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Résumé

De nos jours, les maladies cardiovasculaires restent un sujet de préoccupation majeur
pour la santé et une charge économique importante dans les pays développés. Avec les
progrès de la médecine, les systèmes d’imagerie médicale ont permis la détection des
pathologies cardiovasculaires à un stade précoce, et la surveillance de leur évolution à
travers des outils d’analyse de données avancés. La mesure du débit sanguin, en par-
ticulier, est une information précieuse pour le médecin. Aujourd’hui, de nombreuses
techniques d’acquisition du flux sanguin ont été développées et appliquées dans les rou-
tines cliniques et la recherche médicale. L’une d’entre elles recourt à l’injection d’un
produit de contraste dans le sang artériel. La propagation du traceur dans la circu-
lation sanguine et sa modulation spatiotemporelle délivre l’information des motifs du
flux sanguin dans des séquences d’images 2D. Cependant, les systèmes d’imagerie de
contraste 3D+T n’ont pas encore atteint un stade clinique. Le but de cette thèse est
d’apporter un cadre général de l’estimation de flux sanguin pour les futurs systèmes
d’imagerie de contraste 3D+T.
Une formulation variationnelle du flot optique est présentée, incluant diverses connais-
sances a priori sur la concentration du produit de contraste, et les propriétés du flux
sanguin inspirées de la mécanique des fluides. Par la suite, le potentiel de l’algorithme
d’estimation de flot optique est évalué sur de l’angiographie virtuelle par CFD, avec
une analyse de l’influence du débit sanguin et des paramètres de l’algorithme. Enfin,
une version simplifiée de l’approche de flot optique est testée sur les toutes premières
données MPI 3D+T. Dans un premier temps, une expérience de flux in vitro est pro-
posée à l’intérieur d’un fantôme avec une injection de contraste modulé, dans un second
temps une analyse du flux sanguin est démontrée sur des données in vivo.
Dans son ensemble, cette thèse investigue le sujet original de l’estimation de flux san-
guin et l’analyse de ses motifs en 3D. La contribution technique consiste en la création
d’un nouvel algorithme de flot optique dédié à de l’information de contraste temporelle-
ment résolue dans le système cardiovasculaire. La contribution clinique sous-jacente
consiste en un pipeline complet pour l’estimation du flux sanguin, en partant de la
procédure d’acquisition par modulation de contraste, jusqu’au calcul du flot optique et
à sa validation in silico.

Mots-clés: Imagerie médicale, angiographie, flux sanguin, produit de contraste,
flot optique, méthodes variationnelles, CFD, MPI.

I





Abstract

Nowadays, cardiovascular diseases remain a subject of major concern for healthcare and
an important economic burden in developed countries. With the progress of medicine,
medical imaging systems have allowed to detect cardiovascular pathologies at an early
stage, and to monitor their evolution through advanced data analysis tools. The mea-
surement of blood flow, in particular, is a precious information for a physician. Today,
numerous blood flow estimation techniques have been developed and applied in clinical
routines and medical research. One of them resorts to the injection of a contrast prod-
uct in the arterial blood. The propagation of tracer throughout the bloodstream and
its spatiotemporal modulation delivers the information of blood flow patterns in 2D
image sequences. However, 3D+T contrast systems have not reached a clinical stage
yet. The goal of this thesis is to provide the future 3D+T contrast systems with a
general framework of blood flow estimation.
A variational formulation of optical flow is presented, including different prior knowl-
edge concerning the contrast concentration, and blood flow properties inspired from
fluid mechanics. Subsequently, the fruitfulness of the optical flow estimation algorithm
is evaluated on CFD based virtual angiography, with a sensitivity analysis on flow rate
and algorithm parameters. Finally, a simplified version of the optical flow approach is
tested on 3D+T early MPI evaluation. First, an in vitro flow experiment is proposed
with a modulated contrast injection and secondly a blood flow analysis on in vivo data
is demonstrated.
All in all, this thesis investigates the original subject of blood flow estimation and the
analysis of 3D blood flow patterns. The technical contribution consists in the creation
of a new optical flow algorithm dedicated to time-resolved contrast information in the
cardiovascular system. The underlying clinical contribution is a full pipeline for blood
flow estimation, starting from the acquisition procedure with contrast modulation, to
the optical flow computation, and the in silico validation.

Keywords: medical imaging, angiography, blood flow, contrast agent, optical flow,
variational methods, CFD, MPI.
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et avant-gardiste sur une toute nouvelle modalité d’imagerie médicale Philips. Je re-
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Ebeid pour m’avoir communiqué sa passion de la recherche et son expérience, pour son
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Je remercie plus généralement tous mes copains d’école avec qui j’ai passé de
formidables années à Strasbourg, ainsi que de très sympathiques weekends et vacances
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Introduction abrégée

English speakers are invited to go directly to the extended and translated version of this
introduction.

Au cours de ces dernières décennies, une large variété de systèmes d’imagerie
médicale a émergé des progrès de la médecine, de la physique, et de l’informatique.
Parmi les plus connus apparaissent chronologiquement les rayons X en 1895, les ultra-
sons (US) à la fin des années 1940, la tomographie par émission de positrons (TEP)
et l’endoscopie optique dans les années 1950, le scanner par tomographie dans les
années 1960, et l’imagerie par résonnance magnétique (IRM) en 1977. Chacune de ces
modalités utilise un principe physique différent et répond à un besoin clinique différent.
Par exemple, les structures anatomiques peuvent être efficacement imagées aujourd’hui
avec les rayons X, le scanner, l’IRM, les ultrasons, et l’endoscopie, alors que les infor-
mations fonctionnelles sur les structures physiologiques et leurs métabolismes peuvent
être obtenues à partir de la médecine nucléaire (TEP), les ultrasons, la fluorescence, et
quelques variantes de l’IRM (IRM fonctionnelle, IRM de diffusion).

Ces nouveaux outils d’imagerie ont permis aux médecins d’explorer plus profondément
le corps humain et ont surtout apporté une meilleure compréhension de maladies graves
telles que le cancer, l’insuffisance cardiaque, les tumeurs cérébrales, et les maladies
cognitives. L’acquisition d’images multidimensionnelles hautement résolues d’organes
complexes a considérablement révolutioné la médecine. Les diagnostics assistés par or-
dinateur, l’évaluation des traitements, et les interventions guidées par ordinateur sont
les avancées majeures qui ont profondément transformé les pratiques médicales.

En parallèle, les images médicales et l’extraction d’informations cliniques a donné
lieu à une nouvelle branche de l’imagerie médicale, appelée traitement d’image
médical. Ce champ de recherche très actif a pour but d’extraire d’images brutes
(l’intensité de l’image originale) une connaissance implicite concernant les organes
étudiés: la forme des organes, la taille d’une tumeur, la longueur d’un os, le débit
sanguin, la fraction d’éjection ventriculaire, par exemple, ou n’importe quelle autre
information présentant un intérêt clinique. Bien sûr, les images originales peuvent
être directement interprétées par un clinicien, mais le traitement et l’analyse d’image
lui procure une meilleure interprétation et une évaluation plus riche du tableau clin-
ique. En outre, la quantité toujours croissante des données cliniques à analyser freine
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aujourd’hui les médecins dans leurs examens. Des outils de traitement d’image automa-
tiques représentent donc un gain de temps précieux. Le traitement d’image médical
joue un important rôle dans un diagnostic, les propriétés requises pour un logiciel de
traitement d’image sont principalement:

• La précision

• La robustesse

• La reproducibilité

• L’invariance

• L’automaticité (si possible)

L’intérêt croissant pour les techniques d’imagerie médicales et de traitement d’image
a permis de décupler les possibilités de diagnostic et d’intervention clinique. Au-
jourd’hui, quasiment tous les systèmes d’imagerie médicale sont pourvus de logiciels
de visualisation et d’analyse de données. Cette thèse s’intéresse à une application
particulière du traitement d’image médical: l’estimation du flux sanguin.

L’estimation du flot optique pour le flux sanguin

La mesure du débit sanguin présente très souvent un intérêt clinique majeur dans
le diagnostic de maladies cardiovasculaires. Elle permet d’indiquer la perfusion
des organes, telle que celle des viscères ou du myocarde, mais peut aussi fournir la
résistance vasculaire pendant un effort, ou après. Les anciens dispositifs ultrasonores
ont été intensivement utilisés jusqu’ici dans les examens cardiovasculaires, pour leur
capacité à évaluer le débit sanguin de façon instantanée. Avec le temps et les progrès de
l’imagerie médicale, une exploration plus précise du comportement du flux sanguin dans
les artères est devenue possible. Le débit étant une information limitée pour décrire le
flot sanguin, la visualisation des motifs de flux devient prédominante pour l’analyse
du mouvement dans les cavités cardiaques, les artères tortueuses, les bifurcations, et les
anévrismes. Les améliorations récentes des systèmes d’acquisitions et de leur logiciels
de traitement de données ont permis l’acquisition de motifs de flux sanguin:

• Les systèmes ultrasons 3D utilisent deux sondes ou plus pour reconstruire
des champs de vitesses 3D [Evans et al., 2011,Gómez, 2013].

• L’angiographie par soustraction digitale (ASD) recourt à un agent de con-
trast radio-opaque injecté dans la circulation sanguine. Celui-ci délivre des infor-
mations de flux par l’irradiation de rayons X et leur absorbtion par le traceur [Sh-
pilfoygel et al., 2000, Bonnefous et al., 2012]. Les systèmes d’angiographie rota-
tionnelle 3D n’ont pas encore été utilisé pour l’analyse de flux, ainsi seules des
estimations en 2D peuvent être actuellement effectuées.
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• L’imagerie par résonance magnétique possède un mode d’acquisition spécifique
(le flow MRI) qui exploite la sensibilité au mouvement pour encoder des champs
de vitesse 3D [Wigström et al., 1996,Markl et al., 2007].

Dernièrement, Philips Research a mis au point une technologie nommée l’Imageur
à Particules Magnetiques (MPI en anglais) [Gleich and Weizenecker, 2005]. Ce
système d’imagerie exploite les propriétés de saturation de particules ferromagnétiques
en réponses à un champ magnétique excitateur. Cette modalité 3D+T délivre des infor-
mations quantitatives sur la concentration des particles suite à leur injection dans la cir-
culation sanguine. Le MPI présente divers avantages comparés aux autres modalités de
flux, telles que l’acquisition 3D temps réel et la non toxicité du traceur, mais également
un défi majeur: la taille réduite du champs de vue. A l’instar des autres modalités
de contraste (l’ASD et l’angiographie rotationnelle), le MPI possède un potentiel cer-
tain pour l’évaluation du flux sanguin. A partir d’une séquence d’image, le champ
de déplacement du produit de contraste, aussi appelé flot optique [Beauchemin and
Barron, 1995], peut être estimé.

Ce travail de recherche entreprends tout d’abord d’estimer le potentiel du MPI
dans l’analyse du flux sanguin, puis traite plus généralement du problème de
l’estimation de flux sanguin 3D à partir d’un produit de contrast. Les avan-
tages et les inconvénients du MPI nous mènent aux interrogations suivantes:

• Quel est le potentiel du MPI pour l’estimation de flux sanguin ?

• Peut on exploiter la pulsatilité du sang pour l’estimation de flux ?

• Quel algorithme de flux optique utiliser pour l’estimation de flux sanguin 3D ?

• Comment évaluer et valider l’algorithme de flux optique ?

• Quelles informations peut-on extraire à partir d’un champ de vitesse ?

Cette thèse se donne pour but de répondre à ces cinq questions. La structure de ce
manuscrit est brièvement exposée ci-après.

Plan du manuscrit

Ce manuscrit s’organise en cinq chapitres indépendants, chacun traitant d’un sujet
différent.

Le chapitre 1 présente le contexte clinique de cette thèse. La mesure du débit san-
guin a été longtemps utilisée en imagerie médicale, mais l’acquisition des champs de
vitesse est très récente. De nouvelles possibilités de diagnostic ont vu le jour, ainsi que
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de nouveaux besoins cliniques. Dans un premier temps, les maladies cardiovascu-
laires sont présentées. L’utilité de la mesure de champs de vitesse pour le diagnostic
et l’étude des pathologies telles que l’athérosclérose et les anévrismes est démontrée.
Ensuite, les différentes modalités d’imagerie médicale permettant l’acquisition du flux
sanguin sont présentées avec leurs avantages et inconvénients. Les modalités à pro-
duit de contraste sont particulièrement mises en avant, et une discussion physique et
mathématique montre comment une carte de vitesse peut être obtenue à partir d’une
séquence d’image angiographique.

Le chapitre 2 introduit le cadre général de l’analyse des séquences d’images, avec
un description rigoureuse du flot optique et son principal inconvénient le problème
d’ouverture. Ensuite, les techniques les plus utilisées pour l’estimation du flot op-
tique, telles que les approches variationnelles, sont décrites. Elles comportent deux
classes différentes: les méthodes locales et les méthodes globales, avec ou sans terme de
régularisation. Dans un deuxième temps sont énumerés quelques problèmes classiques
survenant en estimation de flux: les grands déplacements, le repliement temporel et les
changements d’illumination de la scène. Pour chacun d’entre eux sont présentées les so-
lutions classiques retrouvées dans l’état de l’art. Enfin, d’autres méthodes d’estimation
du flot optique n’utilisant pas de cadre variationnel sont décrites.

Le chapitre 3 propose une méthode pour l’estimation du flux sanguin en 3D.
Après une courte revue des techniques existantes, une nouvelle approche de flot
optique dédiée à l’angiographie 3D est détaillée. L’algorithme de flot optique se base
sur plusieurs a priori concernant la concentration du produit de contraste et le flot
sanguin. En s’inspirant de l’état de l’art (chapitre 2), une approche variationnelle
utilisant une énergie de flot optique E et des termes de régularisation est proposée.
Le premier a priori est sur la pulsatilité que le contraste subit lors de sa propagation
dans le sang. Dans des modalités telles que l’angiographie par soustraction numérique,
l’intensité de la séquence d’image présente de forte oscillations correspondant à la
fréquence cardiaque, et se traduit dans l’espace de Fourier par la présence de pics en
plusieurs harmoniques. Un traitement du signal temporel est proposé pour modéliser
cette propriété et simplifier la formulation du flot optique.
Dans une deuxième étape, quelques propriétés du flux sanguin sont injectées dans
l’énergie E au moyen de termes de régularisation (viscosité, incompressibilité, condi-
tions aux limites au niveau des parois du vaisseau). Un algorithme d’optimisation usuel
est décrit pour la minimisation de l’énergie E et la résolution du champ de vitesse v,
puis étendu à des techniques multi-grilles. Cette contribution peut se résumer en une
régularisation sur le temps pour le contraste, suivie d’une régularisation spatiale pour
le flux sanguin.

Le chapitre 4 est une application du chapitre 3 in silico à l’aide de l’angiographie
virtuelle. Tout d’abord, les logiciels de simulations appelés MFN (Mécanique des
Fluides Numériques, ou CFD en anglais) sont présentés. La simulation de séquences
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d’images de contraste est expliquée, en partant de l’extraction de paramètres physi-
ologiques pour les conditions aux limites, jusqu’à l’obtention par le calcul des cartes
de contraste et des champs de vitesses. Par la suite, l’algorithme de flot optique
est testé sur les données d’angiographie virtuelle, et les résultats sont comparés
à la vérité terrain. Finalement, les résultats sont analysés et le rôle des paramètres de
l’algorithme est mis en évidence.

Le chapitre 5 est une application du chapitre 3 in vitro et in vivo sur des données
MPI. Ce chapitre résume le travail préliminaire de cette thèse, qui se vouait ini-
tialement à l’étude de données MPI. Un travail exploratoire est presenté, révèlant le
potentiel du MPI en estimation de flux. Une expérience in vitro originale est décrite,
et présentée comme prometteuse pour l’estimation du flux sanguin en MPI. Pour
finir, un traitement du signal est proposé sur une acquisition MPI in vivo d’une souris,
avec la possibilité d’extraire les lignes de courant du flux sanguin dans les cham-
bres cardiaques.

Le dernier chapitre conclut le manuscrit et apporte une synthèse des contributions
techniques et cliniques, et discute de futures approches.
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General Introduction

Medical imaging and medical image processing

Over the last decades, a wide variety of medical imaging systems have emerged from
the progress of medicine, physics, and computer science. Amongst the most famous
stand chronologically X-Rays in 1895, ultrasounds (US) in late 1940s, positron emis-
sion tomography (PET) in 1950s, optical endoscopy in the same decade, computed
tomography (CT) in 1960s, and magnetic resonance imaging (MRI) in 1977. Each of
these modalities relies on a different physical principle and addresses a different clinical
need. For instance, anatomical structures can be effectively imaged today with X-Ray,
CT, MRI, US, and optical imaging methods, while functional information about phys-
iological structures and their metabolism can be obtained through nuclear medicine
(PET), US, optical fluorescence, and some variations of MRI (fMRI, diffusion-tensor
MRI).

Those new imaging tools have allowed physicians to deeply explore the internal
human body and more importantly brought a better understanding of critical diseases
such as cancer, cardiac failures, brain tumors, and cognitive disorders. The acquisition
of highly resolved multidimensional images of complex organs have considerably revo-
lutionized healthcare. Computer-assisted diagnosis, treatment evaluation, and guided
interventions are the main advances that have tremendously changed the daily practice
of physicians.

In parallel, medical images and image-based clinical knowledge gave rise to a new
branch of medical imaging, called medical image processing [AP Dhawan, 2008].
This very active field of research aims to extract from untreated images (i.e raw sig-
nal intensity) implicit knowledge about the organs of interest: organ shape, tumor
size, bone length, blood flow, ventricular ejection fraction for example, or any other
quantified information having a clinical relevance. Indeed, the acquired images can
be directly interpreted by a clinician, but the image processing and analysis provides
him with a better interpretation and a richer analysis of the clinical picture. On top
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of that, the increasing amount of clinical data to be analyzed today slows down the
physicians in their routine so that automated image analysis tools are a precious save
of time. Medical image processing plays an important role in diagnosis, the important
properties required for medical processing software are:

• Accuracy

• Robustness

• Reproducibility

• Invariance

• Automatic (when possible)

General overview of medical image processing appli-

cations

Within the very extended field of medical image processing, several different classes of
algorithms can be distinguished. For each of those, researchers strive for reaching the
best accuracy and the best efficiency in extracting the information of interest. We can
list those categories as follows:

• Image reconstruction: This class of methods aims to recover the full di-
mensionality of an object when not directly acquired. For instance in three-
dimensional rotational angiography (3DRA), CT or PET imaging, where native
data consists in few one-dimensional (1D) or two-dimensional (2D) image pro-
jections. Reconstruction algorithms transform the sparse and undersampled 1D
or 2D data into the original 2D or 3D object.

• Registration: Registration methods wish to align two images from different
modalities or from different patients. It is always of great help for physicians
to have several information fused in the same view (for example PET scan and
MRI), or to have intra-patient and inter-patient follow up merged.

• Image enhancement: These image processing techniques attempt to improve
the image quality, especially by removing the noise, optimizing the contrast, and
attenuating the artifacts. It helps the clinician to better interpret the medical
image.

• Segmentation: This image processing task takes aim at labeling the medical
image into several regions. It is particularly employed to locate regions of interest
such as organs, blood vessels or tumors. It is very often a prior step before further
statistical analysis.
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• Classification: Classification is one of the foremost goals in medical imaging.
Its purpose is to assign to each element a meaning that eases the image interpre-
tation. For example healthy tissues can be distinguished from tumorous tissues
by highlighting their location with different colors.

• Feature extraction: Feature extraction consists in computing low-level image
characteristics (such as local statistics on the intensity information) or high-level
features (such as shapes and textures) in order to analyze and classify the infor-
mation represented in the image. It is often used as a first step in classification
algorithms.

• Motion analysis: This class of image processing method undertakes to esti-
mate the displacement or the velocity of an object in a temporal image sequence.
Currently, these methods prove very useful in the blood flow estimation, the anal-
ysis of wall motion, the image stabilization during breathing or heartbeat, and
the localization of surgical tools such as catheter tips and pacemakers.

The growing interest in those imaging techniques has boosted the possibilities of
diagnostics and clinical practices. Today, almost every medical imaging system is fitted
with those tools of visualization and analysis. In this thesis, we investigate blood
flow estimation, which is of major clinical importance in cardiovascular
diagnosis.

Blood flow and optical flow estimation

Blood flow is a crucial element of a cardiovascular diagnosis, it can indicate the
perfusion of organs, such as viscera or heart muscle, but can also be exploited to derive
the vascular resistance during an exercise, or after an exercise. Ancient US devices
knew some glorious years in cardiovascular routines (late 1960s), with their ability to
measure the instantaneous blood flow rate with the Doppler effect. Over time, the
progress of medical imaging allowed a deeper exploration and a more precise vision
of how blood flow behaved inside the arteries. The interpretation of blood flow as a
global flow rate was no more sufficient. The studying of blood flow in cardiac cavities,
tortuous arteries, bifurcations, and aneurysms was undoubtedly more appropriate by
the visualization of flow patterns. With the latest improvements of both medical
imaging hardware and software, it recently became possible to acquire flow patterns in
the bloodstream:

• 3D ultrasounds systems make use of two or more probes to reconstruct 2D or
3D flow vector fields [Evans et al., 2011,Gómez, 2013].

• Digital Subtraction Angiography (DSA) employs a radio-opaque contrast
agent (CA) injected in the bloodstream, which provides blood flow information
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through X-Ray irradiation [Shpilfoygel et al., 2000, Bonnefous et al., 2012]. 3D
rotational angiography systems (3DRA) have not been investigated yet for flow
purpose, therefore only 2D flow fields can be estimated at this stage.

• Magnetic Resonance Imaging has a specific imaging mode known as flow
MRI that makes benefit of motion sensitivity to encode 3D flow fields [Wigström
et al., 1996, Markl et al., 2007]. This imaging mode is up to now the most
accurate in term of resolution and provides the highest quantity of information:
time resolved streamlines, pathlines and degree of turbulence in the blood can be
assessed [Dyverfeldt, 2010].

Lately, Philips Research developed a new medical imaging technology called Mag-
netic Particle Imaging (MPI) [Gleich and Weizenecker, 2005]. This imaging sys-
tem uses the interesting saturation property of superparamagnetic iron oxyde (SPIO)
nanoparticles when stimulated by oscillating magnetic fields. This tracer modality pro-
vides 3D+T quantitative information about the nanoparticle concentration after injec-
tion in the bloodstream, with early in vivo successes [Weizenecker et al., 2009,Rahmer
et al., 2013]. MPI presents different advantages compared to the other flow modalities,
such as 3D real time acquisition with kidney safe CA, but also one main chal-
lenge: the limited Field of View (FoV). As with other contrast modalities like DSA
and 3DRA, MPI is thought to be a good candidate for blood flow evaluation. This
medical imaging system acquires an image sequence I(x, t) describing the propagation
of the CA through the bloodstream. From the image sequence, the displacement field
v(x, t) of the CA called optical flow [Beauchemin and Barron, 1995] can be estimated.

This research work first undertakes to unveil the potential of MPI regarding
blood flow analysis, but then more generally tackles the problem of 3D blood
flow estimation based on a CA propagation. From both the potential and the
challenges of MPI, few questions arise:

• Is MPI a good candidate for flow imaging?

• Can we benefit from the blood flow pulsatility to achieve blood flow estimation?

• What is the best choice of optical flow algorithm to assess 3D contrast based flow
imaging?

• How can we evaluate and validate the optical flow algorithm?

• What information can we derive from a blood flow field?

This manuscript basically tries to answer the five aforementioned questions.
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Outline

The manuscript is organized in five chapters, each can be read independently and
focuses on a different subject.

Chapter 1 brings the clinical background of this thesis. The measurement of blood
flow has been used for decades in medical imaging, but the assessment of blood flow
patterns is rather new. The emerging technologies acquiring flow patterns created new
possibilities of diagnosis and new clinical needs. In a first place, several cardiovascular
diseases (CVD) are presented, and how some of them as atherosclerosis and aneurysms
can be detected and studied with flow patterns. Afterward, the different medical
imaging tool allowing to resolve flow patterns are introduced, with their advantages
and drawbacks. A particular emphasis on contrast modalities is made, and a physical
and mathematical digression finally proves how a velocity map can be derived from a
contrast sequence.

Chapter 2 presents the general framework of image sequence analysis. It provides
an in-depth description of the optical flow formulation and its principal pitfall the
aperture problem. Then, the most popular techniques for optical flow estimation
as variational approaches are described. They include local or global miminization
scheme with or without regularization terms. Secondly, several quandaries often arising
in motion estimation are enumerated, among which are large displacements, temporal
aliasing, and illumination changes. Different state of the art approaches are explained
for each of them. Finally, miscellaneous approaches other than variational techniques
are presented.

Chapter 3 describes a methodology for three dimensional blood flow estimation.
After a short overview of the already existing techniques, a new optical flow ap-
proach addressing 3D angiography is developed. The optical flow algorithm is based
on several physical priors concerning the contrast concentration and the blood flow.
Based on the state of the art review described in the previous chapter, a variational
approach using optical flow energy E and regularization term is proposed.
The first prior is the pulsatility that contrast undergoes when propagating through
the bloodstream. In contrast modalities such as DSA, the intensity of the image se-
quence exhibits strong oscillations corresponding to the heart frequency, and resulting
in sharp harmonic peaks in the Fourier domain. A specific time processing approach
is proposed to model this property and simplify the optical flow formulation.
In a second phase, blood flow properties are modeled through several regulariza-
tion terms, including incompressibility, smoothness and boundary conditions on vessel
walls. A typical optimization scheme is detailed in order to minimize the energy E,
solve the blood flow field v, and is later extended to multigrid techniques. This
scheme makes use of a temporal regularization on contrast followed by a spatial regu-
larization on blood flow.
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Chapter 4 is an in silico application of chapter 3 on virtual angiography. First,
a simulation software is presented, and the generation of simulated contrast image
sequence is explained. This simulation makes use of physiologically relevant boundary
conditions for the computation of contrast image and blood flow field. Afterward, the
optical flow algorithm is tested on a set of virtual angiography data, and
results are compared to ground truths. Finally, results are discussed and the role of
algorithm parameters is highlighted.

Chapter 5 presents an in vitro and in vivo application of the chapter 3 on MPI
data. This chapter portrays the preliminary work of this thesis that originally
focused on MPI. An early work is proposed, revealing the future MPI potential. The
originality of the in vitro experiment is pointed out, and presented as a promising
method for blood flow estimation in MPI. Finally, in vivo MPI evaluation of a mouse
is showed with early time processing approaches for the extraction of blood flow
streamlines in heart chambers.

The last chapter eventually concludes the manuscript with a synthesis of its tech-
nical and clinical contributions, before discussing on potential future work.

The overall structure of this thesis is summarized in figure 1.

Figure 1: Organization of the manuscript according to the different chapters.
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Chapter 1

The clinical context
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CHAPTER 1. THE CLINICAL CONTEXT

Abstract

This chapter presents the basic motivation of this thesis, which stands at a cross-
road of healthcare, computer science, physics and applied mathematics. The clinical
background will be first put forward, introducing different diseases in the cardiovas-
cular system, their strong relationship with blood flow, and how we can study them
with flow imaging. Several medical imaging systems will be introduced, with their
advantages and drawbacks, and a particular emphasis on contrast modalities. Finally,
the possibility to capture blood flow with equations of contrast propagation will be
demonstrated. General considerations about hemodynamics and contrast dynamics
will be brought up as theoretical support for the next chapter.

Résumé

Ce chapitre présente la motivation principale de cette thèse, située à la frontière
entre la médecine, l’informatique, la physique et les mathématiques appliquées. Le
contexte clinique sera tout d’abord exposé, en décrivant les différentes maladies du
système cardiovasculaire, leur lien étroit avec le flot sanguin, et les différentes modalités
d’imagerie permettant de les étudier. Plusieurs systèmes d’imagerie médicale seront par
la suite présentés, avec leurs avantages et inconvénients, ainsi qu’un accent particulier
sur les modalités à produit de contraste. Finalement, la possibilité d’extraire le flot
sanguin à partir des équations de propagation du contraste sera démontrée. Des con-
sidérations générales sur la dynamique du sang et du produit de contraste permettront
d’apporter un support théorique utile pour les futurs chapitres.
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1.1. Cardiovascular diseases

1.1 Cardiovascular diseases

According to the World Health Organization, cardiovascular diseases (CVDs) are the
leading cause of mortality in the world, outclassing all the other causes of death put
together [WHO, 2015]. It is estimated that around 17.5 million people died in 2012
because of cardiovascular accidents, which represents 31% of the global mortality, and
occurs at 75% in developing countries. Some of CVDs can be dealt with or controlled
by addressing the behavioral causes (smoking, unhealthy diets, settled way of life,
alcoholism, stress...), but some other kinds of CVDs are more difficult to avoid when
arising from genetic conditions, bacterial infections, or traumatic injuries. Among the
CVDs, several groups of disorders can be identified, whether they can be attributed to
arteries, veins, or heart function [WHO, 2015]:

• Coronary heart diseases (vessels supplying the heart muscle)

• Cerebrovascular diseases (vessels supplying the brain)

• Peripheral arterial diseases (vessels supplying the limbs)

• Vein thrombosis and pulmonary embolism (blood clots in the leg veins, which
can dislodge and move to the heart and lungs)

• Rheumatic heart diseases (damages to heart muscle and valves during a rheumatic
fever, caused by a streptococcal bacteria)

• Congenital heart diseases (malformation existing at birth)

CVDs often manifest themselves by the corruption of the cardiovascular morphol-
ogy, which disturbs the blood flow transport. In the case of blood vessel deformation -
the four first aforementioned diseases - the vessel lumen is either narrowed (stenosis), or
dilated (aneurysm). Theses two abnormalities are at the core of this thesis. They can
be explained by a physiological mechanism known as atherosclerosis but more impor-
tantly by hemodynamic factors. After a short presentation of atherosclerosis and
aneurysms, both impairments of the blood vessel function, the principal hemodynamic
causes will be discussed.

1.1.1 Atherosclerosis

One of the main reason for the development of a CVD is the atherosclerosis. Atheroscle-
rosis, or hardening of the arteries, is a condition in which plaques build-up in the
arteries [AHA, 2014]. The rupture of the arterial plaques stimulates a thrombosis pro-
cess, which often results in the formation of clots. This mechanism eventually leads
to a complete blockage of blood flow supply to heart or brain tissues, thereby causing
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CHAPTER 1. THE CLINICAL CONTEXT

a heart attack, or a stroke. Plaques can manifest themselves on angiographies as a
reduction or an occlusion of the vessel, also called stenosis (see figure 1.1).

Figure 1.1: Stenosis in the right coronary artery. This angiogram is reproduced from a
Philips X-Ray database.

How are arterial plaques generated ?
What is exactly the origin of atherosclerosis is still unclear today. Nevertheless,

many scientists as Wootton et. al [Wootton and Ku, 1999a] believe that the formation
of arterial plaques might arise from the damage of endothelium due to the blood flow.
The endothelium is a very thin layer of squamous cells interfacing the bloodstream with
the arterial wall. When this thin barrier is damaged, arterial wall is weakened, allowing
lipids and toxins to penetrate the smooth muscle layer, known as media. This triggers
an inflammation and oxidative cascade in the media, where fat and cellular wastes
accumulate: a plaque is created [Cito et al., 2013]. Eventually, the plaque begins to
calcify and, over time, becomes prone to rupture.

Figure 1.2: Schema of atherosclerosis: 1. Healthy artery with a laminar parabolic
flow profile: endothelial cells are elongated in the direction of flow 2. Flow turbulence occurs
and damages the intima: endothelial cells get destructured 3. Monocytes are recruited to
the inflammation site 4. Fatty streak and foam cells penetrate the media through weakened
endothelium: atherosclerosis begins 5. Fat and cholesterol accumulate over time and create
an arterial plaque.
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1.1. Cardiovascular diseases

1.1.2 Aneurysms

Another common CVD is the formation of aneurysms. Aneurysms are balloon-like,
blood filled bulges localized in the wall of a blood vessel. Common locations for
aneurysms in the human vascular system include the circle of Willis in the brain,
the thoracic aorta, the abdominal aorta, or even heart itself. It has been established
that around 2% of the population harbors cerebral aneurysms [Rinkel et al., 1998], but
fortunately most of them remains asymptomatic and harmless (between 50% and 80%
never rupture [Brisman et al., 2006]). As an aneurysm increases in size, the risk of
rupture also increases. The consequence of rupture is an extensive bleeding, a hypov-
olemic shock and death if not treated within a short time. Aneurysms are a result of
a weakened blood vessel wall, caused by a hereditary condition, an acquired disease or
hemodynamic factors.

Figure 1.3: Example of saccular-type cerebral aneurysm (courtesy of Dr. Morales, Philips
Research Paris- Medisys Research Lab).

1.1.3 Dissections

A dissection is a tear within the wall of a blood vessel. Usually a layer of the intima or
media ruptures, creating a separation between two wall layers. The blood infiltrates in
this passage and digs a second vessel lumen (see figure 1.4). Dissections often lead to
two different outcomes: ischemic complications, by the reduction of the native lumen
(stenotic configuration), or by the dilation of the ’false lumen’ created by the new space
within the wall of the artery (aneurysmal configuration). From a hemodynamic point
of view, the two above configurations boil down to either the case of a stenosis or the
case of an aneurysm. Dissection are mainly located in the aorta, the coronary arteries,
the vertebral artery, and the carotid artery.

Figure 1.4: Artery dissection
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1.1.4 Hemodynamic factors in cardiovascular diseases

The hemodynamic conditions are fundamental to understand what is health and what
is illness in the circulatory system. Recently, medical literature started to unveil the
strong relationships between hemodynamics, endothelial function and CVDs [Wootton
and Ku, 1999a,Reneman et al., 2006,Malek, 1999,Dolan et al., 2011,Dolan et al., 2012].
Endothelium is suspected to react to local hemodynamics, especially to wall shear
stress (WSS) alongside the arterial walls. It has the ability to sense and mechanically
transduce the mechanical stress of blood flow into a biological signal [Traub and Berk,
1998, Ishida et al., 1997]. Thus, feedback and regulation of the circulatory system can
be achieved by optimally adapting the arterial diameter to the required flow rate.

However, when endothelium gets damaged by blood flow forces, the flow regulation
of endothelial cells gets disrupted and the arterial wall starts to behave improperly
[Malek, 1999, Raj, 2013, Moore et al., 1994]. Indeed, the endothelium is supposed to
maintain the arterial function only within a physiological WSS range, outside which
homeostasis cannot be guaranteed. For instance, low oscillating WSS that occurs in
flow recirculation area promotes the formation of arterial plaques by destructuring
the endothelial cells [Dolan et al., 2012]. High WSS in stenotic arteries stimulates
a so-called arterial remodeling process [Girerd et al., 1996, Zarins et al., 1987],
often increasing the risk of plaque rupture. WSS is therefore a crucial indicator of
atherogenesis, arterial remodeling, and plaque rupture.

Additionally, hemodynamics is very important for the assessment of aneurysm rup-
ture and treatment success. Strong correlations between hemodynamics and aneurysm
initiation, growth and rupture have been reported [Gao et al., 2008,Cebral et al., 2011].
In [Meng et al., 2014], it is shown that both high and low WSS can expose arterial wall
to aneurysm initiation, while the impingement jet and flow stability are associated
with aneurysm rupture [Cebral et al., 2009].

In that respect, computational fluid dynamics (CFD) software have been used
to study and to predict hemodynamic conditions in abnormal vasculatures of the car-
diovascular system. For instance, CFD has allowed to better understand the origins
of aneurysm rupture, and to simulate the possible outcome of a surgical interven-
tion [Morales, 2012]. Even though CFD is not integrated in clinical routines yet, it lets
us envision a significant improvement in the clinical management of CVDs, including
unruptured aneurysms [Singh et al., 2009]. The spreading use of CFD attests to actual
importance of hemodynamics in the genesis and growth of CVDs, while allowing a
completely non-invasive analysis of the cardiovascular system. For further information
about CFD, the reader is invited to go directly to chapter 4.
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1.1. Cardiovascular diseases

Figure 1.5: Examples of CFD simulation for arterial flow with aneurysm (the streamlines
corresponding to bloodflow are color-coded with the velocity magnitude: yellow for high velocity
and red for low velocity).

All the above information about hemodynamic features (WSS and jet among oth-
ers) prove very valuable for the clinical assessment of CVDs, from the prediction and
detection of the disease, to the evaluation of its severity and the need to resort to
surgery. However, further studies about the dysfunction of cardiovascular system and
particularly about the influence of blood flow still need to be conducted. The current
knowledge about the hemodynamic factors on CVDs is still incomplete. In order to
broaden our understanding of the CVDs pathogenesis and evolution, medical imaging
systems dedicated to the in-vivo assessment of blood flow had to be developed. Hence,
the next section will describe the medical imaging devices allowing blood flow analysis.
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CHAPTER 1. THE CLINICAL CONTEXT

1.2 Blood flow assessment in medical imaging

Nowadays, cardiovascular diseases can be efficiently imaged with the advances of medi-
cal imaging. Medical devices such as US, CT, or MRI are perfectly capable of detecting
a cardiovascular condition. Typically, angiography enables the visualization of steno-
sis, aneurysms, and bloodflow malfunctions, while cardiac imaging allows to temporally
resolve heartbeats and study wall and valves motion.

In this section, we will present the different medical imaging modalities that are
employed to capture the blood flow in medical imaging:

• Doppler Ultrasonography (Doppler US) is the gold-standard flow modality
and also the most commonly used in clinical routines.

• Digital Subtraction Angiography (DSA) which takes benefit from a radio-
opaque contrast agent to image the propagation of blood flow under X-Rays
irradiation.

• Flow MRI which is an emerging MRI acquisition mode that makes possible the
visualization of complex flow patterns inside cardiovascular organs.

• Magnetic Particle Imaging (MPI) which is a totally new medical image
modality with high potential in angiography and blood flow assessment, albeit
not fully developed at this time.

1.2.1 Doppler US

Doppler ultrasonography has been a long-standing and reliable tool for the studying of
blood flow in medical imaging. It takes advantage of the well-known Doppler effect
that describes the frequency shift that occurs when a wave source is moving away
from an observer [Kremkau, 1990]. Hence, the velocity component of blood flow in the
direction of the US beam can be computed, using the frequency change of reflected
ultrasounds. This technique has proven very useful for more than 30 years, with the
advantage of providing a real time blood flow estimation and also to require simple
and low cost electronics.

Several acquisition protocols actually exist for the assessment of bloodflow in US:
the continuous wave system, the pulsed wave system, the spectral analysis, the color
flow imaging, and tissue doppler imaging. They usually provide the time variation of
the blood velocity within a single range gate in the form of an audio signal correspond-
ing to the evolution of the Doppler frequency shifts. If we produce an ultrasound beam
of frequency f0 toward the moving blood of velocity v, the ultrasound wave will be
contracted twice: the first time when blood receives the signal at velocity c − v and
the second time when backscattering the wave to the probe at c+ v, c being the speed
of sound. The return frequency fr therefore reads [Bonnefous, 2001]:
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1.2. Blood flow assessment in medical imaging

fr = f0
c+ v

c− v
≈ f0(1 + 2

v

c
) (1.1)

As a consequence, blood velocity can be related to the frequency shift fD by:

fD = fr − f0 = 2f0
v

c
(1.2)

Figure 1.6: Color flow imaging of the carotid artery, using Doppler on a Philips US device.
In A., two colors are displayed: the red shows the blood particles moving away from the
probe, while the blue shows the ones getting closer to the probe. In B. is displayed a velocity
spectrogram measured inside a local window of the US image. The time axis is represented
horizontally, and for each time sample is color coded a velocity distribution of the window of
interest. From this spectrogram can be derived the time evolution of both maximum and mean
velocity.

Yet, the ultrasound waves are limited in their penetration depth, and are strongly
reflected by bones (skull, ribs...). This reduces the applications of color flow imaging
to accessible parts of the body. The color flow imaging has also the main drawback
that it only yields the velocity component of the blood flow in the beam axis. The
angle from which the transducer generates ultrasounds is therefore paramount for the
observation of a blood vessel, especially when the latter harbors curved or tortuous
shapes. Nevertheless, new acquisitions and reconstruction methods using two or more
probes allow to extend color flow imaging to 3D images, with 2 or 3 components of the
velocity vectors [Evans et al., 2011,Gómez, 2013]. The portability and the low cost of
US together with the recent advances of flow acquisition protocols ought to enable US
to stay one of the gold standard modality for blood flow estimation.
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1.2.2 X-Ray DSA

X-Rays devices have been the first medical imaging system invented, after the discovery
of Röntgen in 1895. They make use of the penetrating X-Ray electromagnetic waves to
image the absorption rate of human tissues. Since the first radiographs were obtained
on photographic plates, the acquisition method of X-Rays evolved with the advent of
electronic sensors into modern digital radiography, fluorography, mammography, an-
giography, and their 3D derived rotational angiography and CT scanners [AP Dhawan,
2008].

The basic principle is that the X-Ray attenuation provides information about vari-
ations in the tissue density. The output intensity of a radiation beam parallel to
a x-direction for a y-coordinate location in a z-axial planar cross-section Iout(y;x, z)
would be given by:

Iout(y;x, z) = Iin(y;x, z)e−
�
µ(x,y;z)dx (1.3)

where µ(x, y, z) is the attenuation coefficient to the transmitted X-Ray energy.

X-Ray devices produce images with morphological information at high spatial reso-
lution, which often proves useful for both interventional and diagnostic purpose. Gen-
erally CT is used to acquire an accurate 3D volume of the patient with anatomical
landmarks, to ease a diagnosis or to complement the functional information of other
modalities like PET-scans. Other X-Ray systems as 3DRA or DSA are fitted with
rotating C-arms (see figure 1.7) that make possible the access to patient acquisitions
during the intervention.

Figure 1.7: Philips C-arm BV-Vectra with its monitor. (available on http: // www. healthcare. philips. com )

In the domain of angiography, 3DRA and DSA outperform all other modalities
in term of spatial and temporal resolution. DSA is a 2D X-Ray imaging mode that
generates cone beam projections of the vasculature of interest under a controllable
angulation. A radio-opaque tracer is injected in the bloodstream, which creates a
strong contrast between the background and the blood vessels. Fast image sequence
can be achieved with a frame rate of 60 Hz and a sub-millimetric resolution. 3DRA
basically uses the same acquisition protocol, but adds an extra-dimension by taking
benefit from multiple angulations acquired during a single acquisition. As a result, 3D
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1.2. Blood flow assessment in medical imaging

volume reconstruction becomes possible, but at the cost of temporal resolution (figure
1.8 ). Although these image modalities provide valuable information regarding vascular
morphology [Conti et al., 2011], it is still uneasy to extract functional information, such
as blood flow.

Figure 1.8: 3DRA of brain arteries.

Recently, quantitative assessment of hemodynamics has been investigated by de-
tecting the displacement of the radio-opaque contrast material through the vascular
system in DSA sequences. This concept has been studied since the 1960s, and an exten-
sive review has been published recently [Shpilfoygel et al., 2000], where different classes
of flow estimation methods are shown. Some techniques are based on physical models,
like advection, to compute a realistic flow [Sarry et al., 2002], while other approaches
only rely on the image intensity information [Bogunović and Loncarić, 2006, Rhode
et al., 2005].

Especially optical flow methods (OFM) have been employed to estimate locally
the velocity of blood flow in the arteries. For example, [Bonnefous et al., 2012] es-
timate the flow inside arteries, exploiting both spatial and time derivatives of the
contrast product on 2D DSA sequences. This technique was validated later by com-
paring the flow estimation with Doppler US measurement in the internal carotid artery
(ICA) [Pereira et al., 2014]. The method estimates flow patterns with pixelwise-2D
velocities. For instance, flow patterns in cerebral aneurysms were studied before and
after flow-diverter stenting [Pereira et al., 2013]. OFMs in DSA have a considerable
advantage compared to 2D Doppler US since it provide an additional component of
the blood velocity (see figure 1.9).

However, one should note that the propagation of the CA cannot be observed when
its concentration gets homogeneous in the arteries. Indeed, if the CA has been diluted
over time inside the circulatory system, the blood motion is not visible through the
angiogram and the flow cannot be captured. That is why 3DRA or CT cannot be used
for flow estimation: they require the injection of a long contrast product bolus. The
CA saturates the vessel lumen so that contrast density fluctuations cannot be observed.
Whereas, lower contrast loads are used in DSA. The mixability of contrast with ar-
terial blood produces a spatio-temporal modulation of the CA. This modulation
originates from the sharp and periodic pulsation that blood flow undergoes with heart
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Figure 1.9: DSA depicting an aneurysm. A: Original image sequence. B: The contrast was
enhanced with post-processing. C: Vector field depicting the velocities of the contrast product
estimated from an OFM.

pumping (see section 1.3). This phenomenon can be observed several centimeters away
from the injection point, were the CA starts to form a stable mixture [Lieber et al.,
2009]. Also, the diffusion process tends to homogenize contrast after a long time, which
explain why contrast has to be injected during the DSA examination.

DSA might stay the modality of choice for angiography and flow analysis, by bene-
fiting from a high spatio-temporal resolution, by being minimal-invasive for the patient
and by allowing cerebral imaging. The emission of ionizing radiations is nevertheless
an inherent drawback to X-Rays, even with low dose utilization and image intensi-
fiers. Furthermore, the functional flow evaluation in DSA is currently limited by the
projective 2D geometry, which not only misses one dimension, but brings perspective
complications with overlapped structures and foreshortening effect (X-Ray beams
get even more absorbed when penetrating a vessel longitudinally, thereby skewing the
contrast information).

1.2.3 Flow MRI

MRI techniques provide non-invasive, highly accurate anatomic depictions of the heart
and vessels. The intrinsic motion sensitivity of MRI can be used to image vessels
with phase contrast (PC) MR-angiography, or to quantify blood flow [Firmin et al.,
,Dumoulin, 1995,Bock et al., 2010]. After 2D encoding techniques were invented [Pelc
et al., 1991], the advent of 3D spatial encoding offered the ability to measure 3D time-
resolved flow patterns in vascular regions (aorta, cranial arteries, carotid arteries,...),
making 4D flow MRI the modality with the richest amount of flow information ever
acquired [Wigström et al., 1996,Markl et al., 2007].

Its potential is such that flow MRI becomes central in the analysis of complex flow
pattern, associated with healthy and pathologic hemodynamics [Wetzel et al., 2007,
Harloff et al., 2009,Uribe et al., 2009,Hope et al., 2010]. The possibility to determine the
degree of blood turbulence with high order statistics of intra-voxel velocity distribution
has been proven as a precious asset [Dyverfeldt, 2010].

24



1.2. Blood flow assessment in medical imaging

Figure 1.10: Pathlines visualization of PC-MRI data in the heart. Blue pathlines show the
flow in the right side of the heart while red ones show those in the left side. RA: Right atrium.
RV: Right ventricle. LV: Left ventricle. This picture was reproduced from [Dyverfeldt, 2010],
with the courtesy of Dr. Petter Dyverfeldt (Linköping University).

The relatively long scan time of 3D flow MRI (several minutes) is today the only ob-
stacle to its eligibility in clinical applications and large scale studies. Notwithstanding,
several improvements can be expected on the acquisition time by using spatiotemporal
correlation techniques in the dynamic data [Tsao et al., 2003], or optimizing the encod-
ing mode from Cartesian approach to echo-planar imaging, or non-Cartesian k -space
trajectories for example.

1.2.4 MPI

Magnetic particle imaging is a new imaging system invented in 2001 by Gleich and
Weizenecker and presented for the first time in 2005 in Nature [Gleich and Weizenecker,
2005]. This tracer imaging modality uses the non-linear magnetization property of
superparamagnetic iron oxide (SPIO) nano-particles. Similarly to its elder cousin
MRI, MPI acquires images with the magnetic relaxation of particles in answer to a
magnetic excitation. However, MPI does not use anatomic tissues to generate a signal,
but the more powerful answer of an injected ferromagnetic contrast agent. The differ-
ent saturation behavior of the ferro-particles allows to isolate their magnetization
signal from that of other tissues. This new imaging concept gave rise to a totally new
research field of medical imaging. Few years after being designed in Philips facilities,
MPI is now at an exciting stage of development. This stage is similar to where MRI
was in the early 1980s, when commercial MRI scanners and contrast agents were just
being developed. Although a few handful preclinical prototype scanners have been
constructed worldwide, there is a significant interest in this new imaging modality,
especially from nuclear magnetic resonance (NMR) and MRI researchers.

MPI offers quantitative 3D real-time imaging at spatial resolutions comparable
to other established modalities. One of its greatest advantage, compared to any other
modality, lies in its ability to perform background free measurements. Because tis-
sues are transparent to the excitation field (they contain no ferromagnetic components),
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Figure 1.11: On the left, a rough representation of an MPI device. It contains several sets
of magnets and coils for the control of magnetic field during the acquisition procedure. The 3
directions are encoded, and some coils are used in both excitating the sample, and receiving
the induced signal. On the right, a photo of the unique 3D MPI prototype in a laboratory of
Philips Hamburg.

we only detect the SPIO nanoparticles injected into the body.
The first in-vivo acquisitions were recently demonstrated on living mice [Weize-

necker et al., 2009], where heartbeat and motion of vascular structures were imaged
(see figure 1.12). A bolus of SPIOs was injected into the tail vein of the animal, and
revealed the propagation of the magnetic tracer into the bloodstream. The background
free and high sensitive signal of the nanoparticles image very clearly the shape of the
heart chambers, and the wall motion during the cardiac cycles. From that start, several
potential applications were envisioned, among which stand human angiography, cancer
imaging, in vivo-cell tracking, and inflammation imaging.

Figure 1.12: Three orthogonal slices of a fused MRI-MPI mouse scan. The grey scale inten-
sity corresponds to MRI acquisition, while the jet color code depicts the MPI signal intensity
(i.e magnetic nanoparticles concentration).
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The potential of MPI

MPI could become the modality of choice for diagnoses requiring a fast blood flow
estimation, namely the artery diseases (stenosis, aneurysms) and heart malfunctions.
Its high 3D acquisition speed and fine data resolution are serious assets for quantitative
analysis of contrast propagation in arteries. For the moment, the MPI system is not
fully developed and human acquisitions are still not available. Technical improvements
in MPI hardware have to be addressed, which will favor new image acquisitions with
higher resolution in large animals. Nevertheless, it can be expected in the upcoming
years that this totally new tomographic device will challenge gold-standard cardio-
vascular modality (Doppler US, DSA or flow MRI) in the diagnostic of cardiac diseases
and the use in interventional procedures [Duschka et al., 2013].

Compared to today’s standards in medical imaging such as CT, MRI and PET, this
new modality combines several advantages of each of them. MPI offers the potential
of achieving a higher sensitivity in detection of tracers, compared to the detection of
contrast agents in MRI or CT with a good spatial as well as high temporal resolution
[Buzug et al., 2012]. While the current setting of SPIOs and hardware allows a 1
millimeter spatial resolution scale, in theory even a resolution of 250 micrometer
and a sensitivity of 20 nanomolar appears feasible [Goodwill et al., 2012]. Acquisition
rates of over 40 volumes per second have already been demonstrated [Weizenecker
et al., 2009]. Another benefit arises from using magnetic fields instead of ionizing
radiation. Human tissue is diamagnetic [John, 1996] and thus is not expected to
generate any MPI signal. As a consequence no anatomical background is picked up
by the system and interferes with the structures of interest, resulting in an excellent
contrast. Furthermore, SPIOs generate a signal that is proportional to the amount
of particles in the FoV, thus allowing a true quantitative analysis. Currently the
main drawback is the small FoV, which does not exceed several centimeters per
dimension.

Considering this unique combination of characteristics, MPI is a method with great
promise for a number of applications, including cardiovascular imaging or even cardio-
vascular interventions.
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1.3 Contrast modulation in arteries: the finger-

print of blood propagation

This section will prepare the ground for the main chapter and contribution of my thesis:
the blood flow estimation in tracer modalities. Without ignoring all the potential of
flow MRI and Doppler US in blood flow analysis, we chose to focus exclusively on
DSA and MPI images, which both have in common to provide time-resolved contrast
information.

1.3.1 Blood flow in arteries

The primary purpose of the circulatory system is to drive, control, and efficiently
maintain the blood flow in vessels, so as to continuously supply organs with oxygen
and nutrients. A healthy artery is relatively free of turbulence, it efficiently transports
blood components in a laminar flow with few resistance. Researchers created a science
specific to hydrodynamics of cardiovascular system called hemodynamics. The way
blood propagates into arteries can be modeled by few mechanical laws, including:

• The mass conservation equation:

∂ρ

∂t
+∇ · (ρv) = 0 (1.4)

• The momentum conservation equation:

ρ(
∂v

∂t
+ v · ∇v) = −∇p+ µ∇v (1.5)

With ρ being the blood density, µ the dynamic blood viscosity, p the local blood
pressure, and v the blood velocity. The density ρ ' 1060kg/m3 can be considered as
constant, which yields the incompressibility equation:

∇ · v = 0 (1.6)

The blood viscosity however, varies within a range between 4.10−3 Pa.s and 25.10−3

Pa.s, with an average of 6.10−3Pa.s. Blood can be categorized as a non-Newtonian
fluid: its viscosity depends on the applied shear rate.

The flow rate Q is the quantity of fluid matter flowing during a time unit. It can
also be defined as the net flux of fluid displacement vectors v through a tube cross
section C:

Q =

�
C
v · dS (1.7)
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1.3. Contrast modulation in arteries: the fingerprint of blood propagation

An important property of the flow rate is that it must be kept constant along
the flow conduct. The divergence equation (1.6) together with Green-Ostrogradski
divergence theorem gives:

�
cylinder

(∇.v)dτ = 0 (1.8)

�
cylinder

v · dS = 0 (1.9)

�
inlet

v · dSinlet +

�
wall

v · dSwall +

�
outlet

v · dSoutlet = 0 (1.10)

Qinlet = Qoutlet (1.11)

Figure 1.13: Cylindrical artery with conservation of flow rate.

As a result, the flow rate constancy between inlet and outlet is verified, provided
that there are no leaks along the arterial wall, i.e:

vwall · dSwall = 0 (1.12)

The flow rate conservation should be respected in every segment of the arterial
network, at any time. It is a strong indicator of the flow reliability to fluid mechanics.
As will be seen in later chapters, there are substantial numerical difficulties to capture
complex velocity patterns that satisfy flow rate conservation.

Poiseuille flow

The simplest example of flow in the cardiovascular system would be a long and
straight tube, undergoing no pulsatility nor turbulence, with a steady flow rate. Such
a flow is well-known to be modeled by the Poiseuille equation (1.13), which states that
the pressure drop ∆p along the tube is directly proportional to the length l of the tube,
the flow rate Q,the viscosity µ, and inversely proportional to the fourth power of the
internal radius r [Ku, 1997]:
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∆p =
8µl

πr4
Q (1.13)

with R = 8µl
πr4 the flow resistance.

This formula shows the strong dependency of flow resistance to the radius of artery.
This is particularly true in stenotic artery portions, where the small lumen radius
increases flow resistance, thereby provoking a higher harmful pressure drop ∆p between
the inlet and the outlet.

A simple implementation of the first Newton’s law on viscous and pressure forces
inside the artery (figure 1.13) yields the well-known parabolic velocity profile:

v(r) = v0(1− r2

R2
) (1.14)

Where r stands for the coordinate along the tube radius, R is the tube radius, and
v0 is the maximum velocity on the tube center.

Figure 1.14: Slice of the artery (figure 1.13) where the velocity follows a parabolic profile
depending on the lumen radius.
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1.3. Contrast modulation in arteries: the fingerprint of blood propagation

The flow profile in arteries approximately respects this law for long and straight
vessel portions, with very few pulsatility. Indeed, this is only a simple approximation
of flow behavior since pulsatility causes the flow profile to drift from Poiseuille profile.
Flow particles slow down due to the boundary layer and by assumption that there is
no slippery between wall and particles:

v(R) = 0 (1.15)

Flow regime and pulsatility

In the limit layer, the viscous forces dominate the flow inertia, eliminating the
small-scales turbulence. Whereas, flow generally tends to be more turbulent away
from this layer. The number that quantifies the flow regime is referred to as the
dimensionless Reynolds number, it measures the ratio between inertia forces and
viscous dissipation forces:

Re =
ρvD

µ
(1.16)

With D being the characteristic linear dimension of the flow, here the vessel diam-
eter. This number characterizes the global flow regime of the conduct, as opposed
to local. In the cardiovascular system, the range of Re stands between 1 for the small
arterioles and 4000 for the great arteries as aorta [Ku, 1997]. However, this number
generally stays within laminar range (Re < 2000), with 150 for right coronary artery,
220 for internal carotid, 240 for left main coronary, 280 for femoral artery, and 330 in
the common carotid [Wootton and Ku, 1999b].

Another typical characteristic of arterial flow is pulsatility. The heart pumping
causes the blood flow velocity to oscillate as the valves intermittently close and open
with each beat of the heart. In most parts of the arterial network, the blood undergoes
a sharp pulsation, wherein velocity profiles are distorted and strongly drifted from
parabolas such as in equation (1.14). Instead, more complex pattern can be oberved
[Ku, 1997], including several crests with reversed parabola, or also flat profiles. The
Womersley number α especially quantifies pulsatile flows with:

α = R(
ωρ

µ
)1/2 (1.17)

with ω the pulsation frequency.
This dimensionless number α is important in describing the pulsatile flows, since it

gives an idea of the ratio between pulsation frequency and viscous effects, irrespective
of the flow geometry.

Among the general properties of blood flow described above, pulsatility is the most
interesting for the study of the propagation of a CA. The next section describes how
blood pulsatility can help solving the equations of contrast propagation and eventually
retrieve blood flow information.
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1.3.2 Contrast behavior in arteries

Because the blood flow information is not directly accessible to DSA and MPI devices,
one has to use the CA as a marker, or a fingerprint of the bloodflow propaga-
tion. A CA dragged by the blood flow can be approximated by the scalar transport
equation, whose expression reads:

∂c

∂t
= ∇ · (D∇c)−∇ · (cv) +R (1.18)

with c the CA concentration, D the diffusion coefficient of the said contrast in
blood, and R describing ’sinks’ or ’source’ contrast quantities.

This equation can be highly simplified, considering the very weak diffusivity of
contrast into blood (D ' 0), and also the absence of contrast sources and sinks (R = 0),
excepted at injection point. The scalar transport equation is then:

∂c

∂t
+∇ · (cv) = 0 (1.19)

By bringing the incompressibility equation (1.6) into (1.19), we obtain the simpli-
fied scalar transport equation that relates the contrast concentration c with the
blood velocity v:

∂c

∂t
+ v · ∇c = 0 (1.20)

A model for constrast injection

When injecting the CA within an artery, blood and contrast material mix. The contrast
flow rate Qc is added to blood flow rate Qb. The tracer concentration cinjected is diluted
in the total flow Q = Qb +Qc:

c =
Qc

Qb +Qc

cinjected (1.21)

In arteries, blood flow Qb can be split into two components: a constant component
Q0 and a pulsatile component Qp(t): Qb(t) = Q0 +Qp(t).

Figure 1.15: Catheter tip injecting the contrast flow rate Qc inside the arterial lumen wherein
blood flow rate is the superposition of a constant flow Q0 and a pulsatile flow Qp.

During the end diastole, the flow rate is the lowest and the pulsatile component is
nearly 0: Qp(t) ' 0. The contrast concentration is at its highest:
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1.3. Contrast modulation in arteries: the fingerprint of blood propagation

cmax =
Qc

Qc +Q0

cinjected (1.22)

Whereas during systole, Qp(t) increases, and the contrast is diluted according to:

c(t) =
Qc

Qc +Q0 +Qp(t)
cinjected (1.23)

The concentration variation δc(t) during a cardiac cycle is then:

δc(t) = cmax − c(t) (1.24)

Under the assumption that the contrast flow rate Qc can be neglected compared to
blood flow, it comes:

δc(t) ' QcQp(t)

(Qc +Q0)2
cinjected (1.25)

As Qp(t) is pulsatile, this proves that the concentration c(t) is made up of a constant
component cmax and a pulsatile component δc(t). Thanks to the natural blood flow
modulation, a temporal modulation of CA density can be achieved at the injection
point.

A model for contrast propagation and modulation

After injection, the contrast patterns are dragged by the bloodstream within the arterial
network. Unfortunately, the transformation the CA undergoes with blood pulsatility
is not linear. Contrast information far from the injection point does not follow velocity
variations. However, in order to evaluate the flow far from the injection point, one can
rely on the local scalar transport equation (1.20). For the sake of simplification, let
us consider a flow inside a straight artery of longitudinal axis z. At the injection point
z = 0, the concentration function c0(t) = c(0, t) is periodic with the cardiac period T .
At a sufficiently small distance z from the injection point, such that the time of flight
of a fluid particle is very small compared to the heart period T, the contrast c(z, t) in
adequation with the transport equation verifies:

c(z, t) = c0(t− z

v(t)
) (1.26)

where v(t) is the flow velocity.
Given the periodicity of c0(t) and v(t), we can deduce the periodicity of c(z, t) with

the same cardiac period T :

c(z, t+ T ) = c0(t+ T − z

v(t+ T )
) = c0(t− z

v(t)
) = c(z, t) (1.27)
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This reasoning can be further extended to the transport between z and 2z , 2z and
3z , and so on. Hence, the temporal periodicity can be asserted for the whole arterial
mesh.

On top of that, a pseudo spatial modulation can be noticed. Indeed, if we choose
to neglect the pulsatile velocity component with respect to average velocity v̂, we can
approximate on the first order:

c(z + v̂T, t) ' cz(t− T −
z

v̂
) ' cz(t−

z

v̂
) = c(z, t) (1.28)

Indeed, this equation is inexact, especially for large waves. With a heart frequency
of 1.2Hz and an average velocity of 20cm.s−1 , we get a spatial wavelength L = 16cm,
which is way sufficient for the wave to undergo distortion. Since the velocity is not
steady during the contrast transport, and might also be subject to spatial variations,
the contrast wave is non linearly propagated by blood flow.

Nevertheless, the time periodicity of contrast concentration with a heart period T
can be used to decompose c0(t), the contrast at the injection point, as a Fourier serie:

ĉ0(t) =
+∞∑

n=−∞

Cne
j2πnfct (1.29)

with fc = 1
T

the cardiac frequency, approximated as constant during the injection,
Cn the complex Fourier coefficients of the contrast density, and n the n-th harmonic
of the cardiac frequency.

At a small distance z from the injection, the local transport equation is:

ĉ(z, t) =
+∞∑

n=−∞

Cn,ze
jnωc(t−z/v) =

+∞∑
n=−∞

Cn,ze
jn(ωct−kcz) (1.30)

where ωc = 2πfc is the angular cardiac pulsation and kc = ωc
v

is the wavenumber
or fundamental spatial frequency of the wave. Now consider the local scalar transport
equation (1.20) along z axis, the 1D equation is:

∂ĉ

∂t
+ v

∂ĉ

∂z
= 0 (1.31)

The scalar transport equation is actually what allows to estimate the blood flow v,
based on the contrast concentration c. However, if the spatial derivative ∂ĉ

∂z
vanishes,

the velocity gets undefined and the above equation is not possible to solve. This pitfall
will be better investigated in chapter 2. Developing the spatial gradient from equation
(1.30) yields:

‖∂ĉ
∂z
‖ = kc‖

+∞∑
n=−∞

nCne
jn(ωct−kcz)‖ (1.32)
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Figure 1.16: Example of concentration-time curve at the injection point. The concentration
is periodic with period T . The real part of Fourier signal is displayed as the black curve, the
imaginary part corresponds to the green curve and the dashed blue line to the instantaneous
modulus.

where kc > 0.

The modulus of the complex derivative signal should not cancel. Since the real
part and the imaginary part are in quadrature, they cannot nullify at the same time.
At least one frequency component C1 6= 0, so the term in equation(1.32) should not
cancel out. If no pulsatility was present in the CA signal, the concentration would
be homogeneous and the blood flow invisible on the image sequence. Thanks to the
fundamental periodicity of the CA density, the modulus of the complex concentration
gradient is always carrying information. We could argue indeed that the real part
of contrast serie (1.30) can exhibit some spatial extrema, but the information of the
imaginary part can be used to overcome this issue, as described later in section 3.2.2.
Another complication could arise from infinite velocity v, which would cancel kc and
bring down the possibility to capture a gradient information. This very situation is
not met in reality, but can bring numerical issues when velocity is large compared to
the field of view. This problem will be also discussed in the next chapter.

The above simplified equations show that contrast modulation is paramount in
blood flow assessment. It can be exploited to solve the scalar transport equation (1.20)
and finally estimate blood velocity. Without modulation, the contrast tends to get
homogeneous over time. Typically, this natural phenomenon allows researchers to
track the propagation of CA in DSA sequences.

*
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* *

In this chapter, we evoked the damages of CVDs and the burden it represents for
global healthcare today. The main responsible for these is the corruption of vessel
morphology as encountered in stenosis and aneurysms. Evidences have shown that
hemodynamics play a role in the initiation and evolution of a cardiovascular pathol-
ogy. To further understand the pathogenesis of CVDs, and to improve both diagnostics
and treatments, medical flow imaging was developed. MRI flow and Doppler US have
pioneered this field with great promises, but are still not able to combine both accuracy
and real-time. On the other hand, the DSA and the emerging MPI feature as good can-
didates in the extraction on flow information, with high speed/accuracy compromise.
The main information on which they rely is the contrast displacement and modulation
inside the arterial flow. As a reminder of the thesis, the chapter 2 will present the
main state-of-the art techniques about optical flow estimation, and chapter 3 will
detail the image processing method developed during this thesis to assess blood flow
estimation. The following chapters 4 and 5 will present different applications of the
optical flow techniques, based on in-silico, in-vitro and in-vivo evaluations.
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State of the art on optical flow
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CHAPTER 2. STATE OF THE ART ON OPTICAL FLOW

Abstract

The previous chapter outlined advantages of contrast modalities providing images
of the tracer displacement at a very good temporal resolution. Nowadays, numerous
image processing techniques have been developed in order to estimate motion inside
image sequences. Since the Lucas-Kanade algorithm was proposed in 1981 [Lucas
and Kanade, 1981], the approach became a widely used technique for providing a
solution to the computer vision optical flow problem. The information of optical
flow, which forms the basis of this manuscript, is central in the analysis of image
sequences, and particularly in medical imaging. After a short definition of optical flow,
the main difficulties related to flow estimation, such as the aperture problem, the large
displacement, the occlusions, and the spatial and temporal aliasing will be discussed.
Numerous authors try to overcome these issues by employing regularization schemes.
The main state of the art techniques will then be presented as a technical background
for the next chapters. Finally, the downsides and advantages of each method will be
summarized, and will contribute to find the best suited technique for the blood flow
estimation problem.

Résumé

Dans le chapitre précédent, l’avantage des modalités à contraste imageant le déplacement
du traceur avec une fine résolution temporelle a été mis en avant. Aujourd’hui, de
nombreuses techniques de traitement d’image ont été développées afin d’estimer le
mouvement dans les séquences d’images. Depuis que l’algorithme de Lucas-Kanade a
été proposé en 1981 [Lucas and Kanade, 1981], leur méthode différentielle est large-
ment utilisée pour résoudre des problèmes de flot optique en vision par ordinateur.
L’information du flot optique, qui forme la base de ce manuscrit, est centrale dans
l’analyse des séquences d’images, et particulièrement en imagerie médicale. Après
une brève définition du flot optique, les difficultés principales liées à l’estimation de
flux, telles que le problème de l’ouverture, les grand déplacements, les occlusions, et le
repliement spatiotemporel seront abordées. De nombreux auteurs tentent de surmon-
ter ces problèmes en employant des méthodes de régularisation. L’état de l’art portant
sur ces méthodes sera presenté de façon à fournir une base théorique pour le prochain
chapitre. Enfin, les avantages et inconvénients de chaque méthode seront résumés, ce
qui contribuera au choix d’une technique adaptée au problème d’estimation du flux
sanguin.
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2.1. Optical flow principle

2.1 Optical flow principle

Optical flow refers to the apparent motion of objects, surfaces and edges in a visual
scene caused by the relative motion between an observer (eye or camera) and a scene.
The term has been proposed by roboticists to describe image processing techniques
related to motion detection, object segmentation, time-to-contact information, motion
compensation, and stereo disparity measurement [Aires et al., 2008, Beauchemin and
Barron, 1995]. Industrial applications of optical flow are countless. They range from
defense (vision in rocket science), meteorology (turbulence studying in weather radar
images), cinema post-production (image stabilization and blurring), fluid mechanics
(flow analysis), computer hardware (optical mice sensors) to medical imaging (breath-
ing stabilization, surgical tools tracking, myocardium tracking, flow estimation).

Basically, a 3D moving object is recorded by means of a camera or another video
acquisition system. The resulting 2D or 3D image sequence, in which intensity changes
occur, allows to derive the movement of pixels in the image, i.e the optical flow.

First, let us define an image I as a function of time and space:

I :

{
RN × R+ −→ R
(x, t) 7−→ I(x, t)

x is the N-dimensional vector at which image I is evaluated, and t corresponds
to the time of the image sequence. Generally, N ranges between 1 and 3. The
most common is the case of images (N=2) where x refers to a pixel (or ’picture
element’). In medical imaging, 3D volumes (N=3) are also studied and described by
voxels (volumetric pixels). In some rare cases, one can also choose to study changes
of intensity along a line (N=1), which is the simplest.

When a small displacement dx occurs in the image sequence, the assumption of
brightness constancy between point x at time t and x + dx at time t+ dt yields:

I(x + dx, t+ dt) = I(x, t) (2.1)

Developing the left hand side term of the equation (2.1) for infinitely small time
step dt results in:

I(x + dx, t+ dt) = I(x, t) +∇I · dx +
∂I

∂t
dt (2.2)

=⇒ ∇I · dx +
∂I

∂t
dt = 0 (2.3)

Finally, dividing both sides by dt yields:
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Figure 2.1: Brightness constancy of the object during motion.

∇I · v +
∂I

∂t
= 0 (2.4)

where v = dx
dt

is the instantaneous velocity of the moving object.

This is the general optical flow equation that allows to relate image intensity to
the motions occurring inside the sequence. It can be strongly compared with the scalar
transport equation (1.20) obtained in section 1.3.2 when assuming pure convection.
Indeed, in the case of DSA or MPI, the intensity I captured by the imaging system is
proportional to the tracer concentration c, both corresponding to the same information.
The scalar transport equation being linear turns to the optical flow equation, and
contrast can be regarded as the image intensity.

Yet if we consider digital image sequence, x and t take discrete values. We do
not rely on infinitesimal values but on the inter-frame difference (two consecutive time
samples ∆t = t2 − t1) and the displacement vector ∆x between two frames. As a
consequence, the brightness constancy equation (2.1) is not exactly true. Instead, we
have to resort to a Taylor-Lagrange expansion, reading:

I(x+∆x, t+∆t) = I(x, t) + ∇I ·∆x +
1

∆t
(I(x, t+∆t)−I(x, t))+

1

2
∆xTH∆x + h.o.t

(2.5)
Here the serie is expanded to the 2nd order (H = ∂I

∂xixj
is the Hessian matrix),

while for more accuracy, one should use higher-order terms (h.o.t). In practice, we
can assume that the displacement ∆x is small, so that 1st order approximation is
reasonably accurate. By using the constancy of intensity (equation (2.1)), we obtain
the discretized version of optical flow constrain (2.4):

∇I(x, t) ·∆x +
1

∆t
(I(x, t+ ∆t)− I(x, t)) ' 0 (2.6)
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The difference of this equation lies in the nature of the solution that describe a
displacement vector, and not an instantaneous velocity. Moreover, the equation is
only an approximation at the first order of the true displacement, meaning that the
solution can be inaccurate especially for large displacements. This leads to numerous
numerical problems that will be tackled in section 2.4.

2.2 The aperture problem

The optical flow recovery is an inverse problem that wishes to retrieve the flow vectors
from image intensity information. However, as many inverse problems, optical flow
is ill-posed. In the sense of Hadamard ( [Hadamard, 1902]), an ill-posed problem
is met when small perturbations of the initial data (i.e the optical flow) create large
fluctuations in derivative of the solution (i.e the image derivatives) [Poggio and Yuille,
1986]. Here, the ill-posedness manifests itself in the nonuniqueness due to the aperture
problem [Bertero et al., 1988]. The optical flow equation generally include 2 or 3
unknown components of the velocity v, while the constraint consist of only one equation
(2.4). As a result, the velocity vector cannot be solved straightforwardly. Instead, one
can only compute the optical flow component aligned with image gradient:

v‖ =
−∂I

∂t

‖∇I‖
(2.7)

Figure 2.2: Aperture problem in optical flow: the points described by the black line have
moved downward the image. The displacement component v‖ parallel to the image gradient
∇I is known, while the perpendicular component v⊥ is undefined, allowing infinite number of
solutions.

Because velocity v is projected onto the gradient vector ∇I, the normal component
to the image gradient v⊥ is irrelevant in equation (2.4). Any value will verify the optical
flow equation, as illustrated in figure 2.2.
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As a result, the optical flow constraint lacks one information about the velocity
component normal to the image gradient. Only a basic assumption about flow
being parallel to the gradient can provide a solution, which is seldom true in a real
image sequence.

2.3 Regularization of the optical flow

In order to solve the optical flow problem, other additional constraints need to be
introduced. Basically the idea is to remove the underdetermination of equation (2.4)
by adding regularization terms and to impose the solution uniqueness. The solving of
the optical flow equation will then be achieved by the convex optimization of an optical
flow energy E. The general formulation of a regularized optical flow solution could be
written as follows:

v? = argminvE(v)

E(v) = (∇I · v +
∂I

∂t
)2 +R(v, ∂v, ..., ∂nv)

(2.8)

where v? is the solution vector and R is a convex quadratic function to insure the
convergency and the uniqueness of v?.

Numerous algorithm have been proposed and a wide variety of extensions have
been made to the original formulation. In a survey, [Beauchemin and Barron, 1995]
mentioned six classes of methods. However, a simpler classification can be made by
considering local and global strategies. Local methods use the spatial constancy
assumptions of the optical flow in a small neighborhood surrounding the pixels. They
offer relatively high robustness under noise, but do not give dense flow fields.
Global methods, on the other hand, yield flow fields with 100% density, but are
experimentally known to be more sensitive to noise [Barron et al., 1994,Galvin et al.,
1998]. A typical way to overcome the ill-posedness problems in global methods consists
in making use of smoothing techniques and smoothness assumptions. The most
famous global method is the one of Horn and Schunck that attempts to minimize the
gradient of the flow field [Horn and Schunck, 1981]. Both local and global approaches
are described hereinafter.

2.3.1 Local Optical flow methods

Examples of the first category include the Lucas-Kanade method [Lucas and Kanade,
1981] and the structure tensor approaches of Bigün [Bigun and Granlund, 1988,Bigun
et al., 1991]. The most widespread technique is the one of Lucas- Kanade. It assumes
that inside a small window of the image W surrounding the pixel at x , the velocity
v is constant. It basically uses a weighted least squares method to approximate the
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optical flow at a specific location. This approach is local since the energy corresponds
to only one pixel x:

Ev(x) =
∑
p∈W

W (p) [∇I(p) · v + It(p)]2 (2.9)

where It is the interframe difference and W represents a weighting function inside
the window W . This weighting should favor pixels in the center of the window so as
to enhance local fidelity, and should sum up to 1 in the window. W is often chosen
as Gaussian since the scale of the movement can be easily adapted according to the
standard deviation of the gaussian function.

The energy E is minimized for each pixel independently, assuming one unknown
vector v. It represents the sum of quadratic errors between the regressed velocity
and the individual data fidelities of the window. The above least mean square error
(LMSE) (2.9) minimization:

∂Ev(x)

∂v
= 0 (2.10)

leads to following system:

Mv = b (2.11)

where M =
∑
WW∇I∇IT is the gradient tensor averaged and weighted in the

neighborhood of x and b =
∑
W −W 2It∇I is the right hand side vector term containing

temporal information. For instance in 2D images, the matrix M can be further written
as follows:

M =

( ∑
WI2

x

∑
WIxIy∑

WIyIx
∑
WI2

y

)
(2.12)

The system (2.11) is solved in each point x by inverting the inertia tensor M . As
any symmetric real matrix, M can be diagonalized and decomposed in a new coordinate
system defined by eigenvectors e1 and e2. These vectors define the axis along which
the data are scattered inside W , and the eigenvalues roughly describe the average
gradient components on these axis. The key idea is that inside a local image window,
one should collect a sufficient number of gradient samples so that the average gradient
information does not cancel out in any direction and the aperture is dealt with. For
the system to be safely inverted, the matrix M needs to be well-conditioned, i.e to
have a low condition number. The condition number can be defined as:

C(M) =
λmax(M)

λmin(M)
(2.13)

where λi(i ∈ [1N ]) represents the eigenvalues of M . If the conditioning number is
close to 1, the matrix is well-conditioned, and can be inverted properly. In our case, this
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Figure 2.3: Left: Least mean square estimation of the constant optical flow vector v in the
window W. Right: gradient components Ix and Iy inside W, with direction of eigenvectors
e1 and e2, the main axis of data scattering. The eigenvalues λ1 and λ2 are related to the
average gradient vector.

means that average gradient components are evenly distributed along each eigenvectors,
or that gradient information is strong enough in each axis to provide a reliable flow
vector. If the condition number is very large (C > 1000), at least one component of the
gradient information is missing and the system will be badly inverted. The inversion
will be very sensitive to small variations of vector v and the flow recovery will be highly
unstable and inaccurate. The ratio between eigenvalues, i.e the conditioning can be
visually understood by looking at the local contrast information around a questioned
pixel:

Figure 2.4: Eigenvalues of 2D tensor matrices for different cases of gradient information.
In 1., two eigenvalues are strictly positives, which happen in the case of corners or points
with high curvature. The window collects all information needed to assess a 2D flow vector.
In 2., one eigenvalue vanishes resulting in ill-conditioning and bad system inversion. Edges
with low curvature are typical of this problem since they cannot provide information about
the velocity component parallel to the edge (aperture problem met in section 2.2). 3. exhibits
a constant intensity information, which brings down the possibility of flow recovery. Well
conditioning can be obtained indeed if both eigenvectors are very close to each other, but the
vanishing gradient information will be present in both M and b, leading to a singularity and
an unpredictable solution.

44



2.3. Regularization of the optical flow

Here we see that the conditioning of M is paramount in the achievement of accu-
rate flow estimation. According to the scale of the regression window, more or less
information can be captured. Nevertheless it happens in some locations that the scale
of the aperture effect is greater than the window size, and well-conditioning cannot be
obtained. In this case, we generally resort to a Thikonov regularizer [Tikhonov, 1943]:

Ev(x) =
∑
p∈W

W (p) [∇I(p) · v + It(p)]2 + ‖Γv‖2 (2.14)

Penalizing the l2-norm of v allows to control the instabilities that ill-conditioning
entails. In general Γ = αI is used were α 6= 0 is the regularization factor, and matrix
(2.12) turns to:

M =

(∑
WIx + α2

∑
WIxIy∑

WIyIx
∑
WI2

y + α2

)
(2.15)

This amounts to load the diagonal of M , thereby boosting its eigenvalues and
avoiding the ill-conditioning. This approach is employed to prevent the solution vector
v to exceed a certain threshold. Unfortunately this threshold cannot be determined
automatically and is highly dependent on the alpha parameter. Instead, experimental
evaluation of the optimal factor α is generally achieved.

Local methods such as the one of Lucas-Kanade are well-known to be very robust
to noise, since they make the local assumption of velocity constancy. However, in situ-
ations where aperture is dominant, it usually fails to provide a reliable flow estimation.

2.3.2 Global Optical flow methods

The category of global optical flow methods is represented by the classic Horn and
Schunck [Horn and Schunck, 1981] method, and its numerous discontinuity-preserving
variants [Alvarez et al., 1999, Aubert et al., 1999, Black and Anandan, 1991, Cohen,
1993, Heitz and Bouthemy, 1993, Kumar et al., 1996, Nagel, 1983, Proesmans et al.,
1994,Schnorr, 1994,Shulman and Herve, 1989,Wei, 2001]. These methods mainly use
the assumption on the smoothness of the flow field, meaning that the flow field should
not exhibit sharp spatial variations of the velocity vectors. The global approaches
undertake to minimize a global energy, corresponding to the whole flow field, and
not only to one pixel (previous section). Therefore, only one energy E(v) is being
minimized and a unique flow field solution v?(x, t) has to be obtained:

v?(x, t) = argminvE

E(v(x, t)) =

�
Ω

[
(∇I · v +

∂I

∂t
)2 +R(v, ∂v, ..., ∂nv)

]
dΩ

(2.16)

where Ω is the whole spatial domain.
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In the case of Horn and Schunk method the regularization term is:

R = α2‖∇v‖2
F (2.17)

where ‖.‖F is the Frobenius norm given for every vector gradient ∇v by:

‖∇v‖2
F =

∑
i,j

(
∂vi
∂xj

)2

Working the Euler-Lagrange equation on the above energy yields:

∂E

∂v
= 0

=⇒Mv − α2∆v = b
(2.18)

The size of this system is huge, vector v is not a local vector but a flow field with
N×Card(Ω) elements, N being the number of image dimensions and Card(Ω) the total
number of pixels. Likewise, M and b are not local quantities anymore, but a global
matrix of size (N × Card(Ω))2 and b a vector field of size N × Card(Ω). M is very
sparse, since only its diagonal is filled with blocks of N ×N local matrices Mx. Each
block would represent the individual matrix tensor with Mx = ∇I(x)∇I(x)T , while
the vector field b would be the concatenation of every bx = −It(x)∇I(x). Overall, the
shape of the system will look like:




Mx1

Mx2 0
...

0 ...
MxCard(Ω)

− α2L




v(x1)
v(x2)
...
...

v(xCard(Ω))

 =


bx1

bx2

...

...
bxCard(Ω)



where L is a symetric matrix that spreads the discrete laplacian terms of the flow
field v(x) all over the system matrix.

The inversion of this massive system cannot be considered. Horn and Schunk
prefers to use an iterative technique based on estimating the velocity from the spatial
average of the last iteration. Given ∆v ' v̄−v, the discrete approximation of velocity
laplacian, the idea is to relax independently each row of the above system by the
following iterations:

v(xi)
n+1 = v̄(xi)

n −∇I (∇I · v̄(xi)
n + It)

α2 + ‖∇I‖2
(2.19)

where n is the number of iterations.
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The main effect of this approach is that vectors will propagate and fill in empty
regions where information of image gradient is missing. As the iterations run on, the
reliable gradient information will diffuse in the surrounding, this without violating the
optical flow constraint. The regions with aperture problems will then be supported by
their neighbor carrying high fidelity and will overcome their ill-conditioning. The factor
α controls the diffusion range. The higher α, the more important the smoothing
effect. According to the sparsity of the gradient information in the image, one should
use a more or less important regularization weight.

The main asset of global techniques such as Horn and Schunk is their ability to get
rid of the aperture by diffusing gradient information in locations with homogeneous
intensity. However the assumption of flow field smoothness has a downside: it fails
in predicting flow field discontinuities. In particular, this method needs to be sub-
stantially modified to deal with fluid flow that only occurs within well defined lumen
regions. These phenomenons are very common in image sequences as moving objects
are occluded by other objects in a foreground. The diffusion of flow field in object
interfaces will create erratic estimation of optical flow. Furthermore, the small motion
patterns will be smoothed out when using too much regularization, for the benefit of
large scale motions. These issues can be dealt with using discontinuity constraints but
global methods most often suits for the assessment of smooth flow fields.

Finally, one should not that local and global methods are not incompatible. Bruhn
et al. [Bruhn et al., 2005] combine Lucas-Kanade and Horn and Schunk ’s approaches
with great performances, and further extend their work to non-linear and multi-resolution
techniques. The local and variational methods actually complement each other by pro-
viding both smoothness and robustness against noise.

2.4 Iterative warpings in optical flow

In the section 2.1, we alluded to the approximated nature of discrete optical flow
equation. Under the assumption of a small displacement v between time t1 and t2,
the 1st order Taylor expansion is accurate enough:

∇I(x, t1) · v + I(x, t2)− I(x, t1) ' 0 (2.20)

This equation can be understood in a 1D example, where the brightness constancy
assumption (2.1) (I(x, t1) = I(x+ v, t2)) together with equation (2.20) gives:

I(x+ v, t2) = I(x, t2) +∇I(x, t1) · v (2.21)
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Figure 2.5: 1D optical flow with first order approximation. The blue curve represents the
profile of image intensity at time t1, while the red curve describe that at a small time step later
t2. The horizontal difference is the displacement magnitude v, while the vertical difference is
the discrete time derivative I(x, t2)− I(x, t1).

The time difference of I at a position x is proportional to the displacement v, with
−∇I being the linear factor. This is simply what means a 1st order approximation of
the intensity with respect to v (see figure 2.5).

Now, if v becomes larger, the 1st order expansion is not sufficient. Higher order
terms are needed, as described in equation (2.5). Unfortunately, higher orders of v
will make the optical flow constraint more complex, and will compromise the chances
of flow recovery. On the other hand, keeping the 1st order approximation leaves the
equation (2.20) with a residue ε:

∇I(x, t1) · v + I(x, t2)− I(x, t1) = ε (2.22)

In other words, the brightness assumption is violated with an error of ε:

I(x+ v, t2)− I(x, t1) = ε (2.23)
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Figure 2.6: 1D optical flow with large displacement and optical flow residue ε. The gradient
information ∇I(x, t1) drifts from that of I(x, t2). As a result, the optical flow estimation vOF
is underestimated compared to the actual value vtrue. The evaluation of I(x + vOF , t2) does
not yield the expected I(x, t1). The difference between the two supposedly equals quantities is
the optical flow residue ε.

To overcome the limitation of 1st order approximation, and bring the residue ε to
0, iterative warping approaches are usually considered. First, let us define a warping
transformation T :

T :

{
RN −→ RN

I 7−→ T (I)

After a first rough estimation of the optical flow, the image I(x, t1) is warped with
a transformation T0 that corresponds to the flow field u0(x, t1), such that the output is
closer to the solution image I(x, t2) : T0(I(x, t1)) = I(x+u0(x), t1) . If the residue ε1 is
still too large, a new optical flow estimation is performed and the process is reiterated
with a new transformation T1. For each iteration i, an increment ui is estimated from
the warped image Ti−1(I(x, t1)):

∀x ∈ Ω, Ti(I(x, t1)) = I(x + vi(x, t1)) (2.24)

with:

Ti = Ti−1 ◦ Ti−2 ◦ · · · ◦ T0 (2.25)

vi(x, t1) =
i∑

k=0

uk(x, t1) (2.26)
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Figure 2.7: Iterative warping of the 1D image I(x, t1) toward target image I(x, t2). The
same gradient information ∇I(x + vi, t1) is evaluated at each iteration (dashed green line)
and the linear approximation is repeated. As a result, the warped point (in green) is moved
toward the solution point (in red). The iterations end when the optical flow increment satisfy
the brightness constancy equation.

The implementation of the iterative warping techniques can be performed with
both local or global approaches detailed in section 2.3. Let us define M the local or
global system matrix and b the local or global right hand side vector. Without loss of
generality, the corresponding pseudo-code for solving optical flow is:

Algorithm 1 Calculate the optical flow solution v? with iterative warping

Define thresh > 0, imax
Initialize v0 = 0, i = 0, ε̂0 =

∑
x∈Ω

|I2(x)−I1(x)|
I2(x)

while εi > thresh or i ≤ imax do
Solve M(vi + ui) = b for ui
I1(x + vi + ui) = Tui(I1(x + vi))
vi+1 = vi + ui
ε̂i =

∑
x∈Ω |

I2(x)−I1(x+vi+1)
I2(x)

|
i = i+ 1

end while

The normalized residue ε̂ will decrease until a tolerance threshold is satisfied. The
final optical flow solution will read:

v?(x, t1) =
imax∑
k=0

uk(x, t1) (2.27)

Iterative warping are efficient when larger motion occurs in image sequences. How-
ever, the warping process is computationally expensive, especially in the case of 3D
images. It is desirable for the reference image I(x, t1) and target image I(x, t2) not to
be too far from each other, so that few warping steps are required.
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2.5 Multi-resolution in optical flow

When dealing with large displacements, a good alternative is also the multi-resolution
approach. In the literature, Anandan [Anandan, 1989,Black and Anandan, 1996],and
Mémin and Perez [Memin and Perez, 1998, Mémin and Pérez, 2002] incrementally
compute the optical flow field based on a sophisticated coarse-to-fine strategy. A
Gaussian pyramid is generally built from the original pair of images I1 and I2. For
instance, an image I1n at level n will be downsampled to achieve a coarser level n+1
by a restriction operator:

I1n+1 = I1n ↓ (2.28)

where In+1 is decimated each time by a factor of 2, with respect to:

xn =
1

2n
x0 (2.29)

Figure 2.8: Pyramidal approach in optical flow. The image is downsampled N − 1 times,
until the coarsest grid is obtained. Each grid processes a different scale of optical flow, and
inherits the displacement of coarser scale.

Large motions get much smaller in coarser grids using higher pixel spacing. The
problem of optical flow is modified and made hierarchical to appear as linear as possible.
Large scale motions are used to warp the image and linearize the problem of the next
finer level.

Mn should contain the same gradient information during the warping procedure and
thus is not affected. Whereas, bn contains the inter-frame information and therefore
has to be recomputed to take warping Tvn into account: bn = bn −Mnvn.

Pyramidal approaches are the most widely used techniques in optical flow. They
allow to capture large motions that are recurring in image sequences. By processing
each scale separately, they don’t only provide a general framework for the analysis of
multi-scale motion, but also reduce the computational burden by processing coarser
grids.
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Algorithm 2 Calculate the optical flow solution v? with multi-resolution approach

Define N the number of grid levels
Initialize vN = 0
for n = 2 to N do
I1n = I1n−1 ↓
I2n = I2n−1 ↓
Compute Mn

Compute bn
end for
for n = N to 2 do

Solve Mn(vn + u) = bn for u
vn−1 = 2(vn + u) ↑
n = n− 1

end for
Solve M1(v1 + u) = b1 for u

2.6 The capture range

As soon as the object stays within the FoV, one could believe that optical flow com-
putation is possible, regardless of the motion magnitude. This is not exactly true. In
practice, the displacement magnitude should not exceed the size of the object to be
tracked. If so, ambiguous matches can occur with other objects of the scene. This
issue is particularly obvious in the case of periodic image patterns. Let us consider a
simple cosine function describing a 1D image texture:

I(x, t) = cos(k0(x− vt)) (2.30)

with k0 = 2π
λ0

the spatial frequency of the pattern, and λ0 the wavelength.

If a large motion vt = λ occurs between t1 = 0 and t2, we get:

I(x, t2) = cos(k0(x− λ)) = cos(k0x− 2π) = cos(k0x) = I(x, t1) (2.31)

Solving the optical flow equation would lead to v = 0, which is obviously untrue.
A point of the image is erroneously matched with a point of the same intensity but
from a different period. This reasoning can be extended to every other displacement v
being a multiple of λ, showing the misleading effect of image periodicity. As a matter
of fact, every displacement exceeding a certain limit, called the capture range, will
disable optical flow recovery.

In the case of periodic function, we generally resort to the spatial phase to de-
termine the capture range. As an example, the technique of MR tagging use a spa-
tial modulation to track the myocardium deformation during heartbeat. The spatial
Fourier domain is exploited to extract the harmonic phase (HARP). The first paper
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Figure 2.9: Illustration of the capture range problem when dealing with periodic sig-
nal/images. The reference signal is displayed in blue, and the target signal in red. When
the displacement exceeds the capture range, other phases of the cosine function carrying the
same intensity will occlude the true target and a mismatch will occur. In 1., the displacement
is greater than the wavelength λ0. Hence, the reference point will be paired with the closer
target, belonging to the previous spatial period. In 2., the situation is even worse since the
sign of the time difference signal is inverted. The displacement vector points in the opposite
direction and another target point is found.

dedicated to HARP tracking [Osman et al., 1999] points out the problem of phase
warping and demonstrates that the assessment of cardiac motion is possible when:

|∆φ| < π (2.32)

where ∆φ is the shift of the spatial phase at point x during the time lapse ∆t = t2−
t1. If this condition is satisfied, the tracking of cardiac wall motion can be performed.

From equation (2.30) and (2.32), we deduce:

|∆φ| < π

=⇒k0v∆t < π
(2.33)

Knowing the relations ∆x = v∆t and k0 = 2π
λ

lead to expression of the capture
range:

∆xmax =
λ

2
(2.34)

On the other hand, a temporal resolution that guarantees a displacement within
the capture range reads:

∆t <
T

2
(2.35)

Here we see the importance of time sampling in the tracking of periodic image
sequence. For the signal not to alias in the temporal domain, one should use a suffi-
ciently small time resolution. Without a fine time sampling, the displacements tend to
be larger, and the problem of capture range starts to appear. The capture range can
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be generalized to non periodic images, but is less easy to formalize. In this thesis, we
will deal with pseudo-periodic image sequences. Hence, further mentions to capture
range will refer to the formula (2.34).

2.7 Brightness changes during sequence

A frequent problem that arises in image sequence analysis is the breaking of intensity
conservation assumption. There are two main reasons responsible for this, namely the
brightness changes, and the occlusion phenomenons.

In natural video scenes, illumination changes may introduce intensity changes which
are not directly related to the motion of an object. More in the scope of this thesis,
intensity changes in DSA image sequences may be related to variation due to different
factors including uncontrolled changes in X-ray source intensity. In order to address
this problem, some authors choose to estimate the physical parameters of the bright-
ness change model. Negahdaripour et al. integrate radiometric and geometric cues
into the optical flow solver [Negahdaripour and Yu, 1993,Negahdaripour, 1998], while
Haussecker et al. [Haussecker and Fleet, 2001] makes use of an extended version of
the LMSE employed by Lucas-Kanade [Lucas and Kanade, 1981] (see section 2.3.1)
to estimate brightness variation parameters. In the latter, the brightness constancy
assumption (2.1) is replaced by:

I(x + dx, t+ dt) = α(x)I(x, t) + β(x) (2.36)

in order to account for temporal changes in brightness values, with α and β locally
constant in the image.

The unknown vector to be estimated is then t = [v α β]T , and the LMSE described
in section 2.3.1 minimizes now:

Ex(v, α, β) =
∑
p∈W

W (p) [∇I1(p) · v + I2(p)− αI1(p)− β]2 (2.37)

The system to be inverted for each x is now:

( ∑
W∇I1∇I1T −

∑
W∇I1 [I1 1]

−
∑
W∇I1 [I2 1]

∑
W [I1 1]T [I1 1]

)(
u

[α β]T

)
=

(
−
∑
WI2∇I1∑

WI2 [I1 1]T

)
(2.38)

This full rank system is invertible, but can be nonetheless subject to ill-conditioning,
and high sensitivity to computation of image gradient is also reported in [Negah-
daripour and Yu, 1993]. Moreover, multiple interpretations of motion and illumi-
nance can be made by the system inversion. Typically the discontinuities at motion
boundaries or occlusion can lead to erroneous estimates and large residuals. The main
advantage of this method lies in the introduction of illuminance models.
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2.8 Other optical flow techniques

The previous classes of optical flow methods belong to the family of variational ap-
proaches, using the 1st order expansion of brightness constancy equation(2.1). How-
ever, other ways to exploit the constancy assumption exist.

2.8.1 Block-matching methods

The most intuitive one is the correlation-based method, also called block-matching,
that use a similarity measure between the neighborhood of a pixel in an image, and
the neighborhood of a candidate pixel in the next image.

The main advantage of this technique is there is no need to compute intensity
derivatives and deal with associated inaccuracies. Instead of minimizing an energy,
a window surrounding the pixel of interest is translated across the next image. The
translation with the best similarity score will be the optical flow candidate. The general
formulation of the similarity score reads:

S(x,∆x) =
∑
y∈W

S(I1(x + y), I2(x + ∆x + y)) (2.39)

The similarity measure is calculated by summing S over the windowW surrounding
x in image I1 and x + ∆x in image I2. A common similarity measure is the sum of
squared difference (SSD) of the pixel values:

S(x,x + ∆x) =
∑
y∈W

(I1(x + y)− I2(x + ∆x + y))2 (2.40)

The displacement ∆x that minimizes the similarity measure gives the flow vector
sought. In [Bulthoff et al., 1989], a maximum displacement ∆xmax is chosen in each
direction, with a research window of size n. The smallest value of the SSD similarity
measure defines the proper displacement.

Figure 2.10: Block-matching based optical flow. The window W2 is translated in the vicinity
of x as a way to compare the similarity between its pixel intensities with those of window W1.
The best score defines the optical flow ∆x.
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Other common similarity measure are the sum of absolute differences (2.41), cross-
correlation operator (2.42) , or its normalized version (2.43):

Sabs(x,x + ∆x) =
∑
y∈W

|I1(x + y)− I2(x + ∆x + y)| (2.41)

Scross(x,x + ∆x) =
∑
y∈W

I1(x + y)I2(x + ∆x + y) (2.42)

Sncross(x,x + ∆x) =

∑
y∈W(I1(x + y)− Ī1)(I2(x + ∆x + y)− Ī2)√∑
(I1(x + y)− Ī1)2

√∑
(I2(x + ∆x + y)− Ī2)

(2.43)

Cross-correlation might be more suited in case of slight illumination change between
two images. It does not penalize the exact difference of intensity, but rather the
dissimilarity of the intensity profiles. More generally, two signal being proportional
can be matched by the correlation measures.

The drawback of block-matching methods is the expense incurred by having to test
different windows at each pixel. A displacement can range from few pixels to the size
of the entire image, so that the number of windows to be evaluated can be very large.
Some methods such as in [Ogata and Sato, 1992] first evaluate a rough estimate of the
optical flow, before refining with correlation methods.
Another issue is the selection of the window size for the similarity measure. The window
must be large enough to contain a sufficient amount of details, so that local noise is
not taken as a real texture. The size should not be too large either as ambiguous
match could occur with other objects within the window. The window size is thus
an important parameter of the block-matching methods. In practice, feature-based
methods are employed as a first step to identify points of interests. The correlation
measures are then used to adjust the flow field in the neighborhood of these key points.

For fluid flow estimation, this technique may be used to correctly estimate the
motion of lumen regions or of their walls. It is probably totally inadequate to follow
subtle changes in CA isophote changes.

2.8.2 Feature detection methods

As discussed before, the aperture problem is widespread in image sequences. The
optical flow regularization and its block matching derived methods only reduce the
effect of ill-posedness, but do not provide high accuracy in all the image. The idea of
feature-based optical flow methods is to give up the quest of dense flow field, while
only focusing on a set of points in the image, called features. The features are generally
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image locations containing reliable gradient information, i.e corners or edges with
high curvature. Each features are paired independently in the two images to be
registered. Two steps are performed: the first is the feature detection that attempts
to automatically find the corners and the second one is the pairing that matches the
features with those of the next image.

One of the most common detection method is the Moravec operator [Hans and
Moravec, 1977]. Directional variance is determined by the minimum of the SSD dif-
ference of each pixel in 4 directions (vertical, horizontal, two diagonals). This feature
will tend to have a high minimum in corners, where both gradient information can be
found. The anisotropy of this approach was reported, but later [Harris and Stephens,
1988] invented the Plessey ’s operator. In this approach, image gradients are evaluated
around the pixel of interest, and weighted by a gaussian function W . From a Taylor
expansion of the SSD term, a structure tensor M is derived:

M =

( ∑
WI2

x

∑
WIxIy∑

WIxIy
∑
WI2

y

)
(2.44)

such that the dissimilarity measure at a small shift x is:

E(x) = xTMx (2.45)

As the structure tensor is rotationally invariant, no direction is privileged in the
computation of E. One should not the high similarity between matrix used in corner
detection (2.44), and the structure tensor used in Lucas-Kanade (2.12) where corners
provide the best flow estimations.

Other methods as SUSAN described by [Smith and Brady, 1997], [Beaudet, 1978] or
[Dreschler and Nagel, 1982] address corner detection using more sophisticated features.
However, they will not be discussed in this section, since they are beyond the scope of
this thesis.

After the corner detection, techniques of local correlation are generally used to
assess the displacement between two images. [Barnard and Thompson, 1980], or [Burger
and Bhanu, 1990] use the Moravec operator [Hans and Moravec, 1977] to determine
feature points, before using SSD similarity measure. [Lawton, 1983] prefers to rely on
the edges curvature by applying a Laplacian of Gaussian (LoG) filter, before threshing
high curvatures and apply similarity metrics.

Other authors such as Ellen Hildreth propose to estimate flow not only based on
corners, but on edges [Hildreth, 1984]. After using an edge detection operator, a classi-
cal optical flow method is applied for every point of the contours, with the assumption
of rigid body motion. A smoothness regularization is added similarly to [Horn and
Schunck, 1981] as a way to insure the flow vector not to deviate to much from its con-
tour neighbors. The irregular sampling of contour points was pointed out, but [Gong
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and Brady, 1990] solved the problem using wave-diffusion equation along the edges
from high-curvature points to low-curvature points.

2.8.3 Optical flow in frequency domain

Another class of method resort to the frequency domain to solve the optical flow prob-
lem. The simplest technique is the phase correlation in Fourier domain. The pair
of image I1 and I2 are Fourier -transformed and the translation v between the two
images gives the following formula:

Ĩ2 = Ĩ1e−ik.v (2.46)

where k is the spatial frequency vector.

The normalized cross-power spectrum of the complex Fourier images is:

Ĩ2Ĩ1
∗

|Ĩ2Ĩ1
∗|

= e−ik.v (2.47)

Solving v can be done by considering the surface of phase correlation,

C(v) = F−1(
Ĩ2Ĩ1

∗

|Ĩ2Ĩ1
∗|

) (2.48)

and maximizing this quantity:

v? = argmaxv(C(v)) (2.49)

Yet, this method does not provide dense flow fields but an overall translation of
the two images to be registered. Only integer displacements can be calculated and the
presence of other peaks in the correlation surface can arise when dealing with periodic
images. This straightforward method is suitable for rigid translations between two
images, but shows its limits very rapidly.

More sophisticated approaches try to solve the optical flow equation (2.4) in the
Fourier domain:

∇̃I · v + Ĩt = 0 (2.50)

The idea is to take benefit from a family of Gabor wavelets G that result from the
product of a Gaussian function and a trigonometric spatiotemporal function:

Gi(x, t) =
1

(2π)N
∏
σi,n

e−
1
2
xTΣx cos(2π(ki.x + fit)) (2.51)
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where Σ is the covariance matrix, ki and fi are both the spatial frequency and
temporal frequency of the said Gabor filter. Once computed in Fourier domain, this
filter turns to a (N + 1) dimensional Gaussian filter centered around (ki,fi), with
variance diag(Σ).

Weber and Malik use these filters with different orientations in such a way that the
optical flow system becomes over-determined [Weber and Malik, 1995]. Likewise, [Fleet
and Jepson, 1990] propose to extract the phase of the spatio-temporal signal after
utilizing a family of Gabor wavelet, while [Wu et al., 1998] complement the wavelet
approach with a coarse-to-fine technique.

The drawback concerning all these methods is the excessive filtering that tends to
erase or distort the original information, especially in the case of small motions. More-
over, the number of wavelet parameters to be tuned (central frequencies, scale, shape...)
is problematic for a generic and reproducible assessment of the flow estimation.

*
* *

The recovery of optical flow is an ill-posed problem. It needs to be regularized to
overcome the issue of aperture. Many techniques already exist in the literature, almost
all use variational approaches. They can be classified as local or global methods. The
first class uses the local constancy of the flow vectors, while the second class focusses
on the regularity of the whole flow field. Once the problem is reduced to a linear
algebraic system of equations, all eigen values of the related linear operator should be
positive with a finite condition number. Optical flow is only a first order approximation
based on intensity derivatives and therefore suffers from inaccuracies. In case of large
displacements, iterations are required to bring more accuracy to the flow estimate, us-
ing iterative warping or multi-resolution approaches. The optical flow recovery is also
limited by the capture range. Erroneous estimations appear for image with periodic
content, and time resolution needs to be properly chosen to avoid temporal aliasing.
Other optical flow techniques using brightness models or correlation techniques can be
mentioned. Nevertheless, none of them will be exploited. First, no sharp brightness
change should occur during contrast sequences. Secondly, the specification of blood
flow estimation requires dense velocity estimates, which discards block-matching tech-
niques and feature-based methods. Instead, global variational approaches together with
frequency domain methods are more interesting. They provide dense flow estimates
that are more suited for fluids, and exploit the signal periodicity existing because of
contrast modulation.

Several prerequisites need to be met before an optical flow assessment can be con-
sidered. In the case of contrast imaging, the ratio between acquisition frequency (60Hz
in DSA, 40Hz in MPI) and heart frequency (' 1Hz) is sufficiently large to insure that
the displacements are small compared to the capture range. The rich image gradient
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information together with the fine temporal resolution allows the study of optical flow
in pulsed contrast sequence. The next chapter will develop the mathematical arma-
mentarium that gives rise to a novel 3D optical flow technique, specific for contrast
modalities such as MPI and 3D flow scanners.
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Abstract

This chapter describes the optical flow algorithm developed during this thesis. To
the best of our knowledge, this contribution pioneers the problem of 3D optical flow
based on contrast imaging. Given the very exploratory nature of this thesis, numerous
problems and limitations were encountered. Indeed, 3D contrast flow systems (i.e MPI
and 3DRA) are still ahead of their time, and no clinical data have been acquired so
far. This work basically tries to foresee and anticipate the advent of these modalities
by exploring the potential of 3D flow estimation on virtual images. This chapter
presents image and signal processing tools specific to the analysis of modulated contrast
sequence in arterial flow. Given the prior knowledge concerning contrast pulsatility, a
time processing of the image sequence in Fourier domain is proposed. This approach
mainly helps to provide a reformulation of optical flow as an instantaneous velocity, as
opposed to the displacement described in classical techniques. The principal pitfalls
of 3D optical flow estimation are analyzed, particularly in the spatial domain. Spatial
regularization schemes are employed to bring more accuracy and more reliability to
physics. Then numerical instabilities are pointed out and the importance of boundary
conditions is discussed. A new approach for the estimation of wall shear stress is finally
presented. As a reminder of the thesis, the chapter 4 will confront the new optical
flow method with virtual contrast images. Afterward, tentative flow estimations are
described on in vitro data and in vivo MPI data (chapter 5).

Résumé

Ce chapitre décrit l’algorithme de flot optique développé pendant cette thèse. A
notre connaissance, cette contribution est la première à aborder le problème du flot
optique 3D basé sur de l’imagerie de contraste. Compte tenu de la nature très ex-
ploratoire de cette thèse, de nombreux problèmes et limitations ont été rencontrés.
De fait, les imageurs 3D de flux de contraste (comme le MPI et la 3DRA) sont en-
core d’avant garde, et aucune donnée clinique n’a encore été acquise jusqu’ici. Ce
travail essaie principalement de prévoir et anticiper l’avènement de ces modalités en
explorant le potentiel de l’estimation de flux 3D sur des images virtuelles. Au cours
de ce chapitre théorique sont détaillés des outils de traitement d’image et du signal
spécifiques à l’analyse de séquence d’images de contraste modulé dans le flux artériel.
En partant d’une connaissance a priori sur la pulsatilité du contraste, un traitement
de la séquence d’images dans le domaine de Fourier est proposé. Cette approche per-
met principalement de reformuler le flot optique à partir d’une vitesse instantanée,
contrairement au déplacement utilisé dans les techniques classiques. Les principaux
écueils de l’estimation du flot optique 3D sont analysés, particulièrement dans le do-
maine spatial. Des stratégies de régularisation spatiale sont utilisées afin d’apporter
plus de précision et de fidélité à la physique. Ensuite, les instabilités numériques ainsi
que l’importance de conditions aux limites sont mentionées. Une nouvelle méthode
concernant l’estimation de la contrainte de cisaillement sur la paroi est finalement
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présentée. Pour rappel, le chapitre 4 confrontera la nouvelle méthode de flot optique
proposée avec des images virtuelles de contraste. Ensuite, des resultats d’estimation
de flux seront décrites sur des données MPI in vitro et in vivo (chapitre 5).

3.1 Blood flow estimation in contrast sequences

3.1.1 Short review on fluid flow estimation

The analysis of fluid motion is a longstanding research field in computer vision. A
fluid motion is different from any motion in that it follows the laws of fluid mechanics,
described in section 1.3.1. The optical flow estimation of fluid displacement is a partic-
ular case of optical flow estimation, and requires specific regularization methods. The
most used, but also the most restrictive and computationally demanding, is to impose
the flow field to verify the Navier-Stokes equation (1.5) [Doshi and Bors, 2010, Doshi
and Bors, ]. Slighter constraints, as the continuity equation (1.4) have been used to
impose compliance with fluid mechanics [Wildes et al., 2000] . The variational frame-
work met in 2.3 can be complexified by adding first or second order penalization of
the curl and the divergence of the flow field to the usual optical flow penalty [Corpetti
et al., 2005, Benz et al., 2014]. Mémin, Corpetti and Pérez especially published sev-
eral works in that respect [Corpetti et al., 2000,Corpetti et al., 2002a,Corpetti et al.,
2002b,Papadakis et al., 2007].

R =

�
α(∇ · v)2 + β‖∇ ∧ v‖2 (3.1)

or:

R =

�
α‖∇(∇ · v)‖2 + β‖∇(∇∧ v)‖2 (3.2)

Note that the first regularizer is actually the same than that met in Horn and
Schunck (2.17) with a Frobenius norm on the velocity gradient, but reformulated with
the Helmotlz-Hodge decomposition [Starn, 2001]. Whereas, the second regularizer is a
smoother version that tolerates natural flow discontinuities occurring in non-laminar
flows.

3.1.2 State of the art on blood flow estimation

When it comes to blood flow, the subject is even more specific. The fluid motion
is incompressible, pulsatile, with specific boundary conditions. In Rhodes et
al. [Rhode et al., 2005], six categories of blood flow estimation methods are enumerated:

• Indicator dilution techniques ( [Hilal, 1966, Korbuly, 1973, Lantz et al., 1980,
Mygind et al., 1995,Doriot et al., 1997])
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• Time-intensity curve (TIC) analysis ( [Rosen and Silverman, 1973,Silverman and
Rosen, 1977,Bürsch et al., 1981])

• Distance-time-intensity curve analysis ( [Shaw and Plewes, 1986, Guggenheim
et al., 1994,Dorsaz et al., 1997,Seifalian et al., 1991,Shpilfoygel et al., 1999])

• First pass analysis (FPA) techniques ( [Marinus et al., 1990,Hangiandreou et al.,
1991,Ersahin et al., 1995,Molloi et al., 1993])

• Optical flow methods (OFM) ( [Efron et al., 1978, Amimi, 1994, Imbert et al.,
1997,Huang et al., 1997])

• Inverse advection methods techniques ( [Sarry et al., 1997,Sarry et al., 2002])

All these techniques rely on DSA sequences, also called Roentgen videodensitometry,
but supposedly can be extended to other kind of modalities as CT, MR and 3DRA. A
critical review from [Shpilfoygel et al., 2000] described and classified the aforesaid blood
flow estimation methods. Among them, distance-time-intensity curves and optical
flow methods proved to be the most successful. The first class of method utilizes the
intensity information along a profile, often determined as the centerline of the vessel.
This is a very convenient way to study flow in a particular path of the bloodstream,
but unfortunately does not yield accurate estimates of the flow patterns. In OFM,
the same centerline analysis is often achieved, also by averaging the intensity, and
evaluating spatio-temporal statistics of the estimated velocities.

3.1.3 Motivations

By delving into the state of the art of blood flow estimation, a natural conclusion comes
that very few works exist in vector field estimation of blood velocity. While 2D flow
field estimation is rare in DSA sequence analysis, not a single study, to the best of the
author knowledge, has ever been conducted with 3D time resolved contrast imaging
until now.

Yet, if we consider the recent advances of angiography modalities, as MPI or 3DRA,
we can suspect that the achievement of 3D flow fields will become a major feature
in the forthcoming 3D flow acquisition systems. For the moment, we can just envision
3D optical flow based estimation for the future. Nevertheless, new paths can be
explored in the meantime, with the support of virtual images, and in vitro acquisitions.

First let us recall the definition of a 3D contrast sequence I(x, t) and its corre-
sponding 3D+T flow field sequence v(x, t):

I :

{
R3 × R+ −→ R
(x, t) 7−→ I(x, t)

v :

{
R3 × R+ −→ R3

(x, t) 7−→ v(x, t)

The real or virtual 3D pulsed contrast sequence should respect several specifications,
described in table 3.1.
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Contrast sequence specifications
Sequence properties Mathematical expression
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(1) I is pseudo-periodic: it can be
decomposed in the Fourier domain with
narrowband components Ĩ(f) around the
fundamental cardiac frequency and the first
harmonics. Other frequency components
should be close to 0.

I(t) =
� +∞
−∞ Ĩ(f)e−2πjftdf ,Ĩ(f) ' 0

outside narrowbands
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si
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ro
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(2) I should be kept constant along a flow
line according to the brightness
constancy assumption.

v · ∇I + ∂I
∂t

= 0

(3) v should be a smooth flow field to
account for blood viscosity. ‖∇v‖ as small as possible

(4) v should be an incompressible flow
field. ∇ · v = 0

b
o
u
n
d
a
ry

co
n

d
it

io
n
s

(5) Flow should be enclosed in the vessel
lumen L and should be tangent to the
vessel boundary B of outward normal n.

v(x /∈ L) = 0 and v(x ∈ B) · n = 0

Table 3.1: Synthetic table of the blood flow estimation framework
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Figure 3.1: Overall appearance of a modulated contrast sequence with the corresponding
velocity field. The color coded image intensity I corresponds to the contrast concentration,
while the vector field corresponds to the contrast velocity vectors v that also represents blood
velocity vectors. The magnitude of the velocity vectors is visualized with both length and color
of the vectors. L and B correspond to the vessel lumen and boundary areas.

3.2 New optical flow method for pseudo-periodic

time signals

3.2.1 Time signal processing in Fourier domain

In section 1.3.2, the assumption of contrast periodicity was put forward. However,
it appears that the time intensity curves (TICs) observed in DSA are not exactly
periodic. A slow variation of the signal envelop can be noticed. The curve of the
contrast flow rate at the injection point evolves slowly during the acquisition, resulting
in a pseudo-periodic behavior.

Figure 3.2: A. TIC of a single pixel in DSA sequence with pseudo-periodicity. B. Spectral
density of the Fourier transform |F [I] |, where several peaks including cardiac frequency fc
and four other harmonics can be distinguished.

Hence, the main spectral information of the time sequence is contained in narrow
bands around the fundamental cardiac frequency and several harmonics.

Now, let us consider the discrete Fourier transform of a numerical signal Ĩ(x, n) =
F [I(x, i)]:
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∀n ∈ [0 nmax] , Ĩ(x, n) =
nmax−1∑
i=0

I(x, i)e−2jπ n
nmax

i (3.3)

where n and i are respectively the discrete frequency and time samples, and nmax
both the number of time and frequency samples.

Given the narrow bandwiths of the spectral information, one can make the as-
sumption that only some frequency components Ĩ(x, n) are significant to represent the
contrast sequence. Therefore, one can choose to filter out the other components of the
spectral content. Three options are considered:

1. A filter that simply cuts the frequencies outside the harmonic bandwiths. Let
us call Fnarrowbands the set of frequencies within the narrowbands of cardiac har-
monics. The corresponding bandpass filter will read:

ĨBP (x, n) = 1Fnarrowbands(n)Ĩ(x, n) (3.4)

with 1Fnarrowbands the indicator function:

1Fnarrowbands :

{
1 if n ∈ Fnarrowbands

0 otherwise

2. A smoother filtering that windows the harmonics with gaussian functions. The
bandpass filtered spectrum ĨBP (x, n) will read:

ĨBP (x, n) =

[
Nh∏
h

e−2π2σ2(n−hnc)2

]
Ĩ(x, n) (3.5)

with σ the standard deviation of the gaussian frequency filters, nc the frequency
sample corresponding to the cardiac frequency and Nh the number of selected
harmonics. The windows are centered around each harmonic component hnc and
will then damp the frequency components in a neighborhood controlled by σ.
This windowing helps to avoid ringings artifacts when coming back to temporal
domain. However, the narrowbands are already damped naturally around the
harmonic frequencies (see figure 3.2), which makes this filtering not necessarily
better than the indicator filter.

After the discrete inversion of the Fourier filter, the bandpass signal S(x, i) in
the temporal domain will read:
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S(x, i) = F−1(ĨBP ) =
1

nmax

nmax−1∑
n=0

ĨBP (x, n)e2jπ n
nmax

i (3.6)

3. A filter equivalent to (3.5) exists in the temporal domain. It belongs to the family
of wavelets, and was evoked in section 2.8.3: the Gabor filter. The convolution
of this filter with the temporal signal equals to the gaussian windowing in the
frequency domain. The advantage with this filter is the absence of computation
in the Fourier domain. It only performs a convolution with the temporal signal
as follows:

S(x, i) =

Nh∑
h=0

nmax−1∑
k=0

I(x, k)wh(i− k) (3.7)

with

wh(i) =
1

hσ
√

2π
e
− i2

2(hσ)2 e−2jπh nc
nmax

i

The Gabor wavelet filters the components of I that oscillate at the frequency of
the h-th harmonic. The gaussian time window locally captures the spectral con-
tent of the signal, thus allowing to account for slow changes of the low frequency
envelop. Note that the Fourier transform of a gaussian function is still gaussian,
but with a different σ (actually the inverse of the time σ). In addition, the cosine
functions shift the gaussian windows to the harmonic frequencies in the Fourier
domain.

Basically, the three above bandpass filters will extract the pulsatility of the contrast
information by removing the constant component C(x, 0) and the high frequency noise
that potentially hinders the flow analysis. This signal processing approach can also
be considered as a compression of the spectral information, leading to a simpler
representation of the contrast sequence that only contains few Fourier components.

The main advantage of this approach is that knowing the narrowband frequency
components of the sequence, the bandpass signal can be derived for any time instant
t ∈ R, and not only for the discrete time samples i ∈ [0 nmax]:

S(x, t) =
1

nmax

nmax−1∑
n=0

ĨBP (x, n)e2jπ n
nmax

fst (3.8)

where t = i
fs

is the actual time (in seconds) and fs the actual sampling frequency

(in Hertz). The discrete representation of time i is replaced by a more intuitive and
physical time t.
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The contrast sequence is approximated semi-analytically in a continuous fash-
ion, by assuming that only few frequency component can describe its time-evolution.
In fact, the continuity of the temporal signal will be enforced, while the Fourier sig-
nal will stay discretized. Evaluating the bandpass contrast sequence S for any time t
amounts to interpolate the signal with a Fourier decomposition. This interpolation is
more or less accurate according to the number of frequency component selected. One
could choose to utilize all the Fourier component so as to avoid frequency leaks. How-
ever, the bandwiths are very narrow. Using all the Fourier coefficients is not required
in practice and would lead to an unnecessary computational burden.

Essentially, the key point of this signal processing lies in the evaluation of the time
derivative of the bandpass signal:

∂S(x, t)

∂t
=

1

nmax

nmax−1∑
n=0

jω(n)ĨBP (x, n)ejω(n)t (3.9)

where ω(n) = 2π n
nmax

fs is the real angular pulsation corresponding to the frequency
sample n.

The continuous time representation enables the exact computation of the time
derivative. This is particularly interesting in optical flow, since it allows to avoid the
problem of large displacements met in section 2.4, and more importantly to use the
instantaneous optical flow equation (2.4):

∇S(x, t) · v +
∂S(x, t)

∂t
= 0 (3.10)

Thus, no iterative warping is required, and the unknown variable of the equation
becomes an instantaneous velocity, instead of a displacement vector. A straight-
forward solving of the instantaneous optical flow equation becomes possible
thanks to the Fourier decomposition.

However a problem remains, the bandpass signal S can exhibit several extrema and
as such its derivative can vanish during a fundamental period. The same issue arises
with the spatial gradient ∇S, when the signal is on crest or trough of a spatial wave.
In this case, the equation (3.10) cannot be solved.

3.2.2 The Hilbert transform

To circumvent the pitfall of spatio-temporal extrema, one can resort to a powerful
mathematical tool known as the Hilbert transform. The Hilbert transform basically
creates a quadrature signal, i.e. a time-shifted signal of the original sequence I that
undergoes a phase shift of π

2
. It can be defined in the temporal domain by:
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∀ t ∈ R?, h(t) =
1

π
v.p

1

t
(3.11)

An analytic signal Î is created by convolving the real time sequence I with a
quadrature filter Q:

Î(t) = Q(t) ∗ I(t) = (δ(t) + jh(t)) ∗ I(t) (3.12)

Unfortunately h is not causal and has an infinite support. As such, suitable pre-
cautions should be taken when filtering the discrete time sequence I. The main re-
quirement for the contrast sequence is to be band-limited, i.e. to have few Fourier
components, excluding the DC term and the high frequencies. If the original signal I
does not meet this requirement, the bandpass signal S obtained from ((3.4) or (3.5))
particularly suits for the quadrature processing:

Ŝ(t) = Q(t) ∗ S(t) = (δ(t) + jh(t)) ∗ S(t) (3.13)

Rather than convolving h with a temporal signal, which is computationally expen-
sive, we prefer to resort, once again, to a Fourier transform:

F
[
Ŝ
]

(f) = (1 + jH(f)) ˆIBP (f) (3.14)

with
H(f) = −jsign(f)

where sign(f) is the sign function described by:

sign(f) =

 1 for f > 0
0 for f = 0
−1, for f < 0

Basically, the filter H performs a rotation of −π
2

on the frequency components with
positive frequencies, and π

2
for those with negative frequencies. The main effect will be

to cancel out the negative frequencies, and amplify the positive frequencies by a factor
of 2:

F
[
Ŝ
]

(f) = (1 + sign(f)) ˆIBP (f) (3.15)

Hence, by breaking the conjugation of positive and negative frequencies, an imag-
inary part appears when coming back to the temporal domain. The real part will be
the original bandpass signal S while the imaginary part will be the sought quadrature
term Q:

Ŝ(t) = S(t) + jQ(t) (3.16)

71



CHAPTER 3. NEW OPTICAL FLOW ALGORITHM DEDICATED TO BLOODFLOW
ESTIMATION

where Q and S have the same envelop M -also called modulus - but a phase shift
of π

2
.

Figure 3.3: Bandpass signal of the DSA TIC (figure 3.2)colored in blue, and its quadrature
in green. The quadrature is shifted by an angle of π

2 with respect to the bandpass signal. The

modulus M = |Ŝ| in red represents the envelop of the complex signal oscillations.

The quadrature term prevents the spatial and temporal derivative of the analytic
signal Ŝ to cancel. Figure 3.3 shows that when the signal derivative gets to 0, the
quadrature derivative is maximal, and the other way around. The same phenomenon

occurs for the spatial gradient ∇S and ∇Q. As a result, |∂Ŝ
∂t
| and ‖∇Ŝ‖ never vanish

(excepted if ‖Ŝ‖ is constant). The quadrature filter removes the uncertainties on the
extrema of the spatio-temporal signal S. The analytic optical flow equation therefore
reads:

∇Ŝ(x, t) · v +
∂Ŝ(x, t)

∂t
= 0 (3.17)

The above equation can be rewritten as a system:{
∇S(x, t) · v + ∂S(x,t)

∂t
= 0

∇Q(x, t) · v + ∂Q(x,t)
∂t

= 0
(3.18)

One could believe that this improves the underdetermination of the optical flow
constraint. In fact, the above system is similar to one optical flow equation, excepted
a rotation matrix was pre-multiplied (see appendix A). The two spatial gradients ∇S
and ∇Q have the same directions, and the aperture problem is kept unsolved.

Nonetheless, exploiting both information at the same time is crucial to remove the
issue of derivatives vanishing in time and space. In order to minimize the local optical
flow error, one can use the conjugate product of the analytic optical flow equation
(3.17). Thus, the set of possible solutions v?, denoted V will minimize the following
energy:
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V = argminv (∇Ŝ(x, t) · v +
∂Ŝ(x, t)

∂t
)(∇Ŝ(x, t) · v +

∂Ŝ(x, t)

∂t
)∗ (3.19)

which yields after some algebra:

V = argminv (∇S(x, t) · v +
∂S(x, t)

∂t
)2 + (∇Q(x, t) · v +

∂Q(x, t)

∂t
)2 (3.20)

where V contains all possible velocity vector v within the aperture space.

3.2.3 Phase-based optical flow algorithm

Our optical flow based method fully relies on the oscillation of the contrast product
concentration. Therefore, any change of oscillation amplitude is likely to disturb the
optical flow estimation. When the contrast bolus arrives in the FoV, the envelop of the
oscillation slowly increases until it reaches a stable level, and then decreases to zero a
few second after the end of injection (see figure 3.3, previous subsection). Other causes
of envelop variation can appear when different phases of the product mix in the same
location, or when the contrast gets diluted over time.

To get rid of the envelop variations, we resort to the phase of the complex signal
φ = Arg(Ŝ). The signal phase can be defined for each time t of the sequence by the
angle between the analytic signal and the real axis:

φ(t) = arg(S(t), Q(t)) = atan2(Q,S). (3.21)

The main advantage of the phase, is the absence of envelop. The values constantly
oscillate between −π and π, resulting in periodic discontinuities (see figure 3.4).

The phase can be interpreted as the angular time elapsed since the last maxima
of the real signal occurred. Hence, the zero-crossings correspond to a peak of the real
signal, while the discontinuity corresponds to a trough.

The phase is a very convenient tool to enforce the envelop constancy, and get
freed from the slow signal variation due to the effect of the traveling contrast bolus.
The phase based optical flow (PBOF) equation describing the phase constancy reads:

∇φ · v +
∂φ

∂t
= 0 (3.22)

The numerous phase discontinuities bring an issue concerning the evaluation of the
phase derivatives. To avoid these discontinuities, one can add an integer multiple of
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Figure 3.4: Phase of the bandlimited signal (showed in figure 3.3) exhibiting periodic discon-
tinuities.

2π, what is called phase unwrapping. This work can be tedious, fortunately another
elegant and efficient way to deal with this problem exists: both spatial and temporal
phase derivatives can be related to those of the real and imaginary part, according to:

∂φ
∂t

= 1
S2+Q2 (S ∂Q

∂t
−Q∂S

∂t
)

∇φ = 1
S2+Q2 (S∇Q−Q∇S)

(3.23)

Rewriting the phase derivatives with continuous quantities, such as S and Q cir-
cumvents the discontinuity pitfall, and stabilizes the derivative evaluation.

Additionally, it should be noted that solving the PBOF amounts to solve the nor-

malized analytic bandlimited signal Ŝn = Ŝ

|Ŝ| . Indeed, the normalized analytic signal

Ŝn does not undergo envelop variations as well. This complex number oscillates around
the complex unity circle:

Ŝn =
1

|Ŝ|
(|Ŝ|(cos(φ) + j sin(φ))) = cos(φ) + j sin(φ) (3.24)

It can be demonstrated (see appendix A) that the PBOF energy:

Ev(x) = (∇φ · v +
∂φ

∂t
)2 (3.25)

is equivalent to:

Ev(x) = (∇Ŝn(x, t) · v +
∂Ŝn(x, t)

∂t
)(∇Ŝn(x, t) · v +

∂Ŝn(x, t)

∂t
)∗ (3.26)

A simple and natural way to solve this optical flow equation would be the Lucas-
Kanade approach [Lucas and Kanade, 1981], pointed out in 2.3.1. The corresponding
local equation system would read:
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Mv = b (3.27)

where M is the phase gradient tensor, such that:

M =

 ∑
Wφ2

x

∑
Wφxφy

∑
Wφxφz∑

Wφxφy
∑
Wφ2

y

∑
Wφyφz∑

Wφxφz
∑
Wφyφz

∑
Wφ2

z

 (3.28)

and b = −
∑
W ∂φ

∂t
∇φ is the right hand side term.

The PBOF approach is particularly interesting in our case, since it excludes the
undesirable spectral information (DC component and high frequency noise) and is not
sensitive to envelop variations, i.e. verifies the brightness assumption (2.1) throughout
the sequence. As a result, we can interpret phase displacement as the pure expression
of flow motion. We will use henceforth the phase φ and its derivatives as the suitable
feature for representing contrast propagation.

Unfortunately, a straightforward application of Lucas-Kanade does not yield good
results in contrast sequences. The spatial behavior of the contrast phase φ inside the
arterial lumen, which is the main responsible for failure, will be detailed in the next
subsection.

3.2.4 Image gradient based optical flow and its pitfalls

Now that we settled the technical background for temporal processing, we may focus on
what happens on the spatial side. In order to further understand the spatial behavior
of phase, and have insightful overview of the associated pitfalls, we resort here to the
simplified model of artery described in chapter 1 1.3.1.

A Poiseuille fluid velocity pattern within a cylinder of radius R with axis coinciding
with z-axis and a velocity v0 on the z-axis can be written in the form:

v = (1− r2

R2
)

 0
0
u0

 (3.29)

where v = (vr vθ vz)
T is defined here with cylindrical coordinates.

Let the CA density have a complex harmonic time dependence with frequency
ω = 2πf . In the cylinder cross-section at z = 0, the concentration is assumed to be
independent with respect to r =

√
x2 + y2 so that the propagating CA density Ŝ(r, z, t)

can be expressed as:

Ŝ(r, z, t) = Ae
j(ωt− ωz

u0(1−( r
R

)2)
+φ0)

= Aejφ(r,z,t) (3.30)
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Figure 3.5: Poiseuille flow simulation in a cylindrical tube with complex contrast quantities.
A cut plane is represented at (x = 0), and the vessel wall is shown as red lines. A. shows the
real part of the analytic signal S. B. shows the imaginary part Q. C. represents the phase φ.
The simulation was carried out using equation (3.30) with the following parameters: A = 2,
t = 800 (in frames), R = 30 pixel, u0 = 4 pix.frame−1, f = 1.5 10−3 frame−1, φ0 = π

2 .

As expected, the contrast isovalues follow the parabolic velocity profile. The flow
slows down near the wall, in a so-called limit layer, where the contrast moves slowly.
Analytically, the phase at r = ±R stays still at the injection point z = 0, while phase
at profile peak (r = 0) rapidly gets away from the injection point at the velocity v0. As
a result, the isophase profile forms a very elongated shape in direction of the flow,
and gets even more elongated as we progress on the z axis.

The phase gradient can be written:

∇φ =
−2R2ωz

u0(R2 − r2)2

 x
y

(R2−r2)
2z

 (3.31)

We can easily see the singularity that occurs at r = R:

limr→R ‖∇φr‖ = +∞

Moreover, the dependency of φx and φy with respect to z tends to accentuate
this divergence as we get further from the injection point. This singularity cannot
be directly observed in discrete images indeed, but instead, one gets very high values
near the rim of the cylinder. The norm of the spatial gradient ‖∇φ‖ will increase
dramatically around r = ±R, as illustrated in figure 3.6.

On top of that, the ratio between the radial component, for instance φr and the
longitudinal component φz also diverges when r approaches R:

limr→R
φr
φz

= limr→R
2zr

(R2 − r2)
= +∞ (3.32)
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Figure 3.6: Phase gradient in a Poiseuille tube. The phase gradient direction is aligned
with z-axis at r = 0, but drifts strongly as r gets closer to the cylinder boundary (r = R or
r = −R).

This proves that the phase gradient ∇φ has a tendency for a radial orientation
in the neighborhood of the vessel wall. In the boundary layer, where the viscosity
is dominant, slow traveling lamina adjacent to the wall and fast traveling lamina
coexist. The velocity component parallel to the wall has a large gradient component in
the radial direction. As a result, the phase profile is almost tangent to the wall in the
boundary layer, so that its normal, or gradient is pointing completely outwards. The
following figure describes the behavior of the phase gradient components throughout
the cylindrical model.

Figure 3.7: The further we move away from the injection point, the sharper the isophases
behave. This tends to dramatically increase the radial component of the phase gradient. In
the above figure, the blue arrows represent the phase gradient vector. The green arrow is
the longitudinal component (z-axis), only this information is needed to recover the velocity
magnitude. Its value is kept constant alongside the Poiseuille tube. The red arrow is the
’error component’ that does not play a role in the contrast transport. Due to the important
elongation of the contrat profile, this component grows linearly along the z-axis.

Because optical flow estimation is based on the direction of ∇φ, one can expect
misestimations of the flow direction in areas close to the vessel wall. The aperture
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problem is strongly present in the limit layer where the image gradient is irrelevant
for the computation of flow propagating in an orthogonal direction. When using the
Lucas-Kanade approach, the large aperture scale will create high instabilities in the
recovery of the unknown velocity (see section 2.3.1).

The numerical example of Poiseuille flow does not represent all the sorts of flows
existing in arteries indeed. However, it highlights the phenomenon occurring in the
boundary layer, where the phase gradient∇φ inevitably points in the radial direction.
According to the size of the limit layer, this issue is more or less bothersome. To deal
with aperture problem in contrast phase sequences, we propose a global optical flow
regularization, including physical priors.
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3.3 On the integration of physical constraints

For all imaging modalities, optical flow literature often indicates the necessity of using
a suitable regularization scheme to obtain a reliable flow estimation. In this section,
several priors concerning blood flow will be integrated in the PBOF framework. Some
of them are already used in state-of-the art OFM, while one of them is original and
specific to fluid flow.

3.3.1 Bringing a physical meaning to the optical flow

As pointed out in section 3.1 (see table 3.1), blood flow should respect the three
following constraints:

1. Flow smoothness

2. Flow incompressibility

3. Flow tangency to arterial wall

A suitable framework for the enforcement of global properties is a global varia-
tional approach:

v? = argminv

�
Ω

(∇φ · v +
∂φ

∂t
)2 +R(v, ∂v, . . . , ∂nv) (3.33)

The three enumerated constraints can be translated in a variational framework. In
our formulation, the constraints are expressed as quadratic penalties in the objective
function to minimize:

R1(v) =

�
Ω

µ‖∇v‖2
F

R2(v) =

�
Ω

λ(∇ · v)2

R3(v) =

�
Ω

νB(nT · v)2

where µ, λ and ν are three regularization factors, and n is the outward normal
vector of the lumen boundary, referred to as B. The mask B(x) of B reads:

B =

 1 if x ∈ B

0 otherwise
(3.34)
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Those three quadratic terms should be summed up to the data fidelity energy to
give:

E =

�
Ω

[
(∇φ · v +

∂φ

∂t
)2 + µ‖∇v‖2

F + λ(∇ · v)2 + νB(nT · v)2

]
(3.35)

This energy groups four quadratic terms that penalize a flow field which would
violate phase constancy assumption (3.22) or fluid mechanics laws. Nevertheless, this
setting allows for some flexibility in the solution. The three constraints should be re-
spected in an ideal case, but numerical issues arise when dealing with discrete images.
As a consequence, only a best compromise between each constraint is sought. One
should not that the first term corresponds to the one used in Horn and Schunk [Horn
and Schunck, 1981], while the divergence term is found several times in optical flow
literature [Corpetti et al., 2005,Benz et al., 2014,Corpetti et al., 2000,Corpetti et al.,
2002a, Corpetti et al., 2002b, Papadakis et al., 2007]. What makes the originality
of our approach is essentially the third regularization term R3. The flow
tangency penalty R3(v) replace the usual hard constraint nT · v at the lu-
men wall. In our view, this is more convenient with our cartesian image
representation which would introduce unpleasant pixelization effects.

On top of that, the originality of the approach lies in the way to minimize the global
energy E: the use of a conjugate gradient algorithm. The algorithmic framework is
presented in the following section.

3.3.2 Minimization of a global functional: the preconditioned
conjugate gradient algorithm

The previous energy 3.35 can be minimized using lots of different optimization algo-
rithms. When dealing with very large systems, as in our present problem, straightfor-
ward matrix inversion is not possible. Instead, iterative algorithms are employed,
especially with sparse systems as ours. Large sparse systems often arise when nu-
merically solving partial differential equations or optimization problems.

The conjugate gradient method (CGM) is well known to solve unconstrained
optimization problem such as energy minimization. It was mainly developed by
Magnus Hestenes and Eduard Stiefel [Straeter, 1971, Hestenes and Stiefel, 1952], in
order to solve a linear system:

Av = b (3.36)

with A symmetric (AT = A), positive definite (∀v ∈ R3∗,vTAv > 0), and real.
The solution v? is unique and can be reached in n = rg(A) iterations.
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The energy (3.35) is minimized using the Euler-Lagrange equations. The solution
flow field v is found when:

∂E

∂v
−
∂

(
∂E
∂v
∂x

)
∂x

= 0 (3.37)

The Euler-Lagrange equation simplifies when canceling the second term. After
several developments (see appendix A), the derivation of E with respect to v yields:

Mv − b− µ∆v − λ∇(∇ · v) + νBnnTv = 0 (3.38)

where M =

 φ2
x φxφy φxφz

φxφy φ2
y φyφz

φxφz φyφz φ2
z

 is the phase gradient tensor and b = −∂φ
∂t
∇φ

the right hand side term.
This equation can be rewritten Av = b, by using a new system matrix:

A = M + νBnnT − µ∆− λ∇(∇·) (3.39)

This system function is symmetric and non negative definite, as each term comes
from a quadratic expression. In our preferred framework, A should be rather used as an
operator, than as a matrix. Indeed, the differential operators ∆ and ∇(∇·) are more
convenient to use as a function of space than a matrix. The overall matrix product Av
is painful to write, or even to think:




Mx1

Mx2 0
...

0 ...
MxCard(Ω)

− µR1 − λR2 + αR3




v(x1)
v(x2)
...
...

v(xCard(Ω))



where R1,R2 and R3 are the global regularity matrices corresponding to respec-
tively ∆v, ∇(∇ · v) and BnnT .

Luckily, the conjugate gradient or similar solver only require to perform a linear
application instead of a matrix product:

Av(x) = A(v(x)) = Mxv(x)− µ∆v(x)− λ∇(∇ · v(x)) + νB(x)nnTv(x) (3.40)
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Now, let us recall the basic principle of conjugate gradient. We aim to solve the
linear system Av = b by starting from an initial guest, v = 0Ω, and using specific
conjugate directions to gradually make the energy E decrease. Conjugate flow vectors
d are computed to orient the flow field v toward the solution field v?, by using a Krylov
orthogonality condition. Any pair of conjugate directions di and dj verify:

diAdj = 0 (3.41)

At each iteration, vi gets closer to the solution vector v? by performing a step in
direction di:

vi+1 = vi + αdi (3.42)

The conjugation of descent vectors speed up the convergence of v, by using the
inner properties of the system matrix A [Shewchuk, 1994]. The direction di+1 is built
based on the current residual r = b − Av and all the previous conjugate directions
dk (k ∈ [0 i]):

di+1 = ri + βdi (3.43)

An important property of the CGM is its ability to converge in n iterations, n being
the rank of the system matrix A. Here, n is the number of elements in Ω, which can
be rather large in 3D images. Luckily, much fewer iterations are generally required.
In order to improve the convergence of the CGM, it is always of great help to use a
preconditioning. In a review, Shewchuck details the different CGM, including pre-
conditioning [Shewchuk, 1994], and explains that pre-multiplying the equation (3.36)
with a preconditioner P will help improving the conditioning of A, thereby accelerating
the CGM convergence. P shall be symmetric, positive-definite and approximating A,
but should be easier to invert so that equation (3.36) becomes:

P−1Av = P−1b (3.44)

where C(P−1A)� C(A).

The algorithm for preconditioned conjugate gradient (PCG) is described in the next
page. Note that the CGM can be retrieved when setting P = I, the identity matrix.

Both fields v and descent direction d are iterated until the overall residual norm
δnew goes below a tolerance threshold. δnew is the sum of the squared residuals in Ω, it
represents a distance between the current flow field v and the sought solution v?:

δnew =
∑

Ω

(b(x)− A(x)v(x))T (b(x)− A(x)v(x))

=
∑

Ω

(v(x)− v?(x))TA(x)TA(x)(v(x)− v?(x))

82
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Algorithm 3 Preconditioned conjugate gradient algorithm for flow recovery v?

Define imax the maximal number of iterations and ε the stop criterion
Initialize i = 0 and the residual r0 = b− Av0

Initialize the first direction d0 = P−1r0, δ0 = rT0 d0, and δnew = δ0

while i < imax and δnew > ε2δ0 do
q = Adi
α = δnew

dTq

vi+1 = vi + αdi
if i is divisible by 50 then

ri+1 = b− Avi+1

else
ri+1 = ri − αq

end if
δold = δnew
δnew = rTi+1P

−1ri+1

β = δnew
δold

di+1 = P−1ri+1 + βdi
i = i+ 1

end while

3.3.3 Effect of the different constraints

Now the variational framework is set up, let us shed some light on the different regu-
larization terms.

Flow tangency to arterial wall

The regularization term R3 is necessary to ensure the conservation of flow rate. It
was proven in section 1.3.1, that no flow leaks should occur alongside the arterial wall
(equation (1.12)), so as to insure flow conservation. Furthermore, the previous section
3.2.4 showed how phase gradients badly influence the velocity direction near the wall
boundary. Since the term R3 is local, we simply add it to the tensor matrix of the
phase gradient near the lumen wall B:

MB = M + νnnT (3.45)

where nnT is a symmetric matrix with Tr(nnT ) = 1. The product of this matrix
with the velocity v(x) should be the smallest possible, meaning that v(x) should not
have any component in the direction of n. Since M has only one eigenvector with
non-zero eigenvalues (∇φ) and nnT only n, the addition of both tensors improves the
conditioning of MB, and reduce the underdetermination of flow direction to only one
line (see figure 3.8).

In practice, the aperture inside the boundary layer is fully solved thanks to the
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Figure 3.8: Flow tangency constraint along the arterial wall. ∇φ is pointing outwards,
which misleads the flow direction v. The tangency constraint reduces the aperture to one
line, which is the intersection between the optical flow constraint plane Ker(Mv−b) and the
flow tangency constraint plane Ker(nnTv).

other regularization terms. Typically, the neighborhood will transmit the third missing
component, in such a way that v smoothly follows its neighbors.

Gradient penalization

The smoothness term has already been investigated with the Horn and Schunck algo-
rithm [Horn and Schunck, 1981]. It diffuses the reliable gradient information in the
areas with almost no spatial gradients. The parameter µ has to be chosen according
to the image fidelity, i.e. the strength of the tensor matrix M = ∇φ∇φT . In order to
understand this, let us simplify the Euler-Lagrange equation with only the smoothness
term:

Mv − µ∆v = b (3.46)

Let us approximate M as a scalar with Mv ' Tr(M)
3

v and m = 1
Card(L)

�
L
Tr(M)

3

the average fidelity in the lumen L. Fourier -transforming the equation in the spatial
domain yields:

mṽ + µkTkṽ = b̃ (3.47)

where k is the spatial frequency vector. Isolate ṽ, we get:

ṽ =

b̃

µ
m

µ
+ kTk

(3.48)
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This Lorentzian function is well-known to be a bi-exponential function after inverse
Fourier transform:

v(x) =
1

2
√

(mµ)
b(x) ∗ e−

√
m
µ
‖x‖

(3.49)

which means that v will be blurred because of the gradient penalty, with an
exponential function of pseudo standard deviation σ =

√
µ
m̃

. This approximation of
the solution v shows the strong influence of the ratio µ

m̃
on the flow field diffusion

range. The higher µ compared to M , the more important the diffusion effect. In
practice, µ and m̃ should be the same order of magnitude in order to avoid excessive
smoothing.

Divergence penalization

The divergence term is uneasy to interpret directly. It can be related to the incom-
pressibility term intervening in fluid mechanics with Lamé equations, with λ the Lamé
factor. However, the analogy cannot go any further, since the equation corresponds
to a penalization scheme, and not a true constraint. There is not so much to say
about this excepted one has to be very careful when choosing λ. Once derived with
the Euler-Lagrange equation, this term -∇(∇ · v) - has second order derivatives of the
velocity and as such is very sensitive to sharp variations of the flow fields. This factor
should be set small enough to correct for the flow divergence, as illustrated in figure
3.9:

Figure 3.9: Effect of divergence penalization. The velocity field v is divergent, which is the
result of the limit layer on the phase gradient ∇φ. The correction term λ∇(∇·v) reduces the
divergence by adding inwards vectors. The λ factor should be small so that little corrections are
performed at each iterations. If the regularization factors is pushed more than necessary, an
opposite phenomenon of flow convergence may occur. Subsequently will follow a skyrocketing
oscillation behavior of the flow field between local convergent and divergent patterns. This
would reflect the inner instability of the second order derivative correction term.
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The divergence correction vector appears when considering the residual of E at
iteration i, the new descent direction:

ri = b− Avi = b−Mvi + λ∇(∇ · vi) + . . . (3.50)

In practice, λ is set as the half of µ, as it appears in Lamé equations. This choice
is arbitrary, but seems to lead to reasonable convergence of the CGM. The flow field
corrector λ∇(∇ · vi) slowly decreasing ∇ · vi over iterations is the ideal case.

The weight of optical flow fidelity

Finally, let us investigate the fidelity term of the overall energy E, and how it behaves
compared to the others. Recall the expression of the phase gradient tensor:

M =

 φ2
x φxφy φxφz

φxφy φ2
y φyφz

φxφz φyφz φ2
z

 (3.51)

Use the previous simplification Mv ' Tr(M
3

)v, and the expression of the phase
tensor M , we get:

Mv ' 1

3
‖∇φ‖2v (3.52)

This means that the fidelity to brightness conservation is weighted with the factor
‖∇φ‖2. Considering the Euler-Lagrange equation, we then see clearly the contribution
of each term:

1

3
‖∇φ‖2v − b− µ∆v − λ∇(∇ · v) + νBnnTv = 0 (3.53)

Where ‖∇φ‖2,µ,λ and ν compete with each other. Unfortunately, it was demon-
strated in section 3.2.4 that ‖∇φ‖ is highly unreliable in the boundary layer B and
increases to very large values. In other words, the weighting of optical flow fidelity is
the strongest in areas where its reliability is the lowest. As a result, the bad gradient
information in the boundary layer will diffuse inside the lumen, which is not
desirable indeed.

3.3.4 Weighting of optical flow fidelity

In order to circumvent the issue of improper fidelity weight distribution, one can resort
to a normalization of the optical flow equation. Under the assumption that ‖∇φ‖
does not cancel, the optical flow equation (3.22) turns to:

∇φ
‖∇φ‖

· v +
1

‖∇φ‖
∂φ

∂t
= 0 (3.54)
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Let q = ∇φ
‖∇φ‖ be the normalized phase gradient and vq = −

∂φ
∂t

‖∇φ‖ be the unregularized

optical flow magnitude. Hence, we get the normalized optical flow equation:

q · v − vq = 0 (3.55)

From this we can derive the normalized matrix tensor:

M = qqT (3.56)

and the normalized right hand side vector:

b = −vqq (3.57)

This normalization reduces the pollution of boundary layer during the fidelity dif-
fusion. Every pixel in the lumen carries the same fidelity weight Tr(qqT ) = 1, which
homogenizes the diffusion of phase gradient. As illustrated in figure 3.10, the large
phase gradient vectors will be reduced to the same size of those in the lumen center,
where the velocity is maximal.

Figure 3.10: Phase gradient normalization in the vessel lumen with q = ∇φ
‖∇φ‖ .

The vanishing phase gradients can finally be dealt with by using a specific weighting
depending on a threshold parameter γ:

Mweighted =
‖∇φ‖2

‖∇φ‖2 + γ2
M

bweighted =
‖∇φ‖2

‖∇φ‖2 + γ2
b

Now that every terms of the energy have been thoroughly explained, we read here
our final Euler-Lagrange equation:

Mweightedv − bweighted − µ∆v − λ∇(∇ · v) + νBnnTv = 0 (3.58)

Yet this equation has to be solved in a very large domain Ω with 3D velocity
vectors, which is extremely costly in term of computations. In order to speed up the
convergence of the CGM, we take benefit from a multi-grid approach, described in the
next subsection.
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3.3.5 A multi-grid algorithm for the resolution of scaling issue

Over the last decades, the efficiency of Multigrid techniques have been proven on a wide
variety of numerical problems, especially elliptic partial differential equations (PDEs),
parabolic and hyperbolic PDEs, integral equations, evolution problems and geodesic
problems. Multigrid is of great interest because of its scalability to many physical
problems as fluid mechanics [Brandt and Livne, 2011], its efficiency and its rigorous
mathematical basis. In the late 1980s, William L. Briggs published a very educational
tutorial on Multigrid [Briggs, 1987], with an improved edition with a larger spectrum of
applications in 2000 [Briggs et al., 2000]. Multigrid essentially provides a generalization
of the coarse-to-fine approach discussed in section 2.5.

In our present case, a pyramid of 3D cartesian grids is built. A CGM aims to solve
the system (3.36):

Av = b

with A a full-rank matrix system, v the flow field to be solved, and b the right
hand side field, which can also be written b = Av?, with v? the solution flow field.

The overall flow field error e can be written:

e = v? − v (3.59)

It measures how far v is from the solution. However, since we do not know directly
the solution flow field v?, we cannot have access to the error e. Instead, we resort to
the energy residual:

r = b− Av

= A(v? − v)

= Ae

Unfortunately, we see above that when r is small in norm, e is not necessary small.
The flow field v can stagnate in a state without reaching the global minimum. Briggs
pointed out in his book the very slow error convergence at low spatial frequen-
cies, compared to those with high frequency. Moreover, the damping of error mag-
nitude during CG iterations is uneven in the spatial spectrum. High frequency com-
ponents are efficiently corrected, while low frequency components are left undamped.
The core idea in Multigrid is that the error e can be decomposed in a frequency space
e =

∑
h chwh, with wh the frequency mode, and ch the associated mode magnitude.

The different grid levels h represent different bandwidths of the error e, in which the
associated error eh can be efficiently minimized:

eh = v?h − vh (3.60)
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This is typically what motivates a Multigrid scheme in our problem where both low
and high spatial frequency coexist. Phase φ exhibits high and low spatial frequencies
- i.e. short and long waves - while physical constraints should be respected in coarse
scales.

Now, let us explain the basic implementation of a Multigrid algorithm. First, a
restriction operator is used with suitable anti-aliasing pre-smoothing to inject the
values of the finer grid Ah and bh into the coarser grid A2h and b2h:

A2h = Ah ↓ and b2h = bh ↓ (3.61)

with ↓ the restriction operator. This operation is repeated for A and b until the
coarsest level H is reached.

Dealing with coarse grids shifts the error spectrum in higher frequencies, therefore
improving the attenuation of low frequencies. This way, coarsening the spatial domain
leverages the premature steadiness of e. The reader is invited to delve into Briggs ’s
tutorial to further understand how error eh behaves according to the grid level.

Thereafter, the linear system Av = b is relaxed in every grid, starting from the
coarsest, to the finest. After a small number of iterations, chosen by the user, a flow
field error e2h is extracted and added to the finer flow field error by the use of a
prolongation operator (also known as interpolation operator):

eh = e2h ↑ (3.62)

with ↑ the prolongation operator that generally also uses binomial weights.

Usually, a coarse-to-fine approach does not suffice to fully eliminate the error e.
Briggs explains that the bandwidth components eh cannot be eradicated by a single
relaxation. Instead, one has to travel back and forth within the different grids to
completely get rid of the resistant error residuals. This can be explained algebraically,
as prolongation and restriction operators slightly differ from bandpass filtering, which
create a small ’angle’ between their image and kernel spaces (see [Briggs, 1987]). The
bandwith component ch is in some way distributed in every grid level but with a strong
predominance at grid level h. Consequently, multiple go and backs are desired through
the Multigrid structure.

V-cycle and Full Multigrid

Several Multigrid schemes are proposed in [Briggs et al., 2000], including V -cycles,
W -cycles or Full-MultiGrid (FMG). A V -cycle is rather simple to describe, it is made
of a descending phase, and an ascending phase

In descent, each is grid is relaxed with few CG iterations nd, and transmits its resid-
ual rh to the right hand side term b of the coarser grid. Then, the energy component
ch corresponding to its specific bandwidth is minimized, and the minimization of the
overall error e in evenly distributed in the Multigrid structure.
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Figure 3.11: V cycle with four grid levels in Multigrid algorithm.

Algorithm 4 Vcycle scheme of conjugate gradient relaxations

Define H the number of grid levels, nd and na the number of iterations in descent
and ascent.
Restrict M and b to the coarsest level H
for h = 0 to h = H − 1 do

Relax Ahvh = bh for vh with nd iterations
Restrict the residual bh+1 = (bh − Ahvh) ↓

end for
Solve AHvH = bH for vH
for h = H − 1 to h = 1 do

Prolong the velocity increment vh+ = eh+1 ↑
Relax Ahvh = bh for vh with na iterations

end for
Relax A0v0 = b0 for v0 with na iterations
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The number of voxels Card(Ω) is divided by 23 = 8 at each grid restriction, i.e. 8
for the second grid, 64 for the third grid, and 512 for the fourth grid, which turns to
very fast CG iterations in smallest grid. In order to take benefit from this efficiency
and time gain, the number of iteration is set higher at coarse levels. Finally, the ascent
consists in a simple coarse-to-fine inheritance of the velocity increments eh. Again,
each grid is relaxed during the ascent with na CG iterations.

In our preferred setting, a FMG algorithm is implemented, which is the combination
between V -cycles and coarse-to-fine approaches. FMG attempts to solve the equation
at coarse resolutions as much as possible. Multiples upward and downward inheritances
are carried out on the lowest resolutions so as to efficiently get rid of low frequency
errors. Basically a small V -cycle is used at the coarsest resolution H, before gradually
increasing in size, until a full V -cycle is achieved.

Figure 3.12: Full-Multigrid scheme with grid levels.

What basically comes out of a Full Multi-grid utilization is an efficient elimination
of the low frequency errors, with an acceleration of the CG convergence. For instance,
a global smoothness constraint, or an incompressibility constraint are much easier
to enforce when using small and coarse grids, where they play an important role.
Conversely, the fidelity term is smoothed in coarse scales, where it gets inaccurate.
This local term is more relevant in fine resolutions, it delivers the high frequency
patterns of the flow field v. The physical constraints requiring lots of iterations are
then minimized within coarse scales, while optical flow fidelity term requiring a
few iterations is relaxed within finer scales.
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Algorithm 5 Full-Multigrid method

Define H the number of grid levels, nd,h and nd,h the number of iterations in descent
and ascent, for each grid level
Restrict M and b to the coarsest level H
Relax AHvH = bH for vH with na,H iterations
for h = H − 1 to h = 0 do

Prolong the velocity increment vh+ = vh+1 ↑
Execute V cycle with h the finest level

end for

3.3.6 Boundary conditions

Multigrid methods were originally created for solving boundary value problems,
that arise in many physical problem. Without boundary conditions, a partial differen-
tial equation cannot be solved. In our problem, we can define two kinds of boundary
conditions.

First, there should be no contrast displacement outside the vessel lumen, as stipu-
lated in section 3.1, which means for the velocity to cancel outside L:

v(x /∈ L) = 0 (3.63)

If this condition is suitable outside the vessel lumen, it cannot be used at the
interface between vessel lumen and FoV edges. Obviously, angiography acquisitions
focus on a particular segment of the cardiovascular system. At some point, the FoV
cuts the extremities of the vasculature of interest, where flow occurs. Besides, in many
image processing settings, a region of interest (ROI) is previously defined inside the
FoV, wherein the image analysis is desired. As the ROI is often smaller than the FoV,
it inevitably intersects the lumen L. The intersections will be denoted C.

In C, we wish the flow rate to be conserved. In practice, this condition is hard to im-
plement, but a lighter constraint can be imposed in the vicinity of the intersection
by setting to 0 the velocity gradient component orthogonal to C:

∇v(x) · c = 0 (3.64)

where c is a unit vector normal to C.

If such a condition is not respected, the derivative terms ∆v and ∇(∇ · v) will un-
dergo sharp transitions nearby C, and eventually will lead to skyrocketing oscillations,
that will propagate through the lumen L. On the contrary, imposing the v derivative
to cancel in the direction of c will stabilize the minimization process, and insure flow
continuity.
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Figure 3.13: Boundary conditions at the vessel extremity C: the velocity gradient ∇v should
have no component in direction of flow, so that flow is conserved in that direction.

The next section will describe how we divide the image domain Ω in several regions,
and how we implement the boundary conditions.

3.4 A multi-region description of the flow object

In our preferred flow estimation method, the spatial domain of an input contrast image
I can be divided in five regions, as illustrated in the following figure:

Figure 3.14: Multi-region flow object.

• Region Ω refers to the whole spatial extent of the image data, only a small
proportion of it contains signal

• ROI is specified by the user in the application input. The rest of the domain
¯ROI is ignored in the algorithm execution, ideally no signal is present in it,

excepted in the neighborhood of the vessel extremities. It allows to focus on a
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small portion of the vasculature and also to avoid the vessel extremities to disturb
the flow estimation. The user selects ROI in such a way that it intersects the
inlet and outlet of a vessel segment. This way, the interface between signal area,
and no-signal area corresponds only to the lumen wall, and no spurious gradient
information as ∇φ is picked up at the vessel cuts.

• Region L corresponds to the vessel lumen, wherein flow estimation is performed.
This area contains usual optical flow fidelity, as well as regularization terms on
smoothness and incompressibility.

• Region B corresponds to the vessel walls. In this area, the spurious phase gradi-
ent information pollutes the overall flow estimation. A specific regularization is
employed to enforce the velocity vector lying in a plane tangent to the wall.

• Region C refers to the band of pixel adjacent to the vessel extremities. These
points are needed to compute spatial differentiation operators in the vessel ex-
tremities. As ¯ROI contains no signal, we need to fill C with relevant information
that prevents the differential on extremities to skyrocket. A boundary condition
is set in this region to keep the spatial derivatives of the velocity relatively small
and stabilize the algorithm.

It should be noted that those five regions have to be downsampled for every pyramid
level, in view of a Multigrid implementation. For each region, a different condition has
to be fulfilled.

Region based constraint implementation
Region of the flow object Mathematical expression
ROI ∩ ( ¯L ∪ B)

v = 0

Lumen L
Mweightedv − bweighted − µ∆v − λ∇(∇ · v) = 0

Vessel boundary B
Mweightedv−bweighted−µ∆v− λ∇(∇ ·v) + νnnTv = 0

Vessel cuts C ∇v · c = 0⇒ v =
∑

p∈W∩(L∪B) W (p)v(p)

Table 3.2: Region based implementation of the conjugate gradient

In C, the velocity inside each pixel is mirrored with respect to the lumen neigh-
borhood W , a binomial window that weights each neighbor belonging to window
W ∩ (L ∪ B) (see figure 3.15). Note that the mirroring is performed at each CG
iteration so as to preserve flow continuity.
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Figure 3.15: Boundary condition on the velocity gradient -∇v(x)·c = 0 - is smoothly imposed
by a mirroring operation of the region C with respect to the lumen region L, and wall region
B.

General discussion

In the previous sections of this chapter, an original optical flow formulation applied
to blood flow estimation was detailed. It can be divided into two independent sub-
methods. A first processing on the temporal domain that uses the knowledge of
contrast pulsatility. Then a second processing on the spatial domain that uses
the knowledge of smoothness, incompressibility, and boundary conditions of
the blood flow field. The basic input of the whole image processing technique is a
3D+T pulsed contrast sequence I(x, t), with the contrast lumen segmentation,
and the basic output is the 3D+T velocity flow field of the contrast product v(x, t),
equivalent to 3D+T blood flow field.

From a blood flow field v, a very large number of features can be extracted. Nowa-
days, only a few of them are clinically exploited:

• The blood flow: Q =
�
S

v · dS

• The average velocity along a centerline: v̂(s) = 1
S

�
S

v(s) · dS

• The maximum velocity along a centerline: vmax(s) = maxS(v(s))

• The velocity distribution along a profile: v(r) (radial profile) is the most
common

• The wall shear stress

The last feature is particularly meaningful for physicians, it gives an idea of how
bad blood flow forces can harm the vessel wall. Computing the WSS necessitate a
fine evaluation of flow patterns in the vicinity of the vessel wall, since it requires
the evaluation of spatial derivatives of the velocity. Therefore, only flow field
imaging has the ability to achieve a WSS estimation. The next and last section will
propose a novel optical flow based approach for the WSS estimation.
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3.5 On the estimation of wall shear stress

The influence of wall shear stress on the development of atherosclerosis and aneurysm
was investigated in section 1.1.4. CFD simulations [Jung et al., 2006, Morales, 2012],
and cine-MRI acquisitions [Marshall et al., 2004,Petersson et al., 2012,Isoda et al., 2010,
Geers et al., 2011] have widely studied how WSS gets distributed in the arterial walls,
with different hemodynamic conditions. However, no optical flow based evaluation of
WSS has been reported until now.

First, let us recall the general definition of shear stress. A shear stress, denoted τ
is defined as the component of stress coplanar with a material cross section. Any real
fluid moving along a solid boundary, i.e. a vessel wall, will incur a wall shear stress
on that boundary. The no-slip condition dictates that the speed of the fluid at the
boundary should be 0, while at some distance from the boundary should be the flow
velocity. Generally, the region between those two points is referred to as the boundary
layer. At a distance r from the boundary, the shear stress is in direction of the flow,
and equals to the product between the dynamic viscosity of the fluid µ and the strain
rate:

τ(r) = µ
∂v

∂r
(r) (3.65)

The wall shear stress, however, is defined at the contact of the wall, at r = R:

WSS = µ
∂v

∂r
(r = R) (3.66)

Obviously, the accuracy of wall shear stress estimation depends on the spatial reso-
lution, according to which discretized evaluation of strain rate is more or less accurate.

Now, let us develop our WSS estimation method. The first assumption that is
made is the quadratic behavior of the velocity with respect to the wall distance d.
A quadratic distance map ζ(x) is built based on quadratic morphology with:

∀x ∈ B, ζ(x) = ‖xm‖2 − ‖x− xm‖2 (3.67)

with xm the lumen center, and xb the nearest point on the vessel wall, as shown in
figure 3.16.
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Figure 3.16: Quadratic distance map ζ, defined as a negative quadratic function with respect
to radial component. The maximum is at the lumen center, while the lowest value is reached
on the boundary point xb.

A window W is defined about xb, within which the velocity field can be expressed
as:

v(x) = ζ(x)u(x) (3.68)

where u is a vector normal to outward normal n, which does not vary within the
window. The outward normal can be defined by n = − ∇ζ

‖∇ζ‖ .

For flow in the iso-ζ surfaces, we must have v = v − v(nTv) = (I − nnT )v, where
(I − nnT ) is the projection matrix in the plane normal to n. With this in mind, the
optical flow penalty within the boundary layer is written as:

EOF (x) = (vT · ∇φ+
∂φ

∂t
)2 = (vT (I − nnT ) · ∇φ+

∂φ

∂t
)2 = (vT · g +

∂φ

∂t
)2 (3.69)

with g = (I − nnT )∇φ the projected phase gradient.

The local penalty to minimize within a window W around wall point xb therefore
reads:

EW(xb) =
∑
x∈W

W (x− xb)(
β

2
(ζuTg +

∂φ

∂t
)2 +

α

2
(ζuTn)2) (3.70)

where W is a gaussian weighting window.

Let us write γ = α
∑
WW (x− xb)ζ

2 and C = β
2

∑
WW (x− xb)

∂φ
∂t

2
.

This energy can be reformulated EW = 1
2
uTMu − uTb + C, with M = γnnT +

β
∑
WW (x− xb)ζ

2ggT and b = −β
∑
WW (x− xb)ζg

∂φ
∂t

.

By construction, it is clear that matrix M has an eigenvector n with eigenvalue γ
and two eigenvectors in the tangential plane whose sum of eigenvalues is Tr(β

∑
WW (x−

xb)ζ
2ggT ). We can now evaluate the wall shear vector u as a minimizer of EW as
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u = (M + εI)−1b in which we make use of Tikhonov regularization. The estimation of
the local strain rate in the window finally reads:

S = ∇v · n = −(nT∇ζ)u = ‖∇ζ‖u (3.71)

However, the estimate of the tangential strain rate is valid only if the laminar
projection of the gradient is not erratic. One way to evaluate this is to note that∑
WW (x− xb)ζ

2ggT is a second order moments matrix of the g vectors with weights
given by W (x − xb)ζ

2. To get the corresponding covariance matrix, we first need to
divide by the sum of weights yielding matrix Σ:

Σ =

∑
WW (x− xb)ζ

2ggT∑
WW (x− xb)ζ2

(3.72)

With the same weights, we can also compute a weighted average G for the gradient
g:

G =

∑
WW (x− xb)ζ

2g∑
WW (x− xb)ζ2

(3.73)

The centered covariance matrix about the mean reads: Σc = Σ − GGT . A rea-
sonable estimation of the data is obtained by comparing σ2

c = Tr(Σc) with ‖G‖2 =
Tr(GGT ). Thus, if σc is comparable or larger than ‖G‖2, the above strain estima-
tion cannot be relied upon nor be used for the definition of wall shear stress. In the
favorable case:

WSS(xb) = µS(xb) (3.74)

3.6 Additional fidelity terms: jet fidelity and wall

fidelity

In our first trials for solving the flow field PDE (partial differential equations), we noted
two different phenomenons:

• The estimated normal velocity gradient |n · ∇v| near the lumen wall is generally
considerably smaller than the ground truth.

• The velocity vjet at the peak of the contrast profile in the lumen center is always
in the direction of the phase gradient ∇φ.

Consequently, the two following ideas were implemented.
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3.6.1 The wall fidelity

The boundary penalty (vT · n)2 is effective in reducing the near wall velocity but the
velocity parallel to the wall changes much more slowly along the normal n than ground
truth predicts. To resolve this issue, we introduce a method specially aimed to improve
estimation in a thin layer B near wall boundary.

We now focus on the optical flow penalty term 1
2
(v∇φ+ ∂φ

∂t
)2. For points very near

the wall boundaries, we know that v should be nearly orthogonal to the wall normal
unit vector n so that the optical flow penalty can be rewritten as 1

2
(v‖∇φ+ ∂φ

∂t
)2 where

v‖ is the projection of v parallel to the wall v‖ = v − (vT · n)n. Making use of
associativity of matrix algebra, we have:

v‖ = v − (vT · n)n = v − n(nT · v) = (I − nnT )v (3.75)

resulting in vT‖∇φ = vT (I−nnT )∇φ and 1
2
(v‖∇φ+ ∂φ

∂t
)2 = 1

2
‖(I−nnT )∇φ‖2(vTq−

vq)
2 where vq = −

∂φ
∂t

‖(I−nnT )∇φ‖ and q = (I−nnT )∇φ
‖(I−nnT )∇φ‖ .

We now add the penalty term 1
2
‖(I−nnT )∇φ‖2(vT ·n)2 resulting in ‖(I−nnT )∇φ‖2Q

where Q = 1
2
(vTq− vq)2 + 1

2
(vTn)2. After some matrix algebra manipulations:

Q =
1

2
vT (qqT + nnT )v − vqvTq +

1

2
v2
q =

1

2
vMwallv − vTbwall +

1

2
v2
q (3.76)

where Mwall = qqT + nnT and bwall = vqq.

Matrix Mwall has now clearly two well defined eigenvectors, namely q and n with
unit eigenvalues. In 3D, the third eigenvector is just normal to the two others with
zero eigenvalue whereas bwall has only one component vof in the direction of q. Taking
the fidelity terms alone and adding a small Tikhonov term εI to Mwall, i.e. Mwall =
qqT +nnT +εI, this procedure clearly leads to a full rank (non-singular) fidelity matrix
Mwall. We now have to solve the system:

Mwallvwall = bwall =⇒ vwall = M−1
wallbwall (3.77)

This estimation can serve as a soft boundary condition for the regularized flow
velocity further away from the wall. To do so, we add an extra penalty

�
mathcalB

1
2
WallF id‖v−

vwall‖2. This amounts to replacing the fidelity matrix M and vector b in layer B by
M? and b? with:

M? = M +WallF id.I b? = b +WallF id.vwall (3.78)

where I stands for the identity matrix. The weight WallFid and the thickness
of the layer B, called LayerDepth are considered as adjustable parameters which we
shall empirically determine in the next chapter.
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3.6.2 The jet fidelity

In the previous section, we made use of prior knowledge on the direction of flow velocity
in a near wall layer B to alleviate the optical flow window issue and to allow a local
estimation of the flow velocity. There is another situation where knowledge of the local
flow velocity direction can be assessed. Consider a tracer particle pt having velocity
vt for which neighboring particles in the plane Πt containing pt and normal to the
direction of vt have smaller velocities than vt. We refer the streamlines defined by
such particles as jets. These may occur within tubular flow but also within vortices.
An instance of such a situation is provided by the Poiseuille flow example presented
in section 3.2.4. It can be seen that, in this case, all points on the cylinder center line
have this property. As can be observed in the figures, the curvature of the iso-intensity
contrast density surface is maximal in the transverse plane Πt. In 3D, we may use the
iso-intensity mean curvature defined as in [Rieger et al., 2004] by:

κm = ∇ · ∇φ
‖∇φ‖

(3.79)

In the given example where κm can be evaluated analytically, it is easily seen that for
any point along the z-axis, |κm| has a maximum at the centerline (i.e. at x = 0, y = 0).
Furthermore, the evaluated |κm| at centerline increases linearly with the distance z from
coordinate while a transverse (x, y) plane is taken perpendicular to the jet line with
origin on the centerline. The transport time τ(x, y, z, t) from injection point will be
minimal at x = 0, y = 0 with an associated isophote curvature κm expected to increase
roughly proportionally with τ(x, y, z, t) when distance from injection point increases.
In the example given this can be seen in figure 3.17.

Figure 3.17: Jet velocity in a Poiseuille flow. The black line is the set of point pt with the
highest local curvature κm of the phase gradient ∇φ. At these locations, the jet velocity vjet
is parallel to the phase gradient ∇φ(pt).

Points of the jet lines are detected by computing the κm map and localizing the
points pt for which |κm| is maximum in the transverse plane through pt and normal to
∇φ. Since the flow velocity is expected to be in the direction of ∇φ, we just take the
local flow velocity as:

vjet = −
∂φ
∂t

‖∇φ‖2
∇φ (3.80)
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For each such detected jet points, we modify again the fidelity matrix M and vector
b by M? and b? with:

M? = M + JetF id.I b? = b + JetF id.vjet (3.81)

The weight JetFid is an adjustable parameter which we shall empirically determine
in the next chapter.

Overall, the two new boundary conditions can be brought up to the table 3.3 as
follows:

Region based constraint implementation
Region of the flow object Mathematical expression
ROI ∩ ( ¯L ∪ B)

v = 0

Jet points pt (Mweighted + I)v − bweighted − JetF idvjet − µ∆v −
λ∇(∇ · v) = 0

Lumen L
Mweightedv − bweighted − µ∆v − λ∇(∇ · v) = 0

Vessel boundary B (Mweighted + I)v − bweighted −WallF idvwall − µ∆v −
λ∇(∇ · v) = 0

Vessel cuts C ∇v · c = 0⇒ v =
∑

p∈W∩(L∪B) W (p)v(p)

Table 3.3: Region based implementation of the conjugate gradient with wall and jet fidelity
terms

*
* *

This methodological chapter presented a collection of signal and image processing
tools meant for the assessment of blood flow in pulsed contrast sequences. It should
be considered as a whole framework, each brick aiming to solve a particular issue
or to model a particular property of the contrast sequence. It does not pretend to
cover all the range of possible flow estimation techniques, neither to overcome all the
potential issues pending to optical flow based blood flow estimation. As the
state of the art is very narrow -almost inexistent-, the workstream is fully opened,
and will certainly grow in the forthcoming years. The current difficulty is the absence
of 3D+T contrast imaging systems providing clinical flow data. Nevertheless, X-Ray
DSA and its related 2D flow estimation techniques paved the way for the achievement
of future 3D flow estimation methods. It teaches that contrast pulsatility is the first
property to exploit. It allows to compress the signal in the Fourier domain, and
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to derive a semi-analytic expression of the time signal. Ultimately, it abolishes the
time discretization and leverages the approximate nature of optical flow. The phase
of the analytic signal can then be employed to emancipate from the low frequency
envelop of the bandwidth signal. Secondly, the spatial behavior of the velocity has to
be addressed. If no regularization is carried out, basic numerical simulations predict
that the flow field will tend to orientate radially in a boundary layer. Physical cues as
smoothness, incompressibility, and wall tangency can be exploited to correct for
the spurious flow behavior. Furthermore, local feature of the flow field such as the wall
and jet velocity can serve as boundary conditions to the partial differential equation.
This scientific endeavour would not have any relevance without a proper evaluation of
the methodology. The following chapter proposes to challenge the optical flow method
developed in this chapter with virtual angiography. As a reminder of this thesis, the
last chapter will present the first optical flow results on MPI flow data.
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Abstract

Nowadays, a lot of tools exist in modeling and reproducing physical phenomenons.
Computational Fluid Dynamics, among them, is specialized in fluid mechanics
and widely used in medical physics and biomechanics. This branch of fluid mechanics
is especially useful in modeling and studying blood flow in the circulatory system. In
medical flow imaging, the role of CFD is mainly to provide realistic digital imaging
data when ground truth is missing, which is almost always the case in DSA, MRI
and MPI. In this chapter, CFD is used for the generation of virtual angiography test
and validation data. With the use of appropriate tools, this may be done with a
very good accuracy and reliability. Several CFD models of angiography sequences
and their corresponding flow field ground truth will be confronted to the optical flow
algorithm developed in the previous chapter. The influence of optical flow parameters
will be pointed out, together with the flow rate and geometry parameters. Finally, the
potential of the optical flow algorithm will be discussed.

Résumé

De nos jours, de nombreux outils existent dans la modélisation et la reproduction
de phénomènes physiques. La Mécanique des Fluides Numérique, parmi ceux-ci,
est spécialisée en mécanique des fluides et largement utilisée en physique médicale et en
biomécanique. Cette branche de la mécanique des fluides est particulièrement utile dans
la modélisation et l’étude du flux sanguin dans le système circulatoire. En imagerie de
flux, le rôle de la MFN est principalement de fournir des images réalistes d’angiographie
lorsque les vérités terrains sont inaccessibles, ce qui est presque toujours le cas en ASD
(angiographie par soustraction digitale), IRM et MPI. Dans ce chapitre, la MFN sera
présentée, et comment elle permet de générer des images virtuelles d’angiographie
avec une très bonne précision et fiabilité. Par la suite, différents modèles MFN de
séquences angiographiques ainsi que la vérité terrain de leurs champs de vitesses cor-
respondant seront confrontés à l’algorithme de flot optique développé dans le chapitre
précédent. L’influence des paramètres de flot optique sera mise en avant, ainsi que celle
du débit sanguin et de la géométrie des artères. Enfin, une discussion sur le potentiel
de l’algorithme de flot optique concluera le chapitre.
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4.1 Presentation of CFD

CFD is a branch of fluid mechanics that reproduces physical experiments and compute
meaningful features such as fluid pressure, velocity, shear stress, strain, or even a
scalar quantity transported by the fluid, such as a CA. Navier-Stokes equations are
solved in the studied system by using numerical analysis and algorithms, which are
applied in a discretized version of the regions of interest. CFD models need boundary
conditions to solve the partial differential equations governing the studied system.
Additionally, CFD software is generally complemented with computed graphics tools
that help tremendously the representation and evaluation of 3D scalar and vector fields.

Figure 4.1: Examples of CFD simulation for arterial flow. Fluid flows from right to left.
Part of the arterial flow penetrates the aneurysm cavity, forming a recirculating vortex, as
shown with colored streamlines.

CFD provides a third approach to understand the physics of flow dynamics after
pure theory and experiments. In medical imaging, the multiple assets of using CFD are
the following: the predictive performance of therapeutic devices (i.e. endovascular
coiling [Morales, 2012]), the non-invasiveness, the full control on the simulation
parameter, the countless possibilities of data visualization at infinite time and space
resolution, and the very low cost of CFD compared to in vitro and in vivo experiments.

4.2 Virtual angiography

Virtual angiography can be used as an alternate solution to clinical data, as it
satisfies the same requirements, i.e. time resolved contrast information, and provides
in addition the true velocity field. Virtual angiography can be achieved trough CFD
simulation, using specific boundary conditions adapted to blood flow and arteries,
with a reliable physical framework and a high accuracy. The goal is to estimate
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velocity vectors in the contrast map sequence, based on the OFM described
in chapter 3, and compare the output with the ground truth flow field.

Ideally, the boundary conditions should be extracted, or inspired from true clini-
cal data. In 2005, an image-based model pipeline using medical data for simulating
hemodynamics was defined [Cebral et al., 2005], and later extended with morpholog-
ical, morphodynamics and structural analysis, providing patient specific models with
diagnosis and prognosis descriptors [Villa-Uriol et al., 2010].
The preparatory work before generating the CFD model consists in the segmentation
of the vasculature of interest. A 3DRA image is generally used in order to extract the
arterial tree, and remove the background. Hence, a precise delineation of the lumen
and the vessel wall can be performed, with any state of the art segmentation tools. The
second phase is the volumetric mesh generation, where the regular and cartesian
mesh extracted from the image segmentation is made into an unstructured mesh,
often conformed by tetrahedral elements. Finally, the CFD solves the Navier-Stokes
equations on the volumetric mesh, often assuming blood to be an incompressible fluid
in a transient laminar flow regime and adiabatic. The equation (1.6) and (1.5) describ-
ing blood flow are then enforced throughout the CFD model. Boundary conditions
concerning physical quantities can be derived from studies that measure the physiolog-
ical blood flow [Cebral et al., 2008], one-dimensional models [Reymond et al., 2009], or
even from OFMs [Bonnefous et al., 2012].

The pipeline for CFD model generation and simulation is presented in figure 4.2.

Figure 4.2: Pipeline of the OFM validation with CFD simulations

Eventually, the contrast map sequence can be extracted from the virtual angio,
as well as the corresponding velocity field.
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Materials

For the evaluation of the optical flow algorithm, five different models of virtual
angiography were used. The vessel lumen were extracted from 3DRA data by means
of a state of the art segmentation tool used internally in Medisys Research Lab. Each
model contained an aneurysm with different degrees of severity, as illustrated in figure
4.3:

Figure 4.3: Illustration of five CFD models used for the in-silico evaluation of the optical
flow algorithm. Several morphological features can be observed from these models, including
straight vessel portion, multiple bends, degrees of tortuosity and aneurysms as well.

The continuity and Navier–Stokes equations of an incompressible Newtonian fluid
were numerically solved with OpenFOAM (2013, v2.2.1). Blood density and viscosity
were 1060 kg/m3 and 0.0035 Pa s, respectively, knowing that viscosity changes are
negligible inside cerebral aneurysms [Morales et al., 2013]. A physiological bloodflow
waveform was extracted from a DSA sequence using OFM [Bonnefous et al., 2012],
and post-processed in order to fit our current CFD models. A period was extracted
from the bloodflow waveform, scaled in the time domain to match the working time
resolution, and periodized over several cardiac cycles (see example figure 4.4). A
thorough explanation of how these waveforms were derived can be found in [Morales
and Bonnefous, 2015] and [Morales and Bonnefous, 2014]. The scaling preserves the
shape of the generic waveform but varies Q among the generated waveforms. Finally, a
parabolic profile was imposed at the model inlet. This velocity profile changes
over time, following a generic pulsatile waveform.

Figure 4.4: Example of blood flow waveform with a periodic pattern (average flow rate:
3ml.s−1).
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In order to model the contrast propagation, TICs were extracted from DSA se-
quences - corresponding to the 3DRA routine- at the model inlet. A scalar field of
the contrast concentration was solved from a transport equation. The TIC at the inlet
region of the DSA images was imposed as boundary condition for the contrast concen-
tration at the inlet of the CFD model with a homogeneous distribution [Morales et al.,
2011]. The CFD simulations were performed with OpenFOAM c©(version 2.2.1) and
the visualizations presented throughout this chapter are made with ParaView c©(version
4.1.0 , 64 bit).

4.3 Optical flow evaluation with CFD

Finally, the optical flow algorithm was implemented in C++ by means of a Mi-
crosoft Visual Studio 2010 c©environment. The optical flow software was run on a
hp c©machine, with an operating system Windows 7 c©64 bits (processor Intel(R)
Core(TM) i7-2820 QM, CPU 2.30 GHz, 8 Go RAM, graphic card Nvidia Quadro
1000M 96 @ 700 MHz 128 Bit @ 900 MHz).

For the evaluation of the OFM, three main experiments were conducted.

• Parameter sensitivity analysis: Analysis on the optical flow parameters for
one model (section 4.3.1).

• Flow rate analysis: Analysis on the arterial flow rate on the same model with
the optimal parameters from the previous study (section 4.3.2).

• Geometry sensitivity analysis: Analysis of the arterial morphology with five
models (section 4.3.3).

4.3.1 Parameter sensitivity analysis

To understand the impact of the most relevant parameters of the developed OFM
(chapter 3), a sensitivity analysis was performed. A non-exhaustive list of parameters
that intervene upstream or downstream the algorithm is presented in table 4.1. In
order to cover as much as possible the parameter space (formed by all possible com-
binations), an educated approach was followed by identifying the most critical and
relevant parameters and their values/range. The varied parameters were µ, WallFid
and JetFid while the rest were fixed with the values shown in 4.1.

The compressibility penalty was set to λ = µ
2
, as suggested in the corresponding

subsection 3.3.3. The reason for selecting these three parameters is only experimental:
the other parameter were found poorly significant in the optical flow result. Only the
bandpass filter proved to have an important role in optical flow accuracy, a point which
would require a deeper analysis in the future. The working bandpass ([0.25Hz 5Hz])
simply provided correct results compared to other possible filters.
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Optical flow parameters and their corresponding values
Parameter Description Value

ĨBP

Bandpass filter for frequency filtering,
comprising number of frequency
components and weights of each component
(section 3.2.1)

1F[0.255]
: indicator filter

between 0.25 Hz and 5
Hz (cardiac frequency
' 1Hz)

γ Thresh parameter for phase gradient fidelity
(section 3.3.4)

0.00001

µ and λ
Regularity Lamé factors (section 3.3.3) not fixed

WallFid
JetFid
LayerDepth

Weighting factors for wall fidelity, jet
fidelity, and pseudo boundary layer depth
(sections 3.6)

not fixed (excepted
LayerDepth = 3mm)

ε
Tolerance threshold for the CG residue
(section 3.3.5)

10−8: CG stops if the
current residue is
inferior than 10−8 the
initial residue

L, na, nd

Parameters of the Multigrid structure:
number of pyramid levels, number of
iterations in ascent and descent of the
V-cycles (section 3.3.5)

L = 4,
n(l) = na(l) = nd(l) at
each level l with
n(1) = 20, n(2) = 30,
n(3) = 50 and
n(4) = 150 (4 for the
coarsest level)

Table 4.1: List of optical flow parameters.

Finally, case P3 is selected for the sensitivity analysis (see figure 4.5). 480 frames
of contrast and bloodflow information are available from the CFD. A particular cardiac
period is selected, when the model is fully injected with CA. 15 frames are used for the
optical flow evaluation, from frame 350 to 420 with a time interval of 5 frames (one
cardiac period corresponds to 67 frames approximately).

Flow rate evaluation

The flow rate was measured in several different cross sections of the CFD model for
both optical flow estimation and ground truth velocity field. A set of cross sections
was extracted from the vessel model starting from the inlet with a regular spacing of
2 mm. The flow rate is given by a cross section S:

QS =

�
S

v · ndS (4.1)
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Figure 4.5: Model P3 with flow field evaluation on different cross sections

with n the outward unit normal to the cross section S. Note that the flow rate
ground truth did not have to be computed at each cross section, since this value has
to be constant along a vessel segment (see section 1.3.1). The figure 4.5 illustrates
an example of optical flow estimation and associated 3D flow field on several cross
sections.

For the sensitivity analysis, the flow rate was averaged over one cardiac period, and
over several cross sections. 15 frames were selected from 350 to 420, in order to limit
the memory storage. First, only the first cross section was considered (ns = 1), then
the first three (ns = 3) and first five (ns = 5) cross sections and their corresponding
flow rate were averaged. Finally, the whole model was evaluated (excluding aneurysms
and bifurcations), which yielded a spatio-temporal average flow rate (ns = Ns). The
parameters µ, JetFid and WallFid were independently changed while other sensitivity
parameters were kept constant. Hence, three different parameter analyses were carried
out about a fixed 3D point in the parameter space (JetFid=5, WallFid=5, µPREFAC =
100). The illustration hereafter shows the three axis of parameter space.

Figure 4.6: Parameter space and its three axis. For the sensitivity analysis, each parameter
is changed along its corresponding axis, about a centered position (5,5,100). The parameters
are evaluated for different values, respectively JetFid = [0 0.1 1 3 5 7 9 20 100], WallFid
= [0 0.1 1 3 5 7 9 20 100], and µPREFAC = [40 70 100 130 160].
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One should note that µPREFAC is not the actual regularization weight used in the
optical flow algorithm but only a pre-multiplying factor. µ should be chosen accord-
ing to the average gradient fidelity m (see section 3.3.3). Hence, µPREFAC determines
the factor between the smoothness penalty and the average fidelity m. Moreover, µ is
scaled to the system resolution, since the term µ∆v in (3.38) numerically depends on

1
res2

, with res the system resolution. Overall, the relation between regularity prefactor,
gradient fidelity and resolution reads:

µ = mres2 µPREFAC (4.2)

In our setting, a resolution of res = 0.2923 mm was used, as inspired from
Philips DSA systems. This way, the term res2µPREFAC ranges between 1 and 10, so
m and µ have the same order of magnitude.

Two different ways to evaluate the flow rate estimation are employed: the normal-
ized error of the time averaged flow rate estimation compared to CFD ground truth
eflow, and the ratio between time averaged flow rate estimation and CFD, ρflow. The
first one gives a very precise idea of the accuracy of the optical flow estimation, while
the second one allows to know whether the flow rate is overestimated or underestimated
(see figure 4.7).

We denote the time average flow rate percentage error as:

eflow =
1

Nframe ∗ ns

ns∑
S=1

420∑
frame=350

|QS(frame)−QGT (frame)|
QGT (frame)

(4.3)

The time average flow normalized with ground truth flow rate is:

ρflow =
1

Nframe ∗ ns

ns∑
S=1

420∑
frame=350

QS(frame)

QGT (frame)
(4.4)

Influence of WallFid and JetFid

Figure 4.7 shows the local one-dimensional minima of eflow for each parameter JetFid,
WallFid and µPREFAC . When the parameter WallFid is small (0, 0.1, and 1) compared
to the parameter JetFid (graph A, blue curves),eflow is high (from 300% error at
WallFid=0 to 50% error at WallFid=3). At WallFid=5 and JetFid=5, eflow goes
through a minimum at 3% error in the inlet, 15% for three sections, 35% for five
cross sections, and 65% when considering the whole model. At this minimum we can
see the decreasing of flow estimation accuracy as we get further from the
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Figure 4.7: Parameter sensitivity analysis. For each error curve, the other parameters are
fixed with the following values: JetFid=5, WallFid=5, and µPREFAC = 100. A eflow (in %),
when the JetFid and WallFid parameters vary. A local minimum is observed for both curves
at JetFid = 5, WallFid = 5. B eflow when µPREFAC varies. A local minimum is found when
µPREFAC = 100. C ρflow when JetFid and WallFid vary, D The same ratio for different
values of µPREFAC . For each parameter sensitivity analysis, four different error curves are
displayed: one when only considering the first cross-section (the inlet, ns = 1), one with the
three first cross-section averaged (ns = 3), one with the five first cross-sections (ns = 5) and
one considering the whole model (ns = Ns).
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inlet. This point will be further discussed in this chapter. Finally, when WallFid
increases (7, 9, 20 and 100) with respect to JetFid, eflow slowly increases. This can be
explained by the over-regularization of the flow field when WallFid dominates JetFid
and the parabolic fitting is misestimated. Section 3.6 demonstrated how the shape of
the fitted parabola depends on the spatial resolution, and particuarly near the wall.
When the spatial resolution is not fine enough to estimate properly a parabolic profile,
which is often the case, the latter is underestimated. Graph C (blue curves) show this
underestimation as we increase the wall parameter. Because of this inaccuracy, and
the fact that the true profile is not always parabolic, the WallFid parameter
shouldn’t be pushed more than necessary. The wall fidelity is of great help for
boosting the flow field near the wall, but should be balanced with the jet
fidelity.

The red curves of graph A slightly exhibit the same behavior. When the parameter
WallFid is fixed at 5, the parameter JetFid widely influence eflow. For values smaller
than 5, the flow rate is underestimated (figure 4.7, Graph C, red curves) which can be
explained by the aforementioned effect of the dominant wall fidelity. When changing
JetFid, eflow reaches a minimum at JetFid=5 (for ns = 1, ns = 3, ns = 5), the error
increases to high values (350% at the inlet and 100% for the whole model). This effect
could be related to the very weak value of the phase gradient in the profile peak.
Because the CA propagation is very fast in this area, the phase gradient gets close to
zero. During the inversion of the phase gradient tensor, any numerical inaccuracy can
have an impact on the jet estimation.

As can be seen in graph C (figure 4.7), the wall parameter tends to underestimate
the flow rate while the jet parameter tends to overestimate the flow rate. As a result, a
proper balance between the two contributions should be respected in order
to reduce eflow as much as possible. In the next tests, the values of both
WallFid and JetFid will be fixed to 5, as they provide to our knowledge
the lowest flow estimation error.

Influence of the smoothness factor

Graphs B and D (figure 4.7) show the influence of the smoothness factor µPREFAC .
A local minimum of eflow can be observed at µPREFAC = 100 (graph B), for JetFid
and WallFid fixed at 5. For lower values (40 and 70), the flow field is overestimated,
while higher values (130 and 170) lead to an underestimation. One should note that
ρflow is based on a temporal average of 15 frames. Therefore a ratio crossing 1 is not
necessarily an indicator of good flow estimation. One should only resort to eflow
for evaluating the flow accuracy, while ρflow yields an overall information on
the overestimation or the underestimation of the flow rate.

The analysis on the cross-section number ns shows that the flow estimation at the
inlet tends to be over-estimated for small values of µPREFAC , while it reaches a very
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small error (3%) at µPREFAC = 100, before increasing again as µPREFAC increases.
The two curves for ns = 3 and ns = 5 exhibit the same behavior though the local
minimum at µPREFAC = 100 is higher (10% for ns = 3 and 30% for ns = 5). This
can be explained in the same way as the previous parameter analysis, as the flow
estimation accuracy decreases when we get further from the model inlet.
When ns = Ns (18 for this model), eflow behaves differently as no local minimum shows
up. However, graph D seems to show a coherent behavior with the other curves, as we
notice a gradual underestimation of the flow rate when increasing ns.

Finally the influence of µPREFAC is predictable as this term corresponds to the
smoothness factor met in Horn and Schunck [Horn and Schunck, 1981]. Pushing
too much this factor leads to over-smoothing of the flow field and under-
estimation of the flow rate, while not pushing it enough encourages the
outliers of the phase gradient to ruin the flow estimate, and to cause over-
estimation. In the next tests, the value of µPREFAC will be fixed to 100, as
it provides to our knowledge the lowest flow estimation error.

This sensitivity analysis helped us to understand the influence of the key parame-
ters. This analysis was based on an educated guess of combination and for this case,
the optimal combination was:

JetFid = 5, WallFid = 5, µPREFAC = 100 (4.5)

Among the different combination tested previously, these parameters provide the
lowest flow error eflow, as illustrated in table 4.2.

Flow error with chosen parameters (4.5)
Number of cross-sections eflow
ns = 1 (inlet)

3%

ns = 3
10%

ns = 5
30%

ns = Ns (whole model)
60%

Table 4.2: Flow estimation error for optimal parameters after sensitivity analysis

The next sections are to analyze how this set of parameters can provide different
results when changing the flow rates or the morphology.
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4.3.2 Flow rate errors versus time and slice number

This section presents a sensitivity analysis on the flow rate that was done for case
P3. The same bloodflow waveform used in figure 4.4 is imposed at the inlet of the
model P3, with five different average flow rates: < Q1 >= 1ml.s−1, < Q2 >=
2ml.s−1, < Q3 >= 3ml.s−1, < Q4 >= 4ml.s−1, and < Q5 >= 5ml.s−1. The param-
eters used for those optical flow estimation were mentioned in the previous section
(JetFid=WallFid=5, µPREFAC = 100). The temporal evolution of the flow rate within
one heart cycle (frame 350 to 420, timestep of 5 frames) is displayed in the following
figure, for the five different flow rates.

Figure 4.8: Time evolution of flow estimation for different ground truth flow rates. Each
flow curve corresponds to one cross-section S of the model P3. 18 cross-sections are evaluated
for 15 different frames, and 5 different flow rates.

From these five graphs, one can observe a fast deterioration of optical flow accuracy
with increasing distance from the inlet (black curves). The four first colored curves
better match the average ground truth, even though the systolic peak is
not fully captured. After five cross-sections, that is 1cm away from the inlet, the
estimated flow rate halves, which is the direct result of aperture dominance of the phase
information in these locations. Taking the time-average flow rate < QS > better helps
to figure out this phenomenon, as illustrated in figure 4.9.
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Figure 4.9: Time average flow estimation with respect to S and ground truth flow rate for P3.
Each color corresponds to the flow rate imposed in the CFD model as boundary conditions:
< Q1 >= 1ml.s−1, < Q2 >= 2ml.s−1, < Q3 >= 3ml.s−1, < Q4 >= 4ml.s−1, and < Q5 >=
5ml.s−1. For each one is compared the flow estimation and its evolution along the model, with
the CFD ground truth (thicker lines). In B, the ratio between flow estimation and ground
truth < Q̃S >= <QS>

Q is displayed as to normalize the flow rate and better compare the
curves. The black line of value 1 corresponds to the normalized ground truth.

It can be clearly seen from figure 4.9 that flow rate gets underestimated after five
cross sections, for Q1, Q2, Q3, Q4 and Q5. On the other side, the the optical flow
estimation exhibits the same behavior for the different flow rates imposed
in the CFD model (graph A). When normalizing the flow rate estimates with their
corresponding ground truth (graph B), the curves of each flow rates are roughly over-
laid. This shows that flow rate does not seem to play a role in the distribution of
optical flow accuracy along the model. A strong correlation can therefore be
found between flow estimation and ground truth as the flow rate increases.
Figure 4.10 shows this correlation when different set of cross-sections were selected: at
the inlet (ns = 1), close to the inlet (ns = 3 and ns = 5) and for the whole model
excluding aneurysm (ns = Ns).
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Figure 4.10: Correlation between flow rate estimation and ground truth flow rate. Different
cases are shown: inlet (ns = 1), close to the inlet (ns = 3 and ns = 5) and whole model
(ns = Ns). A strong linear correlation (r > 0.998) can be observed in each case. The
proportionality factor is close to 1 at the inlet, while it decreases for longer portion of the
model.

Local evaluation of the flow field

The optical flow estimation can be evaluated globally by considering the flow rate, but
can also be evaluated locally by considering the blood flow velocities. Because, to our
knowledge, optical flow estimation in virtual angiography is new, we essential focus on
the most essential feature: flow rate. Indeed, our optical flow algorithm is not accurate
enough to motivate a deep analysis of flow field patterns. However, the accuracy is
better at the model inlet as was pointed out previously. The sequence of images below
shows how the flow field weakens far from the inlet (figure 4.11). This occurs mostly
because of the sharpening and elongation of contrast profile (see section 3.2.4), which
misleads the evaluation of the longitudinal phase gradient component.

Figure 4.11: Color-coded velocity field of model P055 (a full cardiac cycle is represented from
frame 355 to frame 415, with a timestep of 15 frames). The flow field is weakening after five
cross-sections, which is the effect of the elongated contrast profiles.

Since the inlet is less subject to aperture problems, the flow field at this location is
more reliably estimated by the optical flow algorithm.

Figure 4.12 shows similar results between optical flow reconstruction and ground
truth for the third cross section S3. One can still notice a slight difference in the
velocity profile where the optical flow exhibits a behavior that is closer to a linear
function. This can be explained by the ambiguous information of the contrast phase
gradient near the lumen wall. However, the peak of the parabola in the optical flow
reconstruction is faithful to the ground truth (excepted for the systolic peak at frame
385).

117



CHAPTER 4. IN-SILICO EVALUATION OF THE OPTICAL FLOW METHOD

Figure 4.12: Local flow field evaluation of P3, at S3. Five time steps are displayed, for
both flow field reconstruction and ground truth. The first column depicts the reconstructed
flow field from optical flow, with a 3D arrow representation and its corresponding color coded
magnitude map. Second column contains graphs representing the velocity magnitude along a
profile selected in the cross section. Both third and fourth column represent the ground truth.
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Those results are an overview of what our optical flow algorithm is capable of. The
optical flow method proves to have to potential to achieve 3D velocity patterns with
relatively low estimation error.

4.3.3 Geometry sensitivity analysis

This section presents the results of the optical flow method to four other models. For
each model, illustrations and results of optical flow estimation are displayed. Similarly
to the figure 4.9, the time average flow rate < QS > is compared with the ground
truth < Q > for different flow rates. Subsequently, correlation curves between flow
estimation and ground truths for different flow rates are shown (as illustrates figure
4.10).

Model 1

Figure 4.13: Model P1 with flow field example of the time sequence. The flow pattern within
the aneurysm are zoomed at for five different timesteps.
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Figure 4.14: Time average flow estimation versus section number S and ground truth flow
rate for P1. In B is displayed the ratio between flow estimation and ground truth < Q̃S >=
<QS>
Q .

Figure 4.15: Correlation between flow rate estimation and ground truth flow rate for model
P1. Different cases are shown: inlet (ns = 1), close to the inlet (ns = 3 and ns = 5) and
whole model (ns = Ns).

Aneurysm evaluation

In addition to the flow rate evaluation, a close-up view of the flow patterns for
different cardiac phases is provided in the figure 4.16. Our optical flow estimation can
provide coherent flow patterns, especially in a location such as aneurysm, where the
flow information is much more complex.
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Figure 4.16: Flow patterns inside an aneurysm of the model P1, with flow rate Q1. Both
optical flow reconstruction (left column) and ground truth (right column) are displayed. The
map of the velocity magnitude ‖v‖ and the velocity vectors v show similar distribution and
orientation. However, the systolic peak (frame 400) is more prevalent in the ground truth.
The optical flow field reconstruction is also smoother than the ground truth, which can be
explained by the existence of the smoothness penalty.

.
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Model 2

Figure 4.17: Model P2 with flow field example of the time sequence.

Figure 4.18: Time average flow estimation versus section number S and ground truth flow
rate for P2. In B is displayed the ratio between flow estimation and ground truth < Q̃S >=
<QS>
Q .

Figure 4.19: Correlation between flow rate estimation and ground truth flow rate for model
P2. Different cases are shown: inlet (ns = 1), close to the inlet (ns = 3 and ns = 5) and
whole model (ns = Ns).
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Model 4

Figure 4.20: Model P4 with flow field example of the time sequence.

Figure 4.21: Time average flow estimation versus section number S and ground truth flow
rate for P4. In B is displayed the ratio between flow estimation and ground truth < Q̃S >=
<QS>
Q .

Figure 4.22: Correlation between flow rate estimation and ground truth flow rate for model
P085. Different cases are shown: inlet (ns = 1), close to the inlet (ns = 3 and ns = 5) and
whole model (ns = Ns).
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Model 5

Figure 4.23: Model P5 with flow field example of the time sequence.

Figure 4.24: Time average flow estimation versus section number S and ground truth flow
rate for P5. In B is displayed the ratio between flow estimation and ground truth < Q̃S >=
<QS>
Q .

Figure 4.25: Correlation between flow rate estimation and ground truth flow rate for model
P5. Different cases are shown: inlet (ns = 1), close to the inlet (ns = 3 and ns = 5) and
whole model (ns = Ns).
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4.4 Discussion

In this section, special attention was paid to the arterial flow rate. The reason is because
it is the most basic and generic measurement that can be obtained from medical images.
Flow rate can be of reference to understand the physiological hemodynamic condition
in an artery [Pereira et al., 2014, Bonnefous, 2001]. To complement the arterial flow
measurement, flow patterns and other hemodynamic quantities, like velocity, WSS
and pressure can be also obtained [Ebbers and Farnebäck, 2009, Isoda et al., 2010,
Petersson et al., 2012,Berg et al., 2014]. These quantities are related to the biological
reaction of the endothelial cells due to the hemodynamic stimuli [Wootton and Ku,
1999a]. Therefore, an effort to obtain velocity field was aimed (see figure 4.12 and
4.16). However, those quantities are more challenging to extract because they depends
on the accuracy of the technique at pixel level.

In the analysis of models P1, P2, P3, P4 and P5, the flow rate estimated from
the optical flow method provides a better accuracy in the three first sections.
For each imposed flow rate, the estimated flow rate roughly provides an accuracy within
40% error. Then, the behavior of the estimated flow rate depend on the model. For
P1, P2 and P3, the flow rate decreases and stabilizes to low values with
shallow peaks (figures 4.14, 4.18 and 4.9), while for P4 and P5 the flow
rate exhibits higher rebounds (figures 4.21 and 4.24). The influence of bends
of the CFD model can be an explanation to these phenomenon, since the secondary
flow spreads the CA towards the walls. As a results, the sharpening of contrast profile
is interrupted, and phase gradients with more favorable directions (smaller aperture
effect) can appear. Nevertheless, more effects can intervene in the distribution of flow
rate along the model, and a deeper investigation should be carried out in the future.

Even if the flow rate shows a disadvantageous behavior after sever cross
sections - sharp diminution -, one can notice an interesting correlation be-
tween the estimated flow rate, and the ideal flow rate. First, the figures 4.14,
4.18, 4.9, 4.21 and 4.24 show that the estimated flow rate behaves similarly for each
ground truth flow rate Q1, Q2, Q3, Q4, Q5. Secondly, the correlation curves for each
model, figure 4.15, 4.19,4.10,4.22 and 4.25 show an excellent linear correlation coeffi-
cient (0.996 < r < 1) when considering the spatio-temporal average of the whole model
(ns = Ns). The flow rate is better estimated at the inlet (the slope of this correlation
surrounds 1: 0.95 for P1, 1.1 for P3, 0.98 for P4, and for three cross sections, 0.99 for P2
and 0.72 for P5), but the correlation coefficient tends to be lower than those observed
for the whole model. Conversely, the flow estimation is worst when considering
the whole model (the linear factor is 0.37 for P1, 0.47 for P2, 0.41 for P3, 0.37
for P4 and 0.31 for P5), but the correlation coefficient converges to 1. As a
result, these linear correlation factors lie within a narrow interval (0.31 to 0.47) and,
in the future, could be taken into account to further adjust the flow rate estimation.

Yet, the main difficulty encountered in this study is that the blood flow rate
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constancy is not verified. Although a penalty term dedicated to the diminution
of divergence is used (section 3.3.3), it appears that blood flow incompressibility is
not sufficiently enforced. A common observation comes for every model that flow es-
timation accuracy decreases after the model inlet (after 1 cm approximately) and the
decrease of the estimated flow rate cause the breaking of incompressibility constraint.
This phenomenon is widely due to the accentuation of the aperture problem when the
contrast profile gets elongated in direction of flow. As was pointed out in section 3.2.4,
the phase gradient becomes more and more orthogonal to the direction of flow as we
progress downstream. The attempts to deal with this difficulty, as the diver-
gence regularization (section 3.3.3) and the wall term (section 3.6) might
not suffice to recover the velocity component in direction of flow. Besides,
the accuracy of the CFD model can also be questioned. While CFD software provides
very precise contrast density and flow fields within tetrahedral elements, the CFD
data gets slightly less accurate when exported into a cartesian grid. Since
the optical flow algorithm outcome fully relies on the contrast phase φ,
any loss of information during the cartesian mesh exportation can dramati-
cally affect the flow recovery (especially nearby the model boundaries where
tetrahedral elements are much smaller than in the lumen center). Because
our optical flow algorithm uses finite difference approximations and carte-
sian coordinates, the evaluation of phase gradient or any other derivative
can mislead the flow estimation. Henceforth, a more suited framework for the
resolution of the CGM could be the utilization of finite elements methods within more
complex meshes. More accurate evaluation of the phase gradient ∇φ, among other,
could provide better flow estimates.

Lastly, one could object that the PBOF (Phase Based Optical Flow) equation
(3.22) that attempts to cancel the material derivative of the phase φ does not
fully correspond to the original optical flow equation ∇I · v + ∂I

∂t
= 0 that wishes to

cancel the material derivative of the contrast density I. Basically, φ and I
are not the same features to track. Because a temporal filtering has been carried out
on the original signal (see section 3.2.1 with bandpass and Hilbert filtering), so the
velocity v implicitly undergoes a time filtering. Therefore, unless the velocity v(x, t)
is stationary, the velocity of the contrast density I and the velocity of the phase φ are
not exactly equal. This said, one can propose an explanation for the systolic peaks
being missed in figure 4.8. If the blood flow quickly varies within a heart cycle, the
phase information may not capture this sharp variation and the optical flow of the
phase may differ from the optical flow of the contrast density.

*
* *

CFD is a very powerful tool to study contrast propagation in the bloodflow, es-
pecially in the absence of in vivo and in vitro data. With its high flexibility and
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reliability, it allows to simulate a wide variety of flow experiment, with different ge-
ometries and different flow rates, both inspired from clinical data. Moreover, CFD
-or virtual angiography- provides accurate information on contrast propagation, blood
flow, and as such can serve as a ground truth for the evaluation and the improvement
of an OFM (Optical Flow Method). The OFM developed in chapter 3 was confronted
to virtual angiography and provided 3D estimates of the blood flow field.

A large number of parameters intervene in the optical flow algorithm, but three
of them are the most sensitive: the jet fidelity, the wall fidelity and the smoothness
penalty. While an exhaustive optimization of the parameters is theoretically possible,
a small amount of parameter combinations was used and yielded local minimums of
the flow estimation error. When changing the boundary conditions, the OFM shows
stable results. The flow rate imposed at the model inlet and the model geometry do not
significantly change the accuracy of the flow rate estimation. While the OFM provides
satisfactory estimates of the flow rate at the inlet, the flow rate accuracy decreases
downstream. Several reasons have been identified:

• The dominance of aperture problem far from the model inlet (phase gradient ∇φ
gets orthogonal to the flow direction).

• The precision or resolution of the CFD contrast map after export in a cartesian
mesh.

• The approximation of the PBOF framework where the velocity v is supposed to
slowly vary over time.

The workstream is fully opened, and the topic is new. Though the first results
are very promising, many improvements can be brought to the current OFM. As a
reminder, the next chapter tests the PBOF method on early MPI data, and the con-
clusion presents several prospects and possible upgrades of the current OFM.
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Abstract

Estimating and assessing blood flow from 3D+T MPI angiography were among
the objective of this thesis. This chapter describes some preliminary work using this
modality. Unfortunately, we only had access to a small amount of MPI data. The
current MPI hardware is still on progress, which limits the development of dedicated
image processing tools. Nonetheless, hopes can be raised concerning the future of
MPI in clinical applications. Flow-phantom MPI experiments will be presented and
the possibility to capture blood flow will be exposed. Secondly, in-vivo evaluation
describing contrast propagation in mice heart will be presented. A tentative approach
to extract the cardiac dynamics will finally be proposed and discussed before concluding
this chapter.

Résumé

L’estimation et l’évaluation du flux sanguin en angiographie MPI 3D+T était un
des principaux objectifs de cette thèse. Ce chapitre décrit un travail préliminaire sur
cette modalité. Malencontreusement, une quantité très limitée de données MPI fut
accessible. Le système MPI actuel est toujours en cours de développement, ce qui
limite le dévelopement d’outils de traitement d’image dédiés. Néanmoins, quelques
espoirs peuvent être permis concernant le futur du MPI dans les applications cliniques.
Des expériences de flux MPI sur fantôme sont présentées ainsi que la possibilité de
capturer le flot sanguin. Dans un deuxième temps, des acquisitions in vivo décrivant
la propagation de contraste dans le coeur de souris seront exposées. Une première
approche pour extraire la dynamique cardiaque sera finalement proposée et discutée
avant de conclure ce chapitre.

130



5.1. In-vitro MPI acquisition

5.1 In-vitro MPI acquisition

The number of in-vivo data is growing rather slowly since the 2008 evaluation, which
hampers substantial studies on MPI in vivo flow assessment. Until then, phantom
experiments are the only alternative to explore the potential of MPI for flow assessment.
This section proposes one of the first MPI flow-phantom experiments dedicated to flow
estimation. For that, we described the method used for the injection of contrast agent
in the phantom inlet, and how a velocity map was derived from the acquired data.

5.1.1 The flow-phantoms

The first step of this experiment was to select the shape of the phantom and the injec-
tion mode. A static tubular phantom was chosen. In in vivo mice data [Weizenecker
et al., 2009], the sizes of heart chambers were just above the spatial resolution, which
resulted in partial volume effects and made difficult the distinction between wall mo-
tion and contrast propagation. Subsequently, a flow free of wall motion was reached
with the use of simple geometries making use of tubular structures (figure 5.1).

Figure 5.1: Different possible shapes of flow phantoms.

The second phantom was selected: a single inlet and outlet, and the possibility to
study the flow in bifurcations. Finally, the injection mode had to be considered. In
DSA, the mixability between blood and contrast is exploited to study bloodflow [Lieber
et al., 2009]. Tracer density is spatially and temporally modulated along the vessels,
due to the periodic bolus dilution that the heart pumping generates. This modulation
is what allows accurate blood flow estimation in angiography sequences. In the same
idea, we wanted to build an experimental set-up that created an alternate flow of water
and MPI contrast agent inside the physical phantom.

5.1.2 Toward an acquisition protocol of pulsated contrast flow

Flow experiments were performed in the preclinical MPI demonstrator available at the
Philips Research facilities in Hamburg. The flow system consisted of two reservoirs
(60ml syringes), placed above the Faraday cage, one with 1/20 diluted Resovist c©and
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the other with water. The reservoirs were connected to two tubes which flow rates were
controlled by a straightway diaphragm valve system, namely a Lego Mindstorm c©unit.
Then, the tubes entered the MPI scanner, and were brought together via a Y-junction
for mixing. The water-contrast mixture finally flowed inside a phantom placed at the
scanner isocenter (see figure 5.2).

Figure 5.2: Experimental set-up

The outlet discharged the mixed fluid into a bucket. The total height difference
between the reservoirs and the outlet was approximately 1.5 m. Note that the Lego
unit was kept away from the MPI room in order to avoid electromagnetic interferences
of its metal components. Concerning the modulation device, the Lego motor drove
two connecting rods back and forth which compressed both tubes alternately with a
frequency of 2.3 Hz. This set up allows a periodic release of contrast agent inside the
phantom, with an approximately constant flow (the two feeding tube were squeezed
alternately in perfect phase opposition).

To calibrate the total flow rate, the syringes graduations were used. After releasing
the contrast-water mixture for 5 seconds, the drop of volume in each syringe was
recorded, and the experiment was repeated 3 times. An average flow rate Qtotal =
4ml.s−1 was found for both syringes combined. The average velocity in the phantom
inlet can be directly derived from the flow rate, knowing the inner diameter of the
PVC tubes, d=4 mm. The average inlet velocity of the mixture in the phantom was
Vinlet = 32cm.s−1 and for each branch Vbranch = 16cm.s−1 (the whole circuit was tubed
with the same diameter).
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Figure 5.3: Lego unit modeling the contrast pump. Left: Oscillatory tube compressor allowing
the modulation of the volumetric flow ratio between contrast and saline solution. Right: Lego
unit on top of the MPI Faraday cage, during the flow experiment.

Figure 5.4: Phantom in the MPI bore (left) and out of the scanner (right).

From the modulation frequency f of the Lego and the velocity inside the branches,
the spatial wavelength of the contrast wave was derived as:

λ =
Vbranch
f

= 7cm (5.1)

This wave can be tracked with a temporal resolution of 21.5ms and a spatial resolu-
tion of 1mm. With such resolutions, a velocity of 16cm.s−1 corresponds to a displace-
ment of 3.44 voxel, which is less than 10 times the capture range (CaptureRange =
0.5λ = 35voxels). The capture range, as explained in section 2.6 with equation (2.34),
is the maximum distance between two phasefronts that allows a proper registration.
This condition can be more easily understood by considering the time resolution (equa-
tion (2.35)):

∆tmax =
T

2
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which works here since the resolution ∆t is 21.5ms and the modulation period
approximately 435ms ( T

2
' 218ms).

In this way, the modulation frequency and velocity range were selected for suitable
flow quantification. Moreover, the working Reynolds number matches state-of-the art
values for arterial flow [Ku, 1997] (Re=640 in the branches). Finally, single-volume
acquisitions were performed. Volume sequences of approximately 20 ∗ 36 ∗ 36mm3
(that is 20 ∗ 36 ∗ 36 voxels) were recorded during 2.5 minutes. MPI dynamic data
were exported on the standard image processing software MATLAB R2010a c©. The
behavior of the CA inside the phantom, and TICs were analyzed.

Figure 5.5: MPI phantom slice (left) and TIC of one voxel (right).

A temporal modulation was visible inside each voxel belonging to the phantom
lumen. However, the spatial modulation was still hidden in the baseline component of
the signal. To remove the baseline component and extract the frequency components
(narrowband components around fundamental and harmonics), a temporal filtering
was performed for each pixel inside the phantom, as described in section 3.2.1 with
Ŝ. One should note that the narrowband frequency extraction allows to retrieve the
low frequency envelop of oscillations, while discarding the baseline. With a FoV of
20*36*36 voxels, half of a wavelength could be visible (λ

2
≈ 35 voxels is approximately

the extent on z axis, the axis along which the product propagates). In figure 5.6 is
displayed the real part of Ŝ , its TIC in a voxel and its quadrature.
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Figure 5.6: Slice of the filtered signal S (left), TIC inside a voxel and its quadrature Q
(right).

5.1.3 The results

Under the approximation that concentration does not change along a flowline, the
signal Ŝ(x, t) should follow the analytic optical flow equation (3.17) met in section
3.2.2:

∂Ŝ(x, t)

∂t
+ v(x, t) · ∇Ŝ(x, t) = 0

where v(x, t) is the instantaneous velocity vector for every couple (x, t) of the

spatial-temporal sequence. Here, ∂Ŝ(x,t)
∂t

is very easy to compute: the semi-analytic
representation of the signal with Fourier series described in section 3.2.1 allows a
straightforward calculation of the time derivative. This is a way to cope with numerical
approximation of finite differences and also long iteration procedures often arising in
Lucas-Kanade algorithm [Lucas and Kanade, 1981]. Such system is well-known to be
solved with the minimization of the LMSE (equation (3.19), section 3.2.2):

E =
∑
x∈W

W (x)(
∂Ŝ(x, t)

∂t
+ v(x, t) · ∇Ŝ(x, t))(

∂Ŝ(x, t)

∂t
+ v(x, t) · ∇Ŝ(x, t))∗

where W is a Gaussian low-pass filter of scale σ in a small window W .
Furthermore, temporal robustness is brought by considering the quadrature signal

Q(x, t) = =(Ŝ(x, t)). This component always prevents the temporal derivatives to
cancel out. Figure 5.6 shows that when the signal derivative gets to 0, the quadrature
derivatives is maximal, and the other way around. As a result, the same thing occurs
for the spatial gradients.

The resolution of the LMSE minimization leads to the linear system (2.11):

Mv = b
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where M = <(
∑
W ( ∂Ŝ

∂xi

∂Ŝ
∂xj

∗
)) is a tensor matrix containing spatial gradients, and

which conditioning has been strongly improved by the quadrature term (diagonal ele-

ments never reach zero) . b = −<(Lσ(∂Ŝ
∂t
∇Ŝ∗)) is the right hand side vector containing

temporal derivatives. The matrix inversion becomes very simple with classic linear sys-
tem resolutions as Gauss-Siedel. This first method was tried on the in-vitro phantom
and yielded very promising results in figure 5.7.

Figure 5.7: Optical flow estimation in a Y-shape phantom. Arrows represent estimated
velocity vectors and jet map is the contrast intensity.

To evaluate the optical flow estimation, the flow calibration was relied upon. The
mean values of velocity magnitude were compared: a mean velocity of 16cm.s−1 was
derived for the calibration, and 14.5cm.s−1 average for the optical flow estimation.
This 10% error is acceptable enough for a first trial and enough to carry on with MPI
in-vitro flow assessment. These early results were presented during the conference
dedicated to MPI [Lacroix et al., 2014].

One could object that the global multigrid techniques developed in chapter 3 (sec-
tion 3.3.1 and 3.3.5) was not used for the in vitro flow experiment. The main reason
for this is the size of the MPI FoV and the acquired phantom lumen (few voxels diam-
eter in figure 5.7). A multigrid technique cannot be suited for such small lumen, and
the aperture problem is less predominant at this scale which is why local techniques
suffice. However, with future MPI data with larger FoV and larger lumen,
the overall optical flow approach presented in chapter 3 would be certainly
useful.

Tentative aneurysm phantom experiment

Some acquisitions were performed on the MPI scanner later during this thesis. A
physical phantom was tailored to look like an aneursym, with a thicker diameter of
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1cm (figure 5.8). The modulated injection protocol was repeated on this phantom
but failed. The scanner was being repaired for months and its calibration was not
properly done. As a result, a periodic signal was gathered by the MPI system, but
the reconstruction yielded a deformed image, where accurate flow estimation was not
achievable (figure 5.9). The system has only recently been repaired, but too late to be
used in this thesis work.

Figure 5.8: Flow acquisition with aneurysm phantom and pulsed contrast injection. The
dynamic data was reconstructed with a 2D system function.

Figure 5.9: Reconstructed data from the aneurysm phantom. The deformed shape makes the
data unexploitable. However, a good temporal modulation is observed in the bright areas.

However, it can be hoped in the future that images with better quality will resolve a
vorticity within the aneurysm-shaped phantom. First phantom acquisitions exhibited
very promising results with MPI, this experimental section can form the basis of many
other MPI flow experiments.
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5.2 In-vivo MPI acquisition

5.2.1 The first in-vivo MPI evaluation

The feasibility of in vivo cardiovascular MPI was demonstrated by the three-dimensional
visualization of a beating mouse heart by Weizenecker et al in 2008 [Weizenecker et al.,
2009]. In this experiment, a small FoV 3D+T MPI scan was performed, and a bolus
of magnetic particles was injected into the tail vein of the living animal. For tracer
concentration in the range between 8 and 45µmol(Fe).l−1, a sufficiently high sensi-
tivity was reached to image clinically approved iron-oxide-based MRI contrast agents
(Resovist, Bayer Schering Pharma) at allowed concentrations (below 40µmol(Fe).l−1).

Before the animal experiments, the system was calibrated by acquiring a system
function (see Appendix B). It was measured on a grid of 34 ∗ 20 ∗ 28 with a voxel size
of (0.6mm)3 using a small reference sample of undiluted (500mmol (Fe).l−1) Resovist
c©. Finally, mice were placed on a cylindrical animal support with an inner diameter

of 29mm so that the heart was within the FoV after insertion into the scanner bore.
The raw data acquired after bolus injection were reconstructed to 1800 volumes.

The diffusion and propagation of the contrast product through the blood stream
is captured as a 3D+T signal by the MPI imaging system. The bloodstream drives
the tracer steadily through the vena cava to the right atrium of the heart. Then the
contrast penetrates the heart chambers gradually, first in the right atrium and right
ventricle, and comes back in the left atrium and right ventricle after a short pass in the
pulmonary vessels. Though the propagation of the bolus is slow (several seconds), the
contrast also undergoes the fast wall motion during the different cardiac phases (240
beats per minutes, i.e 250ms for a cardiac period). Subsequently, a signal is observed
on the vessel and the heart chambers and shows a deep modulation at the cardiac
frequency (see figure 5.11).
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Figure 5.10: MPI sequence with overlay of static MRI image in three orthogonal views
at different times. The frame rate was 21.5 ms per volume and the acquisition lasted 23
min. A ferromagnetic tracer (Resovist) was injected in the tail vein few second after the
acquisition started. The colored triangles indicate the position of the orthogonal slices in the
corresponding frame. The position of MRI slices is depicted by three numbers at the corner
of the frames. The different phases of the bolus passage are represented by the time axis. The
spatio-temporal resolution allowed to resolve heart chambers and great arteries. This image
was reproduced from [Weizenecker et al., 2009] (doi: 10. 1088/ 0031-9155/ 54/ 5/ L01 ) by
permission of IOP Publishing ( c©Institute of Physics and Engineering in Medicine, all rights
reserved).
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Figure 5.11: Time intensity curves of the tracer concentration for different location of the
heart. After the injection, the ferroparticles first arrived in the vena cava, before filling the
right atrium and then right ventricle. A contraction behavior can be noticed, with a phase
opposition between atrium and ventricle. After 1.4 s in the pulmonary circulation, the tracer
comes back in the left atrium and then left ventricle. A phase opposition can be noticed
again between these two chambers, while atria and ventricles are beating in phase. From
the TICs can be derived a heart periodicity of 240 beats per minute. The small crosses on
the curves of the left ventricle illustrate the sampling points. Eventually, the tracer makes
a second and a third pass in the whole circulatory system with delays of approximately 5.1
s, with shallow concentration peaks. This image was reproduced from [Weizenecker et al.,
2009] (doi: 10. 1088/ 0031-9155/ 54/ 5/ L01 ) by permission of IOP Publishing ( c©Institute
of Physics and Engineering in Medicine, all rights reserved).

5.2.2 Harmonic time-processing of cardiac dynamics

In this subsection is described the first contribution and also the starting point of this
thesis which was the analysis of in-vivo data illustrated in the previous sub-section.
From these first results, signal and image processing techniques were employed to re-
construct and interpret the cardiac dynamics, e.g, by calculating streamlines describing
the direction of propagation of the tracer at a given moment. Given the natural peri-
odicity of the contrast density, the idea was to extract from the TICs the narrowband
frequency components around the heart frequency and its harmonics. Let I(x, t) be
the signal intensity, for x covering the whole FoV, and t ∈ {0 1800} covering the whole
time sequence. Then the bandpass filtered signal Ŝ(x, t) can be obtained by convolution
with the wavelet filter (3.7) met in section 3.2.1:

Ŝn(x, t) =
tmax∑
t=0

I(x, τ)wn(t− τ)dτ
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where wn(t) = 1
nσ
√

2π
e
− t2

2(nσ)2 e−2jπn fc
fs
t is a complex Gabor wavelet corresponding to

the nth harmonic component.

Here, fc denotes the cardiac frequency (4Hz), fs the sampling frequency (46.51 Hz)
and σ the wavelet scale. The different Gabor filters are finally summed up to recover
the full filtered signal:

Ŝ(x, t) =
∑
n

Ŝn(x, t) (5.2)

Figure 5.12: Frequency filtering of a TIC in a pixel inside the left ventricle. The original
TIC (to the left) was filtered with wavelets corresponding to the fundamental cardiac frequency
and three harmonic components. The three filtered signals (to the right) corresponds to the
real part (in red), the imaginary part (in green) and the instantaneous modulus (in blue).
The phase of the filtered signal represents the angle between the real and imaginary part.

This time-frequency signal processing suppresses the baseline signal and the high
frequency noise while capturing the spectral components reflecting the cardiac dynam-
ics. Most importantly, it allows to represent the signal at every point x of the FoV by
a time dependent instantaneous phase φ(x, t) = arg(Ŝ(x, t)). Analyzing the evolution
of φ(x, t) over one heart period amounts to observe the time elapsed since the last
intensity maximum occurs at x (actually, elapsed time from the diastole).

One should note that this frequency filtering can be performed as well in Fourier
domain by selecting narrowband components and computing the Hilbert transform
H(F(I)) of the bandpassed spectrum. This returns an analytic signal after inverse
Fourier transform, which is similar to the Gabor filtering:

Ŝn(x, t) = F−1
[
Kfnσ H(F(I))

]
(5.3)

where Kfnσ is a spectral gaussian kernel of scale σ and centered on harmonic com-
ponent fn, and F(I) is the Fourier transform of I. The Hilbert transform H can be
defined as H(F(f)) = F(f)(1− jsign(f)) (see section 3.2.2).
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To avoid the so-called bolus effect (the signal delay caused by the slow contrast
traveling), further techniques have been employed to compress and simplify the TIC
into one cardiac period. Indeed, the signal envelop reaches its peaks at different time in
the left or right ventricle. Because the bolus length is short compared to the circulatory
system, the first pass only allows to image one half-heart at a time. For this problem
to be tackled, the whole time sequence is fused into one cardiac period, which can
be compared to a gating technique. This can easily be done by adding up all the
contributions of the many heart cycles into one fundamental cardiac period:

IT (x, β) =
1

N

N∑
p=0

‖Ŝ‖Ŝ(x, β + p.T ) (5.4)

where IT (x, β) is the synthetic signal of length T , N the number of cardiac cycles
in the TIC, and β the cardiac phase of the reconstructed period (β ∈ {0T}).

Figure 5.13: The filtered signal Ŝ is cut in consecutive intervals of length T , before being
summed phase-wise. Given the periodic behavior of the TICs, the real part (red) and imagi-
nary part (blue) of Ŝ keep the same shape. However, the reconstructed modulus (in green) is
directly computed from IT .

This can be visualized with a surface rendering to bring more intuition to the
contrast behavior. In figure 5.14, we clearly see two iso-surfaces of IT (the real part).

The Fourier compression together with gating strategy deliver a synthetic repre-
sentation of the 3D+T signal over one standard heartbeat, but also allow to segment
atria and ventricles, i.e. areas in phase opposition.
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Figure 5.14: The surface mesh corresponds to an iso-surface of IT (real part), with a color
coding. The red surface is displayed for the iso-surface value v, while the blue iso-surface
corresponds to the negative iso-value −v. The contrast density is maximum in the atrium
(red), while it is minimum in the ventricles (blue). This shows the phase opposition between
atrium and ventricle signal: the ventricles are contracted and devoid of contrast, while the
atria are filled and full of nanoparticles (systolic peak).

5.2.3 Tentative flow estimation inside a mouse heart

The last step consists in extracting the nanoparticle flow and deriving the velocity of
the contrast product. For this purpose, a lot of tools exist in the literature, especially
on the optical flow estimation (see chapter 2). Different features are possible to track
(contrast intensity, real part, imaginary part, phase,..), but the phase φ(x, t) is the
most relevant, since it does not depend on the intensity magnitude and its motion is
explained only by the periodic contrast flow. Again, the PBOF framework (section
3.2.3) was chosen instead of the Multigrid approach (chapter 3). With the small size
of the in vivo data, and the connectivity between heart chambers, the Multigrid
technique would fail to take into account the walls between each heart chambers and
smooth out the overall flow field. In this regard, a preliminary heart chambers
segmentation with larger data would be required for the Multigrid technique
to work properly.

The local PBOF estimation yielded very interesting results [Lacroix et al., 2013],
with meaningful tracer streamlines beneath the heart chambers (figure 5.15).

Though these first results look very promising, it is still impossible to validate ei-
ther flowlines direction and contrast velocity. Up to now, MPI lacks data, and lacks
reproducibility to allow any consistent validation study. Unfortunately, the amount of
exploitable in-vivo evaluation is very poor and the acquisition campaigns are progress-
ing at a very slow rate. Other in vivo acquisitions were carried out with red blood
cells (RBCs) encapsulation [Rahmer et al., 2013], but not any possibility to extract
flow pattern was found. The nanoparticles were already diluted in the blood stream
because of their long stay inside the circulatory system (several days), resulting in no
spatial modulation. Furthermore, the limited FoV makes only possible the acquisition
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Figure 5.15: In this picture is represented a mesh of the mouse heart. As in the figure 5.14,
the red mesh corresponds to a positive iso-value of the real part, and the blue light describe the
negative iso-value. Those meshes roughly represent the heart chambers wall (ventricles for
the red mesh and atria for the light blue mesh). Inside these meshes can be distinguished dark
blue streamlines which correspond to the tangents to the phase gradient ∇φ(x, t). It shows
that during the diastole the contrast fills the ventricles: the nanoparticles flow from the atria
and follow the volume expansion of the ventricles.
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of small anatomies such as mice heart, which hardly exceed the system resolution. As
a consequence, partial volume effects and blurring hamper the analysis of current MPI
data.

After further improvements of MPI hardware, experiment will be conducted on
larger animals (rat, rabbits), and finally human beings. By this time, the aforemen-
tioned tools of temporal filtering and streamlines extraction might become useful to
reconstruct and analyze the cardiac dynamic in clinical MPI.

*
* *

MPI is a promising tracer imaging modality combining fast 3D acquisition with
fine resolution. Theoretically, it solves several issues met in angiography routines: the
accessibility in Doppler US, the acquisition time in flow MRI, and the toxicity in DSA.
However, its slow developing hardware is currently an obstacle to the realization of
dedicated image processing tools, such as blood flow analysis algorithms. In order
to investigate deeper MPI capabilities in the future, data with larger FoV and finer
resolution will be desirable. Nonetheless, early experiments on in-vitro and in-vivo
data brought a short overview of the potential of MPI flow data, and associated image
processing tools. The modulation of contrast density in a silicon phantom proved to
be a successful technique in view of a blood flow estimation. The implementation
of the time signal processing described in section 3.2 with PBOF yielded a reasonable
estimate of the average flow rate. The same technique applied on in-vivo data produced
meaningful phase gradient streamlines, with the possibility to compress the sequence
over one cardiac cycle and filter out the bolus effect. Further acquisition and flow
experiment are needed to confirm the relevance and the efficiency of flow estimation
tools developed during this thesis.
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Conclusion

This thesis was dedicated to the blood flow estimation in 3D+T contrast sequences, as
acquired by 3DRA and MPI systems. A mathematical framework for the estimation
of blood flow was presented, and evaluated on in silico, in vitro and in vivo data.
This conclusion summarizes the technical and clinical contributions of this thesis, and
discusses potential future work.

Summary of the contributions

The technical contributions presented throughout this thesis can be enumerated as
follows:

• Using the spatiotemporal modulation of the CA in the arterial blood flow to
estimate the velocity field of the blood as well as the blood flow rate. This idea
was already approached in few works addressing DSA image analysis, but was
extended and generalized to future 3D contrast flow modalities (3DRA, MPI).
Chapter 1 formulates the physical and mathematical background for contrast
flow acquisition, while the theory of optical flow and related articles is presented
in chapter 2.

• Developing a new variational framework for the estimation of blood flow in 3D
contrast flow modalities. Based on the prior art of DSA techniques (see [Efron
et al., 1978, Amimi, 1994, Imbert et al., 1997, Huang et al., 1997, Bonnefous
et al., 2012]) and fluid flow estimation (see [Corpetti et al., 2000,Corpetti et al.,
2002a,Corpetti et al., 2002b,Papadakis et al., 2007]), physical constraints are
brought up to the optical flow estimator, imposing the strong pulsatility
of the CA, and the compliance of the flow field with fluid mechanics. The main
contribution, developed in chapter 3, lies in the use of the conjugate gradient
algorithm [Straeter, 1971,Hestenes and Stiefel, 1952] on the multigrid tech-
nique [Briggs et al., 2000] to estimate a 3D blood flow field. In addition,
new features such as jet and wall flow fidelity are integrated to the optical flow
framework to further constrain the flow field.

• Evaluating the optical flow algorithm developed in chapter 3 with virtual an-
giography on several CFD models. Accurate flow rate estimation is achieved
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at the injection point of the arterial model. The optical flow algorithm proves
to be stable to different model geometry and flow rates. This contribution can
be found in chapter 4.

• Demonstrating the feasibility of flow estimation on in vitro 3D+T MPI
data. Given the very small size and FoV of the current MPI settings, only the
pulsatility constraint was imposed to the optical flow estimator. Larger MPI data
with bigger vessel lumen will hopefully benefit the optical flow approach devel-
oped in chapter 3. This contribution was presented in chapter 5 and presented
to the MPI conference [Lacroix et al., 2014].

• Achieving blood flow patterns in 3D+T in vivo MPI data. The PBOF
framework using only the pulsatility constraint provides meaningful results inside
the heart chamber of the mouse data. Though MPI ground truths are still a
missing element of flow estimation assessment, this promising contribution paves
the way to the first preclinical or clinical real time blood flow estimation
methods. This work as detailed in chapter 5 was also published in the IWMPI
conference proceedings [Lacroix et al., 2013].

On the clinical side, this thesis offers the potential to acquire, estimate, and evaluate
3D blood flow patterns. A clinical routine aiming at performing a blood flow estimation
should follow the steps hereafter:

• A blood flow acquisition procedure that uses a contrast agent in the arterial
bloodstream, and takes benefit from the sharp blood pulsatility to obtain a spatio-
temporal modulation. This acquisition procedure suits real-time tracer modalities
such as MPI, DSA and 3DRA.

• An optical flow algorithm tracks the propagation of the contrast agent to assess
3D blood flow patterns and/or blood flow rate.

• A simulation tool such as a CFD software mimics the flow experiment with
appropriate boundary conditions (vessel boundaries, flow rate, time intensity
curves at the inlet, and other features extracted by previous acquisition tools)
and finally evaluates the reliability of the optical flow estimation.

Given the small amount of data available, this thesis lacks clinical validation. How-
ever, it provides valuable guidelines for the future MPI or 3DRA systems
aiming at acquiring 3D flow data.

Future work

Many improvements can be brought to this thesis. This research work in 3D blood
flow estimation has to be upgraded, since none (to our knowledge) has addressed
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this problem before. The most important questions to be answered in the future are
described below.

• Can we optimize the optical flow parameters?

As was pointed out in section 4.3.1, a large number of parameters intervene in the
optical flow algorithm. Since only a year was dedicated in developing and testing
the optical flow method, not all the possible combinations were evaluated. As a
result, a thorougher investigation of parameter sensitivity should be carried out.
Even if the wall fidelity, jet fidelity and smoothness factor were found the most
sensitive, the frequency filter also proved to have an important effect on the op-
tical flow results. Indeed, the low frequency and high frequency variations of the
contrast density carry different information on the spatial gradients. Therefore,
choosing to cut off certain frequencies will enable or disable some of the gradient
patterns of the contrast product. Finally, the influence of parameters should be
demonstrated on other patient geometries in order to assess the reproducibility
of optical flow results with respect to the parameters.

• Can we benefit from a temporal regularization of the flow field behav-
ior?

The property of contrast pulsatility has been used for the PBOF frawework, but
pulsatility is also a strong property of the blood flow. In the CFD simulations in
particular, the blood flow patterns were set as periodic, an important property
that can be enforced in the optical flow framework. Hence, a temporal regular-
ization, implying temporal smoothness, or temporal periodicity is to be thought
in future developments of the optical flow algorithm. This approach was tried es-
pecially in gated cardiac sequences with the assumption of motion periodicity [Li
and Yang, 2010].

• Can we bring more physics into the bloodflow estimation?

Undoubtedly, the physical constraints developed in chapter 3 were of great help
in reducing the undesirable effects of phase gradients in the boundary layer.
However, they were not sufficient to ensure the incompressibility of the blood flow
field. A more radical way to deal with the fluid mechanics unfaithfulness is to use
directly the Navier-Stokes equation in the flow estimation. This can be done in an
iterative manner by coupling Navier-Stokes equation and the continuity equation
(1.4) and is widely used in CFD solvers. As an example the SIMPLE algorithm
[Caretto et al., 1973] use this algorithmic scheme to ensure the Navier-Stokes
equation compliance and a divergence free fluid motion. The next challenge would
be to integrate this CFD derived idea with the optical flow framework, while
staying real-time compatible as much as possibly can. Hence, a best compromise
between the image forces (optical flow or advection equation) and the physical
forces (incompressibility and momentum conservation) should be sought.
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• Can we complement CFD with other simulation tools?

CFD is a very valuable tool for the simulation of arterial flow. Unfortunately, it
does not take into account the acquisition procedure and the imperfections of the
imaging systems that sometimes bring artifacts and blurring to the acquired data.
This is the case especially in MPI, where blurring occurs because of the limited
PSF, or because of other acquisition artifacts (see appendix B). MPI simulators
already exist in MPI research facilities and could be greatly beneficial to virtual
angiography. Introducing the MPI acquisition process and its imperfections to the
tracer concentration map in the CFD could mainly improve the data reliability
and further challenge the optical flow method with clinically compatible data.

• Can we accurately measure the Wall Shear Stress?

In chapter 1, the clinical importance of Wall Shear Stress was mentioned as a
strong indicator of the generation, evolution and rupture of arterial plaques and
aneurysms. In chapter 3, a method for the Wall Shear Stress estimation was
proposed, based on its strong relation with the velocity component normal to the
wall. Early estimations were carried out during this thesis but did not provide
accurate results compared to the CFD ground truth. As we explained in chapter
4, the resolution of the cartesian mesh might not be sufficient to achieve precise
evaluation of the spatial gradient nearby the wall. Since Wall Shear Stress is, by
essence, strongly sensitive to the spatial resolution, the cartesian grid might not
be the best suited. Instead, the original tetrahedral mesh, with a reformulation
of the Wall Shear Stress estimator (section 3.5) should be tested. Finally, one can
also choose to investigate new flow field features, such as vorticity, turbulence,
and jet, among others.

The MPI and 3DRA flow systems still have a long road before becoming clinically
relevant. In the meantime, many flow estimation tools can be developed or engineered
based on CFD simulation. It can be hoped that this thesis will be a starting point,
and will provide a possible basis for the future researchers wishing to develop 3D blood
flow estimation tools.
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AppendixA

This appendix details several calculus evoked throughout this thesis.

Underdetermination of the complex optical flow system

Recall the the complex optical flow equation (3.18) met in section 3.2.2:{
∇S(x, t) · v + ∂S(x,t)

∂t
= 0

∇Q(x, t) · v + ∂Q(x,t)
∂t

= 0

We can rewrite the complex quantities according to S = real(Ŝ) = M cos(φ) and
Q = imag(Ŝ) = M sin(φ). We can approximate the modulus M of the complex signal
Ŝ as constant (or we use the normalized version Ŝn). Using the previous system in a
matrix form, we get:

M

(
−φx sin(φ) −φy sin(φ) −φz sin(φ)
φx cos(φ) φy cos(φ) φz cos(φ)

)vxvy
vz

 = −Mφt

(
− sin(φ)
cos(φ)

)

which can be rewritten with a rotation matrix:

(
− sin(φ) − cos(φ)
cos(φ) − sin(φ)

)(
φx φy φz
0 0 0

)vxvy
vz

 = −φt
(
− sin(φ) − cos(φ)
cos(φ) − sin(φ)

)(
1
0

)

Which turns to the simple Phase Based Optical Flow constraint:

∇φ · v = −∂φ
∂t

Here we notice that the previous complex optical flow system is actually one equa-
tion rewritten as a system and pre-multiplied by rotation matrix R(φ + π

2
) with

R =

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
. Therefore, we prove that complex optical flow system

is underdetermined.
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Equivalence between PBOF and normalized optical flow equation

The energy of complex optical flow (section 3.2.2) is:

Ev(x) = (∇Ŝn(x, t) · v +
∂Ŝn(x, t)

∂t
)(∇Ŝn(x, t) · v +

∂Ŝn(x, t)

∂t
)∗

With Ŝn = cos(φ) + j sin(φ), it comes:

Ev(x) = vT∇(cos(φ) + j sin(φ))∇(cos(φ)− j sin(φ))Tv+

∂(cos(φ) + j sin(φ))

∂t
∇(cos(φ)− j sin(φ)) +

∂(cos(φ)− j sin(φ))

∂t
∇(cos(φ) + j sin(φ))+

∂(cos(φ) + j sin(φ))

∂t

∂(cos(φ)− j sin(φ))

∂t

That is:

Ev(x) = (− sin(φ) + j cos(φ))(vT∇φT∇φv + 2∇φ∂φ
∂t

+
∂φ

∂t

2

)(− sin(φ)− j cos(φ))

= vT∇φT∇φv + 2
∂φ

∂t
∇φ+

∂φ

∂t

2

= (vT · ∇φ+
∂φ

∂t
)2

Here we see that the normalized complex optical flow equation is equivalent to the
PBOF and can be implemented in the same way.

Gradient equation for the energy minimization

Recall the global flow field energy (3.35) described in section 3.3.1:

E(v(x, t)) =

�
Ω

[
(∇φ · v +

∂φ

∂t
)2 + µ‖∇v‖2

F + λ(∇ · v)2 + νB(nT · v)2

]
dΩ

The first and last term can be easily derived with respect to v as a quadratic
function of v itself:

∂((∇φ · v + ∂φ
∂t

)2 + νB(nT · v)2)

∂v
= 2(M + νBnnT )v − 2b

with M , B and b defined in the corresponding section.
Concerning the differential term, however, the derivation is not straightforward.

Let us develop the gradient equation for each term, respectively µ‖∇v‖2 and λ(∇·v)2.

• Dirichlet energy variations: J(v) =
�

Ω

∑3
i=1

∑3
j=1( ∂vi

∂xj
)2
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Let v→ v + u be a small variation of flow field v with u small. The corresponding
Dirichlet energy reads:

J(v + u) =

�
Ω

‖∇(v + u)‖2 =

�
Ω

3∑
i=1

3∑
j=1

(
∂vi
∂xj

)2 + 2
∂vi
∂xj

∂ui
∂xj

+ (
∂ui
∂xj

)2

Note that ∂vi
∂xj

∂ui
∂xj

= ∂
∂xj

(vi
∂ui
∂xj

)− vi ∂
2ui
∂x2
j

, integrating by parts and imposing u = 0 on

the domain edges ∂Ω. We get then:

J(v + u) =

�
Ω

‖∇v‖2 − 2u ·∆v + ‖∇u‖2

First variation of J is defined by the Gâteaux derivative in the direction of u:

δJ(v,u) = limτ→0
J(v + τu)− J(v)

τ
= −2

�
Ω

u ·∆v

Hence, the Euler-Lagrange gradient equation can be obtained when J is an ex-
tremum for the vector field v and for any u:

∂J

∂u
= −2

�
Ω

∆v

• Divergence square energy: J(v) =
�

Ω
(∇ · v)2

Let v→ v + u be a small variation of flow field v with u small. The corresponding
divergence energy reads:

J(v + u) =

�
Ω

(∇ · v)2 + 2(∇ · v)(∇ · u) + (∇ · u)2 (5)

Note that (∇ · v) ∂ui
∂xj

= ∂(∇·v)ui
∂xi

− vi ∂(∇·v)
∂xi

, integrating by parts and imposing u = 0

on the domain edges ∂Ω. We get then:

J(v + u) =

�
Ω

(∇ · v)2 − 2u · ∇(∇ · v) + (∇ · u)2

First variation of J is defined by the Gâteaux derivative in the direction of u:

δJ(v,u) = limτ→0
J(v + τu)− J(v)

τ
= −2

�
Ω

u · ∇(∇ · v)

Hence, the Euler-Lagrange gradient equation can be obtained when J is an ex-
tremum for the vector field v and for any u:

∂J

∂u
= −2

�
Ω

∇(∇ · v)
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As a consequence, the overall gradient equation developed in chapter 3 reads:

�
Ω

[
(M + νnnT )v − µ∆v − λ∇(∇ · v)

]
dΩ =

�
Ω

bdΩ (6)

156



AppendixB

This Appendix presents further details about MPI acquisition, MPI encoding, but also
the MPI scanner set up.

General MPI background

MPI is a novel imaging modality that uses the non-linear magnetization of SPIO in-
jected into the body. The physics differs substantially from MRI, but it employs
hardware and imaging concepts that are familiar to MRI researchers: magnetic excita-
tion and detection, pulse sequences, relaxation effects and reciprocity principle [Saritas
et al., 2013]. One compelling reason for MRI specialists to delve into Magnetic Particle
Imaging is the enormous boost of magnetization. The nuclear paramagnetic suscepti-
bility of water in MRI is only 3.8 parts-per-billon at 37 ◦C [John, 1996], which translates
to a weak NMR magnetization (µ0M0 = 27nT at 7T). The magnetization detected by
MPI at 7T -which is electronic superparamagnetism- can reach about 600mT in in-
tensity [R., 1985], that is 22 millions time stronger than MRI. This enormous boost
in magnetization enables MPI to compete with MRI angiograms, even when using
kidney-safe tracers at extremely low concentration, with an excellent contrast-to-noise
ratio.

MPI acquisition

In MPI, the method of acquisition is rather different from MRI. A sensitive point is
rapidly rastered across the sample to produce a tomographic image. To produce the
sensitive point, called Field Free Point (FFP), MPI takes advantage of the nonlinear
magnetization response of SPIOs to applied magnetic field. As shown in figure 16, the
magnetization of SPIOs is nonlinear with the applied field and converges to saturation
above a certain threshold. Hence, in the presence of a strong magnetic field gradient,
the SPIOs are considered to be saturated at every point except for at the FFP, where the
magnetic field nullifies geometrically. When we apply a time-varying excitation field,
the FFP is shifted rapidly across the Field-of-View (FoV). The SPIOs lying within
the FFP respond to this rapid change in magnetic field by flipping their magnetization
180◦, whereas particles elsewhere remain saturated. Since the receiver coil detects time-
varying magnetization, only the SPIOs at the FFP produce an induced MPI signal.
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Figure 16: A. SPIO magnetization characterized by a Langevin function, is non linear with
applied magnetic field with a saturation behavior. This non linear magnetization response
determines the PSF in MPI. For a 6T/m gradient field, the Full Width at Half Maximum
(FWHM) corresponds to 1 mm resolution. B. Two permanents magnets create a strong
magnetic gradient field and a sensitive point, the FFP. Only the SPIOs in the instantaneous
location of the FFP create a MPI signal. C. To cover the imaging field of view, the FFP
is moved rapidly in a trajectory across the imaged volume. The MPI signal is grided to the
instantaneous position of the FFP to form a native MPI image. Reprinted from [Saritas
et al., 2013], with permission from Elsevier (doi: 10. 1016/ j. jmr. 2012. 11. 029 ).

X-space encoding

2D (or 3D) image encoding can be achieved with a very fast acquisition rate. By
sweeping the FFP over the FoV in a 2D or 3D dense Lissajous trajectory, one can
relate the time intensity curve of the induced signal to the position where a particle
was magnetized. This is the basic principle of x-space encoding [Goodwill and Conolly,
2011,W and M, 2010,Lu et al., 2013], illustrated in figure 17.

Figure 17: FFP (yellow circle) following a 2D Lissajous trajectory, enables a fast encoding
of the nanoparticle concentration (a single particle represented here by a green star) inside
the FoV. The intensity of the induced voltage is directly proportional to the nanoparticle
concentration at the corresponding FFP position. Outside a range delimited by the PSF, the
induced signals of the other particles are negligible.

The induced signal is gathered inside two or three pairs of receive coils, before
being filtered and converted numerically. Just as MRI, one of the foremost issue is
the suppression of the direct feedthrough produced by the magnetic excitation. The
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particles get magnetized periodically by the FFP, but their signal is embedded in
the powerful excitation induced signal. Fortunately, SPIOs do not only generate a
voltage in the narrowband fundamental excitation frequency. Thanks to their non
linear behavior described in figure 18, the inducted magnetization curve holds harmonic
components. After performing a Fourier transform on the temporal signal, one can
distinguish clearly the presence of several peaks in the spectral Fourier density. Those
harmonics are the fingerprints of SPIOs in MPI acquisition.

Figure 18: The nanoparticles subject to a magnetic field respond non linearly to a periodic
excitation HD(t). The Langevin function M(HD) describes how the particle magnetization
gets saturated when the excitation field amplitude increases. When it is sufficiently high, the
magnetization stands out of its linear range, and starts to generate harmonic components to
the fundamental excitation frequency. This can be visualized in the time-magnetization curve
M(t) where the shape of the signal drifts from a perfect sine. The induced signal s(t), which
is the magnetization time-derivative holds harmonic components that can be revealed when
looking at its Fourier Transform Sn.

Spectral encoding

The spectrum of the time-induction MPI signal can be exploited for another impor-
tant class of MPI image reconstruction method called spectro-spatial reconstruction or
system matrix reconstruction. In this framework, the Fourier transform Sn can map
a concentration vector image, by using a linear relationship between every frequency
component of the spectral domain, and every pixel of the image domain [Lampe et al.,
2012]. In practice, a tedious calibration step is performed by measuring the spectral
answer of a tracer sample in each single voxel position. A robot moves the sample
gradually in a 3D grid covering the whole FoV. This is a very long process (several
hours), but eventually yields a permanent setting of the MPI reconstruction scheme.
This produces a so-called system matrix, or system function Sf that maps the MPI
frequency vector Sn to the concentration vector C:
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SfC = Sn (7)

The huge size of the system matrix makes the problem not so easy to solve. For
the system to be inverted, a regularized LMSE is minimized:

C∗ = ‖Sn − SfC‖2 + ‖C‖2 (8)

During this thesis, images were only reconstructed with system matrices. This
reconstruction approach is not the fastest (especially for the calibration part), but up
to now, the results in term of image quality (SNR) and resolution outperform the other
reconstruction methods (especially x-space imaging).

MPI scanner

The figure 19 schematically shows the basic setup of the 3D scanner. The scanner
has an effective bore size of 32 mm. A pair of permanent magnets and a pair of coils
produce the selection field gradient. The permanent magnets contribute 3Tµ−1

0 m−1

and the coils 2.5Tµ−1
0 m−1 to the magnetic field gradient, respectively. The scanner

uses three sets of drive field coils to enable 3D imaging. The drive field HD with an
amplitude of 18mTµ−1

0 in the vertical direction is produced by the selection field coils.
The drive fields in the two orthogonal directions are produced by dedicated coils which
are driven at the same amplitude. Three drive field frequencies are chosen to move the
FFP along a 3D Lissajous trajectory. The frequencies for the three directions are 25.25
kHz, 26.04 kHz and 24.51 Hz, respectively. The Lissajous trajectory has a repetition
time of 21.5 ms, corresponding to encoding 46.42 volumes per second, and covers a
volume of about 20.4 ∗ 12 ∗ 16.8mm3. Two saddle-type receive coil pairs are aligned
approximately perpendicular to the bore. In the axial direction, the solenoid drive
field coil is also used for receiving the signal. The voxel size is independent from the
true resolution, which is determined by the particle properties, selection field gradient
strength and the level of regularization used in image reconstruction. Furthermore,
the image resolution and SNR is not completely homogeneous over the entire FoV,
because the FFP speed is lower at the edges of the FoV, thereby stimulating only a
weaker particle response and leading to a signal fade-out at the rim.
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Figure 19: Schematic scanner setup. For the in vivo experiment, the mouse was inserted
into the x drive/receive coil cylinder using an animal support. The bore diameter is 32 mm.
The selection field is generated by both the permanent magnets and the coil pair in the z
direction. The drive field coils can move the FFP in all three spatial directions. For signal
reception, each spatial component of the magnetization is detected by a respective receive coil.
In the x direction, the drive field coil is also used for signal reception.
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optical flow. In Pattern Recognition, 2000. Proceedings. 15th International Confer-
ence on, volume 3, pages 1033–1036. IEEE.

[Corpetti et al., 2002a] Corpetti, T., Mémin, É., and Pérez, P. (2002a). Dense estima-
tion of fluid flows. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 24(3):365–380.

[Corpetti et al., 2002b] Corpetti, T., Mémin, É., and Pérez, P. (2002b). Dense mo-
tion analysis in fluid imagery. In Computer Vision—ECCV 2002, pages 676–691.
Springer.

[Dolan et al., 2012] Dolan, J. M., Kolega, J., and Meng, H. (2012). High Wall Shear
Stress and Spatial Gradients in Vascular Pathology: A Review. Annals of Biomedical
Engineering.

166



Bibliography

[Dolan et al., 2011] Dolan, J. M., Meng, H., Singh, S., Paluch, R., and Kolega,
J. (2011). High fluid shear stress and spatial shear stress gradients affect en-
dothelial proliferation, survival, and alignment. Annals of Biomedical Engineering,
39(6):1620–31.

[Doriot et al., 1997] Doriot, P.-A., Dorsaz, P.-A., Dorsaz, L., and Rutishauser, W.
(1997). Is the indicator dilution theory really the adequate base of many blood flow
measurement techniques? Medical physics, 24(12):1889–1898.

[Dorsaz et al., 1997] Dorsaz, P.-A., Doriot, P.-A., Dorsaz, L., Chatelain, P., and
Rutishauser, W. (1997). A new densitometric approach to the assessment of mean
coronary flow. Investigative radiology, 32(4):198–204.

[Doshi and Bors, ] Doshi, A. and Bors, A. G. Navier-stokes formulation for modelling
turbulent optical flow.

[Doshi and Bors, 2010] Doshi, A. and Bors, A. G. (2010). Robust processing of optical
flow of fluids. IEEE Transactions on Image Processing, 19(9):2332–2344.

[Dreschler and Nagel, 1982] Dreschler, L. and Nagel, H.-H. (1982). Volumetric model
and 3d trajectory of a moving car derived from monocular tv frame sequences of a
street scene. Computer Graphics and Image Processing, 20(3):199–228.

[Dumoulin, 1995] Dumoulin, C. L. (1995). Phase contrast MR angiography techniques.
Magnetic resonance imaging clinics of North America, 3(3):399–411.

[Duschka et al., 2013] Duschka, R. L., Haegele, J., Panagiotopoulos, N., Wojtczyk,
H., Barkhausen, J., Vogt, F. M., Buzug, T. M., and Lüdtke-Buzug, K. (2013).
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