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Résumé

Le but de cette thèse pluridisciplinaire est d’étudier le problème de l’interaction

fluide-structure à partir du point de vue mathématique et physique. Des

problèmes d’interaction d’un fluide visqueux avec une structure élastique

décrivent, par exemple, des interactions entre le manteau terrestre et de la croûte

terrestre, le sang et la paroi vasculaire dans un vaisseau sanguin, etc. En génie

l’interaction fluide visqueux-structure apparâıt lors de la formation de solution

collöıdale quand un laser passe à travers le fluide influençant le substrat (ab-

lation laser dans un liquide). Fusion sélective au laser (FSL) est utilisée pour

étudier le comportement des contraintes résiduelles en dépendance des propriétés

thérmoélastiques et mécaniques du matériau et des formes variées des cordons

rechargés. A partir du point de vue mathématique le système couplé “flux flu-

ide visqueux – plaque mince élastique” en 3D lorsque l’épaisseur de la plaque, ε,

tend vers zéro, tandis que la densité et le module de Young du matériau élastique

sont d’ordre 1 et ε−3, respectivement, est considéré. Le solide est couchée par le

fluide qui occupe un domaine épais. Le développement asymptotique complet est

construit lorsque ε tend vers zéro. L’existence, la régularité et l’unicité de la solu-

tion pour le problème initial sont étudiées au moyen de techniques variationnelles.

L’erreur de la méthode est évaluée.

Mots-clés : interaction fluide-structure, élasticité linéaire, équations de

Stokes, fluide incompressible, interface, méthodes asymptotiques, modélisation,

homogénéisation, traitement par laser, contraintes thermiques résiduelles, pro-

priétés thermo-élastiques, fusion, la stabilité thermomécanique.





Abstract

The goal of this multi-disciplinary thesis is to study the fluid-structure interaction

problem from mathematical and physical viewpoints. Viscous fluid-structure in-

teraction problems describe, for example, interactions between the Earth mantle

and the Earth crust, the blood and the vascular wall in a blood vessels, etc. In

engineering viscous fluid-structure interaction appears during colloidal solution

formation when a laser pierce through the fluid influencing the substrate (laser

ablation in a liquid). Selective laser melting (SLM) is used to study the behavior

of residual stresses depending on the thermoelastic and mechanical properties of

the material and on various forms of reloaded beads. From mathematical point

of view the coupled system “viscous fluid flow-thin elastic plate” in 3D when the

thickness of the plate, ε, tends to zero, while the density and the Young’s modu-

lus of the plate material are of order 1 and ε−3, respectively, is considered. The

plate lies on the fluid which occupies a thick domain. The complete asymptotic

expansion is constructed when ε tends to zero. The existence, the regularity and

the uniqueness of the solution for the original problem is studied by means of

variational techniques. The error of the method is evaluated.

Key words : fluid-structure interaction, linear elasticity, Stokes equations,

incompressible fluid, interface, asymptotic methods, modeling, homogenization,

laser treatment, residual thermal stresses, thermoelastic properties, melting, ther-

momechanical stability.
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thèse et mes déplacements en conférences, ainsi que les le personnel administratif,

Franois Hennecart, Driss Essouabri, les employés de service ASTRE, qui, par leur
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Canon, Frédéric Chardard, Laurence Grammont, Ilya Kostin, Laetitia Paoli et
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Résumé i
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Introduction

Des problèmes d’interaction d’un fluide visqueux avec une structure élastique

décrivent, par exemple, des interactions entre le manteau terrestre et de la croûte

terrestre, le sang et la paroi vasculaire dans un vaisseau sanguin, la mince croûte

de glace et l’eau. Il existe un grand nombre d’articles sur le sujet [1–22] et d’autres.

Aussi, en génie l’interaction fluide visqueux-structure apparâıt-elle lors de la for-

mation de solution collöıdale. Plus précisément, un laser passe à travers le fluide

influençant le substrat (ablation laser dans un liquide).

Problème aux limites élastique linéaire fournit l’informations complète sur les

contraintes, déformations et déplacements [23] dans le matériau élastique con-

sidéré. Équations de Navier-Stokes [24] décrivent le mouvement des substances flu-

ides newtoniens. Le système couplé d’équations pour les mouvements élastiques et

fluides avec l’égalité des vitesses et des contraintes normales à l’interface représente

un modèle pour le problème d’interaction entre un fluide visqueux et une struc-

ture.

En général, le système d’équations de la théorie de l’élasticité est donné dans le

système de coordonnées de Lagrange et le système de Navier-Stokes est représenté

dans le système de coordonnées d’Euler. Les auteurs [19, 25] ont obtenu des

résultats profonds quand un petit paramètre ε est le rapport entre le rayon et la

longueur du vaisseau, le flux est rgi par une chute de pression en fonction du temps

donné entre les frontières d’entrée et de sortie, la paroi vasculaire est flexible. Si

l’épaisseur de la plaque élastique est négligeable par rapport à l’épaisseur du fluide

visqueux, alors nous ne différencions pas des coordonnées lagrangiennes et eule-

riennes. Dans ce cas, il est beaucoup plus facile de construire un développement

asymptotique complet [1, 2].

Le sujet de la thèse est d’étudier le problème de l’interaction fluide-structure



2 Introduction

à partir du point de vue mathématique et physique. On commence avec le cal-

cul des contraintes résiduelles sous fusion sélective au laser des poudres dans

le chapitre 1. On considère un système d’équations de l’élasticité en présence

des contraintes résiduelles, engendrées par un gradient des températures dans

un matériau composite. Le développement asymptotique de la solution est con-

struit et justifié. Ce problème est lié à l’application “traitement de surface par

laser”, plus précisément, à la fusion sélective au laser (FSL) des poudres ayant des

propriétés thermoélastiques et mécaniques. On étudie le comportement des con-

traintes résiduelles avec dépendance des paramètres du procédé : du coefficient de

Poisson, du point de fusion, de la dilatation thermique, du module de Young, des

formes variées des cordons rechargés. Le calcul fournit les contraintes résiduelles

qui se seraient formées après refroidissement de la zone de traitement à l’état ini-

tial moyennant l’absence de déformation élastique et de défaillance à l’étape de

refroidissement. Les résultats des calculs peuvent être utilisés pour évaluer la sta-

bilité thermomécanique des matériaux dans la FSL. La représentation graphique

des champs deux-dimensionnels est obtenue numériquement avec une base des

données des propriétés thermoélastiques des matériaux métalliques, céramiques

et polymères. Ces résultats sont publiés dans [26] et [27].

La première étape de la fusion sélective au laser tandis qu’un liquide en fusion

contacte avec un substrat élastique est étudié plus minutieusement dans la partie

mathématique de la thèse (i.e. chapitres 2 et 3). La partie inférieure (élastique)

est modélisée de manière plus détaillée dans la partie mathématique. Chapitre 2

représente l’analyse variationnelle du système couplé décrivant l’interaction flu-

ide visqueux-plaque mince élastique en 3D. Résultats d’existence, d’unicité et de

régularité sont obtenus pour le problème principal et le problème de limite. La

méthode de Galerkin est appliquée. On généralise l’investigation du problème

d’interaction du fluide visqueux avec la plaque mince élastique en 2D [1, 2]. Une

nouvelle idée est de considérer la même fonction pour la vitesse du fluide vε et la

vitesse dans la zone élastique
∂uε

∂t
. Cela permet de réduire le volume de la preuve

en utilisant un ensemble des approximations de Galerkin à la place de deux (pour

le milieu liquide et le milieu élastique). Le problème de limite est le problème

aux limites de Stokes avec la condition spécifique sur une partie de la frontière
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correspondante à une paroi élastique. La dérivée seconde en temps est absente

dans cette condition par laquelle la preuve en cas 3D se distingue de celle donnée

dans [18]. Ce système signifie que la plaque s’est abâtardie en une paroi grâce

au contraste des coefficients. On a obtenu la condition de transmission pour des

equations de Stokes avec une paroi élastique.

Le noyau de la thèse est le chapitre 3 sur l’analyse asymptotique du problème

de contacte d’une plaque élastique stratifiée mince et rigide avec une couche de

fluide. La force de masse appliquée à la plaque est supposée 1-périodique en

variables “horizontales”, et le petit paramètre, , est le rapport des épaisseurs de

la plaque et de la couche du fluide. On suppose que l’épaisseur de celle-ci et de

même ordre que la période de la force appliquée. Toutes les constantes physiques

(la viscosité, la densité, le temps caractéristique) sont eux aussi d’ordre 1, tandis

que le module de Young de la plaque est d’ordre ε−3. Ce problème modélise

l’interaction flux visqueuxparois élastique dans plusieurs applications, comme par

exemple, l’écoulement du sang, transport du pétrole, etc.

Donc, il ya deux “zooms” mathématiques sur la solution physique et numérique

du problème : l’un parmi eux quand tout a refroidi (Section 1.5) et l’autre cas,

quand une partie est fondue (chapitres 2 et 3).





Introduction

Viscous fluid-structure interaction problems describe, for example, interactions

between the Earth mantle and the Earth crust, the blood and the vascular wall

in a blood vessels, the thin crust of ice and the water. There is a large number

of articles on the subject [1–22] and others. Also, in engineering viscous fluid-

structure interaction appears during colloidal solution formation. More precisely,

a laser pierce through the fluid influencing the substrate (laser ablation in a liquid).

Linear elastic boundary value problem provides complete information about

stresses, strains and displacements [23] in the considered elastic material. Navier-

Stokes equations [24] describe the motion of Newtonian fluid substances. The

coupled system of equations for elastic and fluid motions with the equality of

velocities and normal stresses at the interface represents a model for viscous fluid-

structure interaction problem.

Generally, the system of equations of elasticity theory is given in the Lagrangian

coordinate system and the Navier-Stokes system is putted down in the Euler co-

ordinate system. The authors [19,25] obtained profound results performing coor-

dinate system changing, when a small parameter ε is the ratio between the radius

and the length of the vessel, the flow is governed by a given time-dependent pres-

sure drop between the inlet and the outlet boundary, vessel wall is compliant. If

the thickness of elastic plate is negligibly small as compared to the thickness of vis-

cous fluid, then we do not differentiate the Lagrangian and the Euler coordinates.

In this case it is a lot easier to construct a complete asymptotic expansion [1, 2].

The subject of the thesis is to study the fluid-structure interaction problem

from mathematical and physical viewpoints. We start with calculation of resid-

ual stresses under selective laser melting of powders in Chapter 1. A system

of equations of the elasticity with the presence of residual stresses caused by a
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temperature gradient in a composite material is considered. The asymptotic ex-

pansion of the solution is constructed and justified. This problem is related to

the application “surface laser treatment”, more specifically, to the selective laser

melting (SLM) of powders having thermoelastic and mechanical properties. We

study the behavior of residual stresses with dependency of the process parame-

ters: the Poisson’s ratio, the melting point, the thermal expansion, the Young’s

modulus, the various forms of reloaded beads. The calculation provides the resid-

ual stresses that may have formed after cooling down of the treatment area to

the initial state upon the absence of elastic deformation and failure of the cooling

down stage. Calculation results can be used to evaluate the thermomechanical

stability of the materials in the SLM process. The graphical representation of

the two-dimensional fields is obtained numerically with a database of thermoe-

lastic properties of metallic, ceramic and polymer materials. These results were

published in [26] and [27].

The first stage of selective laser melting while a liquid melt contacts with an

elastic substrate is studied more minutely in the mathematical part of the thesis

(i.e. Chapters 2 and 3). The bottom part (elastic) is modelled in more detail in the

mathematical part. Chapter 2 represents the variational analysis of the coupled

system describing the viscous fluid-thin elastic plate interaction in 3D. Existence,

uniqueness and regularity results are obtained for the main and the limit problems.

Galerkin’s method is applied. The investigation of the viscous fluid-thin elastic

plate interaction in 2D [1, 2] is generalized here. A new idea is to consider one

function for the fluid velocity vε and the velocity in the elastic area
∂uε

∂t
. This

allows to reduce a proof volume using one set of Galerkin approximations in

place of two (for the fluid and elastic mediums). The limit problem is the Stokes

boundary value problem with the specific upper boundary condition corresponding

to an elastic wall. The second derivative in time is absent in this condition in 3D-

case which makes the proof be different from that given in [18]. This system

means that the plate degenerated in a wall becquse of contrast coefficients. There

was obtained the transmission condition for Stokes equations with an elastic wall.

The core of the thesis is the Chapter 3 on the asymptotic analysis of the con-

tact problem of a thin elastic stratified plate with a fluid layer. The mass force
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applied to the plate is assumed to be 1-periodic in “horizontal” variables, and the

small parameter ε is the ratio of the elastic plate thicknesses to the fluid layer

thicknesses. It is assumed that the latter is of the same order as the period of

the applied force. All physical constants (the viscosity, the density, the charac-

teristic time) are also of order 1, whereas the Young’s modulus of the plate is of

order ε−3. This problem models the viscous-elastic wall flow interaction in many

applications, for example, the flow of blood, the oil transportation, etc.

So, there are two mathematical “zooms” on physical and numerical solution to

the problem: one of them when all cooled down (Section 1.5) and another case,

when one part is molten (Chapters 2 and 3).





Chapter 1

Calculation of residual stresses under

selective laser melting of powders

1.1 Introduction

The basic concepts of the theory of elasticity are described in [23]. We are in-

terested in the isotropic case (homogeneous solid) when three-dimensional stress

state along the edges of the elementary cube isolated from the material is charac-

terized by normal and tangential stresses (see Fig. 1).

Fig. 1. Elementary cube with components of the stress state acting on the faces of the cube.

The principal stresses are normal stresses. Principal residual stresses for differ-

ent materials are studied in this chapter. The results were in general published

in [26] and [27].

Selective laser melting (SLM) is one of fast developing trends of additive tech-
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nology. It is applied for rapid prototyping and manufacturing of functional parts

from powders patterned after computer models. A part is shaped geometrically

layer by layer, wherein mechanical deposition of thin flat layer powder is repeated

several times (layer about 50 – 100 µm thick) and its selective scanning by a

focused laser beam (spot diameter about 50 – 100 µm). In calculated for each

computer patterned layer scanning zone, the powder is heated locally, resulting

in its particles melted together along with the previously melted layer, forming

a monolithic shape, dipped into granular powder. It remains only to remove the

finished part of the technology container with the powder, and get the rest of it

out of inside hollows. The details of SLM are described in monographs [28–33].

SLM method gives an opportunity to create parts of intricate shapes, which

cannot be achieved through other technology, thus minimizing the demanding

assembly. Shape correction requires interference only at the stage of computer

modeling, which comes in handy while producing one-of-a-kind pieces and small

batches. At this point high quality is achieved while using ductile metals and

alloys, e.g. austenitic steel. Due to absence of pores and cracks and very fine

grain structure of those materials, obtained through SLM, often have improved

strength characteristics [29]. At the same time, SLM of more fragile materials may

cause unacceptable cracking. For a long time the usage of high-strength titanium

alloys Ti-6Al-4V type in this technology wasn’t successful, although recently there

has been some progress with this alloy [34].

A lot of technological parameters and wide diversity of materials employed along

with economic factors, forcing to employ SLM only for one-of-a-kind pieces and

small batches, put the issues of choice of stable processing modes and optimization

at the top, which often take up a lot of production hours [35, 36]. Mathematical

modeling is successfully applied for this [37]. The contemporary understanding

of physics of laser radiation transport in powder layers and thermal processes at

laser impingement point while SLM is reflected in works [28–30, 37]. Stability

assessment issues of process and quality of micro- and macrostructure obtained

through modeling are discussed in [38–43]. At the same time, the physics of

residual stresses appearance, responsible for possible cracking and part shape

deviation, is insufficiently studied.
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The most general well-known method to reduce the residual stresses at a ther-

mal treatment is to reduce the thermal gradient and the cooling rate [31–33, 44].

This was confirmed, for example, at growing the monocrystals [45]. The same ap-

proach works at laser treatment [46,47], while it is difficult to implement because

heating/cooling rate reduction means the proportional reducing of the productiv-

ity, and the reducing of the thermal gradient contradicts the local nature of the

laser treatment. The preheating has recently become a universal method widely

applied at the laser treatment [48,49]. In order to reduce residual stresses during

SLM, the part formation is going on in a heated container [49]. Preheating effi-

ciency is commonly explained by following two factors [50]. First, as the overall

temperature difference in the treated part is decreased, the temperature gradients

and the heating/cooling rates are proportionally decreased. Second, materials

often become more plastic at elevated temperatures, so that thermal stresses can

partially relax.

The conventional approach to calculate the residual stresses is to separate the

thermal and the thermomechanical problems. The deformation due to the ther-

mal expansion is usually small, so that its thermal effect is negligible compared

to the laser energy. Therefore, the thermal problem can be considered indepen-

dently. The temperature field and the shape of the melt pool calculated by the

thermal model are the initial data for the thermomechanical model. Such a two-

step scheme of calculation is useful to predict residual stresses for a given set of

technological parameters [51,52], but can become too complicated for a theoretical

parametric analysis and optimization of the technological process. A reasonable

simplification of the thermomechanical model [53] was shown to be sufficient to

construct a single-step calculation scheme independent of the temperature dis-

tribution and its evolution. Instead of the analysis in terms of the technological

parameters, an analysis in terms of remelted profiles was proposed [53]. This

method can be fruitful because the desired remelted profile is often given or the

variety of acceptable profiles is restricted. In the scientific works [52, 53] cal-

culations are made for specific beads, obtained on a flat surface of half-infinite

substrate, and in [51] for several beads paralleled upon one another and on the

substrate. More complex geometries weren’t considered. Calculations were made
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for quarts glass and alumina and the capability to explain experimental data was

shown [53]. Despite the demonstrated satisfying alignment of experiment results

with the modeling [51–53] and the confirmation in [52,53] technique of preliminary

heating for residual stress decrease, there is still an open issue of generalization

of the results, obtained in the above mentioned works, for geometric shapes and

materials, different from those mentioned in these works.

This work is based on the preceding works [51–53] and dedicated to development

of more general technique of residual stresses assessment during SLM, applied to

different materials (with arbitrary thermoelastic properties) and geometries.

1.2 Physical model

Strongly localized laser heating of the material generally leads to its expansion and

compressive stresses appearance. With the passing of the laser beam, material

compresses again and the appeared thermal stresses disappear. The practically

observed formation of residual stresses as a result of thermal action is connected

to full or partial relaxation of thermal stresses. With the cooling of the relax-

ation zone down to the initial temperature Ta, the stretching residual stresses

are supposed to appear, and, in the surrounding material, compensating resid-

ual compressive stresses should be formed. Such distribution of residual stresses

is in fact typical for laser processing. Therefore, classical thermoelastic medium

model, useful for thermal stresses estimation, becomes completely inapplicable for

residual stresses calculation.

The formation of residual stresses is often calculated after elastoplastic or vis-

coelastic medium models. The above mentioned works [51,52] are the examples of

such approach. Aside from complexity of numerical calculations such models con-

tain a lot of parameters, including parameters of the moving and nonstationary

heating source, thermophysical properties of a medium, temperature dependence

of the viscosity and the yield limit. That is why the results are hard to analyze and

extrapolate to the unstudied materials. This decreases practical usefulness of such

calculations. On the other hand, thermophysical and viscoelastoplastic properties

of materials under high temperatures are often unknown or have a poor accuracy.
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Also, the measurement error of residual stresses calculation, validating mathe-

matical model, can significantly exceed the computational accuracy. Therefore,

the detailed description with the help of thermoviscoelastoplastic models often

becomes excessive in respect to laser processing, particularly SLM.

Alternative approach, suggested in [53], assumes explicit selection of thermal

stresses relaxation zone while setting a problem. Given that laser melting and

appearance of molten pool with free surface implies almost full stress relief in it,

relaxation zone boundary may be defined in the thermal model as a boundary

of maximum melting — the envelope of the melting front surface. The effective

relaxation zone may considerably be larger than the remelting zone, provided that

under elevated temperatures still in solid state affected by thermal stresses there is

viscous and/or plastic flow. Then envelope of the generally transient isotherm of

effective thermal stresses relaxation can be taken as the relaxation zone boundary.

The advantage of such setting is the absence of a rigid connection between the

heat and mechanical problems. For instance, in many types of laser processing

the geometry of the remelted area or the area heated to a given temperature

is set as the input data. Then the necessary parameter adjustment of the heat

source is carried out by the thermal model, and residual stresses evaluation — by

the mechanical model, which, in fact, becomes independent. Such separation of

thermal and mechanical parameters may be useful for theoretical analysis.

More generally, the principal assumption made in the known model of residual

stresses formation [53] consists in definition of a sharp boundary of the zone

of complete relaxation of thermal stresses. After passage of the heat source and

cooling down to the initial temperature, the relation between the tensors of stresses

with components σβγ and strains with components εβγ outside the relaxation zone

is given by the conventional generalized Hooke’s law [23]

σβγ = λθδβγ + 2µεβγ, (1.2.1)

where λ — is Lamé’s first parameter, µ — the shear modulus, θ = εxx + εyy + εzz

— the volumetric deformation, δβγ the Kronecker symbol, and indices β and γ

take the values x, y and z, corresponding to the Cartesian axes.
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Remark. This is equivalent to

σk
i =

3
∑

j,l=1

aklijε
l
j, σ

k
i = σik,

where the deformation is characterized by the vector field of displacement u, with

the strain tensor components given by derivatives

εlj = εjl =
1

2

(

∂ul
∂xj

+
∂uj
∂xl

)

and elastic constants aklij =
E

2(1 + ν)

(

2ν

1− 2ν
δikδjl+δijδkl+δilδjk

)

verify standard

properties:

(i) aklij (x) = ailkj(x) = alkji(x) = akjil (x), ∀ i, j, k, l ∈ {1, 2, 3}, ∀x ∈ Ω (symmetry),

(ii) ∃ κ > 0 independent of ε such that
3
∑

i,j,k,l=1

aklij (x)η
l
jη

k
i ≥ κ

3
∑

j,l=1

(ηlj)
2, ∀x ∈ Ω,

∀η = (ηlj)1≤j,l≤3, with η
l
j = ηjl (coercivity).

Lamé’s parameters λ and µ can be expressed in terms of E and ν, Young’s

modulus and Poisson’s coefficient, respectively

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

Another form is

σ̂l
j = aklij

∂ul
∂xj

.

The second assumption of the model is the elastic deformation inside thermal

stresses relaxation zone while cooling. Thus, after cooling down to the initial

temperature, the generalized Hooke’s law inside this zone is written as [23]

σβγ = λθδβγ + 2µεβγ + 3sKδβγ, (1.2.2)

where K is the bulk modulus and s is the linear shrinkage while cooling from the

thermal stresses relaxation temperature Tm down to the initial temperature Ta,
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which can be calculated according to linear thermal expansion coefficient α as

s =

Tm
∫

Ta

α dT. (1.2.3)

Relaxation temperature Tm can be evaluated either as melting temperature, or

as softening point. Initial temperature Ta shall mean either the ambient tempera-

ture or the preheating one. The last term in the right hand side of equation (1.2.2)

introduces isotropic tension in the relaxation zone. The value of this tension is cho-

sen to compensate the thermal expansion at the relaxation temperature. Residual

stresses, calculated by equation (1.2.2), as well as linear shrinkage (1.2.3) should

be first and foremost checked according to inelastic strain and fracture criteria.

Should the criteria be met, residual stresses shall be corrected accordingly.

In general, calculation according to the described model gives the residual

stresses, which would be formed after cooling the treatment zone down to the

initial state, if deformation at the cooling stage were strictly elastic. The possible

influence of plastic flow and destruction at cooling should be taken into account

separately. The application example presented further.

1.3 Results

Given that the SLM technology is designed for the manufacture of parts of intri-

cate shapes, it is almost impossible to cover their potential variety, so in sections

1.3.1 and 1.3.2 only simple forms are observed, which, however, can be considered

limiting due to the type of stress state. In section 1.3.3, the model is applied

not to the part in whole, but to a separate bead on a flat surface of the thick

substrate. These results are common, as the details of any forms are constructed

from the beads of the same type, and allow us to estimate the residual stresses at

the production stage. Under the substrate here we understand not only the sub-

strate itself (on which the part is constructed), but also an array of the previous

melted layers that constitute the already constructed part of the part.
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1.3.1 Vertical plate

Vertical wall, grown on the substrate, as shown in Fig. 2 (a), serves as the model

shape, used in the SLM experiments, and at the same time, it is a common element

of various lightweight structures and surface reliefs. The whole body of the wall

is made of remelted powder, so it can be considered a thermal stress relaxation

area, and equation (1.2.2) can be applied to it. At the same time virtually the

entire substrate remains unremelted and equation (1.2.1) operates in it. In case

of a massive substrate, it prevents the wall from longitudinal deformation, that

is why the longitudinal deformation is not present far away from the edges of the

wall,

εxx = 0, (1.3.1)

and away from the substrate there is no force acting in the transverse or vertical

direction, so

σyy = σzz = 0. (1.3.2)

Substrate

(a)

(b)

x
y

z

1

1
2

3

3

4

2
3

3

Fig. 2. Vertical (a) and horizontal (b) plates grown on the substrate with the help of the SLM method: 1 —
computational domain; 2 — transition region; 3 — boundary zone of discharge; 4 — substrate influence zone;
(XY Z) — Cartesian basis.

Arrangement of coordinate axes is given in Figure 2. Simultaneous solution of

equations (1.2.2), (1.3.1) and (1.3.2) gives the longitudinal stress

σxx = sE, (1.3.3)

where E is the Young’s modulus.

Thus, the uniaxial tension is present in the computational domain of the vertical
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wall. The computational domain is shown in Fig. 2 (a). The points of this domain

must be spaced from the substrate by the distance much greater than the wall

thickness, and from the vertical edges — by the distance much greater than the

height of the wall. If for the plastic material the stress σxx, calculated according

to equation (1.3.3), exceeds the yield limit, and the linear shrinkage s does not

exceed the elongation at break, the plastic flow will lead to restriction of the

longitudinal stress by the yield limit value. In case of a brittle material, equation

(1.3.3) can be used up to the tensile strength rupture limit. The resulting stresses

in the vertical wall can be used for evaluating the possibility of its failure while

constructing by the SLM method, and also for calculating the bending of the

substrate, as it is important in selecting its thickness.

1.3.2 Horizontal plate

Horizontal plate on the substrate, as shown in Fig. 2 (b), simulates a coating, or

an extended low part. As in the previous case, the hard substrate prevents the

transversal displacement, that is why far from the edges of the plate

εxx = εyy = 0, (1.3.4)

and the free upper surface eliminates forces in the vertical direction, so

σzz = 0. (1.3.5)

Simultaneous solution of equations (1.2.2), (1.3.4) and (1.3.5) gives the stress

σxx = σyy =
sE

1− ν
, (1.3.6)

where ν is the Poisson’s ratio.

This way the horizontal plate grown on a hard substrate is exposed to the

isotropic biaxial tension. Since the Poisson’s ratio is in the range from 0 to 1/2,

the value of tensile stress is greater than in the vertical plate. The result is

applicable to the computational domain shown in Fig. 2 (b), provided the elastic

deformation during cooling. Adjustment for the possible plastic flow and the

brittle fracture is the same as for the vertical plate, described in the previous
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Fig. 3. Individual remelted beads on a semi-infinite substrate: remelted band (a); lens-shaped remelted profile (b);
double-lens bead (c); circle-shaped bead (d)

section.

1.3.3 Bead on a semi-infinite substrate

Typical for the SLM configurations of the remelted beads are shown in Figure 3.

The first configuration (3a) presents the shallow remelted band of finite width and

infinite length on the surface of the half-space substrate. Material parameters are

listed in Table 1. It is important that the lower part of the bead comes into the

substrate, providing the metallurgical contact of the remelted powder with the

substrate. Geometry (3b) corresponds to the extremely low amount of powder, as

compared to the remelted substrate material, and in geometries (3c) and (3d) the

proportion of the powder is increased successively. In the direction of the bead

the problem is uniform and there is no displacement of the medium. Strain tensor

is expressed through the displacement vector in the plane (Y Z), u = (uy, uz):

εxx = εxy = εxz = 0, εyy =
∂uy
∂y

, εzz =
∂uz
∂z

, εyz =
1

2

(

∂uy
∂z

+
∂uz
∂y

)

. (1.3.7)

In the general case, the three components of the displacement vector are to be

found from the system of the three force balance equations. In the considered

below case of a uniform in x-direction remelted profile, ux = 0, and the following

two force balance (in the directions y and z) equations are sufficient:

∂σyy
∂y

+
∂σyz
∂z

= 0,
∂σzz
∂z

+
∂σyz
∂y

= 0, (1.3.8)

substitution of the Hooke’s law in which in the form of (1.2.1) or (1.2.2) results in

a system of equations for the displacement u. Example of the numerical solution

of this system for the configurations shown in Fig. 3 (a–d) is given in Fig. 4–7,
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respectively. The equivalent Mises stress is calculated by the formula

σMises =

√

1

2
[(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2], (1.3.9)

where σ1, σ2 and σ3 are the principal stresses.

100û 100σ̂1 100σ̂2 100σ̂3 100σ̂Mises

(a) ν = 0.17

(b) ν = 0.34

Fig. 4. Dimensionless residual displacements û, principal residual stresses σ̂1 = σ̂xx, σ̂2, and σ̂3 and equivalent
Mises stresses σ̂Mises in remelted band with the configuration shown in Fig. 3a, and in the substrate adjacent areas
for the Poisson’s ratios ν = 0.17 (a) and 0.34 (b). The displacement direction is indicated by the arrows. The
principal axes directions in the plane (Y Z) are shown by the dashes.

The non-dimensional values here are calculated using the following formulas:

û =
u

u0
, σ̂βγ =

σβγ
σ0
, (1.3.10)

where the normalizing values of displacement u0 and stress σ0 correspond to the

maximum values of these quantities in the horizontal plate of the unit thickness:

u0 =
1 + ν

1− ν
s, σ0 =

sE

1− ν
. (1.3.11)

The above example of calculation for quartz glass suggests that the principal

dependencies on the thermoelastic parameters are given by (1.3.11). Indeed, the

dimensional analysis of the model equations indicates that dimensionless distribu-

tions (1.3.10) are functions of Poissons radio ν for a given shape of the remelted
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100û 100σ̂1 100σ̂2 100σ̂3 100σ̂Mises

(a) ν = 0.17 in the case of a small amount of powder

(b) ν = 0.34 in the case of a small amount of powder

Fig. 5. Dimensionless residual displacements û, principal residual stresses σ̂1 = σ̂xx, σ̂2, and σ̂3 and equivalent
Mises stresses σ̂Mises in insulated remelted beads with the configuration shown in Fig. 3b, and in the substrate
adjacent areas for the Poisson’s ratios ν = 0.17 (a) and 0.34 (b). The displacement direction is indicated by the
arrows. The principal axes directions in the plane (Y Z) are shown by the dashes.

domain. In addition, the thermoelastic problem does not contain a characteristic

space size. Therefore, the similar remelted domains of different scale form the

similar displacement and stress fields.

Thermoelasticity problem does not contain the characteristic size, so the coor-

dinates in Fig. 4, 5, 6 and 7 are given in arbitrary units. In the same units both

u and u0 are measured.

1.4 Discussion

Comparison of the relevant non-dimensional epures for isolated beads in Fig. 5a

and 5b and also Fig. 6a and 6b obtained at various Poisson’s ratios does not

show neither qualitative nor quantitative significant differences between them.

This suggests that the main dependence on Poisson’s ratio in the geometry of the

insulated bead is the same as for the horizontal plate, and is given by equations

(1.3.11). It can be also seen that the values of stresses in the region below the

surface of the substrate, which are critical for the destruction and plastic flow,
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100û 100σ̂1 100σ̂2 100σ̂3 100σ̂Mises

(a) ν = 0.17 in the case of a large amount of powder

(b) ν = 0.34 in the case of a large amount of powder

Fig. 6. Dimensionless residual displacements û, principal residual stresses σ̂1 = σ̂xx, σ̂2, and σ̂3 and equivalent
Mises stresses σ̂Mises in insulated remelted beads with the configuration shown in Fig. 3c, and in the substrate
adjacent areas for the Poisson’s ratios ν = 0.17 (a) and 0.34 (b). The displacement direction is indicated by the
arrows. The principal axes directions in the plane (Y Z) are shown by the dashes.

are weakly dependent on the bead height above the surface. Thus the conclusion

of the work [53], obtained for the quartz glass, can be generalized.

Conventional methods of reducing the residual stresses in case of the SLM,

such as preheating and the choice of material with less thermal expansion, elastic

modulus, or melting point result from equations (1.3.3) and (1.3.6), and from the

second equation (1.3.11). It can be also seen that the increase of the Poisson’s

ratio is advantageous for reducing residual stresses in the individual beads and

the horizontal plate. At the same time, the results of this work indicate that

the residual stresses are not dependent on the spatial resolution and, hence, on

the temperature gradient. The cooling rate is also not among the parameters of

the model. Therefore, it seems that these findings contradict the lessons learned.

Though that is not quite true. For example, preheating decreases the total tem-

perature difference in the part and thus reducing the gradient and the cooling

rate.
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100û 100σ̂1 100σ̂2 100σ̂3 100σ̂Mises

(a) ν = 0.17 in the case of a very large amount of powder

(b) ν = 0.34 in the case of a very large amount of powder

Fig. 7. Dimensionless residual displacements û, principal residual stresses σ̂1 = σ̂xx, σ̂2, and σ̂3 and equivalent
Mises stresses σ̂Mises in insulated remelted beads with the configuration shown in Fig. 3d, and in the substrate
adjacent areas for the Poisson’s ratios ν = 0.17 (a) and 0.34 (b). The displacement direction is indicated by the
arrows. The principal axes directions in the plane (Y Z) are shown by the dashes.

Model equation (1.2.2) implies that within the elastic deformation residual

stresses are proportional to the linear thermal shrinkage s, which is roughly pro-

portional to the temperature difference of the processed part in accordance with

equation (1.2.3). In conventional furnace technologies of heat treatment this tem-

perature difference is not fixed, but it is known that it is proportional to the

temperature gradient in heterogeneous processes and the rate of heating/cooling

in nonstationary processes. Therefore it is necessary to analyze these two parame-

ters. In the laser technologies with their highly localized heating, the temperature
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gradient is almost always known in advance and is equal to Tm − Ta, that is why

it is easier to work with one parameter — s. Thus, the conclusion about the

independence of residual stresses in the SLM on the temperature gradient and

cooling rate made in [53] for quartz glass and generalized here for arbitrary ma-

terials within their elastic deformation during cooling should be seen not as a

contradiction to previous experience, but rather as a proposal to use during the

analysis of laser technologies only one parameter instead of two — the complete

linear thermal shrinkage s.

Conclusion [53] that the maximum longitudinal tensile residual stresses in the

individual beads are approximately twice as large as the maximum transverse and

confirmed for phosphate glass ones [54], are generalized here to arbitrary materials

having a Poisson’s ratio in the investigated range from 0.17 to 0.34 within their

elastic deformation during cooling after laser manufacturing.

Stress distributions for three different geometries of the individual bead on a

massive substrate shown in Figure 3, are very close. In contrast, in the vertical and

horizontal plates shown in Figure 2, residual stresses are very different. Thus the

question arises of how the fundamentally different stress states of parts constructed

from individual beads are formed from the locally identical stress states at the

stage of these beads. Model does not give an answer to it, as it is not considering

the consecutive imposition of beads on each other. It can only be stated that

the mechanical interaction of the part with the substrate on which it is built is

crucial.
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Fig. 8. Maximum principal tensile residual stresses, σ1 and σ2, and the equivalent Mises stress σMises in the
individual beads (bold lines) and the maximum tensile residual stresses in the horizontal and vertical plates (thin
lines) in comparison with the limits of the tensile strength of non-metallic materials and yield limits of the metallic
ones (points). Preheating temperatures Ta are indicated near the points.

In Figure 8 the calculated residual stresses are compared to the tensile strength

rupture limit of non-metallic materials and the yield limits of the metallic ones.

The assumed values of material properties are given in Table 1. Stresses in Fig. 8

were made dimensionless involving a complete linear shrinkage s, which is depen-

dent on the preheating temperature Ta. This eliminates the temperature depen-

dence of the calculations that are shown as lines and artificially introduces the

dependency of the dimensionless strength limits (shown by dots) on it. That is

why for each point the value Ta is mentioned.
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Material ν µ (GPa)
α

(10−6K−1)

Tm

( ◦C)

Tensile

strength

(MPa)

Yield

limit

(MPa)

Quartz

glass
0.17 31 0.55 1700 50

SiO2, vacu-

um grade
0.17 31 0.55 1700 100

Al2O3 0.22 150 8.4 2070 300

Ca3(PO4)2 0.28 19.5 10.9 1670 15

H13 0.3 81 10.4 1427 1650

Ti-6Al-4V 0.34 42 7.6 1650 1030

Polystyrene 0.35 1.3 80 90 60

Tab. 1. Thermoelastic and mechanical properties of different materials adopted for calculations.

Calculations for vertical plate in which the uniaxial tension is formed, can be

directly compared with the results of uniaxial mechanical tests. For individual

beads on a massive substrate the Mises equivalent stress is calculated as shown

in Fig. 8 by the dashed line. Usage of other failure criteria or plastic flow under

complex stress state is also not excluded as the principal stresses are given. In

case of biaxial isotropic tension in the horizontal plate the Mises stress is equal

to the stress along any of the equivalent axes in the plane of stretching.

The calculations predict the alumina oxide fracturing, even with the preheat-

ing up to 1600 ◦C, and absence of polystyrene fracturing. This corresponds to the

known SLM practice. The fracturing of the volumetric quartz glass parts is also

expected, but without longitudinal cracks in the individual beads thereof. How-

ever, in this experiment [53] neither longitudinal nor transverse fracturing of the

beads from this material was observed. This suggests its possible strengthening

by rapid cooling after laser treatment. As for the high-impact metal alloys Ti-6Al-

4V and H13, it is likely that the residual stresses in them reach the yield limits.

This conclusion may be affected by the preheating and possible laser strengthen-
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ing that is associated with grain refinement to submicron size characteristic for

SLM [37].

Titanium alloys fracturing in the SLM is known to be prevented by processing in

a protective atmosphere, eliminating oxidation [37]. That is why the mechanisms

of its fracturing are not under consideration. Only the question about the ratio of

elastic and plastic residual deformations is actual. Calculations shown in Fig. 8

suggest that the elastic and plastic deformation components depending on the

particular geometry and on the preheating temperature are generally comparable.

The same can be said about the ratio of elastic and plastic deformations in the

H13 steel.

Thus, the above calculation results may be used to estimate the thermome-

chanical stability of materials in the SLM.

1.5 Asymptotic analysis of the problem with residual stresses in the

right-hand side

1.5.1 Statement of the problem

LetG be limited (or confined) s-measured domain with infinitely smooth boundary

∂G. Consider the system of the conductivity equations

Lεu ≡
s
∑

k,j=1

∂

∂xk

(

Akj

(x

ε

) ∂u

∂xj

)

= f0(x) +∇
(

α
(x

ε

)

T
(

x,
x

ε

)

)

, (1.5.1)

with boundary condition

u is 1− periodic in R
s. (1.5.2)

Here ε > 0 is a small parameter, which is the characteristic scale of mi-

crostructure of the environment. We require that ε−1 be an integer. Also

x = (x1, x2, . . . , xs) ∈ R
s, u = u(x1, x2, . . . , xs) = (u1,u2, . . . ,us) — tempera-

ture, f0 = (f10 , f
2
0 , . . . , f

s
0), Aij(ξ) are periodic with respect to all variables ξi with

period 1 (s×s) matrix-functions describing heat-conducting properties of the ma-

terial and satisfying properties (i) and (ii) p. 14, where ξi = ε−1xi, ∀i = 1, . . . , s,

ξ = (ξ1, ξ2, . . . , ξs) = (ε−1x1, ε
−1x2, . . . , ε

−1xs).
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The external force f0(x) has zero averaged value:

〈

f0(x)
〉

= 0; (1.5.3)

where 〈·〉 =
∫

(0,1)s dξ.

The thermal expansion coefficient α(xε ) is a measurable bounded function on

[0, 1], the temperature T(x, xε ) has the following structure

T
(

x,
x

ε

)

= T0(x) + εT1

(

x,
x

ε

)

,

where the solution of the homogenized thermal conductivity equation T0(x) is

known function and the first corrector of the thermal conductivity is represented

in the form

T1

(

x,
x

ε

)

=
s
∑

i=1

Ni(ξ)
∂T0(x)

∂xi
, (1.5.4)

as it was introduced by N.S. Bakhvalov and G.P. Panasenko in [55].

Aij(ξ), f0(x), T0(x), T1

(

x, xε
)

are infinitely differentiable functions in R
s.

We assume that elements of the matrices Aij(ξ) satisfy conditions:

ailkj = aklij = aijkl = alijk, (1.5.5)

ailkj(ξ)ηikηlj > κ ηikηik (1.5.6)

for any symmetrical matrix ‖ηik‖, where κ > 0 is constant independent of ε.

It is necessary to construct the asymptotic of the solution of the problem at ε

tending to zero.

1.5.2 Existence and uniqueness of a solution

Denote G = (0, 1)s and consider the spaces

H1
#(G) =

{

f ∈ H1
loc(R

s)

∣

∣

∣

∣

f − 1-periodic

}

, ‖f‖H1
#(G) = ‖f‖H1(G),

L2
#(G) =

{

f ∈ L2
loc(R

s)

∣

∣

∣

∣

f − 1-periodic

}

, ‖f‖L2
#(G) = ‖f‖L2(G).

(1.5.7)

Definition 1.1. The weak solution to problem (1.5.1), (1.5.2) is called a function
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u ∈ H1
#(G) which satisfies the following variational problem:















Find u ∈ H1
#(G) such that

−

∫

G

s
∑

k,j=1

Akj
∂u

∂xj

∂ϕ

∂xk
=

∫

G

f0ϕ−

∫

G

αT∇ϕ, ∀ϕ ∈ H1
#(G).

(1.5.8)

Theorem 1.2. Let f0 ∈ L2
#(G), α and T satisfy the properties indicated above

(measurable bounded fucntions). In addition the averaged value 〈u〉 = 0 and

〈f0〉 = 0. Then there exists a unique solution to problem (1.5.8) that satisfies the

following estimate
∥

∥u
∥

∥

H1 6 C
(∥

∥f0
∥

∥

L2 +
∥

∥αT
∥

∥

L2

)

, (1.5.9)

with C a positive constant.

Proof. This is a classical result [55] that there exists a unique solution u ∈ H1
#(G)

to problem (1.5.8).

A priory estimates can be easily obtained with help of Korn inequality [56] and

Cauchy-Schwarz-Bunyakovsky inequality [57]. Namely,

κ
∥

∥∇u
∥

∥

2

L2 6 κ

∣

∣

∣

∣

∣

∣

∫

G

s
∑

k,j=1

∂u

∂xj

∂u

∂xk

∣

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

∣

∫

G

s
∑

k,j=1

Akj
∂u

∂xj

∂u

∂xk

∣

∣

∣

∣

∣

∣

6
∥

∥f0
∥

∥

L2

∥

∥u
∥

∥

L2 +
∥

∥αT
∥

∥

L2

∥

∥∇u
∥

∥

L2 6
(∥

∥f0
∥

∥

L2 +
∥

∥αT
∥

∥

L2

) ∥

∥u
∥

∥

H1,

κ
∥

∥∇u
∥

∥

2

L2 6
(∥

∥f0
∥

∥

L2 +
∥

∥αT
∥

∥

L2

) ∥

∥u
∥

∥

H1,

and using the equivalence of
∥

∥∇u
∥

∥

L2 and
∥

∥u
∥

∥

H1:

∥

∥u
∥

∥

H1 ≤ (1 + C2)
∥

∥∇u
∥

∥

L2 ≤ (1 + C2)
∥

∥u
∥

∥

H1,

where C > 0 is the constant appearing in the Poincaré-Friedrichs’ inequality [58]

finally we get (1.5.9).

1.5.3 Construction of a solution

We introduce the following notation for the left-hand side of (1.5.1)

Pu ≡
s
∑

k,j=1

∂

∂xk

(

Akj

(x

ε

) ∂u

∂xj

)

, x ∈ G. (1.5.10)
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We need to take into consideration that

∇ =
(

∇x + ε−1∇ξ

) ∣

∣

ξ=x
ε

(1.5.11)

and that formula (1.5.4) is carried out. Then (1.5.10) becomes

Pu ≡
s
∑

k,j=1

[

∂

∂xk

(

Akj(ξ)
∂u

∂xj

)

+
1

ε

∂

∂ξk

(

Akj(ξ)
∂u

∂xj

)

+
1

ε

∂

∂xk

(

Akj(ξ)
∂u

∂ξj

)

+

+
1

ε2
∂

∂ξk

(

Akj(ξ)
∂u

∂ξj

)]

(1.5.12)

and the right-hand side is transformed as follows

f0(x) +∇
(

α
(x

ε

)

T
(

x,
x

ε

)

)

= f0(x) +
1

ε

s
∑

k=1

T0(x)
∂α(ξ)

∂ξk

+
s
∑

j=1

(

α(ξ) +
s
∑

k=1

∂(αNj)

∂ξk

)

·
∂T0(x)

∂xj
+ ε

s
∑

k,j=1

α(ξ)Nj(ξ)
∂2T0(x)

∂xk∂xj

= f0(x) +

2
∑

l=0

εl−1
∑

|i|=l

Gi(ξ)D
iT0,

(1.5.13)

where it is denoted:

G∅ =
∂α(ξ)

∂ξk
, Gi1 = α(ξ) +

∂(αNj)

∂ξk
, Gi1i2 = α(ξ)Nj(ξ). (1.5.14)

A formal asymptotic solution to problem (1.5.1), (1.5.2) is searched in the

following form

u(K) =
K+1
∑

l=0

εl
∑

|i|=l

Ni

(x

ε

)

Div(K) + Yi−1

(x

ε

)

Di−1T0,

v(K) =

K
∑

j=0

εjvj(x),

(1.5.15)

where i = (i1, . . . , il) is a multi-index, ij ∈ {1, . . . , s}, v(x) is a infinitely differen-

tiable 1-periodic with respect to x1, . . . , xs vector function, Ni(ξ), Yi(ξ) are (s×s)

matrix functions that are 1-periodic with respect to ξ1, . . . , ξs.
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By substitution of series (1.5.15) instead of u in (1.5.12) we obtain

Pu(K) =
K+1
∑

l=0

εl
∑

|i|=l

(

Akj(ξ)Ni(ξ)
∂2Div(K)

∂xk∂xj
+Akj(ξ)Yi−1(ξ)

∂2Di−1T0
∂xk∂xj

)

+

+ε−1
K+1
∑

l=0

εl
∑

|i|=l

(

∂

∂ξk

(

Akj(ξ)Ni(ξ)
)∂Div(K)

∂xj
+

∂

∂ξk

(

Akj(ξ)Yi−1(ξ)
)∂Di−1T0

∂xj

)

+

+ε−1
K+1
∑

l=0

εl
∑

|i|=l

(

Akj(ξ)
∂Ni(ξ)

∂ξj

∂Div(K)

∂xk
+ Akj(ξ)

∂Yi−1(ξ)

∂ξj

∂Di−1T0
∂xk

)

+

+ε−2
K+1
∑

l=0

εl
∑

|i|=l

(

∂

∂ξk

(

Akj(ξ)
∂Ni(ξ)

∂ξj

)

Div(K) +
∂

∂ξk

(

Akj(ξ)
∂Yi−1(ξ)

∂ξj

)

Di−1T0

)

,

After index changing

r = l + 2, i1 = k, i1 = l,

q = l + 1, i1 = j,

q = l + 1, i1 = k

(1.5.16)

in the first, the second and the third sum respectively we obtain:

Pu(K) =
K+3
∑

r=0

εr−2
∑

|i|=r

(

Ai1i2(ξ)Ni3...ir(ξ)D
iv(K) + Ai1i2(ξ)Yi3...ir−1

(ξ)Di−1T0

)

+

+
K+2
∑

q=0

εq−2
∑

|i|=q

(

∂

∂ξk

(

Aki1(ξ)Ni2...iq(ξ)
)

Div(K) +
∂

∂ξk

(

Aki1(ξ)Yi2...iq−1
(ξ)
)

Di−1T0

)

+

+
K+2
∑

q=0

εq−2
∑

|i|=q

(

Ai1j(ξ)
∂Ni2...iq(ξ)

∂ξj
Div(K) + Ai1j(ξ)

∂Yi2...iq−1
(ξ)

∂ξj
Di−1T0

)

+

+
K+1
∑

l=0

εl−2
∑

|i|=l

(

∂

∂ξk

(

Akj(ξ)
∂Ni(ξ)

∂ξj

)

Div(K) +
∂

∂ξk

(

Akj(ξ)
∂Yi−1(ξ)

∂ξj

)

Di−1T0

)

,

and after identification of the indexes r, q, l:

Pu(K) =
K+1
∑

l=0

εl−2
∑

|i|=l

(

Hi(ξ)D
iv(K) + Si−1(ξ)D

i−1T0

)

+R
(K)
1ε , (1.5.17)
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where

R
(K)
1ε = εK

∑

|i|=K+2

{(

∂

∂ξk

(

Aki1(ξ)Ni2...iK+2
(ξ)
)

+Ai1j(ξ)
∂Ni2...iK+2

(ξ)

∂ξj
+

+Ai1i2(ξ)Ni3...iK+2
(ξ)
)

Div(K) +

(

∂

∂ξk

(

Aki1(ξ)Yi2...iK+1
(ξ)
)

+

+Ai1j(ξ)
∂Yi2...iK+1

(ξ)

∂ξj
+Ai1i2(ξ)Yi3...iK+1

(ξ)

)

Di−1T0

}

+

+εK+1
∑

|i|=K+3

{

Ai1i2(ξ)Ni3...iK+3
(ξ)Div(K) + Ai1i2(ξ)Yi3...iK+2

(ξ)Di−1T0

}

.

(1.5.18)

Remark. In (1.5.18)

εK
∑

|i|=K+2

∂

∂ξk

(

Aki1(ξ)Ni2...iK+2
(ξ)
)

Div(K) + εK+1
∑

|i|=K+3

Ai1i2(ξ)Ni3...iK+3
(ξ)Div(K) =

= εK+1
∑

|i|=K+2

(

1

ε

∂

∂ξk

(

Aki1(ξ)Ni2...iK+2
(ξ)
)

Div(K) +
∂

∂xk

(

Aki1(ξ)Ni2...iK+2
(ξ)Div(K)

)

)

=

= εK+1 ∂

∂xk





∑

|i|=K+2

Aki1

(x

ε

)

Ni2...iK+2

(x

ε

)

Div(K)





and

εK
∑

|i|=K+2

∂

∂ξk

(

Aki1(ξ)Yi2...iK+1
(ξ)
)

Di−1T0 + εK+1
∑

|i|=K+3

Ai1i2(ξ)Yi3...iK+2
(ξ)Di−1T0 =

= εK+1 ∂

∂xk





∑

|i|=K+2

Aki1

(x

ε

)

Yi2...iK+1

(x

ε

)

Di−1T0



 .

There are at |i| = 0:

H∅ = LξξN∅ ≡ 0, N∅ = 1,

at |i| = 1:

Hi1 =
∂

∂ξk

(

Akj(ξ)
∂Ni1(ξ)

∂ξj
+Aki1(ξ)

)

, S∅ = LξξY∅, LξξY∅ = G∅

and at |i| > 2:

Hi(ξ) = LξξNi + Ti(ξ), (1.5.19)
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Ti(ξ) =

s
∑

k=1

∂

∂ξk

(

Aki1(ξ)Ni2...il(ξ)
)

+

s
∑

j=1

Ai1j(ξ)
∂Ni2...il(ξ)

∂ξj
+ Ai1i2(ξ)Ni3...il(ξ),

(1.5.20)

Si−1(ξ) = LξξYi−1 +Wi−1(ξ), (1.5.21)

Wi−1(ξ) =

s
∑

k=1

∂

∂ξk

(

Aki1(ξ)Yi2...il−1
(ξ)
)

+

s
∑

j=1

Ai1j(ξ)
∂Yi2...il−1

(ξ)

∂ξj
+Ai1i2(ξ)Yi3...il−1

(ξ)

(1.5.22)

in formula (1.5.17).

Remark. We formally assume that there are zero Ni(ξ), Yi(ξ), Si(ξ), Gi(ξ) with

negative multi-index length |i| in formulas (1.5.17) – (1.5.22).

Since Pu should be equal to f0(x) +∇
(

α
(

x
ε

)

T
(

x, xε
))

rewritten in (1.5.13), we

suppose that

Hi(ξ) = hi, Si−1(ξ)−Gi−1(ξ) = si−1,

where hi and si are constants.

We obtain the following recurrent chain of problems of the form

LξξNi = −Ti(ξ) + hi, N∅ = 1 (1.5.23)

to determine Ni and of the form

LξξYi−1 = −Wi−1(ξ) +Gi−1(ξ) + si−1, LξξY∅ = G∅ (1.5.24)

to determine Yi. Ni and Yi are 1-periodic functions with respect to ξ. The constant

matrices hi and si are chosen from the solvability conditions for problems (1.5.23),

(1.5.24):

hi =
〈

Ti(ξ)
〉

=
〈

s
∑

j=1

Ai1j(ξ)
∂Ni2...il(ξ)

∂ξj
+ Ai1i2(ξ)Ni3...il(ξ)

〉

, l > 2,

h∅ = 0, hi1 = 0, (1.5.25)

si−1 =
〈

Wi−1(ξ)−Gi−1(ξ)
〉

=
〈

s
∑

j=1

Ai1j(ξ)
∂Yi2...il−1

(ξ)

∂ξj
+ Ai1i2(ξ)Yi3...il−1

(ξ)−Gi−1(ξ)
〉

, l > 2,

s∅ = 0.



Construction of a solution 33

Thus, the algorithm for constructing the functions Ni and Yi is recurrent:

they are solutions of problems (1.5.23), (1.5.24) for l > 0. The right-hand side

in (1.5.23) contains Nj with multi-indices j whose length is smaller than |i| and

the right-hand side in (1.5.24) contains Yj with multi-indices j whose length is

smaller than |i| − 1.

Substituting series (1.5.15)2 we obtain

Pu(K) =
K+1
∑

l=0

εl−2
∑

|i|=l

(

Hi(ξ)D
iv(K) + Si−1(ξ)D

i−1T0

)

+R
(K)
1ε .

Then by reason of (1.5.25) previous relation will go over

Pu(K) =

K+1
∑

l=2

εl−2
∑

|i|=l

(

hiD
iv(K) + (si−1 + 〈Gi−1〉)(ξ)D

i−1T0

)

+ R
(K)
1ε =

=

K+1
∑

l=2
|i|=l

K
∑

j=0

εl+j−2hiD
ivj +

K+1
∑

l=2

εl−2
∑

|i|=l

(si−1 + 〈Gi−1〉)(ξ)D
i−1T0 + R

(K)
1ε ,

where Gi = 0 at |i| > 2.

Assuming that r = l + j − 2 gives to us:

K+1
∑

l=2
|i|=l

K
∑

j=0

εl+j−2hiD
ivj =

K
∑

r=0

εr





s
∑

i1,i2=1

hi1i2
∂2vr

∂xi1∂xi2
+

r−1
∑

j=0

∑

|i|=r−j+2

hiD
ivj



+ R
(K)
2ε ,

where

R
(K)
2ε =

2K−1
∑

r=K+1

εr
K
∑

j=0

∑

|i|=min{r−j+2,K+1}

hiD
ivj =

2K−1
∑

r=K+1

εr
∑

|i|+j−2=r
|i|6K+1
j6K

hiD
ivj (1.5.26)

because differentiation is possible while |i| 6 K + 1 and the functions vj exist

prior to j = K.

R(K)
ε = R

(K)
1ε + R

(K)
2ε . (1.5.27)
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To determine vj we have

K+1
∑

l=2

εl−2
∑

|i|=l

(

hiD
iv(K) + si−1D

i−1T0

)

= f0(x).

s
∑

i1,i2=1

hi1i2
∂2v(K)

∂xi1∂xi2
+ si1

∂T0
∂xi1

+

K+1
∑

l=3

εl−2
∑

|i|=l

(

hiD
iv(K) + si−1D

i−1T0

)

− f0(x) = 0.

(1.5.28)

Problem (1.5.28) can be regarded as the homogenized equation with respect

to s-dimensional vector v. Substituting series (1.5.15)2 into (1.5.28), we obtain a

recurrent chain of equations for the components vkj of the vectors vj in the form

s
∑

i1,i2=1

hi1i2
∂2vj

∂xi1∂xi2
= gj(x), (1.5.29)

where g0 = f0(x) − si1
∂T0
∂xi1

, the functions gj depend on vj1, j1 < j, and on

the derivatives of these functions. Thus the f.a.s. of problem (1.5.1), (1.5.2),

and (1.5.15) is constructed.

1.5.4 Justification of the asymptotic expansion

After substituting u(K) in the left-hand side of equation (1.5.1) and repeating

transformations as in the construction section we obtain Lεu
(K) = f0(x) + R

(K)
ε ,

where | R
(K)
ε | 6 c1ε

K, c1 is positive constant independent on ε. So, the difference

u(K) − u is a solution to equation Lε(u
(K) − u) = R

(K)
ε . A priory estimate (1.5.9)

for this solution gives

∥

∥u(K) − u
∥

∥

H1 6 C
∥

∥R(K)
ε

∥

∥

L2 = O(ε(K)).

1.6 Conclusions

Concerning the technical physical aspect we can conclude that calculation by

the described model gives residual stresses that could form after cooling of the

treatment area to its original state in case of the absence of inelastic deformation
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and fracturing during the cooling stage.

Vertical plate grown with the help of the SLM method on a hard substrate, is

exposed to uniaxial tension and the horizontal plate is exposed to the isotropic

biaxial one.

Maximum longitudinal tensile residual stresses in the individual beads are ap-

proximately twice as large as the maximum transverse one within the elastic

deformation of materials during cooling after SLM.

Residual stresses in the SLM do not depend on the temperature gradient and

the cooling rate under the condition of elastic deformation of the materials during

cooling.

The results of the presented calculations are used to estimate the thermome-

chanical stability of materials in the SLM.

Concerning the mathematical aspect we can conclude that there exists a unique

solution of the system of linear equations with residual stresses in the right-hand

side.

The solution is constructed as a asymptotic series. Its coefficients are deter-

mined owing to the homogenization process. The difference between the asymp-

totic approach and the solution is small.





Chapter 2

Variational analysis of a viscous

fluid-thin plate interaction problem

2.1 Introduction. Formulation of the problem

The viscous fluid - thin plate interaction problem arises in numerous applications:

the blood flow near the vessel wall, the fluid motion in the pipelines, the hydro-

dynamic resistance to the boat, etc. In the present paper we consider a viscous

fluid-3D thin rigid stratified plate interaction problem. The small parameter ε

stands for the ratio of the thicknesses of the plate and of the fluid layer. In the

same time the Young modulus of the plate is supposed to be great having the

order of ε−3, while the viscosity of the fluid, as well as the densities of the fluid

and solid are supposed to be finite (i.e. of order of 1). The right hand side

functions are supposed 1-periodic with respect to the tangential variables of the

plate. At the plate fluid interface the velocity and the normal stress are contin-

uous. This problem is a three dimensional generalization of the two-dimensional

setting considered in [1, 2]. However the density of the plate was supposed to be

much greater than the density of the fluid which is less natural for the applica-

tions. Moreover, the conclusions made on the two-dimensional modeling may be

very different of the three-dimensional one, which is more realistic. That is why

in the present paper the three-dimensional fluid-structure interaction is consid-

ered. Previously the problems of the fluid-structures interaction were considered

in papers [3, 4, 18, 19, 25, 59]. In [3, 4, 18, 59] the deformable structure descrip-

tion was simplified by neglecting the thickness of the wall. In [15], the authors

study the steady-state fluid-structure interaction between a three-dimensional,
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axi-symmetric elastic tube filled with an incompressible viscous fluid, when the

thickness of the tube wall is of the same order of magnitude as the tube radius.

The elastic moduli of the wall were supposed to be of the same order that the

fluid viscosity.

In the present paper the fluid flow is modeled by the 3D Stokes equations

while the plate is described by the linear 3D elasticity equations. At the interface

the velocity continuity and the normal stress continuity are imposed. Although

the fluid and the solid phases are described in different variables (Eulerian and

Lagrangian, respectively), it is supposed that the displacements and strains are

small enough so that the values of the velocity and of the pressure are close in

both variables.

The fluid occupies the horizontal layer L− = R
2× (−1, 0) while the plate corre-

sponds to the thin layer L+
ε = R

2 × (0, ε), where ε is a small positive parameter.

The applied mass forces are supposed to be 1-periodic with respect to the “hor-

izontal” variables x1 and x2. Put x̄ = (x1, x2), x = (x1, x2, x3) and denote the

x1
x2

x3

0

ε

−1

F+
ε

F 0

F−

L+
ε

L−

Fig. 9. 3D layer

interface between the liquid and solid phase F 0 = {x̄ ∈ R
2, x3 = 0}, the bottom

plane of the liquid phase F− = {x̄ ∈ R
2, x3 = −1}, and the upper plate’s sur-

face F+
ε = {x̄ ∈ R

2, x3 = ε}. Denote D the square (0, 1)2. Then the fluid-plate

interaction problem can be described by the following boundary value problem:
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Find triplet (uε,vε, pε) such that

ρ+(
x3
ε
)
∂2uε

∂t2
− ε−3

3
∑

i,j=1

∂

∂xi

(

Aij(
x3
ε
)
∂uε

∂xj

)

= ε−1g(x̄, t) in L+
ε × (0, T ),

ρ−
∂vε

∂t
− 2ν̃ div (D(vε)) +∇pε = f(x, t) in L− × (0, T ),

div vε = 0 in L− × (0, T ),
3
∑

j=1

A3j(1)
∂uε

∂xj
= 0 on F+

ε × (0, T ),

vε = 0 on F− × (0, T ),


















vε =
∂uε

∂t
,

−pεe3 + 2ν̃D(vε)e3 = ε−3
3
∑

j=1

A3j(0)
∂uε

∂xj

on F 0 × (0, T ),

uε,vε, pε D−periodic,

uε(x, 0) =
∂uε

∂t
(x, 0) = 0 in L+

ε ,

vε(x, 0) = 0 in L−,

(2.1.1)

with a positive given constant T .

The characteristics of the elastic medium are described by the variable density

ρ+(ξ3), by 3×3 matrix-valued functions ε−3Aij(ξ3), i, j ∈ {1, 2, 3} of elastic moduli

of the plate material, by the Young’s modulus ε−3E(ξ3) and by the Poisson’s

coefficient ν(ξ3), with

ξ3 =
x3
ε
. (2.1.2)

The plate is supposed to be heterogeneous, stratified, and so these coefficients

depend on the variable x3. We study the case corresponding to ρ+ and E of

order one (the elastic moduli are of order ε−3). The coefficients ρ+ and Aij are

supposed to be piecewise smooth functions on [0, 1] i.e. there exist p ∈ N, p ≥ 2

and p + 1 real numbers ζ0, ζ1, ..., ζp, with 0 = ζ0 < ζ1 < ... < ζp = 1 such that

ρ+, a
kl
ij ∈ C1([ζa, ζa+1]), a = 0, 1, ..., p−1, i, j, k, l ∈ {1, 2, 3}; moreover, there exist

two positive constants ρ+min, ρ
+
max independent of ε such that

ρ+min ≤ ρ+(ξ3) ≤ ρ+max, ∀ ξ3 ∈ [0, 1]. (2.1.3)



40 Variational analysis of a viscous fluid-thin plate interaction problem

The matrices Aij = (aklij)1≤k,l≤3 with the elements aklij defined via two

piecewise-smooth functions E and ν by the following formula aklij =
E

2(1 + ν)

(

2ν

1− 2ν
δikδjl+δijδkl+δilδjk

)

satisfying the bounds−1 < ν < 1/2, E > 0.

Hence, they satisfy the properties:

(i) aklij (ξ3) = ailkj(ξ3) = alkji(ξ3), ∀ i, j, k, l ∈ {1, 2, 3}, ∀ξ3 ∈ [0, 1],

(ii) ∃ κ > 0 independent of ε such that
3
∑

i,j,k,l=1

aklij (ξ3)η
l
jη

k
i ≥ κ

3
∑

j,l=1

(ηlj)
2, ∀ξ3 ∈

[0, 1], ∀η = (ηlj)1≤j,l≤3, with η
l
j = ηjl .

The matrices Aij have the following expressions:



































































































































































A11(ξ3)=









E(ξ3)(1−ν(ξ3))
(1+ν(ξ3))(1−2ν(ξ3))

0 0

0 E(ξ3)
2(1+ν(ξ3))

0

0 0 E(ξ3)
2(1+ν(ξ3))









, A22(ξ3)=









E(ξ3)
2(1+ν(ξ3))

0 0

0 E(ξ3)(1−ν(ξ3))
(1+ν(ξ3))(1−2ν(ξ3))

0

0 0 E(ξ3)
2(1+ν(ξ3))









,

A33(ξ3)=









E(ξ3)
2(1+ν(ξ3))

0 0

0 E(ξ3)
2(1+ν(ξ3))

0

0 0 E(ξ3)(1−ν(ξ3))
(1+ν(ξ3))(1−2ν(ξ3))









,

A12(ξ3)=









0 E(ξ3)ν(ξ3)
(1+ν(ξ3))(1−2ν(ξ3))

0
E(ξ3)

2(1+ν(ξ3))
0 0

0 0 0









, A13(ξ3)=









0 0 E(ξ3)ν(ξ3)
(1+ν(ξ3))(1−2ν(ξ3))

0 0 0
E(ξ3)

2(1+ν(ξ3))
0 0









,

A21(ξ3)=









0 E(ξ3)
2(1+ν(ξ3))

0
E(ξ3)ν(ξ3)

(1+ν(ξ3))(1−2ν(ξ3))
0 0

0 0 0









, A23(ξ3)=









0 0 0

0 0 E(ξ3)ν(ξ3)
(1+ν(ξ3))(1−2ν(ξ3))

0 E(ξ3)
2(1+ν(ξ3))

0









,

A31(ξ3)=









0 0 E(ξ3)
2(1+ν(ξ3))

0 0 0
E(ξ3)ν(ξ3)

(1+ν(ξ3))(1−2ν(ξ3))
0 0









, A32(ξ3)=









0 0 0

0 0 E(ξ3)
2(1+ν(ξ3))

0 E(ξ3)ν(ξ3)
(1+ν(ξ3))(1−2ν(ξ3))

0









.

(2.1.4)

The characteristics of the viscous fluid, independent of ε, are the positive con-

stants ρ− and ν̃ representing its density and its viscosity, respectively. In addition

to the data ρ+, Aij, E, ν (for the elastic medium) and ρ−, ν̃ (for the viscous fluid),

we also know right hand side functions g and f , the scaled mass forces, which
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act on the elastic medium and on the fluid, respectively; they are supposed to be

1-periodic in x1 and x2.

The unknown functions uε,vε, pε are the plate displacement, the fluid velocity

and the pressure, respectively.

In the Stokes equations the standard notation is used for the symmetrized

gradient:

D(v) =
1

2
(∇v+ (∇v)T), (2.1.5)

and represents the velocity strain tensor. We will use as well the following notation

for the strain tensor in the plate:

E(u) =
1

2

(

∇u+ (∇u)T
)

. (2.1.6)

As usual, at the layer interfaces within the elastic plate the continuity conditions

are satisfied for the displacement uε as well as for the normal stress
∑3

j=1A3j
∂uε

∂xj

(see [55]).

We emphasize that the plate’s material Young modulus is great; it is of the

order ε−3 and depends on the “vertical” fast variable ξ3 = x3

ε : it is equal to

ε−3E(ξ3), where E is a function of order one, while the Poisson’s ratio ν(ξ3) is of

order of one. This value of the Young’s modulus is critical with respect to the

small parameter ε that is the ratio of thicknesses of the plate and of the fluid

layer (the fluid layer thickness is of the same order as the period of the right

hand sides). For this value of the Young’s modulus there is a coupling in the limit

problem between the Stokes equations and the limit plate equation. This coupling

generates a non-standard boundary condition for the Stokes equations. In other

cases the Stokes equations and the limit plate equation may be decoupled.

This boundary value problem for the coupled elasticity equations and the Stokes

equations describing the fluid covered with a stratified plate may be used for the

modeling of the blood flow - the vessel wall interaction in hemodynamics, as well

as for the flow-wall interaction in the pipelines. In order to provide mathematical

analysis of this problem, let us state the variational formulation and define a

weak solution. To this end let us reduce the number of the unknown functions.

Extend formally the velocity vε to the layer L+
ε : uε(x, t) =

∫ t

0 vε(x, s)ds and
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exclude the pressure pε by introducing the divergence free functional space for

the test functions in the fluid part of the domain. This step is quite standard for

the Stokes and the Navier-Stokes equations [24], [60]: normally the variational

formulation starts without the pressure in the solenoidal functional space and

then, if needed, the pressure is defined according to the De Rham theorem, so that

both formulations are equivalent. Let us introduce the necessary functional spaces.

In what follows we call function f defined in R
2×(a, b) (and so depending on x1, x2

and eventually x3 ∈ (a, b)) D−periodic iff for any integer i1, i2, and for any real

x1, x2 (and eventually for any real x3 ∈ (a, b)) the relation f(x1+ i1, x2+ i2, x3) =

f(x1, x2, x3) holds.

Define the periodicity domains by

D− = D × (−1, 0), D+
ε = D × (0, ε), Dε = D × (−1, ε), (2.1.7)

with D− the fluid part and D+
ε the elastic part.

x1

x2

x3

0

ε

−1

1

Γ+
ε

Γ0

Γ−

D+
ε

D−

Fig. 10. Periodicity domain

Introduce the “horizontal” boundaries and interface in the periodic cell:















Γ− = {(x̄,−1)/x̄ ∈ D},

Γ0 = {(x̄, 0)/x̄ ∈ D},

Γ+
ε = {(x̄, ε)/x̄ ∈ D}.

(2.1.8)
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Define

C∞
# (D) =

{

f ∈ C∞(R2)

∣

∣

∣

∣

f −D-periodic

}

,

L2
#(D) =

{

f ∈ L2
loc(R

2)

∣

∣

∣

∣

f −D-periodic

}

, ‖f‖L2
#(D) = ‖f‖L2(D),

L2
#(D

−) =

{

f ∈ L2
loc(R

2 × (−1, 0))

∣

∣

∣

∣

f − D-periodic

}

, ‖f‖L2
#(D

−) = ‖f‖L2(D−),

L2
#(D

+
ε ) =

{

f ∈ L2
loc(R

2 × (0, ε))

∣

∣

∣

∣

f − D-periodic

}

, ‖f‖L2
#(D

+
ε ) = ‖f‖L2(D+

ε ),

L2
#(Dε) =

{

f ∈ L2
loc(R

2 × (−1, ε))

∣

∣

∣

∣

f − D-periodic

}

, ‖f‖L2
#(Dε) = ‖f‖L2(Dε),

H1
#(D

−) =

{

f ∈ H1
loc(R

2 × (−1, 0))

∣

∣

∣

∣

f − D-periodic

}

, ‖f‖H1
#(D

−) = ‖f‖H1(D−),

H1
#(D

+
ε ) =

{

f ∈ H1
loc(R

2 × (0, ε))

∣

∣

∣

∣

f − D-periodic

}

, ‖f‖H1
#(D

+
ε ) = ‖f‖H1(D+

ε ),

H1
#(Dε) =

{

f ∈ H1
loc(R

2 × (−1, ε))

∣

∣

∣

∣

f − D-periodic

}

, ‖f‖H1
#(Dε) = ‖f‖H1(Dε).

The corresponding inner products are introduced in these Hilbert spaces in a

standard way.

Let us define

V =
{

ϕ ∈ (H1
#(Dε))

3
∣

∣ divϕ = 0 in D−, ϕ = 0 on Γ−
}

(2.1.9)

and

V + = (H1
#(D

+
ε ))

3, (2.1.10)

Note that since the space V introduced in (2.1.9) is a separable Hilbert space,

we can select a countable orthogonal in L2
#(Dε)) basis {ϕj}

∞
j=1. Assume that the

right hand side functions have the following regularity

g ∈ H1(0, T ; (L2
#(D

+
ε ))

3), f ∈ H1(0, T ; (L2
#(D

−))3), (2.1.11)

while ρ+, a
kl
ij are piecewise-smooth as it was formulated above.
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We also put

Hv =

{

v ∈ L2(0, T ; V )
∣

∣

∣
v′ ∈ L2(0, T ; V ′),

∫ t

0

v dt ∈ L2(0, T ; V +)

}

.

Define a weak solution to problem (2.1.1) as a function vε satisfying the follow-

ing integral identity:















































Find vε ∈ Hv

d

dt

∫

Dε

(

ρ+χ(D
+
ε ) + ρ−χ(D

−)
)

vε · ϕ+ ε−3

∫

D+
ε

3
∑

i,j=1

Aij
∂

∂xj

(
∫ t

0

vε dt

)

·
∂ϕ

∂xi

+2ν̃

∫

D−

D(vε) : D(ϕ) =

∫

Dε

(

ε−1χ(D+
ε )g + χ(D−)f

)

· ϕ ∀ϕ ∈ V a.e. in (0, T ),

vε(0) = 0 in Dε,

(2.1.12)

Here χ(A) is the characteristic function of the set A. Remind that so defined

weak solution corresponds to the velocity function only, while the displacement

in the solid phase and the pressure are absent. In the next section we study this

variational formulation from the point of view of the existence and uniqueness of

its solution. Then, using the mentioned regularity of the data, we prove the corre-

sponding regularity of function vε which gives the regularity of the displacement

and that of the pressure, previously introduced as a distribution. An important

difference of this problem with respect to the standard Stokes or the Navier-Stokes

equations is that the pressure is defined here uniquely. This gives us a possibility

to prove that the triplet velocity - displacement - pressure satisfies the relations

(2.1.1) pointwisely.

Remark. The function uε is given by uε(x, t) =

∫ t

0

vε(x, s)ds for (x, t) ∈

D+
ε × (0, T ), where vε represents a continuous extension of the fluid velocity in

(D̄ε\D̄
−)× (0, T ), due to (2.1.1)6, and it was denoted in (2.1.12) also by vε. So,

the displacement is formally eliminated for performing the variational analysis of
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problem (2.1.1), it can be rewritten in the form:






































































































ρ+
∂vε

∂t
− ε−3

3
∑

i,j=1

∂

∂xi

(

Aij
∂

∂xj

(
∫ t

0

vε(s)ds

))

= ε−1g in D+
ε × (0, T ),

ρ−
∂vε

∂t
− 2ν̃ div (D(vε)) +∇pε = f in D− × (0, T ),

div vε = 0 in D− × (0, T ),
3
∑

j=1

A3j
∂

∂xj

(
∫ t

0

vε(s)ds

)

= 0 on Γ+
ε × (0, T ),

vε = 0 on Γ− × (0, T ),

−pεe3 + 2ν̃D(vε)e3 = ε−3
3
∑

j=1

A3j
∂

∂xj

(
∫ t

0

vε(s)ds

)

on Γ0 × (0, T ),

vε, pε D−periodic,

vε(0) = 0 in Dε.

(2.1.13)

After multiplication of (2.1.13)1,2 by ϕ/
D+
ε

, ϕ/D−
, respectively and integration by

parts we obtain, by means of the other equations and conditions of (2.1.13), the

problem (2.1.12) that we will study from a variational viewpoint.

2.2 Existence and uniqueness of a solution

2.2.1 Main problem

Consider the variational formulation (2.1.12). The following theorem holds.

Theorem 2.1. Let g and f have the regularity given by (2.1.11). Then there

exists a unique solution vε ∈ Hv of problem (2.1.12).

Proof. The proof of the existence and uniqueness of solution to problem (2.1.12)

is based on the Galerkin’s method.
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System of Galerkin approximations is


























































∫

Dε

(

ρ+χ(D
+
ε ) + ρ−χ(D

−)
) ∂vn

∂t
·ϕ

+ε−3

∫

D+
ε

3
∑

i,j=1

Aij
∂

∂xj

(∫ t

0

vn(s) ds

)

∂ϕ

∂xi
+ 2ν̃

∫

D−

D(vn) : D(ϕ)

=

∫

Dε

(

ε−1χ(D+
ε )g + χ(D−)f

)

· ϕ ∀ϕ ∈ Vn a.e. in (0, T ),

vn(0) = 0 in Dε,

(2.2.1)

where Vn = span{ϕ1,ϕ2, . . . ,ϕn}.

The solution is sought in the form

vn =
n
∑

k=1

ak(t)ϕk(x), in Dε × (0, T ), (2.2.2)

with the functions ak determined from the system of integro-differential equations:






























































n
∑

p=1

∫

Dε

(

ρ+χ(D
+
ε ) + ρ−χ(D

−)
)

ϕp · ϕka
′
k(t)

+
n
∑

p=1

ε−3







∫

D+
ε

3
∑

i,j=1

Aij

∂ϕp

∂xj
·
∂ϕk

∂xi







∫ t

0

ak(s)ds+
n
∑

p=1

2ν̃





∫

D−

D(ϕp) : D(ϕk)



 ak(t)

=

∫

Dε

(

ε−1χ(D+
ε )g + χ(D−)f

)

· ϕk a.e. in (0, T ),

ak(0) = 0 k = 1, ...n.

(2.2.3)

We denote

ck(t) =

∫ t

0

ak(s) ds. (2.2.4)

So, as ak = c′k, system (2.2.3) becomes a system of linear differential equations of
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order 2 that can be used for determination of functions ck(t), k = 1, . . . , n:































































n
∑

p=1

∫

Dε

(

ρ+χ(D
+
ε ) + ρ−χ(D

−)
)

ϕp · ϕkc
′′
k(t)

+
n
∑

p=1

ε−3







∫

D+
ε

3
∑

i,j=1

Aij

∂ϕp

∂xj
·
∂ϕk

∂xi






ck(t)+

n
∑

p=1

2ν̃





∫

D−

D(ϕp) : D(ϕk)



 c′k(t)

=

∫

Dε

(

ε−1χ(D+
ε )g + χ(D−)f

)

· ϕk a.e. in (0, T ),

ck(0) = c′k(0) = 0 k = 1, ...n.

(2.2.5)

System (2.2.5) has a unique solution, since the matrix

M =





∫

Dε

(

χ(D+
ε )ρ+ + χ(D−)ρ−

)

ϕp · ϕk





1≤p,k≤n

(2.2.6)

is non-degenerate. Denoting

ρ± = ρ+χ(D
+
ε ) + ρ−χ(D

−), (2.2.7)

we obtain that

Mξ · ξ =





n
∑

p=1

∫

Dε

ρ± ξpϕpϕk





1≤k≤n

· ξ

=

n
∑

p,k=1

∫

Dε

ρ± ξpϕpξkϕk =

∫

Dε

ρ±

(

n
∑

j=1

ξjϕj

)2

≥ 0.

Thus Mξ · ξ = 0 if and only if ξ1 = ξ2 = · · · = ξn = 0 or ξ = 0 (because the

system
{

ϕk

}

is a linear independent system).

Next, for passing to the limit in (2.2.1)1 as n→ ∞ (and to get weak formulation
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of the problem), we will prove the following estimates:

∥

∥vn

∥

∥

L∞(0,T ;(L2(D−))3)
≤ C,

∥

∥

∥

∂vn

∂t

∥

∥

∥

L∞(0,T ;(L2(Dε))3)
≤ C,

∥

∥

∥

∫

D+
ε

3
∑

i,j=1

Aij
∂

∂xj

(
∫ t

0

vε dt

)

∂

∂xi

(
∫ t

0

vε dt

)

∥

∥

∥

L∞(0,T )
≤ C,

∥

∥D(vn)
∥

∥

L2(0,T ;(L2(D−))3×3)
≤ C.

(2.2.8)

To this effect we take in (2.2.1)1 ϕ = ϕk, multiply by ak(t), sum up from k = 1

to n and integrate from 0 to t:

∫

Dε

ρ±v
2
n + ε−3

∫

D+
ε

3
∑

i,j=1

Aij
∂

∂xj

(
∫ t

0

vn(s) ds

)

∂

∂xi

(
∫ t

0

vn(s) ds

)

+4ν̃

t
∫

0

∫

D−

(

D(vn)
)2

= 2

t
∫

0

∫

Dε

(

ε−1χ(D+
ε ) g + χ(D−) f

)

vn.

(2.2.9)

The function ρ± defined in (2.2.7) can be evaluated owing to (2.1.3) as follows

ρ± ≥ ρ+minχ(D
+
ε ) + ρ−χ(D

−) ≥ c1,

with c1 = min
{

ρ+min, ρ−
}

. Denoting F± = ε−1χ(D+
ε ) g + χ(D−) f , using the

previous inequality and Cauchy-Schwarz-Bunyakovsky inequality we obtain from

(2.2.9)

c1

∫

Dε

v2
n + ε−3

∫

D+
ε

3
∑

i,j=1

Aij
∂

∂xj

(
∫ t

0

vn(s) ds

)

∂

∂xi

(
∫ t

0

vn(s) ds

)

+4ν̃

t
∫

0

∫

D−

(

D(vn)
)2

≤ 2

T
∫

0

∥

∥F±(t)
∥

∥

(L2(Dε))3

∥

∥vn(t)
∥

∥

(L2(Dε))3
dt.

(2.2.10)

The right-hand side in (2.2.10) can be evaluated as outlined below

2

T
∫

0

∥

∥F±(t)
∥

∥

(L2(Dε))3

∥

∥vn(t)
∥

∥

(L2(Dε))3
dt ≤ 2

∥

∥F±

∥

∥

L1(0,T ;(L2(Dε))3)

∥

∥vn

∥

∥

L∞(0,T ;(L2(Dε))3)

≤
c1
2

∥

∥vn

∥

∥

2

L∞(0,T ;(L2(Dε))3)
+

2

c1

∥

∥F±

∥

∥

2

L1(0,T ;(L2(Dε))3)
.
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Finally we obtain the following estimates

c1
2

∥

∥vn

∥

∥

2

L∞(0,T ;(L2(Dε))3)
+ 4ν̃

∥

∥D(vn)
∥

∥

2

L2(0,T ;(L2(D−))3×3)

+ε−3

∥

∥

∥

∥

∥

∫

Dε

3
∑

i,j=1

Aij
∂

∂xj

(
∫ t

0

vn(s) ds

)

∂

∂xi

(
∫ t

0

vn(s) ds

)

∥

∥

∥

∥

∥

L∞(0,T )

≤
∥

∥f , g
∥

∥

1
,

(2.2.11)

where
∥

∥f , g
∥

∥

1
=

2

c1

∥

∥F±

∥

∥

2

L1(0,T ;(L2(Dε))3)
. (2.2.12)

We differentiate next (2.2.1)1 with respect to t (it is possible thanks to regularity

(2.1.11) for g and f). In order to get an estimate for v′
n(0) we consider (2.2.1)1 at

the moment t = 0
∫

Dε

ρ±v
′
n(0) · ϕk =

∫

Dε

F±(0) ·ϕk k = 1, . . . , n; (2.2.13)

we calculate then

n
∑

k=1

(2.2.13) · a′k(0), which yields

∫

Dε

ρ±(v
′
n(0))

2 =

∫

Dε

F±(0) · v
′
n(0). (2.2.14)

From relation (2.2.14) with the inequality ρ± ≥ c1 it follows that

c1
∥

∥v′
n(0)

∥

∥

2

(L2(Dε))3
≤

1

c1

∥

∥F±(0)
∥

∥

2

(L2(Dε))3
def
=

∥

∥f , g
∥

∥

0

c1
. (2.2.15)

We repeat the same technique as before; i.e. we compute
n
∑

k=1

(2.2.1)′1 ·a
′
k(t) and

we integrate in time:

∫

Dε

ρ±(v
′
n)

2 + ε−3

∫

D+
ε

3
∑

i,j=1

Aij
∂vn

∂xj

∂vn

∂xi
+ 4ν̃

t
∫

0

∫

D−

(

D(v′
n)
)2

= 2

t
∫

0

∫

Dε

F′
±v

′
n +

∫

Dε

ρ±(v
′
n(0))

2,



50 Variational analysis of a viscous fluid-thin plate interaction problem

which gives the estimates:

c1
2

∥

∥v′
n

∥

∥

2

L∞(0,T ;(L2(Dε))3)
+ ε−3

∥

∥

∥

∥

∥

∫

Dε

3
∑

i,j=1

Aij
∂vn

∂xj

∂vn

∂xi

∥

∥

∥

∥

∥

L∞(0,T )

+4ν̃
∥

∥D(v′
n)
∥

∥

2

L2(0,T ;(L2(D−))3×3)
≤
∥

∥f ′, g′
∥

∥

1
+
c2
c21

∥

∥f , g
∥

∥

0
,

(2.2.16)

where c2 = max{ρ+max, ρ−}. So, the maximal regularity obtained for v′
n from

(2.2.16) is:
{

v′
n ∈ L∞(0, T ; (L2

#(Dε))
3),

v′
n ∈ L2(0, T ; (H1

#(D
−))3).

(2.2.17)

From (2.2.11), (2.2.16), the definition of the weakly-* convergence and the

Banach-Alaoglu theorem [61] it follows that























vnk
→ v∗,v

′
nk

→ v′
∗ weakly-* in L∞(0, T ; (L2

#(Dε))
3),

3
∑

j=1

A3j

∂
∫ t

0 vnk
dt

∂xj
→

3
∑

j=1

A3j

∂
∫ t

0 v∗dt

∂xj
weakly-* in L∞(0, T ; (L2

#(D
+
ε ))

3),

D(vnk
) → D(v∗) weakly in L2(0, T ; (L2

#(D
−))9).

(2.2.18)

We need to show that the limit v∗ ∈ Hv is solution for (2.1.12).

For passing to the limit in (2.2.1), written for the subsequences nk, we take

ϕ = ϕk in (2.2.1)1, we consider an arbitrary function η ∈ L2(0, T ) and we compute
∫ T

0

n
∑

k=1

ak(2.2.1)1 · η dt, which gives

∫ T

0

∫

Dε

ρ±
∂vn

∂t
· ϕη + ε−3

∫ T

0

∫

D+
ε

3
∑

i,j=1

Aij
∂

∂xj

(
∫ t

0

vn(s) ds

)

∂ϕ

∂xi
η

+2ν̃

∫ T

0

∫

D−

D(vn) : D(ϕ)η =

∫ T

0

∫

Dε

F± · ϕη,

(2.2.19)
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with ϕ =

n
∑

k=1

akϕk. We use next (2.2.18), which yields

∫ T

0

∫

Dε

ρ±
∂v∗

∂t
· ϕη + ε−3

∫ T

0

∫

D+
ε

3
∑

i,j=1

Aij
∂

∂xj

(∫ t

0

v∗(s) ds

)

∂ϕ

∂xi
η

+2ν̃

∫ T

0

∫

D−

D(v∗) : D(ϕ)η =

∫ T

0

∫

Dε

F± · ϕη ∀ϕ ∈ V.

(2.2.20)

To get initial condition (2.1.12)2 we consider in (2.2.19) and (2.2.20) a more

regular function η ∈ C([0, T ]), η(T ) = 0. After integration by parts in time of the

first term of (2.2.19) and (2.2.20) we obtain, respectively

−

∫ T

0

∫

Dε

ρ±vn · ϕη
′ + ε−3

∫ T

0

∫

D+
ε

3
∑

i,j=1

Aij
∂

∂xj

(
∫ t

0

vn(s) ds

)

∂ϕ

∂xi
η

+2ν̃

∫ T

0

∫

D−

D(vn) : D(ϕ)η =

∫ T

0

∫

Dε

F± · ϕη ∀ϕ ∈ V

and

−

∫

Dε

ρ±v∗(0) · ϕη(0)−

∫ T

0

∫

Dε

ρ±v∗ · ϕη
′ + 2ν̃

∫ T

0

∫

D−

D(v∗) : D(ϕ)η

+ε−3

∫ T

0

∫

D+
ε

3
∑

i,j=1

Aij
∂

∂xj

(
∫ t

0

v∗(s) ds

)

∂ϕ

∂xi
η =

∫ T

0

∫

Dε

F± · ϕη ∀ϕ ∈ V.

As a consequence of the previous two relations and (2.2.18) we obtain v∗(0) = 0.

In order to show the uniqueness we take g = 0, f = 0 in (2.1.12) and we need

to prove the absence of nontrivial solutions for this problem; we take vε as a test

function







































∫

Dε

ρ±
∂vε

∂t
vε + ε−3

∫

D+
ε

3
∑

i,j=1

Aij
∂

∂xj

(∫ t

0

vε(s) ds

)

∂vε

∂xi

+2ν̃

∫

D−

D(vε) : D(vε) = 0 a.e. in (0, T ),

vε(0) = 0 in Dε.

(2.2.21)
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A priori estimates for vε are obtained in a similar manner to that described

above (see (2.2.11), with vn replaced by vε):

c1
2

∥

∥vε

∥

∥

2

L∞(0,T ;(L2(Dε))3)
+ 4ν̃

∥

∥D(vε)
∥

∥

2

L2(0,T ;(L2(D−))3×3)

+ε−3

∥

∥

∥

∥

∥

∫

Dε

3
∑

i,j=1

Aij
∂

∂xj

(
∫ t

0

vε(s) ds

)

∂

∂xi

(
∫ t

0

vε(s) ds

)

∥

∥

∥

∥

∥

L∞(0,T )

≤
∥

∥f , g
∥

∥

1
,

(2.2.22)

where
∥

∥f , g
∥

∥

1
is given by (2.2.12). For an a priori estimate the term

ε−3

∥

∥

∥

∥

∥

∫

Dε

∑3
i,j=1Aij

∂
∂xj

(

∫ t

0 vε(s) ds
)

∂
∂xi

(

∫ t

0 vε(s) ds
)

∥

∥

∥

∥

∥

L∞(0,T )

should be estimated

below by the second Korn inequality via lower part and the trace as authors

did in [62, Th. 1] using Lax-Milgram lemma [63]. In (2.2.22) it is easy to get the

lower estimate carrying out a change of variables and unknowns in D+
ε , reducing

it to the field, independent of epsilon, and using the periodicity in x1, x2 with the

continuation through the interface Γ0.

From estimates (2.2.22) the uniqueness follows when f = g = 0.

The uniqueness result gives convergences (2.2.18) not only on subsequences,

but on the whole sequences.

The pressure gradient can be constructed from the de Rham theorem [24] (as

a distribution).

2.2.2 Limit problem

Generally the main question is the constructing of the limit problem that will be

constructed in the chapter 3. For the asymptotic approach of the problem we

need further regularity for the data. We suppose that

(H1) the function g is independent of x3 and g ∈ C∞([0, T ], (C∞
# (D̄))3);

(H2) the function f is C∞ D-periodic and
∂lf

∂xs1 . . . ∂xsl
∈ C∞([0, T ], (L2(D−))3),

for any l ∈ N, s = (s1, . . . , sl), sj ∈ {1, 2}, |s| = l;

(H3) ∃τ0 < T such that f = 0 in D− × [0, τ0], g = 0 in D × [0, τ0].
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Consider the following problem (for k = 0)














































































ˆ̂
J∆2

x̄(w0)3 − p0/

x3=0

= g3 in D × (0, T ),

ρ−
∂v̂0

∂t
− ν̃∆v̂0 +∇p0 = f ,

div v̂0 = 0 in D− × (0, T ),

v̂0(x̄,−1, t) = 0 in D × (0, T ),

v̂0(x̄, 0, t) =
∂(w0)3
∂t

(x̄, t)e3 in D × (0, T ),

(w0)3, v̂0, p0 D − periodic,

v̂0(x, 0) = 0 in D−; (w0)3(x, 0) = 0 in D

(2.2.23)

with regularity for the data satisfying the hypothesis (H1)–(H3).

Problem (2.2.23) can be rewritten































































ρ−
∂v̂0

∂t
− ν̃∆v̂0 +∇p0 = f ,

div v̂0 = 0 in D− × (0, T ),

v̂0(x̄,−1, t) = 0 in D × (0, T ),

(v̂0)1 = (v̂0)2 = 0,
ˆ̂
J

∫ t

0

∆2
x̄(v̂0)3(x̄, 0, s) ds− p0/

Γ0

= g3 in D × (0, T ),

v̂0, p0 D − periodic,

v̂0(x, 0) = 0 in D−,

(2.2.24)

after using of (2.2.23)5,7.

Differentiate (2.2.24)1−4 by t, it yields


























































ρ−v̂
′′
0 − ν̃∆v̂′

0 +∇p′0 = f ′,

div v̂′
0 = 0 in D− × (0, T ),

v̂′
0(x̄,−1, t) = 0 in D × (0, T ),

(v̂0)
′
1 = (v̂0)

′
2 = 0,

ˆ̂
J∆2

x̄(v̂0)3(x̄, 0, s)− p′0
/

Γ0

= g′3 in D × (0, T ),

v̂0, p0 D − periodic,

v̂0(0) = v̂′
0(0) = 0 in D−.

(2.2.25)
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We notice that the condition v̂′
0(0) = 0 appears as a consequence of (H3).

Define

H =
{

ω ∈ (H1
#(D

−))3
∣

∣

∣
divω = 0,ω = 0 on Γ−, ω1,2 = 0 on Γ0, γ0ω3 ∈ H2(Γ0)

}

,

(2.2.26)

where γ : (H1(D−))3 → (H1/2(∂D−))3, γ0 = γ/

Γ0

is the trace operator. Such

spaces [64–66] are called strengthened Sobolev spaces. We put

Hv =
{

v ∈ L2(0, T ;H)
∣

∣

∣
v′ ∈ L2(0, T ; (H1

#(D
−))3),v′′ ∈ L2(0, T ; (L2

#(D
−))3)

}

.

(2.2.27)

The space H is provided with the norm

‖ω‖2H = ‖ω‖2(H1(D−))3 + ‖∆x̄γ0ω3‖
2
L2(Γ0).

We compute
∫

D−(2.2.25)1 ·ϕ+
∫

Γ0
(2.2.25)4 · γ0ϕ3 and after integration by parts

we obtain the variational formulation for our problem



































Find v̂0 ∈ Hv such that

ρ−

∫

D−

v̂′′
0(t)ϕ+ ν̃

∫

D−

∇v̂′
0(t) : ∇ϕ+

ˆ̂
J

∫

Γ0

∆x̄(γ0(v̂0)3)(t)∆x̄(γ0ϕ3)

=

∫

D−

f ′(t)ϕ+

∫

Γ0

g′3(t)γ0ϕ3 a.e. in (0, T ), ∀ϕ ∈ H,

v̂0(0) = v̂′
0(0) = 0 in (L2

#(D
−))3.

(2.2.28)

Definition 2.2. Define a weak solution to problem (2.2.25) as a function v̂0 ∈ Hv

satisfying variational problem (2.2.28).

Theorem 2.3. Let f and g3 have the regularity given by (H1)–(H3), p. 52. Then

problem (2.2.28) has a unique solution, with properties:

v̂′
0 ∈ W 1,∞(0, T ;H), v̂′′

0 ∈ L2(0, T ; (H1
#(D

−))3). (2.2.29)

Proof. The space H being a separable Hilbert space with respect to ‖ · ‖H we

shall apply the Galerkin’s method. For this purpose we consider a orthogonal

basis {ϕj}j∈N of the space H and we define the approximate functions v̂0n(x, t) =
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∑n
j=1 cj(t)ϕj(x). with the coefficients cj(t) : [0, T ] → R uniquely determined from



























ρ−

∫

D−

v̂′′
0nϕj + ν̃

∫

D−

∇v̂′
0n∇ϕj +

ˆ̂
J

∫

Γ0

∆x̄(γ0(v̂0n)3)∆x̄(γ0ϕj3)

=

∫

D−

f ′ϕj +

∫

Γ0

g′3γ0ϕj3 ∀ j = 1, . . . , n a.e. in (0, T ),

v̂0n(0) = v̂′
0n(0) = 0 in (L2

#(D
−))3.

(2.2.30)

Next we multiply (2.2.30)1 by c
′
j and sum from 1 to n. We get



























ρ−

∫

D−

v̂′′
0nv̂

′
0n +

∫

D−

ν̃∇v̂′
0n∇v̂′

0n +

∫

Γ0

ˆ̂
J∆x̄(γ0(v̂0n)3)∆x̄(γ0(v̂

′
0n)3)

=

∫

D−

f ′v̂′
0n +

∫

Γ0

g′3γ0(v̂
′
0n)3 a.e. in (0, T ), ∀ϕ ∈ H,

v̂0n(0) = v̂′
0n(0) = 0 in (L2

#(D
−))3

(2.2.31)

knowing that
∑n

j=1 c
′
jϕj = v̂′

0n,
∑n

j=1 c
′
j(ϕj)3 = γ0(v̂

′
0n)3.

We majorate the right-hand side as follows

ρ−
d

dt

∫

D−

(v̂′
0n)

2 + 2ν̃

∫

D−

(∇v̂′
0n)

2 +
ˆ̂
J
d

dt

∫

Γ0

(∆x̄(γ0(v̂0n)3))
2

≤ 2‖f ′‖(L2(D−))3‖v̂
′
0n‖(L2(D−))3 + 2‖g′3‖L2(Γ0)‖γ0(v̂

′
0n)3‖L2(Γ0)

≤ 2c1‖f
′‖(L2(D−))3‖∇v̂′

0n‖L2(D−) + 2‖g′3‖L2(Γ0)‖γ0(v̂
′
0n)3‖L2(Γ0),

with a constant c1 independent of ε given by Poincaré’s inequality.

Integrating in time the previous inequality and using initial conditions (2.2.31)2

we get

ρ−

∫

D−

(v̂′
0n)

2(t) + 2ν̃

∫ t

0

∫

D−

(∇v̂′
0n)

2 +
ˆ̂
J

∫

Γ0

(∆x̄(γ0(v̂0n)3))
2(t)

≤ 2c1

∫ t

0

‖f ′‖(L2(D−))3‖∇v̂′
0n‖(L2(D−))3 + 2

∫ t

0

‖g′3‖L2(Γ0)‖γ0(v̂
′
0n)3‖L2(Γ0)

≤ 2c1

∫ t

0

‖f ′‖(L2(D−))3‖∇v̂′
0n‖(L2(D−))3x3 + 2c2

∫ t

0

‖g′3‖L2(Γ0)‖∇v̂′
0n‖(L2(D−))3x3

≤ c3

(

‖f ′‖2L2(0,T ;(L2(D−))3) + ‖g′3‖
2
L2(0,T ;L2(Γ0))

)

+ ν̃

∫ t

0

∫

D−

(∇v̂′
0n)

2,

using ‖γ0(v̂′0n)3‖L2(Γ0) ≤ c2‖∇v̂′
0n‖(L2(D−))3x3.
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So we obtain the first estimates as below

max{ρ
1/2
− ‖v̂′

0n‖L∞(0,T ;(L2(D−))3), ν̃
1/2‖∇v̂′

0n‖L2(0,T ;(L2(D−))3x3),
ˆ̂
J1/2‖∆x̄(γ0(v̂0n)3)‖L∞(0,T ;L2(Γ0))} ≤

∥

∥f ′, g′3
∥

∥

2
,

(2.2.32)

with
∥

∥f ′, g′3
∥

∥

2
= (2c3)

1/2
(

‖f ′‖L2(0,T ;(L2(D−))3) + ‖g′3‖L2(0,T ;L2(Γ0))

)

.

Taking into account (H3) we obtain from (2.2.32) the second estimates

max{ρ
1/2
− ‖v̂′′

0n‖L∞(0,T ;(L2(D−))3), ν̃
1/2‖∇v̂′′

0n‖L2(0,T ;(L2(D−))3x3),
ˆ̂
J1/2‖∆x̄(γ0(v̂

′
0n)3)‖L∞(0,T ;L2(Γ0))} ≤

∥

∥f ′′, g′′3
∥

∥

2
,

(2.2.33)

With these estimates we have the following convergences on subsequences















v̂0nk
⇀ v̂0∗, v̂

′
0nk

⇀ v̂′
0∗, v̂

′′
0nk

⇀ v̂′′
0∗ weakly in L2(0, T ; (L2

#(D
−))3),

∇v̂′
0nk

⇀ ∇v̂′
0∗ weakly in L2(0, T ; (L2

#(D
−))3),

∆x̄(γ0(v̂0nk
)3)⇀ ∆x̄(γ0(v̂0∗)3) weakly – * in L2(0, T ;L2

#(Γ0))

(2.2.34)

for k → ∞.

We need to show that the limit v̂0∗ ∈ Hv is the weak solution of (2.2.28).

For passing to the limit in (2.2.30), written for the subsequences nk, we con-

sider arbitrary functions η ∈ L2(0, T ) and ϕ =
∑n

j=1 cjϕj ∈ H and we compute
∫ T

0

∑n
j=1 cj(2.2.30)1 · η dt, which gives

ρ−

∫ T

0

∫

D−

v̂′′
0nϕη + ν̃

∫ T

0

∫

D−

∇v̂′
0n∇ϕη +

ˆ̂
J

∫ T

0

∫

Γ0

∆x̄(γ0(v̂0n)3)∆x̄(γ0ϕ3)η

=

∫ T

0

∫

D−

f ′ϕη +

∫ T

0

∫

Γ0

g′3γ0ϕ3η.

(2.2.35)

We use next (2.2.34), which yields

ρ−

∫

D−

v̂′′
0∗ϕ+ ν̃

∫

D−

∇v̂′
0∗∇ϕ+

ˆ̂
J

∫

Γ0

∆x̄(γ0(v̂0∗)3)∆x̄(γ0ϕ3)

=

∫

D−

f ′ϕ+

∫

Γ0

g′3γ0ϕ3 a.e. in (0, T ), ∀ϕ ∈ H.
(2.2.36)

To get initial conditions (2.2.28)2 we introduce the space

Y = {v ∈ L2(0, T ; (H1
#(D

−))3),v′ ∈ L2(0, T ; (L2
#(D

−))3)},
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we use the fact [24] that Y ⊂ L2(0, T ; (L2
#(D

−))3) is compact owing to the com-

pactness of (H1
#(D

−))3 ⊂ (L2
#(D

−))3. Then applying the Poincaré’s inequality,

estimates (2.2.32), (2.2.33) and using the hypothesis (H3) we get the following

relations
‖v̂′

0n‖L2(0,T ;(H1
#(D

−))3) ≤ C1‖
∥

∥f ′, g′3
∥

∥

2
‖L2(0,T ),

‖v̂′′
0n‖L2(0,T ;(L2

#(D
−))3) ≤ C2‖

∥

∥f ′′, g′′3
∥

∥

2
‖L2(0,T ).

(2.2.37)

It signifies belonging of v̂0n, v̂
′
0n to C([0, T ]; (L2

#(D
−))3). The compactness

of the embedding H1(0, T ; (H1
#(D

−))3) ⊂ C([0, T ]; (L2
#(D

−))3), initial condi-

tions (2.2.30) give the strong convergences v̂0n → v̂0 and v̂′
0n → v̂′

0 in

C([0, T ]; (L2
#(D

−))3) from the weak convergences v̂0n ⇀ v̂0 and v̂′
0n ⇀ v̂′

0 in

L2(0, T ; (H1
#(D

−))3). The limits v̂0, v̂
′
0 are also found in C([0, T ]; (L2

#(D
−))3).

Then the convergences v̂0n → v̂0 and v̂′
0n → v̂′

0 in C([0, T ]; (L2
#(D

−))3) lead to

v̂0n(0) → v̂0(0) in (L2
#(D

−))3 and v̂′
0n(0) → v̂′

0(0) in (L2
#(D

−))3 whence we have

initial conditions (2.2.28)2.

All the assertions of the theorem are obtained following the steps of the corre-

sponding proof of [1, 2].

Uniqueness of v̂0∗. Multiply the integral identity by v̂′
0∗. We use the energetic

estimates for the difference v̂1
0∗ − v̂2

0∗ with right-hand side = 0.

2.3 Regularity results

2.3.1 Main problem

Improving the regularity [67], [60] is a very important question for the existence

of the pressure trace on the interaction boundary Γ0 and the further asymp-

totic analysis. We have already got the existence and uniqueness results for ini-

tial problem (2.1.12) in the weak sense (with the minimal regularity) by means

of Galerkin’s method with a priori estimates (2.2.22) (without pressure). We

improve the data regularity for carrying out of the regularity study as follows:

g ∈ H2([0, T ], (H1
#(D

+
ε ))

3), f ∈ H2([0, T ], (H1
#(D

−))3).We introduce new domains

Dεhi
, D+

εhi
, D−

hi
, that are obtained from Dε, D

+
ε , D

−, respectively, with a shift in
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xi at hi, i = 1, 2:

Dh1
= (h1, 1 + h1)× (0, 1), Dh2

= (0, 1)× (h2, 1 + h2),

Dεhi
= Dhi

× (−1, ε), D+
εhi

= Dhi
× (0, ε), D−

hi
= Dhi

× (−1, 0),

for small h1 and h2. We consider next the variables x1, x2 and t consecutively. For

example, we start with x1: to improve the regularity in x1 we consider problem

(2.1.12) with x1 replaced by x1 + h1










































d

dt

∫

Dεh1

ρ±vε(x1 + h1) · ϕ+ ε−3

∫

D+
εh1

3
∑

i,j=1

Aij
∂

∂xj

(
∫ t

0

vε(x1 + h1) ds

)

·
∂ϕ

∂xi

+2ν̃

∫

D−

h1

D(vε(x1 + h1)) : D(ϕ) =

∫

Dεh1

F±(x1 + h1) · ϕ ∀ϕ ∈ V a.e. in (0, T ),

vε(0) = 0 in Dε,

(2.3.1)

and the problem corresponding to the right-hand side ∂F±

∂x1
:







































d

dt

∫

Dε

ρ±v
∗
ε · ϕ+ ε−3

∫

D+
ε

3
∑

i,j=1

Aij
∂

∂xj

(∫ t

0

v∗
ε ds

)

·
∂ϕ

∂xi

+2ν̃

∫

D−

D(v∗
ε) : D(ϕ) =

∫

Dε

∂F±

∂x1
· ϕ ∀ϕ ∈ V a.e. in (0, T ),

v∗
ε(0) = 0 in Dε.

(2.3.2)

We remark that the test functionϕ in (2.3.1) would have to be equal to ϕ(x1+h1),

but (2.3.1)1 remains true for all ϕ ∈ V . So, it can be taken ϕ(x1). In this case

problem (2.3.1) is equivalent to variational problem (2.1.12) on the score of the D-

periodicity. Convergence of the finite difference
vε(x1 + h1, x2, x3, t)− vε(x, t)

h1
to

the solution v∗
ε(x, t) of (2.3.2) can be proved as follows. Evidently, the difference

vε(x1 + h1, x2, x3, t)− vε(x, t)

h1
−v∗

ε(x, t) satisfies the problem with the right-hand

side
F±(x1 + h1, x2, x3, t)− F±(x, t)

h1
−
∂F±

∂x1
(x, t). We apply a priori estimates
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(2.2.22):

c1
2

∥

∥

∥

vε(x1 + h1)− vε(x1)

h1
− v∗

ε

∥

∥

∥

2

L∞(0,T ;(L2(Dε))3)

+4ν̃

∥

∥

∥

∥

∥

D(
vε(x1 + h1)− vε(x1)

h1
− v∗

ε)

∥

∥

∥

∥

∥

2

L2(0,T ;(L2(D−))3×3)

+ε−3

∥

∥

∥

∥

∥

∫

Dε

3
∑

i,j=1

Aij
∂

∂xj

(
∫ t

0

vε(x1 + h1)− vε(x1)

h1
− v∗

ε ds

)

·
∂

∂xi

(
∫ t

0

vε(x1 + h1)− vε(x1)

h1
− v∗

ε ds

)

∥

∥

∥

∥

∥

L∞(0,T )

≤

∥

∥

∥

∥

f(x1 + h1)− f(x1)

h1
−

∂f

∂x1
,
g(x1 + h1)− g(x1)

h1
−
∂g

∂x1

∥

∥

∥

∥

1

.

(2.3.3)

Due to the improved regularity of f and g, the right-hand side of (2.3.3) goes

to zero when h1 → 0, so
vε(x1 + h1, x2, x3, t)− vε(x, t)

h1
tends to v∗

ε(x, t), when

h1 → 0. From the convergence of
vε(x1 + h1, x2, x3, t)− vε(x, t)

h1
to v∗

ε(x, t) we

deduce that vε is differentiable in x1 and, within the meaning of the generalized

derivative defined by Sobolev, that the derivative
∂vε

∂x1
is exactly the function v∗

ε.

With the same ideas, the previous result holds also for the variables x2 and t.

We consider now the following problem


































































ρ+
∂2uε

∂t2
− ε−3

3
∑

i,j=1

∂

∂xi

(

Aij
∂uε

∂xj

)

= ε−1g in D+
ε × (0, T ),

3
∑

j=1

A3j
∂uε

∂xj
= 0 on Γ+

ε × (0, T ),

uε =
(

∫ t

0

vε(s) ds
)

∣

∣

Γ0

on Γ0 × (0, T ),

uε D−periodic,

uε(0) = u′
ε(0) = 0 in D+

ε .

(2.3.4)

Repeating the same arguments as above we obtain the regularity
∂uε

∂xi
(t) ∈

(H1(D+
ε ))

3, i = 1, 2, and
∂2uε

∂t2
(t) ∈ (L2(D+

ε ))
3. As the coefficients of Aij are

piecewise smooth functions on [0, 1] as stated on p. 39, then relation (2.3.4)1 gives
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∂2uε

∂x23
(t) ∈ (L2(D+

ε ))
3. It means that uε(t) ∈ H2 in a neighborhood of Γ0 and

(uε)/Γ0(t) ∈ H3/2(Γ0).

Next, we consider the problem






















































ρ−
∂vε

∂t
− 2ν̃ div (D(vε)) +∇pε = f in D− × (0, T ),

div vε = 0 in D− × (0, T ),

vε = 0 on Γ− × (0, T ),

vε =
∂uε

∂t
∣

∣

Γ0

on Γ0 × (0, T ),

vε, pε D−periodic,

vε(0) = 0 in D−.

(2.3.5)

From (2.3.5)4 we get vε ∈ (H3/2(∂D−))3. Using the regularity previously ob-

tained for the derivatives in x1, x2 and t for vε, we obtain from equation (2.3.5)1

the condition ∇pε(t) ∈ (H1
#(D

−))3. The ADN-estimates [24] give the following

regularity vε(t) ∈ (H2(D−))3, pε(t) ∈ H1(D−). Consequently, the trace pε∣
∣

Γ0

has

the regularity H1/2.

2.3.2 Limit problem

The regularity question is very important in the asymptotic analysis because

there are the higher-order derivatives taken with respect to t and x1, x2 from the

unknowns (w0)3, v̂0, p0 (obtained in solving the limit problem) in the asymptotics

construction.

Let us consider variational problem (2.2.28) at the moment t+∆t ∈ (0, T ) (∆t

is small)


























ρ−

∫

D−

v̂′′
0(t+∆t)ϕj + ν̃

∫

D−

∇v̂′
0(t+∆t)∇ϕj +

ˆ̂
J

∫

Γ0

∆x̄γ0(v̂0)3(t+∆t)∆x̄γ0ϕj3

=

∫

D−

f ′(t+∆t)ϕj +

∫

Γ0

g′3(t+∆t)γ0ϕj3, j = 1, . . . , n,

v̂0(0) = v̂′
0(0) = 0 in (L2

#(D
−))3,

(2.3.6)
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and problem (2.2.30) replacing f ′ and g′3 in the right-hand side by its derivatives


























ρ−

∫

D−

v̂′′
0∗ϕj + ν̃

∫

D−

∇v̂′
0∗∇ϕj +

ˆ̂
J

∫

Γ0

∆x̄(γ0(v̂0∗)3)∆x̄(γ0ϕj3)

=

∫

D−

f ′′ϕj +

∫

Γ0

g′′3γ0ϕj3 a.e. in (0, T ), j = 1, . . . , n,

v̂0∗(0) = v̂′
0∗(0) = 0 in (L2

#(D
−))3.

(2.3.7)

Remark. The initial condition v̂′
0∗(0) = 0 is obtained automatically from the

fourth hypothesis for f and g3 (see asymptotic analysis).

We consider the difference between
(2.3.6)1−(2.2.30)1

∆t
and (2.3.7)1:

ρ−

∫

D−

(

v̂′′
0(t+∆t)− v̂′′

0(t)

∆t
− v̂′′

0∗(t)

)

ϕj

+ν̃

∫

D−

(

∇v̂′
0(t+∆t)−∇v̂′

0(t)

∆t
−∇v̂′

0∗(t)

)

∇ϕj

+
ˆ̂
J

∫

Γ0

(

∆x̄γ0(v̂0)3(t+∆t)−∆x̄γ0(v̂0)3(t)

∆t
−∆x̄γ0(v̂0∗)3(t)

)

∆x̄γ0ϕj3

=

∫

D−

(

f ′(t+∆t)− f ′(t)

∆t
− f ′′(t)

)

ϕj

+

∫

Γ0

(

g′3(t+∆t)− g′3(t)

∆t
− g′′3(t)

)

γ0ϕj3, j = 1, . . . , n,

(2.3.8)

We obtain the estimates
∥

∥

∥

v̂′
0(t+∆t)− v̂′

0(t)

∆t
− v̂′

0∗(t)
∥

∥

∥

C([0,T ];(L2(D−))3)

+
∥

∥

∥

∇v̂′
0(t+∆t)−∇v̂′

0(t)

∆t
−∇v̂′

0∗(t)
∥

∥

∥

L2(0,T ;(L2(D−))3)

+
∥

∥

∥

∆x̄γ0(v̂0)3(t+∆t)−∆x̄γ0(v̂0)3(t)

∆t
−∆x̄γ0(v̂0∗)3(t)

∥

∥

∥

L∞(0,T ;L2(Γ0))

≤ C
∥

∥

∥
c

(

f ′(t+∆t)− f ′(t)

∆t
− f ′′(t),

g′3(t+∆t)− g′3(t)

∆t
− g′′3(t)

)

∥

∥

∥

L2(0,T )
.

(2.3.9)

Knowing, that

f ′′(t) = lim
∆t→0

f ′(t+∆t)− f ′(t)

∆t
, g′′3(t) = lim

∆t→0

g′3(t+∆t)− g′3(t)

∆t
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we obtain the following convergences

v̂′
0(t+∆t)− v̂′

0(t)

∆t
→ v̂′

0∗(t), ∆t→ 0,

∇v̂′
0(t+∆t)−∇v̂′

0(t)

∆t
→ ∇v̂′

0∗(t), ∆t→ 0,

∆x̄γ0(v̂0)3(t+∆t)−∆x̄γ0(v̂0)3(t)

∆t
→ ∆x̄γ0(v̂0∗)3(t), ∆t→ 0.

The limit of v̂′
0(t+∆t)−v̂′

0(t)
∆t will be the function in Hv because v̂′

0(t+∆t)−v̂′
0(t)

∆t ∈ Hv

which is the closed Hilbert space and contains its limit points. In plus, v̂′
0∗ will

be the second derivative v̂′′
0(t). In fact, if our sequence converges weakly, we can

choose a convergent subsequence in the classical sense in L2 and its limit will be

needed derivative.

Analogically it is possible to get all derivatives in time of v̂0 by induction.

Next, we do the same to the derivatives with respect to the space variables x1

and x2. This gives the estimates (for i = 1, 2)

∥

∥

∥

v̂′
0(xi +∆xi)− v̂′

0(xi)

∆xi
−
∂v̂′

0

∂xi

∥

∥

∥

C([0,T ];(L2(D−))3)

+
∥

∥

∥

∇v̂′
0(xi +∆xi)−∇v̂′

0(xi)

∆xi
−
∂∇v̂′

0

∂xi

∥

∥

∥

L2(0,T ;(L2(D−))3)

+
∥

∥

∥

∆x̄γ0(v̂0)3(xi +∆xi)−∆x̄γ0(v̂0)3(xi)

∆xi
−
∂∆x̄γ0(v̂0)3

∂xi

∥

∥

∥

L∞(0,T ;L2(Γ0))

≤ C
∥

∥

∥
c

(

f ′(xi+∆xi)− f ′(xi)

∆xi
−
∂f ′

∂xi
,
g′3(xi+∆xi)− g′3(xi)

∆xi
−
∂g′3
∂xi

)

∥

∥

∥

L2(0,T )
.

(2.3.10)

It means the convergences

v̂′
0(xi +∆xi)− v̂′

0(xi)

∆xi
→

∂v̂′
0

∂xi
, ∆xi → 0,

∇v̂′
0(xi +∆xi)−∇v̂′

0(xi)

∆xi
→

∂∇v̂′
0

∂xi
, ∆xi → 0,

∆x̄γ0(v̂0)3(xi +∆xi)−∆x̄γ0(v̂0)3(xi)

∆xi
→

∂∆x̄γ0(v̂0)3
∂xi

, ∆xi → 0.

The derivative
∂v̂′

0

∂xi
, i ∈ {1, 2} will be in the our space too (remark, that 1-

periodicity is saved) and we obtain other derivatives of bigger order by induction.
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In order to get the derivatives
∂kv̂′

0

∂xk3
, k ≥ 1 we replace the initial problem by

th Dirichlet problem and we apply for it the ADN-estimates [24].

As stated above, there exist the unique solution to problem (2.2.23), but there

is no information for the reverse transition from the variational problem (without

pressure) to a physical problem (with pressure).

Remark. The formal differentiations in (2.2.23), (2.2.24), (2.2.25) become informal

with the results of applying the smoothness increasing method.

In order to improve the regularity of the unknowns as stated in Theorem 3.5,

for any q, l ∈ N we consider the problem


















































































ˆ̂
J∆2

x̄(wq,l)3 − p
q,l
/

x3=0

=
∂q+lg3

∂tq∂xs1 . . . ∂xsl
in D × (0, T ),

ρ−
∂v̂q,l

∂t
− ν̃∆v̂q,l +∇pq,l =

∂q+lf

∂tq∂xs1 . . . ∂xsl

div v̂q,l = 0

in D− × (0, T ),

v̂q,l(x̄,−1, t) = 0 in D × (0, T ),

v̂q,l(x̄, 0, t) =
∂(wq,l)3
∂t

(x̄, t)e3 in D × (0, T ),

(wq,l)3, v̂0, p0 D−periodic,

v̂q,l(x, 0) = 0 in D−; (wq,l)3(x̄, 0) =
∂(wq,l)3
∂t

(x̄, 0) = 0 in D.

(2.3.11)

Taking into account the assumptions (H1) and (H2) we obtain for the unknowns

of (2.3.11) the same regularity as that for (w0)3, v̂0, p0.

We extend next problem (2.2.23) from the bounded domain D− to the layer
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corresponding to x̄ ∈ R
2:



































































ˆ̂
J∆2

x̄(w0)3 − p
0
/

x3=0

= g3 in R
2 × (0, T ),

ρ−
∂v̂0

∂t
− ν̃∆v̂0 +∇p0 = f

div v̂0 = 0
in R

2 × (−1, 0)× (0, T ),

v̂0(x̄,−1, t) = 0 in R
2 × (0, T ),

v̂0(x̄, 0, t) =
∂(w0)3
∂t

(x̄, t)e3 in R
2 × (0, T ),

v̂0(x, 0) = 0 in R
2 × (−1, 0); (w0)3(x̄, 0) =

∂(w0)3
∂t

(x̄, 0) = 0 in R
2.

(2.3.12)

2.4 Conclusion

We have proved the existence and uniqueness of solution to the viscous fluid-thin

elastic plate interaction problem, assuming the interface continuity of velocity

and normal stresses. Variational analysis of the weak formulation is effectuated.

The higher regularity of the solution is obtained. The existence of pressure follows

from De Rham’s theorem and its regularity. The same arguments and conclusions

are right for the limit problem.



Chapter 3

Asymptotic analysis of a viscous

fluid-thin plate interaction problem

3.1 Introduction

In order to construct an asymptotic expansion the existence, uniqueness and reg-

ularity of solution to the elasticity problem coupled with Stokes equations are

required. We will construct the asymptotic expansion solution compared to the

small parameter ε and prove estimates for the difference of the exact solution

and the partial sums of the asymptotic expansion. The principal question is to

find the zero approximation (satisfying the existence, uniqueness and regularity

results from Chapter 2). This problem generalizes the result in two-dimensional

case obtained in [1, 2]. Admittedly, the 3D model is more adequate, because in

the mentioned articles it was assumed that the density of the plate is of order ε−1

while in the thesis densities of the plate and the fluid are of the same order, which

is more realistic for applications. In section 3.2 an asymptotic solution of order J

is constructed and the limit problem is obtained. This limit problem differs from

that of [2], due to the change of the density order. The asymptotic expansion

is completely justified in section 3.3, where the error between the exact and the

asymptotic solutions is evaluated.

In this chapter we deal with the equations with rapidly oscillating coeffi-

cients [55, 68–72]. Heterogeneous composite materials consist of a plurality of

other substantially smaller (microscale) materials with different thermomechan-

ical properties. But usually it is very important to know how composite will

behave on the whole (macroscale) rather than each of its components separately:
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for engineers the main criteria are the stability of the material to loads, the melt-

ing point of the composite as a homogeneous material and other (chapter 1). For

example, the coefficients of thermal conductivity in the system of equations of

elasticity theory (stationary), which describes the temperature distribution in the

material are rapidly oscillating functions that depend on the “fast variable ξ = x
ε .

The variable x is then called “slow. And they are considered to be independent.

This is the basis of the method twoscale (and multiscale) expansions [73,74] with

homogenisation [75, 76]. Typically, the solution of the problem is sought in the

form of an asymptotic series (Ansatz). The main issue is to construct the limit

problem when ε→ 0 with constant coefficients (as averaging), it characterizes the

general properties of the composite material as a uniform.

The method of partial asymptotic decomposition of the domain (see [71]) allows

to reduce the dimension in some part of a thin domain and to glue the models

of different dimension at the interface. The idea of coupling models of differ-

ent dimension or different scales ( [77–81]) is an important trend in the domain

decomposition approach. It is applied in the blood circulation modelling (see

e.g. [82, 83]) and in engineering [71].

3.2 Construction of an asymptotic expansion of the solution to the

problem

As it was suggested in the chapter 2 for the asymptotic approach of the problem

we need regularity for the data given by four hypothesis (H1)-(H3), p. 52.
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We look for an asymptotic solution of order J for (2.1.1) in the form

u(J)
ε (x, t) =

J
∑

q+l=0

εq+l
∑

s:|s|=l
sj∈{1,2}

Nq, s1...sl (ξ3)
∂q+lw

(J)
ε (x̄, t)

∂tq∂xs1 . . . ∂xsl

+

J
∑

q+l=0

εq+l+2
∑

s:|s|=l
sj∈{1,2}

Mq, s1...sl (ξ3)
∂q+lψ(J)

ε (x̄, t)

∂tq∂xs1 . . . ∂xsl
,

(x, t) ∈ D+
ε × (0, T ),



























v(J)
ε (x, t) =

J
∑

k=0

εkvk(x, t),

p(J)ε (x, t) =
J
∑

k=0

εkpk(x, t),

(x, t) ∈ D− × (0, T ),

ψ(J)
ε (x̄, t) = 2ν̃D(v(J)

ε (x̄, 0, t))e3 − p(J)ε (x̄, 0, t)e3,

(x̄, t) ∈ D × (0, T ),

w(J)
ε (x̄, t) =

J
∑

k=0

εkwk(x̄, t), (x̄, t) ∈ D × (0, T ),

(3.2.1)

withwk, vk, pk D-periodic, for any k ∈ {0, 1, ..., J} and ξ3 is introduced in (2.1.2).

Remark. For any fixed value of J the required smoothness of the data f and g may

be reduced to the class Cα(J) with respect to x1, x2 and t variables, where α(J) is

some finite number depending on J , chosen in such a way that all the derivatives

of w
(J)
ε and ψ(J)

ε in (3.2.2) exist and belong to C2. However, we consider in what

follows the regularity given by (H1) and (H2), in order to ensure the necessary

smoothness for an asymptotic solution of any arbitrary order.

To determine the asymptotic solution means to determine the matrices

Nq, s1...sl = Nq, s1...sl(ξ3), Mq, s1...sl = Mq, s1...sl(ξ3), Nq, s1...sl, Mq, s1...sl ∈ M3,3 and the

functions vk = vk(x, t), pk = pk(x, t), wk = wk(x̄, t). All these functions depend

on ε but we omit the subscript ε.

We introduce the following notation for the left hand side of (2.1.1)1

Pεuε = ρ+ (ξ3)
∂2uε

∂t2
− ε−3

3
∑

i,j=1

∂

∂xi

(

Aij (ξ3)
∂uε

∂xj

)

. (3.2.2)
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Let us replace in (3.2.2) uε with its asymptotic expansion (3.2.1)1.

Applying the chain rule, producing index changing, identifying some indexes

we obtain for J > 4

Pεu
(J)
ε =

J
∑

q+l=0

εq+l−5
∑

s:|s|=l

HN
q, s1...sl

(ξ3)
∂q+lw

(J)
ε (x̄, t)

∂tq∂xs1 . . . ∂xsl

+

J
∑

q+l=0

εq+l−3
∑

s:|s|=l

HM
q, s1...sl(ξ3)

∂q+lψ(J)
ε (x̄, t)

∂tq∂xs1 . . . ∂xsl
+ r(J),1ε ,

(3.2.3)

where a.e. in [0, 1]


































HN
q, s1...sl

(ξ3) = ε3ρ+(ξ3)Nq−2, s1...sl(ξ3)−
(

(A33(ξ3)N
′
q, s1...sl

(ξ3))
′

+(A3s1(ξ3)Nq, s2...sl(ξ3))
′ + As13(ξ3)N

′
q, s2...sl(ξ3) + As1s2(ξ3)Nq, s3...sl(ξ3)

)

,

HM
q, s1...sl(ξ3) = ε3ρ+(ξ3)Mq−2, s1...sl(ξ3)−

(

(A33(ξ3)M
′
q, s1...sl(ξ3))

′

+(A3s1(ξ3)Mq, s2...sl(ξ3))
′ + As13(ξ3)M

′
q, s2...sl(ξ3) + As1s2(ξ3)Mq, s3...sl(ξ3)

)

(3.2.4)

and














































































































r(J),1ε (x̄, ξ3, t) = εJ−4
J+1
∑

q+l=J+1

(

ε3ρ+(ξ3)Nq−2, s1...sl(ξ3)−
(

(A3s1(ξ3)Nq, s2...sl(ξ3))
′

+As13(ξ3)N
′
q, s2...sl(ξ3) + As1s2(ξ3)Nq, s3...sl(ξ3)

)

) ∂q+lw
(J)
ε (x̄, t)

∂tq∂xs1 . . . ∂xsl

+εJ−3
J+2
∑

q+l=J+2

(

ε3ρ+(ξ3)Nq−2, s1...sl(ξ3)−As1s2(ξ3)Nq, s3...sl(ξ3)
) ∂q+lw

(J)
ε (x̄, t)

∂tq∂xs1 . . . ∂xsl

+εJ−2
J+1
∑

q+l=J+1

(

ε3ρ+(ξ3)Mq−2, s1...sl(ξ3)−
(

(A3s1(ξ3)Mq, s2...sl(ξ3))
′

+As13(ξ3)M
′
q, s2...sl

(ξ3) + As1s2(ξ3)Mq, s3...sl(ξ3)
)

) ∂q+lψ(J)
ε (x̄, t)

∂tq∂xs1 . . . ∂xsl

+εJ−1
J+2
∑

q+l=J+2

(

ε3ρ+(ξ3)Mq−2, s1...sl(ξ3)− As1s2(ξ3)Mq, s3...sl(ξ3)
) ∂q+lψ(J)

ε (x̄, t)

∂tq∂xs1 . . . ∂xsl
,

(3.2.5)

with sj ∈ {1, 2}.

Since Pεu
(J)
ε should be equal to ε−1g(x̄, t), we seek the matrices Nq, s1...sl and
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Mq, s1...sl such that HN
q, s1...sl and H

M
q, s1...sl have constant matrix values. In this way

we obtain the equations for determining the matrices Nq, s1...sl, Mq, s1...sl as follows

{

HN
q, s1...sl(ξ3) = −hNq, s1...sl,

HM
q, s1...sl

(ξ3) = −hMq, s1...sl,
(3.2.6)

where hNq, s1...sl and h
M
q, s1...sl

are constant matrices.

The left hand side of (2.1.1)4 written for u
(J)
ε has the expression

3
∑

j=1

A3j(1)
∂u

(J)
ε

∂xj
(x̄, ε, t)

=
3
∑

j=1

A3j(1)
∂u

(J)
ε

∂xj
(x̄, ε, t) + ε−1

3
∑

j=1

A3j(1)
∂u

(J)
ε

∂ξj
(x̄, ε, t)

=

J
∑

q+l=0

εq+l
3
∑

j=1

∑

s:|s|=l

A3j(1)Nq, s1...sl(1)
∂q+l+1w

(J)
ε (x̄, t)

∂tq∂xj∂xs1 . . . ∂xsl

+

J
∑

q+l=0

εq+l+2
3
∑

j=1

∑

s:|s|=l

A3j(1)Mq, s1...sl(1)
∂q+l+1ψ(J)

ε (x̄, t)

∂tq∂xj∂xs1 . . . ∂xsl

+
J
∑

q+l=0

εq+l−1
∑

s:|s|=l

A33(1)
∂Nq, s1...sl

∂ξ3
(1)

∂q+lw
(J)
ε (x̄, t)

∂tq∂xs1 . . . ∂xsl

+

J
∑

q+l=0

εq+l+1
∑

s:|s|=l

A33(1)
∂Mq, s1...sl

∂ξ3
(1)

∂q+lψ(J)
ε (x̄, t)

∂tq∂xs1 . . . ∂xsl
.

After index changing l1 = l + 1, s1 = j and grouping terms of the same order

3
∑

j=1

A3j(1)
∂u

(J)
ε

∂xj
(x̄, ε, t)

=
J
∑

q+l=0

εq+l−1
∑

s:|s|=l

(

A3s1(1)Nq, s2...sl(1) +A33(1)N
′
q, s1...sl

(1)
) ∂q+lw

(J)
ε (x̄, t)

∂tq∂xs1 . . . ∂xsl

+
J
∑

q+l=0

εq+l+1
∑

s:|s|=l

(

A3s1(1)Mq, s2...sl(1) + A33(1)M
′
q, s1...sl

(1)
) ∂q+lψ(J)

ε (x̄, t)

∂tq∂xs1 . . . ∂xsl

+r(J),4ε (x̄, t),

(3.2.7)
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where

r(J),4ε (x̄, t) = εJ
J+1
∑

q+l=J+1

∑

s:|s|=l

A3s1(1)Nq, s2...sl(1)
∂J+1w

(J)
ε (x̄, t)

∂tq∂xs1 . . . ∂xsl

+εJ+2
J+1
∑

q+l=J+1

∑

s:|s|=l

A3s1(1)Mq, s2...sl(1)
∂J+1ψ(J)

ε (x̄, t)

∂tq∂xs1 . . . ∂xsl
.

(3.2.8)

Satisfying boundary condition (2.1.1)4 with the residual of order εJ we get

{

A33(1)N
′
q, s1...sl(1) +A3s1(1)Nq, s2...sl(1) = O3,

A33(1)M
′
q, s1...sl

(1) + A3s1(1)Mq, s2...sl(1) = O3,
sj ∈ {1, 2}. (3.2.9)

Introducing expansion (3.2.1)1 in the right hand side of (2.1.1)7 and using (3.2.1)4

we obtain, as before

−p(J)ε (x̄, 0, t)e3 + 2ν̃D(v(J)
ε (x̄, 0, t))e3 − ε−3

3
∑

j=1

A3j(0)
∂u

(J)
ε

∂xj
(x̄, 0, t)

= ψ(J)
ε (x̄, t)− ε−3

(

J
∑

q+l=0

εq+l
3
∑

j=1

∑

s:|s|=l

A3j(0)Nq, s1...sl(0)
∂q+l+1w

(J)
ε (x̄, t)

∂tq∂xj∂xs1 . . . ∂xsl

+

J
∑

q+l=0

εq+l+2
3
∑

j=1

∑

s:|s|=l

A3j(0)Mq, s1...sl(0)
∂q+l+1ψ(J)

ε (x̄, t)

∂tq∂xj∂xs1 . . . ∂xsl

+
J
∑

q+l=0

εq+l−1
∑

s:|s|=l

A33(0)
∂Nq, s1...sl

∂ξ3
(0)

∂q+lw
(J)
ε (x̄, t)

∂tq∂xs1 . . . ∂xsl

+

J
∑

q+l=0

εq+l+1
∑

s:|s|=l

A33(0)
∂Mq, s1...sl

∂ξ3
(0)

∂q+lψ(J)
ε (x̄, t)

∂tq∂xs1 . . . ∂xsl

)

,

wherefrom it follows that

−p(J)ε (x̄, 0, t)e3 + 2ν̃D(v(J)
ε (x̄, 0, t))e3 − ε−3

3
∑

j=1

A3j(0)
∂u

(J)
ε

∂xj
(x̄, 0, t)

= ψ(J)
ε (x̄, t)−

J
∑

q+l=0

εq+l−4
∑

s:|s|=l

(

A3s1(0)Nq, s2...sl(0) + A33(0)N
′
q, s1...sl(0)

) ∂q+lw
(J)
ε (x̄, t)

∂tq∂xs1 . . . ∂xsl

−
J
∑

q+l=0

εq+l−2
∑

s:|s|=l

(

A3s1(0)Mq, s2...sl(0) +A33(0)M
′
q, s1...sl

(0)
) ∂q+lψ(J)

ε (x̄, t)

∂tq∂xs1 . . . ∂xsl
− r(J),7ε (x̄, t),
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with

r(J),7ε (x̄, t) = εJ−3
J+1
∑

q+l=J+1

∑

s:|s|=l

A3s1(0)Nq, s2...sl(0)
∂J+1w

(J)
ε (x̄, t)

∂tq∂xs1 . . . ∂xsl

+εJ−1
J+1
∑

q+l=J+1

∑

s:|s|=l

A3s1(0)Mq, s2...sl(0)
∂J+1ψ(J)

ε (x̄, t)

∂tq∂xs1 . . . ∂xsl
,

(3.2.10)

and relation (2.1.1)7 is satisfied with a small residual if

{

A33(0)N
′
q, s1...sl

(0) +A3s1(0)Nq, s2...sl(0) = O3,

ε−2
(

A33(0)M
′
q, s1...sl(0) +A3s1(0)Mq, s2...sl(0)

)

= I3δq0δl0,
sj ∈ {1, 2}. (3.2.11)

In what follows we shall use the notations


































〈F 〉 =

∫ 1

0

F (s)ds,

F (x) = x 〈F 〉 −

∫ x

0

F (s)ds,

F (x) =

〈
∫ θ

0

F (s)ds

〉

−

∫ x

0

F (s)ds,

(3.2.12)

where F : [0, 1] 7→ R is an integrable function. The notation 〈·〉 will be used as

well for functions of several variables and in this case it concerns the variable x1:

〈F (x1, t)〉 =

∫ 1

0

F (s, t)ds.

Using equations (3.2.6) and conditions (3.2.9), (3.2.11) we obtain next the prob-

lems for Nq, s1...sl and Mq, s1...sl.

From (3.2.4)1, (3.2.6)1, (3.2.9)1, (3.2.11)1 with the additional conditions

{

〈Nq, s1...sl〉 = O3 ∀ q + l > 0,

N0, ∅ = I3
(3.2.13)
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we get for Nq, s1...sl, ∀ q + l > 0 the second order differential problem







































(

A33N
′
q, s1...sl + A3s1Nq, s2...sl

)′
= −As13N

′
q, s2...sl −As1s2Nq, s3...sl

+ε3ρ+Nq−2, s1...sl + hNq, s1...sl,

hNq, s1...sl =
〈

As13N
′
q, s2...sl

+ As1s2Nq, s3...sl − ε3ρ+Nq−2, s1...sl

〉

,

A33(0)N
′
q, s1...sl(0) = −A3s1(0)Nq, s2...sl(0),

〈Nq, s1...sl〉 = O3.

(3.2.14)

In the same way, from (3.2.4)2, (3.2.6)2, (3.2.9)2, (3.2.11)2, with the additional

condition

Mq, s1...sl(0) = O3 ∀ q + l ≥ 0 (3.2.15)

we obtain for Mq, s1...sl the problem







































(

A33M
′
q, s1...sl +A3s1Mq, s2...sl

)′
= −As13M

′
q, s2...sl − As1s2Mq, s3...sl

+ε3ρ+Mq−2, s1...sl + hMq, s1...sl,

hMq, s1...sl =
〈

As13M
′
q, s2...sl +As1s2Mq, s3...sl − ε3ρ+Mq−2, s1...sl

〉

− ε2I3δq0δl0,

A33(0)M
′
q, s1...sl

(0) = ε2I3δq0δl0,

Mq, s1...sl(0) = O3.

(3.2.16)

Remark. Equation (3.2.14)1 is interpreted in the sense of the variational formula-

tion in H1. It means that it is satisfied everywhere except for the points ζ1, ..., ζp−1

in the classical sense and in each point ζα, α = 1, ..., p − 1 two junction con-

ditions are satisfied: [Nq, s1...sl] = O3, [A33N
′
q, s1...sl + A3s1Nq, s2...sl] = O3, where

[R(ξ3)] = lim
ξ3→ζα+0

R(ξ3)− lim
ξ3→ζα−0

R(ξ3).

The same remark holds for (3.2.16)1. These junction conditions, together with

the smoothness of w
(J)
ε and ψ(J)

ε imply the corresponding junction conditions for

the function u
(J)
ε and for the normal stress

3
∑

j=1

A3j
∂u

(J)
ε

∂xj
.

Solving recursively problems (3.2.14) and (3.2.16) we compute the matrices

Nq, s1...sl, h
N
q, s1...sl

and Mq, s1...sl, h
M
q, s1...sl

, respectively. Concerning hNq, s1...sl, we are

interested to know explicitely hNq, s1...sl, q + l ≤ 4. Using expression (3.2.14)2 and
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the formula for Nq, s1...sl, easily obtained by integrating of relation (3.2.14)1

(

A33N
′
q, s1...sl

+A3s1Nq, s2...sl

)′
= −As13N

′
q, s2...sl

−As1s2Nq, s3...sl + ε3ρ+Nq−2, s1...sl + hNq, s1...sl,

A33N
′
q, s1...sl + A3s1Nq, s2...sl = −

∫ ξ3

0

(

As13N
′
q, s2...sl + As1s2Nq, s3...sl − ε3ρ+Nq−2, s1...sl

)

ds

+hNq, s1...slξ3 = As13N
′
q, s2...sl

+ As1s2Nq, s3...sl − ε3ρ+Nq−2, s1...sl,

N ′
q, s1...sl

= A−1
33

(

−A3s1Nq, s2...sl + As13N
′
q, s2...sl

+ As1s2Nq, s3...sl − ε3ρ+Nq−2, s1...sl

)

,

Nq, s1...sl = A−1
33

(

A3s1Nq, s2...sl − As13N
′
q, s2...sl

+As1s2Nq, s3...sl − ε3ρ+Nq−2, s1...sl

)

we can find consecutively

1) hN0, ∅ = O3, N0, ∅ = I3,

2) hN0, s1 = O3, N0, 1 = A−1
33 A3s1N0, ∅,

2.1) s1 = 1:

N ′
0, 1(ξ3) = −A−1

33 (ξ3)A31(ξ3)

= −









2(1+ν)
E 0 0

0 2(1+ν)
E 0

0 0 (1+ν)(1−2ν)
E(1−ν)









·









0 0 E
2(1+ν)

0 0 0
Eν

(1+ν)(1−2ν)
0 0









=









0 0 −1

0 0 0

− ν
1−ν 0 0









,

N0, 1(ξ3) =









0 0 1
2 − ξ3

0 0 0
ν

1−ν
0 0









,
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2.2) s1 = 2:

N ′
0, 2 = −A−1

33 (ξ3)A32(ξ3)

= −









2(1+ν)
E 0 0

0 2(1+ν)
E 0

0 0 (1+ν)(1−2ν)
E(1−ν)









·









0 0 0

0 0 E
2(1+ν)

0 Eν
(1+ν)(1−2ν) 0









=









0 0 0

0 0 −1

0 − ν
1−ν 0









,

N0, 2 =









0 0 0

0 0 1
2 − ξ3

0 ν
1−ν 0









,

3) hN0, s1s2 =
〈

As13N
′
0, s2

+As1s2

〉

,

N ′
0, s1s2

= A−1
33

(

− A3s1N0, s2 + As13N
′
0, s2

+ As1s2

)

,

N0, s1s2 = A−1
33

(

A3s1N0, s2 − As13N
′
0, s2

+ As1s2

)

,

3.1) s1 = 1, s2 = 1:

hN0, 11 =









〈

E
1−ν2

〉

0 0

0
〈

E
2(1+ν)

〉

0

0 0 0









,

N0, 11 =











ν
1−ν −

2(1+ν)
E

E
1−ν2 0 0

0 −1+ν
E

E
1+ν

0

0 0
ν(1

2
−ξ3)

1−ν











,
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3.2) s1 = 1, s2 = 2:

hN0, 12 =









0
〈

Eν
1−ν2

〉

0
〈

E
2(1+ν)

〉

0 0

0 0 0









,

N0, 12 =











0 ν
1−ν −

2(1+ν)
E

Eν
1−ν2 0

−1+ν
E

E
1+ν 0 0

0 0 0











,

3.3) s1 = 2, s2 = 1:

hN0, 21 =









0
〈

E
2(1+ν)

〉

0
〈

Eν
1−ν2

〉

0 0

0 0 0









,

N0, 21 =











0 −1+ν
E

E
1+ν 0

ν
1−ν −

2(1+ν)
E

Eν
1−ν2 0 0

0 0 0











,

3.4) s1 = 2, s2 = 2:

hN0, 22 =









〈

E
2(1+ν)

〉

0 0

0
〈

E
1−ν2

〉

0

0 0 0









,

N0, 22 =











−1+ν
E

E
1+ν 0 0

0 ν
1−ν

− 2(1+ν)
E

E
1−ν2

0

0 0
ν(1

2
−ξ3)

1−ν











,

so

hN0, 1, 1 = hN0, 12 + hN0, 21 =











0
〈

E
2(1−ν)

〉

0
〈

E
2(1−ν)

〉

0 0

0 0 0











,

where the coefficient at
∂q+r+pw

(J)
ε (x̄, t)

∂tq∂xr1∂x
p
2

in the first sum of (3.2.3) is de-
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noted by hNq, r, p (here and below),

4) hN0, s1s2s3 =
〈

As13N
′
0, s2s3

+ As1s2N0, s3

〉

,

N ′
0, s1s2s3 = A−1

33

(

−A3s1N0, s2 + As13N
′
0, s2s3

+ As1s2N0, s3

)

,

N0, s1s2s3 = A−1
33

(

A3s1N0, s2 −As13N
′
0, s2s3

+ As1s2N0, s3

)

,

4.1) s1 = 1, s2 = 1, s3 = 1:

hN0, 111 =











0 0
〈

E(1
2
−ξ3)

1−ν2

〉

0 0 0
〈

E
1−ν2

〉

0 0











,

N0, 111 =













0 0
ν(1

2
−ξ3)

1−ν
− 2(1+ν)

E

E(1
2
−ξ3)

1−ν2

0 0 0

ν
1−ν

ν
1−ν −

2(1+ν)
E

E
1−ν2 −

(1+ν)(1−2ν)
E(1−ν)

E
1−ν2 0 0













,

4.2) s1 = 1, s2 = 1, s3 = 2:

hN0, 112 =











0 0 0

0 0
〈

E(1
2
−ξ3)

2(1+ν)

〉

0
〈

Eν
1−ν2

〉

0











,

N0, 112 =













0 0 0

0 0 −1+ν
E

E(1
2
−ξ3)

1+ν

0 ν
1−ν

ν
1−ν −

2(1+ν)
E

Eν
1−ν2 −

(1+ν)(1−2ν)
E(1−ν)

Eν
1−ν2 0













,
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4.3) s1 = 1, s2 = 2, s3 = 1:

hN0, 121 =











0 0 0

0 0
〈

E(1
2
−ξ3)

2(1+ν)

〉

0
〈

E
2(1+ν)

〉

0











,

N0, 121 =











0 0 0

0 0 −1+ν
E

E(1
2
−ξ3)

1+ν

0 − ν
1−ν

1+ν
E

E
1+ν −

(1+ν)(1−2ν)
E(1−ν)

E
2(1+ν) 0











,

4.4) s1 = 1, s2 = 2, s3 = 2:

hN0, 122 =











0 0
〈

Eν(1
2
−ξ3)

1−ν2

〉

0 0 0
〈

E
2(1+ν)

〉

0 0











,

N0, 122 =













0 0
ν(1

2
−ξ3)

1−ν − 2(1+ν)
E

Eν(1
2
−ξ3)

1−ν2

0 0 0

− ν
1−ν

1+ν
E

E
1+ν −

(1+ν)(1−2ν)
E(1−ν)

E
2(1+ν) 0 0













,

4.5) s1 = 2, s2 = 1, s3 = 1:

hN0, 211 =











0 0 0

0 0
〈

Eν(1
2
−ξ3)

1−ν2

〉

0
〈

E
2(1+ν)

〉

0











,

N0, 211 =













0 0 0

0 0
ν(1

2
−ξ3)

1−ν
− 2(1+ν)

E

Eν(1
2
−ξ3)

1−ν2

0 − ν
1−ν

1+ν
E

E
1+ν −

(1+ν)(1−2ν)
E(1−ν)

E
2(1+ν) 0













,
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4.6) s1 = 2, s2 = 1, s3 = 2:

hN0, 212 =











0 0
〈

E(1
2
−ξ3)

2(1+ν)

〉

0 0 0
〈

E
2(1+ν)

〉

0 0











,

N0, 212 =











0 0 −1+ν
E

E(1
2
−ξ3)

1+ν

0 0 0

− ν
1−ν

1+ν
E

E
1+ν −

(1+ν)(1−2ν)
E(1−ν)

E
2(1+ν) 0 0











,

4.7) s1 = 2, s2 = 2, s3 = 1:

hN0, 221 =











0 0
〈

E(1
2
−ξ3)

2(1+ν)

〉

0 0 0
〈

Eν
1−ν2

〉

0 0











,

N0, 221 =













0 0 −1+ν
E

E(1
2
−ξ3)

1+ν

0 0 0

ν
1−ν

ν
1−ν −

2(1+ν)
E

Eν
1−ν2 −

(1+ν)(1−2ν)
E(1−ν)

Eν
1−ν2 0 0













,

4.8) s1 = 2, s2 = 2, s3 = 2:

hN0, 222 =











0 0 0

0 0
〈

E(1
2
−ξ3)

1−ν2

〉

0
〈

E
1−ν2

〉

0











,

N0, 222 =













0 0 0

0 0
ν(1

2
−ξ3)

1−ν − 2(1+ν)
E

E(1
2
−ξ3)

1−ν2

0 ν
1−ν

ν
1−ν

− 2(1+ν)
E

E
1−ν2

− (1+ν)(1−2ν)
E(1−ν)

E
1−ν2

0













,
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so

hN0, 2, 1 = hN0, 112 + hN0, 121 + hN0, 211 =











0 0 0

0 0
〈

E(1
2
−ξ3)

1−ν2

〉

0
〈

E
1−ν2

〉

0











,

N0, 2, 1 =













0 0 0

0 0
ν(1

2
−ξ3)

1−ν − 2(1+ν)
E

E(1
2
−ξ3)

1−ν2

0 ν
1−ν

ν
1−ν −

2(1+ν)
E

E
1−ν2 −

(1+ν)(1−2ν)
E(1−ν)

E
1−ν2 0













,

hN0, 1, 2 = hN0, 122 + hN0, 212 + hN0, 221 =











0 0
〈

E(1
2
−ξ3)

1−ν2

〉

0 0 0
〈

E
1−ν2

〉

0 0











,

N0, 1, 2 =













0 0
ν(1

2
−ξ3)

1−ν − 2(1+ν)
E

E(1
2
−ξ3)

1−ν2

0 0 0

ν
1−ν

ν
1−ν

− 2(1+ν)
E

E
1−ν2

− (1+ν)(1−2ν)
E(1−ν)

E
1−ν2

0 0













,

5)

hN0, 1111 =











∗ 0 0

0 ∗ 0

0 0

〈

E(1
2
−ξ3)

1−ν2

〉











, hN0, 2222 =











∗ 0 0

0 ∗ 0

0 0

〈

E(1
2
−ξ3)

1−ν2

〉











,

hN0, 3, 1 =









0 ∗ 0

∗ 0 0

0 0 0









, hN0, 2, 2 =









∗ 0 0

0 ∗ 0

0 0
〈

E(1−2ξ3)
1−ν2

〉









, hN0, 1, 3 =









0 ∗ 0

∗ 0 0

0 0 0









,

6) hN1, ∅ = O3, N1, ∅ = O3,

7) hN1, s1 = O3, N1, s1 = O3,

8) hN1, s1s2 = O3, N1, s1s2 = O3,

9) hN1, s1s2s3 = O3, N1, s1s2s3 = O3,
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10) hN2, ∅ = −ε3〈ρ+〉I3,

N2, ∅ = ε3









2(1+ν)
E ρ+ 0 0

0 2(1+ν)
E ρ+ 0

0 0 (1+ν)(1−2ν)
E(1−ν) ρ+









,

11) hN2, s1 =
〈

As13N
′
2, ∅ − ε3ρ+N0, s1

〉

,

11.1) s1 = 1:

hN2, 1 =









0 0 −ε3
〈

ρ+
ν

1−ν + ρ+(
1
2 − ξ3)

〉

0 0 0

−ε3
〈

ρ+ + ρ+
ν

1−ν

〉

0 0









,

11.2) s1 = 2:

hN2, 2 =









0 0 0

0 0 −ε3
〈

ρ+
ν

1−ν + ρ+(
1
2 − ξ3)

〉

0 −ε3
〈

ρ+ + ρ+
ν

1−ν

〉

0









,

12) hN3, ∅ = O3, N3, ∅ = O3,

13) hN3, s1 = O3, N3, s1 = O3.

We didn’t write above the matrices hN2, s1s2 and hN4, ∅ since they are of the form

hN2, s1s2 = O(ε3), hN4, ∅ = O(ε6).

Concerning problems (3.2.16) we prove next the following result

Proposition 3.1. Mq, s1...sl = ε2M̃q, s1...sl, h
M
q, s1...sl = ε2h̃Mq, s1...sl ∀ q + l ≥ 0, where

M̃q, s1...sl = O(εm), h̃Mq, s1...sl = O(εk), m, k ≥ 0.

Proof. We obtain this result by induction. Taking q = l = 0 in (3.2.16) we get

M0, ∅ = ε2M̃0, ∅, h
M
0, ∅ = −ε2I3, with M̃0, ∅ = O(1); hence, the previous assertion

holds for q + l = 0.

We suppose that ∀ q, l with q + l < p the assertion of the proposition is true

and we prove it for q + l = p. This result is obtained directly from (3.2.16), by

using the property for all the terms containing a matrixMk, j with k+ j < p.
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To determine the asymptotic solution it remains to obtain the functions

wk, vk, pk. For this purpose we define the new function

w̄(J)
ε (x̄, t) = ε−1

(

w(J)
ε (x̄, t) · e1

)

e1

+ ε−1
(

w(J)
ε (x̄, t) · e2

)

e2 +
(

w(J)
ε (x̄, t) · e3

)

e3
(3.2.17)

and we introduce the notations


































Ê1 =

〈

E

1− ν2

〉

, Ê2 =

〈

E

2(1 + ν)

〉

, Ê3 =

〈

E

2(1− ν)

〉

,

ˆ̂
E1 =

〈

E

1− ν2

(

1

2
− ξ3

)〉

,
ˆ̂
E2 =

〈

E

1− ν2

〉

,

Ĵ =

〈

(

E

1− ν2

(

1

2
− ξ3

))

〉

.

(3.2.18)

Using the expressions previously obtained for hNq, s1...sl, q + l ≤ 4, applying Propo-

sition 3.1 for hMq, s1...sl, replacing w
(J)
ε by the new function defined in (3.2.17) and

using (3.2.18)

(Pεu
(J)
ε )1 = −ε−2

{

Ê1
∂2(w̄

(J)
ε )1

∂x21
+ Ê3

∂2(w̄
(J)
ε )2

∂x1∂x2
+ Ê2

∂2(w̄
(J)
ε )1

∂x22

+
ˆ̂
E1

∂

∂x1

(

∆(w(J)
ε )3

)

}

+R(J)
ε · e1,

(Pεu
(J)
ε )2 = −ε−2

{

Ê2
∂2(w̄

(J)
ε )2

∂x21
+ Ê3

∂2(w̄
(J)
ε )1

∂x1∂x2
+ Ê1

∂2(w̄
(J)
ε )2

∂x22

+
ˆ̂
E1

∂

∂x2

(

∆(w(J)
ε )3

)

}

+R(J)
ε · e2,

(Pεu
(J)
ε )3 = −ε−1

{

ˆ̂
E2

(

∂

∂x1

(

∆(w̄(J)
ε )1

)

+
∂

∂x2

(

∆(w̄(J)
ε )2

)

)

+ Ĵ∆
(

∆(w(J)
ε )3

)

−
(

ψ(J)
ε

)

3

}

+R(J)
ε · e3,

(3.2.19)
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where the three components of R
(J)
ε are

R(J)
ε e1 = ε−1

(

ψ(J)
ε

)

1
+ ε0

(

− (hN0, 1111)11
∂4(w̄

(J)
ε )1

∂x41
− (hN0, 3, 1)12

∂4(w̄
(J)
ε )2

∂x31∂x2

− (hN0, 2, 2)11
∂4(w̄

(J)
ε )1

∂x21∂x
2
2

− (hN0, 1, 3)12
∂4(w̄

(J)
ε )2

∂x1∂x32
− (hN0, 2222)11

∂4(w̄
(J)
ε )1

∂x42

)

+ ε

(

〈ρ+〉
∂2(w̄

(J)
ε )1

∂t2
+
〈

ρ̄+
ν

1− ν
+ ρ+

(1

2
− ξ3

)

〉∂3(w
(J)
ε )3

∂t2∂x1

)

+ ε3

(

2
∑

i1=1

(h̃N2, s1s1)11
∂4(w̄

(J)
ε )1

∂t2∂x2s1
+ (h̃N2, 1, 1)12

∂4(w̄
(J)
ε )2

∂t2∂x1∂x2

)

+ ε6(h̃N4, ∅)11
∂4(w̄

(J)
ε )1

∂t4

−
J
∑

q+l=5

εq+l−5
∑

s:|s|=l

(

hNq, s1...sl

∂q+l
(

ε(w̄
(J)
ε )1e1 + ε(w̄

(J)
ε )2e2 + (w

(J)
ε )3e3

)

∂tq∂xs1 . . . ∂xsl

)

1

−
J
∑

q+l=1

εq+l−1
∑

s:|s|=l

(

h̃Mq, s1...sl
∂q+lψ(J)

ε

∂tq∂xs1 . . . ∂xsl

)

1 + r(J),1ε · e1,

R(J)
ε e2 = ε−1

(

ψ(J)
ε

)

2
+ ε0

(

− (hN0, 1111)22
∂4(w̄

(J)
ε )2

∂x41
− (hN0, 3, 1)21

∂4(w̄
(J)
ε )1

∂x31∂x2

− (hN0, 2, 2)22
∂4(w̄

(J)
ε )2

∂x21∂x
2
2

− (hN0, 1, 3)21
∂4(w̄

(J)
ε )1

∂x1∂x32
− (hN0, 2222)22

∂4(w̄
(J)
ε )2

∂x42

)

+ ε

(

〈ρ+〉
∂2(w̄

(J)
ε )2

∂t2
+
〈

ρ̄+
ν

1− ν
+ ρ+

(1

2
− ξ3

)

〉∂3(w
(J)
ε )3

∂t2∂x2

)

+ ε3

(

2
∑

i1=1

(h̃N2, s1s1)22
∂4(w̄

(J)
ε )2

∂t2∂x2s1
+ (h̃N2, 1, 1)21

∂4(w̄
(J)
ε )1

∂t2∂x1∂x2

)

+ ε6(h̃N4, ∅)22
∂4(w̄

(J)
ε )2

∂t4

−
J
∑

q+l=5

εq+l−5
∑

s:|s|=l

(

hNq, s1...sl

∂q+l
(

ε(w̄
(J)
ε )1e1 + ε(w̄

(J)
ε )2e2 + (w

(J)
ε )3e3

)

∂tq∂xs1 . . . ∂xsl

)

2

−
J
∑

q+l=1

εq+l−1
∑

s:|s|=l

(

h̃Mq, s1...sl
∂q+lψ(J)

ε

∂tq∂xs1 . . . ∂xsl

)

2 + r(J),1ε · e2,

(3.2.20)
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R(J)
ε e3 = ε0〈ρ+〉

∂2(w
(J)
ε )3

∂t2

+ ε2

(

2
∑

j=1

〈

ρ̄+ + ρ+
ν

1− ν

〉∂3(w̄
(J)
ε )j

∂t2∂xj
+

2
∑

i1=1

(h̃N2, s1s1)33
∂4(w

(J)
ε )3

∂t2∂x2s1

)

+ ε5(h̃N4, ∅)33
∂4(w

(J)
ε )3

∂t4

−
J
∑

q+l=5

εq+l−5
∑

s:|s|=l

(

hNq, s1...sl

∂q+l
(

ε(w̄
(J)
ε )1e1 + ε(w̄

(J)
ε )2e2 + (w

(J)
ε )3e3

)

∂tq∂xs1 . . . ∂xsl

)

3

−
J
∑

q+l=1

εq+l−1
∑

s:|s|=l

(

h̃Mq, s1...sl
∂q+lψ(J)

ε

∂tq∂xs1 . . . ∂xsl

)

3 + r(J),1ε · e3.

with hN,M
q, s1...sl

= ε2h̃N,M
q, s1...sl

.

We consider

w̄(J)
ε =

J
∑

k=−1

εkw̄k(x̄, t), (3.2.21)

so that, together with (3.2.17) and (3.2.1)5, it gives















(wk)1 = (w̄k−1)1,

(wk)2 = (w̄k−1)2,

(wk)3 = (w̄k)3 ∀ k ≥ 0.

(3.2.22)

Analyzing the order of the terms of (3.2) we can write















































R(J)
ε · e1 − r(J),1ε · e1 =

J+r1
∑

k=0

εk−1Rk · e1,

R(J)
ε · e2 − r(J),1ε · e2 =

J+r2
∑

k=0

εk−1Rk · e2,

R(J)
ε · e3 − r(J),1ε · e3 =

J+r3
∑

k=0

εkRk · e3,

(3.2.23)

with r1, r2, r3 > 0 and Rk independent of ξ3 and bounded by a constant indepen-

dent of ε. In order to obtain the expressions of Rk ·e1, Rk ·e2 and Rk ·e3 necessary

in what follows, we establish the following result:
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Lemma 3.2. a) For any q ∈ N
∗ the matrices hNq, ∅, Nq, ∅ have the form

hNq, ∅ =









αq 0 0

0 βq 0

0 0 γq









, Nq, ∅(ξ3) =









σq(ξ3) 0 0

0 δq(ξ3) 0

0 0 ϕq(ξ3)









. (3.2.24)

The same result holds for hMq, ∅, Mq, ∅, with the elements denoted by αM
q , β

M
q , γ

M
q

and σM
q , δ

M
q , ϕ

M
q , respectively.

b) For any q, j1,2 ∈ N
∗ we have

hNq, r, p =









αq, r, p 0 0

0 βq, r, p 0

0 0 γq, r, p









, if r = 2j1, p = 2j2,

hNq, r, p =









0 0 0

0 0 βq, 2j1, 2j2+1

0 γq, 2j1, 2j2+1 0









, if r = 2j1, p = 2j2 + 1,

hNq, r, p =









0 0 αq, 2j1+1, 2j2

0 0 0

γq, 2j1+1, 2j2 0 0









, if r = 2j1 + 1, p = 2j2,

hNq, r, p =









0 αq, 2j1+1, 2j2+1 0

βq, 2j1+1, 2j2+1 0 0

0 0 0









, if r = 2j1 + 1, p = 2j2 + 1

(3.2.25)

and the matrices Nq, r, p, h
M
q, r, p,Mq, r, p have the same form as hNq, r, p, where

hN,M
q, r, p =

∑

s:|s|=r+p,
|{sj=1}|=r,
|{sj=2}|=p

hN,M
q, s1...sr+p

.

Proof. The result is obtained by induction using the relations of (3.2.14) for

hNq, s1...sl, Nq, s1...sl and the relations of (3.2.16) for hMq, s1...sl,Mq, s1...sl.

Denoting by

ψk(x̄, t) = 2ν̃D
(

vk(x̄, 0, t)
)

e3 − pk(x̄, 0, t)e3 (3.2.26)



Construction of an asymptotic expansion of the solution to the problem 85

and using (3.2), (3.2.23) and (3.2.24) we obtain for any k ≥ 0

Rk · e1 = (ψk)1 + 〈ρ+〉
∂2(w̄k−2)1

∂t2
+ (h̃N4, ∅)11

∂4(w̄k−7)1
∂t4

−
J
∑

q=5

αq
∂q(w̄k+3−q)1

∂tq
−

J
∑

q=1

αM
q

∂q(ψk−q)1
∂tq

+ R̃k · e1,

Rk · e2 = (ψk)2 + 〈ρ+〉
∂2(w̄k−2)2

∂t2
+ (h̃N4, ∅)22

∂4(w̄k−7)2
∂t4

−
J
∑

q=5

βq
∂q(w̄k+3−q)2

∂tq
−

J
∑

q=1

βM
q

∂q(ψk−q)2
∂tq

+ R̃k · e2,

Rk · e3 = 〈ρ+〉
∂2(wk)3
∂t2

+ (h̃N4, ∅)33
∂4(wk−5)3

∂t4

−
J
∑

q=5

γq
∂q(wk+5−q)3

∂tq
−

J
∑

q=1

γMq
∂q(ψk−q+1)3

∂tq
+ R̃k · e3,

(3.2.27)

where R̃k are functions defined by (w̄k′′)1, (w̄k′′)2, (wk′)3,vk′, pk′, with k
′′ ≤ k − 2,

k′ ≤ k − 1 and they have the mean value with respect to x1, x2 equal to zero.

Introducing expansions (3.2.21), (3.2.23) and (3.2.1)4,2,3 in (3.2.19), neglecting

the residuals, using (2.1.1)1 and collecting together the terms of the same order

with respect to the small parameter ε we obtain


















































































−Ê1
∂2(w̄k)1
∂x21

− Ê3
∂2(w̄k)2
∂x1∂x2

− Ê2
∂2(w̄k)1
∂x22

−
ˆ̂
E1

(

∂3(wk)3
∂x31

+
∂3(wk)3
∂x1∂x22

)

= g1δk1 −Rk−1 · e1,

−Ê2
∂2(w̄k)2
∂x21

− Ê3
∂2(w̄k)1
∂x1∂x2

− Ê1
∂2(w̄k)2
∂x22

− ˆ̂
E1

(

∂3(wk)3
∂x21∂x2

+
∂3(wk)3
∂x32

)

= g2δk1 −Rk−1 · e2,

−
ˆ̂
E2

(

∂3(w̄k)1
∂x31

+
∂3(w̄k)2
∂x21∂x2

+
∂3(w̄k)1
∂x1∂x22

+
∂3(w̄k)2
∂x32

)

− Ĵ

(

∂4(wk)3
∂x41

+
∂4(wk)3
∂x21∂x

2
2

+
∂4(wk)3
∂x42

)

+

(

2ν̃
∂(vk)3
∂x3

− pk

)

/

x3=0

= g3δk0 −Rk−1 · e3.

(3.2.28)
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Computing −
ˆ̂
E2 ·

(

∂

∂x1
(3.2.28)1 +

∂

∂x2
(3.2.28)2

)

+ Ê1 · (3.2.28)3 we get

Ê−1
1 (

ˆ̂
E1 ·

ˆ̂
E2 − Ê1 · Ĵ )∆

(

∆(wk)3
)

+

(

2ν̃
∂(vk)3
∂x3

− pk

)

/

x3=0

= g3δk0 −Rk−1 · e3 − Ê−1
1 ·

ˆ̂
E2

(

∂g1
∂x1

δk1 −
∂Rk−1

∂x1
· e1 +

∂g2
∂x2

δk1 −
∂Rk−1

∂x2
· e2

)

.

(3.2.29)

We introduce the notation

ˆ̂
J = Ê−1

1 (
ˆ̂
E1 ·

ˆ̂
E2 − Ê1 · Ĵ ) (3.2.30)

and prove that

Proposition 3.3. The constant
ˆ̂
J is strictly positive.

Proof. Let us denote a(s) =
E(s)

1− ν2(s)
. Using this notation, (3.2.18) obviously

gives

Ê1 = 〈a〉 , ˆ̂
E1 =

1

2
〈a〉 − 〈sa〉 , ˆ̂

E2 =
1

2
〈a〉 −

〈
∫ θ

0

a(s)ds

〉

,

Ĵ =
1

4
〈a〉 −

1

2
〈sa〉 −

1

2

〈
∫ θ

0

a(s)ds

〉

+

〈
∫ θ

0

sa(s)ds

〉

.

Hence
ˆ̂
E1 ·

ˆ̂
E2 − Ê1 · Ĵ = 〈sa〉

〈
∫ θ

0

a(s)ds

〉

− 〈a〉

〈
∫ θ

0

sa(s)ds

〉

. We de-

fine the function F : [0, 1] 7→ R, F (τ) =

(
∫ τ

0

s a(s)ds

)(
∫ τ

0

(
∫ θ

0

a(s)ds

)

dθ

)

−
(
∫ τ

0

a(s)ds

)(
∫ τ

0

(
∫ θ

0

s a(s)ds

)

dθ

)

. It is obvious that F (0) = 0 and F (1) =

ˆ̂
E1 ·

ˆ̂
E2 − Ê1 · Ĵ ; moreover,

F ′(τ) = a(τ)

(

τ

∫ τ

0

(
∫ θ

0

a(s)ds

)

dθ −

∫ τ

0

(
∫ θ

0

s a(s)ds

)

dθ

)

≥ 0,

and it is > 0 for τ > 0. From these properties we obtain the assertion of the

proposition.
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Introducing next expansions (3.2.1)2,3 in (2.1.1)2,3,5 we obtain (without residual)



















ρ−
∂vk

∂t
− 2ν̃div(D(vk)) +∇pk = fδk0,

div vk = 0 in D− × (0, T ),

vk(x̄,−1, t) = 0.

(3.2.31)

It remains to analyze junction condition (2.1.1)6. Introducing expansions (3.2.2)1,2

in (2.1.1)6 one can see that

v(J)
ε (x̄, 0, t)−

∂u
(J)
ε

∂t
(x̄, 0, t) =

J
∑

k=0

εk

(

vk(x̄, 0, t)

−
J
∑

q+l=0

∑

s:|s|=l

Nq, s1...sl(0)
∂q+l+1wk−(q+l)(x̄, t)

∂tq+1∂xs1 . . . ∂xsl

)

− r(J),6ε (x̄, t),

(3.2.32)

where

r(J),6ε (x̄, t) =

J+q+l
∑

k=J+1

εk

(

J
∑

q+l=1

∑

s:|s|=l

Nq, s1...sl(0)
∂q+l+1wk−(q+l)(x̄, t)

∂tq+1∂xs1 . . . ∂xsl

)

. (3.2.33)

So,

vk(x̄, 0, t) =
∂

∂t

(

(w̄k−1)1e1 + (w̄k−1)2e2 + (wk)3e3

)

(x̄, t) +αk−1(x̄, t), (3.2.34)

with

αk−1(x̄, t) =
J
∑

q+l=1

∑

s:|s|=l

Nq, s1...sl(0)

·
∂q+l+1

(

(w̄k−(q+l)−1)1e1 + (w̄k−(q+l)−1)2e2 + (wk−(q+l))3e3
)

∂tq+1∂xs1 . . . ∂xsl
,

(3.2.35)

where αk−1 contains only (w̄k′−1)1, (w̄k′−1)2 and (wk′)3, with k
′ ≤ k − 1.

In addition to the previous relations, we consider the periodicity, the initial

conditions and the property

〈(wk)3〉 = 0, ∀ k ≥ 0. (3.2.36)
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In this way, for every k ≥ −1 we obtain the following two problems:


















































































































































ˆ̂
J∆2

x̄(wk)3 +

(

2ν̃
∂(vk)3
∂x3

− pk

)

/

x3=0

= g3δk0 −Rk−1 · e3

− Ê−1
1 · ˆ̂E2

(

∂g1
∂x1

δk1 −
∂Rk−1

∂x1
· e1 +

∂g2
∂x2

δk1 −
∂Rk−1

∂x2
· e2

)

in D × (0, T ),

ρ−
∂vk

∂t
− 2ν̃ div(D(vk)) +∇pk = fδk0,

div vk = 0 in D− × (0, T ),

vk(x̄,−1, t) = 0 in D × (0, T ),

(vk)1(x̄, 0, t) =
∂ ((w̄k−1)1)

∂t
(x̄, t) +αk−1 · e1 in D × (0, T ),

(vk)2(x̄, 0, t) =
∂ ((w̄k−1)2)

∂t
(x̄, t) +αk−1 · e2 in D × (0, T ),

(vk)3(x̄, 0, t) =
∂(wk)3
∂t

(x̄, t) +αk−1 · e3 in D × (0, T ),

(wk)3,vk, pk D−periodic,

vk(x, 0) = 0 inD−,

(wk)3(x̄, 0) = 0 inD, k ≥ 0

(3.2.37)

and










































Ê1
∂2(w̄k)1
∂x21

+ Ê3
∂2(w̄k)2
∂x1∂x2

+ Ê2
∂2(w̄k)1
∂x22

= −(yk)1,

Ê2
∂2(w̄k)2
∂x21

+ Ê3
∂2(w̄k)1
∂x1∂x2

+ Ê1
∂2(w̄k)2
∂x22

= −(yk)2,

yk =
ˆ̂
E1∇x̄

(

∆x̄(wk)3
)

+ gδk1 −Rk−1,

w̄k D−periodic, k ≥ −1,

(3.2.38)

where the terms Rk−1, αk−1 depend on the functions (w̄k′−1)1, (w̄k′−1)2, (wk′)3,

vk′, pk′ and their derivatives, with k′ ≤ k−1. From the smoothness and periodicity

properties of the functions (w̄k)1, (w̄k)2 and (wk)3, it follows that problem (3.2.38)

has a solution if and only if the following solvability condition is satisfied:

〈Rk−1〉 · e1 = 〈g1〉δk,1, 〈Rk−1〉 · e2 = 〈g2〉δk,1 ∀ k ≥ 0. (3.2.39)
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Denote by

ck(t) = 〈w̄k〉 ∀ k ≥ −1, (3.2.40)

and put

ŵk = w̄k − ck(t), 〈ŵk〉 = 0, k ≥ −1. (3.2.41)

Then from (3.2.38), (3.2.40), (3.2.41) we obtain for ŵk the following problem:






























Ê1
∂2(ŵk)1
∂x21

+ Ê3
∂2(ŵk)2
∂x1∂x2

+ Ê2
∂2(ŵk)1
∂x22

= −(yk)1,

Ê2
∂2(ŵk)2
∂x21

+ Ê3
∂2(ŵk)1
∂x1∂x2

+ Ê1
∂2(ŵk)2
∂x22

= −(yk)2,

ŵk D−periodic, k ≥ −1,

(3.2.42)

where yk is defined by (3.2.38)3.

The main result of this section consists in the construction of some smooth

functions (wk)3,vk, pk, ck−1 that satisfy (3.2.37) and

〈Rk〉 · e1 = 〈g1〉δk,0, 〈Rk〉 · e2 = 〈g2〉δk,0 ∀ k ≥ 0. (3.2.39′)

This result is obtained below.

Theorem 3.4. For any k ≥ 0 there exist a triplet of functions ((wk)3,vk, pk) and

a function depending only on t, ck−1, which satisfy problems (3.2.37) and (3.2.39′).

Moreover, the regularity of these functions is given by (wk)3 ∈ C∞([0, T ];C∞
# (D̄)),

vk ∈ C∞([0, T ]; (C∞
# (D̄) ∩ H2(D−))3), pk ∈ C∞([0, T ];C∞

# (D̄) ∩ H1(D−)) and

ck−1 ∈ C∞([0, T ]).

Proof. The proof of the announced result is technical and will be obtained recur-

sively, in several steps.

Step 1. This step is devoted to the presentation of two auxiliary problems.

We study these problems and we determine their solutions which are used for the

construction of the functions vk, ck−1 that solve, together with (wk)3, pk problems

(3.2.37), (3.2.39′). The first auxiliary problem is: Find the functions (wk)3, v̂k, pk,
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k ≥ 0, which satisfy


















































































































































ˆ̂
J∆2

x̄(wk)3 +

(

2ν̃
∂(v̂k)3
∂x3

− pk

)

/

x3=0

= g3δk0 −Rk−1 · e3

− Ê−1
1 ·

ˆ̂
E2

(

∂g1
∂x1

δk1 −
∂Rk−1

∂x1
· e1 +

∂g2
∂x2

δk1 −
∂Rk−1

∂x2
· e2

)

in D × (0, T ),

ρ−
∂v̂k

∂t
− 2ν̃ div(D(v̂k)) +∇pk = fδk0,

div v̂k = 0 in D− × (0, T ),

v̂k(x̄,−1, t) = 0 in D × (0, T ),

(v̂k)1(x̄, 0, t) =
∂ ((ŵk−1)1)

∂t
(x̄, t) +αk−1 · e1 in D × (0, T ),

(v̂k)2(x̄, 0, t) =
∂ ((ŵk−1)2)

∂t
(x̄, t) +αk−1 · e2 in D × (0, T ),

(v̂k)3(x̄, 0, t) =
∂(wk)3
∂t

(x̄, t) +αk−1 · e3 in D × (0, T ),

(wk)3, v̂k, pk D−periodic,

v̂k(x, 0) = 0 inD−,

(wk)3(x̄, 0) = 0 inD, k ≥ 0.

(3.2.43)

We give below the second auxiliary problem. For any k ≥ 0, find Vk : [−1, 0]×

[0, T ] 7→ R
2 solution for



































ρ−
∂Vk

∂t
− ν̃

∂2Vk

∂x23
= 0 in (−1, 0)× (0, T ),

ν̃
∂Vk

∂x3
= γk−1 on {x3 = 0} × (0, T ),

Vk = 0 on {x3 = −1} × (0, T ),

Vk(0) = 0 in (−1, 0)

(3.2.44)

with

(γk−1)i(t) = 〈gei〉δk+1,1 − 〈ρ+〉(c
′′
k−2)i − ν̃

〈

∂(v̂k)i
∂x3

/

x3=0

〉

−(h4,0)11
d4(ck−7)i

dt4
+

J
∑

q=5

αq
dq(ck+q−3)i

dtq
+

J
∑

q=1

αM
q

dq

dtq
〈(ψk−q)i〉 , i = 1, 2.

(3.2.45)
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Notice that the right hand side of (3.2.44) contains one of the unknowns of

(3.2.43); after solving (3.2.43), the right hand side of (3.2.44) becomes a known

function.

We announce next the results that we shall obtain concerning (3.2.43) and

(3.2.44).

Theorem 3.5. For any k ≥ 0 problem (3.2.43) has a unique so-

lution ((wk)3, v̂k, pk) with the regularity (wk)3 ∈ C∞([0, T ];C∞
# (D̄)),

v̂k ∈ C∞([0, T ]; (H2(D−))3),
∂jv̂k

∂xji
∈ C∞([0, T ]; (L2(D−))3), pk ∈

C∞([0, T ]; (H2(D−))3),
∂jpk

∂xji
∈ C∞([0, T ];L2(D−)), i = 1, 2, j ∈ N.

Theorem 3.6. For any k ≥ 0 problem (3.2.44) has a unique solution Vk with the

regularity Vk ∈ C∞([0, T ]; (H3(−1, 0))2).

Step 2. This step contains the proofs of the previous two theorems for k = 0.

We mention that, even if problems (3.2.43) and (3.2.44) are not coupled, we must

solve them together since, for determining the functions of the k approximation,

we need the induction assumption concerning all the functions from the previous

approximations.

Proof of Theorem 3.5 for k=0 is given above in section 2.2.2.

Proof of Theorem 3.6 for k=0. For k = 0 (3.2.44) becomes


































ρ−
∂V0

∂t
− ν̃

∂2V0

∂x23
= 0 in (−1, 0)× (0, T ),

ν̃
∂V0

∂x3
= γ−1 on {x3 = 0} × (0, T ),

V0 = 0 on {x3 = −1} × (0, T ),

V0(0) = 0 in (−1, 0)

(3.2.46)

with

(γ−1)i(t) = 〈gei〉 − ν̃

〈

∂(v̂0)i
∂x3

/

x3=0

〉

, i = 1, 2. (3.2.47)

This problem is known in geophysics as the heat equation with heat transfer

boundary condition. We introduce the space H̃ = {ϕ ∈ (H1(−1, 0))2/ϕ(−1) =

0} and by means of the variational formulation we obtain, using the Galerkin’s
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method, the existence ofV0 ∈ H1(0, T ; H̃), the unique solution for (3.2.46). From

(3.2.46)1 it follows that V0 ∈ H1(0, T ; (H−3(−1, 0))2); finally, the C∞-regularity

in t is a consequence of (H2) and of the regularity of v̂0, via (3.2.47), which

achieves the proof.

We mention that, in addition to the properties previously obtained, all the

functions determined at this step are zero for t ∈ [0, τ0), due to the assumption

(H3), p. 52.

Step 3. The induction assumption is that all the properties obtained in Step

2. for k = 0 hold for any k′, k′ < k. This step is devoted to prove these properties

for k.

Proof of Theorem 3.5 for k ≥ 1. Unlike the case k = 0, for k ≥ 1 problem

(3.2.43) has nonhomogeneous boundary conditions. In order to replace (3.2.43)

with a homogeneous boundary problem we consider, for any t ∈ [0, T ], k ≥ 1, the

auxiliary problem



























div ζk(t) = 0 in R
2 × (−1, 0),

ζk(t) = 0 on R
2 × {x3 = −1},

ζk(t) = a(t) on R× {x3 = 0},

ζk(t) D−periodic,

(3.2.48)

with a1(x̄, t) =
∂((ŵk−1)1)

∂t
(x̄, t) + αk−1(x̄, t) · e1, a2(x̄, t) =

∂((ŵk−1)2)

∂t
(x̄, t) +

αk−1(x̄, t) · e2, a3(x̄, t) = αk−1(x̄, t) · e3. Notice that, due to properties (3.2.24)

and (3.2.36) we have 〈αk−1〉 ·e3 = 0, which represents the solvability condition for

(3.2.48). We define the Fourier coefficients associated to the function a as follows















a0(t) = 〈a〉(t),

am(t) = 2〈a cos 2πmx̄〉(t),

bm(t) = 2〈a cos 2πmx̄〉(t)
|m| ≥ 1,

where m = (m1, m2) is a multi-index, x̄ = (x1, x2) and mx̄ = m1x1 + m2x2. It
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can be proved by direct computation that the function

ζk(x, t) = (x3 + 1)(3x3 + 1)(a0)1(t)e1 + (x3 + 1)(3x3 + 1)(a0)2(t)e2

− (x3 + 1)

( ∞
∑

m1,m2=1

(

(−3x3 − 1)(am)1(t) +
3

2πm1
x3(bm)3(t)

)

cos 2πmx̄

+
(

(−3x3 − 1)(bm)1(t)−
3

2πm1
x3(am)3(t)

)

sin 2πmx̄

)

e1

− (x3 + 1)

( ∞
∑

m1,m2=1

(

(−3x3 − 1)(am)2(t) +
3

2πm2
x3(bm)3(t)

)

cos 2πmx̄

+
(

(−3x3 − 1)(bm)2(t)−
3

2πm2
x3(am)3(t)

)

sin 2πmx̄

)

e2

− (x3 + 1)

( ∞
∑

m1,m2=1

(

2πm1x3(x3 + 1)(bm)1(t) + 2πm2x3(x3 + 1)(bm)2(t)

+ (2x23 + x3 − 1)(am)3(t)
)

cos 2πmx̄+
(

− 2πm1x3(x3 + 1)(am)1(t)

− 2πm2x3(x3 + 1)(am)2(t) + (2x23 + x3 − 1)(bm)3(t)
)

sin 2πmx̄

)

e3

(3.2.49)

is a solution for (3.2.48). Moreover, the function ζk has the additional properties

ζk ∈ C∞([0, T ]; (C∞
# (D̄−))3),

ζk = 0 in D̄− × [0, τ0).
(3.2.50)

The regularity of ζk with respect to t and x1, stated in (3.2.50)1, is a consequence

of C∞-regularity of the function a given by the induction assumption; relation

(3.2.50)2 is satisfied due to the hypothesis (H3), p. 52. and to the induction

assumption.

We define next the function ωk : D̄
− × [0, T ] 7→ R

3, given by

ωk(x, t) = v̂k(x, t)− ζk(x, t), ∀ k ≥ 0. (3.2.51)

Replacing in (3.2.43) the unknown v̂k by the new unknown ωk, using the incom-

pressibility condition and the assumption (H3), p. 52. we obtain for ((wk)3,ωk, pk)
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the following problem






























































































ˆ̂
J∆2

x̄(ŵk)3 − p̂k/

x3=0

= Gk(x̄, t) in D × (0, T ),

ρ−
∂ωk

∂t
− ν̃∆ωk +∇p̂k = Fk,

div ωk = 0 in D− × (0, T ),

ωk(x̄,−1, t) = 0 in D × (0, T ),

ωk(x̄, 0, t) =
∂(wk)3
∂t

(x̄, t) · e3 in D × (0, T ),

(wk)3,ωk, pk D−periodic,

ωk(x, 0) = 0 inD−,

(wk)3(x̄, 0) = 0 inD, k ≥ 0.

(3.2.52)

with






























Gk(x̄, t) = g3δk0 −Rk−1 · e3 − Ê−1
1 ·

ˆ̂
E2

(

∂g1
∂x1

δk1 −
∂Rk−1

∂x1
· e1

+
∂g2
∂x2

δk1 −
∂Rk−1

∂x2
· e2

)

+ 2ν̃

(

∂a1
∂x1

+
∂a2
∂x2

)

,

Fk(x, t) = f(x, t)δk0 − ρ−
∂ζk
∂t

(x, t) + ν̃∆ζk(x, t).

Compare now problem (3.2.52) with (2.2.23). We notice that all the equations,

initial and boundary conditions are the same; moreover, the known right hand

sides of (3.2.52), Gk,Fk, have the same regularity as g3, f , respectively, regularity

given by (H1) and (H2), via the induction assumption. Hence, the remaining part

of the proof of the proof for an arbitrary value of k, k ≥ 1, is the same as the one

for k = 0. The regularity of ωk corresponds to the regularity for v̂0 in Step 2.

and v̂k has the same regularity as ωk, due to (3.2.50)1, which achieves the proof

for k ≥ 1.

Proof of Theorem 3.6 for k ≥ 1. The problem for Vk, (3.2.44), has the same

form for any value of k. Noticing that the regularity of γk−1 is (C
∞([0, T ]))2 due

to the induction assumption, all the results obtained in Step 2. for V0 are still

true for Vk.

Step 4. The last step is devoted to the construction of some smooth functions
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vk and ck−1 that satisfy, togther with (wk)3, pk already obtained in Theorem 3.5,

problems (3.2.37) and (3.2.39′). Let us define for any k ≥ 0










vk(x, t) = v̂k(x, t) +Vk(x3, t),

ck−1(t) =

∫ t

0

Vk(0, τ)dτ.
(3.2.53)

We prove next that the functions (wk)3,vk, pk, ck−1 satisfy all the assertions of

Theorem 3.4. The regularity of the functions vk, (wk)3, pk, ck−1 is an immediate

consequence of the regularity results provided by Theorem 3.5 and Theorem 3.6.

Let us show that vk, (wk)3, pk, ck−1 satisfy (3.2.37). Notice that ck−1 appears in

(3.2.37)5,6 being contained in (w̄k−1).Relation (3.2.37)1 is obtained from (3.2.43)1

and (3.2.53)1. Equations (3.2.37)2,3 follow from (3.2.43)2,3 and (3.2.44)1. Bound-

ary condition (3.2.37)4 is a consequence of (3.2.43)4 and (3.2.44)3, and (3.2.43)6

gives (3.2.37)6. Finally, using (3.2.53), (3.2.43)5 and (3.2.41) corresponding to

k − 1, we obtain (3.2.37)5. It remains to prove that (3.2.39′) is fulfilled. Using

(3.2.27)1, (3.2.26), the periodicity of
∂(vk)3
∂x1

,
∂(vk)3
∂x2

and (3.2.53), (3.2.39′) can be

rewritten in the following form

ν̃
∂Vk

∂x3

/

x3=0
(t) = γk−1(t) ∀ k ≥ 0, (3.2.54)

which represents exactly (3.2.44)2.

We use next expression (3.2.53)2 corresponding to k− 1 to obtain (w̄k−1)i, i =

1, 2. Note that at the k-th approximation, k ≥ 0 we determine the functions

(wk)3,vk, pk and (w̄k−1)i, i = 1, 2.

We present next the leading term of asymptotic solution (3.2.2). For k = −1

(3.2.41) becomes

w̄−1(x̄, t) = c−1(t), (3.2.55)
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while ((w0)3,v0, p0) is the unique solution for














































































ˆ̂
J∆2

x̄(w0)3 − p0/

x3=0

= g3 in D × (0, T ),

ρ−
∂v0

∂t
− ν̃∆v0 +∇p0 = f ,

div v0 = 0 in D− × (0, T ),

v0(x̄,−1, t) = 0 in D × (0, T ),

v0(x̄, 0, t) = (c′−1)1(t)e1 + (c′−1)2(t)e2 +
∂(w0)3
∂t

(x̄, t)e3 in D × (0, T ),

(w0)3,v0, p0 D−periodic,

v0(x, 0) = 0 in D−; (w0)3(x, 0) = 0 in D.

(3.2.56)

Taking into account (3.2.22), coupling condition (3.2.56)5 can be written as

v0 =
∂w0

∂t
on Γ0. (3.2.57)

3.3 Justification of asymptotics and error estimation

In this section we will obtain the error estimates which generally demonstrate

the small difference between the real solution and the constructed solution to

the main problem. From the previous section we obtain the problem for the
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asymptotic solution of order J in the form






















































































































































ρ+

(x3
ε

)∂2u
(J)
ε

∂t2
− ε−3

3
∑

i,j=1

∂

∂xi

(

Aij

(x3
ε

)∂u
(J)
ε

∂xj

)

= ε−1g − r̃(J),1ε in D+
ε ×(0, T ),

ρ−
∂v

(J)
ε

∂t
− 2ν̃div

(

D(v(J)
ε )
)

+∇p(J)ε = f in D− × (0, T ),

divv(J)
ε = 0 in D− × (0, T ),

3
∑

j=1

A3j(1)
∂u

(J)
ε

∂xj
= r(J),4ε on Γ+

ε × (0, T ),

v(J)
ε = 0 on Γ− × (0, T ),

v(J)
ε −

∂u
(J)
ε

∂t
= −r(J),6ε on Γ0 × (0, T ),

−p(J)ε e3+2ν̃D(v(J)
ε )e3=ε

−3
3
∑

j=1

A3j(0)
∂u

(J)
ε

∂xj
−r(J),7ε on Γ0 × (0, T ),

u(J)
ε ,v(J)

ε , p(J)ε D−periodic,

u(J)
ε (0) =

∂u
(J)
ε

∂t
(0) = 0 in D+

ε ,

v(J)
ε (0) = 0 in D−,

(3.3.1)

where r
(J),4
ε , r

(J),6
ε , r

(J),7
ε are the residuals defined by (3.2.8), (3.2.33), (3.2.10) and

r̃(J),1ε = r(J),1ε +
2
∑

j=1

J+rj
∑

k=J+1

εk−1(Rk)jej +

J+r3
∑

k=J+1

εk(Rk)3e3, r
(J),1
ε given by (3.2.5).

In order to replace the previous system with another one with homogeneous

boundary conditions instead of (3.3.1)4,7 we prove the following result

Proposition 3.7. The problem


















































Find ϕ(J)
ε : D̄+

ε × [0, T ] 7→ R
3 such that

ϕ(J)
ε D−periodic,
3
∑

j=1

A3j(1)
∂ϕ

(J)
ε

∂xj
(x̄, ε, t) = r(J),4ε (x̄, t) in D̄ × [0, T ],

3
∑

j=1

A3j(0)
∂ϕ

(J)
ε

∂xj
(x̄, 0, t) = ε3r(J),7ε (x̄, t) in D̄ × [0, T ]

(3.3.2)
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has at least a solution.

Proof. It can be easily verified that the function

ϕ(J)
ε (x, t) = x3(x3 − ε)

(

2
∑

j=1

(ε(x3 − ε)

µ(0)
(r(J),7ε )j(x̄, t) +

x3
ε2µ(1)

(r(J),4ε )j(x̄, t)
)

ej

+
( ε(x3 − ε)

λ(0) + 2µ(0)
(r(J),7ε )3(x̄, t) +

x3
ε2(λ(1) + 2µ(1))

(r(J),4ε )3(x̄, t)
)

e3

)

(3.3.3)

has the properties stated in (3.3.2).

We define next

U(J)
ε = u(J)

ε − ϕ(J)
ε (3.3.4)

and
(

Û(J)
ε , v̂(J)

ε , p̂(J)ε

)

= (uε,vε, pε)−(U(J)
ε ,v(J)

ε , p(J)ε ) and, from (2.1.1), (3.3.1) and

(3.3.2) we obtain






















































































































































ρ+

(x3
ε

) ∂2Û
(J)
ε

∂t2
− ε−3

3
∑

i,j=1

∂

∂xi

(

Aij

(x3
ε

) ∂Û
(J)
ε

∂xj

)

= −g(J)
ε in D+

ε × (0, T ),

ρ−
∂v̂

(J)
ε

∂t
− 2ν̃div

(

D(v̂(J)
ε )
)

+∇p̂(J)ε = 0 in D− × (0, T ),

div v̂(J)
ε = 0 in D− × (0, T ),

3
∑

j=1

A3j(1)
∂Û

(J)
ε

∂xj
= 0 on Γ+

ε × (0, T ),

v̂(J)
ε = 0 on Γ− × (0, T ),

v̂(J)
ε −

∂Û
(J)
ε

∂t
= r(J),6ε on Γ0 × (0, T ),

−p̂(J)ε e3 + 2ν̃D(v̂(J)
ε )e3 = ε−3

3
∑

j=1

A3j(0)
∂Û

(J)
ε

∂xj
on Γ0 × (0, T ),

Û(J)
ε , v̂(J)

ε , p̂(J)ε D−periodic,

Û(J)
ε (0) =

∂Û
(J)
ε

∂t
(0) = 0 in D+

ε ,

v̂(J)
ε (0) = 0 in D−,

(3.3.5)
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where

g(J)
ε = −r̃(J),1ε − ρ+

∂2ϕ
(J)
ε

∂t2
+ ε−3

3
∑

i,j=1

∂

∂xi

(

Aij
∂ϕ

(J)
ε

∂xj

)

. (3.3.6)

The first estimates between the exact solution and the asymptotic solution of

order J are given by

Theorem 3.8. Let (uε,vε, pε) be the exact solution of (2.1.1) and (u
(J)
ε ,v

(J)
ε , p

(J)
ε )

the asymptotic solution of order J , defined by (3.2.1). Then the following esti-

mates hold






























































































∥

∥

∥

∥

∂

∂t

(

uε − u(J)
ε

)

∥

∥

∥

∥

L∞(0,T ;(L2(D+
ε ))2)

= O(εJ−
7/2),

∥

∥

∥

∥

∂2

∂t2

(

uε − u(J)
ε

)

∥

∥

∥

∥

L∞(0,T ;(L2(D+
ε ))2)

= O(εJ−
7/2),

∥

∥

∥
Ex(uε − u(J)

ε )
∥

∥

∥

L∞(0,T ;(L2(D+
ε ))3×3)

= O(εJ−2),

∥

∥

∥
vε − v(J)

ε

∥

∥

∥

L∞(0,T ;(L2(D−))2)
= O(εJ−

7/2),
∥

∥

∥

∥

∂

∂t

(

vε − v(J)
ε

)

∥

∥

∥

∥

L∞(0,T ;(L2(D−))2)

= O(εJ−
7/2),

∥

∥

∥
Dx(vε − v(J)

ε )
∥

∥

∥

L2(0,T ;(L2(D−))3×3)
= O(εJ−

7/2),

‖pε − p(J)ε ‖L2(0,T ;L2(D−)) = O(εJ−
13/2).

(3.3.7)

Proof. Computing

∫

D+
ε

(3.3.5)1 ·

(

∂Û
(J)
ε

∂t
+ r(J),6ε

)

+

∫

D−

(3.3.5)2 · v̂
(J)
ε we obtain

in the same way as in [1, 2] estimates (3.3.7)1−6. We notice the difference that

appears in (3.3.7)1,2 with respect to the corresponding estimates from [1, 2] due

to the fact that here the density of the elastic material is of order 1 where in [1,2]

is O(ε−1). In what follows we establish a more precise estimate for the pressure

than in [1, 2].

Let us consider a pair (ϕ,ω) ∈ (H1(D+
ε ))

3 × (H1(D−))3 with the properties:

ϕ = 0 on ∂D+
ε \Γ

0, ω = 0 on ∂D−\Γ0, ϕ = ω on Γ0. Computing

∫

D+
ε

(3.3.5)1 ·

ϕ+

∫

D−

(3.3.5)2 · ω and using (3.3.5)7 we get

L(ϕ,ω)(t) =

∫

D−

p̂(J)ε (t) divω a.e. in (0, T ), (3.3.8)
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with

L(ϕ,ω)(t) =

∫

D+
ε

ρ+
∂2Û

(J)
ε (t)

∂t2
· ϕ+ ε−3

∫

D+
ε

3
∑

i,j=1

Aij
∂Û

(J)
ε (t)

∂xj
·
∂ϕ

∂xi

+

∫

D+
ε

g(J)
ε (t) · ϕ+ ρ−

∫

D−

∂v̂
(J)
ε (t)

∂t
· ω + 2ν̃

∫

D−

D(v̂(J)
ε (t)) : D(ω) a.e. in (0, T ).

(3.3.9)

We introduce the notation














A(u(t))= c1

∥

∥

∥

∂2u

∂t2
(t)
∥

∥

∥

(L2(D+
ε ))3

+ c2ε
−3
∥

∥

∥
E(u(t))

∥

∥

∥

(L2(D+
ε ))9

+ c3

∥

∥

∥
g(J)
ε (t)

∥

∥

∥

(L2(D+
ε ))3

,

B(v(t))= c4

∥

∥

∥

∂v

∂t
(t)
∥

∥

∥

(L2(D−))3
+ 2ν̃

∥

∥

∥
D(v(t))

∥

∥

∥

(L2(D−))3×3
,

(3.3.10)

where c1, c2, c3, c4 are positive known constants independent of ε.

Applying Poincaré’s inequality and an obvious estimate for the second term of

the right-hand side of (5.9) it follows that


















∣

∣L(ϕ,ω)(t)
∣

∣ ≤ A(Û(J)
ε (t))

∥

∥∇ϕ
∥

∥

(L2(D+
ε ))3×3 + B(v̂(J)

ε (t))
∥

∥∇ω
∥

∥

(L2(D−))3×3

a.e. in (0, T ), (∀)(ϕ,ω) ∈ (H1(D+
ε ))

3 × (H1(D−))3 :

ϕ = 0 on ∂D+
ε \Γ

0,ω = 0 on ∂D−\Γ0,ϕ = ω on Γ0.

(3.3.11)

We choose next some particular functions ω and ϕ in (3.3.11). We begin

with the construction of ω. For this purpose, we consider an arbitrary function

η : D̄ → R with the properties:






















∫

D

η = 1,

η = 0 on ∂D,

η ∈ C1,1(D̄)

(3.3.12)



Justification of asymptotics and error estimation 101

and the problem:


































Find ω ∈ (H1(D−))3, such that

divω = p̂(J)ε (t) a.e. in D−,

ω = 0 on ∂D−\Γ0,

ω = η

(
∫

D−

p̂(J)ε (t)

)

e3 on Γ0.

(3.3.13)

Appliying a result of [84, Chap.III.3] it follows that there exists a function ω

satisfying (3.3.13) and

∥

∥ω
∥

∥

(H1(D−))3
≤ C(D−)

(

1 +
∥

∥η
∥

∥

H
1/2(D)

)

∥

∥p̂(J)ε (t)
∥

∥

L2(D−)
. (3.3.14)

We consider next the problem for ϕ:






































Find ϕ ∈ (H1(D+
ε ))

3, such that

divϕ = ε−1

∫

D−

p̂(J)ε (t) a.e. in D+
ε ,

ϕ = 0 on ∂D+
ε \Γ

0,

ϕ = η

(
∫

D−

p̂(J)ε (t)

)

e3 on Γ0.

(3.3.15)

By transforming (3.3.15) into a problem on the domain independent of ε, D+ =

(0, 1)3), with the change of function ψ : D̄+ → R
3,

ψ(x̄, ξ3) =
2
∑

j=1

ϕj(x)ej + ε−1ϕ3(x)e3 (3.3.16)

we obtain as before a solution ϕ for (3.3.15) satisfying the estimate

∥

∥ϕ
∥

∥

(H1(D+
ε ))3

≤
C(D+)

ε3/2

(

1 +
∥

∥η
∥

∥

H
1/2(D)

)

∥

∥p̂(J)ε (t)
∥

∥

L2(D−)
, (3.3.17)

with the constant C(D+) independent of ε.
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From (3.3.8), (3.3.9), (3.3.13)2, (3.3.14) and (3.3.17) we finally obtain

∥

∥p̂(J)ε (t)
∥

∥

2

L2(0,T ;L2(D−))
≤ a1ε

−3
∥

∥

∥

∂2Û
(J)
ε

∂t2

∥

∥

∥

2

L2(0,T ;(L2(D+
ε ))3)

+a2ε
−9
∥

∥E(Û(J)
ε )
∥

∥

2

L2(0,T ;(L2(D+
ε ))3×3)

+ a3ε
−3
∥

∥g(J)
ε

∥

∥

2

L2(0,T ;(L2(D+
ε ))3)

+a4

∥

∥

∥

∂v̂
(J)
ε

∂t

∥

∥

∥

L2(0,T ;(L2(D−))3)
+ a5

∥

∥D(v̂(J)
ε )
∥

∥

L2(0,T ;(L2(D−))3×3)
,

(3.3.18)

with a1, . . . , a5 positive constants independent of ε.

Estimate (3.3.7)7 follows from (3.3.18), (3.3.7)2,3,5,6, which achieves the proof.

As one can see, the error between the exact solution and the asymptotic solu-

tion of order J is big if J ≤ 6. The last result of this section is devoted to the

improvement of the previous estimates.

Theorem 3.9. Let (uε,vε, pε) be the exact solution of (2.1.1) and

(u
(K)
ε ,v

(K)
ε , p

(K)
ε ) the asymptotic solution of order K, defined by (3.2.1). Then

the error between these two solutions is given by






























































































∥

∥

∥

∥

∂

∂t

(

uε − u(K)
ε

)

∥

∥

∥

∥

L∞(0,T ;(L2(D+
ε ))2)

= O(εK+3/2),

∥

∥

∥

∥

∂2

∂t2

(

uε − u(K)
ε

)

∥

∥

∥

∥

L∞(0,T ;(L2(D+
ε ))2)

= O(εK+3/2),

∥

∥

∥
Ex(uε − u(K)

ε )
∥

∥

∥

L∞(0,T ;(L2(D+
ε ))3×3)

= O(εK+1/2),

∥

∥

∥
vε − v(K)

ε

∥

∥

∥

L∞(0,T ;(L2(D−))2)
= O(εK+1),

∥

∥

∥

∥

∂

∂t

(

vε − v(K)
ε

)

∥

∥

∥

∥

L∞(0,T ;(L2(D−))2)

= O(εK+1),

∥

∥

∥
Dx(vε − v(K)

ε )
∥

∥

∥

L2(0,T ;(L2(D−))3×3)
= O(εK+1),

‖pε − p(K)
ε ‖L2(0,T ;L2(D−)) = O(εK+1).

(3.3.19)

Proof. We consider K ≥ 0 a fixed integer and J > K + 7. Let us prove,

for instance, (3.3.19)1. Computing the order of
∂

∂t

(

u(J)
ε − u(K)

ε

)

from (3.2.2)1

we obtain
∂

∂t

(

u(J)
ε − u(K)

ε

)

= O(εK+1) which gives, together with (3.3.7)1,
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∥

∥

∥

∥

∂

∂t

(

uε − u(K)
ε

)

(t)

∥

∥

∥

∥

(L2(D+
ε ))2

= O(εJ−
7/2) + O(εK+3/2). Since J > K + 4, we get

(3.3.19)1. All the other estimates from (3.3.19) are obtained in a same way, from

(3.3.7) and (3.2.1), and the proof is completed.

3.4 Conclusion

We have constructed the complete asymptotic expansion of the solution. Homoge-

nization is used. The limit problem describes the principal term of the asymptotic

expansion.





Conclusion

Le problème d’interaction d’un fluide visqueux avec une structure élastique est

considéré. On généralise l’investigation du problème d’interaction du fluide

visqueux avec la plaque mince élastique en 2D [1,2] ici en cas 3D. Dans l’analyse

variationnelle une nouvelle idée est de considérer la même fonction pour la vitesse

du fluide vε et la vitesse dans la zone élastique
∂uε

∂t
. Cela permet de réduire le

volume de la preuve en utilisant un ensemble des approximations de Galerkin à

la place de deux (pour le milieu liquide et le milieu élastique). La caractéristique

distinctive principale du système couplé “flux fluide visqueux – plaque mince

élastique” en 3D du cas deux-dimensionnel est dans l’analyse asymptotique :

lorsque nous construisons le développement asymptotique nous n’avons plus de

termes que nous pouvons déterminer explicitement, nous avons maintenant des

systèmes pour eux. Et comme avant, nous avons réussi à la différenciation entre

les deux problèmes : pour les parties solides et liquides. Les résultats d’application

physiques sont suivent : la formation des contraintes résiduelles pendant le traite-

ment des matériaux par laser est étudié utilisant un modèle thermo-élastique.

Les résultats des calculs numériques peuvent être utilisés pour évaluer la sta-

bilité thermomécanique des matériaux dans la FSL. La représentation graphique

des champs deux-dimensionnels est obtenue numériquement avec une base des

données des propriétés thermoélastiques des matériaux métalliques, céramiques

et polymères.





Conclusion

Viscous fluid-structure interaction problem is considered. The investigation of

the viscous fluid-thin elastic plate interaction in 2D [1, 2] is generalized here to

3D case. In variational analysis a new idea is to consider one function for the

fluid velocity vε and the velocity in the elastic area
∂uε

∂t
. This allows to reduce

a proof volume using one set of Galerkin approximations in place of two (for

the fluid and elastic mediums). The main distinguishing feature of the coupled

system “viscous fluid flow-thin elastic plate” in 3D from the 2D-case is in the

asymptotic analysis: when we construct the asymptotic expansion we have no

more terms that we can determine explicitly, we have now the systems for them.

And as before, we succeeded in differentiation between two problems: for the

solid and fluid parts. Physical application results are following : the formation of

residual stresses during the laser treatment of materials is studied using a thermo-

elastic model. Calculation results can be used to evaluate the thermomechanical

stability of the materials in the SLM process. The graphical representation of the

two-dimensional fields is obtained numerically with a database of thermoelastic

properties of metallic, ceramic and polymer materials.
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