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Introduction

The increase in environmental awareness and the need to predict and improve water quality in lakes, estuaries and coastal seas, has led to significant advances in the modeling of contaminant transport. Hydrodynamic and pollutants transport models in water bodies, required a detailed understanding of transport processes that exist within it. Essential elements of life and productivity such as oxygen, heat and nutrients are transported and dispersed through these processes.

Some geometries of enclosed water bodies such as lakes, reveal that scale of the horizontal length is much greater than the vertical length. This fact justifies a two-dimensional simulation of the current flow in these waters bodies using shallow water model by Saint-Venant equations. The current flows can be induced by hydrodynamic circulation (wind-drive circulation), and, in this case, the vertical current distribution is almost uniform depth with strong gradient exiting only in the bottom.

This current flow calculated, can be implemented by the advection-diffusion equation, the random walk and random flight which are classical models applied to describe the pollutants dispersion in shallow water. The first has a deterministic implementation that combines the Fick's law, the law of conservation of mass and the advection equation to determine the concentration of pollution, and the last two are stochastic models that determine the trajectories at the fluid of each particle of pollutant.

On the other hand, the random walk model and the scheme by advection-diffusion equation accurately describe particles dispersion if these have been in the flow over a Lagrangian time scale and have spread to cover a distance larger than the largest scale of a turbulent fluid flow, [START_REF] Fisher | Mixing in inland and coastal waters[END_REF]. The random flight model corrects this defect by modifying the diffusion terms present in the random walk model. This modification allows a more precise description of the particles deployment and can be shown that, after long periods of simulation, this model is consistent with the advection-diffusion equation, [START_REF] Heemink | Stochastics modelling of dispersion in shallow water[END_REF].

The particle tracking method has been studied and applied in many other areas such as kinetic theory, physical of plasma, oilfields patterns, etc. These models are also popular in some field of flow dynamics for velocity field visualization and gaining and insight into various phenomena of flow. In 1985, Van Doop et al. [START_REF] Dop | Random walk models for particle displacements in inhumogeneuos unsteady turbulent flows[END_REF], developed a one-dimensional random flight model to describe unstable turbulent flows. An application of the model to predict the dispersion in convective boundaries layers is discussed by De Baas et al. [START_REF] Baas | An application of the Langevin equation for inhomogeneous conditions to dispersion in a convective boundary layer[END_REF].

This research was inspired by the ideas established by Heemink in [START_REF] Heemink | Stochastics modelling of dispersion in shallow water[END_REF], but in this time, we applied the numeric scheme described before (random walk and flight models), on Lake Valencia, Venezuela (10 • 11' 00"N, 167 • 44'00"W), which has an area of 350 km2 and mean depth of 18 m, then being the largest fresh water body of Venezuela with no outlet to the sea. Specifically, we apply those two stochastic models mentioned, to describe the dispersion of organic wastes in this lake because its high pollution caused by wasting water from the surrounding urban areas, makes it an appropriate place to do this study. The two algorithms are constructed to solve each stochastic differential equation (SDE), which governs the pollutant particles dispersion. The solution of the first stochastic differential equation is an ordinary diffusion and the second one is a hypoelliptic diffusion. Another important achievement of our work is the implementation of reflection algorithm at the border, developed by M. Bossy et al. [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF]. We use this algorithm for reflecting toward the lake's interior the pollutant particles arriving at its frontier. Given the complicate geometry of the Lake Valencia boundary, we built also a slight modification of this algorithm.

An important and significant novelty of this research is that we build an algorithm that randomly generates the position of the particles of pollutant using satellite image information. This simulates the actual contaminant dispersion into the lake, specifically chlorophyll-a, from the time when the image were captured by the satellite. The importance of this random generation method is that the initial position of the particles are modeled by random pairs of a probability density of organic waste into the lake. To carry out this, we construct a density from the vegetation index corresponding to a satellite image of Lake Valencia. With this density we define and execute the Metropolis-adjusted version of the Langevin algorithm developed in [START_REF] Roberts | Exponential convergence of langevin distribution and their discrete approximations[END_REF], from which are obtained the pairs of random numbers (weakly dependent pairs of numbers), mentioned above that model the chlorophyll-a distribution observed in the satellite image. Howerver, this work offers a comprehensive and pedagogical development about how make predictions associated with the dispersion of pollutants. It should be noted that although the goodness of the estimation is untested at this time, this should be the task of another research.

In order to summarize the structure of this research, then we present a sketch thereof. We first describe theoretically the random walk and flight models. Then, we present a short review about the hydrodynamic model with which we obtained the Lake Valencia's advective flow rates, generated in [START_REF] Valera-López | Understanding circulation in Lake Valencia, Venezuela by a shallow-water model in Ingeniería y Ciencias Aplicadas: Modelos Matemáticos y Computacionales[END_REF]. Additionally, to explain the process involving a digital processing of the satellite image to obtain the vegetation index, we expose the satellite image section. Thereupon, we describe the Monte Carlo method apply. Then, the results section is developed. Where, a discussion about the implementation of these stochastic methods with two types of initial distributions: initial distribution concentrated at a fixed point and initial distribution that simulate the proportions of chlorophyll-a on Lake Valencia, in order to obtain a particle tracking method is performed. Finally, conclusion section is presented. Also, an appendix is included. In the appendix 1, the Langevin equation is described, which is dedicated to establishing elements to simulate efficiently probability densities on relatively compacts subsets of R d , any positive integer d. This justifies the generation of pairs of random numbers, using the Langevin equation constrained by boundary conditions in a domain that is determined by the presence of chlorophyll-a on Lake Valencia.

Stochastic model: random walk

To model the dispersion of pollutants in shallow water media, we develop a random walk model consistent with the advection-diffusion equation with integrated depth. In the model that will be described below, the pollutant is conceived as a particles collection on the surface of a medium shallow water with depth H(x, y) and mean flow velocities u(x, y) and v(x, y) in x and y directions respectively; accordingly, the path of the contaminant will be molded by the corresponding particles path on the water surface.

The speed u and v and water depth H are obtained from a hydrodynamic model to be developed in section 4.

As we know, the advection-diffusion equation with integrated depth,

∂(HC) ∂t + ∂(CuH) ∂x + ∂(CvH) ∂y = ∂ ∂x HD ∂C ∂x + ∂ ∂y HD ∂C ∂y , [1]
where D denotes the dispersion coefficient and C(x, y, t) the particle concentration; is a deterministic model that describes with precision particle dispersion because it responds to fundamental laws of natural science. The C concentration satisfying this differential equation is associated with the density p(x, y, t) corresponding to the distribution of particles in water by the identity

C(x, y, t) = p(x, y, t) H(x, y) .

[2]

Substituting (2) in the advection-diffusion equation ( 1), the Fokker-Planck equation is obtained,

∂p ∂t = - ∂ ∂x u + ∂H ∂x D 1 H + ∂D ∂x p - ∂ ∂y v + ∂H ∂y D 1 H + ∂D ∂y p + 1 2 ∂ 2 ∂x 2 (2D p) + 1 2 ∂ 2 ∂y 2 (2D p).
[3]

The differential equation ( 3) with initial condition p(x, y, t 0 ) = δ(x -x 0 )δ(y -y 0 ) coincides with the forward Kolmogorov equation. The solution of this Kolmogorov equation is the transition probability density of the Markov process {(X t , Y t )} t≥t0 which represents particles position on the surface water body under study and satisfies the following stochastic differential equations (SDEs):

dX t = u + D ∂H ∂x 1 H + ∂D ∂x dt + √ 2DdW 1 t , [ 4 
]
dY t = v + D ∂H ∂y 1 H + ∂D ∂y dt + √ 2DdW 2 t , [5]
where t ≥ t 0 ,

X t0 = x 0 , Y t0 = y 0 , (x 0 , y 0 ) ∈ R 2 and W t = (W 1 t , W 2 t ) T is a two-dimensional Brownian motion which verifies, E(dW t , dW T t ) = Idt. [6]
This results and others similar can be consulted in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]. The consequence of the description above is that the distribution of (X t , Y t ) coincides with the particles distribution whose concentration C(x, y, t) satisfies the advection-diffusion equation; this proves the consistency between the two models and justifies the use of the paths of the diffusion {(X t , Y t )} t≥t0 to simulate the trajectories of each particle of the pollutant.

Formally, the random walk model associates to each particle of pollutant injected at time t = t 0 , at the point (x 0 , y 0 ) of the surface water study, a path of the diffusion {(X t , Y t )} t≥t0 , with initial condition (X t0 , Y t0 ) = (x 0 , y 0 ) to describe their movement.

When the water body surface considered, denoted by D, has a closed border ∂D, the Neumann boundary condition of the advection-diffusion equation ∇C • n = ∂C/∂n = 0, is used to simulate the fact that there is no particles transfer across the boundary, i.e. any solid particle crosses the border to be reflected back into the flow domain thus keeping the conservation of mass.

For the random walk model, the corresponding Neumann condition is incorporated to its SDEs (4)- [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF] in form of reflection term as follows:

dX t = u + D ∂H ∂x 1 H + ∂D ∂x dt + √ 2DdW 1 t + γ 1 dk t , [ 7 
]
dY t = v + D ∂H ∂y 1 H + ∂D ∂y dt + √ 2DdW 2 t + γ 2 dk t , [8]
where t ≥ t 0 , X t0 = x 0 , Y t0 = y 0 and γ = (γ 1 , γ 2 ) is a vector field normalized to 1 that defines the direction of reflection and {k t } t is a process increasing only when

(X t , Y t ) is on ∂D such that k t = t 0 1 {(Xs,Ys)∈∂D} dk s . The process {k t } t
determines the size of the reflection (see [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF]).

Stochastic model: random flight

According to [START_REF] Fisher | Mixing in inland and coastal waters[END_REF], in reality, for short periods of time after particles injection in a turbulent water medium, their speeds are very close to a constant, and for long periods of time after, their movements become less and least correlated at longer and longer times. The random walk model (and consequently advection-diffusion equation), models this behavior only for long periods of simulation because, in this model, a random particles displacement, are simulated by increments of a Brownian motion which are uncorrelated due to its independence. The random flight model corrects this defect by replacing the diffusion terms of the SDEs in (4) -( 5) by Ornstein Unlenbeck processes, which accurately describe the actual behavior of the particle velocities at times t less than T L , where T L denotes a Lagrangian time scale. This scale, which models the time from which the particles movements are increasingly uncorrelated, it is interpreted as a measure of how long the particle takes to lose memory of its initial turbulent velocity (see [START_REF] Bauer | Eddy-mean flow decomposition and eddy-diffusivity estimates in the tropical Pacific Ocean[END_REF] and [START_REF] Fisher | Mixing in inland and coastal waters[END_REF]). The equations that describe the random flight model are as follow:

dX t = u + U t + D ∂H ∂x 1 H + ∂D ∂x dt, t ≥ t 0 , [ 9 
]
dY t = v + V t + D ∂H ∂y 1 H + ∂D ∂y dt, t ≥ t 0 , [ 10 
]
dU t = - 1 T L U t dt + ( K) 1/2 dW 1 t , t ≥ t 0 , [ 11 
]
dV t = - 1 T L V t dt + ( K) 1/2 dW 2 t , t ≥ t 0 , [ 12 
]
with K = 2D/T 2 L where D is again the dispersion coefficient, X t0 = x 0 , Y t0 = y 0 and, U t0 and V t0 are random variables both with Gaussian distribution of zero mean and variance KT L . In the above system (X t , Y t ) represents the particle position on the surface of the water body under study, and (U t , V t ) represents the stochastic particle velocities induced by the turbulent fluid flow.

Diffusion processes (U t ) t≥t0 and (V t ) t≥t0 , are Gaussian processes centered and stationary with autocovariance function given by:

E(U t+τ U t ) = E(V t+τ V t ) = KT L e -|τ |/T L . [13]
The identity in [START_REF] Maccormack | Numerical solution of the interaction of a shock wave with a laminar boundary layer[END_REF] shows that the autocorrelations of U τ and V τ are close to one for τ T L taken t = t 0 , however, while τ T L the autocorrelations tend to zero. This simulates very well the behavior of the particles random velocities in the flow.

For times t such that t T L , this model is consistent with the advection-diffusion equation ( 1), since for (t-t 0 )/T L → ∞ or T L → 0, equations ( 9) -( 12) reduce to stochastic differential equations:

dX t = u + D ∂H ∂x 1 H + 1 2 ∂D ∂x dt + √ 2DdW 1 t , [ 14 
]
dY t = v + D ∂H ∂y 1 H + 1 2 ∂D ∂y dt + √ 2DdW 2 t .
[15]

where t ≥ t 0 , X t0 = x 0 and Y t0 = y 0 . The equations ( 14) - [START_REF] Lanza | Organismos indicadores de la calidad de agua y de la contaminación (Bioindicadores)[END_REF] have to be interpreted, by definition, in the Stratonovich sense [START_REF] Arnold | Stochastic differential equations: Theory and applications[END_REF]. The Itô equations corresponding to the above equations are (4) - [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF], which define the random walk model. Consequently, the asymptotic model ( 14) -( 15) is consistent with advection-diffusion equation [START_REF] Fisher | Mixing in inland and coastal waters[END_REF]. The diffusion process {(X t , Y t , U t , V t )} t≥t0 is a Markov process whose transition probability density satisfies the hypoelliptic Fokker-Plank equation:

∂p ∂t = - ∂ ∂x u + σu 1 + ∂H ∂x D 1 H + ∂D ∂x p - ∂ ∂y v + σv 1 ∂H ∂y D 1 H + ∂D ∂y p + ∂ 2 ∂u 2 1 ( K p) + ∂ 2 ∂v 2 1 ( K p) + ∂ ∂u 1 pu 1 T L + ∂ ∂v 1 pv 1 T L , [ 16 
]
with initial condition

p(x, y, u 1 , v 1 , t 0 ) = δ(x -x 0 )δ(y -y 0 ) 1 2π KT L e - u 2 1 +v 2 1 2 KT L .
[17]

Models valid for more general assumptions are available: a generalization of random flight model to inhomogeneous and non stationary turbulence can be reviewed in subsection 4.2 of [START_REF] Bauer | Eddy-mean flow decomposition and eddy-diffusivity estimates in the tropical Pacific Ocean[END_REF] and the autocovariance functions of the speed processes in [START_REF] Maccormack | Numerical solution of the interaction of a shock wave with a laminar boundary layer[END_REF] can be modeled more accurately by entering equations for acceleration and higher order derivatives of the position (see [START_REF] Bauer | Eddy-mean flow decomposition and eddy-diffusivity estimates in the tropical Pacific Ocean[END_REF]).

Analogous to the case of random walk model, the Neumann boundary condition for the random flight model is incorporated as reflection terms of the particle position in its displacement equations ( 9) and [START_REF] Arnold | Stochastic differential equations: Theory and applications[END_REF].

Hydrodynamic Model

Hydrodinamic modelling in closed water bodies require a detailed knowledge of the transport process within the body.

The Saint-Venant equation, simulate the propagation of disturbances in water and other incompressible flows. The underlying assumption is that the depth of the medium is small compared to the wavelength of the disturbance. Lake Valencia retains this condition, so that the use of the Saint-Venant equation provides a reasonable model for this implementation.

We developed a two dimensional hydrodinamic model that solve the Saint-Venant equations:

∂ ∂t   H uH vH   + ∂ ∂x   uH u 2 H + gH 2 /2 uvH   + ∂ ∂y   vH uvH v 2 H + gH 2 /2   =          0 -gH ∂b ∂x + ∆(Hu) + ρ -1 τ x -gH ∂b ∂y + ∆(Hv) + ρ -1 τ y          , [ 18 
]
where H = H(x, y, t) is the depth and b = b(x, y) is the bathymetry which is positive measured downward from the geoid. Usually, depth H is define as H = b + η, where η = η(x, y, t) represent the free surface elevation relative to the geoid, but in this research we consider η = 0, then H does not depend on t, i.e., H = H(x, y).

The source turn contains the following expressions: g is gravity, τ x = τ wx -τ sx and τ y = τ wy -τ sy determine shear, with τ wx , τ wy shear stream at the bottom of the lake and τ sx , τ sy wind shear over the lake surface in x and y directions, respectively, ρ is the density, is viscosity parameter or regularization and ∆ is the Laplacian [START_REF] García | Numerical solution of the St. Venant equations with the MacCormack finite difference scheme[END_REF], [START_REF] Tsanis | A wind-driven hydrodynamic and pollutant transport model[END_REF].

These differential equations must be solved with an appropriate set of initial and boundary conditions. Initial conditions on the velocities field (u, v) in (t = 0) are introduced: u(x, y, 0) = 0 and v(x, y, 0) = 0. The boundary conditions are closed and defined the calculation field to where the water surface is in contact with the ground. This type of boundary condition is sometimes called waterproof condition, and is interpreted as a null normal speed in respect to the normal edge defining the integration region. However, in this study the viscosity parameter is not null, which makes this formulation of the Saint-Venant equations [START_REF] Li | Biomonitoring and bioindicadors used for river ecosystems: definitions, approaches and trends[END_REF], slightly parabolic. Consequently, it becomes necessary to change or supplement the impermeability boundary condition with the zero speed, sometimes referred to as non-slip condition, [START_REF] García | Numerical solution of the St. Venant equations with the MacCormack finite difference scheme[END_REF].

The explicit finite-difference method used in this work is based on the MacCormack time-splitting scheme, see [START_REF] Maccormack | Numerical solution of the interaction of a shock wave with a laminar boundary layer[END_REF]. The MacCormack scheme is a fractional-step method where a complicated finite difference operator is "split" into a sequence of simpler ones. The splitting process reduces the number of calculations during each time step and archives second-order accuracy in space and time when a symmetric sequence of operators is used.

In order to incorporated numerically the Saint-Venant equations on the physical continuous region is overlayed with a computational grid where all dependent variables are defined at the cell centres (fully dense grid), these values being taken to represent average cell properties. The use of fully dense grids are conceptually more consistent than staggered grids witch usually generate excessive numerical diffusion, owing to the need to takes averages across cell faces. This adaptation of MacCormack numerical scheme (predictor / corrector) is developed in [START_REF] Valera-López | Understanding circulation in Lake Valencia, Venezuela by a shallow-water model in Ingeniería y Ciencias Aplicadas: Modelos Matemáticos y Computacionales[END_REF]. Scheme stability is normally determined by the Courant-Friederichs-Lewy condition; however the particular character of the dicretizated equation results in a somewhat relaxed criterion, i.e.:

∆t ≤ min 1 ∆x 2 + 1 ∆y 2 -1/2 (gH) -1/2 , [ 19 
]
where ∆x, ∆y and ∆t are the dimensions of the blocks of the mesh and the simulation time step, respectively.

The results obtained after implementation on Lake Valencia, which are used for the development of this work can be seen in the Figures 1(a) and 1(b).

Satellite image

Since the organic wastes in water are mainly housed in elements containing chlorophyll (such as algae), our main interest is to model the transport of organic wastes on the lake, determined by the presence of chlorophyll therein, which is obtained from satellite image. This image is obtained from a satellite that shows the geography of a specific territory, in our case Lake Valencia. The photograph taken by a satellite is supplied along with the images of each spectral band. The image of To carefully measure the wavelength and intensity of visible and near-infrared light that reflects the Earth's surface into space, a "vegetation index" is used to quantify the concentrations of leafy green vegetation on the planet. To determine the density of green in a region, you must observe the different colors (wavelengths), of visible and near-infrared light reflected by plants. The pigment of the leaves of plants, chlorophyll, strongly absorbs visible light for use in photosynthesis. We use the presence of chlorophyll in Lake Valencia to model the dispersion of organic waste in the lake, because these contain nutrients that are housed in some bioindicadors such as algae, see [START_REF] Arcos | Indicadores microbiológicos de contaminación de las fuentes de agua[END_REF], [START_REF] Lanza | Organismos indicadores de la calidad de agua y de la contaminación (Bioindicadores)[END_REF], [START_REF] Fan | Prediction of chlorophyll-a consentration using HJ-1 satellite imagery for Xiangxi Bay in Three Gorges Reservoir[END_REF], [START_REF] Fei | Long-term changes of water level associated with chlorophyll-a concentration in Lake Baiyangdian, North China[END_REF], [START_REF] Li | Biomonitoring and bioindicadors used for river ecosystems: definitions, approaches and trends[END_REF], [START_REF] Ostapczuk | Mussels and algaes as bioindicadors for long-term tendencies of element pollution in marine ecosystems[END_REF], [START_REF] Peña | Algas como indicadores de contaminación[END_REF] and [START_REF] Zhuowei | Quantitative inversion model of water chlorophyll-a based on spectral analysis[END_REF]. The cellular structure of the leaves, on the other hand, are strongly reflects near infrared light. If there is much more reflected radiation in the near infrared than in the visible wavelengths, it is likely that pixel vegetation is dense. If there is little difference in intensity of the reflected wavelengths of visible and near-infrared light, the vegetation is probably low. When sunlight collides with the object, certain wavelengths of this spectrum are absorbed and others are reflected. All the algae contain chlorophyll-a, therefore, the detection of these bioindicators over the lake is done by considering the absorption of visual radiation of this type of chlorophyll-a through a satellite image, [START_REF] Awad | Sea water chlorophyll-a estimation using hyperspectral images and supervised artificial neural network[END_REF].

Almost all vegetation indices from satellite employ this difference formula to quantify the density of plant growth on Earth. The result of this formula is called normalized difference vegetation index (N DV I), and is the result of the following operation between red and infrared bands, B3 and B4, respectively:

N DV I = B4 -B3 B4 + B3 .
[20]

The array N DV I of the processed image, measures the vegetation index in a rectangular discretization of the region R, captured by the satellite images, that contain the lake surface D, (see Figure 2(a)). This matrix determine a coordinate system over R considering to each pairs of indices (i, j) of N DV I as the coordinates of the point (x, y) ∈ R where N DV I(i, j) was computed.

Values of N DV I in the interval (0, 1) represent the presence of chlorophyll in the lake (see Figure 3(b)), and determine a domain C ⊂ D formed by a collection of relatively compact subset (see Figure 3(a)). This domain contains all the possible initials positions for the chlorophyll particles whose trajectories can be simulated to describe the dispersion of this substance from the time in that the images were captured by the satellite. To approximate these trajectories, their initial positions and the mean flow velocity of the lake would be defined on the same cartesian coordinate system. For this reason, the coordinates of the initial positions described above, are transformed to their corresponding coordinates on a coordinate system set to the approximate dimensions of the lake, established in the mesh where the static circulation on the lake is calculated (see Figure 3 Note that for best results, chlorophyll particles were discarded on the border, so that only particles that are modeled, strictly falls within the domain of the lake (see Figure 3(a)).

Monte Carlo method

To describe the pollutants transport over Lake Valencia, consider N particles to which are associated N paths of the diffusions processes that satisfy the stochastic differential equations ( 4) -( 5) and ( 9) - [START_REF] Tsanis | A wind-driven hydrodynamic and pollutant transport model[END_REF]. In general, these stochastic differential equations have no analytical solution, since the existence thereof, depends of its coefficients, therefore, the numerical approximation of the solution is used. Hereinafter, the numerical approximation scheme employed for each stochastic model and the contaminant distribution on the lake surface are described for each time instant t.

Numerical approximation of particle transport.

To perform the numerical approximation of pollutant transport over Lake Valencia, two types of initial particles distribution are considered: an initial distribution concentrated at a fixed point and an initial distribution generated from a satellite image.

Initial distribution concentrated at a fixed point. In this part, we consider an initial distribution with density p(x, y) = δ(x -x 0 )δ(y -y 0 ). The implementation consists of: fix a point (x 0 , y 0 ) on the surface of the lake were N particles are injected, whose displacements from this point will be described by Euler schemes corresponding to the random walk and flight models.

The Euler scheme corresponding to the equations ( 4) -( 5) are:

Xt k+1 = Xt k + u + ∂H ∂x D H + ∂D ∂x ( Xt k , Ŷt k )∆t + 2D( Xt k , Ŷt k )ε 1 t k+1 , [ 21 
]
Ŷt k+1 = Ŷt k + v + ∂H ∂y D H + ∂D ∂y ( Xt k , Ŷt k )∆t + 2D( Xt k , Ŷt k )ε 2 t k+1 , [22]
In both equalities, Xt k and Ŷt k denote the numerical approximation of X t and Y t , respectively, where Xt0 = x 0 , Ŷt0 = y 0 and t k = k∆t for integers k ≥ 0 and ∆t representing the time step. In addition, u and v are the approximations of the mean flow velocities of the lake in x and y directions, respectively, H and D are the approximation of its depth and dispersion coefficient, respectively. The above approximations are available in a rectangular grid adjusted to the exact dimensions of the lake surface D.

The increments of Brownian motion

ε i t k+1 = W i t k+1 -W i t k , i = 1, 2
, necessary for the construction of the numerical scheme, are constructed by an array of N vectors (one per particle), whose entries are independent random numbers with normal distribution of parameters (0, ∆t).

In the numeric scheme developed is always necessary to determine the relative position of the particle in the x and y direction respect to the cell that is located this particle. This calculation is necessary to perform two-dimensional linear interpolation of u, v and H, in the point from which will determine the following coordinates of the discretization of the particle trajectory. With this information the code determines the new position of the particle by the approaches defined in equations ( 21) and ( 22). However, it is important to check if the position obtained is outside or within the domain where is going to calculate the trajectory, because if the particle falls outside of the domain should be immediately reflected back into the flow domain.

To do this, a subroutine that executes a border control was built based in the reflection procedure corresponding to the symmetrized Euler scheme developed in [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF], but adjusted to the characteristics of the boundary of the lake surface ∂D.

Specifically, we start with ( Xt0 , Ŷt0 ) = (x 0 , y 0 ) and assume that we have obtained ( Xt k , Ŷt k ) ∈ D; afterward, we compute the next possible position (Xp, Y p) of the particle, executing the above Euler scheme for t k+1 as follows

Xp = Xt k + u + ∂H ∂x D H + ∂D ∂x ( Xt k , Ŷt k )∆t + 2D( Xt k , Ŷt k )ε 1 t k+1 , [ 23 
]
Y p = Ŷt k + v + ∂H ∂y D H + ∂D ∂y ( Xt k , Ŷt k )∆t + 2D( Xt k , Ŷt k )ε 2 t k+1 .
[24]

Then, if (Xp, Y p) ∈ D we define ( Xt k+1 , Ŷt k+1 ) = (Xp, Y p) and follow the calculation of the next point of the discretization of the particle trajectory, but;

• If (Xp, Y p) ∈ D c ∩ V ∂D (r) with V ∂D (r) = z ∈ R 2 : d(z, ∂D)
≤ r for any r > 0, defined from the characteristics of ∂D and the size of the grid with respect to which the discretization of the particle trajectory is being computed, then [START_REF] Lions | Stochastic differential equations with reflecting boundary conditions[END_REF] where Γ = (γ 1 (z), γ 2 (z)) denotes the unit inward normal vector to ∂D corresponding to the normal projection of z onto ∂D for z ∈ D c ∩ V ∂D (r), and F γ (z) denotes the algebraic distance of z to ∂D parallel to γ.

Xt k+1 = Xp -2F γ (Xp, Y p) γ 1 (Xp, Y p) , [25] Ŷt k+1 = Y p -2F γ (Xp, Y p) γ 2 (Xp, Y p) ,
• If (Xp, Y p) ∈ D c ∩ V c ∂D (r) the simulation of (Xp, Y p) is restarted.
In accord with [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF], for domains with boundary bounded and class C 5 there exist r > 0 such that, for any point outside of the domain its normal projection at the border is unique. The boundary of Lake Valencia is bounded but is not class C 5 , for this reason, there exist points z ∈ V ∂D (r) to which its normal projection at ∂D is not unique. For z ∈ V ∂D (r) with this condition, we select the normal reflection corresponding to the smaller of the distances of z to ∂D.

The procedure is similar, in terms of numerical approximation of the diffusion corresponding to stochastic differential equations that define the random flight pattern. To estimate (X t , Y t ), the Euler scheme is implemented as follows:

Xt k+1 = Xt k + u + ∂H ∂x D H + ∂D ∂x Xt k , Ŷt k ∆t + Ût k ∆t, [ 27 
]
Ŷt k+1 = Ŷt k + v + ∂H ∂y D H + ∂D ∂y Xt k , Ŷt k ∆t + Vt k ∆t, [28] 
where u, v, H and D are as before and, in view that [START_REF] García | Numerical solution of the St. Venant equations with the MacCormack finite difference scheme[END_REF] and ( 12) are analytically solved for (U t ) t≥t0 and (V t ) t≥0 , defined by:

U t = U 0 e -1 T L t + K1/2 t 0 e -1 T L (t-s) dW 1 s , [29] V t = V 0 e -1 T L t + K1/2 t 0 e -1 T L (t-s) dW 2 s , [30]
we obtain the estimations Ût k and Vt k of U t k and V t k , respectively, using the Monte Carlo integration method.

The initial random velocities U t0 and V t0 are estimated by random numbers with normal distribution with parameters (0, KT L ).

For random flight scheme, the procedure is analogous to developed above for the random walk model .

Initial distribution generated from a satellite image. As was explained before, we are interested in simulate the chlorophyll dispersion in Lake Valencia during a specific time interval [t 0 , t f ], using stochastic models. To do this, we need pairs of random numbers from a probability distribution that models the chlorophyll distribution in the lake at t 0 , to use them as initial condition in the Euler schemes implementation of the stochastic models. These schemes are defined by the equations ( 21)-( 22) and ( 27)-(30), respectively. The result of this implementations after k time steps, will be the estimations of the chlorophyll dispersion in the lake at t f = k∆t.

To construct the above random sample, we consider three steps. First, we download satellite images of Lake Valencia surface D and use the values between 0 and 1 of their vegetation index (N DV I), to determine the subset C of D\∂D characterized by the presence of chlorophyll, because these N DV I values indicate the presence of chlorophyll in the positions where they were computed. Actually, the information of the N DV I array only allows us to identify the nodes (i, j) of the mesh corresponding to the satellite images such that N DV I(i, j) ∈ (0, 1), then it assumes that C is formed by cells whose nodes considered for identify them are located in the lower left corner of each grid square where N DV I is between 0 and 1. Based in the last assumptions, C is a collection of connected subsets of D (see Figure 3 with A = {(i, j) : N DV I(i, j) ∈ (0, 1)}, for the nodes (i, j) of the mesh corresponding to the satellite images that are contained in C, and by bilinear interpolation for the rest of the points in C. We interpret π as the density of the probability distribution that measures the proportions of chlorophyll in the lake, for the instant which the satellite images were captured. Third, we solve the two-dimensional Langevin stochastic differential equation (SDE) numerically:

dL t = dW t + 1 2 ∇log (π(L t )) dt, t ≥ t 0 , [32]
where W t is a two-dimensional Brownian motion, and select, of this discretized trajectory, the pairs of random numbers with density π that will be assigned to (x 0 , y 0 ) in the implementation of the stochastic models. We approximate this SDE using the Metropolis-Ajusted version of its Euler scheme, with symmetric and normal reflection on the border ∂C (see [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF] and [START_REF] Roberts | Exponential convergence of langevin distribution and their discrete approximations[END_REF]). Specifically, for every connected subset of C, is chosen a point from which the approximation of a path of the diffusion process L t that solves the equation in (32) is generated; then a collection of trajectory points are selected, spaced by a fixed number of time steps to ensure their approximate independence. All the points so built, form the random sample of points in R 2 with density π that we need to use as initial condition in the implementation of the stochastic models. The points of the random sample constructed have density π because this density is invariant for the diffusion L t (see Appendix 1 for the theoretical justification). Figure 4 shows a random sample over Lake Valencia surface constructed by the procedure described before, from images of Lake Valencia captures by the satellite Landsat 8 particularly at 17 : 15 : 59, April 07, 2014.

Numerical approximation of the particles distribution in an instant t.

In accordance with the previously developed, the position of N particles injected into the flow at time t = j∆t where j is non-negative integer, is approximated by the random sample (X 1 j , Y 1 j ), • • • , (X N j , Y N j ), obtained from the implementation of Euler scheme ( 21) - [START_REF] Awad | Sea water chlorophyll-a estimation using hyperspectral images and supervised artificial neural network[END_REF] in the random walk model, or Euler scheme ( 27) -(28) corresponding to the random flight model. From this sample, the probability density p(x, y, t), corresponding to the particles dispersion at time t is estimated using a Gaussian kernel estimator defined as follows: 

p N (x, y, t) = 1 h 2 N N i=1 K x -X i j h , y -Y i j h , [ 33 
]
where K is a two-dimensional Gaussian kernel and h = h(N ) → 0 when N → ∞; in practice it is usual to consider h = N -1/5 . This estimator is asymptotically unbiased and for sufficiently large samples are distributed as a normal distribution.

The estimation of this density allows us to determine an approximation of the distribution of particles on the fluid at any time t.

Results

In this section, we show the empirical behavior of the stochastic models that we have introduced. In order to present the result of the implementation, this section is divided in three parts. First, an analysis of both models, random and flight, are presented. Second, a presentation by the data used for implementation is exposed. Third and final, a comparison between these numerical schemes is done through Lake Valencia implementation with two types of initial distributions: initial distribution concentrated at a fixed point and initial distribution generated from a satellite image. These distributions are described in section 6.

Analysis models.

As it was presented in section 2 and 3, the random walk model, simulates the behavior of the particles in a domain considered only for long periods of simulation. This is because the random particles displacement are simulated by Brownian motion that has independent increments. However, the random flight model corrects this shortcoming through replacement of the dispersion terms in ( 4) and ( 5) by Ornestein Unlenbeck processes, that describe the behavior of the particles velocities at time t less than T L .

Is important to recall that T L can be interpreted as a measure of how long the particle takes to lose memory of its initial turbulent velocity. Also, it is relevant analysis the simulation behavior respect different values of T L . The random flight model is consistent with the advection-diffusion equations [START_REF] Li | Biomonitoring and bioindicadors used for river ecosystems: definitions, approaches and trends[END_REF] for times t such that t T L , since for t-t0 T l → 0 or T L → ∞, the stochastic differential equations that define the random flight model, ( 9)-( 12), are reduce to the Itô equations established for the random walk model. As discussed in sections 2 and 3 both models are consistent with advection-diffusion equation [START_REF] Li | Biomonitoring and bioindicadors used for river ecosystems: definitions, approaches and trends[END_REF].

Data used in the implementation. In testing is considered static circulation obtained with wind speed and direction is 3 m/s from south-south-west to the north-north-east. The current velocity over the lake used for the calculation corresponds to that obtained by the hydrodynamic model presented in section 4, [START_REF] Valera-López | Understanding circulation in Lake Valencia, Venezuela by a shallow-water model in Ingeniería y Ciencias Aplicadas: Modelos Matemáticos y Computacionales[END_REF].

To make the simulations we consider two different values for the dispersion coefficient in Lake Valencia: D = 4 × 10 -2 m 2 /s and D = 5 × 10 -5 m 2 /s. The first is a experimental value found for the dispersion coefficient in Lake Huron (see section 6 of [START_REF] Heemink | Stochastics modelling of dispersion in shallow water[END_REF]). This data is used because there is no experimental data of this kind over Lake Valencia and was not found on similar lakes. The references consulted only contains experimental values about ocean, rivers, large lakes (such as the case of Lake Huron in USA), and reservoirs.

Several tests before to choose the value of D were performed. We observed that, for values of D greater than 4 × 10 -2 m 2 /s, the evolution of 2500 particles injected in a same point at the same time, has the form of a uniform ball of particles whose radius increases so quick that, after a very little time steps, the lake is totally full of particles, for values of D between 4 × 10 -2 m 2 /s and 5 × 10 -5 m 2 /s, the behavior of the particle dispersion is similar to the results obtained for the first value, and it is just from the last value that we see changes in the way of the particles are dispersed.

Along the simulations we use the time step ∆t = 0.3573s.

To implement the numerical schemes of the stochastic models using a initial distribution generated from satellite images, we download these images from satellite Landsat 8 for free through the website of the US Geological Survey -EarthExplorer. This image has 12-bit radiometric resolution (240 m spatial resolution), eight bands of 30 meters and the panchromatic band of 15 meters. The downloaded images were captured by the sensor Enhanced Thematic Mapper (ETM), which has six bands in the electromagnetic spectrum from the visible to middle infrared.

Models implementation.

Hereinafter, the empirical behavior of both stochastic models through implementation on Lake Valencia are introduced. Here, we present two examples. Each of them corresponds to a type of initial condition: one concentrated at a fixed point and other generated from a satellite image. Considering the dispersion coefficient D = 5 × 10 -5 m 2 /s, we can see a more interesting results because with this value of D a better adjustment about the expected dispersive behavior of the particles is obtained, in function of the characteristic of the mean flow velocity and the vortices in Lake Valencia (see Figure 1).

Similar to the simulated with D = 4 × 10 -2 m 2 /s, we will see bellow graphical representations of the behavior models studied before and after a certain Lagrangian time T L . Figure 8 and9 shows the results obtained by injecting 2500 particles at point (30.2, 13.1). For this purpose, the position of each particle after 20000 time steps corresponding to their trajectories is determined. To implement the random flight model is considered T L = 500 s. The value chosen for T L is approximately Example 2: Initial distribution generated from a satellite image. This example is devoted to describe the estimations given by the stochastic models of the real chlorophyll dispersion in Lake Valencia, during 3215, 3 seconds from t 0 = 17 : 15 : 59, April 7, 2014.

To make these estimations, we follow the general procedure described in section 6.

As a first step, we download images of the lake surface captured by the satellite Landsat 8 at time t 0 and, using the information of the bands 3 and 4 of these images, we calculate the vegetation index N DV I, of the lake.

Second, with this N DV I we identify the areas with presence of chlorophyll in Lake Valencia (see Figure 3(b)), and define upon them, a probability density π that approximates the chlorophyll density and, as consequence, defines a probability distribution that simulates the chlorophyll distribution at t 0 .

Third, for every connected spot of chlorophyll shown in Figure 3(a), we select a point from which the approximation of a path of the Langevin process L t , defined by the equation (31) from the density π, is generated; then a collection of 15000 trajectory points are selected, spaced by 100 time steps to ensure their approximate independence. All the points so built, form the random sample of points in R 2 with density π that we need to implement the stochastic models.

Finally, we transform the coordinates of each element of the random sample constructed before to their corresponding coordinates in the mesh where the static circulation on the lake was approximated, and use, this new coordinates, as initial condition of the Euler schemes corresponding to the random walk and flight models. After 9000 time steps for numerical schemes, the simulation of the chlorophill dispersion is obtained for 3215, 3 seconds. Figure 4 shows a random sample constructed by the procedure described before, from images of Lake Valencia captured on the date and time stated above. Figures 13(a by using T L = 500 s. In the last two figures cited, we observe that, as in the case of the initial distribution concentrated at a fixed point, when D = 5 × 10 -5 m 2 /s the approximations given by the models are similar, despite the fact that, the random flight model is less dispersive that random walk model. Figures 14(a) and 14(b) show that the kernel densities corresponding to the stochastic models also exhibit the behavior described above.

Conclusions

In this work is carried out for the first time, a study on the transport of pollutants in Lake Valencia (Venezuela) through the implementation of two stochastic models: random walk and flight. This study was started by us with the determination of circulation flow on the surface of the lake [START_REF] Valera-López | Understanding circulation in Lake Valencia, Venezuela by a shallow-water model in Ingeniería y Ciencias Aplicadas: Modelos Matemáticos y Computacionales[END_REF], and continued with the model that describes the movement of pollutants, the main product of this research.

To achieve the goal of describing the distribution patterns of sediment in Lake Valencia by these two models, the velocities of static circulation is considered, obtained from a hydrodynamic model, which is simulated by using Saint-Venant equations. Interpreting the advection-diffusion equation as a Fokker-Planck equation, it is possible to describe the particle trajectory of contaminant with both stochastic models. The random flight model is introduced to improve the behaviors of the random walk model, shortly after deployment of the particles. In the result obtained by the random flight model can be observed least dispersion of particles in comparison with the result of random walk before the Lagrangian time supposed, demonstrating consistency with the behavior described in sections 2 and 3. In addition, after a long time to run and considering a smaller Lagrangian time, greater similarity between the models is observed, ensuring faster random flight model to random walk convergence.

An important novelty of this research is that we build an algorithm that randomly generates the position of the particles from the contaminant using satellite image information. This simulates contaminant dispersion from a real initial distribution into the lake, since the time when the images were captured by the satellite. The importance of this method of random generation is that the initial positions of the particles are modeled by random pairs of a probability density that accurately approximates the actual density of organic waste into the lake. In addition, this method ensures that the simulation of contaminant transport is not only determined by the initial position of the particles but also by the density of pollution in the area determined by these positions. The initial condition constructed by the random sample, allows models to better approximate the real pollutants transport on the lake. In implementing this initial condition in the stochastic schemes, we observed that the behavior of the results obtained when considering the punctual concentration is maintained, i.e. random flight is still less dispersive than random walk. Although using the shallow water model (from the Saint-Venant equation), the random walk model and random flight model are standard in the study of the circulation of lakes and the distribution of pollutants by sediments, its application is new to Lake Valencia, as well as the use of stochastic and statistical methods using satellite images to model the contaminant distribution (actually the chlorophyll-a dispersion). For this reasons, the circulation patterns and sediment developed in this study represent an original and new contribution.

We think that this study may lead to an automatic procedure for the determination of areas with the highest pollution and thus ensure monitoring of areas closed or coastal water. This can be done considering, on these models, dynamic speeds (which vary according to changes in wind speed or direction) or obtaining satellite images capture time nearest each other.

Even though our application has been made in the Lake of Valencia, developed method can be applied to any surface water closed.

In this work is carried out for the first time, a study on the transport of pollutants in Lake Valencia (Venezuela) through

In fact the Dirichlet forms defined in (34) has different closure depend each of these closures of the core of the initial one. Two of such closures are important, the minimal associated to Dirichlet boundary condition and the maximal linked to the Neumann boundary condition. We only refer here to the second one.

By using the properties of ϕ it can be defined the isometry L 2 (Ω, µ) → L 2 (Ω, dx), such that for f ∈ L 2 (Ω, µ) → g = ϕf ∈ L 2 (Ω, dx). In this manner, denoting T ϕ 2 t the semigroup of self adjoint and bounded operators generated by -L ϕ 2 , one can show, using the isometry, that the transformed semigroup denoted by T t acting on L 2 (Ω, dx) satisfies T t g = ϕT ϕ 2 t (ϕ -1 g), for all g ∈ L 2 (Ω, dx). Furthermore, if 1 denotes the constant function equal to 1, it holds that T ϕ 2 t 1 = 1. By using the relationship between the two semigroups, it has T t ϕ = ϕ. This implies that function ϕ is an eigenfunction for the infinitesimal generator A of T t associated to the 0 eigenvalue. Besides, it can be proved that

Ag = L ϕ 2 (ϕ -1 g) = 1 2 ∆(ϕ -1 g)+ < ∇ log ϕ, ∇(ϕ -1 g) > .
The domain of A results the set D(A) = ϕD(L ϕ 2 ). Now for all continuous and bounded h defined on Ω and defining dµ(x) = ϕ 2 (x)dx it holds

< T ϕ 2 t (µ), h >=< µ, T ϕ 2 t (h) >= R d T ϕ 2 t (h)(x)ϕ 2 (x)dx.
Moreover, one needs to consider the boundary conditions. Hence by using the Green formula it has

Ω (gL ϕ 2 f -f L ϕ 2 g)ϕ 2 dx = - ∂Ω (ϕ 2 (x)g∂ ν f -f ∂ ν (ϕ 2 (x)g) + ∂ ν (log ϕ 2 )ϕ 2 f g)dx = - ∂Ω (g∂ ν f -f ∂ ν g)ϕ 2 dx = 0.
The last equality is a consequence of the boundary condition. This property is transferred onto the semigroup yielding 

< T ϕ 2 t (µ), h > = Ω ϕ(x)T ϕ 2 t (ϕ -1 g)(x)ϕ(x)dx = Ω T t (g)ϕ(x)dx = Ω g(x)T t (ϕ)(x)dx = Ω g(x)ϕ(x)dx = Ω h(x)ϕ 2 (x)dx =< µ, h > .
Getting T ϕ 2 t (µ) = µ, assuring that µ is the invariant measure. Further the operator L ϕ 2 is self-adjoint and, under the hypothesis of our problem, it has a discrete spectra. Let α > 0 and let define the resolvent

(α -L ϕ 2 ) -1 f (x) = ∞ 0 e -αt T ϕ 2 t f (x)dt.
Let quote the following theorem shown in Reed and Simon [START_REF] Reed | Analysis of Operators[END_REF] Theorem XIII. 64. Only the assertions that are interesting for this work will be written.

Theorem. Let A be a self-adjoint operator that is bounded from below. The following are equivalent:

i) (A -α) -1 is compact for at least a α ∈ ρ(A) = {α ∈ C : (A -α) -1 is bounded and injective}.
ii) There exists an complete orthonormal system

{ϕ i } ∞ i=0 in D(A) such that Aϕ n = λ n ϕ n with λ 0 ≤ λ 1 ≤ . . . ≤ λ n . . . and λ n → ∞.
To apply this result to our problem we only need to prove that (α -L ϕ 2 ) -1 is a compact operator defined L 2 (Ω, µ) → L 2 (Ω, µ). But we know by the general theory of semigroups that (α -L

ϕ 2 ) -1 (L 2 (Ω, µ)) = D(L ϕ 2 ). Let u n be a sequence of bounded vectors in L 2 (Ω, µ). Let define g n = (α -L ϕ 2 ) -1 u n , then it holds ||g n || ≤ ||(α -L ϕ 2 ) -1 || op ||u n || < K,
and moreover, L ϕ 2 g n = αg n -u n , then

||L ϕ 2 g n || ≤ α||g n || + ||u n || ≤ (||(α -L ϕ 2 ) -1 || op + 1)||u n || < 2K.
Let introduce also the norm generated by the operator L ϕ 2 as

||f || L ϕ 2 = ||f || L 2 (Ω,µ) + ||L ϕ 2 f || L 2 (Ω,µ) ∀f ∈ D(L ϕ 2 ).
Given that the function ϕ 2 is bounded by below and above, this norm is equivalent to the norm of the Sobolev space W 1,2 (Ω) with respect to the Lebesgue measure:

||f || W 1,2 = ||f || L 2 (Ω,dx) + Ω ||∇f || 2 dx 1/2
. This entails that ||g n || W 1,2 ≤ C for some constant C. The compact embedding W 1,2 → L 2 (Ω, dx) implies that there exists a subsequence g n k that converges in L 2 (Ω, dx) and also in L 2 (Ω, µ), so the compactness of the resolvent is proved.

Let consider {λ i } ∞ i=0 the eigenvalues for L ϕ 2 , with λ 0 = 0 and eigenfunctions {ϕ i } ∞ i=0 . In this manner all function f ∈ L 2 (Ω, µ) can written as

f = ∞ i=0 < f, ϕ i > µ ϕ i .
Recall that ϕ 0 = 1, in this form c 0 = R d f (x)ϕ 2 (x)dx. By using the spectral theorem, one has

T ϕ 2 t (f )(x) = ∞ i=0 e -λit < f, ϕ i > ϕ i .
This equality implies the following inequality

T ϕ 2 t (f ) -c 0 L 2 (µ)
≤ e -2λ1t ||f || L 2 (µ) .

[36]

For justifying this inequality, first we know that zero is an eigenvalue and has multiplicity one because the invariant measure is unique. Moreover, this implies that λ 1 > 0.

Besides, the theory of Dirichlet forms allows obtaining a Markov process {X t } t≥0 taking values on Ω such that it satisfies the SDE: dX(t) = dB(t) + 2∇(log ϕ)(X(t))dt.

[37]

with reflecting boundary condition and X 0 = x ∈ Ω.

The expression "with reflecting condition in the boundary" must be understood according Lions & Sznitman [START_REF] Lions | Stochastic differential equations with reflecting boundary conditions[END_REF] as the SED whose solution is the process X t and has the form dX(t) = dB(t) + 2∇(log ϕ)(X(t))dt + ν(X(t))dk(t), [38] where k(t) is the local time that increasing only whenever X t is in ∂Ω. In fact, the definition of this last process is

k(t) = t 0
1 ∂Ω (X(s))d|k|(s).

The Fokker-Planck equation gives the transition density of such a process starting at y ∈ Ω is

∂ t p(t, x) = L ϕ 2 p(t, x), ∂ ν p(t, x) = 0,
for all x ∈ ∂Ω and p(0, x) = δ y (x) for y ∈ Ω. The result obtained in (36) implies that the process X is ergodic and α-mixing (see [START_REF] Doukhan | Mixing: properties and examples[END_REF] for the definition and properties) with exponential rate and, furthermore, Simulation Algorithm. We can try now to implement a simulation process that permits the generation of a sample X 1 , X 2 , . . . , X N with density ϕ 2 . We consider first the case where ϕ 2 is a density in R d . In [START_REF] Roberts | Exponential convergence of langevin distribution and their discrete approximations[END_REF] was stablished that the diffusion solution of the following SDE dX(t) = dB(t) + ∇ log ϕ(X(t))dt

[39] has as invariant measure dµ(x) = ϕ 2 (x)dx. In this form to generate an approximated sample it is enough to approximate the solution of the SDE with some numerical schema. If one uses the Euler's schema the equation (39) can be approximated by X (k+1)h = X kh + h(∇(log(X kh ))) +

√ hε k .
The constant h is the discretization step and the ε k are a sequence of independent standard Gaussians r.v. If one can assure that for a sufficiently small h the Markov chain X (k+1)h has as invariant measure µ h and moreover µ h and µ are near in a certain metrics, then we only need to run the schema for generating the sample. However, Roberts & Tweedie in [START_REF] Roberts | Exponential convergence of langevin distribution and their discrete approximations[END_REF] pointed out that such a procedure, that we can consider as naive, do not give always good results, proposing then a modification that we sketch in that follows. In the Euler's schema, given the value U k = X kh given, we must generate As is remarked in the article, citing Julien Besag, this chain could be non ergodic and also the convergence towards the invariant density could be pretty slow. As a consequence of this last situation the algorithm must be modified by the way of a procedure of acceptance or reject the same type of the one of the Hasting-Metropolis algorithm. This procedure is used for building a chain M k . In first place a value U k+1 is generated, given the value of M k , as a Gaussian N (M k + h∇ log ϕ(M k ), hI d ) the value U k+1 is accepted with probability equal to

α(M k , U k+1 ) = 1 ∧ ϕ 2 (U k+1 )q(U k+1 , M k ) ϕ 2 (M k )q(M k , U k+1 ) ,
where q is the transition density of the discret chain. If U k+1 is accepted we set M k+1 = U k+1 , otherwise we set M k+1 = M k . The general properties of the Hasting-Metropolis algorithm implies that this algorithm converges towards the invariant measure.

Turning to the problem of simulate a density defined on Ω. We approximate the solution of the SDE (38) by using the Euler scheme of Bossy et al. [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF]. However one must admit that this discrete solution approaches the invariant measure ϕ 2 (x)dx, when the step of discretization tends towards zero. Therefore, two questions remain open and require further study.

• For simulation of a density defined on Ω the Euler scheme of Talay and Bossy et al. [START_REF] Bossy | A symmetrized Euler scheme for an efficient approximation of reflected diffusions[END_REF], Can be modified to approach the invariant measure?

• Can we work with a simulation scheme similar to the one of Roberts and Tweedie [START_REF] Roberts | Exponential convergence of langevin distribution and their discrete approximations[END_REF] and to have a convergent algorithm?
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 1 Fig. 1. Graphical representation of the result obtained by Hydrodynamic model
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  (a) Band 6 image of the satellitel images downloaded. (b) Processed image where the N DV I is evidenced.
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 2 Fig. 2. Data obtained from the satellite images of the Lake Valencia captures by the satellite Landsat 8 at 17 : 15 : 59, April 07, 2014.
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 3 Fig. 3. Data obtained from the satellite images downloaded.

  (a)). Second, we define the function π : C → R by π(i, j) = N DV I(i, j)
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 4 Fig. 4. Random pairs of the initial distribution generated from satellite image.

Example 1 :

 1 Initial distribution concentrated at a fixed point. To present the results obtained when is considered a initial distribution concentrated at a fixed point, graphical representations of the particles behavior before and after of certain Lagrangian time T L , when the dispersion coefficient is D = 4 × 10 -2 m 2 /s, are shown bellow. The results obtained by injecting 2500 particles at point (30.2, 13.1) are presented in Figures 5, 6 and 7. For this purpose, it is determined the position of each particle after 20000 time steps corresponding to their trajectories. Figure 5(b) shows the result obtained from implement the random flight model with T L = 500 s. Figures 5(a) and 5(b) display the position of the particles at time t = 70 s. Here, a less dispersive behavior of random flight model versus random walk model is evident. The above behavior remains for t = 570 s, see Figures 6(a) and 6(b). Also, under the same conditions previously considered, but with T L = 20 s, Figures 7(a) and 7(b) show that, with the last value of t, the behavior of both models are similar, showing the trend towards behavior described theoretically.

  (a) Random walk. (b) Random flight with T L = 500 s.

Fig. 5 .

 5 Fig. 5. Particles position at t = 70 s generated from the implementation with D = 4 × 10 -2 m 2 /s, after being injected into the coordinate (30.2, 13.1) represented in the figure by a square.

  (a) Random walk. (b) Random flight with T L = 500 s.

Fig. 6 .

 6 Fig. 6. Particles position at t = 570 s generated from the implementation with D = 4 × 10 -2 m 2 /s, after being injected into the coordinate (30.2, 13.1) represented in the figure by a square.

  (a) Random walk. (b) Random flight with T L = 20 s.

Fig. 7 .

 7 Fig. 7. Particles position at t = 570 s generated from the implementation with D = 4 × 10 -2 m 2 /s, after being injected into the coordinate (30.2, 13.1) represented in the figure by a square.

Fig. 8 .

 8 Fig. 8. Particles position at t = 357.3 generated from the implementation with D = 5 × 10 -5 m 2 /s, after being injected into the coordinate (30.2, 13.1) represented in the figure by a square.

Figures 10 and 12

 12 Figures 10 and 12 show the kernel density corresponding to time t defined above for T L = 500 s and T L = 20 s of random walk and flight models, respectively. These figures also shows that random flight model approximates better random walk model, when the first is executed with T L = 20 s.

  Random flight with T L = 500 s.

Fig. 9 .

 9 Fig. 9. Particles position at t = 2858.4 s generated from the implementation with D = 5 × 10 -5 m 2 /s, after being injected into the coordinate (30.2, 13.1) represented in the figure by a square.

  Kernel density of random flight with T L = 500 s.

Fig. 10 . 1 (

 101 Fig. 10. Kernel density of particles distribution at t = 2858.4 s generated from the implementation with D = 5 × 10 -5 m 2 /s, after being injected into the coordinate (30.2, 13.1).
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 1 NT= 2500, L= 20000, t= 2858.4, T= 7146, TL= 20, b) Random flight with T L = 20 s.

Fig. 11 .

 11 Fig. 11. Particles position at t = 2858.4 s generated from the implementation with D = 5 × 10 -5 m 2 /s, after being injected into the coordinate (30.2, 13.1) represented in the figure by a square.

  Kernel density of random flight with T L = 20 s.

Fig. 12 .

 12 Fig. 12. Kernel density of particles distribution at t = 2858.4 s generated from the implementation with D = 5 × 10 -5 m 2 /s, after being injected into the coordinate (30.2, 13.1).

  Random flight with T L = 500 s.

Fig. 13 .

 13 Fig. 13. Particles position at t = 3215.3 s generated from the implementation with D = 5 × 10 -5 m 2 /s, with initial distribution generated from satellite image.

  Figure4shows a random sample constructed by the procedure described before, from images of Lake Valencia captured on the date and time stated above. Figures13(a) and 13(b) show the positions of the particles 3215.3 seconds after, determined by the random walk and flight models, respectively. The implementation of random flight model was made

  Kernel density of random walk.

  Kernel density of random flight with T L = 500 s.

Fig. 14 .

 14 Fig. 14. Kernel density of particles distribution at t = 3215.3 s generated from the implementation with D = 5 × 10 -5 m 2 /s, with initial distribution generated from satellite image.

f

  (x)ϕ 2 (x)dx.

U k+1 d = 1 (2πh) d 2 e - 1 2h

 d121 N (U k + h∇ log ϕ(U k ), hI d ).This definition implies that the transition density of the chain isq(u 1 , u 0 ) = ||u1-(u0+h log ϕ(u0))|| 2 .
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the implementation of two stochastic models: random walk and flight.

Appendix 1

Simulation a density defined on a set Ω ⊂ R d with boundary in C 2 . The text that follows is an adaptation of the methods presented in [START_REF] Fattler | Strong feller properties for distorted Brownian motion with reflecting boundary condition an application to continuous n-particle systems with singular interactions[END_REF], to the conditions that satisfies our problem. Thus let us consider a relatively compact connected set Ω ⊂ R d . Let assume that its boundary ∂Ω is a rectifiable set and that its parametrization has two continuous derivatives and also the set has Lebesgue measure zero. Let ϕ 2 be a density on Ω that is differentiable satisfying ε ≤ ϕ 2 (x) ≤ ||ϕ 2 || ∞ in Ω (it can be assumed that this function only vanishes in the boundary but, in such a case, our diffusion can not start in a point of this set). It can be defined the symmetric Dirichlet form (for an introduction to such a notion the reader can consult the reference [START_REF] Fukushima | Dirichlet forms and symmetric Markov processes[END_REF]), that is the closure in L 2 (Ω, µ), where dµ(x) = ϕ 2 (x)dx, of the following symmetric bilinear form

, where W 1,1 loc (Ω) denotes the Sobolev space of functions having a locally integrable weakly derivative on Ω. Given that the function ϕ 2 does not vanish in no point of Ω then the bilinear form (34) with domain D is closable in L 2 (Ω, µ) and its closure (E ϕ 2 , D(E ϕ 2 )) is a Dirichlet form conservative, regular and symmetric. Moreover there exists a self adjoint operator L ϕ 2 with dense domain D(L ϕ 2 ) ⊂ L 2 (Ω, µ) that generates the Dirichlet form (E ϕ 2 , D(E ϕ 2 )) acting in the following form:

, where ∂ ν denotes the derivative with respect to the outward normal of ∂Ω. Also, W 2,∞ (Ω) denotes the Sobolev space of functions two times weakly differentiable and essentially bounded in Ω.