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Introduction

Context

Providing decisional autonomy to a robot requires among other things to compute a func-
tion which returns the symbols of the actions to be triggered at a given moment, consid-

ering the data from its sensors. The features of interest of the robot and its surroundings form
a system. In general, for a given sequence of actions performed by the robot, the evolution of
this system is not fixed for sure, but its behavior may be known by performing tests on the
robot or using information from expert knowledge. As well, the raw or processed data from
the robot sensors are not generally a deterministic outcome of the state of the system or of the
taken actions: nevertheless, these data, called also observations of the system, depend on the
robot’s actions and system states. Relations between observations, system states and actions
may be known through tests of the sensors in various situations, or by taking into account the
description of the sensors, data processing, or any related expert information. For instance, in
the case of a robot using Computer Vision (CV), the output of the image processing algorithm
employed is considered as an observation of the system since it is the result of processed sen-
sor data and the input of the decision model: here data are images from camera. For a given
camera, and a given vision algorithm, the behavior of the observation is related to the action
and to the system state during the process of taking images.

Thus, in order to make a robot autonomously fulfill a chosen mission, we are looking for a
function returning actions conditioned on the sequence of system observations, and taking into
account uncertainty about the system evolution and its observation. Such functions may be
called strategies. The research domain associated to this kind of problem, i.e. strategy compu-
tation, is not restricted to robotics and is called sequential decision making under uncertainty:
in the general case, the entity which has to act is called the agent. In this thesis, although
provided results are mostly theoretical and general enough to tackle much more various appli-
cations, the problem of strategy computation is studied in the context of autonomous robotics,
and the agent is the decisional part of the robot. Computing a strategy for a given robotic
mission needs a proper framework: the best known model describes the state and observation
behaviors using Probability Theory.

A probabilistic model for strategy computation

Markov Decision Processes (MDPs) define a useful formalism to express sequential decision
problems under probabilistic uncertainty [9]. It is a framework well suited to compute strategies
if the actual system state is known by the agent at each point in time. In the robotic context,
this assumption means that the considered mission allows us to assume that the robot has full
knowledge of the features of interest via its sensors. In this model, a system state is denoted
by the letter s, and the finite set of all the possible states is S. The finite set A consists of all
possible actions a ∈ A available to the agent. The time is discretized into integers t ∈ N which
represent time steps of the action sequence.

The state dynamics is assumed to be Markovian: at each time step t, the next system
state st+1 ∈ S, only depends on the current one st ∈ S and the chosen action at ∈ A. This

7
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/ /

s ∈ S: system state

o ∈ O: system observation

a ∈ A: agent’s action

b ∈ PS : belief state
?

Figure 1 – Use of a POMDP for the firefighter robot mission modeling: in this toy example, the mission
of the robot is fire prevention. The states of the system s ∈ S encode for instance the robot location,
the water jet orientation, the amount of water used, the fire location and its level on a scale between
“minor fire” and “severe fire”, etc. Using vision and heat sensors, the robot gets observations o ∈ O
which are the raw or processed values from the sensors: the output of a classifier whose input is a
image of the scene (see Figure 3 and 5), and which returns the fire level or location may be encoded
in an observation. Finally, the actions of the robot a ∈ A are for instance the rotor activations
impacting the rotation of the robot’s wheels, the water pumping, the orientation of the water jet or
sensors etc. The reward function r(s, a) decreases with the fire level state, and is decreased by a
cost proportional to the amount of water used: as an optimal strategy maximizes the mean of the sum
of the rewards, the goal of the robot is thus to attack fires without wasting water. This mean can be
computed knowing the probabilities describing the uncertain dynamic of the system. The robot actions
a ∈ A have a probabilistic effect on the system, as described by the transition function p (s′ | s, a ):
for instance, the activation of wheel rotors modifies the location of the robot, and the probability of each
possible next locations, given the current system state, takes part in the definition of the POMDP. An
other example is the action modifying the water jet orientation, which redefines the probability of the
next fire level given the current system state. The robot actions a ∈ A and next states s′ ∈ S may
also impact the observations from the sensors, as defined by the observation function p (o′ | s′, a ):
for instance, the orientation of the vision sensor may modify the probability of fire detection or fire
level evaluation, which are parts of the observations o′ ∈ O. Finally, the belief state is the conditional
probability distribution of the current system state conditioned on all observations and actions up to the
current time step: as observations and actions are the only data available to the robot, the belief state
can be seen as the robot’s guess.

relation is described by a transition function p (st+1 | st, at ) which is defined as the probability
distribution on the next system states st+1 conditioned on each action: if the action at ∈ A
is selected by the agent, and the current system state is st ∈ S, the next state st+1 ∈ S is
reached with probability p (st+1 | st, at ).

The mission of the agent is described in terms of rewards: a reward function r : (s, a) 7→
r(s, a) ∈ R is defined for each action a ∈ A and system state s ∈ S, and models the goal of the
agent. Each reward value r(s, a) ∈ R is a local incentive for the agent. The more rewards are
gathered during one execution of the process, the better: a realization of a sequence of system
states and actions is considered as well fulfilling the desired mission if encountered rewards
r(st, at) are high. Solving an infinite horizon MDP consists in computing an optimal strategy,
i.e. a function prescribing actions a ∈ A to be taken over time, and maximizing the mean
of the sum of rewards gathered during one execution: this mean is computed with respect to
the probabilistic behavior of the system state encoded by transition functions p (st+1 | st, at ).
For instance, a preferred strategy may be a function d defined on S, as the current state is
available to the agent, and with values in A.

Such markovian strategies are proven to be optimal for some criteria like the one based
on accumulated discounted rewards: indeed, a well-known criterion measuring the accuracy of
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strategy d is the (infinite horizon) expected discounted total reward:

E
[+∞∑
t=0

γtr(st, dt)
]
, (1)

where dt = d(st) ∈ A and 0 < γ < 1 is a discount factor ensuring the convergence of the sum.
The assumption that the agent has a perfect knowledge of the system state is quite strong:

in particular, in the case of robots realizing tasks with conventional sensors, the latter are
usually unable to provide to the robot all the features of interest for the mission. Thus, a more
flexible model has been built, taking into account partial observability of the system state by
the agent.

Indeed a Partially Observable MDP (POMDP) [135] makes a step further into modeling
flexibility, handling situations in which the agent does not know directly the current state
of the system: it more finely models an agent acting under uncertainty in a partially hidden
environment.

The set of system states S, the set of actions A, the transition function p (st+1 | st, at )
and the reward function r(s, a) remain the same as for the MDP definition. In this model,
since the current system state s ∈ S cannot be used as available information for the agent, the
agent knowledge about the actual system state comes from observations o ∈ O, where O is a
finite set. The observation function p (ot+1 | st+1, at ) gives for each action at ∈ A and reached
system state st+1 ∈ S, the probability over possible observations ot+1 ∈ O. Finally, the initial
belief state b0(s) defines the prior probability distribution over the system state space S. An
example of usage of a POMDP is presented in Figure 1.

Solving a POMDP consists in computing a strategy which returns a proper action at each
process step, according to all received observations and selected actions i.e. all of the data
available to the agent: a criterion for the strategy may be also the expected discounted sum
of rewards (I.2).

Most POMDP algorithms reason about the belief state, defined as the probability of the
actual system state knowing all the system observations and agent actions from the beginning.
This belief is updated at each time step using the Bayes rule and the new observation. At a
given time step t ∈ N, the belief state bt(s) is defined as the probability that the tth state is
s ∈ S conditioned on all past actions and observations, and with prior b0: it estimates the
actual system state using the available data, as the latter is not directly observable.

It can be easily recursively computed using Bayes rule: at time step t, if the belief state is
bt, chosen action at ∈ A and new observation ot+1 ∈ O, next belief is

bt+1(s′) ∝ p
(
ot+1 | s′, at

)
·
∑
s∈S

p
(
s′
∣∣ s, at ) · bt(s). (2)

as illustrated by the Bayesian Network in Figure 2.
As successive beliefs are computed with the observations perceived by the agent, they

are considered as visible by the agent. Let us denote by PS the infinite set of probability
distributions over S. An optimal strategy can be looked for as a function d defined on PS such
that successive dt = d(bt) ∈ A maximize the expected reward (I.2): the agent decisions are
then based on the belief state.

The POMDP framework is a flexible model for autonomous robotics, as illustrated by the
firefighter example, see Figure 1: it allows to describe all the robotic and surrounding system,
as well as the robot’s mission, and it is commonly used in robotics [109, 100, 93, 32, 33]. It
takes into account that the robot receives data from its sensors only, and thus has to figure out
the actual system state using these data, named observations, in order to fulfill the mission.
However the POMDP model raises some issues, in particular in the robotic context.
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St St+1

Ot+1at

bt bt+1

p (st+1 | st, at )

p (ot+1 | st+1, at )

Figure 2 – Bayesian Network illustrating the belief update: the states are the gray circular nodes, the
action is the red square node, and the observation is the blue circular node. The random variable St+1
representing the next state st+1 depends on the current one st and on the current action at. The random
variable Ot+1 representing the next observation ot+1 depends on the next state st+1 and on the current
action at too. The belief state bt (resp. bt+1) is the probabilistic estimation of the current (resp. next)
system state st (resp. st+1).
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Figure 3 – Example of an observation method in a robotic context: the robot, here a drone, is equipped
with a camera and uses a classifier computed from a image dataset (as NORB, see Figure 4): such
a classifier is described in Figure 5. The classifier is generated before the mission (off-line) with a
image dataset (see the right part of the illustration), and the classifier output is used during the mission
(online) as an observation, for the agent (see the left part). Here, observations are thus generated by
computer vision means.

Practical issues of the POMDP framework

Complexity

Solving a POMDP i.e. computing an optimal strategy, is PSPACE-hard in finite horizon [103]
and even undecidable in infinite horizon [92]. Moreover a space exponential in the problem
description may be required for an explicit specification of such a strategy. See [95] for a more
detailed complexity analysis of POMDPs.

This high complexity is well-known by POMDP practitioners: optimality can only be
reached for tiny problems, or highly structured ones. Classical approaches try to solve this
problem using Dynamic Programming and linear programming techniques [27]. Otherwise,
only approximate solutions can be computed, and thus the strategy has no optimality guar-
anty. For instance, popular approaches such as point-based methods [108, 84, 136], grid-based
ones [70, 25, 13] or Monte Carlo approaches [132], use approximate computations.

The Predictive State Representation approach [89], reasons directly at the level of the
sequences of observations and actions, without referring to the belief states. It may be an
interesting approach to simplify computations [77], but only few works address this problem.
This approach is more motivated by research in learning [134, 18]. Moreover, it does not
tackle the next POMDP’s practical issues that will be highlighted, concerning modeling flaws
appearing when using this framework: these issues are easily illustrated via robotic situations.

Parameter imprecision and computer vision

Consider now robots using visual perception, and whose observations come from computer
vision algorithms based on statistical learning (see, for instance, Figure 3). In this situation,
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NORB dataset: (imagei, labeli)Ni=1

human

airplane

car

car

truck

human

truck

animal

nothing

car

nothing

human

nothing

animal

truck

animal

Figure 4 – Example of image dataset for computer vision: the labeled image dataset NORB [87]. The
size of NORB is higher than 3.105, and images from this dataset represents objects among the 5 classes:
“animal”, “car”, “human”, “nothing”, “plane” and “truck”. Each element of a labeled image dataset is
composed of a image (e.g. a image showing a car) and a label corresponding to the class of the object
represented by the image (in the previous example, the label is “car”). This dataset can be used for
supervised learning to compute a classifier (see Figure 5). In order to be able to discern locations of
targets, a image is labeled with the name of centered object (“nothing” if there is nothing in the image
center).

the robot uses a classifier to recognize objects in images: the classifier is supposed to return
the name of the object actually in the image, and makes some mistakes with a low probability
(see confusion matrix of Figure 6).

The classifier is computed using a training dataset of images (as NORB, see Figure 4,
authors made it available at http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/). A pow-
erful gradient-based learning algorithm meant to compute classifiers using image datasets is
described in Figure 5: the associated framework is called Convolutional Nextwork [88]. Fig-
ures (4), (5) and (6) illustrate the example of a classifier computed for a UAV mission where
features of interests (system states of the problem) are related with the presence (or absence)
of animals, cars, humans, planes or trucks: the statistical problem of computing a classifier
recognizing such objects in images is called multiclass classification.

As the classifier is learned based on a image dataset (see weights learned in Figure 5), its
behavior, and thus its performances (i.e. how well it predicts objects in images) are inevitably
dependent on the dataset. It is a problem if the image variability in the dataset is too low:
in this case, the probabilistic behavior of the classifier will be dependent on these particular
images, and the robotic system will have poor observation capabilities when the considered
mission involves images too different from the ones in the dataset.

Some large image datasets with a high image variability exist (e.g. NORB, Figure 4, al-
though variability could be ideally higher): note however that with such datasets, the vision
performances are reduced, or good performances are, at least, harder to reach.

A confusion matrix can be computed (see Figure 6) using such a labeled image dataset, not
used for the training, and called testing dataset: observation frequencies can be deduced from
this matrix, normalizing rows into probabilities. A row corresponds to an object in the scene,
and probabilities in this row are observation probabilities, i.e. each probability value is the
frequency with which the classifier returns the name of the object of the corresponding column.
These probabilities can be used to define the observation function p (o′ | s′, a) introduced
above. This approach raises the issue of knowing if the testing dataset is representative enough
of the actual mission. If not, these observation probabilities may not be reliable, and the
POMDP badly defined: however, as shown by equation (2) the belief update needs a perfect
knowledge of the observation probability distributions.

http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/
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Figure 5 – Example of classifier training for computer vision: the labeled image dataset NORB, see
Figure 4, is used to train and test a classifier. The learning algorithm is based on Convolutional Networks
[88, 128] using gradient methods [20, 86, 21]. The weights W = (w0, . . . , wm) are the parameters of
a particular transformation (see the “bi-pyramid” of successive transformation stages) from the image
to a vector representing a label among {animal, car, human, nothing, plane, truck }. These weights are
learned in order to minimize a given loss function i.e. a proper criterion representing the error of the
classifier over the dataset. A classical loss function is the Mean Squared Error (MSE). The environment
Torch7 (based on lua and C languages, [36]) has been used to compute the displayed weights.

More generally, observations of the agent may be outputs of image processing algorithms
whose semantics (image correlation, object matching, class inference, preprocessing followed
by classifiers such as the one computed in Figure 5 etc.) are so complex that probabilities of
occurrence are hard to rigorously extract.

Finally, if the considered datasets are labeled more precisely (as NORB, which includes
information such as the lighting condition, or the object scale), we can imagine that the com-
puted observation probabilities (from the confusion matrix) were more reliable, or the vision
performances upgraded (since separation when learning the classifier is easier). However, as
more observation or states are involved in this case, the POMDP is harder to solve. Moreover,
as the number of images per class is reduced (since there are more complex and numerous
classes), a poorer confusion matrix is obtained when testing (in terms of confidence).

As a conclusion, the POMDP model supposes the knowledge of all probability distributions
involved: unfortunately the actual frequencies used to compute them are not precisely known
in practice. The imprecision about these probabilities, for instance the imprecision related to
the behavior of outputs of the computer vision algorithms when dealing with images taken
during the mission, has to be taken into account to make the robot autonomous under any
circumstances. In general, the computation of the probability distributions of a POMDP needs
enough tests for each possible system state and action, which is hard to perform: there are
limited data to learn the model in practice.

Some variations of the POMDP framework have been built in order to take into account the
imprecision about the probability distributions of the model, also called parameter imprecision.
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Works handling parameter imprecision

Here, transition and observation functions, namely p (s′ | s, a) and p (o′ | s′, a), ∀(s, s′, o′, a) ∈
S2 ×O ×A, are known as POMDP parameters, or also model parameters. To the best of our
knowledge, the first model meant to handle parameter imprecision has been named POMD-
PIP, for POMDP with Imprecise Parameters (POMDPIP) [76]. In this work, each POMDP
parameter is replaced by a set of possible parameters. Figure 7 introduces the Imprecise Prob-
ability Theory that inspired this idea: in this theory, uncertainty and knowledge about it are
represented by sets of probability distributions (named credal sets) to express the fact that the
model is not fully known. Imprecision on the POMDP model is well expressed in this way: for
instance, if confidence bounds on the computed probabilities are available, these bounds can
be taken into account when modeling the problem, considering the sets of all likely probability
distributions.

Starting from this modeling, a second order belief is introduced in this work: it is defined
as a probability distribution over the possible model parameters. This approach thus confuses
parameter imprecision and event frequency. Indeed, strategies which are looked for are the
optimal strategies of a particular “averaged POMDP”: this POMDP results from the compu-
tation of the average of the possible parameters with respect to the given second order belief.
However, the “averaged parameters” of this new POMDP are potentially not even part of the
credal set (e.g. with non-convex credal sets). Although POMDPIPs are well designed, impre-
cision is not satisfactorily handled when the problem is solved because of the use of a second
order belief. Moreover, it is claimed that the actual second order belief is not known, and then
is allowed to vary in order to make the computation of an approximated strategy easier: the
analysis of performances only details how far is the approximated strategy from the “averaged
POMDP”.

Another work, named Bounded Parameters POMDPs (BPPOMDP) [96], deals with pa-
rameter imprecision: in this work, imprecision on each parameter, i.e. on each probability
distribution defining the POMDP, is described by a lower and a upper bound on possible
distributions. In other words, credal sets are defined with bounds. The BPPOMDP solving
does not introduce any second order belief. However, solving BPPOMDPs is similar to solving
POMDPIPs [76] in spirit since the flexibility provided by the parameter imprecision is used
to make the computations as easy as possible: the criterion defining optimal strategies is not
made explicit, but care is taken to simplify the representation of an approximate criterion in
order to avoid memory issues.

The major issue with POMDPIP and BPPOMDP frameworks is that no appropriate crite-
rion choice is made to manage parameter imprecision: for instance, a suitable approach would
be to compute a cautious strategy regarding the imprecision i.e. taking into account the worst

animal human plane truck car nothing
3688 575 256 48 144 149 animal 75.885%
97 4180 81 20 225 257 human 86.008%
292 136 3906 237 202 87 plane 80.370%
95 1 44 4073 514 133 truck 83.807%
129 3 130 1283 3283 32 car 67.551%
154 283 36 63 61 4263 nothing 87.716%

Figure 6 – Example of confusion matrix for multiclass classification: this matrix is computed with a
testing dataset of images, different from the training dataset. Each row only considers the images of a
given object, and numbers represent the answers of the classifier: for instance, 3688 images of animals
are well recognized, but 575 are confused with a human. Average row correct is here 80.223%. Torch7
environment [36] has also been used to compute this matrix from the classifier and the testing dataset.
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case. Yet, the opposite approach would be to look for an optimistic strategy, considering the
best case.

A more recent approach deals with the cautious point of view, and is thus named robust
POMDP [101]. Inspired by the corresponding work in the fully observable case (called uncer-
tain MDP [97]), this work uses the well-known maximin, or worst case criterion, which comes
from Game Theory: in this framework, an optimal strategy maximizes the lowest criterion
among all the parameters considered possible. If the parameter imprecision is not station-
ary, i.e. can change at each time step, the corresponding optimal strategy (in the maximin
sense) can be easily computed using classical computations (called Dynamic Programming [8]).
However, when the parameter imprecision is stationary, things become harder: the proposed
computations lead to an approximately optimal strategy, as the handled criterion is a lower
bound of the desired maximin criterion. Yet, the stationary assumption for the parameter im-
precision seems more suitable according to the proposed POMDP definition: indeed, transition
and observation functions are here defined as independent from the time step, mostly to make
the use of infinite horizon criteria such as (I.2) easier.

Although the use of sets of probability distributions (credal sets) makes the model more
consistent with the reality of the problem (parameters are imprecise in practice), taking them
into account increases eventually the complexity of the optimal strategy computation (e.g. with
a maximin criterion). This intuition is illustrated in Figure 7: Imprecise Probability Theory has
the greatest expressiveness compared to the other theories [145], that is why computations with
this modeling can be expected to be harder to perform. As explained above, POMDP solving is
already a really hard task, thus using a framework leading to more complex computations does
not seem to be a good approach. Moreover, with this framework, some restrictive assumptions
are commonly needed such as the convexity of credal sets [97, 101]. Modeling a problem in
an expressive manner may lead to the use of important approximations without control of the
latter, as done with the POMDPIP and BPPOMDP frameworks. It may be a better approach
to start with a simpler model which can be solved more easily in practice.

Finally, while there are fascinating questions about algorithms in this area, this thesis does
not deal with Reinforcement Learning (RL) [47, 117]. We are interested in robotic applications
whose very first executions have to proceed efficiently and safely: the basic reason is that
robotic systems and their operations may be expensive, and executions are not allowed to break
the robot. However, RL sequentially improves a strategy with potentially unsafe executions.
However, RL approaches may improve the strategy in the long term using all the previous
executions.

Another practical issue of the POMDP model may be also pointed out: it is about the
definition of the belief state concerning the very first state of the system, and more generally
about how agent knowledge is represented.

Agent ignorance modeling

The initial belief state b0, or prior probability distribution over the system states, takes part
in the definition of the POMDP problem. Given a system state s ∈ S, b0(s) is the frequency
of the event “the initial state is s”. This quantity may be hard to properly compute, especially
when the amount of available past experiments is limited: this reason has been already invoked
above, leading to the imprecision of the transition and observation functions.

As an example, consider a robot that is for the first time in a room with an unknown exit
location (initial belief state) and has to find the exit and reach it. In practice, no experience
can be repeated in order to extract a frequency of the location of the exit. In this kind of
situation, uncertainty is not due to a random fact, but to a lack of knowledge: no frequentist
initial belief state can be used to define the model.
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Figure 7 – Most known uncertainty theories and their relations. Imprecise Probability Theory (IPT)
considers sets of probability measures defined on the universe Ω in order to represent uncertainty of
events and knowledge about it: this theory is the most general one. The Belief Functions Theory (BFT,
or Dempster-Shafer Theory, or yet Theory of Evidence), which is a particular case of IPT, considers
a mass function m defined on all the subsets of the universe, and which sums to 1. From this mass
function, upper and lower bounds on possible probability measures can be defined. The upper bound
is called plausibility measure: ∀A ⊂ Ω, Pl(A) =

∑
B∩A6=∅m(B). The lower bound is called the belief

function: ∀A ⊂ Ω, bel(A) =
∑
B⊆Am(B). The set of probability distributions represented by m are

all probability measures P such that ∀A ⊂ Ω, bel(A) 6 P(A) 6 Pl(A). For instance, if the function
m returns 1 for the universe, and 0 for all other subsets, it expresses the total ignorance about the
actual probability distribution: it corresponds to the set of all the possible probability distributions in
IPT. If the mass function is equal to zero for each non-singleton subsets, it simply corresponds to a
probability distribution since bel = Pl. If the mass function is positive only on a sequence of nested
subsets, it corresponds to a possibility distribution: bel is then called the necessity measure, and Pl
the possibility measure (see Section I.2.1 of Chapter I). Probability and Possibility Theories are thus
particular cases of BFT and a fortiori of IPT.

In other cases, the agent may strongly believe that the exit is located in a wall as in the
vast majority of rooms, but it still grants a very small probability pε to the fact that the
exit may be a staircase in the middle of the room. Even if this is very unlikely to be the
case, this second option must be taken into account in the belief state, otherwise Bayes rule
(see Equation 2) cannot correctly update it if the exit is actually in the middle of the room.
Eliciting pε without past experience is not obvious at all and does not rely on any rational
reasons, yet it dramatically impacts the agent’s strategy.

The initial system state may be deliberately stated as unknown by the agent with abso-
lutely no probabilistic information: consider robotic missions for which a part of the system
state, describing something that the robot is supposed to infer by itself, is initially fully un-
known. In a robotic exploration context, the location or the nature of a target, or even the
initial location of the robot may be defined as absent from the knowledge of the agent. Clas-
sical approaches initialize the belief state as a uniform probability distribution (e.g. over all
robot/target possible locations, or over possible target natures), but it is a subjectivist answer
[41, 64]. Indeed, all probabilities are the same because no event is more plausible than another:
it corresponds to equal betting rates. However following belief updates (see Equation 2) will
eventually mix up frequentist probability distributions, given by transition and observation
functions, with this initial belief which is a subjective probability distribution: it does not
always make sense and it is questionable in many cases. Thus, the use of POMDPs in these
contexts, faces the difficulty to encode agent ignorance.

Since the knowledge of the agent about given features of the system may be initially partial
(or even absent), it makes sense to pay attention to the evolution of this knowledge during the
execution of the considered process. Some works inspired by the research in Active Perception,
have been focusing on the information gathered by the agent in the POMDP framework [29, 31].
In these works, the entropy of the belief state is taken into account in the criterion, ensuring
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the computed strategy to make the process reach belief states that have a lower entropy (i.e.
are closer to a deterministic probability distribution) while always satisfying the requirement
of an high expected total reward. This approach leads to really interesting results in practice.

Nevertheless, a tradeoff parameter is introduced making the entropy part of the criterion
more or less important: tuning the latter may add additional computations. Moreover this
approach does not distinguish between the actual frequentist behavior of the system state,
and the lack of knowledge about the actual belief state (as a probability distribution) due to
the imprecision of the initial belief state, or even of the transition and observation function:
it just tends to make the belief as deterministic as possible, even if it is not possible due to
the actual probability distributions of the model (e.g. if the transition probability distribution
p (st+1 | st, at ) has an high entropy for each action at ∈ A), and even if it is not needed (e.g.
if each system state s ∈ S such that the belief state bt is not zero, bt(s) > 0, leads to an high
reward).

However, it has been shown that the proposed criterion (including the entropy of the belief
state) makes the agent estimate faster its real state, which is really useful in some practical
problems. Other models have been introduced, making the reward function dependent on the
belief state [4, 30]: this enables to make the agent behavior vary with respect to the probabilistic
representation of its knowledge.

General problem
Previous sections presented some issues encountered in practice when using the POMDP frame-
work to compute strategies, especially in the robotic context. The really high complexity of
the problem of computing an optimal strategy is a first issue: robotic missions often result in
high dimensional problems, preventing any algorithm to computed a sufficiently near optimal
strategy, because of the prohibitive computation time or memory needed for this task. Second
we highlighted the difficulty of defining the probability distributions describing the problem:
for instance the observation function can be hard to define when the observations come from
complex computer vision algorithms. Finally the problem of managing the knowledge and the
ignorance of the agent has been discussed: there is no clear answer concerning the way to
represent the initial lack of knowledge about the actual world for the agent. Also, how to
handle and take into account the current agent knowledge is still open to question: the dif-
ficulty comes from the classical POMDP definition which only allows the use of frequentist
probability distributions, while more expressive mathematical tools seem necessary.

These problems are the starting points of our work. Indeed, the latter consists in con-
tributing to the problem of computing appropriate strategies for partially observable domains.
The computed strategies have to make the robot fulfill the mission as well as possible, from
the very first execution, i.e. strategy computations are performed before any real execution of
the mission. In order to make the robot more powerful in the long term, RL algorithms may
improve the prior strategies that we propose to compute in this work, taking into account each
past execution of the robotic mission. However this idea is not considered here since we focus
on fulfilling the robotic mission as well as possible, especially for the first executions of the
process: RL algorithms are useless in this context since the dataset of recorded missions is not
sufficiently large during the first mission executions.

The general challenge guiding this work is to proceed with strategy computations only using
data and knowledge really available in practice, possibly making the strategy computation
easier, instead of using the highly complex and hard to define POMDP framework. In other
words, it consists in paying particular attention to the issues pointed out above: namely, the
complexity of the strategy computation, the imprecision of the model, and the management
of the knowledge of the agent.
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Alternative uncertainty theories

Although the use of a more expressive framework may increase the complexity of strategy com-
putations, previous discussions on the issues of parameter imprecision and agent knowledge
suggest that we should consider alternative uncertainty theories: those described in Figure
7 may bring useful properties to deal with our problems. As presented above, the Impre-
cise Probability Theory (IPT) has been already explored to improve the POMDP framework
[76, 96, 101]. However, the proper use of the credal sets defining the problem makes the com-
putations harder.

A less expressive uncertainty theory is called the Belief Functions Theory (BFT, see Figure
7). Consider the universe Ω, which is a finite set whose elements represent the possible ele-
mentary events of a given situation. The BFT encodes uncertainty about the possible events
with a mass function m. The latter is defined on each disjunctive subset of the universe i.e.
m : 2Ω → [0, 1], and sums to 1 over these subsets:

∑
A⊆Ωm(A) = 1. Two non-additive measures

can be defined from this mass: as detailed in Figure 7 the belief measure bel and the plausibility
measure Pl can be deduced from the mass function, and define the credal set Cm represented
by this mass function: Cm = {P probability measure | ∀A ⊆ Ω, bel(A) 6 P(A) 6 Pl(A)}. This
shows that BFT is thus a particular case of IPT.

Recall that the frequentist probability of an elementary event ω ∈ Ω can be computed
in practice using the law of large numbers i.e. this probability can be defined as the number
of times the considered event ω occurred according to a sufficiently large dataset of recorded
samples, over the size of this dataset (the number of samples): in other words, the frequentist
probability is the frequency of occurrence of the considered elementary event in the used
dataset. For instance, when computing one of the probability distributions leading to the
transition function in the POMDP framework, namely s′ ∈ S 7→ p (s′ | s, a) (given a system
state s ∈ S and an action a ∈ A), the finite universe Ω can be defined as the set of system
states S, and then an elementary event is a system state s′ ∈ S. Another example is the
computation of one of the probability distributions leading to the observation function: o′ ∈
O 7→ p (o′ | s′, a), for a given pair (s′, a) ∈ S × A. In this case, the finite universe Ω can be
defined as the set of observations O, and an observation o′ ∈ O is an elementary event.

Suppose now that we need to compute, for some modeling purpose (e.g. to define the
transition or the observation functions of a POMDP), a frequentist probability distribution
describing a given situation (e.g. dynamics of the variables encoding a robotic mission): the
frequentist probability of each elementary event has to be computed in the classical way
(described just above). Consider now that some samples of the dataset have been imprecisely
observed in practice. Usually, samples, i.e. instances of an elementary event, are present several
times in the dataset: the number of instances of this elementary event, i.e. the number of
times the event occurred, leads to the frequentist probability distribution after a normalization
(dividing this number by the size of the dataset, as explained just above). In the case of
imprecise samples in the dataset, a sample consists of a disjunctive set of elementary events
instead of the actual elementary event. Indeed, this set describes the imprecision of the sample:
the actual elementary event is not clear and could be, rationally speaking, any of the elementary
events included in the returned set. The quantity m(A) can then be defined as the frequency of
occurrence of the set A ⊆ Ω, as no better precision is available. As just formally presented, the
use of a mass function can be needed to handle the imprecision of a given dataset. The mass
function can be also the direct translation of the lack of knowledge about a given situation.

Indeed, the total ignorance about the actual probability distribution defining the model
is encoded with a mass function returning 1 for Ω, and 0 for each other subset: in IPT, it
corresponds to the credal set containing all the existing probability distributions. Note that
a more restricted ignorance can be stated with a mass function returning 1 for A ⊂ Ω, and
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0 for each other subset: it means that the support of the (unknown) probability distribution
describing the situation of interest is A. Note also that the BFT framework enable to encode
complete knowledge about the probability distribution describing the situation: it is the case
when the mass is positive on singletons only, i.e. m(A) = 0, ∀A ⊆ Ω such that #A 6= 1.
Thus, it generalizes Probability Theory as illustrated by Figure 7. The fully observable MDP
framework has been already extented to this formalism [142]: to the best of our knowledge, no
update of the POMDP framework using BFT has been proposed.

However, the use of BFT in the POMDP framework leads to an exponential growth of the
size of the sets on which strategy computations are based: the set 2S (resp. 2O) is considered
with BFT, instead of S (resp.O) with the Probability Theory, since BFT assigns a mass to each
subset of the universe. This remark is not in favor of using BFT in our study, as the POMDP
complexity is already a big issue. Moreover, the mass functionm is not always easily specified in
the modeling phase. Consider for example a probability distribution encoded in the observation
function of a POMDP. The BFT counterpart of this object should be a mass function describing
the uncertainty about the observations. The way of defining this mass function from a given
classifier (for instance as the one described in Figure 5) and a given testing dataset of images
(as NORB, see Figure 4) is not obvious. Indeed the imprecision of the probabilistic behavior
of the resulting computer vision algorithm is not easily quantifiable: it should be translated
into a mass function positive on sets containing at least two observations. However the sets to
consider, as well as the mass value to fix on them, are not clearly established. Although BFT
provides a simple way to encode both frequentist information and ignorance, the expressiveness
of this theory seems hard to use when managing parameter imprecision in practice.

Thus, let us focus on a less expressive theory called Possibility Theory (see Section I.2.1 of
Chapter I): as shown by Figure 7, this theory is a particular case of BFT, much like Probability
Theory. All subsets of the finite universe Ω which have a positive mass are called focal sets.
Each possibility measure is equivalent to a mass function for which all focal sets are nested:
the more focal sets contain a given elementary event, the more the latter is plausible. The
possibility measure is defined as the plausibility measure Pl (defined in Figure 7), and the
belief measure bel is called in this case necessity measure. A complete review of the different
uncertainty theories and their respective meanings is formulated in [61].

Possibility Theory

A possibility measure has been defined as the plausibility measure of a mass function m whose
focal sets are nested (see Figure 8). Let us denote these nested subsets by Fi, ∀i ∈ {1, . . . , d},
with d a positive integer: Fd ⊂ Fd−1 ⊂ . . . ⊂ F1 = Ω. Note that if A ⊆ Ω and for a given
i ∈ {1, . . . , d}, A ∩ Fi 6= ∅, then A ∩ Fj 6= ∅ for each j ∈ {1, . . . , i} since focal sets are
nested. As defined in Figure 7, the plausibility measure is Pl(A) =

∑
B∩A=∅m(B), ∀A ⊆ Ω.

Thus, it is easy to show that for each A ⊆ Ω, Pl(A) =
∑dA
i=1m(Fi), where dA = max

{
i ∈

{1, . . . , d}
∣∣∣Fi ∩ A 6= ∅}. As dA∪B = max

{
i ∈ {1, . . . , d}

∣∣∣Fi ∩ A 6= ∅ or Fi ∩ B 6= ∅}, this
integer can be written dA∪B = max {dA, dB }, and then

Pl(A ∪B) =
dA∪B∑
i=1

m(Fi) = max


dA∑
i=1

m(Fi),
dB∑
i=1

m(Fi)

 = max
{
Pl(A), P l(B)

}
.

Note also that Pl(Ω) = 1 as the mass function sums to 1 over 2Ω, and that Pl(∅) = 0 as the
mass function assigns zero to the empty set by definition.

The classical definition of a possibility measure, denoted by Π : 2Ω → [0, 1], corresponds
in fact to the results presented just above:



Introduction 19

ω1

ω6

ω2

ω7

ω4
ω5

ω3

Ω

probabilistic case

example of focal set
i.e. singleton

ω1

ω6

ω2

ω7

ω4ω5

ω3

Ω

possibilistic case

focal sets:

F1

F2

F3

Figure 8 – The focal sets of a mass function m : 2Ω → [0, 1] are the subsets A ⊆ Ω of the universe
Ω = {ω1, . . . , ω7 } such that the mass function is positive: m(A) > 0. As Probability Theory and
Possibility Theory are particular cases of BFT (see Figure 7), each of the probability (resp. possibility)
distributions is equivalent to a certain mass function. Thus, the left part of the illustration shows the
focal sets from a probability measure P: they are the singletons of Ω and m({ω }) = P({ω }). The
right part shows the focal sets from a possibility measure: they are nested subsets of Ω, denoted by
F3 ⊂ F2 ⊂ F1 = Ω.

• Π(Ω) = 1;

• Π(∅) = 0;

• ∀A,B ⊆ Ω, Π(A ∪B) = max
{

Π(A),Π(B)
}
.

It follows that this measure is entirely defined by the associated possibility distribution, i.e.
the possibility measure of the singletons: ∀ω ∈ Ω, π(ω) = Π({ω}). Indeed, the possibility
value of a given event can be defined as the maximal possibility value of the elementary events
constituting the event of interest: Π(A) = maxω∈A π(ω). This is quite similar to the fact that
a probability measure over the finite universe Ω, P : 2Ω → [0, 1], is equivalent to the associated
probability distribution p : ω 7→ P({ω}), using the additivity of the probability measure.

The definition of this measure leads to the possibilistic normalization:

max
ω∈Ω

π(ω) = Π(Ω) = 1.

If (ω, ω) ∈ Ω2 are such that π(ω) < π(ω), the meaning is that ω is less plausible than ω. Ele-
mentary events with possibility degree 0, i.e. ω ∈ Ω such that π(ω) = 0, are impossible (same
meaning as p(ω) = 0, with p : Ω → [0, 1] a probability distribution). Moreover, elementary
events such that π(ω) = 1 are entirely possible: here, this is not equivalent to p(ω) = 1 but
rather a necessary condition for a probability value equal to one.

As Ω is a finite set, the number of possible values of a possibility distribution is finite (much
like a probability distribution over a finite universe Ω): let us denote by { l1, l2, . . . , 0} with
1 = l1 > l2 > . . . > 0, the different values of the possibility distribution, i.e. {π(ω) | ω ∈ Ω}.

On one hand, if the current possibilistic belief coincides with the distribution π(ω) = 1,
∀ω ∈ Ω, all elementary events are totally possible, and it models therefore the total ignorance
of the actual elementary event: this means that Possibility Theory can satisfactorily encode
agent ignorance, one of the issues guiding our work. On the other hand, the full knowledge of
the actual elementary event, say ω̃ ∈ Ω, is encoded by a possibility distribution equal to the
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classical indicator function of the singleton { ω̃}, i.e. π(ω) = 1{ ω̃ }(ω): the possibility degree
of ω̃ is 1, and all others have a possibility degree equal to 0.

Finally, between these two extrema, a possibilistic situation is described by a set of entirely
possible elementary events, {ω ∈ Ω s.t. π(ω) = 1}, and successive sets of less plausible ones
{ω ∈ S s.t. π(ω) = li } down to the set of impossible states {ω ∈ Ω s.t. π(ω) = 0}.

As already explained (see above and Figure 7), a remnant from BFT is the existence of
two measures in Possibility Theory: the first one is the possibility measure, denoted by Π, and
called plausibility measure in BFT (Pl). The second one is the necessity measure, denoted by
N , and called belief measure in BFT (bel). Recall that, given a mass function m, the belief
measure of the set A ⊆ Ω is bel(A) =

∑
B⊆Am(B). Now, if the mass represents a situation

which can be expressed with Possibility Theory, the focal sets (Fi)di=1 of the mass function are
nested: Fd ⊂ Fd−1 ⊂ . . . ⊂ F1 = Ω with d ∈ N∗ the number of focal sets. Note that if Fi ⊆ A
for a given i ∈ {1, . . . , d}, Fj ⊆ A, ∀j > i, because focal sets are nested. Thus, given A ⊆ Ω,
a distinction is made between two cases.

The first case is when Fd 6⊆ A: in this case bel(A) = 0 since no focal set is in A. Let us
denote by A the complementary set of A: A ∪A = Ω and A ∩A = ∅. Now an obvious remark
about sets is recalled: if A and B are two subsets of Ω, “B ⊆ A” ⇔ “B ∩ A = ∅”. Hence, in
the first case, A ∩ Fi 6= ∅ for each i ∈ {1, . . . , d}, and then the plausibility of A is Pl(A) = 1
(as the sum of all focal sets). So, in this case, Pl(A) + bel(A) = 1.

In the second case, i.e. Fd ⊆ A (and thus A 6= ∅), it is easy to show that bel(A) =∑d
i=dAm(Fi), where dA = min

{
i ∈ {1, . . . , d}

∣∣∣Fi ⊆ A
}
. Thus, if A 6= Ω, we can see that

min
{
i ∈ {1, . . . , d}

∣∣∣Fi∩A = ∅
}

= 1+max
{
i ∈ {1, . . . , d}

∣∣∣Fi∩A 6= ∅} i.e. dA = 1+dA (thanks

to the obvious remark about sets), where dA is defined above as max
{
{1, . . . , d}

∣∣∣Fi∩A 6= ∅}.
As shown above, Pl(A) =

∑d
A
i=1m(Fi), thus if A 6= Ω, Pl(A) + bel(A) = 1. Finally, if A = Ω,

all the focal sets are included in A, so bel(A) = 1, and A = ∅, so Pl(A) = 0: Pl(A)+bel(A) = 1
too.

That is why the necessity measure, which corresponds to the belief measure bel in BFT,
can be defined from the possibility measure as follows: ∀A ⊆ Ω,

N (A) = 1−Π(A).

Note that we can differentiate Quantitative Possibility Theory [52] from Qualitative Pos-
sibility Theory [62]. The former uses the product when combining possibility distributions in
order to compute joint distributions (much like in Probability Theory). The latter uses the
min operator for this purpose (see Section I.2.2 of Chapter I). Thus, the qualitative theory
uses only max and min operators. Consider some possibility distributions whose values are in
the finite set { l1, l2, . . . , 0}: as only max and min operators are allowed, computations do not
generate any value not already included in the finite set { l1, l2, . . . , 0}. This is not true for
Quantitative Possibility Theory since the use of the product operator leads to the creation of
new real values in [0, 1].

Finally, in the qualitative framework, the possibility values assigned to each of the elemen-
tary events are not really taken into account in terms of real numbers since only qualitative
comparisons are performed via the use of max and min operators. Hence, Qualitative Possi-
bility Theory is classically defined with the introduction of a qualitative scale L, which may
be defined as { l1, l2, . . . , 0}, or as any other totally ordered set indifferently. As they are
qualitative data, we use the term possibility degrees instead of possibility values. The next
section clarifies why the use of a qualitative framework is beneficial in terms of complexity
and modeling to our study.
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Note the similarities between Possibility and Probability Theories, replacing max by +,
and min by × (in the qualitative case). Note also that Qualitative Possibility Theory de-
fines the semiring (L,max,min), and Quantitative Possibility Theory leads to the semiring
([0, 1] max,×). These algebraic structures are close to the well known tropical semirings [107],
as the max-plus semiring (R ∪ {−∞}max,+) and the min-plus one (R ∪ {+∞} ,min,+).

Qualitative Possibilistic POMDPs

A qualitative possibilistic counterpart of the POMDP framework has been proposed in [121]:
this model is called Qualitative Possibilistic POMDP and denoted by π-POMDP. A π-POMDP
is simply a POMDP with qualitative possibility distributions as parameters, instead of proba-
bility distributions. As the π-POMDP framework is qualitative, the counterpart of the reward
function, called preference function, is a qualitative function: indeed the preference function
returns values from the finite qualitative scale L, and thus is non-additive.

As a particular case of BFT and a fortiori of IPT, Possibility Theory expresses a partial
knowledge of the actual probability distribution, as presented above. A qualitative possibil-
ity distribution is even more imprecise since only qualitative information is given by such
a distribution. This imprecision results in the measures presented above: possibility and ne-
cessity measures. As detailed in Section I.2.3, two qualitative criteria have been proposed in
[125], counterparts of the probabilistic criterion (I.2): a pessimistic one, which is a qualitative
counterpart of the maximin (worst-case) criterion in IPT. The other criterion is qualified as
optimistic, as a qualitative counterpart of the best case criterion in IPT.

One of the most interesting property of π-POMDPs is the simplification of the strategy
computation. Indeed, algorithms proposed for solving classical (probabilistic) POMDPs are
often based on the set of the belief states called belief space. The belief space is infinite in the
general case: each time step leads eventually to a finite number of new belief states, which makes
this set countable. In order to get useful properties and means for the strategy computation,
the set of all probability distributions over the system space S is considered, i.e. the continuous
simplex PS = {p : S → [0, 1] |

∑
s∈S p(s) = 1, and p(s) > 0, ∀s ∈ S }. The infinite size of the

belief space partly explains why probabilistic POMDPs are very hard to resolve. On the
contrary, π-POMDPs have a finite belief space. Indeed, the number of qualitative possibility
distributions over the system space S is lower than #L#S , as the qualitative scale L is finite.
The fully observable version of the π-POMDP model is called π-MDP: as explained in Section
I.2.5 of Chapter I, any π-POMDP reduces to a π-MDP whose system space is the qualitative
possibilistic belief space, and whose size is exponential in the number of states. In works
[66, 69, 121], complexity of π-MDP appears to be lower than complexity of MDP, which
is polynomial [103]: complexity of π-POMDP is then at worst exponential in the problem
description, whereas POMDP solving may be undecidable [92].

In addition to simplifying the computations, the π-POMDP framework may be very inter-
esting to our use case. Indeed, when we considered a robot using computer vision algorithms to
get observations (see Figure 3), we previously highlighted the difficulty of properly defining the
probabilistic observation function: probability values of the answers of the vision algorithms
in the context of the robotic mission are imprecisely known and hard to define in practice.
Finding qualitative estimates of their recognition performance is easier: the π-POMDP model
only requires qualitative data, thus it allows to build the model without the use of information
other than the one really available. For instance, the confusion matrix in Figure 6 may lead
to a qualitative possibilistic observation function which only takes into account how answer
frequencies are sorted: in the presence of a human (see second line), the most frequent answer
is “human”, the second one is “nothing”, the third one is “car”, etc. Thus, the corresponding
possibility distribution is such that, conditioned on the presence of a human, the possibility



22 Introduction

degree of the answer “human” is higher than the possibility degree of the answer “nothing”,
which is higher than the possibility degree of the answer “car”, etc. Instead of assigning fre-
quencies which are not really reliable in practice, the qualitative possibilistic model naturally
expresses imprecisions about the problem.

Finally, let us recall that the constant possibility distribution whose possibility degrees are
all equal to 1 (maximal element of L), represents total ignorance: this distribution can be used
to define the initial belief state when it has to represent an agent which initially ignores a
given situation. Thus, the π-POMDP framework allows for a formal modeling of the agent’s
lack of knowledge.

The use of the Qualitative Possibility Theory [62] is thus studied in this work, as it appears
to be able to both simplify a POMDP, and to model parameter imprecision and ignorance
related to robotic missions. This framework indeed simplifies computations, is able to encode
the problem with only available data and formally models the lack of knowledge: thus this
theory offers solutions to the three issues highlighted previously. However we note that, as a
qualitative framework, it does not allow for frequentist information encoding.

To the best of our knowledge, a rather limited study of the π-POMDP model exists in
the literature up to now: in fact, the work [121] seems to be the only one proposing both
a definition of π-POMDPs and a toy example to illustrate this model. The fully observable
version (π-MDP) has generated some more interest in the research community [123, 122, 147].

Description of our Study
This thesis contributes to determine to which extend Qualitative Possibility Theory can con-
tribute to planning under uncertainty in partially observable domains, and more generally to
sequential uncertainty management, in terms of computation simplification and modeling. It
presents recent contributions in the use of this theory for planning under uncertainty and
knowledge representation, with an almost systematic use of graphical models [81, 10, 19].

The end of this introduction describes how this thesis is structured. Indeed, each of the
following sections corresponds to a chapter of our work and details its contents.

State of the art

As probabilistic POMDPs and qualitative possibilistic ones are the central objects of this
thesis, the first chapter presents these models starting from low level definitions. Most of the
classical results presented are accompanied by proofs making this thesis self-contained: this
work is thus accessible to all researchers and students with basic mathematical competences,
even if they are not familiar with alternative uncertainty theories, nor member of the planning
under uncertainty community.

The first part of this chapter focuses on the classical (probabilistic) POMDP: it begins
with the presentation of the less complex fully observable case, called MDP. The well-know
POMDP is then set up, giving some formal results and proofs that are sometimes hard to find
in the literature. This part ends with a review about some of the most successful POMDP
algorithms including the ones used in the next chapters.

The second part is naturally devoted to the qualitative possibilistic counterpart of the
POMDP. It begins with a presentation of the Possibility Theory, with a specific focus on the
qualitative version. It includes the qualitative counterparts of conditioning, and averaging.
Finally, as all the needed theoretical tools have been presented, the fully observable model (π-
MDP) can be defined, followed by the partially observable one (π-POMDP). As noted above,
to the best of our knowledge, only one ten-paged paper has already dealt with the π-POMDPs:
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the second part of this chapter is thus the first work formally detailing the construction of this
model.

Note that the notations and the terminology set up in this initial chapter, and thus used
throughout this thesis, are those classically used in the POMDP framework: it should make
our work more readable to the POMDP community or more generally to the probabilistic
community. Moreover, dedicating this first chapter to a formal presentation of the probabilistic
and the qualitative possibilistic models is meant to highlight their common structure.

Natural updates of the possibilistic model

The second chapter proposes several extensions of the work [121]. It begins with the presen-
tation of some variants of the qualitative criteria presented in the first chapter: the latter
are related to the aggregations of the preferences over time, and to the chosen approach i.e.
pessimistic or optimistic.

A qualitative possibilistic version of the Mixed-Observable MDPs [100, 3], where some
state variables are fully observable, is then built. It is named π-MOMDP and generalizes both
π-MDP and π-POMDP. This contribution reduces dramatically the complexity of solving π-
POMDPs, while catching finer information about the environment some state variables of
which are fully observable. For instance, the battery level of a robot may be considered as
directly observable information for decision making, leading to easier computations. More
generally, the existence of visible variables is common in robotics [100].

Next, a qualitative criterion for missions with unbounded durations is proposed, along with
an algorithm for computing the associated optimal strategy. This algorithm is used to compute
a strategy for a target recognition mission: experimental results compare executions using this
strategy to those using the strategy from a probabilistic algorithm, in situations where the
probabilistic dynamic of the observations is actually not properly defined.

Note that this experiment is the first practical use of the π-POMDP framework to the best
of our knowledge. It also highlights interesting behaviors of the qualitative possibilistic belief
state: they are then clarified theoretically in the end of the chapter.

The main contributions of this chapter have been published in [49]. The experiments illus-
trate that these contributions are necessary in practice. However they are not sufficient to reach
a competitive computation time or to deal with realistic robotic problems: the orientation of
the next chapter stems from this observation.

Factorized models and symbolic algorithms

The size of the robotic problem dealt with in the previous chapter is small enough to allow
the proposed algorithm to compute a strategy within a reasonable amount of time. The con-
tributions of the third chapter are meant to make computations possible for larger structured
planning problems.

The first part of this chapter proposes a definition for the factored π-MOMDPs: additional
independence assumptions are provided to these processes – in a qualitative possibilistic sense,
as defined in the first chapter. Large planning problems satisfying these assumptions can be
solved more easily: building upon the probabilistic SPUDD algorithm [75], we conceived a
possibilistic algorithm named PPUDD for solving factorized π-MOMDPs using Algebraic De-
cision Diagrams (ADD). The guess motivating this contribution is that computations between
ADDs is less time and memory consuming when performed in the possibilistic framework than
in the probabilistic one: qualitative operations should lead to smaller ADDs when sum and
product are replaced with min and max operators because the formers produce ADDs with
potentially more leaves.
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Independence assumptions defining a factored π-MOMDP concern the variables encoding
successive belief states. Moreover variables defining a factored π-MOMDP are those repre-
senting successive system states and observations. That is why, the following section of this
chapter exhibits sufficient conditions on the system state and observation variables leading
to the desired independence between belief state variables. A robotic example is used as an
illustration of these conditions. As proofs use the graphical concept called d-Separation [141],
these conditions also lead to the belief variable independence in the probabilistic MOMDP
framework.

Performances of our solver PPUDD are next compared to those of its probabilistic coun-
terparts, in terms of computation time, and with quality criteria measuring some mission
achievement metrics. Finally, the last part of this chapter describes the results of PPUDD at
the 2014 International Probabilistic Planning Competition1. We participated in the competi-
tion in order to test the performances of our algorithm against probabilistic ones, in terms of
expected reward gathering, with various probabilistic planning problems.

Some contributions of this chapter have been published in [50]. The various planning prob-
lems of the competition also highlight some issues of our algorithm when used to find an
approximate strategy for a probabilistic problem in order to benefit from qualitative compu-
tations which are simpler. Although modeling points are part of these issues, the next chapter
shows that a possibilistic approach is very useful where only qualitative data are available.
The approach proposed in the final chapter takes into account the highlighted modeling issues.
Moreover, time can be entirely consumed before actual computations of PPUDD begin, when
loading ADDs encoding some high dimensional planning problems: memory issues are also
observed in practice. MDP algorithms using state space search [79, 83] do not face these issues
due to ADD-encoding of MDP instances. They can be used to solve the problem resulting from
the last chapter. The latter focuses on the belief state management, and proposes a hybrid
POMDP technically resulting in a classical probabilistic MDP.

A qualitative possibilistic process for human-machine interaction modeling

The fourth chapter deals with situations where probability distributions are clearly not avail-
able: the managed problem comes from the work [110] and is a joint work with the author,
Sergio Pizziol, working in the field of Human-Machine Interactions (HMI). In systems repre-
senting human behavior in certain situations, for instance interacting with a control panel of
an aerial vehicle, a sufficient amount of statistical data is lacking, especially concerning the hu-
man operator’s state of mind: only expert knowledge can be used in practice as no frequentist
information about the problem is available.

In this chapter, used processes are similar to those studied in the previous chapters: the only
difference is that actions are not chosen anymore, but used as observations to infer the state
of the human-machine system. This process is called qualitative possibilistic Hidden Markov
Process (π-HMP).

This process is used as a tool to produce diagnosis for HMI systems: machine state and
human actions are called occurrences, and the possible transitions of the system are called
effects. After the model construction describing the problem in terms of occurrences and effects
from expert qualitative data and the machine model, the human assessment of the situation
can be estimated. The proposed model can also detect human assessment errors, and produce
a diagnosis for them.

1https://cs.uwaterloo.ca/~mgrzes/IPPC_2014/

https://cs.uwaterloo.ca/~mgrzes/IPPC_2014/
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Probabilistic-possibilistic approach: a hybrid perspective

The last chapter of this thesis persists to show the possible improvement of the POMDP
framework using the qualitative possibility theory, especially for the belief state management.
It also takes into account the issues highlighted in the third chapter.

Indeed, the fifth chapter argues for a hydrid POMDP with both probabilistic and possi-
bilistic settings coherently mixed up. A new translation from POMDPs into Fully Observable
MDPs is described here. Unlike the classical translation presented in the first chapter, the
resulting problem state space is finite, making probabilistic MDP solvers able to solve this
simplified version of the initial partially observable problem. Indeed, this approach encodes
agent beliefs with possibility distributions over states, leading to an MDP whose state space
is a finite set of epistemic states.

Additional simplifications of the computations are described for factored POMDPs [133,
148, 143, 94], i.e. POMDPs with a particular independence structure. These last contributions
have been published in [48].





IState of the Art

The main topic of this thesis is Partially Observable Markov Decision Processes (POMDPs).
The practical use of this model has been criticized in Introduction, however it sums up accu-
rately the principal features of a robotic system. As we ambition to make this thesis math-
ematically self-contained the POMDP model is built in Section I.1 from low level objects of
Probability Theory. The main ways to compute strategies from this model are then summarized
in Section I.1.11. Next, Possibility Theory is presented in order to introduce Qualitative Pos-
sibilistic Markov Decision Processes (π-MDPs) and Partially Observable ones (π-POMDPs)
which are the starting point of this work.

I.1 From Markov Chains to Partially Observable Markov De-
cision Processes
The first theoretical object behind the POMDP model, as its name suggests, is the Markov
Chain. In order to present it, let us look back one century ago.

I.1.1 Markov Chains

In the early years of the twentieth century Andreï Markov, a doctoral student of Pafnouti
Tchebychev, set up Markov Chains. Studying successive letters in the words of novels, he had
the idea to define this kind of sequence of random variables: indeed, each letter depended
primarily on the previous one. As usual, a random variable is a measurable function defined
on a set Ω equipped with a σ-algebra F and a probability measure P.
Definition I.1.1 (Markov Chain)

Let S be a countable set called set of states and (St)t∈N a sequence of random
variables whose values are in S. The sequence (St)t∈N is a Markov Chain if ∀t >
1,∀(s0, s1, . . . , st+1) ∈ St+2

P (St+1 = st+1 | S0 = s0, S1 = s1, . . . , St = st ) = P (St+1 = st+1 | St = st ) (I.1)

i.e. ∀t > 1, the random variable St+1 is independent from all previous variables
{Si | i 6 t− 1} conditional on the random variable St: the value of S0, or its probabil-
ity distribution is given, and the probability distribution of St+1 only depends on the value
of St and on the time step t > 0 (see Figure I.1).

Figure I.1 describes the Bayesian Network [105, 104] of a Markov Chain. In a Bayesian Network,
or directed acyclic graphical model, the variables are represented by nodes. The absence of an
arrow between two random variables (nodes) represents an assumption about the conditional
independence of the variables. Let S′ be a random variable: the set of variables from which an
arrow starts and leads to S′ is called the set of parents of S′, and denoted by parents(S′) =

27
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S0 S1 St St+1

p0(s0)

p1 (s1 | s0 ) pt (st+1 | st )

Figure I.1 – Bayesian Network of a Markov Chain: each node (black circle) represents a random variable.
Each variable St+1 has only one parent St: ∀t > 1 St+1 ⊥⊥ {S0, . . . , St−1 } |St.

{S | S → S′ }. If S ∈ parents(S′), we say that S′ is a children of S: the set of the children
of S is denoted by children(S). The set of the descendants of a random variable S is the
smallest set of variables descend(S) which contains all the children of S and such that ∀S′ ∈
descend(S), children(S′) ⊂ descend(S) i.e. all the children of a descendant is a descendant.
The assumption taken through a Bayesian Network is that each variable S is independent from
its non-descendants nondescend(S) =

{
S̃ /∈ descend(S) ∪ {S } ∪ parents(S)

}
conditional on

its parents parents(S), denoted by:

S ⊥⊥ nondescend(S) | parents(S).

In other words, S only depends on its direct parents. Figure I.1 is also called Dynamic Bayesian
Networks (DBNs) [42] since the arrows model also successive time steps.

Here, the Markov Property i.e. Equation I.1 of Definition I.1.1, implies that ∀t ∈ N, the
variable St+1 has only one arrow pointing to it from St i.e. the variable St+1 has only one
parent in the Network, which is St.

As S is countable, let us number its elements, the states: S =
{
s(1), s(2), . . .

}
. The proba-

bilistic dynamics of a Markov Chain can be represented by a sequence of stochastic matrices1

(Mt)t∈N defined by (Mt)i,j = P
(
St+1 = s(j)

∣∣∣ St = s(i)
)
. Note that the model is entirely de-

fined given this sequence of matrices and the distribution of the first random variable S0:
p0(s) = P(S0 = s). For a better readability, P (St+1 = s′ | St = s) is denoted by pt (s′ | s),
and called the transition probability distribution.

An important result about the Markov Chains is the following:
Property I.1.1

Let (St)t∈N be a Markov Chain whose values are in the countable set of states S.
∀t ∈ N, ∀f : S → R bounded, ∀(s0, . . . , st) ∈ St+1,

E [f(St+1) | S0 = s0, . . . , St = st ] =
∑
s′∈S

f(s′) · P
(
St+1 = s′

∣∣ St = st
)

= E [f(St+1) | St = st ] .

The proof is given in Annex A.2.
This result will help rigorously set up Markov Decision Processes, presented in the next

section.

I.1.2 Markov Decision Processes

MDPs [115] were proposed was built to model systems subject to a probabilistic uncertainty
dependent on actions over time. In its classical formulation, the finite set S defines the possible
states of the system s ∈ S. Here, for the needs of the POMDP model building in a following
section, S is defined as a countable set of states, as stated earlier. The set of the non-negative

1A stochastic matrix is a matrix whose values are non-negative real numbers and whose rows sum to one.
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integers N models the time, or stages of the process. Possible actions, denoted by a, are chosen
from a finite set A. In order to get a clear overview of what information is used to decide each
action, the agent is defined as the entity responsible for decision making, i.e. she/he must
choose the successive actions given the current information about the system. In our case, a
system state s ∈ S consists of the features of both a robot and its environment, needed to
describe the robotic mission. The agent is in this case the decision making part of the robot
who determines the robot’s actions to be exectuted given the successive states of the system.

If the sequence of chosen actions a ∈ A is known, an MDP is a Markov Chain: the sys-
tem state of an MDP at stage t + 1, represented by the variable St+1, only depends, in the
probabilistic meaning of the term, on the previous system state variable St and on the time
step t > 0. However, the agent influences the probabilistic system dynamics by selecting the
actions a ∈ A at each time step t ∈ N.

In the MDP framework, it is assumed that the agent is perfectly informed of the current
system state st ∈ S at each time step. Its decision can then be a priori based on the current
system state and all previous ones: Theorem 1 shows however that, for the used criterion, it is
equivalent to consider that each decision is taken based on the current state only. A stochastic

matrix Md can be defined for each decision rule
{
d : S → A

s 7→ d(s) describing transition

probability distributions of the Markov Chain (St)t∈N if the decision rule d is used:
(
Md

)
i,j

is the probability of reaching the state s(j) from s(i) when the action d(s(i)) is selected by the
agent. Consider a sequence of decision rules (dt)t∈N: such a sequence is called strategy and
defines a sequence of stochastic matrices (Mt)t∈N with Mt = Mdt . Each strategy thus defines
the parameters of a Markov Chain entirely.

A reward rt(s, a) ∈ R is associated to each triple (s, a, t) ∈ S×A×{0, . . . ,H − 1} to model
the importance of going through the state s and selecting action a at time t. The function
r : S ×A×{0, . . . ,H − 1} → R is assumed to be bounded: this assumption is not necessary if
S is finite, as rt(s, a) 6 max

s′∈S
max
a′∈A

max
06t′6H−1

{
rt′(s′, a′)

}
, however, S is here countable and thus

may be infinite. The value of a system finishing in state s is described by the terminal reward
R(s), defined for each state s. The function R is assumed to be bounded on S.

For instance in the Navigation problem of the International Probabilistic Planning Compe-
tition, [127], a robot in a grid has to reach a goal: if the state s encodes a robot location which
is not the goal, rt(s, a) = −1, and rt(s, a) = 0 otherwise. If the designers of the model want
the robot to be in a sleep mode at the end of the mission, terminal reward could have been
defined as R(s) = 1 if the system state s encodes the sleep mode, and R(s) = 0 otherwise.
If some of the moving actions of the robot were more energy demanding than others, for all
s ∈ S the functions a 7→ rt(s, a) may be non-constant, etc.

Solving the optimal control problem for an MDP with horizon H ∈ N, i.e. for a process
whose number of stages is H, consists in finding a strategy maximizing the expectation of the
sum of the rewards, or expected total reward:

VH
(
s, (dt)H−1

t=0

)
:= E

[
H−1∑
t=0

rt
(
St, dt(St)

)
+R(SH)

∣∣∣∣∣ S0 = s

]
. (I.2)

The set of strategies of horizon H ∈ N i.e. the sequence of H decision rules dt numbered from
0 to H − 1 is denoted by DH . The criterion VH is a function of the initial state s ∈ S, the
horizon size H ∈ N and the strategy (dt)H−1

t=0 ∈ DH : this function is called value function.
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I.1.3 Dynamic Programming

In 1949, the Research ANd Development (RAND) corporation hired Richard Bellman to work
on multi-stage decision processes. Richard Bellman found a really efficient method called Dy-
namic Programming [8] to solve a class of problems by decomposing them into several simpler
subproblems. The optimal control of MDPs, i.e. the computation of a strategy maximizing
the expected total reward, is part of this class, and is classically performed using Dynamic
Programming [115].

The notation (d) is used from now on to represent a strategy (dt)H−1
t=0 ∈ DH . Theorem

1 highlights the opportunity to use Dynamic Programming in order to compute the optimal
value function:

V ∗H(s) = sup
(d)∈DH

VH
(
s, (d)

)
(I.3)

and a strategy (d∗) = (d∗t )H−1
t=0 ∈ DH such that ∀s ∈ S, V ∗H(s) = VH

(
s, (d∗)

)
. As shown in the

proof of the following Theorem 1, this strategy exists, and it is thus possible to rewrite the
optimal value function I.3, as follows: V ∗H(s) = max

(d)∈DH
VH(s, (d)).

At step 0 6 t < H, the probability that the system state becomes s′ ∈ S from state s ∈ S
when the agent selects action a ∈ A is denoted by pt (s′ | s, a) = P (St+1 = s′ | St = s, a).
However, we assume that ∀t ∈ {0, . . . ,H − 1}, ∀s ∈ S, ∀a ∈ A, the support of the transition
probability distributions pt ( . | s, a) is finite, i.e. ∃Ss,a,t ⊂ S, such that #(Ss,a,t) < +∞,
and ∀s′ ∈ S − Ss,a,t, pt (s′ | s, a) = 0. For i ∈ {0, . . . ,H − 1}, the partial value function
Vi is defined as the value function for the process starting at time step t = H − i, and
V ∗i (s′) = max

(dt)H−1
t=H−i∈Di

Vi(s′).

Theorem 1
The following Dynamic Programming equations for an horizon H ∈ N computes successive
functions V ∗i for each ∀0 6 i 6 N and an optimal strategy (d∗): ∀s ∈ S,

V ∗0 (s) = R(s),

and ∀1 6 i 6 H, V ∗i (s) = max
a∈A

rH−i(s, a) +
∑

s′∈Ss,a,t
pH−i

(
s′
∣∣ s, a)V ∗i−1(s′)

 .
As well, ∀1 6 i 6 H,∀s ∈ S,

d∗H−i(s) ∈ argmax
a∈A

rH−i(s, a) +
∑

s′∈Ss,a,t
pH−i

(
s′
∣∣ s, a)V ∗i−1(s′)

 .

The proof of this theorem is given in Annex A.3 and uses Property I.1.1.
If the state space S is finite, Algorithm 1 solves the optimal control problem of a Markov

Chain, i.e. the MDP problem: computations are performed recursively, using the Dynamic
Programming equations.

I.1.4 Infinite Horizon MDP

The previous section was devoted to present the finite horizon version of the MDP framework.
In some situations, designers of the MDP model do not know when the process will end, or
they want the agent to control the system forever: the MDP problem has to be expressed
whatever the horizon H, or, more generally, for an infinite horizon. For instance, when the
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Algorithm 1: Dynamic Programming Algorithm for finite state space MDP
1 V ∗0 ← R;
2 for i ∈ {1, . . . ,H } do
3 for s ∈ S do

4 V ∗i (s)← max
a∈A

rH−i(s, a) +
∑
s′∈S

pH−i
(
s′
∣∣ s, a)V ∗i−1(s′)

;

5 d∗H−i(s) ∈ argmax
a∈A

rH−i(s, a) +
∑
s′∈S

pH−i
(
s′
∣∣ s, a)V ∗i−1(s′)

;

6 return V ∗H , (d∗)H−1
t=0 ;

MDP models a robotic mission, it sounds better not to bound the time of the process in order
to let the mission be completed, in case of delay.

An infinite horizon MDP is defined by the 6-tuple 〈S,A, T, r, s0, γ〉:

• S is the countable set of potential states of the system, i.e. states of the agent and its
environment;

• A is the finite set of actions which can be selected by the agent;

• T is the set of transition probability distributions: ∀s ∈ S,∀a ∈ A, T contains the proba-
bility distribution over the reached state s′ ∈ S from system state s and selecting action
a, i.e. the function s′ 7→ p (s′ | s, a) ∈ T defined on S. Note that in this formulation, the
probability distribution is stationary i.e. it does not depend on the stage of the process:
∀t ∈ N, pt (s′ | s, a) = p (s′ | s, a). As previously, we assume that ∀s ∈ S, ∀a ∈ A, the
support of the transition probability distributions p ( . | s, a) is finite, i.e. ∃Ss,a ⊂ S,
such that #(Ss,a) < +∞, and ∀s′ ∈ S − Ss,a, p (s′ | s, a) = 0;

• r(s, a) the reward obtained when the agent selects action a ∈ A and the system is in
state s ∈ S. This function is assumed to be bounded on S ×A. Note that the reward is
stationary too here: ∀s ∈ S, a ∈ A, ∀t ∈ N, rt(s, a) = r(s, a);

• the initial state s0 ∈ S, is the state where the process begins;

• the discount factor γ, a real number such that 0 < γ < 1.

Consider a plan i.e. a sequence of actions indexed by the stage of the process t ∈ N: (at )t∈N.
The system is initially in state s0. Next, at each step of the process (t = 0, 1, . . .), the system
is in state st ∈ S, the agent selects action at ∈ A and the system reaches a state st+1 ∈ S
according to the transition probability distribution p ( . | st, at ) = P (St+1 = s′ | St = st, at ).
Finally, the agent gets the reward r(st, at) ∈ R which is aggregated to the previous ones with
a sum. Figure I.2 graphically sums up the stationary MDP model: the presented figure is
an Influence Diagram, i.e. it represents the relations between successive variables, just like a
Dynamic Bayesian Network, but also including actions and rewards.

As the horizon is infinite, the set of infinite sequences of decision rules, or the set of
strategies, is denoted by D∞ = {(dt)t∈N | ∀t ∈ N, dt : S → A}. The discounted reward at time
step t is γt · r(st, at), with 0 < γ < 1. The real number γ makes the total sum of discounted

rewards converge:
+∞∑
t=0

γtr(st, dt(st)) whatever the trajectory (st)t∈N ∈ SN and the strategy

(dt)t∈N ∈ D∞. Indeed, as the reward function r is bounded, ∃c > 0 such that ∀s ∈ S, ∀a ∈ A,
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S0 S1 St St+1

a0 at−1 at

r(s0, a0) r(st−1, at−1) r(st, at)

P(S0 = s0) = 1

p (s1 | s0, a0 ) p (st+1 | st, at )

Figure I.2 – Influence Diagram of an MDP: black circles represent successive system states, red squares
are selected actions, and yellow diamonds are the rewards. The Bayesian Network resulting from re-
moving rewards and wavy arrows asserts that ∀t > 1, St+1 ⊥⊥ {S0, . . . , St−1 } | {St, At }, where At
represents the action at time step t seen as a random variable.

r(s, a) < c. Thus
+∞∑
t=0

γtr
(
st, dt(st)

)
6 c

+∞∑
t=0

γt 6
c

1− γ < +∞. The discount factor γ can be

defined as the probability that the process goes on, i.e. does not terminate, after each stage
t ∈ N: at each time step t, whatever the current state s ∈ S and action a ∈ A, the process
has a probability 1 − γ to reach an artificial absorbing and reward-free state send modeling
the end of the process, i.e. P (St+1 = send | St = s, a) = 1 − γ, with ∀a ∈ A, r(send, a) = 0
and P (St+1 = send | St = send, a) = 1. If such a terminal state send does not make sense in
the particular context, the discount factor γ models only the fact that long term rewards are
less important than short term ones.

Thus, once a problem has been defined in terms of an MDP, solving the problem consists in
computing a strategy maximizing the expected sum of the discounted rewards. This quantity,
called as previously the value function, is denoted by V and depends on the initial state and
the strategy (d) ∈ D∞:

V
(
s, (d)

)
:= E

[+∞∑
t=0

γtr
(
St, dt(St)

) ∣∣∣∣∣ S0 = s

]
. (I.4)

Note that, for a given strategy, we denote by V d : S → R the function such that V d(s) =
V
(
s, (d)

)
.

I.1.5 The Value Iteration algorithm

The Value Iteration algorithm is a solver for Infinite Horizon MDPs: it is based on the Bellman
equation, which is derived in Annex A.4. Let (d)t∈N ∈ D∞:
Definition I.1.2 (Bellman Equation)

V d(s) = r
(
s, d0(s)

)
+ γ

∑
s′∈Ss,d0(s)

p
(
s′
∣∣∣s, d0(s)

)
V d+(s′). (I.5)

where ∀t ∈ N, ∀s ∈ S, d+
t (s) = dt+1(s).
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The set of bounded functions defined on S and with real values, is denoted by FB(S,R).
The Bellman operator is defined as

Bd : FB(S,R) −−−−−−−−−→ FB(S,R)
V 7−−−−−−−−−→ s 7−→ r

(
s, d0(s)

)
+ γ

∑
s′∈Ss,d(s)

p
(
s′
∣∣∣s, d0(s)

)
V (s′).

The Bellman equation I.5 can then be written

V d = BdV d+
. (I.6)

Consider the sup norm on FB(S,R): ‖V ‖∞ = sups∈S |V (s)|.
Theorem 2

(FB(S,R), ‖.‖∞ ) is a Banach space.

The proof is given in Annex A.5.
Property I.1.2

Bd is a contracting operator of (FB(S,R), ‖.‖∞) whose contraction is γ.

The proof is given in Annex A.6.
If the strategy (d) is stationary, i.e. ∀t ∈ N, ∀s ∈ S, dt(s) = d(s), then V d = V d+ , and

the Bellman equation I.6 becomes V d = BdV d. The Fixed-Point Theorem assures that the
equation V = BdV has a unique solution, and it is thus the value function V d ∈ FB(S,R).
This equation is a characteristic equation of the value function V d for a given stationary
strategy (d). It is worth mentioning that it is also a linear invertible system whose analytical
solution is known.

In order to simplify the next formulae, the operator Ba, for a ∈ A, is introduced:

Ba : FB(S,R) −−−−−−−−−→ FB(S,R)
V 7−−−−−−−−−→ s 7−→ r(s, a) + γ

∑
s′∈Ss,a

p
(
s′
∣∣ s, a)V (s′).

Let us also introduce now the Dynamic Programming operator B∗: ∀V ∈ FB(S,R), ∀s ∈ S,

(B∗V )(s) = max
a∈A
BaV (s)

Property I.1.3
The Dynamic programming operator B∗ is also a contracting operator of FB(S,R) whose
contraction is γ.

The proof is given in Annex A.7.
The Fixed-Point Theorem assures that the Dynamic Programming equation

V = B∗V (I.7)

has a unique solution in FB(S,R), denoted by V ∗.
Using this assertion, the following theorem assures that V ∗ is the optimal value function:

Theorem 3
The solution V ∗ of the dynamic programming equation (I.7) is equal to the optimal value
function

V ∗(s) = sup
d∈D∞

V d(s) = sup
d∈D∞

E
[+∞∑
t=0

γt · r
(
St, dt(St)

) ∣∣∣∣∣ S0 = s

]
.
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Let us define the decision rule d∗ : s 7→ a∗ ∈ argmaxa∈A(BaV ∗)(s). The associated station-
ary strategy, i.e. the strategy (d∗t )t∈N ∈ D∞ such that ∀t ∈ N, ∀s ∈ S, d∗t (s) = d∗(s) is
optimal for the criterion (I.4).

The proof is given in Annex A.8. Note that the d∗ maximizes the criterion also among all
history-dependent strategies, i.e. strategies depending on all the previous system states. In-
deed, it can be shown as in the proof of Theorem 1 (i.e. using Property I.1.1) that the value
function (I.4) from a given time step only depends on the current system state and not on the
previous ones: thus there is no need to adapt the returned action with respect to the previous
system states.

If the state space S is finite, the Value Iteration Algorithm 2, directly derived from the
Fixed-Point Theorem, leads to the computation of the optimal value function. This theorem
assures indeed that ∀V 0 ∈ FB(S,R), (B∗)nV 0 −→ V ∗, in the sense of the norm ‖.‖∞, when
n→ +∞.

Algorithm 2: Value Iteration Algorithm for MDP
1 N ← number of iterations;
2 V ← V 0;
3 i← 1;
4 while i 6 N do
5 for s ∈ S do

6 V ′(s)← max
a∈A

r(s, a) + γ
∑
s′∈S

p
(
s′
∣∣ s, a)V (s′)

 (
= (B∗V )(s)

)
;

7 V ← V ′;
8 i← i+ 1;
9 for s ∈ S do

10 d(s) ∈ argmax
a∈A

r(s, a) + γ
∑
s′∈S

p
(
s′
∣∣ s, a)V (s′)

;

11 return V , d

Error analysis

Let us denote by (V i)i>0 the successive functions computed by Algorithm 2 presented there-
after. The optimal value function is denoted by V ∗. First, the following theorem informs us
about the convergence of V N :
Theorem 4 ∥∥∥V N − V ∗

∥∥∥
∞
6

γN

1− γ ·
∥∥∥V 0 − V 1

∥∥∥
∞
. (I.8)

The proof is given in Annex A.9.
However, we are more interested in an error bound of V d, where (d) is the strategy returned

by the algorithm. The control of the strategy error is given by the next theorem:
Theorem 5

∥∥∥V d − V ∗
∥∥∥
∞
6

2 · γN

1− γ

∥∥∥V 1 − V 0
∥∥∥
∞
.
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The proof is given in Annex A.10.
The number of iteration N can be set up using this bound2: if the desired maximal error

is ε > 0, N has to be greater than log
(

ε(1−γ)
2‖V 1−V 0‖∞

)
/
(

log(γ)
)
.

Another classical way to solve an MDP is the use of the Policy Iteration algorithm, also
called Howard’s algorithm [115]: this algorithm converges in a finite number of iterations but
implies to solve at each iteration the linear system (I.6) with d+ = d.

I.1.6 Partially Observable Markov Decision Process

POMDPs generalize MDPs allowing the agent to misperceive, or partially observe, with a
given probability, the current state of the system: the system state s ∈ S is not given as input
to the agent. The latter has to figure it out using the observations o ∈ O of the system received
at each time step.

Definition

A POMDP, in the infinite horizon settings, is defined by a 8-tuple < S,A,O, T,O, r, b0, γ >:

• S the finite set of system states: the current state st is not given as input to the agent;

• A the finite set of actions which can be selected by the agent;

• O the finite set of observations that the agent may receive: the current observation ot ∈ O
is given as input to the agent;

• T the set of transition probability distributions of the system state: ∀s ∈ S, a ∈ A,
probability distributions p ( . | s, a) ∈ T are defined on S;

• O, the set of observation probability distributions, i.e. the set of probability distributions
over O, defining the probability that the agent observes o′, after selecting action a, if the
system has reached the state s′: ∀s′ ∈ S, a ∈ A, probability distributions p ( . | s′, a) ∈ O
are defined over the set of observations O;

• r(s, a) the reward gathered by the agent in the situation where it selects action a ∈ A
when the system is in state s ∈ S.

• b0, a probability distribution defining the uncertainty on the initial state represented by
the random variable S0: S0 ∼ b0, i.e. ∀s ∈ S, b0(s) = P(S0 = s). This probability distri-
bution is called initial belief state about the system state. It is an epistemic probability
distribution, because it estimates the actual initial system state, since it is not available
for the agent.

Note that the set of system states S is assumed to be finite here: this is a sufficient assump-
tion for the robotic mission features we would like to model, and a classical way to define
POMDPs. Previously, in the Fully Observable case (MDP, see Section I.1.2), the space S was
assumed countable, which is a less restrictive assumption (if S is countable, it may be infinite):
the main results about the POMDP resolution comes from the results of Section I.1.2 about
(Fully Observable) MDPs with countable state space S. The finite set of the observations O
and the set of the observation probability distributions O, are both new in the Partially Ob-
servable model in comparison with the Fully Observable MDP model. However, the transition

2The standard VI algorithm uses the distance between two successive value functions for the stopping
criterion (while loop): this distance is related to the distance between the current value function and the
optimal one using another result of Banach’s contraction theorem (see [115]).
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P(S0 = s0) = b0(s0)

Figure I.3 – Influence Diagram of a POMDP and its belief updating process: black circles represent
successive system states St, blue ones represent successive observations Ot, red squares are selected
actions at, and yellow diamonds are the associated rewards. Green circles at the top of the figure
are the successive belief states Bt constituting the belief updating process, computed using the update
Bt+1 = u(Bt, at, Ot+1). Just like the wavy lines leading to rewards, the green dotted lines represent
a deterministic influence. The Bayesian Network resulting from removing belief states and rewards,
asserts that ∀t > 1, St+1 ⊥⊥ {S0, S1, O1, . . . , St−1, Ot−1 } | {St, At }, where At represents the action at
time step t seen as a random variable. As well, ∀t > 1, Ot is independent from all other variables
conditional on {St, At }.

probability distributions T , the finite set of actions A and the reward function r : S ×A → R,
were already introduced in the section about MDPs.

Consider a plan (at )t∈N ∈ AN. Initially, the system is in state s0 with probability b0. Next,
just like the MDP model, at each time step (t = 0, 1, . . .) the system is in state st ∈ S, the
agent selects action at ∈ A and the system state changes, reaching st+1 ∈ S according to the
probability distribution p ( . | st, at ). The agent gets the reward r(st, at) and also finally gets
the observation ot+1 with probability p (ot+1 | st+1, at ) = P (Ot+1 = ot+1 | St+1 = st+1, at ):
for each time step t > 1, the observation random variable Ot is such that Ot ∼ p ( . | st, at−1 ),
where p ( . | st, at−1 ) ∈ O is the probability distribution over the observations. The bottom of
Figure I.3 fully sums up the definition of this process: the belief updating process in green at
the top of this figure is defined in the next section.

I.1.7 The belief updating process

The independence assumptions highlighted by the Bayesian Network (as a first step, the black
straight-lined arrows and associated nodes, and finally, the dashed green ones too) of Figure I.3,
assert that the probability distributions defining the POMDP fully describe the uncertainty
related to the system: at time step t > 1, the probability that the t first observations are
(o1, . . . , ot) and the t + 1 first system states are (s0, . . . , st) conditional on the t first selected
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actions (a0, . . . , at−1) is

P (S0 = s0, . . . , St = st, O1 = o1, . . . , Ot = ot | a0, . . . , at−1 )

= b0(s0) ·
t−1∏
i=1

p (si+1 | si, ai ) ·
t−1∏
i=1

p (oi+1 | si+1, ai ) .

Let us define the belief updating process which is classically a basis for the strat-
egy computation: at time step t ∈ N, if the observation sequence from the begin-
ning is (o1, . . . , ot) ∈ Ot given as input to the agent, and if the successive selected
actions are (a0, . . . , at−1) ∈ At, the belief state at time step t is the probability dis-
tribution of the system state conditioned on the observation and action sequences.
Definition I.1.3 (Belief State and Information)

The belief state at time step t is the function bt : S → R defined as

bt(s) = P (St = s | O1 = o1, . . . , Ot = ot, a0, . . . , at−1 ) = P (St = s | It = it ) , (I.9)

where it = {o1, . . . , ot, a0, . . . , at−1 }, is the information gathered by the agent at time
step t. The random variable version of it is denoted by It = {O1, . . . , Ot, a0, . . . , at−1 }.

The belief state at time step t is thus the a posteriori probability distribution of the sys-
tem state, given the initial probability distribution b0 and the probability distributions
O and T defining the POMDP, and conditional on the information it. The belief pro-
cess, which is the sequence of belief states, can be computed recursively using Bayes rule.
Theorem 6

If the belief state at time step t is bt, the selected action is at ∈ A, and the next observation
is ot+1, the next belief state bt+1 is computed as follows:

bt+1(s′) =

∑
s∈S

p
(
ot+1 | s′, at

)
· p
(
s′
∣∣ s, at ) · bt(s)∑

s̃∈S

∑
s̃′∈S

p
(
ot+1 | s̃′, at

)
· p
(
s̃′
∣∣ s̃, at ) · bt(s̃) . (I.10)

This formula is called the belief update, and since the belief state bt+1 is shown to be a
function of bt, at and ot+1, we denote it by

bt+1 = u(bt, at, ot+1).

The proof is given in Annex A.11.
The belief update formula (I.10) is more simply written as

bt+1(s′) ∝
∑
s∈S

p
(
ot+1 | s′, at

)
· p
(
s′
∣∣ s, at ) · bt(s)

as
∑
s̃∈S

∑
s̃′∈S

p
(
ot+1 | s̃′, at

)
· p
(
s̃′
∣∣ s̃, at ) · bt(s̃) is nothing more than a normalization constant.

Note that b0 may be seen as the actual value of a random variable B0, like the value s0
of the random variable S0 in the MDP section I.1.4: P(B0 = b0) = 1. Now, if Bt is a random
variable representing the belief state at time t, Bt+1 = u

(
Bt, at, Ot

)
is a random variable as

a function of random variables. In the top of Figure I.3 the belief process is represented by
the belief state variables (Bt)t>0: this figure highlights the links between the belief process
and the POMDP process (green dotted arrows). More formaly the belief state variable Bt is
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Bt(s) = P (St = s | It ) = E
[
1{St=s}

∣∣∣ It ], ∀s ∈ S, i.e. the conditional expectation3 of the
characteristic function of the set {St = s} ⊆ Ω.

I.1.8 A belief dependent value function

As the agent has only access to the information it = {o1, . . . , ot, a0, . . . , at−1 } at time step
t > 1, the sequence of decision rules (dt)t∈N is such that ∀t ∈ N, dt : it 7→ a ∈ A. Let us present
the criterion, or value function, which has to be maximized by choosing the right strategy: for
an initial belief state b0, which defines the probability distribution of S0, the value function
for an infinite horizon and a strategy based on the current information (dt)t∈N, is the expected
discounted total reward:

V d(b0) = E

∑
t>0

γt · r
(
St, dt(It)

) . (I.11)

The following work leads to a formulation of the value function where the belief update
process (Bt)t∈N appears. It considers as well the action sequence as a sequence of random
variables: (At)t∈N. It covers then the case At = dt(It) proposed in the value function definition
(I.11). The information random variable It becomes then {O1, . . . , Ot, A1, . . . At }. Using Fubini
theorem and the linearity of the probabilistic expectation,

V d(b0) =
∑
t>0

γt · E [r(St, At) ]

=
∑
t>0

γt · E
[
E [r(St, At) | It ]

]
as a consequence of Definition A.1

=
∑
t>0

γt · E
[
E
[∑
s∈S

r(s,At) · 1{St=s}

∣∣∣∣∣ It
]]

=
∑
t>0

γt · E
[∑
s∈S

r(s,At) · E
[
1{St=s}

∣∣∣ It ]
]

(I.12)

=
∑
t>0

γt · E
[∑
s∈S

r(s,At) ·Bt(s)
]

by definition of Bt

=
∑
t>0

γt · E [r(Bt, At) ] (I.13)

= E

∑
t>0

γt · r(Bt, At)


where the belief reward function r : (b, a) 7→ r(b, a) :=

∑
s r(s, a) · b(s) is introduced in line

(I.13). Line I.12 uses the linearity of the conditional expectation and Property A.1 (as a
function of It, At = dt(It) is σ(It)-measurable, see Property A.3).

Another way to see that the expectation of the discounted reward is equal to the expected
discounted belief reward is to compute it conditionally on the action sequence:
Theorem 7

E
[
r(St, At) | Ât = ât

]
= E

[
r(Bt, At) | Ât = ât

]
. (I.14)

using the notations Ât = {A0, . . . , At } and ât = {a0, . . . , at }.

The proof is given in Annex A.12.
3The general definition of the probabilistic conditional expectation (as a random variable) is given in Annex,

Definition A.1.
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I.1.9 A POMDP as a belief-MDP

In this section a POMDP is expressed as a MDP, whose states are the belief states: the resulting
MDP is denoted by 〈S̃,A, T̃ , r̃, s̃0, γ〉. The state space S̃ is the set of all reachable belief states
from b0, denoted by PSb0 . This set is countable: indeed, as A and O are finite, each reachable
belief state has a finite number of possible successors. As there is only one initial belief state,
each set of belief states generated for each time step is finite. Numbering them is thus as easy
as numbering each belief state of each successive finite set, following the time index t. The set
of all probability distributions is denoted by PS : thus, PSb0 ⊂ PS .

Let bt be a given belief state, i.e. a probability distribution in PSb0 . The sequence (Bt)t∈N
is a sequence of random variables: as highlighted by the belief update (I.10), if Bt = bt, and
the selected action is at, the value of the next variable Bt+1 is a deterministic function of the
observation Ot+1.

Before defining the belief-MDP, the belief process is shown to be a Markov process:
Theorem 8
∀a ∈ A,∀b′ ∈ PSb0 ,

P
(
Bt+1 = b′

∣∣ It = it, a
)

= P
(
Bt+1 = b′

∣∣ Bt = bitb0 , a
)
, (I.15)

where bitb0 is the current belief state if the initial belief is b0 and the information gathered
is it.

The proof is given in Annex A.13.
As highlighted by equation (21) in the proof, if Bt = bt, the probability that the next belief

Bt+1 is bt+1, is the sum of all probabilities of the observations o′ such that u (bt, at, o′ ) = bt+1,
i.e. of the observations leading to the belief state bt+1: it defines the transition probability
distributions of the belief process, i.e. elements of T̃ , as follows: ∀t > 0,

p (bt+1 | bt, at ) = P (Bt+1 = bt+1 | Bt = bt, at )
=

∑
o′∈O s.t.

u(bt,at,o′)=bt+1

P
(
Ot+1 = o′

∣∣ Bt = bt, at
)

=
∑

o′∈O s.t.
u(bt,at,o′)=bt+1

∑
(s,s′)∈S2

p
(
o′
∣∣ s′, at ) · p (s′ ∣∣ s, at ) · bt(s) (I.16)

=
∑

o′∈O s.t.
u(bt,at,o′)=bt+1

p
(
o′
∣∣ bt, at ) .

where
∑

(s,s′)∈S2 p (o′ | s′, at ) · p (s′ | s, at ) · bt(s) is denoted by p (o′ | bt, at ).
Finally, the reward associated with the belief state bt is defined as previously

r̃ : PSb0 ×A → R
(b, a) 7→

∑
s∈S r(s) · b(s),

(I.17)

and the initial state denoted by s̃0 is the belief state b0.
As B0 = b0, we can write that P(B0 = b0) = 1, and then previous section demonstrates

that

E

∑
t>0

γt · r
(
St, dt(It)

) = E

∑
t>0

γt · r
(
Bt, dt(It)

) ∣∣∣∣∣∣ B0 = b0

 .
The right part of the equation is the value function of the MDP 〈S̃,A, T̃ , r̃, s̃0, γ〉. As high-
lighted by Dynamic Programming exposed in the sections I.1.3 and I.1.4, the criterion may
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vary for two belief states, but not if the information varies always leading to the same belief
state: action sequence has to be chosen as a sequence of functions of the current belief state,
i.e. a maximizing action sequence (At)t>0 is given by a strategy (dt)t>0: At = dt(Bt). As this
criterion can be computed directly with the belief-MDP model 〈S̃,A, T̃ , r̃, s̃0, γ〉, no informa-
tion is lost in focusing our efforts in solving the belief-MDP instead of the initial POMDP
〈S,A,O, T,O, r, b0, γ〉 whose criterion is the left part of the equation.

The translation of a POMDP 〈S,A,O, T,O, b0, γ〉 into the so-called belief-MDP
〈S̃,A, T̃ , r̃, s̃0, γ〉 is summed up here:

• S̃ = PSb0 , the set of all reachable belief states from the initial one b0;

• T̃ contains all transition probability distributions for belief states: ∀a ∈ A, ∀b ∈ PSb0 , the
belief transition probability distribution defined by equation (I.16), p ( · | b, a) is in T̃ ;

• the reward function r̃ is defined by the equation (I.13),

• the initial state s̃0 = b0.

Note that the action set A, as well as the discount factor γ remain the same. Note also that
this belief-MDP fulfills the conditions defined in Section I.1.4. First, S̃ = PSb0 is countable.
Second, the successors of bt for action a ∈ A form the set

{
u (bt, a, o′ ) ∈ PSb0

∣∣∣ o′ ∈ O}, which
is finite as O is finite. For each b ∈ S̃ and a ∈ A, a finite number of belief states b′ ∈ S̃ is such
that p (b′ | b, a) > 0, i.e. ∀b ∈ S̃, ∀a ∈ A, the support of the transition probability distribution
p ( · | b, a) is finite: ∃S̃b,a ⊂ S̃, such that #(S̃b,a) < +∞, and ∀b′ ∈ S̃ − S̃b,a, p (b′ | b, a) = 0,
making the transition function T̃ of the MDP 〈S̃,A, T̃ , r̃, s̃0, γ〉 satisfying the condition stated
in Section I.1.4.

Bellman Equation I.5 stated in page 32 can be rewritten in the context of POMDPs: given
a strategy (dt)t>0, ∀b ∈ S̃,

V d(b) =
(
BdV d+ ) (b)

= r̃
(
b, d0(b)

)
+ γ ·

∑
b′∈S̃b,d0(b)

p
(
b′
∣∣∣b, d0(b)

)
· V d+(b′)

=
∑
s∈S

r̃
(
s, d0(b)

)
· b(s) + γ ·

∑
o′∈O

p
(
o′
∣∣∣ b, d0(b)

)
· V d+

(
u
(
b, d0(b), o′

))

using transition formula (I.16), and where u is the update function defined in Theorem 6.
The Dynamic Programming operator is obtained adding maxa∈A at the beginning, and

replacing d0(b) by a ∈ A (see the Dynamic Programming equation I.7):

B∗V (b) = max
a∈A

∑
s∈S

r(s, a) · b(s) + γ ·
∑
o′∈O

p
(
o′
∣∣ b, a) · V (u(b, a, o′)

) . (I.18)

The Dynamic Programming Equation V ∗ = B∗V ∗ characterizes

sup
d∈D∞

V d(b) = sup
d∈D∞

E
[+∞∑
t=0

γt · r̃
(
Bt, dt(Bt)

) ∣∣∣∣∣ B0 = b

]
.

Given the fact that some optimal MDP strategies are Markovian for additive criteria (i.e. only
depends on the time step and the current system state), some optimal POMDP policies only
depend on the current belief state, or equivalently on the full history of observations.
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I.1.10 Solving a POMDP

Given an action a ∈ A, the reward r̃ of a belief state b ∈ PS is a linear function of the belief
state b: r̃(b, a) =

∑
s∈S r(s, a) · b(s) = 〈r̃a, b〉RS , where r̃a is the vector from RS such that for

each index s ∈ S, the value is r(a, s) ∈ R. The function (x, y) 7→ 〈x, y〉RS is the classical scalar
product of x and y in the vector space RS .

For each belief state b ∈ PS , the value V 0(b) = maxa∈A r̃ (b, a), is the optimal expected
reward for an horizon 0 (only one decision step), starting with the belief state b. This function
is PieceWise Linear and Convex (PWLC), i.e. there exists a finite set of vectors Γ ⊂ RS such
that V 0(b) = maxα∈Γ〈α, b〉RS . As shown by R D. Smallwood and E J. Sondik [135] successive
V i = B∗V i−1 are PWLC, i.e. V i(b) = maxα∈Γ〈α, b〉RS , where α ∈ RS is called “α-vector”:
Theorem 9

PWLC functions remain PWLC after the application of the operator B∗. More specifically,
if a function V : PS → R is PWLC, i.e. such that

V (b) = max
α∈Γ
〈α, b〉RS = max

α∈Γ

∑
s∈S

α(s) · b(s) with Γ ⊂ RS ,#Γ < +∞,

then, ∀b ∈ PS , (
B∗V

)
(b) = max

α′∈Γ′
〈α′, b〉RS = max

a∈A
max

(αo)∈ΓO
〈αa,(αo), b〉RS , (I.19)

with the new α-vectors αa,(αo) ∈ Γ′ defined as

αa,(αo)(s) = r(s, a) + γ ·
∑

o′∈O,s′∈S
p
(
o′
∣∣ s′, a) · p (s′ ∣∣ s, a) · αo′(s), (I.20)

where (αo) ∈ ΓO is the notation for a vector such that the coordinates with index o ∈ O
are α-vector αo ∈ Γ.

The proof is given in Annex A.14. Figures I.4 and I.5 represent examples of PWLC value
functions

This result inspired many POMDP solvers. Indeed, it makes possible to compute the op-
timal value function and the associated strategy in finite horizon settings, and to approach
them for an infinite horizon POMDP, through a few modifications of the Value Iteration al-
gorithm, Algorithm 2: while the state space is infinite, the value function is summed up in
a set of α-vectors. Let us start with a PWLC function V 0(b) = max

α∈Γ0

∑
s∈S

α(s) · b(s), where

Γ0 is the initial set of α-vectors. In order to perform the same computations as in the fi-
nite horizon case, it is possible to start with the reward vectors as initial α-vectors: Γ0 ={
α ∈ RS

∣∣∣ ∀s ∈ S, α(s) = r(s, a) with a ∈ A
}
. The function encoded by Γ0 is in this case the

optimal initial reward for an agent whose belief state is b: V 0(b) = maxα∈Γ0
∑
s∈S α(s) · b(s) =

maxa∈A
∑
s∈S r(s, a) ·b(s) = maxa∈A ES∼b [r(S, a) ]. Iterations of the operator B∗ starting from

V 0 create a sequence of functions (V i)i∈N whose theoretical limit is sup(d)∈D∞ V
d as shown in

Section I.1.4: here, each function of the sequence can be summed up with a finite set of alpha
vectors, which makes computations possible in practice.

Given a number of iterations N for a specified error bound ε > 0 (see the error analysis
in Section I.1.5), Algorithm 3 leads to a value function in the form of a set of α-vectors Γε:
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Figure I.4 – Example of useful alpha vectors (red), value function PWLC (thick blue), and useless (bad)
alpha vectors (dotted green) of a POMDP at a given iteration: the state space is S = {sA, sB }: x-axis
represents b(sA) and y-axis represents V (b). As #S = 2, b(sB) = 1− b(sA).
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Figure I.5 – Value function PWLC at a given iteration when the state space is S = {sA, sB , sC }:
x-axis represents b(sA), y-axis represents b(sB) and z-axis represents V (b). As #S = 3, b(sC) =
1− b(sA)− b(sB). V (b) is the maximum of a set of hyperplans.
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V ε(b) = maxα∈Γε
∑
s∈S α(s) · b(s). The associated strategy, approximately optimal, is

dε(b) ∈ argmax
a∈A

max
(αo)∈(Γε)O

〈αa,(αo), b〉RS

∈ argmax
a∈A

max
(αo)∈ΓOε

∑
s∈S

r(s, a) + γ ·
∑
o′∈O

∑
s′∈S

p
(
o′
∣∣ s′, a) · p (s′ ∣∣ s, a) · αo′(s′).

At execution, if the agent has a belief state b, and the α-vector αa,(αo) is such that ∀α ∈ Γε,
〈αa,(αo), b〉RS > 〈α, b〉RS , then action a is approximately optimal (with error ε).

Algorithm 3: Value Iteration Algorithm for POMDPs
1 Γ← Γ0;
2 i← 1;
3 while i 6 N do
4 for a ∈ A, (αo′) ∈ ΓO do
5 for s ∈ S do
6 α(s)← r(s, a) + γ ·

∑
o′∈O

∑
s′∈S

p
(
o′
∣∣ s′, a) · p (s′ ∣∣ s, a) · αo′(s′);

7 Γ′ ← {Γ′, α};
8 Γ← Γ′;
9 i+ +;

10 return Γ;

This algorithm is really naive since the number of α-vectors increases as a double ex-
ponential with iterations: if ∀n ∈ N, Γn is the set of α-vectors at the end of iteration n,
and gn = #Γn, then gn+1 = #A · g#O

n . Thus, as #A is the initial number of α-vectors,
gn = (#A)

∑n−1
i=0 (#O)i · (#A)(#O)n

A first improvement consists in removing, at each iteration i = 1, . . . , N , dominated α-
vectors αbad ∈ Γi, i.e. α-vectors such that maxα

∑
s∈S α(s) ·b(s) >

∑
s∈S αbad(s) ·b(s), ∀b ∈ PS :

Cassandra’s algorithms use linear programs to prune these dominated α-vectors [28, 27].
Whereas the resolution of finite state MDPs (MDPs with #S <∞) is a P-complete problem

[103], solving a finite horizon POMDP is PSPACE-hard [103], and solving an infinite horizon
POMDP is undecidable [92]. These theoretical complexities are a faithful representation of the
difficulty of solving POMDPs in practice. Algorithm 3 or Cassandra’s improvements [28, 27]
solve only really small POMDPs, i.e. POMDPs with a few system states and observations. For
instance in the case of robotic mission problems, the number of system states may be quite
big, as well as the number of observations, and classical computations are intractable: other
computation methods are necessary to compute efficiently a satisfactory strategy. The next
section is devoted to the presentation of the most notorious algorithms producing approximate
stategies within reasonable time.

I.1.11 Upper and lower bounds on a value function

This section is meant to sum up the main good recipes to approximate POMDP optimal
strategies, as strategy computation is a difficult task in practice and theoretically intractable
[103, 92].

First consider V̂ and Ṽ two functions mapping the set of all probability distributions PS
to R. Suppose that ∀b ∈ PS , V̂ (b) 6 Ṽ (b). Then, ∀b ∈ PS ,(

B∗V̂
)
(b) = max

a∈A

{∑
s∈S

r(s, a) · b(s) + γ ·
∑
o′∈O

p
(
o′
∣∣ b, a) · V̂ (u(b, a, o′)

) }
6
(
B∗Ṽ

)
(b).
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Thus, if ∀b ∈ PS , V (b) 6 V ∗(b), i.e. if V is a lower bound of the optimal value function V ∗,
∀b ∈ PS ,

(
B∗V

)
(b) 6

(
B∗V ∗

)
(b) = V ∗(b). As well, if V is an upper bound of the optimal

value function, ∀b ∈ PS ,
(
B∗V

)
(b) >

(
B∗V ∗

)
(b) = V ∗(b). This means that the iterations of

the Dynamic Programming operator B∗ on a lower (resp. upper) bound of V ∗ return a lower
(resp. upper) bound of V ∗.

Defining rmin = mins∈S,a∈A r(s, a), the constant function V0(b) =
∑
t>0 γ

t · rmin = rmin
1−γ ,

∀b ∈ PS , is an example of initial lower bound of the optimal value function: the worst reward
is obtained at each time step. The only α-vector representing this function is α0(s) = rmin

1−γ ,
∀s ∈ S.

Let us start from an initial set of α-vectors denoted by Γ0, defining a lower bound of the
optimal value function, i.e. such that V0(b) = maxα∈Γ0

∑
s∈S α(s) · b(s) 6 V ∗(b): for instance

Γ0 = {α0 }. The α-vectors α ∈ Γ1 computed using the current α-vector set Γ0 and the equation
(I.20) of Theorem 9, take part in the definition of V1(b) =

(
B∗V0

)
(b). As noted above, V1 is

also a lower bound: V1(b) = maxα∈Γ1

∑
s∈S α(s) · b(s) =

(
B∗V0

)
(b) 6 V ∗(b), ∀b ∈ PS . Thus, as

V0 and V1 are lower bounds of V ∗, max
{
V0, V1

}
too, i.e. maxα∈Γ0∪Γ1

∑
s∈S α(s) ·b(s) is a lower

bound of V ∗(b), and the best available at the moment. Hence, it is sufficient to maintain a set
of α-vectors Γ: the α-vectors computed from Γ may be added to Γ, and the dominated ones
may be removed. Because of the convergence of

(
(B∗)nV0

)
n∈N

towards V ∗, the computation
of new α-vectors tends to improve the lower bound.

The presented machinery of incremental improvement of the lower bound of V ∗ using new
α-vectors cannot be adapted to compute an upper bound: starting from an upper bound V0,
if the computed α-vectors represent a function V1 (also an upper bound of V ∗) which tends
to be closer to V ∗ than V0 (because of the convergence), then max

{
V0, V1

}
is not a better

upper bound: it is actually the worst one. However, it is convenient to consider the maximum
over all computed alpha vectors in practice, that is why min

{
V0, V1

}
cannot be considered.

Another method must be used to maintain and improve an upper bound of the value
function: an upper bound V 0 of the optimal value function is only computed over a set of
n > 0 belief states, leading to the belief-value mappings {bi, vi }ni=1, where V 0(bi) = vi and
(bi, vi) ∈ PS × R. As the limit of a sequence of convex functions is convex, the optimal value
function V ∗ is known to be convex. As the mappings are such that vi > V ∗(bi), and as V ∗
is convex, any convex combination of the belief states (bi)ni=1 has an optimal value lower or
equal to the same convex combination of the upper bound values (vi)ni=1. Indeed, if (wi)ni=1
are convex coefficients, i.e.

∑n
i=1wi = 1 and ∀i ∈ {1, . . . , n}, wi > 0, then the optimal

value function at
∑n
i=1wi · bi is bounded by the convex combination of (vi)ni=1 with respect to

(wi)ni=1: V ∗(
∑n
i=1wi ·bi) 6

∑n
i=1wi ·V ∗(bi) 6

∑n
i=1wi ·vi. In order to get an upper bound of V ∗

defined on a larger set of belief states, the belief-value mappings {bi, vi }ni=1 may be completed
with the pairs (b, v) such that b ∈ PS is in the convex hull of (bi)ni=1, and v is the least
value of

∑n
i=1wi · vi, where (wi)ni=1 are convex coefficients such that b =

∑n
i=1wi · bi. These

coefficients defining the interpolation of the belief-value mappings can be computed using
linear programming or with approximate computations [73, 113]. Finally, consider bj ∈ (bi)ni=1
such that ∀a ∈ A, ∀o′ ∈ O, u(bj , a, o′) is in (bi)ni=1. The upper bound value vj associated to
bj can be replaced with (B∗V 0)(bj), computed using the equation (I.18) defining the Dynamic
Programming operator B∗:

(B∗V 0)(bj) = max
a∈A

{∑
s∈S

r(s, a) · bj(s) + γ ·
∑
o′∈O

p
(
o′
∣∣ bj , a)V 0

(
u(bj , a, o′)

) }
,

where V 0 (u(bj , a, o′)) = vk with u(bj , a, o′) = bk ∈ (bi)ni=1. This value update replaces then the
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Figure I.6 – Bounds of the optimal value function V ∗. The latter is represented by the regular thick
red line. The lower bound V ∗ is the piecewise linear function represented by the thick blue line. Useful
α-vectors are represented by the thin red lines, and dominated ones are represented by dotted green lines.
The upper bound V ∗ is represented by the piecewise linear dashed orange line: the squares represent the
belief-value mappings.

value vj and leads to an improved upper bound of the optimal value function in bj . A famous
and simple method to compute an initial upper bound of V ∗ is called the QMDP method [90]:
it consists in computing an optimal value function for the underlying MDP i.e. for the MDP
built ignoring the observations and the observation probabilities, and considering that the
state is fully observable. An MDP strategy is searched among a more general set of functions
of the data available at execution, than a POMDP strategy. First, the reward is defined on the
system states and the actions, which are directly available during execution in fully observable
settings. Second, as the uncertainty over the observations is conditional on the system state,
the observation random variables Ot can be written as measurable functions of the state and
action variables St and At−1: the functions from the actions and the observations consist
thus of a subset of the functions from the system states and the actions. We can conclude
that, the optimal value function of the POMDP starting from the deterministic belief state
bA0 (s) = 1{ s=sA } with sA ∈ S, namely

V ∗(bA0 ) = max
(dt)t>0 s.t.
dt:It→A

ES0∼bA0

∑
t>0

γt · r
(
St, d(It)

) ,
is less than or equal to the optimal value function for the associated MDP starting from sA:

V ∗MDP (sA) = max
(dt)t>0 s.t.
dt:S→A

E

∑
t>0

γt · r
(
St, d(St)

) ∣∣∣∣∣∣ S0 = sA

 .
Indeed, the maximum operator of the latter is performed on a set of functions including the one
used to maximize the POMDP value function at bA0 (first equation). Hence, an initial upper
bound of the POMDP optimal value function V ∗ can be computed for the deterministic belief
states i.e. the belief state b ∈ PS such that b(s) = 1{ s=sA } with sA ∈ S: V0(b) > V ∗MDP (sA).
The convex hull of these deterministic belief states is the full set of probability distributions
PS . Thus, using the previous interpolation trick, an upper bound of V ∗ is available in the full
belief space PS . Other methods to compute bounds for V ∗ are available for instance in [72].
Figure I.6 illustrates the described bounds.
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I.1.12 POMDP solvers

Some recent POMDP solvers are said to be point-based as they maintain a set of belief states
(bi)ni=1 (the belief points) with associated α-vectors (αi)ni=1. The current approximation V of
the optimal value function is described by (αi)ni=1: ∀b ∈ PS , V (b) = maxni=1

∑
s∈S αi(s) · b(s).

Each belief state of (bi)ni=1 is such that V (bi) =
∑
s∈S bi(s) · αi(s). The point-based Bellman

backup of a belief state bi is the replacement of its α-vector αi by one of the new α-vectors
(Equation I.20) which maximize equation (I.19) with the belief state bi, i.e. replacing it with
α′ ∈ argmaxα′∈Γ′〈α′, bi〉RS .

The first point-based algorithm was PBVI (Point-Based Value Iteration) [108] which starts
with a single belief point b0. At a given iteration, the point-based Bellman backup of each belief
state of the current set (bi)ni=1 is computed and lead to a new set of α-vectors (v′i)ni=1. This
operation is repeated until the convergence of the α-vectors. Next, for each belief state in
(bi)ni=1, one successor is selected: the most distant one from (bi)ni=1, with respect to a given
distance metric. These successors are added to the set, which becomes (bi)2n

i=1, and the next
iteration begins.

Another point-based POMDP solver is the Perseus solver [137]: this solver starts running
trials of random exploration of the belief space, sampling a ∈ A and observation o′ ∈ O at
each time step of a trial to compute the next belief state b′ = u(b, a, o′) from the current one
b ∈ PS . The set of all reached belief states is (bi)ni=1 and does not evolve anymore. A lower
bound PWLC V is used to approach the value function: the associated set of α-vectors is
denoted by Γ. At each iteration, B is initialized as a copy of (bi)ni=1, and Γ = ∅. While B 6= ∅,
an arbirary belief state b is selected in B, and the associated new α-vector α′ is computed with
the point-based Bellman backup on b and using Γ. If 〈α′, b〉RS > V (b), all the belief states
whose value is improved by α′, i.e. the belief states b̃ ∈ B such that 〈α′, b̃〉RS > V (b̃), are
removed from B. The new α′ is added to Γ. Otherwise, if 〈α′, b〉RS < V (b), b is removed from
B and an α-vector from Γ such that α̃ ∈ argmaxα∈Γ〈α, b〉RS is added to Γ. When B = ∅, Γ is
set to Γ, and a new iteration begins.

The HSVI solver (Heuristic Search Value Iteration) [136] is also a point-based algorithm.
This solver maintains both an upper and a lower bound on V ∗: V and V . It takes into account
the fact that the error of the approximation of V ∗ is less important for much later successors
of b0 ∈ PS , due to the discount factor γ: given an error ε > 0, a sequence of belief states (bt)t>0
is generated from b0 until V (bt) − V (bt) < ε

γt . The generation of the belief sequence is done
selecting actions according to the upper bound: if the current belief state is b, the chosen action
is in argmaxa∈A r(s, a) + γ

∑
o′∈O V

(
u(b, a, o′)

)
. This trick tends to force the improvement of

the upper bound: if the selected action is not optimal, as successors for this action are selected,
the computations will focus on these belief states, and will decrease (improve) the upper bound
for them. As well, the observation selected o′ ∈ O is such that the value V

(
u(b, a, o′)

)
−

V
(
u(b, a, o′)

)
· p (o′ | b, a) is the greatest: the probable belief states for which V and V are

poor bounds are preferred, in order to focus the computational efforts on the belief space
subsets where the bounds are the worst. Then, both bounds are updated starting with the
last reached belief state backward down to time step t0: this order makes these updates more
efficient. The scheme starting with a belief sequence generation, and updating the bounds on
it, is repeated until V (b0)− V (b0) < ε.

The solver SARSOP [84], inspired by HSVI and FSVI [130], refines the generation method
of the belief sequence. First of all, the belief space is clustered using a simple learning technique:
the features are for instance the initial upper bound V0 and the entropy of belief states.
This discretization is used to maintain an estimation of the optimal value function denoted
by V̂ : this estimation is constant over each cluster, equal to the average of the estimated
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optimal value of the belief states in this cluster. Let b be a belief state reached during a
generation of a belief sequence: L1 is a real number such that L1 6 V ∗(b). Let L2 =

(
B∗V

)
(b).

Thus, the lower bound of the optimal value function V on b is likely to be improved by
selecting the next belief state b′ = u(b, a, o′) (where a ∈ A and o′ ∈ O are selected as in
HSVI) if the optimal value for b′ is likely to be large enough for it: that is, if r(b, a) + γ ·(
p (o′ | b, a) · V̂ (b′) +

∑
õ 6=o′ p ( õ | b, a) · V

(
u(b, a, õ)

))
is greater than L = max {L1, L2 }. In

this case, if L′1 is such that L = r(b, a)+γ ·
(
p (o′ | b, a) ·L′1 +

∑
õ 6=o′ p ( õ | b, a) ·V

(
u(b, a, õ)

))
,

the condition V̂
(
u(b, a, õ)

)
> L′1 is a good indicator that the selection of the belief state

b′ is likely to improve the current lower bound at b: if V̂ (b′) > L′1 (and if, as in HSVI,
V (b′) − V (b′) 6 ε

γt ), the belief state b′ is selected and the same test is performed on its
successor knowing that V ∗(b′) is likely to be greater than L′1. In this way, the selected belief
sequences may be longer than in HSVI, as sequence generation continues if the next belief
states are likely to improve optimal value function estimation. Next, when the generation of
the sequence ends, the bound updates start from the last belief state down to b0, following the
generated belief state sequence in the reverse order (as with HSVI). Finally, SARSOP proposes
also another major computational simplification: all the previous belief sequence generations
can be summed up in a tree representing the different transitions b→ u(b, a, o′) and which is
recorded in the memory. Let us define Q(b, a) = r(b, a)+γ ·

∑
o′∈O p (o′ | b, a) ·V

(
u (b, a, o′ )

)
,

and Q(b, a) with the same formula replacing V by V . If b is a belief state, a an action, and
∃a′ ∈ A, ∃b′ ∈ PSb0 such that Q(b, a) 6 Q(b′, a′), then, all the successors of b when selecting
action a are removed from the tree, and the associated α-vectors deleted. Indeed, less stored
α-vectors and belief states speed up the POMDP resolution, as lots of useless computations
are avoided: the computations are focused on the belief states which seem to be in PSb0,∗. The
set PSb0,∗ is the subset of PSb0 containing the belief states reached with an optimal strategy.

While the α-vector (or Sondic’s) representation is used by a large proportion of POMDP
solvers, grid-based POMDP solvers, which does not use it, are also popular algorithms [12, 91,
25, 13]. These solvers are based on a discretization of the belief space PS , which leads to an
MDP over the finite set of discretized belief states: computed strategies map any cluster of
belief states to an action a ∈ A.

Another POMDP solver based on a discretization of the belief space is RTDP-bel [70].
The discretization is only used to store a finite number of values during the computations.
The approximation maintains the approximate optimal value function as a piecewise constant
function: two belief states in the same discretization group have the same value. The algorithm
operates in the same way as RTDP (Real Time Dynamic Programming) [7], a Goal-MDP solver
which converges to the optimal value function without considering all the system states. A
Goal-MDP [11] is an MDP all reward values of which are negative; it includes also a subset
of the system state G ⊂ S called set of goals. The system states in G are absorbing and
cost-free: ∀(s, a) ∈ G × A, r(s, a) = 0 and p (s | s, a) = 1. The criterion of a Goal-MDP is
the expected (undiscounted) total reward, i.e. the expectation of the sum of the rewards over
time steps without factors γt: indeed, the sum of costs is guaranteed to converge provided
that there exist proper strategies (i.e. reaching goals with probability 1) and no positive-
cost cycles in the MDP graph. As well, a Goal-POMDP is a POMDP with only negative
rewards and a set of goals G which are absorbing, cost-free and fully observable system states
i.e. O contains G too, and ∀s′ ∈ G, ∀a ∈ A, ∀t > 0, P (Ot+1 = s′ | St+1 = s′, a) = 1. In
fact RTDP-bel is a Goal-POMDP solver. It initializes the value function V with a (piecewise
constant) upper bound called admissible heuristic. Then, the repetition of trials starting from
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b0 improves the approximation of the optimal value function and the associated strategy. At
a given stage of a trial, the current belief state is denoted by b. The Q-value is Q(b, a) ={
r(b, a) +

∑
o′∈O p (o′ | b, a) · V

(
u(b, a, o′)

)}
. An action a ∈ argmaxãAQ(b, ã) is selected, and

V (b) is updated to maxa∈AQ(b, a). Then s is sampled from b, as well as s′ according to
p (s′ | s, a), and o′ using p (o′ | s′, a). If b′ = u(b, a, o′) is such that ∀s ∈ S \ G, b′(s) = 0,
then another trial begins. Otherwise, the next stage of the trial considers b′. As any classical
(discounted) POMDP (Section I.1.6) can be translated into a Goal-POMDP [15], RTDP-bel
can solve any POMDP.

Finally, POMCP [132] is the partially observable counterpart of the MDP solver UCT [80].
The latter is based on the UCB (Upper Confidence Bound) strategy for stochastic bandits [5]
and is an instance of MCTS (Monte-Carlo Tree Search) [34]. A decision tree whose nodes are the
reached states and arrows are the actions, is built during simulations to maintain at each node
the counts N(s, a) of the visits to the couple (s, a), for each action a ∈ A and for each reachable
system state. The estimation V of the optimal value function is computed by Monte-Carlo sim-
ulations. The Q-value is Q(s, a) = {r(s, a) + γ ·

∑
s′∈S p (s′ | s, a) · V (s′)}. The UCB-inspired

exploration-exploitation strategy is to select a ∈ argmaxa∈A
{
Q(s, a) + c ·

√
logN(s)
N(s,a)

}
, where

N(s) =
∑
a∈AN(s, a) and c > 0 is the relative ratio between exploration to exploitation:

the more c is small, the more actions with high values are selected (exploitation), the more
c > 0 is large, the more the actions are selected with about the same rate, without pay-
ing attention to the estimated values. The term c ·

√
logN(s)
N(s,a) is meant to force the actions

rarely tried before to be selected (exploration). In the POMCP case, during computations,
the belief state is approximated by an unweighted particule filter Bt(s) ≈ 1

K

∑K
i=1 1Si=s where

∀i = 1, . . . ,K, Si ∼ Bt, and the nodes of the tree represent possible successive pieces of
information it = {a0, o1, . . . , at−1, ot }, instead of the system states like in UCT.

The algorithms presented in this section are part of the state of the art POMDP solvers,
and some of them will be used in the next chapters in order to conduct comparisons with our
work. Now, the second main subject of this thesis is presented: Possibility Theory, and the
qualitative possibilistic counterpart of the Partially Observable Markov Decision Processes.

I.2 Qualitative Possibilistic MDPs
This section presents the uncertainty framework studied in this thesis: namely, the model π-
POMDP. First of all, the Possibility Theory is presented, with a particular emphasis on the
qualitative part of the theory. Qualitative conditioning is then presented, as well as notions of
independence. Finally, the qualitative possibilistic counterpart of the MDPs called Qualitative
Possibilistic MDPs, or π-MDPs are defined, followed by the Qualitative Possibilistic POMDPs,
or π-POMDPs.

I.2.1 Possibility Theory

The “fuzzy sets” introduced by Lotfi Zadeh [153], have been studied by Didier Dubois [39] and
Henri Prade and their contributions have led to the foundation of Possibility Theory [57].

As in Probability Theory, this theory is based on the definition of an uncertainty mea-
sure, called possibility measure. Unlike the probability measure P which is a classical measure
(Definition I.2.1), the possibility measure, denoted by Π, is a fuzzy measure, or capacity. For
simplicity, a fuzzy measure is not supposed to be additive, but just monotone, as highlighted
by Definition I.2.2. In this thesis, Possibility Theory will only concern finite sets such as S and
O, that is why definitions only concern finite sets.
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Definition I.2.1 (Measure)
A classical measure M on the finite set Ω is a function from 2Ω to R+ such that

• M(∅) = 0 (null empty set);

• ∀A,B ⊆ Ω such that A ∩B = ∅, M(A ∪B) = M(A) + M(B) (additivity).

Definition I.2.2 (Fuzzy Measure)
A fuzzy measure M on the finite set Ω is a function from 2Ω to R+ such that

• M(∅) = 0 (null empty set);

• ∀A,B ⊆ Ω such that A ⊆ B, M(A) 6M(B) (monotonicity).

Note that a classical measure is a particular case of fuzzy measure since classical measures are
monotone: if A ⊂ B,

M(B) = M
(

(A ∩B) ∪ (A ∩B)
)

= M(A) + M(A ∩B) >M(A),

where A is the complementary set of A in Ω i.e. A ∩A = ∅, and A ∪A = Ω.
A possibility measure is also a particular case of fuzzy measure:

Definition I.2.3 (Possibility Measure)
A possibility measure on the finite set Ω is a fuzzy measure such that

• Π(Ω) = 1 (normalization);

• ∀A,B ⊂ Ω, Π {A ∪B } = max
{
Π(A),Π(B)

}
(maxitivity).

Probability Theory models the uncertainty due to the variability of events: in practice,
used probabilities are estimated frequencies of events stated as the actual variability model of
events. Another view of this theory is De Finetti’s one [41]: the probability value of an event
is an exchangeable bet, i.e. the value in [0, 1] that a given person is willing to give for the
bet winning 1 if the event is true. However this person takes into account in her/his choice of
value that the bet can be reversed just before verifying if the event is true. Indeed, she/he may
be asked to get the chosen value, and to give 1 if the event is true. As the probability values
depend on a natural person, who wants to guess the actual probability distribution as well as
possible with respect to information she/he knows about the event, they are called subjective
probabilities: that is why the theory based on this definition is called Subjective Probability
Theory.

Possibility Theory is devoted to uncertainty due to a lack of knowledge or imprecision
about an event. Quantitative Possibility Theory can be seen as a special case of imprecise
probabilities i.e. a possibility measure Π represents a set of probability measures defined on Ω,
denoted by PΠ, and each probability measure P ∈ PΠ is a guess about the actual probabilistic
model. The set PΠ is the set of each probability measure P such that ∀A ⊂ Ω, P(A) 6 Π(A).
In this case, possibility measures are thus “inflated” probability measures, in order to model
that frequencies are not well known, as illustrated iin Figure I.7. The possibility measure is
then ∀A ⊂ Ω, Π(A) = maxP∈PΠ P(A).

If the set of probability distributions consists of all the probability distributions defined
on Ω, i.e. the probabilistic model is completely unknown, and then ∀A ⊂ Ω, Π(A) =
maxP∈PΠ P(A) = 1: the ignorant possibility measure is equal to 1 for each set A ⊂ Ω, as
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Figure I.7 – Example of quantitative possibility distributions (thick blue), and some of the associated
probability distributions (thin) i.e. some of the probability measures encoded by the possibility distribu-
tion. Indeed, a quantitative possibility distribution is a upper bound on possible probability distributions,
defining thus a particular crecal set. Distributions are defined on Ω = {a, b, c}.

illustrated in Figure I.7a. On the contrary, if the actual elementary event is known to be ωA,
∀ω ∈ Ω such that ω 6= ωA, Π ({ω}) = P ({ω}) = 0 and Π ({ωA }) = P ({ωA }) = 1, as illus-
trated in Figure I.7d. It is worth noting that there exist some sets of probability distributions
which are not represented by any quantitative possibility distribution: for instance, the set of
probability distributions on Ω = {ωA, ωB }, {P | P(ωA) > 0.1,P(ωB) > 0.1}.

Unlike quantitative ones, Qualitative Possibility Theory uses possibility measures whose
values are defined in any ordered scale. This theory allows us to reason under a lack of quan-
titative information: the only information given by a qualitative possibility measure is the
rank between events i.e. ∀A,B ⊆ Ω, the information “event A is less plausible than event B”,
which is written Π(A) 6 Π(B). Hence qualitative possibility measures Π are often defined as
functions 2Ω → L, where L is a finite set called possibility scale and equipped with a total
order. In this work, and more specifically for the following three chapters of this thesis, the
possibility scale is defined as L =

{
0, 1

k , . . . , 1
}
to simplify notations.

The structure of Possibility Theory is easily understood using the terminology of fuzzy sets.
A classical set A of elements of Ω can be defined through a characteristic (or membership)
function

1A :


Ω → {0, 1}

ω 7→
{

1 if ω ∈ A
0 otherwise.

In practice, some problems may need to be more flexible about the membership of elements
using membership degrees: a fuzzy set A is defined by a characteristic function 1A : Ω → L
whose range of values is not only {0, 1} but may be in a totally ordered set L: 1A(ω) ∈ L is
the membership degree of ω ∈ Ω. If 1A(ω) = 0, then ω /∈ A. If 1A(ω) = 1, then ω ∈ A. And,
finally, if 1A(ω) = λ ∈ L \ {0, 1}, then ω ∈ A with membership degree λ.

Let us define the possibility distribution as π(ω) = Π({ω}): according to Definition I.2.3,
the possibility measure is entirely defined by the distribution π. Consider that the set Ω is
the set of states S. Let S be a variable representing a state of the problem, and whose values
are in S. Consider an expert description of the actual value of S, given for instance in natural
langage: “the state is near state sA ∈ S (in some sense) and is not sB”. This description given
by the expert knowledge leads to a fuzzy set T: 1T(s) is the degree of membership of s ∈ S,
i.e. the degree of how well s respects the description. For instance, in the previous example,
1T(sB) = 0, and 1T(s) > 1T(s′) if s is “closer” (in some sense) to sA than s′. In summary,
the function 1T : S → L gives the degree of similarity of a prototype, which corresponds to
the expert description. It is assumed that at least one state s ∈ S is fully consistent with the
prototype: 1T(s) = 1. Consider again the variable S: its actual value is unknown, but the
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Figure I.8 – Example of two possibility distributions over Ω = {a, b, c, d, e, f, g, h}: π1 (solid blue line)
and π2 (dashed green one), with π2 more specific than π1. The necessity measure N1 associated with
π1 is assessed on the event {d, e, f } ⊂ Ω: the necessity degree is equal to 0.4 = 1 − 0.6, as illustrated
with solid red arrows. The necessity measure N2 associated with π2 is assessed on the same event: the
necessity degree is equal to 0.8 = 1− 0.2, as illustrated with dashed orange arrows.

fuzzy set T associated to the expert description leads to the possibility distribution of this
variable: the possibility distribution π is defined as the membership function of the fuzzy set
T: ∀s ∈ S, π(s) = 1T(s). A possibility distribution of the variable S ∈ S is a characteristic
function of a fuzzy set based on S where the elementary events {S = s} are mutually exclusive:
∀sA 6= sB ∈ S, Π(S = sA, S = sB) = 0.

Now the possibility degree of the event S ∈ {sA, sB }, i.e. of the event “the state is sA or
sB” is Π ({sA, sB }) = max {1T(sA),1T(sB)} = maxs∈{ sA,sB } π(s): this is a maximum, as an
extension of the logical “or” (∨), usually defined on {0, 1} or {>,⊥}, and here defined on L.
This is easily generalized for more than two elementary events: ∀A ⊆ S, Π(A) = maxs∈A π(s),
which is also a consequence of Definition I.2.3. The possibility measure evaluates an event
A ⊆ S by the most plausible elementary event in the event A. Hence, the normalization
condition of Definition I.2.3, becomes maxs∈S π(s) = 1, which looks more like the probabilistic
normalization

∑
s∈S p(s) = 1. As a conclusion, a possibility degree π(s) can be seen as a “non-

surprise” degree, since 1 − π(s) is considered as the “surprise” degree of the event {S = s}:
the more an event is surprising, the more the complementary event is necessary.

Hence, for each possibility measure, a dual measure called necessity can be defined: the
necessity degree of an event increases if the possibility degree of the opposite event decreases.
Definition I.2.4 (Necessity Measure associated to Π)

The necessity measure associated to Π is the fuzzy measure N : 2Ω → [0, 1] such that
∀A ⊂ Ω,

N (A) = 1−Π(A),

where A is the complementary event of A in Ω.

Note that, as N (∅) = 1 − Π(Ω) = 0, and as ∀A,B subsets of Ω such that A ⊆ B, N (A) =
1−Π(A) 6 1−Π(B) = N (B), the necessity is indeed a fuzzy measure.

Note also that if an event A ⊆ Ω is not entirely possible (Π(A) < 1), then this event
is not necessary at all (N (A) = 0). As well, if the necessity degree of the event A ⊆ Ω is
positive (N (A) > 0), then it is entirely possible Π(A) = 1. Indeed, Π(A ∪A) = Π(Ω) = 1 and
Π(A ∪ A) = max

{
Π(A),Π(A)

}
. Thus max

{
Π(A),Π(A)

}
= 1. Then, if Π(A) < 1, Π(A) = 1

and N (A) = 0. As well, if N (A) > 0, Π(A) < 1 and then Π(A) = 1.
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Consider now A,B ⊆ Ω: whereas Π {A ∪B } = max {Π(A),Π(B)},

N (A ∩B) = min {N (A),N (B)} .

Indeed,

N (A ∩B) = 1−Π(A ∩B)
= 1−Π(A ∪B)
= 1−max

{
Π(A),Π(B)

}
= min

{
1−Π(A), 1−Π(B)

}
= min {N (A),N (B)} .

The total ignorance is modeled by a possibility distribution π such that ∀ω ∈ Ω, π(ω) = 1
i.e. any elementary event is possible. In this case, ∀A ⊆ Ω, A 6= Ω, N (A) = 1 − Π(A) =
1−maxω∈A Π(ω) = 0: apart from the universe Ω, no event is necessary.

On the contrary, the perfect knowledge that the actual elementary event is ωA ∈ Ω is
modeled by a possibility distribution π such that π(ωA) = 1 and π(ω) = 0, ∀ω 6= ωA. The
necessity of the singleton {ωA } is also equal to one: N ({ωA }) = 1 − Π({ωA }) = 1. The
elementary event ωA is necessary, and all the other have a null necessity degree: if ωB 6= ωA,
N ({ωB }) = 1−Π({ωB }) = 1− π(ωA) = 0.

These two particular cases give the intuition to formalize the knowledge, or the information,
provided by a possibility distribution. This idea is led by the word specificity:
Definition I.2.5 (Specificity)

A possibility distribution π2 is more specific (i.e. more informative) than another possi-
bility distribution π1, if ∀ω ∈ Ω,

π2(ω) 6 π1(ω).

Both notions of specificity and necessity are illustrated in Figure I.8.
The main concepts of Possibility Theory have been presented. Possibilistic planning models

studied in this thesis are based on conditional possibility distributions and some independence
assumptions, that is why the next section focuses on these notions.

I.2.2 Qualitative Conditioning and Possibilistic Independence

In practice, two kinds of independence between variables can be distinguished. The first one
is the decompositional independence: two variables X ∈ X and Y ∈ Y are said independent
in this sense, if the joint distribution of these two variables can be decomposed into two
marginal distributions (one for each variable) without losing any information provided by the
joint distribution. In the probabilistic framework, variables X and Y are independent in the
decompositional sense, if ∀E ⊂ X , F ⊂ Y,

P(X ∈ E, Y ∈ F ) = P(X ∈ E) · P(Y ∈ F ). (I.21)

The second kind of independence is called the causal independence: a variable X is inde-
pendent of a variable Y in the causal sense, if the distribution of X is not modified when
something about Y is learned i.e. there is no causality from Y towards X, or yet, Y does not
influence X. Note that this independence relation is not necessarily symetric: “Y does not
influence X” does not imply that “X does not influence Y ”. In terms of probability measures,
the causal independence of X from Y can be written ∀E ⊂ X , F ⊂ Y,

P (X ∈ E | Y ∈ F ) = P(X ∈ E). (I.22)
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In Probability Theory, both equations (I.21) and (I.22) are equivalent, if probabilities are
positive, and then the causal independence is symetric: in this theory, decompositional and
causal independence are equal and called simply independence.

In Possibility Theory, Zadeh [152] introduced the non-interactivity independence, or NI-
independence, a decompositional independence inspired from Fuzzy Logic: as the fuzzy gener-
alization of the “and” (∧) operator is the minimum (min), if events A and B do not interact
together, the degree of truth of A∩B (i.e. of the event “A and B occur”), or its possibility de-
gree, is Π(A∩B) = min {Π(A),Π(B)}. The analogy is also possible with the framework of fuzzy
sets, as the fuzzy “intersection” (∩) is represented by the minimum between the membership
functions. This leads to the definition of the NI-independence for variables (X,Y ) ∈ X × Y,
replacing the event A (resp. B) by {X ∈ E } ⊆ Ω with E ⊆ X (resp. {Y ∈ F } ⊆ Ω with
F ⊆ Y):
Definition I.2.6 (Non Interactivity Independence)

Two events A,B ⊂ Ω are NI-independent if

Π (A ∩B ) = min {Π(A),Π(B)} .

Then, two variables X ∈ X and Y ∈ Y are NI-independent if ∀E ⊂ X , F ⊂ Y,

Π(X ∈ E, Y ∈ F ) = min
{

Π(X ∈ E),Π(Y ∈ F )
}
.

Finally, in terms of possibility distributions, it simply asserts that the joint one is equal to
the minimum between the marginal ones: ∀x ∈ X , y ∈ Y,

π(x, y) = min {π(x), π(y)} ,

where π(x) = Π({X = x}), π(y) = Π({Y = y}), and the joint possibility distribution
π(x, y) is Π ({X = x} ∩ {Y = y}).

Note that, as Π is a fuzzy measure, Π is monotone, and then ∀A,B ⊂ Ω, Π(A∩B) 6 Π(A) and
Π(A∩B) 6 Π(B): thus, the inequality Π(A∩B) 6 min {Π(A),Π(B)} is always true, with an
equality when events are NI-independent. Figure I.9 illustrates a joint possibility distribution
π (x, y ) over X × Y whose corresponding variables are not NI-independent, whereas Figure
I.10 represents a similar distribution whose variables are NI-independent. Note that, if a joint
distribution π(x, y) is given, π(x) can be computed from it by marginalization using the max
operator over Y:

π(x) = Π
(
{X = x}

)
= Π

(
∪y∈Y {X = x} ∩ {Y = y}

)
= max

y∈Y
Π
(
{X = x} ∩ {Y = y}

)
= max

y∈Y
π(x, y).

The NI-independence leads to a first qualitative possibilistic conditioning, introduced by
Hisdal [74]. Indeed, the conditional possibility degree of an event A ⊂ Ω given an event B ⊂ Ω,
namely Π(A|B), can be obtained from Π(B) and Π(A ∩ B), as a solution of the following
equation:

Π(A ∩B) = min
{

Π(A|B),Π(B)
}
. (I.23)

Intuitively, once conditioned on event B, event A (or rather “A|B”) does not interact with the
event B anymore. Moreover Equation I.23 is close to the probabilistic equation P (A ∩B ) =
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Figure I.9 – Example of a joint distribution over X × Y = {xA, xB , xC } × {yA, yB , yC } without any
independence.
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Figure I.10 – Example of a joint distribution over X × Y = {xA, xB , xC } × {yA, yB , yC } when X and
Y are NI-independent (no M-independence).
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P(A|B) · P(B) which comes from the definition of the probabilistic conditioning. Possibility
Theory looks very similar to Probability Theory observing that the addition (+) in Probability
Theory becomes a maximum (max) in Possibility Theory, and the multiplication (×) becomes a
minimum (min). However, Quantitative Possibility Theory keeps the multiplication operator
(×) for conditioning and computing joint possibility measures: in this theory, the classical
conditioning is then equivalent to the Dempster rule of conditioning [46], an evidentialist
(BFT, see Introduction) extension of the well-known Bayes rule.

The classical qualitative possibilistic conditioning [58], counterpart of Bayes rule, is the
least specific solution of Equation I.23:
Definition I.2.7 (Qualitative Possibilistic Conditioning)
∀A,B ⊂ Ω, such that Π(B) > 0,

Π (A | B ) =
{

1 if Π(B) = Π(A ∩B),
Π(A ∩B) otherwise. (I.24)

The conditional possibility distributions of the variable X ∈ X knowing variable Y ∈ Y is
thus, ∀x ∈ X , ∀y ∈ Y such that π(y) > 0,

π (x | y ) =
{

1 if π(y) = π(x, y),
π(x, y) otherwise. (I.25)

where π (x | y ) = Π (X = x | Y = y ).

The meaning of the conditioning (I.24) can be explained as follows: when the event A
contains the elementary event which has the higest possibility degree in B, i.e. if Π(B) =
Π(A ∩ B), then Π (A | B ) = 1. Indeed, as conditioning on B assumes that the new set of
possible elementary events (universe) is B, A has the maximal possibility degree among the new
universe B: the possibility measure conditioned on B is normalized, setting to 1 the possibility
degree of most plausible events in B. As qualitative possibility distributions only define a
ranking between the events, the possibility degree of events A such that Π(A ∩ B) < Π(B)
(second case of Equation I.24) are simply set to Π(A ∩ B). As min {Π (A | B ) ,Π(B)} =
Π (A | B ), Equation I.24 is true thanks to this choice.

Defining the qualitative possibilistic conditioning as previously (I.2.7), the non-interactivity
independence (Definition I.2.6) between variables X and Y corresponds to the fact that ∀x, y ∈
X ×Y either the knowledge that the variable X is equal to x does not decrease the possibility
degree of Y = y, or the knowledge that the variable Y is equal to y does not decrease the
possibility degree of X = x.
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Figure I.11 – Example of a joint distribution over X × Y = {xA, xB , xC } × {yA, yB , yC } when X is
M-independent from Y .

Theorem 10

∀(x, y) ∈ X × Y, π (x, y ) = min {π(x), π(y)}

(non interactivity independence)~w�
∀(x, y) ∈ X × Y, π (x) 6 π (x | y ) or π (y ) 6 π (y | x)

(either the knowledge of Y does not bring any knowledge about X, or the knowledge of
X doesn’t bring any knowledge about Y .)

The proof is given in Annex A.15.
Another independence called the Min-based independence, or M-independence, comes from

the conditioning (I.2.7):
Definition I.2.8 (Min-based “Causal” Independence)

The event A ⊂ Ω is M-independent from the event B ⊂ Ω if

Π (A | B ) = Π(A).

As well, the variable X is M-independent from the variable Y if their distributions are such
that

π (x | y ) = π (x) .

Note that, using Theorem 10, it follows that the M-independence implies the NI-
independence: it can be also observed replacing Π (A | B ) by Π (A) in the equation I.23,
as both possibility degrees are equal.

This independence is causal, and not symetric. Figure I.11 displays an example of a joint
distribution π(x, y) such that π (x | y ) = π(x). However π (y | x) 6= π(y): indeed, if X = xA,
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Y is fully unknown, i.e. π (y | xA ) =
(
1 1 1

)
, if X = xB, π (y | xB ) =

(
0.6 0.4 1

)
, and

the same for X = xC . This illustrates the fact that the M-independence is not symetric.
The symetrized version of the M-independence is the Symetric Min-Based Independence

or MS-independence:
Definition I.2.9 (Symetric Min-Based Independence)

Variables X and Y are said to be MS-independent if X is M-independent from Y and Y
is M-independent from X.

However, this symetric independence is too restrictive: one of the variable has to be entirely
unknown, as highlighted by the following theorem.
Theorem 11

If X and Y are MS-independent, then ∀x ∈ X , Π (X = x) = 1 or ∀y ∈ Y, Π (Y = y ) = 1.

The proof is given in Annex A.16.
Finally, we present a second qualitative possibilistic conditioning, proposed in [40], based

on the previous one (Definition I.2.7): this one ensures that the posterior distribution is not
less specific than the prior.
Definition I.2.10 (Alternative Qualitative Possibilistic Conditioning)

This alternative conditioning is denoted by π(x‖y) and is a modified version of the classical
one (Definition I.2.7): ∀(x, y) ∈ X × Y,

π(x‖y) =
{

π(x) if π (x′ | y ) > π(x′), ∀x′ ∈ X ,
π (x | y ) otherwise.

A more general presentation of the various possibilistic conditionings and independences
and their consequences on possibilistic graphical models is available in the thesis of N.Ben
Amor [10].

We just introduced that the operators min and max will be present in most of equations
below as the studied models are purely qualitative. Some properties about these operators,
which are used in the following sections, end this one.
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Property I.2.1
Consider the functions f : Ω→ L and λ ∈ L:

max
ω∈Ω
{1− f(ω)} = 1−min

ω∈Ω
f(ω), (I.26)

min
ω∈Ω
{1− f(ω)} = 1−max

ω∈Ω
f(ω), (I.27)

min
ω∈Ω

min {f(ω), λ} = min
{

min
ω∈Ω

f(ω), λ
}
, (I.28)

min
ω∈Ω

max {f(ω), λ} = max
{

min
ω∈Ω

f(ω), λ
}
, (I.29)

max
ω∈Ω

min {f(ω), λ} = min
{

max
ω∈Ω

f(ω), λ
}

(I.30)

and argmax
ω∈Ω

f(ω) ⊆ argmaxω∈Ω min {f(ω), λ} , (I.31)

max
ω∈Ω

max {f(ω), λ} = max
{

max
ω∈Ω

f(ω), λ
}
, (I.32)

and argmax
ω∈Ω

f(ω) ⊆ argmaxω∈Ω max {f(ω), λ} . (I.33)

Let us introduce now g : Ω→ L and suppose that ∃ω∗ ∈ Ω such that g(ω∗) = 0:

min
ω∈Ω

max
{

min {λ, f(ω)} , g(ω)
}

= min
ω∈Ω

min
{
λ,max {f(ω), g(ω)}

}
. (I.34)

As well, if we introduce h : Ω→ L and suppose that ∃ω∗ ∈ Ω such that h(ω∗) = 1,

max
ω∈Ω

min
{

max {λ, f(ω)} , h(ω)
}

= max
ω∈Ω

max
{
λ,min {f(ω), h(ω)}

}
. (I.35)

The proof is given in Annex A.17.
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Figure I.12 – Illustration of the result of the Sugeno Integral: the x-axis represents the set Ω =
{ω1, . . . , ω#Ω }, where ∀i ∈ {1, . . . ,#Ω− 1}, f(ωi) 6 f(ωi+1). The y-axis is L. The red line repre-
sents the degrees f(ωi), the dashed blue one represents the degrees µ(Ai) with Ai = {ωi, . . . , ω#Ω }, and
the black dotted one is the result of the Sugeno Integral.
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I.2.3 Qualitative Criteria

As detailed in the first section of this chapter, the criterion used to quantify the quality of a
strategy for a given (PO)MDP is the expectation of the reward, i.e. the integral of the reward
function with respect to the probability measure. The concept of Integral has been extended
to the framework of fuzzy measures. When the measure is quantitative, the extension is called
the Choquet Integral [35]. In the case of a qualitative measure, the resulting objet is the Sugeno
Integral [139]. As the planning framework that will be studied is qualitative, we define here
the Sugeno Integral:
Definition I.2.11 (Sugeno Integral)

The Sugeno Integral of a function f : Ω→ L with respect to the capacity (fuzzy measure)
µ : 2Ω → L is

Sµ [f ] = #Ωmax
i=1

min {f(ωi), µ(Ai)} (I.36)

=
#Ω
min
i=1

max {f(ωi), µ(Ai+1)} (I.37)

where f(ω1) 6 . . . 6 f(ω#Ω), Ai = {ωi, ωi+1, . . . , ω#Ω } and A#Ω+1 = ∅.

The proof of the equality is given in Annex A.18.
As illustrated in Figure I.12, the Sugeno integral of f : Ω → L with respect to the fuzzy

measure µ is the highest degree λ ∈ L such that the measure µ of {ω | f(ω) > λ} is higher or
equal to λ. As an example, the h-index (or Hirsh index) is the Sugeno integral of the function
paper 7→ #citations with respect to the counting measure.

The Sugeno integral with respect to a possibility measure, and the one with respect to a
necessity measure, lead to two criteria presented below. Before that, the following theorem
rewrites both integral in a more simple way.
Theorem 12 (Sugeno Integrals with respect to Possibility and Necessity measures)

SΠ[f ] = #Ωmax
i=1

min {f(ωi), π(ωi)} , (I.38)

SN [f ] =
#Ω
min
i=1

max {f(ωi), 1− π(ωi)} . (I.39)

are rewritings of the Sugeno integrals with respect to possibility and necessity measures.

The proof is given in Annex A.19.
These integrals can be seen as the possibilistic expectations of the variable f : Ω→ L. Let

us introduce the variable S : Ω → S whose possibility distribution is π(s) = Π ({S = s}) =
Π({ω ∈ Ω | S(ω) = s}) = max{ω∈Ω | S(ω)=s} π(ω). We can note for instance that the Sugeno
Integral of the (classical) characteristic function of the event {S ∈ A} with A ⊆ S, namely
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1{S∈A}(ω) =
{

1 if S(ω) ∈ A
0 otherwise , is equal to the possibility degree of this event:

SΠ
[
1{S∈A}

]
= max

ω∈Ω
min

{
1{S∈A}(ω), π(ω)

}
= max

s∈S
max

{ω∈Ω | S(ω)=s}
min {1A(s), π(ω)}

= max
s∈S

min {1A(s), π(s)} (I.40)

= max
s∈S

{
π(s) if s ∈ A

0 otherwise

= max
s∈A

π(s) = Π(S ∈ A). (I.41)

where line (I.40) comes from equation (I.30) of Property (I.2.1). In the same way,

SN
[
1{S∈A}

]
= min

s∈S
max {1A(s), 1− π(s)}

= min
s∈S
{1−min {1− 1A(s), π(s)}} (I.42)

= 1−max
s∈S

min
{
1A(s), π(s)

}
(I.43)

= 1−max
s∈A

π(s) = 1−Π
({

S ∈ A
})

= N ({S ∈ A}) .

where lines (I.42) and (I.43) come from equations (I.26) and (I.27) of Property (I.2.1). These
remarks are the counterparts of the probabilistic equality E

[
1{S∈A}

]
= P({S ∈ A}).

Qualitative Possibilistic Decision Criteria, i.e. functions A → L measuring the accuracy of
actions given a possibilistic and a preference model, have been proposed in [125, 62, 59], based
on Sugeno integrals (I.38) and (I.39). Let us recall that the set S (resp. A) is as previously
the finite set of system states s (resp. of actions a). The variable representing the system
state is S ∈ S. Let

(
πa
)
a∈A be a family of possibility distributions over S, i.e. ∀a ∈ A,

πa(s) = Πa({S = s}) is the possibility degree of the situation {S = s} ⊂ Ω after selecting
action a ∈ A. Let function ρ : S → L be the preference function, defining the preference degree
of each system state s ∈ S.
Definition I.2.12 (Qualitative Decision Criteria)

Let πa be the possibility distribution describing the uncertainty about the system state
given that action a ∈ A has been selected, and ρ(s) the preference of the system state
s ∈ S. Using formula (I.38) with f = ρ(S), the Sugeno integral of the preference with
respect to the possibility measure Πa leads to an optimistic criteria for a ∈ A:

SΠa [ρ(S)] = max
s∈S

min {ρ(s), πa(s)} . (I.44)

As well, using formula (I.39) with f = ρ(S), the Sugeno integral of the preference with
respect to the necessity measure associated to Πa, Na, leads to a cautious criteria for a ∈ A:

SNa [ρ(S)] = min
s∈S

max {ρ(s), 1− πa(s)} . (I.45)

These criteria can be understood best with the fuzzy sets vision: a possibility distribution
πa : S → L is the characteristic (or membership) function of the fuzzy set of the possible
system states after selecting a ∈ A, denoted by Ta i.e. π(s) = 1Ta(s). The preference function
ρ : S → L can also be viewed as the characteristic function of the fuzzy set denoted by R



I.2. Qualitative Possibilistic MDPs 61

0

0.2

0.4

0.6

0.8

1 πa(s)
or 1− πa(s)

ρ(s)

sA sB sC sD sE sF sG sH

Figure I.13 – Illustration of the qualitative criteria. The solid red line is ρ(s) = 1R(s). The dashed
blue line may represent πa(s) = 1Ta(s), and the black circles represent the characteristic function of
the intersection 1Ta∩R(s) = min {ρ(s), πa(s)}. Actions maximizing the optimistic criterion (I.44),
maximizes the highest membership degree maxs∈S 1Ta∩R(s), which is here equal to 0.6, the degree of
sD. The dashed blue line may also represent 1 − πa(s) = 1

T
a(s), and the black squares represent

the characteristic function of the union 1
T

a∪R
(s) = max {ρ(s), 1− πa(s)}. Actions maximizing the

pessimistic criterion (I.45), maximizes the lowest membership degree mins∈S 1Ta∪R
(s), which is here

equal to 0, as sA and sH are totally possible and unpleasant.

representing the preferred system states: ρ(s) = 1R(s). Finally, the characteristic function of
the fuzzy set of plausible and preferred states after selecting action a ∈ A, i.e. Ta ∩ R, is
1Ta∩R = min {1Ta ,1R } = min {πa, ρ}.

An action a ∈ Amaximizing the optimistic criterion (I.44), is thus an action that maximizes
the highest membership degree of Ta ∩R, i.e. of the fuzzy set of possible and preferred states.
This criterion is optimistic because it maximizes the degree of the best situation, but does not
ensure that unwanted states are avoided by the system.

The characteristic function of the complementary set of Ta, denoted by Ta is 1
T
a =

1−1Ta = 1− πa: the fuzzy set of implausible system states. An action a ∈ A maximizing the
pessimistic criterion (I.45), is thus an action that maximizes the lowest membership degree of
Ta ∪R, i.e. of the fuzzy set of the system states which are implausible or preferred. An action
that maximizes the lowest degree of this fuzzy set, tries to make all the system states either
implausible or preferred, i.e. to ensure that if any system state is plausible it is preferred: it
maximizes the “degree” of the inclusion T ⊆ R.

Note that, for a function f : A → L, maxa∈A f(a) = 1−mina∈A f(a), which can be shown
as equation (I.27) of Property I.2.1. Thus,

argmax
a∈A

{
min
s∈S

max {ρ(s), 1− πa(s)}
}

= argmin
a∈A

{
1−min

s∈S
max {ρ(s), 1− πa(s)}

}
.

As 1 − min
s∈S

max {ρ(s), 1− πa(s)} = max
s∈S

{
1 − max {ρ(s), 1− πa(s)}

}
= max

s∈S
min{1 −

ρ(s), πa(s)} (see equations (I.26) and (I.27) of Property I.2.1), the action a ∈ A minimizes
the highest membership degree of the fuzzy set Ta ∩ R, i.e. the fuzzy set of plausible and
unwanted system states: the pessimistic criterion tries to keep down all membership degrees
of this set.

The pessimistic criterion (I.45) tends to avoid unwanted system states, whereas the opti-
mistic criterion (I.44) wants to make it possible that the system reaches preferred ones. Figure
(I.13) illustrates the result of the criteria for a given action a ∈ A.
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Figure I.14 – Illustration of the example of Section I.2.3 about qualitative criteria. Action a1 maximizes
the optimistic criterion (I.44), which can lead to the best state (sA), but also the worst (sC). On the
contrary, action a2 maximizes the pessimistic criterion (I.45) since the worst state is not reachable with
this action.

The following toy example, illustrated in Figure I.14 is meant to present the two criteria
in practice: let the set of system states S be {sA, sB, sC } and the set of actions A = {a1, a2 }.
The preference model and the uncertainty model are described respectively by ρ and (πa )a∈A:

• 1 = ρ(sA) > ρ(sB) > ρ(sC) = 0;

• selecting action a1, πa1(sA) = πa1(sC) = 1, and π(sB) = 0;

• selecting action a2, πa2(sA) = π(sC) = 0, and π(sB) = 1, i.e. the system is in state sB
deterministically.

As min {ρ(s), πa1(s)} =
{

1 if s = sA,
0 otherwise. , the optimistic criterion is equal to SΠa1

[r(S) ] = 1

for a1. Now, as min {ρ(s), πa2(s)} =
{
ρ(sB) if s = sB,
0 otherwise. , the optimistic criterion is equal

to SΠa2
[r(S) ] = ρ(sB) for a2. Thus, as ρ(sB) < 1, a1 maximizes the optimistic criterion (I.44).

The optimistic criterion is maximized by action a1, because with this action, the best
system state, sA, is entirely possible. However, this action makes also the worst system state,
sC entirely possible: state sA is not necessary at all: N ({sA }) = 1 − π ({sB, sC }) = 1 −
max (π(sB), π(sC)) = 0. A more cautious action is a2, whose preference of the reached state
(sB) is lower than 1, but certain.

As expected, the action a2 maximizes the cautious criterion (I.45): max {ρ(s), 1− πa1(s)} ={
1 if s = sA or sB,
0 otherwise. and then the cautious criterion is equal to 0 for a1. It is greater with

a2: max {ρ(s), πa2(s)} =
{

1 if s = sA or sC ,
ρ(sB) otherwise. and thus the criterion is equal to

ρ(sB) > 0 for a2. This choice is more cautious since Na2({sB }) = 1 − Π ({sA, sC }) = 1, i.e.
the preference of the state will be ρ(sB) with certainty.

This section ends with a remark about this qualitative framework: possibility degrees are
compared to preference degrees in the presented criteria. This requires a commensurability
assumption, i.e. these comparisons must mean something. When values of ρ are in {0, 1}, this
assumption is not necessary as system states with a preference of 1 are the goals, and other
states are not. How to model problems in practice with these settings will be detailed in the
experimental parts.

I.2.4 π-MDPs

This model, presented in [123, 122, 121], is a qualitative possibilistic version of the probabilistic
MDPs detailed in Section I.1.2, based on the criteria (optimistic and pessimistic) presented
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in Section I.2.3: this version is called Qualitative Possibilistic Markov Decision Process, or
π-MDP.

The finite set of system states, describing the agent and its environment, remains denoted
by S, as seen in Section I.1.2 where probabilistic MDPs are presented. The finite set of action
is always A and L is the possibility scale

{
0, 1

k , . . . , 1
}
, with k > 2.

As in the probabilistic case, this model considers that successive system states, represented
by the sequence of variables (St)t∈N with St ∈ S ∀t > 0, is Markovian. In this qualitative possi-
bilistic framework, it means that the sequence (St)t∈N is such that ∀t > 0, ∀(s0, s1, . . . , st+1) ∈
St+2 and for each action sequence of action (at)t>0 ∈ AN, St+1 is M -independent (see Defini-
tion I.2.8) from variables {S0, . . . , St−1 }, conditioned on {St = s} and at:

Π
(
St+1 = st+1

∣∣∣ St = st, at
)

= Π
(
St+1 = st+1

∣∣∣ St = st, St−1 = st−1, . . . , S0 = s0, (at)t>0
)
.

(I.46)
Using this property, dynamics of the system are fully described with possibilistic transitions
πt (s′ | s, a) = Π

(
St+1 = s′

∣∣∣ St = s, a
)
∈ L: ∀t > 0, (s, s′) ∈ S2 and a ∈ A, πt (s′ | s, a)

is the possibility degree, that at time step t, the system reaches the state s′ when the agent
selects action a, conditioned to the fact that the current state is s. Finally a π-MDP is entirely
defined with the sequence of preference functions (ρt)H−1

t=0 , where ∀s ∈ S, ∀a ∈ A, ρt(s, a) is the
preference degree when the system state is s and the agent selects action a at time step t. The
final preference function, Ψ, gives for each system state s ∈ S, the preference degree if SH = s:
Ψ(s). With the previous notations for the preference functions, Ψ(s) = ρH(s, a), ∀s ∈ S, a ∈ A.
Figure I.2 in the MDP section (Section I.1.2) is a good representation of a π-MDP, replacing
rewards by preferences, and probability distributions by possibility distributions.

In order to easily derive the MDP criteria from the qualitative possibilistic criteria (I.44)
and (I.45), let us introduce, for an horizon H > 0, a H-length trajectory T = (s1, . . . , sH), and
TH = SH the set of such trajectories. A decision rule is denoted by δ : S → L, and a H-length
strategy is a sequence of decision rules δt: (δt)H−1

t=0 . The set of all the H-length strategies is
denoted by ∆H . In [120], for a given H-length strategy (δ) ∈ ∆H , a given sequence of system
states T = (s1, . . . , sH) ∈ TH , and a given initial state s0 ∈ S, the preference of an H-length
trajectory from s0 is defined as the lowest preference degree along s0 and the trajectory:

ρ
(
T , (δ)

)
= min

{
H−1
min
t=0

ρ
(
st, δt(st)

)
,Ψ(sH)

}
.

This is the possibilistic counterpart of the sum
∑H−1
t=0 rt

(
St, dt(St)

)
+ R(SH), reward aggre-

gation of the probabilistic framework. Note that any preference aggregation of the qualitative
possibilistic framework has to result in a degree λ ∈ L.

Using the Markov property of this system state process, for a given initial system state
s0 ∈ S, a horizon H ∈ N, and a strategy (δt)H−1

t=0 , the possibility degree of the trajectory
T = (s1, . . . , sH) is

Π
(
SH = sh, SH−1 = sh−1, . . . , S1 = s1

∣∣∣S0 = s0,
(
δt
)H−1
t=0

)
=

H−1
min
t=0

πt+1
(
st+1

∣∣∣st, δt(st)) (I.47)

denoted by π
(
T
∣∣∣s0, (δ)

)
.

The Sugeno integral of the preference of the trajectory with respect to this distribution is
denoted by

SΠ
[
ρ
(
T , (δ)

) ∣∣∣ S0 = s0, (δ)
]

= SΠ

[
min

{
H−1
min
t=0

ρ
(
St, δt(St)

)
,Ψ(SH)

} ∣∣∣∣ S0 = s0, (δ)
]
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and defines the optimistic criterion defining optimal strategies, i.e. an optimistic value function:

UH
(
s0, (δt)H−1

t=0

)
= max
T ∈TH

min
{
ρ
(
T , (δ)

)
, π
(
T
∣∣∣s0, (δ)

)}
. (I.48)

It is equivalent to the optimistic qualitative possibilistic criterion (I.44), however, the expecta-
tion is over trajectories TH , and the preference depends on the strategy. The optimal optimistic
strategy δ∗ is the strategy maximizing the optimistic value function (I.48), and the optimal
optimistic value function is the maximal optimistic value function among strategies (δ) ∈ ∆H :
Definition I.2.13 (Optimal Optimistic Value Function and Strategy)
∀s ∈ S,

U∗H(s) = max
(δ)∈∆H

{
UH
(
s, (δ)

)}
(optimal optimistic value function), (I.49)

δ∗(s) ∈ argmax
(δ)∈∆H

{
UH
(
s, (δ)

)}
(optimal optimistic strategy). (I.50)

As well, the pessimistic qualitative possibilistic criterion (I.45) leads to a cautious criterion
for strategies: the pessimistic value function is the Sugeno integral of the preference trajec-
tory with respect to the necessity measure which comes from the possibility distribution over
trajectories TH (I.47) with the strategy (δ) ∈ ∆H :

UH
(
s0, (δt)H−1

t=0

)
= min
T ∈TH

max
{
ρ
(
T , (δ)

)
, 1− π

(
T
∣∣∣s0, (δ)

)}
. (I.51)

denoted by SN
[
ρ
(
T , (δ)

) ∣∣∣ S0 = s, (δ)
]
. As previously for the optimistic case, the optimal

cautious strategy δ∗ is the strategy maximizing the pessimistic value function (I.51), and the
optimal pessimistic value function is the maximal pessimistic value function among strategies
(δ) ∈ ∆H :

Definition I.2.14 (Optimal Pessimistic Value Function and Strategy)
∀s ∈ S,

U∗H(s) = max
(δ)∈∆H

{
UH
(
s, (δ)

)}
(optimal pessimistic value function), (I.52)

δ∗(s) ∈ argmax
(δ)∈∆H

{
UH
(
s, (δ)

)}
(optimal pessimistic strategy). (I.53)

As for the probabilistic MDPs (see Section I.1.3 Theorem 1), optimal value functions and
strategies can be computed with Dynamic Programming:
Theorem 13 (Dynamic Programming for π-MDPs)

The optimal optimistic criterion and an associated optimal strategy can be computed as
follows: ∀s ∈ S,

U∗0 (s) = Ψ(s), and, ∀1 6 i 6 H,

U∗i (s) = max
a∈A

min
{
ρH−i(s, a),max

s′∈S
min

{
πH−i

(
s′
∣∣ s, a) , U∗i−1(s′)

}}
. (I.54)
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δ∗H−i(s) ∈ argmax
a∈A

min
{
ρH−i(s, a),max

s′∈S
min

{
πH−i

(
s′
∣∣ s, a) , U∗i−1(s′)

}}
. (I.55)

As well, the optimal pessimistic criterion and an associated optimal strategy can be com-
puted as follows: ∀s ∈ S,

U∗0 (s) = Ψ(s), and, ∀1 6 i 6 H,

U∗i (s) = max
a∈A

min
{
ρH−i(s, a),min

s′∈S
max

{
1− πH−i

(
s′
∣∣ s, a) , U∗i−1(s′)

}}
. (I.56)

δ∗H−i(s) ∈ argmax
a∈A

min
{
ρH−i(s, a),min

s′∈S
max

{
1− πH−i

(
s′
∣∣ s, a) , U∗i−1(s′)

}}
. (I.57)

The proof is given in Annex A.20.
In this theorem, the horizon i is the opposite modulo H of the stage of the process t:

during execution, δt = δH−i is used at time step t, i.e. when it remains i steps. These Dynamic
Programming formulae lead to the optimistic algorithm, Algorithm 4 and the pessimistic
one Algorithm 5, the qualitative possibilistic counterpart of Algorithm 1 for finite horizon
probabilistic MDPs.

Algorithm 4: Dynamic Programming Algorithm for Optimistic π-MDP
1 U∗0 ← Ψ;
2 for i ∈ {1, . . . ,H } do
3 for s ∈ S do

4 U∗i (s)← max
a∈A

min
{
ρH−i(s, a),max

s′∈S
min

{
πH−i

(
s′
∣∣ s, a) , U∗i−1(s′)

}}
;

5 δ∗H−i(s) ∈ argmax
a∈A

min
{
ρH−i(s, a),max

s′∈S
min

{
πH−i

(
s′
∣∣ s, a) , U∗i−1(s′)

}}
;

6 return U∗H , δ∗;

Algorithm 5: Dynamic Programming Algorithm for Pessimistic π-MDP
1 U∗0 ← Ψ;
2 for i ∈ {1, . . . ,H } do
3 for s ∈ S do

4 U∗i (s)← max
a∈A

min
{
ρH−i(s, a),min

s′∈S
max

{
1− πH−i

(
s′
∣∣ s, a) , U∗i−1(s′)

}}
;

5 δ∗H−i(s) ∈ argmax
a∈A

min
{
ρH−i(s, a),min

s′∈S
max

{
1− πH−i

(
s′
∣∣ s, a) , U∗i−1(s′)

}}
;

6 return U∗H , δ∗;

Note that a broader class of MDP models, including both probabilistic and qualitative
possibilistic MDPs presented above, is called Algebraic MDPs [106].

The next section is devoted to the presentation of the qualitative possibilistic counterpart
of the POMDPs denoted by π-POMDPs: the π-POMDP model is the partially observable
version of the π-MDP one. This model has been presented first in [121] in pessimistic settings.
The algorithm to solve it has been also presented in case no intermediate preference degree
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is involved i.e. in case where preference functions ρt are not used: in these settings only
the terminal preference function Ψ models the goal of the mission: an optimistic strategy
maximizes the plausibility of strategies which end with a good preference, and a cautious
strategy minimizes the plausibility of strategies ending in unwanted states. As the preference
of a system state trajectory T = (s1, . . . , sH) is simply ρ(T ) = Ψ(sH), while the preference of a
π-MDP trajectory is

{
minH−1

t=0 ρ(st, at),Ψ(sH)
}
, it it sufficient to consider a classical π-MDP

such that ρt(s, a) = 1, ∀s ∈ S, ∀a ∈ A and ∀t ∈ {0, . . . ,H − 1}. The π-MDP criteria are
simplified as follows:
Definition I.2.15 (Criteria for π-MDP with Terminal Preference Only)

The optimistic (resp. pessimistic) criterion is the Sugeno integral of the last state preference
Ψ(SH) with respect to the possibility measure (resp. necessity measure) associated to the
possibility distribution

Π
(
SH = sH | S0 = s0, (δt)H−1

t=0

)
= max

(s1,...,sH−1)∈SH−1

H−1
min
t=0

π
(
st+1

∣∣∣st, δt(st))

denoted by π
(
sH
∣∣∣s0, (δ)

)
: these integrals may be denoted by SΠ

[
Ψ
(
SH
) ∣∣∣ S0 = s0, (δ)

]
(resp. SN

[
Ψ
(
SH
) ∣∣∣ S0 = s0, (δ)

]
).

Optimistic criterion:

UH
(
s0, (δt)H−1

t=0

)
= max

sH∈S
min

{
Ψ(sH), π

(
sH
∣∣∣s0, (δ)

)}
. (I.58)

Pessimistic criterion:

UH
(
s0, (δt)H−1

t=0

)
= min

sH∈S
max

{
Ψ(sH), 1− π

(
sH
∣∣∣s0, (δ)

)}
. (I.59)

In this case the π-MDP focuses on the preference over terminal states, whatever the inter-
mediate ones.

I.2.5 π-POMDPs

The qualitative possibilistic POMDP (π-POMDP) model has been first presented in [121].
As explained in Section I.1.6 which presents the classical probabilistic POMDP model, in
partially observable settings the system state is not given anymore as input to the agent: the
agent has to infer it using the observations o ∈ O received at each time step, represented by the
observation process (Ot)t∈N. The uncertainty about successive observation variables Ot only
depends on the current action and the reached state: if the agent selected action a ∈ A at time
step t, and the system has reached state s′ ∈ S at time step t + 1, the observation o′ ∈ O is
received with possibility degree πt (o′ | s′, a) = Π (Ot+1 = o′ | St+1 = s′, a): conditional to the
next system state s′ and the current action a, the next observation variable is M-independent
(see Definition I.2.9) from all other variables. Figure I.3 of Section I.1.6 illustrates just as well
the dynamic and the structure of a π-POMDP: however, the rewards r and R have to be
replaced by preferences ρ and Ψ, and transition (resp. observation) probability distributions
p have to be replaced by the possibility distribution πt (s′ | s, a) (resp. πt (o′ | s′, a)).

As with the probabilistic model, the computation of strategies is performed by translating
of the π-POMDP into a fully observable π-MDP. The state space of the later is the set of
possible qualitative possibilistic belief states β : S → L describing the knowledge about the
actual system state, i.e. the set of all the possibility distributions over S. This set is denoted
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by ΠSL = {π : S → L | maxs∈S π(s) = 1}. Note first that the number of possible possibilistic
beliefs about the actual system state is

(#L)#S − (#L − 1)#S . (I.60)

Indeed, there are #L#S different functions from S to L, and (#L − 1)#S non-normalized ones
i.e. functions f : S → L such that maxs∈S f(s) < 1. The number of possibility distributions
over S is the number of normalized functions from S to L, that is the total number of functions
minus the number of non-normalized ones.

First of all, let us formally defined a π-POMDP as the 7-uple < S,A,O, T π, Oπ,Ψ, β0 >:

• S, a finite set of hidden system states;

• A a finite set of actions;

• O a finite set of observations;

• T π the set of transition possibility distributions containing for each time step t ∈ N, each
current system state s ∈ S and each current action a ∈ A, the possibility distributions
over the next system state s′ ∈ S, πt (s′ | s, a);

• Oπ, the set of observation possibility distributions: for each time step t ∈ N, each current
action a ∈ A, each next state s′, the possibility distribution over the next observation
o′ ∈ O, πt (o′ | s′, a) is part of Oπ.

• Ψ the preference function, defining for each state s ∈ S, the preference assigned to the
situations where the system terminates in state s.

• β0, the possibilistic initial belief state, is the possibility distribution defining the uncer-
tainty about the initial state: ∀s ∈ S, β0(s) = Π(S0 = s).

At each time step the current qualitative possibilistic belief state is computed from these
objects: the possibilistic counterpart of the probabilistic belief defined in Definition I.1.3 of
Section I.1.6. The initial belief state β0 ∈ ΠSL is part of the definition of a π-POMDP. At a
time step t > 1, the belief state is the possibility distribution over the current system state,
conditional to all the data available to the agent.
Definition I.2.16 (Qualitative Possibilistic Belief state)

βt(s) = Π (St = s | O1 = o1, . . . , Ot = ot, a0, . . . , at−1 ) = Π (St = s | It = it ) (I.61)

where it = {o1, . . . , ot, a0, . . . , at−1 } is the information available to the agent at time t (
i0 = { } = ∅ ), and It the variable version (as in the probabilistic POMDP presentation).

The possibilistic belief updating process consists in the sequence of belief states, which can
be computed recursively:
Theorem 14 (Qualitative Possibilistic Belief Update)

If the belief state at time step t is βt, the selected action is at ∈ A, and the next observation
is ot+1, the next belief state βt+1 is computed as follows:

βt+1(s′) =
{

1 if πt (s′, ot+1 | βt, at ) = πt (ot+1 | βt, at ) ,
πt (s′, ot+1 | βt, at ) otherwise. (I.62)

where the joint distribution over system state variable St+1 and observation vari-
able Ot+1 conditional on the current information, is denoted by πt (s′, o′ | βt, at ) =
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min
{
πt (o′ | s′, at ) ,maxs∈S min

{
πt (s′ | s, at ) , βt(s)

}}
. The notation π (o′ | βt, at ) is also

used for maxs′∈S πt (s′, o′ | βt, at ).
This formula is called the possibilistic belief update, and since the belief state βt+1

is shown to be a function of βt, at and ot+1, we denote it by

βt+1 = ν(βt, at, ot+1),

with ν called the belief update function.

The proof is given in Annex A.21.
The possibilistic belief update (I.62) is denoted by

βt+1(s′) ∝π πt
(
s′, ot+1

∣∣ βt, at )
as it only consists in normalizing the function s′ 7→ π (s′, ot+1 | βt, at ) in a possibilistic sense
(maxs π(s) = 1).

We denote by Bπ
t the belief state when considered as a variable, i.e. Bπ

0 is deterministic
equal to β0 (but S0 is uncertain with possibility distribution β0) and Bπ

t+1 = ν(Bπ
t , at, Ot+1)

where Ot+1 is the observation variable at time step t+ 1.
To make things clear, the π-POMDP model is defined here only with a terminal preference

function Ψ, and no intermediate ones ρt. The next chapter will address formally the model
with intermediate preference degree: the pessimistic one presented in [121] and an optimistic
one. The criteria, or optimistic and pessimistic value functions of the π-POMDP model with
terminal preference only, are thus similar to criteria (I.58) and (I.59). Note that the optimistic
criterion has not been presented yet to the best of our knowledge, and is proposed now in
parallel with the pessimistic one [121].
Definition I.2.17 (π-POMDP Criteria with Terminal Preference Only)

This is the same criteria as in the fully observable case (terminal preference case, Definition
I.2.15): however, these criteria depends here on the initial belief state.

The optimistic π-POMDP criterion, or optimistic value function, is the Sugeno
integral of the terminal preference with respect to the possibility measure of the system
process for a given strategy (δt)H−1

t=0 : the strategy which is looked for is a sequence of
function of the available information it, i.e. (δ) = (δt)H−1

t=0 with δt : it 7→ δ(it) ∈ A.

UH
(
β0, (δ)H−1

t=0

)
= max

sH∈S
min

{
Ψ(sH), π

(
sH
∣∣∣β0, (δ)

)}
. (I.63)

As well, the π-POMDP pessimistic value function is the Sugeno integral of the
terminal preference with respect to the necessity measure of the system process given such
a strategy:

UH
(
β0, (δ)H−1

t=0

)
= min

sH∈S
max

{
Ψ(sH), 1− π

(
sH
∣∣∣β0, (δ)

)}
. (I.64)

where

π
(
sH
∣∣∣β0, (δ)

)
= Π

(
SH = sH

∣∣∣(δ))
= max

(s0,...,sH−1)∈SH
min

{
H−1
min
t=0

πt
(
st+1

∣∣∣st, δ(it)), β0(s0)
}

is the possibility distribution over the last system state given the strategy. Thus the
optimistic criterion may be denoted by SΠ

[
Ψ(SH)

∣∣∣β0, (δ)
]

and the pessimistic one
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SN
[
Ψ(SH)

∣∣∣β0, (δ)
]
, as they are optimistic and pessimistic Sugeno integrals based on the

distribution π
(
sH
∣∣∣β0, (δ)

)
.

As in the probabilistic framework, Section I.1.8, these criteria can be rewritten based
on a belief-dependent preference. Consider as previously, a strategy (δt)H−1

t=0 based on the
current information i0 = ∅, i1 = {a0, o1 }, i2 = {a0, o1, a1, o2 }, etc: for each time step t > 0,
δt : it 7→ δt(it) ∈ A. Recall that ν is the belief update function defined in Theorem 14.
We denote by Ôt =

(
Oi
)t
i=1

the successive observations until time step t seen as variables,
and It the associated information. The belief state at time step t + 1, seen as a variable,
can be written Bπ

t+1 = νδt,Ôt+1(Bπ
t ), ∀t > 0, with (δt)H−1

t=0 such a strategy, and the notation
νδt,Ôt+1 : β 7→ ν

(
β, δt(It), Ot+1

)
. Thus,

Bπ
H =

(
#H−1
t=0 ν

δt,Ôt+1

)
(Bπ

0 ),

where # is the function composition operator. Then, knowing that ÔH = ôH with ôH =
{o1, . . . , oH } ∈ OH a sequence of observations, Bπ

H is known: it is denoted by βδ,ôHβ0
, and is

called the belief state generated by the observation sequence ôH and the strategy (δt)H−1
t=0 .

Theorem 15 (π-POMDP Criteria Rewritings – Terminal Preference Case)

Let ôH = {o1, . . . , oH } a sequence of observations, and (δ) = (δ)H−1
t=0 be a strategy such

that δt+1 is a function of the information it+1 = {δt(it), ot+1 }. The possibility distribution
over the possible sequences of observations is denoted by

π
(
ôH
∣∣∣(δ), β0

)
= Π

(
ÔH = ôH

∣∣∣ (δ), β0
)

= max
(s0,...,sH)∈SH+1

min
{
πt
(
ot+1

∣∣∣st+1, δt(it)
)
, πt
(
st+1

∣∣∣st, δt(it)), β0(s0)
}
.

The optimistic π-POMDP criterion is equal to the Sugeno integral of the belief-based
optimistic preference Ψ(Bπ

H) = maxs∈S min {Ψ(s), Bπ
H(s)} with respect to the possibility

measure over the observation sequences. That is, denoting by βδ,ôHβ0
the belief state gener-

ated by the observation sequence ôH and the strategy (δt)H−1
t=0 , the optimistic criterion

can be rewritten as

UH
(
β0, (δ)H−1

t=0

)
= max

ôH

min
{

Ψ(βδ,ôHβ0
), π
(
ôH
∣∣∣(δ), β0

)}
(I.65)

= max
ôH

min
{

max
s∈S

min
{

Ψ(s), βδ,ôHβ0
(s)
}
, π
(
ôH
∣∣∣(δ), β0

)}
.

Likewise, the pessimistic criterion is equal to the Sugeno integral of the belief-based
pessimistic preference Ψ(Bπ

H) = mins∈S max {Ψ(s), 1−Bπ
H(s)}, with respect to the neces-

sity measure over the observation sequences. The π-POMDP pessimistic criterion can
be rewritten as

UH
(
β0, (δ)H−1

t=0

)
= min

ôH

max
{

Ψ(βδ,ôHβ0
), 1− π

(
ôH
∣∣∣(δ), β0

)}
(I.66)

= min
ôH

max
{

min
s∈S

max
{

Ψ(s), 1− βδ,ôHβ0
(s)
}
, 1− π

(
ôH
∣∣∣(δ), β0

)}
.
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The proof is given in Annex A.22.
Written as a Sugeno integral, the optimistic criterion SΠ

[
Ψ(SH)

∣∣∣β0, (δ)
]
, which is based,

as in Definition I.2.17, on π
(
sH
∣∣∣β0, (δ)

)
(the possibility distribution over the last system state

sH), becomes in the previous theorem

SΠ
[

max
s∈S

min {Ψ(s), Bπ
H(s)}

∣∣∣β0, (δ)
]

= SΠ
[
Ψ(Bπ

H)
∣∣∣β0, (δ)

]
.

These two equal Sugeno integrals are based on the possibility distribution over the observation
sequence π

(
ôH
∣∣∣(δ), β0

)
. As well, in Theorem 15, the pessimistic criterion SN

[
Ψ(SH)

∣∣∣β0, (δ)
]

is rewritten

SN
[

min
s∈S

max {Ψ(s), 1−Bπ
H(s)}

∣∣∣β0, (δ)
]

= SN
[
Ψ(Bπ

H)
∣∣∣β0, (δ)

]
.

Note that the belief-based preferences Ψ and Ψ, are the π-POMDP counterparts of the
POMDP belief-based reward r(b, a) =

∑
s∈S r(s, a) · bt(s). As well, these rewritings are the

possibilistic counterpart of the rewriting E
[
r
(
St, dt(it)

)]
= E

[∑
s∈S Bt(s) · r

(
s, dt(it)

)]
.

This theorem assures us that the criteria can be expressed as Sugeno integrals of a
function of the possibilistic belief state Bπ

H : this result leads to the definition of π-MDPs
whose states are the qualitative possibilistic belief states: these π-MDPs are denoted by
〈S̃π,A, T̃ π, Ψ̃〉. The state space S̃π is the finite set of possibilistic belief states ΠSL =
{β | β : S → L,maxs∈S β(s) = 1}.

Let βt a given qualitative possibilistic belief, i.e. a possibility distribution in ΠSL. The
sequence of variables (Bπ

t )t∈N is the sequence of the belief functions seen as random variables.
As highlighted by the possibilistic belief update (I.62), if Bπ

t = βt, and the selected action is
at, the value of the next variable Bπ

t+1 is a deterministic function of the observation Ot+1.
A belief π-MDP is defined since the qualitative possibilistic belief updating process is shown

to be a possibilistic Markov process i.e. ∀a ∈ A, ∀β′ ∈ ΠSL, Bπ
t+1 is M-independent from all

previous variables conditional to the current belief Bπ
t and the selected action at ∈ A:

Theorem 16
The qualitative possibilistic belief updating process is a Markov process, i.e.

Π
(
Bπ
t+1 = β′

∣∣ It = it, at
)

= Π
(
Bπ
t+1 = β′

∣∣ Bπ
t = βitb0 , at

)
, (I.67)

where βitb0 is the qualitative belief state reached starting with β0 and with the information
it = {a0, o1, a1, o2, . . . , at−1, ot }.

The proof is given in Annex A.23.
As highlighted by the equation (44) in the proof, if Bπ

t = β and the selected action is
a ∈ A, the possibility degree that the next belief Bπ

t+1 is β′ ∈ ΠSL, is the maximum of all
the possibility degrees of observations o′ such that ν (β, a, o′ ) = β′: it defines the transition
possibility distributions of the belief process, i.e. elements of T̃ , as follows: ∀t > 0,

πt
(
β′
∣∣ β, a) = max

o′∈O s.t.
ν(β,a,o′)=β′

πt
(
o′
∣∣ β, a) , (I.68)

where πt (o′ | β, a) = max(s,s′)∈S2 min
{
πt (o′ | s′, at ) , πt (s′ | s, at ) , β(s)

}
, is the possibility

degree of observing o′ conditional on all the previous information.
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Finally, the preference functions associated with the possibilistic belief βH are defined as
highlighted by Theorem I.65: for an optimistic π-POMDP, the preference function is, ∀β ∈ ΠSL,

Ψ(β) = max
s∈S

min {Ψ(s), β(s)} (I.69)

and for a pessimistic one, ∀β ∈ ΠSL,

Ψ(β) = min
s∈S

max {Ψ(s), 1− β(s)} . (I.70)

As for each belief β ∈ ΠSL, the possibility and necessity measure conditional on the information
i don’t vary if i ∈

{
i | βiβ0

= β
}
, i.e. if the information i leads to β (see for instance the proof

of Theorem 16), it is sufficient to look for a belief-based strategy (δt)H−1
t=0 , such that ∀t > 0,

δt : βt 7→ δt(βt) ∈ A.
The π-MDP 〈S̃π,A, T̃ π,Ψ or Ψ〉 built from of a π-POMDP 〈S,A,O, T π, Oπ, β0〉 is finally:

• S̃π = ΠSL, the set of all qualitative possibilistic beliefs;

• T̃ π contains all transition possibility distributions of the possibilistic beliefs: ∀a ∈ A,
∀β ∈ ΠSL, the belief transition possibility distribution defined by the equation (I.68),
πt ( . | β, a) is in T̃ π;

• preference functions Ψ if the computed criterion is optimistic, see equation (I.69), or Ψ
if it is pessimistic, equation (I.70).

Note now that, using the belief state transition definition (I.68), and the equation (I.30)
of Property I.2.1, for each function from the belief space to L, U : ΠSL → L,

max
β′∈ΠSL

min
{
πt
(
β′
∣∣ β, a) , U(β′)

}
= max

β′∈ΠSL
min

 max
o′∈O s.t.

ν(β,a,o′)=β′
πt
(
o′
∣∣ β, a) , U(β′)


= max

β′∈ΠSL
max

o′∈O s.t.
ν(β,a,o′)=β′

min
{
πt
(
o′
∣∣ β, a) , U(β′)

}
= max

o′∈O
min

{
πt
(
o′
∣∣ β, a) , U(ν(β, a, o′)

)}
,

This observation leads to Algorithm 6 which is the π-MDP algorithm (4) with terminal pref-
erence criteria (I.58), applied to the π-MDP 〈S̃π,A, T̃ π,Ψ〉.

Algorithm 6: Dynamic Programming Algorithm for Optimistic π-POMDP
with Terminal Preference Only
1 U∗0 ← Ψ;
2 for i ∈ {1, . . . ,H } do
3 for β ∈ ΠSL do
4 U∗i (β)← max

a∈A
max
o′∈O

min
{
πt
(
o′
∣∣ β, a) , U∗i−1

(
ν(β, a, o′)

)}
;

5 δH−i(β) ∈ argmax
a∈A

max
o′∈O

min
{
πt
(
o′
∣∣ β, a) , U∗i−1

(
ν(β, a, o′)

)}
;

6 return U∗H , (δ∗);

As well, the equations (I.26) and (I.27) of Property I.2.1 leads to

min
β′∈ΠSL

max
{

1− πt
(
β′
∣∣ β, a) , U(β′)

}
= 1− max

β′∈ΠSL
min

{
πt
(
β′
∣∣ β, a) , 1− U(β′)

}
,
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for each function U : ΠSL → L. Thus, using the belief state transition definition (I.68),

min
β′∈ΠSL

max
{

1− πt
(
β′
∣∣ β, a) , U(β′)

}
= min

o′∈O
max

{
1− πt

(
o′
∣∣ β, a) , U(ν(β, a, o′)

)}
.

It leads to Algorithm 7, which is the π-MDP algorithm (5), with terminal preference criteria
(I.59), applied to the π-MDP 〈S̃π,A, T̃ π,Ψ〉.

Algorithm 7: Dynamic Programming Algorithm for Pessimistic π-POMDP
with Terminal Preference Only
1 U∗0 ← Ψ;
2 for i ∈ {1, . . . ,H } do
3 for β ∈ ΠSL do
4 U∗i (β)← max

a∈A
min
o′∈O

max
{

1− πt
(
o′
∣∣ β, a) , U∗i−1

(
ν(β, a, o′)

)}
;

5 δH−i(β) ∈ argmax
a∈A

min
o′∈O

max
{

1− πt
(
o′
∣∣ β, a) , U∗i−1

(
ν(β, a, o′)

)}
;

6 return U∗H , (δ∗);

In this first chapter, probabilistic and qualitative possibilistic POMDPs have been built
one after the other shedding some light on the similarities between both models: with prob-
abilistic POMDPs, system state dynamics and observation uncertainty are described with
probabilities p (s′ | s, a) ∈ R and p (o′ | s′, a) ∈ R while they are defined by possibility
distributions π (s′ | s, a) ∈ L =

{
0, 1

k , . . . , 1
}

(with k > 1) and π (o′ | s′, a) ∈ L in the π-
POMDP framework. Moreover, the probabilistic framework measures the benefit from passing
through a system state s ∈ S and using action a ∈ A with the additive reward functions
r(s, a) ∈ R (and R(s) for the last state in case of finite-horizon problem); the possibilistic
framework uses qualitative preferences ρ(s, a) ∈ L and Ψ(s) ∈ L. Thus, the probabilistic
criterion (the value function) for a given strategy is the expectation of the rewards written
E
[
rewards

(
(St)t>0

)]
∈ R, and the possibilistic framework has two criteria (value functions)

which are Sugeno integrals of preferences written SΠ
[
preferences

(
(St)t>0

)]
∈ L for the opti-

mistic one, and SN
[
preferences

(
(St)t>0

)]
∈ L for the pessimistic one. A POMDP (resp. π-

POMDP), is redefined in terms of fully observable MDP (resp. π-MDP) where the system states
are the belief states bt ∈ PSb0 (resp. βt ∈ ΠSL), i.e. probability (resp. possibility) distributions
over the system states of the initial POMDP: the belief-based reward has to be defined r(b, a) =
ES∼b [r(S, a) ] =

∑
s∈S r(s, a) ·b(s) in the probabilistic case. In the possibilistic case, the belief-

based preference can be written ρ(b, a) = SΠ,S∼β [ρ(S, a) ] = maxs∈S min {ρ(s, a), β(s)} for
the optimistic criterion, and ρ(b, a) = SN ,S∼β [ρ(S, a) ] = mins∈S max {ρ(s, a), 1− β(s)} for
the pessimistic one.

The next chapter proposes some improvements of the qualitative possibilistic model: first,
criteria are discussed, concerning the preference aggregation, and the impact of the choice of
the (optimistic or pessimistic) criterion. Next, the Mixed-Observability property is defined:
as for the probabilistic model, the complexity of solving π-POMDPs having this property is
reduced. Finally the infinite horizon problem is formally defined and the proposed solving
algorithm is shown to return an optimal strategy for a given criterion.



IIUpdates and Practical Study of
the Qualitative Possibilistic
Partially Observable Markov
Decision Processes

The end of the previous chapter presented the π-POMDPs, a qualitative possibilistic coun-
terpart of the classical probabilistic POMDPs. Recall that, in the qualitative possibilistic
framework, the set of belief states is finite, #ΠSL < +∞ (see Equation I.60) while the set of
belief states is infinite in the probabilistic framework PSb0 : for this reason, π-POMDPs can be
seen as a simpler model for sequential decision making under uncertainty, than the probabilis-
tic one. This is a good point as solving probabilistic POMDPs is at least a PSPACE problem
[103, 92]. Moreover, Qualitative Possibility Theory allows to model total ignorance as noted in
Introduction: it is a motivation for the study of this model. The distribution ∀s ∈ S, β(s) = 1
means that all states are plausible according to the belief state β, i.e. the agent considers that
all system states are possible. Finally, possibility distributions only sort events and represent
their plausibility only roughly: no quantitative value is assigned to them. If the probability
distributions defining the POMDP are not known in practice, as in the robotic vision example
given in Introduction, a qualitative description of the problem is more suitable.

The pessimistic version of the π-POMDP model has been previously defined in [121]. This
section is then devoted to the update of this promising model: first, optimistic and pessimistic
models with intermediate preferences are built and discussed. This discussion leads to other
criteria. Next, the Mixed-Observability property [100, 3] is defined, describing the systems
some state variables of which are fully observable: it is shown that this property, if correctly
taken into account, dramatically reduces the complexity of solving π-POMDPs. Finally, a
value iteration algorithm for the infinite horizon π-MDPs (Fully and Partially Observable) is
next proposed and the optimality of the returned strategy (for a specified criterion) is shown
assuming the existence of a “stay” action in some goal states. Experimental work finally
illustrates the performance of the strategies computed from different criteria. It is also shown
that strategies computed from π-POMDPs can outperform probabilistic POMDP strategies
for a target recognition problem where the agent’s observations are imprecise.

II.1 Intermediate Preferences in π-POMDPs
In the previous chapter, π-MDPs criteria taking into account intermediate preference degrees
have been defined; after that, the particular case of terminal preferences only has been pre-
sented. The global preference degree of a trajectory T = (s0, . . . , sH) ∈ SH+1 has been defined
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there as the minimum of all the preference degrees of the encountered states:

ρ
(
T , (at)H−1

t=0

)
= min

{
H−1
min
t=0

ρt
(
st, at

)
,Ψ(sH)

}
. (II.1)

Another global preference based on the max operator can be also proposed. Let us explicitly
define the global preferences for system states: they are the possibilistic counterparts of the
sum

∑H−1
t=0 rt

(
st, at

)
+R(sH) in the probabilistic model, given in the equation (I.2).

Definition II.1.1 (Global Preferences on System State Trajectory)

Let (At)H−1
t=0 be a sequence of action variables modeling the successive agent decisions.

Global preferences over system state trajectories (St)Ht=0 are denoted as follows:

• the maximum-based one, not very demanding,

G
(
(St)Ht=0, (At)H−1

t=0

)
= max

{
H−1max
t=0

{
ρt
(
St, At

)}
,Ψ(SH)

}
, (II.2)

• the classical minimum-based one, which has been used until now,

G
(
(St)Ht=0, (At)H−1

t=0

)
= min

{
H−1
min
t=0

{
ρt
(
St, At

)}
,Ψ(SH)

}
, (II.3)

i.e. with previous notations, if the system state trajectory is denoted by T = (s0, . . . , sH) ∈
SH+1 and the strategy (δ) = (δt)H−1

t=0 with ∀t ∈ {1, . . . ,H − 1}, δ : S → A,

• G
(
T , (δ)

)
= G

(
(st)Ht=0,

(
δt(st)

)H−1

t=0

)
, and

• G
(
T , (δ)

)
= G

(
(st)Ht=0,

(
δt(st)

)H−1

t=0

)
= ρ

(
T , (a)H−1

t=0

)
, see the equation (II.1).

Note that other aggregation methods giving their results in L are possible: for instance median
value or majority value. However those aggregation methods do not have features allowing an
easy use of dynamic programming. Note also that a π-MDP with an optimistic criterion (or
optimistic value function, see the equation (I.48) of Section I.2.4) and a maximum-based global
preference degree G has not been defined yet (all π-MDPs seen previously had a minimum-
based global preference G), and we propose it now:
Definition II.1.2 (Optimistic π-MDP Criterion – Maximum-based Global Preference)

Let us denote as previously the initial state s0 ∈ S, an H-length trajectory T = (st)Ht=1,
and TH = SH the set of such trajectories. The value function of the Maximum-based
Optimistic π-MDP is

UH
(
s0, (δt)H−1

t=0

)
= max
T ∈TH

min
{
G
(
T , (δ)

)
, π
(
T
∣∣∣s0, (δ)

)}
,

where, π
(
T
∣∣∣s0, (δ)

)
is the possibility degree of the trajectory T given the strategy (δ) =

(δt)H−1
t=0 , defined as in Section I.2.4, see the equation (I.47). As the Sugeno integral of the

global reward with respect to the possibility measure, it can then be denoted by

UH
(
s, (δ)

)
= SΠ

[
G
(

(St)Ht=0,
(
δt(St)

)H−1

t=0

) ∣∣∣∣ S0 = s, (δ)
]
.
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This optimistic π-MDP also can be solved using Dynamic Programming (DP), just like the
π-MDPs presented in the previous chapter (see Section I.2.4), and as described by the next
theorem:
Theorem 17 (DP for optimistic π-MDPs with Maximum-based Global Preference)

The optimal optimistic criterion with the maximum-based global preference G, denoted
by U∗H , and an associated optimal strategy (δ∗)H−1

t=0 , can be computed as follows:
∀s ∈ S,

U∗0 (s) = Ψ(s), and, ∀1 6 i 6 H,

U∗i (s) = max
a∈A

max
{
ρH−i(s, a),max

s′∈S
min

{
πH−i

(
s′
∣∣ s, a) , U∗i−1(s′)

}}
. (II.4)

δ∗H−i(s) ∈ argmax
a∈A

max
{
ρH−i(s, a),max

s′∈S
min

{
πH−i

(
s′
∣∣ s, a) , U∗i−1(s′)

}}
. (II.5)

This theorem can be proved in exactly the same way as the proof of Theorem 13 (see Annex
A.20), however the equation (I.35) of Property I.2.1 has to be used.

The optimistic and pessimistic π-MDPs with a minimum-based global preference have
been presented in the previous chapter. The optimistic π-MDP with a maximum-based global
preference has been defined just above. Note that a last π-MDP may be pessimistic with a
maximum-based global preference but is not defined here.

Let us recall that, in the partially observable case, the strategy (δt)H−1
t=0 is a priori an

information-based one i.e. it is such that, for the time step t ∈ {0, . . . ,H − 1}, δt maps the
current information it = {a0, . . . , at−1, o1, . . . , ot } ∈ At × Ot to an action at ∈ A. As shown
below, two π-POMDP criteria with global preferences, i.e. with intermediate preferences, allow
to translate the partially observable processes into fully observable ones called belief π-MDPs,
as in the case of a terminal preference only (see Theorem 15):
• the optimistic criterion with maximum-based global preference, partially ob-

servable version of the Definition II.1.2,

UH
(
β0, (δ)

)
= max
T ∈TH

min
{
G
(
T , (δ)

)
, π
(
T
∣∣∣β0, (δ)

)}
. (II.6)

In this formula, G
(
T , (δ)

)
is the maximum-based global preference, defined by the equa-

tion (II.2), where the strategy consists in a function of the current information it. The
possibility degree π

(
T
∣∣∣β0, (δ)

)
= min

{
minH−1

t=0 πt
(
st+1

∣∣∣st, δt(st)), β(s0)
}

is the pos-
sibility degree of the trajectory T given the strategy (δ) and the initial belief state

β0 ∈ ΠSL. This criterion can thus be denoted by SΠ

[
G
(

(St)Ht=0,
(
δt(It)

)H−1

t=0

) ∣∣∣∣ β0, (δ)
]
,

where It = {Ot, δt−1(It−1), It−1 } is the variable representing the current information.

• the pessimistic criterion with minimum-based global preference, partially ob-
servable version of the equation I.45 of Section I.2.4,

UH
(
β0, (δ)

)
= min
T ∈TH

max
{
G
(
T , (δ)

)
, 1− π

(
T
∣∣∣β0, (δ)

)}
. (II.7)

Here, G
(
T , (δ)

)
is the minimum-based global preference, see the equation (II.3), with

an information-based strategy (δ). The possibility degree of the trajectory is denoted by

π
(
T
∣∣∣β0, (δ)

)
, and criterion may be denoted by SN

[
G
(

(St)Ht=0,
(
δt(It)

)H−1

t=0

) ∣∣∣∣ β0, (δ)
]
.
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Note that, in Section I.1.8, the probabilistic criterion is rewritten as a sum of rewards
defined on the belief states: this is possible because of the linearity of the probabilistic expec-
tation. In order to propose a global preference degree such as preferences (II.2) and (II.3) for
the π-POMDPs, some properties of the Sugeno Integral are needed. These properties are the
counterparts of the linearity of the probabilistic expectation:
Property II.1.1 (Maxitivity and Minitivity of the possibilistic Sugeno integrals)

Let f and g two functions from Ω to L. Then,

SΠ [max {f, g} ] = max {SΠ [f ] ,SΠ [g ]} , (II.8)
SN [min {f, g} ] = min {SN [f ] ,SN [g ]} . (II.9)

where the Sugeno integrals SΠ and SN are defined in Section I.2.3 (see Theorem 12).

The proof is given in Annex B.2.
These properties offer rewritings of the Sugeno integrals (with respect to the possibility

and necessity measures) of the global system state preferences G and G, as Sugeno integrals
of the global belief state preference. As the presented π-POMDP value functions, i.e. criteria
(II.6) and (II.7), are Sugeno integrals of the global system state preference, they can be
rewritten in the form of belief-dependent value functions similar to the one of Section I.1.8
for probabilistic POMDPs:

Theorem 18 (Rewritings of the π-POMDP Value Functions)
Recall that the sequence of variables representing the successive belief states is denoted by
(Bπ

t )H−1
t=0 , and the sequence of action variables by At (it includes the case At = δt(It)). The

following equalities are true:

SΠ
[
G
(
(St)Ht=0, (At)H−1

t=0

)]
= SΠ

[
G
(
(Bπ

t )Ht=0, (At)H−1
t=0

)]
, (II.10)

SN
[
G
(
(St)Ht=0, (At)H−1

t=0

)]
= SN

[
G
(
(Bπ

t )Ht=0, (At)H−1
t=0

)]
. (II.11)

where the global preference degrees of a belief state trajectory (Bπ
t )Ht=0 are:

G
(
(Bπ

t )Ht=0, (At)H−1
t=0

)
= max

{
H−1max
t=0

{
ρt
(
Bπ
t , At

)}
,Ψ(Bπ

H)
}

G
(
(Bπ

t )Ht=0, (At)H−1
t=0

)
= min

{
H−1
min
t=0

{
ρt
(
Bπ
t , At

)}
,Ψ(Bπ

H)
}
.

The global preference degrees of a belief state trajectory (Bπ
t )Ht=0 are defined as functions

of the intermediate preference degrees, denoted by ρt and ρt:

ρt(Bπ
t , At) = max

s∈S
min {ρt(s,At), Bπ

t (s)}

ρt(Bπ
t , At) = min

s∈S
max {ρt(s,At), 1−Bπ

t (s)} .

Finally, the terminal preference degrees are defined as in Theorem 15 in the previous
chapter: Ψ(Bπ

H) = maxs∈S min {Ψ(s), Bπ
H(s)}, Ψ(Bπ

H) = mins∈S max {Ψ(s), 1−Bπ
H(s)}.

The proof is given in Annex B.3 and uses Theorem I.65 and Property II.1.1.
Two equivalent belief π-MDPs can be then defined from the π-POMDP criteria (II.6)

and (II.7): as explained in Section I.2.5, their state space is S̃π = ΠSL, i.e. the set
of all belief states {β | maxs∈S β(s) = 1}. The set of the transition possibility distribu-
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tion, denoted by T̃ π, contains ∀β ∈ ΠSL, ∀t ∈ {0, . . . ,H − 1}, the possibility distribution
∀β′ ∈ ΠSL, πt (β′ | β, a) = max o′∈O s.t.

ν(β,a,o′)=β′
πt (o′ | β, a), where πt (o′ | β, a) is a notation for

max(s,s′)∈S2 min
{
πt (o′ | s′, at ) , πt (s′ | s, at ) , β(s)

}
, and ν : ΠSL × A × O → ΠSL is the belief

update function (see Theorem 14). Finally,

• for the optimistic π-POMDP with maximum-based global preference G, the preference
function of the resulting π-MDP is ∀t ∈ {1, . . . ,H − 1}, ∀β ∈ ΠSL, ∀a ∈ A,

ρt(β, a) = max
s∈S

min {ρt(s, a), β(s)}

and terminal preference function is Ψ(β) = maxs∈S min {Ψ(s), β(s)}. The resulting π-
MDP criterion is the one with the maximum-based global preference G (see Definition
II.1.2).

• for the pessimistic π-POMDP with minimum-based global preference G, the preference
function of the resulting π-MDP is ∀t ∈ {1, . . . ,H − 1}, ∀β ∈ ΠSL, ∀a ∈ A,

ρt(β, a) = min
s∈S

max {ρt(s, a), 1− β(s)}

and terminal preference function is Ψ(β) = mins∈S max {Ψ(s), 1− β(s)}. Finally, the
resulting π-MDP criterion is the one with the minimum-based global preference G (see
the equation (I.51) of Section I.2.4).

Note that line II.8 of Property II.1.1 justifies the rewriting of the optimistic π-POMDP (π-
POMDP with criterion II.6) if the global preference degree is maximum-based. However, such
a rewriting is impossible with the minimum-based global preference. Indeed, in order to keep a
criterion based on the minimum (II.1), the following equality should be true: SΠ [min {f, g} ] =
min {SΠ [f ] ,SΠ [g ]}. However, the following counterexample confirms that this equality is not
true in general: consider Ω = {ω1, ω2 }, f : Ω→ L and g : Ω→ L such that f(ω1) = 1, f(ω2) =
0, and g = 1− f . Consider the total ignorance possibility distribution: π(ω1) = π(ω2) = 1. As
min {f(ω), g(ω)} = 0, ∀ω ∈ Ω,

SΠ [min {f, g} ] = max
ω∈Ω

min {f(ω), g(ω), π(ω)} = 0,

whereas SΠ [f ] = maxω∈Ω min {f(ω), π(ω)} = max {1, 0} = 1 and and SΠ [g ] = max {0, 1} =
1 as well, thus

min {SΠ [f ] , SΠ [g ]} = 1.
It can be shown that SN [max {f, g} ] = max {SN [f ],SN [f ]} is not true in general, with the
same counterexample.

The rewritings of Theorem 18 lead to the Dynamic Programming (DP) algorithms (8)
and (9): Algorithm (8) corresponds to the DP scheme of Theorem 17, and Algorithm 9 is the
π-MDP algorithm (5):

• Algorithm 8 computes an optimal strategy for the π-MDP 〈S̃π,A, T̃ π, (ρt)H−1
t=0 ,Ψ〉 with

the optimistic criterion (using the Sugeno integral SΠ) and a maximum-based global pref-
erence (G, see Definition II.1.1), also optimal for the π-POMDP 〈S,A, T π, (ρt)H−1

t=0 ,Ψ〉
with the optimistic criterion (using SΠ), and maximum-based global preference (G).

• Algorithm 9 computes an optimal strategy for the π-MDP 〈S̃π,A, T̃ π, (ρt)H−1
t=0 ,Ψ〉, with

the pessimistic criterion (using the Sugeno integral SN ) and the classical global mininum-
based preference (G, see the equation (II.1) or Definition II.1.1), also optimal for the
π-POMDP 〈S,A, T π, (ρt)H−1

t=0 ,Ψ〉, with the pessimistic criterion (SN ) and the classical
global mininum-based preference (G).
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Algorithm 8: DP Algorithm for Optimistic π-POMDP with intermediate preferences
1 U∗0 ← Ψ;
2 for i ∈ {1, . . . ,H } do
3 for β ∈ ΠSL do

4 U∗i (β)← max
a∈A

max
{
ρt(β, a),max

o′∈O
min

{
πt
(
o′
∣∣ bt, a) , U∗i−1

(
ν(β, a, o′)

)}}
;

5 δH−i(β) ∈ argmax
a∈A

max
{
ρt(β, a),max

o′∈O
min

{
πt
(
o′
∣∣ bt, a) , U∗i−1

(
ν(β, a, o′)

)}}
;

6 return U∗H , (δ∗);

Algorithm 9: DP Algorithm for Pessimistic π-POMDP with intermediate preferences
1 U∗0 ← Ψ;
2 for i ∈ {1, . . . ,H } do
3 for β ∈ ΠSL do

4 U∗i (β)← max
a∈A

min
{
ρt(β, a),min

o′∈O
max

{
1− πt

(
o′
∣∣ bt, a) , U∗i−1

(
ν(β, a, o′)

)}}
;

5 δH−i(β) ∈

argmax
a∈A

min
{
ρt(β, a),min

o′∈O
max

{
1− πt

(
o′
∣∣ bt, a) , U∗i−1

(
ν(β, a, o′)

)}}
;

6 return U∗H , (δ∗);

II.1.1 Discussion

The maximum-based global preference G (II.2) cares about the fact that at least one encoun-
tered state has a high preference. As explained just above, this global preference has been
introduced in order to enable both the definition of belief-based preferences (ρ and Ψ as in
the Terminal Preference case Section I.2.5), and a global preference for belief trajectories (the
maximum of the belief-based preference degrees too), when the optimistic criterion is used
(i.e. using SΠ). Moreover, defining ∀t ∈ {0, . . . ,H − 1}, ∀s ∈ S, ∀a ∈ A, ρt(s, a) = 0, the use
of the maximum-based global preference goes back to the case of the π-MDP with terminal
preference only, i.e. to use the criterion (I.58) or (I.59).

The minimum-based global preference G (II.3) has been used until this chapter and is the
one proposed in [123, 122, 121]: using this global preference, a trajectory has a high preference
degree if all the states of this trajectory have a high preference degree. It allows also, when the
pessimistic criterion is used (i.e. using SN ), the definition of belief-based preferences (ρ, Ψ), and
a global preference for belief state trajectories (also the minimum of the belief-based preference
degrees). As noted before, if all intermediate preferences are set to 1, i.e. ∀t ∈ {0, . . . ,H − 1},
∀s ∈ S, ∀a ∈ A, ρt(s, a) = 1, the use of the minimum-based global preference goes back to use
a π-MDP with terminal preference only.

These global preferences suffer from the drowning effect [53]. Indeed, using the minimum-
based global preference, if one of the encountered state has a low preference degree, the trajec-
tory has a low preference degree no matter the other preference states. There is the same issue
with the maximum-based global preference: no distinction will be made between a trajectory
with only high preferences, and a trajectory with only one state with a high preference. As it
will be presented and tested in this thesis, the lexi approaches, or other criteria [146] can solve
these difficulties.

Finally, it can be noted that, in the optimistic case, a π-POMDP is satisfied by a total
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ignorant belief state: for instance, if ∀s ∈ S, β(s) = 1, Ψ(β) = maxs∈S min {Ψ(s), β(s)} =
maxs∈S Ψ(s). Thus, an uninformative belief state leads to the best preference. A criterion
mixing a pessimistic belief-based preference Ψ and an optimistic one over the belief preferences
can be introduced, even if it means that this criterion is not related anymore on any preference
over system states:
Definition II.1.3 (Mixed Optimistic-Pessimistic Criterion, Terminal Preference Case)

Given a strategy (δ) = (δt)H−1
t=0 and an initial belief state β0 ∈ ΠSL, the mixed π-POMDP

value function can be defined by one of the three following equivalent formulae:

U
(
β0, (δ)

)
= max

βH∈ΠSL
min

{
min
s∈S

max {Ψ(s), 1− βH(s)} , π
(
βH
∣∣∣β0, (δ)

)}
(II.12)

= max
βH∈ΠSL

min
{

Ψ(SH), π
(
βH
∣∣∣β0, (δ)

)}
= SΠ

[
Ψ(SH)

∣∣∣β0, (δ)
]
.

In a nutshell, the general form of the Dynamic Programming equation of a π-POMDP is,

∀β ∈ ΠSL, Û∗0 (β) = Ψ̃(β),

and, ∀i ∈ {1, . . . ,H }, ∀β ∈ ΠSL,

Û∗i (β) = max
a∈A

M̂
{
ρ̃t(β, a), Ŝ

(
πt
(
o′
∣∣ β, a) , Û∗i−1

(
ν(β, a, o′)

))}
, (II.13)

δ̂∗H−i(β) ∈ argmax
a∈A

M̂
{
ρ̃t(β, a), Ŝ

(
πt
(
o′
∣∣ β, a) , Û∗i−1

(
ν(β, a, o′)

))}
(II.14)

For instance, in the case of the optimistic π-POMDP value function (i.e. based on SΠ) with a
maximum-based global preference (G),

• Û∗i is denoted by U∗i as the optimistic criterion,

• Ψ̃(β) = Ψ(β) = maxs∈S min {Ψ(s), β(s)},

• ρ̃t(β, a) = ρt(β) = maxs∈S min {ρt(s, a), β(s)},

• M̂ is the maximum operator,

• Ŝ
(
πt (o′ | β, a) , Û∗i−1

(
ν(β, a, o′)

))
= maxo′∈Omin

{
πt (o′ | β, a) , U∗i−1

(
ν(β, a, o′)

)}
,

see Algorithm 8.
Another example is the case of the pessimistic π-POMDP value function (i.e. based on

SN ) with a minimum-based global preference (G),

• Û∗i is denoted by U∗i as the pessimistic criterion,

• Ψ̃(β) = Ψ(β) = mins∈S max {Ψ(s), 1− β(s)},

• ρ̃t(β, a) = ρt(β) = mins∈S max {ρt(s, a), 1− β(s)},

• M̂ is the minimum operator,
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• Ŝ
(
πt (o′ | β, a) , Û∗i−1

(
ν(β, a, o′)

))
= mino′∈Omax

{
1− πt (o′ | β, a) , U∗i−1

(
ν(β, a, o′)

)}
,

see Algorithm 9.
Finally, in the case of the mixed optimistic-pessimistic π-POMDP value function,

• Û∗i is denoted by U∗i ,

• Ψ̃(β) = Ψ(β) = mins∈S max {Ψ(s), 1− β(s)},

• ρ̃t(β, a) = ρt(β) = mins∈S max {ρt(s, a), 1− β(s)},

• M̂ has not been defined, as the case of intermediate preferences was not considered for
this criterion: it may be defined as the minimum or the maximum operator,

• Ŝ
(
πt (o′ | β, a) , Û∗i−1

(
ν(β, a, o′)

))
= maxo′∈Omin

{
πt (o′ | β, a) , U∗i−1

(
ν(β, a, o′)

)}
,

see just above Definition II.1.3 for the case of terminal preference only. The new mixed
optimistic-pessimistic criterion of Definition II.1.3 will be the most frequently used in this
thesis, mainly because it can be translated into optimistic π-MDP which produce good ap-
proximate strategies for probabilistic problem [122], and because it is adapted to the ubounded
execution criterion presented below.

Let us recall now that S̃π = ΠSL is a finite set of cardinality #S̃π = #L#S − (#L −
1)#S (the total number of #S-size vectors valued in L, minus (#L − 1)#S non-normalized
distributions). For concrete problems, the state space can be dramatically large: #S̃π explodes
and computations become intractable like in standard probabilistic POMDPs. The next section
presents a way to exploit a specific structure of the problem that is very common in practice.

II.2 Mixed-Observability and π-MOMDPs
The complexity issue of π-POMDP solving is due to the fact that the size of the belief state
space ΠSL exponentially grows with the size of the state space S, see the equation (I.60) of Sec-
tion I.2.5. However, in practice, states are rarely completely hidden. Using mixed-observability

Sv,t Sv,t+1Sh,t Sh,t+1

St St+1

at−1 at

Oh,t Oh,t+1Ov,t Ov,t+1

π (st | st−1, at−1 ) π (st+1 | st, at )

π (oh,
t
| s t
, a t
−1)

π (oh,t
+1 |

s t+
1,
a t)

Ov,t = Sv,t Ov,t+1 = Sv,t+1

Figure II.1 – Dynamic Bayesian Network of a π-MOMDP: at time step t, the system state is described
by variable St = (Sv,t, Sh,t). The received observation is Ot = (Ov,t, Oh,t) with Ov,t = Sv,t, and Oh,t
depending on St and action at.
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can be a solution: inspired by a similar recent work in probabilistic POMDPs [100, 3], we
present in this section a structured modeling that takes into account situations where the
agent directly observes some part of the state. a π-POMDP which models such a situation
respects the mixed-observable property. Belief states are then used only for the partially ob-
served components and the size of the belief state space is substantially reduced. Thus, this
model generalizes both π-MDPs and π-POMDPs.

Like in [3], we assume that the state space S of a Qualitative Possibilistic Mixed-Observable
MDP (π-MOMDP) can be written as a Cartesian product of a visible state space Sv and a
hidden one Sh: S = Sv × Sh. Let s = (sv, sh) be a state of the system. The component sv is
directly observed by the agent and sh is only partially observed through the observations of
the set Oh: we denote by πt (o′h | s′, a), the possibility distribution over the future observation
o′h ∈ Oh at time step t, knowing the future state s′ ∈ S and the current action a ∈ A. Figure
II.1 illustrates the structure of this Mixed-Observable model.

The visible state space is integrated to the observation space: Ov = Sv and O = Ov ×Oh.
Then, knowing that the current visible component of the state is sv, the agent necessarily
observes ov = sv (if o′v 6= s′v, πt (o′v | s′v, a) = 0, ∀a ∈ A). Formally, seen as a π-POMDP, its
observation possibility distribution can be written as:

πt
(
o′
∣∣ s′, a) = πt

(
o′v, o

′
h

∣∣ s′v, s′h, a)
= min

{
πt
(
o′h
∣∣ s′v, s′h, a) , πt (o′v ∣∣ s′v )}

=
{
πt (o′h | s′, a) if o′v = s′v

0 otherwise (II.15)

since ∀a ∈ A, πt (o′v | s′v, a) = 1 if s′v = o′v and 0 otherwise. The following theorem, based on
this equality enables the belief over hidden states to be defined.
Theorem 19 (Nature of Reachable Belief States)

Each reachable belief state of a π-MOMDP can be written as an element of Sv × ΠShL
where ΠShL is the set of possibility distributions over Sh: any reachable β ∈ ΠSL can be
written as (sv, βh) with βh(sh) = maxsv∈Sv β(sv, sh) and sv = argmaxsv∈Sv β(sv, sh).

The proof is given in Annex B.4
As all reachable belief states are in Sv×ΠShL when the mixed-observability property holds,

the next theorem rewrites the belief update function for the belief states βh ∈ ΠSL over the
hidden system states sh ∈ Sh.
Theorem 20 (Belief Update for a π-MOMDP)

If a problem can be modeled by a π-MOMDP〈
Sv × Sh,A,Oh, T π, Oπ, (ρt)H−1

t=0 ,Ψ, β0 = (sv,0, βh,0)
〉
,

a new belief update function νh can be defined: if, at time step t, the current visible state
is sv,t ∈ Sv, the current belief state about the hidden system state is βh,t ∈ ΠShL , the
selected action is at ∈ A, the next visible state is sv,t+1 ∈ Sv and the next observation is
oh,t+1 ∈ Oh, then the next belief state about the hidden system state is

βh,t+1(s′h) =


1 if πt (s′h, sv,t+1, oh,t+1 | sv,t, βh,t, at )

= πt (sv,t+1, oh,t+1 | sv,t, βh,t, at )
,

πt (s′h, sv,t+1, oh,t+1 | sv,t, βh,t, at ) otherwise
(II.16)
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where

πt
(
s′v, s

′
h, o
′
h

∣∣ sv, βh, a) = min
{
πt
(
o′h
∣∣ s′, a) , max

sh∈Sh
min

{
πt
(
s′
∣∣ sv, sh, a) , βh(sh)

}}
is the joint possibility distribution over hidden system states s′h ∈ Sh and vis-
ible objects (visible system state and observation) s′v ∈ Sv and o′h ∈ Oh. The
notation πt (s′v, o′h | sv, βh, a) is for the possibility degree of the visible objects
maxs′

h
∈Sh πt (s′h, s′v, o′h | sv, βh, a) (using the notation s′ = (s′v, s′h) ∈ S = Sv × Sh).

This belief update is denoted by

β′h = νh
(
sv, βh, a, s

′
v, o
′
h

)
.

The proof is given in Annex B.5.
The state space of the belief π-MDP resulting from a π-MOMDP can be restricted to the

product space Sv ×ΠShL , i.e. a finer belief π-MDP than those presented previously, benefiting
from the Mixed-Observability, can be defined: 〈S̃π, T̃ π,A, (ρ̃t)H−1

t=0 , Ψ̃〉, where

• the state space of the belief π-MDP is defined as S̃π = Sv ×ΠShL ,

• a transition possibility distribution in T̃ π is such that ∀ {0, . . . ,H − 1}, ∀a ∈ A,
∀
[
(sv, βh), (s′v, β′h)

]
∈
(
S̃π
)2
,

πt
(
(s′v, β′h)

∣∣∣(sv, βh), a
)

= max
o′h∈Oh s.t.

νh(sv ,βh,a,s′v ,o′h)=β′h

πt
(
s′v, o

′
h

∣∣ sv, βh, a) ,
where πt (s′v, o′h | sv, βh, a) is defined just above,

• If the belief-based preferences are optimistic i.e. ρ̃t = ρt and Ψ̃ = Ψ, then ∀t ∈
{0, . . . ,H − 1}, ∀sv ∈ Sv, ∀βh ∈ ΠShL , ∀a ∈ A, the preference functions can be rewritten

ρt(sv, βh) = max
sh∈Sh

min {ρt(sv, sh), βh(sh)} ,

and
Ψ(sv, βh) = max

sh∈Sh
min {Ψ(sv, sh), βh(sh)} .

Indeed, β(sv, sh) = 0 if sv is not the actual visible state sv, thus, for instance

Ψ(β) = max
s∈S

min {Ψ(s), β(s)}

= max
sh∈Sh

min {Ψ(sv, sh), β(sh, sv)} .

• If the belief-based preferences are pessimistic i.e. ρ̃t = ρt and Ψ̃ = Ψ, then ∀t ∈
{0, . . . ,H − 1}, ∀sv ∈ Sv, ∀βh ∈ ΠShL , ∀a ∈ A, the preference functions can be rewritten

ρt(sv, βh) = min
sh∈Sh

max {ρt(sv, sh), 1− βh(sh)} ,

and
Ψ(sv, βh) = min

sh∈Sh
max {Ψ(sv, sh), 1− βh(sh)} .

Indeed, 1− β(sv, sh) = 1 if sv is not the actual visible state sv, thus, for instance

Ψ(β) = min
s∈S

max {Ψ(s), 1− β(s)}

= min
sh∈Sh

max {Ψ(sv, sh), 1− β(sh, sv)} .
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Theorem 21 (Dynamic Programming Equation of a π-MOMDP)
The dynamic programming equation becomes:
∀(sv, βh) ∈ Sv ×ΠShL ,

Û∗0 (sv, βh) = Ψ̃(sv, βh),

and, ∀i ∈ {1, . . . ,H}, ∀(sv, βh) ∈ Sv ×ΠShL ,

Û∗i (sv, βh) = max
a∈A

M̂

{
ρ̃t(sv, βh, a), Ŝ

(
πt
(
s′v, o

′
h

∣∣ sv, βh, a) , Û∗i−1

(
νh(sv, βh, a, s′v, o′h)

))}
,

δ̂∗i (sv, βh) ∈ argmax
a∈A

M̂

{
ρ̃t(sv, βh, a), Ŝ

(
πt
(
s′v, o

′
h

∣∣ sv, βh, a) , Û∗i−1

(
νh(sv, βh, a, s′v, o′h)

))}
,

(II.17)
where νh is the new belief update function (Theorem 20), and the notations come from the
general Dynamic Programming Equation II.13.

The proof is given in Annex B.6.
A standard algorithm would have computed Û∗i (β) for each β ∈ ΠSL while this new dynamic

programming equation leads to an algorithm which computes it only for all (sv, βh) ∈ Sv×ΠShL ,
since only this kind of belief states can be encountered. The size of the new belief space is

#(Sv ×ΠShL ) = #Sv ×
(

#L#Sh − (#L − 1)#Sh
)
,

which is exponentially smaller than the size of standard π-POMDPs’ belief space:

#ΠSL = #L#Sv×#Sh − (#L − 1)#Sv×#Sh .

An even finer belief π-MDP could be defined on the set of reachable belief states starting from
the initial belief state β0: ΠSL,β0

which is a subset of ΠShL .

II.3 Infinite Horizon Settings
A finite strategy for possibilistic MOMDPs can now be computed for larger problems using
the dynamic programming equation of Theorem 21 and selecting maximizing actions for each
state (sv, βh) ∈ Sv × ΠShL (see the equation II.17), as done in the equation (II.14) for each
β ∈ ΠSL. However, for many problems in practice, it is difficult to determine a horizon size
H. The goal of this section is to present an algorithm to solve optimistic π-MOMDPs with
terminal preference only, under infinite horizon: it is the first proved algorithm to solve such
π-(MO)MDPs.

II.3.1 The π-MDP case

Previous work, [121, 123], on solving π-MDPs proposed a Value Iteration algorithm that was
proved to compute optimal value functions, but not necessarily optimal strategies for some
problems with cycles. There is a similar issue in undiscounted probabilistic MDPs where the
greedy strategy at convergence of Value Iteration does not need to be optimal [115]. It is
not surprising that we are facing the same issue in π-MDPs since the possibilistic dynamic
programming operator does not rely on algebraic products so that it cannot be contracted by
some discount factor 0 < γ < 1.
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Figure II.2 – Deterministic example showing the limits of previous algorithms

sA sBâ
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For infinite horizon problems, the optimistic π-MDP model has to undergo a little change.
The dynamics is defined as stationary, as in the probabilistic case, see Section I.1.4: ∀t > 0,
∀(s, s′) ∈ S2, ∀ ∈ A,

πt
(
s′
∣∣ s, a) = π

(
s′
∣∣ s, a) .

The case of terminal preference only, is considered: starting from the general optimistic π-
MDP (with intermediate preferences and minimum-based global preference, see Section I.2.4)
the preference functions can be set equivalently to ∀t > 0, ∀s ∈ S, ∀ ∈ A,

ρt(s, a) = 1,

and thus, only the terminal preference function Ψ has an effect on the criterion, and has to be
defined for the instantiation of the π-MDP.

Algorithm 10: Optimistic π-MDP VI Algorithm – Terminal Preference Only
1 for s ∈ S do
2 U∗(s)← 0 ;
3 U c(s)← Ψ(s) ;
4 δ∗(s)← â ;
5 while U∗ 6= U c do
6 U∗ = U c ;
7 for s ∈ S do
8 U c(s)← max

a∈A
max
s′∈S

min
{
π
(
s′
∣∣ s, a) , U∗(s′)} ;

9 if U c(s) > U∗(s) then
10 δ∗(s) ∈ argmax

a∈A
max
s′∈S

min
{
π
(
s′
∣∣ s, a) , U∗(s′)} ;

11 return U∗, δ∗ ;

To the best of our knowledge, we propose here the first Value Iteration algorithm for π-
MDPs, that provably returns an optimal strategy, and that is different from the one of [123].
Indeed, in the deterministic example of Figure II.2, action â, which is clearly suboptimal
in state sA, was found to be optimal in sA with this algorithm: however it is clear that
since π (sB | sA, b) = 1 and Ψ(sB) = 1, U∗1 (sA) = 1. Obviously, U∗1 (sB) = 1 and since
π (sA | sA, â) = 1, maxs′∈S min

{
π (s′ | sA, a) , U∗1 (s′)

}
= 1 ∀a ∈ { â, b} = A, i.e. all actions

are optimal in sA. The “if” condition of Algorithm 10 permits to select the optimal action b
during the first step. This condition and the initialization, which were not present in previous
algorithms of the literature, are needed to prove the optimality of the strategy. The proof,
which is quite lengthy and intricate, is presented in Annex C. This sound algorithm for π-
MDPs will then be extended to π-MOMDPs in the next section.

As mentioned in [121], we assume the existence of an action “stay”, denoted by â, which
lets the system in the same state with necessity 1. This action is the possibilistic counterpart of
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the discount parameter γ in the probabilistic model, as it guarantees convergence of the Value
Iteration algorithm. However, we will see that action â is finally used only on some particular
satisfactory states. Note that a similar assumption is used to compute optimal strategies in
the framework of deterministic processes (classical planning) whose horizon is not specified
[85].

We denote by δ̂ the decision rule such that ∀s ∈ S, δ̂(s) = â. The set of all the finite
strategies is ∆ = ∪i>1∆i, and #δ is the size of a strategy (δ) in terms of decision epochs. We
can now define the optimistic criterion for an infinite horizon: if (δ) ∈ ∆,

U
(
s0, (δ)

)
= max
T ∈T#δ

min
{
π
(
T
∣∣∣s0, (δ)

)
,Ψ(s#δ)

}
, (II.18)

where T = (s1, . . . , s#δ) is a trajectory of system states, T#δ the set of such trajectories, and

π
(
T
∣∣∣s0, (δ)

)
=

#δ−1
min
i=0

π
(
si+1

∣∣∣si, δi(si)).
Theorem 22 (Optimality of the VI Algorithm for Optimistic π-MDPs)

If there exists an action â such that, for each s ∈ S, π (s′ | s, â) = 1 if s′ = s and 0
otherwise, then Algorithm 10 computes the maximum optimistic criterion and an optimal
strategy, i.e. maximizing the criterion (II.18), which is stationary (i.e. which does not
depend on the stage of the process t).

The proof is given in Annex C. Note that, as in the probabilistic case (see Section I.1.5), the
computed optimal strategy is stationary i.e. does not depend on the time step of the process.

Let s be a state such that δ∗(s) = â, where δ∗ is the returned strategy. By looking at
Algorithm 10, it can be noted that U∗(s) always remains equal to Ψ(s) during the iterations
of the algorithm after the first entry in the while loop. Thus, ∀s′ ∈ S, either ∀a ∈ A, Ψ(s) >
π (s′ | s, a), or Ψ(s) > U∗(s′). If the problem is non trivial, it means that s is a goal (Ψ(s) >
0) and that degrees of possibility of transitions to better goals are less than the degree of
preference for s.

II.3.2 Value Iteration for π-MOMDPs

We are now ready to propose the Value Iteration algorithm for π-MOMDPs which re-
duces to a belief π-MDP which is optimistic and with terminal preference only (whose
Value Iteration algorithm has been presented in the previous section). This Value Iteration
algorithm is, for instance, devoted to π-MOMDPs with the π-POMDP mixed optimistic-
pessimistic criterion, see Definition II.1.3: the terminal preference function is then Ψ(sv, βh) =
minsh∈Sh max {Ψ(sv, sh), 1− βh(sh)}. Another example of appropriate π-MOMDP with the
optimistic π-POMDP criterion (see Algorithm 8, removing intermediate preferences): the ter-
minal preference function is in this case Ψ(sv, βh) = maxsh∈Sh min {Ψ(sv, sh), βh(sh)}.

Note that Algorithm 11 has the same structure as Algorithm 10. Note as well that a
π-MOMDP is a π-MDP over Sv ×ΠShL . Recall that the transition possibility distribution is

πt
(
(s′v, β′h)

∣∣∣(sv, βh), a
)

= max
o′h∈Oh s.t.

νh(sv ,βh,a,s′v ,o′h)=β′h

πt
(
s′v, o

′
h

∣∣ sv, βh, a) .

To satisfy the assumption of Theorem 22, it suffices to ensure that πt
(
(s′v, β′h)

∣∣∣(sv, βh), a
)

=
1 if s′v = sv and β′h = βh, and 0 otherwise. This property is verified if the two following
conditions hold: π (s′v, s′h | sv, sh, â) = 1 if (s′v, s′h) = (sv, sh), and 0 otherwise, and there exists
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Algorithm 11: π-MOMDP Value Iteration Algorithm
1 for sv ∈ Sv and βh ∈ ΠShL do
2 U∗(sv, βh)← 0 ;
3 U c(sv, βh)← Ψ̃(sv, βh) ;
4 δ∗(sv, βh)← â ;
5 while U∗ 6= U c do
6 U∗ ← U c ;
7 for sv ∈ Sv and βh ∈ ΠShL do

8 U c(sv, βh)← max
a∈A

max
s′v∈S

max
o′
h
∈Oh

min
{
π
(
s′v, o

′
h

∣∣∣sv, βh, a), U∗(s′v, νh(sv, βh, s′v, o′h)
)}

;

9 if U c(sv, βh) > U∗(sv, βh) then

10 δ∗(sv, βh) ∈ argmax
a∈A

max
s′v∈S

max
o′
h
∈Oh

min
{
π
(
s′v, o

′
h

∣∣∣sv, βh, a), U∗(s′v, νh(sv, βh, s′v, o′h)
)}

;

11 return u∗, δ∗ ;

an observation “nothing” ôh that is required for each state when â is chosen i.e. ∀(s′v, s′h) ∈ S,
π (o′h | s′v, s′h, â) = 1 if o′h = ôh and 0 otherwise. Indeed, it means that ôh is received for sure
when â is selected: no information is provided by this observation, and the belief does not
evolve.

II.4 Results on a Robotic Mission and Possibilistic Belief State
Behaviour
This section is devoted to the use of strategies computed by Algorithm 11 in the context of
a concrete robotic problem. Consider a robot over a grid of size g × g, with g > 1. It always
perfectly knows its location on the grid (x, y) ∈ {1, . . . , g}2, which forms the visible state space
Sv. It starts at location sv,0 = (1, 1). Two targets are located at (x1, y1) = (1, g) (“target 1”)
and (x2, y2) = (g, 1) (“target 2”) on the grid, and the robot perfectly knows their positions.
One of the targets is A, the other B and the robot’s mission is to identify and reach target A
as soon as possible. The robot does not know which target is A: the two situations, “target
1 is A” (A1) and “target 2 is A” (A2), constitute the hidden state space Sh. The moves of
the robot are deterministic and its actions A consist in moving in the four directions plus the
action “stay”. At each stage of the process, the robot analyzes pictures of each target and gets
then an observation of the targets’ natures: the two targets (oAA) can be observed as A, or
target 1 (oAB), or target 2 (oBA) or no target (oBB).

In the probabilistic framework, the probability of having a good observation
of target i ∈ {1, 2}, is not really known but approximated by p (goodi | x, y ) =
1
2

[
1 + exp

(
−
√

(x−xi)2+(y−yi)2

D

)]
where (x, y) = sv ∈ {1, . . . , g}2 is the location of the

robot, (xi, yi) the position of target i, and D a normalization constant. We suppose
that the observations of both targets are independent: then, for instance, the probability
p (oAB | (x, y), A1) is equal to p (good1 | (x, y)) · p (good2 | (x, y)), p (oAA | (x, y), A1) to
p (good1 | (x, y))·[1− p (good2 | (x, y)) ], and so on. Each step of the process before reaching a
target costs 1, reaching target A is rewarded by 100, and -100 for B. The probabilistic strategy
was computed in mixed-observability settings with APPL1 based on SARSOP [100, 84] (see

1The used software is available at http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
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Figure II.3 – Illustration of a robotic mission, first experiment on π-MOMDPs
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Section I.1.11), using a precision of 0.046 (the memory limit is reached for higher precisions)
and a discount factor γ = 0.99. This problem cannot be solved with the exact algorithm for
MOMDPs [3] because it consumes the entire RAM after 15 iterations.

In the framework of Qualitative Possibility Theory, it is considered always possible to
observe the good target: π (good | x, y ) = 1. Secondly, the farther the robot is from tar-
get i, the more likely it is to badly observe it (e.g. observe A instead of B), which is a
reasonable assumption if the actual probabilistic observation model is imprecisely known:
π (badi | x, y ) = (x−xi)2+(y−yi)2

2(g−1)2 , and thus, L can be defined by
{

0, 1
2(g−1) , . . . , 1

}
, or any

other scale preserving the fact that the possibility degree of misperceiving increases with
the distance from the considered target. The observation of a target is also considered as
NI-independent from the the observation of the other target (see Definition I.2.6 of Section
I.2.2). Thus for instance, π (oAB | (x, y), A1) = 1, π (oAA | (x, y), A1) = π (bad2 | x, y ),
π (oBA | (x, y), A1) = min {π (bad1 | x, y ) , π (bad2 | x, y )}, etc. Note that the construction
of this model with a probability-possibility transformation [63] would have been equivalent.
The terminal preference function Ψ is equal to 0 for all the system’s states and to 1 for states
[(x1, y1), A1] and [(x2, y2), A2] where (xi, yi) is the position of target i. As mentioned in [121],
the computed strategy guarantees a shortest path to a goal state. The strategy then aims
at reducing the mission duration. The mixed optimistic-pessimistic criterion, see Definition
II.1.3, is used here to compute the strategy.

Standard π-POMDPs, which do not exploit mixed-observability contrary to our π-MOMDP
model, could not solve even very small 3×3 grids. Indeed, for this problem, #L > 5, #Sv = 9,
and #Sh = 2. Thus, #S = #Sv ×#Sh = 18 and the number of belief states is then #ΠSL =
L#S − (L − 1)#S > 518 − 418 > 3.7.1012 instead of 81 states with a π-MOMDP. Therefore,
the following experimental results could not be conducted with standard π-POMDPs, which
indeed justifies our present work on π-MOMDPs.

In order to compare the performances of the probabilistic and possibilistic models, we
compare the average of their total (undiscounted) rewards at execution, i.e. a reward-based
criterion really close to the probabilistic criterion (the same with γ = 1): since the situation
(the nature of the targets) is fully known by the agent when the robot is at a target’s location,
it can not end up choosing target B. If k is the number of time steps needed to identify and
reach the correct target, then the total reward is 100− k.

We consider now that, in reality (thus here for the simulations), and contrary to what is
described by the model, the image processing algorithms badly perform when the robot is far
away from targets, i.e., if ∀i ∈ {1, 2},

√
(x− xi)2 + (y − yi)2 > C, with C a positive constant,
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then p (goodi | x, y ) = 1 − Pbad <
1
2 . In all other cases, we assume that the probabilistic

model is the good one. Figure II.3 illustrates this problem, and indicates the zone where the
robot misperceives calling it “error zone”. For the following numerical experiments, we used
104 simulations to compute the statistical mean of the total reward at execution. The grid was
10× 10, D = 10 and C = 4.

Figure II.4.a shows that the probabilistic model is more affected by the introduced error
than the possibilistic one: it shows the total reward at execution of each model as a func-
tion of Pbad, the probability of badly observing targets when the robot’s location is such that√

(x− xi)2 + (y − xi)2 > C, i.e. when the robot is in the “error zone”. This is due to the
fact that the possibilistic update of the belief state does not take into account new obser-
vations when the robot has already obtained a more reliable one, whereas the probabilistic
model modifies the current belief at each step. Indeed, as there are only two hidden states
(A1 and A2) that we now denote by s1

h and s2
h, if βh(s1

h) < 1, then βh(s2
h) = 1 (possibilistic

normalization). As the hidden state does not change during the mission, the joint possibil-
ity distribution over the hidden state and the observation is the minimum of the possibility
distribution over the system state (described by the current belief state) and the observation
possibility degree: e.g. for s1

h, the joint distribution is min
{
π
(
oh | sv, s1

h, a
)
, βh(s1

h)
}
, with

oh ∈ {oAA, oAB, oBA, oBB }. It implies that the joint possibility of s1
h and the observation

oh, is smaller than βh(s1
h). The possibilistic counterpart of the belief update equation, see

the equation (I.62) or the equation (II.16) for Mixed-Observability settings, ensures that the
next belief is either more skeptic about s1

h if the observation is more reliable and confirms the
prior belief (π

(
oh | sv, s1

h, a
)
is smaller than βh(s1

h)); or changes to the opposite belief if the
observation is more reliable and contradicts the prior belief (π

(
oh | sv, s2

h, a
)
is smaller than

both βh(s1
h) and π

(
oh | sv, s1

h, a
)
); or yet simply remains unchanged if the observation is not

more informative than the current belief.
The following theorem gives sufficient conditions leading to an informative possibilistic

belief update i.e. which make the resulting belief state more specific (see Definition I.2.5 of
Section I.2.1) than the previous one: a belief state β1 ∈ ΠSL is said more specific than a belief
state β2 ∈ ΠSL if ∀s ∈ S, β1(s) 6 β2(s). In order to get a total order on ΠSL, the ranking relation
� is defined to sort belief states with respect to their specificity:

β1 � β2 ⇔
∑
s∈S

β1(s) 6
∑
s∈S

β2(s).

Note that if β1 is more specific than β2, then β1 � β2.
Theorem 23 (Conditions for an increasing specificity of the belief states)

Let β0 ∈ ΠSL be the initial belief state modeling the total ignorance i.e. ∀s ∈ S, β0(s) =
1. If the transition function π (s′ | s, a) is deterministic, and if the observations are not
informative, i.e. ∀s′ ∈ S , ∀a ∈ A, ∀o′ ∈ O, π (o′ | s′, a) = 1, then βt+1 � βt, where
βt+1 ∈ ΠSL is the result of an update (I.62) of the belief state βt ∈ ΠSL,

The result βt+1 � βt remains true if, for each action a ∈ A, the transition possibility
distributions π (s′ | s, a) = 1{ s=s′ } (i.e. is equal to 1 if s′ = s and 0 otherwise), and
∀o′ ∈ O, ∀a ∈ A, ∀s′, s̃ ∈ S, π (o′ | s′, a) 6= π (o′ | s̃, a).

The proof is given in Annex B.7. Note that this theorem was devoted to π-POMDP. However,
the same result holds for π-MOMDPs, replacing s ∈ S by sh ∈ Sh and o ∈ O by oh ∈ Oh.
Note also that the conditioning presented in Definition I.2.10 of Section I.2.2 leads to another
belief update: with this one, if βt+1 is the update of the belief state βt, βt+1 is not less specific
than βt. However, it does not ensure that βt+1 � βt.

The probabilistic belief update does not have these capabilities to directly change to the
opposite belief and to disregard less reliable observations: the robot then proceed towards the
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(a) Varying Pbad. (b) Varying β0: here L = {0, 1, . . . , 50}.
Figure II.4 – Comparison of the total reward gathered at execution for possibilistic and probabilistic
models.

wrong target because it is initially far away and thus badly observes targets (without knowing
it). When it is close to this target, it gets good observations and gradually modifies its belief
which becomes true enough to convince it to go towards the right target. However it has to
cross a remote area away from targets: this yet gradually modifies its belief, which becomes
wrong, and the robot finds itself in the same initial situation: it loses thus a lot of time to
get out of this loop. We can observe that the total reward increases for high probabilities of
misperceiving Pbad: this is because this high error leads the robot to reach the wrong target
faster, thus to entirely know that the true target is the other one.

Now if we set Pbad = 0.8 and evaluate the total reward at execution for different wrong
initial belief states, we get Figure II.4.b with the same parameters: we compare here the
possibilistic model and the probabilistic one when the initial belief state is strongly oriented
towards the wrong hidden states (i.e. the agent strongly believes that target 1 is B whereas
it is A in reality). Note that the possibilistic belief state of the good target decreases when
the necessity of the bad one increases. This figure shows that the possibilistic model yields
higher rewards at execution if the initial belief state is wrong and the observation function is
imprecise 2.

II.5 Conclusion
We have proposed a Value Iteration algorithm for possibilistic MDPs, which can produce op-
timal stationary strategies in infinite horizon contrary to previous methods. We have provided
a complete proof of convergence that relies on the existence of intermediate “stay” actions
that vanish for non goal states in the final optimal strategy. Finally, we have extended this
algorithm to a new Mixed-Observable possibilistic MDP model, whose complexity is exponen-
tially smaller than possibilistic POMDPs, so that we could compare π-MOMDPs with their
probabilistic counterparts on realistic robotic problems. Our experimental results show that
possibilistic strategies can outperform probabilistic ones when the probabilities of the obser-
vation function are not precisely known, and thus defined quite differently from the actual
ones.

A value iteration algorithm for the pessimistic π-MDPs can be easily written on the basis of
the optimistic value iteration algorithm, Algorithm 10. However, the optimality of the returned

2The implementation of the solver, as well as a generator of descriptions of such recognition problems
(expressed in the RDDL language [126]) which is the input of the solver, are available on the repository
https://github.com/drougui/ppudd : executions can be simulated using the possibilistic optimal strategy
which is the output of the solver.

https://github.com/drougui/ppudd
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strategy seems hard to prove, essentially because it is not enough to construct a maximizing
trajectory, as the proof in Annex C does. The works [147, 114] may be useful materials to help
us to get results about pessimistic π-MDP in infinite horizon settings.

Note that, if some probabilistic information is really known by the designers of the model,
the π-POMDP is a qualitative approximation of the probabilistic POMDP: in such cases the
quantitative information which is available is not taken into account, in order to simplify the
problem resolution. Indeed, this model only implies maximum and minimum operators. Note
also that if the model has been built from expert qualitative information about the plausible
behaviour of the system, an arbitrary probabilistic POMDP offers no more guarantee than the
possibilistic one which only uses really available description of the problem.

Finally, as highlighted by the experiment, while the π-POMDPs are based on a compu-
tationally simpler uncertainty model than the probabilistic POMDP, the possibilistic belief
updating process may has an interesting behaviour. Under some sufficient assumptions given
by Theorem 23, the belief state is not modified by less reliable information than the previously
gathered information, but is able to change to a quite opposite belief state if an information
item which suggests it and which is more reliable is received. More complex problems have
to be studied to get a better overview of this behavior in a wider set of situations. However,
π-POMDPs with a large system state (or π-MOMDPs with large Sh) cannot be solved with rea-
sonable computation times by algorithms developed until now. The next chapter presents and
uses another problem structure, the possibilistic counterpart of factored POMDPs, which leads
to easier computations of optimal possibilistic strategies and making various experiments: the
developed solvers use Algebraic Decision Diagrams avoiding some useless computations and
making handled data more compact.



IIIDevelopment of Symbolic
Algorithms to Solve π-POMDPs

In this chapter, we propose the study of factored π-MOMDP models in order to solve
large structured planning problems under qualitative uncertainty, or considered as qualitative
approximations of probabilistic problems. Building upon the Stochastic Planning Using Deci-
sion Diagrams (SPUDD) algorithm for solving factored probabilistic MDPs, we have desined
a symbolic algorithm named PPUDD for solving factored π-MOMDPs. Whereas the number
of leaves of SPUDD’s decision diagrams may be as large as the state space since their values
are real numbers aggregated through additions and multiplications, the number of leaves of
PPUDD ones is bounded by the number of elements in L because their values always remain in
the finite scale L via min and max operations only. Finally, we present a sound transformation
from factored mixed-observable possibilistic problems with both hidden and visible state vari-
ables to fully observable ones, on which PPUDD is run. Our experiments show that PPUDD’s
computation time is much smaller than SPUDD, Symbolic-HSVI and APPL for possibilistic
and probabilistic versions of the same benchmarks under either total or mixed-observability,
while still providing high-quality strategies. The performance of the strategies computed by
PPUDD has been tested in the International Probabilistic Planning Competition (IPPC 2014)
whose results are exposed here.

III.1 Introduction
As explained at the end of the previous chapter, starting from a probabilistic MOMDP [100, 3],
the use of Possibility Theory instead of Probability Theory leads to an approximation of
the initial probabilistic model [122]: probabilities and rewards are replaced by qualitative
statements that lie in a finite scale (as opposed to continuous ranges in the probabilistic
framework), which results in simpler computations. Possibilities and probabilities have similar
behaviors for problems with low entropy probability distributions [55]. However, the decision
resulting from both models can be completely different in practice. Consider for example a
situation in which three actions aA, aB and aC lead to three different sets of system states:

• action aA leads to SA =
{
s1
A, s

2
A

}
, with p

(
s1
A

∣∣ aA ) = p
(
s2
A

∣∣ aA ) = 0.5, r(s1
A, aA) = 1

and r(s2
A, aA) = 0;

• action aB leads to SB =
{
s1
B

}
(p
(
s1
B

∣∣ aB ) = 1) with r(s1
B, aB) = 0.5;

• action aC leads to SC =
{
s1
C , . . . , s

7
C

}
with p

(
s1
C

∣∣ aC ) = 0.4, p
(
s2
C

∣∣ aC ) = . . . =
p
(
s7
C

∣∣ aC ) = 0.1, r(s1
C , aC) = 0 and r(s2

C , aC) = . . . = r(s7
C , aC) = 1.

Actions aA and aB lead to the same average gain: 0.5. However, action aC leads to a better
one: 0.6. Now, let us define a possibilistic model respecting the ranking of event plausibilities:

• π
(
s1
A

∣∣ aA ) = π
(
s2
A

∣∣ aA ) = 1, ρ(s1
A, aA) = 1 and ρ(s2

A, aA) = 0;
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• π
(
s1
B

∣∣ aB ) = 1 and ρ(s1
B, aB) = 3

4 ;

• π
(
s1
C

∣∣ aC ) = 1
2 , π

(
s2
C

∣∣ aC ) = . . . = π
(
s7
C

∣∣ aC ) = 1
4 , ρ(s1

C , aC) = 0 and ρ(s2
C , aC) =

. . . = ρ(s7
C , aC) = 1.

The action aA is chosen by the optimistic approach. Indeed, it is entirely possible to reach s1
A

(π
(
s1
A

∣∣ aA ) = 1) whose preference is 1. The action aB is chosen by the pessimistic approach
since the preference 3

4 is reached with certainty with this action: action aA leads potentially to
s1
A with the preference ρ(s2

A, aA) = 0, and aC leads potentially to s1
C with ρ(s1

C , aC) = 0. Thus,
in some cases, the three approaches, (the optimistic and pessimistic possibilistic approaches,
and the probabilistic approach) may select three different actions.

Recall that the possibilistic approach benefits from computations on finite belief state
spaces, whereas probabilistic MOMDPs require infinite ones. It means that the same algorith-
mic techniques can be used to solve π-MDPs, π-POMDPs or π-MOMDPs. What is lost in
precision of the uncertainty model is saved in computational complexity. Problems where the
uncertainty model is imprecisely known are also are naturally well-modeled by π-MOMDPs
[49]: e.g., occurrence frequencies of observations resulting from a complex image processing al-
gorithm depend on many environmental factors like light conditions so that they are generally
not precisely known.

Previously presented works on π-(MO)MDPs do not totally take advantage of the problem
structure, i.e. visible or hidden parts of the state can be themselves factorized into many state
variables, which are flattened by current possibilistic approaches. In probabilistic settings,
factored MDPs and Symbolic Dynamic Programming (SDP) frameworks [23, 75] have been
extensively studied in order to reason directly at the level of state variables rather than state
space in extension. A more recent work is for instance [116]. However, factored probabilistic
MOMDPs have not yet been proposed to the best of our knowledge, probably because of
the intricacy of reasoning with a mixture of a finite state subspace and an infinite belief
state subspace due to the probabilistic model – contrary to the possibilistic case where both
subspaces are finite. The famous algorithm SPUDD [75] solves factored probabilistic MDPs
by using symbolic functional representations of value functions and strategies in the form
of Algebraic Decision Diagrams (ADDs) [6], which compactly encode real-valued functions of
Boolean variables: ADDs are directed acyclic graphs whose nodes represent state variables and
leaves are the function’s values. Instead of updating state values individually at each iteration of
the algorithm, they are aggregated within ADDs and operations are symbolically and directly
performed on ADDs over many states at once. However, SPUDD suffers from the manipulation
of potentially huge ADDs in the worst case: for instance, expectation involves additions and
multiplications of real values (probabilities and rewards), creating other values in-between, in
such a way that the number of ADD leaves may equal the size of the state space, i.e. exponential
in the number of state variables. Therefore, the work presented here is motivated by the simple
observation that symbolic operations with possibilistic MDPs would necessarily limit
the size of ADDs: indeed, this formalism operates over a finite possibilistic scale L with only
max and min operations involved, which implies that all manipulated values remain in the
finite scale L, which is generally far smaller than the number of states.

Figure III.1 shows that ADDs used in the possibilistic settings have a limited number of
nodes since the number of their leaves are at most equal to the cardinality of the possibilistic
finite scale L: the maximal size (maximal number of nodes) of an ADD whose leaves are in
L, is represented as a function of #L, in the case of 8 and 10 variables. The largest ADD in
quantitative settings with 8 (resp. 10) variables have 29−1 (resp. 211−1) nodes, as represented
also in Figure III.1. Operating ADDs in the possibilistic framework would behave much like
manipulating Binary Decision Diagrams (BDDs) [26], which are generally more compact and
thus more efficient than ADDs.



III.2. Solving factored π-MOMDPs using symbolic dynamic programming 93

0 20 40 60 80 100

0

500

1,000

1,500

2,000

Size of the scale L

M
ax

im
al

nu
m
be

r
of

no
de

s
Maximal number of nodes of an ADD: leaves in L versus in R

8 variables: qualitative settings
quantitative settings

10 variables: qualitative settings
quantitative settings

Figure III.1 – The maximal size (total number of nodes) of an ADD whose values are in L, i.e. in
qualitative settings, is limited: the upper bound is represented in blue and brown lines with circles, as a
function of the size of L. When the leaves of the ADD are in R, the number of its nodes is potentially
exponential in the number of variables: the upper bound is represented with red squares and black stars
(as a constant function of the size of L).

In this chapter we present a Symbolic Dynamic Programming algorithm for solving factored
π-MOMDPs named Possibilistic Planning Using Decision Diagram (PPUDD). This contribu-
tion alone is insufficient, since it relies on a belief state variable whose number of values is
exponential in the size of the state space. Therefore, our second contribution is a theorem to
factorize the belief state itself in many variables under some assumptions about dependence
relationships between state and observation variables of a π-MOMDP, which makes our al-
gorithm more tractable while still exact and optimal. We note that our idea of factorizing
the belief state under mixed-observability is sufficiently general to be reused in probabilistic
models. Then, we experimentally assess our approach on possibilistic and probabilistic ver-
sions of the same benchmarks: PPUDD against SPUDD and APRICODD [138] under total
observability to demonstrate that the generality of our approximate approach does not penal-
ize performances on restrictive submodels; PPUDD against symbolic HSVI [133] (a symbolic
version of HSVI, see Section I.1.11) and APPL [84, 100] (already used in previous chapter,
and based on SARSOP, see Section I.1.11) under mixed-observability. These promising results
were a motivation to take part in the International Probabilistic Planning Competition 2014
(IPPC): results of PPUDD on the fully observable track of IPPC 2014 are then provided
and discussed. A general practical solver for solving π-MOMDP using ADDs and available on
the repository https://github.com/drougui/ppudd) is finally detailed: performances of this
solver on the problems of the Fully Observable track of IPPC are also presented.

III.2 Solving factored π-MOMDPs using symbolic dynamic pro-
gramming
Factored MDPs [75] have been used to efficiently solve structured sequential decision problems
under probabilistic uncertainty, by symbolically reasoning on functions of states via decision
diagrams rather than on individual states. Inspired by this work on factored MDPs this section
sets up a symbolic resolution of factored π-MOMDPs, which assumes that the visible state
space Sv, the hidden one Sh and the set of observations Oh are both Cartesian products of

https://github.com/drougui/ppudd
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Figure III.2 – Dynamic Bayesian Network of a factored (π-)MDP: in the possibilistic (resp. probabilistic)
framework T ia is the transition possibility (resp. probability) distribution of next variable Xi

t+1 condi-
tional to the selected action a ∈ A and its parents parents(Xi

t+1) ⊆
{
X1
t , . . . , X

n
t

}
(i.e. parents(Xi

t+1)
is a subset of the current state variables) where n > 1 is the number of variables describing the state
space.

finite sets described by variables. It boils down to solving a finite-space belief π-MDP whose
state space is in the form of S1

v × · · · × Smv ×ΠShL , where each of those spaces is finite. We will
see in the next section how ΠShL can be further factorized thanks to the factorization of Sh and
Oh. While probabilistic belief factorization in [24, 131] is approximate, the one presented here
relies on some assumptions but is exact. For now, as finite spaces of size K can be themselves
factorized into dlog2Ke binary-variable spaces (see [75]), we can assume that we are reasoning
about a factorized belief state π-MDP whose state space is denoted by X and fully described
by variables (X1, . . . , Xn), with n ∈ N∗ and ∀i, Xi ∈ {>,⊥}: X = {>,⊥}n.

Recall that Dynamic Bayesian Networks (DBNs) [42] already used in Section I.1 (for in-
stance taking part of the influence diagrams in Figure I.2 and Figure I.3) and in the previous
chapter (Figure II.1 illustrating the Mixed-Observable structure) are a useful graphical repre-
sentation of studied processes. A DBN representing the structure of a factored π-MDP is de-
picted in Figure III.2: the state variables at a given time step t > 0 are denoted byXt = (Xi

t)ni=1
(current variables), and (Xi

t+1)ni=1 are the state variables at step t+1 (next variables). In DBN
semantics parents(Xi

t+1) is the set of state variables on which the next state variable Xi
t+1

“depends”, i.e. a variable Y , represented by a node in the DBN, is in parents(Xi
t+1) if and

only if there is an arrow from Y to Xj
t+1. We assume that parents(Xi

t+1) ⊆
{
X1
t , . . . , X

n
t

}
, i.e.

parents of the next state variable Xi
t+1 are a part of the current state variables

{
X1
t , . . . , X

n
t

}
:

there cannot be any arrow between state variables of the same time step. Methods are discussed
in the literature to circumvent this restrictive assumption [22].

As recalled in Section I.1.1, in probabilistic settings, the absence of an arrow in a
Bayesian Network represents an independence assumption. Let us consider a set of variables
{Y1, . . . , Yp }, with p > 1, and such that ∀i ∈ {1, . . . , p}, Yi ∈ Yi where Yi is a finite set. For
each i ∈ {1, . . . , p}, the set of the parents of variables Yi can be denoted by parents(Yi) ={
Ypai(1), . . . , Ypai(pi)

}
⊆ {Y1, . . . , Yp }, where pai : {1, . . . , pi } → {1, . . . , p} is an increas-

ing function. (note that pi 6 p). Let us recall that children(Yi) is the set of all the variables
Yj ∈ {Y1, . . . , Yp } such that there is an arrow from Yi to Yj . The set descend(Yi) is the set of the
descendants of variable Yi: descend(Yi) is defined as the smallest set containing children(Yi),
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and such that ∀Yj ∈ descend(Yi), children(Yj) ⊂ descend(Yi). The set of non-descendants
nondescend(Yi) =

{
Yj ∈ {Y1, . . . , Yp }

∣∣∣ Yj /∈ {Yi } ∪ descend(Yi) ∪ parents(Yi)
}
can be also

denoted by
{
Yndi(1), . . . , Yndi(di)

}
⊂ {Y1, . . . , Yp } where ndi : {1, . . . , di } → {1, . . . , n} is an

increasing function (and di 6 p). Hence, a DBN makes the assumption that Yi is independent
from its non-descendants conditional on its parents: Yi ⊥⊥ nondescend(Yi) | parents(Yi).
In the probabilistic case, it can be written ∀(y1, . . . , yp) ∈ Y1 × . . .× Yp, ∀i ∈ {1, . . . p},

P
(
Yi = yi

∣∣∣ Ypai(1) = ypai(1), . . . , Ypai(pi) = ypai(pi), Yndi(1) = yndi(1), . . . , Yndi(di) = yndi(di)
)

= P
(
Yi = yi

∣∣∣ Ypai(1) = ypai(1), . . . , Ypai(pi) = ypai(pi)
)
. (III.1)

This equation holds with a subset of the non-descendants N ⊂ nondescend(Yi): it suffices
to consider the probability distribution over the set nondescend(Yi) \ N , and compute the
probabilistic expectation of each parts of the equation with respect to it. The upper part is
the probability distribution conditional on the parents of Yi and on C, and the lower part
remains the same.

Using this formula, if we consider the state variables (Xi
t)
i∈{1,...,n}
t∈{0,...,H } and actions (at)H−1

t=0 of
a factored MDP, denoting by Xt the variables (Xi

t)ni=1, we get from the DBN of Figure III.2
that ∀t ∈ {0, . . . ,H − 1}, ∀(x0, . . . , xt+1) ∈ {>,⊥}t+2, ∀(a0, . . . , at) ∈ At+1,

P (Xt+1 = xt+1 | X0 = x0, . . . , Xt = xt, a0, . . . , at−1 ) = P (Xt+1 = xt+1 | Xt = xt, at ) ,

which is nothing more than the Markov property, justifying the definition of the transition
probability distributions p(x′|x, a), ∀(x, x′) ∈ {>,⊥}2n and ∀a ∈ A.

Section I.2.2 explains that Qualitative Possibility Theory admits more than one inde-
pendence definition: for instance, the non-interactivity independence (NI-independence, see
Definition I.2.6) and the causal or min-based independence (M-independence, see Definition
I.2.9) are two useful independence definitions for this chapter. If a DBN models M-dependences
(causal dependences) between variables, then Equation III.1 holds replacing the probability
measure P by the possibility measure Π:

Π
(
Yi = yi

∣∣∣ Ypai(1) = ypai(1), . . . , Ypai(pi) = ypai(pi), Yndi(1) = yndi(1), . . . , Yndi(di) = yndi(di)
)

= Π
(
Yi = yi

∣∣∣ Ypai(1) = ypai(1), . . . , Ypai(pi) = ypai(pi)
)
, (III.2)

which also holds considering only a subset of the descendants. The possibilistic Markov
property is also deduced from the DBN of Figure III.2 the same result for π-MDPs: ∀t ∈
{0, . . . ,H − 1}, ∀(x0, . . . , xt+1) ∈ {>,⊥}t+2, ∀(a0, . . . , at) ∈ At+1,

Π (Xt+1 = xt+1 | X0 = x0, . . . , Xt = xt, a0, . . . , at−1 ) = Π (Xt+1 = xt+1 | Xt = xt, at ) ,

which has been already defined in Section I.2.4, see Equation I.46.
Consider again variables (Y )ni=1. Let A and B be two disjoint subsets of {1, . . . , n}. In order

to simplify notations, if the probability P ((Yi = yi)i∈A | (Yj = yj)j∈B ) is considered ∀(yi)i∈A ∈
×i∈A Yi and ∀(yi)i∈B ∈×i∈B Yi, the probability can be denoted by P ((Yi)i∈A | (Yj)j∈B ). For
instance, Equation III.1 can be rewritten

P
(
Yi
∣∣∣ parents(Yi), nondescend(Yi)

)
= P

(
Yi
∣∣∣ parents(Yi)) .
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Let (ik)sk=1 be an increasing sequence of indices with s 6 p, defining the set of variables
{Yi1 , . . . , Yik }. The parents of variables {Yi1 , . . . , Yik } are

parents
(
(Yik)sk=1

)
:=

s⋃
k=1

parents(Yik).

Suppose that the set of variables {Yi1 , . . . , Yik } is such that parents
(
(Yik)sk=1

)
∩

{Yi1 , . . . , Yik } = ∅, i.e. the parents of variables {Yi1 , . . . , Yik } are not in {Yi1 , . . . , Yik }.
Then, using the equation (III.1), we can write

P
(

(Yik)sk=1

∣∣∣∣ parents((Yik)sk=1

))

= P
(
Yi1

∣∣∣∣ parents((Yik)sk=1

))
· P
(
Yi2

∣∣∣∣ Yi1 , parents((Yik)sk=1

))
·

. . . · P
(
Yis

∣∣∣∣ Yi1 , . . . , Yis−1 , parents
(
(Yik)sk=1

))
=

s∏
k=1

P
(
Yik

∣∣∣ parents(Yik)
)
.

As already noted, the variables of the factored MDP model depicted by Figure III.2, are such
that ∀t > 0, ∀i ∈ {1, . . . , n}, parents(Xi

t+1) ⊆
{
X1
t , . . . , X

n
t

}
: thus, using the previous general

equation (with variables (Yi)pi=1),

P (Xt+1 | Xt, at ) = P
(
X1
t+1, . . . , X

n
t+1

∣∣∣ Xt, at
)

=
n∏
i=1

P
(
Xi
t+1

∣∣∣parents(Xi
t+1), at

)
.

It shows that the transition probability distributions p (x′ | x, a) can be computed from the
simpler distributions P

(
Xi
t+1

∣∣ parents(Xi
t+1), at

)
, ∀i ∈ {1, . . . , n}. These transition distribu-

tions are denoted by p (X ′i | parents(X ′i), a), and by T ia in Figure III.2.
If we consider that the DBN involving variables (Yi)ki=1 represents the M-dependences,

Equation III.2 holds, and using the definition of the qualitative possibilistic conditioning (Def-
inition I.2.7), we can also write

Π
(

(Yik)sk=1

∣∣∣∣ parents((Yik)sk=1

))

= min
{

Π
(
Yi1

∣∣∣∣ parents((Yik)sk=1

))
,Π
(
Yi2

∣∣∣∣ Yi1 , parents((Yik)sk=1

))
,

. . . ,Π
(
Yis

∣∣∣∣ Yi1 , . . . , Yis−1 , parents
(
(Yik)sk=1

))}

=
s

min
k=1

Π
(
Yik

∣∣∣ parents(Yik)
)
,

under the same assumption: parents
(
(Yik)sk=1

)
∩{Yi1 , . . . , Yik } = ∅. Thus, as we consider that

the DBN in Figure III.2 represents the M-dependences,

Π (Xt+1 | Xt, at ) = Π
(
X1
t+1, . . . , X

n
t+1

∣∣∣ Xt, at
)

=
n

min
i=1

Π
(
Xi
t+1

∣∣∣parents(Xi
t+1), at

)
.
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The transition possibility distributions π (x′ | x, a) can be computed from the simpler distribu-
tions Π

(
Xi
t+1

∣∣ parents(Xi
t+1), at

)
, ∀i ∈ {1, . . . , n}, denoted by π

(
Xi
t+1

∣∣ parents(Xi
t+1), a

)
,

and by T ia in Figure III.2.
With the π-MOMDP notations, assumptions of the Bayesian Network in Figure III.2 al-

low us to compute the joint possibility transition as π (s′v, β′h | sv, βh, a) = π (X ′ | X, a) =
minni=1 π (X ′i | parents(X ′i), a), where, given a time step t, primed variables are variables con-
cerning time step t + 1 (next variables), and non-primed variables are current variables (at
time step t): for instance, X ′i is the notation for Xi

t+1, and Xi the one for Xi
t . Thus, a factored

π-MOMDP can be defined with transition functions T ia = π (X ′i | parents(X ′i), a) for each
action a and variable X ′i (if transitions are assumed stationary).

Each transition function can be compactly encoded in an Algebraic Decision Diagram
(ADD) [6]. An ADD, as illustrated in Figure III.3a, is a directed acyclic graph which compactly
represents a real-valued function of binary variables, whose identical sub-graphs are merged
and zero-valued leaves are not memorized. The following notations are used to make it explicit
that we are working with symbolic functions encoded as ADDs:

•
�� ��min {f, g} where f and g are 2 ADDs;

•
�� ��max Xi

f =
�� ��max

{
fXi=0, fXi=1

}
,

which can be easily computed because ADDs are constructed on the basis of the Shannon
expansion: f = Xi · fXi=0 +Xi · fXi=1 where fXi=1 and fXi=0 are sub-ADDs representing the
positive and negative Shannon cofactors (see Fig. III.3a).

The optimistic possibilistic update of dynamic programming, i.e. line 8 of the Value
Iteration Algorithm 10 in the previous chapter, (or line 8 of the VI Algorithm 11 for
π-MOMDPs) can be rewritten in a symbolic form, so that states are now globally up-
dated at once instead of individually: denoting by X = (X1, . . . , Xn) the current vari-
able and X ′ = (X ′1, . . . , X ′n) the next one, the possibilistic Q-value of an action a ∈ A is
qa = qa(X) =

�� ��max X′

�� ��min
{
π (X ′ | X, a) , U∗(X ′)

}
. The computation of this ADD (qa) can

be decomposed into independent computations using the following proposition:
Property III.2.1 (Possibilistic regression of the Value Function)

Consider the current value function U∗ : {>,⊥}n → L. For a given action a ∈ A, let us
define:

• qa0 = U∗(X ′1, · · · , X ′n),

• qai = maxX′i∈{>,⊥}min
{
π (X ′i | parents(X ′i), a) , qai−1

}
.

Then, the possibilistic Q-value of action a is: qa = qan, which depends on variables
X1, . . . , Xn, and the next value function is U∗(X1, . . . , Xn) = maxa∈A qan(X1, . . . , Xn).

The proof is given in Annex D.1. Note that the same trick can be used to compute pessimistic
value functions, using the equation (I.29) of Property I.2.1:

• qa0 = U∗(X ′1, · · · , X ′n),

• qai = minX′i∈{>,⊥}max
{

1− π (X ′i | parents(X ′i), a) , qai−1

}
,

and next value function is U∗(X1, . . . , Xn) = maxa∈A qan(X1, . . . , Xn).
The Q-value of action a, represented as an ADD, can be then iteratively regressed over

successive post-action state variables X ′i, 1 6 i 6 n. Figure III.3b illustrates the possibilistic
regression of the Q-value of an action for the first state variable X1 and leads to the intuition
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bined with the transition ADD of Figure III.3a

Figure III.3 – Algebraic Decision Diagrams for PPUDD

that ADDs should be far smaller in practice under possibilistic settings, since their leaves lie
in L instead of R, thus yielding more sub-graph simplifications.

Algorithm 12: PPUDD (infinite horizon resolution)
1 U∗ ← 0 ; U c ← Ψ ; δ ← â ;
2 while U∗ 6= U c do
3 U∗ ← U c ;
4 for a ∈ A do
5 qa ← swap each Xi variable in U∗ with X ′i ;
6 for 1 6 i 6 n do

7 qa ←
�� ��min

{
qa, π

(
X ′i

∣∣∣parents(X ′i), a)} ;

8 qa ←
�� ��max X′i

qa ;

9 U c ←
�� ��max

{
qa, U c

}
;

10 update δ to a where qa = U c and U c > U∗ ;

11 return U∗, δ∗ ;

Algorithm 12 is a symbolic version of the π-MOMDP Value Iteration Algorithm (Algorithm
11 in the previous chapter), which relies on the regression scheme defined in Proposition III.2.1.
Inspired by SPUDD [75], PPUDD means Possibilistic Planning Using Decision Diagrams. As
for SPUDD, it needs to swap unprimed state variables to primed ones in the ADD encoding the
current value function before computing the Q-value of an action a (see Line 5 of Algorithm
12 and Figure III.3b). This operation is required to differentiate the next state represented by
primed variables from the current one when operating on ADDs. Lines 4-9 apply Proposition
III.2.1 and correspond to Line 8 of Algorithm 10.
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We mentioned at the beginning of this section that belief state space ΠShL could be described
by dlog2Ke binary variables where K = #L#Sh − (#L− 1)#Sh . However, this K can be very
large so we propose in the next section a method to exploit the factorization of Sh and Oh in
order to factorize ΠShL itself into small belief subvariables, which will decompose the possibilistic
transition ADD into an aggregation of smaller ADDs. Note that PPUDD can solve π-MOMDPs
even if this belief factorization is not feasible, but it will manipulate larger ADDs.

The previous chapter highlight that a pre-treatment is required to translate a π-MOMDP
into a π-MDP whose state space is X . We can then reason on the state space accessible to the
agent X = Sv ×ΠShL and solve the π-MOMDP as a π-MDP. Next section links the structured
properties of a π-MOMDP, concerning dependencies of original variables (visible, hidden and
observation ones), to the factorization of the treated problem i.e. of the resulting π-MDP on
Sv ×ΠShL (concerning dependencies of visible and belief variables).

Finally, we note that we could have used complete action diagrams (CADs) introduced in
[138], which directly encode the transition matrix of each action as a single ADD. On one
hand, CADs are simpler to manipulate than a set of transition ADDs for each state variable,
and can deal with correlated action effects. On the other hand, they require operating larger
ADDs while preventing intermediate simplifications that are yet offered by reasoning about
separate state variables as we do (Lines 4-9 of Algorithm 12) or SPUDD does [75].

III.3 π-MOMDP belief factorization
Factorizing the belief variable requires three structural assumptions on the π-MOMDP’s DBN,
which are illustrated by the Rocksample benchmark [136].

III.3.1 Motivating example.

A rover navigating in a g × g grid has to collect scientific samples from interesting (“good”)
rocks among R ones and then to reach the exit. It knows the locations of the R rocks (xi, yi)Ri=1
but not which ones are actually of interest (called “good” rocks). However, sampling a rock is
expensive: the rover is equipped with a noisy long-range sensor that can be used to determine
if a rock is “good” or not (“bad”). When a rock is sampled, it becomes (or stays) “bad” (no
more interesting). At the end of the mission, the rover has to reach the exit location at the
right side of the grid:

• Sv consists of all the possible locations of the rover in addition to the exit (#Sv = g2+1);

• Sh consists of all the possible natures of the rocks: Sh = S1
h× . . .×SRh , with ∀1 6 i 6 R,

Sih = {good, bad};

• A contains the (deterministic) moves in the 4 directions (anorth, aeast, asouth, awest) ,
checking rock i, (achecki) ∀1 6 i 6 R, and sampling the current rock, (asample);

• O = {ogood, obad } are the possible sensor’s answers for the current rock.

The rationale behind observation dynamics is the following: the more the rover is close
to the checked rock, the better it observes its nature. In the original probabilistic model, the
probability of a correct observation equals 1

2

(
1 + e−c

√
(xr−xi)2+(yr−yi)2

)
with c > 0. a constant

(the smaller is c, the more effective is the sensor). The rover gets the reward +10 (resp. −10)
for each good (resp. bad) sampled rock, and +10 when it reaches the exit.

In the possibilistic model, the observation function is approximated using a critical distance
d > 0 beyond which checking a rock is uninformative: π (o′i | s′i, a, sv ) = 1 ∀o′i ∈ Oi. The
possibility degree of erroneous observation becomes zero if the robot stands at the checked
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rock, and least non zero possibility degree otherwise. Finally, as possibilistic semantics does
not allow sums of rewards, an additional visible state variable s2

v ∈ {1, . . . , R} which counts
the number of checked rocks is introduced. The qualitative dislike of sampling is modeled as
Ψ(s) = R+2−s2v

R+2 if the location is terminal and zero otherwise. The location of the rover is
finally denoted by s1

v ∈ S1
v and the visible state is then sv = (s1

v, s
2
v) ∈ S1

v × S2
v = Sv.

Observations {ogood, obad } for the current rock can be equivalently modeled as a Cartesian
product of observations {ogood1 , obad1 } × · · · × {ogoodR , obadR } for each rock. By using this
equivalent modeling, state and observation spaces are both respectively factorized as S1

v ×
. . .×Smv ×S1

h× . . .×S lh and O = O1× . . .×Ol, and we can now map each observation variable
Oj ∈ Oj to its hidden state variable Sjh ∈ S

j
h. It allows us to reason about the DBN of Figure

III.4, which expresses three important assumptions that will help us factorize the belief state
itself:

1. all state variables S1
v , S

2
v , . . . , S

m
v , S

1
h, S

2
h, . . . , S

l
h are post-action independent variables,

and the next visible variables do not depend on current hidden ones. Thus, there is no
arrow between two state variables at the same time step, as S2

v,t and S1
h,t, nor arrow from

a current hidden variable to a next visible one, as S1
h,t and S1

v,t+1;

2. a hidden variable does not depend on previous other hidden variables: the nature of a
rock is independent from the previous nature of other rocks. For instance, there is no
arrow from S1

h,t to S2
h,t+1;

3. an observation variable is available for each hidden state variable, and depends on it. It
does not depend on other hidden state variables nor current visible ones, but on previous
visible state variables and action: for instance, there is no arrow between S1

h,t+1 and O2
t+1,

nor between S1
v,t+1 and O1

t+1.

Each observation variable is indeed only related to the nature of the corresponding rock. The
observation quality yet depends on the rover’s location i.e. a current visible state variable, not
allowed by the DBN: fortunately, as moves are deterministic, we avoid this issue considering
observations depend on previous location and action.

III.3.2 Consequences of the factorization assumptions

In this section, we formally demonstrate how the three previous independence assumptions

can be used to factorize ΠShL as the Cartesian product
l×

j=1
ΠS

j
h
L : indeed, the belief state βh

about the hidden states sh ∈ Sh can be represented with marginal belief states βjh ∈ ΠS
j
h
L

about hidden states sj ∈ Sjh, ∀j ∈ {1, . . . , l}.
To this end, we will use the d-Separation criterion [141] in order to show some independence

between variables from the DBN. As explained in Section III.2, a DBN can be drawn from
independence relations. Let us denote by X ⊥⊥ Y | Z the assertion “X is independent from
Y conditional on Z”: recall that for a given definition of the used independence relation, e.g.
probabilistic, non interactivity (NI), or minimum based (M, causal) independence, the DBN
is drawn such that for each node (variable) X, X ⊥⊥ nondescend(X) | parents(X). If the
used independence relation obeys the semi-graphoids axioms [105, 144], the graphical criterion
called d-Separation can be used to identify some independences between variables of the DBN.

This criterion is for instance used in probabilistic settings in [150]. Recall that the M-
independence is not symetric (see Section I.2.2), and thus does not obey the axioms of semi-
graphoids. However, the NI-independence leads to a semi-graphoid, as proved in [68].
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Let us recall that M-independence implies NI-independence (see Theorem 10 of Section
I.2.2). The DBN of Figure III.4 represents M-independences between variables: thus the DBN
representing NI-independences (which is not drawn in this work) has potentially less arrows,
i.e. assumes potentially more independences than the DBN representing the M-independences.
Assuming that the DBN of Figure III.4 represents NI-independences is a relaxation i.e. we
potentially forget some NI-independence assumptions by doing this assumption. However, all
NI-independences proved using d-Separation criterion on the DBN are true.

First of all, the DBN of Figure III.4 representing the M-independence assumptions, some
possibility distributions can be defined from the fact that each node is M-independent from
its non-descendants conditional on its parents: given a time step t > 0, an action at ∈ A, and
a current state s = (sv,t, sh,t) = (s1

v,t, . . . , s
m
v,t, s

1
h,t, . . . , s

l
h,t) ∈ S,

• ∀i ∈ {1, . . . ,m}, the transition possibility distribution over the ith visible state variable
siv,t+1 ∈ Siv:

π
(
siv,t+1

∣∣∣ sv,t, at) = Π
(
Siv,t+1 = siv,t+1

∣∣∣ Sv,t = sv,t, at
)

; (III.3)

• ∀j ∈ {1, . . . , l}, the transition possibility distribution over the jth hidden state variable

t t + 1
S1
v,t

S2
v,t

...

S1
v,t+1

S2
v,t+1

...

S1
h,t

S2
h,t

...

S1
h,t+1

S2
h,t+1

...

atat−1

O1
t

O2
t

...

O1
t+1

O2
t+1

...

Figure III.4 – DBN summing up independence assumptions of a π-MOMDP leading to marginal beliefs
and a π-MDP with a factored transition function i.e. a factored belief π-MDP. Parents of a visible state
variable are the previous visible state variables. Parents of a hidden state variable are the previous visible
state variables and the corresponding previous hidden state variable. Finally, parents of an observation
variable are the previous visible state variables, and the corresponding current hidden state variable.
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sjh,t+1 ∈ Sih:

π
(
sjh,t+1

∣∣∣ sv,t, sh,t, at) = Π
(
Sih,t+1 = sih,t+1

∣∣∣ Sh,t = sh,t, at
)

; (III.4)

• ∀j ∈ {1, . . . , l}, the observation possibility distribution over the jth observation variable
oj ∈ Oi:

π
(
ojt+1

∣∣∣ sv,t, sh,t+1, at
)

= Π
(
Ojt+1 = ojt+1

∣∣∣ Sv,t = sv,t, Sh,t+1 = sh,t+1, at
)
. (III.5)

With these distributions, the dynamics of the process of a π-MOMDP respecting the assump-
tions of Figure III.4 is entirely defined.

Let us define the information it known by the agent at time step t > 1 when the model
is a (π-)MOMDP: i0 = {sv,0 }, and for each time step t > 1, it = {ot, sv,t, at−1, it−1 }: the
corresponding variable is denoted by It. The next theorem shows that the current belief can
be decomposed into marginal belief states dependent on the current information it.
Theorem 24 (Independence of hidden state variables and marginal belief states)

Consider a π-MOMDP described by the DBN of Figure III.4. If initial hidden variables
S1
h,0, . . . , S

l
h,0 are NI-independent, then at each time step t > 0 the belief over hidden states

can be written as
βh,t =

l
min
j=1

βjh,t

with ∀s ∈ Sjh, β
j
h,t(s) = Π

(
Sjh,t = s

∣∣∣ It = it
)
the belief state concerning hidden states of

the set Sjh.

The proof is given in Annex D.2.
Thanks to the previous theorem, the state space accessible to the agent can now be rewrit-

ten as S1
v× . . .×Smv ×ΠS

1
h
L ×· · ·×ΠS

l
h
L with ΠS

j
h
L ( LS

j
h . The size of ΠS

j
h
L is #L#Sj

h−(#L−1)#Sj
h

(see Equation I.60). If all state variables are binary, #ΠS
j
h
L = 2#L − 1 for all 1 6 j 6 l,

so that #Sv × ΠShL = 2m(2#L − 1)l: contrary to probabilistic settings, hidden state
variables and visible ones have a similar impact on the solving complexity, i.e.
both singly-exponential in the number of state variables. In the general case, by noting
κ = max{max16i6m #Sv,i,max16j6l #Sh,j}, there are O(κm(#L)(κ−1)l) flattened belief states,
which is indeed exponential in the arity of state variables too.

In Section I.2.5 about π-POMDP, the belief state variable at time step t > 0 is denoted
by Bπ

t , and its possible values are β ∈ ΠSL. Now that ΠShL has been factorized, we can consider

the marginal belief state variables Bπ,j
h,t , ∀j ∈ {1, . . . , l}, whose possible values are βjh ∈ ΠS

j
h
L ,

i.e. belief states concerning hidden states sj ∈ Sjh. We now want to show that successive
variables S1

v,t, . . . , S
m
v,t, B

π,1
h,t , . . . , B

π,l
h,t respect the assumptions of the DBN of Figure III.2, i.e.

are independent post-action variables, as successive variables X1
t , . . . , X

n
t . This result is based

on Lemma III.3.1, which shows how marginal belief state are actually updated.
Lemma III.3.1 (Update of the marginal belief states)

At time t > 0, if the system is in the visible state sv,t = (s1
v,t, . . . , s

m
v,t) ∈ Sv, in the belief

state over the jth hidden state βjh,t ∈ ΠS
j
h
L , and if the agent selects action at ∈ A and

then gets observation ojt+1 ∈ Oj , the update of the belief state about hidden system states
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sj ∈ Sjh is:

βjh,t+1(sjt+1) =

 1 if π
(
ojt+1, s

j
h,t+1

∣∣∣ sv,t, βjh,t, at) = π
(
ojt+1

∣∣∣ sv,t, βjh,t, at)
π
(
ojt+1, s

j
h,t+1

∣∣∣ sv,t, βjh,t, at) otherwise.
(III.6)

where π
(
ojt+1, s

j
h,t+1

∣∣∣ sv, βjh, a) is the notation for

max
sj∈Sj

h

min
{
π
(
ojt+1

∣∣∣ sv, sjt+1, a
)
, π
(
sjt+1

∣∣∣ sv, sj , a) , βjh(sj)
}
,

using distributions (III.4) and (III.5), and

π
(
ojt+1

∣∣∣ sv, βjh, a) = max
sjt+1∈S

j
h

π
(
ojt+1, s

j
t+1

∣∣∣ sv, βjh, a) .
The proof is given in Annex D.3. The associated belief update function is νj :

βjh,t+1 = νj(sv,t, βjh,t, at, o
j
t+1),

which can be denoted by

βjh,t+1(sjh,t+1) ∝π π
(
ojt+1, s

j
h,t+1

∣∣∣ sv,t, βjh,t, at)
as it consists of the possibilistic normalization of the joint possibility distribution over the jth
hidden state variable and the jth observation.

Hence, the possibility degree that the marginal belief state variables Bπ,j
h,t+1 is βjh,t+1 ∈ ΠS

j
h
L

conditional on Bπ,j
h,t = βjh,t and the action at ∈ A, can be computed:

Π
(
Bπ,j
h,t+1 = βjh,t+1

∣∣∣ Sv,t = sv,t, B
π,j
h,t = βjh,t, at

)
= max

oj∈Oj s.t.
νj(sv,t,βjh,t,at,o

j)=βj
h,t+1

π
(
oj
∣∣∣ sv,t, βjh,t, at)

(III.7)
defining the transition possibility distribution of marginal belief states π

(
βjh,t+1

∣∣∣ sv,t, βjh,t, at).
Finally, Theorem 25 relies on Lemma III.3.1 to ensure independence of all post-action

variables of the belief π-MDP resulting from the factorization, conditional on the current
state: this allows us to write the possibilistic transition function of the belief-state π-MDP in
a factorized form:
Theorem 25 (Factored expression of the transition possibility distribution)

If independence assumptions of a π-MOMDP are described by the DBN of Figure III.4,
then ∀βh,t = (β1

h,t, . . . , β
l
h,t) ∈ ΠShL , βh,t+1 = (β1

h,t+1, . . . , β
l
h,t+1) ∈ ΠShL , ∀(sv,t, sv,t+1) ∈

(Sv)2, ∀at ∈ A,
π (sv,t+1, βh,t+1 | sv,t, βh,t, a)

= min
{

m
min
i=1

π
(
siv,t+1

∣∣∣ sv,t, at) , l
min
j=1

π
(
βjh,t+1

∣∣∣ sv,t, βjh,t, at)} ,
where the transition possibility distributions of visible state variables is given in the equa-
tion (III.3) and the one of marginal belief state variables in the equation (III.7).

The proof is given in Annex D.4. Using this result, such a factorized expression of the tran-
sition possibility distribution allows to compute the value function with n = m + l stages, as
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described in the previous section: the π-MOMDP is indeed a factored π-MDP since variables
(S1
v , . . . , S

m
v , B

π,1
h , . . . , Bπ,l

h ), can play the role of variables X1, . . . , Xn in Algorithm 12.
Note that Probability Theory does not make any difference between causal independence

(M-independence in Possibility Theory, see Definition I.2.8) and decompositional independence
(NI-independence in Possibility Theory, see Definition I.2.6). Moreover, probabilistic indepen-
dence relation obey the axioms of semi-graphoids: so previous independence results due to
d-Separation are also true in probabilistic settings. If independence assumptions between vari-
ables of a probabilistic MOMDP [100, 3] are described by the DBN of Figure III.4, then a
similar factorization result can be deduced:
Theorem 26 (Factored expression of the transition probability distribution)

Consider a probabilistic MOMDP with independence assumptions described by the DBN
of Figure III.4. The following probability distributions define entirely dynamics of variables:

• the transition probability distributions of visible state variables: ∀i ∈ {1, . . . ,m},

p
(
siv,t+1

∣∣∣ sv,t, at) = P
(
Siv,t+1 = siv,t+1

∣∣∣ Sv,t = sv,t, at
)

;

• the transition probability distributions of hidden state variables: ∀j ∈ {1, . . . , l},

p
(
sjh,t+1

∣∣∣ sv,t, sjh,t, at) = P
(
Sjh,t+1 = sjh,t+1

∣∣∣ Sv,t = sv,t, S
j
h,t = sjh,t, at

)
;

• the observation probability distributions: ∀j ∈ {1, . . . , l},

p
(
ojt+1

∣∣∣ sv,t, sjh,t+1, at
)

= P
(
Ojt+1 = ojt+1

∣∣∣ Sv,t = sv,t, S
j
h,t+1 = sjh,t+1, at

)
.

Let us define probabilistic marginal belief states: ∀j ∈ {1, . . . , l}, ∀s ∈ Sjh,

bjh,t(s) = P
(
Sjh,t = s

∣∣∣ It = it
)
.

Given such a marginal belief state bjh,t and a visible state sv,t ∈ Sv, if the action at ∈ A is
selected and the observation ojt+1 ∈ Oj is received, then the next belief state about the jth

hidden state variable is ∀sjh,t+1 ∈ S
j
h,

bjh,t+1(sjh,t+1) ∝ p
(
ojt+1

∣∣∣ sv,t, sjh,t+1, at
)
·
∑

sj
h,t
∈Sj

h

p
(
sjh,t+1

∣∣∣ sv,t, sjh,t, at) · b(sjh,t),
denoted by bjh,t+1(sjh,t+1) = uj(sv,t, bjh,t, at, o

j
t+1).

The transition probability distribution can be written as follows: ∀bh,t =
(b1h,t, . . . , blh,t) ∈ PSh , bh,t+1 = (b1h,t+1, . . . , b

l
h,t+1) ∈ PSh , ∀(sv,t, sv,t+1) ∈ (Sv)2, ∀at ∈ A,

p (sv,t+1, bh,t+1 | sv,t, bh,t, a) =
m∏
i=1

p
(
siv,t+1

∣∣∣ sv,t, at) · l∏
j=1

p
(
bjh,t+1

∣∣∣ sv,t, bjh,t, at) ,
where

p
(
bjh,t+1

∣∣∣ sv,t, bjh,t, at) =
∑

oj∈Oj s.t.
uj(sv,t,βjh,t,at,o

j)=βj
h,t+1

p
(
ojt+1

∣∣∣ bjh,t, at) ,
and

p
(
ojt+1

∣∣∣ bjh,t, at) =
∑

sj
h,t+1∈S

j
h

p
(
ojt+1

∣∣∣ sv,t, sjh,t+1, at
)
·
∑

sj
h,t
∈Sj

h

p
(
sjh,t+1

∣∣∣ sv,t, sjh,t, at)·b(sjh,t).
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The MDP built from such a probabilistic MOMDP is thus a factored MDP.
Previous theorems allow to express the transition distribution of the (π-)MDP resulting

from a (π-)MOMDP with distributions which concern less variables. The value function update
is then divided into n = m + l stages in the possibilistic case, as depicted by the for loop of
Algorithm 12. Qualitative possibilistic MOMDPs can however also be solved using ADDs even
if the independence assumptions do not hold: in this case, one global transition distribution,
encoded as a big ADD concerning all variables (S1

v , . . . , S
m
v , B

π
h ) is used, and the number of

potential values βh ∈ ΠShL of the global belief state variable Bπ
h increases exponentially with the

number of hidden states: #ΠShL = (#L)#Sh− (#L − 1)#Sh (see Equation I.60). Nevertheless,
if the factorization of the transition distribution is possible, handled ADDs have less nodes
and computations should be faster. These results are used in the next section to compute more
efficiently optimal strategies of π-MOMDPs.

III.4 Experimental results
The main expected advantages of using factored π-(MO)MDPs over their probabilistic coun-
terparts are:

1. values of ADDs are in the finite scale L rather than R, so that the number of their leaves
is at most #L � 2n (probabilistic models’ ADDs can have up to 2n leaves, where n is
the number of variables involved in the ADD);

2. π-MOMDPs boil down to factored finite-state belief π-MDPs that can be solved by
PPUDD assuming some independence assumptions on the underlying DBNs;

3. π-MOMDPs are in the same complexity class as π-MDPs if all hidden state variables
are binary (in probabilistic models, partially-observable problems are always in a higher
complexity class).

Of course, we have to pay a price: namely, possibilistic models can be seen as approximations
of probabilistic ones (except if probabilities in the model are not precisely known and uncer-
tainty of the problem is better described in a qualitative form). Yet, many state-of-the-art
probabilistic algorithms are approximate, e.g. MDP solver PROST [79] (based on UCT algo-
rithm [80]) and POMDP solvers described in Section I.1.11. Our PPUDD algorithm, however,
is exact.

In the case of the infinite horizon probabilistic MOMDPs, it is sufficient to look for a
stationary strategy i.e. an optimal strategy can be defined as a function d∗ : Sv × PSh → A
maximizing the value function given an initial visible state sv,0 ∈ Sv and an initial belief state
bh,0 ∈ PSh :

V (sv,0, bh,0, d∗) = sup
d: Sv×PSh→A

V (sv,0, bh,0, d),

where V (sv,0, bh,0, d) = E
[∑
t>0

γt · r
(
St, d(Sv,t, Bh,t)

) ∣∣∣∣ Sv,0 = sv,0, Bh,0 = bh,0

]
, and the action

defining probabilistic dynamics at time step t is d(Sv,t, Bh,t) if the strategy is d (see Section
I.1.6 and [100, 3]).

Consider now qualitative possibilistic MOMDPs [49]: first, the optimistic criterion of an
infinite horizon π-MDP can be written

max
t>0

max
T ∈Tt

min {π (T | s0, (δ)) ,Ψ(st)} ,

using Equation II.18 in the previous chapter and Lemma C.1 of Annex C. In this formula, the
set of t-length trajectories (s1, . . . , st) ∈ St is denoted by Tt and recall that Ψ : S → L is the
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terminal preference function. Let us now denote by xt the couple of visible and belief states
(sv,t, βh,t) ∈ Sv × ΠShL , available to the agent at time step t > 0: Sv × ΠShL is denoted by X .
Theorem 22 assures that at least one stationary strategy is optimal if a “stay” action, which
maintains the system in the same state and denoted by â ∈ A, is available: recall that this
action is only used in some goal states in the optimal strategy. The qualitative infinite horizon
criterion for a mixed optimistic-pessimistic π-MOMDP (see the sections II.1.1 and II.2) can
thus be written

U
(
x0, (δ)

)
= max

t>0
max
T ∈Tt

min
{
π
(
T
∣∣∣ x0, (δ)

)
,Ψ(xt)

}
, (III.8)

where Tt = (x1, . . . , xt) is a trajectory of couples xi = (sv,i, βh,i), Tt the set of such trajectories,
and

π
(
T
∣∣∣ x0, (δ)

)
=

t−1
min
i=0

π
(
xi+1

∣∣∣ xi, δ(xi))
the possibility degree of such trajectories, with the transition possibility distribution
π
(
xi+1

∣∣∣xi, δ(xi)) defined in Section II.2. Recall also that the pessimistic terminal preference is
denoted by Ψ(x) = min

sh∈Sh
max {Ψ(sv, sh), 1− βh(sh)} with x = (sv, βh). An optimal strategy

δ∗ is thus such that
U(sv,0, β0, δ

∗) = sup
δ: Sv×ΠShL →A

U(sv,0, β0, δ),

see Section II.3.2 of the previous chapter.
In the probabilistic case, as the belief state Bh,t is a deterministic function of the current

available information It, a strategy of an infinite probabilistic MOMDP can be defined as a
sequence of functions based on the current information (and thus non stationary): (dt)t>0, with
dt a function of the visible state sv and the information it = {sv,0, a0, o1, . . . , sv,t−1, at−1, ot }.
In this way, the strategy only depends on the variables of the initial problem (and not on the
current belief state). As in the probabilistic case, the qualitative possibilistic belief state Bπ

h,t

is fully specified by the current available information It. The strategy of an infinite horizon
π-MOMDP can thus be defined as a sequence of functions based on the current information:
(δt)t>0, with δt a function of the visible state sv,t and the information it. This being so, the
strategy does not depend on the current possibilistic belief state, but on the variables of the
π-MOMDP.

At execution, the agent knows the successive visible system states and the available infor-
mation: taking into account the previous paragraph, he/she may thus use the optimal strategy
provided by either the probabilistic model using d∗, or the possibilistic one using δ∗. Obvi-
ously, if the performance of the strategy is measured using the probabilistic criterion V , i.e.
evaluating the average of rewards obtained using the given strategy during many trials, the
optimal possibilistic strategy δ∗ is less efficient than d∗:

V (sv, bh, d∗) > V (sv, bh, δ∗).

However, as dimensions of considered problems may be high enough to make the probabilistic
computations intractable or to make probabilistic solvers require too many computation time
resources, strategies returned by probabilistic solvers are approximations of d∗ which may be
less efficient than δ∗ even in the probabilistic sense. Note also that

U(sv, βh, δ∗) > U(sv, βh, d∗),

but this criterion will not be used during the experiments as it is not a standard performance
measure when planning under uncertainty. Qualitative criteria can however be good perfor-
mance measure of strategies in practice if the probabilities of the model are in fact given
arbitrarily from a qualitative evaluation of variables dynamics.
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In this section, we compare our possibilistic approach against probabilistic solvers in order
to answer the following question: what is the efficiency/quality tradeoff achieved by reasoning
about an approximate model (π-MOMDP) but with an exact efficient algorithm (PPUDD)?
Despite radically different methods, possibilistic strategies and probabilistic ones are both
able to return an action for each possible visible state variable and current information: they
are thus directly comparable and statistically evaluated under identical settings i.e. using
transition and reward functions defined by the probabilistic model (criterion V ).

It has been shown in [122] that the optimistic π-MDP criterion (see Equation I.48 of Sec-
tion I.2.4) leads to better strategies than the pessimistic one (see Equation I.51) when the
goal is to approximate an optimal strategy of a probabilistic fully observable MDP. Moreover,
we proposed an algorithm for infinite horizon π-MDPs which has been proved to produce
an optimal strategy with the optimistic criterion, see Section II.3 of previous chapter: Algo-
rithm 10. This algorithm is also devoted to problems without intermediate preferences. The
optimistic criterion, as well as the case of terminal preference only (see Definition I.2.15), are
thus preferred in the following experimentations. In the case of mixed-observability, the mixed
optimistic-pessimistic criterion (see Definition II.1.3) is a good choice as the π-MOMDP boils
down to an optimistic π-MDP. Moreover, with this criterion, the more a belief state is specific,
the higher is its preference, unlike the purely optimistic ones.

III.4.1 Robotic missions

We first assessed PPUDD performances on totally observable factored problems since PPUDD
is also the first algorithm to solve factored π-MDPs (by inclusion in π-MOMDPs). To this end,
we compared PPUDD against SPUDD on the Navigation problem used in the International
Probabilistic Planning Competition 2011 [127]. In this domain, a robot navigates on a grid
where it must reach some goal location most reliably. It can apply actions going north, east,
south, west and stay: all these actions cost 1 except on the goal. When moving, it can suddenly
disappear with some probability defined as a Bernoulli distribution, so that a good policy
tries to reach the goal by avoiding situations where it may disappear. This probabilistic model
is approximated by two possibilistic ones where: the preference of reaching the goal is 1; in
the first model (M1) the highest probability of each Bernoulli distribution is replaced by 1
(for possibility normalization reasons) and the same value for the lowest probability is kept;
for the second model (M2), the probability of disappearing is replaced by 1 and the other
one is kept. Figure III.5a shows that SPUDD runs out of memory from the 6th problem, and
PPUDD computation’s time outperforms SPUDD by many orders of magnitude for the two
models. Intuitively, this result comes from the fact that PPUDD’s ADDs should be smaller
because their leaf values are in the finite scale L rather than R, which is indeed demonstrated
in Figure III.5b. Performances were evaluated with two relevant criteria: frequency of runs
where the policy reaches the goal (see Figure III.5c), and average length of execution runs
that reach the goal (see Figure III.5d), that are both functions of the problem’s instance.
As expected, model (M2) is more cautious than model (M1) and gets a better reached goal
frequency (similar to SPUDD’s one for the instances it can solve). The later is more optimistic
and gets a better average length of execution runs than model (M2) due to its dangerous
behavior. For fairness reasons, we also compared ourselves against APRICODD [138], which
is an approximate algorithm for factored MDPs: however parameters impacting the approx-
imation are hard to tune (either huge computation times, or zero qualities) and it is largely
outperformed by PPUDD in both time and quality whatever the parameters (curves are not
shown since uninformative).

Finally, we compared PPUDD on the Rocksample problem (RS), described in Section
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Figure III.5 – PPUDD vs. SPUDD on the Navigation problem: the x-axis represents indexes of problem
instances, increasing with the problem sizes.
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Figure III.6 – PPUDD vs. APPL and symb HSVI on the RockSample problem: the x-axis represents
indexes of problem instances, increasing with the problem sizes.

III.3.1, against a recent probabilistic MOMDP planner, APPL [100], and a POMDP plan-
ner using ADDs, symbolic HSVI [133]. Both algorithms are approximate and anytime, so we
decided to stop them when they reached a precision of 1. Figure III.6a, where problem in-
stances increase with grid size and number of rocks, shows that APPL runs out of memory at
the 8th problem instance, symbolic HSVI at the 7th one, while PPUDD outperforms them by
many orders of magnitude. Instead of precision, computation time of APPL can be fixed at
PPUDD’s computation time in order to compare their expected total rewards (using proba-
bilistic model’s rewards) after they consumed the same CPU time. Surprisingly, Figure III.6b
shows that rewards gathered are higher with PPUDD than with APPL. The reason is that
APPL is in fact an approximate probabilistic planner, which shows that our approach consist-
ing in exactly solving an approximate model can outperform algorithms that approximately
solve an exact model. Moreover, exact POMDP planners are unable to scale to problems of
the size of the RockSample ones. Finally, it is worth noting that probabilities of the observa-
tion model, which represent uncertainties of sensor outputs, may be difficult to precisely know
in practice, in which case possibilistic models may be more physically accurate. In fact for
this example the policy produced by PPUDD is the best to get all possible rewards: this is
essentially because the rover can be sure of a rock’s nature checking when it is on it.

These results assured us that it was not unreasonable to present PPUDD in the Interna-
tional Probabilistic Planning Competition 2014, even though the computation of strategies for
probabilistic problems is not the initial vocation of this solver. The next section describes the
competition context as well as the presented versions of PPUDD, and discusses the results of
the different competitor solvers.

III.4.2 International Probabilistic Planning Competition 2014

The fully observable track of the International Probabilistic Planning Competition (IPPC) al-
lows to fairly compare performances of MDP solvers. The competitors’ solvers have to compute
strategies for some problems which are not known in advance. Given one of these problems,
solvers have a limited amount of time to send actions to the competition server which simulates
the evolution of the system state: successive states are sampled by the competition server using
the transition probability distributions of the MDP defining the problem, and sent to a given
competitor’s solver. For each system state received, the solver has to send back the action it
has computed. These data exchanges are conducted during few trials of finite horizon and the
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score of the solver for the considered problem is the average (over trials) of the undiscounted
and finite sum of rewards along the trajectory generated by the trial.

Materials about this competition are available at the official web page of the competition
https://cs.uwaterloo.ca/~mgrzes/IPPC_2014/. Problems are grouped in domains, which
are MDPs whose a finite number of parameters are undefined: the problem, or MDP, used in
practice during the competition is an instance of a domain, i.e. a domain whose parameters
have been set. In this competition, 8 domains have been proposed, called respectively Academic
advising, Crossing traffic, Elevators, Skill teaching, Tamarisk, Traffic, Triangle tireworld and
Wildfire. Three possible encodings of the instances of these domains are proposed, i.e. three
different languages can be used to describe the instances: the first is the Planning Domain Defi-
nition Language (PPDDL, [151]); the second is a LISP-like language introduced with symbolic
algorithms such as SPUDD which defines explicitely transition probability distributions and
reward function as ADDs (see http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/); fi-
nally, the third is the Relational Dynamic Influence Diagram Language (RDDL, [126]) which
is simpler and more expressive than the previous ones. The competition consists in evaluating
the solver over 10 instances per domain with 30 runs per instance and 18 minutes per instance:
it takes 24 hours in total.

In order to ensure that everyone has the same computational power, each competitor solver
is set up in a remote server whose RAM is 7.5Gb with 2 cores.The client and server for the
competition are available in the open source RDDLSim software, which is available online at
http://code.google.com/p/rddlsim/. Four solvers have been proposed for this competition:

• PROST [79], based on Upper Confidence bound applied to Trees (UCT, [80]) and using
directly RDDL encoding;

• GOURMAND [83, 82], based on Labeled Real Time Dynamic Programming (LRTDP,
[14]) using PPDDL encoding;

• symbolic LRTDP, using ADDs and LISP-like encoding [45];

• our algorithm PPUDD, using LISP-like encoding too.

As the score given to solvers only depends on the 40 first stages of the process, the presented
version of PPUDD consists of the Algorithm 12 with the “while condition” U∗ 6= U c at line
2 replaced by the condition “iteration 6 40”. It also incrementally augments the planning
horizon while maintaining a mask stored in form of a Binary Decision Diagram (BDD, i.e.
an ADD with leaves in {0, 1}) representing the states reachable from the initial state: the
computation of the current value function is then restricted to the reachable states only. While
PPUDD is an offline algorithm, we proposed also AnyTime PPUDD (ATPPUDD) which is
an anytime version which learns computation times of Bellman backups while dispatching the
computational effort accordingly over the remaining planning horizon much like GOURMAND
does in the probabilistic world (see [83]).

When encoded with the LISP-like format, problems of the competition, i.e. instances of
each domains, are described as factored MDPs with boolean system state variables: for each
action a ∈ A and for each next boolean system state variable X ′i, one ADD representing the
corresponding transition probability distribution p

(
X ′i

∣∣∣ parents(X ′i), a) is given. In order to
define the π-MDP which will be solved by PPUDD, we simply normalize these distributions
in the possibilistic sense: we set to 1 the possibility degree of an assignment of X ′i when its
probability value is maximal, and to the probability value otherwise. For instance, for a given
assignment of the previous variables parents(X ′i), if the probability value of the assignment
(or event) X ′i = 1 is 0.7 (and thus probability 0.3 that X ′i = 0), then the possibility degree of
X ′i = 1 is set to 1, and the one of X ′i = 0 is set to 0.3.

https://cs.uwaterloo.ca/~mgrzes/IPPC_2014/
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/
http://code.google.com/p/rddlsim/
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In terms of ADDs, it can be computed as follows: let us first recall the notation
p
(
X ′i

∣∣∣ parents(X ′i), a)X′i=0
, used to represent the subtree of the ADD p

(
X ′i

∣∣∣ parents(X ′i), a)
setting X ′i to false (i.e. to 0). As well, p

(
X ′i

∣∣∣ parents(X ′i), a)X′i=1
is the subtree of the same

ADD, setting X ′i to true (i.e. to 1). Let us denote by 1p>>p⊥ the BDD equal to 1 for each
variable assignment such that

p
(
X ′i

∣∣∣ parents(X ′i), a)X′i=0
< p

(
X ′i

∣∣∣ parents(X ′i), a)X′i=1
,

and equal to 0 for other assignments. The BDD always equal to 1 is denoted by 1. The BDD
1p=0.5 is equal to 1 for variable assignments such that the probability of the event X ′i = 1
(or X ′i = 0) is equal to 0.5, and this BDD is equal to 0 otherwise. We can also denote by
1p><p⊥ the BDD which is equal to 1 for assignments of variables in parents(X ′i) such that
the probability of event X ′i = 1 is lower than the probability of event X ′i = 0: this BDD can
be computed from previous BDDs, 1

�� ��− 1p>>p⊥
�� ��− 1p=0.5, where

�� ��− is the minus operator,
applied to trees. The possibility transition distribution for the ith variable is

π
(
X ′i

∣∣∣ parents(X ′i), a) =
�� ��max

{
1p=0.5,

�� ��min
{
1p>>p⊥ ,p

(
X ′i

∣∣∣parents(X ′i), a)},
�� ��min

{
1p><p⊥ ,p

(
X ′i

∣∣∣parents(X ′i), a)}
}

As well, for each action a ∈ A, an ADD representing the reward function for this action is
provided and denoted by r(X1, . . . , Xn, a). Let us define then for each s ∈ S and a ∈ A,

Ψ(s, a) = r(s, a)−mins,a r(s, a)
maxs,a r(s, a)−mins,a r(s, a) ∈ [0, 1].

The terminal preference function is set to Ψ(s) = maxa∈AΨ(s, a), and the strategy is initialized
by δ∗(s) ∈ argmaxa∈AΨ(s, a) at the beginning of the algorithm.

Note that possibility and preference degrees are not in a scale L as previously defined (i.e.{
0, 1

k ,
2
k . . . , 1

}
for some k > 1). Indeed, possibility degrees comes from probability values, and

preferences are normalized rewards. However, only max and min operators are used, so it has
no impact on the qualitative results of the computations.

The library used to perform computations with ADDs is the CU Decision Diagram Package
(CUDD, http://vlsi.colorado.edu/~fabio/CUDD/), and the described versions of PPUDD
are available at the adress https://github.com/drougui/ppudd.

Following figures illustrates the results of IPPC 2014: the score is given in function of the
instance index, which generally increases with the difficulty (or the size) of the associated
problem.

Figure III.7 presents the scores obtained by each solver for each of the 10 instances of
the Academic advising domains, i.e. the average over 30 trials of the sum of the encountered
rewards. Performances of our algorithms are close to the best ones. However, an unexplained
and unwanted bug occurred with ATPPUDD for the 2nd instance, as only 3 runs have been
performed by this solver. For the other instances, PPUDD and ATPPUDD produce strategies
with performances like PROST and GOURMAND, and better than Symbolic LRTDP. This
has been less true for the Crossing traffic problem, whose results are also described by Figure

http://vlsi.colorado.edu/~fabio/CUDD/
https://github.com/drougui/ppudd
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III.7. This problem models a robot which has to reach a goal which is across an highway with
a lot of cars. These cars arrive randomly and move left. As the possibility degree of the fact
that no car arrive is set to 1 by our naive MDP to π-MDP translation, the optimistic criterion
leads to decide to cross the street, even if an unseen car may arrive (with a probability < 0.5
but bit enough to be cautious). This explain the poor quality of the produced strategies for
this domain. Note however that, for the 6 last instances (most difficult problems) our approach
leads to better strategies than the probabilistic solver Symbolic LRTDP.

In the Elevators problem, people arrive randomly and have to be transported to the correct
building stage: as the frequentist information is lost using the possibilistic approach and seems
important in this problem (people do not want to wait once arrived), scores of our algorithms
are poorer than the ones of PROST and GOURMAND. The toy example at the beginning
of the introduction of this chapter illustrates that the possibilistic approaches can select ac-
tions probabilistically clearly suboptimal when the probability values are at the heart of the
problem. PPUDD and ATPPUDD are however better than Symbolic LRTDP, as shown by
Figure III.8, and than doing nothing (“noop strategy”) or choosing actions randomly (“ran-
dom strategy”). PPUDD and ATPPUDD have quite good behaviours with the Skill teaching
problem as illustrated by the same figure. Moreover, ATPPUDD leads to better results for the
last three instances: as these instances are the Skill teaching problems with the largest system
space, the anytime version, which manages the computation time, produces strategies with
better performances than PPUDD, which classically solve the associated π-MDP, but cannot
complete computations and lead to a poorer strategy.

With respect to other solvers, possibilistic solvers have good results with the Tamarisk
domain, as shown in Figure III.9.. However, some instances (e.g. the 6th, the 8th and the
10th) are not even run as the ADD instantiation takes too long. Symbolic LRTP faces the
same issue as it uses also the LISP-like encoding of the problem. We think that this is an
issue specific to the competition, as each problem has to be equivalently translated into three
different languages (RDDL, PPDDL and LISP-like), which produces sometimes artificially
complex encodings of the problems. The Traffic domain is really hard to solve by PPUDD and
ATPPUDD (see Figure III.9). Actually the least scores are obtained with this domain, and
even the random and the noop strategies are better strategies. Note that we did not implement
any “watchdog” returning random actions when the computed strategy is less effective than
the random one. However, this kind of gadget is essential to improve results for such large and
risky problem. As mentioned above for the Crossing traffic problem, the optimistic criterion
may lead to dangerous actions, as it does here. Moreover, as this problem involves frequentist
information (car arrivals) an high suboptimality of the strategy produced by the possibilistic
approach is confirmed for this kind of problems (see the Elevator problems). Finally, the Traffic
problem is known to be one of the hardest domain, so ADD instantiation takes long, as well
as computations, which are then not proceeded enough to produce satisfying results.

Finally, the two last domains, whose results are described in Figure III.10, are called
Triangle Tireworld and Wildfire. Firt, ATPPUDD faces an unexplained bug for each instance
of the Triangle Tireworld domain: no trial is performed from the 5th instance, and maximum
2 trials are performed for other instances (which explains the poor score for each instance).
As already mentioned for the Tamarisk domain, ADD instantiation takes too long for the
last instances, and no trial is performed for the last 4 instances with PPUDD too: Symbolic
LRTDP faces the same issue. The last domain, called Wildfire, leads to highly frequentist
problems: it involves random fire starts. That is why PPUDD and ATPPUDD strategies are
not really efficient, but not too distant from Symbolic LRTDP solver’s results.
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III.5 Conclusion
We presented PPUDD, the first algorithm to the best of our knowledge that solves factored
possibilistic qualitative (MO)MDPs with symbolic calculations. In our opinion, possibilistic
models are a good tradeoff between non-deterministic ones, whose uncertainties are not at all
quantified yielding a very approximate model, and probabilistic ones, where uncertainties are
fully specified, sometimes arbitrarily in practice. The resolution of planning problems using the
framework of non-determinism is called contingent/conformant planning studied for instance
in [1, 16]. By the way, in the introduction of this thesis, we might also add “non-determinism”
as a particular case of Possibility Theory in Figure 7, as values of associated non additive
measures are 0 or 1 instead of a more flexible scale L.

Moreover, π-MOMDPs reason about finite values in a qualitative scale L whereas proba-
bilistic MOMDPs deal with values in R, which implies larger ADDs for symbolic algorithms.
Also, the former reduce to finite-state belief π-MDPs contrary to the latter that yield contin-
uous-state belief MDPs of significantly higher complexity. Our experimental results highlight
the point that using an exact algorithm (PPUDD) for an approximate model (π-MDPs) can
bring significantly faster computations than reasoning about complex exact models, while pro-
viding better strategies than approximate algorithms (APPL) for exact models. In the future,
we would like to developp a probabilistic algorithm using the generalization of our possibilis-
tic belief factorization theory to probabilistic settings (see Theorem 26): related but sightly
different results have been proposed for probabilistic POMDPs [131, 112]. These results also
does not concern the case of mixed observability.

This chapter finally presents the results of our possibilistic approach during IPPC 2014:
the highlighted bottleneck of our possibilistic algorithms resides on the translation from prob-
abilities to possibilities: the naive automated translation presented before the description of
the results leads to poor policies in benchmarks with complex dynamics and reward structures.
Another issue is the size of the input LISP-like encoded domains whose ADD instantiation
before optimization takes a very long time or does not even fit into memory for many difficult
benchmarks: this difficulty is shared with the Symbolic LRTDP solver. However, there is al-
most no discretization of the initial probability values defining the MDP in order to produce
the possibility degrees during the instantiation of the ADD defining the π-MDP: the max-
imal difference between two possibility degrees is set to 10−3. Stronger discretizations have
not been tested yet, and could improve scores of our solvers for problems with such memory
issues. Modeling issues have been also highlighted, namely the fact that some problems request
a cautious behaviour, not provided by the use of the optimistic criterion (see Definition III.8)
used during the competition. Moreover, as illustrated in introduction, these experiments show
that problems with high entropy events are outperformed by probabilistic approaches since
the possibilistic approach does not take into account the frequentist information about the
problem. The use of lexi-approaches, as used in the following chapter, may be a possibilistic
stratagem to get around this issue. Note finally that the partially observable version of PPUDD
(with the generation of a mask of reachable belief states, avoiding useless computations on
unreachable beliefs) is also available on the repository https://github.com/drougui/ppudd.

The next chapter, Chapter IV, deals with Human-Machine Interaction (HMI) problems:
the uncertainty dynamics of the system are in this context typically not known in terms of
probability values, and the qualitative possibilistic approach is shown to be a natural approach
to produce efficient diagnosis of human errors.

Finally, the last chapter, Chapter V, takes into account the remarks made using the results
of IPPC14: an approach using Probability and Possibility Theory in order to benefit from both
approaches in the resolution of factored POMDPs is presented: quantitative information of the
problem is kept to avoid the highlighted modeling issues, and the belief state is handled in

https://github.com/drougui/ppudd
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a possibilistic way, in order to get a smart discretization of it and to benefit from a finite
and factorized belief state spaces. This approach leads to a factored probabilistic MDP which
can be solved for instance by GOURMAND or PROST (which does not use the memory
constraining LISP-like encoding).



IVApplication of Qualitative
Possibilistic Hidden Markov
Processes for Diagnosis in
Human-Machine Interaction

The work developed in this chapter is quite independent from the main theme of this thesis,
namely the problem of Decision Making under Uncertainty. This work, performed in collab-
oration with Sergio Pizziol and extending the work of his PhD thesis [110], contributes to
modelling human-machine interactions. It is part of this thesis since it is a significant exam-
ple of the need of qualitative models (such as those presented in previous chapters) in some
practical situations.

We formalize here a framework providing an estimate of the human assessment of the
machine state, an automated detection of human operator attentional errors, and finally an
estimate of the most plausible causes of these errors. A qualitative possibilistic approach is
used to deal with uncertainty about the human operator assessment.

The human-machine context is first introduced to point out the need for a new modelling
method for human attentional error. Then a human error model is derived from the machine
logic, using expert assumptions on human errors and their plausibility. A human-machine
interaction model results from the combination of the machine logic and the error model.
Using the Possibility Theory, an analysis model estimating the human assessment is built on
the interaction model, summed up in a Possibilistic Hidden Markov Processes (π-HMPs). The
possibilistic analysis is first performed on a toy example. Finally the soundness of the approach
is shown through simulation tests with pilots performing a flight mission.

IV.1 Introduction
In human-machine interaction studies, the problem of the correct human assessment of the
machine state has been widely discussed. The main issue is that a human operator with a
wrong assessment of the machine state is likely to perform erroneous actions, i.e. actions
whose outcome is different from what is intended [78].

Many different approaches have been proposed to deal with this issue: among them, mental
models and situation awareness [65, 119], formal inference rules [99], or error models for the
human misinterpretation of the machine feedbacks [118]. Those approaches are based on a
deterministic model for the human error, suited for error dynamic analysis but not for error
detection. Moreover, they do not benefit from the flexibility provided by uncertainty represen-
tations.
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Machine Human

Observer
Machine model Human error model

Feedbacks

Selections

Figure IV.1 – The three actors involved in the study. The red arrows represent information flows.

The human assessment of the machine state is not observable during the interaction with
the machine: nevertheless it may be estimated via uncertainty modelling for example using
Probability Theory [98]. However probability values can be difficult to define in practice be-
cause of a lack of quantitative information related to the human operator’s behaviour. A
method to build an interaction model relying on less informative data is needed. This chapter
proposes a new method building such a model with qualitative expert data and using the
machine logic.

The human assessment of the machine state (shortly assessment) is mainly based on the
feedbacks provided by the machine. Feedbacks are pieces of information the machine sends
(via visual or aural alerts/signs) in order to inform the human operator about its current
state. Some formal approaches have been proposed in order to estimate whether the human
receives enough feedbacks [102, 37]. Nevertheless even if enough feedbacks are provided,
the problem of their correct reception remains. If the human does not perceive some ma-
chine feedbacks during the interaction, the human assessment may be incorrect, leading to
erroneous actions based on such a wrong assessment: the main objective of this work is to
formalise an analysis model detecting assessment errors through human assessment estimation.

Three actors are involved in this framework: a machine, a human operator acting on the
machine, and an observer analysing the human-machine interaction. Human operator actions
on the machine are called selections.

The observer knows the machine logic and contemplates possible human assessment errors.
Moreover, during the human machine interaction, it observes a sequence of data generated by
the machine and the human operator: these data are called observable occurrences, and consist
in each successive feedback (from the machine) and selection (from the human operator), as
illustrated Figure IV.1. Machine state changes corresponding to those feedbacks and selections
can also be considered as part of the observable data: indeed, the observer perfectly knows the
initial machine state as well as the deterministic model of the machine, so the current machine
state is easily determined.

The analysis model, proposed here, is meant to help the observer in the analysis of the
human-machine interaction: using successive observable occurrences, as well as a machine
model and a human error model, it provides an estimate of the human operator assessment
of the machine state, a detection of human assessment errors, and an explanation for those
errors.

The system designers could later modify the machine logic to make it take into account the
assessment errors detection and diagnosis performed by the observer using the analysis model.
For instance they could provide new specific feedbacks meant to correct the human operator
assessment [44, 43]. Note that those applications are out of the scope of this work. This
work focuses on a method to set up a human-machine interaction model from the machine
model and on the definition of the analysis model; experiments on a flight simulator are also
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provided, showing that this approach is reponsive in practice.

Some key concepts are detailed in the next section, as the definition of the machine model
describing the machine logic. The human assessment error model (shortly error model) is
then defined starting from the machine model. Next the human-machine interaction model is
presented, resulting from the combination of the machine logic and the error model. It ex-
haustively defines all the human assessment transitions considered as possible by the observer.
Later some working assumptions are given: assumed by the observer and expressed in natu-
ral language, they involve the plausibility of these human assessment transitions. An analysis
model can then be set up based on these assumptions.

The analysis model presented in this work uses the Qualitative Possibility Theory as it is
well suited to encode qualitative expert knowledge: the possibilistic analysis model is formally
described, in the form of a Hidden Markov Process. It provides a human assessment estimation,
assessment error detection and explanation of the error.

A detailed example of this approach is provided Section IV.4 analysing interactions for a
simple three-state machine. In the last section, the method is tried through tests with pilots
performing a flight simulator mission.

IV.2 Framework for human-machine interactions modelling in-
cluding assessment errors
Hereafter we call state the machine state represented by the notation s ∈ S. The actual
human assessment of the state is represented by h ∈ S: the equality h = s∗ ∈ S means that
the human operator thinks that the state of the machine is s∗. Note that this work is based on
the simplifying assumption that the human operator is certain about the state of the machine:
the representation of the human knowledge is limited to a unique machine state h = s∗. This
unique state can also be seen as the most plausible one from the human operator’s point of
view, i.e. the one on which she/he bases her/his selections. Remember that a selection is a
human operator action on the human-machine interface.

If no assessment error arises, assessment h coincides with actual state s. However the
sending of feedbacks does not guarantee the correct receipt of the information, in particular
for the automated state changes [67], i.e. state changes that are not fired by a selection. So
assessment errors may occur.

The actual assessment h is not observable since the observer has no access to the human
assessment of the situation: the main contribution of this chapter is then to provide a pos-
sibilistic estimation for it. Successive observable occurrences (shortly occurrences) i.e. each
successive feedback (from the machine) and selection (from the human operator), are repre-
sented by the variable v, and are used to update this estimation. Occurrences can be divided
into three categories:

• human selections on the machine interface;

• automated machine state changes with relevant feedback sending;

• the initialization, representing the beginning of the interaction process.

The observer knowing the initial state and machine model is able to deduce the actual state at
each occurrence (so the machine state is considered as observable as well). Next section details
how this machine logic is described, starting point for a human error model derivation.
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IV.2.1 Machine model

The machine logic is summarized through a logic table representation [67]. As this represen-
tation has been developed to describe the deterministic behaviour of the machine, the logic
table takes into account the machine state s, but not the human assessment h. Machine state
transitions are represented as triplets (previous state s, current occurrence v′, current state
s′). These machine state transitions are summarized in pairs of (situation, behaviour):
Definition IV.2.1 (Situation)

A situation is defined as the conjunction between a proposition about current occurrence
P(v′) and a proposition concerning the previous state P(s): P(v′) ∧ P(s). In practice, the
proposition about the current occurrence is a disjunction of occurrences.

Moreover the machine state is described by a tuple of state variables: s =
(s1, s2, . . . , sn). The proposition about the previous state is a Conjunctive Normal Form
(CNF) of these state variables, i.e. a logic conjunction between disjunctions of assignments
of the same state variable.

For instance consider a set of possible occurrences {vA, vB, vC }, and a set of states described
by variables (s1, s2) ∈

{
s1
A, s

1
B

}
×
{
s2
A, s

2
B, s

2
C

}
. An example of proposition about the cur-

rent occurrence might be P(v′) = (v′ = [vA ∨ vC ]). Current occurrences and previous state
variables are either defined explicitly or take the parametric value “no matter which occur-
rence/assignment” denoted by “[∗∗]”. Proposition P(s) = (s1 = [∗∗]) ∧ (s2 = [s2

A ∨ s2
B]) is

an example of CNF, or proposition about the current state. The situation is finally fully de-
scribed with P(v′) ∧ P(s). In this example, the situation is expressed in natural language as:
“occurrence is either vA or vC , variable s1 takes any value, and variable s2 is either s2

A or s2
B”.

Definition IV.2.2 (Behaviour)
A behaviour, which is the result of a situation, is a proposition P(s′) defined as a logic
conjunction between assignments of the different state variables.

These assignments are either defined explicitly, or take the parametric value “same assignment
as the corresponding previous state variable assignment” denoted by “[∗]”.

An example of proposition describing a behaviour for the previous situation example might
be P(s′) = (s′1 = [∗]) ∧ (s′2 = [s2

C ]). In this example, the behaviour is expressed as: “variable
s′1 assignment is the same as s1, and variable s′2 assignment is s2

C”.
A complete set of (situation, behaviour) pairs can be summed up in a logic table.

Definition IV.2.3 (Logic table)
The set of pairs (situation, behaviour) is represented in an explicit way with a table called
logic table. The first column of the table contains the occurrence variable notation v and
state variables names, the second column contains possible occurrences, and possible state
variables assignments. Pairs (situation, behaviour) are represented in the next columns (1,
2, 3, etc). In those columns, boxes containing 1 mean that the current occurrence variable
or state variable is equal to the current line value (assignment). If for some situation
all the boxes corresponding to the occurrence variable or a state variable are empty, the
occurrence variable or state variables take value [∗∗] (no matter which occurrence/machine
state). Note that this is equivalent to fill those boxes with many 1: the only purpose of this
convention is the table readability. If for some behaviours all the boxes for a state variable
are empty, the variable takes value [∗] (same as the previous state).

As a toy example let us consider the case of a machine whose state can be represented with
one binary variable s ∈ {sA, sB }. The set of possible occurrences is {vA, vB, vC }. Table IV.1
gives the logic table of the following (situation, behaviour) pairs:
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1 2 3
SITUATION

v′ vA 1
vB 1
vC 1

s sA 1 1
sB 1

BEHAVIOUR
s′ sA

sB 1

Table IV.1 – Example of logic table for a machine with one binary machine state variables and three
possible occurrences: each pair (situation, behaviour) is described by a column.

1. • situation: (v′ = [vA ∨ vC ]) ∧ (s = [sA]);
• behaviour: (s′ = [∗]).

2. • situation: (v′ = [vB]) ∧ (s = [sA]);
• behaviour: (s′ = [sB]).

3. • situation: (v′ = [∗∗]) ∧ (s = [sB]);
• behaviour: (s′ = [∗]).

The total number of columns is equal to 3, as the number of pairs (situation, behaviour)
describing the state machine. Column 1 of table IV.1 has to be read: “if v′ = vA ∨ vB and
s = sA, then machine state remains the same”.

As the machine logic depiction has been presented, a human error model can be now
deduced, leading to a full human-machine interaction model.

IV.2.2 Derivation of an error model

Classically, human-machine interaction models are based on the machine logic, and, for each
occurrence, only on the expected (or feared) consequence on the human assessment of the
machine state [118, 111]. The presented interaction model provides a more expressive repre-
sentation of the assessment dynamics: many consequences on the human assessment of the
machine state, called effects and denoted by variable e ∈ E, are considered possible for each
occurrence. Nevertheless, they may be defined as more or less plausible by experts. In other
words the term effect means “the (non observable) effect (of an observable occurrence) on
the human assessment of the machine state”. For instance one possible effect is the correct
human perception and interpretation of a feedback. Other possible effects, for the same ob-
servable occurrence (i.e. the feedback sending) could be that the feedback goes unperceived
or misinterpreted.

An effect can be formally defined as the result of a partial function fe : S × V × S → E of
previous assessment h, current occurrence v′ and current assessment h′: e = fe(h, v′, h′). Indeed
that function defines the effect of the occurrence v′ on the assessment dynamics, i.e. on the
transition from h to h′. Partial function fe is not defined for all triplets (h, v′, h′) ∈ S×V ×S.
Indeed, in the context of occurrence v′ some assessment transitions are not assumed to be
possible by experts: if h cannot become h′, fe(h, v′, h′) is not defined, and no effect is associated
with this transition. Effects of v′ are thus each fe (h, v′, h′ ), ∀(h, h′) ∈ S2 when defined.
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h = sA

h′ = sB h′ = sC h′ = sD . . .h′ = sA

Nominal effect e
Non-nominal effects

ẽêê

Multi-effect occurrence v′ 
Figure IV.2 – Nominal effect and non-nominal effects of the occurrence v′ on the assessment h ∈ S
which becomes h′ ∈ S.

For a given occurrence, the effect when no assessment error arises i.e. when the human
assessment transition is equal to the actual machine state transition, is the nominal effect.
Nominal effects are then already defined given the logic table, replacing machine state variables
s and s′ with human assessment variables h and h′.

Non-nominal effects could also take place and correspond to assessment errors. Nevertheless
for some occurrences only nominal effects are taken into account (i.e. the observer does not
foresees any human assessment error for those occurrences). Occurrences with more than one
possible effect for at least one possible assessment h are called multi-effect occurrences, and
are illustrated in Figure IV.2. Formally if v′ and h are such that ∃(h′A, h′B) ∈ S2 and h′A 6= h′B
for which fe(h, v′, h′A) and fe(h, v′, h′B) are defined, and fe(h, v′, h′A) 6= fe(h, v′, h′B), v′ is a
multi-effect occurrence.

The error model is completed once all non-nominal effects have been defined: the logic table
can be enhanced adding non-nominal effects for some occurrences. The way those non-nominal
effects are described is the same as for the nominal effects: by pairs (situation, behaviour)
represented by columns of the logic table. Referring to the example of the logic table given
above (see Table IV.1), the expert knowledge could for instance assert that occurrence vC could
possibly make the human believe that if the machine state is initially sA it finally changes to
sB. This potential effect is described by column 4 in Table IV.2. This new column does not
replace the nominal case that is unaltered and still described by column 1. For readability
columns corresponding to non-nominal effects are written in red. Occurrence vC is thus a
multi-effect occurrence. A logic table that includes assessment errors as Table IV.2 is called an
enhanced logic table. The expert knowledge may again enhance the error model, stating that
occurrence vA could also lead to the same kind of human assessment error (see column 5).

Remember that effects e concern the human assessment dynamics h, which is of course
not observable: actual effects are thus not observable, as a result of fe(h, v′, h′). Effects can
however be sorted according to their plausibility, as presented right now.

IV.2.3 Effect plausibility

In this study nominal effects are considered as generally more plausible than the corresponding
non-nominal ones i.e. than the corresponding human assessment errors starting from the same
previous assessment h, and under the same occurrence v′: the human operator is thus assumed
to know the machine logic and to have a quite good perception of the feedbacks.

Experts, after the enumeration of the potential non-nominal effects, have also to sort all
effects according to their plausibility, dividing them into categories: for instance, effects whose
plausibility is normal e (shortly normal effects), effects whose plausibility is less than normal
but not unusual ê (shortly less than normal effects), effects whose plausibility is unusual
e (shortly unusual effects), or even effects whose plausibility is very rare ẽ (shortly very rare
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columns 1 2 3 4 5
SITUATION

v′ vA 1 1
vB 1
vC 1 1

h sA 1 1 1
sB 1 1

BEHAVIOUR
h′ sA 1

sB 1 1
EFFECT e ẽ e ê e

POSSIBILITY 1 ε 1 λ δ

Table IV.2 – Enhanced logic table of the logic table IV.1: occurrences vA and vC have both a non-nominal
effect, described respectively by columns 5 and 4. Each column represent a pair (situation, behaviour),
and effect row represents the effect plausibility label. Last row assigns a possibility degree to each effect
(see section IV.3.1).

effects). The line “effect” is thus added to Table IV.2 specifying effects plausibility. For instance,
nominal effect described by column 1 is normal according to the expert (e), but nominal effect
described by column 2 is very rare (ẽ).

We have made the assumption that for each assessment h, there always exists at least one
occurrence v′ with a normal effect. Thus, for each current human assessment h, it exists one
possible occurrence and next human assessment considered as normal i.e.

∃v′, h′ such that fe(h, v′, h′) = e. (IV.1)

This remark is essential and forms a rule imposed in practice when filling the effect row of the
enhanced enhanced logic table. It means that for each human assessment, at least one next
step of the human-machine interaction is normal. Moreover, this property suits the possibilistic
analysis model construction, as recalled section IV.3.

In the next section, the analysis model is defined from a given effect plausibility ranking,
using a plausibility measure on the human-machine system dynamics: more details about the
chosen measure are given in section IV.3. The last part of this section (IV.2.5) will derive the
effect ranking from a set of expert rules, leading to a fully defined human-machine interaction
model.

Note that an effect is normal if its plausibility is considered as normal (by the expert, or the
system designer). Nominal effects and normal effects must not be confused (see Figure IV.3):
the words normal, unusual are used to define the plausibility of effects i.e. to sort them, in order
to fully define the interaction model, as just explainded in this section IV.2.3 and performed
from general assumptions in section IV.2.5. On the other hand, effects are said Nominal if they
represent a human assessment transition without error, i.e. a human assessment transition
corresponding to the machine state transition (ideal human understanding). Thus, effects are
said non-nominal if they represent assessment errors, and are added to the logic table using
expert knowledge.

In the following section IV.2.4 the human-machine interaction system dynamic is detailed.

IV.2.4 System dynamics: trajectories and exceptions

After the manifestation ofm > 0 occurrences, the sequence of machine states is called the (m+
1)-length state trajectory and is denoted by Sm = (s0, s1, . . . , sm). This trajectory is considered



126
Chapter IV. Application of Qualitative Possibilistic Hidden Markov Processes for Diagnosis in

Human-Machine Interaction

Occurrences Nominal effects
Normal

Less than normal

Non-nominal effects Less than normal

Machine
model

Error model

PlausibilityDesigner
tuning

Figure IV.3 – Nominal effects, non-nominal ones defining the error model, and plausibility evaluation.

as observable, as well as the (m + 1)-length occurrence trajectory Vm = (v0, v1, . . . , vm). In
other words the observer defined in introduction section IV.1 and Figure IV.1, thanks to their
knowledge of the machine logic, is able to provide ∀0 6 t 6 m,

• the occurrence at stage t, vt (e.g. selection, or automated state change),

• and actual state of the machine st, deduced from the machine logic.

However the actual effect trajectory (e0, e1, . . . , em) and assessment trajectory
(h0, h1, . . . , hm) are not observable. They may be estimated using the possibilistic analy-
sis model described in section IV.3. Remember that each occurrence may have many effects.
So a (m+ 1)-length occurrence trajectory corresponds to many possible (m+ 1)-length effect
trajectories: ∀0 6 t 6 m, et is an effect1 of the occurrence vt. Each time a multi-effect
occurrence is fired, several assessment trajectories are possible, one or more for each possible
effect (see Figure IV.2). The set of possible effects trajectories is denoted by Em and the set
of possible assessments trajectories Hm.

In practice, possible effects and assessments trajectories are stored together in the form
of non-observable trajectories: (e0, h0, e1, h1, . . . , hm−1, em, hm) with ∀0 6 t 6 m, et =
fe(ht−1, vt, ht) if fe is defined for this triplet, and removing h−1 for t = 0. The firing of a
new occurrence vm+1 updates the set of non-observable trajectories adding possible effects
and assessments. Each non-observable trajectory ending with h ∈ S at stage m, is completed
with each pair (fe(h, vm+1, h

′), h′) such that fe(h, vm+1, h
′) is defined, i.e. stored in the en-

hanced logic table. Because several multi-effect occurrences may be fired the number of possible
non-observable trajectories may increase significantly.

Initially the most plausible non-observable trajectory is the one that includes only nominal
effects (i.e. no assessment errors). The corresponding assessment trajectory (removing effects
from the non-observable trajectory) is called the objective assessment trajectory and is equal to
the machine state trajectory. After the firing of an occurrence whose effects are all considered
at the most as unusual in the actual situation, the objective assessment trajectory is no longer
considered as normal. This situation is called an exception and the occurrence that led to the
exception a triggering occurrence. Typical triggering occurrences are selections considered as
erroneous in the particular context.

Let us describe the mechanism and the behaviour of the wanted analysis model which
will be set up in section IV.3.1. If an exception is detected by the analysis model, the model
itself verifies if there is a non-nominal effect (i.e. an assessment error) in the past history
that, if considered as the actual effect, could lead to a situation in which the firing of the
triggering occurrence is not unusual, but instead normal. For instance the analysis models
may verify if there is a human feedback misinterpretation that could explain a human selection
otherwise considered as erroneous. This non-nominal effect is called exception explanation and
the assessment trajectory embedding this exception explanation is considered as the new most

1Remember that effects are not observables.
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plausible one. The formerly most plausible assessment trajectory is no longer coherent with the
actual observations of the system. Therefore, its plausibility is decreased. On the other hand,
if no exception explanation is found, the plausibility of the assessment trajectories remains
unchanged. The possibilistic Bayes rule, also presented in the section IV.3, formally defines
how to implement these concepts.

The following section IV.2.5 presents the expert rules chosen to complete the human-
machine interaction model: these assumptions about effects are used in applications presented
in last sections IV.4 and IV.5.

IV.2.5 Working assumptions

In order to define in practice non-nominal effects modelling human operator assessment errors,
as well as their plausibility, two methods are possible: designing them one by one by hand with
the help of experts of the domain, or deriving them mechanically from a limited number
of general assumptions formulated by the experts. Nevertheless a mixed approach is also
possible: for instance designers could start with the mechanical assumption-based method and
successively suppress or add by hand some non-nominal effects, or even rank by hand the
plausibility of some effects.

Hereafter some assumptions for the mechanical approach about possible effects and their
plausibilities are defined. Defining a generic set of assumptions is out of the scope of this work.
Note that these rules have been defined by experts for the experiment presented in section
IV.5, and may be unsuitable for other applications. They are defined here to set an example
of interaction model (including the ranking of effects), before the building of the possibilistic
analysis model.

Here is the list of the chosen working assumptions:

• the human knowledge of the machine behaviour is correct;

• the human should perceive feedbacks, but she/he can possibly miss them;

• the human knowledge of the initial state is uncertain, but is likely to coincide with the
real one;

• selections that do not change the machine state are considered as slips, i.e. unmeant
selections;

• the missing of a feedback is more likely to happen than a slip or a mistake: a mistake is
a selection or a lack of selection defined as erroneous by the system designer.

• the missing of n < nmax feedbacks is more likely to happen than missing n+1 feedbacks,
or a slip.

The first assumption implies that the human is sufficiently trained to use the machine and
knows its behaviour: nominal effects are then generally considered as more plausible than the
corresponding non-nominal ones. as previously announced.

According to the next two assumptions, the interaction model takes into account two
multi-effect occurrences. The first one is the feedback sending: feedbacks should be perceived
(nominal effect) but could go unseen (non-nominal effect). The second one is the initial human
appreciation of the machine state: the initial assessment should be correct (nominal effect),
but could be wrong (non-nominal effect).

The fourth assumption means that selections which do not change the machine state are not
voluntary. The last assumption states that the more feedbacks are lost, the less the situation
is plausible.
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h = sA

h1 = sA

h1 = sB h2 = sB
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action a
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Figure IV.4 – Loss of feedback as an exception explanation.

For this interaction model, the following occurrences and corresponding effects are thus
used:

• the execution of selections which have one nominal effect; depending on the current
assessment they are classified as normal selections, or as slips/mistakes which are unusual;

• an automated state change with two possible effects: the reception and well interpretation
of the relevant feedback (nominal), which is normal, and the loss of the feedback (non-
nominal), which is not normal but more likely to happen than an unusual effect;

• the state initialization with two possible effects: correct initialization (nominal), which
is normal, and wrong initialization (non-nominal), which is unusual.

The interaction model is so fully defined. The analysis model detailed in the next section
is based on the Qualitative Possibility Theory (see Section I.2.1) providing a formal way to
sort effects according to their plausibility. Starting from a human-machine interaction model,
built as presented in the current section, the analysis model leads to a possibilistic estimation
of the human assessment at each step of the process.

Before detailing the analysis model let us show with an example the desired comportment
of the model for an automated state change followed by an action that is a slip in the actual
state of the machine (see Figure IV.4).

Let us start with the automated state change with machine initial state sA ∈ S and final
state sB ∈ S. The correct reception of the relevant feedback has to be considered as the most
plausible effect. The objective assessment trajectory (h0 = sA, h1 = sB) has to be normal and
so the most plausible one. The second trajectory (h0 = sA, h1 = sA) corresponds to the loss
of feedback and it has to be less than normal but more than unusual.

Later on the human performs a selection (action a) that does not modify the machine state.
This selection is a slip in the actual state of the machine: sB. Therefore it is a slip also for a
human operator for which h1 = sB. The objective assessment trajectory becomes (h0 = sA,
h1 = sB, h2 = sB), and its plausibility should be reduced to that of a slip (unusual).

If the human assessment has not been updated in step 1 due to a loss of feedback (second
trajectory) the assessment is still h1 = sA. Suppose that in this machine state sA action a is
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totally normal. The second trajectory becomes (h0 = sA, h1 = sA, h2 = sC) and its plausibility
should remain unchanged (less than normal but more than unusual).

An exception should be detected and the analysis model should identify the exception
explanation in the loss of the relevant feedback.

IV.3 Human assessment estimation, error detection and diagnos-
tic
Possibility Theory is well suited to encode qualitative expert knowledge such as the working
assumptions presented in the previous section. This section begins with a short presentation of
this theory. Later on the first step of the possibilistic analysis model is presented: starting from
the interaction model, natural language knowledge is expressed in terms of possibility degrees:
basically, what was “plausible” becomes “possible”, what was “less normal” is defined as “less
possible”, what was “unusual” becomes “far less possible”, and what was “very rare” becomes
“almost impossible”. This section ends with formal computations leading to successive human
assessment estimations, the error assessment detection and the exception explanation.

Here the problem deals with uncertainty related to the effects of each occurrence, i.e.
the human assessment transitions: in situations where no wide enough experiments dataset
are available, the corresponding uncertainty cannot be modelled precisely with frequencies
leading to transition probabilities. Possibility Theory allows the definition of a model using
only the available information about the system, which is however enough rich to build a useful
model.

IV.3.1 Possibilistic analysis model

In order to perform the possibilistic analysis the interaction model has to be fully defined,
i.e. all the effects have to be defined and sorted according to their plausibility. The effect
ranking can be encoded defining an appropriate qualitative scale L and assigning possibility
degrees from this scale to the effects. The example of table IV.2 defines the qualitative scale
L as {0, ε, δ, λ, 1} with 0 < ε < δ < λ < 1, and assigns possibility degree 1 to normal effects,
π(e) = 1, degree λ to less normal effects, π(ê) = λ, degree δ to unusual effects π(e) = δ, and
degree ε to very rare effects, π(ẽ) = ε. Of course, if a transition is impossible, i.e. if function
fe is not defined, corresponding possibility degree is 0. This last modelling step leads to the
full definition of a possibilistic hidden Markov process whose states are the successive human
assessments, sound framework for human assessment estimation.

The interaction model used in this work has been set up in section IV.2.5, providing
definition of occurrence effects and the ranking of those effects. The possibility degrees have
still to be assigned to them. Occurrence effects possibility degrees are in the qualitative scale
L = {0, ε, λ, 1} with 0 < ε < λ < 1. The following notations defining classes of effects are
useful to assign possibility degrees:

• e0c
.= the correct initialization – nominal effect of an “initialization” occurrence,

π(e0c) = 1;

• e0w
.= a wrong initialization – non-nominal effect of an “initialization” occurrence,

π(e0w) = ε;

• ef
.= the correct reception of a feedback – nominal effect of an “automated behaviour"

occurrence: π(ef ) = 1;

• el
.= a missed feedback – non-nominal effect of an “automated behaviour" occurrence:

π(el) = λ;
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• en
.= a generic occurrence effect considered as normal, other than e0c and ef (for instance

a normal selection): π(en) = 1;

• es
.= the arising of a slip – nominal effect of a selection occurrence, π(es) = ε;

• em
.= a mistake – nominal effect of a selection or “absence of selection" occurrence,

π(em) = ε.

The human assessment of the initial state is uncertain, but is likely to coincide with the real
one, i.e. a correct initialization is more plausible than a wrong one: 1 = π(e0c) > π(e0w) = ε.
Moreover, the good reception of a feedback is more plausible than a loss of one of them, which
is more likely to happen than a slip or a mistake: π(ef ) = 1 > π(el) = λ > π(es) = π(em) = ε.

Before starting the human assessment estimation, it is important to understand the link
between possibility degrees of effects, and possibilistic system dynamics. An effect encodes the
manifestation of an occurrence v′ and the transition from current human assessment h ∈ S
to the next one h′ ∈ S: an effect is then plausible when occurrence v′ and assessment h′
are plausible knowing previous one h. That leads to the following equation defining the joint
possibility distribution over next assessment and occurrence:

π
(
v′, h′

∣∣ h) = π
(
fe
(
h, v′, h′

))
(IV.2)

i.e. the possibility degree of the effect of an occurrence v′ is the joint possibility de-
gree of the this occurrence (v′) and the next assessment (h′) associated with the effect,
knowing current assessment (h). For the initialization occurrence (beginning of the human-
machine interaction), as no previous assessment is available, equation IV.2 becomes simply:
π (v0, h0 ) = π (fe (v0, h0 )) . Note that initialization occurrence is artificially added to define
initial uncertainty: it is thus considered as a totally normal occurrence: π(v0) = 1. Then
π (v0, h0 ) = min {π(v0), π (h0 | v0 )} = π (h0 | v0 ), i.e.

π (h0 | v0 ) = π (fe (v0, h0 )) . (IV.3)

Recall that the possibility degree 0 is of course assigned to each triplets (h, v′, h′) for which
fe is not defined: no such effects have been declared possible by experts.

As explained around equation IV.1 for each assessment h, there exists an occurrence
v′ and a human assessment h′ entirely possible: there is always a couple (v′, h′) such as
π (v′, h′ | h) = 1. Thus π (v′, h′ | h) defines actually a joint possibility distribution, as possi-
bilistic normalization is naturally ensured.

IV.3.2 Human assessment estimation

Initial possibility distribution over human assessment h is denoted by π0 (h) = π (h0 = h | v0 )
which depends on initial occurrence v0 defining initial machine state s0. It encodes the initial
estimation of the human assessment about the machine state, using assumptions of the inter-
action model: knowing the initial machine state, as part of data available for the observer, a
positive possibility degree is assigned to each potential human operator initial assessment of
the machine state, using equation IV.3.

Given occurrence vt+1, the possibilistic dynamics of human belief (assessment), i.e. the
possibility degree of each assessment transition, is summed up in the transition function
(h, h′) 7→ Tt+1 (h, h′ ) = π (ht+1 = h′ | ht = h, vt+1 ).
Definition IV.3.1 (Transition function)

As π (vt+1, h
′ | h) is given by the interaction model, using equation IV.2, and as vt+1 is
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Figure IV.5 – Dynamic Bayesian Network of the problem: relations between occurrences (vt), and cor-
responding effects (et) on assessments evolution (ht).

known, Tt+1 is computed with normalization

Tt+1 (h, h′ ) =

 1 if h′ ∈ argmax
h′∈S

π
(
vt+1, h

′ ∣∣ h)
π (vt+1, h

′ | h) otherwise,
which comes directly from possibilistic

conditionning I.2.7.

The occurrences sequence (vt)t∈N only concerns actual facts (e.g. human operator selection,
automated behaviour, . . . ) that are available (fully observable): Tt is then in fact a transition
possibility distribution of the non-stationary possibilistic Markov Chain (ht)t∈N ∈ SN with
initial possibility distribution π0. This formalism is the same as the one used in the previous
chapter for planning under uncertainty [49]. Here, unlike in planning problems, no action has
to be chosen in this framework: however hidden state (here human assessment) is inferred in
the same way. As successive human assessments constitute states of the Markov process, and
are not directly observable, the analysis model is in fact summed up in a possibilistic hidden
Markov process illustrated by Figure IV.5.

At occurrence step t, the possibilistic estimation of the human assessment is defined by
the following possibility distribution:
Definition IV.3.2 (Possibilistic estimation of the human assessment)

πt (h) = π (h = ht | v0, . . . , vt ) (IV.4)

As illustrated in Figure IV.5, some occurrences (as selections), depends on the previous
belief (assessment) of the human operator i.e. possibility degree of occurrence vt+1 depends
on ht, and this dependence is defined bu the observation function (h, v′) 7→ O (h, v′ ) =
π (vt+1 = v′ | ht = h): this information is used to update the current estimation πt.
Definition IV.3.3 (Observation function)

As π (vt+1, h
′ | h) is given by equation IV.2, observation function is given by marginaliza-

tion O (h, vt+1 ) = maxh′∈S π (vt+1, h
′ | h)

The set of assessments h such that πt (h) = 1 is denoted by H∗t (human assessments of
the machine state that are totally possible). At step t the next occurrence vt+1 can contradict
estimation of the assessment: an exception arises when the possibility degree of this occurrence
vt+1 knowing one of the most plausible h ∈ H∗t is less than the same possibility degree knowing
another human assessment h̃ /∈ H∗t , O(h, vt+1) 6 O(h̃, vt+1), and less than current estimation
of the latter O(h, vt+1) 6 πt(h̃). More generally, information given by next occurrence vt+1 is
used to update estimation, using next theorem.
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Theorem 27
Human assessment estimation update, π′t (h) = π (ht = h | v0, v1, . . . , vt+1 ), can be com-
puted as follow:

π′t (h)

=

 1 if h ∈ argmax
S

min {O(h, vt+1), πt (h)} ,

min {O(h, vt+1), πt (h)} otherwise.
(IV.5)

This equation does not modify assessment estimation (πt ≡ π′t) if the following sufficient
condition holds: ∀h ∈ H∗t , O (h, vt+1 ) = 1 and ∀h /∈ H∗t , πt (h) 6 O (h, vt+1 ).

Proof : Qualitative possibilistic conditionning I.2.7 provides equation IV.5, observation function
playing the role of π (yobs | x ), occurrence vt+1 the observation role, and assessment h the
role of the state. Now, if ∀h ∈ H∗t , O (h, vt+1 ) = 1, as πt(h) = 1, the first case occurs and
π′t (h ) = πt (h ) = 1. The same equation holds ∀h /∈ H∗t : as πt (h ) < 1, the second case
(“otherwise") occurs, and as πt (h ) 6 O (h, vt+1 ), π′t(h) = min {πt (h ) , O (h, vt+1 )} = πt(h).

It is now possible to formally define an exception: an exception is detected at step t+1
when update IV.5 makes the possibility degree of an assessment h different from
the actual state st and such that πt(h) < 1 become π′t(h) = 1, i.e. when the occurrence
underlying the estimation update leading to π′t, contradicts the previous estimation πt and
make an assessment different from the actual machine state becomes totally possible.

Once π′t is computed using observation function O (h, vt+1 ), estimation πt+1 is easily de-
ducted using π′ and transition function Tt+1:
Theorem 28

Assume π′t(h) = π (ht = h | v0, . . . , vt+1 ) is available: next possibilistic estimation of the
human assessment πt+1(h) = π (ht+1 = h | v0, . . . , vt+1 ) is computed as follow, propagating
assessment estimation over one step of the possibilistic Markov process:

πt+1
(
h′
)

= max
h∈S

min
{
Tt+1

(
h, h′

)
, π′t (h)

}
(IV.6)

Proof : As Tt+1 (h, h′ ) = π (ht+1 = h′ | ht = h, vt+1 ), then πt+1 (h′ ) = max
h∈S

π (ht+1 = h′, ht = h | v0, . . . , vt+1 )

= max
h∈S

min {Tt+1 (h, h′ ) , π (ht = h | v0, . . . , vt+1 )}

= max
h∈S

min {Tt+1 (h, h′ ) , π′t (h )} .

IV.3.3 Exception explanation

As all possible non-observable trajectories are recorded as described in section IV.2.4, set of
possible effects (respectively assessments) trajectories at step m, Em, (respectively Hm) is
available removing assessments (respectively effects): they are used in case of exception to
provide, if existing, an exception explanation. The explanation search uses operator leximin
[51]. Operator leximin is a function similar to the minimum that may discriminate trajectories
whose minimum possibility degree is the same. The idea is to compare effects trajectories at
first via the simple minimum of effect possibility degrees, i.e. for a possible effects trajectory
(e0, . . . , em) ∈ Em, via

m
min
t=0

π(et).
Using equality IV.2, it appears that the minimum of effects possibility degrees corresponds

to the joint possibility degree of the observed occurrences trajectory (v0, . . . , vm) ∈ Vm and
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the assessments trajectory (h0, . . . , hm) ∈ Hm such that, ∀0 6 t 6 m, et = fe(ht, vt+1, ht+1)
(removing “h−1" for t = 0):

m
min
t=0

π(et) =
m

min
t=0

π (vt+1, ht+1 | ht ) (removing “|h−1" for t = 0)
which is equal to π(h0, . . . , hm, v0, . . . , vm).

When an exception occurs, effects trajectories which maximize this quantity are the most
plausible explainations, and associated assessment trajectories can inform the observer about
what the human operator thought. If more than one effects trajectory maximize this quantity,
leximin operator can help to discriminate them. It counts in each trajectory the multiplicity
of effects which have the minimum possibility degree and chose as lexi-minimal the effects
trajectory with largest multiplicity (and then the most plausible ones are the effects trajectories
with lowest multiplicity). If some trajectories have the same number of effects having the
minimal possibility degree, leximin operator remove these effects, and counts multiplicity of
the new minimal possibility degree, etc.
Definition IV.3.4 (Leximin)

Consider finite sequences of elements from a totally ordered space Π. A sequence
(π1, . . . , πm ) ∈ Πm is lower than a sequence ( π̃1, . . . , π̃m ) ∈ Πm in leximin sense, i.e.
(π1, . . . , πm ) >leximin ( π̃1, . . . , π̃m ) if and only if, assuming that elements π ∈ Π are classi-
fied in increasing order in both sequences, ∃1 6 i 6 m such that (π1, . . . , πi ) = ( π̃1, . . . , π̃i )
and πi+1 > π̃i+1.

For a deeper investigation of the leximin operator, see [51] which explains how to find most
credible trajectories in max leximin sence, i.e. argmax

Em

m
leximin
t=0

π(et), using dynamic program-

ming.
Finally, as stated when defining our particular interaction model in section IV.2.5, not

perceiving n < nmax feedbacks is more likely to happen than not perceiving n+ 1 feedbacks.
Moreover not perceiving n < nmax feedbacks (denoted by enl ) is more likely to happen than
slips, i.e. ∀n < nmax

π(eln) > π(es) and π(eln) > π(eln+1).

This condition is taken into account for exception explanation as leximin naturally encodes
it. However, assessment estimation as presented here, suffers from drowning effect due to
the min operator [51]. It is possible to get around this issue redefining L and min operator:
L = {0, ε, λnmax , . . . , λ2, λ1, 1}, and min {λt, λj } = λt+j , with λt+j = λnmax if i + j > nmax
(min operator remains the classical one for other values). The use of the leximin operator for
h may solve this issue as well (but more discriminating).

In the following sections a mock-up example and a real case example are detailed, illustrat-
ing and validating the possibilistic analysis model based on the particular interaction model
presented in section IV.2.5.

IV.4 Interacting with a three-state machine
This example is meant to detail the estimation of assessment h as well as the error detection
and explaination over few occurrences: human selections and automated state changes. Let us
consider a machine with only one state variable with three values L,M and H (for respectively
“low", “medium" and “high"), two possible selections selU and selD (for respectively “up" and
“down"), and three automated state changes: acL (machine state becomes low), acM (machine
state becomes medium) and acH (machine state becomes high). The interaction model is
described in the enhanced logic table IV.3: an additional row “DETAILS” appears, containing
for each column representing a non-nominal effect, a reference to the column number of the
corresponding nominal effect. A description of each effect is given as well in the lower part of
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columns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SITUATION

v′

Selection selU 1 1 1
selD 1 1 1

Autom. change acL 1 1 1
acM 1 1 1
acH 1 1 1

h L 1 1 1 1
M 1 1 1 1
H 1 1 1 1

BEHAVIOUR
h′ L 1 1 1 1 1

M 1 1 1 1 1
H 1 1 1 1 1

EFFECT en en es es en en ef ef ef el el el el el el

POSSIBILITY 1 1 ε ε 1 1 1 1 1 λ λ λ λ λ λ

DETAILS from 7 7 8 8 9 9
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Table IV.3 – Enhanced logic table for the three-state machine: the last row provides a natural language
description for each effect.

the table. Note that columns 7, 8 and 9 represents each three nominal effects: for instance,
column 7 represents transitions from h = L (Low), from h = M (Medium) and from h = H
(High), to h′ = L (Low). Note that the three effects of column 7 lead to the same assessment
L (Low). The same is true for columns 8 and 9.

In this section the human assessment estimation evolution is shown for two scenarios con-
sisting of three successive occurrences.

IV.4.1 Two successive selections

Initialization

The initial human assessment of the machine state is denoted by h0 ∈ S = {L,M,H }. The
initial machine state, denoted by s0 ∈ S, is equal to M .

First occurrence v0 encodes initialization {s0 = M } with two possible effects on human
assessment (stated by experts in section IV.2.5): a correct initialization e0c = fe(v0,M) and
a wrong one e0w = fe(v0, L) = fe(v0, H), which is less plausible. Then, using equation IV.3,
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possibility distribution over h0 is
π0 (h) = π (h0 = h | v0 )

= π (fe(v0, h))

=
{
π(e0c) = 1 if h = M,
π(e0w) = ε otherwise.

As three assessments are possible (∀h ∈ S, π0(h) > 0), it leads to three possible non-observable
trajectories at this initialization step: a good initialization (e0c,M) and two wrong initializa-
tions, (e0w, L) and (e0w, H).

Execution of a first up selection

After the execution of an up selection, machine state becomes s1 = H: the occurrence is then
v1 = selU .

If h0 = M this occurrence v1 has only one possible effect considered as normal en and
making the assessment become h1 = H (see column 2 of table IV.3). Also if h0 = L, occurrence
v1 has the same effect en and the new assessment is h1 = M (see column 1).

On the other hand if h0 = H, occurrence v1 has only one possible effect considered as
unusual: in fact, as the new assessment is unchanged by the up selection (h1 = H), this effect
is a slip es (see column 3).

These effects, encoded by function (h, h′) 7→ fe(h, v1, h
′), can be represented by a matrix

whose rows are indexed by current assessments h = L, M and then H, and columns by
next assessment h′ = L, M and then H:

(
∅ en ∅
∅ ∅ en
∅ ∅ es

)
where ∅ is put where fe(h, v′, h′) is not

defined. Possibility distribution can then be represented as well using equation IV.2:
(

0 1 0
0 0 1
0 0 ε

)
.

Using the definition of the observation function IV.3.3, by maximizing the previous matrix
over column index h′ (marginalization), O(h, v1) = π (v1 | h0 = h) =

(
1 1 ε

)
represented

by a vector indexed by variable h0 with assignment L, M and then H. Indeed, this selection
effect is considered totally possible except when human operator thinks machine state is H:
in this case it has no reason to select up as machine state is already the highest (H), and this
occurrence is considered as a slip (es with π(es) = ε). As π0 (h) =

(
ε 1 ε

)
(indexed by h0),

update of π0 is not necessary, as sufficient condition stated by theorem 27 is satisfied.
Possibilistic transition function, computed from previous matrix using definition IV.3.1,

can be expressed by the following matrix (h indexes rows with L, M and then H; h′ indexes
columns in the same way), and increases deterministically the assessment:

(
0 1 0
0 0 1
0 0 1

)
.

Next human assessment is represented by variable h1. Its estimation (definition IV.4) is
given by propagation equation IV.6: using a representation with matrices and the “max-min"
matrix product ⊗ which replaces sum and product of the classical matrix product × by
respectively max and min, this equation becomes

π1 (h1 ) = max
h∈S

min {T1 (h, h1 ) , π0 (h)}

=
(
ε 1 ε

)
⊗
(

0 1 0
0 0 1
0 0 1

)
=

(
0 ε 1

)
where h′ = h1 indexes last vector with assignments L, M and then H. Finally, as T1 encodes
a deterministic transition, only three non-observable trajectories are possible at this step of
the process: (e0w, L, en,M), (e0c,M, en, H) and (e0w, H, es, H).



136
Chapter IV. Application of Qualitative Possibilistic Hidden Markov Processes for Diagnosis in

Human-Machine Interaction

Execution of a second up selection

After the execution of a second up selection, machine state remains unchanged and then
s2 = H. The second occurrence is thus v2 = selU . In this paragraph, vectors are indexed with
h from L to H. Estimation update has now to be computed.

As O (h, v2 ) =
(
1 1 ε

)
, min {π1(h), O (h, v2 )} =

(
0 ε ε

)
, and finally, update IV.5

asserts that π′1(h) =
(
0 1 1

)
. As assessment h = M becomes entirely possible, this update

leads to an exception because actual machine state is s2 = H. This selection contradicts
previous estimation π1 since the human operator has no reason to select up if their assessment
of the machine state is H.

As v2 = v1, transition function T2 = T1. Propagation equation IV.6 leads to the estimation
of the next assessment h2 from π′1(h), represented by the vector

(
0 1 1

)
, where h indexes

this vector with L,M and then H. Using matrices representation of T2 and “max-min" matrix
product ⊗,

π2(h′) =
(
0 1 1

)
⊗
(

0 1 0
0 0 1
0 0 1

)
=
(
0 0 1

)
where h indexes rows of the matrix, h′ = h2 indexes columns and last vector. After the two
occurrences v1 and v2 the possibilistic model returns a certitude for the human assessment: the
human operator assessment for the machine state is H. Deterministic transition function con-
serves three possible non-observable trajectories: (e0w, L, en,M, en, H), (e0c,M, en, H, es, H)
and (e0w, H, es, H, es, H). Associated effects trajectories have the same possibility degree:
min {π(e0), π(e1), π(e2)} = ε. However the most credible trajectories can be found using
leximin operator: (e0w, en, en), (e0c, en, es) ∈ argmaxE3 leximin {π(e0), π(e1), π(e2)}, i.e. the
trajectory with a correct initialization and the trajectory beginning with h0 = L are the most
plausible ones. The exception explanations are then a slip at the end, or a wrong initialization.

IV.4.2 Automated state change followed by a selection

This scenario shows the effects of the automated state changes on the human assessments.

Initialization and automated state change

Starting from the same machine state as in the previous scenario, the same initial occurrence
v0 = {s0 = M } occurs, and π0 (h) =

(
ε 1 ε

)
. The same non-observable trajectories are

recorded: (e0w, L), (e0c,M) and (e0w, H).
Then machine state automatically goes to H: v1 = acH. Occurrence v1 can produce two

effects: ef if feedback of this automated state change is well received by human operator,
which is totally possible π(ef ) = 1; and el if it is missed, with possibility degree π(el) = λ
(see columns 9, 14 and 15 of table IV.3). Variable h′ (next assessment) indexing columns,
and h (current one) indexing rows, with values L, M and then H, fe(h, v1, h

′) can be written(
el ∅ ef
∅ el ef
∅ ∅ ef

)
, and π(fe(h, v1, h

′)) =
(
λ 0 1
0 λ 1
0 0 1

)
.

Using marginalization IV.3.3, yields the observation function O (h, v1 ) =
(
1 1 1

)
i.e.

this automated behabiour is entirely possible whatever the human operator assessment. Then
estimation update is not necessary as sufficient condition of theorem 27 is satisfied.

Using normalization IV.3.1, transition function is then T1 (h, h′ ) = π (h1 = h′ | h0 = h, v1 )
=

(
λ 0 1
0 λ 1
0 0 1

)
. Finally, using equation IV.6 and “max-min" matrix product ⊗, π1(h′) =(

ε 1 ε
)
⊗
(
λ 0 1
0 λ 1
0 0 1

)
=
(
ε λ 1

)
. For each initial trajectory, except for the one beginning
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with h0 = H, next effect can be either ef or el: (e0w, L, ef , H), (e0w, L, el, L), (e0c,M, ef , H),
(e0c,M, el,M) and (e0c, H, ef , H).

Execution of an up selection

Human operator has no reason to execute this selection if their assessment of the machine
state is H (estimated as the most plausible assessment). This occurrence v2 = selU cor-
rects estimation using theorem 27: as previously, O (h, v2 ) =

(
1 1 ε

)
, indexed by h. Then

min {π1(h), O (h, v2 )} =
(
ε λ ε

)
. Finally update 27 concludes that π′1(h) =

(
ε 1 ε

)
. As

h1 = H is no more the most plausible assessment, while machine state s1 = H, it leads to
an exception. Estimation of h2 is computed thanks to deterministic transition produced by
v2 = selU , already used in the previous scenario: π2(h) =

(
ε 1 ε

)
⊗
(

0 1 0
0 0 1
0 0 1

)
=
(
0 ε 1

)
,

where ⊗ is yet the previously defined “max-min" matrix product.
As transition function T2 is deterministic, number of trajectories remains 5:

• (e0w, L, ef , H, es, H),

• (e0w, L, el, L, en,M),

• (e0c,M, ef , H, es, H),

• (e0c,M, el,M, en, H),

• (e0c, H, ef , H, es, H).

Computing argmaxE3 leximin {π(e0), π(e1), π(e2)}, the situation with a correct initialization,
followed by a missed feedback and by a normal selection is the best guess of the analysis
model: (e0c,M, el,M, en, H) explains thus the exception.

The current section was meant to get an intuition of the mechanism of the analysis model in
estimating successive human assessments, and in detecting and explaining assessment errors.
In practice, machines logics are much more complex: next section presents the results of our
analysis model when facing a realistic human-machine system.

IV.5 Interacting with flight control and guidance
In this section a real case application is presented: the AutoPilot (AP) of a flight simulator.
An experience has been conduced with ten general aviation pilots in this flight simulator.
The experience was originally meant to test the soundness of a method to detect dangerous
situations called human-machine conflicts, in which the pilot actions are not coherent with the
actual state of the machine. Those conflicts are the consequence of human attentional errors.
For that reason the data collected in that experience is a valuable source of attentional errors
in a realistic setting. This dataset is used in this section to test the possibilistic analysis model
for the detection of human attentional errors. For more details about the used dataset, see
[111].

As for the three-state machine example presented in section IV.4, the first step is the
definition of the logic of the automation and the definition of some human assessment errors.
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IV.5.1 System description

The definition of human assessment errors is easily automatized starting from the logic of the
automation and using rules stated section IV.2.5. Hereafter are detailed state variables of the
machine, possible occurrences and effects.

State variables: si

s1 = AP state (On/Off);

s2 = AutoTHRust (ATHR) state (On/Off);

s3 = Airspeed (Underspeed, Normal, Near overspeed, Overspeed). “Underspeed/Overspeed”
means that the airspeed is smaller/greater than minimum/maximum speed. Minimum
and maximum speed are calculated by the autopilot and they depend on the flight
envelope. “Near overspeed” means that the speed is between the maximum speed and
the maximum speed minus five knots. “Normal” means that the speed is between the
minimum speed and maximum speed minus five knots;

s4 = Control stick (Actioning, Not actioning);

s5 = Throttle lever (Actioning, Not actioning).

Occurrences: v

• initialisation:

vA = Initialization .= Start of the experiment and creation of all the initial assessment
trajectories;

• selections:

vB = AP button .= Autopilot engagement/disengagement button pressed. The Autopilot
is the part of the automation that if switched on is in charge for the control of the
pitch, the roll and the yaw of the aircraft, i.e. of its attitude;

vC = ATHR button .= Autothrust engagement/disengagement button pressed. The
Autothrust is the part of the automation that if switched on is in charge of the
control of the thrust;

vD = Control Stick On .= Control stick activation;
vE = Control Stick Off .= Control stick deactivation;
vF = Throttle lever On .= Throttle lever activation;
vG = Throttle lever Off .=Throttle lever deactivation;

• automated state changes:

vH = Speed Low .= Airspeed takes value Underspeed and consequent AP disconnection;
vI = Speed Normal .= Airspeed takes value Normal;
vJ = Near overspeed .= Airspeed takes value Near overspeed and consequent vertical

speed constraint;
vK = Overspeed .= Airspeed takes value Overspeed and consequent AP disconnection;
vL = Trajectory divergence .= divergence between pilot selected trajectory and autopilot

executed trajectory that is greater than 250 feet.



IV.5. Interacting with flight control and guidance 139

Effects: e

• Initialization effects:

The correct initialization (nominal effect): e0c, with π(e0c) = 1;
The wrong initializations (non-nominal effect): e0wi, with π(e0wi) = ε. Note that there

are many possible initializations: as many as the cardinality of the cartesian product
of the state variables. One of those is the correct initialization, and all the others are
wrong. For computational issues, in this work, a limited number of possible wrong
initializations is taken into account: the initialization may be wrong for only one
variable at a time. The cardinality of the initial set of possible assessments is reduced
to the number of variables. This reduced initialization set of possible assessments
has shown to be rich enough to provide proper detections and explanations for the
analysed dataset.

• Automated state changes effects:
nominal effects, ef with π(ef ) = 1

ef1 = Pilot perception of Airspeed change to Underspeed;
ef2 = Pilot perception of Airspeed change to Normal;
ef3 = Pilot perception of Airspeed change to Near overspeed;
ef4 = Pilot perception of Airspeed change to Overspeed;
ef5 = Trajectory divergence greater than 250 feet when the AP is off (the pilot is in

charge of the flight level).

non-nominal effects (lost feedbacks), el with π(el) = λ

el1 = Airspeed takes value Underspeed (missed feedback);
el2 = Airspeed takes value Normal (missed feedback);
el3 = Airspeed takes value Near overspeed (missed feedback);
el4 = Airspeed takes value Overspeed (missed feedback);
el5 = Airspeed takes value Overspeed but just AP disconnection perceived;
el6 = Airspeed takes value Underspeed but just AP disconnection perceived;
el7 = Trajectory divergence greater than 250 feet when AP is on (missed feedback).

• Selection effects:
normal effects, en, with π(en) = 1

en1 = AP/ATHR connection/disconnection in nominal condition;
en2 = Control stick/Throttle lever activation/deactivation in nominal condition.

slips and mistakes: es, with π(es) = ε

es1 = AP connection during overspeed/underspeed (slip);
es2 =Control stick/Throttle lever activation when AP/ATHR On (slip);
es3 =Trajectory divergence consciously greater than 250 feet and increasing because of

AP on (mistake). This effect is defined as a mistake by the designer by hand, so
its possibility degree is not automatically generated starting from the logic table
and the general assumptions. By that we mean that the pilot may not voluntarily
be aware of the increasing trajectory divergence and that the AP is on (so it is
the cause of the divergence) without taking actions, passively accepting that their
requests are not executed.
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Figure IV.6 – Experiment 1: Possibilistic estimation on human assessment of Airspeed (solid red curve),
and actual machine state (blue bar). “L” is “Low speed”, “N” is “Normal speed”, “NO” is “Near
Overspeed” and “O” is Overspeed.

IV.5.2 Experiments

Data generated during the experience have been pre-processed to generate sequences of occur-
rences (among which are selections). Those occurrence sequences (one sequence for each pilot
running the experiment in the flight simulator) have been then processed by our analysis model
to automatically detect exceptions, i.e. when the objective assessment trajectory is no longer
considered as normal. In those cases the exception is analysed: the exception explanation (if
any is found) is specified by the model using the description of the relevant human assessment
error, i.e. the less possible effect of the trajectory explanation, and the triggering occurrence
is specified as well. That in textual form2:

• if an exception explanation is found it is labelled as an explaned exception: Exception
description: ‘Triggering occurrence’ because ‘exception explanation’;

• if no exception explanation is found it is labelled as a simple exception: Exception
description: ‘Triggering occurrence’.

Hereafter the analysis performed for two participants of the experience is presented.

Example 1

The sequence of occurrences generated from the data recorded during the experience with
the first participant is shown hereafter. A total of 57 occurrences (among which are some
selections) have been generated:

‘Initialization’, ‘Control Stick Off’, ‘Throttle lever On’, ‘Throttle lever Off’, ‘Throttle lever On’, ‘Throttle
lever Off’, ‘Throttle lever On’, ‘Throttle lever Off’, ‘Throttle lever On’, ‘Throttle lever Off’, ‘Control Stick
On’, ‘Speed Normal’, ‘Control Stick Off’, ‘Control Stick On’, ‘ATHR button’, ‘Control Stick Off’, ‘SpeedLow’,
‘Speed Normal’, ‘Control Stick On’, ‘Control Stick Off’, ‘Control Stick On’, ‘AP button’, ‘Control Stick Off’,
‘Near overspeed’, ‘Control Stick On’, ‘Control Stick Off’, ‘Speed Normal’, ‘Near overspeed’, ‘Overspeed’, ‘Near

2The message that is automatically generated by our model could later be used to compose specific feedbacks
meant to correct the human state assessment. By the way the definition of those feedbacks is out of the scope
of this work. Note that the real time version of the algorithm is totally feasible: the computing time for a 15-mn
mission is less than one minute.
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overspeed’, ‘Speed Normal’, ‘AP button’, ‘Near overspeed’, ‘Trajectory divergence’, ‘AP button’, ‘Control Stick
On’, ‘Control Stick Off’, ‘Control Stick On’, ‘Control Stick Off’, ‘Control Stick On’, ‘Control Stick Off’, ‘Control
Stick On’, ‘Control Stick Off’, ‘Control Stick On’, ‘Control Stick Off’, ‘Control Stick On’, ‘Control Stick Off’,
‘Control Stick On’, ‘Control Stick Off’, ‘AP button’, ‘Trajectory divergence’, ‘AP button’, ‘Control Stick On’,
‘Speed Normal’, ‘Near overspeed’, ‘Control Stick Off’

The initial machine state is:

s1 = AP state: Off;

s2 = ATHR state: On;

s3 = Airspeed: Underspeed;

s4 = Control stick: Actioning;

s5 = Throttle lever: Not actioning.

After the firing of the 25th occurrence, 119.5 seconds from the beginning of the experiment,
the analysis model detects an exception:

Exception description: ‘Control stick On when AP on!’.

After the firing of the 34th occurrence, 772.6 seconds from the beginning of the experiment,
the analysis model detects an exception and explains it:

Exception description: ‘Vertical speed divergence > 250 ft, unnoticed’
because ’Speed becomes >Vmax-5, but unseen!’.

After the firing of the 51st occurrence, 886.1 seconds from the beginning of the experiment,
an exception is explained again:

Exception description: ‘Vertical speed divergence > 250 ft, unnoticed’
because ’Speed becomes >Vmax-5, but unseen!’.

It is worth noting that the experimenters [111] reported two human automation conflicts
corresponding to the second and third exceptions, and that their findings on those conflicts
causes (based on the observation of the data, the video recording and the interview of the
pilot) is in agree with the exception explanation provided by the analysis model here.

After the execution of the 57 occurrences, 196 assessment trajectories are considered as pos-
sible (with different possibility degrees). The computation time is 30 seconds. Some possibilistic
estimations of the human assessment of the machine state variable “Airspeed” are represented
in Figure IV.6: the possibility distribution over the human assessment h of the airspeed, πt(h),
is indicated by the red curve. This possibilistic evaluation is qualitative, nevertheless in the
graphic representation, quantitative values are arbitrarily assigned to the possibility degrees
(respecting qualitative ordering) to plot them. The actual machine state s is stated by the
blue bar with value 1 on the y-axis: if no exception arises, most possible assessment h should
be the actual state (blue bar).

Remember that after the firing of 34 occurrences an exception is detected by the analysis
model, which is graphically highlighted in Figure IV.6l: most possible human assessment is no
more the real machine state.
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Figure IV.7 – Experiment 2: Possibilistic estimation on human assessment of speed (solid red curve),
actual machine state (blue bar).

Example 2

A sequence of occurrences has been generated from the data recorded during experience with
a second participant. A total of 85 occurrences (among which are some human selections) have
been generated. Hereafter the beginning of the sequence:

‘Initialization’, ‘Throttle lever On’, ‘Throttle lever Off’, ‘ATHR button’, ‘Throttle lever On’ ...
Initial machine state variables are the same as previously, except of control stick, which is

here initially actioning.
This second example was chosen because of the second occurrence, 30.2 seconds from the

beginning of the experiment. The analysis model detects the following exception:

Exception description: ‘Throttle lever On when ATHR on!’ because ’Wrong
state initialization’

Initially the ATHR is on: operating the throttle lever has no result (this action is considered
as a slip). The model explains this slip as the result of a wrong initial assessment: if the pilot
initial assessment of the ATHR state was Off, that could explain the execution of this action
as nominal. It is worth noting that after giving up this useless action (‘Throttle lever Off’)
the participant deactivated the ATHR (‘ATHR button’) and she/he started again operating
the throttle lever (’Throttle lever On’), probably because she/he had a wrong initial situation
assessment (as the found exception explanation) and she/he understood their assessment error.

The analysis model detected also three times the same exception as for the previous par-
ticipant:

Exception description: ‘Vertical speed divergence > 250 ft, unnoticed’
because ’Speed becomes >Vmax-5, but unseen!’

Figure IV.7 shows the estimation of the human assessment of the speed, initially, and when
these exceptions occur.

IV.6 Conclusion
This chapter proposes a model for the human-machine interaction based on a machine model
and expert knowledge on an human assessment error model. The human-machine interac-
tion is modelled as a possibilistic hidden Markov process. Qualitative Possibility Theory has
been chosen because it is well suited to handle uncertainty defined by expert knowledge. The
proposed possibilistic analysis model provides an estimation of the human assessment of the
machine state and detects assessment errors. The analysis model is able to provide also an
explanation (diagnosis) when an assessment error is detected.

This process of detection/identification could be used in real time applications in order to
inform the human operator of their assessment errors. It can help to make them correct their
situation awareness and prevent the execution of other errors.
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This work is based on the simplifying assumption that the human operator is certain about
the state of the machine: a possible extension of this model may be to drop this assumption
using a more refined representation of the human state assessment, as a set of machine states,
or an uncertainty measure over the machine states.

This article proposes a model for the human-machine interaction based on a machine
model and expert knowledge on an human assessment error model. The human-machine in-
teraction is modelled as a possibilistic hidden Markov process. Qualitative Possibility Theory
has been chosen because it is well suited to handle uncertainty defined by expert knowledge.
The proposed possibilistic analysis model provides an estimation of the human assessment of
the machine state and detects assessment errors. The analysis model is able to provide also an
explanation (diagnosis) when an assessment error is detected.

This process of detection/identification could be used in real time applications in order to
inform the human operator of their assessment errors. It can help to make them correct their
situation awareness and prevent the execution of other errors.

This work is based on the simplifying assumption that the human operator is certain about
the state of the machine: a possible extension of this model may be to drop this assumption
using a more refined representation of the human state assessment, as a set of machine states,
or an uncertainty measure over the machine states.





VA Hybrid Model: Planning in
Partially Observable Domains
with Fuzzy Epistemic States and
Probabilistic Dynamics

While the previous chapters dealt with purely qualitative possibilistic models, this one
proposes to use the strength of both probabilistic and possibilistic approaches, in order to
solve fully defined factored POMDPs, or partially defined ones. This idea comes from the
analysis of the results of the experiments of Chapter III: qualitative modeling may lead to
poor strategies for risky problems, or when the frequentist information defining the POMDP
is at the heart of planning the problem. Here, a new translation from Partially Observable MDP
into Fully Observable MDP is described. Unlike the classical translation (see Section I.1.9),
the resulting problem state space is finite, making MDP solvers able to solve this simplified
version of the initial partially observable problem: this approach encodes agent beliefs with
fuzzy measures over states, leading to an MDP whose system state space is a finite set of
epistemic states. The translation is described in a formal manner with semantic arguments.
Then actual computations of this transformation are detailed, in order to highly benefits from
the factorized structure of the initial POMDP in the the final MDP problem size reduction
and structure. Finally size reduction and tractability of the resulting MDP is illustrated on a
simple POMDP problem.

V.1 Introduction
The approach proposed here simplifies the belief space of a POMDP problem before solving
it. The transformation described leads to a fully observable MDP on a finite number of epis-
temic states, i.e. a problem modeling an agent acting under uncertainty in a fully observable
environment [115]. As such a finite state space MDP problem is P-complete [103] this transfor-
mation qualifies as a simplification, and any MDP solver can return a policy for this translated
POMDP.

More than only a simplification of the initial POMDP problem, the theoretical framework
used here for belief states representation formally models an agent’s knowledge about the sys-
tem state. Indeed the proposed translation defines the belief states as possibility distributions
over system states s ∈ S which represents the fuzzy set of possible system states, as done with
π-POMDP models.

The major originality of this work comes from the finiteness of the scale L: indeed it follows
that the number of possible belief states over the system state is, as well, finite (smaller than
#(LS) = (#L)#S , see Equation I.60). What very clearly distinguishes this approach from
the classical one is that the classical translation leads to an infinite set of belief states (the
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continuous set of all probability distributions over S, or the sequence of reachable belief states
from an initial one, see Section I.1.9). The translation described here leads to an MDP whose
system state space is the set of possible possibilistic belief states, or epistemic states, that is
why its state space is finite.

In addition to POMDP simplification and knowledge modelling, this qualitative possibilis-
tic framework offers some interesting properties: the possibilistic counterpart of the Bayes rule
leads to a special belief state behaviour. Indeed the agent can possibly change their mind rad-
ically and rapidly, as described in Section II.4, experimental section of Chapter II.Moreover,
under some conditions, the increased specificity of the belief state distribution is enforced, i.e.
the knowledge about the current state is non decreasing with time steps (see Section II.4).
Finally, in order to fully define the resulting MDP, the translation has to attach a reward
function to its states: as a possibilistic belief state distributions constitute the new (epistemic)
states of the problem, the definition of the rewards uses the Choquet integral adapted to fuzzy
measures. This integral is used with the dual measure of the possibility measure defined by
the belief state. The dual measure of a possibility measure, called the necessity measure (see
Definition I.2.4), and the use of this integral makes the rewards values pessimistic about the
potential lack of knowledge described by the associated belief state.

However the number of possibilistic belief distributions, or fuzzy epistemic states, grows
exponentially with the number of initial POMDP system states. The so called simplification of
the problem does not transform the PSPACE POMDP problem into a polynomial one: as the
new state space size is exponential in the previous one, the resulting problem is EXPTIME.
The proposed translation tries to generate as few epistemic states as possible taking carefully
into account potential factorized structures of the initial POMDP.

This chapter begins with the description of the first contribution of this work, which is the
translation itself, presented in a formal way. As the resulting state space of the built MDP
is too big to make this problem tractable without factorization tricks in practice, the next
section details the proper way to preprocess its attributes. Finally, the last section illustrates
the power of this approach, describing the translation in practice, and applying it on a simple
factored POMDP problem.

V.2 A Hybrid POMDP
As claimed by Zadeh, “most information/intelligent systems will be of hybrid type” [154]: the
idea developped here is to use a granulated representation of the agent knowledge using possi-
bilistic belief states instead of probabilistic belief states in the POMDP framework. The first
advantage of this granulation is that strategy computation is performed reasoning on a finite
set of possibilistic belief states called then epistemic states: the set of all possibility distribu-
tions defined over S, denoted by ΠSL is #ΠSL = #L#S − (#L − 1)#S , due to the possibilistic
normalization (see Equation I.60), while the set of probability distributions over S is infinite.
The π-MDPs studied in the first chapters of this thesis are quite different from the model
exposed in this chapter. For instance, Qualitative Possibilistic MDPs do not use quantitative
data as probabilities or rewards. Dynamics is described in a purely qualitative possibilistic way.
Frequentist information about the problem cannot be encoded: these frameworks are indeed
dedicated to situations when the probabilistic dynamic of the studied system is lacking. More-
over, possible values of the reward function are chosen among the degrees of the qualitative
possibilistic scale. A commensurability assumption between reward and possibility degrees, i.e.
a meaning of why they share the same scale, is needed to use the criteria proposed in these
frameworks. Our model bypasses these demands: a real number is assigned to each possibilistic
belief (epistemic state), instead of a qualitative utility degree: it represents the reward got by
the agent when reaching this belief (in a MDP fashion) as detailed in Section V.2.2. Moreover,
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the dynamics of our process is described with probability distributions: approximate proba-
bilistic transition functions between current and next beliefs, or epistemic states, are given
section V.2.1. Finally, our model can be solved by any MDP solver in practice: it becomes
eventually a classical probabilistic fully observable MDP whose state space is the finite set
ΠSL.

Here, the term hybrid is used because the beliefs only are defined as possibility distribu-
tions, and all variables keep a probabilistic dynamic: the agent reasons based on a possibilistic
analysis of the system state (the possibilistic belief, or epistemic state), and transition prob-
ability distributions are defined for its epistemic states. Such beliefs are formally defined in
Section I.2.5. As the set of the possibilistic beliefs is finite, they define the finite state space
of an MDP, whose the probabilistic transitions are defined in the next section. At this step, a
Markov process based on epistemic states is thus defined. Finally rewards are defined on epis-
temic states using the discrete Choquet integral and leading to the definition of the resulting
MDP.

Consider that possibility distributions similar to those used to define the initial POMDP
are available: a transition distribution, giving the possibility degree of reaching s′ ∈ S from
s ∈ S using action a ∈ A, π (s′ | s, a) ∈ L; as well as an observation one, giving the possibility
degree of observing o ∈ O, in a system state s ∈ S after the use of action a ∈ A, π (o′ | s′, a) ∈
L. Indeed, this work is devoted to two kinds of practical problems. On the one hand real
problems modeled as POMDPs are often intractable: our granulated approach is in this case
a simplification of the initial POMDP, and possibility distributions are computed from the
POMDP probability distributions, using a possibility-probability transformation [63]. On the
other hand, some problems lead to POMDPs with partially defined probability distributions:
some estimated probabilities have no strong guarantees. A more faithful representation is
given with possibility distri- butions modeling the inherent imprecision, defining transition
and observation possibility distributions.

V.2.1 Set transitions

First, we use here some notations: the transition probability distribution is denoted by
T (s, a, s′) = p (s′ | s, a), and the observation probability distribution by O(s′, a, o′) =
p (o′ | s′, a). If the agent selects action a ∈ A in the epistemic state β ∈ ΠSL, the next epistemic
state depends only on the next observation, as highlighted by possibilistic belief update (see
Theorem 14). The probability distribution over observations conditionned on the reached state
is part of the POMDP definition via the observation function O. The probability distribution
over observations conditionned on previous state is obtained using transition function T :

p
(
o′
∣∣ s, a) =

∑
s′∈S

O(s′, a, o′) · T (s, a, s′).

This distribution and the possibilistic belief β about the system state, can lead to an approx-
imate probability distribution over the next observations. Indeed, a probability distribution
over the system state, β ∈ PS , can be derived from β using an extension of the Laplace
principle. Then approximate distribution over o′ ∈ O is defined as

p
(
o′
∣∣ β, a) =

∑
s∈S

p
(
o′
∣∣ s, a) · β(s). (V.1)

Finally, summing over concerned observations, the transition probability distribution over
epistemic states is defined as

p
(
β̃
∣∣∣ β, a) =

∑
o′|u(β,a,o′)=β̃

p
(
o′
∣∣ β, a) . (V.2)
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A way to construct a probability distribution β from a possibility one β is the use of the
pignistic transformation [52] minimizing the arbitrariness in the translation: numbering system
states with the order induced by distribution β, 1 = β(s1) > β(s2) > . . . > β(s#S+1) = 0,
with s#S+1 an artificial state such that π(s#S+1) = 0 introduced to simplify the formula,

β(si) =
#S∑
j=i

β(sj)− β(sj+1)
j

(V.3)

Note that this probability distribution corresponds to the center of gravity of the probability
distributions family induced by the possibility measure defined by distribution β [63], and
respects the Laplace principle of Insufficient Reason (ignorance leads to uniform probability).

Although possibilistic belief states were so far defined in a qualitative way, degrees of L are
considered as numerical in this section and the following: the section about factorization will
make it clear that possibility distributions can be computed from T and O if the sole purpose is
to simplify the POMDP. Numerical values are then used to compute the observation probability
distribution here, and in order to aggregate rewards according to the current epistemic state
in the next section.

V.2.2 Reward aggregation

After the transition function, it remains to assign a reward to each epistemic state: in the
classical probabilistic translation, the reward assigned to a belief state b is the reward expecta-
tion according to the probability distribution b:

∑
s∈S r(s, a) · b(s). Here, the agent knowledge

is represented with a possibility distribution β: it sums up the frequentist uncertainty of the
problem, and imprecision due to the possibilistic discretization and/or due to partial ignorance
about actual probability distributions defining the situation. A way to define a reward being
pessimistic about these imprecisions is to aggregate the reward using the dual measure of the
possibility distribution, and the Choquet integral.

The dual measure of a possibility measure Π : 2S → L is called necessity measure and
is denoted by N . This measure is defined by ∀A ⊆ S, N(A) = 1 − Π(A) where A is the
complementary set of A : A = S \ A. We use now the notation L = { l1 = 1, l2, l3, . . . , 0}. For
a given action a ∈ A, reward values, {r(s, a) | s ∈ S } are denoted by {r1, r2, . . . , rk } with
r1 > r2 > . . . > rk, with k 6 #S. An artificial value rk+1 = 0 is also introduced to simplify
the formulae.

Discrete Choquet integral of the reward function against necessity measure N [2] is defined
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as follows:

Ch(r,N) =
k∑
i=1

(ri − ri+1) ·N({r(s, a) > ri }) (V.4)

=
k∑
i=1

(ri − ri+1) · [1−Π({r(s, a) < ri }) ]

=
k∑
i=1

(ri − ri+1) ·
(

1− max
s|r(s,a)<ri

π(s)
)

= r1 − rk+1 −
k∑
i=1

(ri − ri+1) · max
s|r(s,a)<ri

π(s)

= r1 − (r1 − r2) · max
s|r(s,a)<r1

π(s)− . . .

−(rk−1 − rk) · max
s|r(s,a)<rk−1

π(s)− rk · max
s|r(s,a)<rk

π(s)

=
#L−1∑
i=1

(li − li+1) · min
s|π(s)>li

r(s) (V.5)

More on possibilistic Choquet integrals can be found in [38, 60].
This reward aggregation using the necessity measure leads to a pessimistic estimation of

the reward: as an example, the reward min
s∈S

r(s, a) is assigned to the total ignorance.
Note that, if the necessity measure N is replaced by a probability measure P, e.g as the one

induced by probability distribution β using V.3, Choquet integral coincides with the expected
reward based on β. This could be a good aggregation choice as well, but more optimistic than
the one described above. The most optimistic way to aggregate the reward is to compute the
Choquet integral with the possibilistic measure Π induced by distribution β, rather than with
necessity one N , but this is not detailed here.

V.2.3 MDP with epistemic states

This section summarizes the complete translation using final equations of the previous sections.
This translation takes for input a POMDP: 〈S,A, T,O, O, r〉 and returns an epistemic states
based MDP: 〈S̃,A, T̃ , r̃〉 with

• S̃ = ΠSL;

• T̃ , such that ∀(β, β̃) ∈ (ΠSL)2, ∀a ∈ A
T̃ (β, a, β̃) = p

(
β̃
∣∣∣ β, a) using V.1 and V.2;

• r̃(a, β) = Ch(r(a, .), Nβ), using Equation V.5 and where Nβ is the necessity measure
computed from β.

Finally, as in the probabilistic framework (see Section I.1.4), the criterion of this MDP is the
expected total reward:

E(βt)∼T̃

[+∞∑
t=0

γtr̃(βt, dt)
]
.

While the resulting state space is finite, only really small POMDP problems can be solved
with this translation without computation tricks. Indeed, ΠSL grows exponentially with the
number of system states (see Equation I.60), which makes the problem intractable even for
state of the art MDP solvers.
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V.3 Benefit from factorization
This section carefully derives a tractable MDP problem from a factored POMDP: the resulting
MDP is equivalent to the former translation, but some factorization and computational tricks
are described here to reduce its size and to fit to the factorized structure. First, the definition
of a factored POMDP is quickly exposed, followed by some dependency notations helpful
for describing how distributions are dealt with. Next, a classification of the state variables is
made to strongly adapt computations according to the nature of the state. Then follows the
definition of possibility distributions, and the description of the use of the possibilistic Bayes
rule in practice ends this section.

V.3.1 Factored POMDP

Partially Observable Markov Decision Processes can be defined in a factorized way.

• state space S = s1 × . . . × sm with ∀j ∈ {1, . . . ,m}, sj boolean variable. The set of
boolean state variables is denoted by S = {s1, . . . , sm };

• observation space O = o1×. . .×on with ∀i ∈ {1, . . . , n}, oi boolean variable. In the same
way as to state variables, the set of observation variables is denoted by O = {o1, . . . , on };

• action space A, a finite set of actions a ∈ A.

Note that a problem with non boolean variables can be easily reduced to such a problem with
the boolean variables assumption. For simplicity, and as state sj ∈ S and observation oi ∈ O
notations are no longer reused in this chapter, only variables are denoted with these letters
from now: s ∈ S and o ∈ O.

Non-primed variables correspond to the current time step, and primed variables to the next
time-step. This notation is also used for sets of variables: S′ is the set of next state variables
and O′ the set of next observable ones. The factorized description continues with following
probability distributions:

• ∀j ∈ {1, . . . ,m}, ∀a ∈ A, a transition function is defined:

T aj (s1, . . . , sm, s
′
j) = p

(
s′j

∣∣∣ s1, . . . , sm, a
)

;

• One observation function is also given for each observation variable: ∀i ∈ {1, . . . , n},
∀a ∈ A,

Oai (s′1, . . . , s′m, o′i) = p
(
o′i
∣∣ s′1, . . . , s′m, a) ;

• and reward function r : S ×A → R.

These definitions lead to the following observations:
{
s′j

}
j∈{1,...,m}

are post-action indepen-
dent, and {o′i }j∈{1,...,n} post-transition independent.

V.3.2 Notations and Observation Functions

Transitions of the final MDP make it more handy if each variable depends on only few previous
variables: the procedure to avoid blocking such simplifications brought by the structure of the
initial POMDP during the translation, needs the following notations. In practice, for each
i ∈ {1, . . . , n} not all state variables influence observation variable o′i; similarly, for each
j ∈ {1, . . . ,m}, not all current state variables influence next state variable s′j :
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a ∈ A chosen⇒

s1
...
sk1
...
sk2
...
sk3
...
sm

s′j

Pa(s′j) = {sk1 , sk2 , sk3 }

Figure V.1 – For action a ∈ A, only tree variables influence variable s′j in this Bayesian network: sk1 ,
sk2 and sk3 , which constitute Pa(s′j).

• for each action a ∈ A, observation variable o′i depends on some state variables which are
denoted by

Pa(o′i) =
{
s′j ∈ S′ s.t. o′i depends on s′j when a applied

}
They are called parents as they appears as “parents nodes” in a dynamic Bayesian network
[42] illustrating dependencies of the process.

• as well, for each action a ∈ A, probability distribution of next state variable s′j depends
on some current ones, denoted by

Pa(s′j) =
{
sk ∈ S s.t. s′j depends on sk when a applied

}
and illustrated in Figure V.1.

Now, let us define parents whatever the chosen action: ∀ i = 1, . . . , n,

P(o′i) = ∪a∈APa(o′i) ⊆ S′

and ∀j = 1, . . . ,m,
P(s′j) = ∪a∈APa(s′j) ⊆ S

It leads to the following rewriting of probability distributions:

T aj (P(s′j), s′j) = p
(
s′j

∣∣∣ P(s′j), a
)

and
Oai (P(o′j), o′i) = p

(
o′i
∣∣ P(o′j), a

)
.

Following subset of S is useful to specify observation dynamic:

Q(o′i) =
{
sk ∈ S s.t. ∃s′j ∈ P(o′i) s.t. sk ∈ P(s′j)

}
= ∪s′j∈P(o′i)P(s′j) ⊆ S

and is illustrated in Figure V.2.



152
Chapter V. A Hybrid Model: Planning in Partially Observable Domains with Fuzzy Epistemic States and

Probabilistic Dynamics

∀a ∈ A

s1
...
sk1...
sk2...
sk3...
sk4...
sk5...
sm

s′1

...
s′j1
...
s′j2
...
s′j3
...
s′m

o′i

Q(o′i) = {sk1 , sk2 , sk3 , sk4 , sk5 }

P(o′i) =
{
s′j1 , s

′
j2 , s

′
j3

}

Figure V.2 – Whatever the action a ∈ A, only five state variables influence variable o′i in this Bayesian
network: sk1 , sk2 , sk3 , sk4 , sk5 which constitute Q(o′i).

In order to simplify notations, and as it causes no confusion, S, P(o′i), P(s′i) and Q(o′i)
designate as well a set of variables, or a vector comprised of these variables (with an arbitrary
order). Distribution over P(o′i) assignments benefits from previous rewritings:

p
(
P(o′i)

∣∣ S, a) =
∏

s′j∈P(o′i)
T aj (P(s′j), s′j) =

∏
s′j∈P(o′i)

p
(
s′j

∣∣∣ P(s′j), a
)

= p
(
P(o′i)

∣∣ Q(o′i), a
)
(V.6)

Observation probability distributions, knowing previous state variables, are then defined
∀i = 1, . . . , n

p
(
o′i
∣∣ Q(o′i), a

)
=

∑
v∈2P(o′

i
)

p
(
o′i
∣∣ v, a) · p (v | Q(o′i), a

)
(V.7)

Therefore a possibilistic belief defined on 2Q(o′i) is enough to get the approximate probability
distribution of an observation variable, Equation V.1: such an epistemic state leads via trans-
formation V.3 to a probability distribution β over 2Q(o′i). Finally, the approximate probability
distribution of the observation variable i, factored counterpart of former equation V.1, is:

p
(
o′i
∣∣ β, a) =

∑
v∈2Q(o′

i
)

p
(
o′i
∣∣ v, a) · β(v). (V.8)

V.3.3 State variables classification

State variables s ∈ S do not play the same role in the process: as already studied in the lit-
erature [100], some variables can be visible for the agent, and namely this mixed-observability
leads to important computational simplifications. Moreover, some variables do not affect obser-
vation variables, and factorization of the POMDP is then easily transmitted to the epistemic
state based MDP. Finally, using rewrittings of previous sections, useless computations are
highlighted.
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• A state variable sj is said to be visible, if ∃oi ∈ O, observation variable, such that
P(o′i) =

{
s′j

}
and ∀a ∈ A, p

(
o′i | s′j , a

)
= 1{o′i=s′j } i.e. if o′i = s′j almost surely. The

set of visible state variables is denoted by Sv = {sv,1, sv,2, . . . , sv,mv };

Observation variables corresponding to visible state variables can be removed from the
set of observation variables: the number of observation variables becomes ñ, and remaining
observation variables are denoted by o1, . . . , oñ.

• Inferred hidden variables are simply ∪ñi=1P(o′i), i.e. all hidden variables influenc-
ing (remaining) observation variables. The set of inferred hidden variables is Sh =
{sh,1, sh,2, . . . , sh,mh } and contains possibly visible variables.

• Non-inferred hidden variables or fully hidden variables, denoted by Sf , consists
of hidden state variables which do not influence any observation, i.e. all remaining state
variables. The fully hidden variables are denoted by sf,1, sf,2, . . . , sf,mf , and the corre-
sponding set is Sf .

Of course, this classification leads to a partition of the initial set of state variables if potential
visible variables are removed from inferred hidden variables: denoting purely inferred hidden
variables by Sh = Sh \ Sv, and mh = #Sh the state variables partition is S = Sv t Sh t Sf and
m = mv +mh +mf .

The classification defined here is used to avoid some computations for visible variables:
if sv ∈ Sv is visible, and ov ∈ O is the associated observation (sv = ov almost surely),
computations of the distribution over P(o′v), Equation V.6, and of the distribution over o′v,
Equation V.7, are unnecessary: the distribution over s′v (= o′v) needed is simply given by
p (s′v | P(s′v), a), data of the original problem. The counterpart of Equation V.8 is then

p
(
s′v
∣∣ β, a) =

∑
2P(s′v)

p
(
s′v
∣∣ P(s′v), a

)
· β(P(s′v)), (V.9)

where β is the probability distribution over 2P(s′v) extracted from the possibilistic belief over
the same space, using transformation (V.3).

V.3.4 Belief updating process definition and handling

This section is meant to define marginal belief distributions instead of a global one, in order
to benefit from the factorized structure of the initial POMDP. Indeed, possibilistic belief
distributions have different definitions according to which class of state variables they concern:

• as visible state variables are directly observed, there is no uncertainty over these vari-
ables. Two epistemic states (possibilistic belief distribution) are possible for visible state
variable s′v,j : b′v,T (s′v,j) = 1{ s′v,j=>} and b′v,F (s′v,j) = 1{ s′v,j=⊥}. As a consequence, one
boolean variable β′v,j ∈ {>,⊥} per visible state variables is enough to represent this
belief distribution in practice: if s′v,j = >, then next belief is b′ = b′v,T represented by
belief variable assignment β′v,j = >, otherwise, next belief is b′ = b′v,F , and β′v,j = ⊥. A
belief variable of a visible state variable is denoted by βv.

• for each i ∈ 1, . . . , ñ, each inferred hidden variable constituting P(o′i) is an input of the
same possibilistic belief distribution: non-normalized belief is, ∀i = 1, . . . , ñ

b̃′(P(o′i)) = max
v∈2Q(o′

i
)
min

{
π
(
o′i,P(o′i)

∣∣ v, a) , b(v)
}
. (V.10)
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where joint possibility distributions over o′i × P(o′i), needed for belief process definition (pos-
sibilistic belief update, Theorem 14), are computed in the following way:

π
(
o′i,P(o′i)

∣∣ Q(o′i), a
)

= min
{
π
(
o′i
∣∣ P(o′i), a

)
, π
(
P(o′i)

∣∣ Q(o′i), a
)}

= min
{
π
(
o′i
∣∣ P(o′i), a

)
, min
s′j∈P(o′i)

π
(
s′j

∣∣∣ P(s′j), a
)}

.

A possibilistic normalization finalizes the belief update: for w ∈ 2P(o′i),

b′(w′) =
{

1 if w′ ∈ argmax
v′∈2P(o′

i
) b̃
′(v′);

b̃′(w′) otherwise.
(V.11)

In practice, if l = #L is the size of the possibility scale, and pi = #P(o′i), the number of belief
states is l2pi−(l−1)2pi , and then the number of belief variables is nh,i = dlog2(l2pi−(l−1)2pi )e.
A belief variable of an inferred hidden state variable is denoted by βh.

• for each j ∈ 1, . . . ,mf , non-normalized belief defined on fully hidden variable sf,j is

b̃′(s′f,j) = max
v∈2
P(s′

f,j
)
min

{
π
(
s′f,j

∣∣∣ v, a) , b(v)
}
, (V.12)

which leads to the actual new belief state b′ after normalization (V.11). In practice, as
each fully hidden variable is considered independently from the others, following the
previous reasoning for vector of inferred hidden s.v., the number of belief variables is
nf = dlog2(l2 − (l − 1)2)e = dlog2(2l − 1)e. A belief variable of a fully hidden state variable is
denoted by βf .

Finally the actual global epistemic state b′(S′) is upper bounded by

b′(S′) = min
{

mv
min
j=1

b′(s′v,j),
ñ

min
i=1

b′(P(o′i)),
mf
min
k=1

b′(s′f,k)
}
, (V.13)

where S has to be seen as a vector composed of all state variables.
The latter is considered as the agent belief to make the final MDP factorized.

V.3.5 Selection and use of belief variables

Starting with initial belief states defined for each visible state variable sv,j , for each vector of
inferred hidden variables P(o′i) and for each fully hidden variable sf,j , these belief states are
updated at each time step according to the transformations described above.

However previous formulae V.10 and distribution over observation variable o′i ∈ O, Equa-
tion V.8, depend on belief distribution over Q(o′i) ⊆ S. They can be computed from the
available belief states as follow: ∀i = 1, . . . , ñ,

b(Q(o′i)) = max
v∈2Ki

min
{

min
sv∈Q(o′i)∩Sv

b(sv),min
j∈Ji

b(P(oj)), min
sf∈Q(o′i)∩Sf

b(sf )
}
, (V.14)

where

• Ji = {j ∈ {1, . . . , ñ} s.t. P(oj) ∩Q(o′i) 6= ∅}, i.e. Ji is the set of indices j for which
P(oj) shares (inferred hidden) state variables with Q(o′i), and

• Ki = {∪j∈JiP(oj)} \ Q(o′i) ⊆ Sh, i.e. Ki is the set of (inferred hidden) state variables
which are not present in Q(o′i), but are present in a set P(oj) sharing state variables
with Q(o′i).
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As well, belief update for fully hidden state variables, Equation V.12, needs a belief distribution
over variables P(s′f,j): ∀j = 1, . . . ,mf ,

b(P(s′f,j)) = max
v∈2Nj

min
{

min
sv∈P(s′

f,j
)∩Sv

b(sv), min
k∈Mj

b(P(ok)), min
sf∈P(s′

f,j
)∩Sf

b(sf )
}
,

where

• Mj =
{
k ∈ {1, . . . ,mf } s.t. P(ok) ∩ P(s′f,j) 6= ∅

}
, i.e. Mj is the set of indices k for

which P(ok) shares (inferred hidden) state variables with P(s′f,j), and

• Nj =
{
∪k∈Mj

P(ok)
}
\P(s′f,j) ⊆ Sh, i.e. Nj is the set of (inferred hidden) state variables

which are not present in P(s′f,j), but are present in a set P(ok) sharing state variables
with P(s′f,j).

Finally, a belief distribution over P(s′v,i) needed to define an approximate probability distribu-
tion over visible state variables (Equation V.9), can be defined in the same way, marginalizing
(max) over unused variables.

V.4 Solving a POMDP with a discrete MDP solver
The previous section leads to a factored MDP, whose the version used in practice is defined
here. A concrete POMDP problem and its resulting MDP are then described in order to
highlight the power in state space size reduction of the possibilistic structured translation.

V.4.1 Resulting factored MDP:

Section V.3.3 classifies state variables in order to define epistemic states b over sets of state
variables (respectively ∀j = 1, . . . ,mv,

{
svj

}
, ∀i = 1, . . . , ñ, P(o′i), and ∀k = 1, . . . ,mf ,

{
sfj

}
)

and set of variables encoding them (respectively βv, βh and βf ) independently to each other.
As belief updates are deterministic knowing the observation, a simple trick is used to keep this
determinism in the final MDP: a flipflop boolean variable is introduced, changing its state
at each step, denoted by f . It artificially divides a classical time step of the POMDP into two
phases. During the first phase, called the observation generation phase, non-identity transition
functions (i.e. which do not let the variable remain the same) are the probability distributions
over observation variables V.8 and visible state variables V.9.

During the second phase, called the belief update phase, non-identity transition functions
are the deterministic transitions of the belief variables:

• variable βv is updated knowing value of the corresponding visible variable sv;

• variables β1
h, . . . , β

nh,i
h are updated knowing value of observation variable oi, and using

update V.10, V.11;

• variables β1
f , . . . , β

nf
f using update V.12.

The state space is then defined as:
S = f × s1

v × . . . × smvv × o1 × . . . × oñ × β1
v × . . . × βmvv × β1

h × . . . × βñh × β1
f × . . . × β

mf
f ,

where ∀i = 1, . . . , ñ, βih represents boolean variables β1,i
h , . . . , β

nh,i,i
h , and ∀k = 1, . . . ,mf , βjf

represents boolean variables β1,j
f , . . . , β

nf ,j
f .

The resulting MDP is illustrated in Figure V.3 where βt represents all belief variables, and
vt the visible variables: flipflop variable f , observations oi and visible state variables sv.
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t t + 1

vt

βt−1

vt

βt

rt

vt+1

βt

vt+1

βt+1

rt+1

at at+1

Figure V.3 – Practical DBN of the resulting MDP: thickest arrows illustrate transitions which are not
identity transitions.

This trick makes the belief update phase deterministic. Each belief variable transition can
be then deterministically defined, and independently from each other: as visible state and
observation variables are already post-action independent, the resulting MDP is a factored
MDP.

V.4.2 Results for a concrete POMDP problem

A problem inspired by the RockSample problem [136] is described in this section to illustrate
the factorized possibilistic discretization of the agent belief, from a factored POMDP: a rover
is navigating in a place described by a finite number of locations l1, . . . , ln, and where stand m
rocks. Some of these m rocks have an interest in the scientific mission of the rover, and it has
to sample them. However, sampling a rock is an expensive operation. The rover is thus fitted
with a long range sensor making him able to estimate if the rock has to be sampled. Finally
operating time of the rover is limited, but its battery level is available.

Variables of this problem can now be set, and classified as in Section V.3.3: as the battery
level is directly observable by the agent (the rover), the set of visible state variables consists
of the boolean variables encoding it: Sv = {B1, B2, . . . , Bk }. The agent knows the different
locations of the rocks, however the nature of a rock is estimated. The set of inferred hidden
state variables consists of m boolean variables Ri encoding the nature of the ith rock, > for
“scientifically good” and ⊥ otherwise: Sh = {R1, R2, . . . , Rm }. When the ith rock is observed
using the sensor, it returns a noisy observation of the rock in {>,⊥}, modeled by the boolean
variable Oi: the set of observation variables is then O = {O1, O2, . . . , Om }. Finally, no local-
ization equipment is provided: the agent estimates its location from its initial information, and
its dynamics. Each location of the rover is formally described by a variable Lj , which equals
> if the rover is at the jth location, and ⊥ otherwise. The set of fully hidden variables consists
thus of these n variables: Sf = {L1, L2, . . . , Ln }.

Initial location is known, described by variable L1, and leading to a deterministic initial
belief state: β0(Sh) = 1 if L1 = > and Lj = ⊥ ∀j 6= 1, 0 otherwise. However the initial nature
of each rock is not known. Instead of a uniform probability distribution over the rocks nature
(“rock has to be sampled”, or “rock is not interesting”), Possibility Theory allows to represent
this initial ignorance with the marginal belief β0(Sh) = 1, for each assignment of the hidden
inferred state variables modelling nature of the rocks.

Finally, the factorization trick leads to a reduction of the domain size: with a flat translation
of this POMDP, the size of the resulting state space is described with dlog2(#L2n+m+k−(#L−
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1)2n+m+k)e boolean variables. Taking advantage of the POMDP structure, the resulting state
space is encoded with 1 + 2 · · · k+m+ (m+n).dlog2(2#L− 1)e Boolean variables: the flipflop
variable, the visible variables and associated beliefs variables, the observation variables, and
the belief variables associated to the fully hidden and inferred hidden variables.

Moreover, the dynamic of the resulting MDP is factorized: all variables are independent
post-action, and lots of them are deterministic, thank to the flipflop variable trick. These
structures are beneficial to the MDP solvers, leading to faster computations.

V.5 Conclusion
This chapter described a hydrid translation of a POMDP problem into a finite state space
MDP one: Qualitative Possibility Theory is used here to maintain an epistemic state during
the process. The MDP problem, result of this translation, is entirely built defining transition
and reward functions over these epistemic states. Definitions of these functions use respectively
the pignistic transformation, used to recover a probability distribution from an epistemic state,
and the Choquet integral with respect to the necessity, making the agent pessimistic about
the potential ignorance described by its epistemic state. A practical way to implement this
translation is then described: with these computations, a factored POMDP leads to a factored
and tractable MDP problem. The essential particularity of this translation is the granular
modeling of the agent belief using a qualitative fuzzy knowledge representation Finally this
promising approach will be tested on RDDL files of the IPPC competition [127] using a state of
the art MDP planner like PROST [79]. Indeed these files describe factored POMDP problems
as introduced in Section V.3.





Conclusion

Contributions of this thesis are mainly related to the preliminary works of Régis Sabbadin
[121]. The latter proposes a possibilistic counterpart to the POMDPs modeling uncertainty
with qualitative possibility distributions. Hence, in our work, qualitative possibilistic models
for planning under uncertainty are further developed and studied. This study is meant to adress
some issues in probabilistic POMDPs detailed in Introduction: the probabilistic framework is
also formally introduced in the first chapter.

The major motivation of this study is computational complexity reduction: while the prob-
abilistic belief space is infinite, the possibilistic one can be finite. The qualitative possibilistic
framework thus offers an appropriate belief space discretization. Moreover, as the belief state
is a possibility distribution over the system space in this framework, total ignorance can be
defined by a possibility distribution equal to 1 on all states. If a given system state is perfectly
known to be the actual one, the belief state that assign 1 to this state and to 0 to all other
states is an appropriate representation.

Imprecision in the probability distributions are also naturally encoded with the possibilistic
formalism, resulting in two criteria for the selection of the strategy: one is optimistic and the
other pessimistic. A more practical advantage is that the qualitative possibilistic modeling
needs less information about the system than the probabilistic one: the plausibilities of events
are “only” classified in the possibilistic scale L but not quantified. Possibilistic models can be
seen as a tradeoff between non-deterministic ones, whose uncertainties are not at all quantified
yielding a very imprecise model, and probabilistic ones, where uncertainties are fully specified.
Indeed, under the non-deterministic formalism, an elementary event is either “possible”, or
“impossible”: no degree is available to differentiate a highly plausible event from an unlikely
one.

In a nutshell, this thesis consists of theoretical and practical contributions: on the one hand,
theoretical contributions are for instance the proposed updates of the qualitative possibilistic
processes – mixed-observability and management of unbounded executions – or independence
results on them, with associated proofs. On the other hand, practical contributions are the
demonstration of the accuracy of qualitative possibilistic models to simplify computations or
for modeling, via experimental results (e.g. IPPC 2014) and modeling examples (e.g. chapter
on human-machine interaction). Particular emphasis is being placed on the motivations devel-
oped in Introduction besides complexity reduction and problem imprecisions: namely, robotic
applications and belief management. For instance, target recognition missions are studied in
the second and third chapters (e.g. Rocksample problem, or even the mission described in
Figure II.3); IPPC 2014 contains also problems comparable to robotic systems (e.g. Eleva-
tor problem, or Tamarisk problem, also used in 2014 RL competition). Moreover, the fourth
chapter shows good results in estimating human assessment with qualitative possibility distri-
butions (i.e. belief states on the human assessment of the machine state). Finally, the hybrid
probabilistic-possibilistic POMDP contribution can be seen as a concluding work, taking into
account potential issues when using purely possibilistic models for planning under uncertainty.
A more detailed review of the contributions follows.
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New features for the π-POMDPs and first strategy executions

The very first contribution to the Qualitative possibilistic POMDPs [121] concerns the qualita-
tive aggregations of the preferences over time: we first show that, much like in the probabilistic
framework, preference aggregation can be derived from the properties of the framework – here
the qualitative counterpart of linearity for Sugeno integrals for instance – as proved in An-
nex B.3 using the Theorem I.65 about belief-dependent value functions. The latter is also a
contribution as the first formal construction of the π-POMDP model. Different approaches
between the pessimistic and the optimistic criterion are also presented: note that the mixed
optimistic-pessimistic criterion (see Definition II.1.3) is mainly used along our work since it is
equivalent to a π-MDP with an optimistic criterion. As the optimistic criterion is compatible
with proposed algorithms for time-unbounded processes, and produces often better strategies
for the treated problems, this allows to take advantage of these points. The mixed optimistic-
pessimistic criterion is pessimistic according to the belief state: we observe that it produces a
good tradeoff with the optimistic global criterion.

We then adapted π-POMDPs to mixed-observability [100], which is part of the theoretical
contributions of our work: this contribution, called π-MOMDP, dramatically reduces the size of
the belief space and thus allows the first computations of strategies from π-POMDPs. Finally,
another theoretical contribution is the qualitative counterpart to the value iteration algorithm,
with the associated criterion for time-unbounded executions. As proved in Annex B.6 (and
our publication [49]), there exists an optimal strategy, which is stationary i.e. which does not
depend on the stage of the process t. This strategy can be computed by the proposed dynamic
programming scheme: it is also shown that the number of iterations to make the value function
converge is less than the size of the state space. The assumption of the existence of a “stay”
action is not a constraint in practice as it is only selected in some goal states. Note also that
the target recognition missions presented in this thesis have typically unbounded durations.

As already pointed out, the experiments in the second chapter use both previous theoretical
contributions. Indeed, the mixed-observability property of the problem, makes computations
feasible for our robotic example. The proposed criterion is also really useful: it is convenient
to allow the computation of strategies for robotic missions with unbounded durations. For
instance, in our example, it allows to define the mission properly: if the robot has not figured out
which target is right one, we want the mission to be continued. The first practical contributions
of this thesis is thus the computation of a strategy for this robotic mission and its execution.
Indeed, we have shown that the qualitative possibilistic approach can outperform probabilistic
POMDP ones for a target recognition problem where the agent’s observations dynamics is not
accurately defined. Note that the only information used to define system observation of the
system, is that the more the robot is far from a target, the more the observation is noisy: it
already shows that the possibilistic framework may be useful in case of restricted knowledge
about the problem.

Finally, the second chapter highlights a very interesting behavior of qualitative possibilistic
belief states: under some conditions, the possibilistic belief update, which is defined from the
counterpart of Bayes rule [58], increases the knowledge associated to the belief state. Indeed, in
our example, the belief state is responsible of the imprecision as it only takes into account more
reliable observations, and may also change to the opposite belief if an observation contradicts
the current one. On the contrary a probabilistic belief is modified in most cases (there is a
finite number of normalized eigenvectors for a given matrix). Some conditions leading to this
behavior are then presented, and associated proofs are given (see Annex B.7).
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Graphical work on independence and factorization (PPUDD)

The next theoretical contribution is the introduction of the factored π-MOMDPs: indeed, we
have considered processes whose state space is represented by n post-action independent vari-
ables, i.e. processes whose state variables of the same time step are independent (conditional on
the past). The algorithm proposed to exactly solve these factorized processes, called PPUDD, is
another contribution: it is the symbolic version of the dynamic programming scheme proposed
in the previous chapter. Inspired by SPUDD [75], PPUDD means Possibilistic Planning Using
Decision Diagrams. As SPUDD, it operates on ADDs encoding value, preference and transi-
tion functions. Finally, the last theoretical contributions of the third chapter are the proofs of
independence results, Theorem 24 and Theorem 25: they relate to a proposed graphical model
representing a particular factorization of the process i.e. particular independence assumptions
on the variables. Thus, we have shown that these independence assumptions lead to a natural
factorization of the space of the belief states. The belief state variables of a π-MOMDP satis-
fying these assumptions are post-action independent, and the associated problem can be more
easily solved by PPUDD. The independence of sensors and of corresponding hidden state vari-
ables suffices to fulfill these conditions: for instance, the RockSample problem, well illustrates
these conditions.

The motivation leading to the design of PPUDD, i.e. the guess that the use of opera-
tors min and max leads to smaller ADDs, and thus to faster computations, has been veri-
fied in practice: our experiments and the results of the International Probabilistic Planning
Competition (IPPC 20141) show that this possibilistic approach can involve less computation
time and produce better policies than its probabilistic counterparts when computation time
is limited, or for high dimensional problems. For instance, PPUDD performances have been
compared to the probabilistic MOMDP solver APPL [84, 100] and the symbolic HSVI solver
[133], in terms of computation time, and using the average of the total reward at execution.
PPUDD computes a strategy maximizing exactly the possibilistic criterion while APPL and
symb. HSVI compute strategies which approximately maximize the expected sum of rewards.
The experimental results on the Rocksample problem show that using an exact algorithm
(PPUDD) for an approximate model (π-MOMDPs) can run significantly faster than reason-
ing about exact models, while providing better policies than approximate algorithms (APPL)
for exact models. Most of the cited contributions of this chapter have been published in [50],
and an implementation of PPUDD to reproduce experiments can be found at the repository
www.github.com/drougui/ppudd.

Finally, in order to focus on the behavior of the possibilistic qualitative approach in a wide
panel of probabilistic problems, the next practical contribution is the participation in the fully
observable track of IPPC 2014 with adapted versions of PPUDD. The implementation of our
solver for this competition was performed with the CU Decision Diagram Package for the
ADDs computations. Comparing only solvers using ADDs, PPUDD and a probabilistic solver
called symbolic LRTDP [45] (as a variant of [14]), our solver produces better strategies than
the probabilistic approach.

Discussion about the current results

Experiments concerning the Navigation problem is a good illustration of the optimistic and
pessimistic criteria in the qualitative possibilistic framework: a robot has to reach a goal as
soon as possible, avoiding unsafe locations (for instance, locations where there is a risk that
it falls down and break). The strategy maximizing the optimistic criterion makes the robot
unfrequently reach the goal, but more quickly than the one from the pessimistic criterion

1https://cs.uwaterloo.ca/~mgrzes/IPPC_2014/

www.github.com/drougui/ppudd
https://cs.uwaterloo.ca/~mgrzes/IPPC_2014/
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which makes it however often reach the goal. Proposed approaches involve then the choice of
a criterion. This feature of the possibilistic approach explains also the difficulties experienced
with the “Traffic” domain of the competition: the optimistic criterion can be too optimistic for
the given problem, although strategies from it are generally more efficient than those from the
pessimistic criterion (that is why the optimistic criterion has been used for the competition).

Presented models assume also that preference and uncertainty degrees share the same scale
which makes it hard to set in practice. The fourth chapter about human-machine interaction is
meant to show that, although qualitative possibilistic approach may raise questions concerning
modeling, this approach can be very appropriate in some practical situations, as in our case,
to produce diagnosis.

We got really good results with PPUDD in previous experiments among symbolic algo-
rithms (SPUDD, symbolic LRTDP): for instance, SPUDD provides good strategies, but cannot
solve big instances of the tested problem. However, state space search algorithms (PROST [79]
and GOURMAND [83]) won IPPC 2014, and are yet far more efficient than ADD-based meth-
ods: MDP instances with a complex structure are encoded with ADDs big enough to disqualify
these approaches. These observations and modeling considerations are the motivations of the
last chapter, presenting the hybrid POMDP.

Estimating in a qualitative world (HMI)

Obviously, although qualitative possibilistic models can lead to appropriate approximate
strategies for high dimensional problems, they cannot lead to the best results for simple prob-
lems in purely frequentist worlds. On the contrary, the fourth chapter focuses on the use of
this framework in a purely qualitative world: indeed it proposes the study of human-machine
interactions which only involve the deterministic behavior of the machine and a qualitative
expert knowledge about the human behavior.

This joint work with Sergio Pizziol shows that the use of qualitative possibilistic processes is
an appropriate choice when probabilities cannot be defined in practice. Indeed, this framework
produces useful error detections and diagnosis in real experiments with pilots in a simulator.

Finally, this work also provides theoretical contributions. The first one is summed up in
Theorem 27 and Theorem 28. These theorems lead to the definition of the possibilistic esti-
mation of the human assessment within the framework of the qualitative possibilistic Hidden
Markov Processes (π-HMPs): this estimation is used to detect human attentional errors. An-
other contribution is the diagnosis computation, using the leximin operator. Finally, a toy
example is also provided to explain the use, the meaning and the behavior of these possibilis-
tic tools in practice.

A possibilistic discretization of the belief space (hybrid POMDP

The work on the hybrid POMDP is motivated by the proper discretization provided by the use
of a qualitative possibilistic belief state. The possibilistic nature of these belief states allows
to define the reward attached to them in a pessimistic way using the Choquet integral. This
model is proposed as a way to compute strategies more easily since the hybrid POMDP is
finally solved as a classical MDP. This approach may also lead to cautious behaviors as the
reward definition on belief states is pessimistic with respect to the lack of knowledge.

The computation of the transition function of the resulting MDP are given: it uses a
possibility-probability transformation called pignistic transformation to recover a probability
distribution from a possibilistic belief state, in a neutral way.

We described also how a factored POMDP leads to a factored and more tractable MDP:
indeed, the final contribution shows how to take advantage from a large class of common
structures (at least among IPPC domains) to make the resulting MDP as simple as possible.
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Hence, efficient MDP solvers such as PROST or GOURMAND, are able to solve the factored
MDP representing the hybrid POMDP. This model has been published in [48].

Note finally that all the partially observable processes presented in this work (purely qual-
itative and hybrid) can be translated into MDP or π-MDP and are thus computable in finite
time, at most exponential in the description of the problem.

Perspectives
The first perspective comes from an observation: the memory limitation plausibly reached with
the Triangle tireworld problem of IPPC 2014 may be bypassed by a stronger discretization:
versions of PPUDD of IPPC 2014 used a precision of 10−3 on the initial probabilistic model,
leading to a big scale L – defined in practice as all the transformed probability values and
normalized reward values present in the given MDP. In any case, it would be instructive
to have an idea of the impact of the precision of the discretization on the performances of
PPUDD applied to probabilistic problems. More generally, more efforts on the translation
from a probabilistic MDP into its possibilistic approximation may significantly improve the
approach we proposed for IPPC 2014.

We focused on the symbolic resolution of the π-MDPs (PPUDD). However alternative
resolution methods could be studied: for instance, an heuristic-based strategy computation,
which is efficient for probabilistic problems [140], could be adapted to the possibilistic context.
As regards reinforcement learning in the qualitative possibilistic context, we can cite the
following work [124].

The second chapter does not propose any algorithm to compute strategies for missions with
unbounded horizon according to the pessimistic criterion. The algorithm is straightforward,
but the optimality of the resulting strategy for this criterion seems hard to prove. However, an
optimal strategy in this sense, would be useful in order to manage long-term unsafe problems.

The independence results given in the third chapter are also valid for probabilistic
MOMDPs: it would be interesting to determine if those results can have a positive impact
on the optimal strategy computation.

The work [17] proposes an other framework for planning under uncertainty, also qualified
as qualitative. However, this work uses quantitative operations as sum and product, and may
be seen as a discretization of the probabilistic framework [149]. The authors remark however
that Qualitative Possibility Theory leads to criteria which have not enough information for
discriminating among optimal decisions.

Advances in Possibility Theory may lead to more refined possibilistic MDPs to improve
modeling when needed. We can mention the leximin operator [54], used in the fourth chapter:
it avoids the drowning effect of the operators min and max. It may be used for preference
aggregation or even to compute a refined possibility degree of a trajectory. It may be a useful
improvement, but note that it eventually makes the problem more complex. Another update
which has still to be performed is the integration of more discriminative criteria [146, 71] to
the π-MDP framework.

In the work on HMI, the human operator is supposed to be certain about the state of
the machine even if her/his only guess may be wrong. A future work could define the human
assessment in a more complex way: for instance as a possibility distribution: a possibilistic
belief state of the human operator.

Finally, the promising approach presented under the name hybrid POMDP will be tested on
the POMDPs of the IPPC competition [127] in a future work: indeed, the proposed problems
are factored POMDPs as introduced in Section V.3.
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A Proofs of Chapter I

A.1 Preliminaries

Firstly recall the more general definition of the conditional expectation with respect to a
random variable: a random variable is a measurable function defined on the set Ω equipped
with the σ-algebra F and the probability measure P.
Definition A.1 (Expectation of X Conditional on Y : E [X | Y ])

Let X et Y be two random variables defined on (Ω,F ,P): values of X are in R equipped
with the Borel σ-algebra B(R) and X is integrable. Values of Y are in a set Y equipped
with a σ-algebra V. Let us denote by σ(Y ) the σ-algebra generated by Y i.e. σ(Y ) ={
Y −1(V )

∣∣ V ∈ V } ⊂ F .
The expectation of X conditional on Y , denoted by E [X | Y ], is the unique

random variable in L1(Ω,F ,P) which is

• σ(Y )-measurable,

• and such that ∀A ∈ σ(Y ),
∫
A
E[X|Y ](ω) dP(ω) =

∫
A
X(ω)dP(ω).

As the classical expectation, the conditional expectation is linear: if X1 and X2 are two
random variables, ∀c ∈ R, E [c ·X1 +X2 | Y ] = c · E [X1 | Y ] + E [X2 | Y ].

First, note that if X is σ(Y )-measurable, X = E [X | Y ] P-almost surely. Indeed, the function
X meets both conditions to be E [X | Y ]. Note also that the second point of Definition A.1
implies that

E
[
E [X | Y ]

]
=
∫

Ω
E [X | Y ] (ω)dP(ω) =

∫
Ω
X(ω)dP(ω) = E [X ] .

This second point can be replaced by an other characterization, given by the following property:
Property A.1

The random variable E [X | Y ] can be defined as the unique function σ(Y )-measurable
such that ∀Z : Y → R σ(Y )-measurable,

E
[
Z · E [X | Y ]

]
= E [Z ·X ] .

Proof : Indeed if Z = 1A with A ∈ σ(Y ), we fall back into the second point of Definition A.1.
Thanks to the linearity of the expectation, it remains true if Z is a linear combination of
characteristic functions of elements of the σ-algebra. Finally, consider a non decreasing sequence
(Zn)n∈N, with ∀n ∈ N, Zn a combination of characteristic functions, and whose limit is a
measurable function Z. Equality holds for each Zn, and thanks to Beppo-Levi Theorem, the
result is true for the measurable function Z.

This result makes the following property easier to show:
Property A.2

Let X be a real and integrable random variable, and Y1, Y2 two random variables:

E
[
E [X | Y1, Y2 ]

∣∣∣Y2
]

= E [X | Y2 ] P-almost surely.
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As well,
E
[
E [X | Y2 ]

∣∣∣Y1, Y2
]

= E [X | Y2 ] P-almost surely.

Proof : The second equality is obvious because if X is σ(Y )-measurable, E [X | Y ] = X
P-almost surely. Indeed, X meets the first condition to be E [X | Y ] in Definition A.1, and of
course, the second condition is met. Here, the random variable E [X | Y2 ] is σ(Y2)-measurable
by definition, and thus it is σ(Y1, Y2)-measurable: thus the second equality holds.

For the first equality, since both conditional expectations are σ(Y2)-measurable by defini-

tion, it is sufficient to show that ∀Z σ(Y2)-measurable, E
[
Z ·E

[
E [X | Y1, Y2 ]

∣∣∣Y2

]]
= E [Z ·X ],

as E [X | Y2 ] is the only random variable in L1(Ω,F ,P) such that for each σ(Y2)-measurable
random variable Z, E [Z · E [X | Y2 ] ] = E [Z ·X ]. Let Z be σ(Y2)-mesurable: as Z is σ(Y2)-
measurable, it is a fortiori σ(Y1, Y2)-measurable: σ(Y2) ⊆ σ(Y1, Y2). Thus

E
[
Z · E

[
E [X | Y1, Y2 ]

∣∣∣Y2

]]
= E

[
Z · E [X | Y1, Y2 ]

]
= E [Z ·X ] .

The conditional expectation has been defined as a random variable E [X | Y ] : Ω → R.
However, the following property implies that the σ(Y )-measurability condition of Definition
A.1 may be replaced by “∃ϕ : (Y,V) →

(
R,B(R)

)
measurable such that E [X | Y ] = ϕ(Y )”.

The function ϕ is called Expectation of X Conditional on the Values of Y and may be denoted
by ϕ(y) = E [X | Y = y ], ∀y ∈ Y.
Property A.3

The function Z : Ω→ R is σ(Y )-measurable, where Y : (Ω,F)→ (Y,V)
⇔ ∃ϕ : (Y,V)→

(
R,B(R)

)
measurable such that Z = ϕ(Y ).

Proof : The set {ϕ(Y ) | ϕ : (Y,V)→ (R,B(R) ) measurable } is denoted by Φ. If Z ∈ Φ, then
Z = ϕ(Y ) with ϕ measurable, and as Y is σ(Y )-measurable, Z is σ(Y )-measurable: in short, if
Z ∈ Φ, then Z is σ(Y )-measurable.

Now let us show that any σ(Y )-mesurable function can be written ϕ(Y ) with ϕ measurable.
By definition ∀A ∈ σ(Y ), ∃B ∈ V such that A = {Y ∈ B } = Y −1(B). Thus 1A = 1{Y ∈B } =
1B(Y ) is in Φ as a function of Y . Now, as linear combinations of such characteristic functions
are in Φ, and as non-decreasing limits of sequences of functions in Φ are in Φ, it can be concluded
that Φ contains all σ(Y )-measurable functions.

Definition A.2 (Expectation of X Conditional on the Values of Y )
Let X ∈ R and Y ∈ Y two random variables: as E [X | Y ] can be written ϕ(Y ) with
ϕ : Y → R measurable,

E
[
X
∣∣∣ Y = y

]
= ϕ(y)

is called the expectation of X conditional on the event {Y = y}. For each y ∈ Y such that
P (Y = y ) > 0, it is the expectation of X if we know that Y = y.

If Y is countable, and P (Y = y ) > 0,

E [X | Y = y ] =
∫
{Y=y }

E [X | Y ] (ω)
P(Y = y) dP(ω).

Consider that the values of variables X and Y are in S, and let us introduce
f : S → R measurable: f(X) is a random variable whose values are in R.
The expectation of f(X) conditional on the values of Y ∈ S is denoted by
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E [f(X) | Y = y ], ∀y ∈ S. If S is a countable set equipped with the σ-algebra P(S)
(the set of sets included in S), ϕ(y) = E [f(X) | Y = y ] can be computed explicitly.
Property A.4

Let X and Y two random variables whose values are in a countable set S, and f : S → R
a measurable function: the expectation of f(X) conditional on the values of Y is

∀y ∈ S such that P (Y = y ) > 0, E
[
f(X)

∣∣∣Y = y
]

=
∑
x∈S

f(x) · P (X = x | Y = y ) .
where P (X = x | Y = y ) = P(X=x,Y=y )

P(Y=y ) .

Proof : For clarity, E [f(X) | Y = y ] is denoted by ϕ(y) in this proof. By only considering single-
tons {Y = y } ⊆ Ω in the second condition of Definition A.1, it leads to ∀y ∈ S,∫

{Y=y }
ϕ(Y )dP =

∫
{Y=y }

f(X)dP ⇔ ϕ(y) · P (Y = y ) =
∫
{Y=y }

f(X)dP

and if P (Y = y ) > 0,

ϕ(y) =
∫

Ω
f(X) ·

1{Y=y }dP
P (Y = y ) =

∫
Ω

∑
x∈S

f(x) ·1{X=x} ·
1{Y=y }dP
P (Y = y ) =

∑
x∈S

f(x) · P (X = x, Y = y )
P (Y = y )

thanks to the Fubini theorem. Note that if f(X) = 1{X=x}, we get E
[
1{X=x}

∣∣ Y = y
]

=
P (X = x, Y = y )

P (Y = y ) , which is the discrete conditional probability P (X = x | Y = y ).

A.2 Proof of Property I.1.1
Proof : Let t ∈ N, (s0, s1, . . . , st) ∈ St and s′ ∈ S: on the one hand,∫

{S0=s0,...,St=st }
1{St+1=s′ }dP = P (S0 = s0, . . . , St = st, St+1 = s′ ) ,

and on the other hand, if E
[
1{St+1=s′ }

∣∣ St ] is denoted by P (St+1 = s′ | St ),∫
{S0=s0,...,St=st }

P (St+1 = s′ | St ) dP = P (St+1 = s′ | St = st )·P (S0 = s0, S1 = s1, . . . , St = st ) .

Both integrals are equal as (St)t∈N is a Markov Chain. Since events of σ(S0, . . . , St) are unions
of events which can be written {S0 = s0, S1 = s1, . . . , St = st }, for all B ∈ σ (S0, . . . , St )∫

B

1{St+1=s′ }dP =
∫
B

P (St+1 = s′ | St ) dP

and then, using Definition A.1 and as P (St+1 = s′ | St ) is σ(S0, . . . , St)-measurable

P (St+1 = s′ | St ) = E
[
1St+1=s′

∣∣ S0, . . . , St
]
P-almost surely.

Now,

E [f(St+1) | S0, . . . , St ] = E

[∑
s′∈S

f(s′) · 1{St+1=s′ }

∣∣∣∣∣ S0, . . . , St

]
=

∑
s′∈S

f(s′) · E
[
1{St+1=s′ }

∣∣ S0, . . . , St
]

=
∑
s′∈S

f(s′) · P (St+1 = s′ | St ) P-almost surely.

The random variable
∑
s′∈S f(s′) · P (St+1 = s′ | St ) is σ(St)-measurable, thus

E [f(St+1) | S0, . . . , St ] is σ(St)-measurable too, and then,

E [f(St+1) | S0, . . . , St ] = E
[
E [f(St+1) | S0, . . . , St ]

∫ ∣∣∣∣ St ] = E [f(St+1) | St ] ,
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because of Property A.2. Finally, the equalities of Property I.1.1 are achieved by integrat-
ing both parts of the equations over {S0 = s0, . . . , St = st } and then by dividing them by
P (S0 = s0, . . . , St = st ).

A.3 Proof of Theorem 1
Proof : First of all, consider that the process is at the stage t̃ ∈ N. All states from the beginning

of the process are given as input to the agent: it has to choose the best action knowing these
t̃+ 1 first system states {s0, s1, . . . , st̃ } ∈ S t̃+1. Regardless the previously gathered rewards, its
goal is to maximize the expectation of the sum of the next rewards. We show by induction on t̃
from H−1 to 0, that the highest expected total reward can be reached with a strategy (dt)H−1

t=0
i.e. a sequence of decision rules dt : S → A. A sequence of functions from all the states that the
system has gone through, i.e. a sequence (dt)H−1

t=0 of functions dt : St → A, is not necessary.
Let t̃ = H − 1: the agent has to find the action a maximizing

E
[
rH−1(SH−1, a) +R(SH)

∣∣∣ S0 = s0, . . . , SH−1 = sH−1

]
which is equal to E

[
rH−1(SH−1, a) + E [R(SH) | SH−1 ]

∣∣∣ S0 = s0, . . . , SH−1 = sH−1

]
= E [fa(SH−1) | S0 = s0, . . . , SH−1 = sH−1 ] with fa : S → R measurable,
= E [fa(SH−1) | SH−1 = sH−1 ]

because of Property (I.1.1). Then, the value to be maximized depends on the state sH−1 ∈ S
only: a decision rule d∗H−1 : S → A such that ∀s ∈ S

d∗H−1(s) ∈ argmax
a∈A

E [fa(SH−1) | SH−1 = s ]

is sufficient. Now, assume that this result is true for the time step t̃+ 1 6 H − 1, and consider
that a strategy (dt)H−1

t=t̃+1 has been computed. The agent has to find the action a maximizing

E

rt̃(St̃, a) +
H−1∑
t=t̃+1

rt

(
St, dt(St)

)
+R(SH)

∣∣∣∣∣∣ S0 = s0, . . . , St̃ = st̃


which is equal to E

[
rt̃(St̃, a)+E

[∑H−1
t=t̃+1 rt

(
St, dt(St)

)
+R(SH)

∣∣∣ St̃ ] ∣∣∣∣ S0 = s0, . . . , St̃ = st̃

]

= E [fa(St̃) | S0 = s0, . . . , St̃ = st̃ ] with fa : S → R measurable,
= E [fa(St̃) | St̃ = st̃ ]

and then, the same conclusion holds: it is sufficient to compute a decision rule d∗
t̃

: S → A such
that ∀s ∈ S

d∗t̃ (s) ∈ argmax
a∈A

E [fa(St̃) | St̃ = s ] .

We just proved by induction that it suffices to look for strategies of DH as defined above,
i.e. to look for a sequence of decision rules (dt)H−1

t=0 , maximizing the criterion I.2.
In the following, we set up the Dynamic Programming equations used to compute the

optimal value function and the optimal strategy. The size of the horizon i is the index used for
the incremental computation of the optimal value function V ∗. It is also the opposite modulo
H of the stage of the process t, index used for the strategy. The initialization V ∗0 (s) = R(s)
is obvious: when the horizon is zero, no action has to be selected by the agent, and it receives
only the terminal reward. Next, let s ∈ S, i ∈ {1, . . . H }, and set t0 = H − i:

V ∗i (s) = sup
(dt)H−1

t=t0
∈DH−t0

E

[
H−1∑
t=t0

rt

(
St, dt(St)

)
+R(SH)

∣∣∣∣∣ St0 = s

]
.
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Yet E
[
H−1∑
t=t0

rt

(
Si, di(Si)

)
+R(SH)

∣∣∣∣∣ St0
]

= E

[
rt0

(
St0 , dt0(St0)

)
+ E

[
H−1∑
t=t0+1

rt

(
Si, di(Si)

)
+R(SH)

∣∣∣∣∣ St0 , St0+1

] ∣∣∣∣∣ St0
]

= E
[
rt0

(
St0 , dt0(St0)

)
+ E

[
Vi−1

(
St0+1, (dt)H−1

t=t0+1

) ∣∣∣ St0 , St0+1

] ∣∣∣∣St0]

= E

rt0(St0 , dt0(St0)
)

+
∑

s′∈Ss,a,t

pt0
(
s′
∣∣∣St0 , dt0(St0)

)
· Vi−1

(
s′, (dt)H−1

t=t0+1

) ∣∣∣∣∣∣ St0


using properties (A.2) and (I.1.1). By integrating both part of this equality over {St0 = s} and
divising them by P (St0 = s ) > 0, it becomes

V ∗i (s) = sup
(d)H−1

t=t0
∈DH−t0

rt(s, dt0(s)
)

+
∑

s′∈Ss,a,t

pt0
(
s′
∣∣∣s, dt0(s)

)
· Vi−1

(
s′, (dt)H−1

t=t0+1

)
= sup(

a,(d′)H−1
t=t0+1

)
∈DH−t0

rt(s, a) +
∑

s′∈Ss,a,t

pt0 (s′ | s, a ) · Vi−1

(
s′, (d′t)

)
= max

a∈A

rt(s, a) +
∑

s′∈Ss,a,t

pt0 (s′ | s, a ) · sup
(d′t)H−1

t=t0+1∈DH−t0−1

Vi−1

(
s′, (d′t)

) (15)

= max
a∈A

rt(s, a) +
∑

s′∈Ss,a,t

pt0 (s′ | s, a ) · V ∗i−1 (s′ )


where 15 is justified by:

• as
∑

s′∈Sa,s,t

pt0 (s′ | s, a ) · Vi−1

(
s′, (dt)

)
6

∑
s′∈Sa,s,t

pt0 (s′ | s, a ) sup
(d′t)∈DH−t0−1

Vi−1

(
s′, (d′t)

)
for each strategy (dt)H−1

t=t0+1 ∈ DH−t0−1,

sup
(d′t)∈DH−t0−1

∑
s′∈Sa,s,t

pt0 (s′ | s, a )Vi−1

(
s′, (d′t)

)
6

∑
s′∈Sa,s,t

pt0 (s′ | s, a ) sup
(d′t)∈DH−t0−1

V ∗i−1(s′).

• let (εn)n∈N be a sequence of positive real numbers, such that εn → 0 when n → ∞. For
each n ∈ N, let (dεn

t )H−1
t=t0+1 ∈ DH−t0−1 be a strategy such that

V ∗i−1(s′)− ε 6 Vi−1

(
s′, (dεn)

)
6 V ∗i−1(s′), ∀s′ ∈ S.

Computing the mean with respect to pt0 ( . | s, a ) whose support is finite, the inequality
on the left becomes∑

s′∈Ss,a,t

pt0 (s′ | s, a ) · V ∗i−1(s′)− εn 6
∑

s′∈Ss,a,t

pt0 (s′ | s, a ) · Vi−1

(
s′, (dεn)

)
where the right part is obviously lower than sup

(d)∈DH−t0−1

∑
s′∈Ss,a,t

pt0 (s′ | s, a )·Vi−1

(
s′, (d)

)
.

Now, as this couple of inequalities are true for each n ∈ N, making n→∞, the result is∑
s′∈Ss,a,t

pt0 (s′ | s, a ) · V ∗i−1(s′) 6 sup
(d)∈DH−t0−1

∑
s′∈Ss,a,t

pt0 (s′ | s, a ) · Vi−1

(
s′, (d)

)
.

Therefore, if at each iteration i ∈ {1, . . . ,H }, the decision rule d∗H−i is defined as ∀s ∈ S,
d∗H−i(s) ∈ argmaxa∈A

{
rt(s, a) +

∑
s′∈Ss,a,t

pt0 (s′ | s, a ) · V ∗i−1 (s′ )
}
, V ∗i

(
s, (d∗t )H−1

t=H−i

)
=

V ∗i (s): with i = H, it shows that (d∗t )H−1
t=0 ∈ DH is optimal.
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A.4 Proof of the Bellman Equation (I.5)
Proof : The following calculus lines lead to the Bellman Equation. Let (d)t∈N ∈ D∞.

V d(s) := E

[+∞∑
t=0

γt · r
(
St, dt(St)

) ∣∣∣∣∣ S0 = s

]

= E

[
r
(
S0, d0(S0)

)
+

+∞∑
t=1

γt · r
(
St, dt(St)

) ∣∣∣∣∣ S0 = s

]

= r
(
s, d0(s)

)
+ E

[
E
[+∞∑
t=1

γt · r
(
St, dt(St)

)∣∣∣∣S1

] ∣∣∣∣∣ S0 = s

]

= r
(
s, d0(s)

)
+ γ ·

∑
s′∈Ss,d0(s)

p
(
s′
∣∣∣s, d0(s)

)
· E

[+∞∑
t=1

γt−1 · r
(
St, dt(St)

) ∣∣∣∣∣ S1 = s′

]

= r
(
s, d0(s)

)
+ γ ·

∑
s′∈Ss,d0(s)

p
(
s′
∣∣∣s, d0(s)

)
· E

[ +∞∑
t′=0

γt
′
· r
(
S+
t′ , d

+
t′ (S

+
t′ )
) ∣∣∣∣∣ S+

0 = s′

]

= r
(
s, d0(s)

)
+ γ ·

∑
s′∈Ss,d0(s)

p
(
s′
∣∣∣s, d0(s)

)
· V d

+
(s′).

The third and fourth lines come from the properties A.2 and I.1.1. In the fifth line, (S+
t )t∈N is

defined as S+
t = St+1. As well, ∀t ∈ N, ∀s ∈ S, d+

t (s) = dt+1(s).

A.5 Proof of Theorem 2
Proof : Let (Vn)n∈N be a Cauchy sequence in (FB(S,R), ‖.‖∞ ). For each state s ∈ S,

(
Vn(s)

)
n∈N

is a Cauchy sequence of (R, |.|) because |Vn(s)| 6 ‖Vn‖∞. Since (R, |.|) is complete, ∀s ∈ S,(
Vn(s)

)
n∈N

has a limit in R that we denote by V (s). A Cauchy sequence is bounded, therefore
∃M > 0 such that ∀n ∈ N, ‖Vn‖∞ 6 M . Thus, ∀s ∈ S, |Vn(s)| → |V (s)| 6 M , and then
V ∈ FB(S,R). Finally, as (Vn) is a Cauchy sequence,

∀ε > 0,∃N > 0, such that ∀n > N, p > 0,∀s ∈ S, |Vn(s)− Vn+p(s)| < ε

⇒ ∀n > N, ∀s ∈ S, |Vn(s)− V (s)| < ε

⇒ ∀n > N, ‖Vn − V ‖∞ < ε

Thus Vn −→ V in FB(S,R) when n→ +∞, and then (FB(S,R), ‖.‖∞ ) is a Banach space.

A.6 Proof of Property I.1.2
Proof : Let (V, V ′) ∈ FB(S,R)2,∥∥BdV − BdV ′∥∥∞ 6 γ · sup

s∈S

∑
s′∈Ss,d0(s)

p
(
s′
∣∣∣s, d0(s)

)
· |V (s′)− V ′(s′)|

6 γ · sup
s∈S

∑
s′∈Ss,d0(s)

p
(
s′
∣∣∣s, d0(s)

)
· ‖V − V ′‖∞

6 γ · ‖V − V ′‖∞

since ∀s ∈ S, p ( . | s, d0(s) ) is a probability distribution.
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A.7 Proof of Property I.1.3

First, let us present the following result:
Property A.5

Let f and g be two functions defined on the finite set A and with values in R:∣∣∣∣max
a∈A

f(a)−max
a∈A

g(a)
∣∣∣∣ 6 max

a∈A
|f(a)− g(a)| (16)

Proof :

∀a ∈ A, f(a)− g(a) 6 max
a′∈A

|f(a′)− g(a′)|

⇒ ∀a ∈ A, f(a) 6 max
a′∈A

g(a′) + max
a′∈A

|f(a′)− g(a′)|

⇒ max
a′∈A

f(a′)−max
a′∈A

g(a′) 6 max
a′∈A

|f(a′)− g(a′)| .

Finally, the same inequalities hold starting with g(a)− f(a), thus we get the result 16.

Here is the proof of Property I.1.3:
Proof : The contraction inequality of the operator Bd for (V, V ′ ) ∈ FB(S,R)2 is true for each

strategy (d) ∈ D∞, as stated by Property I.1.2:

∀(d) ∈ D∞,
∥∥BdV − BdV ′∥∥∞ 6 γ · ‖V − V ′‖∞

⇒ ∀(d) ∈ D∞,∀s ∈ S,
∣∣(BdV )(s)− (BdV ′)(s)

∣∣ 6 γ · ‖V − V ′‖∞
⇒ ∀a ∈ A,∀s ∈ S, |(BaV )(s)− (BaV ′)(s)| 6 γ · ‖V − V ′‖∞
⇒ ∀s ∈ S, max

a∈A
|(BaV )(s)− (BaV ′)(s)| 6 γ · ‖V − V ′‖∞

and Property A.5 leads then to ∀s ∈ S
∣∣∣∣max
a∈A

(BaV )(s)−max
a∈A

(BaV ′)(s)
∣∣∣∣ 6 γ · ‖V − V ′‖∞

⇒ ‖B∗V − B∗V ′‖∞ 6 γ · ‖V − V
′‖∞

A.8 Proof of Theorem 3
Proof : Here is how we show that the function V ∗ is the optimal value function, i.e.

V ∗(s) = sup
d∈D∞

V d(s) = sup
d∈D∞

E

[+∞∑
t=0

γt · r
(
St, dt(St)

) ∣∣∣∣∣ S0 = s

]
.

Let s ∈ S and d = (a, d+) the strategy which consists in selecting action a at time step t = 0,
and then actions a1 = d+

0 (s1) := d1(s1), a2 = d+
1 (s2) := d2(s2), etc. Note that d+ ∈ D∞ as well,
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and numbered from 0.

sup
(d)∈D∞

V d(s) := sup
(d)∈D∞

E

[+∞∑
t=0

γt · r
(
St, dt(St)

) ∣∣∣∣∣ S0 = s

]

= sup
(a,d+)∈D∞

r(s, a) + γ ·
∑

s′∈Ss,a

p (s′ | s, a ) · V d
+

(s′)


= max

a∈A

r(s, a) + γ ·
∑

s′∈Ss,a

p (s′ | s, a ) · sup
(d+)∈D∞

V d
+

(s′)

 (17)

= max
a∈A

r(s, a) + γ ·
∑

s′∈Ss,a

p (s′ | s, a ) sup
(d+)∈D∞

V d
+

(s′)


= (B∗ sup

(d+)∈D∞
V d

+
)(s) = (B∗ sup

(d)∈D∞
V d)(s).

The equality 17 is justified just like at the line 15 of the proof of Theorem 1.
Thus V ∗ = supd∈D∞ V

d as stated by the Fixed-Point Theorem. Indeed, as B∗ is a contract-
ing operator (see Property I.1.3), the solution V ∗ of the Dynamic Programming equation I.7 is
unique.

First, as d∗ : s 7→ a∗ ∈ argmaxa∈A(BaV ∗)(s),

Bd
∗
V ∗ = max

a∈A
(BaV ∗)(s) = B∗V ∗

The function V ∗ is then a fixed-point of the contracting operator Bd∗ (see Property I.1.2).
As noted earlier, V d∗ is a fixed-point of Bd∗ too, and thus V d∗ = V ∗ = max(d)∈D∞ V

d. It
means that d∗ is an optimal strategy. It is thus shown that it is sufficient to look for stationary
strategies because at least one of them, d∗, is optimal.

A.9 Proof of Theorem 4
Proof : First,∥∥V N − V ∗∥∥∞ =

∥∥B∗V N−1 − B∗V ∗
∥∥
∞ 6 γ·

∥∥V N−1 − V ∗
∥∥
∞ 6 γ·

(∥∥V N−1 − V N
∥∥
∞ +

∥∥V N − V ∗∥∥∞ )
and then

∥∥V N − V ∗∥∥∞ 6 γ
1−γ ·

∥∥V N−1 − V N
∥∥
∞. Moreover,∥∥V N−1 − V N

∥∥
∞ =

∥∥(B∗)N−1V 0 − (B∗)N−1V 1∥∥
∞ 6 γ

N−1 ·
∥∥V 0 − V 1∥∥

∞ .

Finally, ∥∥V N − V ∗∥∥∞ 6 γN

1− γ ·
∥∥V 0 − V 1∥∥

∞ .

A.10 Proof of Theorem 5
Proof : The Bellman equation for the strategy (d), is V d = BdV d, and the last iteration of the

algorithm is V N+1 = B∗V N = BdV N (as (d∗) is greedy with respect to VN , we consider VN+1
even if it is not actually computed). Thanks to these two equalities, it is possible to write∥∥V d − V N+1∥∥

∞ =
∥∥BdV d − BdV N∥∥∞ 6 γ ·

∥∥V d − V N∥∥∞
6 γ · (

∥∥V d − V N+1∥∥
∞ +

∥∥V N+1 − V N
∥∥
∞)

⇒
∥∥V d − V N+1∥∥

∞ 6
γ

1− γ ·
∥∥V N+1 − V N

∥∥
∞ 6

γN+1

1− γ ·
∥∥V 1 − V 0∥∥

∞ . (18)
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Finally, thanks to results (I.8) and (18), we get the control of the strategy error:

∥∥V d − V ∗∥∥∞ 6 ∥∥V d − V N∥∥∞ +
∥∥V N − V ∗∥∥∞ 6 2 · γN

1− γ
∥∥V 1 − V 0∥∥

∞ .

A.11 Proof of theorem 6
Proof : If it+1 is the current information, ∀s′ ∈ S,

bt+1(s′)
:= P (St+1 = s′ | It+1 = it+1 )

= P (St+1 = s′, Ot+1 = ot+1 | It = it, at )
P (Ot+1 = ot+1 | It = it, at )

(19)

=

∑
s∈S

P (St+1 = s′, Ot+1 = ot+1 | St = s, It = it, at ) · P (St = s | It = it, at )∑
s̃∈S

P (Ot+1 = ot+1 | St = s̃, It = it, at ) · P (St = s̃ | It = it, at )

=

∑
s∈S

P (Ot+1 = ot+1 | St+1 = s′, St = s, It = it, at ) · P (St+1 = s′ | St = s, It = it, at ) · bt(s)∑
s̃∈S

∑
s̃′∈S

P (Ot+1 = ot+1, St+1 = s̃′ | St = s̃, It = it, at ) · bt(s̃)

=

∑
s∈S

p (ot+1 | s′, at ) · p (s′ | s, at ) · bt(s)∑
s̃∈S

∑
s̃′∈S

p (ot+1 | s̃′, at ) · p ( s̃′ | s̃, at ) · bt(s̃)
:= u(bt, at, ot+1)(s′).

where line 19 is simply given by the fact that, for A, B, C subsets of Ω, P (A | B ∩ C ) =
P(A∩B | C )
P(B | C ) .

A.12 Proof of Theorem 7
Proof : We use here the following notations: Ât = {A0, . . . , At }, ât = {a0, . . . , at }, Ôt =
{O1, . . . , Ot }, and ôt = {o1, . . . , ot }. The belief at time step t can be written as a function
of ôt, ât−1 and b0: the belief bt is then denoted by bitb0

= b
ôt ,̂at−1
b0

, and

bitb0
(s) = b

ôt ,̂at−1
b0

(s) =
P
(
St = s, Ôt = ôt

∣∣∣ Ât−1 = ât−1

)
P
(
Ôt = ôt

∣∣∣ Ât−1 = ât−1

) = u

(
u
(
. . . u (b0, a0, o1 ) , . . .

)
, aH−1, oH

)
(s).

(20)
The following notation will be useful for the follow-up:

p ( ôt, st | ât−1, s0 ) = p (ot | st, at−1 )·
∑

s1,...,st−1

p (st | st−1, at−1 )·
t−1∏
i=1

p (oi | si, ai−1 )·p (si | si−1, ai−1 ) .

The numerator of the fraction (20) may be written

P
(
St = s, Ôt = ôt

∣∣∣ Ât−1 = ât−1

)
=
∑
s0∈S

p ( ôt, st | ât−1, s0 ) · b0(s0).

As well, the denominator of the fraction (20) is

P
(
Ôt = ôt

∣∣∣ Ât−1 = ât−1

)
=
∑
st∈S

∑
s0∈S

p ( ôt, st | ât−1, s0 ) · b0(s0).
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Finally, the probability of the system state at time step t conditioned on the random sequence
of actions is

P
(
St = s | Ât−1 = ât−1

)
=

∑
(s0,...,st−1)
∈St

t∏
i=1

p (si | si−1, ai−1 ) · b0(s0)

=
∑
ôt

∑
s0∈S

p ( ôt, st | ât−1, s0 ) · b0(s0).

Then, the expectation of the reward conditioned on the random sequence of actions is

E
[
r(St, At) | Ât = ât

]
=
∑
s∈S

r(s, at) · P
(
St = s | Ât−1 = ât−1

)
=
∑
s∈S

r(s, at) ·
∑

s0,s1,...,st−1

t∏
i=1

p (si | si−1, ai−1 ) · b0(s0)

=
∑
s∈S

r(s, at) ·
∑
ôt

∑
s0∈S

p ( ôt, s | ât−1, s0 ) · b0(s0)

=
∑
ôt

∑
(s0,s)∈S2

p ( ôt, s | ât−1, s0 ) · b0(s0) · r(s, at).

Next, multiplying each term of the sum over observations ôt by

1 =
∑

(s(1),s′(1))∈S2 p
(
ôt, s

′(1)
∣∣ ât−1, s

(1) ) · b0(s(1))∑
(s(2),s′(2))∈S2 p

(
ôt, s′(2)

∣∣ ât−1, s(2)
)
· b0(s(2))

,

we get

∑
ôt

∑
(s(1),s′(1))∈S2 p

(
ôt, s

′(1)
∣∣ ât−1, s

(1) ) · b0(s(1))∑
(s(2),s′(2))∈S2 p

(
ôt, s′(2)

∣∣ ât−1, s(2)
)
· b0(s(2))

·
∑

(s0,s)∈S2

p ( ôt, s | ât−1, s0 ) · b0(s0) · r(s, at)

=
∑
ôt

∑
(s(1),s′(1))

p
(
ôt, s

′(1)
∣∣∣ ât−1, s

(1)
)
· b0(s(1)) ·

∑
s∈S

∑
s0∈S

p ( ôt, s | ât−1, s0 ) · b0(s0)

∑
(s(2),s′(2))

p
(
ôt, s

′(2)
∣∣∣ ât−1, s

(2)
)
· b0(s(2))

· r(s, at)

=
∑
ôt

∑
(s(1),s′(1))

p
(
ôt, s

′(1)
∣∣∣ ât−1, s

(1)
)
· b0(s(1)) ·

∑
s∈S

∑
s0∈S

p ( ôt, s | ât−1, s0 ) · b0(s0)

∑
(s(2),s′(2))

p
(
ôt, s

′(2)
∣∣∣ ât−1, s

(2)
)
· b0(s(2))

· r(s, at)

=
∑
ôt

∑
(s(1),s′(1))

p
(
ôt, s

′(1)
∣∣∣ ât−1, s

(1)
)
· b0(s(1)) ·

∑
s∈S

b
ôt ,̂at−1
b0

(s) · r(s, at)

=
∑
ôt

P
(
Ôt = ôt

∣∣∣ Ât−1 = ât−1

)
·
∑
s∈S

b
ôt ,̂at−1
b0

(s) · r(s, at)

=E

[∑
s∈S

Bt(s) · r(s,At)

∣∣∣∣∣ Ât = ât

]
=E

[
r(Bt, At) | Ât = ât

]
where r(b, a) =

∑
s∈S r(s, a) · b(s).
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A.13 Proof of Theorem 8
Proof : First, ∀at ∈ A,∀o′ ∈ O,

P (Ot+1 = o′ | It = it, at ) =
∑
s′∈S

P (Ot+1 = o′, St+1 = s′ | It = it, at )

=
∑

(s,s′)∈S2

p (o′ | s′, at ) · p (s′ | s, at ) · P (St = s | It = it )

=
∑

(s,s′)∈S2

p (o′ | s′, at ) · p (s′ | s, at ) · bt(s).

where bt = bitb0
i.e. bt is the belief obtained starting from b0 and computed with information it.

For the sake of readability, the result
∑

(s,s′)∈S2 p (o′ | s′, at ) ·p (s′ | s, at ) · bt(s) is denoted by
p (o′ | bt, at ). Then,

P (Bt+1 = b′ | It = it, at ) = E
[
1{Bt+1=b′ }

∣∣ It = it, at
]

=
∑
o′∈O

P (Ot+1 = o′ | It = it, at ) · 1{u( bit
b0
,at,o′

)
=b′
}

=
∑
o′∈O

∑
(s,s′)∈S2

p (o′ | s′, at ) · p (s′ | s, at ) · bt(s) · 1{u( bt,at,o′ )=b′ }

=
∑
o′∈O

p (o′ | bt, at ) · 1{u( bt,at,o′ )=b′ }, (21)

and thus P (Bt+1 = b′ | It, at ) is bIt

b0
-measurable, i.e. Bt-measurable. Indeed, it is shown that

P (Bt+1 = b′ | It = it, at ) is a measurable function of bt = bitb0
when at ∈ A is fixed.

In order to show the equality (I.15) asserting that the belief process is a Markov process, it
is sufficient to show the following equation (see Definition A.1): ∀(b, b′) ∈

(
PSb0

)2:∫
{Bt=b}

E
[
1{Bt+1=b′ }

∣∣ It, at ] dP =
∫
{Bt=b}

1{Bt+1=b′ }dP. (22)

Indeed, as P (Bt+1 = b′ | It, at ) = E
[
1{Bt+1=b′ }

∣∣ It, at ] is Bt-measurable, it remains to show
the equality (22) to prove that E

[
1{Bt+1=b′ }

∣∣ It, at ] = E
[
1{Bt+1=b′ }

∣∣ Bt, at ] P-amolst surely,
i.e. to show equality (I.15).

On the one hand, the left part of the equation (22) is∫
{Bt=b}

∑
o′∈O

p (o′ | bt, at ) · 1{u( bt,at,o′ )=b′ }dP

=
∫

Ω
1{Bt=b}dP ·

∑
o′∈O

p (o′ | b, at ) · 1{u( b,at,o′ )=b′ }. (23)

thanks to the equality (21).
On the other hand, the right part of equation 22 is∫

{Bt=b}
1{Bt+1=b′ }dP =

∫
Ω
1{Bt=b} · 1{u(b,at,Ot+1)=b′ }dP

= E
[
1{Bt=b} · 1{u(b,at,Ot+1)=b′ }

]
= E

[
E
[
1{Bt=b} · 1{u(b,at,Ot+1)=b′ }

∣∣ It, at ] ] (24)

= E

[
1{Bt=b} · E

[
1{u(b,at,Ot+1)=b′ }

∣∣ It, at ] ] (25)

= E

[
1{Bt=b} ·

∑
o′∈O

p (o′ | b, at ) · 1{u( b,at,o′ )=b′ }

]
, (26)
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which is also equal to result (23). Line (24) comes from Definition A.1. Line (25) comes from
Property A.1 and the fact that Bt (and thus 1{Bt=b}) is σ(It)-measurable. The last line (26)
is given by the result (21).

The belief process (Bt)t>0 is thus a Markov process.

A.14 Proof of Theorem 9
Proof : Let V : PSb0

→ R be a PWLC function. Then, ∃Γ ⊂ RS , #Γ < +∞ such that

V (b) = max
α∈Γ

{∑
s∈S

b(s) · α(s)
}

= max
α∈Γ
〈α, b〉RS .

For b ∈ PSb0
, the Dynamic Programming Equation is

(B∗V ) (b) = max
a∈A

{∑
s∈S

r(s, a) · b(s) + γ ·
∑
o′∈O

p (o′ | b, a ) · V
(
u(b, a, o′)

)}

= max
a∈A

{∑
s∈S

r(s, a) · b(s) + γ ·
∑
o′∈O

p (o′ | b, a ) ·max
α∈Γ

{∑
s′∈S

u(b, a, o′)(s′) · α(s′)
}}

= max
a∈A

{∑
s∈S

r(s, a) · b(s) + max
(αo)o∈O∈ΓO

{
γ ·
∑
o′∈O

p (o′ | b, a ) ·
∑
s′∈S

u(b, a, o′)(s′) · αo′(s′)
}}

= max
a∈A

max
(αo)o∈O∈ΓO

{∑
s∈S

r(s, a) · b(s) +
{
γ ·
∑
o′∈O

p (o′ | b, a ) ·
∑
s′∈S

u(b, a, o′)(s′) · αo′(s′)
}}

where (αo)o∈O is an element of ΓO i.e. is a set of vectors from Γ ⊂ RS : each vector αo ∈ Γ is
indexed by an observation o ∈ O.

Thereafter, given a belief b ∈ S̃ and an action a ∈ A, we use the notation p (s′ | b, a ) =∑
s∈S p (s′ | s, a ) · b(s). Then, the belief update (I.10) becomes ∀s′ ∈ S,

u (b, a, o′ ) (s′) = p (o′ | s′, a ) · p (s′ | b, a )
p (o′ | b, a ) .

The result applying B∗ to V is then

(B∗V ) (b) = max
a∈A

max
(αo′ )∈ΓO

∑
s∈S

r(s, a) · b(s) + γ ·
∑
o′∈O

p (o′ | b, a ) ·
∑
s′∈S

p (o′ | s′, a ) · p (s′ | b, a )
p (o′ | b, a ) · αo′(s′)

= max
a∈A,(αo′ )∈ΓO

∑
s∈S

r(s, a) · b(s) + γ ·
∑
o′∈O

∑
s′∈S

p (o′ | s′, a ) ·
∑
s∈S

p (s′ | s, a ) · b(s) · αo′(s′)

= max
a∈A,(αo′ )∈ΓO

∑
s∈S

(
r(s, a) + γ ·

∑
o′∈O

∑
s′∈S

p (o′ | s′, a ) · p (s′ | s, a ) · αo′(s′)
)
· b(s)

= max
α′∈Γ′

∑
s∈S

α′(s) · b(s) = max
α′∈Γ′

〈α′, b〉RS .

where

Γ′ =
{
α′(s) = r(s, a) + γ ·

∑
o′∈O

∑
s′∈S

p (o′ | s′, a ) · p (s′ | s, a ) · αo′(s′)

∣∣∣∣∣ a ∈ A, and ∀o′ ∈ O, αo′ ∈ Γ
}

which is finite, and which size is #A · (#Γ)#O.
The function b 7→ B∗V (b) is thus PWLC and elements of Γ′ are called α-vectors.
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A.15 Proof of Theorem 10
Proof : First, note that

∀(x, y) ∈ X × Y, π(x, y) < min {π(x), π(y)}
m

∀(x, y) ∈ X × Y, π(x, y) < max
x′

π(x′, y) = π(y) and π(x, y) < max
y′

π(x, y′) = π(x)

m
∀(x, y) ∈ X × Y, π (x | y ) = π(x, y) < π(x) and π (y | x ) = π(x, y) < π(y)

Thus, as π(x, y) 6 min {π(x), π(y)} is always true, ∀(x, y) ∈ X ×Y, π(x, y) = min {π(x), π(y)}
⇔ ∀(x, y) ∈ X × Y, π (x | y ) > π(x) or π (y | x ) > π(y).

A.16 Proof of Theorem 11
Proof : Let us suppose that X and Y are MS-independent: in terms of possibility distributions,

it can be written ∀x ∈ X , ∀y ∈ Y, π(x) = π (x | y ) and π(y) = π (y | x ). Suppose also that
∃x0 ∈ X such that π(x0) < 1 i.e. variable X is not fully unknown. Thus, using the qualitative
possibilistic conditioning (Definition I.2.7), we know that, since π (x0 | y ) = π(x0) < 1, ∀y ∈ Y,
π (x0 | y ) = π (x0, y ). Thus, π (x0, y ) < 1. Using also the conditioning of Definition I.2.7, we
get that ∀y ∈ Y, π (y | x0 ) = 1, since the equality π(x0) = π (x0, y ) is the condition which
leads to the possibility degree 1. As ∀x ∈ X , ∀y ∈ Y, π(y) = π (y | x ), ∀y ∈ Y, π (y ) = 1. As
a conclusion, if X is not fully unknown, Y is is fully unknown: thus, if Y is not fully unknown,
X is fully unknown.

A.17 Proof of Property I.2.1
Proof : First, if f∗ = minω∈Ω f(ω), then ∀ω ∈ Ω, f∗ 6 f(ω). Thus ∀ω ∈ Ω, 1 − f∗ > 1 − f(ω),

i.e. 1 − f∗ = 1 − minω∈Ω f(ω) = maxω∈Ω {1− f(ω)}: the equation (I.26) is proved. The
equation (I.27) can be shown using the previous one: setting f = 1 − g, we get ∀g : Ω → L
maxω∈Ω g(ω) = 1−minω∈Ω {1− g(ω)} i.e. it equality is shown.

Now, the equation (I.30) is shown considering the case where λ > maxω∈Ω f(ω): on the
one hand, in this case, both parts of the equality are equal to maxω∈Ω f(ω) since ∀ω ∈ Ω,
λ > f(ω). On the other hand, when λ 6 maxω∈Ω f(ω), right part of equation (I.30) is equal
to λ. As ∀ω ∈ Ω, min {λ, f(ω)} 6 λ, and for each ω such that f(ω) > λ, min {λ, f(ω)} = λ,
the maximum is equal to λ: the left part of the equation (I.30) is equal to λ too. The equation
(I.29) can be be proved using the previous equation: setting f to 1− g, and λ to 1− µ, we get
maxω∈Ω min {1− g(ω), 1− µ} = min {maxω∈Ω {1− g(ω)} , 1− µ}. And then, using equations
(I.26) and (I.27), ∀µ ∈ L, ∀g : Ω→ L, 1−minω∈Ω max {g(ω), µ} = 1−max {minω∈Ω g(ω), µ},
i.e. the equation is shown.

The equations (I.28) and (I.32) are trivial: with the operator min (resp. max), no matter
what is the order of elements and the repetitions, as they are associative2.

The inclusions (I.31) and (I.33) are shown as follows: let ω∗ ∈ argmaxω∈Ω f(ω). If f(ω∗) 6 λ,
∀ω ∈ Ω, min {f(ω), λ} = f(ω) and thus argmaxω∈Ω min {f(ω), λ} = argmaxω∈Ω f(ω).
Now, if f(ω∗) > λ, maxω∈Ω min {f(ω), λ} = λ, and then argmaxω∈Ω min {f(ω), λ} =
{ω | f(ω) > λ}: thus argmaxω∈Ω f(ω) ⊆ argmaxω∈Ω min {f(ω), λ}, i.e. the inclusion
(I.31) is shown. For the inclusion (I.33), if f(ω∗) > λ, then the maximizing ele-
ments are in ω {ω | f(ω) > λ}, where f(ω) = max {f(ω), λ}. Thus maximizing elements
are the same argmaxω∈Ω f(ω) = argmaxω∈Ω max {f(ω), λ}. Otherwise, if f(ω∗) 6 λ,
∀ω ∈ Ω, max {f(ω), λ} = λ, then argmaxω∈Ω max {f(ω), λ} = Ω, and thus obviously
argmaxω∈Ω f(ω) ⊆ argmaxω∈Ω max {f(ω), λ}.

2An operator ∗ over L is associative if ∀(λ1, λ2, λ3) ∈ L3, (λ1 ∗ λ2) ∗ λ3 = λ1 ∗ (λ2 ∗ λ3).
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Finally, let us show the equality (I.34). Note first that functions A : ω 7→
max {min {λ, f(ω)} , g(ω)} and B : ω 7→ min {λ,max {f(ω), g(ω)}} are equal to
ω 7→ max {f(ω), g(ω)} on the set Ω1 = {ω | λ > max {f(ω), g(ω)}}. It is trivial for B, and as
λ > f(ω) on this set, the result comes for A. On the set Ω2 = Ω1 = {ω | λ 6 max {f(ω), g(ω)}},
B is of course equal to λ, and if f(ω) > λ, A(ω) = max {λ, g(ω)} > λ, otherwise if f(ω) 6 λ,
A(ω) = max {f(ω), g(ω)} > λ (on the set Ω2). A and B are thus smaller on Ω1. Indeed, they
are both equal to ω 7→ max {f(ω), g(ω)} 6 λ on Ω1, whereas on Ω2, N = λ and A > λ.
Thus, if Ω1 6= ∅, then the result is shown: the minimum is on Ω1, where functions are equal.
Otherwise, if Ω1 = ∅, ∀ω ∈ Ω, λ 6 max {f(ω), g(ω)}. As g(ω∗) = 0, then f(ω∗) > λ, and
A(ω∗) = max {λ, g(ω∗)} = λ = B(ω∗). For the other ω ∈ Ω, A(ω) = max {λ, g(ω)} > λ or
A(ω) = max {f(ω), g(ω)} > λ, thus the minimum of both functions, λ, is reached with ω∗,
where A and B are equal. The equality (I.35) can be proved using the equality (I.34): if we
set g = 1 − h, g fulfills the condition ∃ω∗ ∈ Ω such that g(ω∗) = 0. Setting λ = 1 − µ and
f ′ = 1− f , we get

min
ω∈Ω

max
{

min {1− µ, 1− f ′(ω)} , 1− h(ω)
}

= min
ω∈Ω

min
{

1− µ,max {1− f ′(ω), 1− h(ω)}
}
.

Using equations (I.26) and (I.27) of Property I.2.1, we get

1−max
ω∈Ω

min
{

max {µ, f ′(ω)} , h(ω)
}

= 1−max
ω∈Ω

max
{
µ,min {f ′(ω), h(ω)}

}
,

i.e. one minus equation (I.35).

A.18 Proof of the equality of Definition I.2.11
Proof : Let us show that (I.36) is equal to (I.37). Note first that, by definition, f(ωi) is non-

decreasing with i ∈ {1, . . . ,#Ω}. Note as well that µ is monotone, and then µ(Ai) =
µ({ωi, . . . , ω#Ω }) > µ(Ai+1) since Ai+1 ⊂ Ai. Let i∗ be the highest i ∈ {1, . . . ,#Ω}
such that µ(Ai∗) > f(ωi∗). As µ(A1) = µ(Ω) = 1 > f(ω1), i∗ exists. For each i 6 i∗,
min {f(ωi), µ(Ai)} = f(ωi), and for each i > i∗, min {f(ωi), µ(Ai)} = µ(Ai), thanks to the
definition of i∗. As f(ωi) is non-decreasing and µ(Ai) is non-increasing with i, highest values

of
(

min
{
f(ωi), µ(Ai)

})#Ω−1

i=1
are f(ωi∗) and µ(Ai∗+1).

If f(ωi∗) 6 µ(Ai∗+1), then (I.36) is equal to µ(Ai∗+1). As well, max {f(ωi∗), µ(Ai∗+1)} =
µ(Ai∗+1). Using the definition of i∗, and as µ is monotone, f(ωi∗+1) > µ (Ai∗+1 ) >
µ (Ai∗+2 ). This implies that max {f(ωi∗+1), µ(Ai∗+2)} = f(ωi∗+1). As µ(Ai+1) is non-
increasing with i, and f(ωi) non-decreasing, µ(Ai∗+1) and f(ωi∗+1) are the lowest values of(

max
{
f(ωi), µ(Ai+1)

})#Ω−1

i=1
. By definition of i∗, f(ωi∗+1) > µ(Ai∗+1), and thus formula

(I.37) is also equal to µ(Ai∗+1): (I.36) and (I.37) are equal.
If f(ωi∗) > µ(Ai∗+1), then formula (I.36) is equal to f(ωi∗), and max {f(ωi∗), µ(Ai∗+1)} =

f(ωi∗). As f(ωi) is non-decreasing with i, and thanks to the definition of i∗, f(ωi∗−1) 6 f(ωi∗) 6
µ(Ai∗) and thus max {f(ωi∗−1), µ(Ai∗)} = µ(Ai∗). As previously (µ(Ai+1) non-increasing and

f(ωi) non-decreasing), µ(Ai∗) and f(ωi∗) are the lowest values of
(

max
{
f(ωi), µ(Ai+1)

})#Ω−1

i=1
.

By definition of i∗, f(ωi∗) 6 µ(Ai∗), and thus formula (I.37) is also equal to f(ωi∗).
Finaly, formula (I.36) and (I.37) are equal.
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A.19 Proof of Theorem 12
Proof : First, let us rewrite the Sugeno integral of a function f : Ω→ L with respect to a possibility

measure Π, using formula (I.36):

SΠ[f ] = #Ωmax
i=1

min {f(ωi),Π(Ai)}

= #Ωmax
i=1

min
{
f(ωi),

#Ωmax
j=i

π(ωj)
}

= max
(i,j)∈{ 1,...,#Ω}2

s.t. i6j

min {f(ωi), π(ωj)} . (27)

Now, note that ∀(i, j) ∈ {1, . . . ,#Ω}2 such that i < j, min {f(ωi), π(ωj)} 6
min {f(ωj), π(ωj)} since f(ωi) is non-decreasing with i. As just shown, such pairs have a
minimum lower than the minimum of an other pair: such pairs can thus be removed from the
maximum operator in the equation (27): we get then the formula (I.38).

As well, using formula (I.37), the Sugeno integral of f with respect to a necessity measure
N is

SN [f ] =
#Ω
min
i=1

max {f(ωi),N (Ai+1)}

=
#Ω
min
i=1

max
{
f(ωi), 1−Π

(
{ω1, . . . , ωi }

)}
=

#Ω
min
i=1

max
{
f(ωi),

i
min
j=1
{1− π(ωj)}

}
= min

(i,j)∈{ 1,...,#Ω}2

s.t. i>j

min {f(ωi), 1− π(ωj)} . (28)

Note that the terms of min
(i,j)∈{ 1,...,#Ω}2

s.t. i>j

, such that i > j, i.e. max {f(ωi), 1− π(ωj)}, are greater

or equal to max {f(ωj), 1− π(ωj)} (as f(ωi) is non-dreasing with i) and can be removed from
min
(i,j)

: the equation (I.39) is then deduced.

A.20 Proof of Theorem 13
Proof : For the case i = 0, U∗0 (s) = Ψ(s), is obvious since no action has to be chosen. The case

i = 1 consists in applying the formula (I.30) of Property I.2.1. Following sequence of equalities
come from properties (I.2.1). Let i be in {2, . . . ,H − 1} and j = H − i, and Ti the set of
i-length system state trajectories T = (sj+1, . . . , sH): ∀sj ∈ S,

U∗i (sj)
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= max
(δ)∈∆i

max
T ∈Ti

min
{

H
min
t=j

ρt

(
st, δt(st)

)
,
H−1
min
t=j

πt

(
st+1

∣∣∣st, δt(st))}
= max

(δ)∈∆i

max
sj+1∈S

max
T ∈Ti−1

min
{

min
{
ρj

(
sj , δj(sj)

)
,

H
min
t=j+1

ρt

(
st, δt(st)

)}
,
H−1
min
t=j

πt

(
st+1

∣∣∣st, δt(st))}

= max
(δ)∈∆i

max
sj+1∈S

min
{
ρj

(
sj , δj(sj)

)
, max
T ∈Ti−1

min
{

H
min
t=j+1

ρt

(
st, δt(st)

)
,
H−1
min
t=j

πt

(
st+1

∣∣∣st, δt(st))}}

= max
(δ)∈∆i

max
sj+1∈S

min
{
ρj

(
sj , δj(sj)

)
,min

{
πj

(
sj+1

∣∣∣sj , δj(sj)),
max
T ∈Ti−1

min
{ H

min
t=j+1

ρt

(
st, δt(st)

)
,
H−1
min
t=j+1

πt

(
st+1

∣∣∣st, δt(st))}}}

= max
δj(sj)∈A

max
sj+1∈S

min
{
ρj

(
sj , δj(sj)

)
,min

{
πj

(
sj+1

∣∣∣sj , δj(sj)),
max

(δ)∈∆i−1
max
T ∈Ti−1

min
{ H

min
t=j+1

ρt

(
st, δt(st)

)
,
H−1
min
t=j+1

πt

(
st+1

∣∣∣st, δt(st))}}}

= max
a∈A

max
sj+1∈S

min
{
ρj

(
sj , a

)
,min

{
πj

(
sj+1

∣∣∣sj , a), U∗i−1(s1)
}}

= max
a∈A

min
{
ρj

(
sj , a

)
, max
sj+1∈S

min
{
πj

(
sj+1

∣∣∣sj , a), U∗i−1(s1)
}}

.

where the final preference function Ψ(s) is denoted by ρH(s, a) to simplify equations. This
shows that the optimistic value function can be computed using the recursive formula (I.54).
The strategy computed with formula (I.55) is indeed optimal, thanks to the inclusion (I.30) of
Property I.2.1.

As well, for the pessimistic criterion, the case i = 0 is obvious too, and the case i = 1
consists in applying the formulae (I.26) and (I.29) of Property I.2.1. For i ∈ {2, . . . ,H − 1},
and j = H − i, using Property I.2.1,

U∗H(sj)
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= max
(δ)∈∆i

min
T ∈Ti

max
{

H
min
t=j

ρt

(
st, δt(st)

)
, 1−

H−1
min
t=j

πt

(
st+1

∣∣∣st, δt(st))}
= max

(δ)∈∆i

min
sj+1∈S

min
T ∈Ti−1

max
{

min
{
ρj

(
sj , δj(sj)

)
,

H
min
t=j+1

ρt(st, δt(st))
}
, 1−

H−1
min
t=j

πt

(
st+1

∣∣∣st, δt(st))}

= max
(δ)∈∆i

min
sj+1∈S

min
{
ρj

(
sj , δj(sj)

)
, min
T ∈Ti−1

max
{

H
min
t=j+1

ρt

(
st, δt(st)

)
, 1−

H−1
min
t=j

πt

(
st+1

∣∣∣st, δt(st))}} (29)

= max
(δ)∈∆i

min
sj+1∈S

min
{
ρj

(
sj , δj(sj)

)
, min
T ∈Ti−1

max
{

H
min
t=j+1

ρt

(
st, δt(st)

)
,
H−1max
t=j

{
1− πt

(
st+1

∣∣∣st, δt(st))}}}

= max
(δ)∈∆i

min
sj+1∈S

min
{
ρj

(
sj , δj(sj)

)
,max

{
1− πj

(
sj+1

∣∣∣sj , δj(sj)),
min
T ∈Ti−1

max
{ H

min
t=j+1

ρt

(
st, δt(st)

)
, 1−

H−1
min
t=j+1

πt

(
st+1

∣∣∣st, δt(st))}}}

= max
δj(sj)∈A

min
sj+1∈S

min
{
ρj

(
sj , δj(sj)

)
,max

{
1− πj

(
sj+1

∣∣∣sj , δj(sj)), (30)

max
(δ)∈∆i−1

min
T ∈Ti−1

max
{ H

min
t=j+1

ρt

(
st, δt(st)

)
, 1−

H−1
min
t=j+1

πt

(
st+1

∣∣∣st, δt(st))}}}

= max
a∈A

min
sj+1∈S

min
{
ρj

(
sj , a

)
,max

{
1− πj

(
sj+1

∣∣∣sj , a), U∗H−1(sj+1)
}}

= max
a∈A

min
{
ρj

(
sj , a

)
, min
sj+1∈S

max
{

1− πj
(
sj+1

∣∣∣sj , a), U∗H−1(sj+1)
}}

.

where the equation (I.34) of Property I.2.1 is used for the row (29). The row (30) is explained
by the following result: consider the function F : S ×A → L. Then,

max
δ:S→L

min
s∈S

F (s, δ(s)) = min
s∈S

max
δ:S→A

F (s, δ(s)).

Indeed, ∀δ : S → A, ∀s ∈ S, min
s′∈S

F (s′, δ(s′)) 6 max
δ′:S→A

F (s, δ′(s)), and thus,
max
δ:S→A

min
s′∈S

F (s′, δ(s′)) 6 min
s∈S

max
δ′:S→A

F (s, δ′(s)). Now, consider δ∗ : S → A such that ∀s ∈ S,
δ∗(s) ∈ argmaxa∈A F (s, a). Then, ∀δ : S → A, min

s∈S
F (s, δ∗(s)) > min

s∈S
F (s, δ(s)), which implies

that min
s∈S

F (s, δ∗(s)) > max
δ:S→A

min
s∈S

F (s, δ(s)), i.e. min
s∈S

max
δ:S→A

F (s, δ(s)) > max
δ:S→A

min
s∈S

F (s, δ(s)) :
the equality is shown.

Finally, the strategy computation (I.57) is explained by inclusions (I.31) and (I.33) of prop-
erties (I.2.1).

A.21 Proof of Theorem 14
Proof : Suppose that the belief state at time step t ∈ N is βt. The joint distribution of the system

state variable St+1 and the observation variable Ot+1 is



A. Proofs of Chapter I 183

Π (St+1 = s′, Ot+1 = o′ | It = it, a )

= max
s∈S

Π (St+1 = s′, Ot+1 = o′, St = s | It = it, at ) (31)

= max
s∈S

min
{

Π (St+1 = s′, Ot+1 = o′ | St = s, It = it, at ) ,Π (St = s | It = it, at )
}

(32)

= max
s∈S

min
{

Π (Ot+1 = o′ | St+1 = s′, at ) ,Π (St+1 = s′ | St = s, at ) , βt(s)
}

(33)

= min
{

Π (Ot+1 = o′ | St+1 = s′, at ) ,max
s∈S

min
{

Π (St+1 = s′ | St = s, at ) , βt(s)
}}

(34)

= min
{
πt (o′ | s′, at ) ,max

s∈S
min

{
πt (s′ | s, at ) , βt(s)

}}
,

denoted by πt (s′, o′ | βt, at ) to simplify notations: maxs′∈S πt (s′, o′ | βt, at ) is also denoted by
π (o′ | βt, at ). Line (31) is the possibilistic marginalization over variable St. Line (32) is due to
the definition of the conditioning, Definition I.2.7. Line (33) uses the Definition of the belief
state, Definition I.2.16, and that St does not depend on the action at. Finally, line (34) is comes
from equation (I.30) of Property I.2.1.

Suppose now that the observation received at time step t + 1 is ot+1: as, by definition,
βt+1(s′) = Π (St+1 = s′ | It = it, Ot+1 = ot+1, at ), using the qualitative possibilistic condition-
ing (Definition I.2.7), we conclude that, ∀s ∈ S,

βt+1(s′) =
{

1 if πt (s′, ot+1 | βt, at ) = πt (ot+1 | βt, at ) ,
πt (s′, ot+1 | βt, at ) otherwise.

A.22 Proof of Theorem 15
Proof : Let us denote by π

(
sH , ôH

∣∣∣β0, (δ)
)

the joint possibility degree of the last system state
sH ∈ S and the observation sequence ôH when the strategy is (δ) = (δ)H−1

t=0 :
Π
(
SH = sH , ÔH = ôH

∣∣∣ (δ)
)

= max
(s0,...,sH−1)∈SH

H−1
min
t=0

min
{
πt

(
ot+1

∣∣∣st+1, δt(it)
)
, πt

(
st+1

∣∣∣st, δt(it)), β0(s0)
}
.

The possibility distribution over the observation sequence is also denoted by

π
(
ôH

∣∣∣β0, (δ)
)

= max
sH∈S

π
(
sH , ôH

∣∣∣β0, (δ)
)
,

and the one over the last state sH ∈ S is denoted by

π
(
sH

∣∣∣β0, (δ)
)

= max
ôH

π
(
sH , ôH

∣∣∣β0, (δ)
)
.

By definition, the qualitative belief state at the end of the execution, i.e. at time step t = H,

is equal to βδ,̂oH

β0
(s) = Π

(
SH = s | ÔH = ôH ,

(
δt(it)

)H−1

t=0

)
, see Definition I.2.16. It can be

written as a function of ôH , (δ) and β0, and this belief state is then denoted by βδ,̂oH

β0
:

βδ,̂oH

β0
(s) =

 1 if π
(
s, ôH

∣∣∣β0, (δ)
)

= π
(
ôH

∣∣∣β0, (δ)
)
,

π
(
s, ôH

∣∣∣β0, (δ)
)

otherwise,

using the possibilistic conditioning, Definition I.2.7.
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Following lines show the desired equality for the optimistic criterion: its rewriting, denoted
by SΠ

[
max
s∈S

min {Ψ(s), BπH(s)}
∣∣∣β0, (δ)

]
, is equal to

max
ôH

min
{

max
s∈S

min
{

Ψ(s), βδ,̂oH

b0
(s)
}
, π
(
ôH

∣∣∣β0, (δ)
)}

= max
ôH ,s∈S

min
{

Ψ(s), βδ,̂oH

b0
(s), π

(
ôH

∣∣∣β0, (δ)
)}

(35)

= max
s∈S

min
{

Ψ(s),max
ôH

min
{

Π
(
SH = s | ÔH = ôH ,

(
δt(it)

)H−1

t=0

)
, π
(
ôH

∣∣∣β0, (δ)
)}}

(36)

= max
s∈S

min
{

Ψ(s), π
(
s
∣∣∣β0, (δ)

)}
(37)

= SΠ [Ψ(SH) | β0, (δ) ] . (38)

Line (35) comes using equality (I.30) of Property I.2.1. Line (36) uses the definition of the
possibilistic belief state. Line (37) uses the definition of π

(
ôH

∣∣∣β0, (δ)
)
, and the possibilistic

conditioning. Finally, line (38) is a notation: it is used as the Sugeno integral is based on the
distribution π

(
sH

∣∣∣β0, (δ)
)
.

As regards the pessimistic criterion (I.66), the rewriting is shown in the same way:
SN
[

mins∈S max {Ψ(s), 1−BπH(s)}
∣∣∣β0, (δ)

]
= min

ôH

max
{

min
s∈S

max
{

Ψ(s), 1− βδ,̂oH

b0
(s)
}
, 1− π

(
ôH

∣∣∣β0, (δ)
)}

= min
ôH ,s∈S

max
{

Ψ(s), 1− βδ,̂oH

b0
(s), 1− π

(
ôH

∣∣∣β0, (δ)
)}

(39)

= min
s∈S

max
{

Ψ(s),min
ôH

max
{

1−Π
(
SH = s | ÔH = ôH ,

(
δt(it)

)H−1

t=0

)
, 1− π

(
ôH

∣∣∣β0, (δ)
)}}
(40)

= min
s∈S

max
{

Ψ(s), 1−max
ôH

min
{

Π
(
SH = s | ÔH = ôH ,

(
δt(it)

)H−1

t=0

)
, π
(
ôH

∣∣∣β0, (δ)
)}}

(41)

= min
s∈S

max
{
P (s), 1− π

(
s
∣∣∣β0, (δ)

)}
(42)

= SN [P (SH) | β0, (δ) ] . (43)

Line (39) comes using the equality (I.29) of Property I.2.1 and line (40) uses the definition of the
possibilistic belief state. Line (41) uses the equatity (I.26) and the equality (I.27) of Property
I.2.1. Line (42) uses the definition of π

(
ôH

∣∣∣β0, (δ)
)
, and the possibilistic conditioning. Finally,

as the Sugeno integral is based on the distribution π
(
sH

∣∣∣β0, (δ)
)
, the result can be denoted as

line (43).
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A.23 Proof of Theorem 16
Proof : First, ∀at ∈ A,∀o′ ∈ O,

Π (Ot+1 = o′ | It = it, at ) = max
s′∈S

Π (Ot+1 = o′, St+1 = s′ | It = it, at )

= max
(s,s′)∈S2

min
{
πt (o′ | s′, at ) , πt (s′ | s, at ) ,Π (St = s | It = it )

}
= max

(s,s′)∈S2
min

{
πt (o′ | s′, at ) , πt (s′ | s, at ) , βitβ0

(s)
}
.

where βitβ0
is obtained starting from β0 and with information it. To make the next equations

clear, the next formula max(s,s′)∈S2 min
{
πt (o′ | s′, at ) , πt (s′ | s, at ) , βitβ0

(s)
}

is denoted by

πt

(
o′ | βitβ0

, at

)
. Then, as the belief state is a deterministic function of the current observation,

the previous action, and the previous belief state,

Π
(
Bπt+1 = β′

∣∣ It = it, at
)

= Π
(
∪ o′∈O s.t.
ν(β,at,o

′)=β′
{Ot+1 = o′ }

∣∣∣∣∣ It = it, at

)
= max

o′∈O s.t.
ν(β,at,o

′)=β′
Π (Ot+1 = o′ | It = it, at )

= max
o′∈O s.t.

ν(β,at,o
′)=β′

πt (o′ | β, at ) . (44)

where βitβ0
(s) is denoted by β. The set of all the possible information sequences at a time

step t > 1 is denoted by It = At × Ot. Thanks to the equation (44) for each belief β ∈ ΠSL,
Π
(
Bπt+1 = β′

∣∣ It = it, at
)
does not depend on the information it ∈ It, provided it is in{

i ∈ It | βiβ0
= β

}
. Thus, as Π (It = i | Bπt = β, at ) = 0 if βiβ0

6= β, we can write

Π
(
Bπt+1 = β′

∣∣ Bπt = β, at
)

= max
i∈It

min
{

Π
(
Bπt+1 = β′

∣∣ It = i, at
)
,Π (It = i | Bπt = β, at )

}
= max

i∈It

min
{

Π
(
Bπt+1 = β′

∣∣ It = i∗, at
)
,Π (It = i | Bπt = β, at )

}
= min

{
Π
(
Bπt+1 = β′

∣∣ It = i∗, at
)
,max
i∈It

Π (It = i | Bπt = β, at )
}

= Π
(
Bπt+1 = β′

∣∣ It = i∗, at
)

where i∗ is such that βi∗β0
= β, using the equation (I.30) of Property I.2.1, and the fact that

maxi∈It Π (It = i | Bπt = β, at ) = 1.
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B Proofs of Chapter II

B.1 Property linking SΠ and SN
Property B.1

Let f be a function from Ω to L:

SΠ [1− f ] = 1− SN [f ]

Proof : By definition (see Definition I.2.11 and Theorem 12),

SΠ [ 1− f ] = max
ω∈Ω

min {1− f(ω), π(ω)}

= max
ω∈Ω

{
1−max {f(ω), 1− π(ω)}

}
= 1−min

ω∈Ω
max {f(ω), 1− π(ω)}

= 1− SN [f ] ,

using equations (I.26) and (I.27) of Property I.2.1.

B.2 Proof of Property II.1.1
Proof : First, ∀ω ∈ Ω, max {f(ω), g(ω)} > f(ω), and max {f(ω), g(ω)} > g(ω). Thus, ∀ω ∈ Ω,

max {f(ω), g(ω)} > min {f(ω), π(ω)}, and max {f(ω), g(ω)} > min {g(ω), π(ω)}. As well,
note that ∀ω ∈ Ω, π(ω) > min {f(ω), π(ω)}, and ∀ω ∈ Ω, π(ω) > min {g(ω), π(ω)}. Thus,
∀ω ∈ Ω,

min
{

max {f(ω), g(ω)} , π(ω)
}
> min {f(ω), π(ω)}

and
min

{
max {f(ω), g(ω)} , π(ω)

}
> min {g(ω), π(ω)} .

Recall that the Sugeno integral SΠ [max {f, g } ] is equal to

max
ω′∈Ω

min
{

max {f(ω′), g(ω′)} , π(ω′)
}
.

Using previous inequalities, ∀ω ∈ Ω,

SΠ [max {f, g } ] > min {f(ω), π(ω)}

and
SΠ [max {f, g } ] > min {g(ω), π(ω)} ,

and then
SΠ [max {f, g } ] > max

ω∈Ω
min {f(ω), π(ω)} = SΠ [f ] ,

and
SΠ [max {f, g } ] > max

ω∈Ω
min {g(ω), π(ω)} = SΠ [g ] .

We can conclude that SΠ [max {f, g } ] > max {SΠ [f ] ,SΠ [g ]}.
Now, let us show that SΠ [max {f, g } ] 6 max {SΠ [f ] ,SΠ [g ]}: let us denote by ω∗ an

element from Ω such that

ω∗ ∈ argmax min
{

max {f(ω), g(ω)} , π(ω)
}
.
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Thus, SΠ [max {f, g } ] = min
{

max {f(ω∗), g(ω∗)} , π(ω∗)
}
. On the one hand, if f(ω∗) >

g(ω∗),

SΠ [max {f, g } ] = min {f(ω∗), π(ω∗)}
6 max

ω∈Ω
min {f(ω), π(ω)} = SΠ [f ] 6 max {SΠ [f ] ,SΠ [g ]} .

On the other hand, if f(ω∗) 6 g(ω∗),

SΠ [max {f, g } ] = min {g(ω∗), π(ω∗)}
6 max

ω∈Ω
min {g(ω), π(ω)} = SΠ [g ] 6 max {SΠ [f ] ,SΠ [g ]} .

Finally, SΠ [max {f, g } ] = max {SΠ [f ] ,SΠ [g ]}.
Using Property B.1, equation (I.27) of Property I.2.1, and the previous result,

SN [min {f, g } ] = SN [ 1−max {1− f, 1− g } ]
= 1− SΠ [max {1− f, 1− g } ]
= 1−max {SΠ [ 1− f ] ,SΠ [ 1− g ]}
= min {1− SΠ [ 1− f ] , 1− SΠ [ 1− g ]}
= min {SN [f ] ,SN [g ]} .

B.3 Proof of Theorem 18
Proof : In order to make the following calculus lines easier to read, Ψ(SH) is denoted by

ρH(SH , AH), Ψ(Bπt ) is denoted by ρH(BπH , AH), and Ψ(Bπt ) is denoted by ρH(BπH , AH):

SΠ

[
G
(

(St)Ht=0, (At)H−1
t=0

)]
= SΠ

[
Hmax
t=0

ρt(St, At)
]

(45)

= Hmax
t=0

SΠ [ρt(St, At) ] (46)

= Hmax
t=0

SΠ [ρt(Bπt , At) ] (47)

= SΠ

[
Hmax
t=0

ρt(Bπt , At)
]

(48)

= SΠ

[
G
(

(Bπt )Ht=0, (At)H−1
t=0

)]
, (49)

where ρt(Bπt , At) = maxs∈S min {ρt(s,At), Bπt (s)}. The definition of G (see Definition II.1.1)
explains the first line (45). Line (46) comes from the maxitivity of SΠ, described in Property
II.1.1. The Theorem 15 is applied to each terms of the maximum operator in line (47). Finally,
line (48) uses Property II.1.1 and line (49) uses the definition of G for belief states.

SN
[
G
(

(St)Ht=0, (At)H−1
t=0

)]
= SN

[
H

min
t=0

ρt(St, At)
]

(50)

=
H

min
t=0

SN [ρt(St, At) ] (51)

=
H

min
t=0

SN
[
ρt(Bπt , At)

]
(52)

= SN
[

H
min
t=0

ρt(Bπt , At)
]

(53)

= SN
[
G
(

(Bπt )Ht=0, (At)H−1
t=0

)]
, (54)

where ρt(Bπt , At) = mins∈S max {ρt(s,At), 1−Bπt (s)}. The definition of G (see Definition
II.1.1) explains line (50). The minitivity of SN , described in Property II.1.1, allows to writte
the line (51). For line (52), the Theorem 15 is applied to each terms of the minimum operator.
Finally, Property II.1.1 is used for line (53), and line (54) comes from the definition of G for
belief states.
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B.4 Proof of Theorem 19
Proof : We proceed by induction on t ∈ N: as the initial visible state sv,0 is known by the agent,

only states s = (sv, sh) for which sv = sv,0 are such that β0(s) > 0. A belief over hidden states
can be thus defined as βh,0(sh) = maxsv∈Sv

β0(sv, sh) = β0(sv,0, sh).
At time t, if βt(s) = 0 for each s = (sv, sh) ∈ S such that sv 6= sv,t, the same notation can

be adopted: βh,t(sh) = βt(sv,t, sh). Thus, if the agent reaches state st+1 = (sv,t+1, sh,t+1) using
action at ∈ A, and if s′ = (s′v, s′h) with s′v 6= sv,t+1, then s′v 6= ov,t+1 and:

πt (ot+1, s
′ | βt, at ) = min

{
πt (ot+1 | s′, at ) ,max

s∈S
min {πt (s′ | s, at ) , βt(s′)}

}
= 0.

thanks to Equation (II.15). Finally, belief update formula (I.62) ensures that βt+1(s′) = 0, since
0 = πt (ot+1, s

′ | βt, at ) < πt (ot+1 | βt, at ) (as ot+1 is received, ot+1 is not impossible, otherwise
the model is wrong). Then, βt+1 is entirely encoded by (sv,t+1, βh,t+1) with sv,t+1 = ov,t+1 and
βh,t+1(sh) = maxsv

βt+1(sv, sh), ∀sh ∈ Sh.

B.5 Proof of Theorem 20
Proof : Starting from the standard belief update equation (I.62) of Theorem 14 with ot+1 =

(ov,t+1, oh,t+1), and using equation (II.15) in the case of ov,t+1 = sv,t+1 (i.e. o′v = s′v), we
get that βt+1(s′v, s′h) is equal to the right part of the equation (II.16). As defined in Theorem
19, βt+1,h(s′h) = maxsv∈Sv

βt+1(sv, s′h); as shown in its proof, ∀s′v ∈ Sv such that s′v 6= ov,
βt+1(sv, sh) = 0. Thus, βh,t+1(s′h) is equal to βt+1(s′v, s′h) with o′v = s′v, i.e. to the right part of
the equation.

B.6 Proof of Theorem 21
Proof : Using the classical dynamic programming equation, Theorem 19, and the facts Sv = Ov

and that s′v 6= o′v is impossible,
Û∗i (sv, βh) = Û∗i (β)

= max
a∈A

M̂
{
ρ̂t(β, a), Ŝ

(
πt (o′ | β, a ) , Û∗i−1

(
ν(β, a, o′)

))}

= max
a∈A

M̂
{
ρ̂t(β, a), Ŝ

(
πt (o′v, o′h | β, a ) , Û∗i−1

(
ν(β, a, o′v, o′h)

))}

= max
a∈A

M̂
{
ρ̂t(sv, βh, a), Ŝ

(
πt (s′v, o′h | β, a ) , Û∗i−1

(
ν(β, a, s′v, o′h)

))}

= max
a∈A

M̂
{
ρ̂t(sv, βh, a), Ŝ

(
πt (s′v, o′h | β, a ) , Û∗i−1

(
s′v, νh(sv, βh, a, s′v, o′h)

))}
where ∀sh ∈ Sh,

β′h(s′h) = νh(sv, βh, a, s′v, o′h)(s′h) = max
sv∈Sv

ν(β, a, s′v, o′h)(sv, s′h) = ν(β, a, s′v, o′h)(s′v, s′h)

= βt+1(s′v, s′h).

B.7 Proof of Theorem 23
Proof : Let βt be a belief state in ΠSL, a be an action in A, and let us denote

maxs∈S min {π (s′ | s, a ) , βt(s)} by βat (s′), ∀s′ ∈ S.
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For each s′ ∈ S, we denote by Pa(s′) the set of system states which lead to s′ selecting
action a ∈ A: {s ∈ S | π (s′ | s, a ) = 1}. As the transition possibility distribution π (s′ | s, a )
is deterministic, ∀s ∈ S, ∃!s′ ∈ S such that π (s′ | s, a ) = 1. It implies that ∀(s′, s̃) ∈ S2,
Pa(s′) ∩ Pa(s̃) = ∅ (otherwise, ∃s ∈ S leading to two different successors selecting action a,
namely s′ and s̃). Moreover, ∪s′∈SPa(s′) = S (otherwise ∃s ∈ S without any successor s′ ∈ S).
Thus, ∀s′ ∈ S, two cases are possible: either there is no system state s ∈ S leading to s′ selecting
action a, i.e. Pa(s′) = ∅, and then βat (s′) = 0 (since ∀s ∈ S, π (s′ | s, a ) = 0). Otherwise,
Pa(s′) 6= ∅ and βat (s′) = maxs∈Pa(s′) βt(s). As, ∀s′ ∈ S, maxs∈Pa(s′) βt(s) 6

∑
s∈Pa(s′) βt(s),∑

s′∈S
βat (s′) 6

∑
s′∈S

∑
s∈Pa(s′)

βt(s) =
∑
s∈S

βt(s),

i.e. βat � βt. Finally, since π (o′ | s′, a ) = 1, min {π (o′ | s′, a ) , βat (s′)} = βat (s′). Thus, using
the belief update equation (I.62), βat = βt+1, and then βt+1 � βt. We can conclude that the
first conditions lead to βt+1 � βt.

We prove now that the second conditions lead to the same conclusion. First note that
if π (s′ | s, a ) = 1{ s′=s}, then βat = βt. Two cases are now distinguished. First, sup-
pose that it exists a system state s′ ∈ S such that min {π (o′ | s′, a ) , βat (s′)} = 1: using
the belief update (I.62), we get that ∀s′ ∈ S, βt+1(s′) = min {π (o′ | s′, a ) , βat (s′)}. Yet,
min {π (o′ | s′, a ) , βat (s′)} 6 βat (s′) = βt(s′), thus βt+1 is more specific than βt (and then
βt+1 � βt). Second, suppose that ∀s′ ∈ S, min {π (o′ | s′, a ) , βat (s′)} < 1. Then, only one
s′ ∈ S can maximize min {π (o′ | s′, a ) , βat (s′)}. Indeed, otherwise, it would be two system
states s′ and s̃ such that one of the following equalities hold: π (o′ | s′, a ) = π (o′ | s̃, a ); or
π (o′ | s′, a ) = βat (s̃); or βat (s′) = βat (s̃). We know that the belief update (I.62) defines βt+1(s′)
as the possibility degree βat (s′), or π (o′ | s′, a ), or yet 1. Since ∀s ∈ S, β0(s) = 1 and since
∀o′ ∈ O, ∀a ∈ A, ∀(s′, s̃) ∈ S2, π (o′ | s′, a ) 6= π (o′ | s̃, a ), belief states obtained from β0,
using successive belief updates (I.62), never assign the same possibility degree to two different
states, except if it is the possibility degree 1. It contradicts thus the fact that more than one
system state s′ ∈ S maximize min {π (o′ | s′, a ) , βat (s′)}. Let us note the maximizing system
state s∗: using belief update (I.62), this state is the only system state such that βt+1(s∗) = 1.
System states s′ ∈ S which do not maximize the joint possibility distribution (s′ 6= s∗) are such
that βt+1(s′) = min {π (o′ | s′, a ) , βat (s′)} 6 βat (s′) = βt(s′). Thus if βt(s∗) = 1, βt+1 is more
specific than βt (and then βt+1 � βt). In order to complete the proof, we now show that the
inequality βt+1 � βt remains true even if βt(s∗) < 1. Let us denote by s̃ ∈ S a system state
such that βt(s̃) = 1. We can affirm that βt+1(s̃) < βt(s∗). Indeed, if this was not the case, then
βt+1(s̃) > βt(s∗), and

βt+1(s̃) > min {π (o′ | s∗, a ) , βt(s∗)} = min {π (o′ | s∗, a ) , βat (s∗)} ,

where the last equality is due to the fact that βat = βt. Since βt+1(s̃) =
min {π (o′ | s̃, a ) , βat (s̃)}, s∗ is not maximizing: it is a contradiction. Thus, βt+1(s̃) < βt(s∗).
Finally,

∑
s∈S\{ s∗,s̃} βt+1(s) 6

∑
s∈S\{ s∗,s̃} βt(s), βt+1(s∗) = βt(s̃) = 1 and βt+1(s∗) < βt(s̃),

thus βt+1 � βt (and even βt+1 ≺ βt).
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C Proof of Theorem 22: optimality of the strategy computed
by Algorithm 10
This appendix demonstrates that Algorithm 10 returns the maximum value of Equation (II.18)
and an optimal strategy. Note that the computed optimal strategy is stationary, and is optimal
regardless of the initial state. We recall that ∃â ∈ A such that ∀s ∈ S, π (s′ | s, â) = 1 if s′ = s,
and 0 otherwise. The existence of this action â makes the maximum value of the criterion non-
decreasing with respect to the horizon size. Let us denote by (u∗i )i>0 the sequence of functions
U∗ computed by the algorithm: ∀i > 1, u∗i−1 is the function U∗ at the beginning of the ith itera-
tion (line 5). That is, u∗0 = Ψ, and ∀i > 1, ∀s ∈ S, u∗i (s) = maxa∈Amin

{
π (s′ | s, a) , u∗i−1(s)

}
.

As well, ∀s ∈ S, we denote by δ∗i the strategy δ∗ : S → A computed after i iterations (accord-
ing to the while loop). Finally, Ti is the set of i-length system state trajectories (s1, . . . , si),
and ∆i the set of i-length strategies: (δt)i−1

t=0 such that δ : S → A.
Lemma C.1
∀s ∈ S, ∀i > 0, u∗i (s) 6 u∗i+1(s).

Proof : Let s0 ∈ S. Looking at Algorithm 4 for optimistic finite-horizon π-MDP, and looking at
Algorithm 10, we see that ∀i > 0, u∗i = U∗i (in the case of terminal preference only, i.e. ∀t > 0,
∀a ∈ A, ∀s ∈ S, ρt(s, a) = 1 since the global preference (II.3) is based on the miminum operator,
see Section I.2.4), and thus, ∀p > 1

u∗p+1(s0) = max
(δ)∈∆p+1

max
τ∈Tp+1

min
{

p

min
i=0

π
(
si+1

∣∣∣si, δi(si)),Ψ(sp+1)
}
.

Consider the particular trajectories τ ′ ∈ T ′p+1 ⊂ Tp+1 such that τ ′ = (s1, . . . , sp, sp+1) and sp =
sp+1. Consider also the particular policies (δ′) ∈ ∆′p+1 ⊂ ∆p+1 such that (δ′) = (δ0, . . . , δp−1, δ̂),
where δ̂ is the decision rule such that δ̂(s) = â (action “stay”). It is obvious that

u∗p+1(s0) > max
(δ′)∈∆′p+1

max
τ ′∈T ′p+1

min
{

p

min
i=0

π
(
si+1

∣∣∣si, δ′i(si)),Ψ(sp+1)
}
.

The right part of this inequality can be rewritten as

max
(δ)∈∆p

max
τ∈Tp

min
{
p−1
min
i=0

π
(
si+1

∣∣∣si, δi(si)), π (sp | sp, â ) ,Ψ(sp)
}

= u∗p(s0)

since π (sp | sp, â ) = 1. Hence, ∀p > 0, u∗p+1(s0) > u∗p(s0).

The meaning of this lemma is: it is always more possible to reach a state s from s0 in at most
p + 1 steps than in at most p steps. As for each s ∈ S,

(
u∗p(s)

)
p∈N
6 1, Lemma C.1 insures

that the sequence (u∗p(s))p∈N converges. The next lemma shows that the convergence of this
sequence occurs in finite time.
Lemma C.2

For all ∀s ∈ S, the number of iterations of the sequence
(
u∗p(s)

)
p∈N

up to convergence is
bounded by #S ×#L.

Proof : Recall first that values of the possibility and preference distributions are in L which is
finite and totally ordered: we can write L={0, l1, l2, . . . , 1} with 0 < l1 < l2 < . . . < 1. If two
successive functions u∗k and u∗k+1 are equal, then ∀s ∈ S sequences

(
u∗p(s)

)
p>k

are constant.
Indeed this sequence can be defined by the recursive formula

u∗p(s) = max
a∈A

max
s′∈S

min
{
π (s′ | s, a ) , u∗p−1(s′)

}
.
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Thus if ∀s ∈ S, u∗p(s) = u∗p−1(s) then the next iteration (p + 1) faces the same situation
(u∗p+1(s) = u∗p(s), ∀s ∈ S). The slowest convergence can then be described as follows: for each
p ∈ N only one s ∈ S is such that u∗p+1(s) > u∗p(s). Moreover, for this s, if u∗p(s) = li, then
u∗p+1(s) = li+1. We can conclude that for p > #L ×#S, the sequence is constant.

We conclude that the variable U∗ of the algorithm converges to the maximal value of the
criterion for an (#L ×#S)-size horizon and can not be greater: the function U∗ returned is
thus optimal with respect to Equation (II.18) and is computed in a finite number of steps.

In the following, we prove the optimality of the strategy, based on the decision rule δ∗ :
S → A, returned by Algorithm 10. For this purpose, we will construct a trajectory τ =
(s1, . . . , sp) ∈ Tp of size p smaller than #S which maximizes min {π (τ | s0, (δ)) ,Ψ(sp)} with
strategy (δ∗) = (δ∗t )t>0 such that ∀s ∈ S, ∀t > 0, δ∗t (s) = δ∗(s). The next two lemmas are
needed for this construction and require some notations.

Let s0 ∈ S and p be the smallest integer such that ∀p′ > p, u∗p′(s0) = U∗(s0), where
U∗ is here the optimal value of the infinite horizon criterion of Equation (II.18) returned by
Algorithm 10 (variable U∗(s) of Algorithm 10 does not increase after p iterations). Algorithm
4 for optimistic finite-horizon π-MDP (in the case of terminal preference only) can be used to
return an optimal strategy in the finite-horizon sence, see criterion (I.58), denoted by (δ(s0)) ∈
∆p (this strategy is not stationary in general). With this notation, ∀s ∈ S, δ∗(s) = δ

(s)
0 (s),

since δ(s)
0 (s) is the last selected action before convergence of

(
U∗i (s)

)
i>0

(see Algorithm 4).
Consider now a trajectory τ = (s1, s2, . . . , sp) which maximizes

min
{
p−1
min
i=0

π
(
si+1

∣∣∣si, δ(s0)
i (si)

)
,Ψ(sp)

}
.

This trajectory is called optimal trajectory of minimal size from s0.
Lemma C.3

Let τ = (s1, . . . , sp) be an optimal trajectory of minimal size from s0. Then, ∀k ∈
{1, . . . , p− 1},

U∗(s0) 6 u∗p−k(sk) 6 U∗(sk),

where U∗ is the optimal value function returned by Algorithm 10, and u∗p−k(sk) is equal
to U∗p−k(sk) in Algorithm 4 (or defined above).

Proof : Let k ∈ {1, . . . , p− 1}.

U∗(s0) = min
{
p−1
min
i=0

π
(
si+1

∣∣∣si, δ(s0)
i (si)

)
,Ψ(sp)

}
6 min

{
p−1
min
i=k

π
(
si+1

∣∣∣si, δ(s0)
i (si)

)
,Ψ(sp)

}
6 U∗p−k(sk) = u∗p−k(sk) 6 U∗(sk)

since (u∗p)p∈N is non-decreasing (see Lemma C.1), and ∀i > 0, U∗i = u∗i (see Algorithm 4) whose
limit is U∗.

Lemma C.4
Let τ = (s1, . . . , sp) be an optimal trajectory of minimal size from s0 and k ∈
{1, . . . , p− 1}. If U∗(s0) = U∗(sk), then δ∗(sk) = δ

(s0)
k (sk).

Proof : Suppose that U∗(s0) = U∗(sk). Since U∗(s0) 6 u∗p−k(sk) 6 U∗(sk) (Lemma C.3), we
obtain that u∗p−k(sk) = U∗(sk). The criterion in sk is thus optimized within a (p− k)-horizon.
Moreover a shorter horizon is not optimal: ∀m ∈ {1, . . . , p− k}, u∗p−k−m(sk) < U∗(sk) i.e. with
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a (p− k−m)-size horizon the criterion in sk is not maximized. Indeed if the contrary was true,
the criterion in s0 would be maximized within a (p−m)-size horizon: the strategy

δ′ = (δ(s0)
0 , δ

(s0)
1 , . . . , δ

(s0)
k−1, δ

(sk)
0 , . . . , δ

(sk)
p−k−m−1) ∈ ∆p−m

would be optimal. Indeed,

U∗(s0) = min
{
k−1
min
i=0

π
(
si+1 | si, δ(s0)

i (si)
)
, u∗p−k(sk)

}
= min

{
k−1
min
i=0

π
(
si+1 | si, δ(s0)

i (si)
)
, U∗(sk)

}
.

Then let τ = (s1, . . . , sp−k−m) ∈ Tp−k−m be an optimal trajectory of minimal size from sk.
Setting s0 = sk, τ thus maximizes min

{
minp−k−m−1

i=0 π
(
si+1 | si, δ(sk)

i (si)
)
,Ψ(sp−k−m)

}
,

which is then equal to U∗(sk). If (s′1, . . . , s′p−m) = (s1, . . . , sk−1, s0, . . . , sp−k−m),

U∗(s0) = min
{
p−m−1
min
i=0

π
(
s′i+1

∣∣∣s′i, δ′i(si)),Ψ(s′p−m)
}
,

i.e. ∃p′ < p such that U∗(s0) = u∗p′(s0): it contradicts the assumption that (s1, . . . , sp) is an
optimal trajectory of minimum size. Thus p − k is the smallest integer such that u∗p−k(sk) =
U
∗(sk): we finally conclude that δ∗(sk)

(
:= δ

(sk)
0 (sk)

)
= δ

(s0)
k (sk), as the action δ(s0)

k (sk) is
also selected during the iteration p− k, maximizing the same value function.

Theorem 29

Let (δ∗) be the strategy returned by Algorithm 10; ∀s0 ∈ S, there exists p∗ 6 #S and a
trajectory (s1, . . . , sp∗) such that

U∗(s0) = min
{
p∗−1
min
i=0

π
(
si+1

∣∣∣si, δ∗(si)),Ψ(sp∗)
}
,

i.e. (δ∗) is an optimal strategy.

Proof : Let s0 be in S and τ ∈ Tp be an optimal trajectory of minimal size p from s0.
If ∀k ∈ {1, . . . , p− 1}, U∗(sk) = U∗(s0), then, using Lemma C.4, ∀k ∈ {1, . . . , p− 1},
δ∗(sk) := δ

(sk)
0 (sk) = δ

(s0)
k (sk), and then the criterion in s0 is maximized with (δ∗) since it

is maximized with (δ(s0)
t )p−1

t=0 : the optimality of the strategy is shown.
Otherwise, let k be the smallest integer ∈ {1, . . . , p− 1} such that U∗(sk) > U∗(s0): the

definition of k and Lemma C.3 implies that U∗(sk) > U∗(si) = U∗(s0), ∀i ∈ {0, . . . , k − 1}.
Reiterate beginning with s

(1)
0 = sk: let p(1) be the number of iterations until variable

U∗(s(1)) of Algorithm 10 converges i.e. the smallest integer such that U∗(s(1)
0 ) = u∗

p(1)(s
(1)
0 ). Let

τ (1) ∈ Tp(1) be a trajectory which maximizes min
{

minp
(1)−1
i=0 π

(
si+1

∣∣∣si, δ(s(1)
0 )

i (si)
)
,Ψ(s(1)

p(1))
}

(τ (1) is an optimal trajectory of minimal size from sk = s
(1)
0 ). We select k(1) in the same way

as previously and reiterate beginning with s(2)
0 = s

(1)
k(1) which is such that U∗(s(1)

k(1)) > U∗(s(1)
0 ),

and U∗(s(1)
k(1)) > U∗(s(1)

i ) ∀i ∈ {0, . . . , k(1) − 1} etc. Lemma C.5 below shows that all selected
states (s0, . . . , sk−1, s

(1)
0 , . . . , s

(1)
k(1)−1, s

(2)
0 . . . , s

(2)
k(2)−1, s

(3)
0 , . . .), are different. Thus this selection

process ends since #S is a finite set. The total number of selected states is denoted by p∗ =
k +

∑q−1
i=1 k

(i) + p(q) with q > 0 the number of new selected trajectories. Then the strategy

(δ′) = (δ0, . . . , δk−1, δ
(s(1)

0 )
0 , . . . , δ

(s(1)
0 )

k(1)−1, . . . , δ
(s(q)

0 )
p(q) )
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corresponds to (δ∗) over τ ′ = (s′1, . . . , s′p∗) = (s0, s1, . . . , sk−1, s
(1)
0 , . . . , s

(1)
k(1)−1, . . . , s

(m)
p(q)−1) and

this strategy is optimal because U∗(s0) = U
(
s0, (δ∗)

)
: indeed,

U∗(s0) = min
{
k−1
min
i=0

π
(
s′i+1

∣∣ s′i, δ′(s′i)) , u∗p−k(sk)
}

6 min
{
k−1
min
i=0

π
(
s′i+1

∣∣ s′i, δ′(s′i)) , U∗(sk)
}

= min
{
k(1)−1
min
i=0

π
(
s′i+1

∣∣ s′i, δ′(s′i)) , u∗p(1)−k(1)(sk(1))
}

. . . 6 min
{
p∗−1
min
i=0

π
(
s′i+1

∣∣ s′i, δ′(s′i)) ,Ψ(sp∗)
}
.

The “6” signs are in fact “=” since otherwise we would find a strategy such that
U(s0, (δ′)) > U∗(s0), while U∗(s0) is the maximal value. Thus (δ∗) is optimal: U∗(s0) =
min

{
minp

∗−1
i=0 π

(
s′i+1

∣∣ s′i, δ∗(s′i)) ,Ψ(sp∗)
}
.

Lemma C.5
The process described in the previous proof in order to construct a trajectory maximizing
the criterion with (δ∗) always selects different system states.

Proof : First, two equal states in the same selected trajectory τ (m) would contradict the hypothesis
that p(m) is the smallest integer such that u∗

p(m)(s
(m)
0 ) = U∗(s(m)

0 ). Indeed let k and l be such
that 0 6 k < l 6 p(m) and suppose that s(m)

k = s
(m)
l . For clarity in the next calculations, we

omit “(m)”: p = p(m) and ∀i ∈ {0, . . . , l}, si = s
(m)
i . We can write

u∗p−k(sk) = min
{

l−1
min
i=k

π
(
si+1 | si, δ(s0)

i (si)
)
, u∗p−l(sl)

}
6 u∗p−l(sl) = u∗p−l(sk),

as sl = sk. However u∗p−k(sk) > u∗p−l(sk) (non-decreasing sequence and p − k > p − l). We
finally get u∗p−k(sk) = u∗p−l(sk), thus

U∗(s0) = min
{
k−1
min
i=0

π
(
si+1 | si, δ(s0)

i (si)
)
, u∗p−k(sk)

}
= min

{
k−1
min
i=0

π
(
si+1 | si, δ(s0)

i (si)
)
, u∗p−l(sl)

}
= min

{
min

i=0,...,k−1,l,...,p−1
π
(
si+1 | si, δ(s0)

i (si)
)
,Ψ(sp)

}
.

Consequently, a (p(m) − l + k)-sized horizon is good enough to reach the optimal value: it is
a contradiction. Finally, if we suppose that a state s appears two times in the sequence of
selected states, then this state belongs to two different selected trajectories τ (m) and τ (m′)

(with m < m′). Lemma C.3, and the definition of k(m) which implies that U∗(s(m+1)
0 ) is strictly

greater than the criterion’s optimal values in each of the states s(m)
0 , . . . , s

(m)
k(m)−1, lead to the

inequalities U∗(s(m′)
0 ) 6 U∗(s) < U∗(s(m+1)

0 ), as s is in τ (m) and in τ (m′). It is a contradiction.
Indeed, as m < m′, the following inequality holds: U∗(s(m+1)

0 ) 6 U∗(s(m′)
0 ).



194 Annex

D Proofs of Chapter III

D.1 Proof of Property III.2.1
Proof :

qa = max
(s′v,β′)∈Sv×ΠSh

L

min
{
π(s′v, β′|sv, β, a), U∗(s′v, β′)

}
= max
X′∈Sv×ΠSh

L

min
{ n

min
i=1

π (X ′i | parents(X ′i), a ) , U∗(X ′)
}

= max
X′n∈{>,⊥}

min
{
π (X ′n | parents(X ′n), a ) , · · ·

max
X′2∈{>,⊥}

min
{
π (X ′2 | parents(X ′2), a ) ,

max
X′1∈{>,⊥}

min{π (X ′1 | parents(X ′1), a ) , U∗(X ′)}
}
· · ·
}

where the last equation is due to the fact that, for any variables x, y ∈ X ,Y finite spaces, and
any functions ϕ : X → L and ψ : Y → L, we have:

max
y∈Y

min{ϕ(x), ψ(y)} = min{ϕ(x),max
y∈Y

ψ(y)},

see the equation I.30 of Property I.2.1.

D.2 Proof of Theorem 24
Proof : First S1

h,0, . . . , S
l
h,0 are initially NI-independent, see Definition I.2.6, i.e. ∀(s1, . . . , sl) ∈

S1
h × . . .× Slh,

Π
(
S1
h,0 = s1, . . . , Slh,0 = sl

)
= min

{
Π
(
S1
h,0 = s1 ) , . . . ,Π (Slh,0 = sl

)}
.

Then ∃
(
βj0

)l
j=1
∈

l×
j=1

ΠS
j
h

L such that ∀sh = (s1, . . . , sl) ∈ S1
h × . . .× Slh, β0(sh) =

l
min
j=1

βj0(sj).

As discussed in Section III.3.2, the d-Separation criterion can be used to prove NI-
independences on the DBN of Figure III.4: we show now that hidden variables of time step
t + 1 are NI-independent conditional on the information it+1. In fact, as shown in Figure
III.4, given 1 6 i < j 6 l, Sih,t+1 and Sjh,t+1 are d-separated by the evidence It+1 = it+1.

Thus, ∀s = (s1, . . . , sl) ∈ Sh, Π (Sh,t+1 = s | It+1 = it+1 ) =
l

min
j=1

Π
(
Sjh,t+1 = sj

∣∣∣ It+1 = it+1

)
i.e. variables (Sjh,t+1)lj=1 are NI-independent conditional on information It+1. It shows that

βh,t+1(s) =
l

min
j=1

βjt+1(sj).

Let us denote by X → Y the fact that there is an arrow from X to Y in the DBN. Note that
the proved independence would not hold if the same observation variable Okt+1, k ∈ {1, . . . , l}
concerned two different hidden state variables Sih,t+1 and Sjh,t+1, i.e. if Sih,t+1 → Okt+1: and
Sjh,t+1 → Okt+1: indeed Okt+1 is part of information It+1, thus there would be a convergent
(towards Okt+1) relationship between Sih,t+1 and Sjh,t+1 i.e. the hidden state variables would have
been dependent (because d-connected) conditioned on information It+1. Moreover if the next
hidden state variable Sih,t+1 depended on the current hidden state variable Sjh,t, (S

j
h,t → Sih,t+1)

then Sih,t+1 and Sjh,t+1 would have been dependent conditioned on information It+1 because
d-connected through Sjh,t (S

j
h,t → Sjh,t+1 is also true).
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D.3 Proof of Lemma III.3.1
Proof : Let j be an integer in {1, . . . , l}. Using Theorem 24, and M-independence assumptions of

the DBN of Figure III.4 leading to the distributions (III.3), (III.4) and (III.5),

Π
(
Ojt+1 = o′j , S

j
h,t+1 = s′j

∣∣∣ It = it, at

)
= max
sj

h
∈Sj

h

min
{

Π
(
Ojt+1 = o′j , S

j
h,t+1 = s′j

∣∣∣ Sjh,t = sjh, It = it, at

)
,Π
(
Sjh,t = sjh

∣∣∣ It = it, at

)}
= max
sj

h
∈Sj

h

min
{

Π
(
Ojt+1 = o′j , S

j
h,t+1 = s′j

∣∣∣ Sjh,t = sjh,t, It = it, at

)
, βjt (s

j
h)
}

= max
sj

h
∈Sj

h

min
{

Π
(
Ojt+1 = o′j

∣∣∣ Sjh,t+1 = s′j , It, at

)
,Π
(
Sjh,t+1 = s′j

∣∣∣ It = it, at

)
, βjt (s

j
h)
}

= max
sj

h
∈Sj

h

min
{
π
(
o′j
∣∣ sv,t, s′j , at ) ,Π(s′j ∣∣ sv,t+1, s

j
h, at

)
, βjt (s

j
h)
}

denoted then by π
(
o′j , s

′
j

∣∣ sv,t, βjt , at). The belief update can be then computed from this
joint possibility distribution using the qualitative possibilistic conditioning (Definition I.2.7).

D.4 Proof of Theorem 25
Proof : First, as visible state variables (Siv,t+1)mi=1 are d-separated by the evidence It = it,

they are NI-independent: ∀sv,t+1 = (s1
v,t+1, . . . , s

m
v,t+1), Π (Sv,t+1 = sv,t+1 | It = it, at ) =

minmi=1 π
(
siv,t+1

∣∣ sv,t, at ). The proof of Lemma III.3.1 shows that Π
(
Ojt+1 = ojt+1

∣∣∣ It = it, at

)
=

Π
(
Ojt+1 = ojt+1

∣∣∣ Sv,t = sv,t, B
j
t = βjt , at

)
, where βjt is the marginal belief state constructed

from it. This distribution is then denoted by π
(
ojt+1

∣∣∣ sv,t, βjt , at). Moreover, observation
variables (Ojt+1)lj=1 are d-separated by the evidence It = it, and are then NI-independent:
∀ot+1 = (o1

t+1, . . . , o
l
t+1), Π (Ot+1 = ot+1 | It = it, at ) = minlj=1 π

(
ojt+1

∣∣∣ sv,t, βjt , at). Fi-
nally, ∀i ∈ {1, . . . ,m} and ∀j ∈ {1, . . . , l}, Siv,t+1 and Ojt+1 are d-separated by the
evidence It = it, and then NI-independent. Thus, ∀sv,t+1 = (s1

v,t+1, . . . , s
m
v,t+1) ∈ Sv,

∀ot+1 = (o1
t+1, . . . , o

l
t+1) ∈ O,

Π (Sv,t+1 = sv,t+1, Ot+1 = ot+1 | It = it, at )

= min
{

m
min
i=1

π
(
siv,t+1

∣∣ sv,t, at ) , l
min
j=1

π
(
ojt+1

∣∣∣ sv,t, βjt , at)} .
As it only depends on the current visible state and belief state, we can denote it by
Π (Sv,t+1 = sv,t+1, Ot+1 = ot+1 | Bπt = βt, at ) = π (sv,t+1, ot+1 | βt, at ). Then, as Bπt+1 is
equal to βt+1 = (β1

t+1, . . . , β
l
t+1) with the possibility degree of the observations leading to it,
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π (sv,t+1, βt+1 | βt, at )

= max
(o1,...,ol)∈Oj s.t. ∀j,
νj(sv,t,β

j
t ,at,o

j)=βj
t+1

π (sv,t+1, ot+1 | βt, at )

= max
(o1,...,ol)∈O s.t. ∀j,
νj(sv,t,β

j
t ,at,o

j)=βj
t+1

min
{

m
min
i=1

π
(
siv,t+1

∣∣ sv,t, at ) , l
min
j=1

π
(
ojt+1

∣∣∣ sv,t, βjt , at)}

= min


m

min
i=1

π
(
siv,t+1

∣∣ sv,t, at ) , max
(o1,...,ol)∈O s.t. ∀j,
νj(sv,t,β

j
t ,at,o

j)=βj
t+1

l
min
j=1

π
(
ojt+1

∣∣∣ sv,t, βjt , at)


= min
{

m
min
i=1

π
(
siv,t+1

∣∣ sv,t, at ) , l
min
j=1

π
(
βjt+1

∣∣∣ sv,t, βjt , at)} ,
using the equation (I.30) of Property I.2.1.
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Notations

f : X → Y f is a function from X to Y
f : x 7→ y the function f maps the element x ∈ X to the element y ∈ Y
f(., x) function fx : y 7→ f(x, y) if f is defined on X × Y and x ∈ X
1A indicator function of the set A
1F (s) function equal to one if the formula F (s) is true, and zero otherwise

(Kronecker delta)
#A size of set A
A complementary set of A: if the working set is Ω, A ∪A = Ω and A ∩A = ∅
N,N∗ set of non negative integers, of positive integers
R,R+ set of real numbers, non negative real numbers
Rd real vector space with d dimensions
P(Ω) the set of all subsets of the set Ω
parents(S) parents and descendants of a variable (node) S in a Bayesian Network
descend(S)
P,E probability and expectation
FB(S,R) the set of the bounded functions from the set S to the set R
X ⊥⊥ Y |Z X is independent from Y conditional on Z
S ∼ b b is the probability distribution of the random variable S: ∀s, P(S = s) = b(s)
b ∝ b b is the probabilistic normalization of b: b(s) = b(s)/

∑
s̃ b(s̃)

bπ ∝π b bπ is the possibilistic nomalization of b:
bπ(s) = 1 if b(s) = maxs′ b(s′), b(s) otherwise

〈x, y〉RS the scalar product of two vectors x and y from RS
# function composition operator
PS set of the probability distributions over S
ΠSL set of the possibilistic distributions over S when the possibilistic scale is L
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Title: Exploiting Imprecise Information Sources for Sequential Decision Making under Uncertainty

Abstract: Partially Observable Markov Decision Processes (POMDPs) define a useful formalism to ex-
press probabilistic sequential decision problems under uncertainty. When this model is used for a robotic
mission, the system is defined as the features of the robot and its environment, needed to express the
mission. The system state is not directly seen by the agent (the robot). Solving a POMDP consists thus
in computing a strategy which, on average, achieves the mission best i.e. a function mapping the infor-
mation known by the agent to an action. Some practical issues of the POMDP model are first highlighted
in the robotic context: it concerns the modeling of the agent ignorance, the imprecision of the observation
model and the complexity of solving real world problems. A counterpart of the POMDP model, called
π-POMDP, simplifies uncertainty representation with a qualitative evaluation of event plausibilities. It
comes from Qualitative Possibility Theory which provides the means to model imprecision and ignorance.
After a formal presentation of the POMDP and π-POMDP models, an update of the possibilistic model
is proposed. Next, the study of factored π-POMDPs allows to set up an algorithm named PPUDD which
uses Algebraic Decision Diagrams to solve large structured planning problems. Strategies computed by
PPUDD, which have been tested in the context of the competition IPPC 2014, can be more efficient than
those produced by probabilistic solvers when the model is imprecise or for high dimensional problems.
We show next that the π-Hidden Markov Processes (π-HMP), i.e. π-POMDPs without action, produces
useful diagnosis in the context of Human-Machine interactions. Finally, a hybrid POMDP benefiting from
the possibilistic and the probabilistic approach is built: the qualitative framework is only used to maintain
the agent’s knowledge. This leads to a strategy which is pessimistic facing the lack of knowledge, and
computable with a solver of fully observable Markov Decision Processes (MDPs). This thesis proposes
some ways of using Qualitative Possibility Theory to improve computation time and uncertainty modeling
in practice.

Keywords: POMDP, Planning under Uncertainty, Possibility Theory, Autonomous Robotics, Imprecise
Knowledge

Titre: Tirer Profit de Sources d’Information Imprécises pour la Décision Séquentielle dans l’Incertain

Résumé: Les Processus Décisionnels de Markov Partiellement Observables (PDMPOs) permettent de
modéliser facilement les problèmes probabilistes de décision séquentielle dans l’incertain. Lorsqu’il s’agit
d’une mission robotique, les caractéristiques du robot et de son environnement nécessaires à la définition
de la mission constituent le système. Son état n’est pas directement visible par l’agent (le robot). Résoudre
un PDMPO revient donc à calculer une stratégie qui remplit la mission au mieux en moyenne, i.e. une
fonction prescrivant les actions à exécuter selon l’information reçue par l’agent. Ce travail débute par la
mise en évidence, dans le contexte robotique, de limites pratiques du modèle PDMPO: elles concernent
l’ignorance de l’agent, l’imprécision du modèle d’observation ainsi que la complexité de résolution. Un
homologue du modèle PDMPO appelé π-PDMPO, simplifie la représentation de l’incertitude: il vient de
la Théorie des Possibilités Qualitatives qui définit la plausibilité des événements de manière qualitative,
permettant la modélisation de l’imprécision et de l’ignorance. Une fois les modèles PDMPO et π-PDMPO
présentés, une mise à jour du modèle possibiliste est proposée. Ensuite, l’étude des π-PDMPOs factorisés
permet de mettre en place un algorithme appelé PPUDD utilisant des Arbres de Décision Algébriques
afin de résoudre plus facilement les problèmes structurés. Les stratégies calculées par PPUDD, testées par
ailleurs lors de la compétition IPPC 2014, peuvent être plus efficaces que celles des algorithmes proba-
bilistes dans un contexte d’imprécision ou pour certains problèmes à grande dimension. Nous montrons
ensuite que les Processus de Markov Cachés possibilistes (π-PMCs), i.e. les π-PDMPOs sans les actions,
produisent de bons diagnostics dans le contexte de l’intéraction Homme-Machine. Enfin, un PDMPO
hybride tirant profit des avantages des modèles probabilistes et possibilistes est présenté: seule la con-
naissance de l’agent est maintenue sous forme qualitative. Ce modèle mène à une stratégie qui réagit de
manière pessimiste au défaut de connaissance, et calculable avec des algorithmes de résolution des Proces-
sus Décisionnels de Markov entièrement observables (PDM). Cette thèse propose d’utiliser les possibilités
qualitatives dans le but d’obtenir des améliorations en termes de temps de calcul et de modélisation de
l’incertitude en pratique.

Mots-clés: PDMPO, Planification dans l’Incertain, Théorie des Possibilités, Robotique Autonome, Con-
naissance Imprecise


	Contents
	List of Figures
	Introduction
	State of the Art
	From Markov Chains to Partially Observable Markov Decision Processes
	Markov Chains
	Markov Decision Processes
	Dynamic Programming
	Infinite Horizon MDP
	The Value Iteration algorithm
	Partially Observable Markov Decision Process
	The belief updating process
	A belief dependent value function
	A POMDP as a belief-MDP
	Solving a POMDP
	Upper and lower bounds on a value function
	POMDP solvers

	Qualitative Possibilistic MDPs
	Possibility Theory
	Qualitative Conditioning and Possibilistic Independence
	Qualitative Criteria
	-MDPs
	-POMDPs


	Updates and Practical Study of the Qualitative Possibilistic Partially Observable Markov Decision Processes
	Intermediate Preferences in -POMDPs
	Discussion

	Mixed-Observability and -MOMDPs
	Infinite Horizon Settings
	The -MDP case
	Value Iteration for -MOMDPs

	Results on a Robotic Mission and Possibilistic Belief State Behaviour
	Conclusion

	Development of Symbolic Algorithms to Solve -POMDPs
	Introduction
	Solving factored -MOMDPs using symbolic dynamic programming
	-MOMDP belief factorization
	Motivating example.
	Consequences of the factorization assumptions

	Experimental results
	Robotic missions
	International Probabilistic Planning Competition 2014

	Conclusion

	Application of Qualitative Possibilistic Hidden Markov Processes for Diagnosis in Human-Machine Interaction
	Introduction
	Framework for human-machine interactions modelling including assessment errors
	Machine model
	Derivation of an error model
	Effect plausibility
	System dynamics: trajectories and exceptions
	Working assumptions

	Human assessment estimation, error detection and diagnostic
	Possibilistic analysis model
	Human assessment estimation
	Exception explanation

	Interacting with a three-state machine
	Two successive selections
	Automated state change followed by a selection

	Interacting with flight control and guidance
	System description
	Experiments

	Conclusion

	A Hybrid Model: Planning in Partially Observable Domains with Fuzzy Epistemic States and Probabilistic Dynamics
	Introduction
	A Hybrid POMDP
	Set transitions
	Reward aggregation
	MDP with epistemic states

	Benefit from factorization
	Factored POMDP
	Notations and Observation Functions
	State variables classification
	Belief updating process definition and handling
	Selection and use of belief variables

	Solving a POMDP with a discrete MDP solver
	Resulting factored MDP:
	Results for a concrete POMDP problem

	Conclusion

	Conclusion
	Annex
	Proofs of Chapter I
	Preliminaries
	Proof of Property I.1.1
	Proof of Theorem 1
	Proof of the Bellman Equation (I.5)
	Proof of Theorem 2
	Proof of Property I.1.2
	Proof of Property I.1.3
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11
	Proof of Property I.2.1
	Proof of the equality of Definition I.2.11
	Proof of Theorem 12
	Proof of Theorem 13
	Proof of Theorem 14
	Proof of Theorem 15
	Proof of Theorem 16

	Proofs of Chapter II
	Property linking S and SN
	Proof of Property II.1.1
	Proof of Theorem 18
	Proof of Theorem 19
	Proof of Theorem 20
	Proof of Theorem 21
	Proof of Theorem 23

	Proof of Theorem 22: optimality of the strategy computed by Algorithm 10
	Proofs of Chapter III
	Proof of Property III.2.1
	Proof of Theorem 24
	Proof of Lemma III.3.1
	Proof of Theorem 25


	Bibliography
	Notations
	Related Research Material

