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Abstract

This PhD thesis deals with some new models of intensional type theory and the
Univalence Axiom introduced by Vladimir Voevodsky. Our work takes place in the
framework of the definitions of type-theoretic model categories, type-theoretic fibration
categories (the notion of model under consideration in this thesis) and universe in a
type-theoretic fibration category, definitions due to Michael Shulman. This universe
does not correspond to a strict type-theoretic universe in the sense that it is closed up
to type-theoretic operations only up to isomorphism. The goal of this thesis consists
mainly in the exploration of the stability of the univalence axiom, in particular in the
following sense: being given a type-theoretic fibration category C equipped with a
univalent universe U, we are eager to endow the presheaf category [Dop,C ], where D
is a small category, with the structure of a type-theoretic fibration category plus a
univalent universe.
There are at least two ways to proceed, one using the so-called projective model
structure on a functor category and the other by using the so-called injective one.
In the very specific case where C is Gpd and D is B(Z/2Z) we reach this goal
by giving two models in the same underlying category [B(Z/2Z)op,Gpd], models
that share the construction of a common universe of (small) discrete groupoids with
involution. To built the first model we use the projective model structure and prove
that our universe is non-univalent. In the second one we use the injective model
structure and prove that our universe is univalent.



Résumé

Cette thèse de doctorat a pour sujet les modèles de la théorie intensionnelle des types
avec l’axiome d’univalence introduit par Vladimir Voevodsky. L’auteur prend pour
cadre de travail les definitions de type-theoretic model category, type-theoretic fibration
category (cette dernière étant la notion de modèle considérée dans cette thèse) et
d’univers dans une type-theoretic fibration category, définitions dues à Michael Shulman.
Cet univers ne correspond pas à un univers strict de la théorie des types en ce sens que
les opérations de formation des types sont closes seulement à isomorphisme près. La
problématique principle de cette thèse consiste à approfondir notre compréhension de
la stabilité de l’axiome d’univalence en le sens précis suivant: soit C une type-theoretic
fibration category équippée d’un univers univalent, nous voulons munir la catégorie
de préfaisceaux [Dop,C ] d’une structure de type-theoretic fibration category équippée
d’un univers univalent.
Il y a au moins deux manières de faire, l’une ayant recours à la structure de modèle
projective sur une catégorie de foncteurs, l’autre à la structure de modèle injective.
Quand C est la catégorie Gpd et D est B(Z/2Z) nous atteignons dans le présent
travail le but énoncé plus haut en donnant deux modèles dans la même catégorie
sous-jacente, à savoir [B(Z/2Z)op,Gpd], modèles qui partagent un même univers de
(petits) groupoïdes discrets équippés d’une involution. Dans notre premier modèle
construit à l’aide de la structure projective, nous prouvons que cet univers n’est pas
univalent. Dans le second modèle, construit à l’aide de la structure injective, nous
prouvons que cet univers est univalent.
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Abstract-Long Version

This PhD thesis deals with some new models of intensional type theory and the
univalence axiom introduced by Vladimir Voevodsky. Our work takes place in the
framework of the definitions of type-theoretic model cateories, type-theoretic fibration
categories (the notion of model under consideration in this thesis) and universe in a
type-theoretic fibration category, definitions due to Michael Shulman. This universe
does not correspond to a strict type-theoretic universe in the sense that it is closed up
to type-theoretic operations only up to isomorphism. The goal of the author consists
mainly in the exploration of the stability of the univalence axiom as initiated by
Michael Shulman in a series of papers, in particular in the following sense: being
given a type-theoretic fibration category C equipped with a univalent universe U, we
are eager to endow the presheaf category [Dop,C ], where D is a small category, with
the structure of a type-theoretic fibration category plus a univalent universe.
Under some slight assumptions on C there are at least two ways to proceed, one
using the so-called projective model structure on a functor category and the other
by using the so-called injective one. In some very specific cases the author finds a
natural candidate to lift the univalent universe.
More specifically, we chose to start with one of the simplest non-trivial case, namely
B(Z/2Z) the groupoid associated with the group with two elements as an index
category and the category of groupoids Gpd as a target category. Thus, our presheaf
category is nothing but the groupoids equipped with an involution. This case is
non-trivial since B(Z/2Z) has a non-trivial automorphism, in particular this is not
a Reedy category but a generalized Reedy category. As a consequence this case
was not covered by Shulman’s work that deals with inverse diagrams and elegant
Reedy categories which are particular cases of Reedy categories. In a Reedy category
non-trivial isomorphisms are not allowed, hence generalized Reedy categories present
the interesting difficulty of dealing with non-trivial isomorphisms.
The projective model structure requires a non-trivial characterization of the trivial
cofibrations to provide the structure of a type-theoretic fibration category. We
overcome this first difficulty. We also provide in this setting the categorical structure
required for modelling universes. However we prove this projective model structure is
not suitable for univalent universes since we are able to break univalence that holds
in Gpd for a universe of small discrete groupoids. Even worse we have been able to
break a weaker form of univalence, namely function extensionality, that holds in the
internal language of the type-theoretic fibration category Gpd.
On the other side the present work confirms that the injective model structure is
suitable for univalence, indeed in the case of functor categories on elegant reedy
categories the injective model structure coincides with the reedy model structure used
by Shulman. But the injective model structure presents some technical difficulties
when it comes to the universe due to the mysterious nature in general of fibrant
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objects and fibrations in the injective case. In the case under interest in this thesis
we overcome this second difficulty.

Contributions

To sum up our contributions we have:

• A model of intensional type theory with
∑

,
∏

, and Id-types and a universe in
[B(Z/2Z)op,Gpd] using the projective model structure. We prove that function
extensionality does not hold in the internal type theory of our model (see chapter
4). Moreover we also prove that our universe does not satisfy univalence (see
chapter 4). These two proofs rely on a non-trivial characterization of homotopy
equivalences in [B(Z/2Z)op,Gpd] equipped with the projective model structure.

• A model of intensional type theory with
∑

,
∏
, and Id-types and a univalent

universe in [B(Z/2Z)op,Gpd] using the injective model structure. In this
model we succeed to deal with a generalized Reedy category with a non-trivial
automorphism as an index category (see chapter 5).
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Résumé-Version Longue

Cette thèse de doctorat a pour sujet les modèles de la théorie intensionnelle des
types avec l’axiome d’univalence introduit par Vladimir Voevodsky. L’auteur prend
pour cadre de travail les définitions de type-theoretic model category, type-theoretic
fibration category (cette dernière étant la notion de modèle considérée dans cette
thèse) et d’univers dans une type-theoretic fibration category, définitions dues à Michael
Shulman. Cet univers ne correspond pas à un univers strict de la théorie des types en
ce sens que les opérations de formation des types sont closes à isomorphisme près. La
problématique principle de cette thèse consiste à approfondir notre compréhension
de la stabilité de l’axiome d’univalence initiée par Michael Shulman dans une série
d’articles, en le sens précis suivant: soit C une type-theoretic fibration category équip-
pée d’un univers univalent, nous voulons munir la catégorie de préfaisceaux [Dop,C ]
d’une structure de type-theoretic fibration category équippée d’un univers univalent.
A l’aide d’hypothèses raisonnables sur C il y a au moins deux manières de faire,
l’une ayant recours à la structure de modèle projective sur une catégorie de foncteurs,
l’autre à la structure de modèle injective. Dans des cas bien particuliers nous avons
pu atteindre l’objectif énoncé plus haut et équipper notre catégorie de foncteurs d’un
univers (univalent).
Plus précisément, l’auteur débute avec l’un des cas non triviaux les plus simples, à
savoir B(Z/2Z) le groupoïde associé au groupe à deux éléments comme choix pour
la catégorie index et la catégorie des groupoïdes Gpd comme catégorie but. Nous
choisissons donc de nous intéresser aux groupoïdes équippés d’une involution. Ce
choix est non trivial en ce que la catégorie index B(Z/2Z) possède un automorphisme
non trivial, en particulier cette catégorie est une catégorie Reedy généralisée mais elle
n’est pas Reedy (stricte). On peut notamment souligner que ce cas n’a pas été traité
dans les travaux de Michael Shulman mentionnés plus haut qui se cantonnent aux
cas des diagrammes inverses et des catégories Reedy élégantes, qui sont dans les deux
cas des cas particuliers de catégories Reedy (strictes) en guise de catégories index.
Rappelons que dans une catégorie Reedy (stricte) les isomorphismes non triviaux ne
sont pas autorisés et leur gestion dans les catégories Reedy généralisées présente donc
un défi technique intéressant.
La structure de modèle projective nécessite une caractérisation non triviale des cofi-
brations triviales pour équipper la catégorie B(Z/2Z) d’une structure de type-theoretic
fibration category. Nous surmontons dans cette thèse cette première difficulté. Nous
fournissons également dans ce contexte projectif la structure catégorique nécessaire
pour avoir des univers. Toutefois, nous prouvons que notre univers de groupoïdes
discrets equippés d’une involution n’est pas univalent, ainsi l’univalence qui est satis-
faite dans Gpd pour l’univers des petits groupoïdes discrets a été brisée. De même,
dans ce modèle l’extensionnalité des fonctions, pourtant satisfaite dans tout univers
de groupoïdes, a été brisée.
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D’un autre côté le présent travail confirme le caractère adéquat de la structure de
modèle injective par rapport à l’univalence, en effet pour des catégories de foncteurs
sur une catégorie de Reedy élégante la structure de modèle injective coïncide avec la
structure de modèle Reedy utilisée précédemment par Shulman. Toutefois la structure
de modèle injective présente des difficultés techniques dans la construction de l’univers
dues à la nature mystérieuse des objets fibrants et des fibrations pour la structure
injective. Cette seconde difficulté est également surpassée dans notre travail.

Contributions

Résumons nos contributions:

• Un modèle de la théorie des types intensionnelle avec types
∑

,
∏
, et Id plus

un univers dans la catégorie [B(Z/2Z)op,Gpd] en ayant recours à la structure
de modèle projective. De plus, nous donnons une preuve que ni l’univalence ni
l’extensionnalité des fonctions ne sont satisfaites dans ce modèle (cf chapitre 4)
grâce notamment à une caractérisation non triviale des équivalences d’homotopie
projectives.

• Un modèle de la théorie des types intensionnelle avec types
∑

,
∏
, et Id plus

un univers univalent dans la catégorie [B(Z/2Z)op,Gpd] en ayant recours à la
structure de modèle injective. Notons que dans ce modèle la catégorie index est
une catégorie Reedy généralisée avec un automorphisme non trivial (cf chapitre
5).
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1 Introduction

1.1 Introduction

In the seventies Per Martin-Löf set a framework out, suitable for constructive math-
ematics, called Martin-Löf Type Theory (MLTT for short). It is well known that
MLTT enjoys very nice computational properties and matches with logic via a famous
correspondence, the so-called Curry-Howard correspondence.
Recently Vladimir Voevodsky added an axiom to MLTT, the so-called Univalence
Axiom, that roughly asserts an equivalence between the type of propositional equalities
between any two small types (i.e. two types of a type-theoretic universe) and the type
of equivalences between these two small types. This brave new world, MLTT plus the
Univalence Axiom, was coined Univalent Foundations by Voevodsky (UF for short).
When a new axiom, like the univalence axiom, is added to a theory then a proof of
relative consistency is desirable. To achieve this proof of equiconsistency, the standard
way consists in giving a model (in the logical sense). In fact, UF with one universe
are at least as consistent as ZFC together with two strongly inaccessible cardinals.
This proof was achieved by Voevodsky [8] who gave a model of UF in the Quillen
model category of simplicial sets.
Models of UF were pursued by Michael Shulman [14, 13], David Gepner and Joachim
Kock [3] and lately by Denis-Charles Cisinski [1]. The groupoid model of Martin
Hofmann and Thomas Streicher that contains a univalent universe of small discrete
groupoids can be seen as an ancestor of this line of work [6].
The goal of this thesis consists in the exploration of the stability of the univalence
axiom as initiated by Michael Shulman, in particular in the following sense: being
given a type-theoretic fibration category C equipped with a univalent universe U, we
are eager to lift this univalent universe in the presheaf category [Dop,C ], where D is
a small category, equipped with the structure of a type-theoretic fibration category.
This goal was achieved by Michael Shulman in some specific cases, especially in [14]
when D is an inverse category and in [13] when C is sSet and D is any elegant Reedy
category. Note that inverse categories and elegant Reedy categories being strict Reedy
categories they do not allow non-trivial isomorphism.
In this thesis we explore the stability of the univalence axiom with respect to the
projective and injective model structures on functor categories. More specifically,
we treat the case where C is the category of groupoids Gpd and D is B(Z/2Z) the
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1 Introduction

groupoid associated with the group with two elements, that contains a non-trivial
automorphism. In particular we give a new model of UF since we construct a univalent
universe in the full subcategory of fibrant objects of [B(Z/2Z)op,Gpd] with respect
to the injective structure. Moreover, more surprisingly we give a second model of
type theory in the same underlying category with respect to the projective fibrations
where the very same universe turns out to be non-univalent. To the best of our
knowledge this second model is the first one derived from a Quillen model structure
where not all objects are cofibrant. Since the projective and injective model categories,
having the same weak equivalences, form a Quillen equivalence, this is also, again
to our knowledge, the first instance of two Quillen equivalent model categories that
host different models of type theory. If it should happen that not all objects are
fibrant-cofibrant then our method of proof makes it clear that even when a whole
model structure is available at hand only the classes of fibrations, acyclic cofibra-
tions and right homotopy equivalences are relevant for models of type theory. Our
thesis stresses this fact and shows that a model invariance principle to the effect of
"equivalent homotopy theories have equivalent internal type theories", as suggested
here https://ncatlab.org/homotopytypetheory/show/open+problems, should be
formulated in a more careful way. Last, note that our univalent model in the injective
setting is not a special case of later results by Shulman in [12], since therein Shulman
constructed a model of UF in a certain model category that presents the homotopy
theory of presheaves on an EI-category, but it is not the injective model structure
on a functor category (in the case of Z/2Z or any other group G Shulman’s model
specializes to the slice category Gpd/B(G) with its natural model structure, which
is well-known to be Quillen equivalent to, but not identical to, the injective model
structure on [B(G),Gpd]). This is rightly one of the points of our PhD thesis that
Quillen equivalent model categories can host different models of type theory. So in the
context of the semantics of type theory through Shulman’s notion of type-theoretic
fibration category such an equivalence is not obvious or trivial.

1.2 Organization
The chapter 2 gives the necessary background on model categories. The chapter
3 details what we mean by a model of type theory with a univalent universe. In
particular we review in this chapter the notions of type-theoretic fibration category
and universe in a type-theoretic fibration category. Also we present the notion of
type-theoretic model category and make explicit the link between the latter and
the former. Though this chapter 3 is short and it could be merged with chapter
2 as one more section, we keep it separate to emphasize the distinction between
type-theoretic fibration categories and model categories. Indeed we have already
warned the reader familiar with model categories against the appeal of thinking in

2
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1.3 Notations

terms of model structure in the context of type theory since this could be misleading.
In accord with this philosophy we introduce the relevant semantical notions to the
reader in a separate chapter. The chapter 4 follows the projective way and presents
a model of type theory with a non-univalent universe in the underlying category
[B(Z/2Z)op,Gpd] , while the chapter 5 follows the injective way and proves that the
previous universe becomes univalent with respect to the injective structure.

1.3 Notations
For the rest of this thesis we denote the group Z/2Z simply by G and by a slight
abuse of notation we also denote by G the associated groupoid B(Z/2Z)op. This
choice is for convenience but the reader should be aware that it does not mean G is
any group, however our results should be generalized to the case of a group action by
any (commutative) group G in a forthcoming work. As a consequence we will denote
the presheaf category [B(Z/2Z)op,Gpd] simply by GpdG.
The reader should note that a presheaf valued in groupoids on G is nothing but
a groupoid equipped with an involution, and a morphism in GpdG is nothing but
an equivariant functor, namely a functor between groupoids compatible with the
involutions on the domain and codomain. Such a groupoid with its involution will be
denoted by a capital letter A and the corresponding Greek letter α will be used to
refer to its involution when needed (except when stated otherwise).
As usual in category theory, the initial object and the terminal object of Gpd will be
denoted by 0 and 1 respectively.
We have an obvious functor from G to 1 denoted ! and an obvious inclusion functor
from 1 to G denoted I. These two functors induce by precomposition the two following
functors between GpdG and Gpd,

_ : GpdG −→ Gpd
G 7−→ G

namely the underlying/forgetful functor that maps a groupoid G equipped with an
involution to its underlying groupoid denoted G which is formaly G ◦ I;

()◦! : Gpd −→ GpdG

G 7−→ G!

that maps, being given the canonical isomorphism between Gpd and Gpd1, a
groupoid G to G◦!, shorten by G! for convenience, which is the groupoid G equipped
with the identity involution. The underlying functor has a left adjoint denoted S that
maps a groupoid G to S(G) := G

∐
G equipped with the swap involution. Last, the

3



1 Introduction

trivial G-groupoid functor ! has a right adjoint, namely the fixed-points functor,

()G : GpdG −→ Gpd
F 7−→ FG

where FG is the groupoid of fixed points and fixed morphisms in F . Note that FG is
limF .
Since limits and colimits are pointwise in a presheaf category, 0! and 1! are the
corresponding initial and terminal objects in GpdG.
We will use the letter I for the groupoid with two distinct points and one isomorphism
between them and we will denote by Ǐ the same groupoid equipped with the involution
that swaps the two points and maps the non-identity isomorphism to its inverse.
When we need to refer to its elements we will use the symbols 0 and 1 and φ for its
isomorphism. We will denote the obvious pushout I

∐̇
I

I in Gpd by P.

We will denote by
`

the groupoid with involution which extends Ǐ and its involution
by a fixed third point denoted 2 and a second non-identity isomorphism between 1 and
2 denoted ψ whose image by the involution is ψ ◦ φ (there are only two non-identity
isomorphisms and their composition).
Last, being given a groupoid A equipped with an involution we will denote by Af the
full subgroupoid of A consisting in the fixed points.

4



2 Background on model categories

Together with chapter 3 this chapter 2 provides all the background required
for this thesis, though without too much details. The reader familiar with
model categories should feel free to skip this chapter.

2.1 Organization

In section 2.2 we say a few words about the relevance of model structure with respect to
type theory and the connection between homotopy theory and type theory is developed
in section 2.4. The sections 2.3 and 2.5 present the basics of model categories. The
section 2.6 presents two model structures on functor categories used in the rest of
this thesis namely the injective and projective model structures.

2.2 Motivations

As motivations the main points are:

• Model Categories are ubiquitous in Mathematics and they are a powerful tool
for using homotopical methods in some abstract setting.

• Any model category C that satisfies a few additional properties, i.e. a type-
theoretic model category, provides a model of MLTT with

∑
,

∏
, Id-types by

taking the full subcategory of fibrant objects.

• Some key ingredients of type theory (dependent types especially Id-types, the
J-rule...) have a counterpart in some key ingredients of model category (fibra-
tions, path objects, diagonal filler . . . ).
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2 Background on model categories

2.3 Basics of model categories
This section is based on [2]. The reader should also consult the seminal work of Daniel
Quillen, the architect of model categories, for instance his lecture notes [10]. The books
by Hirschhorn [5] and Hovey [7] on model categories are also very useful references.

Definition 2.3.1. (diagonal filler) Given a commutative diagram of the form

A
f //

i

��

X

p

��

�

B g
// Y

a diagonal filler is a map h : B → X such that

p ◦ h = g

h ◦ i = f .

The maps i and p being fixed if there is a diagonal filler for any commutative diagram
of the form above, we say that : i has the left lifting property (LLP) with respect to
p. Conversely we say that p has the right lifting property (RLP) with respect to i.
A diagonal filler h is also called a lift (of g along p).

Definition 2.3.2. (retract) Let C be a category and f, g two morphisms of C .
One says that f is a retract of g if there is a commutative diagram

X
r //

f

��

Y

g

��

s // X

f

��

� �

X ′
r′

// Y ′
s′

// X ′

such that

s ◦ r = 1X

s′ ◦ r′ = 1X′ .
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2.3 Basics of model categories

Definition 2.3.3. (model category) A model category is a category C with three
classes of maps :

(i) the class of weak equivalences denoted W (in picture ∼−→)

(ii) the class of fibrations denoted F (in picture �)

(iii) the class of cofibrations denoted C (in picture ↪→).

Maps in W ∩F are called trivial (or acyclic) fibrations.
Maps in W ∩ C are called trivial (or acyclic) cofibrations.

We require the following axioms :

MC1 All (small) limits and (small) colimits exist in C .

MC2 (2 out of 3) If f and g are morphisms of C such that g ◦ f is defined and
two of f, g, g ◦ f are weak equivalences then so is the third.

MC3 (retract) If f is a retract of g and g ∈ F (resp. g ∈ W, resp. g ∈ C)
then f ∈ F (resp. f ∈ W, resp. f ∈ C).

MC4 (lift) Given a commutative diagram as in 2.3.1 a diagonal filler exists in either
of the two situations :

(i) i ∈ C and p ∈ F ∩W

(ii) i ∈ C ∩W and p ∈ F .

MC5 (factorization) Any map f can be factored in two ways :

(i) f = pi with i ∈ C and p ∈ F ∩W

(ii) f = pi with i ∈ C ∩W and p ∈ F .

Remark 2.3.4. We have the following duality principle. Let P be a statement
about model categories and P ∗ be the statement obtained by reversing the arrows in P
and switching “cofibration” with “fibration”. If P is true for all model categories then
so is P ∗.
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2 Background on model categories

Remark 2.3.5. The duality principle follows from the fact that the axioms for a
model category are self-dual (where “dual” has to be taken in the sense above).

Proposition 2.3.6. (the retract argument) Let C be a category. Assume we have
a factorization f = pi in C and assume that f has the LLP with respect to p then f
is a retract of i. In the same way if f = pi has the RLP with respect to i then f is a
retract of p.

Proof. Assume f = pi and f has the LLP with respect to p. One has the following
diagram,

i //

f

��

p

��

�

so one has a lift j,

�

i //

f

��

p

��
�

j

??

hence f is a retract of i,

f

��

i

��

f

��

� �

j
//

h
//

The proof when f has the RLP with respect to i is similar.

Definition 2.3.7. (weakly orthogonal) Let C be a category and A be a class of
morphisms of C .

�A = {i |∀p ∈ Mor(A), i has the LLP with respect to p}
A� = {p |∀i ∈ Mor(A), p has the RLP with respect to i}.
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2.3 Basics of model categories

Proposition 2.3.8. Assume that C is a model category. One has :

(i) C = �(F ∩W) and (C ∩W) = �F

(ii) F = (C ∩W)� and (F ∩W) = C�.

Proof. We prove (i). The statement (ii) follows by duality.
Let us prove the equality C = �(F∩W). By CM4 one has C ⊆ �(F∩W). Conversely,
let f be a map that has LLP with respect to any trivial fibration. Then by MC5
(i) f = pi with i ∈ C and p ∈ (F ∩W), so by the retract argument f is a retract
of i. From MC3 one concludes f ∈ C. The proof of the equality (C ∩ W) = �F is
similar.

Remark 2.3.9. The proposition above shows that in a model category any two of
the three classes determine the third one. Indeed, if Fand W are determined then
one has C = �(F ∩W); in the same way, if C and W are determined then one has
F = (C ∩W)�. Last, if Fand C are determined then W is exactly the class of maps f
that factors as pi with i ∈ C ∩W and p ∈ F ∩W. Indeed, take f = pi with i ∈ C ∩W
and p ∈ F ∩W, then by the 2 out of 3 property f belongs to W. Conversely, if f
belongs to W then by MC5 (ii) one has f = pi with i ∈ C ∩ W and p ∈ F , but by
the 2 out of 3 property p belongs to W and so p belongs to F ∩W. It means that the
axioms for a model category are overdetermined. The semantics of Type Theory can
be seen as a way to relax these axioms.

Definition 2.3.10. (weak factorization system) A weak factorization system
(WFS) on a category C is given by two classes A,B of morphisms of C such that

A = �B and B = A�

and every morphism of C factors as a morphism in A followed by a morphism in B.

Definition 2.3.11. (concise definition of a model category) A model category is
a complete and cocomplete category C with three classes of maps F , C, W such that :

(WFS) (C, F ∩W) and (C ∩W, F) form two weak factorization systems.

(2 out of 3) Given composable morphisms f, g then as soon as two of the three
morphisms in {f, g, g ◦ f} are in W so is the third one.
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2 Background on model categories

Remark 2.3.12. Thanks to 2.3.8 we have already proven that the first definition
implies the concise one. It is pretty straightforward to prove that the concise definition
implies the first one. Let us prove the less obvious fact in this implication, namely that
a retract of a fibration (resp. a cofibration, resp. a weak equivalence) is a fibration
(resp. a cofibration, resp. a weak equivalence). We do the job for fibrations, trivial
fibrations and weak equivalences for instance.
First, we treat the case of fibrations. Assume f is a retract of g and g is a fibration,

X
r //

f

��

Y

g

����

s // X

f

��

� �

X ′
r′

// Y ′
s′

// X ′

with s ◦ r = 1X and s′ ◦ r′ = 1X′, since F = (C ∩W)� we need to check that f lifts
with respect to any trivial cofibration. Being given a lifting problem,

Z
t //

��

∼

h

��

X

f

��

�

Z ′ u
// X ′

one has
Z

t //

��

∼

h

��

X
r //

f

��

Y

g

����

� �

Z ′ u
// X ′

r′
// Y ′

hence we have a lift,
Z

�

r◦t //

��

∼

h

��

Y

g

����
�

Z ′

j

??

r′◦u
// Y ′ .
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2.3 Basics of model categories

So s ◦ j is the lift we are looking for.
Second, we deal with the case of trivial fibrations. Assume that f is a retract of g and
g is a trivial fibration,

X
r //

f

��

Y

g

����

s // X

f

��

� �

X ′
r′

// Y ′
s′

// X ′ .

Since (F ∩W) = C�, we want to prove that f belongs to C�. Consider the following
lifting problem,

Z
t //

��

h

��

X

f

��
Z ′ u

// X ′ .

Since g is a trivial fibration, the following lifting problem can be filled with a diagonal
filler j,

Z
t //

��

h

��

X
r // Y

∼ g

����
Z ′ u

//

j

66

X ′
r′

// Y ′ .

The reader can check that s ◦ j is a diagonal filler for the initial lifting problem.
Last, we work out the case of weak equivalences. Assume that f is a retract of g and
g is a weak equivalence,

X
r //

f

��

Y

g

����

s // X

f

��

� �

X ′
r′

// Y ′
s′

// X ′ .

We proceed in two steps. The first step deals with the case where we have the additional
assumption that f is a fibration. In this case we want to prove that f is a trivial
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2 Background on model categories

fibration. Note that the axiom (WFS) implies MC5 (i). So by MC5 (i) we can factor
g as p ◦ i, where i is a cofibration and p is a trivial fibration. Note that by the axiom
(2 out of 3) the morphism i is a trivial cofibration. Hence a diagonal filler j exists in
the following lifting problem,

Y
s //

��

∼i

��

X

f

����
Y ′′ p

// //

j

66

Y ′
s′

// X ′ .

So we have the following retract diagram,

X
i◦r //

f

��

Y ′′
j //

∼ p

����

X

f

��
X ′

r′
// Y ′

s′
// X ′

by the previous case one concludes that f is a trivial fibration.
The second step is the general case where f is any morphism but of course we still
assume that f is a retract of the weak equivalence g. Note that (WFS) implies MC5
(ii), hence one can factor f as p ◦ i, where i is a trivial cofibration and p is a fibration.
In order to prove that f is a weak equivalence, it suffices to prove that p is a trivial
fibration. Consider t the pushout of i along r. By two applications of the universal
property of the pushout, one gets two maps denoted below by v and w,

X
r //

��

∼i

��

Y

t

�� g

��

X ′′ u
//

r′◦p
**

Z

v

��
Y ′

12



2.3 Basics of model categories

and
X

r //
��

∼i

��

Y

t

��
i◦s

��

X ′′ u
// Z

w

!!
X ′′ .

Now, we can display the initial retract diagram into four squares as follows,

X
r //

��

∼i

��

Y
s //

t

��

X��

∼ i

��
X ′′ u

//

p

����

Z w
//

v

��

X ′′

p

����
X ′

r′
// Y ′

s′
// X ′ .

Lastly, note successively that first the south-est square commutes thanks to the unique-
ness part of the universal property of the pushout applied to the following universal
problem,

X
r //

��

∼i

��

Y

t

��
f◦s

��

X ′′ u
//

p

**

Z

  
X ′ ;

second t is a trivial cofibration since this is the pushout of a trivial cofibration (the
proof of this fact will be given later in 2.3.18). Since one has v ◦ t equals g, by the
(2 out of 3) axiom one concludes that v is a weak equivalence. Hence one exhibits
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2 Background on model categories

the fibration p as a retract of the weak equivalence v, so by the first step p is a trivial
fibration.

Example 2.3.13. Any complete and cocomplete category C can be provided with three
model structures by choosing one of the distinguished classes of morphisms to be all
the isomorphisms and the other two to be all morphisms of C .

Example 2.3.14. On Set:

• Take for W all the maps.

• Take for F the monomorphisms (i.e. the injective maps).

• Take for C the epimorphisms (i.e. the surjective maps).

Example 2.3.15. On Gpd there is a natural model structure (this is the model
structure on Gpd under consideration in this thesis) :

• Take for W the equivalences of groupoids.

• Take for F the isofibrations, where a functor F : G→ H between two groupoids
G and H is an isofibration if for any isomorphism h : y → y′ in H and any
element x ∈ G such that F (x) = y there exists an isomorphism g in G with
domain x such that F (g) = h. In picture,

x
g //

F

��

x′

y
h

// y′

• Take for C the functors that are injective on objects.
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2.3 Basics of model categories

Note this model structure is cofibrantly generated (see [5] def 11.1.1 for a definition of
a cofibrantly generated model category and [11] 4 for a proof that Gpd is cofibrantly
generated). The obvious inclusion :

i : 1 ↪→ I

forms a set of generating trivial cofibrations.
Moreover, together the following three morphisms of groupoids amount to a set of
generators for cofibrations :

u : 0→ 1

v : 1
∐

1 ↪→ I

w : P→ I .

For details on this central example for us the reader can look at [16] 6.1 and [11].

Example 2.3.16. On Top :

• Take W to be the weak homotopy equivalences where a map f : X → Y is a
weak homotopy equivalence if f∗ : π0(X)→ π0(Y ) is a bijection of the sets of
path components and for each basepoint x ∈ X and each n > 1 the morphism
f∗ = πn(X,x)→ πn(Y, f(x)) is an isomorphism of groups.

• Take for F the Serre fibrations, where a map f : X → Y is a Serre fibration
if for each CW -complex A, the morphism f has the RLP with respect to the
inclusion A× 0→ A× [0, 1].

• Take for C the morphisms with the LLP with respect to trivial fibrations.

Example 2.3.17. On sSet :

• Take for W the morphisms f of simplicial sets such that |f | is a weak homotopy
equivalence, where | | is the functor of geometric realization.
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2 Background on model categories

• Take for C the morphisms f : X → Y such that for all n > 0, fn : Xn → Yn is
a monomorphism.

• Take for F the morphisms with the RLP with respect to trivial cofibrations.

This model structure on sSet due to Quillen is cofibrantly generated. A set of
generating cofibrations is given by the boundary inclusions:

∂∆n → ∆n.

A set of generating trivial cofibrations is given by the horn inclusions:

Λnk → ∆n.

Proposition 2.3.18. Let C be a model category.

(i) F (resp. F ∩W) is stable under pullback.

(ii) C (resp. C ∩W) is stable under pushout.

Proof. Let us prove (i). The property (ii) follows by duality. Let g∗f be the pullback
of a fibration f along a morphism g,

Z ×Y X //

g∗f

��

X

f

����
Z g

// Y .

Being given a lifting problem as follows,

V

�

//

��

∼

h

��

Z ×Y X

g∗f

��
W // Z ,
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2.4 The connection with intensional type theory

one has a lift,
V //

��

∼

h

��

Z ×Y X // X

f

����
W //

j′

66

Z // Y .

So using the universal property of the pullback square, one gets a map j as follows,

V //

��

∼

h

��

Z ×Y X

g∗f

��

// X

f

����
W //

j

<<

Z // Y .

The reader can easily check that j is a lift for the initial lifting problem.
The proof follows the same pattern if the map f one starts with is a trivial fibration
then g∗f is a trivial fibration.

Definition 2.3.19. (path object) Let C be a model category and X be an object
of C . A (very good) path object for X is an object of C denoted PX together with a
commutative diagram :

X // ∼ //

∆

""

PX

����

�

X ×X
where ∆ =< idX , idX >.

Remark 2.3.20. For any X ∈ C a path object for X always exists by MC5 (ii).

2.4 The connection with intensional type theory
This section relies on [14] and develops in some details the connection with intensional
type theory. Recall from 4.2 in [14] that J−K denotes the universal morphism from
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2 Background on model categories

the syntactic category to any model. One works out the connection with type theory
as follows.
For Γ ` A type, the identity type

Γ, (x : A), (y : A) ` IdA(x, y) type

is interpreted by a path object

PJΓKJΓ.AK� JΓ.AK×JΓK JΓ.AK

i.e. a path object for JΓ.AK
JAK−−→ JΓK in the slice category C /JΓK, in picture :

JΓ.AK
∆

''

id

$$

id

''

JΓ.AK×JΓK JΓ.AK
p2 //

p1

��

JΓ.AK

JAK

��
JΓ.AK

JAK
// JΓK

JΓ.AK ∆ //

JAK

..

&&
∼

r
&&
�

JΓ.AK×JΓK JΓ.AK

JAK◦p1

��

PJΓKJΓ.AK

�

JIdA(x,y)K

66 66

$$

�

JΓK .

The reflexivity constructor is interpreted by the acyclic cofibration r : JΓ.AK // ∼ // PJΓKJΓ.AK .
Indeed, r is a section of

JΓ, (x : A) ` rx : IdA(x, x)K ,

18
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this last fibration being interpreted by the following pullback :

∆∗PJΓKJAK //

����

PJΓKJΓ.AK

JIdA(x,y)K

����
JΓ.AK

∆
// JΓ.AK×JΓ.AK JΓ.AK

this pullback is (isomorphic to)

PJΓKJΓ.AK

p1◦JIdA(x,y)K

����

PJΓKJΓ.AK

JIdA(x,y)K

����
JΓ.AK

∆
// JΓ.AK×JΓ.AK JΓ.AK

and by the uniqueness condition in the universal property of the pullback we prove
that r is indeed a section of p1 ◦ JIdA(x, y)K = JΓ, (x : A) ` rx : IdA(x, x)K

JΓ.AK
r

%%

r

$$

id

--

PJΓKJΓ.AK

p1◦JIdA(x,y)K

����

PJΓKJΓ.AK

JIdA(x,y)K

����
JΓ.AK

∆
// JΓ.AK×JΓ.AK JΓ.AK .

In particular, on has the J-rule for identity types :

Γ, (x : A), (y : A), (p : IdA(x, y)),Θ ` B type

Γ, (x : A),Θ[x/y, rx/p] ` d : B[x/y, rx/p]

Γ, (x : A), (y : A), (p : IdA(x, y)),Θ ` Jd(x, y, p) : B.

19



2 Background on model categories

The interpretation of this rule is a lift in the following square,

JΓ.A.Θ[x/y,Γx/p]K
d //

��

JrK

��

JΓ.A.A.PΓA.Θ.BK

PB

����
JΓ.A.A.PΓA.ΘK

JIdK

77

JΓ.A.A.PΓA.ΘK .

The left-hand morphism is a pullback of the acyclic cofibration

r : JP.AK // ∼ // PJΓKJΓ.AK

hence is an acyclic cofibration (since in a model of type theory we require that acyclic
cofibrations are stable under pullback along a fibration, actually the square above is
the raison d’être of this requirement).

2.5 More basics of model categories

Through this section we present more basics of model categories and we use the natural
model structure on Gpd introduced in 2.3.15 as a leitmotiv in order to exemplify the
notions introduced and for the acquaintance of the reader with these notions.

2.5.1 Homotopy equivalences
Definition 2.5.1. (right homotopy) Two morphisms f, g : A→ X in C are said
to be right homotopic (written f r∼ g) if there exists a path object PX for X and a
morphism H : A→ PX such that

PX

����

�

A
<f,g>

//

H

<<

X ×X

commutes.
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2.5 More basics of model categories

Remark 2.5.2. Note that the definition of right homotopy given above does not depend
on the choice of a path object. Indeed, the reader can notice that every path object
factors through any other. Let P ′X (and the corresponding morphisms that factor the
diagonal morphism) be any other path object for X, we can form the following lifting
problem and denote by j a diagonal filler,

X // ∼ //
��

∼

��

P ′X

����
PX // //

j

;;

X ×X .

Hence the morphism j ◦H is a right homotopy,

P ′X

����

PX

j
99

A
<f,g>

//

H

==

X ×X .

Remark 2.5.3. We have the dual notions of cylinder object (dual to path object) and
left homotopy l∼ (dual to right homotopy, see [2] 4.1) but there are not relevant for
type theory.

Proposition 2.5.4. If X is fibrant (meaning that the unique morphism from X to
the terminal object 1 is a fibration) then the relation r∼ is an equivalence relation on
C (A,X).

Definition 2.5.5. (homotopy equivalence) Let C be a model category. A mor-
phism f : X → Y in C is a homotopy equivalence if there exists g : Y → X in C and
(right) homotopies from f ◦ g to 1Y and from g ◦ f to 1X .

Remark 2.5.6. Categorically the univalence axiom requires some morphism to be a
homotopy equivalence as explained in the section 3.4.
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2 Background on model categories

2.5.2 Transfinite sequences
Definition 2.5.7. (λ-sequence) Let C be a category and λ any ordinal. A λ-
sequence in C is a cocontinuous functor F from [0, λ] to C , where [0, λ] is the closed
interval of ordinals up to λ.
We denote the value of F at β by Fβ for any β 6 λ and the value of F at the unique
morphism from β to γ by Fβ,γ for every β 6 γ 6 λ.

Definition 2.5.8. (transfinite sequence) A transfinite sequence is a λ-sequence
for some ordinal λ.

Definition 2.5.9. (transfinite composition) Let F be a λ-sequence. The (trans-
finite) composition of F is the natural map F0,λ from F0 to Fλ.

Definition 2.5.10. Let C be a category, A a class of morphisms in C and λ an
ordinal. A λ-sequence F in A is a λ-sequence in C such that for every β < λ the map
Xβ,β+1 belongs to A.

Definition 2.5.11. (closure under transfinite composition) Let C be a category
and A be a class of morphisms in C . One says that the class A is closed under
transfinite composition when the composition of any transfinite sequence in A is in A
again.

Proposition 2.5.12. Let C be a category and B a class of morphisms in C and we
take A = �B. Then the class A is closed under transfinite composition.
In particular, if C carries the structure of a model category then the class C of
cofibrations (resp the class C ∩W of trivial cofibrations) is closed under transfinite
composition.

Proof. Let λ be an ordinal and X a λ-sequence in A. We need to prove that the
transfinite composition X0,λ belongs to A. It suffices to prove that this last map
belongs to �B. Being given a lifting problem :

X0

�

g //

��

Y

f

��
Xλ

h
// Z
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2.5 More basics of model categories

we need to construct a lift.
We define a set S whose elements are the pairs (β, jβ) with β an ordinal less than
or equal to λ and jβ a morphism from Xβ to Y satisfying that f ◦ jβ is equal to the
composition h ◦Xβ,λ and jβ ◦X0,β is equal to g, in picture

X0
g //

X0,β

��

Y

f

��
Xβ

h◦Xβ,λ
//

jβ

>>

Z .

We equip this set with the preorder defined as follows,

(β, jβ) 6 (γ, jγ) iff β 6 γ and jγ ◦Xβ,γ = jβ .

Note that the set S is not empty. Indeed, (0, g) belongs to S. Let C be a non-empty
chain in S. The reader can easily check that ( sup

(β,jβ)∈C
β, colim

(β,jβ)∈C
jβ) belongs to S and

this is an upper bound of C.
By Zorn’s lemma one has a maximal element in S denoted (βmax, jmax). If βmax = λ
then jmax is a diagonal filler for our initial lifting problem.
Otherwise, βmax is strictly less than λ. Since Xβmax,βmax+1 belongs to �B by assump-
tion on the λ-sequence X, one gets a map jβmax+1 as a diagonal filler in the following
lifting problem,

Xβmax

jmax //

��

Y

f

��

Xβmax+1

��

jβmax+1

<<

Xλ
h

// Z .

The reader can easily check that (βmax + 1, jβmax+1) belongs to S and it contradicts
the maximality of (βmax, jmax).

To close this subsection we add for the curious reader the following proposition
about the natural model structure on Gpd (see 2.3.15) that we were unable to find in
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2 Background on model categories

the literature. Let us denote by cof({i}) the trivial cofibrations and by cell({i}) the
transfinite compositions of pushouts in {i}, where i is the generating trivial cofibration
introduced ibid.

Proposition 2.5.13. For the natural model structure on Gpd one has the equality

cof({i}) = cell({i}) .

Proof. Since i is a trivial cofibration, by stability of trivial cofibrations under pushouts
and transfinite compositions one concludes cell({i}) ⊆ cof({i}).
It remains to prove the reverse inclusion. Let f : A→ B be a trivial cofibration. Let
us denote by Push({i}) the class of maps in Gpd that are pushouts of i. We define a
set S whose set of objects are pairs (λ,X) with λ any ordinal and X any λ-sequence
in Push({i}) such that X0 = A and for every β 6 λ the groupoid Xβ is a subgroupoid
of B.
We provide S with the structure of a preordered set as follows,

(λ,X) 6 (λ′, X ′) iff λ 6 λ′ and X ′|[0,λ] = X.

Note that S is a non-empty set. Indeed, (0, X) with X0 := A is an element of S.
Let C be a non-empty chain of S. By using the universal property of the colimit
colim

(λ,Xλ)∈C
λ, one gets a map denoted (

⋃
(λ,Xλ)∈C

Xλ) from [0, colim
(λ,Xλ)∈C

λ] to Gpd,

[0, λ]

Xλ

��

��
...

��
[0, λ′]

Xλ′

$$

��
...

��
[0, colim

(λ,Xλ)∈C
λ] // Gpd .

Clearly ( colim
(λ,Xλ)∈C

λ,
⋃

(λ,Xλ)∈C

Xλ) is an element of S and (λ,Xλ) 6 ( colim
(λ,Xλ)∈C

λ,
⋃

(λ,Xλ)∈C

Xλ)

for every (λ,Xλ) ∈ C.
By Zorn’s lemma one gets a maximal element in S denoted (λmax, X

max). Note that
the transfinite composition Xmax

0,λmax
is (isomorphic to) the inclusion from A to Xmax

λmax
.
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2.5 More basics of model categories

Since f is a trivial cofibration, it is an injective-on-objects equivalence hence it is
(isomorphic to) the inclusion of a full subgroupoid of B which is equivalent to B. So
it suffices to prove that Xmax

λmax
which is (isomorphic to) a full subgroupoid of B is

B itself. Assume this is not the case, then there exists x in B such that x does not
belong to Xmax

λmax
. Hence by essential surjectivity of f there exists y ∈ A ⊆ Xmax

λmax
and

an isomorphism φ in B from y to x.
In this case define a (λmax + 1)-sequence X with X|[0,λmax] := Xmax and Xλmax+1 is
the following pushout,

1
y //� _

i

��

Xmax
λmax

��
I // Xλmax+1 .

Then (λmax + 1, X) belongs to S and (λmax, X
max) < (λmax + 1, X) which contradicts

the maximality of (λmax, X
max).

So one concludes that Xmax
λmax

is (isomorphic to) B and f is (isomorphic to) the
transfinite composition Xmax

0,λmax
.

Remark 2.5.14. Note that the proposition above is non-trivial even though under
some slight assumptions on a category C you always have cof(I) = cell(Î) for any
subset I of morphisms of C but usually with I $ Î (see [15], theorem 8.6.1).

2.5.3 The small object argument

It is usually hard to provide a category C with a model structure. We introduce below
a technical device called “the small object argument” due to Quillen which makes
easier to provide the factorizations involved in MC5 with the lifting properties of
MC4. We first look at this argument in an informal way in the case of Gpd equipped
with the natural model structure of 2.3.15, and afterwards we state and prove the
small object argument in a rigourous way.

Below we explore in details the factorizations involved in the natural model structure
on Gpd given in 2.3.15.
Note that an isofibration (cf. 2.3.15) is nothing but a morphism that has the RLP with
respect to the inclusion i : 1 ↪→ I. Now, starting with any morphism f : X → Y in
Gpd, one can factor it as a trivial cofibration (the inclusion of a full subgroupoid into
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2 Background on model categories

an equivalent groupoid) followed by an isofibration by the following gluing construction.
First, consider the set S which contains all the pairs of morphisms (g, h) such that
the following diagram commutes :

1
g //

� _

i

��

X

f

��

�

I
h

// Y .

Note that such a pair (g, h) is nothing but a (right) lifting problem with respect to i,
and with the definition of an isofibration in mind this pair can be correspondingly
seen as a pair (g(0), h(φ)) which consists in an isomorphism of Y and a point in
the fiber of its domain. To provide a solution (i.e. a lift) for this lifting problem
consists in gluing a cell I in X at g(0) which lies above h(φ). Let us define this gluing
construction by a simple pushout :

∐
(g,h)∈S

1
+g //

∐
i

��

X

j

��∐
(g,h)∈S

I // X ′ .

By the universal property of the pushout X ′ one has a morphism p as follows :

∐
(g,h)∈S

1
+g //

∐
i

��

X

j

��

f

��

�∐
(g,h)∈S

I

+h
33

//

�

X ′

p

��
Y .
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2.5 More basics of model categories

Note that i is a trivial cofibration so by 2.3.18 (and by stability under coproduct)
j is a trivial cofibration. One can prove that p is a fibration of groupoids (i.e. an
isofibration) as follows. Being given a lifting problem :

1
g //

� _

i

��

X ′

p

��

�

I
h

// Y ,

if g(0) ∈ X then (g, h) ∈ S, i.e. (g, h) is an index in the gluing construction. It means
that in X ′ we glued a copy of I along the map g (copy of I which lies above h(φ)
hence a lift exists). Otherwise g(0) belongs to X ′ \X, this new point comes from the
gluing in X ′ of a copy of I corresponding to an index (g′, h′) ∈ S. Let I(g′,h′) denotes
this copy. Since we have also

(g′(0), h(φ) ◦ h′(φ)) ∈ S

we have the following picture :

g′(0)

I(g′(0), h(φ)◦h′(φ))

))I(g′,h′) //

p

��

g(0) = g′(1) //

p

��

g(1)

h′(0)
h′(φ)

// h′(1) = h(0)
h(φ)

// h(1) .

So I(g′(0), h(φ)◦h′(φ)) ◦ I−1
(g′,h′) is the lift we are looking for.

Definition 2.5.15. (sequentially small) Let C be a category with all small colimits.
An object A of C is said to be sequentially small if for every functor B : N→ C the
induced map

colim
n

C (A,B(n))→ C (A, colim
n

B(n))

is an isomorphism.
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2 Background on model categories

Proposition 2.5.16. (the small object argument) Let C be a category with all
small colimits and F = {fi : Ai → Bi}i∈I be a set of maps in C such that for all
i ∈ I, Ai is sequentially small. Then any morphism p of C can be factored as a
transfinite composition of pushouts of coproducts of elements in F followed by a
morphism which has the RLP with respect to every element in F .

Proof. For each i ∈ I consider the set S(i) which contains all pairs of morphisms
(g, h) such that the following diagram commutes :

Ai
g //

fi

��

X

p

��

�

Bi
h

// Y .

We define the gluing construction G1(F , p) to be the object of C given by the pushout
diagram ∐

i∈I

∐
(g,h)∈S(i)

Ai
+i+(g,h)g //

∐
fi

��

X

i1

��∐
i∈I

∐
(g,h)∈S(i)

Bi // G1(F , p) .

Now by the universal property of the pushout one has a morphism p1 as follows

∐
i∈I

∐
(g,h)∈S(i)

Ai
+i+(g,h)g //

∐
fi

��

X

p



ii

��∐
i∈I

∐
(g,h)∈S(i)

Bi

+i+(g,h)h
22

// G1(F , p)

p1

##
Y .
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2.5 More basics of model categories

Now by induction, for k > 1 we define objects Gk(F , p) and morphisms

pk : Gk(F , p)→ Y

by setting Gk(F , p) = G1(F , pk−1) and pk = (pk−1)1. By taking the colimit one has
natural morphisms i∞ and p∞ as follows,

X
i1 //

i∞

((

p

��

G1(F , p)
i2 //

p1

��

G2(F , p) //

p2

��

. . . // G∞(F , p)

p∞

��
Y Y Y . . . Y

where i∞ is the transfinite composition of pushouts of coproducts of elements in F
where G∞(F , p) := colim

n
Gn(F , p). It remains to prove that p∞ has the RLP with

respect to elements in F .
Consider a lifting problem

Ai

�

g //

fi

��

G∞(F , p)

p∞

��
Bi

h
// Y .

Since Ai is sequentially small, there exists an integer k such that g is the composition
of g′ : Ai → Gk(F , p) with the natural morphism Gk(F , p)→ G∞(F , p). So one has

Ai
g′ //

fi

��

Gk(F , p)
ik+1 //

pk

��

Gk+1(F , p) //

pk+1

��

G∞(F , p)

p∞

��
Bi

h
// Y Y Y

where the composition of the top row is g. But (g′, h) contributes as an index in
the construction of Gk+1(F , p) from Gk(F , p). Actually it indexes a gluing of Bi
to Gk(F , p) along Ai and so there exists a map Bi → Gk(F , p) with the required
properties.
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2 Background on model categories

2.6 Model structures on functor categories
Let I be a small index category and C be a model category, under slight assumptions
there are at least two model structures on the functor category [I,C ].

Proposition 2.6.1. (the projective model structure) If C is cofibrantly generated
there is the projective model structure on [I, C ] where a natural transformation
ϕ : F ⇒ G is :

• a weak equivalence if ϕi : Fi → Gi is a weak equivalence in C for every i ∈ I.

• a fibration if ϕi : Fi → Gi is a fibration in C for every i ∈ I.

• a cofibration if ϕ has the LLP with respect to any trivial fibration.

Proof. See [9] proposition A.2.8.2 .

Proposition 2.6.2. (the injective model structure) If C is combinatorial (see
definition A.2.6.1 in [9] for combinatorial), there exists the injective model structure
on [I,C ] where a natural transformation ϕ : F ⇒ G is :

• a weak equivalence if ϕi : Fi → Gi is a weak equivalence in C for every i ∈ I.

• a cofibration if ϕi : Fi → Gi is a cofibration in C for every i ∈ I.

• a fibration if ϕ has the RLP with respect to any trivial cofibration.

Proof. See [9] proposition A.2.8.2 .
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3 From model categories to
type-theoretic fibration
categories

In this third chapter we make clear what we mean by a model of intensional
type theory with a universe. For full details we invite the reader to look
through all the references provided. For the syntax and semantics of
homotopy type theory [14] is highly useful.

3.1 Organization
In section 3.2 we give what we mean by a model of type theory with dependent sums,
dependent products and Id-types. For this purpose we introduce the definition of a
type-theoretic fibration category following Michael Shulman [14]. In the next section
3.3 we recall the notion of a universe in a type-theoretic fibration category. The final
section 3.4 underlines the categorical translation of the univalence axiom.

3.2 The categorical structure needed to model
intensional type theory

In [14], under the label type-theoretic fibration category, Michael Shulman reformulated
the categorical structure needed to model intensional type theory (with dependent
sums, dependent products and identity types) making its close connection to homotopy
theory clearer. We recall here a few definitions and facts.

Definition 3.2.1. (Shulman [14] def. 2.1). A type-theoretic fibration category
is a category C with the following structure.

(1) A terminal object 1.

(2) A subcategory F ⊂ C containing all the objects, all the isomorphisms, and all
the morphisms with codomain 1.
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3 From model categories to type-theoretic fibration categories

• A morphism in F is called a fibration. We write fibrations as A� B.

• A morphism i is called an acyclic cofibration if it has the left lifting property
with respect to all fibrations (see 2.3.1).
We write acyclic cofibrations as A ∼� B.

(3) All pullbacks of fibrations exist and are fibrations.

(4) For every fibration g : A � B, the pullback functor g∗ : C /B → C /A has a
partial right adjoint Πg, defined at all fibrations over A, and whose values are
fibrations over B. This implies that acyclic cofibrations are stable under pullback
along g.

(5) Every morphism factors as an acyclic cofibration followed by a fibration.

(6) In the following commutative diagram:

X //

��

Y //

��

Z

��
A //

∼ //
:: ::B // // C

if B � C and A� C are fibrations, A ∼� B is an acyclic cofibration, and both
squares are pullbacks (hence Y → Z and X → Z are fibrations by (3)), then
X → Y is also an acyclic cofibration.

Remark 3.2.2. In a type-theoretic fibration category the pair of classes of morphisms
(C ∩W,F), where C ∩W denotes the class of acyclic cofibrations namely �F , does
not need to form a weak factorization system. Indeed, a morphism with the right
lifting property with respect to the acyclic cofibrations needs not to be a fibration but
by (5) together with the retract argument (see Lemma 1.1.9 in [7]) only a retract of a
fibration. This is a difference from the structure involved in a model category that one
can emphasize.
We could call such a pair (C ∩W,F) in a type-theoretic fibration category a very weak
factorization system.

The next definition makes explicit the link between type-theoretic fibration cate-
gories and type-theoretic model categories for the reader more familiar with homotopy
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theory. But note that we do not really need the class of cofibrations nor the class
of weak equivalences to model type theory (it is clear from the definition of a type-
theoretic fibration category).

The following definition and proposition are inspired by [14], definition 2.12 and
proposition 2.13, but the definition of a type-theoretic model category is slightly
simplified.

Definition 3.2.3. A type-theoretic model category is a model category C with
the following additional properties.

1. Acyclic cofibrations between fibrant objects are preserved by pullback along any
fibration between fibrant objects.

2. Pullback g∗ along any fibration between fibrant objects has a right adjoint Πg.

The following proposition clarifies the link between type-theoretic fibration cate-
gories and type-theoretic model categories.

Proposition 3.2.4. (Shulman [14], prop. 2.13). If C is a type-theoretic model
category, then its full subcategory Cf of fibrant objects (equipped with the subcategory
given by fibrations) is a type-theoretic fibration category.

3.3 Universes
Shulman also encapsulated in [14] the categorical structure for modeling universes such
that the coercion El from terms of type Type to actual types respects type-theoretic
operations up to isomorphism (they are not necessarily equal definitionally) as shown
in fig. 3.1. For the various options regarding the universes in type theory the reader
can look at http://ncatlab.org/homotopytypetheory/show/universe#Tarski.

Definition 3.3.1. (Shulman [14], def. 6.12). A fibration p : Ũ � U in a type-theoretic
fibration category C is a universe if the following hold, where “small fibration” means
“a pullback of p”.

1. Small fibrations are closed under composition and contain the identities.

2. If f : B � A and g : A� C are small fibrations, so is Πgf � C.

3. If A� C and B � C are small fibrations, then any morphism f : A→ B over
C factors as an acyclic cofibration followed by a small fibration.
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3 From model categories to type-theoretic fibration categories

El(Σ(A,B)) ∼=
∑

x:El(A)

El(B(x)) (3.1)

El(Π(A,B)) ∼=
∏

x:El(A)

El(B(x)) (3.2)

El(Id(A, x, y)) ∼= (x y). (3.3)

Figure 3.1: Coercion isomorphisms for the universe type

3.4 The categorical univalence axiom
Following Shulman ([14], part 7), one says that a universe p : Ũ � U in a type-
theoretic fibration category is univalent if the morphism from U to E over U × U ,
that maps a small type to its identity equivalence, is a (right) homotopy equivalence,
where E denotes the domain of the fibration over U × U interpreting the dependent
type

(A : Type), (B : Type) ` Equiv(A,B) type.
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4 On the inadequacy of the
projective model structure for
univalence

We recall that G = Z/2Z. In this chapter we give a model of intensional
type theory with universes in the category GpdG of groupoids equipped
with an involution. Our universe is the natural universe that lifts, with
respect to the projective model structure on presheaves, the univalent
universe in the category of groupoids consisting of small discrete groupoids.
But surprisingly our universe is not univalent. Moreover, the projective
model structure also allows to break function extensionality (a weak form
of the Univalence Axiom).

4.1 Organization
To prove the inadequacy of the projective model structure with respect to univa-
lence we consider the presheaf category GpdG. Having first endowed the category
of groupoids Gpd with its natural model structure of section 2.3, we endow the
presheaf category GpdG with its projective model structure. In section 4.2 we make
the projective trivial cofibrations in GpdG explicit. This way we are able to equip
in section 4.3 the category GpdG with the structure of a type-theoretic fibration
category. In section 4.4 we equip this type-theoretic fibration category with one
universe UGpd∆(Vκ) for each universe Gpd∆(Vκ) in Gpd consisting of κ-small discrete
groupoids and isomorphisms between them for some inaccessible cardinal κ. This
new universe UGpd∆(Vκ) classifies projective fibrations which are levelwise discrete
fibrations of groupoids with κ-small fibers. For this reason our universe UGpd∆(Vκ)

is the natural lift, with respect to projective fibrations, of the universe Gpd∆(Vκ).
Despite the fact that the universe Gpd∆(Vκ) in Gpd is univalent we surprisingly
prove in section 4.6 that the resulting universe UGpd∆(Vκ) in GpdG is not univalent.
This last proof relies on the characterization of projective homotopy equivalences
given in section 4.5.
Last, recall that function extensionality holds in the internal language of the type-
theoretic fibration category Gpd. But we prove in section 4.7 that function exten-

35



4 On the inadequacy of the projective model structure for univalence

sionality have been broken in the internal language of our type-theoretic fibration
category GpdG.

4.2 The projective model structure made explicit
Since the model structure on Gpd (see 2.3.15) is cofibrantly generated and G is a
small category, there exists the projective model structure on GpdG (see 2.6). By a
slight abuse of notation we denote (this notational convention will only hold in this
chapter) both the underlying categories and the corresponding model categories by
Gpd and GpdG respectively. Hereinafter by a levelwise weak equivalence (resp. a
levelwise fibration) one means a map whose underlying map of groupoids is a weak
equivalence (resp. a fibration) in Gpd.
Recall that one can describe this projective model structure by :

• Weak equivalences are the levelwise weak equivalences.

• Fibrations are the levelwise fibrations.

• Cofibrations are those maps with the left lifting property with respect to trivial
fibrations.

Remark 4.2.1. Note that in GpdG all objects are fibrant since all objects in Gpd
are fibrant and projective fibrations are levelwise. So (GpdG)f is the same as GpdG,
where (GpdG)f is the full subcategory of fibrant objects of GpdG.

Remark 4.2.2. In GpdG a cofibrant object has no fixed point. In particular, 1!, the
terminal object, is not cofibrant.
Indeed, let A be an object of GpdG with a fixed point and consider the following lifting
problem :

0! //

��

�

Ǐ

∼

����
A // 1!

One can easily prove that the unique map from Ǐ to the terminal object 1! is surjective
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on objects and fully faithful and so a projective trivial fibration. But a diagonal filler
does not exist since it should map the fixed point in A to a fixed point in Ǐ and there
is no such fixed point. Thus A is not cofibrant.

Remark 4.2.3. The previous remark shows that being a levelwise cofibration is not
sufficient to be a projective cofibration.

Remark 4.2.4. In GpdG being a levelwise trivial cofibration is not sufficient to be
a projective trivial cofibration.
Indeed, consider the following lifting problem :

Ǐ
� _

��

�

Ǐ

����`
// 1!

where the unique map from Ǐ to 1! is a projective fibration since every object is fibrant.
It is clear that Ǐ ↪→

`
(see the Notations part at the end of the introduction 1 for the

definition of
`
) is a trivial cofibration of groupoids when one forgets the involutions

since this is the inclusion of a full subcategory equivalent to the target category. Again
a diagonal filler does not exist since there is no fixed point in Ǐ.

Knowing the generating trivial cofibrations and the generating cofibrations in Gpd,
by looking at the construction of the projective model structure one gets the generating
projective trivial cofibrations and the generating projective cofibrations in GpdG (see
[9], proof of proposition A.2.8.2). A set of generating projective trivial cofibrations is
given by the following inclusion :

S(i) : S(1) ↪→ S(I)

where we recall that S(1) (resp S(I)) is 1
∐

1 (resp I
∐

I) equipped with the involution
which swaps the two components of the coproduct and S(i) is i

∐
i with i the generating

trivial cofibration of groupoids (see 2.3.15).

Proposition 4.2.5. Let f : A → B be a morphism in GpdG. The following are
equivalent :

(i) f is a trivial cofibration.
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4 On the inadequacy of the projective model structure for univalence

(ii) f is a levelwise trivial cofibration and f induces a bijection between the set of
fixed points of A and the set of fixed points of B.

(iii) f is a levelwise trivial cofibration and f induces an isomorphism between AG

and BG the subgroupoids of fixed points and fixed morphisms.

(iv) f is a levelwise trivial cofibration and f induces an isomorphism between Af

and Bf the full subgroupoids of fixed points.

Proof. We prove successively (i)⇒ (ii), (ii)⇒ (iii), (iii)⇒ (iv) and last (iv)⇒ (i).

• (i)⇒ (ii): assume that f is a trivial cofibration. It is well-known that f is a
levelwise trivial cofibration (see proposition 11.6.2 in [5]). Moreover note that
if x is a fixed point of A one has f(x) = f(α(x)) = β(f(x)), where we recall
that α (resp. β) denotes the involution on A (resp. B), hence f(x) is a fixed
point of B. We also know that f is injective on objects as a cofibration between
groupoids. We need to prove that any fixed point in B is the image of a fixed
point in A. To achieve this the reader can check this fact for the generating
trivial cofibration S(i) and he can check the stability of this fact under pushout,
transfinite composition and retraction. One concludes that f induces a bijection
between the fixed points in A and the fixed points in B.

• (ii)⇒ (iii): it is a straighforward consequence of f being fully faithful.

• (iii)⇒ (iv): idem.

• (iv)⇒ (i): consider the following lifting problem,

A
h //

f

��

C

g

����
B

k
// D ,

where g is a fibration. We want to find a diagonal filler. Since f is a levelwise
trivial cofibration we may assume it is the inclusion of a full subgroupoid of B
and this inclusion is an equivalence.
We define a set S as the set of triples (B′, j′ : B′ → C) where B′ is a full
subgroupoid of B which contains A, and B′ is stable under the involution β on
B (in other words the restriction of β to B′ is an involution on B′), last the
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morphism j′ in GpdG is a diagonal filler for the following diagram,

A
h //� _

��

C

g

����
B′ �
� //

j′

77

B
k

// D .

One provides the set S with the structure of a preordered set as follows:

(B′, j′) 6 (B′′, j′′) iff B′ ⊆ B′′ and B′ �
� //

j′   

B′′

j′′~~
C

commutes .

Note that S is a non-empty set. Indeed, (A, h) is an element of S.
Let C be a non-empty chain of S. Consider

⋃
(B′,j′)∈C

B′, ie the full subgroupoid of

B whose set of objects is
⋃

(B′,j′)∈C

Ob(B′). One defines a map j from
⋃

(B′,j′)∈C

B′

to C as
⋃

(B′,j′)∈C

j′. Clearly, (
⋃

(B′,j′)∈C

B′, j) is an element of S and one has

(B′, j′) 6 (
⋃

(B′,j′)∈C

B′, j)

for every (B′, j′) ∈ C.
By Zorn’s lemma we get a maximal element in S denoted (Bmax, jmax). It
suffices now to prove that Bmax is B. Assume this is not the case, then there
exists an object x in B such that x is not an object of Bmax. Moreover, since
f induces an isomorphism between Af and Bf and Bmax contains A, we know
that x is not a fixed point.
Since f is a levelwise weak equivalence, by the essential surjectivity there exists
y in A (hence y is an element of Bmax) and an isomorphism ϕ in B from f(y),
which is equal to y, to x. Therefore we define B′ as the following pushout in
GpdG,

S(1)
l //

� _

S(i)

��

Bmax

��
S(I) // B′ ,
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where l(0) is y and l(1) is b(y). The groupoid B′ is (isomorphic to) the full
subgroupoid of B whose set of objects is Ob(Bmax)

⋃
{x, b(x)}. Thanks to the

universal property of the pushout one defines a map j′ from B′ to C as follows.
First, we define a map m as a diagonal filler in the following lifting problem,

S(1)
p //

� _

S(i)

��

C

g

����
S(I) q

//

m

==

D ,

where p(0) is h(y) and p(1) is γ(h(y)) and q(φ) is k(ϕ).
Then we get the map j′,

S(1)
l //

� _

S(i)

��

Bmax

�� jmax

��

S(I) //

m

++

B′

j′

!!
C .

One has that (B′, j′) belongs to the set S and (Bmax, jmax) < (B′, j′) which con-
tradicts the maximality of (Bmax, jmax). So Bmax is B and jmax is the diagonal
filler we are looking for, hence we have exhibited f as a trivial cofibration.

Corollary 4.2.6. Let G be a groupoid equipped with an involution and G′ a sub-
groupoid of G stable under this involution such that G′f = Gf and the inclusion map ι
from G′ to G is an equivalence of groupoids. Then the map ι is a trivial cofibration.

Proof. Straighforward with 4.2.5 since G′f = Gf and ι is a levelwise trivial cofibration.
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4.3 GpdG as a type-theoretic fibration category

4.3 GpdG as a type-theoretic fibration category
Equipped with the proposition 4.2.5 one can manage to prove that GpdG, equipped
with the subcategory given by projective fibrations, is a type-theoretic fibration
category (see def 3.2.1).

Lemma 4.3.1. In the natural model structure on Gpd trivial cofibrations are stable
by pullback along any fibration.

Proof. Let g be a fibration from A to B and f a trivial cofibration from C to B.
Consider the pullback of f along g denoted g∗f ,

A×B C //

g∗f

��

C
��

∼f

��
A g

// // B .

First, g∗f is an injective-on-objects functor. Indeed, let (x, y) and (x′, y′) be two
objects of A×B C with x = x′. In this case on has

f(y) = g(x) = g(x′) = f(y′)

hence f(y) = f(y′) and by the injectivity on objects of f , one concludes that y = y′.
Second, we prove that g∗f is a weak equivalence, namely an equivalence of groupoids.
The functor g∗f is essentially surjective. Indeed, let y be any object of A, then g(y)
is an object of B hence there exist x in C and an isomorphism φ in B from f(x) to
g(y). Since g is a fibration there exists a lift in A, denoted φ̃−1, of φ−1 at y. Let us
denote by z the codomain of this lift. One has g(z) = f(x), hence (z, x) is an element
of A×B C and φ̃−1 is an isomorphism in A from g∗f(z, x) = z to y.
We now prove that g∗f is a fully faithful functor. Let (x, y), (x′, y′) be two elements
in A ×B C. We need to prove that the induced map by g∗f from the homset
A×B C((x, y), (x′, y′)) to the homset A(x, x′) that maps a morphism (φ, ψ) to φ is
bijective. Let us prove it is injective. Let (φ, ψ),(φ′, ψ′) be two elements in this first
homset from (x, y) to (x′, y′) with φ = φ′. The map induced by f from C(y, y′) to
B(f(y), f(y′)) is in particular injective since f is fully faithful. So one concludes from

f(ψ) = g(φ) = g(φ′) = f(ψ′)

the equality ψ = ψ′. We now prove the surjectivity of the map under consideration. Let
φ be an element in A(x, x′) and consider g(φ) which is an element of B(g(x), g(x′)) =
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4 On the inadequacy of the projective model structure for univalence

B(f(y), f(y′)). By surjectivity of the map induced by f there exists a (unique) map
ψ in C(y, y′) with f(ψ) = g(φ). Hence (φ, ψ) is an element of A×B C((x, y), (x′, y′))
with (g∗f)(φ, ψ) = φ. So g∗f is fully faithful, being also an injective-on-objects
functor it is a trivial cofibration.

We prove the analogous result for GpdG with respect to the projective model
structure.

Lemma 4.3.2. In the projective model structure on GpdG trivial cofibrations are
stable under pullback along any fibration.

Proof. Consider the following pullback,

A×B C //

g∗f

��

C
��

∼f

��
A g

// // B .

Since the underlying morphism of g is a fibration of groupoids and the underlying
morphism of f is a trivial cofibration of groupoids by 4.3.1 we conclude that the
underlying morphism of g∗f is a trivial cofibration of groupoids. Thanks to 4.2.5 it
suffices to prove the surjectivity of g∗f on the fixed points. Let x be a fixed point
in A. Then g(x) is a fixed point in B, since f is a trivial cofibration thanks to 4.2.5
there exists a (unique) fixed point y in C with f(y) = g(x). Hence (x, y) is a fixed
point in A×B C whose image by g∗f is x.

Lemma 4.3.3. The pullback functor along a fibration in GpdG preserves trivial
cofibrations.

Proof. Let g be a fibration in GpdG from A to B and consider the pullback functor
along g denoted g∗ from the slice category GpdG/B to the slice GpdG/A. Let φ be
a map in GpdG/B,

C
φ //

f   

D

h~~
B .
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The pullback functor maps it to the following dotted arrow g∗φ in the slice category
GpdG/A,

A×B C // //

g∗f

��

g∗φ

$$

C

f

��

φ

��
A×B D // //

g∗h

zz

D

h

��
A g

// // B .

Since g∗φ is the pullback of φ along the fibration from A×B D to D (this last map is
a fibration since it is a pullback of the fibration g), it follows from 4.3.2 that g∗φ is a
trivial cofibration.

Lemma 4.3.4. For every fibration g : A� B in GpdG, the pullback functor

g∗ : GpdG/B → GpdG/A

has a right adjoint Πg, and Πg maps fibrations over A to fibrations over B.

Proof. We introduce the following notation : if u is a morphism in B then by g∗u we
mean the following pullback in Gpd:

A×B I //

g∗u

��

I

u

��
A g

// B .

Where u : I → B is the functor that maps the isomorphism φ : 0
∼=−→ 1 to u in

B. Let f : C → A be a morphism in GpdG. Define dom(Πgf) as the groupoid
whose collection of objects denoted (dom(Πgf))0 are the pairs (y, s) with y ∈ B,
and s : g−1{y} → C a partial section of f , where g−1{y} is the subgroupoid of A
whose objects are objects of A above y and morphisms are morphisms of A above
1y. Define its collection (dom(Πgf))1 of morphisms as the pairs (u, v) with u a
morphism in B and v : g∗u → f a morphism in Gpd/A. Define two functions
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s, t : (dom(Πgf))1 → (dom(Πgf))0 as follows :

s : (dom(Πgf))1 −→ (dom(Πgf))0

(u, v) 7−→ (dom u, v|A×B{0}
)

and

t : (dom(Πgf))1 −→ (dom(Πgf))0

(u, v) 7−→ (cod u, v|A×B{1})
.

Define a partial function

◦ : (dom(Πgf))1 × (dom(Πgf))1 → (dom(Πgf))1

as follows : being given (u, v), (u′, v′) ∈ (dom(Πgf))1 such that s(u′, v′) = t(u, v),
define v′′ : g∗(u′ ◦ u)→ f in Gpd/A by

v′′(x, 0) = v(x, 0) for (x, 0) ∈ A×B I

v′′(x, 1) = v′(x, 1) for (x, 1) ∈ A×B I

v′′(h, 10) = v(h, 10) for (h, 10) ∈ A×B I

v′′(h, 11) = v′(h, 11) for (h, 11) ∈ A×B I .

It remains to define v′′(h : x→ x′, φ) with g(h) = u′ ◦ u. Let ũ be a lift of u at x by
g (i.e. dom ũ = x and g(ũ) = u), such a lift exists since g is an isofibration.
One takes

v′′(h, φ) = v′(h ◦ ũ−1, φ) ◦ v(ũ, φ)

which is a well-defined composition in C. For the sake of readibility and for the purpose
of avoiding lengthy but straighforward calculations we do not give further details but
the reader can check that the defined composition in dom(Πgf) is associative. At
least note that v′′(h, φ) does not depend on the choice of the lift ũ. Indeed, from the
assumption s(u′, v′) = t(u, v) one concludes that v′|A×B{0} = v|A×B{1}. Let û be an
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other lift of u at x, one has the following sequence of equalities,

v′(h ◦ û−1, φ) ◦ v(û, φ) ◦ [v′(h ◦ ũ−1, φ) ◦ v(ũ, φ)]−1 = v′(h ◦ û−1, φ) ◦ v(û, φ) ◦ v(ũ, φ)−1

◦ v′(h ◦ ũ−1, φ)−1

= v′(h ◦ û−1, φ) ◦ v(û, φ) ◦ v(ũ−1, φ−1)

◦ v′(ũ ◦ h−1, φ−1)

= v′(h ◦ û−1, φ) ◦ v(û ◦ ũ−1, 11)

◦ v′(ũ ◦ h−1, φ−1)

= v′(h ◦ û−1, φ) ◦ v′(û ◦ ũ−1, 10)

◦ v′(ũ ◦ h−1, φ−1)

= v′(h ◦ û−1, φ) ◦ v′(û ◦ h−1, φ−1)

= v′(1x′ , 11)

= 1v′′(x′,1) .

Last, define a function id : (dom(Πgf))0 → (dom(Πgf))1, let (y, s) ∈ (dom(Πgf))0,
take id(y,s) := (1y, s) which is a slight abuse of notation since by the second member
in the pair (1y, s) we really mean the functor between g∗(1y) and f in Gpd/A which
maps (x, i) with i = 0, 1 to s(x) and (h,−) to s(h). The reader can check that
(dom(Πgf)) is a groupoid with (u, v)−1 given by :

fst[(u, v)−1] := u−1

snd[(u, v)−1](x, i) := v(x, 1− i)

snd[(u, v)−1](h, 1i) := v(h, 11−i)

snd[(u, v)−1](h, φ) := v(h, φ−1)

(where fst and snd denote the first and the second projections).
Recall that we use a Greek letter to denote the involution of a groupoid denoted
by the corresponding uppercase letter , for instance α denotes the involution of the
groupoid A.
Now, one can equip dom(Πgf) with an involution denoted πgf :

πgf : dom(Πgf) −→ dom(Πgf)
(y, s) 7−→ (β(y), πgf(s) : g−1{β(y)} → C)
(u, v) 7−→ (β(u), πgf(v) : g∗{β(u)} → f)

45



4 On the inadequacy of the projective model structure for univalence

with
πgf(s) : g−1{β(y)} −→ C

x 7−→ γ(s(α(x)))
h 7−→ γ(s(α(h)))

and
πgf(v) : g∗({β(u)}) −→ f

(x, i = 0, 1) 7−→ γ(v(α(x), i))
(h,−) 7−→ γ(v(α(h),−))

Last, one defines Πgf as follows :

Πgf : dom(Πgf) −→ B
(y, s) 7−→ y
(u, v) 7−→ u

.

This is immediate that Πgf is compatible with the involutions πgf and β (respectively
on dom(Πgf) and B).
Now we define Πg on morphisms. Let i be a morphism from f to h in the slice
category GpdG/A,

C
i //

f ��

D

h~~
A .

We define Πgi from Πgf to Πgh as follows.
For any element (y, s) in dom(Πgf) we take

(Πgi)(y, s) = (y, i ◦ s)

and
(Πgi)(u, v) = (u, i ◦ v).

It remains to check that Πg is “the” right adjoint to the pullback functor along g
denoted g∗. Let h : D → B be a morphism in GpdG and define a natural bijection
ϕg,f,h (shorten by ϕ):
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ϕ : GpdG/A(g∗h, f) −→ GpdG/B(h,Πgf)

g∗D
v //

g∗h

��

C

f

��

�

A

7−→ D
ϕ(v) //

h

��

dom(Πgf)

Πgf

��

�

B

where ϕ(v)(x) = (h(x), sx) for x ∈ D with

sx : g−1{h(x)} −→ C
z 7−→ v(z, x)
t 7−→ v(t, 1x)

and ϕ(v)(u : x → x′) = (h(u), wu) for u in D with wu : g∗(h(u)) → f in Gpd/A
defined by :

wu(z, 0) = sx(z) = v(z, x)

wu(z, 1) = sx′(z) = v(z, x′)

wu(−, 10) = sx(−) = v(−, 1x)

wu(−, 11) = sx′(−) = v(−, 1x′)

wu(−, φ) = v(−, u) .

It is a matter of easy calculations to check that ϕ(v) is compatible with the involutions
δ (on D) and πgf (on dom(Πgf)). We have to check that ϕ is a bijection. Let define
ϕ−1 as follows :

ϕ−1 : GpdG/B(h,Πgf) −→ GpdG/A(g∗h, f)

D
k //

h

��

dom(Πgf)

Πgf

��

�

B

7−→ g∗D
ϕ−1(k) //

g∗h

��

C

f

��

�

A

where ϕ−1(k)(z, x) := [snd(k(x)](z) for every z ∈ A and x ∈ D such that
g(z) = h(x) and ϕ−1(k)(t : z → z′, u : x → x′) := [snd(k(u))](t, φ) for every
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morphisms t in A and u in D such that g(t) = h(u). One can easily check that ϕ−1(k)
is compatible with the involutions α× δ on g∗D and γ on C, and futhermore

ϕ−1 ◦ ϕ = 1GpdG/A(g∗h, f)

and
ϕ ◦ ϕ−1 = 1GpdG/B(h,Πgf)

and the bijection ϕ is natural in its arguments.
Finally, by 4.3.3 and by adjunction, one concludes that Πg preserves fibrations in the
slice categories. In particular as a corollary Πg maps fibrations over A in GpdG to
fibrations over B in GpdG.
When the involutions involved in the statement of our present lemma are identities
we recover a theorem by Giraud (see [4], lemma 4.3 and theorem 4.4).

Remark 4.3.5. The above lemma 4.3.4 proves the required condition (4) in the
definition 3.2.1 of a type-theoretic fibration category.

It remains to prove condition (6) in 3.2.1. We get rid of this with the two following
lemmas.

Lemma 4.3.6. In GpdG if g ◦ f and g are trivial cofibrations then f is a trivial
cofibration.

Proof. Since weak equivalences are levelwise and they have the 2-out-of-3 property,
f is a weak equivalence. Moreover f is an injective-on-objects functor, hence f is a
levelwise trivial cofibration. Thanks to 4.2.5 it suffices to prove that f is surjective
on fixed points. Let x be a fixed point in cod(f) then g(x) is a fixed point in
cod(g) = cod(g ◦ f) so, since g ◦ f is a trivial cofibration, there exists a fixed point y
in dom(g ◦ f) = dom(f) such that g(f(y)) = g(x). Since g is a levelwise cofibration
one concludes that f(y) = x.

Lemma 4.3.7. In the following commutative diagram:

X //

��

Y //

��

Z

��
A //

∼ //
:: ::B // // C
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if B � C and A � C are fibrations, A ∼� B is an acyclic cofibration, and both
squares are pullbacks (hence Y → Z and X → Z are fibrations by (3)), then X → Y
is also an acyclic cofibration. In other words any pullback along any morphism of a
trivial cofibration between fibrations is again a trivial cofibration between fibrations.

Proof. According to (5) in 3.2.1 one can factor the morphism from Z to C as a trivial
cofibration followed by a fibration. Thanks to the stability of fibrations under pullback
and knowing that trivial cofibrations are stable under pullback along any fibration (cf
4.3.2), we can display the diagram given in the statement as follows,

X

��

//
!!

∼

!!

Y

��

!!

∼

!!

// // Z
��

∼

��

}}}}

// ∼ //
&& &&

}}}}

// // Z ′

����
A //

∼ //
66 66B // // C .

Hence 4.3.6 allows us to conclude that X → Y is a trivial cofibration.

Theorem 4.3.8. The category GpdG, equipped with the subcategory given by pro-
jective fibrations, namely the levelwise isofibrations of groupoids, is a type-theoretic
fibration category.
We denote this type-theoretic fibration category by GpdG

proj and one says that the
category GpdG is equipped with its projective type-theoretic fibration structure.
Assuming the initiality of the syntactic category of type theory it gives us a model of
dependent type theory with dependent sums, dependent products and identity types in
GpdG.

Proof. The required conditions (1),(2),(3) and (5) are straighforward. The lemmas
4.3.4 and 4.3.7 allow us to conclude that conditions (4) and (6) hold.

4.4 The construction of universes
We now move on to constructing universes (in the sense of 3.3.1) in GpdG for each
inaccessible cardinal κ and each universe Gpd∆(Vκ) in Gpd. Recall from [6] that the
universe Gpd∆(Vκ) in Gpd consists in the groupoid made of discrete groupoids with
κ-small sets of objects and isomorphisms between them.
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In this section we will lift this specific universe Gpd∆(Vκ) in Gpd by constructing
a universe in GpdG denoted accordingly by ˜UGpd∆(Vκ), UGpd∆(Vκ) and pGpd∆(Vκ) :

˜UGpd∆(Vκ) → UGpd∆(Vκ) (shorten later by Ũ∆, U∆ and p∆) and prove the requirement
(i) of 3.3.1 in 4.4.6, requirement (ii) in 4.4.7 and requirement (iii) in 4.4.13 respectively.

Remark 4.4.1. One has a “natural” candidate for lifting in GpdG any universe
Vκ in Gpd consisting in the groupoid whose objects are κ-small (not necessarily
discrete) groupoids with isomorphisms between them, where the κ-smallness means
that both the set of objects and the homsets have cardinality strictly less than κ. Indeed,
for any inaccessible cardinal κ the universe Vκ in the groupoid model classifies split
isofibrations with κ-small fibers. So, projective fibrations being levelwise fibrations we
want to find a universal fibration in GpdG which classifies projective fibrations that
are levelwise split isofibrations with κ-small fibers. We achieve this result in 4.4.3.

To achieve this goal define ŨVκ , UVκ ∈ GpdG and pVκ : ŨVκ → UVκ , shortened
immediately by Ũ ,U and p : Ũ → U :

• Objects of the groupoid Ũ are dependent tuples of the form (A0, A1, a, ϕ) where
A0, A1 are κ-small groupoids, a ∈ A0, and ϕ : A0

∼=−→ A1 is an isomorphism in
Gpd.

• Morphisms in Ũ between (A0, A1, a, ϕ) and (B0, B1, b, ψ) are tuples of the form
(ρ0, ρ1, τ, α) :

(A0, a)

=⇒α

∼=
ϕ

//

∼=

ρ0

��

A1

ρ1

∼=

��
(B0, b)

∼=
ψ

// B1

such that :
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ρ0 : A0
∼=−→ B0 is an isomorphism in Gpd

ρ1 : A1
∼=−→ B1 is an isomorphism in Gpd

τ : ρ0(a)
∼=−→ b is an isomorphism in B0

α : ψ ◦ ρ0 ⇒ ρ1 ◦ ϕ is a natural isomorphism.

The composition in Ũ is given by :

(ρ′0, ρ
′
1, τ
′, α′) ◦ (ρ0, ρ1, τ, α) := (ρ′0 ◦ ρ0, ρ

′
1 ◦ ρ1, τ

′ ◦ ρ′0(τ), ρ′1(α) ◦ α′ρ0
)

where the component of ρ′1(α) ◦ α′ρ0
at x ∈ A0 is ρ′1(αx) ◦ α′ρ0(x). Note that Ũ is a

groupoid. Indeed, the inverse of the morphism (ρ0, ρ1, τ, α) is given by :

(ρ0, ρ1, τ, α)−1 := (ρ−1
0 , ρ−1

1 , ρ−1
0 (τ−1), ρ−1

1 (α−1

ρ−1
0

))

where the component of ρ−1
1 (α−1

ρ−1
0

) at x ∈ B0 is ρ−1
1 (α−1

ρ−1
0 (x)

).

We provide Ũ with the involution ũ :

ũ : Ũ −→ Ũ
(A0, A1, a, ϕ) 7−→ (A1, A0, ϕ(a), ϕ−1)

(A0, A1, a, ϕ)
(ρ0,ρ1,τ,α)−−−−−−→ (B0, B1, b, ψ) 7−→ (ρ1, ρ0, ψ(τ) ◦ α−1

a , ψ−1(α−1
ϕ−1))

where the component of ψ−1(α−1
ϕ−1) at x ∈ A1 is ψ−1(α−1

ϕ−1(x)
). One denotes by U

the “unpointed” version of Ũ , i.e. objects are of the form (A0, A1, ϕ) and morphisms
of the form (ρ0, ρ1, α), with its corresponding involution u. We define our universal
morphism p in GpdG by :

p : Ũ −→ U
(A0, A1, a, ϕ) 7−→ (A0, A1, ϕ)
(ρ0, ρ1, τ, α) 7−→ (ρ0, ρ1, α) .

We want to prove that p : Ũ → U is a universe.

Lemma 4.4.2. Our morphism p : Ũ → U is a fibration in GpdG between fibrant
objects.
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Proof. According to our 4.2.1 the groupoids Ũ and U are fibrant objects. Now, p is a
levelwise fibration, actually we can even equip p with a split cleavage denoted cp as
follows : being given (ρ0, ρ1, α) an isomorphism in U

A0

=⇒α

∼=
ϕ

//

∼=

ρ0

��

A1

ρ1

∼=
��

B0
∼=
ψ

// B1

and (A0, A1, a, ϕ) an element in the fiber of (A0, A1, ϕ) := dom(ρ0, ρ1, α) by p, we
take cp((ρ0, ρ1, α), (A0, A1, a, ϕ)) := (ρ0, ρ1, 1ρ0(a), α) namely

(A0, a)

=⇒α

∼=
ϕ

//
∼=

ρ0

��

A1

ρ1

∼=

��
(B0, ρ0(a))

∼=
ψ

// B1 .

It is easily seen that cp is a split cleavage.

Lemma 4.4.3. The morphism p classifies the projective fibrations in GpdG that are
levelwise split fibrations in Gpd with κ-small fibers.

Proof. We have to prove that for a morphism f : A→ C in GpdG, the following are
equivalent:

(i) f is a pullback of p

(ii) f is a split fibration in Gpd with κ-small fibers.

Assume that f is a pullback of p,

A
p∗g //

f

��

Ũ

p

��
C g

// U .
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Let α : x
∼=−→ y be an isomorphism in C and z ∈ A such that f(z) = x. One denotes

by cf the intended split cleavage of f . One takes cf (α, z) := (α, cp(g(α), p∗g(z)))
which is an isomorphism in A above α by f with domain x (note that we identify A
with the isomorphic groupoid C ×U Ũ). This cleavage is split, indeed one has

cf (1x, z) = (1x, cp(1g(x), p
∗g(z)))

= (1x, 1p∗g(z))

and for x α−→ y
β−→ w and z ∈ f−1{x} one has :

cf (β ◦ α, z) = (β ◦ α, cp(g(β ◦ α), p∗g(z)))

= (β ◦ α, cp(g(β) ◦ g(α), p∗g(z)))

= (β ◦ α, cp(g(β), cod(cp(g(α), p∗g(z)))) ◦ cp(g(α), p∗g(z)))

= (β, cp(g(β), cod(cp(g(α), p∗g(z))))) ◦ (α, cp(g(α), p∗g(z)))

= (β, cp(g(β), p∗g(cod(cf (α, z))))) ◦ (α, cp(g(α), p∗g(z)))

= cf (β, cod(cf (α, z))) ◦ cf (α, z) .

The reader can check that the fibers of f are κ-small. Thus one has (i) ⇒ (ii).
Conversely, assume that f is a fibration of groupoids, with κ-small fibers, equipped
with a split cleavage denoted cf . One has to display f as a pullback of p in GpdG

along a morphism we choose to denote g. So define g as follows :

g : C −→ U
x 7−→ (f−1{x}, f−1{γ(x)}, ϕx)

x
σ−→ y 7−→ (ρσ,0, ρσ,1, βσ)

where by f−1{x} (resp. f−1{γ(x)}) we denote the subgroupoid of A whose objects
are objects of A above x (resp. γ(x)) and morphisms are morphisms in A above 1x
(resp. 1γ(x)). Moreover for x ∈ C, ϕx is the following isomorphism :

ϕx : f−1{x} −→ f−1{γ(x)}
z 7−→ α(z)

z
τ−→ z′ 7−→ α(τ) .

The inverse isomorphism of ϕx is given by :

ϕ−1
x : f−1{γ(x)} −→ f−1{x}

z 7−→ α(z)

z
τ−→ z′ 7−→ α(τ) .
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Actually one has ϕ−1
x := ϕγ(x). For σ : x→ y in C one defines ρσ,0 by :

ρσ,0 : f−1{x} −→ f−1{y}
z 7−→ cod(cf (σ, z))

z
τ−→ z′ 7−→ cf (σ, z′) ◦ τ ◦ cf (σ, z)−1 .

Since f(τ) = 1x one has f(cf (σ, z′) ◦ τ ◦ cf (σ, z)−1) = 1y. In the same way one has

ρσ,1 : f−1{γ(x)} −→ f−1{γ(y)}
z 7−→ cod(cf (γ(σ), z))

z
τ−→ z′ 7−→ cf (γ(σ), z′) ◦ τ ◦ cf (γ(σ), z)−1 .

Last, we define the natural isomorphism βσ by choosing for the component at z ∈
f−1{x} the isomorphism βσ,z := cf (γ(σ), α(z)) ◦ α(cf (σ, z))−1. The suspicious reader
can check in order that ρσ,0 and ρσ,1 are functors and more specifically isomorphisms,
that βσ is a natural isomorphism, and g is functorial and compatible with the
involutions. It remains to check that A is isomorphic to C ×U Ũ above C, i.e. we
need to provide an isomorphism χ : A → C ×U Ũ such that pr1 ◦ χ = f where
pr1 : C ×U Ũ → C is the first projection. Let define χ as follows :

χ : A −→ C ×U Ũ
x 7−→ (f(x), (f−1{f(x)}, f−1{γ(f(x))}, x, ϕf(x)))

x
σ−→ y 7−→ (f(σ), (ρf(σ),0, ρf(σ),1, σ ◦ cf (f(σ), x)−1, βf(σ))) .

The functor χ is compatible with the involutions α and γ × ũ and it is actually an
isomorphism with χ−1 given by :

χ−1 : C ×U Ũ −→ A
(x, (f−1{x}, f−1{γ(x)}, z, ϕx)) 7−→ z

(σ, (ρσ,0, ρσ,1, τ, β)) 7−→ τ ◦ cf (σ, z) .

Thus one has (ii)⇒ (i).

Remark 4.4.4. The previous lemma expresses in which sense we have the “right”
candidate for being a universe in GpdG (see 4.4.1).
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Definition 4.4.5. (Shulman) A pullback of the universal fibration p is called a small
fibration. We denote such a small fibration with a three ends arrow // // // .

Lemma 4.4.6. Small fibrations are closed under composition and contain the identi-
ties.

Proof. Straighforward with 4.4.3 in mind.

Lemma 4.4.7. If f : B // // // A and g : A // // // C are small fibrations in GpdG,
so is Πgf .

Proof. It suffices to prove that Πgf can be equipped with a split cleavage (we know
this is a fibration thanks to 4.3.4). Let u : y → y′ be an isomorphism in C and (y, s)
be an object of dom(Πgf). Since f and g are small fibrations we denote by cf (resp.
cg) a split cleavage for f (resp. g). Let define s′ : g−1{y′} → B a partial section of f
by :

s′ : g−1{y′} −→ B
x 7−→ cod(cf (cg(u

−1, x)−1, s(cod(cg(u
−1, x)))))

x
h−→ x′ 7−→ cf (cg(u

−1, x′)−1, s(cod(cg(u
−1, x′))))

◦ s(cg(u−1, x′) ◦ h ◦ cg(u−1, x)−1)
◦ cf (cg(u

−1, x)−1, s(cod(cg(u
−1, x))))−1

In picture one has

s(cod(cg(u
−1, x′))))

cf (cg(u−1,x′)−1, s(cod(cg(u−1,x′))))
// s′(x′)

s(cod(cg(u
−1, x)))

cf (cg(u−1,x)−1, s(cod(cg(u−1,x))))
//

s(cg(u−1,x′) ◦h ◦cg(u−1,x)−1)

OO

����

f

��

s′(x)

s′(h)

OO

cod(cg(u
−1, x))

cg(u−1,x)−1

//

����

g

��

x

y
u // y′
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Now, we want to define v : g∗u → f in Gpd/A with g∗u defined as usual (see the
proof of 4.3.4) by the following pullback

A×C I //

g∗u

��

I

u

��
A g

// C

so we will get (u, v) : (y, s) → (y′, s′) a morphism in dom(Πgf) above u. Take
v|A×C{0} := s and v|A×C{1} := s′ and for every h : z → z′ in A such that g(h) = u
take

v(h, φ) := cf (cg(u
−1, z′)−1, s(cod(cg(u

−1, z′)))) ◦ s(cg(u−1, z′) ◦ h)

where φ is the non-identity isomorphism in I. In picture one has

s(z)

s(cg(u−1,z′)◦ h)
��

s(cod(cg(u
−1, z′)))

cf (cg(u−1,z′)−1, s(cod(cg(u−1,z′))))
//

����
f

��

s′(z′)

z
h

,,
cg(u−1,z′)◦ h

��

z′

cod(cg(u
−1, z′))

cg(u−1,z′)−1

22

����

g

��y
u // y′ .

By taking cΠgf (u, (y, s)) := (u, v) the reader can check that Πgf is equipped with a
split cleavage. Moreover the map Πgf has κ-small fibers and so is a small fibration.
Indeed, remember from the construction in 4.3.4 that the underlying map of Πgf is
nothing but Πgf and Πg stands for the right adjoint of the pullback functor g∗ in
Gpd. Hence one concludes the smallness of Πgf from the groupoid model using the
smallness of g and the smallness of f .
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4.4 The construction of universes

In the following paragraph we want to prove for p∆ the required condition (iii) in
definition 6.12 of the universe in [14] (for a general candidate for universe p : Ũ → U
it is unlikely that this required condition (iii) holds due to the smallness requirement
of the fibers in the characterization of small fibrations). Be aware that from now on
and until 4.4.14 by a small fibration we mean a pullback of p∆. Following the remark
6.13 in [14] we prove the equivalent condition that the following diagonal map ∆f ,

E

∆f

""
E ×B E

p2 //

p1

��

E

f

��
E

f
// B ,

factors as a trivial cofibration followed by a small fibration, for any small fibration f
in GpdG.

Definition 4.4.8. A fibration in a model category C with a unique solution to any
right lifting problem with respect to any trivial cofibration is called a discrete fibration.

Notation 4.4.9. Let C be a cocomplete category and J be a set of morphisms in
C . We denote by J the weakly saturated class of morphisms generated by J , namely
the smallest class of morphisms containing the elements in J and which is weakly
saturated (see [9] def. A.1.2.2). Remember from chapter 2 (see definition 2.3.7) that
the notation J� denotes the class of morphisms with the right lifting property with
respect to any morphism in J . Now let J� denotes the class of morphisms with the
unique right lifting property with respect to any morphism in J .

Proposition 4.4.10. An element of J� is also an element of J�

Proof. Let f be an element of J�. We know (see [9] Corollary A.1.2.7) that f is an
element of J� (or equivalently any element j of J belongs to �f). It remains to prove
the uniqueness condition.
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4 On the inadequacy of the projective model structure for univalence

To achieve this we consider successively the case of a pushout of a map in J , the case
of a transfinite composition of such maps, and last the case of a retract.

First, assume that g belongs to J and consider the pushout i of g along a morphism
h,

h //

g

��

i

��
j

// .

Consider the following lifting problem,

k //

i

��

f

��
l

// .

Let m, n be two diagonal fillers for this lifting problem. Note that we can form the
following lifting problem,

g

��

k◦h //

f

��
l◦j

// .

Also note that m ◦ j, n ◦ j are two diagonal fillers for this lifting problem. Hence m ◦ j
equals n ◦ j.
By the uniqueness part in the universal property of the pushout and considering the
following universal problem, one concludes that m equals n,

g

��

h //

i

�� k

��
m◦j

))

j
//

m

��

n

&&
dom(f) .
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4.4 The construction of universes

Second, consider an ordinal λ and X a λ-sequence in �f .
Our goal consists in proving that X0,λ belongs to �f .
We do so by a transfinite induction on λ.

• λ = 0
In this case the transfinite composition is id0 and the uniqueness is obvious.
Indeed, for two diagonal fillers j1 and j2 as follows,

0
g //

f

��0
h

//

j1

99

j2

GG

one has the equality j1 = j2 = g.

• λ = γ + 1
Consider two diagonal fillers in the following lifting problem,

X0
g //

��

f

��Xλ
h

//

j1

88

j2

EE

.

The induction hypothesis states that for every γ-sequence X in �f the composi-
tion X0,γ belongs to �f .
We can display this lifting problem as follows,

X0

��

g //

f

��

Xγ

��
Xγ+1

j1

CC

j2

JJ

h
//
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4 On the inadequacy of the projective model structure for univalence

where X0,γ is the composition of X|[0,γ]. By induction hypothesis one has that
j1 ◦Xγ,γ+1 equals j2 ◦Xγ,γ+1.
Now consider the following lifting problem,

Xγ

Xγ,γ+1

��

j1◦Xγ,γ+1 //

f

��Xγ+1
h

//

and note that j1 and j2 are two diagonal fillers for this lifting problem. By
assumption on the λ-sequence X one concludes that j1 equals j2.

• λ limit
The induction hypothesis states that for every β < λ and every β-sequence X
in �f the composition X0,β belongs to �f .
Let j1 and j2 be two diagonal fillers as follows,

X0

��

g //

f

��Xλ
h

//

j1

88

j2

EE

.

Let β be any ordinal strictly less than λ, we can display the square above as
follows,

X0
g //

X0,β

��
f

��

Xβ

��
Xλ

h
//

j1

CC

j2

JJ

.

Note that X0,β is the composition of the β-sequence X|[0,β]. The maps j1 ◦Xβ,λ
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4.4 The construction of universes

and j2 ◦Xβ,λ are two diagonal fillers for the following lifting problem,

X0
g //

X0,β

��

f

��Xβ Xβ,λ
// Xλ

h
//

j1

88

j2

EE

.

Hence by the induction hypothesis j1 ◦ Xβ,λ equals j2 ◦ Xβ,λ for any β < λ.
Note that Xλ is isomorphic to colim

β<λ
Xβ. Together the maps j1 ◦Xβ,λ form a

cocone with cobase dom(f). Indeed, let β′ and β be two ordinals satisfying
β′ 6 β < λ one has

(j1 ◦Xβ,λ) ◦Xβ′,β = j1 ◦ (Xβ,λ ◦Xβ′,β) = j1 ◦Xβ′,λ .

So by the uniqueness part in the universal property of the cocone one has j1
equals j2.

Last, assume that f belongs to {g}� and consider a retract h of g,

i //

h

��

j //

g

��

h

��
k

//
l

// .

Consider the following lifting problem,

m //

h

��

f

��
n

//

r1

77

r2

GG

with r1 and r2 two diagonal fillers.
We can look at the following lifting problem,

m◦j //

g

��

f

��
n◦l

// .
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4 On the inadequacy of the projective model structure for univalence

The maps r1 ◦ l and r2 ◦ l are two diagonal fillers for this lifting problem. Hence r1 ◦ l
equals r2 ◦ l. So r1 ◦ l ◦ k equals r2 ◦ l ◦ k, namely r1 equals r2.

Remark 4.4.11. Note that a small fibration f in Gpd, namely a fibration (with
small fibers) equipped with a split cleavage, is nothing but a lluf subcategory C of
dom(f) such that f|C is a discrete fibration.

Lemma 4.4.12. Let f be any morphism in GpdG. The morphism f is a pullback
of p∆ if and only if f is a discrete fibration in Gpd and it has (discrete) fibers with
small sets of objects.

Proof. Assume that f is a pullback of p∆,

E
k //

f

��

Ũ∆

p∆

��
B

l
// U∆ .

Thanks to 4.4.3 it is enough to prove that two diagonal fillers in any lifting problem
with respect to f are equal. Hence consider a right lifting problem with two diagonal
fillers,

1
g //

i

��

E

f

��
I

h
//

j1

99

j2

EE

B ,

where the map i is our generating trivial cofibration in Gpd. One can display the
following lifting problem with respect to p∆,

1
k◦g //

i

��

Ũ∆

p∆

��
I

l◦h
// U∆ .
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Note that the maps j1 ◦k and j2 ◦k are two diagonal fillers for this last lifting problem
but the reader can easily check that p∆ is a discrete fibration, hence j1 ◦ k and j2 ◦ k
are equal. So the maps j1 and j2 are equal by the uniqueness part in the universal
property of the pushout applied to the following universal problem,

I

��

j1◦k

$$

h

��

E
k //

f

��

Ũ∆

p∆

��
B

l
// U∆ .

Conversely, assume that the underlying map of f is a discrete fibration with small
discrete fibers then the lemma 4.4.3 allows us to conclude that f is a pullback of
p∆.

Lemma 4.4.13. For any small fibration f, the diagonal map ∆f is a small fibration.
As an obvious consequence ∆f factors as a trivial cofibration (the identity map)
followed by a small fibration (∆f itself).

Proof. Let f be a small fibration from E to B. We prove that ∆f is a discrete
fibration in Gpd. Indeed, consider the following lifting problem in Gpd,

1 //

i

��

E

∆f

��
I g

// E ×B E .

We display the following associated lifting problem,

1 //

i

��

E

∆f

��

E

f

��
I g

// E ×B E
f◦p1

// B ,
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4 On the inadequacy of the projective model structure for univalence

where p1 is the first projection.
The maps p1 ◦ g and p2 ◦ g are two diagonal fillers for this last lifting problem, since
f is a small fibration then thanks to 4.4.12 f is a discrete fibration, hence p1 ◦ g
and p2 ◦ g are equal. So the initial lifting problem with respect to ∆f has a unique
solution, namely p1 ◦ g. Since ∆f is a discrete fibration its fibers are discrete and their
sets of objects are obviously small. By 4.4.12 one concludes that ∆f is a pullback of
p∆, namely a small fibration.

Theorem 4.4.14. The morphism p∆ : Ũ∆ → U∆ is a universe for the projective
type-theoretic fibration category GpdG

proj.

Proof. Straighforward with Lemmas 4.4.6, 4.4.7, 4.4.13.

For the record we prove below the fact that one can factor any morphism f in
GpdG as a trivial cofibration followed by a fibration whose underlying fibration of
groupoids is equipped with a split cleavage. Unfortunately a priori this last fibration
is not a small fibration since there is no guarantee for the fibers to be small even if
the morphism f we start with has small fibers. Hence this result does not imply the
condition (iii) in 3.3.1 for our general candidate p : Ũ → U for universe.

Proposition 4.4.15. Let f : E → B be any morphism in GpdG, one can factor f
as a trivial cofibration i∞ followed by a fibration f∞ whose underlying fibration of
groupoids is equipped with a split cleavage

E∞

f∞

�� ��

�

E

FF

∼i∞

FF

f
// B .

Proof. First, we show that one can reduce the proof to the case where E is a discrete
groupoid. Indeed, assume we have an object ∆(E)∞ in GpdG and two maps i∆∞ ,
f∆
∞ such that the following square commutes,

∆(E)∞

f∆
∞

�� ��

�

∆(E)
CC

∼i∆∞

CC

f|∆(E)

// B .
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Consider the pushout of i∆∞ along the inclusion from ∆(E) to E,

∆(E)
��

∼

i∆∞

��

� � // E

i∞

��
∆(E)∞ // E∞ .

We denote i∞ the resulting map. As a pushout of a trivial cofibration i∞ is a trivial
cofibration. By using the universal property of this pushout we get a map f∞ as
follows,

∆(E)
��

∼
i∆∞

��

� � // E

i∞

�� f

��

∆(E)∞ //

f∆
∞

++

E∞

f∞

!!
B .

It remains to prove that f∞ is a levelwise fibration equipped with a split cleavage.
Consider the following lifting problem ,

1

i

��

g // E∞

f∞

��
I

h
// B

where {i} is a set of generating trivial cofibrations in Gpd (see 2.3.15). Since Ob(E∞)
is Ob(∆(E)∞), g factorizes through ∆(E)∞. So we are able to associate with our
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initial lifting problem a new lifting problem with respect to f∆
∞,

1

i

��

g //

!!

E∞

f∞

��

∆(E)∞

<<

f∆
∞

##
I

h
// B .

Now by postcomposition of the diagonal filler (the dashed arrow below) chosen by
the split cleavage of f∆

∞ for this last lifting problem we get a diagonal filler for our
initial lifting problem,

1

i

��

g //

!!

E∞

f∞

��

∆(E)∞

<<

f∆
∞

##
I

h
//

<<

B

and this process defines a split cleavage for f∞.

Second, we prove that one can reduce the case of a discrete groupoid E to two
more basic cases, namely the case of a discrete groupoid with only fixed points and
the case of a discrete groupoid with no fixed point. Indeed, the discrete groupoid E
is (isomorphic to) EZ/2Z∐E0, where EZ/2Z is the discrete subgroupoid of the fixed
points in E and E0 is the discrete subgroupoid of E made of the points that are not
fixed by the involution. Also the map f is (isomorphic to) fZ/2Z

∐
f0. Let us assume
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that we have the following commutative diagrams,

E
Z/2Z
∞

f
Z/2Z
∞

�� ��

�

E
Z/2Z
DD

∼i
Z/2Z
∞

DD

fZ/2Z
// B ,

E0
∞

f0
∞

�� ��

�

E
0
FF

∼i0∞

FF

f0
// B .

Hence one has the following commutative diagram,

E
Z/2Z
∞

∐
E0
∞

f
Z/2Z
∞

∐
f0
∞

�� ��

�

E
Z/2Z∐

E0

>>

∼i
Z/2Z
∞

∐
i0∞

>>

f
// B .

Clearly iZ/2Z∞
∐
i0∞ is a trivial cofibration as a coproduct of trivial cofibrations. Finally

the map fZ/2Z∞
∐
f0
∞ is a levelwise fibration equipped with a split cleavage. Indeed,

consider a lifting problem in Gpd for fZ/2Z∞
∐
f0
∞,

1

i

��

g // E
Z/2Z
∞

∐
E0
∞

f
Z/2Z
∞

∐
f0
∞

��
I

h
// B .
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There are two mutually exclusive possibilities. Either g takes values in EZ/2Z
∞ or it

takes values in E0
∞. If g takes values in EZ/2Z

∞ one can display the following diagram,

1

i

��

g //

  

E
Z/2Z
∞

∐
E0
∞

f
Z/2Z
∞

∐
f0
∞

��

E
Z/2Z
∞

;;

f
Z/2Z
∞

$$
I

h
//

>>

B .

Otherwise one can display the following diagram,

1

i

��

g //

��

E
Z/2Z
∞

∐
E0
∞

f
Z/2Z
∞

∐
f0
∞

��

E0
∞

;;

f0
∞

$$
I

h
//

??

B .

These diagrams not only prove that fZ/2Z∞
∐
f0
∞ is a fibration but they also prove how

to equip its underlying fibration with a split cleavage assuming that the dashed arrow
is the diagonal filler chosen by the split cleavage of fZ/2Z∞ (resp. of f0

∞).

So we need to treat these two more basic cases.
First, let us assume that E is a discrete groupoid with no fixed point. One defines the
groupoid E∞ as

∐
x∈Ob(E)

f(x)/B (where f(x)/B denotes the under groupoid) with the

involution that maps the component f(x)/B to f(ε(x))/B thanks to the involution β

68



4.4 The construction of universes

on B (where ε denotes the involution on E). The map i∞ maps x ∈ Ob(E) to idf(x)

in the corresponding copy of f(x)/B and f∞ is the codomain functor. Using the
characterization of trivial cofibrations given in 4.2.5 the reader can check that i∞ is a
trivial cofibration. Last, we need to prove that f∞ is a levelwise fibration equipped
with a split cleavage denoted c∞. Let x ∈ Ob(E) and ϕ : f(x) → y in Ob(f(x)/B)
and h : y → y′ a morphism in B (one has f∞(ϕ) = y), take c∞(ϕ, h) to be the map h
from ϕ to h ◦ ϕ. Clearly c∞ defined this way is a split cleavage.

Second, let us assume that E is a discrete groupoid with only fixed points. We
start by proving that one can reduce this case to the case of 1! (the terminal object).
Indeed, E is (isomorphic to)

∐
x∈Ob(E)

1!. Also note that f : E → B is (isomorphic

to)
∐

x∈Ob(E)

fx : (
∐

x∈Ob(E)

1!)→ B and let us assume that for each x ∈ Ob(E) we have

morphisms ix∞,fx∞ such that

Ex∞

fx∞

�� ��

�

1!
FF

∼ix∞

FF

fx
// B .

In this case we have the following factorization of f ,∐
x∈Ob(E)

Ex∞

∐
x∈Ob(E)

fx∞

��

�

E

∐
x∈Ob(E)

ix∞

EE

f
// B .

Moreover
∐

x∈Ob(E)

ix∞ is a trivial cofibration as a coproduct of trivial cofibrations. It

remains to prove that
∐

x∈Ob(E)

fx∞ is a levelwise fibration equipped with a split cleavage.

69



4 On the inadequacy of the projective model structure for univalence

We proceed as usual. Consider the following lifting problem in Gpd,

1
g //

i

��

∐
x∈Ob(E)

Ex∞

∐
x∈ObE

fx∞

��
I

h
// B .

We can display the following square with the dashed arrow being the chosen one by
the split cleavage of fx∞,

1

��

g //

i

��

∐
x∈Ob(E)

Ex∞

∐
x∈ObE

fx∞

��

Ex∞

<<

fx∞

##
I

>>

h
// B .

So
∐

x∈Ob(E)

fx∞ is a levelwise fibration equipped with a split cleavage.

Thus the ultimate case consists in the case where E is 1!. We define a groupoid A
whose set of objects consists in the finite (possibly empty) sequences of composable
arrows in B starting at f(?) (where ? denotes the unique object of 1!) quotiented by
the relation that identifies such a sequence with the sequence you get when you erase
the identity arrows in it. Moreover there is exactly one arrow for any ordered pair of
objects in A. For a pair ((g1, . . . , gn), (h1, . . . , hm)) with n,m elements of N, let us
denote this unique map by uhi,mgi,n . Let us denote by ∅ the empty sequence of arrows
in B. We equip A with the involution induced by the involution β on B. We define
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E∞ thanks to the following pushout in GpdG,

S(1)
l //

k

��

A× S(1)

��
A× S(1) // E∞ ,

where

k(0) = (∅, 0)

k(1) = (∅, 1)

l(0) = (∅, 1)

l(1) = (∅, 0) .

We define the functor i∞ as the functor that maps ? to (∅, 0) and the reader can
easily check thanks to 4.2.5 that i∞ is a trivial cofibration. We define f∞ thanks to
the universal property of the pushout,

S(1)
l //

k

��

A× S(1)

�� ρ

��

A× S(1) //

ρ

,,

E∞

f∞

##
B ,

where one defines ρ as follows,

ρ(∅, j) = f(?) with j = 0, 1

ρ(f(?)
g1−→ y1 → . . .

gn−→ yn, j) = yn for n > 1 and j = 0, 1

ρ(id∅, idj) = idf(?) with j = 0, 1

ρ(u
hi,m
gi,n , idj) = (hm ◦ . . . ◦ h1) ◦ (gn ◦ . . . ◦ g1)−1 with j = 0, 1

ρ(u
gi,n
∅ , idj) = gn ◦ . . . ◦ g1 with j = 0, 1 .

It remains to prove that f∞ is a levelwise fibration equipped with a split cleavage. We
define a split cleavage c∞ for f∞ as follows. Consider the following lifting problem in
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Gpd,

1
g //

i

��

E∞

f∞

��
I

h
// B .

We are looking for a diagonal filler c∞(g, h) in such a way that c∞ will be a split
cleavage. Recall that φ denotes the unique non trivial isomorphism in I from 0 to 1. If
h(φ) is an identity then take for c∞(g, h) the identity arrow of g(?). Otherwise, if g(?)
is ((g1, . . . , gn), j) with n greater than or equal to 0 and j equal to 0 or 1 then our
diagonal filler depends on the parity of n. If n is even then define c∞(g, h) as the unique
map in E∞ from ((g1, . . . , gn), j) to ((g1, . . . , gn, h(φ)), j), otherwise (n is odd) define
c∞(g, h) as the unique map in E∞ from ((g1, . . . , gn), j) to ((g1, . . . , gn−1, h(φ)◦gn), j).
The reader can easily check that c∞ is a split cleavage.

4.5 Homotopy equivalences in GpdG

Now, we develop a few basic facts about homotopy equivalences, then we give an
explicit characterization of homotopy equivalences in GpdG.

Proposition 4.5.1. If C is a model category and f : A // ∼ // B is a trivial cofi-
bration such that A is fibrant then f is a (right) homotopy equivalence.

Proof. One has the following lifting problem :

A
��

∼

f

��

�

A

����
B // 1

Since f is a trivial cofibration and A is fibrant there exists a diagonal filler g : B → A
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such that :
A
��

∼

f

��

A

����

� �

B

g

::

// 1

with g ◦ f = 1A, so one immediately concludes that g ◦ f r∼ 1A. One defines the
following lifting problem :

A //
f
∼ //

��

∼

f

��

�

B // ∼ // PB

����
B

<f◦g, 1B>
// B ×B

where PB is any path object for B. Note that the square above commutes since

< f ◦ g, 1B > ◦f = < f ◦ g ◦ f, f >
= < f, f >

and ∆◦f = < 1B, 1B > ◦f = < f, f > where ∆ denotes the diagonal map < 1B, 1B >
which is the composition

B // ∼ // PB // // B ×B .

So there exists a diagonal filler h,

A // ∼ //

��

∼

f

��

B // ∼ // PB

����

� �

B

h

99

<f◦g, 1B>
// B ×B

and such a h is exactly a (right) homotopy between f ◦ g and 1B, so f ◦ g
r∼ 1B and

as a consequence f is a (right) homotopy equivalence.
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Proposition 4.5.2. If f : A→ B is a trivial cofibration in GpdG then f is a (right)
homotopy equivalence.

Proof. Straightforward with the previous proposition and the fact that all objects of
GpdG are fibrant.

Since not all objects are cofibrant here, homotopy equivalences are not the same as
the weak equivalences of the model structure.

Definition 4.5.3. Let G be a groupoid equipped with an involution η. On says that
G is weakly connected if and only if for every pair (x, y) in Ob(G)2 either x and y are
in the same connected component of the groupoid G or x and η(y) are in the same
connected component of the groupoid G.

Proposition 4.5.4. Every groupoid equipped with an involution is (isomorphic to) a
coproduct in GpdG of weakly connected groupoids with involutions.

Proof. Let G be a groupoid equipped with an involution η. Being given x in Ob(G),
let us denote by Cx the connected component of x in the groupoid G. Now we denote
by CG

x the full subgroupoid of G whose set of objects is Ob(Cx)
⋃

Ob(Cη(x)). This
full subgroupoid, which we call the weak connected component of x, has a natural
involution, induced by the involution η on G, hence it turns out to be a groupoid with
an involution. By choosing a representative for each set Ob(Cx)

⋃
Ob(Cη(x)) one can

display G as a coproduct over these representatives of the CG
x ’s in GpdG.

Lemma 4.5.5. Let G be a groupoid equipped with an involution η and

∅ ⊂ G′ ⊆ G′′

two full subgroupoids of G stable under η such that Ob(G′′) = G’ ∪ {x, η(x)} with
x ∈ G and η(x) 6= x. Moreover assume that G is weakly connected. Since G′ 6= ∅, let
z be an element of G′. By weak connectedness there exist an element y of {z, η(z)}
and an isomorphism c from y to x. Then the following square is a pushout square in
GpdG,

S(1)
l //

� _

S(i)

��

G′� _

��
S(I)

k
// G′′
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with l(0) = y, l(1) = η(y), k(0) = y, k(1) = η(y), k(0′) = x, k(1′) = η(x), k(φ) = c
and k(ψ) = η(c) where

S(1) := 1
∐

1 = 0 1

and

S(I) := I
∐

I = 0

φ
��

1

ψ
��

0′ 1′

with the swap involutions.

Proof. We will check that our square satisfies the universal property of a pushout.
Hence consider the following commutative square,

S(1)
l //

� _

S(i)

��

G′

m

��
S(I) n

// H

We want to prove there exists a unique map j : G′′ → H such that j|G′ = m and
j ◦ k = n. We define j as follows. Take j|G′ = m, j(x) = n(0′), j(η(x)) = n(1′) and
j(c) = n(φ), j(η(c)) = n(ψ). It remains to define consecutively j on morphisms from
any z ∈ G′ to x, on morphisms from any z ∈ G′ to η(x), on the automorphisms of x
and η(x) and on morphisms from x to η(x).
Let f be a morphism from z ∈ G′ to x. Note that G′ being a full subgroupoid
and z and y being elements of G′, the morphism c−1 ◦ f belongs to G′. Hence take
j(f) = j(c) ◦ j(c−1 ◦ f). Now let f be a morphism from any z ∈ G′ to η(x), to make
sure that j is compatible with the involutions take j(f) = θ(j(η(f))). Next, let f
be an automorphism of x, take j(f) = j(c) ◦ j(c−1 ◦ f). Again for the sake of the
compatibility with the involutions take j(f) = θ(j(η(f))) for any automorphism f of
η(x). Last, for any morphism f from x to η(x), take j(f) = j(f ◦ c) ◦ j(c)−1. The
reader can easily check that j is unique.

One gives the following full characterization of the homotopy equivalences in GpdG.

Theorem 4.5.6. Let f : G→ H be a morphism in GpdG. The following are equiv-
alent :
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(i) f is a (right) homotopy equivalence.

(ii) f is a levelwise weak equivalence and f induces an isomorphism between the full
subgroupoids of fixed points Gf and Hf .

(iii) f is a levelwise weak equivalence and f induces an isomorphism between the
subgroupoids of fixed points and fixed morphisms GG and HG.

(iv) f is a levelwise weak equivalence and f induces a bijection between the set of
fixed points in G and the set of fixed points in H.

Proof. We will prove successively (i)⇒ (iv), (iv)⇒ (iii), (iii)⇒ (ii) and (ii)⇒ (i).
Before turning to (i)⇒ (iv) we prove the following two lemmas.

• Lemma 1. Let X be a groupoid equipped with an involution such that XG = X
and w : Y ∼� Z a projective trivial cofibration in GpdG. Then for any
morphism v : X → Z there exists a map v̂ : X → Y that makes the following
square commutes,

X
v̂ //

v

""

Y

w

��

�

Z .

Indeed, define v̂ as follows. Let x be an element of Ob(X), since v(x) ∈ Zf by
the characterization of trivial cofibrations given in 4.2.5 there exists a unique
y ∈ Yf such that v(x) = w(y). Take v̂(x) = y. Now let f : x → x′ be a
morphism in X, since w is fully faithful the induced map by w from Y (y, y′)
to Z(v(x), v(x′)) is a bijection, hence there exists a unique map v̂(f) such that
w(v̂(f)) = v(f).

• Lemma 2. Let f, g : X → H be two (right) homotopic maps in GpdG such
that XG = X. Then one has f = g.
Indeed, let PH be a path object for H,

H // ∼
w

//

∆

""

PH

����

�

H ×H
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and γ a (right) homotopy,

PH

����
�

X

γ

<<

<f,g>
// H ×H .

By the previous lemma 1 applied with Y = H, Z = PH and v = γ, there exists
γ̂ such that w ◦ γ̂ = γ. So we have ∆ ◦ γ̂ =< f, g >, hence γ̂ = f = g.

We prove (i) ⇒ (iv). Assume (i), so there exists g : H → G in GpdG such that
f ◦ g r∼ 1H and g ◦ f r∼ 1G. Hence (f ◦ g)|HG

r∼ 1HG and (g ◦ f)|GG
r∼ 1GG , so by the

lemma 2 above one has (f ◦ g)|HG = 1HG and (g ◦ f)|GG = 1GG and we conclude that
fGG : GG → HG is an isomorphism. Hence f induces a bijection between the set of
fixed points in G and the set of fixed points in H.

We prove (iv)⇒ (iii). It is straighforward using the fact that f is a levelwise weak
equivalence, in particular a fully faithful functor.

Next we prove (iii)⇒ (ii). Note that f|Gf
is bijective on objects since f|GG is by

assumption. Moreover f is fully faithful hence f|Gf
is an isomorphism.

Last we prove (ii)⇒ (i). Note that by 4.5.4 we can assume without loss of generality
that G is weakly connected. Let f : G → H in GpdG be a weak equivalence (it
means that f is a levelwise weak equivalence of groupoids) such that f induces an
isomorphism between Gf and Hf .
We start by proving one can assume that f is surjective. Indeed, first note that one
can factorize f through its image Im f , the full subgroupoid of H whose objects
are of the form f(x) for some x ∈ G. The groupoid Im f can be equipped with
an involution thanks to (the restriction of) θ the involution on H. Indeed, being
given y ∈ H such that there exists x ∈ G, f(x) = y then f(η(x)) = θ(f(x)) = θ(y),

hence θ(y) ∈ Im f . First we prove that the inclusion morphism Im f
i
↪→ H is a

projective trivial cofibration. Indeed since (Im f)f = Hf and Im f is equivalent to
H, we conclude by 4.3.8. So thanks to 4.5.2 this inclusion is a homotopy equivalence.
One concludes that f : G→ H is a homotopy equivalence if and only if G→ Im f
is (since the homotopy equivalences have the “2 out of 3” property). The morphism
G→ Im f is still a levelwise weak equivalence (since weak equivalences have the “2
out of 3” property) and this morphism still induces an isomorphism between Gf and
(Im f)f , since (Im f)f = Hf . So without loss of generality one can assume that our
map f : G → H in GpdG, which is a levelwise weak equivalence and induces an
isomorphism between Gf and Hf , is also surjective on objects (hence on morphisms).
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4 On the inadequacy of the projective model structure for univalence

One wants to prove that f is a homotopy equivalence. We will provide a morphism
g : H → G in GpdG such that f ◦ g = 1H and g ◦ f r∼ 1G. Also note we will use that
our projective model structure comes with functorial factorizations of any map as a
trivial cofibration followed by a fibration since the small object argument applies in
our model category (see for details ncatlab.org/nlab/show/path+space+object).
In the next we use the letter P to refer to our functorial path objects. To achieve
our goal we rely on Zorn’s lemma, namely we construct a preordered set of partial
homotopy equivalences then we apply Zorn’s lemma to get a maximal element and
last we prove that this maximal element is the required (total) homotopy equivalence.
One defines a set S as the set of triples

(G′ ⊆ G, g′ : f(G′)→ G′, h′ : G′ → PG′)

such that G′ is a full subgroupoid of G with η′ = η|G′ and Gf ⊆ G′ and the following
squares commute

f(G′)

�

g′ //
� l

��

G′

f ′:=f|G′

��
H

PG′

����
�

G′

h′

<<

<g′◦f ′, 1G′>
// G′ ×G′ .

Note that by f(G′) we denote the full subgroupoid of H whose objects are the
f(x)’s with x ∈ G′. Note this last groupoid is equipped with an involution, namely
θ|f(G′), since θ(f(x)) = f(η(x)) = f(η′(x)) with η′(x) ∈ G′ whenever x ∈ G′ (hence
θ(f(x)) ∈ f(G′)). The two commutative diagrams above mean respectively that g′ is
a partial section of f and h′ is a (right) homotopy between g′ ◦ f ′ and 1G′ . One can
provide S with the structure of a preordered set :

(G′, g′, h′) 6 (G′′, g′′, h′′) if and only if (G′ ⊆ G′′, g′′|f(G′) = g′,

G′

�

h′ //� _

��

PG′

��
G′′

h′′
// PG′′)

.

.
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• Reflexivity :

One has (G′, g′, h′) 6 (G′, g′, h′) since G′ ⊆ G′, g′|f(G′) = g′,

G′

�

h′ // PG′

G′
h′ // PG′.

.

• Transitivity :

Assume (G′, g′, h′) 6 (G′′, g′′, h′′) and (G′′, g′′, h′′) 6 (G′′′, g′′′, h′′′) then G′ ⊆
G′′ ⊆ G′′′ hence G′ ⊆ G′′′, and g′′′|f(G′′) = g′′, g′′|f(G′) = g′ hence g′′′|f(G′) = g′, last
the commutativity of the diagram with h′, h′′′ is obvious by functoriality of P .
So one concludes (G′, g′, h′) 6 (G′′′, g′′′, h′′′).

Let C ⊆ S be a chain of S i.e. C is a subset of S which is totally ordered by 6. One
has to distinguish two cases depending on the emptiness of C.

• First, assume that C = ∅. Takes G′ = Gf . In this case f(G′) = f(Gf ) = Hf

since f induces an isomorphism between Gf and Hf . Takes f−1
|Gf for g′ then

g′ ◦ f ′ = 1G′ and < g′ ◦ f ′, 1G′ >= ∆, hence takes for h′ the trivial cofibration
that comes with the path object PGf .

• Second, assume C 6= ∅. One takes G′C := colim
(G′,g′,h′)∈C

G′, more specifically G′C is

the full subgroupoid of G whose set of objects is given by

Ob(G′C) =
⋃

(G′,g′,h′)∈C

Ob(G′) .

This is easy to check that G′C contains Gf (since C 6= ∅) and is equipped with
the restriction of η as an involution.
In this case f(G′C) is the full subgroupoid of H whose set of objects is

Ob(f(G′C)) =
⋃

(G′,g′,h′)∈C

f(G′) .
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We are looking for g′C : f(G′C)→ G′C . For each (G′, g′, h′) ∈ C one has g′(G′,g′,h′)
from f(G′) to G′. Recall that a functor F : C → D from a category C to a
category D consists in the following functions:

F0 : Ob(C )→ Ob(D)
∀(x, y) ∈ Ob(C )2, F(x,y) : C (x, y)→ D(F0(x), F0(y))

such that

∀x ∈ Ob(C ), F(x,x)(1x) = 1F0(x)

∀(x, y, z) ∈ Ob(C )3, ∀(f, g), F(x,z)(g ◦ f) = F(y,z)(g) ◦ F(x,y)(f)

where in the last equation f goes from x to y and g from y to z.
In other words a functor is nothing than a bunch of functions satisfying some
conditions, hence the union below has to be understood as the functor whose
underlying functions are obtained by the union of the graphs of the functions
involved. With this in mind takes g′C =

⋃
(G′,g′,h′)∈C

g′ which makes sense since C

is totally ordered and for (G′, g′, h′) 6 (G′′, g′′, h′′) two elements of C , one has
g′′|f(G′) = g′.
One has the following commutative square,

f(G′C)
g′C //

� l

��

G′C

f

��

�

H .

Now we are looking for a homotopy h′C such that the following square commutes,

PG′C

����

�

G′C

h′C

99

<g′C◦f|G′
C
, 1G′

C
>

// G′C ×G′C .

For each (G′, g′, h′) ∈ C one has an inclusion G′ ↪−→ G′C , hence by functoriality
one has a map PG′ → PG′C and by precomposition of this last morphism with
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h′ : G′ → PG′ we get a map from G′ to PG′C . By taking the colimit over
these morphisms one gets a map h′C : G′C → PG′C satisfying the following
commutative square,

PG′C

����

�

G′C

h′C

99

<g′C◦f|G′
C
, 1G′

C
>

// G′C ×G′C .

(the commutativity of this square results from the fact that for each (G′, g′, h′) ∈
C one has the commutative square

PG′

����

�

G′

h′

88

<g′◦f|G′ , 1G′>
// G′ ×G′ .

and < g′C ◦ f|G′C , 1G′C >|G′=< g′ ◦ f|G′ , 1G′ >).
Moreover (G′, g′, h′) 6 (G′C , g

′
C , h

′
C) for each (G′, g′, h′) ∈ C since the diagram

G′

�

h′ //� _

��

PG′

��
G′C h′C

// PG′C

.

commutes by construction of h′C .

By Zorn’s lemma S has a maximal element (Gmax, gmax, hmax). We want to prove
that Gmax = G (it will follow that f is a homotopy equivalence).

Assume that Gmax 6= G. We can distinguish two cases:

• First, let assume that Gmax = ∅.
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Since Gmax 6= G then there exists x ∈ G such that x 6∈ Gmax and x is not a
fixed point since Gf ⊆ Gmax.
Now consider G̃ the full subgroupoid of G whose set of objects is
{x, η(x)}. This groupoid has a natural involution namely the restriction of η.
Since Gf ⊆ Gmax and f|Gf : Gf → Hf is an isomorphism, we conclude that
neither G nor H has a fixed point. We are looking for g̃ : f(G̃)→ G̃ such that,

f(G̃)
g̃ //

� k

��

G̃

f|G̃

��

�

H .

Note that f(G̃) is the full subgroupoid of H with objects f(x) and f(η(x)).
Since f is fully faithful, its restriction f|G̃ : G̃→ f(G̃) is an isomorphism from

G̃ to f(G̃). Thus take g̃ = [f|G̃]−1. Finally, we have a (right) homotopy between
g̃ ◦ f|G̃ and 1

G̃
since actually we have the equality g̃ ◦ f|G̃ = 1

G̃
.

• Second case, let us assume that Gmax 6= ∅.

Thanks to Gmax 6= G there exists x ∈ Ob(G)−Ob(Gmax). We denote by G̃ the
full subgroupoid of G generated by Ob(Gmax) ∪ {x, η(x)}. Note that x 6= η(x)
since Gf ⊆ Gmax.
We denote by Hmax the full subgroupoid of H generated by the set of objects
{f(z)|z ∈ Ob(Gmax)}.
We need to distinguish two cases depending on whether f(x) belongs to Hmax
or it does not.

– First, assume that f(x) /∈ Hmax.

One has f(x) /∈ Hf since Hf ⊆ Hmax. We denote by H̃ the full subgroupoid
ofH generated by Ob(Hmax)∪{f(x), θ(f(x))}. Note that Gmax 6= ∅, hence
let z denote an element of Gmax. By weak connectedness, there exist an
element y of {z, η(z)} and an isomorphism c in G from gmax(f(y)) to x.
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Thanks to lemma 4.5.5 the following square is a pushout square in GpdG,

S(1)
l //

� _

S(i)

��

Gmax

��

S(I)
k

// G̃

where with the notations of lemma 4.5.5 for the domain and codomain of
S(i) one has

l(0) = gmax(f(y)), l(1) = η(gmax(f(y)))

k(0) = l(0), k(1) = l(1), k(0′) = x, k(1′) = η(x)

k(φ) = c, k(ψ) = η(c).

Again thanks to lemma 4.5.5 the following square is a pushout square,

S(1)
l //

� _

S(i)

��

Hmax

��

S(I)
k

// H̃

where

l(0) = f(y), l(1) = θ(f(y))

k(0) = l(0), k(1) = l(1), k(0′) = f(x), k(1′) = θ(f(x))

k(φ) = f(c), k(ψ) = θ(f(c)).

Now we want to use the universal property of the pushout square above to
get g̃ as required. One has the following commutative square,

S(1)
l //

� _

S(i)

��

Hmax

ι◦gmax

��

S(I)
j

// G̃
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where ι is the inclusion from Gmax to G̃ and j is defined by

j(0) = gmax(l(0)), j(1) = η(j(0))

j(0′) = x, j(1′) = η(x)

j(φ) = c, j(ψ) = η(c).

Now thanks to the universal property of the pushout we get a map g̃ as
follows,

S(1)
l //

S(i)

��

Hmax� _

��
ι◦gmax

��

S(I)
k //

j
,,

H̃

g̃

!!
G̃ .

The reader can easily check that f ◦ g̃ is the inclusion from H̃ to H. Last,
we need to provide a homotopy h̃ between g̃ ◦ f|G̃ and 1

G̃
.

Recall that one has hmax : Gmax → PGmax such that

PGmax

�

����
Gmax

hmax

77

<gmax◦fmax, 1Gmax>
// Gmax ×Gmax

where fmax := f|Gmax .

Now, consider the following square,

Gmax
hmax //

� _

ι

��

PGmax
Pι // PG̃

����

G̃
<g̃◦f|G̃, 1

G̃
>

// G̃× G̃ .
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The inclusion ι from Gmax to G̃ is a trivial cofibration thanks to our
characterization of trivial cofibrations (see proposition 4.2.5). The above
square can be rewritten as

Gmax

<gmax◦fmax, 1Gmax>

..

hmax //
� _

ι

��

PGmax

��

����

Pι // PG̃

����

Gmax ×Gmax

''
G̃

<g̃◦f|G̃, 1
G̃
>

// G̃× G̃ .

To prove this square is commutative it suffices to prove that its bottom
triangle commutes,

Gmax
<gmax◦fmax, 1Gmax> //

� _

ι

��

Gmax ×Gmax

��

G̃
<g̃◦f|G̃, 1

G̃
>

// G̃× G̃

and this diagram indeed commutes since g̃|Hmax
= gmax

and (f|G̃)|Gmax = f|Gmax := fmax. So one has a diagonal filler h̃,

Gmax
hmax //

� _

ι

��

PGmax
Pι // PG̃

����

G̃

h̃

55

<g̃◦f|G̃, 1
G̃
>

// G̃× G̃

and h̃ is the homotopy we are looking for.
We have (Gmax, gmax, hmax) < (G̃, g̃, h̃) ∈ S which contradicts the maxi-
mality of (Gmax, gmax, hmax).
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4 On the inadequacy of the projective model structure for univalence

– Second case, assume that f(x) belongs to Hmax.

In this case the full subgroupoid ofH generated by Ob(Hmax)∪{f(x), θ(f(x))}
is still Hmax. We still denote by ι the inclusion from Gmax to G̃.
Take g̃ = ι ◦ gmax which makes the following square commutes,

Hmax
g̃ //

� k

��

G̃

f|G̃

��

�

H .

Note that we have a homotopy hmax,

PGmax

�

����
Gmax

hmax

55

<gmax◦fmax, 1Gmax>
// Gmax ×Gmax .

By a previous argument the following square commutes,

Gmax
hmax //

� _

ι

��

PGmax
Pι // PG̃

����

G̃
<g̃◦f|G̃, 1

G̃
>

// G̃× G̃ .

Since the inclusion ι is a trivial cofibration we get the desired homotopy h̃
as a diagonal filler,

Gmax
hmax //

� _

ι

��

PGmax
Pι // PG̃

����

G̃

h̃

55

<g̃◦f|G̃, 1
G̃
>

// G̃× G̃
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4.6 The failure of univalence

with (Gmax, gmax, hmax) < (G̃, g̃, h̃) which contradicts the maximality of
(Gmax, gmax, hmax).
Thus, eventually Gmax = G and (Gmax, gmax, hmax) exhibits f as a (right)
homotopy equivalence.

4.6 The failure of univalence
Now, we want to determine in our model the space of equivalences, i.e. we want to
determine the fibration denoted by E → U × U in GpdG that corresponds to the
interpretation of the dependent type

(A : Type), (B : Type) ` Equiv(A,B) type.

It will allow us to check if univalence holds for the universe of the previous section.

Notation 4.6.1. When Vκ is Gpd∆(Vκ) we denote UVκ (respectively ŨVκ) by U∆

(respectively Ũ∆) and p∆ : Ũ∆ → U∆ our universe. Recall that Gpd∆(Vκ) denotes the
univalent universe of κ-small discrete groupoids in the groupoid model of Hofmann
and Streicher.

Proposition 4.6.2. The set of objects of the fiber of E → U∆ × U∆ over a pair
(A,B) ∈ U∆ × U∆ is the set of isomorphisms in U∆ between A and B. Moreover,
the involution on E maps (A,B, ρ), where ρ is an isomorphism from A to B, to
(u(A), u(B), u(ρ)).

Proof. To achieve this goal we have to unfold all the interpretation of this judgement.
Recall that

Equiv(A,B) :=
∑

f :A→B
[ (

∑
s:B→A

∏
b:B

f(s(b)) = b)× (
∑

r:B→A

∏
a:A

r(f(a)) = a) ]

where f(s(b)) = b (resp. r(f(a)) = a) stands for the identity type IdB(f(s(b)), b)
(resp. IdA(r(f(a)), a)).

We shorten J(A : Type), (B : Type) ` Equiv(A,B) typeK by JEquiv(A,B)K
(and similary for other types). One has

JEquiv(A,B)K = JA→ BK ◦ J(
∑

s:B→A

∏
b:B

f(s(b)) = b)× (
∑

r:B→A

∏
a:A

r(f(a)) = a)K
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4 On the inadequacy of the projective model structure for univalence

where
JA→ BK : JType.Type.A→ BK� U × U

is the interpretation of the judgement

(A : Type), (B : Type) ` A→ B type.

Moreover

J(
∑

s:B→A

∏
b:B

f(s(b)) = b)× (
∑

r:B→A

∏
a:A

r(f(a)) = a)K :

JType.Type.A→ B.(
∑
−)× (

∑
−)K� JType.Type.A→ BK

is the interpretation of the following judgement

(A : Type), (B : Type), (f : A→ B) ` (
∑

s:B→A

∏
b:B

f(s(b)) = b)×(
∑

r:B→A

∏
a:A

r(f(a)) = a) type .

One has JA → BK = ΠJAKJBK where JAK : JType.Type.AK � U × U corresponds to
the interpretation of (A : Type), (B : Type) ` A type,

and JBK : JType.Type.A.BK � JType.Type.AK corresponds to the interpretation
of (A : Type), (B : Type), (a : A) ` B type.

Actually, JAK is the pullback of p along the first projection pr1,

U × Ũ pr2 //

JAK

����

Ũ

p

����
U × U pr1

// U

with JAK =< p ◦ pr2, pr1 >.
Moreover, JBK is the pullback of p along the first projection pr1,

Ũ × Ũ pr2 //

JBK

����

Ũ

p

����
U × Ũ pr1

// U
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4.6 The failure of univalence

with JBK =< p ◦ pr2, pr1 >.
Hence JA → BK = ΠJAKJBK : JType.Type.A → BK � U × U is such that above
(A,B) ∈ U × U there is the groupoid of partial sections s : JAK−1{(A,B)} → Ũ × Ũ
of JBK.

Next, note that :

J(
∑

s:B→A

∏
b:B

f(s(b)) = b)× (
∑

r:B→A

∏
a:A

r(f(a)) = a)K

= J
∑

s:B→A

∏
b:B

f(s(b)) = bK ◦ J
∑

r:B→A

∏
a:A

r(f(a)) = aK

with J
∑

r:B→A

∏
a:A

r(f(a)) = aK :

JType.Type.A→ B.
∑

s:B→A

∏
b:B

f(s(b)) = b.
∑

r:B→A

∏
a:A

r(f(a)) = aK

� JType.Type.A→ B.
∑

s:B→A

∏
b:B

f(s(b)) = bK

and J
∑

s:B→A

∏
b:B

f(s(b)) = bK :

JType.Type.A→ B.
∑

s:B→A

∏
b:B

f(s(b)) = bK� JType.Type.A→ BK.

Since these two expressions are very similar we determine only
J

∑
s:B→A

∏
b:B

f(s(b)) = bK.

Once again, J
∑

s:B→A

∏
b:B

f(s(b)) = bK = JB → AK ◦ J
∏
b:B

f(s(b)) = bK

where JB → AK : JType.Type.A→ B.B → AK� JType.Type.A→ BK

and J
∏
b:B

f(s(b)) = bK :

JType.Type.A→ B.B → A.
∏
b:B

f(s(b)) = bK� JType.Type.A→ B.B → AK.

One has
JB → AK = ΠJBKJAK
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4 On the inadequacy of the projective model structure for univalence

where
JBK : JType.Type.A→ B.BK� JType.Type.A→ BK

is the interpretation of

(A : Type), (B : Type), (f : A→ B) ` B type

and
JAK : JType.Type.A→ B.B.AK� JType.Type.A→ B.BK

is the interpretation of

(A : Type), (B : Type), (f : A→ B), (b : B) ` A type.

The morphism JBK is the pullback of p along pr2 ◦ JA→ BK,

JType.Type.A→ B.BK //

JBK

����

Ũ

p

����
JType.Type.A→ BK

pr2◦JA→BK
// U

where pr2 ◦ JA→ BK maps an element (A,B, s) to B. More explicitely above (A,B, s)
by JBK one has the elements of the form (A, Ḃ, s) where Ḃ denotes an element of Ũ
such that p(Ḃ) = B ∈ U . To be specific s is such that it maps an element of the form
(B, Ȧ) ∈ U×Ũ to an element s(B, Ȧ) ∈ Ũ×Ũ such that s(B, Ȧ) is of the form (Ȧ, Ḃ).

The morphism JAK is the pullback of p along the map :

pr1 ◦ JA→ BK ◦ JBK : JType.Type.A→ B.BK −→ U

(A, Ḃ, s) 7−→ A

JType.Type.A→ B.B.AK //

JAK

����

Ũ

p

����
JType.Type.A→ B.BK

pr1◦JA→BK◦JBK
// U
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4.6 The failure of univalence

so above (A, Ḃ, s) ∈ JType.Type.A → B.BK by JAK one has the elements of the
form (Ȧ, Ḃ, s).
Hence JB → AK : JType.Type.A → B.B → AK � JType.Type.A → BK is such that
above an element (A,B, s) ∈ JType.Type.A → BK there is the groupoid of partial
sections t,

JBK−1{(A,B, s)} t //
� r

$$

JType.Type.A→ B.B → AK

JAK

xx

�

JType.Type.A→ B.BK

in other words, such a section t maps an element of the form (A, Ḃ, s) to an element
of the form (Ȧ, Ḃ, s).

One has to determine J
∏
b:B

f(s(b)) = bK which is the interpretation of the judgement

(A : Type), (B : Type), (f : A→ B), (s : B → A) `
∏
b:B

f(s(b)) = b type .

One has
J
∏
b:B

f(s(b)) = bK =
∏
JBKJf(s(b)) = bK

where

JBK : JType.Type.A→ B.B → A.BK� JType.Type.A→ B.B → AK

is the interpretation of the judgement

(A : Type), (B : Type), (f : A→ B), (s : B → A) ` B type ,

and Jf(s(b)) = bK :
JType.Type.A→ B.B → A.B.f(s(b)) = bK� JType.Type.A→ B.B → A.BK

is the interpretation of

(A : Type), (B : Type), (f : A→ B), (s : B → A)(b : B) ` f(s(b)) = b type .
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4 On the inadequacy of the projective model structure for univalence

The morphism JBK is the pullback of p along the projection

JType.Type.A→ B.B → AK −→ U
(A,B, s, t) 7−→ B

JType.Type.A→ B.B → A.BK //

JBK

����

Ũ

p

����
JType.Type.A→ B.B → AK // U

in other words, JBK maps (A,B, s, t, b) to (A,B, s, t) with b ∈ B. The interpretation
of the judgement

(B : Type), (b : B), (b′ : B) ` b = b′ type

is given by the small fibration PU Ũ // // // Ũ ×U Ũ in the following diagram,

Ũ

∆=<id,id>
((

id

##

id

..

��

∼

��

� Ũ ×U Ũ // //

����

Ũ

p

����

PU Ũ

:: :: ::

Ũ p
// // U .

Now assume that the groupoids involved in the definition of U and Ũ are discrete, in
this case ∆ is itself a small fibration (i.e. an isofibration with κ-small fibers equipped

with a split cleavage), thus for PU Ũ // // // Ũ ×U Ũ on can choose ∆ itself. The
fibration Jf(s(b)) = bK is the pullback of ∆ : Ũ → Ũ ×U Ũ along the projection

JType.Type.A→ B.B → A.BK −→ Ũ ×U Ũ
(A, Ḃ, s, t) 7−→ (pr2[s(B, pr1[t(A, Ḃ, s)])], Ḃ)
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4.6 The failure of univalence

JType.Type.A→ B.B → A.B.f(s(b)) = bK //

Jf(s(b))=bK

���� ��

Ũ

∆

������

JType.Type.A→ B.B → A.BK // Ũ ×U Ũ

in other words JType.Type.A → B.B → A.B.f(s(b)) = bK consists in the tuples
(A, Ḃ, s, t) with A ∈ U , let say A := (A0, A1, ϕA), B ∈ U , let say B := (B0, B1, ϕB)
and s : A0 → B0, t : B0 → A0, such that s ◦ t = 1B0 , and Jf(s(b)) = bK maps such an
element (A, Ḃ, s, t) to itself.
Hence J

∏
b:B

f(s(b)) = bK =
∏
JBKJf(s(b)) = bK is such that above an element (A,B, s, t)

one has (A,B, s, t) itself if s ◦ t = 1B0 (otherwise the fiber is empty).
Last, above (A,B, s) by J

∑
s:B→A

∏
b:B

f(s(b)) = bK one has the right inverses of s (with s

seen as a morphism between the discrete groupoids A0 and B0). In the same way,
above (A,B, s) by J(

∑
s:B→A

∏
b:B

f(s(b)) = b) × (
∑

r:A→B

∏
a:A

r(f(a)) = a)K one has the

tuples (A,B, s, t, u) where t is a right inverse of s and u is a left inverse of s. But A0

and B0 being sets (discrete groupoids) one has t = u.
Finally, JEquiv(A,B)K is a fibration such that above (A,B) ∈ U × U one has
the isomorphisms in U between A and B. We can determine the involution on
E := dom(JEquiv(A,B)K).
Indeed, in order from the beginning, dom(JAK) = dom(< p ◦ pr2, pr1 >) is equipped
with the involution u× ũ on U×Ũ and dom(JBK) = dom(< p◦pr2, pr1 >) is equipped
with the involution ũ× ũ,
and dom(JA → BK) = dom(ΠJAKJBK) = JType.Type.A → BK is equipped with the
involution that maps (A,B, s) to (u(A), u(B), s′) where s′ maps an element of the
form (u(B), ˙u(A)) to ( ˙u(A), ˙u(B)), more specifically :

s′(u(B), ˙u(A)) = (ũ× ũ)(s(u× ũ(u(B), ˙u(A))))

= (ũ× ũ)(s(B, ũ( ˙u(A))))

= ( ˙u(A), ũ(Ḃ)).

Let determine the involution on dom(JB → AK) = JType.Type.A → B.B → AK.
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4 On the inadequacy of the projective model structure for univalence

One has dom(JB → AK) = dom(ΠJBKJAK) with dom(JBK) = JType.Type.A→ B.BK
equipped with the involution that maps (A, Ḃ, s) to (u(A), ũ(Ḃ), s′) with s′ as above.
Hence dom(JB → AK) = dom(ΠJBKJAK) = JType.Type.A → B.B → AK is equipped
with the involution that maps (A,B, s, t) to (u(A), u(B), s′, t′) with t′ such that the
following square commutes,

JBK−1{(u(A), u(B), s′)} t′ //
� s

&&

JType.Type.A→ B.B.AK

JAK

xx

�

JType.Type.A→ B.BK

in other words t′ maps an element of the form (u(A), ˙u(B), s′) to an element of
the form ( ˙u(A), ˙u(B), s′), to be specific this last element is the one you get by
applying the involution on JType.Type.A → B.B.AK to t(A, ũ( ˙u(B)), s), namely
(ũ(Ȧ), ũ( ˙u(B)), s′). Let determine the involution on

dom(J
∏
b:B

f(s(b)) = bK) = dom(
∏
JBKJf(s(b)) = bK).

First, the involution on dom(JBK) = JType.Type.A→ B.B → A.BK maps (A,B, s, t, b)
to (u(A), u(B), s′, t′, ϕB(b)) where B := (B0, B1, ϕB) and b ∈ B0. The involution on
dom(Jf(s(b)) = bK) = JType.Type.A→ B.B → A.B.f(s(b)) = bK maps (A, Ḃ, s, t) to
(u(A), ũ(Ḃ), s′, t′).
Last, the involution on E maps (A,B, ρ), where ρ = (ρ0, ρ1) is an isomorphism in U
between A and B, to (u(A), u(B), (ρ1, ρ0)) = (u(A), u(B), u(ρ)).

Proposition 4.6.3. Univalence does not hold for our universe p∆ : Ũ∆ → U∆ in the
projective type-theoretic fibration category GpdG

proj.

Proof. Recall that according to [14] (see part 7 on the univalence axiom) and our
proposition 4.6.2 the morphism U → E is defined as follows,

U −→ E
A 7−→ (A,A, 1A)

i.e. it maps an object A to the identity isomorphism of A in U . Note that this
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morphism is not surjective on the fixed points of E. Indeed, it is easy to find a fixed
point (A,B, ρ) of E such that ρ 6=id.
For instance, take A := (N,N, 1N), B := (2N, 2N, 12N)

and ρ = (N
∼=−→ 2N,N

∼=−→ 2N) where N
∼=−→ 2N is the bijection that maps n to 2n, then

(A,B, ρ) is a fixed point of E where ρ is not the identity, so (A,B, ρ) does not belong
to the image of the morphism above. Note that we can even take A = B and still find
a fixed point of E that does not belong to the image of our map U → E. Indeed, take
A = B := (Z,Z, 1Z) and ρ = (Z

∼=−→ Z,Z
∼=−→ Z) where Z

∼=−→ Z is the bijection that
maps n to −n. According to 4.5.6 the map U → E is not a homotopy equivalence, so
univalence does not hold in our model.

4.7 The failure of function extensionality

For some details about the meaning of function extensionality in a type-theoretic
fibration category see (5.8) in [14]. In particular, following Shulman, function exten-
sionality in the internal language of a type-theoretic fibration category means that for
every fibrations f : P � X and g : X � A, there is a map

Πg(iscontrX(P ))→ iscontrA(ΠgP ).

.

Proposition 4.7.1. Function extensionality does not hold in the internal type theory
of our projective type-theoretic fibration category GpdG

proj.

Proof. According to lemma 5.9 in [14] (be aware that in this lemma an acyclic fibration
means a fibration which is also a homotopy equivalence), it suffices to prove that there
exists a fibration g and a fibration f such that f is a homotopy equivalence and Πgf
is not a homotopy equivalence. In order to achieve this, take g : S(1) → 1! where
we recall that S(1) is the discrete groupoid with two objects 0 and 1 equipped with
the involution that swaps the two points. Note that g is a fibration since all objects
are fibrant in GpdG. Take f : S(I) → S(1) where we recall that S(I) denotes the
following groupoid

0

φ
��

1

ψ
��

0′ 1′

with the swap involution and f is defined by f(0) = f(0′) = 0,
f(φ) = 10, f(1) = f(1′) = 1 and f(ψ) = 11. The reader can easily check that
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4 On the inadequacy of the projective model structure for univalence

f is compatible with the involution, f is fully faithful and surjective (and so is a
trivial fibration in GpdG) and f restricted to fixed points is the identity (since
(S(I))f = (S(1))f = 0). So, according to 4.5.6, f is a homotopy equivalence. Now,
since Πgf : dom(Πgf)→ 1! and (1!)f = 1 it suffices to prove that dom(Πgf) has at
least two fixed points. A fixed point of dom(Πgf) is a couple (∗, s) where

S(1)
s // S(I)

f

��

�

S(1)

with πgf(s) = s. In other words, s is a section of f such that πgf(s) = s. But we
have two such sections s1 and s2, indeed take

s1 : S(1) −→ S(I)
0 7−→ 0
1 7−→ 1

one has f ◦ s1 = 1 and

{
s1(0) = swap(s1(1))

s1(1) = swap(s1(0))

where swap denotes the swap involution on S(I), so πgf(s1) = s1 and

s2 : S(1) −→ S(I)
0 7−→ 0′

1 7−→ 1′

one has f ◦ s2 = 1 and

{
s2(0) = swap(s2(1))

s2(1) = swap(s2(0))
so πgf(s2) = s2.

Remark 4.7.2. We recall that the univalence axiom implies function extensionality
(cf [17]). Note that the above proposition involving non-discrete groupoids does not
give us a proof that univalence does not hold in our universe of discrete groupoids
equipped with involution. This is the reason why our characterization of homotopy
equivalences in 4.5.6 was mandatory. Also note that according to Remark 5.10 in [14]
function extensionality holds in the type-theoretic fibration category Gpd, so we have
broken function extensionality.
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4.8 Conclusion
This chapter that treats the case of groupoids equipped with an involution gives
support for drawing the conclusion that the projective model structure is not suitable
for univalence. This is essentially due to homotopy equivalences being very strong in
the projective setting.
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5 A univalent model in the injective
type-theoretic fibration category
GpdG

inj

So far, known models of Voevodsky’s Univalence Axiom in functor
categories have not allowed the existence of a non-trivial isomorphism in
the index category. In this chapter we remedy this limitation by giving a
model with one univalent universe in the injective type-theoretic fibration
category GpdG

inj, namely the type-theoretic fibration structure on
GpdG provided by the subcategory given by the injective fibrations.

5.1 Organization

We try to remedy the limitation on the index category by looking at one of the
simplest index category with a non-trivial automorphism, namely B(Z/2Z) (recall
that according to our notations we denote for convenience in the rest of this chapter
this category simply by G). We consider the category of groupoids Gpd as a simple
target category. Thus, like the previous chapter we consider the presheaf category
GpdG. Recall this presheaf category is nothing but the category of groupoids with
involution and equivariant functors between them. We endow this presheaf category
with the injective fibrations, in particular in the first section 5.2 we give a proof of
the fact that the full-subcategory of injectively fibrant objects of GpdG equipped
with the subcategory given by injective fibrations between fibrant objects is a type-
theoretic fibration category. We denote this injective type-theoretic fibration category
by GpdG

inj. In the section 5.3 we give a fairly explicit description of the injective
fibrations. In section 5.4 we equip the injective type-theoretic fibration category
GpdG

inj with a univalent universe.
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5 A univalent model in the injective type-theoretic fibration category GpdG
inj

5.2 The injective type-theoretic fibration
category GpdG

inj

Proposition 5.2.1. Assume one has a category C equipped with a distinguish class
of morphisms called fibrations such that C is locally presentable and satisfies the
additional assumption that for every fibration g : A � B, the pullback functor
g? : C /B → C /A has a right adjoint Πg. Moreover, assume that D is any small
category. Then for any levelwise fibration g : A� B in [D,C ] the pullback functor
g? : [D,C ]/B → [D,C ]/A has a right adjoint Πg.

Proof. Since C is locally presentable and local presentability is preserved by taking
functor category over any small category and is also preserved by slicing, in order to
have a right adjoint it is enough that g? : [ D,C ]/B → [ D,C ]/A preserves small
colimits. So, let E be any small category and F : E → [ D,C ]/B any functor such
that colimF exists in [D,C ]/B. One wants to prove that

g?(colimF ) ∼= colim(g? ◦ F ) .

Due to the nature of a colimit in a slice category it is enough to check that
dom(g?(colimF )) ∈ [D,C ] is (isomorphic to) colim(dom ◦ g? ◦ F ), where
dom : [D,C ]/A→ [D,C ] is the domain functor.
Now, since colimits in a presheaf category are pointwise, i.e. for every d ∈ D,

[ colim (dom ◦ g? ◦ F ) ](d) ∼= colim
e

[ dom(g?(F (e)))(d) ] ,

it is enough to check that dom(g?(colimF ))(d) ∼= colim
e

[ dom(g?(F (e)))(d) ].
But pullbacks are pointwise (like any limit) so

dom(g?(colimF ))(d) ∼= dom(g?d(colimF )d) .

Now by assumption on C and the fact that gd is a fibration, g?d has a right adjoint
and so it preserves colimits.
Moreover, one has (colimF )d ∼= colim

e
(F (e))d.

Indeed, to prove that (colimF )d ∼= colim
e

(F (e))d in C /B(d) it suffices to prove that
dom((colimF )d) = dom(colimF )(d) ∈ C is the colimit colim

e
dom(F (e)d), but one

has dom(colimF ) ∼= colim (dom ◦ F ) ∈ [D,C ], so we conclude
dom(colimF )(d) ∼= colim

e
(dom(F (e))(d)) = colim

e
(dom(F (e)d)).
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inj

As a consequence one has

g?d (colimF )d ∼= g?d[ colime (F (e))d ]

∼= colim
e

[ g?d (F (e))d ],

and finally,

dom(g?d (colimF )d) ∼= dom(colim
e

g?d (F (e))d)

∼= colim
e

[ dom(g?d (F (e))d) ]

∼= colim
e

[ dom(g? F (e)) (d) ] .

Remark 5.2.2. By taking C = Gpd and D = B(Z/2Z), the proposition 5.2.1 gives
us a proof that the pullback functor along any injective fibration (indeed injective
fibrations are in particular levelwise fibrations) has a right adjoint. But note that in
this specific case the construction of the right adjoint in chapter 4 (see 4.3.4) is still
valid because right adjointness is a categorical notion, hence does not depend on the
choice of the class of fibrations, moreover for any fibration g : A� B the right adjoint
Πg constructed there still maps injective fibrations over A to injective fibrations over
B. Indeed, this is equivalent to the fact that the pullback functor g∗ preserves injective
trivial cofibrations, and this is the case since injective trivial cofibrations are levelwise,
injective fibrations are in particular levelwise fibrations, pullbacks are pointwise and
this fact is true in Gpd (see 4.3.1). So it proves the required condition (4) in 3.2.1.

Proposition 5.2.3. Let C be a type-theoretic model category whose underlying model
category is combinatorial, and let I be any small category. The injective model category
[I,C ] is a type-theoretic model category.

Proof. By assumption trivial cofibrations (between fibrant objects) are preserved
by pullbacks along any fibration (between fibrant objects) in the target category C ,
since pullbacks are pointwise, injective trivial cofibrations are levelwise and injective
fibrations are in particular levelwise fibrations, we conclude the first required condition
for the injective structure on [I,C ].
Last, since the underlying category of C is locally presentable and injective fibrations
are in particular levelwise fibrations, by applying 5.2.1 we conclude that the pullback
functor g∗ along any fibration has a right adjoint Πg.
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Proposition 5.2.4. The full subcategory of injectively fibrant objects of GpdG,
namely GpdG

f , equipped with the subcategory given by injective fibrations between
fibrant objects is a type-theoretic fibration category.

Proof. It follows from the fact that the injective model structure on GpdG provides
a type-theoretic model category. Indeed, since Gpd is combinatorial we can apply
5.2.3 and the proposition 3.2.4 in chapter 3 allows us to conclude.

Remark 5.2.5. Since Quillen’s model category sSetQuillen is a type-theoretic model
category whose underlying category is combinatorial, the proposition 5.2.3 gives us a
whole class of models of type theory with

∑
,
∏

and Id-types by taking the full subcate-
gory of injectively fibrant objects. Namely we have such a model in [ I, sSetQuillen ]f ,
where I is any small category. This class of models has already been noticed by
Shulman (last bullet of Examples 2.16 in [14]).

5.3 The injective fibrations in GpdG made
explicit

Remark 5.3.1. Note that we cannot hope without further restrictions on the universe
Vκ in Gpd that the map p : Ũ → U as defined in 4.4 is an injective fibration between
injectively fibrant objects. Indeed, the map Ǐ → 1! is a split isofibration with small
fibers after the forgetting of the involutions, so this map is a small projective fibration,
i.e. a pullback of p. But this map is not an injective fibration (cf. the proof of 5.3.2
below), hence p cannot be an injective fibration.

Remark 5.3.2. Consider the presheaf category GpdG. There exists a projective
fibration in GpdG which is not an injective fibration.
Indeed, consider the map Ǐ ↪→

`
. We recall (see 1.3) that Ǐ is the following groupoid

0
φ // 1

with the involution that maps φ to φ−1, and
`

is the following groupoid

0
φ //

�

��

1

ψ��
2
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with the involution that maps φ to φ−1 and ψ to ψ ◦ φ. Since the inclusion Ǐ ↪→
`

is
an equivalence of groupoids and an injective-on-objects functor, this is an injective
trivial cofibration in GpdG. Note also that every object being fibrant in GpdG with
respect to the projective model structure, the morphism Ǐ→ 1! is a projective fibration
in GpdG. Now, consider the following lifting problem in GpdG :

Ǐ � _

��

Ǐ

��`
// 1! .

A lift cannot exist, since the fixed point 2 of
`

should be mapped to a fixed point in
Ǐ but such a fixed point does not exist. So the morphism Ǐ → 1 is not an injective
fibration in GpdG.

Notation 5.3.3. We denote by i′ the inclusion in GpdG of remark 5.3.2:

Ǐ ↪→
`
.

Also remember we denote by i (see exemple 2.3.15) the generating trivial cofibration
in Gpd with its natural model structure and by S(i) (see section 4.2 in chapter 4)
the corresponding generating projective trivial cofibration in GpdG.

5.3.1 An explicit set of generating trivial cofibrations

Proposition 5.3.4. Let f be a map in the injective type-theoretic fibration category
GpdG

inj, the following are equivalent :

(i) f is a trivial cofibration.

(ii) f is a transfinite composition of pushouts with elements in {S(i), i′}.

Proof. The implication (ii) ⇒ (i) is clear since S(i) and i′ are levelwise trivial
cofibrations and so they are injective trivial cofibrations. The stability of trivial
cofibrations by pushouts and transfinite compositions allows to conclude.
Conversely, let f : A → B be a trivial cofibration. Note that f is a levelwise
trivial cofibration, hence f is an injective-on-objects equivalence, meaning that f is
(isomorphic to) the inclusion of a full subgroupoid of B which is equivalent to B.
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We define a set S whose set of objects are pairs (λ,X) with λ any ordinal and X
any λ-sequence in Push({S(i), i′}) with X0 = A, moreover for every κ 6 λ one has
Xκ ⊆ B (with the involution on Xκ being the restriction of the involution β on B).
We provide S with the structure of a preordered set as follows,

(λ,X) 6 (λ′, X ′) iff λ 6 λ′ and X ′|[0,λ] = X.

Note that S is a non-empty set. Indeed, (0, X) with X0 := A is an element of S.
Let C be a non-empty chain of S. By using the universal property of the colimit
colimλ

(λ,Xλ)∈C
one gets a sequence denoted (

⋃
(λ,Xλ∈C)

Xλ) from [0, colimλ
(λ,Xλ)∈C

] to GpdG,

[0, λ]

Xλ

��

��
...

��
[0, λ′]

Xλ′

%%

��
...

��
[0, colim

(λ,Xλ)∈C
λ] // GpdG .

Clearly ( colim
(λ,Xλ)∈C

λ,
⋃

(λ,Xλ)∈C

Xλ) is an element of S and (λ,Xλ) 6 ( colim
(λ,Xλ)∈C

λ,
⋃

(λ,Xλ)∈C

Xλ)

for every (λ,Xλ) ∈ C.
By Zorn’s lemma one gets a maximal element in S denoted (λmax, X

max). It suffices
to prove that Xmax

λmax
is (isomorphic to) B. Assume this is not the case. Since Xmax

λmax
is a full subgroupoid of B, there exists an object x of B such that x is not an object
of Xmax

λmax
.

We define a (λmax + 1)-sequence X as follows. Take X|[0,λmax] := Xmax and the
definition of Xλmax+1 depends on x. Indeed, by essential surjectivity of f there exists
y ∈ A ⊆ Xmax

λmax
and a morphism φ in B from y to x .

If x is not a fixed point then φ is not a fixed morphism and we get Xλmax+1 as a
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subgroupoid of B by taking the following pushout,

S(1)
y //

� _

S(i)

��

Xmax
λmax

��
S(I) // Xλmax+1 .

Otherwise, x is a fixed point then, if φ is a fixed morphism (hence note that y is a
fixed point) one defines Xλmax+1 by the following pushout,

Ǐ
idy //� _

i′

��

Xmax
λmax

��`
// Xλmax+1 ,

otherwise φ is not a fixed morphism and one defines Xλmax+1 by the following pushout,

Ǐ //� _

i′

��

Xmax
λmax

��`
// Xλmax+1 ,

where the upper horizontal morphism maps the unique non-trivial isomorphism in Ǐ
to β(φ)−1 ◦ φ.
In all cases Xλmax+1 is a subgroupoid of B and (λmax + 1, X) is an element of S
satisfying (λmax, X

max) < (λmax+1, X) contradicting the maximality of (λmax, X
max).

So one concludes that Xmax
λmax

is (isomorphic to) B and f is a transfinite composition
of pushouts in {S(i), i′}.

Proposition 5.3.5. Let f be a morphism in the injective type-theoretic fibration
category GpdG

inj, the following are equivalent :

(i) f is a fibration.

(ii) f has the right lifting property with respect to the elements of the set {S(i), i′}.
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Proof. Straightforward with the previous proposition.

Remark 5.3.6. The above proposition 5.3.5 will be a useful tool to prove the fibrancy
of our expected universe.

5.4 A univalent model in the injective
type-theoretic fibration category GpdG

inj

5.4.1 A universe

Remark 5.4.1. Recall that, according to remark 5.3.1 and proposition 5.3.2, we need
to introduce some restrictions on Vκ in the construction of p : Ũ → U to get a universe
in our injective setting.

Notation 5.4.2. We recall (see 4.4) that when Vκ is Gpd∆(Vκ) we denote UVκ
(respectively ŨVκ) by U∆ (respectively Ũ∆) and p∆ : Ũ∆ → U∆ our candidate for
universe.

Lemma 5.4.3. The morphism p∆ : Ũ∆ → U∆ in GpdG is an injective fibration.

Proof. Thanks to 5.3.5 it suffices to prove that p∆ has the right lifting property
with respect to S(i) and i′. We know that p∆ has the right lifting property against
S(i). Indeed, p∆ is a projective fibration and S(i) is a (generating) projective trivial
cofibration.
Assume we have a lifting problem in GpdG as follows :

Ǐ � _

i′

��

f // Ũ∆

p∆

��`
g

// U∆ .
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Assume f(0) is the tuple (A0, A1, x, χ), then f(1) = ũ∆(f(0)) = (A1, A0, χ(x), χ−1).
Assume f(φ) is the tuple (ρ0, ρ1, idχ(x), id), it means that the following square com-
mutes

χ //

ρ0

��

ρ1

��
χ−1

// .

Since f is compatible with the involutions, we have
f(φ−1) = ũ∆(f(φ)). But ũ∆(f(φ)) = (ρ1, ρ0, idx, id) and
f(φ−1) = f(φ)−1 = (ρ0, ρ1, idχ(x), id)−1 = (ρ−1

0 , ρ−1
1 , idρ1(χ(x)), id).

So one has the equalities ρ1 = ρ−1
0 and ρ1(χ(x)) = x.

One has p∆(f(0)) = g(0), p∆(f(1)) = g(1), p∆(f(φ)) = g(φ).
Assume g(2) is the tuple (C0, C1, η) and g(ψ) : g(1)→ g(2) is the tuple (τ0, τ1, id). It
means that the following square commutes,

χ−1
//

τ0

��

τ1

��
η

// .

Moreover since g is compatible with the involutions, it means that g(ψ◦φ) = u∆(g(ψ)).
But u∆(g(ψ)) = u∆(τ0, τ1, id) = (τ1, τ0, id) and one has
g(ψ ◦ φ) = g(ψ) ◦ g(φ) = (τ0, τ1, id) ◦ (ρ0, ρ1, id) = (τ0 ◦ ρ0, τ1 ◦ ρ1, id). So one has the
equality τ0 ◦ ρ0 = τ1. Note that g(2) is fixed in U∆ (since 2 is a fixed point), hence
C1 = C0 and η is an involution. Now we define a morphism

j :
`
−→ Ũ∆

in GpdG as follows. Take j(φ) = f(φ). We need to define j(2) and j(ψ) such that
p∆(j(2)) = g(2), p∆(j(ψ)) = g(ψ) and j(2) has to be a fixed point and j(ψ) has to
satisfy the equality j(ψ) ◦ j(φ) = j(ψ ◦ φ) = ũ∆(j(ψ)).
Take j(2) = (C0, C0, τ0(ρ0(x)), η). Indeed, one has the following equalities

η(τ0(ρ0(x))) = τ1(χ−1(ρ0(x)))

= τ0(ρ0(χ−1(ρ0(x))))

= τ0(ρ0(ρ1(χ(x))))

= τ0(ρ0(x)) .
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So j(2) is a fixed point in Ũ∆. Finally, take j(ψ) = (η ◦ τ0, τ0 ◦ χ, id, id), indeed
τ0 ◦ χ = η ◦ η ◦ τ0 ◦ χ and η(τ0(χ(x))) = τ1(χ−1(χ(x))) = τ1(x) = τ0(ρ0(x)). So j(ψ)
is a map from j(1) = f(1) = (A0, A1, χ(x), χ−1) to j(2) = (C0, C0, τ0(ρ0(x)), η).
We have the following equalities,

j(ψ ◦ φ) = j(ψ) ◦ j(φ)

= (η ◦ τ0, τ0 ◦ χ, id, id) ◦ f(φ)

= (η ◦ τ0, τ0 ◦ χ, id, id) ◦ (ρ0, ρ1, id, id)

= (η ◦ τ0 ◦ ρ0, τ0 ◦ χ ◦ ρ1, id, id)

= (η ◦ τ1, η ◦ τ1 ◦ ρ1, id, id)

= (η ◦ τ1, η ◦ τ0, id, id)

= (τ0 ◦ χ, η ◦ τ0, id, id)

= ũ∆(η ◦ τ0, τ0 ◦ χ, id, id)

= ũ∆(j(ψ)) .

The map j is a diagonal filler for our lifting problem.

Lemma 5.4.4. The objects Ũ∆ and U∆, equipped with their involutions ũ∆ and u∆

respectively, are two injectively fibrant objects in GpdG.

Proof. We start with U∆. It suffices to prove that the unique morphism from U∆ to
the terminal object 1! has the right lifting property with respect to S(i) and i′.
First, assume we have the following lifting problem :

Ǐ � _

i′

��

f // U∆

��`
// 1! .

Assume f(0) is the tuple (A0, A1, χ), so f(1) is the tuple
u∆(A0, A1, χ) = (A1, A0, χ

−1). Also assume f(φ) is the tuple (ρ0, ρ1, id), it means
that the following square commutes

χ //

ρ0

��

ρ1

��
χ−1

// .
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By compatibility of f with the involutions, one has f(φ−1) = u∆(f(φ)).
But one has the equalities f(φ−1) = f(φ)−1 = (ρ0, ρ1, id)−1 = (ρ0

−1, ρ1
−1, id) and

u∆(f(φ)) = u∆(ρ0, ρ1, id) = (ρ1, ρ0, id). So one has ρ1 = ρ−1
0 . Take j(φ) = f(φ) and

j(2) = (A0, A0, ρ1 ◦ χ). Indeed, ρ1 ◦ χ is an involution since

(ρ1 ◦ χ)−1 = χ−1 ◦ ρ−1
1

= χ−1 ◦ ρ0

= ρ1 ◦ χ ,

so j(2) is a fixed point in U∆. Now, take j(ψ) = (χ−1, ρ1 ◦ χ, id). Indeed, this is a
morphism from j(1) = f(1) to j(2). We need to check that j(ψ ◦ φ) = u∆(j(ψ)). But
one has the following equalities,

j(ψ ◦ φ) = j(ψ) ◦ j(φ)

= (χ−1, ρ1 ◦ χ, id) ◦ (ρ0, ρ1, id)

= (χ−1 ◦ ρ0, ρ1 ◦ χ ◦ ρ1, id)

and

u∆(j(ψ)) = u∆(χ−1, ρ1 ◦ χ, id)

= (ρ1 ◦ χ, χ−1, id)

= (χ−1 ◦ ρ0, ρ1 ◦ χ ◦ ρ1, id).

So j is a diagonal filler for our lifting problem.
Second, U∆ is a projectively fibrant object and so U∆ → 1! has the right lifting
problem with respect to S(i) since S(i) is in particular a projective trivial cofibration.
Now recall from lemma 5.4.3 that p∆ : Ũ∆ → U∆ is an injective fibration, moreover
fibrations are closed by composition, hence we deduce the fibrancy of Ũ∆ from the
fibrancy of U∆,

Ũ∆

��

p∆

����
U∆

// // 1! .
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Theorem 5.4.5. The map p∆ : Ũ∆ → U∆ is a universe in the injective type-theoretic
fibration category GpdG

inj.

Proof. It follows from 5.4.3 and 5.4.4, plus the fact that p∆ : Ũ∆ → U∆ is a universe
in the projective type-theoretic fibration category GpdG hence conditions (i),(ii) and
(iii) of definition 3.3.1 have already been checked since pullbacks of p∆, namely the
small fibrations, are the same in the injective setting.

Corollary 5.4.6. The category (GpdG)f hosts a model of type theory with
∑

,
∏

and Id-types plus a universe (for each inaccessible cardinal κ).

Proof. Assuming the initiality of the syntactic category of type theory, this is 5.2.4
plus 5.4.5.

5.4.2 The univalence property of our universe

We now move on to constructing some specific injective path objects in GpdG (more
generally in the slice category GpdG/C for any C ∈ Ob(GpdG)).
Let f : A→ C be a morphism in GpdG, by the universal property of the pullback
one gets the diagonal morphism δ as follows :

A
δ

##

id

��

id

&&

A×c A //

��

A

f

��
A

f
// C .

We define a groupoid PcA equipped with an involution πcA as follows. The objects of
the groupoid PcA are tuples (x, y, ϕ) where x, y ∈ A and ϕ : x→ y is an isomorphism
in A such that f(x) = f(y) and f(ϕ) = 1f(x) = 1f(y). A morphism in PcA between
(x, y, ϕ) and (x′, y′, ϕ′) is a couple (σ, τ) where σ : x→ x′ is an isomorphism in A, and
τ : y → y′ is an isomorphism in A such that f(σ) = f(τ) and ϕ′ = τ ◦ ϕ ◦ σ−1. Let
(σ, τ) : (x, y, ϕ)→ (x′, y′, ϕ′) and (σ′, τ ′) : (x′, y′, ϕ′)→ (x′′, y′′, ϕ′′) be two composable
morphisms in PcA. We define the composition (σ′, τ ′) ◦ (σ, τ) : (x, y, ϕ)→ (x′′, y′′, ϕ′′)
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as (σ′ ◦ σ, τ ′ ◦ τ). The reader can easily check that f(σ′ ◦ σ) = f(τ ′ ◦ τ) and
(τ ′ ◦ τ) ◦ ϕ ◦ (σ′ ◦ σ)−1 = ϕ′′. Of course this composition is associative by the
associativity of the composition in A. The inverse of the morphism (σ, τ) is (σ−1, τ−1).
Define the involution πcA on PCA as follows :

πcA : PCA −→ PCA
(x, y, ϕ) 7−→ (α(x), α(y), α(ϕ))

(σ, τ) 7−→ (α(σ), α(τ))

where α is the involution on A. We define δ1, δ2 in GpdG as the following morphisms,

δ1 : A −→ PCA
x 7−→ (x, x, 1x)
ϕ 7−→ (ϕ,ϕ)

δ2 : PCA −→ A×c A
(x, y, ϕ) 7−→ (x, y)

(σ, τ) 7−→ (σ, τ) .

The morphisms δ1 and δ2 are compatible with the involutions (α on A, πcA on PcA,
α× α on A×c A) and so they are really morphisms in GpdG. Moreover we have the
factorization δ = δ2 ◦ δ1.

Proposition 5.4.7. Being given f : A→ C in GpdG, PcA with its involution πcA
as constructed above is a path object in the injective type-theoretic fibration category
GpdG

inj.

Proof. It suffices to prove that δ1 is an injective trivial cofibration and δ2 is an injective
fibration. We start with δ1. It suffices to prove that δ1 is a trivial cofibration in
Gpd. Clearly it is an injective-on-objects functor. The morphism δ1 is essentially
surjective. Indeed let (x, y, ϕ) be an element of PcA then (ϕ−1, 1y) is a morphism in
PcA between δ1(y) = (y, y, 1y) and (x, y, ϕ).
It remains to prove that δ1 is a fully faithful functor. Since for every morphism (σ, τ)
in PcA between (x, x, 1x) and (y, y, 1y) one has 1y = τ ◦ 1x ◦ σ−1, we conclude that
σ = τ . So for every x, y ∈ A the morphism A(x, y)→ PcA(δ1(x), δ1(y)) induced by
δ1 is a bijection.
It remains to prove that δ2 is an (injective) fibration. First, the morphism δ2 has
the right lifting property with respect to S(i). Indeed, δ2 is a projective fibration,
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namely δ2 is an isofibration between groupoids. In order to prove this, let (σ, τ) :
(x, y) → (x′, y′) be a morphism in A ×c A and (x, y, ϕ) be an element of PcA such
that δ2(x, y, ϕ) = (x, y), then (σ, τ) : (x, y, ϕ)→ (x′, y′, τ ◦ϕ ◦σ−1) is an isomorphism
in PcA that lies above (σ, τ) in A×c A by δ2.
Last, consider the following lifting problem :

Ǐ � _

i′

��

g // PcA

δ2

��`
h
// A×c A .

We define a morphism j :
`
−→ PcA in GpdG as follows. Take j(φ) = g(φ). Let us

assume that g(φ) is (σ, τ) : (x, y, ϕ)→ (α(x), α(y), α(ϕ)).
Note that (σ, τ)−1 = (σ−1, τ−1) = (α(σ), α(τ)) and α(ϕ) = τ ◦ ϕ ◦ σ−1, since
g(φ−1) = πcA(g(φ)). Moreover, denote h(2) by (x′′, y′′) and h(ψ) : h(1)→ h(2) with
δ2(g(1)) = h(1) by (σ′′, τ ′′) : (α(x), α(y), α(ϕ))→ (x′′, y′′, τ ′′ ◦ α(ϕ) ◦ σ′′−1). Also, by
compatibility of h with the involutions one has

(σ′′, τ ′′) ◦ (σ, τ) = h(ψ) ◦ h(φ) = h(ψ ◦ φ) = (α× α)(h(ψ)) .

Hence one has (σ′′ ◦σ, τ ′′ ◦ τ) = (α(σ′′), α(τ ′′)), so σ′′ ◦σ = α(σ′′) and τ ′′ ◦ τ = α(τ ′′).
In particular, α(x′′) = x′′ and α(y′′) = y′′, i.e. x′′, y′′ are two fixed points in A. Take
j(2) = (x′′, y′′, τ ′′ ◦ α(ϕ) ◦ σ′′−1), this is a fixed point in PcA since

α(τ ′′ ◦ α(ϕ) ◦ σ′′−1) = α(τ ′′) ◦ ϕ ◦ α(σ′′)−1

= τ ′′ ◦ τ ◦ ϕ ◦ σ−1 ◦ σ′′−1

= τ ′′ ◦ α(ϕ) ◦ σ′′−1 .

Finally, take j(ψ) = (σ′′, τ ′′) : (α(x), α(y), α(ϕ))→ (x′′, y′′, τ ′′ ◦ α(ϕ) ◦ σ′′−1), indeed
one has j(ψ ◦ φ) = πcA(j(ψ)), since (σ′′ ◦ σ, τ ′′ ◦ τ) = (α(σ′′), α(τ ′′)) = πcA(σ′′, τ ′′) .
So j is a diagonal filler for the above lifting problem in GpdG. Hence thanks to 5.3.5
δ2 is an injective fibration.

Proposition 5.4.8. If f : A → C is an injective fibration in GpdG and A is
injectively fibrant then PCA is injectively fibrant.
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Proof. First, we prove that the first projection pr1 : A ×C A → A is an injective
fibration. Consider the following lifting problem,

B
g //

��

∼k

��

A×C A

pr1

��
D

h
// A ,

where k is any injective trivial cofibration. We can display the following lifting problem
with respect to f ,

B
g //

��

∼k

��

A×C A

pr1

��

pr2 // A

f

����
D

h
// A

f
// // C .

Since f is a fibration there exists a diagonal filler j1 as follows,

B
g //

��

∼k

��

A×C A

pr1

��

pr2 // A

f

����
D

h
//

55

A
f

// // C .

Now using h, j1 and the universal property of the pullback square, one gets a morphism
j2 satisfying pr1 ◦ j2 = h,

B
g //

��

∼k

��

A×C A

pr1

��

pr2 // A

f

����
D

h
//

55

j2

<<

A
f

// // C .

Using the uniqueness part of the universal property of the pullback square (with the
universal problem involving pr1 ◦ g and pr2 ◦ g), ones proves that the morphisms g
and j2 ◦ k are equal. So j2 is a diagonal filler for our first lifting problem.
Last, using that A is fibrant, δ2 and pr1 are fibrations, and the fact that fibrations

113



5 A univalent model in the injective type-theoretic fibration category GpdG
inj

are closed under compositions, one concludes that PCA is fibrant,

PCA

δ2

����

��

A×C A

pr1

����
A // // 1! .

Remark 5.4.9. Note that the above proposition 5.4.8 proves, under the assumptions
that f : A → C is a fibration and A is (injectively) fibrant, that PCA is an object
of (GpdG)f , hence it is really a path object in the injective type-theoretic fibration
category GpdG

inj, namely the category (GpdG)f equipped with the subcategory given
by the injective fibrations (between injectively fibrant objects).

Lemma 5.4.10. The space of equivalences E in our model is (isomorphic to) the path
object PCA of 5.4.7 where we take C = 1!, A = U∆ and f is the unique morphism
from U∆ to 1!.

Proof. Note that U∆ → 1! is a fibration since we proved in 5.4.4 that U∆ is injectively
fibrant. So by 5.4.8 PU∆ is a fibrant object, namely is an element of (GpdG)f . Also
note that we have already computed E in the proof of proposition 4.6.2 of chapter 4,
moreover this interpretation has not changed with the change of the type-theoretic
fibration category under consideration (from the projective one to the injective one)
since the morphism p∆ is the same (hence small fibrations are the same, thus the
interpretations of the identity types involved in the type of equivalences are still the
same) as well as the categorical interpretations of Σ-types and Π-types.

Theorem 5.4.11. The universe p∆ : Ũ∆ → U∆ in the injective type-theoretic fibration
category (GpdG)f satisfies the univalence property.
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5.5 Conclusion

Proof. Recall from 3.4 that it suffices to prove the upper horizontal arrow in the
following commutative diagram,

U∆
//

��

∼

��

E

����
PU∆

// // U∆ × U∆ ,

that maps a small type to its identity equivalence is a homotopy equivalence. But
this morphism is δ1, hence it is a weak equivalence (even a trivial cofibration see
5.4.7). Moreover in (GpdG)f all objects are fibrant and cofibrant, thus the homotopy
equivalences are the weak equivalences.

5.5 Conclusion
In contrast with the previous chapter and the projective setting this chapter reinforces
the suitability of the injective setting with respect to univalence (indeed, note that in
the case of elegant Reedy categories as index categories the Reedy model structure
on functors categories, used with success in [13], coincides with the injective model
structure). However, the injective setting is not very tractable due to the difficulty of
making fibrations and fibrant objects explicit.
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