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Italian abstract

Titolo della tesi:
Dinamica e statistica di sistemi con interazione a lungo raggio: appli-
cazioni a modelli giocattolo 1-dimensionali.

Questo lavoro di tesi è focalizzato sullo studio e la caratterizzazione dei sistemi
dinamici con interazione a lungo raggio (LR). Questi ultimi vengono definiti tali sulla
base della legge che governa l’interazione tra elementi costitutivi. Per tali sistemi infatti
il potenziale V scala con la distanza r come V ∼ 1

rα , con α minore della dimensione
spaziale d. La difficoltà nello studio di questi sistemi cresce all’aumentare del numero
di gradi di libertà, dal momento che è necessario considerare la configurazione di ogni
elemento per calcolare il potenziale che agisce su una singola particella.
Negli ultimi decenni questo campo di studi ha visto nascere un crescente interesse,
dovuto principalmente alle caratteristiche dinamiche e termodinamiche peculiari che
è possibile osservare nei sistemi LR. Nello specifico, la natura complessa della loro
dinamica fa emergere proprietà contro-intuitive e inaspettate, come la presenza di
stati stazionari di fuori-equilibrio (QSS), il cui tempo di vita diverge con l’aumentare
del numero N di gradi di libertà.
Nel limite N → ∞ il sistema resta indefinitamente intrappolato nei QSS, senza mai
raggiungere la soluzione asintotica prevista sulla base della termodinamica conven-
zionale. I QSS possono essere pertanto considerati veri e propri stati di equilibrio nel
limite di taglia infinita, risultando gli unici accessibili e misurabili.
I QSS sono tipicamente associati a funzioni di distribuzione fortemente non-maxwelliane
ed impongono di fatto una attenta rivisitazione di concetti termodinamici chiave
sviluppati nel contesto di gas perfetti interagenti tramite collisioni a corto raggio.
Nello specifico è possibile osservare proprietà particolari come la presenza di calore
specifico e suscettività magnetica negativi (in sistemi isolati), inequivalenza degli
insiemi statistici, bande di valori proibiti nelle quantità termodinamiche (salti di
temperatura) e peculiari fenomeni di auto-organizzazione spaziale.
Sebbene le interazioni LR costituiscano la base dei più noti sistemi fisici, nella pratica
sperimentale è possibile osservare gli effetti dinamici o termodinamici sopracitati solo
nel limite in cui i contributi a corto raggio, urti, rumore, risultino trascurabili. Nonos-
tante questo, le teorie nate nell’ambito delle interazioni LR sono state applicate con
succcesso per descrivere la dinamica di sistemi auto-gravitanti, di vortici 2-dimensionali
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e di sistemi con interazioni onda-particella; presentano inoltre importanti applicazioni
nel campo della fisica dei plasmi carichi.
Attualmente, la teoria che ha mostrato maggiore accuratezza nel descrivere la
termodinamica dei QSS di un sistema LR è quella dovuta a Lynden-Bell, sviluppata
alla fine degli anni ’70 nel contesto della dinamica galattica. La teoria è stata applicata
con successo alla soluzione del modello Hamiltonian Mean Field (HMF), che è assurto
a sistema paradigmatico delle interazioni LR. Infatti, l’HMF possiede una ricca
fenomenologia che risulta potenzialmente applicabile allo studio di alcuni sistemi laser
(FEL e CARL). Lo studio analitico di questo modello, con la sopracitata teoria di
Lynden-Bell, è stato finora limitato ad una specifica e restrittiva condizione iniziale,
denominata “water-bag”.

Il mio lavoro originale di tesi si è inizialmente focalizzato sull’estensione della
soluzione di Lynden-Bell per l’HMF, generalizzando l’analisi a condizioni iniziali di
“water-bag” a più livelli. L’intento di questo studio è quello di riuscire ad approssimare
condizioni iniziali continue più realistiche.

In seguito, sempre in riferimento al modello HMF, mi sono concentrato sulla
caratterizzazione della termodinamica dei QSS nell’insieme statistico canonico. Si
tratta di uno studio complesso che presenta notevoli problematiche tuttora irrisolte,
legate all’implementazione pratica di un bagno termico per sistemi LR. Il mio lavoro
si è incentrato sulla definizione formale di tale insieme statistico: nello specifico
ho mostrato come, applicando la teoria termodinamica convenzionale, sia possibile
misurare un calore specifico “cinetico” negativo, in un sistema non isolato. Una
prima conseguenza di tale inaspettata proprietà porta, come dimostrato nel corso di
questo lavoro, alla violazione del secondo principio della termodinamica, consentendo
di realizzare una macchina termica che esegue lavoro positivo prendendo calore
dal termostato freddo e rilasciandolo in quello caldo. Un tale risultato ci spinge a
riconsiderare l’applicabilità della attuale teoria termodinamica al caso dei sistemi LR,
e alla eventuale ridefinizione della legge di Fourier per la trasmissione del calore.

L’ultima parte di questa tesi è dedicata allo studio di alcuni modelli a lungo raggio
che si possono configurare come estensioni del modello HMF.
In una prima fase, mi sono concentrato sul modello 1-dimensionale noto come α-HMF,
definito su un reticolo. Questo modello consente di variare la forza dell’interazione
controllata dal parametro reale α. Nel limite N → ∞ quest’ultimo modello è
analiticamente equivalente all’HMF per α < 1. Ho studiato inoltre la persistenza degli
stati QSS nel limite in cui la dinamica passa da LR a corto raggio (α = 1) e mi sono
dedicato allo studio del regime α > 1, evidenziando la presenza di una transizione di
fase tipica del regime LR. I risultati di questo studio suggeriscono una generalizzazione
della definizione dei sistemi LR che tenga conto della dipendenza da r della forza,
piuttosto che del potenziale.
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L’ultimo capitolo della tesi è dedicato alla caratterizzazione di un nuovo modello

LR, che si configura come una naturale estensione del precedente α-HMF, dotato di un

termine di distanza continuo. L’obiettivo prefissato è quello di studiare la dinamica e la

termodinamica LR in modelli complessi e di potenziale interesse applicativo. In questo

lavoro introduttivo, incentrato sullo studio degli stati termodinamici di equilibrio, ho

mostrato come la presenza di uno spazio delle fasi più esteso consenta l’insorgenza

di fenomeni di auto-organizzazione con elevata simmetria. Quest’ultima risulta in un

potenziale efficace di campo medio simile ai modelli studiati in precedenza e una tran-

sizione di fase simile a quella osservata sia per l’HMF che per l’α-HMF, rendendo affine

la descrizione statistica dei tre modelli.



French abstract

Titre de la thèse:
Dynamique et statistique de systèmes avec interactions à longue
portée: applications à des modèles simplifiés unidimensionnels.

Ce thèse a comme objectif l’étude et la caractérisation des systèmes dynamiques
avec interaction à longue portée (LR). Ces derniers sont définis tels en vertu de
la loi d’interaction entre les éléments constitutifs qui les caractérise: le potentiel
d’interaction V varie avec la distance r comme V ∼ 1

rα , avec α plus petit que la
dimension spatiale d dans laquelle est immergé le système. La difficulté de l’étude
de ces systèmes crôıt si l’on augmente le nombre de degrés de liberté, étant donné
qu’il est nécessaire de considérer la configuration de chaque élément pour calculer le
potentiel qui agit sur chaque particule.
Au cours des dernières décennies ce domaine d’études a vu nâıtre un intérêt croissant,
dû principalement aux caractéristiques dynamiques et thermodynamiques particulières
que l’on peut observer dans les systèmes LR. Plus spécifiquement la nature complexe
de leur dynamique met en évidence des propriétés contre-intuitives et inattendues,
comme l’existence d’états stationnaires hors-équilibre (QSS), dont le temps de vie
diverge si l’on augmente le nombre N de degrés de liberté.
Dans la limite N → ∞ le système reste piégé indéfiniment dans les QSS, sans jamais
parvenir à la solution asymptotique prédite sur la base de la thermodynamique
classique. Les QSS peuvent donc être considérés comme des états d’équilibre réel dans
la limite de taille infinie, puisqu’ils se révèlent les seuls accessibles et mesurables.
Les QSS sont décrits typiquement par une fonction de distribution fortement non-
Maxwellienne, menant donc à la redéfinition des concepts thermodynamiques clé
développés dans le contexte de gaz parfaits interagissant par des collisions à courte
portée. Plus spécifiquement on peut observer des propriétés particulières comme
présence de chaleur spécifique et susceptibilité magnétique négatives (dans des
systèmes isolés), inéquivalence des ensembles statistiques, de valeurs interdites dans les
quantités thermodynamiques (sauts de température) et phénomènes caractéristiques
d’auto-organisation spatiale.
Même si les interactions LR constituent la base des systèmes physiques les plus connus,
dans la pratique expérimentale il est possible d’observer les effets dynamiques ou
thermodynamiques précités seulement si les contributions à courte portée, chocs, bruit,
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sont négligeables. Malgré cela, les théories nées dans le cadre des interactions LR ont
été appliquées avec succès pour décrire la dynamique des systèmes auto-gravitants,de
tourbillons bidimensionnels et de systèmes avec interactions onde-particule;elles
présentent en outre d’importantes applications dans le domaine de la physique des
plasmas chargés.
A l’heure actuelle c’est à Lynden-Bell que nous devons la description la plus détaillée
de la thermodynamique des QSS d’un système LR; sa théorie se développe à la fin des
années ’70 dans le contexte de la dynamique galactique. La théorie a été appliquée
avec succès à la solution du modèle Hamiltonian Mean Field (HMF), qui est élevé
à système paradigmatique des interactions LR. En effet l’HMF possède une riche
phénoménologie qui s’avère potentiellement applicable à l’étude des quelques systèmes
laser (FEL e CARL). L’étude analytique de ce modèle, avec la théorie susmentionnée
de Lynden-Bell, a été jusqu’à présent limitée à une condition initiale spécifique et
restrictive appelée “water-bag”.

Mon travail original de thèse s’est tout d’abord consacré à l’extension de la solution
de Lynden-Bell pour l’HMF , de façon à comprendre une généralisation de la condition
initiale de water-bag à plusieurs niveaux. L’objectif de cette étude est de réussir à
approcher des conditions initiales continues plus réalistes.

Par la suite, toujours en me référant au modèle HMF, je me suis intéressé à la
caractérisation de la thermodynamique des QSS dans l’ensemble statistique canonique.
Ce dernier est une étude complexe qui présente d’importantes problématiques qui
sont toujours sans solution; elles sont liées à l’implémentation pratique d’un bain
thermique pour systèmes LR. Mon travail a eu comme objectif la définition formelle
de cet ensemble statistique. Plus spécifiquement j’ai montré comment, en appliquant
la théorie thermodynamique standard, il est possible de mesurer une chaleur spécifique
“cinétique” négative même dans un système non isolé. Une première conséquence
de cette propriété inattendue amène, comme le démontre le travail de ce thése, à
la violation du second principe de la thermodynamique, en consentant de réaliser
une machine thermique qui exécute un travail positif en prenant de la chaleur du
thermostat froid pour la relâcher dans le thermostat chaud. Un tel résultat nous
pousse à reconsidérer l’applicabilité de la théorie thermodynamique actuelle dans le
cas des systèmes LR et à redéfinir éventuellement la loi de Fourier pour la transmission
de la chaleur.

Enfin la dernière partie de mon thèse est consacrée à l’étude de quelques modèles
sur longue portée qui peuvent être considérés comme extensions du modèle HMF.
Tout d’abord je me suis concentré sur le modèle monodimensionnel connu comme
α-HMF, défini sur un réseau. Ce modèle consent de varier la force de l’interaction
contrôlée par le paramètre réel α. Dans la limite N → ∞ ce dernier modèle est
analytiquement équivalent à l’HMF pour α < 1. Dans ce travail j’ai étudié la
persistance des états QSS dans la limite où la dynamique passe de LR à courte portée
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(α = 1); en outre je me suis consacré à l’étude du régime α > 1 en relevant la présence
d’une transition de phase typique du régime LR. Les résultats de cette étude suggèrent
une généralisation de la définition des systèmes LR qui prenne en considération la
dépendance de r de la force plutôt que du potentiel.

Le dernier chapitre de cette thèse est consacré à la caractérisation d’un nouveau

modèle LR, qui est considéré comme une extension naturelle du précédent α-HMF, doté

d’un terme de distance continu. L’objectif préfixé est d’étudier la dynamique et la ther-

modynamique LR dans des modèles complexes et d’intérêt potentiel applicatif. Dans

ce travail d’introduction centré sur l’étude des états thermodynamiques d’équilibre, j’ai

montré comment la présence d’un espace des phases plus étendu permet l’apparition

de phénomènes d’auto-organisation avec une symétrie élevée. Cette dernière génère un

potentiel efficace de champ moyen semblable aux modèles étudiés précédemment, et

une transition de phase semblable à celle que l’on observe aussi bien pour l’HMF que

pour l’α-HMF, ce qui rend analogue la description statistique des trois modèles.







Introduction

Among spatially extended systems, a role of paramount importance is played by
those interacting with a long-range potential. In fact two of the four fundamental
forces in nature, electromagnetism and gravitation, are intrinsically long-range,
giving raise to couplings between every interacting element. In many practical
situations long-range effects are difficult to observe due to the external noise
or because of screening effects originating from different charges distribution.
However, it is found that this class of systems is of key importance in many
different fields of study, ranging from astrophysics [1, 2], to plasma physics [3],
hydrodynamics [4, 5], atomic physics [6] and nuclear physics [7].
These physical systems have been widely studied since the very start of modern
science. However, despite the abundance of theoretical and numerical results,
their statistical thermodynamic description still poses many problems. A
first great challenge lies in the fact that the great number of inter-particles
couplings give raise to analytical and numerical difficulties. Moreover, the
common assumptions at the very basis of statistical mechanics often rely on the
short-range locality of the interaction, which allows one to separate the system
into independent parts.
In recent years the study of long-range systems knew a great burst of activity.
Thanks to seminal results developed in the context of astrophysics and cos-
mology, it was realized that the thermodynamics of few simplified models can
be solved analytically in different statistical ensembles (e.g. microcanonical).
These latter results paved the way to the developing of a generalized statistical
thermodynamic theory and to the rigorous description of a broader range of
phenomenology, e.g. negative specific heat or ensemble inequivalence.
A new phenomenon observed in numerical simulations and theoretically con-
firmed in few solvable cases consists in the striking fact that long-range systems
may develop long-lasting metastable stationary states, far from the equilibrium,
with a lifetime that diverges with the system size. In the thermodynamic limit
these states become the solely experimentally accessible, and it was found that
they are described by equilibrium distribution functions that do not generally
obey to the Boltzmann-Gibbs statistics.
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A great amount of theoretical effort was devoted in the last decades into
developing a rigorous interpretative framework of the above out-of-equilibrium
phenomena. A seminal work pioneered by Lynden-Bell [8] in the context of
galactic dynamics, was based on the Vlasov equation that describes the motion
of a collisionless gas in the continuous limit. This theoretical approach resulted
in a modified statistics that made it possible to characterize the metastable
states via a maximum entropy principle. This latter approach was found to
be able to accurately predict the value of macroscopic observables in selected
long-range many-particles systems, in accordance with numerical simulations.
Lynden-Bell results can be considered a first viable method to describe an
isolated long-range system in the microcanonical ensemble. Despite this success
there are still open questions on how to describe the interaction of such systems
with an external thermal bath, or even on how to physically construct the heat
reservoir. This latter problem prevents the rigorous application of the theory to
many real-world physical settings, where energy exchange with external systems
takes place.
Another problem that limits the general application of the above theory to
a broader range of systems, is that its predictive adequacy was confirmed
only with reference to simplified models, the most paradigmatic one being
the Hamiltonian Mean Field (HMF). Statistical description of more complex
long-range interactions, which are not rigorously mean-field, still faces numerical
and theoretical problems.

The work of this thesis will concentrate on developing the general knowledge
of dynamical and statistical properties of long-range systems. In the course of the
thesis we will show how the general microcanonical Lynden-Bell theory can be
extended to a class of generalized initial conditions. Also, we will try to apply the
latter to describe the interaction with an external thermal bath. We will show
how this generalized approach introduces new challenges to statistical physics,
pointing out the necessity of a better understanding of the basic assumptions
behind our knowledge of long-range thermodynamics.
In the last chapters we will introduce a new model for long-range interactions,
which we solved analytically and which adds a layer of complexity to the
previously studied systems. in particular, by working in this context, we were
able to observe a rich phenomenology, including a solid to gas phase transition.
Hopefully these results will make it possible to model interesting behaviours, like
self-organization as observed in real systems.

The outline of this thesis is the following:

• The first chapter will be focused on a generic introduction to long-range
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theory and the key properties that characterize this class of systems. We
will briefly review the main results present in literature in order to provide
the reader with a comprehensive picture of the topics contained within this
work. For a more in-depth understanding of the subject, an extended review
on long-range physics was published recently by A. Campa et. al. [9].

• In the second chapter we will introduce the Hamiltonian Mean Field model,
to which we shall extensively refer all along the thesis work. We will briefly
review its main features and its equilibrium statistical solution both in the
microcanonical and in the canonical ensemble, revisiting the results so far
obtained in literature on this paradigmatic model.

• In the third chapter we will introduce the theory of metastable Quasi-
Stationary-States emergence. In the mean-field continuous limit, this out-
of-equilibrium states can be described as equilibrium solutions of the Vlasov
equation. We will propose an extension of the Lynden-Bell theory so far
employed in the literature, in order to take into account a generalized family
of initial conditions, i.e. the “multi-level water-bag”. In this general setting
we will validate the theory versus numerical simulations.

• In the fourth chapter we will argue for a possible description of a canonical
HMF model. Our aim is to elucidate the interaction with an external ther-
mal bath. Rather than focusing on the practical construction of the heat
reservoir, we will give a formal description of the interaction with the latter
and explore the statistical properties of the system at thermal equilibrium.
Surprising counter-intuitive features (like negative kinetic “canonical” spe-
cific heat) are observed, which eventually lead to paradoxes when consider-
ing a thermal machine working in such setting. These latter results call for
an extended thermodynamic theory of long-range systems.

• The fifth chapter is devoted to a numerical characterization of the properties
of a long-range lattice model at the short range threshold. We will show
how long-range features may still survive in situations where the interaction
is technically short-range, according to the classical definition that relies on
the decay of the potential with distance. Based on this observation we
argue that a more correct definition of long-range systems would take into
account the scaling of the interaction force.

• In the sixth chapter we will introduce a new Hamiltonian long-range model,
which takes into account the scaling of the potential with respect to a con-
tinuous metric distance term. We were able to find an equilibrium solution
for this model in the thermodynamic limit, which shows good agreement
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with numerical simulations. Living in a more complex phase space, this
model shows a rich phenomenology which yields to spatial self-organization
and solid-to-gas phase transitions. In the thermodynamic limit we are able
to reproduce the transition observed for the HMF, showing effective equiv-
alence between the two models for a wide range of parameters.

• Finally, in the last chapter, we will sum up and conclude.



Chapter 1

Systems with long-range
interactions

Systems with long-range interactions are defined through the scaling law of the
governing potential. In the following we suppose that the system can be described
by Hamiltonian equations and that the interaction can be decoupled in a two-
body translationally invariant potential Vp. The latter acts between pairs of
constituting elements, and the total potential is given by the sum over all the
pairs V =

∑

p Vp. This is the case for the systems under study in this work.
We assume also that the potential Vp scales with a distance parameter r, defined
on the appropriate metric of the space, and that this scaling can be represented
by the following form:

Vp(r) =
A

rα
. (1.1)

We consider a system to be long-range if α ≤ d, where d is the dimension of the
space where the system is embedded. Otherwise it is considered short-range.
To understand the meaning of this definition we must explain in detail how the
scaling properties of the potential are related to key thermodynamic properties
of the system like extensivity and additivity. These aspects are discussed in
section 1.2.

This introductory chapter is devoted to a short discussion of the main theo-
retical aspects behind long-range physics. For an extensive review see [9]. In the
first part 1.1 we will show few examples of long-range systems. In the following
section 1.2 we will make a short introduction to the main thermodynamic
features of long-range systems, to better explain the difference with respect to
short-range interactions. In section 1.3 we will elaborate on the thermodynamic
description of long-range systems in the canonical and microcanonical ensemble.
Finally in section 1.4 we will introduce the main dynamical out-of-equilibrium
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features of long-range models, defining the metastable quasi-stationary-states
(QSS) that characterize these systems.

1.1 Examples of Long-Range Systems

Two of the four fundamental interactions in nature, gravity or electromagnetism,
are long-range. As we will show later, the long-range nature of a system can be
associated to the presence of unusual thermodynamic and dynamic properties:
as an example we can observe ensemble inequivalence, negative specific heat and
temperature jumps, while dynamically the system can relax towards peculiar
out-of-equilibrium states where it remains trapped for a time which diverges
with the system size.
In many cases these effects are not detectable, due to the presence of stronger
short-range effects (e.g. collisions or noise) that destroy the long-range nature of
the underlying physics. This is especially true in the case of gravity, were the
overall weakness of the interaction makes long-range effects to become important
only at very large scales. Also, in the case of electromagnetism, the effective
shielding provided by opposite charges may hide long-range interactions in many
physical situations of interest.

This work will be focused on the study of few paradigmatic Hamiltonian
models. However there are plenty of examples of genuine long-range interacting
systems, to which we shall allude in the following.

●�✁✂✄☎✁☎✄✆✝✁✞ ✟✆☎✠✝☎✄✁✞

❈✆✡✞✆☛☞ ✟✆☎✠✝☎✄✁✞

✷✌ ✂✆�☎✄✍✠✎

■✏✑✒✓✔✕✑✖✗✏ ❛ ❞

✵ ✷

✶ ✸

✶ ✸

❍✘✙ ✵ ✶
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Figure 1.1: Classification of long-range interacting systems based on the embedding dimension d and
the characteristic scaling exponent α of the interaction.
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Gravitational systems

Systems interacting with a gravitational force in three dimensions are naturally
long-range. The gravitational potential scales like 1

r
, which implies α = 1

and d = 3 in the classification scheme that follows equation (1.1). To avoid
short-range divergences, it is customary to introduce an hard core effective
short-range cut-off in the above scaling. This prevents problems in the definition
of the thermodynamic potential.
The study of these kind of systems has deep implications both in astrophysics
and cosmology, but also to collisionless fluid mechanics. Historically, long-range
physics was initially developed in order to answer problems coming from this
field of application, like evidences of negative specific heat [10, 11, 12] as well as
metastable trapping dynamical states [8] in galactic dynamics.

Coulomb-interacting systems

Charged systems with a Coulomb interaction are similar to gravitations systems,
being the scaling of the potential the same, and analogous considerations apply
to the short-range renormalization due to divergencies.
In mixed charge conducting systems, usually the amount of unbalanced charge is
moved to the boundary, so in most cases we limit ourselves to study systems with
zero total charge. Also in the Debye-Hückel approximation, were the tempera-
ture T is high enough that particles obey to Boltzmann’s statistics, the effective

potential is given by Veff ∼ 1
r
e
− r

λD , where

λD =

√

kbT

4πe2ρ
(1.2)

is the characteristic Debye length, ρ is the charge density and kb is the Boltz-
mann’s constant. This length is the range of effectiveness of the shielding effects,
and marks the threshold to plasma behaviour. Looking to the dependence
of λD on the thermodynamic parameters we see that long-range effects are
relevant only in the regime of high temperature or low densities. The first one is
found in high-temperature plasmas, were observations evidence the presence of
out-of-equilibrium trapping states [13, 14] and negative specific heat [15]. The
low density conditions are met in the intergalactic medium, which has a Debye
length λD ∼ 105m.
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2D hydrodynamics

The physics of two-dimensional incompressible fluids is an important field of
application were long-range effects may appear [16]. Generally speaking, in the
case of two-dimensional flows, we can observe the formation of interacting large-
scale coherent structures (vortices).
The stream function Φ(~r), where ~r is the position vector on the plane, is related
to the modulus of the vorticity vector ω = ∂vy

∂x
− ∂vx

∂y
, defined on the velocity field

[vx, vy], through the Poisson equation ∆Φ(~r) = −ω.
One can find a solution to the previous equation over an infinite domain Θ in the
form:

Φ(~r) =

∫

Θ

ω(~r ′)G(|~r − ~r ′|)d~r ′ , (1.3)

where G = − 1
2π

ln(|~r − ~r ′|) is the Green’s function.
Energy E is given by:

E =
1

2

∫

Θ

(v2x + v2y)d~r =
1

2

∫

Θ

(∇Φ)2d~r =
1

2

∫

Θ

ω(~r)Φ(~r) d~r

=
1

4π

∫

Θ

∫

Θ

ω(~r)ω(~r ′) ln(|~r − ~r ′|) d~rd~r ′ .

(1.4)

This is obtained on an infinite domain, where the term coming from the inte-
gration over the boundary vanishes. Equation (1.4) shows that vortices have a
logarithmic interaction, that corresponds to α = 0 and d = 2, according to the
above classification scheme.
The long-range nature of the interaction emerges even more clearly if we approx-
imate the vorticity field with a sum of point vortices with given circulation Γi

located in ~ri: ω(~r) =
∑

i Γiδ(~r − ~ri). If this assumption holds then the energy
takes the form:

E = − 1

4π

∑

i,j|i 6=j

ΓiΓj ln |~ri − ~rj| , (1.5)

which is clearly logarithmic.
These kind of systems are of key importance in hydrodynamics and have been
extensively studied in the past. In particular they display evidences of ensemble
inequivalence and negative specific heat [17, 18, 19].

Simplified (toy) models

Physically realistic models of long-range interactions are difficult to study nu-
merically, especially in higher dimensions, due to the large number of degrees
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of freedom involved and the fact that the matrix of interaction between each
element constituting the system (everything is interacting with everything) gets
very large. For this reason, theoretical studies on long-range interacting systems
are customarily performed by resorting to simplified toy models, which enables
one to reproduce the long-range dynamical and thermodynamic properties in a
phase space of reduced complexity.
This strategy is common to many fields in theoretical physics. For example the
well known Ising model is widely used to mimic ferromagnetic spin systems.
In the last decades many long-range toy models were introduced in literature.
Among them the HMF is certainly the most extensively studied and paradig-
matic. Many of the results presented in this work are related to this model.
The HMF was shown capable of reproducing many key long-range features, with
complex 1-D phase transitions, metastable stationary states [20, 21] and negative
specific heat [22, 23]. A more extended description of the model is the subject of
chapter 2.

Small systems

Systems which are governed by short-range forces, but whose size is comparable
with the interaction range, can also manifest long-range features like ensemble
inequivalence. These latter systems are briefly mentioned in this section as
an exception to the generic classification (1.1). This is an important field of
application, relevant to many different physical systems like atomic clusters,
large nuclei or quantum fluids, where phenomena like out-of equilibrium phase
transitions and negative specific heat [24, 25] could be eventually interpreted
by resorting to the thermodynamic theory developed in the long-range framework.

1.2 Extensivity and Additivity

A long-range system has key distinctive features that mark the difference with
respect to the physics of short-range ones. Typically one encounters several
problems when defining the thermodynamic variables for systems subject to
long-range interactions. The system may be non-extensive and non-additive,
meaning that we may expect a counter-intuitive behaviour of the thermodynamic
potentials with respect to the well known theoretical framework developed in
the short-range context.
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1.2.1 Extensivity and Kac rescaling

Given a system formed by N particles, in the thermodynamic limit we define
intensive a quantity whose value does not depend on the system size, while we
call extensive a quantity that scales proportionally to N . To make an example,
density or temperature are intensive, while the energy E is usually extensive.
Extensive quantities allow the definition of intensive ones, like energy density ǫ =
E
N
, that have a finite value in the thermodynamic limit, and bears key importance

in thermodynamic applications.
This property is satisfied in case of short-range systems, where the number of
interactions between particles is proportional to N , but we can easily understand
how this condition is not obviously met in long-range ones, where the number of
interactions scales with N2.
In order to understand better this latter fact, let us consider as an example the
potential energy U of a single particle, interacting with the potential (1.1), placed
in the center of an homogeneous distribution of particles in a sphere of radius R
and dimension d, with α 6= d:

U =

∫ R

δ

A

rα
ddr ∼

∫ r

δ

r(d− 1− α)dr = Rd−α − δd−α . (1.6)

Here we are neglecting a small neighbourhood δ of the origin in order to avoid the
divergence of the potential (which is unrelated to long-range features) and any
constant coming from the integration. From the previous equation it is evident
that, if A is constant, the energy U diverges as a power law with R, if α ≤ d,
which makes the total energy non-extensive.
In the marginal case α = d the energy still diverges logarithmically:

E ∼ log(R)− log(δ) . (1.7)

In order to recover extensivity it is customary to introduce factor scaling with
the system size in front of the potential, as proposed by Kac et al. [26]. This pro-
cedure is quite common in mean-field physics, the most notable example being
the Curie-Weiss model for ferromagnetic spin interaction, were particles inter-
act with the mean potential generated by the system configuration. To better
understand the effect of this scaling, let us consider as an example the simple
case of the Hamiltonian Mean Field model (HMF), which we will introduce prop-
erly later and will become quite familiar to the reader, defined by the following
Hamiltonian:

H =
N
∑

i=1

p2i +
1

2N

N
∑

i,j=1

(1− cos(θi − θj)) , (1.8)

where p is the momentum and θ the angular coordinate of a particle moving on
a circle.
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Here the kinetic part of the energy is extensive, and thus the kinetic temperature
T is an intensive quantity, while the sum in the potential grows like N2, which
is normalized by the factor 1

N
, thus making it extensive too.

An alternative way to recover extensivity without rescaling the potential
would be to make the temperature extensive T → TN , such that the terms of
the free energy F = E−TS have the same scaling (entropy S scales linearly with
N and E scales with N2). This approach is equivalent to rescaling velocities
(assuming the temperature is the average kinetic energy per particle) and thus
change the timescale. Both prescriptions shown above are equivalent from the
point of view of the physical description of the system, but the rescaling of the
potential is more widely used since it allows for a more intuitive physical insight.

1.2.2 Lack of Additivity

Even though it is possible to renormalise the interaction so to recover extesivity,
long-range systems are by definition non-additive, meaning that they cannot be
described as a sum of disjoint subsets.
Additivity is a key thermodynamic property. It implies that if we divide the
ensemble Γ of all the elements of a system into k disjoint macroscopic sets Γi,
each containing a smaller number of elements, with

⋃k
i=1 Γi = Γ, then the total

value of any extensive quantity computed for the whole ensemble Γ is given by
the sum of the values relative to each set. For example the total energy E would
read E =

∑k
i=1 Ei.

To make an example, let us consider the well known Curie-Weiss model de-
scribed by the following Hamiltonian:

H = − J

2N
(

N
∑

i=1

Si)
2 , (1.9)

where N is the number of spins of magnetization Si = ±1. This model is
extensive thanks to the factor 1

N
. Let us consider a spin distribution which is

split into two separate identical regions of different orientation, like the one
displayed in figure (1.2).
The energy of the two areas is identical E1 = E2 = −JN

8
. The total energy of

the system is however E = 0. The system is hence non-additive since E 6= E1+E2.
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✰
❴

Figure 1.2: A spin distribution which shows the lack of additivity of the Curie-Weiss model (1.9).
The two identical areas are homogeneously populated by spins of orientation +1 or −1, so that the total
magnetization is zero.

1.3 Thermodynamics

The lack of additivity shown before has a relevant impact on the thermodynamic
properties of a long-range system, resulting in unusual behaviours of the ther-
modynamic functions and yielding among the others to ensemble inequivalence,
negative specific heat and temperature jumps.
As an example, let us suppose that we have a system which is characterized by
two thermodinamic extensive macroscopic quantities, respectively the energy E
and the magnetization M (this is the case of the HMF system, as we will show
in chapter 2). If the system is additive, then we can identify two disjoint subsets
and introduce a parameter λ such as:

E = λE1 + (1− λ)E2 ,

M = λM1 + (1− λ)M2 .
(1.10)

Of course λ measures the relative size of the two subsets.

Each state with 0 ≤ λ ≤ 1 is accessible by simply varying the size of the
two subsets. Property (1.10) is the mathematical definition of convexity for the
macrostates space (E,M). A dynamical system can display the latter only by
neglecting the interaction energy between the two subsets. This of course cannot
be done for long-range systems.
In principle, the macroscopic phase space of a long-range system is not nec-
essarily convex, and thus forbidden regions of macroscopic states may appear
between two different accessible states. A schematic representation of this latter
phenomenon is portrayed in figure (1.3). This in turn would mean that the
space of macrostates is no longer connected and one may observe first order
phase transitions (jumps) in the value of the thermodynamic variables, as well
as ergodicity breaking.
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Figure 1.3: Schematic representation of a convex region in the macrostates (E,M) space for a long-range
system.

Let us start by recalling the definition of statistical ensembles from statistical
mechanics: a statistical ensemble is a collection of all the microscopic configura-
tions (microstates) compatible with a given macrostate (identified by macroscopic
measurables like temperature, total energy and so on). At the thermodynamic
equilibrium, the measure of this ensemble, considering each microstate a point in
the phase space, is proportional to the probability of the macrostate it represents.
Usually the statistical relevance of these ensembles is accurate in the thermody-
namic limit, which corresponds to having an infinite collection of microstates.
This in turn implies that the number of degrees of freedom of the system is also
infinite, and in a many body system this latter corresponds to sending the number
of particles N to infinity. These key concepts are the basis of all the statistical
mechanic theory.
The following are the main statistical ensembles that prove useful to construct a
thermodynamic description of a physical system:

• The microcanonical ensemble, describing an isolated system in which each
microstate corresponds to a configuration with fixed given energy and num-
ber of particles.

• The canonical ensemble, which describes to a system in contact with a large
thermal bath (with fixed temperature T ). The energy can be exchanged
but the number of particles is fixed. This statistical ensemble is the most
used in common thermodynamic problems.

• The grand canonical ensemble, corresponding to a system in which both
energy and particles can be exchanged with the thermal bath.
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1.3.1 The microcanonical description

Let us consider the simple case of a system with d = 3. Assume that each
microstate is identified by position q and momentum p of the N particles, with
total energy E and volume V . The microcanonical partition function, which gives
the measure of the ensemble, is defined as:

Ω(N,E, V ) =
1

N !

∫

Γ

δ(E −H(q, p))d3Nqd3Np , (1.11)

where the integral extends over the whole accessible phase space Γ and H(p, q)
is the Hamiltonian equation describing the system. From this, following Boltz-
mann’s prescriptions, we define the microcanonical entropy function S:

S(N,E, V ) = kb log Ω(N,E, V ) , (1.12)

where kb is the Boltzmann’s constant (we will consider kb = 1 for simplicity),
and recover the thermodynamic limit sending N → ∞, E → ∞ and V → ∞,
while keeping finite all the intensive quantities like density ρ = V

N
, energy density

ǫ = E
N

and entropy density s = S
N
.

We define the microcanonical thermodynamic temperature of a system as

T = (
∂S

∂E
)−1 = (

∂s

∂ǫ
)−1 , (1.13)

and the microcanonical specific heat (at constant volume) as

cmic
v =

∂ǫ

∂T
= (

∂2s

∂ǫ2
)−1 . (1.14)

In the case of short-range systems, additivity implies that the entropy density
s is a concave function in ǫ. Back to relations (1.10), it is easy to observe that

s(ρ, λǫ1 + (1− λ)ǫ2) ≥ s(ρ, λǫ1) + s(ρ, (1− λ)ǫ2) , (1.15)

is equivalent to

log(Ω(ρ, λǫ1 + (1− λ)ǫ2)) ≥ log(Ω(ρ, λǫ1)) + log(Ω(ρ, (1− λ)ǫ2)) , (1.16)

which is always true in the thermodynamic limit.
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1.3.2 The canonical description

Additivity is a key property to construct the canonical ensemble for a system in
contact with a thermal bath at temperature T . The classical procedure considers
a system Λ1 of energy E1 which is in contact with a thermal bath Λ2 of total
energy E2 >> E1. The combination of the two systems results in a large isolated
system with energy E that will eventually reach a microcanonical equilibrium.
If additivity holds, we have E = E1 + E2. The microcanonical entropy of the
isolated system is given by:

S(E) = kb log(Ω(E)) , (1.17)

where Ω(E) is the number of configurations (microstates) with total energy E.

▲

▲

✶

✷

Figure 1.4: Pictorial representation of an isolated system Λ = Λ1
⋃

Λ2 formed by a small system Λ1

immersed in a thermal bath Λ2.

The two subsystems reach equilibrium when

∂S1(E1)

∂E1

=
∂S2(E2)

∂E2

, (1.18)

∂S
∂E

= 1
T
= β being the inverse temperature.

Since E2 >> E1, The entropy of the heat reservoir can be expanded to the second
order, yelding:

S2(E − E1) ≃ S2(E)− E1
∂S2(E)

∂E
= S2(E)− βE1 . (1.19)

The probability p1 of finding a system Λ1 with energy between E1 and E1 + dE1,
while Λ2 has energy E2, is proportional to the number of microscopic configura-
tions Ω(E2):

p1 = CΩ(E − E1) = C ′ exp(−βE1) , (1.20)
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where C and C ′ are constant factors. Indexing with γ all the possible energy
configurations of system Λ1, the normalization condition implies:

∑

γ

pγ = 1 = C ′
∑

γ

exp(−βEγ) . (1.21)

From this latter equation we obtain the partition function Z describing the statis-
tics of the system Λ1 in the canonical ensemble, while at equilibrium with the
thermal bath:

Z(β) =
1

C
=
∑

γ

exp(−βEγ) . (1.22)

Consider now the case of simple 3-D gas in contact with a thermal bath
characterized by the temperature T = 1

β
. The measure of the canonical ensemble

can be described via the partition function:

Z(N, β, V ) =

∫

Ω(N,E, V )e−βEdE =
1

N !

∫

Γ

e−βH(q,p)d3Nqd3Np , (1.23)

where the first integral is defined over the whole space of accessible energy con-
figurations.
In the thermodynamic limit we define the free energy per particle f as

f(β, ǫ) = − 1

β
lim

N→∞

1

N
log(Z(N, β, V )) . (1.24)

In the following we will use more the practical definition of rescaled free energy,
as φ = βf .

In general the total energy of a system divided into two parts, as in the
example considered above, can always be written as E = E1 + E2 + Eint, Eint

being the interaction energy between the two parts.
For short-range systems the ratio Eint

E1+E2
goes to zero in the thermodynamic limit

(N → ∞): the energy of a system is proportional to the volume of the system
in d dimensions, while the interaction term is relative to dimension d − 1 of the
contact surface between the two systems. The interaction is hence effective only
between nearest neighbours.
With this latter consideration in mind, the procedure explained above always
applies and allows one to construct a proper canonical ensemble for short-range
systems.

In the case of long-range systems, energy is no more additive, as previously
noticed. The potential is in fact coupling each particle belonging to the system
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and the interaction energy is also proportional to the total volume. Recalling the
generic potential (1.1), we obtain:

Eint = 2

∫

Λ1

∫

Λ2

V (r − r′)ddrddr′ . (1.25)

For α ≤ d, recalling the scaling coming from equation (1.6), the energy contri-
bution that is associated to the interaction term, is no more negligible in the
thermodynamic limit. Also, Kac renormalization does not alter the scaling ratio
between E and Eint.

❡ ❜

s
❢

▲�✁

✂✄☎✆✝ ✞ ✟
✂✄☎✆✝ ✞ ✠

❜❡

✶
✶

✶ ✶

Figure 1.5: Relation between entropy density s and free energy per particle f through the LFT transform.

As a consequence, we cannot derive a canonical ensemble description in case of
long-range interactions using the usual construction as explained above, and this
poses serious problems in the study of their thermodynamics properties in case
of open systems. Typically one can resort to the formal definition of a thermal
bath [27, 28, 29, 30]. Assuming that the partition function Z exists, we can easily
prove [9] that in the thermodynamic limit the following equality holds:

e−Nφ = Z(N,E, V ) =

∫

e−N [βǫ−s(ρ,ǫ)]dE , (1.26)

so that, at equilibrium, φ can be obtained from the microcanonical entropy
through a Legendre-Fenchel transform (LFT):

φ = inf
ǫ
[βǫ− s(ρ, ǫ)] . (1.27)

Since the LFT of a generic function is always concave, φ is concave.
This latter procedure is always valid and only assumes the existence of an
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external thermal bath, whose action on the system is to keep the thermodynamic
temperature T = 1

β
fixed. We will return on the definition of the canonical

ensemble in chapter 4, and discuss the problem that may arise in presence of
long-range interactions.

1.3.3 Ensemble inequivalence and convexity of the en-
tropy functional

In this section we will introduce a peculiar thermodynamic feature that can
manifest for long-range interacting systems. This is the ensemble inequivalence, a
phenomenon associated to the presence of unusual thermodynamic microcanoni-
cal properties, like negative specific heat [31, 32] and negative susceptibility (for
magnetic-like systems) [33, 34].

In the case of short-range systems, entropy s is typically monotonic and
concave, thus the inverse LFT can be applied and we can obtain a bijective way
to map the canonical and microcanonical equilibrium thermodynamic functions
onto each other, proving the equivalence of the two ensembles. The practical
consequence of this latter property is that the same macrostate can be realized
in both ensembles: this means that a microcanonical macrostate with an average
temperature and constant energy, corresponds to a canonical macrostate with
constant temperature and average energy, thus allowing a one to one mapping
between energy and temperature.

Convex regions in entropy may appear in presence of a phase transition,
were usually the equilibrium functions s and φ have some discontinuity in their
derivatives.
Let us consider as an example figure (1.6), where we show a typical entropy
function s(ǫ) in the case of a phase transition between liquid and gas, with
a convexity in the energy range [ǫ1, ǫ2]. We recall that the first derivative of
entropy is the inverse temperature β = ∂s

∂ǫ
, so T may not monotonically increase

with energy if s is convex.

In the case of short-range systems, thanks to additivity, an hypothetical
convex region could be described as a mixing of two different phases of energy
densities ǫ1 and ǫ2, so that the total energy density is ǫ = λǫ1 + (1 − λ)ǫ2, λ
being the fraction of phase 1 present in the system. The entropy function s′

describing the two phases has zero curvature for ǫ2 > ǫ > ǫ1, and corresponds
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Figure 1.6: Concave envelope construction in a convex region of entropy s(ǫ).

to the concave envelope of the original convex entropy s. Hence s′ ≥ s, which
in turn implies that s is an unstable solution and the system is naturally driven
toward phase separation [35, 36, 37].

As schematically represented in figure (1.7), the LFT maps the entropy range
[s(ǫ1), s(ǫ2)] into a single point φ(β1) were the first derivative

∂φ
∂β

= ǫ is discontin-
uous. Increasing the temperature of the system, in the canonical ensemble, one
obtains a first order phase transition with a finite jump in energy.
In the case illustrated above the microcanonical and canonical ensembles de-
scribed by s and φ are not equivalent. Still the two functions can be mapped one
to another with a bijective function, since the inverse LFT of φ reproduces the
concave envelope s′. This latter is in fact a marginal case so it is referred to in
the literature as to a partial inequivalence [38].

In a long-range system the lack of additivity implies that the entropy function
is not necessarily concave, even far from phase transitions, and the states corre-
sponding to points in any convex region of the entropy function are physically
stable due to the impossibility to phase separate (which requires additivity).
The derivation of the free energy from the Legendre-Fenchel transform (1.27) is
still valid, and the function we obtain following this procedure is still concave
The inverse LFT mapping would however reproduce the concave envelope of the
microcanonic entropy, and not the original entropy function. In this case we do
not have anymore a bijective mapping between the microcanonical and canonical
ensemble, and ensemble inequivalence takes place.
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Figure 1.7: Entropy s and free energy f construction in presence of a first order phase transition.

As suggested above, the presence of stable convex regions in entropy can have
a conceptually profound impact on the thermodynamic behaviour of a system.
A striking consequence is that long-range systems can manifest negative micro-
canonic specific heat, formally obtained from the second derivative of s(ǫ):

cmic
v =

∂ǫ

∂T
=

∂2s

∂ǫ2

−1

. (1.28)

In practical terms we the system will reduce its temperature while increasing
the energy. This latter surprising condition is well known in scientific literature
[31, 32].
Conversely the canonical specific heat is defined from the rescaled free energy φ
as follows:

ccanv =
∂2φ

∂β2

(

∂β

∂T

)

. (1.29)

If we consider T = 1
β
we have ∂T

∂β
< 0, and from the concavity of φ it follows

that ccanv must be always positive, independently on the nature of the system.
This last result, which is quite intuitive and always true at equilibrium, may be
reconsidered when one has to face out-of-equilibrium thermodynamics, as we
will see more in detail in chapter 4.
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1.4 Out-of-equilibrium quasi-stationary states

(QSS)

Studying the dynamics of Hamiltonian systems with a large number of degrees
of freedom and its connection to equilibrium statistical mechanics has been a
long standing problem. The relaxation to statistical equilibrium has been under
scrutiny ever since the pioneering work of Fermi and the FPU problem [40].
Moreover, since the advent of powerful computers and for specific systems within
a class of initial conditions, integrating numerically Hamiltonian dynamics has
proven to be competitive in regards to Monte-Carlo schemes for the study of
statistical properties (see for instance [41, 42] and references therein). The
assumption made is that since the system admits only a few conserved quantities
for generic initial conditions, once the dimensions of phase space are large enough,
microscopic Hamiltonian chaos should be at play and be sufficiently strong to
provide the foundation for the statistical approach within the micro-canonical
ensemble.
In order to attain thermodynamic equilibrium one typically has to wait a long
enough time t for the system to relax to its final maximum entropy state.

However recent studies have shown that there is an increase of regularity
with the system size in the microscopic dynamics when considering systems with
long-range interactions [43, 44, 45, 46]. Indeed, the statistical and dynamical
properties of these systems are still under debate. For instance we can measure
negative microcanonical specific heat [47]. Moreover, phase transitions for one
dimensional systems are also observed [9].

Given a vector ~x(t) representing the state of the system at time t, whose
size depend on the number of degrees of freedom, the evolution of a generic
dynamical system may be represented by an application Φ(t, ~x), called flux, that
transforms the initial condition ~x0 at t = 0 into the evolved state ~xt:

~xt = Φ(t, ~x0) . (1.30)

From the microscopic configuration ~x we can then compute macroscopic quanti-
ties Θ(~x) (which can be every typical quantity like temperature or energy). A
stationary equilibrium state requires that fluctuations of Θ would be negligible
and, apart from integrable or strongly non-ergodic cases, this is generally true in
the limit N → ∞, where small contributions cancels out thanks to the increased
statistics.
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When a stationary equilibrium state is reached it means that:

lim
N→∞

lim
t→∞

[Θ(Φ(t′, ~x0))−Θ(Φ(t, ~x0))] = 0 , ∀t′ > t , (1.31)

so that Θ does not depend any longer on time.

A striking feature of the long-range class of systems is that, generally speak-
ing, they show a weak convergence to equilibrium which is much slower than the
typical exponential one common in the short-range case. For some choice of the
initial conditions, far from equilibrium, after an initial fast relaxation, systems
with long-range interaction can be trapped in out-of-equilibrium long lasting
metastable quasi-stationary-states (QSS).
The lifetime τ of a QSS strongly depends on the number of degrees of freedom,
and may diverge with the system size N as a power law [9]. For a long-range
system, the limits (1.31) may not commute: if the size limit is performed
before the time limit, the system may remain permanently trapped in a QSS,
that actually becomes a proper equilibrium states, albeit possessing peculiar
characteristic which are typical of nonequilibrium physics, like the strong
dependence from the initial datum.
This observation is relevant for any large enough long-range system (e.g. galaxies
[48]), for which the time needed to attain the thermodynamic equilibrium could
be greater that the time accessible to the experiment (or the observation in the
case of astrophysics).

Out-of-equilibrium QSS in long-range systems have been observed in numer-
ical simulations, and have been analytically investigated for a wide range of dif-
ferent long-range potentials [50, 51, 52]. QSS emergence is found consistent with
observations coming from many different fields of study, either from astrophysics
[49, 48], charged systems e.g. plasmas [54] and magnetic dipolar systems [53].
Also out-of-equilibrium long-range physics was successfully used to interpret the
behaviour of experimental systems based on wave-particle interactions, e.g. free-
electron lasers [55, 56], and collective atomic recoil lasing (CARL) [57].
The HMF is the benchmark model for theory development targeted to the un-
derstanding of QSS. In chapter 3 and 4 we will analyse more deeply the QSS
phenomenology. In the following chapter we will introduce and discuss the HMF
model.



Chapter 2

Equilibrium solution of the HMF
model

In the previous chapter we have reviewed the main theoretical picture of the
long-range physics and its peculiarities. In this chapter we will focus on a
paradigmatic example of long-range interacting systems, the so called Hamilto-
nian Mean Field (HMF) model, first introduced by Antoni and Ruffo in 1995
[58].
Usually long-range models are quite difficult to study, due to the numerical com-
plexity coming from all-to-all interactions. The long-range potential effectively
couples all the particles in the system, so it is impossible to reduce the dimension
of the interaction matrix into smaller subsets. When computing the trajectory of
a particle, in N-body simulations, calculations have to be performed considering
the effect of all other particles constituting the system, and this makes the
computational complexity to scale as (Nd)2, where N is the number of particles
and d is the dimension of the embedding space. Since one is generally interested
in the large size (N → ∞) limit, it can be easily understood how this poses
problems that are beyond the capabilities of modern computers.
The HMF is a toy-model that was specifically designed in order to be easily
implementable and analytically solvable, thus making it the ideal candidate
to investigate the properties of long-range systems in the thermodynamic
limit. Since its introduction it has been extensively studied, and has become a
paradigmatic model for the study of out-of-equilibrium stationary states.

The HMF shows an interesting dynamic and thermodynamic behaviour.
When performing numerical simulations, starting out-of-equilibrium, the system
is usually trapped in long-lived QSSs, before relaxing to the Boltzmann equilib-
rium solution. The simplicity of the model allows one to develop a theoretical
approach that explains the presence of QSSs as equilibrium solutions of the Vlasov
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equation, as pioneered in [21] and as we shall review in chapter 3. Importantly,
the HMF was also proposed to interpret the behaviour of wave-particle inter-
acting systems: under specific conditions its nonequilibrium properties of can
reproduce the dynamical aspects of the governing Hamiltonian of the Collective
Atomic Recoil Laser (CARL) [57].
In the following sections we will briefly focus on the equilibrium thermodynamic
description of the HMF model, revisiting results which were extensively studied
in the literature (e.g. see [9]).

In statistical physics, it is very difficult to find models which allow for a
straightforward computation of the canonical partition function, and, from that,
of the microcanonical entropy function. In short-range systems it is customary
to derive the micronanonical description from the canonical ensemble, thanks to
ensemble equivalence, since in that case one needs to cope with simple integrals
over the Boltzmann weights. As we observed in chapter 1.3.3, in long-range
systems the microcanonical and canonical ensembles may be inequivalent. Hence
it is important to derive a coherent description of each ensemble, without relying
on the a priori supposed property of equivalence.

As we shall see, the HMF displays a second order phase transition at
equilibrium, which divides between homogeneous to inhomogeneous states. In
addition more complex out-of-equilibrium phase transitions are found, which
interest the QSS states, as we will show in chapter 3.
In this chapter we will first introduce the dynamics of the HMF model, in section
2.1. Then we will turn to briefly discussing the thermodynamic equilibrium
description in both canonical ensemble, section 2.2, and in the microcanonical
one, section 2.3.

2.1 The HMF model

The governing Hamiltonian of the HMF model describes N identical particles
that interact with a cosine-like potential:

H =
N
∑

i=1

p2i +
C

2N

N
∑

i,j=1

(1− cos(θi − θj)) . (2.1)

The canonical coordinate θi identifies the position of particle i over the unitary
circle [0, 2π[, with periodic boundary conditions, while pi is the conjugated mo-
mentum.
Particles have the same mass, which we assume equal to one for simplicity. Par-
ticles cross each other, or equivalently experience perfectly elastic collisions, due
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to the fact that masses are identical.
Depending on the value of the coupling constant C, the interaction can be either
attractive (C > 0) or repulsive (C < 0). Both cases were studied in the past
[9, 60], however all along this work we will assume C = 1 for simplicity.
The HMF potential can be also seen as the first harmonic in the expansion of
the one-dimensional self-gravitating potential [61, 62], taking periodic boundary
conditions.

q

②

①

Figure 2.1: Pictorial presentation of the HMF system, where particles are identified by their angular
position θ over a circle. The interaction is only sensitive the angular distance ∆θ between each pair of
particles.

The system obeys the following Hamilton equations:

θ̇i = pi , (2.2)

ṗi = −∂H
∂qi

= − 1
N

∑N
j=1 sin(θi − θj) . (2.3)

In analogy with spin-glass systems, we introduce a quantity that we identify with
the single-particle magnetization vector ~mi, defined as:

~mi = (cos(θi), sin(θi)) , (2.4)

and define a global magnetization vector ~M with axial components Mx My as

Mx =
1

N

∑

i

cos(θi) ,

My =
1

N

∑

i

sin(θi) .
(2.5)
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With the above notation we can simplify the previous Hamiltonian (2.1) into
its mean-field version, which explicitly depends on the modulus M of the global
magnetization

H =
N
∑

i=1

p2i +
1−M2

2
. (2.6)

Recalling that φ = arctan(Mx

My
), one obtains the following mean-field equations of

motion:

θ̇i = pi , (2.7)

ṗi = −M sin(θi − φ) . (2.8)

2.2 Canonical equilibrium solution

The HMF system can be easily solved in the canonical ensemble and we can
obtain an analytical description of the equilibrium distribution function in
the thermodynamic limit. In this section we will review the derivation of the
canonical solution.

The canonical partition function is:

Z(β,N) =

∫

e−βHdθ1dp1 . . . dθNdpN , (2.9)

with β = 1
kbT

the inverse temperature and kb the Boltzmann constant. In the
following we will consider kb = 1 for simplicity.
By integrating over the momenta we obtain:

Z(β,N) =

(

2π

β

)
N
2

e−
Nβ
2

∫

exp

[

β

2N

N
∑

i,j=1

cos(θi − θj)

]

dθ1 . . . dθN . (2.10)

In the following we will use the Hubbard-Stratonovich transformation which,
given two 2-dimensional vectors ~x = (x1, x2) and ~y = (y1, y2), reads:

e
µ
2
~x2

=
1

π

∫ ∞

−∞
exp

[

−|~y|2 + ~x · ~y
√

2µ
]

dy1dy2 . (2.11)

Recalling (2.5), and applying (2.11) to (2.10), we obtain:

Z(β,N) =

(

2π

β

)
N
2

e−
Nβ
2
1

π

∫

dθ1 . . . dθN

∫ ∞

−∞
exp

[

−|~y|2 +N ~M · ~y
√

2β

N

]

d~y .

(2.12)
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By changing variables ~y ′ =
√

2β
N
~y, we can factorize the integration over the

particle coordinates and go to polar coordinates y′ = |~y ′|. We finally obtain:

Z(β,N) =

(

2π

β

)
N
2

e−
Nβ
2

N

2πβ

∫ ∞

−∞
exp

[

−N

(

y′2

2β
+ ln(2πI0(y

′)

)]

dy′ , (2.13)

where I0 is the modified Bessel function of order 0:

I0(y) =
1

2π

∫ 2π

0

ey
′ cos(θ) . (2.14)

In the thermodynamic N → ∞ limit we can evaluate the integral (2.13) with
saddle point technique, and obtain the rescaled free energy:

φ(β) = − lim
N→∞

1

N
Z(β,N) =

β

2
− ln(

2π

β
) + inf

y′

(

y′2

2β
− ln(2πI0(y

′)

)

. (2.15)

In order to solve the minimization problem contained in the last term of equa-
tion (2.15), we search for its stationary points. Recalling that I1(y) is the first
derivative of I0(y), we obtain the following condition:

δ

( |~y ′2|
2β

+ ln(2πI0(y
′))

)

=
y′

β
− I1(y

′)

I0(y′)
= 0 . (2.16)

The consistency equation that we obtained admits an homogeneous minimal free
energy solution y = 0 for β ≥ 2, while for β < 2 it yields a finite value which
depends on β. The modulus M of the global magnetization is also obtained as
the ratio of the Bessel functions:

M =
I1(y

′)

I0(y′)
. (2.17)

The derivative of the free energy (2.15) with respect to β gives the energy per
particle ǫ:

ǫ(β) =
1

2β
+

1−M2

2
. (2.18)

The critical inverse temperature βc = 2 corresponds to a second order phase
transition between homogeneous (M = 0) states and inhomogeneous magnetized
(M > 0) states, with a critical exponent that was shown to be 1

2
[58]. The

transition curve is represented in figure (2.2), and agrees very well with numerical
finite-size simulations. The critical temperature correspond to a critical energy
per particle ǫc = 0.75.



28 2 Equilibrium solution of the HMF model

✵ ✵�✁ ✵�✂ ✵�✄ ✵�☎✆ ✵✝✞ ✶ ✶�✁ ✶�✂
✵

✵✝✁

✵✝✂

✵✝✄

✵✝✟

✶

❡

▼

❚✠✡☛☞✡✌✍✎✏✑ ✒☞✡✓✍✎✌✍☛✔

◆✕✖✗✘

Figure 2.2: Second order phase transition between homogeneous and magnetized states for the HMF
system at equilibrium, at a critical energy per particle ǫc = 0.75. The predicted theoretical curve, displayed
by the red thick line, is obtained from the minimization of the free energy in the canonical ensemble. It is
consistent with the numerical microcanonical simulations carried out for finite N (the positive magnetization
observed in the homogeneous phase is of the order of the finite-size fluctuations 1√

N
).

2.3 Microcanonical equilibrium solution

The particular form of the Hamiltonian (2.1) allows one to obtain directly the
thermodynamic microcanonical density of states and derive consistently the en-
tropy per particle s(ǫ). In this section we will revisit the procedure discussed in
[9]. We define EK and EU respectively the kinetic an potential energy, while E
is the total energy of the system. The number of microstates Ω is given by:

Ω(E,N) =

∫

δ(E −H)
N
∏

i=1

dθidpi

=

∫ N
∏

i=1

dθidpi

∫

dEKδ

(

EK − p2

2

)

δ (E − EK − EU({θi}))

=

∫

dEK

∫ N
∏

i=1

dpiδ

(

EK − p2

2

)
∫ N
∏

i=1

dθiδ (E − EK − EU({θi})) .

(2.19)

The integral over the momenta can be directly evaluated and yields:

∫ N
∏

i=1

dpiδ

(

EK − p2

2

)

=
2π

N
2 (2EK)

N−2
2

Γ(N
2
)

=

−−−→
N→∞

exp

[

N

2

(

1 + ln(2π) + ln(
2EK

N
)

)]

,

(2.20)
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where in the last passage use has been made of the expansion for the Γ function,
Γ(N) ≃ (N − 1

2
) ln(N)−N + 1

2
ln(2π) for N large.

To solve the second configurational integral in (2.19) we exploit the simplicity
of the HMF potential, which is function of the microscopic magnetization (2.4).
There is a degeneracy in the direction of ~m, so we can chose a magnetization vector
laying along the x axis without loosing generality. We define m as the modulus
of such vector, and we proceed to compute the integral (2.20) by making use of
the Fourier representation of the δ function:

∫ N
∏

i=1

dθiδ (E − EK − EU({θi})) =

= (
1

2π
)2
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

∫ N
∏

i=1

dθie
ik1(

∑

i cos θi−Nm)eik2
∑

i sin θi

= (
1

2π
)2
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 exp

[

N

(

−ik1m+ ln J0(
√

k2
1 + k2

2)

)]

,

(2.21)

where J0(k) is the Bessel function of order 0. We can solve the last integral with
the saddle-point technique, by considering k1 and k2 as complex variables and
remembering that −Ji(k) =

∂J0(k)
∂k

. The saddle point has to satisfy the following
conditions:

− im− J1(
√

k2
1 + k2

2)

J0(
√

k2
1 + k2

2)

q1
√

k2
1 + k2

2

= 0 ,

− J1(
√

k2
1 + k2

2)

J0(
√

k2
1 + k2

2)

q2
√

k2
1 + k2

2

= 0 .

(2.22)

This last system of equations admits a solution q2 = 0 and q1 = iγ, where γ is
obtained by solving the following equation:

I1(γ)

I0(γ)
= m , (2.23)

were we used the properties J0(ik) = I0(k) and J1(ik) = iI1(k). The function
I1(γ)
I0(γ)

is monotonic and decreasing, so we can define Jinv as the inverse of such

function. Summing up the results from (2.19) and (2.21), we can then compute
the microcanonical entropy per particle s(ǫ):

s(ǫ) = lim
N→∞

1

N
ln Ω(E,N) =

=
1

2
+

1

2
ln(4π) + sup

m

[

1

2
ln(ǫ− 1

2
+

m2

2
)−mJinv(m) + ln I0(Jinv(m))

]

.

(2.24)
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The maximization problem can be solved graphically searching for solutions of
the following equation:

m

2ǫ− 1 +m2
− Jinv(m) = 0 . (2.25)

We obtain in this way the same transition curve already observed in the canonical
ensemble (figure 2.2), with the same critical energy per particle ǫc = 0.75. The
first derivative of the entropy is the inverse temperature β:

ds(ǫ)

dǫ
= β(ǫ) =

1

2ǫ− 1 +m2
. (2.26)

Numerical solution of the previous equation shows that d2s(ǫ)
dǫ2

< 0 for all values
of m [9]. From the concavity of entropy, as observed in chapter 1.3.3, follows
ensemble equivalence.

The latter observation concludes the discussion devoted to revisiting the equi-
librium properties of the HMF. In the following section we shall turn to discussing
the out-of-equilibrium dynamics of this paradigmatic model, and present some
original results concerning the extension of the Lynden-Bell theory to a general-
ized family of initial conditions.



Chapter 3

Out-of-equilibrium
thermodynamics

As we already anticipated in chapter 1.4, a long-range system experiences a very
slow relaxation towards the deputed thermodynamic equilibrium. Indeed, it can
be trapped in a long lasting out-of-equilibrium phase called Quasi Stationary
State (QSS). The lifetime of the QSS was reported to diverge with the system
size N . Interestingly, it displays different scaling behaviour versus N , which
range from exponential to power law, being relic of the specific initial condition
selected. As a consequence, searching for an equilibrium thermodynamic
solution, the orders the limits N → ∞ and t → ∞ are taken do matter.
Performing the continuum limit before the infinite time limit, implies preventing
the system from eventually attaining its equilibrium and freezing it indefinitely
in the QSS phase, the latter being typically described by a distribution which is
non-Maxwellian [63, 64].

As a paradigmatic example we will discuss the time evolution of the HMF
model (2.1), introduced in chapter 2. Consider an isolated system (microcanon-
ical) initially set far from equilibrium. In this latter case, numerical simulations
show that the HMF experiences a fast relaxation towards an intermediate regime
[58, 65], before the final equilibrium is eventually attained (figure 3.1). These
metastable states are indeed QSS, having a lifetime τ that diverges with system
size, and bear distinctive traits that make them substantially different from the
equilibrium solution, as we will discuss later in this chapter. It was estimated
that the latter scaling has a power law τ ∼ Nγ with a positive exponent γ = 1.7
[66].

In this chapter we will initially review how the QSS have been successfully
interpreted as equilibria of the collisionless Vlasov equation. This latter appears
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Figure 3.1: HMF model: relaxation of the global magnetization M respect to time t in logarithmic scale
for different increasing systems sizes N = 102, 5 · 102, 103, 5 · 103, 104. There is evidence of a stationary
metastable state before attaining equilibrium, which lifetime increases with N . The results are mediated
over five different realizations.

to rule the dynamics of a broad family of long-range models, when recovering
the continuum picture from the governing discrete formulation. A method exists
that enables one to analytically predict the average characteristics of the QSS,
including the emergence of out-of-equilibrium transitions [9]. This procedure
follows a maximum entropy scheme and can be traced back to the Lynden-Bell
work [8]. Section 3.2 is entirely devoted to presenting this approach.

Lynden-Bell theory was revisited by Antoniazzi et. al., with reference
to paradigmatic long-range applications [20, 67, 68]. As we shall clarify in
the forthcoming sections, the predictive adequacy of the Lynden-Bell violent
relaxation theory has been so far solely assessed for a very specific class of initial
conditions. These are the so called water-bags, were particles are assumed to
initially populate a bound domain of phase space and therein be distributed
with a uniform probability.
In this chapter, we will introduce an extension to the previous established theory
that allows us to relax the strict constrain over the initial condition and apply
Lynden-Bell theory to a generalized water-bag, which can in principle approx-
imate continuous distributions. We will also show that our extended theory,
original contribution of the thesis, works correctly when two levels are considered.
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3.1 The Vlasov limit

Under some assumptions and in the limit of very large size, the dynamics
of long-range systems can be described by the Vlasov equation. This latter
describes the dynamical evolution of the single particle distribution function
f(p, q, t), moving from a trajectory based description to a field dynamics.
The fact that a N -body mean-field Hamiltonian system converges to a Vlasov
equation in the limit N → ∞ has been made rigorous in a theorem by W. Braun
and K. Hepp [69, 70], which we will discuss in this section.

We can obtain the Vlasov limit by following a kinetic approach, which is
similar to the Boltzmann’s kinetic theory used in the case of perfect gases. In
the latter case one deals with binary short-range collisions. When long-range
interactions are to be accounted for, we must introduce a long-range collisional
term which extends beyond the Boltzmann’s one. Several approaches have been
proposed to derive the Vlasov equation. Here we will follow the one that moves
from the Klimontovich equation [71].

Let us consider a generic N -particles system described by an Hamiltonian in
the form:

H =
N
∑

i=1

p2i
2

+ U(qi) , (3.1)

where (qi,pi) are the canonical Lagrangian coordinates and momenta of the par-
ticle i, and U(qi) = 1

N

∑

j 6=i V (qi − qj) is a mean-field potential which is given
by the mean over the pair interactions V (qi − qj). The dynamics of such system
obeys to the Hamilton equations:

q̇i = pi ,

ṗi = −∂U

∂qi
.

(3.2)

We introduce the discrete one-particle distribution function:

fk(q, p, t) =
1

N

N
∑

i=1

δ(q − qi)δ(p− pi) . (3.3)

This latter describes the state of the system at time t, as a function of the Eulerian
coordinates q and p. Differentiating with respect to time, and using equations
(3.2), we obtain:

∂fk
∂t

=
1

N

∑

i

[

−pi
∂

∂q
+

∂U

∂qi

∂

∂p

]

δ(q − qi(t))δ(p− pi(t)) . (3.4)
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By using the property of the Dirac function aδ(a− b) = bδ(a− b), we can rewrite
the previous equation as:

∂fk
∂t

=
1

N

∑

i

[

−p
∂

∂q
+

∂v

∂q

∂

∂p

]

δ(q − qi(t))δ(p− pi(t)) , (3.5)

with v(q, t) =
∫

V (q− q′)fk(q
′, p′, t)dq′dp′. Equation (3.5) reproduces exactly the

form of Klimontovich equation:

∂fk
∂t

+ p
∂fk
∂q

− ∂v

∂q

∂fk
∂p

= 0 . (3.6)

The previous equation is exact, and contains the microscopic information on
every trajectory of the particles. It is therefore difficult to manage the limit
N → ∞. In order to obtain an averaged distribution function that encapsulates
the sought statistical information, we must recover the mean-field limit of
equation (3.6), through a perturbative calculation with respect to a small
parameter that encodes the system size N .

Assume that the Klimontovich distribution function fk can be described as
an averaged distribution f , plus fluctuations that scales as 1√

N
:

fk(q, p, t) = f(q, p, t) +
1√
N
δf(q, p, t) . (3.7)

Here f = 〈fk〉 is the averaged distribution function in the reduced phase space
of single particle. We assume that the average is taken over a large ensemble of
independent microstates, each corresponding to the same macrostate.
Using equation (3.7) we can rewrite the average potential as:

〈v(q, t)〉 =
∫

V (q − q′)f(q′, p′, t)dq′dp′ , (3.8)

so to obtain:

v(q, t) = 〈v(q, t)〉+ 1√
N
δv(q, t) . (3.9)

Using both equations (3.7) and (3.9) into Klimontovich equation (3.6) one gets:

∂f

∂t
+ p

∂f

∂q
+

∂ 〈v〉
∂q

∂f

∂p
=

− 1√
N

(

∂δf

∂t
+ p

∂δf

∂q
− ∂v

∂q

∂f

∂p
− ∂ 〈v〉

∂q

∂f

∂p

)

+
1

N

〈

∂δv

∂q

∂δf

∂p

〉

.

(3.10)
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Finally, by averaging over all initial microscopic configurations, yields to:

∂f

∂t
+ p

∂f

∂q
+

∂ 〈v〉
∂q

∂f

∂p
=

1

N

〈

∂δv

∂q

∂δf

∂p

〉

. (3.11)

In kinetic theory, (3.11) is the first equation of BBGKY hierarchy (see [72]).

In the case of short-range interactions, the right hand side of equation (3.11)
gives the collisional term that we find in Boltzmann equation. If we neglect
collisions, assuming that the latter term becomes negligible in the thermodynamic
limit N → ∞, the famous Vlasov equation is eventually recovered:

∂

∂t
f(p, q, t) + p

∂

∂q
f(p, q, t) +

∂

∂q
〈v(q, t)〉 ∂

∂p
f(p, q, t) = 0 . (3.12)

This equation has a wide range of applications in gravitational systems [73] and
in plasma physics [72]. The Vlasov equation simply states that, in the absence
of collisions, the distribution function f is conserved by the time evolution in
phase space, which means df/dt = 0, in mathematical terms.

In a general case it is not easy to justify the above collisionless assumption.
However, for a broad range of mean-field (long-range) potentials, Braun-Hepp
theorem [69] rigorously proves that in the continuum limit N → ∞ the solutions
of equations (3.2) converges to the solutions of the Vlasov equation (3.12). In
the last part of this section we shall briefly discuss the case of one-dimensional
systems. The theorem can be however straightforwardly extended to higher
dimensions.

Assume that the system is governed by a mean-field Hamiltonian which can be
cast in the form (3.1), and (q0i , p

0
i ) = ~a is the initial condition at t = 0, described

by the discrete distribution fk(q, p, 0) (3.3). We recall that the distribution func-
tion f(q, p, t) is obtained from fk(q, p, t) in the N → ∞ limit of equation (3.7).
Consider the Newtonian equation:

q̈ = −
∫

µ(~b)
∂

∂q
V (q(~a, µ, t)− q(~a, µ, t)) d~b . (3.13)

The latter describes a single particle interacting through the 2-body potential
V (q(~a, µ, t)− q(~a, µ, t)) with other particles having initial conditions distributed
over a real Borel measure µ on R2. Notice that equation (3.13) reduces to the

N -body dynamics (3.2) if µ(~b) = fk(q, p, 0), while if µ(~b) = f(q, p, 0) it reproduces
the Vlasov equation (3.12). Hence, the two latter different dynamics represent
disjoint specializations of (3.13), for different expressions of the measure µ.
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Let M be the set of real Borel measures µ on R2, with |µ| < ∞ and M1
+ the

subset of probability measures. Let Ck
b be the set of all potentials V (q) = V (−q)

with continuous and bounded derivatives up to order k.

Theorem 3.1.1. (Braun-Hepp theorem) Let V ∈ C2
b . Then equation (3.13)

has a unique solution q(~a, µ, t) for all (~a, t) ∈ R2 and µ ∈ M. Then q(~a, µ, t)
is C1 in (~a, t) and weakly continuous in µ, uniformly for ~a ∈ R2 and bounded
sets in t. The mapping q(µ, t) : a −→ q(~a, µ, t) is canonical and Ti : (~a, µ) −→
(q(~a, µ, t), µ ◦ q(~a, µ, t)−1 is a one-parameter group.

The weak convergence in µ implies that whenever a discrete initial condition
fk(q, p, 0) converges weakly to a normalized probability density f(q, p, 0),

fk(q, p, 0) =
1

N

N
∑

i=1

δ(q − q0i )δ(p− p0i ) −→ f(q, p, 0) , (3.14)

the Vlasov dynamics describes asymptotically the evolution of the system.

Searching for an equilibrium thermodynamic solution of a mean-field system
in the above Vlasov approximation means performing the N → ∞ limit before
of the t → ∞ limit. The Braun-Hepp theorem justify the use of Vlasov equation
to model the evolution of large enough mean-field models, which may be the
correct framework to understand the metastable regime of long-range dynamics.
Lynden-Bell argued that QSS corresponds to statistical equilibria of the Vlasov
equation (3.12). Is is however worth emphasizing that Vlasov equation has
an infinite number of stationary solutions, depending on the initial condition
f(q, p, 0) [9].

3.2 Lynden-Bell approach to metastable QSS

The distribution function f of a system obeying the Vlasov equation (3.12) has
a collisionless time evolution. The system undergoes an initial violent relaxation,
governed by Landau damping [8], which develops through a peculiar process
called filamentation due to the collisionless mixing: the fine-grained distribution
function f(q, p, t) will never reach a stationary state, but instead it will be
stretched and stirred into filaments mixed at smaller and smaller scales [73].
From an observer point of view, this never-ending evolution is not physically
relevant, since we have a limited resolution on our observation of the fine-grain
of the phase space detail. An interesting approach to this problem was initially
proposed by Lynden-Bell, in the framework of galactic dynamics [8]. At the
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time there were experimental observations that the radiation signals emitted
by elliptic galaxies were almost regular, implying that the galaxy was in an
equilibrium state. However, these observations clashed with the analytical
estimates for the typical relaxation times of the galaxies due to the two-body
collisional effects. It was hence proposed that the manifest regularity could be
due to a sort of out-of-equilibrium stationary state [74, 75].

With reference to cosmological applications, Lynden-Bell proposed a
maximum-entropy approach to determine the stationary solutions of the Vlasov
equation, pioneering the theory that it is nowadays referred to as to the violent
relaxation theory. The very basic idea behind his work is to introduce a cutoff
to the scale of observation. He first considered the coarse grained distribution
f̄ , obtained by averaging the microscopic f(q, p, t) over a finite grid. Each
element of this grid will contain a large enough portion of phase space that
encompass multiple filaments. The evolution will continue at smaller scales, but
the coarse-grained distribution f̄(q, p, t) will reach an equilibrium state very fast.
In order to analytically describe this equilibrium, the key passage is to associate
to f̄ a mixing entropy S[f̄ ], via a rigorous counting of the microscopic configu-
rations that are compatible with a given macroscopic state.

While following the discussion that can be found in reference [8], we shall
reformulate the original derivation in order to accommodate for the extended
initial condition that we will introduce in the next section.

To apply the statistical mechanics machinery, we divide the phase space into
a very large number of micro-cells each of volume ω̃. The micro-cells define an
hyper-fine support that can be invoked to obtain an adequate representation of
the fine grained function f , provided the mass of the phase element that occupies
each cell is given.
Consider a discretization of the original function f into n levels of phase density
fJ , J = 1, ..., n. Then the phase element mass is fJ ω̃ or 0. Under the effect
of the equation (3.30), the distribution function f(q′, p′, t) will be mixed and
filamented. Still Vlasov dynamics conserve all the Casimirs Cm[f ] =

∫

fm dqdp,
and, as a consequence, it will conserve independently the total mass of each
level.
Lynden-Bell suggested to group these micro-cells into coarse grained macro-cells,
very small, but sufficiently large to contain several micro-cells. Let us call ν the
number of micro-cells inside the macro-cell, the latter having therefore volume
νω. Define niJ the number of elements with phase density fJ that populate cell
i, located in (qi, pi).
Clearly

∑

i niJ = NJ , where NJ stands for number of micro-cells occupied by
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level J .

The sought entropy can be rigorously derived via the following steps. First,
we quantify the number of ways of assigning the micro-cells to all

∑

J niJ phase
elements that are confined in the macro-cell i. A simple combinatorial argument
yields to the estimate:

ν!

(ν −
∑

J niJ)!
. (3.15)

Then, one needs to calculate the total number of microstates W that are com-
patible with the single macrostate defined by the numbers niJ . W is the product
of (3.15) with the total numbers of ways of splitting the pool of available NJ

elements into groups of niJ . In formulae:

W =
∏

J

NJ !
∏

i(niJ)!
×
∏

i

ν!

(ν −∑J niJ)!
. (3.16)

Finally, the entropy S = log(W ) can be cast in the form:

S = −
∑

J

∑

i

niJ

ν
log

niJ

ν
−
∑

i

(

1−
∑

J

niJ

ν

)

log

(

1−
∑

J

niJ

ν

)

, (3.17)

were we have rescaled S by ν and neglected some unimportant constant contri-
butions. The term

∑

i (1−
∑

J niJ/ν) log (1−
∑

J niJ/ν) reflects the exclusion
principle that is being imposed in the combinatorial analysis. Two elements
of phase cannot overlap, each micro-cell being solely occupied by one of the
available density levels, including zero. As emphasized in [8] this procedure
results in a novel type of statistics, which explicitly accounts for the mutual
interference of distinguishable particles, at variance with the Fermi-Dirac one,
that deals with indistinguishable entities. When only one level is allowed for, the
Lynden-Bell and Fermi-Dirac statistics coincide.
This latter consideration can be viewed as a consequence of the conservation
of the Casimirs, since in each microcell the fine-grained distribution function f
will assume the value of only one of the initial levels. In a sense this is similar
to a classical version of Pauli’s exclusion principle, if we consider each level as
populated by a different species of particles.

We now introduce the probability density ρiJ of finding the level of phase
density fJ in cell i as:

ρiJ =
niJ

ν
. (3.18)
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Notice that
∑

i

∑

J ρiJ = 1, as it should be. By inserting equation (3.18) into the
entropy expression (3.17) one gets:

S = −
∑

J

∑

i

ρiJ log ρiJ −
∑

i

(

1−
∑

J

ρiJ

)

log

(

1−
∑

J

ρiJ

)

. (3.19)

Following Lynden-Bell, one can define the coarse grained distribution function
f̄(qi, pi) as:

f̄(qi, pi) =
∑

J

niJ

ν
fJ =

∑

J

ρiJfJ . (3.20)

The density ρiJ and the coarse grained distribution f̄(qi, pi) are the two main
quantities upon which the description relies. However, these are not independent
quantities. Let us write the density as ρiJ = αJhi. The density factorizes hence
into two terms: hi depends on the i-th cell, while the other contribution, αJ , on
the J-th level. By inserting this ansatz into the definition (3.20) for f̄(qi, pi) we
get:

f̄(qi, pi) =
∑

J

αJjifJ , (3.21)

from which we straightforwardly obtain:

hi = f̄(qi, pi) , (3.22)

together with the normalization condition

∑

J

fJαJ = 1 . (3.23)

Hence, summarizing we can rewrite the density (3.18) as:

ρiJ = f̄(qi, pi)αJ , (3.24)

which admits a simple interpretation. The probability of finding an element of
phase density fJ in cell i is given by the probability of finding any element in
such a cell, f̄(qi, pi), times the probability that the selected element is actually
of type fJ . Reasoning along this lines, αJ can be seen as the relative fraction of
phase space volume that hosts the elements of phase density fJ .

Finally, one can obtain a compact expression for ρiJ that explicitly evidences
all allowed levels:

ρiJ =
∑

L

f̄(qi, pi)αLδLJ . (3.25)
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By taking the continuum limit both in the spatial variable (qi, pi) → (q, p), and
in the level distribution fJ → η, one obtains the generalized density function
ρ(q, p, η). Operating under this conditions, (3.20) rewrites:

f̄(q, p) =

∫

levels

ρ(q, p, η)ηdη , (3.26)

and (3.25) takes the form:

ρ(q, p, η) =

∫

levels

f̄(q, p)α(x)δ(x− η) dx , (3.27)

where α(x) is the volume of the set of points (q, p) such that f̄(q, p) = x.

In the following, we will be concerned with the intermediate situation where
the levels are discrete in number. In this case, by using the spatially continuous
version of equation (3.25) in the entropy (3.19), one gets:

S =−
∫

dτ ′

[

∑

J

αJ f̄(q, p) log
∑

J

f̄(q, p)

+

(

1−
∑

J

αJ f̄(q, p)

)

log

(

1−
∑

J

αJ f̄(q, p)

)] (3.28)

where dτ ′ = dqdp/(ω̃ν) and the
∑

J cumulates the contribution of all levels that
insists on cell i.

The equilibrium coarse grained distribution function f̄ maximizes the entropy
functional S[f̄ ], while imposing the constraints of the dynamics. These latter are
the energy, momentum and normalization, as well as the phase space volumes
αJ associated to each of the allowed levels.

3.3 Lynden-Bell microcanonical solution for the

HMF model

As we already seen in section 3.1, thanks to the Braun-Hepp theorem, mean-field
models can be approximated in the large size limit by the Vlasov equation. It
may be argued that Vlasov equation provide the correct framework to address
the problem of QSS emergence. The procedure exposed in the previous section
allows us to search for an equilibrium solution of a Vlasov system, by maximizing



3.3 Lynden-Bell microcanonical solution for the HMF model 41

Lynden-Bell entropy. The problem is not easily solvable in a generic context,
and one must resort to strict assumptions on the form of the initial condition in
order to obtain an equilibrium solution of the distribution function.

Lynden-Bell theory was successfully applied in the past to obtain a solution
that explains the QSS regime of the HMF model [20]. Such a solution was
recovered by using a peculiar initial distribution function known as “water-bag”,
which is flat over a bounded domain of phase space (usually called a “level”)
and zero outside of it.

In the following we will discuss the multi-level water-bag class of initial
conditions, which naturally extends beyond the single water-bag case study, so
far explicitly considered in the literature. It is our intention to test the predictive
ability of the Lynden-Bell theory within such generalized framework. The theory
will be developed with reference to the general setting, including n levels. The
benchmark with direct simulations will be instead limited to the two-levels case,
i.e. n = 2.

3.3.1 The HMF out-of-equilibrium dynamics (QSS)
regime in the single level case

First let us briefly review the main results already present in literature and discuss
the general features of HMF’s QSS states. As we already mentioned the HMF
model describes N identical particles identified by the set of coordinates θ, p,
where θ ∈ [0, 2π[ is the angular coordinate over the ring and p is the conjugated
momentum.
For convenience, we shall rewrite here the Hamiltonian equation that describes
the model:

H =
N
∑

i=1

p2i +
1

2N

N
∑

i,j=1

(1− cos(θi − θj)) . (3.29)

The HMF model has a continuous C∞ potential, and so the Braun-Hepp theorem
(3.1.1) states that in the limit N → ∞ the system converges to the Vlasov
equation (3.12):

∂f

∂t
+ p

∂f

∂θ
− (Mx[f ] sin θ −My[f ] cos θ)

∂f

∂p
= 0 , (3.30)
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where Mx and My represent the total magnetization along the x and y axis
respectively:

Mx[f ] =
∫

f cos(θ) dθdp , (3.31)

My[f ] =
∫

f sin(θ) dθdp , (3.32)

M [f ] =
√

M2
x [f ] +M2

y [f ] . (3.33)

The Vlasov limit of the HMF dynamics was tested rigorously in [51]. The system
conserves the energy density ǫ, total initial momentum P and total mass γ:

ǫ[f ] =
∫

p2

2
f(θ, p) dθdp− M [f ]2−1

2
, (3.34)

P [f ] =
∫

f(θ, p)p dθdp , (3.35)

γ[f ] =
∫

f(θ, p) dθdp = 1 . (3.36)

The mass conservation is equivalent to the normalization condition (3.23). In
the Vlasov approximation the system conserves also all the Casimirs of the
distribution f , as a property of Vlasov equation.

The original water-bag initial condition fwb considered in the paper by
Antoniazzi et. al. [20] takes a constant value f1 within a finite portion of the
phase space, and zero outside of it. Although this is the only prescription to
be accommodated for, rectangular domains are usually chosen for practical
computational reasons. We shall label [∆θ,∆p] the widths of such a rectangle, as
calculated respectively along θ and p directions. A second simplification is also
customarily assumed: the rectangle is centred in the origin, so that θ ∈ [−∆θ

2
, ∆θ

2
]

and p ∈ [−∆p
2
, ∆p

2
].

finit =

{

f1 if θ ∈ [−∆θ
2
, ∆θ

2
] and p ∈ [−∆p

2
, ∆p

2
],

f0 = 0 otherwise.
(3.37)

This region has an area α1 = 4∆θ∆p, and imposing the total mass to be one,
we obtain the normalization condition (3.23) which gives:

f1 =
1

4∆θ∆p
. (3.38)

With the previous choice, we can express the energy density ǫ = E
N

and the initial
magnetization M0 as functions of ∆θ and ∆p:

M0 = 2
sin(∆θ

2
)

∆θ
, (3.39)

ǫ0 =
∆p2

24
+

1−M2
0

2
. (3.40)
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Figure 3.2: Pictorial representation of a 1-level (n = 1) water-bag initial condition. The background
level is f0 = 0.

Although quite simple, for systems characterized by small energy dispersions,
the 1-level water-bag initial conditions represent a good approximation of a more
natural Gaussian initial distribution [67].

Starting from the water-bag initial condition, as depicted in figure (3.1),
numerical evidences show that the HMF system develops a QSS, which is
reminiscent of the Vlasov evolution. The QSS become stationary stable in the
limit N → ∞, justifying the approach based on the Lynden-Bell maximum
entropy principle.

An extensive study of the solution to Lynden-Bell problem, in the single water-
bag case, was already performed in [39], and it was shown that the Lynden-Bell
theory is capable to reproduce the QSS states observed in finite-size numerical
simulation to a satisfying precision. The stable solution f̄eq depends on the initial
choice of the energy density ǫ0 and initial magnetization M0. Depending on the
initial condition, the theory predicts two distinct QSS regimes. One characterized
by a finite positive total magnetization, with a single-cluster distribution, and the
other by an almost zero total magnetization, with a two-cluster formation, the
two phases being separated by an out-of-equilibrium phase transition.
Also the tricritical point that separates the two transitions can be identified with
precision. This results are reported in figure (3.3). An extended description of
this out-of-equilibrium phase transition can be found in [78], where the theory
also validates versus numerical simulations.

With the previous assumptions, the form of the equilibrium distribution func-
tion that maximizes Lynden-Bell entropy is fermionic-like:

f̄eq =
f1

1 + e
f1

[

β
(

p2

2
− ~M ·~m

)

+λp+µ
] , (3.41)
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Figure 3.3: Phase diagram in the (ǫ0,M0) plane of the transition predicted from Lynden-Bell theory
in the QSS states of the HMF model. The full line corresponds to a first order transition, while the dashed
line corresponds to the first order one. The red marker evidences the tricritical point separating the two
transitions.

where ~M is the global magnetization vector (2.5) and ~m = [cos(θ), sin(θ)]. β
and µ are the Lagrange multiplies coming from the maximization problem. β is
identified with the inverse thermodynamic temperature of the system.
In the phase where the total equilibrium magnetization vanishes, we recover a
simple form for the equilibrium distribution:

f̄eq =
f1

1 + e
f1β

(

p2

2
+µ

β

) . (3.42)

Also, in the limit f1 → ∞, the normalization forces the support of the initial
distribution to α1 → 0, so finit reduces to a δ-like function. In this approximation
one recovers the usual Maxwellian distribution function:

f̄eq ≃ f1e
−f1β

(

p2

2
+µ

β

)

. (3.43)

In both phases, homogeneous or magnetized, in the low temperature limit β → ∞
we observe that the value ǫf = ~M · ~m− µ

β
plays the role of the Fermi energy, and

for |p| ≤
√

2 (ǫf ) we recover the Fermi step equilibrium distribution where:

f̄eq =

{

f1 if |p| ≤
√

2 (ǫf ) ,

0 if |p| >
√

2 (ǫf ) .
(3.44)
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3.3.2 N-levels extended solution

Now we will take one step forward and challenge the validity of the theory
presented in section 3.2, when particles are instead distributed so to uniformly
fill more levels. In principle, any smooth profile could be approximated by a
piecewise function, made of an arbitrary number of collated water-bags [79].
As observed above, the general philosophy that inspires the Lynden-Bell theory
is broader than the specific realm to which it was relegated and its potentiality
deserves to be further clarified. We will here extend the treatment to the
multi-levels water-bag initial condition, a step that opens up the perspective to
eventually handle more realistic scenarios, where smooth distributions could be
considered.

Following the notation introduced above, the arbitrary integer n quantifies
the total number of distinct levels, other than the background one f0 = 0, that
are to be allowed for when considering the generalized initial distribution function
fmwb. Arguably, by accounting for a large enough collection of independent and
discrete levels, one can approximately mimic any smooth profile. A pictorial
representation of the family of initial conditions to which we shall refer to is
depicted in figure (3.4).
The initial distribution function fmwb can be written as:

Figure 3.4: Pictorial representation of a 3-levels (n = 3) water-bag initial condition. The background
level is f0 = 0.

fmwb(θ, p) =

{

fJ if θ ∈ ΘJ and p ∈ PJ ,

f0 = 0 elsewhere .
(3.45)

Here ΓJ = [ΘJ , PJ ], J = 1, . . . , n identifies the domain in phase space associated
to level fJ . The corresponding volume is labeled αJ .

We have already seen that the normalization condition (3.23) links together
the 2n constants, fJ and αJ , that are to be assigned to fully specify the initial con-
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dition. In other words, only 2n− 1 scalars are needed to completely parametrize
the initial condition. Importantly, the 1-level water-bag limit is readily recov-
ered once the phase space support of the levels indexed with J > 1 shrinks and
eventually fades out. This condition implies requiring αJ → 0 for J > 1. In
formula:

ρ1 = lim
αJ→0,J>1

ρn = f̄α1δ (η − f1) +
(

1− f̄ , α1

)

δ (η) . (3.46)

Moreover, by making use of the normalization condition one gets α1 =
1
f1
, which,

inserted (3.46), returns immediately the well known form of the one level density
distribution function. Notice that the initial value of the macroscopic observables
can be computed from the explicit knowledge of ρ1.

The QSS distribution function f̄eq(θ, p) for the HMFmodel, relative to the gen-
eralized n-levels water-bag initial condition, is found by maximizing the Lynden-
Bell entropy, under the constrains of the dynamics. This in turn implies solving
a variational problem. The solution is relative to the microcanonical ensemble,
since the Vlasov equation implies that we work with fixed total energy.
As we already observed, the generic n-levels entropy (3.28) takes the following
functional form:

sLB[f̄ ] = −
∫

{
n
∑

J=1

f̄αJ ln(f̄αJ) + (1−
n
∑

J=1

f̄αJ) ln(1−
n
∑

J=1

f̄αJ)} dθdp . (3.47)

The conserved quantities are respectively the energy density ǫ:

ǫ
[

f̄
]

=

∫

p2

2
f̄(θ, p) dθdp− M [f̄ ]2 − 1

2
≡ ǫ0 , (3.48)

and the total momentum P :

P [f̄ ] =

∫

f̄(θ, p)p dθdp ≡ P0 . (3.49)

The initial energy density ǫ0 relates to the geometric characteristics of the
bounded domains that define our initial condition. Conversely, as we will
be dealing with patches ΓJ symmetric with respect to the origin, one can
immediately realize that the total initial momentum P0 = 0.

The n volumes of phase space, each deputed to hosting one of the considered
levels, are also invariant of the dynamics. We have therefore to account for the
conservation of n additional quantities, the volumes ΩJ [f̄ ] for J = 1, ..., n, defined
as:

ΩJ [f̄ ] =

∫

f̄(θ, p)αJ dθdp . (3.50)
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Moreover using the normalization condition (3.23) for the coarse grained
distribution function f̄(θ, p), we get ΩJ [f̄ ] = αJ . Equivalently, by imposing the
above constraints on the hypervolumes, we also guarantee the normalization of
the distribution function, which physically amounts to impose the conservation
of the mass.

Summing up, the variational problem that needs to be solved to eventually
recover the stationary distribution f̄eq(θ, p) reads:

max
f̄

{sLB[f̄ ] | ǫ
[

f̄
]

= ǫ0;P
[

f̄
]

= P0; ΩJ

[

f̄
]

= αJ} , (3.51)

where the entropy functional sLB[f̄ ] is given by equation (3.47). This immediately
translates into:

δsLB − βδǫ− λδP −
n
∑

J=1

µJδΩJ = 0 , (3.52)

where β, λ and µJ stands for the Lagrange multipliers associated respectively to
energy, momentum and volumes (or equivalently mass) conservations.

A straightforward calculation yields to the following expression for f̄eq(θ, p):

f̄eq =
1

B + Ae
β′
(

p2

2
− ~M [f̄eq ]·~m

)

+λ′p+µ′
, (3.53)

where

B =
n
∑

J=1

αJ ; A =

(

n
∏

J=1

ααJ
J

)
1
B

, (3.54)

and we redefined the Lagrange multipliers in the following way:

β′ =
β

B
,

λ′ =
λ

B
,

µ′ =

∑n
J=1 µJ

B
.

(3.55)

The above solution is clearly consistent with that obtained for the 1-level
water-bag case study [20]. This latter (3.41) is in fact recovered in the limit
(αJ → 0 for J > 1 while α1 =

1
f1
).

As we have shown for the previous case, also with this extended n-levels
water-bag initial condition we end up with an implicit form for f̄eq which depends
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on itself. Also, we observe that the equilibrium distribution only depends on
µ′, and not on the complete collection of µJ : this means that, in order to solve
f̄eq, we can hereafter focus just on the conservation of the global mass, i.e. the
normalization.
The number of unknowns total therefore to four (Mx, My, β

′, µ′) and the system
of implicit equations that we have to solve is equivalent to the 1-level case.

ǫ0 =
Ã

2β′3/2

∫

eβ
′ ~M ·~mF2(y) dθ −

M2 − 1

2
(3.56)

1 =
Ã√
β′

∫

eβ
′ ~M ·~mF0(y) dθ (3.57)

Mx =
Ã√
β′

∫

eβ
′ ~M ·~mF0(y) cos(θ) dθ (3.58)

My =
Ã√
β′

∫

eβ
′ ~M ·~mF0(y) sin(θ) dθ (3.59)

Here we have expressed the relations as function of the Fermi integrals

Fh(y) =
∫

phe−p2/2

1+ye−p2/2
dp, y = ÃBeβ

′
M·m and Ã = A−1e−µ′

.

The system of equations (3.56, 3.57, 3.58, 3.59) can be solved numerically
with a Newton method, in a way which is analogous to the 1-level case. We
numerically checked (data not shown) that in the limit of a single water-bag
αj>1 → 0 the solution reported in [20] is indeed recovered. In the following
section we turn to discussing the theory predictions with reference to the simple
case of 2-levels water-bag (n = 2), validating the results versus direct numerical
simulations.

3.3.3 The case n = 2: theory predictions and numerical
simulations.

We here consider the simplifying setting where two levels (n = 2) water-bag
are allowed for (f0 = 0 being the background level). We are in particular
interested in monitoring the dependence of M =

√

M2
x +M2

y versus the various
parameters that characterize the initial condition. We recall in fact that, for
the case of a 1-level water-bag, out of equilibrium transitions have been found,
which separates between homogeneous and magnetized phases.
A natural question is thus to understand what is going to happen if one
additional level is introduced in the initial condition. The level f1 is associated
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to a rectangular domain Γ1 of respective widths ∆θ1 and ∆p1. The level f2
insists instead on an adjacent domain Γ2, whose external perimeter is delimited
by a rectangle of dimensions ∆θ2 and ∆p2. The corresponding surface totals
hence ∆θ2∆p2 −∆θ1∆p1.

Recall that the energy ǫ0 can be estimated as dictated by formula (3.48) and
reads in this specific case:

ǫ0 =
1

24

(

f1∆θ1∆p31 + (f2 − f1)f2∆θ2∆p32
)

+
1− 16(f1∆p1 sin∆θ1/2 + (f2 − f1)∆p2 sin∆θ2/2)

2
.

(3.60)

The 1-level limit is readily recovered by simultaneously imposing ∆θ2 → 0 and
∆p2 → 0 (which also implies α2 → 0). By invoking the normalization condition
(3.23) the following relation holds:

lim
∆θ2,∆p2→0

ǫ0 =
1

6
∆p21 +

1

2
(1−M2

0 ) , (3.61)

where M0 = 2 sin(∆θ1/2)/∆θ1. The above relation coincides with the canonical
expression obtained in the 1-level case (3.40).

Relation (3.60) enables us to estimate the energy associated to the selected
initial condition and can be used in the self-consistency equations (3.56). Before
turning to illustrate the predicted solution, let us note that the normalization
(3.23) reduces for n = 2 to:

α1f1 + α2f2 = 1 . (3.62)

To explore the parameter space we have decided to monitor the dependence of
M on f1, which therefore acts as a control parameter. To this end, we proceed
by fixing the quantity ∆f ≡ f2 − f1, the difference in hight of the considered
levels. Furthermore, we specify the quantity α1, while α2 is calculated so to
match the normalization constraint.

The analysis is then repeated for distinct choices of ∆f , so to eventually
elaborate on the importance of such crucial parameter. The results are displayed
in figure (3.5). The curves collapse towards a point that corresponds to the
limiting condition α2 → 0 (f1 = 1/α1): this special solution is met when
the hypervolume populated by the level f2 shrinks to zero, so driving the
system towards the standard one level setting. By progressively reducing f1 the
predicted magnetization first increases and subsequently decreases to eventually
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Figure 3.5: Analytical predictions for the equilibrium magnetization M [f̄eq ] as obtained for different
values of the initial 2-levels water-bag distribution. The two levels are respectively labeled f1 and f2, while
f0 = 0 is the background level. We here work at constant α1 = 5 and ∆f = f2−f1, while moving the control
parameter f1. The analysis is repeated for distinct values of ∆f (from left to right ∆f = 0.2, 0.15, 0.1, 0.05 ).
α2 is computed according to eq. (3.23). For f1 → 1/α1 = 0.2 the normalization condition yields to α2 → 0,
and the distribution collapses to the limiting case of a 1-level water-bag.
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Figure 3.6: The analytical curves (same setting as in figure (3.5)) are now plotted in the plane (ǫ, f1)
(from left to right ∆f = 0.2, 0.15, 0.1, 0.05 ). We here only represent the points that are associated to positive
M [f̄eq ]. The transition occurs at constant energy density ǫ ≃ 0.675, regardless of the specific domains that
result in the 2-levels water-bag distribution.

reach zero at a critical threshold f c
1 . For f1 > f c

1 the system is predicted to
evolve towards a magnetized, hence non homogeneous phase.
Alternatively, for 0 < f1 < f c

1 a homogeneous phase is expected to occur.
Interestingly, the transition point f c

1 depends on the selected ∆f : the larger ∆f
the smaller the value of the transition point, corresponding to a shift to the left
in figure (3.5). Notice that above a limiting value of ∆f , which self-consistently
corresponds to imposing α2 > 1/∆f , the value of f1 has to forcefully become
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negative so to respect the normalization condition.
A well hence opens up in phase space, an intriguing scenario that can be
formally handled within the descriptive Vlasov framework but that we have here
deliberately omitted to deepen any further.
The smooth phase transition as depicted in figure (3.5) is therefore lost above a
threshold value of ∆f , when the predicted value of M associated to f1 = 0 turns
out to be greater than zero.

To elucidate the specificity of the outlined transition, we plot in figure (3.6)
the energy ǫ, associated to each of the selected initial conditions, versus f1, for
the same selection of parameters as employed in figure (3.5). As suggested by
visual inspection of the figure, the transitions, which we recall take place within
a finite window in f1, always occur for an identical value of the energy (in this
case ǫc ≃ 0.675). The transition point is hence insensitive to the specificity of the
two levels f1 and f2, being neither dependent on their associated volumes nor
relative heights. It is in principle possible to extend the above analysis and so
reconstruct the complete transition surface in the (f1, f2, ǫ) space, a task which
proves however demanding from the computational viewpoint and falls outside
the scope of the present treatment.
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Figure 3.7: Magnetization M as a function of time t, as seen in a typical simulation. The system
experiences a fast relaxation and then settle down into the lethargic QSS phase, whose duration (data not
shown) increases with N . Later on the system moves towards the deputed equilibrium. In this simulation a
two levels water-bag is assumed with f1 = 0.14, f2 = 0.1, α1 = 0.2, α2 = 0.3. The energy density is ǫ = 1.0
and N = 104.

To test the validity of the theory we have run a series of numerical simulations
of the HMF model. The implementation is based on fifth order McLachlan-Atela
algorithm [80] with a time-step δt = 0.1. The initial condition is of a 2-levels
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Figure 3.8: The analytical predictions (solid line) for the QSS magnetization as a function of f1 in the
2-levels water-bag case, are compared (filled circles) to the numerical simulations performed for N = 104.
The comparison is drawn for two distinct values of ∆f (∆f = 0.1 (left) and ∆f = 0.2 (right)). α1 = 5
and α2 follows the normalization condition. Numerical values of M are computed as a time average over a
finite time window where the QSS holds. The data are further mediated over 4 independent realizations.
Expected uncertainties are about the size of the circle.

water-bag type, with respective domains assigned as follows the aforementioned
prescriptions. As a preliminary check we have monitored the approach to
equilibrium, figure (3.7).

As expected and generalizing the conclusion that have been shown to hold
for the simpler 1-level water-bag family of initial conditions, the system settles
down into a QSS, whose lifetime grows with the number of simulated particles.
The QSS are indeed the target of our analysis and it is the magnetization
as recorded in the QSS phase that needs to be compared to the Lynden-Bell
predictions. The comparison between theory and simulations is reported in
figure (3.8). Filled symbols refer to the simulation while the solid line stand for
the theory, for two distinct choice of ∆f . The agreement is certainly satisfying
and points to the validity of the Lynden-Bell interpretative framework, beyond
the case of the single water-bag, so far discussed in the literature.
Motivated by this success, we argue that the Lynden-Bell approach could be
adapted to more complex, and so realistic, family of initial conditions.



Chapter 4

Out-of-equilibrium canonical
description of the HMF model

Despite the great effort profused in the past years [81, 82, 83], the practical
definition of a canonical thermal bath for a long-range system in a QSS regime
is still an open problem. In particular we cannot straightforwardly follow
Boltzmann’s theory, since the partition function that is used in e.g. chapter 2.2
is weighted on the Maxwellian distribution which, as we have seen in the previous
chapter, is inadequate to describe the out-of-equilibrium states [63, 64]. Other
problems may arise from inequivalences among different equilibrium statistical
ensembles [17, 85], as observed in chapter 1.3.3.
Because of the above difficulties, the microcanonical approach was so far the
privileged playground to test theoretical predictions. In fact most results present
in literature restrict to studies made on an isolated system.

The importance of a definition of a canonical out-of-equilibrium thermody-
namic theory is the starting point to question the reproducibility of QSSs in real
physical experiments, where the external interaction with a thermal bath, e.g.
in the form of an an external noise source, induce perturbations that cannot
be taken into account in the microcanonical ensemble. It was shown that the
presence of such noise can induce complex phenomena such as phase transitions
from the Vlasov-stable states [86].
As already shown numerically in past works, in the case of an HMF in contact
with a short-range bath, if the contact interaction is weak enough, the system
still relaxes violently to a QSS, while a strong interaction destroys the out-of-
equilibrium state [81, 82].
Since an explicit derivation of the canonical partition function would require the
knowledge of the practical implementation of the bath, which is still a matter of
debate [84].
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In this chapter we will present an original result of this thesis that aims
to deriving a canonical description of a long-range system from a formal
approach. We will see how such procedure can lead to problems and violations of
fundamental thermodynamic principles, eventually pointing to the necessity of a
generalized thermodynamic theory to tackle the study of a long-range system in
contact with a thermal bath.

Almost all thermodynamic quantities, which are measurables in the canonical
ensemble, can be obtained from the knowledge of the free energy function F . As
discussed in chapter 1.3.2, following the accepted thermodynamic theory, this
latter quantity can be always recovered from the knowledge of the microcanonical
entropy S through a Legendre-Fenchel transform (LFT). This translates into
a viable strategy to study a generic system in contact with the thermal bath
without any knowledge of the latter (apart from its temperature T ).
In the previous chapter we have shown how Lynden-Bell mixing entropy (3.28),
obtained in the Vlasov limit (3.12), is capable to produce a valid prediction for
the QSS states of the HMF model. Starting from this setting we will try to
apply the canonical thermodynamic formalism to out-of-equilibrium stationary
states of this paradigmatic model.
Before proceeding further, it is worth emphasizing that while we will use the
HMF example, the results exposed in this chapter are relevant for a quite large
class of systems and for many practical physical situations showing QSS with
non-Gaussian equilibria, as observed in chapter 1.4.

In section 4.1 we will outline how the formal canonical approach may
force us to reconsider the very definition of temperature, in the light of the
non-Maxwellian nature of the equilibrium distribution function.
When proceeding in deriving the standard formal canonical free energy, we can
end up with a system that possess a negative kinetic specific heat while in con-
tact with a thermal reservoir. This latter evidence will lead to counterintuitive
consequences, and rises questions on the validity of present thermodynamic
theory to describe a long-range system out of the microcanonical formalism.
Conversely in chapter 4.2 we will show how, if we assume the validity of
the formal definition of the thermodynamic temperature obtained from the
thermodynamic functions, we could end up conceiving a thermal cycle that
violates the second law of thermodynamics. To reconcile the last result with the
thermodynamic principles, we could end up modifying the Fourier law of heat
transport, with profound implications in long-range thermodynamics.
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4.1 Out-of-equilibrium thermal bath: question-

ing temperature definition

In classical thermodynamics, specific heat is defined as the energy required
to increase the temperature of a unit quantity of a substance by a unit of
temperature. Such a definition follows common sense: providing energy to
a physical system should induce heating, that is an increase of the system
temperature.
In fact, this is normally the case of physical systems obeying the Boltzmann
statistics [87] and being characterized by short-range interactions. However, less
intuitive thermodynamic properties may be displayed by long-range interacting
systems.

In that case, experiments realized on isolated systems, described by the
micocanonical statistical ensemble, may give different results from similar
experiments performed on systems in contact with a thermal bath, for which the
canonical ensemble is the appropriate one.
As observed in chapter 1.3.3, one of the most striking features of such ensemble
inequivalence is the presence of a negative specific heat in the microcanonical
ensemble: increasing the energy of an isolated long-range system may lead to a
decrease of its thermodynamic temperature. On the other hand, as mentioned
in chapter 1.3.3, it is generally recognized that the specific heat in the canonical
ensemble is always positive, even if interactions are long-range.

Hence, it is a generally shared opinion that one can not measure negative
specific heat in a system in contact with a thermal bath. As we will see, such
a result relies on the assumption that the thermodynamic temperature, defined
as Tth = (∂s/∂ǫ)−1 (where s and ǫ are, respectively, the system entropy and
the energy per particle), coincides with the kinetic temperature, Tkin, defined
in terms of the average of the system kinetic energy. In fact, as we will show,
the latter true only for Boltzmannian systems, and generally not for systems
following a different statistics.

As a paradigmatic example for our investigation, we consider the so-called
Hamiltonian Mean Field (HMF) model (2.1). With the notation introduced in
chapter 3.3.

As already discussed in chapter 3, starting from an initial condition far from
equilibrium, the system may be trapped in a “quasi-stationary state” (QSS),
whose lifetime diverges with the system size N . In this regime the system is
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described by a non Gaussian distribution. It has been shown that in the limit
N → ∞ QSSs can be related to the stable steady states of the Vlasov equation
describing the system, and Lynden-Bell’s theory can be used to define a mixing
entropy sLB. Its explicit form is obtained from a water-bag initial condition.
For simplicity in the following we will consider a 1-level water-bag (3.37), in which
case the entropy per particle reads:

sLB[f̄ ] = −
∫
[

f̄

f1
ln

f̄

f1
+

(

1− f̄

f1

)

ln

(

1− f̄

f1

)]

dpdθ . (4.1)

As already seen in chapter 3.3.1, maximizing this entropy yields a “fermionic”
solution f̄eq(θ, p) (3.41). While QSSs represent out-of-equilibrium states of
the N -body dynamics, they could be equally interpreted as equilibrium con-
figurations of the corresponding continuous description: in this respect, the
conclusions of our analysis applies to both equilibrium and non equilibrium
dynamics, provided the latter bears distinctive non-Boltzmannian traits.

In chapter 1.3 we have seen that the specific heat in the canonical ensemble is
always positive, but here we will challenge that confidence and discuss in which
respects such an argument does not apply to our case.
Consider a generic (long-range or short-range) system. Given the microcanonical
entropy s(ǫ, n), where n is the particle density, the canonical rescaled free energy,
φ(β, n) = βf(β, n), can be calculated as the Legendre-Fenchel Transform (LFT)
of s(ǫ, n):

φ(β, n) = infǫ [βǫ− s(ǫ, n)] . (4.2)

Here β is a free parameter to be related to the system temperature.
As we already noted in chapter 1.3.2 the LFT of a generic function is always
a concave function. If s(ǫ, n) is also concave, the inverse LFT can be applied:
s(ǫ, n) = infβ [βǫ− φ(β, n)]. This is always the case of short-range systems, for
which the equivalence of statistical ensembles holds true. Using the previous
relation one can write:

∂2s

∂ǫ2
=

∂β

∂ǫ
=

∂β

∂T

1

cmic
v

, (4.3)

where

cmic
v =

∂ǫ

∂T
=

1
(

∂2s

∂ǫ2

)(

∂T

∂β

) (4.4)

is the specific heat (at fixed volume) calculated in the microcanonical ensemble
and T is either the thermodynamic (Tth) or the kinetic (Tkin) system temperature.
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Making use of the LFT, the specific heat can be also calculated in the canonical
ensemble and expressed in terms of the rescaled free energy:

ccanv =

(

∂2φ

∂β2

)

(

∂T

∂β

) . (4.5)

Using the thermodynamical definition of temperature: Tth = (∂s/∂ǫ)−1 = 1/β,
one gets:

(

cmic
v

)

th
= −1/T 2

th

(

∂2s/∂ǫ2
)

. (4.6)

The sign of
(

cmic
v

)

th
depends on that of the second derivative of the entropy respect

to energy:
{

If ∂2s/∂ǫ2 < 0 , then
(

cmic
v

)

th
> 0 ,

If ∂2s/∂ǫ2 > 0 , then
(

cmic
v

)

th
< 0 .

(4.7)

As already noted in chapter 1.3.3, in the case of long-range systems, the entropy
function can have a convex region in energy in presence of first order phase
transitions, while this cannot happen in case of short-range interactions due to
phase separation [9].
In the canonical ensemble we have:

(ccanv )th = − 1

T 2
th

(

∂2φ

∂β2

)

. (4.8)

As we have already mentioned, φ is always concave and, as a consequence,
(ccanv )th is always positive.

Consider now the definition of kinetic temperature, which is the one experi-
mentally accessible [63] (we cannot directly measure a thermodynamic potential):

Tkin =

∫

p2F (θ, p)dθdp (4.9)

(we assume unitary mass in the definition of kinetic energy). Here F (θ, p) is the
normalized equilibrium distribution function of the system. Equation (4.9) fur-
nishes the link between Tkin and the thermodynamical temperature Tth = 1/β.
For a Boltzmannian system: F (θ, p) = C exp(−βp2/2), where C is a normal-
ization constant [87]. Substituting the latter expression into equation (4.9) one
gets:

Tkin = 1/β = Tth . (4.10)
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In this case the statistical and kinetic definitions of specific heat provide the
same result: (cv)th = (cv)kin.

From the above, one can conclude that, for a Boltzmannian system, the
canonical specific heat is always positive, regardless the definition of temper-
ature. As a consequence, for a Boltzmannian long-range system, the presence
of negative specific heat in the microcanonical ensemble is the signature of
ensemble inequivalence.
A completely different scenario may arise in the case of non-Boltzmannian
or out-of-equilibrium long-range systems. As we shall demonstrate, for those
systems one can expect to measure negative specific heat in the canonical
ensemble.

Consider the “fermionic” system characterized by the entropy (4.1), paradig-
matic example of a long-range system “trapped” in a QSS. Following the proce-
dure outlined above, one can perform the LFT of s[f̄ ] and calculate the rescaled
free energy φ[f̄ , β]. Requiring the free energy to be stationary, one have to solve
the following variational problem:

δsLB − βδǫ = 0 (4.11)

and gets the following distribution:

f̄eq(θ, p) =
f1

1 + eβf1(p
2/2−Mx[f̄eq] cos θMy[f̄eq] sin θ) + µ

. (4.12)

Here µ plays the role of a Lagrange multiplier associated to mass conservation,
while Mx[f̄ ] =

∫

f̄ cos(θ)dθdp, My[f̄ ] =
∫

f̄ sin(θ)dθdp stand for the two
components of magnetization in the N → ∞ limit.
It is worth stressing that the expression (4.12) for the stationary distribution in
the canonical ensemble is formally identical to the one obtained by requiring the
entropy (4.1) to be stationary in the framework of the microcanonical ensemble
(3.41). In that case, β and µ are Lagrange multipliers associated to energy and
mass conservation.

Figure (4.1) shows the entropic curve, sLB(ǫ), for a given initial condition
f1. The curve is calculated in the framework of the microcanonical ensemble,
using the following procedure. Once fixed ǫ and f1, one first determines the
corresponding values of Mx, My, µ and β in the expression (4.12) for f̄eq.
This can be done by imposing energy and mass conservation and by using the
definition of Mx and My (see chapter 3.3.1).
In general, one obtains several possible distributions f̄eq, corresponding either to
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Figure 4.1: Lynden-Bell entropic curve, sLB = sLB(ǫ), calculated for the initial condition f1 = 1.1096,
in the framework of the microcanonical ensemble. Inset: difference, ∆sLB , between magnetized and non-
magnetized branches of the entropic curve, as a function of energy. A change of sign in ∆sLB(ǫ) is the signal
of a phase transition, see also [88]. There is a second-order phase transition at ǫ = 0.6123 and a first-order
phase transition at ǫ = 0.5987. Note that the latter cannot be noticed on the (too large) scale used to plot
the entropic curve.
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)1/2 6= 0) or to non-magnetized (i.e., M = 0)
states. The value of s(ǫ) is found by substituting the possible solutions into
(4.1) and by solving numerically the integral: the retained value is the one
corresponding to maximum. This also selects the expected (magnetized or
non-magnetized) stable equilibrium distribution.

The Lynden-Bell entropic curve s(ǫ) is always concave (see figure 4.1): such
a result is a clear indication of ensemble equivalence.
Assuming F (θ, p) = f̄eq(θ, p) in equation (4.9), one gets a formal nonlinear
relation between the kinetic temperature; Tkin, and the Lynden-Bell Lagrange
multiplier β = 1/Tkin (inverse thermodynamic temperature).

Reconsidering now equations (4.4) and (4.5), with T = Tkin, one is led to the
surprising conclusion that the measured kinetic specific heat can be negative both
in the microcanonical and in the canonical ensembles, no matter the convexity of
the entropy and of the free energy functions. In fact, in both cases the sign of the
specific heat also depends on that of the derivative of the function Tkin = Tkin(β).

The curve Tkin = Tkin(β) can be calculated in the framework of the canonical
ensemble, as follows. Once fixed β and f1, one determines the stable equilibrium
distribution by finding out the corresponding values of Mx, My and µ. This can
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be done by imposing the normalization constraints and by using the definition
of magnetization.
Note that finding the equilibrium distribution in the framework of canonical
ensemble requires to determine three parameters (and, thus, to solve three equa-
tions), instead of four, as required in the case of the microcanonical ensemble.
This is due to the fact that energy does not explicitly enter the expression (4.12)
for the stationary distribution.
The obtained result is then substituted into equation (4.9) and the integral
solved numerically. The curve Tkin = Tkin(β) is shown in figures (4.2) and (4.3).

Figure 4.2: Kinetic temperature, Tkin, as a function of the Lynden-Bell Lagrange multiplier β, calculated
for the initial condition f1 = 1.1096.

As it can be seen, one gets ∂Tkin/(∂β) > 0 and, thus negative specific heat,
(cv)kin < 0, in both ensembles, in the magnetized region. The change of sign
occurs in correspondence of phase transitions: from positive to negative in
correspondence of a second-order phase transition, at smaller β values, and from
negative to positive in correspondence of a first-order phase transition, at larger
β values, where the curve displays a discontinuity.
Note that this behaviour is fundamentally different from that displayed by
Boltzmannian long-range systems. Indeed, as already mentioned, in that case
the change from positive to negative (thermodynamical) specific heat may occur
only in correspondence of a first-order phase transition [85]. Phase transitions
are also signaled by a change of stability of the magnetized and non-magnetized
branches of the entropic curve, as shown in the inset of figure (4.1).

The presence of a negative kinetic specific heat in the magnetized region



4.1 Out-of-equilibrium thermal bath: questioning temperature
definition 61

Figure 4.3: Kinetic caloric curve, 1/Tkin vs. ǫ (continuous line), and thermodynamic caloric curve,
1/Tth = β vs. ǫ (dotted line), calculated at f1 = 1.1096.

can be also noticed by looking at the kinetic caloric curve shown in figure (4.3)
(continuous line). As expected on the basis of the result shown in figure (4.1), the
thermodynamic caloric curve (dotted line in figure 4.3), is instead characterized
by a negative derivative over the whole energy range, corresponding to (cv)th > 0
in both ensembles.
It is worth stressing that the occurrence of negative specific heat in the micro-
canonical ensemble when the system is magnetized is confirmed by the results of
direct N -body simulations, based on the HMF Hamiltonian (2.1) [88].

As we anticipated, a further surprising result is that the presence of negative
specific heat is associated to equivalent statistical ensembles. A clear indication
of ensemble equivalence can be obtained by inspection of figure (4.1), showing
a concave entropic curve, and of figure (4.2), showing the occurrence of positive
and negative canonical and microcanonical specific heats in the same interval of
β values.
The same indication can be drawn by the thermodynamical caloric curve shown
in figure (4.3).
However, the curves displayed in figures (4.1) and (4.2) have been obtained for
a particular initial condition f1. In order to investigate ensemble equivalence for
any f1, we have compared the values of M obtained by solving the Lynden-Bell
problem in the two ensembles for different initial conditions, following the above
outlined procedures. Results (not reported here) show that the magnetized and
unmagnetized regions perfectly coincide, and this confirms ensemble equivalence.

The results previously exposed demonstrate the unexpected possibility to
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measure negative specific heat in the statistical canonical ensemble. As we
argued above, this conclusion does not contradict any fundamental law of
thermodynamics but ultimately originates from the non-Boltzmannian features
that are possibly associated to non-equilibrium, as well as equilibrium, dynamics.
We want to stress that this issue is strictly related to the concept of “measure”.
In fact we used a formal thermal bath with a constant β (thermodynamic
temperature), but we assume that the real measurable temperature is the kinetic
one, having no instrument to measure a thermodynamic potential or even to
obtain the direct knowledge of the entropy functional.

With reference to the case at hand, and for a specific window of the parameter
space that we traced back to magnetized QSS, the particles gain in kinetic energy
when an energy quota is passed from the system to the heat reservoir. This
surprising effect arises spontaneously and it is driven by the inherent ability of
the system to self-organize at the microscopic level. The average particle velocity
is enhanced at the detriment of the potential energy, and this yields in turn to
an increase of the experimentally measurable kinetic temperature. The opposite
holds if the energy flows towards the system: the particles cool down, while the
potential contribution grows so to guarantee for the needed energy balance.
This phenomenon, that we have here demonstrated with reference to the HMF
model, is in principle general and can potentially extend to all those settings
where non-Boltzmannian effects play a role.

The question that arises from these evidences is how to define the temperature
of a long-range system in contact with a thermal bath, and how to define the
heat transfer between the bath and the system. In past works [81, 82] the
attention was put onto short-range thermal baths (with Tth ≡ Tkin). In this
latter case the interaction with the system (where Tth 6≡ Tkin) cannot keep a
constant β, and a new theory must be developed in order to define appropriate
thermodynamic potentials that take into account the inequivalence in the two
temperature definitions.

Conversely, if a standard thermal bath is indeed realizable, it would be
particularly attractive to speculate on the possibility of realizing efficient thermal
devices, working with a non-Boltzmannian fluid. Given the particular interplay
between the potential and kinetic energy, one can expect that such a machine
would have surprising features. In the next section we will show that this latter
possibility would naturally lead to the violation of key thermodynamic principles,
pointing out the necessity of a global revision of present thermodynamic theory
for long-range systems.
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4.2 A thermal machine working with non-

Maxwellian fluid

According to standard thermodynamics, the efficiency of a cyclic machine is
strictly lower than one. Such a result is a straightforward consequence of the
second principle of thermodynamics. However, as we observed in the previous
chapters, long-range interacting system report on a rather intricate zoology of
peculiar behaviors, which are occasionally in contrast with customarily accepted
scenarios, dueling with intuition and common sense. In this section we will
try to assemble a thermodynamical cycle for an ideal device working with
non-Boltzmaniann long-range fluid and operating in contact with two thermal
reservoirs.
Assuming the microcanonical or canonical temperature Tth to be the correct
thermodynamic temperature, the system is analytically shown to violate the
second principle of thermodynamics. This phenomenon ultimately relates to the
existence of regions in the canonical ensemble where ckinv < 0. We argue that the
validity of the second principle of thermodynamics can be possibly restored, by
revisiting the definition of canonical ensemble, as well as the Fourier law of heat
transport, and consequently relaxing the constraint on the maximal efficiency as
imposed by the Carnot theorem.
This latter possibilities, however, would eventually lead to the development
completely new thermodynamics for non-Boltzmannian systems in equilibrium
with a thermal bath.

The second principle of thermodynamics represents a fundamental milestone
of physics [89]. Its validity is however supported by an impressively large gallery
of experimental facts and consequently assurged to the status of inviolable
universal law. It admits different formulations, the first of which is credited to
the German physicist Rudolf Clausius [90]: No process is possible whose sole
result is the transfer of heat from a body of lower temperature to a body of higher
temperature. This in turn traces back to the concept of irreversibility: the heat
cannot flow from cold to hot regions without external work being performed on
the system, as e.g. it happens in a refrigerator. An alternative formulation of
the second principle due to the Irish physicist Lord Kelvin [91] recites instead:
No process is possible in which the sole result is the absorption of heat from a
reservoir and its complete conversion into work. In practice, one cannot entirely
transform the heat absorbed by a reservoir into work, without dissipating part
of it. Rephrasing the latter statement: it is thermodynamically impossible to
obtain a 100 % efficiency from a cyclic heat engine.



64 4 Out-of-equilibrium canonical description of the HMF model

Indeed, Carnot’s theorem [92] limits the maximum efficiency η for any
possible engine, and can be seen as a direct byproduct of the second principle.
All irreversible heat engines operating between two heat reservoirs, respectively
characterized by thermodynamic temperatures TC (cold) and TH (hot), are
less efficient than a Carnot engine working in contact with the very same
reservoirs. The Carnot maximal efficiency can be straightforwardly quantified in
η = 1− TC/TH as discussed in any basic textbooks.

As already emphasized, the above picture is at the core of our current
understanding of physics, it appears to be solidly grounded on experiments
and no doubt is cast on its correctness. Problems may emerge, however, when
dealing with thermodynamics of long-range systems.

4.2.1 Vlasov fluid in an external field

Let us consider an HMF system in its Vlasov limit N → ∞ (3.30), and lets put
it in contact with a thermal bath, as already explained in chapter 4.1. For the
sake of simplicity, and to allow for relatively straightforward analytical progress,
we solely consider the case of a 1-level water-bag initial condition (3.37), and we
will chose the initial energy density ǫ0 and magnetization M0 in order to end up
in a magnetized QSS phase. In this condition we will measure a negative kinetic
specific heat also in the canonical ensemble.
We will of course suppose that the standard thermodynamic theory can be
applied also in this case, and a free energy function can be successfully obtained
through a Legendre-Fenchel transform of the microcanonical Lynden-Bell entropy
sLB.
In this latter hypothesis, the effect of the thermal bath is to maintain a constant
temperature Tth, while energy and kinetic temperature Tkin can variate.

In order to accommodate the necessity of performing external work on the
system (and thus construct an adiabatic transformation) we will suppose that the
system will interact with be subject to an external magnetic forcing of strength h.
In its original formulation, the HMF is a discrete model composed of N particles
(spins) in mutual interaction, and has been thoroughly studied in the previous
chapters in the unperturbed limit h = 0.
In the continuum limit N → ∞, we will redefine the interaction potential V (θ)[f ]
with an additional external term:

V (θ)[f ] = 1−M [f ] cos(θ) + h cos(θ) , (4.13)

where f(θ, p, t) is the one particle distribution function. For simplicity, and
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without loss of generality, we will assume that the total magnetization M of the
system will be directed along the y axis:

M [f ] =

∫ π

−π

∫ ∞

−∞
f(θ, p, t) cos θdθdp . (4.14)

Including the kinetic contribution, the specific energy reads:

ǫ[f ] =

∫ ∫

(p2/2)f(θ, p, t)dθdp− (M2 − 1)/2 + hM . (4.15)

Within the previous approximations, the entropy reads:

s[f̄ ] = −
∫

dpdθ

[

f̄

f1
ln

f̄

f1
+

(

1− f̄

f1

)

ln

(

1− f̄

f1

)]

, (4.16)

where f̄ is the coarse-grained distribution function (4.12) obtained though
Lynden-Bell procedure.
By maximizing the entropy functional, one obtains the microcanonical solution
in terms of a fermionic distribution f̄eq (3.41), which coincides with a particular
class of stable stationary solutions of the Vlasov equation.

Given the microcanonical entropy (that self-consistently depends on the en-
ergy ǫ), one can always calculate the canonical rescaled free energy, φ(β, f̄eq), as
the Legendre-Fenchel transform (4.2). β is a free parameter which we assume to
be equal to the inverse of the (constant, in the canonical ensemble) thermody-
namic temperature Tth of the system. Requiring the free energy to be stationary,
under the dynamical constraints, one recovers a closed mathematical prediction
for the particles distribution (4.12), which again is fermionic.
In the case of an external magnetic field h we have:

f̄eq(θ, p) =
f1

1 + eβf1(p
2/2−M [f̄ ] cos θ − h cos θ) + µ

, (4.17)

where µ is a Lagrange multiplier associated to mass conservation, which can be
calculated by solving the self-consistent system of equations obtained by impos-
ing the constraints conditions. Consequently, the coarse grained distribution
function f̄eq and the magnetization M can be calculated, for any fixed initial
condition, i.e. given f1, h β.

The thermodynamic temperature is defined as:

Tth =

{

(∂s/∂ǫ)−1 in the microcanonical ensemble ,

1/β in the canonical ensemble .
(4.18)
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A system and a thermal reservoir are said to be in equilibrium (no heat is ex-
changed) if their respective thermodynamic temperatures match. The canonical
ensemble, as defined by the above LFT, provides hence the appropriate descriptive
scenario for the system dynamics, β being fixed as the inverse of the thermostat
thermodynamic temperature.
If a difference in temperature manifests between two adjacent systems, the heat
flows against (proportional to) the temperature gradient so to eventually restore
the equilibrium condition. This is the celebrated Fourier’s law. With reference
to both microcanonical and canonical pictures, one can alternatively consider the
definition of kinetic temperature [63]:

Tkin =

∫

p2f̄eq(θ, p) dθdp . (4.19)

We are purposely omitting any constant factor in the definitions of both
temperatures.

As already observed in the previous section, for a Boltzmannian sys-
tem f̄eq(θ, p) ∝ exp(−βp2/2) [93] and it is therefore immediate to see that
Tkin = 1/β = Tth. When instead the system displays non-Boltzmannian traits,
Tk 6= Tth.
Unintuitive phenomena can thus set in as the emergence of negative kinetic heat
in the canonical ensemble, a possibility demonstrated in chapter 4.1. Moreover,
for a non-Boltzmannian fluid, a word of caution should be exercised on the
usage of Fourier’s heat law: does the heat flow proportional to the kinetic or
thermodynamic temperature gradient? Is the proportionality scaling correct?
We shall return later on this crucial point.

4.2.2 Constructing the thermodynamic cycle

Having reviewed the definition of canonical and microcanonical ensembles, we
can formally construct a thermodynamic cycle, reminiscent of Carnot’s one, for
an hypothetic device working with the Vlasov fluid introduced above. We will in
particular consider two isothermal transformations, the reservoirs being charac-
terized by the (thermodynamic) temperatures TH (hot) and TC (cold). The cycle
is then closed by assuming two adiabatic transformations. As concerns the latter
transformation, we recall [94] that the first principle of thermodynamics reads:

δQ = de− hdM . (4.20)

Here, Q is the heat provided by the environment to the system. The adia-
batic transformation δQ = 0 is hence realized by tuning the field strength as
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h = dǫ/dM along the path. A representative cycle obtained by implementing
the procedure outlined above is depicted in figure (4.4). Each point displayed
in the three dimensional space (h,M, ǫ) is either a stationary solution of the
entropy functional s (microcanical, adiabatic lines) or of the free energy φ
(canonical, isothermal). Notice that one needs to circulate the cycle in figure
(4.4) (lower panel) counter-clockwise, so to extract a positive work amount
(LHMF = −

∫

cycle
hdM). The heat exchanged with the hot and cold reservoirs,

labeled respectively QH and QC , can be readily evaluated as an application of
the first principle (4.20) and upon calculation of the work performed along the
isothermal tracks.

Surprisingly, and as a straightforward application of the above procedure1,
we obtain QH < 0 and QC > 0. Moreover, QC > |QH |.
This is at odds with the physical constraints imposed by the second law of
thermodynamics. The virtual machine that we have constructed works in fact as
a refrigerator, cooling down the reservoir with the lower temperature. In doing
so, it however generates a positive work load, which violates Clausius formulation
of the second law of thermodynamics.
In principle, and admitting this conclusion to be correct, one could insert
between the two considered reservoirs a standard thermal machine that, in a
cycle, receives from the hotter bath the heat quota QH (i.e. the very same
released by our Vlasov device), and returns to the colder reservoir the heat Q′

C ,
such that |Q′

C | < QH , while producing a positive work L.
The machine obtained by pairing together the two considered devices, subtracts
heat from a single reservoir (QC − |Q′

C | > 0) and returns the positive work
Ltot = LHMF+L, against the second law of thermodynamics in the Kelvin-Planck
formulation.

In other words, the machine that we have assembled, and which intimately
exploits the unintuitive features of long-range systems, is characterized by an
efficiency η = Ltot/(QC − |Q′

C |) equal to one. This is so unexpected that, at first
sight, it would be tempting to reject the results as a whole.
It is however possible to elaborate on a thermodynamic interpretation of the
results and pinpoint to the specific, and highly unconventional phenomenon,
that is ultimately responsible for such an astonishing behavior. Then we will
come back to discussing the foundation of the theory, especially the customarily
adopted definition of canonical ensemble, and suggest that the validity of the

1Let us recall that the solution of the Lynden-Bell variational problem (4.11) cannot be
cast in a closed analytical form. In fact, the equations for the constraints which enable one to
quantify the Lagrange multipliers, are to be solved numerically, at sought precision, with an
iterative numerical scheme.
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Figure 4.4: The thermodynamics cycle is represented in the three dimensional space (h,M, ǫ). The
red line stands for the isothermal transformation carried out at TH , while the blue line refers to the choice
TC < TH . Here TH = 1/βH = 0.33 and TC = 1/βC = 0.26. The adiabatic transformations that close up
the cycle are depicted in green. The heat exchanged with the reservoirs are respectively: QH = −0.0363
(heat flows out the system) and QC = 0.0416 (the heat flows towards the system). Here, f1 = 0.12: this
choice is purely representative. We have in fact repeated the calculation for different values of f1, observing
the same type of violation as described in the main body of the paper.

second principle could be eventually restored provided the kinetic temperature
and not the thermodynamic one is employed in the law of Fourier for the heat
transport.

4.2.3 Negative kinetic heat capacity and the violation of
the second principle of thermodyamics

The cycle reproduced in figure (4.4) extends within a domain of the parameters
space yielding magnetized states, where the system is characterized by negative
(kinetic) specific heat in both canonical and microcanonical ensemble, i.e. along
the isothermal lines of the cycle, when the magnetization is different from zero.
This fact is indeed responsible for the apparently unphysical conclusions reached
above. Consider in fact the first law and isolate the two terms that enter the right
hand side of equation (4.20). The second term is related to the actual physical
work: when proceeding counter-clockwise along the isothermal transformation,
in contact with the hot reservoir, the quantity −hdM is positive as can be
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Figure 4.5: The cycle in figure 4.4 is projected in the (M,h) subspace. The arrows indicate the direction
of circulation that produces a positive work.

deduced by looking at figure (4.4) (lower panel, red line).
In practice, and as it happens for an ideal gas performing an isothermal trans-
formation, the work applied perturbs the system from its equilibrium condition,
while constraining it to the same thermodynamic temperature of the bath.
A (positive) heat quota (−hdM) is consequently transferred from the bath to the
system, when circulating counter-clockwise. The opposite clearly holds when the
cold isothermal is considered, together with the chosen direction of circulation:
−hdM is negative, see figure (4.4) (upper panel, blue line).
While the thermodynamic temperature is kept constant, the kinetic one Tkin

changes along the considered transformation: in particular, Tkin increases along
the isothermal at TH , decreases when the system is evolved in contact with the
colder bath TC .

The other contribution to the heat δQ, the first term (dǫ) on the right hand
side of equation (4.20), gets also modulated along the transformation. In figure
(4.6), the energy ǫ is shown to decrease when Tkin increases, for both cold and
hot isothermals (resp. red and blue). The kinetic specific heat is thus negative, a
condition that realises because of the non-Boltzmannian character of the system.
Increasing the kinetic temperature, as the system does when in contact with
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Figure 4.6: The energy ǫ of the system is plotted versus the kinetic energy Tkin, along the two isothermal
transformations (in red TH = 0.33, in blue TC = 0.26). The transformations proceed along the directions
highlighted by the arrows. Here, f1 = 0.12.

the hot bath TH , implies decreasing the energy e, and so contributing with a
negative term to the global heat exchanged with the reservoir. Incidentally, the
latter contribution turns out to be larger in absolute value, than the positive
contribution associated to the magnetic work.
The total contribution is hence negative and for this reason the system cedes heat
to the hot reservoir. Similar conclusions can be drawn when looking at the other
isothermal transformation: now dǫ is positive (the kinetic temperature decreases)
and overcomes the negative −hdM contribution.
When kinetic and thermodynamics temperature are equal (as they should for
conventional Boltzmannian short range systems) the (kinetic) specific heat has
to be necessarily positive, and the above surprising condition cannot realize.

4.2.4 Reconciling theory and experience: alternatives to
the violation of second law

Summing up we have analytically shown that non-Boltzmannian systems can
apparently violate the second law of thermodynamics, and explained such an
astonishing ability in terms their peculiar statistical mechanics. It is however
hard to accept such a conclusion, which would revolutionize our current under-
standing of the laws of nature.

However our derivation, though rigorous, relies on the formal definition of free
energy. This latter follows naturally from the entropy functional, as emphasized
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in the literature [88, 95, 9], and makes it possible to carry out the mathematical
study here reported.
The actual implementation of a long-range dynamics in contact with a heat
reservoir is still an open and controversial issue, that deserves to be carefully
considered when challenging the possible practical relevance of our speculations.

When operating in the proposed scenario several way out in our view exists
which potentially allows one to respect the second principle and confirm its
validity for the class of systems being here considered. The critical point
has to do with the definition of the canonical ensemble, that we have here
mutuated from equilibrium classical statistical mechanics, by performing the
Legendre-Fenchel Transform of the entropy functional.
In doing so, one requires that the canonical dynamics preserves the thermody-
namic temperature of the system, setting it to a constant value imposed by the
external reservoir.
First, and as anticipated before, we here assume that statistical mechanics and
thermodynamics temperature coincide. Although this is a natural and well
founded assumption for short-range systems, its extension to long-range systems
should be critically questioned.
Moreover, one could imagine that non-Boltzmannian systems, when placed in
contact with a thermal bath, would organize so to freeze their kinetic temperature
to the temperature 2 of the bath.

As a natural consequence of this latter assumption, already stressed before,
the Fourier law [96] should require that the heat flows proportionally to the
kinetic temperature gradient, not the thermodynamic one, as the definition of
canonical thermodynamical equilibrium would indirectly imply.
Pushing further this proposal, we could possibly ends up with a cyclic non-
Boltzmannian engine which meets the second law requirement, while still
exceeding the Carnot upper bound of efficiency, since the thermodynamic
temperature is related to the kinetic one by a non linear functional relation:

Tkin = g(Tth) . (4.21)

This is an important issue that touches the foundation of modern physics and
that deserves to be carefully addressed in future works.
More substantial modification of the Fourier law of heat conduction can be
also foreseen where e.g the heat flux is not solely influenced by the kinetic
contributions but also forced by the configurational degrees of freedom stored

2Kinetic temperature, in general. If one deals with a Boltzmannian bath, kinetic and ther-
modynamics temperature clearly coincide.
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in the potential terms. Preliminary N -body simulations of two coupled HMF
systems encourage to insist along this line of investigation, which is out of the
scope of the present work.

To conclude, we would like to stress that our study is relevant for a quite
large class of systems and for many practical physical situations. In fact, the
Vlasov equation is often invoked as the reference model for several experimental
systems, as already observed in chapter 3. The modifications involved to the
presently accepted thermodynamic theory are not simple, and working with
unconventional non-Boltzmannian fluids could alter our current perception of
the concept of efficiency, beyond the standard Boltzmann picture to which
predictive tools are at present indirectly anchored.
In particular, it can be shown that, under some hypotheses, the governing
Hamiltonian of CARL dynamics can be formally reduced to the HMF (2.1) [97].
This important observation will open up the perspective to eventually test our
predictions versus direct experiments.



Chapter 5

Quasi-stationary states at the
short-range threshold

The HMF system introduced before is a paradigmatic model of long-range
interactions and has been widely studied in past literature. In the preceding
chapters we have focused on discussing its main dynamic and thermodynamic
features. Other models however exist which present an especially rich zoology
of peculiar behaviours. This is for instance the case of the α-HMF model, a
generalization of the HMF (2.1) which has been originally proposed in [98].
The interaction between two rotators has the same form as in the HMF model,
but now the coupling constant is a weakly decaying function of the distance
between the two lattice sites where the rotators sit. Thanks to a parameter
α, which determines the decay with distance of the coupling constant between
rotators, we can tune the strength of the interaction. This latter feature makes it
possible to investigate long-range physics ranging from the mean-field limit α = 0
up to the threshold αc after which the model becomes technically short-range.
This model displays identical equilibrium features as the HMF. In fact it was
rigorously proven that all stationary states of the HMF model are also stationary
solutions of the α-HMF model [99, 9, 46].

In this chapter, we shall concentrate on a numerical study of the α-HMF
model. We shall consider here one-dimensional cases for which the exponent α
is next to the threshold value α = 1, when the α-HMF potential model makes
a transition from long to short-range interaction. Also, we shall discuss the
presence of long-range dynamic and thermodynamic signatures in the range 1 ≤
α < 2, where the system is technically short-range, according to the classification
reported in figure (1.1). As observed in section 5.1, the peculiarity of the α-HMF
interaction makes the model difficult to define on the basis of the scaling law
of the potential, allowing some long-range features to persist in the short-range
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regime.
This latter observation eventually points out the necessity to extend the definition
given in chapter 1, in order to take into account the decay with the distance of
the force, acting between pairs of particles.

5.1 The α-HMF model

The α-HMF describes N particles in a periodic space, and obeys to the following
governing Hamiltonian:

H =
N
∑

i=1

[

p2i
2

+
1

2Ñ

N
∑

j 6=i

1− cos (qi − qj)

‖i− j‖α

]

, (5.1)

where qi stands for a spin angle located on the lattice site i and pi is its
canonically conjugate momentum. The distance ‖i− j‖ between the two lattice
sites where the rotators sit, is defined as the shortest distance on the circle of
perimeter N − 1, so that the systems can be isolated and still translational
invariant along the lattice. The mean-field HMF model is eventually recovered
for α = 0.

Recalling definition (1.1), systems are considered long-range when the two
body interacting potential V (r) decays at most as 1/rα with α < d, where d
stands for the dimension of the embedding space. Having only one degree of
freedom, d = 1 for the α-HMF model.
To make the system extensive, we assume N even and write:

Ñ =

(

2

N

)α

+ 2

N/2−1
∑

i=1

1

iα
. (5.2)

The equations of motion of each element i are derived from the Hamiltonian (5.1):

ṗi = − sin(qi)Ci + cos(qi)Si = Mi sin(qi − ϕi) , (5.3)

q̇i = pi , (5.4)

where

Ci =
1

Ñ

∑

j 6=i

cos qj
‖i− j‖α , (5.5)

Si =
1

Ñ

∑

j 6=i

sin qj
‖i− j‖α . (5.6)
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Ci and Si identify the two components of a magnetization per site, with modulus
Mi =

√

C2
i + S2

i , and phase ϕi = arctan(Si/Ci). For large N , and assuming
0 < α < 1, we have:

Ñ ≈ 2

1− α
(N/2)1−α . (5.7)

Then we can use (5.7) in equation (5.5) and perform the N → ∞ limit while
introducing the continuous variables x = i/N and y = j/N to arrive at:

C(x) =
1− α

2α

∫ 1/2

−1/2

cos (q(y))

‖x− y‖α dy , (5.8)

where ‖x− y‖ represents the minimal distance on a circle of perimeter one.
In the above equation we can recognize the fractional integral I1−α and conse-
quently write:

C(x) =
1− α

2α
Γ(1− α)I1−α (cos q(x)) . (5.9)

In this large size limit, the α-HMF dynamics implies studying the evolution of
the scalar fields q(x, t) and p(x, t) which are ruled by the fractional (non-local)
partial differential equations:

∂q

∂t
= p(x, t) , (5.10)

∂p

∂t
=

µ

2α
Γ(µ) (− sin(q)Iµ (cos(q)) + cos(q)Iµ (sin q)) , (5.11)

where µ = 1 − α. It has then been shown in [46] that stationary states are
solutions of the following equation:

Dα cos q =
dα cos q

dxα
= 0 , (5.12)

where the operator Dα stands for the fractional derivative, and that this property
is shared by non stationary QSS’s. All these results were obtained for the model
in its long-range version, meaning when α is smaller than one.

Considering situations where 1 < α < 2 implies studying short range models.
In fact Ñ is finite so there is no need of system size renormalization of the coupling
constant for α > 1. However something is peculiar about the α-HMF lattice
model. The force F acting between particles is obtained from the gradient of the
interaction potential:

F = −∇V (r) . (5.13)

When considering the dynamics of a long-range system, we would expect the
force between particles to be ruled by a 1/rβ decay with β = α + 1. In the case
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of the α-HMF model, the distance is defined over a fixed lattice and does not
come into play in the above derivation. In this latter case the decay exponent is
unchanged (β = α).

Moreover given the particular importance of the microscopic dynamics and
possible ergodicity breaking, it is legitimate to ask whether the long-range nature
of a system is ruled by the dynamics, rather then by the energy scaling. This
would then imply that a system is long-ranged if β < d+1, which for the α-HMF,
corresponds to requiring α < 2. Past investigations targeted to the α-HMF model
have assumed α < 1, and cannot be simply extended to 1 < α < 2. A first
numerical analysis is therefore necessary.

5.2 Equilibrium phase transitions in the short-

range regime

One peculiarity of one dimensional systems is that they should not admit phase
transitions, if the interaction is short ranged. We do know from literature that
the α-HMF is equivalent to the HMF model in the long-range regime (α < 1)
[99, 9], so one recovers the equilibrium phase transition in figure (2.2) with a
transition energy density ǫc = 0.75.
In this section we perform a first numerical study of the magnetization versus
density of energy for α = 1.5. Discarding any possible metastable regime, to be
assimilable to the aforementioned QSS, we shall hence obtain a description of
the relation M(ǫ) for the system at equilibrium. The numerical integration of
the microscopic dynamics is performed using a simplectic scheme (optimal fifth
order see [80]), the time step used is δt = 0.05, and the initial conditions are
Gaussian distributed.

As can be seen in figure (5.1) an equilibrium phase transition is displayed at
a transition point ǫc ≈ 0.6 which is then different from previous value obtained
in the HMF limit. Preliminary results show that the critical point depends on
the value of α and approaches ǫ = 0 for α = 2.

The existence of a phase transition beyond the “classical” long-range thresh-
old in one dimension, already noticed for the Ising model by Dyson in the sixties,
seems to suggest that the system maintains a long-range nature when the po-
tential of the interaction is short-ranged. Recent results [100], seem to point out
that the scaling of the force must be taken into account. However an important
feature to assert this new definition would be to find as well quasi-stationary
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Figure 5.1: Magnetization vs energy, for α = 1.5. A phase transition is displayed with ǫc ≈ 0.6. The
transition point seem to be different from the long-range one which is ǫc = 0.75, but the qualitative behaviour
of curve is the same.

states in this region of α’s.

5.3 QSS lifetime

As we already observed in chapter 1.4, in long-range interacting systems, the
limit N → ∞ and t → ∞ may not commute, so the thermodynamic equilibrium
is not unequivocally defined and one may end up in different states depending on
the order in which the previous limits are taken. The divergence of the lifetime τ
clearly indicates that QSS become indeed equilibrium states (that in general do
not obey Boltzmann’s statistics [9]) in the infinite N limit.

In this section we focus on studying how the QSS lifetime scales with the
exponent α, which, we recall, controls the decay of the potential.
First we study the behaviour of the lifetime τ around the crucial value α = 1 to
better understand the transition between a long-range system and a supposedly
short range one. As mentioned above in the case of α-HMF there are convincing
arguments that the requirement for the emergence of long-range behavior could
be relaxed, and we can expect some long-range features to survive above α = 1.

We considered the initial condition already used in [46] which resulted in a
magnetized QSS above the critical energy. We consider all the particles initially
placed in a single point qi = 0, while the momenta pi’s are Gaussian. To char-
acterize the QSS lifetime we monitor the behaviour of the global macroscopic
parameter magnetization M = |∑j e

iqj |, in analogy with what already done for
the case of the HMF. In figure (5.2) we show the behaviour of M as a function
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Figure 5.2: Magnetization curve vs time for α = 1.0, N = 218 and ǫ = 1.2. During the QSS the
magnetization is oscillating for a time τ1, then it relaxes down to its equilibrium value in a time τ2.
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Figure 5.3: τ2
τ1

for different values of N , α = 1 and ǫ = 0.6. The two times are approximately

proportional, so τ1 returns a good approximation for τ2. This proportionality is respected for all α values
examined in this work, even if the proportionality constant may vary.

of time, for α = 1, which is qualitatively representative for the all the values of
α considered in this work.
A first transition at t = τ1 can be identified. Before this threshold in time the
system oscillates around an almost constant magnetization value. Then the sys-
tem starts to relax towards the equilibrium value M = 0. A second transition at
t = τ2 is as well identified: it corresponds to the time at which the system finally
reaches its equilibrium state. As it can be seen in figure (5.3), we find that these
two values are almost linearly proportional for each α-value that we took into
consideration. Hence, we shall refer to the first lifetime τ1 as the lifetime of the
QSS, since it is an order of magnitude faster to compute it and we are interested
only in the qualitative form of the scaling law for the lifetimes.
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Figure 5.4: Poincarè sections for α = 1, ǫ = 1.2 and N = 220. Left panel refers to the QSS, while right
panel represent intermediate relaxation between the QSS and the equilibrium state (τ1 < t < τ2). It can
be easily seen that the second small island disappears during the relaxation and the phase space becomes
symmetric in q, thus ending the oscillations of the magnetization.

The difference of the two dynamical regimes defined by the above thresholds
are better understood when looking at the Poincarè section captured in each of
this regimes, as displayed in figure (5.4). At first the system forms two distinct
islands in the phase space, which start moving around and create the oscillations
in the magnetization that characterize the QSS. Then, one of the islands disap-
pears during the relaxation period, while the phase space becomes symmetric in
q, thus causing the end of the oscillations.

Now we turn to analysing the lifetime of the QSS versus the size of the system,
close to the classical long-range threshold α = 1. If the system is long-range, it
should diverge with N . The cases α = 0.9, α = 1 are displayed in figure (5.5),
while in figure (5.6) we show the case α = 1.1, beyond the long-range threshold.
We can see that around α = 1 the scaling of τ with N is well interpolated by a
logarithmic curve, meaning that the QSS survives at least until α = 1 and maybe
beyond. In fact a logarithmic scaling appears to be valid also for α = 1.1.
However, when looking at the data for larger value of α, namely α = 1.5 the
scaling of τ appears to saturate as displayed in figure (5.7): the magnetization
curves obtained for α = 1.5 appear to be all identical, no matter the size of the
system. At this value of α, a phase exists which exhibits an oscillation in M ,
typical of the QSS. Now, the associated lifetime seems to be independent of N
and finite, so the system will eventually reach the equilibrium state in a long
enough time.

Conversely we may expect to observe a saturation in τ1 also for α = 1.1. We
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Figure 5.5: Right: scaling of τ1 with N for α = 0.9 and ǫ = 1.2. Left: scaling of τ1 and τ2 with N for
α = 1.0 and ǫ = 1.2.
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Figure 5.7: Magnetization curve vs time for α = 1.5, ǫ = 1.0 and increasing N values. The initial
oscillation lifetime τ1 is independent of N and the system relaxes to equilibrium in a time which should be
constant in the continuous limit.

cannot in fact exclude that our observation reflects the limited (although large)
size of the numerical simulations, due to computing time restrictions. We are
therefore brought to conclude that, right now, we do not have enough proofs in
support of a transition, that can presumably occur between 1.1 < α < 1.5, where
the system can become suddenly short-range dropping the logarithmic growth of
τ1(N). It may be possible that even for α = 1.1 the scaling time could saturate
at some larger value of N > 220. Preliminary results show that this saturation
becomes quite fast for α ∼ 1.2, 1.3 where even for lower values of N , it may still
be possible to observe a scaling which is sub-logarithmic. Nevertheless, given
the large size that would eventually reproduce the saturation, we may expect
that QSS could be observable for a time which, from the “experimental” point of
view, could be long enough to be relevant only for systems with an astronomical
scale of constituents.

However even if the QSS lifetime seems to saturate at some point, so that
the system dynamics change into a short range one, the phase transition from
a magnetized to an homogeneous state, typical of the long-range regime, is still
present (figure 5.1).
The evidences collected so far seem to suggest that the dynamical definition of
long-range interaction, based on the decay with distance of the force, may be
relevant. A similar conclusion was also independently proposed in a recent work
by A. Gabrielli et al. [100].
The presence of QSS-like metastable behaviour (even with a finite lifetime) or
one-dimensional phase transition for a wider range of potentials, encourages us
to search for more complex and realistic models. The aim is to eventually be able
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to interpret the out-of-equilibrium behaviour of real long-range physical systems
in the framework of the rigorous theoretical results obtained in the context of
mean-field systems.



Chapter 6

Self organization in a model of
long-range rotators

Many long-range (LR) models exist in literature, that made it possible to eluci-
date several key aspects of both equilibrium and out-of-equilibrium dynamics.
Still, due to their inherent complexity and number of degrees of freedom involved,
the study of these phenomena is nowadays limited to toy-model systems and
paradigmatic case studies, which cannot reproduce the whole complex behaviour
that we observe in real experimental settings, for example the emergence of
self-organized LR structures.

Typically many-body systems experiencing long-range forces, exhibit many
peculiar self-organization properties displaying for instance the emergence of
collective dynamics. On the other hand, the instabilities generated by random
thermal motion tend to destroy the collective structures. The force of the
interaction is typically the key factor that allows one to observe such behaviours.
There is currently a great effort targeted to understanding the origin and
robustness of such structures. This activity is crucial to eventually clarify the
underlying dynamics of galaxy formations and plasma collective properties,
among other things.
In past years there were many experimental confirmations of the emergence
of crystal-like ordered structures in many long-range physical systems, as for
example dusty charged plasmas [101, 102], Coulomb-interacting cold atoms
[103] or Bose-Einstein condensates [104]. The phenomenology of these latter
states is not clearly understood: there are experiments that seems to suggest
the presence of an intermediate phase during the melting of the solid structure,
which displays additional ordering at different scales [101]. In presence of
a long-range interaction, the interplay between potential and kinetic energy
terms give rise to correlations that do not decay rapidly with distance. This
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latter effect may eventually translates into the emergence of complex ther-
modynamic transitions and peculiar symmetries. Long-range thermodynamics
may prove the correct framework in which to interpret such debated observations.

The main problem that we encounter, while trying to model complex spatial
phenomena using the long-range models that are made available in literature, is
that their phase space presents a relatively modest degree of complexity. This
latter feature is of course welcomed in order to allow one to find exact analytical
solutions, as it is the case for the HMF model. However such simplifications
do not allow for the formation of complex structures with extended spatial
symmetries. For instance in the HMF the spatial extension of the phase space
is limited in size, each coordinate being mapped onto the circle θ ∈ [0, 2π[. The
notion of interparticles’ distance is not explicitly accounted for.
Other long-range solvable systems, albeit spatially extended, may lack of transla-
tional invariance, like the φ4 model [9], or encode for a term defined on a peculiar
lattice metric, see for example the discussion in the previous chapter devoted to
α-HMF model. This latter has a predetermined structure that is embedded in
the model itself, and which reflects in the observed structures as a natural imprint.

In order to describe the behaviour of crystal-like long-range structures, we
will introduce and characterize in this chapter a more complex model, inspired
to the α-HMF and to the paradigmatic HMF model. Such system was first
proposed in [105] and was never extensively studied in the literature.
We will show that the system under scrutiny reproduces the same equilibrium
thermodynamic curves and phase transitions as observed for the HMF, for a
wide range of parameters. Under few assumptions we will prove analytically
that in the thermodynamic limit the models can be considered equivalent. The
dynamics is however different, as we shall discuss in the following.
In section 6.1 we will introduce the new rotators model, obtain its governing
equations and highlight its basic features.
In section 6.2 we will set down to study the dynamic features of the model
at equilibrium, showing the emergence of self-organized crystal phases, which
eventually mutate into disordered gaseous phases at high energies. This extended
model enables one to observe a new self-organized equilibrium state, which is
intermediate between a crystal phase and a gaseous phase. This newly observed
state is identified as a disordered soft crystal.
In section 6.3 we will derive an equilibrium distribution function for the model
being examined and discuss the limit of its applicability due to finite-size
corrections.
In section 6.4 we will show that, taking advantage of the strong properties of
symmetry of the above distribution, we can formally reduce the rotator model
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to the HMF and α-HMF in the infinite size limit.
Finally, in section 6.5 we will describe the phase transition between the crystal
ferromagnetic phase and the homogeneous gaseous phase, which is found to be
equivalent to the HMF equilibrium transition for a wide range of parameters.

6.1 An extended model of rotators

We introduce a 1-D Hamiltonian model describing N rotators that interact with
a cosine-like potential similar to the HMF. The interaction is however scaled by
a factor d−α, d being a measure of the interparticle distance and α an appropri-
ate positive exponent that will play the role of an external parameter. Notice
that d is a continuous parameter, that depends on the dynamical state of the
system rather than on the initial lattice ordering of the particles. This marks a
fundamental distinction with respect to the α-HMF case study discussed in the
previous chapter 5.
The model is defined in a 1-dimensional space of arbitrary length L, with an
average particle density ρ0 = N/L. In this extended phase space we are not a
priori forced to choose a particular metric or boundary condition. In this work,
however, we will always consider periodic boundary conditions, in order to even-
tually recover the HMF setting in the limit α = 0. Then we will consistently
define the distance between two particles of position q and q′ as

d = min{|q − q′|, L− |q − q′|} := ‖q − q′‖ . (6.1)

With the previous conditions, by denoting with pi the canonical momentum of
the particle with position qi, the Hamiltonian equation describing the system can
be written in the following way:

H =
N
∑

i=1

p2i
2

+ A(ρ0, L)
N
∑

i,j=1

1− cos(qi − qj)

||qi − qj||α
. (6.2)

When 0 ≤ α < 1 the system is formally a long-range interacting one.
We can use the α parameter to tune the strength of the long-range effects. Notice
that in the limit qi → qj the potential term goes to zero with continuity, and
the whole Hamiltonian is a C1 function. This latter property means that the
potential does not satisfy the Braun-Hepp theorem, as stated in chapter 3.1. As
a consequence the system dynamics is not necessarily described by the Vlasov
equation in the limit N → ∞. This observation marks an important distinction
with respect to both HMF and α-HMF models.
A(ρ0, L) is a constant introduced to ensure extesivity, obeying Kac prescription.
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Its value is obtained by requiring that the energy density ǫ does not depend on
N . It is difficult to compute the analytical integral of the potential in equation
(6.2), but we can estimate the scaling of ǫ as follows:

ǫ ∼ Tkin + lim
δ→0

∫ L/2

δ

ρ0
2A

rα
dr =

2ρ0A

(1− α)
(
L

2
)1−α . (6.3)

In order to make ǫ independent on N , we set:

A =
(1− α)

N
(
L

2
)α . (6.4)

We then checked through numerical simulations that the latter choice correctly
makes the potential extensive up to a precision in energy density of order 10−5.
In the HMF limit, α = 0, we have A = 1/N , and so recover the correct HMF
scaling.
For simplicity, we will consider L as an integer multiple of 2π, L = 2πl, so we
will also avoid any finite-size effect due to non periodicity of phase space. It
can be argued that this effect becomes eventually negligible in the limit of large L.

Figure 6.1: Phase space portrait in the case of N = 2, l = 10 and α = 0.5. The different curves are
obtained for different energies: blue ones represent bounded solutions while red ones represent free particle
solutions for high energy.

From the previous Hamiltonian (6.2) we derive the following equations of
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motion:

q̇i = p , (6.5)

ṗi = 2A
N
∑

j=1

{−sin(qi)
cos(qj)

||qi − qj||α
+ cos(qi)

sin(qj)

||qi − qj||α
+

+ α
(qi − qj)(1− cos(qi − qj))

||qi − qj||α+2
} . (6.6)

The above equation closely resembles the one obtained for the α-HMF model
previously studied (5.3), except for the presence of the third additional coupling
term that complicates the dynamics and prevents a simple mean-field description.
For N = 2 the equation of motion can be easily decoupled and the system
becomes integrable. Phase space portrait can be computed analytically (figure
6.1), showing a striking similarities with the pendulum portraits.

6.2 Equilibrium dynamics

In this chapter we will focus on the study of the equilibrium dynamic and
thermodynamic properties of the previously introduced system. We deliberately
ignore possible quasi-stationary-states (QSSs). To this end we considered in our
simulations a sufficiently long transient to make sure that the system has relaxed
to the deputed equilibrium.

To help characterizing the system it is useful to define a bunching param-
eter (magnetization) analogous to the HMF case ~M = 1

N

∑

i(cos(qi), sin(qi)).
This global parameter serves as an indicator of the degree of organization present
in the phase space. In fact, one observes M = || ~M || = 1 if all particles are placed
in the local extrema of the potential, where (qi − qj) = kπ, while M ∼ 0 if the
particles are spread along the space.

N -body simulations are run with a fifth-order Mclachlan-Atela symplectic
algorithm [80], with a timestep of δt = 0.05. The presence of the distance term
in the equation significantly increases the computation time with respect to the
HMF case study, or even compared to the α-HMF, where the fixed condition of
the lattice sites allows for a simplified approach and makes the computational
effort scale with N logN [105]. Due to the enhanced computational costs we
consider systems of sizes smaller than N = 103.
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All simulations presented in this thesis are run with an initial distribution
which is Gaussian over momenta p with total momentum P = 0, and 2π-
symmetric, uniformly distributed, over positions q. However, we numerically
tested other initial conditions and we observed convergence to the same equilib-
rium state in most cases. Choosing a function which is inhomogeneously peaked
over few positions q makes the time necessary to attain the equilibrium much
longer than our computational capability, for large N . However, we observe
a convergence to the same equilibrium, independently of the selected initial
condition. We shall therefore assume in this work that the system has only one
thermodynamic equilibrium state.
Starting with a 2π-periodic initial distribution, following the modulation induced
by the cosine term of the potential, allows us to greatly shorten the time that is
needed to converge to equilibrium. t ∼ 104 has proven to be an adequate choice
in most of the cases. The magnetization M settles down to an asymptotic state,
as shown in figure (6.2), which is kept unchanged over time.
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Figure 6.2: Convergence in time of the total magnetization M toward its equilibrium value. Results
were obtained through an N -body simulation with N = 100, l = 100, α = 0.5 and ǫ = 0.45. The initial
distribution is 2π-periodic and Gaussian over the local minima of the potential (q = 2kπ).

Let us start by simply looking at the equilibrium trajectories q(t) obtained
through N -body simulations in figure (6.3): this is the easiest and quickest way to
discover that the system presents self-organization. Three different equilibrium
dynamical states are in particular identified.
At very low energy densities ǫ < ǫc, the system forms a regular crystal phase in
which particles are bounded to their lattice wells corresponding to the symmetries
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of the potential.
The solid eventually melts at higher energies ǫc < ǫ < ǫm and enters a partially
disordered phase: the particles are still bound for finite times, thus preserving a
sort of soft crystal ordering and a finite positive magnetization.
At high energy densities ǫ > ǫm the system looses this partial ordering and
displays a dynamical phase similar to a gaseous state which is homogeneous in
space, with no bunching (M ≃ 0).

Figure 6.3: Position of particles in the q-space versus time. The trajectory of few particles is depicted.
A visual inspection clearly show that three different dynamical regimes occur. The simulations are obtained
for N = 500, l = N and α = 0.5. A numerical estimation of the thresholds in energy separating different
phases gives ǫc ≤ 0.2 and ǫm ≃ 0.75.

The critical threshold ǫm, which separates between magnetized ferromagnetic
(M > 0) and homogeneous paramagnetic (M = 0) phases presents dependency on
both α and L. We were not able to observe a dependency on the average density
ρ0, as we will show in section 6.3. According to the numerical simulations, the
first energy threshold ǫc is estimated ǫc . 0.3 for all values of α < 1. In this work
we did not investigate in detail the scaling of ǫc versus the latter parameter, due to
the computational effort that would be eventually needed to achieve a satisfying
precision. For α = 0.5 the upper bound for the value of ǫc is numerically estimated
to be 0.2.

The lattice ordering becomes evident if we analyse the spatial Fourier power
spectrum of the distributions of inter-particle distances (6.1) C(d), in figure (6.4).
We formally define C(d) as:

C(d) =
∫ ∫

ρ(q + d)ρ(q) dq , (6.7)



90 6 Self organization in a model of long-range rotators

✶�
✷

✶�
✸

✶�
✹

✶�
✺

✶�
✸

✶�
✹

✶�
✺

lo
g(
S
(k
))

� ✶ ✁ ✂ ✄ ☎ ✻

✶�
✸

❦

❡
❝
✥ ❡ ✥ ❡

♠

❡ ✥ ❡
❝

❡ ✆ ❡
♠

Figure 6.4: S(k) is the average over time of the Fourier power spectrum obtained from the distance
distribution C(d). Results are displayed for three different energy density regimes. For ǫ < ǫc there is a clear
crystal structure, with some order preserved in the range ǫc < ǫ < ǫm and an almost disordered state for
ǫ > ǫm. The data are obtained with N = 500, l = N and α = 0.5, discarding an initial transient time of
order t ∼ 103.

where ρ(·) represents the probability distribution of particles in space. It is easy
to estimate the latter two quantities from numerical simulations. Notice that
C(d) has the advantage of being translational invariant by construction.
The clear peaks in the wave number k for ǫ < ǫc shows an ordering with a
wavelength λ = 2π, which corresponds to the periodicity induced by the cosine
term of the potential.
This very same ordering is still present in the energy range ǫc < ǫ < ǫm, even
if some of the harmonics are destroyed by the emerging noise. This means that
the particles distribution still displays a uniform crystal ordering, on the same
wavelength as observed in the energy range ǫ < ǫc.
The order eventually disappears in the high energy regime ǫ > ǫm. The global
magnetization is in fact zero, and this corresponds to an absence of structures
in the phase space and a flat noisy Fourier power spectrum. The small residual
peak, that we observe in this energy regime, can be interpreted as a finite size
effect around the transition ǫm and disappears at higher energies.

The disordered nature of the dynamics in the intermediate phase can be vi-
sually appreciated in figure (6.5), which displays the phase space portraits of the
particles for ǫ = 0.5, α = 0.5, l = 100 and ρ0 =

1
2π
.

For any finite time the particles live in small regions of size comparable to the
dimension of the lattice, as observed in the crystal phase. They can occasion-
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Figure 6.5: This is the phase space portrait of particle trajectories obtained with ǫ = 0.5, α = 0.5, l = 100
and ρ0 = 1

2π
. It corresponds to the intermediate phase between the regular crystal and the gas phase.

Different colors correspond to different particles. We can visually identify the soft lattice regions that
correspond to disordered crystal wells. In figure (a) we represent the whole phase space, while in figure (b)
we show few tracer particles for a finite time T ∼ 1000.

ally escape from these clusters and move around for a while before falling again
in local potential well. The corresponding phase is assimilated to a sort of soft
crystal.

In figure (6.6) we show the mean period τi of each particle qi computed along
the time evolution. This was obtained by recording the time interval between an
inversion in the sign of the momenta pi. We observe that moving from ǫc to the
transition energy ǫm the mean period increases, consistently with the increase in
the free path of each trajectory. By monitoring the behaviour of the standard
deviation of the value τi, we notice that the stability of these periods drops while
approaching the gaseous phase. For any finite time it is still possible to observe
free particles which corresponds to a diverging value of τi in figure (6.6-c). The
number of free particles was observed to decrease with time with a law 1/t. This
suggests that the phenomenon originates from a finite-size effect. A collapse in a
trapping region is hence expected to occur the thermodynamic limit. However,
it takes a long time to observe convergence close to a phase transition, which
explains while we still observe free particles after a time t = 104 for ǫ = 0.65.

The above evidences strengthen our interpretation of the phase ǫc < ǫ < ǫm
as a generalized disordered lattice phase, which is generated by the collective
distribution of the particles.
The presence of this disordered crystal with soft lattice wells emerges from the
long-range nature of the system and was never observed in simplified long-range
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Figure 6.6: Mean period of particles of index i computed as the time interval between inversions in the
sign of momenta. These data were obtained from N -body simulations performed with l = 100, ρ0 = 1/2π
and α = 0.5. Figure (a) corresponds to ǫ = 0.3, figure (b) to ǫ = 0.45 and figure (c) to ǫ = 0.65. In last
picture, two free particles can be identified (which correspond to the peaks at i = 69 and i = 91), which
never exhibit a change of sign in their momenta during the total time t = 104 of the evolution. The error
bars correspond to the standard deviation computed over the time evolution. Such values reflect the relative
stability of the trapping regions.

models. This can be seen as an extension of crystal lattices to the case of purely
long-range interacting systems.

6.3 Equilibrium distribution in the thermody-

namic limit

With respect to the HMF and α-HMF models, we have one more degree of
freedom in choosing our thermodynamic limit. The system now depends on both
the length L and the average particle density ρ0 = N

L
. When performing the

limit N → ∞ we can consider ρ0 → ∞ and fixed L, or the limit L → ∞ with
constant ρ0. We can manipulate the rescaling constant A in order to make the
system explicitly dependant on respectively ρ0 or L.
The infinite density limit is performed for the case of the HMF and α-HMF,
where the volume of the accessible space is limited to the bounded region [0, 2π[.
Let us emphasize that the latter limit is a priori different from the typical
thermodynamic one, usually investigated in statistical mechanics, which aims
to consider an infinite volume. However, both limits are legitimate and have
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potential physical interest.

In the infinite density case, it is easy to compute and obtain the corresponding
Hamiltonian equation for single particle, by simply performing the limit N → ∞
with L constant, since we can integrate over a bounded region in space:

H(q, p) =
p2

2
+

1− α

2πL
(
L

2
)α
∫

L

1− cos(q − q′)

||q − q′||α dq′ . (6.8)

In the case of constant density and L → ∞ it is not so straightforward to
recover analytically an analogous Hamiltonian, and so it is not rigorously
proven that such a limit actually exists. The problem lies in the fact that the
potential is modulated by the cosine with a periodicity of 2π, but it is not
periodic. So we are not allowed to perform trivial simplifications without any
knowledge on the form of the distribution function. Still we can solve the system
for finite length, and observe the scaling of thermodynamic quantities for L → ∞.

Let us consider q ∈ [0, 2πl], ρ0 = N
2πl

and perform the limit N → ∞. We
will restrict for now to the infinite density case and we will keep l constant. Let
us call f(q, p, t) our single particle distribution function, such as f(q, p, t)dqdp is
the fraction of particles in the interval [q.q + dq][p, p+ dp] at time t. The system
conserves the energy density ǫ[f ]

ǫ[f ] =

∫

Γ

f(q, p, t)H(q, p)dqdp , (6.9)

where H(q, p) is obtained from equation (6.8). Also the total momentum P [f ] is
conserved

P [f ] =

∫

Γ

f(q, p, t)pdqdp , (6.10)

together with normalization condition

G[f ] =
∫

Γ

f(q, p, t)dqdp = 1 , (6.11)

where Γ represents the whole phase space domain.
We assume the entropy S has the following functional form which is strictly
Boltzmannian:

S[f ] = −
∫

Γ

f(q, p, t) log(f(q, p, t))dqdp . (6.12)

To obtain the equilibrium function f(q, p) which maximizes the entropy S[f ]
with the constrains obtained from the conserved quantities, we have to solve this
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maximization problem:

max
f

{S[f ]|
∫

Γ

f(q, p, t)dqdp = 1, ǫ[f ] = E,P [f ] = P} . (6.13)

Requiring stationarity of the entropy functional, the latter problem translates
into solving the following equation:

δS[f ] + βδǫ[f ] + γδP [f ] + µδG[f ] = 0 , (6.14)

where β, γ and µ are Lagrange multipliers. A straightforward derivation of
equations (6.12), (6.9), (6.10) and (6.11) yields the following:

log(f(q, p)) = −β(
p2

2
+ V (q))− γp− µ− 1 , (6.15)

where V (q) reads:

V (q) =

∫ ∫

f(q′, p)
1− α

2πL
(
L

2
)α
1− cos(q − q′)

||q − q′||α dpdq′ . (6.16)

Since we initially chose P [f ] = 0, the Lagrange multiplier γ vanishes from
equation (6.15), yielding to the following equilibrium distribution function:

f(q, p) = De−β( p
2

2
+V (q)) , (6.17)

where D = e−1−µ. This is the standard Maxwellian distribution function, where
β = 1/T is the inverse temperature and µ is the chemical potential. In analogy
with what we observed in the case of the HMF solution (3.41), we have to deal
with an implicit system, since V (q) depends on f(q, p). To solve the problem we
use an iterative numerical scheme explained in [106], which, with respect to the
standard Newton technique, has the advantage of ensuring that entropy increases
toward the maximum value at each iteration step.

From equation (6.17) we define the equilibrium density function ρ(q):

ρ(q) =

∫

f(q, p)dp = D

√

2π

β
e−βV (q) . (6.18)

A numerical computation of the above function, represented in figure (6.7), shows
a great degree of homogeneity and symmetry that is consistent with the finite-size
dynamical phases observed in the preceding chapter.
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Figure 6.7: Analytically predicted equilibrium distribution densities ρ(q) for different dynamical regimes
and α = 0.5. Here we plot a small portion of the q axis with 5 periods for a distribution function computed
for l = 100 periods.
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Figure 6.8: Analytical prediction for the density function ρ(q) (straight line) compared to the numerical
data coming from N -body simulations performed with L = 100, N = 100, α = 0.5 and different energy
densities ǫ. Left: direct comparison between the results showing the first five periods of the lattice. Right:
comparison with q coordinates rescaled in the mod(2π) representation. Results correspond to a single point
in time.

The comparison between the theoretically predicted ρ(q) and the results of
numerical simulations can be easily performed for ǫ < ǫc (figure 6.8), where
particles are fixed in their lattice matrix, and in the case ǫ > ǫm, where they
result homogeneously distributed. In both cases we observe a good matching
between theory and simulations, even with a low number of particles (N = 100)
and low density (ρ0 =

1
2π
).

In the intermediate phase the averaging effect due to the particles chang-
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Figure 6.9: Analytical prediction for the distance density function C(d) (straight line) compared to the
numerical data coming from N -body simulations performed with L = 500, N = 500, α = 0.5 and different
energy densities ǫ. The results are averaged over a time ∆t = 5 · 102 and represented in mod(2π) for the
coordinates q.

ing frequently the bunching region makes the direct comparison more difficult,
since one have to cope with the numerical artefacts coming from the lack of local
translational invariance at finite times. In figure (6.9) we confront the analytical
predictions for the distance distribution (6.7). This latter is naturally transla-
tional invariant and allows for a straightforward comparison avoiding the above
problems. The agreement is almost perfect for all the energy regimes.

Let us note that the analytical results so far obtained are relative to the infinite
density thermodynamic limit with L constant. In this context the results shown
above are particularly interesting since we are comparing the theoretical limit
ρ0 → ∞ to numerical simulations performed at low densities ρ0 = 1

2π
, meaning

that we have on average at least one particle for each period of the cosine term
of the potential.
Knowing the distribution function we can compute the two components of the
total magnetization vector ~M :

Mx =

∫

Γ

ρ(q) cos(q)dq ,

My =

∫

Γ

ρ(q) sin(q)dq ,

(6.19)

and the modulus M =
√

M2
x +M2

y . The value of M depends only on f .
We can observe how the predicted value for the above quantity obtained from
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Figure 6.10: Scaling of predicted value for the total magnetization M with respect to the average
density ρ0. Here α = 0.5, l = 10 and ǫ = 0.5. The dots correspond to the value obtained from N -body
simulations, while the dotted line corresponds to the predicted analytical value.

N -body simulations scales with increasing ρ0, while keeping L fixed, and compare
it to the predicted analytical value.
In figure (6.10) we can see that there seems to be almost no dependency of M on
ρ0, and the numerical N -body value is already converged to the analytical one
for ρ0 =

1
2π
.

Since the distribution function seems not to depend on ρ0, we can try to ex-
plore the other thermodynamic limit with L → ∞. In figure (6.11) we compare
the value of the equilibrium magnetization as obtained from the analytical dis-
tribution function with infinite ρ0 and increasing L, to the one obtained from the
simulations with ρ0 =

1
2π

and same L.
We are quite surprised to observe that the two values converge in the limit of
large L. This means that there seems to be a proper L → ∞, ρ0 = constant
thermodynamic limit and that this shares the same homogeneity and symmetry
properties as the infinite density one.

Thanks to the knowledge of the spatial equilibrium distribution ρ(q), we can
try to investigate the presence of the previously observed transition between
a regular crystal phase and a soft crystal. Numerical simulations gave us an
estimate for the energy density threshold of ǫc ≤ 0.2 for α = 0.5. In presence
of trapping regions we expect that the distribution ρ(q) will take a small
value between the lattice periodicities, approaching zero at the regular crystal
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Figure 6.12: Scaling of the ratio
max(ρ(q))
min(ρ(q))

with respect to energy density. The values are computed

for L = 500 and α = 0.5. There seems to be a threshold in energy ǫC ≃ 0.075 after which the equilibrium
distribution traps the particles in the lattice sites, in agreement with numerical simulations. In the inset,
we report the scaling of min(ρ(q)) in loglog scale.

transition threshold.
In figure (6.12) we observe that below an energy density value ǫ = 0.075, the
ratio max(ρ(q))/min(ρ(q)) rapidly diverges, while min(ρ(q)) approaches zero.
Since ρ(q) is periodic (figure 6.8), the previous result seems to strengthen the
evidences of the transition coming from the N -body simulations, confirming



6.4 α-HMF limit 99

the substantial difference between the distinct dynamical phases that we have
identified.
The difference between the theoretical and numerical estimate, could be due to
finite size effects. Below ǫ = 0.2, the value of min(ρ(q)) becomes very small, so
we do expect that the mean escape time from the potential well may become
quickly greater than our maximum simulation time.

6.4 α-HMF limit

The observed crystal order may be reminiscent of the α-HMF phase structure,
even though we must stress that in our case the system self-organizes without the
need of imposing a fixed lattice.
To understand better the similarities between the two models we must make some
assumptions, based on our theoretical knowledge of the equilibrium distribution
function. Let us consider the sum of the type

Ci = A(ρ0, L)
∑

j 6=i

cos(qj)

‖qi − qj‖α
, (6.20)

which appear in the equation of motion (6.6). Define qj = 2πhj + εj, with
hj ∈ {0, · · · , n} playing the role of a lattice index and 0 < ǫj < 2π. In the
following we will consider the density ρ0 = N/L as constant. Then we can
simplify the previous term as:

Ci ∼
1− α

2αρ0

∑

j 6=i

1

L

cos(εj)
∥

∥

∥

2πhi

L
− 2πhj

L
+ (εi − εj)/L

∥

∥

∥

α . (6.21)

If we assume that the equilibrium distribution ρ(ǫ, h) is not peaked over a few
values of the index h, and it is spread enough so to cover the whole length of
the system, in the limit L → ∞ we can ignore the contribution to the potential
coming from particles which are close and have hi = hj. In practice, assuming
hi 6= hj, we can avoid the divergence that arises from the following simplifications:

1
∥

∥

∥

2πhi

L
− 2πhj

L
+ (εi − εj)/L

∥

∥

∥

α ≈ 1
∥

∥

∥

2πhi

L
− 2πhj

L

∥

∥

∥

α − α
(εi − εj)

L
∥

∥

∥

2πhi

L
− 2πhj

L

∥

∥

∥

α+1 . (6.22)

The second term in expression (6.22) vanishes when performing the sum in the
limit L → ∞. Hence, the dependence on ǫi in the distance term disappears,
while the dependence on the index hi is not present in the cosine term.
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This means that, under the previous assumptions, the numerator and denomi-
nator in the expression of Ci become independent, and we fall into a limit which
is very close to the α-HMF case.

If we consider L = N
ρ0
, we obtain:

C̃i = lim
N→∞

Ci ≃ B(ρ0)
N
∑

j=1

Nα−1 cos(ǫj)

‖hi − hj‖α
, (6.23)

where B(ρ0) = 1−α
2α

(2πρ0)
−α. If we assume that the equilibrium distribution

function is homogeneous in the index h and each interval of length 2π, in which
we have divided the system, contains the same number of particles, we can reorder
the previous term by avoiding to sum over each particle with the same index hi

and we obtain:

C̃i = (2πρ0)B(ρ0)
n
∑

j=1

Nα−1 cos(ǫ(y))

‖i− j‖α , (6.24)

which, apart for a constant factor, is exactly the same formula that we obtained
for the α-HMF. Recall in fact that in equation (5.5) we have:

Cα
i =

1− α

2α

N
∑

j=1

Nα−1 cos(ǫ(y))

‖i− j‖α . (6.25)

It is easy to show that

1

N

∑

i

C̃i =
1

N

n
∑

j=1

cos(qj)(2πρ0)B(ρ0)
n
∑

i=1

1

‖i− j‖ ,

=Y (ρ0)
1

N

n
∑

i=1

cos(qj) = Y (ρ0)Mx ,

(6.26)

where Mx is defined as one of the two components of the magnetization vector ~M ,
and Y (ρ0) is a constant coming from the sum. Applying similar considerations
to the second term in equation (6.6) yields:

S̃i = (2πρ0)B(ρ0)
n
∑

j=1

Nα−1 sin(ǫ(y))

‖i− j‖α , (6.27)

and in the end we can recover a simplified mean-field equation of motion which
is analogous to the one obtained for HMF and α-HMF (5.3):

∂pi
∂t

= 2
(

cos(qi)S̃i − sin(qi)C̃i

)

. (6.28)
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Of course this equivalence holds under a strict hypothesis of homogeneity and
symmetry of the distribution function f(q, p) in the limit L → ∞.

In the previous section we pointed out that the symmetry properties of
ρ(q) in the limit ρ0 → ∞, L = cst hold true also in the thermodynamic limit
L → ∞, ρ0 = cst. Under this assumption we do expect to observe a thermody-
namic equivalence between the model (6.2) and the HMF, possibly recovering
the same phase transition as described in figure (2.2).

6.5 Equilibrium phase transition

We proceed to compute the curve for the equilibrium magnetization M(ǫ) for
different values of the scaling exponent α and large enough l = 1000, which
practically sets our computational limit. As depicted in figure (6.13), the
analytical and numerical curves are in almost perfect agreement.
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Figure 6.13: Comparison between the magnetization curves obtained from the analytically predicted
distribution function, and the data recorded via N -body simulations. Here with l = 1000. The N -body data
are obtained as the average over a time window ∆t = 5000, and, as expected, are very noisy next to the
critical transition energy ǫm. The black thick curve represents the HMF equilibrium curve.

As we expected, based on the arguments illustrated in the previous sections,
a second order phase transition between ferromagnetic M > 0 and paramagnetic
M = 0 phases occurs for a critical energy density ǫm. This latter is the energy
which yields to the disappearance of the self organized order. The energy thresh-
old ǫc that follows the dynamical study and which respectively separates regular
and disordered soft crystal states, does not leave a trace in the magnetization
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curves.
As anticipated on pure speculative grounds in section (6.4), we obtain in fig-
ure (6.14) the phase transition curve of the HMF with the same critical energy
ǫ = 0.75 for a wide range of parameters, with an almost perfect agreement for
α < 0.6. This result was first numerically observed in [105], for the single case
α = 0.5.
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Figure 6.14: In figure we represent the transition curves M versus ǫ for different values of the scaling
exponent α. We observe a second order phase transition with a critical exponent 1

2
that reproduces almost

perfectly the HMF curve (thick black) for α < 0.6. For increasing values of α the transition moves towards
lower energy densities. The values are obtained from the analytical distribution obtained for l = 1000.
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Figure 6.15: Temperature T as a function of the energy density ǫ. The critical energy ǫm corresponds to
a second order phase transition, while the first energy threshold ǫc which separates regular and soft crystal
phases seems not associated to a thermodynamic phase transition.

We can observe a signature of the above phase transition also by looking
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at the temperature curve T (ǫ) in figure (6.15). Again the result points to the
quantitative analogy with the HMF transition curve [9]. Convergence problems
in the numerical algorithm prevented us to completely explore the energy range
close to the predicted threshold ǫc, between regular and soft crystal. Even if such
numerical problems may eventually signal the presence of a phase transition,
we were not able to pinpoint any discernible discontinuity in the derivatives of
the temperature curve. As now, we cannot make a definitive assessment on the
nature of the latter transition.
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Figure 6.16: Scaling of critical energy ǫm with respect to α. ǫm is 0.75 (i.e. the HMF transition value)
for α < 0.6. The data were obtained from the analytical distribution function computed for l = 1000. The
fit is obtained by adjusting one free parameter, the exponent of α (see legend).

For larger values of α we observe that the critical transition energy ǫm
gradually moves to zero, as we can easily appreciate in figure (6.16). The phase
transition disappears for α ≃ 1. This is somehow expected, since for α ≥ 1 the
system is no longer of the long-range type and so it cannot undergo a 1-D phase
transition. This is at variance with what we observed in chapter 5.2 in the case
of α-HMF, where the “artificial” nature of the distance term in the potential,
independent on the actual position of the particles, makes it apparently possible
to observe 1-D phase transitions for α ≥ 1.

All the curves shown in figure (6.14) were obtained for l = 1000, which, as
previously mentioned, is the maximum value attainable with our computing
facilities. To be sure of their convergence to the asymptotic shape in the
limit L → ∞, we can observe the scaling of two test curves ǫm(L) reported
in figure (6.17), for different values of α. As we can see, the convergence of
the critical threshold is slower for larger values of α, and behaves like a power
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Figure 6.17: Convergence of critical energy ǫm with increasing L to an asymptotic value for different
values of α. Data obtained from analytically predicted distribution function. The size of the dots corresponds
to our precision in identifying the transition, which depends only on the energy resolution of the data.

law ǫm = aL−b + 0.75, with parameter b decreasing with α. This suggests that
we can be reasonably sure that the curves obtained for α < 0.6 are already
converged to their asymptotic limit. However, the scaling law for ǫm(L) for
α = 0.8, that is inferred from a simple fit of the data, indicates that the
transition threshold will move also in this case toward the asymptotic value
ǫm = 0.75. This latter property seems to be true for every value of α ≤ 0.9
that we analysed. We did not set to study in detail the range 0.9 ≤ α < 1
since there are occasional convergence problems in our numerical algorithm,
which require additional computation effort. However, the preliminary data are
compatible with the above scaling. If the form of the scaling law that we obtained
is confirmed by an analysis performed for larger values of L, then the HMF
phase transition could be reproduced for any value of the scaling exponent α < 1.

Further studies should focus on the characterization of the newly observed
intermediate soft crystal phase, in order to understand if it can be used to
model the collective features observed in real long-range systems. Another open
question is the possible presence of quasi-stationary out-of-equilibrium states
which was non investigated in this work.



Conclusions

Understanding the physics of long-range interacting systems is becoming of
central importance in the development of different fields of study, ranging from
cosmology to plasma physics, with possible application to the experimental
lasers. The work of this thesis was focused on the theoretical and numerical
analysis of long-range interactions, and to the characterization of their peculiar
dynamical and thermodynamic features.

We initially focused on the study of the out-of-equilibrium quasi-stationary
states (QSS), which become proper equilibrium states in the large size limit. An
analytical description of the distribution function representing these states is
possible thanks to the seminal theory developed by Linden-Bell in the context
of galactic dynamics. The technique has been successfully applied to a limited
gallery of toy-model systems, the most important being the paradigmatic
Hamiltonian Mean Field (HMF) model. However rigorous results have been
so far derived only under strict assumptions on the initial condition (one-level
water-bag). In this thesis we have taken a step forward by extending the
Lynden-Bell solution to the multi-level water-bag, which in principle could be
used to approximate any continuous distribution. We have shown that the above
generalized theory reproduces the states observed in finite-size numerical simu-
lations with good agreement. The single-level water-bag solution is recovered as
a limit case.

When trying to study the interaction of a long-range system with a thermal
bath, one encounters several problems, both theoretical and practical, mainly
due to the lack of additivity. Using as a case study the HMF model, we have
introduced the formal description of QSSs in the canonical ensemble, i.e. for a
system at equilibrium with a thermal bath. To this end we recovered the free
energy functional from the Legendre-Fenchel transform of the microcanonical
entropy. Due to the Fermionic nature of the QSS equilibrium, the system
displays negative kinetic specific heat. This counter-intuitive evidence ultimately
stems from the fact that kinetic and thermodynamic temperatures are different.
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Passing heat to the system, we observe a spontaneous self-organization, which
yields to a reduction of the kinetic component of the internal energy.
In order to understand the consequences of the previous result, we studied
an hypothetical thermal machine, working with an HMF QSS fluid. Despite
the fact that formal thermodynamic requirements are respected, we obtain
the shocking finding that such machine would violate the second principle of
thermodynamics, by performing positive work while passing heat from the cold
to the hot reservoir. The latter result is general, and in principle valid for
any fluid described by a non-Maxwellian distribution. In order to avoid the
paradox, we suggest that Fourier’s law for heat exchange could be modified for
long-systems. The consequences of these observations are presently challenged
via dedicated numerical studies.

The HMF system discussed before is a paradigmatic model of long-range
interactions and has been widely studied in past literature. Recently a new
model was proposed, called α-HMF, which introduce a decay of the potential
with respect to a distance term over a fixed lattice matrix. The scaling is ruled
by tunable exponent α, which makes it possible to continuously modify the
interaction up to the short-range threshold. In this thesis work, we focused
on the description of the QSS of the α-HMF model next and beyond to the
classical threshold of long-range interaction, which is assigned on the basis of the
dependence of the potential on α. We observed that QSS lifetime still diverges
logarithmically around the threshold value α = 1, while long-range peculiar
features, like the presence of a 1-D phase transition for α > 1, are found when in
the short-range regime. Consequently, we suggest that a more correct definition
of long-range interaction should take into account the scaling of the force, rather
than the potential, as already proposed in a recent work by A. Gabrielli et. al.
[100]. The latter interpretation seems to be more consistent with the numerical
evidences.

Despite the great interest behind long-range phenomenology, the long-range
solvable models so far studied in the literature are quite simple, and are defined
in a phase space of reduced dimensionality and complexity. To be able to describe
complex spatial self-organized structures that emerge in presence of long-range
potentials, we have studied, in the last part of the thesis, a novel long-range model
first introduced in [105]. By considering a continuous distance term, the latter
adds a degree of complexity with respect to the simplified HMF and α-HMF
systems, while reproducing the same thermodynamics in the large size limit. In
the extended phase space of the above system it is possible to observe a more
rich zoology of equilibrium features. Specifically, we were able to obtain three
different equilibrium dynamical states, encompassing a regular crystal phase, a
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disordered soft crystal phase and a gaseous phase at high energies, which could
not be seen in the reduced phase space of previous long-range models. The crystal
phases manifest as a generalized self-organized state, in which the local lattice
emerge from the collective behaviour of the particles. We were able to analytically
obtain a form for the equilibrium distribution function and apply it to describe
the system in both the infinitely extended limit and in the infinite density limit.
We also shown that assuming the validity of the latter solution, the system can be
formally reduced to the HMF in the infinite size limit, thus reproducing the same
equilibrium transition between magnetized and homogeneous states. We argue
that the newly introduced model could be possibly used to describe more realistic
physical systems like self-gravitating models or charged plasmas, so accounting
for the collective features observed in presence of long-range interactions.
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