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Abstract
This PhD entitled Nanoscale structuration effects on phonon transport at low temperatures

take place for three years in the Thermodynamique et Biophysique des Petits Systèmes of the

Institut Néel.

The context of this PhD is to understand and control the heat transport in samples with

variations at the nanoscale. These samples were mostly suspended silicon nanowires. The

production was performed in the Néel Institute. During these three years, three important

results have been demonstrated.

First, we verify that heat transport is not dominated by an effect due to the contact between

the suspended nanowire and the thermal bath. This has been demonstrated by the agreement

between the measurements and the model called Casimir-Ziman. It was also mainly verified

with wires whose junction to the thermal bath has been adapted to allow transmission close

to unity. These profiles nanowires have the same thermal conductance as a nanowire with

abrupt junction to the thermal bath. This proves that the transmission is always close to 1.

Then measurements on nanowires whose section is corrugated have shown a reduction in

thermal conductance. This reduction is explained by the presence of backscatter phonons

at the surface, resulting in a large reduction of their mean free path. Thus, the phonons in

a smooth nanowire have a mean free path up to 9 times greater than in these corrugated

nanowires. Simulations with the Monte-Carlo method also demonstrate this effect.

If these first results were achieved for monocrystalline silicon nanowires, my last work has

focused on the study sample of silicon nitride. This material is an amorphous one. Physics of

heat transport in amorphous materials is not yet fully understood. However, measurements

on these materials show a similar behavior, both qualitatively and quantitatively, for almost all

amorphous materials. We have measured samples of different kinds, to see if this behavior

was still valid when the sample size is reduced. The result of our measurements is that the

size plays a role in transport. As in crystalline materials, the small sample size will limit the

heat transport. However transport in low-dimensional samples shows the same behavior

qualitatively as in bulk amorphous materials. This can help provide clues for understanding

the heat transport in amorphous materials.

In conclusion, this work has allowed me to make and measure the heat transport in different

types of samples. The results allow a better knowledge of the phonon transport, thus helping

to pave the way towards a better control of heat transport.
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Résumé
Cette thèse, intitulé « Effet de structuration à l’échelle du nanomètre sur le transport de phonon

à basse température » c’est déroulé pendant trois ans au sein du groupe Thermodynamique et

Biophysique des Petits Systèmes de l’Institut Néel.

Il s’agit de comprendre et de contrôler le transport de chaleur au sein d’échantillons ayant des

variations de l’ordre du nanomètre. Ces échantillons ont surtout été des nanofils suspendus

en silicium. La fabrication a été réalisée au sein de l’Institut Néel. Lors de ces trois années,

trois résultats importants ont été réalisés.

Tout d’abord, il a fallu vérifier que le transport de chaleur ne soit pas dominé par un effet dû aux

contacts entre le nanofil suspendu et le bain thermique. Cela a pu être mis en évidence grâce

à la concordance entre les mesures et le modèle appelé Casimir-Ziman. Mais cela a surtout

été vérifié avec des fils dont la jonction au bain thermique a été adaptée afin de permettre

une transmission proche de l’unité. Ces fils profilés ayant la même conductance thermique

que les fils avec une jonction abrupte au bain thermique, cela prouve que la transmission est

toujours proche de 1.

Ensuite des mesures sur des fils dont la section est ondulée ont permis de montrer une

réduction de la conductance thermique. Cette réduction est expliquée par la présence de

rétrodiffusion des phonons à la surface, ce qui entraîne une grande réduction de leur libre

parcours moyen. Ainsi, les phonons dans un nanofil droit ont un libre parcours moyen jusqu’à

9 fois plus grand que dans ces nanofils à la section ondulée. Des simulations avec la méthode

de Monte-Carlo ont permis de mettre en évidence cet effet.

Si ces premiers résultats ont été réalisés pour des fils de silicium monocristallin, le dernier

travail a porté sur l’étude d’échantillon en nitrure de silicium. Ce matériau est un matériau

amorphe. La physique du transport de chaleur au sein des matériaux amorphes n’est pas

encore complètement comprise. Cependant les mesures faites sur ces matériaux montrent

un comportement similaire, tant qualitatif que quantitatif, pour presque tous les matériaux

amorphes. Nous avons donc mesurés des échantillons de différentes sortes, afin de vérifier

si ce comportement était toujours valable, lorsque la dimension de l’échantillon est réduite.

Le résultat de nos mesures est que la dimension joue un rôle sur le transport. Tout comme

dans les matériaux cristallins, la basse dimension de l’échantillon va limiter le transport de

chaleur. Cependant le transport dans les échantillons de basses dimensions montre le même

comportement qualitatif que les matériaux amorphes massifs. Ce travail peut permettre de

donner des pistes pour la compréhension du transport de chaleur au sein des matériaux

amorphes.
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Résumé

En conclusion ce travail m’a permis de fabriquer puis de mesurer le transport de chaleur dans

différents types d’échantillons. Les résultats obtenus permettent une meilleur connaissance

du transport des phonons, et donc aident à ouvrir la voie vers un meilleur contrôle du transport

de la chaleur.
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Introduction

For thirty years, mesoscopic physics has drown a strong activity in the condensed matter

community. This field is at the border between quantum and classical physics. But the

transition between these two fields is not a continuous process. When a macroscopic object is

miniaturized, before reaching a pure quantum behavior with just a few atoms, the physical

properties begin to change.

If electronic properties of meso-systems are much studied, thermal properties are a little left

out. Heat exchange in most cases is undesirable, and responsible for losses of information

(decoherence for instance). Thus, it needs to be controlled. Generally, most studies in meso-

scopic physics deal with electrons. However, intermediate sizes also influence the physics of

phonons, especially in dielectrics. This phonon meso-physics is now called nanophononics.

This emerging field of research is dedicated to the understanding of the physics of phonon

transfer at the nanoscale. Finally, in the energy recovery field of research, heat becomes a

dominant factor, where phonons plays a major role. Heat management at the nanoscale

requires the development of more efficient thermoelectric devices for instance.

This thesis focuses on the vast field of thermal phonon manipulation. Two characteristic

lengths are used to describe phonon transport : the mean free path and the wavelength.

Intuitively, one can think that when the size of the sample studied is of the same order of

magnitude as these characteristic lengths, the phonons transport will be affected. This is our

motivation to undertake the investigation of the effect of nanostructuration on the phonon

transport.

In this work, three typical cases were investigated :

The influence of the contact between a nanowire and a thermal reservoir;

The influence of corrugation at the surface of a nanowire;

The thermal transport in nanoscale systems of amorphous materials.

The environment to perform these experiments was favorable, as the Thermodynamique des

Petits Systemes group of the Institut Néel developed several very sensitive sensors for measur-

ing thermal properties. In the particular field of phonon transport previous measurements

have already been made. The presence of both nanofabrication and cryogenic facilities in the

laboratory was also an advantage.
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Contents

The present manuscript reports the work I have done during the last three years.

In the first chapter, theoretical works of the thermal transport at low temperature are pre-

sented.

The second chapter introduces the methods used for the measurement of phonon transport,

the fabrication of the sample, and previous measurements made in the group.

The influence of the contact conductance between the nanowire and the thermal bath is

investigated in the third chapter.

Chapter four shows how the thermal conductance of a nanowire is affected by the presence of

a corrugation.

Finally, the chapter five introduces thermal transport in an amorphous materials (SiN) in three

different kinds of samples.
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1 Physics of phonons in nanostructures
at low temperature

1.1 Introduction

The thermodynamic variable "temperature" has been studied for more than one century. The

question of what is hot or what is cold has always interested physicists. The temperature is

the intensive thermodynamic variable conjugated to the entropy. It can be macroscopically

defined by means of the mean square value of the velocities of the atoms in a body. However

when the samples to be studied reach nanometric scales, the notion of temperature could

even be not well-defined. Nowadays, with the development of nanofabrication technologies,

it is possible to design and build such nanometric samples.

On a macroscopic scale, heat can propagate in a material or between bodies following three

different ways: conduction, convection and radiation. These three ways are schematically

represented with a cup of coffee in Fig. 1.1. These modes of heat propagation are useful to ob-

tain phenomenologically the flow values between bodies at different temperatures. However,

if we want to know at a microscopic scale what exactly happens when heat propagates, it is

important to know what the heat carriers are, and how they interact with their surroundings.

In this case, a microscopic description of the transfer processes is required.

In this chapter the mechanism of heat transport at low temperature inside nanowires will be

presented. The concept of phonon will be introduced to study heat transport.

1.2 The heat carriers

In the case of radiation, the heat carriers are called photons. The sun for instance radiates

heat through the emission of photons. In fact all bodies at a temperature higher than 0 K

emit photons. An idealized case is when one only takes the temperature into account for the

creation of photons for a body. It is called the black body approximation. This case permits

to calculate the emission of photons of such a body. The black body radiates according to

Planck’s law and the total emissive power of a blackbody is given by the Stefan-Boltzmann
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Chapter 1. Physics of phonons in nanostructures at low temperature

Figure 1.1: Three mechanisms of heat propagation. The conduction come from contact with
a low gradient of temperature; the convection happens when the heat carriers are able to
move freely, so in a disorganized way; the radiation come with the creation of the photons, it
happens as soon as the temperature differ from 0 K, and it propagates in every directions.

law. The power radiated per surface unit is directly proportional to the fourth power of the

black body temperature. It is also interesting to notice that this heat transfer does not require

a medium and can propagate in vacuum.

Convection happens in fluids or gases, where atoms are free to move. A hot atom moves faster

than the others and then gives its energy through collisions. This process, although simple,

may become chaotic due to the high number of atoms. Environmental factors have a huge

impact on this process. No general law exists to quantify convection. One needs to write the

convection-diffusion equation (or drift-diffusion) and solve it in the studied case. As the heat

carriers in convection are atoms, this mechanism is also responsible for mass transport.

In our case we are interested in heat transport in condensed matter. Even if a photon can

travel within matter, it will be absorbed soon. Therefore radiation is not appropriate. Neither is

convection, as atoms do not flow inside bulk materials. Conduction remains the only relevant

mechanism. In this case, the only known moving particle is the electron. While carrying

electricity, electrons also carry heat. In the case of dielectrics, electrons do not move. However,

an atom with an internal energy, can slightly move around its equilibrium position. This

displacement will be seen by its neighbors. As masses linked by strings, this variation will

propagate along the sample (see figure 1.2) [1].

If this process seems quite simple, in the case of a three dimensional system constituting

the lattice, it becomes very complex. A model was proposed by Einstein in 1907 and another

by Debye in 1912. Both models consider the atoms to be quantum harmonic oscillators. If

the Einstein model considers that every atom oscillates at the same frequency, the Debye

model introduces a linear frequency dependence to the wave vector of the oscillation. In 1932,
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1.3. Phonons

Figure 1.2: Schematic representation of a one dimensional atom chain.

Yakov Frenkel and Igor Tamm used the similarity between photons and these atomic quantum

oscillators to introduce the concept of phonons.

As a final note one can argue that on the surface of a sample, radiation and convection

mechanisms play a role in heat transfer. As it will be described later on, the samples are

put under vacuum. No gas will permit thermal exchange and convection process cannot

take place. As it has been said, the emitting power through radiation is proportional to the

fourth power of the temperature. As in our studies, the temperature ranges from 0.27 K to 5 K,

radiation processes can be neglected.

1.3 Phonons

1.3.1 Definition and dispersion relation

In a crystal, atoms are in an equilibrium position in a periodic structure, determined by the

interactions. This position can be given by a Lennard-Jones potential for instance. However

the atoms are not totally fixed at the equilibrium position. They vibrate around this position.

Assuming that the vibrations are small, the position of an atom will be given by r (R) = R+u(R);

where R is the equilibrium position and u(R) its deviation. Each atom pair adds a potential

energy to the crystal, noted φ (with the assumption that just the first neighbor is taken into

account). The total potential energy for a crystal is given by [1, 2, 3] :

U = 1

2

∑
R,R ′

φ
(
R −R ′+u(R)−u(R ′)

)
(1.1)

By using the Taylor theorem U may be approximated. It leads to : U = U eq +U har m . U eq

is the potential energy of equilibrium. It is a constant and determines the zero level of the

internal energy of the crystal. U har m on the other hand describes the energy stored by the

atom vibrations. This term is the first order of the Taylor approximation. That is the reason

why it is called the harmonic approximation.

U har m = 1

2

∑
R,R′
µ,ν

uµ(R)Dµ,ν(R −R ′)uν(R ′) (1.2)
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Chapter 1. Physics of phonons in nanostructures at low temperature

Figure 1.3: Schematic representation of an atom chain with Born-von Karman boundary
conditions.

Dµ,ν(R −R ′) is a matrix which characterises the system; µ and ν are the coordinates of the

system.

Using the classical equation of motion, it leads to the displacement :

u(r, t ) =∑
e i (k.r−ωt ) (1.3)

It is like a plane wave having a wave vector k and a frequency ω. Furthermore, it reminds the

wave function of a free particle in quantum physics. Landau in 1940, formally described this

displacement as a quasiparticle with momentum p =ħk and energy E =ħω. As the photon

is the quantum of vibrations for the electromagnetic field, these new quasiparticles called

phonons are the quanta of vibrations for a solid.

Another analogy for the atoms in a crystal can be done using an oscillator set. In this case, the

energy allowed for an oscillator at the frequency ω is (n +1/2)ħω, with n = 0,1,2, .... It is the

same as the description used in the figure 1.2. The atoms have a mass m and are linked with

strings of stiffness K . Equation 1.2 can be written as for a monoatomic one dimension chain

of N atoms :

U har m = 1

2
K

∑
[u(na)−u([n +1]a)]2 (1.4)

Where a is the period of the lattice. With the assumption of Born-von Karman periodic

boundary conditions (see figure 1.3), the displacement becomes u(na, t ) ∝ exp[i kna − iωt ].

One can notice when k changes of 2π/a the displacement remains unchanged (the range in

phase space where k <π/a is known as the first Brillouin zone). Furthermore the boundary

condition requires e i kN a = 1. This leads to :

k = 2π n

a N
(1.5)
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1.3. Phonons

Figure 1.4: Dispersion curve for a one dimension monoatomic chain of atom with Born-von
Karman periodic boundary conditions.

One can then write the equations of motion :

Mü(na) =−dU har m

du(na)
−Mω2e i i (kna−ωt ) =−2K (1− cos(ka))e i (kna−ωt ) (1.6)

ω and k are thus linked by :

ω(k) =
√

2K (1− cos ka)

M
= 2

√
K

M
si n|ka/2| (1.7)

This is the dispersion relation for a one dimension monoatomic chain of atoms with Born-von

Karman periodic limit. It has been plotted on figure 1.3.1. It is interesting to notice that the

group velocity is given by : vs = ∂ω/∂k. For k → 0 the dispersion relation becomes linear. And

for k =±π/a the speed of sound becomes zero.

In the case of a diatomic chain of atoms, with two different interaction energies, the dispersion

relation has another branch. This branch has a peculiarity : ω(k = 0) 6= 0, and is almost flat

(see figure 1.3.1). The phonons of this branch have a higher frequency, and interact mostly

with photons. Therefore the higher branch is referred to as optical. The lower branch is

called acoustic, because it is responsible of the transport of sound. As the speed of sound is

equal to the derivative of ω, optical phonons will not contribute to heat transport. Also, at

low temperature, the optical branches are not populated. Hence, in our case, only acoustic

phonons will be investigated. These acoustic modes are also called propagative modes because

they carry energy.

One can write the general case for a three dimensional monoatomic crystal. The typical sample

in our study is a nanowire. Our nanowires are doubly clamped beams which cross section
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Figure 1.5: Dispersion curve for a one dimensionnal diatomic chain of atoms with Born-von
Karman periodic boundary conditions.

is around 100 nm × 100 nm. Thus there is still about 200 × 200 atoms in one cross section.

A nanowire cannot be considered as a one dimensional chain, but as a three dimensional

medium with confinement, just like a classical beam (this dimension aspect will be discussed

in the section 1.3.2). Then 3 different types of acoustic waves will propagate in a nanowire :

one longitudinal and two transverses.

In a three-dimensional crystal, such as Si, the dispersion relation will depend on many factors,

such as the propagative direction, the interaction with the neighbors, the lattice parameters,...

However for all acoustic modes, the dispersion relation can always be considered as linear for

small wave vectors. Thus the relation : ωi = vi .ki , (where i stands for the mode, and v is the

group velocity) will always be valid in our studies.

When the wire is small enough to be considered as one dimensional (this will be discussed in

section 1.3.2), a flexural mode will appear. This mode is also an acoustic mode, and can be

considered as linear at small wave vectors.

The wave vector k = 2π n/aN is quantized, so will beω. The energy of the mode is (n+1/2)ħω.

The quantum number n is defined as the number of phonons of wave vector k and at the

frequency ω. The thermal energy is the sum of all these phonons (the s subscript is for the

different modes):

E =∑
k,s

(
nk,s +

1

2

)
ħωs(k) (1.8)

1.3.2 The two characteristic lengths for phonon transport

As phonon transport is concerned, two lengths are important : the mean free path and the

phonon wavelength.

Physically, the phonon mean free path is the distance a phonon will travel before being
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1.3. Phonons

Figure 1.6: The dominant wavelength of phonons in Si against the temperature, in a log-log
scale.

inelastically scattered. As a phonon is defined by its wavelength, a modification in its energy

leads to a new definition for the phonon. Inelastic collisions may be of different types (phonon-

phonon, phonon-electron, phonon-defect,...). At low temperature in dielectrics materials,

only the crystalline defects will affect phonon transport, which means that phonon can travel

centimeters into a single crystal. On the contrary, in a nanowire, the effect of surface becomes

predominant. This has been studied especially by Casimir [4] and Ziman [5, 3], and will be

presented in section 1.4.3 and 1.4.4.

The second significant length scale is the wavelength. To calculate it, the mostly used formal-

ism is called the dominant wavelength approximation. The principle is similar to blackbody

emission of photons, with an energy density following Planck’s law. At the temperature T0,

phonons will be emitted with frequencies determined by a Planck’s law. Thus the majority of

the phonons will have an energy approximatively equals to the maximum of the Planck’s law :

hνmax = 2.82kB T0; where h and kB are the Planck and Boltzmann constant respectively. In the

dominant wavelength approximation, it is assumed that the heat is carried predominantly by

phonons of the same frequency. The model made by Debye considers a maximum frequency

for the phonons. It changes the value of 2.82 by 3.83. Measurements of the phonons that

contribute the most to heat storage was made by R. O. Pohl and T. Klistner [6]. These mea-

surements show that hνmax = 4.25kB T0. The dominant wavelength (λ= vs ; vs is the speed of

sound) is then given by :

λDom = hvs

4.25kB T0
(1.9)

To know if a wire can be considered as one dimensional or three dimensional, one must

compare the cross section of the wire with the phonon dominant wavelength. If the cross
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section is large as compared to the phonon wavelength, then the wire is three dimensional. On

the contrary, if the cross section is small compared to the wavelength, the wire is considered

as one dimensional. The samples studied in this thesis have a cross section around 100 nm

× 100 nm. Thus it is the intermediate case where the cross section is of the same order of

magnitude as the wavelength. The measurements of thermal properties will then depend on

the dimension of the system. Therefore these measurements will also show if the wire can be

considered as one or three dimensional.

1.4 Phonon transport at low dimensions and low temperatures

1.4.1 Introduction

A phonon, as defined in the first section, is a plane wave. The transport of such a wave has

been understood for a long time. However, it can also be defined as a quasi-particle. The same

rules as for electrons can thus be applied. Two differences are that phonons are bosons and

electrically neutral. However the biggest difference between electronic transport and heat

transport is within material properties. In terms of electronic transport, there exist almost

perfect insulator materials, and on the contrary materials with almost no electrical resistance.

This is not the case with phonons. Electronic transport can be measured with the electrical

conductivity, whereas the heat transport is given by the thermal conductivity. For instance

the electrical conductivity of silver is 6.105 S.m−1, whereas it is around 10−17 S.m−1 for glasses.

Conversely, the thermal conductivity of silver (which is one of the best thermal conductors) is

4.102 W.m−1.K−1, and in glass wool (a material often used in thermal insulation), the thermal

conductivity is 4.10−2 W.m−1.K−1. Because of this, phonons are quite difficult to guide. To

improve phonon control, one can use nanofabrication. When the size of a nanosystem is on

the same order of magnitude as the characteristic lengths of phonons, phonon transport will

be modified. This is the new field of nanophononics.

In this section basic notions regarding thermal properties will be presented. Then the impact of

nanostructuration will be investigated, with models taking into account both low dimensions

and low temperatures. Finally, some special nanostructures which have effect on phonon

transport will be discussed.

1.4.2 Heat Capacity, and thermal conductance

Four notions will be presented that are necessary to understand thermal properties in matter :

heat capacity and specific heat, thermal conductance and thermal conductivity.

Heat capacity (C ) represents the capacity of a body to change its temperature with a given

amount of heat. It is defined by the ratio of heat energy (Q) transferred to a body to the

resulting change of temperature : C =∆Q/∆T . It is an extensive property. When expressing

the same phenomenon as an intensive property (depending just on bulk material), the heat
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1.4. Phonon transport at low dimensions and low temperatures

capacity is divided by the amount of substance and is then called specific heat (c). As a general

statement, one has to keep in mind that heat capacity is related to heat storage.

Thermal conductance (K ) and thermal conductivity (κ) are characteristic of how a material

conducts heat. If a body is heated at one side, temperature will tend to homogenize in all the

body. Thermal conductance links the dissipated energy to the temperature gradient created,

by K = P/∆T . Thermal conductivity is the related intensive property while conductance is its

extensive version.

Heat capacity and specific heat

Heat capacity is defined by Cv = ∂U /∂T , where U is the internal energy. As phonons are

bosons, they follow Bose-Einstein statistics [1, 2] :

nk,s =
1

exp(ħω/kB T )−1
(1.10)

Injecting equation 1.10 in equation 1.8 leads to :

U =∑
k,s

1

2
ħω(k)+ ħω(k)

exp
(ħω(k)

kB T

)
−1

(1.11)

The first term corresponds to the zero level of the energy. It is a constant and can be neglected.

Heat capacity is then :

Cv = 1

V

∑
k,s

∂

∂T

ħωs(k)

eħωs (k)/kB T −1
(1.12)

To give an analytical expression of this equation, one can make some approximations. Two

models are often used because of their accuracy with experimental data. The Einstein model,

which considers that all phonons have the same frequency; and the Debye model, which

considers that the dispersion relation is linear (ω = vsk) until a limit wave vector kD . The

Debye model usually provides a better accuracy of experimental results, especially at low

temperature. kD is defined by the density n, with n = k3
D /6π2. One can then define a Debye

frequency : ωD = kD vs , and a Debye temperature : ΘD =ħωD /kB . In this model, heat capacity

becomes :

Cv = 9nkB

(
T

ΘD

)3 ∫ ΘD /T

0

x4ex d x

(ex −1)2

−→
at low T

234nkB

(
T

ΘD

)3

(1.13)

The last term of this equation is for a three dimensional material. It is interesting to notice

that Cv has a cubic dependence with the temperature. In this Debye model, heat capacity is

actually proportional to T d , where d is the dimension of the system studied.
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Chapter 1. Physics of phonons in nanostructures at low temperature

Thermal conductance and thermal conductivity

Thermal energy can be stored by phonons in matter. Acoustic phonons have a non-zero group

velocity. They are propagative and so, transport heat along a body. If there is a temperature

gradient along the x axis, a thermal current j (x) will be created. This thermal current can be

written as :

j (x) = 1

V

∑
k

vx E(k) f (k,p) (1.14)

where V is the volume of the system, vx the phonon velocity, E the energy of the phonons,

and f the distribution function in the (r,p) space. Determining this distribution function is

the main problem. To do so, one can use Boltzmann equation, which describes phonons as a

classical particles gas :

∂ f

∂t
+ dr

d t
.∆ f + dp

d t
.∆ f =

(
∂ f

∂t

)
col l

(1.15)

The term on the right of equation 1.15 is the collision term. Within the relaxation time

approximation one can write :

(
∂ f

∂t

)
col l

=− f − f0

τ
(1.16)

where f0 is the equilibrium distribution function (Bose-Einstein distribution for the phonons),

and τ a characteristic diffusion time.

Using the hypothesis of stationarity (∂ f /∂t = 0) and without external forces (dp/d t = 0), one

can use equation 1.16 to solve equation 1.15. The distribution function is then :

f (r,k) = f0 −τd f

dT
v.∆T (1.17)

This solution is quite interesting in itself, as a temperature gradient will create a deviation

from the equilibrium function for the phonons, along a specific space direction. Heat transfer

will thus be created. Using this solution with equation 1.14 leads to :

j =∑
s

∫ ωmax

0
dω

∫ 2π

0
dφ

∫ π

0
dθ vxħω( f0 −τd f

dT
v.∆T )

D(ω)

4π
(1.18)

This equation has been obtained by changing the sum over k in equation 1.14 by an integral

over frequency. D(ω) = dk/dω is the phononic density of states. If the temperature gradient is
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1.4. Phonon transport at low dimensions and low temperatures

just along one direction, then ∆T = dT /d x, and one can make a comparison with Fourier’s

law :

j = κ
(
−∂T

∂x

)
(1.19)

where the coefficient of proportionality κ is defined as the thermal conductivity. With equa-

tions 1.19, 1.18, and 1.12, one can find a direct relation between κ and Cv :

κ= 1

3
ρCv vsΛ (1.20)

whereΛ= vsτ is the mean free path, vs is the speed of sound, and τ is the collision rate.

This kinetic relation is valid at low temperature, when collision processes conserve total

phonon momentum.

Thermal conductance (K) and thermal conductivity (κ) are related via the following equation :

κ= K
L

S
(1.21)

where L is the length of the sample and S the section.

As it has been said, thermal conductivity is an intensive property and conductance an extensive

one. In the equation 1.20, one can notice the dependence with the mean free path of the

conductivity.

At low temperature, in a nanowire for instance, the mean free path depends on the geometry of

the system studied. Therefore thermal conductivity also depends on the system studied. It is

then more appropriate to describe heat transport at the nanoscale with thermal conductance.

Thus when two samples do not have the same size, a consistent normalization is needed. This

normalization must take into account the size difference, which includes the mean free path.

A model made by Casimir [4] will help us to fulfill this condition.

1.4.3 The Casimir model

In a previous section, the mean free path (MFP) has been defined as the distance between two

inelastic collisions. The probability of a collision decreases with respect to the temperature.

Therefore the mean free path increases. When it becomes larger than the dimensions of the

system, the most probable collision will be with the surface. No other collision processes can

happen in a single crystal nanowire at low temperature. Casimir, in 1938, postulates that a

surface is diffusive [4]. In diffusive surfaces, incident phonons are systematically absorbed and
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re-emitted following Planck’s law. This corresponds to an infinitely rough surface (the surface

is rough at all length scales). The surfaces of the nanowires act as black bodies for phonons. In

a nanowire, the MFP is then limited by the cross section. With the kinetic equation (equation

1.20) Berman et al. demonstrate that it leads for the thermal conductance [5]:

KC as = 3.2×103

(
2π2k4

B

5ħ3v3
s

)(2/3)
e ×wΛC as

L
T 3 (1.22)

where ΛC as = 1.12
p

e ×w is the phonon Casimir mean free path for a rectangular shape

phonon conductor, e refers to the thickness and w to the width of the nanowire, L being its

length and vs the sound velocity. In this model it is assumed that the mean free path does not

depend on temperature.

In this quite simple model, the thermal conductance presents a cubic dependence with

temperature. This dependence is in good agreement with experiments [7, 8, 9]. The limit for

this model happens when the surface cannot be considered as diffusive. In other words, some

phonons are specularly reflected on the surface due to their large wavelength.

1.4.4 The Ziman model

As shown in the previous section, the limit of the Casimir model occurs when one cannot

consider the surface as diffusive for every phonon wavelength. This limit will be determined

by the object which is reflected by the surface, the phonon in our case.

To illustrate this process, an analogy with a ball bouncing to a wall can be made. If the

roughness of the wall is large compared to the diameter of the ball, the outbound may go in

every possible direction. On the other hand if the diameter is larger than the roughness, then

the ball will bounce according to Snell’s law. It is a specular reflection. For the phonons, the

diameter of the ball will be its wavelength. If the wavelength is small compared to the mean

value of the roughness, then the surface will be diffusive. On the other hand, if the wavelength

is larger than the mean value of the roughness, then a specular reflection happens for the

phonon. This will contribute to increase the phonon MFP.

To describe this effect, Ziman and coworkers [5, 3] consider a phonon coming normally to

the surface. This phonon has a probability p to have a specular reflection. p will depend on

both the roughness of the surface and on the wavelength of the phonon. Thus, one may write

p(λ,η); η being the root mean square of deviation of the height of the surface. One may call η

the asperity parameter, qualifying the roughness.

The calculation of p(λ,η) can be done using rather simple arguments. It is the same as a wave

reflecting on an irregular surface. A reflected wave (whose wavelength is λ) will have a phase

shift φ by amounts depending on the height y(x) of the surface at the position x, measured
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1.4. Phonon transport at low dimensions and low temperatures

above or below some reference level parallel to the surface. φ is given by :

φ= 4πy(x)/λ (1.23)

The statistic of this phase shift, especially its variance, is what is interesting. The variance is

defined by :

φ2 = 16π2

λ2 η2 (1.24)

The exact solution of the reflected wave is not interesting in our case. The only waves we are

interested in are those running back along the path of the incident one. The probability of

having such reflected waves gives the probability of having a specular reflection :

p(λ,η) = exp(−πφ2) = exp

(
−16π3η2

λ2

)
(1.25)

However the description of a single parameter η is too restrictive to apply to real surfaces. A

more realistic way is to take into account a distribution probability P (η) for η itself. It is now

possible to define an average value of p(λ) :

p(λ) =
∫ ∞

0
P (η)exp

(
−16π3η2

λ2

)
dη∼

∫ λ/4π

0
P (η)dη (1.26)

This means that one of the priorities will be to determine the distribution of asperities in our

sample. It has already been done in our group [10]. I will show the result in the chapter 2.

In the rest of the thesis I will only speak about p(λ), even when it will be written p(λ) or p.

1.4.5 The universal quantum of thermal conductance

In 1988, two groups independently demonstrated the quantization of electron transport

through a single ballistic channel [11, 12]. A ballistic channel is when electron’s movement is

impeded only negligibly by scattering. The conductance (G) changes in quantized steps of

g0 = e2/h when channels are open, through a gate voltage (see figure 1.7). To achieve that, one

can be in the adequate conditions defined by the sample. It was a real technological challenge,

and was made possible by using both cryogenics and microelectronic techniques.

One-dimensional phonon transport should also be quantized, as shown in 1983 by Pendry and

coworkers [13]. It has then be formally demonstrated by Rego and Kirczenow in 1998 when the

heat carrier are confined within dimensions that are small compared to their characteristic

15



Chapter 1. Physics of phonons in nanostructures at low temperature

Figure 1.7: Schematic representation of a quantum point contact. When a voltage is applied
to the gate, one can control the conductance from contact 1 to contact 2. In appropriate
conditions, defined by the sample, the electrical conductance is found to vary in discrete steps
of g0 = e2/h with respect to the applied gate voltage.

Figure 1.8: Schematic representation of a nanowire connected to two thermal reservoirs. If
T1>T2, then heat will flow along the x axis from reservoir 1 to 2.
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1.4. Phonon transport at low dimensions and low temperatures

wavelengths [14]. They started with the Landauer energy flux for a nanowire connected to a

hot and a cold reservoir (see figure 1.8) :

Q̇ =∑
α

∫ ∞

0

dk

2π
ħωα(k)vα(k)[ fhot − fcold ]ξα(k) (1.27)

where α is the mode index, ωα(k) is the dispersion relation for the phonon with wave vector

k, vα(k) is the group velocity, fi (ω) = 1/(ehω/kB Ti −1) represents the thermal distribution of

phonons in the reservoirs, and ξα(k) is the transmission probability through the wire.

Two assumptions can be made. The cross sectional area of the wire is small enough (hundreds

of nm2) to produce finite gaps in the dispersion relation; And the contact between the thermal

reservoirs and the ballistic quantum wire is perfectly adiabatic (ξα(k) = 1). The thermal

conductance K is defined by K = Q̇/∆T , where ∆T = Thot −Tcold is the temperature gradient

between the two reservoirs. One can then introduce K in equation 1.4.5 and solve it. For the

massless mode (the one which ω(k = 0) = 0, i.e. the acoustic branches), it gives the remarkable

result :

K = k2
Bπ

2

3h

(
TR +TL

2

)
Nα (1.28)

Where Nα is the number of massless modes. As it has been seen, 4 acoustic branches exist in a

nanowire. In the limit ∆T → 0 this result leads to :

KQ = k2
Bπ

2

3h
4T (1.29)

This conductance is quantized for each mode. Furthermore, in this formula, no condition on

the material, nor on the sample, nor on the heat carriers, is required. This means that this

formula is also valid for the electrons (it can be found with the Wiedemann-Franz law, see

section 1.6, and has been measured by Chiatti et al. [15]) and photons (it has been formally

measured by Meschke, Guichard and Pekola [16]). The universal quantum conductance by the

phonons has been measured in only one experiment by Schwab et al. [17, 18]. Unfortunately

this measurement has never been reproduced. A more precise description of this experiment

will be presented on section 2.2.4.

To conclude, a universal quantum of thermal conductance has been shown theoretically

[13, 14] and measured [15, 16, 18]. The conditions required to have this conductance are :

ballistic heat carrier in a one dimensional wire and a transmission coefficient between the wire

and the reservoirs close to one. As the dominant phonon wavelength is inversely proportional

to the temperature, in a nanowire, one may see the transition when the transport can be

considered as one dimensional (KQ ) or three dimensional (Kcas). This has been plotted in

figure 1.9. The transmission coefficient will be discussed in the next section.
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Chapter 1. Physics of phonons in nanostructures at low temperature

Figure 1.9: Theoretical thermal conductance normalized by four times the quantum of ther-
mal conductance with respect to the temperature. One can see the transition between a
one-dimensional behavior at low temperature and a three-dimensional behavior at high
temperature.

1.4.6 The junction with the thermal bath

The difference in the density of states between a one-dimensional and a three-dimensional

medium leads to boundary reflection of propagative waves. A nanowire is connected to two

thermal reservoirs. A thermal resistance (or thermal conductance) appears at the interface. If

this conductance has the same order of magnitude or lower than the conductance of the wire

then it must be taken into account in our measurements. Therefore one must know the value

of the contact conductance because it may impact the measurements presented in this thesis.

One of the first and complete theoretical works has been made by Cross and Lifschitz [19].

Their starting point is the Landauer energy flux equation. They are studying it in the approxi-

mation that the temperature gradient created is small compared to the temperature of the

sample. This leads, as in the previous section, to a conductance determined by the transmis-

sion coefficient. To calculate the transmission coefficient, they use two models. The first one

gives the transmission for all modes and all wave vector. It uses a scalar approach. A scalar field,

the displacement for instance, is calculated with a basic wave equation (∂2φ/∂t 2 = v2∇2φ).

The problem lies in the system chosen for the study and especially the surface of this system.

Cross and Lifschitz use the geometry shown in figure 1.10. On the edges, they used a stress

free condition. Then, they solve for each mode the propagative wave both inside the nanowire

and the reservoir. To calculate the total transmission coefficient, one must integrate over all

the modes. Their work is based on previous results by Angelscu et al. [20].

So Cross and Lifschitz have performed a full calculation of the transmission coefficient for

the scalar case. Then they present another calculation, where the dispersion relation and the
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1.4. Phonon transport at low dimensions and low temperatures

Figure 1.10: Geometry for the calculation of the transmission coefficient. Stress-free boundary
conditions are assumed on the edges.

displacement are given by the relation between stress and strain tensors. The full development

can be found in any standard text on elasticity, for example Landau and Lifshitz [21]. The

dispersion relation can be calculated numerically. To have an analytical result, one must use

a Taylor expansion. Then when the wave vector k is small in comparison with the inverse

of the width of the nanowire (bk,Bk << 1; b and B are the dimensions shown in figure

1.10, k is the wave vector), one can find analytical results for both dispersion relation and

transmission coefficient. Both models give in this approximation the same results. This leads

to a transmission coefficient :

T (k → 0) = 4bk for the longitudinal mode;

T (k → 0) = 0.6bk for the torsional mode;

T (k → 0) = 2.3bk for the flex bend mode;

And T (k → 0) = (bk)3/3 for the in-plane bend mode.

This work was performed for a rectangular nanowire connected to a two dimensional thin

plate.

The same work has been made by Chang and Geller [22] in the case of a cylindrical nanowire

connected to a semi infinite three dimensional solid. The new relations to calculate the

transmission coefficient in this case are :

T (k) = 1.91(bk)2 for the longitudinal mode;

T (k) = 1/6∗ (bk)4 for the torsional mode;

And T (k) = 0.268(bk)5 for the two flexural modes.

Then the transport will be dominated by longitudinal phonons at low temperature (i.e. low

energy phonons). Prasher and Majumdar have calculated the thermal conductance with the

transmission for the longitudinal case [23] :

Kc = 2π3

15

k4
B

ħ3

0.923 b2

v2
s

T 3 (1.30)
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Chapter 1. Physics of phonons in nanostructures at low temperature

where b is the radius of the nanowire.

This result will be of importance as it gives a numerical value for the contact conductance.

It may be compared to our experimental results. The wire conductance and the contact

conductance are in series. If the theoretical value of the contact conductance is higher than

our measured conductance, it will be a sign that the contact conductance plays no role in our

measurements. This will be further explained in detail in chapter 3.

Another interesting study was made by Chalopin et al. [24]. The nanowires studied have square

edges from 1 nm to 10 nm, and the temperature ranges from 1 K to 100 K. They use the diffusive

limit approximation : twi r e→bath = Cbath vbath/(Cbath vbath +Cwi r e vwi r e ) ; Cbath ,Cwi r e are

the heat capacity of the bath and the wire respectively, v the group velocities. The product

C .v is calculated from the temperature derivatives of the heat fluxes. To do so, one needs

to know the total dispersion relation in both the nanowire and the thermal bath, and then

determines the group velocities and the eigenfrequencies. The contact conductance is then

KC = twi r eCwi r e vwi r e . They compare this conductance to the intrinsic conductance of the

nanowires, which is estimated to be four times the universal quantum of thermal conductance.

They found the thermal contact conductance to be smaller than the intrinsic conductance

of the nanowire. This means that contact conductance dominates the heat exchange in the

case of these nanowires. This work however considers the wire as a perfect one-dimensional

structure. It should not be the case in our works, since the section of our nanowires are bigger

than the dominant wavelength.

Other interesting works were made with other methods. For instance, W.-X Li, T. Liu, and

C. Liu [25] used a scattering matrix method to calculate transmission coefficient through an

abrupt junction. This work was made from wires of dimension 15×15 nm, 18×18 nm and

20×20 nm. They are joined to a cavity of dimension 20×20 nm. This is quite different than

the junction between a nanowire and bulk material. Also, these authors made their study for

temperature between 0.1 K and 1 K. They found that the transmission coefficient is strongly

impacted by the junction. The thermal conductance does not follow the same behavior for

the smaller wire. Green function was also used in a work of J. Li et al. [25]. However they

investigate an atomic wire, which is very different than our samples.

Nevertheless all these works shows that transmission coefficient can be affected by an abrupt

junction between the nanowire and the thermal bath.

To decrease the influence of the contact, one can adapt the shape of the interface. Rego and

Kirczenow [14] demonstrated that a nanowire, having a catenoidal contact with the reservoir,

should have a transmission coefficient close to one within a certain range of temperature.

Their model is only valid for longitudinal plane waves. They calculated the equation of motion

for a wire which cross section varies as a cosh2. Tanaka et al. implemented this work including

all the acoustic branches and the two lowest optical modes [26]. They found similar results

as Rego’s group. The transmission coefficient should be close to one, leading to a plateau

at four times the universal quantum of thermal conductance. This is quite exciting because
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1.5. Phonon inside amorphous materials

Figure 1.11: Thermal conductivity of several amorphous solids. This figure is taken from the
reviewl by Pohl et al. [27]. The conductivities of all glasses measured to date below 1 K lie
in the range spanned by the two dashed straight lines shown here, separated by the double
arrow.

such a nanowire is realizable with our fabrication process. However the temperature range

of the plateau should be between 10 mK and 100 mK, just under the minimum temperature

available with our refrigerator. In chapter 3 measurements made on this kind of sample will

be presented.

1.5 Phonon inside amorphous materials

Until now, phonons have been described in the case of crystalline materials. In such materials,

it is quite relevant to describe the atoms as masses linked by strings. However in amorphous

materials this description is not appropriate. Furthermore, in these materials, the chemi-

cal composition and the physical structure at the microscopic level could hardly be more

diverse. And yet, at temperatures below 1 K, the behavior of almost all amorphous materials is

qualitatively similar [27]. These common features include a nearly linear specific heat and

a thermal conductivity roughly proportional to T2 (see fig. 1.11). As thermal conductivity

is concerned, not only is this universality qualitative but also quantitative. In one order of

magnitude, nearly all measured thermal conductivities can be found. Moreover, around 1-10
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Chapter 1. Physics of phonons in nanostructures at low temperature

Figure 1.12: Energy E of the system as a function of a generalized coordinate x, measuring
position along a line connecting two nearby local minima of E.

K, there is always a plateau, the thermal conductivity being approximately constant over about

a decade in temperature. At higher temperatures, the thermal conductivity becomes roughly

proportional to the temperature. In spite of much theoretical effort, this universality remains

poorly understood.

The predominant explanation up to date to understand the physic of amorphous materials at

low temperature was made almost simultaneously by Phillips [28] and Anderson, Halperin

and Varma [29, 30]. The main hypothesis of this model is as follow : in any glass system there

should be a certain number of atoms (or group of atoms) which can sit more or less equally in

two equilibrium positions (see figure 1.12). Then, these authors investigate the case in which

only tunneling allows transitions between the two states. In this case, these authors found

that the specific heat is given by :

C = π2

6
k2

B T n(0) (1.31)

where n(0) is the density of tunneling states (number of tunneling states per unit volume) for

the energy barrier close to zero. Determining the exact value of n(0) is not possible. However

one can find it by a fit of experimental data, and see if it is consistent with available information.

For instance, Anderson et al. [29] found for fused silica : n(0) = 0.04 states per eV, per SiO2

group. The total number of group of atoms with energy barrier close to zero is then estimated

as 1/250 of the total number of SiO2 group. They claim that it seems to be a reasonable

number.

The thermal conductivity can also be calculated through the kinetic relation with heat capacity

(equation 1.20). The only problem is for defining the mean free path in this expression. As the

mean free path is given by the collision rate, it will not be the same as in a crystalline material.

Beside, the phonons which contribute to the thermal transport may not be the same that the
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1.5. Phonon inside amorphous materials

ones which contribute to the specific heat. The idea of Anderson et al. is to consider that the

phonons which have a resonant tunneling through the two energy wells are involved in the

thermal transport. Then the mean free path can be written as :

Λ= 1

σν
(1.32)

where σ is the scattering cross section and ν the number of resonant scatterers per unit

volume.

Determining σ can be done using the relation σ= 4πv2
s /ω2 with the frequency ω coinciding

with the splitting energy of the two level system. However the density of resonant scatterers is

not easy. To estimate it, one must introduce unknown parameters describing the two level

system. Anderson and coworkers finally found for the mean free path :

Λ= 1

π2v2
s

ω3
0

n(0) D
ω−1 (1.33)

where ħω0 is an energy of the same order of magnitude as the zero-point energy and D is a

parameter depending on the material.

The fact that the mean free path is inversely proportional to the frequency fully agrees with

experimental studies [31]. This is quite intuitive. In other words, the phonons which con-

tribute the most to the heat transport are the phonons with the highest wavelength (ω= v/λ).

However, one can argue that the heat capacity was previously demonstrated to be linear with

the temperature. With the kinetic relation (equ. 1.20), this would mean a proportionality

between the MFP and the frequency. This is not true, because at temperatures around 1 K

and higher, for most of the amorphous materials, the heat capacity is cubic dependent to

the temperature. The heat capacity dependence with respect to the temperature is thus :

C = A.T +B.T 3, where A and B are parameters, which depend of the materials studied [31, 32].

This model does not take into account the anomalous amorphous materials (the ones which

do not exhibit the universality behavior). If the model were complete, one should have an

explanation for these exceptions. The model could be adapted with the fact that the energy

barrier is too high to have any tunneling state, for instance. This should come from the fact

that the lattice is overconstrained. However it is not the case for the anomalous materials

detected [27].

Leggett was also critical towards this model [33]. In their formulas, Anderson et al. use many

assumptions concerning the two level system. But these assumptions are sometimes made

rather to fit the experimental data, than with a proper physical argument. Leggett takes the

example of the ultrasound velocity shift. The ultrasonic attenuation per unit wavelength

can be expressed considering very general assumptions by a Kramer-Kronig relation to the
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Chapter 1. Physics of phonons in nanostructures at low temperature

coefficient α of ln T in the ultrasound velocity shift ∆c/c. In the two level system model, α is

given by :

α= γ2
t (dn/dε)

ρv2
t

(1.34)

where ρ is the mass density, vt the speed of transverse sound, dn/dε the density of states of

the two level system per unit energy, and γt the two level system transverse phonon coupling

constant.

These four parameters are completely independent inputs. However, all the four parameters

fluctuate by less than a factor of ten in a significant number of materials, and the maximum

fluctuation of α is a factor 1.8. Such a random coincidence make one feel that something is

missing in the model. Leggett also developed a model using an analogy with the Ising model

for a spin glass. However, this model does not give the proper order of magnitude for the

thermal (and acoustic) properties.

To conclude, the physics of heat transport in amorphous materials is still far from being fully

understood. The mean free path of the phonons is still a characteristic length which can give a

useful piece of information on the underlying physics. Therefore, further studies of the mean

free path may help to get a better understanding of the thermal properties of amorphous

materials, especially at low temperature.

1.6 Thermal transport by electrons

Similar to the calculation of the phononic heat capacity, the electronic heat capacity can be

calculated by Ce− = ∂U /∂T [1]. The mainly used approximations are a free electron gas, with a

Fermi level large compared to the electrons thermal energy. These approximations give the

result that the specific heat of electrons is linearly dependent on the temperature :

Ce− = π2

3
D(EF )k2

B T (1.35)

where D(EF ) is the electrons density of state at the Fermi level. This linear dependence implies

that in metallic materials, at low temperature, the electronic heat capacity is higher than the

phononic one (which is cubic with respect to the temperature, cf. equation 1.13).

The kinetic description used to determine the phonon thermal conductivity does not take

into account the behavior of the statistics of the carrier. For electrons, one can make the same

calculation as for the phonons. It leads to the following expression for the thermal conductivity

of electrons :

κe− = 1

3
ρCe−v f le− (1.36)
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where ρ is the mass density, v f is the Fermi speed and le− is the electronic mean free path.

As the Fermi velocity is three orders of magnitude higher than the speed of sound, in metals

the thermal transport will be dominated by the electrons. In semiconductor materials, and

at low temperature, the electrons cannot move (the thermal energy is not high enough for

electrons to cross the semiconductor gap). Therefore, the thermal transport will come from

the phonons.

A final note can be made on the Wiedmann-Franz law, a relation linking the thermal (K ) and

electronic (G) conductance in metals :

G

K
= π2k2

B

3e2 T = L0T (1.37)

where L0 is the Lorentz number equal to 2.45.10−8 WΩK −2, and e is the elementary electronic

charge equal to 1.602.10−19 C .

This law has been experimentally verified [1]. It is understandable as electrons transport

both heat and electricity. Moreover it is interesting to notice that by replacing the electronic

conductance by the quantum of conductance G0 = 2e2/h then the thermal conductance

equals the quantum of thermal conductance, as defined in section 1.4.5.

1.7 Nanophononics

Electronics has enabled technological developments that have transformed many aspects

of our lives. Phononics, however still need to be further developed. This can be explained

by multiple reasons. Phonons are massless and chargeless, which make them difficult to

control. Furthermore, no good heat conductor material, neither good heat insulator material

are available. As heat flows in all materials, heat is difficult to control. Another reason which

makes the development of phononics difficult is when two bodies are in contact. In this case a

thermal resistance will appear. And typically this resistance is on the same order of magnitude

than the intrinsic material thermal resistance.

In everyday life, however, signals encoded by heat prevail over those encoded by electricity.

Manipulate and control temperature should result in energy savings improvements, and also

more accurate electronic devices. Thermoelectricity, for instance, allows the direct conversion

of temperature differences to electric voltage and vice-versa. Up to date, however no efficient

devices can be used on a power plant scale. To improve the thermoelectric effect, one needs a

material with a high electrical conductivity and a low thermal conductivity. So if one manages

to block phonons in a sample, this will pave the way to exciting technological developments.

In the phononic field some experiments have already been made[34]. A thermal diode, in

which the heat flux in one direction is lower than in the opposite direction, has already been

made by Chang and coworkers in 2006 [35]. They saw a conductance up to 7% greater in one
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direction than in the other. A proposed version of a thermal transistor has been made by

Baowen Li and coworkers [36]. Just as the case of an electronic-transistor, it can either act as

thermal switch, or as a modulator that adjusts the heat current continuously across a wide

range. The realization of such a device may open a door to build phononic logic gates.

In our group, in 2010, a serpentine was introduced in a nanowire [37]. The comparison

between such a nanowire and a straight one shows that phonon transport is affected. With

this purely geometrical effect a reduction in the thermal conductance ranging between 20%

and 40% has been measured. This kind of phonon blocking system could be used to thermally

insulate suspended devices, such as nanoelectromechanical systems.

Another way to develop phononics comes through what has been done in photonics. The

photonics field is also in development nowadays. More results than in phononics have already

been achieved. The main reason is that in the photonics field a monochromatic laser is used,

whereas in phononics, heat generates a broad distribution of phonons. For instance, photonic

crystals, among those the dielectric (or Bragg) mirror is the most famous, are highly developed.

The principle is that a periodic structure affects photon transport. The periodic structure can

be the repetition of thin layers of dielectric, or inclusions or holes in a matrix,... Phononic

crystals have been theoretically proposed with periodic structure. In 2001, Cleland and

coworkers investigated the case of a suspended nanowire with a periodically patterned cross

section [38]. At low temperature, when the wire can be considered as one dimensional and

the transport ballistic, this geometry opens a gap in the dispersion relation. For a temperature

range defined by the period of the variation, the phonon distribution passes through the gap

frequency. Thus the thermal conductance should be reduced according to the amplitude

variation. The same calculation can be done for holes in a membrane [39, 40, 41, 42].

All these systems are quite exciting, as they can control phonon flow, and are feasible with

regular nanofabrication. The measurement of these systems however is quite challenging, as

it means measuring conductances smaller than one picoWatt per Kelvin, the amount of heat

will then be on the order of femtoJoules.

1.8 Conclusion

Theoretical tools to understand thermal transport in nanowire at low temperature have been

presented. The heat carriers, known as phonons, have two characteristic lengths. When

these lengths are around the same order of magnitude as the sample size, both classical and

quantum effects are expected (reduction of the mean free path and quantization for instance).

Finally, to measure the intrinsic thermal conductance of a wire, a transmission coefficient

close to unity from the wire to the thermal bath is needed.
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2 Experimental techniques for thermal
transport in small systems and at low
temperatures
2.1 Introduction

Measuring thermal conductance of nanosize objects at low temperature is quite challenging.

Nowadays, measurements at low temperatures and thermal conductance measurements are

well known. Nanotechnology has also been well developed today. Combining all these tech-

niques introduces difficulties. For instance, the value of the quantum of thermal conductance

is around 10−13 W/K. To measure it, as K = P/∆T , one needs a temperature gradient around

10 mK, which leads to a dissipated power P of 10−15 W. These small energies imply the use

of a low noise electronic setup. These measurements must also be performed at sub-kelvin

temperature on nanosize samples. Very few techniques allow to perform it, which explains

the lack of extended thermal measurements on low dimensional systems at low temperature.

In this work, the 3 ω method has been used. This method is adapted to low temperatures

and nanowires measurements. The advantage of this technique is its relatively easy imple-

mentation (both heater and thermometer are realized by the same object which is called a

transducer). This method also permits measurements of both thermal conductance and heat

capacity. Its main disadvantage is that the transducer introduces parasitic thermal paths to the

phonon transport. Also, for the 3ω method to be properly implemented, a local temperature

must be defined along the wire. However, when phonons are ballistic, they do not thermalize

the wire. Thus this method is not trustworthy at very low temperature (more details on this

effect can be found in chapter 3).

In this chapter, after a presentation of the 3 ω method applied to nanowires, adjustments to

fit to membranes will be presented. Then the sample fabrication process will be shown. The

final section presents previous measurements made in the group. These measurements are

important to validate a normalization process. Nanowires of different sizes will be compared.

This work was important to be able to perform further normalization. The last part of this

chapter shows that other parasitic thermal paths do not affect our measurements.

27



Chapter 2. Experimental techniques for thermal transport in small systems and at low
temperatures

Figure 2.1: The resistance of a typical sample used in our measurements. Resistance varies
significantly between 300 mK and 5 K, and remains above 100 kΩ below 10 K.

2.2 Measurement of thermal conductance

2.2.1 The 3ωmethod for nanowires

General principle

A measurement of thermal conductance is based on creating a temperature gradient (∆T )

after applying a heating power (P ). Then, measuring the temperature gradient allows to know

the thermal conductance as : K = P/∆T . In the case of the 3ω method, the power is created

through a AC current in a transducer [43, 8, 44]. This transducer is used as a heater and a

thermometer concomitantly. A resistive thermometric materials is used for such transduction.

Niobium nitride - a metal undergoing a metal to insulator transition as the temperature is

lowered - will be used for the thermometric transduction.

Niobium is a superconductor at low temperature. By doping it with nitrogen, one is able to

transform it into an insulator at low temperature [45]. This happens because nitrogen creates a

variation of the potential energy. Two phenomena are then in competition concerning electron

transport : the electronic kinetic energy tends to delocalize the electrons; and on the contrary

the disorder (introduced by the nitrogen) tends to localize them. At room temperature, the

kinetic energy dominates, so NbN remains a conductor. At low temperature, the disorder

introduced by the nitrogen dominates, inducing NbN to act as an insulator at T=0 K. This kind

of materials are known as Mott-Anderson insulators [46, 47]. The resistance of the thin film

continuously increases as the temperature decreases, making NbN a very good thermometer

(see figure 2.1). One should be aware that the amount of nitrogen and the method used for

deposition are critical elements for the disorder. Thus it will influence the metal to insulator

transition, which is described by the slope of the resistance with respect to the temperature.
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2.2. Measurement of thermal conductance

Figure 2.2: The temperature coefficient of a resistance measured on a typical nanowire. α is
higher than 0.5 K −1 until 5K. Typical platinium thermometers have αP t = 4.10−3 K −1 at room
temperature. It illustrates that this NbN transducer is a very good thermometer.

The exact stoichiometry of the niobium nitride was measured by Rutherford backscattering

spectrometry on thin films. But instead of writing the correct expression Nb1N1.6, the simplest

notation NbN will be used [48].

The slope of the resistance will give the sensitivity of the thermometer. The best way to

characterize this sensitivity is to calculate what is called the temperature coefficient α. For a

material, at a temperature T0, α is given by (see figure 2.2 for a typical α of our samples) :

α=− 1

R(T0)

∂R

∂T

)
T0

(2.1)

The 3ωmodel

By depositing a thin layer of NbN on top of a suspended wire, it is possible to heat it with an

AC current (see figure 2.3; Iac = I0 si n(ωt )), which induces a dissipated power P = RI 2
ac . Then,

one can write and solve the equation of heat transfer :

ρ Cp
δ

δt
T (x, t ) − κ

δ2

δx2 T (x, t ) = I 2
0 si n2ωt

LS
R(T (x, t ) (2.2)

with the boundary conditions T (0, t) = T0, T (L, t) = T0, and T (x,−∞) = T0; where Cp , κ, R,

and ρ are the volumetric specific heat, thermal conductivity, electric resistance and mass
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Figure 2.3: Schematic principle of the 3 ω method. In black, the electronic circuit; in red, the
temperature profile.

density of the sample at the substrate temperature T0, respectively; L is the length of the

sample between voltage contacts, and S the cross section of the sample.

To solve this equation, one must know R(T (x, t )), which is tricky as it can be seen on the resis-

tance profile shown in figure 2.1, with the temperature profile shown on figure 2.3. However,

if the variation of temperature (T (x, t)−T0) is small enough so that R(T ) can be considered

linear, one can approximate the resistance by its two first terms of the Taylor series :

R(T (x, t )) = R(T0)+R ′(T0).(T (x, t )−T0) (2.3)

Equation 2.2.1 can be solved by first using the impulse theorem. It leads to the result that ∆T

can be represented as the integral of the responses of the sample to what can be called the

instant force b si n2(ωt ) at each time interval. Then an expansion in the Fourier series can be

made, on the condition that the increase of temperature inside the wire is much lower than

the temperature T0. It gives the temperature profile in the wire :

T (x, t )−T0 =∆0

∞∑
n=1

[1− (−1)n]

2n3 × si n
nπx

L
[1− si n(2ωt +φn)√

1+ cot 2φn

] (2.4)

where cotφn = 2ωL2ρCp / π2n2κ; and ∆0 = 2I 2
0 R / (π3κS/L) is the maximum rise of the

temperature in the center of the wire. A noticeable fact is that the temperature will go from T0

to T0 +∆0 at the frequency 2ω.
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The temperature gradient ∆0 is of importance. On figure 2.3 the temperature profile is repre-

sented. The highest temperature is at the center of the wire. Thus the heat will flow from the

center to the extremities of the nanowire. The wire can then be seen as two wires in parallel of

half the total length of the wire. It is also important to notice that ∆0 must be small enough,

as it has been said, to be able to develop the resistance in Taylor series and the temperature

profile in Fourier series. Also, the heating power inhomogeneity caused by resistance fluctua-

tions along the sample should be much smaller than the total heat power. This is given by the

relation :

I 2
0 R ′L
π2κS

¿ 1 ⇔ ∆0α¿ 2/π (2.5)

Typically, ∆0 ≈ 10 mK and α≈ 0.5 K−1 so this condition is usually fulfilled.

A last point regarding ∆0 is that the measured conductance is an average measurement of the

thermal conductance over the range of temperature T0 to T0 +∆0. ∆0 being small compared

to T0 assures that the temperature of the nanowire can be estimated as T0.

The small variation of temperature induces a small variation of resistance. This variation can

be written as :

δR = R ′

L

∫ L

0
[T (x, t )−T0]d x = R ′∆0

∞∑
n=1

[1− (−1)n]2

2πn4 [1− si n(2ωt +φn)√
1+ cot 2φn

] (2.6)

One can notice that this variation appears at the frequency 2ω. The total resistance of the NbN

will be Rtot = R +δR . The voltage can then be written : V = RIac +δRIac =V1ω+V3ω. As δR is

small compared to R , the inequation V1ω >>V3ω will be always fulfilled. In the V1ω signal, the

information on thermal properties is hidden by the ohmic part. The 3ω component however

has only one term, which is related to thermal properties. V3ω can be written as (using the

root mean square notation) :

V3ω ≈ 4I 3R2α

π4K
√

1+ (2ωγ)2
(2.7)

where α is the temperature coefficient of the thermometer (see equation 2.1), I is the root

mean square value of the current (all the values will now be the root mean square of the

signal), K is the thermal conductance and γ= (LSρCp )/(π2K ) is the thermal time constant

of the nanowire. The last term is very important, because it will determine the high and low

frequency limit.

When γω→∞ equation 2.7 can be written as :

V3ω→ 4I 3R2α

π4Kωγ
= I 3R2α

4ωρCp LS
(2.8)
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Figure 2.4: In black, V3ω versus the current at the power three; in red, a linear fit of the lowest
values of V3ω.

In this high frequency regime, the heat stored in the system does not have time to relax toward

the heat bath. Hence the temperature will stay stable at ∆0. This explains the dependence

of V3ω to heat capacity only. However, as V3ω is inversely proportional to the frequency, the

signal will be very weak. This regime is called quasi-adiabatic.

On the other hand, the low frequency limit gives the thermal conductance. The low frequency

regime occurs when γ→ 0. In other words, when the frequency is lower than the one cor-

responding to the relaxation time of the nanowire (τ = C /K ). In this quasi-static regime,

equation 2.7 becomes :

V3ω→ 4I 3R2α

π4K
= I R ′∆0

π3 (2.9)

The temperature will vary slowly enough from T0 to its maximum value T0+∆0 (see figure 2.3).

The system will be sensitive to the propagation of the heat, i.e. the thermal conductance.

Preliminary measurements

Before analyzing the data, one must be convinced that this method is adequate. Thus prelimi-

nary measurements need to be performed.

As it has been said in the first part, the thermometer needs to be calibrated before any mea-

surement, by measuring its resistance versus the temperature. This will allow the calculation

of the temperature coefficient α (see equation 2.1).
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Figure 2.5: In black, V1ω versus the current; in red, a linear fit of the lowest value of V1ω.

As one can see in equation 2.7, V3ω ∝ I 3. This proportionality needs to be verified, to be

sure that the measured V3ω is coherent with the theoretical value. In the figure 2.4, one

can see V3ω ∝ I 3 at low current. When the current increases, the temperature inside the

nanowire increases too. As it has been said, ∆0 must be low enough for the 3ω method to

be performed. Especially, one needs to be sure that R(T ) can be considered as linear for the

range of temperature ∆0. At high current this will not be the case. This effect is also seenat the

fundamental frequency of the signal, see fig 2.5.

Measuring the thermal time constant (γ) is very important to know in which regime the

measurements will be done (low or high frequency). A simple way to measure it, is to fit V3ω

with respect to the frequency by A/
√

1+ (Bω)2; where B = 2γ (cf equation 2.7). This has been

done in the figure 2.6. The measurement leads to γ≈ 200µs. This sample has a length of 5µm

and a section of 200nm×100nm. This value for γ does not fit the expected volumetric specific

heat which is two orders of magnitude lower than the measured value [1, 49]. This is probably

because other cutoff frequencies play a role. We do not know yet where do these cutoffs come

from. However the presence of the plateau at low frequency implies that below 10Hz, the

regime is in a proper quasistatic regime.

In figure 2.7, the electronic setup used in our experiments is represented. The current is gener-

ated by an ultra low distortion function generator (DS 360, by Stanford Research System, less

than 0.001% total harmonic distortion), and a voltage-current converter (LC01, developped

at the Institut Néel) that permits to deliver a very low current (to below 1 nA). The voltage is

measured with a lock-in amplifier (SR830, by Stanford Research System, the input impedance

is 10 MΩ) after being amplified by a low noise preamplifier (EPC1, developped by the Institut

Néel, and sold by Celians; the noise is less than 2nV /
p

H z at 1 Hz). The low noise electronic

allows a highly sensitive measurement of the third harmonic of the signal, which is typically
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Figure 2.6: In black, V3ω versus the frequency; in red, the fit of V3ω explained in the text. This
measurement was performed at 1.7K.

200 times lower than the first harmonic (V1ω/V3ω = 200).

The value of this ratio is actually quite low, and implies that V3ω can be directly measured. In

most common 3 ω method, the temperature coefficient α is smaller 10−3 K−1. This leads to a

ratio V1ω/V3ω to be around 105. In that case, a Wheatstone bridge must be used to get rid of

some part of the first harmonic of the signal. As it has been said, this is not the case for our

measurements on nanowires.

2.2.2 The 3ωmethod for membranes

In this work, some 3ωmeasurements have also been made on SiN thin membranes elaborated

by Hossein Ftouni. In the case of such membranes, the basis of the 3 ω method are the same.

An extensive description will then not be given [50, 51].

By coupling the 3 ω method to Völklein geometry [52], one can make measurement of the

in-plane thermal conductivity of a membrane [50] (figure 2.8). Typical dimensions of these

membranes are 1 mm long, 150 µm wide, and 100 nm thick. A transducer centered on the

membrane is used to both create an oscillation of the heat flux and to measure the temperature

oscillation at the third harmonic using in that case a Wheatstone bridge set-up (figure 2.9).

The main difference with the 3 ω method for nanowires is this Völklein geometry. In this

geometry, the transducer is put on the center of the membrane. The thermal conductance

studied is not along the transducer (as it is the case for the nanowire measurements) but

between the transducer and the thermal bath (fig 2.8). The temperature is given by the 1 D
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Figure 2.7: Schematic figure of the electronic setup. Some HF filters can be added to reduce
the noise.

Figure 2.8: (a) Schematic of the membrane on which the NbN transducer has been deposited.
e is the thickness of the membrane and e’ the thickness of the NbN transducer. C’ is the
specific heat of the hatched area in red. The arrows represent the heat propagation. The hot
point corresponds to the transducer (the red part of the arrows), whereas the cold point is at
the edge of the membrane (the yellow part). (b) Schematic of the thermal system [50].
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heat diffusion equation :

∂2T (x, t )

∂x2 = 1

D

∂T (x, t )

∂t
(2.10)

where D is the diffusivity of the membrane. Calculations using a 2D model give approximately

the same results. The initial and boundary conditions are : T (x,0) = Tb and T (0, t ) = Tb ; where

Tb is the bath temperature. Solving equation 2.10 gives the expression of the absolute value of

the temperature Tm(l ) :

Tm(l ) = P0

Kp [1+ω2(4τ2 + 2l 4

3D2 + 4τl 2

3D )]1/2
(2.11)

where P0 = RI 2
0 /4 is the dissipated power, Kp the thermal conductance, τ=C ′/Kp is a thermal

time constant of the system (C ′ is the heat capacity of the hatched area in figure 2.8).

Another difference with the nanowire, is the presence of the Wheatstone bridge. In the case

of these membranes, putting the same transducer on top of the bulk sample is possible.

Therefore two almost identical resistances are deposited on the sample, one on the suspended

membrane, and one on the bulk part. A Wheatstone bridge can be made using these two

resistances (see fig 2.9). This will decrease the 1ω component of the signal to have a better

signal to noise ratio for the 3ω. However, with a Wheatstone bridge, the dissipated power

can only be made through an AC voltage (on the contrary to nanowire, where an AC current

can be used). This will give a different value of the 3 ω component compared to the previous

calculation. Using the temperature profile obtained in equation 2.11, V3ω is given by (using

the RMS notation) :

|V3ω| =
αV 3

ac (R1 +Rv )R2
e

2Kp (R1 +Re )3(R1 +Rr e f +Rv )[1+ω2(4τ2 + 2l 4

3D2 + 4τl 2

3D )]1/2
(2.12)

where α is the thermometer temperature coefficient (equ. 2.1); R1, Rv ,Re , and Rr e f are the

resistances as defined in figure 2.9.

Like in the nanowire study, we are interested in thermal transport. We thus try to work in the

quasi-static regime. Equation 2.12 can then be simplified for the low frequency limit. When ω

is low enough to neglect the last term of the denominator in equation 2.12, V3ω can be written

in a simpler form :

|V3ω| =
αV 3

ac (R1 +Rv )R2
e

2Kp (R1 +Re )3(R1 +Rr e f +Rv )
(2.13)

One may notice that in this case the proportionality V3ω∝V 3
ac is still valid. It is presented in

figure 2.10. V3ω with respect to the frequency has also been characterize to ensure that the
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Figure 2.9: (a) and (b) : Photograph of the two NbN thermometers deposited on the membrane
and on the bulk region. (c) Schematic of the electrical measurement system including HF
filter, preamplifier, and lock-in amplifier. A, B, C, and D represent the nodes of the Wheatstone
bridge. The V3ω is measured between C and D. The transducer is referred to as Re and the
reference resistance as Rr e f . The insert presents a schematic of the membrane fixed on the
temperature regulated stage covered by a thermal copper shield [50].
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Figure 2.10: [50] V3ω signal as a function of the voltage applied across the Wheatstone bridge
(Vac ) in logarithmic scales. The linear fit is in a very good agreement with experimental data.

measurements will be performed in the quasistatic regime. As one can see in figure 2.11, that

for frequencies below 10 Hz, the regime is quasistatic.

The 3 ω method has been successfully adapted to measure the in-plane thermal conductance

of thin suspended membranes. The main difference with the 3 ω method for the nanowires, is

that for the membranes, the heat propagates perpendicularly to the NbN transducer, i.e. along

the membrane width (for the nanowires heat propagates along the transducer, thus along the

length of the wire). I will present measurements on silicon nitride membrane in chapter 5.

These measurements have been made with Hossein Ftouni.

2.2.3 The Helium 3 fridge

All the measurements performed during my PhD were done on the same Helium 3 fridge.

The principle of such a fridge is to pump a liquid He3 bath to cool it down. The minimum

temperature this fridge can reach is 270 mK. The cooling system consists in two circuits. One

Helium 4 circuit, which serves as a primary stage to reach 1 K; the other with Helium 3 cools

the system down to 270 mK. Schematic representation of a He3 refrigerator has been drawn

on figure 2.12.

The sample is installed on a sample holder and glued with a PMMA resist. The sample holder

is made in copper, and has gold strips which allows the connection of the samples by micro-

bonding, a heating resistance (50 Ohms) and a commercial Ge thermometer resistance. It is

placed in a calorimeter under cryogenic vacuum, to isolate the sample from gas exchange.

The Helium 3 circuit and the 1K chamber are also in this vacuum chamber. The calorimeter is

put on a liquid Helium 4 cryostat (see fig 2.12).
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Figure 2.11: [50] V3ω absolute value and phase signal as a function of the frequency and their
respective fits (solid lines). The presence of the plateau below 10 Hz ensures the quasistatic
regime.

Figure 2.12: Schematic representation of the Helium 3 fridge used for the measurements. The
vacuum chamber is in white. One can notice the closed circuit for helium 3.
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The He3 circuit consists in a charcoal pump and a cold He3 chamber. This circuit is totally

closed to avoid He3 losses. The Helium 3 will become liquid in a capillary, thermally linked to

the 1K chamber. The He3 liquid is stored in the cold chamber. This chamber is also linked to

the charcoal pump. This pump consists in a large amounts of porous charcoal. By heating it,

it is possible to totally outgas the trapped He3. Then it will slowly absorb Helium 3 from the

cold chamber. When the pumping speed and the pressure are stabilized, it is possible to reach

temperatures as low as 270 mK. However, once the charcoal is saturated with He3, it will no

longer be able to pump it. Another heating cycle is needed to reach again 270 mK. Typically, it

is possible to keep the temperature below 300 mK for 6 hours.

2.2.4 Other method of measurement

Performing thermal measurement of nanowires at low temperature is so challenging that, not

many experimental studies have been performed. As it has been said, the problem lies in the

small energy exchange which takes place in this kind of systems. Creating and detecting a

signal under the femtojoule at low temperature is quite difficult. As thermal conductance is

concerned, the general principle is rather simple : one needs to create a temperature gradient

through a power dissipation, and then measure this gradient.

In the late nineties, T. S. Tighe, J. M. Worlock, and M. L. Roukes developed a experimental

device which allows thermal conductance measurements of nanowires [53]. In their experi-

ments, they had a 3 µm2 suspended membrane, connected by four 5 µm long bridges (whose

cross section is around 200 nm × 300 nm) to a thermal reservoir (see fig. 2.13). All this is made

in i -GaAs. Then they connect two meandering n+ GaAs conductor on the membrane through

the bridges. This pair of meanders will act as a transducer : the source will heat and the other

unbiased will act as a thermometer. The phonon thermal conductance is obtained by heating

the source transducer with a small DC current while monitoring the electron temperature of

the unbiased sensor. Their results are in good agreement with the Casimir-Ziman model. This

method, however has two drawbacks. Firstly, it requires many steps of lithography; Secondly

the bridges had n+ GaAs conductor on top of them. A parasitic thermal path is then created

and falsified some of their measurements. Especially for temperatures below 2.5 K this path

becomes increasingly important.

K. Schwab, J.L. Arlett, J.M. Worlock, M.L. Roukes improved this device (see fig 2.14) [17, 18].

First they replaced the n+ GaAs by niobium in the bridges. On the membrane, instead of the

pair of meandering, they put two Cr/Au resistors. The detection was performed by utilizing

DC SQUID-based noise thermometry. In this technique, the temperature of a resistor is

measured by placing it within a superconducting circuit that tightly couples it to a SQUID

which amplifies the Nyquist current noise generated by the resistor. All their samples are

made out of silicon nitride, because this material is easier to manipulate. They claim that even

in such an amorphous material, ballistic transport is achieved for temperatures below 1 K.

Finally they made their bridge with a width varying as a catenoid (cosh2). This could increase

40



2.2. Measurement of thermal conductance

Figure 2.13: SEM picture of the device used by Tighe et al. [53]. On the left an overall view of a
device. In the center : enlarged view of the membrane and the four bridges. One can see the
pair of meandering on top of the membrane. On the right : an side view of the device.

Figure 2.14: On the left : SEM picture of the device used by Schwab et al. [17, 18]. One can
see the catenoidal shape of the wires. On the right, the thermal conductance normalized by
4×4 times the quantum of conductance in a log-log scale. The conductance seems to follow
the three-dimensional behavior for temperature above 1 K, and approach sixteen times the
quantum of conductance for temperature below 200 mK.

the transmission coefficient between the wire and the thermal reservoirs. They found that the

thermal conductance approaches a plateau which value corresponds to the universal value of

thermal conductance (see fig 2.14). Since 2000, no further measurement has been made with

the same device, or independently reproduced.

In the group of Majumdar, a device to make thermal conductance measurements has been

developed in 2003 [54, 55]. This device consists in two membranes of SiNx connected to a

thermal reservoir by five SiNx beams (see fig 2.15). On each membrane a platinum electrode

has been patterned and connected to the electronic setup through Pt on the beams. Each

electrodes can act as both a heater and a thermometer for each membrane. An individual Si

nanowire is deposited between the two membranes, and will then thermally connect them.

This device allows measurements in a temperature range between 20 K and 320 K. They found

a quite good agreement with the Debye model for the nanowire with a diameter larger than

50 nm, and a significant variation for the ones with a smaller diameter. They say that this

41



Chapter 2. Experimental techniques for thermal transport in small systems and at low
temperatures

Figure 2.15: SEM picture of the suspended device used in the group of Majumdar [55]. One
can see the two membranes with their platinum electrodes. In this device, some electrodes
are available to measure the thermoelectric power of the nanowire which connect the two
membranes. One can hardly distinguish the carbon nanotube between these two membranes.

variation may come from a variation in the dispersion relation. As it has been said in chapter

1.3.1 due to the smaller radius of the nanowire, a folding of the dispersion relation may happen.

In their experiments, nanowires are self grown and then deposited on the sensitive part of

the sensor. If this allows a more accurate control of the geometry of the nanowire, it also

introduces a higher thermal contact resistance. But this useful device still allows them to

measure the thermal conductance of carbon nanotube [55], of controllably roughened Si

nanowires [56], and others samples. If one is able to connect the membranes through a single

nanowire with the same material (not by deposition, but by a lithography process), then it

is possible to get rid of the thermal contact. It should be possible to make measurements at

temperature below 100 mK, without any parasitic electronic thermal conductance. Such a

device is currently being developed in our group.

Other methods exists for measuring thermal properties. For instance, pump-probe techniques

allow measurements of phonons which are excited and measured by a laser beam [57, 58].

In this case, the physical properties used for thermometry is the variation of the reflectance

with temperature. The problem with this technique is that a laser beam has a size of few

micrometers. It is rather difficult to have a resolution below this spot size, thus to measure

nanoscale structures.

Finally a way to make phonons measurements has been developed at Cornell university by the

group of Robinson [59]. They adapt previous work made in the seventies with experimental

millimeter-sized devices to micrometer-size [60]. These works use the fact that in a Josephson

junction, phonons can be emitted. A Josephson junction is a superconductor-insulator-

superconductor junction. By applying a DC bias voltage (which energy is eV ), one can shift

42



2.2. Measurement of thermal conductance

Figure 2.16: [61] Left : Josephson junction generation by quasiparticle relaxation (Eph ≤ eV-2∆)
and recombination (Eph ≈ 2 ∆). eV is the bias voltage and must be higher than the gap 2∆.
Right : Josephson junction detection of phonons which energy is higher than the gap. Here
the bias voltage must be smaller than the gap.

the two Fermi levels. We will say that the left superconductor will have the higher Fermi level.

Then an electron pair in the left superconductor may tunnel through the insulator to the right

superconductor. If the bias energy eV is larger than the superconducting gap 2∆, this electron

pair will then transfer it excess energy to phonons through two mechanisms : relaxation and

recombination (see fig 2.16). Relaxation induced phonons have energy around (but not longer

than) eV − 2∆. Recombination induced phonons have energy around (but no less than) 2∆.

Thus this technique creates almost monochromatic phonons at these two energies. One can

notice that the relaxation induced phonons constitute the part of emitted phonon spectrum

whose energy may be controlled. The main drawback of this generation is that the emitted

phonons are mainly along one direction. If the Josephson junction is put on the surface of a Si

substrate, the phonons will mostly be emitted perpendicularly to the surface.

The detection of the phonon takes place in another Josephson junction. In this junction, the

bias energy is smaller than the supraconducting gap. A phonon with energy at least as large as

2∆ can transfer its energy to a Cooper pair. This pair then contributes to the tunneling current

across the junction (see fig 2.16).

In the device made by Robinson et al., generation and detection are both made by SQUIDs

(two Josephson junctions in parallel). This was made because in a single Josephson junction, a

current appears. This current avoids the phonon creation (and detection) process. In a SQUID,

by applying a magnetic field, one can get rid of this current. The phonon signal to noise ratio

is therefore enhanced. Furthermore, because of the direction of the emitted phonons, they

made their SQUID on both sidewalls of what they called a mesa (see figure 2.17).

The aim of their first measurements was to prove that their device was properly functioning.

To do so, they used different generator-detector pairs of SQUIDs, as shown in figure 2.17.
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Figure 2.17: [59] (a) and (b) are a cross view and top view of the schematic diagram of phonon
generator and detector. (c) and (d) are SEM picture of their device. Each phonon generator-
detector pair is indicated by an arrow pointing from the generator to the detector. The detector
in pair C is also used as the generator in pair D. Pair B is identical to A except that the ballistic
path in B is interrupted by a trench etched into the mesa. The measurements confirm that
phonons travel in line-of-sight from generator to detector.

During each set of measurements, they applied to the phonon generator a fixed AC current

modulation δ Ig en = 15 to 36 nA, with a stepped DC current Ig en = −1.5 to 1.5 µA (with the RMS

notation). With a lock-in amplifier, they measured the variation of current inside the detector

δ Idet . The ratio δ Idet / δ Ig en is linked to phonon transport properties. It is not straightforward

to directly get information on the phonon transport with this ratio. However, by comparing

this ratio for different pairs, one can get several pieces of information. For instance the ratio in

the pair A, which is facing on each side of the mesa, is significantly higher than the one in the

pair B, which is separated by a trench. The pair C, which is facing on each side of the mesa

with an angle around 45 ˚, has almost the same ratio as the pair A. Finally the pair D, which

lacks a line-of-sight between generator and detector, has almost the same ratio as pair B.

Their results show that phonons are truly emitted along a direction. However, the fact that

the δ Idet / δ Ig en ratio is not null for pair B and D, suggests that indirect transmission occurs

by a scattering process within the silicon. These measurements are of great importance to

validate their device. Further measurements are expected to provide a better understanding

of this ratio. Also, instead of a trench, they can place some nanowires inside the mesa, to

evaluate the impact on the phonon transmission. It is very interesting, as they do not look

for thermal phonons. Their phonons are almost monochromatic, and they can control the

phonon wavelength. Thus it should be possible to investigate more in detail monochromatic

phonon transport in different geometries.
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Figure 2.18: Schematic representation of the different steps of the lithographic process.

2.3 Fabrication

2.3.1 Silicon nanowires

The fabrication of single crystal silicon nanowires has been realized with the regular method

of e-beam lithography. Wafers of 200 mm of silicon on insulator (SOI) provided by SOITEC

have been used. These wafers are made of a thin layer of 350 nm of silicon on top; a layer

of 1 µm of silicon oxide (SiO2); and 500 µm of bulk silicon. The aim of this lithography is to

design a nanowire (having dimensions of about 10 µm × 100 nm) that is doubly clamped at

two pads (having dimensions of about 100 µm × 100 µm). By an etching process, it is possible

to suspend the wire while the pads are still attached to the bulk substrate. In figure 2.18 the

different steps are shown.

E-beam lithography

First, the Si layer on top of the wafer is thinned by thermal oxidation followed by a liquid

hydrofluoric acid (HF) desoxidation, in order to have a 100 nm (or 200 nm) thin silicon layer.

Then the wafer is separated into 1 cm2 squares. Approximatively 50 nanowires can be made
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on each square. A thin layer of a polymer resist (PMMA, diluted at 4%) is spun on top of

the sample. Then the sample is introduced in a SEM (scanning electron microscope). It is

possible to control the beam of the SEM, through a machine made by the RAITH company.

The minimal area size of the beam is 4 nm. A roughness under 10 nm is then expected. This

allows us to create any wanted shape of nanowire. The beam of electrons will break the bounds

of the polymer. An MIBK/IPA solution will dissolve the resist which has been insulated.

Then an aluminum thin layer (30 nm) is evaporated on all the sample. It will fill the holes or

be on top of the resist. This Al layer will act as a mask for the following etching process. A NMP

bath at 70˚C will then remove the resist, and the Al on top of it. On the sample, aluminum with

the wanted shape will stay on top of the sample.

The sample is then put on a reactive ion etching (RIE) chamber. A SF6/O2 plasma will etch

the silicon isotropically, whereas the aluminum will not be affected. In one minute and thirty

second, 100 nm of Si will be etched. A basic solution (MF319) will remove the aluminum of the

sample. The sample will then consist in pads and nanowires of silicon on top of oxide silicon.

Vapor HF etching

The aim is then to suspend the nanowires without affecting the pads. Hydrofluoric acid (HF)

etches oxide silicon but is inert to silicon. It means that in a HF bath, the SiO2 will be removed,

but both nanowires and pads will not be affected. For a short time, just a small amount of SiO2

will be etched. In order to avoid sticking processes (drop of liquid which breaks the sample),

HF vapor will be used instead of liquid HF. The sample is stuck to a Teflon lid regulated at 45

˚C. The lid is put right over a HF solution. Vapor HF will then etch the SiO2 anisotropically.

Typically, in half an hour, 2 µm is etched. As the wire is 100 nm width, and the pads are

100×100 µm2 large, twenty minutes are enough to ensure that the wire is suspended whereas

the pads will still be attached to the bulk substrate. On the samples, one can find 50 suspended

nanowires doubly clamped to two pads linked to the substrate.

Deposition of the NbN transducer

As it has been said in section 2.2.1, a transducer is needed for using the 3ω method. In our

study, the transducer is made of NbN. The resistance of this material is highly sensitive to

the deposition conditions and can be tuned. Thus a calibration of the deposition is needed,

in order to have a good sensitivity at the temperature range of the study. The sensitivity of a

thermometer is given by its temperature coefficient α= (1/R)(dR/dT ) (see section 2.2.1).

A way to have an estimate of the temperature coefficient is to measure the resistance at room

temperature and the resistance at 70K (the liquid nitrogen temperature). The ratio between

these two resistances is called the resistive ratio, RR. The He3 fridge provides a temperature

range between 0.3K and 10K, RR ≈ 3 leads to a temperature coefficient around one in this

range of temperature.
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Figure 2.19: Some nanowires realized during this work. The scale bar for a) is 100 µm, for b) is
2 µm, for c) is 2 µm, and for d) is 200 nm.

The NbN deposition is made in a RF sputtering setup. Argon and nitrogen gases are first

introduced in the deposition chamber. A RF voltage will produce a plasma. This plasma

etches atoms of a niobium target. Within the Ar/N plasma, Nb atoms will also be present.

The deposition can then begin. First we will deposit the NbN on sapphire samples. After the

deposition, the RR is measured on the sapphire. By adjusting some deposition parameters

(concentration and pressure of the gases, time of deposition, distance to the Nb target,...) it is

possible to change the RR. For instance, raising the frequency of the pulse RF voltage reduces

the RR. Once the RR is close to the value needed on the sapphire samples, the Si sample is

introduced in the machine to make the deposition.

The final step is an annealing. Cycling the NbN at 150˚C for 6 hours ensures that the resistance

of NbN will not change over thermal cycling.

Once the NbN is deposited the sample is ready to be measured. All that needs to be done is

to micro-bound the sample to the sample holder. In our case aluminium wires are used. In

figure 2.19 several nanowires made during my PhD are shown.

2.3.2 Fabrication of Si3N4 nanowires and slabs

During my thesis, I also worked on silicon nitride samples. Measurements on these samples

will be presented in the chapter 5. As the impact of reduced dimension on thermal transport

of amorphous materials is interesting, different kinds of sample will be made. Here the

fabrication of Si3N4 nanowires and Si3N4 slabs will be presented.

The SiN nanowires

The fabrication of Si3N4 nanowires is basically the same as for Si nanowires. The wafers consist

in a thin layer of 100nm (or 50nm) of silicon nitride (Si3N4, which will be called SiN from

now), and bulk undoped silicon. The SiN layer was made with an internal stress of 0.85 GPa.
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The steps of lithography are the same as the ones for the Si nanowire fabrication until the

suspension process. As silicon, SiN is also etched by a SF6/O2 plasma. However HF does not

etch the silicon. An anisotropic etching process, selective to silicon without etching silicon

nitride, is required.

The XeF2 etching process

The xenon difluoride gas does not etch any SiN, SiO2, aluminum, nor PMMA but selectively

etches Si. This is very convenient as it allows to perform the suspension of the SiN nanowire

in a final step. Only the NbN needs to be protected from the XeF2. To do so, a PMMA resist

is good enough, which is convenient as PMMA is easily placed and removed. The chemical

reaction is the following :

2 X eF2 (g as) + Si (sol i d) → 2 X e (g as) + Si F4 (g as) (2.14)

As the resulting gases prevent the continuation of the process, one needs to evacuate them.

The process consists in cycles of less than a minute to permit the evacuation. The cycle

time and the number of cycles will have a great influence on the etching speed and on the

anisotropy of the etching. Environmental parameters such as temperature and XeF2 pressure

will have an effect too. With the table top etcher used in my PhD (Xetch e1 made by Xactix

company), all these parameters except the temperature can be monitored.

Calibration of the etching process has been done. 10 cycles of 30 seconds with a pressure of

1.5 torr of XeF2 allows to etch 2 µm of silicon. This is enough to suspend the SiN nanowires

while the pads are still attached to the Si bulk.

The SiN slabs

In this work, the slabs are beams which lengths are between 10 µm and 20 µm, and width

between 1 µm and 2 µm. As the size of the slabs is much bigger than the nanowires, a regular

photolithography can be used to make them. This process is well known, so it will not be

described in this manuscript. These slabs were made by Dr. Kunal Lulla.

2.3.3 Fabrication of the SiN membranes

The fabrication of the membranes has been made by Hossein Ftouni. The different steps of

lithography are shown on figure 2.20. The membranes have a typical length of 1.5 mm and a

typical width of 150 µm. These sizes are very large compared to the slabs and the nanowires.

The membrane is released by etching the rear face of the wafer.

The membrane needs the NbN transducer to be precisely centered (see section 2.2.2), contrary

to nanowires (and slabs), where the NbN is deposited uniformly over the whole sample. This
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Figure 2.20: (1) The patterns of the membranes are created by photolithography. (2) The
unprotected SiN is removed by SF6 RIE. (3) The silicon is anisotropically etched in a KOH
solution. (4) The thermometers are obtained by a lift-off process; the area is patterned by
photolithography. (5) NbN is deposited by reactive sputtering. (6) The resist and NbN layer
are removed using a wet procedure.

will be done by a photolithographic process (figure 2.20).

2.4 Previous measurements of silicon nanowires

2.4.1 Introduction

Straight silicon nanowires have already been investigated in the group [8, 10, 37]. The mea-

surements will be presented by comparing the conductance measured with the Casimir model

and then by combining it with the Ziman model. The conductance will then be compared to

the contact conductance calculated by Chang and Geller [22, 62]. The influence of both length

and width will also be studied. In a final part the parasitic thermal paths inside the NbN and at

the NbN-Si interface, which may perturb the measurements will be evaluated and discussed.

2.4.2 Comparison with the Casimir-Ziman model

These models have been described in the part 1.4. As a reminder, the Casimir model is based

on the fact that the phonon mean free path (MFP) is limited by the cross section of the system
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Figure 2.21: SEM picture of a nanowire which width is 200 nm. One can see that the mean
value of the roughness is under 5% of the width.

[4]. For the thermal conductance, it leads to [5] :

KC as = 3.2×103

(
2π2k4

B

5ħ3v3
s

)(2/3)
e ×wΛC as

L
T 3 =βC asT 3 (2.15)

Where ΛC as = 1.12
p

e ×w is the Casimir MFP for a rectangular shape phonon conductor, e

refers to the thickness and w to the width of the nanowire, L being its length; vs is the speed of

sound, which was set to 6500 m/s, the mean value of the speed of sound of the transverse (5840

m/s) and longitudinal (8400 m/s) acoustic phonons. βC as is the proportionality factor between

the conductance and the cubic temperature. It is then defined as the Casimir conductance at

1 K.

The mean free path may be modified, as it has been explained in section 1.4.4, by the model of

Ziman. In this case, the mean free path becomes [3] :

ΛZ i man = 1+p

1−p
ΛC as (2.16)

Where p is the probability for a phonon to have a specular reflection at the surface of the

nanowire. p depends on the probability distribution P (η) for the mean value of the roughness

η : p = ∫ λ/4π
0 P (η)dη; where λ is the dominant wavelength of the phonons. One needs to de-

termine this distribution. A distribution given by P (η) = exp(−η/η0)/η0 is in good agreement

with the SEM picture shown in fig. 2.21. As defined in section 1.4.3, η0 is the mean value of the

roughness. The probability p of having a specular reflection at the surface is then expressed

by :

p =
∫ λ/4π

0
P (η)dη= 1−exp

(
−λDom

4πη0

)
(2.17)
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Figure 2.22: In black : thermal conductance of a Si nanowire of dimension 10µm × 150nm ×
100nm; In red : the conductance obtained with the formula by Casimir (equ. 1.22); In blue :
the conductance obtained with the effective mean free path (equ. 2.18).

η0 is not exactly known, and is specific to the studied nanowire. However with the usual

e-beam lithography, one can expect a mean value of roughness around 5 nm. In figure 2.21 a

close-up picture of a nanowire is presented. One can see that the surface is quite smooth, with

a mean value of the roughness around 5 nm.

The mean free path, as modified by Ziman, diverges when the temperature approaches

zero. This is not physically correct. At the boundary between the nanowire and the thermal

reservoirs (what has been called the pads in section 2.3) the phonons are scattered because

of a difference in the density of states. One can use Matthiessen’s rule for the collision rate

: τ−1 = τ−1
sur f ace +τ−1

bound ar y . The mean free path is the product of the collision rate and the

speed of sound. As the speed of sound is the same along the nanowire, one can write :

Λ−1
e f f =Λ−1

Z i man +L−1 (2.18)

where L is the length of the nanowire.

In figure 2.22 the conductance measured in a 5µm ×150nm ×100nm Si nanowire is shown.

The conductance obtained with equation 2.15 and the conductance obtained by replacing the

Casimir mean free path by the effective mean free path (equation 2.18) have also been plotted.

All these conductances behave similarly. KC asi mi r is an order of magnitude below the mea-

sured conductance. For KZ i man , the mean value of roughness η0 has been set to 4 nm. The

mean free path varies between 2 µm and 200 nm, which is in a very good agreement with the

nanowire size. This validates the Casimir-Ziman model. It means that in such a nanowire,
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Figure 2.23: Thermal conductance of four nanowires in a log-log scale. w is the width and L is
the total length of the nanowire. All the wires have the same 100 nm thickness.

phonons act as in a three dimensional sample. The scattering at the surface is a mix between

specular and diffusive reflection. Normalization within the framework of the Casimir-Ziman

model is therefore very consistent.

2.4.3 Influence of the dimensions

As the wires size measured during my PhD are not strictly the same, it is important to have

a proper normalization. In the previous section, it has been shown that the Casimir-Ziman

model can be used. In this section, nanowires with different sizes will be presented. The

conductance of four nanowires are shown in figures 2.23 and 2.24. They have the same

thickness, 100 nm. Their widths are 150 nm and 200 nm. Their total lengths are 5 µm, 7 µm

and 10 µm. As a reminder, the 3 ω method heats the wire in the center, so that a single wire

acts like two wires, of half the length, in parallel.

In figure 2.23, the conductances without any normalization are presented. All these conduc-

tances have the same behavior. One can notice that for nanowires with the same width, the

larger the length, the lower its conductance. It is the contrary for two wires with the same

length : the larger the width, the higher its conductance. This is consistent with what is

expected.

In figure 2.24, conductances have all been normalized by dividing them by the Casimir-

Ziman conductance at 1 K, βC as (cf equation 2.15). The mean free path is modified by the

Ziman model. All the conductances become very close to each other. This means that the

normalization is consistent. In chapters 3 and 4, this normalization will be used.

52



2.4. Previous measurements of silicon nanowires

Figure 2.24: Thermal conductance of four nanowires divided by βC as in a log-log scale. For all
the range of temperature, the samples keep almost the same effective conductance.

2.4.4 Influence of the contact

As it has been shown in section 1.4.6, a contact resistance may appear at the junction between

the nanowire and the pads (i.e. : the thermal reservoirs). This contact conductance has been

calculated (see section 1.4.6) [22, 23] :

Kc = 2π3

15

k4
B

ħ3

0.923 b2

vs
T 3 (2.19)

where b is the radius of the nanowire, in our case it will be half the width of the nanowire. This

conductance has been plotted with the measured conductance of a 10µm × 150nm × 100nm

nanowire (figure 2.25). In this figure four times the universal quantum of thermal conductance

is also represented (see section 1.4.5) :

K0 =
π2k2

B T

3h
(2.20)

This conductance should be the conductance of a one-dimensional wire with no contact

resistance to the thermal reservoir.

One can see in the figure 2.25 that the contact conductance is one order of magnitude higher

than the measured conductance. This means that the contact conductance should not af-

fect our measurements, as this conductance is in series with the wire conductance. The

transmission from the wire to the thermal reservoir should not be a limiting factor in our

experiments. However the geometry used in the theoretical work consists in a cylindrical

nanowire connected to a three-dimensional reservoir. In our case, it is a rectangular nanowire
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Figure 2.25: In black : Thermal conductance of a Si nanowire of dimension 10µm × 150nm
× 100nm; In red : four times the universal quantum of thermal conductance; In blue : the
contact conductance obtained with formula 2.20.

and the reservoir is a three-dimensional silicon oxide. This can introduce deviations from the

theory. Further investigations on the contact have been made and will be presented in chapter

3.

If the universal quantum of thermal conductance is on the same order of magnitude than the

measured conductance, it does not behave the same. It is not surprising, because even in the

ideal case (perfect transmission), the conductance should be quantized below 300 mK [14, 26].

This is because the phonon dominant wavelength is on the same order of magnitude as the

cross section of our nanowire (λDom = 200 nm at 0.5 K). Thus the wire cannot be considered

as one dimensional concerning phonon transport.

However, one can notice that at 300 mK, the contact conductance is on the same order as the

quantum of thermal conductance. It means that thermal contact resistance should have an

effect on the conductance when the temperature is below 300 mK for a one-dimensional wire.

2.4.5 The other parasitic thermal paths

A NbN transducer has been deposited on top of the wire. This transducer introduces several

parasitic thermal conductances which may disrupt the phonon thermal conductance in silicon

(see fig 2.26). One needs to ensure that the thermal properties are actually coming from the

phonons inside the silicon. Several theoretical works allow to calculate the different values of

these parasitic thermal paths.

The signal is carried through electrons for both heating process and temperature measurement.
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Figure 2.26: Schematic representation of the heat transfer in this system. One want to have
the thermal conductance measured equal to the thermal conductance of phonons inside the
Si (in red).

However we are interested in the heat carried by phonons. One needs to be sure that the

two baths (electrons and phonons) are thermalized. This can be checked using the formula

by Wellstood et al. [63]. This formula allows determining the difference in temperature

between the electro bath and the phonon bath in the NbN : T 5
e− −T 5

ph = P/(V ol . ge−/ph); Te−

and Tph are the temperature of electrons and phonons bath respectively; P is the electronic

power; V ol is the volume of the metal; and ge−/ph is a electron-phonon coupling constant

depending on the material. A numerical application gives at 1K, a difference of temperature

for electron and phonon baths under 1 mK (For a typical measurement : P = 2.10−13W ; V ol =
7.10−14cm3; ge−/ph = 1000W /K 5/cm3). This difference is negligible as the increase of the

temperature inside our sample is around 10 mK.

Concerning the thermal conductance, two parasitic thermal paths may change the measured

conductance. The first one is in parallel with the phonon conductance. It is the thermal

conductance of electrons inside the NbN (called Ke−). The other one, which is in series, is

the thermal conductance at the interface between the NbN and the Si (known as the Kapitza

conductance KK api t za). In order to be sure that the conductance measured (Kmeasur ed ) is

the conductance of phonons inside the Si, the condition Ke− ¿ Kmeasur ed ¿ KK api t za must

be fulfilled. The thermal conductance of electrons inside the NbN can be known by the

Wiedmann-Franz law : Ke−R = L0T = 2.44 10−8 T . This has been plotted in figure 2.27.

The Kapitza conductance comes from a lattice mismatch between NbN and Si [61]. Two main

models can be used to determine such a mismatch : The acoustic mismatch model (AMM)

and the diffuse mismatch model (DMM). In the AMM, phonons are governed by continuum

acoustics and the interface is treated as a plane. Thus, no scattering events happen. Phonons
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Figure 2.27: In black the thermal conductance measured with the 3ω method; In red the
electronic conductance; and in blue, the Kapitza conductance. For details, see the text.

may be reflected, may change their direction but without any energy loss. In the DMM the

extreme opposite is used : all the phonons are diffusely scattered at the interface. At low

temperature (below 60 K), both model give the same formula : KK api t za = T 3.Sech/r ; where

Sexch is the exchange surface in cm2 and r a number depending on the materials in contact.

This formula is valid for both gas-solid and solid-solid contacts. For solid-solid contact the

r number is almost the same for AMM and DMM. For our NbN-Si contact, r has been set to

twelve [61].

This Kapitza conductance has also been plotted in the figure 2.27; one can see that Ke− ¿
Kmeasur ed ¿ KK api t za . Therefore, the measured conductance is the expected conductance of

phonons inside the silicon.

2.5 Conclusion

All the tools needed to perform measurements at low temperature on silicon wires have

been presented in this section, from the fabrication, to the measurements. Measurements

on straight nanowires have allowed to ensure a normalization within the framework of the

Casimir-Ziman model. In this model, the mean free path, which is related to the size of

the wire, has a significant effect on the conductance. It will then be possible to modify the

conductance by adjusting the nanowire shape.

As it has been shown, parasitic thermal paths do not affect our measurements. The influence

of thermal contact conductance has been quickly investigated. Further investigation is needed,

and will be presented in the next chapter.
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3 Investigation of the thermal transport
at the junction between a nanowire
and a thermal bath
3.1 Introduction

The study of the thermal transport at the junction between a nanowire and the thermal

reservoir is of great importance. As we want to investigate the thermal conductance of a

nanowire, we need to be sure that the contact has no effect on the measured conductance. In

this chapter, the conductance of nanowires with different shapes of contact will be presented.

The design of the contact was made to look like a catenoid (see figure 3.1). This shape should

normally have the larger reduction of the contact resistance (i.e. a transmission coefficient

close to 1)[14].

3.2 Theoretical works

The most adapted model for thermal contact resistance seems to be the one developed by

Chang and Geller [22], because no approximation on the size of the nanowire has been made.

Also, in this model, they investigate the transmission coefficient of a cylindrical nanowire to a

three-dimensional thermal bath, which is quite similar to our samples.

In this case, shown in figure 3.2, one can write the energy flux as :

H+ = 1

2π

∑
m

∫ ∞

0
dkv(k)ħωm(k)n(ωm(k)) (3.1)

where m denotes the modes, k is the wave vector of the phonon, ωm is the frequency of the

m mode, v(k) = dωm(k)/dk is the group velocity, and n(ωm(k) is the phonon distribution

function, Bose-Einstein distribution in our case.

With the group velocity, it is possible to transform the integral to an integral over frequencies :

H+ = 1

2π

∑
m

∫ ∞

ωm

dωħωm(k)
1

exp
(
ħω

kB T

)
−1

(3.2)
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Figure 3.1: SEM picture of two nanowires with a catenoidal-like shaped interface. The scale
bars for a) and b) is 2 µm.

Figure 3.2: Schematic description of the energy flux in a nanowire to a three-dimensional
thermal bath.
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where ωm is the cutoff frequency of the mth mode.

The thermal conductance is given by subtracting the analogous expression H− for the left-

moving phonons (in fig. 3.2) given by eq. 3.2. The temperature for the left-moving phonons

is the reservoir temperature T , whereas it is the temperature T +δT for the right-moving

phonons. The thermal conductance is then given by :

K (T ) = lim
δT→0

H+(T +δT )−H−(T )

δT
(3.3)

Assuming that the transmission between the nanowire and the thermal reservoir is not perfect,

one can write :

K (T ) = d

dT

 1

2π

∑
m

∫ ∞

ωm

dωħωm(k)
1

exp
(
ħω

kB T

)
−1

t (ω)

 (3.4)

where t(ω) is the transmission coefficient. In this work it is assumed that this coefficient is

the same for transmission from the nanowire to the thermal reservoir than from the thermal

reservoir to the nanowire.

After calculating the derivative, one find the general expression :

K (T ) = ħ2

kB T

∑
m

1

2π

∫ ∞

ωm

dω
t (ω)ω2exp

(
ħω

kB T

)
(
exp

(
ħω

kB T

)
−1

)2 (3.5)

Determining the transmission coefficient is therefore essential to know the thermal conduc-

tance. Chang and Geller find the transmission coefficient for each mode (for silicon nanowire)

:

t (ω) = 1.91(bω/vl )2 for the longitudinal mode;

t (ω) = 1/6∗ (bω/vtor )4 for the torsional mode;

And T (ω) = 0.268(bω/v f lex )5 for the two flexural modes.

At low frequency (which means at low temperature, as we are looking for thermal phonons)

only the longitudinal mode contributes. Then Prasher, Tong and Majumdar give an analytical

form for the thermal conductance [23] :

Kc = 2π3

15

k4
B

ħ3

0.923 b2

v2
s

T 3 (3.6)

where b = p
sect i on is the radius of the nanowire, vs is the group sound velocity for the

longitudinal mode.
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As mention earlier, to compare nanowires with different sizes, the framework of the Casimir

model will be used. The conductance will be divided by βC as . Therefore the normalized

theoretical contact conductance can be written as :

Kc /βC as = 4.7×10−4 k4/3
B L

ħΛ T 3 (3.7)

In the case where the transmission coefficient is close to one and when the nanowire acts like

a one dimension channel, the conductance becomes quantized. By replacing t(ω) by one,

equation 3.5 gives for each mode (the four acoustic modes) :

KQ = k2
Bπ

2

3h
T (3.8)

where h is the Planck constant.

Tanaka, Yoshida and Tamura [26] demonstrate that a plateau corresponding to four times the

quantum of thermal conductance should appear for a temperature value of Tb = 2πħvs/kBϑ.

ϑ is a characteristic length. It is defined as, if w is the width which varies along the x axis :

w(x) = e cosh2(x/ϑ). It can be seen as the length of the wire over which the cross-sectional

area can be regarded as uniform. For our samples, the temperature Tb is around 100 mK. This

is a temperature lower than our range of study. No quantization effects will be expected, even

if the transmission coefficient is close to one.

3.3 Measurements and normalization

In figure 3.3 thermal conductances for three nanowires with a catenoidal shape interface

are represented. Their geometrical parameters are presented in the table 3.1. Thermal con-

ductance for a straight nanowire, the contact conductance of equation 3.2, and four times

the quantum of thermal conductance are also shown. In inset the conductances normal-

ized to four times the quantum of conductance are represented. As expected from previous

measurements, no plateau can be seen.

For all the samples, the contact conductance is almost one order of magnitude higher than

the measured conductances for temperatures above 0.5 K. Below 500 mK, one sample shows

a significant increase of its thermal conductance. It becomes quite close to the contact

conductances. The other samples present an opposite effect. Their conductance tends to

drop, even below the conductance of the straight sample.

Even if all measured conductances do not have the same value, their behavior seems quite

similar. In order to compare them, the normalization with βC as has been done. For the contact

conductance and the quantum conductance, the size used for normalization will be the same

as that of the straight nanowire.
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Figure 3.3: Measured thermal conductance of a straight nanowire (size : 10 µm × 200 nm ×
100nm) and three nanowires with a profiled shape interface with the thermal bath (see figure
3.1). In red the contact conductance (cf equation 3.2) is represented and in dashed line, four
times the universal quantum of thermal conductance (KQ ). The inset shows the measured
conductances normalized by four times KQ .

Sample Effective length (µm) width (nm) thickness (nm) MFP at 1 K (nm)

straight 5 200 200 860
P1 2.9 200 200 830
P2 3.5 200 200 800
P3 2.8 200 200 760

Table 3.1: Geometrical parameters of the nanowires presented in this chapter. The effective
length is the length corresponding to the straight cross section of the nanowire. The effective
MFP at 1 K is also represented.
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Chapter 3. Investigation of the thermal transport at the junction between a nanowire and
a thermal bath

Figure 3.4: The conductances of the same sample as in figure 3.3 normalized by βC as (see
equation 2.15). For the contact conductance (KC ) and the quantum conductance (4Kq ), the
size used for the normalisation is the same as for the straight nanowire. All samples have the
same conductance for temperatures above 1.5 K.

To do this normalization one needs to know the length of the wire. However, with a shape

such as figure 3.1, it is quite hard to define the length. With SEM picture of the sample (fig

3.1), one can estimate the length of the straight part of the nanowire (see table 3.1). As one

can see in figure 3.4, these values for the length give a K /βC as identical for all the samples for

temperature above 1.5 K. These values of lengths are therefore accurate.

In figure 3.4 the conductances normalized by βC as have been plotted. One can see that

above 1.5 K, all the conductances are very close to each other; and the contact conductance

calculated by Prasher et al. [23] is more than one order of magnitude higher than these

measured conductances. These results clearly indicate that the measured conductances are

the intrinsic conductance of the wires; meaning the transmission coefficient between the

nanowire and the thermal bath is close to one above 1 K.

Below 1 K, the conductances have a very different behavior. This could originate in the

measurement method itself. The maximum rise of temperature ∆0 must be much lower than

the temperature of study. If this is not fulfilled, then the temperature in the nanowire cannot

be considered as the same than in the thermal bath [44]. In our measurements, at 300 mK, ∆0

is 10 mK in the straight wire, 25 mK in P1, 3 mK in P2, and 30 mK in P3. As the difference is less

than 10 %, it should not influence our measurements. So experimental problem linked to the

temperature amplitude oscillation in the 3 ω method can be discarded.

The reason for such a large dispersion may come from the mean free path. For the 3 ω method

62
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Figure 3.5: Phonon MFP for the straight nanowire. For temperature below 1 K, the MFP
becomes larger the 1 µm.

to be implemented, one needs to write and solve locally the equation of heat transfer. To

do that, it is essential to define a local temperature inside the nanowire. Following studies

made by Hartmann and coworkers [64, 65, 66] local temperature is only expected to exist in

systems with effective interactions, meaning with energy exchange. When a specular reflection

happens at the surface however, no energy is exchanged. Thus there is no physical meaning of

speaking about temperature in a volume smaller than volmi n =Λ3
phonon . This is not physically

obvious, as it means that the temperature, which is an intensive property, becomes dependent

on the MFP, i.e. on the sample studied.

Below 1 K, the phonon MFP becomes larger than 1µm (see fig 3.5). The volume of the nanowire

is 5 µm × 0.2 µm × 0.2 µm. Thus the limit of the local temperature notion is reached. The 3 ω

method becomes not relevant for sub-Kelvin temperature and should be replaced by a more

appropriate method.

3.4 Conclusion

In this chapter, it has been demonstrated that heat flows well from the wire to the thermal bath

for temperature above 1 K. The measured conductances correspond indeed to the intrinsic

thermal conductance of the nanowire. For temperature below 1 K, some dispersion on the

measured conductances implies that the 3 ω method may have reached its limit. This comes

from the fact that as the temperature decreases the phonon mean free path increases. Thus

the local temperature, necessary to solve the heat transfer equation and then apply the 3 ω

method, cannot be defined inside the wire. A new method is needed to perform measurements

below 1 K.
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4 Modification of phonon transport in
corrugated nanowires

4.1 Introduction

Up to now, the phonon-boundary scattering has been treated as a combination of diffusive

and specular reflection in the Casimir-Ziman model. It has been shown that this treatment is

in a very good agreement with the experimental data in straight nanowires. When Ziman and

coworkers calculated the mean free path (MFP), they considered a phonon coming normally

to the surface. They did not take into account the direction of the reflected phonon. If

backscattering processes occur, then the reflected phonon flows in the direction opposite to

the heat flux. Thus it may decrease the MFP. In a straight nanowire, no backscattering can

happen. However in a sawtooth nanowire, as described by Arden L. Moore and coworkers [67],

backscattering occurs. In their paper, these authors show that a sawtooth shape of the surface

affects the MFP, and therefore the thermal conductance. The sawtooth wire is represented on

figure 4.1. The arrows represent phonons specularly reflected at the surface. This may be a

new exciting way to manipulate heat flux at the nanoscale.

The same idea was used by Rajbapour and coworkers [68]. In this study, the transmission

between two materials was investigated with an interface boundary designed with sawtooth

shape (see figure 4.1).

In this chapter, the thermal conductance of corrugated nanowires is investigated. In these

nanowires the surface has been periodically patterned (see figure 4.2). This design should

increase considerably the probability of phonon-boundary scattering. In table 4.1, the char-

acteristics of each nanowire are shown. Four corrugated nanowires will be compared to a

straight nanowire.

4.2 Measurements

In figure 4.3, the measured conductances are presented. One can notice that the samples

have almost the same conductance, both in order of magnitude and behavior. This analysis
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Chapter 4. Modification of phonon transport in corrugated nanowires

Figure 4.1: Schematic diagram of the sawtooth nanowire [67]. The arrows represent phonons
which are specularly reflected at the surface. The same geometry was made in the study
by Rajbapour et al., but instead of investigating the reflection at the interface between a Si
nanowire and the vacuum, these authors are looking for the transmission across a sawtooth
interface between two materials.

Figure 4.2: SEM images of the straight (a) and the corrugated (b) nanowires; (c) corresponds to
the top view of the corrugated nanowire. The scale bars correspond to (a) 2 µm, (b) 2 µm, and
(c) 300 nm.
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4.2. Measurements

Sample L (µm) wmi n(nm) wmax (nm) period (nm) MFP (nm) MFPN b p

straight 5 200 200 0 909 1 2.27 0.60
C1 4.4 130 250 200 114 0.13 2.52 -0.32
C2 5 140 245 200 181 0.2 2.74 -0.10
C3 5 160 260 200 356 0.39 2.54 0.22
C4 4.4 230 250 200 140 0.15 2.6 -0.27

Table 4.1: Geometrical parameters and physical data extracted from the thermal conductance
measurements of the straight and corrugated nanowires (Ci ). wmi n and wmax designate the
minimum and maximum width of the corrugated nanowires and L their length. The thickness
of the silicon wires is equal to 200 nm. MFPN is the MFP of the wire divided by the MFP of the
straight nanowire.

Figure 4.3: Thermal conductance versus temperature for a straight nanowire and four corru-
gated nanowires in the log-log scale. The slopes of the conductance of all these samples are
quite similar.

67



Chapter 4. Modification of phonon transport in corrugated nanowires

Figure 4.4: Log-log plot of the normalized thermal conductance of the straight and four
corrugated nanowires versus the temperature. As expected the straight wire has a higher
conductance than the corrugated ones. the difference in the corrugated should be linked
with the difference in their MFP. One can see the linear relation between the logarithm of the
normalized conductances with respect to the logarithm of temperature.

of the data must be carefully done. As one can see in table 4.1 the lengths and cross section

are not the same for all these wires. The normalization within the framework of the Casimir-

Ziman model must be done. The scientific objective of these experiments is to measure the

influence of the corrugation on the MFP of the phonons. With the Casimir-Ziman model, MFP

depends on both temperature and the sample cross section. MFP is thus hard to calculate in

the presence of a corrugated surface. As thermal conductances are linear in a log-log scale, it

means that K ∝ T b ; b is the exponent of the temperature power law, which should be close

to 3 for three dimensional samples (see equation 1.22). Thus, the effective MFP should be

proportional to the temperature. Writing this mathematically gives : Λe f f = c.T δ; where c and

δ are unknown factors. As δ is quite hard to extract from measurements, we will consider the

MFP to be temperature independent. This can be done because the Casimir conductance has

almost the same behavior as the measured conductance (as it was seen on section 2.4).

For the normalization, the Casimir MFP will be used : ΛC as = 1.12
p

e.w ; where e is the

thickness of the nanowire and w its width. It leads to :

K /KC as =Λe f f /ΛC as (4.1)

Then log (K /βC as) will be plotted. As it is proportional to the logarithm of the temperature,
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4.3. Impact on the mean free path

one can write :

log (K /βC as) = a +b.l og (T ) = 10a .T b (4.2)

and find graphically the factors a and b. Here, 10a can be considered as the product between

the effective MFP and the Casimir MFP (see equation 4.1). In the Casimir model b is equal to

three. The difference between b and 3 is linked to what has been previously called δ (which is

the temperature power law of the effective MFP). However, we have no proof that δ is exactly

the difference between b and 3. This is the reason why we decide to neglect the temperature

dependence of the MFP.

On figure 4.4, the conductances normalised by βC as are presented. The width used in the

Casimir formula (βC as) is an average value of the corrugated width. The effective MFP and the

b factor can be found on the table 4.1. Moreover, from the effective MFP, the p factor of the

Ziman model can be deduced (Λe f f = (1+p)/(1−p)ΛC as).

4.3 Impact on the mean free path

As one can see in table 4.1, the MFP in the corrugated sample is almost an order of magnitude

smaller than in the straight nanowire. This effect can only be attributed to the corrugation.

Moreover, for samples C1, C2, and C4, the effective MFP is patently smaller than the smallest

section of the nanowires, demonstrating a phonon flux weaker than the one expected in the

Casimir limit. For the straight sample, the phonon MFP is two times higher than the nanowire

width. It is a signature of ballistic phonons. As the factor p is equal to 0.6 for the straight wire,

we found negative values for C1, C2 and C4. A negative value is not physically sound, as it is a

probability of having a specular reflection. As proposed by Moore et al., this reduction of p,

down to negative values, is a signature of the presence of strong phonon trapping in the wire

due to multiple phonon scattering or even backscattering.

For the nanowire C3, the MFP is not as reduced as in the others nanowires. However, there is

still a reduction of a factor 4 compared to the straight nanowire. The difference in value with

the other nanowires may come from a difference of the roughness in the nanowire C3. If C3

has a smoother surface than the others nanowires, it may explain this difference. This will be

discussed with a Monte Carlo simulation.

To illustrate the difference in the MFP, in figure 4.5 the effective MFP of the nanowire C1

has been plotted together with the MFP in the straight nanowire and the Casimir MFP. The

fact that the MFP of the corrugated is on the order of the corrugation illustrates the phonon

trapping inside what one can call the cavity of the surface. Moreover, it is clear that the MFP in

the corrugated nanowire is much smaller than the Casimir limit. It means that a corrugated

surface has the same effect as introducing internal scattering in a nanowire.

A way to ensure that the reduction in MFP is really due to multiple scattering is to make a
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Chapter 4. Modification of phonon transport in corrugated nanowires

Figure 4.5: The Casimir MFP (ΛC as = 220 nm), the effective MFP in the straight nanowire
(Λstr ai g ht = 454 nm), and the corrugated nanowire C1 (Λcor r ug = 57 nm) are compared to the
actual geometry of the corrugated nanowire. One can see that the MFP of the corrugated wire
is much smaller than the width, whereas the MFP of the straight wire is much higher.

Monte-Carlo simulation (MC). As multiple scattering effects involve a corpuscular behavior

for the phonons, it is particularly well handled by a Monte Carlo analysis. Ali Rajabpour of the

Imam Khomeini International University and Sebastian Volz of the Laboratoire d’Energétique

Moléculaire et Macroscopique made a simulation using the ray tracing principle [68]. The

principle is that phonons are emitted from one side of the wire with a random initial direction

and a random initial position. The frequency dependence is discarded. The phonons are

then tracked until leaving the wire through one of its sides. The ratio between the number

of phonons reaching the other side Nthr oug h to the initial number of phonons N defines the

transmission T = Nthr oug h/N . The only scattering mechanism is generated by the surfaces

and was modeled by different specularity parameters ranging from p = 0 to p = 1 as reported

in figure 4.6; the value of the parameter p derived from the thermal measurement of the

straight nanowire is p = 0.6. The transmission coefficients can then be related to the MFP

through the relation :

T = 1

1+ 3
4

L
Λ

. (4.3)

In this equation,Λ stands for any MFP and L is the length of the wire.

In figure 4.6, the results of the simulation are compared to the experimental MFP. One can see

that the trend of the simulation is in good agreement with experiment, especially for samples

C1, C2 and C3. Those samples may have different local roughness, hence different values for

the parameter p. Here the parameter p represent the local probability of a specular reflection,

whereas in table 4.1 p represented the global probability of a specular reflection.

One can find a MFP value significantly close between MC simulation and experiments, when

p is adequately adjusted. One can say that MC simulations support the experimental fact that

in the presence of corrugation, the MFP is strongly reduced. This reduction may be attributed

to the occurrence of phonon multiple scattering, which is inherent to the ray tracing method.

The sample C4 shows a behavior which cannot be described by the simulations. However,
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4.4. Impact of the corrugation on the dispersion relation

Figure 4.6: The red full circles are the experimental MFP normalized by the MFP in the straight
nanowire. The Monte Carlo simulations have been performed with different parameters p
(see the figure legend). The transmissions obtained by the MC simulations are normalized to
the transmission in the straight wire.

other mechanisms may be responsible for such an MFP reduction. Two scenarios of phonon

scattering have recently been proposed which could explain a thermal transport far below

the Casimir limit: coherent effects, involving correlated multiple scatterings of phonons [69],

or strong phonon scattering induced by highly perturbed surfaces (core defects and surface

ripples) [70]; validating such scenarios would require further experimental and theoretical

investigations.

4.4 Impact of the corrugation on the dispersion relation

Cleland and coworkers investigated the phonon propagation in a periodically modulated

nanowire [38]. The nanowire has almost the same shape as our corrugated nanowires. However

their study is made in the absence of scattering processes, i.e. for ballistic phonons in a one

dimensional wire. This is not our case. It should happen at lower temperature. Nevertheless

their results are quite interesting, as they investigate the effect of corrugation on the dispersion

relation. In a so called phononic crystal, they found that a gap should open in the dispersion

relation for the longitudinal mode (see figure 4.7). The frequency of the center of gap ω0 is

determined by the period of the modulation 2π/G : ω0 = cl G/2; cl being the velocity of the

longitudinal mode. The magnitude of the gap ∆ω will be dependent of the amplitude of the

corrugation ε : ∆ω= εω0. This calculation has been made using the longitudinal displacement.

With this study [38] we can calculate the characteristic values of the gap for our nanowires.

We find that the gap may open around 100 GHz, with a magnitude of 40 GHz. As the tem-
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Figure 4.7: Calculated dispersion relation for a straight nanowire (full line) and for phononic
crystals with different amplitudes of corrugation (dashed lines). The insert shows such a
phononic crystal nanowire. The gap ∆ω for a modulation ratio ε = 0.5 is indicated, as is the
band-gap center frequency ω0 = cl G/2.

Figure 4.8: Dispersion relation of the sample C2 in dark blue, and the dispersion relation of
the straight in magenta. One can see that a small gap opens at 9 GHz.
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4.5. Conclusion

perature ranges from 300 mK to 5K, the phonon dominant frequency, which is given by

ωDom = 4.25kB T /h, ranges in our measurements from 30 GHz to 400 GHz (ω at 1 K is around

100 GHz). This means that for ballistic phonon only, a reduction of 40 % may be expected at 1

K for the longitudinal mode due to the phononic crystal effect. As the phonons are mainly dif-

fusive, this reduction is rather small and cannot be discriminated from the multiple scattering

effect.

Anne-Christine Hladky and coworkers (from the Institut d’Electronique de Microélectronique

et de Nanotechnologie) calculate the dispersion relation for the straight nanowire and the

corrugated C2, for all modes. This is shown on figure 4.8. One can see that a gap opens at

9 GHz, which is much smaller than the expected value from the study of Cleland et al.. At

higher frequency, the confinement introduced by the size of the nanowire folds the modes.

This folding induces a broad dispersion on any frequencies. Hence no gap can be seen. A

modification of the average sound velocity (which is defined for the i mode as vi = ∂ω/∂k)

may happen. However this cannot be easily calculated with this model for the dominant

phonon frequency.

4.5 Conclusion

We have shown a significant reduction in the phonon MFP in monocrystalline silicon nanowires

related to the presence of multiple reflections induced by corrugated surfaces. In the best

case, the effective MFP has been reduced by more than a factor of nine compared to the one

of the straight nanowire MFP. Consequently, heat transport has also strongly decreased below

the Casimir limit. The hypothesis of multiple reflections for phonons is confirmed by the ray

tracing analysis showing a strong diminution in the phonon transmission. The dispersion

relation has been modified by the corrugation, but the effect happen for lower frequencies.

To see the impact on the thermal conductance, one need to perform measurements at lower

temperature. This work has been published in Applied Physics Letters [71].
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5 Measurements on SiN structures

5.1 Introduction

In section 1.5, a model concerning thermal properties in amorphous materials has been

presented. This model, using a two level system for the equilibrium position of an atom (or

group of atoms), has some flaws. The origin of these two level systems is not well defined,

the calculations for theoretical values of thermal properties requires parameters, and some

anomalies with respect to this model cannot be explained. Therefore a phenomenological

approach developed by Pohl and coworkers [27] will be used in this chapter.

Three kinds of samples were studied : nanowires, slabs and membranes. Actually, three

nanowires two slabs and two membranes have been measured. As for samples of the same

kind the measurements gave the same results, just one of each kind will be compared. Along

with picture of the samples, a schematic representation with the dimensions of each samples

is shown on figure 5.1. Also, the heat flux is represented. For both the nanowire and the

slab, heat flows along the length, whereas for the membrane, heat is generated by the NbN

transducer and flows to the edge.

5.2 The phenomenological approach

To analyze our results, we use the same approach as Pohl, Liu and Thompson [27]. In this

review, the authors list thermal properties and internal friction of almost all the amorphous

materials measured so far, on a total of over 60 different compositions. They are investigating

bulk materials so thermal conductivity has been compared. Around 1 K, the thermal conduc-

tivity κ, is proportional to the square of the temperature. Combining this relation with the

gas-kinetic picture (equ. 1.20 in section 1.4.2), one can write :

κ= ζ0.T 2 = 1

3
cD vsΛ (5.1)
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Figure 5.1: Pictures and schematic representation of the three SiN samples studied. The red
arrows represent the heat flux. The green arrows the dimensions of these samples.The break
at the right edge of the slab may impact the thermal transport. However, the verifications for
the 3 ω method ensure that the method is properly functioning.
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5.2. The phenomenological approach

ζ0, is the proportionality factor, corresponding to the thermal conductivity at 1 K; cD is the

volumetric specific heat of the heat carrying phonons; vs is the average speed of sound, which

is 11000 m/s in the SiN of our study; andΛ is the phonon mean free path (MFP).

Pohl and coworkers used data on bulk or millimeter size films. In our case, the mean free

path should strongly be affected by the small size of our samples. As the thermal conductivity,

which is an intensive property, depends on the mean free path, it is not physically relevant

to use κ in our case. However, there exists no proper model which describes accurately the

physics of thermal transport inside amorphous materials. This phenomenological approach

seems the best up to date. We will use this approach, but in order to not mix the thermal

conductivity inside bulk SiN with the thermal conductivity inside our small samples, the

notation κextensi ve will be used to name the extensive concept of thermal conductivity.

Following this approach, one needs to know the specific heat. Inside amorphous materials,

the Debye model is in a good agreement with the experiments for temperatures down to 1 K

[31, 72]. In this model the specific heat is given by :

cD = 2

5

k4
B

ħ3

π2

vs
T 3 (5.2)

Combining equations 5.1 and 5.2 allow to write for the MFP :

Λ= 15ħ3

2π2k4
Bπ

2

ζ0v2
s

T
(5.3)

As it has been seen on Si nanowires, the MFP is of great importance for thermal transport. One

can see that the MFP is inversely proportional to the temperature and depends on the speed

of sound, and on the proportionality factor between the thermal conductivity and the square

of the temperature (ζ0).

To compare thermal measurements and acoustic attenuation measurements, Pohl et al. in-

troduce what they call the relative inverse phonon mean free path. It is the ratio between

the dominant phonon wavelength and the phonon MFP. With the dominant wavelength

approximation (λdom = h.v/4.25 kB T ) this ratio is given by :

λdom

Λ
= 4π3k3

B

15ħ24.25

1

ζ0vs
= 0.46[J .K −3.s−1].

1

ζ0vs
(5.4)

This relative inverse phonon mean free path depends on the investigated phonon modes

(transverse or longitudinal). However, for both modes, its value is independent of the material

(and its composition) and falls within a factor 20 for the materials reviewed by Pohl and

coworkers. The order of magnitude of the relative inverse phonon mean free path is the same
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for the transverse modes or the longitudinal. This is the reason why we will use an average

value of both modes (so with an average value of the speed of sound).

The relative phonon mean free path is important for a theoretical reason. In the two level

systems model, a parameter called the tunneling strength describes the coupling between the

tunneling states and the lattice. The tunneling strength is given by [27]:

ξi =
P̄γ2

i

ρv2
i

(5.5)

Where P̄ is the spectral density of the tunneling states, γi is the energy with which they are

coupled to the plane-wave lattice vibrations, ρ is the mass density, and vi is the speed of

sound, with i indicating the phonon mode.

Pohl et al. demonstrate then the relation :

λdom

Λ
≈ 12.5 ξt (5.6)

As the relative inverse phonon mean free path, the tunneling strength is the same for almost all

amorphous materials within a factor 20. It should be very interesting, if this model is relevant

for our samples, to know if a size modification also modifies the tunneling strength.

The aim of our measurements will be to see if the universality behavior is still valid when the

dimensions are reduced. If it is the case, then we will see how the mean free path is affected

within the framework of this model. To do so, SiN nanowires, slabs, and membranes have

been fabricated and measured.

5.3 Measurements on nanowires, membranes and slabs

The measurements have been performed on three kinds of samples shown on figure 5.1.

The measurements on the nanowire and the slab have been realized with the same setup as

described for the Si nanowires. For the membrane, the measurements have been realized with

Hossein Ftouni, and the setup is the one with the Völklein geometry (see section 2.2.2).

In figure 5.2 the conductances of the nanowire, the slab and the membrane are shown in a log-

log scale. The conductance of the nanowire looks like a square dependence for all the range of

temperature (we found on the graph K ∝ T 2.10). The conductance of the slab seems to show

a slight deviation with the temperature squared for the lower temperatures (for T> 0.5 K we

found K ∝ T 1.87). For the membrane, the conductance is almost constant for temperatures

between 0.3 K to 1 K. For temperatures above 1 K, the conductance increases also with a square

dependence with respect to the temperature (in this case : K ∝ T 2.47). Quantitatively, the

conductance of the nanowire is almost 2 orders of magnitude below the conductance of the
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Figure 5.2: Thermal conductances of the nanowire (black), the slab (red), and the membrane
(blue) in a log-log scale. The slope for the conductance of all these samples looks the same for
temperatures above 2 K.

slab, and 6 orders of magnitude below the conductance of the membrane. This seems to agree

with what one may expect (the smallest system has the smallest thermal conductance).

Following the phenomenological approach, the extensive thermal conductivities will be cal-

culated. For the nanowire and the slab, the extensive thermal conductivity is given by :

κextensi ve = K .Le f f /w.t ; where K is the conductance shown on fig. 5.2, Le f f , w , and t , are the

effective length, the width and the thickness respectively. These dimensions are indicated

on figure 5.1. For the membrane, as the heat flows along the width, the extensive thermal

conductivity is given by : κextensi ve = K .we f f /L.t ; where K is the conductance shown on fig.

5.2, we f f , L, and t , are the effective width, the length and the thickness respectively.

It is important to remember that the extensive thermal conductivity is used to allow com-

parison and calculation of the mean free path. It is not the real thermal conductivity of the

SiN.

In figure 5.3, the extensive conductivities of the samples are shown. Qualitatively, the extensive

conductivities behave just as the thermal conductances. This is trivial, as just a normalization

by the dimensions has been performed. Quantitatively, the difference between κextensi ve

decreases but is not zero. κextensi ve for the slab is about twice κextensi ve for the nanowire. And

κextensi ve for the membrane is three order of magnitude higher than for the nanowire. This

difference must come from a difference in the phonon mean free path.

The dependency for the thermal conductivity with the square of the temperature is not obvious

on figure 5.3. It is necessary to verify this dependence to apply the model made by Pohl et al..
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Figure 5.3: Extensive thermal conductivities of the nanowire (black), the slab (red), and the
membrane (blue) in a log-log scale. Compared to the thermal conductances, the extensive
thermal conductivities of the samples are closer to each others. The reason they do not have
the same values (although all the samples are made out of the same material) is due to their
small dimensions. In theses different samples, the phonons do not have the same mean free
path.

Figure 5.4: Thermal conductivity divided by the temperature squared of a nanowire (black), a
slab (red), and a membrane (blue) in a log-log scale. κextensi ve /T 2 of the nanowire is quite
constant for all the range of temperature. For the membrane and the slab, the variation of
κextensi ve /T 2 is within a factor 2 for temperatures above 1 K.
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Figure 5.5: Mean free path of the nanowire (black), the slab (red), and the membrane (blue) in
a log-log scale. As the mean free paths are very different in all these samples, an impact of the
low dimensions of the samples is clearly evidenced by this figure.

To verify it, one can plot κextensi ve /T 2. This corresponds to what has been previously called

ζ0. It has been done on figure 5.4. In this figure, one can see that ζ0(T ) for the nanowire is

almost constant for all the range of temperature. Its value is 1.4×10−4 W K−3 m−1. ζ0 for the

slab is around 2.5×10−4 W K−3 m−1 for the temperatures above 1 K. And for the membrane

ζ0 ≈ 1.5×10−2 W K−3 m−1 above 5 K.

As for a quite large temperature range, ζ0 is constant in all our samples, the model of Pohl

and coworkers can be used. The mean free path can be then calculated, as it has been

demonstrated with the equation 5.3. In this equation ζ0 has been set independent of the

temperature. In our case, we use the ζ0(T ) = κextensi ve /T 2 shown in figure 5.4. The MFPs

are represented on figure 5.5. For the nanowires, this value of MFP is quite consistent, as ζ0

is almost constant for all measured temperatures. The MFP of the slab and the membranes

for temperatures below 1 K must be taken with caution. For higher temperature, the model

should be valid.

Quantitatively, the MFPs of both the nanowire and the slab seems quite consistent. At the

lowest temperatures, the MFP approaches the value of the effective length. At the highest

temperature, the MFP of the nanowire corresponds to the square root of the cross section (100

nm × 100 nm). This is similar to the Casimir model. For the slab, at the higher temperatures

the value of MFP is slightly above 100 nm. It has been shown, that in such a system, the lowest
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Chapter 5. Measurements on SiN structures

Figure 5.6: Figure taken from [74]. The ratio between the MFP (Λ) and the width (w) is plotted
with respect to the log of the ratio between the width and the intrinsic MFP (Λ0).

dimension (the thickness in our case) plays a key role in thermal transport [73].

In ref. [74] Wang and Mingo investigate the influence of this lowest dimension on the MFP.

These authors calculate the MFP with respect to the ratio of the lowest dimension (w) by the

intrinsic MFP due to bulk scattering process (Λ0, so the ratio is : w/Λ0, see figure 5.6). This

calculation has been done for different shapes of wire and with different values of the width

(the thickness remains the same). In the case of a rectangular section, when the ratio w/Λ0

is smaller than 0.1, the MFP corresponds to 1.12 times the lowest dimension (i.e. the width).

This is the case in the measured slab. And this calculation explains the fact that the MFP in the

slab at the highest temperatures is close to 112 nm.

The case of the membrane is different. First of all, as it can be seen on figure 5.4, below 1 K the

extensive conductivity does not depend to the power three with respect to the temperature.

Therefore the values of MFP for temperatures below 1 K are not trustworthy. Then, in the

nanowire and the slabs, the dimensions are on the same order of magnitude. For the mem-

brane however, the cross section seen by the phonons is 100 nm × 1.5 mm. There is more than

4 orders of magnitude between the two dimensions. This huge aspect ratio induces an almost

two-dimensional system. In their study, Wang and Mingo showed that in such a system, the

MFP should be the same as in the bulk material. This is consistent with our measurements as

the MFP in the membrane is almost constant around 10 µm.

The last step of this approach is determining the relative inverse phonon mean free path

(λ/Λ, equ. 5.4). This ratio is of importance for two reasons : firstly, because for almost

all the amorphous materials the value is within a factor 20, whatever the method used to

measure it. Secondly, in the two level systems model, this ratio is proportional to the tunneling

strength. This tunneling strength is an adjustable parameter describing the coupling of the

two tunneling states to the lattice (see equations 5.5 and 5.6), which should not change with
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5.4. Comparison with the Casimir-Ziman model and the quantum of thermal
conductance

Figure 5.7: Relative inverse phonon mean free paths in the sample studied (same colors as the
other figures) in a log-log scale. The values of this ratio for all the materials reviewed by Pohl
et al. are between the two dashed lines. The membrane result in good agreement with these
values, whereas the nanowire and the slab have much larger values.

the dimensions of the sample, at least between membranes and slabs.

The relative inverse phonon mean free paths have been represented for all the temperature

range in figure 5.7. One can see that for the membrane, its value is within the range of the

other materials reviewed by Pohl and coworkers. The nanowire and the slab have a much

higher value of relative inverse phonon mean free path. In the framework of the tunneling

state model, it can be interpreted as a more efficient coupling between the tunneling states

and the lattice. This can come from the decreasing of the volume to surface ratio.

To conclude, this approach allows us to calculate the MFP in quite good agreement with

theoretical works. The normalization with an extensive conductivity, although questionable

on physical grands, seems quite accurate with our measurements. The relative inverse phonon

mean free path may give experimental values for further theoretical works. This is of great

importance, because a theoretical model to explain the physics of phonon thermal transport

inside amorphous materials is still lacking.

5.4 Comparison with the Casimir-Ziman model and the quantum

of thermal conductance

In this section, we will briefly try to compare our measurements on the SiN nanowire to the

Casimir-Ziman model and the quantum of thermal conductance.
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Figure 5.8: Mean free path in a Si nanowire (dark yellow) and in a SiN nanowire (purple).
The nanowires have the same dimensions. One would expect to have the same MFP in
both nanowires. However, even having the same order of magnitude is a proof of a certain
consistency of the phenomenological model of Pohl and coworkers, even in the case of small
size systems.

But firstly, it is of interest to compare the MFP in the SiN found with the model of Pohl et

al. to the MFP of Si found with the Casimir-Ziman model. In figure 5.8 the MFP in the SiN

nanowire, and in a Si nanowire of the same dimensions ( 3.5 µm × 100 nm × 100 nm) are

plotted. The MFP of the Si nanowire has been plotted within the framework of the Casimir-

Ziman model. These MFP have almost the same order of magnitude and behavior. This means

that our interpretation within the framework developed by Pohl et al. is quite consistent. The

difference in the values of these MFP may come either from a physical reason (the MFP in

an amorphous material is smaller than in a crystalline material) or from a problem in the

phenomenological model used for SiN.

Then, for the thermal conductance, the Casimir-Ziman model was used very successfully to

interpret the data in the silicon nanowires. In the case of a SiN nanowire, one may want to use

the same Casimir-Ziman model. The conductance in a SiN nanowire has a square dependence

with respect to the temperature. The simple Casimir model cannot be used, as it predicts a

cubic dependence with respect to the temperature for the conductance. This is evidenced by

the figure 5.9. In this figure the thermal conductance of the nanowire used in the previous

section (fig. 5.2) has been plotted, with the conductances obtained within the framework

of the Casimir-Ziman model (cf. section 2.4) and K0 (four times the universal quantum of

thermal conductance; see section 1.4.5).

On this figure, one can see that even qualitatively, the conductance of the Casimir model does

not correspond to the measured conductance. The conductance made with adjusting the MFP

with specular reflection (KZ i m) may look like the measured conductance, but one order of
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5.5. Conclusion

Figure 5.9: Thermal conductance of the SiN nanowire (in black), the conductance obtained
by the Casimir formula (in red), the conductance with the effective mean free path obtained
with the Ziman model (in blue), and four times the quantum of thermal conductance (K0,
in dark cyan). On the contrary to Si nanowires, these conductances have not even the same
behavior with respect to the temperature. The measured conductance is much smaller than
the quantum of thermal conductance.

magnitude higher. Finally, the thermal conductance of the SiN nanowire is much smaller than

the quantum of thermal conductance. The difference between these conductances increases

when the temperature goes down. Quantum effects are therefore not expected, even for lower

temperatures than those studied.

The conductance called KZ i m is the most comparable to the measured conductance. However

the factor ten between these two conductances cannot be explained. To understand this

difference, it requires the understanding of the physics inside amorphous materials. Indeed if

the two level system is affected by the small size of our sample, this must change the thermal

transport. This is not taken into account in the Casimir-Ziman, and should be investigated in

order to have a good understanding of the physics inside nanowires in amorphous materials.

5.5 Conclusion

Measurements of thermal properties in SiN have been made on three kind of samples : a

nanowire, a slab and a membrane. The behavior of the extensive thermal conductivity is

qualitatively the same as other amorphous materials. The quantitative difference comes from

the small size of the samples, which has been evidenced through the study of the mean free

path. Theoretical works are still lacking to have a physical explanation of the transport inside

bulk amorphous materials, and also in small systems. These measurements may help the

understanding of the physics of phonons in amorphous materials.
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Conclusion

During these three years, I have been able to develop successfully thermal transport mea-

surements on low dimensional systems at low temperatures. This work contributes to the

understanding various effects of nanoscale structuring on phonon transport.

Firstly, I have proved that the conductance measured is not limited by the contact conductance

between the nanowire and the thermal bath. The heat can flow without major perturbations

from the nanowire to a three dimensional thermal reservoir. This result was not obvious since

several models predict an increasing contribution of the contacts to thermal transport as

the temperature is lowered. This is not the case for our samples at the temperatures studied,

where the transmission of heat is nearly perfect.

Then, measurements on corrugated nanowires show a surprising effect. The phonon mean

free path is drastically reduced by multiple scattering and backscattering at the surface of the

nanowire. This leads to a significant decrease of the thermal conductance. The Casimir limit,

which is the lowest value for thermal conductance, has been exceeded in these corrugated

nanowires. These experimental results are of great interest as it allows a new way to decrease

the heat transport with potential application to new materials for thermoelectricity.

Measurements have also been performed in amorphous material samples with three different

sizes (100 nm, 1 µm, 100 µm). By comparing with studies done on other amorphous materials,

the mean free paths have been determined. The physics of phonons in amorphous materials

is not completely understood. It has been shown that the phonon mean free path still plays a

major role for the heat transport in these materials. These measurements may contribute to

have a better understanding of the heat transport in amorphous materials.

In these works, measurements have been done down to 0.3 K. We are now convinced that the

3ω method cannot be used at lower temperature. Indeed, due to the increasing of specular

reflection of phonons on the surface as the temperature is lowered, the phonons mean free

path becomes too large compared to the actual length of the nanowire. In order to explore

thermal transport at lower temperature, where ballistic transport plays a crucial role, the 3 ω

method needs to be dropped for a new experimental technique. A new generation of sensors

are currently being developed in the group for that purpose. These sensors may pave the way

to measurements in the quantum regime of thermal transport at very low temperatures.
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