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Abstract

The main topic of this thesis is the study of the asymptotic behaviour of solutions to
certain nonlinear diffusion equations, whose most important models are the porous medium
equation and the fast diffusion equation. In the first chapter we analyse in detail the connec-
tions between Lp smoothing and decay properties of weighted versions of the porous medium
equation and the validity of suitable functional inequalities involving the weights. In the sec-
ond chapter we investigate the asymptotics of the solutions to the fractional porous medium
equation with power-type weights: this is strictly linked with a similar fractional parabolic
problem having as initial datum a positive finite measure, which we study separately. The
third chapter is mostly devoted to the characterization of the optimal functions for a family
of Caffarelli-Kohn-Nirenberg interpolation inequalities: it turns out that if the power of the
weight that appears in the Lp norms is small enough, then such optimal functions are radial.
As a consequence, solutions to the Euclidean fast diffusion equation with the same power
weight converge towards special solutions of Barenblatt type with an optimal rate, at least
for m larger than a suitable critical value. In the fourth and last chapter we consider the fast
diffusion equation on hyperbolic space: the most important result we obtain, for m close to
one, is the convergence of radial solutions, as t tends to the extinction time, to a separable
solution in the uniform norm of the relative error.
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Summary

This thesis deals with a class of nonlinear diffusion equations whose prototype is
ut = ∆(|u|m−1u) , (1)

which is known as porous medium equation (PME) in the range m > 1 and as fast diffusion
equation (FDE) in the range m < 1. One may see (1) as a particular nonlinear version of
the heat equation whose diffusion coefficient is a power of the solution u itself. We point
out that such coefficient becomes degenerate or singular at u = 0 depending on whether one
considers the PME or the FDE, respectively.

Evolution equations of porous medium type have a long history, both as concerns the
applications which originally motivate their consideration (in this regard, see the Introduction
to Chapter 1) and from the mathematical point of view. We refer in particular to the
monograph [173] by J. L. Vázquez, where a very detailed and comprehensive survey of the
state of the art is given.

Here we are concerned with a number of (weighted) variants and extensions of (1), for
which we address several fundamental issues such as existence and uniqueness of solutions
and their asymptotic behaviour. Our analysis aims at linking as far as possible the properties
of the solutions with suitable functional inequalities associated with the underlying functional
spaces, thus giving a certain amount of generality to the discussion. Below we outline the
main topics we investigate in our work, which is divided into four chapters. A more detailed
introduction to each single topic, as well as full bibliographic references, is provided at the
beginning of the corresponding chapter.
Weighted porous medium equations. The first variant we deal with is the weighted
PME, namely

ρν(x)ut = div
[
ρµ(x)∇(|u|m−1u)

]
, (2)

where ρν and ρµ are suitable positive functions, to which we refer as weights from here on.
A priori we only assume that ρν and ρµ are locally bounded and locally bounded away from
zero. The weight ρν corresponds to an inhomogeneous mass distribution in the medium
where diffusion takes place, whereas ρµ describes a diffusion coefficient that depends on the
spatial variable as well. It is therefore natural to introduce the measure dν := ρν(x)dx for the
problem at hand, whose associated Lebesgue spaces we denote as Lp(ν) for p ≥ 1. Our first
concern consists in considering smoothing and decay properties of solutions to (2), namely
bounds of the type of

‖u(t)‖Lp(ν) ≤ K t−α ‖u0‖βLq(ν) ∀t > 0 , (3)

III



for any given solution u(t) corresponding to an initial datum u0 ∈ Lq(ν), where 1 ≤ q <
p ≤ ∞ and α, β, K are suitable positive constants independent of u0. This is a classical
problem in linear semigroup theory which has widely been studied in the nonlinear setting
as well, see for instance the general reference [172]. The strategy followed here aims at
connecting smoothing and decay estimates of the type of (3) with functional inequalities
that may hold in weighted Sobolev spaces which involve the weights ρν and ρµ. In fact, we
prove full equivalence between suitable versions of (3) and appropriate Poincaré-, Sobolev- or
Gagliardo-Nirenberg-type inequalities (the latter are introduced to deal with low dimensions).
It is worth mentioning that (3) may not be satisfied up to p =∞ unless Sobolev- or Gagliardo-
Nirenberg-type inequalities hold true (i.e. the validity of a Poincaré-type inequality is not
enough). The details of the stated equivalence depend on the particular problem at hand: we
consider Euclidean domains with both homogeneous Dirichlet and homogeneous Neumann
boundary conditions. In the case of finite-ν-measure domains, estimate (3) can be improved
for large times, still by means of a purely functional analytic approach. This is particularly
relevant for the Neumann problem, where convergence of solutions to their ν-mean value
(which is preserved in time) is proved with sharp rates.

The above short- and long-time asymptotics of solutions, together with a detailed well-
posedness analysis, is addressed in Chapter 1 and gathers the results of the papers [P1–P3].
In the same chapter we also consider an inhomogeneous filtration equation in the whole
Euclidean space Rd, which has been studied in [P4], namely an equation of the type of (2)
where ρµ ≡ 1 and the nonlinearity |u|m−1u is replaced by a more general function G(u). It
is known that, in the weighted case, nonuniqueness phenomena can occur even for bounded
data and solutions. Uniqueness can then be restored by adding a suitable nonhomogeneous
condition at infinity, usually formulated in an integral sense. Here we show that existence
and uniqueness results can be proved, under suitable assumptions on the nonlinearity and
on the weight, provided certain pointwise conditions at infinity are prescribed. This seems
to be the first result of this kind for such a problem.

The content of Chapter 1 is based on the following papers:
[P1] G. Grillo, M. Muratori and M. M. Porzio, Porous media equations with two weights:

smoothing and decay properties of energy solutions via Poincaré inequalities, Discrete
Contin. Dyn. Syst. 33 (2013), 3599–3640.

[P2] G. Grillo and M. Muratori, Sharp short and long time L∞ bounds for solutions to porous
media equations with homogeneous Neumann boundary conditions, J. Differential Equa-
tions 254 (2013), 2261–2288.

[P3] G. Grillo and M. Muratori, Sharp asymptotics for the porous media equation in low
dimensions via Gagliardo-Nirenberg inequalities, Riv. Mat. Univ. Parma 5 (2014), 15–
38; proceedings of the workshop “New Trends in Nonlinear Parabolic Equations”, Parma
(Italy), November 12–16, 2012.

[P4] G. Grillo, M. Muratori and F. Punzo, Conditions at infinity for the inhomogeneous
filtration equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 413–428.

Fractional porous medium equations. Chapter 2 is devoted to the study of nonnegative
solutions to the following fractional porous medium equation:

ut = −(−∆)s(um) , (4)

where m > 1 and for s ∈ (0, 1) we denote as (−∆)s the fractional Laplacian operator on
Rd, which can be defined either spectrally or by means of the extension method of Caffarelli
and Silvestre [42]. The investigation of such a class of equations has been started in the
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works [60, 61] by J. L. Vázquez et al., where in particular well-posedness of the evolution is
proved for general L1 data. Recently, existence and uniqueness of Barenblatt-type solutions,
namely solutions having a Dirac delta as initial datum, has been proved again by Vázquez
in [174]. Motivated by these results, we have tackled the delicate problem of (existence
and) uniqueness of weak solutions to (4) when the initial datum is a general positive finite
Radon measure. This is performed by adapting a clever method first introduced by M. Pierre
in [148] a long ago, whose applicability is however far from obvious in the present context and
requires several new arguments. Existence and uniqueness of an initial trace for solutions to
(4) without a prescribed initial condition is also shown. In fact our method, based on Riesz
potential techniques, also works in the case of the following weighted fractional PME :

ρ(x)ut = −(−∆)s(um) , (5)

provided some power-type conditions on the weight (or density) ρ are required both at the
origin, where it can be singular, and at infinity. The mentioned well-posedness analysis is
carried out in the first part of Chapter 2 and relies on the results of [P5]. Being able to
prove existence and uniqueness of Barenblatt-type solutions in the weighted case as well,
and in particular in the case of a singular-power density ρ, we can study the asymptotic
behaviour of general solutions to (5) in terms of Barenblatt-type solutions, at least when
the decay at infinity of ρ is sufficiently slow. It is worth noticing that, as it happens in
the local case (s = 1), the convergence result takes advantage of scaling properties of the
Barenblatt-type solution associated with a singular-power density even when the equation
at hand involves a regular density. This gives motivation to the analysis of (5) in the case
where ρ is singular at the origin. The asymptotic behaviour of solutions to (5) with rapidly
decaying densities is quite different. In fact, still inspired by the local case, we prove that the
latter is actually determined by a separable solution which involves the solution of a suitable
fractional sublinear elliptic equation. This requires techniques completely different from the
ones we use in the slowly decaying case. The present asymptotic analysis, both for slowly
decaying and for rapidly decaying densities, collects the results of [P6].

Finally, we mention that a crucial technical result in proving uniqueness of solutions to (5)
with measure data, based on [P7], is the self-adjointness, in suitably weighted L2 spaces, of
the linear operator formally given by A := ρ−1(−∆)s (and defined on its maximal domain),
together with the Markov property for the associated semigroup. These topics also have an
independent interest and are therefore discussed separately in an appendix at the end of the
chapter.

The content of Chapter 2 is based on the following papers:
[P5] G. Grillo, M. Muratori and F. Punzo, Weighted fractional porous media equations: exis-

tence and uniqueness of weak solutions with measure data, submitted, preprint (2014),
http://arxiv.org/abs/1312.6076v2.

[P6] G. Grillo, M. Muratori and F. Punzo, On the asymptotic behaviour of solutions to the
fractional porous medium equation with variable density, accepted for publication in
Discrete Contin. Dyn. Syst., preprint (2014), http://arxiv.org/abs/1403.5293v2.

[P7] M. Muratori, On the self-adjointness of the fractional Laplacian in some weighted L2

spaces, in preparation.

Caffarelli-Kohn-Nirenberg inequalities and weighted fast diffusion. In Chapter 3 we
address the problem of finding the functions which optimize the following family of Caffarelli-
Kohn-Nirenberg inequalities:

‖w‖2p,γ ≤ C ‖∇w‖ϑ2 ‖w‖1−ϑ
p+1,γ ∀w ∈ D(Rd) , (6)
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where C > 0, d ≥ 3, γ ∈ (0, 2), p ∈ (1, (d− γ)/(d− 2)), ϑ is an explicit exponent depending
on d, γ, p and ‖w‖qq,γ :=

∫
Rd |w(x)|q |x|−γdx for all q ≥ 1. Such inequalities (which can be

extended by density to the space of functions for which the right-hand side of (6) is finite),
in a more general form, were first introduced in [41]. We remark however that the particular
family (6) can readily be deduced by interpolation from Hardy’s inequality and the Sobolev
inequality. Finding optimal functions for (6) means finding those functions which attain the
best constant C in (6). Such problem has completely been solved by M. Del Pino and J.
Dolbeault in [62] in the non-weighted case, i.e. for γ = 0. In particular, it is shown there
that optimal functions coincide with the Aubin-Talenti-type functions

b0(x) :=
(
1 + |x|2

)− 1
p−1 ,

up to a multiplication by a constant and a scaling. Our aim here is to generalize this result
to (6), namely to prove that the corresponding optimal functions are of the type of

bγ(x) :=
(
1 + |x|2−γ

)− 1
p−1 . (7)

Establishing that (7) optimizes (6) among radial functions is not particularly difficult, since
one can bring back the problem to the non-weighted case. Hence, our analysis amounts to
proving that optimal functions are radial, which is far from trivial even though the weight
|x|−γ is radial (in general, symmetry breaking phenomena are known in the literature). By
means of a perturbation argument which involves concentration-compactness techniques, we
prove that the result holds true provided γ > 0 is sufficiently small. This has very interesting
consequences for the asymptotics of nonnegative solutions to the power-weighted Euclidean
fast diffusion equation

|x|−γut = ∆(um) (8)
in the supercritical range (2d − γ − 2)/[2(d − γ)] < m < 1. In fact, the optimality of (7)
for (6) is equivalent to the validity of a suitable sharp free energy-Fisher information (or
entropy-entropy production) inequality, which is in turn equivalent to a sharp exponential
decay estimate for the free energy functional. The latter is actually a measure of the distance
between a general solution to (8) and (7), after a suitable time-space scaling which makes (7) a
stationary solution of a Fokker-Planck version of (8). Such estimates provide key ingredients
to start the well-established entropy method (after [23]) in the power-weighted case as well,
as it will be discussed in detail in [25].

Chapter 3 is based on the following paper:
[P8] J. Dolbeault, M. Muratori and B. Nazaret, Symmetry in weighted interpolation inequal-

ities, submitted.

Fast diffusion on hyperbolic space. As a final topic of the thesis, in Chapter 4 we study
the fast diffusion equation on hyperbolic space HN (N ≥ 2). The asymptotics of nonnegative
radial solutions (namely solutions depending on the spatial component only through the
geodesic distance r from a given pole) turns out to be, in the range m ∈ ((N−2)/(N+2), 1),
driven by a separable solution of the type of(

1− t

T

) 1
1−m

V
1
m , (9)

where V is the unique positive energy solution of the elliptic equation

−∆V = 1
(1−m)T V

1
m on HN , (10)
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also known as Lame-Emden-Fowler equation. We point out that T > 0 (depending on the
initial datum) is the extinction time: in fact, as it happens for the fast diffusion equation
on bounded Euclidean domains with homogeneous Dirichlet boundary conditions, solutions
become identically zero in a finite time. Convergence to the separable solution is proved, in
the spirit of [31], in a very strong sense, namely in the uniform norm of the relative error
and at the level of all derivatives (although without explicit rates).

Notice that on general Riemannian manifolds, in local coordinates, the Laplace-Beltrami
operator can be written as ∆ = |g|−1/2∂i(|g|1/2gij∂j), where the summation convention is
used and |g| denotes the determinant of the metric tensor g. In particular, at least in the
special case of spherically symmetric Riemannian manifolds known as model manifolds, we
basically fall in the class of equations described by (2). In fact, in this framework, the
radial component of the Riemannian Laplacian can always be written in the two-weight form
ρ−1(r) ∂r(ρ(r) ∂r) in geodesic polar coordinates. As mentioned above, here we perform a
detailed analysis on hyperbolic space, as the topologically simplest example of noncompact,
negatively curved model manifold. We believe however that our results can be extended at
least to more general model manifolds with strictly negative curvature, following essentially
the same method of proof.

Chapter 4 is based on the following paper:
[P9] G. Grillo and M. Muratori, Radial fast diffusion on the hyperbolic space, Proc. Lond.

Math. Soc. 109 (2014), 283–317.
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Sintesi

Questa tesi tratta una classe di equazioni non-lineari di diffusione il cui prototipo è

ut = ∆(|u|m−1u) , (1)

nota come equazione dei mezzi porosi (PME) nel range m > 1 ed equazione della diffusione
veloce (FDE) nel range m < 1. La (1) può essere vista come una particolare versione non-
lineare dell’equazione del calore, il cui coefficiente di diffusione è una potenza della soluzione
stessa u. Si noti che tale coefficiente diventa degenere o singolare dove u = 0 a seconda che
si consideri la PME o la FDE, rispettivamente.

Lo studio di equazioni d’evoluzione di tipo mezzi porosi ha una lunga storia, sia a livel-
lo delle applicazioni dalle quali esse nascono (a questo proposito, si veda l’Introduzione al
Capitolo 1), sia da un punto di vista puramente matematico. Ci riferiamo in particolare
alla monografia [173] di J. L. Vázquez, nella quale è fornita una dettagliata e comprensiva
rassegna dello stato dell’arte.

Siamo qui interessati ad alcune varianti ed estensioni (pesate) della (1), per le quali affron-
teremo diverse questioni fondamentali quali esistenza e unicità delle soluzioni e loro compor-
tamento asintotico. La nostra analisi ha lo scopo di legare il più possibile le proprietà delle
soluzioni ad opportune disuguaglianze funzionali associate ai naturali spazi funzionali sotto-
stanti, il che fornisce un certo grado di generalità alla trattazione. Nel seguito delineeremo
gli argomenti principali affrontati nel lavoro di tesi, il quale è suddiviso in quattro capitoli.
Un’introduzione maggiormente dettagliata, assieme ad una vasta bibliografia, verrà fornita
all’inizio dei relativi capitoli.

Equazione dei mezzi porosi pesata. La prima variante che affrontiamo è la PME pesata,
ovvero

ρν(x)ut = div
[
ρµ(x)∇(|u|m−1u)

]
, (2)

dove ρν e ρµ sono opportune funzioni positive, che d’ora in poi chiameremo pesi. A priori
assumeremo solo che ρν e ρµ siano funzioni localmente limitate e localmente lontane da
zero. Il peso ρν corrisponde ad una distribuzione non-omogenea di massa nel mezzo in cui
ha luogo la diffusione, mentre il peso ρµ descrive un coefficiente di diffusione che dipende
possibilmente anche dalla variabile spaziale. Risulta perciò naturale introdurre la misura
dν := ρν(x)dx per il problema considerato, il cui spazio di Lebesgue associato verrà per il
momento denotato come Lp(ν) per p ≥ 1. Il nostro primo obiettivo consiste nel considerare
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proprietà regolarizzanti e asintotiche per le soluzioni della (2), ovvero stime del tipo

‖u(t)‖Lp(ν) ≤ K t−α ‖u0‖βLq(ν) ∀t > 0 , (3)

per ogni data soluzione u(t) corrispondente ad un dato iniziale u0 ∈ Lq(ν), dove 1 ≤ q < p ≤
∞ e α, β, K sono opportune costanti positive indipendenti da u0. Questo è un problema
classico nella teoria dei semigruppi lineari, il quale è stato di recente largamente studiato
anche nel contesto non-lineare, si veda ad esempio la referenza generale [172]. La strategia
che seguiamo qui ha lo scopo di legare stime regolarizzanti e asintotiche come la (3) a di-
suguaglianze funzionali che possono valere in spazi di Sobolev pesati che coinvolgono i pesi
ρν e ρµ. Di fatto dimostreremo una completa equivalenza tra opportune versioni della (3) e
determinate disuguaglianze di tipo Poincaré, Sobolev o Gagliardo-Nirenberg (queste ultime
vengono introdotte in particolare per gestire le dimensioni basse). Vale la pena notare che
la (3) potrebbe non essere soddisfatta fino a p = ∞ se non valgono disuguaglianze di tipo
Sobolev o Gagliardo-Nirenberg (in altre parole, la validità di una disuguaglianza di tipo Poin-
caré non è di per se sufficiente). Nel dettaglio, lo specifico risultato di equivalenza dipenderà
dal particolare problema: considereremo domini Euclidei sia con condizioni di Dirichlet che
con condizioni di Neumann omogenee. Nel caso di domini di ν-misura finita, la stima (3)
può essere migliorata, per tempi lunghi, sempre tramite un approccio puramente analitico-
funzionale. Ciò è particolarmente rilevante per il problema di Neumann, in cui la convergenza
delle soluzioni alla loro ν-media (la quale è conservata nel tempo) è dimostrata con velocità
ottimali.

L’asintotica delle soluzioni appena discussa per tempi brevi e lunghi, assieme ad una
dettagliata analisi di buona posizione, è affrontata nel Capitolo 1 e riunisce i risultati dei
lavori [P1–P3]. Nello stesso capitolo considereremo anche un’equazione della filtrazione non-
omogenea nell’intero spazio euclideo Rd, la quale è stata studiata in [P4], ovvero un’equazione
del tipo (2) in cui ρµ ≡ 1 e la non-linearità |u|m−1u è sostituita da una generica funzione
G(u). È noto che, nel caso pesato, fenomeni di non-unicità possono verificarsi anche solo
per dati e soluzioni limitate. L’unicità può allora essere recuperata a patto di aggiungere
opportune condizioni non-omogenee all’infinito, tipicamente formulate in un senso integrale.
Qui stabiliremo che esistenza e unicità possono essere dimostrate, richiedendo opportune
ipotesi sulla non-linearità e sul peso, anche prescrivendo determinate condizioni puntuali
all’infinito. Quest’ultimo sembra essere il primo risultato di questa tipologia per un tale
problema.

Il contenuto del Capitolo 1 è basato sui seguenti lavori:
[P1] G. Grillo, M. Muratori and M. M. Porzio, Porous media equations with two weights:

smoothing and decay properties of energy solutions via Poincaré inequalities, Discrete
Contin. Dyn. Syst. 33 (2013), 3599–3640.

[P2] G. Grillo and M. Muratori, Sharp short and long time L∞ bounds for solutions to po-
rous media equations with homogeneous Neumann boundary conditions, J. Differential
Equations 254 (2013), 2261–2288.

[P3] G. Grillo and M. Muratori, Sharp asymptotics for the porous media equation in low
dimensions via Gagliardo-Nirenberg inequalities, Riv. Mat. Univ. Parma 5 (2014), 15–
38; proceedings del convegno “New Trends in Nonlinear Parabolic Equations”, Parma
(Italia), 12–16 Novembre 2012.

[P4] G. Grillo, M. Muratori and F. Punzo, Conditions at infinity for the inhomogeneous
filtration equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 413–428.
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Equazione dei mezzi porosi frazionaria. Il Capitolo 2 è dedicato allo studio di soluzioni
non-negative della seguente equazione dei mezzi porosi frazionaria:

ut = −(−∆)s(um) , (4)
dove m > 1 e per ogni s ∈ (0, 1) denotiamo con (−∆)s l’operatore Laplaciano frazionario
su Rd, il quale può essere definito o a livello spettrale o per mezzo del metodo di estensione
dovuto a Caffarelli e Silvestre [42]. L’analisi di tale classe di equazioni è stata avviata dai
lavori [60, 61] di J. L. Vázquez e altri, dove in particolare la buona posizione dell’evoluzione
è dimostrata per generici dati L1. Recentemente, l’esistenza e l’unicità di soluzioni di tipo
Barenblatt, ovvero soluzioni aventi la delta di Dirac come dato iniziale, sono state dimostrate
sempre da Vázquez in [174]. Motivati da questi risultati, abbiamo quindi studiato il delicato
problema dell’unicità (e dell’esistenza) di soluzioni deboli della (4) quando il dato iniziale è
una generica misura di Radon positiva finita. Ciò verrà affrontato adattando un particolare
metodo introdotto inizialmente da M. Pierre in [148], la cui applicabilità nel contesto attuale
tuttavia non è ovvia e richiede molti argomenti nuovi. Sarà inoltre mostrata l’esistenza e
l’unicità di una traccia iniziale per funzioni che siano soluzioni della (4) senza una particolare
condizione iniziale data.

Di fatto il nostro metodo di lavoro, basato su tecniche che coinvolgono potenziali di Riesz,
funziona anche nel caso della seguente PME frazionaria pesata:

ρ(x)ut = −(−∆)s(um) , (5)
posto che alcune condizioni di tipo potenza siano assunte sul peso (o densità) sia nell’origine,
dove può essere singolare, che all’infinito. L’analisi di buona posizione appena menzionata
verrà sviluppata nel corso del Capitolo 2 e si basa sui risultati di [P5]. Dimostrando esistenza
e unicità di soluzioni di tipo Barenblatt anche nel caso pesato, ed in particolare nel caso di una
densità ρ con potenza singolare, possiamo studiare il comportamento asintotico di soluzioni
generiche della (5) in termini delle suddette soluzioni di tipo Barenblatt, perlomeno quando
il decadimento di ρ all’infinito è sufficientemente lento. Vale la pena notare che, così come
accade nel caso locale (s = 1), la dimostrazione del risultato di convergenza sfrutta proprietà
di riscalamento della soluzione di tipo Barenblatt associata alla potenza singolare anche
quando nell’equazione considerata appare una densità regolare. Ciò effettivamente motiva
l’analisi della (5) nel caso in cui ρ sia singolare nell’origine. Il comportamento asintotico
delle soluzioni della (5) con densità che decadono velocemente è decisamente diverso. Infatti,
sempre ispirati dal caso locale, dimostreremo che quest’ultimo è in realtà determinato da
una soluzione a separazione di variabili che è legata alla soluzione di un’opportuna equazione
sublineare ellittica frazionaria. Questo studio richiede tecniche completamente differenti da
quelle usate nel caso di densità che decadono lentamente. L’analisi asintotica qui sviluppata,
sia per densità che decadono lentamente che per densità che decadono velocemente, si riferisce
ai risultati di [P6].

Infine, facciamo notare che un risultato tecnico cruciale nel dimostrare l’unicità di soluzio-
ni della (5) con dati misura, basato su [P7], è l’auto-aggiuntezza, in opportuni spazi L2 pesati,
dell’operatore lineare formalmente dato da A := ρ−1(−∆)s (e definito sul suo dominio mas-
simale), assieme alla proprietà di Markov per il semigruppo associato. Tali argomenti hanno
anche un interesse indipendente e perciò saranno discussi separatamente in un’appendice alla
fine del capitolo.

Il contenuto del Capitolo 2 è basato sui seguenti lavori:
[P5] G. Grillo, M. Muratori and F. Punzo, Weighted fractional porous media equations: exi-

stence and uniqueness of weak solutions with measure data, sottomesso a una rivista
scientifica, preprint (2014), http://arxiv.org/abs/1312.6076v2.
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[P6] G. Grillo, M. Muratori and F. Punzo, On the asymptotic behaviour of solutions to the
fractional porous medium equation with variable density, accettato per la pubblicazione
su Discrete Contin. Dyn. Syst., preprint (2014), http://arxiv.org/abs/1403.5293v2.

[P7] M. Muratori, On the self-adjointness of the fractional Laplacian in some weighted L2

spaces, in preparazione.

Disuguaglianze di Caffarelli-Kohn-Nirenberg e diffusione veloce pesata. Nel Capi-
tolo 3 affrontiamo il problema di trovare le funzioni che ottimizzino la seguente famiglia di
disuguaglianze di Caffarelli-Kohn-Nirenberg:

‖w‖2p,γ ≤ C ‖∇w‖ϑ2 ‖w‖1−ϑ
p+1,γ ∀w ∈ D(Rd) , (6)

dove C > 0, d ≥ 3, γ ∈ (0, 2), p ∈ (1, (d − γ)/(d − 2)), ϑ è un esponente esplicito che
dipende da d, γ, p e ‖w‖qq,γ :=

∫
Rd |w(x)|q |x|−γdx per ogni q ≥ 1. Tali disuguaglianze

(che possono essere estese per densità allo spazio di funzioni per le quali il membro destro
della (6) è finito), in forma più generale sono state introdotte in [41]. Facciamo comunque
notare che la particolare famiglia (6) può essere facilmente ricavata per interpolazione dalle
disuguaglianze di Hardy e di Sobolev. Trovare le funzioni ottimali per la (6) significa trovare
quelle funzioni non-triviali per le quali la (6) vale come uguaglianza con constante ottimale
C. Tale problema è stato completamente risolto da M. Del Pino e J. Dolbeault in [62] nel
caso non pesato, ovvero per γ = 0. In particolare, viene lì dimostrato che le funzioni ottimali
coincidono con le funzioni di tipo Aubin-Talenti

b0(x) :=
(
1 + |x|2

)− 1
p−1 ,

a meno di moltiplicazioni per costanti e riscalamenti. Il nostro obiettivo qui è generalizzare
questo risultato alla (6), cioè dimostrare che le corrispondenti funzioni ottimali sono del tipo

bγ(x) :=
(
1 + |x|2−γ

)− 1
p−1 . (7)

Stabilire che (7) ottimizza (6) tra le funzioni radiali non è particolarmente difficile, dato
che in questo caso il problema può essere facilmente ricondotto al caso non pesato. Di
conseguenza, la nostra analisi si riduce a dimostrare che le funzioni ottimali sono radiali, il
che è tutt’altro che triviale persino quando il peso |x|−γ è radiale (in generale, in letteratura,
sono noti fenomeni di symmetry breaking). Per mezzo di un argomento perturbativo che
coinvolge tecniche di concentrazione-compattezza, dimostreremo che il risultato vale posto
che γ > 0 sia sufficientemente piccolo. Ciò ha conseguenze molto interessanti per l’asintotica
di soluzioni non-negative dell’equazione della diffusione veloce Euclidea pesata con peso di
tipo potenza:

|x|−γut = ∆(um) (8)
nel range supercritico (2d−γ−2)/[2(d−γ)] < m < 1. Di fatto, l’ottimalità della (7) per la (6)
è equivalente alla validità di un’opportuna disuguaglianza di energia libera-informazione di
Fisher (o disuguaglianza di entropia-produzione di entropia) ottimale, la quale è a sua volta
equivalente a una stima ottimale di decadimento esponenziale per il funzionale di energia
libera. Quest’ultimo rappresenta sostanzialmente una misura della distanza tra una soluzione
generica della (8) e la (7), a posteriori di un opportuno riscalamento temporale che rende
la (7) una soluzione stazionaria di una versione di tipo Fokker-Planck della (8). Tali stime
forniscono ingredienti chiave per avviare il ben consolidato metodo d’entropia (sviluppato
in [23]) anche nel caso pesato, come verrà discusso in dettaglio in [25].

Il Capitolo 3 è basato sul seguente lavoro:
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[P8] J. Dolbeault, M. Muratori and B. Nazaret, Symmetry in weighted interpolation inequa-
lities, sottomesso a una rivista scientifica.

Diffusione veloce sullo spazio iperbolico. Come argomento finale della tesi, nel Capitolo
4 studiamo la diffusione veloce sullo spazio iperbolico HN (N ≥ 2). L’asintotica per soluzioni
non-negative radiali (ovvero soluzioni che dipendono solo dalla componente spaziale attraver-
so la distanza geodetica r da un fissato polo) risulta essere, nel rangem ∈ ((N−2)/(N+2), 1),
determinata da una soluzione a variabili separabili del tipo(

1− t

T

) 1
1−m

V
1
m , (9)

dove V è l’unica soluzione positiva di energia dell’equazione ellittica

−∆V = 1
(1−m)T V

1
m su HN , (10)

nota anche come equazione di Lame-Emden-Fowler. Facciamo notare che T > 0 (dipendente
dal dato iniziale) è il tempo d’estinzione: infatti, così come accade per l’equazione della dif-
fusione veloce su domini Euclidei limitati con condizioni di Dirichlet omogenee, le soluzioni
diventano identicamente nulle in un tempo finito. La convergenza alla soluzione a variabi-
li separabili è dimostrata, sulle linee di [31], in un senso molto forte, ovvero nella norma
uniforme dell’errore relativo e a livello di tutte le derivate (sebbene senza velocità esplicite).

Si noti che su varietà Riemanniane generali, in coordinate locali, l’operatore di Laplace-
Beltrami può essere scritto come ∆ = |g|−1/2∂i(|g|1/2gij∂j), dove gli indici sono sottintesi
sommati e |g| denota il determinante del tensore metrico g. In particolare, almeno nel caso
di speciali varietà Riemanniane a simmetria sferica note come varietà modello, fondamental-
mente ricadiamo nella classe di equazioni descritte dalla (2). Infatti, in questo contesto, la
componente radiale del Laplaciano Riemanniano può sempre essere scritta nella forma pe-
sata ρ−1(r) ∂r(ρ(r) ∂r) in coordinate geodetiche polari. Come precedentemente menzionato,
qui svolgeremo una dettagliata analisi sullo spazio iperbolico, essendo quest’ultimo l’esem-
pio topologicamente più semplice di varietà modello non-compatta e a curvatura negativa.
Crediamo infine che i nostri risultati possano essere estesi almeno a varietà più generali con
curvatura strettamente negativa, seguendo essenzialmente lo stesso metodo di dimostrazione.

Il Capitolo 4 si basa sul seguente lavoro:
[P9] G. Grillo and M. Muratori, Radial fast diffusion on the hyperbolic space, Proc. Lond.

Math. Soc. 109 (2014), 283–317.
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Synthèse

Cette thèse s’occupe d’une classe d’équations non-linéaires de diffusion dont le prototype
est

ut = ∆(|u|m−1u) , (1)

aussi connue sous le nom d’équation des milieux poreux (PME) dans le cas où m > 1 et
équation de diffusion rapide (FDE) dans le cas où m > 1. L’équation (1) peut être vue
comme une version non-linéaire particulière de l’équation de la chaleur, dont le coefficient de
diffusion est une puissance de la solution u elle même. Il faut remarquer que ce coefficient
devient dégénéré ou singulier selon que l’on considère respectivement la PME ou la FDE.

L’étude d’équations d’évolution de type milieux poreux a une longue histoire, tant au
niveau des applications physiques dans lesquelles elles apparaissent (à ce propos, voir l’Intro-
duction au Chapitre 1) que du point de vue purement mathématique. On pourra se référer,
en particulier, à la monographie [173] de J. L. Vázquez, dans laquelle est fournie une analyse
détaillée et exhaustive de l’état de l’art.

On s’intéresse ici à des variantes et des extensions (à poids) de (1), en abordant plusieurs
questions fondamentales comme l’existence, l’unicité et le comportement asymptotique des
solutions. Notre analyse a pour but de lier autant que possible les propriétés des solutions à
certaines inégalités fonctionnelles associées dans les espaces fonctionnels naturels sous-jacents,
ce qui fournit un certain degré de généralité à la dissertation. Dans la suite, on va exposer
brièvement les arguments principaux traités dans ce travail de thèse, lequel est divisé en
quatre chapitres. Une introduction plus détaillée, avec une large bibliographie, sera donnée
au début des chapitres correspondants.

Équation des milieux poreux à poids. La première variante que l’on étudie est la PME
à poids, c’est à dire

ρν(x)ut = div
[
ρµ(x)∇(|u|m−1u)

]
, (2)

où ρν et ρµ sont des fonctions positives appropriées, que dorénavant on appellera poids.
À priori on supposera uniquement que ρν et ρµ sont des fonctions localement bornées et
localement minorées par une constante strictement positive. Le poids ρν correspond à une
distribution non-homogène de masse dans le milieu où a lieu la diffusion, alors que le poids
ρµ décrit un coefficient de diffusion qui peut dépendre de la variable spatiale. Il est donc
assez naturel introduire la mesure dν := ρν(x)dx pour le problème considéré, dont l’espace
de Lebesgue associé sera pour l’instant noté Lp(ν) pour p ≥ 1. Notre premier but consiste à
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considérer des propriétés de régularisation et asymptotiques pour les solutions de (2), c’est à
dire des estimations de type

‖u(t)‖Lp(ν) ≤ K t−α ‖u0‖βLq(ν) ∀t > 0 , (3)

pour la solution u(t) correspondante à n’importe quelle donnée initiale u0 ∈ Lq(ν), où 1 ≤
q < p ≤ ∞ et α, β, K sont des constantes positives appropriées qui dépendent de u0. C’est un
problème classique dans la théorie des demi-groupes linéaires, lequel a été largement étudié
récemment également dans un contexte non-linéaire, voir par example la référence générale
[172]. La stratégie que l’on adopte a pour objectif de lier des estimations de régularisation
et asymptotiques de type (3) avec des inégalités fonctionnelles dans des espaces de Sobolev
à poids dans lesquels apparaissent les poids ρν et ρµ. En fait on prouvera une complète
équivalence entre des versions appropriées de (3) et certaines inégalités de type Poincaré,
Sobolev ou Gagliardo-Nirenberg (ces dernières étant introduites en particulier pour s’occuper
des dimensions basses). Il est important de remarquer que (3) pourrait ne pas être satisfaite
jusqu’à p = ∞ dans le cas où des inégalités de type Sobolev ou Gagliardo-Nirenberg ne
sont pas satisfaites (autrement dit, la seule validité d’une inégalité de type Poincaré n’est
pas suffisante). Le résultat d’équivalence dépendra aussi du problème étudié : on considérera
des domaines Euclidiens soit avec conditions de Dirichlet soit avec conditions de Neumann
homogènes. Dans le cas de domaines avec ν-mesure finie, l’estimation (3) peut être améliorée,
lorsque le temps t est grand, toujours avec une approche purement analytique-fonctionnelle.
Cela est particulièrement significatif pour le problème de Neumann, où la convergence des
solutions vers leur ν-moyenne (laquelle est conservée le long du temps) est montrée avec un
taux optimal.

Le comportement asymptotique des solutions dont on vient de discuter pour des temps
brefs et longues, avec une analyse détaillée du caractère bien posé, sera traité dans le Cha-
pitre 1, et réunit les résultats des travaux [P1–P3]. Dans le même chapitre on considérera
aussi une équation de filtration non-homogène dans l’entier espace Euclidien Rd, laquelle a été
étudiée dans [P4], c’est à dire une équation de type (2) où ρµ ≡ 1 et la non-linéarité |u|m−1u
est remplacée par une fonction générique G(u). Il est bien connu que, dans le cas à poids,
des phénomènes de non-unicité peuvent apparaître même parmi les solutions bornées avec
données bornées. L’unicité peut donc être restaurée à condition que l’on ajoute des condi-
tions non-homogènes à l’infini, typiquement formulées au sens intégral. Ici on établira que
l’existence et l’unicité peuvent être démontrées, sous certaines hypothèses sur la non-linéarité
et sur le poids, en posant des conditions appropriées de type ponctuel à l’infini. Ce dernier
résultat semble être le premier de cette typologie pour un tel problème.

Le contenu du Chapitre 1 est basé sur les travaux suivants :
[P1] G. Grillo, M. Muratori and M. M. Porzio, Porous media equations with two weights:

smoothing and decay properties of energy solutions via Poincaré inequalities, Discrete
Contin. Dyn. Syst. 33 (2013), 3599–3640.

[P2] G. Grillo and M. Muratori, Sharp short and long time L∞ bounds for solutions to po-
rous media equations with homogeneous Neumann boundary conditions, J. Differential
Equations 254 (2013), 2261–2288.

[P3] G. Grillo and M. Muratori, Sharp asymptotics for the porous media equation in low
dimensions via Gagliardo-Nirenberg inequalities, Riv. Mat. Univ. Parma 5 (2014), 15–
38 ; comptes-rendus de la conférence “New Trends in Nonlinear Parabolic Equations”,
Parma (Italie), du 12 au 16 Novembre 2012.

[P4] G. Grillo, M. Muratori and F. Punzo, Conditions at infinity for the inhomogeneous
filtration equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 413–428.
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Équation des milieux poreux fractionnaire. Le Chapitre 2 est dédié à l’étude de solu-
tions positives de l’équation des milieux poreux fractionnaire suivante :

ut = −(−∆)s(um) , (4)

où m > 1 et pour n’importe quel s ∈ (0, 1) on note par (−∆)s l’opérateur Laplacien frac-
tionnaire sur Rd, lequel peut être défini soit au niveau spectral soit à travers la méthode
d’extension de Caffarelli et Silvestre [42]. L’analyse d’une telle classe d’équations a été initiée
par les travaux [60, 61] de J. L. Vázquez et ses collaborateurs, où en particulier le caractère
bien posé du problème d’évolution est montré pour des données L1. Récemment, l’existence
et l’unicité de solutions de type Barenblatt, c’est à dire solutions ayant la masse de Dirac
pour donnée initiale, ont été montrées toujours par Vázquez dans [174]. Motivé par ces résul-
tats, on a donc étudié le délicat problème de l’unicité (et de l’existence) de solutions faibles
de (4) lorsque la donnée initiale est une mesure de Radon positive finie générale. Pour cela,
on adapte une méthode introduite par M. Pierre dans [148], dont l’applicabilité dans notre
contexte n’est pas du tout évidente et réclame un certain nombre de nouveaux arguments.
On a montré de plus l’existence et l’unicité d’une trace initiale pour des fonctions qui sont
solutions de (4) sans une condition initiale particulière donnée.

En fait notre méthode de travail, basée sur des techniques de potentiel de Riesz, peut aussi
s’appliquer dans le cas de la PME fractionnaire à poids suivante :

ρ(x)ut = −(−∆)s(um) , (5)

pourvu que certaines conditions de type puissance soient satisfaites par le poids (ou densité),
à l’origine où ce dernier peut être singulier, et à l’infini. L’analyse du caractère bien posé
dont on vient de parler sera présentée dans le Chapitre 2 et se base sur les résultats de [P5].
Étant là encore capable de montrer l’existence et l’unicité de solutions de type Barenblatt
dans le cas à poids aussi, et en particulier dans le cas d’une densité ρ avec une puissance
singulière, on peut donc étudier le comportement asymptotique de solutions génériques de
(5) à travers des solutions Barenblatt ci-dessus, au moins lorsque la décroissance de ρ à
l’infini est suffisamment lente. Notons que, comme dans le cas local (s = 1), la démonstration
du résultat de convergence exploite des propriétés de mise à l’échelle de la solution de type
Barenblatt associée à la puissance singulière même lorsque dans l’équation considérée apparaît
une densité régulière. Cela motive l’analyse de (5) dans le cas où ρ est singulier dans l’origine.
Le comportement asymptotique des solutions de (5) avec densités qui décroissent rapidement
est complètement différent. En effet, toujours inspiré par le cas local, on démontrera que
ce dernier est en fait déterminé par une solution à variables séparées, laquelle est liée à la
solution d’une équation sous-linéaire elliptique fractionnaire appropriée. Cette étude nécessite
des techniques complètement différentes par rapport à celles utilisées dans le cas de densités
qui décroissent lentement. L’analyse asymptotique ici développée, et pour des densités qui
décroissent lentement et pour des densités qui décroissent rapidement, se réfère aux résultats
de [P6].

Finalement, remarquons qu’un résultat technique crucial dans la démonstration de l’uni-
cité des solutions de (5) avec donnée initiale mesure, basé sur [P7], est le fait que, dans des
espaces L2 à poids appropriés, l’opérateur linéaire formellement donné par A := ρ−1(−∆)s
(et défini sur son domaine maximal) est autoadjoint. De plus, le demi-groupe associé a la
propriété de Markov. Telles arguments ont aussi un intérêt indépendant et donc ils seront
abordés séparément dans une annexe à la fin du chapitre.

Le contenu du Chapitre 2 est basé sur les travaux suivants :
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[P5] G. Grillo, M. Muratori and F. Punzo, Weighted fractional porous media equations: ex-
istence and uniqueness of weak solutions with measure data, soumis pour publication,
prépublication (2014), http://arxiv.org/abs/1312.6076v2.

[P6] G. Grillo, M. Muratori and F. Punzo, On the asymptotic behaviour of solutions to the
fractional porous medium equation with variable density, à paraître dans Discrete Contin.
Dyn. Syst., prépublication (2014), http://arxiv.org/abs/1403.5293v2.

[P7] M. Muratori, On the self-adjointness of the fractional Laplacian in some weighted L2

spaces, en préparation.

Inégalités de Caffarelli-Kohn-Nirenberg et diffusion rapide à poids. Le Chapitre 3
est consacré au problème de trouver les fonctions qui optimisent la famille d’inégalités de
Caffarelli-Kohn-Nirenberg suivante :

‖w‖2p,γ ≤ C ‖∇w‖ϑ2 ‖w‖1−ϑ
p+1,γ ∀w ∈ D(Rd) , (6)

où C > 0, d ≥ 3, γ ∈ (0, 2), p ∈ (1, (d− γ)/(d− 2)), ϑ est un exposant explicit qui dépend de
d, γ, p et ‖w‖qq,γ :=

∫
Rd |w(x)|q |x|−γdx pour tout q ≥ 1. De telles inégalités (qui peuvent être

prolongées par densité à l’espace de fonctions pour lesquelles le membre de droite dans (6) est
fini), ont été introduites sous une forme plus générale dans [41]. Remarquons que la famille
(6) peut être facilement obtenue par interpolation à partir des inégalités de Hardy et de
Sobolev. Trouver les fonctions optimales pour (6) signifie trouver des fonctions non-triviales
pour lesquelles (6) devient une égalité, lorsque C est la constante optimale. Ce problème a
été complètement résolu par M. Del Pino et J. Dolbeault dans [62] dans le cas sans poids,
c’est à dire lorsque γ = 0. En particulier, les auteurs démontrent que les fonctions optimales
coïncident avec les fonctions de type Aubin-Talenti

b0(x) :=
(
1 + |x|2

)− 1
p−1 ,

à multiplications, translations et changements d’échelle près. Notre objectif ici est de généra-
liser ce résultat à (6), c’est à dire montrer que les fonctions optimales correspondantes sont
de type

bγ(x) :=
(
1 + |x|2−γ

)− 1
p−1 . (7)

Établir que (7) optimise (6) parmi les fonctions radiales n’est pas particulièrement difficile,
puisque dans ce cas le problème peut être facilement ramené au cas sans poids. Par consé-
quent, notre analyse se réduit à montrer que les fonctions optimales sont radiales, ce qui
n’est pas du tout trivial même si le poids |x|−γ est radial (en général, dans la littérature, sont
connus des phénomènes de brisure de symétrie). Au moyen d’un argument de perturbation
qui nécessite des techniques de concentration-compacité, on montrera que le résultat est vrai
à condition que γ > 0 soit suffisamment petit. Ceci a des conséquences très intéressantes
pour le comportement asymptotique de solutions positives de l’équation de diffusion rapide
sur l’espace Euclidien avec poids puissance :

|x|−γut = ∆(um) (8)

dans l’intervalle super-critique (2d− γ− 2)/[2(d− γ)] < m < 1. Il s’avère que l’optimalité de
(7) dans (6) est équivalente à la validité d’une certaine inégalité d’énergie libre-information de
Fisher (ou inégalité d’entropie-production d’entropie) optimale, laquelle est à son tour équi-
valente à une estimation optimale de décroissance exponentiel pour la fonctionnelle d’énergie
libre. Cette dernière est en fait une mesure de la distance entre une solution générique de (8)
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et (7), après un changement d’échelle qui fait apparaître une version de type Fokker-Planck
de (8) dont (7) est une solution stationnaire. Ces estimations fournissent des ingrédients clés
pour entamer la méthode d’entropie (développée dans [23]) dans le cas à poids, ce qui sera
abordé en détail dans [25].

Le Chapitre 3 est basé sur le travail suivant :
[P8] J. Dolbeault, M. Muratori and B. Nazaret, Symmetry in weighted interpolation inequa-

lities, soumis pour publication.

Diffusion rapide sur l’espace hyperbolique. La dernière partie de la thèse, analysée
dans le Chapitre 4, est l’équation de diffusion rapide sur l’espace hyperbolique HN (N ≥ 2).
Il s’avère que le comportement asymptotique des solutions positives radiales (c’est à dire
solutions qui ne dépendent que de la composante spatiale à travers la distance géodésique
d’un pôle fixé), dans l’intervalle m ∈ ((N − 2)/(N + 2), 1), est déterminé par une solution à
variables séparées de type (

1− t

T

) 1
1−m

V
1
m , (9)

où V est la seule solution positive d’énergie de l’équation elliptique

−∆V = 1
(1−m)T V

1
m sur HN , (10)

aussi connue sous le nom d’équation de Lame-Emden-Fowler. On remarque que T > 0 (lequel
dépend de la donnée initiale) est le temps d’extinction. En effet, comme pour l’équation de
diffusion rapide dans des domaines Euclidiens bornés avec conditions de Dirichlet homogènes,
les solutions deviennent identiquement nulles en temps fini. En s’inspirant de [31], la conver-
gence vers la solution à variables séparées est démontrée dans un sens très fort, c’est à dire
dans la norme uniforme de l’erreur relative ainsi qu’au niveau de toutes les dérivées (par
contre sans taux explicites).

Il est important de remarquer que sur des variétés Riemanniennes générales, en cordon-
nées locales, l’opérateur de Laplace-Beltrami peut être écrit ∆ = |g|−1/2∂i(|g|1/2gij∂j), où il
est entendu que les indices sont sommés et |g| désigne le déterminant du tenseur métrique g.
En particulier, au moins dans le cas de variétés Riemanniennes spéciales avec symétrie sphé-
rique aussi connues sous le nom de variétés modèles, on tombe essentiellement dans la classe
d’équations décrites par (2). En fait, dans ce contexte, la composante radiale du Laplacien
Riemannien peut toujours être écrite sous la forme à poids ρ−1(r) ∂r(ρ(r) ∂r) en coordonnées
géodésiques polaires. Comme déjà indiqué ci-dessus, ici on développera une analyse détaillée
sur l’espace hyperbolique, ce dernier étant l’exemple topologiquement le plus simple de va-
riété modèle non-compacte et à courbure négative. Pour conclure, il est raisonnable de penser
que ces résultats peuvent être étendus à des variétés plus générales avec courbure strictement
négative, en suivant essentiellement la même méthode de démonstration.

Le Chapitre 4 est basé sur le travail suivant :
[P9] G. Grillo and M. Muratori, Radial fast diffusion on the hyperbolic space, Proc. Lond.

Math. Soc. 109 (2014), 283–317.
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CHAPTER1
Porous medium equations with general weights

1.1 Introduction

This chapter is devoted to the analysis of weighted porous medium equations. In particular,
given a domain Ω ⊂ Rd and two weights ρν , ρµ > 0 independent of time and complying with
suitable assumptions that will be specified below, we shall mostly deal with the homogeneous
Dirichlet problem 

ρν(x)ut = div [ρµ(x)∇(um)] in Ω× R+ ,

u = 0 on ∂Ω× R+ ,

u = u0 on Ω× {0}
(1.1.1)

and with the homogeneous Neumann problem
ρν(x)ut = div [ρµ(x)∇(um)] in Ω× R+ ,

ρµ(x)∂(um)
∂n = 0 on ∂Ω× R+ ,

u = u0 on Ω× {0} ,
(1.1.2)

wherem > 1 is a fixed parameter. We stress that the initial datum u0 (and so the correspond-
ing solution) is not required to have a sign: for any q > 0 and y ∈ R, we therefore use the
convention yq := |y|q sign(y) (French powers). Nevertheless, solutions with positive [negative]
initial data stay positive [negative]. This is a formal consequence of standard comparison
principles. A precise meaning to the notions of weak solution to (1.1.1) and (1.1.2) will be
given in Subsections 1.2.1 and 1.3.1, respectively. For such solutions a key (and classical)
estimate that one can prove is the so-called L1 comparison principle (see Theorems 1.2.4 and
1.3.4 below), which includes an L1 contraction inequality and a comparison principle. We
mention from the beginning that our techniques are general enough to permit us to handle
any Euclidean domain, which can also coincide with the whole space Rd; in this regard, we
point out that the boundary conditions in (1.1.1) and (1.1.2) are just formal and have to be
interpreted in a suitable weak sense.
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Chapter 1. Porous medium equations with general weights

Problems (1.1.1) and (1.1.2) are generalizations of the well-known porous medium equa-
tion: we refer the reader to the recent monograph [173] by J. L. Vázquez for a fully-detailed
analysis and a complete overview of the topic. The appearance of the weights ρν and ρµ
is related to spatial inhomogeneity of the medium as concerns mass density and diffusion
coefficient, respectively: see Subsection 1.1.1 for a brief collection of possible physical frame-
works where the (weighted) porous medium equation has proved to be a good model for the
underlying phenomena.

There is a wide literature on porous medium equations with weights: with no claim of
generality we refer the reader e.g to [82,83,89,90,107,111,114–116,118,141,147,153,162–164]
and references therein. The one-weight case in Rd (i.e. when ρµ ≡ 1) is by far the most
studied one (also for more general nonlinearities compared with um). In fact, the latter
was addressed in several papers (included in the above list), some of which deal with a
weight that decays as a negative power of |x| at infinity. Such property allows for a very
detailed analysis of the asymptotic behaviour of solutions in terms of suitably generalized
Barenblatt-type fundamental solutions (for the definition of the latter, see again Subsection
1.1.1) or of separable solutions, depending on the decay rate of the density, much in the
spirit of the non-weighted case (we refer in particular to [114,141,164]). On the other hand,
two-weight operators are of common use in linear analysis and are widely studied in several
different contexts: for example, every Riemannian Laplacian can be written, locally, as a
two-weight linear operator of second order. Still in the linear framework, the validity of
functional inequalities for the quadratic form of the generator of an evolution is well known
to be strictly connected with smoothing and asymptotic properties of the evolution itself:
we refer the reader to the monograph [59] and references quoted therein for a complete
discussion. In the nonlinear case, such connection is more subtle and much less investigated
(see e.g. [27–30, 149]): as we shall explain in detail below, our main goal here is to give a
further contribution to such analysis.

Our first concern is to establish a well-posedness theory for problems (1.1.1) and (1.1.2),
which allows us to deal with sufficiently general weights. In fact, under the sole assumption

ρν , ρµ, ρ
−1
ν , ρ−1

µ ∈ L∞loc(Ω) , (1.1.3)

we shall prove existence of solutions with initial data that belong to suitable Lp(Ω; ν) spaces
(let p ≥ m + 1), where the latter symbol denotes the usual Lp Lebesgue space with respect
to the measure dν = ρν(x)dx (see Subsection 1.1.2 for notations). Our method of proof
is based on a careful generalization of the strategy developed in [173, Chapter 5], which
turns out to work both for the Dirichlet and, with minor modifications, for the Neumann
problem (see Subsections 1.2.2 and 1.3.2). The fundamental idea is to approximate the
degenerate (and possibly singular, depending on the behaviour of the weights at ∂Ω) problems
(1.1.1) and (1.1.2) with a sequence of similar non-degenerate quasilinear problems posed in
a corresponding sequence of regular bounded domains {Ωn} b Ω. Along with the mentioned
L1 comparison principle, key energy estimates are shown to hold for the solutions to such
approximate problems, which permit us to pass to the limit as n→∞ and finally obtain weak
solutions to (1.1.1) and (1.1.2). Note that (1.1.3) is required in order to ensure well-posedness
of the non-degenerate quasilinear problems. When the initial data have a worse integrability
(e.g. they only belong to L1(Ω; ν)), taking advantage of the L1 comparison principle we
construct limit solutions, in agreement with [173, Chapter 6]. Uniqueness, in general, is a
delicate issue: as already noticed in [89], even in the one-weight case it need not hold in the
class of bounded solutions (in this regard, see also Section 1.4). Nevertheless, by means of
a routine argument originally introduced by O. A. Olĕınik we can prove that it does hold in
the class of energy solutions, namely solutions belonging to suitable weighted Sobolev spaces
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1.1. Introduction

(see Definitions 1.2.2 and 1.3.1 below).
Our main goal here is not a full investigation of qualitative properties of solutions for some

explicit classes of weights. We aim at considering weighted porous medium equations from
a more abstract point of view. In fact, we are rather interested in the comprehension of how
the validity of Lq0–L% (let 1 ≤ q0 < %) smoothing and asymptotic properties of solutions to
(1.1.1) and (1.1.2) is connected with the validity of functional inequalities that involve the
weights ρν and ρµ. More precisely, as concerns the Dirichlet problem, we shall deal with
Poincaré-type inequalities of the form

‖v‖2;ν ≤ CP ‖∇v‖2;µ ∀v ∈ H1
0 (Ω; ν, µ) , (1.1.4)

Sobolev-type inequalities of the form (let σ > 1)

‖v‖2σ;ν ≤ CS ‖∇v‖2;µ ∀v ∈ H1
0 (Ω; ν, µ) , (1.1.5)

one-dimensional Gagliardo-Nirenberg-type inequalities of the form (let λ ≥ 2)

‖v‖∞ ≤ CG1 ‖∇v‖
λ
s+λ
2;µ ‖v‖

s
s+λ
s;ν ∀s > 0 , ∀v ∈ H1

0 (Ω; ν, µ) ∩ Ls(Ω; ν) (1.1.6)

and two-dimensional Gagliardo-Nirenberg-type inequalities of the form

‖v‖r;ν ≤ CG2 ‖∇v‖
1− s

r
2;µ ‖v‖

s
r
s;ν ∀r > s > 0 , ∀v ∈ H1

0 (Ω; ν, µ) ∩ Ls(Ω; ν) , (1.1.7)

for suitable positive constants CP , CS, CG1 and CG2(r). By the symbol H1
0 (Ω; ν, µ) we denote

the weighted Sobolev space obtained as the closure of D(Ω) with respect to the norm

‖φ‖H1
0 (Ω;ν,µ) :=

(
‖φ‖2

2;ν + ‖∇φ‖2
2;µ

) 1
2 ∀φ ∈ D(Ω) ,

where dµ = ρµ(x)dx and

‖f‖p;η :=
(∫

Ω
|f(x)|p dη

) 1
p

∀f ∈ Lp(Ω; η) , η = ν or µ ,

see Subsection 1.1.2 for details. Assuming the validity of (1.1.4), we shall prove that solutions
to (1.1.1) satisfy the bounds

‖u(t)‖%;ν ≤ K t−
%−q0
%(m−1) ‖u0‖

q0
%

q0;ν ∀t > 0 (1.1.8)

for some K > 0 independent of t and u0, provided u0 ∈ Lq0(Ω; ν) with q0 ≥ 1 and % ∈ (q0,∞).
On the other hand, the validity of any of the inequalities (1.1.5), (1.1.6) or (1.1.7) entails an
estimate of the form

‖u(t)‖∞ ≤ K t−
θ

m−1 ‖u0‖1−θ
q0;ν ∀t > 0 , (1.1.9)

where K > 0 is as above and u0 ∈ Lq0(Ω; ν) with q0 ≥ 1. The constant θ ∈ (0, 1) is explicit
and depends on q0, m and on the particular inequality which holds true through σ or λ. If
in addition ν(Ω) < ∞ then the above estimates can be improved for long times, yielding
a decay rate of order t−1/(m−1) (absolute bound). Furthermore, we shall also prove converse
implications: that is, the validity of estimate (1.1.8) for solutions to (1.1.1) implies in turn
that the Poincaré-type inequality (1.1.4) holds true. The same applies to (1.1.9) as related to
(1.1.5), (1.1.6) or (1.1.7). We refer the reader to Subsection 1.2.1 for the precise statements
of the corresponding theorems.

As the reader might have noticed, the validity of a Poincaré-type inequality, in contrast
with Sobolev- and Gagliardo-Nirenberg-type inequalities, a priori does not allow us to obtain
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Chapter 1. Porous medium equations with general weights

an L∞ smoothing effect: % is arbitrarily large but has to be strictly smaller than ∞ (indeed
the constant K in (1.1.8) blows up as % ↑ ∞). In agreement with that, we shall provide
explicit examples of couples of weights for which the Poincaré-type inequality holds true
and the L∞ regularization fails for (some) solutions to the corresponding Dirichlet problem.
However, even the fact that a smoothing effect can be deduced from the validity of (1.1.4) is
somehow surprising. In this regard, let us introduce the differential operator formally given
by

Lν,µ := −ρ−1
ν div (ρµ∇) ,

which is formally self-adjoint and nonnegative in L2(Ω; ν). The Poincaré-type inequality
(1.1.4) has a clear spectral interpretation: it amounts to requiring that

minS(Lν,µ) ≥ 1
C2
P

> 0 ,

where S(Lν,µ) denotes the L2(Ω; ν) spectrum of Lν,µ. It would therefore seem quite unlikely,
from the linear case, that such inequalities can be related to anything but a long-time bound
on the L2(Ω; ν) norm of the solution. Nevertheless, in the particular nonlinear framework of
p-Laplacian-type operators, in [105] it has been shown that suitable Poincaré-type inequalities
imply smoothing effects of the type of (1.1.8) (and they are in fact equivalent to one another).
One of our contributions here consists in proving the same type of results for the porous
medium equation.

Sobolev- and Gagliardo-Nirenberg-type inequalities naturally arise from the non-weighted
context (i.e. when ρν = ρµ ≡ 1). In fact, as it is well known, if d ≥ 3 the Sobolev inequality
(1.1.5) holds true in H1

0 (Ω) with σ = d/(d − 2); in dimension two the family of Gagliardo-
Nirenberg inequalities (1.1.7) holds true in H1

0 (Ω), while in dimension one the family of
Gagliardo-Nirenberg inequalities (1.1.6) holds true in H1

0 (Ω) with λ = 2. In fact, all of these
inequalities are a consequence of the Nash inequality

‖φ‖2 ≤ C(d) ‖∇φ‖
d
d+2
2 ‖φ‖

2
d+2
1 ∀φ ∈ D(Rd) ,

which is valid in any dimension: we refer the reader e.g. to the remarkable paper [13] for
a thorough discussion on the equivalence of families of functional inequalities of Poincaré,
Sobolev and Gagliardo-Nirenberg type (and not only). As we shall mention later on, the
smoothing effects (1.1.9) we obtain in the Sobolev and Gagliardo-Nirenberg case allow us to
recover the correct estimates in the non-weighted framework, namely (1.1.9) with

θ = d(m− 1)
2q0 + d(m− 1) .

Such estimates had already been proved in the monograph [172] (where smoothing and decay
properties of solutions to large classes of nonlinear evolution equations are thoroughly anal-
ysed) with different techniques, and they are known to be sharp. However, our method of
proof is more general and only relies on the validity of the above functional inequalities. In
Subsection 1.2.3 we shall also provide explicit examples of nontrivial weights (of power-type)
for which our estimates are sharp.

Let us now consider the Neumann problem (1.1.2). In this case, we assume ν(Ω) <∞ and
investigate smoothing and asymptotic properties of solutions in connection with the validity
of Poincaré-type inequalities of the form

‖v‖2;ν ≤ WP

(
‖∇v‖2;µ + ‖v‖1;ν

)
∀v ∈ H1(Ω; ν, µ) (1.1.10)
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and
‖v − v‖2;ν ≤MP ‖∇v‖2;µ ∀v ∈ H1(Ω; ν, µ) , (1.1.11)

Sobolev-type inequalities of the form (let σ > 1)

‖v‖2σ;ν ≤ WS

(
‖∇v‖2;µ + ‖v‖1;ν

)
∀v ∈ H1(Ω; ν, µ) (1.1.12)

and
‖v − v‖2σ;ν ≤MS ‖∇v‖2;µ ∀v ∈ H1(Ω; ν, µ) , (1.1.13)

one-dimensional Gagliardo-Nirenberg-type inequalities of the form (let λ ≥ 2)

‖v‖∞ ≤ WG1

(
‖∇v‖2;µ + ‖v‖1;ν

) λ
s+λ ‖v‖

s
s+λ
s;ν ∀s > 0 , ∀v ∈ H1(Ω; ν, µ) (1.1.14)

and
‖v − v‖∞ ≤MG1 ‖∇v‖

λ
s+λ
2;µ ‖v − v‖

s
s+λ
s;ν ∀s > 0 , ∀v ∈ H1(Ω; ν, µ) , (1.1.15)

two-dimensional Gagliardo-Nirenberg-type inequalities of the form

‖v‖r;ν ≤ WG2

(
‖∇v‖2;µ + ‖v‖1;ν

)1− s
r ‖v‖

s
r
s;ν ∀r > s > 0 , ∀v ∈ H1(Ω; ν, µ) (1.1.16)

and

‖v − v‖r;ν ≤MG2 ‖∇v‖
1− s

r
2;µ ‖v − v‖

s
r
s;ν ∀r > s > 0 , ∀v ∈ H1(Ω; ν, µ) , (1.1.17)

where WP , MP , WS, MS, WG1 , MG1 , WG2(r) and MG2(r) are suitable positive constants,

f :=
∫
Ω f(x) dν
ν(Ω) ∀f ∈ L1(Ω; ν)

and H1(Ω; ν, µ) is the Sobolev space of weakly differentiable functions v such that ‖v‖2;ν +
‖∇v‖2;µ < ∞ (see again Subsection 1.1.2). If one thinks about the non-weighted case, the
above inequalities are the analogues of (1.1.4)–(1.1.7) in regular bounded Euclidean domains,
for functions which do not necessarily vanish on ∂Ω. Inequalities (1.1.11), (1.1.13), (1.1.15)
and (1.1.17) are stronger than (1.1.10), (1.1.12), (1.1.14) and (1.1.16), respectively; however,
it is easy to show that the former are equivalent to the latter plus the the Poincaré-type
inequality (1.1.11). Assuming the validity of (1.1.10), we shall prove that solutions to (1.1.2)
satisfy the bounds

‖u(t)‖%;ν ≤ K
(
t−

%−q0
%(m−1) ‖u0‖

q0
%

q0;ν + ‖u0‖q0;ν

)
∀t > 0 (1.1.18)

for some K > 0 independent of t and u0, provided u0 ∈ Lq0(Ω; ν) with q0 ≥ 1 and % ∈ (q0,∞).
As in the Dirichlet case, by means of an explicit counterexample we show that in general,
if only the Poincaré-type inequality (1.1.10) (or (1.1.11)) holds true, L∞ regularization fails.
On the other hand, the validity of any of the inequalities (1.1.12)–(1.1.17) entails an estimate
of the form

‖u(t)‖∞ ≤ K
(
t−

θ
m−1 ‖u0‖1−θ

q0;ν + ‖u0‖q0;ν

)
∀t > 0 , (1.1.19)

where K > 0 is as above and u0 ∈ Lq0(Ω; ν) with q0 ≥ 1. The constant θ ∈ (0, 1) is the
same appearing in the corresponding estimate (1.1.9) for the Dirichlet problem. Converse
implications, which yield equivalence results between our estimates and the above functional
inequalities, continue to hold in this context as well. We refer the reader to Subsection
1.3.1 for the precise statements. The bounds (1.1.18) and (1.1.19) can be improved for long
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Chapter 1. Porous medium equations with general weights

times upon requiring the validity of (1.1.11), (1.1.13), (1.1.15) or (1.1.17). Here we need
to distinguish between initial data with zero-mean and with nonzero-mean (and solutions
accordingly, since the Neumann boundary condition forces the mean value to be preserved).
In particular, we shall prove that if u0 = 0 then one can recover exactly the same estimates
as in the Dirichlet case, as well as a decay rate of order t−1/(m−1). On the contrary, the most
important result we shall prove for solutions with nonzero mean is the uniform convergence
to their mean value with a precise exponential rate:

‖u(t)− u‖∞ ≤ Ge
− m

M2
P

|u|m−1 t
∀t ≥ 1 , (1.1.20)

where G > 0 is a suitable constant. We point out that (1.1.20) holds true as a sole con-
sequence of the validity of a Sobolev- or Gagliardo-Nirenberg-type inequality like (1.1.13),
(1.1.15) or (1.1.17): no result of this kind seems to have appeared in the related literature so
far, at least to the best of our knowledge. If we only assume the validity of the Poincaré-type
inequality (1.1.11), then we have a weaker result. That is, for initial data in L∞(Ω) we shall
prove that the corresponding solutions still converge to their mean value with an exponential
rate; however, such rate is unknown and convergence takes place in L%(Ω; ν) for all % ∈ [1,∞).
Actually, uniform convergence in general need not hold, as we can show through a counterex-
ample. Finally, for unbounded initial data we shall prove the same type of convergence to
the mean value, though with some negative-power rate which is not necessarily sharp.

The Neumann problem for the porous medium equation, even in the non-weighted case,
is much less studied in the literature with respect to the Dirichlet problem (or to the Cauchy
problem in the whole space Rd). Some asymptotic estimates were first provided by the
pioneering work of N. D. Alikakos and R. Rostamian [3]. In particular, they proved that
if u0 = 0 then the solution to the homogeneous Neumann problem in regular Euclidean
domains converges uniformly to zero with the sharp rate t−1/(m−1). On the other hand, if
u0 6= 0 convergence to the mean value is exponential. However, such results were established
only for u0 ∈ L∞(Ω), whereas a smoothing effect was proved later on in [27] (in the framework
of Riemannian manifolds). In Subsections 1.3.3 and 1.3.4 we shall explain in detail how our
results improve on the ones of [3] and [27]. In this regard, our contributions consist in having
proved estimates which, in the non-weighted case, are sharp both for short and long times, by
means of purely functional arguments. In the weighted case, as already mentioned, our short-
time estimates are in fact equivalent to the functional inequalities we start from; moreover,
we shall also provide explicit examples of power-law weights for which such estimates are
sharp, in the sense that there exist solutions whose short-time behaviour is exactly the one
given by (1.1.19). As concerns the exponential bound (1.1.20), we point out that, though we
can rigorously prove its sharpness only in the non-weighted case, the rate predicted by it is
precisely the one we obtain by linearising the solution u about its mean value u.

Besides the quoted papers [3,27], let us also mention [116], where the issue of convergence
to the mean value for solutions to the porous medium equation (and more general nonlinear,
degenerate diffusions) is addressed in dimension one and in the one-weight case (namely
ρµ ≡ 1). The authors establish local uniform convergence, while global uniform convergence
is not dealt with; actually, this is in agreement with the fact that the Sobolev-type inequalities
in general may not hold under the assumptions they make on the density ρ = ρν .

Other works related to the Neumann problem for equations of porous medium type can be
found for instance in [5, 6]. However, we remark that the discussions there involve domains
of infinite volume, so that convergence to zero, rather than to the mean value, takes place,
thus giving rise to a kind of evolution which is to some extent closer to the Dirichlet case.

Notice in addition that in also in the papers [82, 83, 176] one can find asymptotic bounds
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1.1. Introduction

for weighted porous medium equations in connection with functional inequalities, although
no smoothing effect is dealt with there.

As concerns methods of proof, most of our short-time estimates will be obtained by means
of techniques of Moser iteration type, named after J. Moser who introduced and developed
them in a series of papers (see e.g. [134–137]), mainly in connection with the study of uni-
formly elliptic operators in Rd. The interesting point in such techniques is that, basically,
they only make use of functional inequalities like Sobolev’s. As concerns the porous medium
equation, similar kind of methods were used in the quoted paper [3] and also in [2], even
though the estimates proved there are not smoothing effects since they still depend in a
nontrivial way upon the L∞ norm of the initial datum. A Moser iteration very similar to the
ones we exploit here can be found in [61], see also Chapter 2, Subsection 2.2.2.

We point out that, although the estimates for the Neumann problem (1.1.18) and (1.1.19)
are equal to the corresponding estimates for the Dirichlet problem plus a constant times
‖u0‖q0;ν in the right-hand side, they are much harder to prove compared to the latter, since
additional terms to be dealt with appear in the Moser iterations.

On the other hand, long-time bounds will be proved by means of purely differential meth-
ods, which amount to find a good differential inequality for

d
dt ‖u(t)‖%%;ν or d

dt ‖u(t)− u‖%%;ν .

Especially in the case of solutions with nonzero mean, obtaining such differential inequalities
is not straightforward: in order to do it, we will have to prove new functional inequalities
from (1.1.11) and (1.1.13). Actually, suitable differential methods, much in the spirit of L.
Gross [106], are thoroughly used by the authors in [27] to prove their smoothing effects. This
yields very good estimates for Dirichlet-type problems (in fact (1.1.8) will be proved by a
differential argument and (1.1.9) is basically a consequence of the results in [27]), while for
Neumann-type problems our Moser iteration techniques give better results.

In Section 1.4 we shall focus on a particular one-weight problem in Euclidean space:ρ(x)ut = ∆ [G(u)] in Rd × (0, T ] =: ST ,
u = u0 on Rd × {0} ,

(1.1.21)

where d ≥ 3, T > 0 and the weight ρ (which here is commonly referred to as density), the
nonlinearity G and the initial datum u0 comply with the following conditions:

(i) ρ ∈ C(Rd) , with ρ > 0 ;
(ii) G ∈ C1(R) , with G(0) = 0 and G′ > 0 in R \ {0} ;
(iii) if G′(0) = 0 then G′ is decreasing in (−δ, 0) and increasing in (0, δ) for some δ > 0;
(iv) u0 ∈ C(Rd) ∩ L∞(Rd) .

(H0)
A typical choice for the function G is of course the one corresponding to the porous medium
equation, namelyG(u) = |u|m−1u for somem > 1 (French power). In this case, the differential
equation in (1.1.21) is usually called inhomogeneous porous medium equation, which arises
in several contexts of physical interest (see Subsection 1.1.1). On the contrary, if one keeps
a general nonlinearity G as in (H0)-(ii, iii), then (1.1.21) is referred to as inhomogeneous
filtration equation.

When one gives up the class of energy solutions we informally introduced above and
only deals with (very weak) bounded solutions, well-posedness of problem (1.1.21) turns
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Chapter 1. Porous medium equations with general weights

out to depend strongly on the behaviour of the density ρ(x) as |x| → ∞. As it is well
known, if assumption (H0) is satisfied, then there exists a bounded solution (see for instance
[90, 116]). Moreover, if d = 1, 2 and ρ ∈ L∞(Rd), such solution is unique [107]. In higher
dimensions d ≥ 3, we can have uniqueness or nonuniqueness of bounded solutions depending
on asymptotic properties of ρ at infinity. More precisely, suppose that ρ does not decay too
fast, in the sense that there exist R1 > 0 and ρ1 ∈ C([R1,∞)) such that ρ(x) ≥ ρ1(|x|) > 0
for all x ∈ Bc

R1 and
∫∞
R1
rρ1(r) dr = ∞. Then problem (1.1.21) admits at most one bounded

solution (see [153,156] or [154] for similar issues on bounded domains). A natural choice for
ρ1 is e.g. ρ1(r) = r−α, with r ∈ [R1,∞), for some α ∈ (−∞, 2] and R1 > 0.

On the other hand, if ρ decays fast enough at infinity, in the sense that Γ ∗ ρ ∈ L∞(Rd),
where Γ is the fundamental solution of the Laplace equation in Rd, then nonuniqueness
prevails (see again [153, 156] or even [113] for the linear case, namely G(u) = u). That is,
for any function A ∈ Lip([0, T ]) with A(0) = 0 there exists a solution u to problem (1.1.21)
which satisfies the additional condition

lim
R→∞

1
|∂BR|

∫
∂BR
|U(σ, t)− A(t)| dσ = 0 (1.1.22)

uniformly as t ∈ [0, T ], where

U(x, t) :=
∫ t

0
G(u(x, τ)) dτ ∀(x, t) ∈ ST .

Note that the hypothesis Γ∗ρ ∈ L∞(Rd) can be replaced by the following stronger (but more
explicit) assumption: there exists R0 > 0 and ρ0 ∈ C([R0,∞)) such that ρ(x) ≤ ρ0(|x|) for
all x ∈ Bc

R0 and
∫∞
R0
rρ0(r) dr <∞. Then we can in turn replace (1.1.22) with

lim
|x|→∞

|U(x, t)− A(t)| = 0 (1.1.23)

uniformly as t ∈ [0, T ], which trivially implies (1.1.22). Again, a natural choice for ρ0 is
e.g. ρ0(r) = r−α, with r ∈ [R0,∞), for some α ∈ (2,∞] and R0 > 0.

We point out that (1.1.22) and (1.1.23) can also be considered as nonhomogeneous Dirichlet
conditions at infinity in a suitable integral sense. In this regard, it seems therefore natural
to ask whether imposing conditions at infinity in a pointwise sense, which resembles more
closely the usual Dirichlet boundary conditions on bounded domains, still restores existence
and uniqueness of solutions. In order to avoid confusion, we remark that here the term
“inhomogeneous” is referred to the presence of the density ρ in the differential equation,
while the term “nonhomogeneous” is referred to possible conditions at infinity with A 6≡ 0.

As concerns uniqueness subject to (1.1.22) or (1.1.23), so far it was only known that there
exists at most one solution u ∈ L∞(ST ) to problem (1.1.21) satisfying the extra conditions
(1.1.22) or (1.1.23) either when G(u) = u (see the results obtained in [113]) or when u0 ≥ 0
and A ≡ 0 (see [90]). However, the methods used to obtain such results did not work
for general G and A. Here we show that, to some extent, it is possible to deal both with
nonlinearities and nonhomogeneous pointwise conditions simultaneously.

In Subsection 1.4.2 we address existence. More precisely, first we prove that if ρ decays
fast enough at infinity, the diffusion is non-degenerate in a suitable sense, u0 ∈ C(Rd) and
lim|x|→∞ u0(x) exists and is finite, then for any a ∈ C([0, T ]) with

a(0) = lim
|x|→∞

u0(x) (1.1.24)

there exists a bounded solution u to problem (1.1.21) which satisfies
lim
|x|→∞

u(x, t) = a(t) uniformly as t ∈ [0, T ] . (1.1.25)
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1.1. Introduction

Furthermore, we can drop the assumption of non-degeneracy for suitable classes of initial
data u0 and conditions at infinity a. Indeed, if a = a0 := lim|x|→∞ u0(x) ∈ R and (H0) holds
true, then there exists a bounded solution u to problem (1.1.21) such that

lim
|x|→∞

u(x, t) = a0 uniformly as t ∈ [0, T ] ,

independently of the asymptotic behaviour of ρ. Finally, if (H0) is fulfilled and ρ decays fast
enough at infinity, then for any a ∈ C([0, T ]) with a > 0 in [0, T ] there exists a bounded
solution u to problem (1.1.21) which satisfies (1.1.25), provided u0 complies with (1.1.24).
For all the precise statements, we refer the reader to Subsection 1.4.1.

Let us comment that in [153], by means of generalizations of the arguments in [113],
conditions (1.1.22) and (1.1.23) for solutions to (1.1.21) are achieved by constructing barriers
at infinity, which are sub- or supersolutions to suitable linear elliptic problems. In the
present context, in order to impose Dirichlet conditions at infinity in a pointwise sense, we
will construct, in a neighbourhood of each t0 ≥ 0, delicate time-dependent barriers, which
are sub- or supersolutions to suitable nonlinear parabolic problems.

Uniqueness is dealt with in Subsection 1.4.3. In particular, we prove that it holds true
under the weaker condition

lim
|x|→∞

u(x, t) = a(t) for a.e. t ∈ (0, T ) ,

for a general G complying with (H0)-(ii, iii) and bounded ρ and a. The arguments we exploit
are modelled after [8] (ρ ≡ 1, d = 1) and [107] (d = 1, 2), where uniqueness was established
in low dimensions without requiring extra conditions at infinity.

1.1.1 Some physical motivations

Given a regular bounded domain Ω ⊂ Rd and m > 1, let us consider the porous medium
equation in the non-weighted case:

ut = ∆(um) in Ω× R+ , (1.1.26)

with u ≥ 0. Undoing the Laplacian as the divergence of the gradient, from (1.1.26) we obtain

ut = div
(
mum−1∇u

)
in Ω× R+ , (1.1.27)

whence one sees that the diffusivity coefficient appearing in the equation is in fact mum−1. If
we think of u as the concentration of some fluid substance in Ω, we find that the diffusion is
slower where the concentration is higher. From the mathematical point of view, this entails
the finite speed of propagation of solutions to (1.1.26), what mostly distinguishes them from
the corresponding solutions to the heat equation (m = 1). To fix ideas, let us examine the
situation in Euclidean space Ω = Rd. As it is well known, the Gaussian function

uC(x, t) := e−
|x|2
4t

(4πt) d2
(1.1.28)

is the heat kernel or fundamental solution of the heat equation, from which, by convolution,
one obtains all solutions with integrable initial data. In fact, (1.1.28) solves the heat equation
with a Dirac delta δ (centred at zero) as initial datum, which represents e.g. the distribution
of a substance that is ideally concentrated at a single point. Hence, the speed of propagation
of such solution is clearly infinite, as after an arbitrarily small time t > 0 it becomes strictly

9



Chapter 1. Porous medium equations with general weights

positive in the whole of Rd; the same holds true for any solution corresponding to a compactly
supported (nonnegative) datum. As concerns the porous medium equation, existence of
a particular family of solutions in Rd, which represents the nonlinear counterpart of the
fundamental solution of the heat equation (1.1.28), was proved in the fifties by three Russian
mathematicians: Zel’dovich, Kompaneets and Barenblatt. Their explicit form is the following
(see [173, Chapter 4]):

uZKB(x, t) := t−α
(
C − b |x|2 t−2κ

) 1
m−1

+
, (1.1.29)

where
α := dκ , κ := 1

d(m− 1) + 2 , b := m− 1
2m κ

and C > 0 is a free parameter associated with the total mass M :=
∫
Rd u(x, t) dx, which is

preserved in time (the same degree of freedom is recovered in the heat equation by multiplying
the fundamental solution by any positive constant). The functions (1.1.29) are commonly
referred to as Barenblatt solutions, or Barenblatt functions. Actually, it is not difficult to
prove that the Barenblatt solution with unitary mass suitably converges, as m ↓ 1, to the
fundamental solution of the heat equation. Nevertheless, there are at least three important
properties (related to each other), enjoyed by Barenblatt solutions, which entail significant
differences between (1.1.28) and (1.1.29):
• a finite speed of propagation;
• a natural free boundary which separates the region where u > 0 from the one where
u ≡ 0, which is a time-space surface of the form

t = c(C,m, d) |x|d(m−1)+2 ;

• a limited regularity (uC is C∞ whereas uZKB is only Hölder).
It is then possible to prove that such properties, in fact, continue to hold for generic solutions
with compactly supported nonnegative initial data, see [173, Chapter 14]. From the physi-
cal point of view, finite speed of propagation is more realistic, making the porous medium
equation a reasonable model for some important physical phenomena, among which heat
propagation can surely be included (in this regard, infinite speed of propagation predicted
by its solutions is one of the main issues associated with the heat equation).

Consider now the weighted porous medium equation

ρν(x)ut = div [ρµ(x)∇(um)] in Ω× R+ , (1.1.30)

where ρν and ρµ are positive regular functions in Ω. A few recent papers, among which we
quote e.g. [114, 163, 164], thoroughly studied the Euclidean case Ω = Rd for ρµ ≡ 1 and
assuming suitable power-decay conditions at infinity on ρν . Basically, it is required that
ρ(x) ≈ |x|−γ as |x| → ∞, for some γ > 0. As γ increases, interesting phenomena arise. If
γ ∈ (0, 2), Barenblatt-type solutions continue to exists and rule the asymptotics of a large
class of solutions (see also Paragraph 1.2.3.3 below or the Introduction to Chapter 2). If
γ ∈ (2, γ2), where

γ2 := 2 + (m− 1)(d− 2)
m

,

then solutions tend to behave more like separable solutions of the form

uS(x, t) := t−
1

m−1 S(x) ,
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S being the (minimal) solution to the elliptic problem

−∆(Sm) = 1
m− 1 ρν S in Rd .

Actually, for such values of the parameter, there are still Barenblatt-type solutions which
play a role in the asymptotics (though they become unbounded) in some space-time “outer
sets”; however, for γ > γ2 they definitively cease to exist. Hence, the thresholds γ = 2 and
γ = γ2 separate classes of weights ρν which, depending on their behaviour at infinity, make
Euclidean space look more like a bounded domain. In fact the value γ2 is deeply linked with
speed of propagation: it is possible to prove that for γ < γ2 initial data with compact support
stay compactly supported along the evolution, while such property is lost in a finite time for
γ > γ2.

As we mentioned above, here we shall also analyse signed solutions to the weighted porous
medium equation, i.e. solutions corresponding to initial data which are possibly negative
somewhere. In this case um is meant as the French power |u|m−1 sign(u). As far as we are
concerned, the interest for such kind of data is purely mathematical: below we shall see that
the main physical models which lead to the porous medium equation deal with the evolution
of intrinsically nonnegative quantities such as (for instance) densities, temperatures, lengths
or populations of species.

As for boundary conditions, we consider homogeneous Dirichlet conditions of the type of

u = 0 on ∂Ω

or homogeneous Neumann conditions of the type of

F (u) := ∂(um)
∂n

= 0 on ∂Ω ,

where F represents the outgoing flow on ∂Ω of the substance that diffuses in Ω. In case of
equations with weights, the flow has to be multiplied by ρµ. Clearly, the Dirichlet condition
amounts to imposing that there is no substance on the boundary, whereas the Neumann
condition entails that there is no incoming or outgoing flow of the substance to or from
the domain. In agreement with that, if we think about the porous medium equation on
bounded domains (see also the results we state in Subsections 1.2.1 and 1.3.1), solutions to
the Dirichlet problem vanish as t→∞, while solutions to the Neumann problem preserve
the mass and converge to their mean value.

Finally, we point out that the case m ∈ (0, 1) gives rise to the so-called fast diffusion
equation. From (1.1.27) it is natural to expect that the behaviour of solutions is substantially
different compared to “porous” case m > 1. In fact, now, the lower is the concentration of
the substance, the higher is the diffusivity. For a short overview of this kind of equation,
which we shall address in Chapters 3 and 4 in two different mathematical frameworks, we
refer the reader e.g. to [173, Section 5.10] and references quoted therein. Let us mention that
the most important phenomenon associated with fast diffusion is extinction in finite time,
namely the fact that, at least for the Dirichlet problem in bounded domains, the diffusion is
so rapid that after a finite time all the substance has gone out of the domain.

In the sequel we briefly describe some physical applications (taken from [173, Chapter 2])
where the porous medium equation has proved to be a good model for the related phenomena.

Let us first consider the distribution of the density σ of a polytropic gas which diffuses in
a porous medium (the name porous medium equation was basically born from the description
of this particular phenomenon). The continuity equation (or mass balance) reads

εσt + div(σV) = 0 ,
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Chapter 1. Porous medium equations with general weights

where V is the velocity of the gas and ε ∈ (0, 1) is the porosity of the medium, that is the
fraction of its total volume which is indeed available for fluid circulation. A second equation
is Darcy’s law, namely an empirical relation which links the velocity V with the pressure p:

υV = −λ∇p ,

where υ is the viscosity of the gas and λ is the permeability of the medium (a parameter
which is related to the ease with which a fluid under pressure can penetrate it). Finally we
have the state equation for perfect gases, connecting pressure with density:

p = p0 σ
η ;

here η ≥ 1 is the so-called polytropic exponent and p0 is the reference pressure. After a few
computations, we end up with the following equation for the density:

σt = ηλp0

ευ(η + 1) ∆(ση+1) ,

namely the porous medium equation with m = η+1 (up to a multiplicative constant of which
we can get rid by means of a straightforward time scaling). The final result gives rise to the
Leibenzon-Muskat model (in this regard, see the monograph [140]). It is apparent that if we
allow for a spatial inhomogeneity of the porosity, the role of the latter is equivalent to the
role of the outer weight ρν in the weighted equation (1.1.30), while a possible inhomogeneity
of the permeability is associated with the presence of the inner weight ρµ.

Another important application of the porous medium equation arises from heat propaga-
tion in plasmas (ionized gases) at very high temperatures. The corresponding physical model
is based on a modification of Fourier’s law (which leads to the heat equation), prescribing
the following relation between thermal conductivity and temperature:

cσTt = div(φ(T )∇T ) , (1.1.31)

where c is the specific heat at constant pressure, σ is the density of the gas, T is the distribu-
tion of temperature of the latter (the unknown) and φ is the thermal conductivity, which is
supposed to be a function of the temperature. The choice φ(T ) = aT 3, for a fixed constant
a > 0, yields the Zel’dovich-Raizer model, which corresponds to the porous medium equation
with m = 4. Again, we obtain weighed versions of (1.1.31) as soon as we allow the density
of the gas (which here is considered as a datum) or the thermal conductivity to depend on
the spatial variable as well.

A good model for the description of the phenomenon of groundwater infiltrations is Boussi-
nesq’s equation. Such a phenomenon consists in the penetration of some fluid (typically wa-
ter) through a porous layer of ground having a given height H, which in turn lies on a solid
impervious material. The aim is to establish the height h ≤ H (depending on the planar
coordinates (x, y)) of the water infiltrated in the porous layer, assuming that the impervious
material is at height zero. The equations one uses are essentially the same described above
for the Leibenzon-Muskat model (continuity equation and Darcy’s law, which here also takes
into account gravity), even though in this case the unknown is not a density but part of
the domain itself, namely the height h of the infiltrated water. If one assumes that water
flows in the soil with a velocity which is mainly horizontal and that there are no significant
variations with respect to y, after some computations (see [173, Section 2.3]) we end up with
the following equation (in fact Boussinesq’s equation):

ht = σgλ

2ευ (h2)xx , (1.1.32)
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where g is gravity, ε and λ are the porosity and the permeability of the ground layer, re-
spectively, while σ and υ are the density and the viscosity of water, respectively. It is then
apparent that (1.1.32) is the porous medium equation with d = 1 and m = 2. The possi-
ble presence of the weights ρν and ρµ is still associated with inhomogeneous features of the
medium.

Finally, from [108] we have a simple law which can be used, in principle, to describe the
evolution of a biological species, whose density in a suitable region we denote as u:

ut = div (φ(u)∇u) + f(u) ,

where φ is a given increasing function (representing the diffusivity of the species) and the
forcing term f(u) subsumes interactions with other species. A common choice is φ(u) = au
(for a constant a > 0).

1.1.2 Preliminary tools: weighted Sobolev spaces

This subsection is devoted to a short overview of weighted Sobolev spaces, which serve
as basic tools for our analysis. We are mostly interested in the case p = 2 and in weights
that are locally bounded and locally bounded away from zero, but for completeness we give
a more general presentation.

In agreement with the above notations, we denote as Ω a general domain of Rd (possibly
coinciding with the whole Euclidean space itself) and as ν and µ two positive measures
on Ω absolutely continuous with respect to the Lebesgue measure, ρν and ρµ being the
corresponding weights (or densities), respectively. Throughout, we shall always assume

ρν(x), ρµ(x) > 0 for a.e. x ∈ Ω ,

so that also the Lebesgue measure is absolutely continuous with respect to ν and µ.
For all p ∈ [1,∞), we denote as Lp(Ω; ν) the Banach space of (equivalence classes of)

Lebesgue measurable functions f such that

‖f‖pp;ν :=
∫

Ω
|f(x)|p dν =

∫
Ω
|f(x)|p ρν(x)dx <∞ .

The same holds for Lp(Ω;µ). If p ∈ (0, 1) we keep an analogous notation, even though in
this case Lp(Ω; ν) is no longer a normed space. We also define the weighted Sobolev space
W 1,p(Ω; ν, µ) (see e.g. [119]) as the set of all (equivalence classes of) functions v ∈ W 1,1

loc (Ω)
such that

‖v‖pp;ν,µ := ‖v‖pp;ν + ‖∇v‖pp;µ <∞ .

With some abuse of notation, sometimes we shall write Lp(Ω; ρν) or W 1,p(Ω; ρν , ρµ) instead
(the same applies to the corresponding norms). In the special case p = 2 we set H1(Ω; ν, µ) :=
W 1,2(Ω; ν, µ). Actually, without further assumptions on ρν and ρµ, in general W 1,p(Ω; ν, µ)
is not complete.

Definition 1.1.1. For all p ∈ (1,∞) we denote as Bp(Ω) the class of all measurable functions
f such that f > 0 a.e. and

|f |−
1
p−1 ∈ L1

loc(Ω) .

One can prove [119, Theorem 2.1] that if p ∈ (1,∞) and ρµ ∈ Bp(Ω) then W 1,p(Ω; ν, µ) is
complete. If p = 1 the result is true providing that the condition ρµ ∈ Bp(Ω) is replaced by
ρ−1
µ ∈ L∞loc(Ω).
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Chapter 1. Porous medium equations with general weights

The fact that for any φ ∈ C∞c (Ω) =: D(Ω) the quantity ‖φ‖p;ν,µ is finite is equivalent
(see [119, Lemma 4.4]) to the local finiteness of ν and µ, that is

ρν , ρµ ∈ L1
loc(Ω) . (1.1.33)

Under the above hypothesis, we define the space W 1,p
0 (Ω; ν, µ) as the closure of D(Ω) with

respect to the norm ‖ · ‖p;ν,µ. If p = 2, we set H1
0 (Ω; ν, µ) := W 1,p

0 (Ω; ν, µ).
When dealing with W 1,p(Ω; ν, µ) or W 1,p

0 (Ω; ν, µ) we shall assume, without further com-
ment, that ρµ ∈ Bp(Ω) or that ρµ ∈ Bp(Ω) and (1.1.33) holds true, respectively.

Proposition 1.1.2. Let p ∈ [1,∞). Then W 1,∞
c (Ω) ⊂ W 1,p

0 (Ω; ν, µ).

Proof. Given v ∈ W 1,∞
c (Ω), thanks e.g. to [1, Lemmas 2.18 and 3.15] we know that there exists

a sequence of functions {vn} ⊂ D(Ω) (the mollification of v, see also Chapter 2, Appendix
2.A) such that, as n→∞,

vn
a.e.−−→ v , ∇vn

a.e.−−→ ∇v , ‖vn‖∞ ≤ ‖v‖∞ , ‖∇vn‖∞ ≤ ‖∇v‖∞

and supp(vn) ⊂ Ω′ b Ω for all n ∈ N. Since ν e µ are locally finite measures, this implies
that ‖vn − v‖p;ν,µ → 0 by dominated convergence, and the assertion follows by definition of
W 1,p

0 (Ω; ν, µ).

Proposition 1.1.3. Let p ∈ [1,∞). If ρν , ρµ, ρ−1
ν , ρ−1

µ ∈ L∞loc(Ω), then C∞(Ω)∩W 1,p(Ω; ν, µ)
is dense in W 1,p(Ω; ν, µ).

Proof. The assumptions imply that the weighted norms ‖·‖p;ν and ‖·‖p;µ are locally equivalent
to the non-weighted norm ‖ · ‖p. This is enough in order to reproduce the proof of [1,
Theorem 3.16]: the idea is to combine the result of Proposition 1.1.2 with a partition of
unity argument.

Proposition 1.1.4. Let p ∈ [1,∞). Then L∞(Ω) ∩W 1,p(Ω; ν, µ) is dense in W 1,p(Ω; ν, µ).

Proof. One proceeds just as in the non-weighted case. That is, given any v ∈ W 1,p(Ω; ν, µ),
consider the approximating sequence of functions vn := n ∧ (−n ∨ v). By construction,
{vn} ⊂ L∞(Ω) ∩W 1,p(Ω; ν, µ) and |vn| ≤ |v|; moreover, ∇vn = χ{−n≤v≤n}∇v. The assertion
is therefore a consequence of monotone convergence.

We now introduce some other weighted Sobolev spaces, which we need throughout the
discussion below.

Definition 1.1.5. Let p ∈ [1,∞), ρν , ρµ ∈ L1
loc(Ω) and ρµ ∈ B2(Ω). We denote as V p

0 (Ω; ν, µ)
the closure of D(Ω) with respect to the norm

‖φ‖V p0 (Ω;ν,µ) := ‖φ‖p;ν + ‖∇φ‖2;µ ∀φ ∈ D(Ω)

and as V0(Ω;µ) the space of all functions v ∈ W 1,1
loc (Ω) with ∇v ∈ [L2(Ω;µ)]d and for which

there exists a sequence {φn} ⊂ D(Ω) such that

lim
n→∞

‖∇v −∇φn‖2;µ = 0 .

Clearly, V p
0 (Ω; ν, µ) is a (reflexive if in addition p > 1) Banach space.

In the special case Ω = Rd and ρµ ≡ 1, we point out that V0(Ω;µ) is a Hilbert space
(endowed with the norm ‖∇(·)‖2), usually referred to as Ḣ1(Rd).
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1.2. The homogeneous Dirichlet problem

Definition 1.1.6. Let p ∈ [1,∞) and ρµ ∈ B2(Ω). We denote as V p(Ω; ν, µ) the space of all
functions v ∈ W 1,1

loc (Ω) such that

‖v‖V p(Ω;ν,µ) := ‖v‖p;ν + ‖∇v‖2;µ <∞ .

It is apparent that V p(Ω; ν, µ) is also a (reflexive if in addition p > 1) Banach space.

1.1.3 Outline of the chapter

The chapter is organized as follows.
In Section 1.2 we address the homogeneous Dirichlet problem for the weighted porous

medium equation. In Subsection 1.2.1 we state the corresponding main results. Subsection
1.2.2 is devoted to the proofs of existence and uniqueness of energy solutions (in Paragraph
1.2.2.1 we discuss comparisons with some previous well-posedness results). Subsection 1.2.3
deals with smoothing and decay properties of solutions in connection with functional in-
equalities of Poincaré, Sobolev and Gagliardo-Nirenberg type, and it is split into Paragraphs
1.2.3.1–1.2.3.4 accordingly (Paragraph 1.2.3.2 contains counterexamples in the Poincaré case).

In Section 1.3 we address the homogeneous Neumann problem. In Subsection 1.3.1 we
state the corresponding main results. Existence and uniqueness of energy solutions are proved
in Subsection 1.3.2. Subsection 1.3.3 deals with smoothing estimates in connection with
functional inequalities of Poincaré, Sobolev and Gagliardo-Nirenberg type, and it is split into
Paragraphs 1.3.3.1–1.3.3.5. In particular, Paragraph 1.3.3.2 contains a counterexample in the
Poincaré case, while Paragraph 1.3.3.5 is concerned with the explanation of how our results
improve on previous ones. Subsection 1.3.4 is devoted to the analysis of long-time behaviour,
and it is split similarly to Subsection 1.3.3 into Paragraphs 1.3.4.1–1.3.4.4.

Section 1.4 deals with the inhomogeneous filtration equation in Euclidean space. In Sub-
section 1.4.1 we state our main existence and uniqueness results. In Subsection 1.4.2 we
give proofs of existence of solutions with nonhomogeneous conditions at infinity, while in
Subsection 1.4.3 we establish uniqueness of such solutions.

Finally, in Appendix 1.A we collect some explicit examples of admissible weights (taken
from available literature) for which Poincaré-, Sobolev- and Gagliardo-Nirenberg-type in-
equalities hold true, so that the results of Sections 1.2 and 1.3 can be readily applied to
the corresponding weighted problems. We divide it into Subsections 1.A.1 (inequalities for
the Dirichlet problem) and 1.A.2 (inequalities for the Neumann problem), which are in turn
divided into Paragraphs 1.A.1.1–1.A.1.3 and 1.A.2.1–1.A.2.3, respectively, depending on the
particular type of inequality we discuss.

1.2 The homogeneous Dirichlet problem

This section is devoted to the analysis of well-posedness issues and smoothing and decay
estimates for solutions to the weighted Dirichlet problem (1.1.1), specially as concerns their
connections with the validity of Poincaré-, Sobolev- and Gagliardo-Nirenberg-type inequali-
ties for the weights involved.

1.2.1 Statements of the main results

We begin by providing our notion of weak solution to (1.1.1).

Definition 1.2.1. A function u such that:

u ∈ L1((0, T ); L1
loc(Ω; ν)) , um(t) ∈ V0(Ω;µ) , ∇(um) ∈ L1((0, T ); [L2(Ω;µ)]d)
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Chapter 1. Porous medium equations with general weights

for a.e. t > 0 and every T > 0 ,
is a weak solution to (1.1.1) with initial datum u0 ∈ L1

loc(Ω; ν) if it satisfies∫ T

0

∫
Ω
u(x, t)ϕt(x, t) dνdt = −

∫
Ω
u0(x)ϕ(x, 0) dν +

∫ T

0

∫
Ω
〈∇(um),∇ϕ〉 (x, t) dµdt (1.2.1)

for all ϕ ∈ C∞c (Ω× [0, T )) such that ϕ(T ) ≡ 0.

The above definition is similar to the one given in [173, Definition 5.4] (non-weighted
porous medium equation on bounded domains). Differences are due to the fact that here we
have to deal with general domains and weights, on which no a priori regularity or boundedness
properties are required.

In agreement with a common terminology often used in [173], we also provide the impor-
tant notion of energy solution.

Definition 1.2.2. We say that u is a (weak) energy solution to (1.1.1) if it is a weak solution
(in the sense of Definition 1.2.1) such that

um ∈ L1+1/m((0, T );V 1+1/m
0 (Ω; ν, µ)) and ∇(um) ∈ L2((0, T ); [L2(Ω;µ)]d) (1.2.2)

for all T > 0.

Energy solutions enjoy a (relatively standard, see [173, Theorem 5.3]) uniqueness property.

Proposition 1.2.3. There exists at most one energy solution to (1.1.1).

As concerns existence, we shall prove the following fundamental result.

Theorem 1.2.4. Let ρν , ρµ, ρ−1
ν , ρ−1

µ ∈ L∞loc(Ω). Take u0 ∈ L1(Ω; ν) ∩ Lq0(Ω; ν), with q0 ≥
m+ 1. Then there exists a weak solution u to (1.1.1), in the sense of Definition 1.2.1, which
satisfies (1.2.2) and the estimates

4q(q + 1)m
(m+ q)2

∫ T

0

∫
Ω

∣∣∣∇(um+q
2
)
(x, t)

∣∣∣2 dµdt+
∫

Ω
|u(x, T )|q+1 dν ≤

∫
Ω
|u0(x)|q+1 dν (1.2.3)

and ∫ T

0

∫
Ω
ζ(t) |zt(x, t)|2 dνdt ≤ max

t∈[0,T ]
ζ ′(t) m+ 1

8m

∫
Ω
|u0(x)|m+1 dν (1.2.4)

for all q ∈ [0, q0 − 1] and T > 0, where z := u(m+1)/2 and ζ is any nonnegative C1
c ((0, T ))

function. In particular, u is the unique energy solution.
Moreover, if v is the energy solution corresponding to another initial datum v0 ∈ L1(Ω; ν)∩

Lm+1(Ω; ν), the following L1(Ω; ν) comparison principle holds true:∫
Ω

[u(x, t)− v(x, t)]+ dν ≤
∫

Ω
[u0(x)− v0(x)]+ dν ∀t > 0 . (1.2.5)

When dealing with initial data in L1(Ω; ν) but with no further integrability property, we
cannot provide a weak solution of (1.1.1) in the sense of Definition 1.2.1. Nevertheless, in
view of (1.2.5), we infer that the map L1(Ω; ν) ∩ Lm+1(Ω; ν) 7→ L∞((0,∞); L1(Ω; ν)) which
associates to an initial datum u0 the corresponding energy solution u, is Lipschitz and densely
defined in L1(Ω; ν). Hence, it admits a unique Lipschitz extension to the whole of L1(Ω; ν).
We shall refer to the corresponding images, according to a terminology used in [173, Section
6.1], as limit solutions.

We now state the main results which connect the validity of suitable functional inequalities
to smoothing and decay estimates for solutions to (1.1.1). In the sequel, by the term “the
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1.2. The homogeneous Dirichlet problem

solution”, we mean the weak energy solution provided by Theorem 1.2.4 if u0 ∈ L1(Ω; ν) ∩
Lm+1(Ω; ν) or the limit solution if u0 ∈ L1(Ω; ν). The assumptions on the weights are also
meant as in Theorem 1.2.4.

Theorem 1.2.5 (Poincaré case). Let q0 ∈ [1,∞) and u0 ∈ L1(Ω; ν)∩Lq0(Ω; ν). Suppose that
the Poincaré-type inequality

‖v‖2;ν ≤ CP ‖∇v‖2;µ ∀v ∈ H1
0 (Ω; ν, µ) (1.2.6)

holds true for some CP > 0. Then the solution u to (1.1.1) with initial datum u0 satisfies the
smoothing estimate

‖u(t)‖%;ν ≤ K1 t
− %−q0
%(m−1) ‖u0‖

q0
%

q0;ν ∀t > 0 (1.2.7)

for all % ∈ (q0,∞), where K1 > 0 is a suitable constant depending only on %, m and CP .
If moreover ν(Ω) <∞, then the above estimate can be improved for large times:

‖u(t)‖%;ν ≤ K2 t
− %−q0
%(m−1)

(
t+ ‖u0‖1−m

q0;ν

)− q0
(m−1)% ∀t > 0 , (1.2.8)

where K2 > 0 is a suitable constant depending only on %, q0, m, CP and ν(Ω). In particular,
the absolute bound

‖u(t)‖%;ν ≤ K2 t
− 1
m−1 ∀t > 0

holds true.

Theorem 1.2.6 (Poincaré case, converse implication). Suppose that there exist a constant
K1 > 0 and two given numbers q0 ∈ [1,m + 1) and % ≥ m + 1 such that, for all u0 ∈
L1(Ω; ν)∩ Lq0(Ω; ν), the solution u to (1.1.1) with initial datum u0 satisfies estimate (1.2.7).
Then the Poincaré-type inequality (1.2.6) holds true. In particular, the validity of (1.2.7) for
two given q0 ∈ [1,m + 1) and % ≥ m + 1 is equivalent to (1.2.6) and so to the validity of
(1.2.7) for any q0 ∈ [1,∞) and % ∈ (q0,∞).

Theorem 1.2.7 (Sobolev case). Let q0 ∈ [1,∞) and u0 ∈ L1(Ω; ν)∩ Lq0(Ω; ν). Suppose that
the Sobolev-type inequality

‖v‖2σ;ν ≤ CS ‖∇v‖2;µ ∀v ∈ H1
0 (Ω; ν, µ) (1.2.9)

holds true for some σ > 1 and CS > 0. Then the solution u to (1.1.1) with initial datum u0
satisfies the smoothing estimate

‖u(t)‖∞ ≤ K1 t
− σ

(σ−1)q0+σ(m−1) ‖u0‖
(σ−1)q0

(σ−1)q0+σ(m−1)
q0;ν ∀t > 0 , (1.2.10)

where K1 > 0 is a suitable constant depending only on m, CS and σ.
If moreover ν(Ω) <∞, then the above estimate can be improved for large times:

‖u(t)‖∞ ≤ K2 t
− σ

(σ−1)q0+σ(m−1)
(
t+ ‖u0‖1−m

q0;ν

)− (σ−1)q0
(m−1)[(σ−1)q0+σ(m−1)] ∀t > 0 ,

where K2 > 0 is a suitable constant depending only on q0, m, CS, σ and ν(Ω). In particular,
the absolute bound

‖u(t)‖∞ ≤ K2 t
− 1
m−1 ∀t > 0 (1.2.11)

holds true.
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Chapter 1. Porous medium equations with general weights

Theorem 1.2.8 (Sobolev case, converse implication). Suppose that there exist a constant
K1 > 0 and two numbers q0 ∈ [1,m+1) and σ > 1 such that, for all u0 ∈ L1(Ω; ν)∩Lq0(Ω; ν),
the solution u to (1.1.1) with initial datum u0 satisfies estimate (1.2.10). Then the Sobolev-
type inequality (1.2.9) holds true. In particular, the validity of (1.2.10) for a given q0 ∈
[1,m+ 1) is equivalent to (1.2.9) and so to the validity of (1.2.10) for any q0 ∈ [1,∞).

Theorem 1.2.9 (One-dimensional case). Let d = 1 (that is, Ω is an interval). Let q0 ∈
[1,∞) and u0 ∈ L1(Ω; ν) ∩ Lq0(Ω; ν). Suppose that the family of one-dimensional Gagliardo-
Nirenberg-type inequalities

‖v‖∞ ≤ CG1 ‖∇v‖
λ
s+λ
2;µ ‖v‖

s
s+λ
s;ν ∀s > 0 , ∀v ∈ H1

0 (Ω; ν, µ) ∩ Ls(Ω; ν) (1.2.12)

holds true for some λ ≥ 2 and CG1 > 0. Then the solution u to (1.1.1) with initial datum u0
satisfies the estimate

‖u(t)‖∞ ≤ K1 t
− λ

(λ+2)q0+λ(m−1) ‖u0‖
(λ+2)q0

(λ+2)q0+λ(m−1)
q0;ν ∀t > 0 , (1.2.13)

where K1 > 0 is a suitable constant depending only on m, CG1 and λ.
If moreover ν(Ω) <∞, then the above estimate can be improved for large times:

‖u(t)‖∞ ≤ K2 t
− λ

(λ+2)q0+λ(m−1)
(
t+ ‖u0‖1−m

q0;ν

)− (λ+2)q0
(m−1)[(λ+2)q0+λ(m−1)] ∀t > 0 , (1.2.14)

where K2 > 0 is a suitable constant depending only on q0, m, CG1, λ and ν(Ω). In particular,
the absolute bound (1.2.11) holds true.

Theorem 1.2.10 (One-dimensional case, converse implication). Suppose that there exist
a constant K1 > 0 and two numbers q0 ∈ [1,m + 1) and λ ≥ 2 such that, for all u0 ∈
L1(Ω; ν)∩Lq0(Ω; ν), the solution u to (1.1.1) with initial datum u0 satisfies estimate (1.2.13).
Then the family of one-dimensional Gagliardo-Nirenberg-type inequalities (1.2.12) holds true.
In particular, the validity of (1.2.13) for a given q0 ∈ [1,m+ 1) is equivalent to (1.2.12) and
so to the validity of (1.2.13) for any q0 ∈ [1,∞).

Theorem 1.2.11 (Two-dimensional case). Let d ≤ 2. Let q0 ∈ [1,∞) and u0 ∈ L1(Ω; ν) ∩
Lq0(Ω; ν). Suppose that the family of two-dimensional Gagliardo-Nirenberg-type inequalities

‖v‖r;ν ≤ CG2 ‖∇v‖
1− s

r
2;µ ‖v‖

s
r
s;ν ∀r > s > 0 , ∀v ∈ H1

0 (Ω; ν, µ) ∩ Ls(Ω; ν) (1.2.15)

holds true for some constant CG2 > 0 which depends on r, s only through a finite upper bound
on r. Then the solution u to (1.1.1) with initial datum u0 satisfies the smoothing estimate

‖u(t)‖∞ ≤ K1 t
− 1
q0+m−1 ‖u0‖

q0
q0+m−1
q0;ν ∀t > 0 , (1.2.16)

where K1 > 0 is a suitable constant depending only on m and CG2.
If moreover ν(Ω) <∞, then the above estimate can be improved for large times:

‖u(t)‖∞ ≤ K2 t
− 1
q0+m−1

(
t+ ‖u0‖1−m

q0;ν

)− q0
(m−1)(q0+m−1) ∀t > 0 , (1.2.17)

where K2 > 0 is a suitable constant depending only on q0, m, CG2 and ν(Ω). In particular,
the absolute bound (1.2.11) holds true.
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Theorem 1.2.12 (Two-dimensional case, converse implication). Suppose that there exist a
constant K1 > 0 and a number q0 ∈ [1,m + 1) such that, for all u0 ∈ L1(Ω; ν) ∩ Lq0(Ω; ν),
the solution u to (1.1.1) with initial datum u0 satisfies estimate (1.2.16). Then the family of
two-dimensional Gagliardo-Nirenberg-type inequalities (1.2.15) holds true with some constant
CG2 > 0 which depends on r, s only through a finite upper bound on r. In particular, the
validity of (1.2.16) for a given q0 ∈ [1,m+ 1) is equivalent to (1.2.15) and so to the validity
of (1.2.16) for any q0 ∈ [1,∞).

Proposition 1.2.3 and Theorem 1.2.4 will be proved in the next Subsection 1.2.2. Theorems
1.2.5 and 1.2.6 will be proved in Paragraph 1.2.3.1. In the subsequent Paragraph 1.2.3.2
we show some counterexample to the L∞ regularization, which therefore does not occur
(in general) when only a Poincaré-type inequality holds true for the weights involved. In
Paragraph 1.2.3.3 we shall only give hints on the proofs of the Sobolev case: in fact, Theorem
1.2.7 is basically a consequence of the results in [27], whereas Theorem 1.2.8 follows by means
of the same techniques of proof of Theorem 1.2.6. Finally, Theorems 1.2.9–1.2.12 will be
proved in Paragraph 1.2.3.4.
Remark 1.2.13. When Ω = Rd and ρν = ρµ ≡ 1, the results of Theorems 1.2.7 (with d ≥ 3
and σ = d/(d − 2)), 1.2.9 (with λ = 2) and 1.2.11 (with d = 2) are in agreement with
the sharp results obtained in [172, Chapters 2, 3], where the same smoothing estimates are
proved with different techniques. We point out that such techniques are not applicable in
our general framework; nevertheless, at least in the case q0 = 1, they permit us to find the
best constant K1 for which the estimates hold (attained by Barenblatt solutions).

As concerns bounded Euclidean domains, still in the non-weighted case ρν = ρµ ≡ 1,
in view of the asymptotic results of [171] (we refer the reader to [173, Chapter 20] as well)
we know that the absolute bound (1.2.11) is in sharp. Note that such an estimate fails
in Euclidean space, since the L∞ norm of Barenblatt solutions decays with a rate slower
than t−1/(m−1) (see also Subsection 1.1.1 above). This is in agreement with the hypothesis
ν(Ω) <∞ we required in order to prove (1.2.11).
Remark 1.2.14. Even though we did not mention it explicitly, it is apparent that if d ≥ 3
then the Sobolev-type inequality (1.2.9) can only hold for some σ ≤ d/(d− 2): this is just a
consequence of the fact that our weights are locally equivalent to the unitary weight (recall
the hypotheses of Theorem 1.2.4 above). For the same reason, an inequality like (1.2.12) can
only hold in dimension one and for some λ ≥ 2. Similarly, (1.2.15) cannot hold if d ≥ 3. In
this regard we refer the reader to Subsection 1.A.1 for some explicit examples.
Remark 1.2.15. Note that, formally, the smoothing estimates of Theorem 1.2.7 can be
obtained by letting λ = −2σ in the ones of Theorem 1.2.9. On the other hand, the smoothing
estimates of Theorem 1.2.11 are in fact the limit, as σ → ∞ or as λ → ∞, of the ones of
Theorem 1.2.7 or Theorem 1.2.9, respectively. This is not just a coincidence: as it is well
known, and as we shall see below, Sobolev- and Gagliardo-Nirenberg-type inequalities are
deeply connected with one another.

1.2.2 Well-posedness analysis

The uniqueness result of Proposition 1.2.3 follows by means of a quite standard argument,
whose main steps we outline for the reader’s convenience.

Proof of Proposition 1.2.3. Thanks to (1.2.2) and to a density argument, in fact it is possible
to choose in (1.2.1) any test function ϕ such that

ϕ ∈ W 1,1+1/m((0, T );V 1+1/m
0 (Ω; ν, µ)) , ∇ϕ ∈ L2((0, T ); [L2(Ω;µ)]d) , ϕ(T ) ≡ 0 . (1.2.18)
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Chapter 1. Porous medium equations with general weights

We can therefore exploit the method of proof of [173, Theorem 5.3], which actually goes back
to the pioneering papers [143,144]. That is, we plug Olĕınik’s test function

ϕ(x, t) =
∫ T

t
[um1 (x, s)− um2 (x, s)] ds , (1.2.19)

which clearly complies with (1.2.18), in the weak formulation satisfied by the difference of
two energy solutions u1 and u2 having the same initial datum u0. After an integration by
parts in time, we end up with∫ T

0

∫
Ω

(u1(x, t)− u2(x, t))(um1 (x, t)− um2 (x, t)) dνdt

+1
2

∫
Ω

∣∣∣∣∣
∫ T

0
∇(um1 − um2 )(x, s) ds

∣∣∣∣∣
2

dµ = 0 .

Since both terms in the l.h.s. are nonnegative, the assertion follows.

In order to prove our existence Theorem 1.2.4, we first need an intermediate result.

Lemma 1.2.16. Let Ω be a C2,α bounded domain of Rd. Let ρν , ρµ, ρ−1
ν , ρ−1

µ ∈ L∞loc(Ω′) for
some domain Ω′ c Ω. Take u0 ∈ C2,α

c (Ω). Then the conclusions of Theorem 1.2.4 hold true
(for all q ≥ 0).

Proof. To begin with, let us assume that ρν ∈ C3,α(Ω) and ρµ ∈ C2,α(Ω), with ρν , ρµ > 0.
Under these additional hypotheses, proceeding along the lines of the proof of [173, Lemma
5.8] we can get a first existence result. The basic idea is to approximate problem (1.1.1)
with suitable non-degenerate problems. More precisely, pick a sequence of smooth functions
Φ′n : R 7→ R+ such that:
• Φ′n(y)→ m|y|m−1 locally uniformly as n→∞;
• Φ′n(y) > 0 ∀y ∈ R;
• Φ′n(y) = Φ′n(−y), so that in particular Φn(0) = 0, where Φn(y) :=

∫ y
0 Φ′n(r) dr.

Then consider the following non-degenerate quasilinear problem:
(un)t = ρ−1

ν div [ρµ∇(Φn(un))] in Ω× R+ ,

un = 0 on ∂Ω× R+ ,

un = u0 on Ω× {0} .
(1.2.20)

In view of the change of variable w = ρνun, it is convenient to write the latter in divergence
form: 

wt = div
[
ρµ
ρν

Φ′n
(
w
ρν

)
∇w − ρµ

ρ2
ν
∇(ρν) Φ′n

(
w
ρν

)
w
]

in Ω× R+ ,

w = 0 on ∂Ω× R+ ,

w = ρνu0 on Ω× {0} .
(1.2.21)

With no loss of generality we shall suppose that Φ′n(y) = c for |y| ≥ ‖u0‖∞ + 1, where
c > 0 is a suitable constant, possibly depending on n. Under our assumptions, we can apply
Theorem V.6.1 of [120], which provides us with a solution w ∈ C2,1(Ω × [0, T ]) ∀T > 0 to
(1.2.21). From standard parabolic regularity results (see e.g. [120, Theorem IV.5.2]) we also
have, in particular, wt ∈ C1,0(Ω× (0, T )). It is then apparent that un is a solution to (1.2.20)
with the same regularity as w. Moreover, thanks to the parabolic maximum principle (see
e.g. [120, Theorem I.2.9]), there holds

|un(x, t)| ≤ ‖u0‖∞ ∀(x, t) ∈ Ω× R+ . (1.2.22)
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1.2. The homogeneous Dirichlet problem

Given a regular function ϕ as in the weak formulation (1.2.1), multiplying the differential
equation in (1.2.20) by ρνϕ and integrating by parts in Ω× (0, T ), we obtain:∫ T

0

∫
Ω
un(x, t)ϕt(x, t) dνdt = −

∫
Ω
u0(x)ϕ(x, 0) dν +

∫ T

0

∫
Ω
〈∇(Φn(un)),∇ϕ〉 (x, t) dµdt .

(1.2.23)
In order to pass to the limit in (1.2.23) as n → ∞, we first need suitable estimates on un.
To this end, letting

Ψn(y) :=
∫ y

0
Φn(r) dr , Υ1

n(y) :=
∫ y

0

√
Φ′n(r) dr ,

by means of computations similar to the ones performed in [173, Lemma 5.8], we get:∫
Ω

Ψn(un(x, T )) dν +
∫ T

0

∫
Ω
|∇(Φn(un))(x, t)|2 dµdt =

∫
Ω

Ψn(u0(x)) dν , (1.2.24)

1
2

∫
Ω
|un(x, T )|2 dν +

∫ T

0

∫
Ω

∣∣∣∇(Υ1
n(un))(x, t)

∣∣∣2 dµdt = 1
2

∫
Ω
|u0(x)|2 dν , (1.2.25)∫ T

0

∫
Ω
ζ(t)

∣∣∣(Υ1
n(un))t(x, t)

∣∣∣2 dνdt = 1
2

∫ T

0

∫
Ω
ζ ′(t) |∇(Φn(un))(x, t)|2 dµdt , (1.2.26)

where ζ is any nonnegative C1
c (0, T ) function. Let us mention that (1.2.24), (1.2.25) and

(1.2.26) follow by multiplying the differential equation in (1.2.20) by the functions ρνΦn(un),
ρνun and ρνζΦ′n(un)(un)t, respectively, and integrating by parts in Ω× (0, T ).

From (1.2.22), (1.2.25), (1.2.26) and the fact that ρν , ρµ, ρ−1
ν , ρ−1

µ ∈ L∞loc(Ω′), we deduce
that the sequence {Υ1

n(un)} is bounded in H1
loc(Ω × R+). Hence, up to a subsequence,

{Υ1
n(un)} converges almost everywhere in Ω × R+. Thanks to the good properties of the

approximating sequence {Φ′n}, this easily entails the existence of a function u such that:

un → u , Ψn(un)→ 1
m+ 1 |u|

m+1 , Φn(un)→ um , Υ1
n(un)→ 2

√
m

m+ 1 u
m+1

2 (1.2.27)

a.e. in Ω × R+. Estimates (1.2.22), (1.2.24), (1.2.26) and the pointwise limits in (1.2.27)
ensure that (again, along subsequences)

un → u in L2((0, T ); L2(Ω)) ,

Φn(un)→ um weakly in L2((0, T );H1
0 (Ω)) (and so in L1+1/m((0, T );V 1+1/m

0 (Ω; ν, µ))) ,

Υ1
n(un)→ 2

√
m

m+ 1 u
m+1

2 weakly in H1((τ, T ); L2(Ω)) ∀τ ∈ (0, T ) .

We are therefore allowed to pass to the limit in (1.2.23) to conclude that u is a weak energy
solution to (1.1.1) with initial datum u0.

It remains to prove estimates (1.2.3)–(1.2.5). As concerns (1.2.3), the idea is just to
multiply the differential equation in (1.2.20) by ρνuqn, integrate in Ω × (0, T ) to obtain the
analogue of (1.2.25) for Υq

n(un), where

Υq
n(y) :=

∫ y

0

√
qΦ′n(r)|r|q−1 dr ,

and pass to the limit as n → ∞. This works rigorously at least for q ≥ 1: if instead q < 1
one can consider a smooth approximation fk(y) of the real function yq, deduce analogous es-
timates as above, first let n→∞ and then k →∞. Estimate (1.2.4) is a direct consequence
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Chapter 1. Porous medium equations with general weights

of (1.2.24), (1.2.26) and the weak convergence of {Υ1
n(un)} to [2

√
m/(m + 1)]u(m+1)/2 in

H1((τ, T ); L2(Ω)). The L1(Ω; ν) comparison principle (1.2.5) follows exactly as in [173, Propo-
sition 3.5]: formally, one picks the test function sign+[Φn(un)−Φn(vn)] in the problem solved
by the difference un − vn, obtains the bound for un(t)− vn(t) and then lets n→∞.

Finally, let us remove the initial assumptions ρν ∈ C3,α(Ω) and ρµ ∈ C2,α(Ω). In order to
do so, it is enough to notice that, in view of the hypotheses on the weights, the corresponding
mollifications (ρν)ε and (ρµ)ε (see e.g. Chapter 2, Subsection 2.A.2) are C∞(Ω) functions,
uniformly bounded from above and below in Ω by positive constants independent of ε > 0
and converging almost everywhere to ρν and ρµ, respectively. Hence, as a consequence of the
first part of the proof, there exists an energy solution uε to (1.1.1) which satisfies (1.2.3) and
(1.2.4), with ρν and ρµ replaced by (ρν)ε and (ρµ)ε. Letting ε → 0, by means of arguments
similar to the ones used above, it is straightforward to check that {uε} converges to the energy
solution of (1.1.1), which still complies with (1.2.3) and (1.2.4). The validity of (1.2.5) follows
likewise.

Taking advantage of Lemma 1.2.16, we are able to prove existence of weak energy solu-
tions to (1.1.1) when the initial datum u0 and the domain Ω are less regular and possibly
unbounded.

Proof of Theorem 1.2.4. First of all, notice that the results of Lemma 1.2.16 can be readily
extended to general L1(Ω; ν)∩L∞(Ω) data: in fact, it suffices to approximate u0 ∈ L1(Ω; ν)∩
L∞(Ω) with a sequence {u0n} ⊂ C2,α

c (Ω) and establish as above proper convergence of the
corresponding (sub)sequence of solutions {un}.

In order to handle general domains Ω, one can proceed similarly to the end of proof
of [173, Theorem 5.7]: that is, given u0 ∈ L1(Ω; ν)∩L∞(Ω), one picks an increasing sequence
of smooth bounded domains {Ωn} such that ⋃n Ωn = Ω, Ωn b Ω and solves in each of
them the homogeneous Dirichlet problem with initial datum u0n = u0|Ωn , denoting as un the
corresponding solution, which is set to zero outside Ωn. Estimates (1.2.3) and (1.2.4) then
read as follows:

4q(q + 1)m
(m+ q)2

∫ T

0

∫
Ω

∣∣∣∣∇(um+q
2

n

)
(x, t)

∣∣∣∣2 dµdt+
∫

Ω
|un(x, T )|q+1 dν ≤

∫
Ω
|u0(x)|q+1 dν , (1.2.28)

∫ T

0

∫
Ω
ζ(t)

∣∣∣∣(um+1
2

n

)
t
(x, t)

∣∣∣∣2 dνdt ≤ max
t∈[0,T ]

ζ ′(t) m+ 1
8m

∫
Ω
|u0(x)|m+1 dν . (1.2.29)

Hence, with minor modifications w.r.t. to the proof of Lemma 1.2.16, no major difficulty
arises in showing that {un}, up to subsequences, converges to the weak energy solution u of
problem (1.1.1) e.g. in the following way:

un → u weakly in L2((0, T ); L2(Ω; ν)) ,

umn → um weakly in L2((0, T );V 1+1/m
0 (Ω; ν, µ)) ,

u
m+q

2
n → u

m+q
2 weakly in L2((0, T );V 2p/(m+q)

0 (Ω; ν, µ)) ∀p > (m+ q)/2 , (1.2.30)
∇(umn )→ ∇(um) weakly in L2((0, T ); [L2(Ω;µ)]d) ,

u
m+1

2
n → u

m+1
2 weakly in H1((τ, T ); L2(Ω; ν)) ∀τ ∈ (0, T ) ,

so that estimates (1.2.3)–(1.2.5) are preserved at the limit (as for the latter, one just applies
simultaneously the same approximating scheme to another initial datum v0).

We finally need to remove the hypothesis u0 ∈ L1(Ω; ν) ∩ L∞(Ω). To this end, one picks
a sequence of initial data {u0n} ⊂ L1(Ω; ν) ∩ L∞(Ω) converging to u0 in L1(Ω; ν) ∩ Lq0(Ω; ν)
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1.2. The homogeneous Dirichlet problem

and considers the corresponding sequence {un} of energy solutions to (1.1.1). Thanks to the
L1(Ω; ν) comparison principle (1.2.5), {un} is Cauchy in L∞((0,∞); L1(Ω; ν)) and therefore
converges to a function u belonging to the same space. In order to prove that u is the energy
solution to (1.1.1) corresponding to u0 and satisfying (1.2.3) and (1.2.4), one proceeds exactly
as above, recalling that q0 ≥ m+1 (the validity of (1.2.5) now is trivial). The only difference
is that (1.2.30) holds true for q ≤ q0 − 1 and p ∈ ((m+ q)/2, q0].

Remark 1.2.17. In the case of a nonnegative initial datum u0 ∈ L1(Ω; ν) ∩ L∞(Ω), the
above sequence of energy solutions {un}, which solve the homogeneous Dirichlet problems
in the regular bounded domains Ωn with initial data u0n = u0|Ωn , is in fact monotone in-
creasing. This is a consequence e.g. of a standard comparison principle for regular sub- and
supersolutions to the approximating problems constructed in Lemma 1.2.16: the solution to
(1.2.20) in Ωn+1 is clearly a supersolution to the same problem in Ωn (it is nonnegative on
∂Ωn), which implies that it lies above the corresponding solution in Ωn. It is then apparent
that such property is preserved at the limit.

Notice that from estimate (1.2.4) we infer, for instance, that u(m+1)/2 is an absolutely
continuous curve in C([τ,∞); L2(Ω; ν)) (for any τ > 0), which in particular implies that
u ∈ C((0,∞); Lm+1(Ω; ν)). In view of this property, it is not difficult to prove the validity
of the so called semigroup property: for every τ > 0, u|[τ,∞) is the (weak) energy solution of
(1.1.1) with initial datum u(τ). Actually, if u0 is smooth enough, we can ensure that u(m+1)/2

is continuous down to t = 0. In fact, we have the following result (see also [173, Section 5.6]).

Corollary 1.2.18. If, in addition to the hypotheses of Theorem 1.2.4, we assume that

um0 ∈ V
1+1/m

0 (Ω; ν, µ) ,

then the estimates∫ T

0

∫
Ω

∣∣∣(um+1
2
)
t
(x, t)

∣∣∣2 dνdt+ (m+ 1)2

8m

∫
Ω
|∇(um)(x, T )|2 dµ ≤ (m+ 1)2

8m

∫
Ω
|∇(um0 )(x)|2 dµ

(1.2.31)
and ∫

Ω
|u0(x)|m+1 dν ≤

∫
Ω
|u(x, t)|m+1 dν + (m+ 1) t

∫
Ω
|∇(um0 )(x)|2 dµ (1.2.32)

hold true for all T, t > 0. In particular, u(m+1)/2 is an absolutely continuous curve in
C([0,∞); L2(Ω; ν)).

Proof. Suppose first that u0 ∈ C2,α
c (Ω). In this case, (1.2.31) and (1.2.32) are direct conse-

quences of the estimates (1.2.24) and (1.2.26) obtained for the corresponding approximating
problems (in (1.2.26) one just lets ζ ′(t) → δ0(t) − δT (t)). In fact, throughout all the subse-
quent passages to the limit in the proofs of Lemma 1.2.16 and Theorem 1.2.4, such estimates
are stable. The only nontrivial point is to prove that we can pass to the limit safely in
the first term in the r.h.s. of (1.2.32) along the proof of Theorem 1.2.4. To this end, let us
denote as un the energy solution to (1.1.1) in Ωn with initial datum u0 and as u−n and u+

n the
energy solutions to the same problem but with initial data −(u0)− and (u0)+, respectively.
Since −(u0)− ≤ u0 ≤ (u0)+, thanks to the L1(Ωn; ν) comparison principle we deduce that
u−n ≤ un ≤ u+

n in Ωn × R+. Recalling Remark 1.2.17 (which holds similarly for nonpositive
data), we have that {u−n } and {u+

n } converge monotonically to u− and u+, respectively, the
latter still being the corresponding energy solutions to (1.1.1), but in the whole of Ω. In
particular, {un(t)} is dominated from above and below by two Lm+1(Ω; ν) functions. Since
{un(t)} converges pointwise to u, estimate (1.2.32) follows by dominated convergence.
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Suppose now that

um0 ∈ V
1+1/m

0,c (Ω; ν, µ) and u0 ∈ L1(Ω; ν) .

Recalling the definition of V 1+1/m
0 (Ω; ν, µ), it is easy to see that there exists a sequence

{u0n} ⊂ C2,α
c (Ω) such that supp(u0n) ⊂ Ω0 b Ω for some fixed domain Ω0 and {um0n}

converges to um0 in V0
1+1/m(Ω; ν, µ) (it is just a matter of approximating the real function

y1/m with a sequence of smooth functions). Thanks to the hypotheses on the initial datum,
we can moreover assume that |u0n| ≤ f for some fixed nonnegative f ∈ L1(Ω; ν)∩Lm+1(Ω; ν).
In view of the L1(Ω; ν) comparison principle, this is enough in order to exploit the first part
of the proof and pass to the limit in (1.2.31) and (1.2.32) (with u = un, the energy solution
to (1.1.1) corresponding to u0n) as n→∞.

Finally, let
um0 ∈ V

1+1/m
0 (Ω; ν, µ) and u0 ∈ L1(Ω; ν) .

The existence of {u0n} ⊂ C2,α
c (Ω) such that {um0n} converges to um0 in V 1+1/m

0 (Ω; ν, µ) can be
established as above. It is straightforward to check that the sequence

ûm0n := [(u0)m+ ∧ (u0n)m+ ]− [(u0)m− ∧ (u0n)m− ]

belongs to V 1+1/m
0,c (Ω; ν, µ) and converges to um0 in V 1+1/m

0 (Ω; ν, µ). Moreover, |û0n| ≤ |u0| ∈
L1(Ω; ν) ∩ Lm+1(Ω; ν). Still by comparison, the sequence of solutions {ûn} to (1.1.1), with
initial data {û0n}, is trapped between two Lm+1(Ω; ν) functions at every time and converges
pointwise to the energy solution with initial datum u0. This permits us to pass to the limit
in (1.2.31), (1.2.32) and conclude the proof.

Below we discuss some standard properties of the limit solutions introduced in Subsection
1.2.1.

Proposition 1.2.19. Let u and v be two limit solutions of (1.1.1), corresponding to the
initial data u0 ∈ L1(Ω; ν) and v0 ∈ L1(Ω; ν), respectively. Then:
• if in addition u0 ∈ Lm+1(Ω; ν), u is the energy solution;
• for a.e. τ > 0, u|[τ,∞) is the limit solution corresponding to the initial datum u(τ)
(semigroup property);
• the L1(Ω; ν) comparison principle (1.2.5) holds true for a.e. t > 0.

Proof. The first and the third claim are trivial consequences of the concept of limit solution
and of the L1(Ω; ν) comparison principle for energy solutions. As concerns the semigroup
property, by definition of limit solution there exists a sequence {un} of energy solutions such
that

‖u(τ)− un(τ)‖1;ν → 0 (1.2.33)
and

un|[τ,∞) → u|[τ,∞) in L∞((τ,∞); L1(Ω; ν)) (1.2.34)
for a.e. τ > 0. Since un|[τ,∞) is the energy solution corresponding to the initial datum un(τ),
thanks to (1.2.33) and (1.2.34) we infer that u|[τ,∞) is the limit solution in Ω × (τ,∞) with
initial datum u(τ).

In Subsection 1.2.3 we shall see that the validity of some functional inequalities (of
Poincaré-, Sobolev- or Gagliardo-Nirenberg-type) for the weights ρν and ρµ gives rise to
an Lq0(Ω; ν)–L%(Ω; ν) regularizing effect, at least for any q0 ∈ [1,∞) and % ∈ (q0,∞): this
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fact, together with Proposition 1.2.19, ensures that limit solutions are actually weak energy
solutions after an arbitrarily small time τ > 0.

Here we shall not analyse further the issue of L1(Ω; ν) continuity of solutions: for a related
discussion, though in a relatively different context, see for instance Chapter 2, Subsection
2.3.4. We only mention that, if ν(Ω) <∞, it is a direct consequence of Corollary 1.2.18 and
(1.2.5).
Remark 1.2.20. The statements and proofs of Lemma 1.2.16, Theorem 1.2.4 and Corollary
1.2.18 have been given for every T, t > 0 and not only for almost every T, t > 0. This is
a consequence of the just recalled C((0,∞); Lm+1(Ω; ν)) property of energy solutions. The
same applies to Theorems 1.2.5, 1.2.7, 1.2.9 and 1.2.11.

1.2.2.1 Comparison with some previous results

In the particular case where Ω = Rd (d ≥ 3), ρµ ≡ 1 and ρν is a weight which satisfies
appropriate decay conditions as |x| → ∞, there are some works which provide existence and
uniqueness results for nonnegative solutions to the corresponding weighted porous medium
equation (also referred to as inhomogeneous porous medium equation, see e.g. [163] and
quoted references). Let us briefly compare such results to ours.

Given a nonnegative initial datum u0 ∈ L1(Rd; ν), according to [163, Definition 1.1] any
nonnegative function u is a weak solution to (1.1.1) if it is continuous in Rd × (0,∞) and:
• u ∈ C([0,∞); L1(Rd; ν)) ∩ L∞(Rd × (τ,∞)) ∀τ > 0;
• ∇(um) ∈ [L2(Rd × (τ,∞))]d ∀τ > 0;
• for any ϕ ∈ C1

c (Rd × (0,∞)) there holds∫ ∞
0

∫
Rd

[〈∇(um),∇ϕ〉(x, t)− u(x, t)ϕt(x, t)ρν(x)] dxdt = 0 ; (1.2.35)

• limt→0 u(t) = u0 in L1(Ω; ν).
The most important difference between our definition of weak solution and the one just given
lies in the space where one looks for the solution u. In fact, note that in [163, Definition
1.1] um is not related to the test function space chosen in (1.2.35): in other words, it is not
imposed that um(t) belongs to the closure of C1

c (Rd) (or D(Rd)) with respect to a suitable
norm. Indeed, when ρν(x) goes to zero sufficiently fast as |x| → ∞, some non-uniqueness
issues arise (see the Introduction to Chapter 2).

The two main well-posedness results proved in [163] are the following:
• if ρν ∈ C1(Rd) is bounded and strictly positive, then [163, Theorem 3.1] there exists a
weak solution according to the above definition;
• if, in addition, ρν satisfies

A0(1 + |x|)−d ≤ ρν(x) ∀x ∈ Rd

for a suitable constant A0 > 0, then such solution is also unique [163, Theorem 4.1].
The uniqueness result, to some extent, is not improvable: if ρν(x) behaves like |x|−γ at
infinity, with γ > d, the finiteness of ν(Rd) implies that if the initial datum is u0 ≡ 1 then
u ≡ 1 is a weak solution to (1.1.1) according to the above definition. On the other hand, it is
possible to prove (see [163, Section 8]) that in this case (actually for any γ > 2) the solution
constructed in [163, Theorem 3.1] satisfies the decay condition

lim
R→∞

1
Rd−1

∫
∂BR

∫ T

0
um(σ, t) dtdσ = 0 ∀T > 0 ; (1.2.36)

since (1.2.36) is trivially not fulfilled by nonzero constants, this means that we have at
least two solutions. When the initial datum belongs to L1(Rd; ν) ∩ L∞(Rd) actually the
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Chapter 1. Porous medium equations with general weights

solution we get from [163, Theorem 3.1] satisfies the requirements of [163, Definition 1.1]
down to τ = 0 and it is indeed an energy solution. It seems therefore natural to inquire how
such non-uniqueness problem is in agreement with uniqueness of energy solutions proved in
Proposition 1.2.3. The answer is that in this case nonzero constants do not belong to

V
1+1/m

0 (Rd; ν, λ) , (1.2.37)
where we denote as λ the Lebesgue measure on Rd. In fact it is direct to show that the
Euclidean Sobolev inequality always holds true in the space (1.2.37) (because it is valid in
Ḣ1(Rd)), which prevents any nonzero constant from belonging to it. Roughly speaking, the
choice of test functions in the weak formulation (1.2.35) is typical of a Dirichlet problem;
however, no “boundary condition” is prescribed on u. When the weight ρν(x) vanishes
sufficiently fast as |x| → ∞, Rd behaves like a bounded domain, so that one expects to have
to put boundary conditions at infinity to restore uniqueness. Indeed, condition (1.2.36) turns
out to be sufficient for uniqueness, see again [163, Section 8] and references quoted therein.

Despite these non-uniqueness issues (for α > d), it is not difficult to check that the weak
solution of (1.1.1) (according to [163, Definition 1.1]) constructed in [163, Theorem 3.1]
coincides with the weak energy solution of the same problem (according to Definition 1.2.1)
whose existence was proved in Theorem 1.2.4, at least for any u0 ∈ L1(Rd; ν)∩ L∞(Rd) (and
so for any L1(Ω; ν) datum in view of (1.2.5)). As a consequence, in this context solutions
are in fact C([0,∞); L1(Rd; ν)) functions. Still from results in [163] we know that an L∞
smoothing effect takes place: this is consistent with the validity of the Sobolev inequality in
H1

0 (Rd; ν, λ) (see Paragraph 1.2.3.3 below).

1.2.3 Smoothing and decay estimates

In this subsection we shall prove Theorems 1.2.5–1.2.12, which show how the validity of
Poincaré-, Sobolev- or Gagliardo-Nirenberg-type inequalities in H1

0 (Ω; ν, µ) is connected with
suitable smoothing effects for solutions to (1.1.1).

1.2.3.1 Poincaré-type inequalities

Proof of Theorem 1.2.5. We shall proceed by means of a Gross differential method. The
computations follow closely to the ones performed in the proof of [105, Theorem 1.3], so we
just point out the most significant differences. Upon defining the entropy functional

J(r, f) :=
∫

Ω

|f(x)|r
‖f‖rr;ν

log
(
|f(x)|
‖f‖r;ν

)
dν ,

the validity of the family of logarithmic Sobolev inequalities(
J(r, v) + 1

2− r log ε
) (2− r)‖v‖2

r;ν

εC2
P

≤ ‖∇v‖2
2;µ (1.2.38)

∀r ∈ [1, 2) , ∀ε > 0 , ∀v ∈ Lr(Ω; ν) ∩H1
0 (Ω; ν, µ)

was established in [105, Theorem 1.3]. Given u0 ∈ L1(Ω; ν) ∩ L∞(Ω), t > 0, q0 ∈ (1,∞) and
% ∈ (q0,∞), let u be the solution to (1.1.1) with initial datum u0. Introducing an increasing,
one-to-one and C1([0, t]) function q : [0, t] 7→ [q0, %], after explicit calculations we get:

d
ds log ‖u(s)‖q(s);ν

=q
′(s)
q(s) J(q(s), u(s))−

(
2

q(s) +m− 1

)2
m(q(s)− 1)
‖u(s)‖q(s)q(s);ν

∥∥∥∥∇(u q(s)+m−1
2

)
(s)
∥∥∥∥2

2;µ
.
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1.2. The homogeneous Dirichlet problem

One applies (1.2.38) to v = u(q+m−1)/2 in the above identity, sets q(s) := q0 + s
t
(% − q0),

chooses r and ε appropriately and solves the resulting differential inequality in the variable
y(s) := log ‖u(s)‖q(s);ν along the lines of the proof of [105, Theorem 1.3]. With respect to
the notations used therein, we point out that it is enough to replace q − 1 with m(q − 1),
p− 2 with m− 1, p with 2 and C with C2

P . This yields estimate (1.2.7) for q0 > 1. The case
q0 = 1 follows by taking limits, since the constant K1 in (1.2.7) can be shown to be bounded
as q0 ↓ 1.

In the case ν(Ω) <∞, for any fixed q0 > 1 we have:

d
ds ‖u(s)‖q0q0;ν = −

(
2

q0 +m− 1

)2

mq0(q0 − 1)
∥∥∥∥∇(u q0+m−1

2

)
(s)
∥∥∥∥2

2;µ

≤ −
(

2
q0 +m− 1

)2
mq0(q0 − 1)

C2
P

‖u(s)‖q0+m−1
q0+m−1;ν

≤ −
(

2
q0 +m− 1

)2
mq0(q0 − 1)
C2
P ν(Ω)

m−1
q0

‖u(s)‖q0+m−1
q0;ν

= −D
(
‖u(s)‖q0q0;ν

) q0+m−1
q0 ,

where D > 0 is a suitable constant depending only on q0, m, CP and ν(Ω). Solving the above
differential inequality in the variable y(s) := ‖u(s)‖q0q0;ν we end up with the estimate

‖u(t)‖q0;ν ≤
1(

D t+ ‖u0‖1−m
q0;ν

) 1
m−1

∀t > 0 , (1.2.39)

upon relabelling D. Hence, using (1.2.39) and (1.2.7) between t and t/2 (notice that we are
also exploiting the semigroup property, see Proposition 1.2.19), we obtain:

‖u(t)‖%;ν ≤ K1 (t/2)−
%−q0
%(m−1) ‖u(t/2)‖

q0
%

q0;ν ≤ K2 t
− %−q0
%(m−1)

(
t+ ‖u0‖1−m

q0;ν

)− q0
(m−1)% ∀t > 0 ,

where K2 > 0 is another constant depending only on %, q0, m, CP and ν(Ω).
It remains to prove the validity of (1.2.8) for q0 = 1. To this end, it is convenient to use

the smoothing effect (1.2.7) with, for instance, % replaced by (%+ 1)/2 and q0 = 1:

‖u(t)‖ %+1
2 ;ν ≤ K1 t

− %−1
(%+1)(m−1) ‖u0‖

2
%+1
1;ν ∀t > 0 . (1.2.40)

Exploiting (1.2.40) and (1.2.8) (with q0 = (%+ 1)/2) between t and t/2, we get:

‖u(t)‖%;ν ≤K2 (t/2)−
%−1

2%(m−1)

(
t/2 + ‖u(t/2)‖1−m

%+1
2 ;ν

)− %+1
2%(m−1)

≤K2 t
− %−1

2%(m−1)

(
t+ ‖u(t/2)‖1−m

%+1
2 ;ν

)− %+1
2%(m−1)

≤K2 t
− %−1
%(m−1)

(
t

2
%+1 + ‖u0‖

2(1−m)
%+1

1;ν

)− %+1
2%(m−1)

≤K2 t
− %−1
%(m−1)

(
t+ ‖u0‖1−m

1;ν

)− 1
(m−1)%

for all t > 0, where K2 > 0 is a constant as above, possibly changing from line to line.
Finally, in order to remove the hypothesis u0 ∈ L1(Ω; ν) ∩ L∞(Ω), it is enough to take a

sequence {u0n} ⊂ L1(Ω; ν) ∩ L∞(Ω) which converges to u0 in L1(Ω; ν) ∩ Lq0(Ω; ν), apply to
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Chapter 1. Porous medium equations with general weights

the corresponding solutions {un} of (1.1.1) the just proved estimates and pass to the limit
as n→∞ (also exploiting the L1(Ω; ν) comparison principle (1.2.5)).

Notice that, a priori, our solutions are not regular enough (in time) in order to justify
rigorously the calculations we performed in the above proof. Nevertheless, one can overcome
this issue in several ways: for instance by performing analogous computations in the non-
degenerate problems solved in the proof of Lemma 1.2.16 and then passing to the limit or by
exploiting the general fact that solutions are actually strong. We shall not investigate further
the latter property: for a short overview in this regard, we refer the reader to Chapter 2,
Paragraph 2.2.2.1, where strong solutions are dealt with in a different context, but the same
arguments work here as well. Alternatively, Theorem 1.2.5, at least as concerns (1.2.7), can
be proved by means of a Moser iteration technique, which does not require time regularity.
We shall see several applications of this method in the proofs of Theorems 1.2.9, 1.2.11 and
in Subsection 1.3.3.

We now prove the converse implication of Theorem 1.2.5.

Proof of Theorem 1.2.6. As in the second part of the proof of [105, Theorem 1.3], we want
to take advantage of [13, Theorem 3.1]. In order to do that, let us consider any initial datum
u0 ∈ W 1,∞

c (Ω). It is apparent that the hypotheses of Corollary 1.2.18 are fulfilled, so that
(1.2.32) holds true. Thanks to an interpolation argument and to the fact that the Lq0(Ω; ν)
norm of the solution does not increase along the evolution (trivial consequence of (1.2.3)),
from the validity of (1.2.7) for some % ≥ m+ 1 it is direct to deduce the validity of the latter
also for % = m+ 1, possibly with a different constant K1 which we do not relabel. Hence, by
combining such a smoothing estimate with (1.2.32), we obtain:

‖u0‖m+1
m+1;ν ≤ Km+1

1 t−
m+1−q0
m−1 ‖u0‖q0q0;ν + (m+ 1) t ‖∇(um0 )‖2

2;µ ∀t > 0 .
Minimizing the explicitly the right-hand side w.r.t. t > 0, we end up with

‖u0‖m+1;ν ≤ B ‖∇(um0 )‖
2(m+1−q0)

(m+1)(2m−q0)
2;µ ‖u0‖

q0(m−1)
(m+1)(2m−q0)
q0;ν , (1.2.41)

where B = B(q0,m,K1) > 0 is a suitable constant. In order to rewrite (1.2.41) in a more
convenient way for our purposes, consider the following sequence {ξn} of real functions:

ξn(y) := 2
(
y − 1

2n

)
χ[ 1

2n ,
1
n)(y) + 2

(
y + 1

2n

)
χ(− 1

n
,− 1

2n ](y) + y χ[ 1
n
,∞)(|y|) ∀y ∈ R .

By construction, the regularized approximations

vn := ξn
(
u

1/m
0

)
of u1/m

0 still belong to W 1,∞
c (Ω). Moreover,

|vn(x)| ≤ |u0(x)|
1
m , ∇(vmn )(x) = ξ′n

(
u

1/m
0 (x)

)
|vn(x)|m−1 |u0(x)|

1
m
−1∇u0(x)

for a.e. x ∈ Ω. In view of the above estimates and from the properties of {ξn}, it is straight-
forward to check that

|∇(vmn )|(x) ≤ 2 |∇u0(x)| for a.e. x ∈ Ω

and that {vn} and {∇(vmn )} converge pointwise to u1/m
0 and ∇(u0), respectively. Applying

(1.2.41) to the sequence of initial data {vn} and passing to the limit as n→∞, by dominated
convergence we infer that

‖u0‖m+1
m

;ν ≤ Bm ‖∇u0‖
2m(m+1−q0)

(m+1)(2m−q0)
2;µ ‖u0‖

q0(m−1)
(m+1)(2m−q0)
q0
m

;ν . (1.2.42)
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1.2. The homogeneous Dirichlet problem

Setting

ϑ := 2m(m+ 1− q0)
(m+ 1)(2m− q0) , r := m+ 1

m
, s := q0

m
, q := 2 , W(f) := ‖∇f‖2;µ ,

where f is any nonnegative function belonging to W 1,∞
c (Ω), inequality (1.2.42) reads

‖f‖r;ν ≤
[
B̂W(f)

]ϑ
‖f‖1−ϑ

s;ν ,
1
r

= ϑ

q
+ 1− ϑ

s
, B̂ := B

m
ϑ . (1.2.43)

We are therefore in position to apply Theorem 3.1 of [13], which ensures the validity of
(1.2.43) for ϑ = 1 and r = 2 as well, that is

‖f‖2;ν ≤ B̂ ‖∇f‖2;µ , (1.2.44)

up to a different positive constant B̂. Hence, we have proved the Poincaré inequality for
nonnegative functions in W 1,∞

c (Ω). The extension of (1.2.44) to signed functions in W 1,∞
c (Ω)

is easily achieved by writing f = f+ − f−, while the extension to the whole of H1
0 (Ω; ν, µ)

just follows by density (recall Proposition 1.1.2).

1.2.3.2 Counterexamples to L∞ regularization

As already mentioned, estimate (1.2.7) provides us with an Lq0(Ω; ν)–L%(Ω; ν) regulariza-
tion which fails at % =∞ (by direct computations one checks that K1 diverges as %→∞). In
this paragraph, by means of two explicit counterexamples, we show that in general one cannot
do better, that is the sole validity of a Poincaré-type inequality prevents L∞ regularization.

Let Ω = R+. With respect to the weights ρν(x) = ρµ(x) = e−x, it is known that the
Poincaré-type inequality (1.2.6) holds true (see Appendix 1.A, Paragraph 1.A.1.1). In this
framework, problem (1.1.1) reads

ut = ex(e−x(um)x)x in R+ × R+ ,

u = 0 on {0} × R+ ,

u = u0 on R+ × {0} .
(1.2.45)

We aim at proving that the solution u corresponding to the initial datum u0(x) = log(x+ 1)
is unbounded for all t ≥ 0. To this end, let us consider the following family of functions:

vB(x, t) := log(x+ 1)
(1 +B−1(m− 1) t)

1
m−1

, B > 0 .

One can show that vB is a subsolution to (1.2.45) for a suitable choice of the constant B. In
fact, after some standard computations, one gets:

ex(e−x([log(x+ 1)]m)x)x =−m [log(x+ 1)]m−1

x+ 1 −m [log(x+ 1)]m−1

(x+ 1)2

+m(m− 1) [log(x+ 1)]m−2

(x+ 1)2 .

It is then apparent that there exists a constant B > 0 such that

log(x+ 1) ≥ −B ex(e−x([log(x+ 1)]m)x)x ,
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Chapter 1. Porous medium equations with general weights

so that

(vB)t = − log(x+ 1)
B (1 +B−1(m− 1) t)

m
m−1
≤ ex(e−x([log(x+ 1)]m)x)x

(1 +B−1(m− 1) t)
m
m−1

= ex(e−x(vmB )x)x .

As a consequence, vB is a subsolution to (1.2.45) for u0(x) = log(x + 1). The comparison
principle for strong sub-supersolutions (see [173, Theorem 8.10]) entails vB ≤ u; in particular,
u(t) is unbounded for all t ≥ 0. Moreover, since u0 ∈ Lq0(R+; e−x) for all q0 ∈ [1,∞), in this
case the Lq0(R+; e−x)–L∞(R+) regularization does not take place for any q0 ∈ [1,∞).

Let Ω = Rd, with d ≥ 3. Take the weights ρν(x) = |x|−2 and ρµ ≡ 1, so that (1.1.1) here
reads |x|−2 ut = ∆(um) in Rd × R+ ,

u = u0 on Rd × {0} .
(1.2.46)

Problem (1.2.46) is also known as inhomogeneous porous medium equation with critical den-
sity, and has been thoroughly studied in the recent paper [141] (see also [169] for connections
with the porous medium equation on hyperbolic space). It is straightforward to check that
the (Barenblatt-type) function

U(x, t) :=
[

log(tκ/|x|)
m(d− 2) t

] 1
m−1

+
, κ := 1

(d− 2)(m− 1)

is in fact an energy solution to (1.2.46) after an arbitrarily small t > 0, which belongs to
L%(Rd; |x|−2) for all % ∈ [1,∞) but is clearly unbounded in a neighbourhood of {x = 0}. On
the other hand, the validity of the classical Hardy inequality∫

Rd
v2(x) |x|−2dx ≤ C2

H

∫
Rd
|∇v(x)|2 dx ∀v ∈ Ḣ1(Rd) , CH > 0 ,

is equivalent to the validity of the weighted Poincaré inequality in H1
0 (Rd; |x|−2, 1).

In the latter case, actually, standard time-space scaling arguments imply that the only
possible smoothing effect of the type

‖u(t)‖%;|x|−2 ≤ K1 t
−α0 ‖u0‖β0

q0;|x|−2 ∀t > 0

for some α0 > 0 and β0 > 0 is (1.2.7). Moreover, estimate (1.2.7) is sharp on U , in the sense
that it captures the exact rate at which ‖U(t)‖%;|x|−2 blows up as t→ 0 or vanishes as t→∞,
namely t−(%−1)/[%(m−1)].

As the reader might have noticed, strictly speaking, problem (1.2.46) does not fall within
the framework of those for which we established a well-posedness theory in Subsection 1.2.2,
since the weight |x|−2 is singular at x = 0. Nevertheless, we can overcome this issue at least
in two ways. One consists in considering the same problem in Rd\{0} rather than in Rd: it is
easy to check that energy solutions to the two problems actually coincide. As an alternative,
one can prove well-posedness results for (1.2.46) by approximating |x|−2 with a sequence of
regular weights (see also Chapter 2, Subsection 2.2.2 for a similar procedure as related to a
fractional problem of the type of (1.2.46)).

1.2.3.3 Sobolev-type inequalities

We only provide a short proof of Theorem 1.2.8 and make some comments on Theorem
1.2.7.
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1.2. The homogeneous Dirichlet problem

Proof of Theorem 1.2.8. Given an initial datum u0 ∈ W 1,∞
c (Ω) and denoting as u the corre-

sponding solution to (1.1.1), using the fact the Lq0(Ω; ν) norm of u(t) does not increase, by
interpolation we get:

‖u(t)‖m+1
m+1;ν ≤ ‖u(t)‖m+1−q0

∞ ‖u0‖q0q0;ν ∀t > 0 .

Applying the smoothing effect (1.2.10) to the r.h.s. we obtain

‖u(t)‖m+1
m+1;ν ≤ C t

− σ(m+1−q0)
(σ−1)q0+σ(m−1) ‖u0‖

q0(2σm−m−1)
(σ−1)q0+σ(m−1)
q0;ν ∀t > 0 (1.2.47)

for a suitable C = C(q0,m, σ,K1) > 0. Thanks again to Corollary 1.2.18, (1.2.47) entails

‖u0‖m+1
m+1;ν ≤ C t

− σ(m+1−q0)
(σ−1)q0+σ(m−1) ‖u0‖

q0(2σm−m−1)
(σ−1)q0+σ(m−1)
q0;ν + (m+ 1) t ‖∇(um0 )‖2

2;µ ∀t > 0 . (1.2.48)

Minimizing the explicitly the right-hand side of (1.2.48) w.r.t. t > 0 and proceeding exactly
as in the proof of Theorem 1.2.6, we end up with the following inequality:

‖f‖r;ν ≤ [C ‖∇f‖2;µ]ϑ ‖f‖1−ϑ
s;ν ,

1
r

= ϑ

q
+ 1− ϑ

s
, (1.2.49)

where f is any nonnegative function belonging to W 1,∞
c (Ω), C is a positive constant as above

and now
ϑ := 2σm(m+ 1− q0)

(m+ 1)(2σm− q0) , r := m+ 1
m

, s := q0

m
, q := 2σ .

Hence, we are again in position to apply Theorem 3.1 of [13], from which we deduce the
validity of (1.2.49) for ϑ = 1 and r = 2σ as well, that is

‖f‖2σ;ν ≤ C ‖∇f‖2;µ (1.2.50)

up to a different positive constant C. The extension of (1.2.50) to the whole of H1
0 (Ω; ν, µ)

just follows as in the end of proof of Theorem 1.2.6.

Theorem 1.2.7, to some extent, was already proved in [27] (see Theorem 1.5 there), at least
as concerns (1.2.10). In fact, in such paper, the authors establish the same smoothing effect
for solutions to the porous medium equation on Riemannian manifolds of infinite volume
and without boundary, in dimension d ≥ 3. They proceed by means of a Gross differential
method, and their approach is purely functional analytic, in the sense that they only exploit
the validity of the Sobolev inequality (1.2.9) with σ = d/(d − 2). It is therefore immediate
to check that their proof works in our context as well.

Furthermore, there are at least another to ways to prove Theorem 1.2.7. They are very
similar to each other and they both rely on a Moser iteration technique. As for the first one,
we refer the reader to the proof of Theorem 1.3.8 in Paragraph 1.3.3.3 (smoothing estimates
for the homogeneous Neumann problem with the validity of a Sobolev-type inequality): it is
apparent that the same strategy also works for the Dirichlet problem (in which case it is even
much simpler). As for the second one, let us notice that, in view of the deep results in [13],
the Sobolev-type inequality (1.2.9) is in fact equivalent to the family of Gagliardo-Nirenberg-
type inequalities (1.2.49), where q = 2σ and r, s > 0, ϑ ∈ (0, 1] are free parameters (linked by
the corresponding constraint in (1.2.49)). Hence, one can repeat the proof of Theorem 1.2.11
below with minor modifications. We point out that, still as a consequence of the results
in [13], the family (1.2.49) is equivalent to (1.2.12) for q = −λ, while for q =∞ it coincides
with (1.2.15).
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Chapter 1. Porous medium equations with general weights

Let us consider problem (1.2.9) with the choices Ω = Rd (d ≥ 3), ρµ ≡ 1 and ρν(x) = |x|−γ
for some γ ∈ (0, 2), that is |x|−γut = ∆(um) in Rd × R+ ,

u = u0 on Rd × {0} .
(1.2.51)

In this case, the Hardy-Sobolev inequality (see also Chapter 3, Subsection 3.2.2)(∫
Rd
|v(x)|2

d−γ
d−2 |x|−γdx

) d−2
2(d−γ)

≤ CHS

(∫
Rd
|∇v(x)|2 dx

) 1
2
∀v ∈ Ḣ1(Rd) , CHS > 0 ,

holds true, namely (1.2.9) with σ = (d− γ)/(d− 2). The Barenblatt-type function (see [164]
or the the Introduction to Chapter 2)

U(x, t) := t−α
[
1− b (t−κ|x|)2−γ

] 1
m−1

+
, α := (d− γ)κ , κ := 1

d(m− 1) + 2−mγ ,

where b is a fixed positive constant depending only on m, d and γ, is an energy solution
to (1.2.51) after an arbitrarily small t > 0. Notice that, in agreement with Theorem 1.2.7
and unlike the case γ = 2 discussed in Paragraph 1.2.3.2, U(t) is a bounded function at any
t > 0. Moreover, a direct computation shows that the smoothing estimate (1.2.10) (with
σ = (d− γ)/(d− 2)) is sharp on U .

As concerns the fact that the weight |x|−γ is singular at x = 0, the same comments as in
the end of Paragraph 1.2.3.2 apply.

1.2.3.4 Gagliardo-Nirenberg-type inequalities

We first prove L∞ bounds in the one-dimensional case.

Proof of Theorem 1.2.9. First notice that inequality (1.2.12) is equivalent to

‖v‖
2(s+λ)
λ

∞

C ‖v‖
2s
λ
s;ν

≤ ‖∇v‖2
2;µ ∀s > 0 , ∀v ∈ H1

0 (Ω; ν, µ) ∩ Ls(Ω; ν) : v 6≡ 0 , (1.2.52)

where we set C := C
2(s+λ)/λ
G1 . Let q0 > 1, t > 0 and take u0 ∈ L1(Ω; ν) ∩ L∞(Ω). Estimate

(1.2.3) with q = q0 − 1 and T = t trivially entails

4q0(q0 − 1)m
(q0 +m− 1)2

∫ t

0

∫
Ω

∣∣∣∣∇(u q0+m−1
2

)
(x, τ)

∣∣∣∣2 dµdτ ≤ ‖u0‖q0q0;ν .

Applying (1.2.52) to the function v = u(q0+m−1)/2(τ), we obtain:

4q0(q0 − 1)m
C (q0 +m− 1)2

∫ t

0

∥∥∥u q0+m−1
2 (τ)

∥∥∥ 2(s+λ)
λ

∞∥∥∥u q0+m−1
2 (τ)

∥∥∥ 2s
λ

s;ν

dτ ≤ ‖u0‖q0;ν
q0;ν . (1.2.53)

Since Lp(Ω; ν) norms are nonincreasing in time (direct consequence of (1.2.3)), from (1.2.53)
we infer (provided s(q0 +m− 1)/2 ≥ 1)

t
4q0(q0 − 1)m
C (q0 +m− 1)2

‖u(t)‖
(s+λ)(q0+m−1)

λ
∞

‖u0‖
s(q0+m−1)

λ
s(q0+m−1)

2 ;ν

≤ ‖u0‖q0q0;ν . (1.2.54)
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1.2. The homogeneous Dirichlet problem

Letting s = 2q0/(q0 +m− 1), (1.2.54) reads

t
4q0(q0 − 1)m
C (q0 +m− 1)2

‖u(t)‖
(λ+2)q0+λ(m−1)

λ
∞

‖u0‖
2q0
λ
q0;ν

≤ ‖u0‖q0q0;ν ,

whence
‖u(t)‖∞ ≤ K1 t

− λ
(λ+2)q0+λ(m−1) ‖u0‖

(λ+2)q0
(λ+2)q0+λ(m−1)
q0;ν (1.2.55)

for a suitable constant K1 > 0 as in the statement which, a priori, also depends on q0 since
it blows up as q0 ↓ 1 (but it is stable as q0 ↑ ∞). In order to prove the validity of (1.2.55)
down to q0 = 1, we use the same argument as in Corollary 8.1 of [61]. That is, by exploiting
the interpolation inequality ‖u(t/2)‖q0q0;ν ≤ ‖u(t/2)‖q0−1

∞ ‖u(t/2)‖1;ν , the fact that the L1(Ω; ν)
norm of the solution is not increasing (recall (1.2.3)) and (1.2.55) between t and t/2, we get:

‖u(t)‖∞ ≤ K1

(2
t

) λα
λ+2
‖u(t/2)‖α(q0−1)

∞ ‖u0‖α1;ν , α := λ+ 2
(λ+ 2)q0 + λ(m− 1) . (1.2.56)

Iterating (1.2.56) k − 1 times we end up with

‖u(t)‖∞ ≤
K
∑k−1

h=0[α(q0−1)]h
1 2

λα
λ+2

∑k−1
h=0(h+1)[α(q0−1)]h

t
λα
λ+2

∑k−1
h=0[α(q0−1)]h

‖u(t/2k)‖[α(q0−1)]k
∞ ‖u0‖

α
∑k−1

h=0[α(q0−1)]h
1;ν .

(1.2.57)
Letting k → ∞ in (1.2.57), it is just a matter of straightforward computations to verify
that the multiplicative constants above stay bounded, the powers to which t−1 and ‖u0‖1;ν
are elevated tend to λ/(λm+ 2) and (λ+ 2)/(λm+ 2), respectively, while the one to which
‖u(t/2k)‖∞ ≤ ‖u0‖∞ is elevated tends to zero. This yields

‖u(t)‖∞ ≤ K̃ t−
λ

λm+2 ‖u0‖
λ+2
λm+2
1;ν , (1.2.58)

namely (1.2.13) for q0 = 1, where K̃ > 0 is a constant that depends only on m, CG1 and λ
(fix e.g. q0 = 2 in the calculations above). We can assert that the multiplicative constant
K1 appearing in (1.2.13) is finally independent of q0 because it is locally bounded, it stays
bounded as q0 → ∞ and for any q0 ∈ [1, 2] (for instance) it is possible to repeat the same
argument we used to prove (1.2.58), which in particular ensures boundedness of such constant
as q0 varies in [1, 2].

For the proof of (1.2.14) in the case ν(Ω) <∞, we can proceed similarly to the end of proof
of Theorem 1.2.5. In fact, the validity of (1.2.39) for q0 > 1 follows by means of an identical
argument (since ν(Ω) <∞, it is apparent that (1.2.12) entails the Poincaré inequality for a
constant CP that depends on CG1 , λ and ν(Ω)). Hence, using (1.2.39) and (1.2.13) between
t and t/2, we obtain:

‖u(t)‖∞;ν ≤K1 (t/2)−
λ

(λ+2)q0+λ(m−1) ‖u(t/2)‖
(λ+2)q0

(λ+2)q0+λ(m−1)
q0;ν

≤K2 t
− λ

(λ+2)q0+λ(m−1)
(
t+ ‖u0‖1−m

q0;ν

)− (λ+2)q0
(m−1)[(λ+2)q0+λ(m−1)] ∀t > 0 ,

where K2 > 0 is another constant depending only on q0, m, CG1 , λ and ν(Ω). It therefore
remains to prove the validity of (1.2.14) for q0 = 1. To this end, note that, thanks to the
inequality ‖u(t)‖2

2;ν ≤ ‖u(t)‖∞‖u0‖1;ν and to (1.2.13) (evaluated at q0 = 1), we get:

‖u(t)‖2;ν ≤ K
1
2
1 t
− λ

2λm+4 ‖u0‖
λ(m+1)+4

2λm+4
1;ν ∀t > 0 . (1.2.59)
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Exploiting (1.2.59) and (1.2.14) (with q0 = 2) between t and t/2, we find

‖u(t)‖∞ ≤K2 t
− λ
λ(m+1)+4

(
t+ ‖u(t/2)‖1−m

2;ν

)− 2λ+4
(m−1)[λ(m+1)+4]

≤K2 t
− λ
λm+2

(
t
λ(m+1)+4

2λm+4 + ‖u0‖
(1−m)λ(m+1)+4

2λm+4
1;ν

)− 2λ+4
(m−1)[λ(m+1)+4]

≤K2 t
− λ
λm+2

(
t+ ‖u0‖1−m

1;ν

)− λ+2
(m−1)(λm+2) t > 0 ,

where K2 > 0 is still a suitable constant depending only on m, CG1 , λ and ν(Ω), possibly
changing from line to line.

In order to conclude the proof, we need to get rid of the assumption u0 ∈ L1(Ω; ν)∩L∞(Ω).
To this aim, given u0 ∈ L1(Ω; ν)∩Lq0(Ω; ν), pick a sequence {u0n} ⊂ L1(Ω; ν)∩L∞(Ω) which
converges to u0 in L1(Ω; ν)∩Lq0(Ω; ν) and notice that the corresponding sequence of solutions
{un} of (1.1.1) converges to u in L∞((0,∞); L1(Ω; ν)) (recall (1.2.5)). Moreover, in view of
(1.2.13), {un(t)} converges to u(t) for a.e. t > 0 in the weak∗ topology of L∞(Ω), which
is enough to pass to the limit in all the above estimates thanks to the weak∗ lower semi-
continuity of the L∞ norm.

Now let us prove the converse implication of Theorem 1.2.9.

Proof of Theorem 1.2.10. We can repeat the same proof as Theorem 1.2.8 to obtain the
following functional inequality:

‖f‖r;ν ≤ [C ‖∇f‖2;µ]ϑ ‖f‖1−ϑ
s;ν ,

1
r

= ϑ

q
+ 1− ϑ

s
, (1.2.60)

where f is any nonnegative function belonging to W 1,∞
c (Ω), C > 0 is a suitable constant

depending on q0, m, λ, K1 and

ϑ := λm(m+ 1− q0)
(m+ 1)(λm+ q0) , r := m+ 1

m
, s := q0

m
, q := −λ .

We are therefore in position to apply Theorem 3.2 of [13], which ensures the validity of
(1.2.60) for any s > 0, ϑ = λ/(s+ λ) and r =∞, that is

‖f‖∞ ≤ C ‖∇f‖
λ
s+λ
2;µ ‖f‖

s
s+λ
s;ν , (1.2.61)

up to a possibly different constant C > 0 independent of s. For a signed f ∈ W 1,∞
c (Ω),

inequality (1.2.61) follows by applying the latter both to f+ and f−. A standard mollification
argument then allows us to assert its validity for all f ∈ H1

0,c(Ω; ν, µ) (recall that ρν and
ρµ are locally equivalent to 1). We can finally deal with any f ∈ H1

0 (Ω; ν, µ) ∩ Ls(Ω; ν) by
density: given {φn} ⊂ D(Ω) such that φn → f in H1

0 (Ω; ν, µ), just notice that the sequence

fn := [f+ ∧ (φn)+]− [f− ∧ (φn)−] ∈ H1
0,c(Ω; ν, µ)

still converges to f in H1
0 (Ω; ν, µ) and it is such that

∫
Ω |fn(x)|s dν →

∫
Ω |f(x)|s dν, which is

enough in order to pass to the limit in (1.2.61).

We now pass to the two-dimensional case.
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Proof of Theorem 1.2.11. Let q0 > 1, t > 0 and take u0 ∈ L1(Ω; ν)∩L∞(Ω). In order to prove
the smoothing estimate (1.2.16), we shall proceed by means of a Moser iteration technique.
That is, given two increasing sequences of positive numbers {pk} (with p0 = q0) and {tk}, to
be defined later, estimate (1.2.3) with (0, T ) replaced by (tk, tk+1) and q = pk − 1 yields

4pk(pk − 1)m
(pk +m− 1)2

∫ tk+1

tk

∫
Ω

∣∣∣∣∇(u pk+m−1
2

)
(x, τ)

∣∣∣∣2 dµdτ ≤ ‖u(tk)‖pkpk;ν . (1.2.62)

Let us rewrite (1.2.15) as

‖v‖
2r
r−s
r;ν

C ‖v‖
s
r
s;ν

≤ ‖∇v‖2
2;µ ∀r > s > 0 , ∀v ∈ H1

0 (Ω; ν, µ) ∩ Ls(Ω; ν) : v 6≡ 0 , (1.2.63)

where C := C
2r/(r−s)
G2 . Applying (1.2.63) to the function v = u(p0+m−1)/2(τ) in order to bound

the l.h.s. of (1.2.62), we get:

4pk(pk − 1)m
C (pk +m− 1)2

∫ tk+1

tk

∥∥∥∥u pk+m−1
2 (τ)

∥∥∥∥ 2r
r−s

r;ν∥∥∥∥u pk+m−1
2 (τ)

∥∥∥∥ 2s
r−s

s;ν

dτ ≤ ‖u(tk)‖pkpk;ν . (1.2.64)

Now let tk := (1 − 2−k)t, so that t0 = 0, tk+1 − tk = t/2k+1 and limk→∞ tk = t. By
exploiting (1.2.64) and the fact that Lp(Ω; ν) norms do not increase along the evolution (let
s(q0 +m− 1)/2 ≥ 1), we infer the inequality

t
4pk(pk − 1)m

2k+1C (pk +m− 1)2

‖u(tk+1)‖
r
r−s (pk+m−1)
r
2 (pk+m−1);ν

‖u(tk)‖
s
r−s (pk+m−1)
s
2 (pk+m−1);ν

≤ ‖u(tk)‖pkpk;ν . (1.2.65)

If we choose s = sk = 2pk/(pk +m− 1), then (1.2.65) reads

‖u(tk+1)‖
r

r−sk
(pk+m−1)

r
2 (pk+m−1);ν ≤ 2kC t−1 ‖u(tk)‖

pk+ sk
r−sk

(pk+m−1)
pk;ν , (1.2.66)

where we relabelled C. It is convenient to set r = rk = sk + 2: in particular, we point out
that in this way both {sk} and {rk} are bounded sequences, so that the constant C only
depends on q0, m and on CG2 through a fixed finite upper bound on r (note that rk ≤ 4).

Assuming that {pk} satisfies the recurrence relation pk+1 = 2pk + m − 1, we can rewrite
(1.2.66) as follows:

‖u(tk+1)‖pk+1;ν ≤ 2
k

pk+1 C
1

pk+1 t
− 1
pk+1 ‖u(tk)‖

2pk
pk+1
pk;ν . (1.2.67)

Iterating (1.2.67) and using the fact that {pk+1} is explicit, namely

pk+1 = (q0 +m− 1) 2k+1 + 1−m,

we obtain:

‖u(tk+1)‖pk+1;ν ≤ 2
1

pk+1

∑k

h=0 2h(k−h) (
C t−1

) 1
pk+1

∑k

h=0 2h
‖u0‖

2k+1q0
pk+1
q0;ν

≤ 2
∑k

h=0 2h(k−h)

(q0+m−1)2k+1+1−m
(
C t−1

) 2k+1−1
(q0+m−1)2k+1+1−m ‖u0‖

2k+1q0
(q0+m−1)2k+1+1−m
q0;ν

≤ K1 t
− 2k+1−1

(q0+m−1)2k+1+1−m ‖u0‖
2k+1q0

(q0+m−1)2k+1+1−m
q0;ν ,

(1.2.68)
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where K1 > 0 is a suitable constant as in the statement, which a priori also depends on q0.
Recalling that pk ↑ ∞ and tk ↑ t as k →∞ and exploiting once again the fact that Lp(Ω; ν)
norms do not increase in time, from (1.2.68) we deduce that

‖u(t)‖∞ = lim
k→∞
‖u(t)‖pk+1;ν ≤ lim inf

k→∞
‖u(tk+1)‖pk+1;ν ≤ K1 t

− 1
q0+m−1 ‖u0‖

q0
q0+m−1
q0;ν ,

that is (1.2.16). In order to prove (1.2.17) in the case ν(Ω) <∞ and to remove the hypotheses
q0 > 1 and u0 ∈ L1(Ω; ν)∩L∞(Ω) one can proceed exactly as in the end of proof of Theorem
1.2.9 above, so we omit details.

We finally give a sketch of proof of the converse implication of Theorem 1.2.11.

Proof of Theorem 1.2.12. Proceeding again as in the proof of Theorem 1.2.8, we end up with
the following functional inequality:

‖f‖r;ν ≤ [C ‖∇f‖2;µ]ϑ ‖f‖1−ϑ
s;ν ,

1
r

= ϑ

q
+ 1− ϑ

s
,

where f is any nonnegative function belonging to W 1,∞
c (Ω), C > 0 is a suitable constant

depending on q0, m, K1 and

ϑ := m+ 1− q0

m+ 1 , r := m+ 1
m

, s := q0

m
, q :=∞ .

Theorem 3.3 of [13] ensures the validity of (1.2.60) for all r > s > 0, ϑ = 1 − s/r and a
constant C > 0 which depends on r, s only through a finite upper bound on r. In order to
deduce the just proved inequality for the whole of H1

0 (Ω; ν, µ)∩Ls(Ω; ν), one can argue as in
the proof of Theorem 1.2.10 above.

Remark 1.2.21. Note that, thanks to the equivalence results of [13], the conclusions of
Theorem 1.2.11 (smoothing estimates, two-dimensional case) remain true if, instead of the
whole family of Gagliardo-Nirenberg-type inequalities (1.2.15), we require the validity of one
inequality of such family (for some r > s > 0). The same comment applies to Theorem 1.2.9
(one-dimensional case).

1.3 The homogeneous Neumann problem
The aim of this section is to establish the same kind of results we proved above for solutions

to the weighted Neumann problem (1.1.2). As we shall see, some of them will follow by means
of adaptations of the arguments we used in the Dirichlet case, but most of them (specially
as concerns asymptotics) need much more elaborated strategies.

1.3.1 Statements of the main results

Below we only give the notion of weak energy solution to (1.1.2). In fact, the natural
counterpart of Definition 1.2.1 here would be the one where one chooses e.g. test functions
in C1(Ω× [0, T )), rather than only in C∞c (Ω× [0, T )). However, since we assume no a priori
regularity property for Ω and ρν , ρµ up to ∂Ω, these test functions may not be directly related
to the underlying weighted Sobolev spaces where it is natural to look for a weak solution
(see Subsection 1.1.2 above: in the generality of our discussion, the only available result as
concerns density of regular functions is Proposition 1.1.3). It is thus convenient to introduce
such spaces in the very definition of weak solution.
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1.3. The homogeneous Neumann problem

Definition 1.3.1. A function u such that:

u ∈ Lm+1((0, T ); Lm+1(Ω; ν)) , ∇(um) ∈ L2((0, T ); [L2(Ω;µ)]d)

for a.e. t > 0 and every T > 0 ,
is a weak energy solution to (1.1.2) with initial datum u0 ∈ Lm+1(Ω; ν) if it satisfies∫ T

0

∫
Ω
u(x, t)ϕt(x, t) dνdt = −

∫
Ω
u0(x)ϕ(x, 0) dν +

∫ T

0

∫
Ω
〈∇(um),∇ϕ〉 (x, t) dµdt (1.3.1)

for all ϕ ∈ W 1+1/m((0, T ); L1+1/m(Ω; ν)) with ∇ϕ ∈ L2((0, T ); [L2(Ω;µ)]d) and ϕ(T ) ≡ 0.

It is apparent that the above properties entail

um ∈ L1+1/m((0, T );V 1+1/m(Ω; ν, µ)) ∀T > 0 .

Notice that now it is by definition admissible to pick Olĕınik’s test function (1.2.19) in (1.3.1).
Hence, repeating the proof of Proposition 1.2.3, we get the same result in the Neumann case.

Proposition 1.3.2. There exists at most one weak energy solution to (1.1.2).

When ν is a finite measure, we denote as f the weighted mean value of a function f ∈
L1(Ω; ν), that is

f :=
∫

Ω f(x) dν
ν(Ω) .

In our short- and long-time analysis of the behaviour of solutions to (1.1.2), we shall focus
on the case ν(Ω) <∞. In this regard, a classical key property is the conservation of (signed)
mass or mean value.

Proposition 1.3.3. Let ν(Ω) <∞. If u is a weak energy solution to (1.1.2) then

u(t) = u0 = u for a.e. t > 0 .

Proof. Thanks to the assumptions, for any fixed t > 0 and h ∈ (0, 2t) we can plug in (1.3.1)
the following test functions (independent of x):

ϕh(s) := χ[0,t−h/2)(s) + χ[t−h/2,t+h/2](s)
(
t− s
h

+ 1
2

)
∀s ∈ R+ ,

from which we get the identity

1
h

∫ t+h/2

t−h/2

∫
Ω
u(x, s) dνds =

∫
Ω
u0(x) dν .

In order to conclude the proof we let h→ 0 and use Lebesgue’s differentiation Theorem.

As for existence, we have the analogue of Theorem 1.2.4.

Theorem 1.3.4. Let ρν , ρµ, ρ−1
ν , ρ−1

µ ∈ L∞loc(Ω). Take u0 ∈ L1(Ω; ν) ∩ Lq0(Ω; ν), with q0 ≥
m + 1. Then there exists the weak energy solution u to (1.1.2), in the sense of Definition
1.3.1, which satisfies the estimates

4q(q + 1)m
(m+ q)2

∫ T

0

∫
Ω

∣∣∣∇(um+q
2
)
(x, t)

∣∣∣2 dµdt+
∫

Ω
|u(x, T )|q+1 dν ≤

∫
Ω
|u0(x)|q+1 dν (1.3.2)
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and ∫ T

0

∫
Ω
ζ(t) |zt(x, t)|2 dνdt ≤ max

t∈[0,T ]
ζ ′(t) m+ 1

8m

∫
Ω
|u0(x)|m+1 dν (1.3.3)

for all q ∈ [0, q0 − 1] and T > 0, where z := u(m+1)/2 and ζ is any nonnegative C1
c ((0, T ))

function.
Moreover, if v is the weak energy solution corresponding to another initial datum v0 ∈

L1(Ω; ν) ∩ Lm+1(Ω; ν), the following L1(Ω; ν) comparison principle holds true:∫
Ω

[u(x, t)− v(x, t)]+ dν ≤
∫

Ω
[u0(x)− v0(x)]+ dν ∀t > 0 . (1.3.4)

Thanks to (1.3.4), for general L1(Ω; ν) data we can define limit solutions exactly as in
Subsection 1.2.1.

Remark 1.3.5. In the case where

V 1+1/m(Ω; ν, µ) = V
1+1/m

0 (Ω; ν, µ) ,

it is plain that the two notions of energy solution provided by Definitions 1.2.2 and 1.3.1
coincide. Hence, in view of the above existence and uniqueness results, the energy solution
to the Dirichlet problem with initial datum u0 ∈ L1(Ω; ν) ∩ Lm+1(Ω; ν) is also the energy
solution to the Neumann problem with the same initial datum, and vice versa. We can draw
an analogous conclusion if

H1(Ω; ν, µ) = H1
0 (Ω; ν, µ) . (1.3.5)

Actually, in such case, we cannot state that Definitions 1.2.2 and 1.3.1 are equivalent. Nev-
ertheless, thanks to estimate (1.3.2), we know that for any u0 ∈ L1(Ω; ν) ∩ L∞(Ω) the cor-
responding energy solution to the Neumann problem is such that um(t) ∈ V 1+1/m(Ω; ν, µ) ∩
L2(Ω; ν) for a.e. t > 0. It is direct to check that, in view of (1.3.5), this entails

um(t) ∈ V 1+1/m
0 (Ω; ν, µ) .

Hence, the energy solution to the Neumann problem is also the energy solution to the Dirichlet
problem, so that such solutions coincide in this case as well. For a general u0 ∈ L1(Ω; ν), the
same results hold by taking limits (recall (1.3.4)).

If the above functional equivalences occur, we can claim that the Dirichlet and the Neu-
mann problems (1.1.1) and (1.1.2) are indistinguishable to one another. In this regard, a
classical example is the Euclidean space Ω = Rd with the choices ρµ ≡ 1 and ρν(x) = |x|−γ
for some γ ∈ [0, 2).

Below we state the results which connect the validity of suitable functional inequalities to
smoothing estimates for solutions to (1.1.2) in the case of finite measure, namely ν(Ω) <∞.
By the term “the solution”, we mean either the weak energy solution provided by Theorem
1.3.4 or the limit solution, depending on whether u0 ∈ Lm+1(Ω; ν) or not. The implicit
assumptions on the weights are local boundedness and boundedness away from zero, just as
in the statement of Theorem 1.3.4.

Theorem 1.3.6 (Poincaré case). Let ν(Ω) < ∞ and u0 ∈ Lq0(Ω; ν), with q0 ∈ [1,∞).
Suppose that the Poincaré-type inequality

‖v‖2;ν ≤ WP

(
‖∇v‖2;µ + ‖v‖1;ν

)
∀v ∈ H1(Ω; ν, µ) (1.3.6)
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holds true for some WP > 0. Then the solution u to (1.1.2) with initial datum u0 satisfies
the smoothing estimate

‖u(t)‖%;ν ≤ K
(
t−

%−q0
%(m−1) ‖u0‖

q0
%

q0;ν + ‖u0‖q0;ν

)
∀t > 0 (1.3.7)

for all % ∈ (q0,∞), where K > 0 is a suitable constant depending only on %, m, WP and
ν(Ω).
Theorem 1.3.7 (Poincaré case, converse implication). Let ν(Ω) < ∞. Suppose that there
exist a constant K > 0 and a number % ≥ m+1 such that, for all u0 ∈ Lm(Ω; ν), the solution
u to (1.1.2) with initial datum u0 satisfies estimate (1.3.7) for q0 = m. Then the Poincaré-
type inequality (1.3.6) holds true. In particular, the validity of (1.3.7) for q0 = m and a given
% ≥ m + 1 is equivalent to (1.3.6) and so to the validity of (1.3.7) for any q0 ∈ [1,∞) and
% ∈ (q0,∞).
Theorem 1.3.8 (Sobolev case). Let ν(Ω) <∞ and u0 ∈ Lq0(Ω; ν), with q0 ∈ [1,∞). Suppose
that the Sobolev-type inequality

‖v‖2σ;ν ≤ WS

(
‖∇v‖2;µ + ‖v‖1;ν

)
∀v ∈ H1(Ω; ν, µ) (1.3.8)

holds true for some σ > 1 and WS > 0. Then the solution u to (1.1.2) with initial datum u0
satisfies the smoothing estimate

‖u(t)‖∞ ≤ K

(
t
− σ

(σ−1)q0+σ(m−1) ‖u0‖
(σ−1)q0

(σ−1)q0+σ(m−1)
q0;ν + ‖u0‖q0;ν

)
∀t > 0 , (1.3.9)

where K > 0 is a suitable constant depending only on m, WS, σ and ν(Ω).
Theorem 1.3.9 (Sobolev case, converse implication). Let ν(Ω) < ∞. Suppose that there
exist a constant K > 0 and a number σ > 1 such that, for all u0 ∈ Lm(Ω; ν), the solution u
to (1.1.2) with initial datum u0 satisfies estimate (1.3.9) for q0 = m. Then the Sobolev-type
inequality (1.3.8) holds true. In particular, the validity of (1.3.9) for q0 = m is equivalent to
(1.3.8) and so to the validity of (1.3.9) for any q0 ∈ [1,∞).
Theorem 1.3.10 (One-dimensional case). Let d = 1 (that is, Ω is an interval). Let
ν(Ω) <∞ and u0 ∈ Lq0(Ω; ν), with q0 ∈ [1,∞). Suppose that the family of one-dimensional
Gagliardo-Nirenberg-type inequalities

‖v‖∞ ≤ WG1

(
‖∇v‖2;µ + ‖v‖1;ν

) λ
s+λ ‖v‖

s
s+λ
s;ν ∀s > 0 , ∀v ∈ H1(Ω; ν, µ) (1.3.10)

holds true for some λ ≥ 2 and WG1 > 0. Then the solution u to (1.1.2) with initial datum u0
satisfies the estimate

‖u(t)‖∞ ≤ K

(
t
− λ

(λ+2)q0+λ(m−1) ‖u0‖
(λ+2)q0

(λ+2)q0+λ(m−1)
q0;ν + ‖u0‖q0;ν

)
∀t > 0 , (1.3.11)

where K > 0 is a suitable constant depending only on m, WG1, λ and ν(Ω).
Theorem 1.3.11 (One-dimensional case, converse implication). Let ν(Ω) < ∞. Suppose
that there exist a constant K > 0 and a number λ ≥ 2 such that, for all u0 ∈ Lm(Ω; ν),
the solution u to (1.1.2) with initial datum u0 satisfies estimate (1.3.11) for q0 = m. Then
the family of one-dimensional Gagliardo-Nirenberg-type inequalities (1.3.10) holds true. In
particular, the validity of (1.3.11) for q0 = m is equivalent to (1.3.10) and so to the validity
of (1.3.11) for any q0 ∈ [1,∞).
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Theorem 1.3.12 (Two-dimensional case). Let d ≤ 2. Let ν(Ω) <∞ and u0 ∈ Lq0(Ω; ν), with
q0 ∈ [1,∞). Suppose that the family of two-dimensional Gagliardo-Nirenberg-type inequalities

‖v‖r;ν ≤ WG2

(
‖∇v‖2;µ + ‖v‖1;ν

)1− s
r ‖v‖

s
r
s;ν ∀r > s > 0 , ∀v ∈ H1(Ω; ν, µ) (1.3.12)

holds true for some constant WG2 > 0 which depends on r, s only through a finite upper bound
on r. Then the solution u to (1.1.2) with initial datum u0 satisfies the smoothing estimate

‖u(t)‖∞ ≤ K
(
t
− 1
q0+m−1 ‖u0‖

q0
q0+m−1
q0;ν + ‖u0‖q0;ν

)
∀t > 0 , (1.3.13)

where K > 0 is a suitable constant depending only on m, WG2 and ν(Ω).

Theorem 1.3.13 (Two-dimensional case, converse implication). Let ν(Ω) < ∞. Suppose
that there exists a constant K > 0 such that, for all u0 ∈ Lm(Ω; ν), the solution u to
(1.1.2) with initial datum u0 satisfies estimate (1.3.13) for q0 = m. Then the family of
two-dimensional Gagliardo-Nirenberg-type inequalities (1.3.12) holds true. In particular, the
validity of (1.3.13) for q0 = m is equivalent to (1.3.12) and so to the validity of (1.3.13) for
any q0 ∈ [1,∞).

If stronger functional inequalities hold true, then all the above estimates can be improved
for large times, in the sense that we can prove convergence of u(t) to the mean value u with
rates, which are different depending on whether u = 0 or u 6= 0.

Theorem 1.3.14 (Poincaré case, u = 0). Let ν(Ω) <∞ and u0 ∈ Lq0(Ω; ν), with q0 ∈ [1,∞).
Suppose that the Poincaré-type inequality

‖v − v‖2;ν ≤MP ‖∇v‖2;µ ∀v ∈ H1(Ω; ν, µ) (1.3.14)

holds true for some MP > 0. If in addition u0 = 0, then the smoothing estimate (1.3.7) can
be improved as follows:

‖u(t)‖%;ν ≤ K t−
%−q0
%(m−1)

(
t+ ‖u0‖1−m

q0;ν

)− q0
(m−1)% ∀t > 0 , (1.3.15)

where K > 0 is another constant depending on %, q0, m, Ω, ν and µ. In particular, the
absolute bound

‖u(t)‖%;ν ≤ K t−
1

m−1 ∀t > 0
holds true.

Theorem 1.3.15 (Sobolev case, u = 0). Let ν(Ω) <∞ and u0 ∈ Lq0(Ω; ν), with q0 ∈ [1,∞).
Suppose that the Sobolev-type inequality

‖v − v‖2σ;ν ≤MS ‖∇v‖2;µ ∀v ∈ H1(Ω; ν, µ) (1.3.16)

holds true for some σ > 1 and MS > 0. If in addition u0 = 0, then the smoothing estimate
(1.3.9) can be improved as follows:

‖u(t)‖∞ ≤ K t
− σ

(σ−1)q0+σ(m−1)
(
t+ ‖u0‖1−m

q0;ν

)− (σ−1)q0
(m−1)[(σ−1)q0+σ(m−1)] ∀t > 0 , (1.3.17)

where K > 0 is another suitable constant depending on q0, m, Ω, ν and µ. In particular, the
absolute bound

‖u(t)‖∞ ≤ K t−
1

m−1 ∀t > 0 (1.3.18)
holds true.
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Theorem 1.3.16 (One-dimensional case, u = 0). Let d = 1, ν(Ω) <∞ and u0 ∈ Lq0(Ω; ν),
with q0 ∈ [1,∞). Suppose that the family of one-dimensional Gagliardo-Nirenberg-type in-
equalities

‖v − v‖∞ ≤MG1 ‖∇v‖
λ
s+λ
2;µ ‖v − v‖

s
s+λ
s;ν ∀s > 0 , ∀v ∈ H1(Ω; ν, µ) (1.3.19)

holds true for some MG1 > 0. If in addition u0 = 0, then the smoothing estimate (1.3.11)
can be improved as follows:

‖u(t)‖∞ ≤ K t
− λ

(λ+2)q0+λ(m−1)
(
t+ ‖u0‖1−m

q0;ν

)− (λ+2)q0
(m−1)[(λ+2)q0+λ(m−1)] ∀t > 0 , (1.3.20)

where K > 0 is another suitable constant depending on q0, m, Ω, ν and µ. In particular, the
absolute bound (1.3.18) holds true.

Theorem 1.3.17 (Two-dimensional case, u = 0). Let d ≤ 2, ν(Ω) <∞ and u0 ∈ Lq0(Ω; ν),
with q0 ∈ [1,∞). Suppose that the family of two-dimensional Gagliardo-Nirenberg-type in-
equalities

‖v − v‖r;ν ≤MG2 ‖∇v‖
1− s

r
2;µ ‖v − v‖

s
r
s;ν ∀r > s > 0 , ∀v ∈ H1(Ω; ν, µ) (1.3.21)

holds true for some constant MG2 > 0 which depends on r, s only through a finite upper bound
on r. If in addition u0 = 0, then the smoothing estimate (1.3.13) can be improved as follows:

‖u(t)‖∞ ≤ K t
− 1
q0+m−1

(
t+ ‖u0‖1−m

q0;ν

)− q0
(m−1)(q0+m−1) ∀t > 0 , (1.3.22)

where K > 0 is another suitable constant depending on q0, m, Ω, ν and µ. In particular, the
absolute bound (1.3.18) holds true.

Theorem 1.3.18 (Poincaré case, u 6= 0). Let ν(Ω) < ∞ and u0 ∈ L1(Ω; ν), with u0 6= 0.
Suppose that the Poincaré-type inequality (1.3.14) holds true. Then

‖u(t)− u‖%;ν ≤ K1 t
− 1
m−1 ∀% ∈ [1, 2] , ∀t > 0 (1.3.23)

and

‖u(t)− u‖%;ν ≤ K2 t
− 2
%(m−1) +ε ∀% ∈ (2,∞) , ∀ε ∈

(
0, 2
%(m− 1)

)
, ∀t ≥ 1 , (1.3.24)

where K1 > 0 is a constant depending only on %, m, MP , ν(Ω), while K2 > 0 is a constant
depending on ε, %, m, MP , ν(Ω) and ‖u0‖1;ν.

If in addition u0 ∈ L∞(Ω), then u converges exponentially to its mean value. More
precisely:

‖u(t)− u‖%;ν ≤ e−C|u|
m−1t ‖u0 − u‖%;ν ∀% ∈ (1,∞) , ∀t ≥ 0 , (1.3.25)

where C > 0 is a suitable constant (unknown) that depends on %, m, Ω, ν, µ and on u0 only
through a finite upper bound on ‖u0−u‖∞/|u|. Furthermore, in the case where ∇ρν ∈ L∞loc(Ω),
exponential convergence to the mean value is locally uniform. That is, for any ΩK b Ω there
holds

‖u(t)− u‖L∞(ΩK) ≤ GK e
−CKt ∀t ≥ 1 , (1.3.26)

where GK , CK > 0 are suitable constants depending on m, Ω, ΩK, ρν, ρµ, |u| and ‖u0‖∞.
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If Sobolev- or Gagliardo-Nirenberg-type inequalities hold true, then the results of Theorem
1.3.18 can be considerably improved.

Theorem 1.3.19 (Sobolev or Gagliardo-Nirenberg case, u 6= 0). Let ν(Ω) < ∞ and u0 ∈
L1(Ω; ν), with u0 6= 0. Suppose that one between the Sobolev-type inequality (1.3.16), the one-
dimensional Gagliardo-Nirenberg-type inequality (1.3.19) and the two-dimensional Gagliardo-
Nirenberg-type inequality (1.3.21) holds true. Then

‖u(t)− u‖∞ ≤ Ge
− m

M2
P

|u|m−1 t
∀t ≥ 1 , (1.3.27)

where G > 0 is a suitable constant depending on m, Ω, ν, µ, |u| and ‖u0‖1;ν, whereas MP is
the best constant appearing in the Poincaré-type inequality (1.3.14).

In the particular framework of the Neumann problem in regular bounded domains (with,
for simplicity, ρν = ρµ ≡ 1), estimate (1.3.27) is sharp.

Proposition 1.3.20. Let Ω be a C∞ bounded domain of Rd. Consider the first nonzero
eigenvalue λ1 = 1/M2

P of (minus) the Laplacian with homogeneous Neumann boundary con-
ditions, and the corresponding set of eigenfunctions (possibly consisting of one single element)
normalized in L2(Ω). Pick any of such eigenfunctions and denote it by ψ1. Given a constant
u 6= 0, let u be the solution to (1.1.2), with ρν = ρµ ≡ 1, corresponding to the initial datum
u0 = u+c1ψ1, with |c1| > 0 small enough. Then there exists a constant G > 0, which depends
on c1, m, Ω and u, such that

‖u(t)− u‖∞ ≥ Ge
− m

M2
P

|u|m−1 t
∀t ≥ 0 . (1.3.28)

Theorem 1.3.4 will be proved in the next Subsection 1.3.2. In Subsection 1.3.3 we deal
with smoothing estimates. Theorems 1.3.6 and 1.3.7 will be proved in Paragraph 1.3.3.1.
In Paragraph 1.3.3.2 we provide a counterexample to the L∞ regularization in the Poincaré
case. Theorems 1.3.8 and 1.3.9 will be proved in Paragraph 1.3.3.3, whereas Theorems
1.3.10–1.3.13 will be proved in Paragraph 1.3.3.4. In Paragraph 1.3.3.5 we discuss to what
extent our results improve on previous ones, and show some contexts where they are sharp.
In Subsection 1.3.4 we analyse the long-time behaviour of solutions. Theorems 1.3.14 and
1.3.18 will be proved in Paragraph 1.3.4.1. In Paragraph 1.3.4.2 we provide counterexamples,
in the Poincaré case, to the uniform convergence of solutions to their mean value. Theorems
1.3.15, 1.3.16, 1.3.17 and 1.3.19 will be proved in Paragraph 1.3.4.3. Finally, in Paragraph
1.3.4.4 we shall prove Proposition 1.3.20 and discuss improvements of our results, as concerns
asymptotics, with respect to previous ones.

Remark 1.3.21. The conclusions of Theorems 1.3.15, 1.3.16, 1.3.17 and 1.3.19 remain true
if, instead of (1.3.16), (1.3.19) or (1.3.21), we require the validity of the weaker inequalities
(1.3.8), (1.3.10) or (1.3.12) plus the (zero-mean) Poincaré-type inequality (1.3.14).

In fact, it is plain that the Sobolev-type inequality (1.3.8) plus the (zero-mean) Poincaré-
type inequality (1.3.14) is equivalent to the (zero-mean) Sobolev-type inequality (1.3.16).
Such equivalence also holds for Gagliardo-Nirenberg-type inequalities. Let us prove it in the
two-dimensional context (in dimension one the proof is even easier). If the family (1.3.21)
holds true, then by picking r = 2 and s = 1 we get:

‖v − v‖2;ν ≤MG2 ‖∇v‖
1
2
2;µ ‖v − v‖

1
2
1;ν ≤MG2 ν(Ω) 1

4 ‖∇v‖
1
2
2;µ ‖v − v‖

1
2
2;ν ∀v ∈ H1(Ω; ν, µ) ,

that is
‖v − v‖2;ν ≤M2

G2 ν(Ω) 1
2 ‖∇v‖2;µ ∀v ∈ H1(Ω; ν, µ) .
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Moreover, still (1.3.21) with r = 2 and s = 1 entails

‖v‖2;ν ≤ max
{√

2MG2 , ν(Ω)− 1
2
} (
‖∇v‖2;µ + ‖v‖1;ν

) 1
2 ‖v‖

1
2
1;ν ∀v ∈ H1(Ω; ν, µ) ,

from which we recover the whole family (1.3.12) thanks to [13, Theorem 3.3]. On the other
hand, the validity of (1.3.12) (applied to v−v) plus the (zero-mean) Poincaré-type inequality
(1.3.14) yields

‖v − v‖r;ν ≤WG2

(
‖∇v‖2;µ + ‖v − v‖1;ν

)1− s
r ‖v − v‖

s
r
s;ν

≤WG2

(
1 + ν(Ω) 1

2MP

)1− s
r ‖∇v‖1− s

r
2;µ ‖v − v‖

s
r
s;ν ∀r > s > 0 , ∀v ∈ H1(Ω; ν, µ) .

Remark 1.3.22. As the reader may notice, the smoothing estimates (1.3.7), (1.3.9), (1.3.11)
and (1.3.13) coincide with the corresponding estimates for the Dirichlet problem plus a con-
stant times ‖u0‖q0;ν . Let us mention that, at least when also a zero-mean Poincaré-type
inequality holds true (see the above remark), such an extra term is necessary: in fact, with-
out it, any solution would be forced to converge to zero, which is in contradiction with
Theorems 1.3.18 and 1.3.19 in the case u 6= 0.

Remark 1.3.23. The comments of Remarks 1.2.14 and 1.2.15 above also apply to the present
context. As already mentioned, our results are new and improve on previous ones (in partic-
ular, we refer to [3] and [27]), even in the non-weighted case.

1.3.2 Well-posedness analysis

The proof of existence of weak energy solutions follows an approximation procedure similar
to the one used in the proof of the analogous result for the Dirichlet problem (Theorem 1.2.4).

Proof of Theorem 1.3.4. Given a sequence of smooth functions {Φ′n(y)} which approximates
m|y|m−1 as in Lemma 1.2.16 and a fixed C2,α bounded domain Ω0 b Ω, we solve the following
Neumann problems: 

(un)t = ρ−1
ν div [ρµ∇(Φn(un))] in Ω0 × R+ ,

∂(Φn(un))
∂n = 0 on ∂Ω0 × R+ ,

un = u0 on Ω0 × {0} ,
(1.3.29)

where, for the moment, we assume in addition ρν ∈ C3,α
loc (Ω), ρµ ∈ C2,α

loc (Ω) and u0 ∈ C2,α(Ω0)
with ∂u0

∂n = 0 on ∂Ω0. Setting w = ρνun, let us rewrite (1.3.29) in divergence form:
wt = div

[
ρµ
ρν

Φ′n
(
w
ρν

)
∇w − ρµ

ρ2
ν
∇(ρν) Φ′n

(
w
ρν

)
w
]

in Ω0 × R+ ,

Φ′n
(
w
ρν

) [
∇w − w

ρν
∇ρν

]
· n = 0 on ∂Ω0 × R+ ,

w = ρνu0 on Ω0 × {0} .
(1.3.30)

Quasilinear theory (see e.g. [125, Theorem 13.24]) ensures that problem (1.3.30) admits a
solution w ∈ C2,1(Ω0 × [0, T ]) with wt ∈ C1,0(Ω0 × (0, T )) for all T > 0. Hence, un is a
solution to (1.3.29) with the same regularity as w. Taking advantage of the upper bound

|un(x, t)| ≤ ‖u0‖∞ ∀(x, t) ∈ Ω0 × R+

and performing exactly the same computations as in the Dirichlet case, we can pass to the
limit as n → ∞ to get a weak energy solution u to (1.1.2) (with Ω = Ω0), in the sense of

43



Chapter 1. Porous medium equations with general weights

Definition 1.3.1, which satisfies estimates (1.3.2) and (1.3.3). The validity of the L1(Ω0; ν)
comparison principle (1.3.4) is ensured by repeating simultaneously the same approxima-
tion scheme for another initial datum v0 (again, the formal idea is to use the test function
sign+[Φn(un)− Φn(vn)]).

Now notice that, proceeding as in the end of proof of Lemma 1.2.16 and as in the beginning
of proof of Theorem 1.2.4, there is no difficulty in extending the above result to weights ρν , ρµ
as in the statement and to data u0 ∈ L1(Ω0; ν)∩L∞(Ω0). The crucial point is the possibility
to consider general domains. To this end, take an initial datum u0 ∈ L1(Ω; ν) ∩ L∞(Ω),
an increasing sequence of smooth bounded domains {Ωn} such that ⋃n Ωn = Ω, Ωn b Ω
and solve in each of them the homogeneous Neumann problem (1.1.2) with initial datum
u0n = u0|Ωn , denoting as {un} the corresponding sequence of solutions. We point out that an
admissible test function ϕ for the Neumann problem in Ωn is also an admissible test function
for the Neumann problem in Ω (recall Definiton 1.3.1). Hence, upon setting

fn := un χΩn , gn := ∇(umn )χΩn ,

we infer that∫ T

0

∫
Ω
fn(x, t)ϕt(x, t) dνdt = −

∫
Ω
u0(x)ϕ(x, 0)χΩn(x) dν +

∫ T

0

∫
Ω
〈gn,∇ϕ〉 (x, t) dµdt

(1.3.31)
for any T > 0 and ϕ as in Definition 1.3.1. Exploiting estimates (1.2.28) and (1.2.29) as in
the Dirichlet case (let Ω = Ωn there, since un has a gradient only inside Ωn), we can assert
that {fn} and {gn} converge pointwise and weakly in Lm+1((0, T ); Lm+1(Ω; ν)) to a function
u and weakly in L2((0, T ); [L2(Ω;µ)]d) to a vector valued function g (up to subsequences),
respectively. This is enough in order to pass to the limit in (1.3.31) as n→∞ to get∫ T

0

∫
Ω
u(x, t)ϕt(x, t) dνdt = −

∫
Ω
u0(x)ϕ(x, 0) dν +

∫ T

0

∫
Ω
〈g,∇ϕ〉 (x, t) dµdt .

It therefore remains to prove that g = ∇(um). First of all note that, given any Ω0 b
Ω, we have gn|Ω0 = ∇(umn |Ω0) for all n large enough. Since umn |Ω0 → um|Ω0 weakly in
L2((0, T );H1(Ω0)) (recall estimate (1.2.28) and that un → u pointwise) and at the same time
gn|Ω0 → g|Ω0 weakly in L2((0, T ); [L2(Ω0)]d), there holds g|Ω0 = ∇(um|Ω0). The inner domain
Ω0 being arbitrary, the assertion follows.

Finally, the validity of estimates (1.3.2) and (1.3.3) is a consequence of the above con-
vergence results, just as in the end of proof of Theorem 1.2.4. The validity of the L1(Ω; ν)
comparison principle can be established by performing simultaneously the same approxima-
tion procedure for another initial datum v0 ∈ L1(Ω; ν) ∩ L∞(Ω). In order to handle general
data u0 ∈ L1(Ω; ν) ∩ Lq0(Ω; ν), with q0 ≥ m + 1, one argues again as in the end of proof of
Theorem 1.2.4.

For more regular initial data, we have the analogue of Corollary 1.2.18.

Corollary 1.3.24. If, in addition to the hypotheses of Theorem 1.3.4, we assume that

um0 ∈ V 1+1/m(Ω; ν, µ) ,

then the estimate∫ T

0

∫
Ω

∣∣∣(um+1
2
)
t
(x, t)

∣∣∣2 dνdt+ (m+ 1)2

8m

∫
Ω
|∇(um)(x, T )|2 dµ ≤ (m+ 1)2

8m

∫
Ω
|∇(um0 )(x)|2 dµ

(1.3.32)
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holds true for all T > 0. In particular, u(m+1)/2 is an absolutely continuous curve in
C([0,∞); L2(Ω; ν)). If moreover ν(Ω) <∞, then also the estimate∫

Ω
|u0(x)|m+1 dν ≤

∫
Ω
|u(x, t)|m+1 dν + (m+ 1) t

∫
Ω
|∇(um0 )(x)|2 dµ (1.3.33)

holds true for all t > 0.

Proof. If Ω0 b Ω is a C2,α bounded domain and u0 ∈ C2,α(Ω0) with ∂u0
∂n = 0 on ∂Ω0, estimates

(1.3.32) and (1.3.33) (with Ω = Ω0) are readily inherited from analogous estimates that we can
obtain for the corresponding solutions to the approximate non-degenerate problems (1.3.29).
For an initial datum u0 ∈ L∞(Ω) such that um0 ∈ V 1+1/m(Ω; ν, µ), by means of a similar
argument as in the proof of Corollary 1.2.18 we can pick a sequence {u0n} ⊂ C2,α

c (Ω), with
∂u0
∂n = 0 on ∂Ω0, such that u0n → u0 in Lp(Ω0; ν) for all p ∈ [1,∞) and

um0n → um0 in V 1+1/m(Ω0; ν, µ) .

Denoting as {un} the corresponding sequence of energy solutions to (1.1.2), no difficulty
arises in passing to the limit in (1.3.32) and (1.3.33) (with u = un and Ω = Ω0) as n→∞ to
recover the validity of such estimates for u as well, the latter being the energy solution in Ω0
with initial datum u0. Now we replace Ω0 with an increasing sequence of domains {Ωn} as in
the proof of Theorem 1.3.4: thanks to the latter, we know that the corresponding sequence
of energy solutions {un} to (1.1.2) in Ωn suitably converges to the energy solution u in Ω.
In particular, convergence takes place a.e. in Ω× R+ and ‖un‖∞ ≤ ‖u0‖∞, which suffices in
order to pass to the limit in (1.3.32) and (1.3.33) (on the first term in the r.h.s. of (1.3.33) we
exploit the finiteness of the measure). Finally, the assumption u0 ∈ L∞(Ω) can be removed
by considering the sequence of initial data

u0n := [(u0)+ ∧ n]− [(u0)− ∧ n]

and proceeding as above (using in addition the L1(Ω; ν) comparison principle).

We point out that, in view of estimate (1.3.3), weak energy solutions to the Neumann prob-
lem are again C((0,∞); Lm+1(Ω; ν)) curves, with all related implications as in the Dirichlet
case. In particular, this is the reason why we are allowed to state our main results for every
T, t > 0 rather than only for almost every T, t > 0 (a posteriori, this remark applies to
Proposition 1.3.3 as well).

1.3.3 Smoothing estimates

In this subsection we shall prove Theorems 1.3.6–1.3.13, which connect the validity of
Poincaré-, Sobolev- or Gagliardo-Nirenberg-type inequalities in H1(Ω; ν, µ) with suitable
smoothing effects for solutions to (1.1.2). Such results are primarily interesting for small
times.

1.3.3.1 Poincaré-type inequalities

Before proving Theorem 1.3.6, we provide an elementary numerical inequality that we
shall frequently exploit in this and subsequent paragraphs.

Lemma 1.3.25. Given α, β ∈ (0, 1), with α > β, there exists a constant c = c(α, β) > 0
such that

x−αy1−α + x−βy1−β + y ≤ c (x−αy1−α + y) ∀x, y ∈ R+ . (1.3.34)
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Proof. We need to show that the function

R(x, y) := x−βy1−β

x−αy1−α + y
(1.3.35)

is bounded in R+ × R+ by a constant which depends only on α and β. In order to do
that, we can fix y > 0 and find the zeros x∗(y) of Rx(·, y) (in fact 0 < β < α implies
R(0+, y) = R(+∞, y) = 0). Through an explicit calculation we get

x∗(y) =
(
α− β
β

) 1
α

y−1 .

Substituting the above value in (1.3.35) we obtain (1.3.34) with

c(α, β) = 1 +
(
β

α

) β
α
(

1− β

α

)1− β
α

≤ 2 .

Proof of Theorem 1.3.6. Let q0 ∈ (1,∞) ∩ [m− 1,∞), t > 0 and take u0 ∈ L∞(Ω). With no
loss of generality we shall also assume ν(Ω) = 1. First of all, note that we can rewrite the
Poincaré-type inequality (1.3.6) as follows:

1
2W 2

P

‖v‖2
2;ν − ‖v‖

2
1;ν ≤ ‖∇v‖

2
2;µ ∀v ∈ H1(Ω; ν, µ) . (1.3.36)

By exploiting estimate (1.3.2) with q = q0− 1 and (1.3.36) with v = u(q0+m−1)/2(τ), we carry
out a single step of the Moser iteration:

4(q0 − 1)q0m

(m+ q0 − 1)2

∫ t

0

(
1

2W 2
P

‖u(τ)‖q0+m−1
q0+m−1;ν − ‖u(τ)‖q0+m−1

q0+m−1
2 ;ν

)
dτ ≤ ‖u0‖q0q0;ν . (1.3.37)

Since q0 ≥ m − 1 and ν(Ω) = 1, we have ‖u(τ)‖(q0+m−1)/2;ν ≤ ‖u(τ)‖q0;ν . Hence, taking
advantage of the fact that Lp(Ω; ν) norms do not increase along the evolution (see again
(1.3.2)), from (1.3.37) we easily obtain

‖u(t)‖q0+m−1;ν ≤ K
(
t
− 1
q0+m−1 ‖u0‖

q0
q0+m−1
q0;ν + ‖u0‖q0;ν

)
, (1.3.38)

where K > 0 is a suitable constant that depends on %, q0, m andWP , which in the sequel may
change from line to line (we do not relabel it). It is apparent that (1.3.38) only provides us
with the smoothing estimate (1.3.7) from Lq0(Ω; ν) to Lq0+m−1(Ω; ν). By means of a standard
interpolation inequality, we can readily extend it to any % ∈ (q0, q0 +m− 1]:

‖u(t)‖%;ν ≤ K
(
t
− 1
q0+m−1 ‖u0‖

q0
q0+m−1
q0;ν + ‖u0‖q0;ν

) (q0+m−1)(%−q0)
%(m−1)

‖u0‖
q0(q0+m−1−%)

%(m−1)
q0;ν ,

whence
‖u(t)‖%;ν ≤ K

(
t−

%−q0
%(m−1) ‖u0‖

q0
%

q0;ν + ‖u0‖q0;ν

)
. (1.3.39)

In order to prove the validity of (1.3.39) for every % ∈ (q0,∞), we can proceed by induction.
In fact, we already know that it holds for % ∈ (q0, q0 +m−1]. Let us assume that it also holds
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for all % ∈ (q0, q0 +n(m− 1)] for some n ∈ N. Given %1 ∈ (q0 +n(m− 1), q0 + (n+ 1)(m− 1)],
still from (1.3.39) (pick q0 + n(m− 1) in place of q0 and %1 in place of %) we infer:

‖u(t)‖%1;ν ≤ K

(
t
− %1−q0−n(m−1)

%1(m−1) ‖u0‖
q0+n(m−1)

%1
q0+n(m−1);ν + ‖u0‖q0+n(m−1);ν

)
. (1.3.40)

Shifting the time origin to t/2 in (1.3.40) and using the inductive hypothesis on the term
‖u(t/2)‖q0+n(m−1), we find

‖u(t)‖%1;ν ≤ K

(
t
− %1−q0
%1(m−1) ‖u0‖

q0
%1
q0;ν + t

− %1−q0−n(m−1)
%1(m−1) ‖u0‖

q0+n(m−1)
%1

q0;ν +

+ t
− n(m−1)

(m−1)[q0+n(m−1)] ‖u0‖
q0

q0+n(m−1)
q0;ν + ‖u0‖q0;ν

)
,

which, thanks to Lemma 1.3.25, entails

‖u(t)‖%1;ν ≤ K
(
t
− %1−q0
%1(m−1) ‖u0‖

q0
%1
q0;ν + ‖u0‖q0;ν

)
,

namely estimate (1.3.39) for all %1 ∈ (q0 + n(m− 1), q0 + (n+ 1)(m− 1)].
We now get rid of the assumption q0 ∈ (1,∞) ∩ [m − 1,∞). Given any q0 ≥ 1, estimate

(1.3.39) evaluated between t and t/2, with % replaced by 2mq0 and q0 replaced by mq0 (plus
a standard interpolation inequality), yields

‖u(t)‖2mq0;ν ≤ K
[
(t/2)−

1
2(m−1) ‖u(t/2)‖

m−1
2m−1
2mq0;ν ‖u0‖

1
4m−2
q0;ν + ‖u(t/2)‖

2m−2
2m−1
2mq0;ν ‖u0‖

1
2m−1
q0;ν

]
. (1.3.41)

Consider first an initial datum with ‖u0‖2mq0;ν = 1, so that ‖u0‖q0;ν ≤ 1 (recall that ν(Ω) = 1).
Since Lp(Ω; ν) norms do not increase along the evolution, there follows ‖u(s)‖2mq0;ν ≤ 1 for
all s > 0. In particular, (1.3.41) implies

‖u(t)‖2mq0;ν ≤ K
(
t−

1
2(m−1) + 1

)
‖u(t/2)‖

m−1
2m−1
2mq0;ν ‖u0‖

1
4m−2
q0;ν . (1.3.42)

Iterating (1.3.42) (for more detailed computations in a similar context we refer the reader to
the proof of Theorem 1.3.8) we end up with the estimate

‖u(t)‖2mq0;ν ≤ K
(
t−

2m−1
2m(m−1) ‖u0‖

1
2m
q0;ν + ‖u0‖

1
2m
q0;ν

)
. (1.3.43)

However, (1.3.43) only holds for initial data such that ‖u0‖2mq0;ν = 1. By means of a standard
time-scaling argument (we refer again to the proof of Theorem 1.3.8), from (1.3.43) we infer

‖u(t)‖2mq0;ν ≤ K
(
t−

θ
m−1 ‖u0‖1−θ

q0;ν + ‖u0‖θ2mq0;ν ‖u0‖1−θ
q0;ν

)
, (1.3.44)

which holds true for any L2mq0(Ω; ν) initial datum, where we set θ := (2m− 1)/2m. Taking
advantage of (1.3.44) between t and t/2 and performing n iterations, we obtain:

‖u(t)‖2mq0;ν ≤ K

(
n∑
i=1

t−
θi

m−1 ‖u0‖1−θi
q0;ν + ‖u0‖θ

n

2mq0;ν ‖u0‖1−θn
q0;ν

)
, (1.3.45)

where the constant K here also depends on n. Now we need a suitable smoothing estimate
between Lq0(Ω; ν) and L2mq0(Ω; ν). To this end, consider first an initial datum with ‖u0‖q0;ν =
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1. Performing another iteration and recalling once again that Lp(Ω; ν) norms do not increase,
it is direct to check that one can use (1.3.41) in the simplified form

‖u(t/2k)‖2mq0;ν ≤ 2
k+1

2(m−1)K
(
t−

1
2(m−1) + 1

)
‖u(t/2k+1)‖

m−1
2m−1
2mq0;ν

up to the largest k ∈ N for which ‖u(t/2k+1)‖2mq0;ν ≤ 1 and

‖u(t/2k)‖2mq0;ν ≤ 2
k+1

2(m−1)K
(
t−

1
2(m−1) + 1

)
‖u(t/2k+1)‖

2m−2
2m−1
2mq0;ν (1.3.46)

for larger k. It is apparent that the worst scenario occurs when we are forced to use at any
step (1.3.46), in which case we get, as k →∞,

‖u(t)‖2mq0;ν ≤ K
(
t−

2m−1
2(m−1) + 1

)
. (1.3.47)

We point out that (1.3.47) holds true provided ‖u0‖q0;ν = 1. Nevertheless, still by time-scaling
arguments, we can recover an estimate that is valid for all initial data in Lq0(Ω; ν):

‖u(t)‖2mq0;ν ≤ K
(
t−

2m−1
2(m−1) ‖u0‖

3−2m
2

q0;ν + ‖u0‖q0;ν

)
. (1.3.48)

Finally, using (1.3.45) between t and t/2, with n equal to the first integer such that

θn(2m− 1)/2 < θ ,

and combining it with (1.3.48) (evaluated at t/2), we deduce:

‖u(t)‖2mq0;ν ≤ K

(
n∑
i=1

t−
θi

m−1 ‖u0‖1−θi
q0;ν + t−

2m−1
2(m−1) θ

n

‖u0‖1− 2m−1
2 θn

q0;ν + ‖u0‖q0;ν

)
.

Hence, applying Lemma 1.3.25 n + 1 times, we obtain (1.3.7) for % = 2mq0 and any q0 ≥ 1.
Given a general % > q0, if % > 2mq0 we can reason as follows:

‖u(t)‖%;ν ≤K
(

(t/2)−
%−2mq0
%(m−1) ‖u(t/2)‖

2mq0
%

2mq0;ν + ‖u(t/2)‖2mq0;ν

)

≤K
(
t−

%−q0
%(m−1) ‖u0‖

q0
%

q0;ν + t−
%−2mq0
%(m−1) ‖u0‖

2mq0
%

q0;ν + t−
2m−1

2m(m−1) ‖u0‖
1

2m
q0;ν + ‖u0‖q0;ν

)
,

whence (1.3.7) by exploiting again Lemma 1.3.25. If instead % ∈ (q0, 2mq0), we just proceed
by interpolation:

‖u(t)‖%;ν ≤ ‖u(t)‖
2m(%−q0)
%(2m−1)

2mq0;ν ‖u0‖
2mq0−%
%(2m−1)
q0;ν ≤ K

(
t−

2m−1
2m(m−1) ‖u0‖

1
2m
q0;ν + ‖u0‖q0;ν

) 2m(%−q0)
%(2m−1)

‖u0‖
2mq0−%
%(2m−1)
q0;ν

≤ K
(
t−

%−q0
%(m−1) ‖u0‖

q0
%

q0;ν + ‖u0‖q0;ν

)
.

It is possible to remove the assumption ν(Ω) = 1 by spatial scaling. In fact, if u(x, t) is a
solution to (1.1.2) in the domain Ω of measure V = ν(Ω), with respect to the weights ρν(x),
ρµ(x) and with initial datum u0(x), then

ũ(x̃, t) := V −
2

d(m−1) u
(
V 1/d x̃, t

)
(1.3.49)
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is also a solution to (1.1.2) in the domain Ω̃ := Ω/V 1/d of measure 1, with respect to the
weights

ρ̃ν(x̃) := ρν
(
V 1/d x̃

)
, ρ̃µ(x̃) := ρµ

(
V 1/d x̃

)
and with initial datum

ũ0(x̃) := V −
2

d(m−1) u0
(
V 1/d x̃

)
.

One then applies estimate (1.3.7) to ũ and goes back to the original solution u through
(1.3.49) and the bounds

‖ũ‖p;ν̃ = V −
2

d(m−1)−
1
p ‖u‖p;ν , WP (Ω̃) ≤ max

{
V −1/d, V 1/2

}
WP (Ω) ,

whence the validity of (1.3.7) for general domains, with a multiplicative constant K that
depends on ν(Ω) and d as well. Nevertheless, as a consequence of the above computations,
it is straightforward to check that K can be in turn bounded from above by a constant that
is independent of q0 and d.

In order to deal with data u0 ∈ Lq0(Ω; ν) which are not necessarily bounded, one argues
exactly as in the end of proof of Theorem 1.2.5.

We now prove the converse implication of Theorem 1.3.6.

Proof of Theorem 1.3.7. We begin by considering a nonnegative initial datum u0 ∈ L∞(Ω)∩
H1(Ω; ν, µ). Proceeding along the lines of the proof of Theorem 1.2.6 (notice that we are
allowed to use Corollary 1.3.24), we end up with the following inequality:

‖u0‖m+1;ν ≤ B
(
‖∇(um0 )‖

2
m(m+1)
2;µ ‖u0‖

m−1
m+1
m;ν + ‖u0‖m;ν

)
, (1.3.50)

where B = B(%,m,K) > 0 is a suitable constant. Now take the sequence of real functions

ξn(y) := 1
n
χ[0, 1

n ](y) + y χ( 1
n
,∞)(y) ∀y ∈ R+ .

Letting
vn := ξn

(
u

1/m
0

)
∈ L∞(Ω) ∩H1(Ω; ν, µ) ,

it is immediate to show that {vn} converges to u1/m
0 in L∞(Ω) and {∇(vmn )} converges to

∇u0 in [L2(Ω;µ)]d. Hence, replacing u0 with vn in (1.3.50), passing to the limit as n → ∞
and raising to the power of m, we obtain:

‖u0‖m+1
m

;ν ≤ Bm
(
‖∇u0‖

2
m+1
2;µ ‖u0‖

m−1
m+1
1;ν + ‖u0‖1;ν

)
. (1.3.51)

Upon defining

ϑ := 2
m+ 1 , r := m+ 1

m
, s := 1 , q := 2 , W(f) := ‖∇f‖2;µ + ‖f‖1;ν ,

(1.3.51) entails

‖f‖r;ν ≤
[
B̂W(f)

]ϑ
‖f‖1−ϑ

s;ν ,
1
r

= ϑ

q
+ 1− ϑ

s
, B̂ := B

m
ϑ , (1.3.52)

where f is any nonnegative function belonging to L∞(Ω) ∩H1(Ω; ν, µ). We are therefore in
position to apply Theorem 3.1 of [13], from which we infer that (1.3.52) also holds for ϑ = 1
and r = 2 (up to a different positive constant B̂), that is

‖f‖2;ν ≤ B̂
(
‖∇f‖2;µ + ‖f‖1;ν

)
.
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We have then proved the Poincaré-type inequality (1.3.6) for nonnegative functions belonging
to L∞(Ω) ∩ H1(Ω; ν, µ). The validity of the latter for signed functions follows by writing
f = f+ − f−. Finally, Proposition 1.1.4 permits us to conclude the proof.

1.3.3.2 Counterexample to L∞ regularization

In this paragraph, similarly to what we did in Paragraph 1.2.3.2, we show that in general
the validity of a Poincaré-type inequality like (1.3.6) is not enough in order to guarantee
L∞ regularization. In fact, consider the case Ω = R and ρν(x) = ρµ(x) = e−|x|. Actually,
for such weights, there holds the stronger (zero-mean) Poincaré-type inequality (1.3.14) (see
Appendix 1.A, Paragraph 1.A.2.1). Moreover, it is easy to prove that H1(R; e−|x|, e−|x|) =
H1

0 (R; e−|x|, e−|x|), so that in this case the Neumann problem coincides with the Dirichlet
problem (recall Remark 1.3.5). In particular, in order to prove that a certain function is a
(sub- or super-) solution to (1.1.2), one can neglect its behaviour at infinity and just test it on
compactly supported functions in the corresponding weak formulation. Hence, by means of
computations analogous to the ones we performed in Paragraph 1.2.3.2, it is direct to check
that there exists a constant B > 0 such that the function

vB(x, t) := log(x2 + 2)
(1 +B−1(m− 1) t)

1
m−1

is a subsolution to (1.1.2), so that u(t) 6∈ L∞(R) for all t ≥ 0. We have therefore proved
that for the initial datum u0(x) = log(x2 + 2), which clearly belongs to Lq0(R; e−|x|) for all
q0 ∈ [1,∞), there is no Lq0(R; e−|x|)–L∞(R) regularization.

1.3.3.3 Sobolev-type inequalities

In contrast with the Poincaré case, when a Sobolev-type inequality like (1.3.8) holds true
we can get regularization up to L∞(Ω).

Proof of Theorem 1.3.8. We proceed along the lines of a classical Moser iteration technique,
with careful modifications in order to handle the additional term (w.r.t. (1.2.9)) in the r.h.s.
of (1.3.8). With no loss of generality, we can assume that ν(Ω) = 1 and u0 ∈ L∞(Ω) (see the
end of the proofs of Theorems 1.2.9 and 1.3.6). Given t > 0 and q0 ∈ (1,∞) ∩ [m − 1,∞),
take the time sequence tk := (1− 2−k)t. Also, let {pk} be an increasing sequence of positive
numbers starting from q0, which will be explicitly defined below. Using estimate (1.3.2) with
(0, T ) replaced by (tk, tk+1) and q = pk − 1, we obtain:

4(pk − 1)pkm
(pk +m− 1)2

∫ tk+1

tk

∫
Ω

∣∣∣∣∇(u pk+m−1
2

)
(x, τ)

∣∣∣∣2 dµdτ ≤ ‖u(tk)‖pkpk;ν . (1.3.53)

Notice that inequality (1.3.8) entails

1
2W 2

S

‖v‖2
2σ;ν − ‖v‖

2
1;ν ≤ ‖∇v‖

2
2;µ ∀v ∈ H1(Ω; ν, µ) . (1.3.54)

Applying (1.3.54) to the function u(pk+m−1)/2(τ) in (1.3.53), we get:

2(pk − 1)pkm
W 2
S(pk +m− 1)2

∫ tk+1

tk

‖u(τ)‖pk+m−1
σ(pk+m−1);ν dτ

≤‖u(tk)‖pkpk;ν + 4(pk − 1)pkm
(pk +m− 1)2

∫ tk+1

tk

‖u(τ)‖pk+m−1
pk+m−1

2 ;ν
dτ .
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Since ν(Ω) = 1, q0 ≥ m− 1 and pk is increasing, ‖u(τ)‖(pk+m−1)/2;ν ≤ ‖u(τ)‖pk;ν . Moreover,
tk+1 − tk = t/2k+1. By combining these properties with the fact that Lp(Ω; ν) norms do not
increase along the evolution, we deduce:

(pk − 1)pkm
W 2
S(pk +m− 1)2 2−k t ‖u(tk+1)‖

pk+1
σ

pk+1;ν ≤ ‖u(tk)‖pkpk;ν + 2(pk − 1)pkm
(pk +m− 1)2 2−k t ‖u(tk)‖pk+m−1

pk;ν ,

(1.3.55)
where we set pk+1 := σ(pk + m − 1). Let us assume ‖u0‖∞ = 1. This hypothesis, together
with the monotonicity of the Lp(Ω; ν) norms, implies

‖u(tk)‖pk+m−1
pk;ν ≤ ‖u(tk)‖pkpk;ν ,

so that (1.3.55) reads

‖u(tk+1)‖
pk+1
σ

pk+1;ν ≤
W 2
S(pk +m− 1)2

(pk − 1)pkm
2k t−1 ‖u(tk)‖pkpk;ν + 2W 2

S ‖u(tk)‖pkpk;ν . (1.3.56)

It is apparent that there exists a suitable constant K > 0 depending on q0, m and WS (which
may change from line to line below) such that (1.3.56) entails

‖u(tk+1)‖pk+1;ν ≤ K
k+1
pk+1 (t−1 + 1)

σ
pk+1 ‖u(tk)‖

σ
pk
pk+1

pk;ν .

Setting Uk := ‖u(tk)‖pk;ν , it is a matter of tedious but elementary computations to prove
that the sequence {Uk} satisfies

Uk+1 ≤ K
σk+2−(k+2)σ+k+1

pk+1(σ−1)2 (t−1 + 1)
σk+2−σ
pk+1(σ−1) U0

q0
σk+1
pk+1 , (1.3.57)

with
pk = (q0 − A)σk + A , A := − σ

σ − 1(m− 1) .

Letting k →∞ in (1.3.57), we infer:

‖u(t)‖∞ = lim
k→∞
‖u(t)‖pk+1;ν ≤ lim inf

k→∞
Uk+1 ≤ K(t−1 + 1)

σ
(σ−1)q0+σ(m−1)‖u0‖

(σ−1)q0
(σ−1)q0+σ(m−1)
q0;ν .

(1.3.58)
We point out that (1.3.58) is not an L∞ smoothing estimate. In fact, in order to establish
it, we assumed that ‖u0‖∞ = 1. Through a simple time-scaling argument, we can deal with
general L∞(Ω) data. That is, given a solution u to (1.1.2) corresponding to the initial datum
u0, it is straightforward to check that û(·, t) := λ−1u(·, λ1−m t) is the solution to the same
problem corresponding to the initial datum û0 := λ−1u0. Choosing λ = ‖u0‖∞ and applying
(1.3.58) to û(t) we find

‖u(t)‖∞ = ‖u0‖∞ û(‖u0‖m−1
∞ t) ≤ K(t−1 + ‖u0‖m−1

∞ )
σ

(σ−1)q0+σ(m−1)‖u0‖
(σ−1)q0

(σ−1)q0+σ(m−1)
q0;ν . (1.3.59)

It is then possible to improve on the dependence of estimate (1.3.59) on ‖u0‖∞. To this aim,
let us rewrite the latter as

‖u(t)‖∞ ≤ K

(
t
− σ

(σ−1)q0+σ(m−1)‖u0‖
(σ−1)q0

(σ−1)q0+σ(m−1)
q0;ν + ‖u0‖

σ(m−1)
(σ−1)q0+σ(m−1)
∞ ‖u0‖

(σ−1)q0
(σ−1)q0+σ(m−1)
q0;ν

)
,

that is, setting
θ := σ(m− 1)

(σ − 1)q0 + σ(m− 1) ,
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‖u(t)‖∞ ≤ K
(
t−

θ
m−1‖u0‖1−θ

q0;ν + ‖u0‖θ∞ ‖u0‖1−θ
q0;ν

)
. (1.3.60)

Shifting the time origin from 0 to t/2 in (1.3.60) (and using the fact that ‖u(t/2)‖q0;ν ≤
‖u0‖q0;ν) we obtain

‖u(t)‖∞ ≤ K
(
t−

θ
m−1‖u0‖1−θ

q0;ν + ‖u(t/2)‖θ∞ ‖u0‖1−θ
q0;ν

)
,

whence, applying (1.3.60) to ‖u(t/2)‖∞,

‖u(t)‖∞ ≤ K
(
t−

θ
m−1‖u0‖1−θ

q0;ν + t−
θ2
m−1‖u0‖1−θ2

q0;ν + ‖u0‖θ
2

∞ ‖u0‖1−θ2

q0;ν

)
.

It is then clear that proceeding as above along n+ 1 steps we end up with

‖u(t)‖∞ ≤ K

(
n∑
i=1

t−
θi

m−1‖u0‖1−θi
q0;ν + ‖u0‖θ

n

∞ ‖u0‖1−θn
q0;ν

)
, (1.3.61)

where K now also depends on n. In order to get rid of the term ‖u0‖∞, we need a suitable
smoothing estimate. To this end, we can reason in the following way. Suppose ‖u0‖q0;ν = 1.
From (1.3.55), letting again Uk := ‖u(tk)‖pk;ν , we infer:

Uk+1
pk+1
σ ≤ W 2

S(pk +m− 1)2

(pk − 1)pkm
2k t−1Uk

pk + 2W 2
S Uk

pk+m−1 . (1.3.62)

Consider a solution to (1.3.62), namely a sequence {Vk} such that V0 = U0 = 1 and

Vk+1
pk+1
σ = W 2

S(pk +m− 1)2

(pk − 1)pkm
2k t−1Vk

pk + 2W 2
S Vk

pk+m−1 ;

it is easy to show (e.g. by induction) that Uk ≤ Vk and Vk ≥ 1. Hence, the leading term in
the right-hand side is Vkpk+m−1, so that {Vk} also satisfies the following recurrence inequality:

Vk+1 ≤ K
k+1
pk+1 (t−1 + 1)

σ
pk+1 Vk , (1.3.63)

where K > 0 is a suitable constant as above. Iterating (1.3.63) and exploiting the fact that
pk ≥ q0 σ

k, we get:

Vk+1 ≤ K
(k+2)(1−σ)σ−k−1−σ−k−1+σ

q0(σ−1)2 (t−1 + 1)
σ−σ−k
q0(σ−1) ,

from which, passing to the limit as k →∞,

‖u(t)‖∞ = lim
k→∞
‖u(t)‖pk;ν ≤ lim inf

k→∞
Uk ≤ lim inf

k→∞
Vk ≤ K (t−1 + 1)

σ
(σ−1)q0 . (1.3.64)

Due to scaling arguments, (1.3.64) entails

‖u(t)‖∞ ≤ K
(
t−1 + ‖u0‖m−1

q0;ν

) σ
(σ−1)q0 ‖u0‖

1− σ(m−1)
(σ−1)q0

q0;ν ,

which reads
‖u(t)‖∞ ≤ K

(
t−

δ
m−1 ‖u0‖1−δ

q0;ν + ‖u0‖q0;ν

)
(1.3.65)

upon setting
δ := σ(m− 1)

(σ − 1)q0
.
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Shifting the time origin to t/2 in (1.3.61) and using (1.3.65) at time t/2, we obtain:

‖u(t)‖∞ ≤ K

(
n∑
i=1

t−
θi

m−1‖u0‖1−θi
q0;ν + t−

δθn

m−1‖u0‖1−δθn
q0;ν + ‖u0‖q0;ν

)
.

Now we choose n so large that δθn < θ and apply iteratively Lemma 1.3.25 with x = t1/(m−1),
y = ‖u0‖q0;ν , α = θ, β = δθn in the first step and then β = θj as j = n . . . 2. We finally get
the estimate

‖u(t)‖∞ ≤ K

(
t
− σ

(σ−1)q0+σ(m−1) ‖u0‖
(σ−1)q0

(σ−1)q0+σ(m−1)
q0;ν + ‖u0‖q0;ν

)
. (1.3.66)

We conclude the proof by showing that we can drop the assumption q0 ∈ (1,∞)∩ [m−1,∞).
We shall exploit an argument similar to the one performed in the proof of Theorem 1.2.9 (see
also the proof of Theorem 1.3.6 above). For notational simplicity, we shall consider only the
case q0 = 1. Using estimate (1.3.66) between t and t/2 for q0 = m, that is

‖u(t)‖∞ ≤ K

(
(t/2)−

σ
(σ−1)m+σ(m−1) ‖u(t/2)‖

(σ−1)m
(σ−1)m+σ(m−1)
m;ν + ‖u(t/2)‖m;ν

)
,

plus the inequality ‖u(t/2)‖mm;ν ≤ ‖u(t/2)‖m−1
∞ ‖u0‖1;ν , we find:

‖u(t)‖∞ ≤ K
(

2
γ

m−1 t−
γ

m−1 ‖u(t/2)‖
(m−1)(1−γ)

m
∞ ‖u0‖

1−γ
m

1;ν + ‖u(t/2)‖
m−1
m
∞ ‖u0‖

1
m
1;ν

)
, (1.3.67)

where
γ := σ(m− 1)

(σ − 1)m+ σ(m− 1) .

In order to deal with (1.3.67), we can argue as in the first part of this proof. That is, consider
an initial datum u0 such that ‖u0‖∞ = 1. This, in particular, implies that ‖u(t/2)‖∞ ≤ 1
and ‖u0‖1;ν ≤ 1, so that (1.3.67) reads

‖u(t)‖∞ ≤ K
(
t−

γ
m−1 + 1

)
‖u(t/2)‖

(m−1)(1−γ)
m

∞ ‖u0‖
1−γ
m

1;ν . (1.3.68)

Iterating (1.3.68) along k − 1 steps we get

‖u(t)‖∞ ≤2
γ

m−1
∑h=k−1

h=0 h[ (m−1)(1−γ)
m ]h [K (

t−
γ

m−1 + 1
)]∑h=k−1

h=0 [ (m−1)(1−γ)
m ]h

× ‖u(t/2k)‖[
(m−1)(1−γ)

m ]k
∞ ‖u0‖

1−γ
m

∑h=k−1
h=0 [ (m−1)(1−γ)

m ]h
1;ν .

Letting k →∞ we end up with

‖u(t)‖∞ ≤ K

(
t−

mγ
(m−1)[1+(m−1)γ] ‖u0‖

1−γ
1+(m−1)γ
1;ν + ‖u0‖

1−γ
1+(m−1)γ
1;ν

)
. (1.3.69)

Estimate (1.3.69) is analogous to (1.3.58). By reasoning likewise we obtain again (1.3.61)
with q0 = 1 and θ = mγ/[1 + (m− 1)γ]:

‖u(t)‖∞ ≤ K

(
n∑
i=1

t−
θi

m−1‖u0‖1−θi
1;ν + ‖u0‖θ

n

∞ ‖u0‖1−θn
1;ν

)
. (1.3.70)

In order to remove the dependence of the r.h.s. on ‖u0‖∞, it is convenient to assume first
that ‖u0‖1;ν = 1 and look for a suitable smoothing estimate. Arguing as in the end of proof
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of Theorem 1.3.6, there is no loss of generality in supposing that ‖u(s)‖∞ ≥ 1 for all s < t,
in which case (1.3.67) entails

‖u(t)‖∞ ≤ K
(
t−

γ
m−1 + 1

)
‖u(t/2)‖

m−1
m
∞ ‖u0‖

1
m
1;ν . (1.3.71)

By means of another iteration, (1.3.71) yields

‖u(t)‖∞ ≤ K
(
t−

mγ
m−1 ‖u0‖1;ν + ‖u0‖1;ν

)
,

which holds true provided ‖u0‖1;ν = 1. The usual time-scaling argument then ensures that
the estimate

‖u(t)‖∞ ≤ K
(
t−

mγ
m−1 ‖u0‖1−mγ

1;ν + ‖u0‖1;ν

)
(1.3.72)

holds true for all u0 ∈ L1(Ω; ν). Choosing n in (1.3.70) so large that mγθn < θ and combining
the latter with (1.3.72) (through a t/2-shift of the time origin), we obtain:

‖u(t)‖∞ ≤ K

(
t−

mγ
(m−1)[1+(m−1)γ] ‖u0‖

1−γ
1+(m−1)γ
1;ν + ‖u0‖1;ν

)
,

which is exactly (1.3.66) with q0 = 1.

We close this paragraph with a short proof of the converse implication of Theorem 1.3.8.

Proof of Theorem 1.3.9. Given any nonnegative initial datum u0 ∈ L∞(Ω) ∩H1(Ω; ν, µ), by
proceeding along the lines of the proofs of Theorems 1.2.8 and 1.3.7 we obtain the following
family of inequalities:

‖u0‖m+1
m+1;ν ≤ C

(
t−

σ
2σm−m−σ ‖u0‖

m(2σm−m−1)
2σm−m−σ

m;ν + (m+ 1) t ‖∇(um0 )‖2
2;µ + ‖u0‖m+1

m;ν

)

for all t > 0 and a suitable constant C = C(m,σ,K) > 0 (possibly varying from line to line).
Minimizing the r.h.s. with respect to t > 0 we end up with

‖u0‖m+1
m+1;ν ≤ C

(
‖∇(um0 )‖

2σ
m(2σ−1)
2;µ ‖u0‖

2σm−m−1
2σ−1

m;ν + ‖u0‖m+1
m;ν

)
. (1.3.73)

Approximating the function u1/m
0 as in the proof of Theorem 1.3.7, we deduce that (1.3.73)

is in fact equivalent to

‖f‖r;ν ≤ [CW(f)]ϑ ‖f‖1−ϑ
s;ν ,

1
r

= ϑ

q
+ 1− ϑ

s
, (1.3.74)

where

ϑ := 2σ
(m+ 1)(2σ − 1) , r := m+ 1

m
, s := 1 , q := 2σ , W(f) := ‖∇f‖2;µ + ‖f‖1;ν

and f is any nonnegative function belonging to L∞(Ω) ∩ H1(Ω; ν, µ). Theorem 3.1 of [13]
then ensures that (1.3.74) also holds for ϑ = 1 and r = 2σ, that is

‖f‖2σ;ν ≤ C
(
‖∇f‖2;µ + ‖f‖1;ν

)
. (1.3.75)

The validity of (1.3.75) in the whole of H1(Ω; ν, µ) follows as in the end of proof of Theorem
1.3.7.
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1.3. The homogeneous Neumann problem

1.3.3.4 Gagliardo-Nirenberg-type inequalities

We begin by proving L∞ bounds in the one-dimensional case.

Proof of Theorem 1.3.10. As above, with no loss of generality, we can and shall assume that
ν(Ω) = 1 and u0 ∈ L∞(Ω). First of all, let us rewrite inequality (1.3.10) in the following way:

‖v‖
2(s+λ)
λ

∞

C ‖v‖
2s
λ
s;ν

− ‖v‖2
1;ν ≤ ‖∇v‖

2
2;µ ∀s > 0 , ∀v ∈ H1(Ω; ν, µ) : v 6≡ 0 , (1.3.76)

where C := 2W 2(s+λ)/2
G1 . Given t > 0 and q0 ∈ (1,∞) ∩ [m − 1,∞), using inequality (1.3.2)

with q = q0 − 1 and (1.3.76) with
v = u

q0+m−1
2 (τ) ,

we get:

‖u0‖q0q0;ν ≥
4q0(q0 − 1)m
(q0 +m− 1)2

∫ t

0


∥∥∥u q0+m−1

2 (τ)
∥∥∥ 2(s+λ)

λ

∞

C
∥∥∥u q0+m−1

2 (τ)
∥∥∥ 2s
λ

s;ν

−
∥∥∥∥u q0+m−1

2 (τ)
∥∥∥∥2

1;ν

 dτ

≥ 4q0(q0 − 1)m
(q0 +m− 1)2

∫ t

0

 ‖u(τ)‖
(s+λ)(q0+m−1)

λ
∞

C ‖u(τ)‖
s(q0+m−1)

λ
s(q0+m−1)

2 ;ν

− ‖u(τ)‖q0+m−1
q0+m−1

2 ;ν

 dτ

≥ 4q0(q0 − 1)m
(q0 +m− 1)2

t ‖u(t)‖
(s+λ)(q0+m−1)

λ
∞

C ‖u0‖
s(q0+m−1)

λ
s(q0+m−1)

2 ;ν

−
∫ t

0
‖u(τ)‖q0+m−1

q0;ν dτ



≥ t
4q0(q0 − 1)m
(q0 +m− 1)2

‖u(t)‖
(s+λ)(q0+m−1)

λ
∞

C ‖u0‖
s(q0+m−1)

λ
s(q0+m−1)

2 ;ν

− ‖u0‖q0+m−1
q0;ν

 .
Picking s = 2q0/(q0 +m− 1) in the above inequality we deduce that

‖u0‖q0q0;ν ≥ t
4q0(q0 − 1)m
(q0 +m− 1)2

‖u(t)‖
(λ+2)q0+λ(m−1)

λ
∞

C ‖u0‖
2q0
λ
q0;ν

− ‖u0‖q0+m−1
q0;ν

 ,
or equivalently (upon relabelling C)

‖u(t)‖∞ ≤C
(
t−1 ‖u0‖

(λ+2)q0
λ

q0;ν + ‖u0‖
(λ+2)q0+λ(m−1)

λ
q0;ν

) λ
(λ+2)q0+λ(m−1)

≤C
(
t
− λ

(λ+2)q0+λ(m−1) ‖u0‖
(λ+2)q0

(λ+2)q0+λ(m−1)
q0;ν + ‖u0‖q0;ν

)
,

namely (1.3.11). The fact that C can be taken to be independent of q0 is just a consequence
of the above computations. The assumption q0 ∈ (1,∞) ∩ [m − 1,∞) can be removed by
means of an argument completely analogous to the one performed in the end of the proof of
Theorem 1.3.8, which we therefore skip.

We now prove the analogue of Theorem 1.3.10 in dimension d ≤ 2.
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Chapter 1. Porous medium equations with general weights

Proof of Theorem 1.3.12. Again, with no loss of generality, we assume that ν(Ω) = 1 and
u0 ∈ L∞(Ω). We can rewrite inequality (1.3.12) as follows:

‖v‖
2r
r−s
r;ν

C ‖v‖
2s
r−s
s;ν

− ‖v‖2
1;ν ≤ ‖∇v‖

2
2;µ ∀r > s > 0 , ∀v ∈ H1(Ω; ν, µ) : v 6≡ 0 , (1.3.77)

where C := 2W 2r/(r−s)
G2 . Given t > 0 and q0 ∈ (1,∞) ∩ [m − 1,∞), let tk := (1 − 2−k)t and

{pk} be an increasing sequence of positive numbers starting from q0, which we shall define
below. Using estimate (1.3.2) with (0, T ) replaced by (tk, tk+1) and q = pk − 1 and applying
(1.3.77) to the function

v = u
pk+m−1

2 (τ) ,
we obtain:

4pk(pk − 1)m
(pk +m− 1)2

∫ tk+1

tk


∥∥∥∥u pk+m−1

2 (τ)
∥∥∥∥ 2r
r−s

r;ν

C

∥∥∥∥u pk+m−1
2 (τ)

∥∥∥∥ 2s
r−s

s;ν

−
∥∥∥∥u pk+m−1

2 (τ)
∥∥∥∥2

1;ν

 dτ ≤ ‖u(tk)‖pkpk;ν ,

that is

4pk(pk − 1)m
(pk +m− 1)2

∫ tk+1

tk

 ‖u(τ)‖
r
r−s (pk+m−1)
r
2 (pk+m−1);ν

C ‖u(τ)‖
s
r−s (pk+m−1)
s
2 (pk+m−1);ν

− ‖u(τ)‖pk+m−1
pk+m−1

2 ;ν

 dτ ≤ ‖u(tk)‖pkpk;ν . (1.3.78)

Exploiting the fact that (pk+m−1)/2 ≤ pk and that Lp(Ω; ν) norms do not increase in time,
from (1.3.78) we deduce

t
2pk(pk − 1)m

2k (pk +m− 1)2

‖u(tk+1)‖
r
r−s (pk+m−1)
r
2 (pk+m−1);ν

C ‖u(tk)‖
s
r−s (pk+m−1)
s
2 (pk+m−1);ν

− ‖u(tk)‖pk+m−1
pk;ν

 ≤ ‖u(tk)‖pkpk;ν .

Letting s = sk = 2pk/(pk +m− 1) and r = rk = sk + 2, we get

‖u(tk+1)‖
rk

rk−sk
(pk+m−1)

rk
2 (pk+m−1);ν ≤ C

(
2k t−1 ‖u(tk)‖

pk+ sk
rk−sk

(pk+m−1)
pk;ν + ‖u(tk)‖

pk+ sk
rk−sk

(pk+m−1)+m−1
pk;ν

)

for another positive constant C = C(q0,m,WG2) (which we do not relabel below) independent
of k, or equivalently

‖u(tk+1)‖pk+1
pk+1;ν ≤ C

(
2k t−1 ‖u(tk)‖2pk

pk;ν + ‖u(tk)‖2pk+m−1
pk;ν

)
, (1.3.79)

where we set pk+1 := 2pk +m− 1. Estimate (1.3.79) is the analogue of (1.3.55) in the proof
of Theorem 1.3.8, so we can handle it by means of similar techniques. That is, for initial
data with ‖u0‖∞ = 1 one can readily show that (1.3.79) yields

‖u(t)‖∞ ≤ C
(
t−1 + 1

) 1
q0+m−1 ‖u0‖

q0
q0+m−1
q0;ν ; (1.3.80)

then, through a standard time-scaling argument, from (1.3.80) one infers

‖u(t)‖∞ ≤ C
(
t−1 + ‖u0‖m−1

∞

) 1
q0+m−1 ‖u0‖

q0
q0+m−1
q0;ν , (1.3.81)
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which holds true for any u0 ∈ L∞(Ω). On the other hand, considering first initial data with
‖u0‖q0;ν = 1 and then general Lq0(Ω; ν) data by time scaling, still from (1.3.79) we can get
the following (non-sharp) smoothing estimate:

‖u(t)‖∞ ≤ C

(
t
− 1
q0 ‖u0‖

q0+1−m
q0

q0;ν + ‖u0‖q0;ν

)
. (1.3.82)

Finally, the proper smoothing estimate (1.3.13) can be deduced from (1.3.81) and (1.3.82) by
reasoning exactly as in the proof of Theorem 1.3.8. The same holds for the arguments that
allow us to get rid of the assumption q0 ∈ (1,∞) ∩ [m− 1,∞).

We close the paragraph by giving a sketch of proof of the converse implications of Theorems
1.3.10 and 1.3.12.

Proof of Theorems 1.3.11 and 1.3.13. There is no significant difference with respect to the
proof of Theorem 1.3.9 above. Let us just mention that, by reasoning likewise, we end up
with the validity of the functional inequality (1.3.74), with the sole difference that

ϑ = λ

(m+ 1)(λ+ 1) and q = −λ

in the one-dimensional case and

ϑ = 1
m+ 1 and q =∞

in the two-dimensional case. Hence, Theorems 3.2 and 3.3 of [13] ensure the validity of the
families (1.3.10) and (1.3.12), respectively, at least for nonnegative functions in L∞(Ω) ∩
H1(Ω; ν, µ). In order to extend the result to the whole of H1(Ω; ν, µ) we can again take
advantage of Proposition 1.1.4.

Finally, we point out that the same conclusions as in Remark 1.2.21 apply to Theorems
1.3.10 and 1.3.12 as well.

1.3.3.5 Improvements on previous results and comments on sharpness

In [27] the authors also consider the porous medium equation on smooth compact Rieman-
nian manifolds M (endowed with a suitable metric) without boundary, in dimension d ≥ 3.
In this framework the Sobolev-type inequality

‖v − v‖ 2d
d−2
≤MS ‖∇v‖2 ∀v ∈ H1(M)

holds true, where Lp norms are meant w.r.t. to the underlying Riemannian measure and
∇ denotes the corresponding Riemannian gradient. Even though we did not work on such
Riemannian manifolds, it is readily seen that result of Theorem 1.3.8 still applies (with
σ = d/(d − 2)), since our proofs are only based on chain rule-type arguments and on the
validity of a Sobolev-type inequality. Moreover, it improves on the estimate

‖u(t)‖∞ ≤ K t−
θ

m−1 ‖u0‖1−θ
q0

e
E0‖u0‖m−1

1∨(m−1) t ∀t > 0 , (1.3.83)

where K and E0 are suitable positive constants that depend only on q0, m, MS, d, Vol(M)
and

θ :=
1−

(
q0

q0 +m− 1

) d
2
 , (1.3.84)
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which was proved in [27, Theorem 1.1] (by means of a Gross differential method). In fact, it
is plain that

θ >
d(m− 1)

2q0 + d(m− 1) ∀m > 1 , ∀d > 2 , ∀q0 ≥ 1 .

Furthermore, note that (1.3.83) holds for data in Lq0 with q0 ≥ 1 ∨ (m− 1) and blows up as
t→∞, whereas (1.3.9) holds for all q0 ≥ 1 and stays bounded as t→∞.

In the non-weighted Euclidean framework (i.e. Ω is a regular bounded domain and ρν =
ρµ ≡ 1), there is a simple argument that shows that our smoothing estimates are sharp, at
least for small times. To this end, we need to introduce a suitable notion. By a scaling-
invariant estimate for solutions to (1.1.2) (or to (1.1.1)), we mean a bound of the type

‖u(t)‖∞ ≤ Sq0
(
t, ‖u0‖q0;ν

)
∀t > 0 , ∀u0 ∈ Lq0(Ω; ν) ,

for some function Sq0 : R+ × R+ 7→ R+ such that

Sq0
(
t, ‖u0‖q0;ν

)
= ‖u0‖q0;ν Sq0

(
‖u0‖m−1

q0;ν t, 1
)
∀t > 0 , ∀u0 ∈ Lq0(Ω; ν) .

In particular, S is completely determined by the one-variable function Sq0(·, 1). As it is well
known (see e.g. [142, pp. 125-126]), if Ω is a regular bounded domain of Rd then:

– for d ≥ 3 the Sobolev-type inequality (1.3.8) holds true in H1(Ω) with σ = d/(d− 2);
– for d = 2 the family of Gagliardo-Nirenberg-type inequalities (1.3.12) holds true in
H1(Ω);

– for d = 1 the family of Gagliardo-Nirenberg-type inequalities (1.3.10) holds true in
H1(Ω) with λ = 2.

In this case, the bounds (1.3.9), (1.3.11) and (1.3.13) can therefore be subsumed in the
estimate

‖u(t)‖L∞(Ω) ≤ K

(
t
− d

2q0+d(m−1) ‖u0‖
2q0

2q0+d(m−1)
Lq0 (Ω) + ‖u0‖Lq0 (Ω)

)
∀t > 0 , (1.3.85)

which is valid for all d ≥ 1. It is apparent that (1.3.85) is scaling invariant (as well as
(1.3.83)), with

Sq0(τ, 1) = Sq0(τ, 1) := K
(
τ
− d

2q0+d(m−1) + 1
)
∀τ > 0 .

Consider now the classical Barenblatt functions (let b = b(m, d) > 0)

U(x, t) := t−α
(
1− b t−2κ |x|2

) 1
m−1

+
, α := dκ , κ := 1

d(m− 1) + 2 ,

which in particular solve the Neumann problem for sufficiently small times (provided x =
0 ∈ Ω, otherwise one just shifts them). It is a matter of straightforward computations to
check that ‖U(t)‖q0 ∼ t−α(1−1/q0) for all t > 0 and q0 ∈ [1,∞]. Moreover, using (1.3.85) on U
between t and t/2, we get:

t−α ∼ ‖U(t)‖∞ ≤ Sq0
(
t/2, ‖U(t/2)‖q0

)
= ‖U(t/2)‖q0 Sq0

(
‖U(t/2)‖m−1

q0
t/2, 1

)
∼ t−α ,

for all t small enough. This implies that estimate (1.3.85) is sharp on U , in the sense that
there cannot exist another scaling-invariant estimate Sq0(τ, 1) with a better rate as τ → 0.

We can also provide a weighted example in which the bound (1.3.9) is sharp. The setting
is one dimensional, in particular we choose Ω = (0, 1) with the weights ρν(x) ≡ 1 and
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ρµ(x) = xβ. The Sobolev-type inequality (1.3.8) associated to such weights is known to
hold with σ = 1/(β − 1) for β ∈ (1, 2) (see Appendix 1.A, Paragraph 1.A.2.2). An explicit
calculation shows that the Barenblatt-type functions

Uβ(x, t) := t−κ
[
1− b (t−κx)2−β

] 1
m−1

+
, κ := 1

m+ 1− β , b := m− 1
m(2− β)(m+ 1− β)

are (energy) solutions to the corresponding weighted Neumann problem (1.1.2) in Ω×(t/2, t),
provided t is so small that the support of Uβ(·, t) is bounded away from the point x = 1. By
performing similar computations as in the non-weighted case above, it is straightforward to
check that the smoothing estimate (1.3.9) (with σ = 1/(β− 1)) is sharp on Uβ, so that there
cannot exist a better scaling-invariant estimate for small times.

1.3.4 Long-time behaviour

Estimates (1.3.7), (1.3.9), (1.3.11) and (1.3.13) do not provide us with significant infor-
mation on the behaviour of solutions as t→∞. In this subsection we shall see that actually,
under the validity of stronger inequalities like (1.3.14), (1.3.16), (1.3.19) or (1.3.21), any so-
lution u converges to its mean value u (which is preserved in time, recall Proposition 1.3.3),
with suitable rates. In order to prove it, it will be crucial to deal with the quantity

d
dτ ‖u(τ)− u‖%%;ν .

To this end, we shall establish proper functional inequalities for zero-mean functions, which
are new in this framework.

1.3.4.1 Poincaré-type inequalities

The following preliminary result is key to our analysis.

Lemma 1.3.26. Suppose that the (zero-mean) Poincaré-type inequality (1.3.14) holds true.
Let Φ : R 7→ R be a continuous and increasing function with the following properties:

lim
y→0

Φ(y)
yr

=: l0 , lim
y→−∞

Φ(y)
yr

=: l− , lim
y→+∞

Φ(y)
yr

=: l+ (1.3.86)

for some r ≥ 1/2 and l0, l−, l+ ∈ (0,+∞). Then there exists a constant MΦ > 0, which
depends on Φ, Ω, ν and µ, such that the inequality

‖Φ(ξ)‖2;ν ≤MΦ ‖∇Φ(ξ)‖2;µ (1.3.87)

holds true for every function ξ ∈ L1(Ω; ν) with ξ = 0 and Φ(ξ) ∈ H1(Ω; ν, µ).

Proof. We proceed by contradiction. Should the assertion be false, then there would exist a
sequence of functions

{ξn} ⊂ {ξ ∈ L1(Ω; ν) : ξ 6≡ 0 , ξ = 0 , Φ(ξ) ∈ H1(Ω; ν, µ)}

such that
‖∇Φ(ξn)‖2;µ ≤

1
n
‖Φ(ξn)‖2;ν ∀n ∈ N .

Let an := ‖Φ(ξn)‖2;ν and

Ψn(ξn) := Φ(ξn)
an

.
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Clearly,
‖Ψn(ξn)‖2;ν = 1 , ‖∇Ψn(ξn)‖2;µ ≤

1
n
∀n ∈ N . (1.3.88)

Applying the Poincaré-type inequality (1.3.14) to the sequence {Ψn(ξn)} and exploiting the
second inequality in (1.3.88), we deduce that

∥∥∥Ψn(ξn)−Ψn(ξn)
∥∥∥

2;ν
≤ MP

n
∀n ∈ N . (1.3.89)

The above inequality and the normalization condition in (1.3.88) imply that the sequence of
real numbers {Ψn(ξn)} is bounded, so that up to subsequences it converges to some limit c0.
This fact and again (1.3.89) allow us to assert that

‖Ψn(ξn)− c0‖2;ν → 0 ,

that is, up to subsequences,

Ψn(ξn(x))→ c0 for a.e. x ∈ Ω . (1.3.90)

The just mentioned normalization condition prevents c0 from being zero. Now we need to
distinguish three cases according to the value of the quantity

a∞ := lim
n→∞

an ,

which exists upon picking another subsequence. If a∞ ∈ (0,+∞), then the continuity of Φ
(and so of Φ−1) entails

ξn(x)→ Φ−1(a∞c0) 6= 0 for a.e. x ∈ Ω .

If a∞ = 0 or a∞ = +∞ instead, things are more delicate. Let us begin with the case a∞ = 0.
Recalling the definition and the properties of Φ, in view of (1.3.90) there follows

ξn(x)→ 0 for a.e. x ∈ Ω ;

whence, exploiting the first identity in (1.3.86) and again (1.3.90),

Zn(x) := ξn(x)
a

1/r
n

=
[

[ξn(x)]r
Φ(ξn(x)) Ψn(ξn(x))

] 1
r

→
(
c0

l0

) 1
r

6= 0 for a.e. x ∈ Ω .

In the case a∞ = +∞ one can argue likewise. In fact, suppose c0 > 0. From the properties
of Φ and (1.3.90) we deduce that

ξn(x)→ +∞ for a.e. x ∈ Ω ,

from which, thanks to the third identity in (1.3.86),

Zn(x) = ξn(x)
a

1/r
n

=
[

[ξn(x)]r
Φ(ξn(x)) Ψn(ξn(x))

] 1
r

→
(
c0

l+

) 1
r

6= 0 for a.e. x ∈ Ω .

Reasoning in the same way, when c0 < 0 we get

Zn(x)→
(
c0

l−

) 1
r

6= 0 for a.e. x ∈ Ω .
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Hence, in any of the above cases, the sequence {Zn} converges pointwise to a nonzero con-
stant. Since Zn = 0 and the mean value operator is trivially continuous in L1(Ω; ν), we come
to a contradiction as soon as we prove that {Zn} also converges in L1(Ω; ν) to such constant.
To this end, in view of Egoroff’s Theorem, it is enough to show that the sequence∫

E
|Zn(x)| dν

converges to zero uniformly as n → ∞ and ν(E) → 0. First of all, notice that (1.3.86),
together with the continuity and the monotonicity of Φ, entails the existence of a constant
D > 0 such that

D−1 |y|r ≤ |Φ(y)| ≤ D |y|r ∀y ∈ R .

As a consequence,∫
E
|Zn(x)| dν =

∫
E

|ξn(x)|
a

1/r
n

dν ≤D 1
r

∫
E
|Ψn(ξn(x))| 1r dν

≤D
1
r ν(E)1− 1

2r

(∫
E
|Ψn(ξn(x))|2 dν

) 1
2r
,

so that the sequence ∫
E
|Ψn(ξn(x))|2 dν

does vanish uniformly as n→∞ and ν(E)→ 0 since∫
E
|Ψn(ξn(x))|2 dν ≤ 2

(∫
Ω
|Ψn(ξn(x))− c0|2 dν + ν(E) c2

0

)
.

We have therefore proved that {Zn} converges in L1(Ω; ν) to a nonzero constant with zero
mean, a contradiction.

In the case of bounded Euclidean domains with ρν = ρµ ≡ 1, the above result had already
been proved in [3, Lemma 3.2] for Φ(y) = ym (m > 1). However, the corresponding proof
exploited in an essential way the compactness of the embedding H1(Ω) ↪→ L2(Ω). On the
contrary, the proof of Lemma 1.3.26 does not require compactness (which, in the generality
of our analysis, may not hold). Note that it is crucial that the behaviour of Φ(y) as y → 0
and as y → ±∞ is given by the same power of y: if, for instance, Φ(y) ≈ yr1 as y → 0 and
Φ(y) ≈ yr2 as y → ±∞ with r1 6= r2, our proof does not work (we fail to bound

∫
E |Zn(x)| dν).

We are now ready to prove our asymptotic result, in the Poincaré case, for zero-mean
solutions. When Φ(y) = yr, with a slight abuse of notation, we shall denote as Mr the
constant MΦ appearing in (1.3.87).

Proof of Theorem 1.3.14. Let q0 ∈ (1,∞) and, with no loss of generality, take u0 ∈ L∞(Ω),
with u0 = 0. Consider the (formal) identity

d
dτ ‖u(τ)‖q0q0;ν = −

(
2

q0 +m− 1

)2

mq0(q0 − 1)
∥∥∥∥∇(u q0+m−1

2

)
(τ)
∥∥∥∥2

2;µ
. (1.3.91)

Since u(τ) has zero mean, we can apply Lemma 1.3.26 with the choice Φ(y) = y(q0+m−1)/2,
which provides us with a positive constant M(q0+m−1)/2 such that

‖u(τ)‖q0+m−1
q0+m−1;ν ≤M2

(q0+m−1)/2

∥∥∥∥∇(u q0+m−1
2

)
(τ)
∥∥∥∥2

2;µ
. (1.3.92)
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In view of (1.3.91) and (1.3.92), we can proceed as in the proof of Theorem 1.2.5 to get the
following bound:

‖u(t)‖q0;ν ≤
1(

D t+ ‖u0‖1−m
q0;ν

) 1
m−1

∀t > 0 , (1.3.93)

where D > 0 is a suitable constant depending on q0, m, M(q0+m−1)/2 and ν(Ω). For any fixed
% ∈ (q0,∞), using the smoothing estimate (1.3.7) between t and t/2 and (1.3.93) evaluated
at t/2, we obtain:

‖u(t)‖%;ν ≤ K
[
t−

%−q0
%(m−1)

(
t+ ‖u0‖1−m

q0;ν

)− q0
%(m−1) +

(
t+ ‖u0‖1−m

q0;ν

)− 1
m−1

]
∀t > 0 , (1.3.94)

where K > 0 is a suitable constant as in the statement, which we do not relabel in the sequel.
It is immediate to see that (1.3.94) implies (1.3.15). Hence, it remains to prove the validity of
the latter down to q0 = 1. To this end, given % ∈ (1,∞), a trivial interpolation plus estimate
(1.3.15) with q0 = (%+ 1)/2 yield

‖u(t)‖ %+1
2 ;ν ≤ ‖u(t)‖

%
%+1
%;ν ‖u0‖

1
%+1
1;ν ≤ K (t/2)−

%−1
2(%+1)(m−1) ‖u(t/2)‖

1
2
%+1

2 ;ν ‖u0‖
1
%+1
1;ν ∀t > 0 .

(1.3.95)
A standard iteration allows us to infer from (1.3.95) the validity of

‖u(t)‖ %+1
2 ;ν ≤ K t−

%−1
(%+1)(m−1) ‖u0‖

2
%+1
1;ν ∀t > 0 . (1.3.96)

Thanks to (1.3.94) (with q0 = (% + 1)/2) and (1.3.96), in order to obtain estimate (1.3.15)
for q0 = 1 one argues exactly as in the end of proof of Theorem 1.2.5.

In order to handle solutions with non-zero mean, we partially rely on a result which, at
least in the case ρν = ρµ and for nonnegative solutions, had already been proved in [82] (see
Theorem 4.5 there). For the sake of completeness, we repeat the main lines of the proof in
our framework.

Lemma 1.3.27. Let ν(Ω) <∞ and u0 ∈ L1(Ω; ν), with u0 6= 0. Suppose that the Poincaré-
type inequality (1.3.14) holds true. Then

‖u(t)− u‖2;ν ≤ K t−
1

m−1 ∀t > 0 , (1.3.97)

where K > 0 is a constant that depends only on m, MP and ν(Ω).

Proof. For any α ∈ (0, 1], Proposition 2.2 of [82] (apply it to f+ and f−) provides us with
the following inequality:

‖vα − vα‖2;ν ≤MP,α ‖∇v‖α2;µ ∀v ∈ H1(Ω; ν, µ) , (1.3.98)

where one can choose e.g.
MP,α = 21−α2 ν(Ω) 1−α

2 Mα
P .

Now notice that, in view of the conservation of mass,
d
dτ ‖u(τ)− u‖2

2;ν = d
dτ ‖u(τ)‖2

2;ν ,

so that
d
dτ ‖u(τ)− u‖2

2;ν = − 8m
(m+ 1)2

∥∥∥∇(um+1
2
)
(τ)
∥∥∥2

2;µ
≤ − 8m

Mm+1
P,2/(m+1) (m+ 1)2 ‖u(τ)− u‖m+1

2;ν ,
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where we used (1.3.98) with α = 2/(m+1) and v = u(m+1)/2(τ). Solving the above differential
inequality in the variable y(τ) := ‖u(τ)− u‖2

2;ν we end up with the same bound as (1.3.93),
with q0 = 2 and u replaced by u− u, which entails (1.3.97).

We are now in position to prove Theorem 1.3.18.

Proof of Theorem 1.3.18. Estimate (1.3.23) for % ∈ [1, 2] is just a consequence of Lemma
(1.3.27) and the finiteness of the measure. In order to get (1.3.24) for % ∈ (2,∞), consider
first the following interpolation inequality:

‖u(t)− u‖%;ν ≤ ‖u(t)− u‖
2
%
−ε(m−1)

2;ν ‖u(t)− u‖
1− 2

%
+ε(m−1)

2+ 2(%−2)
ε%(m−1) ;ν

.

Thanks to (1.3.97), the first factor in the right-hand side gives the same time rate as in
(1.3.24). Hence, we only need to bound the second factor. Applying the smoothing estimate
(1.3.7) with q0 = 1 and % replaced by

p = p(ε, %,m) := 2 + 2(%− 2)
ε%(m− 1) ,

we obtain:

‖u(t)− u‖p;ν ≤ 2 ‖u(t)‖p;ν ≤ 2K
(
‖u0‖1/p

1;ν + ‖u0‖1;ν
)
∀t ≥ 1 ,

which finally entails (1.3.24).
Consider now an initial datum u0 ∈ L∞(Ω) with u0 6= 0, so that ‖u(t)‖∞ ≤ ‖u0‖∞ for all

t > 0. Let w := u/u − 1. Given % ∈ (1,∞), by plugging the test function w%−1 in the weak
formulation (1.3.1) (we can justify this rigorously), we find:

d
dτ ‖w(τ)‖%%;ν = −%(%− 1)m|u|m−1

∫
Ω
|w(x, τ) + 1|m−1 |w(x, τ)|%−2 |∇w(x, τ)|2 dµ . (1.3.99)

If we let
Φ(y) =

∫ y

0
|z|

%
2−1 |z + 1|

m−1
2 dz ,

then (1.3.99) reads

d
dτ ‖w(τ)‖%%;ν = −%(%− 1)m|u|m−1

∫
Ω
|∇(Φ(w))(x, τ)|2 dµ . (1.3.100)

At this point we aim to exploit Lemma 1.3.26 to Φ. Such a function is certainly continuous
and increasing, and by means of de l’Hôpital’s Theorem it is straightforward to check that

lim
y→0

Φ(y)
y
%
2

= 2
%
, lim

y→±∞

Φ(y)
y
%+m−1

2
= 2
%+m− 1 .

Actually, since %/2 6= (%+m− 1)/2, we cannot apply Lemma 1.3.26 to the function Φ as it is.
However, we can circumvent this difficultly by taking advantage of the fact that u0 ∈ L∞(Ω)
and the quantity ‖w(t)‖∞ does not increase in time (trivial consequence of (1.3.99)), so that

‖w(t)‖∞ ≤ ‖w(0)‖∞ = ‖u0 − u‖∞
|u|

=: R ∀t ≥ 0 .
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In particular, the behaviour of Φ(y) for |y| large does not affect Φ(w(t)). Hence, we are
allowed to modify Φ e.g. as follows:

ΦR(y) :=


Φ(y) if y ∈ [−R− 2, R] ,
Φ(R) +

∫ y
R z

%
2−1 (R + 1)m−1

2 dz if y > R ,

Φ(−R− 2)−
∫−R−2
y |z| %2−1 (R + 1)m−1

2 dz if y < −R− 2 .
(1.3.101)

It is plain that ΦR fulfils all the hypotheses of Lemma 1.3.26 since

lim
y→+∞

ΦR(y)
y
%
2

= lim
y→−∞

ΦR(y)
y
%
2

= 2(R + 1)m−1
2

%
.

Recalling that w = 0, we can therefore assert that there exists a positive constant MΦR
(depending on %, m, Ω, ν, µ and R) such that

‖ΦR(w)‖2;ν ≤MΦR ‖∇ΦR(w)‖2;µ . (1.3.102)

Moreover, Φ(w) = ΦR(w) by definition of ΦR, so that (1.3.100) and (1.3.102) entail
d
dτ ‖w(τ)‖%%;ν ≤ −

%(%− 1)m|u|m−1

M2
ΦR

‖ΦR(w(τ))‖2
2;µ .

In view of (1.3.101), it is apparent that there exists a suitable constant D = D(%,m) > 0
such that

D−1|y|
%
2 ≤ |Φ0(y)| ≤ |ΦR(y)| ∀y ∈ R ,

whence
d
dτ ‖w(τ)‖%%;ν ≤ −

%(%− 1)m|u|m−1

M2
ΦRD

2

∥∥∥w%/2(τ)
∥∥∥2

2;ν
= −C% |u|m−1 ‖w(τ)‖%%;ν ,

where C is a positive constant as in the statement. Solving the above differential inequality
in the variable y(τ) := ‖w(τ)‖%%;ν and going back to u− u we deduce (1.3.25).

In the case where ρν has better local regularity properties (∇ρν ∈ L∞loc(Ω) will do), from the
results of [72] and [151] we infer that the solution u(t) is Hölder continuous in any compact
set ΩK b Ω. More precisely, we can apply Theorem 1.1 of [151] to û := ρνu, which (in
particular) ensures that there exists a constant α = α(m,Ω,ΩK , ρν , ρµ, ‖u0‖∞) ∈ (0, 1) such
that

sup
t≥1
|û(t)|Cα(ΩK) =: B(m,Ω,ΩK , ρν , ρµ, ‖u0‖∞) <∞ . (1.3.103)

Since ρν is locally Lipschitz and bounded away from zero, it is plain that (1.3.103) also holds
for u(t). We point out that in case ρν is constant one may apply [72, Theorem 1.2 and
Remark 4.1] as well. Now let Ω′K be a suitable subdomain of Ω with ΩK b Ω′K b Ω (for
instance, Ω′K = ΩK + Bε, where 0 < ε < dist(ΩK , ∂Ω)). Take a regular cut-off function η
such that η ≡ 1 in ΩK and supp η b Ω′K . Reasoning likewise, it is not difficult to deduce that

sup
t≥1
|η(u(t)− u)|Cα(Rd) <∞ (1.3.104)

for another constant α as above. A classical interpolation result due to Gagliardo and Niren-
berg (see e.g. [142, p. 126], [30, Appendix A.3] or [100,101]) entails the validity of the following
inequality:

‖η(u(t)− u)‖L∞(Rd) ≤ G |η(u(t)− u)|
d

d+α%
Cα(Rd) ‖η(u(t)− u)‖

α%
d+α%
L%(Rd) , (1.3.105)

for a suitable G > 0 that depends on α, % and d. Hence, estimate (1.3.26) follows from
(1.3.25), (1.3.104) and (1.3.105).
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Note that, in the above proof of (1.3.25) (and (1.3.26)), the assumption u0 ∈ L∞(Ω) is
crucial. In fact the way the constant MΦR in (1.3.102) depends on R, and so on ‖u0‖∞, is
completely unknown: Lemma 1.3.26 takes advantage of an argument by contradiction. For
the same reason, we can give no explicit bound over C (and CK).

1.3.4.2 Counterexamples to uniform convergence to the mean value

In Paragraph 1.3.3.2, by means of an explicit counterexample, we have seen that in general
validity of the Poincaré-type inequality (1.3.6) yields a smoothing effect for solutions to (1.1.2)
which works up to L%(Ω; ν), with % strictly smaller than infinity. However, in Theorem
1.3.18 we proved that, for bounded initial data with nonzero mean, as a consequence of
the (zero-mean) Poincaré-type inequality (1.3.14) solutions converge (with exponential rate)
locally uniformly to their mean value. It seems therefore natural to ask whether, at least
for bounded initial data, such convergence could be globally uniform. By means of another
counterexample, we shall now see that the answer is again negative (in general).

Let us consider problem (1.1.2) with the following choices:

Ω = (0, 1) , ρν(x) = xβ−2 , ρµ(x) = xβ , β > 1 , m ≥ 2 .

In this context, the (zero-mean) Poincaré-type inequality (1.3.14) holds true (see Appendix
1.A, Paragraph 1.A.2.1). We are looking for a function r : R+ 7→ (0, 1) which is regular,
decreasing, with limt→+∞ r(t) = 0 and such that

û(x, t) :=


0 if x ∈ [0, r(t)/2] ,
2x
r(t) − 1 if x ∈ (r(t)/2, r(t)] ,
1 if x ∈ (r(t), 1]

(1.3.106)

is a supersolution to (1.1.2). Because ûx(x, t) vanishes in neighbourhoods of x = 0 and x = 1
for all t > 0, it is enough to check that û is a supersolution in the distributional sense. This
amounts to requiring that

ρν(x)ût(x, t) ≥ (ρµ)x(x)(ûm)x(x, t) + ρµ(x)(ûm)xx(x, t) in D′((0, 1)× R+) . (1.3.107)

After some straightforward computations, we get:

ût(x, t) = −2r′(t)x
r2(t) χ(r(t)/2,r(t)](x) ,

(ûm)x(x, t) = 2m
r(t)

(
2x
r(t) − 1

)m−1

χ(r(t)/2,r(t)](x) ,

(ûm)xx(x, t) = v(x, t)− 2m
r(t) δx=r(t)(x, t) , (1.3.108)

where we set

v(x, t) := 4m(m− 1)
r2(t)

(
2x
r(t) − 1

)m−2

χ(r(t)/2,r(t)](x) .

Since the contribution of the Dirac mass in (1.3.108) is negative, we can neglect it, so that
the validity of (1.3.107) is ensured provided

−xβ−2 2r′(t)x
r2(t) ≥

2mβxβ−1

r(t)

(
2x
r(t) − 1

)m−1

+ 4m(m− 1)xβ
r2(t)

(
2x
r(t) − 1

)m−2

(1.3.109)

∀t > 0 , ∀x ∈ (r(t)/2, r(t)) .
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Dividing (1.3.109) by xβ−1, we obtain:

− 2r′(t)
r2(t) ≥

2mβ
r(t)

(
2x
r(t) − 1

)m−1

+ 4m(m− 1)x
r2(t)

(
2x
r(t) − 1

)m−2

. (1.3.110)

It is then apparent that, for any given t > 0, (1.3.110) holds true for all x ∈ (r(t)/2, r(t)) if
and only if it holds true at x = r(t) (recall that m ≥ 2). Hence, letting x = r(t) in the r.h.s.
of (1.3.110), we get:

r′(t)
r(t) ≤ −m(β + 2(m− 1)) =: −c(m,β) < 0 .

Integrating between 0 and t we end up with

r(t) ≤ r(0)e−c(m,β)t . (1.3.111)

If we pick r(0) small enough, a function r(t) as in the r.h.s. of (1.3.111) fulfils all the require-
ments we listed in the beginning of the construction. So we have proved that there exists
a supersolution to (1.1.2) of the type of (1.3.106). In particular, the solution to the same
problem associated to any nonnegative (and nontrivial) initial datum u0(x) ≤ û(x, 0) will be
less than or equal to û(x, t) for all t > 0: as a result, it cannot converge uniformly to its
mean value u > 0 since it is forced to be zero in the interval (0, r(t)/2) for all t > 0. Thanks
to a routine time-scaling argument it is easy to show that the same holds true for solutions
corresponding to any uniformly bounded initial datum which is less than or equal to zero in
a neighbourhood of x = 0 and has positive mean.

As the reader may guess, the assumption m ≥ 2 in the above example cannot be relaxed,
since for m ∈ (1, 2) the right-hand side of (1.3.109) blows up as x → r(t)/2. However, by
performing some modifications, we are still able to construct a suitable supersolution. Indeed,
upon setting

ũ(x, t) :=


x
r(t) if x ∈ [0, r(t)] ,
1 if x ∈ (r(t), 1]

and proceeding as above, we get the condition

− r′(t)
r2(t) ≥

mβxm−1

rm(t) + m(m− 1)xm−1

rm(t) , (1.3.112)

which must be valid for all x ∈ (0, r(t)). The maximum of the r.h.s. of (1.3.112) is clearly
attained at x = r(t), so that by substituting such value in the latter and solving the cor-
responding differential inequality we end up again with (1.3.111) (up to a different positive
constant c(m,β)). Unlike û, the supersolution ũ does not have a zero derivative at x = 0.
Luckily, it turns out that this does not matter. In fact, the space of absolutely continuous
functions in [0, 1] which vanish in a neighbourhood of x = 0 is dense in H1((0, 1);xα, xβ),
provided α ∈ R and β ≥ 1 (see e.g. the proof of [95, Theorem 2.11]). This means that in
order to prove that ũ is a supersolution to (1.1.2) it is enough to test it against functions
which vanish in a neighbourhood of x = 0. The fact that ũ is zero at x = 0 for all t > 0
makes sure that uniform convergence to the mean value u > 0 does not occur for a class of
bounded data as above.

We point out that in the case d ≥ 3 (let d ∈ N) and β = d − 1, our analysis amounts to
considering radial solutions to the Neumann problem (1.1.2) in B1 ⊂ Rd, with the singular
weight ρν(x) = |x|−2 and ρµ ≡ 1. In [111] the authors studied the same problem in the
whole Euclidean space: our counterexamples, at least in a neighbourhood of the origin, are
in agreement with [111, Theorem 1.1].
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1.3.4.3 Sobolev- and Gagliardo-Nirenberg-type inequalities

If Sobolev- or Gagliardo-Nirenberg-type inequalities of the type of (1.3.16), (1.3.19) or
(1.3.21) hold true, then the results we proved in Paragraph 1.3.4.1 leave room for improve-
ment, as we shall now see. We begin with the case of zero-mean solutions.

Proof of Theorems 1.3.15, 1.3.16 and 1.3.17. Let q0 ∈ (1,∞) and, with no loss of generality,
u0 ∈ L∞(Ω), with u0 = 0. First of all, notice that estimate (1.3.93) holds true. Indeed,
any of the inequalities (1.3.16), (1.3.19) or (1.3.21) implies the validity of the (zero-mean)
Poincaré-type inequality (1.3.14) (Remark 1.3.21), which is the only functional tool one needs
to prove (1.3.93) (recall the proof of Theorem 1.3.14). Hence, taking advantage of the latter
together with the smoothing estimates (1.3.9), (1.3.11) or (1.3.13) evaluated between t and
t/2, we obtain (K denotes a positive constant as in the statements):

‖u(t)‖∞ ≤ K

[
t
− σ

(σ−1)q0+σ(m−1)
(
t+ ‖u0‖1−m

q0;ν

)− (σ−1)q0
(m−1)[(σ−1)q0+σ(m−1)] +

(
t+ ‖u0‖1−m

q0;ν

)− 1
m−1

]
,

(1.3.113)

‖u(t)‖∞ ≤ K

[
t
− λ

(λ+2)q0+λ(m−1)
(
t+ ‖u0‖1−m

q0;ν

)− (λ+2)q0
(m−1)[(λ+2)q0+λ(m−1)] +

(
t+ ‖u0‖1−m

q0;ν

)− 1
m−1

]
(1.3.114)

or

‖u(t)‖∞ ≤ K
[
t
− 1
q0+m−1

(
t+ ‖u0‖1−m

q0;ν

)− q0
(m−1)(q0+m−1) +

(
t+ ‖u0‖1−m

q0;ν

)− 1
m−1

]
, (1.3.115)

respectively, for all t > 0, from which the corresponding estimates (1.3.17), (1.3.20) and
(1.3.22) follow. In order to prove the validity of such estimates down to q0 = 1, we can
reason exactly as in the proof of Theorem 1.3.14. That is, by interpolation and iteration
arguments we infer the bounds

‖u(t)‖2;ν ≤ K t−
σ

2(σm−1) ‖u0‖
σ(m+1)−2
2(σm−1)

1;ν ∀t > 0 ,

‖u(t)‖2;ν ≤ K t−
λ

2λm+4 ‖u0‖
λ(m+1)+4

2λm+4
1;ν ∀t > 0

or
‖u(t)‖2;ν ≤ K t−

1
2m ‖u0‖

m+1
2m

1;ν ∀t > 0 ;

then we plug the latter in estimates (1.3.113)–(1.3.115), with q0 = 2 and the time origin
shifted to t/2.

As concerns solutions with nonzero mean, before proving Theorem 1.3.19 we need some
preliminary steps, one of which is a delicate refinement of Lemma 1.3.26.

Lemma 1.3.28. Given r ≥ 1/2, m > 1 and a fixed number R > 1, let

Φr,m(y) :=
∫ y

0
|z|r−1 |z + 1|

m−1
2 dz ∀y ∈ [−R,R] .

Then there exist two positive constants C1 = C1(m) and C2 = C2(m,R) such that

C1

r1+1∨[m−1
2 ] |y|

r ≤ |Φr,m(y)| ≤ C2

r
|y|r ∀y ∈ [−R,R] . (1.3.116)
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Proof. One has to study the ratio |Φr,m(y)|/|y|r. The bound from above is easily achievable,
since

|Φr,m(y)| ≤ (R + 1)
m−1

2

∣∣∣∣∫ y

0
|z|r−1 dz

∣∣∣∣ = (R + 1)m−1
2

r
|y|r ∀y ∈ [−R,R] .

In order to get a lower bound, we begin with the case m = 3. Recall that, for y 6= 0, we use
the convention yr := |y|r−1y. First of all notice that

Φr,m(y)/yr ≥
∫ y

0 z
r−1 dz
yr

= 1
r
∀y ∈ (0, R] ; (1.3.117)

moreover,

Φr,3(y)/yr =
∫ |y|

0 zr−1 (1− z) dz
|y|r

= 1
r
− |y|
r + 1 ≥

1
r(r + 1) ∀y ∈ [−1, 0) . (1.3.118)

So we are left with studying the minimum of Φr,3(y)/yr as y varies in [−R,−1). We have:

fr(y) := Φr,3(y)/yr =
∫ |y|

0 zr−1 |z − 1| dz
|y|r

=
∫ 1

0 z
r−1 (1− z) dz +

∫ |y|
1 zr−1 (z − 1) dz

|y|r

=
(

2
r(r + 1) + |y|

r+1

r + 1 −
|y|r

r

)
/|y|r

= 2
r(r + 1) |y|

−r + |y|
r + 1 −

1
r
∀y ∈ [−R,−1) .

(1.3.119)
Since

d
ds

(
2

r(r + 1) s
−r + s

r + 1 −
1
r

)
= − 2

r + 1 s
−r−1 + 1

r + 1 ,

whose zero is attained at s0 := 21/(r+1), there holds

fr(y) ≥ 1
r

(
2

1
r+1 − 1

)
∀y ∈ [−R,−1) . (1.3.120)

Finally, it is apparent that
1
r

(
2

1
r+1 − 1

)
≥ log 2
r(r + 1) . (1.3.121)

By collecting (1.3.117)–(1.3.121) we then get the lower bound in (1.3.116) for m = 3.
Now let us consider the case m > 3. Since the function s 7→ |s|(m−1)/2 is convex, in view

of Jensen’s inequality we have:

|Φr,m(y)|
|y|r

= 1
r

∫ |y|
0 zr−1 |z − 1|m−1

2 dz∫ |y|
0 zr−1 dz

≥ r
m−3

2

∫ |y|0 zr−1 |z − 1| dz
|y|r


m−1

2

∀y ∈ [−R, 0) ,

and we can bound the right-hand side from below just by applying to it the above estimates
for m = 3, so as to obtain

|Φr,m(y)|
|y|r

≥ C1

r1+m−1
2

∀y ∈ [−R, 0) (1.3.122)

for some positive constant C1 = C1(m). Hence, (1.3.117) and (1.3.122) provide us with the
claimed lower bound in (1.3.116).
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We still have to deal with the casem ∈ (1, 3), that is when the function s 7→ |s|(m−1)/2 is no
more convex. Again, since (1.3.117) holds for all m > 1, we can limit ourselves to the analysis
of the ratio |Φr,m(y)|/|y|r for y ∈ [−R, 0). Since (m − 1)/2 =: α ∈ (0, 1), straightforward
computations show that

|z − 1|α ≥ |zα − 1| ∀z ∈ [0, R] ,
whence

|Φr,m(y)|
|y|r

=
∫ |y|

0 zr−1 |z − 1|m−1
2 dz

|y|r
≥
∫ |y|

0 zr−1
∣∣∣zm−1

2 − 1
∣∣∣ dz

|y|r
∀y ∈ [−R, 0) . (1.3.123)

Thanks to (1.3.123), there is no difficulty in proceeding as in the case m = 3 in order to
prove that also the r.h.s. of (1.3.123) is bounded from below by a constant times 1/r2.

Lemma 1.3.29. Suppose that there exists a constant MPS > 0 such that the Poincaré-
Sobolev-type inequality

‖v − v‖2σ;ν ≤MPS ‖∇v‖2;µ ∀v ∈ H1(Ω; ν, µ) (1.3.124)

holds true for some σ ≥ 1. Then for any fixed m > 1 and R > 1 there exists another constant
M∗ > 0, which depends on m, Ω, ν, µ and R, such that the inequality

‖Φr,m(ξ)‖2σ;ν ≤M∗ ‖∇Φr,m(ξ)‖2;µ

holds true for all r ≥ 1/2 and every function ξ ∈ L∞(Ω) with ξ = 0, ‖ξ‖∞ ≤ R and
Φr,m(ξ) ∈ H1(Ω; ν, µ).

Proof. As in the proof of Lemma 1.3.26, we argue by contradiction. If the assertion were
false, then there would exist a sequence of numbers rn ≥ 1/2 and a corresponding sequence
of nontrivial functions {ξn} such that rn → ∞, ‖ξn‖∞ ≤ R, ξn = 0, Φrn,m(ξn) ∈ H1(Ω; ν, µ)
and

‖∇Φrn,m(ξn)‖2;µ ≤
1
n
‖Φrn,m(ξn)‖2σ;ν ∀n ∈ N . (1.3.125)

The fact that {rn} cannot accumulate at some finite r and is therefore forced to go to infinity
is a direct consequence of the method of proof of Lemma 1.3.26. Let

an := ‖Φrn,m(ξn)‖2σ;ν

and
Ψn := Φrn,m(ξn)

an
.

From (1.3.125) we deduce that

‖Ψn‖2σ;ν = 1 , ‖∇Ψn‖2;µ ≤
1
n
∀n ∈ N .

Applying the Poincaré-Sobolev-type inequality (1.3.124) to Ψn we find∥∥∥Ψn −Ψn

∥∥∥
2σ;ν
≤ MPS

n
∀n ∈ N . (1.3.126)

In particular, since ‖Ψn‖2σ;ν = 1, the sequence of real numbers {Ψn} is bounded and thus
converges to some finite number c0 (up to a subsequence which we do not relabel). In
view of (1.3.126), {Ψn} also converges in L2σ(Ω; ν) to such constant, so that c0 6= 0 since
‖Ψn‖2σ;ν = 1.
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Consider now the sequence

Zn(x) := ξn(x)
a

1/rn
n

.

First of all, we aim to prove that {Zn} converges pointwise to a nonzero constant. Indeed,
still up to subsequences, we know that {Ψn} converges pointwise to the nonzero constant c0.
Let us rewrite Zn in the following way:

Zn(x) =
[
|ξn(x)|rn

|Φrn,m(ξn(x))|Ψn(x)
] 1
rn

.

Thanks to Lemma 1.3.28 and to the fact that |ξn(x)| ≤ R, we have:

[
rn
C2

] 1
rn |Ψn(x)|

1
rn ≤ |Zn(x)| ≤

r1+1∨[m−1
2 ]

n

C1


1
rn

|Ψn(x)|
1
rn .

Letting n → ∞ we then infer that {|Zn|} converges pointwise to 1, so that {Zn} converges
pointwise to 1 if c0 > 0 or to −1 if c0 < 0, in any case to a nonzero constant. We can
finally we prove that {Zn} also converges in L1(Ω; ν) to such a nonzero constant. To this
end, thanks to Egoroff’s Theorem, it is enough to show that

∫
E |Zn(x)| dν vanishes uniformly

as n→∞ and ν(E)→ 0. We have:

∫
E
|Zn(x)| dν =

∫
E

|ξn(x)|
a

1/rn
n

dν ≤

r1+1∨[m−1
2 ]

n

C1


1
rn ∫

E
|Ψn(x)|

1
rn dν

≤ν(E)1− 1
rn

r1+1∨[m−1
2 ]

n

C1


1
rn

‖Ψn‖
1
rn
1;ν .

The assertion follows since {Ψn} converges in L2σ(Ω; ν) and in particular is bounded in
L1(Ω; ν). We have therefore proved that the sequence of zero-mean functions {Zn} converges
in L1(Ω; ν) to a nonzero constant, a contradiction.

With respect to the family of functions Φr,m, Lemma 1.3.29 improves Lemma 1.3.26 in
the sense that, basically, it ensures that the constant MΦr,m appearing in (1.3.87) does not
depend on r: this turns out to be a crucial property that allows us to prove the next result,
namely uniform convergence of solutions with nonzero mean to their mean value.

Proposition 1.3.30. Let ν(Ω) < ∞ and u0 ∈ L∞(Ω), with u0 6= 0. Suppose that one
between the Sobolev-type inequality (1.3.16), the one-dimensional Gagliardo-Nirenberg-type
inequality (1.3.19) and the two-dimensional Gagliardo-Nirenberg-type inequality (1.3.21) holds
true. Then the solution u to (1.1.2) corresponding to the initial datum u0 converges uniformly
to its mean value u.

Proof. We proceed by means of a Moser iteration. Indeed, for a given % > q0 > 1, let us
plug the test function w%−1 in the weak formulation (1.3.1), where we set w := u/u− 1. We
obtain:

‖w(T )‖%%;ν+%(%−1)m|u|m−1
∫ T

s

∥∥∥∇Φ%/2,m(w(τ))
∥∥∥2

2;µ
dτ = ‖w(s)‖%%;ν ∀T > s ≥ 0 . (1.3.127)
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Since ‖w(τ)‖∞ ≤ ‖w(0)‖∞ + 1 =: R, we can apply to the l.h.s. of (1.3.127) Lemma 1.3.29
(with r = %/2), which entails

‖w(T )‖%%;ν + %(%− 1)m|u|m−1

M2
∗

∫ T

s

∥∥∥Φ%/2,m(w(τ))
∥∥∥2

2σ;ν
dτ ≤ ‖w(s)‖%%;ν ∀T > s ≥ 0 .

(1.3.128)
Notice that either of the Gagliardo-Nirenberg-type inequalities (1.3.19) or (1.3.21) implies
the validity of a Sobolev-type inequality, so we assumed with no loss of generality that the
latter holds true for some σ > 1. Thanks to estimate (1.3.116) (again with r = %/2), (1.3.128)
yields

‖w(T )‖%%;ν + %(%− 1)m|u|m−1

M2
∗

∫ T

s

C2
1(

%
2

)2+2∨(m−1)

∥∥∥w%/2(τ)
∥∥∥2

2σ;ν
dτ ≤ ‖w(s)‖%%;ν ∀T > s ≥ 0 ,

that is

‖w(T )‖%%;ν + K

%2∨(m−1)

∫ T

s
‖w(τ)‖%σ%;ν dτ ≤ ‖w(s)‖%%;ν ∀T > s ≥ 0 , (1.3.129)

whereK > 0 is a suitable constant that depends on q0,m,M∗, σ and |u| (but is independent of
%), which we do not relabel below. Given any t > 0, let us define the sequences tk := (1−2−k)t
and pk+1 = σpk, where p0 := q0. Using (1.3.129) with s = tk, T = tk+1, % = pk and taking
advantage of the fact that ‖w(τ)‖p;ν is non-increasing in τ for all p ∈ [1,∞], we obtain:

‖w(tk+1)‖pk+1;ν ≤

p2∨(m−1)
k 2k+1

K

 1
pk

t
− 1
pk ‖w(tk)‖pk;ν ,

or equivalently
‖w(tk+1)‖pk+1;ν ≤ K

k+1
σkq0 t

− 1
σkq0 ‖w(tk)‖pk;ν . (1.3.130)

Performing an iteration of (1.3.130), we end up with

‖w(tk+1)‖pk+1;ν ≤ K
∑k

h=0
h+1
σhq0 t

−
∑k

h=0
1

σhq0 ‖w(0)‖q0;ν .

Hence,

‖w(t)‖∞ = lim
k→∞
‖w(t)‖pk+1;ν ≤ lim inf

k→∞
‖w(tk+1)‖pk+1;ν ≤ K t

− σ
(σ−1)q0 ‖w(0)‖q0;ν , (1.3.131)

and the assertion follows by letting t→∞.

We are now ready to prove the main asymptotic result of this subsection: as a consequence
of the validity of a Sobolev-type or Gagliardo-Nirenberg-type inequality, solutions to (1.1.2)
with nonzero mean converge uniformly to their mean value with a precise exponential rate.

Proof of Theorem 1.3.19. We first assume u0 ∈ L∞(Ω). In view of Proposition 1.3.30, in
particular there exists a suitable τ0 = τ0(m,M∗, σ, |u|, ‖u0‖∞) > 0 such that

essinf
x∈Ω

|u(x, t)| ≥ |u|2 ∀t ≥ τ0 . (1.3.132)

By combining (1.3.127), (1.3.132) and recalling the definition of Φr,m, it is straightforward
to deduce the following inequality (let % > 1):

d
dτ ‖u(τ)− u‖%%;ν ≤ −

4(%− 1)m
%

(
|u|
2

)m−1 ∥∥∥∇ [(u(τ)− u)
%
2
]∥∥∥2

2;µ
∀τ ≥ τ0 . (1.3.133)
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The choice % = 2 in (1.3.133) immediately leads to

‖u(t)− u‖2;ν ≤ e
− m

M2
P

(
|u|
2

)m−1
(t−τ0)

‖u(τ0)− u‖2;ν ∀t ≥ τ0 , (1.3.134)

where in the r.h.s. we exploited the Poincaré-type inequality (1.3.14), which trivially holds
true as a consequence of (1.3.16), (1.3.19) or (1.3.21). Replacing t with (t+τ0)/2 in (1.3.134)
and using estimate (1.3.131) with q0 = 2 and the time origin shifted to (t+ τ0)/2, we end up
with the bound

‖u(t)− u‖∞ ≤ Ge−Ct ‖u0 − u‖2;ν ∀t ≥ τ0 + 1 , (1.3.135)
where G > 0 is a suitable constant that depends on m, Ω, ν, µ, |u|, ‖u0‖∞ (which may change
from line to line and we do not relabel) and

C := m|u|m−1

M2
P 2m .

Now let us pick τ1 ≥ τ0 + 1 so large that
1
2 |u| ≤ |u| −Ge

−Ct ‖u0 − u‖2;ν ∀t ≥ τ1 . (1.3.136)

Since
|u(x, τ)| ≥ |u| − |u(x, τ)− u| ≥ |u| −Ge−Cτ ‖u0 − u‖2;ν ∀τ ≥ τ1 , for a.e. x ∈ Ω ,

we have:
d
dτ ‖u(τ)− u‖2

2;ν =− 2m
∫

Ω
|u(x, τ)|m−1 |∇u(x, τ)|2 dµ

≤− 2m
(
|u| −Ge−Cτ ‖u0 − u‖2;ν

)m−1
‖∇u(τ)‖2

2;µ

≤− 2m
M2

P

(
|u| −Ge−Cτ ‖u0 − u‖2;ν

)m−1
‖u(τ)− u‖2

2;ν ∀τ ≥ τ1 .

(1.3.137)
Integrating (1.3.137) between τ1 and t, we get (notice that here and above we exploit the
fact that ‖u(τ)− u‖2;ν is non-increasing in τ):

‖u(t)− u‖2
2;ν ≤ ‖u0 − u‖2

2;ν e
− 2m
M2
P

∫ t
τ1

(|u|−Ge−Cτ‖u0−u‖2;ν)m−1
dτ
. (1.3.138)

Letting ε := Ge−Cτ ‖u0 − u‖2;ν , in view of the elementary inequalities (recall (1.3.136))

(|u| − ε)m−1 ≥ |u|m−1 − (m− 1)|u|m−2ε ∀m ≥ 2 ,
(|u| − ε)m−1 ≥ |u|m−1 − (m− 1)(|u| − ε)m−2ε ≥ |u|m−1 − 22−m(m− 1)|u|m−2ε ∀m ∈ (1, 2)
and of a straightforward computation of the integral appearing at the exponent, estimate
(1.3.138) yields

‖u(t)− u‖2;ν ≤ Ge
− m

M2
P

|u|m−1 t
∀t ≥ τ1 . (1.3.139)

Taking advantage of (1.3.135) with the time origin shifted to t−τ0−1 and (1.3.139) evaluated
at time t− τ0 − 1 (in place of t) we finally obtain

‖u(t)− u‖∞ ≤ Ge
− m

M2
P

|u|m−1 t
∀t ≥ τ2 , (1.3.140)

where we set τ2 := τ0 + τ1 + 1. The fact that in (1.3.27) we can pick e.g. τ2 = 1 and any
u0 ∈ L1(Ω; ν) with u0 6= 0 (we also replace the dependence of G on ‖u0‖∞ with ‖u0‖1;ν
accordingly) is just a consequence of (1.3.140) and the smoothing effects (1.3.9), (1.3.11) or
(1.3.13).

72



1.3. The homogeneous Neumann problem

As the reader might have noticed, in the proofs of Theorems 1.3.14–1.3.19 at some point we
computed time derivatives of Lp(Ω; ν) norms of u (or u−u). This can be justified rigorously,
for instance, since solutions are strong, as we recalled in Paragraph 1.2.3.1 above (similar
remarks apply to the Neumann problem as well). Alternatively, one can prove all the key
energy estimates (like e.g. (1.3.127)) on the regular solutions to the approximate problems
we constructed in the the proof of Theorem 1.3.4 and then pass to the limit.

1.3.4.4 Improvements on previous results and comments on sharpness

As concerns zero-mean solutions, in [27, Corollary 1.3] the authors established the following
estimate (in the framework of compact Riemannian manifolds without boundary where the
Sobolev inequality holds true, see Paragraph 1.3.3.5):

‖u(t)‖∞ ≤
C(

B (t− 1) + ‖u0‖1−m
q0

) 1−θ
m−1

∀t > 1 (1.3.141)

for suitable positive constants B and C, where θ ∈ (0, 1) is defined as in (1.3.84). It is
apparent that (1.3.141) is weaker than (1.3.17) since it provides a slower decay rate for
‖u(t)‖∞ as t → ∞ (t−(1−θ)/(m−1) versus t−1/(m−1)). Actually, at least in the framework of
regular bounded Euclidean domains, a decay rate of order t−1/(m−1) was already known to
hold for bounded initial data due to the results of the pioneering work [3] (see in particular
Theorems 3.1 and 4.1), even though the estimate given there still depended in a nontrivial
way on the L∞ norm of the initial datum and in particular could not be extended to general
L1 data. We point out that such rate is in fact sharp: one can consider the separable solutions
constructed in [3, Section 2], whose L∞ decay rate is precisely t−1/(m−1).

As we have seen throughout Subsection 1.3.4, solutions with nonzero mean converge uni-
formly to their mean value. In this regard, an immediate consequence of Proposition 1.3.30
is the following.

Corollary 1.3.31. Let ν(Ω) <∞ and let one between the (zero-mean) Sobolev-type inequality
(1.3.16) and the Gagliardo-Nirenberg-type inequalities (1.3.19) or (1.3.21) hold true. Then
the support of any solution u(t) of (1.1.2) corresponding to a compactly supported initial
datum u0 with nonzero mean becomes the whole Ω for t large enough.

The analysis of the properties of the support of solutions is a widely investigated topic in
the literature. Without any claim of completeness, we quote e.g. the papers [107, 117, 118,
147,155,157,168]. The interesting point in Corollary 1.3.31 lies in the fact that, at least for a
Neumann-type problem like (1.1.2), solutions starting from nonzero-mean data with compact
support lose this property in finite time as a sole consequence of the validity of a suitable
functional inequality. A result of this type seems to have no analogue in the literature. In [27]
uniform convergence to the mean value is also established, but in order to do so the authors
take advantage of the uniform spatial Hölder continuity of solutions, which may not hold in
the general framework we deal with.

Let us now compare Theorem 1.3.19 to some previous results. In [116] a convergence
analysis is carried out in one-dimensional Euclidean space: actually, more general nonlin-
earities and more general weights are considered there, but only local uniform convergence
to the mean value (without rates) for nonnegative solutions is proved. We have to remark,
however, that for such weights Sobolev-type or Gagliardo-Nirenberg-type inequalities may or
may not hold (depending on the behaviour of the weight at infinity), and therefore one cannot
expect uniform convergence in general. On the other hand, in [27] the authors provided a
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convergence rate of order

e
− (1−θ)m
M2
P

2m−1 |u|
m−1t

(as recalled above, for nonzero-mean solutions on compact Riemannian manifolds without
boundary), which is clearly weaker than the one we obtained here. It is worth mentioning
that in fact an exponential rate of the type of

e
−ε m

M2
P

|u|m−1t
∀ε ∈ (0, 1)

could have also been proved by exploiting the uniform convergence to the mean value together
with Theorem 3.3 of [3]. Theorem 1.3.19 ensures that one can actually choose ε = 1.

Let ρν = ρµ ≡ 1 and let Ω be a regular bounded domain of Rd, for simplicity. By writing
u(x, t) = u+f(x, t) and linearizing (1.1.2) about the constant u one formally gets the equation
ft = m|u|m−1∆f , so that the rate given in Theorem 1.3.19 coincides with the one predicted
by linearization. This is not by chance: in the following, we shall prove that estimate (1.3.27)
is sharp by providing suitable data for which the latter is matched by a lower bound.

Proof of Proposition 1.3.20. We consider first the solution to (1.1.2) corresponding to a reg-
ular initial datum u0 such that u0 = 1 and ‖u0 − 1‖∞ ≤ δ < 1, where δ > 0 will be chosen
afterwards. Since ‖u(t) − 1‖∞ is non-increasing in t, we have that |u(x, t)| ≥ 1 − δ for all
x ∈ Ω and t > 0. Hence, by exploiting such bound in the first line of (1.3.137) and solving
similarly the associated differential inequality, we end up with the following estimate:

‖f(t)‖2 ≤ ‖f0‖2 e
−λ1m(1−δ)m−1t ∀t > 0 , (1.3.142)

where we set f(x, t) := u(x, t) − 1 and f0(x) := u0(x) − 1. Because the equation is in fact
non-degenerate, from standard quasilinear theory (see the monograph [120]) we have that
f ∈ C∞(Ω× (0,∞)). Moreover, straightforward computations show that

ft = m∆f + F , (1.3.143)

with
F := m(m− 1)(1 + f)m−2 |∇f |2 +m[(1 + f)m−1 − 1] ∆f .

Upon choosing f0 = c1ψ1 as initial datum, under the condition

|c1| ≤
δ

‖ψ1‖∞
, (1.3.144)

(1.3.142) reads
‖f(t)‖2 ≤ |c1| e−λ1m(1−δ)m−1t ∀t > 0 . (1.3.145)

Let us define
|f |C0(Ω) := ‖f‖∞

and, for any multi-index η := (η1, . . . , ηd) (let |η| := η1 + . . .+ ηd), the seminorms

|f |Ck(Ω) := max
|η|=k
‖∂ηf‖∞ , k ∈ N .

Again, since the equation at hand is uniformly parabolic, we infer the existence of a constant
C = C(δ, k,m,Ω) > 0 such that

|f(t)|Ck(Ω) ≤ C ∀t > 0 , ∀k ∈ N . (1.3.146)
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We now recall the generalized interpolation inequalities

|g|
Cj(Ω) ≤ Q

(
|g|

d+jp
d+kp
Ck(Ω) ‖g‖

p(k−j)
d+kp
p + ‖g‖p

)
, (1.3.147)

valid for all integers k > j ≥ 0, real numbers p ≥ 1 and a suitable positive constant
Q = Q(j, k, p, d,Ω) (we refer the reader to [142, Theorem at p. 125 and comment n. 5 at p.
126] or, for a short review on the same topics, [30, Appendix A.3]). Combining (1.3.145),
(1.3.146) and (1.3.147) (with g = f(t)) we deduce that

|f(t)|C`(Ω) ≤ C ′
(
|c1|1−ε + |c1|

)
e−λ1m(1−δ)m−1(1−ε)t for ` = 0, 1, 2 , ∀t > 0 , ∀ε ∈ (0, 1) ,

where C ′ = C ′(ε, δ,m, d,Ω) is another positive constant independent of c1 subject to (1.3.144).
From the very definition of F and from the fact that the L∞ norm of f(t) is non-increasing in
t we infer that, for suitable positive constants C ′′ = C ′′(δ,m, d) and C ′′′ = C ′′′(ε, δ,m, d,Ω),

‖F (t)‖∞ ≤ C ′′
(
|f(t)|2C1(Ω) + ‖f(t)‖∞ |f(t)|C2(Ω)

)
≤ C ′′′

(
|c1|1−ε + |c1|

)2
e−2λ1m(1−δ)m−1(1−ε)t ∀t > 0 , ∀ε ∈ (0, 1) .

(1.3.148)

We aim to study the asymptotic behaviour of α1(t) := 〈f(t), ψ1〉L2(Ω), that is the first Fourier
coefficient of f along the evolution. In order to do that, let us multiply equation (1.3.143)
by ψ1 and integrate in Ω, so as to obtain the following differential equation for α1(t):

α̇1(t) = −λ1mα1(t) + 〈F (t), ψ1〉L2(Ω) .

Duhamel principle entails that α1 must satisfy the nonlinear integral equation (recall that by
construction α1(0) = c1)

α1(t) = e−λ1mt
[
c1 +

∫ t

0
eλ1ms 〈F (s), ψ1〉L2(Ω) ds

]
. (1.3.149)

If we choose δ and ε sufficiently small, namely such that 2(1 − δ)m−1(1 − ε) > 1, thanks to
(1.3.148) we easily deduce that the integral in (1.3.149) can be bounded as follows:∣∣∣∣∫ t

0
eλ1ms 〈F (s), ψ1〉L2(Ω) ds

∣∣∣∣ ≤ D
(
|c1|1−ε + |c1|

)2
,

where D is another suitable positive constant independent of c1 subject to (1.3.144) and of
t ≥ 0. Now pick |c1| so small that

|c1| > D
(
|c1|1−ε + |c1|

)2
,

this being possible since 2(1− ε) > 1. Under such a constraint on |c1|, (1.3.149) entails that
the exact decay rate of α1(t) is e−λ1mt, in the sense that |α1(t)| ∼ e−λ1mt as t → ∞. Hence,
(1.3.28) holds true since there exists a suitable constant G > 0 such that

‖u(t)− 1‖∞ = ‖f(t)‖∞ ≥ |Ω|
− 1

2 ‖f(t)‖2 ≥ |Ω|
− 1

2 |α1(t)| ≥ Ge−λ1mt ∀t > 0 .
The case of initial data with nonzero mean u0 6= 1 can be brought back to the case u0 = 1
by means of a standard time-scaling argument.

1.4 A nonhomogeneous Dirichlet problem in Euclidean space

After having analysed the homogeneous problems (1.1.1) and (1.1.2), in this section we
deal with existence and uniqueness issues for the special problem (1.1.21) in Euclidean space,
where nonhomogeneous Dirichlet conditions of the type of (1.1.25) are prescribed at infinity.
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1.4.1 Statements of the main results

We first provide a suitable notion of solution to (1.1.21). For the moment, let us just
assume that ρ and G are continuous functions and that u0 is a bounded initial datum.
Definition 1.4.1. Given T > 0, a very weak solution to problem (1.1.21) is a function
u ∈ C(ST ) ∩ L∞(ST ) such that∫ t

0

∫
Ω

[ρ(x)u(x, τ)ϕt(x, τ) +G(u(x, τ))∆ϕ(x, τ)] dxdτ

=
∫

Ω
ρ(x) [u(x, t)ϕ(x, t)− u0(x)ϕ(x, 0)] dx+

∫ t

0

∫
∂Ω
G(u(σ, τ)) ∂ϕ

∂n
(σ, τ) dσdτ

(1.4.1)

for all smooth bounded domain Ω ⊂ Rd, t ∈ (0, T ] and any ϕ ∈ C2,1(Ω × [0, t]) with ϕ ≡ 0
on ∂Ω× [0, t].

In agreement with the above definition, a (very weak) supersolution [subsolution] to
(1.1.21) is a function u ∈ C(ST ) ∩ L∞(ST ) which satisfies (1.4.1) with “=” replaced by
“≤” [“≥”] and in addition ϕ ≥ 0.

As already mentioned in the Introduction, in order to establish well-posedness results for
(1.1.21) we shall mostly deal with densities ρ, nonlinearities G and initial data u0 which
comply with the following assumptions:

(i) ρ ∈ C(Rd) , with ρ > 0 ;
(ii) G ∈ C1(R) , with G(0) = 0 and G′ > 0 in R \ {0} ;
(iii) if G′(0) = 0 then G′ is decreasing in (−δ, 0) and increasing in (0, δ) for some δ > 0;
(iv) u0 ∈ C(Rd) ∩ L∞(Rd) .

(H0)
As concerns existence, we begin with the case of non-degenerate nonlinearities.

Theorem 1.4.2. Let d ≥ 3. Suppose that ρ ∈ C(Rd) with ρ > 0, G ∈ C1(R) with
G(0) = 0, G′ ≥ α0 for some α0 > 0 and u0 ∈ C(Rd) with lim|x|→∞ u0(x) existing and
being finite. Assume in addition that there exist R0 > 0 and a nonnegative ρ0 ∈ C([R0,∞))
with

∫∞
R0
rρ0(r) dr <∞ such that

ρ(x) ≤ ρ0(|x|) ∀x ∈ Bc
R0 . (1.4.2)

Finally, take T > 0 and any a ∈ C([0, T ]) satisfying
a(0) = lim

|x|→∞
u0(x) . (1.4.3)

Then there exists a solution u to problem (1.1.21), in the sense of Definiton 1.4.1, such that
lim
|x|→∞

u(x, t) = a(t) uniformly as t ∈ [0, T ] . (1.4.4)

For possibly degenerate nonlinearities of porous medium type, we shall prove the following
results.
Theorem 1.4.3. Let d ≥ 3. Let assumption (H0) be satisfied. Suppose in addition that

lim
|x|→∞

u0(x) = a0 (1.4.5)

for some a0 ∈ R. Then there exists a solution u to problem (1.1.21), in the sense of Definiton
1.4.1, such that

lim
|x|→∞

u(x, t) = a0 uniformly as t ∈ [0, T ] ,

for all T > 0.
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Theorem 1.4.4. Let d ≥ 3. Let assumption (H0) be satisfied, with lim|x|→∞ u0(x) ex-
isting and being finite. Suppose in addition that there exist R0 > 0 and a nonnegative
ρ0 ∈ C([R0,∞)) with

∫∞
R0
rρ0(r) dr < ∞ such that (1.4.2) holds true. Take T > 0 and

any a ∈ C([0, T ]) complying with (1.4.3) and with mint∈[0,T ] a(t) > 0. Then there exists a
solution u to problem (1.1.21), in the sense of Definiton 1.4.1, which satisfies (1.4.4).

Remark 1.4.5. Let us assume the same hypotheses of Theorem 1.4.3. Suppose moreover
that ρ is a density which does not decay too fast at infinity, in the sense that there exist
R1 > 0 and a nonnegative ρ1 ∈ C([R1,∞)) with

∫∞
R1
rρ1(r) dr =∞ such that

ρ(x) ≥ ρ1(|x|) > 0 ∀x ∈ Bc
R1 .

Then, in view of the uniqueness result recalled in the Introduction and as a consequence of
Theorem 1.4.3, we can assert that the unique solution to problem (1.1.21) (without prescribed
conditions at infinity) necessarily satisfies

lim
|x|→∞

u(x, t) = lim
|x|→∞

u0(x) uniformly as t ∈ [0, T ] ,

for all T > 0.

Remark 1.4.6. As we shall explain in the end of Subsection 1.4.2, with minor changes in
the corresponding proofs the above results admit some generalization. More precisely:
(i) In Theorem 1.4.2, if we drop assumption (1.4.3), the conclusion remains true upon

replacing (1.4.4) with the following property:

lim
|x|→∞

u(x, t) = a(t) uniformly as t ∈ [t0, T ] (1.4.6)

for all t0 ∈ (0, T );
(ii) In Theorem 1.4.4, if we drop assumption (1.4.3), the conclusion remains true upon

replacing (1.4.4) with (1.4.6) and requiring in addition that there exist R∗, ε > 0 such
that

2G(I) > G(S) , I := inf
x∈Bc

R∗
u0(x) , S := sup

t∈(0,ε)
a(t) . (1.4.7)

Clearly (1.4.7) is a technical assumption, but it is essential in order to make our proof work:
we do not know whether it can be removed. Notice that the latter certainly holds if I is large
enough compared to S, so that possible problems occur, to some extent, only if the initial
datum u0 is too small at infinity with respect to the “boundary” datum a.

Remark 1.4.7. Note that the hypotheses of Theorem 1.4.4 allow us to take as initial data
functions u0 which may be nonpositive in some compact set K ⊂ Rd: we only need them to
be strictly positive outside a ball. On the other hand, it is apparent that an analogous result
holds true for a < 0 and initial data which are strictly negative outside a ball (just exploit
Theorem 1.4.4 with u0 replaced by −u0, a replaced by −a and G(u) replaced by −G(−u));
the same comment applies to Remark 1.4.6-(ii) as well.

Our uniqueness result reads as follows.

Theorem 1.4.8. Let d ≥ 3. Let assumption (H0) be satisfied and suppose in addition that
ρ ∈ L∞(Rd) and a ∈ L∞((0, T )) for some T > 0. Then there exists at most one solution u
to problem (1.1.21), in the sense of Definiton 1.4.1, such that

lim
|x|→∞

u(x, t) = a(t) for a.e. t ∈ (0, T ) .
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Theorems 1.4.2–1.4.4 and 1.4.8 entail immediate corollaries.

Corollary 1.4.9. Let the assumptions of Theorem 1.4.2 be satisfied and suppose in addition
that ρ ∈ L∞(Rd). Then there exists a unique solution u to problem (1.1.21), in the sense of
Definiton 1.4.1, such that

lim
|x|→∞

u(x, t) = a(t) uniformly as t ∈ [0, T ] . (1.4.8)

Corollary 1.4.10. Let the assumptions of Theorem 1.4.3 be satisfied and suppose in addition
that ρ ∈ L∞(Rd). Then there exists a unique solution u to problem (1.1.21), in the sense of
Definiton 1.4.1, such that

lim
|x|→∞

u(x, t) = a0 uniformly as t ∈ [0, T ] ,

for all T > 0.

Corollary 1.4.11. Let the assumptions of Theorem 1.4.4 be satisfied and suppose in addition
that ρ ∈ L∞(Rd). Then there exists a unique solution u to problem (1.1.21), in the sense of
Definiton 1.4.1, such that (1.4.8) holds true.

Remark 1.4.12. Notice that, when (H0) is satisfied, ρ belongs to L∞(Rd) and does not decay
too fast at infinity, the discussion in Remark 1.4.5 is in agreement with Corollary 1.4.10.

Theorems 1.4.2–1.4.4 will be proved in Subsection 1.4.2, whereas Theorem 1.4.8 will be
proved in Subsection 1.4.3.

1.4.2 Existence

In view of the assumptions on the density ρ made in the hypotheses of Theorems 1.4.2 or
1.4.4, there exists a radial function V ∈ C2(Bc

R0) such that

∆V ≤ −ρ in Bc
R0 , (1.4.9)

V (x) > 0 ∀x ∈ Bc
R0 ,

|x| 7→ V (x) is nonincreasing ,

lim
|x|→∞

V (x) = 0 , (1.4.10)

where R0 > 0 can be assumed to be equal to the parameter that appears in the hypotheses
of the quoted theorems. Such a function, which can be constructed through standard Riesz
potential techniques (see e.g. Chapter 2, Subsection 2.3.2 for similar issues in the fractional
framework), will play a central role in the sequel.

Before proving our existence results, let us mention that below we shall often make use
of the function G−1, whose domain need not coincide with R. Nevertheless, as we deal with
bounded initial data u0 (and, by comparison principles, with bounded solutions), this is
not a problem since one can modify the definition of G(u) for |u| large so that it becomes
a bijection from R to itself and it still complies with the corresponding assumptions (like
e.g. (H0)), without changing the evolution of u0.

Hereafter we shall denote as {ζj} a given sequence of cut-off functions having the following
properties:

ζj ∈ C∞c (Bj) , 0 ≤ ζj ≤ 1 in Rd , ζj ≡ 1 in Bj/2 .
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Proof of Theorem 1.4.2. Since a ∈ C([0, T ]) and G ∈ C1(R) is increasing, for any t0 ∈ [0, T ]
and σ > 0 there exists δ = δ(σ) > 0 such that

G−1 (G(a(t0))− σ) ≤ a(t) ≤ G−1 (G(a(t0)) + σ) ∀t ∈ [tδ, tδ] , (1.4.11)

where we set tδ := max{t0 − δ, 0} and tδ := min{t0 + δ, T}. Moreover, in view of the
assumptions on u0, for any σ > 0 there exists R = R(σ) > R0 such that

G−1 (G(a(0))− σ) ≤ u0(x) ≤ G−1 (G(a(0)) + σ) ∀x ∈ Bc
R . (1.4.12)

For any j ∈ N, let uj ∈ C(Bj × [0, T ]) be the unique solution to the quasilinear problem (see
e.g. [120]) 

ρ(x)ut = ∆ [G(u)] in Bj × (0, T ) ,
u = a(t) on ∂Bj × (0, T ) ,
u = u0j on Bj × {0} ,

(1.4.13)

where
u0j := ζju0 + (1− ζj)a(0) in Bj .

By standard comparison principles,

|uj| ≤ K := max{‖u0‖∞, ‖a‖∞} in Bj × (0, T ) . (1.4.14)

It is then a matter of usual compactness arguments to show that there exists a subsequence
{ujk} ⊆ {uj} which converges, as k →∞, locally uniformly in Rd × (0, T ) to a solution u to
problem (1.1.21). We are therefore left with proving that

lim
|x|→∞

u(x, t) = a(t) uniformly as t ∈ [0, T ] .

To this end, let t0 ∈ [0, T ] and

w(x, t) := G−1
(
−M V (x)− σ +G(a(t0))− λ(t− t0)2

)
∀(x, t) ∈ Bc

R0 × (tδ, tδ) ,

whereM > 0 and λ > 0 are suitable constants to be chosen later. Thanks to the assumptions
and to (1.4.9), there holds

ρ(x)wt −∆[G(w)] = −ρ(x) 2λ(t− t0)
G′(w) +M ∆V ≤ ρ(x)

(
2λδ
α0
−M

)
≤ 0 in Bc

R0 × (tδ, tδ)

(1.4.15)
providing that

M ≥ 2λδ
α0

. (1.4.16)

For any j ∈ N, with j > R, let us set

NR,j := Bj \BR , (1.4.17)

where R is as in (1.4.12); we have

w(x, t) ≤ −K ∀(x, t) ∈ ∂BR × (tδ, tδ) (1.4.18)

as long as
M ≥ G(‖a‖∞)−G(−K)

V (R) . (1.4.19)
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Furthermore,
w(x, t) ≤ G−1 (G(a(t0))− σ) ∀(x, t) ∈ ∂Bj × (tδ, tδ) . (1.4.20)

If tδ = 0 there holds

w(x, t) ≤ G−1 (G(a(t0))− σ) ∀(x, t) ∈ NR,j × {0} , (1.4.21)

otherwise
w(x, t) ≤ G−1

(
G(a(t0))− λδ2

)
≤ −K ∀(x, t) ∈ NR,j × {tδ} (1.4.22)

provided
λ ≥ G(‖a‖∞)−G(−K)

δ2 . (1.4.23)

Suppose now that conditions (1.4.16), (1.4.19) and (1.4.23) are fulfilled. From (1.4.15),
(1.4.18) and (1.4.20)–(1.4.22) we infer that w is a subsolution to the problem

ρ(x)ut = ∆ [G(u)] in NR,j × (tδ, tδ) ,
u = −K on ∂BR × (tδ, tδ) ,
u = G−1 (G(a(t0))− σ) on ∂Bj × (tδ, tδ) ,
u = −K on NR,j × {tδ}

(1.4.24)

in case tδ > 0, whereas it is a subsolution to the problem
ρ(x)ut = ∆ [G(u)] in NR,j × (0, tδ) ,
u = −K on ∂BR × (0, tδ) ,
u = G−1 (G(a(t0))− σ) on ∂Bj × (0, tδ) ,
u = G−1 (G(a(t0))− σ) on NR,j × {0}

(1.4.25)

in case tδ = 0. On the other hand, (1.4.11), (1.4.12) and (1.4.14) show that the data for the
solutions to (1.4.13), (1.4.24) and (1.4.25) are ordered on each side of the parabolic boundary
of NR,j × (tδ, tδ). In particular, we deduce that uj is a supersolution to problem (1.4.24) or
to problem (1.4.25) depending on whether tδ > 0 or tδ = 0. Hence, by comparison principles,

w ≤ uj in NR,j × (tδ, tδ) . (1.4.26)

We also aim to obtain an estimate from above for uj. To this end, let

w(x, t) := G−1
(
M V (x) + σ +G(a(t0)) + λ(t− t0)2

)
∀(x, t) ∈ Bc

R0 × (tδ, tδ) ,

with
M ≥ max

{
2λδ
α0

,
G(K)−G(−‖a‖∞)

V (R)

}
and

λ ≥ G(K)−G(−‖a‖∞)
δ2 .

Reasoning as above, we find that w is a supersolution to the problem
ρ(x)ut = ∆ [G(u)] in NR,j × (tδ, tδ) ,
u = K on ∂BR × (tδ, tδ) ,
u = G−1 (G(a(t0)) + σ) on ∂Bj × (tδ, tδ) ,
u = K on NR,j × {tδ}

(1.4.27)
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in case tδ > 0, whereas it is a supersolution to the problem
ρ(x)ut = ∆ [G(u)] in NR,j × (0, tδ) ,
u = K on ∂BR × (0, tδ) ,
u = G−1 (G(a(t0)) + σ) on ∂Bj × (0, tδ) ,
u = G−1 (G(a(t0)) + σ) on NR,j × {0}

(1.4.28)

in case tδ = 0. Collecting (1.4.11), (1.4.12) and (1.4.14) we then deduce that uj is a subso-
lution to problem (1.4.27) or to problem (1.4.28) depending on whether tδ > 0 or tδ = 0, so
that comparison principles entail

uj ≤ w in NR,j × (tδ, tδ) . (1.4.29)

Thanks to (1.4.26) and (1.4.29) with j = jk, letting k →∞ we finally get

w ≤ u ≤ w in Bc
R × (tδ, tδ) . (1.4.30)

Hence, in view of (1.4.10) and (1.4.30), we infer that for |x| large enough, independently of
t0 ∈ [0, T ], there holds

G−1 (G(a(t0))− 2σ) ≤ u(x, t0) ≤ G−1 (G(a(t0)) + 2σ) .

In order to complete the proof one just lets σ ↓ 0.

Proof of Theorem 1.4.3. As above, thanks to (1.4.5) we can assert that for any σ > 0 there
exists R = R(σ) > 0 such that

G−1 (G(a0)− σ) ≤ u0(x) ≤ G−1 (G(a0) + σ) ∀x ∈ Bc
R . (1.4.31)

In view of assumption (H0), standard results (see e.g. [8]) ensure existence and uniqueness,
for all j ∈ N, of the solution uj to the problem

ρ(x)ut = ∆ [G(u)] in Bj × (0, T ) ,
u = a0 on ∂Bj × (0, T ) ,
u = u0j on Bj × {0} ,

where
u0j := ζju0 + (1− ζj)a0 in Bj .

Note that, as a consequence of the regularity results in [71] (the presence of the density ρ
here is not an issue), uj ∈ C(Bj × [0, T ]). Moreover, by comparison principles,

|uj| ≤ K := max{‖u0‖∞, |a0|} in Bj × (0, T ) .

Routine compactness arguments (one can use e.g. [70, Lemma 5.2] plus a diagonal procedure)
entail the existence of a subsequence {ujk} ⊂ {uj} which converges, as k → ∞, locally
uniformly in Rd × (0, T ) to a solution u of problem (1.1.21). Now let

Γ(x) := |x|2−d ∀x ∈ Rd \ {0} .

It is apparent that
∆Γ = 0 in Rd \ {0} ,
Γ > 0 in Rd \ {0} ,
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and
lim
|x|→∞

Γ(x) = 0 . (1.4.32)

Let us define the function

W (x) := G−1
(
M Γ(x) + σ +G(a0)

)
∀x ∈ Rd \ {0}

under the assumption
M ≥ G(K)−G(a0)

Γ(R) ,

so that, thanks to the properties of G and Γ, there hold

∆[G(W )] = 0 in Rd \ {0} , (1.4.33)

W (x) ≥ K ∀x ∈ ∂BR , (1.4.34)
W (x) ≥ a0 ∀x ∈ ∂Bj (1.4.35)

and
W (x) ≥ G−1 (G(a0) + σ) ∀x ∈ NR,j , (1.4.36)

where NR,j is as in (1.4.17). From (1.4.33)–(1.4.36) we then deduce thatW is a supersolution
to the problem 

ρ(x)ut = ∆ [G(u)] in NR,j × (0, T ) ,
u = K on ∂BR × (0, T ) ,
u = a0 on ∂Bj × (0, T ) ,
u = G−1 (G(a0) + σ) on NR,j × {0} .

(1.4.37)

On the other hand, uj is a subsolution to (1.4.37) (recall also (1.4.31)); hence, by comparison,

uj ≤ W in NR,j × (0, T ) . (1.4.38)

In order to get a similar estimate from below, let

W (x) := G−1 (−M Γ(x)− σ +G(a0)) ∀x ∈ Rd \ {0} ,

where
M ≥ G(a0)−G(−K)

Γ(R) .

By means of arguments similar to the ones we used above, we can infer that W and uj are a
subsolution and a supersolution, respectively, to the problem

ρ(x)ut = ∆ [G(u)] in NR,j × (0, T ) ,
u = −K on ∂BR × (0, T ) ,
u = a0 on ∂Bj × (0, T ) ,
u = G−1 (G(a0)− σ) on NR,j × {0} ,

so that by comparison principles

W ≤ uj in NR,j × (0, T ) . (1.4.39)

By exploiting (1.4.38) and (1.4.39) with j = jk and letting k →∞, we finally obtain

W ≤ u ≤ W in Bc
R × (0, T ) . (1.4.40)
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Taking the limit of (1.4.40) as |x| → ∞, thanks to (1.4.32) we deduce that for |x| large
enough, independently of t ∈ [0, T ], there holds

G−1 (G(a0)− 2σ) ≤ u(x, t) ≤ G−1 (G(a0) + 2σ) .
The proof is then complete upon letting σ ↓ 0.

Theorem 1.4.4 combines the cases of a possibly degenerate nonlinearity G with a condition
at infinity a(t) which may depend on time. Before proving it, we need some intermediate
results.
Lemma 1.4.13. Let d ≥ 3. For any α,R,M > 0 there exists a subsolution u0 to the equation

−∆[G(u)] = 0 in Rd

which is bounded, continuous, radial, nondecreasing as a function of |x|, satisfies
lim
|x|→∞

u0(x) = α

and is equal to −M in BR.
Proof. First of all, let us define the function

Ũ0(x) := G(α)− β

|x|
∀x ∈ Bc

ε ,

where
0 < ε < γ := β

G(α)−G(−M) .

It is immediate to check that
−∆Ũ0 ≤ 0 in Bc

ε ,

so that ũ0 := G−1(Ũ0) is a subsolution to −∆[G(u)] = 0 in Bc
ε. Now consider the function

û0(x) := max {ũ0(x),−M} ∀x ∈ Bc
ε .

Thanks to Kato’s inequality, we deduce that û0 is also a subsolution to −∆[G(u)] = 0 in
Rd \Bε. Upon noticing that û0 = −M in Bγ \Bε, it is readily seen that the function

u0 :=

û0 in Bc
ε ,

−M in Bε

is a subsolution to −∆[G(u)] = 0 in the whole of Rd. The fact that u0 is bounded, continuous,
radial, nondecreasing as a function of |x| and satisfies the claimed limit property at infinity
is clear by construction. The constant condition in BR is then achieved by picking β =
R(G(α)−G(−M)).

Lemma 1.4.14. Suppose that, besides the assumptions of Theorem 1.4.4, there exists a
function u0 having all the properties stated in Lemma 1.4.13 and such that, for a suitable
ε > 0, there hold

u0(x) ≥ u0(x) ∀x ∈ Rd ,

lim
|x|→∞

u0(x) = min
t∈[0,T ]

a(t)− ε > 0 (1.4.41)

and
2G

(
min
t∈[0,T ]

a(t)− ε
)
> G(‖a‖∞) . (1.4.42)

Then there exists a solution to problem (1.1.21), in the sense of Definition 1.4.1, which
satisfies (1.4.4).
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Proof. First we repeat the proof of Theorem 1.4.2 up to the construction of the sequence {uj},
keeping the same notations. Notice that, as in the proof of Theorem 1.4.3, when we allow for
a degenerate nonlinearity G, in view of the hypothesis (H0) the well-posedness of problem
(1.4.13) is known (see e.g. [8]). Again, from the regularity results of [71], uj ∈ C(Bj× [0, T ]).

Thanks to the properties of u0, (1.4.41), (1.4.42) and (H0), we can pick R1 > R0 and
β > 0 such that

β < u0(R)
and

2G (u0(R))−G(β)−G(‖a‖∞) > 0 (1.4.43)
for all R ≥ R1. Moreover, by definition of u0, it is plain that the latter is a subsolution to
problem (1.4.13). Hence, by comparison,

u0(x) ≤ uj(x, t) ≤ K ∀(x, t) ∈ Bj × (0, T ) ,

where K is as in (1.4.14). Recalling that u0(x) is nonincreasing as a function of |x|, we then
infer

u0(R) ≤ uj(x, t) ≤ K ∀(x, t) ∈ NR,j × (0, T ) . (1.4.44)
Now let

γ := min
u∈[β,K]

G′(u) . (1.4.45)

Given σ > 0, in view of (1.4.10) we can fix R = R(σ) > R1 in (1.4.12) so large that in
(1.4.11) we are allowed to choose

δ = 2
γ
V (R) . (1.4.46)

Note that β and γ are independent of R and δ. Let t0 ∈ [0, T ] and set

λ := G(a(t0))−G(u0(R))
δ2 , M := 2λδ

γ
. (1.4.47)

By combining (1.4.43), (1.4.46) and (1.4.47) there follow

M = G(a(t0))−G(u0(R))
V (R) (1.4.48)

and
−MV (R)− σ +G(a(t0))− λδ2 > G(β) (1.4.49)

provided σ > 0 is small enough. Let us define the function

w(x, t) := G−1
(
−M V (x)− σ +G(a(t0))− λ(t− t0)2

)
∀(x, t) ∈ Bc

R0 × (tδ, tδ) .

Recalling that |x| 7→ V (x) is nonincreasing, from (1.4.49) we deduce

w(x, t) ≥ β ∀(x, t) ∈ NR,j × (tδ, tδ) . (1.4.50)

Moreover, (H0)-(ii), (1.4.9), (1.4.45), (1.4.47) and (1.4.50) entail

ρ(x)wt −∆ [G(w)] = −ρ(x) 2λ(t− t0)
G′(w) +M ∆V ≤ ρ(x)

(
2λδ
γ
−M

)
= 0 in Bc

R0 × (tδ, tδ) .

(1.4.51)
In view of (1.4.48), we have that

w(x, t) ≤ u0(R) ∀(x, t) ∈ ∂BR × (tδ, tδ) ; (1.4.52)
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in addition,
w(x, t) ≤ G−1 (G(a(t0))− σ) ∀(x, t) ∈ ∂Bj × (tδ, tδ) . (1.4.53)

If tδ = 0 there holds

w(x, t) ≤ G−1 (G(a(t0))− σ) ∀(x, t) ∈ NR,j × {0} , (1.4.54)

otherwise

w(x, t) ≤ G−1
(
G(a(t0))− λδ2

)
= u0(R) ∀(x, t) ∈ NR,j × {tδ} . (1.4.55)

Notice that in (1.4.55) we took advantage of (1.4.47). Thanks to (1.4.51)–(1.4.55) we then
infer that w is a subsolution to the problem

ρ(x)ut = ∆ [G(u)] in NR,j × (tδ, tδ) ,
u = u0(R) on ∂BR × (tδ, tδ) ,
u = G−1 (G(a(t0))− σ) on ∂Bj × (tδ, tδ) ,
u = u0(R) on NR,j × {tδ}

(1.4.56)

in case tδ > 0, whereas it is a subsolution to the problem
ρ(x)ut = ∆ [G(u)] in NR,j × (0, tδ) ,
u = u0(R) on ∂BR × (0, tδ) ,
u = G−1 (G(a(t0))− σ) on ∂Bj × (0, tδ) ,
u = G−1 (G(a(t0))− σ) on NR,j × {0}

(1.4.57)

in case tδ = 0. On the other hand, from (1.4.11), (1.4.12) (which, recall, holds true as a
consequence of (1.4.3)) and (1.4.44) we easily deduce that uj is a supersolution to problem
(1.4.56) or to problem (1.4.57) depending on whether tδ > 0 or tδ = 0. Hence, by comparison,

w ≤ uj in NR,j × (tδ, tδ) .

In order to get an analogous estimate from above, let

w(x, t) := G−1
(
M V (x) + σ +G(a(t0)) + λ(t− t0)2

)
∀(x, t) ∈ Bc

R0 × (tδ, tδ) .

By construction,
w ≥ min

t∈[0,T ]
a(t) in Bc

R0 × (tδ, tδ) .

Choose any

M ≥ max
{

2λδ
mint∈[0,T ] G′(a(t)) ,

G(K)−G(−‖a‖∞)
V (R)

}
and

λ ≥ G(K)−G(−‖a‖∞)
δ2 .

Reasoning in a similar way as above, there is no difficulty in showing that w is a supersolution
to problem (1.4.27) or to problem (1.4.28) depending on whether tδ > 0 or tδ = 0. On
the other hand, by exploiting (1.4.11), (1.4.12) and (1.4.14) we easily deduce that uj is a
subsolution to problem (1.4.27) or to problem (1.4.28) depending on whether tδ > 0 or
tδ = 0. Hence, as in the proof of Theorem 1.4.3, by means of a compactness argument which
makes use e.g. of [70, Lemma 5.2] (again, the presence of the density ρ is not an issue) and a
diagonal procedure, we deduce that there exists a subsequence {ujk} ⊂ {uj} which converges,
as k → ∞, locally uniformly in Rd × (0, T ) to a solution u to problem (1.1.21). We then
conclude by arguing as in the end of proof of Theorem 1.4.2.
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Proof of Theorem 1.4.4. Consider first a datum a(t) such that, for some ε > 0,

min
t∈[0,T ]

a(t)− ε > 0

and (1.4.42) holds true. Then pick a function u0 as in Lemma 1.4.13 with the choices

α = min
t∈[0,T ]

a(t)− ε ,

R so large that
u0(x) ≥ min

t∈[0,T ]
a(t)− ε ∀x ∈ Bc

R

and
M = max

{
0,− inf

x∈Rd
u0(x)

}
.

Under these assumptions, it is plain that u0(x) ≥ u0(x) for all x ∈ Rd. Hence, in this case,
we are in position to apply Lemma 1.4.14 and the assertion is proved.

If there exists no ε > 0 such that a(t) satisfies (1.4.42) in the time interval [0, T ], we can
always find ε, τ > 0 so small that

2G
(

min
s∈[t,(t+τ)∧T ]

a(s)− ε
)
> G

(
max

s∈[t,(t+τ)∧T ]
a(s)

)
∀t ∈ [0, T ) .

This is a straightforward consequence of the uniform continuity of G(a(t)) and of its strict
positivity in [0, T ]. By exploiting again Lemma 1.4.14 we get existence in the time interval
[0, τ ]. Repeating the same procedure starting from t = τ we get existence in [τ, 2τ ∧ T ] with
initial datum u(τ) and so, by Definition 1.4.1, existence in the whole of [0, 2τ ∧ T ]. A finite
number of iterations then yields the claim.

As concerns Remark 1.4.6, note that point (i) follows by means of the same proof as
Theorem 1.4.2, provided one chooses δ ∈ (0, t0) in (1.4.11). As for point (ii), we just stress
that condition (1.4.7) permits us to repeat the proof of Theorem 1.4.4, upon picking R > R∗

and τ ≤ ε. In both cases, the assumption that lim|x|→∞ u0(x) exists finite can be replaced by
u0 ∈ L∞(Rd).

1.4.3 Uniqueness

Let u1 and u2 be any two solutions of problem (1.1.21). Define the function

q(x, t) :=


G(u1(x,t))−G(u2(x,t))

u1(x,t)−u2(x,t) if u1(x, t) 6= u2(x, t) ,
0 if u1(x, t) = u2(x, t) ,

for all (x, t) ∈ ST . Notice that, in view of assumption (H0)-(ii), we have q ≥ 0 in ST and
q ∈ L∞(ST ). Given τ ∈ (0, T ), one can show that there exists a sequence {qn} ⊂ C∞(ST )
such that, for every n ∈ N, there hold

1
nd+1 ≤ qn ≤ ‖q‖L∞(ST ) + 1

nd+1 in Qn,τ := Bn × (0, τ)

and
lim
n→∞

∥∥∥∥∥(qn − q)√
qn

∥∥∥∥∥
L2(Qn,τ )

= 0 . (1.4.58)
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In fact, it is enough to choose (for instance) a regular approximation of

q ∨
( 1
nd+1

)
.

Hereafter we shall assume, in addition, that the density ρ is regular. We shall then explain
in the end of the proof of Theorem 1.4.8 how it is possible to consider general ρ ∈ C(Rd).

For any n ∈ N, let ψn be the unique regular solution to the backward parabolic (dual)
problem 

ρ(x)(ψn)t + qn(x, t) ∆ψn = 0 in Qn,τ ,

ψn = 0 on ∂Bn × (0, τ) ,
ψn = χ on Bn × {τ} ,

(1.4.59)

where χ ∈ C∞(Rd) is any function such that 0 ≤ χ ≤ 1 and suppχ ⊂ Bn0 for a fixed n0 ∈ N.
Such solutions enjoy some crucial properties.

Lemma 1.4.15. For all n > n0, there hold

0 ≤ ψn ≤ 1 in Qn,τ (1.4.60)

and
− C

nd−1 ≤ 〈∇ψn,nn〉 ≤ 0 on ∂Bn × (0, τ) , (1.4.61)

where C is a positive constant independent of n and nn = nn(σ) is the outer normal at
σ ∈ ∂Bn.

Proof. The bounds (1.4.60) just follow by standard comparison principles (see e.g. [98]) be-
cause ψ ≡ 0 and ψ ≡ 1 are a subsolution and a supersolution, respectively, to problem
(1.4.59). As for (1.4.61), first notice that (1.4.60) entails

〈∇ψn,nn〉 ≤ 0 on ∂Bn × (0, τ) , (1.4.62)

since
ψn = 0 on ∂Bn × (0, τ) .

Now let
En := Bn \Bn0 .

From (1.4.60) and the fact that suppχ ⊂ Bn0 we infer that ψn is a subsolution to the problem
ρ(x)ψt + qn(x, t) ∆ψ = 0 in En × (0, τ) ,
ψ = 1 on ∂Bn0 × (0, τ) ,
ψ = 0 on ∂Bn × (0, τ) ,
ψ = 0 on En × {τ} .

(1.4.63)

Consider the function
z(x) := C0

|x|2−d − n2−d

1− n2−d ∀x ∈ En ,

where C0 is a suitable positive constant. It is readily seen that, for C0 = C0(n0) large enough,
z is a supersolution to problem (1.4.63) (recall that d ≥ 3). Furthermore,

ψn = z = 0 on ∂Bn × (0, τ) ,
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whence

〈∇ψn,nn〉 ≥ 〈∇z,nn〉 = −(d− 2)C0 n
1−d

1− n2−d on ∂Bn × (0, τ) . (1.4.64)

Thanks to (1.4.62) and (1.4.64) there follows (1.4.61) with C := (d − 2)C0/(1 − n2−d
0 ), and

the proof is complete.

We are now in position to prove our uniqueness result.

Proof of Theorem 1.4.8. Let u1 and u2 be two bounded solutions to problem (1.1.21) (with
the same u0), in the sense of Definiton 1.4.1, satisfying

lim
|x|→∞

u1(x, t) = lim
|x|→∞

u2(x, t) = a(t) for a.e. t ∈ (0, T ) .

By dominated convergence, this implies that for any τ ∈ (0, T )

lim
R→∞

1
Rd−1

∫ τ

0

∫
∂BR
|G(u1(σ, t))−G(u2(σ, t))| dσdt = 0 . (1.4.65)

It is apparent that w := u1 − u2 solves∫
Ω
ρ(x)w(x, τ)ϕ(x, τ) dx

=
∫ τ

0

∫
Ω
{ρ(x)w(x, t)ϕt(x, t) + [G(u1(x, t))−G(u2(x, t))] ∆ϕ(x, t)} dxdt

−
∫ τ

0

∫
∂Ω

[G(u1(σ, t))−G(u2(σ, t))] ∂ϕ
∂n

(σ, t) dσdt

(1.4.66)

for any Ω and ϕ as in Definition 1.4.1 (just swap t and τ there). Now note that, by multiplying
the differential equation in (1.4.59) by ∆ψn/ρ and integrating by parts we obtain∫ τ

0

∫
Bn
qn(x, t) [∆ψn(x, t)]2 dxdt ≤ C̃ (1.4.67)

for some constant C̃ > 0 independent of n (recall that ρ ∈ L∞(Rd)). Choosing Ω = Bn and
ϕ = ψn in (1.4.66) we get∫

Bn
ρ(x)w(x, τ)χ(x) dx =

∫ τ

0

∫
Bn

[q(x, t)− qn(x, t)]w(x, t) ∆ψn(x, t) dxdt

−
∫ τ

0

∫
∂Bn

q(σ, t)w(σ, t) 〈∇ψn,nn〉(σ, t) dσdt .
(1.4.68)

We shall prove that both integrals in the right-hand side of (1.4.68) vanish as n → ∞. As
for the first one, (1.4.58) and (1.4.67) yield(∫ τ

0

∫
Bn

[q(x, t)− qn(x, t)]w(x, t) ∆ψn(x, t) dxdt
)2

≤B
∥∥∥∥∥(qn − q)√

qn

∥∥∥∥∥
2

L2(Qn,τ )

∫ τ

0

∫
Bn
qn(x, t) [∆ψn(x, t)]2 dxdt→ 0 as n→∞ ,

(1.4.69)

where B := (‖u1‖∞ + ‖u2‖∞)2. On the other hand, from (1.4.61) and (1.4.65) we deduce
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that ∣∣∣∣∫ τ

0

∫
∂Bn

q(σ, t)w(σ, t) 〈∇ψn,nn〉(σ, t) dσdt
∣∣∣∣

=
∣∣∣∣∫ τ

0

∫
∂Bn

[G(u1(σ, t))−G(u2(σ, t))] 〈∇ψn,nn〉(σ, t) dσdt
∣∣∣∣

≤ sup
∂Bn×(0,τ)

|〈∇ψn,nn〉|
∫ τ

0

∫
∂Bn
|G(u1(σ, t))−G(u2(σ, t))| dσdt

≤ C

nd−1

∫ τ

0

∫
∂Bn
|G(u1(σ, t))−G(u2(σ, t))| dσdt→ 0 as n→∞ .

(1.4.70)

Letting n→∞ in (1.4.68), in view of (1.4.69) and (1.4.70) there follows∫
Rd
ρ(x)χ(x)w(x, τ) dx = 0 , (1.4.71)

which in fact holds true for any τ ∈ (0, T ) and any χ ∈ C∞c (Rd) with 0 ≤ χ ≤ 1. Now fix
any compact subset K b Rd and let

ζ(x, τ) :=

1 if x ∈ K and w(x, τ) > 0 ,
0 elsewhere .

Pick a sequence {χn} ⊂ C∞c (Rd), with 0 ≤ χn ≤ 1, which converges pointwise to ζ. Identity
(1.4.71) gives ∫

Rd
ρ(x)χn(x)w(x, τ) dx = 0 ,

so that by taking the limit as n→∞ we get (e.g. by dominated convergence)∫
K∩{w(τ)>0}

ρ(x)w(x, τ) dx = 0 .

As a result, w(x, τ) ≤ 0 for all x ∈ K. Since the compact subset K b Rd and τ ∈ (0, T ) are
arbitrarily chosen, we then obtain

w ≤ 0 in Rd × (0, T ) ,

that is
u1 ≤ u2 in Rd × (0, T ) .

Swapping the role of u1 and u2 we also find the opposite inequality, which completes the
proof.

Finally, we still have to get rid of the hypothesis that ρ is regular. The latter property
has been used in order to justify rigorously (1.4.61), (1.4.67) and (1.4.68), where we need
e.g. ψn ∈ C2(Bn × [0, τ ]). The idea is just to replace, for any given n > n0, the density ρ
with its mollification ρε in problem (1.4.59), whose solution we denote as ψn,ε. It is easy to
check that estimates (1.4.61) and (1.4.67) are independent of ε > 0. The only difference is
in the r.h.s. of (1.4.68), where the term∫ τ

0

∫
Bn

[ρ(x)− ρε(x)]w(x, t) (ψn,ε)t(x, t) dxdt (1.4.72)

appears. However, it is plain that (1.4.72) vanishes as ε → 0. Hence, by letting first ε → 0
and then n→∞ we recover (1.4.71).
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1.A Some examples of weighted inequalities

In this section we shall provide pairs of weights (ρν , ρµ) for which Poincaré-, Sobolev-
and Gagliardo-Nirenberg-type inequalities hold true, so as to show some explicit frameworks
where the results of Sections 1.2 and 1.3 apply.

1.A.1 The Dirichlet case: functions in H1
0 (Ω; ν, µ)

Here we shall consider inequalities of the type of (1.2.5), (1.2.7), (1.2.12) and (1.2.15). For
the weights involved, the smoothing and decay estimates of Section 1.2 concerning solutions
to the Dirichlet problem (1.1.1) hold true.

1.A.1.1 Poincaré-type inequalities

We begin with the one-dimensional case, where necessary and sufficient conditions are
available. Afterwards we shall consider domains of Rd with d > 1.

Let Ω = (a, b), the cases a = −∞ and b = +∞ being allowed. We look for weights ρν and
ρµ such that the Poincaré-type inequality (also referred to as Hardy-type inequality)

‖φ‖2;ν ≤ CP ‖φ′‖2;µ (1.A.1)

holds true for some CP > 0 and all φ belonging to a suitable functional space. We shall mainly
refer to the monograph [145]. According to the notations introduced therein, we denote as
ACL(a, b) the space of all functions φ : (a, b) 7→ R which are locally absolutely continuous
and such that limx→a+ φ(x) = 0. The space ACR(a, b) is meant likewise, upon replacing a+

with b−, while ACLR := ACL ∩ ACR. Since C∞c (a, b) is included in ACLR(a, b) and it is
dense in H1

0 ((a, b); ν, µ) by definition, the validity of (1.A.1) in ACLR(a, b) implies in turn
the validity of the latter in H1

0 ((a, b); ν, µ). Theorem 1.14 of [145] ensures that (1.A.1) holds
true in ACL(a, b) if and only if the weights satisfy the following condition:

BL(a, b, ν, µ) := sup
x∈(a,b)

(∫ b

x
ρν(y) dy

)(∫ x

a
ρµ(y)−1 dy

)
<∞ .

On the other hand, (1.A.1) holds true in ACR(a, b) if and only if

BR(a, b, ν, µ) := sup
x∈(a,b)

(∫ x

a
ρν(y) dy

)(∫ b

x
ρµ(y)−1 dy

)
<∞ .

It is then possible to show [145, Theorem 8.8] that the existence of a constant c ∈ [a, b] such
that

BL(a, c, ν, µ) + BR(c, b, ν, µ) <∞ , (1.A.2)
where we conventionally set BL(a, a, ·, ·) = BR(b, b, ·, ·) = 0, is necessary and sufficient for the
validity of (1.A.1) in ACLR(a, b). Actually, one can show that the same result is true if we
replace ACLR(a, b) with the space of absolutely continuous functions in (a, b) with compact
support. As a consequence, at least for weights that are locally bounded and bounded away
from zero, we can assert that condition (1.A.2) is necessary and sufficient for the validity of
(1.A.1) in H1

0 ((a, b); ν, µ). For a more general discussion about inequality (1.A.1), possibly
involving weights which are not absolutely continuous with respect to the Lebesgue measure,
see e.g. [131, Section 1.3] or also the pioneering works [138,139].

In dimension d ≥ 1, it is well known (see e.g. [145, Chapter 15]) that the so-called Muck-
enhoupt classes of weights originally introduced in [139] have an important role in weighted
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functional inequalities. In fact, Muckenhoupt classes are defined by a sort of generalization
of condition (1.A.2) for d-dimensional domains. We shall not investigate further such theory:
we prefer to give some explicit examples instead.

Let Ω ⊂ Rd be a bounded Lipschitz domain. We denote as δ(x) := dist(x, ∂Ω) the distance
of x ∈ Ω with respect to the boundary. Consider a parameter β < 1. From [145, Theorem
21.5] we have that the Poincaré-type inequality

‖v‖2;ν ≤ CP ‖∇v‖2;µ (1.A.3)

holds true for all v ∈ H1
0 (Ω; δα, δβ) if and only if α ≥ β − 2. Moreover, Sobolev-type

inequalities hold if in addition either β ≤ 2 − d or β > 2 − d and α > β − 2 (see the next
Paragraph 1.A.1.2). Finally, if β ≥ 1 it is possible to prove that H1

0 (Ω; δβ, δβ) = H1(Ω; δβ, δβ)
[95, Theorem 2.11]: this is enough in order to assert that for any α ∈ R and β ≥ 1 inequality
(1.A.3) cannot be valid in H1

0 (Ω; δα, δβ).
Consider now an exterior domain Ω ⊂ Rd (namely the complement of any compact set)

such that infx∈Ω |x| > 0. Then the Poincaré-type inequality (1.A.3) holds true in

H1
0 (Ω; |x|α, |x|β)

if and only if β 6= 2 − d and α ≤ β − 2 [145, Example 21.10]. Under such assumptions,
Sobolev-type inequalities are valid either if β > 2−d or if β < 2−d and α < β−2 (see again
Paragraph 1.A.1.2). The same results apply to the whole Euclidean space Rd upon replacing
the weights |x|α and |x|β with (|x|+ 1)α and (|x|+ 1)β, respectively, provided β > 2− d (see
e.g. [22,24]). On the other hand, if β < 2− d then the Poincaré-type inequality (1.A.3) does
not hold since, for instance, one can prove that constants belong to

H1
0 (Rd; (|x|+ 1)α, (|x|+ 1)β)

provided α ≤ β − 2 < −d. As concerns the limit case β = 2 − d and peculiar related
functional inequalities, we refer the reader to [24, 30] for a thorough analysis. Still in the
framework of exterior domains, in [145, Example 21.12] exponential weights are also dealt
with. In particular, one can prove that the Poincaré-type inequality (1.A.3) holds true in

H1
0 (Ω; eα|x|, eβ|x|) , β 6= 0 ,

provided α ≤ β. Sobolev-type inequalities also hold if in addition either β > 0 or β < 0 and
α < β.

In the special case Ω = Rd \ {0} (see again [145, Example 21.10]), the (Hardy) Poincaré-
type inequality (1.A.3) is also satisfied with respect to the weights ρν(x) = |x|β−2 and ρµ(x) =
|x|β, under the only assumption β 6= 2− d (and no Sobolev-type inequality holds).

In view of the above discussion, we can now list a collection of some explicit domains
Ω and pairs of weights (ρν , ρµ) for which the Poincaré-type inequality (1.A.3) holds true
in H1

0 (Ω; ν, µ) but Sobolev-type embeddings fail. In the one-dimensional setting we exploit
condition (1.A.2) and condition (1.A.5) below.
• Intervals:
◦ (xβ−2, xβ) for β > 1 in Ω = (0, b), with b > 0;
◦ (xβ−2, xβ) for β < 1 in Ω = (a,+∞), with a > 0;
◦ (xβ−2, xβ) for β 6= 1 in Ω = (0,+∞);
◦ (x−1| log x|β−2, x| log x|β) for β 6= 1 in Ω = (0, 1);
◦ (eαx, eαx) for α 6= 0 in Ω = R;
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• Bounded Lipschitz domains (d ≥ 2):
◦ (δβ−2, δβ) for 2− d < β < 1;
• Exterior domains:
◦ (|x|β−2, |x|β) for β < 2− d;
◦ (e−α|x|, e−α|x|) for α > 0;
• Euclidean space:
◦ (|x|β−2, |x|β) for β 6= 2− d in Rd \ {0}.

1.A.1.2 Sobolev-type inequalities

As in the Poincaré case, necessary and sufficient conditions are also known for the va-
lidity of Sobolev-type inequalities in the one-dimensional context. More precisely, given
a ∈ [−∞,+∞) and b ∈ (−∞,+∞], with a < b, the Sobolev-type inequality

‖φ‖2σ;ν ≤ CS ‖φ′‖2;µ (1.A.4)

holds true for some σ > 1, CS > 0 and all φ ∈ ACL(a, b) if and only if

CL(a, b, ν, µ, σ) := sup
x∈(a,b)

(∫ b

x
ρν(y) dy

) 1
σ (∫ x

a
ρµ(y)−1 dy

)
<∞ .

On the other hand, (1.A.4) holds true in ACR(a, b) if and only if

CR(a, b, ν, µ, σ) := sup
x∈(a,b)

(∫ x

a
ρν(y) dy

) 1
σ

(∫ b

x
ρµ(y)−1 dy

)
<∞ .

These results are still proved in [145, Theorem 1.14], whereas [145, Theorem 8.8] ensures that
the existence of a constant c ∈ [a, b] such that

CL(a, c, ν, µ, σ) + CR(c, b, ν, µ, σ) <∞ (1.A.5)

is necessary and sufficient for the validity of (1.A.4) in ACLR(a, b).
Hereafter, for simplicity, we shall mainly focus on domains and weights for which the

Poincaré-type inequality (1.A.1) also holds true: we point out that such property (i.e. the
validity of both Poincaré-type and Sobolev-type inequalities) need not be a feature of only
domains with finite measure. Moreover, in order to make sure that no Gagliardo-Nirenberg-
type inequality of the type of (1.2.12) or (1.2.15) holds, we shall only consider cases where σ
has a finite upper bound.

As concerns bounded Lipschitz domains Ω ⊂ Rd (we use the same notations as in Para-
graph 1.A.1.1), from [145, Theorem 21.5] we have that the Sobolev-type inequality

‖v‖2σ;ν ≤ CS ‖∇v‖2;µ (1.A.6)

holds true in H1
0 (Ω; δα, δβ) provided d ≥ 3, β < 1, β ≤ 2 − d, α ≥ β − 2 and σ ∈ [1, 1∗] or

d ≥ 2, 2− d < β < 1, α > β − 2 and σ ∈ [1, 1∗ ∧ κ], where we set

1∗ := d/(d− 2) if d ≥ 3 , 1∗ := +∞ otherwise (1.A.7)

and
κ := α + d

β − 2 + d
. (1.A.8)
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Given an exterior domain Ω ⊂ Rd with infx∈Ω |x| > 0, Example 21.10 of [145] entails that the
Sobolev-type inequality (1.A.6) holds true in H1

0 (Ω; |x|α, |x|β) provided β < 2− d, α < β − 2
and σ ∈ [1, 1∗ ∧ κ] or d ≥ 3, β > 2− d, α ≤ β − 2 and σ ∈ [1, 1∗]. For the latter choice of the
parameters, as mentioned above, the same is true in

H1
0 (Rd; (|x|+ 1)α, (|x|+ 1)β) .

In the case of exponential weights, from [145, Example 21.12] we deduce that (1.A.6) holds
true in

H1
0 (Ω; eα|x|, eβ|x|)

provided β < 0, α < β and σ ∈ [1, 1∗∧ (α/β)] or d ≥ 3, β > 0, α ≤ β and σ ∈ [1, 1∗]. For the
latter choice of the parameters it is not difficult to show that the same result is valid with
Ω = Rd.

Finally, let us consider the special case Ω = Rd \ {0}. Still from [145, Example 21.10],
we have that the Sobolev-type inequality (1.A.6) holds true in H1

0 (Ω; |x|α, |x|β) provided
β > 2− d, α > β − 2 (with in addition α ≤ β1∗ if d ≥ 3) and σ = κ or β < 2− d, α < β − 2
(with in addition α ≥ β1∗ if d ≥ 3) and σ = κ.

We can now summarize the above examples by listing a collection of explicit domains
Ω and pairs of weights (ρν , ρµ) for which the Sobolev-type inequality (1.A.6) holds true in
H1

0 (Ω; ν, µ) (but one- and two-dimensional Gagliardo-Nirenberg-type inequalities fail). In the
one-dimensional setting we exploit condition (1.A.5).
• Intervals:
◦ (xα, xβ) in Ω = (0, b) (with b > 0) for β > 1, α > β − 2 and σ ∈ [1, (α + 1)/(β − 1)];
◦ (xα, xβ) in Ω = (a,+∞) (with a > 0) for β < 1, α < β−2 and σ ∈ [1, (α+1)/(β−1)];
◦ (xα, xβ) in Ω = (0,+∞) for β > 1, α > β − 2 and σ = (α + 1)/(β − 1) or for β < 1,
α < β − 2 and σ = (α + 1)/(β − 1);
◦ (x−1| log x|α, x| log x|β) in Ω = (0, 1) for β > 1, α > β − 2 and σ = (α+ 1)/(β − 1) or
for β < 1, α < β − 2 and σ = (α + 1)/(β − 1);
◦ (eαx, eβx) in Ω = R for α > β > 0 and σ = α/β;
• Bounded Lipschitz domains:
◦ (δα, δβ) for d ≥ 3, β < 1, β ≤ 2 − d, α ≥ β − 2 and σ ∈ [1, 1∗] or for d ≥ 2,

2 − d < β < 1, α > β − 2 and σ ∈ [1, 1∗ ∧ κ], where 1∗ and κ are as in (1.A.7) and
(1.A.8), respectively;

• Exterior domains:
◦ (|x|α, |x|β) for β < 2 − d, α < β − 2 and σ ∈ [1, 1∗ ∧ κ] or for d ≥ 3, β > 2 − d,
α ≤ β − 2 and σ ∈ [1, 1∗];
◦ (eα|x|, eβ|x|) for β < 0, α < β and σ ∈ [1, 1∗ ∧ (α/β)] or for d ≥ 3, β > 0, α ≤ β and
σ ∈ [1, 1∗];

• Euclidean space:
◦ [(|x|+ 1|)α, (|x|+ 1)β] in Rd for d ≥ 3, β > 2− d, α ≤ β − 2 and σ ∈ [1, 1∗];
◦ (eα|x|, eβ|x|) in Rd for d ≥ 3, β > 0, α ≤ β and σ ∈ [1, 1∗];
◦ (|x|α, |x|β) in Rd \ {0} for β > 2− d, α > β − 2 (with α ≤ β1∗ if d ≥ 3) and σ = κ or
for β < 2− d, α < β − 2 (with α ≥ β1∗ if d ≥ 3) and σ = κ.

1.A.1.3 Gagliardo-Nirenberg-type inequalities

Unlike Poincaré- and Sobolev-type inequalities, as far as we know no necessary and suffi-
cient conditions on the weights (in dimension one) are available for one- or two-dimensional
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Gagliardo-Nirenberg-type inequalities. Nevertheless, we can still construct explicit exam-
ples in our setting relying on the well-known Caffarelli-Kohn-Nirenberg inequalities (see the
original reference [41]). In particular, given β ∈ (−1, 1) and α ≥ −β, the inequalities(∫

R
|φ(x)|r |x|αdx

) 1
r

≤ CG1

(∫
R
|φ′(x)|2 |x|βdx

) λ(r−s)
2r(s+λ)

(∫
R
|φ(x)|s |x|αdx

) r+λ
r(s+λ)

∀φ ∈ C∞c (R)
(1.A.9)

hold true for all r > s > 0 and some CG1 = CG1(r, s, α, β) > 0, where

λ := 2 α + 1
1− β . (1.A.10)

This is in fact a special case of the main theorem in [41], at least for s ≥ 1. In view
of [13, Theorem 3.2], we then infer that (1.A.9) is equivalent to

‖φ‖∞ ≤ CG1

(∫
R
|φ′(x)|2 |x|βdx

) λ
2(s+λ)

(∫
R
|φ(x)|s |x|αdx

) 1
s+λ

∀φ ∈ C∞c (R) , (1.A.11)

for another positive constant CG1 independent of s > 0. We point out that the weights |x|α
and |x|β are not locally bounded and locally bounded away from zero in Ω = R, a property
that we required in the theory above. However, notice that (1.A.11) trivially implies the
validity of the same inequality e.g. in C∞c ((0,+∞)), and therefore in the whole of

H1
0 ((0,+∞); |x|α, |x|β) ∩ Ls((0,+∞); |x|α)

by density.
As concerns two-dimensional Gagliardo-Nirenberg-type inequalities, for simplicity we still

provide examples in the real line. In order to avoid confusion, let us remark that the termi-
nology “two dimensional” only refers to the type of inequality and not to the setting. Given
α > −1, the inequalities(∫

R
|φ(x)|r |x|αdx

) 1
r

≤ CG2

(∫
R
|φ′(x)|2 |x|dx

) r−s
2r
(∫

R
|φ(x)|s |x|αdx

) 1
r

∀φ ∈ C∞c (R)
(1.A.12)

hold true for all r > s > 0 and some CG2 = CG2(r, s, α) > 0, still as a consequence of the
results in [41] and of [13, Theorem 3.3]. Reasoning as above, we can then assert that (1.A.12)
is also valid, for instance, in the whole of

H1
0 ((0,+∞); |x|α, |x|) ∩ Ls((0,+∞); |x|α) ,

for another CG2 > 0 that depends on r, s only through a finite upper bound on r. Moreover,
in this case, a standard scaling argument (replace φ(x) with φ(x/ε) and let ε ↓ 0) prevents
the possibility that a one-dimensional inequality of the type of (1.A.11) holds.

1.A.2 The Neumann case: functions in H1(Ω; ν, µ) with zero mean

We now consider inequalities of the type of (1.3.14), (1.3.16), (1.3.19) and (1.3.21). Ac-
cordingly, the smoothing and long-time estimates of Section 1.3 concerning solutions to the
Neumann problem (1.1.2) hold true for the weights involved.

1.A.2.1 Poincaré-type inequalities

As concerns Poincaré-type inequalities for zero-mean functions, in the one-dimensional
context necessary and sufficient (and easy-to-check) conditions are still available. More pre-
cisely, let Ω = (a, b) (the cases a = −∞ and b = +∞ being admissible) and take a pair of
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weights (ρν , ρµ) defined in Ω, with ν(Ω) <∞. Consider the quantities

KL(a, b, ν, µ) := sup
x∈(a,b)

(∫ b

x
ρν(y) dy

)(∫ x

a

(∫ y

a
ρν(t) dt

)2
ρµ(y)−1 dy

)
,

KR(a, b, ν, µ) := sup
x∈(a,b)

(∫ x

a
ρν(y) dy

)∫ b

x

(∫ b

y
ρν(t) dt

)2

ρµ(y)−1 dy
 .

Theorem 1.4 of [54] states that the Poincaré-type inequality

‖v − v‖2;ν ≤MP ‖v′‖2;µ , v :=
∫ b
a v(x) ρν(x)dx∫ b
a ρν(x) dx

holds true for some MP > 0 and all v ∈ H1((a, b); ν, µ) if and only if

KL(a, b, ν, µ) +KR(a, b, ν, µ) <∞ . (1.A.13)

We refer the reader to the end of this paragraph for some explicit examples of one-dimensional
weights complying with (1.A.13).

Let Ω ⊂ Rd be a bounded star-shaped domain and let w : (0,+∞) 7→ (0,+∞) be any
increasing function such that w(sr) ≥ sw(r) for all r > 0 and s ∈ (0, 1). Then, for any k ∈ N,
there exists a constant MP > 0 such that (recall that δ here denotes the distance function
w.r.t. the boundary)∫

Ω

∣∣∣φ(x)− φ
∣∣∣2w(δ(x))k dx ≤M2

P

∫
Ω
|∇φ(x)|2w(δ(x))k dx (1.A.14)

∀φ ∈ C1(Ω) ∩H1(Ω; (w ◦ δ)k, (w ◦ δ)k) .

This is the content of [39, Theorem 1]. In view of Proposition 1.1.3 the validity of (1.A.14) is
readily extended to the whole of H1(Ω; (w ◦ δ)k, (w ◦ δ)k). In the case where Ω is a ball, the
result remains true under the sole assumption that w is increasing, see e.g. [88] and references
therein. Nevertheless, here we are mainly interested in weights for which the Poincaré-type
inequality

‖v − v‖2;ν ≤MP ‖∇v‖2;µ , v :=
∫

Ω v(x) ρν(x)dx∫
Ω ρν(x) dx (1.A.15)

holds true and no Sobolev-type inequality does. For instance, from (1.A.14) we deduce that
(1.A.15) is satisfied in H1(Ω; δβ, δβ) for all β > 0 (see also [110] for similar results in less
regular domains), but in the latter case also Sobolev-type inequalities are valid (we refer to
Paragraph 1.A.2.2).

If Ω ⊂ Rd is a bounded convex domain, then the Poincaré-type inequality (1.A.15) holds
true in H1(Ω; δβ−2, δβ) as a consequence of [55, Theorem 1.1], provided β ≥ 2. Moreover, in
this case there is no Sobolev-type embedding (we refer again the reader to the next Paragraph
1.A.2.2). Actually, by exploiting the results of [87] (see Theorem 3.3 there), where the authors
establish some Muckenhoupt-type condition for rather general domains, we can assert that
the same holds true for β ∈ (1, 2) as well. Notice that, by means of an elementary change of
variable, we can relax the hypothesis that Ω is convex by requiring, for instance, that there
exists a bi-Lipschitz function which maps it to a convex domain.

We now consider the whole Euclidean space Rd with power-law weights. In view of the
results of [22,24], we have that for d ≥ 3 the Poincaré-type inequality (1.A.15) holds true in

H1(Rd; (|x|+ 1)β−2, (|x|+ 1)β)
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provided β < 2 − d. Furthermore, in this case there is no Sobolev-type embedding (see
e.g. [145, Example 20.6]).

Finally, as for exponential weights, we limit ourselves to mentioning the well-know Poincaré
inequality with respect to the Gaussian measure, namely the fact that (1.A.15) holds true in

H1(Rd; e−α|x|2 , e−α|x|2)

for all α > 0 (and Sobolev-type embeddings fail). Several references are available in the
literature on this classical topic: we refer the reader e.g. to [106], [59, Chapter 2 and Section
4.3] and [92]. In this regard, see also the paper [12] and references therein for similar results
concerning log-concave (and more general) measures.

For the reader’s convenience, we list the most significant examples we discussed above
where the Poincaré-type inequality (1.A.15) holds true in H1(Ω; ν, µ) but Sobolev-type ones
do not. In the one-dimensional case we exploit condition (1.A.13) and condition (1.A.17)
below.
• Intervals:
◦ (xβ−2, xβ) for β > 1 in Ω = (0, b), with b > 0;
◦ (xβ−2, xβ) for β < 1 in Ω = (a,+∞), with a > 0;
◦ (x−1| log x|β−2, x| log x|β) for β < 1 in Ω = (0, c), with c ∈ (0, 1);
◦ (e−α|x|, e−α|x|) for α > 0 in Ω = R;
• Bounded convex domains:
◦ (δβ−2, δβ) for β > 1;
• Euclidean space:
◦ [(|x|+ 1)β−2, (|x|+ 1)β] for d ≥ 3 and β < 2− d in Rd;
◦ (e−α|x|2 , e−α|x|2) for α > 0 in Rd.

1.A.2.2 Sobolev-type inequalities

In the one-dimensional context, Theorem 1.4 of [54] also deals with the Sobolev-type
inequality

‖v − v‖2σ;ν ≤MS ‖v′‖2;µ . (1.A.16)
That is, given a ∈ [−∞,+∞) and b ∈ (−∞,+∞], with a < b, (1.A.16) holds true for some
σ > 1, MS > 0 and all v ∈ H1((a, b); ν, µ) if and only if

QL(a, b, ν, µ, σ) +QR(a, b, ν, µ, σ) <∞ , (1.A.17)

where

QL(a, b, ν, µ, σ) := sup
x∈(a,b)

(∫ b

x
ρν(y) dy

) 1
σ
(∫ x

a

(∫ y

a
ρν(t) dt

)2
ρµ(y)−1 dy

)

and

QR(a, b, ν, µ, σ) := sup
x∈(a,b)

(∫ x

a
ρν(y) dy

) 1
σ

∫ b

x

(∫ b

y
ρν(t) dt

)2

ρµ(y)−1 dy
 .

Again, in the end of the paragraph we shall list some explicit examples of one-dimensional
weights which comply with (1.A.17).

In general dimensions, once the embedding ofH1(Ω; ν, µ) in L2σ(Ω; ν) is continuous and the
one in L2(Ω; ν) is compact, one can readily prove the validity of the Sobolev-type inequality

‖v − v‖2σ;ν ≤MS ‖∇v‖2;µ (1.A.18)
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by a means of a standard argument by contradiction (of course, provided ν(Ω) < ∞). As a
consequence, below we shall only mention compactness properties, taking for granted that the
latter imply (1.A.18). We point out that this approach is in principle possible for the Poincaré-
type inequality (1.A.15) as well, except that in this case lack of Sobolev-type embeddings is
usually associated with lack of compactness.

Let Ω ⊂ Rd be a bounded Lipschitz domain, with d ≥ 2. If β > 1 and α > β − 2, then
Theorems 19.9 and 19.11 of [145] establish that the injection of H1(Ω; δβ, δβ) in L2σ(Ω; δα)
is continuous for all σ ∈ [1, 1∗ ∧ κ] (1∗ and κ are as in (1.A.7) and (1.A.8), respectively) and
compact for all σ ∈ [1, 1∗∧κ). Using compactness it is easy to show that in fact, in this case,
H1(Ω; δα, δβ) is continuously embedded in H1(Ω; δβ, δβ), so that the just mentioned results
also hold upon replacing the latter with the former. We point out that for α = β − 2 no
Sobolev-type embedding takes place (see e.g. [145, Example 18.15]). On the other hand, if
β ≤ 1 and α > −1 (recall that we need δα(x)dx to be a finite measure), still Theorems 19.9
and 19.11 of [145] assert that the embedding of H1(Ω; δβ, δβ) in L2σ(Ω; δα) is continuous for
all σ ∈ [1, 1∗] ∩ [1, (α + d)/(d − 1)) and compact for all σ ∈ [1, 1∗) ∩ [1, (α + d)/(d − 1)).
Actually, one can prove that the same holds in H1(Ω; δα, δβ). Indeed, if α > −1 then for
every β0 > 1 small enough we have α > β0− 2. Hence, in view of first part of the discussion,
H1(Ω; δα, δβ0) is continuously embedded in L2σ(Ω; δα) for all σ ∈ [1, 1∗∧ (α+d)/(β0−2+d)],
with compactness provided σ ∈ [1, 1∗∧(α+d)/(β0−2+d)). Since β0 > β, so thatH1(Ω; δα, δβ)
is in turn continuously embedded in H1(Ω; δα, δβ0), the result follows by letting β0 ↓ 1.

We finally consider the whole Euclidean space Rd, with power-law and exponential weights.
If β < 2 − d and α < β − 2, by means of elementary cut-off arguments it is not difficult to
show that

H1(Rd; (|x|+ 1)α, (|x|+ 1)β) = H1
0 (Rd; (|x|+ 1)α, (|x|+ 1)β) ;

In particular, we are allowed to take advantage of the results of [145, Examples 20.6 and
21.10], which ensure that the embedding

H1(Rd; (|x|+ 1)α, (|x|+ 1)β) ↪→ L2σ(Rd; (|x|+ 1)α)

is continuous for all σ ∈ [1, 1∗ ∧ κ] and compact for all σ ∈ [1, 1∗ ∧ κ). On the other hand, if
β ≥ 2− d and α < −d we can reason as follows (let d ≥ 3). For every β0 < 2− d such that
α < β0 − 2, in view of the just recalled results we know that the embedding

H1(Rd; (|x|+ 1)α, (|x|+ 1)β0) ↪→ L2σ(Rd; (|x|+ 1)α)

is continuous for all σ ∈ [1, 1∗ ∧ (α + d)/(β0 − 2 + d)] and compact for all σ ∈ [1, 1∗ ∧ (α +
d)/(β0 − 2 + d)). Since the embedding

H1(Rd; (|x|+ 1)α, (|x|+ 1)β) ↪→ H1(Rd; (|x|+ 1)α, (|x|+ 1)β0)

is trivially continuous, by letting β0 ↑ 2− d we then deduce that in this case the embedding

H1(Rd; (|x|+ 1)α, (|x|+ 1)β) ↪→ L2σ(Rd; (|x|+ 1)α)

is continuous for all σ ∈ [1, 1∗] and compact for all σ ∈ [1, 1∗). When dealing with exponential
weights, one can also prove that

H1(Rd; eα|x|, eβ|x|) = H1
0 (Rd; eα|x|, eβ|x|)

provided (for instance) α < β < 0. Hence, by exploiting [145, Examples 20.8 and 21.12], we
deduce that the embedding

H1(Rd; eα|x|, eβ|x|) ↪→ L2σ(Rd; eα|x|)
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is continuous for all σ ∈ [1, 1∗ ∧ (α/β)] and compact for all σ ∈ [1, 1∗ ∧ (α/β)). If α < 0 and
β > 0, arguing as above we can then assert that the same embedding is continuous for all
σ ∈ [1, 1∗] and compact for all σ ∈ [1, 1∗) (let d ≥ 3).

Let us now summarize the above examples by listing some explicit domains Ω and pairs
of weights (ρν , ρµ) for which the Sobolev-type inequality (1.A.18) holds true in H1(Ω; ν, µ).
In the one-dimensional setting we exploit condition (1.A.17).
• Intervals:
◦ (xα, xβ) in Ω = (0, b) (with b > 0) for β > 1, α > β − 2 and σ ∈ [1, (α + 1)/(β − 1)];
◦ (xα, xβ) in Ω = (a,+∞) (with a > 0) for β < 1, α < β−2 and σ ∈ [1, (α+1)/(β−1)];
◦ (x−1| log x|α, x| log x|β) in Ω = (0, c) (with c ∈ (0, 1)) for β < 1, α < β − 2 and
σ ∈ [1, (α + 1)/(β − 1)];
◦ (e−α|x|, e−β|x|) in Ω = R for α > β > 0 and σ ∈ [1, α/β];
• Bounded Lipschitz domains (d ≥ 2):
◦ (δα, δβ) for β ≤ 1, α > −1 and σ ∈ [1, 1∗]∩ [1, (α+d)/(d− 1)) or for β > 1, α > β− 2
and σ ∈ [1, 1∗ ∧ κ], where 1∗ and κ are as in (1.A.7) and (1.A.8), respectively;

• Euclidean space:
◦ [(|x| + 1|)α, (|x| + 1)β] in Rd for d ≥ 3, β ≥ 2 − d, α < −d and σ ∈ [1, 1∗] or for
β < 2− d, α < β − 2 and σ ∈ [1, 1∗ ∧ κ];
◦ (eα|x|, eβ|x|) in Rd for β < 0, α < β and σ ∈ [1, 1∗ ∧ (α/β)] or for d ≥ 3, β > 0, α < 0
and σ ∈ [1, 1∗].

1.A.2.3 Gagliardo-Nirenberg-type inequalities

Recalling the one-dimensional example of Paragraph 1.A.1.3, for β ∈ (−1, 1), α ≥ −β
and λ ≥ 2 as in (1.A.10) it is easy to show that the family of inequalities (1.A.11) also holds
upon replacing C∞c (R) with the space X of functions belonging to C∞([0, 2]) which vanish
at x = 2. By means of classical cut-off and mollification arguments, one can prove that X is
dense in the Hilbert space Y of functions belonging to H1((0, 2); |x|α, |x|β) which vanish at
x = 2, so that (1.A.11) holds in Y as well. It is then apparent that there exists an extension
operator E : H1((0, 1); |x|α, |x|β) 7→ Y which is linear and continuous. Picking for instance
s = 2 in (1.A.11) we infer that

‖E(v)‖∞ ≤ WG1

(∫
R
|E(v)′(x)|2 |x|βdx

) λ
2(2+λ)

(∫
R
|E(v)(x)|2 |x|αdx

) 1
2+λ

∀v ∈ H1((0, 1); |x|α, |x|β) ,

whence

‖v‖∞ ≤ WG1

(
‖v′‖2;|x|β + ‖v‖2;|x|α

) λ
2+λ ‖v‖

2
2+λ
2;|x|α ∀v ∈ H1((0, 1); |x|α, |x|β) (1.A.19)

for a suitable WG1 > 0 that may change from line to line (we do not relabel it). It is possible
to prove, e.g. using compactness (see [145, Section 7.10, ii)]) or the necessary and sufficient
conditions provided by [54, Theorem 1.4], that the Poincaré-type inequality

‖v − v‖2;|x|α ≤MP ‖v′‖2;|x|β ∀v ∈ H1((0, 1); |x|α, |x|β) (1.A.20)

holds true for some MP > 0. Hence, taking advantage of (1.A.19), (1.A.20) and reasoning as
in Remark 1.3.21 we end up with the validity of the one-dimensional family

‖v − v‖∞ ≤ WG1 ‖v′‖
λ
s+λ
2;|x|β ‖v − v‖

s
s+λ
s;|x|α ∀s > 0 , ∀v ∈ H1((0, 1); |x|α, |x|β) . (1.A.21)
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As for two-dimensional inequalities we only mention that, given α > −1, starting from
(1.A.12) and arguing as above it is not difficult to deduce the validity of the family

‖v‖r;|x|α ≤ WG2

(
‖v′‖2;|x| + ‖v‖2;|x|α

)1− 2
r ‖v‖

2
r

2;|x|α ∀r > 2 , ∀v ∈ H1((0, 1); |x|α, |x|) .

for a suitable WG2 > 0. In fact, even though functions belonging to H1((0, 1); |x|α, |x|) are
not necessarily bounded, standard truncation and mollification techniques entail the density
of restrictions of functions in C∞([0, 2]) in H1((0, 1); |x|α, |x|). Also the Poincaré inequality
continues to hold thanks to [54, Theorem 1.4]. We can therefore claim the validity of the
two-dimensional family

‖v − v‖r;|x|α ≤MG2 ‖v′‖
1− s

r

2;|x| ‖v − v‖
s
r

s;|x|α ∀r > s > 0 , ∀v ∈ H1((0, 1); |x|α, |x|)

for a constant MG2 > 0 that depends on r, s only through a finite upper bound on r. Finally,
the same scaling argument as in Paragraph 1.A.1.3 ensures that no one-dimensional inequality
of the type of (1.A.21) can hold. Alternatively, one can exploit the already mentioned fact
that functions in H1((0, 1); |x|α, |x|) are not necessarily bounded (take for instance x 7→
log | log x|).
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CHAPTER2
Fractional porous medium equations with power-type

densities

2.1 Introduction
The main topic of this chapter is the analysis of the asymptotic behaviour of nonnegative

solutions to the following nonlocal, nonlinear and degenerate parabolic problem:ρ(x)ut + (−∆)s(um) = 0 in Rd × R+ ,

u = u0 on Rd × {0} ,
(2.1.1)

where m > 1, s ∈ (0, 1), d > 2s and the symbol (−∆)s denotes the fractional Laplacian
operator on Rd, that is

(−∆)s(φ)(x) := p.v. Cd,s

∫
Rd

φ(x)− φ(y)
|x− y|d+2s dy ∀x ∈ Rd , ∀φ ∈ C∞c (Rd) , (2.1.2)

Cd,s being a suitable positive constant depending only on d and s (if φ is less regular, its
fractional Laplacian is meant in the distributional sense), see e.g. [69, Sections 3, 4]. The
initial datum u0 in (2.1.1) is assumed to be nonnegative and to belong to the weighted L1

space
L1
ρ(Rd) :=

{
u measurable : ‖u‖1,ρ :=

∫
Rd
|u(x)| ρ(x)dx <∞

}
.

The densities ρ we consider are nonnegative Lebesgue measurable functions, locally essentially
bounded away from zero (namely ρ−1 ∈ L∞loc(Rd)) and satisfying suitable power-law decay
conditions at infinity. More precisely, we say that ρ is a slowly decaying density if there exist
two positive constants c < C such that

c|x|−γ0 ≤ ρ(x) ≤ C|x|−γ0 a.e. in B1 and c|x|−γ ≤ ρ(x) ≤ C|x|−γ a.e. in Bc
1 (2.1.3)

for some γ ∈ (0, 2s) and γ0 ∈ [0, γ], where Br := Br(0) and Bc
r denotes its complement. Note

that possible singularities are allowed at x = 0. For this kind of densities, we shall also study
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the well-posedness of the more general problemρ(x)ut + (−∆)s(um) = 0 in Rd × R+ ,

ρ(x)u = µ on Rd × {0} ,
(2.1.4)

where µ is a positive finite Radon measure on Rd (here we let γ ∈ [0, 2s), since our results
are new even in the non-weighted case). In fact, as we shall explain below, the solution to
(2.1.4) corresponding to the choices ρ(x) = |x|−γ and µ = δ will be key to the asymptotics
of general solutions. Conversely, we say that ρ is a rapidly decaying density if ρ−1 ∈ L∞loc(Rd)
and there exists a positive constant C such that

ρ(x) ≤ C (1 + |x|)−γ a.e. in Rd (2.1.5)
for some γ > 2s. In contrast with the slowly decaying case, for such densities an essential
role is played by a separable solution of the form t−1/(m−1)w1/m(x), where w is the solution
of a suitable fractional sublinear elliptic equation.

The local version of (2.1.1), that isρ(x)ut −∆(um) = 0 in Rd × R+ ,

u = u0 on Rd × {0} ,
(2.1.6)

known as inhomogeneous porous medium equation, has been largely studied in the literature.
As concerns well-posedness, we quote the papers [89,90,112,116,153,163]. In particular, for
d ≥ 3 it is shown that (2.1.6) admits a unique very weak solution if ρ(x) decays slowly as
|x| → ∞ (e.g. like |x|−γ with γ ∈ (0, 2)), while nonuniqueness prevails when ρ(x) decays
rapidly as |x| → ∞ (e.g. like |x|−γ with γ > 2). In the latter case, uniqueness can be restored
by imposing proper extra conditions at infinity (see Chapter 1, Section 1.4) or by looking for
solutions in suitable energy spaces (weak energy solutions). In this regard, we refer the reader
to the results of Chapter 1, Subsection 1.2.2, which hold independently of the behaviour of
the weights at the boundary (i.e. the behaviour of ρ at infinity).

The long time behaviour of solutions to (2.1.6) has been analysed in detail in [114,162,164].
In [164] the authors prove that, if ρ > 0, ρ(x) ≈ |x|−γ as |x| → ∞ for some γ ∈ (0, 2) and
‖u0‖1,ρ =: M > 0, then

lim
t→∞
‖u(t)− UM(t)‖1,ρ = 0 and lim

t→∞
tα ‖u(t)− UM(t)‖∞ = 0 .

The function UM above is the Barenblatt solution with mass ‖UM(t)‖1,ρ = M (it is preserved
in time), which has an explicit self-similar profile:

UM(x, t) := t−αF (t−κ|x|) ∀(x, t) ∈ Rd × R+ ,

where
F (ξ) := (C − b ξ2−γ)

1
m−1
+ ∀ξ ≥ 0

for suitable positive constants C and b depending on M , m, d and γ, while α and κ are
defined by the formulas

α := (d− γ)κ , κ := 1
d(m− 1) + 2−mγ .

Analogous results are proved in [162], buy only in the case d = 2. We stress that UM solves
the singular problem |x|−γut −∆(um) = 0 in Rd × R+ ,

|x|−γu = Mδ on Rd × {0} .
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Let us point out that these convergence results are similar to the ones previously obtained in
the non-weighted case (see e.g. [99] and [170]), namely for ρ ≡ 1 and so γ = 0. For rapidly
decaying densities, the situation in quite different. In fact, in [114] the authors prove that if
ρ > 0 and ρ(x) ∼ |x|−γ as |x| → ∞ for some γ > 2, then the minimal solution to problem
(2.1.6) (namely the one obtained as monotone limit of solutions to homogeneous Dirichlet
problems in balls of increasing radii), which is unique in the class of solutions satisfying

1
Rd−1

∫
∂BR

∫ t

0
um(σ, τ) dτdσ → 0 as R→∞

for all t > 0, converges to a separable solution:

t
1

m−1u(x, t)→ (m− 1)−
1

m−1 W
1
m (x) as t→∞ ,

uniformly w.r.t. x ∈ Rd. Here W is the minimal positive solution to the sublinear elliptic
equation

−∆W = ρW
1
m in Rd ,

and it satisfies
lim
|x|→∞

W (x) = 0 .

Problem (2.1.1) with ρ ≡ 1, known as fractional porous medium equation, which readsut + (−∆)s(um) = 0 in Rd × R+ ,

u = u0 on Rd × {0} ,
(2.1.7)

has recently been addressed in the breakthrough papers [60, 61] by J. L. Vázquez et al.:
existence, uniqueness and qualitative properties of weak energy solutions (with L1 data) are
analysed there, also for m < 1. The asymptotic behaviour of such solutions as t→∞ is then
investigated in [174]. As one may guess from the local case (s = 1), a key preliminary result
consists in proving that, for any M > 0, there exists a unique solution ÛM to the problemut + (−∆)s(um) = 0 in Rd × R+ ,

u = Mδ on Rd × {0} .

Such solution still has a self-similar profile:

ÛM(x, t) := t−αf(t−κ|x|) ∀(x, t) ∈ Rd × R+ ,

where now
α = dκ , κ = 1

d(m− 1) + 2s .

The function f : [0,∞) 7→ (0,∞) is bounded, Hölder continuous, decreasing and satisfies
limξ→∞ f(ξ) = 0. Thanks to these properties, ÛM is called again a Barenblatt solution.
However, in contrast with the local case, f , and so ÛM , is no more explicit. It is then proved
that ÛM actually plays the role of an attractor for any nonnegative solution to (2.1.7) with
mass ‖u0‖1 = M :

lim
t→∞

∥∥∥u(t)− ÛM(t)
∥∥∥

1
= 0 and lim

t→∞
tα
∥∥∥u(t)− ÛM(t)

∥∥∥
∞

= 0 . (2.1.8)

Inspired by the above results, here we carry out the asymptotic analysis for nonnegative
solutions to (2.1.1), which is both a weighted and a fractional problem.
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In the case of slowly decaying densities (Section 2.2) we first perform a full well-posedness
analysis of problem (2.1.4), where any positive finite Radon measure µ is allowed as initial
datum. More precisely, under the additional assumption γ ≤ d− 2s, we prove existence and
uniqueness of weak solutions for any ρ complying with (2.1.3). We stress that our techniques
crucially exploit the validity of the fractional Hardy-Sobolev inequality(∫

Rd
|v(x)|2∗γ |x|−γdx

) 1
2∗γ ≤ Cγ

∥∥∥(−∆) s2 (v)
∥∥∥

2
, 2∗γ := 2 d− γ

d− 2s , Cγ > 0

and the Stroock-Varopoulos inequality (let q > 1 and v ≥ 0)∫
Rd
vq−1(x)(−∆)s(v)(x) dx ≥ 4(q − 1)

q2

∫
Rd

∣∣∣(−∆) s2
(
v
q
2
)
(x)
∣∣∣2 dx .

As it might be guessed, the hardest part to tackle is uniqueness. To this end, the first is-
sue we have to deal with is the essential self-adjointness, in suitably weighted L2 spaces, of
the operator formally defined as ρ−1(−∆)s on test functions, and the validity of the Markov
property for the associated linear evolution (Appendix 2.A). In fact, in order to prove unique-
ness, we need to adapt a delicate argument originally developed by M. Pierre in [148] for the
same problem, but in the local case and without weight (porous medium equation). Such an
argument crucially exploits the properties of solutions to a dual problem, which is a linear
modification of the original one; moreover, it strongly relies on Riesz potential techniques,
which means that one considers the equation solved by the Riesz potential of ρu(t) and works
with the latter, rather than with the original one. Though this kind of techniques is proving
to be extremely powerful in the fractional framework (see e.g. [32, 33]), the drawback in our
setting is that, in order to justify rigorously the equation solved by the Riesz potential, we
have to require the additional assumption γ ≤ d− 2s.

Existence and uniqueness of nonnegative bounded solutions to problem (2.1.1) for non-
negative initial data u0 ∈ L1

ρ(Rd) ∩ L∞(Rd) and bounded, strictly positive densities ρ have
been investigated in [159,160], where it is proved that if there exists C > 0 such that

ρ(x) ≥ C|x|−γ a.e. in Bc
1

for some γ ∈ [0, 2s), then (2.1.1) admits a unique bounded solution. Here we shall exploit
such results in order to prove existence of solutions to (2.1.4), by means of an approximation
procedure.

The study of porous medium and fast diffusion equations with measure data can be tracked
back to the pioneering papers [9, 37, 56,148] (see also [173, Chapter 13] for details and addi-
tional references). The fast diffusion case, which will not be dealt with here, is investigated
in [48, 49]: notice that for such evolutions a Dirac delta may not be smoothed into a reg-
ular solution, so that different techniques must be used; a general approach can be found
in [150]. Semilinear heat equations with measure data have a long history as well and have
recently been studied also in the fractional framework (we refer the reader e.g. to [50, 130]
and references quoted). Let us point out that the terminology “measure data” sometimes
refers to different contexts in which a measure appears as a source term in certain evolution
equations, see for instance [133].

Once existence and uniqueness of solutions to (2.1.4) is established, one can start the
asymptotic analysis. To this end, in agreement with the local case, it is crucial to assume
that, in addition to (2.1.3), ρ satisfies

lim
|x|→∞

ρ(x)|x|γ =: c∞ > 0 , (2.1.9)
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namely ρ(x) ≈ |x|−γ as |x| → ∞ (up to a multiplicative constant). We are then able to prove
that the asymptotics is ruled by the solution uM to the following singular problem:c∞|x|−γut + (−∆)s(um) = 0 in Rd × R+ ,

c∞|x|−γu = Mδ on Rd × {0} ,
(2.1.10)

where ‖u0‖1,ρ = M > 0 is the (conserved) mass and c∞ is as in (2.1.9). More precisely, there
holds

lim
t→∞
‖u(t)− uM(t)‖1,|x|−γ = lim

t→∞
‖tαu(tκ·, t)− uM(·, 1)‖1,|x|−γ = 0 , (2.1.11)

where
α = (d− γ)κ , κ = 1

d(m− 1) + 2s−mγ .

In the proof of (2.1.11) we partially follow the general strategy used in the literature to
establish similar convergence results, see [99, 163, 170, 173, 174]. However, in the present
context, some technical difficulties arise, due to the simultaneous presence of the weight
ρ(x) and of the nonlocal operator (−∆)s. An essential tool is the well-posedness of problem
(2.1.10), which falls in the framework of the more general problems (2.1.4) discussed above.
In particular, uniqueness ensures that the solution to (2.1.10) is self-similar (though not
explicit), a crucial fact in order to prove the asymptotic result. We remark, however, that
the lack of known Hölder regularity properties for the solutions to the equation at hand,
which on the contrary hold true in the non-weighted case in view of the theory developed
in [10] (see also [175] for improved regularity), makes the final convergence step more difficult
with respect to [174] and prevents us from proving an L∞ asymptotic result of the type of
(2.1.8).

In the case of rapidly decaying densities (Section 2.3), the well-posedness of problem (2.1.1)
was first studied in [159]. Here we shall improve on such results, establishing existence
of a minimal solution within a more general class of solutions, which satisfies a suitable
decay condition at infinity. Moreover, under the stronger assumptions d > 4s and γ ∈
(2s, d − 2s] ∩ (4s,∞), we shall prove new uniqueness theorems dealing with integrability
properties of solutions. As in the local framework, let us notice that for generic densities
ρ ∈ L∞loc(Rd) such that ρ−1 ∈ L∞loc(Rd) one can also prove uniqueness of weak energy solutions
in the same spirit as Chapter 1, Subsection 1.2.2, i.e. regardless of the behaviour of ρ at
infinity. Again, it is just a matter of energy spaces in which one looks for the solutions: the
more such spaces include themselves some “condition at infinity” (like Ḣs(Rd), for instance),
the less one expects to have to ask extra conditions to restore uniqueness. Also existence of a
minimal solution is ensured, provided a local comparison principle holds true for the classes
of solutions involved, independently of the behaviour of ρ at infinity: the latter only plays
a role in restricting or enlarging the class of functions where the minimal one is the unique
solution.

The long time behaviour of the minimal solution to (2.1.1) in the rapidly decaying case
is deeply linked with the minimal positive solution w to the following fractional sublinear
elliptic equation:

(−∆)sw = ρw` in Rd , (2.1.12)
where ` := 1/m ∈ (0, 1). The local problem (s = 1) has been thoroughly studied in [38],
while the fractional problem with ρ ≡ 1 has been recently addressed in [36] (on bounded
domains). Equation (2.1.12) is partially analysed in [158], where the authors deal with weak
energy solutions under the hypotheses that (2.1.5) holds true for γ > d (with d > 4s) and
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ρ ≥ 0 (with ρ 6≡ 0). Here we prove existence of nontrivial very weak solutions provided (2.1.5)
is valid for γ > 2s (with d > 2s) and ρ is locally bounded away from zero. To our purposes,
a central role will be played by the solution to the linear equation

(−∆)sV = ρ in Rd .

Assuming that (2.1.5) holds true for d, γ > 4s, we shall also prove uniqueness of very weak
solutions, which are required to be, in addition, local weak solutions and to comply with
proper integrability conditions.

Once the analysis of (2.1.12) has been performed, we are able to prove that, if u is the
minimal solution to (2.1.1) and w is the minimal solution to (2.1.12) for ` = 1/m, then

lim
t→∞

t
1

m−1u(x, t) = (m− 1)−
1

m−1w
1
m (x) (2.1.13)

e.g. in Lploc(Rd) for all p ∈ [1,∞). The just mentioned uniqueness results allow us to extend the
validity of (2.1.13) to a larger class of solutions. Let us remark that (2.1.13) is in agreement
with the content of the very recent paper [32], where the authors study problem (2.1.1) with
ρ ≡ 1 and on bounded domains, obtaining (in particular) sharp convergence results with
rates.

In [114] it is proved that actually, for the weighted local problem (2.1.6), there is an
exponent γ2 = γ2(m, d) ∈ (2, d) such that, for γ ∈ (2, γ2), a family of Barenblatt solutions
continues to exist (though they become unbounded at the origin) and still plays a role for
the asymptotics in “outer sets” of the form {|x| ≥ Ktκ} (let K > 0). In fact, in such sets,
Barenblatt solutions provide more precise information with respect to the separable solution.
Here we do not address this issue: indeed, unlike the local problem, no explicit Barenblatt
profile is available, and the analysis of (2.1.10) with the techniques we used for γ < 2s
completely fails when γ > 2s.

Finally, let us mention the critical case γ = 2s. In the local framework it corresponds
to γ = 2 and has been investigated only recently, mainly in the papers [141] and [111].
Moreover, the analysis of the spectral properties of operators which are modelled on the
critical operator formally given by |x|2(−∆) has been performed in [67]. The main results
of [141], for problem (2.1.6) with a regular density ρ(x) that behaves like |x|−2 at infinity,
concern asymptotic estimates which are, to some extent, similar to the ones obtained in
the subcritical case γ < 2. They rely on existence of explicit Barenblatt profiles, and the
fact that the latter have a logarithmic singularity at the origin complicates the analysis
(see also Chapter 1, Paragraph 1.2.3.2). In [111] the authors study problem (2.1.6) with
ρ(x) = |x|−2. They mainly focus on radial solutions and on their different behaviour near the
origin, depending on whether the initial datum vanishes or not at the origin. Here an analysis
similar to the one developed in [141] is in principle possible. However, the study of problem
(2.1.10) when γ = 2s is much more delicate than in the subcritical case (in particular, we
expect solutions to be unbounded).

As for applied context in which the fractional porous medium equation is used as a model,
we refer the reader to Appendix B of [35], where a brief overview of the topic is given, along
with several references.

2.1.1 Preliminary tools

In this subsection we recall some basic notions and properties concerning weighted Lebes-
gue spaces, positive finite Radon measures, fractional Laplacians, fractional Sobolev spaces
and Riesz potentials, which will be extremely useful throughout.
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2.1.1.1 Weighted Lebesgue spaces

For a given measurable function ρ : Rd 7→ R+ (that is, a weight or density) and p ∈ [1,∞),
we denote as Lpρ(Rd) the Banach space constituted by all (equivalence classes of) measurable
functions f : Rd 7→ R such that

‖f‖p,ρ :=
(∫

Rd
|f(x)|p ρ(x)dx

)1/p
<∞ .

Occasionally, we shall also let p ∈ (0, 1): the definition is the same, but of course ‖ · ‖p,ρ is
no longer a norm. In the special case ρ(x) = |x|α (let α ∈ R) we simplify notation, replacing
Lpρ(Rd) with Lpα(Rd) and ‖f‖p,ρ with ‖f‖p,α. If α = 0 we keep the usual symbol Lp(Rd),
denoting the corresponding norm as ‖f‖p or ‖f‖Lp(Rd).

At some point we shall also deal with weighted Lp spaces in domains Ω ⊂ Rd. In such
cases, we shall use the more explicit notations Lpρ(Ω) and ‖f‖Lpρ(Ω).

2.1.1.2 Positive finite Radon measures on Rd

With a slight abuse of notation, we denote as M(Rd) the cone of positive finite Radon
measures on Rd (this is actually the usual symbol for the space of signed measures). To begin
with, consider a sequence {µn} ⊂ M(Rd). Following the same notation as [148], we say that
{µn} converges to µ ∈M(Rd) in σ(M(Rd), Cc(Rd)) if there holds

lim
n→∞

∫
Rd
φ dµn =

∫
Rd
φ dµ ∀φ ∈ Cc(Rd) , (2.1.14)

where Cc(Rd) is the space of continuous, compactly supported functions in Rd. This is usually
referred to as local weak∗ convergence (see [4, Definition 1.58]). A classical theorem in measure
theory asserts that if

sup
n
µn(Rd) <∞ (2.1.15)

then there exists µ ∈M(Rd) such that {µn} converges to µ in σ(M(Rd), Cc(Rd)) up to subse-
quences [4, Theorem 1.59]. The same holds true if we replace Cc(Rd) with C0(Rd), the latter
being the closure of the former w.r.t. the L∞ norm. A stronger notion of convergence is the
following. A sequence {µn} ⊂ M(Rd) is said to converge to µ ∈M(Rd) in σ(M(Rd), Cb(Rd))
if

lim
n→∞

∫
Rd
φ dµn =

∫
Rd
φ dµ ∀φ ∈ Cb(Rd) , (2.1.16)

where Cb(Rd) is the space of continuous, bounded functions in Rd. Clearly, (2.1.16) implies
(2.1.14). The opposite is true under a further hypothesis: that is, if {µn} converges to µ in
σ(M(Rd), Cc(Rd)) and

lim
n→∞

µn(Rd) = µ(Rd) ,

then {µn} converges to µ also in σ(M(Rd), Cb(Rd)) [4, Proposition 1.80]. Notice that if {µn}
converges to µ in σ(M(Rd), Cc(Rd)) and (2.1.15) holds, a priori we only have a weak∗ lower
semi-continuity property:

µ(Rd) ≤ lim inf
n→∞

µn(Rd)

(see again [4, Theorem 1.59]).

107



Chapter 2. Fractional porous medium equations with power-type densities

2.1.1.3 Fractional Laplacians and fractional Sobolev spaces

For all s ∈ (0, 1) and φ ∈ D(Rd) := C∞c (Rd) the fractional Laplacian (−∆)s(φ) is defined
as in (2.1.2). However, in order to reformulate problem (2.1.1) in a suitable weak sense (see
Definition 2.2.1 below), it is necessary to introduce some fractional Sobolev spaces. Here we
shall mainly deal with Ḣs(Rd), that is the closure of D(Rd) w.r.t. the norm

‖φ‖2
Ḣs := Cd,s

2

∫
Rd

∫
Rd

(φ(x)− φ(y))2

|x− y|d+2s dxdy ∀φ ∈ D(Rd) .

Notice that the space usually denoted as Hs(Rd) is just L2(Rd) ∩ Ḣs(Rd). For definitions
and properties of the general fractional Sobolev spaces W r,p(Rd) we refer the reader to the
survey paper [69].

The link between the fractional Laplacian and the space Ḣs(Rd) is made clear by the
identity

〈φ, ψ〉Ḣs = Cd,s
2

∫
Rd

∫
Rd

(φ(x)− φ(y))(ψ(x)− ψ(y))
|x− y|d+2s dxdy =

∫
Rd

(−∆) s2 (φ)(x)(−∆) s2 (ψ)(x) dx

=
∫
Rd
φ(x)(−∆)s(ψ)(x) dx ,

(2.1.17)
valid for all φ, ψ ∈ D(Rd) (see [69, Section 3]). In particular,

‖φ‖2
Ḣs =

∥∥∥(−∆) s2 (φ)
∥∥∥2

2
∀φ ∈ D(Rd) . (2.1.18)

Notice that (2.1.17) can be shown to hold, by approximation, also when φ ∈ D(Rd) is replaced
by any v ∈ Ḣs(Rd), where now (−∆) s2 (v) is meant in the sense of distributions. A further
approximation entails
Cd,s

2

∫
Rd

∫
Rd

(v(x)− v(y))(w(x)− w(y))
|x− y|d+2s dxdy =

∫
Rd

(−∆) s2 (v)(x)(−∆) s2 (w)(x) dx (2.1.19)

for all v, w ∈ Ḣs(Rd). Hence, if we set v = w in (2.1.19) we deduce that (2.1.18) holds true
in Ḣs(Rd) as well.

2.1.1.4 Riesz potentials

Another mathematical object deeply linked with the fractional Laplacian is its Riesz kernel,
namely the function

I2s(x) := kd,s
|x|d−2s ,

where kd,s is again a positive constant depending only on d and s. For a given (possibly
signed) finite Radon measure ν, one can show that the convolution

Uν := I2s ∗ ν

yields an L1
loc(Rd) function referred to as the Riesz potential of ν, which formally satisfies

(−∆)s(Uν) = ν ;

that is, still at a formal level, the convolution against I2s coincides with the operator (−∆)−s.
One of the most important and classical references for Riesz potentials is the monograph [121].
Throughout Subsections 2.2.2 and 2.2.3 we shall exploit some crucial properties of Riesz
potentials collected in [121], along with their connections with the fractional Laplacian.
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2.2. Slowly decaying densities

2.1.2 Outline of the chapter

The chapter is organized as follows.
Section 2.2 deals with the case of slowly decaying densities. In Subsection 2.2.1 we state

our main results. In Subsection 2.2.2 we prove existence of weak solutions with measure
data. Paragraphs 2.2.2.1 and 2.2.2.2 give hints of the proof of two standard properties of
such solutions. Subsection 2.2.3 is devoted to uniqueness: since the argument is long and
technical, we split it into Paragraphs 2.2.3.1–2.2.3.3. In Subsection 2.2.4 we finally study the
asymptotics of solutions.

Section 2.3 deals with the case of rapidly decaying densities. In Subsection 2.3.1 we provide
the statements of the main theorems. In Subsection 2.3.2 we analyse a fractional sublinear
elliptic equation deeply connected with the asymptotics: existence and uniqueness results
are proved in Paragraphs 2.3.2.1 and 2.3.2.2, respectively. Subsection 2.3.3 is devoted to the
asymptotic analysis. Finally, in Subsection 2.3.4 we collect some well-posedness results for
various kinds of solutions (Paragraphs 2.3.4.1–2.3.4.3) to the parabolic problem.

In Appendix 2.A we study the properties of a suitable weighted fractional Laplacian
operator, which are crucial for uniqueness in the slowly decaying case. Subsection 2.A.1
recalls some basic scaling properties of fractional Laplacians. In Subsection 2.A.2 we prove
that the standard mollification of a function converges to the latter not only in the usual
Lp spaces but also in some power-weighted Lp spaces. This is an important tool for the
analysis in Subsection 2.A.3, which is devoted to the proof of the self-adjointness property
and integration by parts formulas for the weighted fractional Laplacian operator mentioned
above.

2.2 Slowly decaying densities

In this section we mainly deal with existence and uniqueness of weak solutions to problem
(2.1.4) in the case of a slowly decaying density ρ, and related consequences for the asymp-
totics.

2.2.1 Statements of the main results

Here we provide a suitable notion of weak solution to (2.1.4), in the spirit of [61] (and [160]).

Definition 2.2.1. Given a positive finite Radon measure µ, by a weak solution to problem
(2.1.4) we mean a nonnegative function u such that

u ∈ L∞((0,∞); L1
ρ(Rd)) ∩ L∞(Rd × (τ,∞)) ∀τ > 0 , (2.2.1)

um ∈ L2
loc((0,∞); Ḣs(Rd)) , (2.2.2)

−
∫ ∞

0

∫
Rd
u(x, t)ϕt(x, t) ρ(x)dxdt+

∫ ∞
0

∫
Rd

(−∆) s2 (um)(x, t)(−∆) s2 (ϕ)(x, t) dxdt = 0
(2.2.3)

∀ϕ ∈ C∞c (Rd × (0,∞))

and
lim
t→0

ρu(t) = µ in σ(M(Rd), Cb(Rd)) . (2.2.4)

Our first main result concerns existence of such weak solutions.
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Chapter 2. Fractional porous medium equations with power-type densities

Theorem 2.2.2. Let d > 2s and assume that ρ satisfies (2.1.3) for some γ ∈ [0, 2s)∩[0, d−2s]
and γ0 ∈ [0, γ]. Let µ be a positive finite Radon measure. Then there exists a weak solution u
to (2.1.4), according to Definition 2.2.1, which conserves the mass in the sense that µ(Rd) =∫
Rd u(x, t) ρ(x)dx for all t > 0 and satisfies the smoothing estimate

‖u(t)‖∞ ≤ K t−α µ(Rd)β ∀t > 0 , (2.2.5)

where K is a suitable positive constant depending only on m, C, γ, d, s and

α := d− γ
(m− 1)(d− γ) + 2s− γ , β := 2s− γ

(m− 1)(d− γ) + 2s− γ . (2.2.6)

For given solutions to the differential equation in (2.1.4) (namely without a prescribed
initial datum), the following result on existence and uniqueness of their initial trace, in the
spirit of [35, Section 7] and [15], will also be proved.

Theorem 2.2.3. Let d > 2s and assume that ρ satisfies (2.1.3) for some γ ∈ [0, 2s) ∩
[0, d − 2s] and γ0 ∈ [0, γ]. Consider a weak solution u to ρut + (−∆)s(um) = 0 in the
sense that u complies with (2.2.1), (2.2.2) and (2.2.3). Then there exists a unique positive
finite Radon measure µ which is the initial trace of u in the sense of (2.2.4). In particular,
µ(Rd) =

∫
Rd u(x, t) ρ(x)dx for all t > 0. The same result holds true if the condition u ∈

L∞(Rd × (τ,∞)) in (2.2.1) is replaced by the weaker condition
∫ t2
t1
um(τ) dτ ∈ L1

ρ(Rd) for all
t2 > t1 > 0.

As for uniqueness of weak solutions, we shall prove the next result.

Theorem 2.2.4. Let d > 2s and assume that ρ satisfies (2.1.3) for some γ ∈ [0, 2s)∩[0, d−2s]
and γ0 ∈ [0, γ]. Let u1 and u2 be two weak solutions to (2.1.4), according to Definition 2.2.1.
Suppose that their initial datum, in the sense of (2.2.4), is the same positive finite Radon
measure µ. Then u1 = u2.

We point out that, in order to prove Theorem 2.2.4, we shall crucially exploit the properties
of the operator A := ρ−1(−∆)s provided by Theorems 2.A.12 and 2.A.13 in Appendix 2.A
below.

In the analysis of the long time behaviour of solutions, we shall assume in addition that
ρ satisfies (2.1.9). In agreement with the local case (s = 1), a major role is played by the
solution to the same problem in the particular case ρ(x) = c∞|x|−γ and µ = Mδ (namely
the solution to (2.1.10)), where M is the mass of the initial datum. Our main result reads
as follows.

Theorem 2.2.5. Let d > 2s and assume that ρ satisfies (2.1.3) for some γ ∈ [0, 2s)∩[0, d−2s]
and γ0 ∈ [0, γ]. Suppose in addition that

lim
|x|→∞

ρ(x)|x|γ =: c∞ > 0 . (2.2.7)

Let u be the unique weak solution to problem (2.1.4), according to Definition 2.2.1, corre-
sponding to µ ∈M(Rd), with µ(Rd) =: M > 0. Then,

lim
t→∞
‖u(t)− uM(t)‖1,−γ = 0 , (2.2.8)

or equivalently
lim
t→∞
‖tαu(tκ·, t)− uM(·, 1)‖1,−γ , (2.2.9)

110



2.2. Slowly decaying densities

where uM is the Barenblatt solution defined as the unique solution to problem (2.1.10),

κ := 1
(m− 1)(d− γ) + 2s− γ (2.2.10)

and α is as in (2.2.6).

Remark 2.2.6. Notice that, if d ≥ 4s, then the above assumptions on γ amount to γ ∈
[0, 2s).

Theorems 2.2.2 and 2.2.3 will be proved in Subsection 2.2.2, Theorem 2.2.4 will be proved
in Subsection 2.2.3 and Theorem 2.2.5 will be proved in Subsection 2.2.4.

2.2.2 Existence of weak solutions

Before proceeding with the proof of Theorem 2.2.2 (and related lemmas), we shall show
a first, direct consequence of Definition 2.2.1, namely the conservation in time of the mass∫
Rd u(x, t) ρ(x)dx, that is the L1

ρ(Rd) norm of u(t) since we are considering nonnegative solu-
tions.

Proposition 2.2.7. Let d > 2s and assume that ρ satisfies (2.1.3) for some γ ∈ [0, 2s) and
γ0 ∈ [0, γ]. Let u be a weak solution to (2.1.4) according to Definition 2.2.1. Then

‖u(t)‖1,ρ =
∫
Rd
u(x, t) ρ(x)dx = µ(Rd) for a.e. t > 0 , (2.2.11)

namely we have conservation of mass.

Proof. In order to prove (2.2.11) we first plug in (2.2.3) the following test function:

ϕR(x, t) := ϑ(t)ξR(x) ,

where ξR is a standard family of cut-off functions (see Lemma 2.A.3 below) and ϑ is a suitable
family of positive, regular and compactly supported approximations of χ[t1,t2] (let t2 > t1 > 0).
In view of (2.1.17), there holds∫ ∞

0

∫
Rd

(−∆) s2 (um)(x, t)(−∆) s2 (ϕR)(x, t) dxdt =
∫ ∞

0

∫
Rd
um(x, t)(−∆)s(ϕR)(x, t) dxdt .

Recalling Lemma 2.A.4 and the assumptions on ρ, we have:∣∣∣∣∫ ∞
0

∫
Rd
um(x, t)(−∆)s(ϕR)(x, t) dxdt

∣∣∣∣
≤c−1‖ϑ‖∞

(
‖(−∆)s(ξ)‖∞

R2s + ‖|x|
γ(−∆)s(ξ)‖∞
R2s−γ

) ∣∣∣∣∣
∫ t∗

t∗

∫
Rd
um(x, t) ρ(x)dxdt

∣∣∣∣∣ ,
(2.2.12)

where t∗ > t∗ > 0 are chosen so that suppϑ ⊂ [t∗, t∗] independently of θ. The integral in the
r.h.s. of (2.2.12) is finite thanks to (2.2.1). Hence, letting R→∞ in (2.2.3), we deduce that∫ ∞

0

∫
Rd
u(x, t)ϑ′(t) ρ(x)dxdt = 0 . (2.2.13)

If we then let ϑ→ χ[t1,t2] in (2.2.13) and use Lebesgue’s differentiation Theorem we find that
‖u(t2)‖1,ρ = ‖u(t1)‖1,ρ for a.e. t2 > t1 > 0. This property and (2.2.4) finally yield (2.2.11).
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The proof of existence of weak solutions to (2.1.4) is based on an approximation procedure.
That is, one approximates the measure µ with data u0 ∈ L1

ρ(Rd) ∩ L∞(Rd) and shows that
the corresponding solutions suitably converge to a solution of (2.1.4). This calls, first of all,
for an existence result for the following problem:ρ(x)ut + (−∆)s(um) = 0 in Rd × R+ ,

u = u0 on Rd × {0} .
(2.2.14)

To this aim, we need a preliminary lemma.

Lemma 2.2.8. Let d > 2s and assume that ρ satisfies (2.1.3) for some γ ∈ [0, d + 2s] and
γ0 ≥ 0. Consider a function v ∈ L2

loc((0,∞); Ḣs(Rd)) such that, for all t2 > t1 > 0,∫ t2

t1

∫
Rd
|v(x, t)|2 ρ(x)dxdt ≤ K , (2.2.15)

∫ t2

t1

∫
Rd

∣∣∣(−∆) s2 (v)(x, t)
∣∣∣2 dxdt ≤ K (2.2.16)

and ∫ t2

t1

∫
Rd
|vt(x, t)|2 ρ(x)dxdt ≤ K , (2.2.17)

where K is a positive constant depending only on t1 and t2. Take any cut-off functions
ξ1 ∈ C∞c (Rd), ξ2 ∈ C∞c ((0,∞)) and define vc : Rd 7→ R as follows:

vc(x, t) := ξ1(x)ξ2(t)v(x, t) ∀(x, t) ∈ Rd × R ,

where we implicitly assume ξ2 and v to be zero for t < 0. Then

‖vc‖2
Hs(Rd+1) = ‖vc‖2

L2(Rd+1) + ‖vc‖2
Ḣs(Rd+1) ≤ C ′ (2.2.18)

for a positive constant C ′ that depends only on ξ1, ξ2, γ, c, K, d and s.

Proof. The validity of
‖vc‖2

L2(Rd+1) ≤ C ′ (2.2.19)
is an immediate consequence of (2.2.15) and of the fact that ρ is bounded away from zero
on compact sets (from now on C ′ will be a constant as in the statement that we shall not
relabel). Moreover, since

(vc)t = ξ1ξ
′
2v + ξ1ξ2vt ,

by (2.2.15), (2.2.17) and again the fact that ρ is bounded away from zero on compact sets
we deduce that

‖(vc)t‖2
L2(Rd+1) ≤ C ′ . (2.2.20)

Now we have to deal with the spatial regularity of vc. Straightforward computations show
that

‖vc(t)‖2
Ḣs(Rd) =Cd,s2 ξ2

2(t)
∫
Rd
ξ2

1(x)
(∫

Rd

(v(x, t)− v(y, t))2

|x− y|d+2s dy
)

dx

+ Cd,s
2 ξ2

2(t)
∫
Rd
|v(y, t)|2

(∫
Rd

(ξ1(x)− ξ1(y))2

|x− y|d+2s dx
)

dy

+ Cd,s ξ
2
2(t)

∫
Rd

∫
Rd
ξ1(x)v(y, t)(v(x, t)− v(y, t)) (ξ1(x)− ξ1(y))

|x− y|d+2s dxdy .

(2.2.21)
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The Cauchy-Schwarz inequality allows us to bound the third integral in the r.h.s. of (2.2.21)
with the first two integrals. As concerns the first one, we have:

Cd,s
2 ξ2

2(t)
∫
Rd
ξ2

1(x)
(∫

Rd

(v(x, t)− v(y, t))2

|x− y|d+2s dy
)

dx ≤ χsupp ξ2(t) ‖ξ2‖2
∞ ‖ξ1‖2

∞ ‖v(t)‖2
Ḣs(Rd) .

(2.2.22)
In order to bound the second integral, it is important to recall that the function ls(ξ1)(y) is
regular and decays at least like |y|−d−2s as |y| → ∞ (for the definition and properties of ls
see Lemmas 2.A.2–2.A.4 in Appendix 2.A). Hence, thanks to the assumptions on ρ and γ,
we infer that

ξ2
2(t)

∫
Rd
|v(y, t)|2

(∫
Rd

(ξ1(x)− ξ1(y))2

|x− y|d+2s dx
)

dy ≤ C ′χsupp ξ2(t) ‖ξ2‖2
∞

∫
Rd
|v(y, t)|2 ρ(y)dy .

(2.2.23)
Integrating in time (2.2.21), using (2.2.22), (2.2.23), (2.2.15), (2.2.16) and identity (2.1.18)
evaluated at φ = vc, we then get ∥∥∥(−∆) s2 (vc)

∥∥∥2

L2(Rd+1)
≤ C ′ . (2.2.24)

By combining (2.2.19), (2.2.20) and (2.2.24) one can deduce (2.2.18) e.g. using Fourier trans-
form methods. In fact, upon denoting as F(f)(x′, t′) the Fourier transform in Rd+1 of a
function f(x, t), estimate (2.2.20) entails∫

Rd+1
|t′|2 |F(vc)(x′, t′)|2 dx′dt′ =

∫
Rd+1

(vc)2
t (x, t) dxdt ≤ C ′ , (2.2.25)

whereas (2.2.24) gives∫
Rd+1
|x′|2s |F(vc)(x′, t′)|2 dx′dt′ =

∫
Rd+1

∣∣∣(−∆) s2 (vc)(x, t)
∣∣∣2 dxdt ≤ C ′ . (2.2.26)

Thus, in view of (2.2.19), (2.2.25) and (2.2.26) we finally get the estimate∫
Rd+1

(
1 + |x′|2 + |t′|2

)s
|F(vc)(x′, t′)|2 dx′dt′ ≤ C ′ ,

which is equivalent to (2.2.18) (see e.g. [69, Section 3]).

We are now able to prove existence of weak solutions to (2.2.14). Such solutions are
understood in the sense of Definition 2.2.1, just upon replacing µ with ρu0. The idea is to
regularize the density ρ(x) in a neighbourhood of x = 0 (where it can be singular) and use
the results of [159].
Lemma 2.2.9. Let d > 2s and assume that ρ satisfies (2.1.3) for some γ ∈ [0, 2s) and
γ0 ∈ [0, γ]. Let u0 ∈ L1

ρ(Rd) ∩ L∞(Rd), with u0 ≥ 0. Then there exists a weak solution u to
(2.2.14) which satisfies the following energy estimates:∫ t2

t1

∫
Rd

∣∣∣(−∆) s2 (um)(x, t)
∣∣∣2 dxdt+ 1

m+ 1

∫
Rd
um+1(x, t2) ρ(x)dx

= 1
m+ 1

∫
Rd
um+1(x, t1) ρ(x)dx

(2.2.27)

for all t2 > t1 ≥ 0 and ∫ t2

t1

∫
Rd
|zt(x, t)|2 ρ(x)dxdt ≤ K ∀t2 > t1 > 0 , (2.2.28)

where z := u(m+1)/2 and K depends only on m, t1, t2 and u0 e.g. through ‖u(t1/2)‖m+1,ρ.
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Proof. We introduce the following approximation of problem (2.2.14):ρη(x)(uη)t + (−∆)s(umη ) = 0 in Rd × R+ ,

uη = u0 on Rd × {0} ,
(2.2.29)

where {ρη} ⊂ C(Rd) is a family of strictly positive densities which behave like |x|−γ at infinity
and approximate ρ(x) monotonically from below. In particular, u0 ∈ L1

ρη(Rd) ∩ L∞(Rd).
Existence (and uniqueness) of weak solutions to (2.2.29) for such densities and initial data
have been established in [159, Theorem 3.1]. Actually the solutions constructed there also
belong to C([0,∞); L1

ρη(Rd)) and satisfy the bound

‖uη‖L∞(Rd×R+) ≤ ‖u0‖L∞(Rd) .

Moreover, one can show that each uη satisfies a weak formulation which is slightly stronger
than the one of Definition 2.2.1:

−
∫ T

0

∫
Rd
uη(x, t)ϕt(x, t) ρη(x)dxdt+

∫ T

0

∫
Rd

(−∆) s2 (umη )(x, t)(−∆) s2 (ϕ)(x, t) dxdt

=
∫
Rd
u0(x)ϕ(x, 0) ρη(x)dx

(2.2.30)
for all T > 0 and ϕ ∈ C∞c (Rd × [0, T )) such that ϕ(T ) ≡ 0, where umη ∈ L2((0,∞); Ḣs(Rd)).
The latter property follows from the validity of the key energy identity∫ t2

t1

∫
Rd

∣∣∣(−∆) s2 (umη )(x, t)
∣∣∣2 dxdt+ 1

m+ 1

∫
Rd
um+1
η (x, t2) ρη(x)dx

= 1
m+ 1

∫
Rd
um+1
η (x, t1) ρη(x)dx

(2.2.31)

for all t2 > t1 ≥ 0. Formally, (2.2.31) can be proved by plugging the test function ϕ(x, t) =
ϑ(t)umη (x, t) in the weak formulation (2.2.30) and letting ϑ tend to χ[t1,t2] as in the proof of
Proposition 2.2.7. The problem is that, a priori, such a ϕ is not admissible as a test function.
In order to justify (2.2.31) rigorously one must then proceed as in [61, Section 8]. A crucial
point concerns the fact that our solutions are strong, which follows by means of techniques
analogous to the ones used in [61, Subsection 8.1]. We refer the reader to the Paragraphs
2.2.2.1 and 2.2.2.2 below for more details. Another fundamental estimate is∫ t2

t1

∫
Rd
|(zη)t(x, t)|2 ρη(x)dxdt ≤ K ∀t2 > t1 > 0 , (2.2.32)

where zη := u(m+1)/2
η and K is a suitable positive constant that depends only on t1, t2 and u0

through ‖uη(t1/2)‖m+1,ρ ≤ ‖u0‖m+1,ρ. The proof of (2.2.32) follows exactly as in [61, Lemma
8.1]. Since(

umη
)
t

= 2m
m+ 1 z

m−1
m+1
η (zη)t and ‖zη‖L∞(Rd×R+) = ‖uη‖

m+1
2

L∞(Rd×R+) ≤ ‖u0‖
m+1

2
L∞(Rd) ,

from (2.2.32) we deduce that∫ t2

t1

∫
Rd

∣∣∣(umη )t (x, t)
∣∣∣2 ρη(x)dxdt ≤

( 2m
m+ 1

)2
‖u0‖m−1

∞ K ∀t2 > t1 > 0 .

Furthermore, the validity of∫ t2

t1

∫
Rd

∣∣∣umη (x, t)
∣∣∣2 ρη(x)dxdt ≤ C ′ ∀t2 > t1 ≥ 0

114



2.2. Slowly decaying densities

for another suitable positive constant C ′ that depends only on t1, t2 and u0 is ensured
by the conservation of mass (2.2.11) (with ρ = ρη) and by the bound over ‖uη‖L∞(Rd×R+).
Applying Lemma 2.2.8 to v = umη and using the fact that Hs(Rd+1) is compactly embedded
in L2

loc(Rd+1) [69, Theorem 7.1], one can pass to the limit in (2.2.30) as η →∞ and get that
the weak limit um of {umη } in L2((0, T ); Ḣs(Rd)) (for any T > 0) satisfies

−
∫ T

0

∫
Rd
u(x, t)ϕt(x, t) ρ(x)dxdt+

∫ T

0

∫
Rd

(−∆) s2 (um)(x, t)(−∆) s2 (ϕ)(x, t) dxdt

=
∫
Rd
u0(x)ϕ(x, 0) ρ(x)dx

(2.2.33)

for all T > 0 and ϕ ∈ C∞c (Rd× [0, T )) such that ϕ(T ) ≡ 0. The validity of (2.2.4) follows by
plugging in (2.2.33) the test function ϕ(x, t) = ϑ(t)ξR(x), where ξR is a cut-off function as in
Lemma 2.A.3 and ϑ is a regular approximation of χ[0,t2]. One then lets t2 → 0 and R→∞.

Finally, the energy estimates (2.2.27) and (2.2.28) can be obtained reasoning exactly as
we did in the proof of (2.2.31) and (2.2.32) (we exploit again the fact that solutions are
strong).

Having at our disposal an existence result for problem (2.2.14), we can now let ρu0 ap-
proximate µ. In order to show that the corresponding solutions converge to a solution of
(2.1.4), we first need some technical lemmas. We begin with a modification of the classical
Stroock-Varopoulos inequality: it is proved here for a precise set of functions that we shall
deal with later on. A simple proof of such inequality (with different assumptions on the func-
tions involved), which exploits the extension in the upper plane, can be found in [61, Section
5]. See also [59, formula (2.2.7)] for a similar result involving general Dirichlet forms.

Proposition 2.2.10. Let d > 2s. For all nonnegative v ∈ L∞(Rd) ∩ Ḣs(Rd) such that
(−∆)s(v) ∈ L1(Rd) the function vq/2 belongs to Ḣs(Rd) and the inequality∫

Rd
vq−1(x)(−∆)s(v)(x) dx ≥ 4(q − 1)

q2

∫
Rd

∣∣∣(−∆) s2
(
v
q
2
)
(x)
∣∣∣2 dx (2.2.34)

holds true for any q > 1.

Proof. We shall assume, with no loss of generality, that v is a regular function. Indeed, by
standard mollification arguments, one can always pick a sequence {vn} ⊂ C∞(Rd)∩L∞(Rd)∩
Ḣs(Rd) such that {vn} converges pointwise to v, ‖vn‖∞ ≤ ‖v‖∞ and {(−∆)s(vn)} converges
to (−∆)s(v) in L1(Rd). This is enough to pass to the limit as n→∞ in the l.h.s. of (2.2.34),
while in the r.h.s. one exploits the weak lower semi-continuity of the L2 norm.

Consider the following sequences of functions:

ψn(x) :=
∫ x∧ 1

n

0
y

4s
d−2s dy + (q − 1)

∫ x∨ 1
n

1
n

yq−2 dy ∀x ∈ R+ ,

Ψn(x) :=
∫ x∧ 1

n

0
y

2s
d−2s dy + (q − 1) 1

2

∫ x∨ 1
n

1
n

y
q
2−1 dy ∀x ∈ R+ .

It is plain that ψn and Ψn are absolutely continuous, monotone increasing functions such
that ψ′n(x) = [Ψ′n(x)]2 for all x ∈ R+. For any R > 0, take a cut-off function ξR as in Lemma
2.A.3. To the function ξRv one can apply Lemma 5.2 of [61] with the choices ψ = ψn and
Ψ = Ψn, which yields∫

Rd
ψn(ξRv)(x)(−∆)s(ξRv)(x) dx ≥

∫
Rd

∣∣∣(−∆) s2 (Ψn(ξRv))(x)
∣∣∣2 dx . (2.2.35)
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Computing the fractional Laplacian of the product of two functions, we get that the l.h.s. of
(2.2.35) equals∫

Rd
ψn(ξRv)(x)ξR(x)(−∆)s(v)(x) dx+

∫
Rd
ψn(ξRv)(x)(−∆)s(ξR)(x)v(x) dx

+ 2Cd,s
∫
Rd
ψn(ξRv)(x)

∫
Rd

(ξR(x)− ξR(y))(v(x)− v(y))
|x− y|d+2s dydx .

(2.2.36)

By dominated convergence,

lim
R→∞

∫
Rd
ψn(ξRv)(x)ξR(x)(−∆)s(v)(x) dx =

∫
Rd
ψn(v)(x)(−∆)s(v)(x) dx .

Our aim is to show that the other two integrals in (2.2.36) vanish as R→∞. We have:∣∣∣∣∫
Rd
ψn(ξRv)(x)(−∆)s(ξR)(x)v(x) dx

∣∣∣∣
≤‖(−∆)s(ξR)‖∞

(
d− 2s
d+ 2s

∫
{v≤1/n}

v
2d
d−2s (x) dx+ ψn(‖v‖∞)‖v‖∞

∫
{v>1/n}

dx
) (2.2.37)

and ∣∣∣∣∣
∫
Rd
ψn(ξRv)(x)

∫
Rd

(ξR(x)− ξR(y))(v(x)− v(y))
|x− y|d+2s dydx

∣∣∣∣∣
≤‖v‖Ḣs

(∫
Rd

[ψn(ξRv)(x)]2
∫
Rd

(ξR(x)− ξR(y))2

|x− y|d+2s dydx
) 1

2

≤‖v‖Ḣs ‖ls(ξR)‖
1
2
∞

[d− 2s
d+ 2s

]2 ∫
{v≤1/n}

v2 d+2s
d−2s (x) dx+ [ψn(‖v‖∞)]2

∫
{v>1/n}

dx
 1

2

,

(2.2.38)

where ls is defined in Lemma 2.A.2. In view of Lemma 2.A.4, limR→∞ ‖(−∆)s(ξR)‖∞ =
limR→∞ ‖ls(ξR)‖∞ = 0. Moreover,

v ∈ L
2d
d−2s (Rd) ∩ L∞(Rd)

(see [69, Section 6] or Lemma 2.2.11 below). In particular, v also belongs to

L2 d+2s
d−2s (Rd) .

Letting R → ∞ in (2.2.37) and (2.2.38), we therefore deduce that the last two integrals in
(2.2.36) actually go to zero, so that we can pass to the limit in the l.h.s. of (2.2.35). In
the r.h.s. we just use the fact that {(−∆) s2 (Ψn(ξRv))} converges to (−∆) s2 (Ψn(v)) weakly in
L2(Rd), i.e. {Ψn(ξRv)} converges to Ψn(v) weakly in Ḣs(Rd). This proves the validity of∫

Rd
ψn(v)(x)(−∆)s(v)(x) dx ≥

∫
Rd

∣∣∣(−∆) s2 (Ψn(v))(x)
∣∣∣2 dx . (2.2.39)

The final step is to let n → ∞ in (2.2.39). It is clear that the sequence {ψn(x)} converges
locally uniformly to the function xq−1, while {Ψn(x)} converges locally uniformly to the
function 2(q − 1) 1

2x
q
2/q. Hence, {ψn(v)} and {Ψn(v)} converge in L∞(Rd) to vq−1 and 2(q −

1) 1
2v

q
2/q, respectively, so that we can pass to the limit in (2.2.39) and obtain (2.2.34).
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Lemma 2.2.11. Let d > 2s and assume that ρ satisfies (2.1.3) for some γ ∈ [0, 2s) and
γ0 ∈ [0, γ]. There exists a positive constant CCKN = CCKN(C, γ, d, s) such that the family of
fractional Caffarelli-Kohn-Nirenberg inequalities

‖v‖q,ρ ≤ CCKN
∥∥∥(−∆) s2 (v)

∥∥∥ 1
a+1

2
‖v‖

a
a+1
p,ρ ∀v ∈ Lpρ(Rd) ∩ Ḣs(Rd) (2.2.40)

holds true for any a ≥ 0, p > 0 and

q = 2(d− γ)(a+ 1)
2(d− γ)a

p
+ d− 2s .

For a = 0 we recover the fractional Sobolev inequality

‖v‖2 d−γ
d−2s ,ρ

≤ CCKN
∥∥∥(−∆) s2 (v)

∥∥∥
2
∀v ∈ Ḣs(Rd) . (2.2.41)

Proof. The fractional Hardy-Sobolev inequality

‖v‖2 d−γ
d−2s ,−γ

≤ Cγ
∥∥∥(−∆) s2 (v)

∥∥∥
2
∀v ∈ Ḣs(Rd) (2.2.42)

can be proved by interpolation between the fractional Sobolev inequality

‖v‖ 2d
d−2s
≤ CS

∥∥∥(−∆) s2 (v)
∥∥∥

2
∀v ∈ Ḣs(Rd)

(see e.g. [69, Theorem 6.5]) and the fractional Hardy inequality

‖v‖2,−2s ≤ CH
∥∥∥(−∆) s2 (v)

∥∥∥
2
∀v ∈ Ḣs(Rd)

(see e.g. [96] and references quoted therein). Hence, (2.2.41) follows from (2.2.42) in view
of the hypotheses on ρ: here it is crucial that γ ∈ [0, 2s) and that γ0 ≤ γ. Once we have
(2.2.41), another interpolation yields (2.2.40).

We point out that, for ρ(x) = |x|−γ, inequality (2.2.40) is just a particular case of [57,
Theorem 1.8].

Proposition 2.2.10 and Lemma 2.2.11 provide us with some functional inequalities which
are key to prove the following smoothing effect for solutions to (2.2.14).

Proposition 2.2.12. Let d > 2s and assume that ρ satisfies (2.1.3) for some γ ∈ [0, 2s) and
γ0 ∈ [0, γ]. There exists a constant K > 0 depending only on m, C, γ, d and s such that,
for all nonnegative initial data u0 ∈ L1

ρ(Rd)∩ L∞(Rd) and the corresponding weak solution u
to (2.2.14) constructed in Lemma 2.2.9, the following Lp0

ρ –L∞ smoothing effect holds true for
any p0 ∈ [1,∞):

‖u(t)‖∞ ≤ K t−α0 ‖u0‖β0
p0,ρ

∀t > 0 , (2.2.43)
where

α0 := d− γ
(m− 1)(d− γ) + (2s− γ)p0

, β0 := (2s− γ)p0

(m− 1)(d− γ) + (2s− γ)p0
. (2.2.44)

Proof. We proceed exactly as in the proof of [61, Theorem 8.2], i.e. through a standard
parabolic Moser iteration, so we just stress the main steps for the convenience of the reader.
In fact, the method of proof is the same as Theorem 1.2.11 in Chapter 1, Paragraph 1.2.3.4:
here the additional difficulty due to the presence of the fractional Laplacian is overcome by
means of the above Stroock-Varopoulos inequality.
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First of all, let us fix t > 0 and consider the time sequence tk := (1 − 2−k) t. Denote
as {pk} ⊂ (1,∞) another increasing numerical sequence to be chosen later. Multiplying
the differential equation in (2.2.14) by upk−1(x, t), integrating over Rd × [tk, tk+1], applying
Proposition 2.2.10 to the function v = um (with the choice q = (pk+m−1)/m) and exploiting
the fact that the Lpρ norms do not increase along the evolution (see Paragraph 2.2.2.2 below),
we get:

‖u(tk)‖pkpk,ρ ≥
ck

‖u(tk)‖pkpk,ρ

∫ tk+1

tk

∥∥∥∥(−∆) s2
(
u
pk+m−1

2 (τ)
)∥∥∥∥2

2
‖u(τ)‖pkpk,ρ dτ , (2.2.45)

where ck := 4mpk(pk − 1)/(pk + m − 1)2. The above computations are justified rigorously
since, as we recall in Paragraph 2.2.2.1, our solutions are strong. In particular, both sides
of the differential equation in (2.2.14) belong to L1(Rd). Exploiting (2.2.40) with the choices
p = 2pk/(pk +m− 1) and a = pk/(pk +m− 1), we obtain:∥∥∥∥(−∆) s2

(
u
pk+m−1

2 (τ)
)∥∥∥∥2

2
‖u(τ)‖pkpk,ρ ≥ C

−2 2pk+m−1
pk+m−1

CKN ‖u(τ)‖2pk+m−1
(d−γ)(2pk+m−1)

2d−γ−2s ,ρ
. (2.2.46)

Thanks to (2.2.46) and again to the fact that the Lpρ norms of u(τ) do not grow in time, we
deduce:∫ tk+1

tk

∥∥∥∥(−∆) s2
(
u
pk+m−1

2 (τ)
)∥∥∥∥2

2
‖u(τ)‖pkpk,ρ dτ ≥ C

−2 2pk+m−1
pk+m−1

CKN 2−(k+1)t ‖u(tk+1)‖2pk+m−1
(d−γ)(2pk+m−1)

2d−γ−2s ,ρ
.

(2.2.47)
Gathering (2.2.45) and (2.2.47) we find the recursive inequality

‖u(tk+1)‖pk+1,ρ
≤

2k+1C
2 2pk+m−1
pk+m−1

CKN

ck t


σ

2pk+1

‖u(tk)‖
σ

pk
pk+1

pk,ρ
,

where
pk+1 = σ

2 (2pk +m− 1) , σ := 2(d− γ)
2d− γ − 2s .

Note that, since γ ∈ [0, 2s), σ > 1. Furthermore, upon taking p0 > 1, it is easy to check that

pk = A(σk − 1) + p0 , A := p0 + (d− γ)(m− 1)
2s− γ > 0 ,

whence pk+1 > pk and limk→∞ pk =∞. Thus, letting Uk := ‖u(tk)‖pk,ρ, we can find a constant
c0 = c0(p0,m,C, γ, d, s) > 0 (in particular, independent of k) such that

Uk+1 ≤ c
k

pk+1
0 t

− σ
2pk+1U

σ
pk
pk+1

k ; (2.2.48)
applying (2.2.48) iteratively we get

Uk ≤ c
1
pk

∑k−1
j=1 (k−j)σj

0 t
− 1

2pk

∑k

j=1 σ
j

U
σk

p0
pk

0 . (2.2.49)
Passing to the limit in (2.2.49) as k →∞ we end up with the estimate

‖u(t)‖∞ ≤ C ′ t
− d−γ

(m−1)(d−γ)+(2s−γ)p0 ‖u0‖
(2s−γ)p0

(m−1)(d−γ)+(2s−γ)p0
p0,ρ

(2.2.50)

for some positive constant C ′ = C ′(p0,m,C, γ, d, s) > 0, namely (2.2.43). However, we recall
that (2.2.50) has been proved under the assumption p0 > 1. In order to establish its validity
down to p0 = 1 one can proceed as in the proof of [61, Corollary 8.1] (see also the proof of
Theorem 1.2.9 in Chapter 1, Paragraph 1.2.3.4).
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Before proving Theorem 2.2.2, we still need a preliminary result concerning Riesz poten-
tials.

Lemma 2.2.13. Let d > 2s and φ : Rd 7→ R be a continuous function which belongs to
L1(Rd) and decays at least like |x|−d as |x| → ∞. Then the convolution I2s ∗ φ (namely the
Riesz potential of φ) is also a continuous function, decaying at least like |x|−d+2s as |x| → ∞.

Proof. The fact that I2s ∗ φ is continuous easily follows from continuity and integrability
properties of both I2s and φ. In order to prove the claimed decay behaviour as |x| → ∞ we
have to work a bit more. To begin with, let us split the convolution in this way:

(I2s ∗ φ) (x) =
∫
Rd

kd,s φ(y)
|x− y|d−2s dy =

∫
B2|x|

kd,s φ(y)
|x− y|d−2s dy︸ ︷︷ ︸
F1(x)

+
∫
Bc2|x|

kd,s φ(y)
|x− y|d−2s dy︸ ︷︷ ︸
F2(x)

.

As concerns F2, we have:

|F2(x)| =
∣∣∣∣∣
∫
Bc2|x|

kd,s φ(y)
|x− y|d−2s dy

∣∣∣∣∣ ≤ 2d−2sC kd,s

∫
Bc2|x|

|y|−2d+2s dy ≤ C kd,s d |B1|
(d− 2s)|x|d−2s , (2.2.51)

where we used the inequalities

|φ(y)| ≤ C

|y|d
∀y ∈ Rd , |x− y| ≥ |y|2 ∀y ∈ Bc

2|x| , (2.2.52)

valid for some C > 0. On the other hand, F1 can be estimated as follows:

|F1(x)| =
∣∣∣∣∣
∫
B2|x|

kd,s φ(y)
|x− y|d−2s dy

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
B|x|/2(x)

kd,s φ(y)
|x− y|d−2s dy

∣∣∣∣∣+
∣∣∣∣∣
∫
B2|x|∩Bc|x|/2(x)

kd,s φ(y)
|x− y|d−2s dy

∣∣∣∣∣ .
(2.2.53)

Since∣∣∣∣∣
∫
B|x|/2(x)

kd,s φ(y)
|x− y|d−2s dy

∣∣∣∣∣ ≤ 2dC kd,s
|x|d

∣∣∣∣∣
∫
B|x|/2(x)

|x− y|−d+2s dy
∣∣∣∣∣ ≤ 2d−2s−1C kd,s d |B1|

s|x|d−2s

and ∣∣∣∣∣
∫
B2|x|∩Bc|x|/2(x)

kd,s φ(y)
|x− y|d−2s dy

∣∣∣∣∣ ≤ 2d−2skd,s
|x|d−2s ‖φ‖1 , (2.2.54)

gathering (2.2.51)–(2.2.54) we finally deduce the claimed decay property of I2s ∗ φ.

Proof of Theorem 2.2.2. Suppose first that µ is a compactly supported measure. Consider
the family {uε} of weak solutions to (2.1.4) that take the regular initial data µε := ψε ∗ µ
(let ε > 0), where ψε(x) := ε−d ψ(x/ε) with ψ ∈ D(Rd), ψ ≥ 0 and ‖ψ‖1 = 1. The existence
of such a family is ensured by Lemma 2.2.9, upon letting u0 = ρ−1µε ∈ L1

ρ(Rd) ∩ L∞(Rd).
We shall prove that {uε} converges (up to subsequences), as ε → 0, to a function u which
satisfies (2.2.1), (2.2.2) and (2.2.3). Afterwards we shall deal with (2.2.4).

Combining the smoothing effect (2.2.43) (for p0 = 1) with the fact that ‖µε‖1 = µ(Rd)
and with the conservation of mass (2.2.11), we obtain:∫

Rd
um+1
ε (x, t) ρ(x)dx ≤ ‖uε(t)‖m∞ ‖µε‖1 ≤ Km t−αm µ(Rd)1+βm ∀t > 0 . (2.2.55)
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Hence, using (2.2.27), (2.2.28) and (2.2.55), we get:∫ t2

t1

∫
Rd

∣∣∣(−∆) s2 (umε ) (x, t)
∣∣∣2 dxdt+ 1

m+ 1

∫
Rd
um+1
ε (x, t2) ρ(x)dx ≤ Km

m+ 1 t
−αm
1 µ(Rd)1+βm ,

(2.2.56)∫ t2

t1

∫
Rd
|(zε)t(x, t)|2 ρ(x)dxdt ≤ K ′ (2.2.57)

for all t2 > t1 > 0, where zε := u(m+1)/2
ε and K ′ is a positive constant that depends on t1, t2

and µ(Rd) (via (2.2.55) evaluated e.g. at t1/2) but is independent of ε. Thanks to (2.2.56),
(2.2.57), the conservation of mass and the smoothing effect (which in particular permits us
to bound {uε} in L∞(Rd× (τ,∞)) for all τ > 0, independently of ε), we can proceed exactly
as in the proof of Lemma 2.2.9. That is, we find that the pointwise limit u of {uε}, up to
subsequences, satisfies (2.2.1), (2.2.2) and (2.2.3).

In order to prove that the initial datum assumed by u (in the sense of (2.2.4)) is actually
µ, we exploit some results in potential theory, following [148] or [174]. To begin with, let us
introduce the Riesz potential Uε(t) of ρuε(t), namely

Uε(x, t) := [I2s ∗ ρuε(t)] (x) ∀(x, t) ∈ Rd × R+ .

The equation solved by uε is

ρ(x)(uε)t(x, t) = − (−∆)s (umε )(x, t) ∀(x, t) ∈ Rd × R+. (2.2.58)

Applying to both sides of (2.2.58) the operator (−∆)−s, i.e. the convolution against the Riesz
kernel I2s (see Paragraph 2.1.1.4), we formally obtain

(Uε)t (x, t) = −umε (x, t) ∀(x, t) ∈ Rd × R+ . (2.2.59)

We aim at proving (2.2.59) rigorously. To this end, let us plug in (2.2.3) (with u = uε) the test
function ϕ(y, t) = ϑ(t)φ(y), where ϑ is a smooth and compactly supported approximation of
χ[t1,t2] and φ ∈ D(Rd). Integrating by parts (in space), letting ϑ tend to χ[t1,t2] and replacing
φ(y) with φ(y + x) (for any fixed x), we get:∫

Rd
uε(y, t2)φ(y + x) ρ(y)dy −

∫
Rd
uε(y, t1)φ(y + x) ρ(y)dy

=−
∫
Rd

(∫ t2

t1
umε (y, t) dt

)
(−∆)s(φ)(y + x) dy .

(2.2.60)

Integrating (2.2.60) against the Riesz kernel I2s(x) and exploiting Fubini’s Theorem we end
up with the identity (let z = y + x)∫

Rd
Uε(z, t2)φ(z) dz −

∫
Rd
Uε(z, t1)φ(z) dz

=−
∫
Rd

(∫ t2

t1
umε (y, t) dt

)(∫
Rd

(−∆)s(φ)(y + x)I2s(x) dx
)

dy

=−
∫
Rd

(∫ t2

t1
umε (y, t) dt

)
φ(y) dy .

(2.2.61)

The application of Fubini’s Theorem here is justified by means of Lemma 2.2.13, Lemma
2.A.1, (2.2.1) and the assumptions on ρ. In fact, both the functions

y −→
∫
Rd
|φ(y + x)| I2s(x) dx (2.2.62)
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and
y −→

∫
Rd
|(−∆)s(φ)(y + x)| I2s(x) dx (2.2.63)

are continuous and decay at least like |y|−d+2s as |y| → ∞. This implies that∫
Rd

∫
Rd
|ρ(y)uε(y, t)φ(y + x)I2s(x)| dydx <∞ for t ∈ {t1, t2}

and ∫
Rd

∫
Rd

∣∣∣∣(∫ t2

t1
umε (y, t) dt

)
(−∆)s(φ)(y + x)I2s(x)

∣∣∣∣ dydx <∞

since (2.2.62) is bounded and (2.2.63) decays at least like ρ(y) at infinity (here the assumption
d− 2s ≥ γ is crucial). By Lemma 2.2.9 and Definition 2.2.1, we know that ρuε(t) converges
to µε in σ(M(Rd), Cb(Rd)) as t→ 0. Hence, letting t1 → 0 in (2.2.61), we find that∫

Rd
Uε(x, t2)φ(x) dx−

∫
Rd
Uµε(x)φ(x) dx = −

∫
Rd

(∫ t2

0
umε (x, t) dt

)
φ(x) dx (2.2.64)

for all t2 > 0 and φ ∈ D(Rd). In fact,∫
Rd
Uε(x, t1)φ(x) dx =

∫
Rd

(∫
Rd
I2s(x− y) ρ(y)uε(y, t1) dy

)
φ(x) dx

=
∫
Rd

(∫
Rd
I2s(y − x)φ(x) dx

)
︸ ︷︷ ︸

Uφ(y)

ρ(y)uε(y, t1) dy ,

and in view of Lemma 2.2.13 we know that, in particular, Uφ ∈ C0(Rd), which allows us to
pass to the limit in the integral as t1 → 0. Thanks to the smoothing effect, the conservation
of mass and the hypotheses on ρ, we can provide the following bound for (2.2.64):∣∣∣∣∫

Rd
Uε(x, t2)φ(x) dx−

∫
Rd
Uµε(x)φ(x) dx

∣∣∣∣ ≤ ∥∥∥ρ−1φ
∥∥∥
∞
Km−1 µ(Rd)1+β(m−1)

∫ t2

0
t−α(m−1)dt .

(2.2.65)
Note that the time integral in the r.h.s. is finite since α(m − 1) < 1 (recall (2.2.44) for
p0 = 1). We proved above that {uε} converges pointwise a.e. (up to subsequences) to a
function u which satisfies (2.2.1), (2.2.2) and (2.2.3). If we exploit once again the smoothing
effect and the conservation of mass, we easily infer that such convergence also takes place in
σ(M(Rd), C0(Rd)):

lim
ε→0

ρuε(t) = ρu(t) in σ(M(Rd), C0(Rd)) , for a.e. t > 0 . (2.2.66)

Using (2.2.66), the fact that µε → µ in σ(M(Rd), Cb(Rd)) and proceeding exactly as we did
in the proof of (2.2.64), we can let ε→ 0 in (2.2.65) to get∣∣∣∣∫

Rd
U(x, t2)φ(x) dx−

∫
Rd
Uµ(x)φ(x) dx

∣∣∣∣ ≤ ∥∥∥ρ−1φ
∥∥∥
∞
Km−1 µ(Rd)1+β(m−1)

∫ t2

0
t−α(m−1)dt

(2.2.67)
for a.e. t2 > 0 and φ ∈ D(Rd), where we denote as U the potential of ρu. Note that, passing
to the limit in (2.2.64) for any nonnegative φ ∈ D(Rd), we deduce in particular that U(x, t) is
nonincreasing in t. Moreover, (2.2.67) implies that U(t) converges to Uµ in L1

loc(Rd), whence

lim
t→0

U(x, t) = Uµ(x) for a.e. x ∈ Rd . (2.2.68)
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Letting ε→ 0 in the conservation of mass (2.2.11) (applied to u = uε and µ = µε), by means
e.g. of Fatou’s Lemma we obtain

‖u(t)‖1,ρ ≤ µ(Rd) for a.e. t > 0 . (2.2.69)

Due to the compactness results recalled in Paragraph 2.1.1.2, from (2.2.69) we infer that
(almost) every sequence tn → 0 admits a subsequence {tnk} such that {ρu(tnk)} converges to
a certain positive finite Radon measure ν in σ(M(Rd), Cc(Rd)). Thanks to (2.2.68) and [121,
Theorem 3.8] we have that Uν(x) = Uµ(x) almost everywhere. Alternatively, such identity
can be proved by passing to the limit in

∫
Rd U(x, tnk)φ(x) dx, recalling that U(tnk) → Uµ

in L1
loc(Rd) as k → ∞. Theorem 1.12 of [121] then ensures that two positive finite Radon

measures whose potentials are equal almost everywhere must coincide. Hence, ν = µ and the
limit measure does not depend on the particular subsequence, so that

lim
t→0

ρu(t) = µ in σ(M(Rd), Cc(Rd)) .

In order to show that convergence also takes place in σ(M(Rd), Cb(Rd)), it is enough to
establish that

lim
t→0
‖u(t)‖1,ρ = µ(Rd) . (2.2.70)

Since ρu(t) converges to µ in σ(M(Rd), Cc(Rd)) as t→ 0, we know that

µ(Rd) ≤ lim inf
t→0

‖u(t)‖1,ρ , (2.2.71)

see again Paragraph 2.1.1.2. But (2.2.71) and (2.2.69) entail (2.2.70).
Finally, the validity of the smoothing estimate (2.2.5) just follows by passing to the limit

in (2.2.43) (applied to uε and p0 = 1) as ε → 0, recalling that {uε} converges to u almost
everywhere.

At the beginning of the proof we assumed µ to be compactly supported. Otherwise, take
a sequence of compactly supported measures {µn} converging to µ in σ(M(Rd), Cb(Rd))
and consider the corresponding sequence of solutions {un} to (2.1.4). The energy estimates
(2.2.56) and (2.2.57) (as well as the conservation of mass and the smoothing effect) are clearly
stable as ε→ 0, so that they hold true with uε replaced by un and µε replaced by µn. Hence,
using the same techniques as above, one can prove that {un} converges to a solution u of
(2.1.4) starting from µ.

Lemma 2.2.14. Let ν be a signed finite measure, namely the difference between two positive
finite Radon measures, such that Uν ≥ 0 almost everywhere. Then ν(Rd) ≥ 0.

Proof. From the assumptions on Uν and thanks to Fubini’s Theorem, there holds∫
Rd
χBn(y)Uν(y) dy =

∫
Rd

(I2s ∗ χBn) (x) dν = kd,s

∫
Rd

(∫
Bn
|x− y|−d+2s dy

)
dν ≥ 0

(2.2.72)
for all n ∈ N. Performing the change of variable z = y/n, the last inequality in (2.2.72) reads∫

Rd

(∫
B1
|x/n− z|−d+2s dz

)
dν ≥ 0 ∀n ∈ N . (2.2.73)

It is plain that for every x ∈ Rd the sequence {
∫
B1
|x/n−z|−d+2s dz} converges to the positive

constant
∫
B1
|z|−d+2s dz and it is dominated by the latter. Passing to the limit as n→∞ in

(2.2.73), we get the assertion by dominated convergence (recall that ν is a finite measure).
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Proof of Theorem 2.2.3. Consider a function u satisfying (2.2.1), (2.2.2) and (2.2.3). Mono-
tonicity in time of the associated potential is a consequence of the analogue of (2.2.61), which
here can be proved exactly as above: for such an argument to work, the running assumptions
on γ are necessary. Actually the same proof holds if, instead of u ∈ L∞(Rd×(τ,∞)), u is only
supposed to satisfy

∫ t2
t1
um(τ) dτ ∈ L1

ρ(Rd) for all t2 > t1 > 0. Existence of an initial trace µ,
meant as convergence in σ(M(Rd), Cc(Rd)) along subsequences of a given sequence of times
going to zero, follows by compactness, since we are assuming that u ∈ L∞((0,∞); L1

ρ(Rd)).
Uniqueness of such a trace is established as we did after (2.2.68), i.e. using monotonicity of
potentials and [121, Theorems 1.12 and 3.8].

We are left with proving that convergence to µ takes places also in σ(M(Rd), Cb(Rd)),
namely that limt→0

∫
Rd u(x, t) ρ(x)dx = µ(Rd). By weak∗ lower semi-continuity, it is enough

to show that lim supt→0
∫
Rd u(x, t) ρ(x)dx ≤ µ(Rd). Let U(t) be the potential of ρu(t). Again,

the monotonicity in time of U(t) and the first part of the proof ensure that Uµ − U(t) ≥ 0
almost everywhere. Therefore, Lemma 2.2.14 applied to the signed finite measure dν = dµ−
u(x, t)ρ(x)dx entails µ(Rd) ≥

∫
Rd u(x, t) ρ(x)dx. Letting t→ 0 we conclude the proof.

2.2.2.1 Strong solutions

In order to justify rigorously some of the above computations, it is essential to show
that the weak solutions constructed in Lemma 2.2.9 are strong. By a “strong solution”,
following [61, Subsection 6.2], we mean a weak solution u (in the sense of Definition 2.2.1)
having the additional property

ut ∈ L∞((τ,∞),L1
ρ(Rd)) ∀τ > 0 . (2.2.74)

Here we shall only give a sketch of how it is possible to prove that our solutions are indeed
strong, as techniques are completely analogous to the ones used in [61, Subsection 8.1]. The
first step consists in establishing that ρut(t) is a bounded Radon measure satisfying the
estimate

‖ρut(t)‖M(Rd) ≤
2 ‖u0‖1,ρ

(m− 1)t ∀t > 0 , (2.2.75)

where now, byM(Rd), we mean the Banach space of signed measures on Rd, equipped with
the usual norm of the total variation. This can be proved proceeding exactly as in [173,
Lemma 8.5], that is by exploiting the validity of the L1

ρ(Rd) contraction principle∫
Rd

[u(x, t)− ũ(x, t)]+ ρ(x)dx ≤
∫
Rd

[u0(x)− ũ0(x)]+ ρ(x)dx ∀t > 0 , (2.2.76)

where u and ũ are the solutions to (2.2.14) constructed in Lemma 2.2.9 corresponding to the
initial data u0 and ũ0, respectively. Such principle does hold for the approximate solutions
uη and ũη used in the proof of Lemma 2.2.9:∫

Rd
[uη(x, t)− ũη(x, t)]+ ρη(x)dx ≤

∫
Rd

[u0(x)− ũ0(x)]+ ρη(x)dx ∀t > 0 . (2.2.77)

This is proved in [159, Proposition 3.3]. Hence, (2.2.76) is just a consequence of letting
η →∞ in (2.2.77).

Afterwards one proves that z := u(m+1)/2 is a function satisfying estimate (2.2.28), with a
constant K that depends on t1, t2 and e.g. on∫ 2t2

t1/2

∫
Rd

∣∣∣(−∆) s2 (um)(x, t)
∣∣∣2 dxdt .
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Chapter 2. Fractional porous medium equations with power-type densities

In order to do that, one just repeats the proof of [61, Lemma 8.1] (the idea is to use Steklov
averages). In particular,

zt ∈ L2
loc((0,∞); L2

ρ(Rd)) . (2.2.78)
The dependence of K on the initial datum through ‖u(t1/2)‖m+1,ρ is then a consequence of
the energy identity (2.2.27) (the proof of which requires however that solutions are strong, see
the next Paragraph 2.2.2.2). Having at our disposal (2.2.75) and (2.2.78), we can apply the
general result [17, Theorem 1.1], which ensures (in particular) that ut is actually a function
satisfying

ut ∈ L1
loc((0,∞); L1

ρ(Rd)) . (2.2.79)
In view of (2.2.75) and (2.2.79) we then get the estimate

‖ut(t)‖1,ρ ≤
2 ‖u0‖1,ρ

(m− 1)t . (2.2.80)

In particular, (2.2.74) holds true and solutions are strong.
Remark 2.2.15. We have shown that the weak solutions to (2.2.14) constructed in Lemma
2.2.9 are strong. Since, for any τ > 0, every weak solution u to (2.1.4) is a weak solution to
(2.2.14) corresponding to the initial datum u(τ) ∈ L1

ρ(Rd)∩L∞(Rd), one may claim that also
such u is a strong solution. This is actually true: however, in order to prove it rigorously, we
need the uniqueness Theorem 2.2.4.

Knowing that also the weak solutions provided by Theorem 2.2.2 are strong allows us,
a posteriori, to state some properties of such solutions for all t > 0 rather than only for
a.e. t > 0.

2.2.2.2 Decrease of the norms

An important consequence of the fact that the solutions constructed in Lemma 2.2.9 are
strong is the decrease of their Lpρ norms for any p ∈ [1,∞]. Indeed, thanks to (2.2.74), we are
allowed to multiply the differential equation in (2.2.14) by up−1 and integrate in Rd× [t1, t2].
Exploiting the Stroock-Varopoulos inequality (2.2.34) (let v = um and q = (p + m − 1)/m
there), we obtain∫

Rd
up(x, t2) ρ(x)dx−

∫
Rd
up(x, t1) ρ(x)dx = −p

∫ t2

t1

∫
Rd
up−1(x, t)(−∆)s(um)(x, t) dxdt ≤ 0

(2.2.81)
for all t2 > t1 > 0. The validity of (2.2.81) down to t1 = 0 cannot be proved just by letting
t1 → 0, since a priori we have no information over the continuity of ‖u(t)‖p,ρ at t = 0.
However, reasoning as above, we have that also the approximate solutions uη of Lemma 2.2.9
are strong and therefore satisfy∫

Rd
upη(x, t2) ρη(x)dx ≤

∫
Rd
upη(x, t1) ρη(x)dx . (2.2.82)

Moreover, here we are indeed allowed to let t1 → 0 in (2.2.82), which yields∫
Rd
upη(x, t) ρη(x)dx ≤

∫
Rd
up0(x) ρη(x)dx ∀t > 0 ; (2.2.83)

in fact, uη ∈ C([0,∞); L1
ρη(Rd))∩L∞(Rd× (0,∞)) (see [159, Definition 2.2 and Theorem 3.1]

and also Subsection 2.3.4). Hence, letting η →∞ and using e.g. Fatou’s Lemma in the l.h.s.
of (2.2.83), we find that ∫

Rd
up(x, t2) ρ(x)dx ≤

∫
Rd
up(x, t1) ρ(x)dx
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for all t2 > t1 ≥ 0.
We point out that the above computations are rigorous provided p ∈ (1,∞). However, we

know that ‖u(t)‖1,ρ is preserved, while the case p = ∞ can be dealt with by taking limits.
Notice that, for p = m+ 1, (2.2.81) becomes exactly the energy identity (2.2.27).

2.2.3 Uniqueness of weak solutions

In this subsection we borrow some ideas from the pioneering paper [148], which need to be
carefully modified in order to deal with our fractional, weighted problem. In particular, the
Markov property for the linear semigroup associated to the operator A := ρ−1(−∆)s, which
is addressed in Appendix 2.A, will play a crucial role.

Prior to the proof of Theorem 2.2.4, below we prove some basic lemmas and introduce our
strategy.

Lemma 2.2.16. Let d > 2s and assume that ρ satisfies (2.1.3) for some γ ≥ 0 and γ0 ∈
[0, 2s). Let v ∈ L1

ρ(Rd) ∩ L∞(Rd) and U v
ρ be the Riesz potential of ρv. Then, U v

ρ belongs to
C(Rd) ∩ Lp(Rd) for all p such that

p ∈
(

d

d− 2s,∞
]
. (2.2.84)

Proof. In order to prove that U v
ρ belongs to C(Rd) ∩ Lp(Rd) for all p satisfying (2.2.84), we

first split the convolution as follows:

U v
ρ (x) =

∫
B1
ρ(y) v(y) I2s(x− y) dy︸ ︷︷ ︸

Uvρ,1(x)

+
∫
Rd
χBc1(y) ρ(y) v(y) I2s(x− y) dy︸ ︷︷ ︸

Uvρ,2(x)

.

Exploiting the fact that v ∈ L∞(Rd) and γ0 < 2s (so that |y|−d+2sρ(y) ∈ L1
loc(Rd)), it is easily

seen that U v
ρ,1(x) is a continuous function which decays at least like |x|−d+2s as |x| → ∞. In

particular, it belongs to Lp(Rd) for all p satisfying (2.2.84). As concerns U v
ρ,2(x), notice that,

since v ∈ L1
ρ(Rd)∩L∞(Rd), the function χBc1ρv belongs to L1(Rd)∩L∞(Rd). Hence U v

ρ,2(x) is
continuous as well. To prove that it belongs to Lp(Rd) for all p satisfying (2.2.84), we write:

U v
ρ,2 = (χB1 I2s) ∗

(
χBc1 ρv

)
+
(
χBc1 I2s

)
∗
(
χBc1 ρv

)
. (2.2.85)

Because χB1 I2s ∈ L1(Rd) and χBc1 ρv ∈ L1(Rd) ∩ L∞(Rd), the first convolution in (2.2.85)
belongs to L1(Rd)∩ L∞(Rd). Using the fact that χBc1 I2s ∈ Lp(Rd) for all p as in (2.2.84) and
χBc1 ρv ∈ L1(Rd), we infer that the second convolution in (2.2.85) belongs to Lp(Rd) for all
such p. The latter property is then inherited by U v

ρ,2.

In the following, with the term “weak solution”, we shall always mean a solution to (2.1.4)
in the sense of Definition 2.2.1.

Lemma 2.2.17. Let d > 2s and assume that ρ satisfies (2.1.3) for some γ ∈ [0, d− 2s] and
γ0 ≥ 0. Let u be a weak solution to (2.1.4), starting from the positive finite Radon measure
µ whose potential is Uµ, and denote as U the potential of ρu. Then,

lim
t→0

U(x, t) = Uµ(x) ∀x ∈ Rd . (2.2.86)

Proof. It is actually a direct application of [121, Theorem 3.9], but for the reader’s convenience
we give some details.
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Chapter 2. Fractional porous medium equations with power-type densities

Thanks to Theorem 3.8 of [121] and to the monotonicity in time of U(x, t) (see the proof
of Theorem 2.2.2 above, one only needs γ ≤ d−2s to justify (2.2.61)), we have that the limit
in (2.2.86) is taken at least for a.e. x ∈ Rd. Nevertheless, Lemma 1.12 of [121] shows that, as
a consequence of monotonicity, there exists a positive measure ν, whose potential is denoted
by Uν , and a constant A ≥ 0 such that

lim
t→0

U(x, t) = Uν(x) + A ∀x ∈ Rd .

Since we have just proved that (2.2.86) holds almost everywhere, in particular

Uµ(x) = Uν(x) + A for a.e. x ∈ Rd . (2.2.87)

However, in view of the corollary at page 129 of [121], from (2.2.87) we deduce that A =
0. Hence, Uν = Uµ almost everywhere, and by Theorem 1.12 of [121] we know that two
potentials coinciding a.e. in fact coincide everywhere, whence (2.2.86).

Now let u1 and u2 be two weak solutions to (2.1.4) which take the same positive finite
Radon measure µ as initial datum. We denote as U1 and U2 the potentials of ρu1 and ρu2,
respectively. Fix once for all the parameters h, T > 0 and consider the function

g(x, t) := U2(x, t+ h)− U1(x, t) ∀(x, t) ∈ Rd × (0, T ] . (2.2.88)

Thanks to the hypothesis γ ≤ d− 2s, we can proceed again as in the proof of (2.2.61) to find
that g(t) is an absolutely continuous curve in L1

loc(Rd) which satisfies

ρ(x)gt(x, t) = ρ(x) (um1 (x, t)− um2 (x, t+ h)) = −a(x, t)(−∆)s(g)(x, t) (2.2.89)

for a.e. (x, t) ∈ Rd × (0, T ), where

(−∆)s(g)(x, t) = ρ(x)u2(x, t+ h)− ρ(x)u1(x, t)

and we define the function a as

a(x, t) :=


um1 (x,t)−um2 (x,t+h)
u1(x,t)−u2(x,t+h) if u1(x, t) 6= u2(x, t+ h) ,

0 if u1(x, t) = u2(x, t+ h) .
(2.2.90)

Notice that, since m > 1 and u1, u2 ∈ L∞(Rd × (τ,∞)) for all τ > 0, a is a nonnegative
function belonging to L∞(Rd × (τ,∞)) for all τ > 0.

In the sequel, a key role will be played by a suitable family of positive finite Radon
measures {ν(t)}, which is somehow related to equation (2.2.89). More precisely, ν(t) is the
limit in σ(M(Rd), Cb(Rd)), as ε → 0, of {ρψε(t)}, while ψε is in turn the weak limit in
L2
ρ(Rd × (τ, T )) (for all τ ∈ (0, T )), as n → ∞, of a suitable sequence {ψn,ε}. The latter is

defined, for every n ∈ N and ε > 0, to be the solution (in a sense that will be clarified later)
of ρ(x) (ψn,ε)t = (−∆)s [(an + ε)ψn,ε] in Rd × (0, T ) ,

ψn,ε = ψ on Rd × {T} ,
(2.2.91)

where ψ is an arbitrary nonnegative function of D(Rd). The sequence {an} is a suitable
approximation of the function a above. In particular we suppose that, for every n ∈ N, an(x, t)
is a piecewise constant function of t (regular in x) in the time intervals (T − (k + 1)T/n, T −
kT/n], for any k ∈ {0, . . . , n − 1}. Thanks to Theorem 2.A.13, we are then able to treat
problem (2.2.91) by means of standard semigroup theory; in [148, Theorem 1] this is not
needed since parabolic regularity holds true for the corresponding equation.
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2.2.3.1 Construction and properties of the family {ψn,ε}

We begin the proof of Theorem 2.2.4 by introducing more precisely the functions ψn,ε that
solve (2.2.91).

Lemma 2.2.18. Assume that ρ satisfies (2.1.3) for some γ ∈ [0, 2s) and γ0 ∈ [0, d). Let
{an} be a sequence of nonnegative functions such that:
• for any n ∈ N and t > 0, an(x, t) is regular in x;
• for any n ∈ N and x ∈ Rd, an(x, t) is piecewise constant in t on the time intervals

(T − (k + 1)T/n, T − kT/n], for any k ∈ {0, . . . , n− 1};
• {‖an‖L∞(Rd×(τ,∞))} is uniformly bounded in n for any τ > 0.

Then, for any ε > 0 and any ψ ∈ D(Rd) with ψ ≥ 0, there exists a nonnegative solution ψn,ε to
problem (2.2.91), in the sense that ψn,ε(t) is a continuous curve in Lpρ(Rd) (for all p ∈ (1,∞))
satisfying ψn,ε(T ) = ψ and it is absolutely continuous on (T − (k + 1)T/n, T − kT/n) for all
k ∈ {0, . . . , n− 1}, so that the identity

ψn,ε(t2)− ψn,ε(t1) =
∫ t2

t1
ρ−1(−∆)s [(an + ε)ψn,ε] (τ) dτ (2.2.92)

∀t1, t2 ∈
(
T − (k + 1)T

n
, T − kT

n

)
, ∀k ∈ {0, . . . , n− 1}

holds true in Lpρ(Rd) for all p ∈ (1,∞). Moreover,

ψn,ε ∈ L∞((0, T ); Lpρ(Rd)) ∀p ∈ [1,∞] and ‖ψn,ε(t)‖1,ρ ≤ ‖ψ‖1,ρ ∀t ∈ [0, T ] . (2.2.93)

Proof. Let us first define ζ1 as the solution ofρ (ζ1)t = (−∆)s [(an(T ) + ε) ζ1] in Rd ×
(
T − T

n
, T
)
,

ζ1 = ψ on Rd × {T} .
(2.2.94)

To obtain such a ζ1, one can for instance exploit the change of variable

φ1(x, t) := (an (x, T ) + ε) ζ1(x, t) (2.2.95)

and see φ1 as the solution of(φ1)t = (an(T ) + ε) ρ−1(−∆)s(φ1) in Rd ×
(
T − T

n
, T
)
,

φ1 = (an(T ) + ε)ψ on Rd × {T} .
(2.2.96)

Problem (2.2.96) is indeed solvable by means of standard semigroup theory. In fact, letting

ρ1(x) := (an(x, T ) + ε)−1 ρ(x) ,

we know that the operator ρ−1
1 (−∆)s with domain Xs,ρ1 = Xs,ρ (see Definition 2.A.8 below)

is nonnegative, self-adjoint and generates a Markov semigroup on L2
ρ1(Rd) (Theorem 2.A.13).

Our final datum (an(T )+ε)ψ is clearly nonnegative and belongs to Lpρ1(Rd) for all p ∈ [1,∞],
which is enough in order to have a nonnegative solution to (2.2.96) that is continuous up to
t = T and absolutely continuous on (T − T/n, T ) in Lpρ1(Rd) for all p ∈ (1,∞). This is a
consequence of the fact that the semigroup is actually analytic in Lpρ1(Rd) for p ∈ (1,∞) (we
refer again the reader to Theorem 2.A.13 below): by classical results, see for instance [146,
Theorem 5.2 at p. 61], such property ensures in particular that problem (2.2.96) is solved by
a differentiable curve φ1(t).
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Going back to the original variable ζ1 through (2.2.95), we deduce that the latter solves
(2.2.94) in the same sense in which φ1 solves (2.2.96). Having at our disposal such a ζ1, we
can then solve the problemρ (ζ2)t = (−∆)s

[(
an
(
T − T

n

)
+ ε

)
ζ2
]

in Rd ×
(
T − 2T

n
, T − T

n

)
,

ζ2 = (an (x, T ) + ε)−1 φ1 on Rd ×
{
T − T

n

}
,

just by proceeding as above. That is, we perform the change of variable

φ2(x, t) := (an(x, T − T/n) + ε)ζ2(x, t)

and consider φ2 as the solution of(φ2)t =
(
an(T − T

n
) + ε

)
ρ−1(−∆)s(φ2) in Rd ×

(
T − 2T

n
, T − T

n

)
,

φ2 =
(
an(T − T

n
) + ε

)
ζ1 = an(T−T/n)+ε

an(T )+ε φ1 on Rd ×
{
T − T

n

}
.

It is apparent how the procedure goes on and permits us to obtain a solution ψn,ε to (2.2.91)
in the sense of the statement, just by defining it as

ψn,ε(t) := ζk+1(t) ∀t ∈
(
T − (k + 1)T

n
, T − kT

n

]
, ∀k ∈ {0, . . . , n− 1} .

Finally, since ρ−1
k+1(−∆)s generates a contraction semigroup on Lpρk+1

(Rd) for all p ∈ [1,∞],
where

ρk+1(x) := (an(x, T − kT/n) + ε)−1ρ(x) , (2.2.97)

the inequalities

‖φk+1(t)‖p,ρk+1
≤
∥∥∥∥∥ an(T − kT/n) + ε

an(T − (k − 1)T/n) + ε
φk(T − kT/n)

∥∥∥∥∥
p,ρk+1

(2.2.98)

∀t ∈
(
T − (k + 1)T

n
, T − kT

n

]
, ∀p ∈ [1,∞]

hold true for any k ∈ {0, . . . , n − 1} (in the r.h.s. of (2.2.98) for k = 0 we conventionally
set φ0 = ψ and an(T + T/n) + ε = 1). Going back to the variables ζk+1, from (2.2.97) and
(2.2.98) one deduces (2.2.93): in fact, for p = 1 it is easy to check that the factors containing
an cancel out and give the corresponding inequality, while for p > 1 such terms remain and
one obtains an inequality of the type ‖ψn,ε(t)‖p,ρ ≤ C(n, ε)‖ψ‖p,ρ, where C(n, ε) is a positive
constant depending on n and ε.

Lemma 2.2.19. Let d > 2s and assume that ρ satisfies (2.1.3) for some γ ∈ [0, 2s)∩[0, d−2s]
and γ0 ∈ [0, γ]. Let g be as in (2.2.88), a as in (2.2.90) and an, ψn,ε, ψ as in Lemma 2.2.18.
Then the identity∫

Rd
g(x, T )ψ(x) ρ(x)dx−

∫
Rd
g(x, t)ψn,ε(x, t) ρ(x)dx

=
∫ T

t

∫
Rd

(an(x, τ) + ε− a(x, τ)) (−∆)s(g)(x, τ)ψn,ε(x, τ) dxdτ
(2.2.99)

holds true for all t ∈ (0, T ].
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Proof. To begin with, set

tk := T − kT

n
∀k ∈ {0, . . . , n} .

Recall that, by Lemma 2.2.18, ψn,ε(t) is a continuous curve in Lpρ(Rd) on (0, T ], absolutely
continuous on any interval (tk+1, tk) for k ∈ {0, . . . , n − 1} and satisfying the differential
equation in (2.2.91) on such intervals, for all p ∈ (1,∞). Moreover, g(t) is an absolutely
continuous curve in Lpρ(Rd) on (0, T ] for all p such that

p ∈
(
d− γ
d− 2s,∞

)
. (2.2.100)

Since g(x, t) is a continuous function of x (recall Lemma 2.2.16) and the weight ρ(x) is locally
integrable, in order to prove that g(t) ∈ Lpρ(Rd) for all p as in (2.2.100) it suffices to show
that g(t) ∈ Lpρ(Bc

1). To this end, still Lemma 2.2.16 ensures in particular that g(t) ∈ Lp(Rd)
for all p satisfying (2.2.84): the latter property and Hölder’s inequality readily imply that
g(t) ∈ Lpρ(Bc

1) for all p as in (2.2.100). The fact that g(t) is also absolutely continuous in
Lpρ(Rd) on the time interval (0, T ] is then a consequence of (2.2.89) and of the integrability
properties of u1 and u2. Hence, due to Lemma 2.2.18, we get that

t 7→
∫
Rd
g(x, t)ψn,ε(x, t) ρ(x)dx (2.2.101)

is a continuous function on (0, T ], absolutely continuous on each interval (tk+1, tk), which
satisfies

d
dt

∫
Rd
g(x, t)ψn,ε(x, t) ρ(x)dx

=
∫
Rd
{−a(x, t)(−∆)s(g)(x, t)ψn,ε(x, t) + g(x, t) (−∆)s[(an + ε)ψn,ε](x, t)} dx

(2.2.102)

there. We have just shown that g(t) ∈ Lpρ(Rd) for all p satisfying (2.2.100); moreover,
ρ−1(−∆)s(g)(t) ∈ Lpρ(Rd) for all p ∈ [1,∞]. As a consequence of Lemma 2.2.18, we have that
(an(t) + ε)ψn,ε(t) ∈ Lpρ(Rd) for all p ∈ [1,∞] and ρ−1(−∆)s[(an(t) + ε)ψn,ε(t)] ∈ Lpρ(Rd) for all
p ∈ (1,∞). We are therefore in position to apply Theorem 2.A.12 to the r.h.s. of (2.2.102)
(note that the interval ((d − γ)/(d − 2s),∞) ∩ [2, 2(d − γ)/(d − 2s)) is not empty), which
yields

d
dt

∫
Rd
g(x, t)ψn,ε(x, t) ρ(x)dx =

∫
Rd

(an(x, t) + ε− a(x, t))(−∆)s(g)(x, t)ψn,ε(x, t) dx .
(2.2.103)

As the r.h.s. of (2.2.103) is in L1((τ, T )) for any τ ∈ (0, T ), we deduce that (2.2.101) is
absolutely continuous on the whole of (0, T ] and not only on (tk+1, tk). Hence, integrating
(2.2.103) between t and T , we end up with (2.2.99).

Next we prove that ψn,ε preserves the mass.

Lemma 2.2.20. Under the same assumptions as in Lemma 2.2.18, the L1
ρ norm of ψn,ε(t)

is preserved, that is ∫
Rd
ψn,ε(x, t) ρ(x)dx =

∫
Rd
ψ(x) ρ(x)dx ∀t ∈ [0, T ] . (2.2.104)
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Proof. Multiplying (2.2.92) by ρφ for any φ ∈ D(Rd) and integrating in Rd, we obtain the
identity ∫

Rd
ψn,ε(x, t∗)φ(x) ρ(x)dx−

∫
Rd
ψn,ε(x, t∗)φ(x) ρ(x)dx

=
∫
Rd

(−∆)s(φ)(x)
(∫ t∗

t∗
(an(x, τ) + ε)ψn,ε(x, τ) dτ

)
dx

(2.2.105)

for all t∗, t∗ ∈ (tk+1, tk). Since the L1
ρ norm of ψn,ε(t) is bounded by the L1

ρ norm of the final
datum ψ (recall (2.2.93)), from (2.2.105) we get:∣∣∣∣∫

Rd
ψn,ε(x, t∗)φ(x) ρ(x)dx−

∫
Rd
ψn,ε(x, t∗)φ(x) ρ(x)dx

∣∣∣∣ ≤ K|t∗ − t∗| ‖ψ‖1,ρ

∥∥∥ρ−1(−∆)s(φ)
∥∥∥
∞
,

(2.2.106)
where K := ‖an + ε‖L∞(Rd×(t∗∧t∗,T )) is a positive constant independent of n and ε. Replacing
φ with a usual cut-off function ξR (see Lemma 2.A.3 below) and estimating the r.h.s. of
(2.2.106) as in the proof of Proposition 2.2.7, we end up with∣∣∣∣∫

Rd
ψn,ε(x, t∗)ξR(x)ρ(x)dx−

∫
Rd
ψn,ε(x, t∗)ξR(x)ρ(x)dx

∣∣∣∣
≤K |t∗ − t∗| ‖ψ‖1,ρ c

−1
(
‖(−∆)s(ξ)‖∞

R2s + ‖|x|
γ(−∆)s(ξ)‖∞
R2s−γ

) (2.2.107)

for all R > 0 and t∗, t∗ ∈ (tk+1, tk), the positive constant c being as in (2.1.3). Recalling that
ψn,ε(t) is a continuous curve (for instance in L1

ρ,loc(Rd)) on [0, T ], we can extend the validity
of (2.2.107) (and (2.2.106)) to any t∗, t

∗ ∈ [0, T ]. Picking t∗ = T and letting R → ∞ in
(2.2.107), we finally get (2.2.104).

In the following lemma we introduce the Riesz potential of ρψn,ε, which will play a crucial
role below.

Lemma 2.2.21. Let d > 2s and assume that ρ satisfies (2.1.3) for some γ ∈ [0, 2s)∩[0, d−2s]
and γ0 ∈ [0, γ]. Let an, ψn,ε, ψ be as in Lemma 2.2.18, and denote as Hn,ε(t) the potential
of ρψn,ε(t), that is

Hn,ε(x, t) := [I2s ∗ ρψn,ε(t)](x) ∀(x, t) ∈ Rd × [0, T ] .

Then Hn,ε(t) ∈ Ḣs(Rd) and the identity

‖I2s ∗ ρψ‖2
Ḣs = ‖Hn,ε(t)‖2

Ḣs + 2
∫ T

t

∫
Rd

(an(x, τ) + ε)ψ2
n,ε(x, τ) ρ(x)dxdτ (2.2.108)

holds true for all t ∈ [0, T ].

Proof. First notice that ρ−1(−∆)s(Hn,ε)(t) = ψn,ε(t) ∈ Lpρ(Rd) for all p ∈ [1,∞] (recall
(2.2.93)) and Hn,ε(t) ∈ Lpρ(Rd) for all p satisfying (2.2.100) (this can be proved by using
Lemma 2.2.16 exactly as in the proof of Lemma 2.2.19). Again, since the interval ((d −
γ)/(d−2s),∞)∩ [2, 2(d−γ)/(d−2s)) is never empty, applying Lemma 2.A.11 and Theorem
2.A.12 we get that Hn,ε(t) ∈ Ḣs(Rd) and the identity

‖Hn,ε(t)‖2
Ḣs =

∫
Rd
Hn,ε(x, t) (−∆)s(Hn,ε)(x, t) dx =

∫
Rd
Hn,ε(x, t)ψn,ε(x, t) ρ(x)dx (2.2.109)

holds true. Thanks to the validity of the differential equation

(Hn,ε)t (x, t) = (an(x, t) + ε)ψn,ε(x, t) for a.e. (x, t) ∈ Rd × (0, T ) , (2.2.110)
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which can be justified as we did for (2.2.89), taking the time derivative of (2.2.109) in the
intervals (tk+1, tk), using (2.2.110), (2.2.91) and again Theorem 2.A.12, we obtain:

d
dt ‖Hn,ε(t)‖2

Ḣs = 2
∫
Rd

(an(x, t) + ε)ψ2
n,ε(x, t) ρ(x)dx . (2.2.111)

A priori, in view of (2.2.109), we have that ‖Hn,ε(t)‖2
Ḣs is continuous on [0, T ] and absolutely

continuous only on (tk+1, tk). Nevertheless, the r.h.s. of (2.2.111) is in L1((0, T )); hence,
(2.2.108) just follows by integrating (2.2.111) from t to T .

2.2.3.2 Passing to the limit as n→∞

The goal of the next lemma is to show that, if an → a as n → ∞, then sequence {ψn,ε}
suitably converges (up to subsequences) to a limit function ψε having some crucial properties.

Lemma 2.2.22. Let d > 2s and assume that ρ satisfies (2.1.3) for some γ ∈ [0, 2s)∩[0, d−2s]
and γ0 ∈ [0, γ]. Let u1 and u2 be two weak solutions to problem (2.1.4), taking the same
positive finite Radon measure µ as initial datum. Let g be as in (2.2.88), a as in (2.2.90) and
ψn,ε, ψ as in Lemma 2.2.18, where we suppose in addition that an → a almost everywhere.
Then, up to subsequences, {ψn,ε} converges weakly in L2

ρ(Rd × (τ, T )) (for all τ ∈ (0, T )) to
a suitable nonnegative function ψε and {ρψn,ε(t)} converges to ρψε(t) in σ(M(Rd), Cb(Rd))
for a.e. t ∈ (0, T ). Moreover, ψε enjoys the following properties:∫

Rd
ψε(x, t) ρ(x)dx =

∫
Rd
ψ(x) ρ(x)dx , (2.2.112)

∫
Rd
ψ(x)φ(x) ρ(x)dx−

∫
Rd
ψε(x, t)φ(x) ρ(x)dx

=
∫
Rd

(−∆)s(φ)(x)
(∫ T

t
(a(x, τ) + ε)ψε(x, τ) dτ

)
dx ,

(2.2.113)

∣∣∣∣∫
Rd
g(x, T )ψ(x) ρ(x)dx−

∫
Rd
g(x, t)ψε(x, t) ρ(x)dx

∣∣∣∣
≤ε (T − t) ‖ψ‖1,ρ ‖u2(·+ h)− u1‖L∞(Rd×(t,T ))

(2.2.114)

for a.e. t ∈ (0, T ) and any φ ∈ D(Rd).

Proof. From (2.2.108) we deduce that, up to subsequences, {ψn,ε} converges weakly in L2
ρ(Rd×

(τ, T )), for all τ ∈ (0, T ), to a suitable function ψε. Moreover, thanks to the uniform bound-
edness of {ρψn,ε(t)} in L1(Rd) ensured by (2.2.93), for every t ∈ (0, T ) there exists a subse-
quence (a priori depending on t) along which {ρψn,ε(t)} converges in σ(M(Rd), Cc(Rd)) to
some positive finite Radon measure ν(t) (recall Paragraph 2.1.1.2). We aim at identifying,
at least for a.e. t ∈ (0, T ), ν(t) with ρψε(t), so that a posteriori the subsequence does not
depend on t. In order to do that, let t ∈ (0, T ) be a Lebesgue point of ψε(t) (e.g. as a curve
in L1((τ, T ); L2

ρ(Rd)). Given any φ ∈ D(Rd), using (2.2.106) we obtain:∣∣∣∣∣
∫ t+δ

t

∫
Rd
ψn,ε(x, τ)φ(x) ρ(x)dxdτ −

∫ t+δ

t

∫
Rd
ψn,ε(x, t)φ(x) ρ(x)dxdτ

∣∣∣∣∣
≤
∫ t+δ

t

∣∣∣∣∫
Rd
ψn,ε(x, τ)φ(x) ρ(x)dx−

∫
Rd
ψn,ε(x, t)φ(x) ρ(x)dx

∣∣∣∣ dτ
≤
∫ t+δ

t
K(τ − t) ‖ψ‖1,ρ

∥∥∥ρ−1(−∆)s(φ)
∥∥∥
∞

dτ = δ2

2 K ‖ψ‖1,ρ

∥∥∥ρ−1(−∆)s(φ)
∥∥∥
∞

(2.2.115)
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for all δ > 0 sufficiently small. The passage to the limit in (2.2.115) as n → ∞ (up to
subsequences) yields∣∣∣∣∣

∫ t+δ

t

∫
Rd
ψε(x, τ)φ(x) ρ(x)dxdτ − δ

∫
Rd
φ(x) dν(t)

∣∣∣∣∣ ≤ δ2

2 K ‖ψ‖1,ρ

∥∥∥ρ−1(−∆)s(φ)
∥∥∥
∞
.

(2.2.116)
Dividing (2.2.116) by δ and letting δ → 0 we find the identity (recall that t is a Lebesgue
point for ψε(t)) ∫

Rd
ψε(x, t)φ(x) ρ(x)dx =

∫
Rd
φ(x) dν(t) ,

which is valid for any φ ∈ D(Rd), whence ψε(x, t)ρ(x)dx = dν(t).
We finally prove the claimed properties of ψε. Letting n→∞ in (2.2.107) (with t∗ = T and

t∗ = t) and using the just proved convergence of {ρψn,ε(t)} to ρψε(t) in σ(M(Rd), Cc(Rd)),
we get: ∣∣∣∣∫

Rd
ψ(x)ξR(x) ρ(x)dx−

∫
Rd
ψε(x, t)ξR(x) ρ(x)dx

∣∣∣∣
≤K(T − t) ‖ψ‖1,ρ c

−1
(
‖(−∆)s(ξ)‖∞

R2s + ‖|x|
γ(−∆)s(ξ)‖∞
R2s−γ

) (2.2.117)

for a.e. t ∈ (0, T ). Letting R→∞ in (2.2.117) we then deduce (2.2.112). Thanks to (2.2.104)
and (2.2.112), in particular

lim
n→∞

‖ψn,ε(t)‖1,ρ = ‖ψε(t)‖1,ρ ,

so that the convergence of {ρψn,ε(t)} to ρψε(t) takes place in σ(M(Rd), Cb(Rd)) as well.
Recalling that g(t) belongs to Cb(Rd) (Lemma 2.2.16), we can let n → ∞ in (2.2.99) to
obtain∫

Rd
g(x, T )ψ(x) ρ(x)dx−

∫
Rd
g(x, t)ψε(x, t) ρ(x)dx

= lim
n→∞

∫ T

t

∫
Rd

(an(x, τ) + ε− a(x, τ)) (−∆)s(g)(x, τ)ψn,ε(x, τ) dxdτ

= lim
n→∞

∫ T

t

∫
Rd

(an(x, τ) + ε− a(x, τ)) (u2(x, τ + h)− u1(x, τ))ψn,ε(x, τ) ρ(x)dxdτ

=ε
∫ T

t

∫
Rd

(u2(x, τ + h)− u1(x, τ))ψε(x, τ) ρ(x)dxdτ for a.e. t ∈ (0, T ) ,

(2.2.118)

where in the last integral we are allowed to pass to the limit since {ψn,ε} converges to ψε
weakly in L2

ρ(Rd × (t, T )), {an} converges to a pointwise and it is uniformly bounded in
L∞(Rd × (t, T )) and u1, u2 belong to Lpρ(Rd × (t, T + h)) for all p ∈ [1,∞]. In particular,
(2.2.118) and (2.2.112) entail (2.2.114). In a similarly way, we can pass to the limit in
(2.2.105) (which actually holds for any t∗, t∗ ∈ (0, T )) to get (2.2.113).

2.2.3.3 Passing to the limit as ε→ 0 and proof of Theorem 2.2.4

We are now in position to prove Theorem 2.2.4, using the strategy of [148]: we give some
detail for the reader’s convenience.

Proof of Theorem 2.2.4. To begin with, we introduce the Riesz potential Hε of ρψε, that is
Hε(x, t) := [I2s∗ρψε(t)](x). Since we only know that ρψε(t) ∈ L1(Rd), we have no information
over the integrability of Hε(t) other than L1

loc(Rd) (by classical results, see e.g. [121, p. 61]).
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Nevertheless, exploiting (2.2.113) and proceeding once again as in the proof of (2.2.61), we
obtain the identity

I2s ∗ ρψ −Hε(t) =
∫ T

t
(a(τ) + ε)ψε(τ) dτ ≥ 0 for a.e. t ∈ (0, T ) ,

whence, in particular,
0 ≤ Hε(x, t1) ≤ Hε(x, t2) ≤ Hε(x, T ) = (I2s ∗ ρψ)(x) (2.2.119)

for a.e. 0 < t1 ≤ t2 ≤ T and a.e. x ∈ Rd. In view of the above inequality we deduce
that Hε(t) belongs to Lp(Rd) at least for the same p for which Hε(T ) does, namely for any
p ∈ (d/(d− 2),∞].

Our next goal is to let ε → 0 (along a fixed sequence whose index for the moment we
omit, in order to simplify readability). Thanks to the boundedness of {ρψε(t)} in L1(Rd)
(trivial consequence of (2.2.112)), for a.e. t ∈ (0, T ) there exists a subsequence {εn}, a
priori depending on t, such that {ρψεn(t)} converges to a positive finite Radon measure
ν(t) in σ(M(Rd), Cc(Rd)). In order to overcome the possible dependence of {εn} on t, it
is convenient to exploit the properties of {Hε}. First of all, notice that (2.2.119) ensures
the uniform boundedness of {Hε} in Lp(Rd × (0, T )) for any p ∈ (d/(d − 2),∞]. This
entails the existence of a decreasing subsequence {εm} such that {Hεm} converges weakly in
Lp(Rd × (0, T )) to a suitable limit function H. By Mazur’s Lemma, there exists a sequence
{Hk} of convex combinations of {Hεm} that converges strongly to H in Lp(Rd × (0, T )). By
definition, {Hk} is of the form

Hk =
Mk∑
m=1

λm,kHεm ,
Mk∑
m=1

λm,k = 1

for some sequence {Mk} ⊂ N and a suitable choice of the coefficients λm,k ∈ [0, 1]. With no
loss of generality we shall assume that

lim
k→∞

Mk∑
m=1

εmλm,k = 0 .

This can be readily justified by applying iteratively Mazur’s Lemma on suitable subsequences
of {Hεm}, exploiting the fact that also the sequence {Hεm+`} converges to H weakly in
Lp(Rd × (0, T )) for all ` ∈ N. Now notice that the function whose Riesz potential is Hk is
just

fk(x, t) :=
Mk∑
m=1

λm,k ρ(x)ψεm(x, t) .

Multiplying (2.2.114) (with ε = εm) by λm,k and summing over k, one finds that fk satisfies
the estimate ∣∣∣∣∫

Rd
g(x, T )ψ(x) ρ(x)dx−

∫
Rd
g(x, t)fk(x, t) dx

∣∣∣∣
≤

 Mk∑
m=1

εmλm,k

 (T − t) ‖ψ‖1,ρ ‖u2(·+ h)− u1‖L∞(Rd×(t,T ))

(2.2.120)

for a.e. t ∈ (0, T ), whereas from (2.2.112) and (2.2.117) we infer that∣∣∣∣∫
Rd
ψ(x)ξR(x) ρ(x)dx−

∫
Rd
fk(x, t) ξR(x) dx

∣∣∣∣
≤K(T − t) ‖ψ‖1,ρ c

−1
(
‖(−∆)s(ξ)‖∞

R2s + ‖|x|
γ(−∆)s(ξ)‖∞
R2s−γ

) (2.2.121)
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and ∫
Rd
ψ(x) ρ(x)dx =

∫
Rd
fk(x, t) dx (2.2.122)

for a.e. t ∈ (0, T ). Letting k → ∞ we find that, for almost every t ∈ (0, T ), there exists
a subsequence of {fk(t)} (a priori depending on t) that converges in σ(M(Rd), Cc(Rd)) to
a positive finite Radon measure ν(t). Nonetheless, the fact that {Hk} converges strongly
in Lp(Rd × (0, T )) to H forces the potential of ν(t) to coincide a.e. with H(t). This is a
consequence e.g. of [121, Theorem 3.8]. By [121, Theorem 1.12] we therefore deduce that the
limit ν(t) is uniquely determined by its potential H(t). This identification allows us to assert
that the whole sequence {fk(t)} converges to ν(t) in σ(M(Rd), Cc(Rd)), independently of t.
Passing to the limit in (2.2.119) (after having set ε = εm, multiplied by λm,k and summed
over k) we deduce that also the potentials H(t) of ν(t) are ordered and bounded above by
I2s ∗ ρψ:

0 ≤ H(x, t1) ≤ H(x, t2) ≤ (I2s ∗ ρψ)(x) for a.e. 0 < t1 ≤ t2 ≤ T , for a.e. x ∈ Rd .
(2.2.123)

Letting k →∞ in (2.2.121) we obtain∣∣∣∣∫
Rd
ψ(x)ξR(x) ρ(x)dx−

∫
Rd
ξR(x) dν(t)

∣∣∣∣
≤K(T − t) ‖ψ‖1,ρ c

−1
(
‖(−∆)s(ξ)‖∞

R2s + ‖|x|
γ(−∆)s(ξ)‖∞
R2s−γ

) (2.2.124)

for a.e. t ∈ (0, T ), whence, letting R→∞,∫
Rd
ψ(x) ρ(x)dx =

∫
Rd

dν(t) for a.e. t ∈ (0, T ) . (2.2.125)

Gathering (2.2.122) and (2.2.125) we infer that {fk(t)} converges to ν(t) also in the stronger
sense σ(M(Rd), Cb(Rd)): this permits us to pass to the limit in (2.2.120) to get the identity∫

Rd
g(x, T )ψ(x) ρ(x)dx =

∫
Rd
g(x, t) dν(t) for a.e. t ∈ (0, T ) . (2.2.126)

As a consequence of the monotonicity in time ofH(x, t) and thanks to (2.2.124)–(2.2.126), the
curve ν(t) can actually be extended to every t ∈ (0, T ] so that it still complies with (2.2.123)–
(2.2.126) (one uses again e.g. [121, Theorem 3.8]). Recalling that g(x, t) = U2(x, t + h) −
U1(x, t) and that U1, U2 are continuous in space and do not increase in time, we have that
g(x, t) ≤ U2(x, h) − U1(x, t0) for every x ∈ Rd and t0 > t. Because ν(t) is a positive finite
measure, this fact and (2.2.126) imply that∫

Rd
g(x, T )ψ(x) ρ(x)dx ≤

∫
Rd

(U2(x, h)− U1(x, t0)) dν(t) ∀t0 > t . (2.2.127)

The next step is to let t tend to zero in (2.2.127). Since the mass of ν(t) is constant (formula
(2.2.125)), up to subsequences ν(t) converges to a suitable positive finite Radon measure ν
in σ(M(Rd), Cc(Rd)). Moreover, by (2.2.123), we know that the potentials H(t) of ν(t) are
nondecreasing in t (for a.e. x): in particular, H(t) admits a pointwise limit almost everywhere
H0 as t ↓ 0. Theorem 3.8 of [121] ensures that H0 coincides almost everywhere with the
potential of the limit measure ν (which therefore does not depend on the particular sequence
tk ↓ 0). We can then pass to the limit in the integral∫

Rd
U1(x, t0) dν(t) . (2.2.128)
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Indeed, by Fubini’s Theorem, (2.2.128) is equal to∫
Rd
u1(x, t0)H(x, t) ρ(x)dx . (2.2.129)

Letting t ↓ 0 in (2.2.129) we get that

lim
t↓0

∫
Rd
u1(x, t0)H(x, t) ρ(x)dx =

∫
Rd
u1(x, t0)H0(x) ρ(x)dx (2.2.130)

e.g. by dominated convergence, since H(t) is nonincreasing as t ↓ 0 and converges a.e. to H0.
Recalling that H0 is the potential of ν, and using again Fubini’s Theorem, (2.2.130) can be
rewritten as

lim
t↓0

∫
Rd
U1(x, t0) dν(t) =

∫
Rd
U1(x, t0) dν .

One proceeds similarly for the integral∫
Rd
U2(x, h) dν(t) .

Hence, passing to the limit as t ↓ 0 in (2.2.127), we find that∫
Rd
g(x, T )ψ(x) ρ(x)dx ≤

∫
Rd

(U2(x, h)− U1(x, t0)) dν ∀t0 > 0 . (2.2.131)

Now we let t0 ↓ 0 in (2.2.131). By monotone convergence (see Lemma 2.2.17) we obtain∫
Rd
g(x, T )ψ(x) ρ(x)dx ≤

∫
Rd

(U2(x, h)− Uµ(x)) dν . (2.2.132)

In this step it is crucial that the limit of U1(x, t0) to Uµ(x) is taken for every x ∈ Rd, because
we have no information over ν besides the fact that it is a positive finite Radon measure. Still
monotonicity implies that U2(x, h) ≤ Uµ(x) for every x ∈ Rd. Thus, from (2.2.132) there
follows ∫

Rd
g(x, T )ψ(x) ρ(x)dx ≤ 0 . (2.2.133)

Since (2.2.133) holds true for any h, T > 0 and any nonnegative ψ ∈ D(Rd), we infer that
U2 ≤ U1. Swapping u1 and u2 we get that U1 ≤ U2, whence U1 = U2 and u1 = u2.

Remark 2.2.23. We point out that the proofs of Lemmas 2.2.19, 2.2.21, 2.2.22 and Theorem
2.2.4 actually work under the less restrictive assumption γ0 ∈ [0, 2s). However, since in the
existence Theorem 2.2.2 we needed the stronger hypothesis γ0 ∈ [0, γ], we preferred to leave
it unmodified in the statement of Theorem 2.2.4.

2.2.4 Asymptotic behaviour

Take a positive finite Radon measure µ, with µ(Rd) =: M > 0, and denote as uM the
solution to the singular problem (2.1.10), where c∞ is the positive constant appearing in
(2.2.7). Upon defining the positive parameters α, κ as in (2.2.6) and (2.2.10), it is immediate
to check that, for any given λ > 0, the function

uM,λ(x, t) := λαuM(λκx, λt)

is still a solution to (2.1.10). Hence, as a consequence of our uniqueness Theorem 2.2.4, uM,λ

and uM must necessarily coincide, that is

uM(x, t) = λαuM(λκx, λt) ∀t, λ > 0 , for a.e. x ∈ Rd . (2.2.134)
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Note that the validity of (2.2.134) for every t, λ > 0 is a consequence of the fact that solutions
are strong, see Paragraph 2.2.2.1. As we shall see below, in view of this self-similarity identity
the special solution uM will be key in the study of the asymptotic behaviour of any solution
to (2.1.4).

Lemma 2.2.24. Let d > 2s. Assume that ρ satisfies (2.1.3) and (2.2.7) for some γ ∈
[0, 2s)∩ [0, d− 2s] and γ0 ∈ [0, γ]. Let u0 ∈ L1

ρ(Rd)∩L∞(Rd), with u0 ≥ 0 and ‖u0‖1,ρ =: M .
Let u be the weak solution to (2.2.14) provided by Lemma 2.2.9. For any λ > 0, set

uλ(x, t) := λαu(λκx, λt) .

Then, given any sequence λn →∞, {uλn} converges to uM almost everywhere in Rd× (0,∞)
along subsequences.

Proof. For notational simplicity, and with no loss of generality, we shall only consider the
case c∞ = 1. We shall not give a fully detailed proof, since the procedure follows closely the
one performed in the proof of Theorem 2.2.2.

To begin with, let us notice that uλ solvesρλ(x)ut + (−∆)s (umλ ) = 0 in Rd × R+ ,

uλ = u0λ on Rd × {0} ,

where
ρλ(x) := λκγρ(λκx) , u0λ(x) := λαu0(λκx) .

Since α = (d− γ)κ, due to the conservation of mass (2.2.11) there holds

‖uλ(t)‖1,ρλ = ‖u0λ‖1,ρλ = M ∀t, λ > 0 . (2.2.135)

Claim 1: There exists a subsequence {uλm} ⊂ {uλn} that converges pointwise a.e. in Rd×R+

to some function u, which satisfies (2.2.1), (2.2.2) and (2.2.3) with ρ(x) = |x|−γ.
First of all observe that, in view of (2.1.3),

c

1 + |x|γ ≤ ρλ(x) ≤ C

|x|γ
∀λ ≥ 1 . (2.2.136)

Combining the smoothing effect (2.2.43) with (2.2.135), we obtain:

‖uλ(t)‖∞ ≤ K t−αMβ ∀t, λ > 0 , (2.2.137)

where K > 0 is a constant depending only on m, C, γ, d and s. In particular,∫
Rd
um+1
λ (x, t) ρλ(x)dx ≤ Km t−αmMβm+1 ∀t, λ > 0 . (2.2.138)

By (2.2.27) and (2.2.138), we infer that∫ t2

t1

∫
Rd

∣∣∣(−∆) s2 (umλ )(x, t)
∣∣∣2 dxdt+ 1

m+ 1

∫
Rd
um+1
λ (x, t2) ρλ(x)dx ≤ Km

m+ 1 t
−αm
1 Mβm+1

(2.2.139)
for all λ > 0 and all t2 > t1 > 0. On the other hand, thanks to (2.2.28),∫ t2

t1

∫
Rd
|(zλ)t(x, t)|2 ρλ(x)dxdt ≤ C ′ ∀t2 > t1 > 0 , ∀λ > 0 , (2.2.140)

136



2.2. Slowly decaying densities

where zλ := u
(m+1)/2
λ and C ′ is another positive constant depending on m, γ, d, s, t1, t2, K,

M but independent of λ. In view of (2.2.135)–(2.2.140), by standard compactness arguments
(see the proofs of Lemma 2.2.9 and Theorem 2.2.2) the sequence {uλn} admits a subsequence
{uλm} converging a.e. in Rd ×R+ to some function u that complies with (2.2.1) and (2.2.2).
Moreover, recalling the assumptions on ρ, we have that (2.2.136) holds true and

lim
λ→∞

ρλ(x) = |x|−γ for a.e. x ∈ Rd . (2.2.141)

We are therefore allowed to pass to the limit in the weak formulation solved by uλm to find
that u also satisfies (2.2.3), and Claim 1 is proved. In order to deal with the initial trace of u, it
is convenient to introduce the Riesz potential Uλ of ρλuλ, that is Uλ(x, t) := [I2s ∗ρλuλ(t)](x).
Claim 2: For any λ > 0, the function Uλ satisfies∫

Rd
Uλ(x, t2)φ(x) dx−

∫
Rd
Uλ(x, t1)φ(x) dx = −

∫
Rd

(∫ t2

t1
umλ (x, t) dt

)
φ(x) dx (2.2.142)

for all t2 > t1 > 0 and φ ∈ D(Rd).
Note that the above identity is just (2.2.61), with uε replaced by uλ.
Claim 3: For any λ > 0, let U0λ := I2s ∗ ρλu0λ. Then,∣∣∣∣∫

Rd
Uλ(x, t2)φ(x) dx−

∫
Rd
U0λ(x)φ(x) dx

∣∣∣∣ ≤ ∥∥∥ρ−1
λ φ

∥∥∥
∞
Km−1M1+β(m−1)

∫ t2

0
t−α(m−1)dt

(2.2.143)
for all t2 > 0 and φ ∈ D(Rd).
The validity of (2.2.143) is just a consequence of (2.2.135), (2.2.137), (2.2.142) and of the
definition of weak solution (see the proof of (2.2.65)).
Claim 4: The potential U of |x|−γu, that is U(x, t) := [I2s ∗ | · |−γu(·, t)](x), satisfies∣∣∣∣∫

Rd
U(x, t2)φ(x) dx−

∫
Rd
MI2s(x)φ(x) dx

∣∣∣∣
≤c−1 ‖(1 + |x|γ)φ‖∞K

m−1M1+β(m−1)
∫ t2

0
t−α(m−1)dt

(2.2.144)

for a.e. t2 > 0 and φ ∈ D(Rd).
Our goal is to let λ → ∞ in (2.2.143). In the r.h.s. we just exploit (2.2.136). Thanks to
Claim 1, (2.2.135), (2.2.136), (2.2.137) and (2.2.141) we infer that

lim
m→∞

ρλmuλm(t) = |x|−γu(t) in σ(M(Rd), C0(Rd))

for a.e. t > 0. This is enough in order to pass to the limit in the first integral in the l.h.s. of
(2.2.143) (for details, we refer the reader to the proof of (2.2.67)). The same holds true for the
second integral, provided we can prove that {ρλu0λ} tends to Mδ e.g. in σ(M(Rd), Cb(Rd))
as λ→∞. This is indeed the case: in fact, ‖ρλu0λ‖1 = M and for any φ ∈ Cc(Rd) one has

lim
λ→∞

∫
Rd
φ(x)ρλ(x)u0λ(x) dx

= lim
λ→∞

λα+κγ
∫
Rd
φ(x)ρ(λκx)u0(λκx) dx = lim

λ→∞

∫
Rd
φ(y/λκ)u0(y) ρ(y)dy = Mφ(0) .

Claim 5: There holds

lim
t→0
|x|−γu(t) = Mδ in σ(M(Rd), Cb(Rd)) . (2.2.145)
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Passing to the limit in (2.2.135) as λ = λm →∞ we get

‖|x|−γu(t)‖1 ≤M for a.e. t > 0 . (2.2.146)

Estimate (2.2.146) implies, in particular, that |x|−γu(t) converges, up to subsequences, to
some positive finite Radon measure ν in σ(M(Rd), Cc(Rd)) as t → 0. In view of (2.2.144)
we know that U(t) converges to MI2s = I2s ∗Mδ e.g. in L1

loc(Rd) as t → 0, which entails
ν = Mδ (see the end of proof of Theorem 2.2.2). We have therefore proved (2.2.145) at least
in σ(M(Rd), Cc(Rd)). In order to recover convergence in σ(M(Rd), Cb(Rd)), it suffices to
show that

lim
t→0
‖|x|−γu(t)‖1 = M ;

but this is a consequence of (2.2.146) and weak∗ lower semi-continuity.
From Claims 1 and 5 we conclude that u solves (2.1.10) in the sense of Definition 2.2.1,

and therefore coincides with uM in view of the uniqueness Theorem 2.2.4.

We are now in position to prove Theorem 2.2.5.

Proof of Theorem 2.2.5. With no loss of generality, we shall suppose that µ = ρu0 with
u0 ∈ L1

ρ(Rd)∩L∞(Rd): in fact, thanks to the smoothing effect (2.2.5), we know that solutions
become instantaneously L1

ρ ∩ L∞ functions.
Take any sequence λn →∞. We first aim at proving that, along any of the subsequences

{λm} ⊂ {λn} given by Lemma 2.2.24, there holds

lim
m→∞

∫
BR
|uλm(x, t)− uM(x, t)| |x|−γdx = 0 ∀R > 0 , ∀t > 0 . (2.2.147)

Thanks to the smoothing estimates (2.2.5), (2.2.137) and to the fact that for almost every
t > 0 we know that {uλm(t)} converges pointwise almost everywhere to uM(t), by dominated
convergence

lim
m→∞

∫
BR
|uλm(x, t)− uM(x, t)| dx = 0 ∀R > 0 , for a.e. t > 0 . (2.2.148)

Moreover, estimate (2.2.80) for uλ reads

‖(uλ)t(t)‖1,ρλ ≤
2M

(m− 1) t for a.e. t > 0 . (2.2.149)

Gathering (2.2.149) and (2.2.136), we can assert that for every R, τ > 0 there exists a positive
constant C(R, τ) (independent of λ) such that

‖(uλ)t(t)‖L1(BR) ≤ C(R, τ) for a.e. t ≥ τ . (2.2.150)

Of course (2.2.150) also holds for uM . It is then possible to infer that (2.2.148) is actually
valid for every t > 0:

lim
m→∞

∫
BR
|uλm(x, t)− uM(x, t)| dx = 0 ∀R > 0 , ∀t > 0 . (2.2.151)

In fact, for any fixed t0, ε > 0, there exists t > t0 such that (2.2.148) holds true and |t−t0| ≤ ε.
Exploiting (2.2.150), we get:∫

BR
|uλm(x, t0)− uM(x, t0)| dx ≤ 2C(R, t0) ε+

∫
BR
|uλm(x, t)− uM(x, t)| dx ,
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whence
lim sup
m→∞

∫
BR
|uλm(x, t0)− uM(x, t0)| dx ≤ 2C(R, t0) ε . (2.2.152)

Letting now ε → 0 in (2.2.152) we deduce that (2.2.148) holds for t = t0 as well. The
validity of (2.2.147) is then just a consequence of (2.2.151), the local integrability of |x|−γ
and the uniform bound over ‖uλm(t)− uM(t)‖∞ ensured by the smoothing estimates (2.2.5)
and (2.2.137).

The consequence of Lemma 2.2.24 and what we proved above is that any sequence λn →∞
satisfies (2.2.147) along subsequences. Hence,

lim
λ→∞

∫
BR
|uλ(x, t)− uM(x, t)| |x|−γdx = 0 ∀R > 0 , ∀t > 0 . (2.2.153)

Letting t = 1, relabelling λ as t and recalling the definition of uλ, we have that (2.2.153)
reads

lim
t→∞

∫
BR
|tαu(tκx, t)− uM(x, 1)| |x|−γdx = 0 ∀R > 0 .

Performing the change of variable y = tκx and using the fact that α + κ(γ − d) = 0, we
obtain:

lim
t→∞

∫
BRtκ
|u(y, t)− t−αuM(t−κy, 1)| |y|−γdy = lim

t→∞

∫
BRtκ
|u(y, t)− uM(y, t)| |y|−γdy = 0

(2.2.154)
for all R > 0, where we used (2.2.134) with λ = t−1.

From now on we shall denote as εR any function of the spatial variable (possibly constant)
which is independent of t and vanishes uniformly as R → ∞. Going back to the original
variable x = t−κy, we find that∫

Bc
Rtκ

uM(y, t) |y|−γdy =
∫
BcR

uM(x, 1) |x|−γdx = εR ∀R > 0 . (2.2.155)

Therefore, the conservation of mass for uM , (2.2.154) and (2.2.155) imply that

lim
t→∞

∫
BRtκ

u(y, t) |y|−γdy = Mc−1
∞ − εR ∀R > 0 . (2.2.156)

Next we show that in fact

lim
t→∞

∫
Rd
u(y, t) |y|−γdy = Mc−1

∞ . (2.2.157)

To this end first notice that, thanks to (2.2.7), there holds

|y|−γ = ρ(y)
c∞ + εR(y) for a.e. y ∈ Bc

R ,

whence ∫
Rd
u(y, t) |y|−γdy =

∫
BR
u(y, t) |y|−γdy +

∫
BcR

u(y, t) ρ(y)
c∞ + εR(y) dy . (2.2.158)

Due to (2.2.158) and the conservation of mass (2.2.11) for u, we get:∣∣∣∣∫
Rd
u(y, t) |y|−γdy −Mc−1

∞

∣∣∣∣ =
∣∣∣∣∣
∫
Rd
u(y, t) |y|−γdy −

∫
Rd
u(y, t) ρ(y)

c∞
dy
∣∣∣∣∣

≤
∫
BR
u(y, t) |y|−γdy

+
∫
BR
u(y, t) ρ(y)

c∞
dy + ‖εR‖∞

c∞(c∞ − ‖εR‖∞)

∫
BcR

u(y, t) ρ(y)dy .
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Letting t → ∞, using the smoothing effect (2.2.5) (as a decay estimate) and the fact that
both ρ(y) and |y|−γ are locally integrable, we end up with

lim sup
t→∞

∣∣∣∣∫
Rd
u(y, t) |y|−γdy −Mc−1

∞

∣∣∣∣ ≤ M ‖εR‖∞
c∞(c∞ − ‖εR‖∞) ,

which entails (2.2.157). It is apparent that∫
Rd
|u(y, t)− uM(y, t)| |y|−γdy ≤

∫
BRtκ
|u(y, t)− uM(y, t)| |y|−γdy

+
∫
Bc
Rtκ

u(y, t) |y|−γdy +
∫
Bc
Rtκ

uM(y, t) |y|−γdy .
(2.2.159)

Moreover, (2.2.156) and (2.2.157) yield

lim
t→∞

∫
Bc
Rtκ

u(y, t) |y|−γdy = εR . (2.2.160)

Collecting (2.2.154), (2.2.155), (2.2.159) and (2.2.160) we finally get

lim sup
t→∞

∫
Rd
|u(y, t)− uM(y, t)| |y|−γdy ≤ 2εR ,

whence (2.2.8). The validity of (2.2.9) is just a consequence of (2.2.8) and the change of
variable y = tκx (one exploits again the self-similar property (2.2.134) of uM).

2.3 Rapidly decaying densities

This section is focussed on the asymptotic behaviour of nonnegative solutions to (2.1.1)
when ρ(x) decays sufficiently fast as |x| → ∞. A related fractional sublinear elliptic problem
is also studied in detail.

2.3.1 Statements of the main results

We start by providing a suitable notion of weak solution to (2.1.1). In the following, we
shall always assume ρ ∈ L∞loc(Rd) with ρ ≥ 0 and ρ−1 ∈ L∞loc(Rd).

Definition 2.3.1. A nonnegative function u is a weak solution to problem (2.1.1) corre-
sponding to the nonnegative initial datum u0 ∈ L1

ρ(Rd) if:
– u ∈ C([0,∞); L1

ρ(Rd)) ∩ L∞(Rd × (τ,∞)) for all τ > 0;
– um ∈ L2

loc((0,∞); Ḣs(Rd));
– for any ϕ ∈ C∞c (Rd × (0,∞)) there holds∫ ∞

0

∫
Rd
u(x, t)ϕt(x, t) ρ(x)dxdt−

∫ ∞
0

∫
Rd

(−∆) s2 (um)(x, t)(−∆) s2 (ϕ)(x, t) dxdt = 0 ;

– limt→0 u(t) = u0 in L1
ρ(Rd).

In agreement with the discussion in Paragraph 2.2.2.1, we say that u is a strong solution
if, in addition, ut ∈ L∞((τ,∞); L1

ρ(Rd)) for every τ > 0.
It is plain that for µ = ρu0 ∈ L1(Rd) a solution to (2.1.1) with respect to Definition 2.3.1 is

also a solution to (2.1.4) with respect to Definition 2.2.1. However, by means of the latter we
are able to handle more general initial data (positive finite Radon measures). In particular,
we cannot ask u ∈ C([0,∞),L1

ρ(Rd)). Nevertheless, in view of the fundamental uniqueness
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Theorem 2.2.4 we proved above, when µ = ρu0 ∈ L1(Rd) such solutions do coincide, provided
ρ, γ, γ0, d and s meet the corresponding assumptions.

Existence and uniqueness of weak solutions to (2.1.1), which can be established by means
of relatively standard techniques (see e.g. [60, 61, 159] and Chapter 1, Subsection 1.2.2), are
discussed in Subsection 2.3.4. In this regard, we have the following result (for a sketch of
proof see in particular Paragraphs 2.3.4.1 and 2.3.4.2 below).
Proposition 2.3.2. Let d > 2s. Let ρ ∈ L∞(Rd) be nonnegative and such that ρ−1 ∈
L∞loc(Rd). Take u0 ∈ L1

ρ(Rd), with u0 ≥ 0. Then there exists a unique weak solution u to
problem (2.1.1), in the sense of Definition 2.3.1, which is also a strong solution.

When ρ is a rapidly decaying density, we shall often deal with solutions to (2.1.1) which
are meant in a more general sense with respect to Definition 2.3.1, namely what we call local
weak solutions and local strong solutions. The corresponding definitions are a bit technical,
and we leave them to Subsection 2.3.4 (Definition 2.3.21). The first result we present below
concerns existence and uniqueness of local strong solutions.
Theorem 2.3.3. Let d > 2s. Let ρ ∈ L∞(Rd) be nonnegative and such that ρ−1 ∈ L∞loc(Rd).
Assume in addition that ρ(x) ≤ C|x|−γ a.e. in Bc

1 for some γ > 2s and C > 0. Take
u0 ∈ L1

ρ(Rd), with u0 ≥ 0. Then the weak solution to problem (2.1.1) provided by Proposition
2.3.2 is the minimal solution in the class of local strong solutions (according to Definition
2.3.21 below) and satisfies

U(x, t0, t)→ 0 as |x| → ∞ , (2.3.1)
where for any fixed t0 > 0 and t > t0 we set

U(x, t0, t) :=
∫ t

t0
um(x, τ) dτ .

More precisely, there holds
U(x, t0, t) ≤ K(I2s ∗ ρ)(x) for a.e. (x, t) ∈ Rd × (t0,∞) (2.3.2)

and some K > 0, whence (2.3.1) follows by Lemma 2.3.12 below.
Furthermore, under the more restrictive assumption that d > 4s and γ ∈ (2s, d − 2s] ∪

(4s,∞), the solution is unique in the class of local strong solutions satisfying
um ∈ L1

(1+|x|)−d+2s(Rd × (t0, T )) ∀T > t0 > 0 .

If in addition u0 ∈ L∞(Rd), then u ∈ L∞(Rd×R+) and all the above results hold true with
t0 = 0 as well.
Remark 2.3.4. Notice that, as concerns uniqueness, for d ≥ 6s the assumptions on γ amount
to γ > 2s.

For the proof of Theorem 2.3.3 we refer the reader to Paragraph 2.3.4.3 in Subsection
2.3.4. As for asymptotics, in Subsection 2.3.3 we shall prove the following result.
Theorem 2.3.5. Let d > 2s. Let ρ ∈ Cσ

loc(Rd) (for some σ ∈ (0, 1)) be strictly positive and
such that ρ(x) ≤ C|x|−γ in Bc

1 for some γ > 2s and C > 0. Take u0 ∈ L1
ρ(Rd), with u0 ≥ 0

and u0 6≡ 0. Denote as u the minimal solution to problem (2.1.1) provided by Theorem 2.3.3
and as w the nontrivial solution to the fractional sublinear elliptic equation (2.1.12) (with
` = 1/m) provided by Theorem 2.3.10 below, which is also minimal in the class of solutions
specified by the corresponding statement. Then,

lim
t→∞

t
1

m−1 u(x, t) = (m− 1)−
1

m−1 w
1
m (x) (2.3.3)

monotonically and in Lploc(Rd) for all p ∈ [1,∞).
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Remark 2.3.6. Under the same assumptions as in Theorem 2.3.5, with in addition d > 4s
and γ > 4s, thanks to the uniqueness results of Theorem 2.3.3 and Theorem 2.3.11 below,
we can read the above asymptotic result as follows: any nontrivial local strong solution u to
(2.1.1) satisfying

um ∈ L1
(1+|x|)−d+2s(Rd × (t0, T )) ∀T > t0 > 0

converges, in the sense of (2.3.3), to the unique nontrivial local weak and very weak solution
w to (2.1.12) (with ` = 1/m) satisfying

w ∈ L1
(1+|x|)−d+2s(Rd) .

2.3.2 A fractional sublinear elliptic equation

Here we study the sublinear equation (2.1.12) when ρ(x) decays fast as |x| → ∞. Such an
equation naturally arises from the asymptotic analysis, as we shall see in Subsection 2.3.3.

If ϕ is a smooth and compactly supported function defined in Rd, we can consider its
s-harmonic extension E(ϕ) to the upper half-space Rd+1

+ := {(x, y) : x ∈ Rd, y > 0}, namely
the unique smooth and bounded solution to the problemdiv (y1−2s∇E(ϕ)) = 0 in Rd+1

+ ,

E(ϕ) = ϕ on ∂Rd+1
+ := Rd × {y = 0} .

It is well-known (see e.g. [40, 42,61]) that

−µs lim
y→0+

y1−2s ∂E(ϕ)
∂y

(x, y) = (−∆)s(ϕ)(x) ∀x ∈ Rd ,

where µs := 22s−1Γ(s)
Γ(1−s) . It is therefore convenient to introduce the operators

Ls := div(y1−2s∇) , ∂

∂y2s := −µs lim
y→0+

y1−2s ∂

∂y
.

Furthermore, we denote as Xs the completion of C∞c (Rd+1
+ ∪ ∂Rd+1

+ ) w.r.t. the norm

‖ψ‖Xs :=
(
µs

∫
Rd+1

+

y1−2s |∇ψ(x, y)|2 dxdy
) 1

2

∀ψ ∈ C∞c (Rd+1
+ ∪ ∂Rd+1

+ ) ,

and as Xs
loc the space of all functions v such that ψv ∈ Xs for any ψ ∈ C∞c (Rd+1

+ ∪ ∂Rd+1
+ ).

It is possible to prove that there exists a well defined notion of trace on ∂Rd+1
+ for functions

in Xs (see e.g. [36, Section 2], [40, Subsection 3.1] or [61, Subsection 3.2]), and therefore in
Xs

loc as well. Moreover, for every v ∈ Ḣs(Rd) there exists a unique extension E(v) ∈ Xs such
that

E(v)(x, 0) = v(x) for a.e. x ∈ Rd

and
µs

∫
Rd+1

+

y1−2s〈∇E(v),∇ψ〉(x, y) dxdy =
∫
Rd

(−∆)s(v)(x)(−∆)s(ψ)(x, 0) dx

for any ψ ∈ C∞c (Rd+1
+ ∪ ∂Rd+1

+ ) (that is, E(v) is the harmonic extension of v).
Having at our disposal the above tools, we can provide suitable weak formulations of

problem (2.1.12) which deal with the harmonic extension. In fact, at a formal level, looking
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for a solution w to (2.1.12) is the same as looking for a pair of functions (w, w̃) that solve
the problem 

Lsw̃ = 0 in Rd+1
+ ,

w̃ = w on ∂Rd+1
+ ,

∂w̃

∂y2s = ρw` on ∂Rd+1
+ ,

(2.3.4)

where 0 < ` < 1.

Definition 2.3.7. A nonnegative function w ∈ Ḣs(Rd) is a weak solution to problem (2.1.12)
if it satisfies ∫

Rd
w`(x)ψ(x, 0) ρ(x)dx =

∫
Rd

(−∆) s2 (w)(x)(−∆) s2 (ψ)(x, 0) dx

=µs
∫
Rd+1

+

y1−2s〈∇E(w),∇ψ〉(x, y) dxdy
(2.3.5)

for any ψ ∈ C∞c (Rd+1
+ ∪ ∂Rd+1

+ ).

Definition 2.3.8. A local weak solution to problem (2.3.4) is a bounded nonnegative function
w such that, for some nonnegative w̃ ∈ Xs

loc ∩ L∞loc(Rd+1
+ ∪ ∂Rd+1

+ ) (what we call a local
extension for w), there holds w̃|∂Rd+1

+
= w and∫

Rd
w`(x)ψ(x, 0) ρ(x)dx = µs

∫
Rd+1

+

y1−2s〈∇w̃,∇ψ〉(x, y) dxdy

for any ψ ∈ C∞c (Rd+1
+ ∪ ∂Rd+1

+ ).

Definition 2.3.9. A bounded, nonnegative function w is a very weak solution to problem
(2.1.12) if it satisfies ∫

Rd
w`(x)φ(x) ρ(x)dx =

∫
Rd
w(x)(−∆)s(φ)(x) dx

for any φ ∈ C∞c (Rd).

Note that a bounded weak solution is also a solution both in the sense of Definition 2.3.8
and Definition 2.3.9. This section aims at studying existence and uniqueness of solutions to
(2.1.12) and (2.3.4), according to the above definitions. Our main results are the following.

Theorem 2.3.10 (existence). Let d > 2s and ` ∈ (0, 1). Let ρ ∈ Cσ
loc(Rd) (for some

σ ∈ (0, 1)) be strictly positive and such that ρ(x) ≤ C|x|−γ in Bc
1 for some γ > 2s and C > 0.

Then there exists a local weak solution w to problem (2.3.4), which is minimal in the class of
non-identically zero local weak solutions (in the sense of Definition 2.3.8). Moreover, w is a
very weak solution to (2.1.12) (in the sense of Definition 2.3.9) and satisfies the estimate

w(x) ≤ K(I2s ∗ ρ)(x) ∀x ∈ Rd (2.3.6)

for some K > 0.
Finally, if γ complies with the more restrictive condition

γ > 2s+ d− 2s
`+ 2 , (2.3.7)

then w is also a weak solution to (2.1.12) (in the sense of Definition 2.3.7).
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Theorem 2.3.11 (uniqueness). Let d > 4s and ` ∈ (0, 1). Let ρ ∈ Cσ
loc(Rd) (for some

σ ∈ (0, 1)) be strictly positive and such that ρ(x) ≤ C|x|−γ in Bc
1 for some γ > 4s and

C > 0. Then the minimal solution to problem (2.3.4) provided by Theorem 2.3.10 is unique
in the class of non-identically zero local weak solutions (in the sense of Definition 2.3.8)
which are also very weak solutions to (2.1.12) (according to Definition 2.3.9) and belong to
L1

(1+|x|)−d+2s(Rd).
The next lemma, which provides us with elementary estimates from above for the Riesz

potential of ρ, is key to our analysis.
Lemma 2.3.12. Let d > 2s and ρ ≥ 0 be a measurable function. Assume in addition that
ρ(x) ≤ C(1 + |x|)−γ for some γ > 2s and C > 0. Then, I2s ∗ ρ is a nonnegative continuous
function and there exists a constant K > 0 such that

(I2s ∗ ρ)(x) ≤ K (1 + |x|)−κ ∀x ∈ Rd ,

where:
(a) if γ < d, κ = γ − 2s;
(b) if γ = d, κ = d− 2s− ε for all ε > 0 (with K = K(ε));
(c) if γ > d, κ = d− 2s.
Proof. The proof goes exactly as the one of Lemma 2.2.13, hence we skip it. Let us just
mention that the critical term, namely the one that gives the above decay rates, is (2.2.54)
(with φ replaced by ρ).

2.3.2.1 Existence

Below we shall prove all the properties of w claimed in Theorem 2.3.10 except the fact
that w is a very weak solution to problem (2.1.12) in the sense of Definition 2.3.9. The latter
will actually be an interesting consequence of the asymptotic analysis in Subsection 2.3.3.

Consider first the following problem: find (wR, w̃R) such that

Lsw̃R = 0 in ΩR ,

w̃R = 0 on ΣR ,

w̃R = wR on ΓR ,
∂w̃R
∂y2s = ρw`R on ΓR ,

(2.3.8)

where ΩR := {(x, y) ∈ Rd+1
+ : |(x, y)| < R}, ΣR := ∂ΩR ∩ {y > 0} and ΓR := ∂ΩR ∩ {y = 0}.

We denote by Xs
0(ΩR) the completion of C∞c (ΩR ∪ ΓR) w.r.t. the norm

‖ψ‖Xs
0(ΩR) :=

(
µs

∫
ΩR
y1−2s |∇ψ(x, y)|2 dxdy

) 1
2
∀ψ ∈ C∞c (ΩR ∪ ΓR) ,

i.e. the closure of C∞c (ΩR ∪ ΓR) in Xs|ΩR .
Definition 2.3.13. A weak solution to problem (2.3.8) is a pair of nonnegative functions
(wR, w̃R) such that:

– w`R ∈ L1(BR), w̃R ∈ Xs
0(ΩR);

– w̃R|ΓR = wR;
– for any ψ ∈ C∞c (ΩR ∪ ΓR) there holds∫

BR
w`R(x)ψ(x, 0) ρ(x)dx = µs

∫
ΩR
y1−2s〈∇w̃R,∇ψ〉(x, y) dxdy . (2.3.9)
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Existence results for (2.3.8) can be proved by standard variational methods, see e.g. [36].

Proposition 2.3.14. Let ` ∈ (0, 1). Let ρ ∈ L∞loc(Rd) be nonnegative and such that ρ−1 ∈
L∞loc(Rd). Then there exists a non-identically zero weak solution (wR, w̃R) to problem (2.3.8),
in the sense of Definition 2.3.13.

The following positivity result and comparison principle for problem (2.3.8) will be crucial
in the proof of Theorem 2.3.10, specially as concerns minimality.

Proposition 2.3.15. Let ` ∈ (0, 1). Let ρ ∈ L∞loc(Rd) be nonnegative and such that ρ−1 ∈
L∞loc(Rd).
(i) Take a subsolution (fR, f̃R) and a supersolution (gR, g̃R) to problem (2.3.8) (in a weak

sense, in agreement with Definition 2.3.13). Assume that f̃R, g̃R ≥ 0 a.e. in ΩR, fR ≥ 0
a.e. in BR, gR > 0 a.e. in BR and f̃R|ΣR ≤ g̃R|ΣR a.e. in ΣR. Then fR ≤ gR a.e. in BR

and f̃R ≤ g̃R a.e. in ΩR.
(ii) Suppose in addition that ρ ∈ Cσ

loc(Rd) for some σ ∈ (0, 1). Let (wR, w̃R) be a weak
solution to problem (2.3.8), in the sense of Definition 2.3.13, such that wR ∈ L∞(BR)
and w̃R ∈ L∞(ΩR). Then (in particular) w̃R ∈ C(Ωr) for all 0 < r < R and either
(wR, w̃R) ≡ (0, 0) or wR > 0 in BR and w̃R > 0 in ΩR.

Proof. Statement (i) follows by performing minor modifications to the proof of [36, Lemma
5.3]. Actually the strategy of proof goes back to the pioneering paper [38]: let us mention
that the strict positivity of the supersolution and the fact that the nonlinearity is sublinear
are essential.

Statement (ii) is due to the regularity results in [40]. In fact, since (wR, w̃R) is bounded and
ρ(x) and f(w) := w` are Hölder functions, Lemma 4.5 of [40] ensures that w̃R and ∂w̃R/∂y2s

are also Hölder continuous in Ωr for all 0 < r < R. Corollary 4.12 of [40] then entails the
assertion (the same argument works upon replacing d(x)u(x) there with −ρ(x)u`(x)).

We are now in position to prove the part of Theorem 2.3.10 which deals with existence
of a minimal local weak solution to (2.3.4). The fact that such solution is also a very weak
solution to (2.1.12) (according to Definition 2.3.9) will be deduced in the end of proof of
Theorem 2.3.5 below.

Proof of Theorem 2.3.10 (first part). For any R > 0, in view of Proposition 2.3.14 we know
that there exists a nontrivial solution (wR, w̃R) to problem (2.3.8). Let (FR, F̃R) be the unique
regular solution to 

LsF̃R = 0 in CR ,
F̃R = 0 on ∂CR ∩ {y > 0} ,
F̃R = FR on ΓR ,
∂F̃R
∂y2s = ρ on ΓR ,

(2.3.10)

where CR := BR × {y > 0}. By standard results (see e.g. [52]),

F̃R(x, y) =
∫
BR
GR((x, y), z) ρ(z)dz ∀(x, y) ∈ CR , (2.3.11)

where GR((x, y), z) (let (x, y) ∈ CR and z ∈ BR) is the Green function associated to problem
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(2.3.10), namely the solution of
LsGR(·, z) = 0 in CR ,
GR(·, z) = 0 on ∂CR ∩ {y > 0} ,
∂GR(·, z)
∂y2s = δz on ΓR .

It is well known that Green functions are positive and ordered w.r.t. R, that is

GR1 > 0 in CR1 ∪ ({BR1} × {0}) , GR1 ≤ GR2 in CR1 (2.3.12)

for all z ∈ BR1 and R2 > R1 > 0. Furthermore, they are all bounded from above by the
Green function G+ of the half-space:

GR((x, y), z) ≤ G+((x, y), z) ∀(x, y) ∈ CR , ∀z ∈ BR , ∀R > 0 , (2.3.13)

where
G+((x, y), z) := ks,d

|(x− z, y)|d−2s ∀(x, y) ∈ Rd+1
+ , ∀z ∈ Rd

and kd,s is the same constant as in Paragraph 2.1.1.4. In fact, G+ solves
LsG+(·, z) = 0 in Rd+1

+ ,
∂G+(·, z)
∂y2s = δz on ∂Rd+1

+

for all z ∈ Rd (see again [52] or [68]). From (2.3.11), (2.3.13) and Lemma 2.3.12 we deduce
that, for any R > 0 and (x, y) ∈ CR,

F̃R(x, y) ≤
∫
Rd
G+((x, y), z) ρ(z)dz ≤

∫
Rd
G+((x, 0), z) ρ(z)dz =(I2s ∗ ρ)(x)

≤‖I2s ∗ ρ‖∞ =: Ĉ .
(2.3.14)

Now note that, by definition of (FR, F̃R), for any test function ψ ∈ C∞c (ΩR ∪ΓR) there holds

µs

∫
ΩR
y1−2s〈∇F̃R,∇ψ〉(x, y) dxdy = µs

∫
CR
y1−2s〈∇F̃R,∇ψ〉(x, y) dxdy =

∫
BR
ψ(x, 0) ρ(x)dx .

(2.3.15)
Upon picking C0 ≥ Ĉ

`
1−` , the function (C0FR, C0F̃R) is a supersolution to problem (2.3.8).

In fact, thanks to (2.3.14) and (2.3.15),

µs

∫
ΩR
y1−2s〈∇(C0F̃R),∇ψ〉(x, y) dxdy =

∫
BR
C0ψ(x, 0) ρ(x)dx

≥
∫
BR

[C0FR(x)]` ψ(x, 0) ρ(x)dx

for all nonnegative ψ as above. In view of (2.3.11) and (2.3.12), we are then in position to
apply the comparison principle provided by Proposition 2.3.15-(i) with the choices (fR, f̃R) =
(wR, w̃R) and (gR, g̃R) = (C0FR, C0F̃R), to get:

w̃R ≤ C0F̃R a.e. in ΩR (2.3.16)

and
wR ≤ C0FR a.e. in BR . (2.3.17)
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In particular, from (2.3.14), (2.3.16) and (2.3.17) we infer that wR ∈ L∞(BR) and w̃R ∈
L∞(ΩR). We can therefore exploit Proposition 2.3.15-(ii), which yields

w̃R > 0 in ΩR (2.3.18)
and

wR > 0 in BR . (2.3.19)
Let R2 > R1 > 0. The strict positivity ensured by (2.3.18) and (2.3.19) permits us to
apply again Proposition 2.3.15-(i), this time with the choices (fR, f̃R) = (wR1 , w̃R1) and
(gR, g̃R) = (wR2 , w̃R2). We obtain:

w̃R1 ≤ w̃R2 in ΩR , wR1 ≤ wR2 in BR ∀R2 > R1 > 0 . (2.3.20)
We aim at passing to the limit on (wR, w̃R) as R→∞. Given any fixed η ∈ C∞c (Rd+1

+ ∪∂Rd+1
+ ),

for every R > 0 large enough we can pick (after a standard approximation) ψ = w̃Rη
2 as a

test function in Definition 2.3.13. It is straightforward to check that

µs

∫
ΩR
y1−2s |∇w̃R(x, y)|2 η2 dxdy

≤2 ‖wR‖`+1
∞

∫
BR
η2(x, 0) ρ(x)dx+ 4µs ‖w̃R‖2

∞

∫
ΩR
y1−2s |∇η(x, y)|2 dxdy .

(2.3.21)

From (2.3.14), (2.3.16), (2.3.17) and (2.3.21) we deduce that, for any Ω0 b Rd+1
+ ∪ ∂Rd+1

+ ,
there holds ∫

Ω0
y1−2s |∇w̃R(x, y)|2 dxdy ≤ C ′ (2.3.22)

for a suitable positive constant C ′ independent of R > 0. Moreover, (2.3.20) entails the
existence of the following (nontrivial) pointwise limits:

lim
R→∞

w̃R =: w̃ ∈ L∞(Rd+1
+ ) , lim

R→∞
wR =: w ∈ L∞(Rd) . (2.3.23)

Thanks to (2.3.22), by standard compactness arguments we can pass to the limit in the weak
formulation (2.3.9) to find that w is a local weak solution to (2.3.4) in the sense of Definition
2.3.8 (with local extension w̃).

We are left with proving minimality. In order to avoid confusion, hereafter we shall
denote as w the solution constructed above and as w any other non-identically zero local
weak solution to (2.3.4) (according to Definition 2.3.8). Note that, for R large enough,
(w|BR , w̃|ΩR) is a nontrivial solution to problem (2.3.8), in the sense of Definition 2.3.13,
except that w̃|ΩR is not necessarily zero on ΣR. That is, w̃ has finite energy (the L2

y1−2s

norm of the gradient) in ΩR but does not belong to Xs
0(ΩR). Nevertheless, the regularity

results of [40] hold regardless of boundary conditions on ΣR: namely, Proposition 2.3.15-(ii)
is applicable in this case as well, ensuring in particular that w > 0 in BR. Because (wR, w̃R)
is also a weak solution to (2.3.8) and, trivially, w̃R|ΣR ≤ w̃|ΣR , from Proposition 2.3.15-(i)
(with the choices (fR, f̃R) = (wR, w̃R) and (gR, g̃R) = (w|BR , w̃|ΩR)) we deduce that

wR ≤ w|BR in BR ,

whence w ≤ w in Rd by letting R→∞. We have therefore proved that w is indeed minimal.
The upper bound (2.3.6) is just a consequence of (2.3.14), (2.3.17) and (2.3.23).

From the above method of proof it is direct to check that, under the more restrictive
assumption (2.3.7), w is also a weak solution to (2.1.12) in the sense of Definition 2.3.7. In
fact, in this case, inequalities (2.3.14), (2.3.17) and Lemma 2.3.12 ensure that the L1

ρ norm of
w`+1
R is uniformly bounded with respect to R. As a consequence, estimate (2.3.22) actually

holds with Ω0 = Rd+1
+ (up to setting w̃R ≡ 0 in Ωc

R). Hence, passing to the limit as R→∞,
we deduce that w̃ ∈ Xs, w ∈ Ḣs(Rd), w̃ = E(w) and that w satisfies (2.3.5).
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2.3.2.2 Uniqueness

Our strategy of proof of Theorem 2.3.11 strongly relies on the uniqueness result for the
parabolic problem provided by Theorem 2.3.3.

Proof of Theorem 2.3.11. Throughout, we shall denote as w the minimal solution provided
by Theorem 2.3.10 and as w any other solution complying with the assumptions of the
statement.

To begin with, set m = 1/` and

Cm := (m− 1)−
1

m−1 .

For any k ∈ N, let ζk ∈ C∞(Rd) with ζk ≡ 1 in Bk, ζk ≡ 0 in Bc
2k and 0 ≤ ζk ≤ 1 in Rd.

Take R > 2k and denote as (vR,k, ṽR,k) the unique strong solution to the following parabolic
problem (see Paragraph 2.3.4.2 in Subsection 2.3.4 below):

Ls(ṽmR,k) = 0 in ΩR × R+ ,

ṽmR,k = 0 on ΣR × R+ ,

ṽmR,k = vmR,k on ΓR × R+ ,
∂(ṽmR,k)
∂y2s = ρ

∂vR,k
∂t

on ΓR × R+ ,

vR,k = Cmζkw
1
m on BR × {t = 0} .

(2.3.24)

Let (wR, w̃R) be as in the proof of Theorem 2.3.10. Since by hypothesis w ∈ L∞(Rd), thanks
to (2.3.19) and to the fact that wR+1 ∈ C(BR) we can select a suitable τR > 0 so that

w
1
m
R+1

τ
1

m−1
R

≥ w
1
m in BR . (2.3.25)

Let

ŨR := Cmw̃
1
m
R+1

(t+ τR)
1

m−1
≤ Cmw̃

1
m
R+1

t
1

m−1
=: Ũ0R in ΩR × (0,∞) ,

with UR(·, t) := ŨR(·, 0, t) and U0R(·, t) := Ũ0R(·, 0, t) for all t > 0. By definition of (UR, ŨR)
and in view of (2.3.25), it is apparent that (UR, ŨR) is a strong supersolution to (2.3.24).
Hence, applying the comparison principle provided by Proposition 2.3.20 below, we deduce
that

vR,k ≤ UR ≤ U0R a.e. in BR × (0,∞) . (2.3.26)
In addition to the above bounds, note that for any k2 > k1 and R > 2k2 there holds

vR,k1 ≤ vR,k2 ≤
Cmw

1
m

(t+ 1)
1

m−1
=: V a.e. in BR × (0,∞) . (2.3.27)

Such inequalities still follow by Proposition 2.3.20: (V, Ṽ ) is a strong supersolution to (2.3.24)
for all R > 0 and k ∈ N, while (vR,k2 , ṽR,k2) is a strong supersolution to (2.3.24) for k = k1.

Since Cmζkw
1
m ∈ L1

ρ(Rd) ∩ L∞(Rd), by standard arguments (see e.g. the proof of [159,
Theorem 3.1] or Paragraph 2.3.4.2) there exists the limit

v∞,k := lim
R→∞

vR,k a.e. in Rd × R+ ,

148



2.3. Rapidly decaying densities

which solves problem ρ(v∞,k)t + (−∆)s(vm∞,k) = 0 in Rd × R+ ,

v∞,k = Cmζkw
1
m on Rd × {0}

both in the sense of Definition 2.3.1 (weak solution) and in the sense of Definition 2.3.23
(very weak solution). Moreover, as a consequence of (2.3.27), such limit satisfies the bounds

v∞,k1 ≤ v∞,k2 ≤ V a.e. in Rd × R+ (2.3.28)

for all k2 > k1. Thanks to (2.3.28), by monotonicity we get existence of the pointwise limit

v∞ := lim
k→∞

v∞,k ≤ V a.e. in Rd × R+ . (2.3.29)

Passing to the limit as k → ∞ in the very weak formulation solved by v∞,k, we then infer
that v∞ is a very weak solution, in the sense of Definition 2.3.23, to the problemρ(v∞)t + (−∆)s(vm∞) = 0 in Rd × R+ ,

v∞ = Cmw
1
m on Rd × {0} .

(2.3.30)

Now notice that V is also a very weak solution to (2.3.30), because so is w with respect to
(2.1.12). By hypothesis we know that w ∈ L1

(1+|x|)−d+2s(Rd), whence V m ∈ L1
(1+|x|)−d+2s(Rd ×

(0, T )) for all T > 0; but then (2.3.29) implies that vm∞ belongs to L1
(1+|x|)−d+2s(Rd× (0, T )) as

well. We are therefore in position to apply the uniqueness result of Theorem 2.3.3 (together
with Remark 2.3.24), which yields

v∞ = V a.e. in Rd × R+ .

Letting R → ∞, k → ∞ in (2.3.26) and using (2.3.23) (replace w with w there), we infer
that

v∞ ≤
Cmw

1
m

t
1

m−1
a.e. in Rd × R+ .

Hence,

w
1
m ≤ (t+ 1)

1
m−1

t
1

m−1
w

1
m a.e. in Rd × R+ . (2.3.31)

Passing to the limit in (2.3.31) as t→∞ we end up with

w
1
m ≤ w

1
m a.e. in Rd ,

which implies w = w since w is nontrivial and w is minimal.
Finally, the fact that w ∈ L1

(1+|x|)−d+2s(Rd) is just a consequence of estimate (2.3.6) and
Lemma 2.3.12 (recall the assumptions d, γ > 4s).

2.3.3 Asymptotic behaviour

Before proving Theorem 2.3.5 we need an intermediate result, which provides us with a
crucial bound from above for the minimal solution to problem (2.1.1).

Lemma 2.3.16. Under the same assumptions and with the same notations as in Theorem
2.3.5, there holds

u(x, t) ≤ (m− 1)−
1

m−1 t−
1

m−1w
1
m (x) for a.e. (x, t) ∈ Rd × (0,∞) . (2.3.32)
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Proof. Suppose first that u0 ∈ L1
ρ(Rd) ∩ L∞(Rd). Let us define Cm, (wR, w̃R) and (UR, ŨR)

(for a suitable τR > 0 to be chosen later) as in the proofs of Theorems 2.3.10 and 2.3.11. For
any R > 0, let (uR, ũR) be the unique strong solution to the following parabolic problem (see
Paragraph 2.3.4.2 below): 

Ls(ũmR ) = 0 in ΩR × R+ ,

ũmR = 0 on ΣR × R+ ,

ũmR = umR on ΓR × R+ ,
∂ũmR
∂y2s = ρ

∂uR
∂t

on ΓR × R+ ,

uR = u0 on BR × {t = 0} .

(2.3.33)

By standard arguments (we refer again the reader to the proof of [159, Theorem 3.1] or to
Paragraph 2.3.4.2), we have that

lim
R→∞

uR = u a.e. in Rd × R+ , lim
R→∞

ũmR = ũm = E(um) a.e. in Rd+1
+ × R+ . (2.3.34)

In view of the positivity properties of the solutions wR recalled above, for any R > 0 there
holds

min
BR

wR+1 > 0 .

Since u0 ∈ L1
ρ(Rd) ∩ L∞(Rd), we can therefore pick τR > 0 so that

Cmw
1
m
R+1

τ
1

m−1
R

≥ u0 a.e. in BR . (2.3.35)

Thanks to (2.3.35), (UR, ŨR) is a strong supersolution to problem (2.3.33). By comparison
(see Proposition 2.3.20 below),

uR ≤ UR a.e. in BR × R+ . (2.3.36)

It is then apparent that (2.3.36) entails the fundamental estimate

uR ≤ Cm t
− 1
m−1w

1
m
R+1 a.e. in BR × (0,∞) . (2.3.37)

Letting R→∞ in (2.3.37) and exploiting (2.3.23), (2.3.34), we finally get (2.3.32).
Consider now a general datum u0 ∈ L1

ρ(Rd). We have:

u = lim
n→∞

un a.e. in Rd × R+ ,

where for every n ∈ N we denote as un the solution to problem (2.1.1) corresponding to the
initial datum u0n ∈ L1

ρ(Rd) ∩ L∞(Rd), and the sequence {u0n} is such that 0 ≤ u0n ≤ u0 in
Rd for all n ∈ N and u0n → u0 in L1

ρ(Rd) as n→∞ (see [159, Subsection 6.2] or Subsection
2.3.4, Paragraphs 2.3.4.1 and 2.3.4.2). In view of the first part of the proof, we know that
for every n ∈ N there holds

un ≤ Cm t
− 1
m−1w

1
m a.e. in Rd × (0,∞) . (2.3.38)

The assertion then follows by passing to the limit as n→∞ in (2.3.38).
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Remark 2.3.17. As a consequence of the method of proof of Lemma 2.3.16 we also get the
estimate

E(um) ≤ Cm
m t
− m
m−1 w̃ a.e. in Rd+1

+ × (0,∞) , (2.3.39)
where E(um) is the extension of um and w̃ is the local extension of w (in agreement with Def-
inition 2.3.8) provided along the first part of the proof of Theorem 2.3.10. In fact it is enough
to notice that, thanks to the standard comparison principle for sub- and supersolutions to
the elliptic problem Ls = 0 in ΩR, (2.3.37) implies

ũmR ≤ Cm
m t
− m
m−1 w̃R+1 a.e. in ΩR × (0,∞) ,

whence (2.3.39) upon letting R→∞.

Proof of Theorem 2.3.5 and end of proof of Theorem 2.3.10. Let us denote as v(x, τ) the fol-
lowing rescaling of u(x, t):

u(x, t) =: e−βτv(x, τ) , t =: eτ , β := 1
m− 1 .

It is immediate to check that v is a (weak, and in particular very weak) solution of

ρvτ = −(−∆)s(vm) + βρv in Rd × R+ ,

in the sense that

−
∫ ∞

0

∫
Rd
v(x, τ)ϕτ (x, τ) ρ(x)dxdτ +

∫ ∞
0

∫
Rd
vm(x, τ)(−∆)s(ϕ)(x, τ) dxdτ

=β
∫ ∞

0

∫
Rd
v(x, τ)ϕ(x, τ) ρ(x)dxdτ +

∫
Rd
u(x, 1)ϕ(x, 0) ρ(x)dx

(2.3.40)

for all ϕ ∈ C∞c (Rd × [0,∞)). Moreover, E(vm) ∈ L2((0, T );Xs) and

−
∫ T

0

∫
Rd
v(x, τ)ψτ (x, 0, τ) ρ(x)dxdτ + µs

∫ T

0

∫
Rd+1

+

y1−2s 〈∇E(vm),∇ψ〉 (x, y, τ) dxdydτ

=β
∫ T

0

∫
Rd
v(x, τ)ψ(x, 0, τ) ρ(x)dxdτ

(2.3.41)
for all T > 0 and ψ ∈ C∞c ((Rd+1

+ ∪ ∂Rd+1
+ )× (0, T )). In view of Lemma 2.3.16 (and Remark

2.3.17), we have:

v(x, τ) ≤ Cmw
1
m (x) ≤ Cm ‖w‖

1
m
∞ for a.e. (x, τ) ∈ Rd × (0,∞) , (2.3.42)

E(vm)(x, y, τ) ≤ Cm
m w̃(x, y) ≤ Cm

m ‖w̃‖∞ for a.e. (x, y, τ) ∈ Rd+1
+ × (0,∞) . (2.3.43)

Furthermore, the following monotonicity properties hold true:

v(x, τ2) ≥ v(x, τ1) for a.e. x ∈ Rd , E(vm)(x, y, τ2) ≥ E(vm)(x, y, τ1) for a.e. (x, y) ∈ Rd+1
+

(2.3.44)
and all τ2 ≥ τ1 > 0. In fact, by proceeding exactly as in [173, p. 182] (see also the original
reference [16]), one can prove the fundamental Bénilan-Crandall inequality

ρut ≥ −
ρu

(m− 1)t a.e. in Rd × (0,∞) ,

which reads
vτ ≥ 0 a.e. in Rd × (0,∞) . (2.3.45)
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Thanks to (2.3.45) we get the first inequality in (2.3.44), and therefore also the second one
because the extension operator is order preserving. Hence, from (2.3.42)–(2.3.44) we infer
that there exist finite the limits

h(x) := lim
k→∞

v(x, τk) for a.e. x ∈ Rd , H(x, y) := lim
k→∞

E(vm)(x, y, τk) for a.e. (x, y) ∈ Rd+1
+ ,

(2.3.46)
where {τk} is any time sequence tending to infinity. Note that, since u0 6≡ 0, (2.3.44)
implies that h 6≡ 0 and H 6≡ 0, while (2.3.42) and (2.3.43) ensure that h ∈ L∞(Rd) and
H ∈ L∞(Rd+1

+ ). Let
g := C−mm hm , g̃ := C−mm H . (2.3.47)

First we aim at proving that g (with the corresponding local extension g̃) is a solution to
problem (2.3.4) (for ` = 1/m) in the sense of Definition 2.3.8. To this end, for any fixed
0 < τ1 < τ2 and 0 < ε < (τ2 + τ1)/2, let ζε(τ) be a smooth approximation of the function
χ[τ1,τ2](τ) such that

0 ≤ ζε(τ) ≤ 1 ∀τ ≥ 0 , ζε(τ) = 0 ∀τ 6∈ [τ1, τ2] , ζε(τ) = 1 ∀τ ∈ [τ1 + ε, τ2 − ε] .

Moreover, we can and shall assume that

ζ ′ε(τ)→ δτ1 − δτ2

as ε→ 0. Consider now a cut-off function η as in the first part of the proof of Theorem 2.3.10
and plug in the weak formulation (2.3.41) the test function ψ = ζεη

2E(vm) (after a standard
approximation). Letting ε→ 0, we get:

1
m+ 1

∫
Rd
vm+1(x, τ2)η2(x, 0) ρ(x)dx

+ µs

∫ τ2

τ1

∫
Rd+1

+

y1−2s〈∇E(vm),∇[η2E(vm)]〉(x, y, τ) dxdydτ

= 1
m+ 1

∫
Rd
vm+1(x, τ1)η2(x, 0) ρ(x)dx+ β

∫ τ2

τ1

∫
Rd
vm+1(x, τ)η2(x, 0) ρ(x)dxdτ .

In view of (2.3.42) and (2.3.43), by setting τ1 = τk, τ2 = τk + 1 and proceeding as in the
proof of (2.3.22), we obtain the estimate∫ τk+1

τk

∫
Ω0
y1−2s |∇E(vm)(x, y, τ)|2 dxdydτ ≤ C ′ (2.3.48)

for all Ω0 b Rd+1
+ ∪ ∂Rd+1

+ and a suitable constant C ′ > 0 independent of k. Given any
φ ∈ C∞c (Rd+1

+ ∪∂Rd+1
+ ), by plugging in (2.3.41) the test function ψ(x, y, τ) = φ(x, y)ζε(τ) and

letting ε→ 0 we infer that∫
Rd

[v(x, τk + 1)− v(x, τk)]φ(x, 0) ρ(x)dx

+ µs

∫ τk+1

τk

∫
Rd+1

+

y1−2s 〈∇E(vm)(x, y, τ),∇φ(x, y)〉 dxdydτ

=β
∫ τk+1

τk

∫
Rd
v(x, τ)φ(x, 0) ρ(x)dxdτ .

(2.3.49)

We point out that, still as a consequence of the time monotonicity ensured by (2.3.44), in
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addition to (2.3.46) we also have
h(x) = lim

k→∞
v(x, τk + λ) for a.e. (x, λ) ∈ Rd × (0, 1) ,

h(x) = lim
k→∞

v(x, τk + 1) for a.e. x ∈ Rd , (2.3.50)

H(x, y) = lim
k→∞

E(vm)(x, y, τk + λ) for a.e. ((x, y), λ) ∈ Rd+1
+ × (0, 1) .

Gathering (2.3.42), (2.3.43), (2.3.46), (2.3.48) and (2.3.50), we can pass to the limit safely in
(2.3.49) to find that h and H satisfy

µs

∫
Rd+1

+

y1−2s〈∇H,∇φ〉(x, y) dxdy = β
∫
Rd
h(x)φ(x, 0) ρ(x)dx ,

with H(x, 0) = hm(x). That is, the function g (with g̃ as a local extension) defined in (2.3.47)
is a local weak solution to (2.3.4) (for ` = 1/m) in the sense of Definition 2.3.8. Furthermore,
g is also a very weak solution to (2.1.12) in the sense of Definition 2.3.9. In order to prove the
latter assertion, we can proceed as above: for any φ ∈ C∞c (Rd) plug in the weak formulation
(2.3.40) the test function ϕ(x, τ) = ζε(τ)φ(x) and let ε→ 0 to get∫

Rd
[v(x, τk + 1)− v(x, τk)]φ(x) ρ(x)dx

=
∫ τk+1

τk

∫
Rd

[−vm(x, τ)(−∆)s(φ)(x) + βv(x, τ)φ(x)ρ(x)] dxdτ .

Passing to the limit as k →∞ and using (2.3.42), (2.3.46), (2.3.50), we end up with

0 = −
∫
Rd
g(x)(−∆)s(φ)(x) dx+

∫
Rd
g

1
m (x)φ(x) ρ(x)dx (2.3.51)

and the estimate
g(x) ≤ w(x) for a.e. x ∈ Rd . (2.3.52)

Since g is a non-identically zero local weak solution to (2.3.4), the minimality of w and
(2.3.52) necessarily imply that g = w. In particular, thanks to (2.3.51), we can conclude the
proof of Theorem 2.3.10 by inferring that the minimal solution provided by it is also a very
weak solution to (2.1.12) (for ` = 1/m) in the sense of Definition 2.3.9.

Finally, the convergence of {v(τk)} to Cmw1/m in Lploc(Rd) for p ∈ [1,∞) is just a conse-
quence of (2.3.42) and (2.3.46). The above arguments being independent of the particular
sequence {τk}, the proof is complete.

2.3.4 Well-posedness of the parabolic problem

This subsection is primarily devoted to the proofs of Proposition 2.3.2, Theorem 2.3.3 and
connected additional results.

2.3.4.1 First construction of weak solutions

If ρ ∈ L∞loc(Rd) is nonnegative and such that ρ−1 ∈ L∞loc(Rd), and u0 ∈ L1
ρ(Rd) ∩ L∞(Rd)

with u0 ≥ 0, then one can argue as in the proof of [61, Theorem 7.3 (first construction)] to
get existence of a weak solution to problem (2.1.1) in the sense of Definition 2.3.1, which is
moreover bounded in the whole of Rd × R+. Let us just mention that such a construction
proceeds by means of a time discretization of the problem, which makes use of the funda-
mental Crandall-Liggett Theorem. Furthermore, the following L1

ρ comparison principle holds
true: ∫

Rd
[u1(x, t)− u2(x, t)]+ ρ(x)dx ≤

∫
Rd

[u01 − u02]+ ρ(x)dx ∀t > 0 , (2.3.53)
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where u1 and u2 are the solutions to (2.1.1), constructed as above, corresponding to the initial
data u01 ∈ L1

ρ(Rd) ∩ L∞(Rd) and u02 ∈ L1
ρ(Rd) ∩ L∞(Rd), respectively.

As for uniqueness, a standard result is the following.

Proposition 2.3.18. Let ρ ∈ L∞loc(Rd) be nonnegative and such that ρ−1 ∈ L∞loc(Rd). Let u
and v be two nonnegative weak solutions to (2.1.1) corresponding to the same initial datum
u0 ∈ L1

ρ(Rd), in the sense that:

u, v ∈ Lm+1
ρ (Rd × R+) , (2.3.54)

um, vm ∈ L2
loc([0,∞); Ḣs(Rd)) (2.3.55)

and

−
∫ ∞

0

∫
Rd
u(x, t)ϕt(x, t) ρ(x)dxdt+

∫ ∞
0

∫
Rd

(−∆) s2 (um)(x, t)(−∆) s2 (ϕ)(x, t) dxdt

=−
∫ ∞

0

∫
Rd
v(x, t)ϕt(x, t) ρ(x)dxdt+

∫ ∞
0

∫
Rd

(−∆) s2 (vm)(x, t)(−∆) s2 (ϕ)(x, t) dxdt

=
∫
Rd
u0(x)ϕ(x, 0) ρ(x)dx

(2.3.56)

for any ϕ ∈ C∞c (Rd × [0,∞)). Then, u = v.

Proof. In view of the hypotheses on u and v, using a standard approximation technique one
can show that the so-called Olĕınik’s test function

ϕ(x, t) =
∫ T

t
[um(x, τ)− vm(x, τ)] dτ in Rd × (0, T ] , ϕ ≡ 0 in Rd × (T,∞) ,

is in fact an admissible test function in the weak formulations (2.3.56) (for all T > 0). The
conclusion then follows by reasoning exactly as in [61, Theorem 6.1] (see also the subsequent
remark). An analogous argument, for s = 1 and more general weights, is performed in the
proof of Proposition 1.2.3 in Chapter 1, Subsection 1.2.2.

Arguing as in the proof of Lemma 2.2.9 and as in Paragraphs 2.2.2.1, 2.2.2.2, it is not
difficult to deduce that the above solutions satisfy the energy estimates (2.2.27), (2.2.28),
that they are strong and that their Lpρ norms do not increase in time (to this end, a key role
is played by the comparison estimate (2.3.53)).

Now suppose that, in addition, d > 2s and ρ ∈ L∞(Rd). As a consequence, the frac-
tional Sobolev inequality (2.2.41), and so the fractional Caffarelli-Kohn-Nirenberg inequali-
ties (2.2.40), hold true for γ = 0. Hence, we can repeat the proof of Proposition 2.2.12 to
obtain the following Lp0

ρ –L∞ smoothing effect for any p0 ∈ [1,∞):

‖u(t)‖∞ ≤ K t−α0 ‖u0‖β0
p0,ρ

∀t > 0 , (2.3.57)

where
α0 := d

d(m− 1) + 2sp0
, β0 := 2sp0

d(m− 1) + 2sp0

and K = K(m, ‖ρ‖∞, d, s) > 0. It is then possible to construct solutions to (2.1.1) cor-
responding to any nonnegative datum u0 ∈ L1

ρ(Rd). To this aim, one picks a sequence of
nonnegative data u0n ∈ L1

ρ(Rd) ∩ L∞(Rd) such that u0n → u0 in L1
ρ(Rd) and passes to the

limit in the weak formulation of Definition 2.3.1 as n→∞ by exploiting (2.3.53), the energy
estimate (2.2.27) and the smoothing estimate (2.3.57) for p0 = 1 (see also [159, Theorem
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6.5 and Remark 6.11]). Such solutions are still strong e.g. because the fundamental L1
ρ com-

parison principle (2.3.53) is preserved at the limit. We have therefore proved the existence
result contained in Proposition 2.3.2. As concerns uniqueness, one can reason as follows.
Proposition 2.3.18, in particular, ensures that if u0 ∈ L1

ρ(Rd) ∩ L∞(Rd) then the solution to
(2.1.1) that we constructed above is unique in the class of weak solutions satisfying (2.3.54),
(2.3.55) and (2.3.56). Moreover, any weak solution u(x, t) to (2.1.1), in the sense of Defini-
tion 2.3.1, is such that u(x, t + ε) is a weak solution to (2.1.1), corresponding to the initial
datum u0(x, ε) ∈ L1

ρ(Rd) ∩ L∞(Rd), satisfying (2.3.54), (2.3.55) and (2.3.56), for any ε > 0.
Thanks to these properties, one can then proceed exactly as in the proof of [159, Theorem
6.7]: that is, given two solutions u1 and u2 corresponding to the same u0 ∈ L1

ρ(Rd), in view
of Proposition 2.3.18 and (2.3.53) they satisfy ‖u1(t) − u2(t)‖1,ρ ≤ ‖u1(ε) − u2(ε)‖1,ρ for all
t ≥ ε > 0. Letting ε→ 0 we infer that u1 = u2.

2.3.4.2 Second construction of weak solutions

We describe here another method for constructing weak solutions to problem (2.1.1),
which, under suitable hypotheses, provides us with a minimal solution. Given again a non-
negative initial datum u0 ∈ L1

ρ(Rd) ∩ L∞(Rd), consider the following problem (for notations,
we refer to the discussion at the beginning of Subsection 2.3.2):

Ls(ũmR ) = 0 in ΩR × R+ ,

ũmR = 0 on ΣR × R+ ,

ũmR = umR on ΓR × R+ ,
∂ (ũmR )
∂y2s = ρ

∂uR
∂t

on ΓR × R+ ,

uR = u0 on BR × {t = 0} .

(2.3.58)

Definition 2.3.19. A weak solution to problem (2.3.58) is a pair of nonnegative functions
(uR, ũR) such that:

– uR ∈ C([0,∞); L1
ρ(BR)) ∩ L∞(BR × (τ,∞)) for all τ > 0;

– ũmR ∈ L2
loc((0,∞);Xs

0(ΩR));
– ũmR |ΓR×(0,∞) = umR ;
– for any ψ ∈ C∞c ((ΩR ∪ ΓR)× (0,∞)) there holds

−
∫ ∞

0

∫
BR
uR(x, t)ψt(x, 0, t) ρ(x)dxdt+µs

∫ ∞
0

∫
ΩR
y1−2s〈∇(ũmR ),∇ψ〉(x, y, t) dxdydt = 0 ;

– limt→0 uR(t) = u0|BR in L1
ρ(BR).

Weak sub- and supersolutions to (2.3.58) are meant in agreement with Definition 2.3.19.
We say in addition that (uR, ũR) is a strong solution if (uR)t ∈ L∞((τ,∞); L1

ρ(BR)) for every
τ > 0. By means of the same arguments used in the proof of [61, Theorem 6.2], it is direct
to deduce the next comparison principle:

Proposition 2.3.20. Let ρ ∈ L∞loc(Rd) be nonnegative and such that ρ−1 ∈ L∞loc(Rd). Let
(fR, f̃R) and (gR, g̃R) be a strong subsolution and a strong supersolution, respectively, to prob-
lem (2.3.58). Suppose that fR ≤ gR on BR × {t = 0} and f̃R ≤ g̃R on ΣR × (0,∞). Then,
fR ≤ gR in BR × (0,∞) and f̃R ≤ g̃R in ΩR × (0,∞).

Making use of standard tools (see again [61, 159]), one can prove that for any R > 0
and nonnegative u0 ∈ L1

ρ(Rd) ∩ L∞(Rd) there exists a unique strong solution (uR, ũR) to
problem (2.3.58), in the sense of Definition 2.3.19. Moreover, the family {uR} is monotone
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in R thanks to Proposition 2.3.20 and the limit function u := limR→∞ uR is bounded in
Rd × R+ and satisfies (2.3.54), (2.3.55), (2.3.56). Hence, in view of Proposition 2.3.18, u
necessarily coincides with the solution constructed in Paragraph 2.3.4.1: this in particular
ensures that u ∈ C([0,∞),L1

ρ(Rd)). Again, for general data u0 ∈ L1
ρ(Rd), we can select a

sequence {u0n} ⊂ L1
ρ(Rd)∩L∞(Rd) such that 0 ≤ u0n ≤ u0 and u0n → u0 in L1

ρ(Rd) and pass
to the limit as n → ∞ in the weak formulation of Definition 2.3.1 to get a weak solution
to (2.1.1), which still coincides with the one obtained in Paragraph 2.3.4.1 thanks to the
uniqueness result of Proposition 2.3.2.

Finally, we point out that in [61] and [159] the approximate problems are slightly different
from (2.3.58). Namely, cylinders in the upper plane are used instead of half-balls. Neverthe-
less, this change does not affect the construction of the solution u. In fact the present idea
of using problem (2.3.58) is inspired by [60, Section 3], where the case s = 1/2 and ρ ≡ 1 is
studied.

2.3.4.3 Local weak solutions and very weak solutions

Now let us address the following problem, which is the analogue of (2.3.58) in the whole
upper plane: 

Ls(ũm) = 0 in Rd+1
+ × R+ ,

ũm = um on ∂Rd+1
+ × R+ ,

∂ (ũm)
∂y2s = ρ

∂u

∂t
on ∂Rd+1

+ × R+ ,

u = u0 on Rd × {t = 0} .

(2.3.59)

Definition 2.3.21. A nonnegative function u is a local weak solution to problem (2.3.59)
corresponding to the nonnegative initial datum u0 ∈ L1

ρ(Rd) if, for some nonnegative function
ũ such that

ũm ∈ L2
loc((0,∞);Xs

loc) ∩ L∞(Rd+1
+ × (τ,∞)) ∀τ > 0 ,

there hold:
– u ∈ C([0,∞); L1

ρ(Rd)) ∩ L∞(Rd × (τ,∞)) for all τ > 0;
– ũm|∂Rd+1

+ ×(0,∞) = um;
– for any ψ ∈ C∞c ((Rd+1

+ ∪ ∂Rd+1
+ )× (0,∞)),

−
∫ ∞

0

∫
Rd
u(x, t)ψt(x, 0, t) ρ(x)dxdt+µs

∫ ∞
0

∫
Rd+1

+

y1−2s 〈∇(ũm),∇ψ〉 (x, y, t) dxdydt = 0

(2.3.60)
(in fact ũm is a local extension for um);

– for any ϕ ∈ C∞c (Rd × (0,∞)),

−
∫ ∞

0

∫
Rd
u(x, t)ϕt(x, t) ρ(x)dxdt+

∫ ∞
0

∫
Rd
um(x, t)(−∆)s(ϕ)(x, t) dxdt = 0 ; (2.3.61)

– limt→0 u(t) = u0 in L1
ρ(Rd).

Moreover, we say that u is a local strong solution if, in addition, ut ∈ L∞((τ,∞); L1
ρ,loc(Rd))

for every τ > 0.
We stress that (2.3.61) is related to the so-called very weak formulation of problem (2.1.1),

see Definition 2.3.23 below. For local weak solutions, in general, um 6∈ L2
loc((0,∞); Ḣs(Rd)).

Hence, equivalence between (2.3.60) and (2.3.61) cannot be established.
It is apparent that the criterion of Proposition 2.3.18 is not applicable in order to prove

uniqueness of local weak solutions. However, one can restore the latter by imposing suitable
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extra integrability conditions, as stated in Theorem 2.3.3. Before proving it, we need some
preliminaries. Given a nonnegative f ∈ C∞c (Rd), let h := I2s ∗ f ≥ 0, so that

(−∆)s(h) = f in Rd .

It is straightforward to check that h ∈ C∞(Rd) and

h(x) + |∇h(x)| ≤ K(1 + |x|)−d+2s ∀x ∈ Rd

for some K > 0 (use e.g. Lemma 2.3.12). Now take a cut-off function ξ ∈ C∞c (Rd) such that
0 ≤ ξ ≤ 1 in Rd, ξ ≡ 1 in B1/2 and ξ ≡ 0 in Bc

1. For any R > 0, let

ξR(x) := ξ(x/R) ∀x ∈ Rd . (2.3.62)

We have:

(−∆)s(hξR)(x) = h(x)(−∆)s(ξR)(x) + (−∆)s(h)(x)ξR(x) + B(h, ξR)(x) ∀x ∈ Rd ,

where
B(φ1, φ2)(x) := 2Cd,s

∫
Rd

(φ1(x)− φ1(y))(φ2(x)− φ2(y))
|x− y|d+2s dy ∀x ∈ Rd

and Cd,s is the positive constant appearing in (2.1.2) (see Subsection 2.A.3 for analogous
computations). Lemma 3.1 of [161] in our context reads as follows.

Lemma 2.3.22. Let f ∈ C∞c (Rd), with f ≥ 0, h := I2s ∗ f and ξR be as in (2.3.62). Then,
for any T > 0 and v ∈ L1

(1+|x|)−d+2s(Rd × (0, T )), there holds

lim
R→∞

∫ T

0

∫
Rd
|v(x, t)h(x) (−∆)s(ξR)(x)| dxdt+

∫ T

0

∫
Rd
|v(x, t)B(h, ξR)(x)| dxdt = 0 .

We are now in position to prove Theorem 2.3.3.

Proof of Theorem 2.3.3. Let u be the weak solution to problem (2.1.1) provided by Propo-
sition 2.3.2. Its minimality in the class of solutions described by Definition 2.3.21, namely
local strong solutions, is a consequence of the construction outlined in Paragraph 2.3.4.2 and
the comparison principle given in Proposition 2.3.20: the approximate solutions whose limit
is u, let them be uR or un, are smaller than any local strong solution. As concerns estimate
(2.3.2), we only mention that it can be established by means of the same arguments as in the
proof of [159, Theorem 5.5], combined with the smoothing effect (2.3.57) (see also [159, Re-
mark 6.11]). We point out that the approximate solutions uR used there are those obtained
by solving (2.3.58) in cylinders CR rather than in half-balls ΩR. Nevertheless, by compari-
son, the solution to the Dirichlet problem in ΩR is below the one in CR, and this is clearly
enough to get the upper bound (2.3.2). If u0 ∈ L∞(Rd) no smoothing effect is needed, so
that the validity of (2.3.2) down to t0 = 0 is ensured by the fact that u ∈ L∞(Rd ×R+) (see
again [159, Theorem 5.5]).

In order to prove our uniqueness results, let us first assume that u0 ∈ L1
ρ(Rd) ∩ L∞(Rd).

In this case, we have just shown that∫ T

0
um(x, τ) dτ ≤ K(I2s ∗ ρ)(x)

for all T > 0. In view of Lemma 2.3.12, it is straightforward to check that I2s ∗ ρ ∈
L1

(1+|x|)−d+2s(Rd) provided d > 4s and γ > 4s, whence um ∈ L1
(1+|x|)−d+2s(Rd×(0, T )) for all T >
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0 and such values of the parameters. Moreover, since u ∈ L1
ρ(Rd×(0, T ))∩L∞(Rd×(0, T )) and

so um ∈ L1
ρ(Rd× (0, T )), if γ ∈ (2s, d− 2s] we have again that um ∈ L1

(1+|x|)−d+2s(Rd× (0, T )).
Now take another local strong solution u to (2.1.1) corresponding to the same u0 ∈ L1

ρ(Rd)∩
L∞(Rd), which for the moment we assume to be bounded as well in the whole of Rd × R+.
Because both u and u belong to

C([0,∞); L1
ρ(Rd)) ∩ L∞(Rd × R+) ,

by exploiting (2.3.61) it is direct to see that for any ϕ ∈ C∞c (Rd × [0,∞)) there holds

−
∫ ∞

0

∫
Rd
u(x, t)ϕt(x, t) ρ(x)dxdt+

∫ ∞
0

∫
Rd
um(x, t)(−∆)s(ϕ)(x, t) dxdt

=−
∫ ∞

0

∫
Rd
u(x, t)ϕt(x, t) ρ(x)dxdt+

∫ ∞
0

∫
Rd
um(x, t)(−∆)s(ϕ)(x, t) dxdt

=
∫
Rd
u0(x)ϕ(x, 0) ρ(x)dx .

(2.3.63)

Let η ∈ C∞([0,+∞)) be such that
η(0) = 1 , η ≡ 0 in [1,+∞) , 0 < η < 1 in (0, 1) , η′ ≤ 0 in [0,+∞) .

For any T > 0, set
ηT (t) := η(t/T ) ∀t ≥ 0 .

Take the test function
ϕ(x, t) = h(x)ξR(x)ηT (t) ∀(x, t) ∈ Rd × [0,+∞) ,

where h and ξR are defined above, and plug it in the weak formulation (2.3.63) solved by
u− u. We get:∫ T

0

∫
Rd
f(x)ξR(x)ηT (t) [um(x, t)− um(x, t)] dxdt

=
∫ T

0

∫
Rd
h(x)ξR(x)η′T (t) [u(x, t)− u(x, t)] ρ(x)dxdt

−
∫ T

0

∫
Rd

[h(x)(−∆)s(ξR)(x) + B(h, ξR)(x)] ηT (t) [um(x, t)− um(x, t)] dxdt .

(2.3.64)

Since u ≤ u and η′T ≤ 0, from (2.3.64) we find that

0 ≤
∫ T

0

∫
Rd
f(x)ξR(x)ηT (t) [um(x, t)− um(x, t)] dxdt

≤
∫ T

0

∫
Rd
|h(x)(−∆)s(ξR)(x) + B(h, ξR)(x)| [um(x, t) + um(x, t)] dxdt .

(2.3.65)

Letting R→∞ in (2.3.65) and applying Lemma 2.3.22 with v = um+um, we then infer that
u = u in the region supp f × (0, T ). Thanks to the arbitrariness of f and T , this means that
u = u in the whole of Rd × R+.

We finally need to get rid of the assumption u0 ∈ L∞(Rd). First notice that, for any
t0 > 0, u and u, restricted to Rd × (t0,∞), are bounded local strong solutions with initial
data u(t0) ∈ L1

ρ(Rd)∩L∞(Rd) and u(t0) ∈ L1
ρ(Rd)∩L∞(Rd), respectively. Moreover, um, um ∈

L1
(1+|x|)−d+2s(Rd × (t0, T )) for all T > t0. Hence, in view of the uniqueness result we proved

above, they both coincide with the corresponding minimal local strong solutions having the
same initial data. But minimal solutions are, in fact, the ones constructed in Paragraphs
2.3.4.1 and 2.3.4.2, for which, in particular, the L1

ρ comparison principle (2.3.53) holds true.
As a consequence, ‖u(t) − u(t)‖1,ρ ≤ ‖u(t0) − u(t0)‖1,ρ for all t > t0 > 0. The conclusion
follows by letting t0 → 0 and recalling that u, u ∈ C([0,∞); L1

ρ(Rd)).
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Consider the next definition of very weak solution to problem (2.1.1).

Definition 2.3.23. A nonnegative function u ∈ L∞(Rd × R+) is a very weak solution to
problem (2.1.1) corresponding to the nonnegative initial datum u0 ∈ L∞(Rd) if, for any
ϕ ∈ C∞c (Rd × [0,∞)), there holds

−
∫ ∞

0

∫
Rd
u(x, t)ϕt(x, t) ρ(x)dxdt+

∫ ∞
0

∫
Rd
um(x, t)(−∆)s(ϕ)(x, t) dxdt

=
∫
Rd
u0(x)ϕ(x, 0) ρ(x)dx .

It is plain that any bounded weak solution to (2.1.1) (according to Definition 2.3.1) is also
a very weak solution in the sense of Definition 2.3.23.

Remark 2.3.24. As a byproduct of the method of proof of the uniqueness result in Theorem
2.3.3, it turns out that if u1 and u2 are ordered very weak solutions to problem to (2.1.1)
(i.e. u1 ≤ u2 or u2 ≤ u1 in Rd × R+) such that um1 , um2 ∈ L1

(1+|x|)−d+2s(Rd × (0, T )) for all
T > 0, then u1 = u2.

2.A Self-adjointness of a weighted fractional Laplacian operator

This appendix is devoted to the analysis of the operator formally defined as ρ−1(−∆)s in
Rd (s ∈ (0, 1), d ≥ 1), where ρ(x) is a weight which behaves approximately as a power of |x|,
both as x→ 0 and as |x| → ∞.

2.A.1 Elementary scaling properties of fractional Laplacians

We omit the proofs of the first two lemmas, since they follow by exploiting the same
strategy as [35, Lemma 2.1].

Lemma 2.A.1. The fractional Laplacian (−∆)s(φ)(x) of any φ ∈ D(Rd) is a regular function
which decays (together with its derivatives) at least like |x|−d−2s as |x| → ∞.

Lemma 2.A.2. For any φ ∈ D(Rd), the function

ls(φ)(x) :=
∫
Rd

(φ(x)− φ(y))2

|x− y|d+2s dy ∀x ∈ Rd

is regular and decays (together with its derivatives) at least like |x|−d−2s as |x| → ∞.

Lemma 2.A.3. For any R > 0, let ξR be the cut-off function

ξR(x) := ξ(x/R) ∀x ∈ Rd ,

where ξ is a positive, regular function such that ‖ξ‖∞ = 1, ξ ≡ 1 in B1 and ξ ≡ 0 in Bc
2.

Then, (−∆)s(ξR) and ls(ξR) enjoy the following scaling property:

(−∆)s(ξR)(x) = R−2s (−∆)s(ξ)(x/R) , ls(ξR)(x) = R−2s ls(ξ)(x/R) ∀x ∈ Rd . (2.A.1)

Proof. We only prove the result for ls(ξR), since the proof for (−∆)s(ξR) is analogous. Letting
ỹ = y/R, one has:

ls(ξR)(x) =
∫
Rd

(ξR(x)− ξR(y))2

|x− y|d+2s dy = R−2s
∫
Rd

(ξ(x/R)− ξ(ỹ))2

|x/R− ỹ|d+2s dỹ = R−2s ls(ξ)(x/R) .
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Lemma 2.A.4. Let ξ and ξR be as in Lemma 2.A.3. Let q ∈ [1,∞) and γ ∈ [0, d + 2q′s).
Then the norms

‖|x|γ(−∆)s(ξ)‖q,−γ , ‖|x|γls(ξ)‖q,−γ (2.A.2)
are finite. If in addition γ ∈ [0, d+ 2s], then also the norms

‖|x|γ(−∆)s(ξ)‖∞ , ‖|x|γls(ξ)‖∞ (2.A.3)

are finite. Moreover,

‖|x|γ(−∆)s (ξR)‖q,−γ =
‖|x|γ(−∆)s(ξ)‖q,−γ

R2s−γ− d−γ
q

, (2.A.4)

‖|x|γ(−∆)s (ξR)‖∞ = ‖|x|
γ(−∆)s(ξ)‖∞
R2s−γ (2.A.5)

and
‖|x|γls (ξR)‖q,−γ =

‖|x|γls(ξ)‖q,−γ
R2s−γ− d−γ

q

, (2.A.6)

‖|x|γls (ξR)‖∞ = ‖|x|
γls(ξ)‖∞
R2s−γ . (2.A.7)

Proof. The finiteness of (2.A.2) and (2.A.3) is ensured by the decay properties of (−∆)s(ξ)(x)
and ls(ξ)(x) recalled in Lemmas 2.A.1 and 2.A.2. Similarly, identities (2.A.4)–(2.A.7) follow
from the scaling property (2.A.1).

2.A.2 Density of mollifications in weighted Lebesgue spaces

Hereafter, we shall assume that ρ is a positive, measurable function such that

c|x|λ ≤ ρ(x) ≤ C|x|λ a.e. in B1 and c|x|Λ ≤ ρ(x) ≤ C|x|Λ a.e. in Bc
1 (2.A.8)

for some positive constants c < C and exponents λ,Λ ∈ R.

Theorem 2.A.5. Let p ∈ (1,∞). Assume that (2.A.8) holds true for some λ ∈ (−d, (p− 1)d)
and γ ∈ R. Let f ∈ Lpρ(Rd) and consider the standard mollification

fε(x) :=
∫
Rd
ηε(x− y)f(y) dy ∀x ∈ Rd , (2.A.9)

where
ηε(x) := ε−d η(x/ε) ∀x ∈ Rd , ∀ε > 0 ,

η being a regular nonnegative function, supported in B1 and such that
∫
Rd η(x)dx = 1. Then,

fε ∈ C∞(Rd) ∩ Lpρ(Rd) and
lim
ε→0
‖fε − f‖p,ρ = 0 . (2.A.10)

Proof. For simplicity, we shall give the full proof only in the simpler case ρ(x) = |x|λ. Minor
modifications are required to deal with a more general weight as in the statement. In order
to give sense to (2.A.9) and to prove that fε ∈ C∞(Rd), we first need to establish that
f ∈ L1

loc(Rd). To this end, by means of Hölder’s inequality, for any R > 0 we get:

∫
BR
|f(y)| dy ≤

(∫
BR
|y|−

λ
p−1 dy

) p−1
p
(∫

BR
|f(y)|p |y|λdy

) 1
p

≤ |Sd−1|
p−1
p R

d(p−1)−λ
p(

d− λ
p−1

) p−1
p

‖f‖p,λ ,

(2.A.11)
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where Sd−1 is the unitary (d − 1)-dimensional sphere. The validity of (2.A.10) is in fact
implied by the validity of

‖fε‖p,λ ≤ K ‖f‖p,λ ∀f ∈ Lpλ(Rd) (2.A.12)

for a suitable positive constant K independent of ε. Indeed, once we have (2.A.12), we can
proceed as follows. First of all, we pick a sequence of functions {fn} which are compactly
supported in Rd \ {0} and such that

lim
n→∞

‖fn − f‖p,λ = 0 . (2.A.13)

This is always possible: for any given n ∈ N, one considers the truncated functions

fn(x) :=

f(x) if 1
n
≤ |x| ≤ n ,

0 elsewhere .

It is plain that each fn is by definition compactly supported in Rd\{0} and belongs to Lp(Rd),
and that the sequence {fn} converges to f in Lpλ(Rd) as n → ∞. By standard results (see
e.g. [1, Chapters 2, 3] or [91, Appendix C.4]) we know that, for any n ∈ N, the mollification
(fn)ε converges to fn in Lp(Rd). Since (fn)ε is eventually supported in B2n ∩ Bc

1/2n and the
weight |x|λ is equivalent to 1 in such region, we deduce that

lim
ε→0
‖(fn)ε − fn‖p,λ = 0 . (2.A.14)

Using the triangular inequality, the linearity of the mollification operator and (2.A.12), we
get:

‖fε − f‖p,λ ≤ (K + 1) ‖fn − f‖p,λ + ‖(fn)ε − fn‖p,λ . (2.A.15)
Thanks to (2.A.13), for any given δ > 0 we can pick nδ so large that ‖fnδ − f‖p,λ ≤ δ. Letting
ε→ 0 in (2.A.15) evaluated at n = nδ and using (2.A.14), we obtain:

lim sup
ε→0

‖fε − f‖p,λ ≤ (K + 1) δ .

The arbitrariness of δ entails (2.A.10). We are then left with proving the validity of (2.A.12).
To this aim, let us first observe that

‖fε‖pp,λ =
∫
Rd
|fε(x)|p |x|λdx =

∫
B2ε
|fε(x)|p |x|λdx+

∫
Rd\B2ε

|fε(x)|p |x|λdx . (2.A.16)

We shall estimate the two integrals in the r.h.s. of (2.A.16) separately. As for the first one,
we have: ∫

B2ε
|fε(x)|p |x|λdx ≤ |Sd−1|

2d+λεd+λ

d+ λ
‖fε‖pL∞(B2ε) , (2.A.17)

where, in view of (2.A.9) and (2.A.11) (the latter evaluated at R = 3ε),

‖fε‖L∞(B2ε) ≤
‖η‖∞
εd

∫
B3ε
|f(y)| dy ≤ 3

d(p−1)−λ
p |Sd−1|

p−1
p ‖η‖∞

ε
d+λ
p

(
d− λ

p−1

) p−1
p

‖f‖p,λ . (2.A.18)

Combining (2.A.17) and (2.A.18) we obtain∫
B2ε
|fε(x)|p |x|λdx ≤ 2d+λ 3d(p−1)−λ |Sd−1|p ‖η‖p∞

(d+ λ)
(
d− λ

p−1

)p−1 ‖f‖pp,λ . (2.A.19)
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Now we need to estimate the second integral in the r.h.s. of (2.A.16). We have:∫
Rd\B2ε

|fε(x)|p |x|λdx =
∫
Rd\B2ε

∣∣∣∣∫
Rd
ηε(x− y)f(y) dy

∣∣∣∣p |x|λdx
≤
∫
Rd\B2ε

(∫
Rd
ηε(x− y) |f(y)|p dy

)
|x|λdx

=
∫
Rd
|f(y)|p

(∫
Rd\B2ε

ηε(x− y) |x|λdx
)

dy ,

(2.A.20)

where we exploited Hölder’s inequality, at fixed x, w.r.t. the probability measure ηε(x−y)dy.
Thanks to (2.A.20), we are only left with showing that there exists a positive constant K ′,
independent of ε, such that∫

Rd\B2ε
ηε(x− y) |x|λdx ≤ K ′ |y|λ ∀y ∈ Rd . (2.A.21)

First of all observe that∫
Rd\B2ε

ηε(x− y) |x|λdx ≤ ‖η‖∞
∫
Rd\B2ε

χ{|x−y|≤ε} |x|λdx
εd

. (2.A.22)

It is apparent that for |y| < ε the integral in the r.h.s. of (2.A.22) is identically zero, while
for |y| > 2ε, we have:∫

Rd\B2ε
χ{|x−y|≤ε} |x|λdx

εd
≤
∫
Bε(y) |x|λ dx

εd
≤ |Sd−1|

d
max

{
(|y|+ ε)λ, (|y| − ε)λ

}
≤ |Sd−1|

d
max

{
3λ
2λ |y|

λ,
1
2λ |y|

λ

}

= |Sd−1|
d2λ max

{
3λ, 1

}
|y|λ .

(2.A.23)

Hence, it remains to estimate the r.h.s. of (2.A.22) as y varies in the set {ε ≤ |y| ≤ 2ε}. To
this end, notice that in such region the following inequality holds true:∫

Rd\B2ε
χ{|x−y|≤ε} |x|λdx

εd
≤
∫
B|y|+ε\B2ε

|x|λ dx
εd

= |Sd−1|
d+ λ

(|y|+ ε)d+λ − 2d+λεd+λ

εd
. (2.A.24)

We can finally show that there exists a positive constant M , independent of ε, such that
(|y|+ ε)d+λ − 2d+λεd+λ

εd
≤M |y|λ ∀y ∈ B2ε ∩Bc

ε . (2.A.25)

In fact, performing the change of variable z = |y|/ε, we infer that the validity of (2.A.25) is
equivalent to the validity of

(z + 1)d+λ − 2d+λ

zλ
≤M ∀z ∈ [1, 2] .

Therefore, upon setting

M := max
z∈[1,2]

(z + 1)d+λ − 2d+λ

zλ

and gathering (2.A.22)–(2.A.25), we deduce that (2.A.21) actually holds true for

K ′ = |Sd−1| ‖η‖∞max

max
{

3λ, 1
}

d2λ ,
M

d+ λ

 ,
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whence, recalling (2.A.19) and (2.A.20), there follows (2.A.12) with the choice

C =

2d+λ 3d(p−1)−λ |Sd−1|p ‖η‖p∞
(d+ λ)

(
d− λ

p−1

)p−1 + |Sd−1| ‖η‖∞max

max
{

3λ, 1
}

d2λ ,
M

d+ λ




1
p

.

If ρ is a general weight as in the statement, one can split f in the sum f = f1 + f2, with
f1 := fχB1 and f2 := fχBc1 . By linearity, fε = (f1)ε + (f2)ε; it is therefore enough to show
that (2.A.10) holds true for f1 and f2 separately. As concerns f1, since the latter and its
mollifications are (eventually) supported e.g. in B3/2, one can modify ρ(x) so that it behaves
like |x|λ also in Bc

3/2 and then apply the first part of the theorem. Similarly, because f2 and
its mollifications are eventually supported in Bc

1/2, the validity of the analogue of (2.A.12)
(and so of (2.A.10)) is now implied by the validity of (2.A.21) in the region {|y| > 1/2},
which holds for all λ = Λ ∈ R in view of (2.A.23).

Remark 2.A.6. Notice that the above assumption λ ∈ (−d, (p− 1)d) is necessary. In fact,
consider first the following function:

g(x) :=
χB1/2

|x|d log |x| .

It is apparent that g 6∈ L1
loc(Rd). Moreover, its mollification gε is equal to −∞ in a set of

positive measure, for all ε > 0. However, g belongs to Lpλ(Rd) for all λ ≥ (p− 1)d.
As concerns the bound from below over λ, consider the function

h(x) := χB1|x|
−λ
p ∈ Lpλ(Rd) .

For all ε > 0 small enough, the mollification hε is strictly positive in a neighbourhood of 0.
In particular, if λ ≤ −d then hε 6∈ Lpλ(Rd), so that (2.A.10) (for f = h) cannot hold.

2.A.3 Self-adjointness and integration by parts formulas

For a function f belonging to L1
loc(Rd)∩L1

−d−2s(Bc
1), a property that any element of Lpρ(Rd)

enjoys if ρ satisfies (2.A.8) with

λ < (p− 1)d and Λ > −d− 2ps ,

the action
φ −→

∫
Rd
f(x)(−∆)s(φ)(x) dx ∀φ ∈ D(Rd) (2.A.26)

is actually an element of D′(Rd). This is an immediate consequence of the fact that the
notion of convergence of a sequence {φn} ⊂ D(Rd) to φ in D(Rd) implies, in particular, the
pointwise convergence of {(−∆)s(φn)} to (−∆)s(φ) and the validity of the bound

|(−∆)s(φn)(x)| ≤ C (1 + |x|)−d−2s ∀x ∈ Rd (2.A.27)

for a suitable positive constant C independent of n (recall Lemma 2.A.1). The integrability
properties of f and (2.A.27) then permit us to pass to the limit in (2.A.26) (with φ = φn) as
n→∞.

In the next lemma we show that, for regular functions having suitable integrability prop-
erties at infinity, the distributional fractional Laplacian and the classical one coincide.
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Lemma 2.A.7. Let v ∈ C∞(Rd) ∩ LpΛ(Bc
1), with p ∈ (1,∞) and Λ ≥ −d − ps. Then the

classical fractional Laplacian of v, defined as

(−∆)s(v)(x) := Cd,s p.v.
∫
Rd

v(x)− v(y)
|x− y|d+2s dy ∀x ∈ Rd , (2.A.28)

is a continuous function which coincides with its distributional fractional Laplacian, in the
sense that∫

Rd
v(x)(−∆)s(φ)(x) dx =

∫
Rd

(−∆)s(v)(x)φ(x) dx ∀φ ∈ D(Rd) . (2.A.29)

Proof. To begin with, we prove that formula (2.A.28) provides us with a locally bounded
function of x. To this end, fix R > 0 and let x vary in BR. It is direct to see that the integral

p.v.
∫
B2R

v(x)− v(y)
|x− y|d+2s dy ∀x ∈ BR

is bounded in modulus by a constant (depending on R) times ‖∇2v‖L∞(B2R). Moreover, still
for x varying in BR, we have:∫

Bc2R

|v(x)− v(y)|
|x− y|d+2s dy ≤2d+2s ‖v‖L∞(BR)

∫
Bc2R

|y|−d−2s dy + 2d+2s
∫
Bc2R

|v(y)| |y|−d−2sdy

≤2d+2s ‖v‖L∞(BR)

∫
Bc2R

|y|−d−2s dy

+ 2d+2s
(∫

Bc2R

|v(y)|p |y|Λdy
) 1
p
(∫

Bc2R

|y|−
p(d+2s)+Λ

p−1 dy
) 1
p′

.

Note that the r.h.s. does not depend on x ∈ BR and is finite since v ∈ C∞(Rd) ∩ LpΛ(Bc
1)

with Λ ≥ −d− ps > −d− 2ps. We have therefore proved that (−∆)s(v) is locally bounded.
Continuity follows by similar arguments, which we omit.

Now we aim at proving that (−∆)s(v) is in fact the distributional fractional Laplacian of
v, namely the validity of (2.A.29). Let us first consider the truncated function ξRv ∈ D(Rd)
(ξR is as in Lemma 2.A.3) and observe that, for the latter, the identity∫

Rd
ξR(x)v(x)(−∆)s(φ)(x) dx =

∫
Rd

(−∆)s(ξRv)(x)φ(x) dx ∀φ ∈ D(Rd) (2.A.30)

holds true (see e.g. [69, Section 3]). Using the product formula

(−∆)s (ξRv) (x) =ξR(x)(−∆)s(v)(x) + (−∆)s(ξR)(x)v(x)

+ 2Cd,s
∫
Rd

(v(x)− v(y)) (ξR(x)− ξR(y))
|x− y|d+2s dy

(2.A.31)

and plugging it in (2.A.30), we get:∫
Rd
ξR(x)v(x)(−∆)s(φ)(x) dx

=
∫
Rd
φ(x)ξR(x)(−∆)s(v)(x) dx+

∫
Rd
φ(x)v(x)(−∆)s(ξR)(x) dx

+ 2Cd,s
∫
Rd

∫
Rd
φ(x)(v(x)− v(y)) (ξR(x)− ξR(y))

|x− y|d+2s dxdy .

(2.A.32)

Letting R→∞, the l.h.s. and the first term in the r.h.s. of (2.A.32) make no problem since v
is locally regular and integrable at infinity with respect to the weight |x|−d−2s (recall again the
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hypothesis on Λ), while (−∆)s(v) is locally bounded. As concerns the second term, taking
advantage of (2.A.5) (with γ = 0) we obtain:∫

Rd
|φ(x)v(x)(−∆)s(ξR)(x)| dx ≤ ‖(−∆)s(ξ)‖∞

R2s

∫
Rd
|φ(x)v(x)| dx . (2.A.33)

It is then apparent that (2.A.33) vanishes as R→∞. In order to handle the last term in the
r.h.s. of (2.A.32), we have to work a bit more. First of all let us introduce, for any q ∈ (1,∞),
the following operator:

lq,s(φ)(x) :=
∫
Rd

|φ(x)− φ(y)|q

|x− y|d+qs dy ∀x ∈ Rd

(note that l2,s = ls). As in Lemmas 2.A.2–2.A.4, it is easy to show that lq,s(ξ)(x) is a
continuous function which decays at least like |x|−d−qs as |x| → ∞ and satisfies the scaling
identities

lq,s (ξR) (x) = R−qs lq,s(ξ)(x/R) , ‖lq,s (ξR)‖∞ = R−qs ‖lq,s(ξ)‖∞ . (2.A.34)

Proceeding in similar way as above, we can prove that also lp,s(v)(x) is a locally bounded
(actually continuous) function. In fact, for all R > 0 and x ∈ BR, the integral∫

B2R

|v(x)− v(y)|p

|x− y|d+ps dy

is bounded in modulus by a constant (depending on R) times ‖∇v‖pL∞(B2R). Moreover,
∫
Bc2R

|v(x)− v(y)|p

|x− y|d+ps dy ≤ 2d−1+p(s+1) ‖v‖pL∞(BR)

∫
Bc2R

|y|−d−ps dy + 2d−1+p(s+1)
∫
Bc2R

|v(y)|p

|y|d+ps dy ,

and the r.h.s. is finite independently of x ∈ BR (here we exploit the assumption Λ ≥ −d−ps).
Now observe that, by writing

(v(x)− v(y)) (ξR(x)− ξR(y))
|x− y|d+2s = (v(x)− v(y))

|x− y|
d+ps
p

(ξR(x)− ξR(y))

|x− y|
d+p′s
p′

, p′ := p

p− 1 ,

applying Hölder’s inequality w.r.t. dy and using (2.A.34), we get:∫
Rd

∫
Rd

∣∣∣∣∣φ(x)(v(x)− v(y)) (ξR(x)− ξR(y))
|x− y|d+2s

∣∣∣∣∣ dxdy ≤
∫
Rd
|φ(x)| [lp,s(v)(x)]

1
p [lp′,s(ξR)(x)]

1
p′ dx

≤R−s‖lp′,s(ξ)‖
1
p′
∞

∫
Rd
|φ(x)| [lp,s(v)(x)]

1
p dx .

Letting R→∞, we then deduce that also the last term in the r.h.s. of (2.A.32) vanishes, so
that (2.A.29) is finally proved.

In the following, we shall mainly focus on weights ρ complying with (2.A.8) for nonpositive
λ and Λ, though some of the results below can be extended to suitable positive exponents.
Hence, for greater readability, we shall reformulate (2.A.8) as follows:

c|x|−γ0 ≤ ρ(x) ≤ C|x|−γ0 a.e. in B1 and c|x|−γ ≤ ρ(x) ≤ C|x|−γ a.e. in Bc
1 (2.A.35)

for some positive constants c < C and nonnegative exponents γ0, γ.
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Definition 2.A.8. Let p ∈ (1,∞) and p′ := p/(p − 1) be its conjugate exponent. Suppose
that ρ satisfies (2.A.35) for some γ0 ∈ [0, d) and γ ∈ [0, d+ps]. We denote as Xp,s,ρ the space
of all functions v ∈ Lpρ(Rd) such that (−∆)s(v) (as a distribution) belongs to Lp

′

ρ′(Rd), where
ρ′ := ρ−(p′−1). In the special case p = 2, we use the simplified notation X2,s,ρ =: Xs,ρ.

According to the above definition, a function v ∈ Lpρ(Rd) belongs to Xp,s,ρ if and only if
there exists an element

V ∈ Lp
′

ρ′(Rd)
such that ∫

Rd
v(x)(−∆)s(φ)(x) dx =

∫
Rd
V(x)φ(x) dx ∀φ ∈ D(Rd) . (2.A.36)

Notice that the assumptions γ0 ∈ [0, d) and γ ∈ [0, d + ps] ensure that both the left and
the right-hand side of (2.A.36) are actually distributions (v ∈ L1

loc(Rd) ∩ L1
−d−2s(Bc

1) and
V ∈ L1

loc(Rd)).
Lemma 2.A.9. Let p, ρ, ρ′ and Xp,s,ρ be as in Definition 2.A.8. Then the following properties
hold true:
(a) D(Rd) ⊂ Xp,s,ρ;
(b) Xp,s,ρ, endowed with the norm

‖v‖Xp,s,ρ :=
(
‖v‖2

p,ρ + ‖(−∆)s(v)‖2
p′,ρ′

) 1
2 ∀v ∈ Xp,s,ρ ,

is a Banach space (Hilbert if p = 2);
(c) the subspace C∞(Rd) ∩Xp,s,ρ is dense in Xp,s,ρ;
(d) the map B : Xp,s,ρ ×Xp,s,ρ 7→ R, defined as

B(v, w) :=
∫
Rd

(−∆)s(v)(x)w(x) dx ∀v, w ∈ Xp,s,ρ ,

is a continuous bilinear form on Xp,s,ρ.

Proof. In order to prove (a) it is enough to check that, for any φ ∈ D(Rd), we have φ ∈ Lpρ(Rd)
and (−∆)s(φ) ∈ Lp

′

ρ′(Rd). But this is straightforward: ρ is locally integrable since γ0 ∈ [0, d)
and (−∆)s(φ)(x) is a regular function decaying at least like |x|−d−2s as |x| → ∞, which in
particular implies that it belongs to Lp

′

ρ′(Rd) (recall that γ ∈ [0, d+ ps]).
As for (b), take a Cauchy sequence {vn} ⊂ Xp,s,ρ. By the definition of ‖ · ‖Xp,s,ρ and by

the completeness of Lpρ(Rd) and Lp
′

ρ′(Rd), there exist v ∈ Lpρ(Rd) and V ∈ Lp
′

ρ′(Rd) such that

lim
n→∞

(
‖vn − v‖2

p,ρ + ‖(−∆)s(vn)− V‖2
p′,ρ′

) 1
2 = 0 .

In order to infer that Xp,s,ρ is complete we need to show that V = (−∆)s(v), which is true if
we can pass to the limit in the identity∫

Rd
vn(x)(−∆)s(φ)(x) dx =

∫
Rd

(−∆)s(vn)(x)φ(x) dx ∀φ ∈ D(Rd) .

This is indeed the case because (−∆)s(φ) ∈ Lp
′

ρ′(Rd) is equivalent to ρ−1(−∆)s(φ) ∈ Lp′ρ (Rd),
and the same holds for (−∆)s(vn). The fact that X2,s,ρ = Xs,ρ is Hilbert just follows upon
defining the scalar product

〈v, w〉Xs,ρ := 〈v, w〉L2
ρ

+ 〈(−∆)s(v), (−∆)s(w)〉L2
ρ′
∀v, w ∈ Xs,ρ .
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Now let us prove (c). We shall exploit the crucial result provided by Theorem 2.A.5. Thanks
to the latter, given any v ∈ Xp,s,ρ, its mollification vε belongs to C∞(Rd) ∩ Lpρ(Rd) and
converges to v in Lpρ(Rd). We claim that the fractional Laplacian of vε, which is well defined
both in the classical and in the distributional sense in view of Lemma 2.A.7, is in fact the
mollification of (−∆)s(v), that is

(−∆)s(vε) = [(−∆)s(v)]ε . (2.A.37)

This is straightforward to prove, since for any φ ∈ D(Rd) the following identities hold true:∫
Rd

(−∆)s(φ)(x)vε(x) dx =
∫
Rd

(−∆)s(φ)(x)
(∫

Rd
ηε(x− y)v(y) dy

)
dx

=
∫
Rd
ηε(z)

(∫
Rd

(−∆)s(φ)(z + y)v(y) dy
)

dz

=
∫
Rd
ηε(z)

(∫
Rd
φ(z + y)(−∆)s(v)(y) dy

)
dz

=
∫
Rd
φ(x)

(∫
Rd
ηε(x− y)(−∆)s(v)(y) dy

)
dx

=
∫
Rd
φ(x) [(−∆)s(v)]ε (x) dx .

The changes of order of integration above are justified since the integrals∫
Rd

∫
Rd
|(−∆)s(φ)(x)ηε(x− y)v(y)| dxdy and

∫
Rd

∫
Rd
|φ(x)ηε(x− y)(−∆)s(v)(y)| dxdy

are finite, a consequence of the fact that |v|ε, φ ∈ Lpρ(Rd) and (−∆)s(φ), |(−∆)s(v)|ε ∈
Lp
′

ρ′(Rd). Having established (2.A.37) and recalling again Theorem 2.A.5, we therefore deduce
that vε ∈ C∞(Rd) ∩Xp,s,ρ and

lim
ε→0
‖vε − v‖Xp,s,ρ = lim

ε→0

(
‖vε − v‖2

p,ρ + ‖[(−∆)s(v)]ε − (−∆)s(v)‖2
p′,ρ′

) 1
2 = 0 ,

which proves (c).
Finally, the only nontrivial point in (d) is the continuity of B, which follows by a direct

application of Hölder’s inequality:

|B(v, w)| ≤
∫
Rd
|(−∆)s(v)(x)w(x)| dx

≤
(∫

Rd
|(−∆)s(v)(x)|p

′
ρ′(x)dx

) 1
p′
(∫

Rd
|w(x)|p ρ(x)dx

) 1
p

= ‖(−∆)s(v)‖p′,ρ′ ‖w‖p,ρ
≤‖v‖Xp,s,ρ ‖w‖Xp,s,ρ

for all v, w ∈ Xp,s,ρ.

Lemma 2.A.10. Let p ∈ [2,∞). Suppose that ρ satisfies (2.A.35) for some γ0 ∈ [0, d) and
γ ∈ [0, d + 2s] if p = 2, γ ∈ [0, d + ps) if p > 2. Let ls, ξ and ξR be as in Lemmas 2.A.2,
2.A.3 and v1, v2 ∈ C∞(Rd) ∩Xp,s,ρ. Then the integral

IR (vi) :=
∫
Rd
ξ2
R(x)

(∫
Rd

(vi(x)− vi(y))2

|x− y|d+2s dy
)

dx i = 1, 2
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is finite for all R > 0. Moreover, the following estimates hold true:∫
Rd
|v1(x)v2(x)ξR(x)(−∆)s(ξR)(x)| dx ≤ K ‖v1‖p,ρ ‖v2‖p,ρ

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

)
,

(2.A.38)∫
Rd
|v1(y)v2(y)|

(∫
Rd

(ξR(x)− ξR(y))2

|x− y|d+2s dx
)

dy ≤ K ‖v1‖p,ρ ‖v2‖p,ρ
(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

)
,

(2.A.39)∫
Rd

∫
Rd

∣∣∣∣∣ξR(x)v1(x)(v2(x)− v2(y)) (ξR(x)− ξR(y))
|x− y|d+2s

∣∣∣∣∣ dxdy

≤K
1
2 ‖v1‖p,ρ [IR(v2)]

1
2

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

) 1
2
,

(2.A.40)

∫
Rd

∫
Rd

∣∣∣∣∣ξR(x)v1(y)(v2(x)− v2(y)) (ξR(x)− ξR(y))
|x− y|d+2s

∣∣∣∣∣ dxdy

≤K
1
2 ‖v1‖p,ρ [IR(v2)]

1
2

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

) 1
2
,

(2.A.41)

where K = K(d, s, p, γ0, γ, c, ξ) is a suitable positive constant.

Proof. In order to prove that IR(vi) is finite for any R > 0 note that, since ξR is supported
in B2R, it is enough to show that the function

hi(x) :=
∫
Rd

(vi(x)− vi(y))2

|x− y|d+2s dy

is bounded as x varies in B2R. We have:
∫
B4R

(vi(x)− vi(y))2

|x− y|d+2s dy ≤‖∇vi‖2
L∞(B4R)

∫
B4R
|x− y|−d+2(1−s) dy

≤‖∇vi‖2
L∞(B4R)

∫
B6R
|z|−d+2(1−s) dz

and∫
Bc4R

(vi(x)− vi(y))2

|x− y|d+2s dy ≤2d+2s
∫
Bc4R

(vi(x)− vi(y))2

|y|d+2s dy

≤2d+2s+1
(
‖vi‖2

L∞(B2R)

∫
Bc4R

|y|−d−2s dy +
∫
Bc4R

v2
i (y)
|y|d+2s dy

) (2.A.42)

for all x ∈ B2R. As concerns the last term in the r.h.s. of (2.A.42), if p = 2 and γ ∈ (0, d+2s]
its finiteness is trivial; if instead p > 2, by means of Hölder’s inequality we obtain

∫
Bc4R

v2
i (y)
|y|d+2s dy ≤

(∫
Bc4R

|vi(y)|p

|y|γ
dy
) 2
p
(∫

Bc4R

|y|−
p(d+2s)−2γ

p−2 dy
) p−2

p

,

so that the same holds true provided γ ∈ [0, d + ps). We have therefore shown that hi is
locally bounded, whence the finiteness of IR(vi).
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Now let us deal with estimates (2.A.38)–(2.A.41). Recalling that ‖ξ‖∞ = 1, using (2.A.4)
with q = p/(p− 2), (2.A.5) with γ = 0 and exploiting Hölder’s (with three factors), we find:∫

Rd
|v1(x)v2(x)ξR(x)(−∆)s(ξR)(x)| dx

=
∫
B1
|v1(x)v2(x)| |(−∆)s(ξR)(x)| ρ−1(x)ρ(x)dx

+
∫
Bc1

|v1(x)v2(x)| |(−∆)s(ξR)(x)| ρ−1(x)ρ(x)dx

≤
‖v1‖p,ρ ‖v2‖p,ρ ‖(−∆)s(ξ)‖∞

(∫
B1
|x|

2γ0
p−2 dx

) p−2
p

c
2
pR2s

+
‖v1‖p,ρ ‖v2‖p,ρ ‖|x|γ(−∆)s(ξ)‖ p

p−2 ,−γ

c
2
pR2s−γ− (d−γ)(p−2)

p

,

(2.A.43)
where for p = 2 it is understood that p/(p − 2) = ∞. Clearly (2.A.43) implies (2.A.38).
Similarly (use (2.A.6) and (2.A.7)),

∫
Rd
|v1(y)v2(y)|

(∫
Rd

(ξR(x)− ξR(y))2

|x− y|d+2s dx
)

dy

≤
‖v1‖p,ρ ‖v2‖p,ρ ‖ls(ξ)‖∞

(∫
B1
|x|

2γ0
p−2 dx

) p−2
p

c
2
pR2s

+
‖v1‖p,ρ ‖v2‖p,ρ ‖|x|γls(ξ)‖ p

p−2 ,−γ

c
2
pR2s−γ− (d−γ)(p−2)

p

,

whence (2.A.39). As for (2.A.40), we can proceed as follows:∫
Rd

∫
Rd

∣∣∣∣∣ξR(x)v1(x)(v2(x)− v2(y)) (ξR(x)− ξR(y))
|x− y|d+2s

∣∣∣∣∣ dxdy

≤
(∫

Rd
v2

1(x) ls(ξR)(x) dx
) 1

2
(∫

Rd

∫
Rd
ξ2
R(x)(v2(x)− v2(y))2

|x− y|d+2s dxdy
) 1

2

=
(∫

B1
v2

1(x) ls(ξR)(x) ρ−1(x)ρ(x)dx+
∫
Bc1

v2
1(x) ls(ξR)(x) ρ−1(x)ρ(x)dx

) 1
2

[IR(v2)]
1
2

≤‖v1‖p,ρ


‖ls(ξ)‖∞

(∫
B1
|x|

2γ0
p−2 dx

) p−2
p

c
2
pR2s

+
‖|x|γls(ξ)‖ p

p−2 ,−γ

c
2
pR2s−γ− (d−γ)(p−2)

p


1
2

[IR(v2)]
1
2 .

The proof of (2.A.41) is identical.

Lemma 2.A.11. Suppose that ρ satisfies (2.A.35) for some γ0 ∈ [0, d) and γ ∈ [0, 2s). Let
p ∈ [2,∞) if d ≤ 2s and p ∈ [2, 2(d − γ)/(d − 2s)) if d > 2s. Then Xp,s,ρ is continuously
embedded in Ḣs(Rd) and the following inequality holds true:

〈v, v〉Ḣs = Cd,s
2

∫
Rd

∫
Rd

(v(x)− v(y))2

|x− y|d+2s dxdy ≤
∫
Rd
v(x)(−∆)s(v)(x) dx ∀v ∈ Xp,s,ρ ,

(2.A.44)
where Cd,s is the same constant appearing in (2.A.28).

Proof. We shall first prove (2.A.44) for a sequence {vn} ⊂ C∞(Rd)∩Xp,s,ρ converging to v in
Xp,s,ρ (recall Lemma 2.A.9-(c)), and then we shall pass to the limit as n→∞. To this end,
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take a family of cut-off functions {ξR} as in Lemma 2.A.3. Since ξRvn belongs to C∞c (Rd) for
all R > 0 and n ∈ N, the identity

〈ξRvn, ξRvn〉Ḣs =
∫
Rd
ξR(x)vn(x)(−∆)s(ξRvn)(x) dx (2.A.45)

holds true. Using the product formula (2.A.31) (with v = vn) and plugging it in the r.h.s. of
(2.A.45), we obtain:∫

Rd
ξR(x)vn(x)(−∆)s(ξRvn)(x) dx

=
∫
Rd
ξ2
R(x)vn(x)(−∆)s(vn)(x) dx+

∫
Rd
ξR(x)(−∆)s(ξR)(x)v2

n(x) dx

+ 2Cd,s
∫
Rd

∫
Rd
ξR(x)vn(x)(vn(x)− vn(y)) (ξR(x)− ξR(y))

|x− y|d+2s dxdy .

(2.A.46)

As for the l.h.s. of (2.A.45), we have:

2 〈ξRvn, ξRvn〉Ḣs =Cd,s
∫
Rd

∫
Rd

(ξR(x)vn(x)− ξR(y)vn(y))2

|x− y|d+2s dxdy

=Cd,s
∫
Rd
ξ2
R(x)

(∫
Rd

(vn(x)− vn(y))2

|x− y|d+2s dy
)

dx

+ Cd,s

∫
Rd
v2
n(y)

(∫
Rd

(ξR(x)− ξR(y))2

|x− y|d+2s dx
)

dy

+ 2Cd,s
∫
Rd

∫
Rd
ξR(x)vn(y)(vn(x)− vn(y)) (ξR(x)− ξR(y))

|x− y|d+2s dxdy .

(2.A.47)
Exploiting inequality (2.A.40) from Lemma 2.A.10, with the choices v1 = v2 = vn, we can
estimate the third term in the r.h.s. of (2.A.46) in the following way:

2Cd,s
∫
Rd

∫
Rd

∣∣∣∣∣ξR(x)vn(x)(vn(x)− vn(y)) (ξR(x)− ξR(y))
|x− y|d+2s

∣∣∣∣∣ dxdy

≤2Cd,sK
1
2 ‖vn‖p,ρ [IR(vn)]

1
2

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

) 1
2

≤δ Cd,s IR(vn) + δ−1Cd,sK ‖vn‖2
p,ρ

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

) (2.A.48)

for all δ > 0. The same holds for the third term in the r.h.s. of (2.A.47) upon using (2.A.41):

2Cd,s
∫
Rd

∫
Rd

∣∣∣∣∣ξR(x)vn(y)(vn(x)− vn(y)) (ξR(x)− ξR(y))
|x− y|d+2s

∣∣∣∣∣ dxdy

≤δ Cd,s IR(vn) + δ−1Cd,sK ‖vn‖2
p,ρ

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

) (2.A.49)

for all δ > 0. Thanks to inequalities (2.A.38) and (2.A.39) (still with the choices v1 = v2 =
vn), we can also estimate the second term in the r.h.s. of (2.A.46) and the second term in
the r.h.s. of (2.A.47):∫

Rd

∣∣∣ξR(x)(−∆)s(ξR)(x)v2
n(x)

∣∣∣ dx ≤ K ‖vn‖2
p,ρ

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

)
, (2.A.50)
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Cd,s

∫
Rd
v2
n(y)

(∫
Rd

(ξR(x)− ξR(y))2

|x− y|d+2s dx
)

dy ≤ Cd,sK ‖vn‖2
p,ρ

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

)
.

(2.A.51)
By combining (2.A.46), (2.A.48) and (2.A.50), we infer that∣∣∣∣∫

Rd
ξR(x)vn(x)(−∆)s(ξRvn)(x) dx−

∫
Rd
ξ2
R(x)vn(x)(−∆)s(vn)(x) dx

∣∣∣∣
≤δ Cd,s IR(vn) +

(
δ−1Cd,s + 1

)
K ‖vn‖2

p,ρ

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

) (2.A.52)

for all δ > 0. Similarly, gathering (2.A.47), (2.A.49) and (2.A.51), we get:

|2 〈ξRvn, ξRvn〉Ḣs − Cd,s IR(vn)|

≤δ Cd,s IR(vn) +
(
δ−1 + 1

)
Cd,sK ‖vn‖2

p,ρ

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

) (2.A.53)

for all δ > 0. Hence, (2.A.45), (2.A.52) and (2.A.53) yield

Cd,s IR(vn) ≤2
∫
Rd
ξ2
R(x)vn(x)(−∆)s(vn)(x) dx+ |2 〈ξRvn, ξRvn〉Ḣs − Cd,s IR(vn)|

+ 2
∣∣∣∣∫

Rd
ξR(x)vn(x)(−∆)s(ξRvn)(x) dx−

∫
Rd
ξ2
R(x)vn(x)(−∆)s(vn)(x) dx

∣∣∣∣
≤2

∫
Rd
ξ2
R(x)vn(x)(−∆)s(vn)(x) dx+ 3δ Cd,s IR(vn)

+
(
3δ−1Cd,s + Cd,s + 2

)
K ‖vn‖2

p,ρ

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

)
,

that is

(1− 3δ)Cd,s IR(vn) ≤2
∫
Rd
ξ2
R(x)vn(x)(−∆)s(vn)(x) dx+

+
(
3δ−1Cd,s + Cd,s + 2

)
K ‖vn‖2

p,ρ

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

)
.

(2.A.54)
In view of the hypotheses on γ and p, which in particular ensure that

−2s+ γ + (d− γ)(p− 2)
p

< 0 ,

for any (fixed) δ ∈ (0, 1/3) we can pass to the limit in (2.A.54) as R→∞ to get, by means
e.g. of Fatou’s Lemma and dominated convergence,

(1− 3δ)Cd,s
∫
Rd

∫
Rd

(vn(x)− vn(y))2

|x− y|d+2s dxdy ≤ 2
∫
Rd
vn(x)(−∆)s(vn)(x) dx . (2.A.55)

Note that the r.h.s. of (2.A.55) is finite thanks to Lemma 2.A.9-(d). Letting δ → 0 we end
up with

Cd,s

∫
Rd

∫
Rd

(vn(x)− vn(y))2

|x− y|d+2s dxdy ≤ 2
∫
Rd
vn(x)(−∆)s(vn)(x) dx . (2.A.56)

The fact that vn actually belongs to Ḣs(Rd) is an immediate consequence of the boundedness
of the family {ξRvn}R≥1 in Ḣs(Rd). Indeed, it is direct to check that the above estimates and
(2.A.56) bound 〈ξRvn, ξRvn〉Ḣs uniformly w.r.t. R ≥ 1. We can therefore rewrite the latter as

〈vn, vn〉Ḣs ≤
∫
Rd
vn(x)(−∆)s(vn)(x) dx . (2.A.57)
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Since the sequence {vn} converges to v in Xp,s,ρ and, by (2.A.57), it is bounded in Ḣs(Rd),
we deduce that v ∈ Ḣs(Rd); hence, (2.A.44) just follows by letting n → ∞ in (2.A.57),
exploiting Fatou’s Lemma in the l.h.s. and the fact that the r.h.s. is a continuous bilinear
form on Xp,s,ρ (recall again Lemma 2.A.9-(d)).

We are now in position to prove our main “integration by parts” formula for functions
belonging to Xp,s,ρ.
Theorem 2.A.12. Suppose that ρ satisfies (2.A.35) for some γ0 ∈ [0, d) and γ ∈ [0, 2s). Let
p ∈ [2,∞) if d ≤ 2s and p ∈ [2, 2(d− γ)/(d− 2s)) if d > 2s. Then,

〈v, w〉Ḣs = Cd,s
2

∫
Rd

∫
Rd

(v(x)− v(y))(w(x)− w(y))
|x− y|d+2s dxdy =

∫
Rd
v(x)(−∆)s(w)(x) dx

=
∫
Rd

(−∆)s(v)(x)w(x) dx
(2.A.58)

for all v, w ∈ Xp,s,ρ.

Proof. We shall proceed as in Lemma 2.A.11, i.e. we start from the validity of the formula

〈ξRvn, ξRwn〉Ḣs =
∫
Rd
ξR(x)vn(x)(−∆)s(ξRwn)(x) dx , (2.A.59)

where {vn}, {wn} ⊂ C∞(Rd) ∩ Xp,s,ρ are sequences converging to v and w, respectively, in
Xp,s,ρ. Following the same lines of proof of (2.A.46) and (2.A.47), we obtain the identities∫

Rd
ξR(x)vn(x)(−∆)s(ξRwn)(x) dx

=
∫
Rd
ξ2
R(x)vn(x)(−∆)s(wn)(x) dx+

∫
Rd
ξR(x)(−∆)s(ξR)(x)vn(x)wn(x) dx

+ 2Cd,s
∫
Rd

∫
Rd
ξR(x)vn(x)(wn(x)− wn(y)) (ξR(x)− ξR(y))

|x− y|d+2s dxdy

(2.A.60)

and

2 〈ξRvn, ξRwn〉Ḣs =Cd,s
∫
Rd
ξ2
R(x)

(∫
Rd

(vn(x)− vn(y)) (wn(x)− wn(y))
|x− y|d+2s dy

)
dx

+ Cd,s

∫
Rd
vn(y)wn(y)

(∫
Rd

(ξR(x)− ξR(y))2

|x− y|d+2s dx
)

dy

+ Cd,s

∫
Rd

∫
Rd
ξR(x)vn(y)(wn(x)− wn(y)) (ξR(x)− ξR(y))

|x− y|d+2s dxdy

+ Cd,s

∫
Rd

∫
Rd
ξR(x)wn(y)(vn(x)− vn(y)) (ξR(x)− ξR(y))

|x− y|d+2s dxdy .

(2.A.61)
Notice that the trivial inequality

Cd,s IR(v) ≤ 2 〈v, v〉Ḣs ∀v ∈ Xp,s,ρ (2.A.62)
holds true, and in view of Lemma 2.A.11 we know that the r.h.s. is finite. Hence, arguing as
in the proof of (2.A.48)–(2.A.51) and exploiting (2.A.62), we get:

2Cd,s
∫
Rd

∫
Rd

∣∣∣∣∣ξR(x)vn(x)(wn(x)− wn(y)) (ξR(x)− ξR(y))
|x− y|d+2s

∣∣∣∣∣ dxdy

≤2
√

2C
1
2
d,sK

1
2 ‖vn‖p,ρ ‖wn‖Ḣs

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

) 1
2
,

(2.A.63)
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Cd,s

∫
Rd

∫
Rd

∣∣∣∣∣ξR(x)vn(y)(wn(x)− wn(y)) (ξR(x)− ξR(y))
|x− y|d+2s

∣∣∣∣∣ dxdy

≤
√

2C
1
2
d,sK

1
2 ‖vn‖p,ρ ‖wn‖Ḣs

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

) 1
2
,

(2.A.64)

Cd,s

∫
Rd

∫
Rd

∣∣∣∣∣ξR(x)wn(y)(vn(x)− vn(y)) (ξR(x)− ξR(y))
|x− y|d+2s

∣∣∣∣∣ dxdy

≤
√

2C
1
2
d,sK

1
2 ‖wn‖p,ρ ‖vn‖Ḣs

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

) 1
2
,

(2.A.65)

∫
Rd
|ξR(x)(−∆)s(ξR)(x)vn(x)wn(x)| dx ≤ K ‖vn‖p,ρ ‖wn‖p,ρ

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

)
,

(2.A.66)

Cd,s

∫
Rd
|vn(y)wn(y)|

(∫
Rd

(ξR(x)− ξR(y))2

|x− y|d+2s dx
)

dy

≤Cd,sK ‖vn‖p,ρ ‖wn‖p,ρ
(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

)
.

(2.A.67)

Gathering (2.A.59)–(2.A.61) and (2.A.63)–(2.A.67), we deduce that∣∣∣∣∣Cd,s
∫
Rd
ξ2
R(x)

(∫
Rd

(vn(x)− vn(y)) (wn(x)− wn(y))
|x− y|d+2s dy

)
dx

−2
∫
Rd
ξ2
R(x)vn(x)(−∆)s(wn)(x) dx

∣∣∣∣
≤
√

2C
1
2
d,sK

1
2
(
5 ‖vn‖p,ρ ‖wn‖Ḣs + ‖wn‖p,ρ ‖vn‖Ḣs

) (
R−2s +R−2s+γ+ (d−γ)(p−2)

p

) 1
2

+ (Cd,s + 2)K ‖vn‖p,ρ ‖wn‖p,ρ
(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

)
.

Letting R→∞, we find the identity

〈vn, wn〉Ḣs =
∫
Rd
vn(x)(−∆)s(wn)(x) dx . (2.A.68)

Now we can let n → ∞ and pass to the limit in (2.A.68): in fact, thanks to Lemmas 2.A.9
and 2.A.11, both in the left and in the right-hand side we have continuous bilinear forms on
Xp,s,ρ. This entails

〈v, w〉Ḣs =
∫
Rd
v(x)(−∆)s(w)(x) dx ∀v, w ∈ Xp,s,ρ .

The last equality in (2.A.58) just follows by swapping v and w.

We finally focus on the case p = 2, showing that Theorem 2.A.12 implies the self-
adjointness of the operator ρ−1(−∆)s in L2

ρ(Rd) (and related consequences).
Theorem 2.A.13. Suppose that ρ satisfies (2.A.35) for some γ0 ∈ [0, d) and γ ∈ [0, 2s). Let
us define the linear operator A : D(A) := Xs,ρ ⊂ L2

ρ(Rd) 7→ L2
ρ(Rd) as follows:

A(f) := ρ−1(−∆)s(f) ∀f ∈ D(A) .

Then, A is a densely defined, nonnegative self-adjoint operator on L2
ρ(Rd), whose quadratic

form is

Q(v, v) := Cd,s
2

∫
Rd

∫
Rd

(v(x)− v(y))2

|x− y|d+2s dxdy ,
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with domain D(Q) = L2
ρ(Rd) ∩ Ḣs(Rd). Moreover, Q is a Dirichlet form and A generates a

Markov semigroup S2(t) on L2
ρ(Rd). In particular, for all p ∈ [1,∞] there exists a contraction

semigroup Sp(t) on Lpρ(Rd), consistent with S2(t) on L2
ρ(Rd) ∩ Lpρ(Rd), which is furthermore

analytic with a suitable angle θp > 0 for all p ∈ (1,∞).

Proof. It is direct to check that A actually acts from D(A) to L2
ρ(Rd), since A(f) ∈ L2

ρ(Rd)
is equivalent to (−∆)s(f) ∈ L2

ρ−1(Rd), which is true by definition of Xs,ρ. The fact that
A is densely defined follows from the inclusion D(Rd) ⊂ Xs,ρ (Lemma 2.A.9-(a)). The
nonnegativity of A is a trivial consequence of Theorem 2.A.12 (take v = w = f in (2.A.58)).

In order to prove that A is a symmetric operator, we can again take advantage of (2.A.58):
for all f, g ∈ D(A) there holds∫

Rd
f(x)A(g)(x) ρ(x)dx =

∫
Rd
f(x)(−∆)s(g)(x) dx =

∫
Rd

(−∆)s(f)(x)g(x) dx

=
∫
Rd
A(f)(x)g(x) ρ(x)dx ,

so that D(A) ⊂ D(A∗) and A = A∗ on D(A). Hence, proving that A is self-adjoint amounts
to establish the inclusion D(A∗) ⊂ D(A). By definition of D(A∗), we know that h ∈ D(A∗)
if and only if h ∈ L2

ρ(Rd) and there exists a positive constant Mh such that∫
Rd
h(x)A(g)(x) ρ(x)dx ≤Mh ‖g‖2,ρ ∀g ∈ D(A) . (2.A.69)

As recalled above, D(Rd) ⊂ D(A), so that in particular (2.A.69) holds true for all g =
φ ∈ D(Rd). Since D(Rd) is dense in L2

ρ(Rd), thanks to (2.A.69) and to Riesz representation
Theorem we infer the existence of a unique element E ∈ L2

ρ(Rd) such that∫
Rd
h(x)A(φ)(x) ρ(x)dx =

∫
Rd
h(x)(−∆)s(φ)(x) dx =

∫
Rd
E(x)φ(x) ρ(x)dx ∀φ ∈ D(Rd) .

(2.A.70)
But the last equality in (2.A.70) does mean that ρ E = (−∆)s(h) and therefore h ∈ Xs,ρ =
D(A) (note that ‖(−∆)s(h)‖2,ρ−1 = ‖E‖2,ρ < ∞). We have then established the inclusion
D(A∗) ⊂ D(A) and so the self-adjointness of A.

Let us finally deal with the quadratic form Q associated to A. Thanks to Theorem 2.A.12,
we have that

Q(v, v) = Cd,s
2

∫
Rd

∫
Rd

(v(x)− v(y))2

|x− y|d+2s dxdy (2.A.71)

for all v ∈ D(A). As it is well known (see e.g. [59]), the domain D(Q) of Q is just the closure
of D(A) w.r.t. the norm

‖v‖2
Q := ‖v‖2

2,ρ−1 +Q(v, v) = ‖v‖2
2,ρ−1 + ‖v‖2

Ḣs .

It is straightforward to see that such closure is nothing but L2
ρ(Rd) ∩ Ḣs(Rd) and that the

quadratic form on D(Q) = L2
ρ(Rd) ∩ Ḣs(Rd) is still represented by (2.A.71).

By classical results (we refer again to [59]), proving that A generates a Markov semigroup
is equivalent to proving that if v belongs to D(Q) then both v ∨ 0 and v ∧ 1 belong to D(Q)
and satisfy

Q(v ∨ 0, v ∨ 0) ≤ Q(v, v) , Q(v ∧ 1, v ∧ 1) ≤ Q(v, v) ; (2.A.72)
but (2.A.72) is an immediate consequence of the characterization of Q given above. The last
assertion of the statement follows from the general theory of symmetric Markov semigroups
(see in particular [59, Theorems 1.4.1, 1.4.2]).
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Remark 2.A.14. A posteriori, for ρ and p complying with the hypotheses of Theorem
2.A.12, the subspace D(Rd) is dense in Xp,s,ρ. In fact, in view of Lemma 2.A.9-(c), it is
enough to show that for any ϕ ∈ C∞(Rd)∩Xp,s,ρ the cut-off family {ξRϕ} converges to ϕ in
Xp,s,ρ as R→∞. The only nontrivial point is the convergence of {(−∆)s(ξRϕ)} to (−∆)s(ϕ)
in Lp

′

ρ′(Rd). We have:∫
Rd
|(−∆)s(ξRϕ)(x)− (−∆)s(ϕ)(x)|p

′
ρ′(x)dx

≤C ′
[∫

Rd
|ξR(x)− 1|p

′
|(−∆)s(ϕ)(x)|p

′
ρ′(x)dx+

∫
Rd
|(−∆)s(ξR)(x)|p

′
|ϕ(x)|p

′
ρ′(x)dx

+
∫
Rd

∣∣∣∣∣
∫
Rd

(ϕ(x)− ϕ(y))(ξR(x)− ξR(y))
|x− y|d+2s dy

∣∣∣∣∣
p′

ρ′(x)dx


≤C ′
[∫

Rd
|ξR(x)− 1|p

′
|(−∆)s(ϕ)(x)|p

′
ρ′(x)dx+ ‖ϕ‖

p
p−1
p,ρ

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

) p
p−1

+ ‖ϕ‖
p
p−1
Ḣs

(
R−2s +R−2s+γ+ (d−γ)(p−2)

p

) p
2(p−1)

]
,

where C ′ = C ′(d, s, p, γ0, γ, c, ξ) is a positive constant, possibly changing from line to line.
Letting R→∞ we get the claimed result.
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CHAPTER3
Optimal functions for Caffarelli-Kohn-Nirenberg

inequalities and weighted fast diffusion

3.1 Introduction
This chapter is devoted to a special class of Caffarelli-Kohn-Nirenberg interpolation in-

equalities that were first introduced in [41] and can be written as

‖w‖2p,γ ≤ Cγ ‖∇w‖ϑ2 ‖w‖
1−ϑ
p+1,γ ∀w ∈ D(Rd) , (3.1.1)

where by Cγ > 0 we denote the best constant in the inequality. The spatial dimension d and
the parameters p, γ, ϑ are assumed to satisfy

d ≥ 3 , γ ∈ (0, 2) , p ∈
(

1,
2∗γ
2

)
with 2∗γ := 2 d− γ

d− 2 , (3.1.2)

ϑ :=
2∗γ(p− 1)

2p
(
2∗γ − p− 1

) = (d− γ)(p− 1)
p (d+ 2− 2γ − p(d− 2)) . (3.1.3)

The norms are defined by

‖w‖q := ‖w‖q,0 with ‖w‖q,γ :=
(∫

Rd
|w(x)|q |x|−γdx

) 1
q

.

When γ = 0 the corresponding inequalities become a particular subfamily of the well-known
Gagliardo-Nirenberg inequalities introduced in [100, 142]. In that case, optimal functions
have completely been characterized in [62]. These inequalities have attracted lots of interest
in the recent years: see for instance [86] and references therein, or [14].

There are several reasons to consider the problem of finding functions which attain the
best constant in (3.1.1) (in this regard, see also the forthcoming Subsection 3.1.1). First of
all, optimality among radial functions is achieved by

bγ(x) :=
(
1 + |x|2−γ

)− 1
p−1 (3.1.4)
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Chapter 3. Optimal functions for CKN inequalities and weighted fast diffusion

up to a multiplication by a constant and a scaling. In fact, in the case of radial functions, it is
not very difficult to reduce the problem with γ > 0 to the case γ = 0; see Proposition 3.3.14
below and [25] for more details. However, without such a radial symmetry, it is remark-
able that the function bγ clearly departs from standard optimal functions that are usually
characterized using the conformal invariance properties of the sphere and the stereographic
projection, like for instance in [14, Section 6.10]. Even with a radial weight of the form |x|−γ,
there is no simple symmetry result that would allow us to identify the optimal functions in
terms of bγ. In other words, upon defining the quotient

Q[w] :=
‖∇w‖ϑ2 ‖w‖

1−ϑ
p+1,γ

‖w‖2p,γ
,

it is not known whether equality holds in

inf
w∈D?(Rd)\{0}

Q[w] =: (C?γ)−1 = Q [bγ] ≥ (Cγ)−1 = inf
w∈D(Rd)\{0}

Q[w] , (3.1.5)

where we denote as D?(Rd) the subset of D(Rd) which is spanned by radial smooth functions,
i.e. functions which depend only on |x|. The main result we shall prove here is a first step in
this direction.

Theorem 3.1.1. Let d ≥ 3. For any p ∈ (1, d/(d − 2)) there exists a positive γ∗ such that
equality holds in (3.1.5) for all γ ∈ (0, γ∗).

We remark that optimal functions for Q (which can be assumed to be nonnegative) satisfy,
up to a multiplication by a constant a and scaling, the semilinear elliptic equation

−∆w + wp − w2p−1

|x|γ
= 0 in Rd ; (3.1.6)

this will be discussed in detail in Subsection 3.2.1. However, the standard Gidas-Ni-Nirenberg
result in [102] does not allow us to decide whether a positive solution of (3.1.6) is forced to
be radially symmetric. To the best of our knowledge, even for a minimizer of Q, it is not
known yet if the result can be deduced from a symmetrization method either. We shall then
say that symmetry breaking occurs if C?γ < Cγ. Whether this occurs for some γ ∈ (0, 2) and
p in the appropriate range, or not, is an open question: our result ensures that symmetry
breaking is ruled out in a right-hand neighbourhood of {γ = 0}.

The proof of Theorem 3.1.1 is based on a perturbation method (sketched in Subsection
3.1.2) which relies on the fact that, thanks to the results established in [62] by J. Dolbeault
and M. Del Pino, the optimal functions in the case γ = 0 are radial up to translations. Our
strategy is adapted from [79], except that we have no Emden-Fowler type transformation
that would allow us to get rid of the weights. This has the unpleasant consequence that
a fully developed analysis of the convergence of the optimal functions for (3.1.1) is needed,
based on a concentration-compactness technique, as γ ↓ 0. We prove that the limit is in fact
the radial solution to the limit problem, namely the only one centred at the origin, although
such problem is translation invariant. Then we are able to prove that the optimal functions
are themselves radially symmetric for γ > 0 sufficiently small. As a consequence, C?γ = Cγ
for any such γ, and the optimal functions are all given by (3.1.4) up to a multiplication by
a constant and a scaling.

Symmetry issues in Caffarelli-Kohn-Nirenberg inequalities are well known to be a difficult
problem. While symmetry breaking is usually proved by means of a spherical harmonics
expansion as in [47, 63, 94], symmetry results are harder. The best established method is
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based on a perturbation argument that has been used in [79, 80, 126, 165], although in some
cases symmetry has also been proved by direct estimates, see for instance [78, 81]. We refer
the reader to [47, 75] for results on the existence of optimal functions in the Hardy-Sobolev
case p = (d−γ)/(d−2), to [74] for an overview of symmetry breaking issues and to [76,77] for
some additional numerical investigations. It is worth pointing out that inequality (3.1.1) has
three endpoints where symmetry is known: the case of the Gagliardo-Nirenberg inequalities
corresponding to γ = 0, the case of the Hardy-Sobolev inequalities with p = (d− γ)/(d− 2)
and ϑ = 1, and finally the case of Hardy’s inequality with (p, γ) = (1, 2) (see e.g. [79]). Note
that, if ϑ = 1, moving plane methods as in [53] or symmetrization techniques as in [81, 109]
can indeed be applied to establish that the optimal functions are given by (3.1.4), still up to
a multiplication by a constant and a scaling.

In [14, Section 6.10] the problem of finding the best constant for (3.1.1), in the case γ = 0,
has been reduced to the question of the optimality of the Aubin-Talenti functions (i.e. (3.1.4)
with γ = 0 and p = d/(d − 2), named after [11, 167]) for the Sobolev inequality, in higher
dimension, within a class of functions having some special symmetry properties. However,
such a method does not seem to apply to the case γ > 0, at least directly, for the simple
reason that |x|2−γ cannot be decomposed into a sum of terms involving only some of the
coordinates of x. It could well be that a more clever change of variables solves the issue, but
this remains an open question so far.

3.1.1 Connections with power-weighted Euclidean fast diffusion equations

The symmetry result of Theorem 3.1.1 has very interesting consequences. In this regard,
let us consider the following power-weighted fast diffusion equation:

ut + |x|γ div
[
u∇

(
um−1

)]
= 0 in Rd × R+ , (3.1.7)

with initial condition u(·, 0) = u0 ≥ 0 and m ∈ (m1, 1), where

m1 := 2d− γ − 2
2(d− γ) .

From the point of view of the well-posedness of the Cauchy problem and of the long-time
behaviour of solutions, such an equation, in the porous medium case (namely for m > 1),
has thoroughly been studied in [163, 164]. As for the fast diffusion regime we consider here,
analogous issues will be addressed in detail in [25]. In particular, it can be shown that the
mass M :=

∫
Rd u(x, t) |x|−γdx is preserved along the evolution. In order to better understand

the asymptotics of (3.1.7), let us introduce the time-dependent rescaling

u(x, t) = Rγ−d(t) v
(
x/R(t) , (2− γ)−1 logR(t)

)
, (3.1.8)

with R = R(t) defined to be the solution of

dR
dt = (2− γ)R(1−m)(d−γ)−1 , R(0) = 1 . (3.1.9)

Integrating (3.1.9), we find that such solution is explicit and given by

R(t) = [1 + (2− γ)(d− γ)(m−mc) t]
1

(d−γ)(m−mc) , (3.1.10)

where
mc := d− γ − 2

d− γ
.
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We point out that, even though (3.1.7) is a fast diffusion equation, one can show that there is
no extinction in the range m ∈ (mc, 1), in contrast with the situation in bounded Euclidean
domains (see the Introduction to Chapter 4).

After changing variables in agreement with (3.1.8), we infer that the rescaled function v
solves the Fokker-Planck-type equation

vt + |x|γ div
[
v∇

(
vm−1 − |x|2−γ

)]
= 0 in Rd × R+ , (3.1.11)

with initial datum v(·, 0) = u0. Accordingly, the convergence of u towards a self-similar
solution of Barenblatt type as t → ∞ (see [23, 62] in the non-weighted case) is replaced by
the convergence of v towards a stationary solution of (3.1.11) given by

B(x) :=
(
C + |x|2−γ

)− 1
1−m , (3.1.12)

where C = C(M) > 0 is uniquely determined by the condition∫
Rd

B(x) |x|−γdx = M .

It is straightforward to check that the free energy

F [v(t)] := − 1
1−m

∫
Rd

[
vm(x, t)−Bm(x)−mBm−1(x) (v(x, t)−B(x))

]
|x|−γdx

is nonnegative and satisfies
d
dt F [v(t)] = −I[v(t)] ,

where the Fisher information is defined by

I[v(t)] := m

1−m

∫
Rd
v(x, t)

∣∣∣∣∣∇ (vm−1
)

(x, t)− (2− γ) x

|x|γ

∣∣∣∣∣
2

dx .

An elementary computation shows that, as a consequence of Theorem 3.1.1,

(2− γ)2F [v] ≤ I[v] (3.1.13)

provided γ ∈ (0, γ∗). More precisely, the above inequality is exactly equivalent to the fact
that Bm−1/2 is an optimal function for (3.1.1), as it can be verified by setting w = vm−1/2,
p = 1/(2m − 1) and performing a well-chosen scaling. This is consistent with the fact that
Bm−1/2 is equal to bγ up to a scaling and a multiplication by a constant.

In view of the above discussion, we can then generalize to γ ∈ (0, γ∗) the results obtained
in [62] for equation (3.1.11) in the case γ = 0.

Corollary 3.1.2. Let d ≥ 3, m ∈ (1 − 1/d, 1) and γ ∈ (0, γ∗), where γ∗ is defined as
in Theorem 3.1.1 with p = 1/(2m − 1). If v is the solution to (3.1.11) corresponding to
a nonnegative initial datum u0 such that M =

∫
Rd u0(x) |x|−γdx and

∫
Rd u

m
0 (x) |x|−γdx +∫

Rd u0(x) |x|2−2γdx are finite, then

F [v(t)] ≤ F [u0] e−(2−γ)2 t ∀ t > 0 . (3.1.14)

Estimate (3.1.14) is sharp in the sense that it is actually equivalent to (3.1.13) and hence-
forth to (3.1.1) as it can be checked by computing d

dtF [v(t)] at t = 0. Asymptotic decay rates
can be obtained for γ ≥ γ∗ as well: we refer to [25] for results in this direction. The free
energy F [v] is in fact a measure of the distance between v and the Barenblatt-type solutions
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(3.1.12). We can then undo the change of variables (3.1.8) and write an intermediate asymp-
totics estimate based on a Csiszár-Kullback inequality which was established in [86, Theorem
4]. Taking advantage of a time shift δ as in [84], which amounts to an adjustment of the
scaling at lower order or, equivalently, to the introduction of a time rescaling which ensures
that the solution u and the Barenblatt-type solution with the same mass also have the same
second moment (i.e.

∫
Rd u(x, t) |x|2−2γdx), we can deduce the following result.

Corollary 3.1.3. Let R = R(t) be given by (3.1.10). Under the same assumptions as in
Corollary 3.1.2, if u is a solution to (3.1.7) corresponding to a nonnegative initial datum u0
such that M =

∫
Rd u0(x) |x|−γdx and

∫
Rd u

m
0 (x) |x|−γdx +

∫
Rd u0(x) |x|2−2γdx are finite, then

there exists a positive constant δ such that∥∥∥u(·, t+ δ)−Rγ−d(t)B (·/R(t))
∥∥∥

1,γ
≤ KR−

2−γ
2 (t) ∀ t > 0

for some K > 0 depending only on M ,
∫
Rd u

m
0 (x) |x|−γdx and

∫
Rd u0(x) |x|2−2 γdx.

3.1.2 Outline of the proof of the main result

In the following, we give a hint of the strategy we develop throughout Sections 3.2 and
3.3 to prove Theorem 3.1.1. Before going on, let us introduce some basic notations.

Given p, q ≥ 1, we define the Banach spaces Lqγ(Rd) and Hγ(Rd) as the space of all
measurable functions w such that ‖w‖q,γ is finite and the space of all measurable functions
w, with ∇w measurable, such that ‖w‖Hγ := ‖w‖p+1,γ + ‖∇w‖2 is finite, respectively. If
Ω ⊂ Rd, the spaces Lqγ(Ω) and Hγ(Ω) are understood likewise. In addition, we denote as
H?
γ(Rd) the subspace of Hγ(Rd) spanned by radial functions. A simple density argument

shows, in particular, that D(Rd) is dense in Hγ(Rd) (see Proposition 3.2.3 below), so that
inequality (3.1.1) holds for true any function in Hγ(Rd) and, as a consequence, Hγ(Rd) is
continuously embedded in L2p

γ (Rd). For the sake of greater readability, in almost all the
integrals that will appear below we shall drop the explicit dependence of functions on the
variable of integration and use the notations Lqγ and Hγ in place of Lqγ(Rd) and Hγ(Rd),
respectively.

In order to avoid possible ambiguity with previous chapters, we remark that here by ‖·‖q,γ
we denote the Lq norm with respect to the negative power |x|−γ (in contrast with Chapter
2, Paragraph 2.1.1.1). As for terminology, below we shall refer to functions of the type of
(3.1.4), for simplicity, as Barenblatt-type functions, though they are not compactly supported
(see the Introduction to Chapter 1). Note that, in the case γ = 0, such functions are also
referred to in the literature as Aubin-Talenti-type functions.

We are now ready to outline the main steps of our approach.
1. In Subsection 3.2.2 we establish compactness of the embedding of Hγ(Rd) in L2p

γ (Rd),
which implies existence of an optimal function for (3.1.1); the latter satisfies (3.1.6) up
to a multiplication by a constant and a scaling. Afterwards, in Subsection 3.2.3, we
prove some integrability and regularity estimates for solutions to (3.1.6). We point out
that C1,α regularity can be expected only for γ ∈ (0, 1), as it can easily be guessed by
considering the function bγ (see Remark 3.2.11).

2. We work with the non-scale-invariant form of inequality (3.1.1) which can be written as

Eγ[w] := 1
2

∫
Rd
|∇w|2 dx+ 1

p+ 1

∫
Rd

|w|p+1

|x|γ
dx− I1

γ

(∫
Rd

|w|2p

|x|γ
dx
)θγ
≥ 0 , (3.1.15)
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where I1
γ denotes another optimal constant and θγ ∈ (0, 1) is a suitable exponent that

depends regularly on γ. A simple scaling argument, which we describe in Subsection
3.2.1, shows that (3.1.15) and (3.1.1) are equivalent and relates I1

γ to Cγ explicitly.
3. If we denote as wγ any optimal function corresponding to some γ ≥ 0, so that Eγ[w] ≥
Eγ[wγ] = 0, then we readily deduce that

Eγ[wγ]− E0[wγ] ≤ Eγ[w0]− E0[w0] . (3.1.16)

The concentration-compactness analysis we perform in Subsection 3.3.1 shows that, up
to subsequences, limγ↓0wγ(· + yγ) = w0, where {yγ} is a suitable sequence of trans-
lations. Dividing (3.1.16) by γ and passing to the limit one can prove, after several
simplifications, that

lim sup
γ↓0

∫
Rd

(
−
wp+1
γ

p+ 1 +
w2p
γ

2p |x|
−γ
)

log |x| dx ≤ lim
γ↓0

Eγ[w0]− E0[w0]
γ

. (3.1.17)

The fact that the right-hand side of (3.1.17) is explicit, and in particular finite, entails
that {yγ} is bounded, whence limγ↓0wγ = w0. This is proved rigorously in Subsection
3.3.2.

4. Let wb be the unique minimizer of E0, with a suitable mass
∫
Rd w

2p
b |x|−γdx, which is

radial about the origin. In fact wb coincides with b0 up to a multiplication by a constant
and a scaling (see formula (3.2.4) below), in view of the results in [62]. As mentioned
above, any other minimizer w0 having the same mass can be written as wb(· − y) for
some y ∈ Rd. Inspired by selection principles in Γ-convergence as in [7], and exploiting
the fact that in the r.h.s. of (3.1.17) we are actually allowed to pick any such w0, we
infer that limγ↓0wγ = wb(· − y) for some y ∈ Rd which minimizes the function

y 7→
∫
Rd

(
−w

p+1
b (x)
p+ 1 + w2p

b (x)
2p

)
log |x+ y| dx .

The minimum turns out to be attained exactly at y = 0, so that {wγ} converges to wb.
The detailed analysis is carried out in Subsection 3.3.3.

5. Finally, in Subsection 3.3.4, we prove Theorem 3.1.1 (more precisely, its equivalent
formulation given by Theorem 3.2.1 below) arguing by contradiction. The idea is to use
a method similar to the one of [79,80] and consider angular derivatives of wγ, which are
nontrivial if wγ is supposed not to be radial. In fact, differentiating the Euler-Lagrange
equation (3.1.6), one finds that the angular derivatives of wγ belong to the kernel of the
linear operator associated with a suitable functional. Passing to the limit as γ ↓ 0 and
taking advantage of the previous convergence analysis, we get a contradiction with the
fact that the linear operator associated with the limit functional enjoys a spectral gap
property and its kernel is known to coincide with the directional derivatives of b0.

3.2 Existence and elementary properties of optimal functions

In this section we establish some basic properties of the space Hγ(Rd) introduced above,
which will permit us to establish existence of optimal functions for (3.1.1) (Subsection 3.2.2).
Integrability and regularity properties of such functions are then discussed in Subsection
3.2.3. In order to do so, proceeding along the lines of [62, Section 2], it is convenient to work
with a non-scale-invariant minimization problem related to (3.1.1) (which we introduce in
the next subsection), so that finding the corresponding minimizers is equivalent to finding
optimal functions for (3.1.1).
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3.2.1 Reformulating the problem in a non-scale-invariant form

To begin with, let us consider the following functional:

Gγ[w] := 1
2

∫
Rd
|∇w|2 dx+ 1

p+ 1

∫
Rd

|w|p+1

|x|γ
dx ∀w ∈ Hγ(Rd) .

By means of standard scaling arguments, it turns out that looking for nontrivial optimal func-
tions for (3.1.1) is equivalent to solving, for any fixed mass M > 0, the following constrained
minimization problem:

Find wγ ∈ Hγ(Rd) such that
‖wγ‖2p

2p,γ = M and Gγ[wγ] = inf
w∈Hγ(Rd): ‖w‖2p2p,γ=M

Gγ[w] . (P)

In fact, multiplying any solution to (P) by an arbitrary constant α ∈ R and letting M and
α vary, we obtain the whole family of optimal functions for (3.1.1). Hence, as a necessary
preliminary result, one needs to show that problem (P) admits solutions (Proposition 3.2.6).
Actually, with respect to the non-weighted case, this can be proved in an easier way: as long
as γ is strictly positive the embedding of Hγ(Rd) in L2p

γ (Rd) is compact (Proposition 3.2.5).
Before proving their existence, let us discuss some important properties of solutions to

problem (P). First of all, since Gγ[wγ] = Gγ[|wγ|] and |wγ| ∈ Hγ(Rd), to our purposes we can
and shall assume that wγ is nonnegative. By classical variational arguments wγ must satisfy,
in distributional (and pointwise) sense, the semilinear Euler-Lagrange equation

−∆wγ +
wpγ
|x|γ

= µ
w2p−1
γ

|x|γ
in Rd

for some positive parameter µ = µ(M), namely the Lagrange multiplier. By scaling argu-
ments, if wγ is a minimizer of Gγ under the constraint ‖wγ‖2p

2p,γ = M , then the function ŵγ
defined as (let β > 0)

ŵγ(x) := β
2−γ
p−1 wγ(βx) (3.2.1)

is also a minimizer of Gγ under the constraint

‖ŵγ‖2p
2p,γ = β

d−γ+p(4−γ−d)
p−1 M .

In particular, we can always fix the mass M in order to make µ equal to 1: from here on, by
wγ, we shall implicitly mean any solution to (P) satisfying

−∆wγ +
wpγ
|x|γ

=
w2p−1
γ

|x|γ
in Rd . (3.2.2)

We point out that the Barenblatt-type function that solves (3.2.2), which also minimizes
Gγ in H?

γ(Rd) (see Proposition 3.3.14), is the following:

wb,γ(x) :=
(

aγ
bγ + |x|2−γ

) 1
p−1

, (3.2.3)

where
aγ := (2− γ)d− γ − p(d− 2)

(p− 1)2 , bγ := (d− γ − p(d− 2))2

p(p− 1)2 .
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Recalling (3.1.4), observe that the identity wb,γ(x) = αbγ(βx) holds true with the choices

α = (aγ/bγ)
1
p−1 , β = b

− 1
2−γ

γ .

On the other hand, the Barenblatt-type function that solves (3.2.2) for γ = 0, which mini-
mizes G0 in H0(Rd) thanks to the results in [62], is

wb(x) :=
(

a

b+ |x|2

) 1
p−1

, a := 2 d− p(d− 2)
(p− 1)2 , b := (d− p(d− 2))2

p(p− 1)2 . (3.2.4)

In fact, in this case, all minimizers of G0 whose mass is such that they solve (3.2.2) are of
the form wb(· − y0) for some y0 ∈ Rd (see in particular [62, Theorem 4]).

According to the above notations, we can then reformulate our main result as follows.

Theorem 3.2.1 (Equivalent to Theorem 3.1.1). Let d ≥ 3. For any p ∈ (1, d/(d− 2)) there
exists γ∗ = γ∗(p, d) ∈ (0, d− (d− 2)p) such that wγ = wb,γ for all γ ∈ (0, γ∗).

Remark 3.2.2. We shall prove Theorem 3.2.1 in Subsection 3.3.4, after several intermediate
results which are established below. As already mentioned, throughout we shall tacitly work
with nonnegative optimal functions. This is not restrictive: in fact Theorem 3.2.1 also holds
true for signed solutions to (P), since it holds true for their modulus.

The scaling properties of Gγ entail that any solution to (P) is actually a solution of an
explicit unconstrained minimization problem. In fact, consider the infimum

I1
γ := inf

w∈Hγ(Rd)\{0}

1
2
∫
Rd |∇w|

2 dx+ 1
p+1

∫
Rd |w|p+1 |x|−γdx

(
∫
Rd |w|2p |x|−γdx)θγ

, (3.2.5)

where, for all d, γ and p complying with (3.1.2), we set

θγ := d+ 2− 2γ − p(d− 2)
d− γ − p(d+ γ − 4) ∈ (0, 1) . (3.2.6)

Let us denote as IMγ the value of the infimum appearing in problem (P). By exploiting the
rescaling (3.2.1), it is straightforward to check that the following identity holds true:

IMγ = M θγI1
γ ∀M > 0 . (3.2.7)

From (3.2.7) we deduce that w ∈ Hγ(Rd) attains I1
γ if and only if it is a solution to problem

(P) for some M > 0. By the definition of I1
γ there holds

1
2

∫
Rd
|∇w|2 dx+ 1

p+ 1

∫
Rd

|w|p+1

|x|γ
dx ≥ I1

γ

(∫
Rd

|w|2p

|x|γ
dx
)θγ

for all w ∈ Hγ(Rd), and the two sides are equal if and only if w ≡ 0 or w is a minimizer of
(3.2.5). Recalling the functional Eγ introduced in (3.1.15), this means that

inf
w∈Hγ(Rd)

Eγ[w] = 0 ,

and such infimum is attained if and only if w ≡ 0 or w is a minimizer of (3.2.5), that is a
solution to problem (P) for someM > 0. Note that, if one replaces I1

γ with I > I1
γ in (3.1.15),

then the infimum of the corresponding functional becomes −∞ (it suffices to pick a sequence
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of minimizers of (3.2.5) with increasing mass). Conversely, if I < I1
γ then the infimum is still

0, but it is attained only by w ≡ 0.
The fact that, in particular, wγ is also a minimizer of Eγ over Hγ(Rd) provides us with an

explicit relation between its mass Mγ :=
∫
Rd w

2p
γ |x|−γdx and I1

γ . Indeed, differentiating Eγ[w]
in w = wγ and recalling the Euler-Lagrange equation (3.2.2), we obtain the identity

2pI1
γθγM

θγ−1
γ = 1 , (3.2.8)

which can equivalently be written as

θγ

(
1
2

∫
Rd
|∇wγ|2 dx+ 1

p+ 1

∫
Rd

wp+1
γ

|x|γ
dx
)

= 1
2p

∫
Rd

w2p
γ

|x|γ
dx . (3.2.9)

Note that, performing simple but tedious computations (one picks wα(x) := αw(x) and
optimizes the ratio in (3.2.5) w.r.t. α > 0), we can express I1

γ in terms of Cγ:

I1
γ = Cγ−2pθγ p− 1

p+ 1− 2pθγ

(
2pθγ − 2

p+ 1− 2pθγ

)− 2pθγ−2
p−1

2−
p+1−2pθγ

p−1 (p+ 1)−
2pθγ−2
p−1 . (3.2.10)

3.2.2 Basic properties of Hγ and existence of minimizers

We now prove some elementary results concerning Hγ(Rd), which will be crucial in order
to establish existence of solutions to (P) (or minimizers of (3.2.5)).
Proposition 3.2.3. Let (3.1.2) hold true. Then C∞c (Rd \ {0}) is dense in Hγ(Rd).

Proof. We have to prove that, for any function w ∈ Hγ(Rd), there exists a sequence {ϕn} ⊂
C∞c (Rd \ {0}) such that

lim
n→∞

‖w − ϕn‖p+1,γ = 0 , lim
n→∞

‖∇w −∇ϕn‖2 = 0 . (3.2.11)

If w is compactly supported in Rd \ {0} such a sequence does exist by standard mollification
arguments (the weight |x|−γ is, locally in Rd \{0}, bounded and bounded away from zero). It
is therefore enough to prove that, for any w ∈ Hγ(Rd), one can pick a sequence of functions
{wn} ⊂ Hγ(Rd) having compact support in Rd \ {0} and such that (3.2.11) holds true with
ϕn = wn. In view of another classical density argument, it is not restrictive to assume in
addition that w ∈ L∞(Rd). Consider then the following sequence (let n ≥ 2):

wn(x) :=
[
χ{|x|<2}(x) (1− ξ (nx)) + χ{|x|≥2}(x) ξ (x/n)

]
v(x) ,

where ξ is a smooth function such that
0 ≤ ξ(x) ≤ 1 ∀x ∈ Rd , ξ(x) = 1 ∀x ∈ B1 , ξ(x) = 0 ∀x ∈ Bc

2 .

By dominated convergence, it is apparent that
lim
n→∞

‖w − wn‖p+1,γ = 0 .

As for the convergence of {∇wn} to ∇w in [L2(Rd)]d, first notice that the gradient of wn
reads

∇wn(x) =
[
−nχ{ 1

n
≤|x|≤ 2

n}(x)∇ξ (nx) + n−1 χ{n≤|x|≤2n}(x)∇ξ (x/n)
]
w(x)︸ ︷︷ ︸

Fn(x)

+
[
χ{|x|<2}(x) (1− ξ (nx)) + χ{|x|≥2}(x) ξ (x/n)

]
∇w(x)︸ ︷︷ ︸

Gn(x)

.
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Since {Gn} converges to ∇w in [L2(Rd)]d (e.g. again by dominated convergence), we only
need to prove that

lim
n→∞

‖Fn‖2 = 0 . (3.2.12)

To this end, let M > 0 be any constant such that ‖∇ξ‖∞ ≤M and ‖w‖∞ ≤M . We have:

‖Fn‖2
2 ≤ CM4 n2

∫ 2
n

1
n

rd−1 dr + M2

n2

∫
n≤|x|≤2n

w2 dx , (3.2.13)

where C := |Sd−1|. Since d ≥ 3, the first term in the r.h.s. of (3.2.13) vanishes as n → ∞.
As for the second term, we have to work a bit more. Exploiting Hölder’s inequality and the
fact that |x|−γ is decreasing in |x|, we get:∫

n≤|x|≤2n
w2 dx ≤2

2γ
p+1n

2γ
p+1

∫
n≤|x|≤2n

w2 |x|−
2γ
p+1 dx

≤C
p−1
p+1 2

2γ
p+1n

2γ
p+1

(∫
n≤|x|≤2n

|w|p+1 |x|−γdx
) 2
p+1 (∫ 2n

n
rd−1 dr

) p−1
p+1

.

(3.2.14)

Since w ∈ Lp+1
γ (Rd), from (3.2.14) we deduce that the second term in the r.h.s. of (3.2.13)

goes to zero as n→∞ provided
2γ
p+ 1 + d

p− 1
p+ 1 ≤ 2 ,

that is p ≤ (d−2γ+2)/(d−2), which clearly holds true in view of (3.1.2). We have therefore
proved (3.2.12) and the result follows.

Using a standard notation, from here on we shall denote by Ḣ1(Rd) the closure of D(Rd)
w.r.t. the norm ‖∇(·)‖2 (see also Chapter 2, Paragraph 2.1.1.3 for the definition of the
analogous space in the fractional framework). It is well known that for all γ ∈ [0, 2] there
exists a suitable positive constant C∗ = C∗(γ, d) such that the Hardy-Sobolev inequality

‖w‖2∗γ ,γ ≤ C∗ ‖∇w‖2 ∀w ∈ Ḣ1(Rd) (3.2.15)

holds true, where 2∗γ is defined in (3.1.2) and we set 2∗ := 2∗0. Note that for γ = 0 we recover
the standard Sobolev inequality(∫

Rd
|w|2

∗
dx
)1/2∗

≤ CS ‖∇w‖2 ∀w ∈ Ḣ1(Rd) , (3.2.16)

while for γ = 2 we obtain Hardy’s inequality:(∫
Rd
w2 |x|−2dx

)1/2
≤ CH ‖∇w‖2 ∀w ∈ Ḣ1(Rd) . (3.2.17)

On the other hand, (3.2.15) follows by interpolation between (3.2.17) and (3.2.16):

‖w‖2∗γ ,γ ≤ ‖w‖
γ(d−2)
2(d−γ)
2,2 ‖w‖

d(2−γ)
2(d−γ)
2∗ ≤ C

γ(d−2)
2(d−γ)
H C

d(2−γ)
2(d−γ)
S ‖∇w‖2 ∀w ∈ Ḣ1(Rd) , (3.2.18)

although the best constant C∗ is not the one appearing in (3.2.18). For best constants in
Sobolev inequalities we refer the reader to the pioneering papers [11, 167] and e.g. to [109].
Performing another interpolation and using (3.2.18), we actually recover the Caffarelli-Kohn-
Nirenberg inequality (3.1.1):

‖w‖2p,γ ≤ C
γ(p−1)(d−2)

2p[2(d−γ)−(p+1)(d−2)]
H C

d(p−1)(2−γ)
2p[2(d−γ)−(p+1)(d−2)]
S ‖∇w‖ϑ2 ‖w‖

1−ϑ
p+1,γ (3.2.19)

186



3.2. Existence and elementary properties of optimal functions

for all w ∈ Hγ(Rd), where ϑ is as in (3.1.3). Again, we do not claim that the constant
that appears in the r.h.s. of (3.2.19) is the best one for which the inequality holds true,
namely Cγ. However, it provides us with an explicit upper bound for the latter, which will
be fundamental for the concentration-compactness analysis of Subsection 3.3.1 to work.

Lemma 3.2.4. Let d ≥ 3 and γ ∈ [0, 2). Then Ḣ1(Rd) is locally compactly embedded in
Lqγ(Rd) for all q ∈ [1, 2∗γ).

Proof. First of all we remark that it is enough to establish the result for all q ∈ (2, 2∗γ). Since
2∗γ ≤ 2∗, in view of the well-known local compactness of subcritical Sobolev embeddings (see
e.g. [103, Theorem 7.22]) and thanks to the local boundedness and boundedness away from
zero of the weight |x|−γ, it is plain that Ḣ1(Rd) is compactly embedded in Lqγ(BR \ Br) for
all R > r > 0. We are then left with proving an equi-integrability property. That is, we need
to show that ∫

Br
|w|q |x|−γdx→ 0

as r → 0, uniformly as w varies in a bounded subset of Ḣ1(Rd). But this readily follows by
interpolation, as a direct consequence of (3.2.15) and (3.2.17):

∫
Br
|w|q |x|−γdx ≤

(∫
Br
w2 |x|−γdx

) 2∗γ−q
2∗γ−2

(∫
Br
|w|2∗γ |x|−γdx

) q−2
2∗γ−2

≤r(2−γ)
2∗γ−q
2∗γ−2C

2
2∗γ−q
2∗γ−2

H C
2∗γ

q−2
2∗γ−2

∗ ‖∇w‖q2 .

Thanks to the above results, we are in position to prove a key compact embedding for the
space Hγ(Rd).

Proposition 3.2.5. Let (3.1.2) hold true. Then Hγ(Rd) is compactly embedded in L2p
γ (Rd).

Proof. Recalling the definitions of Ḣ1(Rd) and Hγ(Rd), from Proposition 3.2.3 we immedi-
ately deduce that Hγ(Rd) is continuously embedded in Ḣ1(Rd). Hence, using Lemma 3.2.4
and noticing that 2p < 2∗γ, we deduce that Hγ(Rd) is locally compactly embedded in L2p

γ (Rd).
In order to prove global compactness, we have to establish an equi-integrability property at
infinity (as we did in the proof of Lemma 3.2.4). To this end, by means of Hölder’s inequality
we get, for all w ∈ Hγ(Rd):

∫
BcR

|w|2p

|x|γ
dx ≤ 1

R
γ(q−1)
q

(∫
BcR

|w|2pαq

|x|γ
dx
)1/q (∫

BcR

|w|2p(1−α)q′ dx
)1/q′

(3.2.20)

∀R > 0 , ∀ q, q′ : 1/q + 1/q′ = 1 , q > 1 , ∀α ∈ (0, 1) .

Choosing

q = 2∗ − p− 1
2∗ − 2p , α = (p+ 1)(2∗ − 2p)

2p (2∗ − p− 1) ,

inequality (3.2.20) becomes

∫
BcR

|w|2p

|x|γ
dx ≤ 1

R
γ(q−1)
q

(∫
BcR

|w|p+1

|x|γ
dx
)1/q (∫

BcR

|w|2∗ dx
)1/q′

. (3.2.21)
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Thanks to the standard Sobolev inequality (3.2.16) and to the definition of ‖ · ‖Hγ (see
Subsection 3.1.2), from (3.2.21) we infer that

∫
BcR

|w|2p

|x|γ
dx ≤ C

2∗(q−1)
q

S

R
γ(q−1)
q

‖w‖2p
Hγ ∀R > 0 , ∀w ∈ Hγ(Rd) . (3.2.22)

In particular, (3.2.22) shows the equi-integrability at infinity of |w(x)|2p |x|−γ as w varies in
a bounded subset of Hγ(Rd), and permits us therefore to conclude that the embedding of
Hγ(Rd) in L2p

γ (Rd) is compact.

As an immediate consequence of Proposition 3.2.5 we have the claimed result about exis-
tence of solutions to (P).

Proposition 3.2.6. Let (3.1.2) hold true. Then for any M > 0 problem (P) admits (at
least) one solution.

Proof. It is direct to check that the functional Gγ is coercive and weakly lower semi-continuous
on Hγ(Rd). The latter being a reflexive Banach space, the existence of a minimizer wγ ∈
Hγ(Rd) for Gγ complying with the constraint ‖wγ‖2p

2p,γ = M follows by means of the compact
embedding ensured by Proposition 3.2.5.

Remark 3.2.7. Under assumptions (3.1.2), the inclusion

H0(Rd) ⊂ Hγ(Rd) (3.2.23)

holds true. Indeed, using (3.2.15) and the fact that H0(Rd) is continuously embedded in
Ḣ1(Rd), we get:

∫
Rd
|w|q |x|−γdx ≤

(∫
B1
|w|2∗γ |x|−γdx

) q
2∗γ
(∫

B1
|x|−γ dx

) 2∗γ−q
2∗γ +

∫
Bc1

|w|q dx (3.2.24)

for all w ∈ H0(Rd) and q ∈ [p+ 1, 2∗γ]. Picking q = p+ 1 in (3.2.24), property (3.2.23) readily
follows.

3.2.3 A priori estimates for minimizers

The aim of this subsection is to provide some estimates over Lq and Hölder norms of wγ,
by exploiting the semilinear Euler-Lagrange equation (3.2.2) solved by it. Such estimates
will turn out to be fundamental in order to prove convergence results and justify passages to
the limit in Section 3.3.

Lemma 3.2.8. Let d ≥ 3, p ∈ (1, 2∗/2) and γ ∈ [0, d− (d− 2)p). Then

‖wγ‖q ≤ C ∀q ∈ [2∗,∞] , (3.2.25)

where C = C(γ, ‖∇wγ‖2, p, d) is a positive constant which depends continuously on γ ∈
[0, d− (d− 2)p) and ‖∇wγ‖2.

Proof. We can proceed by means of a standard Moser iterative method, in the spirit of the
pioneering works [134,137]. That is, let A > 0 and set

ε0 := 2∗γ − 2p . (3.2.26)
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Multiplying the Euler-Lagrange equation (3.2.2) by the test function (wγ ∧ A)1+ε0 and inte-
grating by parts in Rd, we get:∫
Rd
〈∇(wγ ∧ A)1+ε0 ,∇wγ〉 dx+

∫
Rd

(wγ ∧ A)1+ε0 wpγ |x|−γdx =
∫
Rd

(wγ ∧ A)1+ε0 w2p−1
γ |x|−γdx ,

that is
4(1 + ε0)
(2 + ε0)2

∫
Rd

∣∣∣∇(wγ ∧ A)1+ ε0
2
∣∣∣2 dx+

∫
Rd

(wγ ∧ A)1+ε0 wpγ |x|−γdx

=
∫
Rd

(wγ ∧ A)1+ε0 w2p−1
γ |x|−γdx .

(3.2.27)

Letting A→ +∞ in (3.2.27) we obtain the following identity:
4(1 + ε0)
(2 + ε0)2

∫
Rd

∣∣∣∣∇(w1+ ε0
2

γ

)∣∣∣∣2 dx+
∫
Rd
wp+1+ε0
γ |x|−γdx =

∫
Rd
w2p+ε0
γ |x|−γdx . (3.2.28)

Applying the weighted Sobolev inequality (3.2.15) to the function w = w1+ε0/2
γ in the l.h.s.

of (3.2.28) and using (3.2.26), we deduce that
‖wγ‖2∗γ(1+ε0/2),γ

is bounded from above by
‖wγ‖2∗γ ,γ

.

Now let us define the sequence {εn} through the recursive equation

εn+1 :=
2∗γ
2 εn + 2∗γ − 2p ∀n ∈ N . (3.2.29)

Performing the same computations as above, with ε0 replaced by εn, it is apparent that we
end up with a bound over the L2p+εn+1

γ norm of wγ in terms of the L2p+εn
γ norm of wγ. More

precisely, we obtain the following recursive inequality:

‖wγ‖2p+εn+1,γ
≤
[
C2
∗(2 + εn)2

4(1 + εn)

] 2∗γ
2(2p+εn+1)

‖wγ‖
2∗γ (2p+εn)

2(2p+εn+1)
2p+εn,γ . (3.2.30)

Note that from (3.2.26) and (3.2.29) we can derive an explicit expression for {εn}:

εn =
2∗γ − 2p
2∗γ − 2

[
2∗γ
(

2∗γ
2

)n
− 2

]
∀n ∈ N . (3.2.31)

By iterating (3.2.30) and exploiting (3.2.31) it is not difficult to deduce the validity of the
estimate

‖wγ‖2p+εn+1,γ
≤ D ‖wγ‖

(2∗γ/2)n+1 2∗γ
2p+εn+1

2∗γ ,γ , (3.2.32)
for a suitable positive constant D = D(γ, p, d) which depends continuously on

γ ∈ [0, d− (d− 2)p)
and actually blows up as γ ↑ d − (d − 2)p. Letting n → ∞ in (3.2.32) we thus get the L∞
bound

‖wγ‖∞ ≤ D ‖wγ‖
(2∗γ−2)/(2∗γ−2p)
2∗γ ,γ . (3.2.33)

Finally, in order to prove (3.2.25), it suffices to use the standard interpolation inequality

‖wγ‖q ≤ ‖wγ‖
2∗
q

2∗ ‖wγ‖
1− 2∗

q

∞

together with (3.2.33) and the Sobolev inequalities (3.2.15), (3.2.16).
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Lemma 3.2.9. Let d ≥ 3, p ∈ (1, 2∗/2) and q ∈ [1,∞). There exist γ = γ(q, p, d) ∈
(0, d− (d− 2)p) and C = C(q, p, d) > 0 such that the estimate

‖∆wγ‖Lq(Ω) ≤ C
(
‖wγ‖2p−1

L(2p−1)q(Ω) + ‖wγ‖pLpq(Ω) + ‖wγ‖2p−1
L2pq(Ω) + ‖wγ‖pL2pq(Ω)

)
(3.2.34)

holds true for all γ ∈ [0, γ) and any Ω ⊂ Rd.

Proof. From the Euler-Lagrange equation (3.2.2), we obtain:

‖∆wγ‖qLq(Ω) ≤2q−1
(∫

Ω
w(2p−1)q
γ dx+

∫
Ω
wpqγ dx

)
+ 2q−1

(∫
B1
|x|−γ2pq dx

) 1
2p
(∫

Ω
w2pq
γ dx

) 2p−1
2p

+ 2q−1
(∫

B1
|x|−γ2q dx

) 1
2
(∫

Ω
w2pq
γ dx

) 1
2
.

(3.2.35)
Let γ ∈ (0, d− (d− 2)p) be any number such that γ < d/2pq. In view of (3.2.35) it is clear
that, under the assumption γ ∈ [0, γ), for a suitable positive constant C = C(q, p, d) the
estimate

‖∆wγ‖qLq(Ω) ≤ C
(
‖wγ‖(2p−1)q

L(2p−1)q(Ω) + ‖wγ‖pqLpq(Ω) + ‖wγ‖(2p−1)q
L2pq(Ω) + ‖wγ‖pqL2pq(Ω)

)
holds true, whence (3.2.34) upon relabelling C.

Lemma 3.2.10. Let d ≥ 3, p ∈ (1, 2∗/2) and q ∈ (1,∞). There exists a positive constant
C = C(q, d) such that wγ ∈ W 2,q(B1(x0)) and the estimate

‖wγ‖W 2,q(B1(x0)) ≤ C
(
‖wγ‖Lq(B2(x0)) + ‖∆wγ‖Lq(B2(x0))

)
(3.2.36)

holds true for any x0 ∈ Rd and all γ ∈ [0, γ), where γ = γ(q, p, d) is as in Lemma 3.2.9. In
particular, if q ∈ (d,∞) then there exists another positive constant C̃ = C̃(q, d) such that the
estimate

‖wγ‖C1,1−d/q(B1(x0)) ≤ C̃
(
‖wγ‖Lq(B2(x0)) + ‖∆wγ‖Lq(B2(x0))

)
(3.2.37)

holds true for any x0 ∈ Rd and all γ ∈ [0, γ).

Proof. Thanks to (3.2.25) and (3.2.34), we have that wγ ∈ Lq(B2(x0)) and ∆wγ ∈ Lq(B2(x0))
for all γ ∈ [0, γ). On the other hand, by the Calderón-Zygmund theory, we know that
there exists a positive constant C = C(q, d) such that, for any function w ∈ W 2,q

loc (B2(x0)) ∩
Lq(B2(x0)) with ∆w ∈ Lq(B2(x0)), the inequality

‖w‖W 2,q(B1(x0)) ≤ C
(
‖w‖Lq(B2(x0)) + ‖∆w‖Lq(B2(x0))

)
(3.2.38)

holds true. This is the content (in a particular case) of [103, Theorem 9.11]. A priori we do
not know whether wγ ∈ W 2,q

loc (B2(x0)). However, one can consider the standard mollification
wγ,ε := wγ ∗ ρε (let {ρε} be a regular mollifier), apply (3.2.38) to wγ,ε and then pass to the
limit as ε→ 0 to get (3.2.36), recalling that wγ,ε → wγ and ∆wγ,ε → ∆wγ in Lq(B2(x0)).

Finally, estimate (3.2.37) is just a consequence of (3.2.36) and standard Sobolev embed-
dings (see e.g. [103, Theorem 7.26]).

Remark 3.2.11. Thanks to the L∞ bound provided by Lemma 3.2.8, the Euler-Lagrange
equation (3.2.2) implies that |x|γ∆wγ ∈ L∞(Rd), for all γ and p complying with (3.1.2).
Arguing as in the proof of Lemma 3.2.10, we then deduce that wγ ∈ W 2,q

loc (Rd) for all q ∈
[1, d/γ). In particular, if γ ∈ (0, 1) then wγ ∈ C1,α for all α < 1− γ, while if γ ∈ [1, 2) then
wγ ∈ C0,α for all α < 2− γ.
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We point out that this is the “almost” optimal regularity for solutions to (3.2.2). In fact,
the Barenblatt-type function wb,γ defined in (3.2.3) is a solution to (3.2.2) whose regularity,
because of the presence of the singularity |x|−γ, is precisely C1,1−γ for γ ∈ (0, 1) and C0,2−γ

for γ ∈ [1, 2).

3.3 Convergence as γ ↓ 0 and radial symmetry of optimal functions

Having at our disposal optimal functions for (3.1.1) (or, equivalently, minimizers of prob-
lem (P)) and associated a priori estimates, we are in position to analyse their asymptotic
behaviour as the parameter γ tends to zero. Our strategy, which has been sketched in
Subsection 3.1.2, will finally allow us to prove Theorem 3.1.1 (i.e. Theorem 3.2.1), namely
radial symmetry of such optimal functions for any γ lying in some (unknown) right-hand
neighbourhood of {0}.

3.3.1 Concentration-compactness analysis

In this subsection we shall make use of a suitable variant of the concentration-compactness
principle originally introduced in [127, 128] to prove that the solutions wγ to problem (P)
satisfying (3.2.2) approximate, as γ ↓ 0, the Barenblatt-type function wb (see (3.2.4)) up
to translations. Afterwards, taking advantage of the estimates of Subsection 3.2.3, we shall
refine a little bit this result.

Lemma 3.3.1. Let p ∈ (1, 2∗/2) and {γn} ⊂ (0, d− (d− 2)p) be a decreasing sequence such
that limn→∞ γn = 0. Let Mγn :=

∫
Rd w

2p
γn |x|

−γndx. Then, up to subsequences:
– {Mγn} tends to the mass of wb:

lim
n→∞

Mγn =
∫
Rd
w2p

b dx ; (3.3.1)

– there exist y ∈ Rd and a sequence of translations {yn} ⊂ Rd such that

vn → wb(· − y) strongly in Ḣ1(Rd) , (3.3.2)

where vn := wγn(·+ yn). Moreover, either {yn} = {0} or |yn| → ∞ and

lim
n→∞

|yn|γn = 1 . (3.3.3)

As a consequence,
lim
γ→0

I1
γ = I1

0 , (3.3.4)

where I1
γ is the value of the infimum appearing in (3.2.5).

Proof. Let %n(x) := w2p
γn(x) |x|−γn . Our first aim is to prove that the sequence Mγn =∫

Rd %n(x) dx converges (up to subsequences) to a positive number M . To this end, a cru-
cial step consists in establishing the boundedness and the boundedness away from zero of the
sequence {I1

γn}. The former is straightforward. In fact, by the definition of I1
γ , we have:

I1
γn ≤

1
2
∫
Rd |∇wb|2 dx+ 1

p+1
∫
Rd w

p+1
b |x|−γndx(∫

Rd w
2p
b |x|−γndx

)θγn ,

which yields
lim sup
n→∞

I1
γn ≤ I1

0 . (3.3.5)
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In view of (3.2.10), the boundedness away from zero of {I1
γn} is equivalent to the boundedness

of {Cγn}, and the latter is a direct consequence, for instance, of (3.2.19). Summing up, we
have proved that

0 < lim inf
n→∞

I1
γn ≤ lim sup

n→∞
I1
γn <∞ ,

that is, up to subsequences,
lim
n→∞

I1
γn =: I ∈ (0,∞) . (3.3.6)

Recalling (3.2.8), we finally obtain (again, up to subsequences)

lim
n→∞

Mγn = lim
n→∞

∫
Rd
%n dx = lim

n→∞

(
2pI1

γnθγn
) 1

1−θγn = (2pIθ0)
1

1−θ0 =: M . (3.3.7)

Thanks to (3.3.6), (3.3.7) and to the scaling identity (3.2.7), we have:

lim
n→∞

Gγn [wγn ] = lim
n→∞

M θγn
γn I1

γn = M
θ0I . (3.3.8)

Having established (3.3.7), we can apply the classical concentration-compactness criterion
[127, Lemma I.1] to the sequence {%n} ⊂ L1(Rd). In fact, only three scenarios are admissible
for {%n} (up to subsequences): vanishing, dichotomy or compactness. We shall rule out van-
ishing and dichotomy, and thus infer compactness. Afterwards we shall see how compactness
entails the convergence of {wγn} to wb up to translations.
No vanishing. Suppose, by contradiction, that there exists R > 0 such that

lim
n→∞

sup
y∈Rd

∫
y+BR

%n dx = 0 . (3.3.9)

Let fn(x) := wγn(x) |x|−
γn
2p , so that (3.3.9) reads

lim
n→∞

sup
y∈Rd

∫
y+BR

f 2p
n dx = 0 . (3.3.10)

For any given ε2 > ε1 > 0, consider the function f̃n(x) := φ(x)fn(x), where φ is a fixed
smooth cut-off function such that 0 ≤ φ ≤ 1 in Rd, φ ≡ 0 in Bε1 and φ ≡ 1 in Bc

ε2 . It is easy
to check that one can choose ε2 (and ε1 accordingly) so small that

lim inf
n→∞

∫
Rd
f̃ 2p
n dx > 0 . (3.3.11)

Indeed, if this were not possible, then there would exist a subsequence {fnk} and a sequence
εk → 0 such that

lim
k→∞

∫
Bεk

f 2p
nk

dx = lim
k→∞

∫
Bεk

%nk dx = M ;

but this means that the sequence {%nk} concentrates about x = 0, which is impossible in
view of the locally compact embeddings provided by Lemma 3.2.4. Our aim is now to
apply [128, Lemma I.1] to the sequence

{
f̃n
}
. First of all note that, if (3.3.10) holds, then

trivially
lim
n→∞

sup
y∈Rd

∫
y+BR

f̃ 2p
n dx = 0 . (3.3.12)

Moreover,
{
f̃n
}
is bounded in L2p(Rd) (recall (3.3.7)). In order to use [128, Lemma I.1], we

need to show that
lim sup
n→∞

∫
Rd

∣∣∣∇f̃n∣∣∣2 dx <∞ .
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By differentiating f̃n, we get:

∇f̃n(x) = wγn(x)
|x|

γn
2p
∇φ(x)− γn

wγn(x)φ(x)
2p |x|

γn
2p +2 x+ φ(x)

|x|
γn
2p
∇wγn(x) .

The sequence ∫
Rd
|∇φ|2w2

γn |x|
− γn

p dx

is bounded since ∇φ is bounded and supported in Bε2 \ Bε1 , where the weight |x|−
γn
p is

regular, and we can bound
∫
Bε2\Bε1

w2
γndx by ‖wγn‖2∗ , which is in turn bounded because so

is {Gγn [wγn ]} (recall (3.2.16) and (3.3.8)). The sequence∫
Rd
|∇wγn|

2 φ2 |x|−
γn
p dx

is also bounded because the same holds true for {‖∇wγn‖2} and φ is bounded and supported
in Bc

ε1 . As for the sequence
γ2
n

4p2

∫
Rd

φ2w2
γn

|x|
γn
p

+2 dx ,

we can proceed in this way:

γ2
n

4p2

∫
Rd

φ2w2
γn

|x|
γn
p

+2 dx ≤ γ2
n

4p2ε
γn/p
1

∫
Rd

w2
γn

|x|2
dx ≤ γ2

nC
2
H

4p2ε
γn/p
1

∫
Rd
|∇wγn|2 dx ,

where in the last computation we used Hardy’s inequality (3.2.17). Hence,{
f̃n
}

is bounded in L2p(Rd)

and {
∇f̃n

}
is bounded in [L2(Rd)]d ;

this means that if (3.3.12) holds true, then by [128, Lemma I.1]

lim
n→∞

∥∥∥f̃n∥∥∥
q

= 0 ∀q ∈ (2p, 2∗) . (3.3.13)

Let us show that (3.3.13) contradicts (3.3.11). By standard interpolation inequalities, we
have: ∥∥∥f̃n∥∥∥2p

≤
∥∥∥f̃n∥∥∥ r(q−2p)

2p(q−r)

r

∥∥∥f̃n∥∥∥ q(2p−r)2p(q−r)

q
(3.3.14)

for all r ∈ (p + 1, 2p) and q ∈ (2p, 2∗). It is possible to prove that, for a suitable choice of
r ∈ (p+ 1, 2p), the sequence

{
f̃n
}
is bounded in Lr. In fact, by means of Hölder’s inequality,

we get:∫
Rd
wrγn |x|

−γn 2∗−r
2∗−p−1 dx ≤

(∫
Rd
wp+1
γn |x|

−γndx
) 2∗−r

2∗−p−1
(∫

Rd
w2∗
γn dx

) r−p−1
2∗−p−1

. (3.3.15)

Moreover,

∥∥∥f̃n∥∥∥r
r

=
∫
Rd
φrwrγn |x|

−γn r
2pdx ≤ ε

−γn
(
r
2p−

2∗−r
2∗−p−1

)
1

∫
Rd
wrγn |x|

−γn 2∗−r
2∗−p−1 dx (3.3.16)

provided
r

2p ≥
2∗ − r

2∗ − p− 1 , (3.3.17)
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which is true for all r close enough to 2p. Since {‖wγn‖p+1,γn} and {‖wγn‖2∗} are bounded
(recall (3.3.8)), from (3.3.15) and (3.3.16) we deduce the boundedness of

{
f̃n
}
in Lr for any

r ∈ (p+ 1, 2p) complying with (3.3.17). But then (3.3.13) and (3.3.14) yield

lim
n→∞

∫
Rd
f̃ 2p
n dx = 0 ,

which is in contradiction with (3.3.11). Hence, (3.3.10) cannot hold and vanishing is ruled
out.
No dichotomy. By [127, Lemma I.1], if dichotomy occurs then there exists a number
λ ∈ (0,M) such that, for every ε > 0, it is possible to choose R0 > 0 (arbitrarily large), a
monotone sequence Rn ↑ ∞ and a sequence {yn} ⊂ Rd such that∫

yn+BR0

w2p
γn |x|

−γndx ≥ λ− ε and
∫
yn+B2Rn

w2p
γn |x|

−γndx ≤ λ+ ε (3.3.18)

for all n large enough. Let ξ and ϕ be two regular functions complying with the following
conditions:

0 ≤ ξ, ϕ ≤ 1 in Rd , ξ ≡ 1 in B1 , ξ ≡ 0 in Bc
2 , ϕ ≡ 0 in B1 , ϕ ≡ 1 in Bc

2 .

Using the same strategy as in [128, Theorem I.2], we define the cut-off functions ξn, ϕn as

ξn(x) := ξ ((x− yn)/R0) , ϕn(x) := ϕ ((x− yn)/Rn)

and set
w1,n := ξnwγn , w2,n := ϕnwγn .

With no loss of generality, we can and shall suppose that n is large enough (i.e. such that
Rn > 2R0), so that in particular w1,n and w2,n have disjoint supports. From (3.3.18) and the
definitions of Mγn , w1,n and w2,n we deduce that

λ− ε ≤
∫
Rd
w2p

1,n |x|−γndx ≤ λ+ ε (3.3.19)

and
Mγn − λ− ε ≤

∫
Rd
w2p

2,n |x|−γndx ≤Mγn − λ+ ε . (3.3.20)

Now we aim at comparing Gγn [wγn ] with Gγn [w1,n] + Gγn [w2,n]. By construction and by the
fact that w1,n and w2,n have disjoint supports, we have:∫

Rd
wp+1
γn |x|

−γndx ≥
∫
Rd
wp+1

1,n |x|−γndx+
∫
Rd
wp+1

2,n |x|−γndx . (3.3.21)

Comparing the L2 norms of the gradients requires a little more care. First of all, the square
of the L2 norm of ∇w1,n reads∫

Rd
|∇w1,n|2 dx =

∫
Rd
ξ2
n |∇wγn|

2 dx+
∫
Rd
w2
γn |∇ξn|

2 dx+ 2
∫
Rd
wγnξn 〈∇wγn ,∇ξn〉 dx .

(3.3.22)
We shall prove that the last two terms in the r.h.s. of (3.3.22) are smaller than ε provided
one picks R0 large enough. We have:

|∇ξn(x)| ≤ CR−1
0 χ{R0≤|x−yn|≤2R0}(x) ∀x ∈ Rd , (3.3.23)
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where C := ‖∇ξ‖∞. Let us fix R̂ > 0 so that the left-hand inequality in (3.3.18) holds true,
with R0 = R̂, for all n large enough. It is then possible to prove that

|yn|γn ≤ Ĉ ∀n ∈ N (3.3.24)

for another positive constant Ĉ = Ĉ(R̂, λ, ε). This is actually a direct consequence of the
left-hand inequality in (3.3.18). In fact, with no loss of generality, we can suppose that
|yn| ≥ 2R̂, so that

|x+ yn| ≥ |yn|/2 ∀x ∈ B
R̂
.

Hence,

λ− ε ≤
∫
B
R̂

w2p
γn(x+ yn)
|x+ yn|γn

dx ≤ 2γn
|yn|γn

∫
yn+B

R̂

w2p
γn(x) dx ≤ 2γn

|yn|γn
‖wγn‖

2p
2∗
∣∣∣B

R̂

∣∣∣ 2∗−2p
2∗ ,

which reads

|yn|γn ≤
2γn ‖wγn‖

2p
2∗
∣∣∣B

R̂

∣∣∣ 2∗−2p
2∗

λ− ε
,

namely (3.3.24) recalling once again the boundedness of {‖wγn‖2∗}. Collecting (3.3.23) and
(3.3.24), we obtain:

∫
Rd
w2
γn |∇ξn|

2 dx ≤C2R−2
0

(∫
Rd
wp+1
γn |x|

−γndx
) 2
p+1

(∫
Rd
|x|γn

2
p−1χR0≤|x−yn|≤2R0 dx

) p−1
p+1

≤DR
d p−1
p+1−2

0

(
|yn|γn

2
p+1 +R

γn
2
p+1

0

)(∫
Rd
wp+1
γn |x|

−γndx
) 2
p+1

≤DR
d p−1
p+1−2

0

(
Ĉ

2
p+1 +R

γn
2
p+1

0

)(∫
Rd
wp+1
γn |x|

−γndx
) 2
p+1

,

(3.3.25)
for another suitable positive constant D depending on C, p and d. Since {‖wγn‖p+1,γn} is
bounded, γn ↓ 0 and

d
p− 1
p+ 1 − 2 < 0 ,

in view of (3.3.25) we can make the second term in the r.h.s. of (3.3.22) smaller than ε

(for all n large enough) upon choosing R0 = R0(R̂, λ, ε, p, d) sufficiently large. Due to the
boundedness of {‖∇wγn‖2} and to Cauchy-Schwarz inequality, the same is true for the last
term in the r.h.s. of (3.3.22). Noticing that ξn is supported in yn + B2R0 and 0 ≤ ξn ≤ 1,
from (3.3.22) we then deduce that for R0 as above and all n large enough there holds∫

Rd
|∇w1,n|2 dx ≤

∫
yn+B2R0

|∇wγn|
2 dx+ 2ε . (3.3.26)

As concerns w2,n, one can reason in a similar way: it suffices to replace ξn with ϕn and R0
with Rn in (3.3.25) to find that∫

Rd
|∇w2,n|2 dx ≤

∫
yn+BcRn

|∇wγn|
2 dx+ 2ε (3.3.27)

for all n large enough. By adding up (3.3.21) (multiplied by 1/(p+ 1)), (3.3.26) and (3.3.27)
(multiplied by 1/2), we obtain:

Gγn [wγn ] ≥ Gγn [w1,n] + Gγn [w2,n]− 2ε . (3.3.28)
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Let us set
αn :=

∫
Rd
w2p

1,n |x|−γndx , βn :=
∫
Rd
w2p

2,n |x|−γndx .

Recalling the definitions of wγn and IMγ , from (3.3.28) we infer the following inequality:

IMγn
γn = Gγn [wγn ] ≥ Gγn [w1,n] + Gγn [w2,n]− 2ε ≥ Iαnγn + Iβnγn − 2ε ,

which, thanks to the scaling identity (3.2.7), becomes

M θγn
γn I1

γn ≥ αθγnn I1
γn + βθγnn I1

γn − 2ε .

Dividing by I1
γn , passing to the limit as n → ∞ and using (3.3.6), (3.3.19) and (3.3.20), we

deduce that
M

θ0 ≥ αθ0 + β
θ0 − 2ε/I (3.3.29)

for some α ∈ [λ − ε, λ + ε] and β ∈ [M − λ − ε,M − λ + ε]. Since we can establish (3.3.29)
for arbitrarily small ε > 0, letting ε→ 0 we get that

M
θ0 ≥ λθ0 +

(
M − λ

)θ0
,

which is absurd since λ ∈ (0,M) and

θ0 = d+ 2− p(d− 2)
d− p(d− 4) < 1 .

Compactness. Vanishing and dichotomy having been ruled out, only compactness can
occur. That is, there exists a sequence of translations {yn} ⊂ Rd such that, for any ε > 0,
one can choose R0 > 0 so that∫

yn+BcR0

%n dx =
∫
yn+BcR0

w2p
γn |x|

−γndx ≤ ε . (3.3.30)

There are two possibilities: either the sequence {yn} is bounded or it is unbounded. In the
first case, let BR1 be a fixed ball in which {yn} lies. If we set R2 := R0 + R1, then from
(3.3.30) we get that ∫

BcR2

w2p
γn |x|

−γndx ≤ ε . (3.3.31)

Since {Gγn [wγn ]} is bounded, we can assume that {wγn} converges, up to subsequences,
pointwise and weakly in Ḣ1(Rd), to some limit w. By weak lower semi-continuity, Fatou’s
Lemma, (3.2.7), (3.3.5) and (3.3.7), we deduce that

1
2

∫
Rd
|∇w|2 dx+ 1

p+ 1

∫
Rd
wp+1 dx ≤ lim inf

n→∞
Gγn [wγn ] = lim inf

n→∞
IMγn
γn ≤ IM0 . (3.3.32)

Recalling that Ḣ1(Rd) is locally compactly embedded in L2p
γ (Rd) for any γ ∈ [0, 2) (Lemma

3.2.4), we can pass to the limit in (3.3.31) to obtain∫
Rd
w2p dx ≥

∫
BR2

w2p dx ≥M − ε . (3.3.33)

Furthermore, Fatou’s Lemma yields
∫
Rd w

2p dx ≤M , whence, letting ε→ 0 in (3.3.33),∫
Rd
w2p dx = M . (3.3.34)
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Gathering (3.3.32) and (3.3.34) we deduce that w is a solution to problem (P) for γ = 0 and
M = M . This means that

G0[w] = 1
2

∫
Rd
|∇w|2 dx+ 1

p+ 1

∫
Rd
wp+1 dx = IM0 , (3.3.35)

so that in particular

lim
n→∞

∫
Rd
|∇wγn|

2 dx =
∫
Rd
|∇w|2 dx , lim

n→∞

∫
Rd

wp+1
γn

|x|γn
dx =

∫
Rd
wp+1 dx . (3.3.36)

Thanks to (3.3.36), the convergence of {wγn} to w is actually strong in Ḣ(Rd), so that (3.3.2)
holds true with {yn} = {0}. In the end of the proof we shall see that in fact w = wb(·−y) for
some y ∈ Rd. Suppose now that {yn} is unbounded. Let vn := wγn(· + yn), so that (3.3.30)
reads ∫

BcR0

v2p
n |x+ yn|−γndx ≤ ε

or, equivalently,
Mγn − ε ≤

∫
BR0

v2p
n |x+ yn|−γndx ≤Mγn . (3.3.37)

Up to a subsequence, we can assume that |yn| → ∞ and that there exists

lim
n→∞

|yn|γn =: L ∈ [1,∞] . (3.3.38)

Using local compactness as above (note that ‖∇vn‖2 = ‖∇wγn‖2), we can pass to the limit
in (3.3.37) to get

M − ε ≤ 1
L

∫
BR0

w2p dx ≤M , (3.3.39)

where now w denotes the pointwise and weak limit of {vn} in Ḣ(Rd). Since we can assume
that ε < M and we know (e.g. by local embeddings) that

∫
BR0

w2p dx < ∞, (3.3.39) implies
L <∞. Moreover, as R0 is arbitrarily large and ε is arbitrarily small, still (3.3.39) yields the
identity

1
L

∫
Rd
w2p dx = M . (3.3.40)

Again, by weak lower semi-continuity, Fatou’s Lemma, (3.2.7), (3.3.5), (3.3.7) and (3.3.38),
we obtain:

1
2

∫
Rd
|∇w|2 dx+ 1

(p+ 1)L

∫
Rd
wp+1 dx ≤ lim inf

n→∞
IMγn
γn ≤ IM0 . (3.3.41)

We shall prove that actually L = 1. To this end, let us set g := w/L
1
2p . Using (3.3.40) and

(3.3.41), it is straightforward to check that g satisfies
∫
Rd g

2p dx = M and

L
1
p

2

∫
Rd
|∇g|2 dx+ 1

(p+ 1)L
p−1
2p

∫
Rd
gp+1 dx ≤ IM0 .

Hence, the family of rescaled functions

gσ(x) := σ
d
2p g(σx) , σ ∈ R+

satisfies ∫
Rd
g2p
σ dx = M (3.3.42)
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and
L

1
p

2σ
d−p(d−2)

p

∫
Rd
|∇gσ|2 dx+ σ

d(p−1)
2p

(p+ 1)L
p−1
2p

∫
Rd
gp+1
σ dx ≤ IM0 . (3.3.43)

If we choose σ = σL := L
1

d−p(d−2) , then (3.3.43) becomes

1
2

∫
Rd
|∇gσL|

2 dx+ L
p−1
2p ( d

d−p(d−2)−1)

p+ 1

∫
Rd
gp+1
σL

dx ≤ IM0 . (3.3.44)

Since p ∈ (1, d/(d− 2)), we have that

p− 1
2p

(
d

d− p(d− 2) − 1
)
> 0 .

As a consequence, if L > 1 then (3.3.44) would imply that

G0 [gσL ] < IM0 ,

which is in contradiction with (3.3.42) and the definition of IM0 . We therefore deduce that
L = 1, so that (3.3.3) holds true and w is a solution to problem (P) for γ = 0 and M = M .
Because (3.3.41) is in fact an identity, that is

G0[w] = 1
2

∫
Rd
|∇w|2 dx+ 1

p+ 1

∫
Rd
wp+1 dx = IM0 , (3.3.45)

reasoning exactly as in the case where {yn} is bounded we infer that {vn} converges strongly
in Ḣ1(Rd) to w.

Finally, from (3.3.32) and (3.3.35) (or from (3.3.41) and (3.3.45)) we get that

lim
n→∞

IMγn
γn = IM0 (3.3.46)

up to subsequences. Using (3.2.7), (3.3.7), (3.3.46) and the fact that we can repeat the same
argument along any sequence γn ↓ 0, we end up with (3.3.4).

It remains to prove (3.3.1) and (3.3.2). Due to the characterization of the minimizers of
G0 provided in [62], the fact that w = wb(· − y) for some y ∈ Rd is equivalent to

2pI1
0θ0M

θ0−1 = 1 ,

which follows by (3.3.7) and (3.3.46).

Corollary 3.3.2. Assume the same hypotheses as Lemma 3.3.1 (and use notations accord-
ingly). Then, up to subsequences:

lim
n→∞

‖vn − wb(· − y)‖q = 0 ∀q ∈ [2∗,∞) (3.3.47)

and
lim
n→∞

‖vn − wb(· − y)‖C1,α(Rd) = 0 ∀α ∈ (0, 1) . (3.3.48)

Proof. By interpolation, we have

‖vn − wb(· − y)‖q ≤ ‖vn − wb(· − y)‖
2∗
q

2∗ ‖vn − wb(· − y)‖
1− 2∗

q

∞ . (3.3.49)
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From Lemma 3.3.1 and the Sobolev inequality (3.2.16) we know that {vn} converges to
wb(·−y) in L2∗(Rd). Moreover, Lemma 3.2.8 and again Lemma 3.3.1 ensure that the sequence
{‖vn‖∞} is bounded, while wb ∈ L∞(Rd). These properties and (3.3.49) yield (3.3.47).

In order to prove (3.3.48), we shall make use of the following elementary inequalities:

‖w‖C1,α(Rd) ≤ 4 sup
x0∈Rd

‖w‖C1,α(B1(x0)) , (3.3.50)

sup
x0∈BR

‖w‖C1,α(B1(x0)) ≤ 2(1 + 2α) sup
x0∈BR+1

‖w‖C1,α(B1/2(x0)) , (3.3.51)

where R > 0 and w is any function such that the right-hand sides of (3.3.50) and (3.3.51) are
finite. Clearly there exists a suitable number NR ∈ N and a set of points {yk}k=1...NR ⊂ BR+1
such that, for every x0 ∈ BR+1,

B1/2(x0) ⊂ B1(yk)
for some k ∈ {1, . . . , NR} depending on x0. From (3.3.51) we thus get

sup
x0∈BR

‖w‖C1,α(B1(x0)) ≤ 2(1 + 2α) max
k=1...NR

‖w‖C1,α(B1(yk)) . (3.3.52)

Gathering (3.3.50) and (3.3.52) we deduce the validity of the following estimate:

‖w‖C1,α(Rd) ≤ 4 max
{

2(1 + 2α) max
k=1...NR

‖w‖C1,α(B1(yk)) , sup
x0∈BcR

‖w‖C1,α(B1(x0))

}
. (3.3.53)

Given α ∈ (0, 1), let qα := d/(1− α). In view of Lemmas 3.2.9 and 3.2.10 (see in particular
(3.2.34) and (3.2.37)), we have that for a suitable γ = γ(α, p, d) > 0 and all n such that
γn < γ there holds

‖vn‖C1,α(B1(x0))

≤C
(
‖vn‖Lqα (B2(x0))+‖vn‖2p−1

L(2p−1)qα (B2(x0))+‖vn‖
p
Lpqα (B2(x0))+‖vn‖

2p−1
L2pqα (B2(x0))+‖vn‖

p
L2pqα (B2(x0))

)
(3.3.54)

for all x0 ∈ Rd and a positive constant C = C(α, p, d). Thanks to (3.3.47) and (3.3.54), for
every ε > 0 there exist R0 > 0 and n0 ∈ N such that

sup
x0∈BcR0

‖vn‖C1,α(B1(x0)) ≤ ε ∀n ≥ n0 .

This is apparent if qα ∈ [2∗,∞)∩ (d,∞). In case qα ∈ (d, 2∗) (which can occur only if d = 3),
it is enough to control the norms appearing in the r.h.s. of (3.3.54) with ‖vn‖Lq(B2(x0)) for
some q ∈ [2∗,∞) large enough, and then use (3.3.47) with q = q. Recalling the explicit profile
(3.2.4) we can assume that, still for R0 large enough,

sup
x0∈BcR0

‖wb(· − y)‖C1,α(B1(x0)) ≤ ε ,

so that
sup

x0∈BcR0

‖vn − wb(· − y)‖C1,α(B1(x0)) ≤ 2ε ∀n ≥ n0 . (3.3.55)

Now let NR0 ∈ N and {yk}k=1...NR0
⊂ BR0+1 as above. Fix α0 ∈ (α, 1). Exploiting (3.3.54)

with α = α0, we infer that {vn} is (eventually) bounded in C1,α0(B1(x0)) for all x0 ∈ Rd. As
a consequence,

lim
n→∞

‖vn − wb(· − y)‖C1,α(B1(yk)) = 0 ∀k = 1 . . . NR0 . (3.3.56)
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Using (3.3.53) with w = vn − wb(· − y) and R = R0 and recalling (3.3.55), we obtain:

‖vn − wb(· − y)‖C1,α(Rd) ≤ 24 max
{

max
k=1...NR0

‖vn − wb(· − y)‖C1,α(B1(yk)) , ε

}

for all n ≥ n0. Hence, in view of (3.3.56),

lim sup
n→∞

‖vn − wb(· − y)‖C1,α(Rd) ≤ 24ε . (3.3.57)

Since ε is arbitrarily small, from (3.3.57) we finally deduce (3.3.48).

Thanks to Lemma 3.3.1 and Corollary 3.3.2 we can provide an upper bound for vn, which
we shall often exploit below.

Lemma 3.3.3. Assume the same hypotheses as Lemma 3.3.1 (and use notations accordingly).
Then the estimate

vn(x) ≤ C (1 + |x|)−
2−γn
p−1 ∀x ∈ Rd , ∀n ≥ ñ , (3.3.58)

holds true for a suitable ñ ∈ N and a positive constant C independent of n.

Proof. First notice that, in view of (3.2.2), vn solves the following equation:

−∆vn = −v
p
n + v2p−1

n

|x+ yn|γn
in Rd .

In view of (3.3.48), and recalling the explicit profile (3.2.4) of wb, we infer that there exist
R0 > 0 and n0 ∈ N (independent of n) such that

vn(x) ≤ 2−
1
p−1 ∀x ∈ Bc

R0 , ∀n ≥ n0 .

In particular,
−∆vn ≤ −

vpn
2|x+ yn|γn

in Bc
R0 , ∀n ≥ n0 . (3.3.59)

One can prove that there exist R1 > 0 and n1 ∈ N (independent of n) such that

|x+ yn|γn ≤ 2|x|γn ∀x ∈ Bc
R1 , ∀n ≥ n1 . (3.3.60)

If {yn} = {0} then (3.3.60) is trivial. On the other hand, if |yn| → ∞ then (3.3.60) follows
from (3.3.3) and the inequality

|x+ yn|γn ≤ |yn|γn ||x|/|yn|+ 1|γn .

Let R2 := R0 ∨ R1 and n2 := n0 ∨ n1. Combining (3.3.59) and (3.3.60) we infer that vn
satisfies

−∆vn ≤ −
vpn

4|x|γn in Bc
R2 , ∀n ≥ n2 . (3.3.61)

It is readily seen that the function

v̂n(x) := Ĉ |x|−
2−γn
p−1 (3.3.62)

is a supersolution to (3.3.61), namely it satisfies

−∆v̂n ≥ −
v̂pn

4|x|γn in Bc
R2 , ∀n ≥ n2 , (3.3.63)
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provided Ĉ is large enough (independently of n), that is

4 2− γn
p− 1

(
2− γn
p− 1 + 2− d

)
≤ Ĉp−1 . (3.3.64)

Still from (3.3.48) (or directly from (3.2.25)), we know that there exist n3 ∈ N and a positive
constant D such that

‖vn‖C0(Rd) ≤ D ∀n ≥ n3 . (3.3.65)

Due to (3.3.65), if we choose Ĉ so large that, in addition to (3.3.64), it also satisfies

Ĉ ≥ DR
2−γn
p−1

2 ,

then
v̂n(x) ≥ vn(x) ∀x ∈ ∂BR2 , ∀n ≥ n3 . (3.3.66)

Let ñ := n2 ∨ n3. Thanks to (3.3.61), (3.3.63) and (3.3.66) we can apply the comparison
principle for weak sub- and supersolutions to the equation

−∆w = − wp

4|x|γn in Bc
R2 ,

which entails
vn(x) ≤ v̂n(x) ∀x ∈ Bc

R2 , ∀n ≥ ñ . (3.3.67)

Estimate (3.3.58) is then a consequence of (3.3.62), (3.3.65) and (3.3.67).

3.3.2 Removing translations

Lemma 3.3.1 establishes the convergence of {wγn} to wb(· − y) up to a sequence of trans-
lations {yn}. Proceeding in the spirit of [7], here we show that {yn} is necessarily bounded,
which entails convergence of {wγn} to wb(· − y).

In the following, Eγ is the functional introduced in (3.1.15), whose minimizers, we recall,
are all solutions to problem (P) for some M > 0. By wb[M ] we denote the unique minimizer
of E0, with mass M , which is radial about the origin. In agreement with the discussion in
Subsection 3.2.1 (see in particular (3.2.1) for γ = 0), we know that

wb[M ](x) = β
2/(p−1)
M wb(βMx) , βM :=

(
M ‖wb‖−2p

2p

) p−1
d+p(4−d) . (3.3.68)

Lemma 3.3.4. Assume the same hypotheses as Lemma 3.3.1 (and use notations accordingly).
Then the sequence of translations {yn} is bounded.

Proof. In view of the upper barrier (3.3.58) provided by Lemma 3.3.3, it is plain that wγn ∈
H0(Rd) for all n large enough. Furthermore, from Remark 3.2.7 we know that H0(Rd) ⊂
Hγn(Rd). Hence, both wγn and wb[M ] belong to H0(Rd) ∩ Hγn(Rd). Since wγn and wb[M ]
minimize Eγn over Hγn(Rd) and E0 over H0(Rd), respectively, we readily deduce the validity
of the following inequalities:

Eγn [wb[M ]]− E0[wb[M ]] ≥ Eγn [wγn ]− E0[wb[M ]] ≥ Eγn [wγn ]− E0[wγn ] ,
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which can be written as

1
p+ 1

∫
Rd
wp+1

b[M ]

(
|x|−γn − 1

)
dx+

(
I1

0 − I1
γn

)(∫
Rd
w2p

b[M ] dx
)θ0

+ I1
γn

[(∫
Rd
w2p

b[M ] dx
)θ0
−
(∫

Rd
w2p

b[M ] |x|
−γndx

)θγn]

≥ 1
p+ 1

∫
Rd
wp+1
γn

(
|x|−γn − 1

)
dx+

(
I1

0 − I1
γn

) (∫
Rd
w2p
γn dx

)θ0
+ I1

γn

[(∫
Rd
w2p
γn dx

)θ0
−
(∫

Rd
w2p
γn |x|

−γndx
)θγn]

.

(3.3.69)

Since the rate at which {I1
γn} converges to I1

0 is a priori unknown, it is convenient to set∫
Rd
w2p

b[M ] dx = M =
∫
Rd
w2p
γn dx =:Mn ,

so that the terms multiplied by I1
0 − I1

γn cancel out in (3.3.69) and the latter reads

1
p+ 1

∫
Rd
wp+1

b[Mn]

(
|x|−γn − 1

)
dx+ I1

γn

[(∫
Rd
w2p

b[Mn] dx
)θ0
−
(∫

Rd
w2p

b[Mn] |x|
−γndx

)θγn]

≥ 1
p+ 1

∫
Rd
wp+1
γn

(
|x|−γn − 1

)
dx+ I1

γn

[(∫
Rd
w2p
γn dx

)θ0
−
(∫

Rd
w2p
γn |x|

−γndx
)θγn]

.

(3.3.70)
Performing some first-order developments in (3.3.70), we get:

(∫
Rd
w2p

b[Mn] dx
)θ0
−
(∫

Rd
w2p

b[Mn] |x|
−γndx

)θγn
= θ0 M̃θ0−1

n

∫
Rd
w2p

b[Mn]

(
1− |x|−γn

)
dx

+ log
(∫

Rd
w2p

b[Mn] |x|
−γndx

)(∫
Rd
w2p

b[Mn] |x|
−γndx

)θ̃b,n
(θ0 − θγn)

(3.3.71)

and(∫
Rd
w2p
γn dx

)θ0
−
(∫

Rd
w2p
γn |x|

−γndx
)θγn

=θ0 M̃
θ0−1
n

∫
Rd
w2p
γn

(
1− |x|−γn

)
dx+ log

(∫
Rd
w2p
γn |x|

−γndx
)(∫

Rd
w2p
γn |x|

−γndx
)θ̃n

(θ0 − θγn) ,
(3.3.72)

where M̃n lies between
∫
Rd w

2p
b[Mn] |x|−γndx and

∫
Rd w

2p
b[Mn] dx =Mn, while θ̃b,n lies between θ0

and θγn . The same holds true for the corresponding quantities appearing in (3.3.72) (namely
M̃n and θ̃n) upon replacing wb[Mn] with wγn .

It is now crucial to provide bounds, with respect to γ, over the difference 1−|x|−γ appearing
in the above integrals. Because for any fixed |x| 6= 0 the function λ 7→ |x|λ is convex on R,
its graph lies above the tangent line at λ = 0. Using this property at λ = −γ and λ = γ, we
deduce the validity of the following numerical inequalities:

1− |x|−γ ≤ γ log |x| and 1− |x|−γ ≥ γ |x|−γ log |x| . (3.3.73)
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Gathering (3.3.70)–(3.3.73) (with γ = γn) and dividing by γn, we obtain:

− 1
p+ 1

∫
Rd
wp+1

b[Mn] |x|
−γn log |x| dx+ I1

γnθ0M̃θ0−1
n

∫
Rd
w2p

b[Mn] log |x| dx

+ I1
γn log

(∫
Rd
w2p

b[Mn] |x|
−γndx

)(∫
Rd
w2p

b[Mn] |x|
−γndx

)θ̃b,n θ0 − θγn
γn

≥− 1
p+ 1

∫
Rd
wp+1
γn log |x| dx+ I1

γnθ0M̃
θ0−1
n

∫
Rd
w2p
γn |x|

−γn log |x| dx

+ I1
γn log

(∫
Rd
w2p
γn |x|

−γndx
)(∫

Rd
w2p
γn |x|

−γndx
)θ̃n θ0 − θγn

γn
.

(3.3.74)

Let {yn} be the sequence of translations given by Lemma 3.3.1, so that {vn} = {wγn(·+ yn)}
converges in Ḣ1(Rd) to wb(·− y) for some y ∈ Rd. The idea is that, if |yn| → ∞, then we get
a contradiction with (3.3.74). To this end, a key property to be exploited is the following:

lim
n→∞

Mn = lim
n→∞

Mγn =
∫
Rd
w2p
γn |x|

−γndx =
∫
Rd
w2p

b dx =: M . (3.3.75)

This is a direct consequence of the definition of Mn and of fact that, thanks to Lemmas
3.3.1 and 3.3.3, {vn} converges to wb(· − y) also in L2p(Rd). In order to get the claimed
contradiction, we first prove that all the terms in the l.h.s. of (3.3.74) stay bounded as
n → ∞. Taking advantage of the explicit formula (3.2.4) for wb, (3.3.68) and (3.3.75), it is
straightforward to check that also {∫

Rd
w2p

b[Mn] |x|
−γndx

}
converges toM . In view of (3.2.6), it is apparent that θγn → θ0 and that (θ0−θγn)/γn → −θ′0.
In particular, θ̃b,n → θ0. As a consequence, recalling that I1

γn → I1
0 , the last term in the l.h.s.

of (3.3.74) stays bounded as n→∞. As for the first two terms, upon noticing that M̃n →M ,
we only need to show that∫

Rd
wp+1

b[Mn] |x|
−γn log |x| dx and

∫
Rd
w2p

b[Mn] log |x| dx

stay bounded. Recalling (3.3.68) and (3.3.75), we have:∫
Rd
wp+1

b[Mn] |x|
−γn log |x| dx = β

2(p+1)
p−1
Mn

βγn−dMn

∫
Rd
wp+1

b |y|−γn log
(
β−1
Mn
|y|
)

dy (3.3.76)

and ∫
Rd
w2p

b[Mn] log |x| dx = β
4p
p−1
Mn

β−dMn

∫
Rd
w2p

b log
(
β−1
Mn
|y|
)

dy . (3.3.77)

Since γn → 0 and wb is a regular function behaving like |x|−2/(p−1) as |x| → ∞, it is plain
that the integrals (3.3.76) and (3.3.77) stay bounded as n→∞, and so the l.h.s. of (3.3.74).
Let us then consider the r.h.s. of (3.3.74). To prove boundedness of the last term, one can
proceed exactly as above. Hence, we get a contradiction as soon as we prove that |yn| → ∞
implies

− 1
p+ 1

∫
Rd
wp+1
γn log |x| dx+ I1

γnθ0M̃
θ0−1
n

∫
Rd
w2p
γn |x|

−γn log |x| dx→ +∞ . (3.3.78)
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Recalling the definition of vn, we can rewrite the l.h.s. of (3.3.78) as follows:

log |yn|
(
− 1
p+ 1

∫
Rd
vp+1
n dx+ I1

γnθ0M̃
θ0−1
n

∫
Rd
v2p
n dx

)

− 1
p+ 1

∫
Rd
vp+1
n (log |x+ yn| − log |yn|) dx

+ I1
γnθ0M̃

θ0−1
n

∫
Rd
v2p
n

(
|x+ yn|−γn log |x+ yn| − log |yn|

)
dx .

(3.3.79)

Lemmas 3.3.1 and 3.3.3 ensure that, in particular, {vn} converges to wb(· − y) in Lp+1(Rd)∩
L2p(Rd). In particular, the factor between brackets in the first line of (3.3.79) converges to

− 1
p+ 1

∫
Rd
wp+1

b dx+ I1
0θ0M

θ0−1
∫
Rd
w2p

b dx , (3.3.80)

which, thanks to (3.2.8) at γ = 0, is equal to

− 1
p+ 1

∫
Rd
wp+1

b dx+ 1
2p

∫
Rd
w2p

b dx . (3.3.81)

Exploiting (3.2.9) and the identity∫
Rd
|∇wγ|2 dx+

∫
Rd
wp+1
γ |x|−γdx =

∫
Rd
w2p
γ |x|−γdx ,

which can be obtained by multiplying the Euler-Lagrange equation (3.2.2) by wγ and inte-
grating in Rd, we get:

1
p+ 1

∫
Rd
wp+1
γ |x|−γdx = 2(pθγ − 1)

θγ(p− 1)
1
2p

∫
Rd
w2p
γ |x|−γdx . (3.3.82)

Due to (3.3.82) evaluated at γ = 0, we have that (3.3.80) and (3.3.81) coincide with[
1− 2(pθ0 − 1)

θ0(p− 1)

]
1
2p

∫
Rd
w2p

b dx ,

a strictly positive term. Recalling (3.3.79), in order to come to a contradiction it is therefore
enough to prove that∣∣∣∣∣

∫
Rd
vp+1
n

(
log |x+ yn|

log |yn|
− 1

)
dx
∣∣∣∣∣+

∣∣∣∣∣
∫
Rd
v2p
n

(
|x+ yn|−γn

log |x+ yn|
log |yn|

− 1
)

dx
∣∣∣∣∣

converges to zero as n→∞. Since {vn} converges in Lp+1(Rd)∩L2p(Rd) and by Lemma 3.3.1
we know that in case |yn| → ∞ then |yn|γn → 1, it is clear that locally in Rd such integrals
vanish. Hence, we are left with proving that for any ε > 0 there exist Rε > 0 and nε ∈ N
such that∣∣∣∣∣

∫
BcRε

vp+1
n

log |x+ yn|
log |yn|

dx
∣∣∣∣∣+

∣∣∣∣∣
∫
BcRε

v2p
n |x+ yn|−γn

log |x+ yn|
log |yn|

dx
∣∣∣∣∣ ≤ 2ε (3.3.83)

for all n ≥ nε. For simplicity we consider only the first integral in the l.h.s. of (3.3.83), but
note that the second one can be dealt with similarly. We have:∣∣∣∣∣

∫
BcRε

vp+1
n

log |x+ yn|
log |yn|

dx
∣∣∣∣∣

≤
∣∣∣∣∣
∫
B1(−yn)

vp+1
n

log |x+ yn|
log |yn|

dx
∣∣∣∣∣+

∣∣∣∣∣
∫
BcRε∩B

c
1(−yn)

vp+1
n

log |x+ yn|
log |yn|

dx
∣∣∣∣∣ .

(3.3.84)
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As for the first integral in the r.h.s. of (3.3.84), there holds∣∣∣∣∣
∫
B1(−yn)

vp+1
n

log |x+ yn|
log |yn|

dx
∣∣∣∣∣ ≤ Cp+1

∣∣∣∣∣
∫
B1(−yn)

log |x+ yn|
log |yn|

dx
∣∣∣∣∣ = Cp+1

log |yn|

∣∣∣∣∫
B1

log |y| dy
∣∣∣∣

(3.3.85)
for all n ≥ ñ, where C and ñ are as in the statement of Lemma 3.3.3 (assuming in addition
that |yn| > 1 for all n ≥ ñ). If |yn| → ∞, then clearly (3.3.85) ensures the existence of n1 ≥ ñ
such that ∣∣∣∣∣

∫
B1(−yn)

vp+1
n

log |x+ yn|
log |yn|

dx
∣∣∣∣∣ ≤ ε

2 (3.3.86)

for all n ≥ n1. In order to handle the second integral in the r.h.s. of (3.3.84), first observe
that

|log |x+ yn|| = log |yn|+ log |x/|yn|+ yn/|yn|| ≤ log |yn|+ log (1 + |x|) (3.3.87)

for all x ∈ Bc
1(−yn) and n ≥ n1. Using (3.3.87) and again estimate (3.3.58) we end up with∣∣∣∣∣

∫
BcRε∩B

c
1(−yn)

vp+1
n

log |x+ yn|
log |yn|

dx
∣∣∣∣∣

≤Cp+1
∫
BcRε∩B

c
1(−yn)

[1 + log (1 + |x|)] (1 + |x|)−
(2−γn)(p+1)

p−1 dx
(3.3.88)

for all n ≥ ñ ∨ n2, where n2 is such that log |yn| ≥ 1 for all n ≥ n2. Since γn → 0 and
2(p + 1)/(p − 1) > d, it is plain that the r.h.s. of (3.3.88) can be made smaller than ε/2,
independently of n ≥ n3, provided Rε is taken large enough. Hence,∣∣∣∣∣

∫
BcRε∩B

c
1(−yn)

vp+1
n

log |x+ yn|
log |yn|

dx
∣∣∣∣∣ ≤ ε

2 (3.3.89)

for all n ≥ ñ ∨ n2 ∨ n3. In view of (3.3.86) and (3.3.89), we can then assert that the first
integral in the l.h.s. of (3.3.83) is smaller than ε for all n ≥ nε := n1 ∨ n2 ∨ n3.

Corollary 3.3.5. Assume the same hypotheses as Lemma 3.3.1 (and use notations accord-
ingly). Then,

lim
n→∞

‖wγn − wb(· − y)‖q = 0 ∀q ∈
(
d
p− 1

2 ,∞
)
, (3.3.90)

lim
n→∞

‖wγn − wb(· − y)‖C1,α(Rd) = 0 ∀α ∈ (0, 1) (3.3.91)

and the estimate
wγn(x) ≤ C (1 + |x|)−

2−γn
p−1 ∀x ∈ Rd , ∀n ≥ ñ , (3.3.92)

holds true for a suitable ñ ∈ N and a positive constant C independent of n.

Proof. By Lemmas 3.3.1 and 3.3.4 we deduce that {yn} = {0}. As a consequence, (3.3.91)
and estimate (3.3.92) follow directly from (3.3.48) and (3.3.58), respectively. The validity of
(3.3.90) is then inherited from (3.3.47): in order to prove it for q ∈ (d (p− 1)/2, 2∗) as well,
one just exploits the fact that the r.h.s. of (3.3.92) eventually belongs to Lq(Rd) for all such
q.
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3.3.3 Identification of the limit minimizer

In this subsection we shall prove that in fact {wγn} converges to wb, or equivalently that
y = 0, according to the notations of the previous Subsections 3.3.1 and 3.3.2. This means
that, among all the solutions of problem (P) for γ = 0, the sequence {wγn} selects the one
centred at zero. We shall proceed by means of a selection principle argument, inspired again
by some original ideas introduced in the paper [7].

Lemma 3.3.6. Assume the same hypotheses as Lemma 3.3.1 (and use notations accordingly).
Then,

y ∈ argmin
y∈Rd

∫
Rd

[
− 1
p+ 1 w

p+1
b (x− y) + 1

2p w
2p
b (x− y)

]
log |x| dx . (3.3.93)

Proof. In order to prove the assertion we can proceed along the proof of Theorem 3.3.4, upon
noticing that in place of wb[Mn] we can pick wb[Mn](·−y) for any fixed y ∈ Rd (recall that E0 is
translation invariant). Hence, for possibly different M̃n and θ̃b,n having the same properties
as in the mentioned proof, we obtain the analogue of (3.3.74):

− 1
p+ 1

∫
Rd
wp+1

b[Mn](x− y) |x|−γn log |x| dx+ I1
γnθ0M̃θ0−1

n

∫
Rd
w2p

b[Mn](x− y) log |x| dx

+ I1
γn log

∫
Rd

w2p
b[Mn](x− y)
|x|γn

dx
∫

Rd

w2p
b[Mn](x− y)
|x|γn

dx
θ̃b,n θ0 − θγn

γn

≥− 1
p+ 1

∫
Rd
wp+1
γn log |x| dx+ I1

γnθ0M̃
θ0−1
n

∫
Rd
w2p
γn |x|

−γn log |x| dx

+ I1
γn log

(∫
Rd

w2p
γn

|x|γn
dx
)(∫

Rd

w2p
γn

|x|γn
dx
)θ̃n

θ0 − θγn
γn

.

(3.3.94)
Passing to the limit as n→∞ in (3.3.94), which is feasible e.g. thanks to Lemma 3.3.1 and
Corollary 3.3.5, we deduce:

− 1
p+ 1

∫
Rd
wp+1

b (x− y) log |x| dx+ I1
0θ0M

θ0−1
∫
Rd
w2p

b (x− y) log |x| dx

− I1
0 log

(∫
Rd
w2p

b (x− y) dx
)(∫

Rd
w2p

b (x− y) dx
)θ0

θ′0

≥− 1
p+ 1

∫
Rd
wp+1

b (x− y) log |x| dx+ I1
0θ0M

θ0−1
∫
Rd
w2p

b (x− y) log |x| dx

− I1
0 log

(∫
Rd
w2p

b (x− y) dx
)(∫

Rd
w2p

b (x− y) dx
)θ0

θ′0 .

Recalling the identities
∫
Rd w

2p
b dx =: M and I1

0θ0M
θ0−1 = 1/2p, the above inequality reads

− 1
p+ 1

∫
Rd
wp+1

b (x− y) log |x| dx+ 1
2p

∫
Rd
w2p

b (x− y) log |x| dx

≥− 1
p+ 1

∫
Rd
wp+1

b (x− y) log |x| dx+ 1
2p

∫
Rd
w2p

b (x− y) log |x| dx .
(3.3.95)

Since y is arbitrary, (3.3.95) is equivalent to (3.3.93).
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By a change of variables, we have that the function to be minimized in (3.3.93) coincides
with

F (y) :=
∫
Rd

[
− 1
p+ 1 w

p+1
b (x) + 1

2p w
2p
b (x)

]
log |x+ y| dx ∀y ∈ Rd .

Our aim is therefore to prove that F has a unique minimum at y = 0. Since both wb and
log |x| are radial about the origin, it is straightforward to check that also F enjoys such
property. This is a general fact: the convolution between two radial functions is still radial.
Hence, letting

K := − 1
p+ 1 w

p+1
b + 1

2p w
2p
b , (3.3.96)

we have that minimizing F w.r.t. y ∈ Rd is equivalent to minimizing

G(R) :=
∫
Rd
K(x) log

∣∣∣x+
√
Re1

∣∣∣ dx (3.3.97)

w.r.t. R ∈ R+, where e1 is e.g. the first versor of the canonical basis of Rd.

Lemma 3.3.7. The function G defined in (3.3.97) can be rewritten as

G(R) = 1
4

∫
Rd
K(x) log

[(
R + |x|2

)2
− 4Rx2

1

]
dx ∀R ∈ R+ . (3.3.98)

Proof. By splitting the integral in the regions {x1 ≥ 0} and {x1 < 0}, we obtain:

G(R) =1
2

∫
Rd∩{x1≥0}

K(x) log
[(
x1 +

√
R
)2

+ x2
2 + . . .+ x2

d

]
dx

+ 1
2

∫
Rd∩{x1≥0}

K(x) log
[(
−x1 +

√
R
)2

+ x2
2 + . . .+ x2

d

]
dx ,

(3.3.99)

where in the region {x1 < 0} we used the change of variables

(x1, x2, . . . , xd) 7→ (−x1, x2, . . . , xd)

and exploited the radiality of K. Since(
±x1 +

√
R
)2

+ x2
2 + . . .+ x2

d = R + |x|2 ± 2
√
Rx1 ,

we deduce that (3.3.99) coincides with

1
2

∫
Rd∩{x1≥0}

K(x) log
[(
R + |x|2 + 2

√
Rx1

) (
R + |x|2 − 2

√
Rx1

)]
dx ,

namely (3.3.98) because the integrand is symmetric w.r.t. {x1 = 0}.

In the sequel we shall prove that dG(R)
dR is actually strictly positive, whence the fact that

G(R) has a unique minimum at R = 0. It is readily seen that G(R) is continuous. Moreover,
taking the derivative w.r.t. R in (3.3.98), we obtain:

dG(R)
dR = 1

4

∫
Rd
K(x) 2(R + |x|2)− 4x2

1
(R + |x|2)2 − 4Rx2

1
dx ∀R ∈ R+ . (3.3.100)

Note that, since d ≥ 3 and K(x) is a regular function decaying fast enough as |x| → ∞, we
are allowed to take derivatives under the integral sign in (3.3.98) and therefore get (3.3.100).
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Moreover, we have that also dG(R)
dR is continuous, so that G ∈ C1(R+). To our purposes, it is

convenient to write the integral in (3.3.100) in spherical coordinates:

dG(R)
dR = C

∫ +∞

0
K(r) rd−1

∫ π

0

2(R + r2)− 4r2 cos2(θ)
(R + r2)2 − 4Rr2 cos2(θ) sind−2(θ) dθ dr (3.3.101)

for all R ∈ R+, where C is a positive constant depending only on d and, with a slight abuse
of notation, we denote by K(r) the function K(x) evaluated at any point x such that |x| = r.

Lemma 3.3.8. Let R > 0. Then the function

`R(r) :=
∫ π

0

2(R + r2)− 4r2 cos2(θ)
(R + r2)2 − 4Rr2 cos2(θ) sind−2(θ) dθ ∀r ∈ R+ (3.3.102)

is continuous, positive and decreasing.

Proof. It is straightforward to check that `R(r) = (2/R) ˆ̀(r2/R) for all r ∈ R+, where

ˆ̀(s) :=
∫ π

2

0

[
1 + 2(1 + s)− (1 + s)2

(1 + s)2 − 4s cos2(θ)

]
sind−2(θ) dθ ∀s ∈ R+ . (3.3.103)

Proving our statement is therefore equivalent to proving that ˆ̀(s) is continuous, positive and
decreasing. It is apparent that lims→+∞ ˆ̀(s) = 0, from which, if we establish that ˆ̀(s) is
strictly decreasing, then it is necessarily positive. Since the denominator of the integrand in
(3.3.103) vanishes if and only if s = 1 and θ = 0, it is immediate to see that ˆ̀(s) is continuous
in [0, 1) ∪ (1,+∞). In order to prove continuity at s = 1 as well, we must show that

lim
s→1

∫ π
2

0

2(1 + s)− (1 + s)2

(1 + s)2 − 4s cos2(θ) sind−2(θ) dθ = 0 .

Recalling that d ≥ 3 and θ ∈ [0, π/2], we have:∣∣∣∣∣ 2(1 + s)− (1 + s)2

(1 + s)2 − 4s cos2(θ) sind−2(θ)
∣∣∣∣∣ ≤ |1− s|

1 + s− 2
√
s cos(θ) sin(θ) , (3.3.104)

so that by calculating the exact integral of the r.h.s. of (3.3.104), we get:∣∣∣∣∣
∫ π

2

0

2(1 + s)− (1 + s)2

(1 + s)2 − 4s cos2(θ) sind−2(θ) dθ
∣∣∣∣∣ ≤ |1− s|2

√
s

log
[

1 + s

(1−
√
s)2

]
,

which actually vanishes as s → 1. We are left with proving that ˆ̀(s) is strictly decreasing.
In order to do so, it is enough to show that

dˆ̀(s)
ds < 0 ∀s ∈ (0, 1) ∪ (1,+∞) . (3.3.105)

Let
m(s) :=

∫ π
2

0

2(1 + s)− (1 + s)2

(1 + s)2 − 4s cos2(θ) sind−2(θ) dθ ∀s ∈ R+

and C :=
∫ π

2
0 sind−2(θ) dθ. It is readily seen that

ˆ̀(s) = C +m(s) = C −m
(
s−1

)
∀s > 0 . (3.3.106)
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Thanks to (3.3.106), it is enough to establish (3.3.105) e.g. only for s > 1. To this end, we
shall first consider the case d = 3 and then infer from it the result for all d > 3. Let then
d = 3, so that we can compute ˆ̀(s) explicitly:

ˆ̀(s) = 1 + (1 + s)(1− s)
∫ 1

0

1
(1 + s)2 − 4sy2 dy = 1 + 1− s

2
√
s

log
(

1 +
√
s

|1−
√
s|

)
.

In order to prove (3.3.105) for all s > 1, we can set s = t2,

ˆ̀̂(t) := t2 − 1
2t log

(
1− 2

t+ 1

)
∀t > 1

and show that dˆ̀̂(t)
dt < 0 for all t > 1. Since

dˆ̀̂(t)
dt = (t2 + 1) log [1− 2/(t+ 1)] + 2t

2t2 ∀t > 1 ,

we need to prove that

(t2 + 1) log [1− 2/(t+ 1)] + 2t < 0 ∀t > 1 . (3.3.107)

To this end we can exploit the fact that log(1 − x), for every x ∈ (0, 1), is smaller than its
Taylor expansion (at any order) centred at x = 0. In particular,

log [1− 2/(t+ 1)] < −2(t+ 1)−1 − 2(t+ 1)−2 − (8/3)(t+ 1)−3 ∀t > 1 .

Therefore, (3.3.107) is implied by

(t2 + 1)
[
−2(t+ 1)−1 − 2(t+ 1)−2 − (8/3)(t+ 1)−3

]
+ 2t < 0 ∀t > 1 . (3.3.108)

After straightforward computations, one finds that (3.3.108) is equivalent to −8t2−12t−20 <
0 for all t > 1, which is trivially true. Hence, we have proved (3.3.105) in the case d = 3. Let
us show that the validity of (3.3.105) for d = 3 ensures the validity of the same inequality
for d > 3. As above, it is enough to prove it for s > 1 only. We have:

dˆ̀(s)
ds =

∫ π
2

0

−2(1 + s)2 + 4(1 + s2) cos2(θ)
[(1 + s)2 − 4s cos2(θ)]2︸ ︷︷ ︸

f(s,θ)

sind−2(θ) dθ . (3.3.109)

Note that taking derivatives under the integral sign is safe because for s > 1 the denominator
of the integrand is bounded away from zero as θ ∈ [0, π/2]. It is readily seen that

f(s, θ) ≥ 0 ∀θ ∈ [0, θ̂(s)] , f(s, θ) < 0 ∀θ ∈ (θ̂(s), π/2] , (3.3.110)

where, for s > 1, we set

θ̂(s) := arccos
[
(1 + s)/

√
2(1 + s2)

]
∈ (0, π/2) .

The validity of (3.3.105) in the case d = 3 entails that∫ π
2

0
f(s, θ) sin(θ) dθ < 0 . (3.3.111)
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In view of (3.3.109)–(3.3.111), for any d > 3 we obtain:

dˆ̀(s)
ds

=
∫ θ̂(s)

0
f(s, θ) sin(θ) sind−3(θ) dθ +

∫ π
2

θ̂(s)
f(s, θ) sin(θ) sind−3(θ) dθ

≤ sind−3
(
θ̂(s)

) ∫ θ̂(s)

0
f(s, θ) sin(θ) dθ + sind−3

(
θ̂(s)

) ∫ π
2

θ̂(s)
f(s, θ) sin(θ) dθ

= sind−3
(
θ̂(s)

) ∫ π
2

0
f(s, θ) sin(θ) dθ < 0 .

Hence, ˆ̀(s) is strictly decreasing and the proof is completed.

We are now in position to prove the following result.

Proposition 3.3.9. The function G(R) defined in (3.3.98) is strictly increasing. In partic-
ular, it attains its unique minimum at R = 0.

Proof. In order to prove the assertion it suffices to show that dG(R)
dR > 0 for all R > 0, which,

due to (3.3.101) and (3.3.102), is equivalent to proving that∫ +∞

0
K(r) rd−1`R(r) dr > 0 ∀R > 0 .

Recalling the strict positivity of (3.3.81) and the definition (3.3.96) of K, we have:∫ +∞

0
K(r) rd−1 dr > 0 . (3.3.112)

Thanks to the explicit profile (3.2.4) of wb, it is immediate to check that there exists R̂ > 0
such that

K(r) ≥ 0 ∀r ∈ [0, R̂] , K(r) < 0 ∀r > R̂ . (3.3.113)
Exploiting (3.3.112), (3.3.113) and Lemma 3.3.8, we obtain:

∫ +∞

0
K(r) rd−1`R(r) dr ≥`R(R̂)

∫ R̂

0
K(r) rd−1 dr + `R(R̂)

∫ +∞

R̂
K(r) rd−1 dr

=`R(R̂)
∫ +∞

0
K(r) rd−1 dr > 0 .

We can finally state the fundamental consequence of Lemma 3.3.6, Proposition 3.3.9 and
the relation between F and G.

Corollary 3.3.10. Corollary 3.3.5 holds true with y = 0.

3.3.4 Optimal functions are radial for γ small

This final subsection is devoted to the proof of Theorem 3.2.1. We shall exploit the
convergence results of the previous subsections and perform an argument by contradiction,
which involves angular derivatives of possibly non-radial optimal functions.

Given a nontrivial antisymmetric matrix A and a differentiable function f , we define the
angular derivative of f with respect to A as follows:

fA(x) := xTA∇f(x) ∀x ∈ Rd ,
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3.3. Convergence as γ ↓ 0 and radial symmetry of optimal functions

where T denotes transposition. Antisymmetric matrices are deeply linked with infinitesimal
rotations. In fact, take a curve of rotations about the origin {R(t)} (let t ≥ 0) in the
Euclidean space, such that R(0) = I and R′(0) = AT . A straighforward computation shows
that fA represents the first-order variation of f along {R(t)} at t = 0, that is

d [f(R(t)x)]
dt

∣∣∣∣∣
t=0

= xT [R′(0)]T︸ ︷︷ ︸
A

∇f(x) ∀x ∈ Rd .

Note that it is always possible to construct such a curve: this is a consequence of the well-
known fact that the tangent space to the rotation group at R = I coincides with the space
of antisymmetric matrices.

The term “angular derivative” is readily justified. To fix ideas, let d = 3. Here the usual
change of variables in spherical coordinates reads

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ ,

where r ∈ [0,∞) is the radius, θ ∈ [0, π] is the polar angle and φ ∈ [0, 2π) is the azimuthal
angle. The derivative of a differentiable function f w.r.t. the azimuthal angle is fφ = −yfx +
xfy, namely fφ = fAφ with the choice

Aφ :=

 0 1 0
−1 0 0
0 0 0

 .
Such property can easily be generalized to the case d > 3 by considering the last angle in
spherical coordinates (the only one ranging between 0 and 2π). Note that this is false for the
polar angle θ: dθ is not an infinitesimal rotation.

As a consequence of the above discussion, it is apparent that if f is a radial function
then necessarily fA ≡ 0 for any antisymmetric matrix A. It is not difficult to prove (e.g. by
contradiction) that also the vice versa holds true: if fA ≡ 0 for every antisymmetric matrix
A, then f is a radial function. Our aim is to prove that wγ is radial, at least for γ small.
Hence, if it is not, there must exist an antisymmetric matrix Aγ such that (wγ)Aγ 6≡ 0. In
the following, we shall prove some crucial properties of the angular derivatives of wγ, which
are basically inherited from the Euler-Lagrange equation.
Lemma 3.3.11. Assume the same hypotheses as Lemma 3.3.1 (and use notations accord-
ingly). Given any antisymmetric matrix A, set ωn[A] := (wγn)A. Then there exists ñ ∈ N,
independent of A, such that ωn[A] belongs to Ḣ1(Rd) and satisfies

−∆ωn[A] + p
wp−1
γn

|x|γn
ωn[A] = (2p− 1)

w2(p−1)
γn

|x|γn
ωn[A] in Rd (3.3.114)

for all n ≥ ñ. Moreover, the following identities hold true:∫
Rd

∣∣∣∇ωn[A]

∣∣∣2 dx+ p
∫
Rd
ω2
n[A]

wp−1
γn

|x|γn
dx = (2p− 1)

∫
Rd
ω2
n[A]

w2(p−1)
γn

|x|γn
dx , (3.3.115)

∫
Rd
ωn[A] w

2p−1
γn |x|−γndx = 0 . (3.3.116)

Proof. The validity of (3.3.114) can be proved just by plugging ϕA as a test function in the
weak formulation of (3.2.2), where ϕ ∈ D(Rd):

−
∫
Rd
wγn ∆ϕA dx+

∫
Rd

wpγn
|x|γn

ϕA dx =
∫
Rd

w2p−1
γn

|x|γn
ϕA dx . (3.3.117)
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In fact, noticing that

∆ϕA =
(
ATx

)
· ∇(∆ϕ) + ∆

(
ATx

)
· ∇ϕ+ 2AT : ∇2ϕ︸ ︷︷ ︸

=0

= (∆ϕ)A

and ∫
R
f ϕA dx =

∫
R

〈
fATx ,∇ϕ

〉
dx = −

∫
R

div
(
fATx

)
ϕ dx = −

∫
R
fA ϕ dx

for all f regular enough (recall the antisymmetry of A and the symmetry of ∇2ϕ), from
(3.3.117) we infer

−
∫
Rd

(wγn)A ∆ϕ dx+
∫
Rd

(
wpγn|x|

−γn
)
A
ϕ dx =

∫
Rd

(
w2p−1
γn |x|

−γn
)
A
ϕ dx ,

namely (3.3.114) since (|x|−γn)A = 0. As a consequence of Lemma 3.2.10, we have that
wγn ∈ H2(Br) for any r > 0 and all n sufficiently large (it is enough that γn < γ(2, p, d)). In
particular, ωn[A] ∈ H1(Br) and equation (3.3.114) also holds in the H1 (local) weak sense. In
order to prove (3.3.115), let us then multiply (3.3.114) by the test function ϕ = ξR ωn[A] and
integrate by parts, where ξR(x) := ξ(x/R) and ξ is a regular cut-off function (see e.g. after
formula (3.3.18)). We obtain:∫

Rd
ξR
∣∣∣∇ωn[A]

∣∣∣2 dx+ 1
2

∫
Rd

〈
∇ξR ,∇

(
ω2
n[A]

)〉
dx+ p

∫
Rd
ξR ω

2
n[A]

wp−1
γn

|x|γn
dx

=(2p− 1)
∫
Rd
ξR ω

2
n[A]

w2(p−1)
γn

|x|γn
dx .

(3.3.118)

Since wγn ∈ Ḣ1(Rd), by the definition of ωn[A] we have that ωn[A] ∈ L2
2(Rd), namely∫

Rd
ω2
n[A] |x|−2dx <∞ .

We can therefore estimate the second term in the l.h.s. of (3.3.118) as follows:∣∣∣∣∫
Rd

〈
∇ξR ,∇

(
ω2
n[A]

)〉
dx
∣∣∣∣ =

∣∣∣∣∫
Rd

∆ξR ω2
n[A] dx

∣∣∣∣ ≤‖∆ξ‖∞R2

∣∣∣∣∣
∫
B2R\BR

ω2
n[A] dx

∣∣∣∣∣
≤4 ‖∆ξ‖∞

∣∣∣∣∣
∫
B2R\BR

ω2
n[A]

|x|2
dx
∣∣∣∣∣ ,

so that
lim
R→∞

∣∣∣∣∫
Rd

〈
∇ξR ,∇

(
ω2
n[A]

)〉
dx
∣∣∣∣ = 0 (3.3.119)

in view of the just recalled integrability properties of ωn[A]. Now notice that∫
Rd
ω2
n[A] w

2(p−1)
γn |x|−γndx <∞ . (3.3.120)

This is still a consequence of the fact that ωn[A] ∈ L2
2(Rd) and of the uniform boundedness

of the function |x|2−γnw2(p−1)
γn , which in turn follows by the estimate from above (3.3.92) of

Corollary 3.3.5 (here we need to assume n ≥ ñ). Using (3.3.119) and (3.3.120) we can then
pass the limit in (3.3.118) to obtain∫

Rd

∣∣∣∇ωn[A]

∣∣∣2 dx+ p
∫
Rd
ω2
n[A]

wp−1
γn

|x|γn
dx ≤ (2p− 1)

∫
Rd
ω2
n[A]

w2(p−1)
γn

|x|γn
dx . (3.3.121)
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Since (3.3.121) implies that both terms in the l.h.s. are finite, passing to the limit once again
in (3.3.118) we deduce the validity of (3.3.115).

We still have to show that ωn[A] ∈ Ḣ1(Rd), namely that there exists a sequence {ϕk} ⊂
D(Rd) such that

lim
k→∞

∫
Rd

∣∣∣∇ωn[A] −∇ϕk
∣∣∣2 dx = 0 .

By standard mollification arguments, it is enough to prove that the same holds true for the
sequence {ξk ωn[A]}, and this is indeed the case:∫
Rd

∣∣∣∇ωn[A] −∇
(
ξk ωn[A]

)∣∣∣2 dx ≤ 2
∫
Rd

(1− ξk)2
∣∣∣∇ωn[A]

∣∣∣2 dx+ 8 ‖∇ξ‖2
∞

∫
B2k\Bk

ω2
n[A] |x|−2dx ,

where the r.h.s. vanishes as k → ∞ since ∇ωn[A] ∈ [L2(Rd)]d and ωn[A] ∈ L2
2(Rd). Let us

finally prove (3.3.116). This is equivalent to proving that∫
Rd

(
w2p
γn |x|

−γn
)
A

dx = 0 . (3.3.122)

In order to establish (3.3.122), we can exploit once again a cut-off argument:∣∣∣∣∫
Rd
ξR
(
w2p
γn |x|

−γn
)
A

dx
∣∣∣∣ =

∣∣∣∣∣
∫
Rd

(ξR)A
w2p
γn

|x|γn
dx
∣∣∣∣∣ ≤ ‖ξA‖∞

∫
B2R\BR

w2p
γn

|x|γn
dx . (3.3.123)

To complete the proof, just recall (3.3.120) and that wγn ∈ L2p
γn(Rd), use the bound

∫
Rd

∣∣∣ωn[A]

∣∣∣ w2p−1
γn

|x|γn
dx ≤

(∫
Rd
ω2
n[A]

w2(p−1)
γn

|x|γn
dx
) 1

2
(∫

Rd

w2p
γn

|x|γn
dx
) 1

2

and let R→∞ in (3.3.123).

Lemma 3.3.12. Assume the same hypotheses of Lemma 3.3.11 (and use notations accord-
ingly). If {wγn} is eventually not radial (up to subsequences), then there exists a corresponding
sequence of antisymmetric matrices {An} such that∫

Rd
ω2
n[An] w

2(p−1)
γn |x|−γndx = 1 (3.3.124)

eventually. Moreover, {ωn[An]} converges weakly in Ḣ1(Rd), up to subsequences, to a non-
trivial function ω̄ satisfying the inequality∫

Rd
|∇ω̄|2 dx+ p

∫
Rd
ω̄2wp−1

b dx ≤ (2p− 1)
∫
Rd
ω̄2w

2(p−1)
b dx (3.3.125)

and the identities ∫
Rd
ω̄ w2p−1

b dx = 0 , (3.3.126)∫
Rd

xi
|x|2

(
wpb − w

2p−1
b

)
ω̄ dx = 0 ∀i = 1 . . . d . (3.3.127)

Proof. As recalled in the beginning of this subsection, if wγn is not radial then there exists
an antisymmetric matrix An such that ωn[An] 6≡ 0. In particular,∫

Rd
ω2
n[An] w

2(p−1)
γn |x|−γndx > 0 . (3.3.128)
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In fact, thanks to the regularity of wγn ensured by Lemma 3.2.10, we know that ωn[An] is
eventually continuous. Since ωn[An] is by hypothesis nontrivial, there exist x0 ∈ Rd and r > 0
such that ω2

n[An] > 0 in Br(x0). Therefore, wγn cannot be identically zero in Br(x0): this
means that ∫

Br(x0)
ω2
n[An] w

2(p−1)
γn |x|−γndx > 0 ,

which proves (3.3.128). Hence, in order to get (3.3.124), it is enough to replace the matrix
An with

Ãn :=
(∫

Rd
ω2
n[An] w

2(p−1)
γn |x|−γndx

)− 1
2
An .

For notational simplicity, we shall keep denoting Ãn as An. In view of (3.3.124), the identity
(3.3.115) reads ∫

Rd

∣∣∣∇ωn[An]

∣∣∣2 dx+ p
∫
Rd
ω2
n[An] w

p−1
γn |x|

−γndx = 2p− 1 . (3.3.129)

Thanks to (3.3.129), the sequence {ωn[An]} is then bounded in Ḣ1(Rd); we can therefore
assume that, up to subsequences, it converges in Ḣ1(Rd) and pointwise to some function ω.
First of all, let us show that

1 = lim
n→∞

∫
Rd
ω2
n[An] w

2(p−1)
γn |x|−γndx =

∫
Rd
ω2w

2(p−1)
b dx . (3.3.130)

Exploiting the just mentioned convergence properties of {ωn[An]} and the Sobolev inequality,
we infer that {ω2

n[An]} converges weakly in Ld/(d−2)(Rd) to ω2, up to subsequences. In order
to establish (3.3.130), it is then enough to prove that the sequence

w2(p−1)
γn |x|−γn

converges strongly in Ld/2(Rd) to w2(p−1)
b . But this is a direct consequence of Corollaries 3.3.5

and 3.3.10. In fact, from (3.3.91) such convergence is trivially true in B1. In Bc
1 one can use

estimate (3.3.92), which in particular ensures that

w2(p−1)
γn (x) |x|−γn ≤ C (1 + |x|)−4+γn ∀x ∈ Bc

1 (3.3.131)

for all n large enough and a positive constant C independent of n. Since γn ↓ 0, the r.h.s. of
(3.3.131) is eventually dominated by a function belonging to Ld/2(Rd). Hence, by dominated
convergence, we get that

w2(p−1)
γn |x|−γn

does converge to w2(p−1)
b strongly in Ld/2(Rd), and so (3.3.130) holds true. At this point,

estimate (3.3.125) follows by passing to the limit in (3.3.129) as n→∞: in the l.h.s. we use
weak lower semi-continuity and in the r.h.s. we use (3.3.130).

We are left with proving the validity of (3.3.126) and (3.3.127). As for the first one, it is
enough to note that the sequences

ωn[An] w
p−1
γn |x|

−γn/2 and wpγn|x|
−γn/2

converge strongly in L2(Rd) to ω̄ wp−1
b and wpb, respectively. This allows us to pass to the

limit in (3.3.116) (with A = An) to get (3.3.126). Let us finally prove (3.3.127). To begin
with, for all i = 1 . . . d, we consider the equation solved by the directional derivatives of wγn ,
namely vn[i] := (wγn)xi . Proceeding as in the proof of (3.3.114), we get that vn[i] ∈ Ḣ1(Rd)
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and it solves exactly the same equation as ωn[An] except for a forcing term coming up from
the directional derivative of the weight |x|−γn :

−∆vn[i] + p
wp−1
γn

|x|γn
vn[i] = (2p− 1)

w2(p−1)
γn

|x|γn
vn[i] + γn

xi
|x|γn+2

(
wpγn − w

2p−1
γn

)
(3.3.132)

in Rd. Thanks to (3.3.114) (with A = An) and (3.3.132) we deduce the identities∫
Rd

〈
∇ωn[An] ,∇f

〉
dx+ p

∫
Rd
ωn[An] f

wp−1
γn

|x|γn
dx = (2p− 1)

∫
Rd
ωn[An] f

w2(p−1)
γn

|x|γn
dx (3.3.133)

and ∫
Rd

〈
∇vn[i] ,∇g

〉
dx+ p

∫
Rd
vn[i] g

wp−1
γn

|x|γn
dx

=(2p− 1)
∫
Rd
vn[i] g

w2(p−1)
γn

|x|γn
dx+ γn

∫
Rd

xi
|x|γn+2

(
wpγn − w

2p−1
γn

)
g dx

(3.3.134)

for all f, g ∈ Ḣ1(Rd). Picking f = vn[i], g = ωn[An] and subtracting (3.3.134) from (3.3.133),
we end up with the key identity∫

Rd

xi
|x|γn+2

(
wpγn − w

2p−1
γn

)
ωn[An] dx = 0 . (3.3.135)

The validity of (3.3.127) is then just a matter of passing to the limit in (3.3.135) as n→∞.
This is feasible since, for instance, {ωn[An]} converges to ω̄ weakly in L2

2(Rd) and the sequence

xi |x|−γn
(
wpγn − w

2p−1
γn

)
converges to xi (wpb − w

2p−1
b ) strongly in L2

2(Rd).

The next proposition recalls a fundamental spectral gap property, which is a consequence
of the results in [24,65,66].
Proposition 3.3.13. Consider the functional

Jb(w) :=
∫
Rd
|∇w|2 dx+ p

∫
Rd
w2wp−1

b dx− (2p− 1)
∫
Rd
w2w

2(p−1)
b dx ,

where w ∈ Ḣ1(Rd). Then, Jb(w) ≥ 0 for all w ∈ Ḣ1(Rd) such that∫
Rd
ww2p−1

b dx = 0 , (3.3.136)

and equality is attained if and only if there exists a vector a ∈ Rd such that

w(x) = aT∇wb(x) ∀x ∈ Rd . (3.3.137)

Proof. As a particular case of [24, Theorem 2] (let α = −2p/(p − 1) < −d there), we have
that the Hardy-Poincaré inequality

4p
a(p− 1)

∫
Rd
f 2w3p−1

b dx ≤
∫
Rd
|∇f |2w2p

b dx (3.3.138)

(let a be as in (3.2.4)) holds true for all f belonging to the closure of D(Rd) w.r.t. the norm
appearing in the r.h.s. of (3.3.138) and such that∫

Rd
f w3p−1

b dx = 0 . (3.3.139)
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Moreover, nontrivial optimal functions for (3.3.138) subject to (3.3.139) are explicit: there
holds equality if and only if

f(x) = bTx ∀x ∈ Rd (3.3.140)
for some b ∈ Rd. We point out that these results had already been obtained by Denzler
and McCann in [65, 66], but in a different functional setting. We refer the reader to [24, pp.
16462-16463] for the details.

At this point the proof of our lemma consists in plugging the function f = ww−pb in
(3.3.138)–(3.3.140) and performing some integrations by parts. In order to justify this rig-
orously, we shall use compactly supported functions. That is, if w ∈ D(Rd) and satisfies
(3.3.136), then f = ww−pb is an eligible function for (3.3.138), so that integrating by parts in
the r.h.s. we find that Jb(w) ≥ 0. Given any w ∈ Ḣ1(Rd), take a sequence {wn} ⊂ D(Rd)
converging to w in Ḣ1(Rd), having the property that

∫
Rd wnw

2p−1
b dx = 0 for all n ∈ N.

Passing to the limit in the inequality Jb(wn) ≥ 0 we deduce that Jb(w) ≥ 0. We are left
with proving that Jb(w) = 0 if and only if (3.3.137) holds true. Again, the idea is to take
a sequence {wn} as above. Since Jb(wn) → 0 (Jb is continuous in Ḣ1(Rd)), we infer that
fn := wnw

−p
b satisfies

4p
a(p− 1)

∫
Rd
f 2
n w

3p−1
b dx =

∫
Rd
|∇fn|2w2p

b dx+ εn (3.3.141)

and
∫
Rd fnw

3p−1
b dx = 0, where εn → 0. To conclude that f = ww−pb is an optimal function

for (3.3.138), we just need to pass to the limit in (3.3.141). The only nontrivial part is to
show that we can pass to the limit in the right-hand side. Noticing that

∇fn = w−pb ∇wn − pwnw
−p−1
b ∇wb and ∇f = w−pb ∇w − pww

−p−1
b ∇wb ,

this amounts to proving that∫
Rd
|∇wn −∇w|2 dx→ 0 and

∫
Rd
|wn − w|2w−2

b |∇wb|2 dx→ 0 . (3.3.142)

But (3.3.142) is just a consequence of the convergence of {wn} to w in Ḣ1(Rd). In fact, by
Hardy’s inequality, the latter implies convergence in L2

2(Rd), and it is immediate to check
that

w−2
b (x) |∇wb(x)|2 ≤ C

(
1 + |x|2

)−1
∀x ∈ Rd

for a suitable positive constant C. Passing to the limit in (3.3.141) we then infer that
f = ww−pb optimizes (3.3.138) subject to (3.3.139). Hence, (3.3.140) implies that ww−pb = bTx
for some b ∈ Rd, and (3.3.137) follows by noting that ∇wb is proportional to xwpb.

Now we show that the optimal functions for (3.1.1), when restricting to the radial setting,
are Barenblatt-type profiles.

Proposition 3.3.14. Let (3.1.2) hold true. Then the solution to problem (P) restricted to
H?
γ(Rd) is unique and explicit. If the mass M is chosen so that it satisfies the Euler-Lagrange

equation (3.2.2), it coincides with wb,γ as in (3.2.3).

Proof. Since every (suitably rescaled) solution to problem (P) restricted to H?
γ(Rd) is a so-

lution to (3.2.2), it is enough to establish uniqueness for nonnegative, nontrivial solutions to
(3.2.2) belonging to H?

γ(Rd) (hereafter we shall denote such solutions as w?γ). Actually, this
follows from the results of [152]. In fact, there it is proved uniqueness for the non-weighted
semilinear equation

−∆w + wp = w2p−1 in Rd (3.3.143)
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among radial solutions which are nontrivial, nonnegative, belong to C1(Rd) and vanish at
infinity. Nevertheless, for radial functions, one can always perform the change of variables

v(s) = w?γ
(
c s2/(2−γ)

)
∀s ∈ R+ , c := [(2− γ)/2]2/(2−γ) ,

where, with a slight abuse of notation, it is understood that w?γ(|x|) = w?γ(x). Lengthy but
elementary computations show that v solves

v′′ + dγ − 1
s

v′ + vp = v2p−1 in R+ , (3.3.144)

where dγ := 2(d−γ)/(2−γ). Now notice that (3.3.144) is just the same equation as (3.3.143)
but for radial functions and in the “real” dimension dγ. One can then apply the uniqueness
results of [152] (see Theorem 2 in Section 2 there) to v and so recover uniqueness for w?γ.
However, such results hold true provided v ∈ C1. But this is indeed the case. In fact, from
the L∞ bound (3.2.25) and from the Calderón-Zygmund theory (see the proof of Lemma
3.2.10), we easily get that w?γ ∈ L∞(Rd) ∩ C1(Rd \ {0}). The latter property ensures that
v ∈ C1: this is carefully justified in [152, Section 6, Remark 3].

Finally, since wb,γ as in (3.2.3) belongs to H?
γ(Rd) and solves (3.2.2), the last statement is

a trivial consequence of the just proved uniqueness result.

Thanks to Lemma 3.3.12 and Propositions 3.3.13, 3.3.14, we are in position to prove our
main symmetry result.

Proof of Theorem 3.2.1. We argue by contradiction. By Proposition 3.3.14, if the assertion is
false then there exist a sequence {γn} ⊂ (0, d−(d−2)p) such that γn ↓ 0 and a corresponding
sequence of minimizers {wγn} such that wγn is not radial for all n ∈ N. In view of Lemma
3.3.12, this entails the existence of a nontrivial function ω̄ ∈ Ḣ1(Rd) satisfying (3.3.125),
(3.3.126) and (3.3.127): but then Proposition 3.3.13 forces (3.3.125) to be an equality and
ω̄ to have the explicit form ω̄ = aT∇wb for some a 6= 0. Combining this information with
(3.3.127), we infer that

d∑
j=1

aj
∫
Rd

xi
|x|2

(
wpb − w

2p−1
b

)
(wb)xj dx = 0 ∀i = 1 . . . d ,

that is
d∑
j=1

aj
∫
Rd

xi
|x|2

(
1

p+ 1 w
p+1
b − 1

2p w
2p
b

)
xj

dx = 0 ∀i = 1 . . . d . (3.3.145)

Integrating by parts in (3.3.145), we obtain:

d∑
j=1

aj
∫
Rd

(
δij
|x|2
− 2 xixj
|x|4

)(
− 1
p+ 1 w

p+1
b + 1

2p w
2p
b

)
dx = 0 ∀i = 1 . . . d , (3.3.146)

where δij denotes Kronecker’s delta. Since wb is radial, it is apparent that for all j 6= i
the integrals appearing in the summation (3.3.146) are identically zero, so that the latter
amounts to

ai
∫
Rd

(
1
|x|2
− 2 x2

i

|x|4

)(
− 1
p+ 1 w

p+1
b + 1

2p w
2p
b

)
dx = 0 ∀i = 1 . . . d . (3.3.147)
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The radiality of wb also implies that the integral in (3.3.147) is independent of i:∫
Rd

(
1
|x|2
− 2 x2

i

|x|4

)(
− 1
p+ 1 w

p+1
b + 1

2p w
2p
b

)
dx

=d− 2
d

∫
Rd

1
|x|2

(
− 1
p+ 1 w

p+1
b + 1

2p w
2p
b

)
dx ∀i = 1 . . . d .

(3.3.148)

Since a 6= 0, from (3.3.147) and (3.3.148) we deduce that∫
Rd

1
|x|2

(
− 1
p+ 1 w

p+1
b + 1

2p w
2p
b

)
dx = 0 . (3.3.149)

Actually (3.3.149) cannot hold. In fact, repeating exactly the same proof as Proposition
3.3.9, with `R(r) replaced by 1/r2, we get that the integral in (3.3.149) is strictly positive.
The contradiction is then established, and the proof is complete.
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CHAPTER4
Fast diffusion on hyperbolic space: sharp asymptotics

of radial solutions

4.1 Introduction and main results

In this chapter we study the asymptotic behaviour of nonnegative solutions to the following
fast diffusion equation on N -dimensional (let N ≥ 2) hyperbolic space HN :ut = ∆(um) on HN × (0, T ) ,

u = u0 on HN × {0} ,
(4.1.1)

where ∆ is the Riemannian Laplacian, m ∈ (ms, 1) and ms is the critical exponent

ms := N − 2
N + 2 .

The initial datum u0 is assumed to be nonnegative and radial in the sense that it depends
only on the geodesic distance r from a given point o ∈ HN (which we shall denote as d(x, o)),
namely the pole, which has to be considered as fixed. Solutions to the fast diffusion equation
corresponding to radial data are of course themselves radial at any time. In (4.1.1) the
parameter T = T (u0) denotes, for an appropriate class of data, the extinction time of the
solution u, namely the smallest positive time t at which u(t) ≡ 0. In fact, the results of [29]
show that, in a class of Cartan-Hadamard manifolds which includes HN , the extinction time
exists finite for initial data which belong to Lq(HN), where q > 1 ∨ N(1−m)/2. We refer
to such paper also for the relevant existence and uniqueness results for solutions to (4.1.1)
provided there (see however an alternative approximation procedure sketched in Subsection
4.2.1).

It is well known that the fine asymptotics of solutions to the fast diffusion equation posed
in the whole Euclidean space RN is governed by (suitable rescalings of) Barenblatt, or pseudo-
Barenblatt, solutions. A huge literature on the topic has been produced in the last decade, so
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we limit ourselves to quote the monographs [172,173] and, without any claim of completeness,
the papers [23, 24, 30, 43–46, 58, 62, 64, 66, 85, 122, 132] and references therein (see also the
Introduction to Chapter 3). We point out that in this context extinction in finite time takes
place, for suitable classes of data, only for m < (N − 2)/N (provided e.g. N ≥ 3).

The situation on negatively curved manifolds is different from the Euclidean one since
solutions vanish in finite time not only for m small enough, but for all m < 1. In fact, this
is somewhat similar to what happens in the case of the homogeneous Dirichlet problem in
bounded Euclidean domains Ω, which was deeply investigated e.g. in [19, 31, 73, 93, 166]. In
such papers, at various levels of detail, it is shown that the asymptotics of suitable classes of
solutions can be described in terms of separable solutions of the form (1 − t/T )1/(1−m)S1/m,
where S is a positive solution to the elliptic problem −∆S = c S1/m in Ω, with S = 0 on
∂Ω, for a suitable constant c > 0 (in principle depending on the initial datum). No positive
solution to the above elliptic problem exists in the whole Euclidean space RN . However, on
HN , the fact that the bottom of the L2 spectrum of −∆ is strictly positive points towards
existence of such a solution. Indeed, this result was proved in [129]. More precisely, the
authors establish there that, given any c > 0 and m ∈ (ms, 1), the equation

−∆V = c V
1
m on HN (4.1.2)

admits strictly positive solutions V belonging to the Sobolev space H1(HN) (what we call
energy solutions), which are necessarily radial with respect to some pole o ∈ HN , the latter
thus being the only free parameter characterizing such family of solutions. Notice that
solutions to (4.1.2) corresponding to different values of c are related by scaling, namely they
are all multiples of the solution with c = 1. The asymptotics of V = V (r) as r → ∞ was
studied as well in [129] and slightly improved in [26]: the main result is the existence of a
constant l = l(c,m,N) > 0 such that, for all k ∈ N ∪ {0},

lim
r→∞

e(N−1)r dkV
drk (r) = (−1)k(N − 1)k l . (4.1.3)

Actually, in [129] and [26], formula (4.1.3) is proved for k = 0, 1 only, but by exploiting
(4.1.2) it is straightforward to deduce its validity for all k ∈ N. Infinitely many other positive
solutions to (4.1.2) exist, but none of them belongs to H1(HN) and their behaviour as r →∞
is of power type (see again [26]).

As concerns asmyptotics, here we shall prove that the behaviour of a given solution u
to (4.1.1) with a nonnegative radial initial datum u0 is related to the energy solution V of
(4.1.2) having the same pole o as u0 and corresponding to a value of c that depends on u0
itself via the extinction time T of u, namely the one that satisfies

−∆V = 1
(1−m)T V

1
m on HN . (4.1.4)

More precisely, our main result is the following.
Theorem 4.1.1 (Convergence in relative error and convergence of derivatives). Let u be the
solution to the fast diffusion equation (4.1.1) corresponding to a non-identically zero initial
datum u0 ≥ 0, which is supposed to be radial w.r.t. o ∈ HN and to belong to Lq(HN) for
some q > N(1−m)/2, with q ≥ 1. If T > 0 is the extinction time of u and V is the unique
positive energy solution, with pole o, to the elliptic problem (4.1.4), then

lim
t→T−

∥∥∥∥∥∥∥∥
u(t)(

1− t
T

) 1
1−m V

1
m

− 1

∥∥∥∥∥∥∥∥
∞

= 0 . (4.1.5)
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Moreover, for all k ∈ N there holds

lim
t→T−

∣∣∣∣∣∣∣∣
u(t)(

1− t
T

) 1
1−m V

1
m

∣∣∣∣∣∣∣∣
Ck(R+)

= 0 , (4.1.6)

where
|φ|Ck(R+) :=

∥∥∥∥∥∂kφ∂rk
∥∥∥∥∥
∞

for any regular radial function φ. As a consequence, for all k ∈ N there exists a smooth
function Fk(r), having the property

lim
r→∞

Fk(r) = 1 ,

such that

lim
t→T−

∥∥∥∥∥∥∥∥
∂ku(t)
∂rk

(−1)k
(
N−1
m

)k (
1− t

T

) 1
1−m V

1
m

− Fk

∥∥∥∥∥∥∥∥
∞

= 0 . (4.1.7)

Remark 4.1.2. Estimates (4.1.3) and (4.1.7) (together with identity (4.4.41) below) imply
that, given any k ∈ N, for all ε > 0 there exist tε ∈ (0, T ) and rε > 0 such that

1− ε ≤
∂ku
∂rk

(r, t)(
1− t

T

) 1
1−m dkV

1
m

drk (r)
≤ 1 + ε ∀r ≥ rε , ∀t ∈ [tε, T ) .

Notice that (4.1.7) bears some similarity with some of the results established in [124] in the
Euclidean case and for m > 1 (porous medium equation). See also [123] for analogous results
for the Euclidean p-Laplacian driven evolution.

The method proof of Theorem 4.1.1 and the known behaviour at infinity of V and its
derivatives allow us to state a global Harnack principle and give upper and lower bounds on
derivatives of the solution.
Theorem 4.1.3 (Global Harnack principle and bounds for derivatives). Let the assump-
tions of Theorem 4.1.1 be satisfied. Then for all ε > 0 there exist positive constants c1 =
c1(u0,m,N, ε) and c2 = c2(u0,m,N, ε) such that the bound

c1

(
1− t

T

) 1
1−m

e−
N−1
m

r ≤ u(r, t) ≤ c2

(
1− t

T

) 1
1−m

e−
N−1
m

r (4.1.8)

holds true for all r ≥ 0 and t ∈ [ε, T ). Moreover, for all k ∈ N there hold∣∣∣∣∣∂ku∂rk
(r, t)

∣∣∣∣∣ ≤ C1,k

(
1− t

T

) 1
1−m

e−
N−1
m

r , (4.1.9)
∣∣∣∣∣∂ku∂tk (r, t)

∣∣∣∣∣ ≤ C2,k
ek(N−1)( 1

m
−1)r

(1− t
T

)k e−
N−1
m

r
(

1− t

T

) 1
1−m

, (4.1.10)

∀r ≥ 0 , ∀t ∈ [ε, T )
for suitable positive constants C1,k = C1,k(u0,m,N, ε) and C2,k = C2,k(u0,m,N, ε). In
addition, for any k ∈ N there exist t ∈ (0, T ), r > 0 and a suitable positive constant
C ′k = C ′k(u0,m,N) such that∣∣∣∣∣∂ku∂rk

(r, t)
∣∣∣∣∣ ≥ C ′k

(
1− t

T

) 1
1−m

e−
N−1
m

r ∀r ≥ r , ∀t ∈ [t, T ) . (4.1.11)
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Notice that our global Harnack principle (as well as the corresponding bounds for deriva-
tives) is in the spirit of the one proved by E. DiBenedetto, Y. Kwong and V. Vespri in the
fundamental paper [73] for the fast diffusion equation in bounded domains of RN , and of sim-
ilar results proved by M. Bonforte and J. L. Vázquez in [34] for the fast diffusion equation in
RN : in the latter case solutions can in fact be bounded above and below by special solutions
of Barenblatt type. The concept of convergence in relative error was first introduced in [170],
still as concerns the fast diffusion equation in RN . Later on, M. Bonforte, G. Grillo and J.
L. Vázquez proved in [31] that convergence in relative error to a separable solution occurs in
the case of bounded domains, thus improving on the results of [73].

It is worth pointing out that the techniques of proof of Theorems 4.1.1 and 4.1.3 can be
used to capture the spatial behaviour of solutions, at any fixed t > 0, to the fast diffusion
equation on HN in the subcritical range m ∈ (0,ms] as well. Indeed, the following result
holds true.
Theorem 4.1.4 (Spatial bounds for subcritical m). Let N ≥ 3 and the assumptions of
Theorem 4.1.1 be satisfied. Suppose that m lies in the subcritical range (0,ms]. Then for any
fixed t ∈ (0, T ) there exist positive constants c1 = c1(t, u0,m,N) and c2 = c2(t, u0,m,N) such
that the bound

c1 e
−N−1

m
r ≤ u(r, t) ≤ c2 e

−N−1
m

r (4.1.12)
holds true for all r ≥ 0. Moreover, for all k ∈ N the bounds∣∣∣∣∣∂ku∂rk

(r, t)
∣∣∣∣∣ ≤ C1,k e

−N−1
m

r , (4.1.13)∣∣∣∣∣∂ku∂tk (r, t)
∣∣∣∣∣ ≤ C2,k e

k(N−1)( 1
m
−1)r e−N−1

m
r , (4.1.14)

∀r ≥ 0 , ∀t ∈ (0, T )

hold true for suitable positive constants C1,k = C1,k(t, u0,m,N) and C2,k = C2,k(t, u0,m,N).
Some words have to be said about the assumption of radiality that we require on the

initial data, which is related to several technical issues. First of all, we need some a priori
decay properties for the solution in order to exploit suitable barrier arguments. Such decay
properties are straightforward for radial functions in H1(HN) but need not be valid for
general solutions. In the second place, it is not obvious that the solution (suitably rescaled
in time) corresponding to a non-radial datum selects a unique asymptotic profile V along
subsequences (recall the degree of freedom given by the pole o). This was proved in [93] in the
Euclidean case (bounded domains) but it is not known in the present context. Besides, in the
proof of the key Lemma 4.2.3 below, the compactness of the embedding (see the forthcoming
Subsection 4.1.1 for notations)

H1
rad(HN) ↪→ L1+1/m

rad (HN)

is exploited in a crucial way, and such property fails in the non-radial framework. We remark
that it is not even clear how to consider data which are not radial but bounded above and
below by some radial data, since the extinction times of the corresponding solutions are
in principle different. The existence of ordered radial data whose solutions have the same
extinction time T > 0 is an open problem. Should such a construction be possible, our
methods of proof would readily give convergence in relative error to the separable solution
extinguishing at time T also for non-radial data in between.

Finally, let us mention the very recent paper [169]. In such work, the author studies the
asymptotic behaviour of solutions to the porous medium equation on HN , obtaining sharp
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results for radial solutions, which show that they approach a Barenblatt-type function whose
support grows in time with a logarithmic rate (in contrast with Euclidean power rate). Hence,
it is remarkable that form > 1 equation (4.1.1), to some extent, is closer to the same equation
in Euclidean space rather than in bounded domains.

Remark 4.1.5. Keeping the fundamental hypothesis of radiality, our results hold in some-
what more general geometric frameworks, but we preferred to work in the explicit case of
HN to avoid bothering the reader with heavier notations and technicalities. In fact one could
consider Riemannian models (see [20, 104] as general references and [18] for the analysis of
Lame-Emden-Fowler equations in such context) whose metric is defined, in spherical coor-
dinates about a pole o, by ds2 = dr2 + ψ2(r)dΘ2, where Θ ∈ SN−1, ψ ∈ C2([0,∞)) with
ψ(0) = ψ′′(0) = 0, ψ′(0) = 1, ψ′(r) > 0 for every r > 0 and limr→∞ ψ

′(r)/ψ(r) ∈ (0,∞).
Note that sectional curvatures at a point P tend, as the geodesic distance d(o, P ) tends to
∞, to a strictly positive constant. In such a kind of manifolds a radial energy solution having
the properties of the present solution V was shown to exist in [18].

4.1.1 Notations and preliminaries

As for the initial datum u0 = u0(r) in (4.1.1), in addition to its nonnegativity, in principle,
we should also assume that it is bounded and such that um0 ∈ H1

rad(HN), where

H1
rad(HN) :=

{
v radial : ‖v‖2

H1 :=
∫ ∞

0
v2(s) (sinh s)N−1ds+

∫ ∞
0

[v′(s)]2 (sinh s)N−1ds <∞
}
.

Notice that H1
rad(HN) is precisely the space of radial functions w.r.t. o which belong to

H1(HN). By energy solutions to (4.1.1) one should mean those corresponding to data u0
with um0 ∈ H1

rad(HN) (um0 ∈ H1(HN) if u0 is not radial), but in fact the results of [29] show
that the solution u corresponding to an initial datum which complies with the integrability
conditions of Theorem 4.1.1 automatically satisfies um(ε) ∈ H1

rad(HN)∩L∞(HN) for all ε > 0.
This is stated in [29] for N ≥ 3, but it holds true for N = 2 as well because the methods
of proof exploited in [29] only rely on the validity of a suitable Sobolev inequality (to some
extent, in the same spirit as Chapter 1), which is a fortiori satisfied in H1(H2).

Now let us see what problem (4.1.1) looks like for radial solutions. Recall that the Rie-
mannian Laplacian on hyperbolic space, for a radial function v = v(r), reads

∆v(r) = 1
(sinh r)N−1

[
(sinh r)N−1 v′(r)

]′
= v′′(r) + (N − 1)(coth r)v′(r) , (4.1.15)

where the superscript ′ means derivation with respect to r. From (4.1.15) we have that
studying energy solutions to (4.1.1) for radial initial data is equivalent to studying energy
solutions to the problem

ut = (um)′′ + (N − 1)(coth r) (um)′ in (0,∞)× (0, T ) ,
(um)′ = 0 on {0} × (0, T ) ,
u = u0 on [0,∞)× {0} .

(4.1.16)

The fact that there exists a finite extinction time T > 0 is a straightforward consequence of
the validity in H1

rad(HN) (in fact also in H1(HN)) of both a Poincaré and a Sobolev inequality
(see e.g. [173, Section 5.10] and [26, Section 3]), that is

‖v‖2 ≤ CP ‖v′‖2 , ‖v‖ 2N
N−2
≤ CS ‖v′‖2 (4.1.17)
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for all v ∈ H1
rad(HN) and suitable positive constants CP = CP (N), CS = CS(N), where

‖v‖pp :=
∫ ∞

0
|v(s)|p (sinh s)N−1ds , Lprad(HN) := {v radial : ‖v‖p <∞} .

Moreover, one can prove [21, Theorem 3.1] that the embedding of H1
rad(HN) in Lprad(HN) is

compact for all p ∈ (2, 2N/(N − 2)). Notice that, since m ∈ (ms, 1), this means in particular
that

H1
rad(HN) c

↪→ L1+1/m
rad (HN) , (4.1.18)

a crucial fact that we shall exploit in the next section. Recall however that such compact
embedding fails in H1(HN), another nontrivial issue that points out the advantage of working
in the radial framework.

In the sequel, for notational simplicity, we shall write Lp instead of Lp(HN) and do the
same with all the other functional spaces involved. Also, since we shall mostly deal with
radial functions, in the discussion below we shall often replace e.g. HN with [0,∞), Br with
[0, r) or o with 0, as long as there is no risk of ambiguity.

4.1.2 Outline of the chapter

The above results will be proved through several intermediate steps. Local uniform con-
vergence of um/(1 − t/T )m/(1−m) to the energy solution V of the elliptic problem (4.1.4) is
established in Section 4.2. In particular, in Subsection 4.2.1 we prove convergence on com-
pact subsets of HN \ {o}, while in Subsection 4.2.2 we extend such result to neighbourhoods
of {o}. Given the strict positivity of V , this ensures that (4.1.5) is satisfied at least locally.
Afterwards, in Section 4.3, we prove the global Harnack principle (4.1.8), by means of suitable
barriers at infinity which provide us with the correct upper and lower bounds (Subsections
4.3.1 and 4.3.2, respectively). In Section 4.4 we then deal with the proof of Theorem 4.1.1.
The convergence in relative error (4.1.5) is established in Subsections 4.4.1 (where we first
write the differential problem satisfied by the relative error and see it as a limit of suitable
approximate problems) and 4.4.2, in fact by taking advantage of the global Harnack prin-
ciple and exploiting a further delicate barrier argument. Finally, as concerns derivatives,
estimates (4.1.9)–(4.1.11) and the Ck convergence results (4.1.6), (4.1.7) and are dealt with
in Subsection 4.4.3. As already mentioned, Theorem 4.1.4 is just a direct consequence of the
methods of proof of Theorems 4.1.1 and 4.1.3 (in this regard, see Remarks 4.3.8, 4.3.14 and
4.4.7 below).

4.2 Local uniform convergence to the separable solution

As previously mentioned, each solution to (4.1.1) extinguishes in a finite time T > 0.
Therefore the asymptotic behaviour of u is, from this point of view, trivial: the solution
goes to zero as t ↑ T . In order to study finer properties of u it is very useful to look for
separable solutions to (4.1.1) (if any), so that their asymptotic behaviour might unveil at
least the expected order of convergence to zero of a generic solution. To this end, let us set
u(x, t) = g(t)V 1/m(x). After some straightforward computations one gets that u is a solution
to (4.1.1) for some u0 ≥ 0 (not identically zero) if and only if

g(t) =
(

1− t

T

) 1
1−m

∀t ∈ [0, T ] (4.2.1)

and V is a positive solution to the elliptic problem (4.1.4) for some parameter T > 0 (the
extinction time). When m ∈ (ms, 1) existence, uniqueness and radiality of such a V is guar-
anteed by compactness and by a moving plane method (in this regard, see the fundamental

224



4.2. Local uniform convergence to the separable solution

paper [129]). Local regularity and strict positivity of V are then a consequence of standard
elliptic arguments. So the rate of convergence to zero as t ↑ T for separable solutions is given
by (4.2.1). This suggests that, in order to analyse a nontrivial asymptotics, it is convenient to
study the behaviour of the rescaled solution u(r, t)/g(t). Notice that, if u(r, t) = g(t)V 1/m(r),
then such rescaled solution trivially coincides with V 1/m. For a generic u this is of course not
true: however, V 1/m seems to naturally maintain the role of an attractor for u/g.

Motivated by the above discussion, given the extinction time T > 0 associated with the
solution u of (4.1.1), let us consider the corresponding rescaled solution w defined as

w(r, τ) :=
(

T

T − t

) 1
1−m

u(r, t) = e
τ

(1−m)T u
(
r, T − Te−

τ
T

)
, τ := T log

(
T

T − t

)
, (4.2.2)

∀r ∈ (0,∞) , ∀t ∈ (0, T ) , ∀τ ∈ (0,∞) .

Straightforward computations show that w solves the following problem:
wτ = ∆(wm) + 1

(1−m)T w in (0,∞)× (0,∞) ,
(wm)′ = 0 on {0} × (0,∞) ,
w = u0 on [0,∞)× {0} .

(4.2.3)

The aim of this section is to prove that wm(τ) converges locally uniformly in {r ∈ [0,∞)} to
V as τ → ∞ (since V is positive, this is clearly equivalent to claiming that w(τ) converges
locally uniformly to V 1/m). The basic estimates one needs to exploit in order to prove such
kind of result were obtained in a celebrated paper [19] by J. G. Berryman and C. J. Holland,
though for regular solutions to the fast diffusion equation in regular bounded domains of RN .
Here, first we shall only point out how their techniques, with minor modifications, can be
applied to this framework as well. This will ensure local uniform convergence at least away
from {r = 0} (Subsection 4.2.1). Some further work will then be required to extend the
result to neighbourhoods of the pole o (Subsection 4.2.2).

4.2.1 Convergence away from the pole

To our purposes, it is convenient to see u as a monotone increasing limit of the sequence
of solutions {un} (with extinction times {Tn}) to the problems

(un)t = ∆(umn ) in (0, n)× (0, Tn) ,
un = 0 on {n} × (0, Tn) ,
(umn )′ = 0 on {0} × (0, Tn) ,
un = u0n on [0, n]× {0} ,

(4.2.4)

where {u0n} is a sequence of regular data such that u0n(n) = 0, (um0n)′(0) = 0, u0n ≤ u0,
which suitably approximates u0, and Tn ↑ T . We shall identify un(·, t) as functions in the
whole of [0,∞) by setting them to zero outside [0, n]. Notice that (4.2.4) corresponds to the
radial fast diffusion equation with homogeneous Dirichlet boundary conditions posed on the
ball of radius n of HN centred at x = o.

Lemma 4.2.1. There exists a positive constant C = C(m,N) such that

C (T − t)
1

1−m ≤ ‖u(t)‖m+1 ≤
(

1− t

T

) 1
1−m
‖u0‖m+1 ∀t ∈ (0, T ) . (4.2.5)
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Moreover, the ratio
t 7→ ‖(u

m)′(t)‖2
‖u(t)‖mm+1

(4.2.6)

is nonincreasing along the evolution.

Proof. The left inequality in (4.2.5) can be proved exactly as in [19, Lemma 1] using the
identity

d
dt

∫ ∞
0

um+1(s, t) (sinh s)N−1ds = −(m+ 1)
∫ ∞

0
[(um)′(s, t)]2 (sinh s)N−1ds (4.2.7)

and the Poincaré-Sobolev inequalities in (4.1.17). To justify the the other statements we
proceed as in [19, Lemma 2], outlining the main steps only. At a formal level, we have:∫∞

0 [(um)′(s, t)]2 (sinh s)N−1ds∫∞
0 um+1(s, t) (sinh s)N−1ds ≤

∫∞
0 um−1(s, t) [∆(um)(s, t)]2 (sinh s)N−1ds∫∞

0 [(um)′(s, t)]2 (sinh s)N−1ds , (4.2.8)

d
dt

∫ ∞
0

[(um)′(s, t)]2 (sinh s)N−1ds = −2m
∫∞

0 um−1(s, t) [∆(um)(s, t)]2 (sinh s)N−1ds∫∞
0 [(um)′(s, t)]2 (sinh s)N−1ds ,

(4.2.9)
where (4.2.8) follows from integration by parts and Cauchy-Schwarz inequality. From (4.2.7)–
(4.2.9) one easily shows, exactly as in [19, Lemma 2], that the ratio in (4.2.6) is nonincreasing.
Thanks to this, the right inequality in (4.2.5) also follows as in [19, Lemma 2, formula (14)].

To justify such steps it is convenient to exploit the approximate solutions {un}. Indeed
the proof of [19, Lemma 2] requires the finiteness of the quantity∫ ∞

0
um−1(s, t) [∆(um)(s, t)]2 (sinh s)N−1ds

for all t ∈ (0, T ), which a priori may not hold here. However, one obtains (4.2.5) and (4.2.6)
for un (we can assume that umn is regular enough up to the boundary) and then passes to the
limit as n → ∞. This is feasible since {umn (t)} converges weakly in H1

rad to um(t), and by
monotonicity {un(t)} converges to u(t) in Lm+1

rad and {Tn} converges to T .

The next result is key in order to establish the mentioned convergence of wm to the
stationary profile V .

Lemma 4.2.2. The following inequality holds true for all τ ∈ (0,∞):∫ ∞
0

[
1
2 [(wm)′(s, τ)]2 − m

(1−m2)T wm+1(s, τ)
]

(sinh s)N−1ds

+m
∫ τ

0

∫ ∞
0

wm−1(s, σ) [wτ (s, σ)]2 (sinh s)N−1dsdσ

≤
∫ ∞

0

[
1
2 [(um0 )′(s)]2 − m

(1−m2)T um+1
0 (s)

]
(sinh s)N−1ds .

(4.2.10)

Proof. For the smooth rescaled solutions wn inequality (4.2.10) is in fact an equality, since
by straightforward computations one verifies that

d
dτ

∫ ∞
0

[
1
2 [(wmn )′(s, τ)]2 − m

(1−m2)Tn
wm+1
n (s, τ)

]
(sinh s)N−1ds

=−m
∫ ∞

0
wm−1
n (s, τ) [(wn)τ (s, τ)]2 χ(0,n)(s) (sinh s)N−1ds .

(4.2.11)
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In order to get estimate (4.2.10) it suffices to integrate (4.2.11) from 0 to τ and let n→∞:
to the first integral on the l.h.s. of (4.2.10) we can apply the weak convergence of {umn (t)}
to um(t) in H1

rad and the strong convergence of {un(t)} to u(t) in Lm+1
rad , while the second

integral is handled by means of Fatou’s Lemma (thanks to local regularity we can assume
that, up to subsequences, {(un)t} converges pointwise to ut) or by the fact that

u
m+1

2
n → u

m+1
2 weakly in H1((0, T ); L2

rad(HN)) .

We can now prove the claimed local uniform convergence away from o.

Lemma 4.2.3. Let w be the rescaled solution (4.2.2) to (4.2.3) and V be the radial, positive
energy solution to the elliptic problem (4.1.4). Then

lim
τ→∞
‖wm(τ)− V ‖L∞loc((0,∞)) = 0 , (4.2.12)

that is wm(τ) converges uniformly to V in any compact set K b (0,∞) as τ →∞.

Proof. We adapt the proof of [19, Theorem 2]. First of all notice that, from (4.2.10), one
deduces the existence of a sequence {τn} → ∞ such that∫ ∞

0
wm−1(s, τn) [wτ (s, τn)]2 (sinh s)N−1ds→ 0 . (4.2.13)

To show this fact notice that, thanks to (4.2.5) and (4.2.2), ‖w(τ)‖m+1 is bounded as a func-
tion of τ , hence the first integral on the l.h.s. of (4.2.10) is bounded from below. Moreover,
the r.h.s. does not depend on τ , therefore the integral∫ ∞

0

∫ ∞
0

wm−1(s, σ) [wτ (s, σ)]2 (sinh s)N−1dsdσ

must be finite. Still from (4.2.10) and (4.2.5) one gets the boundedness of ‖wm(τn)‖H1 ; hence,
up to subsequences, {wm(τn)} converges weakly in H1

rad to a certain function R. From the
compact embedding (4.1.18), such convergence is in fact strong in L1+1/m

rad . In particular, R
is a nonnegative non-identically zero function (indeed (4.2.5) prevents ‖wm(τn)‖1+1/m from
going to zero) belonging to H1

rad.
The next step is to show that R solves (4.1.4). To this end, take any test function

φ : [0,∞) 7→ R with compact support in [0,∞), multiply by it the first equation in (4.2.3)
(evaluated at τ = τn) and integrate by parts in [0,∞). This leads to the identity∫ ∞

0
wτ (s, τn)φ(s) (sinh s)N−1ds =−

∫ ∞
0

(wm)′(s, τn)φ′(s) (sinh s)N−1ds

+
∫ ∞

0

1
(1−m)T w(s, τn)φ(s) (sinh s)N−1ds .

(4.2.14)

The two integrals in the r.h.s. of (4.2.14) are stable under passage to the limit as n → ∞:
indeed {wm(τn)} converges weakly in H1

rad to R and {w(τn)} converges strongly in Lm+1
rad to

R1/m (and so also in L1
rad locally). Finally, the left-hand side goes to zero since its modulus

is bounded by(∫ ∞
0

w1−m(s, τn)φ2(s) (sinh s)N−1ds
) 1

2
(∫ ∞

0
wm−1(s, τn) [wτ (s, τn)]2 (sinh s)N−1ds

) 1
2
,
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which goes to zero thanks to (4.2.13) and to the boundedness of ‖w(τn)‖m+1. From the
arbitrariness of φ and the uniqueness of energy solutions to (4.1.4) we infer that R must
coincide with V . Moreover, the convergence of {wm(τn)} to R = V in H1

rad is also strong. To
prove that, just replace φ with wm(τn) in the computations above to get

lim
n→∞

∫ ∞
0

[(wm)′(s, τn)]2 (sinh s)N−1ds =
∫ ∞

0

1
(1−m)T V

m+1
m (s) (sinh s)N−1ds

=
∫ ∞

0
[V ′(s)]2 (sinh s)N−1ds .

Hence, weak convergence plus convergence of the norms in H1
rad gives the claimed strong

convergence. Since H1
rad is continuously embedded in L∞loc (see e.g. Lemma 4.3.2 below), we

have proved (4.2.12) along the special sequence {τn}. To prove that such convergence takes
place along any other subsequence, one can argue by contradiction. That is, suppose there
exists a sequence {τk} such that {wm(τk)} does not converge strongly in H1

rad to V . By
(4.2.10) we can assume that, up to subsequences, {wm(τk)} converges weakly in H1

rad to a
certain function Q. Now note that, again from (4.2.5) and (4.2.10) (up to a shift of the time
origin), both

τ 7→ ‖w(τ)‖m+1
m+1

and
τ 7→ 1

2 ‖(w
m)′(τ)‖2

2 −
m

(1−m2)T ‖w(τ)‖m+1
m+1

are nonincreasing functions of τ . In particular,

‖Q‖m+1
m

= lim
k→∞
‖w(τk)‖mm+1 = lim

n→∞
‖w(τn)‖mm+1 = ‖V ‖m+1

m
(4.2.15)

and

‖Q′‖2
2 ≤ lim inf

k→∞

(
‖(wm)′(τk)‖2

2 ±
m

(1−m2)T ‖w(τk)‖m+1
m+1

)
= lim

n→∞
‖(wm)′(τn)‖2

2 = ‖V ′‖2
2 .

(4.2.16)
Since V is the unique minimizer of ‖v′‖2

2 among all functions v with prescribed L1+1/m
rad norm

(see [129]), (4.2.15) and (4.2.16) necessarily imply that Q = V . Strong convergence of
{wm(τk)} to Q = V is then a consequence of (4.2.16), which leads to a contradiction.

4.2.2 Convergence in a neighbourhood of the pole

We are left with proving that the local uniform convergence (4.2.12) takes place also down
to r = 0. In order to do that, we shall use Lemma 4.2.3 and the following two lemmas, which
show how positivity and boundedness of w can be extended to a neighbourhood of o.

Lemma 4.2.4. For any ε > 0 there exist rε > 0 small enough and τε > 0 large enough such
that

wm(r, τ) ≥ V (0)− ε ∀(r, τ) ∈ [0, rε]× [τε,∞) . (4.2.17)

Proof. We can adapt the techniques of proof of [73, Lemma 6.2]. First of all recall that,
thanks to the local uniform convergence to the stationary profile (4.2.12), we have uniform
boundedness away from zero in any compact set which does not contain o. In particular,
consider a point x0 ∈ HN such that r0 := d(x0, o) ∈ (0, 1/2). For a given τ0 > 0, set

k := inf
(x,τ): τ≥τ0 , x∈Br0/2(x0)

w(d(x, o), τ) , (4.2.18)
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where Br0/2(x0) is the hyperbolic ball of radius r0/2 centred at x0. Thanks to the observations
above, k > 0 provided τ0 is sufficiently large. Let us consider equation (4.2.3) (more precisely,
its interpretation as a differential equation on HN) centred at x0 in place of o. To avoid
confusion, we shall call ρ the radial coordinate about such x0. Upon defining

Ñ := 1 + (N − 1) sup
ρ∈(0,1)

ρ coth(ρ) ,

for any function f = f(ρ) such that f ′(ρ) ≤ 0 we have

∆f(ρ) = f ′′(ρ) + (N − 1) coth(ρ)f ′(ρ) ≥ f ′′(ρ) + Ñ − 1
ρ

f ′(ρ) ∀ρ ∈ (0, 1) , (4.2.19)

where the term in the r.h.s. of (4.2.19) is the Euclidean Laplacian of f associated with the
“artificial” dimension Ñ . In order to seek a subsolution ψ(ρ, τ) to (4.2.3) centred at x0 it is
therefore enough to require that (we keep denoting as ′ derivative w.r.t. ρ)

ψτ ≤ (ψm)′′ + Ñ − 1
ρ

(ψm)′ , ψ ≥ 0 , (ψm)′ ≤ 0 , (4.2.20)

as long as ρ varies in (0, 1). The proof of Lemma 6.2 of [73] ensures that the function

ψ(ρ, τ) = k
(1− ρβ) 2

m(
1 + k1−m bρ2

τ−τ0

) θ
1−m

satisfies (4.2.20) in the region{
(ρ, τ) ∈

(
r0

2 , 1
)
×
(
τ0, τ0 + r2

0
4

)}

upon choosing appropriately the positive parameters β = β(m, Ñ), θ = θ(m, Ñ) and b =
b(m, Ñ, k), k being as in (4.2.18). Let us check conditions on the parabolic boundary. For
τ = τ0 and for ρ = 1 we have, by construction, ψ ≡ 0 and so trivially ψ ≤ w. For ρ = r0/2
(actually for any ρ ∈ (0, 1)) there holds ψ ≤ k, from which ψ ≤ w by definition of k. Hence,
by comparison,

w
(
d(x, o), τ0 + r2

0/4
)
≥ ψ(d(x, x0), τ0 + r2

0/4) ≥ ψ(3r0/2, τ0 + r2
0/4) = k

(
1−

(
3r0
2

)β) 2
m

(1 + 9bk1−m)
θ

1−m

=: C0 > 0

∀x ∈ HN : r0

2 ≤ d(x, x0) ≤ 3r0

2 .

In particular we obtain the existence of a radius r1 > 0 and a time τ1 > 0 such that

w(r, τ) ≥ C0 > 0 ∀(r, τ) ∈ [0, r1]× {τ1} . (4.2.21)

Indeed (4.2.21) holds for all τ larger than τ1, rather than only for τ = τ1. This is a trivial
consequence of the fact that C0 is a subsolution to (4.2.3) (the comparison condition on the
lateral boundary {r1}×(τ1,∞) is satisfied provided C0 is small enough, again as a consequence
of the local uniform convergence (4.2.12)).
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Finally, we need to refine estimate (4.2.21). To this end, just observe that the function

g(τ) := C0 e
τ−τ∗

(1−m)T

is a solution to the differential equation in (4.2.3) for any τ∗ > 0. Still from the local uniform
convergence (4.2.12) (and from the fact that V (·) is decreasing) we have that, for any ε > 0,
we can choose r2 = r2(ε) < r1 and τ2 = τ2(ε) > τ1 such that wm(r2, τ) ≥ V (0) − ε for all
τ ≥ τ2. Therefore g(τ), with the choice τ∗ = τ2, is a subsolution to (4.2.3) in the region

{(r, τ) ∈ (0, r2)× (τ2, τ3)} ,

where τ3 is the time at which gm(τ3) = V (0)− ε. Since the constant (V (0)− ε)1/m is then a
subsolution in {(r, τ) ∈ (0, r2)× (τ3,∞)}, estimate (4.2.17) follows.

Now we prove the analogue of (4.2.17) from above.
Lemma 4.2.5. For any ε > 0 there exist rε > 0 sufficiently small and τε > 0 sufficiently
large such that

wm(r, τ) ≤ V (0) + ε ∀(r, τ) ∈ [0, rε]× [τε,∞) . (4.2.22)

Proof. Again, we shall proceed by constructing a proper supersolution to (4.2.3). To begin
with, let α and ε two small positive parameters. Our aim is first to obtain a suitable estimate
for ∆(V (r/α)) in the region {r ≤ αε}. We have:

∆(V (r/α)) = − 1
α2(1−m)T V 1/m(r/α) + N − 1

α2 (α coth(r)− coth(r/α))V ′(r/α) . (4.2.23)

The function h(r) := r coth(r) is regular and satisfies

h(r) = 1 + h′(0) r + q(r)r2 , h(r/α) = 1 + h′(0) r
α

+ q(r/α)
(
r

α

)2
, (4.2.24)

where both |q(r)| and |q(r/α)| can be bounded by

Q := max
s∈[0,1]

h′′(s)
2

provided α and ε are smaller than 1. In order to control the right term in the r.h.s. of (4.2.23),
we use (4.2.24):∣∣∣∣∣α coth(r)− coth(r/α)

α2

∣∣∣∣∣ =
∣∣∣∣∣r coth(r)− r

α
coth(r/α)

αr

∣∣∣∣∣ =
∣∣∣∣∣h′(0)
α

+ q(r) r
α
− h′(0)

α2 − q(r/α) r
α3

∣∣∣∣∣
≤ C
α2

for a suitable constant C > 0 independent of α and ε. Notice that, since V is regular and
V ′(0) = 0, there exists D > 0 (independent of α, ε) such that |V ′(r/α)| ≤ Dε for all r ≤ αε.
Hence, ∣∣∣∣N − 1

α2 (α coth(r)− coth(r/α))V ′(r/α)
∣∣∣∣ ≤ (N − 1)CDε

α2 . (4.2.25)

Then recall that V (·) is decreasing and V (0) > 0, so that from (4.2.23) and (4.2.25) we can
claim that there exists a constant E > 0 such that for any ε > 0 sufficiently small (depending
only on V , m and N) there holds

∆(V (r/α)) ≤ − E

α2T
∀r ∈ (0, αε) . (4.2.26)

230



4.2. Local uniform convergence to the separable solution

From Lq–L∞ smoothing effects (see [73, Lemma 6.1] or [29, Theorem 4.1], together with
(4.2.5)) we know that there exist A > 0 and τ0 > 0 such that w(r, τ) ≤ A for all (r, τ) ∈
(0,∞)× (τ0,∞). Let A1 > A2 be two given positive constants and let ε > 0 be so small that
(4.2.26) holds. For a fixed τ∗ ≥ τ0 + 1 set f(τ) := (τ − τ0)/(τ ∗ − τ0). First we shall prove
that if α > 0 is small enough then the function

ϕ(r, τ) := [A1(1− f(τ)) + A2f(τ)]
1
m V (r/α) 1

m

is a supersolution to (4.2.3) in the region

{(r, τ) ∈ (0, αε)× (τ0, τ∗)} . (4.2.27)

To this end, notice that

ϕ(r, τ0) = A
1
m
1 V

1
m (r/α) ≥ A

1
m
1 V

1
m (ε) ∀r ∈ (0, αε) , ϕ(αε, τ) ≥ A

1
m
2 V

1
m (ε) ∀τ ∈ (τ0, τ∗) ,

(4.2.28)
while derivatives of ϕ entail

ϕτ (r, τ) = − 1
m
f ′(τ)V 1

m (r/α)(A1 − A2) [A1(1− f(τ)) + A2f(τ)]
1
m
−1

≥ − 1
m

(A1 − A2)A
1
m
−1

1 V
1
m (0) ,

(4.2.29)

∆(ϕm)(r, τ) = [A1(1− f(τ)) + A2f(τ)] ∆(V (r/α)) ≤ −A2E

α2T

and
ϕ(r, τ) ≤ A

1
m
1 V

1
m (0) . (4.2.30)

In view of (4.2.29) and (4.2.30), we get that for ϕ to be a supersolution in the region (4.2.27)
it is enough to require

− 1
m

(A1 − A2)A
1
m
−1

1 V
1
m (0) ≥ −A2E

α2T
+ A

1
m
1 V

1
m (0)

(1−m)T , (4.2.31)

which is achieved by choosing α = α(V, T,m,N,A1, A2) sufficiently close to zero.
Now fix ε > 0 small enough. Set A1 = Am/V (ε) and A2 = V (0)/V (ε), where we assume

without loss of generality that Am > V (0) and pick α = α(V, T,m,N,A, ε) complying with
(4.2.31). Thanks to (4.2.28) we have

ϕ(r, τ0) ≥ A ∀r ∈ [0, αε] , ϕ(αε, τ) ≥ V
1
m (0) ∀τ ∈ [τ0, τ∗] . (4.2.32)

From the fact that V (·) is decreasing and from the local uniform convergence (4.2.12), we
can take τ0 so large that wm(αε, τ) ≤ V (0) for all τ ≥ τ0 (notice that ϕ is a supersolution
independently of τ0, τ∗ provided τ∗ − τ0 ≥ 1). Since (4.2.32) holds we can conclude, by
comparison, that w ≤ ϕ in the region (4.2.27). In particular,

wm(r, τ∗) ≤
V 2(0)
V (ε) ∀r ∈ [0, αε] .

By the remarks above this last result is actually valid for all τ∗ ≥ τ0 + 1. Hence, since
V (ε)→ V (0) > 0 as ε→ 0, we conclude that for any ε > 0 there exist rε so small and τε so
large that (4.2.22) holds true.
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Lemmas 4.2.4 and 4.2.5 then allow us extend the result of Lemma 4.2.3 down to r = 0.

Proposition 4.2.6. Let w be the rescaled solution (4.2.2) to (4.2.3) and V be the radial,
positive energy solution to the elliptic problem (4.1.4). Then

lim
τ→∞
‖wm(τ)− V ‖L∞loc([0,∞)) = 0 , (4.2.33)

that is wm(τ) converges uniformly to V in any compact set K b [0,∞) as τ →∞.

4.3 The global Harnack principle

The goal of this section is to bound the ratio wm(τ)/V in L∞((0,∞)) (and not only in
L∞loc([0,∞)) as we did in Section 4.2), namely to prove the global Harnack principle (4.1.8), a
crucial ingredient in the proof of Theorem 4.1.1. Since V (r) behaves like e−(N−1)r at infinity
(see (4.1.3) or Lemma 4.3.3 below), it will be enough to give bounds over

wm(r, τ)
e−(N−1)r . (4.3.1)

4.3.1 Estimates from above

Our first aim is to obtain the correct estimate from above for w.

Proposition 4.3.1. Let w be the rescaled solution corresponding to a nonnegative energy
solution u to (4.1.16), as in (4.2.2). Then, for any ε > 0, there exists a positive constant
Q′ = Q′(u0,m,N, ε) such that

w(r, τ) ≤ Q′ e−
N−1
m

r ∀(r, τ) ∈ [0,∞)× [ε,∞) . (4.3.2)

In order to prove Proposition 4.3.1, we need some preliminary lemmas.

Lemma 4.3.2. Let v ∈ H1
rad. For any r0 > 0 there exists a positive constant C(r0, N) such

that
v(r) ≤ C(r0, N) ‖v‖H1 e−

N−1
2 r ∀r ∈ [r0,∞) .

Proof. Consider the function z(r) := (sinh r)N−1 v2(r). We have:

z′(r) = (N − 1)(cosh r)(sinh r)N−2 v2(r) + 2(sinh r)N−1 v(r)v′(r) ;

integrating between r and r0 we end up with

z(r) =(sinh r0)N−1v2(r0) + (N − 1)
∫ r

r0
v2(s) (cosh s)(sinh s)N−2 ds

+ 2
∫ r

r0
v(s)v′(s) (sinh s)N−1 ds .

(4.3.3)

Since r0 > 0 and the behaviour at infinity of sinh r and cosh r is the same, we can control
the last two terms in the r.h.s. of (4.3.3) with a constant (depending on r0 and N) times
‖v‖2

H1 . As for the first term, notice that H1((r0/2, 3r0/2)) is continuously embedded in
L∞((r0/2, 3r0/2)) and H1

rad is in turn continuously embedded in H1((r0/2, 3r0/2)) (again,
through constants depending on r0 and N). Hence, there exists C(r0, N) > 0 such that

z(r) ≤ C2(r0, N) ‖v‖2
H1 ∀r ∈ [r0,∞) ,

which yields the claimed result since sinh r ≈ er/2 for r large.
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Lemma 4.3.3. For any m0 ∈ (ms, 1) there exists a solution V to

−∆V (r) = V
1
m0 (r) ∀r ∈ (0,∞) (4.3.4)

which is smooth, strictly positive, belongs to H1
rad and satisfies

A−1 e−(N−1)r ≤ V (r) ≤ Ae−(N−1)r ∀r ∈ [0,∞) (4.3.5)

for some positive constant A = A(m0).

Proof. As recalled in the Introduction, see e.g. [129] and [26].

Lemma 4.3.4. Let u be a bounded, nonnegative energy solution to (4.1.16). There exists a
positive constant C0 = C0(u0,m,N) such that

u(r, t) ≤ C0 e
−N−1

2m r ∀(r, t) ∈ [0,∞)× (0, T ) . (4.3.6)

Proof. It is a matter of straightforward computations to show that

−∆
(
e−

N−1
2 r
)
≥ 0 ∀r ∈ (0,∞) . (4.3.7)

Thanks to Lemma 4.3.2, to the fact that um0 ∈ H1
rad and to the boundedness of u, one can

choose C0 so large that C0 e
−N−1

2m r is above u on a parabolic boundary of the type [r0,∞)×
{0} ∪ {r0} × (0, T ), for a given r0 ∈ (0,∞). The conclusion then follows from (4.3.7), the
comparison principle (which is standard here) and again the boundedness of u.

We are now ready to prove a better (spatial) estimate from above for nonnegative energy
solutions to (4.1.16).
Lemma 4.3.5. Let u be a nonnegative energy solution to (4.1.16). For any t∗ ∈ (0, T ) there
exists a positive constant Q = Q(t∗, u0,m,N) such that

u(r, t∗) ≤ Qe−
N−1
m

r ∀r ∈ [0,∞) . (4.3.8)

Proof. We shall construct a proper barrier. In particular, we shall prove that for a suitable
choice of the parameter ξ > 0, the following function is a supersolution to (4.1.16) in the
parabolic domain (ξ,∞)× (0, t∗):

ū(r, t) := C0
[
Ae

N−1
2 ξ V (r) f(t) + e−

N−1
2 r (1− f(t))

] 1
m
, (4.3.9)

where V is the solution to (4.3.4) associated with a fixed m0 ∈ (2m/(1 +m), 1) (A being
the corresponding constant that appears in (4.3.5)) and f(t) : [0, t∗] 7→ [0, 1] is a regular
increasing function such that f(0) = 0 and f(t∗) = 1, which we shall define later. The
constant C0 is the one that appears in (4.3.6): indeed, thanks to smoothing effects (recall
the brief discussion in Subsection 4.1.1), there is no loss of generality in assuming that u0 is
bounded. Since

ū(r, 0) = C0 e
−N−1

2m r ≥ u0(r) ∀r ∈ [0,∞)
and

ū(ξ, t) = C0
[
Ae

N−1
2 ξ V (ξ) f(t) + e−

N−1
2 ξ (1− f(t))

] 1
m ≥ C0 e

−N−1
2m ξ ≥ u(ξ, t) ∀t ∈ [0, t∗) ,

in order to prove that u(r, t) ≤ ū(r, t) for all (r, t) ∈ [ξ,∞)× [0, t∗] we are left with showing
that, by suitably choosing ξ, there holds

ūt(r, t) ≥ ∆(ūm)(r, t) ∀(r, t) ∈ (ξ,∞)× (0, t∗) .
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We have:

ūt(r, t) = C0 f
′(t)

[
Ae

N−1
2 ξ V (r)− e−N−1

2 r
] 1
m

[
Ae

N−1
2 ξ V (r) f(t) + e−

N−1
2 r (1− f(t))

] 1
m
−1

≥ −C0
1
m
f ′(t) e−

N−1
2 r

[
A2 e

N−1
2 ξ e−(N−1)r f(t) + e−

N−1
2 r (1− f(t))

] 1
m
−1
.

Moreover, thanks to (4.3.4),

∆(ūm)(r, t) = −Cm
0

[
Ae

N−1
2 ξ V

1
m0 (r) f(t) + (N − 1)2

4 e−
N−1

2 r (2 coth r − 1) (1− f(t))
]

≤ −Cm
0

[
A

1− 1
m0 e

N−1
2 ξ e

−N−1
m0

r
f(t) + (N − 1)2

4 e−
N−1

2 r (1− f(t))
]
.

In particular, there exist two positive constants B0(m,m0) and B1(m0, N) such that

−ūt(r, t) ≤ C0B0 f
′(t)

[
e

(N−1)(1−m)
2m ξ e−

(N−1)(2−m)
2m rf

1
m
−1(t) + e−

N−1
2m r (1− f(t))

1
m
−1
]
,

−∆(ūm)(r, t) ≥ Cm
0 B1

[
e
N−1

2 ξ e
−N−1

m0
r
f(t) + e−

N−1
2 r (1− f(t))

]
.

Hence it is enough to show that, if ξ is properly chosen, the following inequality holds in
(ξ,∞)× (0, t∗):

C1−m
0 B∗ f

′(t)
[
e

(N−1)(1−m)
2m ξ e−

(N−1)(2−m)
2m rf

1
m
−1(t) + e−

N−1
2m r (1− f(t))

1
m
−1
]

≤ e
N−1

2 ξ e
−N−1

m0
r
f(t) + e−

N−1
2 r (1− f(t)) ,

(4.3.10)

where B∗ = B∗(m,m0, N) is another suitable positive constant. Exploiting the change of
variable ρ = r − ξ and using the fact that m0 < 1 we infer that (4.3.10) is implied by

C1−m
0 B∗ f

′(t) e−
N−1
2m ξ

[
e−

(N−1)(2−m)
2m ρf

1
m
−1(t) + e−

N−1
2m ρ (1− f(t))

1
m
−1
]

≤ e−
(N−1)(2−m0)

2m0
ξ
[
e
−N−1

m0
ρ
f(t) + e−

N−1
2 ρ (1− f(t))

] (4.3.11)

for all (ρ, t) ∈ (0,∞) × (0, t∗). Since we choose m0 to lie in the interval (2m/(1 +m), 1) we
have that

ε := (N − 1)
( 1

2m −
1
m0

+ 1
2

)
> 0 ;

therefore (4.3.11) reads

C1−m
0 B∗ e

−ε ξ f ′(t) e
− (N−1)(2−m)

2m ρf
1
m
−1(t) + e−

N−1
2m ρ (1− f(t))

1
m
−1

e
−N−1

m0
ρ
f(t) + e−

N−1
2 ρ (1− f(t))︸ ︷︷ ︸

l(ρ,t)

≤ 1 . (4.3.12)

Our aim is now to show that for a suitable choice of f(t) the function l(ρ, t) stays bounded
in (0,∞) × (0, t∗). To this end, let us set y = e−(N−1)ρ and f(t) = h(t/t∗), h being a
function to be defined which has the same properties as f but in the interval [0, 1] instead
of [0, t∗]. The boundedness of l(ρ, t) is implied by the boundedness of the ratio (recall that
m0 > 2m/(1 +m))

h′(τ) y
( 1
m
− 1

2)h( 1
m
−1)(τ) + y

1
2m (1− h(τ))(

1
m
−1)

y( 1
2m+ 1

2)h(τ) + y
1
2 (1− h(τ))

= h′(τ) y
αhα(τ) + y

α
2 (1− h(τ))α

y
α+1

2 h(τ) + 1− h(τ)
, (4.3.13)
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α := 1
m
− 1 ,

for all (y, τ) ∈ (0, 1) × (0, 1). If α ≥ 1, which corresponds to m ≤ 1/2, the numerator in
(4.3.13) is always smaller than or equal to the denominator. Therefore we are left with the
case α ∈ (0, 1), that is m ∈ (1/2, 1). Here it is convenient to pick h as

h(τ) = 1− (1− τ) 1
α .

In this way, performing the change of variable σ = 1− τ , (4.3.13) becomes

1
α
σ

1
α
−1 y

α
(
1− σ 1

α

)α
+ y

α
2 σ

y
α+1

2
(
1− σ 1

α

)
+ σ

1
α

(4.3.14)

for (y, σ) ∈ (0, 1)× (0, 1). Now notice that, for σ varying in [1/2, 1), (4.3.14) is bounded by
a constant that depends only on α (recall that α ∈ (0, 1)). Otherwise, if σ varies in (0, 1/2),
the boundedness of (4.3.14) is equivalent to the boundedness of

yασ−1 + y
α
2

y
α+1

2 σ−
1
α + 1

≤ yασ−1

y
α+1

2 σ−
1
α + 1

+ 1 . (4.3.15)

For any fixed y ∈ (0, 1), the maximum of the r.h.s. of (4.3.15) as σ ∈ (0,∞) can be computed
explicitly, and it is equal to

y
α
2 (1−α)αα(1− α)1−α + 1 .

Summing up, we have proved that for a suitable choice of f(t) (depending on whetherm ≤ 1/2
orm ∈ (1/2, 1)) the function l(ρ, t) in (4.3.12) is bounded by a positive constantK = K(t∗,m)
as (ρ, t) varies in (0,∞)× (0, t∗). This means that if we set

ξ ≥ 1
ε

log
(
C1−m

0 B∗K
)

we ensure that ū(r, t) as in (4.3.9) is a supersolution to (4.1.16) in the region (ξ,∞)× (0, t∗).
By the comparison principle, in particular,

u(r, t∗) ≤ ū(r, t∗) ≤ C0A
2
m e

N−1
2m ξ e−

N−1
m

r ∀r ∈ (ξ,∞) .

Since u(·, t∗) is also bounded in (0, ξ], this gives (4.3.8).

The result just proved is not enough in order to bound from above the ratio wm(r, τ)/V (r)
because it only establishes such boundedness at any fixed τ ∈ (0,∞): indeed, recall that u(·, t)
is bounded (so is w(·, τ)), V (r) is locally bounded away from zero and its behaviour at infinity
is the same as e−(N−1)r. What estimate (4.3.8) lacks is a decay rate of order (T − t∗)1/(1−m)

in the r.h.s., which we shall now provide.
Lemma 4.3.6. Let w be the rescaled solution corresponding to a bounded, nonnegative energy
solution u to (4.1.16). There exists a constant C1 = C1(u0,m,N) such that

w(r, τ) ≤ C1 e
−N−1

2m r ∀(r, τ) ∈ [0,∞)× (0,∞) . (4.3.16)

Proof. The fact that
‖u(t)‖∞ ≤ D (T − t)

1
1−m ∀t ∈ (0, T ) (4.3.17)

for a suitable positive constant D = D(u0,m,N) can be proved exactly as in [73, Sections 5,
6] (see also the results in [29]). Then notice that Lemma 4.2.1 in particular yields

‖(wm)′(τ)‖2 ≤ ‖(u
m
0 )′‖2 ∀τ ∈ (0,∞) . (4.3.18)
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The Poincaré inequality in (4.1.17), Lemma 4.3.2 and (4.3.18) finally entail the following
bound:

wm(r, τ) ≤ D′(r0, N) ‖(um0 )′‖2 e
−N−1

2 r ∀(r, τ) ∈ [r0,∞)× (0,∞) ,
which, together with (4.3.17), gives the claimed estimate (4.3.16).

Notice that we proved (4.3.16) under the hypothesis that u is a bounded, nonnegative
energy solution. However, thanks to the aforementioned smoothing effects, it also holds for
any solution corresponding to data as in the hypothesis of Theorem 4.1.1, provided one starts
from τ = ε > 0 rather than τ = 0.

The bound (4.3.16) for w is the exactly the same as (4.3.6) for u, which was a key starting
point in order to prove the claim of Lemma 4.3.5. Indeed, as we shall see now, the barrier
exploited in the proof of such Lemma also works for the equation solved by w. This allows
us to obtain our estimate from above.

Proof of Proposition 4.3.1. As just remarked, we need only prove that for a suitable choice
of the parameter ξ > 0 the barrier constructed in the proof of Lemma 4.3.5 still works. For
a given τ∗ ∈ (ε,∞), consider again the function

w̄(r, τ) = C1
[
Ae

N−1
2 ξ V (r) f(τ) + e−

N−1
2 r (1− f(τ))

] 1
m
, (4.3.19)

where ξ, V , A, f are as in (4.3.9) (just replace t with τ and let f(ε) = 0) and C1 is the
constant appearing in (4.3.16). First of all, since f(·) is always included in [0, 1], m < 1
and m0 ∈ (2m/(1 +m), 1), we can bound the reaction term in (4.2.3) (what actually makes
(4.2.3) different from (4.1.1)) in the following way:

1
(1−m)T w̄(ρ+ ξ, τ) ≤ C1B2 e

−N−1
2m ξ

[
e−

N−1
m

ρf
1
m (τ) + e−

N−1
2m ρ (1− f(τ))

1
m

]
≤ C1B2 e

−N−1
2m ξ

[
e
−N−1

m0
ρ
f(τ) + e−

N−1
2 ρ (1− f(τ))

]
,

where B2 is a positive constant depending only on T , m, m0 and we performed the usual
change of space variable ρ = r − ξ. The equivalent of (4.3.11) then reads

C1B0 f
′(τ) e−ε ξ

[
e−

(N−1)(2−m)
2m ρf

1
m
−1(τ) + e−

N−1
2m ρ (1− f(τ))

1
m
−1
]

≤
(
Cm

1 B1 − C1B2 e
−ε ξ

) [
e
−N−1

m0
ρ
f(τ) + e−

N−1
2 ρ (1− f(τ))

]
∀(ρ, τ) ∈ (0,∞)× (ε, τ∗) .

By elementary computations one gets that
Cm

1 B1

2 ≤ Cm
1 B1 − C1B2 e

−ε ξ

provided

ξ ≥ 1
ε

log
(

2C1−m
1 B2

B1

)
. (4.3.20)

Therefore, under assumption (4.3.20), we can repeat the same proof of Lemma 4.3.5 starting
from (4.3.12) (one replaces B∗ with 2B0/B1 and C0 with C1). Hence we deduce the existence
of a positive parameter ξ = ξ(C1(u0,m,N, ε), T, ε) such that

w(r, τ) ≤ w̄(r, τ) ∀(r, τ) ∈ [ξ,∞)× [ε, τ∗] . (4.3.21)
The validity of (4.3.2) is then a consequence of (4.3.21), (4.3.19) (evaluated at τ = τ∗) and
(4.3.17).
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Remark 4.3.7. In the proofs of Lemmas 4.3.4, 4.3.5 and Proposition 4.3.1 we applied the
comparison principle in parabolic regions of the form (ξ,∞)× (0, t∗), neglecting the {r =∞}
side of the parabolic boundary. However, this technical issue is easy solvable by approximat-
ing u with the solutions un to (4.2.4), applying comparison between un and ū in (ξ, n)×(0, t∗)
and passing to the limit as n→∞ (using also the fact that Tn ↑ T ).

Remark 4.3.8. The estimate from above provided by Lemma 4.3.5 actually holds for all
m ∈ (0, 1), since its method of proof only requires the existence of a solution to (4.3.4)
satisfying (4.3.5) for a value of m0 which can be taken as close to 1 as necessary.

4.3.2 Estimates from below

We now aim to bound the ratio wm(τ)/V from below. Again, thanks to (4.3.5), this is
equivalent to establishing a lower bound for (4.3.1). The result we shall prove is the following.

Proposition 4.3.9. Let u be a nonnegative nonzero energy solution to (4.1.16). For any
ε ∈ (0, T ) there exists a positive constant P ′ = P ′(u0,m,N, ε) such that

u(r, t∗) ≥ P ′ e−
N−1
m

r (T − t∗)
1

1−m ∀ (r, t∗) ∈ [0,∞)× [ε, T ) . (4.3.22)

To this end, we first need a preliminary step.

Lemma 4.3.10. Let u be a nonnegative nonzero energy solution to (4.1.16). For any given
α > N − 1 and t∗ ∈ (0, T ) there exists a positive constant P = P (t∗, α, u0,m,N) such that

u(r, t∗) ≥ P e−
α
m
r ∀r ∈ [0,∞) . (4.3.23)

Proof. We shall prove that for a suitable choice of the positive parameters µ0 and ξ the
following function is a subsolution to (4.1.16) in the parabolic region (ξ,∞)× (t∗/2, t∗):

u(r, t) := µ0
[(

1 + e−α(r−ξ)
)
f(t)− 1

] 1
m

+
, (4.3.24)

where f : [t∗/2, t∗] 7→ [1/2, 1] is an increasing function such that f(t∗/2) = 1/2 and f(t∗) = 1,
to be defined later. We have:

ut(r, t) = µ0
1
m
f ′(t)

(
1 + e−α(r−ξ)

) [(
1 + e−α(r−ξ)

)
f(t)− 1

] 1
m
−1

and
∆(um)(r, t) = µm0 f(t) e−α(r−ξ)

(
α2 − (N − 1)α coth r

)
in the region where (1 + e−α(r−ξ))f(t) − 1 is nonnegative (below, we shall work tacitly in
such region), while both ut and ∆(um) are zero outside it. Let us check conditions on the
parabolic boundary. On [ξ,∞)× {t∗/2} u satisfies

u(r, t∗/2) = µ0

[1
2
(
1 + e−α(r−ξ)

)
− 1

] 1
m

+
= 0

and on {ξ} × (t∗/2, t∗) there holds

u(ξ, t) = µ0 [2f(t)− 1]
1
m ≤ µ0 .

Therefore, in order to have u ≤ u on [ξ,∞)× {t∗/2} ∪ {ξ} × (t∗/2, t∗), we need only require

µ0 ≤ inf
t∈(t∗/2,t∗)

u(ξ, t) =: λ(ξ, t∗, u0) > 0 ,
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the last inequality following from standard positivity results (if t∗ is close enough to T , one
can also exploit the results of Section 4.2). Now let us check the differential equation. By
means of the usual change of spatial variable ρ = r − ξ,

ut(r, t) ≤ ∆(um)(r, t) ∀(r, t) ∈ (ξ,∞)×
(
t∗
2 , t∗

)
reads

µ0
1
m
f ′(t)

(
1 + e−αρ

) [(
1 + e−αρ

)
f(t)− 1

] 1
m
−1

≤µm0 f(t) e−αρ
(
α2 − (N − 1)α coth(ρ+ ξ)

)
∀(ρ, t) ∈ (0,∞)×

(
t∗
2 , t∗

)
.

(4.3.25)

Upon choosing ξ = ξ(α,N) so large that, for instance,

α2 − (N − 1)α coth ξ ≥ 1
2
(
α2 − (N − 1)α

)
=: C1(α,N) > 0 , (4.3.26)

we get that (4.3.25) is implied by

µ1−m
0

1
mC1

f ′(t) (1 + e−αρ) [(1 + e−αρ) f(t)− 1]
1
m
−1

f(t) e−αρ ≤ 1 ∀(ρ, t) ∈ (0,∞)×
(
t∗
2 , t∗

)
,

which is in turn implied by (recall that 1/2 ≤ f(t) ≤ 1)

µ1−m
0

4
mC1

f ′(t) eαρ
[(

1 + e−αρ
)
f(t)− 1

] 1
m
−1

︸ ︷︷ ︸
L(ρ,t)

≤ 1 ∀(ρ, t) ∈ (0,∞)×
(
t∗
2 , t∗

)
. (4.3.27)

If m ≤ 1/2 the function L in (4.3.27) is bounded from above (take f regular enough) by a
constant that depends only on t∗, α, m and N . On the other hand, if m ∈ (1/2, 1) this is in
general false, unless one chooses f carefully. To this end, consider the function

h(τ) := 1− 1
2 (1− τ)

m
1−m ∀τ ∈ [0, 1]

and set
f(t) = h

(
2 t

t∗
− 1

)
∀t ∈

[
t∗
2 , t∗

]
.

Elementary computations (one can find the exact maximum of L(ρ, t), in the region where
(1 + e−αρ)f(t) ≥ 1, at any given t) show that

L(ρ, t) ≤ C2

t∗
∀(ρ, t) ∈ (0,∞)×

(
t∗
2 , t∗

)
for a suitable positive constant C2 = C2(α,m,N) (which we assume to work for the case
m ≤ 1/2 as well). Hence, we proved that u as in (4.3.24) is indeed a subsolution to (4.1.16)
providing that

µ0 ≤ min
{
λ(ξ(α,N), t∗, u0) ,

(
t∗
C2

) 1
1−m

}
.

In particular, at t = t∗ there holds

u(r, t∗) ≥ u(r, t∗) = µ0 (t∗, α, u0,m,N) e αm ξ(α,N) e−
α
m
r ∀r ∈ (ξ,∞) ,

which yields the assertion together with the local positivity of u(·, t∗) in (0, ξ).
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The result provided by Lemma 4.3.10 ensures that at any given t∗ ∈ (0, T (u0)) all non-
negative nonzero energy solutions to (4.1.16) go to infinity (as r →∞) slower than e− α

m
r, for

any α > N − 1. Exploiting such property, we are then able to prove Proposition 4.3.9.

Proof of Proposition 4.3.9. Once again we construct a lower barrier which has the desired
behaviour as in (4.3.22). Indeed, given t∗ ∈ (2ε, T ) (the final result will follow just by
replacing ε with ε/2), consider the function

u(r, t) := µ0

[((
e−β(r−ξ) + A−1V (r)e(N−1)ξ

)
f(t)− e−β(r−ξ)

)
+

+ e−α(r−ξ)
] 1
m

, (4.3.28)

where α = α(m,N) and β = β(m,N) are fixed parameters such that

α > N − 1 , β < N − 1 , α ≤ β + (N − 1) 1−m
m

, (4.3.29)

f : [ε, t∗] 7→ [0, 1] is a regular increasing function that satisfies f(ε) = 0, f(t∗) = 1 and V is
the solution to (4.3.4) corresponding to m0 = m (A being the related constant appearing in
(4.3.5)). We want to prove that, if one chooses the positive parameters ξ and µ0 properly,
then u is a subsolution to (4.1.16) in the parabolic region (ξ,∞) × (ε, t∗). By (4.3.28), we
have

u(r, t0) = µ0 e
α
m
ξ e−

α
m
r ∀r ∈ [ξ,∞)

and
u(ξ, t) ≤ µ0

[
A−1V (ξ)e(N−1)ξ + 1

] 1
m ≤ µ0 2 1

m ∀t ∈ (ε, t∗) .

Therefore u and u are correctly ordered on the parabolic boundary [ξ,∞)×{ε}∪{ξ}× (ε, t∗)
provided (recall (4.3.23))

µ0 ≤ e−
α
m
ξ P (ε, α, u0,m,N) and µ0 ≤ 2− 1

m inf
t∈(ε,t∗)

u(ξ, t) =: λ(ξ, t∗, u0,m,N, ε) > 0 ,

that is
µ0 ≤ min

{
e−

α
m
ξP , λ

}
. (4.3.30)

Now let us compute derivatives of u(r, t):

ut(r, t) =µ0
1
m
f ′(t)

(
e−β(r−ξ) + A−1V (r)e(N−1)ξ

)
sign+ q(r, t)

×
[((

e−β(r−ξ) + A−1V (r)e(N−1)ξ
)
f(t)− e−β(r−ξ)

)
+

+ e−α(r−ξ)
] 1
m
−1
,

∆(um)(r, t)
=µm0

[(
(f(t)− 1) (β2 − (N − 1) β coth r) e−β(r−ξ) − A−1V

1
m (r)e(N−1)ξf(t)

)
sign+ q(r, t)

+ (α2 − (N − 1)α coth r) e−α(r−ξ)
]
,

where for the sake of notational convenience we set

q(r, t) :=
(
e−β(r−ξ) + A−1V (r)e(N−1)ξ

)
f(t)− e−β(r−ξ) .

If we take ξ = ξ(α,N) so large that (4.3.26) holds, set ρ = r − ξ and use (4.3.5), we obtain:

ut(ρ+ ξ, t) ≤ µ0
1
m
f ′(t)

(
e−βρ + e−(N−1)ρ

) [((
e−βρ + e−(N−1)ρ

)
f(t)− e−βρ

)
+

+ e−αρ
] 1
m
−1
,
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∆(um)(ρ+ ξ, t) ≥ µm0
[
−A

1−m
m e−(N−1) 1−m

m
ξ f(t) e−

N−1
m

ρ + C1 e
−αρ

]
∀(ρ, t) ∈ (0,∞)× (ε, t∗) .

Hence once we choose ξ = ξ(α,m,N) such that, in addition to (4.3.26), it also satisfies

A
1−m
m e−(N−1) 1−m

m
ξ ≤ C1

2 ,

we deduce that in order to have u ≤ u in (ξ,∞)× (ε, t∗) it is enough to require (recall that
f(t) ∈ [0, 1])

µ0
1
m
f ′(t)

(
e−βρ + e−(N−1)ρ

) [
e−(N−1)ρ + e−αρ

] 1
m
−1
≤ µm0

C1

2 e−αρ (4.3.31)

∀(ρ, t) ∈ (0,∞)× (ε, t∗) .
Upon setting f(t) = h((t − ε)/(t∗ − ε)), h : [0, 1] 7→ [0, 1] being a given regular, increasing
function such that h(0) = 0 and h(1) = 1, (4.3.31) reads

µ1−m
0

2
mC1 (t∗ − ε)

h′
(
t− ε
t∗ − ε

) (
e(α−β)ρ + e(α−N+1)ρ

) [
e−(N−1)ρ + e−αρ

] 1
m
−1

︸ ︷︷ ︸
L(ρ,t)

≤ 1 (4.3.32)

∀(ρ, t) ∈ (0,∞)× (ε, t∗) .
Thanks to (4.3.29) and to the fact that t∗ ∈ (2ε, T ), the function L(ρ, t) in (4.3.32) is bounded
in (0,∞)×(ε, t∗) by a positive constant C2 = C2(T,m,N, ε). Therefore u(r, t) is a subsolution
to (4.1.16) providing that (recall (4.3.30))

µ0 ≤ min
{
e−

α
m
ξP , C

− 1
1−m

2 , 2− 1
m inf
t∈(ε,t∗)

u(ξ, t)
}
,

which is implied by

µ0 ≤ C3 min
{

1 , inf
t∈(ε,t∗)

u(ξ, t)
}

(4.3.33)

for a suitable positive constant C3 = C3(ξ, u0,m,N, ε). Taking advantage of Proposition
4.2.6 we can give a quantitative lower bound for the r.h.s. of (4.3.33). Indeed (4.2.33) yields
(in particular) the existence, for any given ξ > 0, of a time t̂ = t̂(ξ, u0) such that

u(ξ, t) ≥ V
1
m (ξ)
2 (T − t)

1
1−m ∀t ∈ (t̂, T ) . (4.3.34)

From standard positivity results we also know that, in case ε < t̂, u(ξ, t) is still positive
between ε and t̂; this fact and (4.3.34) (together with the local positivity of V ) ensure the
existence of a positive constant C4 = C4(ξ, u0,m,N, ε) such that

u(ξ, t) ≥ C4 (T − t)
1

1−m ∀t ∈ (ε, T ) ,

which gives
inf

t∈(ε,t∗)
u(ξ, t) ≥ C4 (T − t∗)

1
1−m . (4.3.35)

Combining (4.3.35) and (4.3.33) we infer that (4.3.33) is implied by

µ0 ≤ C5 (T − t∗)
1

1−m (4.3.36)
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for another positive constant C5 = C5(ξ, u0,m,N, ε). The validity of (4.3.22) for r varying in
(ξ,∞) then follows by choosing µ0 equal to the r.h.s. of (4.3.36) and evaluating the subsolution
u(r, t) at t = t∗, recalling (4.3.5). On the other hand, the validity of (4.3.22) as r varies in
(0, ξ] is a direct consequence of (4.2.33) and the local positivity of u.

It is apparent that Proposition 4.3.9 can be reformulated as follows.
Corollary 4.3.11. Let w be the rescaled solution corresponding to a positive energy solution
u to (4.1.16). For any τ0 > 0 there exists a positive constant P ′′ = (τ0, u0,m,N) such that

w(r, τ) ≥ P ′′ e−
N−1
m

r ∀(r, τ) ∈ [0,∞)× [τ0,∞) .
Thanks to Propositions 4.3.1 and 4.3.9 (or Corollary 4.3.11) we then deduce formula (4.1.8)

in Theorem 4.1.3, namely the global Harnack principle.
Remark 4.3.12. Both in the proofs of Lemma 4.3.10 and Proposition 4.3.9, when computing
the hyperbolic Laplacian of the barriers (4.3.24) and (4.3.28), we neglected Dirac terms
coming up from second derivatives of positive parts. However, this is not an issue since it is
easy to check that such terms are nonnegative.
Remark 4.3.13. When we applied the comparison principle to u and u, both in the proofs
of Lemma 4.3.10 and Proposition 4.3.9, we did not take into account {r = ∞} as a side of
the parabolic boundary. In order to justify more rigorously those computations, it is enough
to consider the following family of modified barriers:

uε := [um − ε]
1
m
+ ≤ u , ε > 0 ,

where u is either (4.3.24) or (4.3.28). Straightforward computations show that uε is a sub-
solution to (4.1.16) as long as u is. Moreover, for any fixed ε > 0, uε(·, t) is zero outside
a compact set of the form [ξ, R(ε)] ⊂ [ξ,∞). One then applies the comparison principle in
(ξ, R(ε))× (ε, t∗) (let ε = t∗/2 when u is as in (4.3.24)) to get uε ≤ u and lets ε→ 0.
Remark 4.3.14. The estimate from below (4.3.22) holds true for all m ∈ (0, 1), even though
one has to let the constant P ′ in there, for m ∈ (0,ms], depend on t∗ as well. Indeed, in
the proof of Proposition 4.3.9, for simplicity we exploited the existence of a solution V to
(4.3.4) satisfying (4.3.5) for m0 = m. However, if m ∈ (0,ms], such a solution does not exist.
Nevertheless, it is easy to see that the choice of any m0 ∈ (ms, 1) instead of m would have
sufficed (provided one requires in addition that α < (N − 1)/m0).

This result and the one discussed in Remark 4.3.8 prove the bounds (4.1.12) of Theorem
4.1.4.

4.4 Convergence in relative error
In this section we shall prove the claimed uniform convergence in relative error, that is

(4.1.5), which can equivalently be rewritten in terms of the rescaled solution w as

lim
τ→∞

∥∥∥∥∥wm(τ)
V

− 1
∥∥∥∥∥
∞

= 0 . (4.4.1)

Since V is strictly positive in any compact subset of HN , as a direct consequence of Propo-
sition 4.2.6 (formula (4.2.33)) we already know that (4.4.1) holds true locally on HN . The
nontrivial point is to prove that (4.2.33) holds up to r =∞, what we are concerned with in
the next two subsections. Finally, in Subsection 4.4.3 we shall deal with estimates for deriva-
tives and improved convergence in Ck spaces, namely with the proofs of (4.1.9)–(4.1.11),
(4.1.6) and (4.1.7).
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4.4.1 The relative error and its equation

To begin with, let us write the equation solved by the relative error φ := wm/V −1. Using
the fact that V satisfies (4.1.4), we get:

1
m

(1 + φ)
1
m
−1 φτ = V 1− 1

m∆φ+ 2 V
′φ′

V
1
m

+ 1
(1−m)T

[
(1 + φ)

1
m − (1 + φ)

]
, (4.4.2)

where, as remarked above, the superscript ′ stands for derivation w.r.t. r. We need also to
consider the equation solved by minus the relative error ψ := 1− wm/V , that is

1
m

(1− ψ)
1
m
−1 ψτ = V 1− 1

m∆ψ + 2 V
′ψ′

V
1
m

+ 1
(1−m)T

[
(1− ψ)− (1− ψ)

1
m

]
.

In order to prove (4.4.1) we shall construct suitable upper barriers both for φ and ψ, following
the approach of [31].

The next lemma shows a good approximation property enjoyed by V , which will turn out
to be very useful to overcome some technical difficulties related to the upper barrier for ψ.
Lemma 4.4.1. There exists a sequence of positive, regular radial solutions {Vn} to−∆Vn = 1

(1−m)Tn V
1
m
n on Bn ,

Vn = 0 on ∂Bn ,
(4.4.3)

where Bn is the hyperbolic ball of radius n centred at o, such that:
– Vn(r) ≤ V (r) for all r ≥ 1 and Vn → V pointwise;
– Tn → T ;
– for ε > 0 arbitrarily small, one can choose nε and rε so large that the following inequality
holds true:

V ′n(r) ≤ (1− ε)V ′(r) ∀r ∈ (rε, n) , ∀n ≥ nε . (4.4.4)

Proof. For any given n ∈ N, let Xn be the set of all functions v ∈ H1
rad such that v(r) = 0

for all r ≥ n and ‖v‖1+1/m = ‖V ‖1+1/m. Consider the following minimization problem:

Find vn ∈ Xn : ‖v′n‖2 = min
v∈Xn

‖v′‖2 . (4.4.5)

Thanks to standard arguments, the solution vn of (4.4.5) exists, is unique, strictly positive
on Bn and solves (4.4.3) for some Tn > 0. Since Xn ⊂ Xn+1, the sequence {‖v′n‖2} is
nonincreasing. This implies that {Tn} is nondecreasing: indeed, multiplying (4.4.3) by vn
(upon replacing Vn by vn) and integrating by parts we obtain

Tn =
‖vn‖

m+1
m
m+1
m

(1−m) ‖v′n‖
2
2

=
‖V ‖

m+1
m
m+1
m

(1−m) ‖v′n‖
2
2
.

Let us denote as T` the limit of {Tn} as n → ∞. Because {‖v′n‖2} is bounded, {vn} (along
subsequences) converges weakly in H1

rad and therefore strongly in L1+1/m
rad to a certain function

V`. Passing to the limit in the (weak formulation of the) equation solved by vn, we get:

−∆V` = 1
(1−m)T`

V
1
m
` on HN . (4.4.6)

First of all note that T` cannot be infinity: if it were, then from the Poincaré inequality in
(4.1.17) V` would be zero, while we know that

‖V`‖m+1
m

= lim
n→∞

‖vn‖m+1
m

= ‖V ‖m+1
m

> 0 .
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So V` is a positive, energy solution to (4.4.6) for some T` < ∞, having the same L1+1/m
rad

norm as V : by the uniqueness result recalled in the beginning of Section 4.2, it necessarily
coincides with V (and then Tn ↑ T ).

The next step is to prove that {vn} converges to V also in L1/m
rad . Since {vn} converges

pointwise to V (up to subsequences), and locally L1+1/m
rad is continuously embedded in L1/m

rad ,
we only need to dominate {vn} outside a compact set with a function that belongs to L1/m

rad .
To this end note that, from Lemma 4.3.2 and from the fact that {‖v′n‖2} is nonincreasing,
there exists a constant K > 0 such that

vn(r) ≤ K e−
N−1

2 r ∀r ∈ [1,∞) , ∀n ∈ N . (4.4.7)

When m is greater than or equal to 1/2, the function in the r.h.s. of (4.4.7) does not belong
to L1/m

rad . We have therefore to improve on (4.4.7) using the equation solved by vn: integrating
it between 0 and r we obtain the identity

− (sinh r)N−1 v′n(r) =
∫ r

0

v
1
m
n (s)
Tn

(sinh s)N−1ds . (4.4.8)

Suppose now that (4.4.7) holds with a generic exponent −(N − 1)a (let a > 0, a 6= m) in
place of −(N − 1)/2. Exploiting the corresponding analogues of (4.4.7) and (4.4.8), after
some straightforward computations we get:

− v′n(r) ≤ Q
m

m− a
e−(N−1)r

(
e(N−1)m−a

m
r − 1

)
∀r ∈ [1,∞) , (4.4.9)

where Q > 0 is a suitable positive constant that does not depend on n (which may change
from line to line). Since vn(n) = 0, we have:

vn(r) =
∫ n

r
−v′n(s) ds ∀r ∈ [1, n) . (4.4.10)

If a > m (4.4.9) gives −v′n(r) ≤ Qe−(N−1)r, in which case an integration of (4.4.10) entails

vn(r) ≤ Qe−(N−1)r ∀r ∈ [1,∞) . (4.4.11)

On the other hand, if a < m then (4.4.9) entails −v′n(r) ≤ Qe−(N−1) a
m
r; integrating again

(4.4.10) one gets
vn(r) ≤ Qe−(N−1) a

m
r ∀r ∈ [1,∞)

(the case a = m can be dealt with similarly). It is plain that starting from a = 1/2 and
proceeding in this way, after a finite number of steps we obtain (4.4.11). Since e−(N−1)r

belongs to L1/m
rad , we have our dominating function and the convergence of {vn} to V also

takes place in L1/m
rad . Such convergence is crucial because it ensures that (4.4.4) holds for the

sequence {vn}. Indeed, applying (4.4.8) to vn = V we deduce that

lim
r→∞
−(sinh r)N−1 V ′(r) =

∫ ∞
0

V
1
m (s)
T

(sinh s)N−1ds =: CV > 0 ; (4.4.12)

for a given ε > 0, take rε so large that
∫ ∞
rε

V
1
m (s)
T

(sinh s)N−1ds ≤ CV
ε

2 .
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In view of the just proved convergence of {vn} to V in L1/m
rad and to the fact that Tn ↑ T ,

there exists n = n(rε, ε), large enough, such that

−(sinh r)N−1 v′n(r) =
∫ r

0

v
1
m
n (s)
Tn

(sinh s)N−1ds ≥
∫ rε

0

v
1
m
n (s)
Tn

(sinh s)N−1ds

≥
∫ rε

0

V
1
m (s)
T

(sinh s)N−1ds− CV
ε

2
≥ CV (1− ε)

for all r ∈ (rε, n) and n ≥ n(rε, ε). Hence, there holds

−v′n(r)
−V ′(r) = −(sinh r)N−1v′n(r)

−(sinh r)N−1V ′(r) ≥
CV (1− ε)

CV
≥ 1− ε ∀r ∈ (rε, n) , ∀n ≥ n(rε, ε) ,

that is (4.4.4) for the sequence {vn}.
In general it is not for granted that vn(r) ≤ V (r) for all r ∈ [1,∞). Therefore, in order

to conclude our proof, it is necessary to modify {vn}. To this aim, consider the following
sequence:

Vn = λn vn ,

where, for any fixed n, λn is the largest number belonging to (0, 1] for which λn vn(r) ≤ V (r)
for all r ∈ [1,∞). We can assume that λn < 1 eventually, otherwise there is nothing to
prove since along a subsequence {Vn} has all the properties claimed in the statement of the
Lemma. But if λn is strictly smaller than 1 then Vn(r) necessarily touches V (r) at some
point r = ξn ∈ [1,∞) (see Figures 4.1 and 4.2 below), otherwise λn would not be the largest
number in (0, 1) for which λn vn(r) ≤ V (r) for all r ∈ [1,∞) (recall that each vn is compactly
supported, V is strictly positive and both vn and V are continuous). Now there are two
possibilities: either the sequence {ξn} stays bounded or it is unbounded. In the first case,
{ξn} converges along subsequences to a certain number ξ̄ ∈ [1,∞). Since {vn} also converges
locally uniformly in [1,∞) to V (see Remark 4.4.2 below), then

vn(ξn)→ V (ξ̄) > 0 ;

however, by definition of ξn,

λn vn(ξn) = V (ξn)→ V (ξ̄) ,

whence λn → 1. In the case ξn → ∞ (again, along subsequences), clearly each ξn lies in
the interior of [1, n) eventually. Therefore, in addition to Vn(ξn) = V (ξn), we also have
V ′n(ξn) = V ′(ξn), so that

−λn (sinh ξn)N−1 v′n(ξn) = −(sinh ξn)N−1 V ′n(ξn) = −(sinh ξn)N−1 V ′(ξn)→ CV > 0

and

−(sinh ξn)N−1 v′n(ξn) =
∫ ξn

0

v
1
m
n (s)
Tn

(sinh s)N−1ds→
∫ ∞

0

V
1
m (s)
T

(sinh s)N−1ds = CV ,

where we have used once again the fact that {vn} converges to V in L1/m
rad and Tn ↑ T . This

means that in this case as well {λn} is forced to go to 1 and so {Vn} is indeed a sequence which
has all the required properties (no subsequence is needed since the ongoing proof actually
holds along any subsequence). Just note that the parameter Tn appearing in (4.4.3) here is
actually Tn λ1/m−1

n .
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Figure 4.1: Vn touches V at ξn = 1.

Figure 4.2: Vn touches V at ξn > 1.

Remark 4.4.2. As mentioned in the proof above, convergence of the sequence {vn} solving
(4.4.5) to V also occurs locally uniformly in [1,∞). This fact can be proved in several ways.
One of them is the following: a priori {vn} converges weakly in H1

rad to V (and so strongly
in L1+1/m

rad ), but using the equation solved by each vn and the fact that Tn → T one gets
‖v′n‖2 → ‖V ′‖2. Therefore such convergence is actually strong. Since H1

rad is locally (in
(0,∞)) continuously embedded in L∞, the assertion follows.

For reasons that will become clearer later (see the proof of Lemma 4.4.4 below), instead of
studying ψ it is convenient to work with its natural approximation ψn := 1− wm/Vn, where
{Vn} is the sequence constructed in Lemma 4.4.1. It is straightforward to check that ψ ≥ ψn
and that the equation solved by ψn is the following:

1
m

(1− ψn)
1
m
−1 ψn,τ = V

1− 1
m

n ∆ψn + 2 V
′
nψ
′
n

V
1
m
n

+ 1
(1−m)

[ 1
Tn

(1− ψn)− 1
T

(1− ψn)
1
m

]
,

(4.4.13)
in the region {(r, τ) ∈ (0, n)× (0,∞)}.

4.4.2 Barriers and global convergence in L∞

We first provide a suitable family of supersolutions to (4.4.13), in the spirit of [31].

Lemma 4.4.3. Let τ0 > 0. Consider the function

Ψ(r, τ) := C − B

r
− A (τ − τ0) . (4.4.14)
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If the positive parameters A, B, C, r̄ comply with the condition

BKε e
(N−1)(1−ε)( 1

m
−1)r̄ ≥ A

m
+ 2

(1−m)T , (4.4.15)

where ε > 0 is a fixed number small enough (ε = 1/5 will work) and Kε is a positive constant
depending on ε, then Ψ is a supersolution to (4.4.13) in the region

{(r, τ) : Ψ(r, τ) ∈ [0, 1)} ∩ {(r, τ) ∈ (r̂, n)× (τ0,∞)} ,

independently of n, provided
r̂ ≥ r̄ ∨ r∗ , n ≥ n∗ ,

r∗ and n∗ being positive numbers depending only on ε, m and N .

Proof. Let us compute the derivatives of Ψ:

Ψτ = −A , Ψ′ = B

r2 ,

∆Ψ = −B∆
(1
r

)
= −B

(
2
r3 − (N − 1) coth(r)

r2

)
.

In order to ensure that Ψ is a supersolution to (4.4.13) it is enough to require that

1
m

(1−Ψ)
1
m
−1 Ψτ ≥ V

1− 1
m

n ∆Ψ + 2 V
′
n Ψ′

V
1
m
n

+ 1
(1−m)Tn

(1−Ψ) ,

namely

− A

m
(1−Ψ)

1
m
−1 ≥ − B

V
1
m
n

[
Vn

(
2
r3 − (N − 1) coth(r)

r2

)
− 2 V

′
n

r2

]
+ 1

(1−m)Tn
(1−Ψ)︸ ︷︷ ︸

R

,

(4.4.16)
where we have neglected the nonpositive term −(1−Ψ)1/m. Now we need to suitably estimate
from above the r.h.s. of (4.4.16). To this end, take ε > 0 sufficiently small. Moreover, take
n0 and r0 so large that Tn ≥ T/2 for all n ≥ n0 and coth(r) ≤ 1 + ε for all r ≥ r0. Thanks
to (4.4.4) and to the fact that Vn ≤ V in [1,∞), we have:

R ≤ B

V
1
m
n

[
(N − 1)(1 + ε) Vn

r2 + 2 V
′
n

r2

]
+ 2

(1−m)T (1−Ψ)

≤ B

r2 V
1
m
n

[(N − 1)(1 + ε)V + 2(1− ε)V ′] + 2
(1−m)T (1−Ψ)

∀(r, τ) ∈ (r0 ∨ rε ∨ 1, n)× (τ0,∞) , ∀n ≥ n0 ∨ nε .
Recall that V satisfies (4.4.12): in particular, by (4.1.3), there exists r1 so large that

V ′(r) ≤ −(N − 1)(1− ε)V (r) ∀r ≥ r1 .

Hence,

R ≤ −(N − 1) BV

r2 V
1
m
n

[
−(1 + ε) + 2(1− ε)2

]
+ 2

(1−m)T (1−Ψ) (4.4.17)
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∀(r, τ) ∈ (r0 ∨ r1 ∨ rε ∨ 1, n)× (τ0,∞) , ∀n ≥ n0 ∨ nε .
Since ε is small (it is enough that −(1 + ε) + 2(1 − ε)2 > 0) and Vn ≤ V in [1,∞), we can
replace Vn with V in (4.4.17), which yields

R ≤ − B

r2 V
1
m
−1

(N − 1)
[
−(1 + ε) + 2(1− ε)2

]
︸ ︷︷ ︸

Kε

+ 2
(1−m)T (1−Ψ) (4.4.18)

∀(r, τ) ∈ (r0 ∨ r1 ∨ rε ∨ 1, n)× (τ0,∞) , ∀n ≥ n0 ∨ nε .

Collecting (4.4.16) and (4.4.18), we deduce that a necessary condition for Ψ to be a superso-
lution to (4.4.13) in the region

{(r, τ) : Ψ(r, τ) ∈ [0, 1)} ∩ {(r, τ) ∈ (r0 ∨ r1 ∨ rε ∨ 1, n)× (τ0,∞)}

is
B

r2 V
1
m
−1
Kε ≥

A

m
(1−Ψ)

1
m
−1 + 2

(1−m)T (1−Ψ) . (4.4.19)

Still from (4.4.12) and (4.1.3) we infer that

Kε

r2 V
1
m
−1
≥ Kε e

(N−1)(1−ε)( 1
m
−1)r ∀r ≥ r2

for another positive constant Kε, provided r2 is large enough. The final condition on r̄ is
then

BKε e
(N−1)(1−ε)( 1

m
−1)r̄ ≥ A

m
+ 2

(1−m)T . (4.4.20)

Summing up, if one fixes the positive parameters ε (we can take e.g. ε = 1/5), A, B, C, picks
r∗ = r0 ∨ r1 ∨ r2 ∨ rε ∨ 1 and r̄ so large that (4.4.20) is satisfied, then the function Ψ as in
(4.4.14) is a supersolution to (4.4.13) in the region

{(r, τ) : Ψ(r, τ) ∈ [0, 1)} ∩ {(r, τ) ∈ (r̂, n)× (τ0,∞)}

for all r̂ ≥ r̄ ∨ r∗ and n ≥ n0 ∨ nε = n∗.

Note that (4.4.14) is a family of supersolutions in the sense that the initial time τ0 > 0
is a free parameter. In fact, in the next lemma, proceeding along the lines of the proof
of [31, Theorem 2.1], we shall show how to use such barriers in order to prove that ψ becomes
small as τ →∞. To this aim it is crucial to recall the global Harnack principle (4.1.8), which
entails the existence of a time τw > 0 and two positive constants c0, c1 such that

c0 ≤
wm(r, τ)
V (r) ≤ c1 ∀(r, τ) ∈ [0,∞)× [τw,∞) , c0 < 1 < c1 . (4.4.21)

Lemma 4.4.4. Let ψ := 1− wm/V . There holds

lim sup
τ→∞

sup
r∈[0,∞)

ψ(r, τ) ≤ 0 .

Proof. First of all consider the barrier Ψ as in (4.4.14), with the choices A = B = 1. Then
set C = 1 − c0/2 and assume that r̂ is greater than (2/c0) ∨ r̄ ∨ r∗, where r̄ is taken large
enough so as to satisfy

Kε e
(N−1)(1−ε)( 1

m
−1)r̄ ≥ 1

m
+ 2

(1−m)T ,
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that is (4.4.15) with A = B = 1. By construction, such a Ψ is always lower than 1. Therefore,
from Lemma 4.4.3, it is a supersolution to (4.4.13) in the region (r̂, n)× (τ0,∞) (let τ0 ≥ τw)
for all n ≥ n∗ as long as it is greater than or equal to zero. Since we want to compare Ψ with
the solutions ψn, let us check conditions on a parabolic boundary of the form

[r̂, n]× {τ0} ∪ {r̂} × (τ0, τ1) ∪ {n} × (τ0, τ1) ,

where τ1 > τ0 is a positive time to be chosen later. In view of the above choice of C and
(4.4.21), on the bottom we have that

Ψ(r, τ0) = C − 1
r
≥ 1− c0 ≥ ψ(r, τ0) ≥ ψn(r, τ0) ∀r ∈ [r̂, n] ,

the last inequality following from the fact that V ≥ Vn for r ≥ 1. On the inner lateral
boundary there holds

Ψ(r̂, τ) = C − 1
r̂
− (τ − τ0) = 1− c0

2 −
1
r̂
− (τ − τ0) ∀τ ∈ (τ0, τ1) .

Now let us fix a small ε > 0 (e.g. with ε ≤ c0/2). Assume that r̂ is also larger than 2/ε.
Exploiting the local uniform convergence of ψ to zero (Proposition 4.2.6), we know that if
τ0 ≥ τ0(r̂, ε) then

ψ(r̂, τ) ≤ ε

2 ∀τ ≥ τ0 .

Hence, once τ satisfies

τ ≤ τ1 := τ0 + 1− c0

2 −
1
r̂
− ε

2 ≥ τ0 + 1− c0 > τ0 ,

there holds
Ψ(r̂, τ) ≥ Ψ(r̂, τ1) = ε

2 ≥ ψ(r̂, τ) ≥ ψn(r̂, τ) ∀τ ∈ (τ0, τ1) .

On the outer lateral boundary {n} × (τ0, τ1) it is plain that Ψ(n, τ) > ψn(n, τ) = −∞.
In fact this is the reason why we needed to suitably approximate V from below with the
sequence {Vn}, otherwise we would have not been able to compare Ψ with ψ in an outer
lateral boundary. By comparison we then infer that Ψ ≥ ψn in the region [r̂, n]× [τ0, τ1]. In
particular,

ψn(r, τ1) ≤ Ψ(r, τ1) ≤ ε ∀r ∈ [r̂, n] . (4.4.22)
Passing to the limit in (4.4.22) as n→∞ yields

ψ(r, τ1) ≤ Ψ(r, τ1) ≤ ε ∀r ∈ [r̂,∞) . (4.4.23)

Since τ1 = τ0 + 1− c0/2− 1/r̂ − ε/2 and (4.4.23) holds true for all τ0 ≥ τ0(r̂, ε), we have:

ψ(r, τ) ≤ ε ∀(r, τ) ∈ [r̂,∞)× [τ̄ ,∞) , (4.4.24)

where τ̄ := τ0(r̂, ε) + 1 − c0/2 − 1/r̂ − ε/2. Thanks to (4.4.24) and to the local uniform
convergence of ψ to zero, we end up with

lim sup
τ→∞

sup
r∈[0,∞)

ψ(r, τ) ≤ ε .

As ε > 0 is arbitrarily small, the proof is complete.

The final step consists in proving an analogous result for φ := wm/V − 1. Since the
arguments follow closely the ones carried out in the proofs of Lemmas 4.4.3 and 4.4.4, we
shall be concise.
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Lemma 4.4.5. Let τ0 > 0. Consider the function

Φ(r, τ) := C − B

r
− A (τ − τ0) . (4.4.25)

If the positive parameters A, B, C, r̄ comply with the condition

BKε e
(N−1)(1−ε)( 1

m
−1)r̄ ≥ (1 + C)

1
m
−1
[
A

m
+ 2(1 + C)

(1−m)T

]
, (4.4.26)

where ε > 0 is a fixed number small enough (ε = 1/5 will work) and Kε is a positive constant
depending on ε, then Φ is a supersolution to (4.4.2) in the region

{(r, τ) : Φ(r, τ) > −1} ∩ {(r, τ) ∈ (r̂,∞)× (τ0,∞)}

provided r̂ ≥ r̄ ∨ r∗, where r∗ = r∗(ε,m,N) > 0.

Proof. Condition (4.4.26) follows by reasoning as in the proof of Lemma 4.4.3. In fact it is
even easier to deduce an inequality like (4.4.19) with (1−Ψ)1/m−1 replaced by (1+Φ)1/m−1 and
(1−Ψ) replaced by (1+Φ)1/m, since here we do not deal with the approximate sequence {Vn}.
Hence, in order to obtain (4.4.26), one just exploits the fact that Φ ≤ C by construction.

Thanks to the barriers (4.4.25), we can now prove the analogue of Lemma 4.4.4 for φ.

Lemma 4.4.6. Let φ := wm/V − 1. There holds

lim sup
τ→∞

sup
r∈[0,∞)

φ(r, τ) ≤ 0 .

Proof. Again, we proceed along the lines of the proof of Lemma 4.4.4. Set A = B = 1,
C = c1 − 1/2, ε < 1/2 and r̂ so large that it satisfies r̂ ≥ r̄ ∨ r∗ ∨ 2/ε, where r̄ complies with
(4.4.26). These choices ensure that Φ is a supersolution to (4.4.2) in the region (r̂,∞)×(τ0, τ1),
with

τ1 := τ0 + c1 −
1
2 −

1
r̂
− ε

2 .

Then, one takes τ0 = τ0(r̂, ε) so that φ(r̂, τ) ≤ ε/2 for all τ ≥ τ0(r̂, ε); in this way Φ and
φ are correctly ordered on [r̂,∞) × {τ0} ∪ {r̂} × (τ0, τ1). However, we have no clue about
their relation in an outer lateral boundary of the form {n} × (τ0, τ1), for n > r̂. In order to
overcome this difficulty it is enough to replace w with wn ≤ w, the latter being the sequence
of rescaled solutions corresponding to the approximate solutions un of (4.2.4), which vanish
on {n} × (τ0, τ1). By construction, φn := wmn /V − 1 ≤ φ and the equation solved by φn is
basically the same as (4.4.2) (just replace (1 + φ)1/m/T with (1 + φn)1/m/Tn), so that for n
large enough (that is, Tn close to T ) Φ is a supersolution to such equation as well. From here
on one can proceed exactly as in the proof of Lemma 4.4.4.

Thanks to Lemmas 4.4.4 and 4.4.6 we finally deduce (4.4.1). Going back to the original
variables t and u(r, t), we obtain convergence of um(r, t) to (1− t/T )m/(1−m)V (r) in relative
error, which is clearly equivalent to (4.1.5).

4.4.3 Bounds for derivatives and global convergence in Ck

This subsection is devoted to proving the claimed results of Theorems 4.1.1 and 4.1.3
which deal with derivatives. To this end, we shall exploit a useful change of spatial variable
and rescaling techniques in the spirit of [73].
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Let
s = s(r) :=

∫ ∞
r

1
(sinh σ)N−1 dσ , (4.4.27)

so that
d
ds = −(sinh r)N−1 d

dr .

Notice that s ↓ 0 as r ↑ ∞, while s ↑ ∞ as r ↓ 0. Hence, the hyperbolic Laplacian of a
regular function f = f(r) = f(r(s)) reads

∆f = (sinh r)−2(N−1) d2f

ds2 .

Let w be the solution to (4.2.3). Take τ0 ≥ 1, r0 ≥ R with R large enough (to be chosen
later) and let s0 = s(r0). Consider the rescaled function

W(y, z) := (sinh r0)N−1
m w

(
r
(
s0 + y (sinh r0)−(N−1)

)
, τ0 + z (sinh r0)−(N−1)( 1

m
−1)

)
,

(4.4.28)
where (y, z) varies in the square (−α, α)2, α > 0 being a fixed number that we shall pick
later. After straightforward computations one finds that W satisfies the following equation:

Wz = (sinh r0)2(N−1)

(sinh r)2(N−1)︸ ︷︷ ︸
a(r,r0)

(Wm)yy + (sinh r0)−(N−1)( 1
m
−1)

(1−m)T︸ ︷︷ ︸
b(r0)

W . (4.4.29)

From here on we shall fix α to be independent of r0 and τ0 and so small that s is forced not
to leave the interval (s0/2, 3s0/2) as y varies in the interval (−α, α). This is feasible. Indeed,
first note that from (4.4.27) one has

lim
r→∞

s(r)
(sinh r)−(N−1) =: C(N) > 0 . (4.4.30)

Moreover, s varies in the interval(
s0 − α(sinh r0)−(N−1) , s0 + α(sinh r0)−(N−1)

)
.

Hence, if r0 ≥ R (namely s0 ≤ s(R)) with R = R(N) large enough, a proper choice of α =
α(N) (small enough) ensures that s does not leave the interval (s0/2, 3s0/2) as y ∈ (−α, α)
and that τ ≥ 1/2 as z ∈ (−α, α). Still from (4.4.30) one deduces that

lim
s↓0

r(s/2)− r(s) =: C , lim
s↓0

r(3s/2)− r(s) =: C (4.4.31)

for suitable constants C = C(N) > 0 and C = C(N) < 0. The above choice of α and (4.4.31)
imply that, for r0 = r(s0) large enough (again, greater than or equal to a given number R
that depends only on N), there holds

1
C1

sinh r0 ≤ sinh r ≤ C1 sinh r0 ∀r ∈ (r(s0/2) , r(3s0/2)) , (4.4.32)

C1 being another positive constant depending only on N . Gathering all this information, let
us go back to equation (4.4.29). First, from the global Harnack principle (4.1.8) and from
(4.4.32), one deduces that

|W(y, z)| ≤M ∀(y, z) ∈ (−α, α)2 (4.4.33)
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for a positive constant M = M(u0,m,N) that does not depend on r0 and τ0. Moreover,
recalling (4.4.28),

d
dy = − (sinh r)N−1

(sinh r0)N−1
d
dr , (4.4.34)

where, with some abuse of notation, it is understood that

r(y) = r(s(y)) = r
(
s0 + y (sinh r0)−(N−1)

)
.

Hence, (4.4.29), (4.4.34) and the inequality

1
C1

cosh r0 ≤ cosh r ≤ C1 cosh r0 ∀r ∈ (r(s0/2), r(3s0/2)) ,

which can be proved as (4.4.32) (for a possibly different C1 = C1(N) > 0), yield

1
Pk
≤
∣∣∣∣∣dka(r(y), r0)

dyk

∣∣∣∣∣ ≤ Pk , |b(r0)| ≤ Q ∀(y, z) ∈ (−α, α)2 , ∀k ∈ N ∪ {0} , (4.4.35)

again for positive constants Pk = Pk(N) and Q = Q(T (u0),m,N) that do not depend on r0
and τ0. The bounds (4.4.33) and (4.4.35) permit us to conclude, as in the proofs of Theorem
1.1 and Lemmas 3.1, 3.2 of [73] (one exploits e.g. the regularity results of [97] and [51] for
bounded solutions to nonlinear parabolic equations like (4.4.29)), that the following estimates
hold true: ∣∣∣∣∣∂kW∂yk (0, 0)

∣∣∣∣∣ ≤M1,k ,

∣∣∣∣∣∂kW∂zk (0, 0)
∣∣∣∣∣ ≤M2,k ∀k ∈ N , (4.4.36)

M1,k and M2,k being suitable positive constants depending only on M , α, T , m and N .
Going back to the original variables, we infer the existence of positive constants A1,k =
A1,k(u0,m,N, ε) and A2,k = A2,k(u0,m,N, ε) such that∣∣∣∣∣∂kw∂rk (r0, τ0)

∣∣∣∣∣ ≤ A1,k e
−N−1

m
r0 , (4.4.37)∣∣∣∣∣∂kw∂τ k (r0, τ0)

∣∣∣∣∣ ≤ A2,k e
k(N−1)( 1

m
−1)r0 e−

N−1
m

r0 , (4.4.38)

∀r0 ≥ 0 , ∀τ0 ≥ ε , ∀k ∈ N .

In fact, in order to prove (4.4.37) and (4.4.38) in the region {r0 ≥ R , τ0 ≥ 1}, one can use
(4.4.28), (4.4.34), (4.4.36) and the identity

dτ = (sinh r0)−(N−1)( 1
m
−1)dy

recursively. To extend such bounds to r0 ∈ (0, R) it is enough to apply the aforementioned
regularity results of [51, 97] to w directly, since in this region w is bounded away from zero.
Finally, they also hold for τ0 ≥ ε upon letting the constants A1,k and A2,k depend on ε as
well through α and M (as a consequence of the global Harnack principle (4.1.8)).

Recalling that the solution V (r) to (4.1.4) and any of its derivatives V (k)(r) behave like
e−(N−1)r at infinity (see (4.1.3) and formula (4.4.41) below), it is only a matter of tedious
computations to check that estimates (4.4.37) imply that∥∥∥∥∥∂kϕ∂rk (τ)

∥∥∥∥∥
∞

= |ϕ(τ)|Ck(R+) ≤ A1,k ∀τ ≥ ε , ∀k ∈ N (4.4.39)
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up to possibly different constants that we keep denoting as A1,k, where ϕ is the relative error
ϕ(r, τ) := w(r, τ)/V 1/m(r) − 1 (note that it is slightly different from the relative error φ
we introduced in Subsection 4.4.1). Taking advantage of the interpolation inequalities (let
ϕ(−r, τ) = ϕ(r, τ) for all r > 0)

|ϕ(τ)|Ck(R) ≤ Cj,k |ϕ(τ)|k/jCj(R) ‖ϕ(τ)‖1−k/j
∞ ∀k, j ∈ N : k < j

(we refer again to [142, pp. 125-126], [30, Appendix A.3] or to [100, 101]), (4.4.1) and the
bounds (4.4.39), we deduce that in fact

lim
τ→∞
|ϕ(τ)|Ck(R+) = 0 ∀k ∈ N . (4.4.40)

In view of (4.2.2), this is equivalent to (4.1.6) in Theorem 4.1.1. As for estimates (4.1.9) and
(4.1.10) in Theorem 4.1.3, just notice that they can be readily deduced from (4.4.37) and
(4.4.38).

Let us investigate what (4.4.40) means in terms of the spatial derivatives of w (or u). That
is, we are going to prove (4.1.7) in Theorem 4.1.1. First of all we can show, by induction,
that

lim
r→∞

dkV p
drk (r)
V p(r) = (−p (N − 1))k ∀p 6= 0 , ∀k ∈ N . (4.4.41)

Indeed, the existence of the limit in (4.4.41) is a consequence of the chain rule and (4.1.3).
Then, suppose that (4.4.41) holds for a given k. Consider the identities

lim
r→∞

dk+1V p

drk+1 (r)
dV p
dr (r)

= 1
p

lim
r→∞

dk+1V p

drk+1 (r)
V p(r)

V (r)
V ′(r) = 1

−p (N − 1) lim
r→∞

dk+1V p

drk+1 (r)
V p(r) . (4.4.42)

Since, in view of (4.1.3), the last limit in the r.h.s. of (4.4.42) exists, by de l’Hôpital’s Theorem
it coincides with

−p (N − 1) lim
r→∞

dkV p
drk (r)
V p(r) ,

and this proves the inductive step. As (4.4.41) is trivially valid for k = 0, we conclude that
it holds for all k ∈ N. Now note that, for the k-th spatial derivative of ϕ, we can exploit the
binomial formula

∂kϕ

∂rk
=

k∑
j=0

(
k

j

)
w(j)

(
V −

1
m

)(k−j)
, (4.4.43)

where, for greater readability, we only use superscripts to denote derivatives w.r.t. r. We
shall establish that, for all k ∈ N, the ratio w(k)(r, τ)/V 1/m(r, τ) converges in L∞ to a smooth
function Gk(r) such that

lim
r→∞

Gk(r) = (−1)k
(
N − 1
m

)k
. (4.4.44)

This is clearly equivalent to proving (4.1.7). For k = 0 (4.4.44) is exactly (4.1.5), with the
choice G0 = 1. As for further derivatives, we proceed by induction. Indeed, suppose the
result is true for all j ≤ k − 1. From (4.4.40) and (4.4.43) we get

lim
τ→∞

∥∥∥∥∥∥w
(k)(τ)
V

1
m

−
k−1∑
j=0
−
(
k

j

)
w(j)(τ)

(
V −

1
m

)(k−j)
∥∥∥∥∥∥
∞

= 0 . (4.4.45)
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Thanks to the inductive hypothesis and (4.4.41), (4.4.45) implies

lim
τ→∞

∥∥∥∥∥∥∥
w(k)(τ)
V

1
m

−
k−1∑
j=0
−
(
k

j

)
Gj

(
V −

1
m

)(k−j)

V −
1
m

∥∥∥∥∥∥∥
∞

= 0 .

So we are left with proving that the function

Gk(r) := −
k−1∑
j=0

(
k

j

)
Gj(r)

(
V −

1
m

)(k−j)
(r)

V −
1
m (r)

complies with (4.4.44). From (4.4.41) and the inductive hypothesis, this is indeed the case
provided

−
(
N − 1
m

)k k−1∑
j=0

(
k

j

)
(−1)j = (−1)k

(
N − 1
m

)k
,

an identity which is a direct consequence of Newton’s binomial formula.
Finally, we point out that the estimate from below (4.1.11) is an immediate corollary of

(4.1.7).

Remark 4.4.7. In order to obtain the bounds (4.1.13) and (4.1.14) of Theorem 4.1.4 (sub-
critical m), just note the constants c1(t, ·) and c2(t, ·) appearing in (4.1.12) can be taken
to be continuous functions of t ∈ (0, T ), as a consequence of the method of proof of such
inequalities (see Section 4.3). This allows us to prove that there exists a constant M (here
depending on τ0 as well) such that (4.4.33) holds true, which is enough in order to proceed
as above and get the claimed estimates.
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