybrid genetic algorithm for the vehicle
routing problem with time windows. In GECCO 2002: Proceedings of the Genetic
and Evolutionary Computation Conference, New York, USA, 9-13 July 2002, pages
1309–1316. Morgan Kaufmann.

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

117

[17] Kallehauge, B. (2008). Formulations and exact algorithms for the vehicle routing
problem with time windows. Computers & Operations Research, 35(7):2307 – 2330.

[18] Konc, J. and Janezic, D. (2007). An improved branch and bound algorithm for
the maximum clique problem. proteins, 58:569–590.

[19] Kontoravdis, G. and Bard, J. F. (1995). A grasp for the vehicle routing problem
with time windows. ORSA journal on Computing, 7(1):10–23.

[20] Labadi, N., Prins, C., and Reghioui, M. (2008). A memetic algorithm for the
vehicle routing problem with time windows. Rairo-operations Research, 42:415–431.

[21] Lenstra, J. K. and Kan, A. (1981). Complexity of vehicle routing and scheduling
problems. Networks, 11(2):221–227.

[22] Little, J. D. C., Murty, K. G., Sweeney, D. W., and Karel, C. (1963). An algorithm
for the traveling salesman problem. Operations Research, 11(6):972–989.

[23] Néron, E., Baptiste, P., and Gupta, J. N. (2001). Solving hybrid flow shop problem
using energetic reasoning and global operations. Omega, 29(6):501–511.

[24] Ombuki, B., Ross, B. J., and Hanshar, F. (2006). Multi-objective genetic algo-
rithms for vehicle routing problem with time windows. Applied Intelligence, 24:17–30.

[25] Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints. Operations Research, 35(2):254–265.

[26] Tan, K. C., Chew, Y., and Lee, L. (2006). A hybrid multiobjective evolutionary
algorithm for solving vehicle routing problem with time windows. Computational
Optimization and Applications, 34(1):115–151.

[27] Ursani, Z., Essam, D., Cornforth, D., and Stocker, R. (2011). Localized genetic
algorithm for vehicle routing problem with time windows. Applied Soft Computing,
11(8):5375–5390.

[28] Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. (2013). A hybrid genetic
algorithm with adaptive diversity management for a large class of vehicle routing
problems with time-windows. Computers & Operations Research, 40(1):475–489.

Paper: New Lower Bounds on the Number of Vehicles for VRPTW Appendix A

118

B | Detailed results for Chapter 2

119

Appendix B Detailed results for Chapter 2

Table B.1 – Results on Solomon and Desrosiers [82] instances with 25 customers.

Data Set Classical New BestLB BestUB
Clique Capacity BP ER ERBPP ERBPPC SubSets

c101 3 3 2 3 3 3 3 3 3
c102 2 3 2 3 3 3 3 3 3
c103 2 3 2 3 3 3 3 3 3
c104 2 3 2 3 3 3 3 3 3
c105 2 3 2 3 3 3 3 3 3
c106 3 3 2 3 3 3 3 3 3
c107 1 3 2 3 3 3 3 3 3
c108 1 3 2 3 3 3 3 3 3
c109 1 3 2 3 3 3 3 3 3

c201 1 1 1 2 2 2 2 2 2
c202 1 1 1 1 1 1 1 1 1
c203 1 1 1 1 1 1 1 1 1
c204 1 1 1 1 1 1 1 1 1
c205 1 1 1 1 1 1 1 1 1
c206 1 1 1 1 1 1 1 1 1
c207 1 1 1 1 1 1 1 1 1
c208 1 1 1 1 1 1 1 1 1

r101 8 2 5 8 8 8 8 8 8
r102 6 2 3 6 6 7 7 7 7
r103 4 2 3 4 4 4 4 4 4
r104 4 2 3 4 4 4 4 4 4
r105 4 2 4 4 4 4 5 5 5
r106 3 2 3 3 3 3 4 4 4
r107 3 2 3 3 3 3 4 4 4
r108 3 2 3 3 3 3 3 3 4
r109 3 2 3 3 3 3 4 4 4
r110 1 2 3 3 3 3 4 4 4
r111 3 2 3 3 3 3 4 4 4
r112 1 2 3 3 3 3 3 3 4

r201 1 1 1 2 2 2 2 2 2
r202 1 1 1 1 1 1 2 2 2
r203 1 1 1 1 1 1 2 2 2
r204 1 1 1 1 1 1 1 1 1
r205 1 1 1 1 1 1 1 1 1
r206 1 1 1 1 1 1 1 1 1
r207 1 1 1 1 1 1 1 1 1
r208 1 1 1 1 1 1 1 1 1
r209 1 1 1 1 1 1 1 1 1
r210 1 1 1 1 1 1 1 1 1
r211 1 1 1 1 1 1 1 1 1

rc101 3 3 3 3 3 3 4 4 4
rc102 3 3 2 3 3 3 3 3 3
rc103 3 3 2 3 3 3 3 3 3
rc104 3 3 2 3 3 3 3 3 3
rc105 4 3 3 4 4 4 4 4 4
rc106 2 3 2 3 3 3 3 3 3
rc107 2 3 2 3 3 3 3 3 3
rc108 2 3 2 3 3 3 3 3 3

rc201 1 1 1 1 1 1 2 2 2
rc202 1 1 1 1 1 1 1 1 1
rc203 1 1 1 1 1 1 1 1 1
rc204 1 1 1 1 1 1 1 1 1
rc205 1 1 1 1 1 1 2 2 2
rc206 1 1 1 1 1 1 1 1 1
rc207 1 1 1 1 1 1 1 1 1
rc208 1 1 1 1 1 1 1 1 1

120

Detailed results for Chapter 2 Appendix B

Table B.2 – Results on Solomon and Desrosiers [82] instances with 50 customers.

Data Set Classical New BestLB BestUB
Clique Capacity BP ER ERBPP ERBPPC SubSets

c101 5 5 4 5 5 5 5 5 5
c102 5 5 4 5 5 5 5 5 5
c103 4 5 4 5 5 5 5 5 5
c104 2 5 4 5 5 5 5 5 5
c105 3 5 4 5 5 5 5 5 5
c106 5 5 4 5 5 5 5 5 5
c107 1 5 4 5 5 5 5 5 5
c108 1 5 4 5 5 5 5 5 5
c109 1 5 4 5 5 5 5 5 5

c201 1 2 2 2 2 2 2 2 2
c202 1 2 2 2 2 2 2 2 2
c203 1 2 2 2 2 2 2 2 2
c204 1 2 2 2 2 2 2 2 2
c205 1 2 2 2 2 2 2 2 2
c206 1 2 2 2 2 2 2 2 2
c207 1 2 2 2 2 2 2 2 2
c208 1 2 2 2 2 2 2 2 2

r101 11 4 8 11 11 11 11 11 11
r102 9 4 5 9 9 10 10 10 10
r103 8 4 5 8 8 8 8 8 8
r104 5 4 5 5 5 5 5 5 6
r105 5 4 6 7 7 7 8 8 8
r106 5 4 5 6 6 6 7 7 7
r107 5 4 5 5 5 5 6 6 6
r108 4 4 4 5 5 5 5 5 6
r109 3 4 5 5 5 5 5 5 7
r110 3 4 5 5 5 5 5 5 7
r111 4 4 5 5 5 5 5 5 7
r112 1 4 4 5 5 5 5 5 6

r201 1 1 2 2 2 2 2 2 2
r202 1 1 1 2 2 2 2 2 2
r203 1 1 1 1 1 1 2 2 2
r204 1 1 1 1 1 1 2 2 2
r205 1 1 2 2 2 2 2 2 2
r206 1 1 1 1 1 1 1 1 2
r207 1 1 1 1 1 1 1 1 2
r208 1 1 1 1 1 1 1 1 2
r209 1 1 1 1 1 1 1 1 2
r210 1 1 1 1 1 1 2 2 2
r211 1 1 1 1 1 1 1 1 2

rc101 6 5 5 6 6 6 8 8 8
rc102 5 5 4 5 5 5 7 7 7
rc103 5 5 4 5 5 5 6 6 6
rc104 3 5 4 5 5 5 5 5 5
rc105 6 5 4 6 6 6 8 8 8
rc106 4 5 4 5 5 5 6 6 6
rc107 3 5 4 5 5 5 5 5 6
rc108 2 5 4 5 5 5 5 5 6

rc201 1 1 1 1 1 1 2 2 2
rc202 1 1 1 1 1 1 2 2 2
rc203 1 1 1 1 1 1 2 2 2
rc204 1 1 1 1 1 1 2 2 2
rc205 2 1 1 2 2 2 2 2 2
rc206 1 1 1 1 1 1 2 2 2
rc207 1 1 1 1 1 1 2 2 2
rc208 1 1 1 1 1 1 1 1 2

121

Appendix B Detailed results for Chapter 2

Table B.3 – Results on Solomon and Desrosiers [82] instances with 100 cus-
tomers.

Data Set Classical New BestLB BestUB
Clique Capacity BP ER ERBPP ERBPPC SubSets

c101 10 10 8 10 10 10 10 10 10
c102 9 10 8 10 10 10 10 10 10
c103 7 10 8 10 10 10 10 10 10
c104 4 10 8 10 10 10 10 10 10
c105 5 10 8 10 10 10 10 10 10
c106 6 10 8 10 10 10 10 10 10
c107 1 10 8 10 10 10 10 10 10
c108 1 10 8 10 10 10 10 10 10
c109 1 10 8 10 10 10 10 10 10

c201 2 3 3 3 3 3 3 3 3
c202 2 3 3 3 3 3 3 3 3
c203 2 3 3 3 3 3 3 3 3
c204 1 3 3 3 3 3 3 3 3
c205 1 3 3 3 3 3 3 3 3
c206 1 3 3 3 3 3 3 3 3
c207 1 3 3 3 3 3 3 3 3
c208 1 3 3 3 3 3 3 3 3

r101 18 8 13 18 18 18 19 19 19
r102 17 8 9 17 17 17 17 17 17
r103 13 8 8 13 13 13 13 13 13
r104 8 8 7 8 8 8 8 8 9
r105 7 8 9 11 11 11 11 11 14
r106 7 8 8 9 9 9 11 11 12
r107 6 8 8 8 8 8 9 9 10
r108 5 8 7 8 8 8 8 8 9
r109 4 8 8 9 9 9 9 9 11
r110 3 8 8 8 8 8 8 8 10
r111 6 8 8 8 8 8 8 8 10
r112 1 8 7 8 8 8 8 8 9

r201 2 2 2 3 3 3 3 3 4
r202 2 2 2 2 2 2 3 3 3
r203 1 2 2 2 2 2 3 3 3
r204 1 2 2 2 2 2 2 2 2
r205 1 2 2 2 2 2 2 2 3
r206 1 2 2 2 2 2 2 2 3
r207 1 2 2 2 2 2 2 2 2
r208 1 2 2 2 2 2 2 2 2
r209 1 2 2 2 2 2 2 2 3
r210 1 2 2 2 2 2 2 2 3
r211 1 2 2 2 2 2 2 2 2

rc101 8 9 9 11 11 11 13 13 14
rc102 7 9 8 9 9 9 12 12 12
rc103 7 9 7 9 9 9 9 9 11
rc104 6 9 7 9 9 9 9 9 10
rc105 12 9 8 12 12 12 13 13 13
rc106 4 9 8 9 9 9 9 9 11
rc107 4 9 7 9 9 9 9 9 11
rc108 3 9 7 9 9 9 9 9 10

rc201 1 2 2 3 3 3 3 3 4
rc202 1 2 2 2 2 2 3 3 3
rc203 1 2 2 2 2 2 2 2 3
rc204 1 2 2 2 2 2 2 2 3
rc205 2 2 2 2 2 2 4 4 4
rc206 1 2 2 2 2 2 2 2 3
rc207 1 2 2 2 2 2 2 2 3
rc208 1 2 2 2 2 2 2 2 3

122

Detailed results for Chapter 2 Appendix B

Table B.4 – Results on Homberger and Gehring [46] instances with 200 cus-
tomers.

Data Set Classical New BestLB BestUB
Clique Capacity BP ER ERBPP ERBPPC SubSets

C1_2_1 20 18 15 20 20 20 20 20 20
C1_2_2 17 18 15 18 18 18 18 18 18
C1_2_3 13 18 15 18 18 18 18 18 18
C1_2_4 9 18 15 18 18 18 18 18 18
C1_2_5 10 18 15 19 19 19 20 20 20
C1_2_6 10 18 15 18 18 18 18 18 20
C1_2_7 4 18 15 18 18 18 18 18 20
C1_2_8 3 18 15 18 18 18 18 18 19
C1_2_9 1 18 15 18 18 18 18 18 18
C1_2_10 1 18 15 18 18 18 18 18 18

C2_2_1 3 6 6 6 6 6 6 6 6
C2_2_2 3 6 6 6 6 6 6 6 6
C2_2_3 3 6 6 6 6 6 6 6 6
C2_2_4 3 6 6 6 6 6 6 6 6
C2_2_5 1 6 6 6 6 6 6 6 6
C2_2_6 1 6 6 6 6 6 6 6 6
C2_2_7 3 6 6 6 6 6 6 6 6
C2_2_8 1 6 6 6 6 6 6 6 6
C2_2_9 2 6 6 6 6 6 6 6 6
C2_2_10 1 6 6 6 6 6 6 6 6

R1_2_1 20 18 11 20 20 20 20 20 20
R1_2_2 16 18 7 18 18 18 18 18 18
R1_2_3 14 18 6 18 18 18 18 18 18
R1_2_4 8 18 6 18 18 18 18 18 18
R1_2_5 11 18 9 18 18 18 18 18 18
R1_2_6 10 18 7 18 18 18 18 18 18
R1_2_7 9 18 6 18 18 18 18 18 18
R1_2_8 6 18 6 18 18 18 18 18 18
R1_2_9 6 18 8 18 18 18 18 18 18
R1_2_10 4 18 7 18 18 18 18 18 18

R2_2_1 3 4 2 4 4 4 4 4 4
R2_2_2 2 4 2 4 4 4 4 4 4
R2_2_3 2 4 2 4 4 4 4 4 4
R2_2_4 2 4 2 4 4 4 4 4 4
R2_2_5 1 4 2 4 4 4 4 4 4
R2_2_6 1 4 2 4 4 4 4 4 4
R2_2_7 1 4 2 4 4 4 4 4 4
R2_2_8 1 4 2 4 4 4 4 4 4
R2_2_9 2 4 2 4 4 4 4 4 4
R2_2_10 1 4 2 4 4 4 4 4 4

RC1_2_1 13 18 8 18 18 18 18 18 18
RC1_2_2 11 18 6 18 18 18 18 18 18
RC1_2_3 8 18 6 18 18 18 18 18 18
RC1_2_4 7 18 6 18 18 18 18 18 18
RC1_2_5 8 18 7 18 18 18 18 18 18
RC1_2_6 6 18 7 18 18 18 18 18 18
RC1_2_7 6 18 7 18 18 18 18 18 18
RC1_2_8 4 18 6 18 18 18 18 18 18
RC1_2_9 3 18 6 18 18 18 18 18 18
RC1_2_10 2 18 6 18 18 18 18 18 18

RC2_2_1 3 4 2 4 4 4 4 4 6
RC2_2_2 2 4 2 4 4 4 4 4 5
RC2_2_3 2 4 2 4 4 4 4 4 4
RC2_2_4 2 4 2 4 4 4 4 4 4
RC2_2_5 4 4 2 4 4 4 4 4 4
RC2_2_6 1 4 2 4 4 4 4 4 4
RC2_2_7 2 4 2 4 4 4 4 4 4
RC2_2_8 1 4 2 4 4 4 4 4 4
RC2_2_9 1 4 2 4 4 4 4 4 4
RC2_2_10 1 4 2 4 4 4 4 4 4

123

Appendix B Detailed results for Chapter 2

Table B.5 – Results on Homberger and Gehring [46] instances with 400 cus-
tomers.

Data Set Classical New BestLB BestUB
Clique Capacity BP ER ERBPP ERBPPC SubSets

C1_4_1 40 36 28 40 40 40 40 40 40
C1_4_2 35 36 26 36 36 36 36 36 36
C1_4_3 25 36 26 36 36 36 36 36 36
C1_4_4 15 36 26 36 36 36 36 36 36
C1_4_5 21 36 27 37 37 37 39 39 40
C1_4_6 21 36 27 36 36 36 36 36 40
C1_4_7 5 36 27 36 36 36 36 36 39
C1_4_8 4 36 26 36 36 36 36 36 37
C1_4_9 1 36 26 36 36 36 36 36 36
C1_4_10 2 36 26 36 36 36 36 36 36

C2_4_1 5 11 11 12 12 12 12 12 12
C2_4_2 4 11 11 11 11 11 11 11 12
C2_4_3 4 11 11 11 11 11 11 11 11
C2_4_4 3 11 11 11 11 11 11 11 11
C2_4_5 1 11 11 12 12 12 12 12 12
C2_4_6 1 11 11 11 11 11 11 11 12
C2_4_7 3 11 11 11 11 11 11 11 12
C2_4_8 1 11 11 11 11 11 11 11 11
C2_4_9 2 11 11 11 11 11 11 11 12
C2_4_10 1 11 11 11 11 11 11 11 11

R1_4_1 40 36 19 40 40 40 40 40 40
R1_4_2 28 36 11 36 36 36 36 36 36
R1_4_3 21 36 10 36 36 36 36 36 36
R1_4_4 14 36 9 36 36 36 36 36 36
R1_4_5 18 36 15 36 36 36 36 36 36
R1_4_6 16 36 10 36 36 36 36 36 36
R1_4_7 14 36 10 36 36 36 36 36 36
R1_4_8 12 36 9 36 36 36 36 36 36
R1_4_9 11 36 13 36 36 36 36 36 36
R1_4_10 5 36 11 36 36 36 36 36 36

R2_4_1 5 8 4 8 8 8 8 8 8
R2_4_2 4 8 3 8 8 8 8 8 8
R2_4_3 4 8 2 8 8 8 8 8 8
R2_4_4 3 8 2 8 8 8 8 8 8
R2_4_5 1 8 3 8 8 8 8 8 8
R2_4_6 1 8 3 8 8 8 8 8 8
R2_4_7 1 8 2 8 8 8 8 8 8
R2_4_8 1 8 2 8 8 8 8 8 8
R2_4_9 3 8 3 8 8 8 8 8 8
R2_4_10 1 8 3 8 8 8 8 8 8

RC1_4_1 22 36 13 36 36 36 36 36 36
RC1_4_2 22 36 10 36 36 36 36 36 36
RC1_4_3 17 36 10 36 36 36 36 36 36
RC1_4_4 15 36 9 36 36 36 36 36 36
RC1_4_5 17 36 12 36 36 36 36 36 36
RC1_4_6 10 36 12 36 36 36 36 36 36
RC1_4_7 11 36 11 36 36 36 36 36 36
RC1_4_8 7 36 11 36 36 36 36 36 36
RC1_4_9 4 36 10 36 36 36 36 36 36
RC1_4_10 3 36 10 36 36 36 36 36 36

RC2_4_1 4 8 3 8 8 8 8 8 11
RC2_4_2 4 8 3 8 8 8 8 8 9
RC2_4_3 4 8 2 8 8 8 8 8 8
RC2_4_4 3 8 2 8 8 8 8 8 8
RC2_4_5 7 8 3 8 8 8 8 8 8
RC2_4_6 1 8 3 8 8 8 8 8 8
RC2_4_7 4 8 3 8 8 8 8 8 8
RC2_4_8 2 8 3 8 8 8 8 8 8
RC2_4_9 1 8 3 8 8 8 8 8 8
RC2_4_10 1 8 3 8 8 8 8 8 8

124

Detailed results for Chapter 2 Appendix B

Table B.6 – Results on Homberger and Gehring [46] instances with 600 cus-
tomers.

Data Set Classical New BestLB BestUB
Clique Capacity BP ER ERBPP ERBPPC SubSets

C1_6_1 60 56 43 60 60 60 60 60 60
C1_6_2 51 56 40 56 56 56 56 56 56
C1_6_3 38 56 39 56 56 56 56 56 56
C1_6_4 22 56 39 56 56 56 56 56 56
C1_6_5 27 56 42 56 56 56 56 56 60
C1_6_6 26 56 41 56 56 56 56 56 59
C1_6_7 8 56 41 56 56 56 56 56 57
C1_6_8 6 56 40 56 56 56 56 56 56
C1_6_9 2 56 40 56 56 56 56 56 56
C1_6_10 2 56 39 56 56 56 56 56 56

C2_6_1 8 17 16 18 18 18 18 18 18
C2_6_2 7 17 16 17 17 17 17 17 17
C2_6_3 7 17 16 17 17 17 17 17 17
C2_6_4 5 17 15 17 17 17 17 17 17
C2_6_5 3 17 16 17 17 17 17 17 18
C2_6_6 2 17 16 17 17 17 17 17 18
C2_6_7 4 17 16 17 17 17 17 17 18
C2_6_8 1 17 16 17 17 17 17 17 17
C2_6_9 5 17 16 17 17 17 17 17 17
C2_6_10 1 17 16 17 17 17 17 17 17

R1_6_1 59 54 25 59 59 59 59 59 59
R1_6_2 45 54 12 54 54 54 54 54 54
R1_6_3 37 54 11 54 54 54 54 54 54
R1_6_4 28 54 10 54 54 54 54 54 54
R1_6_5 26 54 19 54 54 54 54 54 54
R1_6_6 24 54 12 54 54 54 54 54 54
R1_6_7 21 54 10 54 54 54 54 54 54
R1_6_8 15 54 10 54 54 54 54 54 54
R1_6_9 17 54 16 54 54 54 54 54 54
R1_6_10 9 54 14 54 54 54 54 54 54

R2_6_1 7 11 5 11 11 11 11 11 11
R2_6_2 7 11 3 11 11 11 11 11 11
R2_6_3 6 11 3 11 11 11 11 11 11
R2_6_4 5 11 3 11 11 11 11 11 11
R2_6_5 4 11 4 11 11 11 11 11 11
R2_6_6 3 11 3 11 11 11 11 11 11
R2_6_7 3 11 3 11 11 11 11 11 11
R2_6_8 2 11 3 11 11 11 11 11 11
R2_6_9 5 11 4 11 11 11 11 11 11
R2_6_10 1 11 3 11 11 11 11 11 11

RC1_6_1 37 55 16 55 55 55 55 55 55
RC1_6_2 32 55 11 55 55 55 55 55 55
RC1_6_3 28 55 10 55 55 55 55 55 55
RC1_6_4 20 55 9 55 55 55 55 55 55
RC1_6_5 23 55 14 55 55 55 55 55 55
RC1_6_6 17 55 14 55 55 55 55 55 55
RC1_6_7 17 55 13 55 55 55 55 55 55
RC1_6_8 11 55 12 55 55 55 55 55 55
RC1_6_9 7 55 12 55 55 55 55 55 55
RC1_6_10 5 55 11 55 55 55 55 55 55

RC2_6_1 7 11 4 11 11 11 11 11 14
RC2_6_2 7 11 3 11 11 11 11 11 12
RC2_6_3 5 11 2 11 11 11 11 11 11
RC2_6_4 4 11 2 11 11 11 11 11 11
RC2_6_5 10 11 3 11 11 11 11 11 11
RC2_6_6 3 11 3 11 11 11 11 11 11
RC2_6_7 6 11 3 11 11 11 11 11 11
RC2_6_8 3 11 3 11 11 11 11 11 11
RC2_6_9 1 11 3 11 11 11 11 11 11
RC2_6_10 1 11 3 11 11 11 11 11 11

125

Appendix B Detailed results for Chapter 2

Table B.7 – Results on Homberger and Gehring [46] instances with 800 cus-
tomers.

Data Set Classical New BestLB BestUB
Clique Capacity BP ER ERBPP ERBPPC SubSets

C1_8_1 80 72 54 80 80 80 80 80 80
C1_8_2 72 72 49 72 72 72 72 72 72
C1_8_3 54 72 48 72 72 72 72 72 72
C1_8_4 33 72 47 72 72 72 72 72 72
C1_8_5 36 72 51 72 72 72 72 72 80
C1_8_6 39 72 50 72 72 72 72 72 79
C1_8_7 14 72 50 72 72 72 72 72 77
C1_8_8 9 72 48 72 72 72 72 72 74
C1_8_9 4 72 48 72 72 72 72 72 72
C1_8_10 3 72 48 72 72 72 72 72 72

C2_8_1 12 22 22 24 24 24 24 24 24
C2_8_2 11 22 21 22 22 22 22 22 23
C2_8_3 9 22 21 22 22 22 22 22 23
C2_8_4 7 22 20 22 22 22 22 22 23
C2_8_5 3 22 21 22 22 22 22 22 24
C2_8_6 2 22 21 22 22 22 22 22 23
C2_8_7 7 22 21 22 22 22 22 22 24
C2_8_8 1 22 21 22 22 22 22 22 23
C2_8_9 4 22 21 22 22 22 22 22 23
C2_8_10 1 22 21 22 22 22 22 22 23

R1_8_1 80 72 29 80 80 80 80 80 80
R1_8_2 59 72 14 72 72 72 72 72 72
R1_8_3 42 72 11 72 72 72 72 72 72
R1_8_4 24 72 11 72 72 72 72 72 72
R1_8_5 36 72 23 72 72 72 72 72 72
R1_8_6 32 72 13 72 72 72 72 72 72
R1_8_7 26 72 11 72 72 72 72 72 72
R1_8_8 19 72 11 72 72 72 72 72 72
R1_8_9 22 72 19 72 72 72 72 72 72
R1_8_10 13 72 16 72 72 72 72 72 72

R2_8_1 10 15 5 15 15 15 15 15 15
R2_8_2 8 15 3 15 15 15 15 15 15
R2_8_3 7 15 3 15 15 15 15 15 15
R2_8_4 5 15 3 15 15 15 15 15 15
R2_8_5 4 15 4 15 15 15 15 15 15
R2_8_6 4 15 3 15 15 15 15 15 15
R2_8_7 4 15 3 15 15 15 15 15 15
R2_8_8 4 15 3 15 15 15 15 15 15
R2_8_9 5 15 4 15 15 15 15 15 15
R2_8_10 2 15 4 15 15 15 15 15 15

RC1_8_1 48 72 19 72 72 72 72 72 72
RC1_8_2 44 72 13 72 72 72 72 72 72
RC1_8_3 41 72 12 72 72 72 72 72 72
RC1_8_4 29 72 11 72 72 72 72 72 72
RC1_8_5 35 72 17 72 72 72 72 72 72
RC1_8_6 25 72 17 72 72 72 72 72 72
RC1_8_7 21 72 16 72 72 72 72 72 72
RC1_8_8 15 72 15 72 72 72 72 72 72
RC1_8_9 9 72 15 72 72 72 72 72 72
RC1_8_10 8 72 14 72 72 72 72 72 72

RC2_8_1 9 15 5 15 15 15 15 15 18
RC2_8_2 9 15 3 15 15 15 15 15 16
RC2_8_3 9 15 3 15 15 15 15 15 15
RC2_8_4 8 15 3 15 15 15 15 15 15
RC2_8_5 10 15 4 15 15 15 15 15 15
RC2_8_6 4 15 4 15 15 15 15 15 15
RC2_8_7 8 15 4 15 15 15 15 15 15
RC2_8_8 6 15 3 15 15 15 15 15 15
RC2_8_9 2 15 3 15 15 15 15 15 15
RC2_8_10 1 15 3 15 15 15 15 15 15

126

Detailed results for Chapter 2 Appendix B

Table B.8 – Results on Homberger and Gehring [46] instances with 1000 cus-
tomers.

Data Set Classical New BestLB BestUB
Clique Capacity BP ER ERBPP ERBPPC SubSets

C1_10_1 100 90 64 100 100 100 100 100 100
C1_10_2 88 90 57 90 90 90 90 90 90
C1_10_3 72 90 55 90 90 90 90 90 90
C1_10_4 45 90 54 90 90 90 90 90 90
C1_10_5 49 90 61 90 90 90 90 90 100
C1_10_6 49 90 59 90 90 90 90 90 100
C1_10_7 19 90 60 90 90 90 90 90 98
C1_10_8 14 90 57 90 90 90 90 90 93
C1_10_9 5 90 57 90 90 90 90 90 90
C1_10_10 5 90 56 90 90 90 90 90 90

C2_10_1 16 28 26 29 29 29 29 29 30
C2_10_2 15 28 25 28 28 28 28 28 29
C2_10_3 12 28 25 28 28 28 28 28 28
C2_10_4 10 28 25 28 28 28 28 28 28
C2_10_5 4 28 25 28 28 28 28 28 30
C2_10_6 4 28 25 28 28 28 28 28 29
C2_10_7 9 28 25 28 28 28 28 28 29
C2_10_8 2 28 25 28 28 28 28 28 28
C2_10_9 6 28 25 28 28 28 28 28 29
C2_10_10 1 28 25 28 28 28 28 28 28

R1_10_1 100 91 37 100 100 100 100 100 100
R1_10_2 78 91 16 91 91 91 91 91 91
R1_10_3 54 91 14 91 91 91 91 91 91
R1_10_4 27 91 13 91 91 91 91 91 91
R1_10_5 45 91 29 91 91 91 91 91 91
R1_10_6 40 91 16 91 91 91 91 91 91
R1_10_7 32 91 13 91 91 91 91 91 91
R1_10_8 22 91 12 91 91 91 91 91 91
R1_10_9 30 91 25 91 91 91 91 91 91
R1_10_10 17 91 20 91 91 91 91 91 91

R2_10_1 12 19 7 19 19 19 19 19 19
R2_10_2 11 19 4 19 19 19 19 19 19
R2_10_3 8 19 3 19 19 19 19 19 19
R2_10_4 7 19 3 19 19 19 19 19 19
R2_10_5 5 19 5 19 19 19 19 19 19
R2_10_6 5 19 3 19 19 19 19 19 19
R2_10_7 4 19 3 19 19 19 19 19 19
R2_10_8 4 19 3 19 19 19 19 19 19
R2_10_9 6 19 5 19 19 19 19 19 19
R2_10_10 3 19 4 19 19 19 19 19 19

RC1_10_1 56 90 24 90 90 90 90 90 90
RC1_10_2 51 90 15 90 90 90 90 90 90
RC1_10_3 44 90 13 90 90 90 90 90 90
RC1_10_4 30 90 12 90 90 90 90 90 90
RC1_10_5 39 90 21 90 90 90 90 90 90
RC1_10_6 29 90 21 90 90 90 90 90 90
RC1_10_7 27 90 19 90 90 90 90 90 90
RC1_10_8 16 90 18 90 90 90 90 90 90
RC1_10_9 12 90 17 90 90 90 90 90 90
RC1_10_10 11 90 17 90 90 90 90 90 90

RC2_10_1 11 18 6 18 18 18 18 18 20
RC2_10_2 10 18 3 18 18 18 18 18 18
RC2_10_3 10 18 3 18 18 18 18 18 18
RC2_10_4 9 18 3 18 18 18 18 18 18
RC2_10_5 12 18 5 18 18 18 18 18 18
RC2_10_6 6 18 5 18 18 18 18 18 18
RC2_10_7 9 18 4 18 18 18 18 18 18
RC2_10_8 6 18 4 18 18 18 18 18 18
RC2_10_9 3 18 4 18 18 18 18 18 18
RC2_10_10 2 18 4 18 18 18 18 18 18

127

C | Detailed results for Chapter 3

This document complements the results of Chapter 3: Particle Swarm Optimiza-

tion for VRPTW with detailed experimental results. Tables Tables C.1 to C.6

present the results of all the instances.

Table C.1 – Results on Solomon and Desrosiers [82] instances.

C1 C2 R1 R2 RC1 RC2

NV TD NV TD NV TD NV TD NV TD NV TD

1 10 828.94 3 591.56 19 1 650.8 4 1 252.37 14 1 696.95 4 1 406.94
2 10 828.94 3 591.56 17 1 486.12 3 1 191.7 12 1 554.75 3 1 365.64
3 10 828.06 3 591.17 13 1 292.67 3 939.5 11 1 261.67 3 1 050.63
4 10 824.78 3 590.6 9 1 011.04 2 831.69 10 1 135.52 3 798.46
5 10 828.94 3 588.88 14 1 377.11 3 994.43 13 1 629.44 4 1 297.65
6 10 828.94 3 588.49 12 1 252.03 3 906.14 11 1 424.73 3 1 146.32
7 10 828.94 3 588.29 10 1 104.66 2 893.33 11 1 230.48 3 1 061.14
8 10 828.94 3 588.32 9 960.88 2 726.82 10 1 139.82 3 828.14
9 10 828.94 - - 11 1 197.42 3 909.16 - - - -
10 - - - - 10 1 118.84 3 939.37 - - - -
11 - - - - 10 1 096.73 2 898.15 - - - -
12 - - - - 9 1 005.2 - - - - - -

129

Appendix C Detailed results for Chapter 3

Table C.2 – Results on Homberger and Gehring [46] instances with 200 cus-
tomers.

C1 C2 R1 R2 RC1 RC2

NV TD NV TD NV TD NV TD NV TD NV TD

1 20 2 704.57 6 1 931.44 20 4 796.9 4 4 526.01 18 3 976.13 6 3 099.76
2 18 2 976.45 6 1 863.15 18 4 136.45 4 3 649.42 18 3 384.15 5 2 825.24
3 18 2 720.57 6 1 775.07 18 3 400.87 4 2 881.46 18 3 061.6 4 2 604.09
4 18 2 647.99 6 1 719.95 18 3 086.48 4 1 981.3 18 2 892.76 4 2 063.76
5 20 2 702.05 6 1 878.85 18 4 195.22 4 3 367.53 18 3 599.81 4 2 911.85
6 20 2 701.03 6 1 857.35 18 3 672.23 4 2 913.81 18 3 473.34 4 2 920.34
7 20 2 701.03 6 1 849.46 18 3 188.93 4 2 451.14 18 3 270.23 4 2 528.62
8 19 2 782.86 6 1 820.53 18 2 979.27 4 1 849.87 18 3 156.5 4 2 315.07
9 18 2 690.16 6 1 830.05 18 3 829.86 4 3 099.11 18 3 118.25 4 2 179.09
10 18 2 646.16 6 1 808.21 18 3 357.66 4 2 654.97 18 3 014.46 4 2 015.61

Table C.3 – Results on Homberger and Gehring [46] instances with 400 cus-
tomers.

C1 C2 R1 R2 RC1 RC2

NV TD NV TD NV TD NV TD NV TD NV TD

1 40 7 152.05 12 4 116.14 40 10 649.57 8 9 289.07 38 8 769.72 12 6 626.29
2 36 8 519.32 12 3 930.25 36 9 980.62 8 7 677.95 36 8 767.09 10 6 090.93
3 36 7 796.66 12 3 817.18 36 9 032.63 8 6 029.85 36 8 258.38 8 5 289.17
4 36 7 368.74 12 3 587.34 36 8 020.74 8 4 317.15 36 8 084.44 8 3 673.72
5 40 7 152.05 12 3 945.39 36 10 404 8 7 205.62 36 9 111.87 10 6 015.41
6 40 7 153.45 12 3 875.94 36 9 205.4 8 6 164.4 37 8 411.75 9 5 767.26
7 40 7 149.43 12 3 894.16 36 8 245.67 8 5 125.19 36 8 699.65 8 5 799.93
8 38 7 944.13 12 3 816.55 36 7 923.45 8 4 048.53 36 8 503.98 8 4 893.48
9 37 7 240.95 12 3 892.79 36 9 387.42 8 6 460.02 36 8 414.57 8 4 626.89
10 37 6 910.03 12 3 720.77 36 8 696.52 8 5 895.6 36 8 153.33 8 4 341.4

Table C.4 – Results on Homberger and Gehring [46] instances with 600 cus-
tomers.

C1 C2 R1 R2 RC1 RC2

NV TD NV TD NV TD NV TD NV TD NV TD

1 60 14 095.64 18 7 774.15 59 22 749.7 11 19 682.94 56 18 717.9 16 13 124.78
2 58 14 383.26 18 7 498.37 54 26 080.74 11 15 566.82 55 19 808.89 14 11 182.53
3 56 15 688.49 18 7 331.46 54 21 336.03 11 11 949.05 55 19 288.63 11 10 575.2
4 56 14 637.59 17 9 499.32 54 19 670.21 11 8 565 55 17 257.47 11 7 859.38
5 60 14 085.72 18 7 575.19 55 21 375.16 11 15 796.01 55 19 682.65 13 12 911.47
6 60 14 089.66 18 7 628.96 55 19 983.26 11 13 242.92 55 19 194.46 12 12 230.97
7 60 14 119.26 18 9 407.6 54 19 808.42 11 10 613.56 55 18 980.45 11 12 385.37
8 59 14 523.48 18 7 416.4 54 18 336.63 11 8 039.71 55 18 170.06 11 11 194.13
9 56 14 580.85 18 7 470.11 55 20 577 11 14 163.34 55 18 257.3 11 10 478.34
10 56 14 477.33 17 9 484.11 54 20 946.79 11 12 902.38 55 18 084.65 11 9 776.6

130

Detailed results for Chapter 3 Appendix C

Table C.5 – Results on Homberger and Gehring [46] instances with 800 cus-
tomers.

C1 C2 R1 R2 RC1 RC2

NV TD NV TD NV TD NV TD NV TD NV TD

1 80 25 184.38 24 11 664.8 80 39 556.46 15 29 728.36 73 36 608.37 20 20 667.59
2 78 25 953.1 24 12 073.52 72 42 323.02 15 24 070.32 73 34 824.45 18 18 663.19
3 73 28 237.11 24 12 499.92 72 38 426.39 15 18 802.58 73 33 094.63 16 15 696.17
4 72 27 337.89 24 12 317.44 72 32 491.89 15 14 527.74 73 30 993.09 15 12 224.84
5 80 25 166.28 25 11 813.42 72 43 049.12 15 25 933.76 73 34 020.69 17 18 904.83
6 80 25 161.06 25 12 000.69 72 39 134.71 15 21 814.6 73 33 717.51 16 18 824.58
7 79 25 814.91 25 12 060.74 72 34 773.54 15 17 730.51 73 33 467.35 15 18 190.43
8 78 25 743.51 25 12 463.99 72 32 567.45 15 13 711.44 73 32 894.3 15 17 217.29
9 76 26 997.04 25 12 560.57 72 40 381.26 15 23 627.11 73 33 534.83 15 16 372.67
10 74 27 513.18 24 15 842.59 72 37 478.7 15 21 861.52 73 32 032.23 15 15 527.86

Table C.6 – Results on Homberger and Gehring [46] instances with 1000 cus-
tomers.

C1 C2 R1 R2 RC1 RC2

NV TD NV TD NV TD NV TD NV TD NV TD

1 100 42 478.95 30 16 891.48 100 57 826.73 19 44 953.16 91 56 083.16 22 33 001.28
2 97 46 365.66 30 16 906.65 92 59 937.6 19 36 785.6 90 57 426.8 21 27 187.2
3 91 47 145.85 31 18 485.7 92 53 863.29 19 27 780 90 50 028.47 18 27 179.77
4 91 43 255.58 30 18 623.06 91 52 905.02 19 19 894.15 90 48 676.3 18 18 460.58
5 100 42 469.88 32 17 626.8 92 60 896.5 19 38 727.62 90 56 378.35 19 31 084.49
6 100 42 472.09 32 18 147.3 92 56 254.06 19 32 584.35 90 56 383.44 19 29 085.51
7 100 42 465.9 32 18 843.04 92 51 014.94 19 25 812.23 90 56 398.77 19 26 819.22
8 100 46 572.1 31 18 844.05 91 50 563.15 19 19 039.25 90 53 785.44 18 26 623.06
9 96 45 325.25 32 18 128.99 92 58 395.63 19 35 475.38 90 53 735.28 18 26 236.53
10 93 44 950.54 31 17 915.73 92 56 068.89 19 32 729.32 90 52 273.54 18 25 114.94

131

Bibliography

[1] Sohaib Afifi, Duc-Cuong Dang, and Aziz Moukrim. “A Simulated Annealing

Algorithm for the Vehicle Routing Problem with Time Windows and Syn-

chronization Constraints”. In: LION 7, Catania, Italy. Vol. 7997. Lecture

Notes in Computer Science. Springer, 2013, pp. 259–265.

[2] Sohaib Afifi, Duc-Cuong Dang, and Aziz Moukrim. “Un algorithme de recuit

simulé pour le problème de tournées de véhicules avec fenêtres de temps

et contraintes de synchronisation”. (In french) ROADEF 14ième, Troyes,

France. 2013.

[3] Sohaib Afifi, Rym Nesrine Guibadj, and Aziz Moukrim. “New Lower Bounds

on the Number of Vehicles for the Vehicle Routing Problem with Time Win-

dows”. In: CPAIOR 2014, Cork, Ireland. Vol. 8451. Lecture Notes in Com-

puter Science. Springer, 2014, pp. 422–437.

[4] Sohaib Afifi, Duc-Cuong Dang, and Aziz Moukrim. “Heuristic Solutions for

the Vehicle Routing Problem with Time Windows and Synchronized Visits”.

Submitted, 2014.

[5] Alfred V. Aho, Michael R. Garey, and Jeffrey D. Ullman. “The transitive

reduction of a directed graph”. In: SIAM Journal on Computing 1.2 (1972),

pp. 131–137.

133

Bibliography

[6] Guilherme Bastos Alvarenga, Geraldo Robson Mateus, and G De Tomi. “A

genetic and set partitioning two-phase approach for the vehicle routing prob-

lem with time windows”. In: Computers & Operations Research 34.6 (2007),

pp. 1561–1584.

[7] Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. “New Route Re-

laxation and Pricing Strategies for the Vehicle Routing Problem”. In: Oper-

ations Research 59.5 (2011), pp. 1269–1283.

[8] Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. “Recent exact

algorithms for solving the vehicle routing problem under capacity and time

window constraints”. In: European Journal of Operational Research 218.1

(2012), pp. 1–6.

[9] Raúl Baños, Julio Ortega, Consolacion Gil, Antonio Fernandez, and Fran-

cisco De Toro. “A Simulated Annealing-based parallel multi-objective ap-

proach to vehicle routing problems with time windows”. In: Expert Systems

with Applications 40.5 (2013), pp. 1696–1707.

[10] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. “Satisfiability tests

and time-bound adjustments for cumulative scheduling problems”. In: Annals

of Operations Research 92 (1999), pp. 305–333.

[11] Jonathan F Bard, George Kontoravdis, and Gang Yu. “A branch-and-cut

procedure for the vehicle routing problem with time windows”. In: Trans-

portation Science 36.2 (2002), pp. 250–269.

[12] Richard Bellman. “On a routing problem”. In: Quarterly of Applied Mathe-

matics 16 (1958), pp. 87–90.

[13] Hermann Bouly, Duc-Cuong Dang, and Aziz Moukrim. “A memetic algo-

rithm for the team orienteering problem”. In: 4or 8.1 (2009), pp. 49–70.

[14] Olli Bräysy and Michel Gendreau. “Vehicle routing problem with time win-

dows, Part I: Route construction and local search algorithms”. In: Trans-

portation science 39.1 (2005), pp. 104–118.

134

Bibliography

[15] Olli Bräysy and Michel Gendreau. “Vehicle routing problem with time

windows, Part II: Metaheuristics”. In: Transportation science 39.1 (2005),

pp. 119–139.

[16] David Bredström and Mikael Rönnqvist. “A branch and price algorithm for

the combined vehicle routing and scheduling problem with synchronization

constraints”. In: NHH Dept. of Finance and Management Science Discussion

Paper (2007).

[17] David Bredström and Mikael Rönnqvist. “Combined vehicle routing and

scheduling with temporal precedence and synchronization constraints”. In:

European Journal of Operational Research 191.1 (2008), pp. 19–31.

[18] Jacques Carlier and Eric Pinson. “Adjustment of heads and tails for the job-

shop problem”. In: European Journal of Operational Research 78.2 (1994),

pp. 146–161.

[19] Wen-Chyuan Chiang and Robert A. Russell. “Simulated annealing meta-

heuristics for the vehicle routing problem with time windows”. In: Annals of

Operations Research 63.1 (1996), pp. 3–27.

[20] Jean-Francois Cordeau, Guy Desaulniers, Jacques Desrosiers, Marius M

Solomon, and François Soumis. “The vehicle routing problem”. In: ed. by

Paolo Toth and Daniele Vigo. Philadelphia, PA, USA: Society for Industrial

and Applied Mathematics, 2001. Chap. VRP with Time Windows, pp. 157–

193.

[21] Jean-François Cordeau, Michel Gendreau, Alain Hertz, Gilbert Laporte,

and Jean-Sylvain Sormany. New heuristics for the vehicle routing problem.

Springer, 2005.

[22] Zbigniew J Czech and Piotr Czarnas. “Parallel simulated annealing for the

vehicle routing problem with time windows”. In: Proc. of 10th Euromicro

Workshop on Parallel, Distributed and Network-based Processing (2002).

135

Bibliography

[23] Duc-cuong Dang, Rym Nesrine, and Aziz Moukrim. “Particle Swarm Opti-

mization for the Team Orienteering Problem”. In: Computers & Operations

Research (2011).

[24] George B Dantzig and John H Ramser. “The truck dispatching problem”.

In: Management science 6.1 (1959), pp. 80–91.

[25] Guy Desaulniers, François Lessard, and Ahmed Hadjar. “Tabu Search, Par-

tial Elementarity, and Generalized k-Path Inequalities for the Vehicle Rout-

ing Problem with Time Windows”. In: Transportation Science 42.3 (2008),

pp. 387–404.

[26] Martin Desrochers, Jacques Desrosiers, and Marius Solomon. “A new opti-

mization algorithm for the vehicle routing problem with time windows”. In:

Operations research 40.2 (1992), pp. 342–354.

[27] Jacques Desrosiers, François Soumis, and Martin Desrochers. “Routing with

time windows by column generation”. In: Networks 14.4 (1984), pp. 545–565.

[28] Jacques Desrosiers, Yvan Dumas, and Francois Soumis. “A dynamic pro-

gramming solution of the large-scale single-vehicle dial-a-ride problem with

time windows”. In: American Journal of Mathematical and Management Sci-

ences 6.3-4 (1986), pp. 301–325.

[29] Jacques Desrosiers, Yvan Dumas, Marius M Solomon, and François Soumis.

“Time constrained routing and scheduling”. In: Handbooks in operations

research and management science 8 (1995), pp. 35–139.

[30] Anders Dohn, Matias Sevel Rasmussen, and Jesper Larsen. “The Vehicle

Routing Problem with Time Windows and Temporal Dependencies”. In: Net-

works 58.4 (2011), pp. 273–289.

[31] Michael Drexl. “Synchronization in vehicle routing-A survey of VRPs

with multiple synchronization constraints”. In: Transportation Science 46.3

(2012), pp. 297–316.

136

Bibliography

[32] Nizar El Hachemi, Michel Gendreau, and Louis-Martin Rousseau. “A heuris-

tic to solve the synchronized log-truck scheduling problem”. In: Computers

& Operations Research 40.3 (2013), pp. 666–673.

[33] Jacques Erschler, Pierre Lopez, and Catherine Thuriot. “Raisonnement tem-

porel sous contraintes de ressources et problèmes d’ordonnancement”. In:

Revue d’Intelligence Artificielle 5.3 (1991), pp. 7–36.

[34] Matteo Fischetti and Andrea Lodi. “Local branching”. In: Mathematical

Programming 98.1-3 (2003), pp. 23–47.

[35] Matteo Fischetti, Juan Jose Salazar Gonzalez, and Paolo Toth. “Solving the

orienteering problem through branch-and-cut”. In: INFORMS Journal on

Computing 10.2 (1998), pp. 133–148.

[36] Marshall L Fisher, Kurt O Jörnsten, and Oli BG Madsen. “Vehicle Routing

with Time Windows: Two Optimization Algorithms”. In: Operations Re-

search 45.3 (1997), pp. 488–492.

[37] Hermann Gehring and Jörg Homberger. “A parallel hybrid evolutionary

metaheuristic for the vehicle routing problem with time windows”. In: Pro-

ceedings of EUROGEN99. Vol. 2. 1999, pp. 57–64.

[38] Michel Gendreau, Gilbert Laporte, and Jean-Yves Potvin. “Metaheuristics

for the capacitated VRP”. In: The vehicle routing problem 9 (2002), pp. 129–

154.

[39] Michel Gendreau, Gilbert Laporte, and Frédéric Semet. “Heuristics and

lower bounds for the bin packing problem with conflicts”. In: Computers

& Operations Research 31.3 (2004), pp. 347–358.

[40] Michel Gendreau, Jean-Yves Potvin, Olli Bräumlaysy, Geir Hasle, and Arne

Løkketangen. Metaheuristics for the vehicle routing problem and its exten-

sions: A categorized bibliography. Springer, 2008.

137

Bibliography

[41] Bruce L Golden, Arjang A Assad, and Edward A Wasil. “Routing vehicles

in the real world: applications in the solid waste, beverage, food, dairy, and

newspaper industries”. In: The Vehicle Routing Problem, SIAM Monographs

on Discrete Mathematics and Applications, Philadelphia (2002), pp. 245–

286.

[42] Rym Nesrine Guibadj. “Problèmes de tournées de véhicules et application

industrielle pour la réduction de l’empreinte écologique”. PhD thesis. 2013.

url: http://hal.archives-ouvertes.fr/tel-00966428/.

[43] Mohamed Haouari and Anis Gharbi. “Fast lifting procedures for the bin

packing problem”. In: Discrete Optimization 2.3 (2005), pp. 201–218.

[44] Geir Hasle and Oddvar Kloster. “Industrial vehicle routing”. In: Geometric

modelling, numerical simulation, and optimization. Springer, 2007, pp. 397–

435.

[45] Karla L Hoffman and Manfred Padberg. “Solving airline crew scheduling

problems by branch-and-cut”. In: Management Science 39.6 (1993), pp. 657–

682.

[46] Jörg Homberger and Hermann Gehring. “A two-phase hybrid metaheuristic

for the vehicle routing problem with time windows”. In: European Journal

of Operational Research 162.1 (2005), pp. 220–238.

[47] Integration of AI and OR Techniques in Constraint Programming - 11th

International Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014.

Proceedings. Vol. 8451. Lecture Notes in Computer Science. Springer, 2014.

[48] Irina Ioachim, Jacques Desrosiers, François Soumis, and Nicolas Bélanger.

“Fleet assignment and routing with schedule synchronization constraints”.

In: European Journal of Operational Research 119.1 (1999), pp. 75–90.

[49] Mads Jepsen, Bjørn Petersen, Simon Spoorendonk, and David Pisinger.

“Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time

Windows”. In: Operations Research 56.2 (2008), pp. 497–511.

138

http://hal.archives-ouvertes.fr/tel-00966428/

Bibliography

[50] Yan Jin, Jin-Kao Hao, and Jean-Philippe Hamiez. “A memetic algorithm

for the Minimum Sum Coloring Problem”. In: Computers & Operations Re-

search 43 (2014), pp. 318–327.

[51] Soonchul Jung and Byung Ro Moon. “A Hybrid Genetic Algorithm For The

Vehicle Routing Problem With Time Windows”. In: GECCO 2002: Proceed-

ings of the Genetic and Evolutionary Computation Conference, New York,

USA, 9-13 July 2002. Morgan Kaufmann, 2002, pp. 1309–1316.

[52] Brian Kallehauge. “Formulations and exact algorithms for the vehicle routing

problem with time windows”. In: Computers & Operations Research 35.7

(2008), pp. 2307–2330.

[53] James Kennedy and Russell Eberhart. “Particle swarm optimization”. In:

Proceedings of IEEE international conference on neural networks. Vol. 4. 2.

Perth, Australia. 1995, pp. 1942–1948.

[54] Scott Kirkpatrick, MP Vecchi, et al. “Optimization by simmulated anneal-

ing”. In: science 220.4598 (1983), pp. 671–680.

[55] Janez Konc and D Janezic. “An improved branch and bound algorithm for

the maximum clique problem”. In: proteins 58 (2007), pp. 569–590.

[56] George Kontoravdis and Jonathan F Bard. “A GRASP for the vehicle rout-

ing problem with time windows”. In: ORSA journal on Computing 7.1 (1995),

pp. 10–23.

[57] Nacima Labadi, Christian Prins, and Mohamed Reghioui. “A memetic al-

gorithm for the vehicle routing problem with time windows”. In: Rairo-

operations Research 42 (3 2008), pp. 415–431.

[58] Nacima Labadie, Christian Prins, and Yanyan Yang. “Iterated Local Search

for a Vehicle Routing Problem with Synchronization Constraints”. In:

ICORES 2014 - Proceedings of the 3rd International Conference on Opera-

tions Research and Enterprise Systems, Angers, Loire Valley, France, March

6-8, 2014. 2014, pp. 257–263.

139

Bibliography

[59] Philippe Laborie and Jerome Rogerie. “Reasoning with Conditional Time-

Intervals.” In: FLAIRS conference. 2008, pp. 555–560.

[60] Gilbert Laporte and Yves Nobert. “Exact algorithms for the vehicle routing

problem”. In: Surveys in Combinatorial Optimization 31 (1987), pp. 147–

184.

[61] Learning and Intelligent Optimization - 7th International Conference, LION

7, Catania, Italy, January 7-11, 2013, Revised Selected Papers. Vol. 7997.

Lecture Notes in Computer Science. Springer, 2013.

[62] Jan Karel Lenstra and Rinnooy Alexander Kan. “Complexity of vehicle rout-

ing and scheduling problems”. In: Networks 11.2 (1981), pp. 221–227.

[63] Yanzhi Li, Andrew Lim, and Brian Rodrigues. “Manpower allocation with

time windows and job-teaming constraints”. In: Naval Research Logistics

(NRL) 52.4 (2005), pp. 302–311.

[64] Andrew Lim and Xingwen Zhang. “A two-stage heuristic with ejection pools

and generalized ejection chains for the vehicle routing problem with time

windows”. In: INFORMS Journal on Computing 19.3 (2007), pp. 443–457.

[65] Tsung-Lieh Lin, Shi-Jinn Horng, Tzong-Wann Kao, Yuan-Hsin Chen, Ray-

Shine Run, Rong-Jian Chen, Jui-Lin Lai, I Kuo, et al. “An efficient job-

shop scheduling algorithm based on particle swarm optimization”. In: Expert

Systems with Applications 37.3 (2010), pp. 2629–2636.

[66] John DC Little, Katta G Murty, Dura W Sweeney, and Caroline Karel. “An

Algorithm for the Traveling Salesman Problem”. In: Operations Research

11.6 (1963), pp. 972–989.

[67] Denis Naddef and Giovanni Rinaldi. “Branch-and-cut algorithms for the

capacitated VRP”. In: The vehicle routing problem 9 (2002), pp. 53–81.

[68] Yuichi Nagata, Olli Bräysy, and Wout Dullaert. “A penalty-based edge as-

sembly memetic algorithm for the vehicle routing problem with time win-

dows”. In: Computers & Operations Research 37.4 (2010), pp. 724–737.

140

Bibliography

[69] Emmanuel Néron, Philippe Baptiste, and Jatinder ND Gupta. “Solving hy-

brid flow shop problem using energetic reasoning and global operations”. In:

Omega 29.6 (2001), pp. 501–511.

[70] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gre-

gory J Duck, and Guido Tack. “MiniZinc: Towards a Standard CP Modelling

Language.” In: 13th International Conference on Principles and Practice of

Constraint Programming (CP2007). Providence, Rhode Island, USA, 2007,

pp. 23–27.

[71] Clara Novoa and Robert Storer. “An approximate dynamic programming

approach for the vehicle routing problem with stochastic demands”. In: Eu-

ropean Journal of Operational Research 196.2 (2009), pp. 509–515.

[72] Beatrice Ombuki, Brian J Ross, and Franklin Hanshar. “Multi-objective Ge-

netic Algorithms for Vehicle Routing Problem with Time Windows”. In: Ap-

plied Intelligence 24 (2006), pp. 17–30.

[73] David Pisinger and Stefan Ropke. “A general heuristic for vehicle routing

problems”. In: Computers & operations research 34.8 (2007), pp. 2403–2435.

[74] Jean-Yves Potvin, Tanguy Kervahut, Bruno-Laurent Garcia, and Jean-Marc

Rousseau. “The vehicle routing problem with time windows part I: tabu

search”. In: INFORMS Journal on Computing 8.2 (1996), pp. 158–164.

[75] Eric Prescott-Gagnon, Guy Desaulniers, and Louis-Martin Rousseau. “A

branch-and-price-based large neighborhood search algorithm for the vehicle

routing problem with time windows”. In: Networks 54.4 (2009), pp. 190–204.

[76] Christian Prins. “A simple and effective evolutionary algorithm for the ve-

hicle routing problem”. In: Computers & Operations Research 31.12 (2004),

pp. 1985–2002.

141

Bibliography

[77] Matias Sevel Rasmussen, Tor Justesen, Anders Dohn, and Jesper Larsen.

“The home care crew scheduling problem: Preference-based visit clustering

and temporal dependencies”. In: European Journal of Operational Research

219.3 (2012), pp. 598–610.

[78] Panagiotis P Repoussis, Christos D Tarantilis, and George Ioannou. “Arc-

guided evolutionary algorithm for the vehicle routing problem with time

windows”. In: Evolutionary Computation, IEEE Transactions on 13.3 (2009),

pp. 624–647.

[79] Celso C Ribeiro and François Soumis. “A column generation approach to

the multiple-depot vehicle scheduling problem”. In: Operations research 42.1

(1994), pp. 41–52.

[80] Nicola Secomandi. “Comparing neuro-dynamic programming algorithms for

the vehicle routing problem with stochastic demands”. In: Computers &

Operations Research 27.11 (2000), pp. 1201–1225.

[81] Marius M Solomon. “Algorithms for the Vehicle Routing and Scheduling

Problems with Time Window Constraints”. In: Operations Research 35.2

(1987), pp. 254–265.

[82] Marius M Solomon and Jacques Desrosiers. “Time window constrained rout-

ing and scheduling problems”. In: Transportation science 22 (1988), pp. 1–

13.

[83] Kay Chen Tan, YH Chew, and LH Lee. “A Hybrid Multiobjective Evolution-

ary Algorithm for Solving Vehicle Routing Problem with Time Windows”.

In: Computational Optimization and Applications 34.1 (2006), pp. 115–151.

[84] Robert Tarjan. “Depth-first search and linear graph algorithms”. In: SIAM

journal on computing 1.2 (1972), pp. 146–160.

[89] Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. Monographs on

Discrete Mathematics and Applications. Society for Industrial and Applied

Mathematics, 2002.

142

Bibliography

[90] Alan Mathison Turing. “On computable numbers, with an application to the

Entscheidungsproblem”. In: J. of Math 58 (1936), pp. 345–363.

[91] Ziauddin Ursani, Daryl Essam, David Cornforth, and Robert Stocker. “Lo-

calized genetic algorithm for vehicle routing problem with time windows”.

In: Applied Soft Computing 11.8 (2011), pp. 5375–5390.

[92] Alex Van Breedam. “Improvement heuristics for the vehicle routing prob-

lem based on simulated annealing”. In: European Journal of Operational

Research 86.3 (1995), pp. 480–490.

[93] Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian

Prins. “A Hybrid Genetic Algorithm with Adaptive Diversity Management

for a Large Class of Vehicle Routing Problems with Time-windows”. In:

Computers & Operations Research 40.1 (2013), pp. 475–489.

[94] Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian

Prins. Time-Window Relaxations in Vehicle Routing Heuristics. Tech. rep.,

CIRRELT, Montréal, 2013.

[95] Min Wen, Jesper Larsen, Jens Clausen, Jean-François Cordeau, and Gilbert

Laporte. “Vehicle routing with cross-docking”. In: Journal of the Operational

Research Society 60.12 (2009), pp. 1708–1718.

143

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Preface
	Publications
	Symbols and Notation
	Introduction
	1 Field of Study
	1.1 Combinatorial optimization
	1.1.1 Algorithm complexity
	1.1.2 Problem complexity
	1.1.3 Solution methods

	1.2 Vehicle routing problems
	1.2.1 Some variants of VRP
	1.2.2 Solution methods

	1.3 Conclusion

	2 Bounding Methods On The Number Of Vehicles For VRPTW
	2.1 Trivial lower bounds
	2.2 Lower bounds inspired from Energetic Reasoning
	2.3 Bin-packing lower bounds and Energetic Reasoning
	2.4 Lower bounds based on problem decomposition techniques
	2.5 Preprocessing
	2.6 Numerical results
	2.7 Conclusion

	3 Particle Swarm Optimization for VRPTW
	3.1 PSO based algorithm
	3.1.1 Solution representation and evaluation
	3.1.2 Crossover and position update

	3.2 Initialization algorithm
	3.3 Best insertion heuristic
	3.4 Local search
	3.5 Parameter configuration and experimentation
	3.6 Conclusion

	4 Exact methods for VRPTWSyn
	4.1 Problem definition
	4.2 Literature
	4.3 Problem formulation
	4.4 New reduced formulation
	4.5 Constraint programming model
	4.6 Preprocessing
	4.7 Additional cuts
	4.7.1 Incompatibilities and clique cuts
	4.7.2 Subtour eliminations
	4.7.3 MIP overall algorithm

	4.8 Experimentation
	4.8.1 Travel time
	4.8.2 Preferences
	4.8.3 Workload balance

	4.9 The efficiency of the cuts
	4.10 Conclusion

	5 Heuristic Solutions for VRPTWSyn
	5.1 Simulated annealing based iterative local search algorithm
	5.1.1 Constructive heuristic
	5.1.2 Diversification process
	5.1.3 Local search procedure

	5.2 Experimentation
	5.2.1 Parameter settings
	5.2.2 Efficiency of the neighborhood structure
	5.2.3 Comparative results

	5.3 Conclusion

	Conclusions and future works
	Appendices
	A Paper: New Lower Bounds on the Number of Vehicles for VRPTW
	B Detailed results for Chapter 2
	C Detailed results for Chapter 3

	Bibliography

