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Directeur de thèse: Alain Barrat
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Synthèse en français

Introduction

Dans cette thèse, nous étudions l’influence des propriétés diverses des réseaux dynamiques et
statiques sur la propagation des épidémies. Nous utilisons des données récentes de contacts en
face à face de haute résolution. Pour les simulations de la propagation des épidémies, les nœuds
du réseau sont divisés en compartiments de nœuds susceptibles (S), infectés (I), exposés (E) et
guéris (R). Outre le modèle SEIR, des modèles avec moins de compartiments, comme SIR ou SI,
seront utilisés aussi.

Récolte des données

Les données sont récoltées par la collaboration SocioPatterns. Ce sont des données des contacts
en face à face entre les gens. Elles sont très détaillées avec une résolution temporelle de 20
s. On sait donc qui est en contact avec qui, quand et pour combien de temps. En contraste
avec les données récoltées par des questionnaires, ici on n’a pas de biais causé par la mémoire
des participants. Ces données sont donc très utiles pour simuler la propagation des épidémies.
Néanmoins il peut y avoir des erreurs dues à une défaillance du matériel ou au comportement
des participants avec les badges RFID. Il faut donc nettoyer les données, ce qui peut mener à un
biais causé par les décisions prises. Aussi les contacts entre les gens sont enregistrés seulement si
les gens sont vraiment en face à face à une distance de moins de 2 mètres. Les maladies comme la
grippe , par contre, peuvent se propager aussi avec quelque probabilité si les gens sont à une plus
grande distance. Ces chemins de propagation sont ignorées ici, ce qui peut limiter l’envergure de
l’épidémie. De plus, il y a des gens qui étaient présents mais qui n’ont pas participé à l’expérience.
Nous avons utilisé la méthode de bootstrapping pour simuler l’effet qu’un échantillon incomplet
a sur le résultat de la propagation des épidémies. En regardant le nombre final de cas divisé par
le nombre de participants, nous avons pu constater que l’effet de la réduction de l’échantillon
est plus grand si le nombre de liens dans le réseau était déjà faible. Un autre problème est posé
par l’enregistrement des contacts. Celui arrive de manière probabiliste. Pour garantir qu’un
contact est vraiment enregistré, il faut donc attendre au moins 20 secondes. Ceci donne une
limite à la résolution des données. Nous avons testé l’effet d’une limite de résolution. On peut
voir qu’en baissant la résolution la longueur des contacts est surestimée, menant aussi à une
surestimation de la taille de l’épidémie. Il se pose donc la question de savoir si les 20 secondes
sont une résolution trop faible qui influence le résultat de la simulation. Nous ne pouvons pas
tester l’effet d’augmenter la résolution. Au lieu de cela, nous avons testé un modèle très simple
dans lequel un contact va être enregistré avec une probabilité proportionnelle à sa longueur (en
unités de 20 secondes) dans des intervalles de plus en plus larges. Réduire la résolution jusqu’à
une résolution de quelques minutes n’a pas changé le résultat, si en même temps la probabilité
d’enregistrer des contacts (et de leur donner une longueur en multiples de l’intervalle minimal)
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est proportionnelle à la longueur des contacts. On peut donc supposer que baisser la résolution
de 20 secondes n’a pas un effet très fort puisque beaucoup de contacts plus courts ne vont pas
avoir été enregistrés.

Propagation des épidémies sur réseaux dynamiques

Nous avons testé la dépendance de la propagation des épidémies dans les paramètres β et µ en
changeant β et µ d’une façon qui laisse leur rapport β/µ constant. Quand β et µ sont augmentés,
les épidémies finissent de plus en plus rapidement. Ils parcourent donc des parties de moins en
moins courtes sur les données dynamiques. En même temps, l’effet des fluctuations des données
sur le résultat est augmenté. En regardant l’évolution du nombre des infectés et du nombre des
guéris dans le temps, nous avons pu voir, que ce nombre suit de plus en plus des fluctuations sur
courte échelle pour les grandes valeurs des paramètres β et µ. Cet effet montre que pour β et µ
grand, le choix du temps de début de l’épidémie peut jouer un rôle important sur le déroulement
et surtout sur l’envergure de l’épidémie, en particulier si l’épidémie commence juste avant la
tombée de la nuit. Alors que pour β et µ petits, l’évolution de l’épidémie était indépendant des
fluctuations plus faibles et plus courts. Dans ce cas, le résultat de la simulation était le même si
la simulation était effectuée sur le réseau dynamique ou sur un réseau statique (HET) construit
en agrégeant le réseau. Les liens entre les nœuds recevaient alors un poids donné par la durée
que ces deux nœuds ont été en contact divisé par le temps total des données.
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Figure 1: Le taux d’attaque d’une épidémie simulé sur les données de ”sfhh” en fonction de β.
Le rapport β/µ = 51.84. Dans le plot à droit, les nuits sont exclus des données. Des simulations
sur des réseaux HETnn, HOMnn sont ajoutées comme référence.

En augmentant β et µ les nuits jouent un rôle de plus en plus important. Jusqu’au point
(βnn), où le peak de l’épidémie est toujours avant la tombée de la nuit, la taille de l’épidémie
augmente. A ce maximum et pour β plus grand, la taille de l’épidémie est donc la même que pour
des épidémies simulées sur des données dynamiques dont les nuits étaient enlevées (DYNnn). Des
simulations sur ce réseau dynamique (DYNnn) ne montraient pas beaucoup de changement avec
β (en gardant β sur µ constant) pour des valeurs de β plus petites que βnn. Nous avons construit
un réseau statique (HETnn) qui n’était basé que sur le temps dans lequel il y avait des contacts
dans les données dynamiques. Des simulations sur HETnn étaient les mêmes que les simulations
sur DYNnn pour β < βnn. Par contre, ils diffèrent fortement des simulations sur DYN pour ces
paramètres. Si nous incluons des nuits, faisant un réseau bimodal (HETnn+nuits), qui est le
réseau statique pendant les jours et qui ne montre aucun contact entre des nœuds pendant la
nuit, alors les simulations sur DYN et sur (HETnn+nuits) sont très similaires pour les paramètres
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β < βnn. L’effet principal dans cet espace de paramètres en utilisant un réseau dynamique est
donc la présence des nuits. En augmentant β au dessus βnn, la taille de l’épidémie sur le réseau
dynamique commence à baisser alors que sur les réseaux statiques elle reste la même. Des effets
similaires ont été trouvés [] et le plupart du temps attribués au fait que la distribution de temps
entre les contacts est large. Ici nous avons trouvé que si l’épidémie finit rapidement, seulement
une partie du réseau dynamique est parcourue et seulement des nœuds qui étaient présents dans
cette partie pouvaient être infectés. C’est cette limitation qui joue le rôle le plus fort. En créant
un réseau statique de cette partie limitée du réseau dynamique et en simulant la propagation
des épidémies là-dessus nous avons trouvé que la taille finale de l’épidémie est comparable à la
taille obtenue en utilisant le réseau dynamique. Nous avons simplifié le modèle encore plus. En
prenant le réseau dynamique calculé sur toutes les données mais en le limitant à contenir soit
seulement les nœuds qui ont été présents pendant l’épidémie, soit le même nombre des nœuds
que sur la partie parcourue par l’épidémie. Dans les deux cas, le résultat a encore été comparable
à celui obtenu en simulant sur les données dynamiques.

De plus nous avons créé des réseaux dynamiques avec des modifications des propriétés di-
verses. Pour chaque réseau nous avons simulé la propagation des épidémies pour des valeurs
diverses du paramètre β en laissant β sur µ fixe. Puis nous avons regardé le nombre moyen de
nœuds et de liens qui sont activés pendant un temps spécifique. Dans un réseau (time shuffle)
nous avons changé aléatoirement les temps de début de contacts entre les liens. Ce réseau montre
les mêmes fluctuations du nombre de contacts sur le temps, mais les corrélations temporelles sont
complètement anéanties. Cela menait à une augmentation fort du nombre de nœuds et liens qui
sont actifs sur un temps précis. Aussi la taille de l’épidémie augmentait.

En concluant nous pouvons dire que le nombre de nœuds qui sont présents pendant l’épidémie
joue un rôle crucial pour la mesure de la taille finale de l’épidémie.

Représentation des données

Les paramètres β et µ peuvent aussi jouer un rôle quand on essaie de réduire la complexité des
données. Les réseaux dynamiques que nous avons sont très précis et détaillés. Mais souvent ce
n’est pas nécessaire pour obtenir des résultats de simulations suffisamment exactes. Il peut y
avoir des propriétés qui ne sont pas importantes pour la propagation des épidémies, des détails
qui sont en trop. En éliminant des détails peu nécessaires des données, les caractéristiques
importantes du réseau ressortent et les données deviennent plus générales.

Nous avons trouvé que pour réduire la résolution temporelle sans avoir d’effets négatifs causés
par une surestimation des longueurs de contacts, il est suffisant d’attribuer aux liens des poids
proportionnels à leur activité. Par contre, même en faisant cela, il reste une résolution minimale
nécessaire qui est définie par le temps qu’un nœud reste infectieux. Dans le réseau dynamique,
le nombre de nœuds qui peuvent être infectés par un nœud infectieux est limité au nombre de
nœuds avec lesquels il a été en contact. Puisqu’en moyenne un nœud reste infectieux pendant
1/µ secondes, cette durée est une bonne estimation pour la limite minimale de la résolution tem-
porelle. En baissant la résolution au-delà de cette valeur, la taille finale de l’épidémie commence
à crôıtre. Si β est très grand, des erreurs sur cette limite deviennent plus importants et il peut
être nécessaire d’avoir une résolution plus fine. Nous avons simulé la propagation pour trois sets
de paramètres - β et µ petit, moyen et grand- sur des réseaux avec des résolutions différents entre
20 s et la longueur totale des données. Nous avons trouvé que la distribution du nombre final de
cas ne change pas, tant que la résolution des données reste au-dessus de cette limite donnée par
µ.

Il peut aussi être raisonnable de limiter la résolution des données du point de vue de la
structure du réseau. Surtout quand il s’agit des simulations épidémiques de grande échelle ou
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des vaccinations, des résultats au niveau de nœuds spécifiques ne sont pas nécessaires. Alors pour
la simulation aussi il est possible que des informations sur les nœuds spécifiques sont superflues.
Dans l’épidémiologie, des matrices de contacts sont souvent utilisées pour faire des prédictions
sur des épidémies. Pour construire les matrices de contact, la population est représentée en
groupes, par exemple en groupes d’âge. Les entrées de la matrice correspondent au temps moyen
de contact entre les membre de chaque group. Si on utilise la matrice de contacts, les probabilités
de contact entre les gens diffèrent selon leurs groupes, ce qui est une amélioration par rapport
au mélange homogène où tous les nœuds sont en contact avec la même probabilité. De plus, ces
matrices de contact sont aussi bien généralisables. Nous avons ici pris des données des contacts
entre des gens dans un hôpital. L’avantage de ces données est que les participants sont divisés
en groupes selon leur rôle dans l’hôpital. Il y a des infirmières, des auxiliaires, des docteurs,
des patients et leurs parents, puisque c’était un hôpital pour enfants. Néanmoins d’autres choix
sont possibles pour les groupes. Nous avons donc testé des choix de groupes différents. Puisque
l’information des connections individuelles disparâıt en faveur de l’information des connections
de groupe, pour perdre le moins d’informations possible, il est favorable que les connections entre
individus des deux groupes ont des poids similaires. La matrice d’adjacence peut donc être obtenu
dans une forme proche d’une matrice formée de blocs uniformes. De tous les regroupements que
nous avons essayé, les plus proches à une forme de bloc étaient le regroupement selon les rôles des
participants et un regroupement selon leur degré. Le plus loin était le regroupement aléatoire.
Pour le regroupement selon le degré et celui selon les rôles nous avons testé l’effet du nombre
de groupes sur le résultat de la propagation des épidémies. Pour mesurer l’effet de la perte
de l’information individuelle à cause du regroupement, nous mélangeons les liens entre deux
groupes et les liens des nœuds d’un même group. Puis la propagation d’une épidémie est simulée
avec le modèle SIR sur ces réseaux différents. Bien qu’avec une augmentation du nombre des
groupes la perte de l’information individuelle diminue et le résultat devient légèrement plus
précis, il est bien plus important de bien choisir les groupes au lieu d’augmenter leur nombre.
La meilleure façon de choisir les groupes que nous avons trouvé reste le regroupement selon
les rôles des participants. Nous utilisons donc ce regroupement pour tester des représentations
différentes des données. Outre le réseau statique avec poids hétérogènes (HET) et la matrice de
contact (CM), nous construisons un réseau statique avec poids homogènes (HOM), ce qui est une
représentation qui garde l’information sur la structure du réseau en écartant toute l’information
sur les poids et une représentation qui est une matrice de distributions de durées de contacts
(CMD). Elle ressemble à CM, mais inclut des distributions des poids pour chaque group. Dans
la représentation de données CMD, au lieu de mettre le même poids moyen sur tous les liens
entre deux groupes, nous avons fait un fit sur la distribution des poids entre chaque deux groupes
et nous tirons des poids de cette distribution en les attribuant arbitrairement aux liens entre les
deux groupes. En comparant la distribution du nombre final de cas pour les représentations de
données différentes, il devient clair que c’est surtout l’hétérogénéité des poids de liens qui joue un
rôle important. Les simulations utilisant des représentations de données qui gardent l’information
sur la distribution des poids sur les liens, comme HET et CMD, donnent des résultats similaires
aux simulations sur les données exactes, alors que les simulations utilisant CM, HOM ou bien le
cas d’un mélange homogène surestiment fortement le nombre final de cas. Le taux d’extinction
de l’épidémie est également plus bas pour CM et HOM, comparé à HET, DYN et CMD. Avec
les informations sur les rôles des participants nous pouvons aussi examiner la probabilité d’être
infecté lors du déroulement d’une épidémie pour les membres de chaque group. On trouve que
dans les groupes des auxiliaires et des infirmières, cette probabilité est plus élevée que dans
les groupes de patients ou de parents. La probabilité d’être infecté pour les docteurs est entre
ces deux extrêmes. La distribution du pourcentage des infectés dans chaque groupe est aussi
similaire pour les simulations utilisant DYN, HET ou CMD. Si la matrice des contacts est utilisé,
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Figure 2: Distributions du taux d’attaque de l’épidémie pour les représentations de données
différentes.

la probabilité d’être infecté est largement surestimée pour les patients et les parents. C’est dû
au fait que entre ces deux groupes il y a très peu de contacts, mais avec une durée très longue,
ce qui a pour conséquence que la moyenne est comparable à un cas avec beaucoup de contacts
avec une durée moyennement faible. Seulement les représentations qui incluent l’information sur
la distribution des poids peuvent distinguer entre ces deux cas. La matrice des distributions de
contacts (CMD) est donc une représentation de données qui en même temps donne des résultats
de simulations très similaires aux simulations sur les données exactes (DYN) et reste néanmoins
généralisable. Dans le cas où les données des distributions de contacts sont accessibles, cette
représentation est donc un meilleur choix que la matrice de contacts.

Immunisation

Bien que la nouvelle représentation des données fonctionne bien pour simuler l’envergure des
épidémies, il est encore plus important d’être capable de les contenir effectivement. Nous
testons donc combien de données sont nécessaires pour proposer des stratégies de vaccination
utiles. La taille finale d’épidémie était différente pour les simulations sur diverses représentations
de données, et nous constatons aussi que l’effet d’immunisation des nœuds change d’une
représentation de données à une autre. Nous commençons avec des stratégies simples, immu-
nisant 10 nœuds d’une même group. Nous comparons le nombre final de cas des vaccinations
de chaque group. Si toutes les informations sont utilisées pour la simulation, il se trouve que
le plus efficace est de vacciner les infirmières ou les auxiliaires et le moins efficace de vacciner
les patients ou les parents. Le même ordre d’efficacité de vaccination de groupes est obtenu si
nous utilisons des représentations de données avec hétérogénéité des poids (HET,CMD). Pour les
simulations qui utilisent la matrice de contact par contre, il semble être aussi efficace de vacciner
les patients ou des parents que de vacciner les infirmières ou les auxiliaires. Ceci mène donc à de
fausses prédictions d’efficacité d’immunisation si la matrice de contact est utilisée pour simuler
les épidémies.

De plus, car les informations dans les représentations de données sont plus ou moins limitées,
des stratégies de vaccination qui peuvent être tirées de ces représentations différents sont plus
ou moins sophistiquées. Pour chaque représentation (DYN,HET,HOM,CM,CMD) nous choisis-
sons une stratégie de vaccination qui intègre le plus d’informations possible et qui nous semble
optimale pour les données correspondantes. Nous testons l’efficacité de ces stratégies en simu-
lant l’épidémie sur le réseau dynamique avec des nœuds vaccinés. Les stratégies obtenues sont
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les suivantes: pour DYN et HET l’immunisation des nœuds par leur degré individuel, pour
CMD l’immunisation des groupes par degré de groupe (et des nœuds dans les groupes sans
ordre précis), pour CM l’immunisation des groupes par strength et pour le cas d’un mélange
homogène l’immunisation arbitraire et sans ordre. Il se trouve que le plus d’information est
inclus le mieux est la stratégie d’immunisation. Le désavantage de baser une recommandation
d’immunisation sur des informations détaillées au niveau de chaque individu est le coût et la
violation de la vie privée, mais aussi le manque de généralité. L’immunisation par degré de
groupe donne des résultats assez bon par rapport à l’immunisation par degré d’individu mais
sans ces désavantages. Cependant l’immunisation par strength moyen de groupe se révélait en
partie même moins efficace que l’immunisation sans ordre.

Quand les données pour concevoir la stratégie d’immunisation sont limitées à la longueur
d’une journée l’efficacité de la stratégie est réduite pour l’immunisation par degré individuel.
Cependant, pour l’immunisation par degré moyen de groupe la réduction de l’efficacité est
beaucoup moins forte. Les groupes des infirmières et auxiliaires restent les plus aptes pour
l’immunisation même sur les données d’une journée seulement. Ces stratégies semblent donc
être plus stables que les stratégies d’immunisation individuelle si la longueur des données est
réduite.

Il reste à voir combien le résultat est influencé par le fait que la stratégie de l’immunisation
est conçue sur les même données sur lesquelles il est testé. Dans un premier essai de tester cet
effet, nous avons regardé le taux d’extinction de l’épidémie pour des épidémies très rapides. En
prenant des parties de 24 heures pour concevoir la stratégie d’immunisation nous avons pu tester
la dépendance du taux d’extinction en fonction du temps de début de l’épidémie. Il semblait
que l’effet du temps de début ne dépendait pas énormément du tronçon de données sur lequel la
stratégie était basée.

Jusqu’ici nous n’avons utilisé la même stratégie d’immunisation pour les données statiques
(HET) et les données dynamiques (DYN). Il est possible que l’information dynamique puisse
mener à des stratégies bien meilleures que la stratégie par degré individuel. Nous avons essayé
de trouver une stratégie qui utilise les particularités des données dynamiques. Pour chaque
nœud nous mesurons l’effet de son enlèvement en regardant tous les chemins temporels avec et
sans ce nœud. Nous somme intéressés par le changement de la longueur des chemins temporels
et le changement du temps des chemins entre deux nœuds. Nous définissons la ’signifiance’
comme mesure qui accumule cet effet pour tous les chemins temporels qui commencent dans
une fenêtre de temps limité. La distribution de cette ’signifiance’ est exponentielle pour des
temps de début différents, même la distribution des valeurs d’un seul nœud. Pour obtenir une
stratégie d’immunisation nous prenons la moyenne sur toutes les valeurs d’un même nœud. En
comparant cette stratégie avec des stratégies antérieures, elle n’est pas meilleure que la stratégie
d’immunisation par degré individuel. Il est possible que beaucoup de l’information dynamique
est perdu en moyennant la ’signifiance’ sur les temps de débuts différents. De plus, pour simuler
l’épidémie le modèle SIR avec β < 1 est utilisé alors que les chemins temporels sont basés sur
un modèle SI avec β = 1. Comme nous avons vu auparavant, pour des épidémies plus lentes la
structure à courte terme peut être négligée. Cependant, les structures à temps courts jouent un
rôle très grand pour les chemins temporels.

Prévisibilité

Pour qu’une représentation de données soit vraiment généralisable et qu’une stratégie
d’immunisation soit efficace, il est important que les données ne changent pas trop. Si par exemple
on crée une représentation de données d’un hôpital et on veut interpréter des simulations utilisant
cette représentation comme valable pour un hôpital général et donc aussi pour n’importe quel
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hôpital spécifique, alors les représentations de données obtenues à partir de différents hôpitaux
spécifiques ne devraient pas être trop différentes. Une stratégie d’immunisation est conçue à par-
tir de données réelles, mais doit être valable pour des situations futures. Pour pouvoir estimer
les erreurs de prédictions il est donc essentiel qu’on puisse estimer les fluctuations des données.

Pour les données de l’hôpital à Lyon, ”lyon2011” et ”lyon2012”, nous regardons les valeurs
de la matrice de contact calculée pour chaque jour. Les valeurs sont assez stables la plupart
du temps, c’est à dire que les fluctuations des valeurs ne sont pas beaucoup plus grandes que
la différence entre les valeurs. Seulement la fin de la semaine dans les données de ”lyon2012”
marque une exception. Ici, les temps de contact moyens changent énormément entre la fin et le
reste de la semaine. Ceci est clairement dû au fait que le travail est organisé différemment le
weekend. Il y a par exemple seulement un docteur qui travaille et très peu d’infirmières. Par
contre, une anomalie semble être la croissance du temps moyen de contact entre infirmières vers
la fin des données de ”lyon2012”. Sans connâıtre les distributions du temps moyen des matrices
journalières il est pourtant difficile de juger quelle matrice de contact est normale et laquelle est
une exception dont la divergence des valeurs est causée par un autre effet.

Nous choisissons trois échantillons de 4 jours pour comparaison: les 4 jours des données de
”lyon2011” et deux fois quatre jours des données de ”lyon2012”, dont quatre de la première
semaine (”lyon2012 w1”) et quatre de la deuxième semaine (”lyon2012 w2”). En calculant la
matrice de contact sur quatre jours, les fluctuations sont encore diminuées un peu. Néanmoins,
les matrices de contacts entre ces trois ensembles de données diffèrent toujours. Pendant que pour
”lyon2011” le contact entre les médecins est le plus fort, dans les deux semaines de ”lyon2012”
c’est le contact entre les infirmières. La densité de liens entre des groupes montre les même
tendances. La différence entre la matrice de contacts de ”lyon2012 w1” et ”lyon2012 w2” est
seulement dans les valeurs exactes, par exemple, le temps moyen de contacts entre infirmières est
beaucoup plus haut pour la deuxième semaine que pour la première, alors que la relation entre
les valeurs est très similaire.
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Figure 3: La taille final de l’épidémie, simulé sur la représentation de données CMD avec les
paramètres β = 100 ∗ µ, γ = 1/2day−1, µ = 1day−1. Dans la légende, ”2011” − > ”2012w1”
signifie, que la simulation était fait avec la matrice de distributions CMD calculé sur les données
de ”lyon2011” pendant que les tailles de groupes pour construire le réseau étaient pris des données
de ”lyon2012 w1”.

Nous comparons la simulation des épidémies sur des matrices de distribution de contacts
(CMD) entre les trois ensembles de données. Alors que le pourcentage d’infectés est similaire
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pour les deux semaines de ”lyon2012”, il est visiblement plus haut pour les données de ”lyon2011”.
Dans les trois ensembles de données le nombre de participants dans chaque rôle n’est pas pareil.
Un des avantages de la représentation de données CMD est que le nombre de personnes dans
chaque groupe peut être choisi librement. Nous utilisons donc la représentation CMD pour
”prédire” des épidémies dans des contextes différents, en prenant les paramètres de la distribution
d’un ensemble de données et en l’appliquant à un autre ensemble de données, c.a.d. la simulation
est effectuée avec les tailles de groupes d’un autre ensemble de données. En simulant les épidémies
sur des réseaux créés de cette façon, nous voyons directement l’influence de la taille des groupes
différents sur le nombre final de cas. De plus, changer le nombre de participants par rôle ne
semble pas suffire pour améliorer les prédictions du nombre final de cas d’une épidémie. C’est
surtout le temps moyen de tous les contacts qui diffère entre les trois ensembles de données. Alors
que les simulations des deux semaines de ”lyon2012” ne diffèrent pas beaucoup, la simulation
utilisant les paramètres de la distribution de contacts de ”lyon2011” ne donne pas des prédictions
valables pour des épidémies éventuelles dans 2012. Si nous modifions les réseaux alors qu’ils n’ont
pas seulement le vrai nombre de participants par groupe, mais aussi le bon temps moyen total
de contacts, alors le nombre moyen de cas finals est très similaire à celui obtenu en utilisant
la matrice des distributions de contacts construite avec les données de 2012. Néanmoins, le
pourcentage de cas dans chaque groupe diffère encore puisque les valeurs relatives des matrices
diffèrent encore.

Pour voir le développement des stratégies d’immunisation avec le temps, nous regardons le
changement de l’ordre des degrés des nœuds sur un réseau dont la résolution temporelle est
augmenté en agrégeant sur un temps court. Cet ordre change beaucoup. Un nœud qui a le plus
haut degré à un temps spécifique ne l’a pas forcément dans le futur.

La distribution du degré d’un nœud pris à différent moments dans nôtres données, par contre,
n’est pas aussi large que dans l’expérience de Braha [15]. Dans nos données, la distribution pour
les nœuds avec le plus haut degré sur des fenêtres de quelques heures montre une crête. Le
plupart du temps même les nœuds avec un degré très haut sur le réseau complètement agrégé
(HET) ont un degré négligeable, mais quelques fois ils ont un degré très haut. Si les données
sont agrégées sur des temps plus longues, ces fluctuations deviennent un peu plus faibles. En
regardant comment l’ordre des nœuds change si on agrège de plus en plus longtemps, nous
trouvons qu’il y a bien une limite de temps d’agrégation au-delà duquel l’ordre ne change plus
beaucoup. Ce phénomène peut être dû au fait que nos données sont limitées, mais aussi au fait
que dans l’hôpital les rôles des gens donnent naissance à un type de comportement spécifique.
En tout cas, ici il suffit d’agréger les données pendant un temps assez court pour trouver les
nœuds avec les plus hauts degrés sur le réseau HET. Au moins, déjà après très peu de temps, le
degré moyen final (celui basé sur le réseau complètement agrégé) des premières 20 % des nœuds
d’un classement selon leur degré réel (celui basé sur un réseau agrégé pendant un temps T) est
très similaire au degré moyen final des premières 20% des nœuds d’un classement selon leur
degré final. Néanmoins, le classement des nœuds continue à changer légèrement. En calculant
le Kendall-τ du classement réel avec le classement final, on voit une croissance initiale forte qui
devient rapidement moins raide. Pourtant, le Kendall-τ continue à crôıtre avec T. L’ordre exact
des nœuds continue à changer, surtout pour les nœuds de faible degré. L’ordre du degré moyen
des rôles par contre est beaucoup plus stable. Très rapidement les groupes avec le plus haut
degré moyen sont trouvés.

Distances

Il y a des propriétés ou des épidémies qui se propagent seulement pendant un nombre de pas
limités. Des rumeurs peuvent changer à chaque pas de propagation. La distance entre deux
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nœuds peut donc jouer un rôle important pour estimer si une épidémie va se propager d’un
nœud à l’autre. Cependant, il est possible que la propagation d’une épidémie d’un nœud à un
autre, qui est proche sur le réseau statique, prenne un temps long ou qu’elle soit impossible alors
que l’épidémie se propage rapidement à un autre nœud beaucoup plus loin sur le réseau statique.
La distance entre deux nœuds ne suffit donc pas pour estimer le temps de propagation. Ici nous
étudions la longueur des chemins temporels. Un chemin temporel est le chemin le plus rapide
entre deux nœuds n1 et n2 d’un réseau dynamique après l’introduction du nœud n1 au temps
t. Le chemin temporel de n1 à n2 peut être très différent du chemin temporel de n2 à n1. Bien
que la longueur des chemins temporels soit corrélée avec la distance, elle est souvent beaucoup
plus grande. Par exemple, deux nœuds qui ont une distance 4 sur le réseau statique peuvent être
séparés de 8 pas si les contraintes temporelles sont respectées.

Comme la distribution des distances d’un réseau statique, la distribution des longueurs des
chemins temporels peut caractériser le réseau dynamique. Nous comparons la distribution des
longueurs de chemins temporels sur le réseau dynamique avec la distribution de longueurs de
chemins d’un processus SI (chemins infectieux) sur un réseau statique. Si la dynamique du
réseau temporel est poissonnienne avec une probabilité d’activité des liens très faible, les deux
distributions sont les mêmes. Pour une activité forte des liens sur le réseau dynamique, la
distribution des longueurs de chemins temporels change vers des longueurs plus basses jusqu’à
devenir identique à la distribution des distances sur le réseau statique, si les liens sont actifs
avec probabilité 1. Nous pouvons approximer la distribution de longueurs des chemins infectieux
sur un réseau statique complètement connecté par la solution des équations différentielles du
processus SI. Celles-ci donnent la distribution suivante des chemins infectieux:

p(d) =
ln(n− 1)d

d!n

avec une longueur moyenne des chemins infectieux de 〈d〉 ∼ ln(n), où n est le nombre de nœuds du
réseau et d la longueur des chemins infectieux. Même pour des réseaux statiques complètement
connectés cette distribution est seulement une approximation, parce qu’elle est conçue pour des
réseaux de taille limite avec un nombre discret de nœuds. Si les réseaux ne sont pas complètement
connectés, la distribution des chemins infectieux change. Nous testons comment la distributions
des chemins infectieux dépend des densités de liens pour les réseaux Erdös-Rényi. La longueur
moyenne des chemins infectieux reste stable pour une grande gamme de densités. La longueur
moyenne ne crôıt rapidement qu’à l’approche du seuil de percolation. Nous regardons aussi
l’influence du poids des liens sur la distribution des chemins infectieux. Dans ce but nous
construisons des réseaux aléatoires dont les liens ont des poids tirés d’une distribution négative-
binomial. L’influence des poids est seulement visible si le réseau est très dilué. Alors comparé à
une distribution de poids étroite,une distribution de poids large augmente la longueur moyenne
des chemins infectieux. Quant à la distribution des chemins temporels, le même effet est visible
pour les réseaux avec une dynamique poissonienne, si la distribution des probabilités d’activité
des liens est très large. Cet effet est beaucoup plus faible que l’effet de l’activité moyenne des
liens. Finalement nous étudions la distribution des chemins temporels sur les données de l’hôpital
à Lyon et les données d’une conférence. L’effet de l’activité simultanée des liens peut être observé
pour les niveaux différents d’agrégation de données. Plus on baisse la résolution temporelle des
données en les agrégeant, plus le nombre de liens actifs au même moment est grand et plus la
longueur moyenne des chemins temporels est faible.

Pour voir l’effet de la dynamique des contacts, nous comparons la distribution des chemins
temporels pour les données et des réseaux dynamiques basés sur les données mais avec une
dynamique poissonienne (dHET et dHOM). Pour dHET et dHOM la probabilité d’activité d’un
lien est donnée par le poids des liens dans les réseaux HET et HOM. Comme déjà vu pour
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Figure 4: Distribution de la longueur de chemins temporels du réseau dynamique de contacts
des données de ”sfhh”. La longueurs des chemins temporels des réseaux modèles dHEt et dHOM
est montré aussi

l’influence de la hétérogénéité des poids, la distribution des chemins temporels a des valeurs
moyennes plus grandes pour le réseau dHET que pour dHOM. La distribution de la longueur
des chemins temporels pour le réseau DYN dépend des temps de début des chemins temporels.
Nous avons pris la moyenne sur des temps de début différents. La dynamique des contacts ne
semble pas avoir une grande influence sur la distribution de longueurs des chemins temporels.
La distribution est très similaire pour les données et le réseau dHET. La longueur moyenne des
chemins temporels n’est plus petite que la longueur moyenne sur dHET que pour un ensemble
de données. L’explication de cette exception reste à éclaircir.

Conclusion

Dans cette thèse nous avons contribué à répondre aux questions sur les processus dynamiques
sur réseaux temporels. En particulier, nous avons étudié l’influence des représentations des
données sur les simulations des processus épidémiques, le niveau de détail nécessaire pour la
représentation des données et sa dépendance des paramètres de la propagation de l’épidémie.
Avec l’introduction de la matrice de distributions du temps de contacts nous espérons pouvoir
améliorer dans le futur la précision des prédictions des épidémies et des stratégies d’immunisation
en intégrant cette représentation des données aux modèles d’épidémies multi-échelles. De plus
nous avons pu montrer comment les processus épidémiques dynamiques sont influencés par les
propriétés temporelles des données. Il reste beaucoup de questions concernant la distribution
des fluctuations des données dynamiques et son influence sur les prédictions des simulations des
épidémies, les stratégies d’immunisation basées sur les données dynamiques ou la quantification
des résultats avec des modèles.



Contents

1 Introduction 1

1.1 Why networks? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 What are networks? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 How to classify networks? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Dynamic processes on networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Epidemic spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Network topology’s influence on epidemic processes . . . . . . . . . . . . . . . . . 9
1.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Data collection 11

2.1 SocioPatterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Degree vs. Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Contact-dynamics distributions . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Limitations of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 A short note about cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Incomplete samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Discrete timesteps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Epidemic simulation on temporal network data 25

3.1 Activity fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Influence of starting time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Effect of nights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Finite time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Model networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Data representation 41

4.1 Time resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Structural resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Choice of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Heterogeneity of weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Daily networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.4 Influence of roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.5 R0-correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xiii



xiv CONTENTS

5 Immunization on dynamic networks and data representations 65

5.1 Influence of the data representations . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Immunization strategies on static data representations . . . . . . . . . . . . . . . 67
5.3 Effect of a limited time window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Time dependence of ranking efficiency . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 Immunization strategies on dynamic networks:

significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Predictability 81

6.1 Degree ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Data-based predictions of epidemic spread . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 Comparing datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 Effect of data variability on epidemic predictions . . . . . . . . . . . . . . 92

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Distances 97

7.1 Static distance vs. dynamic distance . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Temporal path lengths and infection-path lengths . . . . . . . . . . . . . . . . . . 100

7.2.1 Discrete vs continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2.2 Influence of link density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2.3 Influence of the weight distribution . . . . . . . . . . . . . . . . . . . . . . 105

7.3 Distance on face-to-face contact networks . . . . . . . . . . . . . . . . . . . . . . 106
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8 Conclusions 111

A Appendix 115



Chapter 1

Introduction

In this thesis, we investigate how various properties of temporal networks influence epidemic
processes on networks. We are in particular interested in the role the data representation plays
in this context and in how much detail of the data is necessary in order to obtain sufficiently
accurate spreading results and decide on immunization strategies.

1.1 Why networks?

In order to tackle complex problems, simplification is a successful mechanism. By simplifying
the problem as much as possible without losing its essential characteristics, it becomes better
understandable. The language of network science does exactly this for complex systems. It
describes the system as a set of interacting units. Only the connections between the often
featureless units are important, all other properties of the system can be neglected. Systems
simplified in this way can still lead to complex behaviour. Network theory has become one
framework to study complex systems, thus supplying a common language to the study of topics
as diverse as disease spreading, metabolic pathways or ecosystems.

Among others, human interaction patterns can now be quantified through dynamical net-
works of high resolution. This facilitates the study of transmission pathways and spreading of
diseases, news or rumours between individuals. While in many previous studies of epidemic
spread the problem has been simplified up to the point where interaction patterns were replaced
by homogeneous mixing, describing the problem on dynamic networks enables a better under-
standing of the exact transmission pathways and the role of individuals for the epidemic spread.
It also allows for a more accurate prediction of the epidemic outcome.

1.2 What are networks?

A network can be described as a graph G(N,E), consisting of a set of vertices or nodes, N , and
a set of edges or links, E.

Edges on the network can be physical or conceptual. In addition to the topology of the graph,
we can store further information on the network, giving nodes and edges additional properties.
Edges can have weights, describing, for example, the duration of contact between individuals,
the number of contact events, the structural similarity between nodes, the correlation of events
happening on the nodes, the trade volume between countries, or the flow of electricity, water
or traffic. Edges can be one dimensional or multi-dimensional, describing different, independent

1
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properties. In the latter case, we can represent them by multiplex networks. Nodes as well
can have properties, like their infectiousness or resistance to epidemics, their capacity, political
preferences or other characteristics. Again, these properties can be described by vectors as well.
In addition to properties, nodes can have different states, which can change according to processes
on the network. In the case of epidemic processes, the states can be, for example, susceptible,
infected or recovered. The same is true for edges. If edges change their state depending on
the process of the network, the network is adaptive. Nodes and edges can either be static and
fixed in time, or their properties can vary with time. They can then be described as continuous
functions n(t) and w(t). The weight function could for example represent the changing distance
between two people over time.

In the networks used in this thesis, nodes do not have specific properties, but they can be
in different states, which change according to the process on the network. Links between the
nodes reflect the face-to-face contact between two individuals. The weight of the links is then
either 1, if a contact exists, or 0 otherwise. Furthermore the weight-function is discrete in time.
It is possible to integrate out the time component, taking the average over time of this function,
which results in a static network with real-valued edge weights.

Often, a threshold is taken, setting edge weights below the threshold to zero. This threshold
can be already present in the data collection or be applied afterwards. It can be a threshold in
the affinity between two people, below which they are not considered friends, or a threshold in
the distance between two people, above which they are not considered in contact. In networks in
which edges are weighted by the correlation between nodes, a threshold can be introduced below
which nodes are judged as uncorrelated and not connected by an edge. The choice of edges is
essential as it defines the graph’s topology [18].

If there are fewer edges than nodes, but the graph still forms one connected component,
where all nodes can be reached from any other node via edges and intermediate nodes, the graph
is called a tree. A (rooted) tree of N nodes has N − 1 edges and no loops. There is only one
possible path between any two nodes. Removing any edge will make the graph fall apart into
more than one connected component. If for two nodes, there is more than one path that connects
them, the network contains cycles or loops. A cycle is independent of other cycles in the network,
when it cannot be described by the sum of these cycles. The number of independent cycles in a
connected network is E − N + 1 [12], so with every edge added to a connected network a new
independent cycle is created.

The structure of the graph can be expressed in the adjacency matrix Aij , where Aij is one
if nodes i and j are connected and zero otherwise. In the case of weighted networks, the matrix
can also contain the weights wij of the edges between nodes i and j. For undirected graphs, the
adjacency matrix is symmetric. The adjacency matrix can show a block-like structure, if the
graph contains densely clustered subgraphs, and nodes in the same cluster are placed next to
each other in the matrix columns.

1.3 How to classify networks?

As networks get bigger, the eye as a tool to understand the structure of the network is not
sufficient anymore. The structure can become so complex that looking at it will not easily reveal
the important properties of the network. Markers or proxies that will classify the properties of
the network can be considered instead. Some of these classifiers, which were proven essential in
different contexts, are described in the following.

• degree

The degree k of a node indicates the number of neighbors that are directly connected to this
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node via edges. It corresponds to the row sum of the adjacency matrix. The average degree
of a network can be easily calculated as < k >= 2E/N . The degree distribution, which
comprises information on the degree of all nodes of the graph, is a defining property of the
network. Networks with a scale-free degree distribution are called scale-free networks in
order to distinguish them, for example, from random networks (networks in which links are
placed between nodes with some constant probability p), which have a Poissonian degree
distribution.

• strength

If the network is weighted, instead of the degree we can also define the strength of a node,
which is the sum of the weights of all links starting from this node [10]

si =
∑

i

wij

If weights are placed randomly on all links, then the degree of a node is proportional to its
strength s ∼ k < w > [10]. In the networks used here, nodes with high degree also tend to
have links with high weight.

• clustering coefficient

The clustering coefficient of a node n [107] is defined as the number of triangles T (n)
between this node and its neighbors, divided by the possible number of triangles
d(n) · (d(n)− 1)/2, where d(n) is the degree of the node.

cn =
2T (n)

d(n)(d(n)− 1)

If the clustering coefficient is high, then many of the neighbors of a node are connected
among each other as well. The average clustering coefficient of a network is the average
over all clustering coefficients of the nodes of the network. Social networks usually have
higher clustering than random networks, as friends of the same node tend to be friends
among each other as well. If the network is fully connected, the clustering coefficient of all
nodes is equal to one. In a tree-network, none of the neighbors of a node are connected.
The clustering coefficient is zero for every node.

• path length

A path between two nodes n1 and nk is a sequence of nodes P (n1, n2..., nk) in which
subsequent nodes are adjacent to each other. The shortest path in a network between
node n1 and node nk is the path with the smallest number of adjacent nodes, over which
information from node n1 needs to pass to reach node nk. Its length is called the distance
between node n1 and node nk. The diameter of a network is the largest distance between
two nodes on the graph. Graphs with a small diameter D ∼ logN or a small average
shortest path length have small-world properties [107]. This has been found to be the case
for many social networks [59, 106].

• betweenness

The betweenness centrality of a node n is related to the number of shortest paths dij
between any two nodes i and j, which pass through node n. It is in fact the sum over all

nodes i, j of the percentage of shortest paths
dij(n)
dij

passing through n between any two

nodes of the network [67, 32].

bn =
∑

ij

dij(n)

dij
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It is a proxy for the influence a node n can have on messages passing on the network
between any two nodes.

• temporal patterns

Temporal networks can be regarded as a sequence of static networks. As the temporal
development of the networks is too complex to follow directly, some proxies can also be
put forward for temporal networks.

– activity

To get an impression of the variability over time, the activity of nodes and edges,
the number of active nodes or edges, can be plotted as a function of time. This way,
temporal patterns become easily visible.

– average number of active nodes and links

Even if the number of active nodes and links per timestep does not change, contacts
can end and new contacts can be formed. In order to visualize this variability in the
network, we cam aggregate over a certain time period and consider the number of
distinct active nodes as a function of the aggregation time. In the networks consid-
ered here, the average number of active nodes increases with aggregation time.
Wherever the derivative of this measure in respect to the time is positive, we have an
introduction of new nodes into the network at that timescale. The same is valid for
links when considering the average number of active links.

– time-varying centrality measures

For each instant of the temporal network, the above mentioned properties like degree
or clustering coefficient can be calculated. However, the network snapshots are usually
very sparse and consist of many disconnected components of two or three nodes. A
more interesting measure is to partly aggregate the network and to consider these
properties as a function of aggregation time and starting time of the aggregation.

– temporal distributions

Additionally, the distributions of the contact times and the times between con-
tacts characterize the dynamics of the network. The duration of contacts is important
for the transmission of diseases or information. If network characteristics are chosen
in order to compare different networks in the face of their spreading capability, the
waiting-time distribution [101] can also be of interest. The waiting time here is
the time that passes between the start of two subsequent contacts of the same node
with two diverse nodes. It characterizes the time that information which arrives at
one node needs to wait before it can be passed on. The waiting-time plays a role when
nodes can recover from the epidemic or stop transmitting information after a certain
time. The inter-contact time distribution is here the distribution of the times
in which single links are not active. It informs about the time that passes before a
certain link is active again.

In the time-varying networks of face-to-face contacts which are of interest here, the
distribution of the duration of contacts as well as the distribution of waiting times are
both rather broad [20].

1.4 Dynamic processes on networks

Nodes and edges can have different states. Networks represent the connections between different
nodes. These connections can influence the states of the node. In order to understand how the
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state of a node develops, influenced by the state of its neighbors, we study processes on the
network. An introduction to complex dynamics on networks can be found in Barrat et al[9]. In
the case of diffusion processes, the state of the node is characterized by the number or volume of
diffusing particles which occupy the space of the node. Traffic flow can be modeled, for example,
by diffusion processes on road networks or electricity flow on power grids. In these flow networks,
edges can have a distinct capacity which cannot be exceeded. If there are no sinks or sources,
the amount of particles or the volume of the flow is constant. In the case of spreading processes,
there is no conservation of the entity (opinion, information or disease) which is spread. They
can be used to model the spread of diseases or rumours, as well as the spreading or forming
of opinions. In opinion spreading models like the voter model [19], a node adapts its state to
the state of a random neighbor. In models of epidemic spreading, a node can transfer its state
to a neighboring node if the neighbor is in the ’susceptible’ state and the node itself in the
’infectious’ state. Other state changes, like the transition from the ’infectious’ to the ’recovered’
state, happen independently of the influence of neighbors. Further processes with specific rules
concerning the change of states of nodes can be used to better understand such diverse social
phenomena as the consensus on word use in language (naming game [87, 27, 8]) or the evolution
of cooperation strategies (prisoner’s dilemma [69]). Here we will study more closely epidemic
spreading processes on time-varying networks.

1.4.1 Epidemic spreading

To study epidemic spread in populations, the population is divided into different compartments.
These compartments correspond to node states. People in one compartment are in the same
state. We can distinguish between several compartments, for example, susceptible, infected and
recovered. People change the compartment with a given transition rate. Depending on the
names of the compartments, where S stands for susceptible, I for infectious, E for exposed and
R for recovered, we have, among others, the SI, SIR and SEIR model. The different models are
used in different situations. If people cannot recover from the disease and stay infected forever
or at least longer than the time span which is considered, then the SI model is appropriate.
The SIR model applies if people can recover, gaining life long immunity, immunity which is
longer than the modeling time or if they die from the disease. A refinement of this model is
the SEIR model, in which the time in which people carry the disease without yet being able to
infect others is accounted for. Other models, where infected people become susceptible again
after being infectious (SIS) or after having recovered (SIRS), are not treated here. We introduce
the deterministic compartment models described by differential equations in a homogeneously
mixing population [3, 47] and afterwards describe the simulation on networks for the SIR model.

SI model

The simplest epidemic model divides the population into two compartments, infected and sus-
ceptible. Each individual is in contact with all other individuals. Infected individuals (I) in-
fect susceptible individuals (S) with rate β. The total number of individuals stays constant
(N = S + I).

dS

dt
= −βIS (1.1)

dI

dt
= βIS (1.2)

The fraction of infectious and susceptible in the population are i = I/N , s = S/N . The
differential equation which describes the spread of the SI epidemic over time can then be written
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as:

ds

dt
= −βNis (1.3)

di

dt
= βNis (1.4)

For this very basic model, an analytic solution can be obtained by replacing s in 1.4 with
1− i and i in 1.3 with 1− s, and using a variable transform (s = 1/y, i = 1/x). It is

s(t) =

(

1 + eβNt(
1

s0
− 1)

)

−1

(1.5)

i(t) =

(

1 + e−βNt(
1

i0
− 1)

)

−1

(1.6)

The solution depends on the fraction of initially infected i0 and initially susceptible s0.

SIR model

In a slightly more realistic approach, a third compartment is introduced. Infected individuals
can recover from the epidemic with rate µ. Recovered (R) individuals are removed. They are
immune and cannot be infected again. The differential equations that correspond to this model
are

dS

dt
= −βSI (1.7)

dI

dt
= βSI − µI (1.8)

dR

dt
= µI (1.9)

In contrast to the SI model, the whole population will not necessarily get infected in the SIR
model. The fraction of the population which is reached by the epidemic depends on the pa-
rameters β and µ. If the propagation rate is very low compared to the recovery rate, it can
happen that the epidemic does not spread at all. The basic reproduction number R0 specifies
the average number of secondary infections for an infected node in a population of susceptible
individuals. The basic reproduction number depends directly on the rates β and µ as R0 = β

µ
N .

If the average number of secondary infections per node is below one, the epidemic will not reach
a significant fraction of the population.

SEIR model

A further compartment that can be added is the compartment of exposed individuals (E). After
being infected, individuals are not directly infectious. They enter first the exposed state in which
they remain before becoming infectious with rate γ.

dS

dt
= −βSI (1.10)

dE

dt
= +βSI − γE (1.11)

dI

dt
= +γE − µI (1.12)

dR

dt
= µI (1.13)
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However, in real life there is a finite discrete number of people, so that the epidemic spread
needs to be modeled by difference equations. Propagation of the epidemic is not happening at
fixed rates either, it is a stochastic process. Stochasticity can be integrated into the model using
stochastic difference equations. Furthermore, not everybody is in contact with everybody else.
Once the homogeneous mixing hypothesis is not considered sufficient and when the underlying
network becomes too complex, for example when real data is given, differential equations become
unpractical and unsolvable. However, the epidemic spread can still be simulated numerically on
the underlying networks.

In addition to making the structure of the network more and more realistic, also the process
on the network could be refined. Recovered individuals could become partly susceptible again.
In general, different people can have different degrees of susceptibility to the epidemic, depending
on their overall health condition or history. Some might even be partly immune. The propa-
gation of the epidemic can furthermore depend on other variables, like seasonality or changing
local conditions like temperature, humidity etc. We do not have any information on possible
influencing conditions and also are mainly interested in how the network structure influences
the spreading on the network, therefore we will limit the models used to simple compartment
models. Parameters for the epidemic will be chosen arbitrarily, but within a reasonably realistic
range. As the time scale on which we model is in the order of days, birth and death are not con-
sidered. However, due to the dynamic properties of the system, nodes are constantly introduced
or removed from the system.

1.4.2 Simulation

We will describe the simulation for the SIR model here. Simulations for the SI and the SEIR
model follow the same principles. We perform epidemic simulations on temporal networks based
on contact data. The epidemic starts with only one infected node. Any effects due to the
introduction of multiple infected seeds at various distances from each other on the network or at
different times are thus excluded. Once the starting seed and starting time of the epidemic are
chosen, the epidemic spreads stochastically with fixed rate β from infected nodes to neighboring
susceptible nodes and infected nodes recover with rate µ. There are two different but related
ways to simulate the spread of the epidemic. Either the propagation of the epidemic is advancing
in discrete time steps, based on the discrete temporal network, or spreading is done continuously
in time.

Choice of seed and starting time

In simulations, it is important how the starting time and starting node are chosen. Here we choose
the node randomly with equal probability among all nodes. As nodes have different properties
like degree, strength or presence, there are nodes which play a bigger part in the propagation
of diseases. They are also more likely to contract the disease. The choice of the starting node
introduces a bias, as not all starting nodes are equally likely in reality to be infected. As high
degree nodes usually have a higher probability of being infected, one way of choosing the seed
could be, for example, a function of its degree. However, since we do not know anything about
the nodes of our dataset outside of the data, we do not use any information on the nodes in our
choice of starting nodes. The seed is chosen at random. Similarly, we choose the starting time to
be equally probable for all times. On static networks, the choice of a starting time is irrelevant.
On dynamic networks, some thought has to be given to the choice of the random starting time.
We consider two possibilities, a completely random starting time, independent of the choice of
the seed node, or the time of first introduction of the seed into the network after a random point
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in time. Since inter-contact times are bursty, so that nodes can be absent from the network for
a long time, it makes a big difference if the starting time is chosen completely at random or as
the time of first introduction of the node into the network after some random point in time. In
the first case, the node has the chance to recover before entering the network, which will result
in only one infected, in the second case, it will immediately be able to spread the epidemic. The
two procedures make a difference for the extinction rate of the epidemic and thus also for the
percentage of epidemic runs whose number of final cases is higher than a certain threshold. In
comparison to static networks, infecting the seed only at its first introduction into the dynamic
network would introduce a starting bias for dynamic networks. Seeds which are very rarely
in contact with other nodes have small edge weights in the static network. Their potential for
infecting their neighbors is low. If the seed is infected at the time of its first introduction into the
network after some random time, its capacity for infecting neighbors will be much higher than
on the comparable static network. Therefore, whenever the extinction rate is calculated or the
number of simulation runs which result in a final size of the epidemic below a given threshold,
we use the first case. If only the outcome of the epidemic above a given threshold is considered,
both methods lead to the same result, but starting the epidemic with the introduction of the
seed will need fewer simulation runs.

Discrete time steps

The minimum time step of the temporal network of the data sets we consider (see Ch. 2) is 20
seconds. Every 20 seconds the static network snapshots change. Many nodes will change their
neighbors or become isolated. We therefore choose to use 20 seconds as the minimum spreading
time step. Every 20 seconds, every infected node has once the possibility to infect each one of its
current neighbors. The probability of infection during a contact of 20 seconds is 1− exp(−20β).
Then, all infected nodes have the option to recover with probability 1 − exp(−20µ). For very
small β and µ, these probabilities can be approximated by 20β for the infection of a neighboring
node during the 20 seconds interval and 20µ for the recovery of an infected node. We use
these approximations in all simulations with discrete time steps. When all infected nodes are
recovered, the epidemic ends. The advantage of this method is that it is easy to implement, and
computation time on the time varying networks which we use here is reasonably short. If the
network has link weights wij , the probability of propagation will be modified to 20β′ = 20βwij .
Link weights represent here the probability of activity of a link and will be always between 0 and
1.

Continuous time

Another option is to simulate in continuous time. On the static network, this simulation method
is much faster. The probability for a node to become infected after t seconds of contact with an
infected neighbor is then −β exp(−βt). For every infected node n the time of infection is stored.
At the time of its infection, the time of its recovery is drawn from the exponential distribution
function µ exp(−µt). We do this by using the inverse probability transform sampling in order
to transform random numbers x drawn from a uniform distribution into random numbers t for
the exponential distribution. Thus the probability of the identically distributed random variable
to fall into an interval x1, x2, P (x1 < X < x2) =

∫ x2

x1

dx, is set equal to the probability

of the transformed random variable to fall into an interval t1 = t(x1), t2 = t(x2), P (t1 <

T < t2) =
∫ t2

t1

∫

−µ exp(−µt) dt. Thus we have:
∫

dx =
∫

dx
dt dt =

∫

−µ exp(−µt) dt. The

transformation function t(x) is then the inverse of the cumulated probability function of the
exponential distribution. The time of recovery is calculated as t = − ln(1 − x)/µ, where x



1.5. NETWORK TOPOLOGY’S INFLUENCE ON EPIDEMIC PROCESSES 9

is a random number in the interval [0,1). For each neighbor of node n the time of possible
transmission is drawn as t = − ln(1− x)/β. If the time of transmission of the epidemic is earlier
than the time of recovery of node n, then the neighbor node becomes infected at the given time.
For all neighbors who can get infected by node n, the time of infection is stored. If they already
possess a time of infection through another infected node, the time of infection is updated to the
earlier of the two times. In some simulations, in which the exact infection path was of interest,
also the node by which they got infected is stored. At the time of its recovery, node n recovers
and is removed from the network. The epidemic is over when all infected nodes have recovered.
If the network is weighted, for each transmission over a link with weight wij the probability of
transmission β will be modified to β′ = β ∗ wij .

On the dynamic network, the simulation is identical except for one difference. The time of
transmission is the time which passes while the infected node and its neighbor are in contact. In
order to calculate the time of infection, the time in between the contacts of the two nodes has to
be added, as long as the epidemic is not transmitted. The advantage of using this methods on
the time varying network is that simulations can also be done for high β and µ. Furthermore,
for each network snapshot of 20 seconds the epidemic can propagate along all connected paths
and is not limited to infect only direct neighbors of the infectious node.

Basic reproduction number

We calculate the average number of secondary cases 〈Rn〉 for each node n in the network. To this
end, we average the number of final cases that were directly infected by the starting node n over
several epidemic simulations. In order to obtain an approximation for the basic reproduction
number R0 we then take the average over 〈Rn〉 for all nodes of the network. Again, this way of
calculating R0 is very dependent on the choice of starting time. When the epidemic is started
with the introduction of the seed node, the extinction probability is much lower and thus the
average number of secondary cases per node is higher. To calculate R0 we therefore start all
epidemics at random starting times, allowing nodes to recover before they come into contact. In
any case, an R0 calculated using the number of secondary infections of individual nodes is not
necessarily equivalent to the epidemic threshold parameter calculated on population level models
[16].

1.5 Network topology’s influence on epidemic processes

When studying epidemic spread on static networks, it is of particular interest to under-
stand how the topological structure of the network influences the course of the epidemic
[46, 75, 49, 68, 64, 94, 81, 45]. To this end, often simulations on networks with particular
structural properties are compared to simulations on random networks. It has thus been found,
that the nature of the degree distribution has a strong influence on the epidemic threshold and
the overall outcome of the epidemic. In particular, networks with a scale-free degree distribution
facilitate epidemic outbreaks. In these scale-free networks the epidemic threshold is reduced,
and epidemics propagate faster than in random networks [75, 76, 54, 65]. This has a direct con-
sequence for immunization strategies. Random vaccination on scale-free networks is inefficient,
as it often removes only nodes with limited importance for the spreading process, while targeted
immunization can easily lead to a complete disintegration of the network by removing the hubs,
nodes with high degree and consequently high importance [2, 23].

Another property of many social networks is a dense community structure [33]. While com-
munities can facilitate spreading on a limited local scale, they globally hinder the diffusion of
information. If on top of the community structure weights are correlated in such a way with
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the topology that inter-community links have low weight and intra-community links have high
weight [37], this effect of trapping information in communities is enhanced [70]. If community
structures are strong, it is therefore a good immunization strategy to vaccinate individuals who
bridge different communities [83]. Similarly, clustering slows down spreading [104] and can reduce
the epidemic size [49] and R0 [60].

Furthermore, when information on the temporal structure of the network is available, a
comparison between simulations on dynamic networks with particular temporal properties and
networks with randomized dynamics can inform on the influence of particular temporal properties
of the network. In particular the burstiness of contact patterns slows down epidemic spread [44]
while correlations between events can sometimes facilitate the propagation of epidemics [82].

1.6 Overview

The subsequent chapters treat the following subjects. Chapter 2 gives a short summary on the
datasets used. Limitations of data and the effects of decisions concerning the data representa-
tions, such as the choice of the minimal time step length of temporal networks, are also discussed.
In chapter 3, we investigate the effect of the dynamics of the network on the spreading process
on the network. A focus will be put on the interplay between the timescales of the data and
the process on the data, as well as the finite time effects of data. In the following chapter (Ch.
4) we follow two directions to simplify the data representation. On the one hand, we look at
the optimal aggregation time of the temporal network, on the other hand, we try to simplify
the aggregated networks by grouping nodes together. Here we introduce a contact matrix of
distributions, which allows us to keep some of the heterogeneity of the links, even though single
nodes adopt group properties, losing their individuality. We consider the efficacy of immuniza-
tion schemes which can be derived from networks based on different data representations with
different levels of detail in chapter 5. As we have a wide choice of data representations, we try to
find a method which uses the maximum level of detail of the data in order to choose the optimal
nodes for immunization, and we discuss its limitations. In chapter 6, we test for the amount of
data necessary to make predictions for immunization schemes and the reliability of such predic-
tions. We will also test the applicability of generalized data representations to other situations
and discuss its limits. Finally, in chapter 7, we look at the relation of distances on static and
dynamic networks and at the distribution of temporal distances as well as the distribution of the
number of intermediary nodes in spreading processes. We give a short conclusion in chapter 8.



Chapter 2

Data collection

Network science has experienced a new surge of interest with the availability of large datasets.
The discovery that many empirical networks describing systems relevant in diverse contexts share
essential properties, like a scale-free or at least very broad distribution of degrees [22, 7], raised
hopes that the theory of complex networks facilitates a general and unified theory of complex
systems.

The study of the role of dynamical properties of temporal networks could only recently profit
from detailed datasets. This opens the way for advanced, data-backed research on many open
questions concerning the interaction of people, their dynamical contact patterns, the importance
of single individuals on the spread of epidemics, temporal distances in networks and many more.

Dynamical (and topological) properties of real contact networks and their influence on dy-
namical processes on the network can be studied on the temporal data in order to understand
which features of the dynamical properties have the most significant influence on specific dy-
namical processes on the network. These features can then be extracted, compared for different
datasets and used in order to construct models of temporal networks [90, 78].

Data is also needed to inform existing models. For example, models for epidemic simulations
can use census data, age data, data of human mobility and airline transportation data [99, 5].
Depending on the model, different degrees of precision of the data are needed. Precise data with
high resolution is yet rare and therefore most models are using more general data. Comparing
models informed by data representations containing various levels of detail can give an insight
about how much information and which level of precision for data is needed in order to obtain
results at a specific level of precision.

The data used here has a very high resolution. This allows us to compare results obtained by
using precise data with results based on more general data - especially general static data - and
discuss the differences due to various levels of detail on dynamic and individual information. The
data was collected in the framework of the SocioPatterns collaboration [85], which we introduce
in Sec.2.1.

Even though very precise data is a very good proxy for reality, there are still many limits.
When a network is formed, decisions need to be taken about what is considered a node and
what an edge. These decisions, like the choice of a threshold on the creation of edges, can
greatly influence the topology of the network and the outcome of simulations. The right network
representation for the given problem or question is therefore essential. [18]. Thus, in every data
collection a bias is introduced through the choice of the network representation and selection of
the information that is included (see sec. 2.3). Furthermore, datasets include errors, which can
be eliminated by cleaning, but at the same time an expectation bias is introduced, as outliers

11
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are discarded, when they do not meet the expected criteria of the corresponding distribution
(see Sec. 2.4). In addition, datasets represent only a limited window of reality. We discuss the
effects of its limitation in time in Sec. 3.4, its limitation in size in Sec. 2.5 and its limitation in
resolution in Sec. 2.6.

2.1 SocioPatterns

The data sets used in this thesis were collected by the SocioPatterns collaboration [85]. They
comprise face-to-face contact data between individuals at different venues. The data sets which
we will use come from two settings: conferences and hospitals. Participants were equipped
with radio-frequency identification (RFID) tags, which emit and receive signals in a peer-to-peer
fashion. The emitted radio packets contain a unique identifier for the device and the time of
emission. The tags register contacts autonomously whenever two participants face each other
at a distance below 1-1.5 meters. The angle of detection is about 120 ◦. As radio signals are
absorbed by the body water, the device can only efficiently emit signals towards the front of the
body, thus greatly reducing the risk of false positive contacts of people who are in proximity but
not facing each other.

The resolution of the contact data is extraordinarily precise, as contacts are registered con-
tinuously. However, detection of contacts is not instantaneous. The RFID tags alternate emit
and receive cycles. When a packet is emitted during the emit cycle, it can only be registered by
another RFID tag in the receiving cycle. Thus, it can take some time before a contact is reg-
istered. The contact data was therefore discretized into 20 second timesteps, which guaranteed
with a probability of 99 % that an actual contact was recorded [20]. Also, meaningful contact
lengths were assumed to not last much shorter than 20 seconds.

Further details about the collected data and the method of data collection can be found at
the SocioPatterns website (www.sociopatterns.org) and in related papers [85, 20, 11].

2.2 The datasets

The data which are used throughout this work are face-to-face contact data of different venues,
from the SocioPatterns collaboration [85]. The data vary in many properties, like number of
participants, density of links or number of days. Depending on the setting, some data also have
meta-information about the participants. For instance, the participants in the hospital data sets
can be classified as Assistants, Doctors, Nurses, Patients or Caregivers. In order to understand
the processes on the networks better, it is of advantage to know some of the structural and
dynamical properties of the data. In the following, a short overview of some important aspects
of the data are given. We use two types of data sets, data from conferences and data from
hospitals. The conferences were the Congress of the ’Société Francaise d’Hygiène Hospitalière
(sfhh), the European Semantic Web Conference (eswc) and the ACM Hypertext Conference (ht).
The hospital data came from the Childrens’ Hospital Ospedale Bambini Gesu (obg) in Rome and
from a pediatric ward in a hospital in Lyon (lyon2011 and lyon2012). The length of the data set
and the number of participants for each data set are given in Tab. 2.1.

2.2.1 Activity

In Fig. 2.1 the number of participants which are in contact with other participants is given for
each timestep, as well as the number of connections which are active at each instant. This activity
shows strong daily patterns. Coffee breaks and lunch breaks are marked by high peaks of activity,
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Figure 2.1: Number of active nodes and links per timestep. On the left column are the conference
data sets ”sfhh”, ”ht” and ”eswc”, on the right column the hospital data sets ”obg”, ”lyon2012”
and ”lyon2011”
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Name event type year length participants reference
sfhh conference 2009 2 days 403 [88]
ht conference 2009 3 days 113 [41, 84]
eswc conference 2010 4 days 180 [1, 100]
obg hospital 2010 10 days 119 [40]
lyon2011 hospital 2011 4 days 80
lyon2012 hospital 2012 11 days 84

Table 2.1: For each dataset, the type of the data (conference or hospital), the year in which it
was collected, the time in days over which it was collected and the number of participants is
given. References are provided for data sets which are publicly available or for which analysis
have been published.

data E L ld W 〈w〉10−3 〈d〉 〈C〉
sfhh 26040 9565 0.1181 1405220 1.284876 47.47 0.28
ht 9859 2196 0.3470 413540 0.901633 38.87 0.5347
eswc 18332 4890 0.3175 876920 0.415114 55.57 0.545
obg 16009 1227 0.1748 766000 0.911181 20.62 0.535
lyon2011 17672 1405 0.4446 885660 1.813264 35.13 0.6876
lyon2012 19015 1278 0.3666 962220 0.853234 30.43 0.74

Table 2.2: E: number of events L: number of links in the fully aggregated network, number of
connections among nodes, ld: link density, W: total time of all contacts (in seconds), 〈w〉: average
weight per link, corresponds to W/(TL), where T is the length of the data set in seconds, 〈d〉:
average degree, 〈C〉: average clustering coefficient

whereas during the night no contacts take place. Depending on the dataset, weekly variations
can also be noticed. For instance, there is a strong drop in activity during the weekend in the
”lyon2012” dataset and the first and last days of the ”eswc” conference show lower activity. The
percentage of nodes which are in contact at any time varies also between the datasets. While in
the ”obg” dataset, at no time more than about 15% of the participants are in contact at the same
time, in the ”sfhh” dataset at peak times it is over 30%. The networks also differ in the number
of different contacts per person, the average number of events per time and other properties as
listed in Tab. 2.2.

2.2.2 Degree vs. Strength

Nodes can be classified according to their degree and strength. If the contact time were identical
for each link, then degree and strength would be linearly correlated. This is however not the
case. As can be seen in Fig. 2.2, higher degree leads to higher strength, but not in a linear
way. Participants with many diverse contacts also spend more time on average per contact.
This superlinear dependence can be observed in many data sets and hints at the presence of
superspreaders, individuals with many and intense contacts [20]. Furthermore, especially in the
hospital data sets, the relation between degree and strength depends also on the class to which
nodes belong. A particular case is the children’s hospital (”obg”), where young patients were
attended by their parents or other caregivers. For these classes, the relation between degree and
strength is fundamentally different from other classes, as a low number of diverse contacts is set
against high strength, resulting from few but very intense relations.
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Figure 2.2: For each data set (conferences at the left, hospitals at the right), the strength of
the nodes is plotted over the degree. The nodes of the hospital data set have meta information
concerning the role they occupy. The nodes of the ”lyon2011” and ”lyon2012” data sets can be
differentiated into Assistants, Nurses, Doctors, Patients and others, where others are people from
diverse roles. The ”obg” data set includes Assistants, Nurses, Doctors, Patients and Caregivers.
Patients were children in this hospital. Caregivers were parents or mentors which accompanied
the child.
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2.2.3 Contact-dynamics distributions
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(d) total contact time

Figure 2.3: For all data sets are shown: (a) contact-time distribution, (b) inter-contact time
distribution, (c) waiting-time distribution, (d) distribution of total contact time per link, which
is proportional to the weight distribution, when divided by the respective length of the dataset.

The weight distribution is very broad. It is related to the distribution of total contact time
per link. In Fig. 2.3(d) the distributions of total contact time per link for the six data sets are
plotted. While the distributions for the conference data sets are very similar, the distributions
for the hospital data sets diverge slightly for low contact times. Especially in the ”lyon2012”
dataset, there are comparatively few links with low contact times. This could be due to the fact
that contacts in the hospital are less regulated by chance. Many contacts follow the schedule of
the hospital, for example, when nurses or doctors visit the patients on a regular basis, or when
they meet the same set of other nurses or assistants. In conferences short and unique contacts are
more likely to happen by chance, as participants can mix freely during breaks. In the appendix,
the weight distribution for contacts among and between different classes is shown for the ”obg”
dataset.

The contact-time distribution on the other hand is very similar for all data sets and shows
behaviour similar to scale free distributions (see Fig. 2.3(a)). The distribution of the time that
passes between two contact events among the same two neighbors also has a long tail, but a small
peak appears at a duration of one day, or rather a small dip at about 12 hours. As contacts are
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more likely to happen during the day, the duration between two contacts is less likely to be in
the order of twelve hours and more likely to be one entire day, even though in general longer
times between two contacts are less likely and short inter-contact times are abundant (see Fig.
2.3(b)). The waiting-time distribution (Fig. 2.3(c)) also shows broad behaviour with a peak due
to the day-night patterns.

2.3 Limitations of data

The data collected via RFID tags has a great advantage over data collected by questionnaires.
Contacts are registered directly and therefore not subjectively biased. This method also avoids
some of the shortcomings of traditional data collection via questionnaires like the informant
inaccuracy or the fixed choice effect [48]. However, other limitations cannot be eliminated.
Datasets are a limited version of reality. They only show one instance of reality, limited in
time, space and resolution. Datasets inevitably need to have a beginning and an end. Here,
the time was limited to a few days. Also, only one specific place was surveyed, in this case a
hospital or conference. As soon as participants leave the area, taking off their badges, contacts
are not registered anymore. Participation of the experiments was on a voluntary basis and some
individuals have declined to wear a badge. In case they also share behavioural properties, this
could have introduced a sampling bias (see also Sec. 2.5). Some participants did not properly
handle their RFID tags, which led to some spurious contacts (see Sec. 2.4). The data sets are
also limited in time, extending only over a few days. For simulations which last longer than the
dataset, an artificial repetition or extension of the data set is necessary.

Furthermore, data is always collected for a purpose, focusing only on those parts of reality
which serve this purpose. Only one specific detail is considered and everything thought unnec-
essary is disregarded. In order to better understand communication patterns between people,
many different datasets can be taken into consideration, each one adequate to answer a different
question: telephone calls, email contacts, interaction in online forums, face-to-face contacts. To
simulate the global spread of epidemics, census data, data on human mobility and travel data
can be used.

A good proxy for the probability of transmission of diseases, like influenza, which are trans-
mitted via aerosols or droplets in close contact [98, 38, 108], are face-to-face contacts. To be
more specific, simulation of influenza transmission via small aerosol particles only requires in-
formation on room co-presence as particles stay air-born for some time, whereas larger particles
settle quickly and require close contacts for transmission [38]. Nevertheless, other transmission
pathways are possible as well. The transmission of mainly fomite-mediated diseases, for example,
might not be simulated successfully by knowing only face-to-face contacts, as no information on
touching or shared objects is registered.

Furthermore, a possible dependence of transmission probability on inter-personal distance
might not be proportional to the distance-dependent detection probability of signals. The radio
signals emitted by the RFID tags can have different predefined strengths, ranging from 1-2 meter
up to several meters. The present data is registered with weak radio signals, limiting the data
to true face-to-face contacts at a distance of 1-2 meters, which are a reasonable proxy for human
communication. Influenza transmission can, however, also happen at larger distances through
sneezing or small particle aerosols [53].

Other aspects which play a role in disease transmission, like information about the immunity
of participants due to prior exposure, are not captured by the available data, mainly because
they are unkown. Except for their contact activity, people are considered identical. Where meta-
information is given, like information about the roles in the case of the hospital, which could be
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correlated to frequent exposure and immunity, this information is not used to assign different
properties to people. Another aspect of reality which cannot be captured in our simulations is
the change of behaviour people undergo when faced with the possibility of infection vis-a-vis an
infectious individual. During the data collection no individuals with respiratory illnesses were
registered. However, all of these aspects can be considered as being part of the stochasticity of
transmission and the choice of transmission parameters.

2.4 A short note about cleaning

Once the data have been stored, they need to be checked for errors and spurious contacts. Some
participants do not handle the equipment as intended, taking off their badges or sometimes even
leaving them next to other badges, which leads to continuously registered contacts. Some RFID
tags could have been faulty, not detecting or emitting radio signals in a reliable way. Also, when
badges are distributed at the beginning of the experiment or collected at the end contacts can
erroneously be registered. These spurious contacts can be seen as abnormal behaviour in the
data sets. High and narrow peaks of activity at the beginning or end of the data set, as well
as outliers in the distributions of contact times, are an indication for spurious signals. Also, an
augmented number of simultaneous contacts per node can be a sign of false positives. In some
datasets, therefore, parts of the data were stripped off, some nodes were removed completely,
and some partly if the number of simultaneous contacts exceeded a threshold of 6. In the ”obg”
dataset, only contacts which last less than one hour are considered.

However, deciding which registered behaviour is abnormal and due to a technical or human
error, and which registered behaviour is real, is often difficult as no additional information is
given to decide whether an outlier in the data is due to an uncommon event or due to an error
in handling the material. Therefore, cleaning data will not only erase errors but also introduce
a small expectation bias.

2.5 Incomplete samples

The observed interactions are just a subset of global interactions since people in the venue were
not separated from the rest of the world. They could leave the venue, go home or to a hotel
at night and meet other people with whom they could interact. Furthermore, participation was
voluntary. Some people chose not to participate. Therefore, participants in the experiment were
only a subset of present individuals. However, the fraction of people which agreed to participate
was rather large in the used data sets. In the case of the ”lyon2011” and ”lyon2012” datasets,
more than 90% of the individuals in the ward agreed to participate in the study. In the ”obg”
dataset, after cleaning, about 65% of the individuals are registered in the data. In the ”sfhh”
data, only about 30% of the conference participants agreed to wear RFID tags, in the ”ht09”
data it was about 75%. In addition, some contact events occurring during a measure might not
have been registered. However, the probability of registering an event which lasted at least 20
seconds within a 20 seconds timestep was very high, so this does not play a major role here.
Nevertheless, the detection of a face-to-face contact is subject to a threshold related to the
distance of participants. Thus, many potential contact events taking place at a larger distance
are not registered, thereby transforming the topology of the network [20].

The effects of incomplete data can be modeled through different sampling methods. An in-
complete set of participants, for example, can be modeled by node sampling. If node sampling
does not happen randomly, if for example people are more likely to participate in a study when
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one of their friends participates, then people with more friends will be more likely to partici-
pate, introducing a sampling bias. This will inevitably change network properties like the degree
distribution. Similarly it is possible that people are more likely to participate if a certain per-
centage of their community participates, which can have the effect that entire communities are
excluded from the sample. But even random sampling does not leave the network unchanged.
For example, a degree distribution which is scale free in the complete network might not be
scale-free in the sampled network [92]. Other properties of the network change as well when the
network is sampled [71, 50, 48, 26, 92, 91, 20]. In which way these properties change depends
on the sampling method [50]. We will only consider incomplete data through node sampling.
The related change of network properties has a direct effect on the outcome of processes on the
network. The effects of incomplete data are inherently the same as the effects of node removal,
for example through attack of nodes in a network [23, 24] or through immunization [77, 25].

We try to get an insight on the size of this effect on the outcome of epidemic processes on
the network data. To this end we simulate an SIR model on random samples of different sizes.
In Fig. 2.4 we see the results of sampling on the epidemic spreading for the ”sfhh”, the ”obg”
and the ”lyon” datasets. The used sampling method is comparable to the vaccination of random
individuals. As the distribution of the final number of cases is bimodal, removing nodes from the
network has two effects, it decreases the average number of final cases for all runs that attain a
certain percentage (here we generally choose 10%) of the network, and increases the number of
runs, for which the outcome of the epidemic is below this percentage. For the ”sfhh” network, the
attack rate (AR), the final size of the epidemic divided by the number of nodes in the network,
decreases already visibly with the random removal of very few nodes. Thus, in strongly sampled
networks the fraction of the network that gets attained by the epidemic is underestimated. This
effect, that the percentage of infected participants decreases with the removal of single nodes, is
most likely stronger for sparse networks than for densely connected networks.

2.6 Discrete timesteps

The data used here is discretized into network snapshots at different time instants. The choice
of the minimum timestep size proves to be quite important. We simulate the choice of different
timestep sizes by aggregating the network with different aggregation timesteps. By doubling
the aggregation timestep size, we merge two consecutive network snapshots into one. Whenever
these two network snapshots contain the same nodes but with different links, then the new
merged network snapshot contains nodes with higher degree. The chosen timestep length in the
discretization of the dataset has therefore a direct influence on the distributions of the average
degree of all nodes per timestep. In Fig. 2.5(a) the dependence of the average of this measure
over all timesteps in the complete temporal graph on the length of the aggregation timesteps is
shown. Longer aggregation increases the number of contacts which happen at the same time and
thus the average instantaneous degree of the network at each timestep. In order to make results
more consistent, nights were removed and data were stripped to a length which is a power of
two.

When the network is aggregated into larger timesteps, the minimum connection time of
contacts is also increased. For contacts which last for the length of one timestep, this means at
least a doubling in contact length. Furthermore, several consecutive short contacts between the
same two nodes can merge to a longer contact, and a large fraction of contacts is extended by
one or even two timesteps, depending on their starting time and duration. The distribution of
contact length depending on the aggregation timestep is shown in Fig. 2.6(a) for the ”lyon2012”
dataset. All contact lengths increase significantly when aggregation timesteps are doubled.
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Figure 2.4: The attack rate as a function of the number of participants in the data set. The
parameters for the simulation are β = 0.00015 and (a) for the ”sfhh” data set β/µ = 50 (b)
for the ”obg” dataset β/µ = 500, (c) for the ”lyon2011” dataset β/µ = 100 and (d) for the
”lyon2012” dataset β/µ = 300
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Figure 2.5: (a) The average degree of the network at each timestep, averaged over the complete
network, dependent on the aggregation time step of the network for various temporal networks of
different sizes and from different data sets. The networks were stripped of all contact-free episodes
and shortend to a length which is a power of 2. (b) For the ”lyon2012” dataset (with nights),
the degree distributions are shown for different aggregation timesteps. The degree distribution is
taken for each time instant of the dynamic network and then averaged over all degree distributions
of the dynamic network with a specific resolution.

10
2

10
3

10
4

10
5

10
6

contact duration (seconds)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

fr
eq

ue
nc

y

20
40
80
160
320
640
1280
2560
5120

(a) contact duration

10
-4

10
-3

10
-2

10
-1

10
0

weight

10
-4

10
-3

10
-2

10
-1

10
0

fr
eq

ue
nc

y

20
40
80
160
320
640
1280
2560

(b) weight

Figure 2.6: (a) Contact-time distribution for the aggregated temporal networks with different
aggregation time steps. (b) Distribution of weights for the aggregated temporal networks with
different aggregation time steps
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Related to the distribution of contact lengths is the total time a link between two nodes
is active and the probability of activity for each link. When we build a static network out of
the dynamic data, any contact that is registered in the temporal data corresponds to a link in
the static network. Link weights of this resulting static network are chosen according to the
total time each link has been active in the data divided by the length of the data-collection
time. The distribution of the total time each link is active is then related to the distribution of
weights. Epidemic simulations on this heterogeneous static network (HET) can be a good proxy
for simulations on the temporal network [88].

The average weight of links plays an important role for the spreading of epidemics as it
influences the probability of transmission. In Fig. 2.6(b) the distribution of weights on the
HET network is shown for different aggregation steps of the network. With the increase of
contact times for each event, also the weight of the links increases significantly. Aggregating over
the complete network results in a static network where each link is active with probability 1.
Therefore, choosing a higher minimum timestep size can have a strong influence on the epidemic
process on the temporal network.
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Figure 2.7: The average over the final size of the epidemic for epidemics which reach more than
10% of the population as a function of the aggregation timestep size for three different ways of
aggregating the network. The parameters used are: µ−1=4 days and (a) for ”sfhh” β = 50µ (b)
for ”lyon2012” β = 100µ

In Fig. 2.7 an epidemic is simulated on networks which were aggregated with this simple
aggregation method. The influence of the minimal timestep size on the outcome of the epidemic
is quite strong.

One solution to this problem is to introduce weights also on the links of the temporal network.
When the network is aggregated, weights can give an alternative to distinct contact lengths. The
weight here corresponds to the probability that a contact link is active. The exact times at which
a link is active are thus replaced by activation probabilities. If weights are introduced even in
the temporal network, the effective duration which links are active can be reduced below the
minimum timestep length. Two alternative methods are chosen here which keep the average
strength of the temporal graph constant. In the first method, each link has a weight which
corresponds to the probability of activity for this link. This method also preserves the weight
distribution of the links. While aggregating the network over n timesteps of size dt, the weight
of a link between nodes i and j is defined as the total time Tij the link was active during the
n timesteps, divided by the length of the new timestep: wij = Tij/(ndt). If the network is
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aggregated over the complete temporal data using this heterogeneous rescaling of link weights,
the resulting network is the static network with heterogeneously weighted links (HET).

Another method is to weight links according to the overall average probability for links to
be active during this timestep. The total time T =

∑

i>j Tij all links are in contact during the
n timesteps is divided by the number of links L which are active and the length of the new
aggregation timestep ndt: 〈w〉 = T/(Lndt). This method retains the average probability of
activity of links in the network over a time period ndt. By aggregating over the entire network
using this homogeneous rescaling of link weights, the result is a static network with homogeneous
weights (HOM). The weights in the HOM network are the average over all weights in the HET
network.

By including the information of how long links have been active during each time step, the
epidemic spreading depends much less on the aggregation timesteps size. Similar to the distinc-
tion between spreading on the HOM and HET network [88], the more individual information is
included in the link weights, the better the outcome. It seems therefore more important to focus
on measuring the exact duration a link has spent in contact, rather than the exact time a contact
starts. However, this is only valid within a certain range of parameters. Simulations in Fig. 2.7
are done with a probability of recovery µ = 1/(4days) which is longer than the used data. As
will be seen in Sec. 3.4 and Sec. 4.1 for larger µ the rescaling with weights is not enough to
assure a reliable outcome of the epidemic for all aggregation step sizes, some information on the
timing of links cannot be neglected for accurate simulation results.

In order to introduce weights on the contact links, information about the exact contact time
length in a resolution lower than the resolution of the network timesteps needs to be available.
Being able to increase the timestep length when using weighted links might therefore not allow for
much improvement on the current data collection methods, as the exact information on contact
length is still necessary, but it can be used in order to reduce the size of the data afterwards.
This will be discussed more thoroughly in the scope of data representations in Ch. 4.

One way to obtain similar results as with the rescaling method with heterogeneous weights,
but with less precision on the measuring method concerning the exact duration of the contacts,
would be to make the probability of detection for a contact proportional to its activity during
the time interval. This method is called ”drop” in Fig. 2.7. We model this artificial scenario
by using the weights of the links in the temporal network and creating a new temporal network
where links are kept or dropped stochastically with a probability proportional to their weight for
each aggregation timestep. Thus, if the link was active during the entire time ndt, the weight
would be w = 1 and the link is active during the aggregated timestep of length ndt. If however
only in m out of n time windows of size dt the link was active in the temporal network, then in
the aggregated network the link is active in the time window of size ndt with probability m/n. As
contact events are dropped, some connections between nodes which lasted only for a very short
duration in the temporal network are lost entirely. This corresponds to setting a threshold in the
aggregated static network, dropping links with low weight with a certain probability. This method
shows that if detection of contacts is not always 100% sure, if furthermore it is proportional to
the actual time spent in contact, then choosing slightly higher aggregation timesteps does not
have the same severe effect on the outcome of the epidemic as the basic aggregation simulated
above suggests. At least up to a minimum timestep of about 5 min the results are similar to the
method with rescaled weights.

Thus, even though for an ideal data acquisition the timesteps should be infinitely small and
the detection probability of a contact equal to one, a coarser method of contact detection can
still yield reasonable data for epidemic simulations. If detection of an actual face-to-face contact
has a constant probability per infinitesimal timestep, then the probability of detection of the
contact before t seconds have passed follows a cumulative geometric distribution. The data is
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discretized into 20s timesteps afterwards, so that, whenever a signal of a contact has fallen into
one of the 20s time segments, the contact is marked in the data for this time segment. On
the one hand, in order to have information about the true distribution of contact length, it is
necessary that a contact that is active during an entire time segment is registered with a very high
probability for this time segment so that long contacts, which last over multiple time segments,
are not disrupted. On the other hand, if a contact lasts shorter than the time segment, then the
probability of detecting a contact event should be proportional to the fraction of the time segment
during which the contact is active, so that the total contact time of all contacts is conserved on
average and not artificially prolonged. For the choice of a minimal time step, a compromise has
to be made between the overestimation of activity by choosing the time segments too long and
a loss of continuity in contacts by choosing it too short.



Chapter 3

Epidemic simulation on temporal

network data

Due to a lack of temporal network data, most simulations of epidemic spread have until recently
been performed on static networks. However, simulations on simple dynamical model networks
have already shown the important influence of the dynamics of networks on the outcome of epi-
demic simulations. For example, varying the frequency with which nodes change their interaction
partner has an effect on the final size of the epidemic. The faster nodes mix, the higher the final
size of the epidemic, influencing R0 and the epidemic threshold [102, 103].

The now available dynamical data open up new opportunities to study the temporal features
of datasets and their influence on dynamical processes on the data set. Data sets come from a
variety of sources, representing different aspects of human interactions, like communication via
telephone or email, online interactions, human mobility, proximity or face-to-face contacts [85].
Despite their diversity, these datasets show many common patterns, among others large inter-
event time distributions [6, 101]. Furthermore, events are often correlated, so that one action
is the result of another (emails are forwarded or answered immediately, the news received in a
telephone call is transmitted to friends) or two events have a high probability to happen at the
same time (people meet and interact in groups, contacts are more likely to happen at a certain
time of the day, i.e at lunch breaks, or during the week as opposed to the weekend). This and
other factors result in the overall activity of the data showing daily patterns, night-day patterns,
weekly patterns and patterns of higher time order.

These dynamic structures of the data will influence dynamic processes on the data. In par-
ticular, the bursty nature of contact patterns was shown to slow down spreading [101, 39, 44],
while temporal correlations can actually accelerate outbreaks [82]. Using the SIR model, it was
found that burstiness hinders propagation for high propagation probabilities, while group conver-
sations favor propagation at low propagation probabilities compared to temporal networks with
randomized dynamics [63]. The heterogeneity of temporal contact patterns can even completely
impede the spreading of epidemics [62].

In this chapter we have put our main focus on the timescales of the process and how they
interact with the timescales of the network. For an SIR process on the temporal network, we
can change the timescale of the process by changing the probability of propagation β and the
probability of recovery µ at the same time. This is comparable to the mixing model of Volz et
al [102] mentioned before. Increasing the speed of the epidemic is comparable to decreasing the
speed of the temporal interactions, which corresponds to decreasing the mixing rate of nodes in
the model of Volz. In temporal networks with large waiting-time distributions, speeding up the

25
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epidemic will decrease the number of different neighbors each node will see during the course
of the spread and especially during its infectious period, while slowing down the speed of the
epidemic will lead to higher mixing of nodes during the epidemic. On static networks, changing
the timescale of the process does not have any effect on the outcome of the epidemic. Only the
duration of the epidemic process will change.

Dynamic networks have intrinsic activity fluctuations at different timescales. While the re-
covery of infectious individuals is unaffected by these activity fluctuations, the propagation of
the epidemic depends strongly on the number of available neighbors and the overall density of
the network. Temporal inhomogeneities in the network structure, changes of activity of nodes
and links, can therefore temporarily change the equilibrium between recovery and propagation
rates, thus steering the development of the epidemic. In section 3.1 we show how those temporal
structures influence the course of the epidemic. In extreme cases, the outcome of the epidemic
will then depend considerably on the starting time, as can be seen in Sec 3.2. Recurring long
periods with no or very little activity can furthermore hinder the spread of epidemics, depending
on how many of these periods are run through (see Sec. 3.3). In section 3.4, the influence of the
timescale of the epidemic process on the size of the epidemic is shown for data sets with broad
inter-contact time distributions. It becomes apparent that the length of the network dataset plays
a non negligible role on the outcome of the epidemic. In order to compare which characteristics
of the temporal network influence the outcome of the epidemic most, we simulate epidemics for
different model networks in Sec 3.5, in which single features of the temporal network are changed.

3.1 Activity fluctuations
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Figure 3.1: Development of the number of infected nodes over time for different spreading pa-
rameters β and µ of the SIR process, where µ = β/100. Out of 100 simulations, the continuous
lines are the average over those simulations with a final size of the epidemic exceeding 10% of
the nodes. The dotted lines show the standard error.

Temporal networks have dynamic structures at different timescales. These structures influ-
ence the dynamics of processes on the network. In return, processes on the network can reveal
the temporal structure of the network. By tuning the timescale of the dynamic process, network
structures at different timescales can become apparent in the development of the process.

Fig. 3.1 shows how the number of infected individuals over time follows the activity pattern of
the network for SIR processes at different timescales. Starting times are random. Processes which
infect less than 10% of the nodes were filtered out before averaging. The average for different
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random starting nodes and times is shown. The temporal evolution of the SIR processes was
averaged relative to their starting time and not the absolute time on the network. The parameters
β−1 and µ−1 are varied over several orders of magnitude from seconds to months, keeping the
ratio β/µ constant. Thus β can be seen as an indicator for the spreading speed of the epidemic.
For an epidemic spreading rate in the order of inverse minutes, daily patterns, like coffee breaks,
characterize the course of the epidemic. For slightly slower spreading, with β−1 in the order
of hours, night-day patterns are clearly visible. For even slower spreading (β−1 in the order of
days), night-day patterns are still present but they become small in proportion to the overall
shape of the time development of infected nodes. For β−1 in the order of months, the day-
patterns disappear. The dataset used only extends over a few days; monthly or strong weekly
variations are not present and can therefore not be seen in the course of the epidemic.

The number of newly infected nodes at any time is directly related to the probability of
propagation and to the activity of the network. Thus, if the propagation probability is low,
the same fluctuations in activity will result in low fluctuations in the number of newly infected
individuals. When low activity leads to β ∗ 〈k〉/µ < 1 , then the number of infected nodes
decreases as more nodes recover than are newly infected. This threshold is an approximation on
static networks when all nodes except the seed are susceptible. It can be applied for each static
snapshot of the dynamic network where 〈k〉 is the average degree of the network snapshot but it
is probably more useful to consider 〈k〉 as the average degree of the temporal network aggregated
over the time a node is infectious and also include the weight of the links. The larger µ is, the
steeper is the decrease of the number of infected individuals in periods without activity. Thus,
the higher the probability for propagation and recovery, the more the variation in the data is
imprinted on the spreading process.

For fast processes, patterns at small timescales are emphasized in the development of the
process but the process also finishes quickly. A process with low β and µ covers a longer time
period on the network but will also be less sensitive to short-term fluctuations.

3.2 Influence of starting time
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Figure 3.2: Final size of epidemic depending on the starting time of the epidemic for two different
parameter sets with β/µ = 100. A medium fast one with µ = 1day−1 and a fast one with
µ = 10day−1. The node activity of the corresponding networks is plotted as a reference. The
average and standard deviation is plotted over all outcomes with a final size greater 10% of the
nodes and with a starting time falling into a one-hour bin. The grey and orange dots are the
data points.
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As the temporal data is not homogeneous in time, the starting time of a process on the
network can greatly influence its outcome. In Fig. 3.2 it can be seen how the final size of the
epidemic depends on the starting time of the epidemic. Depending on the speed of the epidemic,
already a few hours difference can be decisive, independent of the intrinsic properties of the seed
itself.

In the case of fast epidemic spread only a small part of the temporal network influences
the epidemic process. In particular, if the process starts shortly before nightfall, the directly
following night has a strong impact on the outcome of the epidemic. During the night, the ratio
of newly infected to recovered nodes is much lower than during the day. The amount of infected
nodes decreases, which either hinders the further epidemic spread or ends it altogether. In the
case of slower epidemic spread the part of the network that is influential on the outcome of the
epidemic can extend over several days. In Fig. 3.3 the distribution of the times up to the highest
peak is shown. For fast epidemics, the epidemic peak is reached after only a short time. More
precisely, for β = 1./86.4s−1, the epidemic peak is reached around 1 hour after the start of the
epidemic. In the slower epidemic, the probability of recovery µ = 1day−1 is lower, so that a
significant part of infected nodes will not recover over night. Even though the epidemic peak is
most likely to happen within the first day, the epidemic can also peak on the following days. In
fact, it will have many daily peaks of different height. The peak time is calculated as the time
with the highest number of infected individuals. The distribution of peak times (Fig. 3.3) shows
daily recurrent peaks with diminishing intensity.
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Figure 3.3: Distribution of the peak time of the epidemic for the ”lyon2011”and the ”lyon2012”
dataset. The parameters of the epidemic process are µ = 10/day in the left and µ = 1/day in
the right plot with β/µ = 100.

However, not only the starting position relative to nightfall influences the epidemic. Less
severe activity modulations, like the weekend in ”lyon2012”, also affect the outcome. For the very
fast epidemic the effect is immediate. If the infected seed is introduced on the weekend, epidemics
have an overall lower outcome as the activity during the beginning phase of the epidemic is
generally lower. For the slightly slower epidemic, an introduction of the infected seed one or
two days before the weekend leads to a smaller total number of infected, as the estimated peak
time then falls together with the low activity on the weekend and the epidemic cannot expand
as easily. Epidemics starting on the first day of the weekend will either end with a very low final
size or outlast the low weekend activity and end with a high final size. Modulations in activity at
higher timescales are not available here but will have an effect even in slow spreading epidemics.
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Figure 3.4: For the DYN network, the number of active edges at each time instant is shown. For
HET and HETnn+night the total weight of all links, corresponding to the average number of
active edges (at each time instant of the simulation), is plotted over time.

We will furthermore investigate the effect of the speed of the epidemic on its final size while
the dynamic network’s time scale stays fixed. In contrast to static networks, which do not have
any time scales, temporal networks have a timescale defined by their activity fluctuation and
contact patterns. Changing the timescale of the epidemic by varying β while leaving the ratio
β/µ constant will lead to interactions between the timescale of the process and the network,
affecting also the final size of the epidemic. As the largest variation in the course of the epidemic
was due to night-day patterns, in Fig. 3.5 the dependence of the attack rate of the epidemic
on the propagation parameter β for fixed ratio β/µ is plotted for the ”sfhh” data set with and
without nights. Since data sets are repeated for simulations, a second night was added to the
”sfhh” data set, extending it to 48 hours. Thus, the nights are rather long, extending over 12 and
16 hours. The effect of the nights is accordingly quite strong, as the overall duration of nights
is even longer than the active phase. Simulations on static networks are added as reference.
The HET and HOM networks are calculated by aggregating over the entire temporal network.
For the HET network, links are weighted according to their probability of appearance in the
temporal network. The link weight is calculated as the total time the link was active divided by
the total length of the temporal network. For the HOM network, all links have the same weight,
given by the average link weight of the HET network. In the right plot, the temporal network
does not include night times (DYNnn). The HETnn and HOMnn networks were calculated by
aggregating over the temporal network without nights. In the left plot, nights were then added
to these static networks at the same time at which nights occurred in the dynamic network so
that at night times no propagation is possible.

For the simulation on networks where the nights were eliminated, the epidemic size does
not decrease for lower propagation and recovery frequencies, while for networks with nights the
effect of nights sets in for epidemics with β . 0.01, reducing the final size of the epidemic. For
this region of epidemic speed, the main effect which regulates the outcome of the epidemic is
the effect of nights. Further variations in contact patterns, as they exist between the HETnn
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Figure 3.5: The plot shows the attack rate of an epidemic (the percentage of final cases) on the
”sfhh” data set as a function of the propagation probability β where the ratio β/µ = 51.84 stays
constant. The propagation probability β is increased from 1.5 ∗ 10−4 to 0.05. In the left plot,
the temporal network DYN includes nights. HETnn and HOMnn are calculated on the temporal
network without nights, but periods of nights are added to these static graphs (see Fig. 3.4) so
that HETnn+night and HOMnn+night also include periods of no activity during night times.
The HET network is a static network, calculated by aggregating over the complete temporal
network (DYN). In the right plot, the temporal network (DYNnn) does not include nights or
time periods without any events. Simulations for the static networks HETnn and HOMnn which
are based on DYNnn are plotted as comparison. For the static networks, the average over attack
rates greater 0.1 for each parameter pair β and µ is plotted (big connected circles) in addition
to the simulation outcome (HETnn -small red circles, HOMnn-small blue circles, HET-small red
circles with white filling).
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network with nights and the dynamic DYN network, are less important. The epidemic on the
heterogeneous network HET which was calculated over the complete dataset including the nights
reached about 50% of the nodes. This is the same as the outcome of a very slow epidemic on the
HETnn+night network since for very slow epidemics the night-day patterns become irrelevant.

The faster the epidemic spreads on the network with nights, the fewer nights are run through
and the higher the final size of the epidemic, up to the point where the epidemic ends before
nightfall, and results on the temporal network with or without nights are identical. However,
a second effect persists even in the temporal network without nights. The epidemic size also
decreases for faster spreading epidemics.
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Figure 3.6: (a) Peak time of an epidemic and (b) epidemic duration with constant ratio of
parameters β/µ = 51.84. The propagation probability β is increased from 4 ∗ 10−5 to 0.05.
Simulations are shown for temporal networks (”sfhh”) with nights (black) and without nights
(red). The horizontal line marks half a day (12 hours).

In Fig. 3.6 the time up to the epidemic peak as well as the duration of the epidemic are
plotted depending on β. For very slow epidemics the epidemic can also peak after having run
through several nights, whereas faster epidemics do not extend over more than one day.

3.4 Finite time

The faster the epidemic ends, the less nodes are present during the course of the epidemic if node
presence is not constant over the whole network but limited in time. In Fig. 3.7 the epidemic size
is plotted against the epidemic duration. Simulations were done for various β, whereas for each
β the epidemic has a relatively well defined span of probable durations. Nights are removed from
the network in order to not mix different effects. The epidemic size increases with the epidemic
duration until the duration has about the size of the temporal network. The size increases slightly
further even when the network is run through once as nodes which are mainly present at the
beginning of the epidemic could not have been reached yet. Any further increase of the duration
linked to a smaller propagation probability β does not lead to a bigger epidemic size. To test the
effects of the finite size, simulations are redone on a shorter version of the ”lyon2012” dataset.
Instead of the complete data, only 4 days of data are used. After removal of night times, this
results in about 41.5 hours of data. Again it can be seen that the final size of the epidemic for
durations much higher than the data length does not increase any more and is lower than the
final size of simulations with the same parameters on the whole dataset. Whenever the epidemic
lasts longer than the length of the temporal network, the final size of the epidemic might be
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Figure 3.7: Epidemic size vs epidemic duration for various color coded pairs of β and µ, where
β/µ = 100 for the ”lyon2012” network and β/µ = 50 for the ”sfhh” network. The value for β is
marked in the legend. Both networks do not include night times. In (b) simulations on a reduced
data set of 4 days (no nights) are added and marked with magenta squares for all β values. The
grey line marks the length of the reduced data, the black line the length of the complete data.
The grey squares show simulations on a static HET network as comparison.

underestimated for simulations on the temporal network. This is most likely due to the fact
that neither new nodes nor new links are introduced once the network is run through, as data is
repeated without any change.

Thus, the main effect for the reduction of epidemic size is the fact that not all nodes could be
reached if the epidemic duration was very short, as not all nodes had been present yet. This is at
least the case here where the extension of the temporal networks leads to new nodes joining the
network at later times and can be seen by comparing simulations on the complete data versus
simulations on the network of 4 days.

For the same reason simulations on a static network, aggregated over the entire temporal
network, overestimate the extent of the epidemic for high propagation probabilities and short
epidemic duration. On the static network, all nodes and links are present all the time whereas on
the dynamic network during the course of the epidemic neither all links nor all nodes could have
been present. Spreading on a static network, however, gives similar results to spreading on a
temporal network for epidemics which last about as long as the length of the temporal network.
As can be seen as well in Fig. 3.7, the result for processes exceeding the length of the temporal
network by far is then equivalent to the spreading on a static network with heterogeneous weights
(HET).

Therefore, if an epidemic is simulated on a dynamic network on which nodes are continuously
joining or leaving for extended time periods, the length of the network data is important. Re-
peating the dynamical network will not take possible new nodes into account. Artificially adding
nodes or new links at later times is an option which however needs a theory of the dynamics. By
changing or prolonging the original data based on hypotheses, much of the advantage of original,
purely observational data is lost. On the other hand, epidemic simulations on aggregated static
networks seem to give good results when the network is aggregated over a time slightly below
the duration of the epidemic on the dynamic network.

We test this by comparing the spreading on the temporal network for various parameter
sets with the spreading on various reduced static network. For each epidemic simulation on the
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Figure 3.8: Epidemic size vs β for the DYN network and three static networks, HETT, HETN
and HETV. For the ”lyon2012” network: β/µ = 100. For the ”sfhh” network: β/µ = 50. Both
networks do not include nights. The boxes show the 25 and 75 percentiles as well as the median
of the distribution of final cases, where only epidemics which reach more than 10% of the network
are considered. The whiskers mark the 5 and 95 percentiles.

temporal network, simulations were redone on three different static networks, HETT, HETN and
HETV.

• The HETT network corresponds to a static network which is aggregated over the exact
length of the temporal network on which the epidemic took place. For each simulation run
on the temporal network, we register the starting time and end time of the epidemic, ag-
gregate the temporal network over this time period and start the spreading on the resulting
static network with the same seed node.

• The HETN network is a subnetworks of the HET network, which is based on the entire
temporal data set. For the HETN network, the HET network was reduced to include only
those nodes which were present during the epidemic on the dynamic network.

• The HETV network is a subnetwork of the HET network. The HET network is reduced
by randomly removing nodes until the number of nodes is identical to the number of nodes
in the HETN network.

In Fig. 3.8 it can be seen that results averaged over simulations on these reduced static networks
are similar to results on the temporal network for all parameter sets. Indeed, for faster epidemics
with higher β and µ, the static networks used for simulations contain less nodes and less links.
The main effect of the reduction of epidemic size for faster epidemics then seems to be the
number of nodes and links which are present during the epidemic since just reducing the number
of nodes on the static network will give similar results. Depending on the properties of the
temporal network, the various methods to create reduced static networks can lead to a slight over
or underestimation of the epidemic spread. In temporal networks in which nodes are preferably
present over a certain finite time, nodes which are present during the epidemic are less likely to be
present in the rest of the temporal data. Aggregating over the complete data instead of only over
the duration of the epidemic will then add no new links to those nodes but reduce the weight of
the already present links. Weights on links connected with these nodes are higher for the HETT
network than for the HETN network. The HETN network will then have a lower outcome of the
epidemic than the HETT network. If, on the other hand, node presence is rather homogeneous
throughout the whole network, but new links are formed constantly, then aggregating over a
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longer time will not dramatically reduce the weight of the links. However, it will add many
new connections between nodes. Outcomes on the HETN network might then be higher than
outcomes on the HETT network, as more links are added to the chosen nodes when aggregating
over a longer time, and the weight reduction is not as strong.

If the importance of nodes in the network is very heterogeneous, then there are nodes which
have many different connections and high activity in the network while others are only rarely
present. Nodes which are important for epidemic spreading due to their high strength and high
degree are also more likely to be present at any time of the temporal network. Therefore they
are also more likely to be present during an epidemic. These nodes are then also more likely
to be part of the HETN and the HETT network, whereas the choice of nodes for the HETV
network is completely random. The choice of nodes in the HETN network is therefore slightly
biased towards nodes with higher activity. Spreading on the HETV network might then have
lower outcomes than on the HETN network.

Here, slight tendencies can be seen that nodes in the ”lyon2012” network are not present
over the entire dataset while nodes on the ”sfhh” network have a higher probability of presence.
In both networks, new links are introduced at all timescales (see also Fig. 3.10). However,
these differences are not strong enough in order to significantly influence the simulation results.
Results on the ”sfhh” network are nevertheless slightly different. The maximum number of final
cases in the distribution of final cases hardly decreases with β. This could be related to the high
activity fluctuations in the ”sfhh” data. In the next section, we form several model networks in
order to better distinguish the properties of the data that are responsible for the reduction of
the number of final cases.

In conclusion, it can be said that epidemic simulations on static networks can lead to results
comparable to simulations on temporal networks if the aggregation length of the static network
does not exceed the length of the epidemic. In cases where the epidemic duration is shorter than
the time over which the network was aggregated, a reduction in network size can lead to better
results if it is known how many nodes on average are present over a certain time. The main
cause for the very different results on static and dynamic networks for fast spreading epidemics
seems to be the number of present nodes and links over time, which is related to the distribution
of inter-contact times and correlation between events. If the length of the epidemic exceeds
the length of the data, then simulations on the static and on the temporal network have to be
handled with caution as they might underestimate the size of the epidemic.

3.5 Model networks

In order to better understand the origin of the decrease of the epidemic size with augmented
epidemic speed, and how it depends on properties of the temporal network, we build several
model networks which change some of the properties of the temporal network.

The model networks are:

• time shuffle (shuffled starting time):
Every event in the temporal network can be attributed 4 values: the IDs for the two
nodes which are in contact, the starting time of the contact and its duration. For the time
shuffled network, the value for the starting times of all events are randomly redistributed.
Thus the same amount of new contacts are started at any time instant for the time
shuffled and the original network, but the starting times for contacts between each pair of
nodes have changed. By shuffling the starting times of events, we keep the contact-time
distribution but lose correlation of events, like group meetings. Also the node inherent
burstiness is reduced, as starting times between different events are exchanged. The
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activity fluctuations are mostly preserved.

• hom start (homogeneous starting time):
For the ”hom start” network, the starting times of all events are modified. To this end,
events are ordered according to their starting time. The order among events starting at
the same time is random. Then all starting times are distributed at equal distance in
time. The starting time difference between two consecutive events is equal to the length
of the data set divided by the number of events. The order of events is conserved. Setting
starting times of events at a homogeneous distance will mostly eliminate the activity
fluctuations, while keeping the contact time distribution. It will also preserve some of
the node inherent burstiness, as two events from one node, which start within a short
time, will stay comparably close together, depending on the overall activity of the network
between the two starting times.

• avg cont (average contact time):
The contact-time distribution is changed by setting the length of all contact durations
to the average contact duration 〈t〉 while keeping the exact starting times of the events.
Since the average contact duration is not an integer multiple of the timestep length, for
each event the length of the average contact duration was chosen at random to be either
rounded up or down to the next multiple of 20 seconds (the duration of the network’s
time steps). The probability of rounding up to the next integer multiple of 20 seconds was
chosen proportional to the difference of the average contact duration and the next lower
multiple of 20 seconds divided by 20 seconds, p = 〈t〉/20 − ⌊〈t〉/20⌋. This transformation
also changes the weight distribution of the corresponding aggregated HET network.
Weights of each link are now proportional to the number of occurrences of each link.

• dHET:
The aggregated static network with heterogeneous weights (HET) is transformed into a
temporal network with Poisson dynamics. At every time step, for each weighted link of
the HET network the link is set as active with probability given by its weight. If discrete
simulation timesteps are used, it does not make a difference if we use HET or dHET for any
one simulation. However, discrete simulation timesteps are only valid for low β. Therefore
we use continuous simulation steps here and HET and dHET need to be distinguished.

By changing the starting position of contact events in the temporal network, the length of
the temporal network was sometimes increased. In this case, we cut off contacts which were
lasting longer than the original length of the network and added them at the beginning of the
network. In case two events between the same nodes overlapped, the later event was moved so
that it started after the first ended, preserving the total duration of contacts of the network. To
build the average over several simulations all model networks were frequently rebuilt.

All four transformations slightly influence the waiting-time distribution. We plotted the dis-
tributions for one realization of each model network in Fig. 3.9. For the model with homogeneous
starting times (”hom start”), the frequency of very small waiting times, which are due to clus-
tering of contacts in time, is decreased when starting times are drawn apart, and the frequency
of slightly longer waiting times is increased instead. Long waiting times are not affected. This
effect is even stronger for the time shuffled version, as the starting times of events for the same
node are not merely drawn apart but randomly exchanged with starting times of other events,
eliminating node-inherent burstiness and also reducing the number of long waiting times. In
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Figure 3.9: Waiting time distribution and contact-time distribution for the temporal networks
”sfhh” and ”lyon2012” and the corresponding model networks
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the dHET case, short waiting times are common and long waiting times are rare. Due to the
Poisson dynamics, nodes are mixing more, contact times are shorter, and events are abundant
and spread over the entire time of the temporal network.

The contact-time distributions are only different for the model network with average contact
times and the model with Poisson dynamics. In both cases, contact times are short and not
broadly distributed.
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Figure 3.10: Average number of nodes and links which are active over a time period on the
temporal networks ”sfhh” and ”lyon2012” as well as on various modifications thereof. Together
with the average, the standard error is plotted.

As the limited number of present nodes and links during any time period of the network was
conjectured to be responsible for the different outcomes of epidemics with different spreading
velocities, here we compare these measures for the different model networks. In a temporal
network, nodes arrive and leave over time, some contacts are very rare, others are quite frequent.
If only a short period of the temporal network is considered, not all possible links will be active
during this time period and not all nodes will have had contacts. In Fig. 3.10 the average number
of present nodes and links per time window is shown. For the dynamic data, the average number
of present nodes increases rapidly for short time windows, however, there is no scale at which no
nodes are introduced. The average number of present nodes increases constantly.

The average number of links and nodes is identical for the temporal network and the ”avg
cont” network, suggesting that the correlation of the starting times of events plays a more
prominent role than the actual contact length for the presence of links and nodes over time.

For the network with homogeneous starting times, the contacts are spread out more in time,
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eliminating activity fluctuations. Thus at any time on the temporal network, there is a similar
number of present nodes for the ”hom start” network. Therefore, the standard error is lower
for the ”hom start” network than for networks with activity fluctuations, like the DYN network.
For the ”lyon2012” network, the average number of present nodes is very similar to the average
number of present nodes on the original temporal network. However, for the ”sfhh” network,
which has very strong activity fluctuations, the average number of present nodes is slightly higher
on the ”hom start” network compared to the DYN network.

The network with shuffled events has a higher mixing of nodes. Nodes are not confined any
more to a limited time period in which they are present on the network, event correlations are
completely eliminated. Events including nodes can appear at any time during the temporal
network. This increases largely the average number of present nodes and active links per time
period.

In the case of the dHET network, the probability of appearance of a node at any time
only depends on its strength and is therefore constant over the entire length of the temporal
network. The average number of present nodes and links during a certain time is highest for
this temporal network with Poisson dynamics. However, as link presence is stochastic, links with
low probability of appearance have a high probability not to be activated in the dHET model
network, as the dHET network only extends over a limited time period, identical to the length of
the original data. Therefore each of the realizations of the dHET network has a smaller number
of links than the other model networks.

A difference can be seen between the ”lyon2012” network and the ”sfhh” network. While in
the ”sfhh” network, most nodes have quickly made their appearance, in the ”lyon2012” network
the increase of the average number of nodes which have been present in a certain time period
is much slower. This is related to the different settings of the dataset. While most people will
stay during the entire conference rather than just coming for one or two hours, in the hospital,
nurses or doctors might only come on specific days. Concerning the average number of active
links, we have the opposite case. At the conference, many weak links lead to a slow increase
of the average number of active links, while in the hospital, very short and rare encounters are
less likely, meetings are not as random (see also Fig. 2.3(d), the distribution of weights, which
is here the probability of link activation). Furthermore the high number of weak links in the
”sfhh” dataset also leads to a stronger discrepancy between the total number of links for the
dHET network and the aggregated temporal network.

In Fig. 3.11 an SIR process was simulated for all model networks for increasing propagation
parameter β, as before. For simulations on the ”lyon2012” network, the final size of the epidemic
decreases strongly for faster epidemics for the original temporal network (DYN), as well as the
model networks ”avg cont” and ”hom start”, which have the same average number of present
nodes and a very similar waiting-time distribution. The model networks that have a high average
number of present nodes even over very small durations do not show a strong difference for slow
and fast epidemics. For the time shuffled network, there is only a small decrease with β and for
the dHET network, the decrease with β is almost not visible at all. For the static HET network,
there would be no decrease with β, as could be seen in Fig. 3.5 above.

Simulations on the ”sfhh” data set look slightly different. This is mainly due to the fact that
activity fluctuations are very strong. The distribution of the final cases of the epidemic is much
broader for the networks with daily patterns: the DYN, the ”avg cont” and the ”time shuffled”
networks. For the model with homogeneous starting times, the decrease with β is the strongest
even though the waiting-time distribution and the average number of nodes suggest otherwise.
Unlike in the temporal networks with activity fluctuations, in the ”hom start” model there are
no periods with very high activity and high mixing of nodes. In networks with high activity
fluctuations, the epidemic either dies out quickly, or it survives up to a peak of activity then
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Figure 3.11: Number of final cases for the temporal network of ”sfhh” and ”lyon2012” and the
modifications thereof. Both network do not include nights. The boxes show the 25 and 75
percentiles as well as the median of the distribution of final cases where only epidemics which
reach more than 10% of the network are considered. The whiskers mark the 5 and 95 percentiles.
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Figure 3.12: Cumulative distribution of final cases for epidemics with β = 0.015. (a) For the
”lyon2012” data set: µ = β/100. (b) For the ” sfhh” dataset: µ = β/50. Both datasets do not
include nights.
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spreading widely and quickly among all present nodes. Thus the epidemic outcome can often have
a high number of final cases as well as a low number of final cases. For the model with average
contact times, the final size of the epidemic is much higher than on the temporal network.
Possibly, because the probability of transmission on a contact event is a concave function of
contact time. The transmission probability over two equally sized contact events is thus higher
than over one of very short and one of very long length. Also, if the ”avg cont” network were
aggregated, the distribution of link weights would not be the same as on the dynamic network.

In the cumulative distribution of final cases for β = 0.015 (see Fig. 3.12) the difference be-
tween the model networks and also between the two data sets become easily visible. Simulations
are started at a random time, independent of the presence of the seed in the network at that
time. The extinction probability is highest for the original temporal network due to the bursti-
ness of the dynamics linked to the high activity fluctuations. The epidemic can often end even
before the infected seed has had its first contact in the network. Simulations on the network
with homogeneous starting time, on the other hand, end less often before infecting other nodes,
as activity is homogeneous and there are always nodes present which can be infected. For the
network with Poisson dynamics, epidemics have the lowest extinction probability. The distribu-
tion of the final number of cases is very broad for networks with strong activity fluctuations, like
DYN, ”time shuffle” and ”avg cont”, and therefore the cumulative distribution increases grad-
ually for higher case counts of the epidemic, while for the more homogeneous networks without
activity fluctuations, like ”hom start” and ”dHET”, a characteristic number of final cases can
be observed as a sharp increase in the cumulative distribution function. For the ”sfhh” dataset,
this increase is at a medium final size of about 250 final cases for the network with homogeneous
starting times. Outcomes in this range or below are therefore highest for the ”hom start” case.
For the dHET network, this peak lies around 315 final cases. In networks with high activity
fluctuations, smaller outcomes are most likely, but large outcomes can be reached as well.

For the ”lyon2012” network data, these tendencies are not as strong, as activity fluctuations
are much lower. However, the shuffling of starting times has a much greater effect, as nodes do
not mix as widely as in the conference data.

All in all, the main effect for the decrease of the epidemic size for faster epidemics is due to
the reduced number of nodes and links that are active at any given time span. Networks with a
high turnover of nodes and links are more susceptible to this effect. Activity fluctuations, on the
other hand, are not responsible for the decrease of the epidemic size with the epidemic speed,
even though they can change the shape of the distribution of final cases.

3.6 Conclusion

We have seen that patterns at small time scales have a stronger influence on epidemics with high
probabilities β and µ than on those with low β and µ. The size of the epidemic is reduced in
those cases of fast epidemics mainly because not all nodes can be reached on the network, but
also because the number of links between nodes is limited to those created through interactions
taking place during the epidemic. The introduction of nights and long times without activity
can be another reason for the reduction of the final size of the epidemic. However, in spite of all
the variations of the epidemic size due to temporal properties, static networks can be a good first
approximation even of bursty temporal networks, if they are aggregated over the length of the
network on which the epidemic takes place. In the next chapter we will look more closely under
which conditions the resolution of the temporal data can be reduced, extending this simplification
also to the structural resolution of static networks.



Chapter 4

Data representation

With the advent of new technologies, ever more detailed data sets can be obtained. However, for
large scale simulations, data sets with very high precision do not exist yet and also would quickly
become unmanageable. Therefore, large-scale epidemic models are usually informed by general
data without high spatial or temporal resolution. This can be census or demographic data, data
about co-location, shared office spaces, human mobility or the like [97, 21, 56, 5, 17]. Furthermore,
a high level of detail can easily obscure the important aspects of the data. Especially, if results
are expected to be generalizable, it can be helpful to filter out unnecessary details and only keep
those aspects of the data which have a major influence on the outcome of the epidemic. Aspects
of the networks, like the degree distribution or cluster coefficient, which are known to have an
influence on epidemic spreading should be conserved when the data is simplified.

As the high-resolution, temporal contact data contain many aleas which are situation specific,
they are difficult to generalize. In order to be valid for simulations with a different amount of
participants, at a different time or place, a representation of the data needs to be found which
is independent of these specific details and only retains those properties of the data which are
general for different situations.

For simulations on a large scale, data might not need to be as precise. The level of precision
needed on the data is related to the level of precision which is wanted for the outcome of the
epidemic and also to the sensitivity of the process on the data to the details of the data. For
example, to evaluate targeted vaccination strategies for different groups, information on the risk
of infection for each individual is unnecessary. Also, slow spreading processes seem to be less
sensitive to data fluctuations on small time scales. It is therefore plausible that for fast processes
data need to have a higher temporal resolution than for slow processes.

When dealing with high resolution data sets, it is therefore an important task to find a way to
modulate between data representations of different levels of detail and to find the right amount
of information that needs to be retained in the data [14] given a specific problem or task.

We will construct here different representations of the data with varying levels of detail. The
data will be more and more simplified by replacing exact data by distributions or averages. In
Sec. 4.2 we look for the optimal resolution in time depending on the process that is run on
the data. To this end, we compare the outcome of epidemic simulations on temporal networks
whose time resolution is reduced through aggregation. By aggregating temporal events into
more general weight information on the links, the exact timing of events is replaced by a Poisson
distribution, which disregards temporal order but retains the contact probability of links. Other
distributions, formed by processes with memory and keeping information on the burstiness of the
contacts and the contact-time distribution, could be considered at a later time to obtain better
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approximations.

Once the temporal resolution is decided upon, for each time the corresponding static network
graph can be simplified as well, depending on the level of detail that is considered necessary for
the epidemic simulation. We consider simplifications on two levels, the distribution of weights
and the placement of weights on the network. Nodes can completely lose their identity or be
assigned to different groups and only retain a shared group identity, where the group identity
comprises the aggregated properties of the contained nodes, like their average degree, average
strength or average clustering coefficient. We discuss the importance of a proper choice of groups
in Sec. 4.2.1. Together with the suppression of individual properties of the nodes, information on
the exact weights of the links between groups can be replaced either by providing each link with
the average weight or by drawing weights from a weight distribution. The former leads to a very
basic network that can be represented as a contact matrix. The contact matrix representation
of data is widely used in epidemiology [72, 93, 109, 40, 42, 66, 89, 43, 29] as it constitutes an
improvement over the homogeneous mixing hypothesis and can easily integrate data which lacks
higher levels of precision. Being easily generalizable and adaptable to different situations, it
furthermore lends itself to predictions for situations for which actual data cannot be obtained.
However, as we will see in Sec. 4.2.2, the heterogeneity of weights can be significant for the
epidemic simulations and discarding it may lead to wrong predictions. We therefore introduce
the contact matrix of distributions, which replaces the exact weights by weights drawn from
a negative binomial distribution. Negative binomial distributions can account for the broad
distribution of weights and also the high number of zero-weight links. They are often used to
model contact distributions [58, 42, 66]. By simulating epidemics on the various simplified data
representations, we can compare the influence of the respective modifications of the networks
constructed from the data representation and assess the level of detail needed for the purpose
of obtaining correct predictions of the probability for a member of one of the groups to become
infected, the influence of different groups on the spreading (see Sec. 4.2.4) and the overall size
of the epidemic.

The importance of roles in the network is influenced by their characteristic weight distribu-
tions. Depending on how well these distributions can be approximated by the average weight, the
relative importance of the groups changes for the contact matrix representation. Approximating
the weight distribution by the average weight increases on average the transmission probability.
We account for this by adapting the average number of secondary infections per node in Sec.
4.2.5. Nevertheless, adapting R0 cannot account for the change of group importance in the con-
tact matrix representation as compared to the dynamic network. We can therefore conclude that
a global rescaling of the model parameters is not able to compensate for heterogeneity induced
differences between the groups which have a direct influence on the outcome of the epidemic.
Depending on the properties of the data and the distribution of weights among the groups, it
can therefore be crucial to include information on the heterogeneity of weights in the contact
matrix representation. Even in cases where the contact matrix is an acceptable approximation
of the exact network, the contact matrix with distributions will help to obtain simulation results
with higher accuracy.

4.1 Time resolution

High-resolution temporal networks over a long time period can become quite large. However,
not all processes on the network might need the same level of precision of the data. As seen
before (Ch. 3), fast spreading processes sense more details of the data than slow processes. It
is therefore likely that slow processes do not require the same level of detail of the data as fast
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processes. A resolution of 20s per timestep might therefore be an overkill, and data with lower
resolution could suffice for slow processes. Nevertheless, collecting data with a low resolution can
also pose problems, even for slow processes, if the exact contact length is neglected, as seen in Sec.
2.6. Measurement needs to be precise concerning the duration links are active, whereas the exact
timing of events plays a secondary role. Integrating the exact contact time length into data with
lower time resolution using weights can be a good compromise between high resolution data and
data with lower resolution. However, depending on the spreading parameters, a complete loss
of temporal information can lead to an overestimation of the outcome of the epidemic (see Sec.
3.4), even if weights are included. When the data is bursty, some temporal information seems
necessary and aggregating over the entire network, may lead to biased results. Nevertheless,
simulations on static networks can be a feasible alternative to simulations on the time-resolved
data if the duration of the epidemic coincides with the aggregation time of the static network.
For specific parameter sets it has been furthermore shown that aggregating over daily networks
is sufficient to obtain similar results as with the full temporal resolution of the contact network
[88]. It is therefore conceivable that a minimum temporal resolution exists so that increasing the
resolution further will not add information which influences the epidemic process on the network.
We are looking here for such a minimum timestep size, depending on the speed of the epidemic.

In order to find such an optimal aggregation time step, we simulate epidemics using the SIR
model on the ”lyon2012” dataset. Nights were not removed. The data are reduced to a length
which is a power of 2 and then aggregated with different time step sizes, using heterogeneous
rescaling with weights as described in Sec. 2.6.

By increasing the time-step length over which the temporal network is aggregated, we can
modulate between the high-resolution temporal network and the heterogeneous static network
(HET). The temporal fluctuations of the data decrease with larger aggregation time steps.
Whereas networks with aggregation times below 12 hours can still show daily patterns, ag-
gregating over entire days will make daily patterns disappear.
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Figure 4.1: The final size of the epidemic as a function of the starting time for two networks
with different aggregation step length. The black lines signal the number of active nodes in each
timestep. Simulation is done for β = 0.04s−1 and µ = 0.0004s−1

In Fig. 4.1 the influence of the starting time on the outcome of the epidemic is shown for very
fast epidemics on two networks with different temporal resolution. The daily patterns, which
are still present in the network with a resolution of 12 hours, strongly influence the outcome of
the very fast epidemic. The network which is aggregated over 23 hours does not show any daily
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patterns anymore, however, weekly patterns, in the form of a strong reduction of activity during
the weekend, are still visible.

We test epidemic spread for three parameter sets corresponding to a very fast, medium and
slow epidemic on temporal networks of different time resolution. The distribution of final sizes of
the epidemic is plotted in Fig. 4.2. Up to a certain aggregation step length, the distribution of
case counts does not change. Only when the aggregation step length is of the order 1/µ does the
average number of people reached by the epidemic increase. Nodes are on average infectious for a
duration of the order 1/µ. In this time they can infect any of their neighbors. When the network
is aggregated, the average number of neighbors each node is in contact with increases (see Fig.
2.5(a)). If the aggregation time is larger than the infectious time, then the node can infect more
neighbors in the aggregated than in the temporal network. In Fig. 4.2(b), 4.2(d) and 4.2(f) the
L2-norm between the histogram for the spreading on the original data and the histogram for
the spreading on the aggregated data is shown. The L2-norm is used as an approximation of
the distance between the two distributions. In the appendix (Fig. A.1) we have used Pearson’s
χ2-test to decide for which aggregation timesteps the distributions are significantly different.
In a first approximation, the distributions become very different for aggregation steps greater
than 1/µ. Possibly the variability of the network at different timescales also plays a role. If,
for example, the neighbors for a specific node do not change much over time, and if with longer
aggregation no new information is added to the network, then aggregating over timesteps longer
than 1/µ will not have a great impact on the outcome of the epidemic. If on the other hand
there is much difference between two subsequent instants of the aggregated temporal network,
it can be important that the network is aggregated over the exact time of infection of a node. If
the node gets infected close to the end of an aggregation interval, it effectively can infect nodes
which are neighbors in both intervals, the interval in which it got infected and the subsequent
one. Therefore an aggregation timestep smaller than 1/µ can be necessary. This can be seen
for the simulation with β = 0.004 and µ = 0.00004. The aggregation timesteps corresponding
to 1/µ, which are around 7 hours long, divide the temporal network into static snapshots with
very different numbers of nodes due to the strong night-day patterns of the data. Here, and also
for slightly longer aggregation timesteps (compare Fig. 4.1(a)), the daily patterns can still have
a big impact, greatly changing the graphs from one instant to the next. In this case smaller
aggregation timesteps might be necessary. Furthermore, for a higher probability of propagation,
being infectious in more than one time instant of the temporal network has a higher impact
than for a lower propagation probability. Therefore, aggregation timesteps below 1/µ can be
necessary in those cases as well.

We finally note that it could make sense to not aggregate the temporal network in equal
timesteps but to use smaller timesteps in regions of high variability of the data and longer
timesteps during night periods or periods when the data does not change much.

4.2 Structural resolution

Every instant of the temporal network can be described as a static network. By aggregating over
longer time periods, the instantaneous static networks become more complex, gaining nodes and
links with weights. In addition to a simplification in time, we can also simplify the structure
of the static networks. In order to reduce the information content for the static network, exact
data must be replaced by average values or distributions. This reduction of information can be
compared to lossy data compression. The aim is to compress only those parts of the data which
are irrelevant for the task at hand and to keep the information in the data which is essential for
epidemic spreading.
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Figure 4.2: Left column: distributions of the final size of the epidemic for networks with different
aggregation time steps for three sets of parameters with β/µ = 100. Right column: L2-norm
between the distribution of the final size of the epidemic for the network with highest temporal
resolution and networks with lower temporal resolution as a function of the aggregation time
step. The vertical lines mark 1/µ.
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average weight weight distribution or exact weights
all weights FULL HETshuf
all weights (groupwise) CM CMD
nonzero weights HOM HETwshuf

Table 4.1: Data representations categorized according to the information on weights. The rows
specify if all weights, all weights within and among groups or only the non-zero weights are
concerned, keeping the link-structure of the network. The columns specify if these weights are
replaced by their average, by randomly drawn weights from the weight distribution (CMD) or if
weights are shuffled (HETshuf, HETwshuf).

set1 set2
β 60/day 240/day
γ 1/day 2/day
µ 0.5/day 1/day

Table 4.2: Parameter sets which are frequently used in the following.

We are interested in two kinds of information on the static network: the weights and the
placement of weights on the network.

In a first approximation, the network structure is defined by the presence and absence of
links. In a second approximation, it can make sense to consider the exact placement of the
weights as part of the network structure. Often, the placement of links on the network comes
about by applying a threshold to a fully connected network with different weights. Links with
weights below a certain threshold will be removed. The information of the placement of weights
on the network, including zero-weighted links, therefore integrates all the topologically possible
networks with different weight thresholds.

We can simulate the effect of losing all information of the weight placement and keeping
all information of the exact weights, by shuffling the links of the network. We test for two
possibilities, shuffling all weights, including zero-weighted links or only shuffling the non-zero
weighted links. Concerning the information on the exact weights, we consider two different
levels of information loss. Replacing all weights with the average weight corresponds to a strong
loss of information, using a distribution which approximates the original distribution of weights
corresponds to a weak loss of information.

The networks which are created by these data reduction methods are:

• HET
The heterogeneous static network, as described before, which integrates all temporal infor-
mation in the form of weights. It is the static network with the most available information,
so that we use it as comparison for the other static networks.

• HETwshuf (weight-shuffled HET network)
All non-zero weights of the HET network are shuffled. The link structure of the network
is identical to the HET network and all information on the weight distribution is kept.
However, information on the exact placement of the weights is lost.

• HETshuf (shuffled HET network)
All links of the HET network are shuffled to random positions. Thus, all the information
on the weight distribution is kept, and all information on the placement of weights and
links is lost.
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• HOM (homogeneous static network)
The network structure is identical to the HET network but the weights of all non-zero
weighted links are replaced by the average of the weights of the non-zero weighted links in
the HET network.

• FULL (fully connected network)
The weights of all links are identical to the average weight of all links in the HET network,
including the zero weight links. This network loses thus all but the average information
on its weight distribution and keeps no information on its structure. The full network
corresponds to the homogeneous mixing assumption, which is often used as a first crude
approximation for contact patterns among people.
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Figure 4.3: Distributions of the final size of the epidemic for static networks with varying levels
of detail in the underlying data as described in the text. Parameter sets see Tab. 4.2.

To compare the effects of the different simplifications of the data, we model an SEIR epidemic
on the networks, using two parameter sets: set 1 for a slightly slower and set 2 for a slightly
faster epidemic (see Tab. 4.2). In Fig. 4.3 the distribution of the final sizes of the epidemic
is shown for the simulations on the networks created from various representations of the ”obg”
dataset. The effect of the loss of precise information on the data is clearly visible.

Losing all information, both the information on the distribution of weights and the informa-
tion on the network structure, as is the case for the FULL network, results in the least similar
outcome of the final sizes of the epidemic compared to the HET network. Keeping, on the other
hand, both the information on the weight distribution and on the network structure and only
losing the information of the placement of weights on the links (HETwshuf) has the most similar
outcome to HET of the compared models.

While complete loss of information on the placement of the links and complete loss of infor-
mation on the weight distribution both have a severe influence on the outcome of the epidemic,
the weight distribution seems to be slightly more important in this case. This can be seen by
comparing the distribution of final sizes of the epidemic of the HET network with either the
distribution of final sizes of HOM, where information on the heterogeneity of weights is lost, or
with the distribution of final sizes of HETshuf, where information on the placement of links is
lost. The distribution of HETshuf is closer to the distribution of HET than the distribution of
HOM. However, both variants constitute a simplification of the original data which is too severe.



48 CHAPTER 4. DATA REPRESENTATION

Predictions based on these data representations would be too different from predictions based
on the HET network in order to represent valuable replacements for the latter.

4.2.1 Choice of groups

In order to keep some information on the structure of the placement of weights on the network,
instead of replacing the weights by distributions or by their average on the entire network, the
same procedure can be applied only on parts of the network. To this end, we assign the nodes
of the network to different groups or classes. Within each group, nodes lose their individuality.
Just as with the entire network before, links are placed randomly between and among nodes of
the different groups. However, the average weight or the weight distributions are now calculated
separately for each group and for links between groups. This way, the structure of high density
and low density clusters in the network can be partly preserved.

By changing the number of classes into which nodes are arranged, we can tune the network
between the HET network, which contains the complete available information of a static network,
and either the FULL network (in the case of average weights) or the HETshuf network (with
exact, but shuffled weights), or rather a network which resembles the HETshuf network but with
a fitted weight distribution. If every node is its own class, all information is kept, whereas all
structural information is lost when all nodes are grouped into the same class.

When nodes are assigned to different classes, they lose their individual properties like degree,
strength or choice of neighbors. Links within and among groups are placed randomly. Individual
properties of nodes are replaced by group properties. The information content of the network
will therefore not only depend on the number of groups but also on the choice of groups. The
weight on each link is replaced by another value, either the average or a value drawn from a
distribution. The closer the new value is to the old one, the better is the approximation. If
weights within a group or between two groups are already fairly homogeneous, then replacing
them by random values drawn from the corresponding distribution will not severely alter neither
the information on the weights nor on the structure of the network. An intelligent choice of
groups could therefore be a choice in which link weights among and between groups are fairly
homogeneous. Furthermore the number of groups should be neither too large, so that a reasonable
reduction of detail is obtained, nor too small, so that the outcome of epidemic simulations will
not deviate too much from the outcome on the HET network. If weights of links among and
between groups are homogeneous, then the adjacency matrix with weights should be close to a
block form.

We show in Fig 4.4 the adjacency matrices obtained for the following methods used to group
nodes together:

• random

Node placement on the adjacency matrix is random (Fig. 4.4(a)). If nodes are assigned
randomly to groups, the adjacency matrix does not show any particular structure.

• degree

Nodes were sorted according to their degree. In the adjacency matrix, they are placed next
to each other with increasing degree from left to right and top to bottom (Fig. 4.4(d)).
Nodes with similar degree could then be grouped together.

• strength

Nodes were sorted according to their strength. In Fig. 4.4(b) they are placed next to each
other with increasing strength from left to right and top to bottom. Nodes with similar
strength could be placed in the same group.
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(a) random sorted (b) strength sorted

(c) natural classification (d) degree sorted

(e) clustered dis (f) clustered cos

Figure 4.4: Adjacency matrix of the nodes, ordered so that nodes which are next to each other
can be classed in the same group. The grey value is proportional to Log(1+weight).
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• clustered

An algorithm to cluster nodes with similar link properties was tried in Fig. 4.4(e) and 4.4(f).
To this end, each node was represented by a vector of its weights with all other nodes. Then,
an auxiliary network was formed of these vectors in which nodes were connected by links
weighted according to the similarity. For Fig. 4.4(e) this similarity was calculated as the
inverse of the L2-norm between the vectors of the two nodes (clustered dis). For Fig. 4.4(f)
the cosine similarity was used instead (clustered cos). In this auxiliary network, nodes
which have similar connections with third party nodes are linked by high weights. Finding
clusters of nodes on this network ideally would result in groups with similar connection
properties. To find the clusters, a simple clustering algorithm was run and a dendrogram
was built. Nodes in the matrix are plotted in the order of the dendrogram’s leaves. Thus,
nodes with similar neighborhoods should end up close together.

• natural classification

Since the data comes with meta information concerning the nodes, the natural classification
(Fig. 4.4(c)) is the one which groups nodes of the same role class together, as given by the
meta information on the data. Nodes, placed from left to right (and top to bottom) on the
adjacency matrix, belong to the following groups: Caregivers, Assistants, Nurses, Doctors,
and Patients. The sizes of these role classes are given in Tab. 4.3.

The block structure appears most prominently for the natural classification and can be imag-
ined with much good will for the degree sorted nodes. Also, for all practical purposes, it is
favorable if groups are chosen by local properties which are independent of the network structure
as a whole in order to be more stable in case of minor network changes.
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Figure 4.5: Histograms of the final size of the epidemic for networks with groups of different
sizes and formations from 16000 simulations. Every 1000 simulations random groups were newly
built, every 100 simulations links between and among groups were shuffled.

In order to assess the influence of the group selection mechanism on the structure of the
network representation and the corresponding outcome of simulations performed on this network
representation, we create different network representations in which nodes are either randomly
assigned to different groups or grouped together by degree. We also consider a partition of the
network into groups according to the roles participants fill in the hospital. The exact weights
are preserved. This way we can test for the influence of group number and grouping method
only. All links, including those with zero weight, between two groups as well as all links within
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Assistants 10
Doctors 20
Nurses 21
Patients 37
Caregivers 31

Table 4.3: Group sizes for the roles in the hospital data set obg

one group are shuffled randomly. Group sizes for the randomly assembled nodes were chosen
homogeneously. For the network with degree sorted groups, nodes were sorted according to their
degree, then a sequence (n1,n2,n3..) of group sizes was chosen, and the nodes with highest degree
were placed in group n1, nodes with subsequently lower degree in group n2 and so on until all
nodes are placed into groups. Since the degree distribution has few nodes with very high degree
and many nodes with very low degree, a partition into homogeneous groups seemed less able to
optimally group nodes with similar degree together. An optimal partition could be conceived as
one in which the new degree distribution, after reshuffling of links in each group, approximates
the original degree distribution best for a given number of groups. As nodes in one group after
reshuffling of links have a degree close to the average degree of the group, a possible partition
into groups can be achieved by optimizing the approximation of the area under the function
which plots the degree of nodes depending on their position in the ordered list with a given
number of rectangles,where the base corresponds to the size of the group and the heights to the
corresponding average degree in the group. However, due to a lack of time this algorithm was
not tried out. Instead, group sizes were chosen in order to make the result comparable to the
case where groups are chosen according to the roles in the hospital. For the case with 5 groups,
the same group sizes were chosen for the natural groups and the network with degree-sorted
groups. For the natural groups, the group sizes are shown in Tab. 4.3. The group sizes for
degree sorted groups with three or ten groups were chosen slightly arbitrarily but smaller group
sizes were chosen for high degree nodes and larger group sizes for low degree nodes. When the
network was partitioned into three degree-sorted groups, the group sizes were: 20, 31, 68. For
the network with ten degree-sorted groups, group sizes were: 4, 6, 8, 10, 10, 13, 15, 16, 17, 20.

On these networks an epidemic is simulated using the SEIR model. Fig. 4.5 shows the
distributions of the final size of the epidemic for simulations on the various networks. The HET
network integrates the complete static information and is therefore taken as a reference here.
When nodes are grouped together by similar degree, the outcome of the epidemic is much closer
to the outcome on the HET network than when nodes are grouped together randomly. Any
individual information of nodes within one group concerning the link placement is lost. The
degree distribution of nodes within each group is effectively replaced by a Poisson distribution
with the same average. Even when on average only two nodes are grouped together randomly
(∼ 50 groups), enough information on the network structure is lost in order to greatly alter
the distribution of final sizes of the epidemic. Grouping random nodes together and randomly
exchanging all their links with all other nodes in the graph efficiently randomizes the network,
and clustering will be quickly dissolved. Grouping nodes of similar degree together will partly
retain the degree distribution in the network. The outcome for the natural groups is closer to
the HET network than the outcome for the degree sorted groups of the same size. Thus other
properties than the degree, which are retained in the choice of natural groups, play an important
role as well.

Even though the number of groups matters, intelligently grouping nodes together plays a much
bigger role than changing the resolution by adding more groups. However, it is possible that for
much larger networks more groups are necessary to obtain results similar to those obtained on
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the corresponding HET network. The efficient number of groups and group sizes as well as the
ideal criterion to select nodes for each group depending on the network structure is an issue that
still needs further investigation. Possibly, community detection algorithms will be a good way
to select different groups.

Nevertheless, the roles people occupy seem to represent very good markers to distinguish
different groups, as every role in a hospital comes with a certain set of tasks, which imposes
distinct behavioural patterns on its members. In this sense, belonging to a certain role is a single
property, independent of the network structure. It comprises many different features, which
otherwise might need to be evaluated separately and with considerably more effort, in order to
select people for different groups. We will therefore continue only using the natural groups.

4.2.2 Heterogeneity of weights

Once a set of groups has been assigned to the data, we can apply the simplification methods
described above, either replacing the weights within and among groups with the corresponding
average weight or with weights drawn from a weight distribution. Network representations which
are built this way are:

• CM (contact matrix)
Weights, including zero weights, within groups and among groups are replaced by their
average. For each group, no information on the link structure or the weight distribution
is kept. However, groups have different average weights and thus at a global level some
information on the weight distribution and the weight placement is kept. The contact
matrix is traditionally used in epidemiology as an improvement over the homogeneous
mixing assumption.

• CM0 (contact matrix with zero weights)
Weights within and among groups are replaced by the average weight of the non-zero
weighted links. The correct number, but not the placement, of zero-weights within and
among each group is preserved. This data representation keeps information of the link
density and average degree on a group level.

• CMD (contact matrix of distributions)
Weights within and among groups are replaced by weights drawn from negative binomial
distributions. The distributions are fitted to the original weights (including zero-weights)
using maximum likelihood estimation. The fit to the weight distribution is plotted in the
appendix (Fig. A.2). Thus, this data representation keeps most information on the weight
distribution on a local and global scale. However, information on the placement of the
weights is only retained at the group level.

The contact matrix is shown in Tab. A.1 and the corresponding parameters for the fit of
the distributions are shown in Tab. A.2 and A.3. The contact matrix is traditionally used in
epidemiology as a first improvement on the homogeneous mixing assumption of nodes (FULL).
The contact matrix of distributions allows us to take the broad fluctuations of contact durations
in the data into account.

In order to test for the influence of the weight distribution, we simulate an SEIR epidemic
on the above mentioned networks. The distribution of the final size of the epidemic in Fig. 4.6
shows the strong influence of the heterogeneity of weights. While the data representations which
keep the heterogeneity of weights (HET,CMD) are very similar and also approximate the DYN
network best, the networks without information on the heterogeneous weight distribution (CM,
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Figure 4.6: Distributions of the attack rate of the epidemic for different data representations.
The ”obg” data set was reduced to the first 7 days. Simulations are done for the two parameter
sets (see Tab. 4.2).

HOM,FULL) all overestimate the outcome of the epidemic. The overestimation for the outcome
of the epidemic when using the HOM representation is only due to the loss of the heterogeneity
of the weight distribution. The exact placement of links is retained. In contrast to the HOM
representation, the CM representation has slightly more information on the weight distribution,
as weights are replaced by the average weights of links between or among groups. However,
the full heterogeneity of the weight distribution is not retained, nor is the number or placement
of zero-weighted links. All information on the exact placement of links and the average degree
of each group is lost. Especially the very few but very long contacts between the Patient and
Caregiver groups lead to groups with high strength but low degree. As the CM representation
drops the information on the degree, spreading in those groups is much more efficient than in
the original data. Thus, using the CM representation overestimates the epidemic outcome more
severely than using the HOM representation.

If however the network is reduced to only contain 4 groups, by discarding the group of
caregivers and all interactions with this group, then the CM representation leads to results
comparable to the CMD and HET representation of the data (see Fig. 4.7). The distribution
of weights between patients and caregivers, which was characterized by very few links with very
high weight, disappears with the caregiver group. For the remaining groups, the average strength
as used in the CM representation is a better proxy for the average degree. However, CMD still
performs better than CM.

The timing of the epidemic (Fig. 4.8) for the different networks is similar if only those runs
are considered which reach more than 10% of the population. As has been observed before for a
non-structured population [88], the timing seems to be a fairly robust characteristic.
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Figure 4.7: Distributions of the final size of the epidemic for the HET,CM and CMD network,
based only on a network including only assistants, doctors, nurses and patients, for 4 sets of
parameters: b = 0.0694s−1, r = 1./2days,m = 1./1day, (a) β = b/4, γ = 20r, µ = 5m, (b)
β = b, γ = r, µ = m, (c) β = (5/3)b, γ = r, µ = m, (d)β = (5/2)b, γ = 20r, µ = 5m.
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Figure 4.8: Histogram of the epidemic duration and peak time for epidemics that reach more
than 10% of the population. The parameter sets are described in Tab. 4.2.
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4.2.3 Daily networks

The static networks above had been aggregated over the complete dataset. Especially for pa-
rameter set 2 this approximation is too coarse. As seen before, the spreading parameters suggest
rather an aggregation timestep of more or less one day. We therefore aggregate the dynamic
graph on a daily basis. For each day, the network now contains a static graph with heteroge-
neous weights, which can be simplified further, as before, by grouping nodes for each day together
and calculating contact matrices and distributions.
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Figure 4.9: Histogram of the final size of the epidemic for two parameter sets (see Tab. 4.2) and
the various static networks. The lines show simulations on the static networks, calculated on the
entire data set. The symbols show simulations on the corresponding daily aggregated networks,
a sequence of static networks calculated for each of the 7 days of the dataset.

Epidemic spreading was simulated for the networks based on these data representations with
different inherent amount of information and the results are shown in Fig. 4.9. Keeping a daily
temporal resolution of the data improves the simulation results for all networks. The number of
nodes per group varies from day to day. Thus, even though in the contact matrix networks all
present nodes are connected with each other for every single day, they are not directly connected
to all nodes appearing on other days as well since not all nodes are available for spreading all
the time. Only for the sequence of daily CMD networks, the effect of the lower number of daily
present nodes on the epidemic spread is counteracted by an increased number of connections on
the fully aggregated network. Since links are placed randomly for every daily contact matrix
network, mixing among nodes increases slightly compared to the CMD network on the entire
data.

4.2.4 Influence of roles

The results of epidemic simulations have been averaged over different starting times and starting
seeds. The role of starting times has been assessed in Sec. 3.2. Here we consider the influence of
the class of the epidemic seed and how the probability of getting infected depends on a node’s
class. Due to their inherent properties, different nodes have indeed different risks to get infected
during the epidemic. We are in particular interested in the role a node plays for the course of the
epidemic depending on the group to which it belongs. As policies for the prevention of epidemics
cannot be individual based, the affiliation to a given role class can be used as a proxy in order
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to predict the importance of single individuals for epidemic spreading in absence of more precise
information.

We find that the seed plays an important role for the extinction probability of the epidemic
and also in the first phase of the epidemic. The extinction probabilities and the probabilities
for an epidemic to reach less than 10% of the population are given in the appendix in Tab. A.4
and Tab. A.5 for networks based on different data representations and depending on the class
to which the seed node belongs. Epidemics starting from an assistant are most likely to spread
and reach a larger part of the network, while epidemics starting from a patient, caregiver or
doctor are more likely to die out or only reach a small part of the network. The extinction
probabilities are qualitatively similar for the HET and CMD network. On the other hand, the
probability to die out when spreading starts from a patient or caregiver is underestimated in the
CM representation. It is comparable to the case when the seed is a nurse.
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Figure 4.10: Boxplot for the final size of the epidemic for epidemics which reach more than 10%
of the population, depending on the group to which the starting seed belongs. These groups are:
C- Caregivers, N-Nurses, D- Doctors, P-Patients, A-Assistants. The case where starting seeds
are chosen randomly from all groups is marked as ”All”. The boxes show the median, 25% and
75% quantiles, the whiskers show the 5% and 95% quantiles. The parameter sets are given in
Tab. 4.2

Once the epidemic has infected many different nodes, the choice of the seed is of no importance
anymore for the size of the outbreak of the epidemic. In Fig. 4.10 it can be seen that the outbreak
size for outbreaks which reach more than 10% of the population is independent of the group of
the starting seed but depends strongly on the data representation used for the simulation.

Nodes which have the highest impact on the epidemic as a starting node are also the most
in danger to get infected during an epidemic. In Fig. 4.11 and Fig. 4.12 the fraction of nodes
of each group which gets infected during an epidemic is shown. Assistants have a very high
chance to get infected during an epidemic, whereas patients and caregivers are fairly safe. The
CM representation and the HOM network do not only overestimate the outcome of the epidemic
greatly, simulations on these networks also misjudge the respective importance of the different
groups. In the CM representation, patients and caregivers appear to be almost as much in
danger to become infected by an epidemic as nurses. Due to the high strength and low degree
of the patient and caregiver groups, the importance of these groups is overestimated in a data
representation which does not retain information on the degree and heterogeneity of the weights.

When conceiving immunization schemes, knowing which groups are most endangered plays
a major role. The limitations of the CM model when faced with weight distributions which are
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Figure 4.11: Histogram of the fraction of members of each group which are infected in the course
of an epidemic outbreak for parameter set 1 (see Tab. 4.2). Simulations are done on the DYN,
HET, HOM, CMD, CM0 and CM network.
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Figure 4.12: Simulation for parameter set 2, as in Fig. 4.11.
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Figure 4.13: Boxplot for the fraction of nodes in each group which were infected during the
course of an epidemic outbreak that reached more than 10% of the population. The boxes show
the median, 25% and 75% quantiles, the whiskers show the 5% and 95% quantiles. Simulations
were done for two parameter sets (see Tab. 4.2).

broad and contain many zeros needs to be taken into account and can be overcome by introducing
distributions to the contact matrix.
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4.2.5 R0-correction

0 10 20 30 40
R

n

10
-4

10
-3

10
-2

10
-1

10
0

fr
eq

ue
nc

y

DYN
HET
HOM
CMD
CM

(a) set1

0 10 20 30 40 50
R

n

10
-4

10
-3

10
-2

10
-1

10
0

fr
eq

ue
nc

y

DYN 
HET
HOM
CM
CMD

(b) set2

Figure 4.14: Distribution of the number of secondary infections Rn per node for the different
networks for two parameter sets (see Tab. 4.2). The distribution is based on 80 simulations
starting from each of the nodes in the network.

Replacing heterogeneous link weights by their average leads to an overestimation of the
epidemic, also because the transmissibility is a concave function. The transmission probability
over two links with very different weights is therefore smaller than the transmission probability
over two links which have the respective average weight. In order to account for this fact, we
will rescale the probability of propagation so that the average number of secondary cases is the
same for all networks. In Fig. 4.14 the distribution of the number of secondary cases on the
networks is shown for the two parameter sets. The distribution is exponential and it is most
likely that the seed does not infect any other node. The distribution for the HOM and CM
networks is broader than for the networks with heterogeneous weight distributions. The average
number of secondary cases for these networks is higher as well (Tab. 4.4). The average number
of secondary cases for the dynamic network DYN is smaller than for the HET network, mainly
because the epidemic has a much higher extinction probability on the DYN network. This is
due to the burstiness of the network, which leads to comparably longer times on average before
a node comes into contact with other nodes. If the epidemic starts with the introduction of
the seed into the network, the probability that nodes recover before they have the possibility to
infect other nodes disappears, and the average number of secondary cases increases to a value
comparable to HET or even higher. In the case of parameter set 2, for example, this more than
doubles the average number of secondary cases, from 1.06 to 2.32.

As the average number of secondary cases for the HOM, CM and CM0 networks are much
higher than for the HET network, we rescale the spreading probability β for HOM, CM and
CM0, so that they have the same average number of secondary cases as HET. In order to find
the right scaling parameter, we recalculate the average number of secondary cases for simulations
with different scaling parameters in Fig. 4.15(a) and fit a linear function through the data points.

Nevertheless, even after correcting for the average number of secondary cases, HOM still
overestimates the outcome of the epidemic (Fig. 4.15(b)). The shape of the distribution of final
cases for CM and CM0 remains very different from the one for DYN and HET. Low as well as high
outcomes of the epidemic are now overestimated by those data representations. Furthermore,
the relative importance of groups is still not assessed correctly (Fig. 4.16).
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set1 set2
DYN 0.84 1.06
HET 1.04 1.66
CMD 1.04 1.67
CM0 1.44 2.27
CM 2.00 3.87
HOM 2.06 3.71

Table 4.4: Average number of secondary infections for the different network and two parameter
sets (see Tab. 4.2)
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Figure 4.15: (a) Average number of secondary infections for the HOM, CM and CM0 networks as
a function of a scaling parameter p, which scales the probability of propagation (b) Distribution
of the final size of the epidemics. Simulations for the HOM, CM, and CM0 network are done
with modified propagation probabilities so that the average number of secondary infections is
identical to the one on the HET network with parameter set 1.
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Figure 4.16: Fraction of final cases in each group for the networks HOM,CM and CM0 with
modified propagation probabilities so that the average number of secondary cases is identical to
the one on the HET network with parameter set 1.
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4.3 Conclusion

We have contributed to the question, which level of detail of the data is necessary or sufficient
for the simulation of epidemic processes on the data. We estimated which resolution in time is
necessary for epidemic simulations on dynamic networks depending on the spreading parameters.
Furthermore, we have introduced a data representation which bridges the gap between contact
matrices and dynamic network data. By including weight distributions to the usual contact
matrix representation, we could incorporate the heterogeneity of link weights. This greatly
improved the accuracy of simulation results especially in cases where the weight distributions
on the original data are very broad. In the next chapter, we will compare the different data
representations tested in this chapter with regard to their capability to devise immunization
strategies.



Chapter 5

Immunization on dynamic

networks and data

representations

One of the most important areas of epidemiology is disease prevention. Since the introduction
of vaccination, major steps have been done. People who are vaccinated do not only acquire
immunity for themselves but also protect society as a whole. When a certain fraction, depending
on the reproductive rate of the disease, has been vaccinated, herd immunity can be acquired,
effectively stopping the epidemic as a whole. However, as many social networks have a broad
degree distribution [52], to acquire herd immunity almost the entire population needs to be
vaccinated [77]. On the other hand, scale-free networks are very susceptible to targeted attacks
[24, 25, 77], and therefore targeted immunization can effectively reduce the outbreak size by only
vaccinating a small portion of the population.

Having data to inform social network models can therefore lead to more efficient immuniza-
tion policies. An optimal immunization scheme could be reached by general surveillance of the
interactions between individuals by means of mobile phone applications, for example through
Bluetooth and GPS, as well as self-reported information. However, if this data acquisition stays
on a voluntary basis, it will not cover the whole population. Furthermore, it raises severe privacy
issues.

So far, on a population level no data for a complete network view exists, and proxies have
to be used to guess possible transmission pathways. Therefore, in many epidemiological studies
contact matrix models are still widely used [35, 36, 57, 79, 105]. The contact matrix can, for
example, be defined by the average contact time or the assumed reproductive rate between age
groups or roles. The lack of exact data has a direct influence on the epidemic simulations (see
Chap. 4) and also has a direct effect on the realizability of optimal immunization strategies
that rely on global network information. The possibility to find the super-spreaders [55] in the
population is greatly dependent on accurate data.

Some efforts have been done to find practicable immunization schemes which do not rely on
global or complete information. These are for example the method of acquaintance immuniza-
tion [25]. Here individuals are randomly selected and one of their friends is immunized. This
systematically leads to a selection of random individuals with a higher than average degree, as
our friends usually have a higher degree [31] than we do. However, due to its random elements,
this immunization method remains far from being optimal. It can already be outperformed by

65
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immunization strategies based on only a short amount of collected exact network data [86].

Immunization policies need to make practical immunization suggestions which are general
and easy to enforce. Therefore two challenges have to be met to deduce a useful immunization
strategy from real data. The strategy needs to be generalizable and transferable to other similar
datasets, and it needs to hold also for future events. In the last chapter we have introduced a data
representation which is group-based and fairly general without losing too much of its predictive
power. Results for epidemic simulations using this data representation were comparable to results
using the exact temporal data. Here we will test the capability of this data representation to
suggest successful vaccination strategies. In the next chapter (Ch. 6), we will see that there
might be limits to predicting the perfect set of nodes to vaccinate even with complete data, as
presence and importance of nodes change over time. It might therefore not be the optimal choice
to vaccinate a super-spreader due to past evidence as correlation with future performance might
not be overly high. On the other hand, common sense tells us that people are different, that
their social activity might fluctuate around different averages or following different distributions.
Thus, a short dataset might not be sufficient to find an exact ranking between individuals but it
might suffice for an approximate one. Also, as belonging to a group might transfer some of the
group properties to its members, group-wise vaccination might be a feasible alternative. Finding
a proxy, like group-membership, to describe the importance of nodes is a feature that is easily
generalized. We are looking for generalizable immunization strategies which can rely on limited
data without running the risk of false predictions due to too few data.

Even though complete dynamic data does not exist on a nation wide scale, for smaller settings
the differences between common low-information and high-resolution networks and the resulting
influence of the information on epidemic prediction and immunization strategies can be tested.

In this section, we will test different immunization strategies on a dataset describing the
interactions in a hospital ward. Current immunization strategies, suggested by the Center for
Disease Control and Prevention, are to prioritize health-care workers but do not make further
distinctions between different health-care workers [79].

Most strategies have been explored on static networks or using contact matrices, where no
change of individual importance for the disease arises. We test the effect of the data represen-
tation on the prediction of efficiency of different simple group-based immunization strategies in
Sec. 5.1. In Sec. 5.2 we compare the efficiency of immunization strategies based on different data
representations. For more general data representations, individual features of nodes disappear
and only group information is retained. Due to higher generality, better enforceability and less
privacy issues, group based immunization strategies appear to be a very practical alternative
to randomized strategies or to strategies that rely on exact network data. In Sec.5.3 we focus
our comparison between group based immunization strategies and individual based immuniza-
tion strategies on the stability of these strategies over time and also on their dependence on the
length of the dataset. In Sec. 5.4 we control for the starting-time dependence of immunization
strategies based on daily networks in order to test the reliability of these strategies for future
events. In Sec 5.5 we will look into possible methods to find an optimized vaccination strat-
egy that also makes use of the time-resolved information of dynamic networks and discuss their
limits.

5.1 Influence of the data representations

To evaluate the efficiency of an immunization strategy via simulations, one has to choose a
model for the epidemic, a data representation on which to run the model and a measure for
the outcome of the simulation in order to evaluate and compare the different strategies. We
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use the SEIR model for simulations as before. Our focus here is on the influence of different
data representations on the evaluation of the immunization strategy. In Chap. 4 we have seen
that the data representation does have an influence on the outcome of epidemic simulations.
Here we will test whether there is a difference in predicting the efficiency of vaccination for
different data representations and if it is crucial. We use a simple immunization scheme, in
which ten random individuals from one of the five groups (assistants, doctors, nurses, patients
and caregivers) are vaccinated. The same five data representations as before (DYN, HET, HOM,
CMD, CM) are used for simulations. The distributions of the final size of the epidemic simulated
on the different data representations can then be compared (see Fig. 5.2 and 5.1). The case
without immunization is added as a reference for all five data representations. For all five data
representations, a correspondence can be seen between the groups which are the most likely to be
attained by the epidemic and the groups which, when vaccinated, lead to the highest reduction
on the outcome of the epidemic. For the DYN, HET and CMD data representation, the best
groups to vaccinate are assistants and nurses. Vaccinating patients and caregivers is the least
efficient. Even though the overall case counts for epidemics on the HOM data representation
are greatly overestimated, and the effect of vaccination are quantitatively different, the order
of importance between the different groups is the same as for the DYN network. Only the CM
representation grossly overestimates the efficiency of vaccinating the patient and caregiver groups,
just as it overestimated before their probability to catch the disease. Simulations on this data
representation can therefore lead to misleading conclusions about the right group to vaccinate,
with possibly severe effects. It is also noticeable that vaccinating patients and caregivers does
not reduce the attack rate. Vaccinating these groups does not have a strong effect as group
members have a low probability of getting infected in the course of an epidemic (see Sec. 4.2.4).

5.2 Immunization strategies on static data representations

Here we evaluate the efficiency of the optimal immunization strategies that can be derived from
each data representation. As strategies are chosen to be optimal on each data representation,
it makes little sense to run the simulations on networks created from the corresponding data
representation. In order to compare the different immunization strategies, simulations will have
to be run on the same underlying data representation. As the DYN representation of the data
has the highest amount of information and is the most similar to reality, we choose this repre-
sentation as our gold standard. Simulations are run using the same SEIR model for simulations
as before. Comparison between the different immunization strategies will be done by considering
the percentage of simulations with an attack rate below 10% and the median final number of
cases for simulations which result in an attack rate above 10%. The immunization strategy is
more efficient when more runs have an attack rate below 10% and the median number of cases
is low.

As the different data representations have different inherent amounts of information, vacci-
nation by individual degree of nodes is not available for all data representations. Of the data
representations used here, only DYN, HET and HOM have individual information for all nodes,
and therefore only those three data representations can provide enough information for degree
based immunization schemes.

The CM and CMD representation do not contain other information on individual nodes than
their belonging to different classes with different class properties. Only class based immunization
schemes can be formed based on these data representations.

In the CM representation, classes can be ordered according to the total time individuals of
each class spent in contact. Inside classes the immunization ranking has to remain random, as
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Figure 5.1: Vaccination of 10 subjects out of one of the groups (A,N,D,P,C) or no vaccination
at all (n). Simulations were done with parameter set 2 (see Tab. 4.2) on the various networks.
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Figure 5.2: Vaccination of 10 subjects out of one of the groups (A,N,D,P,C) or no vaccination
at all (n). Simulations were done with parameter set 1 (see Tab. 4.2) on the various networks.
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Figure 5.3: Effect of the immunization of an increasing number of participants, following different
strategies. The left figures are simulated with parameter set 1, the right figures with parameter
set 2 (see Tab. 4.2). The top figures show boxplots of the final size of epidemics, restricted to
the runs in which more than 10% of the non-immunized population was affected. The gray line
marks the 10%. The box represents the median and the 25% and 75% quantiles, the whiskers
the 5% and 95% quantiles. The bottom figures show the fraction of simulations that yield an
attack rate smaller than 10% of the non-immunized population. The immunization strategies
are: ”degree”, which immunizes individuals according to their degree on the aggregated static
network, immunizing highest-degree nodes first. ”degree (group)” immunizes individuals from
groups with the highest average degree first, the ranking within the group is random. ”strength”
immunizes individuals according to their strength on the static network, ”strength(groups)”
ranks groups according to their average strength, individuals within each group are ranked at
random. ”random” is a complete random choice of individuals for immunization.
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no information to discriminate between nodes is available.

In the CMD representation, in addition to the information of total contact time, we also
have information of the link density within and among classes. This allows a ranking of classes
according to their average degree.

As a reference we also test the random strategy, which is the only possible strategy if no
information is available to distinguish individuals. This is for example the case for the fully
connected networks with identical link weights, describing the homogeneous mixing case.

In Fig. 5.2, plots are shown for both parameter sets. Vaccination by degree performs best,
followed by the strategy based on the CMD data representation. Vaccination by average strength
of groups partly performs worse than the random strategy. This is due to the fact, that the
patient and caregiver groups include individuals with high contact rates but very low degree.
This leads to a high average strength for these groups but low average degree. Often, strength
and degree are correlated so that groups with high average strength are also groups with high
average degree. This is not the case here (see Fig. 2.2). Therefore the information on strength
of groups cannot serve as a proxy for the degree of groups. As the CM representation does not
retain information on the degree of groups, it can only inform on the vaccination by strength of
groups. Vaccination by strength for these groups proves to be inefficient.

5.3 Effect of a limited time window

The data representations also have a limit in the available information that is imposed by the
length of the dataset. In this case, the dataset extends over one week.

The ranking could differ for different periods of data acquisition. Here we can only subsample
within the period given by the dataset. We will therefore reduce the data to one-day samples and
to half-day samples in order to investigate the effect of the time of data acquisition and the limit
of information imposed by the dataset length on data-based immunization strategies. In Fig. 5.4
and 5.5 we compare individual vaccination by degree, based on the data aggregated on one day
only, for different days, with class vaccination by degree where the information is also limited
to one day. For four out of seven days, the group-based immunization scheme stays the same
as the one calculated on the complete dataset. For the other 3 days, the ranking still considers
assistants and nurses as the most important classes to vaccinate. The respective vaccination
orders are NADCP and NACDP. The efficiency of these three group-based immunization schemes
is very similar. The efficiency of the individual-based immunization schemes decreases slightly
when information is reduced to only one day of contacts.

Ranking on half days leads again to similar results, classing A and N first in 13 out of 15 cases,
C and P last, when groups were ranked according to their degree. If only the information of the
CM representation is available, and groups cannot be ranked according to their average degree,
then the Patient and Caregiver groups are very often classed as the most important groups as
they have a high strength on the daily contact matrices.

Nodes which have a high degree on one day do not necessarily also have a high degree on
other days. As we will see in Sec. 6.1, the ranking by degree fluctuates in time. In Fig. 6.7
we see the development of the degree ranking over time for the diverse roles. The ranking of
different roles, especially nurses in comparison to patients, shows a rather stable and distinct
behavior, while the individual ranking fluctuates. The precise ranking according to individual
degree is therefore less stable than the ranking according to group degree. The individual degree
ranking loses some of its advantage when it is applied to parts of the dataset on which it has not
been constructed. Thus the difference between the efficiency of the immunization scheme based
on the DYN network and the efficiency of the immunization scheme based on the CMD network



72CHAPTER 5. IMMUNIZATION ONDYNAMIC NETWORKS ANDDATA REPRESENTATIONS

0 20 40 60
Number of immunized individuals

0

10

20

30

40

50

Fi
na

l n
um

be
r 

of
 c

as
es

 (
A

R
>

10
%

)

day 1
day 3
day 6

(a)

0 20 40 60
Number of immunized individuals

0

10

20

30

40

50

Fi
na

l n
um

be
r 

of
 c

as
es

 (
A

R
>

10
%

)

ANDCP
NACDP
NADCP

(b)

0 20 40 60
Number of immunized individuals

0.85

0.9

0.95

1

Pe
rc

en
ta

ge
 o

f 
ru

ns
 (

A
R

 <
10

%
)

day 1
day 3
day 6

(c)

0 20 40 60
Number of immunized individuals

0.85

0.9

0.95

1
Pe

rc
en

ta
ge

 o
f 

ru
ns

 (
A

R
 <

 1
0%

)

ANDCP
NACDP
NADCP

(d)

Figure 5.4: Effect of the immunization of an increasing number of participants. In the left
figures (a+c), the immunization strategy is based on the degree of the individuals calculated on
the aggregated network of limited length of one day. In the right figures (b+d), the immunization
strategy is ”degree (group)”, where the average degree of the classes is calculated and ranked on
daily aggregated networks. On the 7 days, 3 different rankings of groups are found and shown
here. Individuals within each group are ranked randomly. The top figures (a+b) show boxplots
of the final size of epidemics, restricted to the runs in which more than 10% of the non-immunized
population was affected. The box marks the median and the 25% and 75% quantiles, the whiskers
the 5% and 95% quantiles. The bottom figures (c+d) show the fraction of simulations that yield
an attack rate smaller than 10% of the non-immunized population. Simulations were done on
the dynamic network with parameter set 1.
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Figure 5.5: Same as Fig. 5.4. Simulations were done on the dynamic network with parameter
set 2.
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decreases slightly for shorter collection times of information.

5.4 Time dependence of ranking efficiency

As the ranking of nodes changes over time, the question arises how valid a ranking chosen
at a specific point in time remains in the future. In our simulations, the choice of nodes to
vaccinate was taken on the same dynamic network on which the efficiency of the vaccination
was subsequently tested. This introduces a bias which increases the immunization efficiency. To
explore the size of this bias, we check the efficiency of an immunization scheme depending on
the starting time relative to the time at which the scheme was devised.
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Figure 5.6: The extinction probability is plotted for various immunization schemes as a function
of the starting time of the epidemic. The immunization schemes are based on individual degree
ranking on data aggregated over one day. Plots for the different days are marked with different
colors. In each run, 20 individuals were vaccinated. Lines are guides to the eye.

For daily degree-based rankings on different days, we simulate epidemic processes with dif-
ferent starting times and plot the extinction probability as a function of the day on which the
epidemic started in Fig. 5.6. The simulation was done with parameter set 2 (see Tab. 4.2).
Epidemics for which the seed node does not infect any of its neighbors have an average duration
of one day for this parameter set. Thus, in most cases the seed does not stay infectious over the
whole week and the starting time is characteristic for the effect the vaccination has on epidemics
which occur at and shortly after the starting time. A slight effect on the dependence of the
starting time can be seen. For example, the extinction probability of epidemics starting at the
first day is highest for the immunization scheme which was designed on a degree ranking based on
the first day, whereas the extinction probability of epidemics starting at the fifth day is highest,
if the immunization scheme is based on the degree ranking of nodes on day 5. Nevertheless, the
overall dependence of the extinction probability on the starting time due to weekly fluctuations
of the data is much higher.

In order to focus on the effect of the dependence of the outcome on the relation between the
starting time and the day on which the vaccination scheme was based, and in order to factor out
the effect of the starting time due to variations of the data, in Fig. 5.7 we have plotted the ratio
of the extinction probability with and without immunization for two vaccination schemes based
on the degree ranking at different days. This ratio is lowest when the immunization is not very
efficient and highest when the immunization strategy is very efficient. We can see that it is most
efficient for epidemics which start at or just before the day on which the ranking was chosen and
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Figure 5.7: The ratio of the extinction probability for epidemics with immunization to the
extinction probability for epidemics without immunization is plotted against the starting time
for different numbers of vaccinated individuals. (a) The immunization ranking was based on
the aggregated network of day 1. (b) The immunization ranking was based on the aggregated
network of day 4.

worst for epidemics which start just afterwards, as due to the cyclic nature of the network, the
epidemic is then least likely to reach the day which the immunization strategy is based on.

However, these effects are very weak and more simulations have to be done in order to see if
these results are significant or not. Especially the exact choice of the time window over which
the immunization scheme is calculated can have an effect. Here we have chosen 24 hour time
windows. Due to daily repeated fluctuation patterns, this is a reasonable choice. However, time
windows do not start at midnight but at the beginning of the dataset in order to maximize their
number. This could possibly have a small influence on the outcome. It remains to be seen how
much the daily-based immunization schemes need to differ when based on successive days so that
their efficiency changes strongly with the starting time of the epidemic.

5.5 Immunization strategies on dynamic networks:

significance

Dynamic networks differ from static networks through the presence of dynamic motifs [4, 61].
The spreading between two nodes which are neighbors in the static network can be impossible
in the dynamic network if their contact takes place before either of them gets infected.

It could be important to take dynamic aspects into account when devising immunization
methods. So far, methods have been put forward which easily take account of the different
occurrence probabilities of nodes by vaccinating the most recent or the most frequent contact of
a random node [51]. However, they do not take account of network motifs or of the importance
of single nodes for the efficiency of spreading paths. The advantage of these strategies is that
they are easy to apply and better than complete random strategies. However, they still include
random elements and are not optimal strategies. Understanding better which characteristics
lead to an optimal immunization strategy could also improve these more practicable methods.
As many people know their friends quite well, being able to point out characteristics of efficient
spreaders could then improve simple strategies in which randomly chosen subjects point out the
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one friend which fits these characteristics best. When the optimal immunization strategy is found,
it remains to be seen how much of the efficiency of a spreader is due to its own characteristics
and how much to the interactions on the network, the global network structure or just plain
chance.

Takaguchi has shown that single events can play an important role in the dynamic network
[95]. If these events are removed the dynamic network will fall apart. We explore a new method
to evaluate the importance of single nodes in the spreading process.

To this end, we measure the effect the removal of a single node has on temporal paths starting
at a specific time. A temporal path between nodes i and j is the fastest path that can be traced
between the two nodes on the dynamic network [73]. There can be more than one temporal path,
and in that case, we choose the one which includes fewer nodes. There may be no temporal path
between two nodes even if they are connected on the static network [73]. For every node in the
dynamic network we look at its temporal out-component [96].

The temporal path can be characterized by two properties: the time it took for information
from node i to reach node j and the number of nodes that had to transmit this information.
We look at the change of both properties when a specific node n in the network is removed.
The more significant the position of this node was, the more the temporal paths in the network
should change. We therefore quantify the effect the removal of a node has on temporal paths on
the dynamic network and call it the node’s significance. We hereby distinguish between a change
in path length and a change in the duration of the temporal path. This duration of the temporal
path from its start at node i up to its arrival at node j can be taken entirely or only measured
when node n is in contact. Using this internal clock time of a node has proven to lead to more
robust results when considering the time a temporal path takes to reach different nodes in the
network [74].

Algorithm to calculate the significance:

• Divide network into different time slices ∆T .

• Choose the size of each slice in such a way that all slices contain the same total contact
time between all active nodes.

• For all nodes in one slice, start temporal paths at the first occurrence of each node s.

• Register the time tsl and the number of steps dsl between the seed node s and any
node l that it can reach on the temporal network.

• We considered three different ways to measure the time t between the seed and the
leaves of the temporal out-component.

– The total time that has passed, tT .

– The total time that has passed and in which the leave node was in contact, its
internal clock time or the time it was present, tp.

– The total time in which other nodes were in contact with the leave node between
the start of the information flow and the time in which the leave node is reached,
tc.

• For each node n which lies on one of these temporal paths, neither as seed nor as leave,

– remove the node
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– register the time t−n
sl and number of steps d−n

sl for each temporal path from s to
l as before.

• The step significance Sn,∆T
d for node n is the sum over the inverse step difference for

all paths.

Sn,∆T
d =

∑

s,l

1

dsl
−

1

d−n
sl

• The time significance Sn,∆T
t for the removed node n is the sum over the difference of

the inverse times for all paths it lies on, where t can be tT ,tp or tc.

Sn,∆T
t =

∑

s,l

1

tsl
−

1

t−n
sl

Whenever a node does not appear in any of the temporal out-components starting at a specific
time window, its significance for this time window is zero. We take the difference of inverse time
and the difference of inverse distance in order to avoid adding infinite distances or times if nodes
are not reached anymore by the temporal path.

The significance Stc is highly correlated with Stp , mostly because nodes in our networks are
rarely in contact with more than one node at the same time, so that tc and tp do not differ
significantly. We therefore drop time measure tc.
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Figure 5.8: (a) distribution of the significance Sn,∆T
d , (b) distribution of the significance Sn,∆T

t

calculated for the internal time tp over the complete 4 days of the ”lyon2011” data for all nodes
and for the most frequently present node.

In Fig. 5.8(b) the distribution of the significances in time, Sn,∆T
t , is shown, and in Fig.

5.8(a) we show the distribution of the step significances, Sn,∆T
d . Simulations were done on the

”lyon2011” dataset. Since the temporal path is the fastest path between two nodes, the time
of the temporal path between these two nodes can only increase or stay the same when one of
the nodes that is lying on this temporal path is removed. Therefore St,∆T

d is always positive.
The number of steps between the two nodes, on the other hand, can increase or decrease when
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one node on the path is removed. The step significance Sn,∆T
d can be negative or positive. The

significance in time is distributed exponentially. For most temporal paths between two nodes,
removing a particular node does not have any significant influence on the temporal path. If this
is the case for all temporal paths starting in a specific time window ∆T , then the significance
Sn,∆T of this node is zero, or close to zero. While most of the time the removal of a particular
node does not play an important role, sometimes it does.

The importance between nodes and over times varies very much. Looking at the distribution
of the significance in time for just one single node, the same variation of the significance can
be seen. The shape of the distribution of the significance at different times for all nodes is
also due to the distribution of the significance for each single node at different times. For the
step significance as well, the distribution for a single node shows the same shape as the overall
distribution.

To optimally contain an epidemic it would be sufficient to remove nodes only at those times
at which they are most significant. This could, for example, correspond to wearing face masks or
other protections in order to not spread diseases at situations when one is in contact with many
different people. However, vaccination is not limited in time at the timescales considered here. If
we are looking for an immunization strategy based on the temporal information of the network,
we need to globally classify and rank nodes. We do this by averaging over the different values at
different starting-time windows ∆Ti and then ranking nodes according to their significance.

Sn =
1

N

N
∑

i=0

Sn,∆Ti (5.1)

Taking the average over the different significance values of the same node at different times
reduces much of the information given by this measure. However, if we want to devise an
immunization strategy, it does not matter at what time a specific node was important, it only
matters if it is likely to be important again. If in the dynamic network some motifs are repeated
in contact patterns, they could be detected by our method but not by devising an ordering
scheme on a static network.

To distinguish the effect of the significance from the mere presence and absence of nodes, we
also include a vaccination ordering in which nodes are ranked according to the number of time
windows in which they appear (presence). Similar to the temporal betweenness centrality, we
furthermore calculate for each node the percentage of temporal paths (starting at different time
windows) in which it is present, independent of the effect its removal would have. This measure
should be highly correlated with the temporal betweenness centrality if the number of temporal
paths between two nodes i and j, starting at a given time t, is low. Since we only consider one
temporal path, the temporal path with the lowest number of intermediate nodes, between any
two nodes for the significance, we do the same for this measure, which we call simple temporal
betweenness.

We then rank nodes according to the above mentioned classifications of the importance of
nodes, their significance Sn, their simple temporal betweenness and their presence and vaccinate
them following the respective rankings. This way, we can compare the usefulness of these dynamic
classifications with rankings based on information taken on static networks.

In Fig. 5.9(a) we look at the correlation between the significance in time and the degree
of nodes. As the degree ranking is quite good as immunization scheme, it serves as a first test
for the new significance measure. In Fig. 5.9(b) we compare the significance in time with a
more simple but also dynamic measure, the simple temporal betweenness. Both measures are
correlated with the significance St but the correlation is not so strong as to consider the new
measure as redundant.
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Figure 5.9: (a) For all nodes the average significance St is plotted against their degree on the
total aggregated network. (b) For all nodes the average significance St is plotted against their
average simple temporal betweenness.
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Figure 5.10: Effect of the immunization of an increasing number of participants, following the
different strategies (degree, strength, significance St, presence ). The left plot gives the boxplot
of the final size of epidemics, restricted to the runs in which more than 10% of the non-immunized
population was affected. The right plot gives the fraction of simulations that yield an attack
rate smaller than 10% of the non-immunized population. The parameter set used was: β =
1000 ∗ µ,µ = 1day−1, λ = 1/2day−1.
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We will subsequently test in Fig. 5.10 if our ranking works better for some networks or
some spreading parameter sets than the simpler static and dynamic measures. As the dynamic
network features become more important for faster spreading (see Ch. 3), we test the efficiency
of the vaccination rankings using epidemic spreading in this parameter region first. The used
parameter set is: β = 1000day−1, µ = 1day−1, λ = 0.5day−1.

Vaccinating nodes according to the degree ranking has the same effect as vaccination according
to the significance ranking. Also, in contrast to the dataset of the children’s hospital, vaccination
by strength still works quite well. This might be due to the fact that strength and degree are
more strongly correlated here. The simple temporal betweenness ranking, which is not based
on the effect the removal of a node has and only considers its presence in the temporal paths
between nodes, works less well. Finally, the presence ranking, which uses only the information
whether or not nodes are present in time windows, is even less efficient. The ranking according
to the step significance does poorly, but is still more efficient than random vaccination.

As the significance values are quite widely spread for each node, averaging over those values
seems to take out most of the extra temporal information. The remaining information which is
inherent in the ranking does not result in better containment of the epidemic than the informa-
tion already included in the degree ranking, the best among the rankings on static network we
consider. Furthermore, the significance only considers the effect of node removal on temporal
paths. For epidemics which propagate slowly, the temporal path between two nodes is most likely
not the path over which the epidemic spreads. The number of longer paths can play a much more
important role, similar to spreading on static networks, where epidemics do not always spread
over the shortest path [71]. In Ch. 7 we look into temporal paths and infection paths.

5.6 Conclusion

We have seen that the evaluation of the same immunization strategies on different data repre-
sentations can come to different conclusions. Using the right data representation to simulate
epidemics and predict the efficiency of immunization strategies is therefore very important. In
order to devise good immunization strategies, a certain level of detail is necessary. By comparing
the efficiency of immunization strategies which could be derived from the information in the
different data representations we found that even though individual information on the degree
of nodes lead to the best containment of epidemics, information on the average degree as can
be extracted from the CMD data representation leads to similar results. Furthermore, when the
time over which the information is collected is reduced, the individual degree ranking of nodes
became less stable, while group based rankings remained fairly robust. Thus individual ranking
schemes need to be considered with a grain of salt. The role single nodes play can change. This
could also be seen for the significance of nodes, which varies quite strongly over time. In order
to devise immunization strategies, it is important to predict if single nodes or groups of nodes
will be important for the epidemic spread in the future. However, any strategy will be based
on data from the past. Knowing how much node rankings for immunization strategies change,
how much the importance of nodes varies and also, how much datasets vary over time can be
an important information in order to evaluate the validity of immunization schemes. In the
next chapter we will look at the development of the degree ranking over time, how it changes
with longer aggregation time and how it varies over time. We will also compare two datasets
which were registered at different times at the same place in order to discern to what extent the
datasets differ and to assess the validity of epidemic predictions.



Chapter 6

Predictability

One of the key reasons to make models is not only to understand the main influences of different
aspects of reality better but also to make predictions about the future and to learn how to
manipulate reality in order to achieve a desired outcome. In order to apply models to the real
world, to be able to make predictions, they need to be informed by data. The more specific the
data, the more exact are the predictions the model can make. However, if the data is unknown, it
needs to be approximated by existing and similar data. The less is known about the underlying
situation, the more general the data which is used needs to be.

In this chapter, we will look at the predictability of outcomes concerning the epidemic spread-
ing on networks when generalized data representations are used and also at the stability of rank-
ings of nodes. The data-based rankings can be used as prediction of which nodes going to be the
most important in the network.

6.1 Degree ranking

In order to manipulate the course of an epidemic through vaccination, the most influential
spreaders need to be known. Similarly to the prediction of the outcome of an epidemic, this task
is twofold: knowing the most influential spreaders of a given network and predicting how similar
the network will be in the future.

High-degree nodes have been shown to play a crucial role in spreading processes on static
networks. In static networks, the ranking of nodes according to their degree centrality is a well-
established and straightforward procedure. In dynamic networks, the degree of a node is less well
defined. The instantaneous degree of a node, the number of people a person is in contact with
at one specific moment, is usually very low, rarely higher than four or five and thus does not
differ enough between individual nodes in order to be a good basis for a ranking. The number
of distinct nodes a node was in contact with over a longer time period is more meaningful.
However, the optimal aggregation time in order to obtain a degree ranking remains unknown.
While too short an aggregation time will miss sensible information, aggregating the network over
a very long period is costly and the additional data acquisition effort might not bring useful
extra information. On the contrary, a prolonged aggregation time might lead to the inclusion
of nodes which are not relevant anymore in the ranking list. Furthermore no information about
the frequency of occurrence of the links is retained. With longer aggregation more rare links
are included in the aggregated network. These links have the same influence on the degree of a
node as links with high activity. Nonetheless, the degree centrality is still one of the best and
simplest measures to designate influential spreaders, even for dynamic networks [86]. In the last
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chapter we have seen that the degree ranking was not outperformed by more elaborate ranking
measures. However, the ranking did not seem to be very robust. Rankings on datasets reduced
to one day proved to be slightly less efficient. How long data needs to be registered in order to
provide a basis for robust degree-based immunization strategies and how much these strategies
will vary depending on the aggregation time are therefore interesting questions, which we try to
tackle here.

In order to understand which is the optimal aggregation time to arrive at a degree ranking
which is sufficiently robust and efficient, it is important to understand how the ranking changes
with longer aggregation times. The degree distribution changes with longer aggregation time
towards larger average degrees and higher variance (see Fig. 2.5(a) and Fig. 2.5(b)) as new links
are added to the network. We consider here the stability of the degree ranking of a network in
which links instead of nodes are added, similarly to the discussion of leader nodes in growing
networks [34]. The question is therefore if the ranking is preserved when new links are added or
if it changes frequently and unpredictably. If the nodes have different inherent attractiveness,
as expressed by their different degree in a static network, the ranking is expected to stay fairly
stable.
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Figure 6.1: Degree of nodes on the network aggregated over ∆T vs. ∆T . The degrees of the
first 5% of nodes in the degree ranking on the fully aggregated network are shown in red (only
every third node is shown for clarity). The degree of the following nodes in the ranking (up to
the first 20% of nodes) in the fully aggregated network are shown in violet (only every sixth node
is shown). The evolution of the aggregated degree of a small number of other nodes is shown in
grey for comparison.

We look at the development of the aggregated degree of the nodes as the network is aggregated
over longer and longer time periods in Fig. 6.2 and 6.1. The dynamic networks used are ”sfhh”,
”eswc”, ”ht” and ”lyon2012” where in this section all nights and phases without activity were
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Figure 6.2: Degree of nodes on the network aggregated over ∆T vs. ∆T for a shuffled version of
the dynamic contact data. See Fig. 6.1.

removed. In Fig. 6.2 each link has a specific probability of appearance. The dynamics of the
network follows the Poisson distribution. In this case, the degree of the nodes grows in a regular
way, which mostly preserves the ranking among different nodes.

The original data however has bursty dynamics. In Fig. 6.1 the development of the nodes’
degree is plotted for the original network data. The growth of the degree with aggregation time
shows irregularities and jumps, the ranking among different degrees is less stable. As the cutoff of
the dynamic network data is arbitrary, the ranking most likely continues to change. In general,
however, the ranking for the top nodes seems more stable than the ranking for lower degree
nodes. The nodes which have the highest degree on the fully aggregated network (HET) already
appear early on in the list of top nodes and there is little mixing across the whole range of the
ranking. Possibly this stability can be a transient phenomenon as the datasets are rather short.
For the hospital dataset, which is the longest of the four, the ranking seems to stabilize much
later.

Two questions arise: What is the minimal aggregation time necessary to obtain a sensible
ranking of influential nodes? And how stable is this ranking?

In Fig 6.3 we compare the ranking calculated on the network data aggregated up to time
∆T (∆T -network) with the ranking on the fully aggregated network (T-network). Not all nodes
are present over the entire length of the dataset. Nodes which have not appeared yet at time
∆T are randomly added at the bottom of the ranking. Instead of their ID, nodes in the ranking
are referred to by their respective degree on the T-network. Nodes which have the same degree
on the T-network, occupy the same position in the ranking. We then calculate the Kendall
τ -b coefficient as a measure of comparison, as it takes account of ties. In a very short time,
the Kendall-τ rises rapidly to a value above 0.5, as the fraction of nodes for which the ranking
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Figure 6.3: The Kendall τ -b correlation coefficient for the correlation between the ranking based
on the fully aggregated network and the ranking based on the network aggregated up to ∆T .
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is calculated increases. Afterwards, the ranking correlation coefficient only increases gradually.
The most important factor seems to be the fraction of nodes which are ranked. As important
nodes are supposed to be present more frequently than nodes which play a minor role in the
spreading of epidemics, measuring contacts for only a short period could already be sufficient.
Furthermore, as the density of nodes with similar degree is higher for low degree nodes, there
are also more fluctuations in the bottom part of the ranking. The Kendall-τ ranking coefficient
does not give different importance to the correct ranking of nodes in the top or the bottom part
of the list. As low degree nodes do not play an influential role in the spread of epidemics, their
exact ranking position is of minor importance.

In containment strategies, a fraction of the nodes of the network is removed. This fraction is
the top fraction of the ranking. In order to find the optimal nodes for vaccination, it is therefore
sufficient that they are ranked among the top nodes. Their exact position in the ranking is of
no importance since for a given vaccination strategy a specific percentage of nodes is selected for
vaccination.
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Figure 6.4: The median of the degrees of the top 5% (red) and the top 20% (black) nodes of
the degree ranking based on the network aggregated up to ∆T , whereas the degrees taken to
calculate the median are the respective degrees these nodes have in the fully aggregated network.
The median degree is plotted vs. ∆T/T . The dashed horizontal lines mark the final values: the
median degree of the top 5% and of the top 20% of the nodes on the fully aggregated network.

In Fig. 6.4 we compare the top 5% and the top 20% of nodes of the degree ranking on the
network aggregated over the complete length T of the data with the top nodes of the network
aggregated over a time ∆T . For comparison we use the median degree of the nodes chosen at
time ∆T , where the degree of each node is represented by its degree on the network aggregated
over T . Already after a very short aggregation time there are many nodes among the chosen
top nodes which play an important role on the entire dataset. The median degree of the top
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nodes at time ∆T is rapidly similar to the median degree of the highest degree nodes calculated
on the fully aggregated data. Aggregating for a longer time only slightly improves the choice of
nodes. Whether the higher extra cost for a much longer collection of information is worth the
improvement of the exact ranking of the nodes therefore depends on the stability of the ranking
itself. If nodes had a fixed unchanging importance in the network, it could make sense to measure
over a long enough time in order to find this ranking with high precision.
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Figure 6.5: Degree of several nodes on the networks aggregated over temporal windows of 400
time steps vs t/T . The curves are colored according to the node’s ranking in the network
aggregated over [0, T ].

However, it was shown for an email contact network in [15] that this is not necessarily the
case. The important nodes change frequently and do not occupy a crucial position in the dynamic
network over a very long time period. In Fig. 6.5 we plot the aggregated degree of some of the
top nodes depending on the starting time of aggregation. For a short aggregation time of 400
timesteps, the accumulated degree of nodes fluctuates strongly, especially in the hospital dataset.
Even the importance of those nodes which occupy a top position in the fully aggregated network
is localized in time. There are time periods in which these nodes do not appear at all. For longer
aggregation times, the fluctuations are slightly attenuated. As the present datasets are rather
short, it remains unclear, whether or not there are fluctuations on longer timescales.

In order to be able to predict if the top nodes which have been chosen by aggregating over
a time ∆T will continue to play an important role later on, the correlation between the present
and future degree of nodes needs to be known. We furthermore test the dependence of this
correlation on the aggregation time. In order to test for different aggregation lengths, tests are
done on the longest dataset, ”lyon2012”, where as before all phases without activity were taken
off.

In Fig. 6.6(a) the Pearson correlation coefficient is plotted over the aggregation time. It
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Figure 6.6: (a) Pearson correlation coefficient between degrees of all nodes at time t = 128000s
and time t = 320000s, aggregated over different time length, vs aggregation time. (b) For nodes
at position 1, 9 and 15 in the final degree ranking, the histogram of degrees at different points
in the ”lyon2012” dataset is shown. The degrees are calculated on networks aggregated over 400
timesteps (8000 s).

measures the correlation between the degree centrality at times t1 = 128000 and t2 = 320000.
These points in time correspond to the last day of the first week and day four of the second
week. Both show high activity. The degree was calculated on snapshots of the temporal network,
aggregated over given time intervals with different aggregation times.

The correlation between the degree increases with longer aggregation time. We do not (yet)
get a saturation effect as observed in [15], but a slight flattening is already visible. Correlation
is in general much higher than in [15]. This could be related to the smaller size of the dataset.

For a selection of nodes we look at how much their aggregated degree varies. We aggregate
the degree over 400 timesteps (∼2h.) Even though the degree distribution is very wide, we do
not find a power law degree distribution as was found for phone calls by Braha [15]. Nodes which
occupy a high position in the ranking on the complete dataset consistently show a small and wide
peak at high degrees when considering only the time in which they are present. For nodes which
occupy a lower position in the final ranking, this peak drifts towards zero. A second peak at
degree zero is present for all nodes, as they are not constantly in contact with other nodes. The
fact that the degree distribution does show a more consistent behaviour for high degree nodes,
could be due to the limited length and size of the dataset but it could also be due to the fact
that in the hospital dataset individuals occupy different roles, which distinguish them from each
other.

To better visualize the development of the ranking for different roles, we plot in Fig. 6.7
again the degree as a function of aggregation time for the hospital datasets ”lyon2012” and
”obg”, where the different roles are color coded. The behaviour of the curves is very distinct
for the nursing staff and patients. While Nurses and Assistants have almost all been present in
the first days, for some patients the first contacts happen much later. The degree rises rapidly
for nurses and assistants, once they are present, while the degree for patients stays constantly
low. It seems very unlikely that even after longer aggregation time, patients will adopt nurse-like
behaviour or nurses patient-like behaviour. The average degree for the groups shows a robust
ranking already for short aggregation times.

In conclusion, it can be said that for the datasets we consider here a preliminary ranking can
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Figure 6.7: Left figure: Degree of nodes on the ”obg” network aggregated over ∆T . The colored
lines show the development of the degree of each individual belonging to a given class, the circles
show the average degree for individuals of a given class. Right figure: Degree of nodes on the
”lyon2012” network aggregated over ∆T . The different nodes are color coded according to the
roles they occupy. The roles are: A- assistants, D- Doctors, N- Nurses, P- Patients. Only every
third node of each role is shown.

be obtained after a very short time of data collection. This ranking already contains a major part
of the most important nodes. Even though the ranking is not absolutely stable, the top nodes
seem to reliably persist over large parts of the dataset, which might be, at least for the hospital
dataset, related to the functions they perform. Furthermore, the ranking for groups proves to be
very stable while the ranking for individuals fluctuates more prominently. The ranking is based
on aggregated networks. The variations of the ranking therefore must come from variations of
the underlying data. In the next section we compare two datasets taken at different times.

6.2 Data-based predictions of epidemic spread

Models are fed with data from a specific situation in the past. This situation-specific data will
not repeat itself in the exact same way. The precision of the predictions therefore might depend
on the precision of the data the model is fed, and on how much reality changes, that is, on how
applicable the data is to the future situation. To make the data (in this case the face-to-face
contact data) more general, knowledge about the process through which face-to-face contacts
occur and the corresponding underlying distributions would be necessary. As of today, this
process remains unknown. We use therefore the CMD data representation, described in the last
chapter, as it is fairly general and keeps enough aspects of the data in order to allow reasonable
predictions. Also, the size of the dataset can be easily modified in order to match the setting for
which the prediction will be done.

We will ignore here the difference between the predictions based on the CMD data repre-
sentation and an outcome of the epidemic in reality. We are only interested in the difference of
the predictions due to data changes over time. To this end, we compare the predictions of the
SIR-model on the CMD representations of two datasets which describe face-to-face contacts at
the same location but at different times.

We test how well the model, informed by one dataset, can predict outcomes of epidemic
spread in a different situation described by another dataset. The two datasets are the datasets
”lyon2011” and ”lyon2012” as described in chapter 2. To this end, we will first compare the two
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datasets in order to see how much data taken at the same location, but at different times, varies.
Thus we can see how similar the data is, at a certain level of representation in 2 different years.
Then we simulate epidemic processes on the data in order to see how important those differences
are for the predictions based on the data.

6.2.1 Comparing datasets

Comparing the datasets on an individual basis is impractical since many participants are not
present in both years. Furthermore, it cannot be expected that contact patterns of individuals
are unchangeable. On the other hand, in order to make data-based predictions about future
properties of the contact patterns, general features of the data should stay robust. We will
therefore here only consider the CMD data representation, as it is a role-based representation
with general rather than individual information. The participants of each dataset can be divided
into 4 classes: Doctors, Nurses, Assistants and Patients.

The number of individuals which constitute one class is not equal in both datasets, nor
are the exact composition and characteristics of the classes. Individuals can be assigned very
specific tasks and roles. We group individuals with similar characteristics together. The class of
nurses also includes student nurses and physiotherapists. The class of assistants includes nursing
auxiliaries, student nursing auxiliaries, social workers and hospital service employees. The class
of doctors is the most diverse, including among others an ergotherapist, a dietician, a psychologist
and first and second year student doctors. Not all patients stay during the entire time of the
data acquisition. Some leave and are replaced by other patients.

The CMD data representation uses the contact matrix and the matrix of distributions of the
available dataset. If the general and essential features of the data are captured, and if they are
constant, then the matrices should be the same for both datasets. When a network is constructed
based on the CMD data representation, group sizes can be chosen corresponding to the group
sizes of the dataset for which the predictions are done.
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Figure 6.8: The average contact time in seconds/day, calculated on daily contact matrices for
the ”lyon2012” and the ”lyon2011” dataset, vs the day on which it is based. Lines are guides to
the eye. Contact matrix entries for contacts among the same group are marked by a continuous
line. Symbols have one outline and line color which represents one of the two interaction partners
and one filling color and symbol, which represents the other interaction partner. Nurses - red
(triangle), Doctors - green (square), Patients - blue (diamond), Assistants -grey (circle)

In Fig. 6.8 we show the average contact time for each day between two people of one of



90 CHAPTER 6. PREDICTABILITY

class 2011 2012
week 1 week 2

A 15 12 12
D 11 16 15
N 16 11 12
P 29 21 28
all 71 60 67

Table 6.1: Number of individuals in each class during the 4-day period

class 2011 2012
day 1 2 3 4 1 2 3 4 5 6 7 8 9 10
A 12 11 12 12 10 8 9 11 6 8 8 11 9 8
D 10 10 9 10 10 12 9 10 4 1 11 12 9 11
N 12 9 9 11 9 8 9 9 3 6 8 9 9 9
P 19 20 21 17 14 17 14 15 13 14 18 18 17 16
all 53 50 51 50 43 45 41 45 26 29 45 50 44 44

Table 6.2: Number of individuals per day in each class

the classes, measured in seconds per day for the ”lyon2012” hospital data (6.8(a)) and for the
”lyon2011” hospital data (6.8(b)). Fluctuations are clearly visible between different days, es-
pecially for the weekend when contact times change dramatically. Doctors are not present on
Sunday, and assistants have higher average contact times on Saturday. However, during the
weekdays the ranking between the classes is fairly stable.

For a better comparison between the two datasets, the datasets will be cut into parts of equal
duration, which only consist of weekdays, excluding the weekend in the ”lyon2012” dataset.
For the ”lyon2012” dataset, we consider only the first four days (week 1: ”lyon2012 w1”) from
Tuesday to Friday and the last four days (week 2: ”lyon2012 w2”) from Monday to Thursday.
The ”lyon2011” dataset spans over the duration of four consecutive days from Monday afternoon
until Friday noon.

The class sizes in the three four-day networks are similar (see Tab. 6.1). Class sizes fluctuate
strongly on a daily basis, especially over the weekend, where they are much reduced (see Tab.
6.2).

The fact that not all individuals of each class are present every day leads to lower daily average
contact times between classes for the 4-day networks as compared to the daily average contact
time on the daily networks, where absent individuals are not used to compute the average.

The general features of the contact matrix are comparable to the contact matrix of the ”obg”
dataset from the children’s hospital in Rome (see Isella et al. [40] and Tab. A.1). Contacts
between patients are very low, contact times and density between assistants and nurses are quite
high.

The contact matrices and the link density in Fig. 6.9 show that the two weeks in the
”lyon2012” dataset are very similar. The only difference is a strong rise in the Nurse-Nurse
contact time, as already observed towards the end of week 2 in Fig. 6.8. The ”lyon2011” dataset,
however, shows very different properties. Here the contacts among doctors are extremely high.
This is mainly due to two doctors talking about two hours every day. At this time, student
doctors, who needed some tutoring, were in the hospital. The link density is also higher (Fig.
6.9(b), suggesting more interaction among doctors in general.

Overall, the three datasets show slightly different properties, especially the high activity
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(a) 2011 (b) 2011

(c) 2012 week 1 (d) 2012 week 1

(e) 2012 week 2 (f) 2012 week 2

Figure 6.9: Left column: average contact time between individuals of different classes (A: Assis-
tants, D: Doctors, N: Nurses, P: Patients) in seconds per day. Right column: density of links
between the different classes.
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for doctors in the ”lyon2011” set in comparison to the ”lyon2012” sets. On the other hand,
the average contact times between groups seem to be very similar for the majority of groups.
Whether these differences have an effect on the outcome of the epidemic will be tested in the
next section.

6.2.2 Effect of data variability on epidemic predictions

If the predictions of datasets are comparable, then any of the given CMD data representations
can be used in order to predict the outcome of epidemics on any of the given datasets. In Fig.
6.10(a), 6.10(c) and 6.10(e) we compare the outcome of the epidemic spread using the CMD
data representation fed by one of the three datasets as a prediction for the outcome on the other
datasets. The parameters used for the simulation are: β = 100µ, γ = 1/2day−1, µ = 1day−1

The outcomes of the curves marked as ”2011 → 2011”, ”2012 w1 → 2012 w1” and ”2012 w2
→ 2012 w2” are the standards which we try to obtain by using the CMD representation of the
respective other datasets. They are already quite different from each other. Many factors can play
a role for this difference. The number of participants is not identical, the number of individuals
per group differs and the contact matrices do not contain the same average weight for entries
between groups. When using, for example, the CMD representation of the ”lyon2011” dataset
to simulate the epidemics for the ”lyon2012 w1” dataset, we create a network with the number
of participants and individuals per group taken from the ”lyon2012 w1” data and the weight
distributions and corresponding average weight of the CMD representation of the ”lyon2011”
data. The outcome of this simulation is marked as ”2011 → 2012 w1”. Thus eventual differences
due to a different number of participants are eliminated.

The influence of the group sizes can be seen by comparing the outcome of simulations which
use the same data to create the contact matrix of distributions, but different group sizes. The
effect is generally small. It is most visible by comparing the simulation in the case where the
CMD matrix is based on the ”lyon2012 w1” data set, while group sizes are taken either from the
”lyon2011” or the ”lyon2012 w1” dataset.

The simulation on the first week of ”lyon2012” gives a very good prediction for the outcome
on the second week of ”lyon2012”. Using the second week of ”lyon2012” as a prediction for the
outcome on the first week of ”lyon2012” still works well. However, any prediction of the final size
of the epidemic for the ”lyon2011” dataset using one of the two weekly sets of the ”lyon2012”
set is poor, the final size is largely underestimated. In the opposite case, the spread simulated
for an epidemic in ”lyon2012” using data of ”lyon2011” is overestimated.

The strong difference in the average final size of the epidemic between simulations using the
CMD representations of the 2011 and the 2012 datasets is mainly due to the difference in average
weight of the contact matrices.

The average weight of the 2011 dataset is much higher than that of the 2012 datasets. The
average weight was: ”lyon2011”: 62 s/day, ”lyon2012” week 1: 46 s/day, ”lyon2012” week 2: 51
s/day.

If in addition to adjusting the group sizes, we also adjust the average weight of the complete
network, the average outcome is much better (Fig. 6.10(b), 6.10(d) and 6.10(f)). However the
estimate for the importance of classes is still different (see Fig. 6.11).

This difference in the relative importance of classes is directly attributable to the structure
of the different contact matrices. When comparing the daily entries of the contact matrices in
Fig. 6.8(a), then the difference between the contact matrix entries in the ”lyon2012” and the
”lyon2011” dataset, especially for the average contact time among nurses and the average contact
time among doctors, seems outside of the normal day-to-day fluctuations. However, as the two
datasets are rather short, it is not possible to tell what distribution the day-to-day fluctuations
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Figure 6.10: The final size of the epidemic, simulated on the CMD data representation with
parameters β = 100 ∗ µ, γ = 1/2day−1, µ = 1day−1. The legend ”2011” − > ”2012w1” means,
that the simulation was done using the contact matrix with distributions calculated on the
”lyon2011” dataset with group sizes adjusted in order to serve as prediction for the first week
(w1) of the ”lyon2012” dataset. Similarly for all other combinations of datasets the form of the
symbol and color is characteristic for the dataset which is used to create the contact matrix of
distributions, while the symbol outline stands for the dataset for which the simulation is done.
If the dataset for which the simulation is done is the same as the dataset on which the contact
matrix is based, the symbols in the plot are connected by a line. The histogram is built from
10000 simulations. Every 100 runs, the network is rebuilt from the CMD representation of the
data. Right column: the weights of the resulting network were additionally scaled in order to
show the same average weight as the network for which the prediction is done.



94 CHAPTER 6. PREDICTABILITY

0 0.2 0.4 0.6 0.8 1
fraction of final cases

10
-4

10
-3

10
-2

10
-1

10
0

fr
eq

ue
nc

y

2011        -> 2011
2012_w1 -> 2011
2012_w2 -> 2011

(a) Assistants

0 0.2 0.4 0.6 0.8 1
fraction of final cases

10
-3

10
-2

10
-1

10
0

fr
eq

ue
nc

y

2011        -> 2011 
2012_w1 -> 2011
2012_w2 -> 2011

(b) Doctors

0 0.2 0.4 0.6 0.8 1
fraction of final cases

10
-4

10
-3

10
-2

10
-1

10
0

fr
eq

ue
nc

y

2011        -> 2011
2012_w1 -> 2011
2012_w2 -> 2011

(c) Nurses

0 0.2 0.4 0.6 0.8 1
fraction of final cases

10
-4

10
-3

10
-2

10
-1

10
0

fr
eq

ue
nc

y

2011        -> 2011
2012_w1 -> 2011
2012_w2 -> 2011

(d) Patients

Figure 6.11: The final size of the epidemic, simulated on the CMD data representation with
parameters β = 60 ∗ µ, γ = 1/2day−1, µ = 1day−1. The fraction of final cases in each group
Assistants, Doctors, Nurses and Patients are shown. Simulations are done with the group sizes
of the ”lyon2011” dataset and the weights are rescaled to have the same total average weight
as the ”lyon2011” data. The weight distributions are calculated using the ”lyon2011” data, the
”lyon2012 w1” and the ”lyon2012 w2” data.
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follow. Therefore, at this point we cannot decide whether the change in average contact times
between the datasets is within the normal day-to-day fluctuations or if it constitutes an abnormal
exception, a change in hospital procedures. The distribution of weights among and between
groups is rather large and modeled here by negative binomial distributions. The average weight
changes from day to day or week to week. If the process which generates the daily contact weights
had every day the same underlying negative binomial probability distribution, the distribution
of daily average weights or contact times between two classes could fluctuate broadly. Very
long datasets or very large groups would be needed in order for the average contact time to
stabilize. However, if the underlying distribution of contact times or weights does not have an
expectation value or if the distribution is very broad, then increasing the sample size within given
possibilities would not stabilize the result. Furthermore, with the increase of group sizes or the
aggregation time of the data simulations on the contact matrix representation become less similar
to simulations on the original data. This is a trade-off which needs to be looked at more closely
in order to evaluate the faithfulness of predictions using the CMD data representation. With
longer data collections, however, a distribution of daily contact matrices could be approximated.
Knowing the variance of this distribution can lead to a better understanding of the precision of
predictions based on available data. For a given daily contact matrix it could then be decided if
it is an outlier of the distribution or not.

6.3 Conclusion

In order to estimate the variability of epidemic predictions, not only the stochasticity of the
epidemic model plays a role, also the variability of the underlying data, on which predictions are
based, needs to be taken into account. Here and in the last section we have seen that the degree
ranking of face-to-face contact data varies strongly for short aggregation times on an individual
basis. Degree ranking on a group basis is more robust. However, even when aggregating the
datasets over longer times, here over 4 days, and only considering group properties, the outcome
of the epidemic is significantly different for datasets which lie a long time apart. This has direct
consequences on the possibility to predict future epidemics based on present data or epidemics on
different settings. Even when the right number of participants is known, the frequency of their
interactions can change, leading to a wrongly estimated importance for groups. It is therefore
important to have an estimate for the variability of the contact patterns in addition to the
variability of the epidemic spread.
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Chapter 7

Distances

In temporal networks, the spread of information or diseases has to follow the time ordered events.
Unlike the spread on static networks, temporal constraints can hinder the direct transmission
between two adjacent nodes. If this is the case, then the flow of information or pathogens
between two neighboring nodes is only possible via third parties, if at all. This can lead to
much longer transmission paths than in static networks. As information can accumulate errors
at every retransmission, the number of steps it has taken before arrival can severely influence its
accuracy and thus its trustworthiness. Finally, some processes on networks, like the propagation
of a certain behaviour, only permeate to finite depths. In all these cases, the path length of the
process is a valuable information.

The distance between two nodes on the static network is a lower limit for the path length
of any process on the network. It gives a measure for the connectedness between two nodes. In
dynamic networks the distance between two nodes is not necessarily identical to the length of the
fastest path, also called temporal path. While the first minimizes the number of steps between
two nodes, the second minimizes the time information or pathogens need to travel between two
nodes. Just as the distance on the static network indicates how well two nodes are connected, so
does the temporal path length on the dynamic network for a specific time. The temporal path
can be characterized by the number of intermediate nodes which the temporal path traverses
(temporal path length) and the time it takes to travel along the temporal path. This time can
be very diverse and is only loosely correlated with the distance on the static network [73]. In
Sec. 7.1, we will show that this also holds for the temporal path length.

Therefore, the distance on the static network cannot sufficiently inform about the number
of steps information travels between two nodes on the dynamic network. In order to know how
many individuals will be reached within a limited amount of steps, more knowledge about the
distribution of temporal path lengths is needed.

In Sec. 7.2, we will try to compare the distribution of temporal path lengths with the
distribution of infection-path lengths on static networks, since often only an aggregated static
version of a temporal networks is available, but also in order to see the influence of temporal
properties on the distribution of temporal paths. The infection-path length between two nodes
is the number of steps which an SI process with β < 1 starting from one node takes to reach the
other node. Infection paths, like temporal paths, are self-avoiding. Every node can only be visited
once. The infection-path length on static networks is closely related to the temporal path length
on networks with Poissonian dynamics. By comparing the path length distribution of temporal
networks with Poissonian dynamics with the distribution of the original network, the influence of
temporal properties, like time resolution, burstiness or correlation of events on the distribution of

97
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temporal path lengths becomes apparent (see Sec. 7.3). Furthermore, the infection-path lengths
on fully connected networks can be well approximated by analytic calculations, thus giving a
good comparison to the simulated infection-path length distributions (see Sec. 7.2.1).

On a static network, the shortest path is the most likely path connecting source and target.
However, depending on the network structure, many longer transmission pathways are possible
as well. In fact, it is much more likely that the spreading process takes a considerably longer
path [71]. So, even though every single longer path is less likely taken than the shortest path,
not taking the shortest path can be more likely than taking it, depending on the number of
other possibilities. The probability of taking longer paths therefore depends on the number of
possible longer paths (and their respective probabilities). The number of possible transmission
paths between two nodes increases with the amount of loops in the network. On networks with
tree-like structure, the shortest path is the only available path. Therefore, the path length of
epidemic processes will not differ from the distance on the static network if the network is a tree.
On all other networks, anything between the minimum and the maximum path can be taken by
the epidemic process when propagating from one node to another.

The relation between the infection-path length and the shortest path can inform about the
structure of the static network, and the structure of the network can give insights about the
distribution of the infection-path lengths. In the following, we will consider the influence of link
density (in Sec. 7.2.2) and of the weight distribution (in Sec. 7.2.3) on the distribution of the
infection-path lengths. The influence of network topology remains an open question.

7.1 Static distance vs. dynamic distance

In social networks, most individuals are connected via only a few intermediate friends. This
property, which characterizes small world networks, has as a consequence that information could
in principle travel quickly between any two nodes, following a very short path. In reality, indi-
viduals are not constantly in contact with each other. The fastest connection between two nodes,
the temporal path, does not necessarily follow the shortest path. As a measure of how close two
nodes are on a dynamic network at a specific time period and how fast information can spread
between them, the temporal path [73] is a much more adequate measure than the shortest path.
It provides a lower limit for the time something needs to spread between two nodes at a given
time period.

We calculate the temporal path between any two nodes using an SI process with β = 1 on the
dynamic network. Since the temporal path also depends on the starting time, for each node pair
i, j we calculate the temporal path for 20 random starting points in the network. As starting
time we chose the time of first occurrence of the seed i after the random starting point. Since the
likelihood of reaching other nodes in the network decreases, as the start of the temporal paths
is close to the end of the finite data set [73], we repeat the data once. For every seed node, the
SI process will construct a spanning tree of temporal paths. The temporal path between node i
and j is different from the temporal path between node j and i. It can be considerably longer
or shorter. Temporal paths do not even necessarily exist in both directions.

In Fig. 7.1 we compare the temporal path length to the static path length on networks of
face-to-face contacts from a conference (”sfhh”) and a hospital (”obg”). The distances on the
static network are very different from those on the dynamic network. The number of intermediate
nodes on the temporal path is much higher than the shortest path length on the static network.
The latter is only a lower bound. In dynamic networks, the duration of the path between two
nodes and the path length are unlikely to both be minimum at the same time. If information
is to be transmitted directly between two nodes, or via the fewest intermediate nodes, it can
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Figure 7.1: Left: static distance vs temporal path lengths for the ”sfhh” and the ”obg” data sets.
The distance on the static network was either taken on the HOM network or on the HET network.
The temporal distance on the DYN network was measured starting at the first occurrence of each
node. For better visibility, the ’HOM vs DYN’ was shifted by 0.03 to the right, and ’HET vs
DYN’ was shifted by 0.03 to the left. The green line marks the identity and thus is a lower limit
for the temporal distance. Right: distribution of temporal path lengths between nodes which
have a given static distance.
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take considerably longer than if it travels the fastest path, depending on the starting time of
the process. If, on the other hand, the time to reach one node from another is minimized, as in
temporal paths, the number of intermediate steps cannot be minimized at the same time and will
therefore often be higher than the shortest path length. The impression of closeness between two
nodes on the static network can thus be misleading. In many cases, information needs to travel
a long way in order to arrive in the fastest possible way. However, the shortest path length is
correlated to the temporal path length. The correlation became stronger by taking the average
over several temporal paths between two nodes, starting at different points on the dynamic data.
For any two nodes which are the same distance apart on the static network, the temporal path
length on the dynamic network is distributed as shown in the right column of Fig. 7.1. Nodes
which are direct neighbors are still likely to connect directly in the dynamic network, whereas
information between nodes which are only separated by two steps on the static network is most
likely to travel around five steps on the dynamic networks used here.

7.2 Temporal path lengths and infection-path lengths

Even in a densely connected network, infection can travel long distances before reaching individ-
uals who are only a few steps away on the static network [71]. In the case of mutating pathogens
or epidemics which only spread up to a finite depth, it is therefore of interest to know how many
nodes can be reached up to a given path length. In order to know how many steps on average a
process will take before arriving at a random node on the network, we will look at the distribution
of temporal path lengths on dynamic networks.

The role the dynamics of the network plays for the temporal path length distribution can be
assessed by comparing it to the distribution of distances in a network with shuffled time events.
We will use a dynamic network where the links are active at random times with the same average
probability as on the original dynamic network. This is the dHET network mentioned before
(see Sec. 3.5). The temporal path on the dHET network can be simulated in the same way
as the infection path on the static HET network (see Sec. 2.6). The infection path on a static
network is the path of an SI process with β < 1. The distribution of the infection-path length
and the temporal path length would be identical if simulations of the infection-path length were
discrete in time and the propagation probability was given by the link weights w < 1. The
temporal paths on the dHET network only differ from infection paths on the corresponding
static HET network due to the discreteness in time of the temporal network. We simplify the
underlying network structure further, looking at infection-path lengths on random graphs and
fully connected networks. The most basic approximation, using the differential equations for an
SI process, turns out to be a reasonable first approximation for the distribution of temporal path
lengths in networks with low activity.

7.2.1 Discrete vs continuous

To understand the basic properties of the distribution of infection-path lengths, we look at the
development of the SI process over time for nodes at different infection path steps from the seed.
The simplest implementation, which can be solved analytically, is the homogeneous mixing case.
Every node is connected with every other node so that the diameter of the network is exactly 1.
There are no topological constraints for the spread of an epidemic, every path is possible. This
leads to a maximal number of possible paths of any path length d.

In order to know at how many transmission steps from the source an infected individual is,
the compartment of infectious can be divided into sub-compartments of infectious at a certain
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transmission distance from the source. The differential equation for the percentage of individuals,
which were infected after d steps,

did
dt

= βnid−1s

= βnid−1

(

1 + eβnt(
1

s0
− 1)

)

−1

can be solved recursively, using the solution of the SI model (Eq. 1.5). Initially only one seed is
infected, so that i0 = 1/n and s0 = (n− 1)/n. All nodes which are directly infected by the seed
are at distance d = 1. Infected at distance d = 2 have been infected by any one of the nodes at
distance d = 1.

i1(t) = βni0

∫ t

0

s(t′) dt′

= β
n

n
S(t)

= β
βnt− ln

(

1 + (n− 1)−1 exp(βnt)
)

βn

id(t) =
(nβ)dS(t)d

d!n

The solution to the differential equations is plotted in Fig. 7.2 for β = 10−6 and n = 100. The
number of infectious at distance one rises first. At some point, there are so many more infected
nodes at a distance greater than one that it becomes more likely for nodes to be infected by
nodes of a distance greater than one than directly by the source. The more nodes are infected
at d steps away from the source, the more the number of nodes at d + 1 steps away from the
source grows. As the epidemic spreads, each compartment has its maximal number of newly
infected individuals at a later time than the compartment from which it got infected. Therefore
the average infection distance will increase with the number of nodes in the network. Ultimately
all nodes are infected.

Together with the analytic solution of the differential equations, the simulation of a SI process
on a fully connected network of 100 nodes is plotted in Fig. 7.2. The SI process on the fully
connected network is stochastic and discrete. No partially infected nodes exist. Nodes will either
get infected completely or not at all. At any time step, neighbors can get infected with probability
β = 0.00001. The results are averaged over 1200 runs. The initial growth of the discrete process
on the network is therefore slower than the growth of the analytic solution. The difference
propagates through the different compartments so that with increasing spreading distance from
the source the number of newly infected nodes peaks much earlier for the continuous process
than for the discrete process, ultimately leading to a higher average distance from the source for
nodes infected via the continuous process.

The final number of infected Id(t) = nid(t) at distance d can be found for the continuous
solution by looking at the limit of t → ∞:

lim
t→∞

Id(t) =
ln(n− 1)d

d!
(7.1)

For the discrete solution, the probability to find nodes at a distance d can be calculated
looking at all possible spreading trees. The probabilities to take the maximum path length, the
Hamiltonian path, is n/n! (if at every time step only one node gets infected). This is much lower

than the probability for maximum path length in the continuous model if n > 5: ln(n−1)n−1

n! .
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Figure 7.2: Left column: development over time of the number of nodes infected after d steps.
Only curves for temporal path lengths up to d = 6 are displayed. The lines show the solution
of the SI model, the dots the simulation on a fully connected network with β = 10−6. Right
column: development over time of the number of newly infected nodes at a temporal path length
of d steps from the source. Only curves for temporal path length up to d = 6 are displayed. Lines
show the SI model solution, dots the simulation on a fully connected network with β = 10−6.

The average distance the epidemic travels is:
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Figure 7.3: Simulation of the infection-path length distribution on a fully connected static net-
work of 500 nodes for various β in continuous time. The solution of the SI model is shown as
comparison.
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In Fig. 7.3 the distribution of the infection-path length is plotted for the continuous and the
discrete stochastic SI process. The distance distribution of the analytic solution is independent
of β. Simulating the spreading process in continuous time but with discrete nodes for different β
does not show any dependence on β either. As static networks do not have intrinsic timescales,
any timescale of the process can be rescaled. Therefore only time related effects, like the change
of the epidemic duration, can come from changing β.
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Figure 7.4: (a) Simulation of the temporal path length distribution on a fully connected network
of 500 nodes for various link activation probabilities w in discrete time. The simulation of the
infection-path length in continuous time and the infection-path length of the SI model are shown
as a reference. (b) The average temporal distance depending on w. Simulations in continuous
time and the solution of the SI model are shown as a reference.

In contrast to static networks, dynamic networks have a timescale. Changing the timescale
of the process on the network can change the outcome of the process. For temporal paths, the
process on the network is instantaneous with β = 1. If we evaluate the propagation of the
epidemic on the static network at discrete time steps, it is equivalent to an SI process with β = 1
on a dynamic network where the dynamics are regulated by a probability w for the links to be
either active or inactive. In Fig. 7.4 we gradually change this probability w from 1 to 10−5.
If the probability for links to be active is 1, then the distribution of temporal path lengths is
identical to the distribution of shortest path lengths on the static network, as we effectively have
a static network. By lowering w we tune the network from one where the distribution of temporal
paths is identical to the distance distribution on static networks to one where the distribution
of temporal paths mimics the distribution of infection-path lengths on the static network. The
average temporal path length increases as the instantaneous average degree wN decreases. The
instantaneous degree of a node regulates how many of its neighbors can be infected at the same
time. A high number of simultaneously active links increases the number of infected nodes at
each time step, leading to a higher percentage of nodes at a low infection distance from the
source since all nodes will be infected before higher infection distances dominate the infection
process. Decreasing w will not increase the average temporal path length ad infinitum as a limit
is reached when maximally one link is active at each time step. Any further lowering of w will
not change the temporal path length, only the duration of the temporal path between nodes
will continue to increase. This limit distribution coincides with the distribution of infection-path
lengths in continuous time. In continuous time processes, at any precise time instant only one
node gets infected as well. Therefore, in this limit the continuous time approximation is valid.
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7.2.2 Influence of link density
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Figure 7.5: (a) Distribution of the infection-path length in continuous time simulated on static
random graphs with different link density p and 500 nodes. The solution of the SI model is
plotted as a reference. (b) Dependence of the average infection-path length on the link density
p. The static distance lnN/ ln(Np) is plotted as a reference.

The homogeneous mixing case is quite artificial. It can only be applied for densely connected
communities. Usually, not everyone is connected with everyone else, and contact networks are
rather sparse. The average distance between two nodes in graphs with small world properties is
of the order of lnN . More specifically, for random graphs it is proportional to lnN

ln k
[28]. If the

random network becomes sparse, the average inter-vertex distance therefore depends on the link
density.

We will study the effect of link density in random graphs on the dynamic path lengths. In
the case of discrete dynamics for w = 1, the temporal path length follows the distance on static
graphs. We will focus on the case of continuous dynamics, which corresponds to sparse link
activity.

By varying the link density p of the random graph, we regulate the average degree 〈k〉 = Np
and the average inter-vertex distance on the static network lnN

ln(Np) . Fig. 7.5 shows the distribution

of infection-path lengths for random graphs with various link densities. For a large range of link
densities, from p = 1 to about p = 0.1 the average infection-path length stays robust. Here
the approximation through infection path length on the homogeneous mixing SI-model is still
comparatively good. The slight increase of the average inter-vertex distance on the static graph
in this range of link densities does not have any effect on the infection-path length. Random
graphs start to become disconnected for p = lnN

N
[30]. When this was the case, we repeated

the creation of the random graph up to 200 times, until a connected graph was obtained. Thus,
the selection of the random graph used introduced a small bias on graph properties like the
degree distribution. Only when the graph becomes sparse and approaches the bond percolation
threshold p = 1/N [30], when the average inter-vertex distance increases strongly, it has an
influence on the infection-path length.

The distances on the static graph give a constraint on the infection-path length. The number
of nodes with an infection-path distance greater than d from the source has a lower limit given
by the number of nodes at a distance greater than d on the static graph. The probability for
a node on the static random graph to be at a distance greater than d from the source can be
roughly approximated by Fd = exp(− 1

N
(Np)d) [13]. The number of nodes which can be reached
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❍
❍
❍
❍
❍

p
w

0.1 0.01 0.001 0.0001

0.1 1 1 0.922 0.226
0.01 1 0.990 0.372 0.045
0.001 0.999 0.501 0.065 -

Table 7.1: For the generated networks with negative binomial weight distribution, average weight
w and parameter p = m/v = Tw/v, the link density is given, corresponding to the percentage
of non-zero weights.

within d transmission steps has an upper limit given by the number of nodes which are at a
distance of less than or equal to d steps from the source on the static graph (N(1− Fd)).

By decreasing p, this limit is first reached for the direct neighbors of the source node. For
the number of nodes with an infection path distance of d = 1 from the source, the upper limit
is Np. Looking at the approximation of the distribution of the infection-path lengths using the
SI model on a fully connected graph, this limit is attained for p ≥ ln(N − 1)/N . However, the
approximation using the fully connected graph is already poor for much higher p. A stronger
effect will most likely come from the fact that the number of susceptible nodes in Eq. 7.1
is also limited by 1 − Fd, limiting the increase of infected nodes at low transmission distances.
Furthermore, when the graph becomes spares but stays connected, the number of cycles decreases
and thus the infection-path length will become more similar to the shortest path length.

7.2.3 Influence of the weight distribution

In contact networks not all connections happen at the same frequency. Some links are stronger,
and neighbors will frequent each other more often; some links are weaker, and neighbors will
interact rarely. In order to see if different link activities will have an effect on the temporal path
length, we create random networks with a negative binomial weight distribution. The negative
binomial distribution was chosen because in spite of being sufficiently broad it still has an easily
controllable expectation value and variance. The negative binomial distribution is generated with
the probability parameter p and the dispersion parameter n = m2/(v−m), where m is the mean
contact time and v the variance. It models the distribution of total contact times and was divided
by T = 10000 in order to obtain the distribution of weights. We chose the mean contact time m
from 1 time unit up to 1000 out of 10000, which corresponds to a weight between w = 10−4 and
w = 0.1, and we chose the variance of the weight distribution v so that the parameter p = m/v
varies between 0.1 and 0.001. The weights, including zero-weights, are randomly distributed
on the links. The average weight is calculated over all links, including those with weight zero.
In Tab. 7.1 the link density is shown for the chosen parameters. In the case of w = 0.0001
and p = 0.001, the network consisted of more than one connected component. For this case no
simulations were done. The static networks were then transformed into dynamic networks where
each link is active at any given time with a probability corresponding to its weight w on the
static network. Links do not have weights on the dynamic network. The temporal network was
generated for a length of T = 10000 timesteps.

In Fig. 7.6 the distributions of the temporal path lengths are plotted for different weight dis-
tributions. Results are averaged over 100 runs. The main effect on the distribution of temporal
path lengths is caused by the average probability of links to be active, which is given by the aver-
age weight, similar to (Fig. 7.4). For densely connected networks, increasing the heterogeneity of
the weight distribution does not show any effect on the temporal path-length distribution. Only
for link densities below 10% does a higher heterogeneity of the weights result in a divergence of
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Figure 7.6: Left: distribution of temporal path length in discrete time for various weights w,
which are distributed according to a negative binomial distribution with mean weight w and
variance vw = w/(Tp). The weights mark the probability a given link is active at a given time.
The weight distribution has a higher variance for smaller p. Right: distribution of infection-path
length in continuous time for three of the networks with lowest average weight. For each of these
networks, the simulation on an identical network with homogeneous weight (HOM) is added as
comparison.

the distribution of temporal path lengths towards longer temporal paths.

To exclude the possibility that the change in temporal path length is only due to the reduced
link density, the simulation was redone for two topologically identical networks with the same
average weight, which only differ in the weight distribution. One has a negative binomial weight
distribution, and the other one has the same topology but all non-zero weights are replaced by
their average. We call them HET and HOM. The simulation was done in the continuous time
case in order to better compare between networks with different average weight. The effect that
infection-path lengths increase for weight distributions with higher variance in networks with low
link density persists.

As long as the network has high link density, there is no influence of the weight distribution.
When the network approaches the percolation threshold, then the average transmission path
length increases rapidly (see previous section). Links with very low weight are only very rarely
active so that the network has an even lower link density most of the time. As the effect of
link density is quite strong close to the percolation threshold, even a partial reduction of link
density in time can influence the transmission path length. Furthermore it would be interesting
to see the effect of topology, like clustering, scale-freeness or different degree distributions, on
the transmission path length.

7.3 Distance on face-to-face contact networks

For transmission processes on contact networks, the topology of the network and the burstiness
of the dynamics play important roles [44]. In some networks, the dynamics and structure can
lead to an optimized transmission, while others are constructed in a way to hinder the flow
of information [82, 63]. Concerning the time needed to get from one node to another, Pan
et al. [73] have investigated the duration of temporal paths on different networks and found
significant differences between the time needed to reach any node on air transport networks or
communication networks following temporal paths.
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Here we look at the length of temporal paths on face-to-face contact networks. In order
to differentiate between temporal effects, like time resolution of the data, time ordering and
burstiness in the dynamic network and effects due to the difference in contact frequency between
neighboring nodes, we will compare results with two model networks.
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Figure 7.7: (a) Distribution of temporal path length for the ”sfhh” contact network at different
aggregation levels. The different colors correspond to different aggregation time steps (given in
seconds). (b) Average temporal path length vs. aggregation level.

By aggregating the dynamic contact network over different time lengths, we can control for
the time resolution of the underlying data. In Fig. 7.7 the distribution of the temporal path
length on the ”sfhh” dataset is shown for different time resolutions. Similar to Fig. 7.4 where
links were active with probability w so that more links were active at the same time for higher w,
here, more links are active at the same time due to the higher degree of the network snapshots
with higher aggregation time. This higher average instantaneous degree of the network leads to a
shorter average temporal path length. The average temporal path length depends logarithmically
on the time resolution in the given range of aggregation times. However, the link density in each
network snapshot cannot increase infinitely with aggregation time. Thus, also the temporal path
length will eventually stop decreasing. Also, even if the time resolution was ever more precise,
it is not likely that the temporal path length continues to increase.

The effect of the different dynamic properties on the temporal distances can be seen in Fig.
7.8 for the datasets ”sfhh”, ”lyon2011” and ”lyon2012”. In order to control for the effect of the
network dynamics, we create two networks with random dynamics, dHET and dHOM, for each
data set using the static networks HET and HOM. The links in dHET and dHOM are active
with a probability according to their weight on the static networks HET and HOM. Thus, dHET
is a temporal network with Poissonian contact-time distribution and no burstiness, but the same
aggregated weights as the corresponding temporal network (DYN). The dHOM network also
has Poissonian event dynamics, but all non-zero links have the same probability to be active.
Results for the dHET and dHOM network are averaged over different realizations of the networks.
Results for the DYN network are averaged over different starting times. The bursty dynamics
leads to slightly shorter average temporal path length, compared to the networks with random
dynamics. The weight distribution in dHET leads to slightly longer temporal paths compared
to dHOM, in agreement with Sec. 7.2.3.

At first it seems surprising that the temporal path length for the DYN network for ”lyon2011”
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Figure 7.8: Temporal path-length distribution for the contact networks of the ”sfhh”, ”lyon2011”
and ”lyon2012” data sets. The temporal path length of two model networks, dHET and dHOM,
is also shown. In dHET contacts have the same probability as in the original data, but are
random in time. In dHOM all contacts have the same probability so that the average activity of
dHOM is identical to dHET and the original data.
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is lower than for the networks with Poissonian dynamics. Just as in the random dynamics
case dHET, some links are much less often active than others. However, while the temporarily
reduced link density increases the temporal path length in the random dynamic model, dHET,
the opposite effect is witnessed on the original data set. One reason for shorter temporal path
length might be the fact that temporal correlations and burstiness lead to temporarily smaller
networks with higher link density [6]. The distribution of temporal path lengths for the DYN
network will most likely also depend on the activity fluctuations and the starting time. This
remains to be tested. The continuous approximation of the infection-path length distribution,
ln(N)d/d!, can also give a first estimate for the temporal path length distribution. It captures the
essence of the distance on the dynamic graph better than the static distance does, but is obtained
for Poisson dynamics with low link activity on fully connected networks. Temporal properties
like correlations between links or activity fluctuations, which can lead to lower temporal path
lengths, or sparse connectivity, which can lead to higher temporal path lengths, will worsen
the approximation. Especially when the underlying network becomes very sparse, or when the
dynamics shows a high number of links which are active at the same time, the approximation
loses its validity.

7.4 Conclusion

As could be seen for the duration of temporal paths [73] and the length of infection paths [71], also
the length of temporal paths between two nodes is much higher than the distance on the static
network. We have looked in particular at the distribution of the temporal path lengths and the
infection path lengths. Both distributions have similar properties and can be approximated by
p(d) = ln(N)d/(Nd!). We furthermore tested how different properties of static networks like the
link density and heterogeneity of weights influence the infection path lengths and the temporal
path lengths. The latter is also influenced by temporal properties like a high instantaneous
average degree. It remains to be tested how other topological and temporal properties influence
these distributions. The distribution of infection path lengths for SIR models on temporal
networks would also be of interest as, depending on the parameters of the SIR model, the paths
the infection takes are often longer than the temporal paths. Preliminary results which are not
shown here suggest that the infection path lengths on temporal networks increases on average
when the epidemic is slower up to the point where not all nodes are reached anymore.

.
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Chapter 8

Conclusions

With the advent of new technologies, contact data has become available with higher details and
to larger extent. This abundance of detailed data opens up new opportunities to model social
interactions and spreading of information or epidemics in social settings with unprecedented
precision.

However, with the high availability of data at various levels of detail rises also the question
of how to best represent data for modeling. Data is always a partial representation of reality,
taken in order to answer specific questions. It is not evident how much data is needed and
which amount of detail is optimal to best answer these questions. The problem we have put our
focus on is the spread of epidemics. In order to tackle this problem, we have used face-to-face
contact data, as face-to-face contacts can be a valuable proxy for the spread of influenza-like
diseases. A closer look at the data sets has revealed temporal patterns on different time scales,
like weekly patterns, day-night patterns or daily patterns. Furthermore, at any time new nodes
are introduced in the data and the time between contacts can have any timescale.

In a previous work, Stehlé et al. [88] have shown that under certain conditions static networks
can be adequate representations of temporal networks in epidemic modeling. We investigated
the role of the model parameter sets and the time over which the static network was aggregated
in order to assess the conditions under which static networks can sufficiently represent temporal
networks. We have found that for our temporal data sets, which have high temporal variability
and an introduction of new nodes at any time scales, spreading on a static network representation
can be a good approximation for spread on a temporal network if the length of the epidemic
matches the time over which the network was aggregated. Otherwise, the additional links and
nodes which the static network accumulates with longer aggregation times can lead to an over-
estimation of the outcome of the epidemic. Similarly, if the epidemic duration is longer than the
aggregation time of the static network, the outcome of the epidemic can be severely underesti-
mated. This is also true for spreading on a dynamic network when the data is repeated. Here
as well, the introduction of new nodes and links after the end of the data set would have altered
the outcome of the epidemic. In the light of the temporal limits of data sets not only epidemic
simulations on static networks need to be critically reassessed depending on the parameters used
but also epidemic simulations on repeated temporal data sets.

In order to obtain a more accurate result for the distribution of final sizes of the epidemic,
instead of fully aggregated networks, partly aggregated networks, for example daily networks
(see Stehlé et al. [88]), are a viable alternative. Investigating on the necessary level of detail
in the temporal resolution of the data, we looked at the influence of temporal patterns of the
network on the spreading process. The influence of the variability of the data on the outcome of
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the epidemic was stronger for faster epidemics, which had high probability of propagation and
recovery. While for slowly developing epidemics with low β and µ daily fluctuations played only
a minor role, fast processes were strongly influenced by the temporal structure of the network
at short timescales. We found that the question whether or not the data can be simplified
depends as much on the patterns of the data as on the process on the data. Indeed, the temporal
resolution could be reduced to the order of the infectious period of nodes. We could thus shed
some light on the question at which resolution data is accurate enough for a specific epidemic
process.

This estimate for the maximum aggregation time however only concerns the exact ordering
and timing of contacts, the average time a link is active over the aggregation period still needs
to be measured. Increasing the aggregation time steps by using less accurate measuring pro-
cedures without keeping information on the aggregated activity of contact links will otherwise
overestimate the total time individuals spent in contact over a certain duration, altering the
outcome of the epidemic in a non-negligible way. The optimal choice of a minimal time step up
to which contacts can be aggregated without keeping information on average contact activity
seems nontrivial and depends on the measuring procedure.

In the quest between accuracy of the outcome of epidemic simulations and practicability
as well as generalizability of the data representations, we went one step further, introducing
a data representation which lies in between the contact matrices and the static network. The
contact matrix representation is much used in epidemiology as it is a big improvement over the
homogeneous mixing hypothesis but still only needs a minimum amount of information. Contact
matrices only require the average time different groups spend in contact with each other. This
representation is highly unspecific and independent of the number of individuals in each group.
However, it completely ignores the heterogeneity of total contact time spent between members of
different groups or among members of the same group. The data representation we introduced is
a contact matrix of distributions and thus easier to generalize and to transport into other settings
than the individual based exact static network, but at the same time it keeps information on the
heterogeneity of the link weights. To optimally use the advantage this method brings, the choice
of the right groups is important. As the information on the distribution of total contact time is
largely kept, it is of particular importance to choose groups in such a way that the structural
properties of the network are maintained. Grouping nodes according to their degree, so that
nodes with similar degree on the static network are placed in the same group, is a promising
first approach. The natural groups, given by the roles the individuals played in the hospital,
proved to be a better choice though. It is not yet very clear which properties of the nodes are
good proxies to reach an optimal choice of groups. Possibly, community algorithms can work
to find groups which keep much of the heterogeneity of the network structure. This remains
to be tested. Furthermore, it would be interesting to find the optimal number of groups into
which the network can be partitioned, so that on the one hand the information that is needed to
construct the network is minimized and on the other hand the outcome of the epidemic simulation
remains reasonably accurate. However, independent of the choice of groups, the contact matrix
of distributions gives much more reliable results on the outcome of the epidemic than the contact
matrix representation. Being just as generalizable, we hope that it can eventually replace contact
matrix representations in large multi-scale epidemic models, thus increasing the accuracy of the
outcome of simulations.

We tested the contact matrix of distributions with respect to its ability to function as a
versatile representation that can be applied to different situations and with respect to its ability
to suggest immunization strategies. In an attempt to use the contact matrix of distributions
for different but similar settings, we tested it on three different data sets, two of which were
obtained with the same participants at the same venue. The contact matrix allowed us to adapt
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the number of individuals in each group in order to provide a prediction for the epidemic spread
on a different data set with different numbers of individuals per group. We thus could obtain an
idea of the accuracy of predictions which can be made on a future epidemic outbreak when using
available data from the same or similar settings. The data sets which were one year apart could
show the limits of predictions in general if data is used as a prediction for a different situation.
At the same time, when the contact matrix of distributions was obtained on the first part of
a long data set, predictions for the second part based on the first part were fairly accurate. It
would be interesting to test several longer data sets in order to better estimate the variability
of the corresponding contact matrices in order to assign a confidence interval to the respective
simulations depending on the predicted variations of the data.

This can also be important for the design of immunization strategies, as those are also based
on data from the past but applied to an unknown situation in the future. However, in order to
understand which nodes need to be vaccinated, it is useful to create and apply immunization
strategies on the same data set. We found that by keeping information on the distribution of the
total amount of time spent between two people, the contact matrix of distributions can also better
inform immunization strategies than the contact matrix, as the former preserves the information
of the average degree per group, while the latter only contains information on the average time
spent between individuals. Immunization strategies relying on an ordering based on the average
degree of groups proved to be nearly as good as immunization strategies based on the individual
degree of nodes. Furthermore, when reducing the size of datasets, group based immunization
strategies were more robust than strategies based on individual nodes. This is mainly due to
the high variability of the importance of nodes as spreader of information or diseases over time.
We could confirm the existence of this variability in our data sets. Therefore the usefulness of
individual based immunization strategies is limited. At the same time, we saw that even a small
amount of data will already lead to reasonably good degree-based immunization strategies, which
will only improve slowly with the information given by longer datasets.

The changing importance of nodes over time poses problems when looking for optimal im-
munization strategies that use temporal information of the data. We have conceived a measure
which is able to estimate the significance of a node by considering its direct influence on the
temporal paths of an SI process. This significance fluctuates with the starting time of the SI pro-
cess. In our data sets, different nodes were significant for the epidemic process at different times.
Thus, when averaging over those times in order to find a global list for immunization, much of
the additional temporal information was lost, so that the resulting immunization strategy is not
better than a strategy conceived on a static network. Possibly, this method can lead to better
results when temporal patterns repeatedly lead to the significance of some nodes but not of oth-
ers. However, the method to calculate the significance used here was based on temporal paths
on the network. Often epidemics do not follow the temporal path. Especially if the propagation
probability is low, the epidemic will follow longer paths on the network. It could be useful to
conceive a measure which takes the multitude of possible transmission paths into account and
also their dependence on the spreading parameters. Also, in the same way as Takaguchi et al.
[95] have tested the importance of events on the temporal network, it might be a good idea not to
look for a global immunization strategy which is valid for the entire temporal network but instead
test the efficiency of the removal of nodes at certain time periods, similar to applying protective
measures against epidemic spread, like masks doctors wear in hospitals. It could be interesting
to furthermore test other time-varying properties, like the partially aggregated degree, in order
to predict the importance of nodes at precise times, similar to the degree on a static network.

As a side note, we also looked at the distribution of temporal path length for dynamic
networks. We compared it to the distribution of infection path lengths on the corresponding
aggregated network and could show that it is reasonably well approximated by the latter, which
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again can be approximated by a simple solution of the SI model’s differential equations.
Overall in this thesis we have contributed to provide insights into questions concerning dy-

namic epidemic processes on data-driven, temporal networks. In particular, we have investigated
the influence of data representations on the outcome of epidemic processes, shedding some light
on the question how much detail is necessary for the data representation and its dependence on
the spreading parameters. By introducing an improvement to the contact matrix representa-
tion we hope we could provide a data representation that could in the future be integrated into
multi-scale epidemic models in order to improve the accuracy of predictions and corresponding
immunization strategies. We could also point out some of the ways dynamic processes are in-
fluenced by temporal properties of the data. However, much remains to be done. Especially, a
quantification of the results on the basis of models might be useful.
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Data
A D N P C

A 298 1.16 24.7 0.95 1.92
D 1.16 20.8 3.99 0.95 1.20
N 24.7 3.99 47.3 2.32 2.57
P 0.95 0.95 2.32 1.27 46.9
C 1.92 1.20 2.57 46.9 1.80

Table A.1: Average contact time in seconds per day between two members of each group for the
”obg” data set.
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Figure A.1: The χ2-test has been used to compare the distribution of final cases for a partially
aggregated network with given aggregation timestep and the original temporal network. The
p-value is calculated as described in Numerical Recipes [80] (p.733), the number of bins was
chosen as the smallest set of bins which were non-zero for both distributions. The vertical lines
correspond to the value of µ−1. Continuous lines correspond to the value used for simulations
marked by a circle with the same color, dashed lines correspond to the value used by simulations
marked by a square of the same color.
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Figure A.2: Weight distribution for the weights between and among different groups in the
”obg” data set, where A-Assistants, D-Doctors, N-Nurses, P-Patients, C-Caregivers. The weight
is given in seconds per day. The maximum likelihood fit with a negative binomial distribution is
shown as well. The parameters of the fit are given in Tab. A.2 and Tab. A.3.
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Fit
A D N P C

A 300(60) 1.2(0.2) 25(3) 0.95(0.16) 2.0(0.3)
D 1.2(0.2) 21(5) 4.0(0.6) 0.95(0.17) 1.2(0.2)
N 25(3) 4.0(0.6) 47(5) 2.3(0.4) 2.6(0.4)
P 0.95(0.16) 0.95(0.17) 2.3(0.4) 1.3(0.7) 47(16)
C 2.0(0.3) 1.2(0.2) 2.6(0.4) 47(16) 1.8(0.9)

Table A.2: Average contact time in seconds per day between two members of each group from
the fit with a negative binomial distribution on the ”obg”data set. The numbers in parenthesis
are the standard errors as given by R’s ”fitdistr” function.

Fit
A D N P C

A 0.615(0.014) 0.195(0.002) 0.404(0.0018) 0.136(0.0007) 0.215(0.0013)
D 0.195(0.002) 0.112(2.10-4) 0.1278(2.10-4) 0.0482(5.10-5) 0.0602(8.10-5)
N 0.404(0.0018) 0.1278(2.10-4) 0.3696(0.0013) 0.05652(4.10-5) 0.0845(9.10-5)
P 0.136(7.10-4) 0.0482(5.10-5) 0.0565(4.10-5) 0.00489(1.8.10-6) 0.00718(9.10-7)
C 0.215(0.0013) 0.0602(8.10-5) 0.0845(9.10-5) 0.00718(9.10-7) 0.009(6. 10-6)

Table A.3: The r-parameter obtained from fits with a negative binomial distribution on the
”obg”data set. The numbers in parenthesis are the standard errors as given by R’s ”fitdistr”
function. The variance of the distribution is given by m + m2/r, where m is the mean of the
distribution.
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DYN HET HOM CM CM0 CMD
runs EP AR< 10% EP AR< 10% EP AR< 10% EO AR< 10% EP AR< 10% EP AR< 10%

All 16000 0.60 0.86 0.47 0.80 0.41 0.50 0.50 0.80 0.33 0.48 0.38 0.65

Assistants 1344 0.35 0.51 0.21 0.34 0.20 0.27 0.18 0.26 0.18 0.28 0.20 0.33
Doctors 2690 0.71 0.93 0.65 0.87 0.40 0.49 0.56 0.81 0.57 0.84 0.59 0.91
Nurses 2823 0.50 0.70 0.39 0.56 0.19 0.28 0.33 0.48 0.33 0.52 0.36 0.58
Patients 4975 0.66 0.95 0.51 0.91 0.54 0.64 0.30 0.44 0.40 0.71 0.58 0.92
Caregivers 4168 0.59 0.95 0.45 0.91 0.47 0.58 0.27 0.40 0.35 0.68 0.52 0.90

Table A.4: Fraction of runs that lie under a given threshold for the different network models. For each network model, the dependence
on the starting group is also taken into account. Simulations are done for parameter set 1 (see Tab. 4.2).
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DYN HET HOM CM CM0 CMD
runs EP AR< 10% EP AR< 10% EP AR< 10% EO AR< 10% EP AR< 10% EP AR< 10%

All 16000 0.62 0.81 0.35 0.63 0.28 0.32 0.21 0.27 0.26 0.40 0.37 0.59

Assistants 1344 0.44 0.51 0.13 0.16 0.10 0.12 0.10 0.12 0.10 0.12 0.11 0.14
Doctors 2690 0.70 0.84 0.51 0.67 0.27 0.30 0.40 0.55 0.39 0.57 0.42 0.66
Nurses 2823 0.51 0.64 0.26 0.33 0.11 0.13 0.20 0.26 0.21 0.27 0.21 0.30
Patients 4975 0.68 0.90 0.40 0.79 0.39 0.44 0.18 0.23 0.28 0.44 0.47 0.74
Caregivers 4168 0.62 0.90 0.31 0.77 0.32 0.37 0.16 0.20 0.24 0.41 0.42 0.72

Table A.5: Fraction of runs that lie under a given threshold for the different network models. For each network model, the dependence
on the starting group is also taken into account. Simulations are done for parameter set 2 (see Tab. 4.2).
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