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Résumé

Ces dernières années, la puissance croissante des ordinateurs a permis à la fois de rassembler une quantité

sans précédent de données décrivant la société moderne et d’envisager des outils numériques capables

de s’attaquer à l’analyse et la modélisation les processus dynamiques qui se déroulent dans cette réalité

complexe. Dans cette perspective, l’approche quantitative de la physique est un des catalyseurs de la

croissance de nouveaux domaines interdisciplinaires visant à la compréhension des systèmes complexes

techno-sociaux. Dans cette thèse, nous présentons dans cette thèse un cadre théorique et numérique pour

simuler des épidémies de maladies infectieuses émergentes dans des contextes réalistes. Dans ce but, nous

utilisons le rôle crucial de la mobilité des agents dans la diffusion des maladies infectieuses et nous nous

appuyons sur l’étude des réseaux complexes pour gérer les ensembles de données à grande échelle décrivant

les interconnexions de la population mondiale. En particulier, nous abordons deux différents problèmes

de santé publique. Tout d’abord, nous considérons la propagation d’une épidémie au niveau mondial,

et présentons un modèle de mobilité (GLEAM) conçu pour simuler la propagation d’une maladie de

type grippal à l’échelle globale, en intégrant des données réelles de mobilité dans le monde entier. La

dernière pandémie de grippe H1N1 2009 a démontré la nécessité de modèles mathématiques pour fournir

des prévisions épidémiques et évaluer l’efficacité des politiques d’interventions. Dans cette perspective,

nous présentons les résultats obtenus en temps réel pendant le déroulement de l’épidémie, ainsi qu’une

analyse a posteriori portant sur les stratégies de lutte et sur la validation du modèle. Le deuxième

problème que nous abordons est lié à la propagation de l’épidémie sur des systèmes en réseau dépendant

du temps. En particulier, nous analysons des données décrivant les mouvements du bétail en Italie

afin de caractériser les corrélations temporelles et les propriétés statistiques qui régissent ce système.

Nous étudions ensuite la propagation d’une maladie infectieuse, en vue de caractériser la vulnérabilité

du système et de concevoir des stratégies de contrôle. Ce travail est une approche interdisciplinaire qui

combine les techniques de la physique statistique et de l’analyse des systèmes complexes dans le contexte

de la mobilité des agents et de l’épidémiologie numérique.
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Abstract

In recent years, the increasing availability of computer power has enabled both to gather an

unprecedented amount of data depicting the global interconnections of the modern society and

to envision computational tools able to tackle the analysis and the modeling of dynamical pro-

cesses unfolding on such a complex reality. In this perspective, the quantitative approach of

Physics is catalyzing the growth of new interdisciplinary fields aimed at the understanding of

complex techno-socio-ecological systems. By recognizing the crucial role of host mobility in the

dissemination of infectious diseases and by leveraging on a network science approach to handle

the large scale datasets describing the global interconnectivity, in this thesis we present a theo-

retical and computational framework to simulate epidemics of emerging infectious diseases in real

settings. In particular we will tackle two different public health related issues. First, we present

a Global Epidemic and Mobility model (GLEaM) that is designed to simulate the spreading of

an influenza-like illness at the global scale integrating real world-wide mobility data. The 2009

H1N1 pandemic demonstrated the need of mathematical models to provide epidemic forecasts

and to assess the effectiveness of different intervention policies. In this perspective we present

the results achieved in real time during the unfolding of the epidemic and a posteriori analysis on

travel related mitigation strategies and model validation. The second problem that we address

is related to the epidemic spreading on evolving networked systems. In particular we analyze a

detailed dataset of livestock movements in order to characterize the temporal correlations and

the statistical properties governing the system. We then study an infectious disease spreading,

in order to characterize the vulnerability of the system and to design novel control strategies.

This work is an interdisciplinary approach that merges statistical physics techniques, complex

and multiscale system analysis in the context of hosts mobility and computational epidemiology.
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1

Introduction

Since the mid-20th century, the availability of new computational resources has added novel

and important tools to theoretical physics. In particular, statistical mechanics had found in

computer simulations the perfect environment to perform numerical experiments to explore ideal

systems composed by thousands of interacting elements. Nowadays, the technological innovations

have pushed the computational power to an extent unthinkable even twenty years ago. The

easiness to which it is possible to perform huge calculations on ordinary personal computers

represents a precious opportunity to tackle the study of natural processes involving a multitude

of interacting objects in a complex reality, shifting the attention from ideal systems to the real-

world phenomena.

Along with the technical innovations, the last decade has witnessed an increasing attention to

the data gathering, ranging from biological (1; 2; 3; 4) to social systems (5; 6; 7; 8; 9; 10; 11; 12),

from infrastructural (7; 13; 14; 15; 16) to financial realities (17; 18; 19; 20). In particular, the

pervasiveness of technology in the every day life allowed physicists to quantitatively explore new

fields. For instance, the mobile phones provide informations about the geographical position

of his/her owner (21) and can be used as a proxy of human mobility as well as the tracking

of banknotes (22). Furthermore, the analysis of mobile communication (23) along with the

web 2.0 and the virtual social networks (24) permit the analysis of social interactions at a

very large scale considering the interactions among thousand of individuals and measuring the

conjectures and the hypothesis proposed by sociologists (25) and anthropologists (26) since the

last century. Moreover, research on some technological systems pointed out their tendency to

evolve as autonomous systems even though they have been built in their constituent elements by

human beings, as in the case of the Internet (27) or the World-Wide-Web (28). All the above
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mentioned systems are composed by many interacting entities and in order to formalize such

interactions and to conveniently handle them, many datasets have been naturally described in

terms of networks. The analysis of such systems highlighted their intrinsically complex nature:

their behavior cannot be described extrapolating the properties and the governing laws of their

constitutive units. The study of each subpart of the system in isolation does not allow the

understanding of the whole system and its dynamics. In many cases, we observe the spontaneous

outcomes of emerging phenomena due to the interactions among the system constitutive units.

They are self-organizing systems without a blueprint or a global supervision.

The ambitious aim of the new computational science is to understand and predict through a

data-driven approach the behavior of large-scale phenomena of the above mentioned techno-social

systems. Starting with the mathematical description of patterns found in real data, scientists can

devise models to anticipate trends, in order to evaluate risks and eventually manage future events

(29). The most successful example of the potential of the computational modeling approach

to complex settings is represented by weather forecasts: powerful supercomputers elaborate

current meteorological data and correlate with huge libraries of historical entries into large-scale

computational simulations achieving extraordinary results. Using the physical laws governing

the dynamics of fluid and gas masses and sophisticated equipment to record data at the local

level, in the last decades the development of accurate weather forecasts permitted to project

the path and intensity of storms, hurricanes, and other disruptive meteorological occurrences

and, in many cases, to save thousand of lives by anticipating and preparing for these events.

On the other hand, the main obstacle for the understanding of human-related phenomena was

the lack of large-scale data about human patterns and consequently the difficulty in formalizing

mathematical laws governing human behavior. With the increasing availability of data about the

individual and collective human dynamics, we are finally able to study phenomena involving social

systems with the quantitative approach of statistical Physics. In this perspective, the modeling of

epidemic spreading of infectious diseases is a challenging problem with immediate and important

applications related to public health issues. Similarly to weather forecasts, we have to feed with

the appropriate data and initial conditions the set of laws governing the transmission of pathogens

in a spatially extended systems. The dissemination of infectious diseases is governed by host

mobility at different scales. For instance, a child that gets influenza interacting with schoolmates

can transmit the disease to her/his parents when s/he comes back home. Subsequently the

parents might infect their colleagues at the workplace that is eventually placed in a neighboring

town and the infection chain might continue infecting more and more people. In the pre-industrial

2
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Figure 1.1: Disease spreading examples. The slow propagation of the black death in the 14th

century (A) is compared with the rapid dissemination at the global scale of the 2009 H1N1 influenza

(B).

age the human mobility was characterized by rare travels covering rather short distances, leading

to a slow dissemination of new pathogens. As shown in figure 1.1A, it has been estimated that in

the 14th century the so-called ’Black Death’ was able to spread at the velocity of few hundreds

miles per year. On the contrary, the mobility in the modern society is shaped by the large fluxes

of short range daily commuters and air travelers. In such settings the spreading of infectious

diseases may rapidly reach global proportions as in the paradigmatic case of the 2009 H1N1

pandemic shown in figure 1.1B. In this thesis, integrating with a network science approach the

large-scale datasets describing the host mobility, we present a theoretical and computational

framework to simulate epidemics of emerging infectious diseases in real settings.

The thesis is organized as follow. In chapter 2 we recall the basic concepts of graph theory,

we introduce some mathematical tools that are necessary to analyze networked systems and we

review three models that represent milestones of network science and are useful to understand the

behavior of complex networks. In chapter 3 we provide an introduction to mathematical modeling

of infectious diseases. The transmission of a pathogen within a host population can be described

as a dynamical process governed by a set of differential equations by defining an appropriate

phase space. In chapter 4 we describe in detail the Global Epidemic Mobility model (GLEaM)

that integrates a data-driven network description of human mobility and an epidemic model

of an influenza like illness. The work concerning GLEaM has been carried out within a large

collaboration led by Vittoria Colizza (PI) and Alessandro Vespignani (PI and Team Coordinator)

based mainly at the I.S.I Foundation, Turin, IT and at the Indiana University, Bloomington, IN,

USA. Under the supervision of Vittoria Colizza, I have partially helped in the data gathering and

3
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analysis of short range mobility datasets, while the computational implementation of GLEaM

and the numerical simulations of epidemic scenarios has been an important part of the work

performed during this thesis and it represents the crossing point of the interdisciplinary merging

of human disease modeling, complex networks science and policy decision making. In chapter 5

we present the results obtained by using GLEaM to perform forecasts, analysis and intervention

assessments during the 2009 H1N1 pandemic influenza. It is worth to stress that most of those

results were achieved well before the epidemic peak opening the road to real time epidemic

forecasting. In chapter 6 we present the results achieved under the supervision of Alain Barrat and

Vittoria Colizza aimed at the development of novel mathematical and statistical tools through

the longitudinal analysis of a dynamical complex network. Many systems are usually treated as

static networks mainly because of a lack of information on the timing of the interactions and also

because the static description is often a good approximation for several purposes. Nevertheless,

when the time scale of the system dynamics is comparable to the investigated dynamical process it

is crucial to incorporate the whole temporal information. We thus present the study on a detailed

dataset of livestock movements that represents a unique opportunity to define new quantities and

physical observables to analyze networked systems with an explicit temporal dimension. Finally,

we further discuss some important features that may affect the spreading of an emerging infectious

disease and we propose a novel approach to study dynamical processes on dynamical networks.

4
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Theoretical Framework:

Networks and Graphs

Contents

2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Real networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Network models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Dynamical networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

The first scientist to introduce the notion of graph was Leonard Euler in the famous work

Solutio problematis ad geometriam situs pertinentis in 1736, where he solved the Königsberg

bridges problem.

Generally speaking, a graph is an abstract way of specifying relationships among a collection of

objects. Such level of abstraction can be applied to a broad range of systems. In this perspec-

tive graphs provide a theoretical framework that allows a convenient conceptual representation

of interrelations in complex systems where the system characterization implies the mapping of

interactions among a large number of constituent elements. The study of graphs has a long tra-

dition in discrete mathematics, sociology, and communication research and has recently become

very popular also in physics and biology.

In this work, the concept of networks plays a crucial role providing a suitable framework to

explore computationally the unfolding of dynamical processes in complex realities and to tackle
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theoretical issues raised by the dynamics of the system itself. In this chapter we will introduce

the very basic concepts of this field but we refer the reader for a deeper analysis of the subject

to some classical books for a more theoretical point of view (30; 31; 32; 33; 34; 35; 36) and for a

more applied perspective (27; 37; 38; 39; 40; 41).

2.1 Basic definitions

A graph G(N,E) is identified by a set of N objects named vertices or nodes and a list of E

pairs of nodes, called edges or links indicating the relationships between the objects. Two nodes

are neighbors if they are connected by an edge. The relationships between the objects can be

symmetric or asymmetric leading to undirected or directed graphs respectively. Graphs are useful

because they serve as mathematical models of network structures and from now on we will refer

to graphs or networks without further distinctions. A convenient way to mathematically describe

a graph is through the N × N adjacency matrix A, whose element Aij = 1 if the nodes i and

j are connected and Aij = 0 otherwise. Using such formalism, the undirected networks are

represented by a symmetric adjacency matrix (Aij = Aji), while in the directed cases the matrix

can be asymmetric. Moreover, in the following we will consider only networks without self-loops

(Aii = 0). Depending on the system under study, it might be important to add a new degree

of freedom representing the intensity of the relationships between nodes. It is thus possible to

construct weighted networks where each connection (i, j) has its own weight wij .

In the following we recall some fundamental concepts and definitions used for the quantitative

analysis of complex networks.

Path, connectivity and distance

A path Pij defined in graph G(N,E) is an ordered collection of edges connecting the nodes i

and j. A graph is called connected if for every pair of nodes there is a path between them. A

component C is defined as a connected subgraph and two components C1(M1, E1) and C2(M2, E2)

are disconnected if it is impossible to construct a path Pij with i ∈ M1 and j ∈ M2. Graphs

usually lack a metric, but the distance between two vertex can be naturally defined as the number

of links traversed by the shortest connecting path. For two given nodes i and j the distance lij

between them is the path length with the minimum number of links between them. If the nodes

i and j belong to two disconnected components, their distance is set to infinity. The diameter D

of a graph is the maximal distance among all the pairs of nodes.

6
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The average distance L is evaluated averaging the shortest paths for all the possible couples of

nodes (i, j):

L =
2

N(N − 1)

�

i<j

lij (2.1)

If L is much smaller than the size of the system N , the network is said to exhibit a small world

property.

Degree

The degree ki of a node i is the number of links connected to i, i.e. the number of its neighbors.

By using the adjacency matrix formalism ki =
�

j
Aij while the average degree is simply �k� =

2E/N . In a directed graph the number of incoming or outgoing connections are called in-degree

k
in or out-degree kout respectively. The definition of degree can be generalized to weighted graphs

where the weighted degree is usually called strength. The strength a the node i is si =
�

j
wij ,

and similarly to the unweighted directed graphs it is possible to define the in-strength and the

out-strength quantities.

Centrality measures

When considering a network, the centrality of the nodes and links is crucial to understand their

role in the systems. The degree is one of the simplest and more common centrality measure

adopted to assess the node centrality, but many others exists: betweenness node/link centrality,

closeness centrality, eigenvector centrality, pagerank. We will not go into details of such measures

since in this work we will use the degree whenever we investigate the centrality of a node and we

refer the reader to classical textbooks (37; 38; 39; 40) to deepen this topic.

Clustering coefficient

The clustering coefficient Ci of a node i is the fraction of neighboring nodes that are also connected

to each other. In social networks the clustering coefficient quantifies the abundance of triadic

closure, counting the prevalence of friends of a node that are also friend to each other. Let us

consider a vertex i with ki = 3 and let us imagine that two of them are connected with each other.

In this case Ci = 1/3 because just 1 pair among 3 is actually connected. If all the neighbors were

connected the clustering coefficient would have the maximum value Ci = 1. Using the adjacency

matrix we have:

Ci =
2

ki(ki − 1)

�

j,k

AijAikAjk (2.2)

7
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Degree distribution

The degree distribution P (k) of a network represents the probability that a randomly chosen

node has degree k. The average degree �k� is:

�k� =
�

k

kP (k) ≡ 2E

N
. (2.3)

A graph is called sparse if the average degree is very small with respect to the number of nodes:

�k� << N . In the case of a directed graph we have two distributions P (kin) for the in-degree

and P (kout) for the out-degree. In the next sections we will present different classes of networks

and we will discuss how the degree distribution is crucial to characterize a graph.

Degree correlation

Many real networks show a correlation between the degree of a node and the degree of its

neighbors e.g. nodes with high degree are preferentially connected with high degree nodes. This

kind of correlation is called assortative mixing and it is particularly common in social networks. In

other cases the opposite situation has been found i.e. high degree nodes connected preferentially

with low degree nodes. This kind of correlation is called disassortative mixing (42) and is rather

common in technological and biological networks. Formally these correlations can be measured

considering the average degree of the nearest neighbors of a generic node i, knn,i:

knn,i =
1

ki

�

j∈νi

kj (2.4)

where the sum is over the nearest neighbors of i. From this quantity a convenient measure to

investigate the behavior of the degree correlation function is obtained by the average degree of

the nearest neighbors, knn(k) of nodes of degree k. This quantity can be expressed as:

knn(k) =
�

k�

k
�
P (k�|k) (2.5)

where P (k�|k) is the conditional probability that any given edge departing from a node of degree

k is pointing to a node of degree k
�. When the degrees of neighboring vertices are uncorrelated,

P (k�|k) is only a function of k
� and thus knn(k) is constant. In the presence of correlations

knn(k) could be a non constant function of the degree and in particular a positive (or negative)

correlation is a signature of assortativeness (or disassortativeness).

8
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2.2 Real networks

Much research has been done in the analysis of networked systems available from empirical

datasets. In this section we will give some examples of real world networks. We will focus in

particular on the macro areas of social, technological and biological networks including trans-

portation infrastructures, human communication and mobility patterns (3; 14; 15; 16; 21; 22; 43;

44; 45; 46; 47; 48; 49). Studies performed on such different fields have unveiled the presence of

unexpectedly similar properties, shared by these systems independently of their function, origin

and scope. Besides the small world property, which consists in the co-existence of high local

interconnectedness and small distances across any two nodes in the network compared to the

system size (7), the components of such systems are found to be wired in a non-homogeneous

way, with the number of connections per node showing very large fluctuations in contrast with

the random Poissonian hypothesis (8). The ubiquitous nature of this so-called scale-free prop-

erty - found across natural, societal, and artificial systems - has spurred more than a decade

of research aimed at characterizing and understanding complex systems drawn from different

disciplines through the common paradigm of networks science (50).

2.2.1 Social networks

Social Networks represent the individuals as nodes and the social interactions among them

(friendship, sexual relations, belonging to the same group of work) as links. This kind of net-

works has been studied since the works of Moreno (51) in 1934 and are extremely important not

just for social sciences but even for a wide variety of processes from the spreading of infectious

diseases to the emergence of consensus and knowledge diffusion. The historical problem related

to these networks was the difficulty to get reliable information of a sufficiently large number of

people in order to have enough statistical power. Fortunately the recent explosion of online social

interactions has made available data sets of unprecedented size. E-mail exchanges (5; 6), habits

and shared interest inferred from web visits and professional communities such as collaboration

networks of film actors (7; 9; 52) or company directors networks (53) or co-authorship among

scientists (10; 11; 12) are classical examples of this type of networks.

2.2.2 Technological networks

Technological networks are human-built networks designed to accomplish the distribution of

some resource: water, electricity, gas etc.. Classical examples are: the networks of power grids

9
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both high or low voltage (7; 13), the networks of inter-urban streets (14), internet (27; 54; 55)

and the airport networks (15; 16). This last system can be represented as a weighted graph

where nodes are the airports, links the air connections and weights the flow of passengers. For

more details we refer the reader to the Chapter 4 were a complete description of such network is

presented. Another important technological network often classified as an information network is

the WolrdWideWeb. It is the most famous virtual network where nodes are web pages and links

are the hyper-links (direct links) between them. The extremely rapid and unregulated growth of

the Web has led to a huge complex network. Its structure is very difficult to study and for many

years experiments have been done in order to get information about it (28; 56).

2.2.3 Biological networks

Biological networks completely pervade the biological world spanning from the microscopic realm

of biological chemistry, genetics, proteomics to the large scale of food webs. An important

example is the protein interaction network (PIN) of various organisms where nodes represent

proteins and edges connect pairs of interacting proteins (1; 2). Three different scales of processes

are usually considered. The microscopic scale such as PIN networks in which the main point is

to understand the biological significance of the topology of these networks (3). At a larger scale

biological networks can describe interactions between animals and even humans (57). At the

very large scale we find the networks describing the food webs of entire ecosystems (4).

2.3 Network models

The study of networked systems can be tackled with two complementary approaches. The char-

acterization of real datasets and the analysis of different case studies has to be integrated with

the development of models aimed at investigating the aggregation mechanism behind the ob-

served patterns. In this perspective, many models have been formulated to explain and recover

the main characteristics of the observed empirical networks. In this section we will recall just

three of them, that for historical reasons and for the importance of their results are probably the

most cited works in the field of complex networks.

2.3.1 Random networks: Erdös-Rényi (ER) model

The main contribution to the study of random graphs are due to Paul Erdös and Alfréd Rényi

(58; 59; 60). In their first work they defined a random graph of N vertices and m links selected

10
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p=0.05 p=0.2 p=0.5

Figure 2.1: Schematic illustration of ER model with different connectivity probability. The larger

is p, the denser is the network. When p = 0 the graph is composed by isolated nodes and when

p = 1 the graph is fully connected.

at random among the N(N − 1)/2 pairs of nodes. There are in total
�
N(N−1)/2

m

�
possible graphs.

They can appear with the same probability and they form the ensemble of graphs characterized

by this rule. Another definition of random graph is given by the binomial model that is equivalent

to the ER model for large N . Starting from N vertices for each pair of nodes a link is formed

with probability p as illustrated in figure 2.1. The number of links is then a random variable

with average value �m� = pN(N − 1)/2.

In a random graph characterized by a probability of connection p, in the limit of N → ∞, the

degree distribution can be approximated by a Poisson distribution:

Prand(k) � e
�k� �k�k

k!
(2.6)

The most characteristic trait of the degree distribution of random graphs is that it decays ex-

ponentially for large values of k allowing only very small degree fluctuations. The degree of the

different nodes can thus be considered as uniform and equal to the average degree k � �k� � pN .

In general, random graphs are characterized by very small diameters showing a small-world be-

havior that is observed in many real world networks. It is easy to show that the diameter D

is proportional to ln(n)/ln(�k�) (61). Moreover, random graphs are characterized by very small

clustering coefficients. Given a node i, the probability that two of its neighbors are connected is

equal to the probability that any other two nodes will be connected, so that:

Crand = p =
�k�
N

. (2.7)

This implies that the ratio Crand/�k� at fixed �k� decrease with the size of the system like N
−1.

11
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Figure 2.2: (A) The Watts-Strogatz model interpolates between a regular ring lattice and a

random network with the random rewiring procedure. (B) Average shortest path length L and

average clustering coefficient as a function of p. The quantities have been normalized by their value

for the regular lattice topology. The rapid drop of L triggers the onset of small-world effects and it

occurs when the clustering coefficient is still high.

2.3.2 Small world networks: Watts-Strogatz (WS) model

It has been observed that many real networks exhibit many closed triads leading to large cluster-

ing coefficients (like some regular graphs but in contrast with random graphs), but also very short

paths (like random networks but in contrast with regular graphs). From this simple observation

we can conclude that real networks are neither regular lattice nor random graphs, and following

this inspiration, in 1998, Watts and Strogatz put forward a model to interpolate between these

two limits (7). The model states that starting from N nodes in a ring, each connected to k/2

to the left and k/2 nodes to the right, every link is randomly rewired with a probability p as

shown in Figure 2.2A. With this process pNk/2 links will be reshuffled on average. Nodes that

before were far away from each other by construction are now closer thanks to the presence of

shortcuts. It is extremely interesting to study the behavior of the average path length L of the

graph and of the clustering coefficient C as a function of p. For p = 0 we have a complete regular

ring with L(0) � n

2k and C(0) � 3
4 while for p = 1 the network becomes completely random with

L(1) � ln(n)
ln(k) and C(1) � k

n
. For intermediate values of p we will have a situation in between

these two limits. As shown in Figure 2.2B as p increases the distance gets reduced a lot while

the average clustering is almost constant. The two quantities change with a complete different

slope with p and there is thus a broad region in which we see a small-world effect and a value of

clustering bigger than the random case.

12
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It has been shown in Ref. (62) that the shape of the degree distribution for p > 0 is similar

to the distribution of a random graph with a well defined peak around the mean value and an

exponential decay for large value of k. This model is able to create small-world networks highly

clustered but it still has a homogeneous topology and the degree distribution is far from being

heavy-tailed as observed in real networks.

2.3.3 Scale free networks: Barabási-Albert (BA) model

In the last ten years many models have been proposed to explain the abundance in many natural

systems of networks with high heterogeneity in the degree distribution. In the following we will

recall the first, a very elegant, simple and most cited model, proposed in 1999 by Barabási and

Albert able to produce scale-free graphs with small-world phenomena (8; 63).

In contrast with the previous models where the number of nodes N were fixed a priori and the

edges were drawn (or rewired) with a certain probability, the BA model suggests a reasonable

mechanism of networks formation. Here the nodes are progressively added to the system con-

necting with new edges the most popular links. Starting from a small number of core nodes n0

the graph is thus build following these rules:

1. growth: at each time step a new vertex is added to the graph and it is linked with m < n0

other nodes already present

2. preferential attachment: the new node is connected to the node i with probability π de-

pending on the degree ki

π(ki) =
ki�
j
kj

. (2.8)

Numerical simulations and analytical calculations show that the degree distribution of such

networks will be:

P (k) � k
−γBA with γBA = 3. (2.9)

It has been shown in (64) that the diameter of a BA graph is smaller than the relative measure

of a random graph. The diameter of a BA graph is

D ∼ lnN

ln ln(N)
, (2.10)

It is then possible to show that a BA graph has a clustering coefficient higher than the ran-

dom graphs of the same size and generated with the same �k� (65)(66)(67). The BA model

13
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Figure 2.3: (A) Network with N = 1000 nodes generated with a BA model. The size and the

color gradient of the nodes is proportional to their degree. (B) Degree distributions of networks

generated with the BA model and different sizes.

has stimulated a lot of research in modeling the aggregating mechanism leading to networked

structures. Nowadays there is abundance of models with tunable parameters able to create scale

free networks. In particular with such refined models it is possible to tune the slope of the degree

distribution, the clustering coefficient and the degree correlations.

The models presented in the last section will be used as benchmarks or paradigmatic examples

to discuss the structural properties of the networks that will be described in the following chap-

ters. It is worth to remember that the functional form of the statistical distributions character-

izing large-scale networks defines two broad network classes. The first refers to the homogeneous

networks where the degree distribution has a fast exponentially decay. The second class concerns

networks with statistically heterogeneous connectivity patterns usually corresponding to skewed

and heavy tailed distributions that can be approximated by a power law decay P (k) � k
−γ . In

general, in the asymptotic limit of N → ∞, the cut-off kc corresponding to the largest possible

degree value diverges, so that �k2� ∼
�
k
2
P (k)dk ∼ k

3−γ

c
→ ∞: for values of γ < 3 fluctuations

are unbounded and depend on system size. The absence of any intrinsic scale for the fluctuations

implies that the average value is not a characteristic scale for the system. Whenever a network

exhibits such large degree heterogeneities it is called scale-free and with the small-world effect it

is one of the principal characteristics of complex networks.

14
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2.4 Dynamical networks

As briefly enumerated in the previous section, many real systems can be treated as networks

by coupling the constituent elements, namely the vertices, through some functional connections,

namely the links. Nevertheless, in some cases, edges are active only for a certain period of time:

e.g., a sexual contact between two individuals occurring at given time holds for a limited period

(68). Similarly, a social interactions of people attending a conference can be represented by a

graph where an edge between two individuals is on throughout the time they are chatting or at

least in a close proximity (69). Like network topology, the temporal structure of edge activa-

tions can affect dynamics of systems interacting through the network, from disease contagion to

information diffusion. The emergent field of temporal networks is exponentially growing and it

is still lacking a unified theoretical framework to analyze the temporal datasets. In the light of

traditional network theory, one can see this framework as moving the information of when things

happen from the dynamic system on the network, to the network itself. Since fundamental prop-

erties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of

these methods need to be quite different from those for static networks (70).

2.5 Conclusions

In this section we recalled the basic notions of graph theory. In particular, we presented the very

fundamental tools to analyze and characterize networked systems. We gave a general overview

of some data-driven networks to provide to the reader some examples of how a network approach

can be used to describe very different settings. In chapter 4 and 5 we will use a network represen-

tation to describe the world-wide airport network and the local commuting patterns. Then, we

briefly introduced three network models that are the prototype examples of graphs with different

statistical behavior: random graphs, small-world networks, scale-free networks. These models

are often used as benchmarks to analyze new datasets and to understand the aggregation mech-

anism of different systems. We finally introduced the concept of dynamical network, that will

be crucial in the chapter 6 where we present the longitudinal analysis of a dynamical network

and we discuss some important features that can enhance our understanding of the unfolding of

dynamical processes on networked systems with temporal dimension.
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The etiology and the mechanism of transmission of infectious pathogens has been success-

fully investigated for many diseases. In general, diseases transmitted by viral agents, such as

influenza, measles and chicken pox, confer immunity against reinfection, while diseases trans-

mitted by bacteria, such as tuberculosis, meningitis, and gonorrhea, do not led to a lifelong

immunity. Other diseases, such as malaria or West Nile virus, are not directly transmitted from

hosts to hosts but by vectors, which are agents who carry the infections between the hosts. For

sexually transmitted infections the disease is transmitted back and forth between the individuals

by means of sex acts. Different diseases call for different theoretical designs and in this chapter

we will present the general framework to investigate the unfolding of airborne diseases such as

an influenza-like-illness (ILI) by means of a mathematical model. It is worth to notice that the

mathematical description of an infectious disease can explore different scales depending on the

observables under study. The evolution of the virus population within the host, the number of

children or elderly people that would be hospitalized during an epidemic wave or the number

of country reached by the epidemic are crucial issues that has to be addressed with different
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models. In this thesis we investigate the disease transmission between individuals in a closed

population. In chapter 5 we will present the results of our studies on the 2009 H1N1 pandemic

influenza where we focused on the country level by considering the world-wide dissemination of

the disease. In chapter 6 we assess the impact of an emerging infectious disease among premises

of domestic animals.

In this chapter we will introduce the very fundamental concepts of this field but we refer the

reader for a deeper analysis of the subject to some classical textbooks (71; 72; 73; 74; 75). Similar

techniques can be further generalized for modeling the spread of rumors and the cascade effects

of economic crises.

3.1 Compartmental models

The first theoretical approach to the propagation of infectious diseases, namely smallpox, was

taken by Daniel Bernoulli in the 18th century. Almost two centuries later, Kermack and McK-

endrick formalized the concept of compartmental models by using a set of ordinary differential

equations to describe the unfolding of an epidemic. This approach became extremely popular

and powerful and represents the basis of the modern computational epidemiology.

The compartmental model simply assumes that the individuals of a closed population are divided

into a discrete set of compartments according to their health status (71; 76) such as susceptible

people who can contract the infection S, those who are already infected and can transmit the

disease to other people I and those who have already contracted the infection and have recov-

ered from the disease R. In this simple case the model is named SIR, but if the disease does

not confer any long lasting immunity the SIS model would be more appropriate, or if the disease

under study lead to a permanent infection it can be used the SI model. Additional stages of the

disease can be introduced depending on the type of the disease. Examples of these extensions

will be shown in details in the chapter 4. With a compartmental model is possible to tackle the

key questions of infectious disease spreading:

• if a new pathogen is introduced in a “virgin” population, does this cause an epidemic?

• if so, with what rate does the number of infected hosts increase during the rise of the

epidemic?

• what proportion of the population will ultimately have experienced infection?
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Let us consider a population of N individuals and let us define the number of individuals in the

class [m] at the time t as X [m](t). Since we are not considering births and deaths, we assume a

conservation of the number of individuals

N =
�

m

X
[m](t). (3.1)

The transitions between different compartments depend on the specific disease that we are mod-

eling. In general, the transition from one compartment to the other is specified by a reaction

rate that depends on the disease etiology, such as the infection transmission rate or the recovery

rate. In compartmental models there are two possible types of elementary processes ruling the

disease dynamics. We can imagine the disease transmission as a reaction process where the rate

of interaction of two different subsets of the population is proportional to the product of the

numbers in each of the subset concerned, while the spontaneous recovery process occurs with a

constant rate.

S + I → 2I I → R (3.2)

The first process can be generally described by considering the variation of individuals in

the class m as
�

h,g
ν
m

h,g
ah,gX

[h]
X

[g]
N

−1, where ah,g is the transition rate of the process and

ν
m

g,h
= [−1, 0, 1] the change in the number of X

[m] due to the interaction. The factor N
−1

follow from the homogeneous approximation, where the interaction of each individual of class [h]

with individuals of class [g] depends only on the density of individuals of such class X [g]
/N . The

homogeneous approximation is therefore equivalent to the mean-field one used for physical models

and considers an effective interaction, a mass-action law, determining the force of infection in

the same way for all the individuals of the system. The spontaneous transition of one individual

from one compartment [m] to another one [h] is given by
�

h
ν
m

h
ahX

[h] where ν
m

h
= [−1, 0, 1]

and ah is the transition rate. We can now write the general deterministic reaction rate equations

for the quantity X
[m] summing the two contributions presented:

∂tX
[m] =

�

h,g

ν
m

h,g
ah,gX

[h]
X

[g]
N

−1 +
�

h

ν
m

h
ahX

[h]
. (3.3)

Equation 3.3 represents the general expression to define many epidemiological models. In partic-

ular it would be easy to derive the differential equations governing the SI, SIS and SIR models.

In the following we will focus on the SIR model, since in this work we have always in mind

diseases that lead to a permanently recovered state.
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Considering the SIR compartmentalization and an infection transmission rate β and a re-

covery rate µ, the system is thus governed by the following differential equations providing the

variations of density of susceptible s(t) = S(t)/N , density of infectious i(t) = I(t)/N and density

of recovered individuals R(t)/N in time:

ds(t)

dt
= −βi(t)s(t) (3.4)

di(t)

dt
= βi(t)s(t)− µi(t)

dr(t)

dt
= µi(t)

The transmissibility β introduced here is a mathematical parameter to model in an effective

way the rate of infection of susceptible hosts homogeneously mixed with infectious individuals

averaging all the biological, social and environmental factors contributing to disseminate or

hamper the spread of the virus. For a sake of simplicity, the fundamental quantity k, counting

the number of contacts that each individual experienced and representing the number of potential

individuals that may transmit or acquire the infection has been dropped by assuming that k = �k�

for all the individuals and thus rescaling accordingly β. Another implicit assumption of this model

is that the time scale of the disease is much smaller than the lifespan of individuals; therefore we

do not include in the equations terms accounting for the birth or natural death of individuals.

Let us imagine that a new infected individual is introduced in the closed population N . At the

early stage of the epidemic we have i(0) = 1/N and we can consider the number of susceptibles

s(0) � 1 and r(0) = 0. Since the variation of i(t) can be written as di(t)/dt = µi(t) + βi(t)[1−

r(t) − i(t)], we can thus use a linear approximation neglecting all the i
2 terms. The density of

infected individuals is:

i(t) � i0e
t/τ (3.5)

where i0 is the initial density of infected individuals and τ is the typical outbreak time τ−1 = β−µ

(71). This expression suggests an important consideration: if the recovery rate is greater than

the transmission rate, τ assumes negative values and the number of infected individuals fade

out on the timescale |τ |. The ratio β/µ is thus a crucial quantity and represents the epidemic

threshold. Defining the basic reproductive number R0, as

R0 =
β

µ
, (3.6)

an infectious disease is able to spread in a large part of the population only if R0 > 1 i.e. when

the exponent of equation 3.6 greater than zero. The basic reproductive number represents the
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Figure 3.1: (A) Eradication Criterion. The critical fraction of people that has to be vaccinated

to eradicate the disease as a function of R0 is shown. (B) Final outbreak size as a function of the

basic reproductive number.

number of new secondary cases that an infected individual may infect in a fully susceptible

population before getting recovered.

The relevance of the epidemic threshold is also related to the protection of populations by means

of immunization programs. These correspond to vaccination policies aimed at the eradication of

the epidemics. Let us imagine that a fraction v = V/N of the original population is vaccinated

and thus fully immune to the disease. The initially susceptible individuals are s(0) = 1−v− i(0),

and the linear approximation is therefore:

di(t)/dt = [µ+ β(1− v)]i(t) (3.7)

The new condition for observing an epidemic outbreak is R�
0 = β

µ
(1− v) > 1. It is thus possible

to define the critical vaccination fraction

vc = 1− µ

β
= 1− 1

R0
(3.8)

representing the fraction of individuals to immunize to eradicate an infection. As shown in

Figure 3.1A, because of a herd immunity it is not necessary to vaccinate everyone to eradicate

an infection. If the vaccine is not perfect and has an efficacy 0 < E ≤ 1 of preventing the

transmission from an infected contact, then vc = 1
E
(1 − 1

R0
). It may happen that for highly

infectious diseases (large R0) and not so effective vaccines (small E), the critical vaccination

fraction exceeds 1. This means that vaccination alone cannot prevent an outbreak.
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Considering the SIR compartmentalization it is also possible to approximately evaluate the final

size of the epidemic (73). Considering the equations 3.4, let us divide the variation of susceptible

individuals by the variation of recovered ones:

ds

dr
=

−βs(t)i(t)

µi(t)
= −R0s(t) (3.9)

Integrating with respect to dr, we obtain s(t) = s(0)e−R0r(t). Now, when the epidemic is over,

by definition, we have i(∞) = 0 and s(∞) = 1− r(∞). We thus end up with the transcendental

equation:

r(∞) = 1− s(0)e−R0r(∞) (3.10)

Ideally, it is possible to estimate the basic reproductive number of a disease using the total number

of infected cases using the formula 3.10. In Figure 3.1B the final size is shown as a function of R0.

It is important to stress that the deterministic continuous equations presented here are valid

only in case of sufficiently large populations and in general a more realistic approach able to

capture the natural chance effects of the epidemic transmission would require a full stochastic

description. To account for this variability the stochastic dynamics rely on an integer-based

population and events occur at probabilistic rates. The linear analysis of the SIR model high-

lights the presence of three basic stages in an epidemic evolution. Initially when few infected

individuals are introduced in the population we define a pre-outbreak stage in which the evo-

lution is noisy and dominated by stochastic effects that are extremely relevant in the presence

of few contagious events. This is a stage in which epidemics may or may not disappear from

the population just because of stochastic effects. When the infected individuals are enough to

make stochastic effects negligible, but still very few compared with the whole population, we

observe an exponential take off of the infected cases as described by the equation 3.5. Finally,

the decrease of susceptible individuals reduces the force of infection of each infected individual

and the exponential growth cannot be sustained any longer in the population, we observe the

epidemic turn over and the outbreak will ultimately disappear. However, it is worth stressing

that while the outbreak will occur with finite probability if the parameters poise the system above

the epidemic threshold, this probability is not equal to one. Actually the stochastic fluctuations

may lead to the extinction of the epidemics even well above the epidemic threshold. It has been

shown (72) that the extinction probability of an epidemic starting with I0 infected individuals is

equal to R
−I0
0 . For instance, in the case of a single infected individual, even for values of R0 as
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high as 2 the outbreak probability is just 50%.

3.2 Epidemic spreading on graphs

In the previous section we have presented the simple compartmental epidemic models to inves-

tigate an infectious disease spreading in a homogeneous population disregarding every possible

substructure (gender, age, risk groups, etc...). As already mention, the parameter β governs in an

effective way the transmission rate of the disease between infectious and susceptible individuals.

In particular, the approximation adopted so far where the β value has been rescaled in order

to disregard the usually unknown average number of contacts �k� through which the disease

can be transmitted, is equivalent to consider the spreading on a random graph. Nevertheless,

many real social and technological networks of epidemiological relevance (mobility networks, the

web of sexual contacts, internet, etc...) are far for being homogeneous and the hypothesis that

each individual in the system has the same number of connections k � �k� might not be a good

approximation.

In this section, by describing the epidemic spreading on a networked system, we show that the

fluctuations play a main role in determining the epidemic properties and the spreading may be

favored in heterogeneous networks (27; 71; 77; 78). Let us consider an uncorrelated graph com-

pletely defined by the degree distribution P (k), and let us divide the nodes according to their

health status. The disease can be transmitted from one node to the other only if the nodes

are connected through an edge. In order to take into account the heterogeneity induced by the

presence of nodes with different connectivity, here we will use a degree block approximation

(77; 79; 80): all nodes with the same degree are statistically equivalent. Thus our results will not

apply to structured networks in which a distance or a time ordering can be defined; for instance,

when the small-world property is not present (79; 81). Here, we have to relax the homogeneous

mixing hypothesis made in the previous section and leading to equation 3.4 and work instead

with the relative density of infected and susceptible vertices with given degree k:

ik =
Ik

Nk

, sk =
Sk

Nk

. (3.11)

and the global averages are given by:

i =
�

k

P (k)ik , s =
�

k

P (k)sk. (3.12)
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Let us first consider the very simple SI model. In this case we know that the whole connected

component of the system will be infected independently of the spreading rate, but it is very

interesting to see the effect of topological fluctuations on the spreading velocity. Considering the

class of degree k and defining θk(t) the density of infected neighbors of vertices of degree k the

evolution equations read:

dtik(t) = β[1− ik(t)]kθk(t). (3.13)

The term θk represents the average probability that any given neighbor of a node of degree

k is infected, in the homogeneous assumption it is equal to the density of infected nodes. By

considering that at least one of the edges of each infected vertex points to another infected vertex

from which the infection has been transmitted, the most general expression for θk is

θk =
�

k�

k
� − 1

k�
P (k�|k)ik� . (3.14)

The simplest case we can analyze is a network with no degree correlations meaning that the

probability that an edge departing from a vertex of degree k arrives at a vertex of degree k
� is

independent from the degree of the initial vertex k. In this case the conditional probability does

not depend on the originating node and it is possible to show that P (k�|k) = k
�
P (k�)/�k� and

thus

θk(t) = θ(t) =

�
k�(k� − 1)P (k�)ik�(t)

�k� . (3.15)

Using this in 3.13 and neglecting the terms i2, we have:

dtik(t) = βkθ(t), (3.16)

multiplying both sides of this expression by (k − 1)P (k) and summing over k we get:

dtθ(t) = βθ(t)

�
�k2�
�k� − 1

�
. (3.17)

We can solve these equations fixing ik(t = 0) = i0 getting:

ik(t) = i0

�
1 +

k(�k� − 1)

�k2� − �k� (e
t/τ − 1)

�
, (3.18)

with

τ =
�k�

β(�k2� − �k�) . (3.19)

It is clear that the fraction of infected individuals increases exponentially. This process is faster

for high degree nodes. The growth time scale is measured by the heterogeneity ratio �k2�/�k�. For

scale free networks with power law degree distributions P (k) = k
−γ with exponent 2 < γ ≤ 3
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in the limit N → ∞ we have an unbounded second moment, then in uncorrelated scale-free

networks we would have a virtually instantaneous rise of the epidemic size. The reason for that

is quite intuitive. Once the disease has reached the hubs it can spread rapidly among the network.

Multiplying both sides by P (k) and summing over all k we get:

i(t) = i0

�
1 +

�k�2 − �k�
�k2� − �k� (e

t/τ − 1)

�
. (3.20)

The above results can be easily extended to the SIR model. Here the variation of infected

individuals of degree k has to take into account also the recovery process:

dtik(t) = βksk(t)θk(t)− µik(t), (3.21)

where sk(t) = 1 − rk(t) − ik(t). Again considering the linear approximation and uncorrelated

networks we get the time scale τ :

τ =
�k�

β�k2� − (µ+ β)�k� . (3.22)

The fluctuations are again very important, and here they play a crucial role in the definition of

the epidemic threshold. In order to ensure an epidemic outbreak the condition τ > 0 must be

satisfied:
β

µ
≥ �k�

�k2� − �k� . (3.23)

For scale-free networks with exponent 2 < γ ≤ 3 in the limit of infinite size the second moment

diverges, so we have a null epidemic threshold. This is an important result that confirms how

heterogeneous networks behave in a completely different way from homogeneous networks. Scale-

free networks are then an ideal topology for the spreading of infectious diseases.

3.3 Metapopulation models

In the previous section we studied systems with a homogeneous mixing approximation or struc-

tured populations in which each node of the network corresponds to a single individual. Recently

the effect of heterogeneous connectivity patterns has been studied in the case in which each node

of the system may be occupied by any number of particles and the connections allow for the

displacement of particles form one node to the other (82). In an epidemic framework, particles

represent hosts moving between different locations, such as cities or urban areas called, in general,

subpopulations. These models are called metapopulations epidemic models and can be formal-

ized on different theoretical substructures, from regular lattices to random graphs, but in the last
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population i

population j

i

j

Subpopulation Individuals health status

Susceptible

Infected

Recovered

host mobility

Metapopulation

Figure 3.2: Representation of a metapopulation model. Each node of the system contains a
population of individuals who are characterized with respect to their stage of the disease. In
this case we are considering Susceptible, Infected and Recovered indicated in different colors in the
picture. Individuals can diffuse from a subpopulation/node to another on the network of connections
among subpopulations.

years the abundance of data-driven networks which trace the activities of individuals have led to

models based on the detailed knowledge of the spatial structure of the environment and of trans-

portation infrastructures, movement patterns and traffic networks (78; 83; 84; 85; 86; 87; 88).

In this framework, the nodes of the network are the subpopulations and the coupling among

them is shaped by the connectivity patterns represented by the network topology resulting by

the movement of individuals from one subpopulation to the other. A sketch of the metapopu-

lation approach is shown in Figure 3.2. Each node i is connected to other ki nodes according

to its degree resulting in a network with degree distribution P (k) and distribution moments

�kα� =
�

k
k
α
P (k).

Realistic descriptions are provided by explicit mechanistic approaches, in which detailed rates

of traveling/commuting obtained from data, or from empirical fit to gravity law models, are

included (78; 89). A typical assumption is to consider the diffusion process as Markovian implying

that the movements of individuals have no memory. Individuals are not labeled according to their

original subpopulation, so they move without having memory of their origin. At each time step

the movement of individuals is given according to a matrix pij that encodes the probability that

an individual in the subpopulation i will travel to the subpopulation j. Being wij the traffic

among subpopulations and Ni the number of individuals living in the node i, we define

pij ∼
wij

Ni

. (3.24)
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These probabilities in realistic models are obtained from real data (45; 78; 90; 91; 92; 93; 94; 95;

96).

Individuals in the same location may get in contact and interact according to the infection

dynamics modeled as a reaction process. Within each subpopulation they are divided into classes

denoting their health status according to the modeled disease (71). A key point is to evaluate the

force of infection generated by the infectious individuals in subpopulation j on the individuals in

subpopulation i (84; 85; 97; 98; 99; 100). In the case of a simple SIR model for the evolution of

the disease, the metapopulation approach amounts to writing, for each subpopulation, equations

such as:

∆Ii(t) = f(Ii, Si, Ri) + Ωi(I) (3.25)

where the first term represents the variation of infected individuals due to the infection dynamics

within the subpopulation i and the second term corresponds to the net balance of infectious

individuals traveling in and out of the city i. This last term, the transport operator Ωi, depends

on the probability pij that an infected individual will go from city i to city j and can be generally

written as:

Ωi(I) =
�

i

(pjiIj − pijIi) (3.26)

representing the total sum of infectious individuals arriving in subpopulation i from all connected

subpopulations j, minus the amount of individuals traveling in the opposite directions. Similar

equations can be written for all the compartments included in the disease model, finally leading

to a set of equations where the transport operator acts as a coupling term among the evolution

of the epidemics in the various subpopulations.

3.4 Conclusion

We are aware that the transmission of airborne diseases is influenced by many biological, social

and environmental factors. For instance, the infectivity of a diseased individual depends on the

viral load (101; 102) as well as the susceptibility is influenced by the individual antibody response.

The age-specific contact patterns (103; 104) have been found to be relevant for infections trans-

mitted by the respiratory or close-contact route and, finally, it has been recognized that the ab-

solute air humidity may contribute to disseminate viruses in aerosolized droplets (105; 106; 107).

Nevertheless, with the basic compartmental description introduced in this chapter, where all

these factors are disregarded or flattened out, it is possible to achieve important insights about

an infectious disease spreading. Such approach represent the first step in the epidemic modeling,
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and we discussed how through the homogeneous mixing approximation it is possible to derive a

mathematical description of the epidemic threshold, the final size of an epidemic outbreak and

the critical vaccination fraction. We then briefly described how the modeling of disease spread-

ing on networked settings can take advantage of the degree-block approximation in order to take

into account the heterogeneity of the system due to different contact patterns. This approach

will be crucial in chapter 5 for the analytical assessment of the disease containment by means of

human mobility restrictions. Furthermore, in chapter 6, leveraging on a network description, we

will present a systematic investigation of an emerging infectious disease spreading through the

Italian livestock premises. Finally, the metapopulation framework introduced in the last section

represents the starting point for presenting the Global Epidemic and Mobility (GLEaM) model

described in chapter 4 and chapter 5.
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In this chapter we present in detail the Global Epidemic and Mobility model (GLEaM), that

is a discrete stochastic epidemic computational model based on a meta-population approach able

to perform numerical simulations of global epidemic spreading. The design and implementation

of GLEaM started in 2005 and in the last years it involved almost twenty collaborators from

different laboratories in Europe and the US. Along with the academic research, the GLEaMviz

project (www.gleamviz.org) is devoted to provide a public software with a user friendly inter-

face for the simulation of large-scale epidemic outbreaks and to participate to outreach activities

about emerging infectious diseases spreading. During my PhD training, within the Computa-

tional Epidemiology Laboratory at the I.S.I. Foundation, Turin, IT, I have contributed to the

development of GLEaM by collecting and analyzing part of the short range mobility data in-
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cluded in the model, and by testing and implementing the computational infrastructure described

in this chapter. GLEaM is coded in C/C++ and runs conveniently on high-end desktop ma-

chines. The results presented in chapter 5 were achieved by using GLEaM to investigate the

H1N1 2009 influenza pandemic. In this context, I have performed part of the simulations for

the estimation of the disease parameters as described in 5.2 and I have performed the numerical

estimate of the number of cases in Mexico in the early phase of the outbreak as discussed in

5.4. I have implemented the code, performed the simulations and analyzed the results to test

different intervention strategies as described in sections 5.5.1 and 5.5.3 and I have helped in the

analysis and the assessment of the critical care demand presented in 5.5.2. Furthermore I have

performed the simulations and provided the data for the implementation of the“Epidemic Planet”

scientific exhibit (http://www.gleamviz.org/outreach-activities/) that was hosted

at the International Science Festival that took place in Edinburgh, UK, April 3 - 17, 2010 and at

the International Conference for High Performance Computing, Networking, Storage and Anal-

ysis that took place in New Orleans, LA, USA, November 13 - 19, 2010

Structured metapopulation model

Here we present the detailed definition and data description of the global structured metapopu-

lation model. The computational model is based on three data/model layers. The first layer is

a data layer defining the census area and the subpopulation structure. The second one refers to

human mobility model defined by the transportation and commuting networks characterizing the

interactions and exchanges of individuals across subpopulations. The third layer is the epidemic

dynamic model that defines the evolution of the infectious disease inside each subpopulations.

4.1 Global Population and subpopulations definition

The population dataset was obtained from the Web sites of the ”Gridded Population of the World”

and the ”Global Urban-Rural Mapping” projects (108; 109), which are run by the Socioeconomic

Data and Application Center (SEDAC) of Columbia University. The surface of the world is

divided into a grid of cells that can have different resolution levels. Each of these cells has

assigned an estimated population value.

Out of the possible resolutions, we have opted for cells of 15× 15 minutes of arc to constitute

the basis of our model. This corresponds to an area of each cell approximately equivalent to a
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Figure 4.1: Population database and Voronoi tessellation around main tranportation hubs. The

world surface is represented in a grid-like partition where each cell - corresponding to a population

values - is assigned to the closest airport. Geographical census areas emerge that constitute the

sub-populations of the meta-population model.

rectangle of 25×25 kms along the Equator. The dataset comprises 823 680 cells, of which 250 206

are populated. Since the coordinates of each cell center and those of the airports are known, the

distance between the cells and the airports can be calculated. We have performed a Voronoi-

like tessellation of the Earth surface assigning each cell to the closest airport that satisfies the

following two conditions: (i) Each cell is assigned to the closest airport within the same country,

and (ii), the distance between the airport and the cell cannot be longer than 200 kms. This cutoff

naturally emerges from the distribution of distances between cells and closest airports, and it is

introduced to avoid that in barely populated areas such as Siberia we can generate geographical

census areas thousands of kilometer wide but with almost no population. It also corresponds to

a reasonable upper cutoff for the ground traveling distance expected to be covered to reach an

airport before traveling by plane.

Before proceeding with the tessellation, we need to take into account that some urban areas

include more than one airport. For instance, London has up to six airports, Paris has two, and

New York City has three. Our aim is to build a metapopulation model whose subpopulations

correspond to the geographical census areas obtained from tessellation. Inside these geographical

census areas a homogeneous mixing is assumed. The groups of airports that serve the same urban

area need therefore to be aggregated since the mixing within the given urban area is expected to
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be high and cannot be represented in terms of separated subpopulations for each of the airports

serving the same city. We have searched for groups of airports located close to each other and

we manually processed the identified groups of airports to select those belonging to the same

urban area. The airports of the same group are then aggregated in a single ”super-hub”. An

example with the final result of the Voronoi tessellation procedure with cells and airports can

be seen in Figure 4.1. The geographical census areas become thus the basic subpopulations of

our metapopulation model. Their connections will determine the geographical spreading of an

hypothetical epidemic.

4.2 World Airport Network

The subpopulations are connected to each other by human mobility fluxes. The long range

connections due to the air travels are incorporated in the model by considering the World-wide

Airport Network (WAN). The WAN is composed of 3362 commercial airports indexed by the

International Air Transport Association (IATA) that are located in 220 different countries. The

database contains the number of available seats per year for each direct connection between two

of these airports. The coverage of the dataset is estimated to be 99% of the global commercial

traffic. The WAN can be seen as a weighted graph comprising 16 846 edges where the weight

ωj� of a link (j, �) represents the passenger flow between airports j and �. The network shows a

high degree of heterogeneity both in the number of destinations per airport and in the number

of passengers per connection (15; 88; 110; 111).

4.3 Commuting Networks

The commuting databases have been collected from the Offices of Statistics of 28 countries in

the 5 populated continents. The full dataset comprehends more than 78 000 administrative

regions and over five million commuting flow connections between them (see (78))4.1. The

definition of administrative unit and the granularity level at which the commuting data are

provided enormously vary from country to country. For example, most European countries

adhere to a practice that ranks administrative divisions in terms of geocoding for statistical

purposes, the so called Nomenclature of Territorial Units for Statistics (NUTS). Most countries

in the European Union are partitioned into three NUTS levels which usually range from states

to provinces. The commuting data at this level of resolution is therefore strongly coarse-grained.

In order to have a higher geographical resolution of the commuting datasets that could match
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Table 4.1: Commuting networks in each continent. Number of countries (Nc), number of admin-

istrative units (V ) and inter-links between them (E) are summarized.

Continent Nc V E

Europe 17 65880 4490650

North America 2 6986 182255

Latin America 4 1858 63678

Asia 3 2732 323815

Oceania 2 746 30679

Total 28 78202 5091077

the resolution scale of our geographical census areas, we looked for smaller local administrative

units (LAU) in Europe. The US or Canada report commuting at the level of counties. However,

even within a single country the actual extension, shape, and population of the administrative

divisions are usually a consequence of historical reasons and can be strongly heterogeneous.

Such heterogeneity renders the efforts to define a universal law describing commuting flows

likely to fail. The mobility behavior might indeed result different across countries simply due

to the country specific partition of the population into administrative boundaries. In order

to overcome this problem, and in particular to define a data-driven short range commuting

for GLEaM, we used the geographical census areas obtained from the Voronoi tessellation as the

elementary units to define the centers of gravity for the process of commuting. This allows to deal

with similar units across the world wth respect to mobility as emerged from a tessellation around

main hubs of mobility and not country specific administrative boundaries. We have therefore

mapped the different levels of commuting data into the geographical census areas formed by

the Voronoi-like tessellation procedure described above. The mapped commuting flows can be

seen as a second transport network connecting subpopulations that are geographically close.

This second network can be overlaid to the WAN in a multi-scale fashion to simulate realistic

scenarios for disease spreading. A schematic illustration of the different layers of the model is

shown in figure 4.2. The network exhibits important variability in the number of commuters

on each connection as well as in the total number of commuters per geographical census area.

Since the census areas are relatively homogeneous and similar we can estimate a gravity law that

successfully reproduces the commuting data obtained across different continents, and provide us
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Figure 4.2: Schematic illustration of the GLobal Epidemic and Mobility (GLEaM) model. Top:

census and mobility layers that define the subpopulations and the various types of mobility among

those (commuting patterns and air travel flows). The same resolution is used worldwide. Bottom:

compartmental structure in each subpopulation. A susceptible individual in contact with a symp-

tomatic or asymptomatic infectious person contracts the infection at rate β or rββ, respectively,

and enters the latent compartment where he is infected but not yet infectious. At the end of the

latency period, each latent individual becomes infectious, entering the symptomatic compartments

with probability 1− pa or becoming asymptomatic with probability pa. The symptomatic cases are

further divided between those who are allowed to travel (with probability pt) and those who would

stop traveling when ill (with probability 1 − pt). Infectious individuals recover permanently with

rate µ. All transition processes are modeled through multinomial processes.
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with estimations for the possible commuting levels in the countries for which such data is not

available as in ref. (78).

4.4 Epidemic model

Each geographical census area corresponds to a subpopulation in the metapopulation model, in-

side which we consider a Susceptible-Latent-Infectious-Recovered (SLIR) compartmental scheme,

typical of influenza-like illnesses (ILIs), where each individual has a discrete disease state assigned

at each moment in time. In Fig. 4.2, a diagram of the compartmental structure with transitions

between compartments is shown. The contagion process, i.e. generation of new infections, is

the only transition mechanism which is altered by short-range mobility, whereas all the other

transitions between compartments are spontaneous and remain unaffected by the commuting.

The rate at which a susceptible individual in subpopulation j acquires the infection, the so called

force of infection λj , is determined by interactions with infectious persons either in the home

subpopulation j or in its neighboring subpopulations on the commuting network.

Given the force of infection λj in subpopulation j, each person in the susceptible compartment

(Sj) contracts the infection with probability λj∆t and enters the latent compartment (Lj), where

∆t is the time interval considered. Latent individuals exit the compartment with probability

ε∆t, and transit to asymptomatic infectious compartment (Ia
j
) with probability pa or, with

the complementary probability 1− pa, become symptomatic infectious. Infectious persons with

symptoms are further divided between those who can travel (It
j
), with probability pt, and those

who are travel-restricted (Int
j
) with probability 1 − pt. All the infectious persons permanently

recover with probability µ∆t, entering the recovered compartment (Rj) in the next time step.

All transitions and corresponding rates are summarized in Table 4.2 and in Figure 4.2. In each

subpopulation the variation of the number of individuals in each compartment [m] can be written

at any given time step as

X
[m]
j

(t+∆t)−X
[m]
j

(t) = ∆X
[m]
j

+ Ωj([m]) (4.1)

where the term ∆X
[m]
j

represents the change due to the compartment transitions induced by

the disease dynamics and the transport operator Ωj([m]) represents the variations due to the

traveling and mobility of individuals. The latter operator takes into account the long-range

airline mobility and defines the minimal time scale of integration to 1 day. The mobility due to

the commuting flows is taken into account by defining effective force of infections by using a time

scale separation approximation as detailed in the following sections.
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Table 4.2: Transitions between compartments and their rates.

Transition Type Rate

Sj → Lj Contagion λj

Lj → I
a

j
Spontaneous εpa

Lj → I
t

j
” ε(1− pa)pt

Lj → I
nt

j
” ε(1− pa)(1− pt)

I
a

j
→ Rj ” µ

I
t

j
→ Rj ” µ

I
nt

j
→ Rj ” µ

4.5 Stochastic and discrete integration of the disease dy-

namics

In each subpopulation j, we define an operator acting on a compartment [m] to account for all

the transitions out of the compartment in the time interval ∆t. Each element Dj([m], [n]) of

this operator is a random variable extracted from a multinomial distribution and determines the

number of transitions from compartment [m] to [n] occurring in ∆t. The change ∆X
[m]
j

of a

compartment [m] in this time interval is given by a sum over all random variables {Dj([m], [n])}

as follows

∆X
[m]
j

=
�

[n]

{−Dj([m], [n]) +Dj([n], [m])} . (4.2)

As a concrete example let us consider the evolution of the latent compartment. There are

three possible transitions from the compartment: transitions to the asymptomatic infectious,

the symptomatic traveling and the non-traveling infectious compartments. The elements of the

operator acting on Lj are extracted from the multinomial distribution

Pr
Multin(Lj(t), pLj→I

a
j
, pLj→I

t
j
, pL→I

nt
j
) (4.3)

determined by the transition probabilities

pLj→I
a
j

= εpa∆t ,

pLj→I
t
j

= ε(1− pa)pt∆t , (4.4)

pL→I
nt
j

= ε(1− pa)(1− pt)∆t ,
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and by the number of individuals in the compartment Lj(t) (its size). All these transitions cause

a reduction in the size of the compartment. The increase in the compartment population is due

to the transitions from susceptibles into latents. This is also a random number extracted from a

binomial distribution

Pr
Bin(Sj(t), pSj→Lj ) (4.5)

given by the chance of contagion

pSj→Lj = λj∆t , (4.6)

with a number of attempts given by the number of susceptibles Sj(t). After extracting these

numbers from the appropriate multinomial distributions, we can calculate the change ∆Lj(t) as

∆Lj(t) = Lj(t+ 1)− Lj(t) = −
�
Dj(L, I

a) +Dj(L, I
t) +Dj(L, I

nt)
�
+Dj(S,L) . (4.7)

4.6 The integration of the transport operator

The transport operator is defined by the airline transportation data and sets the integration

time scale to 1 day. The number of individuals in the compartment [m] traveling from the

subpopulation j to the subpopulation � is an integer random variable, in that each of the Xj

potential travelers has a probability pj� = wj�/Nj to go from j to �. In each subpopulation j the

numbers of individuals ξj� traveling on each connection j → � at time t define a set of stochastic

variables which follows the multinomial distribution

P ({ξj�}) =
X

[m]
j

!

(X [m]
j

−
�

�
ξj�)!

�
�
ξj�!

(1−
�

�

pj�)
(X[m]

j −
�

� ξj�)
�

�

p
ξj�

j�
, (4.8)

where (1−
�

�
pj�) is the probability of not traveling, and (X [m]

j
−
�

�
ξj�) identifies the number

of non traveling individuals of the compartment [m]. We use standard numerical subroutines to

generate random numbers of travelers following these distributions. The transport operator in

each subpopulation j is therefore written as

Ωj([m]) =
�

�

(ξ�j(X
[m]
�

)− ξj�(X
[m]
j

)), (4.9)

where the mean and variance of the stochastic variables are �ξj�(X [m]
j

)� = pj�X
[m]
j

and Var(ξj�(X
[m]
j

)) =

pj�(1− pj�)X
[m]
j

. Direct flights as well as connecting flights up to two-legs flights can be consid-

ered. It is worth remarking that on average the airline network flows are balanced so that the

subpopulations Nj are constant in time, e.g.
�

[m] Ωj([m]) = 0.
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4.7 Time-scale separation and the integration of the com-

muting flows

The Global Epidemic and Mobility (GLEaM) modeler combines the infection dynamics with

long- and short-range human mobility. Each of these dynamical processes operates at a different

time scale. For ILI there are two important intrinsic time scales, given by the latency period

ε
−1 and the duration of infectiousness µ

−1, both larger than 1 day. The long-range mobility

given by the airline network has a time scale of the order of 1 day, while the commuting takes

place in a time scale of approximately τ
−1 ∼ 1/3 day. The explicit implementation of the

commuting in the model thus requires a time interval shorter than the minimal time of airline

transportation. In particular, for the numerical simulations we would use a time step of the

order of 1/3 day or less and we should explicitly consider the displacements and interactions

of individuals in the different epidemic compartments that spend a fraction of day in a close

location. This would triple the number of time steps for each simulation and would enormously

increase the complexity of the model design, since the population in each location i should be

divided in [m] compartments and further tracked to k close locations to perform the back-and-

forth daily commuting. We would consider [m] · (k + 1) compartments depending both on the

[m] health status and the k commuting route performed daily (the term +1 accounts for people

that do not commute). Finally, we should aggregate again all the information to investigate

the topic under study that is typically longer than 1/3 day. To overcome these complications,

we use a time-scale separation technique, in which the short-time dynamics is integrated into

an effective force of infection in each subpopulation. We start by considering the temporal

evolution of subpopulations linked only by commuting flows and evaluate the relaxation time to

an equilibrium configuration. Consider the subpopulation j coupled by commuting to other n

subpopulations. The commuting rate between the subpopulation j and each of its neighbors i

will be given by σji. The return rate of commuting individuals is set to be τ . Following the work

of Sattenspiel and Dietz (112), we can divide the individuals originary from the subpopulation

j, Nj , between Njj(t) who are from j and located in j at time t and those, Nji(t), that are from

j and located in a neighboring subpopulation i at time t. Note that by consistency

Nj = Njj(t) +
�

i

Nji(t). (4.10)
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The rate equations for the subpopulation size evolution are then

∂tNjj = −
�

i
σjiNjj(t) + τ

�
i
Nji(t) ,

∂tNji = σjiNjj(t)− τNji(t) .

(4.11)

By using condition (4.10), we can derive the closed expression

∂tNjj + (τ + σj)Njj(t) = Njτ , (4.12)

where σj denotes the total commuting rate of population j, σj =
�

i
σji. Njj(t) can be expressed

as

Njj(t) = e
−(τ+σj)t

�
Cjj +Njτ

�
t

0
e
(τ+σj)sds

�
, (4.13)

where the constant Cjj is determined from the initial conditions, Njj(0). The solution for Njj(t)

is then

Njj(t) =
Nj

(1 + σj/τ)
+

�
Njj(0)−

Nj

(1 + σj/τ)

�
e
−τ(1+σj/τ)t . (4.14)

We can similarly solve the differential equation for the time evolution of Nji(t)

Nji(t) =
Njσji/τ

(1 + σj/τ)
− σij

σj

�
Njj(0)−

Nj

(1 + σj/τ)

�
e
−τ(1+σj/τ)t

+

�
Nji(0)−

Njσji/τ

(1 + σj/τ)
+

σij

σj

�
Njj(0)−

Nj

(1 + σj/τ)

��
e
−τt

. (4.15)

The relaxation to equilibrium of Njj and Nji is thus controlled by the characteristic time [τ (1+

σj/τ)]−1 in the exponentials. Such term is dominated by 1/τ if the relation τ � σj holds. In

our case, σj =
�

i
ωji/Nj , that equals the daily total rate of commuting for the population j.

Such rate is always smaller than one since only a fraction of the local population is commuting,

and it is typically much smaller than τ � 3 − 10 day−1. Therefore the relaxation characteristic

time can be approximated by 1/τ . This time is considerably smaller than the typical time for

the air connections of one day and hence the approximation of considering the subpopulations

Njj(t) and Nji(t) as relaxed to their equilibrium values,

Njj =
Nj

1 + σj/τ
and Nji =

Njσji/τ

1 + σj/τ
, (4.16)

is reasonable. This approximation, originally introduced by Keeling and Rohani (113), allows

us to consider each subpopulation j as having an effective number of individuals Nji in contact

with the individuals of the neighboring subpopulation i. In practice, this is similar to separating

the commuting time scale from the other time scales in the problem (disease dynamics, traveling

dynamics, etc.). While the approximation holds exactly only in the limit τ → ∞, it is good
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enough as long as τ−1 is much smaller than the typical transition rates of the disease dynamics.

In the case of ILIs, the typical time scale separation between τ and the compartments transition

rates is close to one order of magnitude or even larger. The Eq.s [4.17] can be then generalized

in the time scale separation regime to all compartments [m] obtaining the general expression

X
[m]
jj

=
X

[m]
j

(1 + σj/τ)
and X

[m]
ji

=
X

[m]
j

(1 + σj/τ)
σji/τ , (4.17)

where σj =
�

i
σji denotes the total commuting rate of j. For all the other compartments which

are restricted from traveling X
[m]
jj

= X
[m]
j

and X
[m]
ji

= 0. These expressions will be used to obtain

the effective force of infection taking into account the interactions generated by the commuting

flows.

4.8 Effective force of infection

The force of infection λj that a susceptible population of a subpopulation j sees can be decom-

posed into two terms: λjj and λji. The component λjj refers to the part of the force of infection

whose origin is local in j, while λji indicates the force of infection acting on susceptibles of j dur-

ing their commuting travels to a neighboring subpopulation i. The effective force of infection can

be estimated by summing these two terms weighted by the probabilities of finding a susceptible

from j in the different locations, Sjj/Sj and Sji/Sj , respectively. Using the time-scale separation

approximation that establishes the equilibrium populations in Eq. (4.17), we can write

λj =
λjj

1 + σj/τ
+

�

i

λjiσji/τ

1 + σj/τ
. (4.18)

We will focus now on the calculation of each term of the previous expression. The force of

infection occurring in a subpopulation j is due to the local infectious persons staying at j or to

infectious individuals from a neighboring subpopulation i visiting j and so we can write

λjj =
βj

N
∗
j

�
I
nt

jj
+ I

t

jj
+ rβI

a

jj
+

�

i

�
I
nt

ij
+ I

t

ij
+ rβI

a

ij

�
�

, (4.19)

where in βj we keep explicit the dependance from the subpopulation j and in our model it

accounts for seasonality effects in the infection transmission rate by introducing a function of the

calendar time (if the seasonality is not considered, it is a constant), and N
∗
j
stands for the total

effective population in the subpopulation j. By definition, Int
jj

= I
nt

j
and I

nt

ji
= 0 for j �= i. If we

use the equilibrium values of the other infectious compartments (see Eq. (4.17)) we obtain

λjj =
βj

N
∗
j

�
I
nt

j
+

I
t

j
+ rβI

a

j

1 + σj/τ
+
�

i

I
t

i
+ rβI

a

i

1 + σi/τ
σij/τ

�
. (4.20)
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The derivation of λji follows from a similar argument yielding:

λji =
βi

N
∗
i



Int
ii

+ I
t

ii
+ rβI

a

ii
+

�

�∈υ(i)

�
I
nt

�i
+ I

t

�i
+ rβI

a

�i

�


 , (4.21)

where υ(i) represents the set of neighbors of i, and therefore the terms under the sum are due to

the visits of infectious individuals from the subpopulations �, neighbors of i, to i. By plugging

the equilibrium values of the compartment into the above expression, we obtain

λji =
βi

N
∗
i



Int
i

+
I
t

i
+ rβI

a

i

1 + σi/τ
+

�

�∈υ(i)

I
t

�
+ rβI

a

�

1 + σ�/τ
σ�i/τ



 . (4.22)

Finally, in order to have an explicit form of the force of infection we need to evaluate the effective

population size N∗
j
in each subpopulation j, i.e., the actual number of individuals actually staying

at the location j. The effective population is N∗
j
= Njj+

�
i
Nij , that in the time-scale separation

approximation reads

N
∗
j
= I

nt

j
+

Nj − I
nt

j

1 + σj/τ
+

�

i

Ni − I
nt

i

1 + σi/τ
σij/τ . (4.23)

Note that in these equations all the terms with compartments have an implicit time dependence.

By inserting λjj and λji into Eq. (4.18), it can be seen that the expression for the force of

infection includes terms of zeroth, first and second order on the commuting ratios (i.e., σij/τ).

These three term types have a straightforward interpretation: The zeroth order terms repre-

sent the usual force of infection of the compartmental model with a single subpopulation. The

first order terms account for the effective contribution generated by neighboring subpopulations

with two different sources: a transmission might occur between either susceptible individuals

of subpopulation j having contacts with infectious individuals of neighboring subpopulations i,

or infectious individuals of subpopulations i visiting subpopulation j. The second order terms

correspond to an effective force of infection generated by the contacts of susceptible individuals

of subpopulation j meeting infectious individuals of subpopulation � (neighbors of i) when both

are visiting subpopulation i. This last term is very small in comparison with the zeroth and first

order terms, typically around two orders of magnitude smaller, and in general can be neglected.
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In this chapter we present our works on the influenza pandemic H1N1. It is worth to notice

that most of these results were achieved in real time during the actual unfolding of the epidemic.

In particular we submitted the first four articles listed below, well before the epidemic peak.

Some results went beyond the pure academic research, trying to suggest some important insights

and forecasts for the policy making. The chapter is organized as follows. We first present our

work on the estimate of the reproduction number R0 of the H1N1 epidemic based on knowledge

of human mobility patterns. We use GLEaM (78; 114) to simulate the worldwide evolution of

the pandemic and perform a maximum likelihood analysis of the reproduction number R0 of

the H1N1 influenza against the actual chronology of newly infected countries. Subsequently, a

correlation analysis allows the selection of the most probable seasonal behavior based on the

observed pattern, leading to the identification of plausible scenarios for the unfolding of the

pandemic and the estimate of pandemic activity peaks in the different hemispheres. We also
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study the effect of systematic therapeutic use of antiviral drugs on the epidemic timeline and

give an estimation of the initial number of cases in Mexico. We then present the results on a

hypothetical massive vaccination campaign as it was devised in the fall 2009. We finally assess

the impact of travel related measures, demonstrating both from a computational and theoretical

point of view their scarce efficacy. The last section is devoted to compare and discuss the

numerical results of GLEaM with the data became available after the epidemic wave.

The results presented here are based on the following papers:

• Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte

Carlo likelihood analysis based on human mobility published in BMC medicine in September

2009,

• Estimate of Novel Influenza A/H1N1 cases in Mexico at the early stage of the pandemic

with a spatially structured epidemic model published in PLoS current Influenza in November

2009,

• Modeling vaccination campaigns and the fall/winter 2009 activity of the new A(H1N1)

influenza in the northern hemisphere published in Emerging Health Threats Journal in

November 2009,

• Modeling the critical care demand and antibiotics resources needed during the fall 2009

wave of influenza A(H1N1) pandemic published in PLoS current Influenza in December

2009,

• Human Mobility Networks, Travel Restrictions, and the Global Spread of 2009 H1N1 Pan-

demic published in PLoS One in January 2011,

• GLEaM, a Global Stochastic Simulation Model of Influenza Epidemic: Its Application to

the 2009 A/H1N1pdm in preparation.

5.1 Background

Beginning April, 2009, the world experienced its latest global pandemic outbreak, originated in

Mexico. It spread quickly to many countries in months and on June 11, 2009, the World Health

Organization officially raised the phase of pandemic alert to level 6. As of July 19, 2009, 137,232

cases of the new H1N1 influenza strain had been officially confirmed in 142 different countries,

and during the summer of 2009, the pandemic unfolding in the Southern hemisphere was under
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scrutiny to gain insights about the succesive winter wave in the North. A major challenge was

given by the need to estimate the virus transmission potential and to assess its dependence on

seasonality aspects in order to use numerical models capable to forecast the spatio-temporal pat-

tern of the pandemic.

Estimating the transmission potential of a newly emerging virus is crucial when planning for

adequate public health interventions to mitigate its spread and impact, and to forecast the ex-

pected epidemic scenarios through sophisticate computational approaches (44; 111; 115; 116).

With the 2009 outbreak of the new influenza A(H1N1) strain having reached pandemic propor-

tions, the investigation of the influenza situation worldwide could be considered as the key for

the understanding of the transmissibility observed in different regions and to the characteriza-

tion of possible seasonal behavior. During the early phase of an outbreak, this task is hampered

by inaccuracies and incompleteness of available information. A different detection rate might

occur even within the same country. During the initial stage of the outbreak the enhanced setup

of monitoring systems led to more accurate notifications, while later on it relaxed as reporting

requirements changed (117). Reporting is also constrained by the difficulties in confirming large

numbers of cases through specific tests and serological analysis. The cocirculation of multiple

strains, the presence of asymptomatic cases that go undetected, the impossibility to monitor

mild cases that do not seek health care and the possible delays in diagnosis and reporting, all

worsen the situation. Early modeling approaches and statistical analysis show that the number

of confirmed cases by the Mexican authorities during the early phase was underestimated by a

factor ranging from one order of magnitude (118) to almost three (119). The Centers for Disease

Control (CDC) in the US estimate a 5% to 10% case detection, similar to other countries facing

large outbreaks, with expected heterogeneities due to different surveillance systems.

By contrast, the effort put in place by the World Health Organization (WHO) and health protec-

tion agencies worldwide provided an unprecedented amount of data and, at last, the possibility

of following in real time the pandemic chronology on the global scale. In particular, the border

controls and the enhanced surveillance aimed at detecting the first cases reaching uninfected

countries appeared to provide more reliable and timely information with respect to the raw

count of cases at the local level. Moreover, data on international passenger flows from Mexico

was found to display a strong correlation with confirmed H1N1 importations from Mexico (120).
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Figure 5.1: Illustration of the model’s initialization. (A) Intensity of the commuting between

US and Mexico at the border of the two countries. (B) The 12 countries infected by international

travelers coming from Mexico used in the Monte Carlo likelihood analysis. The color scale of the

arrows from red to yellow indicates the time ordering of the epidemic invasion.

5.2 Disease parameters estimation

We used the classic influenza-like illness compartmentalization in which each individual is clas-

sified by a discrete state such as susceptible, latent, infectious symptomatic, infectious asymp-

tomatic or permanently recovered/removed (71; 121). The model therefore assumes that the

latent period is equivalent to the incubation period and that no secondary transmissions occur

during the incubation period (see Figure 4.2) for a detailed description of the compartmental-

ization). As explained in the previous chapter all transitions are modeled through binomial and

multinomial processes to preserve the discrete and stochastic nature of the processes. Asymp-

tomatic individuals are considered as a fraction pa = 33% of the infectious individuals (101)

generated in the model and assumed to infect other individuals with a relative infectiousness

of rβ = 50% (118; 121; 122). Change in traveling behavior after the onset of symptoms is

modeled with the probability 1 − pt, set to 50%, that individuals stop traveling when ill (121).

As discussed in chapter 3, the spreading rate of the disease is ultimately governed by the ba-

sic reproduction number R0. By computing the eigenvalues of the Jacobian at the disease-free

equilibrium (76), we obtained the following expression for the basic reproductive number of the

adopted compartmentalization:

R0 =
β

µ
(rβpa + 1− pa) (5.1)

Once the disease parameters and initial conditions based on available data are defined, GLEaM

allows the generation of stochastic realizations of the worldwide unfolding of the epidemic, with
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mobility processes entirely based on real data. The model generates in silico epidemics for which

we can gather information such as prevalence, morbidity, number of secondary cases, number of

imported cases and other quantities for each subpopulation and with a time resolution of 1 day.

While global models are generally used to produce scenarios in which the basic disease parameters

are defined from the outset, here we use the model to provide a maximum likelihood estimate

of the transmission potential by finding the set of disease parameters that best fit the data on

the arrival time of cases in different countries worldwide. The projections for the winter season

in the northern hemisphere were also assuming that there would not be mutation of the virus

with respect to the spring/summer of 2009. Furthermore, while at the moment of our analysis

the novel H1N1 influenza was accounting for 75% of the influenza cases worldwide, the model

did not consider the cocirculation of different influenza strains and cannot provide information

on cocirculation data.

The initial conditions of the epidemic were defined by setting the onset of the outbreak near La

Gloria in Mexico on February 18 2009, as reported by official sources (123) and analogously to

other works (118). We tested different localizations of the first cases in census areas close to

La Gloria without observing relevant variations with respect to the observed results. We also

performed sensitivity analysis on the starting date by selecting a seeding date anticipated or

delayed by 1 week with respect to the date available in official reports (123). The arrival time

of infected individuals in the countries seeded by international travelers departed from Mexico

depends both on the number of cases present in the originating country (Mexico) and the mobility

network, both within Mexico and connecting Mexico with countries abroad. For this reason we

integrated into our model the data on Mexico-US border commuting (see Figure 5.1)A, which

could be relevant in defining the importation of cases in the US, along with Mexican internal

commuting patterns that were responsible for the diffusion of the disease from rural areas such

as La Gloria to transportation hubs such as Mexico City. In addition, we used a time-dependent

modification of the reproductive number in Mexico as in (119) to model the control measures

implemented in the country starting April 24 and ending May 10, as those could have affected the

spread to other countries. In order to ascertain the effect of seasonality on the observed pattern,

we explored different seasonality schemes. The seasonality is modeled by a standard forcing

that rescales the value of the basic reproductive number into a seasonally rescaled reproductive

number, R(t), depending on time. The seasonal rescaling is time and location dependent by

means of a scaling multiplicative factor generated by a sinusoidal function with a total period

of 12 months oscillating in the range αmin to αmax, with αmax = 1.1 (sensitivity analysis in the
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range 1.0 to 1.1) and αmin a free parameter to be estimated (124). The rescaling function is in

counter phase in the Northern and Southern hemispheres, so that during the warmer seasons R0

is reduced and the disease transmissibility is hampered. No rescaling is assumed in the equatorial

area between the Tropics. The value of R0 reported in the Table 5.2 and the definition of the

baseline is the reference value in the Tropics. In each subpopulation the R(t) relative to the

corresponding geographical location and time of the year is used in the simulations.

We have defined a Monte Carlo likelihood analysis for the assessment of the seasonal transmission

potential of the 2009 A(H1N1) influenza based on the analysis of the chronology of case detection

in affected countries at the early stage of the epidemic. This method allows the use of data coming

from the border controls and the enhanced surveillance aimed at detecting the first cases reaching

uninfected countries. This data is, in principle, more reliable than the raw count of cases provided

by countries during the evolution of the epidemic. The procedure provided the necessary input

to the large-scale computational model for the analysis of the unfolding of the pandemic. The

seasonal transmission potential of the H1N1 strain was assessed in a two-step process that first

estimated the reproductive number in the Tropics region, where seasonality is assumed not to

occur, by focusing on the early international importation of infective cases from Mexico, and

then estimated the degree of seasonal damping factor by examining a longer time period of

international spread to allow for seasonal changes. The estimation of the reproductive number

was performed through a maximum likelihood analysis of the model fitting the data of the early

chronology of the H1N1 epidemic. As shown in equation 5.1, the basic reproductive number R0

is a function of rβ and pa that are fixed according to previous clinical estimates, while the values

β and µ are the free variables of the fitting procedure. In particular we explore some values of

the recovery rate µ and we perform a maximum likelihood estimates by systematically varying

β. Given a set of values of the disease parameters, we produced 2 · 103 stochastic realizations of

the pandemic evolution worldwide for each R0 value. Our model explicitly takes into account the

classes of symptomatic and asymptomatic individuals and allows the tracking of the importation

of each symptomatic individual and of the onset of symptoms of exposed individuals transitioning

to the symptomatic class, as observables of the simulations. This allows us to obtain numerically

with a Monte Carlo procedure the probability distribution Pi(ti) of the importation of the first

infected individual or the first occurrence of the onset of symptoms for an individual in each

country i at time ti. Asymptomatic individuals do not contribute to the definition of ti. In

Figure 5.2 a schematic representation of the Monte Carlo likelihood procedure is shown. With

the aim of working with conditional independent variables we restricted the likelihood analysis to
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Figure 5.2: Flow chart representing the steps that compose the Monte Carlo maximum likelihood

method. First, for each point in the parameter space we run n = 2, 000 stochastic realizations, all

with the same initial conditions. Second, for each run we record the arrival times of the countries

under study. Third, we compare the probability distribution built on the simulated arrival times

with the empirically observed arrival time for each country. Finally, we evaluate the likelihood

function in order to find its maximum value, corresponding to the set of parameters that best fit

the data.
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12 countries seeded by infectious travelers coming from Mexico (see Figure 5.1B) and for which

it was possible to know with good confidence the onset of symptoms and/or the arrival date of

the first detected case (see Table 5.1). This allowed us to define a likelihood function:

L =
�

i

Pi(t
∗
i
), (5.2)

where t∗
i
is the empirical arrival time from the H1N1 chronological history in each of the selected

countries. Maximizing this function, after fixing the values of the epidemiological and seasonal-

ity parameters (�, µ, αmin), we obtained an estimation of the basic reproductive number. This

methodology assumes the prompt detection of symptomatic cases at the very beginning of the

outbreak in a given country, and for this reason we have also provided a sensitivity analysis

accounting for a late/missed detection of symptomatic individuals as reported in the next sec-

tion. The transmission potential was estimated as the value of R0 that maximizes the likelihood

function L, for a given set of values of the disease parameters. In Table 5.2 we report the

reference values assumed for some of the model parameters and the range explored with the

sensitivity analysis. At the time of our study there were no precise clinical estimates of the basic

model parameters � and µ defining the inverse average exposed and infectious time durations

(125; 126; 127). The generation interval Gt = �
−1 + µ

−1 (128; 129), which is the mean time

interval between the infection of one person and the infection of the people that this individual

infects, is based on the early estimate of (118) and values obtained for previous pandemic and

seasonal influenza (101; 111; 121; 122; 130; 131), with most studies focusing on values ranging

from 2 to 4 days (118; 132; 133; 134). We have therefore assumed a short exposed period value

�
−1 = 1.1 as indicated by early estimates (118) and compatible with recent studies on seasonal

influenza (101; 135) and performed a sensitivity analysis for values as large as �−1 = 2.5 days and

we systematically explore the average infectious period µ
−1 in the range 1.1 − 4.0. The major

problem in the case of projections on an extended time horizon is the seasonality effect that in

the long run is crucial in determining the peak of the epidemic. In order to quantify the degree of

seasonality observed in the 2009 epidemic, we estimated the minimum seasonality scaling factor

αmin of the sinusoidal forcing by extending the chronology under study and analyzing the whole

data set composed of the arrival dates of the first infected case in the 93 countries affected by

the outbreak as of June 18. The full exploration of the phase space of epidemic parameters and

seasonality scenarios required data from 106 simulations; the equivalent of 2 million minutes of

PowerPC 970 2.5 GHz CPU time.
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Country Onset of symptoms Flight arrival Confirmed on

United States March 28 (136) – April 21 (136)

Canada April 11 (137) April 8 (138) April 23 (139)

El Salvador – April 19 (140) May 3 (141)

United Kingdom April 24 (142) April 21 (143) April 27 (139)

Spain April 25 (144) April 22 (145) April 27 (139)

Cuba – April 25 (146) May 13 (139)

Costa Rica April 25 (147) April 25 (147) May 2 (139)

Netherlands – April 27 (148) April 30 (148)

Germany April 28 (149) – April 29 (139)

France – – May 1 (150)

Guatemala May 1 (151) – May 5 (152)

Colombia – – May 3 (153)

Table 5.1: The day of onset of symptoms, flight arrival and day of official confirmation of the first

confirmed case in 12 countries seeded by infectious individuals traveling from Mexico are reported.

Best

Parameter Estimate 95% CI Description

R0 1.75 1.64 to 1.88 Basic reproduction number

αmin 0.65 0.6 to 0.7 winter minimal seasonality rescaling

Assumed Sensitivity analysis

values range Description

µ
−1 2.5 1.1 to 4.0 Mean infectious period (days)

�
−1 1.1 1.1 to 2.5 Mean exposed period (days)

αmax 1.1 1.0 to 1.1 Summer maximum seasonality rescaling

Table 5.2: Best Estimates of the epidemiological parameters. Estimates from the Monte Carlo

likelihood analyses for various values of the parameter space explored. The confidence interval is

determined by the likelihood procedure.

51



Global spread of H1N1 pandemic influenza

Table (5.2) reports the results of the maximum likelihood procedure and of the correlation

analysis on the arrival times for the estimation of αmin. In the following we consider as the

baseline case the set of parameters Gt = 3.6 days, µ
−1 = 2.5 days, and the best estimates

R0 = 1.75. The best estimate for R0 was higher than the one obtained in early findings but

close to subsequent analysis on local outbreaks (132; 133; 134). The R0 we report is the refer-

ence value for Mexico and the tropical region, whereas in each country we have to consider the

R(t) due to the seasonality rescaling depending on the time of the year, as shown in Figure 5.4.

This might explain the lower values found in some early analysis in the US. The transmission

potential emerging from our analysis was close to estimates for previous pandemics (91; 154). We

performed a full sensitivity analysis concerning the assumptions used in the model (96). Results

show that larger values of the generation interval provide increasing estimates for R0. Fixing the

latency period to �
−1 = 1.1 days and varying the mean infectious period in the plausible range

1.1 to 4.0 days yields corresponding maximum likelihood estimates for R0 in the range 1.4 to

2.1. Variations in the latency period from �
−1 = 1.1 to �

−1 = 2.5 days provide corresponding

best estimates for R0 in the range 1.9 to 2.3, if we assume an infectious period of 3 days. We

tested variations of the compartmental model parameters pa, and pt up to 20% and explored the

range rβ = 20% to 80%, and sensitivity on the value of the maximum seasonality scaling factor

αmax in the range 1.0 to 1.1. The obtained estimates lie within the confidence intervals of the

best estimate values.

The empirical arrival time data used for the likelihood analysis are necessarily an overestimation

of the actual date of the importation of cases as cases could go undetected. By considering earlier

arrival times assuming a shift of 7 days from official reports, the resulting maximum likelihood

yields an increase to the best estimate for R0 to 1.87 (95% CI 1.73 to 2.01), as expected since

earlier case importation necessitates a larger growth rate of the epidemic. The official timeline

used here therefore provided, all other parameters being equal, a lower estimate of the transmis-

sion potential. We have also explored the use of a subset of the 12 countries, always generating

results within the confidence interval of the best estimate.

The best estimates reported in Table 5.2 do not show any observable dependence on the as-

sumption about the seasonality scenario. The analysis is restricted to the first countries seeded

by infected individuals departing from Mexico to preserve the conditional independence of the

variables and it is natural to see the lack of any seasonal signature since these countries receive

the disease from a single country, mostly found in the tropical region where no seasonal effects

are expected.
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Figure 5.3: Simulated arrival times median and 95% CI versus the empirical ones for the two

seasonality scaling factor 0.6 and 0.7.

In order to find the minimum seasonality scaling factor αmin that best fits the empirical data,

we performed a statistical correlation analysis of the arrival time of the infection in the 93 coun-

tries infected as of June 18. Given the extended time frame under observation, the arrival times

considered in this case are expected to provide a signature of the presence of seasonality. They in-

cluded the seeding events of new countries from outbreaks taking place in regions where seasonal

effects might occur, such as for example in the US or in the UK. For the simulated arrival times we

have considered the median and 95% confidence interval (CI) emerging from the 2 ·103 stochastic

runs. By considering a larger number of countries and a longer period for the unfolding of the

epidemic worldwide as seasons change, the correlation analysis for the baseline scenario provides

clear statistical indications for a minimum rescaling factor in the interval 0.6 < αmin < 0.7

as shown in Figure 5.3. We analyzed the correlation between the simulated arrival time and

its corresponding empirical value, by measuring the regression coefficient (slope γ) between the

two datasets. In the full range of epidemic parameters explored, the correlation analysis yields

values for αmin in the range 0.4 to 0.9. This evidence for a mild seasonality rescaling is con-

sistent with the activity observed in the months of June and July in Europe and the US where

the epidemic progression has not stopped and the number of cases kept increasing considerably

(see also Figure 5.4) for the corresponding values of R(t) in those regions during summer months).
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Figure 5.4: Seasonality time-dependent reproduction number in the Southern hemisphere (red

shaded area) and in the Northern hemisphere (blue shaded area). The values of R(t) for the

Northern hemisphere correspond to the rescaling of the maximum likelihood value of R0 in Mexico

and in the Tropical regions (R0 = 1.75) and the best values for the seasonality rescaling factor,

0.6 < αmin < 0.7. The parameter αmin indicates the minimum value of the seasonal rescaling of

R0 induced by the sinusoidal forcing in the Northern hemisphere (124).
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Figure 5.5: Results for the activity peaks in three geographical areas. Panels (A), (B) and

(C) show the daily incidence in Lower South America, South Pacific and North America/Western

Europe, respectively. The shaded area indicates the 95% confidence interval (CI) of the peak time

in the corresponding geographical region. The median incidence profiles of selected countries are

shown for the two values defining the best-fit seasonality scaling factor interval.

5.3 Real time predictions

After the epidemic parameters estimation we were able to provide a comparison with the epidemic

activity observed and an early assessment of the subsequent unfolding of the epidemics. For each

set of parameters the model generates quantities of interest such as the profile of the epidemic

behavior in each subpopulation or the number of imported cases. Each simulation generates

a stochastic realization of the process and the curves are the statistical aggregate of at least

2 · 103 realizations. In the following we report the median profiles and where indicated the 95%

CI. Results are in good agreement with the reported temporal evolution of the epidemic and

highlight a progressive decrease of the monitoring activity caused by the increasing number of

cases, as expected (117).

In Figure 5.5A-B we report the real time predictions of the baseline case for countries in the

Southern hemisphere. It is possible to observe in the figure that in this case, the effect of sea-

sonality is not discriminating between different waves, as the short time interval from the start

of the outbreak to the winter season in the Southern hemisphere does not allow a large variation

in the rescaling of the transmissibility during these months. Therefore we predicted a first wave

occurring between August and September in phase with the seasonal influenza pattern, and in-

dependently of the seasonality parameter αmin. The situation was expected to be different in the

Northern hemisphere where different seasonality parameters would have progressively shifted the

peak of the epidemic activity in the winter months. Figure 5.5C reports the predicted daily inci-

dence profiles for the Northern hemisphere and the 95% CI for the activity peaks of the pandemic
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with the best-fit seasonality scenario (that is, the range 0.6 < αmin < 0.7). The general evidence

clearly points to the occurrence of an autumn/winter wave in the Northern hemisphere strikingly

earlier than usual, with peak times ranging from early October to the middle of November while

the seasonal influenza usually peaks in January-February. The peak estimates for each geograph-

ical area is obtained from the epidemic profile summing up all subpopulations belonging to the

region. The activity peak estimate for each single country can be noticeably different from the

overall estimate of the corresponding geographical region as more populated areas may dominate

the estimate for a given area. For instance Chile had a pandemic activity peak in the interval

July 1 - August 6, one month earlier than the average peak estimate for the Lower South America

geographical area it belongs to. It is extremely important to remark that in the whole phase

space of parameters explored the peak time for the epidemic activity in the Northern hemisphere

lay in the range from late September to late November, thus suggesting that the early seasonal

peak was a genuine feature induced by the epidemic data available at the moment of the analysis.

In order to assess the amount of pressure on the healthcare infrastructure, we provided the

expected number of hospitalizations at the epidemic peak according to different hospitalization

rate estimates (see Table 5.3) . The assessment of the hospitalization rate was very difficult as it

depends on the ratio between the number of hospitalizations and the actual number of infected

people. As discussed previously, the number of confirmed cases released by official agencies was

always a crude underestimate of the actual number of infected people. We considered three

different methods along the lines of those developed for the analysis of fatalities due to the new

virus (155). The first assumes the average value of hospitalization observed during the regular

seasonal influenza season. The second is a multiplier method in which the hospitalization rate

was obtained as the ratio between the WHO number of confirmed hospitalizations and the cases

confirmed by the WHO multiplied by a factor 10 to 30 to account for underreporting. The third

method is given by the ratio of the total number of confirmed hospitalizations and the total

number of confirmed cases. This number was surely a gross overestimation of the hospitalization

rate (155; 156). It has to be noted that hospitalizations were often related to existing health

conditions, age and other risk factors. This implies that hospitalizations would likely have not

affected the population homogenously, a factor that we cannot consider in our model.

The number of hospitalized at peak times in the selected countries range between 2 and 40

per 100.000 persons, for a hospitalization rate typical of seasonal influenza and for an assumed

1% rate, respectively, yielding a quantitative indication of the potential burden that the health
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Seasonal influenza Multiplier method WHO confirmed cases

HR:0.08% HR:0.3% HR:1% HR:10%

USA 2.21 8.28 27.58 275.84

Canada 2.18 8.17 27.22 272.23

UK 2.52 9.45 31.52 315.15

France 2.61 9.79 32.64 326.40

Germany 2.98 11.17 37.22 372.18

Italy 72.87 10.76 35.87 358.67

Spain 2.54 9.54 31.81 318.12

China 2.48 9.32 31.05 310.50

Japan 2.59 9.70 32.32 323.19

Table 5.3: Number of hospitalizations per 100,000 persons at the activity peak in several coun-

tries. The estimates are obtained by considering three methods. The first assumes the average

hospitalization rate (HR) observed during the seasonal influenza season. The second is a simple

multiplier method in which the HR is obtained as the ratio between the World Health organization

(WHO) number of confirmed hospitalizations and the cases confirmed by the WHO multiplied by

a factor 10 to 30 to account for underreporting. The third method is simply the ratio of the total

number of confirmed hospitalizations and the total number of confirmed cases.

care systems would have faced at the peak of the epidemic activity in the fall of 2009. It is

worth noting that the present analysis considered a worst-case scenario in which no effective

containment measures were introduced. This was surely not the case in that pandemic plans and

mitigation strategies were considered at the national and international level. Guidelines aimed at

increasing social distancing and the isolation of cases were crucial in trying to mitigate and delay

the spread in the community, thus reducing the overwhelming requests on the hospital systems.

5.4 Estimating the early number of cases in Mexico

By using GLEaM it was possible to provide a model estimate of the number of imported cases

arriving from Mexico to a set of selected countries. The estimated 99% reference range is shown

in Table 5.4. The dates and target countries were chosen to facilitate the comparison with the

numbers found in the literature (157; 158; 159; 160). The numbers shown in the Table refer to the

importation of infected/exposed individual traveling from Mexico in one of the listed countries as

of the date of May 8th. Only 2/3 of the exposed travelers were then considered in the cumulative

number of cases as only this fraction will eventually develop symptoms, according to the model
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assumptions. The numbers of imported cases to each country were typically small, and as such

prone to large stochastic fluctuations. However the surveillance values were all within the 99%

reference ranges of the 2 ·103 realizations of our model. We provided in Ref. (96) a full sensitivity

analysis of the results but, overall, there are very small variations with respect to the presented

results in the range of parameters explored. This is because any Maximum Likelihood Estimate

(MLE) for R0 and generation interval tends to optimize the growth rate with respect to the

epidemic timeline thus producing very similar results in the early spreading of the epidemic. We

have also considered that in the US the travel history was known only for 50% of the confirmed

cases. The simple extrapolation that provides a twofold estimate of imported cases (in brackets

in Table 5.4) was however still compatible with the reference range of our stochastic simulations.

Table (5.5) shows GLEaM predictions for the size of the epidemic in Mexico on April 30 and

compares the results with the estimations of Refs. (118) and (157). We provide the 95% refer-

ence range over 2 · 103 realizations. The obtained range included the lower bound estimate of

Ref. (157). Our median value for the number of asymptomatic cases is 734.000 that is again

compatible with the range of values reported in Ref.(157). While the estimates presented in

Refs. (118) and (157) are based on a homogeneous mixing approach within the entire country

of Mexico, the approach used here is a spatially structured model that just in Mexico counts

65 different census areas. These census areas are not equally connected internationally and be-

tween them. The number of cases relevant for the international spread of infected individuals are

mostly in census areas close to international transportation hubs. Poorly connected regions of

Mexico on the other hand, while experiencing a considerable number of cases, would contribute

only marginally to the International spread of cases. This observation readily explains why single

population calculations that matched the detection of imported cases with the local prevalence

were necessarily underestimating the latter quantity.

While GLEaM takes into account a higher level of geographical organization than previous

approaches, its estimates still contain a number of assumptions and approximations. The conta-

gion within each census area is approximated by means of a homogeneous mixing process. Once

a person arrives at a census area by plane, he/she becomes integrated into the local population.

This implies that, as in (157), the travelers and the local population are equally exposed to the

disease. Finally, the model considers each individual as independent and the possibility of cluster

cases, i.e. a group of people that are in close contact and can therefore easily transmit the disease

to each other, is not considered. Despite these shortcomings and other necessary uncertainties,
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Number imported cases

(May 8) USA UK France Germany Brazil

Simulation Results 0 - 534 0 - 44 0 - 62 0 - 55 0 - 45

Surveillance data 85 (170) 17 11 9 3

Table 5.4: Cumulative number of imported cases from Mexico shown as the 99% reference range

over 2 · 103 realizations on May 8 for a few countries. The simulations are obtained with the best

estimate parameters of the baseline case of Ref. (96) and R0=1.75 [95%CI 1.64 to 1.88]. The

number of imported infected individuals and of independent clusters correspond to the data given

in Ref. (157) for US, and UK and the values in (159) for France, in (158) for Germany and in (160)

for Brazil. No data was available to assess the possible presence of clusters in Germany and France.

In the USA we report in parentheses the revised number considering the rate of unknown travel

history in confirmed cases.

Number of symptomatic cases

in Mexico (April 30)

Simulation Results [121,000 - 1,394,000]

Lower bound range of Ref. (157) 113,000-375,000

Estimate of Ref. (118) 2,000 - 280,000

Mexican official report (161) (confirmed cases) 3,350

Table 5.5: Predictions of GLEaM for the size of the epidemic in Mexico on April 30 in thousands of

cases and comparison with other approaches and with empirical data. The simulations are obtained

with the best estimate parameters of the baseline case of Ref. (96) and show the 95% reference

range over 2 · 103 stochastic realizations. The results are compared with the lower bound estimate

range in (157), the estimate provided in Ref. (118) and the number of confirmed cases given by

official reports. The interval provided for Ref.(118) is obtained by merging the results reported in

the paper under different assumptions and including the 95% CI.
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GLEaM predictions could provide additional information for a better understanding of the early

evolution of the past pandemic. Despite the different approximations used here and in Ref.(157),

both approaches were providing support to the possibility of a reporting ratio of infected cases in

Mexico as low as 1 in 100, in agreement with prior estimates (119). This finding was important

when evaluating the massive amount of data which were collected in a large number of countries

around the world. We can easily imagine that the reporting rate as well as any estimate of

the cumulative attack rate in most of the countries could be easily underestimated by orders of

magnitude.

5.5 Intervention strategies

5.5.1 Vaccination campaign

As an effective line of defense against influenza epidemics most of the countries planned the

vaccination of a large fraction of the population (162). The vaccine development and production

started after the virus identification at the end of April 2009, and received the approval by the US

Food and Drugs Administration in mid September 2009 (163). Vaccine delivery was scheduled to

start in early or mid-October (163) in several countries, but the expected timing of the pandemic

influenza activity predicted to peak in October/November put at risk the effectiveness of mass

vaccination as a control strategy. Using GLEaM (96; 111) it was possible to assess in advance

the effect of mass vaccination on the predicted pandemic evolution, given the expected vaccine

availability and timing of distribution. We used the model and predicted patterns of global

spread obtained in Ref.(96) to quantify the mitigation effect of mass vaccination campaigns

and combined strategies under different scenarios. The baseline (no intervention) scenario was

compared along with mitigation strategies based on the use of antiviral drugs and the use of

vaccines (78; 115; 116; 121; 122; 130; 164; 165; 166; 167; 168). Intervention involving vaccination

was constrained on the availability and distribution of vaccine doses matching the novel H1N1

influenza virus. Since this analysis has been performed in the late September-October 2009,

information on the time and amount of delivery of the first doses of vaccine was available for

certain countries only and underwent continuous updates. Significant availability of H1N1 vaccine

was expected to begin only in mid-October or later. The United States projected to have 45M

doses by October 15, with additional 15M doses shipped every week after that date, reaching the

delivery of the full amount of 195M doses by the end of December (169; 170; 171). The United

Kingdom planned to have the first amount of 100,000 doses by mid-October, with subsequent
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distribution of additional doses till full coverage of the population (172). Little was known about

vaccine production rates and delivery for several other countries. Here we assumed that all

countries having stockpiled on antivirals (173) would have placed orders to have vaccines available

to administer to their populations. Based on the available data on vaccination programs, we

explored scenarios where the campaign started on the same date for all countries with vaccines,

where the date was set to October 15 or November 15. Additional dates were also studied in the

sensitivity analysis. Following previous studies on vaccination during the course of a pandemic

(115; 116; 174), we assumed a dynamic mass vaccination of 1% of the population uniformly in

countries where doses were available, till their exhaustion. We assume the administration of

a single dose of vaccine (111; 175; 176), providing protection with a delay of 2 weeks (177).

The 2 weeks time to produce the immune response was chosen according to the preliminary

data in adult clinical studies for H1N1 influenza vaccine (163; 177), and a sensitivity analysis

reducing it to 1 week was performed. Recommendations foresaw the use of vaccines first in the

groups of population who were at elevated risk of severe outcomes or who were likely to come

in contact with the novel H1N1 virus (178). The model did not consider social structure in the

subpopulations, therefore the effect of prioritized distribution of vaccines to health care workers,

risk groups, and others, in reducing the number of hospitalizations and deaths (178; 179; 180; 181)

was out of the scope of our study. Mass vaccination aims to (i) reduce susceptibility to infection;

(ii) reduce infectiousness if infection occurs; (iii) reduce the probability of developing clinical

symptoms (115). The efficacy of the vaccine with respect of these three effects is quantified

by the parameter V ES , V EI , V ED, respectively. The efficacy of the vaccine was still under

study, therefore we referred to previous estimates and performed a sensitivity analysis to explore

higher and lower efficacy levels. We considered a vaccine efficacy for susceptibility V ES = 70%,

a vaccine efficacy for infectiousness V EI = 30%, and a vaccine efficacy for symptomatic disease

given infection V ED = 50% (115; 179; 182). Based on the partial information on total production

amounts per country, ranging from approximately 1/3 of the population (183; 184; 185) to 2/3

(169), up to full coverage (172; 186; 187), we explored two different mass vaccination scenarios

in which we assumed a 30% and a 60% coverage of the population.

We also considered combined strategies including the systematic treatment of clinical cases

with antiviral drugs aimed at reducing the severity of the disease and the transmissibility while

infectious (121; 122; 130). The data on antiviral stockpiles in the world were collected from Ref.

(173) and from national agencies to model the current availability of the drugs by country. We

assumed the treatment with antivirals of 5% and 10% of clinical cases within the first day from
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Figure 5.6: Compartmental structure in each subpopulation. A susceptible individual interacting

with an infectious person may contract the illness and enter the latent compartment where s/he is

infected but not yet infectious. At the end of the latency period, each latent individual becomes

infectious entering the symptomatic compartment with probability (1 − pa) or becoming asymp-

tomatic with probability pa. Asymptomatic individuals infect with a transmission rate reduced of

rβ. A fraction (1−pt) of the symptomatic individuals stop traveling when ill. Infectious individuals

recover permanently with rate µ. Antiviral treatment is assumed to be administered to a fraction

pAV of the symptomatic infectious individuals within one day from the onset of symptoms, accord-

ing to the drugs availability in the country. It reduces the infectiousness by the antiviral efficacy

AV EI and shortens the infectious period of 1 day. If vaccines are available, a fraction equal to 1%

of the susceptible population enters the susceptible vaccinated compartment each day. A similar

progression to the baseline compartmentalization is considered if infection occurs. However, the vac-

cine reduces the susceptibility of the vaccinated susceptible with an efficacy V ES , the probability

of developing symptoms if infection occurs with an efficacy V ED, and their transmission rate while

infectious with an efficacy V EI . All transition process are modeled through multinomial processes.
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the onset of symptoms, along with a hypothetical conservative intervention with the treatment

of 30% of clinical cases. This parameter considered the prompt detection of symptomatic cases

and the rapid administration of the drug (78; 96). The treatment was considered to last until

resources were available. We assumed a drug efficacy in reducing transmission equal to 62%,

and a reduction of 1 day of the total infectious period (121; 122). A schematic illustration of

the compartmental diagram including the combination of intervention strategies is reported in

Figure 5.6.

By using the best estimates of the model parameters as in the previous section, it was possible

to calculate the 95% reference range for the activity peak in each country. The benchmark to

evaluate the effect of mass vaccination campaigns was the no intervention scenario that was

predicted to reach the activity peak e.g. in the United States between the beginning of October

and the beginning of November. In the following we will refer to the early and late peak cases

as the earliest and latest date, respectively, of the reference range for the activity peak time

(96). This allows us the consideration of the whole range of peak times to explore the impact

of mass vaccination campaigns also in extreme situations such as a very early activity peak in

October. It is important to stress that even the “late” peak case corresponds to an activity peak

occurring much earlier than the usual timing of seasonal influenza. It is also worth remarking

that the predictions for the activity peak reference range obtained in the model in the Northern

Hemisphere differ from country to country (96). In the case of an activity peak at the beginning

of the reference range provided by the model (early October for the US and many European

countries), our study predicted that the mass vaccination program starting on October 15 with

30% coverage would have almost no effect on the epidemic profile, as the effective immunization

would start long after the epidemic peak. In the case of a late peak corresponding to the other

extreme of the reference range (from early to late November depending on the country), the

peak attack rate would be reduced by a factor of about 28% averaged across countries, ranging

from 15% to 38% depending on the specific pandemic unfolding in each country, with a lower

reduction obtained in those countries where the epidemic would have arrived earlier (e.g. US vs.

Europe, according to our predictions). Figures 5.7 and 5.8 show the incidence curves for a set of

countries in the early and late peak cases, respectively. In the US for example, the effect of mass

vaccination (with no additional intervention strategy) would correspond to a 15% reduction of

the peak incidence in the most favorable situation of a late peak and early vaccination campaign.

If the availability of the first vaccine batches was delayed of 1 month, the mass vaccination

program would have almost no mitigation effect (less than 2%) for all countries under study in
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Figure 5.7: Effect of vaccination and of combined strategies for the early peak case. The incidence

curves show the impact of an incremental vaccination with 1% daily distribution policy starting

on October 15 for the early peak case. The baseline case was compared to the cases in which

intervention strategies were considered - vaccination only, and combination of vaccination with

antiviral treatment of 5%, 10%, and 30% of clinical cases. Efficacies of antiviral treatment and

vaccination assumed the values reported in the text. Median profiles obtained from 2,000 stochastic

realizations of the model are shown. A 60% vaccine coverage is assumed, with the gray bar indicating

the time period during which the immunization takes effect.

the whole range of scenarios explored. Moreover, no major differences were observed with a larger

coverage, given the 1% daily distribution rate, since in both the early and late peak extreme of

the activity peak reference range the assumed 30% coverage would almost always be enough for

the distribution during the entire epidemic activity, even assuming an early distribution starting

on October 15. According to the simulated scenarios the mass vaccination would therefore do

little against a pandemic expected to peak before or at the beginning of November, consistently

with the simulation results on phased vaccination strategies in the United States (179).

We investigated if the introduction of combined mitigation strategies could help in pushing

back the epidemic peak and make more effective the mass vaccination campaigns. Here we report

simulations of scenarios in which the systematic use of antiviral drugs for treatment of cases is
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Figure 5.8: Effect of vaccination and of combined strategies for the late peak case. The incidence

curves show the impact of an incremental vaccination with 1% daily distribution policy starting

on October 15 for the late peak case. The baseline case was compared to the cases in which

intervention strategies were considered - vaccination only, and combination of vaccination with

antiviral treatment of 5%, 10%, and 30% of clinical cases. Efficacies of antiviral treatment and

vaccination assume the values reported in the text. Median profiles obtained from 2,000 stochastic

realizations of the model are shown. A 30% coverage is assumed, with the gray bar indicating the

time period during which the immunization takes effect.
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used to delay the epidemic peak, and to reduce the attack rate at peak time in combination with

the vaccination campaign (78; 115; 116; 121; 122; 130; 164; 165; 166; 167; 168). If we assume a 5%

to 10% detection of clinical cases and prompt administration of drugs, the pandemic peak would

be delayed of approximately 1-2 weeks in the countries with available antiviral stockpiles. We also

studied a possible scenario of analysis that assumed a 30% treatment, leading to approximately

a full month delay of the pandemic peak (96). Though larger fraction than the implemented

policy for the treatment of clinical cases in some countries, it allows the study of the effectiveness

of mass vaccination campaign when a delay of one month can be achieved with a combination of

intervention strategies.

Finally, it is worth noting that our model assumed a 100% susceptibility in the population,

neglecting effects of prior immunity, since no clear estimates have been provided (188; 189; 190).

On the other hand, the global nature of the model allows the simulation of the pandemic since its

start in Mexico, taking into account the population-level immunity caused by the first peak of the

spread of pandemic H1N1 in the Northern hemisphere during the spring and summer 2009. The

presented results for the simulated attack rates were likely overestimating the pandemic impact

because of the above assumptions. With the best estimate parameters used here, we found clinical

attack rates in absence of intervention policies (i.e. baseline case) of approximately 35− 40% at

the end of the epidemic. A full comparison with attack rates estimates from real data (191) was

however made difficult along by the large under-ascertainment of cases, the presence of detection

biases, surveillance systems with country-specific capacity and coverages, as well as monitoring

requirements changing in time as the epidemic was progressing.

The interplay between the timing of the pandemic and the start of the dynamic vaccination

campaign was crucial for mitigation effects. Results show that mass vaccination may have had

little effect on controlling the pandemic even when administered as early as mid-October, unless

additional mitigation strategies would have considered to delay the activity peak. This made also

a strong case for prioritized vaccination programs focusing on high-risk groups, healthcare and

social infrastructure workers. If the pandemic peak had occurred much later than anticipated

from the modeling approach, in December or January, there would have been enough time to

provide immunization to a larger fraction of the population given the schedule for vaccination

campaign, with a larger mitigation effect than in the early pandemic wave situation.
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5.5.2 Modeling the critical care demand

Following the estimates of the severity of H1N1 pandemic, we assume a complication rate of

15% of clinical cases (192), a hospitalization rate of 0.5% of clinical cases (193), and an intensive

care unit (ICU) admission rate of 15% of hospitalized patients (194). We model influenza-

related pneumonia as a complication associated to influenza infection, considering two main types

of pneumonia: primary viral pneumonia and secondary bacterial pneumonia. While bacterial

coinfection was shown to be the predominant cause of death in previous influenza pandemics

(195), its presence in the severe cases analyzed since the start of the outbreak range from almost

no evidence in the early reviews (196; 197; 198), to about 10% (199), 33% or larger proportions

(200; 201) of the cases presenting influenza-associated complications. These fluctuations in the

role of bacterial pneumonia might be due to the difficulty of testing for specific bacterial diagnosis,

or to the use of antibiotics prior to routine clinical tests. Given the uncertainty on the cause of

pneumonia at this stage of the epidemic evolution, we assume a proportion of bacterial pneumonia

in cases showing complications in the range of 33 − 50%. Under pandemic conditions, it is

assumed that very small differences will be implemented in the management and treatment of

the patients with either types of pneumonia, as the diagnosis of influenza-associated complications

will be mostly based on clinical findings and most prescribing will be empirical, based on both

antibacterial therapy and antiviral medications (202). Multiple subsequent stages of pneumonia

course are modeled according to a classification score which is based on clinical symptoms (203),

and different progressions are assumed to take into account both viral and bacterial pneumonia.

It is also worth remarking that the model does not consider social structure in the subpopulations,

therefore the effect of prioritized distribution of vaccines to individuals belonging to risk groups

in reducing the number of hospitalizations and deaths is not considered here.

Based on the available knowledge of complication, hospitalization and ICU rates, and the

relative proportion of bacterial vs. viral pneumonia, the simulation results allow the measure of

the predicted need of beds in intensive care units, and provide estimates of the corresponding

courses of antibiotics needed. Figure 5.9 shows the time evolution of the predicted prevalence

of ICU occupancy for a given set of countries. In the baseline case, when no intervention is

implemented, the ICU prevalence peak ranges between approximately 5 and 7 ICU beds per 105

individuals. These values are well below the national average capacity of some countries, such

as e.g. the United States with a total of about 20 ICU beds per 105 (204) and Germany with an

average of approximately 28 ICU beds per 105 (205). The predicted need is slightly lowered if a
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0.1% dynamic vaccination is considered, and would be reduced to values in the range of 3.6 to 4.8

ICU beds per 100,000 if we assume rv = 1%, below the national average number of ICU beds of

many European countries (206). While the predicted ICU beds needs are averaged at the country

level to conform with the capacity data, it is however important to note that the impact and

the potential occurrence of critical situations strongly depends on the geographic distribution

of the critical care resources, with areas that might have access to a larger number of intensive

care units than others (see for example Ref. (207)). Moreover, a direct comparison between

the simulated demand and critical care availability is made difficult by the lack of a standard

definition for intensive care unit beds, and the large variations observed in both numbers of beds

and volume of admission between countries in North America and Western Europe (206).

The results shown in Figure 5.9 are based on an average ICU length of staying equal to LICU = 7

days. Since there is a large variation in this parameter, with cohort studies showing median

duration of 7 days and interquartile range up to approximately 2 weeks (201), we also explored

the effect of considering longer lengths of staying, LICU = 10 and LICU = 14 days.

The longer bed occupancy would inevitably lead to an increase in the need of ICU beds at

peak, in the range of approximately 9 to 12 per 100,000 persons in the case of 14 days of average

ICU duration (see Table 5.6).

Along with anecdotal reports indicating ICUs overwhelmed by the sudden surge of H1N1 cases

with severe complications (208), studies on the winter experience in the Southern Hemisphere

during the H1N1 pandemic wave confirmed a substantial impact on ICUs, with the maximum

number of ICU beds occupied by region in Australia and New Zealand ranging between 0.63 and

1.1 per 100,000 inhabitants (201). These values were smaller than the ICU demands predicted

for the fall wave in the Northern Hemisphere. It is important to note, however, that the used

model does not take into account the population structure (age dependent attack rates), risk

groups and prior immunity thus likely overestimating the global attack rate of the pandemic.

Furthermore the model did not include mitigation factors (e.g. social distancing, targeted school

closures, etc.) that might have contributed to the reduction of the overall burden on the critical

care facilities.
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Figure 5.9: Time evolution of the ICU occupancy in a set of countries. ICU occupancy measures

the predicted need of ICU beds per 100,000 persons. Results for the United States, France, Germany,

and Spain are shown. The three profiles per each country refer to the predicted ICU occupancy in

the baseline case when no intervention is implemented, and in case dynamic vaccination campaigns

with distribution rates rv = 0.1% and rv = 1% are considered. Solid curves correspond to the

median profiles and the shaded areas to the 95% reference range obtained from 2,000 stochastic

simulations. The average ICU length of staying is assumed equal to 7 days (201).

ICU occupancy at peak (per 100,000)

Country Baseline Vaccination campaigns

0.1% 1%

7 days 10 days 14 days 7 days 10 days 14 days 7 days 10 days 14 days

US [5.0-5.6] [6.8-7.5] [8.7-9.7] 5.0-5.5] [6.7-7.3] [8.6-9.4] [4.5-4.6] [5.9-6.2] [7.6-7.9]

UK [5.7-6.5] [7.6-8.6] [9.9-11.0] [5.5-6.2] [7.4-8.2] [9.6-10.5] [3.9-4.6] [5.2-6.1] [6.7-7.7]

Canada [5.0-5.7] [6.7-7.6] [8.7-9.9] [4.8-5.5] [6.5-7.3] [8.5-9.5] [3.8-4.4] [5.1-5.8] [6.5-7.3]

France [5.9-6.6] [7.9-8.7] [10.2-11.2] [5.7-6.2] [7.6-8.3] [9.8-10.6] [3.6-4.4] [4.9-5.9] [6.3-7.4]

Italy [6.5-7.1] [8.6-9.4] [11.0-12.0] [6.2-6.7] [8.2-8.9] [10.5-11.3] [3.6-4.5] [4.8-5.9] [6.1-7.4]

Spain [5.8-6.4] [7.8-8.6] [10.0-11.0] [5.6-6.1] [7.5-8.2] [9.6-10.5] [3.8-4.5] [5.1-5.9] [6.5-7.5]

Germany [6.6-7.3] [8.8-9.7] [11.2-12.2] [6.4-7.0] [8.5-9.2] [10.8-11.6] [4.0-4.8] [5.4-6.4] [6.8-8.0]

Table 5.6: Predicted need of ICU beds in the baseline case scenario and in the case of vaccination

campaigns. The 95% reference range (RR) of the daily number of occupied ICU beds per 100,000

is reported at its peak for several countries in the Northern Hemisphere.
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5.5.3 Travel restrictions

After the emergence of the H1N1 influenza in 2009, some countries responded with travel-related

controls during the early stage of the outbreak in an attempt to contain or slow down its in-

ternational spread. These controls along with self-imposed travel limitations contributed to a

decline of about 40% in international air traffic to/from Mexico following the international alert.

However, no containment was achieved by such restrictions and the virus was able to reach pan-

demic proportions in a short time. When gauging the value and efficacy of mobility and travel

restrictions it is crucial to rely on epidemic models that integrate the wide range of features

characterizing human mobility and the many options available to public health organizations

for responding to a pandemic. In this section we present a comprehensive computational and

theoretical study of the role of travel restrictions in halting and delaying pandemics by using

a model that explicitly integrates air travel and short-range mobility data with high-resolution

demographic data across the world and that is validated by the accumulation of data from the

2009 H1N1 pandemic. We explore alternative scenarios for the 2009 H1N1 pandemic by assessing

the potential impact of mobility restrictions that vary with respect to their magnitude and their

position in the pandemic timeline. We provide a quantitative discussion of the delay obtained

by different mobility restrictions and the likelihood of containing outbreaks of infectious diseases

at their source, confirming the limited value and feasibility of international travel restrictions.

These results are rationalized in the theoretical framework characterizing the invasion dynamics

of the epidemics at the metapopulation level.

Figure 5.10 summarizes the simulation’s reproduction of the observed relative magnitude of

imported cases in the local epidemics of newly-affected countries that validate the model. Panels

A, B show cases in the United Kingdom and Germany, respectively, during the early phase of

the outbreak when case-based surveillance was deployed in order to detect imported H1N1 cases

and monitor local H1N1 transmission (209; 210). Computer simulations also allow us to explore

the level of stochasticity associated with the importation of infectious individuals. We keep

track for each time step of each realization of the contribution of imported cases to the total

prevalence in the country defined as the ratio Q of the number of imported cases versus the total

number of infectious individuals in the country. Since at the early stage of the epidemic there

are usually large fluctuations in the number of imported local transmission cases, we measure

the probability in time of observing a given ratio Q by averaging over 2,000 realizations of the

global simulation. Panels 5.10C, 5.10D show the time behavior of the probability distribution
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P (Q) clearly illustrating that the importation of cases dominates the initial phase of the epidemic

in each country, which is soon followed by a sustained local transmission. The contribution of

imported cases is observed to reach 100% with a finite probability only during the months of

April-May, after which the probability distribution progressively shrinks around small values of

Q, showing how the local H1N1 transmission starts to dominate the epidemic. The agreement

of the model with the actual data from the H1N1 pandemic allows us to assess the effect of

the observed decline in travel flows to/from Mexico by comparing the results obtained in the

reference scenario with a version of the model in which no travel reduction is considered.

Control measures based on limiting or constraining human mobility are considered in the

contingency planning of several countries (211). The aim of these control measures is the decrease

of travel to/from the areas affected by the epidemic outbreak and the corresponding decrease of

the number of infected individuals reaching countries not yet affected by the epidemic. While the

effects of slowing down the international propagation of an epidemic can be statistically evaluated

based on available data and bootstrap techniques (212), the impossibility of disentangling the

role played by travel from other contributing factors in the spread of an epidemic (213) has

generated debates about the appropriate strategy for mobility restrictions. In this context the

only way to systematically gauge uncertainty and the effectiveness of competing control strategies

is through data-driven modeling efforts (111; 115; 116; 124; 214; 215). However, most previous

works have focused on synthetic pandemic influenza scenarios and only a few empirical examples

are available to validate models and evaluate the effectiveness of travel restrictions in general

(216; 217; 218).

In the 2009 H1N1 pandemic (H1N1pdm), control measures (see Table 5.7) included travel

bans to/from Mexico, the screening of travelers on entry into airports, and travel advisories

against non-essential travel to Mexico (211). By considering also the spontaneous reaction of

individuals to the health emergency, a reduction in the international traffic to/from Mexico of

about 40% have been observed during the month of May, followed by smaller reductions in the

following months, and resulting in a slow return to normality in about 3 months (229). The

aggregation of data on the H1N1 pandemic therefore represents an unprecedented opportunity

to calibrate and validate a modeling approach to the global spread of epidemics that integrates

detailed information on human mobility and travel.

We consider as a reference scenario the one produced by the best estimates able to reproduce

the initial chronology of newly infected countries (i.e. the baseline scenario), where in addition
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Figure 5.10: Importation of cases. A,B, Simulation results of the fraction Q of imported cases

in United Kingdom (A) and Germany (B). The quantity Q is a measure of the relative weight

of case importation with respect to local transmission events. The gray shaded areas show the

95% and 50% reference ranges of the simulation results obtained from 2,000 stochastic realizations.

The surveillance data are indicated by red dots. While the numerical simulations are in very good

agreement with the UK data, larger fluctuations are observed in Germany. It is worth to notice

that the empirical data refers to confirmed cases and thus depends on the potential biases and

inaccuracies of the surveillance system. Nonetheless, GLEaM simulations are still able to capture

the timing of the observed drop and the values are mostly within the 95% reference range. C,D,

Time evolution from April to November 2009 in the United Kingdom (C) and Germany (D) of

the probability distribution to observe in any given realization of the epidemic the ratio Q between

imported cases and the total number of cases. The probability distribution is reconstructed through

the simulation of 2,000 stochastic realizations. Large values for the quantity Q are observed with

high probability only in the early phase of the respective country’s epidemic. The observed non-zero

probability for a fraction of imported cases equal to zero at the early stage is due to the fact that the

epidemic is imported in some cases by non-detectable individuals, such as latent and asymptomatic

infectious individuals.
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Adopted measure Country Time period

Mexican flight ban

Argentina from April 28 to May 14, 2009 (219; 220)

China from May 2, 2009 (221; 222)

Cuba from April 30 to May 31, 2009 (223)

Peru from April 29 to May 13, 2009 (224; 225)

Quarantine of passengers

China, Hong Kong discontinued by all countries

Japan, Taiwan, by July 2009.

Singapore.

Thermal screening

Bulgaria, Chile,

China, Ecuador,

Hong Kong, India, discontinued by all countries

Jordan, Lebanon, by January 2010.

Malaysia, Qatar,

Singapore, Thailand,

UAE.

Health travel warnings

Bosnia, Bulgaria,

Canada, Chile,

Colombia, France, discontinued by all countries

Germany, Korea, by June 2009.

Russia, Turkey,

United States, UK

Venezuela, Vietnam.

Table 5.7: Known measures adopted worldwide against the pandemic spread (211; 226; 227; 228).
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we take into account the empirically observed drop in air traffic, following the data reported in

(230). The best estimates presented in section 5.2 were achieved when the informations about

the reduction of passengers fluxes were not available (and not even observed). Afterwards we

performed a new Monte Carlo likelihood estimate including the observed travel drop and we

recovered the same results. This is mainly due to the fact that, as we will show in this section,

a travel flux reduction of 40% leads to a very small delay in the epidemic propagation (3 days

on average), and because the set of countries considered for the likelihood estimate were mostly

infected before such reduction. The reference scenario is then compared to a set of hypothetical

scenarios in which increasingly larger restrictions in individual mobility are considered, as well as

different starting dates for the implementation of such restrictions. The efficacy of travel-related

measures is therefore measured on the timing of seeding events and resulting delays.

Compartmentalization permits tracking of the arrival of detectable (i.e. symptomatic) and

non-detectable (i.e. latent or asymptomatic) infected individuals in a given country. By defining

the arrival time as the date the first symptomatic case arrives in the country under study, it is

possible to quantify the delay in the spreading of the epidemic.

Figure 5.11 shows changes induced by travel restrictions on the simulated chronology with

respect to the reference case by tracking the arrival time probability distribution. Results are

reported in panels A, B of Figure 5.11, where application of the interventions is shown to reduce

the probability values right after the peak of the distribution, with almost no change in the

date of the peak. If we focus on the first arrival from Mexico, considering all possible seeding

events (i.e. latent, asymptomatic, and symptomatic), we observe similar reductions in the rate

of increase in the cumulative probability distribution of the seeding event, pointing to a slower

rate of importation (see Figure 5.11C, D). However, the resulting change is not able to halt the

spread.

By considering the time at which the cumulative probability for the seeding from Mexico

has reached 90%, we can calculate the delay induced by larger reductions in air travel. It is

quite impressive to notice that, according to our model, the 40% drop in travel flows observed in

reality only led to an average delay in the arrival of the infection in other countries (i.e. the first

imported case) of less than 3 days. We then test whether an additional decrease in travel flows of

magnitudes larger than the observed 40% would have provided an additional benefit in slowing

down the propagation of the H1N1 virus across the world. We consider drops in the air travel

flows connecting Mexico with the rest of the world starting on April 25 following the international

alert, optimistically assuming a prompt implementation by authorities with no further delays.
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Figure 5.11: Effects of restrictions in the air travel to/from Mexico on the probability distribu-

tions of the seeding events. Travel measures imposing a reduction of α = 60% and α = 90% are

compared to the reference scenario where the observed drop in air travel to/from Mexico is taken

into account. A,B, Probability distributions of the arrival time (defined as the date of arrival of the

first symptomatic case) in the United Kingdom (A) and Germany (B) for different values of α. Here

we consider the importation from any possible source country, not only Mexico. The vertical dotted

line indicates the observed arrival time in the country, as obtained from official reports, and the ver-

tical solid line indicates the starting date of the travel restrictions, April 25, 2009, the day after the

international alert. The probability distributions are obtained from 2,000 stochastic realizations and

data are binned over 7 days. Even when imposing α = 90%, the peak of the probability distribution

is not delayed with respect to the real scenario. C,D, Cumulative probability distributions of the

first seeding event from Mexico to the United Kingdom (C) and Germany (D) for different values of

α. Here we consider any source of infection in the seeding event, including symptomatic cases and

non-detectable infected cases, such as latent and asymptomatic, as allowed by the computational

approach. The distributions are computed over 2,000 stochastic realizations. The effect of travel

restrictions is very limited in delaying the time at which the cumulative distribution reaches unity.
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We also assume that the reduction is kept constant across time, differently from the empirically

observed decline that successively decreased to become negligible in about 3 months.

Figure 5.12A shows the delays obtained for a selection of countries. Even given the unlikely

assumption of a 90% travel reduction, the resulting delay would be of the order of 2 weeks,

confirming results from previous studies (111; 124; 214; 215). This time could be used to finalize

the response by the public health infrastructure of unaffected countries following the international

alert, thus gaining time to enhance surveillance systems and allocate resources. Unfortunately,

this timescale is insufficient to develop and distribute a vaccine. Anticipation of travel reductions

following local epidemiological alerts in Mexico or the onset of symptoms from the first case in

the US would have led to similar results (see panel B of Figure 5.12).

The exponential increase of cases in the outbreak region explains the negligible impact of

travel restrictions over the course of the pandemic. Given two coupled populations with deter-

ministic infection dynamics, the delay is a logarithmic function of the applied travel reduction of

magnitude α, ∆t = −τ ln(1− α), where τ is the timescale of the epidemic’s exponential growth

in the seed population (231; 232). The exponential increase of cases in the outbreak region is

therefore responsible for the relatively limited delay induced by strong and lasting travel reduc-

tions. When α = 65%, α = 80% or α = 95% the corresponding delays become approximately

1, 1.6, and 3 times, respectively, the timescale τ that is typically on the order of a few days.

The logarithmic relation also explains more realistic situations in which the epidemic origin is

characterized by spatial heterogeneity and intra-region mobility that is not subject to travel re-

strictions. This was the case of the H1N1 pandemic, which initially diffused within Mexico before

reaching international hubs and propagating internationally.

Beyond the assessment of the invasion delay, the fundamental question concerns the extent

to which mobility restrictions are able to achieve containment at the source of the pandemic,

especially in combination with timely mitigation policies in the country of origin. To this end

we rely on a simplified modeling framework based on a metapopulation scheme describing a

network of subpopulations (nodes) coupled with mobility processes (links, see Figure 5.14A)

whose features reproduce the topological and mobility properties of real-world transportation

systems (82; 233).

We consider a synthetic metapopulation system whose demographic and mobility properties

are set in order to reproduce the statistical properties of the real systems. As briefly reviewed in

chapter 2, several mobility networks at different scales – intra-city (43; 234), inter-city (14; 235),

country scale (235), worldwide scale (15; 236) – and of different type – air travel (15; 236),
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Figure 5.12: Delaying effects in the international spread. A, Delay in the case importation

from Mexico to a given country compared with the reference scenario as a function of the travel

reduction α. The delay is measured in terms of the date at which the cumulative distribution of the

seeding from Mexico (see Figure 5.10) reaches 90%. The dotted line shows the logarithmic behavior

relating the delay as a function of the imposed restrictions. The largest delay, gained when imposing

α = 90%, is less than 20 days for all countries. The model also considers the implementation of

sanitary interventions in Mexico during the early stage that was able to damp the exponential

increase of cases in the outbreak zone. Travel restrictions would therefore lead to a larger impact

during this phase due to the mitigating effect on the local epidemic. If a country would seeded

during this phase, the resulting delay induced by the travel restrictions would have been larger,

thus creating the observed differences in the resulting delays by country. B, as in A, where earlier

dates for the start of the intervention are considered, at fixed α = 90%: April 25, corresponding

to the day after the international alert; April 16, corresponding to the epidemic alert in Mexico;

March 28, corresponding to the onset of symptoms of the first case in the US; and 6 weeks before

the international alert. In all these scenarios and for different countries, the delay is always less

than 20 days, highlighting that even the enforcement of strong travel reduction as early as possible

would have had little effect.

77



Global spread of H1N1 pandemic influenza

10
0

10
1

10
2

10
3

10
4

10
5

kikj

10
3

10
4

10
5

10
6

<
 w

ij >

10
2

10
3

10
5

kikj

10
0

10
2

10
4

<
 w

ij >

10
0

10
2

10
4

10
6

kikj

10
0

10
1

10
2

10
3

<
 w

ij >

10
0

10
1

10
2

10
3

k

10
-4

10
-2

10
0

P(
k)

World-wide airport network

10
0

10
1

10
2

10
3

k

10
-6

10
-4

10
-2

10
0

P(
k)

US county commuting network

10
0

10
1

10
2

10
3

k

10
-6

10
-4

10
-2

10
0

P(
k)

Italian municipality commuting network

Figure 5.13: Degree distributions and average weight of the connections as a function of the

product of connected node degrees for three empirical mobility networks.

commuting (14; 235), movement of people between city locations (43; 234) – have been studied

and found to exhibit large-scale heterogeneities at different levels. In particular, the number of

connections k from a given location is generally described by a broad distribution P (k), with

P (k) representing the probability that a randomly extracted node has degree k. In addition, the

fluxes of traveling people (the weight wij of the link connecting i to j (15)) are also found to

be characterized by very large fluctuations with a weight probability distribution P (w) spanning

several orders of magnitude. Finally, a statistical law relating the travel flux wij to the number

of connections departing from the two ending nodes i and j was found in the worldwide air

transportation network (15):

wij ∼ (kikj)
θ
. (5.3)

These properties are illustrated in Figure 5.13 for the case of three empirical mobility networks

characterized by different spatial scales: the air transportation network analyzed in (15), the

commuting patterns among counties in the United States (208) and among municipalities in

Italy (237). The figure reports for the three datasets the results for the degree distribution P (k),

and the travel fluxes wij as functions of the topology expressed in terms of kikj . All networks

display large heterogeneities in the degree distribution and exhibit travel fluxes consistent with
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Eq. 5.3. It is worth to note that these statistical features are invariant under changes of the mean

of transportation and of the spatial scale, thus pointing out their robustness as peculiar aspects

characterizing these systems. Disregarding the high-resolution details of numerical approaches,

this synthetic metapopulation model can be analyzed, defining a new theoretical framework that

allows for the study of epidemic containment measures. Starting from a single subpopulation

infected at time t = 0, it is possible to describe the invasion dynamics at the subpopulation

level in a Levins-type approach by considering the microscopic dynamics of infection and of

individual travel (233). The system is characterized by a subpopulation reproductive number

R∗. Analogous to the reproductive number R0 at the individual level, R∗ indicates a threshold

behavior of the system: if R∗ > 1 the epidemic reaches global invasion; otherwise, it is contained

in the subpopulation of the first infected case. It is possible to derive an expression for the global

invasion threshold in a branching process approximation (238; 239).

Following the empirical analysis of Figure 5.13, we assume a metapopulation model whose

underlying structure is heterogeneous to include degree fluctuations, and characterized by travel

fluxes following Eq. 5.3. Both topology and travel fluxes are therefore expressed in terms of the

degree k of each subpopulation. A convenient description is then provided by the degree-block

variables of the metapopulation system (82), where each quantity that depends on a subpopula-

tion i (e.g. population size, number of infectious, etc.) depends only on the subpopulation degree

ki. This corresponds to a mean-field assumption for which subpopulations with a given degree

k are considered statistically equivalent. The method is general and can be used for different

disease compartmentalization, but here we have in mind an SIR-like model. Under the assump-

tion that subpopulations having the same number k of connections are equivalent, we define

D
0
k
as the number of diseased subpopulations of degree k at generation 0 (i.e. at the beginning

of the branching process). During the entire duration of the outbreak experienced by the D
0
k

subpopulations, each of them can in principle seed some of the neighboring subpopulations thus

leading to a number D1
k
of diseased subpopulations of degree k at generation 1, for various values

of the degree k. By iterating the seeding events, it is possible to describe the evolution of the

number Dn

k
of diseased subpopulations with degree k at generation n, yielding (233; 240):

D
n

k
=

�

k�

D
n−1
k� (k� − 1)P (k|k�)(1−R

−λkk�
0 )

�
1−

n−1�

m=0

D
m

k

Vk

�
(5.4)

The r.h.s. of the equation 5.4 describes the contribution of the subpopulations of degree k
� at

generation n − 1 to the infection of subpopulations with degree k at generation n. Each of

the D
n−1
k

has (k� − 1) possible connections along which the infection can proceed (the -1 term
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Figure 5.14: Network heterogeneity and failure of travel restrictions aimed at containment. A,

Schematic illustration of the simplified modeling framework based on a metapopulation scheme. At

the macroscopic level the system is composed of a heterogeneous network of subpopulations. At the

microscopic level, each subpopulation contains a population of individuals. The infection dynamics

are described by a simple compartmentalization (compartments are indicated by different colored

dots in the picture). Within each subpopulation, individuals are mixed homogeneously and can

migrate from one subpopulation to another following the mobility connections of the network. In

this way the disease can spread at the subpopulations level. B, Plot of the global invasion threshold

R∗ described by Eq. 5.10. Here, R∗ is plotted as a function of the basic reproductive number R0

and the traffic reduction α, which is the parameter representing the percentage of variation in the

total traffic w0 in Eq. 5.10. Only in the case of extremely low values of R0 or extremely large values

of α is it possible to reduce R∗ below the threshold.

corresponds to the link through which each of those subpopulations received the infection). In

order to infect a subpopulation of degree k, three conditions are needed: (i) the connections

departing from nodes with degree k
� point to subpopulations of degree k, as indicated by the

conditional probability P (k|k�); (ii) the reached subpopulations are not yet infected, as indicated

by the term
�
1−

�
n−1
m=0

D
m
k

Vk

�
, where Vk is the total number of subpopulations with degree k; (iii)

the outbreak seeded by λk�k infectious individuals takes place, and the probability for this event to

occur is given by (1−R
−λkk�
0 ) (241). The link between the microscopic dynamics of the infection

transmission among individuals and the coarse grained description at the metapopulation level

is encoded in the term λk�k. It represents the number of infectious people traveling from the

diseased subpopulation k to the neighboring subpopulation k
� during the entire duration of the

outbreak, and it depends on the details of the diffusion process of individuals as well as the

individual travel behavior and its interplay with the disease stages.
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We assume that the rate of diffusion on any given edge from a subpopulation of degree k to a

subpopulation of degree k
� scales linearly with the travel flux wkk� from k to k

� and is inversely

proportional to the population size Nk of the origin location, i.e. dkk� = wkk�
Nk

= w0(kk
�)θ

Nk
, where

we used the statistical law of Eq. 5.3 observed in real mobility networks as shown in Figure 5.13.

The term λk�k can be explicitly written as λk�k = dk�kF(D) where F(D) is a function of the set of

disease parameters D that represents the number of individuals that are potential seeders during

the whole unfolding of the epidemic and depends on the choice of the compartmentalization of

the epidemic model. At the first stage of the infection when most of the subpopulations are

susceptible
�

n−1
m=0

D
m
k

Vk
∼ 0 and assuming an uncorrelated network so that P (k|k�) = kP (k)/�k�

(242), and a disease with a reproductive ratio close to the epidemic threshold, i.e. R0 − 1 << 1,

equation 5.4 can be rewritten as:

D
n

k
=

�

k�

D
n−1
k� (k� − 1)kP (k)/�k�(R0 − 1)w0(kk

�)θ · F(D) (5.5)

Introducing the new variable Θn =
�

k
D

n

k
(k − 1)kθ, one can re-sum the previous relation as:

Θn = Θn−1(R0 − 1)ω0

�

k

k
2 − k

�k� k
2θ
P (k) · F(D) (5.6)

and finally:

Θn = Θn−1(R0 − 1)ω0
�k2θ+2� − �k2θ+1�

�k� · F(D) (5.7)

The global invasion leading to a growing number of diseased subpopulations will occur if:

R� = (R0 − 1)ω0
�k2θ+2� − �k2θ+1�

�k� · F(D) > 1 (5.8)

In order to explicitly compute λkk� and hence F(D) we need to specify the compartmentaliza-

tion chosen for the disease modeling. Extending the analysis of Ref. (233; 240), we explore more

structured and realistic compartmentalizations that take into account the presence of latent and

asymptomatic individuals and envision a possible modification of the traveling behavior after

presenting clinical symptoms. More in detail, considering the full compartmental model (see

Figure 4.2), the number of seeds λkk� can be approximated to the first order by

λkk� = dkk�
�
(pt(1− pa) + pa) (�

−1 + µ
−1)S∞Nk + (1− pt)(1− pa)�

−1S∞Nk

�

= dkk�S∞Nk

�
�
−1 + (pt(1− pa) + pa)µ

−1
�
, (5.9)

since each of the S∞Nk infectious individuals (with S∞ being the fraction of the population

that contracted that disease, namely the epidemic size (71)) can travel with rate dkk� during

81



Global spread of H1N1 pandemic influenza

a time period that is determined by his stage of disease. Asymptomatic individuals and a

fraction pt of the symptomatic can diffuse out of the diseased subpopulation during a time

window that equals the sum (�−1 + µ
−1) of the average latency and infectious periods, whereas

the (1 − pt)(1 − pa)S∞Nk non-traveling symptomatic individuals can only diffuse during their

latency state of duration �
−1.

By explicitly introducing the expression of the epidemic size S∞ for an SEIR local dynamics

with R0 close to 1 (241), we obtain the following expression for the global invasion threshold R∗:

R∗ =
2(R0 − 1)2

R
2
0

�
�
−1 + µ

−1 (pt(1− pa) + pa)
�
w0

�k2+2θ� − �k1+2θ�
�k� . (5.10)

The quantity R∗ is thus the product of three functions that depend on the disease parameters,

as well as the topology and fluxes of the mobility of individuals. Travel-related interventions can

be modeled as the reduction of the mobility scale w0 or the reduction of the traveling probability

pt of symptomatic cases. The effect of such interventions is however damped by the topological

heterogeneities encoded in P (k) that lead to very large values of the ratio �k2+2θ�/�k�. Therefore,

a reasonable reduction in the travel flows w0 is not sufficient to decrease R∗, keeping the value

well above the threshold as shown by the 3D plot reported in Figure 5.14B.

In order to better understand the crucial role of the topological heterogeneity of the mobility

network, we compute R∗ for a homogeneous network with the same average values of degree

�k� and weight �w� as the heterogeneous one. In this case, all nodes have the same degree

�k� and all the links are characterized by the same weight �w�, which leads to a traveling rate

dkk� that is simply �w�/N through all the connections. Then, the number of seeds is given by

λkk� = �w�S∞
�
�
−1 + (pt(1− pa) + pa)µ−1

�
. Replacing this term in Eq.5.4, we obtain

R∗ =
2(R0 − 1)2

R
2
0

�w� (�k� − 1)
�
�
−1 + µ

−1 (pt(1− pa) + pa)
�
. (5.11)

Figure 5.15 compares the heterogeneous and homogeneous network, and shows for both cases

the two-dimensional projection of the functional R∗(R0,α) (α indicates the travel reduction

affecting w0 in Eq. 5.10 and �w� in Eq. 5.11, respectively). In both cases the epidemiological

parameters, �, µ, pa and pt, are set as described in section 5.2. The red and green curves indicate

the epidemic threshold R∗(R0,α) = 1 for heterogeneous and homogeneous networks, respectively.

The picture highlights how the heterogeneity of the mobility network is responsible for favoring

the epidemic invasion.

Similar conclusions apply for entry screening at the airports modeled by a reduction in the

traveling probability pt, and the modeling of effective containment policies, reducing R0 and the

82



Global spread of H1N1 pandemic influenza

 1  1.1  1.2
0%

20%

40%

 60%

80%

100%

homogeneous network
heterogeneous network

R*<1 on heterogeneous and homogeneous network

R*>1 on heterogeneous network and
R*<1 on homogeneous network

R*>1 on heterogeneous and homogeneous network

R0

Figure 5.15: Two-dimensional projection of the functional R∗(R0,α). Different gradations of grey

distinguish the regions of the parameters space above and below the global epidemic threshold, while

the red and the green curves indicate the epidemic threshold R∗(R0,α) = 1 for the heterogeneous

an homogeneous network respectively.
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total number of cases. The large heterogeneity of human mobility patterns is therefore responsible

for the fact that travel restrictions are largely ineffective for containing an emerging pandemic.

Our analysis of the 2009 H1N1 pandemic shows that the observed decline in air travel to/from

Mexico was of too small a magnitude to impact the international spread. Stricter regimes of travel

reduction would have led to delays on the order of two weeks even in the optimistic case of early

intervention. It is unlikely that given the ever-increasing mobility of people travel restrictions

could be used effectively in a future pandemic event.

5.6 Assessment of model predictions and discussion

In the previous sections we have described GLEaM, a global stochastic simulation model of

influenza epidemic based on real data on human population distribution and mobility, and its

application to the 2009 A/H1N1 pandemic. We have presented the work conducted and real-

ized in real time during the pandemic emergency that led to the publication in summer 2009

of the predicted timing for the pandemic wave in the countries of the Northern Hemisphere for

the fall/winter period. In the previous section we already presented a comparison between the

numerical results achieved with GLEaM and the real data regarding the contribution of im-

ported cases to a local outbreak in the early phase of the epidemic (see Figure 5.10). In this

section we present a wider comparison that considers the complete unfolding of the epidemic

activity. To compare the simulated results to the observed temporal and geographic pattern of

the pandemic fall/winter wave, we collected data from the surveillance monitoring systems of

46 countries around the world, accessing their official websites on a regular weekly basis and

downloading their reports with the most relevant influenza activity indicators. Each surveillance

system tracks different influenza activity indicators. Our data sources reported weekly at least

one or more of the following indicators: ILI (Influenza-Like Illness) incidence, ARI (Acute Res-

piratory Infection) incidence, fraction of ILI visits or fraction of ILI patients per sentinel doctor,

number of H1N1pdm laboratory confirmed cases. The indicators are generally based on the

number of individuals that seek medical consultation and show respiratory symptoms that can

be specifically diagnosed as influenza (ILI) or, with a broader set of possible causes, as acute

respiratory infections (ARI). Even though every indicator is affected by biases, especially related

to the differences in healthcare seeking behavior of different population groups, we assume that

surveillance data provide a reliable estimate of the timing of the influenza activity peak, which

is the only relevant information we were interested in at this stage of our work. For the same
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reason, we do not address the problem of estimating the real incidence of the disease, accounting

for normalization factors or different consultation rates. Since we are considering the fall wave of

the pandemic only, it seems reasonable to assume a constant surveillance and consultation rate

across time in a given country. The same assumption would not be true when comparing the first

and the second waves, as e.g. in the United Kingdom (243). Finally, to take into account the

uncertainty related to the different surveillance reporting systems, we display the observed peak

weeks as a color gradient, whose limits correspond to the time interval where an incidence higher

than 80% of the maximum was observed. In the Northern Hemisphere, most of the countries

experienced a single major pandemic wave during autumn. The influenza activity peaked, during

the October-December period, that is much earlier than the usual timing of seasonal influenza,

generally peaking between January and March.
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Figure 5.16: Peak timing in the Northern Hemisphere: simulations and real data. Peak weeks

of the epidemic activity in the baseline scenario (grey). The reference ranges of the simulated peak

week are obtained by the analysis of 2,000 stochastic realizations of the model for three different

values of the seasonal rescaling factor, αmin = 0.6, 0.65 and 0.7. The peak weeks reported by

the surveillance are shown as color gradients, whose limits correspond to the time interval where

an incidence higher than 80% of the maximum incidence was observed. Numbers from 1 to 5

indicate the kind of data provided by the surveillance of each country. Numbered weeks of the year

correspond to the calendar used by the US Center for Diseases Control and Prevention.
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Findings shown in Figure 5.16 indicate a good agreement in the predicted timing for a large

variety of countries, including underdeveloped ones, as they all lie within the 95% reference range

of the simulations, thus signaling the potentially critical importance of such an approach during

an epidemic emergency.

Beyond the comparison with the actual peak times of the epidemic, further research aimed at

a broader validation of the GLEaM model predictions against the data from the 2009 pandemic is

still under study. As already mentioned in the previous sections, the comparison of the predicted

attack rates with real data is hampered by the limited availability of accurate data on the total

number of infected people (244). Surveillance data usually rely on people who seek medical care

for illness, while asymptomatic individuals or individuals with mild symptoms are not counted

and this leads to an underestimation of the actual number of infections. By adjusting for con-

sultation rates, current estimates of the epidemic size range from 1.8% for symptomatic cases in

the UK (243), to 18% in France for the overall proportion of infected population (245), to about

14 − 29% of illness attack rate in the US (Center for Disease Control and Prevention, available

at http://www.cdc.gov/h1n1flu/estimates_2009_h1n1.htm). The large variability

of these estimates is related to the intrinsic under-ascertainment of surveillance systems, and

also to different healthcare-seeking behaviors that may vary from country to country as well as

change in time within the same population (see e.g. (243; 246; 247)).

The comparison of the model predictions with the empirical data would represent a valuable op-

portunity to assess the validity of our predictions also against the mobility network incorporated

in the model. The aim would be to understand whether the full complexity of the real data

considered in GLEaM was essential to obtain the predictions presented in the previous sections,

or if a simplified version of the model would yield similar results. Such studies, together with

the assessment of the model results against the overall burden of the epidemic, are still a work

in progress and they are a matter of interest of future investigations.
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As reviewed in chapter 2, many empirical datasets have been analyzed by leveraging on

statistical tools gathered from network science. In the last decade the development of such

techniques has been refined and nowadays a taylored analysis of a networked system is able to

unveil many non-trivial features and emerging phenomena. However most of the mathematical

and statistical tools developed so far for the study of complex networks have been devised with

the aim of understanding static topologies. In fact the lack of longitudinal data led quite often to

an aggregated view of intrinsically dynamic systems as, for instance, for the pioneer investigations

on the network of human sexual contacts (57). On the other hand, when the links are present

for long time periods (depending on the investigated research question) a static representation

of the network topology perfectly fits the real setting as in the case of the power grid (13) or

inter-urban streets (14) that are static infrastructures growing over long time scales. Nonetheless

in different settings it can be necessary to go beyond a static representation because the system
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dynamics itself can be intricate and worthy to be addressed in order to better understand the

unfolding of dynamical processes affected by the temporal evolution of the underlying evolving

system. In this perspective the emerging challenge of the study of complex networks is to include

the temporal dimension in the system description.

New and richer datasets including temporal information are necessary to define novel and proper

observables to investigate and characterize networked systems evolving over time. In this chapter

we take steps in this direction, taking as a case study the longitudinal dataset of Italian cattle

movements that reports the mobility of individual animals among farms on a daily basis. The

importance of a data-driven approach for the development of new mathematical tools aimed at

describing dynamical networked systems resides in the possibility of comparing the dynamical

behavior of different datasets, it helps in showing the limits of current techniques and it stimulates

discussions and provides hints on the tools needed for a deeper understanding. Despite their

importance for the spread of zoonotic diseases, our understanding of the dynamical aspects

characterizing the movements of farmed animal populations remains limited as these systems

are traditionally studied as static objects and through simplified approximations. Here, the

complexity and inter-relations between topology, function and dynamical nature of the system

are characterized at different spatial and time resolutions, in order to uncover patterns and

vulnerabilities fundamental for the definition of targeted prevention and control measures for

emerging zoonotic diseases. The chapter is organized as follows. After the description of the

dataset under study, we first recognize the intrinsic dynamics at the agent level and then we

characterize the system dynamics in terms of successive snapshots obtained from aggregating

the data on different time windows. This allows us to study the emergence and robustness of

network properties across time and the role of the timescale of aggregation. We then analyze the

dynamical evolution of the network at the micro level, and explore its impact on the structural

backbone of the system. The data analysis is then completed by introducing a novel definition

of dynamical motifs for a time dependent evolving network, able to uncover causal recurrent

paths in the bovine movements. We then provide insights about the efficacy of control measures

against spreading phenomena. In the last section we model an infectious disease spreading on

the system and we investigate the impact of the network dynamics on the unfolding of the

epidemic. In particular, we assess the role of initial conditions in generating an outbreak and

classify the seeds into clusters leading to similar disease invasion pathways.We investigate the

temporal stability of the clusters and put forward a novel procedure to identify specific nodes
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that should be monitored as disease sentinels that can be exploited for epidemic risk assessment

and inform the design of optimal surveillance systems.

The results presented here are based on the following papers:

• Dynamical patterns of cattle trade movements published in PLoS One in May 2011,

• Seeds clustering and sentinel identification for disease spreading on dynamical networks

submitted.

6.1 Background

The 2001 Foot-and-Mouth disease epidemic in the UK (248) represents a paradigmatic example

of how the animal movements related to the trading and marketing of livestock may offer an

easy mean for rapid dissemination of zoonotic infectious diseases among animal holdings, with a

spatial extent covering large geographical distances. Animal diseases may compromise livestock

welfare and reduce productivity, and may in addition represent a threat to human health, since

the emergence of human diseases is dominated by zoonotic pathogens (249). Disease management

and control is thus very important in order to reduce such risks and prevent large economical

losses (250). To correctly evaluate the possible preventive and control measures, a detailed knowl-

edge and regulation of animal movements is needed. A crucial step into addressing this issue

has been taken after the Bovine Spongiform Encephalopathy crisis of 1997, when the European

Union Council imposed the systematic identification and traceability of individual bovine ani-

mals (251), and similar cattle identification and tracing systems have also been implemented in

other countries (252). Large datasets describing the cattle movements at the individual animal

level on a daily basis have thus become available. Such monitoring efforts have led to a unique

opportunity of studying animal movements in a detailed way, characterizing their behavior in

time and space, and identifying patterns that may become relevant for the spread of a potential

disease in the cattle population. A natural description of these systems is offered by the network

representation in terms of nodes (the elements of the system, i.e., the premises in the cattle flow

case) and links (the interactions among its elements, i.e., the cattle movements among premises)

(8; 27; 37; 38; 39; 253). The application of network approaches to veterinary medicine is however

rather new. As reviewed recently by Dubé et al. (254) and by Martinez-López et al. (255), few

papers have been published that analyze livestock movements by constructing the network of

displacements and studying the relations between nodes with a systemic approach, thus going
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beyond the simple characterization of single-node properties (as e.g. the amount or frequency of

displacements on and off single farms). Most of the veterinary studies are indeed based on static

representations of cattle flows - where the temporal information of the displacements is collapsed

into few successive snapshots of the datasets (256; 257; 258; 259; 260; 261; 262; 263; 264), or

explored through the time series analysis of simple global quantities (257; 258; 261; 262; 265)

- or focus on the results of spreading simulations based on the dynamical network and on its

static counterparts (266). In the analyses performed so far, results have shown a large het-

erogeneity in the connectivity patterns among premises, with probability distributions for the

number of incoming and outgoing connections (in-degree and out-degree, respectively) charac-

terized by broad tails (256; 257; 258; 260; 261). Such results are typically obtained from the

investigation of a static network obtained by aggregating data on the full available time window

(256; 257; 260), and few examples of structures extracted from shorter aggregation times (such

as e.g. monthly and weekly networks) have been investigated (258; 261), without, however, ex-

ploring in a systematic way the stability of the observed features across time. With the aim of

assessing the spreading potential induced by the complex structures hidden in the data, much

work has been dedicated to the analysis of the components of the network (giant component,

weakly and strongly connected components, etc.) in order to estimate the upper bounds of the

epidemic size (256; 258; 260; 261; 265; 267), and to the ranking of nodes in terms of various

measures of centrality defined a priori, such as degree, betweenness, and others (256; 259; 267),

that in other systems were found to impact the behavior of dynamical processes taking place on

top of them (37; 77; 82; 268; 269; 270; 271; 272; 273; 274; 275; 276; 277; 278). The efficacy of

prevention and control measures based on this information (256; 258) have been studied, though

no assessment of the stability of these features in time is provided, thus affecting the applicability

of the same measures in different points in time, due to the time evolution of the network.

6.2 Data description

Data on cattle trade movements were obtained from the Italian National Bovine database, which

is administered by the Italian National Animal Identification and Registration Database (279).

The database details the movement of the entire Italian population of bovines among animal

holdings, providing a comprehensive picture of where cattle have been kept and moved within

the country. Each movement record reports the unique identifier of the animal, the codes of
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the holdings of origin and destination, and the date of the movement. Such tracking system

allows us to easily reconstruct the path of each bovine and to build the corresponding overall

network, minimizing the problems related to data accuracy that are found in other tracking

systems that do not provide both origin and destination of the displacements (260; 261). Ad-

ditional information was provided for the animal holdings, including the type of premises (i.e.

fattening farm, dairy farm, pasture, slaughterhouse, assembly center, market, genetic material

center, and other), and their georeferenced metadata in terms of the geographic coordinates

of the centroids of the municipality where the premises were located. Here we examine the

records for the year 2007 (256). A total of 4,946,201 bovines were tracked, counting for 7,177,825

recorded displacements of individual animals and 1,592,332 distinct batches movements. There

were 173,139 active premises during the year (i.e. they either received a batch or moved it),

of which 49.9% were fattening farms, 26.1% were dairy farms, 1.7% were pasture, 1.1% were

slaughterhouses, 0.4% were assembly centers, 0.06% were markets, 0.04% were genetic material

centers, and the remaining 20.7% were labeled as other premises. Active premises are located

on almost the entire territory of the country, covering 96% of the Italian municipalities, though

their distribution is not uniform - a single municipality can indeed contain a number of holdings

varying from few units to hundreds. A total of 365 days of activity was recorded, from January

1st to December 31st of 2007, signaling that at least one displacement per day took place in the

year under study. The dataset also contains information on the importation and exportation

of cattle; these movements, representing less than 1% of the total number of movements in the

database, were however excluded from the analysis as the focus of our study is on the full set

of displacements within national boundaries. Table 6.1 summarizes some basic properties of the

dataset.

Differently from human mobility data where the information is usually not provided at the

individual level and is aggregated into flows that cannot be traced back to the individual’s

behavior (15; 78), the cattle movement dataset provides detailed information at the individual

level through tracking each single animal during its displacements. This allows two different levels

of description of the dynamics: (i) the agent-centered point of view that considers the features

of the animals’ movements (similarly to what can be done for individuals based on anonymized

phone cell data (21; 48)); (ii) the network point of view that focuses instead on the system’s

behavior and is given by the evolution of the topology, and of the links’ and nodes’ properties

from one time window to the next. These views provide complementary information for the

characterization and understanding of the dataset. Gaining insight from the agent-centered
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Table 6.1: Cattle trade movements: data from the Italian National Bovine database for the year

2007.

property value

tracked bovines 4,946,201

number of animal movements 7,177,825

number of cattle movements 1,592,332

average batch size 4.5

days of activity 365 [Jan 1- Dec 31]

municipality involved 7,780 (96% of the Italian municipalities)

number of active farms 173,139

average number of active farms per municipality 25

dynamics aims at characterizing the trajectories of each bovine, uncovering the possible presence

of predictable patterns, similarities or large heterogeneities, in the perspective of understanding

the potential for disease propagation across the system, through its agents.

As bovine displacements are subject to livestock commercial constraints, we expect that the

resulting bovine mobility patterns will be different from human mobility patterns (21; 22; 48; 78).

Indeed, the number of displacements of any single animal over one year is quite restricted

(257; 280), as shown in Figure 6.1 , in particular if compared with human behavior. On av-

erage bovines experience 1.45 displacements during a year. Interestingly however, some animals

perform more than 10 moves, which may potentially result in superspreader behaviors. Figure

6.1 also reports the distributions of geographical distances covered either in a single displacement

(i.e., the geographical distance between the origin and destination farms), or following the tra-

jectory of a single animal in one year. Despite a well-defined maximum at short distances, these

distributions display rather broad tails corresponding to very long routes (257; 261). In addition,

the distributions are robust against filtering on the yearly batch size displaced, indicating that

very long routes are performed by both small and large batches. The possibility of such long

displacements should be taken carefully into account when dealing with spreading of diseases, as

they could result in epidemics rapidly reaching geographically very distant parts of the system.

Another interesting issue concerns the time interval between two consecutive displacements

of an agent, corresponding to the period that a given bovine spends in the same holding (257).

This time interval may represent the time of exposure of the animal to a potential outbreak

taking place in the holding, or the time during which it could spread the disease to other animals
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Figure 6.1: Bovine activity. Panel A shows the probability distribution of the number of displace-

ments that a bovine experiences during one year. Panel B displays the probability distributions of

the distances covered during a single displacement. Since many links correspond to the displacement

of very few animals, the same distribution is shown with different thresholds, i.e. considering only

routes with at least 2 or 10 bovines displaced during the year under study. This corresponds to keep-

ing respectively 42% and 13% of the original displacement routes. Panel C shows the probability

distribution of the distances covered by a single animal during its trajectory in one year.

if infected. Since the different types of farms have different roles in the bovines trade, the global

distribution shown in Figure 6.2 A is a convolution of several different behaviors. In particular,

the two peaks at 3 and 6 months correspond to pasture and fattening farms, respectively, as

shown by the other panels of the Figure that disaggregate the results by premises type. Except

for the markets, in which bovines spend only few days, the distributions of these time intervals

are broad for each farm type, with different slopes. This points out the large variety of possible

timescales characterizing the time during which an animal stays in a given premises, indicating

that homogeneous assumptions on the length of stay of an animal at a given holding do not

provide an accurate description of reality. The broadness of these distributions should therefore

be taken cautiously into account in the modeling approaches.

6.3 Daily and aggregated networks

The system of cattle trade movements can be represented in terms of a network, similarly to other

mobility datasets and transportation systems (14; 15; 16; 21; 22; 43; 46; 78; 281; 282; 283). The

simplest representation is obtained when nodes correspond to premises, and a directed edge is

drawn between two nodes whenever a displacement of bovines occurs between the corresponding

premises. Since data on cattle movements is provided on a daily basis by the original dataset,

it is thus possible to construct 365 daily networks, each containing the activity of nodes and

links for one day. It is also useful to construct static snapshots of the system by aggregating the
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Figure 6.2: Probability distributions of the time interval τ between two consecutive displacements

of a bovine. τ corresponds to the time during which the bovine stays at given premises. The season-

ality behavior of breeding is clearly shown by the peaks at 3 and 6 months, while at shorter times

the distribution behaves as τ
−1. The global distribution is a convolution of the time distributions

obtained for different farm types, shown in panels B to H.
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observed activity over various time windows ∆t in order to assess how the choice of the time

window affects the observed statistical properties and how such properties change across time for

a fixed ∆t. This series of static views partially looses the intrinsic dynamical nature of the system

within the given time window, however it allows to study the static snapshots with the usual

techniques of network theory (27; 37; 38; 39; 253; 256; 257; 258; 259; 260; 261; 262; 263; 264).

Given a specific choice of ∆t, we can construct 365/∆t such consecutive snapshots, corresponding

to the time windows [n∆t, (n + 1)∆t], with n going from 0 to 365/∆t − 1. In addition to the

intrinsic time resolution of the system, ∆t = 1 day, we also consider time windows of ∆t = 7

days, ∆t = 28 days (we avoid aggregating over calendar months to avoid fluctuations due to

the different duration of the months during one year), and ∆t = 365 days. These choices give

rise to 365 daily networks, 52 weekly networks, 13 monthly networks, and one annual network,

respectively, the latter aggregating the whole activity reported in the dataset. While in the

literature annual and monthly networks have been typically analyzed (with the exception of Ref.

(258) that studied the weekly networks of French data), here we consider different values of ∆t in

order to systematically explore the dynamical features of the networks on a variety of timescales.

The simplest dynamical information is given by the evolution of the sizes of the aggregated

networks. The numbers of nodes and links follow consistent patterns (as shown in Figure 6.3)

with both weekly cycles and clear seasonal properties that distinguish the livestock activity across

the different seasons (257; 258; 261; 262; 265). On a monthly time scale, it emerges that the

summer activity is substantially lower than the activity registered during the rest of the year.

The evolution of the daily snapshots sizes shows moreover how the overall movements decrease

strongly during the weekends, leading to increasingly smaller and more fragmented networks that

put obstacles to the propagation of a disease across the system.

The analysis of the various static snapshots gives access to a first characterization of the system

under consideration, investigating both its structural and dynamical properties. This allows

for the first time the comparison of the features obtained at different timescales, and, for each

timescale, the possible emergence of properties that remain stable or change across time, as the

activity captured in each snapshot may indeed vary from one snapshot to another. Even the

very basic features of the network, such as e.g. the number of nodes (noted N) and of edges,

depend both on the time of the year at which we observe the system and on the duration of

the aggregation ∆t (258). As the networks are directed, each node i is characterized by both

its out-degree ki,out (i.e., the number of premises to which a movement is registered within

the given time window) and in-degree ki,in (i.e., the number of premises from which the node
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Figure 6.3: Time evolution of the global static features of networks on different timescales. The

timeline of the number of nodes (top), the number of links (center), and the fraction of nodes in the

giant component (bottom) are shown for daily, weekly, and monthly networks. Clear weekly and

seasonal patterns are detected.
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receives an incoming flux of animals within ∆t). For each snapshot, we consider only nodes with

ki,in + ki,out > 0, defining them as active nodes since they correspond to premises that have

registered at least one incoming or outgoing displacement during the aggregation time window.

Moreover, the links of these networks can be weighted according to two distinct definitions,

measuring either the number of cattle batches moved or the total number of animals moved (260).

More specifically, we denote by w
B

ij
the amount of cattle batches movements recorded within the

given time window ∆t from the holding i to the holding j. The weight w
A

ij
instead indicates

the total number of bovines moved from i to j during ∆t. The first quantity provides a binary

information on a daily basis, and counts the number of movements occurring in the time window

∆t under consideration; the second measures the magnitude of the movements. The introduction

of two different definitions of the weight is useful in order to explore whether there are any

trivial correlations among the two quantities, and to assess the limits of the approximation that

uses less detailed data such as the number of movement batches, which are usually more readily

available than the detailed movements of animals at the individual level (266). This would be very

important in the framework of modeling approaches based on real data. By following the usual

definition of strength of a node in a weighted network (15), we denote by s
B(A)
i,in

=
�

j
w

B(A)
ji

and

s
B(A)
i,out

=
�

j
w

B(A)
ij

the in-strength and out-strength of node i, respectively, quantifying the total

numbers of incoming and outgoing batch (B) and animal (A) movements of the corresponding

premises during ∆t. Table 6.2 summarizes the basic properties of the aggregated networks for

the various values considered.

At the smallest possible aggregation scale, ∆t = 1 day, the networks are small and very

sparse, including an average number of nodes of the order of few thousands (to be compared to

the total of about 105 nodes active across the whole year), and they are typically composed of

small disconnected components, similarly to what was observed in the UK cattle data (280). For

larger values of ∆t, i.e. longer aggregation times, an increasing number of nodes and links are

present in the networks, since more and more distinct displacement events are registered during

the time window. The average number of nodes of the weekly and monthly networks increases

of one order of magnitude with respect to the daily case, as observed in the weekly and monthly

snapshots of the French cattle data (258). This number does not show great variations in time

for a given ∆t, however it remains very small if compared to the full network, thus indicating

the presence of strong changes in the activation of nodes from one month to the other. When

aggregating over time windows of increasing duration, the networks not only increase in size

but also become denser, with the number of active connections growing faster than the number
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Figure 6.4: Degree distributions for networks aggregated on different timescales . Since a single

value of ∆t (for ∆t < 365 days) yields multiple snapshots, each panel shows one distribution

obtained for a given snapshot (circles) superimposed to a subset of the distributions obtained for

the other snapshots at the same value of ∆t (grey lines). Panels A to D report the distributions of

the in-degree kin, that show very large fluctuations and a power-law like behavior with exponent

close to -2 in all cases. Panels E to H present the distributions of the out-degree kout, characterized

by a cut-off that strongly depends on the length of the aggregating time window.
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Figure 6.5: Strength distributions for networks aggregated on different timescales ∆t. Panels A

to D report the distributions of the in-strength sin. Interestingly, the definition used to weight the

links does not affect the distribution of the incoming traffic: the distributions P (sAin) and P (sBin) are

very close. Panels E to H present the distributions of the out-strength sout, whose behavior instead

depends strongly on the type of weight considered. Broader tails are observed when considering the

total number of animals displaced out of a given holding. The same representation of Figure 6.4 is

adopted, with symbols representing the result of a particular snapshot, and grey lines the results

obtained for a subset of the other snapshots.
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Figure 6.6: Relation between the number of bovine traffic movements of a holding and its number

of connections for different values of ∆t. Panels A to D report the average in-strength of nodes

with a given value of in-degree, whereas panels E to H present the average out-strength of nodes

with given out-degree. The same representation of Figure 6.4 is adopted, with symbols representing

the result of a particular snapshot, and grey lines the results obtained for a subset of the other

snapshots.
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Table 6.2: Summary of the main features of the mobility networks obtained by aggregating the

data over a time window ∆t.

Aggregating time window variable average σ [min,max]

# of nodes 4.9 · 103 3 · 103 [85, 1.1 · 104]
∆t = 1 # of links 4.2 · 103 2.8 · 103 [49,104]

(365 networks) kin 0.9 6.2 [0,683]

kout 0.9 0.8 [0,178]

w
A

ij
3.6 10.4 [1,2039]

w
B

ij
1 0 [1,1]

# of nodes 2.6 · 104 2.8 · 103 [1.5 · 104, 2.9 · 104]
∆t = 7 # of links 2.8 · 104 3.4 · 103 [1.5 · 104, 3.2 · 104]

(52 networks) kin 1.1 11.9 [0,1595]

kout 1.1 1.1 [0,178]

w
A

ij
3.8 11.9 [1,2039]

w
B

ij
1.05 0.3 [1,7]

# of nodes 6.4 · 104 3.8 · 103 [5.6 · 104, 6.9 · 104]
∆t = 28 # of links 9 · 104 6.5 · 103 [7.8 · 104, 9.9 · 104]

(13 networks) kin 1.4 22.9 [0,4154]

kout 1.4 1.9 [0,219]

w
A

ij
4.8 18.1 [1,2039]

w
B

ij
1.3 0.8 [1,25]

# of nodes 1.7 · 105 - -

∆t = 365 # of links 5.77 · 105 - -

(1 network) kin 3.3 59.5 [0,13186]

kout 3.3 7.0 [0,649]

w
A

ij
9.8 65 [1,10845]

w
B

ij
2.7 5 [1,250]

of active nodes. The small disconnected components observed in the daily networks coalesce,

leading to an increasingly larger giant component (i.e. the largest connected component of the

network). Though snapshots up to monthly networks are small in size compared to the total

number of active nodes observed during the year, their structure and interconnectivity allows for

the creation of giant components spanning a large fraction of the aggregated networks , similarly

to what was observed in the analysis of cattle movement data in other countries (258). Starting

from daily networks that may offer only limited propagation at the daily scale, a giant component

emerges if aggregating on timescales ∆t � 7 that indicates the existence of paths of propagation
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from one node to another at the system level.

Figures 6.4 to 6.6 report a set of statistical properties of the networks generated by aggre-

gating the data on time windows of lengths ∆t =1, 7, 28, 365 days. Given that each ∆t value

corresponds to a set of snapshots (except in the case of ∆t = 365 days), for the sake of visu-

alization we show in each plot the distribution of the quantity under study for one particular

snapshot chosen as an example (red circles), overlaid to gray lines that indicate the behavior

displayed by the other snapshots corresponding to the same ∆t (in the weekly and daily cases,

given the large number of snapshots, we show a random subset). This allows us to monitor

the variations over time signaling changes of the system’s statistical properties, as a function of

changes in ∆t and the time of observation. Interestingly, these distributions are superimposed

for successive time snapshots at a fixed value of ∆t, denoting a statistical stationarity of global

distributions, describing the activity taking place at the microscopic level. This behavior, which

is observed here for the first time for cattle movement data, is consistently present for all ∆t

under study, and is similar to what was observed in other systems for which longitudinal data

is available, such as e.g. the airline transportation system analyzed in Ref. (49). Figure 6.4

displays the distributions of in- and out-degrees. The in-degree distributions are broad, with a

behavior close to a power-law and a slope approximately equal to -2. This is in agreement with

the results found for a specific month of the 2005 UK cattle data (261), and shows that this

behavior is a common feature of the system in various countries and, moreover, is independent of

∆t. The range of values of kin clearly increases with increasing values of ∆t. Large fluctuations

are observed also in the out-degree distributions, however the range of possible values of kout is

systematically one order of magnitude smaller than the corresponding range observed for kin,

not only for the annual network (260) but for every timescale investigated. Results show a clear

asymmetry in the receiving and sending activities of the animal holdings, which can be explained

by the typical activity of specific premises types, such as slaughterhouses, assembly centers and

also markets. Such premises are indeed responsible for assembling cattle trade fluxes for com-

mercial purposes, thus receiving batches from a large number of premises, assembling them and

moving larger fluxes to fewer premises. Similar probability distributions can be computed for

the weights as well, taking into account the two possible definitions. Figure 6.7 shows how the

weights wB have by definition a sharp cutoff at their maximum value ∆t, therefore limiting the

range of possible values they can assume in the case of small ∆t. On the other hand, the number

w
A

ij
of animals displaced between farms i and j is characterized by a broad distribution even
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Figure 6.7: Weight distributions for networks aggregated on different timescales ∆t. Red circles

refer to the binned distributions of the weight w
A

ij , measuring the number of animals moved along

the link ij, whereas green squares refer to the binned distributions of the weight wB

ij that counts the

number of batches displaced along the link. The same representation of Figure 6.4, with symbols

representing the result of a particular snapshot, and grey lines the results obtained for a subset

of the other snapshots. The cut-off of the w
B

ij distributions is naturally fixed by the choice of the

aggregating period ∆t. The distribution of wB

ij for the daily networks has been omitted, since it is

equal to 1 for wB

ij = 1 and 0 elsewhere.
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for the shortest time window ∆t = 1 day (257). This shows how cattle displacements are most

often characterized by a small number of animals, but that movements of very large numbers

are also observed with a non-negligible probability. Interestingly, the shapes of the distributions

are almost not affected by changes in ∆t, denoting underlying non-trivial mechanisms that make

these statistical properties stable across integrations on diverse timescales. Figure 6.5 shows the

in- and out-strength distributions, according to the two definitions for the weights. A pattern

very similar to the degree distributions is observed: the in-strength distributions are broad even

at small ∆t, while the out-strength distributions broaden significantly only as ∆t increases, es-

pecially for s
B

out
, which indicates the total outflow of batches. The asymmetry discussed above

is thus retained if we consider the total number of animals displaced in and out of premises.

Besides looking at the overall behaviors of these quantities in terms of probability distribu-

tions, it is interesting to explore whether non-trivial correlations arise that relate the topology

with the flows at the premises level, by considering the correlations between the strengths and

degrees of nodes. Figure 6.6 shows the results obtained when the strengths are defined in terms of

the weights wB and w
A, considering both the inflow and outflow dynamics. The behavior is lin-

ear for the in-strength, signaling an absence of correlation between the number of premises from

which a specific holding receives batches and the number of batches or bovines received on each

connection (15). In the case of the out-strength we observe instead a slightly superlinear trend

when s
A

out
is expressed as a function of the out-degree, showing that more active farms in terms

of number of connections also tend to send more animals on each connection (15), explaining the

asymmetry observed before in the variations of sout and kout with respect to sin and kin. For

increasing time window lengths, the aggregated networks take into account more displacement

events. Concerning the links and nodes present in a network at a given timescale ∆t, this means

that their weights, degrees and strengths are expected to increase when longer time windows

are considered. Notably however, we do not observe a simple shift of the whole distributions

towards larger values with a corresponding absence of small values: the distributions continue to

be broad, spanning several orders of magnitude, but the most probable values remain very small.

In the case of the degree distributions, this can be due to nodes that have very few connections

for any time window, or to nodes that are active only very rarely. For the weights distributions,

it shows that on any timescale there exists many links that are active only during few days,

already indicating the presence of a non-trivial underlying dynamics that cannot be uncovered

through the analysis of static snapshots only.
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6.4 Network microscopic dynamics

The results of the previous section show how the microscopic dynamics of cattle movements

is described by statistical properties that are found to be stationary, with a behavior that is

qualitatively invariant with respect to changes in the timescale (whereas size and magnitude of

fluctuations clearly depend on the time window ∆t). Here and in the following subsections we

aim at characterizing the underlying dynamics to uncover higher order correlations and relevant

temporal aspects leading to the observed behavior. By comparing the results obtained for the

weekly and monthly networks with those corresponding to the whole dataset, it is clear that a

strong dynamical activity shapes the evolution of the system on both global and local scales. As

an example, we show in Figure 6.8 a visualization of a subgraph for three consecutive monthly

networks. The subgraph is constructed by selecting a particular seed node (the same for all three

networks) and by considering all nodes at distance ≤ 3 from the seed (where the distance is

defined by the number of links traversed on the shortest path connecting the two nodes). Nodes

keep their position in the visualization if they are active over multiple snapshots. The figure

highlights how the structure of the neighborhood of a given node obtained at consecutive time

snapshots can widely differ: even highly connected nodes in one snapshot can disappear from

the neighborhood of the given node in the next snapshot, and hubs suddenly appear that were

absent from the previous snapshot.

6.4.1 Activity timescales

Similarly to the dynamics of single animals, the network dynamics can be first characterized by

the distributions of the activity and inactivity periods of nodes and links (49). These periods are

defined, for a given timescale ∆t, as the number of consecutive time steps in which a node, or a

link, is active (or not active, respectively). In the case of time windows of ∆t = 1 day, we remove

the weekends from the dataset as they are characterized by a much smaller activity, and consider

a node or a link to be continuously active if it is present in the snapshots of a given Friday and

of the Monday of the following week. The corresponding distributions are shown in Figure 6.9

for ∆t = 1 and 7 days. As seen also in the dynamics of the air transportation network (49),

most nodes and links turn out to be continuously active or inactive for only very short periods.

The distributions of activity periods are rather narrow in the case of daily networks, and can

be fitted by power-laws with exponent smaller than -4: most nodes and links are active only for

one day at a time, and only very few are continuously active for more than a few days. The

105



Dynamical network analysis and spreading simulations

n=2  (~February) n=3  (~March) n=4  (~April)

A B C

Figure 6.8: Neighborhoods of a selected node in three consecutive monthly networks. The sub-

graphs are obtained by showing all nodes within distance 3 from a selected node (in red in the

figure), for consecutive monthly snapshots. The visualization highlights how the neighborhood of

a given node may strongly change its structure in time. It is important to note that nodes that

disappear from the plots may still be present in the network, but are not shown as they may be at

distance larger than 3 from the seed, thus not belonging to its neighborhood.

distributions become significantly broader when considering weekly networks, where power-laws

with exponents close to -3 emerge. The difference observed by comparing ∆t = 1 and 7 days

can be easily explained by the integration over multiple days in the case of ∆t = 7: being active

in two consecutive such networks is a less stringent condition than being active each day of two

successive weeks. The inactivity periods ∆τ are characterized by much broader distributions

extending on all possible timescales, signaling that a node (or a link) may become active at a

given point in time without then participating to the dynamics for a long time interval. From the

point of view of control policies, such long inactivity periods would help in limiting the spread

through self-isolation of premises.

Given that the activities of nodes and links of the displacement network occur at both short

and long timescales, here we aim at characterizing the mechanisms behind the appearance and

disappearance of links in the system, and we focus on the weights wA that measure the number

of animals displaced along each link. As proposed in (49) we evaluate in particular the fraction

of appearing f
a and disappearing f

d links, as a function of their weight, in order to uncover a

possible correlation between a link’s stability and the number of displaced animals along that

link. More precisely, if E(w|t) is the number of links with weight w = w
A at time t and E

a(w|t)

is the number of such links that were not active at the previous time (and thus appeared at time

t), the fraction of appearing links is f
a(w) = E

a(w|t)/E(w|t). An analogous procedure leads
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Figure 6.9: Probability distributions of the duration τ of activity and of the duration ∆τ of

inactivity of nodes and links. Results are reported for daily (panels A to D) and weekly (panels

E to H) networks. In the daily case, weekend breaks are neglected as they are characterized by a

much lower activity and clear weekly patterns (see Figure 6.3 ). The observed peaks in P (∆τ) of

the daily networks correspond to inactivity periods of multiples of a week.

107



Dynamical network analysis and spreading simulations

P(w)

w
P
(w
)

10-8
10-6
10-4
10-2
100

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

f a

f d

Daily  networks

fa ,
  f
d

A

A

fa ,
  f
d

10-8
10-6

10-4

10-2

100

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

w

Weekly  networks

P
(w
)

A

B

10-8

10-6

10-4

10-2

100

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

Monthly  networks

w

P
(w
)

fa ,
  f
d

A

C

Figure 6.10: Fraction of appearing/disappearing links as a function of the weight associated to the

link. The weight considered here counts the number of animals, wA. Results for daily, weekly, and

monthly networks are shown (panels A, B, C, respectively). As a reference, the weight distribution

is also shown with a grey histogram.

to the definition of fd by considering the links of weights w active at time t − 1 but no longer

active at time t. The quantities fa(w) and f
d(w) are shown in Figure 6.10 for daily, weekly and

monthly networks. We observe that fa(w) and f
d(w) have an almost identical behavior, though

dependent on the timescale ∆t. Disaggregating the results by premises type for the origin (or for

the destination) of each considered link, it turns out that the behavior observed in Figure 6.10

results from a convolution of trends that are quantitatively different but qualitatively similar for

all farm types. In all cases, links with small or large displacements of animals are both very

unstable, whereas the most stable links are those with an intermediate weight. While till now

the system of bovine movements showed properties that are very similar to those found in the

analysis of human mobility by air travel, this result instead strongly differs from the positive

correlations of links’ stability and weight found in the airline transportation network (49). In

the airline system this is due to the fact that links with large weights correspond to busy routes

that are economically convenient carrying a large fraction of the traffic and thus well established.

Different commercial driving forces characterize the cattle trade flows and, in addition, premises

have limited receiving capacities, constrained by the limited size of the space hosting the cattle for

a widely varying number of days (see the results in Figure 6.2). Since a large weight corresponds

to a transport of a large number of animals, it is rather unlikely that two (or more) very large

such events occur on the same connection in rapid succession, as this may correspond to a large

increase in the population at the premises, if no animals are moved away. Differently from this

process in which bovines stay at the arrival node after displacement, airline passengers either

connect through an airport or leave the airport to reach their final destination, without thus

increasing the population at the mobility node itself. The result is that large displacements are

108



Dynamical network analysis and spreading simulations

very stable in the airline case, whereas they heavily fluctuate in the bovine case. The lack of

possible identification of stable connections over time carrying large weights (and thus having

a large spreading potential) seems to indicate the absence of a robust pattern of movements

in the system that could be easily targeted by intervention measures aimed at controlling and

containing the spread of a disease. This aspect will be explored in further detail in the next

subsection when evaluating the evolution dynamics of the network backbone. As expected, the

minimum values of fa(w) and f
d(w) are very close to 1 when considering the daily networks,

meaning that more than 80% of the links present at a given day will disappear the day after

(and similarly for the appearance of links). At such timescale the full dynamical nature of the

network emerges. More stable structures are instead detected at larger aggregation times, when

weekly and monthly networks are considered.

6.4.2 Fluctuations of nodes and links properties

In addition to characterizing the dynamics with which nodes and links can switch on and off

their activity, here we study the evolution of nodes’ and links’ properties while they are active.

In particular, the evolution in time of a link’s weight wij(t) is characterized by its growth rate

rij(t) = log(wij(t+1)
wij(t)

) whose distribution is shown (for the weights w
A) in Figure 6.11 for the

various time windows under study. The distributions are stationary, with exponentially decaying

tails, as found for the airports network (49) and in studies of firm growth (283). This corresponds

to a weights’ evolution from one month to the next of the form wij(t+1) = wij(t)(1+ηij) where

the multiplicative noise η = e
r − 1 is a random variable whose distribution is broad and does

not depend on time, indicating that most of the weights increments are small but that sudden

and large variations of the weights can be observed with a small but non negligible probability.

The highly dynamical nature of the network, characterized by large instabilities and timescales

describing the appearance and disappearance of nodes and links, is expected to have a strong

impact on the nodes’ properties as well. For instance, a node with many connections on a certain

day may be much less connected the next day (284). The stationarity of the distributions obtained

from the analysis of static aggregated networks does not imply the stationarity of the properties

of each given node; the set of nodes in the tail of the distribution may for instance differ from one

snapshot to another. If we focus on properties of centrality of the nodes, which are often used to

identify and target the elements of the system for isolation and quarantine aiming at prevention

and control of an epidemic spreading on the network, large fluctuations in these values point to

the strong limitations of such measures. In order to investigate this, we show the variations of a
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Figure 6.11: . Distributions of the growth rates of the number of bovines w
A displaced along a

connection. The solid line represents the distribution of the growth rates considering all networks

of a given aggregating time window ∆t. Symbols correspond to a selection of snapshots.

Figure 6.12: Fluctuations of the total outgoing traffic of bovines of a given holding for various

aggregating time windows. Each plot shows, for each holding of the system, the fluctuations of the

values of sAout assumed by each node during all snapshots of the ∆t under study. The median (black

dots) and the 95% confidence interval (brown shaded area) of outgoing traffic are shown.

node’s property for all snapshots considered, depending on the timescale ∆t under study. Figure

6.12 shows the median and the 95% confidence interval of all values of the out-strength s
A

out

that each node assumes when active, for different time window lengths. Very large fluctuations

are observed, with most nodes showing variations over more than 2 decades, signaling that this

property lacks stationarity at the node level. Some nodes with very high strength seem to have

no fluctuations, but they appear in fact only once in the dataset. Similar results are obtained

when considering other possible measures of node centrality, such as the in-strength or the in-

and out-degree (not shown). Given that these quantities are proxy measures for the centrality of

nodes, such findings strongly undermine the efficacy of traditional measures for epidemic control

that do not take into account the large variations in time of the role of the premises with respect

to the flows of the system.
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6.4.3 Evolution of the network backbone

The results of the previous subsection show how the system is characterized by large fluctuations

and strong topology and traffic variations on all spatial and temporal scales. The overall picture

is thus one of a network whose structure changes very strongly from one snapshot to the next,

not only at the global level, but also at the node neighborhood and node levels, inducing very

strong centrality fluctuations. Notably, these centrality fluctuations are observed for all premises

and geographical positions. A natural question therefore arises concerning the possible existence

of a backbone of nodes and connections, carrying the relevant topological and dynamical in-

formation of the system, and of its temporal stability. The observed strong fluctuations may

indeed be related to less meaningful connections of the network, and may thus be compatible

with a stationary backbone. A first attempt at defining a global backbone over time consists in

considering the intersection of successive aggregated networks. If a considerable fraction of the

system is stable across time, the intersection will be quite large and will identify the subset of

premises and flows that have a predominant role in the dynamics. At the monthly scale, less

than 4% of the links are common to the 13 corresponding networks. Moreover, the corresponding

weights are not particularly stable and show a growth rate distribution comparable to the one

obtained for the original networks. More advanced filtering techniques can be used to extract

a statistically significant subgraph that carries a significant part of the traffic. In particular, it

is possible to retain only the links with weights larger than a certain threshold, i.e., the ones

with most traffic. However, when the system is characterized by large fluctuations of weights,

and more in detail by a large heterogeneity of weights around a given node (as is the case here,

not shown), global thresholding can lead to misleading dismissal of locally very important links

(285). For this reason, in addition to the thresholding method, we consider the disparity filter

method that was introduced in Ref. (285). For each node, it consists in identifying the links

that should be preserved in the network. To this aim, one considers the null hypothesis of a

random assignment of the normalized weights p
out

ij
= wij/si,out and p

in

ij
= wij/sj,in (as links

are directed, we consider two normalized weights definitions), and computes for each link the

probability α
in(out)
ij

that its normalized weights are compatible with this hypothesis. These prob-

abilities are given by α
in

ij
= (1−p

in

ij
)kj,in−1 and α

out

ij
= (1−p

out

ij
)ki,out−1 (286), and the backbone

is given by the links which satisfy at least one of the conditions α
in

ij
< α or α

out

ij
< α, where

α is a parameter that can be tuned in order to change the significance level of the filtering.

For networks with uncorrelated weights, the disparity filtering procedure is equivalent to the
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Figure 6.13: Evolution of monthly network backbones. Top: Distributions of the growth rates

of the weights w
A of the backbone links, where the network backbone is obtained under different

filtering procedures. In each case, growth rates r are measured only for links that are present in two

successive backbones. Center and Bottom: Overlap between the backbones of monthly networks.

The overlap measures the number of links common to the pair of networks under consideration,

normalized by their total number of links. Backbones are obtained either with a global threshold

filter (center row) or using a disparity filter (bottom row). Three values of the significance parameter

α are considered.
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global thresholding procedure, pruning the links with a weight smaller than �w� · ln(1/α), where

�w� is the average weight in the network. We have considered both filtering procedures for the

aggregated networks with ∆t = 28 days, and constructed for each network the corresponding

backbones for various significance levels. In order to assess how the network backbone change in

time, we have then computed the overlap between the 13 · 12/2 pairs of backbones, at a given

significance level, where the overlap of two networks with respective sets of edges E1 and E2

is defined by |E1
�
E2|/|E1

�
E2|. Figure 6.13 displays the distributions of the growth rates of

the links’ weights w
A in the various backbones, compared with the corresponding distribution

in the whole network, together with the overlaps of the monthly backbones in color-coded ma-

trices. The overlap between backbones of successive monthly networks is substantial but not

large, approximately ranging from 25 to 30%. If we assume that the two successive backbones

have the same size, an overlap of 25− 30% would correspond approximately to an intersection of

40−50% between the two systems. While about half of the system is retained from one snapshot

to the following, this value becomes rapidly smaller when moving away from the diagonal, i.e.,

as the corresponding networks are further apart in time. This shows that the memory of the

most significant links in a given month rapidly fades away in the successive months, and that

evaluating the importance of a link based on previous evidence could thus be misleading.

6.4.4 Dynamical motifs

A static representation of the system and the usual tools devised to investigate static networks are

clearly insufficient to properly describe and analyze the temporal dimension of the dataset. After

observing the large fluctuations and the fast dynamics characterizing the system at all timescales,

we present in this subsection an analysis aimed at going even further in the understanding of the

system flows by exploring the possible signatures of a temporal ordering of the bovine displace-

ments and the presence of recurrent paths. The search in networks of the abundance of particular

topological paths or motifs (287) should then be complemented by causality requirements and

approaches that are able to incorporate the longitudinal dimension (70; 288; 289; 290; 291). Be-

yond the topological paths, the temporal correlation is fundamental for the study of diffusion

processes. One of the main consequences of the temporal evolution of the network resides in the

causality constraints it induces. For instance, a spreading phenomenon can propagate on a path

ijk (i.e. from i to j to k) only if the link ij is present before the link jk (70; 292). This becomes

particularly relevant if the flows form cycles or paths that allow the re-infection of some premises,

given an appropriate interplay of the disease and movement timescales. From the point of view
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of quarantine and similar control strategies, this would represent an important phenomenon to

take into account when establishing the identification of premises to isolate, or the durations of

disease surveillance at those locations. Figure 6.14 presents an example of causal motifs: for in-

stance, the repetition of the sequence of a link ij followed in the next snapshot by a link jk could

imply a cause-effect relationship between these two links. Here we introduce a new measure to

define causal motifs and restrict our analysis on the shortest possible timescale, i.e. the intrinsic

timescale of the system ∆t = 1 day. We collect, for each path length , the motifs given by a list

of links i0i1, i1i2, , il−1il such that i0i1 is present at a certain snapshot t0, i1i2 at snapshot t0+1,

and finally il−1il at t0 + l − 1. The duration of the path is therefore equal to its length, and

each path corresponds to a possible propagation that respects causal constraints. Each motif

can occur for several values of the starting time t0, and motifs of a given length can be ranked

according to their number of occurrences. It is worth remarking that the above definition does

not focus on the shape of the motifs since only temporally connected chain-like motifs are con-

sidered, and the recurrence is sought at the microscopic level counting the number of appearance

of a certain link sequence. Figure 6.14B shows the corresponding frequency-rank plots, as well

as the fraction of motifs that are repeated more than once for each length. Motifs are found up

to length l = 8, and both the absolute number of motifs and the fraction of recurring motifs

strongly decrease for increasing lengths. Since the number of times a link is present in the daily

networks is broadly distributed (this number is given by the weight wB in the globally aggregated

network over the whole year), pure statistical effects could be responsible for the abundance of

specific patterns. For instance, if both links ij and jk are present all the time, then the causal

path ijk will be very frequent. We therefore compare in Figure 6.14C the results obtained in

the real data with different null models. The first null model (random ordered) is constructed

by randomly shuffling the order of the daily aggregated networks: in this way, the structure

of each daily network is kept, but the temporal correlations are lost. The second null model

(temporal mixed edges) shuffles randomly the days in which each edge is active, independently

from one edge to the next. The resulting daily aggregated networks have therefore randomized

structures. Finally, we construct also a third null model by reshuffling the edges in each daily

network as described in Ref. (293) (time ordered and reshuffled networks): we recall that this

procedure consists in taking at random pairs of links ij and lm involving 4 distinct nodes, and

rewiring them as e.g. im and jl (if neither im nor jl already exist) . This procedure preserves

both the in- and out-degree for each node, but destroys correlations. Figure 6.14 shows that the

two first null models lead to similar results: a much smaller number of motifs is observed, and
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Figure 6.14: Motifs: schematic representation and their occurrence. A schematic example of

the dynamics of a subset of the mobility networks is shown in panel A through three successive

snapshots. The connections are color-coded according to the time at which they are active. A

temporal motif is a temporal sequence of links such that the destination node of a link at time t0 is

the origin of another link at time t0+∆t. Two examples of motifs, of respective lengths 2 and 3, are

shown below. We restrict the present study to the case of ∆t = 1 day. Panel B shows the results

on the presence of motifs, analyzed by counting the number of occurrences during the timeframe

under study. The longer the motifs, the smaller the number of times they appear. By focusing only

on the set of motifs that occur at least twice, panel C compares the size of this set (expressed as a

fraction of the total) obtained from the empirical dataset with the sizes obtained through various

randomization procedures. The results are shown as functions of the motifs length. In panel D the

median and confidence intervals of the number of motifs passing through a farm depending on the

farms type are shown, together with the same computation for a null model in which the farm types

are reshuffled at random.
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a smaller fraction of these motifs are found more than once. At lengths smaller than 5 however,

this fraction is non negligible, showing that purely statistical effects due to the frequent presence

of some links account for a part of the motifs presence and repetition. When both time ordering

and network topology are reshuffled, motifs essentially disappear.

Since the network under study is directed, it is interesting to note that a causal sequence of links

(inin+1 at a certain snapshot tn, followed by in+1in+2 at snapshot tn + 1) is not a valid causal

path if it happens in the reverse order (in+1in+2 followed by inin+1). We therefore consider in

Figure 6.14 also the sequence of 365 daily aggregated networks, seen in the reverse temporal

order. Strikingly, the number of motifs is much smaller than for the true temporal sequence,

and the fraction of repeated motifs is close to the case of a random temporal ordering. This

indicates the presence of an intrinsic time arrow in the dataset, and provides a general method

for investigating this aspect in dynamically directed networks. To our knowledge, this is indeed

the first time that an intrinsic arrow of time has been explicitly detected in a temporal network.

In Figure 6.14 we also show the statistics of the number of motifs passing through a farm for

different farm types. In order to take into account the relative abundance of the different farm

types, we compare the results with a null model where the labels describing the farm types are

reshuffled. We notice that some premises types (such as assembly centers or markets) are much

more prone to be part of causal motifs than what would be expected for a random labeling of the

premises. Our definition of causal motifs is therefore able to characterize the behavior of premises

by identifying those types of premises that, as expected, show highly recurrent flow-in/flow-out

patterns at such short timescale. The present analysis can also be extended by considering longer

latency times for the occurrence of specific causal paths in the network, by considering sequences

of links ij at time t and jl at time t + t
�, relaxing the previous condition on the separation of

times between the occurrences of successive links in the motifs. The flexibility of this approach

thus allows the tuning of the analysis to the relevant timescales of the dynamical process under

study, with a variable latency time t
� that corresponds to the time during which a node can be

considered as continuously active.

6.5 Spreading processes on dynamical networks

Surveillance, prevention and control represent major aspects of the public health response to

a potential contagious disease (294). They aim at monitoring the health status of the popula-

tion of hosts, detecting and observing the progression of an outbreak, as well as devising and
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implementing effective measures to best minimize its impact on the population. While the spa-

tial and topological aspects of the pattern of contacts among hosts have been widely explored

in the epidemiological context, we now focus on a dynamical framework in which the tempo-

ral nature of the contacts is considered. In particular, the dynamical behavior of the network

substrate observed in many real-world examples (ranging from social interactions to mobility pat-

terns (21; 266; 288; 295; 296; 297)) opens theoretical and computational challenges concerning:

(i) the lack of meaningful definitions of nodes’ vulnerability, given the potential large fluctuations

of measures of centrality defined on static structural properties, and (ii) the strong dependance

of the spreading pattern on the initial conditions. Here we address these challenges first through

a percolation analysis of the cattle displacement network and then by performing disease spread-

ing simulations among livestock premises where the full temporal resolution of the system is

considered.

6.5.1 Percolation analysis

The strong temporal variations in the network network topology higlighted in Figure 6.12, along

with the very short memory of the backbone structure (see Figure 6.13) leads us to the study of

how the dynamical aspects impacts the percolation properties of the network of displacements.

Percolation has long been used in the analysis of complex networks (298; 299), and results

have shown that many real-world network structures typically retain their integrity, in terms of

global connectedness, when nodes or links are removed in a random fashion, while they are very

fragile with respect to targeted attacks. In this respect, percolation analysis has become a tool to

investigate the structure of networks, by studying how the size of the largest connected component

evolves when nodes are removed according to different procedures (298; 299; 300; 301; 302). The

size of the giant component not only is a measure of the resilience of the structural properties of

the network under study, but it also quantifies the extent to which an epidemic could possibly

spread in the system. Identifying ways to reduce this size, by removing particular nodes, is

equivalent to finding efficient intervention and control strategies in the framework of disease

spreading, aiming at breaking down the network in small pieces in order to prevent the disease

from invading the system. Let us consider for instance that an outbreak starts at a certain

date. It is then possible to sort the nodes of the aggregated network of the corresponding time

window by their degree, strength, or other centrality measures, and to try to contain the disease

spread by isolating the most central nodes, reducing drastically the size of the largest connected

component through the isolation of only a few percents of the nodes (298; 300; 301). A lot of
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Figure 6.15: Percolation analysis on consecutive monthly networks. Two consecutive monthly

snapshots (n = 3 and n = 4) have been considered. A list of nodes with decreasing degree is

calculated on the snapshot n = 3, and is applied as a removal strategy for both networks. The same

procedure has been performed on the corresponding network backbones obtained for two values of

the significance parameter α.

work has been done in this direction for the analysis of the fragmentation of the network of

livestock movements when nodes are chosen according to different centrality measures (256; 258;

259; 260; 261; 265; 267), and no information on disease spreading is considered, as instead was

done in Ref. (303). However, these studies have neglected the dynamical nature of the system,

focusing on specific snapshots only, and assuming to be able to access all the relevant information

of the system at any given point in time, e.g. during an epidemic emergency. Since we showed

so far how the underlying topology and flows strongly fluctuate at all levels, here we want to

study instead the situation in which we have limited information on the system gathered from

its activity on the last time window under study, and we want to apply isolation and quarantine

measures to the following snapshot. The ranking of nodes according to a given centrality measure

(corresponding to their spreading potential) computed on a certain time window may indeed

loose its relevance when applied at successive times. Given these intrinsic dynamical features,

we aim here at assessing the impact of a removal strategy on consecutive snapshots (thus the

snapshots characterized by the highest values of the overlap), once the strategy is defined on

the basis of the available information on one snapshot only, and is not updated according to

the successive network evolution. We investigate this aspect by measuring the effect of the

successive removal of nodes by decreasing degree in consecutive snapshots of ∆t = 28 days.

More in detail, by focusing on a given snapshot for ∆t = 28 days (the third snapshot of the
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year, chosen as an illustrative example), we fix the order of nodes to be removed in a degree-

decreasing fashion. Then, we assess the impact of the removal of nodes ordered in such way

on this snapshot and on the following one. This means that for the successive snapshot we

are not re-evaluating the centrality of each node (as measured here by the degree) but we use

the information computed on the previous time snapshot. This procedure is tested on the full

network and on the corresponding backbone, calculated at two different significance levels. Figure

6.15 shows the results in terms of the relative size of the giant component as a function of the

fraction of nodes removed. As expected, the removal of nodes is very efficient if the order of

nodes to be removed is calculated on that snapshot (256; 258; 259; 260; 261; 265; 267), whereas

such ordering is not able to destroy the network at the successive time window, leading to a

size of the giant component that decreases very slowly, and maintains a fraction of more than

20% of the system still intact and connected after the list of nodes is exhausted. Even though a

large number of nodes is removed from the system, the effectiveness of such isolation procedure

is strongly limited by that fact that the premises’ properties have dramatically changed. Many

of the active premises have appeared/disappeared from one snapshot to the other, and the ones

that remained have strongly changed their interaction pattern. In such situations, intervention

and control strategies devised using the information from static aggregated networks, or more

generally from data from past mobility patterns, can thus result to be very inefficient.

6.5.2 Epidemic spreading simulations

In order to gain a general understanding of the interplay between the dynamical evolution of

the disease and the temporal features of the animal movements, we consider a simple model of

a notifiable disease characterized by short timescales. The disease spread on the dynamical net-

work is modeled using a simple SIR compartmental model (71). We assume that farms are the

discrete single units of the process, following a Levins-type approximation for metapopulation

systems (304) that ignores the possible impacts of within-farm dynamics, as commonly assumed

in the study of the spread of zoonosis through animal movements (305). Premises are labeled as

Susceptible, Infectious, or Removed, according to the stage of the disease, and are not further

distinguished according to their characterization or function (e.g. markets, fattening farms, or

others), as we aim at exploring the role of initial conditions in defining a propagation pattern on

the dynamical network of movements, independently of the farm type. All farms are considered

susceptible at the beginning of the simulations, except for the seeding farm. At each time step,

an infectious farm i can transmit the disease along its outgoing link to its neighboring susceptible
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farms that become infected and can then propagate the disease further in the network. Here we

consider a deterministic process for which the contagion occurs with probability equal to 1 as

long as there is a directed link of cattle movements from an infectious farm to a susceptible one

at a given time step. Though a crude assumption, this allows us to simplify the computational

exploration of the initial conditions, define and evaluate the proposed methodology for the “sim-

ple” deterministic case, focusing on the fastest infection patterns and yielding an upper bound

to the final size of the epidemics. The corresponding stochastic case is then discussed in the last

section. After µ−1 time steps an infected farm becomes recovered and cannot be reinfected. The

simulation is fully defined by the choice of the timescale ∆t, used to define the successive ag-

gregated networks on which the disease propagation occurs, and of the initial conditions (x0, t0)

where x0 is the seeding node (i.e. the first infected farm) and t0 is the seeding time (i.e. the

time at which x0 starts being infectious). The choice of the aggregating time window length

∆t affects the underlying mobility structure, leading to denser displacement networks for longer

time windows, while the time step used in the numerical simulations of the spreading dynamics

is kept fixed to 1 day. In this perspective, when the spreading process takes place on the daily

dynamical networks, at every time step of the spreading the snapshot of the static network is

different, while for a longer aggregating window length the network topology remains unchanged

for exactly ∆t time steps. In Figure 6.16 , the unfolding of the spreading for different aggregating

time window lengths is followed by plotting the temporal evolution of the number of infected

premises for every spreading time step (=1 day). We first explore the role of the timescale of

aggregation ∆t of the dynamical network on the disease propagation, by analyzing the spreading

patterns resulting from outbreaks starting at each of the ∼ 1.7 · 105 premises on the seeding date

t0 = January 1st, assuming an infectious period µ
−1 = 7 days.

The simulated epidemics dramatically depend on the aggregation timescale, as shown by

the time behavior of the number of infected farms for outbreaks taking place on daily, weekly,

monthly and yearly aggregations of the displacements, and for all the possible origins x0, as

reported in Figure 6.16. As ∆t increases, the spreading becomes faster and reaches a larger

proportion of the nodes (266). At short timescales of aggregation, the large temporal variability

of the displacement networks limits the spreading of the disease, by creating disconnected com-

ponents that prevent possible paths of infection along the network. With increasing values of ∆t,

this intrinsic variability is collapsed into an aggregated static picture, where links active in reality

at very different times are simultaneously present in the same static network, thus allowing prop-

agation paths that were otherwise prevented for shorter ∆t values. The choice of the aggregating
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Figure 6.16: Number of infected farms as a function of time for different aggregating time windows

∆t. Each grey curve represents the profile of an epidemic starting on January 1st from a given seed.

time window length ∆t affects the underlying mobility structure, leading to denser displacement

networks for longer time windows, while the time step used in the numerical simulations of the

spreading dynamics is kept fixed to 1 day. In this perspective, when the spreading process takes

place on the daily dynamical networks, at every time step of the spreading the snapshot of the

static network is different, while for a longer aggregating window length the network topology re-

mains unchanged for exactly ∆t time steps. Besides overall differences in timing and size reached

by the epidemic with changing ∆t, the epidemic profiles also show an intrinsic variability that

depends on the initial conditions of the outbreak, and that is averaged out by large values of

the aggregation timescale. When the maximal temporal resolution is used (i.e. ∆t = 1 day),

the profiles of Figure 6.16 are rather ruffled, with multiple peaks and strong differences in peak

times for different initial conditions. Larger ∆t values lead to smoother curves that collapse

into a small set of synchronized behaviors of the global spread originating from different seeds

(e.g. for ∆t = 28 days), with the number of different profiles being reduced by the aggregation

on longer time windows, as shown by the extreme case of ∆t = 365 days, where no temporal

fluctuations are present and changes in the profiles only depend on changes in geography of the

initial conditions. By loosing the intrinsic variability at the local level due to the aggregation on

large ∆t values, also the role of the initial conditions in leading to outbreaks of different nature

(in terms of size and timing) is increasingly weakened. Therefore, in order to realistically account
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for the impact of the seeding on the spread of fast epidemics on the dynamical network, in the

following we focus on the finest temporal grain, ∆t = 1 day, for the description of the bovines

mobility in the epidemic simulations.

6.5.3 Invasion paths and seeds’ cluster detection

Given the limited applicability of quantities defined a priori to characterize the spreading poten-

tial of a node in such a highly dynamical network, here we exhaustively explore the dependance

of the spreading process from the initial conditions and investigate the possible emergence of

recurrent patterns, aimed at proposing a method to identify similar spreaders in such a complex

environment. The spreading pattern of an outbreak is encoded in an invasion path where a

directed link i − j denotes that the farm j has been infected by the farm i (78). Each inva-

sion path Γ is thus composed by an ensemble of nodes �ν, an ensemble of links �l, and a root

x0 representing the initial seed of the outbreak. We define the overlap Θ12 between two paths

Γ1 and Γ2 as the Jaccard index �ν1
�

�ν2

�ν1
�

�ν2
, measuring the common nodes with respect to the total

number of nodes reached by the two paths. It is important to note that this measure does not

consider the information on the links of transmission from one farm to another, as we are indeed

interested on the observable outcome of the outbreaks, namely the fact that a farm is infected

or not, rather than on the precise path followed between the infected nodes. We compute, at

fixed ∆t = 1 day and initial time t0, the overlap Θ12 between the invasion paths of deterministic

SIR outbreaks generated by every pair of potential seeds (x1, x2). We then construct the initial

conditions similarity network (ICSN) as a weighted, undirected network in which each node is an

initial condition of the epidemic spread and the link between two nodes x1 and x2 is weighted by

the value of the overlap Θ12, measuring the similarity of the invasion trees they produce (306).

By filtering the ICSN to disregard too small values of the similarity, below a given threshold

Θth, the network separates into several connected components, leading to a natural classification

of the initial conditions into clusters. These represent sets of nodes that, if at the origin of an

outbreak, would lead to similar invasion paths. Clusters are organized in a hierarchy depending

on the value of Θth, and it is interesting to note that, given the distribution of similarity values

obtained, even large enough values of Θth lead to the emergence of non-trivial clusters of initial

conditions, i.e. different from simply isolated nodes. As the choice of the threshold is arbitrary,

it is important to check the robustness of the obtained cluster structure with respect to changes

in the threshold value. We investigate this point in Figure 6.18 by measuring the intersection of

clusters obtained with different threshold values. For large enough threshold values, the structure
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Figure 6.17: Schematic representation of the cluster detection procedure. (A) Different simu-

lated invasion paths (colored lines) obtained for different seeder (colored nodes) are shown on the

network. Each path is colored according to with the color of the seeding node. (B) The initial

conditions similarity network (ICSN) is obtained by calculating the overlap Θij for any pair of ini-

tial conditions i and j, measuring the similarity between the invasion paths originated by the two

nodes. Thicker lines in the ICSN indicate a higher overlap. (C) By filtering the ICSN neglecting

all links characterized by an overlap lower than a given threshold Θth, two non-trivial connected

components emerge (i.e. with a size larger than one farm) corresponding to cluster 1 and cluster 2

of nodes leading to similar propagation pathways.

of resulting clusters is stable with respect to small variations in the thresholding criterion. In all

the remaining text we use the threshold value 0.8.

In Figure 6.19, we show the 12 largest clusters identified with this procedure by assuming

Θth = 0.8, along with the displacement network aggregated over the entire spreading period.

Some important characteristics of the clusters emerge clearly. First, the nodes of a given cluster

defined through the ICSN are not tightly connected in the aggregated displacement network

(Figure 6.19A). In addition, there is a lack of chains of infections: the nodes in the clusters are

not trivially connected to each other by links that bring the disease from one node to the next.

A direct analysis of the aggregated displacement network, based for instance on the search of

communities or chain-like motifs, would therefore not be able to detect the similarity of their

spreading properties. Most importantly, such topological analysis would not provide meaningful

insights for the cluster identification if tested on variations of the timescale of aggregation ∆t; the

large temporal fluctuations prevent the definition of a unique relevant timescale for the process,

and the study of the displacement network aggregated over the entire spreading period (i.e.

containing the full information on all displacements occurred) highlight the lack of cluster-like
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Figure 6.18: Jaccard indices between clusters constructed using different threshold values. For

each couple of threshold values a and b, we show at row a and column b a color-coded matrix of the

Jaccard indexes between the two sets of 20 largest clusters of the ICSN obtained for the thresholds

values a and b. The Jaccard indices of two clusters is computed as the number of common nodes

divided by the number of nodes in the union of the clusters. The cases a = b are not shown as they

trivially have a diagonal equal to 1 and zero off-diagonal elements. The violet-to-yellow color scale

indicate how much the clusters obtained with different thresholds have in common. For threshold

values larger than 0.6, the cluster structure is rather stable with respect to small changes in the

thresholding criterion. Note that for each threshold value, the 20 largest clusters are ranked by size;

as this ranking may change from one cluster value to the next, the yellow dots are not all on the

diagonal of the corresponding matrix.
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Figure 6.19: Twelve largest clusters obtained from the study of simulated epidemics starting at

time t0 = January 1st. (A) The nodes belonging to each of the 12 clusters are represented in

the network of bovines displacement aggregated over the whole spreading period. Each cluster is

identified with a color. The nodes in each cluster are not tightly interconnected in this network

representation. (B) Cluster geographical dispersion, calculated as the distance between each pair of

nodes belonging to the same cluster, and expressed in Kms. The boxplots are colored accordingly

to the corresponding clusters. (C) Each network corresponds to a given cluster (indicated by the

color) and represents the union of all invasion paths starting from the nodes of that cluster. The

initial conditions are not shown in these networks for the sake of simplicity of the visualization;

the size of the nodes indicates the number of incoming infections along the invasion paths, and the

link thickness represents the number of invasion paths propagating along that connection. Different

topological structures of the invasion paths are found for different seed clusters.

125



Dynamical network analysis and spreading simulations

Figure 6.20: The 12 largest clusters are shown in different colors on the georeferenced network

of bovines’ displacement aggregated over the whole spreading period (35 days). The most compact

clusters in terms of geographical dispersion are highlighted with an ellipse.

structures. The geographical analysis of the georeferenced representation of the clusters (where

each node is assigned the location of the corresponding municipality) shows that, although some

clusters are formed by nodes which are geographically rather close, most clusters are dispersed,

with a distribution of distances between nodes spanning several hundreds of kilometers (see panel

B of Figure 6.19). Clusters can also geographically overlap and do not have mutually separated

geographical boundaries as shown in figure 6.20. Therefore, the geographical proximity of two

nodes does not necessarily imply a similar pattern of invasion when the nodes are at the origin

of an infectious disease outbreak.

Overall, neither the structural nor the geographical analysis of the dynamical network of

displacements would be able to reveal the existence and composition of groups of nodes leading

to similar spreading patterns, and a detailed analysis of the dynamical process itself is needed.

Interestingly, the mixed shapes observed in the epidemic profiles of Figure 6.16 are automatically

classified into a set of specific and well-defined profile behaviors by considering initial conditions

belonging to the same cluster, as shown in Figure 6.21A. The clustering method described above,

grounded on the comparison of the infected nodes, however disregarding information on the

timing of the spreading events, is able to group the spreading histories into similar patterns

characterized by the same timing for the overall epidemic and for its peak.

Similar findings are obtained also considering a stochastic infection dynamics, where we gen-
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eralize the procedure to a stochastic framework and we recover the results regarding the classi-

fication of profile behaviors induced by the clustering, analogously to Figure 6.21A.

6.5.4 Longitudinal stability of the seeds’ clusters

The method described above unveils a very interesting partition of the possible seeds of a disease

spreading which would not be directly detected from the network structure. The partition how-

ever depends a priori on the starting time of the spreading. Given the strong variability of the

network’s properties on all timescales (297), partitions obtained for spreading processes starting

at different times could substantially differ.

In order to investigate this aspect, we define the partition P(t0) of the C largest clusters

corresponding to the initial time t0, i.e. Ci(t0) (i = 1, · · · , C), and compare it with the partition

P(t) corresponding to a spreading initial time t > t0. In particular, we are interested in measuring

to what extent the clusters Ci(t0) of P(t0) are preserved in the partition P(t). For each cluster

Ci(t0), we thus define the vector �ρi(t, t0) with components ρi,j(t, t0) =
|Cj(t)

�
Ci(t0)|

|Ci(t0)| representing

the fraction of nodes of Ci(t0) present in the cluster Cj(t), i.e. in the cluster j of the partition

P(t). If the cluster detection procedure yields the same clusters at time t0 and t, each vector

�ρi(t, t0) will have one component equal to 1, and all the others equal to 0. If instead the nodes of

Ci(t0) are homogeneously redistributed into the clusters Cj(t), �ρi(t, t0) will have all components

equal to 1/C. We restrict our analysis only to the seeding nodes that are possible seeders (i.e.,

present in the daily network) both at time t0 and t. Furthermore, since we are considering only

the C largest clusters (we will consider C = 20 in the following), we note that the fraction

σi(t, t0) =
�

j
ρij(t, t0) of the nodes of Ci(t0) also represented in one of the clusters of the

partition P(t) may be smaller than 1. The level of heterogeneity of the time evolution of each

cluster Ci(t0) can be described through the disorder of the vector ρi, measured by the normalized

entropy function H(t):

Hi(t) =
1

σi(t) log(σi(t)/C)

�

j

ρi,j(t) log ρi,j(t) , (6.1)

where we have dropped the dependence on t0 for simplicity. If Ci(t0) is also a cluster of P(t),

Hi(t) = 0. If its nodes are equally divided into the C clusters of P(t), the entropy is equal to 1. In

general the entropy takes values in the interval

�
1

1− log C
log σi

, 1

�
, where its minimum value, minHi(t),

represents the best configuration; all the nodes of Ci(t0) are in the same cluster of P(t), except

the fraction (1− σi) that do not belong anymore to the largest C clusters. Taking into account

this quantity is crucial, as high entropy values may occur because the nodes of a cluster Ci(t0)
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Figure 6.21: Seeds’ clusters characterization in terms of epidemic profiles and stability over time.

(A) Number of infected farms as a function of time where the curves in each plot correspond

to epidemics starting from the initial conditions belonging to the same cluster. Four clusters of

different sizes are shown as examples. (B) Entropy of the partition into cluster as a function of

time, for the clusters proposed in the panels A. It measures the fragmentation of the largest C = 20

clusters obtained for the starting time t0 = January 1st in the partitions obtained at the following

weeks. The difference H−minH (grey bars) represents the robustness of the cluster (the smaller

the difference and the more robust is the cluster), given that only part of it may be present in the

partition obtained for a later starting condition (as measured by minH). Four typical behaviors can

be characterized, each reported through a cluster example: a cluster loosing part of its structure

already after 1 week (cluster 0) or after 2 weeks (cluster 2), then showing a stable behavior in time

with its nodes partially regrouped in other clusters; a very stable cluster preservation at almost all

times (cluster 9); a cluster that is not preserved in time (cluster 8).

obtained at t0 are no longer active at time t (large minHi(t)) so that the cluster simply disappears,

or because the structure of the network has changed so that, even if the nodes of Ci(t0) are still

potential seeds at t, spreading processes starting from these nodes lead to distinct invasion paths.

Measuring the minimum entropy value together with the entropy allows us to distinguish between

these two behaviors. As an example, we present in Figure 6.21B the results corresponding to

t0 = January 1st and t = t0 + 7w with w = 1, 2, 3, ..., i.e. successive times separated by w

weeks from t0 (these days being all Mondays to preserve the weekly fluctuations of the network).

Our results show that the cluster temporal stability exhibits four main behaviors, pictured in

the four panels of Fig. 6.21B: i) a substantial fraction of the nodes of the cluster disappears

already for w = 1 (minH �= 0), and small groups of nodes are redistributed in other clusters

(small differences H−minH), with a behavior stable in time (cluster 0); ii) a similar behavior,
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starting from w = 2, since after 1 week the cluster is almost unchanged, showing a very low

entropy (cluster 1); iii) a very stable behavior at w = 1, followed by a robust preservation of the

partition (small differences H−minH) given that a fraction of the nodes of the partition at time

t0 have disappeared from the largest C clusters (cluster 9); iv) the cluster is very unstable and the

cluster’s nodes disappear almost completely from the clusters of the partition P(t), (very high

minH , cluster 8). The most robust behavior in time, i.e. behavior (iii) shown by the example of

cluster 9 in the Figure, was found for 2 clusters out of the 20 largest clusters considered for t0 =

January 1st.

6.5.5 Disease sentinels

The study of the initial conditions, and their characterization in terms of the spreading pathways

they generate when seeding an outbreak, is crucial for the development of efficient methods to

hinder the disease propagation. In particular, the success of control and mitigation measures

critically depend on the ability to rapidly detect an outbreak and identify its source. Ideally, a

timely detection of the origin of the disease would allow a targeted strategy able to isolate the

infected herds and contain the propagation of the infection to other farms. Longer delays between

the start of the outbreak and its detection mean larger numbers of infected farms, a more difficult

identification of the starting point of the spreading, and therefore a more difficult identification

of the propagation pathways, that is needed to prevent further spread to unaffected farms,

overall leading to increasingly expensive containment measures. The high temporal variability

and the complex nature of the network of displacements makes the identification of the possible

origin of the outbreak, following the detection of an infected node, an a priori particularly

difficult task. However, the very same variable and heterogeneous nature of the network allows

for the identification of clusters of seeds leading to similar invasion paths, as discussed in the

previous subsections. Here we explore whether the information on the seeds’ clusters may provide

additional knowledge to enhance surveillance and help the inference of the origin of a disease,

once an epidemic is unfolding on the network.

Let us consider a partition P(t0) of clusters of initial conditions. If we explore all paths of

infections, we can measure the number of times that any node in the network is reached by the

epidemic, and break down this number according to the seed cluster originating the epidemic.

We can then associate to each node k, reached by the disease nk times, a vector �π(k) whose

components πj(k) represent the probability of being infected by a seeder belonging to the cluster

j. If k is reached each of the nk times by invasion paths rooted in premises belonging to the
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same cluster m, the vector has components πm = 1 and πj �=m = 0. On the contrary, for a node

k infected by epidemics originated in farms belonging to a different cluster each of the nk times,

the vector elements assume the values πj = 1/nk. In the case an epidemic is detected at node

k by the surveillance system, the vector �π(k) encodes valuable information for the identification

of the possible initial condition leading to that epidemic. In particular, it is possible to define

an uncertainty ξ(k) in the identification of the seeding cluster, by using an entropy-like function

defined as ξ(k) = −(log nk)−1
�

j
πj log πj . With reference to the two examples reported before,

the uncertainty in the identification of the seeding cluster would be equal to 0 when k is infected

by a node in the seed cluster m all the times, and equal to 1 if k is infected each time by a different

cluster. Figure 6.22A shows the cumulative distribution of the uncertainty ξ. The number of

times nk that a node is infected may strongly vary from one node to the next; in particular, many

nodes are in fact infected just once (nk = 1) in very small outbreaks, yielding trivially high ξ(k)

values. We thus focus on farms that have been infected at least 10 times. Interestingly, even with

this restriction, the seeder uncertainty is less than 40% for almost 70% of the infected nodes,

meaning that most nodes reached by the infection are able to provide valuable insights about

the origin of the disease in terms of the identification of the cluster from which the spreading

originated. As a result, information about the invasion paths and the epidemic timing is also

obtained, following the findings of Figure 6.21.

The uncertainty ξ(k) on the identification of the cluster of initial conditions infecting the node

k and the number of times nk the node k is reached by the epidemic clearly depend on the time

t0 of the start of the epidemic. In the following, we explore the variation of these two quantities

for all nodes of the network when we consider epidemics starting at time t0 = January 1st +7w

with w = 0, 1, 2, 3, ..., 8, i.e. spanning an 8-weeks interval from January 1st. In Figure 6.22B we

represent each farm k as a point with coordinates (nk, ξ(k)) in the two-dimensional n− ξ phase

space, for t0= January 1st. A variety of different behaviors is obtained, as expected given the

large variability of the network. Large fluctuations of the number of times a node is infected are

observed, as a node with a large nk (i.e., often reached by the disease) for an initial time t0 may

be rarely reached if the outbreak starts later, given the change in the network of displacements,

or may even disappear from the plot if it is not infected for a given explored initial time (i.e.

it has nk = 0). Similarly, also the values of the uncertainty in the identification of the seeding

cluster can strongly fluctuate. In the surveillance perspective, we are mainly interested in the

nodes that are infected a large number of times (i.e. are likely reached by the epidemic, given

any temporal and geographical initial conditions) and for which we have a low uncertainty in the
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ns

30 40 50 60 70 80 90 100

ξs

0.50 42 40 37 34 31 29 25 25

0.45 32 31 28 25 22 20 18 18

0.40 15 14 11 10 9 7 5 5

0.35 9 8 6 6 5 4 4 4

Table 6.3: Deterministic simulations. Number of sentinels for different thresholds in the n − ξ

space.

identification of the seeding cluster, providing important insights into the previous and future

spreading patterns. We define these farms as sentinel nodes by imposing that they are infected

at least ns times and are characterized by an uncertainty at most equal to ξs for all initial

conditions. Their trajectories in the n− ξ phase space for varying t0 are shown in Figure 6.22B,

where we have imposed ns = 30 and ξs = 0.4. The choice of the (ns, ξs) threshold values depends

on the resources available to monitor these sentinels: smaller αs and larger ξs lead to a larger

number of sentinels.

In Table 6.3, we report the number of sentinels obtained for different choices of the threshold

values. It is also possible to be less conservative and enlarge the group of possible proxies for

an efficient detection of an infectious disease by including farms with discontinuous trajectories

that have nk = 0 for one value of the starting time but have nk ≥ ns and ξ(k) ≤ ξs for the

other starting times. By relaxing these constraints, it is possible to build a hierarchy of disease

sentinels with different levels of reliability, and specific to the available surveillance resources.

The interest of the definition of sentinel nodes in the perspective of a surveillance system is

quantified further in the panels C and D of Figure 6.22. Given a set of sentinels, we measure

the fraction of detected outbreaks as a function of the outbreak final size, where an outbreak

is considered detected if it infects at least a sentinel farm. Figure 6.22C shows that sentinels

are not good indicators for the presence of small outbreaks (i.e. corresponding to sizes smaller

than 5-10 infected farms), as expected, however a surveillance system based on only 15 sentinel

nodes (out of a total number of more than 170, 000 premises) would detect more than 55% of

the outbreaks with final size at least 10 and, if the number of sentinels is increased to 32, the

fraction of outbreaks detected would be more than 75%. Finally, it is also important to consider

that the information provided by the sentinel farms is meaningful as long as the detection oc-

curs rather early in the outbreak evolution. Therefore in Figure 6.22D we evaluate the rapidity

of the detection by showing the infection time of each of the 15 sentinel farms (obtained with
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Figure 6.22: Uncertainty in the identification of the initial conditions given the detection of the

outbreak and sentinel farms. (A) Cumulative probability distribution of the uncertainty ξ in the

identification of the seeding cluster, once a given node of the network is infected. Here slaughterhouse

are discarded from the analysis, as they cannot spread the disease further to other farms since they

are the end points of the livestock movements and usually gather the bovines from different sources.

(B) For a set of initial conditions, each infected farm is represented by a dot in the n − ξ phase

space, with n being the number of times the farm is reached by the infection, and ξ the uncertainty

in the identification of the corresponding seeding cluster. Eight consecutive weeks starting from

January 1st are considered as temporal initial conditions. Sentinel nodes are defined as the farms

that are often reached by the epidemic (i.e. n > ns) and that have a low degree of uncertainty in

the identification of the seeding cluster that led to the outbreak (i.e. ξ < ξs). In the plot we show

the trajectory in the phase space of the 15 sentinels obtained by imposing ns = 30 and ξs = 0.4.

(C) Fraction of detected outbreaks as a function of the minimum outbreak size of the epidemic,

where an outbreak is considered detected if one of the sentinel has been reached by the infection.

Two sets of sentinel farms are considered, 15 and 32 sentinels, having both ns = 30 but a different

threshold on the uncertainty, i.e. ξs = 0.4 and ξs = 0.45, respectively. (D) Boxplot of the time of

infection of the 15 sentinels relative to the full duration of the outbreak, considering the detected

outbreaks with final size greater than 10. Each box is colored according to the number of times that

the sentinel has been infected and a grey shaded area indicates the 33% of the relative infection

time.
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ns = 30 and ξs = 0.4) relative to the full outbreak duration, for outbreaks with size larger than

10. Interestingly, almost all sentinels are able to detect most outbreaks within the first third of

the outbreak duration.

6.5.6 Generalization to the stochastic case

The high dimensionality of the phase space of the initial conditions has led us to prefer a de-

terministic computational approach for the presentation of the proposed methodology and main

results. We show however in the following how our approach can be extended to stochastic

simulations which take into account the intrinsic stochasticity of epidemic propagation phenom-

ena. Results similar to the deterministic case are recovered. In the stochastic simulations, each

spreading event is a probabilistic process which occurs with a probability of infection βdt per

time interval dt. We keep for simplicity a deterministic recovery process. Moreover, while the

weights of the links are irrelevant in the case of a deterministic spreading, they need to be taken

into account in a stochastic modeling. In this context, two definitions of weights can be used.

We denote by w
H

ij
the number of herds of cattle and by w

B

ij
the number of bovines displaced from

i to j in the time window ∆t. At most one herd is displaced each day, so that w
H

ij
is at most

equal to ∆t. Each weight definition leads to a different definition of the probability of infection

of a susceptible node by a neighboring infectious node, with different underlying assumptions.

A first possibility is to define the rate of infection as P (Si + Ij → Ii + Ij) = β ∗ (wH

ij
)/∆t: for

∆t = 1, this means that an infectious node infects a neighboring node to whom it sends a herd

with probability β. On the other hand, one can assume that the spreading power is proportional

to the number of displaced bovines during each time window. Since the weights wB

ij
are broadly

distributed (297), we choose to model the probability of infection by a function that saturates

to 1 at large values of the weight, namely P
�(Si + Ij → Ii + Ij) = 1− exp(−β

�
w

B

ij
/∆t) . We use

the finest time scale ∆t = 1 day for the stochastic simulations. In this case, the number of herds

displaced between two nodes at each time step is either 0 or 1. In order to compare the two pos-

sible assumptions underlying the stochastic simulations, we use values of β and β
� such that the

probabilities P and P
� are equal on average. This condition is satisfied if β� = ln(1− β)/�wB

ij
�.

We explore two values of β: high transmission rate (β = 0.9, corresponding to β
� = 0.63) and

intermediate transmission rate ( β = 0.5, corresponding to β
� = 0.19). Once the transmission

probabilities are defined and the transmission rate fixed, each stochastic simulation produces an

invasion path. The union of all the paths yields a risk probability associated to each node, given
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Figure 6.23: Prevalence curves of stochastic spreading starting from nodes belonging to various

clusters. For each seed 500 stochastic simulations have been performed and the medians (black

curves) and 50% confidence intervals are shown. In order to give an estimate of the fluctuations we

evaluated the 50% confidence interval for each curve and we plot the maximum of the upper bounds

and the minimum of the lower bounds (brown shaded area). Higher transmission rate (A) leads to

lower fluctuations, while for the intermediate transmission rate (B), the 50% confidence intervals are

quite broad. It is worth to stress that hundreds of stochastic curves with different seeding nodes are

compared, so some fluctuations are expected; nevertheless the clustering procedure is still able to

capture the similarity in the overall behavior (shape, peak time, duration) of the prevalence curves.

by the fraction of runs in which the node has been infected. We generalize the construction of the

ICSN and of the clusters defined in the previous section for deterministic spreading as follows.

For each seed x, we define a vector r whose element ri is given by the fraction of runs starting in

x for which i was infected, and the set ν of nodes i such that ri > 0 (i.e., the set of nodes which

were reached at least once by a spreading issued from x). For each pair of seeds x1 and x2, we

build in this way the two vectors r1 and r2 and the sets of nodes ν1 and ν2, and we consider

the similarity Ω12 =
�

i
(1− |r1,i − r2,i|2)/|ν1

�
ν2|. In the case of a deterministic spreading, we

recover the definition of the overlap Θ as the elements of the vectors ri are 0 or 1.

The cluster detection method described previously can now be applied using this measure by

retaining in the ICSN only the links with similarity Ω larger than a certain threshold.

We show in Figure 6.23 the prevalence curves for seeds belonging to various clusters. As in
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Figure 6.24: Jaccard indices of the 20 largest clusters obtained with different simulation proce-

dures. We refer with stochasticH and stochasticB to simulations with transmission probabilities

respectively determined by w
H

ij and w
B

ij . Each point represents the intersection of different clusters

obtained with different transmission probability definitions and transmission rates and is color-coded

according to the value of the Jaccard index computed as the number of common nodes divided by

the number of nodes in the union of the clusters. The violet-to-yellow color scale indicates how

much the clusters obtained in different simulation procedures have in common.
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ns

30 40 50 60 70 80 90 100

ξs

0.45 39 34 32 27 24 21 20 16

0.40 27 24 22 18 16 14 13 10

0.35 15 13 12 10 8 6 5 3

0.30 4 4 4 2 2 1 1 0

Table 6.4: Stochastic simulations. Number of sentinels for different thresholds in the n− ξ space.

the deterministic case, spreading phenomena originated in nodes of the same cluster show very

similar temporal patterns. The cluster detection procedure leads thus to an efficient grouping of

the potential seeds of an epidemics not only for deterministic spreading but also for more realistic

stochastic simulations.

We also evaluate and show in Figure 6.24 the overlap between the clusters obtained with the

various types of stochastic simulations and the deterministic ones. Strikingly, many clusters are

very stable when the type of simulation and the infectivity parameter are changed.

Once the nodes are grouped in different clusters, the sentinel identification is a rather straight-

forward procedure. Using the same definition of seeder uncertainty described in the main paper,

it is thus possible to identify sentinel nodes starting from stochastic disease spreading simula-

tions. It is worth to notice that for each seeding node we simulate 100 stochastic runs, so that

the number of times nk that a node k has been reached by the disease is, potentially, much larger

than the deterministic case. In order to make comparable the stochastic and the deterministic

scenarios we rescale n in Figure 6.25 and table 6.4 of a factor 100. In Figure 6.25 we show the

results obtained from stochastic simulations, similarly to Figure 6.22. Surprisingly, the stochastic

simulations lead to a lower uncertainty than the deterministic case. This counter-intuitive behav-

ior can be attributed to the fact that including some heterogeneities due to the links’ weight the

less probable invasion paths contribute very little in the seeder uncertainty evaluation, naturally

reducing the noise of the measure as already shown for the spreading on the airport network in

(110). Since the choice of ξs and ns are arbitrary, we report in table 6.4 the number of sentinels

identified with different values.
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Figure 6.25: Identification of the initial conditions, and corresponding uncertainty similarly to

Figure 6.22, for the stochastic simulations. (A) Cumulative probability distribution of the uncer-

tainty ξ in the identification of the seeding cluster, once a given node of the network has been

detected as infected. (B) For a set of initial conditions, each infected farm is represented by a dot

in the n − ξ phase space, with n being the number of times the farm is reached by an infection,

and ξ the uncertainty in the identification of the corresponding seeding cluster. (C) Fraction of de-

tected outbreaks as a function of the minimum outbreak size of the epidemic. Two sets of sentinel

farms are considered, of 15 and 27 sentinels, corresponding respectively to (ns = 30, ξs = 0.35) and

(ns = 30, ξs = 0.40).
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6.6 Conclusions

In this chapter, we have presented a full analysis of a dynamical networked system, going beyond

static and simple approximations and taking fully into account the temporal dimension of the

dataset, using the Italian data of cattle movements of 2007 as a prototypical example. Starting

from detailed data at the individual level at a daily resolution and covering a whole year, we have

constructed aggregated networks on different timescales to characterize the system’s behavior

on a variety of timescales, exposing the coexistence of stationary statistical distributions and

strong microscopic dynamics at all time and spatial scales. We have shown how this dynamics

affects not only global quantities (such as the number of connected nodes), but also the nodes’

and links’ properties at a very local level, and in relation with the rest of the system. In

particular, the centrality of a node fluctuates strongly in time, thus preventing a straightforward

static assessment of the spreading potential of premises that could be used for the definition

of prevention and control measures. The network’s dynamics also hinders the definition of a

stationary backbone for the system structure and function, as a subset of the most important

links (and weights) that are stable over time. We found indeed that the nodes and links forming

the backbone strongly vary depending on the time window considered, and that the memory of

the backbone rapidly fades away from one snapshot to the successive ones. We have put forward

a definition of dynamical motifs, formed by sequences of links that allow causal propagation, and

illustrated how this definition can unveil the existence of an intrinsic time arrow in the dataset.

The number of motifs of various lengths is indeed strongly different in the real dataset and in a

time-reversed version; moreover such definition can be easily extended to focus on a variety of

timescales of interest for the study of different dynamical processes.

The strong temporal fluctuations of the system have important implications for the dynamical

phenomena occurring on the system. Evaluating the information available at a given time step,

to devise containment strategies against an epidemic spreading on the system, would indeed

lead to inefficient measures if applied at other times. Through simulations on the fully dynamic

network, where daily bovine movements are explicitly captured, we have studied the role of the

initial conditions (i.e. seeds) in shaping the propagation process. Clusters of seeds emerge that

lead to similar spreading patterns in terms of infected farms, and are also characterized by similar

epidemic profiles and peak times. These clusters cannot be trivially identified from structural

or geographical considerations. The proposed clustering method can be used in order to define

rapid and efficient containment strategies, targeting farms that are at high risk of being infected
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and further spread the disease. Although the displacement network is characterized by a large

temporal variability, intrinsically altering the centrality role of nodes from a given observation

time to another, it is however possible to identify sentinel nodes representing premises which

are often reached by the disease and, when detected as infected, are able to provide valuable

information on the seeding farms of the outbreak. Remarkably, the complex aspects of the

dynamical network and their interplay with the disease dynamics lead to the emergence of a

very small number of sentinel premises, with respect to the total number present in the system,

that may be efficiently used for disease prevention and control. A hierarchical classification of

sentinels can be provided by tuning the constraints imposed for their definition, thus leading

to different levels of surveillance. Applications to specific diseases, where the timescale of the

epidemic is set by the parameters describing the specific disease etiology, can be performed to tune

this framework to particular cases. These findings clearly depend on the full knowledge of the

displacement dataset, and can thus be obtained as a priori information during a non-emergency

period to help orienting control strategies, as it is commonly done with the static analysis of the

contact network structure. However, it is not obvious how to exploit the information provided

by the sentinel nodes in order to explicitly track back the disease pathway and identify the origin

of the epidemic. Future research will focus on a possible reverse-engineering process aimed at

identifying a list of possible seeder nodes once that an outbreak has been detected by a sentinel. In

addition, analysis of successive years of movements data, uncovering possible recurrent patterns

and seasonal behaviors, may contribute to make this framework a general tool to be used in

real-time emergencies.
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Conclusions and perspectives

In this thesis we have presented theoretical and computational frameworks for the investigation

of disease spreading phenomena in real settings. Following the findings and the results achieved

by recent studies on complex networked systems and recognizing in the interconnectivity among

host populations the key ingredient for the dissemination of infectious diseases, we investigated

large-scale empirical datasets providing crucial information about the underlying host mobility

structure in emergent epidemics. The first part of this thesis was devoted to present the Global

Epidemic and Mobility model (GLEaM) and its application to the past 2009 H1N1 pandemic.

We have described the disease parameters estimation through a human mobility based Monte

Carlo likelihood method, and we have presented the real-time projections and results that we

had achieved well before the epidemic’s peak. Then we have focused on possible intervention

strategies highlighting the limited efficacy of the vaccination campaign given the early occurrence

of the pandemic’s peak, and we have discussed both theoretically and numerically the scarce ef-

fectiveness of travel restriction policies for containing the new virus at the source. The 2009

pandemic influenza revealed the vulnerability of our interconnected world to the spreading of

new pathogens and demonstrated the need of computational models to address public health

issues related to intervention policies aimed at monitoring, controlling and preventing large scale

outbreaks. In this perspective, we think that our work provided an important contribution to the

multidisciplinary research in the direction of a data-driven real-time epidemic forecasting. We

are aware that lots of work has to be done in order to include a more structured epidemic model

able to integrate a higher level of realism. In particular, it would be interesting to include social

structures and behavioral changes in the synthetic population, along with an even more accurate

mobility network able to capture the seasonal nature of commercial air flights and possible long



Conclusions and perspectives

term migrations. On the other hand, the more intricate and detailed a model is, the wider are

the assumptions and the larger is the amount of data needed to estimate parameters. It is thus

necessary to assess how the present details are important and drive the forecasts precision, and

how our multi-scale GLEaM model is susceptible to small perturbations of the initial conditions.

The predictive power and the fundamental limits in epidemic evolution predictability with com-

putational modeling represent the main open issues that modelers and policy makers have to

face in the next years.

In the last part of this thesis, we have tackled the new and challenging problems related to the

analysis of dynamical networks and the interplay of the system dynamics with the dynamical pro-

cesses unfolding on top of them. The highly detailed dataset of livestock movements represented

a unique case study to test the robustness, the reliability and the limits of a static approach

and to devise new mathematical tools aimed at deeper investigations. We have performed an

extensive and systematic longitudinal analysis unveiling the coexistence of the stationarity of

global distributions along with a microscopic blinking topology. We quantitatively analyzed the

temporal fluctuations and we put forward a novel definition of dynamical motifs able to uncover

temporal correlations in the network dynamic. It is worth to notice that the study of dynamical

processes on a static representation of the system may lead to limited and inaccurate results, and

a new perspective is needed to handle processes entangled with the network dynamics. Beyond

the system characterization, we have thus studied the dissemination of an emerging infectious

livestock disease and we have proposed a new method to cluster nodes with similar spreading

potential properties. We have further indicated a novel procedure to identify sentinel nodes

able to largely improve the surveillance system efficacy. Future developments of this research

will include a more structured epidemic model and an assessment of the proposed method with

real epidemiological data. Furthermore, the reverse-engineering process able to reconstruct the

spreading pathways given the detection of an outbreak by means of a disease sentinel node is

still under study. We dare to hope that our work could contribute to pose the basis of a tay-

lored approach to the analysis of evolving networked systems, and we believe that the increasing

availability of different longitudinal datasets will provide vital insights of emerging phenomena

in realistic settings.
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[59] P. Erdös and A Rényi. Publ. Math. Inst. Hung. Acad. Sci., 5:17, 1960. 10
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[153] Ministerio de la proteccìıon social república de colombia, official update, may 3 2009. 51

[154] C.E. Mills, J.M. Robins, and M. Lipsitch. Transmissibility of 1918 pandemic influenza.

Nature, 432:904–906, 2004. 52

[155] N. Wilson and M.G. Baker. The emerging influenza pandemic: estimating the case fatality

ratio. Euro Surveilliance, 14:26, 2009. 56

[156] T. Garske et al. Assessing the severity of the novel a/h1n1 pandemic. BMJ, 339:b2840,

2009. 56

156



Conclusions and perspectives

[157] M. Lipsitch, M. La jous, J.J. OH́agan, T. Cohen, and J.C. Miller. PLoS ONE, 4:e6895,

2009. 57, 58, 59, 60

[158] Eurosurveilliance. 57, 59

[159] Eurosurveilliance. 57, 59

[160] Reports of the brazilian health department (ministerio da saude). 57, 59

[161] Secretaria de salud, mexico. situation actual de la epidemia, oct 12, 2009. 59

[162] Who, production and availability of pandemic influenza a (h1n1) vaccines. 60

[163] Us food and drugs administration, fda approves vaccines for 2009 h1n1 influenza virus. 60,

61

[164] A. Flahault, E. Vergu, L. Coudeville, and R. Grais. Strategies for containing a global

influenza pandemic. Vaccine, 24:6751–6755, 2006. 60, 66

[165] N. M. Ferguson, D. A. T. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai, S. Iam-

sirithaworn, and D. S. Burke. Strategies for containing an emerging influenza pandemic in

southeast asia. Nature, 437:209, 2005. 60, 66

[166] J.T. Wu, S. Riley, C. Fraser, and G.M. Leung. Reducing the impact of the next influenza

pandemic using household-based public health interventions. PLoS Med, 3:e361, 2006. 60,

66

[167] N. Arinaminpathy and A.R. McLean. Antiviral treatment for the control of pandemic

influenza: some logistical constraints. J. R. Soc. Interface, 5:5945–553, 2008. 60, 66

[168] M.L. Ciofi degli Atti, S. Merler, C. Rizzo, M. Ajelli, M. Massari, et al. Mitigation measures

for pandemic influenza in italy: An individual based model considering different scenarios.

PLoS ONE, 3:e1790, 2008. 60, 66

[169] Cdc: Weekly 2009 h1n1 flu media briefing. 60, 61

[170] Us news. 60

[171] Pbs. 60

[172] Lancet. 61

157



Conclusions and perspectives

[173] A.C. Singer et al. Meeting report: Risk assessment of tamiflu use under pandemic condi-

tions. Environ Health Perspect, 116:1563â1567, 2008. 61
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[296] M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, et al. Small but slow world: How

network topology and burstiness slow down spreading. Phys. Rev. E, 83:025102, 2010. 117

[297] P. Bajardi, A. Barrat, F. Natale, L. Savini, and V. Colizza. Dynamical patterns of cattle

trade movements. PLoS ONE, 6(5):e19869, 2011. 117, 127, 133

[298] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks.

Nature, 406:378, 2000. 117

[299] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Resilience of the internet to random

breakdown. Phys. Rev. Lett., 85:4646, 2000. 117

[300] P. Holme, J. Kim, C.N. Yoon, and S.K. Han. Attack vulnerability of complex networks.

Phys Rev E, 65:056109, 2002. 117
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