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0. General Introduction 

0.1  Goal 

Global climate change and air pollution are key challenges for today’s human society, 

affecting our thinking to new technological innovations. Major eco-friendly changes have 

to be made at each level and in each sector. For the automotive industry, this means that 

our main way of transport, now mainly based on the ICE (Internal Combustion Engine) 

has to innovate even more relating to a clean environment. One of the possibilities is the 

electrification of our fleet of cars, vans, motorcycles, buses, trucks... Hybrid Electric 

Vehicles (HEVs) and Plug in Hybrid Electric Vehicles (PHEVs) are the first steps to make 

the transition possible to the fullest electrification (Battery Electric Vehicles (BEVs)) of the 

automotive sector in the future. BEVs, HEVs and PHEVs today still are facing some 

technical and economic challenges related to the range, charging time, lifetime and 

battery cost. The batteries must operate in a certain envelope of voltage, current and 

temperature for optimal performance and for safety considerations. Regarding 

temperature, the BTMS (Battery Thermal Management System) is needed to maintain the 

operating temperature of the batteries within the operational range. The BTMS should be 

optimized in order to increase its effectiveness and the battery performance and to reduce 

its complexity, size, weight and cost.  

0.2 Outline of performed research work 

This PhD is divided in six chapters: 

- Chapter 1: Background information 

This chapter presents a brief description of the environmental impact of the 

transportation sector regarding energy consumption and gas emissions. In addition, the 

state-of-the-art of EVs, HEVs and PHEVs is presented as potential solution of the 

environmental issues. Furthermore, the characteristics and specifications of the different 

batteries used in these vehicles are compared and analyzed. Finally, the specifications of 

some recent commercial vehicles are also reported. 

- Chapter 2: State-of-the-Art of Battery thermal management 

This chapter is mainly focused on the review of the different battery thermal models that 

have been developed, their characteristics and their applications. The shortcomings of 
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these models are also described. Furthermore, the different battery thermal management 

used in the literature is also discussed in depth. Some basic numerical methods and 

software tools are also analyzed and documented. 

- Chapter 3: Electrical-Thermal Model for Large Size Lithium-Ion Cells 

In this chapter, a two dimensional electrical-thermal model has been developed in order 

to investigate and to analyze the temperature distribution over the battery surface. The 

ANSYS FLUENT software has been used to solve the model development. The model is 

validated by experimental results. In addition, a new estimation tool has been developed 

for the estimation of the proposed thermal model parameters. Furthermore, the thermal 

behavior of the battery has been investigated at different environmental conditions as 

well as during abuse conditions.  

- Chapter 4: Pouch Cell Design: Impact of Tab Location  

Following chapter 3, the developed model has been extended to three-dimensional (3D) 

level and in particular for large lithium iron phosphate oxide (LiFePO4) pouch cells.  3D 

simulations of the Li-ion battery behavior are highly nonlinear and computationally 

demanding. Integration of the electrochemical model to the thermal models represents 

an important step towards accurate simulation of the thermal behavior of Li-ion batteries.  

Non-uniform temperature, potential and current density through the battery induce non-

uniform use of the active material and can have a negative impact on cell performance 

and lifetime. Different pouch cell designs, with different tab locations, have been 

investigated in terms of performance, current density, potential and heat distributions. 

The developed model has been validated against experimental data at different current 

discharge rates. Afterwards, the electrochemical, thermal and electrical behaviors over 

each cell design at high discharge current rate (4 It) are compared between different 

design configurations.  

- Chapter 5: Numerical Analysis of Different Battery Thermal Management Systems 

In this chapter different thermal management strategies such as water cooling and 

passive cooling using phase change material embedded in an aluminum foam (liquid-

solid phase change) have been investigated by using the developed electrochemical-

thermal model in chapter 4 coupled with fluid dynamics. The model has been developed 

in COMSOL Multiphysics. At first, different liquid cooling plate’s configurations have 

been investigated in order to obtain the suitable and efficient cooling architecture, which 

allows to decrease the temperature and to obtain a more uniform temperature 
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distribution over the surface of the battery cell. Secondly, the performances of the battery 

thermal management system (BTMS) of a battery module with 10 cells, cooled by the efficient 

cooling plate architecture have been investigated by varying the cold plate locations.  The select 

BTMS design with the efficient cold plate arrangement is analyzed at different load 

conditions, liquid inlet (temperature and flow rate), and initial temperature. Finally, the passive 

cooling using phase change material embedded in an aluminum-foam have been 

investigated and compared to the liquid cooling method. The impact on the cost of the 

different solutions are also discussed.  

- Chapter 6:  Conclusions, Contributions and Future Work 

The different results obtained in this PhD are summarized. The added value of this thesis 

as well as the future work have been discussed. 
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1. Background Information 

1.1 Introduction  

Since the urban areas and populations are expanding worldwide [1], the world energy 

consumption is constantly increasing. The transportation sector in particular is one of the 

major global consumers of energy. It remains the main driver of economic growth and 

social opportunities. Between 1990 and 2010, final energy consumption from overall 

transport in EU-28 have increased by more than 30% as shown in Figure 1.1a. This trend 

can be explained by the growth in number of vehicles particularly in new member 

countries of the EU. In addition, transportation in EU-28 remains highly oil dependent, 

more than 75% are derived from crude oil as illustrated in Figure 1.1b. Because the 

technology of the transportation sector is still dominated by the conventional internal 

combustion engine (ICE), which uses mainly gasoline or diesel. 

(a) (b) 

  

 

Figure 1.1: final energy consumption (a) total and (b) petroleum products by sector in 

the EU-28, 1990-2010 [2] 
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Furthermore, the transport sector is one of the main contributors of greenhouse gas 

(GHG) emissions (CO2, CH4 and N2O), representing 25% above level, which has been 

defined in 1990 [3]. As illustrated in Figure 1.2, from 1990 to 2012, only the GHG 

emissions from overall transport in the EU-28 are increasing while emissions from others 

sector are generally decreasing. The GHG emissions are also directly related to the fuel 

consumption. The greenhouse gas emissions are responsible for the air pollution, which 

harms human health and environment, and contributed to the global warming. 

 

Figure 1.2:  change of Greenhouse gas (GHG) emissions from 1990 to 2012 in CO2 

equivalents (Tg) by sector in the EU-28 [4]. 

 
In the last decade, some efforts are being made to reduce the fuel consumption and GHG 

emissions in the transportation sector.  From the vehicle manufacturers' point of view, 

this reduction of fuel consumption GHG emissions involved the lightening of the vehicle 

body structure, the reduction of the aerodynamic drag coefficient and the improvement 

of engine efficiency. Beside, from a political point of view, several European policies and 

regulations have been established aiming at the reduction of GHG emissions from 

transport. Among the well-known, one can mention: 

- The council directive 70/220/EEC [5], introduced in 1970, is related to reduce the 

air pollution from the engine of motor vehicles, 

- The Euro regulations: Different Euro emissions regulations [5]–[9] for light–duty 

vehicles are introduced. They define the mandatory limit in g/km for a list of 
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pollutants (carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons (HC) 

and particulate matter (PM10)). 

To achieve these targets, the transport has to innovate even more related to a clean 

environment. The vehicles with electric propulsion are considered as an attractive option 

on the pathway to reduce GHG emissions.  

Due to major progress in rechargeable energy storage system (RESS), the sales of vehicles 

with electric operation mode are expected to increase. The overall target of a 50% 

reduction in global energy-related CO2 emissions by 2050 [10] compared to 2005 levels 

can be achieved by performing annual sale of about 50 million of electrical vehicles by 

2050 as shown in Figure 1.3. 

 

Figure 1.3: Annual global EV and PHEV sales [11] 

 

1.2 Alternative powertrains 

1.2.1 Hybrid Electrical Vehicles (HEVs) 

Hybrid Electric Vehicles (HEVs) are the first steps to make the transition possible to the 

fully electrification of the automotive sector in the future.  In principle, there are two 

energy sources in HEVs:  the conventional internal combustion engine (ICE), which uses 

mainly gasoline or diesel operates in combination with an electric motor generally 

powered by battery or a combination of battery and electrical double-layer capacitors 

(EDLCs). The HEVs have the advantage of reducing the fuel consumption and emissions. 

The electric motor allows energy recovery to the battery system during braking, provides 

additional power to assist the ICE during pick power demand, and then allows reducing 

the size and power of the ICE.  
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The main hybrid topologies are the series hybrid (Figure 1.4), the parallel hybrid (Figure 

1.5) and the series-parallel combined hybrid (Figure 1.6). In the series topology, the 

traction is obtained by only the electric motor and an ICE works as a generator to power 

the electric motor or recharge the battery. As the different energy sources are decoupled, 

the series hybrid has the advantage of operating the ICE only when needed. Thus, it can 

run at optimum speed and efficiency [12]. However, the disadvantage of the series hybrid 

topology is that it implies higher losses due to the double energy conversion. This 

topology is usually used in heavy vehicles (buses, locomotives, military vehicles, etc…). 

 

Figure 1.4: Series hybrid topology [12] 

In parallel hybrid technology, the traction is obtained through a mechanical coupling of 

the ICE and the electric motor. They can supply the vehicle traction individually or 

together. The major advantage of this topology is that the energy loss due to the 

conversion is small. In addition, it required small traction motor and due to the missing 

of the generator, the system is compact. Passenger cars usually use the parallel 

configuration. The main disadvantage is the ICE operation still depending on vehicle 

speed. 

 

Figure 1.5: Parallel hybrid topology [12] 

 
In the combined hybrid topology, the advantages of previous two topologies are 

combined. It often makes use of a planetary gear to connect the ICE and the two electric 

machines with the wheels of the vehicles. 
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Figure 1.6: Combined hybrid topology [12] 

Several hybrid concepts are created based on the rate of hybridization (RoH) [12] such as 

the Micro-HEVs, the Mild-HEVs, the Full-Hybrid and the PHEVs. According to the RoH, 

the functions performed by the electric motor are different. The RoH is equal to 1 if the 

both energy sources (ICE and electric motor) have an equal contribution to the vehicle 

traction effort. If only one of both energy sources is used, the RoH is equal to zero.  Table 

1.1 summarized the functions of the different HEVs according to the RoH. In Table 1.2, 

the performances and characteristics of different commercial HEVs, from the 

manufacturer values, are compared. 

   Function   
System      

 Stop & 
Start 

Electric 
traction 

Regenerative 
Braking 

Electric 
driving 
only 

External 
Battery 
Charge 

Conventional 
vehicle (ICE) 

Possible No No No No 

Micro-HEV Yes No Minimum No No 

Mild-
HEV/medium 
HEV 

Yes Limited Yes Minimum No 

Full HEV Yes Yes Yes Yes No 

PHEVs Yes Yes Yes Yes Yes 

Table 1.1: Different HEVs types and their main functions/Characteristics [13] 

1.2.2 Plug-in Hybrid Electric Vehicles (PHEVs) 

The PHEVs are based on the three basic hybrid topologies described above. They are 

generally using with high capacity batteries, with a typically energy content up to 15 

kWh, for passenger cars that can be charged externally from the power grid. They can 

store enough electricity to decrease significantly the petroleum consumption. This allows 

having an all electricity range from 15 to above 100 km [14]. In Table 1.3, the performances 
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and characteristics of different commercial PHEVs, from the manufacturer values, using 

Lithium ion battery, are compared. The charging can be standard charge (220V, 10 or 16 

A) or Fast charge (400V, 32 or 63 A) [13]. 

1.2.3 Battery Electric Vehicles (BEVs) 

Battery Electric Vehicles (BEVs) are using an electric motor powered by the battery packs 

for traction. With the advancement of new battery technology, such as Lithium ion 

battery, BEVs become more attractive. They are expected to perform more acceleration 

with a speed up to 200 km/h and ranges up several hundred kilometers with top-range 

commercial BEV such as the Tesla [13]. In Table 1.4, the performances and characteristics 

of different commercial BEVs, from the manufacturer values, using Lithium ion battery, 

are compared. The BEVs can be recharged at home through a standard 230V connection, 

or at charging station, or wireless charging with inductive technology. 

 

Figure 1.7: Battery electric vehicle topology  [12] 
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Model Battery type 
Energy 
content 
(kWh) 

Electric 
motor 

power [kW] 

Electric 
range [km] 

Max vehicle 
speed in pure 

electric [km/h] 

Battery thermal  
management 

Audi Q5 Hybrid 
(Full HEV) 

Li-ion 
(266V/5Ah) 

1.3 40 3 100 Air-cooling 

BMW ActiveHybrid 3 
(Full HEV) 

Li-ion 
(317V/2Ah) 

0.675 41 4 70 Air-cooling 

BMW ActiveHybrid 5 
(Full HEV) 

Li-ion 
(317V/2Ah) 

0.675 40.5 4 60 Air-cooling 

BMW ActiveHybrid 7 
(Mild HEV) 

Li-ion 
(120V/6.6Ah) 

0.8 15 4 60 Liquid-cooling 

Nissan 
Infiniti M35h  
(Full HEV) 

Li-ion 
(346V/3.7Ah) 

1.4 50 
No data 
available 

80 Air-cooling 

Mercedes S400 Class 
Hybrid (Mild HEV) 

Li-ion 
 

0.8 20 
No data 
available 

No data  
available 

Air-cooling 

Table 1.2: Prototypes/commercial HEVs [13], [15] 

 

Model 
Battery 

type 

Energy 
content 
(kWh) 

Electric 
motor power 

[kW] 

Electric 
range [km] 

Max vehicle 
speed in pure 

electric [km/h] 

Battery thermal  
management 

Mercedes Vision 
S500 Plug-in 
HYBRID (PHEV) 

Li-ion 
 

10 85 33 140 Water-cooling 

Toyota Prius Plug-in 
(PHEV) 

NiMH 
 

4.4 60 22 100 Air-cooling 

Volvo V60 Plug-in 
Hybrid (PHEV) 

Li-ion 
 

11.2 51 49 112 Water-cooling 

Table 1.3: Prototypes/commercial PHEVs [13], [15] 
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Model Battery 
type 

Energy content 
(kWh) 

Electric motor 
power [kW] 

Electric range 
[km] 

Max vehicle 
speed [km/h] 

Battery thermal  
management 

BMW i3 (EREV) Li-ion 
 

23 126 225 150 Air-cooling 

Chevrolet Spark EV 
2014 (BEV) 

Li-ion 
 

21 110 130 193 Liquid-cooling 

Chevrolet Volt 
(EREV) 

Li-ion 
 

16.5 110 60 160 Liquid-cooling 

Citroën C-Zero 
(BEV) 

Li-ion 
 

16 47 150 130 Air-cooling 

Fiat 500e (BEV) Li-ion 
 

24 83 140 115 Liquid-cooling 

Ford Focus EV (BEV) Li-ion 
 

23 108 160 136 Liquid-cooling 

Honda FIT EV (BEV) Li-ion 
 

20 92 130 70 Air-cooling 

Mini E (BEV) Li-ion 
 

35 150 200 152 Air-cooling 

Nissan Leaf (BEV) Li-ion 
 

24 80 175 93 Air-cooling 

Peugeot iOn (BEV) Li-ion 
 

16 47 150 130 Air-cooling 

Renault Fluence Z.E. 
(BEV) 

Li-ion 
 

22 70 160 135 Air-cooling 

Renault Kangoo Z.E. 
(BEV) 

Li-ion 
 

22 44 160 130 Air-cooling 

Renault Zoe Z.E. 
(BEV) 

Li-ion 
 

22 65 160 140 Air-cooling 

Toyota eQ (BEV) Li-ion 
 

12 46 100 125 Liquid-cooling 

Volvo C30 (BEV) Li-ion 
 

21.5 40 150 130 Liquid-cooling 

Table 1.4: Prototypes/commercial BEVs [13], [15] 
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1.3 Lithium-ion battery 

Lithium-ion battery (LIB) has received considerable attention for traction uses due to the 

higher energy density (70-170 Wh/kg), power capabilities, lowest standard reduction 

voltage (Eo=-3.04V) and low atomic mass compared to previous battery technologies. 

Figure 1.8 shows the relationship between various types of secondary batteries in a 

Ragone plot. The required amount of energy stored in PHEVs and EVs is much higher 

than for HEVs in order to be able to travel long distances in all electric range. In the 2000s, 

the LIB are considered as one of the most promising solutions for environment-friendly 

transportation such as HEVs, PHEVs and EVs. 

 

Figure 1.8: Specific energy and specific power of different battery types [16] 

 
Basically, LIB includes different components (cathode, anode, separator and electrolyte) 
and work according to the so-called “extraction/insertion” process. The LIB cells are 
configured in various shapes such as coin, cylindrical, pouch and prismatic as shown in 
Figure 1.9.  The basic working principle of the LIB is described in Figure 1.10. During 
charging lithium-ions are extracted from the cathode and migrate via the electrolyte into 
the anode. The reverse mechanism occurs during discharging 
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(a) (b) (c) 

 

 
 

 

Figure 1.9: Different lithium-ion battery design concepts: (a) cylindrical, (b) pouch and 

(c) prismatic cells [17] 

 

 

Figure 1.10: working principle of LiB  [18] 
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Based on the used cathode and anode materials, different types of LIB have been adopted 

and show different performance, cost and safety characteristics. 

1.3.1 Cathode material 

According to the cathode material, different LIB can be categorized by material crystal 

structure, including the layered compounds LiMO2, the spinel compounds LiM2O4 and 

the olivine compounds LiMPO4 as illustrated in Figure 1.11. In recent years, new 

structure intercalation such as silicates Li2MSiO4, borates LiMBO3 and tavorites LiMPO4F 

compounds are also gaining attention.  

 
(a) (b) (c) 

   
 

Figure 1.11: crystal structure of: (a) layered, (b) spinel and (c) olivine  [19] 

For the Layered compounds LiMO2: the transition metal intercalation oxides MO2 and 

the Li layers are stacked alternatively. The most common lithium ion candidate taking 

part to this group are listed below [18], [19]: 

- Lithium cobalt oxide (LiCoO2 or LCO): The LCO batteries are widely used in 

portable applications. The presence of toxic, the high cost and the structural 

instability of the material that raised some safety issues, are the main 

disadvantages of this material. The LCO batteries can deliver only 140 mAh/g 

capacity (compared to 160 mAh/g of theoretical capacity) and are not suitable for 

HEV and EV applications[19].  

 

- Lithium nickel cobalt aluminium oxide (LiNi0.8Co0.15Al0.05O2 or NCA): in order to 

improve the stability of the LCO, the nickel has replaced some cobalt atoms 

because nickel is cheaper than cobalt and then it can reduce the battery cost. 

Aluminium doping is beneficial to stabilize the charge transfer impedance on the 

cathode side and improving the electrolyte stability. The NCA has a specific 

capacity of 200 mAh/g, however the cycle life remains short [19]. 
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- Lithium nickel manganese cobalt oxide (LiNi1/3Mn1/3Co1/3O2 or NMC), which 

have a specific capacity of 180 mAh/g. The NMC batteries are less costly than the 

others layers compounds battery due to the presence of the Manganese (Mn).This 

technology becomes a good candidate for BEVs.  

For the spinel compounds LiM2O4, in this crystal structure, the Li-ions occupy the 

tetrahedral sites in the transition metal layers. The spinel Lithium manganese oxide 

(LiMn2O4 or LMO) is a promising cathode electrode due to its high operating voltage (3.5-

4.5V), lower cost and lower toxicity. They are now powering the Nissan Leaf and the 

Chevrolet Volt.   

For the olivine compound LiMPO4, these crystal structures are receiving more attention 

because of these stabilities compared to the layered and spinel compounds. Among them, 

the Lithium iron phosphate (LiFePO4 or LFP) has been proposed as a promising 

candidate to overcome the weakness of the earlier cathode material. The LFP have an 

excellent thermal stability, show high cycle life, and are low cost and less toxic. However, 

the operating voltage (3.3 V) and energy density are rather low. 

1.3.2  Anode material 

As mentioned above, during discharge the Li ions are intercalated into the anode. The 

most common anode material are listed below: 

- Graphite: due to its high specific capacity of 372mA [20], graphite seems to be the 

most appropriate anode material. However, graphite-based anodes have some 

limitation due to the poor performance at low temperature and the formation of a 

passive solid electrolyte interface (SEI) layer[21]. An SEI layer is formed because 

lithium intercalation reaction proceeds on graphite at such a low potential that the 

organic electrolyte, consisting of LiPF6 dissolved in organic solvents, becomes 

unstable and reacts with the electrode[22]. This layer makes the graphite electrode 

less reactive towards further decomposition of the electrolyte and the reactions 

continue to some extent consuming the electrolyte during charging of the battery. 

Another drawback of a graphite anode, resulting from the low lithium insertion 

potential, is the deposition of metallic lithium on the electrode surface. This 

irreversible reaction occurs especially when charging at sub-zero temperatures or 

using too high a charging rate. Very reactive metallic lithium consumes the 
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electrolyte and may result in dendrite formation and even in internal short-

circuiting of the battery. 

 

- LTO [23], [24] is a more ideal insertion material because of its high lithium 

insertion potential of about 1.55 V versus Li/Li+ where the electrolyte is more 

stable and metallic lithium formation thermodynamically less favorable making 

the battery safer and more durable. LTO has also very small dimensional changes 

during lithium intercalation/de-intercalation and consequently, mechanical stress 

during battery cycling is low. As no electrolyte consuming SEI layer is formed and 

dimensional changes are low, batteries with an LTO anode show long cycle life. 

However, the specific capacity is only 175 mAh/g and thus the batteries have a 

low energy density. Because of the high anode potential, batteries with an LTO 

anode have low operating voltages, comparable to lead acid batteries. LTO has a 

spinel structure, whereby the surface area is typically much larger than that of 

carbon-based electrodes [25]. The larger surface area allows moving the electrical 

charges more quickly. Thus, the LTO does not suffer from high current rates. In 

the last few years, several companies such as Toshiba, EIG Batteries and 

Altairnano have begun commercializing this technology. 

1.3.3  Electrolyte 

In LIB, the lithium-ion migrate from electrode to electrode through the electrolyte. 

Several requirements must be satisfied by the electrolyte, such as larger ionic 

conductivity (higher than 10-3 S/cm[21]), a stabilized evolution of the solid electrolyte 

interface (SEI) (interface between electrolyte and electrode) and a higher thermal and 

electrical stability [22]. Several liquid electrolytes are used in LIB, such as Lithium 

hexafluorophosphate (LiPF6), Lithium tetrafluoroborate (LiBF4), lithium triflate 

(LiSO3CF3) and lithium tris (trifluoromethanesulfonyl) methide (LiC(SO2CF3)3) [26]. Due 

to its higher ionic conductivity, the LiPF6 is mostly used and they are often dissolved on 

carbonate-based aprotic solvents such as: propylene carbonate (PC), ethylene carbonate 

(EC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) or dimethylene carbonate 

(DMC). 
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1.3.4  Summary of commercial lithium ion batteries 

As shown below, several materials have been adopted for use in commercial lithium ion 

batteries. The choice depends on the targeted application and the operation conditions. 

Table 1.5 shows the characteristic list of the most common lithium ion candidates for EV 

and HEV. 

 Nominal Cell Specific Capacity 

Positive/Negative Electrode 
Material 

Voltage/V 
Positive/Negative/(mA.h.g-

1) 

LiCoO2 (LCO)/graphite 3.7 120/370 

LiMn2O4(LMO)/graphite  3.7 100/370 

LiNiO2/graphite 3.7 170-180/370 

LiNi1/3Mn1/3Co1/3O2 
(NMC)/graphite 

3.7 130-160/370 

LiCo0.2Ni0.8O2/graphite 3.7 200/370 

LiNi0.8Co0.15Al0.05O2 
(NCA)/graphite 

3.7 180/370 

LiFePO4(LFP)/graphite  3.7 150-160/370 

Li4Ti7O12 (LTO)/LFP 3.7 150-160/150-160 

 

Table 1.5: Characteristics of some commercial lithium Ion batteries [18], [27], [28] 

1.3.5  Choice of the battery chemistry in this PhD 

Due to the availability of the cells in the framework of research project, as well as to the 
properties of this technology, the lithium iron phosphate battery of 45Ah pouch type cell, 
as shown in Figure 1.12, was selected as high energy storage component. This cell is 
manufactured by the European Batteries.  The performance parameter characteristics of 
cell is included in  Table 1.6. 

 
Figure 1.12: Pouch cell, European Battery (EB) 45 Ah 
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Nominal capacity BoL/Ah 45 

Nominal Voltage/V 3.2 

Max. voltage/V 3.65 

Min. voltage/V  2 

Weight/kg 0.99 

Nominal Energy EoL/Wh 144 

Spec. Energy BoL Wh/kg 145 

Max. discharge current cont/A 135 

Peak Current discharge 10s/A 180 

Peak regen. Current 10s / A 90 

Peak spec. discharge power 10s W/kg 580 

Peak discharge power 10s /W 576 

 
Table 1.6: Characteristics of EB 45Ah lithium Iron Phosphate battery 
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2. State-of-the-Art of Battery Thermal 
Management 

2.1 Goal  

This chapter is mainly focused on the review of the different battery thermal models that 

have been developed, their characteristics and their applications. The shortcomings of 

these models are also described. Furthermore, the different battery thermal management 

used in the literature is also discussed in depth. Some basic numerical methods and 

software tools are also analyzed and documented. 

2.2 Introduction  

As mentioned in chapter 1, lithium-ion batteries have emerged as a key energy storage 

technology and are now the main technology for portable devices. Due to their high 

potential and their high energy and power densities, and also their good lifetime, they 

are now the preferred battery technology, which has been able to provide longer driving 

range and suitable acceleration for electrically propelled vehicles such as Hybrid Electric 

Vehicles (HEVs), Battery Electric Vehicles (BEVs) and Plug-In Hybrid Electric Vehicles 

(PHEVs) [16], [29]–[31]. However, cost, safety and temperature performance issues 

remain obstacles to its widespread application. As known, during the discharge or charge 

process, various exothermic chemical and electrochemical reactions occur. These 

phenomena generate heat that accumulates inside the battery and therefore accelerates 

the reaction between cell components. With higher discharge/charge current rates, the 

heat generation in a battery increases significantly. If heat transfer from the battery to the 

surroundings is not sufficient, the battery temperature can rise very fast and exceed the 

safe temperature range. In the worst-case scenario (Figure 2.1) thermal runaway can 

occur [32]–[34]. For optimal performance, safety and durability considerations, the 

battery must operate within the safe operating range of voltage, current and temperature 

as indicated by the battery manufacturer. Figure 2.1 shows the safe operating window 

for a typical LiFePO4/graphite cell [35]. The voltage range is between the maximum 

voltage (3.65V) and the minimum voltage (2V), the temperature range is depending on 

the operating mode (charge and discharge) and varies between [-20°C; 60°C] and [0°C; 

40°C] during discharge and charge, respectively. These ranges can change according to 

the cell chemistry and battery manufacturer [36]. 
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Figure 2.1: Thermal runaway process [37] 

 

 

Figure 2.2: An example of a safe operating area of a typical LiFePO4/graphite cell [35] 
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Regarding the temperature issue, a Battery Thermal Management System (BTMS) as a 
part of the whole battery system is needed for implementation to maintain the operation 
temperature of the batteries between those boundaries. The BTMS must be optimized to 
suit the operational conditions specific for each application. A better understanding, 
evaluation and comparison of the different BTMS in an objective way is needed to have 
the optimum battery performances. This would also give the opportunity to make the 
BTMS smaller, cheaper, compact, efficient, and light, dedicated to its operation area… If 
less attention is spent on the BTMS, problems could arise around safety, durability and 
life cycle, range…  
In this way the design, evaluation and comparison of BTMSs are crucial for better battery 
performance and setting future goals on the expectations of BEVs. 
This chapter is firstly focused on giving a brief description of the temperature impact on 
the lithium ion battery cell. Then a review of the different battery thermal models that 
have been developed and their characteristics are analyzed.  Furthermore, the different 
existing battery thermal management systems used in the literature are also discussed in 
depth. Some basic numerical methods and software tools are also analyzed and 
documented. 
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2.3 Battery thermal behavior, modeling and characterization 

2.3.1 Battery geometry, external and internal structures 

As shown in chapter 1, commercial lithium-ion batteries can be classified according to 

cell shape and component materials. The various forms of batteries include cylindrical, 

prismatic and pouch cells, as illustrated in Figure 2.3. This figure describes the key 

components in a LIB, such as the cathode active material, the anode active material the 

current collector (aluminium and copper), the separator the electrolyte and the tab outer 

casing. Cylindrical cells have spiral wound structure and are easier to manufacture with 

a good mechanical stability. However, they have relatively a low packing energy density. 

Prismatic cells have jelly roll or stacked layer structures with high packing efficiency and 

are more expensive to manufacture. Pouch cells, which could be considered as thin 

prismatic cells within a flexible enclosure. They have stacked layer structure with higher 

energy density than the prismatic and cylindrical cell, and provide more flexibility of the 

design aspect and are relatively less expensive. However, they remain mechanically 

vulnerable, and require a strong case for the module packaging. As mentioned in chapter 

1, section1. 3, all these three types of LIB include several single battery layer with a 

dimension of 100 microns. Each single battery layer contains different components 

(cathode, anode, separator and electrolyte) and work according to the so-called 

“extraction/insertion” process. 

 

Figure 2.3: Internal structure of the different shape of LIB: (a) cylindrical, (b) prismatic 

and (c) pouch [38] 
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2.3.2 Impact of temperature on the battery behaviors 

A thermal management system for batteries is needed because of the best optimal 

temperatures of the batteries do not comply completely with the possible operating 

temperatures of the vehicle. The best temperature range of ambient temperature for Li-

ion batteries is situated between 25°C and 40°C [39], while the operation range of a vehicle 

is possible between -30°C and 60°C depending on the geographic regions and climatic 

zones. 

Phenomena that occur when the temperature exceeds the prescribed limits are briefly 

summarized in Table 2.1 [39]. Global trends of battery behaviors are related to the 

chemistry, design and manufacturer of the battery package. Low temperature induces to 

the capacity drop and internal resistance increase due to the lower chemical activity. The 

increase in resistance will result in a higher heat generation. However, high temperature 

leads to an increase of the internal resistance, to self-discharge and in worst case to 

thermal runaway. These phenomena may reduce battery performance and lifetime [40]–

[42].  

Low temperature (<0°C) - Capacity drop 

 - Internal resistance increase 

High temperature (>40°C) - Internal resistance decrease 

 - Accelerated aging phenomena 

 - Higher self-discharge 

 - Decomposition of electrolyte 

 - Thermal runaway, safety considerations 

 - Reduced life cycle 

 

Table 2.1: Influence of temperature on working principle of batteries: global trends [39] 

2.3.3 Effect of cell design on the cell behaviors 

Advanced research in the field of rechargeable energy storage (RESS) enables to a wide 

use of large-format, high-capacity Li-ion cells in PHEVs and EVs. This format has the 

advantage of reducing the number of cells in the module, increasing the capacity and 

reducing the size and weight at the pack level. Increasing the current amplitude during 

the charge/discharge process subjects the large format battery to abuse situations and 

leads to non-uniform distributions of temperature, potential, current density and heat 

generation through the cell. Bad design and extreme operation conditions of large format 

cells may reduce battery performance and lifetime. Therefore, good cell design is 
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necessary to avoid non-uniform distribution of the electrical and thermal parameters. The 

temperature differences within a cell and amongst the cells in battery pack should be 

smaller than 5°C [43]. Furthermore, the particle size and the electrode coating thickness 

have also a significant impact on battery behavior. Recently, Zhao et al [44] showed that 

small coin cells provide much better performance and energy density than large format 

cells, where uneven current density is observed, leading to lower utilization of the active 

material. In addition, the impact of the arrangements and the number of the current 

collecting tabs are investigated in the cases of wound design [44], [45] and stacked layer 

design [46], [47]. As a function of the number and location of tabs, the electron pathways 

become more or less long and thereby cause an increase or decrease of the ohmic 

resistance responsible for the voltage loss. Interaction between the cooling systems and 

the design of the battery pack is needed to ensure this uniformity of temperature. 

2.4 Battery Models  

In order to build an effective battery management system (BMS), designing the battery 

cell and dimensioning the cooling and heating systems, the development of an accurate 

model is crucial. Three categories of models are reported in the literature:  

 The equivalent circuit model (ECM),  

 The electrochemical models, 

 The empirical model. 

All these battery models are generally coupled with the thermal model. The ECM and the 

electrochemical models are the most widely used. 

2.4.1 Electrical-thermal modeling 

The coupling scheme between the electrical and thermal models with the model inputs 
and outputs are illustrated in Figure 2.4. The electrical parameters, such as the resistance 
and capacitance depend on the temperature and SoC. The resistance and the current are 
used to compute the battery heat source. The SoC is calculated based on Coulomb 
counting method, where: 

 𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡0) +
∫ 𝐼𝑡𝑑𝜏
𝑡0+𝑡

𝑡0

𝐶𝑁
 (2.1)   
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With CN the nominal capacity of the battery and I the current of charge or discharge. 
 

 

Figure 2.4: Electro-thermal model [48] 

- Electrical Circuit Model (ECM) 

Various ECM are developed and presented in the literature. All these models are 

summarized in Omar's PhD report [49]. The accuracy of them depends on the battery 

chemistry. Among the most relevant one, we can find: 

 Shepherd Model [50], 

 Rint battery model [51], [52], 

 RC battery model [53], 

 FreedomCar Battery model [54], 

 Thévenin Battery model [54], 

 Second order  FreedomCar Battery Models [54]. 

The ECMs consists of electrical components such as capacitors, resistances (ohmic and 

polarization), and voltage sources (open circuit voltage).  Figure 2.5 shows the voltage 

response of a lithium-ion cell after a pulse test, the voltage declines in three parts: 

  The first part corresponds to the ohmic loss without any time delay 

 The second part  corresponds to the voltage loss caused by charge transfer runs 

after a time delay 

 The third part corresponds to the voltage loss by diffusion of lithium in the active 

material  
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Figure 2.5: Voltage response of a lithium-ion cell after a current pulse[55] 

These different phenomena are included in the ECM model. For example in Figure 2.6, 

the first order Thévenin battery model is illustrated, where: 

 OCV represents the open circuit voltage of the battery 

 Ro represents the ohmic resistance 

 Rp represents the polarization resistance due to the charge transfer  

 Cp represents the polarization capacitance in parallel with Rp 

 VL represents the battery voltage 

 

Figure 2.6: first order Thévenin Battery model [54] 

The electrical parameters of these models can be extracted by performing tests such as 

the HPPC (Hybrid pulse power characterization test) [48] in the time domain model or 

by using the electrochemical impedance spectroscopy (EIS) [56] in the frequency domain. 

These tests are coupled with an estimation technique, such as generic algorithm (GA) 



Chapter 2.   State-of-the-Art of Battery Thermal Management 
 

 

33 
 

optimization [57], nonlinear least squares curve fitting techniques [58] in order to extract 

the electrical parameters from the used model. These methods can be used without the 

need to access the innards of the battery cell. Afterwards, the battery model is built based 

on look-up tables with cell electrical parameters. As a function of the inputs (current, 

OCV (open circuit voltage) and temperature the model could be validated as illustrated 

in Figure 2.7. 

 

Figure 2.7: operating principle of the electrical model [48] 

- Thermal  Model 

The thermal model delivers the temperature distribution of the cell, which depends on 

the electrical parameters and the operating conditions (current, cooling method and 

ambient temperature).  The thermal model is based on the energy balance, taken in one, 

two or three-dimensional according to the geometric features of the battery. The heat 

source is mainly derived from three main phenomena [31] :  

 The reversible heat corresponding to the chemical reaction, manifested by an 

entropy change, 

  The irreversible heat including ohmic heat and polarization heat, 

 The heat generated by side reactions, for example, corrosion reaction, overcharge, 

and chemical shorts. 

The latter point is generally neglected. The irreversible heat is computed from the 

electrical parameters (internal and polarization resistances) including in the lookup table 
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of the electrical model. While the reversible heat is computed from the entropy 

coefficient, based on the OCV change as a function of cell temperature [59]–[61]. 

To solve the electrical-thermal modeling, two types of techniques have been considered 

in the literature: Analytical techniques give continuous solutions and can show explicitly 

how the parameters affect the solutions [62]. Nevertheless, these techniques are only 

applicable in simplified cases [62], for example in the case of lumped-parameters 

approach where the battery surface temperature is considered as uniform or the Biot 

number is lower than 1 [63]. Several analytical techniques exist, such as Laplace 

transformation [64], [65], separation of variables [66], [67], Green’s function [68][69], [70], 

etc. . . . Numerical techniques are performed based on complex models depending on the 

design and the multidirectional heat transfer of the battery. They use many discretization 

techniques such as a finite differential method (FDM) [71], finite volume method (FVM), 

the finite element method (FEM) [14,18] and etc. . .  

To solve the energy balance equation, numerical methods are usually implemented in 

commercial software packages such as ANSYS Fluent, COMSOL Multiphysics, Star-

CCM+, etc. . . . 

Several one-dimensional thermal equivalent circuit models (TECM) applied to cylindrical 

and prismatic cell have been developed in the literature [30], [31], [72]–[75] ; they are more 

suitable for small cylindrical cells as illustrated in Figure 2.8, where the temperature 

gradient along the axial direction is almost negligible comparing to the radial direction. 

The one-dimensional model can be implemented easily in a BMS. Others 

multidimensional thermal models have been developed in the literature [34], [43], [61], 

[72], [73]. They are more suitable for large cells where asymmetric temperature 

distribution arises from geometric effects and from the cooling method. 

 

Figure 2.8: Simplified thermal  ECM for small cell  [74] 
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One difficulty for developing accurate battery thermal models is that the thermal 

parameters are not easy to obtain. Different techniques have been established, such as 

parameters estimation and measurement techniques.  

In the estimation technique, two methodologies have been used in the literature. The first 

one considered the active material as a continuous material with anisotropic properties 

that depend on the layered directions. Normally the active material is assumed to consist 

of several layers (anode, cathode, separator and current collectors). The thermal 

conductivity along and across the layers can be evaluated as a function of the thicknesses 

(𝑙𝑖) of the different layers and the thermal conductivity (𝑘𝑖) of the material constituting 

these layers as shown in Eq (2.1) and Eq (2.2). The density (𝜌) and heat capacity) (𝐶𝑝) of 

the active material are calculated similarly as a function of the density (𝜌𝑖) and heat 

capacity (𝐶𝑝𝑖) of the material constituting these layers, as illustrated in Eq (2.3) and Eq 

(2.4). 

Thermal conductivity across the layers (𝑘𝑛): 

 𝑘𝑛 =
∑ 𝑙𝑖𝑖

∑
𝑙𝑖
𝑘𝑖

𝑖

 (2.2)   

Thermal conductivity along the layers (𝑘𝑡): 

 𝑘𝑡 =
∑ 𝑙𝑖𝑘𝑖𝑖

∑ 𝑙𝑖𝑖
 (2.3)   

Density (𝜌) and thermal capacity (𝐶𝑝) of the active material:  

 𝜌 =
∑ 𝑙𝑖𝜌𝑖𝑖

∑ 𝑙𝑖𝑖
 (2.4)   

 

 

𝐶𝑝 =
∑ 𝑙𝑖𝐶𝑝𝑖𝑖

∑ 𝑙𝑖𝑖
 

(2.5)   

For a good accuracy of this model, the material composition of the layers should be well 

known. This is rarely the case in the competitive industry; the manufacturers do not want 

to reveal their secrets. 

The second estimation technique is based on the solving of a first order thermal 

equivalent circuit model [74], [75]. By applying a micro-pulse test, one can estimate the 



Chapter 2.   State-of-the-Art of Battery Thermal Management 
 

 

36 
 

different thermal resistances. However, this method is performed to estimate the thermal 

parameters in one direction and requires to insert a thermal sensor inside the battery in 

order to calculate the conductive resistance. The thermocouple inserted inside the battery 

can involve oxidation risks. 

The thermal parameter measurement can be determined by using accelerating rate 

calorimeter (ARC) [76], differential scanning calorimeter (DSC) [77], thermal impedance 

spectroscopy (TIS) [78], [79], hot disc method [80], [81], flash method [82], [83], etc… 

However, these devices are expensive and available in laboratories specialized on 

material characterization.   

2.4.2 Electrochemical-thermal modelling  

The electrochemical or physics based model is a multidimensional model that involves 

the resolution of the physical and electrochemical variable at the different length scale 

(particle, electrode and cell levels) as illustrated in Figure 2.9. This model has been firstly 

developed by Doyle, Fuller and Newman [84] based on the porous electrode theory. 

 

Figure 2.9: Governing equation at different length scale [85] 

Electrochemical modeling techniques are more appropriate than the electrical modeling 

to investigate the battery designs, because they show a clear relation between the 

electrochemical parameters and battery geometry and have a relatively high accuracy. 

The main disadvantages of this model are the difficulty to obtain the required parameters 
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and long computational times due to the lot of effort of meshing. Most of the 

electrochemical parameters depend on the temperature. 

Several 1D electrochemical models are listed in the literature [86], [88]–[90]. These are 

more suitable for describing small-format batteries. They also provide average values for 

large-format batteries without taking into account the collector tabs. However, they are 

not sufficient to handle the issue of non-uniform thermal, electrical and electrochemical 

variable distributions observed in large-format cells. Recent advances in numerical 

simulation techniques applied to Li-ion batteries have given more attention to the 

development of 2D axisymmetric and 3D electrochemical-thermal modeling [44], [45], 

[91]–[93]. The multi-dimensional simulations are highly nonlinear and computationally 

demanding, and coupling electrochemical and thermal modeling represents an 

important step towards accurate simulation of the Li-ion battery. Most of the models in 

the literature use the electrochemical-thermal coupling model. As illustrated in Figure 

2.10, the coupling method 1 is performed by using the volume-average temperature of 

the cell from the previous time step as inputs to update the electrochemical parameters 

and compute the heat source. This coupling method is less time and memory consuming.  

Little work focuses on the coupling method 2 [85]–[87]. This method shows results that 

are more accurate with time consuming. 

 

Figure 2.10: Different types coupling between electrochemical and thermal models 

Most of 2D and 3D electrochemical-thermal models are applied to the spirally wound 

design in order to gain insight into large-scale battery behavior and to investigate the 

impact of the number of collecting tabs on the battery performance. However, little work 
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is focused on stacked layered designs and the impact of the tab positioning on 

performance and variable distributions 

2.5 Battery Thermal management  

2.5.1 Global principles of a battery thermal management system 

Figure 2.11 gives a global overview of the main possibilities of a BTMS. Depending on 

the application area and the type of battery, cooling and/or heating is required to work 

in the best temperature operating range. For the cooling aspect, it is important to 

distinguish three major cooling methods: liquid, air and Phase Change Material (PCM) 

cooling (or a combination of these). The choice of the method has a large impact on the 

performance, complexity and cost of the thermal management system. 

 

Figure 2.11: Flow chart of the BTMS for BEV [88] 

- Liquid cooling system 

Liquid cooling with direct contact means that the coolant involved, is in contact with the 

surface of the cell and have a property of a dielectric coolant (silicon-based or mineral oils 
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could be used) in order to avoid cell short circuit. The advantage of direct contact with 

fluids is its high heat transfer coefficient rate. Due to the high viscosity of these fluids, 

more energy for pumping is needed, which results in a higher overall energy 

consumption. The liquid cooling shows a heat transfer coefficient 1.5 to 3 times larger 

than  air [88].  

The liquid indirect cooling is the most used system, where the coolant flows through 

pipes and channels between the different cells or in a jacket around the battery. Such 

configurations exist where all the cells are thermally connected to a fluid cooled plate 

[89]–[92].  

Water/glycol is the most used coolant in liquid indirect cooling system; it has a lower 

viscosity and higher thermal conductivity than oils used in direct contact, which results 

in high heat transfer coefficients. In this way, it is interesting to use good thermal 

conductivity materials and high contact surface in the packaging between the cell and the 

fluid in order to enhance the heat transfer coefficient. Aluminium, copper and steel are 

good candidates for the packaging. In the Tesla Roadster for example, the cells have a 

steel packaging for strength and rigidity, but also to fasten the heat removal [93].  

Due to their larger battery packs of BEVs and PHEVs, the liquid cooling system has 

shown to be more appropriate for the used BTMS.  

In the recent year, passive liquid-vapor phase change processes [94]–[99] are investigated 

for battery cooling system using different refrigerant types. In general, passive liquid 

cooling has the advantage to operate passively with natural circulation of the refrigerant 

and no additional energy input is needed. They operate at a low temperature and 

pressure differences between heat source and condenser. 
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- Air cooling 

In specific cases air-cooling and/or heating can deliver sufficient thermal management. 

Air cooling is often indirect. The natural convection is generally not sufficient for battery 

cooling [39] due to its low heat transfer coefficient. For this reason, a fan is generally used 

to create forced convection. Because of the use in mild climates, the early BEVs did not 

have specific cooling or heating equipment for thermal regulation of the batteries and 

only ambient air was used for the battery cooling. Around the year 2000, cabin air has 

been used for heating/cooling in HEVs like for example Honda Insight and Toyota Prius 

[88].  

More problems of non-uniform temperatures rise with series cooling (the cool media is 

heated up by the first cells and is less able to cool the other cells because the same amount 

of air is provided for all the cells/modules). Advantage of series cooling is that the flow 

isn’t split into different branches (like for parallel) such that the flow rate for series cooling 

is higher. In this way steady state can be achieved much faster and the absolute steady 

state temperature is also lower [100]. For parallel cooling the total airflow is split and this 

requires a very careful design of the air inlet manifold.  

Explicit examples  of series or series-parallel air cooling are GM EV1, Toyota RAV4-EV, 

Honda Insight HEV, Toyota Prius (Japanese version), while pure parallel air cooling is 

used in the Toyota Prius (North American version) [88] .  

An overview of the main possibilities for passive and active cooling/heating is visible in 

Figure 2.11. For passive cooling, no explicit auxiliary equipment is used (except the fan 

for forced convection). This means only ambient or cabin air is used to cool the battery or 

the circulating fluid in the battery. For active cooling, interaction with auxiliary 

equipment like the ICE coolant (only for HEV), air conditioning or specific equipment is 

possible. Passive systems can be generally sufficient in mild climates when the ambient 

temperature is around 10°C to 35°C. Explicit examples of active water-cooling are Opel 

Ampera, Volvo C30, Volvo V60, BMW i3 and Volkswagen E-UP. 

- Phase change material (PCM) cooling method 

Generally, the PCM is used to capture the heat surrounds the cells of the battery pack. In 

this way, heat is stored in the PCM and the temperature is controlled in a uniform way. 

Because of the direct thermal energy capture of the PCM, it is clear that temperature 

variations are more attenuated. This means also that the heat storage is limited and 

residual heat can be present/stored from the previous operation of the batteries. PCM on 
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its own has a low relative thermal conductivity and to prevent temperature increases, the 

generated heat must be removed quickly. For this reason, several techniques exist to 

improve the thermal conductivity of the PCM. Possible improvements are the 

encapsulation of PCM into metal-foam [73], [107]–[112], the attachment of aluminium 

cooling fins on the battery or cells and the PCM can also be used in a PCM-graphite 

composite. Of course, the combination of PCM cooling with air or liquid cooling is 

possible to solve the problem of the limited heat storage. Battery packs for a scooter or 

HEV applications are smaller compared to BEV battery packs and therefor PCM cooling 

with thermal improving conducting materials can be  a simple, compact and cheap 

solution [101]. For BEV applications, the combination of the PCM with air or liquid 

cooling is recommended to ensure enough heat removal of the batteries. Problem of PCM 

is currently the slight increase of the battery volume due to the implementation of enough 

PCM between the cells. The advantage of using PCM is that different layers of different 

types of PCM can be used to ensure optimal temperature range of broader temperature 

conditions [102].  

An illustration can be given by the specific study of changing the existing NiMH battery 

pack of the Ford Escape Hybrid (PHEV) by Li-ion battery pack with PCM cooling (by All 

Cell Technologies LLC [103]). The study claims that PCM cooling seems to be the ideal 

solution for flattening out peak temperatures in specific applications (peak and stressful 

loading of the battery) like Plug in Hybrid Electric Vehicles (PHEV) compared to forced 

air-cooling. The PCM cooling method, required less maintenance than the air and liquid-

cooling method.  

For specifying the phase change material[104], a very wide range of possible chemical 

species exist. An overview of the possibilities for vehicle applications is given in Figure 

2.12 and they can be globally divided into organic, inorganic, metallic and solid-solid 

PCMs. In the past, many investigation focus on the PCM  material with a high specific 

latent heat (200kJ/kg – 285kJ/kg) such as the paraffin waxes (e.g. Rubitherm RT-42 [105]). 

These paraffin have a wide melting range of temperatures (related to their composition 

from -30°C up to 115°C) and in this way, the operating temperatures can be easily turned 

around the right temperature. Recently, more attentions have been spent for materials 

with better volumetric latent heat and higher thermal conductivity compared to paraffin. 

Promising materials for battery thermal management with these better properties are 

suggested in Table 2.2. 
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Figure 2.12: Temperature ranges of the surveyed material categories [104] 

 

Name PCM Type TM (°C) Hf (kJ/kg) 
Hf,v 

(MJ/m3) 
kth,s 

(W/mK) 

Gallium Metallic 29.8-30 80.1-80.3 473-474 33.7 

Lithium nitrate trihydrate 
Salt 
hydrate 

29.9-30.2 296 460 0.8 

Lithium acetate dihydrate 
Salt 
hydrate 

58-70 150-377 - - 

Sodium hydroxide 
monohydrate 
 

Salt 
hydrate 

64.3 227.6-272 385-468 - 

 
Table 2.2: Notable PCMs for battery pack buffer/protection [104] 
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2.5.2 Commercial applications of BTMS 

The battery thermal management methods of different vehicle’s brands are included in 

Table 1.2, Table 1.3 and Table 1.4. Air and liquid cooling have each their specific 

advantages and disadvantages and a specific comparison can be found in Table 2.3. 

Specific aspects of BTMS Characteristics 

Air cooling -  Less complicated 

- Lower cost 

- Less uniform temperature distribution 

- Higher parasitic fan power 

Liquid cooling - Less space demanding 

- Higher cost 

- Cooling more effective so higher load of 

battery possible 

- Require higher maintenance  

- Higher weight 

 

Table 2.3: Comparison (dis)advantages BTMS using air or liquid [88] 

2.6 Conclusions 

As shown in this chapter, the temperature is the major parameter influencing the battery 

performance and lifetime in many aspects. Two ways are identified to improve the 

battery behavior. The first one is to optimize the cell design in order to lower the 

temperature gradient and the second one is to associate the cell with a dedicated battery 

thermal management system that can keep the cell temperatures in the safe range. In 

addition, the pouch cells are specified as the most flexible design aspect and are relatively 

less expensive and easier to manufacture. 

To tackle this, there is a need to develop a dedicated battery electrical-thermal model in 

order to investigate the cell thermal behavior. The model has to be based on a new 

methodology to estimate the battery thermal parameters, which avoids an insertion of 

thermal sensor inside the battery and which is able to estimate the thermal resistance in 

all directions of the battery cell. The pouch cell, less investigated in literature, is a good 

candidate for BEVs due to its large capacity and energy density. 

At cell level, the safety improvements can be made by acting on the cell chemistry or the 

cell design. In this PhD dissertation, a methodology for battery cell design is proposed in 
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order to improve the battery's effectiveness and safety. A good cell design requires 

therefore a less complex cooling strategy. 

Finally, regarding the thermal management, the liquid and PCM cooling methods have 

shown to be more appropriate for BEV applications. In numerical and design aspect, 

some improvements are needed to increase the accuracy of the models with less effort of 

meshing. 
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3. Electrical –Thermal Model for Large 
Size Lithium-ion Cells 

3.1 Goal  

In this chapter, a two dimensional electrical-thermal model has been developed in order 

to investigate and to analyze the temperature distribution over the battery surface. The 

ANSYS FLUENT software has been used to solve the model development. The model is 

validated by experimental results. In addition, a new estimation tool has been developed 

for the estimation of the proposed thermal model parameters. Furthermore, the thermal 

behavior of the battery has been investigated at different environmental conditions as 

well as during abuse conditions.  

3.2 Introduction  

As mentioned in chapter 2, section 2.2.2, the temperature has a strong influence on the 

battery performance and safety. It is suggested also that the ECM is the most appropriate 

models that can be implemented in a BMS. Furthermore, the electrical parameters, 

including in the ECM model depend strongly on the cell temperature. This input can be 

obtained by real time recording through a thermocouple or by using thermal models.   

In order to keep the battery temperature on the safe range on one hand and to increase 

its performance on the other hand, the knowledge of the battery temperature distribution 

under all environmental conditions is necessary. Different ECM models coupled with a 

thermal model are developed in the literature. In [75] a 1D thermal model for small 

cylindrical Electric Double–Layer Capacitors (EDLC) is proposed using a thermal sensor 

inside the battery in order to calculate the conductive resistance of the cell and then 

estimating the different thermal parameters. In [74], almost the same methodology is 

described as in [75] for simulation of the temperature of a small cylindrical LFP battery 

cell. In [106], the simulation of the temperature of a small cylindrical LFP battery cell is 

proposed based on some estimation routines. However, these models are more suitable 

for the thermal parameter estimation of small cylindrical cells, as specified in chapter 2, 

section 2.2.3.1. Large and high capacity cells, as widely used in BEV applications, are 

generally subject to heavy solicitation that can lead to non-uniform temperature 

distribution. 
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In [34], [43], [61], [72], [73], different 2D and 3D electrical-thermal models, more suitable 

for large cells, have been developed with known thermal parameters. From this 

investigation, we found the necessity to develop a dedicated battery electro-thermal 

model that can be applied for any type of battery cell (scale and chemistry), with a new 

methodology to estimate the battery thermal parameters in all directions, avoiding the 

insertion of thermal sensors inside the battery. The main advantage of this model is that 

the cell can be considered as a ‘black-box approach’ and without knowing the materials 

and layers composition, thermal parameters can be estimated by input and output signals 

(current voltage and cell surface temperature) and then included these parameters in the 

CFD models. 

 Taking into account the advantage of using the pouch cell, as mentioned in chapter 2, 

section 2.3.1, a large format pouch cell, characteristic for BEV applications, has been 

selected for in-depth investigation. The selected cell is 45Ah LiFePO4/graphite. For this, 

an advanced electrical-thermal model is developed to simulate the thermal behavior at 

different operating conditions. The used input parameters are the heat generation and 

thermal properties. A new estimation tool has been developed in Matlab Simulink for 

estimation of the thermal model parameters, accurately, in each direction of the cell. 

Furthermore, the thermal behavior of the proposed battery has been investigated at 

different environmental conditions as well as during the abuse conditions by using the 

ANSYS FLUENT software. 

3.3 Thermal modelling 

3.3.1 Model assumptions and geometry features 

Generally, soft pouch cells for BEVs and PHEVs have small thicknesses, which vary 

between 5 and 20 mm, depending on the battery cell capacity. The used 

LiFePO4/graphite lithium-ion pouch cell with the size of the different domains (Tabs, 

case and electrode domains) is illustrated in Figure 3.1. These domains are made of 

different materials. Taking into account its thickness of 13 mm, the heat development in 

the y-direction has been neglected. Thus a two-dimensional transient heat conduction 

equation is sufficient to describe the thermal phenomena in the battery. However the 

convective term inside the battery (electrode-electrolyte) can generally be neglected [63]. 

As mentioned in chapter 2, section 2.3.1, the active material of the battery is assumed to 

consist of several single cell layers. Therefore, the thermal conductivities are anisotropic, 

with a higher value along the x and z-directions, than the normal direction to the layers. 

Furthermore, the thermal conductivity along x-direction is the same than the z-direction. 
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Therefore, an equivalent material is set up to model all different materials that the battery 

cell is consisting of. The radiative and convective heat transfer from the battery surface 

to the surrounding have been considered. 

(a) (b) 

  

Figure 3.1: Pouch cell: (a) image and (b) schematic diagram and dimension (mm) of 

pouch Li-ion battery 

3.3.2 Governing equations and boundary conditions 

3.3.2.1 Governing equations 

Based on the above assumption, the energy balance equation over a representative 

elementary volume (REV) in a battery, enable to predict the transient response of the 

temperature distribution for the 2D thermal modeling is formulated as:  

- In the electrode and tabs domains: 

 𝑘 [
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑧2
] + 𝑞𝑔 = 𝜌. 𝐶𝑝

𝜕𝑇

𝜕𝑡
 (3.1)   

For the electrodes domain, the heat generation is given by: 

 

 
𝑞𝑔 =

1

𝑉𝑏𝑎𝑡
[𝑅′𝐼² + (𝑇 [

𝑑𝐸

𝑑𝑇
]) 𝐼] (3.2)   
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Where 𝑞𝑔 (W m-3) is the volumetric heat generation, where R’(Ω) is the battery internal 

resistance, 
𝑑𝐸

𝑑𝑇
 (V.K-1) the entropy coefficient and I(A) the applied current (negative in 

discharge and positive in charge).  

For the Tab domain, the heat generation is given by: 

 

 
𝑞𝑔 =

𝑅′′𝐼2

𝑉𝑡𝑎𝑏
;     𝑅′′ = 𝜌′′

𝑙

𝑆
 (3.3)   

- In case domains 

 𝜆 [
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑧2
] = 𝜌. 𝐶𝑝

𝜕𝑇

𝜕𝑡
 (3.4)   

Where 𝑅′′ (Ω), 𝜌′′(Ωm), 𝑙(m), 𝑆(m2) and 𝑉𝑡𝑎𝑏(m
3) are the electrical resistance, resistivity, 

length, cross section and volume of the corresponding tab, respectively. Also 𝜌 (kg 

m−3), 𝐶𝑝 (J kg−1 K−1) and 𝜆 (W m−1 K−1) are the average density, the average specific heat 

and the average thermal conductivity along the x-direction and z-direction, respectively. 

𝜌 is equal to 2247 kg m−3, this value is calculated from the mass and the volume of the 

cell.  

3.3.2.2 Boundary conditions 

- Interface cell/ ambient air  

The balance between the conductivity heat flux from the battery surface to the 

surrounding and both contributions of radiation and convection heat gives the boundary 

conditions: 

 𝑞𝑠 = −𝜆 (
𝜕𝑇

𝜕𝑥
+
𝜕𝑇

𝜕𝑦
) |𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 = (ℎ𝑐𝑜𝑛𝑣 + ℎ𝑟𝑎𝑑)(𝑇 − 𝑇𝑎) (3.5)   

With 

 ℎ𝑟𝑎𝑑 = 𝜖𝜎(𝑇2 + 𝑇𝑎
2)(𝑇 + 𝑇𝑎) (3.6)   

- The interface between two domains of cell made of different material  

At this type of boundary the continuity is applied and formulated as follows: 
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 λ (
𝜕𝑇

𝜕𝑥
+
𝜕𝑇

𝜕𝑦
) |𝑑𝑜𝑚𝑎𝑖𝑛 1 = 𝜆 (

𝜕𝑇

𝜕𝑥
+
𝜕𝑇

𝜕𝑦
) |𝑑𝑜𝑚𝑎𝑖𝑛 2 (3.7)   

Where hconv (W m−2 K−1), hrad (W m−2 K−1) represent the convective heat transfer and 

radiative heat transfer, ε the emissivity of the cell surface, σ (5.669 10-8 Wm−2K−4) the 

Stefan–Boltzmann constant [107], T the battery surface temperature and Ta the ambient 

temperature. Because of using a thermal imager, the battery has been painted black, and 

then the emissivity is taken equal to 1. 

The case domains are made by aluminium; all related thermal parameters of this domain 
are taken from [107]. The thermal parameters used in the tab domains are summarized 
in Table 3.1 
 

 
Positive tab (aluminium)  

and case domain 

Negative tab 

(copper) 

𝜌(kg m−3) 2719 8978 

𝜆(W m−1 K−1) 202.4 387.6 

𝐶𝑝(J kg−1 K−1) 871 381 

 

Table 3.1: Thermal parameters of tab domains 

From the tab dimensions and the resistivity value, the electrical resistance of the 

aluminium positive tab is 4.3 mΩ and the electrical resistance of the copper negative tab 

is 1.09 mΩ. These resistances are computed from the Eq (3.3). Thus, the heat generated at 

the positive tab is higher than at the negative tab. Knowing the heat generation variation 

and thermal parameters, finite volume numerical is used to solve the energy balances by 

ANSYS Fluent software. The thermal model is validated by comparing with the 

experimental measurements. 

3.3.3 Heat generation measurement 

The expression of heat source is derived from Bernardi et al. [108] by applying the first 

law of thermodynamic energy balance on a cell control volume. Two main origins of heat 

source are taken into account: the first represents the overpotential heat due to ohmic 

losses in the cell, the charge-transfer overpotentials at the interface and the mass transfer 

limitations, and the second is the entropic heat from the reaction. The heat source from 

mixing effects (during relaxation after the current is turned off) and phase change are 



Chapter 3.  Electrical-Thermal Model for Large Size Lithium-ion Cells 
 

 

52 
 

neglected in this expression. The internal resistance and the entropy coefficient have been 

extracted experimentally; these parameters allow to determine the heat source.  

3.3.3.1 Internal resistance measurement  

The measurement method of the internal resistance is described in [109], [110]. The 

battery is first placed in a climatic chamber to ensure constant battery temperature. 

Thereafter, the extended hybrid pulse power characterization (HPPC) test was applied, 

whereby at a specific SoC, different charge and discharge current pulse rates of 10 

seconds, with a rest of 300 seconds in between is applied. The test procedure is repeated 

at different environment temperatures as summarized in Table 3.1. Based on the 

Levenberg-Marquardt minimization algorithm applied to the first order Thévenin model, 

the internal resistance is estimated based on the methodology described in Figure 3.2.  

 

Step Action Duration 

1 Tempering 3h 

2 Constant current (CC) charge at 1 It up to 3.65V  <2 h 

3 Constant voltage (CV) charge at 3.65V up to 1A 
with SoC=100% 

<1h 

4 Rest  30 min 

5 - Charge current pulse at specific current rate 

- Rest 

- Discharge current pulse at specific current 

rate  

- Repeat step 5 at different current rates 

- 10 s of charge 

- 300s of rest 

- 10s of discharge 

6 Discharge of 5% SoC  at  ½ It  6 min 

7 Rest  15 min 

8 Repeat steps 5- 7  up to SoC = 0%  

 

Table 3.1: HPPC procedure at a specific temperature 

 
In this PhD, the HPPC is performed at different temperatures (0°C, 10°C, 25°C, and 40°C), 

current rates (1/3It, 1It, 2It, and 3It) and SoC (100% to 0% by step of 5%). Where the It 

represents the current value corresponding to the battery capacity in Ah as defined in 

IEC61434[111]. In our case 1It corresponds to 45 A. The environment temperature is 

regulated by using climatic chamber as shown in Figure 3.15. The variation of internal 

resistance as a function of SoC and temperature at 1It charge and discharge current rates 
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are plotted in Figure 3.3 and Figure 3.4. Between 100% and 90% SoC, the internal 

resistance decreases with the decrease of SoC. From 90% and downwards the internal 

resistance maintain more less stable. Below 20%, the resistance increases more as can be 

seen in both the resistance figures. At low temperatures, the internal resistance increases 

due to the increase of the electrolyte’s viscosity, which is limiting the ionic transport 

reaction speed. It has been shown that the internal resistance decrease with the increasing 

of the current rate, as shown in Figure 7.1, Figure 7.2, Figure 7.3, Figure 7.4, Figure 7.5, 

and Figure 7.6 in Appendix I, section 7.1. 

 

Figure 3.2: Methodology of the Electrical parameter estimation 
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Figure 3.3: Internal resistance of charge as a function of SoC and Temperature at 1It 

current rate 

 

Figure 3.4: Internal resistance of discharge as a function of SoC and Temperature at 1It 

current rate 
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3.3.3.2 Entropy coefficient measurement 

The entropy coefficient is based on the open circuit voltage (OCV) measurement as a 

function of battery temperature at different SoC levels. Several methods exist to measure 

the OCV such as linear interpolation method and potentiometric method or voltage 

relaxation method [76], [112]. In this work, the voltage relaxation method is used. The 

OCV measurement during charge, discharge process was performed as follows: 

- The battery was first charged  at 1/3It up to 3.65V, followed by a constant voltage 

charge of 3.65V up to 1A, corresponding to a SoC of 100%. 

- The battery was left in open circuit for about 3h relaxation in order to reach a 

relatively stable state. Afterwards, the OCV in discharge at 100% of SoC was 

reached. 

- With a programmable climatic chamber, the OCV in discharge was measured at 

different temperatures (10°C, 2°C, 15°C, and 30°C). For each temperature level, 3h 

was needed to ensure constant battery temperature.  

- The battery was discharged  at 1/3It by a step of 10% of  SOC 

- At each SoC, the battery was left in open circuit for about 3h relaxation in order 

to reach a relatively stable state. Afterwards, the OCV measurement as a function 

of temperature was repeated. 

The OCV measurement is repeated in charge process by discharging completely the 

battery at 1/3 It up to the cutoff voltage 2V, corresponding to a SoC of 100%. After 

relaxation time of 3h the OCV was measured at different temperatures. Figure 3.5 shows 

the illustration of the OCV in charge as a function of temperature at 0% of SoC, where at 

the end of each temperature variation the steady state was reached. 

Afterwards the battery was charged at 1/3It by a step of 10% of SOC and at each SoC the 

OCV in charge was measured at different temperatures. 

The entropy coefficient for a given SoC is obtained experimentally from the slope of the 

open circuit voltage (OCV) curve as a function of temperature. The entropy coefficient of 

0% of SoC is illustrated in Figure 3.6. This calculation procedure is repeated at each SoC 

(90% to 0% by step of 10%) during both charging and discharging. The entropy 

coefficients from 10 to 50% of SoC  during the charge process is illustrated in Appendix 

I,  Figure 7.10, Figure 7.11, Figure 7.12, Figure 7.13, and Figure 7.14. Figure 3.7 describes 

the entropy coefficient as a function of SoC during charge and discharge process and 

shows a difference between both. This difference is due to the hysteresis of the open 
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circuit voltage (OCV). The result has also been observed for various lithium-ion batteries 

[109], and is more pronounced at low SoC as reported by V. Pop et al [112]. 

For low charge or discharge current rates, the reversible heat becomes dominant respect 

to the irreversible heat. According to the reversible heat formula ((T [
dE

dT
]) I), this term 

may be positive or negative depending the sign of the current (positive in charge and 

negative in discharge) and also the sign of the entropy coefficient. If the reversible heat is 

positive, then the chemical reactions are exothermic otherwise, they are endothermic. 

Physically, an endothermic reaction is obtained when the chemical bonds of the reactants 

are higher than those of the product: then extra energy should be absorbed from the 

external environment to create new bonds. During exothermic reaction the opposite 

situation occurs. Generally the entropy (∆S = nF
dE

dT
 ) measures the degree of disorder in a 

system at the microscopic level, where n is the number of electrons transferred and F is 

the Faraday’s constant. Indeed the higher entropy is high, the less its elements are 

ordered and the higher the system energy. 

 

Figure 3.5: evolution of OCV as a function of battery temperature at 0% of SoC during 

charge process 
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Figure 3.6: Entropy coefficient of 0% of SoC during charge process 

 

 

Figure 3.7: Entropy coefficient as a function of SoC during charge and discharge 

processes 
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3.3.4 Battery thermal model parameters  

As the dynamic performances of cells and batteries during operation are related to their 

temperature, an accurate thermal model is essential to investigate the battery behavior in 

advance and during operation.  

As the battery cell is considered as a “black-box” and consists of a combination of 

materials and layers not precisely mentioned, thermal parameters have to be estimated 

from the input and output signals. From a practical point of view, only current, voltage 

and surface temperature of the battery cell can be measured. Electrical parameters are 

estimated based a first order Cauer network, where the energy balance is represented by 

an equivalent circuit in each direction of the cell, as shown in Figure 3.8, where Pg 

represents the total heat generation, Cp stands for the thermal capacitance, Rth is the 

conductive thermal resistance and Rcon represents the convection and radiation thermal 

resistance.  This model has less assumptions comparing to some models used in the 

literature [48], [74], [75] where a thermal sensor was inserted inside the battery in order 

to calculate the thermal resistance Rth and also these models considered that all power 

generated by the battery goes through the normal direction, which is an ideal condition. 

These assumptions are only valid for cylindrical battery shape because in prismatic or 

pouch cell the dissipated power is not just released through the normal front and back 

directions to the ambient (𝑇𝑠 𝑓𝑟𝑜𝑛𝑡 and 𝑇𝑠 𝑏𝑎𝑐𝑘 as demonstrated in Figure 3.8) but also along 

the surface directions to the ambient (𝑇𝑠1, 𝑇𝑠2, 𝑇𝑠3 and 𝑇𝑠4 as presented in Figure 3.8). The 

thermocouple inserted inside the battery can involve oxidation risks. Taking account all 

these into consideration, the method described below is developed to estimate the 

thermal battery model parameters. 

Firstly, a micro-pulse test is carried out at 3 It current rate until the battery surface 

temperature reached the steady state. As shown in Figure 3.9, the temperature at each 

surface is almost equal and the differences did not exceed 1 °C.  

From these results, the percentage of power generation emitted along each direction is 

calculated. P1, P2, P3 are defined as the part of heat generated through the front direction, 

the right direction and the down direction, respectively. At steady state, the heat 

accumulation is equal to zero, and then from Figure 3.8, the energy balance can be 

formulated as: 

 𝑃𝑔 = 2. 𝑃1 + 2. 𝑃2 + 2. 𝑃3 (3.8)   

Where Pg is the generated heat in [W]. 
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According to the Newton's law of cooling, each associated heat can be expressed as a 

function of temperature difference ∆𝑇 between surface and ambient, total heat transfer 

coefficient h (W/m2 K) and surface. ∆𝑇1, ∆𝑇2 and ∆𝑇3 are the temperature differences 

associated to the direction of 𝑃1, 𝑃2 and 𝑃3, and 𝐴1, 𝐴2 and  𝐴3 are the related areas.  

Then at the steady state, we have from Figure 3.8 and Figure 3.9 the following equations: 

 

𝑃1 = ℎ𝐴1∆𝑇1 ;    𝑃2 = ℎ𝐴2∆𝑇2 ;    𝑃3 = ℎ𝐴3∆𝑇3 

∆𝑇1 = ∆𝑇2 = ∆𝑇3 

 

(3.9)   

These equations also can be expressed as follows: 

 
𝑃2
𝑃1

=
𝐴2
𝐴1
 ;    

𝑃3
𝑃1

=
𝐴3
𝐴1

 (3.10)   

Substitution of (3.10) in (3.8): 

 𝑃𝑔 = 2. 𝑃1 + 2
𝐴2
𝐴1
 𝑃1 + 2

𝐴3
𝐴1

𝑃1 (3.11)   

According to cell dimensions, the results give: 

 𝑃1 = 0.45 𝑃𝑔 ;     𝑃2 = 0.03 𝑃𝑔 ;     𝑃3 = 0.02 𝑃𝑔 (3.12)   

In each direction the calculated percentage of heat generated is used to estimate the 

associated thermal parameters with the least-square curve fitting method. 
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 According to the flowchart as shown in Figure 3.10, the methodology of the estimation 

of the thermal battery model parameters is presented. For estimating thermal parameters, 

the surface temperature of the battery has to be stabilized. Therefore, the micro-pulses 

are applied until the temperature reaches the steady state condition. Considering the total 

resistance and battery current, total heat generation can be calculated. According to the 

methodology described for determining of the heat flow in each direction, the thermal 

parameters can be estimated. The associated heat generated at each direction is taken as 

input and the measured surface temperature is considered as output. As it mentioned 

above, the algorithm that is used for parameter estimation is least-square curve fitting. 

This algorithm uses a recursive procedure to optimize the cost function (thermal balance 

equation) and tries to fit the temperature curves. 

 

Figure 3.8: Cauer thermal model 
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Figure 3.9: Battery surface temperature at 2 It current rate micro-pulse and 27°C of 

environment temperature 

 

Figure 3.10: Estimation flowchart thermal battery model parameters 
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In order to ensure the validity of the results, the thermal parameters have been estimated 

at different current pulses (1.5It, 2It, and 3It). The results are shown in Table 3.2, where 

the thermal conductivity along the axial direction is 100 times bigger than the thermal 

conductivity along the normal direction of the battery. The reason is the layering of 

several materials in the direction of the front and back surfaces, thereby acting as an 

insulator. The estimated h is the combination of convection and radiation heat transfer. 

The estimated values are in the range of those used in the literature. However, the 

difference in function of current rate may from to the temperature increase during high 

current pulse test or from the error of the internal resistance estimation. 

 
Cp  

(J/kg.K) 

Rth1                   

(°C/W) 

Rth 

(°C/W) 

Rcon 

(°C/W) 

h 

(W/m².K) 

𝜆 1 

(W/m.K) 

𝜆  

(W/m.K) 

1.5 It 645,01 0,62 0,89 0,95 30,41 0,30 28,13 

2 It 636,05 0,65 0,81 1,14 25,21 0,28 32,68 

3 It 575,03 0,66 0,74 1,21 23,79 0,28 33,50 

 

Table 3.2: Battery thermal parameters at different current rates and 27°C of environment 

temperature 

3.4 Experimental  

A test bench has been developed in order to characterize the battery and validate the 

model. The test bench is composed of a programmable DC power supply and DC active 

load to charge and discharge the battery, respectively, and four electric contractors, which 

are alternately closed and opened according to the battery processes (charge/discharge). 

These components are interconnected in series, as represented in Figure 3.11 and Figure 

3.12. During the charge process the Contactors c1 and c2 are closed, d1 and d2 are opened, 

and the opposite will happen during the discharge process. A Labview application was 

developed to manage the battery process and to monitor the different measurements 

(current, voltage and temperature) by means of a Data acquisition system.  



Chapter 3.  Electrical-Thermal Model for Large Size Lithium-ion Cells 
 

 

63 
 

 

Figure 3.11: Battery tester 

 

Figure 3.12: Charging and discharging circuits [113] 

The battery was fully charged (100% SoC) by using the constant current (CC) charge 

process with the given current till the maximum allowed voltage (Vmax= 3.65 V)  

following by constant voltage (CV) till the battery charge current is reduced till 0.01It  as 

illustrated in typical current-voltage charging curve in Figure 3.13. 
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Figure 3.13: Constant current –constant voltage (CCCV) charging process [49] 

The complete discharge is performed until the cut-off voltage (Vmin=2V) is reached. 

Different charge and discharge current rates are performed. Due to the current limitation 

the charge process is performed at 1/3It, 2/3 It, and 1 It, against 2It, 3It and 4It for the 

discharge process. In addition. A computer, by means of the data acquisition system, 

monitors, displays and records continuously the current, voltage and temperature of the 

battery at each 0.01s. In order to analyze the thermal distribution of the battery, 11 

thermocouples (K-type) have been placed on the battery surface as shown in Figure 3.14.  

 

Figure 3.14: Thermocouples position on the battery 
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Figure 3.15: The pouch cell battery in the climatic chamber 

In order to regulate the environment temperature a climatic chamber is used as shown in 

Figure 3.15. A FLIR A325SC IR camera is used to measure accurately the thermography 

imaging of the battery at each 5 seconds. The battery is coated with a black paint with 1 

as emissivity. The Thermal camera is connected to a computer in order to display and 

save the images and videos at different time steps. During the test, we make sure that the 

room temperature remains almost constant with a temperature variation less than 2°C. 
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3.5 Results and discussion 

3.5.1 Numerical aspect 

All equations are simultaneously solved numerically in ANSYS FLUENT by using the 

Finite Volume Method (FVM). As the governing equations are nonlinear, the 

performance and accuracy of the calculation depend on the mesh and solver. A 

structured mesh is generated with GAMBIT software. To ensure the accuracy and the 

mesh independency of the solutions, 24,990 structured elements are used over the entire 

computational domain after testing several grid densities with refining zones at the 

junction between the tabs and the electrode domain, as illustrated in Figure 3.16. The 

energy equations are fully coupled with the electrical model by means of the lookup table 

as illustrated in Figure 3.17. For spatial discretization, the 1st-Order Implicit formulation 

is used. At each time step (taken at 1 second), the temperature is solved by using the 

SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) Solver Algorithm. For 

each time step, the convergence is reached where the relative tolerance is below than 10-

3 for all variables. Then, the time step progresses until the cut-off potential is reached  

 

Figure 3.16: Meshing of battery (a), and zoom vision (b) 
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Figure 3.17: Procedure of the numerical solution at each time step 

3.5.2 Model validation  

The simulation results are compared with the experimental results during capacity tests 
at different current rates and operating conditions. The full modeling of thermal 
distributions at different time steps of 1 It charge and discharge, as shown in in Figure 
3.18 and Figure 3.19, is compared with the thermal imager measurements. The 
comparison shows a good agreement, except at the tabs, because the tabs are connected 
during test to a heavy copper block, which conducts a lot of heat. This indicates that the 
battery surface temperature is nearly uniform, except in the middle where the maximum 
temperature is measured by the thermocouple T6. The maximum temperature gradient 
on the surface of the battery is about 0.7°C. This type of distribution is only shown for 
low current rate (less than 1 It) because the density of heat generation by tabs are 
negligible compared to the heat density of the battery’s active material.  
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Figure 3.18: Thermal distributions based on thermal imager and modeling at 1 It charge 

current rate and 20°C of environment temperature 
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Figure 3.19: Thermal distributions based on thermal imager and modeling at 1 It 

discharge current rate and 20°C of environment temperature 

As observed in Figure 3.20 and Figure 3.21, the simulation results at different charge and 

discharge rates are validated by the experimental results. The relative error is less than 

3% at low current rate and 7% at high current rate. Similar results validation, based on 

the comparison between simulations and thermal camera results at different current rate, 

are included in Figure 7.7, Figure 7.8 and Figure 7.9 in Appendix I, section 7.2. By 

increasing the current rate, the battery temperature raises more due to the increase of the 

heat generation in the electrodes and tab domains.  
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Figure 3.20: Maximum temperature and relative error variations from model and 

experiment during different charge current rates and 20°C of environment temperature 
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Figure 3.21: Maximum temperature and relative error variations from model and 

experiment during different discharge current rates and 20°C of environment 

temperature 

 
Figure 3.22 shows the temperature distribution at high discharge rate (4 It). The maximum 

temperature is located near the positive tab due to the high amount of heat generated at 

the positive tab, because of the high resistivity of aluminium compare to the copper 

material at the negative tab. 
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Figure 3.22: Thermal distributions based on modeling at 4It discharge current rate at 

20°C of environment temperature 

3.6 Conclusions 

In this work, a 2D-thermal model is developed for a large size of Li-ion pouch battery for 

BEVs, which is able to predict the surface temperature distribution of the battery at 

different operating conditions. The simulation results are in good agreement with the 

experimental results where the relative errors are less than 7%. A new battery thermal 

parameter estimation is developed to estimate the related thermal parameters by using 

the first order Cauer model. This model involves a primary calculation in order to 

calculate the percentage of heat flows through each side of the cell. At high current rate 

(more than 1 It) the generated heat is higher than the dissipated heat and the maximum 

temperature is located near the positive tab. However, at low current rate, the maximum 

temperature is located at the middle of the battery cell. 
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4. Pouch Cell Design: Impact of Tab 
Location 

4.1 Goal  

In this chapter, different pouch cell designs, with different tab locations, have been 

investigated in term of performance, current density, potential and heat distributions by 

using advanced three-dimensional electrochemical-thermal modeling. The model is first 

validated with experimental data at different current discharge rates. Afterwards, the 

electrochemical, thermal and electrical behaviors over each cell design under high 

discharge rate (4 It) are compared between configurations. 

4.2 Introduction  

As mentioned in chapter 3, large-format, and high-capacity Li-ion pouch cells are widely 

used in PHEVs and EVs, and the temperature has a strong influence on the battery 

performance and safety. As found in chapter 3, the increase of the current amplitude 

during the charge/discharge process can subject the large format battery cell to non-

uniform temperature distributions. In Pesaran et al work [43] it is mentioned that the 

temperature gradient within the cell should be less than 5 °C in order to guarantee good 

battery performance and a long lifetime. Therefore, good cell design is necessary to avoid 

non-uniform distribution of the electrical and thermal parameters that can lead to a non-

uniform utilization of the active material.  

Particle size, electrode coating thickness and current collector dimensions also have a 

significant impact on battery behavior. Recently, Zhao et al [44] showed that small coin 

cells provide much better performance and energy density than large format cells, where 

uneven current density is observed, leading to lower utilization of the active material. In 

addition, the impact of the arrangements and number of the current collecting tabs is 

investigated in the cases of  wound design [44], [45] and stacked layer design [46], [47]. 

As a function of the number and location of tabs, the electron pathways become more or 

less long and thereby cause an increase or decrease of the ohmic resistance responsible 

for the voltage loss.  In order to investigate these battery designs, electrochemical 

modeling techniques are more appropriate than electrical modelling because they show 

a clear relation between the electrochemical parameters and battery geometry. As 

mentioned in chapter 2, the 1D electrochemical models are more suitable for describing 
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small-format battery behavior. They also provide average values for large-format 

batteries without taking into account the collector tabs. However, they are not sufficient 

to handle the issue of non-uniform thermal, electrical and electrochemical variable 

distributions observed in large-format cells. Recent advances in numerical simulation 

techniques applied to Li-ion batteries have given more attention to the development of 

2D axisymmetric and 3D electrochemical-thermal modeling [44], [45], [86], [87], [114]. 

This chapter presents an extensive fully coupled three-dimensional (3D) simulation of 

electrochemical-thermal modelling, describing the behavior of large LiFePO4 pouch cells.  

Different pouch cell designs with various tab locations have been investigated in term of 

performance and distribution. The model is first validated with experimental data at 

different discharging current rates. Afterwards, the electrochemical, thermal and 

electrical behaviors of each cell design under high discharge rate (4 It) are compared in 

order to select the best configuration. Finally, the impact of the tab width on the 

temperature, potential and current density distributions is also investigated in depth. 

4.3 Model Description  

4.3.1 Model assumptions and geometry features 

A 3D electrochemical-thermal model is developed for the same pouch cell as presented 

in chapter 3. As it is well-known, the battery is composed of several layers (current 

collectors (CC) (positive and negative) with collecting tabs, the positive electrode (PE), 

the separator and the negative electrode (NE)) in sandwich structure as described in 

chapter 2, section 2.2.1. Since the modeling of all layers required a lot of meshing effort 

and then long computational times, 1D electrochemical coupled with the thermal model 

applied to a single cell layer (composed by NCC, NE, separator, PE, PCC) has been used 

in several works [115]–[118]. The model was validated by comparing simulation to the 

experimental test performed on the whole battery.  Therefore a single electrode plate pair 

approach can be modeled to describe the pouch cell behaviors. In this approach the 

electrochemical variable in length and large directions have been considered. The 

sandwich structure can be considered as a parallel circuit. The single cell potentials are 

almost equal. The total current is almost equal to the sum of the currents in each single 

cell. For this reason, we downscale the current by taking into account the current passing 

through representing other cell layers. The whole layers of the cell are bathed in the 

electrolyte (2 mol/L LiPF6 in EC/DMC solvent) as illustrated in Figure 4.1.  
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Figure 4.1: single electrode plate pair configuration and component thicknesses 

Several designs of single electrode configuration are investigated, where the collecting 

tab positioning changes as shown in Table 4.2. 

 

 

  Figure 4.2: different designs and dimensions (mm) of pouch cell 

The geometrical details such as the electrodes, separator and current collectors, and tabs 

thicknesses and the particle radius are included in Table 8.1, in Appendix II, section 8.3.  
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4.3.2 Electrochemical modeling 

The electrochemical process during discharge is mainly represented by energy 

conversion from the chemical to the electrical, and during charge the inverse process 

occurs. These conversions occur at the solid electrolyte interface (SEI) by mean of 

electrochemical reactions as described below: 

𝐿𝑖𝑦𝐹𝑒𝑃𝑂4

𝑐ℎ𝑎𝑟𝑔𝑒
→      
←    

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
𝐿𝑖𝑦−𝑧𝐹𝑒𝑃𝑂4 + 𝑧𝐿𝑖+ + 𝑧𝑒− (4.1)   

- At the negative electrode: 

𝐿𝑖𝑥𝐶6

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
→         
←      
𝑐ℎ𝑎𝑟𝑔𝑒

𝐿𝑖𝑥−𝑧𝐶6 + 𝑧𝐿𝑖+ + 𝑧𝑒− 
(4.2)   

In the charge process, lithium ions are deintercalated from the cathode material and an 

equal number of lithium ions and electrons are produced. Then the lithium ions migrate 

through the electrolyte where they are intercalated into the anode. The passing of an 

electron through the collectors compensates each passage of a lithium ion into the internal 

circuit of the battery because the electrons cannot cross through the separator. These 

processes are exothermic due to the ohmic losses, activation losses, and other irreversible 

processes. According to the above physical description, lithium-ion batteries are modeled 

using porous electrode theory coupled with various transport and reaction mechanisms. 

This theory determines the concentration of lithium ions, the potential in the electrolyte 

and in the intercalation particles, as well as in the collectors and tabs. The electrochemical 

reaction kinetics for lithium-ion intercalation/deintercalation at the SEI is also estimated. 

As the physical parameters depend on the cell temperature, the porous electrode theory 

is coupled with the energy balance. All the required variables are listed in Table 4.1.  
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Domain Variable name Symbol SI Unity Variable 

 
Particle 
 
 

Li concentration in solid 
phase  

𝑐1,𝑗(𝑗 = 𝑝, 𝑛) mol.m−3 𝑡, 𝑟, 𝑥, 𝑦, 𝑧 

Porous 
Electrode 
 

 
Li+ concentration in the 
electrolyte 
Potential in solution phase 
Potential in solid phase 
Surface reaction rate 
 
 

𝑐2 
 
𝛷2 
𝛷1 

𝐽𝑗(𝑗 = 𝑝, 𝑛) 

 

 
mol.m-3 

 
V 
V 

mol.m-2.s-1 

 
 

𝑡, 𝑥, 𝑦, 𝑧 
 

Cell  
 

Temperature 
Potential in collector& Tabs 

 
𝑇 

𝛷𝑐𝑐,𝑗(𝑗 = 𝑝, 𝑛) 

 

K 
V 

𝑡, 𝑥, 𝑦, 𝑧 
 

 

Table 4.1: variables of the model 

The battery cell is divided into several geometrical domains. Each corresponds to a 

particular physical length scale as described in Figure 4.1. The dynamic performance of a 

lithium-ion cell is characterized by the solution of the electrochemical and thermally 

coupled equations as summarized in Table 4.2. 
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 Physics Governing equations and boundary conditions Eq. 
Number 

Mass balance  in solid phase 
 

𝜕𝑐1,𝑗

𝜕𝑡
= 𝛻. (𝐷1,𝑗  𝛻. 𝑐1,𝑗)  

−𝛻. 𝑐1,𝑗|𝑟=0 = 0 ;       −𝐷1,𝑗 𝛻. 𝑐1,𝑗|𝑟=𝑅𝑠,𝑗
=

𝐽𝑛,𝑗

𝑆𝑎,𝑗 𝐹
 ;   (𝑗 = 𝑝, 𝑛) 

(4.4) 

Mass balance  in electrolyte phase 
 

𝜀2
𝜕𝑐2
𝜕𝑡

= 𝛻. (𝐷2
𝑒𝑓𝑓

 𝛻𝑐2) +
𝑆𝑎,𝑗  𝐽𝑛,𝑗

𝐹
(1 − 𝑡+) ;     𝐷2

𝑒𝑓𝑓
= 𝐷2𝜀2

𝛾2  

−𝛻. 𝑐2| 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠

 𝑁𝐸/𝐶𝐶− 𝑎𝑛𝑑 𝑃𝐸/𝐶𝐶+
= 0 ;   −𝛻. 𝑐2|𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠

𝑃𝐸/𝑆𝑃

= −𝛻. 𝑐2|𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠
𝑁𝐸/𝑆𝑃

 

(4.5) 

Electron transport  in the solid phase 𝛻. 𝑖1 = −𝑆𝑎,𝑗  (𝐽𝑛,𝑗 + 𝐶𝑑𝑙 (
𝜕𝛷1

𝜕𝑡
−

𝜕𝛷2

𝜕𝑡
)) ; 

𝑖1 = −𝜎1
𝑒𝑓𝑓  𝛻𝛷1;      𝜎1

𝑒𝑓𝑓
= 𝜎1𝜀1

𝛾1 ;   𝑆𝑎,𝑗 =
3𝜀1,𝑗

𝑅𝑠,𝑗
 

−𝜎1
𝑒𝑓𝑓 𝛻. 𝛷1| 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠

 𝑁𝐸/𝐶𝐶− 𝑎𝑛𝑑 𝑃𝐸/𝐶𝐶+
= 𝑖𝑁,𝑗  ;     −𝜎1

𝑒𝑓𝑓  𝛻. 𝛷1| 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠
 𝑁𝐸/𝑆𝑃 𝑎𝑛𝑑 𝑃𝐸/𝑆𝑃

= 0;         (𝑗 = 𝑝, 𝑛) 

(4.6) 

Ionic transport in the solution phase 𝛻. 𝑖2 = 𝑆𝑎,𝑗  𝐽𝑛,𝑗 

𝑖2 = −𝜎2
𝑒𝑓𝑓 𝛻𝛷2 +

2𝑅 𝑇 𝜎2
𝑒𝑓𝑓

𝐹
(1 − 𝑡+  ) (1 +

𝑑𝑙𝑛 𝑓±

𝑑𝑙𝑛 𝑐2
) 𝛻𝑙𝑛 𝑐2  

𝛻.𝛷2| 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠

 𝑁𝐸/𝐶𝐶− 𝑎𝑛𝑑 𝑃𝐸/𝐶𝐶+
= 0 

(4.7) 

Electrochemical kinetics 
𝐽𝑛,𝑗 = 𝐽0,𝑗 [𝑒𝑥𝑝 (

𝛼𝑎 𝐹

𝑅𝑇
𝜂𝑗) − 𝑒𝑥𝑝 (−

𝛼𝑐 𝐹

𝑅𝑇
𝜂𝑗)]   ;       𝐽0,𝑗 = 𝐹𝑘0,𝑗𝑐2

𝛼𝑎(𝑐1,𝑗,𝑚𝑎𝑥 − 𝑐1,𝑗,𝑠𝑢𝑟𝑓)
𝛼𝑎
𝑐1,𝑗,𝑠𝑢𝑟𝑓
𝛼𝑐  

𝜂𝑗 = 𝛷1 − 𝛷2 − 𝑈𝑗  ;     𝑐1,𝑗,𝑠𝑢𝑟𝑓 = 𝑐1,𝑗|𝑟=𝑅𝑠  

(4.8) 

Potential in collectors & Tabs 𝛻. (−𝜎𝑐𝑐,𝑗𝛻𝛷𝑐𝑐𝑗) = −𝑖𝑁,𝑗  at the PE/CC and NE/CC 

𝑖𝑁,𝐽 = 0   at the tabs 

𝑛. (−𝜎𝑐𝑐,𝑗𝛻𝛷𝑐𝑐,𝑗) = 𝑖𝑎𝑝𝑝,𝑗 =
𝐼𝑎𝑝𝑝

𝑁∗𝐴𝑡𝑎𝑏
  at top of the  tab 

𝛷𝑐𝑐,𝑛   = 0  (j=n) at the top of the negative tab 

(4.9) 

Energy balance 𝜌𝑗𝑐𝑝,𝑗 
𝑑𝑇

𝑑𝑡
− 𝜆𝑗  𝛻

2𝑇 = 𝑞𝑟𝑒𝑎,𝑗 + 𝑞𝑎𝑐𝑡,𝑗 + 𝑞𝑜ℎ𝑚,𝑗  

𝜆𝑗   ∆𝑇|𝐶𝐶 𝑎𝑛𝑑 𝑇𝑎𝑏𝑠/𝑎𝑚𝑏𝑖𝑒𝑛𝑡
= ℎ(𝑇 − 𝑇𝑎) 

(4.10) 

reversible heat 
𝑞𝑟𝑒𝑎,𝑗 = 𝑆𝑎,𝑗  𝐽𝑛,𝑗  (𝑇

𝑑𝑈𝑗

𝑑𝑇
) 

(4.11) 

polarization heat  𝑞𝑎𝑐𝑡,𝑗 = 𝑆𝑎,𝑗  𝐽𝑛,𝑗   𝜂𝑗 (4.12) 

Ohmic heat  𝑞𝑜ℎ𝑚 = −𝑖1𝛻.𝛷1 − 𝑖2𝛻.𝛷2 − 𝑖𝑐𝑐,𝑗𝛻.𝛷𝑐𝑐,𝑗   ; (𝑗 = 𝑝, 𝑛) (4.13) 

 

Table 4.2: Governing equation and boundaries conditions [84] 
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The electrodes are assumed to be porous material consisting of a lattice of several 

spherical particles (with 𝜀s the corresponding volume fraction) immersed in the 

electrolyte (with 𝜀l the corresponding volume fraction). The electrochemical processes 

and transport phenomena in the porous electrode and particles are described by an 

extended 3D porous electrode model derived from the work of Newman et al. [84]. The 

intercalated lithium concentration in the spherical particle is computed from the mass 

balance (Fick’s second law), as shown in Eq. (4.4). Due to symmetry, the lithium flux is 

equal to zero at the center of the particle, while at the surface of the particle (SEI), the 

lithium flux is equal to the surface electrochemical reaction rate ( 𝐽𝑗). Furthermore, the 

lithium-ion transport in the electrolyte phase is modeled by using the concentrated 

solution theory  as shown in Eq. (4.5), where the flux is equal to zero (no reaction) at the 

electrode/collector interfaces; additionally there is continuity of species flux in the 

electrolyte at the electrode/separator interfaces. At the SEI, the surface electrochemical 

reaction rate is represented by the Butler-Volmer equation as shown in Eq. (4.8). The 

transport and kinetic parameters are dependent on the exchange current density, the 

overpotential and temperature variation of the system.  The potential in the solid phase 

is derived from the charge balance governed by Ohm’s law as described by Eq. (4.6). At 

the electrode/separator interfaces, there is no flux of charge (the separator acts as a 

barrier for the passage of the electrons), while at the electrode/collector interfaces the 

charge flux corresponds to the total current in the circuit. The potential in the electrolyte 

phase is also governed by Ohm’s law, defined as a function of reaction current density 

and the local concentration of lithium, as shown in Eq. (4.7), where at the 

electrode/collector interfaces the potential gradient is equal to zero. A continuity of 

charge flux is considered in the electrolyte at the electrode/separator interfaces. The 

governing equations for the charge balance in the collectors are given by Eq. (4.9), where 

no transverse current is flowing through the tab domains. The current density is applied 

at the top cross-section of the positive tab, while the potential at the top of the negative 

tab is fixed at zero.  

4.3.3 Thermal modeling 

The electrochemical model is coupled to the thermal model in order to estimate the cell 

temperature change. As mentioned in chapter 3, a two-dimensional transient model can 

be used to model the thermal behavior of a pouch cell. Therefore a single cell sandwich, 

which can be likened to a 2D geometry is suitable to describe the thermal behavior. From 

this assumption, the heat equation is solved in the same geometry as used in the 

electrochemical model to ensure better spatial coupling of these two physics. As shown 
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in Eq. (4.10), the energy balance is solved at each layer (electrodes, separator and current 

collectors and tabs included). Heat generation is mainly composed of the contributions 

of polarization heat, ohmic heat and reversible heat as expressed in Eq. (4.11)-(4.13). At 

the interfaces between cell components (current collectors/electrodes and 

electrodes/separator), the continuity of the heat flux is applied as an internal boundary 

condition. Furthermore, to match the experimental conditions, model validation is 

conducted by taking into account convective heat transfer. Convective heat transfer is 

calculated using the methodology as described in chapter 3 and included in Table 8.1 in 

Appendix II, section 8.3.  Afterwards, the model is performed in adiabatic conditions in 

order to compare the performances and behaviors of the different cell designs.  

4.3.4 Model Input 

The effective parameters are obtained by multiplying the porosity (𝜀𝑗) power to the 

tortuosity (𝛾𝑗, Bruggeman coefficient) of the porous electrode. In addition, 

electrochemical parameters such as the diffusion coefficient of lithium in the solution and 

solid phases, the ionic electrical conductivity of the solution phase, the open circuit 

potential, the entropy coefficient and the reaction rate are affected by temperature change 

through the Arrhenius law and other empirical relations, as listed in Table 8.2, in 

Appendix II, section 8.3. To compute this model, the dimensions of the different 

components as well as the electrochemical and thermal parameters are needed. The used 

input data come from the literature and are listed in Table 8.1, in Appendix II, section 8.3.  

4.3.5 Numerical method and Validation 

4.3.5.1 Numerical aspects 

All equations are simultaneously solved numerically in COMSOL Multiphysics 4.3b with 

the Batteries and Fuel cells toolbox by using the Finite Elements Method (FEM). As the 

governing equations are highly nonlinear, the performance and accuracy of the 

calculation depend heavily on the mesh and solver. A hexahedral mesh is used, generated 

by the swept method. To ensure the accuracy and the mesh independency of the 

solutions, 16,700 hexahedral elements are used over the entire computational domain 

after testing several grid densities with refining zones at each component thickness, 

especially at the electrolyte and also at the junction between the tab and the current 

collector, as illustrated in Figure 4.3. 
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Figure 4.3: Meshing of different cell designs 

In order to save memory and time, the equations are coupled, by using the segregated 

approach as shown in Figure 4.4. At each time step, two segregated steps are considered: 

first, the temperature is solved by keeping the electrochemical variables constant, and 

second, the results of temperatures at each mesh nodes are used to update the 

corresponding local electrochemical parameters and then the local electrochemical 

variables of each mesh nodes are calculated. The process is repeated at each node until 

the convergence is reached for all variables. The direct solver PARDISO (Parallel Direct 

Sparse Solver Interface) was chosen as linear solver. For each time step, the convergence 

is reached where the relative tolerance is below than 10-3 for all variables. Then, the time 

step progresses until the cut-off potential is reached. 

 
Figure 4.4: Procedure of the numerical solution at each time step 
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4.3.5.2 Model validation 

Different capacity tests were carried out, as mentioned in chapter 3, section 3.4, at various 

charge current rates (1/3It, 2/3It and 1 It)  and discharge current rates (1It, 2It, 3It and 4 It) 

under 20°C of ambient and initial temperatures. Pouch cell with the case 1 design, is used.  

The electrode dimensions are presented in both Figure 4.2 and Table 8.1 in Appendix II, 

section 8.3. During the capacity test the cell was cycled between 0%-80% DoD. The 

maximum and minimum cell potential are 3.65V and 2V, respectively.  The battery tester, 

presented in chapter 3, was used to charge and discharge the battery and also to monitor 

the current, potential and temperature. 9 thermocouples (75 µm, K-type) were placed on 

the upper side of the battery surface as illustrated in chapter 3 with the accuracy of ± 

0.1°C obtained from [119]. As the capacity of the cell is 45Ah in our simulation, an 

electrode plate pair is modeled with a capacity of (C=Capacity of the entire cell/total 

number of the electrode pair (N)), where N is 77, therefore the capacity used in the model 

is 0.58Ah and the applied current density is equal to 

𝑖𝑎𝑝𝑝 =
𝐼𝑡

𝑁 ∗  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑎𝑏 𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 
 (4.3)   

The initial electrochemical parameters (concentration and potential in electrolyte and 

solid particle, state of charge) are obtained from model calibration. The model is validated 

by comparing the experimental temperature given by the thermocouples and the 

measured potential with the model results.  
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Figure 4.5: Comparison between experimental and modeling of cell potential at 

different charge current rates and the relative error 
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Figure 4.6: Comparison between experimental and modeling of cell potential at 

different discharge current rates and the relative error 
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Figure 4.7: Comparison between experimental and modeling of the cell maximum 

temperature at different charge current rates 
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Figure 4.8: Comparison between experimental and modeling of the cell maximum 

temperature at different discharge current rates 
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aluminium. For this reason, the maximum temperatures from the model and the 

simulation are compared at different discharge current rates in Figure 4.7 and Figure 4.8. 

The simulation results, at different discharge rates, validate the experimental results. The 

maximum relative error is less 6%. At high current rates, the battery temperature rises 

more due to increased heat generation.  

The voltage and temperature distributions throughout the battery at different time step 

are included in Figure 8.1 and Figure 8.2 in Appendix II, sections 8.2 and 8.3. These results 

confirm the cell behaviour observed in chapter 3. 

4.4 Results and discussion 

After validation based on case 1, the model is extrapolated to others designs (case 2, case 

3 and case 4) with different tab locations as illustrated in Figure 4.2. The same current 

density and physical parameters (electrochemical and thermal) are used for all designs. 

In order to investigate the impact of cell design on battery behavior, the discharge process 

under 4 It rate and 20°C of initial temperature is simulated in adiabatic conditions. In the 

validation part, convective heat transfer was considered in order to match the 

experimental conditions. 

 

Figure 4.9: average cell potential for different cell designs versus time under 4 It 

discharge current rate 
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Figure 4.9 shows the average output potential profiles of the different cell designs. The 

curves have a similar shape, but small potential differences are observed. Case 2 shows 

less potential drop, followed by case 4, case 3 and case 1. The small differences in potential 

may be due to the use of cell components with the same dimensions. On the other hand, 

tab arrangement is responsible for the potential drop by changing the current pathways, 

which affect the active material utilization.  

To highlight the origin of the potential drop, potential distributions relative to tab 

potential along the negative and positive current collector at 640s of discharge time are 

plotted in Figure 4.10 and Figure 4.11. 

 

Figure 4.10: Potential gradient over the negative current collectors and tab under 4 It 

discharge current rate at 640s for different cell designs: (a) case 1, (b) case 2, (c) case 3 

and (d) case 4 

 
 



Chapter 4.  Pouch Cell Design: Impact of Tab Location 
 

 

91 
 

 

Figure 4.11: Potential gradient over the positive current collectors and tabs under 4 It 

discharge current rate at 640s for different cell designs: (a) case 1, (b) case 2, (c) case 3 

and (d) case 4 

 Regardless of cell design, the potential gradient in both current collectors is mainly 

localized near the junctions between the tabs and the current collectors. At the beginning 

of the discharge process, the current enters through the negative tab. Due to resistance 

and the change of cross-section (between tab and current collector), the current amplitude 

(represented by the black line) decreases steeply along the flow direction and leads to a 

gradual potential drop along the negative collector. A similar trend of local overpotential 

therefore occurs along this current collector. According to the electrochemical kinetics (cf 

Eq. (4.8)), the same trend of current density is generated in the positive electrode and then 

flow out through the positive current collector. Finally, the generated current and the 

resistance of the Al foil are responsible for the non-uniform potential formed in the 

positive current collector. Comparing the different cell designs, case 2 shows the smallest 

potential gradient, followed by case 4, case 3 and case 1.  
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Due to the positions of their tabs, as described in Figure 4.12, L1, L2, L3 and L4, are 

proposed to illustrate the maximum current pathways in the current collector of case 1, 

case 2, case 3 and case 4, respectively. From this figure, it is shown that L2 (~240 mm) < 

L4 (~280 mm) < L3 (~325 mm) <= L1 (~325 mm). Resistance (R= (ρ Li)/S) of the negative 

current collector is lowest with case 2, which generates the lowest potential gradient. In 

addition, the voltage drops in case 1 and case 3 are almost the same, due to the same 

maximum current pathways.  

 

Figure 4.12: maximum current pathway on the negative current collector of different 

cell designs: (a) case 1, (b) case 2, (c) case 3 and (d) case 4 
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Due to charge conservation, similar trends of current density and potential gradient are 

generated in the positive current collector, as shown previously. However, the 

aluminium positive collector has a larger potential gradient due to its high electrical 

resistivity compared to the copper negative collector. The non-uniform utilization of 

active material can be quantified by the local depth of discharge (DoD). The DoD 

distributions along the electrode length are investigated in the different cell designs. 

Variation of the DoD through the thickness (due to the lithiation/delithiation 

mechanism) were examined in the literature [44], [120], [121].  

Figure 4.13 and Figure 4.14 show DoD distributions at the middle planes of the anode 

and cathode. Due to the high local overpotential closer to the positive tabs, the active 

material in that region is used faster than the rest of the domain and showed higher DoD. 

As expected, case 2 shows more uniform local DoD compared to other cell designs, due 

to its uniform local overpotential. This uniform DoD distribution leads to high active 

material utilization and less potential drop, as observed in Figure 4.9.  

 

 
 

Figure 4.13: DoD distribution over the middle of the cathode under 4 It discharge 

current rate at 640s for different cell designs: (a) case 1, (b) case 2, (c) case 3 and (d) case 

4, with 𝑐1,𝑝,𝑚𝑎𝑥 the maximum stoichiometric lithium content in the cathode 
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Figure 4.14: DoD distribution over the middle of the anode under 4 It discharge current 

rate at 640s for different cell designs: (a) case 1, (b) case 2, (c) case 3 and (d) case 4, with 

𝑐1,𝑛,𝑚𝑎𝑥 the maximum stoichiometric lithium content in the anode 

 
Regarding thermal behavior, the average temperature of each cell design is represented 

in Figure 4.15. All cell designs have temperature profiles with similar trends, but small 

differences are observable. These differences may arise from the ohmic heat seen in 

Figure 4.17, which affects the total heat source (Figure 4.18).The high potential gradient 

drives the increase of ohmic heat (as conductivity multiplied by the gradient of potential 

squared). As mentioned above, the case 2 design is cycled more uniformly and generates 

less potential gradient and thus less temperature increase. The same logic can be used to 

explain the order of temperature increase (Figure 4.15) and deviation (Figure 4.16) among 

the different cell designs. 
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Figure 4.15: Comparison of the average temperature under 4 It discharge current rate 

for the different cell designs 

 

Figure 4.16: Comparison of the temperature deviation profiles under 4 It discharge 

current rate for the different cell designs 
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The total heat generation represented in Figure 4.18 shows nonlinear behavior, with a 

sharp peak followed by a drop in heat generation near the end of the discharge. To gain 

better insight into this behavior, different heat contributions (reversible and irreversible) 

are represented in Figure 4.19. It is well known that the reversible heat corresponds to the 

chemical reaction manifested by an entropy change, while the irreversible heat 

corresponds to the heat effects of ohmic resistance and polarization. At the beginning of 

the discharge process, the total heat slightly decreases due to the endothermic reaction 

(with a negative reversible heat). The contribution of ohmic heat to the irreversible heat 

is constant throughout the discharge process (cf. Figure 4.17). After that, the rapid 

increase of total heat corresponds to the exothermic reaction (with a positive reversible 

heat). Near the end of discharge, the rapid increase of total heat is caused by a significant 

increase in the irreversible heat by polarization heat.  
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Figure 4.17: average ohmic heat sources profiles at (a) the positive current collector and 

(b) the negative electrode under 4 It discharge current rate 
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Figure 4.18: Comparison of the average heat source profiles under 4 It discharge current 

rate for the different cell design 

 

 

Figure 4.19: total, reversible and irreversible heat sources under 4 It discharge current 

rate for case 2 cell design 

 



Chapter 4.  Pouch Cell Design: Impact of Tab Location 
 

 

99 
 

Figure 4.20 shows the temperature distribution through the different cell designs near the 

end of the discharge process. It can be seen that each cell design represents comparatively 

higher temperature near the positive tab (made of aluminium foil) than the rest of the 

battery, because of the high electrical resistivity and current density in this area. In 

addition, the temperature gradient is lower with cases 2 and case 4 due to the uniform 

potential and current distributions observed previously, which lead to lower heat source 

gradients. Uniform temperature distribution over the surface could be obtained by 

balancing the tab widths. 

 

Figure 4.20: Temperature distribution over the cell under 4 It discharge current rate at 

640s for different cell designs: (a) case 1, (b) case 2, (c) case 3 and (d) case 4 
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In summary, the statistical distributions of temperature, potential and current density are 

represented in Figure 4.21. Distributions are computed from the difference between the 

maximum and the minimum, and normalized by the maximum distribution obtained 

between the different cases (∆𝑀 =
max(𝑀𝑚𝑎𝑥−𝑀𝑚𝑖𝑛)

max
𝑐𝑎𝑠𝑒𝑠

(𝑀𝑚𝑎𝑥−𝑀𝑚𝑖𝑛)  
), where M stands for the temperature, 

current density and potential. It is shown that case 2 and case 4 present more uniform 

temperature, potential and current distributions due to the symmetrical arrangement of 

their tabs (placed at the center of the cell), which minimize the maximum current 

pathways. At pack level, the battery design based on case 2 can be cycled more uniformly, 

requiring a less complex cooling system and strategy. 

 

Figure 4.21: Summary of Comparison between cell designs under 4 It discharge current 

rate 

 
As case 2 presents the most favorable cell design in term of thermal, voltage and current 
distributions, in-depth investigations are carried out with this case in order to highlight 
the impact of the tab width on the distribution. The values of the tab width investigated 
are summarized in Table 4.3. As shown in Figure 4.22, the temperature, potential and 
current density distributions become more uniform with the increase of the tab width, 
due to current density decreases when the surface increases. An increase of the tab width 
gives more uniform potential, current density and thermal distributions, leading to 
uniform utilization of the active material, which tends to improve battery performance 
by increasing the output voltage and capacity of the cell. It also tends to increase energy 
and power densities as established in the literature [44], [122]. 
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 1*𝐿𝑡𝑎𝑏 2* 𝐿𝑡𝑎𝑏 3* 𝐿𝑡𝑎𝑏 4* 𝐿𝑡𝑎𝑏 

Positive tab (m) 0.04 0.08 0.12 0.16 

Negative tab (m) 0.05 0.10 0.15 0.25 

 

Table 4.3 : Value of investigated tab widths of the case 2 design 

 

 

Figure 4.22: Influence of the tab width on the distribution under 4 It discharge current 

rate 

4.5 Conclusion 

Extensive three-dimensional simulations of large LiFePO4 pouch cells have been carried 

out to investigate the impact of different pouch cell designs on performance and variable 

distributions. It has been shown that the cell designs with symmetrical configurations 

(case 2 and case 4) show uniform potential and current density gradient, which minimize 

the ohmic heat and lead to more uniform active material utilization and temperature 

distributions across the cell surface. Cell design with symmetrical configuration tends to 

minimize the maximum current pathways. It is found that the high potential, current 

density and temperature gradient are mainly located near the positive tab due to its high 

resistivity. Due to charge conservation, the potential distribution along the negative 

current collector at the beginning of discharge are responsible for the non-uniform active 

material utilization and the potential distribution in the positive current collector. In 

addition, the increase of the tab width makes the potential, current density and thermal 
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distributions more uniform and improve the battery performance by increasing its output 

voltage. This also tends to increase the energy and power densities. At the pack level, the 

design of case 2 with a subsequent tab width can be cycled more uniformly and thereby 

allows a less complex cooling strategy. 
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5. Numerical Analysis of Different 
Battery Thermal Management 

Systems 

5.1 Goal  

In this chapter, advanced numerical model for battery thermal management system 

(BTMS) have been developed and different BTMS designs, using liquid-cooling and 

Phase change material, have been investigated in order to optimize them. The battery 

module consists of 10 cells (45Ah Lithium iron phosphate pouch format).  A one-

dimensional electrochemical model (see chapter 4) coupled with a three-dimensional 

lumped thermal model was developed to describe the battery behavior. Furthermore, the 

flow channels are modeled by a one–dimensional non-isothermal flow model, and the 

plates are represented by a three-dimensional thermal model in order to estimate the heat 

dissipated from the batteries to the cooling plates. The finite element method (FEM) 

software COMSOL Multiphysics has been used to perform the simulations. At first, a 

preliminary analysis has been carried out for the comparison of different liquid cooling 

plate (cold plate) designs in order to select the most suitable and efficient cooling 

architecture, which allows to decrease the temperature and to obtain a more uniform 

temperature distribution over the surface of the battery cell. Secondly, the performances 

of the battery modules, using the best cold plate design at different locations are 

investigated and compared in order to select the most suitable and efficient cooling 

arrangement, which minimizes the temperature increase and gradient over the module.  

Finally, the passive cooling using phase change material embedded in aluminium-foam 

have been investigated and compared to the liquid cooling method. The impact on the 

cost of the different solutions are also discussed. 

5.2 Introduction  

Due to temperature issues and extension of battery system lifetime and performances, as 

mentioned in chapter 2, a Battery Thermal Management System (BTMS) is needed to 

maintain the operating temperature of the batteries within the optimum thermal 

envelope of 20°C - 40°C [39], [43]. Depending on the area of application, the temperature 

range during vehicle operation  may vary between -30°C and 60°C [39]. 
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The main functions of the BTMS are to regulate the temperature of the battery system 

and to achieve a uniform temperature across each battery cell and between cells in the 

module or pack, principally during high current rate charging and discharging processes. 

Therefore, the optimum design for BTMS is required in commercialization of electric 

vehicles. An effective design of BTMS help to enhance the battery performance, lifetime 

and effectiveness, and to reduce its complexity, size, weight and as well as the cost. 

Four major cooling methods are widely used in electrically propelled vehicles: 

conventional air cooling [102], [123]–[126], liquid cooling [92], [96], [127]–[133], liquid-

vapor phase change cooling [98], [134]–[139] and Phase Change Material (PCM) cooling 

[105], [140]–[142], or a combination of these methods. The conventional forced air-cooling 

is generally used in many HEVs, however the liquid cooling systems are advantageous 

for PHEV and BEV applications, where high amount of dissipated heat should be 

removed due to the wide operating range of the battery. In addition liquid cooling shows 

a heat transfer coefficient 1.5 to 3 times larger than air cooling [88] and required smaller 

cell to cell gap than the air cooling [143]. Recently, most of liquid cooling systems are 

based on cold plates (thin metal that include one or more internal channel through which 

a liquid is flowing) in order to increase the cooling efficiency and reducing the amount of 

liquid and the power consumption. Jarrett et al. [92], [131] investigated the optimization 

of a serpentine-channel cold plate in order to minimize the pressure drop and maximize 

the removal heat and temperature uniformity. Jin et al. [96] investigated ultra-thin mini-

channel performance by comparing the oblique structure to the conventional channel and 

shows that the high performance was obtain with the oblique structure. We learned from 

these works that the designs of the cold plate can play a key role on the efficiency of the 

liquid cooling, however they didn’t tackled the used of the cold plate in battery module. 

Recently, some studies investigated the implementation of the cold plates on cell and 

pack levels. At cell level, Huo et al. [129],  investigated numerically the influence of the 

number of cooling channel and effect of flow direction on the battery cell temperature 

during 5It discharge current rate. At pack level, Liu et al [132] investigated numerically 

the thermal behavior  of a module of  20 prismatic batteries close to each other with two 

cold plates placed at the extremity, from the pack design, where high temperature 

increase was observed in the middle of the pack. Smith et al. [90] investigated the 

performance of the liquid-based BTMs where the cold plate was placed at the bottom of 

the battery module with 8 prismatic cell. However, these studies were carried out without 

taking into account the heat generated at the battery tab. From these studies, it can be 

concluded that the pouch cells are less investigated. In addition, the position of the cold 

plate on the battery modules can be improved. 
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In addition, PCM has been identified as a good solution for battery cooling system in 

PHEV and BEV applications [101], [103]. PCM on its own has relatively low thermal 

conductivity and to prevent high temperature increase, the generated heat must be 

removed quickly. For this reason, several techniques exist to improve the thermal 

conductivity of the PCM. Possible improvements are the encapsulation of PCM into 

metal-foam [102], [144]–[149], the metal is often made of aluminium, copper or graphite 

composite. Several modelling techniques represent the PCM as solid material [101], [103], 

[150] without taking into account the liquid phase after the melting. This phase can 

involve convection that can change the temperature distribution of the battery.  

In this chapter, extended numerical models have been developed to simulate the existing 

and novel cold plate’s designs in order to predict the optimal design which minimize the 

pressure drop of the water and also the temperature rise and distributions of the battery 

at various discharge processes. This comparison is carried out by using a single battery 

in the middle of the two cold plates with the same designs.  In addition, the performances 

of the selected cold plate applied on battery module, with 10 pouch cells (as used in the 

previous chapter) connected in series, have been investigated. After evaluation of the 

effective position of the cold plate and its possibility to be associated with hot plate 

(without channel flow), the influence of liquid mass flow rate, liquid inlet temperature 

and ambient temperature of the battery module are also analyzed. 

Secondly, PCM embedded in aluminium-foam system is used to cool the same battery 

module, as used previously in the first part.  For this, an extended model of PCM that 

take into account the natural convection of the liquid arising from the melting of the PCM 

is used.   

Finally, a comparison between the liquid cooling and PCM has been made in terms of 

performance and cost. 

5.3 Liquid cooling method 

5.3.1 Investigation of the cooling plate’s designs 

5.3.1.1 Model assumptions and geometry features  

Figure 5.1 shows the pouch cell cooled by two cold plates with the same designs and 

dimensions. The cold plates are located on both sides of the pouch cell. The heat is 

generated by the battery, transferred into the cold plates, and removed throughout the 

cooling channels. Four cold plates’ designs (Figure 5.2) are investigated at various 
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discharge current rates (2 It, 4 It and 6 It) in order to illustrate the most efficient in terms 

of the maximum temperature rising and temperature distribution of the battery cell. The 

whole system is insulated in order to quantify the effectiveness’s of the different cold 

plate designs and to represent the real situation in pack level where the battery are 

covered by protective material. The cooling plates and cooling channel are made of 

aluminium and copper, respectively. 

 

Figure 5.1: Battery cell cooled with two cold plates 

 
The schematics of the different cold plate’s designs are represented in Figure 5.2 and have 

the same dimensions of 150 mm in width, 26 mm in depth and 230 mm in height. The 

different cold plate designs differ from the structure of the cooling channels with an inner 

diameter of 16 mm: 

- Design 1: characterized by 5-straight cooling channels distributed equidistantly 

along the width of the cold plates. The inlet connector channel is placed at the 

middle in order to have more flow rate at the middle of the cold plate. The outlet 

connector channel is placed at the middle of the bottom to recover the hot liquid. 

This design has the advantage of reducing the pressure drop inside the cooling 

channel. 

 

- Design 2 comprises one cooling channel having an inlet and outlet ends on the left 

and right sides of the cold plate, respectively. The intermediate portion with a 

sinuous pattern has arranged vertically. This design has the advantage of 

conducting the total flow rate into the cooling channel. 



Chapter 5.  Numerical Analysis of Different Battery Thermal Management Systems 
 

 

109 
 

 

- Design 3: characterized by 4-straight cooling channels, where the total flow rate is 

split uniformly into the different lines. 

 

- Design 4 have the same characteristic than the design 2, however the intermediate 

portion with sinuous pattern is arranged horizontally. 

 

Figure 5.2: Different cold plate designs: (a) design 1, (b) design 2, (c) design 3 and (d) 

design 4 

 
The simulation of heat transfer of the whole system requires a 3D geometry 
representation. Simulation of 3D flow and heat transfer inside the cooling channels is 
computationally expensive. As the diameter of the cooling channel is smaller (16 mm), 
the flow and heat transfer inside the cooling channels can be modelled with 1D pipe 
thermal-flow equations coupled with the 3D modelling of the cold plates. This technics 
have been never published regarding the BTMS modelling. The equations describing the 
cooling channel flow are fully coupled with the heat transfer equations of the cooling 
plate and battery. 

5.3.1.2 Model development  

5.3.1.2.1 Battery domain  

The battery behavior is investigated by using a one-dimensional electrochemical model 

coupled with a lumped 3D-thermal model. This model was described in detail in chapter 

4 and is able to accurately estimate the average voltage and heat source at different 
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current rates. The heat source has mainly three contributions the reaction heat (𝑞𝑟𝑒𝑎), the 

reversible heat (𝑞𝑎𝑐𝑡), and the electrical ohmic heat (𝑞𝑜ℎ𝑚). The heat generation is evenly 

distributed within the electrode domain (Figure 5.4). The used input parameters of the 

electrochemical model are listed in Appendix II, Table 8.1 and Table 8.2. The 

electrochemical model is coupled with a 3D lumped thermal model (as shown in Figure 

5.3), which requires as inputs the thermal parameters as estimated in chapter 3 section 

3.3.4.  

 

Figure 5.3: Battery model 

 

Figure 5.4: different battery domain 

The energy balance equation of the battery cell (Figure 5.4) is formulated as:  
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 𝜌𝐶𝑝 
𝑑𝑇

𝑑𝑡
− 𝜆 𝛻2𝑇 = 𝑞𝑔 (5.1)  

 
Where: 

𝜌(kg/m3): is the density of the battery, 

𝐶𝑝(J kg
−1 K−1): is the specific heat capacity of the battery, 

𝜆(Wm−1K−1): is the thermal conductivity of the battery,  

𝑞𝑔(Wm−3): is the heat source generated by the battery, 

𝑇(K): is the temperature of the battery. 

- in the electrode domain, the heat source (𝑞𝑔) is given by: 

 𝑞𝑔 =  𝑞𝑟𝑒𝑎,𝑗 + 𝑞𝑎𝑐𝑡,𝑗 + 𝑞𝑜ℎ𝑚,𝑗 (5.2)  

 

Where: 

 𝑞𝑟𝑒𝑎,𝑗 (Wm−3): is the reaction heat, computed from the electrochemical model, 

 𝑞𝑎𝑐𝑡,𝑗(Wm−3): is the activation heat, computed from the electrochemical model, 

𝑞𝑜ℎ𝑚,𝑗(Wm−3): is the ohmic heat, computed from the electrochemical model, 

- in the tabs domain, the heat source is given by: 

 

 𝑞𝑔 =
𝑅′′𝐼𝑡

2

𝑉𝑡𝑎𝑏
;     𝑅′′ = 𝜌′′

𝑙

𝑆
 (5.3)  

Where: 

𝑅′′(Ω): is the electrical resistance of the associated tab, 

𝐼𝑡(A): is the current rate, 
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𝑉𝑡𝑎𝑏(m
3): is the volume of the associated tab,  

𝜌′′(Ωm): is the resistivity of the associated tab, 

𝑙(m): is the length of the associated tab, 

𝑆(m2): is the cross-section of the associated tab, 

The value of 𝑅′′ are included in chapter 3, section 3.3.2.2, for both tabs of the considered 

battery type. 

5.3.1.2.2 Cooling plate domain 

5.3.1.2.2.1  Energy balance of the cold plate 

The energy equation is given by: 

 𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝜆 𝛻2𝑇 (5.4)  

Where: 

𝜌(kg/m3): is the density of the cold plate, 

𝐶𝑝(J kg
−1 K−1): is the specific heat capacity of the cold plate, 

𝜆(Wm−1K−1): is the thermal conductivity of the cold plate,  

The cold plates are made of aluminium. 

5.3.1.2.2.2  Flow and heat transfer in the cooling channels   

Cooling channel with a large enough length/diameter ratio can be reduced to a 1D 

representation with cross section averaged velocity and pressure [151]. 

-  The momentum and mass conservation of the 1D pipe flow in the cooling 

channels describe below are a simplified form of the Navier-Stokes equations: 
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 𝜌
𝜕𝑣 

𝜕𝑡
= −𝛻𝑝 − 𝑓𝐷

𝜌

2𝑑ℎ
|𝑣|𝑣 + 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 (5.5)  

 
𝜕𝐴𝜌

𝜕𝑡
+ ∇. ( 𝐴 𝜌 𝑣) = 0 (5.6)  

Where: 

𝑣(m/s): is the averaged fluid velocity at the cross section of the cooling channel, 

 𝐴(m2): is the cross section of the cooling channel, 

𝑑ℎ(m): is the hydraulic diameter of the cooling channel, 

𝜌(kg/m3): is the density of the water,  

𝑝(N/m2): is the pressure, 

𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦(N/m
3): represents the body force due to the gravity,  

𝑓𝐷 is the Darcy friction factor, which describes the pressure drop due to the viscous shear. 

Among the different existing Darcy friction factor models in the literature  [152], [153] for 

single phase flow, the Churchill relation [154] is more suitable to describe the water. This 

relation is valid for laminar flow (Reynolds number (Re) lower than 2000), turbulent flow 

(Reynolds number (Re) higher than 3000), and transitional region in between. In the 

Churchill relation, the Darcy friction factor is expressed as: 

 𝑓𝐷 = 8 [(
8

𝑅𝑒
)
12

+ (𝐴 + 𝐵)−1.5]

1
12

 (5.7)  

Where A and B are constants. 

 𝐴 = [−2.457 𝑙𝑛 (
7

𝑅𝑒
)
0.9

+ 0.27 (
𝑒

𝑑ℎ
)]

1
12

 (5.8)  
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 𝐵 = (
37530

𝑅𝑒
)
16

 (5.9)  

 
 
The Reynolds number is equal to: 

 𝑅𝑒 =
𝜌𝑣𝑑ℎ
𝜇

 (5.10)  

Where 𝜇 (Pa.s) is the dynamic viscosity and 𝑒(𝑚) is the surface roughness. 

The surface roughness is a function of the cooling channel material.  

- The energy equation for the cooling channel flow is:  

 𝜌𝐴𝐶𝑝
𝜕𝑇 

𝜕𝑡
+ 𝜌𝐴𝐶𝑝𝑣. ∇T = ∇. (𝐴𝜆∇T) + 𝑓𝐷

𝜌𝐴

2𝑑ℎ
|𝑣|3 + 𝑄𝑤𝑎𝑙𝑙 (5.11)  

Where: 

𝐶𝑝(J kg
−1 K−1): is the specific heat capacity of the water, 

𝜆(Wm−1K−1): is the thermal conductivity of the water. 

The second term on the left hand corresponds to the heat dissipated due to viscous shear. 

𝑄𝑤𝑎𝑙𝑙(W/m), is the heat transferred from the cold plate to the water in the cooling channel 

through its wall and is expressed as: 

  𝑄𝑤𝑎𝑙𝑙 = ℎ𝑖𝑛𝑡  𝑍(𝑇𝑤𝑎𝑙𝑙 − 𝑇) (5.12)  

Where 

𝑍(m): is the wetted perimeter of the cooling channel, 

ℎ𝑖𝑛𝑡(W/m2. K): is an overall heat transfer coefficient between the internal film of the 

cooling channel and the wall of the cold plates, 
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𝑇𝑤𝑎𝑙𝑙(°C): is the external temperature outside of the mini-channel given by the 3D heat 

transfer in the cold plate, 

 ℎ𝑖𝑛𝑡 has been estimated from the forced convection correlation, which depends on the 

Nusselt number (Nu) and Prandtl numbers (Pr), the flow regime and the design of the 

channel. 

 

- for laminar flow regime with round pipe [155], the Nusselt number is given by: 

  𝑁𝑢𝑙𝑎𝑚 = 3.66  (5.13)  

- for turbulent flow regime, the following Nusselt correlation has been used [156]: 

  𝑁𝑢𝑡𝑢𝑟𝑏 =
(𝑓𝐷/8)(𝑅𝑒 − 1000)𝑃𝑟

1 + 12.7√𝑓𝐷/8(𝑃𝑟2/3 − 1  )
  (5.14)  

The Prandtl number is expressed as: 

 

 
𝑃𝑟 =

𝜇 𝐶𝑝

𝜆
 (5.15)  

ℎ𝑖𝑛𝑡 is expressed as: 

 ℎ𝑖𝑛𝑡 = 𝑁𝑢
𝜆

𝑑ℎ
 (5.16)  

With  

 𝑁𝑢 = max (𝑁𝑢𝑙𝑎𝑚, 𝑁𝑢𝑡𝑢𝑟𝑏) (5.17)  
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5.3.1.2.2.3 Boundary and initial conditions   

- Interface battery cell/cooling plates 

The heat flux continuity is applied, where the heat from the battery is transferred to the 

cold plate: 

 −𝜆𝑏𝑎𝑡𝑡𝑒𝑟𝑦∇T|𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 = −𝜆𝑐𝑜𝑙𝑑 𝑝𝑙𝑎𝑡𝑒∇T|𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 (5.18)  

 

- Interface cooling plate/channels 

At the interface between the cold plate and cooling channel, the boundaries conditions 

are given by the continuity of the heat transfer fluxes. Indeed the heat from the cold plates 

is transferred to the channels: 

 −𝜆𝑐𝑜𝑙𝑑 𝑝𝑙𝑎𝑡𝑒∇T|𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 = 𝑄𝑤𝑎𝑙𝑙 (5.19)  

 

- At the inlet of the cooling channel, a temperature of  𝑇𝑖𝑛𝑙𝑒𝑡 (°C) is specified: 

 𝑇 = 𝑇𝑖𝑛𝑙𝑒𝑡 (5.20)  

- At the outlet of the cooling channel, an outflow condition is applied. 

- At the external surface, the heat is dissipated through the ambient air by 

convection. 

 𝜆∇T|𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 = ℎ𝑒𝑥𝑡(𝑇 − 𝑇𝑎𝑚𝑏) (5.21)  

Where: 

 ℎ𝑒𝑥𝑡(𝑊/𝑚². 𝐾): the convective heat coefficient between the interface battery and cooling 

plates included and ambient environment. 

𝑇𝑎𝑚𝑏 (°𝐶) : the ambient air temperature. 

- The initial temperature of the battery pack is defined as 𝑇𝑖𝑛𝑖(°C): 
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 𝑇 = 𝑇𝑖𝑛𝑖 (5.22)  

- In the inlet, the liquid velocity is equal to the ratio of volumetric flow rate and the 

cross-section of the cooling channel.  

 𝑣 =
𝑞𝑣,0
𝐴

 (5.23)  

Where 𝑞𝑣,0 (m3/s) is volumetric flow rate. 

 

- In the outlet, the atmospheric pressure (𝑝𝑎(Pa)) is assigned. 

 𝑝 = 𝑝𝑎 (5.24)  

5.3.1.2.3  Numerical procedure 

All equations are simultaneously solved numerically in COMSOL Multiphysics 4.3b by 

using the Finite Elements Method (FEM). As the governing equations are highly 

nonlinear, the performance and accuracy of the calculation depends heavily on the mesh 

and solver. The unstructured mesh was generated by using the swept method. To ensure 

the accuracy and the mesh independency of the solutions, 75791 hexahedral, 10058 

triangular, 984 edge and 84 vertex elements are used over the entire computational 

domain after testing several grid densities with refining zones at the cooling channels. In 

order to reduce the memory usage and computational time, the equations are coupled 

using the segregated approach as shown in Figure 5.5. At each time step, two segregated 

steps are considered: first, the temperature and flow are solved by keeping the 

electrochemical variables constant, and second, the results of temperatures at each mesh 

nodes are used to update the corresponding local electrochemical parameters and then 

the local electrochemical variables of each mesh nodes are calculated. The process is 

repeated at each node until the convergence is reached for all variables. The direct solver 

PARDISO (Parallel Direct Sparse Solver Interface) was chosen as linear solver. For each 

time step, the convergence is reached where the relative tolerance is below 10-3 for all 

variables. Then, the time step progresses until the cut-off potential is reached 
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Figure 5.5: Procedure of the numerical solution at each time step 

5.3.1.3 Results of the different cooling plate designs 

Cold plates with different cooling channel designs are investigated in order to achieve 

better heat management. Based on the methodology as described above, during high 

discharge rate, the effect of the channel architecture, the exchanged heat flux with the 

environment air, ambient and inlet temperatures are evaluated in term of maximum and 

gradient temperatures. 

5.3.1.3.1 Effect of the channel design   

The battery cell is cycled between the maximum and the minimum voltages with a 

discharge rate of 6 It. The simulations of the different cooling plate design are performed 

by using the same conditions, physical and cooling parameters. The impact of the cold 

plate’s designs on battery behavior are investigated by considering the heat removed by 

the refrigerant and the heat dissipated through the ambient air with a convective 

coefficient of 100 W/m².K. The water is used as a refrigerant with a volume flow rate of 

30 l/min and an inlet and initial temperature of 20°C. 

To evaluate the effect of the channel design, the evolution of the maximum and gradient 

temperatures of the battery cooled by the different cooling plate under 6 It discharge 

current, are presented in Figure 5.6 and Figure 5.7. It is clearly shown that all cooling 

plate’s designs give almost similar temperature profile trends with a small difference. 

The results indicate more temperature drop with the design 4, follow by design 2, design 

3 and design 1. The explanation can from the energy balance of the whole system, where 

the total amount of heat generated by the battery is distributed as follows: 
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- The heat removed by the liquid  

- The heat dissipated by convection through the ambient air  

- The remaining heat  is stored inside the system and being responsible of 

temperature increases of the battery 

As the external surfaces of the different cooling plate designs are the same, therefore the 

amount of heat dissipated by convection (ℎ𝑒𝑥𝑡 𝑆 (𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡) are the same for the 

different cases. The small differences may from to the heat removed by the water 

(𝜌 𝑞𝑣𝐶𝑝(𝑇𝑜𝑢𝑡𝑙𝑒𝑡 − 𝑇𝑖𝑛𝑙𝑒𝑡). The flow rate over the different branches of the channel are 

responsible for the temperature drop by increasing the heat transfer from the plates to 

the channel flow. Due to the division of the flow rate in the different channel branches of 

the design 1 and design 3, less temperature drops are observed, compared to the design 

2 and 4, for which the flow rate remain the same and is equal to its total value. Regarding 

the temperature gradient as observed in Figure 5.7, the most uniform temperature 

distribution is obtained with the design 1 follow by design 3, design 4 and design 2 due 

to the uniform repartition of the flow rate through the plate, as illustrated in Figure 5.9. 

Furthermore, due to the low thermal conductivity of the battery in its normal direction, 

the cooling plate in direct contact with the battery leads a high temperature drop, in 

contrast a high gradient temperature is observed because of the high temperature in the 

middle and low temperature at the surface of the battery, as illustrated in Figure 5.8.    

 

Figure 5.6 : Maximum battery cell temperature given by different cooling designs at 6It 

discharge current rate, Tinlet=20°C and Tamb=20°C with h=100 W/m².K. 
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Figure 5.7: Cell temperature gradients with different cooling designs at 6It discharge 

current rate, Tinlet=20°C and Tamb=20°C with h=100 W/m².K. 
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Figure 5.8: Temperature distribution over the cell at the end of 6 It discharge current 
rate for different cold plate designs, Tinlet=20°C and Tamb=20°C with h=100 W/m².K. 
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Water 
Design 1 Design 2 Design 3 Design 4 

 
Max=20.60 Max=20.37 Max=20.58 Max=20.38 

 
    

 
 Min=20.33 Min=20.07 Min=20.10 Min=20.07  

 

Figure 5.9: Temperature distribution over the cell with different cold plate designs at 
the end of 6 It discharge current rate, Tinlet=20°C and Tamb=20°C with h=100 W/m².K. 

5.3.1.3.2 Influence of inlet temperature 

The performance of the different cooling plates was examined by considering different 

inlet temperatures (0°C and 40°C) of the liquid. At low inlet temperature, the plates act 

to cool the battery, as illustrated by the evolutions of the maximum and gradient 

temperatures in Figure 5.10 and Figure 5.11. These results corroborate the previous ones 

observed in Figure 5.6 and Figure 5.7. However, at high inlet temperature, the plates act 

to heat the battery, as illustrated as illustrated from the evolution of the maximum and 

gradient temperatures in Figure 5.12 and Figure 5.13, where the inverse trend is observed. 
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Figure 5.10: Maximum battery cell temperature given by different cooling designs at 6It 
discharge current rate, Tinlet=0°C and Tamb=20°C with h=100 W/m².K. 

 
Figure 5.11: Cell temperature gradients with different cooling designs at 6It discharge 

current rate, Tinlet=0°C and Tamb=20°C with h=100 W/m².K. 
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Figure 5.12 : Maximum battery cell temperature given by different cooling designs at 6It 
discharge current rate, Tinlet=40°C and Tamb=20°C with h=100 W/m².K. 

 

 
 

Figure 5.13: Cell temperature gradients with different cooling designs at 6It discharge 
current rate, Tinlet=40°C and Tamb=20°C with h=100 W/m².K. 
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In summary, it can be observed that the design 1 shows the lower temperature gradient 
than the other designs due to the uniform distribution of the flow rate into the different 
subdivision of the cooling channel. 
In conclusion, as the difference between the maximum temperatures given by the 
different cold plate design is low, our main criteria of selection is dictated by the design 
with the lowest temperature gradient. Therefore, the design 1 is identified to be more 
appropriate to build an efficient BTMS 

5.3.2 Impact of cooling plate location on the Battery module thermal 
management system 

5.3.2.1 Model assumptions and geometry features  

The battery module includes 10 Lithium iron phosphate pouch cells (32V, 45Ah) 

connected in series. The cold plates and hot plates (i.e. plates without cooling channels) 

have been placed at different positions in the module. The heat is removed from the 

battery module by the cold plates with design 1. The hot plates are used to conduct heat 

and to improve the uniformity of battery module temperature. Different positions of the 

cold plate in the battery module are investigated as illustrated in Figure 5.14, in order to 

select the suitable and efficient cooling arrangement of the cooling plates that minimizes 

the maximum temperature increase and the gradient in the module. The different battery 

module designs include: 

- Design A: battery module with cold plates between the cells (no hot plates used), 

- Design B: battery module with hot plates between the cells and cold plates at both 

the extremities of the module, 

Design C: battery module with hot plates between cells and cold plate at one of 

the longitudinal sides, 

- Design D: battery module with hot plates between the cells and cold plates at the 

two of the longitudinal sides, 

- Design E: battery module design with hot plates between cells and cold plate at 

the bottom side, 

- Design F: battery module design with a cold plate at both extremities of the 

module and without hot plates between cells. 
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Design A Design B Design C 

 
  

Design D Design E Design F 

 
  

 

Figure 5.14:  Different Battery module designs:  Design (A, (B), (C), (D), (E), (F). 
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The battery module is assumed thermally insulated from the environment and therefore 
only the cold plates are able to remove the heat from the module. The cells are 
interconnected by copper busbars, which presented a same amount of heat source than 
the negative tab. The cells are assumed to have the same electrical and electrochemical 
behaviors. The comparisons of the different battery pack designs is based on the values 
of the maximum temperature of the cells and on the temperature gradient over the cells.  

5.3.2.2 Results 

5.3.2.2.1  Comparison of the different cooling plate location  

The simulations of the different battery thermal management designs are performed at 
4It discharge current rate and 20°C of operating and initial temperatures.  A volume flow 
rate of 30 L/min and an inlet temperature of 20°C are used in the cooling channel inlet. 
Atmospheric pressure is set at the cooling channel outlet. The numerical simulation was 
implemented in Comsol Multiphysics version 4.3b. The same numerical methods 
described in section 5.3.2 have been used. The mesh independency is also investigated to 
ensure the accuracy of the numerical results. 
As the cells in each module designs show almost the same maximum temperature 
profiles, except for design B, where the temperatures of the cells closest to the cold plates 
are different from those at the middle of the pack. Therefore, in Figure 5.15a the 
maximum temperature of one cell is represented for the module designs A, C, D, E and 
F while the maximum of two cells (one at the extremity and another one at the middle) is 
represented for the module design B.  
The different battery module designs are compared based on the value of the maximum 
temperature evolution and on the temperature difference over the battery cells.  
The maximum temperature profiles given by the different module designs show similar 
trends, with different maximum temperature increase. Without cooling, the maximum 
temperature is significantly higher (up to 55°C) and uniform. The design D shows the 
lowest maximum temperature increase, followed by designs A, C, E, and B, respectively.  
Regarding the temperature difference, as the cells in the different pack designs show 

almost the same temperature difference profiles, except for designs B and F, where the 

temperatures difference of the cells closest to the cold plates are different from those at 

the middle of the pack. Therefore, in Figure 5.15b the maximum temperature of one cell 

is represented for the module designs A, C, D, and E while the temperature differences 

of two cells (one at the extremity and another one at the middle) is represented for the 

module design B and F. It can be noticed that less temperature difference is obtained with 

the case of without cooling follow by the design B and F with only the cells placed at the 

middle of the module. For the entire module, with liquid cooling the lowest temperature 

gradient is obtain with the design D, whereas the design B and F show higher 

temperature gradient due to fact that one face of the cell (placed at the extremity of the 



Chapter 5.  Numerical Analysis of Different Battery Thermal Management Systems 
 

 

127 
 

pack) is cooled by cold plates. In addition the temperature gradient given by the design 

D is less than 5°C, as suggested by Pesaran et al. [88] in order to maximize the battery 

lifetime. For better understanding of the performance of the different module designs, 

the temperature distributions are plotted in Figure 5.16 and Figure 5.17 at the end of 4It 

discharge current rate. 

(a) 

 
(b) 

 
Figure 5.15: Comparison of the maximum temperature (a) and temperature gradient (b) 

profiles under 4 It discharge current rate for different battery module designs 
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Since the highest temperatures are reached at the end of the discharging processes with 

4 It current rate, Figure 5.16 shows the temperature distribution over the different module 

designs at the end of the discharging processes. The highest temperatures are located on 

the tabs and the cells in the middle of the module, based on designs A, B, C, E and F. 

Design D shows uniform temperature distribution. Hot plates incorporated between the 

cells play important roles for better temperature uniformity. Indeed, the heat generated 

within the cells was dissipated through the hot plates to the cold plates. This figure shows 

how the location of the cold plate affects the temperature distribution in the battery 

module. 

The main characteristics of the different designs include: 

- Design A shows a low maximum temperature increase, located mainly located at 

the tabs and in the middle of each battery cell. However, the temperature gradient 

of each battery cell is still higher due to a low thermal conductivity in the normal 

direction of the cell.  

- For designs B and F, due to the absence of cold plates between the cells, the 

temperature is uniformly distributed in the middle of the module, however, the 

maximum temperature increase remains high due to the location of cold plates at 

the extremities and due to the low thermal conductivity in the normal direction of 

the cell. 

- The design C shows that the longitudinal position of the cold plate is reducing 

more the maximum temperature increases than the case of the cold plate in the 

transversal position, as observed with design B and F. However, due to the cooling 

at only one of the sides of the battery module, the temperature gradient remains 

higher. 

- Design D shows the lowest maximum temperature increase and lowest 

temperature gradient because of the presence of the cold plates at both the 

longitudinal sides of the module. 

- Design E shows that the position of the cold plate at the longitudinal bottom side 

is more effective than the cold plate in a traversal position, as observed in designs 

B and F. 
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 Design A Design B Design C 

 

 
 

Min : 20.281 °C  ;  Max : 33.66 °C 
 

 
 

Min : 20.31 °C ;Max : 38.25 °C 
 

 
Min : 23.01 °C ;  Max : 34.85 °C 

 

Design D Design E Design F 

 
Min : 22.08 °C; Max : 30.56 °C 

 
Min : 23.14 °C; Max : 36.75 °C 

 
Min : 20.33 °C ; Max : 47.93 °C 

 

Figure 5.16: Temperature distribution over the different module designs at the end of 4 It discharge current rate and 20°C 
of initial temperature 
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 Design A Design B Design C 

 

 
 

Min : 20.281 °C  ;  Max : 33.66 °C 
 

 
 

Min : 20.31 °C ;Max : 38.25 °C 
 

 
Min : 23.01 °C ;  Max : 34.85 °C 

 

Design D Design E Design F 

 
Min : 22.08 °C; Max : 30.56 °C 

 
Min : 23.14 °C; Max : 36.75 °C  

Min : 20.33 °C ; Max : 47.93 °C 

 

Figure 5.17: Temperature distribution over the different module designs in the zy plane at the end of 4 It discharge current 
rate and 20°C of initial temperature 
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In conclusion, the battery module with design D is identified as the most optimized one 
from the thermal point of view. 

5.3.2.2.2 Influence of current rate 

The performance of the battery module with design D is investigated at different 

discharge current rates (2It, 4It and 6It). The evolution of the maximum temperature 

increases and temperature gradients are shown in Figure 5.18 and Figure 5.19, 

respectively. By increasing the current rate, the maximum temperature increase is due to 

the generated high heat source. With the liquid cooling method, the maximum 

temperatures dropped are 30°C, 20°C and 10°C compared to the no-cooling cases at the 

end of 6It, 4It and 2It discharge current rates, respectively. However the temperature 

gradients increase by 6°C, 4°C and 2°C at the end of 6It, 4It and 2It discharge current rates. 

With high discharge rate, the maximum temperature increase and temperature gradient 

remain in the safety range (60°C and 5°C). Therefore, the simulation results indicate that 

the liquid cooling strategies can satisfy the requirement at any allowed operating 

discharge rate. 

 

Figure 5.18: Evolution of the maximum temperature at different discharge current rates, 
20°C of initial temperature and 30L/min of flow rate 
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Figure 5.19: Evolution of the temperature gradient at different discharge current rates, 
20°C of initial temperature and 30L/min of flow rate 

5.3.2.2.3 Influence of the inlet and initial temperatures 

The average temperatures of the battery with different inlet temperatures (0°C, 20°C, 

40°C) and initial temperatures (0°C, 20°C, 40°C) at 4 It discharge process with a flow rate 

of 30L/min are illustrated in the Figure 5.20 and Figure 5.21. With a higher difference 

between the inlet and initial temperature, the inlet temperature became dominant at the 

end of discharge process; the temperature of the battery will stabilize near the value of 

the inlet temperature.  
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Figure 5.20: Comparison of the average temperature at 4 It discharge current rate and 
20°C of initial temperature at different coolant inlet temperatures 

 

 

Figure 5.21: Comparison of the average temperature at 4 It discharge current rate and 
20°C of inlet temperature at different initial temperatures 
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5.3.2.2.4 Influence of the flow rate  

Figure 5.22 shows the evolution of the average battery temperature at various liquid flow 

rates (5L/min, 10 L/min, 30 L/min and 40 L/min) during discharge process with a 

current rate of 4 It. As expected, it has been shown that with higher flow rate the battery 

temperature increase is small and the temperature gradient (Figure 5.23) is higher, but 

remains lower than 5°C (except at the end of the discharge). Higher flow rate results in a 

higher heat removal by the cooling channel flow. 

 
 

Figure 5.22: Comparison of the average temperature at 4 It discharge current rate at 
different flow rates 
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Figure 5.23: Comparison of the temperature gradient at 4It discharge current rate at 
different flow rates 

The effect of the flow rate on the pressure drop has been investigated as well for design 

D. Figure 5.24 shows the pressure drop and the corresponding pump power required for 

various flow rates. As expected, liquid cooling, which requires higher flow rates also 

needs higher pumping power. As shown previously, with a flow rate of 30L/min, the 

maximum temperature of the battery pack is relatively low (up to 26°C) and remains 

within the safety range (between 20°C and 40°C). Therefore the required pumping power 

needed is about 6W. 
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Figure 5.24: Evolution of pressure drop and required pump power at 4 It discharge 

current rate at different flow rates 

5.4 Solid-liquid phase change material cooling method 

5.4.1 Model Description 

5.4.1.1 Geometry features and Model assumptions 

The same battery pack with 10 LiFePO4 pouch cells connected in series (32V, 4.5Ah), as 

previously used, has been selected for this study. The pack is cooled by PCM embed on 

aluminium-foam, as illustrated in Figure 5.25. The PCM absorbs the heat generated from 

the batteries while minimizing the temperature changes in the battery pack. As PCM, 

Paraffin wax is used in this study due to its high latent heat of fusion. Considering its low 

thermal conductivity, the Paraffin wax is embedded in aluminium-foam in order to 

increase the heat transfer. The impact of PCM thicknesses and initial temperatures are 

also investigated at 4 It discharge current rate. The battery pack is insulated. 

The PCM absorbs the heat generated from the batteries while minimizing the 

temperature changes in the battery pack. The effectiveness of the PCM is governed by the 

melting point and latent heat of the material. Paraffin wax (Rubitherm RT-42) was used 
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as the PCM in this study due to its high specific latent heat of fusion and its melting point 

in the operating temperature range of the battery pack. 

 
Figure 5.25: Battery pack cooled by PCM embed on aluminum-foam 

 

5.4.1.2 Model development 

5.4.1.2.1 Battery domain 

The same battery model as described above in the liquid cooling system is used to 

compute the heat source. This model is coupled with the energy balance applied in PCM 

domain. 

5.4.1.2.2 PCM domain 

As shown above, the PCM is embedded in aluminium foam. The PCM is modelled by 

using the effective heat capacity method. This method is based on the idea of 

incorporating the phase change phenomenon into the heat capacity calculations [101], 

[157].  The energy balance of the PCM is expressed as follows: 

 𝜌𝑒𝑓𝑓 𝐶𝑝𝑒𝑓𝑓
𝜕𝑇

𝜕𝑡
= 𝜆𝑒𝑓𝑓 𝛻

2𝑇 (5.25)  
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Where 

𝜌𝑒𝑓𝑓(kg/m
3): is the effective density of the PCM embedded in aluminium-foam, 

𝐶𝑝,𝑒𝑓𝑓(J /kg. K): is the effective heat capacity of the PCM embedded in aluminium-foam, 

𝜆𝑒𝑓𝑓(W/m2. K): is the effective thermal conductivity.  

The effective thermophysical properties of the PCM embedded in Al-foam depend on the 

state (liquid or solid) of the PCM and the aluminium properties. 

- In the solid phase of the PCM where T ≤ Ts, the thermophysical properties are 

given by: 

 

𝐶𝑝𝑃𝐶𝑀 = 𝐶𝑝𝑠 

𝜆𝑃𝐶𝑀 = 𝜆𝑠 

𝜌𝑃𝐶𝑀 = 𝜌𝑠 

(5.26)  

Where 

 ρs(kg/m
3): is the density of the solid state of the PCM, 

Cp,s(J /kg. K): is the heat capacity of the solid state of the PCM,  

λs(W/m2. K): is the thermal conductivity of the solid phase of the PCM, 

Ts(°C): is the start melting temperature of PCM. 

- At the liquid phase of the PCM where T ≥ Tl, the thermophysical properties are 

given by: 

 

𝐶𝑝𝑃𝐶𝑀 = 𝐶𝑝𝑙 

𝜆𝑃𝐶𝑀 = 𝜆𝑙 

𝜌𝑃𝐶𝑀 = 𝜌𝑙 

(5.27)  
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Where 

 ρl(kg/m
3): is the density of the liquid state of the PCM, 

𝐶𝑝,𝑙(J /kg. K): is the heat capacity of the liquid state of the PCM, 

𝜆𝑙(W/m2. K): is the thermal conductivity of the liquid phase of the PCM, 

𝑇𝑙(°C): is the end melting temperature of PCM. 

- At the mushy phase 𝑇𝑠 < 𝑇 < 𝑇𝑙, where the solid and the liquid phases coexist the 

effective heat capacity of the material is a linear function of the latent heat 

(𝑑𝐻(J /kg. K)) of the PCM [158]. 

 

𝐶𝑝𝑃𝐶𝑀 = 𝐶𝑝𝑠 +
𝑑𝐻(𝑇−𝑇𝑠)

(𝑇𝑚−𝑇𝑠 )2
   if   𝑇𝑠 < 𝑇 < 𝑇𝑚 

 

𝐶𝑝𝑃𝐶𝑀 = 𝐶𝑝𝑠 +
𝑑𝐻(2𝑇𝑚−𝑇−𝑇𝑠)

(𝑇𝑚−𝑇𝑠 )2
   if   𝑇𝑚 < 𝑇 < 𝑇𝑙 

 

𝑇𝑚 =
(𝑇𝑠 + 𝑇𝑙)

2
 

 

𝜆𝑃𝐶𝑀 =
(𝜆𝑠 + 𝜆𝑙)

2
 

 

𝜌𝑃𝐶𝑀 =
(𝜌𝑠 + 𝜌𝑙)

2
 

(5.28)  
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The effective thermophysical properties of the system PCM embedded in the aluminum-

foam (with 𝜀 the associated porosity) is given by the following equations: 

 

 

𝐶𝑝𝑒𝑓𝑓 = 𝜀𝐶𝑝
𝑃𝐶𝑀

+ (1 − 𝜀)𝐶𝑝𝐴𝑙 

 

𝜆𝑒𝑓𝑓 = 𝜀𝜆𝑃𝐶𝑀 + (1 − 𝜀)𝜆𝐴𝑙 

 

𝜌𝑒𝑓𝑓 = 𝜀𝜌𝑃𝐶𝑀 + (1 − 𝜀)𝜌𝐴𝑙 

 

(5.29)  

By taking into account the convection flow of the liquid state of the PCM during phase 

change, the flow is represented by the volume average model based on Brinkman-

Forchheimer extended Darcy model [159], which take into account the porous 

environment of the aluminium-foam,. Therefore the continuity and momentum 

equations are given by: 

- The continuity equation which expressed the conservation of mass is formulated 

as: 

 𝜑
𝜕𝜌𝑙
𝜕𝑡

+ ∇. (𝜌𝑙 𝑢) = 0 (5.30)  

Where  
𝜑 is the volume fraction of the liquid state in PCM, 
𝑢 (m/s) is the velocity vector of the liquid state in PCM. 
 

- The momentum equations are given by: 

 
𝜌𝑙 [

1

𝜑

𝜕𝑢

𝜕𝑡
+
1

𝜑
𝛻 (

𝑢 . 𝑢

𝜑
)]

= −𝛻𝑃 +
𝜇

𝜑𝜌𝑙
𝛻2𝑢 −

𝜇

𝐾
𝑢 −

𝑐𝐹𝜌𝑙

√𝐾
|𝑢|𝑢 + 𝜌𝑙𝑔𝛽(𝑇𝑙 − 𝑇𝑆) 

(5.31)  

Where 
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𝑃(Pa): is the pressure of the liquid state of the PCM,  

𝜇(N. s.m−2): is the kinetic viscosity of the liquid state of the PCM, 

𝐾(m2): is the permeability of the aluminum-foam, 

𝑐𝐹 is the inertial coefficient, 

 𝛽(K−1 ) is the thermal expansion coefficient of the liquid state of the PCM. 

5.4.1.2.3 Boundary and initial conditions  

- Interface battery cell/PCM 

The heat flux continuity is applied, where the heat from the battery is transferred to the 

PCM: 

 −𝜆𝑏𝑎𝑡𝑡𝑒𝑟𝑦∇T|𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 = −𝜆𝑒𝑓𝑓∇T|𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 (5.32)  

- All other external boundaries are thermally isolated in order to test the efficiency 

of the cooling system. Therefore, non-heat exchange with the ambient 

environment is considered. 

 
𝜆∇T|𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 = 0 

 
(5.33)  

- The initial temperature of the battery pack is defined as 𝑇𝑖𝑛𝑖. 

 T = Tini (5.34)  

5.4.1.2.4  Input parameters  

The paraffin wax is used as a PCM and these different thermophysical properties are 

from the work of Khateeb et al. [160] and included in Table 5.1. 
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Parameters Symbol Value 

Conductivity of the solid phase 𝜆𝑠 (Wm−1K−1) 0.29 
Conductivity of the liquid phase 𝜆𝑙 (Wm−1K−1) 0.21 
Conductivity of Aluminum 𝜆𝐴𝑙 (Wm−1K−1) 218 

Heat capacity of the solid phase 𝐶𝑝𝑠 (kJ kg
−1K−1) 1.77 

Heat capacity of the liquid 
phase 

𝐶𝑝𝑙 (kJ kg
−1K−1) 1.77 

Heat capacity of Aluminum 𝐶𝑝𝐴𝑙  (kJ kg
−1K−1) 0.963 

Porosity 𝜀 0.8 
Density of the solid phase 𝜌𝑠 (kg m

−3) 910 
Density of the liquid phase 𝜌𝑙  (kg m

−3) 822 
Density of Aluminum 𝜌𝐴𝑙  (kg m

−3) 2700 
Latent heat of melting 𝑑𝐻 (kJ kg−1) 195 
Start temperature of PCM 
melting 

𝑇𝑠 (°C) 41 

End temperature of PCM 
melting 

𝑇𝑙 (°C) 44 

Thermal expansion 𝛽(K−1 ) 16.31 10-4 

 

Table 5.1: Thermophysical properties for model materials [160] 

 

5.4.2 Results 

5.4.2.1  Influence of current rate  

The equations are simultaneous solved in Comsol Multiphysics, with the same numerical 

procedure that has been used in the cold plate design in section 5.3.2. Figure 5.30 shows 

the maximum temperature profiles at different discharge current rates (2 It, 4 It and 6 It) 

of the battery module cooled by PCM with 26 mm of thicknesses. As observed previously, 

with the higher discharge current rate, the maximum temperature increase is higher. 

Whether the temperature of the cell module is lower than the melting temperature of the 

PCM (41°C), then the temperatures of the cells follow the same trends, which lower 

values than the case of without cooling, as observed with the curve of 2It discharge 

current rate. The temperatures decrease of the cells cooled by the PCM is lower compared 

to the case of without cooling due the larger volume of the module with PCM. However, 

when it reaches the melting point, the heat from the batteries is absorbed by the PCM for 
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the phase change while minimizing temperature changes in the module and then 

stabilized the cell temperature, as observed with the curve of 6It. 

With the PCM cooling method, the maximum temperature drops are 10°C, 5°C and 2°C 

compared to the no-cooling case at the end of 6It, 4It and 2It discharge current rates, 

respectively. However, the maximum temperature gradients are decreasing by 2°C, 1.5°C 

and 0.5°C during 6It, 4It and 2It discharge current rates. 

 

Figure 5.26: Maximum cell temperature profiles at different discharge current rates and 
20°C of initial temperature 

 
Figure 5.27: Temperature gradient profiles at different discharge current rates and 20°C 

of initial temperature 



Chapter 5.  Numerical Analysis of Different Battery Thermal Management Systems 
 

 

144 
 

 
Figure 5.28 presents the temperature distributions of the pack cooled with PCM at the 

end of different discharge current rate. The temperature distributions are nearly uniform, 

with maximums located on the tab and busbars connections. Figure 5.29 shows the 

fraction of liquid due to the phase change at the end of different discharge current rates. 

It has been shown that higher fraction of liquid is present at 6It discharge current rate 

due to the high temperature of the cell. 

 

 
Figure 5.28: Temperature distribution over the battery pack at different discharge 

current rates at the end of the process 

 

 

Figure 5.29: fraction of liquid over the PCM at different discharge current rates at the 

end of the process 
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5.4.2.2 Influence of PCM thickness 

In addition, with larger thickness, the average cell temperatures become lower, but the 

temperature gradient becomes higher, as shown in Figure 5.31. The temperature gradient 

of the cell with PCM cooling method is relatively small (less than 2°C), except at the end 

of the discharge process.  

 
Figure 5.30: Maximum cell temperature profiles at 4 It discharge current rate and 20°C 

of initial temperature 

 

 
Figure 5.31: Temperature gradient profiles at 4 It discharge current rate and 20°C of 

initial temperature 
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5.4.2.3  Influence of initial temperature 

The influence of initial temperature is investigated at 4 It discharge current rate. Two 

initial temperatures (20°C and 40°C) are used. From Figure 5.32, it has been shown that 

with an initial temperature of 20°C and 40°C, the temperature increased to around 21°C 

and 4°C, respectively. These results show that when the temperature difference between 

the initial temperature and the PCM melting temperature is low, the temperature increase 

of the battery module is lower as well. 

 
Figure 5.32: Maximum cell temperature profiles at 4 It discharge current rate at different 

initial temperatures 

5.4.2.4  Combination of PCM with liquid cooling 

As shown previously in section 5.3.2, the liquid cooling with design D was found as the 

most optimized one in term of lowering the maximum temperature and gradient 

temperature increase. Therefore, the liquid cooling is embedded on the PCM with respect 

to design D as shown in Figure 5.33.  
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Figure 5.33: Design of PCM combining with liquid cooling 

 

Figure 5.34 shows the temperature profiles of the cells cooling with PCM without liquid 

cooling and in combination with liquid cooling with an inlet temperature of 20°C and 

flow rate of 30L/min. It is illustrated that the PCM with liquid cooling shows less battery 

temperature increase. However, the temperature gradient remains higher as illustrated 

in Figure 5.35, due to the non-uniform cooling of the channel flows. 

 
 

 
Figure 5.34: Maximum cell temperature profiles at 4 It discharge current rate at 20°C of 

initial temperatures 
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Figure 5.35: Temperature gradient profiles at 4 It discharge current rate at 20°C of initial 
temperatures 

 

5.5 Comparison between liquid and PCM cooling methods 

5.5.1 Performance comparison based on driving cycle 

A performance comparison of both BTMS presented above is made by applying a driving 
cycle from Peugeot. The input current rate is presented in Figure 5.36. The positive values 
correspond to the charge current rate and the negative values correspond to the discharge 
current rate. 
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Figure 5.36: Peugeot driving cycle 

Figure 5.37 shows the evolutions of the voltage during the driving cycle for both BTMS. 

The both profiles are similar. 

It has been shown that the BTMS based on liquid cooling shows more temperature drop 

than the PCM cooling method as shown in Figure 5.38 and Figure 5.39. However, the 

temperature gradient given by the liquid cooling remains higher, as illustrated in Figure 

5.39. 

 

Figure 5.37: Evolution of the voltage during Peugeot driving cycle 
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Figure 5.38: Evolution of the maximum temperature during Peugeot driving cycle 

 
 

 
Figure 5.39: Evolution of the average temperature during Peugeot driving cycle 
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Figure 5.40: Evolution of the gradient temperature during Peugeot driving cycle 

5.5.2 Cost comparison of the different cooling strategies 

A cost comparison of the two BTMS as presented above, such as the liquid cooling and 

PCM are made with the price data of different components that composed the module. 

The mentioned prices should be considered as an approximation depending of the 

component supplier. 

Cooling Strategies Components Units Cost, euro 

Liquid-cooling Cold plate 2 500 

 Hot plate 11 1190 

Pump 1 350 

Chiller 1 5150 

 Total 7190 

PCM embed on Al-foam Aluminum foam  1 6256 

 PCM Paraffin wax 
(Rubitherm RT-42) 

1 1380 

 Total 7636 

 
Table 5.2: cost comparison of the different studied BTMSs 

 
As shown in Table 5.2, liquid cooling have almost the same cost than the PCM. 

Nevertheless, many other aspects, such as the battery temperature specifications, ambient 
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conditions, expected battery lifetime, consumption of the auxiliary system, maintenance, 

location flexibility, etc.…, should also be taken into account when selecting the best 

configuration. It should be noted that the proposed cost comparison is not based on series 

productions. 

5.6 Conclusion 

In this chapter different thermal management strategies such as liquid cooling and 

passive cooling using phase change material embedded in aluminium foam (liquid-solid 

phase change material) have been investigated by using the developed electrochemical-

thermal model in chapter 4 coupled with fluid dynamics. The model has been developed 

in COMSOL Multiphysics.  Firstly, different liquid cold plate’s configurations has been 

investigated in order to obtain the efficient cooling architecture, which allows to decrease 

the temperature and to obtain a more uniform temperature distribution over the surface 

of the battery cell. It has been concluded that the cooling plate with design 1 successfully 

controls the maximum temperature and reduces the temperature gradient due to the high 

surface contact between the cooling channel and plates. Furthermore, the performances 

of a battery module with 10 cells have been investigated at different position of the cold 

plate. The both longitudinal sides have been found to be the best position of the cold 

plates. The hot plates are also used to make the temperature distribution of the cells more 

uniforms. Different operating conditions are also investigated. It has been shown that the 

flow rate of 30 L/min, represents an optimum value for lowering the maximum 

temperature increase, therefore the required pump power needed is about 6W. It has also 

been noticed that more the difference between the inlet and initial temperature is higher; 

the temperature of the battery tends to stabilize near the value of the inlet temperature at 

the end of the discharge process.  

Secondly, the performances of a battery module have been investigated by using passive 

cooling with PCM embedded in aluminium-foam. Different discharge current rates have 

been simulated and show that with the PCM cooling method, the maximum cell 

temperature drops are 10°C, 5°C and 2°C, compared to the non-cooling case during the 

6It, 4It and 2It discharge current rates, respectively. The temperature of the battery 

module increases steeply until the PCM reaches its melting temperature, where it stays 

nearly constant due to the high latent heat of the PCM. Therefore, the PCM melting 

temperature and latent heat are crucial parameters for the PCM selection. In addition, by 

increasing the thickness of the PCM, the average temperature of the battery module 

becomes lower, while the temperature gradient becomes higher. Furthermore, for an 
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initial temperature of the battery module close to PCM melting temperature, the 

temperature increase of the battery module is lower. 

Finally, a performance and cost comparison have been made between the liquid cooling 

and the PCM. The performance comparisons are made by applying a driving cycle from 

Peugeot for electric vehicles. More temperature (maximal and average) drop has been 

observed with the liquid cooling than the PCM cooling method. However, the 

temperature gradient given by the liquid cooling remains higher. A cost comparison 

based on non-series productions of the both cooling methods show that the liquid cooling 

have almost the same cost than the PCM. Nevertheless, many other aspects, such as the 

battery temperature specifications, ambient conditions, expected battery lifetime, 

consumption of the auxiliary system, maintenance, location flexibility etc. Should also be 

taken into account for the liquid cooling system. 
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6. Conclusions, Contributions and 
Future Work 

6.1 Conclusions and overview of work performed 

After a brief presentation of the state-of-the-art of BEVs, HEVs and PHEVs, the main 

characteristics of the different lithium ion battery and their applications in some 

commercial vehicles are compared and analyzed. From chapter 2, it has been shown that 

the temperature is one of the major parameters influencing the battery performance and 

lifetime in many aspects. At cell level, the safety improvement can be made by acting on 

the cell chemistry or the cell design. At pack or module level the performance and safety 

can be improved by designing an optimal battery thermal management system.  

In chapter 3, a 2D-thermal model is developed for a large size Li-ion pouch battery for 

BEVs, which is able to predict the surface temperature distribution of the battery at 

different operating conditions, accurately. The simulation results are in good agreement 

with the experimental results where the maximum relative error is between 7%. A novel 

battery thermal parameter estimation has been developed to estimate the related thermal 

parameters by using the thermal equivalent circuit model which is associated to the first 

order Cauer model. This model involves a primary calculation in order to calculate the 

percentage of heat flows through each side of the cell. These percentages of heat depend 

mainly on the surface of the sides. 

In chapter 4, extensive three-dimensional simulations of large LiFePO4 pouch cells have 

been carried out to investigate the impact of different pouch cell designs on performance 

and variable distributions. It has been shown that the cell designs with symmetrical 

configurations (case 2 and case 4) show uniform potential and current density gradient, 

which minimize the ohmic heat and lead to more uniform active material utilization and 

temperature distributions across the cell surface. Cell design with symmetrical 

configuration tends to minimize the maximum current pathways. It is found that the high 

potential, current density and temperature gradient are mainly located near the positive 

tab due to its high resistivity. Due to charge conservation, the potential distribution along 

the negative current collector at the beginning of discharge are responsible for the non-

uniform active material utilization and the potential distribution in the positive current 

collector. In addition, the increase of the tab width makes the potential, current density 

and thermal distributions more uniform and improve the battery performance by 
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increasing its output voltage. This also tends to increase the energy and power densities. 

At the pack level, the design of case 2 with a higher tab width can be cycled more 

uniformly and thereby allows a less complex cooling strategy. 

In chapter 5, different thermal management strategies such as water cooling and passive 

cooling using phase change material embedded in aluminium foam (liquid-solid phase 

change material) have been investigated by using the developed electrochemical-thermal 

model in chapter 4 coupled with fluid dynamics. The model has been developed in 

COMSOL Multiphysics.  Firstly, different liquid cold plate’s configurations have been 

investigated in order to obtain the efficient cooling architecture, which allows to decrease 

the temperature and to obtain a more uniform temperature distribution over the surface 

of the battery cell. It has been found that the cooling plate with (design 1) successfully 

controls the maximum temperature and reduces the temperature gradient due to the high 

surface contact between the cooling channel and plates. Furthermore, the performances 

of a battery module with 10 cells have been investigated at different position of the cold 

plate. Both longitudinal sides have been found as the best position of the cold plates. The 

hot plates are also used to make the temperature distribution of the cells more uniforms. 

Different operating conditions are also investigated. It has been shown that the flow rate 

of 30 L/min, represents an optimum value for lowering the maximum temperature 

increase. Therefore the required pump power needed is about 6W for efficient cooling of 

the investigated cell module. In addition, when the inlet temperature is different from the 

initial temperature, therefore at the end of the discharge process, the cell temperature 

tends to the value of the inlet temperature.  

Secondly, the performances of a battery module have been investigated by using passive 

cooling with PCM embedded in aluminium-foam. Different discharge current rates have 

been simulated and show that with the PCM cooling method, the maximum cell 

temperature drops are 10°C, 5°C and 2°C, compared to the no-cooling cases, during the 

6It, 4It and 2It discharge current rates, respectively. The temperature of the battery module 

increases steeply until the PCM reaches its melting temperature, where it stays nearly 

constant due to the high latent heat of the PCM. Therefore the PCM melting temperature 

and latent heat are crucial parameters for the PCM selection. In addition, by increasing 

the thickness of the PCM, the average temperature of the battery module becomes lower, 

while the temperature gradient becomes higher. Furthermore, for an initial temperature 

of the battery module close to PCM melting temperature, the temperature increase of the 

battery module is lower. 
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Finally an extended comparison has been made between the liquid cooling and the PCM. 

The performance comparisons are made by applying a typical driving cycle. More 

temperature (maximal and average) drop has been observed based on the liquid cooling 

than the PCM cooling method. However, the temperature gradient given by the liquid 

cooling remains higher. A cost approximation of both cooling methods is also compared 

and shows that the liquid cooling has almost the same cost than the PCM. Nevertheless, 

many other aspects, such as the battery temperature specifications, ambient conditions, 

expected battery lifetime, consumption of the auxiliary system, maintenance, location 

flexibility etc. Should also be taken into account regarding the design of the liquid cooling 

system. 

6.2 Contributions 

The major contributions of this work could be summarized as follows: 

- Development of an extended 2D electrical-thermal model, 

- The in-depth thermal characterization using a thermal camera, 

- Development of a novel 3D thermal parameter estimation tool based on a thermal 

equivalent circuit model by calculating the ratio of heat throughout the different 

directions of the cell, 

- Development of a fully coupled  3D electrochemical-thermal model, 

- Investigation of the pouch cell design based on developed 3D electrochemical-

thermal model, 

- Development of an extended 1D pipe flow to simulate the liquid flow in a channel, 

- Investigation of different cold plate designs, 

- Development of a new liquid cooling battery thermal management system designs 

- Development of an extended PCM new liquid cooling strategy by taking into 

accounts the convection flow in the aluminium-foam. 

6.3 Future work 

The presented work in this PhD dissertation gave rise to additional research 

opportunities concerning the following issues: 

- Experimental investigation of the different pouch cell design, 

- Reduced order of the fully electrochemical-thermal model in order to simulate the 

full battery cell by taking into account each cell layer. The results of such analysis 

can be compared to our work, where one cell layer has been considered, in order 
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to validate the made assumptions. Therefore, the battery reduced order model can 

be easily implemented in a BMS. 

- Development of a BTMS model that takes into accounts the ageing phenomenon. 

- Experimental investigation of the developed BTMSs used in this work in order to 

ensure the validity of the numerical results. 

- Improvement of the cold plate’s design. 

- Investigation of the cooling plate with different refrigerant types.  

- Investigation of different PCM with different melting points. 

- Extension of the investigation of the battery module to pack level. 
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7. Appendix I 

7.1 Internal resistance as a function of SoC and temperature at 

different current rate 

 
 

Figure 7.1: Internal resistance as a function of SoC and temperature at 1/3It charge 
current rate 

 

 
Figure 7.2: Internal resistance as a function of SoC and temperature at 1/3It discharge 

current rate 
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Figure 7.3: Internal resistance as a function of SoC and temperature at 2It charge current 
rate 

 
 

 
 

Figure 7.4: Internal resistance as a function of SoC and temperature at 2It discharge 

current rate 
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Figure 7.5: Internal resistance as a function of SoC and temperature at 3It charge current 

rate 

 
 

Figure 7.6: Internal resistance as a function of SoC and temperature at 3It discharge 
current rate 
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7.2 Comparison of the Thermal distributions based on 

experimental thermal imager and modeling at different 

current rates. 

 

Figure 7.7: Thermal distributions based on experimental thermal imager and modeling 
at 2/3It charge current rate 
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Figure 7.8: Thermal distributions based on experimental thermal imager and modeling 

at 1/3It charge current rate 
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Figure 7.9: Thermal distributions based on experimental thermal imager and modeling 
at 1/3It discharge current rate 
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7.3 Entropy coefficient as a function of temperature at different 

SoC levels 

 
Figure 7.10: OCV at different temperature and 10% of SoC during charge process 

 
Figure 7.11: OCV at different temperature and 20% of SoC during charge process 
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Figure 7.12: OCV at different temperature and 30% of SoC during charge process 

 
Figure 7.13: OCV at different temperature and 40% of SoC during charge process 
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Figure 7.14: OCV at different temperature and 50% of SoC during charge process 
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8. Appendix II 

8.1 Voltage distribution at the negative and positive current 

collectors  

At 220s 

 

  

 

At 420s 
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At 640s 

  

  

  

 
Figure 8.1: Voltage distributions based on simulation at 4It discharge current rate at 

different time steps 
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8.2 Temperature distribution at different time steps and 4It 

discharge rate 

t = 220s t = 420s t = 640s 

 

   

   
    

 
Figure 8.2: Temperature distributions based on simulation at 4It discharge current rate 

at different time steps
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8.3 Input parameters for a 45 Ah LiFePO4 battery  

Parameters Symbol Cu foil Anode Separator Cathode Al foil 

Thickness  lj[m] 2 10-5 3.4  10-5 2.5 10-5 8 10-5 1 10-5 
Particle radius Rs,j,ref [m] - 14.75 10-6 - 1.15 10-6 - 
Active material volume fraction 𝜀1 [/] - 0.56 - 0.435 - 
Porosity  𝜀2 [/] - 0.268 0.54 0.306 - 
Reaction rate coefficient k0,j,ref [m2.5/mol0.5 s] - 1.764 10-11 - 3.626 10-11 - 
Reference Solid phase Li+ diffusion D2,j [m2/s] - Eq (4.14) Eq (4.14) Eq (4.14)  
Electrolyte phase Li+ diffusion D1,j,ref [m2/s] - 3.9 10-14   - 1.18 10-18 - 

Maximum solid phase concentration c1,j, max [mol/m3] -  31,370   - 22,806 - 

Initial electrolyte concentration c2,0, [mol/m3] - 2000 2000 2000 - 
Stoichiometry at 0% SOC y0%, x0% - 0.1 - 0.83 - 
Stoichiometry at 100% SOC y100%, x100% - 0.995 - 0.0005 - 

Transference Number t+ -  - 0.363 - - 

Bruggman tortuosity factor 𝛾 - 1.5 1.5 1.5 - 
Charge transfer coefficient, 𝛼 - 0.5 - 0.5 - 

Solid electronic conductivity 𝜎1,𝑗[S/m]  6.63 10-7 100 - 0.5 3.83 10-7 

Ionic conductivity of electrolyte 𝜎2,𝑗[S/m] - Eq (4.17) Eq (4.17) Eq (4.17) - 

Activation energy for reaction 𝐸𝑎𝑅,𝑗[J/mol] - 4 103 - 4 103 - 

Activation energy for particle diffusion 𝐸𝑎𝐷𝑠,𝑗[J/mol] - 4 103 - 2 104 - 

heat capacity Cp [J/kg.K] 385 1437 700 1260 900 
density 𝜌 [kg/m3] 8700 2660 492 1500 2700 
thermal conductivity 𝜆 [W/m.K] 398 1.04 1 1.48 170 
Convective heat transfer ℎ [W/m2.K] 0.03     
Total number of single cell 𝑁 77     
Faraday’s constant F (C/ mol) 96487    - 

Reference temperature 𝑇𝑟𝑒𝑓(K) 298.15     

Universal gas constant R (J/ mol. K) 8.3145    - 

 
Table 8.1: Input parameters for a 45 Ah LiFePO4 battery [87], [121] 
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Parameters Equations Eq. Number 

Diffusion coefficient of the solid phase 𝐷1,𝑗 = 𝐷1,𝑗,𝑟𝑒𝑓  𝑒𝑥𝑝 [−
𝐸𝑎𝐷1,𝑗

𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)];  (𝑗 = 𝑝, 𝑛) (4.14) 

Diffusion coefficient of the liquid phase 
𝐷2,𝑗 = 10

−4.43−(
54

𝑇−229−0.005𝑐2 
)−4

 
(4.15) 

The reaction rate 
 

𝑘0,𝑗 = 𝑘0,𝑗,𝑟𝑒𝑓   𝑒𝑥𝑝 [−
𝐸𝑎𝑅

𝑅
(

1

𝑇𝑟𝑒𝑓
−

1

𝑇
)];  (𝑗 = 𝑝, 𝑛) (4.16) 

The ionic conductivity 
 

𝜎2 = 10−4𝑐2 × 1.2544(−8.2488 + 0.053248 𝑇 − 0.00002987 𝑇2 + 0.26235
× 0.001 𝑐2 − 0.0093063 × 0.001 𝑐2𝑇 + 0.000008069 × 0.001 𝑐2𝑇

2

+ 0.22002 × 10−6𝑐2
2 − 0.0001765 × 10−6𝑐2

2𝑇 )2 

(4.17) 

Open circuit potential 
 

𝑈𝑗 = 𝑈𝑟𝑒𝑓,𝑗 + (𝑇 − 𝑇𝑟𝑒𝑓) 
𝑑𝑈𝑗

𝑑𝑇
 

 

𝑈𝑟𝑒𝑓,𝑝 = 3.4323 −  0.4828 𝑒𝑥𝑝 (−80.2493(1 −  𝜃𝑝)
1.3198

) − 3.2474

× 10−6 exp (−20.2645(1 −  𝜃𝑝)
3.8003

) + 3.2482

× 10−6 exp (−20.2646(1 −  𝜃𝑝)
3.7995

) 

 
𝑈𝑟𝑒𝑓,𝑛 = 0.6379 +  0.5416 𝑒𝑥𝑝(−305.5309 𝜃𝑛)

+  0.044 𝑡𝑎𝑛ℎ [−
 𝜃𝑛 –  0.1958

0.1088
] –  0.1978 𝑡𝑎𝑛ℎ [

 𝜃𝑛 − 1.0571

0.0854
]

−  0.6875 𝑡𝑎𝑛ℎ [
 𝜃𝑛  +  0.0117

0.0529
] –  0.0175𝑡𝑎𝑛ℎ[

 𝜃𝑛 –  0.5692

0.0875
] 

 

𝜃𝑗 =
𝑐2,𝑗 

𝑐2,𝑗,𝑚𝑎𝑥 
 ; (𝑗 = 𝑝, 𝑛) State of charge (SOC) 

 

(4.18) 

Entropy coefficient  𝑑𝑈𝑝

𝑑𝑇
= −0.35376𝜃𝑝

8 + 1.3902𝜃𝑝
7  −  2.2585𝜃𝑝

6 + 1.9635𝜃𝑝
5 − 0.98716𝜃𝑝

4 + 0.28857𝜃𝑝
3

− 0.046272𝜃𝑝
2 + 0.0032158𝜃𝑝 − 1.9186  

 
𝑑𝑈𝑛
𝑑𝑇

= −344.1347148 ×
exp(−32.9633287𝜃𝑛 + 8.316711484)

1 + 749.0756003 exp(−34.79099646𝜃𝑛 + 8.887143624)
− 0.8520278805𝜃𝑛 + 0.362299229𝜃𝑛

2 + 0.2698001697 

(4.19) 

 
Table 8.2: temperature dependency of parameters [87], [121] 
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TITRE: Contribution à la modélisation et à la gestion thermique des Batteries Lithium -ion 
pour des Voitures Électriques 

Résumé : L’avancée de la recherche sur les batteries a conduit à une utilisation massive des batteries Lithium-
ion de grande capacité dans les véhicules électriques. De tels designs, en grand format, ont l'avantage de réduire 
le nombre de cellules interconnectées dans les packs de batteries.  Dans les applications de transport, le temps 
de recharge des batteries constitue un frein au développement des véhicules électriques. L'augmentation du 
courant de charge peut soumettre à la batterie à des situations très critiques et peut ainsi entrainer une 
augmentation considérable de sa température. En long terme, ces phénomènes peuvent conduire à la réduction 
de sa durée de vie ainsi que ses performances et dans certains cas à l’emballement thermique. Afin d’éviter de 
telles situations, il est nécessaire d’optimiser la  gestion thermique de manière à maintenir la batterie dans une 
gamme de températures de fonctionnement sûre. Ceci passe par la mise en place d’un modèle thermique capable 
de prédire la température d’une cellule et d’un pack de batterie à différentes conditions de fonctionnement et 
ensuite proposer différentes stratégies de refroidissements. Compte tenu de la forme et des dimensions du type 
de batterie utilisé (batterie « pouch ») un modèle électrothermique est développé afin de prédire la distribution 
de température de la cellule, ce modèle nécessite moins de paramètres d'entrée et possède une grande précision. 
En outre, un nouvel outil d'estimation des paramètres thermiques a été développé. Le comportement thermique 
de la batterie, soumise  à  des  conditions de fonctionnements extrêmes, a été étudié avec ce modèle. De ces 
résultats, on remarque que la cellule de batterie présente une distribution thermique non-uniforme lorsque celle-
ci est parcourue par des courants de grandes amplitudes. Ce constat nous amène à étudier le design des batteries 
de type « pouch » afin d’élire celle qui présente une distribution thermique et électrique plus uniformes. Pour se 
faire un modèle 3D électrochimique-thermique  a été développé. Enfin, différentes stratégies de gestion 
thermique  des batteries telles que: le refroidissement actif par liquide et passif utilisant un matériau à 
changement de phase (liquide-solide à changement de phase) incorporé dans une mousse d'aluminium, ont été 
étudiées puis comparées en appliquant un cycle de conduite, provenant d’un véhicule tout électrique de la 
gamme Peugeot. L'objectif principal est de réduire la complexité, le poids, le volume, le coût et également de 
maintenir à un haut niveau de sureté de fonctionnement du module de batterie. 
Indexation rameau : Batteries, Lithium, Ion, modèle Mathématiques, thermique, électrochimie 

--- 
TITLE: Battery electrical vehicles-Analysis of Thermal Modelling and Thermal Management 

Abstract: Uitgebreid onderzoek naar Lithium-ion batterijen heeft een grootschalig gebruik van batterijen met 
een hoge capaciteit in Batterij Elektrische Voertuigen (BEVs) toegelaten.  Dergelijke grote cellen hebben als 
voordeel dat het aantal cellen in een module en op pakket niveau kan verminderd worden. In tractie 
toepassingen, vormt een lange oplaadtijd een barrière voor het wijd gebruik van BEVs. Een stijging van de 
stroomgrootte kan de batterij onderwerpen aan gevaarlijke situaties en kan de batterijtemperatuur significant 
doen stijgen. Deze fenomenen reduceren de levensduur en performante van de batterij en in het slechtste geval 
kan oververhitting plaatsvinden. Om dit te vermijden is er nood aan een geoptimaliseerd warmtebeheer, zodat 
de batterij in haar veilig temperatuursbereik kan werken. Allereerst werd in dit proefschrift een 
tweedimensionaal elektrothermisch model ontwikkeld om de temperatuursdistributie over het oppervlak van 
de batterij te voorspellen. Dit model vereist minder input-parameters maar bereikt nog steeds een hoge 
nauwkeurigheid. Voorst werd het thermisch gedrag van de bestudeerde batterij onderzocht bij zowel 
verschillende omgevingscondities als bij schadelijk gebruik voor een beoordeling van de thermische stabiliteit. 
Rekening houdend met de grote temperatuursdistributie, is een geavanceerd driedimensionaal elektrochemisch 
thermisch model ontwikkeld om de impact van het cel design op de temperatuur-, spanning- en stroom- 
verdeling in te schatten. Het doel is een sterk niet-homogene distributie te vermijden. Het ontwikkeld model laat 
ons toe het cel design te optimaliseren om zo een zo hoog mogelijke levensduur en performante te garanderen. 
Tenslotte zijn verschillende warmtebeheer strategieën zoals vloeibare en passieve koeling gebruikmakend van 
phase-changing materials ingebed in een aluminium-foam (vloeistof-vaste fase verandering) onderzocht en 
grondig vergeleken door realistische BEV cycli op te leggen aan de batterij. Het voornaamste objectief van dit 
werk is een verlaging van de complexiteit, het gewicht, het volume en de kost zonder een hoge veiligheid van 
het batterijsysteem in het gedrang te brengen. 
Trefwoorden: Batterijen, Lithium, Ion, Matematica model, Thermish, Elecktrochemie 
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