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Introduction

Motivation

The study of turbulent flows plays a prominent role in a wide range of appli-
cations. The aeronautics, naval and automobile industries are constantly in need
for an accurate representation of the three dimensional wake of an unknown obs-
tacle to build reliable and eco-friendly vehicles that can face the adversity of climate
change. At a human scale, the study of turbulent flows can also bring significant
improvements to pre-existing systems. For instance, the reconstruction and control
of fundamental turbulent flows carried out by the ACTA team (Irstea, Rennes) ini-
tiated the development of the FROILOC c© system which blows ultra-clean and cold
air over a localized work space without altering the ambient air temperature. This
system is very attractive for the food and pharmaceutical industries as it ensures
the quality of the manufactured products and the well-being of the workers at the
same time. All in all, we are most of the time surrounded by turbulent flows which
influence human activity at various scales. Therefore, the more we understand the
behavior of the turbulence phenomenon in fundamental flows, the more efficiently
we can apprehend real life problems and propose efficient technological solutions.

Over the last century, two main fields emerged from the fluid mechanics context
to study the behavior of fundamental turbulent flows. In the one hand, the Compu-
tational Fluid Dynamics (CFD) field developed a large panel of dynamical models
to reconstruct numerically the evolution of steady or unsteady flows from an initial
state. On the other hand, the Experimental Fluid Dynamics (EFD) field developed
several measurement techniques to observe two dimensional, and more recently three
dimensional, observations of each component of the velocity field. During the last
decade, the fluid mechanics community witnessed the surge of techniques combining
both approaches in order to benefit from the assets and overcome the limitations of
each approach (Druault et al., 2004; Suzuki, 2014).

In recent studies, there is a trend towards the implementation of data assimilation
techniques in a fluid mechanics context (Cuzol et al., 2007; Cuzol and Mémin, 2009;
Kato and Obayashi, 2013; Papadakis and Mémin, 2009; Gronskis et al., 2013). Data
assimilation emerged from the weather forecasting and the geophysics fields which
are characterized by large-sized systems. This thesis follows the work of Gronskis
et al. (2013) and carries out the application of a 4DVar data assimilation technique,
to the 3D reconstruction of the characteristics of a given flow from image data and
dynamical models. Two different configurations are studies in this thesis.
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Free-surface flow configuration

Following the work of Combés et al. (2015) with particle filter, we investigate
with a variational data assimilation method the combined use of Kinect depth ob-
servations with a shallow water dynamical model to reconstruct free surface flow
geometry and dynamics. As mentioned in its name, the Shallow Water Equations
(SWE) are used to model a low-depth three dimensional fluid at its surface. The
SWE describes the height and the velocity fields at its surface, and are often used
as a prototype in geophysics applications. In the framework of this thesis, we built a
MATLAB dynamical code from scratch and implemented the 4DVar technique with
the help of an automatic differentiation tool. At first, the reconstruction is perfor-
med with partial and complete synthetic observations. In a second step, we consider
the real measurements of the evolution of the free surface height observed with a
Kinect depth-sensor.

In this application, we seized the opportunity to compare the performance of
the 4DVar technique with various strategies of an emergent hybrid data assimilation
technique. The comparison was published in Computers and Fluids (Yang et al.,
2015).

3D cylinder wake at Reynolds 300 configuration

This study is an extention of the work of Gronskis et al. (2013) to the recons-
truction of a three dimensional cylinder wake at Reynolds 300 by combining a highly
accurate and parallelized code Incompact3d (Laizet and Lamballais, 2009) with a
sequence of two dimensional observations. An important part of this application
was focused on the construction and validation of the discrete adjoint parallelized
code necessary to the implementation of the 4Dvar method. We performed a first
reconstruction of a purely synthetic flow generated by Incompact3d, using three
dimensional observations. We then performed the reconstruction of a fully three di-
mensional flow from the alternated synthetic observations of orthogonal stereo PIV
like observations (inflow and stream-wise plane). We investigate the possibilities of
the reconstruction with the real observations obtained by orthogonal stereo PIV
measurements.

This thesis is articulated around four chapters. At first, we overview in chapter 1
the numerical and experimental approaches developed so far in the fluid mechanics
context to reconstruct a fundamental turbulent flow. We present the limitations of
each approach and shed light on the attempts to combine both methods in the fluid
mechanics context. We overview in chapter 2 the data assimilation techniques which
are well suited to our problem and focus in particular on the variational data assimi-
lation methods. We describe in chapter 3 the construction and the implementation
of the the 4DVar technique to a free surface flow problem. We compare the recons-
truction of the free surface characteristics by different data assimilation techniques
(Yang et al., 2015) with synthetic and real observations. Finally, we carry out in
chapter 4 the implementation of the 4DVar technique to a highly accurate paral-
lel code. The 4DVar code was validated on a purely synthetic experimental case
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and puts in perspective the reconstruction of a fully three dimensional flow from a
sequence of two dimensional observations.
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Chapitre 1

Turbulent 3D flow reconstruction

The study of turbulent flows are crucial for a wide variety of academic and
industrial applications. While fluid dynamics problems are often associated to ae-
rodynamics and geophysics, they reveal to have a decisive influence in many other
fields. From the modeling of the blood flow within a vessel, to the refrigeration
process for the quality and safety of food products ; fluid dynamics has played a
pivotal role and opened the door to many applications. The study and modeling
of fundamental flows is a cornerstone of industrial applications. By reconstructing
the evolution of fundamental fluid flows characteristics (velocity and pressure fields,
temperature etc...), we can thereafter enhance complex systems used in the industry.
Traditionally, there are two main approaches to the 3D reconstruction of turbulent
flows that we discuss in the following.

A first approach, described in § 1.1, consists in modeling the behavior of a set of
variables that characterize fundamental flows based on physical laws. The Computa-
tional Fluid Dynamics (CFD) field offers a wide range of numerical methods to solve
the dynamics equations describing the flow evolution. We also introduce the main
techniques used in turbulence modeling. Finally, we discuss the inherent limitations
of the CFD methods to model a realistic phenomenon, like the choice of the initial
and boundary conditions or the tuning of the model’s parameters.

A second approach, described in § 1.2, consists in observing directly the evolution
of a fundamental flow in a controlled space. In this approach, many efforts have been
devoted to measure a fluid motion in a non-intrusive and accurate manner. The
experimental approach was formalized in the beginning of the XXth century and
grew along with the technical progress of measurement sensors and computer vision
techniques. The recent development of Experimental Fluid Dynamics (EFD) offers a
bright perspective for the reconstruction of a full 3D turbulent flow within a square
meter volume. Despite the remarkable technological progress, the EFD approach can
only provide sparse and often noisy information that require an additional model to
deduce the quantities of interests, namely the forces exerted on the fluid.

Considering the inherent limitations of the numerical and experimental approaches,
the investigation for a combination of both approaches has aroused a lot of enthu-
siasm in the fluid dynamics community. We discuss the attempts from each com-
munity to combine a dynamics model with a set of observations in § 1.3. The most
promising approach is given by the data assimilation techniques which stem from the

21



Chapitre 1. Turbulent 3D flow reconstruction

weather forecasting field and are well established in every weather forecasting cen-
ters and geophysics applications as well. Data assimilation techniques have captured
the attention of many other communities, and recent efforts were notably carried
out to implement them in the fluid dynamics context. We overview these endeavors
and introduce the approach we followed within this PhD work.

1.1 Computational Fluid Dynamics

The simulation of steady and unsteady flow problems rose long before the growth
of numerical methods and the advent of computers in the 1970s. Centuries of fluid
mechanics research established the governing equations that describe the evolution
of an infinitesimal particle in time and space (see § 1.1.1). The latter can be solved
exactly by hand for simplified or idealized flows, or approximated by numerical
methods. The increasing need to design atmospheric entry vehicles in the 1940s and
beyond (for ballistic, then for orbital and lunar motivations), urged for the resolution
of complex fluid dynamics problems. In parallel, numerical methods to solve ODEs
and PDEs were known and conceived by paper since the time of Newton in the
1700s. Centuries of progress led to a wide range of concepts and numerical methods,
however it was a tedious task to apply these methods by hand. Hence, the advent
of computers in the 1970s boosted their growth and development ; and while the
application of numerical methods go beyond fluid dynamics problem, there was a
complete link between the development of numerical methods for PDEs and the
simulation of fluid flow problems. It is within this context that the Computational
Fluid Dynamics (CFD) field emerged and grew significantly. Nowadays, the literature
provides us a wide choice of numerical methods that have been implemented and
improved throughout the history of CFD. We briefly overview these methods in
§ 1.1.3. The development and improvement of the CFD field allowed us to study
more and more complex flows, in particular the reconstruction of turbulent flows
which is the key to many industrial applications. We briefly discuss the case of
turbulence flow modeling principles in § 1.1.2. Finally, we discuss in § 1.1.4 the
inherent limitations of the CFD approach.

1.1.1 Governing equations

We generally describe a fluid motion through three conservation laws that link
the mass density ρ, the pressure field p = p(x, y, z), the velocity field in each di-
rection u = (u, v, w) and the energy E. The first conservation law guarantees the
conservation of mass, the sum of the mass flow rates entering into a control volume is
equal to the sum of the mass flow rates getting out of the control volume. The second
conservation law comes from the application of Newton’s second law of motion to a
given fluid particle, the change of momentum ρu = (ρu, ρv, ρw) equals the sum of
all the external forces applied to each fluid particle. Finally, the third conservation
law, which comes from the first law of thermodynamics, guarantees the conservation
of energy. The rate of change of energy equals the sum of the rate of heat and the
work done on each fluid particle.
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Chapitre 1. Turbulent 3D flow reconstruction

Within the fluid dynamics context, we generally consider the Navier-Stokes equa-
tions which describe the relation between the velocity and the pressure of a moving
fluid. In an academic context, we generally assume that the variations of pressure
doesn’t influence the particles’ density. This ideal case is specified by the incom-
pressibility hypothesis, which states that ∇·u = 0. In the Newtonian fluids approxi-
mation, we assume that the relation between stress and the corresponding rate of
strain is linear. The viscous stress in the fluid is the sum of a diffusion viscous term
(proportional to the gradient of velocity) and a pressure term. Turbulence, and the
generation of boundary layers, are the result of diffusion in the flow. Under the
previous hypotheses, the momentum equation is rewritten into the Navier-Stokes
equations for an incompressible fluid. Hence, for an incompressible flow, the fluid
dynamics equation reads,

∇·u = 0, (1.1)

∂tu +
1

2
(∇(u⊕ u) + (u∇)u)− ν∇2u +∇p = 0. (1.2)

The Navier-Stokes equations, coupled with the adequate initial and boundary
conditions, are primarily used in fluid dynamics to describe fundamental flows and
will be considered within this thesis in chapter 4.

Most of the dynamics fluid equations encountered in many other configurations
are generally derived from the latter. We will also consider in this work the shallow
water equations (SWE) which are deduced from the depth-integration of the Navier-
Stokes equations. These equations are often used in an academic context to model the
free surface of a fluid which depth is negligible with respect to its surface dimensions.
While a vertical velocity term is not present in the shallow water equations, note
that this velocity is not necessarily zero and can be recovered via the continuity
equation. The standard 2D SWE are formulated as :

∂th+ ∂x(hu) + ∂y(hv) = Sh,
∂t(hu) + ∂x(hu

2) + ∂y(huv) + g∂xh
2 = Shu,

∂t(hv) + ∂x(huv) + ∂y(hv
2) + g∂yh

2 = Shv,

where g is the gravity acceleration, Sh, Shu and Shv are the source terms such as,
for instance, the Coriolis force Shu = fhu, the friction Shu = cfu

√
u2 + v2 or the

topology at the "bottom" of the fluid.

1.1.2 Introduction to turbulence modeling

While the formal definition of turbulence is still in the center of numerous de-
bates, there is a common ground on the definition of its main characteristics. In the
turbulence context, the smallest scales, referred to as the Kolmogorov scales η, have
a crucial impact on the characteristic length of the smallest scales of the flow beyond
which kinetic energy is transformed into heat (sometime called eddies). Therefore, an
ideal simulation of a turbulent flow would consist in representing the contributions
of all the spatial and temporal scales of the turbulence spectrum (see figure 1.1).
This complete representation can be achieved by the Direct Numerical Simulation
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(DNS). Once we define a spatial and temporal discretization of the physical domain
that can represent the smallest scales, we solve the Navier Stokes equations by the
means of one or a combination of numerical methods presented in § 1.1.3.

Figure 1.1 – Kolmmogorov energy spectrum representing all the scales of a turbu-
lent flow

As one could expect, the DNS requires a tremendous amount of computational
resources which increase with the size of the problem. We can assess the computa-
tional cost by considering a flow characterized by a given Reynolds number Re, the
number of points necessary to describe all the turbulent flow scales depends on Re
such as,

Np ∝ Re9/4.

In addition, the number Nt of time steps ∆t necessary for the simulation on a time
interval [0;T ] is given by

Nt ≈
T

∆t
≈ Re1/2.

Therefore, the cost of the DNS on a [0;T ] time interval is estimated to

Np ×Nt ∝ Re3.

The higher the Reynolds number, the more expensive the DNS. In general, engi-
neering applications require high Reynolds number, like for instance Re = 108 and
Re = 109 in automobile and aerodynamic applications, respectively. While the DNS
is clearly inapplicable in these applications, it has greatly contributed to the deve-
lopment of turbulence models that we introduce in this section. We outline three
notable turbulence models and refer the reader to Wilcox (1998); Spalart (2000);
Lesieur (2012) for a deeper description of these models.

Reynolds Average Navier Stokes (RANS) consists in dividing the velocities
into mean components averaged in time and fluctuating components, by introducing
them into the Navier Stokes equations, then modeling the new product terms. The
RANS model has been implemented among commercial softwares such as ANSYS
(former FLUENT). We refer the reader to Spalart (2000) for a review of RANS
models.
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Large Eddy Simulation (LES) consists in modeling the small eddies by a sub-
grid scale model, pioneered by Smagorinsky (1963) and improved by Germano et al.
(1991) for near-wall region, while the large eddies are solved directly by a transient
calculation. The reader can find in Sagaut (2006) a broader review of LES methods.
Mathematically, the LES comes to separating the velocity field into a resolved part,
representing the large eddies, and a sub-grid part, representing the small scales.

More recently, Mémin (2014) has proposed an alternative to the classical Reynolds
decomposition by separating a differential drift component to a time uncorrelated
uncertainty random term. The latter isn’t differentiable with respect to time, the-
refore it is handled through stochastic calculus. The dynamics associated with the
differentiable drift component is derived from a stochastic version of the Reynolds
transport theorem. It includes in its general form an uncertainty dependent sub-
grid bulk formula that cannot be immediately related to the usual Boussinesq eddy
viscosity assumption constructed from thermal molecular agitation analogy like in
LES subgrid models. This formulation, considering uncertainties into the dynamical
turbulence flow model is promising for the coupling with sparse data image. The
learning of spatio-temporal model parameters taking into account data uncertain-
ties and model error is potentially of huge interest, as for the moment no satisfying
solution exists in complex real world cases encountered in industrial problems.

1.1.3 Numerical methods for CFD

Exact solutions of the Navier Stokes equations (1.1), (1.2) can be found in Crane
(1970); Brady and Acrivos (1981); Wang (1992). These solutions are often restricted
to a steady-state flow and boundary conditions, and they eventually require additio-
nal simplifications of the equations. On the other hand, numerical solvers of ODEs
and PDEs were theoretically established in the literature. After over a half-century
of research, we have at our disposal a wide range of numerical methods and discre-
tization schemes to solve a set of PDEs at a certain level of accuracy. In the CFD
framework, we commonly use the Finite Difference Method (FDM), the Finite Ele-
ment Method (FEM), the Finite Volume Method (FVM) and the Spectral Element
Method (SEM).

Finite Difference Method (FDM) is the first numerical method to be applied
to fluid dynamics problems. In the same way as the definition of a derivative, the
FDM replaces the partial derivatives of the governing equations by algebraic diffe-
rence quotients. This yields to a system of algebraic equations from which we deduce
the value of the variables of interest at each grid points. The two sources of error in
the FDM are round-off errors, the loss of precision due to computer rounding of de-
cimal quantities, and truncation error or discretization error, which is the difference
between the exact solution of the finite difference equation and the exact quantity
assuming no round-off errors. The easy implementation of the FDM is an important
asset which allowed its fast improvement and spread to various domains of applica-
tion. In the context of turbulent flows, it is necessary to deal with highly accurate
schemes which are capable to represent all the ranges of scales while ensuring a
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stability. The compact finite difference schemes (Lele, 1992) keeps the versatility of
the FDM and provides a spectral-like accuracy. These methods are ideal for DNS as
they provide a sufficiently high accuracy and robustness.

Finite element method (FEM) stems from structural mechanics problems which
focus on the deformation, deflections and internal stresses within structures. These
problems are characterized by complex geometry that can’t be represented by a regu-
lar structured grid. Therefore, the FEM offers the flexibility to subdivide the domain
into cells, called elements, of flexible shape. The elements have typically a triangular
form (in 2D) but they can also be rectangular or curved which is an important asset
with respect to FDM. The reader can find more description in Szabo and Babuvska
(1991). In opposition to the FDM, the FEM doesn’t seek for the solution of the PDE
itself, but aims at solving the integral form of the PDE instead. This asset leads to
more flexibility in terms of boundary conditions implementations and allows the
construction of higher order accurate methods. However, the implementation of the
FEM itself is a tedious task and is actually worth the effort for a solution that is
assumed to depend a priori on a complex geometry. In this perspective, FEM is
well established in industrial applications and is commonly implemented entirely or
partially in most commercial tools such as ANSYS (formely Fluent) or FLOW-3D.

Finite Volume Method (FVM) is well suited to simulate various types (para-
bolic, elliptic, hyperbolic etc...) of conservation laws and is usually favored to solve
CFD problems in particular (Versteeg and Malalasekera, 2007). In opposition to the
FDM, the FVM is based on the variational formulation of the PDE. Instead of de-
termining the value at a local grid point, the FVM quantifies the fluxes that move
from a discretized cell - referred to as a control volume - to its neighbor. By construc-
tion, the FVM ensures the numerical conservation of the flux which is an attractive
asset to the fluid dynamics context. Similarly to the FEM, the FVM may be used
on complex geometries, using structured or unstructured meshes but requires less
implementation effort.

Spectral Method (SM) are established as the most accurate numerical method
to solve fluid dynamics PDEs. Spectral methods (Gottlieb and Orszag, 1977) consists
in using Fourier or Chebyshev representation and solving the governing equations
in the spectral space which guarantees the high accuracy of the method. However,
these methods are usually limited to simple geometries and for complex configura-
tions, conventional finite difference methods are used. Nevertheless, the accuracy of
the SM is a very attractive asset which pushed the development of hybrid methods.
For instance, the Spectral Element Method, introduced by Patera (1984), decom-
poses the domain into a series of elements similarly to the FEM and the velocity in
each element is represented as a high-order Lagrangian interpolant through Cheby-
sev collocation points. Similarly, the Spectral Volume Method (Wang, 2002; Wang
and Liu, 2006) decomposes each spectral volume into a series of control volumes.
The cell-averaged data from these control volumes are used to reconstruct a high-
order approximation in the spectral volume. The Riemann solvers are then used to
compute the fluxes at spectral volume boundaries.
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In the framework of this PhD, our goal is to perform a DNS model for two fluid
flow configurations using the appropriate numerical schemes. In a first academic
application, we consider a simplified 2D Shallow Water model defined on a simple
geometry form (see chapter 3). We implemented the FVM, as described in detail in
§ 3.1, which provides an accurate solution for a reasonable implementation effort. On
the other hand, we perform a DNS for a 3D turbulent cylinder wake for Re = 300
based on the incompressible Navier Stokes equations. The DNS code employed,
Incompact3d, combines a spectral method and high order compact FDM as described
in Laizet and Lamballais (2009).

1.1.4 Limitations of computational fluid dynamics

As depicted throughout this section, the final goal of CFD methods is to provide
a numerical approximation of the actual physical laws that governs a realistic flow.
While the CFD field provides accurate methods and tools to represent ideal flows,
there are still inherent limitations that may lead to a poor representation of a turbu-
lent realistic flow in three dimension. We discuss in this section the main limitations
we can encounter in a purely CFD approach.

Model errors are inherent to the CFD approach. Indeed, we don’t always have
enough of knowledge of the physical laws governing the turbulent flow of interest it-
self. Typically, in many fundamental and industrial problems, it is nearly impossible
to know the exact boundary conditions. Despite we achieve a perfect representation
of the flow within the volume of interest, a bad choice of the boundary conditions
model might lead to the spread of errors within the whole volume and compromise
the final solution of the problem. In a channel flow configuration for instance, it is
nearly impossible to model a realistic inflow for a turbulent flow which is crucial to
define the evolution of the flow throughout the channel. In a three dimensional cylin-
der wake configuration in particular, it is custom to impose a periodicity condition
along the cylinder axis. Indeed, this choice is based on experimental measurements of
(Zdravkovich, 2003), which shows a periodic distribution (2 < λz/D < 9) depending
on the Reynolds number.

Additional errors also rise when we consider turbulence models such as (LES,
RANS). These errors are induced by the model itself and the adjustment of the
parameters of the model. These errors can be eventually included in the dynamical
model and the parameters can be estimated in situ (see § 1.1.2).

The initial condition definition is also a major limitation to the CFD approach.
Even if we possess a perfect dynamics model and we input a misinformed initial
condition, we might obtain a completely different flow. This comes from the nonlinear
terms of the Navier Stokes equations and the deterministic nature of the CFD model.
In addition, as we mentioned previously, a turbulent flow is sensible to the finest
scales of the flow. Therefore, in a turbulent flow with a high Reynolds number, a
slight change in the finest scale structures can impact the large scale structures.
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Numerical errors induced by the numerical schemes employed to discretize the
dynamics model (§ 1.1.3) can also compromise the representation of realistic turbu-
lent flows. Despite the remarkable progress in the CFD field and the constant growth
of computational resources, we are inevitably exposed to round-up and truncation
errors. Such errors can be lowered by the representation of the flow on a finer grid,
however the latter requires a considerable increase of computation time and storage.

In a nutshell, CFD models provide an essential pillar of the reconstruction of tur-
bulent flows as they provide time continuity and dynamical consistency among the
velocity and pressure fields. Nevertheless, these models are only able to reconstruct
accurately ideal flows and we still lack knowledge on the physical model of realistic
three dimensional turbulent flows. This lack mainly concerns the initial and boun-
dary conditions, and the turbulence model errors and the tuning of their parameters.
Additionally, we have to find the best compromise between the computational re-
sources and the accuracy of the numerical schemes used to discretize the dynamics
model.

1.2 Experimental fluid dynamics

One of the early and most prominent example of fluid mechanics experiment has
been carried out by L. Prandtl in 1904 who observed and studied the aspects of uns-
teady separated flows behind several objects in a water tunnel(figure 1.2). The flow
was visualized by distributing a suspension of mica particles on the surface of water.
The latter set up a revolutionary experimental methodology that has systematically
been used until today, and paved the way for measurement techniques expansion.
Likewise the CFD field, the Experimental Fluid Dynamics (EFD) field expansion has
been closely linked with technological progress. Within the fluid dynamics context,
the intrusive Hot Wire Anemometry (HWA) and the non intrusive Laser Doppler
Anemometry (LDA) were popularly used and developed to measure an accurate
and punctual point in space. The estimation of the whole velocity field could be ob-
tained by an additional post-processing technique. While these techniques are well
established in the community, they were progressively supplanted by Particle Image
Velocimetry (PIV) and later on 3D Particle Image Velocimetry which are briefly
discussed throughout this section.

1.2.1 Particle Image Velocimetry for 2D observations

Nowadays, by combining Prandtl’s attempt to trace particles, a contemporary
laser and image processing techniques, we are able to measure the velocity of micron-
sized particles following the flow by the so-called Particle Image Velocimetry (PIV)
technique, illustrated in figure 1.3. PIV is a well established non-intrusive 2D measu-
rement technique for measuring velocity fields of fundamental flows from a sequence
of instantaneous snapshots (Adrian, 1991). The displacement of the particles is es-
timated statistically by correlating two sequences of particle images as described
in Meinhart et al. (1993). If we consider for instance an airflow at Re = 300, i.e.
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Figure 1.2 – Ludwig Prandtl in 1904 showing a test bench, known as the Prandtl
channel, to visualize the flow evolution.

L
η

= O(Re3/4) ≈ 72, the PIV experiments is able to provide the same spatio-temporal
resolution than a DNS. However, if we consider a higher Reynolds number, the cor-
responding dynamics range is L

η
>> 100 whereas the PIV is limited to a velocity

dynamics range of range of 100 :1 (Adrian, 1995). Therefore, at the PIV resolution
we can’t retrieve the smallest scales yielding a coarse representation of a turbulent
flow. The reader can find a complete description of the PIV technical background
and applications in Adrian (2005) and in Raffel et al. (2013).

Figure 1.3 – The classical PIV system configuration setup is composed of a double-
pulsed laser and CCD camera. We deduce the velocity field by performing the ana-
lysis of the correlation between a sequence of frames.

The measurement of a two-dimensional three-component velocity field is a major
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stake for fluid mechanics and is even indispensable for a good understanding of
turbulent flows. By combining PIV and stereoscopy, Arroyo and Greated (1991)
developed a set-up which takes two stereoscopic images of the flow simultaneously
with only one camera, yielding a measurement of the three components velocity
flow in one plane. Kähler and Kompenhans (2000) developed a multi-plane stereo
PIV system which consists of a four-pulse laser system and two pairs of progressive-
scan cameras in an angular imaging configuration. This system provides the three
components velocity field based on a classical PIV setting.

1.2.2 3D Particle Image Velocimetry

The progress of PIV techniques led to satisfying three components reconstruc-
tion of the velocity fields. Nevertheless, in order to have a better understanding of
turbulent flows, the three dimensional three component velocity field is of crucial
need. Several techniques to measure three dimensional quantities were proposed in
the literature, such as scanning-PIV (Brücker, 1997), 3D Particle Tracking Velo-
cimentry (3D-PTV) (Virant and Dracos, 1997) or holographic-PIV (Hinsch, 2002;
Chan et al., 2004). Tomographic PIV (tomoPIV), pioneered by Elsinga et al. (2006),
offers one of the most interesting perspective for three dimensional unsteady flow
measurements. In analogy to the PIV technique, tomoPIV consists in seeding the
measured 3D volume with tracer particles and illuminate the 3D region by a pulsed
light source. The particles are then recorded simultaneously by CCD cameras similar
to stereo-PIV as illustrated by figure 1.4. The tomoPIV measurement technique has
recently emerged thus we are able to retrieve very small volumes using thin tracer
particles. The first tomo-PIV measurements carried out by Elsinga et al. (2006) re-
trieved the three components of the a cylinder wake velocity field within a 40 mm ×
40 mm × 10 mm volume in air using 1µm droplets as tracer particles. Most of the
tomo-PIV experiments achieved so far remain in that scale order (Schröder et al.,
2008; Humble et al., 2009) in order to provide an accurate representation of the
particle motion.

Figure 1.4 – The tomographic PIV system configuration setup is composed of a
double-pulsed laser and CCD camera. We deduce the velocity field by performing
the analysis of the correlation between a sequence of frames.
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More recently, there is an emergence of large-scale tomo-PIV systems to retrieve
a cubic-meter sized volume by using Helium-Filled Soap Bubbles (HFSB) (Kuhn
et al., 2011; Scarano et al., 2015). In this configuration, we seed the turbulent flow
with HFSB of which are much larger than the 1µm particle used so far in PIV
and tomoPIV techniques. Due to their size, the particle distribution is smaller and
more sparse thus they are esentially able to measure large scale structures. Other
measurement techniques also such as tomoPTV and 4D-TomoPIV "Shake the box"
also propose to retrieve the three dimension three component velocity fields in for
wide volumes (Schanz et al., 2013).

1.2.3 Limitation of Experimental Fluid Dynamics

The EFD techniques presented throughout this section are able to capture phe-
nomena that we might not be able to model yet and that improves our knowledge
on the flow of interest. Despite the technological and methodological progress in
the measurement techniques, there are still inherent limitations that may restrict
severely the representation of the realistic turbulent flows. We discuss in this section
the limitations that we can encounter in the 2D and 3D measurement techniques.

2D measurements are first and foremost limited in size, PIV measures are ty-
pically limited to 1000 × 1000px2 which comes to 8 × 8cm2. In terms of spatial
resolution, as mentioned previously the PIV is limited to a velocity dynamics range
of 100 : 1 (Adrian, 1995). Therefore, at a high Reynolds number, we are only able
to capture large scales and obtain the same resolution as a LES (see § 1.1.2). In ad-
dition to the resolution limitation, 2D measurements are inherently sparse in space,
as they only provide the velocity components within planes, and in time. We can
eventually set an experimental configuration to retrieve the velocity fields at the
inlet and the stream-wise planes alternatively in time (see § 4.4.3), however we still
lack the whole 3D contribution of the measured flow.

3D measurements are even more limited in size due to the tremendous cost of
energy of the laser used to illuminate the flow. As described in § 1.2.2, tomoPIV
measurements are limited to a small volume of a few cm3 and the velocity dynamics
range is smaller than the 2D measurement case. Therefore, similarly to the 2D
measurements, we can’t retrieve the smaller scales and obtain observations which
are LES like. The recent large-scale tomo-PIV techniques can eventually retrieve a
larger domain of a few m3 (Kuhn et al., 2011; Scarano et al., 2015), however the
obtained observations are sparse in order to avoid occlusions of the particles.

In a nutshell, EFD techniques provide important characteristics of a realistic flow.
However, the measurements size and resolution are limited by the experimental
settings and are often sparse in time and in space. Therefore, we obtain a LES-like
observations which captures the large scales of the flow of interest. Let us note this
LES-like representation is not model-free since strong smoothing functions are used
in the estimation process.
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1.3 Coupling CFD with EFD

Traditionally, experimental observations are used as a reference for a numerical
method result as in Dong et al. (2006) and in Parnaudeau et al. (2008), while the
model can be used to deduce non-observable variables characterizing the fluid dyna-
mics. Recently, the CFD and the EFD communities have both shown great interest
in combining a dynamical model with observations to obtain a better representation
of a given flow motion. We present an overview of the early attempts to introduce
measurements into a model and vice versa. A particular focus is brought to the
promising data assimilation techniques that couple a model with the observations of
a system of interest. We describe the recent attempts to apply a data assimilation
technique in the fluid mechanics context and finally present the approach proposed
by this thesis.

1.3.1 Early attempts to combine measurements with a model

Early attempts to introduce measurements into a model in the fluid mecha-
nics community stem from the application of the Proper Orthogonal Decomposition
(POD). Initially, POD was used in the CFD community to reduce large CFD models.
The popular snapshot method proposed by Sirovich (1987) provides a set of modes
from a set of instantaneous flow solution obtained from a simulation of the CFD
method. The governing equations of the large CFD models are then projected onto
the reduced space spanned by the POD modes. The snapshot method was thereafter
improved by Everson and Sirovich (1995) in the image processing context, to recons-
truct of images - human face - from a sequence of incomplete or gappy images. The
first application of the POD in the aerodynamics context was carried out by Bui-
Thanh et al. (2004) to reconstruct flow fields corresponding to a given airfoil shape,
using a set of incomplete experimental PIV measurements. In the fluid mechanics
context, Druault et al. (2004) use a POD model which combines a LES model with
HWA and PIV measurements to generate realistic inflow conditions for a numerical
simulation. This procedure can also be used as a dynamical data post-processing
which aims at improving the experimental data, for instance by completing partial
information or restoring the data deterioration occurred during the measurement
acquisition. More recently, Suzuki (2014) applied a POD model by combining with
time-resolved PIV/PTV measurements for a turbulent flow at Reynolds Re = 2000.

Optimal design problems aim at determining the optimal input parameters cor-
responding to measured forces exerted on the fluid. In this context, we seek for an
optimal design parameter, for instance an initial condition (Lundvall et al., 2006)
or a material characteristic (Avril et al., 2008), such that the error between the
model-based solution and the true measurements reaches a minimum. To that pur-
pose, optimal design problems are formulated as an optimal control problem (Lions,
1971) which is solved by an adjoint-based control optimization, as pioneered by
Jameson (1995). In this aspect, optimal design problems are similar to the variatio-
nal approach of the data assimilation techniques that we present in the following
sub-section.
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1.3.2 Towards data assimilation techniques

Data assimilation (DA) is a whole branch of mathematical techniques that emer-
ged from the weather forecasting and geophysics fields. One of the most seducing
assets of the data assimilation techniques is their ability to retrieve the state of in-
terest in a full spatial and temporal resolution by combining the dynamics model
describing the system of interest with low resolution and partial observations. The
application of DA techniques to the fluid mechanics context was first investigated in
D’Adamo et al. (2007) and in Cuzol et al. (2007) to provide low representations of
the flow characteristics. We usually distinguish two main approaches to data assi-
milation techniques, a sequential data assimilation (SDA) approach which estimates
an optimal state from a first guess state and its observation ; and a variational data
assimilation (VDA) approach which seeks for an optimal trajectory which is a com-
promise between the evolution of a system and a set of observations in a given
assimilation window.

Application of the SDA approach In the SDA approach, Colburn et al. (2011)
employed the Ensemble Kalman Filter (EnKF) technique, introduced by Evensen
(2003), to estimate the 3D near-wall flow at a low Reynolds number (Re=100). This
application combines a standard spectral second order finite difference approach with
measurements of the skin friction and pressure only on the wall. The results are a
first step to determine the dynamics law of turbulent near-wall flows with respect
to the distance from the wall. Kato and Obayashi (2013) employed the EnKF tech-
nique to retrieve the optimal parameters of the Spalart-Allmaras turbulence model.
These parameters were initialized by random values within a defined range and were
compared to the original values proposed by the Spalart-Allmaras turbulence model.
Combés et al. (2015) proposed to reconstruct the 3D geometry dynamics of a free
surface flow by coupling Kinect depth measurements with SWE dynamics model via
stochastic filtering.

Application of the VDA approach In the VDA approach, a first study was car-
ried out by Papadakis and Mémin (2009) to couple turbulent flow image sequences
with DNS. This study was followed by Cuzol and Mémin (2009) who coupled turbu-
lent flow image sequences with vortex particle simulations. Suzuki et al. (2009a,b)
propose a hybrid unsteady-flow simulation technique which combines DNS and PTV
which is very similar to the variational approach formulation. The latter is used to
and is compared to a 2D URANS solution. These first attempts are reviewed in Heitz
et al. (2010). The VDA approach has later on been used by Gronskis et al. (2013)
to reconstruct a 2D accurate full resolution inflow and initial condition by coupling
PIV measurements and a highly accurate DNS model at Reynolds Re = 400. This
reconstruction was performed by controlling the initial and inlet conditions. In the
same vein,

Dovetta et al. (2014) recovered a turbulent pipe flow statistics at high Reynolds
(Re = 37155) by performing the VDA approach with a RANS model and mean ve-
locity measurement taken from McKeon et al. (2004). In the same vein of Fujisawa
et al. (2005) and Van Oudheusden (2005), a variational assimilation technique was
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carried by Lemke and Sesterhenne (2013) to reconstruct pressure fields for acous-
tic fluctuations. The latter combines an adjoint-based formulation of the fully 2D
compressible Navier Stokes equation, with synthetic PIV observations to determine
an improved full resolution of the velocity fields. The pressure field is thereafter
deduced by solving the Poisson equation with the obtained velocity fields. The re-
sulting pressure fields revealed to be more accurate than those obtained directly
from solving the Poisson equation on the observed PIV field. Foures et al. (2014)
combined a 2D RANS model with several measures of the mean flow for a low Rey-
nolds number (Re = 100). These studies laid out the VDA asset to interpolate,
reconstruct and extrapolate the flow statistics from partial observations, in regions
where measurements are difficult or impossible to obtain. The VDA approach was
also used in Mons et al. (2014) to reconstruct the initial kinetic energy spectrum
by coupling an eddy-damped quasi-normal Markovian model with the observation
of ah homogeneous isotropic turbulence decay.

Hybrid approach More recently, there is an emergence of hybrid methods which
combine the SDA and the VDA approaches which is introduced in § 2.5. A complete
review of such method can be found in Yang (2014). In chapter 3, we considered the
application of the hybrid technique En4DVar and compare its results with a classic
VDA approach.

In the framework of this thesis, we carried out two applications of the VDA ap-
proach. In the one hand, we reconstruct a free surface height and velocity field by
coupling a 2D SWE model and depth map observations provided by the Kinect sen-
sor. On the other hand, we combine a DNS model with stereo-PIV observations to
reconstruct the three components three dimension velocity fields of a cylinder wake
at Re = 300. In extension to Gronskis et al. (2013), we perform the reconstruc-
tion by controlling the initial and inflow conditions. One of the biggest challenge of
this second application is to retrieve the whole volume in the wake of an unknown
obstacle from 2D observations.
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Data assimilation techniques

The concept of data assimilation (DA) comes from the numerical weather pre-
diction (NWP) field. The goal is to combine an a priori knowledge of a given system
with observations of the system as formulated in section § 2.1. When we apply data
assimilation techniques to a given dynamic system (i.e. we consider the evolution in
time), we ought to fulfill three main purposes : improve our knowledge of the present
state from the past observations, predict a better state in the future from the past
and present observations and provide a better estimate of the evolution of the state,
referred to as the trajectory, of the system of interest. Early attempts to combine
a model with a set of observations in the NWP context were carried out through
the interpolation of the observations to the dynamic numerical grid points. Pionee-
ring works by Bergthorsson and Döös (1955) and Cressman (1959), later combined
with a statistical interpretation by Gandin (1965), together gave birth to a metho-
dology called optimal interpolation (OI). The estimation theory offers a wide range
of parametric estimators for a state of interest given a set of observations, which
is discussed in section § 2.2. Thereafter, two main approaches to data assimilation
techniques stood out and were developed mostly independently from one another.
In the one hand, the sequential approach, discussed in § 2.3, resorts to the Kalman
Filter equations which require the calculation of a single and expensive matrix (cal-
led the Kalman gain), and on the other hand, the variational approach, discussed
in section § 2.4, is based on the application of optimal control theory elements to
the data assimilation problem. Finally, we discuss in § 2.5 the emergence of the hy-
brid data assimilation techniques which combines the concepts of the sequential and
varitional approaches.

2.1 General context

First and foremost we define the mathematical context common to the data
assimilation techniques described throughout this chapter. The common goal of data
assimilation techniques is to provide an optimal estimate of a true initial state xt0 and
control parameter ut(t, x) that are in practice unknown. The obtained optimal state
is referred to as the analysis state, denoted xa0. Data assimilation techniques require
two main ingredients. In the one hand, we need a dynamic model that describes
the evolution of the system of interest, named the background trajectory, from an a
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priori initial state xb0. On the other hand, we need a set of measurements Y of the
system. In the fluid mechanics context, the state variables of interest are typically the
velocity and pressure fields and the observations are obtained by PIV or tomoPIV
measurements. The data assimilation problem is formulated by the following system
of equations,

∂tx(t, x) + M(x(t, x)) = q(t, x), (2.1)
x(t0, x) = xb0(x) + η(x), (2.2)
Y(t, x) = H(x(t, x)) + ε(t, x). (2.3)

The first equation (2.1) describes through a differential operator M the evolution
of the state x in time and space t, x. The differential operator M is often non-
linear ; in the fluid mechanics context for instance, (2.1) corresponds to the general
form of the Navier Stokes equations (1.1),(1.2). Function q(x, t) takes into account
potential model errors, such as dynamical parameter errors or errors induced by the
discretization of the continuous dynamics equations into the numerical solver. In
the framework of this thesis, we assume that the dynamics model is perfect, thus
q(t, x) = 0.

The second equation (2.2) describes the initial condition for the dynamics equa-
tion which is defined by the background state xb0 up to the background error η(x).
The latter is supposed to have a zero mean and is associated to a so-called back-
ground covariance matrix,

B = E((xb0 − x)(xb0 − x)T ) = E(ηηT ).

The last equation (2.3) links the measurements Y of the system with the state
variable x for each occurrence of the observation t. This relation is characterized by
a differential observation operator H which can be non-linear. The measurements
Y are often noisy and can be completely or partially defined in time and space at
a different scale than the state of interest x. The discrepancy error between the
measurement and the state in the observation space, denoted ε(t, x) = Y(t, x) −
H(x(t, x)) and is assumed to be a zero mean Gaussian random field associated to
the observation covariance tensor R. The observation error ε(t, x) covers at the
same time the measurement errors induced by the measurement sensors and by the
observation operator H. In the former case, we usually have an information on the
mean and standard deviation corresponding to the adopted measurement sensor.
Whereas, in the latter case, it is not trivial to estimate the errors induced directly
by the observation operator which depends on a given model. In both applications
studied within this thesis, we will consider pseudo observations which are equivalent
to the state of interest and which are obtained from a specified pre-process, therefore
the observation operator will be set to an identity matrix.

2.2 Linear estimation theory
Estimation theory is a branch of statistics which provides a basis for data assi-

milation techniques. We consider a noisy observation Y ∈ Rm of a given physical

36



Chapitre 2. Data assimilation techniques

system, linked to a state variable x ∈ Rn by an observation operator. We will consi-
der throughout this section a linear observation operator noted H such as

Y = Hx + ε.

The discrepancy error ε between the observations and the state variable is assu-
med to be unbiased and is associated to the following covariance matrix

R = E((Y −Hx)(Y −Hx)T ) = E(εεT ).

Estimation theory aims at determining and studying the properties of an optimal
estimator x̂ of the true state xt, based on the knowledge of the observation Y . In the
Numerical Weather Prediction (NWP) context, we have an a priori knowledge of
the data behavior, thus, we are interested into parametric estimators which are very
dependent on the adjustment goodness of the data to the density functions. A wide
range of estimators can be found in the literature, we present two main approaches
to solve the given linear estimation problem.

2.2.1 Linear least squares estimation

Given the estimation problem above, the linear Least Squares (LS) estimation
formulation is straightforward. In this approach, we seek for the optimal estimator
x̂ that minimizes the following cost function

J(x) =
1

2
(Y −Hx)T (Y −Hx).

The optimal state is obtained by canceling the cost function gradient :

∇J = HTHx−HTY = 0,

supposing HTH is reversible, we deduce the optimal linear LS estimator :

x̂ = (HTH)−1HTY .

This formulation can be generalized by taking into consideration a weight, des-
cribed by the observation covariance matrix R, into the cost function :

J(x) =
1

2
(Y −Hx)TR−1(Y −Hx).

We deduce, the generalized optimal linear LS estimator is given by

x̂ = (HTR−1H)−1HTR−1Y .

We note that the LS approach is purely deterministic technique, which relies on a
Gaussian a priori of the discrepancy errors between the data and the state variables.
Such a statistic analysis can be pushed forward within a Bayesian context.
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2.2.2 Bayesian approach

In the Bayesian estimation, we consider the state vector x as a random variable
associated to the probability distribution P (x). We assume that the observation Y
is also a random vector. In this approach, we seek for an estimation of the true
(unobservable) state xt knowing the observed data Y associated to the conditional
probability P (x|Y). By applying the Bayes’ rule, the latter is written as

P (x|Y) =
P (Y|x)P (x)

P (Y)
, (2.4)

where P (Y|x) is the distribution of the data given the un-observable state xt. As
the observation data come from imperfect measurements, P (Y|x) quantifies the dis-
tribution of measurement errors, it can reflect possible biases as well as instrument
errors. P (x) is the prior distribution which provides an a priori understanding of
the quantities of interest. Within this PhD framework, the prior distribution will
be based on the dynamics model defined by physics laws. The marginal distribu-
tion P (Y) is in general not needed as it defines a normalizing constant that can be
replaced by the following definition,

P (Y) =

∫
P (Y|x)P (x)dx.

Given all the previous elements, a given Bayesian estimator x̂ is associated to
the conditional probability distribution :

P (x|Y) =
P (Y|x)P (x)∫
P (Y|x)P (x)

.

A Bayesian estimator x̂ is built by minimizing the Bayes risk noted E(C(x̂,x)),
where C(x̂,x) is associated to a certain loss function. For instance, the Minimum
variance estimator (MV), noted xaMV , considers the Bayes risk as the mean square
error,

C(x̂,x) = ||x̂− x||2 = Tr
(
(x̂− x)(x̂− x)T

)
,

where Tr is the trace of a given matrix. Therefore, we aim at minimizing the
cost function JMV given by the expectation of ||x − x̂||2 knowing Y , which reads
after further simplification :

JMV = E
(
||x̂− x||2|Y

)
=

∫
(x̂− x)T (x̂− x)P (x|Y)dx. (2.5)

The estimator is obtained by nullifying the cost function gradient with respect
to x̂,

∇JMV =

∫
2(x̂− x)P (x|Y)dx = 0.

The unique estimator that minimizes JMV is given by :
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xaMV =

∫
xP (x|Y)dx = E(x|Y).

2.2.3 Best Linear Unibiased Estimator (BLUE)

We discuss in this section another approach which is based on the knowledge
of the error covariance matrices without specifying first the probability densities
P (x|Y) and P (x). We consider the background error η = xt − xb associated with
the background error covariance matrix

B = E(ηηT ), (2.6)

and we consider the observation error ε = Y −Hxt associated with the observation
error covariance matrix

R = E(εεT ), (2.7)

We assume that the background and observation error are unbiased, i.e. E(η) = 0
and E(ε) = 0. In this context, we seek for the optimal estimate xa defined by the
following linear combination :

xa = Lxb + KY . (2.8)

First and foremost, we assume that the analysis error εa = xa − xt is unbiased.
By introducing the definition of the background and observation errors into (2.8) we
obtain :

E(εa) = E(xa − xt) = LE(η) + KE(ε) + (L + KH + Id)E(xt) = 0.

As the background and the observation errors are unbiased, we easily establish
the value of L and deduce the expression of the analaysis state xa :

xa = xb + K(Y −Hxb), (2.9)

where the vector Y −Hxb is called the innovation vector and the matrix K is
referred to as the gain matrix. The latter is unknown and has to be defined along
with the analysis covariance matrix noted A. If we assume in addition that x and Y
are both Gaussian random vectors and the background and observation errors are
non-correlated, i.e. E(εηT ) = 0, then the analysis state (2.8), referred to as the Best
Linear Unbiased Estimator (BLUE), is exactly equivalent to the MVE described
in § 2.2.2. Under the previous hypotheses, we seek for the gain matrix K which
minimizes the variance E(||εa||2) by using the information provided by covariance
matrices (2.6) and (2.7). We consider the following cost function by injecting (2.8)
into (2.5) :

JBLUE = E(||xa−xt||2) =

∫
(xb−xt+K(Y−Hxb))T (xb−xt+K(Y−Hxb))P (x|Y)dx,

then we cancel its gradient with respect to the gain matrix K
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∂JBLUE
∂K

=

∫
(Y −Hxb)T (xb − xt + K(Y −Hxb))P (x|Y)dx = 0.

We use the background and observation errors and their proprieties definition to
deduce the gain matrix (2.10) and the analysis covariance matrix (2.11). The reader
can find the details in the appendice A. The complete procedure to determine the
BLUE is summarized in algorithm 1.

K = BHT (R + HBHT )−1, (2.10)
A = E((xa − xt)(xa − xt)) = B−BHT (HBHT + R)−1HB (2.11)

Algorithm 1 Best Linear Unbiased Estimator (BLUE)
1: Compute the gain matrix

K = BHT (R + HBHT )−1

2: Deduce the analysis and its covariance error matrix

xa = xb + K(Y −Hxb)
A = E((xa − x)(xa − x)) = (Id−KH)B

We point out that so far we didn’t take into account the state variable dynamics.
At this point, two main data assimilation approaches emerged. On the one hand,
the sequential approach, presented in § 2.3, couples the results of the Bayesian
estimation, in particular the BLUE, with a dynamic model. On the other hand, the
variational approach, described in § 2.4, uses the results of optimal control theory
by imposing the dynamic model as a constraint and aims at minimizing the least
squares cost function written in terms of covariance matrices :

J(x) = (x− xb)B−1(x− xb) + (Y −H(x))R−1(Y −H(x)).

2.3 Sequential approach
The sequential approach can be seen as an extension of the Bayesian minimum

variance estimation which propagates the background state forward in time by a
dynamical model. As the name suggests, the goal of sequential data assimilation
consists in correcting the background state each time a new observation is available.
We discuss throughout this section the Kalman filter and its extensions.

2.3.1 Kalman filter

The Kalman Filter introduced by Kalman (1960) can be seen as the direct ex-
tention of the BLUE for dynamics model (see § 2.2.3). In this approach, we seek for
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the analysis state xak+1 that corrects the background state, that we refer to as the
forecast state xfk+1, given the observation Yk+1 at the instant tk+1 as illustrated in
figure 2.1.

Figure 2.1 – Sequential data assimilation representation : we seek for the analysis
state xak+1 that corrects the forecast state xfk+1 generated by the dynamics model
given the observation Yk+1 at the instant tk+1. The dynamics model start from the
analysis state xak of a previous assimilation process.

We consider the following dynamic linear model and observation defined by equa-
tions (2.12) and (2.13),

xfk+1 = Mk,k+1x
f
k , (2.12)

Yk+1 = Hkxtk+1 + εk, (2.13)

where the linear discrete operator Mk,k+1 describes the flow operator that links
the state evolution between the instant tk and tk+1. This model imperfections are
represented by the model error qk associated to the error covariance matrix Qk such
as,

xtk+1 = Mk,k+1xtk + qk.

In the same way, the observation operator Hk is assumed linear and the error ob-
servation εk+1 at the instant tk+1 is associated to the observation covariance matrix
Rk+1.

We observe immediately that the forecast error is propagated through the follo-
wing forecast covariance matrix Pf

k+1,

Pf
k+1 = E((xf − xt)T (xf − xt)) = Mk,k+1P

a
kM

T
k,k+1 + Qk.

The Kalman filter approach considers the same hypotheses as those of the BLUE
given in § 2.2.3, and assumes in addition that the model and observation errors aren’t
correlated, in other words,

E(εkq
T
k ) = 0.
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The analysis state xa is also associated to an error covariance matrix Pa,

Pa = E((xa − xt)(xa − xt)T ).

Under all the previous hypotheses, the Kalman Filter algorithm, given by algorithm
2, consists into an analysis step, similar to the BLUE algorithm, and an additional
forecast step, that invokes the dynamical model Mk,k+1 and computes the forecast
covariance matrix.

Algorithm 2 Kalman filter
1: Analysis step similar to the BLUE algorithm

K = (HkP
f
k)
T
(
Hk(HkP

f
k)
T + Rk

)−1

(2.14)

xak = xfk + Kk(Y −Hxfk) (2.15)

Pa
k = (Id−KkHk)P

f
k (2.16)

2: Forecast step performed by using the model

xfk+1 = Mk,k+1xak (2.17)

P f
k+1 = Mk,k+1P

a
kM

T
k,k+1 + Qk (2.18)

2.3.2 Extended Kalman Filter

The Kalman filter can be extended to non-linear dynamics and observation ope-
rators. In this case, we consider the linear tangent operator around the analysis state
xak, noted ∂xMk, of the non-linear dynamics operatorMk,k+1 and the linear tangent
operator around xfk , noted ∂xHk, of the non-linear observation operator Hk+1. The
tangent linear operators are obtained by the application of the Taylor series :

Mk,k+1(xa(tk)) =Mk,k+1(xf (tk)) + ∂xMk(xa(tk)− xf (tk)) +O(‖εk|2),

Hk(xa(tk)) = Hk(xf (tk)) + ∂xHk(xa(tk)− xf (tk)) +O(‖εk|2).

This extension, called the Extended Kalman Filter (EKF), is illustrated by al-
gorithm 3.

The major drawback of the classic and extended Kalman filter lays in the com-
putation of the Kalman gain filter matrix K and the error covariance matrices Pa

k

and Pf
k , which requires a significant computation and storage resources of the squa-

red size of the state space vector. Therefore, these techniques are only usable for
systems of low size which isn’t suitable for NWP, geophysics and in particular, fluid
mechanics applications. Besides, we point out that the EKF provides a good estima-
tion for slightly nonlinear models, which is restrictive for many applications. If we
consider for instance the Navier Stokes equations as the dynamics model of interest,
its associated tangent linear model operator is likely to neglect the non-linear effects
and compromise the optimality of the analysis.
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Algorithm 3 Extended Kalman filter
1: Forecast step
2: Compute the forecast using the nonlinear dynamic operator

xfk+1 =Mk,k+1xak (2.19)

3: Compute the forecast covariance matrix Pf
k+1 depending on the tangent linear

and adjoint dynamic model

Pf
k+1 = ∂xMkP

a
k∂xM∗

k + Qk (2.20)

4: Analysis step
5: Compute the Kalman gain matrix and deduce the analysis state

Kk+1 = Pf
k+1∂xH∗k

(
∂xHkP

f
k+1∂xH∗k + Rk

)−1

(2.21)

xak+1 = xfk+1 + Kk+1(Yk+1 − ∂xHxfk+1) (2.22)

6: Update the analysis error covariance matrix Pa
k+1

Pa
k+1 = (Id−Kk+1∂xHk+1)Pf

k+1 (2.23)

2.3.3 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF), first introduced in Evensen (1994), pro-
poses an efficient alternative to the EKF using a Monte-Carlo approach. In this
context, we consider a set, called ensemble, of possible state samples, each referred
to as an ensemble member, noted {xf,(1)(t+ 1), · · · ,xf,(N)(t+ 1)}. This ensemble is
generated from the randomization of the non linear dynamics model given the result
xa(t) of a previous assimilation. Instead of directly computing and storing the error
covariance matrices, the EnKF uses an empirical expression of the ensemble mean
and covariance matrix to deduce a low-rank approximation of the gain matrix and
the covariance matrices Pf and Pa. The EnKF process is illustrated in figure 2.2.

The more ensemble members are employed, the more accurate the approxima-
tions are and the more computational resources is required. A balance policy must
be clearly chosen. However, ours is always reduced to choose a number of ensemble
members N much smaller than the size of the state of interest, noted n. Similarly to
the sequential data assimilation techniques presented throughout this section, the
EnKF consists in the following forecast and analysis steps.

Ensemble forecast

In the EnKF context, the ensemble forecast consists in generating and propa-
gating the ensemble of N ensemble members by the nonlinear dynamics. Each en-
semble member is obtained by perturbing the given forecast trajectory associated to
the initial forecast state xf (t0). As we deal with nonlinear dynamics, each ensemble
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Figure 2.2 – Ensemble Kalman Filter representation : we consider a set, called
ensemble, of possible state samples, each referred to as an ensemble member, noted
{xf,(1)

k+1 , · · · ,x
f,(N)
k+1 } (blue dots). The latter is generated from the randomization of

the non linear dynamics model given the result xak of a previous assimilation. The
analysis ensemble is obtained by correcting the forecast ensemble (red dots) with
the observation Yk+1 (green dot) and is associated with the analysis covariance error
matrix P e (red ellipse).

member can be generated by adding a perturbation δ(i) to the initial forecast, such
that

xf,(i)(t0) = xf0 + δ(i),∀i ∈ {1, · · · , N},

and propagating each xf,(i)(t0) by the time integration in [t0, t] of the nonlinear
model operator Mt. We point out however that more and more ensemble systems
are generated by perturbing the model parameters, which seems to provide a more
accurate ensemble spread as studied in Wei et al. (2013) and in Wu et al. (2008).

The ensemble members are then gathered into the following matrix,

Xf
t :=

[
xf,(1)(t), · · · ,xf,(1)(t)

]
∈ Rn×N ,

and the empirical ensemble mean of the N ensemble members is noted

< Xf
t >:=

1

N

N∑
i=1

xf,(i)t .

The forecast step ends with the estimation of the following ensemble covariance
matrix Pe, which implicitly captures the dominant directions of uncertainty of the
forecast error,

Pf ≈ Pe =
1

N
(Xf

t− < Xtf >)(Xf
t− < Xf

t >)T . (2.24)
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Ensemble analysis

We saw previously that the analysis procedure consists in computing the gain
matrix Kk, deducing the analysis state xak and finally updating the analysis cova-
riance matrix Pa

k from the forecast Pf
k . In the ensemble context, there are two main

approach to deduce the analysis estimate and evaluate the analysis errors.
In the same vein as the pioneering work of Evensen (1994) and taking into account

the work of Burgers et al. (1998), a first approach consists in generating an ensemble
of measurement samples in the same way as the ensemble forecast (xf,(i)t )i=1,··· ,N .
Therefore, each ensemble observation is defined as

Y(i)
t = Yt + ε

(i)
t , i = 1, · · · , N. (2.25)

At this point, the most intuitive process consist to replace Pf
k by the matrix Pe

(2.24) to compute the Kalman gain matrix K,

Kt = PeH(HPeHT + R)−1, (2.26)

In this context, the observation operator is nonlinear, therefore the terms PeH
and HPeHT are approximated by

PfH =
1

N − 1
(Xf

t− < Xf
t >)(H(Xf

t )− < H(Xf
t ) >)T , (2.27)

HPfHT =
1

N − 1
(H(Xf

t )− < H(Xf
t ) >)(H(Xf

t )− < H(Xf
t ) >)T . (2.28)

We then deduce the analysis state

xa,(i)t = xf,(i)t + Kt(Y(i)
t −H(xf,(i)t ). (2.29)

At last, the update of the analysis matrix (2.23) is replaced by the mean of the
variance of the ensemble forecast errors given by

P
a,(i)
t =

1

N − 1
(Xa

t− < Xa
t >)(H(Xa

t )− < H(Xa
t ) >)T . (2.30)

2.4 Variational approach

The variational approach was first introduced by Sasaki (1958) and expanded
rapidly in the 80s with the works of Le Le Dimet and Talagrand (1986) and Cour-
tier and Talagrand (1987). In opposition to the sequential approach, the variational
approach considers a given assimilation window in which we have a so-called back-
ground trajectory, generated by the dynamics from an initial background state xb0,
and a set of observations Y . The goal of this approach consists in changing gradually
the initial background state xb0 to draw the trajectory closer to the observations by
solving an optimal control problem as described by Lions (1968, 1971). In practice,
this approach comes to minimize an objective functional which measures the mis-
match between the model predictions and complete or partial measurements of the
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system, weighed by inverse covariance matrices. This optimization is conducted un-
der the constraint that the optimal state obeys to the model dynamics. Therefore,
we expect the assimilation results to satisfy two basic requirements. On the one
hand, the assimilation trajectory has to be close to the observations, ideally to the
accuracy of the observations themselves. On the other hand, the trajectory has to
be consistent with the physical relations between each variables and the evolution
of the flow imposed by the model.

2.4.1 Variational formulation

The data assimilation problem can be formulated as the minimization of a least
square cost function expressed in terms of the background and the observation cova-
riance matrices, respectively B and R. In this context, we consider the minimization
of such function over an assimilation window [t0; tf ] such as

J(x0) =
1

2
(x0 − xb0)TB−1(x0 − xb0) +

1

2

∫ tf

t0

(H(xt)− Y(t))TR−1(H(xt)− Y(t)).

A complete integration of the dynamics model on a given assimilation widow
[t0; tf ], provides a trajectory of the state, associated to an initial guess x0 and a flow
map ϕt(x0) such as :

xt := ϕt(x0) = x0 +

∫ t

t0

M(x(s))ds.

We place the data assimilation problem within the control optimal theory (Lions,
1968, 1971) framework. Formally, let V be a Hilbert space identified to his dual space
U . We assume that the state variable xt ∈ V and the observations Y ∈ O are square
integrable functions in Hilbert spaces identified to their dual. The norms corres-
ponds to the Mahalanobis distance defined from the inner products < R−1., . >O,
< B−1., . >V of the measurements and the state variable spaces respectively. They
involve covariance matrices R, and B related to the measurement error and the error
on the initial condition.

The minimization is performed by a gradient-based algorithm which, as its name
suggests, requires the evaluation of the cost function gradient∇J(x0) with respect to
the initial state x0. The optimization algorithm usually requires the computation of
the gradient for several values of x0 to converge to the optimal solution. Therefore one
of the major issue of the variational approach lays in the computation of an accurate
numerical gradient. There are basically three approaches to obtain numerically such
gradient.

The finite difference schemes consist in approximating the gradient by varying
each variables of the cost function. Let’s consider a first order finite difference scheme
is given by

∇J(x0) ≈ J(x0 + αd)− J(x0)

α
,

where d is an arbitrary direction. In order to meet the accuracy requirements, we
need to fix a sufficiently small differentiation step α. Another alternative consists in
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increasing the numerical scheme order p which costs 2p−1 computation and storage
of the cost function. This comes to 2p − 1 temporal integration of the nonlinear
model for each iteration of the gradient based algorithm. Therefore, this approach
is clearly unsuitable to our problem.

The sensitivity equation gives the information on how the flow will react to a
given perturbation dx = ∂x

∂η
δη. In opposition to the finite difference approach, we

don’t need several evaluations of the cost function for different inputs. The sensitivity
equation is obtained by the linearization of the cost function J around x0 in the
direction δη. The differentiation of the perfect nonlinear equations (2.1) and (2.2)
in the direction δη reads :

∂tdx(t, x) + ∂xM(x(t, x))dx(t, x) = 0, (2.31)
dx0(x) = δη(x), (2.32)

where ∂xM(x) denotes the tangent linear operator associated to the non-linear ope-
rator M defined as :

∂xM(x)dx = lim
β→0

M(x + βdx)−M(x)

β
. (2.33)

We deduce the differentiation of the cost function in the direction δη :〈∂J
∂η

, δη
〉
V

=
〈
B−1(x0 − xb0), δη

〉
V
−
∫ tf

t0

〈
R−1(Y(t)−H(xt)), ∂xH(xt)

∂x
∂η

δη
〉
O
dt.

(2.34)
Introducing the adjoint of the linear tangent observation operator (∂xH(x))∗, defined
as :

∀(u, v) ∈ (V ,O), < (∂xH(x))u, v >O=< u, (∂xH(x))∗v >V , (2.35)

the relation (2.34) can be reformulated as :

〈∂J
∂η

, δη
〉
V

=
〈
B−1(x0 − xb0), δη

〉
V
−∫ tf

t0

〈
(∂XH)∗R−1(Y(t)− xt),

∂x
∂η

δη
〉
V
dt. (2.36)

Equation (2.36) describes the functional gradients in the directions δη. For the
whole gradient, if we consider p the number of design variables, we have to solve
p sensitivity equations. In the framework of our PhD, for instance, we ought to
control all three components of the velocity fields in a p ≈ 106 volume, therefore this
approach is too expensive.

The adjoint formulation is an elegant alternative based on the work of Lions
(1971) and Le Le Dimet and Talagrand (1986). We consider a so-called adjoint
variable λ ∈ V and carry out the integration over the range [t0, tf ] of the inner
product between λ and the relation (2.31) such as :
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∫ tf

t0

〈∂dx
∂t

(t),λ(t)
〉
V
dt+

∫ tf

t0

〈
∂xMdx(t),λ(t)

〉
V
dt = 0. (2.37)

An integration by parts of the first term yields :

−
∫ tf

t0

〈
− ∂λ

∂t
(t) + (∂xM)∗λ(t), dx(t)

〉
V
dt =

〈
λ(tf ), dx(tf )

〉
V −

〈
λ(t0), dx(t0)

〉
V ,

(2.38)
where the adjoint of the tangent linear operator (∂xM)∗ : V → V has been intro-
duced. At this point no particular assumptions nor constraints were imposed on
the adjoint variable. However, we are free to specify the set of adjoint variables of
interest by setting a particular evolution equation or a given boundary conditions
simplifying the computation of the functional gradient. As we will see, imposing the
adjoint variable λ as the solution of the system{

−∂tλ(t) + (∂xM)∗λ(t) = (∂xH)∗R−1(Y −H(x(t)))
λ(tf ) = 0,

(2.39)

will provide us a simple and accessible solution for the functional gradient.
As a matter of fact, injecting this relation into equation (2.38) with dx(t0) =

δη and dx = (∂x/∂η)δη allows us to identify the right hand second terms of the
functional gradients (2.36) and we get :〈∂J

∂η
, δη
〉
V

= −
〈
λ(t0), δη

〉
V

+
〈
B−1(δx(t0)− δx0), δη

〉
V
. (2.40)

From these relations, one can now readily identify the expression of the cost function
derivative with respect to the control variable

∂J

∂η
= −λ(t0) + B−1(δx(t0)− δx0). (2.41)

In the adjoint-based approach, we only require to solve the adjoint equation once.
We note that if the nonlinear dynamics equation is time dependent, then the adjoint
equation is time dependent and is solved backwards in time.

2.4.2 Standard 4DVar technique

The aim of the standard 4DVar technique consists in determining the initial
optimal state xa(t0) from the so called background trajectory, associated to an initial
guess xb(t0) and generated by the dynamics model, and a set of observations defined
within a given assimilation window. The optimal state leads to an analysis trajectory
which is a compromise between the background trajectory and the observations. The
standard 4DVar technique is illustrated by figure 2.3.

A complete integration of the dynamics model on a given assimilation widow
[t0; tf ], provides a trajectory of the state, referred to as xt, associated to an initial
guess x0 and a flow map ϕt(x0) such as :
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Figure 2.3 – Standard 4DVar assimilation representation : we aim at determining
the optimal assimilation trajectory (red curve) from the background trajectory (blue
curve) and a set of observations (green). We minimize the distance between the
background trajectory and the observations by a gradient-descent algorithm. The
cost function gradient is deduced by performing an adjoint procedure backwards in
time (orange curve) which takes into account the observations correction.

xt := ϕt(x0) = x0 +

∫ t

t0

M(X(s))ds.

We ought to minimize the distance between the background trajectory defined
by (2.1) and (2.2), and the observations (2.3), by controlling the initial state x0, as
formulated by the following cost function :

J(x0) =
1

2
‖xb0 − x(t0, x)‖2

B−1 +
1

2

∫ tf

t0

‖Y(t)−H(xt)‖2
R−1dt, (2.42)

where the L2 norm is defined as ‖f‖2
A =

∫
Ω

f(x)A(x, y)f(y)dxdy. The associated mi-

nimization problem is referred to in the literature as the strong constraint variational
assimilation formulation.

The background and observation covariance matrices, respectively B and R, de-
fine the variation of the background and observations through the variance and the
dependence of each variable to one another through the covariance. The inverted
matrices used in the cost function aim at normalizing each term and define the
weight of the observation with respect to the background. These matrices guide the
minimization process by determining which data should be given more confidence
at each mesh point of the grid.

In order to solve the optimal control problem defined by (2.42), (2.1), (2.2) and
(2.3), we resort to an iterative optimization method. The literature provides a large
range of iterative methods to solve an optimization problem under constraint. In this
thesis, we opt for the limited storage gradient-based optimization method LBFGS
proposed by Nocedal (1980).
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We now have all elements in hand to establish the standard 4DVar assimilation
algorithm 4.

Algorithm 4 Standard Variational assimilation technique

Initialization: k = 0 and xk0 = xb0
1: repeat
2: Compute xt with the forward integration (2.1) and the cost function (2.42)
3: Compute the initial adjoint variable λ(t0) by the backward integration (2.39)
4: Update the initial state xk+1

0 = xk0 + Bλ(t0)
5: until ‖xk+1

0 − xk0‖ < tol
6: From xa0 = xk+1

0 deduce the analysis trajectory xat

2.4.3 Incremental Variational Assimilation

As the previous standard 4DVar assimilation cost function (2.42) implies the use
of the nonlinear model, there is a chance that the optimization procedure leads to a
local minima. Whereas, if we deal with a convex cost function, we are guaranteed to
find the global minima. It is in this perspective that Courtier et al. (1994) introduced
the incremental strategy to improve the 4DVar technique. This optimization strategy
consists in performing a linearization of the dynamics around the current trajectory
and minimizes a convex cost function with respect to an increment δx0 instead of the
initial state x0. The optimal increment is then used to update the initial state and we
carry out the linearization and optimization again for a fixed number of iterations.
The incremental 4DVar strategy is illustrated in figure 2.4. This procedure is similar
to a Gauss-Newtoon minimization.

The initial increment δx0 is propagated by the following tangent dynamics equa-
tion linearized around a given state x,

∂tδx(t, x) + (∂xM)δx(t, x) = 0, (2.43)
δx0(x) = (xb0(x)− x0(x)) + η(x), (2.44)

where (∂xM) is the tangent operator associated to the nonlinear dynamics opera-
tor M (2.33). Consequently, the cost function is expressed in terms of the initial
increment δx0,

J(δx0) =
1

2
‖δx0‖2

B−1 +
1

2

∫ tf

t0

‖H(xt)− Y(t)‖2
R−1dt, (2.45)

where we consider the perturbed trajectory

xt = ϕ(xbt) + ∂xϕt(xbt)δx0.

The cost function (2.45) can be alternatively formulated as :

J(δx0) =
1

2
‖δxb0 − δx0‖2

B−1 +
1

2

∫ tf

t0

‖∂xHδx(t, x)−D(t, x)‖2
R−1dt, (2.46)
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Figure 2.4 – Incremental variational assimilation representation : we seek for the
optimal increment δx(1)

0 of the linearized convex cost function around the initial state
x(1)

0 = xb0 (blue curve) and unpdate to x(2)
0 = x(1)

0 + δx(1)
0 . We repeat the procedure

until we reach the optimal state x0 which minimizes the nonlinear cost function J
(red curve).

where
xt = ∂xϕt(xbt)δx0,

and the innovation vector D(t, x) is defined by

D(t, x) = Y(t, x)−H(ϕt(xbt)).

As in the non-incremental case, we perform a gradient descent optimization with
the LBFGS algorithm and we compute the incremental cost function gradient with
the adjoint equation which reads in this case :{

−∂tλ(t) + (∂xM)∗λ(t) = (∂xH)∗R−1(∂xH∂xϕ(x0)D(t, x))
λ(tf ) = 0.

(2.47)

The gradient is then deduced by :

∂δx0J(δx0) = −λ(t0) + B−1δx0. (2.48)

Once we determine the optimal increment, we update the former initial state x0

and deduce its corresponding trajectory by solving the nonlinear dynamics equations.
The updated trajectory can then be used as a linearization state and we can perform
a second outer loop optimization around the new state. The incremental variational
assimilation technique proposed by Courtier et al. (1994) is illustrated by algorithm
5.

In the standard case we seek to update directly the background trajectory and
in the incremental approach we only use the tangent procedure to update an incre-
mental trajectory. The nonlinear dynamics is used for the outerloop only.
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Algorithm 5 Incremental 4DVar assimilation technique (Courtier et al., 1994)

Initialization: x(1)
0 = xb0

Forward integration of the nonlinear dynamics (2.1)
for k = 1, Nk do

Set the initial increment as : δx(k)
0 = δxb0

repeat
Compute δxt with the tangent linear dynamics (2.43) and (2.44) and the

cost function
Compute the adjoint variable λ(t0) with the backward integration of rela-

tion (2.47)
Update the initial increment value δx(k)

0 = Bλ(t0)
until ‖xk+1

0 − xk0‖ < tol

Update the background : x(k+1)
0 = x(k)

0 + δx(k)
0

end for
From xa0 = x(k+1)

0 deduce the analysis trajectory xat

2.4.4 Inflow and initial conditions control

In the framework of this thesis, we aim at reconstructing the downstream of
a cylinder wake by combining a DNS model with three velocity components mea-
surements of the flow in the inflow and in the stream-wise planes (see § 4.1). In
this configuration, noisy or incomplete inlet conditions (with no or erroneous small
and even large scales information) may lead to an unrealistic background trajectory
which might compromise the convergence of the variational assimilation technique
employed. This issue can be tackled by gradually modifying the inflow condition at
each time step by including the latter as a control variable in the variational assi-
milation formulation. This approach has been successfully carried out by Gronskis
et al. (2013) to generate inflow and initial conditions of a 2D turbulent flow. The
idea of controlling the inflow was also carried out in Habert et al. (2014) with an
Extended Kalman Filter in the context of real-time flood forecasting.

Within this context, we introduce the control parameter u(t) which is defined in
the space of square integrable function on spatio-temporal domain UT . Hence, we
consider the data assimilation system,

∂tx(t, x) + M(x(t, x),u(t)) = 0, (2.49)
x0(x) = xb0(x) + η(x). (2.50)

In addition to the background error η(x) and observation error ε(t, x), associated
to the covariance error matrices B and R respectively, we consider the deviation θ(t)
between the control u(t) an its a priori value uc(t) associated to the covariance error
matrix Bc. Therefore, our goal consists in minimizing the cost function (2.51) with
respect to the control variable γ(t, x) = {η(x),θ(t)} = {x(x, t0) − x0(x),u(t) −
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uc(t)}.

J(γ) =
1

2

∫ tf

t0

‖Y(t)−H(xt)‖2
R−1dt+

1

2
‖x(t0, x)− xb0(x)‖2

B−1

1

2

∫ tf

t0

‖u(t)− uc(t)‖2
B−1

c
dt, (2.51)

with ‖f‖2
B−1

c
=

∫
Γ

f(x)B−1
c (x, y)f(y)dxdy where Γ refers to the inflow section. Given

a perturbation dx = ∂x
∂uδu(t) + ∂x

∂η
δη, the differentiation of the equations (2.49) and

(2.50) in the direction δγ = (δu, δη) reads :

∂tdx(t, x) + ∂xM(x(t, x),u(t))dx(t, x) + ∂uM(x(t, x),u(t))du(t) = 0, (2.52)
dx0(x) = δη(x). (2.53)

The differentiation of the cost function in the direction δγ :〈∂J
∂u

, δu
〉
UT

=

∫ tf

t0

〈
B−1
c (u(t)− uc(t)), δu(t)

〉
U

−
∫ tf

t0

〈
R−1(Y(t)−H(xt)), ∂xH(xt)

∂x
∂u

δu(t)
〉
O
dt, (2.54)〈∂J

∂η
, δη
〉
V

=
〈
B−1(x0 − xb0), δη

〉
V

−
∫ tf

t0

〈
R−1(Y(t)−H(xt)), ∂xH(xt)

∂x
∂η

δη
〉
O
dt. (2.55)

Considering the linear tangent observation operator (∂xH(x))∗ introduced in (2.35),
we can reformulate the equations (2.54) and (2.55) by :

〈∂J
∂u

, δu
〉
UT

=

∫ tf

t0

〈
B−1
c (u(t)− uc(t)), δu(t)

〉
U

−
∫ tf

t0

〈
(∂xH(xt))∗R−1(Y(t)−H(xt)),

∂x
∂u

δu(t)
〉
V
dt (2.56)〈∂J

∂η
, δη
〉
V

=
〈
B−1(x0 − xb0), δη

〉
V

−
∫ tf

t0

〈
(∂xH(xt))∗R−1(Y(t)−H(xt)),

∂x
∂η

δη
〉
V
dt. (2.57)

As it is unfeasible to compute directly the cost function gradients, we resort to a
similar adjoint approach than in § 2.4.1. To that end, we proceed to the integration
over the range [t0, tf ] of the inner product between an adjoint variable λ ∈ V and
the relation (2.52) is given by :∫ tf

t0

〈∂dx
∂t

(t),λ(t)
〉
V
dt+

∫ tf

t0

〈
∂xMdx(t),λ(t)

〉
V
dt+

∫ tf

t0

〈
∂uMδu(t),λ(t)

〉
V
dt = 0.

(2.58)
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An integration by parts of the first term yields :

−
∫ tf

t0

〈
− ∂λ

∂t
(t) + (∂xM)∗λ(t), dx(t)

〉
V
dt =

〈
λ(tf ), dx(tf )

〉
V −

〈
λ(t0), dx(t0)

〉
V

+

∫ tf

t0

〈
δu(t), (∂uM)∗λ(t)

〉
U
dt.

(2.59)

As in § 2.4.1, we impose the adjoint variable λ as the solution of (2.39) and inject
the latter into (2.59) with dx(t0) = δη and dx = (∂x/∂η)δη to identify the right hand
second terms of the functional gradients (2.56) and (2.57). Hence, we get

〈∂J
∂u

, δu
〉
UT

=

∫ tf

t0

〈
δu(t),B−1

c (u(t)− uc(t)) + (∂uM)∗λ(t)
〉
U
dt

=
〈
B−1
c (u− uc) + (∂uM)∗λ, δu

〉
UT〈∂J

∂η
, δη
〉
V

=−
〈
λ(t0), δη

〉
V

+
〈
B−1(x0 − xb0), δη

〉
V
.

Thus, we deduce the expression of the cost function derivative with respect to δγ =
(δη, δu) :

∂J

∂u
= −λ(t0) + B−1

c (u− uc) + (∂uM)∗λ, (2.60)

∂J

∂η
= −λ(t0) + B−1(x(t0)− x0). (2.61)

All in all, the optimal control problem defined by (2.51), (2.49), (2.50) and (2.3) is
solved by the LBFGS method (see § 2.4.1), the assimilation algorithm is summarized
in 7.

Algorithm 6 4DVar assimilation with inflow and initial condition control (Gronskis
et al., 2013)

Initialization: k = 0 and xk0 = xb0
repeat

Compute xt with the forward integration (2.49) and the cost function (2.51)
Compute the initial adjoint variable λ(t0) by the backward integration (2.39)
Update the initial state xk+1

0 = xk0 + Bλ(t0)
Update the parameter model uk+1 = uk + Bc(∂uM)∗λ(t0)

until ‖xk+1
0 − xk0‖ < tol

From xa0 = xk+1
0 deduce the analysis trajectory xat

2.4.5 Incremental variational assimilation with inflow and ini-
tial condition control

In the framework of this thesis, we implemented the incremental version of the
previous variational formulation which includes the control of the inflow and the
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initial conditions (see § 2.4.4). In the same vein as in § 2.4.3, we aim at minimizing
the following convex cost function with respect to an increment δγ = {δx, δu}

J(δγ0) =
1

2
‖δx0‖2

B−1 +
1

2

∫ tf

t0

‖δu(t)‖2
Bc
−1dt+

1

2

∫ tf

t0

‖H(xt)− Y(t)‖2
R−1dt, (2.62)

where the increment vector δγ verify (2.52) and (2.53).
As in the previous case, we call upon the adjoint equation (2.39) to compute the

incremental cost function gradient with respect to the increment vector δγ such that

∂δx0J = −λ(t0) + B−1δx0, (2.63)
∂δuJ = −λ(t0) + B−1

c δu + (∂uM)∗λ. (2.64)

The present 4DVar technique is described in algorithm 7 and is referred to as
the 4DVar technique in the following chapters.

Algorithm 7 Incremental 4DVar assimilation technique with inflow and initial
condition control
Initialization: x(1)

0 = xb0
Forward integration of the nonlinear dynamics (2.49)
for k = 1, Nk do

Set the initial increment as : δx(k)
0 = δxb0

repeat
Compute δxt with the tangent linear dynamics (2.52) and (2.53)
Compute the cost function (2.62)
Compute the adjoint variable λ(t0) with the backward integration of rela-

tion (2.47)
Update the initial increment value δx(k)

0 = Bλ(t0)
until ‖xk+1

0 − xk0‖ < tol

Update the background : x(k+1)
0 = x(k)

0 + δx(k)
0

Update the parameter model uk+1 = uk + Bc(∂uM)∗λ(t0)
end for
From xa0 = x(k+1)

0 deduce the analysis trajectory xat

2.4.6 Numerical adjoint construction strategies

As described previously, the variational assimilation techniques employs a gradient-
descent method to solve an optimal control problem. The computation of the cost
function gradient is deduced from the backward integration of the adjoint equa-
tion (2.39). We discuss in this section the construction and implementation of the
numerical adjoint equation corresponding to the dynamics.

There are two main strategies for the construction of a numerical adjoint asso-
ciated to a given dynamics model. On the one hand, the differentiate-then-discretize
strategy consists in determining the analytic adjoint from the nonlinear dynamics
model, then discretizing the adjoint model to obtain a numerical adjoint procedure,
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referred to as the continuous adjoint. On the other hand, discretize-then-differentiate
consists in constructing the discrete adjoint directly from the discretized non-linear
dynamics model. The latter can be performed by the mean of an Automatic Differen-
tiation tool (AD), which is described in appendix C.1. Both strategies are illustrated
in figure 2.5 and were compared in different contexts (Nadarajah and Jameson, 2000;
Griesse and Walther, 2004).

Figure 2.5 – Construction of the differentiation code df(x) associated to the ana-
lytic function y = f(x) by the discretize-then-differentiate (solid line) and the
differentiate-then-discretize (dashed line) strategies.

In general, as iterative gradient-descent algorithms are sensible to numerical er-
rors, we seek for the most accurate numerical adjoint associated to a given problem.
The discretize-then differentiate strategy provides an accurate numerical adjoint
operator up to the machine precision, whereas the continous adjoint obtained by the
differentiate-the-discretize strategy is accurate up to the discretization errors of the
numerical scheme on a given mesh. Therefore, if we possess beforehand a sufficiently
accurate original code, the discrete adjoint will remain at the same accuracy up to
the machine precision. In addition, the continuous case generates boundary terms,
commonly by integration by parts, that have to be dealt separately. On the other
hand, the construction of discrete adjoint is straightforwardly derived from the ori-
ginal code and doesn’t require additional thoughts to discretizations or boundary
conditions for either operator.

The variational approach has been applied so far on 2D problems which require
a reasonable computational cost, and most of the authors opted for the construc-
tion of an continuous adjoint (Lemke and Sesterhenne, 2013; Mons et al., 2014).
De Pando et al. (2012) evaluated the direct and adjoint linearized dynamics from
compressible flow solvers. In another context, Ponçot et al. (2013) constructed the
discrete adjoint to implement a variational technique for xenon dynamical forecasts
in neutronic. Gronskis et al. (2013) employed for the first time the discrete adjoint
in the implementation of a variational technique which combines the 2D version of
Incompact3d and PIV measurements. This strategy has also the great advantage to
guarantee that the constructed adjoint is the adjoint of the discrete code.

Within the framework of this thesis, we build the discrete adjoint by applying the
AD on the highly accurate 3D DNS code Incompact3d (see § 4.2). Unlike the conti-
nuous adjoint, the discrete adjoint takes directly advantage of the Incompact3d’s
optimal parallelization structure and conserves the high accurate of the original
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code. We also we use the same strategy to build the discrete adjoint associated to
the 2D SWE model for the reconstruction of the free surface height and velocity
fields (see § 3.3). It is indeed difficult to argue this choice as the analytic adjoint is
often different from the real one.

The AD implementation can also be eased by the use of a automatic differen-
tiation (AD) tools. In terms of AD implementation, the literature offers several AD
tools that employs either the source code transformation (SCT) or the operator
overloading (OO) strategy (see appendix C.1.1). In this thesis, we opt for TAPE-
NADE which is an AD tool developed by the Tropics team in Inria Sophia Antipolis
(Hascoët, 2004). This tool employs the SCT strategy and was formerly successfully
used in the work of Gronskis et al. (2013).

2.4.7 Validation of the adjoint procedure

The discrete tangent and adjoint procedure built by the means of the AD has
to be validated by a series of tests. Before presenting the different validation tests
carried out, we point out the importance of the choice of the inputs into each vali-
dation process. Indeed, in the strictly numerical sense, the validation test should be
verified for a random value of the state. However, in practice the dynamics model
obey to a physical model, and it has been tested that inputting a random state x
to the original direct model f leads often to a numerical explosion. Therefore, in
order to validate a dynamic model on several time steps, we have to input state x
has to obey to the physics. We detail in the following validation tests the degrees of
freedom that are adopted to this respect.

Tangent validation The tangent validation is based on the Taylor formula ap-
plied to the direct method operator f around a given state x0 given a direction d,

f(x0 + αd) ≈ f(x0) + α < ∇f(x0),d > . (2.65)

This validation test consists in studying the ratio

R1 :=
f(x0 + αd)− f(x0)

α < ∇f(x0),d >
. (2.66)

It is particularly interesting if we obtain the tangent operator ∇f(x0) with an AD
tool.

We point out that the ratio accuracy depends on the choice of α. A too large
value of α might result to accuracy errors as the dynamics operator f is non-linear,
whereas a too small value of may lead to the accumulation of rounding errors. In the
applications within this thesis, we study the ratios for α in a range of α ∈ [10−3; 10−9].
We can reasonably expect the ratio R1 to be more or less close to 1 up to O(α).
In the latter case, it would mean that the tangent procedure would have the same
accuracy that a finite difference which isn’t suitable.

57



Chapitre 2. Data assimilation techniques

Dot product

The results of the reverse adjoint mode are validated by using the previously
validated tangent. We recall the definition of the adjoint operator (∂xM)∗ :

< (∂xM)Ẋ, Ẏ >=< Ẋ, (∂xM)∗Ẏ >, ∀Ẋ, Ẏ (2.67)

We set in particular Ẏ = (∂xM)Ẋ and define X̄ := (∂xM)∗(∂xM)Ẋ = (∂xM)∗Ẏ . We
then develop the dot product of X̄ and Ẋ :

< Ẋ, X̄ >=< Ẋ, (∂xM)∗Ẏ >=< (∂xM)Ẋ, Ẏ >=< Ẏ , Ẏ > . (2.68)

This comes to reduce the following ratio to 1 :

R2 :=
< (∂xM)X, (∂xM)X >

< X, (∂xM)∗Y >
=
< Ẏ , Ẏ >

< Ẋ, Ȳ >
≈ 1. (2.69)

The adjoint operator (∂XM∗) has to be the most accurate as possible. In other
words, we have to obtain a ration of R2 = 1+O(εm) where εM represents the machine
accuracy.

Adjoint validation

In the 4DVar context, we will particularly evaluate the theoric equality between
the adjoint variable λ(t0) at time t0 and the cost function gradient ∇J(x0) at time
t0 for a given direction d, such that

< ∇J(x0),d >=< λ(t0),d > . (2.70)

We recall that the adjoint variable λ(t0) is obtained after the backwards adjoint
model integration.

Similarly to the tangent validation, we apply the Taylor formula to the cost
function J and evaluate the ratio (2.71) given by :

R3 =
J(x0 + αd)− J(x0)

α < ∇J(x0),d >
≈ J(x0 + αd)− J(x0)

α < λ(t0), d >
. (2.71)

In analogy to the accuracy discussions for the ratio R1, the value of the ratio
R3 depends on the value of α. Although, we have to keep in mind that the first
order finite difference scheme provides a rough approximation of the cost function
gradient. Therefore, we expect don’t expect the ratio to be accurate up to 10−α.

2.5 Hybrid approaches
During the last decade, there is a trend in the development of hybrid data assimi-

lation techniques which combine the advantages of ensemble methods and varitional
assimilation approaches. Each technique differs according to the context in which
they are developed, therefore there are two main groups of hybrid techniques :
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A first group of hybrid techniques, based on the variational formalism, aims at
incorporating an ensemble-based background covariance into a variational system.
Hamill and Snyder (2000) proposed the EnKF-3DVar method which basically com-
bines several 3DVar data assimilation process with the EnKF update process. The
background error covariace is set as a linear combination of the ensemble covariance
and the static covariance. This idea was extended to the 4DVar formalism by Lo-
renc (2003) who also introduced a localization procedure. Several authors proposed
hybrid methods that express either the background error covariance as a linear com-
bination of the ensemble covariance and the static covariance or the solution as a
linear combination of the square root of the ensemble-based covariance (Liu et al.,
2009; Buehner et al., 2010a,b; Clayton et al., 2013; Desroziers et al., 2014).

A second group of hybrid techniques, based on the EnKF formalism, incorporates
the 4DVar formulation to overcome the limitations of the sequential approach. In
the one hand, the standard EnKF assimilates sequentially the observation whenever
they are available (Evensen, 2003). The hybrid 4D-EnKF technique proposed by
Hunt et al. (2004) seeks for an observation operator which could link the state to
future or past observations. This idea is then extended in the 4D-LETKF technique
introduced by Hunt et al. (2007) and Fertig et al. (2007). Sakov et al. (2010) intro-
duced the AEnKF which aims at finding the explicit form of temporal evolution of
the increment by propagating the correction along the forecast system trajectory.

On the other hand, the explicit form of the update equations in EnKF (or EKF)
are difficult to calculate when dealing with high dimensional problems. A group
of hybrid techniques propose to replace the EnKF update by the minimization of
an arbitrary cost function by an iterative gradient descent procedure similarly to
the 4DVar technique which handles efficiently large dimension problems (Zupanski,
2005; Sakov et al., 2012; Solonen et al., 2012).

In the framework of this thesis, we compare an ensemble-based 4DVar, referred to
as 4DEnVar, a classical 4DVar and the 4D-LETKF techniques to reconstruct a 2D
free surface in chapter 3. The 4DEnVar technique is closely related to the strategy
proposed by Buehner (2005) and Liu et al. (2008). This technique introduces in its
objective function an empirical ensemble-based background error covariance which
avoids the use of tangent linear and adjoint model. We describe the 4DEnVar in
§ 3.2.
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Chapitre 3

A first application : reconstruction of
a free surface flow

The shallow water equations (SWE) - also called Saint Venant equations - des-
cribes the height and the velocity of a thin layer of an inviscid fluid at its free
surface. These equations are often used as a prototype in geophysics applications,
such as ocean motion, river sedimentation and under certain hypotheses, they can
also provide a satisfying atmospheric flow approximation model. The simplicity of
both numerical model implementation and experimental setting (for an academical
context) is an ideal framework for a first application of the 4DVar technique. In this
work, we also seized the opportunity to compare the reconstruction of the dimen-
sional free surface flow characteristics (height and 2D velocity fields) using a classic
formulation of the 4DVar and an enhanced version of an ensemble based technique
(Yang et al., 2015).

We present in § 3.1 the dynamical model used to simulate the free surface of
the flow of interest. The data assimilation techniques used throughout this chapter
are overviewed in § 3.2. We describe in particular the construction of the adjoint
procedure necessary to implement the classical 4DVar technique in § 3.3. In a first
step, we consider in § 3.4.1 the reconstruction of the free surface characteristics
from partial and complete synthetic observations. In a second step, we consider
the real measurements of the evolution of the free surface height observed with a
Kinect depth sensor as described in § 3.4.2. We finally draw the conclusions of the
comparison between the assimilation techniques considered for this application and
layout some perspectives in § 3.5.

3.1 Dynamics

3.1.1 Hypotheses and governing equations

As its name suggests, the thickness (or height when we consider a flat bottom
topology) of the fluid of interest is neglected with respect to its length and width.
Under this hypothesis, the mass conservation implies that the vertical velocity of the
fluid is small, hence, we only take into consideration the 2D velocity field u := (u, v)T .
In the framework of this chapter, we consider a simplified version of the SWE under
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the following hypothesis :
– The bottom of the domain is flat and non tilted.
– We neglect the Coriolis effect and the bottom friction.
As introduced in § 1.1.1, the SWE are deduced by the depth-integration of the

Navier-Stokes equations and are used to model the height and the velocity field at
the free surface of the fluid. The simplified 2D SWE used throughout this chapter
reads

∂th+ ∂x(hu) + ∂y(hv) = 0, (3.1)
∂t(hu) + ∂x(hu

2) + ∂y(huv) + g∂xh
2 = 0, (3.2)

∂t(hv) + ∂x(huv) + ∂y(hv
2) + g∂yh

2 = 0. (3.3)

The equations (3.1), (3.2) and (3.3) can be written in a conservative form by

considering the conserved variables as x =

 h
hu
hv

 and their associated fluxes

F (x) =

 hu
hu2 + 1

2
gh2

huv

 and G(x) =

 hv
huv

hv2 + 1
2
gh2

. The conservative form is

given by :
∂tx(t, x) + ∂xF (x(t, x, y)) + ∂xG(x(t, x, y)) = 0. (3.4)

The literature provides many numerical schemes that can be used to solve the
SWE model (see § 1.1.3). In this work we created from scratch a numerical code
based on the work of Vreugdenhil (1994) who studied numerical solutions for 2D
SWE. This code is described thereafter.

3.1.2 Spatial discretization and Roe solver

As described in § 1.1.3, the Finite Volume Method (FVM) is well suited to simu-
late conservation laws and is usually favored to solve CFD problems. We describe in
the present section the discretization of the advection terms F (x) and G(x) of the
conservative equation (3.4).

Finite volume formulation

The solution domain Ω is a partition of many control volumes, that are referred
to as cells Cij = [xi−1/2;xi+1/2] × [yj−1/2; yj+1/2] with ∆xi = xi+1/2 − xi−1/2 and
∆yj = yj+1/2 − yj−1/2 where i ∈ {1, . . . , nx} and j ∈ {1, . . . , ny}, as illustrated in
figure 3.1.

Within our context, we assume that each cells have the same size, i.e. ∆x :=
∆xi = ∆yj, ∀i, j. On a given cell Cij, the integral form of (3.4) reads :

d
dt

∫
Cij

x(t, x) + 1
∆x
F (x(t, xi+1/2, yj))− 1

∆x
F (x(t, xi−1/2, yj))

+ 1
∆y
G(x(t, xi, yj+1/2))− 1

∆y
G(x(t, xi, yj−1/2)) = 0.

(3.5)
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Figure 3.1 – Spatial discretization of the FVM grid : the cell Cij = [xi−1/2;xi+1/2]×
[yj−1/2; yj+1/2] is the cell associated to the quantity xi,j. We aim at computing the
the flux crossing each inter-cell flux F n

i+1/2,j, F
n
i−1/2,j, G

n
i,j+1/2 and Gn

i,j−1/2 in each
direction east, west, south and north respectively.

Given the following averages for each cell Cij at a given time tn,

xni,j = 1
∆x∆y

∫
Cij

x(tn, x, y)dxdy,

F n
i+1/2,j = 1

∆t

∫ tn+1

tn
F (x(tn, xi+1/2, yj))dt, F n

i−1/2,j = 1
∆t

∫ tn+1

tn
F (x(tn, xi−1/2, yj))dt,

Gn
i,j+1/2 = 1

∆t

∫ tn+1

tn
G(x(tn, xi, yj+1/2))dt, Gn

i,j−1/2 = 1
∆t

∫ tn+1

tn
G(x(tn, xi, yj−1/2))dt,

the finite volume formulation reads

xn+1
i,j = xni,j −

∆t

∆x

(
F n
i+1/2,j − F n

i−1/2,j

)
− ∆t

∆y

(
Gn
i,j+1/2 −Gn

i,j−1/2

)
. (3.6)

Godunov (1959) proposed a conservative numerical scheme which assumes that
the finite volume solution is piece-wise constant at each cell, as illustrated in figure
3.2. Under this hypothesis, we seek for an estimation of the inter-cell fluxes F n

i+1/2,j,
F n
i−1/2,j, G

n
i,j+1/2 and Gn

i,j−1/2 by solving a local Riemann problem at each inter-cell.

1D Riemann problem

Given a time interval [tn; tn+1], the 1D Riemann problem at a the inter-cell
(xi+1/2, yj) is formulated as the following initial value problem :

∂tx + A.∂xx = 0,

x(tn, x, yj) =

{
xL := xni,j if x < xi+1/2

xR := xni+1,j if x > xi+1/2
,

(3.7)

where A = ∇F n
i+1/2,j is the Jacobian matrix of F n

i+1/2,j.
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Figure 3.2 – 1D representation of the piecewise partition of the solution. The finite
volume solution has a constant value within each cell Ci = [xi−1/2;xi+1/2].

If the flux F n
i+1/2,j is linear, the solution is straightforward. We perform a diagona-

lization A = R−1ΛR, where the eigenvalues e1 < · · · < em correspond to the linearly
independent eigenvectors r1, · · · , rm of the Jacobian A. Each wave p ∈ {1, · · · ,m}
carries a jump discontinuity with a velocity propagation ep, also called characteristic
speed. By introducing an auxiliary variable W := Rx, the problem (3.7) comes to a
system of m scalar hyperbolic problems :

∂tW
(p)(t, x) + Λ∂xW

(p)(t, x) = 0, for p = 1, · · · ,m. (3.8)

The solution of (3.8) is obtained by introducing the following matrices

A+ = RΛ+R−1, A− = RΛ−R−1, |A| = R|Λ|R−1,

where Λ+ and Λ− gather the positive and negative characteristic speed respecti-
vely, and |Λ| contains the absolute value of the characteristic speed. Given these
matrices, we apply the first-order upwind method to (3.8) for positive an negative
characteristic speeds such that

(W+)n+1
i = (W+)ni − Λ+ ∆t

∆x
((W+)ni − (W+)ni−1),

(W−)n+1
i = (W−)ni − Λ− ∆t

∆x
((W−)ni+1 − (W−)ni ).

As W is by the definition the sum of W+ and W−, the numerical solution of the
hyperbolic equation (3.8) reads :

W n+1
i = W n

i − Λ
∆t

∆x
(W n

i −W n
i−1) + |Λ|∆t

∆x

W n
i+1 − 2W n

i +W n
i−1

2
.

Thus, we deduce the numerical solution of the 1D Riemann problem (3.7) for a linear
flux F with respect to its Jacobian matrix A :

xn+1 = xni − A
∆t

∆x
(xni − xni−1) + |A|∆t

∆x

xni+1 − 2xni + xni−1

2
. (3.9)

In the non-linear case, the literature provides several solvers that approximate
the Riemann solution (Harten et al., 1983; Roe, 1981). The Roe solver, proposed by
Roe (1981), is commonly chosen when it comes to solve numerically the SWE. This
solver consists in linearizing the Jacobian matrix A ≈ Ã(xL,xR), called Roe matrix,
which has to verify the following proprieties :
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– Ã(xL,xR) is assumed to be constant between the left and the right cells,
– Ã(xL,xR) has to be diagonalizable with real eigenvalues {ep}p associated to
linearly independent eign vectors {rp}p. This propriety is consistent with the
exact Jacobian and the conservation of Ã(xR − xL) = F (xR)− F (xL).

Once the linearized Jacobian matrix is obtained, the solution of the 1D Riemann
problem follows the linear case (3.9). The Roe matrix associated to the 2D SWE was
proposed by Priestley (1987) and also Glaister (1988). We describe the construction
of the Roe solver in the following.

Application of the Roe solver to the 2D SWE

In order to construct the Roe matrix, Priestley (1987) introduced the following
parameter vectors :

wL :=

 w1
L

w2
L

w3
L

 =

 √
hL

uL
√
hL

vL
√
hL

 ,wR :=

 w1
R

w2
R

w3
R

 =

 √
hR

uR
√
hR

vR
√
hR

 .

At each cell interface we compute the difference between the left flux and the right
flux, denoted by the subscripts L an R respectively,

F (xL)− F (xR) = Ã(xL − xR) =
3∑
i=1

αkekrk.

For each variable, we denote ∆w := wL−wr and w̃ := 1
2
(wL+wR). The eigenvalues

of the linearized Jacobian Ã(xR,xL) are defined by

e1 =
w̃2

w̃1

−
√
w̃2

1, e2 =
w̃2

w̃1

, e3 =
w̃2

w̃1

+
√
w̃2

1,

and their corresponding eigenvectors are

r1 =

 w̃1

w̃2 − w̃1

√
w̃2

1

w̃3

 , r2 =

 0
0
w1

 , r3 =

 w̃1

w̃2 + w̃1

√
w̃2

1

w̃3

 ,

with the coefficients

α1 = ∆w1 −
w̃1∆w2 − w̃2∆w1

2w̃1

√
w̃2

1

, α2 =
w̃1∆w2 − w̃2∆w1

w̃1

, α3 = ∆w1 +
w̃1∆w2 − w̃2∆w1

2w̃1

√
w̃2

1

.

Hence, the fluxes along the x-direction are described by :

F n
i+1/2,j =

1

2
(F (xnL) + F (xnR))− 1

2

3∑
k=1

αk|ek|rk, for xL = xni,j and xR = xni+1,j,

(3.10)

F n
i−1/2,j =

1

2
(F (xnL) + F (xnR))− 1

2

3∑
k=1

αk|ek|rk, for xL = xni−1,j and xR = xni,j.

(3.11)

65



Chapitre 3. A first application : reconstruction of a free surface flow

Similarly, in the y-direction, we compute the flux difference between the north
flux and the south flux, denoted by the subscripts N an S respectively,

G(xS)−G(xN) = Ã(xN − xS) =
3∑

k=1

βkekrk.

For each variable we note ∆w = wN −wS and w̃ = 1
2
(wN + wS). The eigenvalues

of the approximated Jacobian Ã(xN ,xS) are defined by

e1 =
w̃3

w̃1

−
√
w̃2

1, e2 =
w̃3

w̃1

, e3 =
w̃3

w̃1

+
√
w̃2

1,

and their corresponding eigenvectors are

r1 =

 w̃1

w̃2

w̃3 − w̃1

√
w̃2

1

 , r2 =

 0
0
w1

 , r3 =

 w̃1

w̃2

w̃3 + w̃1

√
w̃2

1

 ,

with the coefficients

α1 = ∆w1 −
w̃1∆w3 − w̃3∆w1

2w̃1

√
w̃2

1

, α2 =
w̃1∆w3 − w̃3∆w1

w̃1

, α3 = ∆w1 +
w̃1∆w3 − w̃3∆w1

2w̃1

√
w̃2

1

.

Finally, the fluxes along the y-direction are given by :

Gi,j+1/2 =
1

2
(G(xL) +G(xR))− 1

2

3∑
k=1

αk|ek|rk, for xS = xij and xN = xi,j+1,

(3.12)

Gi,j−1/2 =
1

2
(G(xL) +G(xR))− 1

2

3∑
k=1

αk|ek|rk, for xS = xi,j−1 and xN = xij.

(3.13)

3.1.3 Boundary conditions

As we study a fluid contained in a non-porous rectangular tank (see § 3.4.2), we
expect the fluid to return in the opposite direction whenever it hits the walls. This
comes to impose a reflecting boundary condition in every direction. In this configu-
ration, we impose the values of the height and velocity field at ghost cells {C1,j, j =
1, . . . ny}, {Ci,1, i = 1, . . . nx}, {Cnx,j, j = 1, . . . ny} and {Ci,ny, i = 1, . . . nx} around
the boundaries. The height and velocity field in these ghost cells are set to the same
height as the boundaries and the same velocity in the opposite direction than the
incoming wave respectively. The reflecting boundary conditions are illustrated in
figure 3.3.

3.1.4 Time integration

We describe in the present section the formulation of the time integration scheme.
The general formulation of Runge-Kutta techniques is given by :
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Figure 3.3 – Reflecting boundary conditions : we set the value of the flow at ghost
cells (in gray) with respect to the values of the height and velocity fields at the
boundary cells.

xn+1 = xn + ∆t
r∑
i=1

biki,

ki = f(tn + ∆tci,xni + ∆t
r∑
j=1

aijki),i = 1, ..., r

where the function f computes the fluxes given a state variable xn such that f(xn) =
F n
i,j+1/2 − F n

i,j−1/2 +Gn
i,j+1/2 −Gn

i,j−1/2.
The 4th order Runge-Kutta method (RK4) is usually privileged in many CFD

applications for its robustness and convergence proprieties. The 3rd order method
(RK3) also provides a good compromise between accuracy and computation time.
Both techniques were implemented in the SWE code and performed very simi-
lar results. Thus, we decided to consider the RK3 method for the implementa-
tion of the 4DVar code. The RK3 method is defined by fixing r = 3 and the
coefficients (c1, c2, c3) = (0, 0.5, 1), (b1, b2, b3) = (1/6, 2/3, 1/6) and (aij)1≤i,j≤3 = 0 0 0

1/2 0 0
-1 2 0

 .

3.1.5 Implementation into MATLAB

We created the SWE code based on the dynamical model described previously.
The code computes the trajectory of the non-conservative variable state on a given
assimilation window [0;N∆t] as described in algorithm 8. The auxiliary routines
u2q and q2u perform a simple transformation from a given non conservative state
variables x = (h, u, v)T to the conservative variables xc := (h, qx, qy)

T = (h, hu, hv)T

and vice versa. The RK3 routine performs the time integration procedure which
deduces the conservative state xn+1

c at time tn+1 = (n+1)∆t from the previous state
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xnc at time tn = n∆t (see§ 3.1.4). The latter performs several calls of the boundary
conditions routine BC defined by § 3.1.3, and the FVM routine which computes the
fluxes at each inter-cells (see § 3.1.2).

Algorithm 8 SWE(h0,u0,v0)

Initialization: n = 0, h0, u0, v0

while n < N do
call u2q(hn,un,vn,qnx ,qny )
call RK3(hn,qnx ,qny ,hn+1,qn+1

x ,qn+1
y )

call q2u(hn+1,un+1,vn+1,qn+1
x ,qn+1

y )
save (hn+1,un+1,vn+1)
n = n+ 1

end while
return hN , uN , vN

3.2 Ensemble-based 4DVar technique
We compare in this chapter the performance of a purely variational data as-

similation technique (see § 2.4.7) and an enhanced version of an ensemble based
technique (Yang et al., 2015). The latter is based on the work of Liu et al. (2008)
and Liu et al. (2009), and is referred to as the 4DEnVar in the following. This
technique is specifically defined within the framework of preconditioned incremental
variational formulation (see § 3.2.1) while handling an empirical approximation of
the background covariance matrix. The low rank approximation of the background
covariance matrix is directly inspired from the Ensemble Kalman filter techniques
where the covariance terms are empirically estimated from an ensemble of realiza-
tions.

3.2.1 Preconditioning of the incremental 4DVar assimilation

We recall the incremental variational assimilation formalism defined by the assi-
milation system

∂tδx(t, x) + ∂xMδx(t, x) = 0, (3.14)
δx(t0, x) = xb0 − x0 + η, (3.15)

Y(t, x) = H(ϕt(x0(x)) + ε(t, x), (3.16)

where ∂xM(x) denotes the tangent linear operator of the dynamics operator M. The
variable xb0 denotes an arbitrary background condition, x0 is the initial guess and η
is some error of background covariance B. The quantity

ϕt(x0(x)) = xt = x0 +

∫ t

t0

M(xs)ds,

denotes the flow map. The state variables xt and the measurements Y are linked
by an observation operator H, up to an observation error ε that is assumed to be
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a zero mean i.i.d. (independent and identically distributed)Gaussian random field
with covariance tensor R. In this study, for simplification purpose, we will consider a
linear observation operator set to the identity or to an incomplete identity operator
when only a part of the state is observable. The optimal increment δx0 at time t0 is
obtained by minimizing the following cost function :

J(δx0) =
1

2
‖δxb0 − δx0‖2

B−1 +
1

2

∫ tf

t0

‖∂xHδx(t, x)−D(t, x)‖2
R−1dt, (3.17)

where
xt = ∂xϕt(xbt)δx0,

and the innovation vector D(t, x) is defined by

D(t, x) = Y(t, x)−H(ϕt(xbt)).

In order to minimize the objective function J(δx0) with respect to δx0 we have
to cancel the gradient ∇J(δx0). This comes to solve the following linear system :

∇J(δx0) = B−1δx0 +

∫ tf

t0

∂xϕ
∗
t (∂xH)∗R−1(∂xH∂xϕtδx0 −D(t))dt = 0, (3.18)

⇔
(

B−1 +

∫ tf

t0

∂xϕ
∗
t (∂xH)∗R−1∂xH∂xϕtdt

)
δx0 =

∫ tf

t0

∂xϕ
∗
t (∂xH)∗R−1D(t)dt,

(3.19)

which can be compactly written as Hδx0 = b, denoting the left hand operator as
the Hessian matrix

H = B−1 +

∫ tf

t0

(∂xϕt)
∗(∂xH)∗R−1∂xH∂xϕtdt, (3.20)

and the right hand as the vector

b =

∫ tf

t0

(∂xϕt)
∗(∂xH)∗R−1D(t, x)dt. (3.21)

The possibly ill-conditioned nature of (3.19) depends on the condition number of
the Hessian matrix H (3.20). The condition number is defined by the ratio between
the maximal eigenvalue over the minimal eigenvalue of the matrix of interest. The
larger the condition number, the more sensitive the system is to errors both in the
b vector and in the estimate. A poorly-conditioned variational incremental system
can be improved by applying a change of variable with the matrix square-root of
the background error covariance matrix B. This change of variable is commonly
achieved by the so-called control variable transform (CVT),

δxt = B
1
2 δzt, (3.22)

and leads to a new Hessian matrix H̃ = B
1
2HB

1
2 possessing a lower condition number

(Haben et al., 2011; Yang, 2014).
Thus, we obtain a modified cost function by injecting the CVT (3.22) into the

objective function (3.17) such as

J(δz0) =
1

2
‖δz0‖2

B−1 +
1

2

∫ tf

t0

‖∂xH∂xϕt(x0)B
1
2 δz0 −D(t, x)‖2

R−1dt, (3.23)
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3.2.2 Low rank approximation of the background error cova-
riance matrix

The En4DVar assimilation is designed on such preconditioned incremental varia-
tional system and introduces an empirical approximation of the background cova-
riance matrix B. This low rank approximation of the background covariance matrix
is directly inspired from the Ensemble Kalman filter where the covariance terms are
estimated from the spread of an ensemble of samples.

Denoting < f(t) >= 1
N

N∑
i=1

f (i)(t) as an empirical ensemble mean of a quantity

f(t) through N samples, the unbiased empirical background covariance matrix reads

B ≈ 1

N − 1

N∑
i=1

(
x(i),b− < xb >

) (
x(i),b− < xb >

)T
. (3.24)

Noting A′b := 1√
N−1

(x(1),b
0 − < xb0 >, · · · ,x(N),b

0 − < xb0 >), the perturbation
matrix gathering the N zero mean centered background ensemble members as a low-
dimensional approximation of the background matrix. Introducing the background
covariance approximation in the preconditioned cost function (3.23), we get

J(δz0) =
1

2
‖δz0‖2

B−1 +
1

2

∫ tf

t0

‖∂xH∂xϕt(x0)A′bδz0 −D(t, x)‖2
R−1dt, (3.25)

we define the square root of the background error covariance matrix as the per-
turbation matrix :

B
1
2 ≈ A′b :=

1√
N − 1

(x(1),b
0 − < xb0 >, · · · , (x

(N),b
0 − < xb0 >)).

Let us note B̃
1
2 := ∂xϕt(x0)A′b the propagation of ensemble perturbation matrix

A′b which corresponds to a forecast by the dynamical model of the centered square-
root background covariance matrix. As we rely here on an empirical description of
this matrix from a set of samples, we can observe that integrating these samples in
time provides us immediately an empirical expression of a low-rank approximation
of the background covariance trajectory and of its square root. This avoids thus the
employment of the adjoint operator.

The gradient of the cost function is now given by

∇J(δz0) = δz0 +

∫ tf

t0

(B̃
1
2
T (∂xH)∗R−1(∂xHB̃

1
2 δz0 −D(t, x))dt. (3.26)

and its Hessian reads

H̃ = I +

∫ tf

t0

B̃
1
2
T (∂xH)∗R−1∂xHB̃

1
2dt. (3.27)

Once the minimizer δ̂z0 estimated, the analysis reads

xa0 = xb0 + A′bδ̂z0. (3.28)
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Let us emphasize that, as the empirical covariance matrix B is at most of rank
N−1, the control variable has at most N−1 non null components in the eigenspace.
Compared to the full 4DVar approach, the control variable’s degrees of freedom
are thus considerably lowered and the minimization computational complexity is
significantly decreased. Indeed, this ensemble version has a lower computation cost
if the ensemble forecasting step is distributed on a grid computing.

3.2.3 Preconditioning matrix update

As mentioned earlier, in this study we focus on situations where the background
state is only poorly known. It is hence essential to allow in the estimation process
a substantial deviation from the background state. So unlike typical incremental
ensemble-based variational methods which keep a fixed background covariance and
apply a single outer loop of the Gauss-Newton minimization, we propose to update
the approximation of this associated error covariance between two consecutive outer
loops. The update of the error covariance can be either derived from the ensemble
of analysis based on perturbed observations or by a direct transformation of the
background ensemble perturbations. The first method relies on a perturbed ensemble
of observations, generated with an additional noise with the same standard deviation
than in (3.16) :

Yj = Y + εj, j = 1, ..., N. (3.29)

At the kth outer loop iteration, the innovation vector of the member of the initial
ensemble x(j),k

0 is defined as,

D(j),k(t, x) = Yj(t, x)−H(ϕt(x
(j),k
0 )), j = 1, ..., N, (3.30)

with x(j),0
0 = x(j),b

0 . Thus a parallel realization of minimization with regard to each
member of initial ensemble is conducted

δz(j),k
0 = (A

′k
b )−1δx(j),k

0 , j = 1, ..., N. (3.31)

J(δz(j),k
0 ) =

1

2
‖δz(j),k

0 ‖2 +
1

2

∫ tf

t0

‖∂xH∂xϕt(x0)A
′k
b δz

(j),k
0 −D(j),k(t, x)‖2

R−1dt.

(3.32)

Finally the updated initial ensemble field and its perturbation matrix read :

x(j),k+1
0 = x(j),k

0 + A
′k
b δ̂z0

(j),k
, j = 1, ..., N. (3.33)

A
′(k+1)
b =

1√
N − 1

(
x(1),k+1

0 − < xk+1
0 >, ...,x(N),k+1

0 − < xk+1
0 >

)
. (3.34)

The direct transformation approach corresponds to a linear transformation of the
initial error’s xb − xt covariance. This approach can take many forms as the trans-
formation matrix is not unique, here we opt for a mean preserving transformation
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as used in Ensemble Transform Kalman filter, the updated background ensemble
perturbations reads,

A
′(k+1)
b = A

′k
b

(
I +

∫ tf

t0

B̃
1
2
T

t (∂xH)∗R−1∂xHB̃
1
2dt

) 1
2
,k

V. (3.35)

It corresponds to the Hessian square root computed from previous perturbation
matrix at outer loop iteration k. As the minimization algorithm LBFGS relies on
an approximation of the inverse Hessian matrix H−1, we can use this byproduct to
evaluate (3.35). At the initial time, the background matrix is fixed from the initial
random conditions chosen. The arbitrary orthogonal matrix V is used to center
the posterior ensemble on the updated initial condition/analysis. In this approach
a single minimization process is conducted with respect to the background state in
opposition to previous cases where the minimization has to be done with respect to
each member of the ensemble plus the background state. Finally the updated initial
ensemble fields are,

x(j),k+1
0 = x̂k0 +

√
N − 1A

′(k+1)
b , j = 1, ..., N, (3.36)

where x̂k0 corresponds to the updated initial state at the kth outer loop,

x̂k0 = xk0 +
(
A
′k
b

)−1

δ̂z0

k
. (3.37)

Both variants of the update will be assessed in the experimental § 3.4.2.

3.2.4 Localization issues

The previous ensemble method relies on a low rank approximation of the back-
ground matrix. This empirical approximation built from only very few samples,
compared to the state space dimension, leads in practice to spurious correlations
between distant points. For ensemble Kalman techniques, it is customary to remove
these long distance correlations through the so-called localization procedure. There
are generally two methods to filter the pseudo-correlations.

The first approach introduces a Schur element-wise product between the back-
ground correlation matrix and a local isotropic correlation function Pb = C � B.
The spatial correlation function can be simply defined as a matrix C(‖x− y‖/L) in
which we set Cxy = 0 when the distance between x and y exceeds the cutoff distance
L. Polynomial approximations of a Gaussian function with compact support and a
hard cutoff are often employed to that end (Gaspari and Cohn, 1999). They lead
to sparse correlation matrices, which is computationally advantageous. In order to
incorporate the localized background error matrix into our system, we approximate
the square root of Pb by a spectral decomposition of the isotropic correlation function
and keep only the r first leading Fourier modes

C = En×rλ
1/2
r×r. (3.38)

The modified perturbation matrix is then provided by

P′b = (diag(A
′(1)
b )C, ..., diag(A

′(N)
b )C). (3.39)
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Here the diag operator sets the vector x′b,k as the diagonal of a matrix. This locali-
zed perturbation matrix is used to precondition the assimilation system associated
with (3.25). Remark that this approach is incompatible with the direct transform
update of the background error covariance matrix. This is due to the inconsistency
of matrix dimensions when updating the background ensemble based on (3.36). As
the dimension of P′b is n×N×r instead of n×N , the ensemble perturbation matrix
cannot be recovered from its localized counterpart.

A variant of covariance localization approach based on Lorenc (2003) is imple-
mented in Desroziers et al. (2014) along with other localization schemes. Desroziers
et al. (2014) also highlights the importance of the dimension of the control vector
which is directly related to the cost of the minimization algorithm.

Another localization technique proposed by Hunt et al. (2004) employs local
ensemble. This approach involves a transformation Ml from state space Rn to local
space Rl, the local vector is defined as :

xl = Mlxn. (3.40)

Then the analysis process is done in local space Rn around each grid point only
incorporating the model points and observations within a certain range. This certain
range, denoted as l, which corresponds to the concept of cut-off distance aforemen-
tioned, determines the size of the local space. This localization strategy is ideally
compatible with the method of direct transformation approach associated with the
update of background error covariance matrix. The great advantage of this combi-
nation is its low computational cost when implemented with properly parallelized
minimization procedures. However, good performances can only be reached with a
small local space.

All these elements (i.e. CVT, localization and incremental/background error co-
variance matrix update) associated with a LBFGS minimization strategy constitute
the proposed ensemble method. The algorithm descriptions of the overall methods
are presented in Figs. 2 and 3. We point out that this assimilation system - composed
of perturbed observations, one outer loop and localization via a modified covariance
matrix - is equivalent to the 4DEnVar method proposed by Liu et al. (2008) and
Liu et al. (2009). If direct ensemble transformation update is used, it is hence close
to the 4D-LETKF method Fertig et al. (2007) and the IEnKS method Bocquet and
Sakov (2014) but with a minimization performed on a variational basis.

3.3 Construction of the SWE discrete tangent and
adjoint

The construction of the discrete adjoint corresponding to the SWE model descri-
bed in algorithm 8 is the cornerstone of the 4DVar implementation. While the choice
of constructing the discrete adjoint over the analytic adjoint in this application can
be debated, our goal is to explore the implementation of a variational technique in
preparation to the 3D reconstruction (see § 4.2). In this application, we need to
construct the most accurate as possible adjoint represenetation of the discrete SWE
dynamics (i.e. the finite volume scheme with the Roe approximation).
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Algorithm 9 Ensemble-based variational data assimilation algorithm : Localize
covariance approach

Set an initial state x(t0) = xb(t0) and the ensemble xj,b0 as an arbitrary choice (for
the 1st cycle) or as the forecast state an the ensemble forecast derived from the
previous assimilation cycle respectively
loop

Define the matrix X(t) = [x(t0),x1,b
0 , ...,xN,b0 ] concatenating the initial en-

semble and compute in parallel X(t) with the forward integration of the nonlinear
dynamics (3.14)

Generate ensemble observations (3.29) and innovations (3.30)
Derive the background perturbation matrix localization technique from (3.39)
Initialize the increment matrix δX0 = [δx(t0), δx1,b

0 , ..., δxN,b0 ]
Do an inverse control variable transformation δR0 = (P′b)

−1δX0 if necessary
where (P′b)

−1 is calculated by SVD
Optimize in parallel δR0 in the inner loop, the cost function and the gradient

are calculated based on the modified versions of (3.23)
Update control initial space R0 and calculate δ0X0 by transforming δR0 to

the state space with (3.22)
Update the initial ensemble (3.33) and the ensemble perturbation matrix (3.34)

end loop
Evolve the analysis state xa(t0) to the beginning of the next cycle through the
nonlinear dynamics (3.14). The forecast state and the forecast enesemble are used
to initialize the next assimilation cycle.
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Algorithm 10 Ensemble-based variational data assimilation algorithm : Localize
ensemble approach

Set an initial state x(t0) = xb(t0) and the ensemble xb0 as an arbitrary choice (for
the 1st cycle) or as the forecast state an the ensemble forecast derived from the
previous assimilation cycle respectively
loop

Define the matrix X(t) = [x(t0),x1,b
0 , ...,xN,b0 ] concatenating the initial en-

semble and compute in parallel X(t) with the forward integration of the nonlinear
dynamics (3.14)

Define local space and the transformation from state space to local space (3.40)
Parallelizing minimization computation at each grid point (p, q)
Initialize the increment vector

δx0,l = Ml,sδx0

Derive the background ensemble perturbation covariance

A′b,l =
1√

N − 1

(
x(1),b

0,l − < xb0,l >, ...,x
(N),b
0,l − < xb0,l >

)
Apply an inverse control variable transformation in the local space

z0,l = (A′b,l)
−1δx0,l

The cost function minimization is done only once in terms of the background.
The updated background is obtained by (3.37)

Update the initial ensemble and ensemble perturbation matrix by (3.36) and
(3.35)

Reconstruct the analysis and the ensemble form local space to state space
end loop
Evolve the analysis state xa(t0) to the beginning of the next cycle through the
nonlinear dynamics (3.14). The forecast state and the forecast enesemble are used
to initialize the next assimilation cycle.
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To that end, we build the discrete adjoint procedure associated to the SWE code
with the help of the AD tool TAPENADE (Hascoët, 2004). We note that we had
to perform a conversion of the SWE code from MATLAB to FORTRAN 90 in order
to implement the AD tool TAPENADE. The reader can find the description of the
AD principles and the different implementation strategies in appendix C.1. We also
provide in appendix C.1.2 an example of the detailed construction of the tangent
and adjoint procedure corresponding to a simple program.

In terms of the notations, we inherit from the formalism imposed by TAPENADE
such that :

– the tangent procedures are ended by the subscript _d, the differential tangent
variables associated to a given variable x are denoted ẋ,

– the adjoint procedures are ended by the subscript _b, the differential adjoint
variables associated to a given variable x are denoted x̄.

We describe in § 3.3.1, § 3.3.2 and § 3.3.3 the construction of the adjoint procedure
of the boundary conditions, the Roe solver and the time discretization respectively.
We deduce the discrete adjoint of the SWE code in § 3.3.4. The tangent and adjoint
procedures of each subroutine and the entire code are systematically verified by the
validation procedures presented in § 3.3.5.

3.3.1 Adjoint of the boundary conditions

The imposed reflecting boundary conditions consist in adding ghosts cells in
every directions, and defining the value of non-conservative variable state according
to figure 3.3. In the perspective of the computation of the fluxes FE, FW , GN and
GS in the east, west, north and south directions with respect to a given cell Cij
respectively, the BC routine generates the auxiliary variables xE, xW , xN and xS as
described in the left side of figure 3.4. The values at the ghost cells for each variables
xE, xW , xN and xS are determined according to figure 3.3.

The adjoint routine BC_b corresponding to the BC routine outputs the adjoint
variable x̄ from each adjoint x̄E, x̄W , x̄N and x̄S which are the output of the adjoint
flux\_b routine (see § 3.3.2). The adjoint variable x̄ is the sum of the values at
the ghost cells with the values at the boundaries of the adjoint variable state x̄ for
each adjoint x̄E, x̄W , x̄N and x̄S. The reader can find in appendix D.1 the complete
adjoint routine of the boundary conditions.

3.3.2 Adjoint of the flux terms

Adjoint of the Roe solver

As described in § 3.1.2, we solve a 1D Riemann problem with a Roe solver to
determine the flux crossing every inter-cell in a given direction (see § 3.1.2). In
practice, the Roe solver computes the flux crossing from the left to the right cell
from the input xL and xR. The values of xL and xR depend on the direction of the
flux we aim at computing. We assume beforehand that we computed the quantities
xW , xE, xN and xS by the BC routine. The horizontal fluxes FW := Fi−1/2,j and
FE := Fi+1/2,j require the couple (xW ,x) and (x,xE) respectively. In the same way,
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Figure 3.4 – Left side : BC creates ghost cells from the input state x (black box)
to xE, xW , xN and xS (red box) which are used to compute the horizontal flux FE,
FW , GN and GS and Gi+1/2,j respectively. Right side : BC_b sums the values at the
ghost cells with the values at the boundaries of each adjoint variable state x̄ (black
box) for each adjoint x̄E, x̄W , x̄N and x̄S (green box).

the vertical flux FS := Gi,j−1/2 and FN := Gi,j+1/2 require the couple (xS,x) and
(x,xN) respectively.

At first, the Roe solver calls the Priestley routine which computes the parame-
ter variables wL and wR from xL and xR. The parameters wL and wR are then used
to compute the eigenvalues, eigenvectors and the coefficient of a linearized Jacobian
Ã(xR,xL). These quantities are computed by the eigenvalue, eigenvector and
coefficient routines respectively. Finally, the latter are combined if the nonlinear
flux F (xL) and F (xR) or G(xL) and G(xR) to deduce flux of interest in the given
direction. We recall that the nonlinear flux of a given state x in the horizontal and

vertical direction is given by F (x) =

 hu
hu2 + 1

2
gh2

huv

 and G(x) =

 hv
huv

hv2 + 1
2
gh2


respectively. The latter is discretized in the algorithm fluxH and fluxV respectively.

The adjoint procedure corresponding to the auxiliary routines Priestley, eigenvalue,
eigenvector, coefficient, fluxH and fluxV are systematically built with the TA-
PENDADE tool and are detailed in appendix § D.2. We assume that we determined
these discrete adjoint and deduce the discrete adjoint Roe_b associated to Roe in
algorithm 11.

Adjoint of the FVM

The FVM routine combines the fluxes terms FE, FW , GS and GN in each direction
according to the FVM formulation (3.6). Each flux term was computed beforehand
by the Roe solver described previously. The original FVM routine is described in
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Algorithm 11 Roe_b(F̄ ,hL,uL,vL,hR,uR,vR,flag)
! Forward step =================>
! Preprocessing
wL = Priestley (hL, uL, vL,flag)
wR = Priestley (hR, uR, vR,flag)
∆w = wL −wR

w̃ = 1
2
(wL + wR)

! Characteristics of the Roe matrix Ã(XR, XL)
[e1, e2, e3] = eigenvalues(w̃,flag)
[r1, r2, r3] = eigenvectors(w̃,flag)
[α1, α2, α3] = coefficients(w̃,∆w,flag)
! Backward step <=================
! Compute the left and right fluxes
F̄L = F̄L + 1

2
F̄

F̄R = F̄R + 1
2
F̄

if flag then
[h̄L, ūL, v̄L] = fluxH_b (F̄L,hL, uL, vL)
[h̄R, ūR, v̄R] = fluxH_b (F̄R,hR, uR, vR)

else
[h̄L, ūL, v̄L] = fluxV_b (F̄L,hL, uL, vL)
[h̄R, ūR, v̄R] = fluxV_b (F̄R,hR, uR, vR)

end if
[w̃, ∆w] = coefficients_b(ᾱ1, ᾱ2, ᾱ3,w̃,∆w,flag)
w̃ = eigenvectors_b(r̄1, r̄2, r̄3, w̃)
w̃ = eigenvalues_b(ē1, ē2, ē3,w̃)
w̄L = w̄L + 1

2
w̃

w̄R = w̄R + 1
2
w̃

w̄L = w̄L + ∆w
w̄R = w̄R −∆w
[h̄R, ūR, v̄R] = Priestley_b (w̄R,hR, uR, vR)
[h̄L, ūL, v̄L] = Priestley_b (w̄L,hL, uL, vL)
return h̄L, ūL, v̄L, h̄R, ūR, v̄R
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algorithm 12.

Algorithm 12 FVM(h,qx,qy)

call q2u(h,u,v,qx,qy)
call BC(h, u, v, hW , uW , vW , hE, uE, vE, hN , uN , vN , hS, uS, vS)
FE = Roe(h, u, v, hE, uE, vE, flag)
FW = Roe(h, u, v, hW , uW , vW , flag)
GS = Roe(h, u, v, hS, uS, vS, flag)
GN = Roe(h, u, v, hN , uN , vN , flag)
F = ∆t

∆x
(FW − FE)− ∆t

∆y
(GS −GN)

return F

The q2u routine transforms the conservative variable xc = (h, qx, qy) = (h, hu, hv)
to the non-conservative variable x = (h, hu, hv). The adjoint procedure of the latter
is described in appendix D.3. Given the adjoint procedure of the boundary condi-
tion and the Roe solver discussed previously, we deduce the discrete adjoint FVM_b
described in algorithm 13.

Algorithm 13 FVM_b(F̄ )
! Forward step =================>
call q2u(h,u,v,qx,qy)
call BC(h, u, v, hW , uW , vW , hE, uE, vE, hN , uN , vN , hS, uS, vS)
! Backward step <=================
F̄W = ∆t

∆x
F̄ , F̄E = −∆t

∆x
F̄

ḠS = ∆t
∆y
F̄ , ḠN = −∆t

∆y
F̄

[h̄, ū, v̄, h̄N , ūN , v̄N ] = Roe_b(F̄N ,1)
[h̄S, ūS, v̄S, h̄, ū, v̄] = Roe_b(F̄S,1)
[h̄W , ūW , v̄W , h̄, ū, v̄] = Roe_b(F̄W ,0)
[h̄, ū, v̄, h̄E, ūE, v̄E] = Roe_b(F̄E,0)
call BC_b(h̄, ū, v̄, h̄W , ūW , v̄W , h̄E, ūE, v̄E, h̄N , ūN , v̄N , h̄S, ūS, v̄S)
call q2u_b(h,h̄,u,ū,v,v̄,qx,q̄x,qy,q̄y)
return h̄, ū, v̄

3.3.3 Adjoint of the time integration scheme

The time integration is simply carried out by the RK3 method recalled below,

k1 = f(xnc ), (3.41)
k2 = f(xnc + 0.5k1), (3.42)
k3 = f(xnc + 2k1 − k2), (3.43)

xn+1
c = xnc +

∆t

6
(k1 + k2 + k3), (3.44)

where xnc is the conservative vector xnc = (hn, qnx , q
n
y ) = (hn, hnun, hnvn). The function

f calculates the fluxes in each direction as described in § 3.1.2, in other words,
f(xnc ) = FVM(hn, qnx , q

n
y ).
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Hager (2000) provided the general formulation of the Runge-Kutta methods dis-
crete adjoint procedure and Sandu (2006) showed that the Runge-Kutta discrete
adjoint method has the same order of accuracy as the original forward method.
Hence, we apply below the general formulation of the discrete adjoint to the RK3
method :

k1 = f(xnc ), (3.45)
k2 = f(xnc + 0.5k1), (3.46)
l1 = ∂xf

∗(x̄n), (3.47)
l2 = ∂xf

∗(x̄n + 0.5k1), (3.48)
l3 = ∂xf

∗(x̄n + 2k1 − k2), (3.49)

x̄n−1 = x̄n +
∆t

6
(l1 + 4l2 + l3), (3.50)

where ∂xf
∗ is the analytic adjoint operator corresponding to f . In our context, this

operator corresponds to the adjoint routine FVM_b such that f(x̄nc ) = FVM(h̄n, q̄nx , q̄
n
y ).

We deduce the adjoint routine RK3_b summarized in algorithm 14.

Algorithm 14 RK3_b(hn−1,h̄n−1,qn−1
x ,q̄n−1

x ,qn−1
y ,q̄n−1

y ,hn,h̄n,qnx ,q̄nx ,qny ,q̄ny )

! Forward procedure =================>
xn = (hn,qnx ,qny )
k1 = FVM(hn,qnx ,qny )
tmp = xn + 0.5 ∗ k1
k2 = FVM(tmp)
! Backward procedure =================>
x̄n = (h̄n,q̄nx ,q̄ny )
l1 =FVM_b(x̄n)
l2 =FVM_b(x̄n + 0.5 ∗ k1)
l3 =FVM_b(x̄n − k1 + 2 ∗ k1)
h̄n−1 = h̄n + 1

6
(l1(1) + 4 ∗ l2(1) + l3(1))

q̄n−1
x = q̄nx + 1

6
(l1(2) + 4 ∗ l2(2) + l3(2))

q̄n−1
y = q̄ny + 1

6
(l1(3) + 4 ∗ l2(3) + l3(3))

3.3.4 Adjoint of the main code

Given the previous adjoint routines, we deduce the adjoint procedure correspon-
ding to the main SWE routine in algorithm 15. As we work with a rather small sized
problem, we choose to implement a store-all strategy which consists in saving every
quantities hn, un, vn for each time step tn and invoke them when needed.

3.3.5 Code validation

We validated previous tangent and adjoint procedures by applying the validation
tests presented in § 2.4.7. We recall that the original SWE code studied in this chapter
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Algorithm 15 SWE_b

Initialization: n = N , h̄N = 0, ūN = 0 ,v̄N = 0
while n > 0 do

call q2u_b(hn,h̄n,un,ūn,vn,v̄n,qnx ,q̄nx ,qny ,q̄ny )
call RK3_b(hn−1,h̄n−1,qn−1

x ,q̄n−1
x ,qn−1

y ,q̄n−1
y ,hn,h̄n,qnx ,q̄nx ,qny ,q̄ny )

call u2q_b(hn−1,h̄n−1,un−1,ūn−1,vn−1,v̄n−1,qn−1
x ,q̄n−1

x ,qn−1
y ,q̄n−1

y )
n = n− 1

end while
return h̄0, ū0, v̄0

was implemented in MATLAB, therefore we performed beforehand the conversion
to an equivalent FORTRAN code to use the AD tool TAPENADE. The obtained
tangent and adjoint procedures are then converted back to MATLAB procedure.
Consequently, the following test were performed on the procedures converted to
MATLAB.

Tangent process validation

We recall the expression of the tangent validation procedure for the operator f
of interest, which represents in this case the original code SWE, and its corresponding
tangent denoted ∇f ,

R1 :=
f(x0 + αd)− f(x0)

α < ∇f(x0), d >
. (3.51)

We evaluate the value of 1−R1 for different differentiation step α over a temporal
window of 10∆t′ then 100∆t′. The results are summarized in table 3.1. The tangent
code accuracy meets our expectation as the ratio R1 is close to 1 up to 10−α. We
obtain the same accuracy for both temporal windows.

α 10∆t′ 200∆t′

10−3 4.738510−5 4.195710−5

10−4 2.561910−6 4.116810−6

10−5 4.397310−7 3.567710−7

10−6 4.445610−8 3.537610−8

10−7 4.260110−9 4.368910−9

10−8 4.305410−10 8.092410−10

10−9 1.140810−9 1.369510−9

Table 3.1 – Evaluation of 1 − R1 results for different values of the differentiation
step α over 10∆t′ and 200∆t′. These results are calculated in MATLAB’s default
accuracy.
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Dot product validation

By definition, the adjoint procedure must correspond exactly to the tangent
procedure associated to original code. Therefore, this validation test is carried out
in double precision O(10−16) and we expect the results to reach the same accuracy.
We computed the ratio R2 over 200∆t′ obtained a satisfying result (3.52). Hence,
the discrete adjoint corresponds accurately to the previous tangent procedure.

R2 =
< (∂XM)X, (∂XM)X >

< X, (∂XM#)Y >
=
< Ẏ , Ẏ >

< Ẋ, Ȳ >
= 1.000000000000220. (3.52)

Adjoint process validation

Finally, we evaluated the validity of the entire 4DVar assimilation implementation
by computing the ratio R3 for several differential step α,

R3 =
J(x0 + αd)− J(x0)

α < λ(t0), d >
. (3.53)

We recall that we don’t require the latter to be close to 1 as the first order finite
difference provides a lowly accurate estimate of the cost function. The results are
summarized in table 3.2.

α R3

10−3 0.88820
10−4 1.05709
10−5 1.07748
10−6 1.06722
10−7 1.05659
10−8 1.04759
10−9 1.07377

Table 3.2 – 4DVar validation result for different values of the differentiation step
α over an assimilation window T ′ = 200∆t′.

3.4 Application to the reconstruction of a free sur-
face characteristics

In this chapter, we seek for the complete characteristics (height and velocity
field) of the free surface of a fluid contained in a rectangular flat bottom tank of size
Lx × Ly = 250mm × 100mm. Since we have a numerical code which describes the
evolution at the free surface in time (see § 3.1.1) and a set of observations, we apply
and compare the following data assimilation strategies :
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– An incremental 4DVar technique, based on Courtier et al. (1994), which
requires the construction of the discrete adjoint code described in § 3.3. We
fixed the background error co-variance matrix as a static diagonal matrix B =
σ2
b I for both experiments. σb was optimally tuned as the standard deviation

between the true solution and the a priori experimental initial state.
– Several hybrid data assimilation strategies based on the 4DEnVar developed

in Liu et al. (2008), labeled by the suffix "Liu-et-al" in the following figures. The
strategies with several outer loops, perturbed observation or direct transfor-
mation are indicated by suffix "OL", "OP" and "DT" respectively. Covariance
localization and local ensemble are indicated by suffix "LC", "LE" accordingly.
In terms of background error covariance matrix, it is crucial that the initial
ensemble represents correctly the background errors, therefore the latter are
specified in each case. The reader can find complete study of these strategies
in Yang (2014).

3.4.1 Synthetic experiment

General context

In this purely synthetic experiment, we define a reference initial condition as a
smooth slope tilted along the x-axis and the y-axis by 21% and 10% respectively.
The initial reference velocity field was fixed as a Gaussian field with a standard
deviation of 1mm/s. The data assimilation techniques are run on a meshgrid of
nx × ny = 101 × 41 nodes. The background is set as a smooth 20% slope along
the x-axis only. The slight slope in the y direction induced in the reference height
contributes to the divergence between the reference and the background trajectory.
The initial reference and background configurations are illustrate in figure 3.5.

Figure 3.5 – Representation of the initial configuration of the reference (on the
left) and the background (on the right). The reference is obtained by a smooth 21%
slope along the x-axis and a 10% slope along the y-axis. The background height is
set as a smooth slope at 20% slope along the x-axis.
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In terms of the initialization of the ensemble members, we set up two kind of
perturbations of the initial condition. In the one hand, we opt for a Gaussian pertur-
bation of the background. On the other hand, we opt for a parameter perturbation
strategy which consists in generating heights with random smooth slope.

The synthetic observations are generated by adding i.i.d Gaussian noise pertur-
bations to the reference free surface height and velocity fields at each grid point. In
this experiment, we observe either the free surface height only, or the free surface
velocity field only or both at the same time. The observations are acquired every
∆t′obs = 50∆t·U/Lx of the dynamic step ∆t = 1e−3s. The common temporal setup
of both experiments is illustrated in figure 3.6. The height and velocity observation
errors are specified as 0.25mm and 1mm/s respectively.

Figure 3.6 – Temporal setup for the data assimilation techniques : we perform the
assimilation over a period of tf ·U/Lx. The observations are injected each ∆t′obs =
50∆t·U/Lx.

In this experiment, we define the characteristic height ∆h = 50mm as the diffe-
rence between the maximum and minimum surface height of the initial background
state. We also define the characteristic velocity U =

√
g∆h = 0.34 m/s as an ap-

proximation of the wave phase velocity. For every data assimilation techniques, we
performed a single assimilation window of duration tfU/Lx = 0.8951. All the follo-
wing results are adimensionalized with respect to these characteristic values.

We analyze the following results by computing the Root Mean Square Error
(RMSE) defined for the given state of interest x with respect to the reference state
xref . We assess display the evolution in time of the RMSE for the background, ob-
servation and the resulting analysis states with respect to the values of the reference
state. The RMSE function is defined as

RMSE(x) =
1

N

√√√√ N∑
i=1

(x− xref)
2, (3.54)

where N represents the total size of the state x. We also consider the RMSE com-
parison on a semi-logarithmic graph. In general, a lower RMSE at the end of the
assimilation window indicates better performance in terms of the forecast, and a
lower temporal RMSE indicates better performance in terms of reconstruction.
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Height observations

In this configuration, we only take into account noisy free surface height obser-
vations. The En4DVar techniques provided comparable results with the 4DVar for
an ensemble of 8 members. Figure 3.7 shows that in terms of the RMSE comparison,
the 4DEnVar yields to the best reconstruction of each variables than the standard
4DVar assimilation techniques. Both methods performed strong corrections of the
height whereas the standard 4DVar seems to have difficulties to reconstruct the
non-observed velocity fields.

Figure 3.7 – RMSE comparison between an incremental 4DVar and 4DEnVar assi-
milation approaches with a a partial height observation through a noisy free surface
height.

Concerning the 4DEnVar methods, the parameter perturbation strategy (4DEnVar-
Para) provided the best reconstruction of the complete state. In order to obtain com-
parable results with the Gaussian perturbation strategy, a localization is necessary
and the cutoff distance was set as the optimal cutoff distance minimizing the average
RMSE (the same value was used to define the size of local space). The distance in-
creases as the ensemble member increases. We also observe that several outer loops
clearly improve the results (OL-LC against Liu-et-al and OL-LE against LE), which
highlights the pertinence of the background covariance update. The method with
local ensemble (LE) provided slightly better results than the method with localized
covariance (LC).
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Velocity observations

This time, we only take into account noisy free surface velocity observations. Fi-
gure 3.8 reveals a similar behavior than the previous case as the 4DEnVar techniques
globally provided a better reconstruction than the standard 4DVar.

Figure 3.8 – RMSE comparison between an incremental 4DVar and 4DEnVar assi-
milation approaches with a a partial velocity observation through a noisy free surface
height.

As in the previous case, the parameter perturbation strategy (4DEnVar-Para)
provides the best reconstruction of the complete state for a low ensemble member
N = 8. On the other hand, the Gaussian perturbation strategy required a moderately
higher ensemble number N = 16 to obtained better comparable results to the 4DVar.
The increase of the ensemble size to N = 32 slightly improves the quality of the
results at the expense of a higher computational cost.

Height and velocity observations

Finally, we performed the reconstruction with complete observations of the sys-
tem of interest. The comparison of the each data assimilation techniques provided
a very similar behavior than in the previous case. Indeed, the ensemble techniques
provided a better reconstruction than the 4DVar in terms of the RMSE evolution.
However the advantage of the ensemble methods towards the 4DVar is less enhanced
than in the previous case. As we possess the complete observations of the system,
we assume that each variable component is mainly corrected by the corresponding
observations than indirectly inferred from other observed components.

In terms of the ensemble methods comparison, we obtain globally the same
conclusions as previously. The parameter perturbation strategy provided a slightly

86



Chapitre 3. A first application : reconstruction of a free surface flow

better result than the Gaussian perturbation. The localization ensemble (LE) ap-
proach generally led to better results than the localization covariance (LC) approach,
however the more we increase the ensemble number N the more the results of both
approaches are alike.

As the data assimilation techniques are comparable in terms of RMSE, we com-
pare their computational needs in table 3.3. The parameter perturbation approach
(4DEnVar-PP), requires the less CPU time among all the data assimilation tech-
niques compared. The 4DVar approach requires the most CPU time as it performs
several forward and backward time integrations, however in the upside, this tech-
nique requires a smaller memory resources. Concerning the Gaussian perturbation,
for an equal number of ensemble member, the local covariance approach costs more
in time and in memory than the local ensemble approach.

Data assimilation method CPU time Memory demands
4DVar 3200s Small
4DEnVar-PP (no localization, N=8) 120s Small
4DEnVar-LC(N = 32) 2400s Huge
4DEnVar-LE(N = 32) 600s Small

Table 3.3 – Comparison of the computation resources required for the classic 4DVar
method (4DVar), the parameter perturbation approach (4DEnVar-PP), Gaussian
perturbation with a local covariance approach for N = 32 ensemble members
(4DVar-LC) and the Gaussian perturbation with a local ensemble approach for
N = 32 ensemble members.

Conclusion

The ensemble based data assimilation techniques showed great potential in hand-
ling incomplete and noisy observations and each 4DEnVAr strategies clearly outper-
formed the 4DVar reconstruction in terms of RMSE. Regarding the ensemble ini-
tialization, a physical noise, in our case the generation of smooth random slopes, is
preferred over non-physical noise which requires a localization procedure. However,
in practice we often don’t have a profound knowledge of both the dynamical model
and the observations to generate a good parameter sampling.

When we consider a set of complete observations, the ensemble-based methods
provide similar results with respect to the 4DVar technique. Table 3.3 showed that
the 4DVar technique requires the highest CPU time for a relatively small memory
cost. Although, these results assume that the En4DVar methods are parallelized
beforehand which can represent a tedious task more complex dynamical systems.
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3.4.2 Real image data experiment

Experimental observations

The experimental setup simply consists in measuring the height of a colored
liquid contained in a tank with a Kinect depth sensor placed above the tank as
illustrated in figure 3.9. The measurements were acquired on a 222×88 grid. Combes
et al. (2011) described in details the measurement technique employed to extract the
surface height from the raw data captured by the Kinect sensor.

Figure 3.9 – Experimental setup with the Kinect depth sensor

The free surface height observations are characterized by a high level of noise
and exhibit large regions of missing data mostly along the boarders which are due
to light reflections on the tank’s wall. We performed a sequence of procedures that
transforms the sequence of spatially sparse height observations into complete height
observations defined on 248×98 nodes. However, the computational limitations leads
us to run the data assimilation on 124×49 nodes instead. Therefore, the observations
are interpolated on the coarse grid. The entire pre-procedure that transforms the
height observations acquired on the 222× 88 grid into a format suitable to run the
assimilation techniques is summarized in algorithm 16.

Algorithm 16 Real observations pre-processing
1: Eliminate singular points whose value exceeds a given threshold
2: Fill the missing boundary areas located besides the long borders with the average

of the all the pixels’ values located in the same section
3: Extrapolate the height profile to the missing boundary areas located besides the

short boarders
4: Fill the missing inner hole areas with pseudo-values computed as the mean of

all the adjacent pixel’s observation values

Similarly to the synthetic configuration, we consider an adimensionalized system
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with respect to the characteristic height, velocity and time defined as ∆h = 12mm,
U =

√
g∆h = 0.34 m/s and tf ·U/Lx = 0.4608 respectively.

We estimate the observation error within an unobserved region with respect to
the distance from the closest observed point. Thus, the longer the distance, the larger
the error. The observation error is however bounded by a threshold of 60%∆h.

The observation time step was tuned cautiously to ∆t′obs = 30∆t·U/Lx such that
the observation sequence is synchronized with the dynamics model.

3.4.3 Choice of the background

In this framework, the initial background was built from the partial observations
provided by the Kinect measurements. The initial height is deduced by filtering the
observation at the initial time which was obtained by the pre-processing described
in algorithm 16. As we notice that the observed free surface behaved roughly as
an unidrectional wave along the x-axis, we set the initial x-axis velocity field as a
smooth linear slope. The velocity at the top of the wave was set as 23% of the wave
velocity and the velocity at the bottom of the wave was set to 0. The transverse
velocity field was set to v = 0. The initial observation and background height and
velocity are illustrated in figure 3.10.

(a) (b)

(c)

Figure 3.10 – Observed free surface height retrieved from the Kinect depth map
(a), interpolated free surface height used as the background (b), background velocity
set accordingly to the height observation (c)

In terms of ensemble sampling, we initialize the ensemble members by adding
isotropic Gaussian perturbation fields with standard deviation σb = 3.6%∆h to the
background state. The cutoff distance and the size of local space are fixed as 15%Lx.
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The assimilation scheme was adapted to sliding assimilation windows to avoid
long range temporal correlations. Each window contains five observations and we
adopted five windows over nine observations, as illustrated in figure 3.11.

Figure 3.11 – Temporal setup for the sliding data assimilation techniques : we
perform the assimilation over a period of tf ·U/Lx. The observations are injected each
∆t′obs = 30∆t·U/Lx. We then slide the assimilation window to the next observation
and perform once again the data assimilation. This procedure is repeated until we
reach the ninth observation.

3.4.4 Results

In opposition to the synthetic case, we don’t possess a reference state in this case.
We can only assume the true solution to lie within an interval around the observa-
tion. Therefore, instead of studying the RMSE with respect to the observations, we
compare directly the height fields.

Figure 3.12 shows the evolution of the average surface height of the wave crest
of the background, the observations and the result of the different data assimilation
techniques. As the observations indicate that the free surface behaves globally as a
single wave, we particularly focus on the wave crest’s region rather than hte other flat
regions. While the background diverges from the observations, we observe that the
4DVar and the 4DEnVar can both follow the observation trajectory tendency. The
4DVar tends to understimate the surface height at the beginning of the simulation
whereas the ensemble-based methods follow the trend imposed by the 1st to the
4th observation. After the fifth observation, the En4DVar (Liu et al., 2008) diverges
from the observation trajectory.

We also compared the free surface in figure 3.13. According to these free surfaces,
we can see that the 4DVar solution showed some difficulties to handle the disconti-
nuities at the boundaries of the regions in which the data have been extrapolated.
On the other hand, the En4DVar provided a much smoother solution on the borders
which corresponded clearly to a better compromise between the observation and the
model.
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Figure 3.12 – Comparison of the evolution of the mean surface height of the wave
crest region.a

3.5 Conclusion and perspectives
In this chapter, we evaluated the capacity of a classical incremental method to

reconstruct the complete characteristics (height and velocity field) at the free surface
of a unidirectional wave from partial and noisy observations. We had the opportunity
to compare the results with the ensemble-based method 4DEnVar, proposed by (Liu
et al., 2009), and various strategies based on the latter (Yang et al., 2015).

In general, both methods retrieved successfully the complete characteristics of
the free surface in the synthetic and the experimental case. In opposition to the
varitional approach, the major advantage of the ensemble-base methods lies in the
fact that we avoid the tedious task of constructing the adjoint procedure. In general,
the ensemble-based methods provided better results in terms of RMSE for partial
and complete observations. In return, these techniques require a significant number
of ensemble members to have comparable results with the 4DVar technique. A para-
metric perturbation of the initial ensemble clearly improves the assimilation process
and requires the less computational ressources. However, we often don’t have enough
knowledge on the system of interest, especially in industrial applications, to generate
an adequate physical perturbation. The parallelization of the ensemble members is
also required to reach a computational comparable to the 4DVar. While the paral-
lelization can be simply implemented for simple dynamical models, this task gets
tougher when we consider a DNS or even a LES model, as the latter often require a
parallelization by domain decomposition.

Finally, we note that the incremental 4DVar technique used throughout this
chapter could be enhanced by applying a preconditioning technique similar to § 3.2.1.
We could also refine the background error covariance matrix, fixed as B = σ2

b I
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Figure 3.13 – Height field comparison at t·U/Lx ≈ 0.0652 (in the left) and at
t·U/Lx ≈ 0.5859 (in the right). From top to bottom : observation, background,
4DVar, En4DVar proposed by Liu et al. (2008), the 4DEnVar-OL-LC and the
4DEnVar-OL-LE.

throughout this chapter, by injecting the dependence of each variables, height and
velocity, from the spatial correlation.

On the other, as the experimental setup is simple to reproduce, we could also
add a sensor that measures the free surface velocity field and lead a comparative
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study as in the synthetic case § 3.4.1. Despite these implementations are out of the
scope of this present thesis, the latter can pave the way to significant improvements
of the results.

In the following chapter, we chose to remain in variational framework as the
gain provided by the En4DVar techniques are relatively small with respect to the
implementation difficulties.
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Chapitre 4

Reconstruction of a turbulent 3D
cylinder wake flow

The reconstruction of three dimensional fundamental turbulent flows is a cor-
nerstone for fluid mechanics applications. As discussed in § 1.3.2, several papers
hinted towards the use of data assimilation techniques which combine a numerical
model with a set of observations. In this perspective, we aim at building and vali-
dating an incremental 4DVar code which is capable to reconstruct a turbulent flow
at Re = 300 by combining a DNS code with 2D or 3D observations.

The CFD field provides a wide range of models and numerical schemes to si-
mulate a three dimensional turbulent flow by solving the Navier-Stokes equations
(see § 1.1). In the present application, we seek for an accurate representation of the
flow, therefore we employed the parallel DNS code Incompact3d developed by Laizet
and Lamballais (2009). In § 4.1, we describe the structure and present briefly the
numerical schemes employed in Incompact3d. We describe in § 4.2 the construction
and the numerical validation of the adjoint procedure necessary to implement the
assimilation technique. We apply and assess the 4DVar code on a ideal experiment in
§ 4.3 with a set of synthetic 3D observations. Finally, we investigate the possibility to
reconstruct a 3D cylinder wake flow with orthogonal-plane stereo PIV observations
in § 4.4.

4.1 DNS code Incompact3D
We consider the Navier Stokes equations, recalled below, as the dynamics model

to describe the evolution of the incompressible fluids of interest,

∇.u = 0, (4.1)

∂tu +
1

2
(∇(u⊗ u) + (u∇)u)− ν∇2u +∇p = 0. (4.2)

In this work, we use the parallel DNS code Incompact3D to solve these equa-
tions (Laizet and Lamballais, 2009; Laizet et al., 2010). Incompact3d is a highly
accurate code which combines high-order compact schemes with a spectral solver.
It was initially designed for serial processors, then converted to vector processors
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and more recently converted to parallel platforms (Laizet et al., 2010). The paral-
lel computation, which is achieved by using a 2D decomposition library decomp2d
(Li and Laizet, 2010), is a very important asset especially for fluid mechanics ap-
plications which usually involve large dimension variables. This section provides a
succinct description of the main procedures implemented in Incompact3d. First of
all, we present briefly the numerical aspects such as the 2D decomposition library
(see § 4.1.1) and the required computational resources (see § 4.1.2). We then present
the discretization schemes of the time advancement, the convection and diffusion
terms and the pressure treatment in § 4.1.3, § 4.1.4 and § 4.1.5 respectively.

4.1.1 2d decomposition

The 2D decomposition library decomp2d (Li and Laizet, 2010) decomposes the
computation domain (nx× ny × nz) into "pencils" along a given direction x, y or z,
respectively referred to as X-pencil, Y-pencil and Z-pencil, as illustrated by figure 4.1.
The communication between each processor is taken in charge by "transpose" su-
broutines provided by 2Ddecomp library. Each processor performs the same instruc-
tions bloc to the input data. For instance, let’s assume we start from the X-pencil
configuration and we aim at computing a gradient ∇f =

(
∂f
∂x
, ∂f
∂y
, ∂f
∂z

)
≈
(
f ′i , f

′
j, f
′
k

)
.

We compute at first the 1D derivative in the x-axis, f ′i , then we swap to the Y-
Pencil to compute 1D derivative in the y-axis, f ′j, and finally swap to the Z-Pencil
to compute the last 1D derivative in the z-axis, f ′k. This procedure is extended to
every instruction of Incompact3d with the necessary swap operations. For the sake of
clarity, we voluntarily omit to mention the swap operations in the following sections.

Figure 4.1 – 2D domain decomposition example of a 3D computation domain using
a 4× 4 processor grid : (a) X-pencil, (b) Y-pencil and (c) Z-pencil.

4.1.2 Computational resources

In terms of computational resources, every calculation of this thesis was run on
the computer grid IGRIDA which offers a 125 computer nodes (1200 cores). In terms
of storage, IGRIDA offers to each member of the research teams at IRISA/INRIA
a shared scratch space of 1.7 TB for temporarily storing simulations inputs and
outputs. There are also 5 GPU nodes with NVIDIA GPUs which hasn’t been used
during this thesis. The computation resources provided by each cluster used in the
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Name CPU REFERENCE RAM DISK Network

Calda 2 x 8 cores
Sandy Bridge

Intel(R) Xeon(R)
CPU E5-2450 0
@ 2.10GHz

48GB 2 x 600GB Infiniband + 1GB/s

Panda 2 x 4 cores
Clovertown

Intel(R) Xeon(R)
CPU L5310 0
@ 1.60GHz

8GB 1 x 73GB 1 GB/s

Gouda 2 x 4 cores
Clovertown

Intel(R) Xeon(R)
CPU E5345 0
@ 2.33GHz

8GB 73GB 1 GB/s SAS 15k

Table 4.1 – List of the clusters used in this thesis

framework of this work are summarized in table 4.1. The computational time and
memory resources strongly depend on the size of the domain of study, therefore they
will be precised in § 4.3 and § 4.4.

4.1.3 Time advancement

The general formulation of the time advancement of the equation (4.2), which
deduces the state uk+1 at time tk+1 from the previous state uk at time tk, can be
expressed as

u∗ − uk

∆t
= akF

k + bkF
k−1 + ckF

k−2 − gk∇p̃k, (4.3)

u∗∗ − u∗

∆t
= gk∇p̃k, (4.4)

uk+1 − u∗∗

∆t
= −gk∇p̃k+1, (4.5)

with

F k = −1

2

[
∇(uk ⊗ uk) + (uk.∇)uk

]
+ ν∇2uk (4.6)

and the time averaged values on a given sub-step gk∆t :

p̃k+1 =
1

gk∆t

∫ tk+1

tk

p(t)dt (4.7)

We specify the discretization scheme by fixing the coefficient triplet {ak, bk, ck}k=1,··· ,nk

(where gk = ak + bk + ck for simplicity) on nk sub-time steps with t1 = tn and
tnk

= tn+1 (∆t = tn+1− tn being the full time step). The time discretization schemes
available in Incompact3d are the Runge Kutta methods at order 3 (RK3) and 4
(RK4), and the Adams-Bashford methods at order 2 (AB2) and 3 (AB3). The va-
lues attributed to each coefficient for each technique are summarized in appendix
B. In this thesis, we kept the default numerical scheme AB3 for which nk = 1 and
(a1,b1,c1) = (23/12, −16/12, 5/12).
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4.1.4 Spatial discretization of convective and diffusive terms

The convection and diffusion terms of the Navier-Stokes equations (4.6) are di-
rectly solved in the computational domain Lx × Ly × Lz discretized on a regular
three-dimensional Cartesian mesh of nx×ny×nz nodes. Despite this meshing choice,
the code is capable to treat complex geometries via an Immersed Boundary Method
(Parnaudeau et al., 2004). The discretization is carried out by a sixth-order, and
a second-order on the boundaries, compact finite difference scheme. The following
description is based on Laizet et al. (2010).

Let us consider a uniform 1D meshgrid consisting of the distribution of nx nodes
{xi}i=1,··· ,nx defined on the domain [0;Lx]. A given derivative f ′(xi) at the node xi
is approximated by its numerical derivative f ′i ≈ f ′(xi) as follow :

αf ′i−1 + f ′i + αf ′i+1 = a
fi+1 − fi−1

2∆x
+ b

fi+2 − fi−2

4∆x
, (4.8)

where the coefficients are given by α = 1/3, a = 14/9 and b = 1/9. The second order
derivative is therefore deduced by :

αf ′′i−1 +f ′′i +αf ′′i+1 = a
fi+1 − 2f − i+ fi−1

2∆x2
+b

fi+2 − 2fi + fi−2

4∆x2
+c

fi+3 − 2fi + fi−3

9∆x2
,

(4.9)
where the coefficients are given by α = 2/11, a = 12/11, b = 3/11 and c = 0. The
latter is a sixth-order like approximation with the same favorable properties than
the first derivative in terms of spectral-like resolution.

In practice, Incompact3d offers the possibility to impose a combination of three
types of boundary conditions : periodic, free-slip and open boundary conditions.

Periodic condition conserves the order of the numerical scheme and is easy to
implement. The values of f, f ′, f ′′at the boundaries are simply deduced by :

f0 = fnx , f−1 = fnx−1, f
′
0 = f ′nx

, f
′′

0 = f
′′

nx
.

Free slip condition has the same assets than the periodic condition and corres-
ponds whether to the symmetric condition

f0 = f2, f−1 = f3, f
′
0 = f ′2, f

′′

0 = f
′′

2 ,

or the asymmetric condition

f0 = −f2, f−1 = −f3, f
′
0 = f ′2, f

′′

0 = −f ′′2 .

Open boundary condition doesn’t make any assumptions on the flow outside
the computational domain. Single sided formulations are used for the approximation
of first derivatives and second derivatives for these types of boundaries using relations
of the form :

f ′1 + 2f ′2 =
1

2∆x
(−5f1 + 4f2 + f3),

f ′′1 + 11f
′′

2 =
1

2∆x2
(13f1 − 27f2 + 15f3 − f4),
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that are third order accurate (Lele, 1992). At the adjacent nodes, because a three
point formulation must be used. Padé schemes are employed with forth-order accu-
rate schemes :

1

4
f ′1 + f ′2 +

1

4
f ′3 =

3

2

f3 − f1

2∆x
,

1

10
f
′′

1 + f
′′

2 +
1

10
f
′′

3 =
6

5

f3 − 2f2 + f1

∆x
.

The open boundary conditions are thereafter specified at the 2nd step of the time
advancement (4.4). In our application, as we aim at modeling the downstream of a
cylinder wake without knowing the obstacle geometry. Therefore, the inlet is assumed
to be known beforehand and is imposed at each time step ∆t of the DNS. The outlet
is modeled by a first-order advection model in the streamwise direction that reads :

uBCnx
= u∗nx

− gk
∆x

∆t
u∗nx

(u∗nx
− u∗nx−1) (4.10)

4.1.5 Pressure treatment

The tedious incompressibility condition (4.1) can be verified at the end of each
sub-time step

∇·uk+1 = 0, (4.11)

through solving a Poisson equation

∇2p̃k+1 =
∇·u∗∗

gk∆t
, (4.12)

that provides the estimation of the pressure p̃k+1 from the velocity u∗∗ (obtained by
(4.4)) required to perform the correction (4.5).

The inversion of a 3D Poisson equation is in itself a tedious task which re-
quires sophisticated and expensive methods such as in Mercier and Deville (1981)
who use multidimensional compact high order schemes. On the other hand, the
Poisson equation can be easily solved in Fourier space by the means of a Fast Fou-
rier Transform (FFT) library. Laizet et al. (2010) provides a review of the parallel
FFT libraries to be implemented in Incompact3d. Initial attempts were carried out
to adapt existing FFT packages, however each library has their limitations and
aren’t always practical in terms of implementation with the decomposition library.
Li and Laizet (2010) created from scratch a generic FFT based on the derivation
of Glassmans’s general N Fast Fourier Transform (Ferguson Jr, 1979) and avalaible
at http://www.jjj.de/fft/glassman-fft.f. The latter is written in FORTRAN
77 and provides an interface which supports complex to complex, real to com-
plex/complex to real transforms.

In order to reduce any spurious oscillations on the pressure field, the pressure
discretization is performed on a regular staggered mesh grid shifted by a half-mesh
in each spatial direction as illustrated in figure figure 4.2. The partial staggering,
initially proposed by Wilhelmson and Ericksen (1977) and further developed by
Canuto et al. (1988) and Chen et al. (2010) using second-order schemes, is easy
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Figure 4.2 – Representation of the velocity meshgrid (black points) and the pressure
meshgrid (white points). The pressure meshgrid is obtained by shifting by a half-
mesh, ∆x/2 and ∆y/2, along the spatial direction x and y respectively.

to implement because it does not require extensive use of mid-point interpolations
which are computationally expensive when combined with high-order schemes.

The evaluation of the first order derivative f ′i+1/2 at the staggered nodes is given
by a sixth-order finite difference scheme expressed by :

αf ′i−1/2 + f ′i+1/2 + αf ′i+3/2 = a
fi+1 − f − i

2∆x2
+ b

fi+2 − fi−1

3∆x2
, (4.13)

with α = 9/62, a = 63/62 and b = 17/62. The spectral behaviour of this scheme is
better than its collocated counterpart (4.8), however we have to consider in addition
the combination with a mid-point intepolation procedure which is given by :

αf ′i−1/2 + f ′i+1/2 + αf ′i+3/2 = a
fi+1 + fi

2
+ b

fi+2 + fi−1

2
, (4.14)

which provides a sixth-order estimation of fi+1/2 for α = 3/10, a = 3/4 and b = 1/20
(Nagarajan et al., 2003).

4.1.6 Initialization from a previous state

In preparation for the 4DVar implementation, we are led to restart a DNS from
a pre-existing turbulent flow and the inflow computed or observed at each DNS
time step. In order to ensure that the restart procedure after a given time tk doesn’t
induce any errors and the flow doesn’t diverge from its initial trajectory, Incompact3d
generates the restart file sauve.dat attk which is saves the following elements :

– each component of the velocity field at tk,
– the the pressure field pk at tk,
– the gradient of the pressure field ∇pk at tk,
– and the previous convection and diffusion terms F k−1, F k−2 necessary to the

time advancement scheme (4.3).
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4.2 Construction of Incompact3d discrete adjoint

In this chapter we implement the 4DVar technique described in § 2.4.5. The
construction of the discrete adjoint corresponding to the Incompact3d code is the
cornerstone of the 4DVar implementation. In this work, the discrete adjoint code was
built with the help of the AD tool TAPENADE (Hascoët, 2004). The reader can
find the description of the AD principles and the different implementation strategies
in § C.1. We also provide in § C.1.2 an example of the detailed construction of the
tangent and adjoint procedure corresponding to a simple program.

In the present chapter, we consider the complete DNS code Incompact3d which
is structured into a sequence of subroutines as illustrated in figure 4.3.

Figure 4.3 – General structure of the DNS code Incompact3d. The pencil configu-
ration swaps carried out in each subroutine are specified in the right column.

In terms of the notations, we inherit from the formalism imposed by TAPENADE
such that :

– the tangent procedures are ended by the subscript _d, the differential tangent
variables associated to a given variable x are denoted ẋ,

– the adjoint procedures are ended by the subscript _b, the differential adjoint
variables associated to a given variable x are denoted x̄.

First and foremost, we present in § 4.2.1 the treatment of the parallelization
routines involved in the code. We then describe in § 4.2.2, § 4.2.3, § 4.2.4, § 4.1.5
and § 4.2.6 the discrete adjoint procedures corresponding to each subroutine of the
original program depicted in figure 4.3. Most of these procedures involve the first
and/or second order derivatives which are defined by high order compact schemes.
The latter are a algebraic combination of coefficients and values of the flow at given
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points, therefore we deduce their corresponding discrete adjoint by a systematic
application of TAPENADE. We refer the reader to appendix E. Finally, the complete
discrete adjoint of Incompact3d is summarized in § 4.2.7. The tangent and adjoint
procedures of each subroutine and the entire code was systematically verified by the
validation procedures presented in § 4.2.8.

4.2.1 Discrete adjoint of parallel-MPI codes

Incompact3d and in particular the decomp2d library are based on MPI subrou-
tines which need to be differentiated in the same way as the other subroutines of the
code. The numerical gradient of MPI-codes have been investigated in the literature
by Faure and Dutto (1999), Utke et al. (2009) and Schanen et al. (2010). We base
the following description on Utke et al. (2012).

In the one hand, we consider the global communicators which carry out opera-
tions that involve all the data within all the processors. For instance, the global com-
municator MPI_allreduce(x,y,...,SUM,P,...) sums the values of x from each proces-
sor into the global variable y in the processor P. The procedure adjoint corresponding
to the global communicators are summarized in figure 4.4, where P denotes a specific
processor to which the result is sent to for MPI_bcast, MPI_reduce, MPI_gather and
MPI_scatter.

Original Adjoint
MPI_bcast(x, ... ,P, ...) MPI_reduce (x̄, t̄, ... , SUM, P, ...)

x̄ = 0.0 ; on P : x̄ = x̄+ t̄

MPI_reduce(x,y, ... ,SUM, P, ...) on P : t̄ = ȳ ; on P : ȳ = 0.0

MPI_bcast (t̄, ... , P, ...) ; x̄ = x̄+ t̄

MPI_allreduce(x,y, ... ,SUM, ...) MPI_allreduce (ȳ, t̄, ... , SUM, ...)
ȳ = 0.0 ; x̄ = x̄+ t̄

MPI_gather(x,y, ... ,P, ...) MPI_scatter (ȳ, ... ,t̄, P, ...)
on P : ȳ = 0.0 ; x̄ = x̄+ t̄

MPI_scatter(y, ... ,t, P, ...) MPI_gather (ȳ, ... ,t̄( :), P, ...)
on ȳ = 0.0 ; on P : x̄ = x̄+ t̄(:)

Figure 4.4 – Discrete adjoints of global MPI communicators

On the other hand, the point-to-point communicators consists in sending or re-
ceiving the data between two given processes. The reader can find in Utke et al.
(2009) the adjoining of point-to-point communication. In our context, these commu-
nicators are exclusively used within the decomp2d library to swap from a pencil to
another (Li and Laizet, 2010). It is shown that there exists a duality between for-
ward and adjoint MPI communication routines for several applications (Faure and
Dutto, 1999; Cheng, 2006). This duality can be extended in our context with the
swap of a configuration to another. In other words, the adjoint of the swap proce-
dure transpose_x_to_y which swaps from the X-pencil to the Y-pencil is given by
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transpose_y_to_x which swaps from the Y-pencil to the X-pencil. By analogy, the
adjoint of the swap procedure transpose_y_to_z is given by transpose_z_to_y.

For the sake of clarity, we avoid to mention the swap procedures in the following
sections and we assume that each operation performs the adequate forward and
backward swap before each procedure.

4.2.2 Discrete adjoint of the convection and diffusion terms

Discrete adjoint of the convective term

The convective term, namely 1
2

(∇(u⊗ u) + (u∇)u), requires the knowledge of
the first order derivatives of the velocity field u, denoted derx(u), dery(u) and
derz(u). Given these derivatives, the computation of the convective term, summa-
rized into the vector conv = (convx, convy, convz), with respect to the velocity field
u = (u, v, w), is given by algorithm 17.

Algorithm 17 conv(u,v,w,convx,convy,convz)
tx = u.u
ty = u.v
tz = u.w
convx = 0.5(derx(tx)+dery(ty)+derz(tz)) + 0.5(u.derx(u) + v.dery(u) +
w.derz(u))
tx = v.u
ty = v.v
tz = v.w
convy = 0.5(derx(tx)+dery(ty)+derz(tz)) + 0.5(u.derx(v) + v.dery(v) +
w.derz(v))
tx = w.u
ty = w.v
tz = w.w
convz = 0.5(derx(tx)+dery(ty)+derz(tz)) + 0.5(u.derx(w) + v.dery(w) +
w.derz(w))

We detail the construction of the adjoint for the first component convx the other
components convy and convz are then deduced by analogy.

The tangent of the intermediate terms tx, ty, tz is straightforward and reads ṫx
ṫy
ṫz

 =

 2u 0 0
v u 0
w 0 u

 u̇
v̇
ẇ

 . (4.15)

The adjoint is simply deduced by transposing the previous matrix such as ū
v̄
w̄

 =

 2u v w
0 u 0
0 0 u

 t̄x
t̄y
t̄z

 . (4.16)
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We assume that we know beforehand the tangent procedures derx_d, dery_d
and derz_d, respectively corresponding to each derivative subroutines derx, dery
and derz, and we denote their associating Jacobian matrix as Dx, Dy and Dz. Thus,
given (4.15), we deduce the tangent of ˙conv :

˙convx =
1

2

(
Dx Dy Dz

) 2u 0 0
v u 0
w 0 u

 u̇
v̇
ẇ

+

1

2

(
derx(u) dery(v) derz(w)

) u̇
v̇
ẇ

+
1

2

(
u.Dx v.Dy w.Dz

) u̇
v̇
ẇ

 .

Given the transposed of the Jacobian matrices DT
x , DT

y and DT
z and (4.16), we

deduce the expression of the adjoint variable convx

 ū
v̄
w̄

 =
1

2

 2u v w
0 u 0
0 0 u

 DT
x

DT
y

DT
z

 convx+

1

2

 derx(u)
dery(v)
derz(w)

 convx +
1

2

 u.DT
x

v.DT
y

w.DT
z

 convx.

The discrete adjoint of each convective term convy and convy can easily be dedu-
ced by analogy. The discrete adjoint of the convection procedure is finally presented
in algorithm 18.

Discrete adjoint of the diffusion term

The diffusion term, namely −ν∇2u, requires the knowledge of the second or-
der derivatives of the velocity field u, determined by the subroutines derxx(u),
deryy(u) and derzz(u) respectively. The computation of the diffusion vector diff =
(diffx, diffy, diffz) is given by algorithm 19.

Similarly to the previous case, we assume that we know beforehand the tangent
and discrete adjoint associated to the second order derivative subroutine. Thus the
adjoint of the the diffusive terms are given by algorithm 20. Let us note although this
operator is formally auto-adjoint, the discretization of its continous adjoint doesn’t
respect this property. Thus the discrete adjoint has to be specified by AD.

Discrete adjoint of the convection and diffusion terms

Given the previous routines, the convection and diffusion terms are summed into
the vector F := (Fx, Fy, Fz) = conv + diff. We easily deduce the discrete adjoint
convdiff_b summarized in algorithm 22.
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Algorithm 18 conv_b(u,ū,v,v̄,w,w̄,convx,convx,convy,convy,convz,convz)
Initialization: ū = 0, v̄ = 0, w̄ = 0

! Forward procedure
call conv(u,v,w,convx,convy,convz)
! Background procedure
tmp1 = derx_b(convx, convx)
tmp2 = dery_b(convy, convx)
tmp3 = derz_b(convz, convx)
ū = ū+ 0.5(2u.tmp1 + v.tmp2 + w.tmp3) + 0.5 derx(u).convx + 0.5.u.tmp1
v̄ = v̄ + 0.5u.tmp2 + 0.5 dery(v).convx + 0.5.v.tmp2
w̄ = w̄ + 0.5u.tmp3 + 0.5 derz(w).convx + 0.5.w.tmp3
tmp4 = derx_b(convx, convy)
tmp5 = dery_b(convy, convy)
tmp6 = derz_b(convz, convy)
ū = ū+ 0.5v.tmp4 + 0.5 derx(u).convy + 0.5.u.tmp4
v̄ = v̄ + 0.5(u.tmp4 + 2v.tmp5 + w.tmp6) + 0.5 dery(v).convy + 0.5.v.tmp5
w̄ = w̄ + 0.5v.tmp6 + 0.5 derz(w).convy + 0.5.w.tmp6
tmp7 = derx_b(convx, convz)
tmp8 = dery_b(convy, convz)
tmp9 = derz_b(convz, convz)
v̄ = ū+ 0.5w.tmp7 + 0.5 derx(u).convz + 0.5.u.tmp7
w̄ = v̄ + 0.5w.tmp8 + 0.5 dery(v).convz + 0.5.v.tmp8
ū = ū+ 0.5(u.tmp7 + v.tmp8 + 2w.tmp9) + 0.5 derz(w).convz + 0.5.w.tmp9

Algorithm 19 diff(u,v,w,diffx,diffy,diffz)
Initialization: u, v, w
diffx = −ν(derxx(u)+deryy(u)+derzz(u))
diffy = −ν(derxx(v)+deryy(v)+derzz(v))
diffz = −ν(derxx(w)+deryy(w)+derzz(w))

4.2.3 Discrete adjoint of the time integration scheme

We recall the general formulation of the time advancement procedure described
in § 4.1.3,

u∗ = uk + ak∆tF
k + bk∆tF

k−1 + ck∆tF
k−2,

where F k is the result of the convdiff routine. The time integration scheme can be
written into the following matrix form

u∗

F k

F k−1

F k−2

 =


1 ak∆t bk∆t ck∆t
0 1 0 0
0 0 1 0
0 0 0 1




uk

F k

F k−1

F k−2

 . (4.17)
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Algorithm 20 diff_b(u,ū,v,v̄,w,w̄,diffx,diffx, diffy, diff y,diffz,diff z)

Initialization: ū = 0, v̄ = 0, w̄ = 0
! Forward procedure

Initialization: u, v, w
call diff(u,v,w,diffx,diffy,diffz)
! Background procedure
ū = ū+ (derxx_b(−ν.diffx,−ν.diffx)
ū = ū+deryy_b(−ν.diffx,−ν.diffx)
ū = ū+derzz_b(−ν.diffx,−ν.diffx)
v̄ = v̄ + (derxx_b(−ν.diffy,−ν.diff y)
v̄ = v̄+deryy_b(−ν.diffy,−ν.diff y)
v̄ = v̄+derzz_b(−ν.diff y,−ν.diff y)
w̄ = w̄ + (derxx_b(−ν.diffz,−ν.diff z)
w̄ = w̄+deryy_b(−ν.diffz,−ν.diff z)
w̄ = w̄+derzz_b(−ν.diffz,−ν.diff z)

Algorithm 21 convdiff(u,v,w,Fx,Fy,Fz)

call conv(u,v,w,convx,convy,convz)
call diff(u,v,w,diffx,diffy,diffz)
Fx = convx + diffx
Fy = convy + diffy
Fz = convz + diffz

Algorithm 22 convdiff_b(u,ū,v,v̄,w,w̄,Fx,F̄x, Fy, F̄y,Fz,F̄z)
Initialization: ū = 0, v̄ = 0, w̄ = 0

! Forward procedure
call conv(u,v,w,convx,convy,convz)
call diff(u,v,w,diffx,diffy,diffz)
! Backward procedure
convx = F̄x ; convy = F̄y ; convz = F̄z
diffx = F̄x ; diff y = F̄y ; diff z = F̄z
call diff_b(u,ū,v,v̄,w,w̄,diffx,diffx, diffy, diff y,diffz,diff z)
tmp1 = ū ; tmp2 = v̄ ; tmp3 = w̄
call conv_b(u,ū,v,v̄,w,w̄,convx,convx,convy,convy,convz,convz)
ū = ū+ tmp1 ; v̄ = v̄ + tmp2 ; w̄ = w̄ + tmp3

The corresponding adjoint procedure is then simply deduced by transposing the
latter matrix such that

ūk

F̄ k

F̄ k−1

F̄ k−2

 =


1 0 0 0

ak∆t 1 0 0
bk∆t 0 1 0
ck∆t 0 0 1




ū∗

F̄ k

F̄ k−1

F̄ k−2

 . (4.18)
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Therefore, the generalized form of the discrete adjoint of the time integration scheme
is given by algorithm 24.

Algorithm 23 intt_b(uk,ūk, F̄ k, F̄ k−1, F̄ k−2)

Initialization: F k = 0, F k−1 = 0 and F k−2 = 0
F̄ k = F̄ k + ak∆tūk

F̄ k−1 = F k−1 + bk∆tūk

F̄ k−2 = F k−2 + ck∆tūk

4.2.4 Discrete adjoint of the velocity divergence

At this point, we proceed to several operations before computing the pressure
field. First and foremost, we impose the boundary conditions on each component
of the velocity field and in each directions. A pre-correction treatment is applied
to ensure the proper application of the boundary conditions. Finally, the velocity
divergence ∇·u required to solved the Poisson equation is developped (see § 4.2.5).
All these operations are gathered under the designation of velocity divergence in the
structure of the code (see figure 4.3). As the velocity divergence ∇·u is computed by
an elementary combination of the derivative routines, we omit here its description
and refer the reader to appendix E. Thus, the present section describes the discrete
adjoint of the boundary conditions and the pre-correction routine.

Boundary conditions

In terms of boundary conditions, we constructed the discrete adjoint correspon-
ding specifically to the cylinder wake flow configuration studied within this chapter.
In this work, we impose the following boundary conditions model :

– periodic condition along the z-axis,
– free slip condition along the y-axis,
– Dirichlet condition for the inflow and
– a first order advection model for the outflow.
As discussed in § 4.1, the periodic and free-slip conditions are implicitly imposed

by the numerical schemes used in the first and second order derivatives subroutines.
As the inflow is a control parameter of the 4DVar assimilation technique, we refer
the reader to § 2.4.5 for its adjoint. Finally, we recall the first order transport model
in the stream-wise direction employed to model the outlet boundary condition,

uBCnx = u∗nx − cx(u∗nx − u∗nx−1), (4.19)

where u∗ is the result of the time integration scheme (4.3) and cx = gk
∆t
∆x
u∗nx is set

such as the CFL condition is verified.
The tangent of outflow model with respect to the differential variables u̇∗ can be

written into the following matrix form(
u̇BCnx
u̇BCnx−1

)
=

(
1− cx cx u∗nx − u∗nx−1

0 1 0

) u̇∗nx
u̇∗nx−1

ċx

 .
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The corresponding adjoint procedure is obtained by transposing the previous ma-
trix :  ū∗nx

ū∗nx−1

c̄x

 =

 1− cx 0
cx 1

u∗nx − u∗nx−1 0

( ūBCnx
ūBCnx−1

)
.

The adjoint procedure of the outflow boundary is given by algorithm 24.

Algorithm 24 outflow_b(ū∗, v̄∗, w̄∗,ūBC , v̄BC , w̄BC)
Initialization: ūnx = 0, ū∗nx−1 = 0, v̄∗nx = 0, v̄∗nx−1 = 0, w̄∗nx = 0, w̄∗nx−1 = 0,

! Forward procedure
cx = gk

∆t
∆x
unx

! Background procedure
ū∗nx = ūBCnx + cxū

BC
nx

v̄∗nx = v̄BCnx + cxv̄
BC
nx

w̄∗nx = w̄BCnx + cxw̄
BC
nx

c̄x = c̄x − (unx − unx−1)ūnx − (vnx − vnx−1)v̄nx − (wnx − wnx−1)w̄nx
ū∗nx−1 = ūBCnx−1 + cxū

BC
nx

v̄∗nx−1 = v̄BCnx−1 + cxv̄
BC
nx

w̄∗nx−1 = w̄BCnx−1 + cxw̄
BC
nx

ū∗nx = ūBCnx + gk
∆t
∆x
c̄x

Pre-correction

We perform the pre-correction on the boundaries for each component of the
velocity field (4.4) recalled below,

u∗∗ = u∗ + gk∆t∇p̃k,

where u∗ and ∇p̃k is the velocity field and the average of the pressure gradient
respectively and computed at the previous time step. This pre-correction ensures
that the boundary condition model is effectively applied after the correction of the
pressure gradient deduced by solving the Poisson equation (see § 4.2.6). The discrete
adjoint corresponding to this pre-correction is straightforward and reads :

ū∗ = ū∗ + ū∗∗,

∇pk = ∇pk + gk∆tū∗∗.

A second correction on the outflow is performed to ensure that the outflow rate
corresponds to the inflow rate. This correction is an elementary operation which
requires the use of a global communicator MPI_AllReduce in order to compute the
sum of the flow on the entire plane. The adjoint associated to routine is described
in § 4.2.1.
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4.2.5 Discrete adjoint of the Poisson solver

As described in § 4.1.5, the incompressibility condition is verified by solving a
Poisson equation,

∇·∇p̃k+1 =
∇.u∗∗

gk∆t
,

in the spectral space. In this work, we choose to construct the discrete adjoint of the
generic FFT developed by Li and Laizet (2010) which is based on the derivation of
Glassmans’s general N Fast Fourier Transform (Ferguson Jr, 1979). The FFT routine
denoted SPCFFT can be found in http://www.jjj.de/fft/glassman-fft.f. The
construction of the adjoint procedure corresponding to SPCFFT revealed that the
routine is autoadjoint in the numerical sense which eases the implementation of the
adjoint operator.

The poisson routine takes as input the right hand side of the Poisson equa-
tion, denoted rhs, and outputs the pressure field p. The procedure is described
by algorithm 25. The wave number kxyz is determined by the auxilary proce-
dure waves, as it doesn’t depend on an active variable of the routine, there is no
need to compute its adjoint. The routine poisson also depends on two auxiliary
routines assemble, disassemble and FFT_postproc. The routines assemble and
disassemble are conjugate routines which simply performs a redistribution of the
element of the input matrix. In other words, the discrete adjoint of assemble cor-
responds to disassemble and vice versa. The routine FFT_postproc performs a
one dimensional post processing applied in every direction. The reader can find in
appendix F the construction of its corresponding discrete adjoint.

Algorithm 25 poisson(rhs,p)
Initialization: call waves(kxyz)
assemble(rhs)
FFT(rhs,cw,1)
! Post processing in the spectral space
call FFT_postproc(cw,cwp,1)
! Solve the poisson equation
tmp1 = real(kxyz) ; tmp2 = aimag(kxyz)
cwp = cmplx(−cwp/tmp1,−cwp/tmp2)
! Backward post processing in the spectral space
call FFT_postproc(cwp,cwpp,-1)
FFT(p,cwpp,-1)
assemble(p)

Given the discrete adjoint of the auxiliary routines, the discrete adjoint correspon-
ding to the poisson routine is deduced by algorithm 26.
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Algorithm 26 poisson_b(rhs,p̄)
Initialization: call waves(kxyz)
disassemble(p̄)
FFT(p̄,cwpp,-1)
! Post processing in the spectral space
call FFT_postproc_b(cwpp,cwp,-1)
! Solve the poisson equation
tmp1 = real(kxyz) ; tmp2 = aimag(kxyz)
cw1 = cmplx(−cwp/tmp1,−cwp/tmp2)
! Backward post processing in the spectral space
call FFT_postproc_b(cwp,cw,1)
FFT(rhs,cw,1)
assemble(rhs)

4.2.6 Discrete adjoint of the pressure gradient and velocity
correction

The pressure gradient ∇pk+1, computed by the subroutine gradp, is determined
by sixth-order finite difference schemes described in § 4.1.5. The numerical schemes
are linear combinations of the value of the pressure at different position of the stagge-
red grid. Therefore, the corresponding adjoint procedure gradp_b can be determined
straightforwardly by using TAPENADE.

We recall the expression of the final correction (4.5) of the velocity field with the
pressure gradient computed previously

uk+1 = u∗∗ − gk∆t∇p̃k+1,

its discrete adjoint ūk+1, implemented to the corgp_b routine, is straightforwardly
deduced by :

ū∗∗ = ū∗∗ + ūk+1

∇p̄k+1 = ∇p̄k+1 +−gk∆t∇̃̄uk+1.

4.2.7 Discrete adjoint of the main program

All in all, the discrete adjoint of the original program Incompact3d is summarized
in algorithm 25.

4.2.8 Code validation

We applied each validation test presented in § 2.4.7 to each adjoint routine
built previously. We show in this section the results run on the discrete adjoint
Incompact3d_b (see algorithm 27) corresponding to the original Incompact3d code.
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Algorithm 27 Incompact3d_b (u0,ū0)

Initialization: k = N ,u0,ūN = 0, F̄N−1 = 0, F̄N−2 = 0
while k>0 do

corgp_b(uk,ūk,∇p,∇p̄)
gradp_b(∇p,∇p̄,p,p̄)
poisson_b(p,p̄,u∗∗,ū∗∗)
pre_correc_b(p,p̄)
intt_b(u∗,ū∗,F k−1,F̄ k−1,F k−2,F̄ k−2 )
convdiff_b(uk−1,ūk−1,F k−1,F̄ k−1,F k−2,F̄ k−2 )
k = k − 1

end while

Tangent process validation

We recall the tangent validation procedure for the operator f , which represents
in this case the original code Incompact3D, and its corresponding tangent denoted
∇f ,

R1 :=
f(x0 + αd)− f(x0)

α < ∇f(x0), d >
. (4.20)

We evaluate the ratio R1 for different differentiation step α over a temporal window
of 10∆t′ then 100∆t′. The results are summarized in table 4.2. The tangent code
accuracy meets our expectation as the ratio R1 is close to 1 up to 10−α. We obtain
the same accuracy for both temporal windows.

α R1 for 10 iterations R1 for 100 iterations
10−3 1.0006899708371482 1.0000100833054026
10−4 1.0000689567331724 1.0000001285470035
10−5 1.0000068952890127 1.0000000040572325
10−6 1.0000006894438878 1.0000000003169462
10−7 1.0000000695308335 1.0000000000302249
10−8 1.0000000375275666 0.99999999989057253
10−9 1.0000000677486891 0.99999999908904569

Table 4.2 – Tangent validation results for different values of the differentiation step
α over 10∆t′ and 100∆t′.

Dot product validation

By definition, the discrete adjoint procedure must correspond exactly to the
previous tangent procedure associated to original code. Therefore, as the validation
test is carried out in FORTRAN double precision (O(10−14), we expect the result to
reach the same accuracy. We computed the following ratio R2 for 50∆t′ and obtained
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the following result which met our expectations,

R2 =
< (∂XM)X, (∂XM)X >

< X, (∂XM#)Y >
=
< Ẏ , Ẏ >

< Ẋ, Ȳ >
= 0.99999999999998990. (4.21)

Adjoint process validation

Finally, we evaluated the validity of the entire 4DVar assimilation code by com-
puting the following ratio for several differential step α

R3 =
J(x0 + αd)− J(x0)

α < λ(t0), d >
. (4.22)

This test was at first carried out at first in FORTRAN double precision, then
in FORTRAN single precision which corresponds to the accuracy of the simulation
and assimilation. In opposition to the previous validation test, we don’t require
the adjoint procedure to be close to the finite difference as the latter is a rough
approximation of the cost function gradient. The results are summarized in table
4.3.

α R3 (single precision) R3 (double precision)
10−2 0.43749039322927519 -27.578171220965167
10−3 0.95755116373350546 -1.8429534822499196
10−4 1.0093158427293105 0.72996059356742782
10−5 1.0149894966177055 0.98725112730444675
10−6 1.0135159015484660 1.0129792001335909
10−7 1.2662584846733522 1.0155449210116843
10−8 2.3891918787645077 1.0156921716925300
10−9 20.272515591281547 1.0148236474889325

Table 4.3 – 4DVar validation result for different values of the differentiation step
α in FORTRAN single and double precision.
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4.3 Validation on a synthetic case with 3D observa-
tions

We consider an ideal synthetic experiment to apprehend the mechanism of the
reconstruction of a 3D turbulent flow using the 4DVar code developed during this
thesis. This experiment doesn’t aim at reproducing any specific experimental setting,
instead our goal is to assess the capacity of the code to correct a background flow
with a set of 3D observations sparse in time and at the DNS spatial resolution. The
experimental context and the synthetic reference flow are described in § 4.3.1. As it is
unfeasible to perform the assimilation within the same domain as the reference flow,
we investigate the consequence of running the assimilation within a smaller domain
in § 4.3.2. The description of the synthetic observations and the initial background
are given in § 4.3.3 and § 4.3.4, respectively. Finally, the results are presented in
§ 4.3.5.

4.3.1 Synthetic configuration

In this synthetic context, we consider a cylinder wake flow at Re = 300 as a
reference flow. The latter is generated by running Incompact3d from an initial null
velocity field within the reference domain Ωref = 20D × 12D × 6D descritized into
360× 217× 108 nodes. The turbulent structures are induced by imposing an inflow
velocity uin/U = 1 + ε at each DNS time step ∆t′ = ∆t·U/D = 0.005. The cylinder
is modeled by an Immersed Boundary Method (Parnaudeau et al., 2004, 2008). We
impose free-slip conditions on the y-axis borders and periodic conditions along the
cylinder axis. The outflow is modeled by a first-order advection model (see § 4.1).
We obtain satisfying turbulent structures at T ′ref = 34000∆t′ = 170 (see figure 4.5).

Figure 4.5 – Snapshot of the stream-wise velocity field u/U in the reference domain
Ωref . The turbulent structures are obtained from an initial null velocity field and the
input of an inflow velocity over T ′ref = 34000∆t′. The assimilation is run within the
sub-domain Ω (in blue) and we perform statistics of the results in the the sub-domain
Ωobs (in green).

The temporal setup for the generation of a reference flow followed by the ap-
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plication of the 4DVar is illustrated in figure 4.6. The characteristics of each run
performed within the present synthetic configuration are summarized in table 4.4.

Figure 4.6 – Temporal setup for the reconstruction of a complete three dimensional
flow with the 4DVar technique. In a first step we build the reference flow of this study
by running a DNS over T ′ref = 34000∆t′ = 170 within the reference domain Ωref . We
then extract the three components of the velocity at t′1 = 170 and add a 15% noise
and a sin(y3) profile. The latter is used to initialize the 4DVar code performed over
the assimilation window T ′a = 50∆t′ = 0.25, by injecting three dimensional synthetic
observations every ∆t′obs = 10∆t′.

4.3.2 Initialization from a pre-existing turbulent flow

In regards to the computational resources, we clearly can’t afford to run the
4DVar assimilation on the reference domain Ωref . Unfortunately, running the DNS
on a smaller domain inevitably leads to incompatible boundary conditions models of
the reference domain and the smaller domain. Furthermore, most of the experimen-
tal setups can’t provide the quantities required for the restart procedure described
in § 4.1.6 (pressure field and convection/diffusion terms at previous time steps).
We assess in the present section the inherent errors induced by the model and the
initialization with the components of the velocity field only.

We ran Incompact3d within the smallest sub-domain possible Ω = 8D×8D×6D
which contains the turbulent structure, over a period of 500∆t′ = 2.5. This DNS
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Run Lx× Ly × Lz nx× ny × nz Re Duration CPU
time (h)

Reference 20D × 12D × 6D 361× 217× 108 300 30000∆t′ 50
4DVar 8D × 8D × 6D 145× 145× 108 300 50∆t′ 5
4DVar-rampe 8D × 8D × 6D 145× 145× 108 300 50∆t′ 5

Table 4.4 – Characteristics of each run performed to reconstruct the three dimen-
sional flow from 3D synthetic observations. Each data assimilation cases considered
a static background error covariance matrix B−1 = 1. The 4DVar and 4DVar-rampe
runs fix the observation error covariance matrix to R−1 = 1 and to the formulation
given by (4.23), (4.24) and (4.25), respectively.

is only initialized with the velocity field components directly extracted from the
reference flow described in § 4.3.1, the pressure and gradient pressure are set to
zero and we use of a first order temporal scheme at the start. We also input at
each DNS time step ∆t′ the exact inflow extracted from the reference. Figure 4.7
displays the difference between the reference and the simulated stream-wise velocity
at T ′ref +50∆t′ = 170.25 and T ′ref +500∆t′ = 172.5. We see that the errors remain in a
range of (u−uref)/U = [−0.01; 0.01] in time. These errors are clearly amplified after
a long period. The errors at the inlet are likely induced by the lack of information
of the gradient pressure ∇pk which intervenes in the pre-correction step (4.4). The
free slip and the outflow models also modify the dynamics within the sub-domain.

T ′ref + 50∆t′ = 170.25 T ′ref + 500∆t′ = 172.5

Figure 4.7 – Error between the reference and the simulated stream-wise velocity
field at T ′ref + 50∆t′ = 170.25 and T ′ref + 500∆t′ = 172.5 at the stream-wise plane
z = 3D.

In our context, we recall that we perform the 4DVar over a small assimilation
window T ′a = 50∆t′ as illustrated in figure 4.6. Within the assimilation window, the
errors are reasonably confined at the boarders and remain in a range of [−0.01; 0.01].
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A solution could consist in using sponge layers (Bogey et al., 2000) which will re-
quire the construction of the adjoint as suggested by Lemke and Sesterhenne (2013).
However, as explained in § 4.3.3, for the sake of simplicity we chose to reduce boun-
dary zone effects by tuning the observation error covariance matrix R. Finally, we
perform the statistics assessments within a smaller Ωobs, illustrated in figure 4.5.

4.3.3 Synthetic observations

In this ideal synthetic configuration, we assume we possess a set of 3D synthetic
observations every ∆t′obs = 10∆t′, the observation time step. These observations are
directly extracted from the reference flow within the sub-domain Ω.

In light of the analysis made in § 4.3.2, the errors induced by the incompatibility
of the boundary condition models over the assimilation window T ′a are confined
within boundary zones (see figure 4.7). Therefore, we attempt to reduce the effect
of these errors by tuning the observation error covariance matrix R within the sub-
domain Ω. We run two assimilation cases :
Case a : we assume that we trust the observations which comes to impose R−1 = I

within the sub-domain Ω. This case is referred to as "4Dvar-all" in the following
results.

Case b : we consider the incompatibilities between the model and the observations
within the boundary zones. This case is referred to as "4Dvar-rampe" in the
following results. We set the observation covariance matrix as a decreasing
function depending on the distance to the boundaries such that

R−1(x, y, z) = diag

(
exp

(
−(x− 6D)2

2

))
, x ∈ [6D; 8D], (4.23)

R−1(x, y, z) = R−1diag

(
(x, y, z)exp

(
−(y − 1D)2

2

))
, y ∈ [0D; 1D], (4.24)

R−1(x, y, z) = R−1diag

(
(x, y, z)exp

(
−(y − 7D)2

2

))
, y ∈ [7D; 8D]. (4.25)

The resulting observation covariance matrix R−1 is illustrated in figure 4.8.

4.3.4 Background choice

In this purely synthetic application, we build a background initial condition which
is likely to generate a divergent trajectory to the reference flow. Our main concern in
this experiment is to assess the 4DVar code ability to retrieve the reference from an
un-phased flow and few observations by correcting the initial state. We recall that
we don’t aim at reproducing a synthetic equivalent of a realistic experiment in this
application.

As illustrated in figure 4.6, the background initial condition is deduced from the
reference flow at t′1 by adding a 15% white noise and a sin

((
y
D

)3
)
profile bias along

the y-axis. The comparison between the synthetic reference and the background
initial stream-wise velocity fields is illustrated in figure 4.9. In this configuration, we
fix the background error covariance matrix to B = 1.
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Figure 4.8 – Representation of the inverted observation covariance matrix R−1

at the stream-wise plane z = 3D. We reduce gradually the confidence within the
boundary zones by the application of several 1D Gaussian profiles described by
(4.23), (4.24) and (4.25).

Reference Background

Figure 4.9 – Assimilation with 3D synthetic observations : comparison between
the stream-wise velocity field of the reference flow (left) with the background flow
(right) obtained by adding a 15% white noise and a sin(y3) profile bias along the
y-axis at t′1 = 170.

4.3.5 Results

We assess the reconstruction of the velocity fields and compare each experimental
case described in § 4.4.2. Both cases were carried out on a single assimilation window
T ′a with a single outer loop iteration. Since the observation time step is small (∆t′obs =
10∆t′), there are few changes between two consecutive observations. Besides, the
observed inlet corresponds to the reference, thus the inlet correction didn’t bring
much improvements to the analysis flow. Therefore, we only assess the correction
brought by the assimilation to the initial condition at t′1.
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Optimization characteristics

First and foremost, we compare the evolution of the cost function J(δγ0) and
the norm of its gradient ‖∇J(δγ0)‖ with respect to the number of inner loop itera-
tions. Figure 4.29 shows that both cases have a similar convergence rate of the cost
function. In the one hand, the case a performs more inner loop iterations and reach
a lower cost function evaluation than in case b. In the other hand, the case b found
the correct descent gradients most of the time. We assume that the observation
covariance matrix guided the case b in the right path.

Case a Case b
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Figure 4.10 – Assimilation with 3D synthetic observations : comparison of the
evolution of the cost function and cost function gradient for the case a (on the left)
and the case b (on the right) with respect to the inner loop optimization iterations.

RMSE comparison

We study the evolution of the Root Mean Square Error (RMSE) defined for a
given state x with respect to a reference state xref such that,

RMSE(x) =
1

N − 1

N∑
i=1

(x− xref ), (4.26)
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where N is the size of the state of interest x. We compute and compare the RMSE for
each component of the velocity field within the sub-domain Ω. The RMSE provides
a global estimation of the correction of the large scale structures.

We compare in figure 4.11 the RMSE evolution of the background, observation
and the analysis results in both cases, with respect to the reference flow over the
data assimilation window T ′a = 50∆t′. Each RMSE was computed within the sub-
domain Ωobs. We recall that case a and case b correspond to the labels "4DVar-all"
and "4DVar-rampe", respectively. In both cases, the data assimilation performed few
corrections of the initial state and the solution tends to get closer to the reference in
time. Both cases provide very similar results, we note that the case b provides the
closest solution to the reference flow for the components v and w.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50

R
M
S
E

(u
/U

)

Number of ∆t′

Background
Observations

4DVar-all
4DVar-rampe

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 10 20 30 40 50

R
M
S
E

(v
/U

)

Number of ∆t′

Background
Observations

4DVar-all
4DVar-rampe

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 10 20 30 40 50

R
M
S
E

(w
/U

)

Number of ∆t′

Background
Observations

4DVar-all
4DVar-rampe

Figure 4.11 – Assimilation with 3D synthetic observations : comparison of the
RMSE evolution of the background (in blue), the observations (in green), the analysis
in case a (in red) and the analysis in case b (in black) with respect to the reference
state for each velocity components over the assimilation window of T ′a = 50∆t′ within
the sub-domain Ωobs.

Map comparison

We compare in figure 4.12 the snapshots of each component u, v and w of the
velocity field in the stream-wise plane z = 3D at t′1 = 170. The figure shows that
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over the short assimilation window T ′a = 50∆t′, the 4DVar technique was able to
correct the bias imposed on the initial background flow. In the downside, both cases
haven’t lowered the level of noise added in the initial background flow despite the
observations and the inputted inlet are noise-free.
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Figure 4.12 – Assimilation with 3D synthetic observations : snapshots of the velo-
city field for each component u, v and w at the beginning of the assimilation window
at t′1 = 170 in the stream-wise plane z = 3D. The row correspond to the reference,
background, 4DVar-all and 4DVar-rampe flow, respectively.

We also compare in figure 4.13 the snapshots of each component u, v and w of
the velocity field in the stream-wise plane z = 3D at t′2 = 170.25. We notice that
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the DNS code is able to fairly denoise the initial perturbed flow in time. However
the imposed bias influences the behavior of the background flow. Both assimilation
cases corrected the bias and ensured a better reconstruction in time. The case b
provides a slightly better result than the case a in terms of noise reduction within
the sub-domain Ωobs. This improvement is especially observed on the w component.
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Figure 4.13 – Assimilation with 3D synthetic observations : snapshots of the velo-
city field for each component u, v and w at the end of the assimilation window at
t′2 = 170.25 in the stream-wise plane z = 3D. The row correspond to the reference,
background, 4DVar-all and 4DVar-rampe flow, respectively.
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Energy spectrum comparison

Finally, we compare in figure 4.14 the energy spectrum in each case at t′1 = 170
and t′2 = 170.25. In both 4Var methods corrected the flow at the largest scale but
didn’t perform very well at the smallest scale. We notice that case b performed a
slightly better correction of the initial smallest scales than case a. At the end of
the assimilation window, the analysis results tend to stick to the background flow,
nevertheless the case b still shows slight improvement with respect to the case a.

4.3.6 Conclusion and discussion

We assessed throughout this section the ability of the 4DVar code to correct a
non-physical noise and bias over a short assimilation window T ′a = 50∆t′.

First and foremost, we identified the inherent source of model errors that can be
encountered during the assimilation. In the one hand, these errors stem from the
incomplete initialization of the DNS code. While the errors remain in a small range
of err/U = [−0.01; 0.01] over 500∆t′, they might be much more amplified at a higher
Reynolds number. A solution would consist in adding an additional control of the
initial quantities in the same spirit as the control on the initial velocity components.
On the other hand, the incompatibility between the boundary conditions model led
to local errors on the y-axis borders and the outlet. We could have used sponge
layers and construct their corresponding adjoint in the same vein as Lemke and
Sesterhenne (2013). However, the implementation of the parallel 4DVar code for two
different domains is a delicate task so we opted for an assimilation within the domain
Ω and tuned the covariance matrix R and B (see § 4.3.3).

Globally, the 4DVar code was able to reconstruct the initial conditions from a
noisy and biased background and a set of ideal three dimensional observations. The
tuning of the observation error covariance matrix R improves slightly the solution
at the largest and the smallest scale and eases the optimization process.

122



Chapitre 4. Reconstruction of a turbulent 3D cylinder wake flow
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Figure 4.14 – Assimilation with 3D synthetic observations : comparison of the
energy spectrum evolution of the reference flow (in blue), the background flow (in
green), the 4DVar-all flow (in red) and the 4DVar-rampe black (in black) at t′1 = 170
(on the left) and at t′2 = 170.25 (on the right) in a cross-section plane x = 4D. The
comparison of the spectra of the error for the same data with respect to the reference
are shown in inset.
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4.4 Towards the reconstruction of a full 3D velocity
field with orthogonal-plane stereo PIV observa-
tions

We investigated in this section the capacity of the 4DVar technique to reconstruct
a fully three dimensional flow with orthogonal-plane stereo PIV observations. In this
context, we consider the reconstruction of a cylinder wake at Reynolds 300 given
a set of observations within the inlet and the stream-wise observation planes. We
layout in § 4.4.1 the experimental context and the measurement techniques employed
to provide the experimental observations. We consider at first the reconstruction of
the three dimensional velocity field with synthetic observations in § 4.4.2. We then
consider in § 4.4.3 the reconstruction of the three dimensional velocity field with real
observations extracted from two stereo-PIV systems.

4.4.1 Experimental context

The experimental cylinder wake flow was generated by the wind tunnel located
at Irstea regional center in Rennes. The wind tunnel, illustrated in figure 4.15, was
designed to simulate experimentally a mixing layer flow and was adapted to simulate
experimentally a cylinder wake flow. It is equipped with two independent aeraulic
circuits, each of them equipped with a 7.5kW blower, a 42kW cold battery and a
31kW heater. The two parallel air streams are blown separately from two air intakes
into a conditioning chamber composed of filters and screens, before they are blown
into a pressure conditioning chamber. This configuration can generate low turbulence
homogeneous flows. The air streams are then blown into a convergent entrance cone
with a contraction ratio of 2.5 and are separated at the inlet by an aluminum plate.
Both flows end up in a test section of 3m× 1m× 1m. The velocity and temperature
of each incoming flows can be set continuously and independently in a range of 0.5
to 5m/s and in a range of 5 to 35◦C.

Figure 4.15 – General view of the mixing layer wind tunnel

The main experiment consists in two perpendicular 2D3C PIV measurements at
the planes x = 19D and z = 0D behind the circular cylinder which are referred to
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as SPIVS1 and SPIVS2 respectively. SPIV1 is composed of a Litron 15mJ laser and
two cameras which covers a field of view of 14.9D × 18.5D. SPIV2 is composed of
a Litron 15mJ laser and two cameras which covers a field of view of 15.3D × 18D.
The experimental measurement setup is illustrated in figure 4.16.

Figure 4.16 – Representation of the 2D3C PIV systems : SPIVS1 (in red) measures
the three components velocity at the plane x = 19D and PIVS2 (in green) measures
the three components velocity at the plane z = 0D.

We acquired alternatively 3000 image pairs of the inlet and the stream-wise
flows with SPIV1 and SPIV2 respectively, with a time interval of 2000µs between
two successive images (500Hz). The time acquisition of each stereo PIV system is
illustrated in figure 4.17.

Figure 4.17 – Single frame configuration : each stereo PIV system requires a fre-
quency dt to acquire two consecutive frames. In the single frame configuration,
dt = 1000µs.

As the wind tunnel was initially designed for a mixing layer configuration, a
cushion at the separation plaque was added to reduce the mixing layer effect. The
circular cylinder has a length L = 1000mm and a diameterD = 10mm. It is equipped
with two thin rectangular end plates with the specification recommended by Stansby
(1974). The distance between the end plates is 300mm providing an aspect ratio
L/D = 30. The clearance between the walls and the end plates is about of 350mm
which is much larger than the thickness of the boundary layer. The blockage ratio is
1. The free stream velocity is adjusted to U = 0.48m/s so that the Reynolds number
Re is 300.
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4.4.2 Synthetic orthogonal plane stereo PIV observations

General context

We consider the same cylinder wake reference flow defined in § 4.3.1 to generate
the synthetic observations. We recall that the reference flow is obtained by running
Incompact3d from an initial null velocity field and by inputting an inflow velocity
within the reference domain Ωref = 20D × 12D × 6D . We conserve the same DNS
step ∆t′ = 0.005 and run the simulation until T ′ref = 30000∆t′. We mimic the PIV
observations by extracting alternatively the inlet plane x = 0D and a stream-wise
plane z = 3D from the reference flow every ∆t′obs = 10∆t′. Thus, every observation in
a given plane occurs every ∆t′PIV = 20∆t′. The time setup is illustrated in figure 4.18
and the characteristics of each run performed during this experiment are summarized
in table 4.5.

Figure 4.18 – Assimilation with synthetic orthogonal-plane observations : temporal
setup for the reconstruction of a complete three dimensional flow with the 4DVar
technique. In a first step we build the reference flow of this study by running a DNS
over T ′ref = 30000∆t′ within the reference domain Ωref . In a second step, we generate
an initial background from a null velocity by injecting the three components of the
velocity field every ∆t′PIV = 20∆t′ at the inlet x = 0D within the sub-domain Ω.
After a T ′b = 5000∆t′ time period, the initial background is used to initialize the
4DVar code performed over the assimilation window T ′a = 60∆t′ = 0.3.

Synthetic observations

In order to apply the 4DVar code to this problem, we have to carry out a pre-
procedure which generates three dimensional observations from each occurrence of

126



Chapitre 4. Reconstruction of a turbulent 3D cylinder wake flow

Run Lx× Ly × Lz nx× ny × nz Re Duration CPU
time (h)

Reference 20D × 12D × 6D 361× 217× 108 300 30000∆t′ 50
Empty box 8D × 8D × 6D 145× 145× 108 300 5000∆t′ 9
4DVar 8D × 8D × 6D 145× 145× 108 300 50∆t′ 5

Table 4.5 – Assimilation with synthetic orthogonal-plane observations : charac-
teristics of each run performed to reconstruct the three dimensional flow from 3D
synthetic observations. The empty box case corresponds to the simulation perfor-
med to obtain an acceptable initial background from an initial null velocity field and
the injection of an inlet every ∆t′PIV = 20∆t′. The data assimilation method 4DVar
considered a static background error covariance matrix B−1 = 1 and the observation
error covariance matrix R−1 built by algorithm 29.

an observed plane. We draw the reader’s attention on the necessity to filter the obser-
vations at the borders in order to verify the free-slip boundary conditions and ensure
that the code won’t explode numerically. The entire pre-procedure that transforms
the 2D observations into the 3D observations is summarized in algorithm 28. Figure
4.19 shows two snapshots of the reference and the observed flows at each observed
plane at t′2.

Algorithm 28 Synthetic observations pre-processing in the orthogonal-plane PIV
observations configuration
1: Add a 10% white noise to each component of the observed velocity field at each

occurence ∆t′PIV and at each point of the grid
2: At each plane x = 0D and z = 3D perform a temporal interpolation at every

∆t′obs

3: Set a weight for the inlet plane w1(x) = exp
(
− x2

2σ2
1

)
4: Set a weight for the stream-wise plane w2(z) = exp

(
− (z−3D)2

2σ2
1

)
5: Compute the value of each component of the velocity flow u(x, y, z) at each

non-observed point (x, y, z) from the values of the observed velocities at the
inlet u1(y, z) and at the stream-wise plane u2(x, y)

u(x, y, z) =
u1(y, z)w1(x) + u2(x, y)w2(z)

w1(x) + w2(z)

6: Filter the values at the boundary conditions in the y-axis to fit the free-slip
boundary conditions

In light of the previous results in the synthetic case (see § 4.3), we tune the obser-
vation error covariance matrix with respect to the level of confidence at each point.
In the orthogonal-plane observations context, we impose the highest confidence on
the observed planes and lower rapidly the confidence in time. The construction of the
observation error covariance matrix is summarize in algorithm 29 and is illustrated

127



Chapitre 4. Reconstruction of a turbulent 3D cylinder wake flow

Reference Observation

In
le
t
(x

=
0)

St
re
am

-w
is
e
(z

=
3D

)

Figure 4.19 – Assimilation with synthetic orthogonal-plane observations : compa-
rison of the initial reference and synthetic observation stream-wise velocity u/U at
the observed planes x = 0D (top) and z = 3D (bottom) at t′2 = 175.

in each plane x = 0D, y = 3D and y = 4D in figure 4.20.

Choice of the intial background

As we don’t possess any additional information aside the observed planes, the
background initial solution is obtained by performing the DNS from a null velocity
and input the reference inflow every ∆t′. The inlet planes at every ∆t′ are obtained
by a linear temporal interpolation of the observed inlet every ∆t′PIV = 20∆t′. This
procedure is referred to as "Empty box" in table 4.5.

A first simulation was carried out by considering an ideal inflow which is directly
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Algorithm 29 Construction of the invert observation error covariance matrix R−1

1: We set the most confidence on the observed orthogonal planes x = 0D and
z = 3D

R−1(x, y, z) = diag

(
max

(
exp

(
− x

2

0.2

)
, exp

(
−(x− 3D)2

0.2

)))
2: We reduce the confidence along they-axis to take into account the incompatibility

between the background free-slip boundary condition and observations’ model

R−1(x, y, z) = R−1(x, y, z).diag

(
exp

(
−(y − 1D)2

0.2

))
, y < 1D

R−1(x, y, z) = R−1(x, y, z).diag

(
exp

(
−(y − 7D)2

0.2

))
, y > 7D

3: We reduce the confidence along the x-axis to take into account the incompati-
bility between the background and observations model at the outlet

R−1(x, y, z) = R−1(x, y, z).diag

(
exp

(
−(x− 6D)2

0.2

))
, x > 6D

4: We reduce the confidence along the z-axis as the generated observations don’t
strictly verify the periodicity condition

R−1(x, y, z) = R−1(x, y, z).diag

(
exp

(
−(z − 1D)2

0.2

))
, y < 1D

R−1(x, y, z) = R−1(x, y, z).diag

(
exp

(
−(z − 5D)2

0.2

))
, y > 5D

y = 4D z = 3D x = 0D

Figure 4.20 – Assimilation with synthetic orthogonal-plane observations : repre-
sentation of the inverted observation covariance matrix R−1 in the plane y = 4D,
z = 3D and x = 0D
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extracted from the reference flow at each ∆t′PIV. After performing a simulation from
scratch over T ′b = 5000∆t′ time steps, the obtained background flow revealed to
be very close to the reference flow as illustrated in figure 4.21. In this particular
configuration, the DNS is capable to retrieve a good estimation of the reference
flow, therefore the assimilation is unnecessary.

Reference Background

Figure 4.21 – Assimilation with synthetic orthogonal-plane observations : compari-
son between the streamwise velocity of the reference flow (left) with the background
flow (right) after T ′b = 5000∆t′. The background is obtained by injecting the tem-
poral integration of the exact inflow at each ∆t′.

We induced a 10% synthetic noise into the inflow and performed once more the
simulation from scratch. The synthetic noise is adjusted according to a Gaussian
profile to avoid the apparition of instabilities at the free slip boundaries which can
compromise the simulation. After T ′b = 5000∆t′, the obtained background has a
different structure than the reference as illustrated in figure 4.22. We also notice
that the noise injected at the inlet is denoised by the DNS code.

Results

We show in this section the results of the assimilation run with the initial back-
ground and synthetic observations described in § 4.4.2 and § 4.4.2, respectively. The
assimlation was carried out with two outer loop iterations over the data assimilation
window T ′a = 50∆t.

We analyze the evolution of the cost function J(δγ0) and the norm of its gradient
‖∇J(δγ0)‖ with respect to the number of inner loop iterations. Figure 4.29 shows
that during the first outer loop iteration, the value of the cost function decreased ra-
ther slowly. The first correction of the second outer loop provided a better correction
and led the assimilation to a better solution.

We display the evolution of the velocity norms of each component of the reference,
background, observation and analysis at each observed planes x = 0 and z = 3D.
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Reference Background

Figure 4.22 – Assimilation with synthetic orthogonal-plane observations : compari-
son between the strea-mwise velocity of the reference flow (left) with the background
flow (right) after T ′b = 5000∆t′. The background is obtained by injecting the tem-
poral integration of the a noisy inflow at each ∆t′.
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Figure 4.23 – Assimilation with synthetic orthogonal-plane observations : evolution
of the cost function (left) and cost function gradient (right) with respect to the inner
loop iterations for two outer loop iterations.

Figure 4.24 shows that the assimilation achieved notable corrections at the inlet
plane every ∆t′PIV, however, in general the analysis trajectory tends to stick to the
background trajectory. The snapshots of each velocity components showed very few
visible corrections of the background. Therefore, the assimilation failed to provide a
satisfying correction of the initial and inflow conditions with synthetic observations,
however the assimilation performed better with real observations as described in
§ 4.4.3.
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Figure 4.24 – Assimilation with synthetic orthogonal-plane observations : compari-
son of the norm of each component of the velocity field from t2 = 175 to t3 = 175.3.

4.4.3 Real orthogonal-plane stereo PIV observations

General context

The PIV measurements were calibrated to the same resolution than the DNS. In
this configuration, the cylinder diameter is discretized on 1D = 17 nodes instead of
18 nodes. The velocity observations are defined on 20D×16D at the inlet plane x = 0
and on 16D× 20D at a stream-wise plane z = 3D. The characteristic velocity is set
as U = 0.48m/s. The temporal setup of this experiment is described in figure 4.25.
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The characteristics of each run performed within this experiment are summarized
in table 4.6.

Figure 4.25 – Assimilation with real orthogonal-plane observations : temporal setup
for the reconstruction of a complete three dimensional flow with the 4DVar technique.
In a first step we build the reference flow of this study by running a DNS over
T ′ref = 30000∆t′ = 150 within the reference domain Ωref . In a second step, we
generate an initial background from a null velocity and by injecting alternatively
the three components of the velocity field every ∆t′obs = 10∆t′ at the plane x = 0D
and z = 3D. After a T ′b = 5000∆t′ time period, initial background is used to initialize
the 4DVar code performed over the assimilation window T ′a = 50∆t′ = 0.25.

Run Lx× Ly × Lz nx× ny × nz Re Duration CPU
time (h)

Empty box 8D × 10D × 6D 137× 171× 102 300 4000∆t′ 7
4DVar 8D × 10D × 6D 137× 171× 102 300 60∆t′ 10

Table 4.6 – Assimilation with real orthogonal-plane observations : characteristics
of each run performed to reconstruct the three dimensional flow from 3D piv obser-
vations. The empty box case corresponds to the simulation performed to obtain an
acceptable initial background from an initial null velocity field and the injection of an
inlet every ∆t′PIV = 20∆t′. The data assimilation method 4DVar considered a static
background error covariance matrix B−1 = 1 and the observation error covariance
matrix R−1 built by algorithm 29.

Similarly to the synthetic case, we define the smallest sub-domain possible which
contains the turbulent structures. In this context, the definition of the sub-domain
depends on the observations. The real observations structures aren’t as regular as
the synthetic structures and are occasionally spread along the y-axis. In order to
fit as much as possible the free-slip condition along the y-axis, we have to increase
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the sub-domain to Ly = 10D. In addition to the errors inevitably induced by the
intialization of the DNS and the boundary condition model incompatibilities as
described in § 4.3.2, the observed flow doesn’t present a strict periodicity length
as assumed in the DNS. We estimated instead the statistical periodicity length by
comparing the mean and the standard deviation of each component of the velocity
field in time at different position at fixed position in the inlet plane. Figure 4.26 shows
a comparison between the mean and the standard deviation of each component of
the velocity field in time at a punctual position. We fixed the periodic length at 6D.
All in all, we run the assimilation on the sub-domain Ω = 8D × 10D × 6D.

In terms of observations, we reconstruct the three dimensional observations from
the two dimensional observations by applying the algorithm 28. The first step of the
algorithm is replaced by a filter that We also employ the algorithm 29 to construct
the R−1 matrix which is illustrated in figure 4.27 at plane y = 4D, z = 3D and
x = 0D. In this configuration, as we don’t have a strictly periodic flow it is necessary
to lower the confidence along the z-axis.

Choice of the intial background

Similarly to the synthetic case described in § 4.3.4, the background initial solution
is obtained by performing the DNS from a null velocity and input the temporal
interpolation of the reference inflow every ∆t′. The latter is obtained by a linear
temporal interpolation of the observed inlet every ∆t′PIV. Figure 4.28 compares the
snapshots the real observation with the initial background at the stream-wise plane
z = 3D obtained after running 4000∆t′ from scratch. We notice that the background
flow is less detailed with respect to the observations. We also notice that the flow
seems to diverge from the observation at the outflow as the influence of the inlet
faded and the outflow boundary condition is incompatible with the observation.
Nevertheless, the three dimensional background flow is conform to the dynamics of
the system and captures the trend of the observations on the observed plane, which
is sufficient to start the 4DVar code.

Results

We analyze the evolution of the cost function J(δγ0) with respect to the num-
ber of inner loop iterations. Figure 4.29 shows that the assimilation process has
difficulties to find the correct descent direction.

As we only observe two orthogonal planes, it is clearly unreasonable to trust the
extrapolated data within the 3D volume. Therefore, we limit our statistics compa-
rison to the observed plane x = 0 and z = 3D. Moreover, the observations are noisy
and only represent a trend of the true solution which lies somewhere in between
the observations and the dynamical representation of the flow. Therefore, instead of
studying the evolution of the RMSE in the observed planes, we analyze norm of each
velocity component of the observation, the background and the analysis at the obser-
ved planes x = 0 and z = 3D. Figure 4.30 shows that the analysis achieves notable
corrections on the inlet similarly to the the synthetic case § 4.4.2. This phenomenon
could be improved by implementing a temporal average on the inflow condition as
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Figure 4.26 – Assimilation with real orthogonal-plane observations : comparison of
the mean and the standard deviation of each component of the velocity field in time
at a punctual position on the inlet plane at y = 4D

proposed in Gronskis et al. (2013). At the stream-wise plane, the analysis trajectory
generally tends to get closer to the observations, excepted for the v component.

We analyze in figure 4.31 the snapshots of each component u/U , v/U and w/U
of the velocity field in the observed stream-wise plane z = 3D at the beginning of
the assimilation window t′0. We compare the snapshots of the observations, the back-
ground and the analysis obtained by the 4DVar code. We observe that the analysis
retrieved similar turbulent structures to the observations for each component, while
it conserved the same velocity levels as the background flow. This correction leads
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y = 4D z = 3D x = 0

Figure 4.27 – Assimilation with real orthogonal-plane observations : representation
of the observation covariance matrix R−1 in the plane y = 4D, z = 3D and x = 0D.

Observation Background

Figure 4.28 – Assimilation with real orthogonal-plane observations : comparison of
the initial observation (left) and background (right) stream-wise velocity u/U at the
observed stream-wise plane z = 3D. The background is obtained after running the
DNS over a 4000∆t′ period from a null velocity field and the input of the temporal
interpolation of the observation inlet at each ∆t′.

to a denoised and more detailed flow in the observed plane z = 3D.

In terms of inlet correction, the correction of the inlet at the beginning of the
assimilation window t′1 = 20 is too small to be discerned directly as illustrated in
figure 4.32.

We can assess the correction performed within the entire volume by analyzing
each component in the cross-section plane y = 4D. Figure 4.33 shows that the ana-
lysis flow leveled the values of each velocity component to follow the trend imposed
by the observations. Nevertheless, the analysis map remains close to the background
as it doesn’t possess any other information beside the observed planes.
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Figure 4.29 – Assimilation with real orthogonal-plane observations : cost function
evolution with respect to the inner loop iterations.

4.4.4 Conclusion and discussion

We carried out the reconstruction of the three components of the velocity fields
from a sequence of two orthogonal-plane synthetic and real observations. In both
cases, it is crucial to perform a post processing procedure on the observations descri-
bed in algorithm 28. The latter generated by Incompact3d from a null velocity field
with a input of the temporal interpolation of the inflow at each ∆t′. In the synthetic
case, we are able to retrieve a very comparable flow to the reference, however, by
adding noise to the inflow we obtain a sufficiently modified flow to justify the use
of the variational assimilation technique. In opposition, the initial background ob-
tained by the temporal interpolation of the real inflow observations isn’t as detailed
as the observations but provides a sufficient estimation of the flow to perform the
assimilation.

In the one hand, we performed the assimilation with synthetic noisy observa-
tions. In this configuration, the assimilation had difficulties to converge and achie-
ved negligible corrections of the background trajectory. This case could be improved
by implementing a temporal average on the inflow condition similarly to Gronskis
et al. (2013). As the assimilation performed better results with real orthogonal-
plane observations, this case lays out the difficulty of generating synthetic realistic
observations.

On the other hand, we achieved the reconstruction of the three dimensional flow
from pre-processed observations acquired from a stereo-PIV setup. This experiment
represented a particularly tedious task as the observations don’t obey to a strict
periodicity conditions imposed at the boundaries along the z-axis in addition to the
model incompatibilities described in § 4.3.2. The observation error covariance matrix
R played an important role in this reconstruction as it indicates the areas in which
the boundary conditions model is incompatible. We also remind that these results
were obtained on a short assimilation window T ′a = 60∆t′ containing 6 observations
including 4 observations at the inlet x = 0. The increase of this temporal window
can clearly ease the reconstruction of the flow.
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Figure 4.30 – Assimilation with real orthogonal-plane observations : comparison of
of the norm of each component of the velocity field from t′1 = 20 to t′2 = 20.3.
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Figure 4.31 – Assimilation with real orthogonal-plane observations : snapshots of
the velocity field for each component u, v and w at the beginning of the assimilation
window at t′1 = 20 in the stream-wise plane z = 3D. Each row corresponds to the
observation, the background and the analysis, respectively.
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Figure 4.32 – Assimilation with real orthogonal-plane observations : snapshots of
the velocity field for each component u, v and w at the beginning of the assimilation
window at t′1 = 20 in the stream-wise plane z = 3D. Each row corresponds to the
observation, the background and the analysis, respectively.
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Figure 4.33 – Assimilation with real orthogonal-plane observations : snapshots of
the velocity field for each component u, v and w at the beginning of the assimilation
window t′1 = 20 in the stream-wise plane y = 4D. Each row corresponds to the
observation, the background and the analysis, respectively.
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Conclusions and perspective

Conclusion

The fluid mechanics field context possess a wide range of various methods to
reconstruct a realistic turbulent flow. During these last decades, the trend is to
couple experimental measurements with dynamical models, particularly by using
data assimilation techniques. These techniques emerged from the Numerical Weather
Prediction field and are well suited for large sized problems.

We covered in chapter 2 the main data assimilation approaches so far. In the
framework of this thesis, we applied a variational data assimilation approach, referred
to as 4DVar in the following, which consists in solving a optimal control problem
under the constraint of the dynamical model. This approach is well-known for its
accuracy and relies on the construction and the implementation of a so-called adjoint
procedure. The latter is built upon the original dynamics code and provides the
gradient descent direction for the optimization. The construction of the adjoint is
eased by the use of an automatic differentiation tool but requires a systematic and
rigorous validation procedure to ensure that the accuracy of the original dynamics
code is conserved.

Reconstruction of a free surface flow

In chapter 3, we implemented and evaluated a classical incremental 4DVar tech-
nique (Courtier et al., 1994) to a simplified SWE code. We compared this method
with the ensemble-based method 4DEnVar, proposed by Liu et al. (2008), and va-
rious strategies based on the latter (Yang et al., 2015), to reconstruct the complete
characteristics of a free surface from partial and noisy observations.

In general, both methods retrieved successfully the characteristics of the free
surface with synthetic and real-ground observations. The major advantage of the
presented 4DEnVar strategies lies in the fact that we don’t have to construct the
adjoint procedure in opposition to the 4DVar approach. In general, the ensemble-
based methods provided good results in terms of RMSE for partial and complete
observations without the use of the adjoint procedure. In return, these techniques
require a significant number of ensemble members to have comparable results with
the 4DVar technique. The parallelization of the generation of the ensemble members
also yields a computational cost comparable to the 4DVar. While the parallelization
can be easily achieved for simple dynamical models, this task can be tedious for
a DNS or even a LES model which require themselves a parallelization by domain
decomposition.
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Reconstruction of a turbulent three dimensional flow

The reconstruction of the three dimensional three components of a turbulent flow
was at the heart of this thesis. In chapter 4, we carried out the reconstruction of the
three dimensional three components velocity fields at the downstream of a cylinder
wake at Reynolds 300. In this chapter, we combined the parallelized highly-accurate
DNS code Incompact3d and a set of orthogonal-plane stereo PIV obserations. This
study follows the work of Gronskis et al. (2013) who performed successfully the
reconstruction in a two dimensional context.

First and foremost, we emphasize on the difficult task of the adjoint construction.
Indeed, we had to reach the double objective of conserving the accuracy and the
parallelized structure of the original Incompact3d code, as laid out in § 4.2.

Once we validated the adjoint procedure, we carried out a first reconstruction in
an ideal context. In § 4.3, we assessed the ability of the 4DVar code to retrieve a
reference flow from an initial noisy and biased flow. We encountered difficulties to
find a compromise between the size of the domain (an implicitly the computational
cost) and the accuracy of the flow with respect to a reference run in a larger domain.
While the DNS code alone is capable to denoise the initial noise, the 4DVar success-
fully corrected the initial flow bias. The tuning of the observation error covariance
matrix also improved the reconstruction and paved the way for future improvements.

Finally, we performed in § 4.4.3 the 4DVar with a set of orthogonal-plane stereo
PIV observations. We draw the reader’s attention on the difficulty of this challenge.
Indeed, despite the quality of the DNS code and the DNS-like resolution of the
PIV measurements, the passage from a 2D reconstruction to the 3D reconstruction
is a delicate task. We described in § 4.4.3 the construction of three dimensional
observations and their associated covariance error matrix.

Perspective
In light of the conclusions of this work, we lay out various subjects for further

research.

Preconditioning model

In the first place, the incremental variational method could be enhanced by
implementing a preconditioning technique similar to § 3.2.1 to avoid the ill-posed
nature of the system of interest. We can also improve the variational method by
updating the background error covariance matrix B by injecting the dependence of
each controlled variables from the spatial correlation. These lines of research can be
easily implemented for simple dynamics and be compared to hybrid data assimilation
techniques in the same vein as the work carried out in chapter 3.

Control of the boundary conditions

In chapter 4 we achieved the correction of the flow by controlling the initial
condition and the inflow at each time step. In the first step, a short term improvement
to the presented results consists in implementing a temporal average on the inflow
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condition similarly to Gronskis et al. (2013). As further study in § 4.3.2 revealed
that the boundary conditions and the incomplete initialization of the DNS can lead
to additional errors. While these errors remained in a reasonable range, at a higher
Reynolds they are likely to be amplified. This situation could be avoided by including
the control of the initial pressure field and every boundary conditions of the domain
into the assimilation process.

Towards three dimensional observation

Despite the possibility to reconstruct a turbulent flow with orthogonal-plane
stereo PIV observations, it is preferable to have a three dimensonal representation
of the observation. During the last decade, experimental fluid dynamics community
head to 3D PIV techniques. While the tomo-PIV measurements are only capable
to retrieve a very small domain (40 mm × 40 mm × 10mm) (Elsinga et al., 2006),
recent studies are able to retrieve cubic-meter sized volume (Kuhn et al., 2011;
Scarano et al., 2015). These observations are particularly sparse in space and could
be coupled with an LES model in the future.
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Annexe A

BLUE

We seek for the gain matrix K involved in the analysis state xa given by (2.9)
and recalled below

xa = xb + K(Y −Hxb)

The background error is defined by η = xt − xb associated with the background
error covariance matrix

B = E(ηηT ), (A.1)

and the observation error ε = Y −Hxt associated with the observation error cova-
riance matrix

R = E(εεT ). (A.2)

The gain matrix minimizes the variance E(||εa||2) by using the information pro-
vided by the covariance matrices (A.1) and (A.2). The cost function of interest reads

JBLUE = E(||xa−xt||2) =

∫
(xb−xt+K(Y−Hxb))T (xb−xt+K(Y−Hxb))P (x|Y)dx,

and we cancel ints gradient with respect to K :

∂JBLUE
∂K

=

∫
(K(ε+ Hη)− η)(ε+ Hη)TP(x|Y)dx = 0,

⇔ E
(
(K(ε+ Hη)− η)(ε+ Hη)T

)
= 0,

⇔ KE
(
(ε+ Hη)(ε+ Hη)T )− E(η(varepsilon+ Hη)T

)
= 0,

⇔ K = (E(η(ε+ Hη)T )
(
E((ε+ Hη)(ε+ Hη)T

)−1
,

K = (HE(ηη)T )
(
E(εεT ) + HE(ηηT )HT

)−1
.

We then deduce the analysis covariance matrix A

A = E((xa − xt)(xa − xt)),

⇔ A = B−BHT (HBHT + R)−1HB
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Annexe B

Time integration discretization
schemes

We recall the general discretization of the time advancement of (4.2) which de-
duces the state uk+1 at time tk+1 from the previous state uk at time tk,

u∗−uk
∆t

= akF
k + bkF

k−1 + ckF
k−2 − gk∇p̃k,

u∗∗−u∗
∆t

= gk∇p̃k,
uk+1−u∗∗

∆t
= −gk∇p̃k+1,

. (B.1)

We specify the discretization scheme by fixing the coefficient triplet {ak, bk, ck}k=1,··· ,nk

(where gk = ak + bk + ck for simplicity) on nk sub-time steps with t1 = tn and
tnk

= tn+1 (∆t = tn+1 − tn being the full time step). The discretization schemes
available in Incompact3d are the Runge Kutta methods at order 3 (RK3) and 4
(RK4), and the Adams-Bashford methods at order 2 (AB2) and 3 (AB3). The va-
lues attributed to each coefficient for each technique are given by :
AB2 nk = 1

(a1,b1,c1) = (3/2 ,−1/2,0)
AB3 nk = 1

(a1,b1,c1) = (23/12 ,−16/12,5/12)
RK3 (Williamson, 1980) nk = 3

(a1,b1,c1) = (8/15 ,0,0)
(a2,b2,c2) = (5/12 ,−17/60,0)
(a3,b3,c3) = (3/4 ,−5/12,0)

RK4 (Kennedy et al., 2000) nk = 5
(a1,b1,c1) = (0,0.1496590219993,0) and g1 = 0.1496590219993
(a2,b2,c2) = (−0.4178904745 ,0.1496590219993,0) and g2 = 0.220741935365
(a3,b3,c3) = (−1.192151694643 ,0.3792103129999,0) and g3 = 0.25185480577
(a4,b4,c4) = (−1.697784692471 ,0.8229550293869,0) and g4 = 0.33602636754
(a5,b5,c5) = (−1.514183444257 ,0.1530572479681,0) and g5 = 0.041717869325
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Annexe C

Automatic Differentiation

Automatic Differentiation (AD) is a set of techniques that aims at evaluating
derivatives of a given function defined by a computer program. Regardless of the
complexity of a given computer program, it consists in a sequence of simple ins-
tructions consisting in elementary arithmetic operations (additions, multiplications
etc...) and/or elementary functions (exponential, cosinus etc...). As we know befo-
rehand the derivative of each instruction, AD consists simply in applying the chain
rule of derivative calculus repeatedly. Conceptually, AD is different from symbolic
and numerical differentiation and takes advantage of both approaches. Indeed, the
application of the chain rule avoids round-off errors encountered by finite differen-
tiation and provides the most accurate derivatives of the original program. At the
same time, it avoids the delicate task of performing a discretization by providing
directly a discretized program.

We describe in this chapter the main principles of automatic differentiation, with
the different computational strategies. We then describe the implementation tech-
niques and present the AD tool used to ease the implementation. Finally, we illus-
trate the AD technique on a simple example. The reader can find further information
in Hascoët (2006, 2012).

C.1 Automatic Differentiation principles
Let’s consider a continuous function f : Rm → Rn which can be decomposed

by a sequence of k functions such as f = fp ◦ fp−1 ◦ · · · ◦ f1. The value of f at
an initial value x := x0 ∈ Rm is given by f(x) = fp(xp−1) = fp−1 ◦ fp−1(xp−2) =
fp−1◦fp−1(xp−2)◦· · ·◦f1(x0). The function f is implemented as a program P composed
of a sequence of p instructions such that P = {I1 ; ... ; Ip−1 ; Ip}. Our aim
consists in defining the differential tangent and adjoint program of P corresponding
to the function f with respect to x ∈ Rm. According to the chain rule, the differential
tangent associated to f with respect to x is given by :

f ′(x) = f ′k(xp−1) · f ′p−1(xp−2) · · · f ′1(x0) (C.1)

The derivative f ′(x) is too large and requires expensive computation resources.
We can counter this issue by introducing the differential vector ẋ such that :

ẏ = f ′(x) · ẋ = f ′k(xp−1) · f ′p−1(xp−2) · · · f ′1(x0) · ẋ (C.2)
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Instead of computing each matrix f ′k of size n for k ∈ {1, · · · , p} and deduce
f ′(x) · ẋ, we compute each vector of size n × m. This is done by computing (C.2)
from right to left : we first compute the vector f ′1(x0) · ẋ, then f ′2(x1) · (f ′1(x0) · ẋ)
and finally deduce ẏ = f ′(x) · ẋ.

The reverse mode is deduced from the chain rule by introducing the differential
adjoint vector ȳ ∈ Rn and the adjoint derivatives f#

p for p ∈ {1, ..., k} such that :

x̄ = f ∗(x) · ȳ = f ∗1 (x0) · · · f ∗p−1(xp−2) · f ∗p (xp−1) · ȳ (C.3)

As in the tangent mode, (C.3) is also computed from right to left which rises
an important issue. Indeed, for the first step calculation for instance, we need the
value of xp−1 which, we recall, is obtained by xp−1 = fp−1(xp−2) ◦ · · · ◦ f1(x0). Thus,
at each step of the reverse mode computation, we require all the values of xp for
p ∈ {1, ..., k}.
There are two main strategies to tackle the reverse mode issue :
Store all (SA) consists in saving all the values of {xp; p = 1, · · · , k−1} and invoke

each intermediate value when it is required. This technique is illustrated by
figure C.1. While this strategy costs twice the computation time of the source
program P, it clearly requires a tremendous amount of memory which can’t
be provided when we consider very large size problems. We can deal with this
memory problem by a checkpoint strategy which consists in applying the SA
strategy on some parts of the program and recompute from the beginning of
the subprograms as illustrated by figure C.1.

Figure C.1 – SA strategy (top) stores all the intermediate values (black points) at
the end of each instructions {Ik; k = 1, · · · , p− 1}. In the reverse mode, each values
are invoked and used. Checkpointing SA strategy (bottom) consists in applying the
SA strategy on small blocs of the program.

Recompute all (RA) consists in recomputing all the values of {xp; p = 1, · · · , k−
1} when they are needed, as illustrated by figure C.2. In opposition to the SA
strategy, this strategy doesn’t require any additional storage however the com-
putational cost is clearly colossal. As in the SA strategy, there is a checkpoin-
ting RA strategy which also consists in fragmenting the whole program and
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saving the complete state of the problem, called snapshot, and recompute from
the closest snapshot instead of the initial state. This strategy is illustrated by
figure C.2.

Figure C.2 – RA strategy (top) performs all the intermediate instructions from
the initial value x (black points) to obtain the required value. Checkpointing RA
strategy (bottom) recomputes the intermediate values from each snapshot (black
points)

In the framework of this thesis, we are led to opt for the checkpointing SA
strategy. This choice stems from the implementation of the AD as discussed in the
following section.

C.1.1 Automatic Differentiation implementation

The numerical implementation of the AD can be achieved by applying one of the
following strategies :
Source Code Transformation (SCT) consists in replacing the source code by

an automatically generated from the source code. This new code includes ad-
ditional variables, arrays and data structures that hold the derivatives and all
the necessary new instructions to compute them. It is also easier to imple-
ment the reverse mode with this strategy. On the downside, the transforma-
tion of the source code is more complex as the complexity of the source code
increases. Therefore, in practice we resort to AD tools that performs automa-
tically and rapidly the transformation. This strategy can also be implemented
for all programming languages and the resulting program can be compiled into
an efficient code.

Operator Overloading (OO) consists in telling the compiler that each real num-
ber is replaced by a pair of real numbers, the second holding the differential.
This strategy is obviously possible for a source code written in a language
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which supports operator overloading. Each elementary operation on real num-
bers is overloaded, in other words, it is replaced by a new one. working on pairs
of reals, that computes the value and its differential. In opposition to source
code transformation, the original program is virtually unchanged since every-
thing is done at compile time. However, the resulting program will run slowly
because it constantly builds and destroys pairs of real numbers. Moreover, it
is very hard to implement the reverse mode with this strategy.

In the framework of this thesis, we turn to the SCT strategy and perform the
code transformation with the help of the AD tool TAPENADE (Hascoët, 2004;
Hascoët and Pascual, 2013). TAPENADE, which is successor of Odyssée (Faure and
Papegay, 1998), was developed by the Tropics team (Inria Sophia Antipolis) since
1999. This tool is specialized among others in AD reverse and tangent mode and
adopts a store-all strategy with the possibility of checkpointing on calls. This tool is
implemented at 90% Java and 10% C and supports code sources written in Fortran
(Fortran95, Fortran177 and older). TAPENADE was previously employed in several
such as optimum design problems citepHascoet2003,Dervieux2006, oceanography
(Ferron and Hascoët, 2006; Tber et al., 2007) and was also used for the reconstruction
of a 2D turbulent flow by a variational assimilation technique (Gronskis et al., 2013).
In the framework of this thesis, we recall that we aim at reconstruction the state of
a 2D flow chapter 3 and a 3D turbulent flow chapter 4. On the one hand, the 2D
application is based on a homemade MATLAB code, which can be easily translated
into a Fortran code ; and in another hand, the 3D application is based on the DNS
code Incompact3d which is entirely written in Fortran. Therefore, TAPENADE is a
good candidate for both applications and was naturally selected.

In practice, TAPENADE can be used directly as a web server by a distant user,
without any need for a local installation at the following address :

http://tapenade.inria.fr:8080/tapenade/index.jsp

However, it is usually more convenient to download and install the tool on a local
computer from the ftp server

ftp://ftp-sop.inria.fr/tropics/tapenade

and call the tool directly as a command with arguments. The reader can refer to
TAPENADE’s user guide Hascoët and Pascual (2004).

C.1.2 Automatic Differentiation example using TAPENADE

Many examples simple examples can be found in the litterature, in this section
we illustrate the construction of the tangent and adjoint of a homemade short code
source written in Fortran90. In this example, we consider a subroutine foo2, defined
by 2, nested in a main subroutine foo1, defined by 6, and aim at differentiating the
latter with respect to the active variables m1 ∈ Rn and v4 ∈ R.
where,

These source codes are automatically transformed by TAPENADE and are ve-
rified by the validations tests § 2.4.7. The tangent mode results to 11 and 4, where
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Algorithm 30 foo1(m1,v4)
for i=1,n,2 do

v1 = m1(i)**2
v2 = cos(m1(i+1))
call foo2(v1,v2,v3)
v4 = v4+v3

end for

Algorithm 31 foo2(v1,v3,v4)
v2 = 2*v1 + 5
v4 = v2 + p1*v3/v2

Algorithm 32 foo1_d(m1,v4)
v4d = 0.0
v3d = 0.0
for i=1,n,2 do

v1d = 2*m1(i)*m1d(i)
v1 = m1(i)**2
-(m1d(i+1)*SIN(m1(i+1)))
v2 = cos(m1(i+1))
call foo2_d(v1, v1d, v2, v2d, v3, v3d)
v4d = v4d + v3d
v4 = v4+v3

end for

Algorithm 33 foo2_d(v1,v3,v4)
v2d = 2*v1d
v2 = 2*v1 + 5
v4d = v2d + (p1*v3d*v2-p1*v3*v2d)/v2**2
v4 = v2 + p1*v3/v2
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the variables ending by d denotes the differential tangent variable which are always
initialized at the begining of the code for security :

We recall that the reverse mode use the checkpointing SA strategy. As illustrated
previously, this procedures consists in a forward computation of the source code and
a backward computation to deduce the differential adjoints. The checkpointing is
performed by repeatedly calling PUSH procedures which push the value at a given
stage of the source algorithm during the forward procedure and POP procedures
which reads the first value of the pile. The result of the reverse mode is given by 26
and 6.

Algorithm 34 foo1_b(m1,v4)
! Forward procedure
for i=1,n,2 do

v1 = m1(i)**2
v2 = cos(m1(i+1))
! Save intermediate values for the adjoint process
call PUSH(v1)
call PUSH(v2)
call PUSH(v3)
call foo2(v1,v2, v3)

end for
! Backward procedure
m1b = 0.0
v3b = 0.0
for i=n-mod(n-1, 2),1,-2 do

v3b = v3b + v4b
! Invoke intermediate values
call POP(v1)
call POP(v2)
call POP(v3)
v1b = 0.0
v2b = 0.0
call foo2_b(v1, v1b, v2, v2b, v3, v3b)
m1b(i+1) = m1b(i+1) - SIN(m1(i+1))*v2b
m1b(i) = m1b(i) + 2*m1(i)*v1b

end for
v4b = 0.0
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Algorithm 35 foo2_b(v1,v3,v4)
v2 = 2*v1 + 5
tempb = p1*v4b/v2
v2b = v4b - v3*tempb/v2
v3b = tempb
v1b = 2*v2b
v4b = 0.0
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Annexe D

Discrete adjoint of auxiliary
procedures used in SWE

We describe in the tangent and adjoint procedures corresponding to each auxi-
liary routines used within the shallow water code SWE. We recall in algorthm 36 the
structure of the original SWE code.

Algorithm 36 SWE(h0,u0,v0)

Initialization: n = 0, h0, u0, v0

while n < N do
call u2q(hn,un,vn,qnx ,qny )
call RK3(hn,qnx ,qny ,hn+1,qn+1

x ,qn+1
y )

call q2u(hn+1,un+1,vn+1,qn+1
x ,qn+1

y )
save (hn+1,un+1,vn+1)
n = n+ 1

end while
return hN , uN , vN

We will provide the numerical code or the equivalent matrix formulation for
each routine laid out in this chapter. In terms of the notations, we inherit from the
formalism imposed by TAPENADE such that :

– the tangent procedures are ended by the subscript _d, the differential tangent
variable associated to a given variable x are denoted ẋ,

– the adjoint procedures are ended by the subscript _b, the differential adjoint
variable associated to a given variable x are denoted x̄.
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D.1 Adjoint of the boundary conditions procedure

D.1.1 Contribution of the adjoint variable in the east direc-
tion

Algorithm 37 BC_east_b(h̄E, ūE, v̄E)
Define value within the domain
for i=1,nx do

for j=1,ny do
h̄(i, j) = h̄(i, j) + h̄E(i, j)
ū(i, j) = ū(i, j) + ūE(i, j)
v̄(i, j) = v̄(i, j) + v̄E(i, j)

end for
end for
Sum values from the ghost cells into the boundaries of the domain
for i=1,nx do

h̄(i, ny) = h(i, ny) + h̄E(i, ny + 1)
ū(i, ny) = u(i, ny) + ūE(i, ny + 1)
v̄(i, ny) = v(i, ny)− v̄E(i, ny + 1)

end for
for j=1,ny do

h̄(nx, j) = h̄(nx, j) + h̄E(nx+ 1, j)
ū(nx, j) = ū(nx, j)− ūE(nx+ 1, j)
v̄(nx, j) = v̄(nx, j) + v̄E(nx+ 1, j)

end for
h̄(nx, ny) = h̄(nx, ny) + h̄E(nx+ 1, ny + 1)
ū(nx, ny) = ū(nx, ny)− ūE(nx+ 1, ny + 1)
v̄(nx, ny) = v̄(nx, ny)− v̄E(nx+ 1, ny + 1)
return h̄, ū, v̄
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D.1.2 Contribution of the adjoint variable in the west direc-
tion

Algorithm 38 BC_west_b(h̄W , ūW , v̄W )
Define value within the domain
for i=1,nx do

for j=1,ny do
h̄(i, j) = h̄(i, j) + h̄W (i+ 1, j)
ū(i, j) = ū(i, j) + ūW (i+ 1, j)
v̄(i, j) = v̄(i, j) + v̄W (i+ 1, j)

end for
end for
Sum values from the ghost cells into the boundaries of the domain
for i=1,nx do

h̄(i, ny) = h̄(i, ny) + h̄W (i+ 1, ny + 1)
ū(i, ny) = ū(i, ny) + ūW (i+ 1, ny + 1)
v̄(i, ny) = v̄(i, ny)− v̄W (i+ 1, ny + 1)

end for
for j=1,ny do

h̄(1, j) = h̄(1, j) + h̄W (1, j)
ū(1, j) = ū(1, j)− ūW (1, j)
v̄(1, j) = v̄(1, j) + v̄W (1, j)

end for
h̄(1, ny) = h̄(1, ny) + h̄W (1, ny + 1)
ū(1, ny) = ū(1, ny)− ūW (1, ny + 1)
v̄(1, ny) = v̄(1, ny)− v̄W (1, ny + 1)
return h̄, ū, v̄
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D.1.3 Contribution of the adjoint variable in the north direc-
tion

Algorithm 39 BC_north_b(h̄N , ūN , v̄N)
Define value within the domain
for i=1,nx do

for j=1,ny do
h̄(i, j) = h̄(i, j) + h̄N(i, j)
ū(i, j) = ū(i, j) + ūN(i, j)
v̄(i, j) = v̄(i, j) + v̄N(i, j)

end for
end for
Sum values from the ghost cells into the boundaries of the domain
for i=1,nx do

h̄(i, ny) = h(i, ny) + h̄N(i, ny + 1)
ū(i, ny) = u(i, ny) + ūN(i, ny + 1)
v̄(i, ny) = v(i, ny)− v̄N(i, ny + 1)

end for
for j=1,ny do

h̄(nx, j) = h̄(nx, j) + h̄N(nx+ 1, j)
ū(nx, j) = ū(nx, j)− ūN(nx+ 1, j)
v̄(nx, j) = v̄(nx, j) + v̄N(nx+ 1, j)

end for
h̄(nx, ny) = h̄(nx, ny) + h̄N(nx+ 1, ny + 1)
ū(nx, ny) = ū(nx, ny)− ūN(nx+ 1, ny + 1)
v̄(nx, ny) = v̄(nx, ny)− v̄N(nx+ 1, ny + 1)
return h̄, ū, v̄
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D.1.4 Contribution of the adjoint variable in the south direc-
tion

Algorithm 40 BC_south_b(h̄S, ūS, v̄S)
Define value within the domain
for i=1,nx do

for j=1,ny do
h̄(i, j) = h̄(i, j) + h̄S(i, j + 1)
ū(i, j) = ū(i, j) + ūS(i, j + 1)
v̄(i, j) = v̄(i, j) + v̄S(i, j + 1)

end for
end for
Sum values from the ghost cells into the boundaries of the domain
for i=1,nx do

h̄(i, 1) = h(i, 1) + h̄S(i, 1)
ū(i, 1) = u(i, 1) + ūS(i, 1)
v̄(i, 1) = v(i, 1)− v̄S(i, 1)

end for
for j=1,ny do

h̄(nx, j) = h̄(nx, j) + h̄S(nx+ 1, j + 1)
ū(nx, j) = ū(nx, j)− ūS(nx+ 1, j + 1)
v̄(nx, j) = v̄(nx, j) + v̄S(nx+ 1, j + 1)

end for
h̄(nx, 1) = h̄(nx, 1) + h̄S(nx+ 1, 1)
ū(nx, 1) = ū(nx, 1)− ūS(nx+ 1, 1)
v̄(nx, 1) = v̄(nx, 1)− v̄S(nx+ 1, 1)
return h̄, ū, v̄

D.1.5 Discrete adjoint of the BC routine

Given the adjoint procedures presented in this section, the discrete adjoint (h̄, ū, v̄)
of the boundary conditions are given by algorithm 41.

Algorithm 41 BC_b(h̄, ū, v̄, h̄W , ūW , v̄W , h̄E, ūE, v̄E, h̄N , ūN , v̄N , h̄S, ūS, v̄S)

[h̄, ū, v̄]= BC_east_b(h̄E, ūE, v̄E)
[h̄, ū, v̄]= BC_west_b(h̄W , ūW , v̄W )
[h̄, ū, v̄]= BC_north_b(h̄N , ūN , v̄N)
[h̄, ū, v̄]= BC_south_b(h̄S, ūS, v̄S)
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D.2 Adjoint of the routines involved in the Roe sol-
ver

The Roe routine which solves the 1D Riemann problem from the left and right
state xL = (hL, uL, vL) and xR = (hR, uR, vR) is described by algorithm 42. We
describe in this section the adjoint procedures of the auxiliary routines Priestley,
eigenvalues, eigenvectors, fluxH and fluxV called from the Roe routine.

Algorithm 42 Roe(hL, uL, vL, hR, uR, vR, flag)
! Preprocessing
wL = Priestley (hL, uL, vL)
wR = Priestley (hR, uR, vR)
∆w = wL −wR

w̃ = 1
2
(wL + wR)

! Characteristics of the Roe matrix Ã(XR, XL)
call eigenvalues(w̃,e1, e2, e3)
call eigenvectors(w̃,r1, r2, r3)
call coefficients(w̃,∆w,α1, α2, α3)
! Compute the left and right fluxes
if flag then

FL = fluxH (hL, uL, vL)
FR = fluxH (hR, uR, vR)

else
FL = fluxV (hL, uL, vL)
FR = fluxV (hR, uR, vR)

end if

return 1
2
(FL + FR)− 1

2

3∑
k=1

αk|ek|rk

D.2.1 Adjoint of the Preistley algorithm

In order to implement the Roe solver to the 2D SWE model, Priestley (1987)
introduced parameter vectors which are determined by the left and right state vectors
xL and xR (see § 3.3.2). Given an input x= (h, u, v), we define the Preistley routine
by the following function

Preistley(x) = (
√
h, u
√
h, v
√
h)

The tangent procedure with respect to a linearization state x = (h, u, v) can be
written into the following matrix form,

ẇ =
1

2
√
h

 h 0 0
u 2h 0
v 0 2h

 ẋ,
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and we deduce straightforwardly the matrix form of the corresponding adjoint pro-
cedure,

x̄ =
1

2
√
h

 h u v
0 2h 0
0 0 2h

 w̄.

D.2.2 Adjoint of the eigenvalues of Ã(xR,xL)

The eigenvalues e1, e2, e3 of the linearized Jacobian Ã(xR,xL) are computed
from the input variable w̃ := 1

2
(wL + wR) such that

e1 =
w̃2

w̃1

d+
w̃3

w̃1

(1− d)− w̃1, (D.1)

e2 =
w̃2

w̃1

d+
w̃3

w̃1

(1− d), (D.2)

e3 =
w̃2

w̃1

d+
w̃3

w̃1

(1− d) + w̃1, (D.3)

where d = 1 for the horizontal fluxes and d = 0 for the vertical fluxes. In the
following, we provide the tangent and adjoint procedures of the eigenvalues routine
with respect to a given linearization state w := (w1, w2, w3).

The tangent procedure can be written into the following matrix form

ė =
1

w2
1

 −w2d− w3(1− d) + w1 w1 w1

−w2d− w3(1− d) w1 w1

−w2d− w3(1− d) + w1 w1 w1

 ẇ,

and the corresponding adjoint procedure simply reads,

w̄ =
1

w2
1

 −w2d− w3(1− d) + w1 −w2d− w3(1− d) −w2d− w3(1− d) + w1

w1 w1 w1

w1 w1 w1

 ē.

D.2.3 Adjoint of the eigenvectors of Ã(xR,xL)

Similarly to the eigenvalues, the eigenvectors r1, r2, r3 of the linearized Jacobian
Ã(xR,xL) are computed from the input variable w̃ := 1

2
(wL+wR) . We recall below

the expression of each eigenvectors,

r1 =

 w1

w2 − w1

√
w2

1d

w3 − w1

√
w2

1(1− d)

 , r2 =

 0
0
w1

 , r3 =

 w1

w2 + w1

√
w2

1d

w3 + w1

√
w2

1(1− d)

 ,

where d = 1 for the horizontal fluxes and d = 0 for the vertical fluxes. We provide
the tangent and adjoint procedures with respect to a given linearization state w :=
(w1, w2, w3).
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The tangent and adjoint procedures corresponding to the calculation of the ei-
genvector r2 are elementary, therefore we only provide the formulation for the eigen-
vectors r1 and r3 which are summarized by :

r1,3 =

 w1

w2 ± w1

√
w2

1d

w3 ± w1

√
w2

1(1− d)

 .

The tangent procedure can be written into the following matrix form

ẇ =

 1 0 0

±
√
w2

1d 1 0

±
√
w2

1(1− d) 0 1

 ṙ1,3,

and the adjoint procedure reads,

r̄1,3 =

 1 ±
√
w2

1d ±
√
w2

1(1− d)
0 1 0
0 0 1

 w̄.

D.2.4 Adjoint of the nonlinear flux

We recall that the nonlinear flux of a given state x = (h, u, v)T in the horizontal

direction is given by FH := F (x) =

 hu
hu2 + 1

2
gh2

huv

. The tangent of the horizontal

flux is given by

˙FH =

 u h 0
u2 + gh 2hu 0
uv hu hv

 ẋ,

and its adjoint is deduced by

x̄ =

 u u2 + ghh uv
h 2hu hu
0 0 hv

FH.

Similarly, we recall that the nonlinear flux in the vertical direction is given by

FH := F (x) =

 hu
hu2 + 1

2
gh2

huv

 and FV := G(x) =

 hv
huv

hv2 + 1
2
gh2

. The tangent

of the horizontal flux is given by

˙FV =

 u 0 h
uv hv hu

v2 + gh 0 2hv

 ẋ,

and its adjoint is deduced by

x̄ =

 u uv v2 + gh
0 hv 0
h hu 2hv

FV .
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D.3 Adjoint for the conversion of non-conservative
variables to conservative variables

The SWE routine requires two auxiliary routines u2q and q2u which transforms the
non-conservative x = (h, u, v)T into the conservative variable state x = (h, h.u, h.v)T

and vice versa. These routines are defined by elementary operations, therefore their
corresponding tangent and adjoint routines are straightforwardly obtained with TA-
PENADE.

In the one hand, the u2q routine is defined by the elementary operations

qx = hu, (D.4)
qy = hv, (D.5)

its corresponding tangent procedure u2q_d is given by

q̇x = hu̇+ ḣu, (D.6)

q̇y = hv̇ + ḣv, (D.7)

and its corresponding adjoint procedure u2q_b is deduced by

h̄ = h+ uq̄x + vq̄y (D.8)
ū = hū (D.9)
v̄ = hv̄. (D.10)

In the one hand, the q2u routine is defined by the elementary operations

u = qx/h, (D.11)
v = qy/h, (D.12)

its corresponding tangent procedure q2u_d is given by

u̇ =
hq̇x − ḣqx

h2
, (D.13)

v̇ =
hq̇y − ḣqy

h2
, (D.14)

and its corresponding adjoint procedure q2u_b is deduced by

h̄ = h̄− qx
q̄x
h2
− qy

q̄x
h2

(D.15)

ū =
q̄x
h2

(D.16)

v̄ =
q̄y
h2
. (D.17)
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Annexe E

Discrete adjoint of the compact
schemes

The first and second order derivatives are computed for each direction, after
the swap to the adequate pencil. For the sake of simplicity, we consider within this
section that swapped to the X-pencil configuration and we aim at computing the
first and second order derivatives of a given vector f := (fi)nx . We recall that the
6th order numerical scheme used to approximate the first order derivative f ′(xi) at
xi reads

αf ′i−1 + f ′i + αf ′i+1 = a
fi+1 − fi− 1

2∆x
+ b

fi+2 − fi−2

4∆x
.

and the approximation of the second order derivative f ′′(xi) at xi reads

αf ′′i−1 +f ′′i +αf ′′i+1 = a
fi+1 − 2f − i+ fi−1

2∆x2
+b

fi+2 − 2fi + fi−2

4∆x2
+c

fi+3 − 2fi + fi−3

9∆x2
,

The main asset of this numerical scheme is the fact that it’s a linear algebraic
combination, therefore the adjont procedure can be easiely deduced. It is possible
to write the compact schemes in the following matrix forms :

Axf′ =
1

∆x
Bxf,

A′xf
′′

=
1

∆x
B′xf,

where the matrices Ax, Bx, A′x and B′x of size nx × nx depends on the selected
boundary conditions. Hence, the adjoint procedure corresponding to the compact
schemes are simply deduced by :

BT
x f =

1

∆x
ATx f

′,

(B′x)
T f =

1

∆x
(A′x)

T f
′′
.
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Periodic condition conserves the order of the numerical scheme and is easy to
implement. The values of f, f ′, f ′′at the boundaries are simply deduced by :

f0 = fnx , f−1 = fnx−1, f
′
0 = f ′nx

, f
′′

0 = f
′′

nx
.

Therefore the compact scheme can be formulated as :

Ax =



1 α α
α 1 α

. . .
. . .

. . .
. . .
α 1 α

α α 1


and Bx =

1

∆x



0 a b −b −a
−a 0 a b −b
−b −a 0 a b

. . . . .
. . . . .
−b −a 0 a b

b −b −a 0 a
a b −b −a 0


Free slip condition has the same assets than the periodic condition and corres-
ponds whether to the symmetric condition

f0 = f2, f−1 = f3, f
′
0 = f ′2, f

′′

0 = f
′′

2 ,

This boundary condition can be considered as a symetric or antisymetric condition
according to the velocity component considered. If f is even, the matrix Ax and Bx

reads :

Ax =



1 0 α
α 1 α

. . .
. . .

. . .
. . .
α 1 α

α 0 1


and Bx =

1

∆x



0
−a −b a b
−b −a 0 a b

. . . . .
. . . . .
−b −a 0 a b

b −b −a b a
a b 0


or the asymmetric condition

f0 = −f2, f−1 = −f3, f
′
0 = f ′2, f

′′

0 = −f ′′2 .

If f is odd, the matrix Ax and Bx reads :

Ax =



1 2α α
α 1 α

. . .
. . .

. . .
. . .
α 1 α

α 2α 1


and Bx =

1

∆x



0 2a 2b
−a b a b
−b −a 0 a b

. . . . .
. . . . .
−b −a 0 a b

b −b −a b a
a b 2b 2a 0
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Open boundary condition doesn’t make any assumptions on the flow outside
the computational domain. Single sided formulations are used for the approximation
of first derivatives and second derivatives for these types of boundaries using relations
of the form :

f ′1 + 2f ′2 =
1

2∆x
(−5f1 + 4f2 + f3),

f ′′1 + 11f
′′

2 =
1

2∆x2
(13f1 − 27f2 + 15f3 − f4),

that are third order accurate (Lele, 1992). At the adjacent nodes, because a three
point formulation must be used Padé schemes are employed with forth-order accurate
schemes :

1

4
f ′1 + f ′2 +

1

4
f ′3 =

3

2

f3 − f1

2∆x
,

1

10
f
′′

1 + f
′′

2 +
1

10
f
′′

3 =
6

5

f3 − 2f2 + f1

∆x
.
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Annexe F

Discrete adjoint of FFT_postproc

We describe the construction of the FFT_postproc routine which intervenes in
the poisson routine (see algorithm 25. This routine perfoms a one dimensional post
processing applied in every direction. In this section, we consider the construction
in an arbitrary direction for an input a vector in of size n. The input variable sign
indicates if we consider the forward post processing (sign = 1) or the backward post
processing (sign = −1). The coefficients used in this routine are determined by the
routine abxyz which doesn’t involve any active variables, therefore we don’t need to
compute its discrete adjoint.

The original FFT_postproc routine is described by algorithm 43.

Algorithm 43 FFT_postproc(in,out,sign)
Initialization: call abxyz(ax,bx,ay,by,az,bz)
for i=2,n do

tmp1 = real(in(i))
tmp2 = aimag(in(i))
tmp3 = real(in(n− i+ 2))
tmp4 = aimag(in(n− i+ 2))
xx1 = tmp1.bx/2 ; xx2 = tmp1.ax/2
xx3 = tmp2.bx/2 ; xx4 = tmp2.ax/2
xx5 = tmp3.bx/2 ; xx6 = tmp3.ax/2
xx7 = tmp4.bx/2 ; xx8 = tmp4.ax/2
if (sign) then

out(i) = cmplx(xx1 + xx4 + xx5− xx8,−xx2 + xx3 + xx6 + xx7)
else

out(i) = cmplx(xx1− xx4 + xx6 + xx7,−(−xx2− xx3 + xx5− xx8))
end if

end for

The discrete adjoint corresponding to the FFT_postproc routine is obtained
straightforwardly by TAPENADE and is described by algorithm 44.
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Annexe F. Discrete adjoint of FFT_postproc

Algorithm 44 FFT_postproc_b(in,in,out,out,sign)
Initialization: call abxyz(ax,bx,ay,by,az,bz)
for i=2,n do

tmp5b = real(out)
tmp6b = aimag(out)
if (sign) then

xx1b = tmp5b ; xx4b = tmp5b ; xx5b = tmp5b ; xx8b = −tmp5b
xx2b = −tmp6b ; xx3b = tmp6b ; xx6b = tmp6b ; xx7b = tmp6b

else
xx1b = tmp5b ; xx4b = tmp5b ; xx5b = tmp5b ; xx8b = −tmp5b
xx2b = −tmp6b ; xx3b = tmp6b ; xx6b = tmp6b ; xx7b = tmp6b

end if
tmp4b = bx.xx7b/2 + ax.xx8b/2
tmp3b = bx.xx5b/2 + ax.xx6b/2
tmp2b = bx.xx3b/2 + ax.xx4b/2
tmp1b = bx.xx1b/2 + ax.xx2b/2
in(nx− i+ 2) = in+ cmplx(tmp3b, tmp4b)
in(i) = in+ cmplx(tmp1b, tmp2b)

end for
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Annexe G

PIV system

In the double frame configuration, we can change each system’s acquisition time
which corresponds to the period between two snapshots which are used to determine
the velocity of each particules. Then we set a delay between two acquisition in order
to perform another acquisition with system 2.In figure G.1, the acquisition of the
system 1 and system 2 is 500µs and 400µs, respectively. We set a cooldown of 2000µs
between each acqusition. The period between the begin of the system 1 and system 2
velocity acquisition is 1000µs. Thus, in this configuration we can set the observation
time step ∆tobs = 1000µs.

Figure G.1 – Double frame configuration : the acquisition of the system 1 and
system 2 is dt1 and dt2 respectively.

In the single frame configuration, each system’s acquisition time is fixed, we
perform a shit between each acquisition to avoid an overlap between each system’s
acquisition. In figure G.2, the acquisition of both is 2000µs. We set system 2’s
acquisition 1000µs after system 1’s acquisition. Thus, in this configuration we can
set the observation time step ∆tobs = 1000µs.

The stereo PIV systems were calibrated beforehand to ensure that the common
area of both observed planes are equivalent. The correct spatio-temporal positioning
of the common area was verified by comparing measurements of the velocity profile
in the common area for each PIV system as illustrated in figure G.3. The comparison
was performed by A. Guibert.

As the wind tunnel was initially designed for a mixing layer configuration, we
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Figure G.2 – Single frame configuration

Figure G.3 – Comparison of the velocity profile u at the inlet

added a cushion at the separation plaque to reduce its effect as illustrated in figure
??. After installing the cushion a the entry of the test section, we controlled the
initial flow in contact with the cylinder. We input two air streams of 0.5m/s at
the same temperature and measured the velocity profile in the x-direction and the
turbulence rate at 830 mm from the separation plaque. As shown in figure G.4, the
measured velocity is more or less/acceptably constant along the height, which shows
the cushion reduced well the effects of the separation plaque.
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Figure G.4 – Dual plane position in the cylinder wake configuration at Reynolds
300
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Abstract : In the one hand, flow dynamics are usually described by the Navier-
Stokes equations and the literature provides a wide range of techniques to solve such
equations. On the other hand, we can nowadays measure different characteristics
of a flow (velocity, pressure, temperature etc...) with non-intrusive Particle Image
Velocimetry techniques. Within this thesis, we take interest in the data assimilation
techniques, that combine a dynamics model with measurements to determine a better
approximation of the system. This thesis focus on the classic variational assimilation
technique (4DVar) which ensures a high accuracy of the solution by construction.

We carry out a first application of the 4DVar technique to reconstruct the charac-
teristics (height and velocity field) of a uni directional wave at its free surface. The
fluid evolution is simulated by the shallow water equations and solved numerically.
We use a simple experimental setup envolving a depth sensor (Kinect sensor) to ex-
tract the free surface height. We compared the results of the 4DVar reconstruction
with different versions of the hybrid data assimilation technique 4DEnVar.

Finally, we apply the 4DVar technique to reconstruct the downstream of a three
dimensional cylinder wake at Reynolds 300. The turbulent flow is simulated by
the high-performance multi-threading DNS code Incompact3d. This dynamics mo-
del is first combined with synthetic three dimensional observations, then with real
orthogonal-plane stereo PIV observations to reconstruct the full three dimensional
flow.
Key words : variational assimilation, fluid dynamics, particle image velocimetry

Résumé : D’une part, les équations de Navier-Stokes permettent de décrire les
écoulements fluides, la littérature est riche de méthodes numériques permettant la
résolution de celle-ci. D’autre part, nous sommes capables de mesurer de manière
non-intrusive différentes caractéristique d’un écoulement (champ de vitesse et pres-
sion, etc.). Dans le cadre de cette thèse, nous nous intéressons aux techniques d’as-
similation de données qui combinent les modèles numériques avec les observations
afin de déterminer une meilleure approximation du système. Cette thèse s’articule
autour de l’assimilation de donnée variationelle (4DVar) qui est plus précise par
construction.

Nous avons mené une première application sur la reconstruction de la hauteur
et vitesse de la surface libre d’un fluide contenu dans un récipient rectangulaire à
fond plat. L’écoulement est modélisé par les équations de shallow water et résolues
numériquement. Les observations de l’évolution de la hauteur de la surface libre
ont été prélevées par un capteur de profondeur (Kinect). Nous avons comparé les
résultats de la reconstruction par ls 4DVar avec plusieurs version de la méthode
d’assimilation hybride 4DEnVar.

Enfin, nous avons appliqué la technique 4DVar à la reconstruction volumique de
l’aval d’un sillage de cylindre à Reynolds 300. L’écoulement turbulent a été simulé par
un code DNS parallèle Incompact3D. La reconstruction a été éffectué en combinant
tout d’abord des observations synthètiques en trois dimension, puis en combinant
des observations de plans orthogonales en stéréo PIV.
Mots clefs : assimilation variationelle de données, dynamique des fluides, particle
image velocimetry
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