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Dr Raphaēl Couturier Professor IUT Belfort-Montbéliard Examiner
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Abstract

This thesis addresses the utilization of Graphics Processing Units (GPUs) to im-
prove the Power Flow (PF) analysis of modern power systems. GPUs are powerful
vector co-processors that have been very useful in the acceleration of several com-
putational intensive applications. PF analysis is the steady-state analysis of AC
power networks and is widely used for several tasks involved in system operation
and planning. Currently, GPUs are challenged by applications exhibiting an ir-
regular computational pattern, as is the case of most known methods to solve the
PF analysis. At the same time, the PF analysis needs to be improved in order
to cope with new requirements of efficiency and accuracy coming from the Smart
Grid concept. The relevance of GPU-enhanced PF analysis is twofold. On one
hand, it expands the application domain of GPUs to a new class of problems. On
the other hand, it consistently increases the computational capacity available for
power system operation and design. What specific features of GPUs can be used to
enhance crucial aspects of PF analysis? What algorithms or models for PF analysis
are best suited to the massively parallel architecture of GPUs? The present work
attempts to answer such questions in two complementary ways: (i) by developing
novel GPU programming strategies for available PF algorithms, and (ii) by propos-
ing novel PF analysis methods that can exploit the numerous features present in
GPU architectures. The proposed methods are implemented using state-of-the-art
programming frameworks and paradigms, and tested over state-of-the-art GPU and
CPU architectures. Results are discussed and compared with existing solutions from
the literature of the field, leading to relevant conclusions and guidelines for future
research. Specific contributions to GPU computing include: (i) a comparison of two
programming paradigms, namely regularity and load-balancing, for implementing
the so-called treefix operations; (ii) a study of the impact of the representation
format over performance and accuracy, for fuzzy interval algebraic operations; and
(iii) the utilization of architecture-specific design, as a novel strategy to improve
performance scalability of scientific applications. Contributions to PF analysis in-
clude: (i) design and evaluation of a novel method for the uncertainty assessment,
based on the fuzzy interval approach; and (ii) the development of an intrinsically
parallel method to solve the PF analysis, which is not affected by the Amdahl’s
law.
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Nomenclature

Complex numbers

j The imaginary unit.
x A phasor.
x∗ The complex conjugate of x.
|x| The magnitude of x.
Re(x) The real part of x.
Im(x) The imaginary part of x.

Linear algebra

x A vector.
A A matrix.
Jf The Jacobian matrix of f .
Diag(x) The diagonal matrix that has x as diagonal.
‖x‖ The norm of x.

Floating-point arithmetic

△ The rounding attribute towards ∞.
▽ The rounding attribute towards −∞.
� The rounding attribute towards the nearest.
ε The relative rounding error (i.e., the machine epsilon).
η The smallest representable (denormalized) floating-point positive num-

ber.
Interval analysis

[x] An interval.
[x̃] A fuzzy interval.
x The lower bound of [x].
x The upper bound of [x].
x̌ The midpoint of [x]; alternatively, the kernel of [x̃].
ρx The radius of [x].
µ(x) A membership function.
[xi] The ith α-cut of [x̃].
ρx,i The radius of [xi].
δx,i The radius increment associated to [xi].

Probability theory

X A random variable.
Pr(A) The probability of event A.
FX The distribution function of X.
fX The density function of X.
E(X) The expected value of X.
fX ⊗ fY The convolution product of fX and fY .



Nomenclature 5

Asynchronous power flow method

nh The node h.
chm The component situated between nh and nm.
N The set of circuit nodes.
C The set of circuit components.
Ih The set of influencers of nh.
vh The voltage at nh.
uhm The voltage at nh according to chm.
ihm The current flowing from nm to nh.
∆ih The current mismatch at nh.
zhm The impedance of chm.
v̂hm The voltage source of chm.
whm The weight within nh of chm.
shm The power flowing from nm to nh.
∆sh The power mismatch at nh.
sL,h The power injected by loads to nh.



Abbreviations

GPU Graphics Processing Unit.
CPU Central Processing Unit.
HPC High Performance Computing.
SIMT Single Instruction Multiple Thread.
TLP Thread-Level Parallelism.
ILP Instruction-Level Parallelism.
SM Streaming Multiprocessor.
API Application Program Interface.
PF Power Flow.
NR Newton-Raphson.
BFS Backward-Forward Sweep.
AC Alternating Current.
FDPF Fast Decoupled Power Flow.
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1.1 Overview

In the last decade, Graphics Processing Units (GPUs) have gained popularity in
accelerating calculations thanks to massive parallelism. Originally intended to op-
timize graphics rendering, they have quite naturally extended their domain of ap-
plication to the most diverse fields [Pharr 2005, Nguyen 2007]. To date, several
computing intensive applications have been ported to GPUs, dramatically chang-
ing the landscape of high performance computing (HPC) [Keckler 2011]. At the
same time, Power Flow (PF) analysis has consolidated as a most relevant tool
in power systems management and planning, as the shift towards the Smart-Grid
concept takes place [Amin 2005]. By providing a snapshot of the network, PF
analysis allows for several security-related tasks (e.g., the reliability assessment)
to be efficiently performed [Milano 2010]. Several software packages are avail-
able that implement the different methods for PF analysis proposed in the lit-
erature [Simulator 2005, Milano 2013, Simulink 1993].

GPUs are challenged by several applications, e.g., applications that do not ex-
hibit a regular computational pattern [Collange 2010]. This is precisely the case of
most algorithms for PF analysis (e.g., the Newton-Raphson (NR) method and the
Backward-Forward Sweep (BFS) [Milano 2010, Kersting 2012]). At the same time,
PF analysis software need to be enhanced in order to satisfy new requirements of
efficiency and accuracy [Momoh 2009, Fang 2012]. The interest of GPU-based PF
analysis is twofold. On one hand, it expands the application domain of GPUs to a
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new class of problems, opening the possibility for similar tools to benefit from the
same computing power. On the other hand, it consistently increases the computa-
tional capacity available for power system operation and design.

In the present work, the above problem is addressed in two ways. First, by
taking existing algorithms for PF analysis and exploring the possibilities and issues
of a GPU-based implementation. Second, by developing novel methods for PF
analysis specifically designed to run on such architectures. The proposed methods
are implemented using state-of-the-art programming frameworks and paradigms,
and tested over recent GPU and CPU architectures. The results are discussed and
compared with existing solutions from the literature of the field, leading to relevant
conclusions and guidelines for future research.

The remainder of this chapter is organized as follows. Section 1.2 provides a
preliminary discussion of GPUs and PF analysis. Section 1.3 exposes the main
problem addressed in this thesis and its significance. The method of the investiga-
tion is stated in Section 1.4. Finally, Section 1.5 outlines the main contributions of
the present research.

1.2 Context

This section introduces the state-of-the-art of GPUs and PF analysis at the time
of writing this thesis. The discussion is thoroughly expanded in Chapters 2 and 3.

1.2.1 Graphics Processing Units

The development of GPUs started during the 1990s, largely motivated by the mul-
timedia industry and the necessity of rendering graphics quickly at an affordable
cost [Owens 2008, Nickolls 2010]. GPUs were originally conceived as powerful vec-
tor co-processors, capable of computing the information for thousands of pixels at a
time. For this purpose, several (somewhat rudimentary) computing cores were dis-
posed together in a configuration allowing for data-parallelism to be exploited. The
Single Instruction Multiple Thread (SIMT) execution model was adopted, and a
specific memory hierarchy was implemented in order to satisfy the particular needs
of graphics developers. Two main manufacturers captured a large portion of the
market: Nvidia and ATI. From then on, several generations of GPUs have been
released, embedding more and more computing cores, as well as larger memory
spaces and newer features. Various supercomputers and calculation clusters around
the world adopted GPUs as part of their environment, and GPUs consolidated as
a key element for high performance computing.

At the beginning, GPUs were devoted to graphics rendering. The architec-
tural design was dictated by the specification of the programming language, e.g.,
DirectX and OpenGL. Programming for general applications was only possible
through cleverly and carefully manipulating graphics primitives from those ded-
icated languages. The situation drastically changed when, by the middle of the
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past decade, general purpose GPU programming frameworks made their appear-
ance. For the first time, developers were able to exploit the potential of GPUs
on any application that would fit the GPU architectural model. Two of these
frameworks have gained popularity: CUDA, developed by Nvidia, and OpenCL,
by the Khronos Group [Cuda 2012, Stone 2010]. Thanks to these frameworks,
the growth of GPU applications has been exponential. Many GPU applications
nowadays achieve speed-ups of several orders of magnitudes over their serial CPU
versions [Che 2008, Volkov 2008].

Before the raise of GPU technology, the performance of serial programs was
automatically enhanced through increasing the frequency of CPU cores. No major
effort was required from the developers: a program simply runs faster on a faster
machine. However, by the end of the 1990’s, the development of CPUs started hit-
ting several walls. The first of them was the “power wall”: since the power consumed
by the processor grows exponentially with the frequency, it became increasingly dif-
ficult to cool high performance CPU cards. The second was the “memory wall”:
CPUs were evolving much faster than memories, and memory access latency pre-
vented most applications to achieve peak CPU performance. The third was the
“instruction-level parallelism (ILP) wall”: the instruction pipeline, used by CPUs
to enhance performance, was under-utilized by programs having insufficient inde-
pendent instructions to execute in parallel [Asanovic 2006].

Interestingly, the stall of CPUs coincided with GPUs reaching their maturity
in terms of architecture and programming. The computing power of GPUs was
seen as an opportunity to keep increasing performance through the use of paral-
lel programming. However, this time software developers were bound to play an
important part, as programs designed for CPUs had to be re-written in order to
run on GPUs. Developers faced a double challenge: (i) discovering the parallelism
inherent in their application; and (ii) exposing that parallelism to the GPU in a
special, novel programming language (such as CUDA and OpenCL).

The above did not prevent GPUs from disrupting into the world of HPC. A novel
research field named General Purpose GPU programming (GPGPU) would emerge
to accompany and confirm the success of GPUs [Du 2012]. GPGPU is concerned
with the following question: how to write parallel code in order to extract the max-
imum benefit of various GPU architectural features? GPGPU has revealed several
guidelines to answer such a question: guidelines to hide latency, to maximize uti-
lization of floating-point units and to access memory more efficiently [Harris 2012].
Applications exhibiting a regular computation pattern and data structure proved
to fit best the SIMT paradigm. Several examples of such successful experiences can
be found in the recent literature on HPC. Currently, the challenge is to move from
such “embarrassingly parallel” applications to a wider variety of tools, including,
for instance, computations over graphs and sparse matrix operations.
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1.2.2 PF analysis

PF analysis is the steady-state analysis of Alternating Current (AC) power systems.
Given the specification of all electrical components in the network, the PF analysis
determines the system operating point and is a tool for analysts and stakeholders
to make better decisions and improve system security [Milano 2010].

PF analysis has been at the core of power system analysis since the 1950s. Sys-
tem operators have used it to anticipate and prevent the effects of critical contin-
gencies, but also to optimize performance under a series of economical and political
constraints. System planners have used it to compare expansion scenarios and se-
lect the ones that fit the best [Machowski 1997]. New applications continue to be
added to the list, as the system evolves into newer and more complex configurations.
Recently, the introduction of massive renewable energy generation, smart metering
and load demand response is challenging system operators and planners, as part
of the shift into the so-called Smart Grid concept [Momoh 2009]. The PF analysis
appears to be a crucial tool in accompanying and consolidating this crucial process.

The standard PF formulation specifies loads in terms of real and reactive power
consumptions; generators in terms of real power injections and rated voltages; and
transmission lines in terms of susceptances and impedances. Since the power flowing
through an impedance is a function of the product of voltage and current, solving
the PF problem implies dealing with a highly-coupled, often ill-conditioned system
of non-linear equations. In the past, a linearized model based on direct current
(DC) was used to find an approximate solution. Nonetheless, this method can lead
to an accuracy loss of up to 50% and is not considered in this work. On the other
hand, Newton-based methods have proven to be fairly efficient and soon became
the industry standard. Gauss-based methods have also been investigated, although
their relevance is nowadays more academical than practical. In addition, the BFS
method is largely used for the analysis of radial distribution networks.

For PF analysis to be applied to power system operation, certain standards
of efficiency and accuracy need to be fulfilled. Due to computational constraints,
the above did not happen until the late 1960s [Stott 1974]. At that point, key
improvements in the digital processor allowed a variant of the Newton method,
namely the Fast Decoupled Power Flow (FDPF), to be appropriately suited for
industry. The FDPF is based on a fixed slope to move from one approximation
to the next, instead of factorizing the system Jacobian matrix at each iteration.
With time, numerous improvements in sparse matrix factorization made the full
NR method increasingly efficient, and now several software packages implement it
as the basic general purpose approach [Milano 2013].

To date, most attempts to improve performance of PF analysis have consisted in
accelerating certain routines involved in the Newton method. Different libraries for
sparse matrix factorization have been tried out, e.g. SuperLU, UMFPACK, KLU,
among others [Li 2005, Davis 2004, Davis 2010]. Simultaneously, various forms of
non-deterministic PF analysis have been proposed to provide accurate results in
scenarios of high uncertainty [Alvarado 1992]. As power systems become more
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heterogeneous, the sources of uncertainty increase, and the numerical quality of PF
solutions needs to be reassessed. A possible approach consists in providing results
in terms of intervals or distributions, which allows the analysis of several possible
scenarios at once. Currently, the trend is to combine all these improvements (and
others to come) into a comprehensive PF analysis tool, for the enhancement of
modern and future power systems [Vaccaro 2013].

1.3 Problem statement

The SIMT execution model adopted by GPUs allows the same instruction to be
executed over different data by a large number of parallel threads. GPU program-
ming is achieved through kernel functions, which contain the instructions to be
executed by every thread within a multidimensional array. At the architectural
level, threads are scheduled for execution by batches (of 32 or 64, depending on the
manufacturer). All threads in the batch execute the same instruction, and memory
accesses are served with full lines of cache to an entire batch. For an application to
sufficiently exploit this model, all threads in a batch should follow the same execu-
tion path. Also, they should access data in the same line of cache. This means that
applications exhibiting a regular computation pattern automatically achieve better
performance.

The NR method for PF analysis computes successively better approximations
of the zero of a non-linear function describing the system. The method moves from
one point to the next one by following the tangent to the function at the current
point, which is done by factorizing the system Jacobian matrix. To the date, most
matrix factorization algorithms rely on some sort of reordering followed by block
factorization and backward substitution. The process as a whole is characterized
by strong data dependencies, making the application of the SIMT execution model
extremely difficult. The underlying data structure, in turn, is highly irregular, as
the power network is typically a sparse meshed graph. This makes GPU memory
model difficult to exploit.

In synthesis, neither the SIMT execution model nor the GPU memory model
can be properly exploited by the NR algorithm for PF analysis. However, GPUs
exhibit many other features that can become a leverage for either performance or
accuracy. Similarly, PF analysis can be performed by other methods, either avail-
able or newly developed. This thesis is confronted with the question of how to
efficiently use GPUs to improve PF analysis in a general way. This means under-
standing GPU architecture in deep detail, such that novel programming guidelines
can be proposed. It also means rediscovering PF analysis from the point of view
of parallel computing. What specific features of GPUs can be used to enhance
crucial aspects of PF analysis? What algorithms or models for PF analysis are
best suited to massively parallel computing architectures? These questions have
not been sufficiently explored.

The problem stated above spans two independent areas of knowledge. Accord-
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ingly, its significance is twofold. On one hand, there is the enormous benefit of
expanding the applicability of GPUs to new areas. PF analysis is exactly the kind
of applications that the current trend in GPU computing is trying to assess. That is
to say, applications with no evident data parallelism in their work-flow, exhibiting
an irregular computation pattern, with a scattered data structure, and so on. Being
able to adopt PF analysis as one of GPU applications certainly opens the door for
others to follow.

On the other hand, enhancing PF analysis is crucial in the current worldwide
scenario of power systems. The shift towards the Smart Grid means novel technolo-
gies being introduced to the network and new services to be provided. The ability
to analyze large, complex and heterogeneous networks efficiently and accurately is
key for the success of that process. The above is particularly true as PF analysis is
at the core of many other relevant analysis over power systems. From this point of
view, any improvement either in the time of response, the numerical quality of the
results or the comprehensiveness of the solution, can have a big impact on the way
the whole system is conceived and dealt with.

1.4 Methodology

The very nature of the problem, i.e., how to efficiently use GPUs to enhance various
aspects of PF analysis, allows it to be addressed in two complementary ways. The
first consists in developing novel GPU programming strategies for available PF
algorithms. The second is to propose novel PF analysis methods that can exploit
the numerous features present in GPU architectures.

Each aspect of the methodology requires a deep understanding of both GPU
computing and PF analysis. Accordingly, the first part of the thesis, comprising
Chapters 2 and 3, is devoted to investigate the state-of-the-art in these two fields.
The peculiarities of GPUs are discussed in Chapter 2. Several details of the ex-
ecution model, memory hierarchy and programming frameworks are exposed. As
features are described, several guidelines and strategies for GPU programming are
discussed.

PF analysis is studied in Chapter 3, starting from the fundamentals of circuit
theory and AC circuit analysis. After stating the PF problem, relevant solution
methods are described. The above includes deterministic and non-deterministic
methods, the latter oriented to deal with uncertainty. It also includes methods
for fully meshed networks, i.e., with arbitrary topology, and methods for radial
networks. As methods are described, relevant implementation issues are discussed.

The second part of the thesis, comprising Chapters 4, 5 ad 6, is focused on
developing the field. Based on the understanding of the state-of-the-art, several
research directions are proposed. These are obtained by combining one crucial
aspect of each subject, i.e., GPU computing and PF analysis, which results in a
particular viewpoint. The viewpoint originates a novel technique, or improves an
existing technique in an original way. The proposed technique is first studied and
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validated from a theoretical point of view. Then, the technique is implemented and
tested using state-of-the-art programming methods and computing architectures.
The results are discussed and compared with results obtained using other methods
from existing literature. The assessment of the proposed methods is carried out
considering real-world problems. Based on the above, guidelines for further research
are finally proposed. In particular, Chapter 4 studies different ways of implementing
the so-called treefix operations on GPUs, for the analysis of radial power networks.
Chapter 5 proposes a novel GPU fuzzy interval arithmetic implementation, and its
application to uncertainty modelling in PF analysis. Chapter 6 proposes a novel
fixed-point method for PF analysis which is intrinsically parallel, and discusses its
implementation using asynchronous iterations on the GPU.

1.5 Summary of contributions

The present work intends to bring the following main contributions. To GPU pro-
gramming:

• Comparison of programming paradigms. The analysis of different treefix
approaches in Chapter 4 brings an answer to the problem of regularity versus
load-balancing on GPUs for this kind of problem. Which approach is better
for GPU programming? On one hand, regularity exploits better the SIMT
execution model, but may introduce extra operations and data transfer. On
the other hand, load-balancing keeps the number of operations to a minimum,
but it may generate a computational pattern unsuited to SIMT.

• Impact of the representation format. Chapter 5 provides a comparison
of different interval representation formats for fuzzy algebra. Is it possible
to improve performance or accuracy of fuzzy applications by using a specific
representation format? Certain peculiarities of the membership function can
be exploited by the midpoint-radius format, however, most available fuzzy al-
gebra implementations overlook that fact, relying exclusively on lower-upper.

• Architecture-specific design. GPU computing is a relatively recent tech-
nology. Therefore, most existing GPU-based approaches for numerical anal-
ysis and simulation rely on parallelizing already available techniques. What
about using our knowledge of the GPU to design new methods, specifically
suited for the implementation on such massively parallel architectures? The
asynchronous PF method proposed in Chapter 6 is one of the first attempts
to achieve that goal.

To PF analysis:

• Acceleration of radial network analysis. Chapter 4 proposes a novel
vectorial implementation of the BFS algorithm, based on the study of treefix
operations. How much faster can this solution be, compared to the traditional
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approach based on sequential tree traversals? Experimental results show that
a speedup of 2 to 9 can be achieved, depending on several implementation
features.

• Uncertainty assessment. Chapter 5 proposes a novel method for the un-
certainty assessment in PF analysis. Current interval approaches are affected
by the dependency problem, which causes a critical loss of accuracy in the
final results. Is it possible to overcome that issue? In the proposed method,
the above is achieved by using an optimization problem to compute the radius
of the solution. The proposed method provides an accuracy similar to that of
the Monte Carlo approach, with a much lower computational complexity.

• Intrinsically parallel PF analysis. Chapter 6 proposes a novel fixed-point
method for PF analysis, which is intrinsically parallel. How advantageous this
approach can be, compared to parallelizing existing serial approaches? Two
features of the proposed method are particularly interesting: (i) performance
does not depend as much on the problem size, as it does in traditional PF
approaches; and (ii) performance is able to scale with the number of com-
puting cores, automatically benefiting from improvements in the computer
architecture.

1.6 List of publications

The present work has originated the following publications. In peer-reviewed inter-
national conferences:

• D. Defour and M. Marin. Regularity Versus Load-balancing on GPU for

Treefix Computations. Procedia Computer Science, 2013 International Con-
ference on Computational Science, vol. 18, pp. 309 – 318, 2013.

• D. Defour and M. Marin. FuzzyGPU: A Fuzzy Arithmetic Library for GPU.

Parallel, Distributed and Network-Based Processing (PDP), 2014 22nd Eu-
romicro International Conference on, pp. 624–631, 2014.

• M. Marin, D. Defour and F. Milano. Power flow analysis under uncertainty

using symmetric fuzzy arithmetic. IEEE PES General Meeting, Conference
& Exposition, pp. 1–5, 2014.

In national journals:

• D. Defour and M. Marin. Simulation temps réel de réseaux électriques à l’aide

des architectures multicœurs. UPVD Magazine Hors-Série recherche, no. 3,
pp. 42-44, 2014.

• D. Defour and M. Marin. Optimiser la représentation des flottants. HPC
Magazine France, vol. 4, pp. 65-70, 2013.
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Under review:

• M. Marin., D. Defour and F. Milano An efficient representation format for
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2.1 Introduction

This chapter describes several features of Graphics Processing Units (GPUs), fo-
cusing on architectural aspects. It does not aim to be an exhaustive review but
rather provide the basis for the discussion that will follow in Chapters 4, 5 and 6.

GPUs have gained popularity lately thanks to their high computational power,
attractive cost, programmability and availability. Applications ported to GPUs can
achieve a substantial speed-up over their single-core versions, and this performance
gain is able to scale with the number of cores [Owens 2008, Che 2008]. Writing an
application for the GPU, however, requires understanding the architectural model.
Specifically, programmers need to expose the data parallelism of their applications
by using some dedicated programming language. In addition, they may need to tune
their implementations in order to achieve maximum efficiency [Ryoo 2008]. This
chapter presents the most relevant features of GPU architecture, and discusses how
these features can be exploited in order to achieve maximum performance.

The remainder of the chapter is organized as follows. Section 2.2 introduces
the GPU, detailing the hardware architecture, execution model, memory hierarchy
and main programming frameworks. In Section 2.3, three relevant factors for GPU
performance are discussed: regularity, latency hiding and instruction throughput.
These factors are presented along with several strategies to leverage performance of
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GPU applications. Finally, Section 2.4 draws conclusions and outlines GPU issues
discussed in following chapters.

2.2 Hardware architecture

GPUs are powerful co-processors designed to exploit data parallelism. This section
presents an overview of key aspects of GPU architecture, focusing particularly on
Nvidia architectures.

Modern GPU architectures embed hundreds to thousands of computing cores,
along with several memories, caches, and dedicated units. These elements are
organized into so-called Streaming Multiprocessors (SM). Figure 2.1 presents a
schematic of the Nvidia Fermi GPU architecture [Glaskowsky 2009]. The entire
board is shown in Fig. 2.1(a), and Fig. 2.1(b) shows an individual SM.

At high level, the host interface communicates the GPU with the ‘host’ proces-
sor, which launches the task (typically, a CPU). In this context, the GPU is called
the ‘device’. GPU global memory allows both processors to exchange data. The
thread-block scheduler distributes blocks of threads to different SMs for their execu-
tion. Additionally, the L2 cache allows data caching for redundant global memory
accesses made by SMs.

At SM level, the thread scheduler and dispatch units distribute threads to the
different execution units. The latter include scalar processors (SP), special function
units (SFU) and load/store units. SPs execute integer and floating-point arithmetic
instructions, whereas SFUs accelerate in hardware the execution of transcendental
instructions such as sine, cosine, square root and interpolation. Load/store units
calculate source and destination addresses.

The SM register file provides registers for threads execution. The L1 cache
allows additional data caching for global memory accesses made by different threads.
Finally, shared memory allows different threads to explicitly share data.

2.2.1 Execution model

GPUs rely on a Single Instruction Multiple Thread (SIMT) execution model, where
a kernel program is launched over a grid of thread-blocks. The above is illustrated
in Fig. 2.2. Grid and blocks can be up to three-dimensional. Each block has a
unique identifier within the grid, and each thread has a unique identifier within its
block. These two can be used together to compute a unique global identifier for
each thread.

The thread-block scheduler distributes blocks of threads to the different SMs.
Each block is executed on a single SM, however, each SM can have multiple blocks
running concurrently. The number of blocks that can run on a given SM depends
on the resources of the SMs compared to the requirements of each block. Within
the SM, threads are scheduled by batches of a fixed size to the different execution
units. In Nvidia architectures, 32 threads are scheduled together and called a warp.
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Figure 2.2: Grid of thread-blocks.

In the rest of the chapter, the term warp is used to refer to a batch of threads
simultaneously executed.

For illustration purposes, consider the Nvidia Fermi architecture, where each SM
has two thread schedulers and dispatch units and the execution units are organized
in four sets: two sets of 16 SPs each, one set of 4 SFUs, and one set of 16 load/store
units (see Fig 2.1(b)). At every instruction issue time, each scheduler selects a warp
and issues one instruction from that warp to consume any two of the four sets of
execution units listed above. For example, one instruction can consume both sets
of 16 SPs, or one set of 16 SPs and the set of 4 SFUs, or any combination alike.

All the execution units are fully pipelined, which allows the GPU to exploit
Instruction-Level Parallelism (ILP) within a single thread. This adds up to the
data parallelism that is already exploited by the SIMT execution model.

In the presence of a branch, execution paths that are only taken by some of the
threads in a warp are also executed by the others. Typically, all divergent paths
are executed by the entire warp serially (unless all the threads happen to follow the
exact same path). This generates unnecessary computation and should be avoided
if possible. One solution is to sort the data so that divergent paths are taken
preferable by different warps. Another is to use function templates and generate
separate kernels for each execution path. For details on the latter, see [Harris 2007].
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2.2.2 Memory hierarchy

GPU memory is organized in three main areas: registers, shared memory and global
memory. The first two can be found inside any individual SM, i.e., on-chip. The
third is located outside the SM, i.e., off-chip. These areas are distinguished in
Fig. 2.1. According to their distance to the execution units, these memories are
accessed at different speeds: registers and shared memory have a low latency access
(few cycles), whereas global memory has a relatively high latency access (hundreds
of cycles). In general, registers have a higher bandwidth than shared memory, and
shared memory has a higher bandwidth than global memory. For example, in the
Fermi architecture, these are 8 TB/s for registers, 1.6 TB/s for shared memory, and
192 GB/s for global memory.

Registers. Registers are allocated to each thread as needed, with a maximum
depending on the architecture (e.g., 63 registers per thread in modern Nvidia archi-
tectures). The number of registers per thread decreases as the number of threads
in flight increases. When a thread needs more registers than the ones available,
registers are spilled onto off-chip “local” memory. Such register spilling should be
avoided if possible, e.g., by adjusting the number of blocks and number of threads
per block.

Shared memory. Shared memory can be used by the programmer to explicitly
share data among threads from the same block, thus enabling cooperation. It can be
seen as a scratchpad, or programmable cache. Shared memory is organized in banks.
These can be accessed simultaneously by all the threads within a warp, as long as
each thread accesses a different bank. If two or more threads try accessing the
same bank, then several memory transactions are serially issued. Such concurrent
access, also known as bank conflict, must be prevented in order to achieve maximum
performance. Sometimes programmers add padding to the data in shared memory
in order to avoid these conflicts for a given memory access pattern.

Global memory. Global memory allows host and device processors to ex-
change data. Typically, input data is copied from host to device prior to the kernel
execution, and results are copied from device to host afterwards. Global memory is
accessed by segments of a fixed size (e.g., 32, 64, or 128 bytes). When threads in a
warp access data in the same segment, all the accesses are coalesced into a unique
memory transaction. Otherwise, several transactions are issued, degrading perfor-
mance. A coalesced access can be achieved, for example, by having consecutive
threads accessing consecutive cells in memory.

In addition to these main memory areas, modern GPUs may provide several
types of cache, e.g., L1 cache, L2 cache, constant memory and texture memory. For
details about these caches, see [Glaskowsky 2009].
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2.2.3 Programming frameworks

General purpose GPU programming is achieved by using a specific framework, with
an Application Program Interface (API) defined for that framework. CUDA and
OpenCL are the most commonly used.

These frameworks define a layer of abstraction, so that the same program can
be compiled for different GPU architectures without changing the code. In this
way, the parallelism in the application automatically scales with the number of
computing resources in the architecture. The programmer is just responsible for
exposing the parallelism by writing a kernel program. The kernel may involve tasks
to be executed independently in parallel by blocks of threads, and smaller sub-tasks,
to be executed cooperatively in parallel by threads within a block. The programmer
specifies the number of blocks and number of threads per block. However, the
specific way in which these blocks and threads are executed on the GPU is entirely
up to the hardware, and the programmer does not have control over it.

The CUDA and OpenCL API extend standard programming languages such as
C and C++. This allows for heterogeneous programming, where sections of host
code are interleaved with sections of device code. Device code is written in kernel
functions, which contain the instructions to be executed by a single thread. Typ-
ically, this involves retrieving of identifiers for that thread, data transfers between
global and shared memory, several arithmetic operations, and synchronization in-
structions. Host code typically involves setting up of GPU devices, declaration of
variables in host and device memory, data transfers between host and device, and
kernel calls.

Despite the fact that both CUDA and OpenCL provide a very similar function-
ality, there are still relevant differences between them. Some of these differences and
particular features are outlined below. For an extensive description of the CUDA
and OpenCL frameworks, see [Cuda 2012, Stone 2010].

CUDA. Compute Unified Device Architecture (CUDA) is a parallel computing
platform and API developed by Nvidia exclusively for their own manufactured
GPUs. The API consists of a set of C language extensions and a runtime library.

CUDA programs are compiled with nvcc. Compilation is usually performed of-
fline, by targeting a specific device or range of devices. The latter is specified by a
compute capability, which indicates relevant features common to several GPU de-
vices, usually attached to the generation (e.g., number of SMs, number of execution
units, size of the register file, size of the L1 and L2 caches). Offline compilation
is divided in three steps. First, device code is separated from host code and com-
piled into assembly and/or binary code by nvcc. The assembly code is tailored
for a specific compute capability, whereas the binary code is already tailored for
a specific device. Second, host code is modified by introducing function calls to
the CUDA run-time library, needed to load and launch the kernels compiled in the
precedent step. Third, the resulting host code is compiled into object code by the
host compiler.
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When an application loads assembly code to be executed on a specific device,
the driver automatically checks if there is a previously compiled binary for that
device. If not, it generates the binary at run-time, using nvcc, and caches a copy
for future runs. This is called just-in-time compilation, and allows applications to
immediately take advantage of driver upgrades. It is also a way for an application
to run on devices that may not have been existed at the moment the application
was originally compiled.

OpenCL. Open Computing Language (OpenCL) is an open standard for hetero-
geneous programming maintained by the Khronos group. Unlike CUDA, OpenCL
is designed to run across heterogeneous platforms with devices from several manu-
facturers. This includes CPUs and GPUs, but also other processors such as Digital
Signal Processors (DSPs) and Field-Programmable Gate Arrays (FPGAs). The
Khronos group specifies the OpenCL API to be implemented by the chip manufac-
turers. The API is organized into a platform layer API and a run-time API. Com-
pliant implementations are available from Apple, Intel, AMD and Nvidia, among
others.

In OpenCL, device code is usually compiled at run-time. This is intended to
ensure portability of applications among several compute platforms. As a conse-
quence, it is up to the programmer to explicitly use the run-time API in host code
in order to facilitate the compilation of device code (a process which is performed
automatically in CUDA). Typically, this means calling a function to create a pro-
gram object with source code from a text buffer, and another function to build that
program into a binary. Then, kernel objects can be created from the program just
built, and queued to launch onto a selected device.

The OpenCL run-time API also provides a function to create program objects
directly from binary code, instead of using source code. This is particularly useful
for applications that are designed to run several times on the same device and
platform, as it can reduce the execution time. However, it is up to the programmer
to purposely store a copy of the generated binary into disk, as binaries normally
have the lifetime of an individual execution. Of course, this strategy is not optimal
for portability [van der Sanden 2011].

2.3 Performance considerations

In order to improve performance of GPU applications, programmers may follow sev-
eral guidelines. These guidelines revolve around optimizing instruction and memory
usage. In order to know which strategies will be more impactful for a particular
kernel, the first step is to determine the bottleneck of that kernel. There are three
major bottlenecks that a kernel can encounter: instruction throughput, memory
throughput and latencies [Cuda 2012].

The bottlenecks can be determined by using the CUDA profiler, which is pro-
vided by Nvidia with every modern CUDA distribution. For each kernel, the profiler
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calculates the ratio of arithmetic instructions to data transfers. Then, by comparing
this figure with the ideal ratio of the device, one can determine whether the kernel
is compute-bound, memory-bound or latency-bound. Another way is to modify
the kernel by alternatively removing all arithmetic instructions and memory in-
structions, and compare the performance of the modified kernels with the original
one.

The remainder of the section discusses three relevant factors for GPU perfor-
mance: regularity, latency hiding and throughput. The discussion introduces several
strategies for enhancing performance of GPU applications.

2.3.1 Regularity

In parallel computing, regularity means similarity of behaviour between threads.
Regularity usually determines how well an application fits into the SIMT execu-
tion model. Therefore, it becomes one of the main aspects to consider for GPU
programming [Collange 2010].

For certain computations, e.g., matrix-matrix multiplication, a parallel algo-
rithm naturally exhibits a regular computation pattern. In some cases, the regular
algorithm is also work-efficient, i.e., it performs the minimal amount of opera-
tions needed to compute the result. Whereas in other cases, additional operations
have to be introduced in order to provide regularity. On the other hand, appli-
cations may use load-balancing whenever a regular computation pattern is hard
to find. Load-balancing means equally distributing parallel tasks among available
threads in execution time. This is the case, for example, of certain sparse matrix
computations and graph computations where the work-flow is data-driven or even
topology-driven [Nasre 2013].

Regularity can take several forms. The most basic is instruction regularity,
where different threads execute the same instruction simultaneously. On GPUs,
this is implied in the SIMT execution model and the concept of warp. Addition-
ally, applications may also implement control regularity and memory regularity,
explained below.

Control regularity means having different threads follow the same execution
path. On GPUs, this implies minimizing divergence among threads in a warp
caused by branching. As mentioned in Section 2.2.1, when threads in a warp take
divergent paths, all these paths are executed serially by the entire warp. In such
case, the instruction throughput is divided by the number of divergent paths. In
CUDA, whenever a branch is likely to generate many divergent paths with a limited
number of instructions each, nvcc is allowed to use branch predication. With branch
predication, only instructions in the path taken by each thread are actually exe-
cuted. Instructions from other paths are scheduled but not executed. This allows
the SM to save resources, although it does not prevent serialization of paths.

Memory regularity means using a memory access pattern that minimizes the
number of memory transactions. On GPUs, this comes down to avoid uncoalesced
accesses to global memory, as well as bank conflicts in shared memory accesses.
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As seen in Section 2.2.2, when threads in a warp read or write data in different
segments of global memory, the accesses are split into several transactions. In this
case, the throughput is divided by the ratio of the size of the transaction to the size
of the accessed word. For example, if a 4-byte word is accessed through a 32-byte
memory transaction, then the throughput is divided by 8. Accordingly, the more
scattered are the addresses, the more the throughput is reduced. As also seen in
Section 2.2.2, when threads in a warp access the same shared memory bank, again,
several memory transactions are issued. In this case, the throughput is divided by
the number of bank conflicts.

2.3.2 Latency hiding

Instruction latency is the number of cycles that a warp takes in executing a given
instruction. In other words, it is the period between the instruction issue time and
the completion time. On SIMT architectures, latency can be hidden by interlacing
execution of independent instructions. Latency hiding is one of the main sources of
GPU performance, as it allows the different execution units to remain busy most
of the time [Cuda 2012].

Instruction latency is typically caused by data dependence. Thus, it depends
on the memory access latency. For example, assume that an instruction needs to
read a variable which is written by the previous instruction (Read After Write
dependence). If this variable resides in a register, then the latency is relatively
low (tens of cycles, the time of accessing the register file). Whereas if the variable
resides in off-chip global memory, then the latency is much higher (hundreds of
cycles).

In order to hide latency, a SM interlaces the instructions from other warps.
However, the SM needs to find enough independent instructions to execute during
the latency period. To determine the number of instructions needed to saturate
the SM, one has to multiply latency by throughput. For example, if an instruction
has a latency of 20 cycles, and the SM can issue two instructions per cycle, then at
least 40 warps are needed to completely hide that 20 cycles of latency.

The CUDA programming guide recommends maximizing the occupancy, i.e., the
number of warps in the flight, in order to hide latency and maximize utilization.
However, latency can also be hidden by means of instruction-level parallelism (ILP).
Indeed, as mentioned in Section 2.2.1, GPUs are able to exploit ILP in addition
to data-parallelism, thanks to the instruction pipeline available in every execution
unit. Following this, Volkov has demonstrated that kernels can use ILP to achieve
better performance at lower occupancy [Volkov 2008].

In addition, using ILP means doing more work per thread, and thus fewer
threads are required. In this way, the block size can be reduced and the number
of registers per thread can be increased. Reducing the block size allows more
blocks to fit into each SM. Therefore, arithmetic instructions can be overlapped
with global memory accesses more efficiently. In turn, increasing the number of
registers per thread allows data to be transferred at a higher bandwidth. Therefore,
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memory-bound kernels can perform faster. These ideas are developed in more detail
in [Volkov 2010].

2.3.3 Throughput

Throughput is the number of operations performed per cycle. Latency hiding,
discussed in the previous section, is a way to increase throughput at SM level.
However, throughput can also be increased at instruction level.

Arithmetic throughput can be increased by using a lower precision either for
integer or floating-point computations. For example, consider a numerical algorithm
that computes a series of approximations to a certain variable and stops when the
error is below a certain threshold. Assume that the error is decreasing geometrically,
i.e., every new approximation is at least one order of magnitude more accurate than
the precedent. For the first few approximations, when the error is still very large,
the computations can be performed using a low precision (e.g., single). Then, only
when the error approaches the threshold, the algorithm can switch to a higher
precision in order to deliver the final result (e.g., double). This kind of methods are
known as mixed precision methods [Clark 2010].

CUDA provides a set of intrinsic functions for fast mathematical computation,
including division, trigonometrical functions, logarithm and exponentiation, among
others. These map to fewer native instructions than their standard counterparts,
resulting in faster, although less accurate computation. They can be called explicitly
in device code, at the points where the programmer is willing to trade accuracy for
performance.

In addition, memory throughput can be increased by avoiding memory accesses
with high latency. In particular, data transfers between host and device can be
reduced by running more tasks on the device, even serial ones. For example, consider
a loop in host code that launches a kernel and reads back the results in order to
evaluate an end condition. This requires transferring data from device to host at
every iteration, whereas if the condition is evaluated on device code, then all those
memory transfers are avoided.

Finally, global memory accesses from within SMs can be reduced by using shared
memory. For example, assume that the previous loop can be split into several loops
working on non-overlapping subsets of the data. These loops can be assigned to
independent thread-blocks and performed asynchronously on shared memory. In
this way, the blocks transfer their results to global memory only when the end
condition is reached, instead of doing it at every iteration.

2.4 Conclusions

This chapter presents a review of GPUs and general purpose GPU programming.
The hardware architecture is first described, detailing the SIMT execution model,
the GPU memory hierarchy and the main frameworks for GPU computing. Next,
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three relevant factors for GPU performance are analyzed: regularity, latency hiding
and throughput.

Following chapters resume some of the issues presented above, applied to spe-
cific problems issued from Power Flow (PF) analysis. Chapter 4 addresses the
problem of regularity versus load-balancing for the implementation of the so-called
treefix operations. Which approach is better for GPU programming? On one hand,
regularity exploits better the SIMT execution model, but may introduce extra op-
erations and data transfer. On the other hand, load-balancing keeps the number of
operations to a minimum, but it may generate a computational pattern unsuited
to SIMT.

Chapter 5 provides a comparison of different interval representation formats for
fuzzy algebra. Is it possible to improve performance or accuracy of fuzzy interval
applications by using a specific representation format? Certain peculiarities of
the membership function can be exploited by the midpoint-radius format, however,
most available fuzzy algebra implementations overlook that fact, relying exclusively
on lower-upper.

GPU computing is a relatively recent technology. Therefore, most existing
GPU-based approaches for PF analysis and simulation rely on parallelizing already
available techniques. What about using our knowledge of the GPU to design new
methods, specifically suited for the implementation on such massively parallel ar-
chitectures? The asynchronous PF method proposed in Chapter 6 is one of the first
attempts to achieve that goal.
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3.1 Introduction

This chapter outlines different models and methods for Power Flow (PF) analysis.
It does not aim to be an exhaustive survey but rather an introduction to the main
aspects of PF analysis that will be addressed in Chapters 4, 5 and 6.

PF analysis can be seen as a special case of circuit analysis, where the component
behaviour is defined in terms of power injections. Using a power injection model
leads to a set of nonlinear equations. As a consequence, the solution is commonly
approached by using numerical methods. The Newton-Raphson (NR) method is
considered the standard [Stott 1974].

This chapter also considers uncertainty in PF analysis, which is caused by the
complex and heterogeneous nature of the power systems. Uncertainty is typically
modelled using probabilistic and interval analysis, and a number of solution meth-
ods have been proposed. The problem acquires special relevance in the context
of the smart-grid functionality, with the changes experimented by power systems
worldwide in recent years [Wan 1993].

The remainder of the chapter is organized as follows. Section 3.2 presents the
fundamentals of circuit analysis, including Alternating Current circuits in steady-
state. Section 3.3 focuses on PF analysis. Conventional solution methods are
classified based on network topology. Relevant approaches to deal with uncertainty
are also discussed in Section 3.3. Finally, Section 3.4 draws conclusions and outlines
the developments presented in Chapters 4, 5 and 6.
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3.2 Classic circuit analysis

PF analysis finds its roots in circuit analysis. This consists in determining node
voltages and branch currents in an electrical circuit given the description of the
circuit components (sources, resistors, etc.) [Nilsson 2009].

The circuit is typically assumed to be a lumped parameter system, where electri-
cal effects happen simultaneously throughout all components. This assumption is
valid if the signal wavelengths are much larger than the circuit itself, and in partic-
ular if voltage and current are time-invariant. In this situation Kirchhoff’s laws can
be applied [Nilsson 2009]. Kirchhoff’s current law establishes that the (signed) sum
of currents injected to any node in the circuit is equal to zero. Kirchhoff’s voltage

law establishes that the voltage drop across any closed loop in the circuit is equal
to zero. It is important to note that these laws are only valid when

Kirchhoff’s current law. Let i1, i2, . . . , in be the current intensities on n branches
merging into a node in an electrical circuit. Then,

n∑

k=1

ik = 0. (3.1)

Kirchhoff’s voltage law. Let v1, v2, . . . , vn be the voltage drops across n branches
that form a closed loop within an electrical circuit. Then,

n∑

k=1

vk = 0. (3.2)

Kirchhoff’s current law leads to the so-called node method. One node in the
circuit is selected as ground, or reference node. All other voltages are measured
with respect to ground. Then, Kirchhoff’s current law is applied on every non-
ground node in the circuit, and the resulting equation system is solved. Of course,
the above needs to be completed with the particular equations that describe circuit
components and relate voltage and current within the components themselves.

3.2.1 Alternating current circuits in steady-state

Let’s consider the following two assumptions that characterize Alternating Current
(AC) circuits in steady-state operation:

i) All sources are sinusoidal waveforms of the same frequency (AC assumption).

ii) The sources have been active long enough for all transients to fade away
(steady-state assumption).

If these assumptions hold and all components are linear, then all voltages
and currents in the circuit are sinusoidal waveforms of the same frequency as the
sources [Nilsson 2009]. Typically, they are represented as phasors. For example,
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consider the sinusoidal waveform, v(t) = v cos(ωt + θ). This is written as the real
part of a complex exponential, as follows.

v(t) = Re
(
vej(ωt+θ)

)
= Re

(
vejωtejθ

)
. (3.3)

Since ω is fixed, v(t) is simply noted as the phasor v = vejθ = v(cos θ + j sin θ), or,
in angle notation, v = v∠θ.

Additionally, the concept of impedance is introduced to model the behaviour of
electrical components under the AC regime.

Definition 3.2.1 (Impedance). Let v be the phasor voltage across an electrical
component, and i, the phasor current through it, in an AC steady state operation
regime. Then, the complex ratio,

z =
v

i

, (3.4)

is the impedance of the component.

Note that even if z is the ratio of two phasors, it is not itself a phasor (it is not
associated to any sinusoidal form). The impedance of common electrical compo-
nents is obtained from the component model. In general, the resulting expression is
a combination of the model parameters, the system frequency, ω, and the imaginary
unit, j. For example, for the resistor, inductor and capacitor, the following linear
relations are available:

vR(t) = R iR(t), (3.5a)

iC(t) = C
dvC

dt
, (3.5b)

vL(t) = L
diL

dt
, (3.5c)

where vR(t), vC(t) and vL(t), are the voltages across the components; R, C and L,
are the resistance, capacitance and inductance, respectively; iR(t), iC(t) and iL(t)
are the currents through. Applying phasor differentiation to these equations, the
following complex equations are obtained:

vR = R iR, (3.6a)

vC = −
j

ωC
iC , (3.6b)

vL = jωL iL, (3.6c)

where vR, vC and vL, are the phasor voltages at component terminals; iR, iC

and iL are the phasor currents through. By looking at the above equations, the
expression for the impedances can be deduced. These are summarized in Table 3.1.

The remainder of the section illustrates the node method on an example AC
circuit.
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Table 3.1: Impedance of common linear components.

Component type Impedance

Resistance R R

Capacitance C − j
ωC

Inductance L jωL

1

0

32

i1

R12
R23

jωL2 − j
ωC3

Figure 3.1: RLC circuit in stationary AC conditions.

Example 3.2.1: Node method for AC circuit analysis. Figure 3.1 shows a
typical AC circuit. The current source, i1, the resistances R12 and R23, inductance
L2, and capacitance C3, are all given. The problem is to determine v1, v2 and v3,
the phasor voltages at nodes 1, 2 and 3. Node 0 is selected as voltage reference,
i.e., v0 = 0.

Applying Kirchhoff’s current law on nodes 1, 2 and 3, the following system of
complex linear equations is obtained.

i1 +
1

R12
(v1 − v2) = 0, (3.7a)

1
R12

(v2 − v1) −
j

ωL2
v2 +

1
R23

(v2 − v3) = 0, (3.7b)

1
R23

(v3 − v2) + jωC3 v3 = 0. (3.7c)

In matrix form, one obtains:




1
R12

− 1
R12

0

− 1
R12

1
R12

− j
ωL2

+ 1
R23

− 1
R23

0 − 1
R23

1
R23

+ jωC3







v1

v2

v3


 =




−i1

0

0


 . (3.8)

The above system can be solved by a number of techniques (e.g., Gaussian elim-
ination, LU factorization). The solution represents the stationary condition or
steady-state of the circuit.



3.3. PF analysis 36

3.3 PF analysis

PF analysis is the steady state analysis of an AC circuit that represents the power
network. The focus is on power injections at network buses, which determine the
power flows across the network. The concept of complex power is introduced to
study these power flows.

Definition 3.3.1 (Complex power). Let i be the current magnitude through an
electrical component in an AC circuit, and z, its impedance. Then,

s = z i2, (3.9)

is the complex power flowing through the component.

The real part of the complex power is called real power, and noted p. The
imaginary part is called reactive power, and noted q. Then, s = p + jq. For a
physical interpretation of real and reactive power, see [Machowski 1997]. Note that
the complex power can also be obtained by,

s = v i

∗, (3.10)

where v and i are the phasor voltage and current, and (·)∗ denotes the complex
conjugate.

In this thesis, the power network is assumed to be a balanced symmetrical
three-phase system. Accordingly, it suffices to analyze only one of the phases using
a single-phase equivalent circuit. The typical PF problem defines four types of
devices: generators, loads, transmission lines and transformers. Nodes in the circuit
are referred to as buses. In the single-phase equivalent circuit, generators and
loads are always connected with one terminal to ground. Transmission lines and
transformers are connected between two non-ground buses.

Generators are specified in terms of a real power injection and a voltage magni-
tude, whereas loads are specified in terms of a real and a reactive power consump-
tion. Transmission lines and transformers are specified in terms of a π-circuit with
constant impedance. The per-unit system (pu) is used, which allows expressing
voltage magnitudes and power flows as fractions of a determined base.

The objective is to compute bus voltage magnitudes and phase angles. To
this purpose, the buses in the network are classified as follows. If a generator is
connected to the bus, it is called a generator bus. If only loads are connected, it is
called a load bus. One of the generator buses is chosen as reference for the voltage
angle, and is called the slack bus.

At generator buses, the real power injection and the voltage magnitude are
known. This leaves the voltage phase angle and the reactive power injection to be
determined. At load buses, real and reactive power injections are known, which
leaves the voltage magnitude and phase angle to be determined. At the slack bus,
voltage magnitude and phase are known, thus, real and reactive power injections
are left to determine. The above is summarized in Table 3.2.
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Table 3.2: Known and unknown variables for each type of bus in PF analysis.

Bus type Knowns Unknowns Code

Generator p, v θ, q PV
Load p, q v, θ PQ
Slack v, θ p, q -

3.3.1 Conventional solution methods

Depending on the topology of the network, different solution methods can be used.
One of the main aspects that determine the suitable method is the presence (or
absence) of meshes in the grid. For an extensive survey of PF analysis methods
see [Milano 2010, Kersting 2012].

Meshed networks

In the general case of a network with several generators and meshes, the solution is
typically approached by solving the system of power balance equations. These state
that the power injected to each bus by generators and loads is equal to the net PF
entering the bus from transmission lines. The above is expressed in the following
vector equation:

s = Diag(v) i∗, (3.11)

where s is the vector of complex powers injected by generators and loads, v is the
vector of phasor bus voltages, and i is the vector of phasor currents coming through
transmission lines. Diag(v) is the diagonal matrix that has v as diagonal.

The vector of current injections, i, is obtained from circuit analysis, using the
following expression:

i = Y v, (3.12)

where Y is the admittance matrix, defined below.

Definition 3.3.2 (Admittance matrix). Let zhk be the impedance of the line con-
necting buses h and k in a power network. Then, the admittance matrix, Y , is a
symmetric matrix, defined by,

yhk =





∑
m

1
zhm

if h = k,

− 1
zhk

otherwise.
(3.13)

Combining equations (3.11) and (3.12), the power balance equations are noted
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as follows.

s = Diag(v)(Y v)∗, (3.14)

And, in scalar form,

sh = vh

∑

k∈B

(yhkvk)∗, h ∈ B, (3.15)

where B is the set of buses. The above equation is split into real and imaginary
parts, by writing, sh = ph + jqh, vh = vhejθh , and yhk = ghk + jbhk. This yields the
following two equations.

ph = vh

∑

k∈B

vk(ghk cos θhk + bhk sin θhk), h ∈ B, (3.16a)

qh = vh

∑

k∈B

vk(ghk sin θhk − bhk cos θhk), h ∈ B, (3.16b)

where θhk = θh − θk.
Equation (3.16a) is written for both PV and PQ buses, whereas equation (3.16b)

is only written for PQ buses. This yields a system of 2n + m − 1 equations on
2n + m − 1 unknowns, where n is the number of PQ buses, and m is the number of
PV buses (including the slack).

Next, two approaches to the solution of the above system are presented. The
first is the NR method. The second is relaxation, which includes the Jacobi and
Gauss-Seidel methods.

NR method. The NR method is an iterative direct method for finding succes-
sively better approximations of the zeros of a differentiable function, f(·) : Rn →

R
n. It computes a series, x(k), k = 1, 2, . . ., such that,

lim
k→∞

f(x(k)) = 0, (3.17)

given a “good” initial guess, x(0).
The method relies on approximating the function by its tangent at the current

point. The next point is computed as the zero of this tangent. The tangent to f(·)
at x(k) is given by,

y(x) = f(x(k)) + Jf

∣∣∣
x=x(k)

(x − x(k)). (3.18)

where Jf is the Jacobian matrix of f(·) (see appendix A for a definition of Jacobian
matrix). Imposing, y(x(k+1)) = 0 in the equation above, yields the NR iteration,

x(k+1) = x(k) −

(
Jf

∣∣∣
x=x(k)

)−1

f(x(k)). (3.19)
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The NR method is applied to PF analysis as follows. The buses in the network
are numbered from 1 to m + n, such that: bus 1 is the slack bus, buses 2 to m are
PV buses, and buses m + 1 to m + n are PQ buses. Then, x and f(·) are chosen as,

x =

(
θ

v

)
=




θ2
...

θm+n

vm+1
...

vm+n




, f(x) =

(
∆p(x)
∆q(x)

)
=




∆p2(x)
...

∆pm+n(x)
∆qm+1(x)

...
∆qm+n(x)




, (3.20)

where,

∆ph(x) = −ph + vh

∑

k∈B

vk(ghk cos θhk + bhk sin θhk), (3.21a)

∆qh(x) = −qh + vh

∑

k∈B

vk(ghk sin θhk − bhk cos θhk). (3.21b)

Functions ∆ph and ∆qh are called power mismatches.
The Jacobian matrix, Jf , is computed as follows.

∂∆ph

∂θh
= −vh

∑

k 6=h

vk (ghk sin θhk − bhk cos θhk) , (3.22a)

∂∆ph

∂θk
= vhvk (ghk sin θhk − bhk cos θhk) , h 6= k, (3.22b)

∂∆ph

∂vh
= 2vhghh +

∑

k 6=h

vk (ghk cos θhk + bhk sin θhk) , (3.22c)

∂∆ph

∂vk
= vh (ghk cos θhk + bhk sin θhk) , h 6= k, (3.22d)

∂∆qh

∂θh
= −vh

∑

k 6=h

vk (ghk cos θhk + bhk sin θhk) , (3.22e)

∂∆qh

∂θk
= vhvk (ghk cos θhk + bhk sin θhk) , h 6= k, (3.22f)

∂∆qh

∂vh
= −2vhbhh −

∑

k 6=h

vk (ghk sin θhk − bhk cos θhk) , (3.22g)

∂∆qh

∂vk
= −vh (ghk sin θhk − bhk cos θhk) , h 6= k. (3.22h)

The NR method for PF analysis is depicted in Algorithm 3.1.

Jacobi and Gauss-Seidel methods. The Jacobi and Gauss-Seidel methods are
iterative fixed-point methods for finding successively better approximations to the
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Algorithm 3.1 NR algorithm for PF analysis.
Input: Real power injections at all non-slack buses, p2, . . . , pm+n. Reactive power

injections at PQ buses, qm+1, . . . , qm+n. Voltage magnitudes at PV buses,
v2, . . . , vm. Complex voltage at the slack, |v1|∠θ1. Admittance matrix, Y .
Maximum tolerance for the error, ε.

Output: Voltage phase angles at all non-slack buses, θ2, . . . , θm+n. Voltage mag-
nitudes at PQ buses, vm+1, . . . , vm+n.

1: x =

(
θ

v

)
=

(
0
1

)
# Initial guess

2: repeat

3: f(x) =

(
∆p(x)
∆q(x)

)
# Power mismatches

4: Jf =




∂∆p
∂θ

∂∆p
∂|v|

∂∆q
∂θ

∂∆q
∂v


 # Jacobian matrix

5: ∆x = −J−1
f f(x) # Increment

6: x′ = x + ∆x

7: x = x′

8: until ‖f(x)‖ < ε

solution of a system of linear equations,

Ax = b, (3.23)

where A ∈ R
n×n and b ∈ R

n. They compute series, x(k), k = 1, 2, . . ., such that,

lim
k→∞

Ax(k) = b, (3.24)

given a “good” initial guess, x(0).
The Jacobi method begins by decomposing matrix A into a diagonal matrix,

D, and a remainder, R, as follows.

A = D + R, (3.25)

where D is given by,

dhk =





ahk if h = k,

0 otherwise,
(3.26)

and R is given by,

rhk =





0 if h = k,

ahk otherwise.
(3.27)
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This allows re-writing equation (3.23) as follows.

x = D−1(b − Rx), (3.28)

which leads to the Jacobi iteration,

x(k+1) = D−1(b − Rx(k)), (3.29)

or, in scalar form,

x
(k+1)
h =

1
ahh


bh −

∑

m6=h

ahmx(k)
m


 . (3.30)

Coppersmith, Don; Winograd, Shmuel (1990), "Matrix multiplication via arithmetic
progressions

Similarly, the Gauss-Seidel method decomposes matrix A into a lower triangular
matrix, L, and a strictly upper triangular matrix, U , as follows.

A = L + U , (3.31)

where L is given by,

lhk =





ahk if h ≤ k,

0 otherwise,
(3.32)

and U is given by,

uhk =





ahk if h > k,

0 otherwise.
(3.33)

This allows re-writing equation (3.23) as follows.

x = L−1(b − Ux), (3.34)

which leads to the Gauss-Seidel iteration,

x(k+1) = L−1(b − Ux(k)), (3.35)

or, in scalar form,

x
(k+1)
h =

1
ahh


bh −

∑

m<h

ahmx(k+1)
m −

∑

m>h

ahmx(k)
m


 . (3.36)

The Gauss-Seidel method utilizes the most recent computed values at every
update. This includes elements with lower indices from the current iteration. On
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the contrary, the Jacobi method only utilizes values from the past iteration.
The Jacobi and Gauss-Seidel methods are applied to PF analysis as follows.

Equation (3.14) is re-written as,

Y v =
(
Diag(v)−1

s

)∗
. (3.37)

Then, A and b are chosen as,

A = Y , b =
(
Diag(v)−1

s

)∗
. (3.38)

The Jacobi iteration for PF analysis is the following.

v

(k+1)
h =

1
yhh



(

sh

v

(k)
h

)∗

−
∑

m6=h

yhmv
(k)
m


 . (3.39)

Whereas the Gauss-Seidel iteration is the following.

v

h

(k+1) =
1

yhh



(

sh

v

(k)
h

)∗

−
∑

m>h

yhmv
(k)
m −

∑

m<h

yhmv
(k+1)
m


 . (3.40)

Radial networks

At the distribution level (e.g., a city) power networks are often characterized by the
following two conditions.

i) There are very few feeders, modelled as PV buses, one of them chosen as a
slack.

ii) The topology of the grid is radial.

This type of network, typically called radial, can be analyzed with the Backward-
Forward Sweep (BFS) algorithm [Mendive 1975]. In the case of weakly-meshed net-
works, the BFS algorithm can be extended into a compensation-based PF method,
described in [Shirmohammadi 1988].

The BFS algorithm consists of two successive steps, the backward sweep and
the forward sweep, which are repeated iteratively until convergence. The algorithm
starts with an initial guess for the voltage magnitude and phase at every PQ bus.
These values are updated at each iteration.

The purpose of the backward sweep is to update line currents. A preliminary
step computes the current injected by loads to every PQ bus, using equation (3.10).
Then, line currents are obtained by applying Kirchhoff’s current law on every PQ
bus, starting from the line series endpoints and progressing towards the generator
bus.

The purpose of the forward sweep is to update PQ bus voltages. A preliminary
step computes the voltage drop across every line, using equation (3.4). Then, new
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1 2 3
+ − −+

v1

p2, q2 p3, q3

z2 z3
i2 i3

j2 j3

u2 u3

Figure 3.2: 3-bus radial network.

PQ bus voltages are obtained by applying Kirchhoff’s voltage law on every line,
starting from the ones connected to the root and moving progressively towards the
endpoints.

The above is summarized in Algorithm 3.2. Network buses are numbered from
1 to n. Bus 1 is the feeder, or generator bus. The numbering respects the rule that
buses further from the generator have higher numbers. The function parent(m)
returns to each bus m the number of the parent (i.e., the bus that precedes it in the
line series). Similarly, the function children(m) returns the list of children numbers
(i.e., the buses that succeed it in the line series). The line connecting buses h and
m, where m is further from the generator, is numbered m.

Algorithm 3.2 BFS algorithm.
Input: Vector of complex power injections at PQ buses, s. Vector of branch

impedances, z. Maximum tolerance for the error, ε.
Output: Vector of complex voltages at PQ buses, v.

1: v = 1∠0 # Initial guess
2: repeat

3: i =
(
Diag(v)−1

s

)∗ # Load currents
4: for m in n, . . . , 2 do

5: h = parent(m)
6: L = children(m)
7: jm = im +

∑
k∈L

jk # Backward sweep

8: u = Diag(z) j # Line drops
9: for m in 2, . . . , n do

10: h = parent(m)
11: vm = vh − um # Forward sweep
12: until ‖s − Diag(v)i∗‖ < ε

The BFS algorithm is illustrated below on an example network.

Example 3.3.1: BFS algorithm. Figure 3.2 shows a 3-bus radial network. Note
the similarities with the AC circuit in Fig. 3.1 in previous section.

The BFS iteration is as follows. First, load current injections are determined as
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follows.

i2 =
(

p2 + jq2

v2

)∗

, (3.41a)

i3 =
(

p3 + jq3

v3

)∗

. (3.41b)

Next, the backward sweep computes line currents in two steps, as follows.

j3 = i3, (3.42a)

j2 = i2 + j3. (3.42b)

Line drops are computed as follows.

u2 = z2j2, (3.43a)

u3 = z3j3. (3.43b)

Finally, the forward sweep computes new bus voltages in two steps, as follows.

v2 = v1 − u2, (3.44a)

v3 = v2 − u3. (3.44b)

BFS algorithm using treefix operations. The BFS algorithm can be de-
scribed using the so-called treefix operations, +rootfix and +leaffix, first introduced
by [Leiserson 1988].

Definition 3.3.3 (+Rootfix). Given a weighted tree, the +rootfix operation returns
to each vertex the sum of its ancestors’ weights.

Definition 3.3.4 (+Leaffix). Given a weighted tree, the +leaffix operation returns
to each vertex the sum of its descendants’ weights.

Figure 3.3 illustrates these operations on a 6-node tree.
Algorithm 3.3 demonstrates the BFS algorithm using treefix operations. The

network is translated into a tree, T . The vertices in T are the network buses; the
edges are the network lines. The function setWeights(x) assigns weights from vector
x to the vertices of the tree instance. The function getWeights() returns a vector
containing the weights of the tree instance. The functions +rootfix() and +leaffix()
apply the treefix operations on the tree instance.

The use of the treefix operations is relevant when considering the parallel im-
plementation of the BFS algorithm, as will be discussed in Chapter 4.

3.3.2 Uncertainty assessment

The methods described above can be referred to as “deterministic”, since they only
consider one set of input data to produce one set of results. However, it often hap-
pens in PF analysis that several sets of input data need to be considered due to
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at PQ buses
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0
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Figure 3.3: Treefix operations on a 6-node tree: (a) +Rootfix. (b) +Leaffix.

uncertainty. For example, this is the case of state estimation problems [Abur 2004].
Uncertainty in power systems takes multiple forms, e.g., imprecise demand forecast,
price variability, renewable energy generation, economic growth and industry place-
ment. Failing to account for uncertainties can lead to erroneous estimations and,
therefore, improper planning and insecure operation of the system [Wan 1993].

The uncertainty assessment in PF analysis consists of finding all the possible
states for a variety of input scenarios. Two modelling approaches are typically
used, the probabilistic approach and the interval approach. Each of them leads
to a particular family of methods. One big difference between them is that the
probabilistic approach assumes that there is statistical data available, whereas the
interval approach only requires a possibility distribution. However, the two methods
are combined together and their results are seen as complementary of each other.

Probabilistic approach

The probabilistic approach consists in modelling the uncertainties as random vari-
ables with a given probability distribution (see Appendix A for a definition of ran-
dom variable, distribution function and density function). This requires using sta-
tistical data to obtain the probability distribution of the inputs. A probabilistic PF

model is defined by extending the PF equations to random variables. The equations
are solved to obtain the distribution of the unknown variables. The solution method
can be numerical, such as Monte Carlo, or analytical. For an extensive survey of
probabilistic PF methods, see [Billinton 2001, Chen 2008].
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Algorithm 3.3 BFS algorithm using treefix operations.
Input: Vector of complex power injections at PQ buses, s. Vector of branch

impedances, z. Power network’s associated tree, T . Maximum tolerance for
the error, ε.

Output: Vector of complex voltages at PQ buses, v.
1: v = 1∠0 # First guess
2: repeat

3: i =
(
Diag(v)−1

s

)∗ # Load currents
4: T.setWeights(i)
5: T.+leaffix()
6: l = T.getWeights() # Backward sweep
7: u = Diag(z) l # Line drops
8: T.setWeights(−u)
9: T.+rootfix()

10: v = T.getWeights() # Forward sweep
11: until ‖s − Diag(v)i∗‖ < ε

Monte Carlo method. The Monte Carlo method is a numerical method to
approximate the distribution of an unknown random variable. The method relies
on the law of large numbers and sampling. The Monte Carlo consists of the following
steps:

1. Create a number of scenarios by taking samples of known random variables.

2. For every scenario, compute a sample of the unknown variable using a deter-
ministic model (e.g., simulation).

3. Aggregate the results into some relevant parameters.

Algorithm 3.4 illustrates the Monte Carlo method for probabilistic PF analysis.
The algorithm computes the sample mean vector of bus voltages, v, given the
distribution functions of bus power injections, FS(·). The function rng(·) returns a
random number in the interval [0,1], and is used for sampling purposes.

Typically, a high number of samples is needed to obtain accurate results. For
this reason, the method is rarely applied to real-world problems involved in the
operation of the power system. It can be used for planning, or as a validation
tool to test other techniques. Several examples can be found of the latter, in
which the results from Monte Carlo simulations are interpreted as the “correct”
ones [Vaccaro 2013, Saric 2006].

Analytical methods. These methods attempt to find analytical expressions for
the distribution of the random state variables. They were first introduced by
Borkowska and Allan [Borkowska 1974, Allan 1974].

In the basic formulation, nodal power injections are assumed to be mutually
independent. This allows using convolution products to obtain the density of the
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Algorithm 3.4 Monte Carlo method for probabilistic PF analysis.
Input: Number of samples, m. Distribution functions of bus power injections,

FS(·). Deterministic PF equations, s = f(v).
Output: Sample mean of bus voltages, v̌.

1: for h in 1, . . . , m do

2: r = rng()
3: s(h) = F−1

S (r) # Sampling

4: v(h) = f−1
(
s(h)

)
# Deterministic PF

5: v̌ = 1
n

∑
h
v(h) # Expected value

bus voltages, once the PF equations have been linearized (see Appendix A for a
definition of convolution product).

The PF equations are extended to random variables, as follows.

S = f(V ), (3.45)

where S is the vector of random power injections and V is the vector of random
bus voltages. The above equation is linearized around the estimated mean value of
the bus voltages, V̂ . This yields the following expression.

V ≈ V̂ + Jf

∣∣∣
V =V̂

(S − E(S)) , (3.46)

where Jf is the Jacobian matrix of f(·), and E(·) denotes the expected value (see
Appendix A for a definition of these concepts). In scalar form, the above equation
can be noted as follows.

Vh ≈ V̂h +
∑

k

ahkZk, ∀ h, (3.47)

where ahk = ∂fh

∂Vk
, and Zk = Sk − E(Sk). As the nodal power injections, Sk, are

mutually independent, so are the replacement variables, Zk. Therefore, the density
function of the bus voltages, Xh, can be approximated using convolution products,
as follows.

fXh
(x) ≈

(∏

k

1
|ahk|

)(
fZ1

(
x

ah1

)
⊗ . . . ⊗ fZn

(
x

ahn

))
, ∀ h, (3.48)

where ⊗ denotes the convolution product, and n is the number of buses.
The assumption of independence between the inputs, the use of a linearized

model, and the difficulty of computing convolution products, are considered strong
drawbacks of the technique above. There are several works which address these
issues. For example, in [Da Silva 1984], linear correlation is assumed for the power
inputs. In [Allan 1981], the PF equations are linearized around multiple points.
In [Su 2005, Zhang 2004], the point-estimate method and the combined cumulants
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methods are used, instead of convolution, to fit the distribution of the state vari-
ables. The approach has also been applied to other analyses on power systems, such
as Optimal Power Flow [Schellenberg 2005].

Interval approach

The interval approach consists of modelling the uncertainties as intervals without
specifying a probability distribution. This allows using expert knowledge to gen-
erate intervals for the inputs, whenever statistical data is lacking. An interval PF

model is defined by extending the PF equations to interval variables. The equa-
tions are solved to compute the interval bus voltages. The solution methods are
self-validated, which ensures the reliability of the results [Alvarado 1992].

Interval Newton method. The interval Newton method is a method for bound-
ing the zeros of a differentiable function, f(·) : Rn → R

n. Given an initial interval
guess, [x](0), the method computes a series, [x](k), k = 1, 2, . . ., such that,

x ∈ [x](0) , f(x) = 0 =⇒ x ∈ [x](k) ⊂ [x](k−1) ⊂ . . . ⊂ [x](0) . (3.49)

The method consists of applying the mean value theorem with vectors in the
current interval. This allows finding a new interval which contains the zeros. How-
ever, the new interval might be overlapping the current one. Therefore, both are
intersected in order to compute the next interval in the series. Given the current
interval, [x](k), the mean value theorem states that,

f(x) ∈ f(y) + Jf

∣∣∣
x=[x](k)

(x − y), ∀x,y ∈ [x](k) , (3.50)

where Jf is the Jacobian matrix of f(·). Note that the Jacobian matrix is evaluated
in the interval, [x](k). Thus, the result is an interval matrix. Imposing, f(x) = 0,
and choosing y as x̌(k) (the midpoint of [x](k)), allows obtaining the following
expression.

x ∈ x̌(k) −

(
Jf

∣∣∣
x=[x](k)

)−1

f(x̌(k)), (3.51)

which leads to the interval Newton iteration,

[x](k+1) = [x](k)
⋂(

x̌(k) −

(
Jf

∣∣∣
x=[x](k)

)−1

f(x̌(k))

)
. (3.52)

The interval Newton method is applied to interval PF analysis in the same way
as the NR method is applied to deterministic PF analysis (see Section 3.3.1). This
idea was introduced in [Wang 1992].

Note that the interval Newton iteration requires inverting an interval matrix (or,
alternatively, solving a system of interval linear equations). Typical factorization



3.4. Conclusions 49

techniques include interval Gaussian elimination and the Krawczyk’s method [Moore 1979].
However, depending on the structure of the matrix, these methods can either not
converge, take too long or simply deliver an impractical result [Barboza 2004].

In Chapter 5, a novel method for interval PF analysis is proposed which does
not require factorizing an interval matrix. Another approach using range arith-
metic and the mixed complementarity problem formulation has been proposed
in [Vaccaro 2013].

3.4 Conclusions

This chapter provides a literature review of several aspects of circuit and PF analy-
sis. Topics from classic circuit analysis to the uncertainty assessment are discussed.
Different models and solution methods are described and some of them illustrated
with examples.

Following chapters tackle some relevant aspects of the techniques presented
above. Chapter 4 proposes a novel vectorial implementation of the BFS algorithm,
based on the study of treefix operations. How much faster can this solution be,
compared to the traditional approach based on sequential tree traversals? Experi-
mental results show that a speedup of 2 to 9 can be achieved, depending on several
implementation features.

Chapter 5 proposes a novel method for the uncertainty assessment in PF anal-
ysis. Current interval approaches are affected by the dependency problem, which
causes a critical loss of accuracy in the final results. Is it possible to overcome that
issue? In the proposed method, the above is achieved by using an optimization
problem to compute the radius of the solution. The proposed method provides an
accuracy similar to that of the Monte Carlo approach, with a much lower compu-
tational complexity.

Chapter 6 proposes a novel fixed-point method for PF analysis, which is intrin-
sically parallel. How advantageous this approach can be, compared to parallelizing
existing serial approaches? Two features of the proposed method are particularly
interesting: (i) performance does not depend as much on the problem size, as it does
in traditional PF approaches; and (ii) performance is able to scale with the number
of computing cores, automatically benefiting from improvements in the computer
architecture.
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The works in this chapter have been presented at the International Conference
of Computational Science (ICCS) 2013 [Defour 2013].

4.1 Introduction

This chapter discusses the implementation on GPUs of the so-called treefix oper-
ations. These operations can be used to describe and implement the Backward-
Forward Sweep (BFS) algorithm for the analysis of radial power networks, as dis-
cussed in Section 3.3.1.

In the past, the parallel implementation of treefix operations was studied as
part of higher-level algorithms on trees. Two strategies were proposed, one based
on regularity and one based on load-balancing [Merrill 2012, Blelloch 1990]. The
one based on regularity is able to efficiently exploit the SIMT execution model.
However, it introduces extra arithmetic operations. On the other hand, the algo-
rithm based on load-balancing is work-efficient, i.e., it performs the same amount
of arithmetic operations as an optimal serial implementation. However, the load-
balancing overhead can become critical on SIMT architectures.

The above unleashes a series of questions, which have not been addressed by
literature. Which of the two approaches is more suitable to GPU computing? Is
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the cost of extra arithmetic operations in the regular algorithm compensated by
efficiently exploiting the SIMT model? Is the cost of load-balancing compensated by
being work-efficient? What floating-point issues are raised? This chapter attempts
to answer these questions by implementing and testing both algorithms on the GPU.

The remainder of the chapter is divided as follows. Section 4.2 recalls the
treefix operations and introduces the two main approaches for parallel implemen-
tation. Section 4.3 presents relevant issues regarding the implementation of such
approaches on GPUs. A suite of tests comparing performance and accuracy of both
implementations, and a case study regarding the analysis of a radial power network
are presented in Section 4.4. Finally, Section 4.5 draws relevant conclusions.

4.2 Treefix operations

The treefix operations were first introduced by Leiserson and Maggs [Leiserson 1988]
to describe certain computations over weighted trees. Two operations were defined,
+rootfix and +leaffix. The term treefix was later introduced by Blelloch [Blelloch 1990].
Let us recall the definition of these operations given in Section 3.3.1.

Definition 3.3.3 (+Rootfix). Given a weighted tree, the +rootfix operation returns
to each vertex the sum of its ancestors’ weights.

Definition 3.3.4 (+Leaffix). Given a weighted tree, the +leaffix operation returns
to each vertex the sum of its descendants’ weights.

+Rootfix and +leaffix can be performed in parallel using two approaches, de-
scribed below.

Vectorial approach. The vectorial approach was studied by Blelloch [Blelloch 1990],
who proposed a vectorial representation and algorithm [Blelloch 1990]. The rep-
resentation is based on Euler-tour ordering and consists of two vectors of left and
right parentheses. The algorithm is based on the scan operation and other highly
efficient parallel primitives. The main advantage of this algorithm is the instruction
and memory regularity, which allows it to map efficiently into the SIMT execution
model of the GPU. The main issue is twofold: first, it requires to build a vector
of twice the size of the tree, which means doubling the amount of memory used
for data storage in comparison with the parallel approach. Second, the underlying
operation needs to be associative, which is not the case of floating-point addition
and therefore could result in a loss of accuracy.

Parallel approach. The parallel approach is based on the breadth-first search
algorithm. Given a tree and a root-vertex, this algorithm visits all the vertices
in the tree in breadth-first order starting from the root. To compute +rootfix, it
suffices to add the weight of the parent to the weight of the children as the vertices
are visited. The main advantage of this approach is that it is work-efficient, i.e., it
performs the same amount of arithmetic operations as an optimal serial approach
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Figure 4.1: Example tree and edge set E′ in Euler-tour order.

and thus does not suffer from accuracy issues. The main disadvantage is that it
requires load-balancing to be implemented on a SIMT architecture, which typically
causes overhead.

Two other algorithms have been developed for specific type of trees. The first
one is a randomized algorithm for the balanced binary tree proposed by Leiserson
and Maggs [Leiserson 1988]. It is based on the contraction technique developed by
Miller and Reid [Miller 1985]. The second is for the linked list (in which each vertex
has exactly one child) and is based on symmetry breaking. Both algorithms have a
time complexity of O(lg n), and both are easy to implement in parallel.

4.2.1 Vectorial approach

Vectorial representation

In the vectorial representation, the tree is viewed as an undirected tree G = (V, E),
where V is a set of n vertices and E is a set of n − 1 undirected edges. Each
undirected edge in E is replaced by two anti-parallel edges into a new set E′, which
allows to trace an Euler-tour around the tree. The definition of Euler-tour is as
follows.

Definition 4.2.1 (Euler-tour [Tarjan 1984]). Let G′ = (V, E′) be a directed tree,
where

vivj ∈ E′ ⇐⇒ vjvi ∈ E′. (4.1)

A closed path around the tree that visits every edge exactly once is called an Euler-
tour.

The Euler-tour ordering consists of arranging the edges in E′ as they are visited
in an Euler-tour that starts from the root and proceeds counter-clockwise. Fig-
ure 4.1 shows an example tree and the associated set of directed edges E′ after
the ordering. Euler-tours can be found by using a parallel algorithm in O(lg n)
steps [Atallah 1984].
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The set E′ in Euler-tour ordering is translated using a parenthetical notation
into a vector e. In this vector, the element noted ‘(i’ represents the Euler-tour
reaching vertex vi while going down, i.e., away from the root; the element noted
‘i)’, in turn, represents the Euler-tour leaving vertex vi while going up, i.e., back to
the root. The elements noted ‘(0’ and ‘0)’, added at the beginning and end of the
vector, represent fictitious edges reaching and leaving the root. For the example
tree in Fig. 4.1, the vector e is the following.

e = [(0 (1 (2 2) (3 3) (4 4) 1) (5 5) 0)] (4.2)

The vectorial representation consists of two vectors, l and r, holding respec-
tively, at each position i, the positions of (i and i) within vector e. For the example
tree shown in Fig. 4.1, vector e has 12 positions, numbered from 0 to 11, and the
vectors l and r are the following.

l = [0 1 2 4 6 9] (4.3)

r = [11 8 3 5 7 10] (4.4)

Vectorial algorithm

The vectorial algorithm is based on the scan operation. This operation takes a
vector of data, and returns a new vector with the result of applying a binary operator
over all elements up to each position [Iverson 1962].

Definition 4.2.2 (Scan). Let ◦ be a binary associative operator with identity i,
and x = (x0, . . . , xn−1), a vector. Then,

◦scan(x) = (i, x0, x0 ◦ x1, . . . , x0 ◦ x1 ◦ . . . ◦ xn−2), (4.5)

is called the scan operation over x.

The scan operation can be efficiently implemented in parallel using a regular
approach. The original algorithm was developed by Blelloch [Blelloch 1990] and
relies on building a balance binary tree over the input vector. This algorithm is
work-efficient, i.e., it has the same complexity as a sequential algorithm that simply
adds the elements in the input vector, and stores the partial sums in an output
vector.

The balanced binary tree is built so that each leaf corresponds to a vector case.
The algorithm consists of two phases, the up-sweep (also known as reduce phase)
and the down-sweep. The up-sweep traverses the tree from leaves to root, computing
partial sums in the internal nodes. At the end, the root contains the sum of all
the elements in the vector. The down-sweep traverses the tree from root to leaves,
computing the result of the scan from the stored partial sums. Before starting
the down-sweep, the last element of the vector is zeroed. The above is illustrated
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Figure 4.2: Work-efficient parallel scan algorithm: (a) Up-sweep. (b) Down-sweep.

in Fig. 4.2. This is a regular algorithm, as the operations that are performed in
parallel are exactly the same for each level of the tree.

The up-sweep performs n−1 additions, whereas the down-sweep performs n−1
additions and n − 1 swaps. As a consequence, the algorithm has a work complexity
of O(n). However, as each sweep performs only one step per level of the tree, the
algorithm has a step complexity of O(log n).

Algorithm 4.1 details the procedure to perform +rootfix using the +scan op-
eration, given the vectorial representation in form of the vectors of left and right
parentheses, l and r. First, the position of the left and right parentheses are read
for each vertex, and the vertex’s weight and its inverse are written at those positions
in a working vector h of size 2n, where n is the size of the tree. Second, an inplace
parallel +scan is run over h. Third, the result is gathered from the new h in the
position of the left parenthesis.

The vectorial representation allows the complexity of the algorithm to be de-
tached from the tree topology, and depend only on the tree size. However, two
assumptions needs to be met by the arithmetic operation in use (the addition, in
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Algorithm 4.1 Vectorial rootfix algorithm
Input: Left and right parenthesis vectors, l and r; weights vector w.
Output: Result vector g.

1: for all i ∈ {0, . . . , n − 1} do in parallel

2: l = li, r = ri

3: hl = wi

4: hr = −wi

5: Run an inplace +scan on h

6: for all i ∈ {0, . . . , n − 1} do in parallel

7: l = li
8: gi = hl

this case). First, that it has an inverse, so that instruction 4 can be performed.
Second, that it is associative, so that the scan operation does not distort the re-
sults. Both assumptions are met by the integer addition, however, the second is not
met by the floating-point addition. As a consequence, the algorithm is introducing
additional sources of numerical error compared to the parallel one.

4.2.2 Parallel approach

The parallel approach is based on the breadth-first search algorithm. Given a graph
G and a vertex v0, this algorithm traverses the vertices of G in breadth-first order
starting from v0. As visited, each vertex is marked either with: (i) its distance to
v0, or (ii) its predecessor in the shortest path from v0.

The breadth-first order of search implies visiting all the vertices in one level
before passing to the next. Accordingly, the algorithm performs one iteration per
level. The set of vertices to be visited during a certain iteration (i.e., the set of
vertices in that level) is called the vertex frontier. For each iteration, the vertex
frontier is determined by (i) expanding the vertices visited during the previous
iteration into their neighbours, and (ii) filtering out duplicates and already visited
vertices. The neighbours are given by the adjacency lists, defined as follows.

Definition 4.2.3 (Adjacency list). Let G = (V, E) be a directed graph, with V a
set of vertices, and E a set of edges. Let vivj be an edge directed from vertex vi to
vj . Then, the set

Ai = {vj | vivj ∈ E}, (4.6)

is called the adjacency list of vertex vi in graph G.

Note that, in the case of trees, the adjacency list correspond to the list of children
of one vertex. Figure 4.3 shows a 6-vertex example tree and the corresponding
adjacency lists.

Using adjacency lists for neighbours gathering allows the algorithm to be work-
efficient. Indeed, the vertex frontier contains only the vertices to be visited during
each iteration.
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Figure 4.3: 6-vertex tree and adjacency lists.

Algorithm 4.2 details the procedure to perform breadth-first search by expand-
ing vertices in parallel. The vertex frontier is managed using two queues, an input

queue and an output queue. At the beginning of each iteration, the input queue con-
tains the vertex frontier from the previous iteration. These vertices are expanded
into their neighbours using the adjacency lists. As gathered, the neighbours are
filtered and inserted into the output queue, which subsequently contains the vertex
frontier for the current iteration. The function safeEnqueue(vi) inserts the vertex
vi at a reserved position in the queue instance. At the end of the iteration, the
output queue is copied into the input queue to be consumed by the next iteration.

Algorithm 4.2 Parallel breadth-first search algorithm.
Input: Graph G = (V, E), and adjacency lists Ai, for each vertex vi ∈ V ; root

vertex v0.
Output: Vector d, holding distances from each vertex to v0.

1: for all i : vi ∈ V do in parallel

2: di = ∞
3: d0 = 0
4: inQ = {}
5: inQ.safeEnqueue(v0)
6: while inQ != {} do

7: outQ = {}
8: for all i : vi ∈ inQ do in parallel

9: for all j : vj ∈ Ai do

10: if dj = ∞ then

11: outQ.safeEnqueue(vj)
12: dj = di + 1
13: inQ = outQ

In order to perform +rootfix using the breadth-first search algorithm, the weight
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of the parent needs to be added to the weight of the children as the latter are visited.
This is illustrated in Algorithm 4.3. The work-flow is very similar to Algorithm 4.2.
However, in this case, there is no need to check for duplicates or already visited
vertices before inserting gathered children into the output queue. Indeed, the tree
structure ensures that every vertex only belongs to one adjacency list (the one of
its parent).

Algorithm 4.3 Parallel +rootfix algorithm
Input: Tree T = (V, E), and adjacency lists Ai, for each vi ∈ V ; root vertex v0;

weights vector w.
Output: Result vector g.

1: g0 = 0
2: inQ = {}
3: inQ.safeEnqueue(v0)
4: while inQ != {} do

5: outQ = {}
6: for all i : vi ∈ inQ do in parallel

7: for all j : vj ∈ Ai do in parallel

8: gj = gi + wi

9: outQ.safeEnqueue(vj)
10: inQ = outQ

The amount of parallel work that this algorithm can perform depends on the
tree topology. The broader the tree, the more vertices that can be visited in parallel
at each iteration. In the worst case scenario, when the input tree is a linked list, the
algorithm is forced to visit vertices one at a time, just as the serial version. On the
other hand, the algorithm is work-efficient. That is to say, the result for every vertex
is obtained exactly as the sum of the ancestors’ weights. This corresponds to the
minimal amount of operations needed to compute +rootfix, whatever the algorithm.
As a consequence, no additional errors are introduced when using floating-point data
to run the algorithm.

4.3 GPU implementation

This section describes the implementation on GPUs of the two approaches presented
above.

4.3.1 Vectorial approach

Algorithm 4.1 is implemented using OpenCL. The implementation is built around
three separate kernels, seed, scan and reap. The seed kernel performs the first
parallel for (lines 1 to 4), the scan kernel performs the parallel +scan operation
(line 5), and the reap kernel performs the second parallel for (lines 6 to 8). The
seed and reap kernels are launched with n work-items, where n is the size of the input
vectors, l, r and w. These work-items are packed in workgroups of maximum size,
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which according to our tests allows for maximizing performance. The appropriate
parameter can be found via ‘clGetKernelWorkGroupInfo’.

All three kernels are memory-bound, however they differ in their memory access
pattern. Only the scan kernel has a regular pattern; the seed and reap kernels are
forced to perform at least one uncoalesced access. The memory access strategy
breaks down as follows. In the scan kernel, every work-item processes two con-
secutive elements in the working vector h, and so all the accesses are coalesced.
In the seed kernel, every work-item reads an element in vectors l, r and w, and
writes another in vector e; all three reads are coalesced, whereas the write to h is
uncoalesced. In the reap kernel, every work-item reads an element in vectors l and
h, and writes another in vector g; the read from l and the write to g are coalesced,
although the read from h is uncoalesced. These uncoalesced accesses are inherent
to the algorithm.

On a pre-Fermi architecture, the Nvidia profiler reports a global memory load
efficiency of only about 25% for the seed and reap kernels. This is a consequence of
the irregular access pattern to vector h. The efficiency is improved on Fermi, due
to the presence of L1 and L2 cache, reaching about 50%. See [Glaskowsky 2009] for
a complete overview of the Fermi architecture.

4.3.2 Parallel approach

Algorithm 4.3 requires load-balancing in order to be efficiently implemented on
GPUs. Recently, a high performance implementation has been proposed by Merril
et al [Merrill 2012]. This implementation uses at least three different load-balancing
strategies to gather neighbours from the adjacency lists. In all these strategies, one
thread is first assigned to each vertex in the input queue, allowing to perform the
parallel loop in line 8 of Algorithm 4.2. The loop in line 9 is performed in a distinct
way by each strategy, as described below.

Serial gathering. Each thread gathers its adjacency lists individually, without
cooperation from other threads. That is to say, the loop in line 9 is simply a serial
one. This strategy causes serious imbalance when the adjacency lists have very
different sizes.

Warp-based gathering. Each thread tries to control its warp by writing its
identifier into a word shared by all the threads in the warp. Only one of these
writes succeeds (the one that is performed last), and that thread is allowed to enlist
the entire warp in gathering its assigned adjacency list in parallel. The process is
repeated until all the threads in the warp have their corresponding vertex expanded.
This strategy provides better load balance than the serial one, however, it presents
two main issues. The first is that threads are left unused whenever the size of an
adjacency list is not a multiple of the warp-width. The second is warp imbalance,
which may happen when threads within one warp have adjacency lists much larger
than threads in other warps.
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Scan-based gathering. Each thread serially writes its adjacency list into a
vector shared by the entire block. The offset of each list is determined by a parallel
scan over an auxiliary vector which contains the lists’ sizes. Afterwards, each thread
in the block gathers one neighbour from the shared vector. This strategy allows
threads in the same block to gather neighbours completely in parallel. This is a
clear advantage when the data of those neighbours is read from global memory,
as the accesses are fully coalesced. On the other hand, load imbalance may occur
during the process of writing the adjacency lists into the shared vector. As this
process is performed by a serial loop which spans over multiple threads, the ones
with shorter lists are forced to remain idle during the last cycles.

By using these and other load-balancing techniques, the implementation by
Merril et al achieves a graph traversal rate in excess of 3.3 billion edges per sec-
ond. This rate is about five times greater than the one obtained by previous GPU
implementations [Merrill 2012].

4.4 Tests and results

4.4.1 Performance

As mentioned in Section 4.2.2, when using the parallel approach to perform the
+rootfix operation, one can expect the tree topology to have an impact on perfor-
mance. The amount of parallelism allowed by the particular topology is given by
the average branching factor, i.e., the ratio between the total number of vertices and
the total number of levels in the tree. The larger this factor is, the better for the
parallel algorithm as there are more vertices to visit in parallel, in average. On the
contrary, as stated in Section 4.2.1, when using the vectorial approach the impact
of the tree topology over performance should be negligible.

To validate these hypotheses, we used a group of benchmark trees with dif-
ferent topologies generated as follows. First, ten matrices are selected from the
University of Florida Sparse Matrix Collection, corresponding to a suit of bench-
marks used in the 10th DIMACS Implementation Challenge [UFS 2012, DIM 2012].
These matrices are representative of the type of networks that can be found in real-
life applications in terms of topology and size. Next, the minimum spanning tree
of each of these networks is computed. The resulting benchmarks are presented in
Table 4.1 ordered by increasing number of vertices. Note the differences in number
of levels and average branching factor in the third and forth column.

The tests consists of running the parallel and vectorial algorithms on every
benchmark measuring execution time. Additionally, a purely sequential algorithm
is run in order to have a mean of comparison with traditional single-core CPU
approaches. Table 4.2 summarizes the computing environment used in the tests.
The tests program are compiled using GCC 4.6.3, CUDA 4.2.1 and OpenCL 1.1.

The execution time is split into: (a) computation time, spent in the actual
calculation, and (b) data transfer time, spent in copying data between host and
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Table 4.1: Suite of benchmark trees.

Name Nb. of vertices Nb. of levels Avg. branching factor

af_shell9 504,855 490 1,030
audikw1 943,695 236 3,998
ldoor 952,203 784 1,214
af_shell10 1,508,065 1,098 1,373
G3_circuit 1,585,478 705 2,248
kkt_power 2,063,494 36 57,319
nlpkkt120 3,542,400 123 28,800
cage15 5,154,859 81 63,640
nlpkkt160 8,345,600 163 51,200
nlpkkt200 16,240,000 203 80,000

device. The reason for this decoupling is that several applications, including the
BFS algorithm, only need to transfer the data once per several runs of the +rootfix
operation. In such case the computation times is more relevant.

Table 4.2: Test environment.

Device Compute capability Number of cores

Xeon E645 N/A 12 (1 used)
GeForce GTX 670 2.0 1,344

Figure 4.4(a) shows the related performance of sequential, parallel and vectorial
+rootfix over the set of benchmarks ordered by increasing number of vertices. The
computation time of both the sequential and parallel implementations exhibit an
irregular pattern in which, sometimes, a larger tree is treated in lesser time than a
smaller one. In the case of the vectorial implementation, the computation time is
constantly increasing with the tree size.

The data transfer time is almost the same for both the parallel and vectorial
implementations, as shown in Fig. 4.4(b). This is due to the fact that both im-
plementations transfer the same amount of data. From host to device, the parallel
implementation transfers two arrays of sizes n − 1 and n + 1, containing the ad-
jacency lists in compressed sparse row (CSR) form. The vectorial implementation
transfers the vectors of left and right parentheses, both of size n. From device to
host, both implementations transfer the result in one array of size n.

Figure 4.5 shows the speedup of parallel and vectorial +rootfix over sequential
+rootfix, considering only computation time. The acceleration is quite substantial,
especially in the case of our vectorial implementation where it reaches a speed-up
greater than 60 on the two largest benchmarks.

Figure 4.6 shows the vertex density of two benchmarks, namely ‘nlpkkt120’ and
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Figure 4.4: Execution time (s) of sequential, parallel and vectorial +rootfix on
GTX 670. The benchmarks are ordered by increasing number of vertices. (a)
Computation time. (b) Data transfer time.



4.4. Tests and results 65

 0

 10

 20

 30

 40

 50

 60

 70

Sp
ee

du
p

af_
sh

ell
9

au
di

kw
1

ld
oo

r

af_
sh

ell
10

G3_
cir

cu
it

kk
t_

pow
er

nl
pk

kt
12

0

ca
ge

15

nl
pk

kt
16

0

nl
pk

kt
20

0

Parallel Vectorial

Figure 4.5: Speedup of parallel and vectorial +rootfix over sequential +rootfix on
GTX 670.

‘cage15’. Note that the latter has fewer levels even though it has more vertices; this
explains why it is processed faster by the parallel implementation (see Fig. 4.4).
This validates the hypothesis about the topology (via the average branching factor)
having an impact on performance in the parallel implementation.

This effect can be further seen in Figures 4.7(a) and 4.7(b). Here, two extreme
cases of topology are considered: (a) caterpillar, where every vertex has exactly
one child, and (b) star, where the root has n − 1 children. In the caterpillar the
average branching factor takes its minimum value (1), whereas in the star it takes
its maximum (n). Next, random trees of 215 to 224 vertices are generated having
these special topologies, and the different algorithms are run on them. The results
show that the parallel implementation, as expected, performs poorly on the cater-
pillar type of tree as the algorithm becomes serialized. In this case, there is even
a slow-down over the single-core CPU sequential implementation, caused by the
parallelism overhead. The vectorial implementation, in turn, is unaffected by the
tree topology and outperforms the parallel implementation in both scenarios: on
the caterpillar tree by a factor of 5,000, and, more surprisingly, on the star by a
factor of 5. This demonstrates that even in the best-case scenario for the paral-
lel implementation, i.e., when the input tree has the maximum average branching
factor, our vectorial approach is still faster compared to the state-of-the-art of the
load-balancing solution. This demonstrates how important regularity is.

4.4.2 Accuracy

Section 4.2 stated that the vectorial algorithm requires the arithmetic operation
involved in the calculations to be associative, in order to provide the same results
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Figure 4.6: Vertex density of the ‘nlpkkt120’ and ‘cage15’ benchmarks.

as the parallel one. As floating-point addition is not associative, one can expect
the vectorial algorithm to be less accurate than the parallel algorithm when dealing
with floating-point data.

This section studies the numerical quality of the parallel and vectorial +rootfix
and +leaffix algorithms for ill-conditioned problems. The conditioning of a problem
(independently of the algorithm used to solve it) is given by the condition number.
In the case of the addition of n floating-point numbers, p0, . . . , pn−1, the condition
number is determined as follows.

cond
(∑

pi

)
=
∑

|pi|

|
∑

pi|
, (4.7)

where | · | is the absolute value.
The condition number is proportional to the degree of cancellation in

∑
pi

(see [Higham 2002] for a definition of cancellation). Based on this fact, Ogita et al.

developed an algorithm to generate vectors having any arbitrary condition number,
as follows. Half of the vector is first generated randomly within a large exponent
range; then, the other half is generated such that some cancellation occurs, depend-
ing on the desired condition number [Ogita 2005].

The accuracy of an algorithm is given by the relative error. If s is the exact

result of a computation and ŝ is the approximate result provided by the algorithm,
then the relative error is measured as follows.

err(ŝ) =
|s − ŝ|

|s|
. (4.8)

In the case of +rootifx and +leaffix the result is a set of n sums, one for each
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Figure 4.7: Execution time (s) of sequential, parallel and vectorial +rootfix with
extreme topologies on GTX 670: (a) Caterpillar topology. (b) Star topology.
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vertex in the tree, so there are n relative errors and n condition numbers which
can be measured. In order to keep a one-to-one relation, we consider the maximum
relative error, and the condition number corresponding to the longest sum to be
performed. A suit of 100 random trees of 10,000 vertices each are generated, where
each vertex had between 2 and 5 children. For each tree, the longest path from
root to leaf is computed, associated with the longest sum in +rootfix; then, vectors
of random weights are generated having condition numbers between 10 and 1010,
to assign to the vertices on that path. These vectors are generated using the al-
gorithm developed by Ogita et al. [Ogita 2005]. Finally, the parallel and vectorial
+rootfix and +leaffix implementations are run over the suite of trees, using double
precision to compute an accurate approximation and single precision to compute
the approximate result. In this way, the numerical behaviour of the algorithms is
captured for a large range of condition numbers.

Figure 4.8 shows the maximum relative error as a function of the condition
number for the +rootfix and +leaffix parallel and vectorial algorithms. Note that
both parallel and vectorial have similar numerical behaviour. The large dispersion
of points for condition number lower than 104 may come from the difficulties in
generating vectors with such characteristics. Regardless, the parallel version seems
better than the vectorial one. It seems that in this case, our vectorial implemen-
tation is loosing an extra two bits of accuracy in average compared to the parallel
one.

In the parallel algorithm, the topology of the tree is affecting the computation
scheme and therefore the error. For example, on a caterpillar topology, where every
vertex has exactly one child, the parallel algorithm requires a recursive sum of n

values with n − 1 partial sums. Whereas on a star topology, where the root has
n−1 children, it requires n sums of two values, i.e., no partial sums. The latter is a
much better scenario, as the error of a sum in floating-point is proportional to the
magnitudes of the partial sums [Higham 2002]. A large average branching factor is
thus beneficial for the parallel approach.

4.4.3 Case study

This section applies the vectorial approach introduced above to the implementation
of the BFS algorithm. As seen in Section 3.3.1, the BFS algorithm is used for radial
Power Flow (PF) analysis and can be implemented using treefix operations. Using
the OpenCL implementation presented in Section 4.3, we developed a vectorial BFS
routine and integrated it within the Python-based software Dome [Milano 2013].

The implementation is written in C and provided as an extension to Dome.
The vectorial BFS routine can be called from python code and used to analyze
any radial network. Dome also provides a serial BFS routine, based on standard
tree traversals, which is used in this section for comparison purposes. A series of
tests are run to measure the speed-up that the vectorial version can achieve over
the serial one. The aim is to determine whether a vectorial BFS implementation
can be used in real applications to accelerate computations and reduce the time of
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Figure 4.8: Related accuracy of parallel and vectorial treefix algorithms: (a) +Root-
fix operation. (b) +Leaffix operation.
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response.
To this purpose, benchmark networks from 2,500 to 20,000 buses are generated

using a routine from Dome for random radial network generation. The routine uses
a random number generator and attempts to reproduce typical conditions from
distribution networks in the real-world. This kind of networks are characterized by
having very few feeders (typically, only one). Also, the grid does not have meshes.
The benchmark networks are generated using a base voltage of 15 kV and a base
power of 100 MVA. At least half of the buses, selected at random, have a load
attached to them. This load is chosen randomly between 0 and 30 kVA, with a
power factor between 0.85 and 1.

The random radial network generator distinguishes certain buses as ‘roots’.
These are the buses where forks occur. The feeder bus is one of these roots, and it
has the majority of the forks (as many as the total number of buses divided by 50).
For other roots, the number of forks is chosen randomly between 2 and 5. Each fork
marks the beginning of a ‘row’, i.e., a series of buses connected in cascade where no
fork takes place. The number of buses in a row is chosen randomly between 5 and
20. The last bus in each row is flagged as a root and originates new forks.

Table 4.3 specifies some of the details above for the generated benchmarks. The
number of forks grows linearly with the number of buses. This means that the
average branching factor of all four benchmarks is very similar.

Table 4.3: Details of the randomly generated benchmarks.

Number of buses 2,500 5,000 10,000 20,000

Loads 1,942 2,802 6,800 18,583
Lines 2,499 4,999 9,999 19,999
Forks 183 382 752 1,490

The benchmarks are analyzed with both BFS implementations and the execution
times are measured. The vectorial BFS execution time is split in order to reflect
the time that the program spend in each task. These are: (i) Euler-tour ordering,
(ii) OpenCL platform and context setup, (iii) data transfer between host and device
and (iv) actual PF calculations. The test environment is described in Section 4.4.1
and summarized in Table 4.2.

Table 4.4 shows the execution time of serial and vectorial BFS on the four
benchmarks. Note that, in the latter case, the times are largely dominated by the
OpenCL platform and context configuration, which actually causes a slowdown over
the serial implementation. As a consequence, to take fully advantage of the vectorial
BFS extension, an implementation must be able to re-use a previously configured
OpenCL context for the current platform. This is the case, for example, of a real-
time simulation which remains online while performing a series of PF analyses. As
observed in the last row of Table 4.4, the speedup excluding the OpenCL setup is
quite considerable, ranging from 2.7 to about 9 and increasing with the network
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size.

Table 4.4: Execution time (ms) of vectorial BFS on the GTX 680 GPU and com-
parison with sequential BFS.

Number of buses 2,500 5,000 10,000 20,000

Sequential time 5.31 20.68 27.58 77.02
Vectorial time 91.83 80.52 91.83 97.44

Euler-tour ordering 0.10 0.21 0.49 1.33
OpenCL setup 89.87 76.63 87.05 89.02
Data transfer 0.32 0.48 1.08 1.53
PF 1.54 3.19 3.21 5.56

Speedup 0.05 0.25 0.30 0.79
Speedup (excluding OpenCL setup) 2.7 5.32 5.76 9.14

It is interesting that the PF is not so relevant in the balance of all tasks. For
example, in the 20,000 buses network, the PF calculations only account for about
two thirds of the computation time excluding the OpenCL setup. This means that
reducing the time spent in either Euler-tour ordering or data transfer can have a
relevant impact on performance. The latter cannot be manipulated by software as it
depends on specific features of the communication bus between host and device, and
the respective memories. The Euler-tour ordering, nonetheless, can be accelerated
by using the parallel algorithm provided by [Atallah 1984]. This algorithm has a
step complexity of O(log n), lower than the O(n) complexity of the serial algorithm
used in the current implementation. This improvement is planned as future work.

4.5 Conclusions

This chapter addresses the implementation of the BFS algorithm on GPUs. The
above requires studying the so-called treefix operations, which are the basic building
blocks of BFS.

The implementation of treefix operations on GPUs is studied by comparing
two approaches. A parallel approach, that minimizes the number of operations
and intermediate storage by using load-balancing, and a vectorial approach, that
involves a higher amount of operations but exhibits a regular computation pattern.
The two approaches are compared in terms of performance and accuracy on GPU
architectures. The accuracy tests show that the vectorial approach introduces a
higher rounding error, as it performs more floating-point operations to compute the
result. On the other hand, the performance tests show that the vectorial approach
is always faster, leading to a speedup of 5 to 5,000. Furthermore, its performance
is not affected by the tree topology.

Based on the above, the BFS algorithm is implemented using the vectorial
approach. The proposed implementation is tested against a standard sequential
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implementation provided by the software Dome. A speedup of about 2 to 9 is
achieved, if the overhead due to OpenCL configuration is not considered.
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Fuzzy arithmetic on the GPU
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Elements of this chapter were presented at the Euromicro International Con-
ference on Parallel and Distributed Processing (PDP) 2014, receiving the Nvidia
Best Paper Award for GPU applications [Defour 2014], and at the IEEE Power &
Energy Society General Meeting (PES-GM) 2014, where they have been selected
for the Best Paper Session [Marin 2014]. A paper with most recent results has been
submitted to ACM Transactions on Mathematical Software and is currently under
review. Another paper focusing on Power Flow (PF) analysis under uncertainty is
currently in preparation, to be submitted to IEEE Transactions on Power Systems.

5.1 Introduction

This chapter discusses the implementation on GPUs of fuzzy interval arithmetic.
Also, it proposes a novel methodology for the assessment of uncertainty in PF
analysis, using the fuzzy interval approach.

Interval arithmetic and fuzzy interval arithmetic are tools for the uncertainty as-
sessment used in several fields [Buisson 2003, Bondia 2006, Chen 2006, Cortes-Carmona 2010].
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In the classic approach to interval arithmetic, a region is defined to which the value
of a variable is expected to belong. This allows modelling uncertainty in numerical
data if the information about the bounds is available, e.g., “the speed is between
20 and 50 km/h”. However, if the information is more ambiguous and imprecise,
e.g., “the speed is about 30 km/h”, then the classic approach fails and the fuzzy
interval approach can be more appropriate [Siler 2005]. Fuzzy intervals are char-
acterized by a membership function, which assigns a degree of membership to each
number in the real domain.The α-cut approach to fuzzy interval arithmetic consists
of splitting the fuzzy intervals into sets of regular intervals by degree of mem-
bership [Dubois 1978]. In this way, only a finite number of levels are considered.
Regarding the representation format, several options such as lower-upper, midpoint-
radius or even lower-diameter can be used [Moore 1966, Neumaier 1990]. Most fuzzy
arithmetic applications rely on interval libraries which implement the lower-upper
format [Brönnimann 2006, Revol 2001, Goualard 2006, Anile 1995, Kolarovic 2013,
Gagolewski 2012, Trutschnig 2013]. However, a comparative study of different rep-
resentation formats has not been provided. Is it possible to enhance performance
and/or accuracy of fuzzy interval arithmetic by using a specific representation for-
mat?

This chapter addresses the above question by studying different formats from
both a theoretical and an empirical point of view. As a result of this study, two novel
fuzzy interval implementations are proposed. The first is based on the midpoint-
radius format that reduces by two the memory requirements and number of op-
erations compared to the traditional lower-upper approach. The second is based
on the midpoint-increment format that improves accuracy compared to the previ-
ous one, while maintaining or even reducing the number of operations. Next, the
midpoint-radius format is used to proposed a novel methodology for PF analysis
under uncertainty.

The remainder of the chapter is organized as follows: in Section 5.2, the math-
ematical framework underlying fuzzy interval arithmetic is presented. Section 5.4
describes the proposed representation formats for symmetric fuzzy intervals; details
the implementation of these formats into a fuzzy arithmetic library; and evaluates
performance of the library on the GPU. The proposed method for the assessment
of uncertainty in PF analysis is presented in Section 5.5. Finally, Section 5.6 draws
conclusions and outlines future work.

5.2 Mathematical background

In order to support the discussion of following sections, the basic concepts of interval
arithmetic and α-cut fuzzy arithmetic are outlined next.

5.2.1 Interval arithmetic

Intervals are defined as convex sets of real numbers. It is assumed that, given a
real number and an interval, the real number either belongs to the interval or not.
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In this way, each element in the interval is considered equally possible (and each
element outside the interval, equally impossible).

Interval representation

Intervals can be represented in several formats, e.g., through lower and upper
bounds, midpoint and radius, or lower bound and diameter. This chapter con-
siders the first two alternatives, as follows.

Definition 5.2.1 (Lower-upper representation). Let [x] be an interval defined by

[x] = {x ∈ R : x ≤ x ≤ x},

where x, x ∈ R, x ≤ x. Then [x] is noted [x, x].

Definition 5.2.2 (Midpoint-radius representation). Let [x] be an interval defined
by

[x] = {x ∈ R : |x − x̌| ≤ ρx},

where x̌, ρx ∈ R, ρx ≥ 0. Then [x] is noted 〈x̌, ρx〉.

Interval operations and rounding

This subsection defines interval operations based on the definitions given above.
The basic property of inclusion isotonocity is assumed, as follows.

Definition 5.2.3 (Inclusion isotonicity). Let ◦ be a basic arithmetic operation, i.e.,
◦ ∈ {+, −, ·, /}, [x] and [y] intervals. If

x ◦ y ⊆ [x] ◦ [y] , ∀ x ∈ [x] , ∀ y ∈ [y] ,

then ◦ is said to be inclusion isotone.

Inclusion isotonicity ensures that no possible values are “left behind” when per-
forming interval operations. To respect this property, interval arithmetic imple-
mentations have to cope with floating-point rounding errors.

The IEEE-754 Standard for floating-point computation establishes that the fol-
lowing three rounding attributes must be available: rounding upwards (towards
infinity), rounding downwards (towards minus infinity), and rounding to near-
est [461 2008]. The IEEE-754 Standard also defines the relative rounding error
and the smallest representable (unnormalized) floating-point number, the latter
being associated with the underflow error [Rump 1999, Higham 2002].

In the lower-upper representation, isotonicity implies rounding downwards when
computing the lower bounds, and upwards when computing the upper bounds [Dubois 1978].
The interval operations for the lower-upper representation are defined below.
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Definition 5.2.4 (Lower-upper interval operations). Let [x] = [x, x] and [y] =
[y, y]. Let ▽(·) and △(·) be the rounding attributes towards minus infinity and
plus infinity, respectively. Then

[x] + [y] = [▽(x + y), △(x + y)],

[x] − [y] = [▽(x − y), △(x − y)],

[x] · [y] = [▽(min(xy, xy, xy, xy)), △(max(xy, xy, xy, xy))],

1
[y]

=

[
▽

(
1
y

)
, △

(
1
y

)]
, 0 /∈ [y] .

In the case of the midpoint-radius representation, in addition to adequate round-
ing, isotonocity requires adding to the radius the error due to midpoint round-
ing [Rump 1999]. The interval operations for the midpoint-radius representation
are defined below.

Definition 5.2.5 (Midpoint-radius interval operations). Let [x] = 〈x̌, ρx〉 and [y] = 〈y̌, ρy〉.
Let �(·) and △(·) be the rounding attributes to nearest and towards plus infinity,
respectively. Let ε be the relative rounding error, ε′ = 1

2ε and η be the smallest
representable (unnormalized) floating-point positive number. Then

[x] ± [y] = 〈z, △(ε′|z| + ρx + ρy)〉, z = �(x̌ ± y̌), (5.2a)

[x] · [y] = 〈z, △(η + ε′|z| + (|x̌| + ρx)ρy + |y̌|ρx)〉, z = �(x̌y̌), (5.2b)

1
[y]

=

〈
z, △

(
η + ε′|z| +

−ρy

|y̌|(ρy − |y̌|

)〉
, z = �

(
1
y̌

)
, 0 /∈ [y] . (5.2c)

It is worth noting that both equations (5.2b) and (5.2c) introduce a bounded
overestimation over the lower-upper format definition. In the case of the multipli-
cation, the overestimation is bounded by a factor of 1.5 [Rump 1999].

The impact of rounding on performance depends on the computing architecture.
For example, for most CPU architectures, the rounding attribute is a processor
‘mode’, and thus changes in rounding mode cause the entire instruction pipeline to
be flushed.

The dependency problem

The so-called dependency problem causes overestimation in interval computations
where the same variable occurs more than once. Since all the instances of the same
variable are taken independently by the rules of interval arithmetic, the radius of the
result might be expanded to unrealistic values. For example, consider the function,
f(x) = x2 − 1, where x ∈ [−1, 1]. Then, f(x) ∈ [−1, 0]. However, using interval
arithmetic, f([−1, 1]) = [−1, 1] · [−1, 1] − 1 = [−2, 0].

This can become a major issue to the application of interval arithmetic to real-
world problems, especially to non-linear ones. Accordingly, specific measures have
to be taken to preserve the relevance of the results.
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5.2.2 Fuzzy interval arithmetic

Fuzzy intervals are defined as fuzzy sets of real numbers. Given a number and
a fuzzy interval, the number belongs to the fuzzy interval with a certain degree
of membership. Elements with a higher degree are considered more possible than
elements with lower degrees. This is the main feature that distinguish fuzzy intervals
from regular intervals.

Fuzzy interval representation

Fuzzy intervals are characterized by a membership function. This chapter considers
continuous, strictly monotonic membership functions. The definition of membership
function is as follows.

Definition 5.2.6 (Membership function). Let µ(·) : R → [0, 1] be a continuous
function. Let x, x̌, x ∈ R, such that x ≤ x̌ ≤ x, and:

µ(x̌) = 1,

µ(x1) < µ(x2), ∀ x1, x2 ∈ [x, x̌], x1 < x2,

µ(x1) > µ(x2), ∀ x1, x2 ∈ [x̌, x], x1 < x2,

µ(x) = 0, ∀ x /∈ [x, x].

Then, µ(·) is called a membership function.

In other words, the membership function is strictly increasing up until reaching
the point µ(x̌), and then strictly decreasing. The formal definition of fuzzy interval
is given below.

Definition 5.2.7 (Fuzzy interval). Let µ(·) be a membership function. Then, the
set

[x̃] = {(x, µ(x)) : x ∈ R},

is called a fuzzy interval.

According to Definition 5.2.7, a fuzzy interval is a set of ordered pairs, each
composed of a real number and a degree of membership, the latter given by a
membership function. Figure 5.1 shows an example of fuzzy interval.

Fuzzy interval operations: the α-cut approach

The α-cut approach to fuzzy arithmetic consists of splitting the fuzzy intervals into
sets of regular intervals characterized by given membership degree [Dubois 1978].
These intervals are called α-cuts. In this chapter, only a finite number of uncertainty
levels is considered, N . Each uncertainty level, or α-level, is assigned a membership
degree, αi ∈ [0, 1], such that α1 > . . . > αN . For each level i, the corresponding
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Figure 5.1: Fuzzy interval, membership function and α-cuts.

α-cut contains all the real numbers having membership degree of at least αi. The
formal definition of α-cut is the following:

Definition 5.2.8 (α-cut). Let [x̃] be a fuzzy interval with membership function
µ(·). Let N ∈ N, i ∈ {1, . . . , N}, and αi ∈ [0, 1]. Then

[xi] = {x ∈ R : µ(x) ≥ αi},

is called an α-cut (of level i) of the fuzzy interval [x̃].

The assumptions made on the membership function (see Definition 5.2.6) allow
the α-cuts to become well-defined intervals, as seen in Fig. 5.1. Once the α-cuts are
obtained for each operand, the α-cut concept defined below may be applied.

Definition 5.2.9 (α-cut concept). Let ◦ ∈ {+, −, ·, /}, and [x̃] , [ỹ] , [z̃], fuzzy in-
tervals, such that [z̃] = [x̃] ◦ [ỹ]. Let [xi] , [yi] , [zi], be the α-cuts of level i of each.
Then

[zi] = [xi] ◦ [yi] .

The above definition states that to perform a fuzzy operation, the α-cuts of the
result are to be computed via the corresponding interval operation between α-cuts
of the operands.

5.3 Proposed fuzzy arithmetic implementation

This section presents two novel approaches to implement fuzzy interval arithmetic
based on the midpoint-radius format.
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5.3.1 Midpoint-radius format

The shape of the membership function is a crucial aspect in fuzzy modelling [Boukezzoula 2014].
This section considers a membership function symmetric with respect to a ver-
tical axis, which is of particular relevance in several fuzzy arithmetic applica-
tions [Chang 1995, Mendel 2006]. For symmetric membership functions, all α-cuts
are centered on the kernel, which leads to relevant properties that are exploited by
the proposed implementation. The definition of a symmetric fuzzy interval is given
below.

Definition 5.3.1 (Symmetric fuzzy interval). Let [x̃] be a fuzzy interval with mem-
bership function µ(·) and kernel x̌. If µ(·) is symmetric around x̌, i.e.,

µ(x̌ − x) = µ(x̌ + x), ∀ x ∈ R,

then [x̃] is called a symmetric fuzzy interval.

Although symmetry is immaterial for the lower-upper interval representation,
it is relevant for the midpoint-radius representation, as it is stated by the following
proposition.

Proposition 5.3.1. Let [x̃] be a symmetric fuzzy interval with kernel x̌. Let N ∈ N,

i ∈ {1, . . . , N}, and [xi] = 〈x̌i, ρx,i〉, an α-cut. Then,

[x̃] is symmetric ⇐⇒ x̌i = x̌, ∀ i ∈ {1, . . . , N}.

Proof. See Appendix B.

The above result can be graphically seen in Fig. 5.1, where the fuzzy interval
is symmetric. Note how all the α-cuts are centered on the kernel. The property of
symmetry is also preserved by basic fuzzy arithmetic operations, as stated by the
following theorem.

Theorem 5.3.1. Let [x̃] and [ỹ] be fuzzy intervals, ◦ ∈ {+, −, ·, /}. If [x̃] and [ỹ]
are symmetric, then [z̃] = [x̃] ◦ [ỹ] is also symmetric.

Proof. See Appendix B.

Proposition 5.3.1 and Theorem 5.3.1 are applied next to propose an efficient
representation format of symmetric fuzzy intervals. Fuzzy intervals are stored with
two elements: (i) the kernel (or midpoint, common to all α-cuts) and (ii) a set
of radii (one per α-cut). Fuzzy operations are also solved in two steps: (i) the
computation of the kernel, and (ii) the computation of the individual radius of
each α-cut. Algorithm 5.1 illustrates how to perform fuzzy multiplications. The
parameters ε and η correspond to the relative rounding error and the smallest
unnormalized floating-point number, respectively (see Definition 5.2.5). As shown
in Section 5.4.1, this format allows us to save both bandwidth and execution time
when performing fuzzy operations on symmetric fuzzy intervals.
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Algorithm 5.1 Symmetric fuzzy multiplication in the midpoint-radius format.
Require: Symmetric fuzzy operands [x̃] and [ỹ].
Ensure: Symmetric fuzzy result [z̃] = [x̃] · [ỹ].

1: kernel: ž = �(x̌y̌)
2: for i in 1, . . . , N do

3: radius: ρz,i = △(η + 1
2ε|ž| + (|x̌| + ρx,i)ρy,i + |y̌|ρx,i)

5.3.2 Midpoint-increment format

Another relevant property of fuzzy intervals is that every α-cut is fully contained
within any lower level α-cut [Fortin 2008]. This is an immediate consequence of the
membership function being monotonic around the kernel.

Proposition 5.3.2. Let [x̃] be a fuzzy interval, N ∈ N, i, j ∈ {1, . . . , N}, and

[xi] , [xj ], α-cuts. Then

αi > αj =⇒ [xi] ⊂ [xj ] .

Proof. See Appendix B.

The result above is applied next to propose a representation format of symmetric
fuzzy intervals. The fuzzy intervals are stored with two elements: (i) the kernel (or
midpoint, common to all α-cuts), and (ii) a set of radius increments (one per α-cut).
This format differs from the previous one (Section 5.3.1) as only the increments are
stored here. The increments correspond to the difference between the radii of two
consecutive α-cuts, as defined below.

Definition 5.3.2 (Radius increments). Let [x̃] be a fuzzy interval, N ∈ N and
i ∈ {1, . . . , N}. Let {α1, . . . , αN } ∈ [0, 1], such that α1 > . . . > αN . Let [x1] , . . . , [xN ],
be α-cuts and ρx,1, . . . , ρx,N , their respective radii. The numbers, δx,1, . . . , δx,N , de-
fined as:

δx,i =





ρx,i − ρx,i−1 if 2 ≤ i ≤ N,

ρx,1 if i = 1,

are called radius increments.

From the above definition, it is transparent that any radius of level i can be
computed as a sum of increments:

ρx,i =
i∑

k=1

δx,k.

The purpose of this format is to increase the accuracy of fuzzy computations.
As the increments are, by definition, smaller than the radii, the rounding errors
originated from the use of floating-point arithmetic are also smaller. This concept
is further developed in Section 5.3.3.
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Algorithms 5.2, 5.3 and 5.4 show how to compute the addition, subtraction,
multiplication and inversion on this format. Note that the number of floating-
point operations needed by this format is not increased compared to midpoint-
radius. In fact, addition and subtraction require one fewer operation per α-cut
than the midpoint-radius. Multiplication and inversion require the same amount of
operations per α-cut, provided that the α-cuts are treated sequentially (such that
certain computations associated to a given α-level can be re-used in the following
level).

Algorithm 5.2 Symmetric fuzzy addition and subtraction in the midpoint-
increment format.
Require: Symmetric fuzzy operands [x̃] and [ỹ].
Ensure: Symmetric fuzzy result [z̃] = [x̃] ± [ỹ].

1: kernel: ž = �(x̌ ± y̌)
2: first increment: δz,1 = △(1

2ε|ž| + δx,1 + δy,1)
3: for i in 2, . . . , N do

4: increment: δz,i = △(δx,i + δy,i)

Algorithm 5.3 Symmetric fuzzy multiplication in the midpoint-increment format.
Require: Symmetric fuzzy operands [x̃] and [ỹ].
Ensure: Symmetric fuzzy result [z̃] = [x̃] · [ỹ].

1: kernel: ž = �(x̌y̌)
2: accumulator in [x̃]: tx,1 = △(|x̌| + δx,i)
3: accumulator in [ỹ]: ty,1 = △(|y̌|)
4: first inc.: δz,1 = △(η + 1

2ε|ž| + tx,1δy,1 + ty,1δx,1)
5: for i in 2, . . . , N do

6: accumulator in [x̃]: tx,i = △(tx,i−1 + δx,i)
7: accumulator in [ỹ]: ty,i = △(ty,i−1 + δy,i)
8: increment: δz,i = △(η + 1

2ε|ž| + tx,iδy,i + ty,iδx,i)

Algorithm 5.4 Symmetric fuzzy inversion in the midpoint-increment format.
Require: Symmetric fuzzy operand [ỹ].
Ensure: Symmetric fuzzy result [z̃] = 1/ [ỹ].

1: kernel: ž = �(1/y̌)
2: accumulator: ty,1 = |y̌|
3: first increment: δz,1 = △(η + 1

2ε|ž| + (−δy,1)/(ty,1(δy,1 − ty,1))
4: for i in 2, . . . , N do

5: accumulator: ty,i = △(ty,i−1 − δy,i−1)
6: increment: δz,i = △(η + 1

2ε|ž| + (−δy,i)/(ty,i(δy,i − ty,i))

In Algorithms 5.2, 5.3 and 5.4, the kernel’s rounding error is added only to the
first increment, so one operation per α-cut is saved. In the case of the multiplication
and inversion, i has to be increased sequentially. Variables t(·) are introduced to
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serve as accumulators. In the multiplication, these accumulators store the maximum
(absolute) value of two α-cuts, one in each operand, one level apart from each
other. Only one operation is needed to update the accumulator at each α-level.
Interestingly, these accumulators allow for a quite transparent calculation of the
increment. The same amount of operations are needed as in computing the full
radius using the midpoint-radius format.

5.3.3 Error analysis

This section compares the accuracy of radius computations in both proposed for-
mats. The main operation involved in this kind of computation is the rounded
floating-point addition. The following result, which concerns the error associated
with floating-point summation algorithms, is useful for the analysis that is discussed
later in this section.

Theorem 5.3.2 (Bound for the absolute error in summation algorithms [Higham 2002]).
Let x1, . . . , xn ∈ R and Sn =

∑n
i=1 xi. Let Ŝn be an approximation to Sn computed

by a summation algorithm, which performs exactly n − 1 floating-point additions.

Let T̂1, . . . , T̂n−1, be the n − 1 partial sums computed by such algorithm. Then,

En :=
∣∣∣Sn − Ŝn

∣∣∣ ≤ ε
n−1∑

i=1

∣∣∣T̂i

∣∣∣ ,

where ε is the relative rounding error.

Proof. See [Higham 2002].

Hence, the absolute error introduced by a floating-point summation algorithm
is no greater than the relative rounding error, multiplied by the sum of magnitudes
of all the intermediate sums.

Theorem A.2.1 is used to prove that the midpoint-increment format improves
the accuracy of basic fuzzy computations, compared to midpoint-radius. The re-
sult presented below is a direct consequence of the increments being smaller in
magnitude than the radii.

Theorem 5.3.3. Let ◦ ∈ {+, −, ·, /} and [x̃] , [ỹ] , [z̃], be fuzzy intervals, such that

[z̃] = [x̃] ◦ [ỹ]. Let [zi] be the α-cut of level i of [z̃], and ρz,i, the radius of [zi]. Let

E(rad)(·) and E(inc)(·) return the maximum absolute error in the midpoint-radius

and midpoint-increment formats, respectively. Then,

E(inc)(ρz,i) < E(rad)(ρz,i), ∀ i ≥ 2.

Proof. See Appendix B.

Theorem 5.3.3 allows concluding that the gain in accuracy is driven ultimately
by the fact that the radius at any α-level is always greater than the one at the
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previous level. This, in turn, is a consequence of the monotonicity of the member-
ship function. In the midpoint-increment format, the smallest radius is computed
first, and then the others by simply adding the increments. In other words, large
values are broken down into smaller ones, prior to perform fuzzy computations. As
these computations are composed mainly of floating-point additions, this strategy
reduces rounding error in absolute value.

It can be shown that the result holds for any summation algorithm chosen to
compute the increments and the radii, as long as it is the same for both. However,
this proof is omitted for sake of brevity. The accuracy gain can also be quantified.
It depends on several factors, e.g., the considered summation algorithm (i.e., the
order of the operations); the ratio of increment to radius at different α-levels; the
“precision” of the intervals (i.e., the ratio of midpoint to radius); and the relative
rounding error ε.

5.4 Implementation on the GPU

We implemented the proposed midpoint-radius and the traditional lower-upper for-
mat in CUDA and C++. The library of fuzzy arithmetic operations is available
at https://github.com/mmarin-upvd/fuzzy-gpu/. The implementation of the
midpoint-increment format is planned as future work.

The library is callable from either CPU and GPU code, effectively adapting
itself to the underlying architecture. The code is composed of a series of wrappers.
At the user-end, one finds the two fuzzy classes. The lower-upper fuzzy class relies
on a lower-upper interval class, which serves the purpose of holding the α-cuts.
The lower-upper interval class, in turn, relies on a rounded arithmetic class for
operating between the α-cuts, according to the rules of interval arithmetic. The
midpoint-radius fuzzy class is linked directly to the rounded-arithmetic class, as
the α-cuts are managed as a whole and not individually, making use of the result
from Theorem 5.3.1 in the previous section. The rounded arithmetic class is a
wrapper of C and CUDA compiler intrinsics, directly associated to specific machine
instructions.

The fuzzy template classes are parametrized by the number of α-cuts N and
the data type T . In the lower-upper class, N and T specify the size and type of the
array of intervals which corresponds to the different α-cuts. In the midpoint-radius
class, N and T are the size and type of the array of radii, and T is also the type of
the scalar midpoint common to all the α-cuts.

Basic arithmetic operators are overloaded to work on both fuzzy classes. The
loop that sweeps over the set of α-cuts (see Algorithms 5.1, 5.2, 5.3 and 5.4) is
not spread among multiple threads in GPU code, since most applications in real
life do not involve more than three to four degrees of uncertainty [Buisson 2003,
Bondia 2006, Chen 2006, Cortes-Carmona 2010]. This number is way too low to
conveniently exploit thread level parallelism (TLP). However, TLP may be exploited
in vector operations involving fuzzy intervals, through kernels that assigns each
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element of a fuzzy array to a different thread.
Performance of basic operations over complex data type such as fuzzy inter-

vals are impacted by numerous factors. Following paragraphs discuss and compare
different representation formats regarding number of instructions, memory require-
ments and Instruction-Level Parallelism (ILP).

Number of instructions

Table 5.1 shows the number of instructions, such as basic operations with different
rounding, minimum, maximum and absolute value, required for the addition, mul-
tiplication and inversion of different data types, including fuzzy intervals. In fuzzy
data types, N represents the number of α-cuts. Note that the addition of fuzzy
intervals in the lower-upper format require only 3 operations less than in midpoint-
radius. However, the multiplication requires 2.8 times more operations per α-cut.
In the case of a full division, which corresponds to one inversion plus one multiplica-
tion, the lower-upper fuzzy requires 16N operations, whereas the midpoint-radius
requires 11 + 10N , i.e., lower-upper requires 1.6 more operations per α-cut. There-
fore, just by comparing the number of instructions, it can be anticipated that the
midpoint-radius format shall bring a speed-up over lower-upper.

Table 5.1: Number of instructions per operation, for different data types.

Data type Addition Multiplication Inversion

Scalar 1 1 1
Lower-upper interval 2 14 2
Midpoint-radius interval 5 11 10
Lower-upper fuzzy 2N 14N 2N
Midpoint-radius fuzzy 3 + 2N 6 + 5N 5 + 5N
Midpoint-increment fuzzy 4 + N 6 + 5N 5 + 5N

N : number of α-cuts.

Memory usage

Table 5.2 shows the memory space required to store different data types. The
units have been normalized to the size of one scalar. In the fuzzy case, once again,
N represents the number of α-cuts. The lower-upper fuzzy requires double the
space than the midpoint-radius and midpoint-increment fuzzy. As the bandwidth
requirement of both the latter is half the one of the former, an application that
needs to access memory at a high rate will definitely benefit from that property.

Note that the memory footprint of all these representation formats can be fur-
ther reduced by lowering the type used to store the radius or the increment, in the
case where the α-cuts are not too wide. The impact is solely on the width of the
α-cuts which can be considered and not on the dynamic of numbers. For example,
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the midpoint can be stored in double precision and the radius in single precision,
without impacting too much on the accuracy. This again is an advantage for the
proposed formats, as the lower bound is an array of scalars, whereas the midpoint
is only one scalar.

Table 5.2: Memory requirements of different data types.

Data type Memory usage

Scalar 1
Lower-upper interval 2
Midpoint-radius interval 2
Lower-upper fuzzy 2N
Midpoint-radius fuzzy 1 + N
Midpoint-increment fuzzy 1 + N

N : number of α-cuts.

Instruction-Level Parallelism

Ideal ILP, defined as the ratio of the number of instructions to the number of levels
in the dependency tree [Goossens 2013], is a good measure of how a given sequence
of instructions could be handled on today’s but also future architectures. The higher
the ideal ILP is, the higher the amount of instructions that can be pipelined during
the execution of a given application. However, a bigger ideal ILP requires a larger
amount of hardware resources.

Table 5.3 shows the ideal ILP in the addition, multiplication and inversion of
different data types. The number of α-cuts in lower-upper and midpoint-radius
fuzzy data types does not affect the size of the dependency tree, as each α-cut is
processed independently from all others. The same is valid for the addition in the
midpoint-increment format. However it does not hold in the multiplication and
inversion, because of dependencies between computations belonging to different α-
cuts. Accordingly, the size of the dependency tree depends in this case on N , the
number of α-levels.

In general, lower-upper fuzzy exhibits more ideal ILP than midpoint-radius and
midpoint-increment in either the addition, the multiplication and the inversion.
However, ILP is exploited differently depending on the GPU generation as well as
the precision in use (single or double). For example, GPUs with CUDA capability
3.0 can schedule up to 2 independent instructions for a given warp scheduler. The
impact of ILP on example applications is also studied in the next section.

5.4.1 Tests and results

This section evaluates the performance of the proposed fuzzy arithmetic library on
GPUs. According to the CUDA Programming Guide, GPU performance is mainly
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Table 5.3: ILP per arithmetical operation, for different data types.

Data type Addition Multiplication Inversion

Scalar 1 1 1

Lower-upper interval 2 14
3 2

Midpoint-radius interval 5
4

11
5

9
2

Lower-upper fuzzy 2N 11
5 N 2N

Midpoint-radius fuzzy 3
4 + 1

2N 6
5 + N 1 + 4

5N

Midpoint-increment fuzzy 1 + 1
4N 6+5N

3+N
5+5N
3+N

N : number of α-cuts.

driven by the ratio of computing intensity to memory usage [Cuda 2012]. With
this regard, two types of applications are considered: compute-bound application,
where arithmetic instructions are dominant over memory accesses; and memory-
bound application, where the opposite is true. For an example of the former,
see [Beliakov 2015]. For an example of the latter, see [Davis 2012]. The performance
of the implemented fuzzy arithmetic library is tested in these two extreme cases,
obtaining a general idea of its behaviour.

The test environment is summarized in Table 5.4. The tests programs are com-
piled using GCC 4.8.2 and CUDA 6.0. The different tests scenarios are generated
by varying significant parameters in the application over an appropriate range.
The number of α-cuts varies from 1 to 24; the lower-upper and midpoint-radius
fuzzy representation formats are alternatively selected; single and double precision
floating-point numbers are chosen as the underlying data-type.

Table 5.4: Test environment

Device Compute capability Number of cores

Xeon X560 N/A 12 (1 used)
GeForce GTX 480 2.0 480
GeForce GTX 680 2.0 1,536

Compute-bound test: AXPY kernel

Figure 5.2 shows a kernel that computes the n-th element of the series xk+1 =
axk + b, where all the values are fuzzy intervals. The threads read the value from
an input array, perform the computation through an iterative loop and write the
result back to an output array. As the number of iterations, n, is incremented, the
number of floating-point instructions is incremented as well. Whereas the number
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# include " fuzzy_lib .h"

template < class T, int N>

__global__ void axpy (int n,

fuzzy <T, N> * input ,

fuzzy <T, N> b,

fuzzy <T, N> * output )

{

int thread_id = blockIdx .x * blockDim .x + threadIdx .x;

fuzzy <T, N> a, c = 0;

a = input [ thread_id ];

for (int i = 0; i < n; i ++)

c = a * c + b;

output [ thread_id ] = c;

}

Figure 5.2: AXPY kernel, compute-bound test.

of accesses to global memory remains constant, i.e., one load for the starting value
and one store for the final result. In this way, the ratio of floating-point instructions
to global memory accesses can be arbitrarily incremented.

The kernel’s execution time is measured along with other relevant performance
indicators, for the different scenarios generated. The kernel arguments are tuned for
different runs in order to achieve maximum occupancy on the GPU architecture.
The results are plotted in Figs. 5.3 and 5.4. Figure 5.3(a) shows performance
achieved by different configurations on various CPU and GPU architectures, in
terms of number of iterations per second as a function of the number of α-cuts. The
Xeon CPU is running a single threaded version of the kernel using (i) the proposed
library, and (ii) the Java library in [Kolarovic 2013]. The latter is a straightforward
implementation of the α-cut approach, however, it does not use correct rounding
to certify the results. Therefore, the computational burden is a little lower than in
the proposed library.

The differences in performance come from heterogeneous sources. First, there
is a pure architectural gain of about three orders of magnitude on passing from
the CPU to the GPU. Second, within the GPU, there is an algorithmic gain on
choosing midpoint-radius over lower-upper, although this remains in the same order
of magnitude. Finally, there is a gain of one order of magnitude by considering single
versus double precision format in fuzzy calculations.

The most interesting of these gains is the one driven by the algorithm, as it
reveals the differences between the lower-upper and the midpoint-radius represen-
tation formats. Figure 5.3(b) shows the speed-up achieved by the midpoint-radius
over the lower-upper using different precision on two GPU architectures. The be-
haviour observed is the result of different factors. Some of them pertain exclusively
to the implementation, the others are introduced by CUDA and the hardware.

The pure effect of the implementation is observed between 1 and 8 α-cuts.
In this range, the curve follows a growing pattern which is consistent with the
theoretical analysis of the number of operations presented in Section 5.4. According
to Table 5.1, the ratio between the number of operations per cycle of the AXPY
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Figure 5.3: Results of the compute-bound test: (a) Performance comparison of
different representation formats. (b) Speed-up achieved by midpoint-radius over
lower-upper.
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Figure 5.4: Results of the compute-bound test: (a) Registers used in each rep-
resentation format. (b) Instruction replays due to local memory accesses in each
format.
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loop required by each format is:

rc(N) =
16N

7 + 7N
, (5.4)

where N is the number of α-cuts. Note that the speed-up curve in Fig. 5.3b fol-
lows approximately equation (5.4) between 1 and 8 to 9 α-cuts. Moreover, such
behaviour does not depend on the architecture or the precision. This result vali-
dates the theoretical analysis and illustrates the performance of the library when
the architecture is not saturated.

The effects of CUDA and the hardware are observed from 9 to 10 α-cuts. In
this area, register spilling and local memory accesses with high latency become
relevant. It is worth noticing that CUDA devices of compute capability 2.0 and 3.0
may allocate up to 63 registers of 32-bits per thread on a kernel execution. Double
precision values are stored in two consecutive registers. If this limit is binding, the
kernel uses local memory to allocate extra data. Figure 5.4(a) shows the number
of registers used by the AXPY kernel in each format. Figure 5.4(b) shows the
percentage of replayed instructions due to local memory accesses.

When using the lower-upper format and single precision values, the 63 registers
limit is reached at about 9 α-cuts. Local memory transactions start at 10 α-cuts.
Figure 5.3(b) shows an increase of the speed-up in single precision for 10 α-cuts, as
the midpoint-radius format is not suffering from register spilling yet. The size of
the midpoint-radius fuzzy being about half of the lower-upper, spilling only starts
at double the α-cuts, i.e., 18. For more than 18 α-cuts, the speed-up curve in single
precision moves back to the ideal shape that can be explained purely by the ratio
of number of operations.

In double precision, the scenario is slightly more complex. Both lower-upper
and midpoint-radius fuzzy start spilling registers relatively early, between 6 and 8
α-cuts. Figure 5.3(b) shows that there is a slight drop in the speed-up in double
precision, at about 9 α-cuts. The performance of the midpoint-radius format de-
creases in this area. This is due to spilling the midpoint of one of the fuzzy intervals
involved in the calculation. Note that midpoint-radius fuzzy arithmetic proceeds
by computing the midpoint first and then uses the result to calculate all the radii.
If one midpoint is spilled to off-chip local memory, there might not be enough in-
dependent arithmetic instructions to hide the latency of accessing that value. This
effect cannot be appreciated in single precision as register spilling does not have
a relevant impact despite the high number of α-cuts considered. This proves that
performance is mainly driven by the amount of memory required to store data.
Temporal dependency among data has a limited impact.

Next, the GPU L1 cache/shared memory configuration is changed in order to
see the impact of different memory allocations over register spilling. According to
the CUDA programming guide [Cuda 2012], the two following configurations are
possible for GPUs with compute capability 2.0 or higher: (i) 48 KB of L1 cache
and 16 KB of shared memory, and (ii) 16 KB of L1 cache and 48 KB of shared
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# include " fuzzy_lib .h"

# include <thrust / sort.h>

int main (){

thrust :: device_vector <fuzzy <double , 4> > d_a (M);

thrust :: device_vector < unsigned int > k(M);

...

thrust :: sort_by_key (k.begin (), k.end (), d_a . begin ());

}

Figure 5.5: Thrust’s sort by keys, memory-bound test.

memory, totalling 64 KB in both cases. In the proposed experimental study, option
(i) increases the number of α-cuts for which register spilling is still not an issue. On
the other hand, option (ii) mitigates the negative effect of register spilling whenever
it appears.

It is worth noting that real-world applications typically do not involve more
than 3 to 4 α-cuts. In consequence, register spilling, which only appears at 8 α-
cuts, should not be a problem in the majority of cases.

Memory-bound test: sort by keys

Figure 5.5 shows a thrust [Hoberock 2010] program that sorts a vector of fuzzy
intervals on the device. This example shows how easily the proposed fuzzy type is
integrated to other GPU libraries, as all the arithmetic operators are overloaded.

The vector is sorted by keys, which are integers of 32 bits. The sorting algorithm
used by thrust in this case is radix sort. The thrust kernels read the fuzzy array
from global memory, sort it on the device, and then write the sorted array back to
global memory. The sorting process performs one step per key bit, i.e., 32 steps in
this case. At each step, each element in the fuzzy array is read and copied into a
new position. This is a typical case of memory-bound application.

GPU sorting time is measured when varying different key parameters, as in the
previous experiment. Results for the GTX 480 are plotted in Fig. 5.6. Figure 5.6(a)
shows performance of different representation formats in terms of millions of sorted
elements per second. Figure 5.6(b) shows the speed-up of midpoint-radius over
lower-upper. The time spent in transferring data between host and device is not
considered in the experiment.

As in the compute-bound test, the results are a combination of purely algo-
rithmic factors and CUDA-related factors. The purely algorithmic behaviour can
be observed before 8 and afer 14 α-cuts in double precision, and after 15 α-cuts
in single precision. In this zone, the speed-up curves follow approximately the ra-
tio between the memory requirements by each format. This can be obtained from
Table 5.2:

rm(N) =
2N

1 + N
, (5.5)

where N is the number of α-cuts. Outside that area, the effects of CUDA and the
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Figure 5.6: Results of the memory-bound test: (a) Performance comparison of
different representation formats. (b) Speed-up achieved by midpoint-radius over
lower-upper.
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hardware become more relevant, causing the speed-up to fluctuate. Thrust’s sort
uses shared memory to optimize the sorting process. When the values being treated
by threads within one Streaming Multiprocessor do not longer fit in shared memory,
the application starts using global memory with a direct impact over performance.
As stated above, lower-upper needs twice the amount of memory than midpoint-
radius. As a consequence, it saturates shared memory at half the number of α-cuts.
When both architectures saturate shared memory, the speed-up curve goes back
to the normal behaviour, explained by the ratio of memory usage (equation (5.5)).
Note that single precision midpoint-radius does not saturate shared memory in this
experiment and keeps a high performance all along the considered range.

5.5 Proposed method for fuzzy PF analysis

This section presents a novel approach to evaluate the impact of uncertainty on
PF analysis, using symmetric fuzzy intervals discussed above. As discussed in Sec-
tion 3.3.2, uncertainty has been traditionally addressed by means of two approaches:
(i) probabilistic and (ii) interval-based. The probabilistic approach, which usually
takes the form of Monte Carlo simulations, is able to provide increasingly accurate
results by enlarging the sample size. However, the computational cost increases
as well. On the other hand, the interval-based approach does not require as much
computation as Monte Carlo, although the radius of the interval result tends to
grow with the size of the problem.

The purpose of this section is to present a technique which is not as expensive as
Monte Carlo, but more accurate than previous interval-based approaches. With this
aim, midpoint-radius fuzzy interval algebra is applied to the classic PF equations.
Then, the problem is split into two consecutive parts: (i) the midpoint is computed
using crisp PF analysis, and (ii) the radius is obtained by solving a minimization
problem, especially designed to prevent overestimation of the interval result.

Recently, another approach has been proposed in [Vaccaro 2013]. This approach
is based on range arithmetic and a mixed complementarity problem formulation
of PF analysis. The interval PF solution is obtained by solving two nonlinear
optimization problems, one for the lower bound and one for the upper bound.

The remainder of this section describes the proposed technique, and presents a
case study including comparisons with the Monte Carlo approach.

5.5.1 Method description

The proposed methodology consists in using the midpoint-radius format to represent
the fuzzy intervals, which allows the PF equations to be solved separately for the
midpoint and the radius.

For clarity, let us recall the crisp PF equations (3.14) discussed in Chapter 3,
as follows:

s = Diag(v)(Y v)∗, (5.6)
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where s is the vector of complex power injections, v is the vector of complex
voltages and Y is the admittance matrix. Diag(v) is the diagonal matrix that
has v as diagonal and (·)∗ denotes the complex conjugate. Let us also recall the
following definitions:

s = p + jq, (5.7)

v = v∠θ, (5.8)

where p is the vector of real power injections, q is the vector of reactive power
injections, v is the vector of voltage magnitudes and θ is the vector of voltage
phase angles.

Equation (5.6) is translated in interval form as follows:

[s] = Diag([v])(Y [v])∗, (5.9)

where [s] and [v] are now complex interval vectors. The method assumes that there
is no variability associated with line parameters. Therefore, the admittance matrix
Y is crisp. This is a common assumption in similar approaches (e.g., [Vaccaro 2013])

Using the midpoint-radius format, [s] and [v] are expressed in the following
form:

[s] = 〈š,ρs〉, (5.10)

[v] = 〈v̌,ρv〉, (5.11)

where

š = p̌ + jq̌, (5.12)

v̌ = v̌∠θ̌, (5.13)

and ρs,ρv ∈ R.
The above means that each element in [s] and [v] defines a disc in the com-

plex plane. In this way the power radius, ρs, simultaneously defines the variation
for both the real and reactive power. Similarly, the voltage radius, ρv, simul-
taneously defines the variation for both the voltage magnitude and phase angle
(see [Rump 1999] for a complete description of complex intervals in the midpoint-
radius format).

By applying the rules of interval arithmetic introduced above (see Definition 5.2.5),
equation (5.9) is split in midpoint and radius parts. This yields the following system
of equations:

š = Diag(v̌)(Y v̌)∗, (5.14a)

ρs = Diag(|v̌| + ρv)|Y |ρv + Diag(ρv)|Y v̌|. (5.14b)

The knowns and unknowns of this system are summarized in Table 5.5.
Note that equation (5.14a) represents a crisp PF problem with the midpoints
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Table 5.5: Known and unknown variables for each type of bus in the proposed fuzzy
PF analysis method.

Bus type Knowns Unknowns

Generator p̌, v̌, ρs, ρv θ̌, q̌

Load p̌, q̌, ρs v̌, θ̌, ρv

Slack v̌, θ̌, ρv p̌, q̌, ρs

of all variables. Solving this problem, e.g., by using the Newton-Raphson (NR)
method, yields v̌, the midpoint of the interval solution (see Chapter 3 for a descrip-
tion of the NR method). The value of v̌ obtained from the crisp PF solution can
be replaced in equation (5.14b). Then, the Newton method can be used to obtain
the value of ρv that satisfies (5.14b). The main drawback of this technique is that
it can lead to a value of ρv with some negative components. To avoid this, the
equality in (5.14b) is relaxed by allowing the calculated power radius to be greater
than the specified value. This yields the following inequality:

ρs ≤ Diag(|v̌| + ρv)|Y |ρv + Diag(ρv)|Y v̌|. (5.15)

The above inequality represents a sufficient condition for the voltage radius ρv

to be a solution of the PF problem specified by the power radius ρs (given the
precomputed voltage midpoint, v̌). This condition redefines the power balance at
each bus in terms of interval injections. The interval power injected by transmission
lines must at least contain the interval power injected by generators and loads.

Clearly, any sufficiently large radius will satisfy the above condition. Hence, to
obtain the smallest possible radius the following minimization problem is proposed:

minimize ‖ρv‖p (5.16a)

subject to Diag(|v̌| + ρv)|Y |ρv + Diag(ρv)|Y v̌| − ρs ≥ 0, (5.16b)

ρv ≥ 0, (5.16c)

where ‖·‖p is the p-norm (see the definition of p-norm in Appendix A). The choice of
the norm can be based on a specific need, e.g., reducing the complexity or increasing
the accuracy of the result. Section 5.5.2 presents a case study using the 2-norm,
i.e., the sum of squared vector components.

Complexity analysis. This paragraph studies the computational complexity of
the proposed method as well as of other methods from literature.

The complexity of the Monte Carlo method depends on the technique used for
solving each instance of PF analysis, namely NR. In turn, the complexity of NR is
given by the cost of LU factorizing the Jacobian matrix. As the cost of LU factoriza-
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tion is proportional to the cost of multiplying two matrices, there exists a O(n2.376)
algorithm based on the Coppersmith–Winograd algorithm [Coppersmith 1987]. There-
fore, the complexity of Monte Carlo simulations using the NR method is of O(m ·

n2.376), where m is the number of samples.
The complexity of the interval approach is that of the Classic Interval Newton

method, which requires solving an interval linear system at each iteration. Using
the algorithm described in [Rump 1992], the above can be done in 5n3 operations,
i.e., O(n3).

Finally, the complexity of the method proposed in [Vaccaro 2013] and the com-
plexity of the method proposed in this thesis are the same. Both methods are
dominated by solving a nonlinear optimization problem. Using the interior point
method, the above can be done in O(n3) steps [Den Hertog 1992].

Table 5.6 summarizes the discussions above. Observe that in the Monte Carlo
method, m is generally much larger than n, which leads to a complexity much
higher than in the other three approaches.

Table 5.6: Computational complexity of methods for PF analysis under uncertainty.

Method Complexity

Monte Carlo O(m · n2.376)
Interval Newton O(n3)
Range Arithmetic O(n3)
Proposed method O(n3)

5.5.2 Case study

This subsection studies the accuracy of the proposed method by comparing with the
Monte Carlo approach. The objective is to determine the feasibility of the method
in real-world applications. With this aim, the proposed method is implemented in
C++ using the OPT++ library, a package for nonlinear optimization based on an
interior point method [Meza 2007]. The implementation consists of two routines:
the first is a standard PF solver based on the NR method, and is used to obtain
the midpoint. The second uses OPT++ to solve the optimization problem defined
by (5.16), thus determining the radius. The objective function in (5.16a) is chosen
as the sum of squared vector components (i.e., the square of the Euclidean norm).
A Newton nonlinear interior-point method provided by OPT++ is chosen as the
optimization method [Potra 2000]. This method needs to compute the gradient and
Hessian matrix of the nonlinear constraints. To alleviate the programming burden,
the latter is computed using finite differences in place of the analytical expression.
Since the network used in the study is relatively small, the above is not dramatic
from the point of view of performance.

The Monte Carlo approach is implemented using the Python-based software
Dome [Milano 2013]. Dome is a tool for power system analysis that provides the
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interface needed to perform Monte Carlo simulations. The input file containing the
network specification is modified in order to introduce a random scaling on certain
parameters. This allows the power injections and consumptions to oscillate within
the desired bounds. Then, an arbitrary number of PF analyses can be launched
over this random network, thus obtaining the result of the Monte Carlo experiment.
One additional feature is that the program is able to run in parallel on multiple
computing cores, reducing the total simulation time.

Both implementations are tested over a fuzzified version of the IEEE 57 bus test
case system. This system represents a part of the American Electric Power System
as it was in the early 1960’s. It has 7 generators, 42 loads and 80 transmission
lines. Figure 5.7 shows a one-line diagram. The original (non-fuzzified) data can
be found at http://www.ee.washington.edu/research/pstca/. The fuzzification
consists in assuming a percentage variation over generator bus voltages and power
injections and consumptions. For generator bus voltages, the variation considered
is ±1%. For power injections and consumptions, three cases are considered: (a)
±10%, (b) ±20% and (c) ±50% variation. This idea is translated to the Monte
Carlo simulations by assuming uniformly distributed random variables within the
respective bounds. Then, 5,000 runs of the PF analysis are launched using the
Dome implementation.

The execution time of the proposed method implemented in C++ is about
10 seconds in average, whereas the execution time of the Monte Carlo approach
implemented with Dome is larger than 1 minute.

Results are shown in Fig. 5.8. The bars represent the bounds obtained for the
bus voltages in the Monte Carlo approach. Bullets and crosses represent the bounds
obtained with the proposed method. It can be seen that both methods yield very
similar results in case (a). In cases (b) and (c), however, as the considered variation
increases, some discrepancies appear. In case (c), the proposed method reports a
very high variation on the voltage at one of the buses, namely bus 7. This variation
is almost three times that of the Monte Carlo approach. At other buses, in turn,
the variation obtained by Monte Carlo is much higher, up to three times that of the
proposed method. Apparently, the large interval at bus 7 is absorbing much of the
variability considered in the inputs, allowing other buses to keep a narrow interval.
That is to say, the constraint in (5.16b) gets satisfied by the large voltage radius at
bus 7, without the other radii needing to increase too much.

As mentioned above, the current implementation uses the 2-norm in the defini-
tion of the objective function. However, it is possible that using a norm of a ‘higher
rank’, such as the ∞-norm, yields better results in scenarios of high variation. The
∞-norm corresponds to the maximum absolute value of vector components. Thus,
using this norm will penalize solutions where one of the radius is much larger than
the others, as in case (c) above. As a consequence, the resulting interval voltage will
have a more homogeneous profile, similar to the one seen in the Monte Carlo ap-
proach. Unfortunately, the implementation of the ∞-norm poses some difficulties,
as the interior point optimization method requires to evaluate the derivative of the
objective function. Since the ∞-norm is not differentiable, the solution needs to be
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Figure 5.7: One-line diagram of the IEEE 57 bus test case system.
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approached by other optimization methods, probably more expensive in terms of
computation. Of course, a trade-off between accuracy and performance is expected
for this kind of numerical applications. An investigation of this trade-off is planned
as future work.

5.6 Conclusions

This chapter proposes and compares different representation formats for fuzzy in-
tervals and their implementation on GPUs. The conventional lower-upper approach
is compared to the midpoint-radius approach, which is particularly suited to model
symmetric membership functions. A novel representation format is proposed based
on the midpoint-radius approach. The proposed format allows halving both the
memory requirements and the number of operations compared to the lower-upper
format. The midpoint-increment format is also explored in this paper. This format
improves the accuracy of the midpoint-radius format while using the same num-
ber of operations. With this aim, a library of fuzzy interval arithmetic operations,
written in CUDA and C++, is described and evaluated using compute-bound and
memory-bound benchmarks.

In addition, the midpoint-radius interval approach is used for the assessment
of uncertainty in PF analysis. A novel technique is proposed, which separates the
computation of the midpoint from the computation of the radius. The proposed
technique proves to yield relatively accurate result at an affordable computational
cost.

Future works will include the expansion of the fuzzy arithmetic library with
more operations and conversion between formats. In case of non-symmetric mem-
bership function, the use of a symmetric envelope will be explored. Also, regarding
the proposed method for the uncertainty assessment in PF analysis, the trade-off
between complexity and accuracy will be investigated.
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Figure 5.8: Bus voltage magnitude intervals for different variations in load power
consumption and generator power injection: (a) ±10% variation. (b) ±20% varia-
tion.
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Figure 5.8: Bus voltage magnitude intervals for different variations in load power
consumption and generator power injection: (c) ±50% variation.



References 104

References

[461 2008] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pp.
1–70, 2008. (Cited on page 77.)

[Anile 1995] A. Anile, S. Deodato and G. Privitera. Implementing fuzzy arithmetic.
Fuzzy Sets and Systems, vol. 72, no. 2, pp. 239–250, 1995. (Cited on page 76.)

[Beliakov 2015] G. Beliakov and Y. Matiyasevich. A parallel algorithm for calcula-

tion of determinants and minors using arbitrary precision arithmetic. BIT
Numerical Mathematics, pp. 1–18, 2015. (Cited on page 88.)

[Bondia 2006] J. Bondia, A. Sala, J. Pico and M. Sainz. Controller Design Un-

der Fuzzy Pole-Placement Specifications: An Interval Arithmetic Approach.
IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 822–836, 2006.
(Cited on pages 75 and 85.)

[Boukezzoula 2014] R. Boukezzoula, S. Galichet, L. Foulloy and M. Elmasry. Ex-

tended gradual interval (EGI) arithmetic and its application to gradual

weighted averages. Fuzzy Sets and Systems, vol. 257, pp. 67–84, 2014. (Cited
on page 81.)

[Brönnimann 2006] H. Brönnimann, G. Melquiond and S. Pion. The design of the

Boost interval arithmetic library. Theoretical Computer Science, vol. 351,
no. 1, pp. 111–118, 2006. (Cited on page 76.)

[Buisson 2003] J.-C. Buisson and A. Garel. Balancing meals using fuzzy arith-

metic and heuristic search algorithms. IEEE Transactions on Fuzzy Systems,
vol. 11, no. 1, pp. 68–78, 2003. (Cited on pages 75 and 85.)

[Chang 1995] C.-H. Chang and Y.-C. Wu. The genetic algorithm based tuning

method for symmetric membership functions of fuzzy logic control systems.
International IEEE/IAS Conference on Industrial Automation and Control:
Emerging Technologies, 1995., pp. 421–428. IEEE, 1995. (Cited on page 81.)

[Chen 2006] C.-T. Chen, C.-T. Lin and S.-F. Huang. A fuzzy approach for supplier

evaluation and selection in supply chain management. International journal
of production economics, vol. 102, no. 2, pp. 289–301, 2006. (Cited on
pages 75 and 85.)

[Coppersmith 1987] D. Coppersmith and S. Winograd. Matrix multiplication via

arithmetic progressions. Proceedings of the nineteenth annual ACM sympo-
sium on Theory of computing, pp. 1–6. ACM, 1987. (Cited on page 98.)

[Cortes-Carmona 2010] M. Cortes-Carmona, R. Palma-Behnke and G. Jimenez-
Estevez. Fuzzy Arithmetic for the DC Load Flow. IEEE Transactions on
Power Systems, vol. 25, no. 1, pp. 206–214, 2010. (Cited on pages 75 and 85.)



References 105

[Cuda 2012] C. Cuda. Programming guide. NVIDIA Corporation, July, 2012.
(Cited on pages 9, 24, 25, 27, 88 and 92.)

[Davis 2012] J. D. Davis and E. S. Chung. SpMV: A Memory-Bound Application

on the GPU Stuck Between a Rock and a Hard Place. Technical Report
MSR-TR-2012-95, 2012. (Cited on page 88.)

[Defour 2014] D. Defour and M. Marin. FuzzyGPU: A Fuzzy Arithmetic Library

for GPU. Parallel, Distributed and Network-Based Processing (PDP), 2014
22nd Euromicro International Conference on, pp. 624–631, 2014. (Cited on
page 75.)

[Den Hertog 1992] D. Den Hertog. Interior point approach to linear, quadratic and

convex programming: algorithms and complexity. PhD thesis, TU Delft,
Delft University of Technology, 1992. (Cited on page 98.)

[Dubois 1978] D. Dubois and H. Prade. Operations on fuzzy numbers. International
Journal of systems science, vol. 9, no. 6, pp. 613–626, 1978. (Cited on
pages 76, 77 and 79.)

[Fortin 2008] J. Fortin, D. Dubois and H. Fargier. Gradual Numbers and Their Ap-

plication to Fuzzy Interval Analysis. IEEE Transactions on Fuzzy Systems,
vol. 16, no. 2, pp. 388–402, 2008. (Cited on page 82.)

[Gagolewski 2012] M. Gagolewski. FuzzyNumbers Package: Tools to deal with fuzzy

numbers in R. http://www. ibspan. waw. pl/g̃agolews/FuzzyNumbers, 2012.
(Cited on page 76.)

[Goossens 2013] B. Goossens and D. Parello. Limits of instruction-level parallelism

capture. Procedia Computer Science, vol. 18, pp. 1664–1673, 2013. (Cited
on page 87.)

[Goualard 2006] F. Goualard. Gaol 3.1.1: Not just another interval arithmetic

library. Laboratoire d’Informatique de Nantes-Atlantique, 2006. (Cited on
page 76.)

[Higham 2002] N. J. Higham. Accuracy and stability of numerical algorithms. Siam,
2002. (Cited on pages 66, 68, 77, 84 and 139.)

[Hoberock 2010] J. Hoberock and N. Bell. Thrust: A Parallel Template Library,

Version 1.7.0. http://thrust.github.io/, 2010. (Cited on page 93.)

[Kolarovic 2013] N. Kolarovic. Fuzzy numbers and basic fuzzy arithmetics

(+, -, *, /, 1/x) implementation written in Java. Online at
http://http://sourceforge.net/projects/fuzzyarith/, 2013. (Cited on
pages 76 and 89.)



References 106

[Marin 2014] M. Marin, D. Defour and F. Milano. Power flow analysis under un-

certainty using symmetric fuzzy arithmetic. IEEE PES General Meeting,
Conference & Exposition, pp. 1–5, 2014. (Cited on page 75.)

[Mendel 2006] J. Mendel and H. Wu. Type-2 Fuzzistics for Symmetric Interval

Type-2 Fuzzy Sets: Part 1, Forward Problems. IEEE Transactions on Fuzzy
Systems, vol. 14, no. 6, pp. 781–792, 2006. (Cited on page 81.)

[Meza 2007] J. Meza, R. Oliva, P. Hough and P. Williams. OPT++: An object-

oriented toolkit for nonlinear optimization. ACM Transactions on Mathe-
matical Software, vol. 33, no. 2, page 12, 2007. (Cited on page 98.)

[Milano 2013] F. Milano. A Python-based software tool for power system analysis.
IEEE Power and Energy Society General Meeting, pp. 1–5, 2013. (Cited on
pages 7, 10, 68, 98, 122 and 124.)

[Moore 1966] R. E. Moore. Interval analysis, vol. 4. Prentice-Hall Englewood Cliffs,
1966. (Cited on page 76.)

[Neumaier 1990] A. Neumaier. Interval methods for systems of equations, vol. 37.
Cambridge university press, 1990. (Cited on pages 76 and 139.)

[Potra 2000] F. A. Potra and S. J. Wright. Interior-point methods. Journal of
Computational and Applied Mathematics, vol. 124, no. 1 - 2, pp. 281 –
302, 2000. Numerical Analysis 2000. Vol. IV: Optimization and Nonlinear
Equations. (Cited on page 98.)

[Revol 2001] N. Revol and F. Rouillier. The MPFI library.
http://mpfi.gforge.inria.fr/, 2001. (Cited on page 76.)

[Rump 1992] S. M. Rump. On the solution of interval linear systems. Computing,
vol. 47, no. 3-4, pp. 337–353, 1992. (Cited on page 98.)

[Rump 1999] S. M. Rump. Fast and parallel interval arithmetic. BIT Numerical
Mathematics, vol. 39, no. 3, pp. 534–554, 1999. (Cited on pages 77, 78
and 96.)

[Siler 2005] W. Siler and J. J. Buckley. Fuzzy expert systems and fuzzy reasoning.
John Wiley & Sons, 2005. (Cited on page 76.)

[Trutschnig 2013] W. Trutschnig, M. Lubiano and J. Lastra. SAFD — An R Pack-

age for Statistical Analysis of Fuzzy Data. In C. Borgelt, M. Á. Gil, J. M.
Sousa and M. Verleysen, editeurs, Towards Advanced Data Analysis by Com-
bining Soft Computing and Statistics, vol. 285 of Studies in Fuzziness and

Soft Computing, pp. 107–118. Springer Berlin Heidelberg, 2013. (Cited on
page 76.)



References 107

[Vaccaro 2013] A. Vaccaro, C. A. Cañizares and K. Bhattacharya. A range

arithmetic-based optimization model for Power Flow analysis under inter-

val uncertainty. IEEE Transactions on Power Systems, vol. 28, no. 2, pp.
1179–1186, 2013. (Cited on pages 11, 46, 49, 95, 96 and 98.)



Chapter 6

Asynchronous Power Flow

analysis

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Fixed-point iterations on a parallel computer . . . . . . . . 109

6.2.1 Synchronous iterations . . . . . . . . . . . . . . . . . . . . . . 110

6.2.2 Asynchronous iterations . . . . . . . . . . . . . . . . . . . . . 110

6.2.3 Partially asynchronous iterations . . . . . . . . . . . . . . . . 112

6.3 Proposed method for AC circuit analysis . . . . . . . . . . . 114

6.3.1 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.2 Component and node models . . . . . . . . . . . . . . . . . . 116

6.3.3 Convergence study . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Extension of the method to PF analysis . . . . . . . . . . . . 118

6.4.1 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.2 Component and node model . . . . . . . . . . . . . . . . . . . 119

6.5 Implementation and evaluation . . . . . . . . . . . . . . . . . 121

6.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Elements of this chapter have been published as a research report in HAL open
archives [Marin 2015]. A paper with most recent results is currently in preparation,
to be submitted to IEEE Transactions on Power Systems.

6.1 Introduction

This chapter describes an intrinsically parallel method for Alternating Current (AC)
circuit analysis and Power Flow (PF) analysis. As discussed in Chapter 3, these
analyses are typically based on a vectorial approach and direct solvers. In the past,
most implementations of such methods were designed to run on single-core proces-
sors. This allowed performance to scale with the processor frequency. More recently,
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as single-core processors started reaching their peak frequency, parallel implemen-
tations were investigated [Gupta 1997, Honkala 2001, Tu 2002, Garcia 2010].

The above methods, however, are intrinsically serial. That is to say, some
parts of the algorithm need to wait for others to complete in order to start. In
consequence, there is always a portion of the algorithm that remains serial in every
parallel implementation. According to the Amdahl’s law, this remaining serial code
limits the performance of the parallel program even if the number of parallel cores
grows to infinity [Amdahl 1967]. For performance to keep growing with the number
of cores, the algorithm must be intrinsically parallel. The use of analog emulation
has been investigated in [Nagel 2013]. This consists in mapping the real power
system onto a CMOS integrated circuit for its simulation. However, no software-
based intrinsically parallel method for circuit or PF analysis has been proposed in
the current literature.

The approach presented in this chapter is inspired from the physical system,
which, in fact, is intrinsically parallel: each component in the physical system is
continuously evolving, without explicit synchronization with others. At some point,
an equilibrium point naturally arises. In the proposed method, each element in the
network is performing a fixed-point iteration. If all these converge, the current
state is the solution for the network. The above is implemented using the concept
of team algorithms, presented in [Talukdar 1983], where different algorithms are
combined into the solution of a common problem. A similar idea is presented
in [Tsitsiklis 1984] under the name of agreement algorithm.

An important antecedent of the proposed approach is the work in [Bertsekas 1987],
where the authors study the use of asynchronous iterations in the network flow prob-
lem. Indeed, the network flow problem is representative of the situation that arises
in power flow analysis when the standard formulation is utilized. In [El-Baz 1996],
a novel computational model is introduced which allows flexible communication

between program threads, helping to accelerate convergence of a network flow al-
gorithm.

The remainder of the chapter is organized as follows. Section 6.2 describes
several alternatives to implement fixed-point iterations in parallel, using different
synchronization schemes. In Section 6.3, the proposed intrinsically parallel method
for AC circuit analysis is presented and convergence is studied. The method is
extended to PF analysis in Section 6.4. Section 6.5 describes the implementation
and evaluation of the method on a set of benchmarks and comparison with existing
approaches. Finally, Section 6.6 draws conclusions and outlines future work.

6.2 Fixed-point iterations on a parallel computer

This section introduces the concept of fixed-point iterations and discusses the im-
plementation of such iterations on a parallel machine. Fixed-point iterations are
iterative processes that lead to a fixed-point of a function, i.e., a point that is
mapped to itself.
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Definition 6.2.1 (Fixed-point and fixed-point iteration). Let f : Rn → R
n and

x ∈ R
n. Then, x is a fixed-point of f(·) if and only if x = f(x). Furthermore, let

x(0) ∈ R
n. Then, the iteration given by:

x(k+1) = f(x(k)), k = 0, 1, . . . , (6.1)

is called a fixed-point iteration on f(·).

Examples of fixed-point iterations are the Jacobi and Gauss-Seidel methods
discussed in Section 3.3.1. Fixed-point iterations can be implemented in parallel
by assigning each element of the iterated vector to an individual thread. Each
thread updates its respective element and communicates its result to others. A
synchronization point may be defined, where the process has to make sure that the
results computed by each thread are visible to others.

6.2.1 Synchronous iterations

The usual setup of a fixed-point iteration, as presented by Definition 6.2.1, corre-
sponds to a synchronous iteration in the context of parallel computing. This means
that the vector is updated as a block, i.e., all the elements are updated before the
process moves as a whole into the next step. The above requires to place a synchro-
nization point at the end of each iteration. As a consequence, threads that finish
their updates earlier are forced to wait for the others to catch up. The reason for
threads having different processing times are various. Some of them may be intrin-
sic to the algorithm, e.g., irregular memory access patterns, load imbalance. Some
others may be related to the architecture, e.g., differences in processor frequency,
communication network constraints [Frommer 2000].

6.2.2 Asynchronous iterations

An alternative to the synchronous approach is the so-called asynchronous iteration,
in which individual threads do not wait for others and simply go ahead with their
work. This means that the vector is updated by chunks, i.e., at every asynchronous
iteration only a subset of the vector elements are updated. No synchronization
point is explicitly added to the program. As a consequence, some of the updates
may be computed with data from several iterations back.

An asynchronous iteration is defined in terms of an update function and a delay

function. The update function, noted U(·), receives the iteration counter k ∈ N,
and returns a subset of {1, . . . , n} indicating the list of threads that update their
elements at iteration k. The delay function, noted d(·), receives the indices i, j ∈

{1, . . . , n} and the iteration counter k ∈ N, and returns the delay of thread j with
respect to thread i at iteration k. This delay represents the number of iterations
performed since the value of xj was last made visible to i.
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Definition 6.2.2 (Asynchronous iteration). Let x ∈ R
n and f : Rn → R

n. For
k ∈ N, i, j ∈ {1, . . . , n}, let U(k) ⊆ {1, . . . , n} and d(i, j, k) ∈ N0, such that:

d(i, j, k) ≥ 0, ∀i, j, k, (6.2a)

lim
k→∞

d(i, j, k) < ∞, ∀i, j, (6.2b)

|{k : i ∈ U(k)}| = ∞, ∀i. (6.2c)

Finally, let x0 ∈ R
n. Then, the iteration defined by:

x
(k+1)
i =





fi(x
(k−d(i,1,k))
1 , . . . , x

(k−d(i,n,k))
n ) if i ∈ U(k),

x
(k)
i if i 6∈ U(k),

(6.3)

is called an asynchronous iteration on f(·), with update function U(·) and delay
function d(·).

The assumptions in (6.2a), (6.2b) and (6.2c) ensure that the process is well
defined. Specifically, the assumption in (6.2a) states that only values computed in
previous iterations are used in any update. The one in (6.2b) states that newer
values of the elements are eventually used. Finally, the assumption in (6.2c) states
that no element ceases to be updated during the course of the iteration. In practical
terms, if the updates are made visible as soon as they are computed, then the third
assumption implies the second. This is the case, for example, of an application that
uses GPU global memory to store the data. Note that a synchronous iteration is a
special case of asynchronous iteration with U(k) = {1, . . . , n} and d(i, j, k) = 0, for
all i, j, k.

Due to the peculiarities introduced above, asynchronous iterations converge dif-
ferently from synchronous ones. The following result considers the case of a linear
application.

Theorem 6.2.1 (Necessary and sufficient condition for convergence of linear asyn-
chronous iterations [Chazan 1969]). Let f : Rn → R

n, given by,

f(x) = Lx + b, (6.4)

where L ∈ R
n×n, and b ∈ R

n. Let |L| denote the matrix of absolute values of

the entries of L, and ρ(|L|) its spectral radius (see Appendix A for a definition of

spectral radius). If

ρ(|L|) < 1, (6.5)

then any asynchronous iteration on f(·) converges to x∗, the unique fixed-point of

f(·), regardless of the selection of U(·), d(·) and x(0). Furthermore, if ρ(|L|) ≥ 1,

then there exists U(·), d(·) and x(0) such that the associated asynchronous iteration

does not converge to x∗.

Proof. See [Chazan 1969].
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6.2.3 Partially asynchronous iterations

In some circumstances, convergence of asynchronous iterations can be facilitated
by making threads synchronize every once in a while.

Definition 6.2.3 (Partially asynchronous iteration). Consider Definition 6.2.2 of
an asynchronous iteration. Replace the assumptions in (6.2b) and (6.2c) by the
following:

∃ d̄ ∈ N : d(i, j, k) ≤ d̄, ∀i, j, k, (6.6a)

∃ s̄ ∈ N : i ∈
s̄⋃

s=1

U(k + s), ∀i, k. (6.6b)

d(i, i, k) = 0, ∀i, k, (6.6c)

Then, the iteration given by equation (6.3) is now termed a partially asynchronous
iteration.

The assumption in (6.6a) establishes that not only newer values of the vector
elements are eventually used, but each of these values is used before d̄ iterations
have passed from their calculation. The assumption in (6.6b), in turn, states that
each element is updated at least once in every s̄ consecutive iterations. Finally,
the assumption in (6.6c) establishes that every element is updated using its own
last calculated value. In practical terms, the first two assumptions can be met by
performing a synchronization step every l iterations, where l is the minimum of d̄

and s̄. The third assumption can be met by having each element assigned to only
one thread.

As mentioned above, partially asynchronous iterations converge ‘more easily’
than totally asynchronous ones. The following result establishes a convergence
criteria in the linear case, with softer assumptions than the ones in Theorem 6.2.1.

Theorem 6.2.2 (Sufficient condition for convergence of linear partially asynchronous
iterations [Tseng 1990]). Let f : Rn → R

n, given by,

f(x) = Lx + b, (6.7)

where L ∈ R
n×n, and b ∈ R

n. Let g : Rn → R
n, given by:

g(x) = (1 − α)x + αf(x), (6.8)

where α ∈ (0, 1).
If L = (lij) is irreducible (see Appendix A for a definition of irreducibility) and

n∑

j=1

|lij | ≤ 1, ∀i, (6.9)

then any partially asynchronous iteration on g(·) converges to x∗, fixed-point of

f(·).
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Proof. See [Tseng 1990].

In [Lubachevsky 1986], the authors presented a special case in which conver-
gence occurs for α = 1, at a linear (geometric) rate. They also determined a lower
bound for the average convergence rate (per iteration) in the long-term, τ , as fol-
lows:

τ ≥ (1 − σr)1/r, (6.10)

where

r = 1 + d̄ + (n − 1)(s̄ + d̄), (6.11a)

σ = min
i,j

+

(
x∗

i lij
x∗

j

)
, (6.11b)

and min +(·) refers to the minimum of the positive elements. This means that the
error is scaled at most by a factor of (1 − σr)1/r in any average iteration. As σ is
always lower than 1, the convergence rate approaches 1 for increasing values of n,
d̄ and s̄. That is to say, the convergence becomes sub-linear.

For illustration purposes, consider that d̄ = s̄ = 0 (synchronous iteration). In
this case, from equations (6.10) and (6.11a), r = 1 and τ = 1 − σ. In other words,
the convergence rate is unaffected by the problem size n and only depends on σ.

Now consider that d̄ = s̄ = 1. This corresponds to a partially asynchronous
iteration with a synchronization step every other iteration. In this case, r = 2n,
which means that convergence slows down as the problem grows. Figure 6.1 shows
the lower bound on the convergence rate as a function of the problem size n. The
different curves represent different values of σ. Observe that, unless σ is very high,
convergence becomes sub-linear very quickly.
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Figure 6.1: Bound on the convergence rate as a function of the problem size, for
different values of the parameter σ.
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This might be a strong reason to prefer the synchronous approach over the
partially asynchronous. However, the partially asynchronous approach can be a
valid alternative in some cases, e.g., if the costs of synchronization are relatively
high, or when the number of iterations required to converge is relatively low.

6.3 Proposed method for AC circuit analysis

This section presents a novel technique for AC circuit analysis based on partially
asynchronous iterations. The proposed method is intrinsically parallel, and at-
tempts to emulate the real behaviour of the physical system. The method is designed
to be implemented on Single Instruction Multiple Thread (SIMT) architectures such
as the GPU. As seen in Section 2.2.1, the SIMT execution model allows the same
instruction to be executed simultaneously by a large number of parallel cores over
different data. The proposed method is based on a “universal component” model
that allows for an efficient utilization of the above feature.

The method is presented through a top-down approach. The network model is
described first, specifying how the different parts communicate and interact. Next,
the models of the different elements that compose the AC system are specified in
their atomic behaviour. Finally, the convergence properties of the proposed method
are studied.

6.3.1 Network model

The proposed methodology distinguishes two fundamental units in the circuit: com-
ponents and nodes. The components are the electrical devices, and the nodes are
the points of interconnection. For sake of simplicity and also to facilitate illustration
of the method, the following three assumptions are made:

1. Only dipole components, i.e., components connected to two nodes, are present.

2. There is no more than one component connected between any two nodes.

3. Every node is connected to at least two components.

The circuit is well defined if there are components connecting all the nodes in a
closed path. Node h in the circuit is noted nh. The component connected between
nh and nm is noted chm. The set of all nodes in the circuit is noted N , and the set
of components, C.

In addition, a set of influencers, Ih ⊂ N , is defined for each non-ground node
nh ∈ N . This set contains all the nodes separated from nh by exactly one compo-
nent. These are also known as the fanin nodes [Newton 1984].

For illustration purposes, consider the circuit in Fig. 6.2. In this case, N = {n0, n1, n2, n3}

and C = {c01, c12, c02, c23, c03}. The circuit is well defined, since c01, c12, c23 and c03

connect all the nodes in a closed path. In addition, I1 = {n0, n2}, I2 = {n0, n1, n3},
and I3 = {n0, n2}.
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n0

n1 n2 n3

c01

c12

c02

c23

c03

Figure 6.2: Example 4-node circuit.

In the proposed methodology, vh denotes the voltage at node nh, and uhm

denotes the voltage at node nh ‘according’ to component chm. The two are different
during the course of the iteration, and become equal at convergence. In addition,
ihm denotes the current injected to nh by component chm, and ∆ih denotes the
current mismatch at nh.

At every iteration k, a component chm obtains v

(k)
h and ∆i

(k)
h from node nh,

and returns u

(k)
hm and i

(k)
hm to it. A similar exchange occurs with node nm at the

other end of the component. Next, at the same iteration k, node nh receives u

(k)
hj

and i

(k)
hj from each component chj connected to it, and returns v(k+1)

h and ∆i

(k+1)
h

to all of them. Then, the process moves into a next iteration. Figure 6.3 illustrates
the above for component c12 and node n2 in the example 4-node circuit.
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Figure 6.3: Network model: (a) Component; and (b) Node.
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6.3.2 Component and node models

Component model

For the purposes of the proposed method, only two types of component are required:
the voltage source and the impedance. Although these are conceptually different,
they are both modelled as a voltage source in series with an impedance. The
source and the impedance assume the appropriate values to represent one and the
other. The use of a universal model improves instruction regularity of the GPU
implementation, as discussed in Section 6.5.

The voltage source of component chm, measured from nh to nm, is noted v̂hm.
The impedance is noted zhm. Observe that v̂hm = −v̂mh and zhm = zmh. The
values of v̂hm and zhm for each component are detailed below.

Voltage source. The voltage source is modelled as an independent source V

of maximum current I. Accordingly, v̂hm is set to V. The value of zhm, in turn, is
chosen so that the voltage drop across its terminals is negligible, i.e., lower than a
positive, small real number ε:

0 ≤ zhmI < ε. (6.12)

This is achieved by setting zhm = ε
2I .

Impedance. The impedance is simply modelled as a constant impedance Z.
Accordingly, v̂hm is set to zero and zhm is set to Z.

Table 6.1: Voltage source and resistance for each component.

Component zhm v̂hm

Voltage source ε
2I V

Impedance Z 0

The component iteration is defined as follows:

u

(k)
hm = v

(k)
h + zhm∆i

(k)
h , (6.13a)

i

(k)
hm =

v

(k)
m − v

(k)
h − v̂hm

zhm
. (6.13b)

These equations are obtained by applying the Ohm Law on component chm, and
the Kirchhoff Current Law on node nh (see Appendix B for a detailed deduction).
Note that if the current mismatch at nh is equal to zero (i.e., ∆i

(k)
h = 0), then

u

(k)
hm = v

(k)
h . That is to say, the voltage according to component chm is the same as

the one according to node nh itself. This corresponds to a condition of convergence
at component level.
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Node model

The node is simply modelled as a point where different components exchange data
and consolidate their results. The node iteration is defined as follows:

v

(k+1)
h =

∑

m∈Ih

whmu
(k)
hm, (6.14a)

∆i

(k+1)
h =

∑

m∈Ih

i

(k)
hm, (6.14b)

where whm is defined as the weight of component chm within node nh. These weights
satisfy the following equation:

∑

m∈Ih

whm = 1. (6.15)

In other words, the voltage at each node is updated with the weighted sum of the
voltages computed by each component connected to it. Note that if convergence
is attained at component level (i.e., u(k)

hm = v

(k)
h , ∀m ∈ Ih), then v

(k+1)
h = v

(k)
h .

This happens when all the components agree on the value of the node voltage, and
corresponds to a condition of convergence at node level.

The next subsection shows how these weights can be chosen in order to guarantee
convergence of the proposed iteration.

6.3.3 Convergence study

This section investigates the convergence properties of the proposed iterative method
for two different synchronization schemes.

Let n0 be the ground-node, and N ′ the set of all nodes in the circuit minus the
ground. That is to say, N ′ = N \{n0}. Also, let v ∈ C

n−1 be the vector of voltages
at all non-ground nodes. The iteration function, f : Cn−1 → C

n−1, is given by:

fh(v) = vh +
∑

m∈Ih

∑

j∈Ih

whmzhm
vj − vh − v̂hj

zhj
, h ∈ N ′. (6.16)

This expression is obtained by combining equations (6.13a), (6.13b), (6.14a), (6.14b)
and (6.15). Equation (6.16) is linear, thus, it can be written as follows:

f(v) = Lv + b, (6.17)
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where L and b are given by:

lhh = 1 −
∑

m∈Ih

∑

j∈Ih

whmzhm

zhj
,

lhj =





∑
m∈Ih

whmzhm

zhj
if j ∈ Ih,

0 otherwise.

bh = −
∑

m∈Ih

∑

j∈Ih

whmzhmv̂hj

zhj
.

(6.18)

The following theorem establishes that a totally asynchronous iteration on f(·),
as given by (6.17), is not guaranteed to converge.

Theorem 6.3.1. Let f(·) be defined by (6.17). Then, there exists an update func-

tion U(·), a delay function d(·) and an initial guess v

(0), such that the associated

asynchronous iteration on f(·) does not converge to a fixed-point.

Proof. See Appendix B.

The above result implies that to ensure convergence of the proposed iteration,
further assumptions are needed. The following theorem establishes a sufficient
condition for convergence based on partially asynchronous iterations.

Theorem 6.3.2. Let g(·) be defined by:

g(v) = (1 − α)v + αf(v), (6.19)

where 0 < α < 1 and f(·) is given by (6.16). Let the weights, whm, m ∈ Ih, satisfy

the following:

1 −
∑

m∈Ih

∑

j∈Ih

whmzhm

zhj
≥ 0, ∀h. (6.20)

Then, any partially asynchronous iteration over g(·) converges to v

∗, fixed-point of

f(·).

Proof. See Appendix B.

6.4 Extension of the method to PF analysis

As discussed in Section 3.3, the main difference between solving an AC circuit and
the PF analysis lies in the set of input data. Circuit analysis uses voltages and
currents to characterize electrical components, whereas PF analysis is based on
power injections and consumptions. Another difference comes from the topology.
In circuit analysis, the ground node is explicitly defined, so that components are
always connected between two nodes. In PF analysis, on the other hand, the ground
is not represented. This allows components with one terminal to ground to appear
as connected to only one node.
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The proposed method for AC circuit analysis is extended to PF analysis by
making slight modifications to the network and component models. These are
described below.

6.4.1 Network model

The network model is modified by substituting current mismatches, ∆i, with com-
plex power mismatches, ∆s. Similarly, current injections, i, are replaced by complex
power injections, s. Therefore, instead of nh communicating ∆ih to its attached
components, it communicates ∆sh. Also, instead of chm sending ihm and imh to
its terminal nodes, it sends shm and smh. The following equations are utilized to
make the proper adjustments:

∆i =
(

∆s

v

)∗

, (6.21)

i =
(
s

v

)∗

, (6.22)

where (·)∗ indicates the complex conjugate.
To better reflect the power system topology, the ground node is taken out. Also,

certain components are allowed to be connected to only one node, as described in
the following subsection.

6.4.2 Component and node model

Component model

The proposed method for PF analysis considers three types of component: genera-
tor, branch and shunt. These components are described below.

Generator. It is connected to only one node, say nh. The generator is there to
ensure that the reactive power mismatch at the node is equal to zero. In this sense,
the model assumes that generators are able to provide as much reactive power as
needed in order to maintain the voltage. The slack generator also does the same
for real power. Accordingly, the iteration is simply the following: for non-slack
generators,

Im(s(k)
h ) = 0. (6.23)

And for the slack generator,

s

(k)
h = 0. (6.24)

Branch. The branch is connected between two non-ground nodes, say nh and
nm. It consists of a constant impedance, zhm. The branch iteration is defined as
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follows:

u

(k)
hm = v

(k)
h + zhm

(
∆s

(k)
h

v

(k)
h

)∗

, (6.25a)

s

(k)
hm = v

(k)
h

(
v

(k)
m − v

(k)
h

zhm

)∗

. (6.25b)

The above expressions are obtained by combining equations (6.13a), (6.13b) and (6.21).

Shunt. As the generator, the shunt is connected to only one node, say nh.
It represents an impedance to ground, noted zh0 (the subscript ‘0’ indicates the
ground). The shunt iteration is similar to the branch one. The main difference is
that vm in equation (6.25b) is replaced by zero (the ground voltage). The iteration
is the following:

u

(k)
h0 = v

(k)
h + zh0

(
∆s

(k)
h

v

(k)
h

)∗

, (6.26a)

s

(k)
h0 = −

|v
(k)
h |2

(zhm)∗ , (6.26b)

where |·| indicates the absolute value.

Node model

The node model is simply extended by replacing equation (6.14b) with:

∆s

(k+1)
h =

∑

m∈Ih

s

(k)
hm. (6.27)

Also, a new iteration is added which allows PQ loads to become constant
impedances, if the voltage at the node is outside specific limits. This is a tech-
nique used in traditional PF analysis [Milano 2010]. In the proposed method, the
power injected to nh by loads is noted sL,h. If the voltage is outside the limits,
this variable is scaled by a factor depending on the current voltage and the violated
limit. Then, the power mismatch at the node is adjusted to reflect the change in
the load. In conclusion, the iteration is composed of two parts. The first updates
the power injected by loads, as follows:

s

(k+1)
L,h =





(
v

(k)
h

vmin
h

)2

s

(k)
L,h if v

(k)
h < vmin

h ,
(

v
(k)
h

vmax
h

)2

s

(k)
L,h if v

(k)
h > vmax

h ,

s

(k)
L,h otherwise,

(6.28)

where vmin
h and vmax

h are the voltage limits at nh. Then, the second part updates
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the power mismatch, as follows:

∆s

(k+1)
h = ∆s

(k)
h − s

(k)
L,h + s

(k+1)
L,h . (6.29)

The use of the above iteration reduces instruction regularity, as it needs to
be performed only by nodes. However, it may be required for convergence of the
method, which makes it affordable from an overall point of view.

6.5 Implementation and evaluation

In this section, the proposed method for PF analysis is implemented in CUDA
C++ and tested on the Nvidia Kepler GPU architecture [kep 2012]. As any GPU
implementation, this one requires to take into account the peculiarities of GPU
architecture, as described below. The proposed method is also evaluated on a series
of benchmarks, with the aim of exploring convergence, performance and scalability
issues.

6.5.1 Implementation

As explained in Section 2.3.1, regularity is one of the most powerful leverages for
GPU performance. The above is demonstrated for the case of treefix computations
in Chapter 4. Algorithm 6.1 presents a regular implementation of the method pro-
posed in Section 6.4. The algorithm assigns one parallel thread to each component
in the system. In instructions 4 and 5, each thread calculates the voltage at its
component’s terminals and updates the appropriate coordinates on vector v. Next,
in instructions 6 and 7, the thread calculates the power injections into each termi-
nal and updates the appropriate coordinates on vector ∆s. The process is repeated
after synchronizing all threads, until convergence is reached.

Algorithm 6.1 Intrinsically parallel algorithm for PF analysis.
Input: Vector of initial power mismatches, ∆s; component model parameters; tol-

erance for the error, ε.
Output: Vector of node voltages, v.

1: v = 1∠0 # Initial guess
2: for all h, m : chm ∈ C in parallel do

3: repeat

4: calculate uhm and umh

5: update vh and vm

6: calculate shm and smh

7: update ∆sh and ∆sm

8: synchronize threads
9: until |∆sh|, |∆sm| < ε

By assigning threads to components, the amount of work per thread is almost
the same, as components are always connected to either one or two nodes. If threads
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were assigned to nodes instead, then some threads would perform much more work
than others, as nodes can be connected to any number of components.

The proposed implementation revolves around two classes, namely Component

and Node, which provide all the necessary variables and routines to efficiently per-
form the iterations described in Section 6.4. As discussed in Section 2.2.2, coalesced
global memory accesses can drastically improve GPU performance by reducing the
number of memory transactions. In the proposed implementation, the above is
achieved by using a ‘structure of arrays’ in the definition of the aforementioned
classes.

As explained in Section 2.2.2 as well, GPU performance can be improved by us-
ing shared memory instead of global memory for recurrent memory operations. This
is due to the fact that shared memory has a much lower latency (few cycles compared
to hundreds of cycles). However, shared memory is only accessible to threads within
one thread-block, whereas global memory is accessible to all threads. Accordingly,
using shared memory in the proposed method allows the delay between threads to
grow larger, which affects convergence as discussed in Section 6.3.3. In the proposed
implementation, global memory is preferred over shared memory for sake of simplic-
ity. An investigation of the trade-off between memory efficiency and convergence
of the method is planned as future work. In particular, the framework of asyn-
chronous iterations with flexible communication, as introduced in [Miellou 1998],
seems useful for carrying out such study.

6.5.2 Evaluation

The implementation is evaluated using randomly generated benchmarks from 1,024
to 8,192 nodes. The benchmarks are obtained using the random radial network gen-
erator provided by Dome [Milano 2013]. The specifications of this random network
generator are thoroughly detailed in Section 4.4.3.

Table 6.2 summarizes the hardware used in the tests. All source code is compiled
using G++ 4.8.2 and CUDA 6.5.

Table 6.2: Test environment

Device Clock rate (GHz) Number of cores

Xeon E5645 CPU 2.4 12 (1 used)
Tesla K40c GPU 0.7 2,880
GeForce GTX 680 GPU 1.06 1,536

Convergence

As discussed in Section 6.2.3, partially asynchronous fixed-point iterations typically
exhibit a sub-linear rate of convergence. This means that reducing the convergence
tolerance below a small threshold may require a large number of iterations. This
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Figure 6.4: Numerical error as a function of the number of iterations on the K40c
GPU.

paragraph investigates the relation between the convergence error and number of
iterations for the proposed method using the K40c GPU.

Figure 6.4 shows the mismatch (on a logarithmic scale) as a function of the
maximum number of iterations performed by any component. The different curves
represent different problem sizes. Note that the behaviour is very similar on all 6
benchmarks, suggesting that convergence is independent from the problem size.

The convergence rate for this experiment is changing with the accuracy achieved.
For example, reducing the error from 10−3 to 10−4 requires about 555 iterations in
average. This corresponds to a convergence rate of 0.995 (i.e., each iteration scales
the error by a factor of 0.995). Whereas reducing the error from 10−5 to 10−6

requires about 1,850 iterations. This represents a convergence rate of 0.998. That
is to say, convergence is better when the error is higher. The farther the method is
from the exact solution, the faster it approaches that solution. This is the opposite
of the Newton-Raphson (NR) method where the convergence rate is improving at
each iteration. From this point of view, it may be interesting to combine both
approaches into a hybrid solution that switches methods depending on the error.
For example, the proposed method can be used to obtain a first solution fast, and
the NR method can be used to improve that solution afterwards. This idea will be
investigated in future works.

It is worth noting that this experiment validates the theoretical study of Sec-
tion 6.2.3, which shows that the convergence rate of this kind of methods approaches
1 in the long term.
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Performance

This paragraph compares performance of the proposed approach with serial NR,
the latter being provided by Dome [Milano 2013]. The Dome’s implementation uses
KLU, a highly optimized library for sparse matrix factorization, particularly suited
to deal with matrices from circuit analysis [Davis 2010]. The proposed method is
run on the Tesla K40c GPU, and the NR method is run on the Xeon E5645 CPU.

Figure 6.5 shows the execution time of both methods (on a logarithmic scale)
as a function of the problem size, n. The NR execution time grows exponentially
with the problem size, which is consistent with precedent results [Milano 2010]. In
the proposed method, in turn, the execution time seems less affected by the size,
and exhibits a more flat profile. At about 3,000 nodes, there is a turning point in
which the proposed method becomes faster than NR.

It is worth noting that the tolerance for the error in this experiment is only
of 10−4. For lower tolerances, the execution time is likely to increase more in the
proposed method than in NR (as the former converges sub-linearly, whereas the
latter converges quadratically). Thus, as the tolerance decreases, the turning point
should move to the right of the plot. The final position of the point will depend
on other factors as well, e.g., quality of both implementations, network topology,
computer architectures. However, given the differences in the slope observed in
Fig. 6.5, it is expected to see a turning point in most comparable scenarios.
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Figure 6.5: Related performance of N-R and the proposed method (accuracy: 10−4).

Scalability

As mentioned in Section 6.1, performance of intrinsically parallel methods should
increase with the number of computing cores. The above is confirmed by Fig. 6.6,
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which shows the execution time of the proposed method on two Nvidia Kepler GPU
architectures as a function of the problem size. The Tesla K40c GPU, embedding
2,880 computing cores, allows for a performance gain of about 1.3 over the GTX
680, which has 1,536 cores. The ratio between the number of cores is of 1.8, which
means that the proposed method almost achieve strong scalability.

It is noteworthy that both architectures are running binaries issued from the
same source code. That is to say, the program is not adjusted to fit either archi-
tecture in particular, e.g., by using grid and block sizes that maximize occupancy
in one or another. Different gains could be observed depending on such details.
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Figure 6.6: Performance of the proposed method on two GPU architectures.

6.6 Conclusions

This chapter presents a partially asynchronous fixed-point method for AC circuit
analysis and PF analysis. The method is designed to be implemented on SIMT
architectures such as the GPU. A theoretical result is provided which shows that
the method is certain to converge, although convergence is generally sub-linear.
The proposed method is implemented in CUDA and tested on different GPU archi-
tectures, using a set of radial randomly generated benchmarks. Simulation results
show that: (i) the convergence rate of the proposed method tends to be better at
an early stage, which makes it a good complement of the traditional NR method;
(ii) beyond a certain problem size, which depends on several parameters including
architectural and implementation features, the proposed method becomes faster
than the traditional NR approach; (iii) the proposed method scales well with the
number of computing cores in the parallel architecture, allowing the application to
automatically take advantage of newer GPU architectures.



6.6. Conclusions 126

Future works will consider the improvement of the proposed CUDA implementa-
tion with aims at reducing simulation time. In particular, the use of shared memory
will be investigated. The above requires addressing convergence of the method in
the case where an increasing number of iterations are performed ‘asynchronously’,
i.e., without communicating the results to all threads. Also, the method will be
evaluated on a larger range of networks with various sizes and topologies, and com-
pared with other solution techniques such as the Backward-Forward Sweep. Finally,
the adaptation of additional types of loads and generators will be considered (e.g.,
renewable energy generators, storage units, electric vehicle chargers, and others).
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7.1 Overview

This thesis addresses the application of Graphics Processing Units (GPUs) to the
Power Flow (PF) analysis of modern power systems. The aim is twofold: (i) to
develop a new understanding of GPUs in the context of challenging problems, where
typical GPU performance leverages are not straightforward to implement; and (ii),
to enhance PF analysis for its application to the Smart Grid concept, with new
standards for performance and accuracy.

GPUs are generally utilized in the field of High Performance Computing (HPC)
to accelerate several computational intensive applications, some of them involved
in PF analysis. At the same time, accelerating PF analysis was recognized as a
fundamental challenge for the efficient operation of modern power systems, and
GPU computing was identified as an efficient tool for accelerating computations.
However, several questions regarding specific aspects of a GPU-based solution for
PF analysis remained unanswered. The present investigation attempts to answer
some of these questions. The questions addressed in this thesis are: which available
methods for PF analysis are best suited to GPU computing? What kind of rep-
resentation formats are most adapted to both power system modelling and GPU
implementation? How to apply the knowledge of various GPU features to develop
novel PF algorithms?
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Answering these questions requires a balanced understanding of both GPU com-
puting and PF analysis. One is incomplete without the other. Accordingly, Chap-
ters 2 and 3 of this thesis revisit the state-of-the-art of each field. In particular,
Chapter 2 introduces GPU architecture by reviewing the execution model, memory
hierarchy and main programming frameworks. Chapter 2 also presents relevant
aspects of GPU programming such as regularity and latency hiding. In turn, Chap-
ter 3 introduces PF analysis through a review of the classic circuit analysis problem.
Then, main methods for PF analysis are classified according to network topology.
Additionally, some fundamental approaches to handle uncertainty in PF analysis
are described.

Chapters 4, 5 and 6 present original research regarding the application of GPUs
to PF analysis. Each chapter explores a different idea to enhance the PF analysis,
through a specific set of GPU-based programming strategies. Chapter 4 is devoted
to the so-called ‘treefix’ operations and their implementation on GPUs. Treefix
operations are useful primitives defined over a tree structure, that can be used
to implement the BFS algorithm for the analysis of radial power networks, among
other applications. Treefix operations have been traditionally performed by utilizing
mainly two different approaches. The first is a vectorial approach, which exhibits a
highly regular pattern but doubles the amount of arithmetic operations and memory
required. The second is a parallel approach, that performs the minimal amount of
arithmetic operations but requires load-balancing to handle the irregularity of the
tree structure. Both approaches are well-suited for GPU computing. However,
no comparative study of their behaviour on modern GPU architectures has been
presented before this thesis. Moreover, no implementation of the BFS algorithm
using GPU-based treefix computations has been provided. Chapter 4 provides such
comparison of treefix approaches and the correspondent BFS implementation.

Chapter 5 explores the implementation on GPUs of fuzzy interval algebra. Fuzzy
intervals are mathematical entities used for modelling uncertainty in numerical anal-
yses, such as PF analysis. Fuzzy interval analysis extends classic interval analysis
to multiple levels of uncertainty through the concepts of membership function and
α-cuts. The α-cuts, which represents different levels of uncertainty in the model,
can be represented using classic interval representation formats such as lower-upper
and midpoint-radius. Depending on the membership function, different representa-
tion formats may have a specific impact over performance. However, most available
fuzzy arithmetic implementations are based on classic interval libraries that only
provide the lower-upper format. Chapter 5 expands this vision by implementing
both formats into a library of fuzzy interval arithmetic, callable from either CPU
and GPU architectures. Subsequently, the impact of the hardware and representa-
tion format over performance is measured for benchmark fuzzy interval applications.

Chapter 5 addresses uncertainty modelling in PF analysis. In the literature, the
above has been done by two methods. The first is the probabilistic Monte Carlo
approach, i.e., running several PF instances using samples of random variables
obtained from statistical data. Afterwards, the results are aggregated into some
relevant figures. The second is the interval approach, i.e., using interval analysis to



7.2. Empirical findings 131

solve the PF equations with interval data. Both approaches have severe drawbacks.
The former is very inefficient, as it requires thousands of PF analyses to provide
accurate results. The latter tends to be very inaccurate, as interval computations
tend to overestimate results in long computations such as PF analysis. Chapter 5
proposes a novel interval approach based on midpoint-radius fuzzy intervals. The
method is based on decoupling the calculation of midpoint and radius, which allows
reducing complexity and increasing accuracy of numerical results.

Finally, Chapter 6 discusses the use of asynchronous iterations in a novel fixed-
point method for PF analysis. The asynchronous iteration model allows several
threads to carry out a computation with no rigid synchronization schemes. In this
way, performance scales with the number of computing cores offered by the architec-
ture. However, most available PF methods, including Newton-Raphson (NR), are
not well suited to the asynchronous model. The above is due to strong data depen-
dencies, which result in several synchronization points. Chapter 6 proposes a novel
fixed-point method to fix this problem and take full advantage of the asynchronous
framework.

The remainder of the chapter is organized as follows. Section 7.2 summarizes the
empirical findings of this thesis. Section 7.3 discusses the theoretical implications of
such findings. Limitations of the study are presented in Section 7.4, and prospects
for further research are outlined in Section 7.5. Finally, Section 7.6 concludes the
chapter and the thesis.

7.2 Empirical findings

This section summarizes the empirical findings obtained in this thesis. These are
chapter-specific, as presented below.

7.2.1 Treefix operations on the GPU

A comparison of vectorial and parallel treefix algorithms discussed in the previous
section is provided. The study is based on measuring performance and accuracy of
two GPU implementations, one for each approach. The performance of each imple-
mentation is evaluated using a series of relevant benchmark trees. Results show that
the vectorial approach, which exploits regularity to enhance GPU performance, is
always faster than the parallel approach based on load-balancing. It is also shown
that performance in the vectorial approach is exclusively driven by the size of the
tree. The larger the tree, the longer the algorithm takes to complete, independently
of any other factor, which is an important property for performance predictability.
Whereas in the parallel approach, performance is also affected by the tree topology.
Broader trees take less time to sweep as there are more vertices for the algorithm
to visit in parallel.

Accuracy is evaluated using a random topology and several sets of input data,
with different condition numbers. The condition number is used to determine the
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numerical difficulty to provide accurate results in floating-point computations. Re-
sults show that the maximum relative error among all vertices tends to be lower
in the parallel algorithm. In comparison, the vectorial algorithm loses up to two
bits of accuracy as it generally needs more floating-point operations to compute the
result.

A novel implementation of the BFS algorithmm, based on the vectorial ap-
proach, is compared with the sequential BFS routine provided by the software
Dome. Both implementations of BFS are tested using a series of randomly gen-
erated benchmark trees, measuring the speedup of the vectorial version over the
sequential one. The speedup ranges from 2 to 9, depending on two main factors:
(i) the size of the network, and (ii) whether a new OpenCL context needs to be
created, or a previously created one can be reused.

7.2.2 Fuzzy arithmetic on the GPU

A library of fuzzy interval arithmetic in lower-upper and midpoint-radius formats
is written in CUDA and made available online. Using this library, performance
of both formats is compared. To this purpose, two benchmarks application are
designed: one compute-bound and one memory-bound. The compute-bound is a
classic ‘axpy’ loop, and the memory-bound benchmark is a radix sort. Midpoint-
radius outperforms lower-upper by a factor of two to twenty in both cases, which
is consistent with the observation made in the previous section.

The proposed method for fuzzy PF analysis is compared with the Monte Carlo
approach. Both methods are run over a fuzzified version of the IEEE-57 bus test
case system, assuming a 10% variation over the central value in all power injections
and consumptions. A total of 5,000 uniformly distributed samples are obtained
to implement the Monte Carlo approach. The results of both methods are very
similar, whereas the proposed technique has a much lower computational cost.

7.2.3 Asynchronous PF analysis

The proposed fixed-point method for PF analysis is implemented in CUDA. The
implementation is tested on modern GPU architectures using a series of randomly
generated radial networks, from about 2,000 to 8,000 nodes. The aim is to study
convergence, accuracy, performance and scalability of the proposed approach.

A first series of tests show that the convergence rate decreases as the method
approaches the exact solution. In other words, it is increasingly harder for the
method to reduce the approximation error. However, during the early iterations
the error is reduced quite fast, which means that a first (although not too accurate)
approximation is easy to compute.

A second experiment shows that the number of iterations does not vary too much
with the number of nodes in the power network. This suggests that performance of
the proposed method is independent from the problem size. As a consequence, there
is a turning point where the proposed approach becomes faster than traditional
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PF methods, such as NR, which require increasing amounts of time to analyze
increasingly larger networks.

Finally, a third experiment provides a measurement of the scalability of the
solution. The proposed approach is tested over two different GPUs of the same ar-
chitecture (Nvidia Kepler), measuring execution time. The application runs faster
on this architecture when more cores are used. The above demonstrates that per-
formance scales with the number of threads, and thus the proposed method can
benefit for architectural improvements without major changes in the algorithm.

7.3 Theoretical implications

This section synthesizes the theoretical implications of the findings discussed above.

7.3.1 For GPU computing

Regularity versus load-balancing

Chapter 4 compares the efficacy of regularity and load-balancing in the solution of
the treefix problem on GPUs. We show that regularity is always a better choice
for performance, independently of the tree size and topology. This is an interesting
result, considering that the regular algorithm actually requires more arithmetic
operations than the one using load-balancing. The GPU appears to compensate
the cost of extra arithmetic operations and data transfer by exploiting the SIMT
execution model. The GPU rewards regularity highly, as discussed in Section 2.3.1.

The above illustrates an interesting fact: despite the natural intuition, GPU
applications do not require to be work-efficient for achieving the best performance.
The cost of extra operations is affordable and even meaningless, provided that
they enhance regularity of the solution. In this way, applications can be designed
with regularity in mind, rather than trying to achieve work-efficiency. This level of
design is only reachable by understanding both the computer architecture and the
considered algorithm. Dedicating most of the efforts to only one of the two aspects
is clearly an unreliable strategy.

Impact of the representation format

Chapter 5 compares lower-upper and midpoint-radius formats in symmetric fuzzy
interval operations performed on the GPU. The results show that midpoint-radius
outperforms lower-upper by a factor of 2 to 20, in both compute-bound and memory-
bound applications. It is interesting that such performance gain is only achieved by
using a dedicated representation format. No changes to the fuzzy interval model are
introduced. The representation format has a considerable impact over performance
of symmetric fuzzy interval operations. The above has a strong implication for
design: even if different representation formats yield the same result, one of them
may be more adapted to the scenario. In the case of symmetric fuzzy interval
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algebra, this is true for the midpoint-radius format. The choice of the representation
format can enhance several aspects of the implementation, beyond the final result.

Architecture-specific design

Chapter 6 proposes a novel PF method based on asynchronous fixed-point itera-
tions. The method is implemented in CUDA and tested on state-of-the-art GPU
architectures. The results show several interesting properties:

• the method is efficient at reducing the error during the first iterations, quickly
providing a first approximation of the solution;

• performance of the method is not too dependant on the problem size, unlike
traditional approaches such as NR;

• performance scales well with the number of computing cores available in the
architecture, almost reaching strong scalability.

All these good properties are a natural consequence of the algorithm design.
The proposed approach is conceived with the architecture in mind, knowing that
the framework of asynchronous iterations is able to efficiently exploit the SIMT
execution model of GPUs. In this way, the application could immediately benefit of
architectural improvements expected from future GPUs. For example, as observed
in the empirical tests, the increase in the number of computing cores allows larger
networks to be analyzed without increasing the simulation time. A similar situa-
tion was observed in the past with serial computing, where improvements in CPU
frequency immediately implied that single-core applications would run faster. The
proposed approach achieves that kind of behaviour, now in the domain of parallel
computing.

7.3.2 For Power System Analysis

Accelerated radial network analysis

Chapter 4 presents a novel implementation of the BFS algorithm which relies on the
vectorial treefix approach. A cases study shows a speed-up of 2 to 9 achieved by the
proposed implementation over the traditional sequential approach. The speed-up is
higher on larger networks, i.e., the impact of the vectorial approach is more appre-
ciable as the network grows. The speed-up is also higher if the application reuses
an already available OpenCL context, as the platform and context configuration
process can be skipped for that run.

The above illustrates the advantages and limitations of using GPU computing for
this type of analyses. On one hand, there is the natural acceleration coming from the
use of parallel computing on a dedicated architecture. On the other hand, there are
the issues related to the practical implementation, e.g., platform configuration, data
transfers, which ultimately reduce the overall gain. Applications that implement
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the parallel or vectorial approach must be aware of such opportunities and issues,
in order to exploit the former while trying to overcome the latter.

Fuzzy PF solutions

Chapter 5 proposes a novel fuzzy PF analysis method based on symmetric fuzzy
intervals and the midpoint-radius format. The accuracy of the proposed method is
similar to that of the Monte Carlo approach, whereas its computational complexity
is much lower. This improves previous attempts in the area of interval PF analysis,
where the radius of the result tends to explode. It is shown that interval computa-
tions can be useful if some measures are applied to prevent radius overestimation.

The proposed technique provides a novel criterion of validity for the solution of
the interval PF analysis. This condition establishes that a valid solution is one that
considers all the variability specified in the inputs, even if it includes non-possible
scenarios (overestimation of the result). The best solution is the one that includes
the least amount of non-possible scenarios. In the proposed method, this solution
is obtained by solving an optimization problem, where the objective function is a
measure of the radius length and the constraints are the validity criterion expressed
above.

Intrinsically parallel simulation

Chapter 6 proposes a software-based intrinsically parallel PF simulator. This so-
lution overcomes the serialization problem that affects most existing PF analysis
methods (such as NR) according to the Amdahl’s law. The use of intrinsically par-
allel methods appears as a promising technique, as computer architectures evolve
towards massive parallelism. The fact that most physical systems, particularly
power systems, are themselves ‘intrinsically parallel’ makes the situation even more
favourable. Several physical phenomena can be modelled using very simple mathe-
matical expressions, such as the Kirchhoff’s circuit laws. The problem comes from
the aggregation of all these expressions into systems of equations for their cen-
tralized solution. Using intrinsically parallel methods bypasses this difficulty and
recovers the simplicity and originality of the physical phenomenon. The method
proposed in Chapter 6 admits the inclusion of almost any electrical device, with
the only requirement that its behaviour can be modelled using voltages and power
flows.

7.4 Limitations of the study

In Chapter 4, the performance comparison of different treefix approaches does not
consider the time in obtaining the tree representation for each algorithm. In the
case of the vectorial algorithm, this corresponds to the vector tree representation,
computed using Euler-tour ordering. In the case of the parallel algorithm, it cor-
responds to the adjacency lists. The rationale behind this decision is that most
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treefix-based applications do not need to compute the input tree representation
very often. Indeed, these applications rely on sweeping the input tree several times,
typically in an iterative scheme. That is to say, the tree representation is computed
as part of the algorithm setup, and then re-used several times for each instance of
treefix. Therefore, the time in computing the representation is not critical.

In Chapter 5, the midpoint-radius format is used to implement symmetric fuzzy
intervals. In the case of interval multiplication, this format introduces an overesti-
mation of up to 1.5 over lower-upper. The overestimation depends on the precision
of the interval, i.e., the ratio of the radius to the midpoint. The lower this ratio,
the less the overestimation. In PF analysis, where typically the variability is small
with respect to the central value, the above should not be a big issue.

Finally, in Chapter 6, the proposed asynchronous method for PF analysis is
tested using radial networks of about 2,000 to about 8,000 nodes. This is acceptable
to have an idea of the method behavior. However, more testing needs to be done
in order to fully validate the proposed approach.

7.5 Recommendations for future research

Based on the results of the present research, some future work directions are outlined
next:

• The accuracy analysis of Chapter 4 shows that the vectorial treefix algorithm
loses up to 2 bits of accuracy with respect to the parallel one. This is due
to extra operations needed to ensure regularity, which introduce additional
rounding errors. In fact, computing the result for a given vertex requires as
many operations as there are steps in the Euler-tour up to that vertex. Thus,
using a different Euler-tour ordering (e.g., swapping branches according to
the size of the sub-tree) may have a positive impact on the representation and
the accuracy.

• Chapter 4 proposes a novel implementation of the BFS method using a vec-
torial treefix approach. Results show that the speedup achieved over the
sequential version is significant, especially if the same OpenCL context can
be reused in multiple runs. The above can be exploited by any application
that utilizes the BFS algorithm as building block. Two examples are particu-
larly relevant: (i) admission control, which requires to run several instances of
PF analysis over slightly different networks, and (ii) the compensation-based
method for weakly meshed networks, which splits the network into several
trees and applies BFS over each one.

• Chapter 5 shows that the midpoint-radius format achieves a speed-up of 2 to
20 over traditional lower-upper. However, the above requires fuzzy intervals
to be symmetric, which may not be the case in some scenarios. To overcome
this, one alternative is to use symmetric envelopes of asymmetric membership
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functions. This would allow the midpoint-radius approach to be applicable at
the cost of losing accuracy in some of the α-cuts.

• Chapter 5 proposes a fuzzy PF analysis method that compares well in terms of
accuracy with the reputed Monte Carlo approach. However, as the uncertainty
grows, the proposed method has more trouble in finding the correct interval
bounds. The above can be explained by the choice of the 2-norm in measuring
the length of the radius vector. A norm of a ‘higher rank’, such as the ∞-
norm, could improve this situation at the expense of increasing the complexity
of the algorithm.

• The method proposed in Chapter 5 illustrates the advantages of using the
interval approach for PF analysis. The technique can be extended to other
analyses which may benefit from the interval approach as well, e.g., the state-
estimation problem, Optimal Power Flow, or even time domain integration.

• Chapter 6 proposes a novel approach for PF analysis based on asynchronous
fixed-point iterations. The approach is well suited to parallel implementation
over SIMT architectures such as the GPU. This is a promising technique given
the current trend in GPU architectures design, where the number of comput-
ing cores increases with each new generation. The proposed solution can be
complemented with models of additional electrical components. Also, the im-
plementation can be optimized by using shared memory for local iterations
within thread-blocks.

• The PF simulator proposed in Chapter 6 relies on classic circuit theory results.
The above means that a circuit simulator could also be implemented using
the proposed intrinsically parallel approach. Therefore, the approach could
be extended to circuit and dynamic analysis, probably preserving most of its
interesting properties.

7.6 Final remarks

This thesis proposes a number of approaches to improve different aspects of PF
analysis using specific GPU programming strategies. The proposed methods are
tested on modern GPU architectures and compared with state-of-the-art PF solu-
tions. The results allow for a novel understanding of various GPU features. They
also show what kind of improvements can be made over PF analysis in the context
of novel requirements from the Smart Grid concept.
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Mathematical reminders

This appendix recalls a series of classic mathematical definitions and theorems uti-
lized in the body of the thesis. The definitions and theorems are presented in no
particular order.

A.1 Definitions

Definition A.1.1 (Jacobian matrix). Let x ∈ R
n, and f(x) : Rn → R

m, be a
differentiable function. Then, the matrix given by,

Jf =




∂f1

∂x1
. . . ∂f1

∂xn

...
. . .

...
∂fm

∂x1
. . . ∂fm

∂xn


 , (A.1)

is called Jacobian matrix of f(x).

Definition A.1.2 (Random variable). Let Ω be the set of possible outcomes of an
experiment. Then, the function, X : Ω → R, which maps every element in Ω into a
real number, is called random variable.

Definition A.1.3 (Distribution and density functions). Let X be a continuous, real
valued random variable. Let Pr(·) be a measure of probability. Then, the function,

FX(x) = Pr (X ≤ x) , (A.2)

is called distribution function of X. The function,

fX(x) =
dFX

dx
, (A.3)

is called probability density function.

Definition A.1.4 (Convolution product). Let f(·) : R → R and g(·) : R → R, be
two differentiable functions. Then,

(f ⊗ g)(x) =
∫ ∞

−∞
f(y)g(x − y)dy, (A.4)

is called the convolution product of f(·) and g(·).
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Definition A.1.5 (p-norm). Let x = (x0, . . . , xn−1) ∈ R
n and p ≥ 1. Then,

‖x‖p = (|x0|p + . . . + |xn−1|p)
1
p (A.5)

is called the p-norm of x.

Definition A.1.6 (Spectral radius). Let A ∈ C
n×n, with eigenvalues λi, 1 ≤ i ≤ n.

Then,
ρ(A) = max

1≤i≤n
|λi|, (A.6)

is called the spectral radius of A.

Definition A.1.7 (Reducible matrix). Let A ∈ C
n×n. If there exists P ∈ C

n×n,
such that P TAP is of the form:

[
A1 A12

0 A2

]
,

where A1 and A2 are square matrices of size at least 1, then A is called reducible.

Definition A.1.8 (Digraph of a matrix). Let A ∈ C
n×n. Let D = (V, A) be a

directed graph, such that vivj ∈ A if and only if aij 6= 0. Then D is called the
digraph of A, and noted D = D(A).

Definition A.1.9 (Strongly connected). Let D = (V, E), be a directed graph, and
vi, vj ∈ V . If there are directed walks from vi to vj and from vj to vi, then D is
strongly connected.

A.2 Theorems

Theorem A.2.1 (Bound for the absolute error in summation algorithms). Let

x1, . . . , xn ∈ R and Sn =
∑n

i=1 xi. Let Ŝn be an approximation to Sn computed by

a summation algorithm, which performs exactly n − 1 floating-point additions. Let

T̂1, . . . , T̂n−1, be the n − 1 partial sums computed by such algorithm. Then,

En :=
∣∣∣Sn − Ŝn

∣∣∣ ≤ ε
n−1∑

i=1

∣∣∣T̂i

∣∣∣ , (A.7)

where ε is the relative rounding error.

Proof. See [Higham 2002].

Theorem A.2.2 (Necessary and sufficient condition for inclusion of intervals.). Let

[x] = 〈x̌, ρx〉 and [y] = 〈y̌, ρy〉. Then,

[x] ⊂ [y] ⇐⇒ |y̌ − x̌| < ρy − ρx. (A.8)

Proof. See [Neumaier 1990].
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Theorem A.2.3 (Bound for the spectral radius). Let A ∈ C
n×n, and let |A| be

the matrix of absolute values of the entries of A. Then ρ(A) ≤ ρ(|A|).

Proof. See [Horn 2012].

Theorem A.2.4 (Irreducibility and matrix digraph). Let A ∈ C
n×n. Then A is

irreducible if and only if D(A) is strongly connected.

Proof. See [Horn 2012].
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Appendix B

Proof of theorems and

propositions

This appendix provides the proofs of novel propositions and theorems presented in
the body of the thesis.

Proposition 5.3.1. Let [x̃] be a symmetric fuzzy interval with kernel x̌. Let N ∈ N,

i ∈ {1, . . . , N}, and [xi] = 〈x̌i, ρx,i〉, an α-cut. Then,

[x̃] is symmetric ⇐⇒ x̌i = x̌, ∀ i ∈ {1, . . . , N}.

Proof. Let µ(·) be the membership function of [x̃]. The reciprocal is proven, i.e.,

[x̃] is non-symmetric ⇐⇒ ∃ j ∈ {1, . . . , N}, x̌j 6= x̌. (B.1)

i) ( =⇒ )
If [x̃] is non-symmetric, then there is x0 ∈ R such that,

µ(x̌ − x0) 6= µ(x̌ + x0). (B.2)

Let j ∈ {1, . . . , N} and [xj] = [xj, xj] be an α-cut, such that,

xj = x̌ − x0. (B.3)

Let x̌j be the midpoint of [xj ] and assume,

x̌j = x̌. (B.4)

Then,
xj = 2x̌j − xj = 2x̌ − xj = x̌ + x0, (B.5)

where the first equality is due to the definition of midpoint, the second to the
assumption in (B.4), and the third to (B.3). Now, by definition of α-cut,

µ(xj) = µ(xj), (B.6)

and replacing equations (B.3) and (B.5) above,

µ(x̌ − x0) = µ(x̌ + x0), (B.7)

which contradicts equation (B.2). Hence, the assumption in (B.4) must be
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false.

ii) ( ⇐= )
Let [xj] = [xj , xj ], and x0 ∈ R, such that,

xj = x̌ − x0. (B.8)

If x̌j 6= x̌, then,
xj = 2x̌j − xj 6= 2x̌ − xj = x̌ + x0, (B.9)

where the first equality is due to the definition of midpoint, and the last to
equation (B.8). Now, by construction, both xj and x̌ + x0 are in the interval
[x̌, xj ], where µ is strictly monotonous. Then,

µ(xj) 6= µ(x̌ + x0). (B.10)

And, by definition of α-cut,

µ(xj) = µ(xj). (B.11)

Replacing this in equation (B.10),

µ(xj) 6= µ(x̌ + x0), (B.12)

and replacing equation (B.8) above,

µ(x̌ − x0) 6= µ(x̌ + x0). (B.13)

Hence, [x̃] is non-symmetric.

Theorem 5.3.1. Let [x̃] and [ỹ] be fuzzy intervals, ◦ ∈ {+, −, ·, /}. If [x̃] and [ỹ]
are symmetric, then [z̃] = [x̃] ◦ [ỹ] is also symmetric.

Proof. Let i ∈ {1, . . . , N}, be an uncertainty level. Recalling the α-cut concept,

[zi] = [xi] ◦ [yi] . (B.14)

If [x̃] and [ỹ] are symmetric, then, by Proposition 5.3.1,

x̌i = x̌, y̌i = y̌, ∀ i. (B.15)

Without loss of generality, let α1 = 1. Then, the α-cuts of level 1 are crisp, i.e.,
composed of a single point. The kernel of [z̃] can be expressed as the midpoint of
such α-cut, i.e.,

ž = ž1. (B.16)
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If ◦ ∈ {+, −, ·}, then,

ži = �(x̌i ◦ y̌i) = �(x̌1 ◦ y̌1) = ž1 = ž, ∀ i. (B.17)

Hence, [z̃] is symmetric. If ◦ is the inversion, a similar calculation yields the result.

Proposition 5.3.2. Let [x̃] be a fuzzy interval, N ∈ N, i, j ∈ {1, . . . , N}, and

[xi] , [xj ], α-cuts. Then

αi > αj =⇒ [xi] ⊂ [xj ] .

Proof. Let [xi] = 〈x̌i, ρx,i〉 and [yi] = 〈y̌i, ρy,i〉. Let µ(·) be the membership function
of [x̃], and x̌, its kernel. By definition of α-cut,

µ(x̌i − ρx,i) = µ(x̌i + ρx,i) = αi, (B.18a)

µ(x̌j − ρx,j) = µ(x̌j + ρx,j) = αj . (B.18b)

From above, if αi > αj, then,

µ(x̌i − ρx,i) > µ(x̌j − ρx,j), (B.19a)

µ(x̌i + ρx,i) > µ(x̌j + ρx,j). (B.19b)

Now, by construction, both x̌i − ρx,i and x̌j − ρx,j are lower than x̌, where µ is
strictly increasing. Similarly, both x̌i + ρx,i and x̌j + ρx,j are higher than x̌, where
µ is strictly decreasing. Then,

x̌i − ρx,i > x̌j − ρx,j, (B.20a)

x̌i + ρx,i < x̌j + ρx,j. (B.20b)

Combining these two,

− (ρx,j − ρx,i) < x̌j − x̌i < ρx,j − ρx,i. (B.21)

And, more synthetically,
|x̌j − x̌i| < ρx,j − ρx,i. (B.22)

Then, from Theorem A.2.2,
[xi] ⊂ [xj] . (B.23)

Theorem 5.3.3. Let ◦ ∈ {+, −, ·, /} and [x̃] , [ỹ] , [z̃], be fuzzy intervals, such that

[z̃] = [x̃] ◦ [ỹ]. Let [zi] be the α-cut of level i of [z̃], and ρz,i, the radius of [zi]. Let

E(rad)(·) and E(inc)(·) return the maximum absolute error in the midpoint-radius

and midpoint-increment formats, respectively. Then,

E(inc)(ρz,i) < E(rad)(ρz,i), ∀ i ≥ 2.
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Proof. The result is proven for the addition and subtraction. The other two cases
(multiplication and inversion) can be obtained by a similar reasoning.

The proof proceeds by induction.

i) (Assume i = 2.)
In the midpoint-increment representation,

ρz,2 = δz,1 + δz,2. (B.24)

Applying the error function,

E(inc)(ρz,2) = E(inc)(δz,1) + E(inc)(δz,2). (B.25)

Now, according to Algorithm 5.2,

δz,1 = △

(
1
2

ε |ž| + δx,1 + δy,1

)
. (B.26)

Without loss of generality, assume that the above is computed with the fol-
lowing summation algorithm,

T̂1 = △

(
1
2

ε|ž| + δx,1

)
,

T̂2 = △
(
T̂1 + δy,1

)
. (B.27)

By Theorem A.2.1,

E(inc)(δz,1) = ε ·
(∣∣∣T̂1

∣∣∣+
∣∣∣T̂2

∣∣∣
)

= ε · (2δx,1 + δy,1) + ε2|ž|. (B.28)

Similarly,
E(inc)(δz,2) = ε · (δx,2 + δy,2) . (B.29)

Replacing (B.28) and (B.29) in (B.25),

E(inc)(ρz,2) = ε(δx,1 + ρx,2 + ρy,2) + ε2|ž|. (B.30)

Following an analogous procedure,

E(rad)(ρz,2) = ε(δx,1 + δx,2 + ρx,2 + ρy,2) + ε2|ž|. (B.31)

And, since δx,2 > 0,
E(inc)(ρz,2) < E(rad)(ρz,2). (B.32)

ii) (Assume E(inc)(ρz,i) < E(rad)(ρz,i), ∀ i ≥ 2.)
In the midpoint-increment representation,

ρz,i+1 = ρz,i + δz,i+1. (B.33)
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Applying the error function,

E(inc)(ρz,i+1) = E(inc)(ρz,i) + E(inc)(δz,i+1). (B.34)

By the induction hypothesis,

E(inc)(ρz,i+1) < E(rad)(ρz,i) + E(inc)(δz,i+1). (B.35)

By Theorem A.2.1,

E(rad)(ρz,i) = ε · (2ρx,i + ρy,i) + ε2|ž|, (B.36a)

E(inc)(δz,i+1) = ε · (δx,i+1 + δy,i+1). (B.36b)

Replacing in (B.35),

E(inc)(ρz,i+1) < ε · (ρx,i + ρx,i+1 + ρy,i+1) + ε2|ž|. (B.37)

Again, by Theorem A.2.1,

E(rad)(ρz,i+1) = ε · (2ρx,i+1 + ρy,i+1) + ε2|ž| (B.38)

And, since ρx,i < ρx,i+1,

E(inc)(ρz,i+1) < E(rad)(ρz,i+1). (B.39)

Theorem 6.3.1. Let f(·) be defined by (6.17). Then, there exists an update func-

tion U(·), a delay function d(·) and an initial guess v

(0), such that the associated

asynchronous iteration on f(·) does not converge to a fixed-point.

Proof. From Theorem 6.2.1, it suffices to prove that ρ(|L|) ≥ 1, where L is given
by (6.18). Since the sum of the elements in any row of L is equal to 1, then 1
is an eigenvalue of L and ρ(L) ≥ 1. Thus, from Theorem A.2.3 in Appendix A,
ρ(|L|) ≥ 1.

Theorem 6.3.2. Let g(·) be defined by:

g(v) = (1 − α)v + αf(v), (6.19)

where 0 < α < 1 and f(·) is given by (6.16). Let the weights, whm, m ∈ Ih, satisfy

the following:

1 −
∑

m∈Ih

∑

j∈Ih

whmzhm

zhj
≥ 0, ∀h. (6.20)

Then, any partially asynchronous iteration over g(·) converges to v

∗, fixed-point of

f(·).
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Proof. From Theorem 6.2.2, it suffices to prove that L given by (6.18) is irreducible

and
n∑

m=1
|lhm| ≤ 1. Assuming (6.20), then it follows that lhh ≥ 0. Since lhm ≥ 0 by

definition,
n∑

m=1

|lhm| =
n∑

m=1

lhm = 1, ∀h.

Now, consider the digraph D associated to matrix L, which can be obtained
from the circuit diagram in the following three steps: (i) for each node in the
circuit, place a vertex in D; (ii) for each component in the circuit, place a pair of
anti-parallel arcs connecting the two terminal vertices in D; (iii) place an arc from
each vertex to itself. Figure B.1 illustrates this transformation process.

If the circuit is well defined, then D is strongly connected. And from Theo-
rem A.2.4 in Appendix A, L is irreducible.

nA nB

(a) Circuit diagram.

nA nB

(b) Digraph of matrix L.

Figure B.1: Equivalence between the circuit diagram and the digraph of the appli-
cation matrix L, or dependency graph [Newton 1984].
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