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Rēsumē ētendu en français

1 Vérification statique de programmes
Le logiciel est omniprésent, et partout il contient des erreurs. Une erreur se manifeste
lorsqu’un programme se comporte différemment de ce qui est attendu. Cela peut provenir
d’un problème de conception ou d’usage : le logiciel est utilisé dans un but différent de
celui pour lequel il a été conçu. Cela peut également provenir d’une inadéquation entre la
spécification du programme et la fonctionnalité qu’il remplit effectivement. Enfin, cela
peut être une erreur à l’exécution ; par exemple, le programme s’interrompt brutalement.
Dans de nombreux cas, on s’accommode d’un programme erroné. Cependant, si celui-ci
est un programme critique, les conséquences d’une erreur peuvent être dramatiques. Un
logiciel est dit « critique » lorsqu’un comportement incorrect de ce logiciel peut menacer
la sécurité ou l’intégrité de ses utilisateurs ou de son environnement d’exécution. De
tels logiciels sont présents dans de nombreux systèmes, de l’airbag aux programmes de
commande de vol, en passant par la signalisation des réseaux ferroviaires et les contrôleurs
de centrales électriques.

Les erreurs de programmation sont diverses, ont de nombreuses causes, et de nombreux
remèdes ont été proposés soit pour les éviter ou pour circonscrire leurs effets. Notamment,
les langages de programmations peuvent, dans leur conception même, éviter des familles
entières d’erreurs. Par exemple, la gestion automatique de la mémoire [JHM11], proposée
par de nombreux langages, évite toute erreur de sûreté liée à la gestion de la mémoire. Si
les erreurs de programmations ne peuvent être évitées, leurs conséquences peuvent être
limitées par une vérification dynamique de politiques de sûreté : lorsqu’une erreur de pro-
grammation aboutirait à un comportement incorrect, le programme est interrompu sans
provoquer davantage de problèmes. Par exemple, certaines conséquences des débordements
de tampons [Ale96] peuvent être évitées en utilisant des canaris [Cow+98] qui permettent
de vérifier, au cours de l’exécution, l’intégrité, dans une certaine mesure, des adresses
de retour stockées sur la pile. De même, des protocoles d’accès à la mémoire peuvent
être imposés dynamiquement par des tests d’intégrité injectés dans le programme lors de
sa compilation [CCH06]. Dans des langages de haut niveau tels Java™, les programmes
vérifient systématiquement que les accès aux éléments d’un tableau sont dans les bornes
de celui-ci et satisfont une discipline de typage : toute violation produit une erreur qui
peut être traitée par le programme ou bien l’interrompt.

S’assurer ainsi lors de l’exécution du bon déroulement d’un programme a un coût,
puisque cela peut accroitre le temps d’exécution, la taille du programme ou sa consomma-
tion de mémoire. Heureusement, certaines vérifications sont superflues et cela peut être
démontré statiquement : avant l’exécution, un simple examen du code source permet de
prouver que certains tests ne peuvent pas échouer ; ils peuvent donc être retirés. C’est ce
que font certains compilateurs optimisants ; par exemple, le compilateur Java™ Hotspot
insère systématiquement des instructions pour vérifier les accès aux éléments des tableaux
puis tente de les retirer en prouvant automatiquement qu’elles ne sont pas nécessaires
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Rēsumē ētendu en français

[WWM07]. Une autre approche consiste à prouver statiquement que des opérations non
contrôlées sont sûres (par exemple que les accès aux éléments d’un tableau sont bien
dans ses bornes), et d’injecter des instructions de contrôle seulement lorsque le résultat
de l’analyse statique n’est pas assez précis. C’est l’approche suivie par exemple dans
CCured [Nec+05] et WIT [Akr+08] qui instrumentent des programmes C pour y injecter
des vérifications de sûreté. Les langages de bas niveau peuvent aussi être conçus avec
des objectifs de sûreté. C’est notamment le cas de Cyclone [Jim+02 ; Gro+05] et de Rust
[Rust]. Dans ces langages, tous les programmes sont à priori sûrs : le compilateur rejette
les programmes qu’il ne peut prouver sûrs. Le programmeur doit explicitement annoter
les parties du programme dans lesquelles les propriétés de sûreté doivent être vérifiées
dynamiquement.

Ces approches dynamiques ou hybrides sont très efficaces pour empêcher le détourne-
ment d’erreurs de programmation et pour circonscrire les conséquences de ces erreurs,
comme par exemple dans le cas de la faille « Heartbleed » [CVE13] : les serveurs affectés ont
pu faire fuir des kibi-octets de données secrètes (mots de passes, clefs cryptographiques se-
crètes…) en accédant hors des bornes de tableaux. Cependant, empêcher dynamiquement
que les erreurs ne se manifestent n’est pas toujours suffisant : dans un contexte critique, un
programme ne doit pas s’interrompre à cause d’une erreur de programmation. En outre,
dans les langages de bas niveau, dans lesquels il est permis de briser les abstractions, les
vérifications dynamiques ne sont pas toujours possibles ou alors seulement à un coup
exorbitant.

C’est pourquoi, afin d’assurer qu’un programme a du sens et que son exécution ne peut
produire d’erreur, ledit programme doit être étudié statiquement. C’est-à-dire qu’il faut
prédire tous ses comportements possibles, et ce avant toute exécution du programme,
en prenant en compte tout environnement possible. Les analyseurs statiques sont des
outils qui inspectent automatiquement le texte d’un programme et infèrent des propriétés
concernant les exécutions de ce programme; par exemple qu’aucune erreur d’une famille
donnée ne peut se produire. Il existe un large panel d’analyseurs statiques, avec différents
objectifs. Certains tels coverity [Bes+10] visent à trouver autant d’erreurs de programma-
tion que possible : ils s’appliquent aux programmes en cours de développement pour y
trouver les erreurs le plus tôt possible. Ces outils ne prétendent pas être corrects : s’ils
ne trouvent pas d’erreur, cela ne signifie pas qu’il n’y en a pas. Certains analyseurs font
des hypothèses pragmatiques et ne sont corrects que lorsque celles-ci sont satisfaites. Par
exemple, l’outil Infer [Cal+15] qui s’applique aux applications pour téléphones mobiles
suppose qu’il n’y a ni “concurrence ni dynamic dispatch”. De même, le Static Driver Verifier
[Bal+06] qui s’applique aux pilotes de périphériques écrits en C pour Microsoft Windows,
est correct à condition que le programme analysé manipule la mémoire de manière sûre.
Cet analyseur vérifie que des programmes spécifiques (des pilotes de périphériques)
satisfont des propriétés spécifiques (que l’API des pilotes est correctement utilisée). Enfin,
certains analyseurs sont corrects. Par exemple Astrēe [Mau04 ; Cou+05] a pour but de
vérifier des programmes, de prouver qu’ils ne peuvent pas produire d’erreur à l’exécution.
Il est employé par la société Airbus pour prouver la sûreté de programme de commande
de vol électrique de certains de ses appareils.

Dans cette thèse, nous nous concentrons sure l’analyse statique correcte des pro-
grammes, qui doit faire face aux deux difficultés suivantes : d’une part le problème
est indécidable ; d’autre part un tel analyseur doit être fiable. En vertu du théorème de
Rice, aucun analyseur statique correct ne peut produire de résultats précis pour tous les
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programmes. Un tel analyseur doit recourir à des approximations et échouer dans de
nombreux cas. Concevoir une analyse statique requiert donc de trouver un juste milieu :
quels programmes seront analysés précisément et dans quels cas l’analyseur abandonnera-
t-il. Un analyseur utile doit abandonner dans de nombreux cas (une infinité) mais doit
être suffisamment précis pour la catégorie de programme ciblée. Une autre propriété
importante pour un analyseur est son efficacité : il doit fournir un résultat précis dans des
délais suffisamment brefs. L’interprétation abstraite [CC77] fournit un cadre théorique
pour construire des familles d’analyseurs statiques de coûts et précisions variés.

2 Analyse de langages de bas-niveau

Les analyseurs statiques reposent, afin d’obtenir des résultats précis et corrects, sur les
abstractions fournies par le langage de programmation ciblé : variables, fonctions, objets,
types, gestion automatique de la mémoire etc. Les langages de bas niveau ne fournissent
que peu d’abstractions, et quand bien même il en fournirait, le programmeur est autorisé
à les briser. Cela tend à suggérer qu’il est préférable d’analyser des programmes écrits
dans les langages de plus haut niveau. Cependant, ce n’est pas toujours possible, ni même
désirable.

Certains programmes sont directement écrits dans des langages de bas niveau, soit
parce qu’ils ont besoin de briser les abstractions, ou afin de fournir des services de bas
niveau comme la bibliothèque standard d’un langage de plus haut niveau, un pilote de
matériel ou un système d’exploitation. Dans de tels cas, il n’existe pas de version de haut
niveau qui puisse être analysée. Et dans les cas où elle existerait, elle ne serait peut-être
pas disponible, par exemple pour des raisons de propriété intellectuelle.

Scade conception

C

RTL optimisation

Assembleur

Binaire exécution

Toutefois, les programmes sont en général écrits dans des lan-
gages destinés avant tout aux programmeurs et, avant de pouvoir
être exécutés par une machine, subissent plusieurs transforma-
tions, appelées collectivement compilation, pour produire un pro-
gramme correspondant dans une forme propice à l’exécution
par une machine. Le diagramme ci-contre schématise les diffé-
rentes étapes de la compilation d’un programme d’avionique
écrit initialement dans le langage Scade. Ce processus de compi-
lation peut lui-même être erroné et introduire des erreurs dans le
programme compilé, ou plus simplement invalider les résultats
d’une analyse obtenus sur le code source.

Une analyse peut donc avoir lieu au niveau le plus bas possible, pour manipuler le
programme sous sa forme finale, tel qu’il sera exécuté. Cette approche est notamment
utilisée par Reps [BR08 ; RBL06] et par nous-mêmes dans le chapitre 4. Son avantage majeur
est que la distance entre le programme analysé et le programme exécuté est réduite au
minimum. Mais c’est aussi son principal inconvénient : le programme est analysé à un
niveau très bas, alors que le langage de programmation (si l’on peut le qualifier de tel)
ne propose que peu d’abstractions voire aucune et il est très difficile de faire la moindre
hypothèse quant à la forme du programme étudié. Aucune approximation adaptée ne
peut être choisie : quelle est la bonne abstraction pour analyser une famille de programmes
donnée?

De plus, la plupart des analyses statiques sont conçues pour des langages de plus
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haut niveau qui proposent quelques abstractions (fonctions, variables, types…) ; et un
analyseur peut se reposer sur ces abstractions pour être précis : il peut être conçu pour
être très imprécis quand le programme analysé ne se conforme pas à ces abstractions. Tant
qu’il s’y conforme, l’analyse est aussi précise que possible, et dès qu’il ne s’y conforme
plus, le résultat d’analyse, quoique correct, devient très grossier.

Il est donc judicieux d’analyser, lorsque c’est possible (c’est-à-dire lorsque le code source
est disponible) un programme sous une forme de plus haut niveau et de prouver que les
propriétés établies sur cette forme de haut-niveau sont préservées par le processus de
compilation. Il existe deux moyens pour établir une telle preuve : la compilation vérifiée
et la translation validation.

L’emploi d’un compilateur vérifié permet de justifier que les propriétés établies sur le
code source d’un programme sont valides pour toutes les exécutions du programme com-
pilé. Un compilateur vérifié est un compilateur accompagné d’un théorème de correction ;
on le prouve une fois et il s’applique à toutes les exécutions du compilateur. Par exemple,
le compilateur CompCert garantit que la compilation n’introduit pas de comportements
dans les programmes compilés et que celle-ci préserve toute propriété de sûreté établie sur
le code source. Le programme compilé doit toutefois être exempt d’erreurs à l’exécution,
ce qui est, par chance, une propriété qui peut être démontrée par un analyseur statique.

La translation validation [PSS98 ; Nec00] consiste à vérifier qu’un résultat particulier est
correct pour un programme particulier. Cela requiert un calcul supplémentaire à chaque
exécution d’un analyseur. Cette approche est utilisée pour la vérification de l’analyseur
Sparrow [Kan+14].

L’exemple du compilateur CompCert montre que les deux méthodologies peuvent être
combinées : certaines passes de compilation sont certifiées alors que d’autres (comme
l’allocation de registre, par exemple) sont validées à chaque exécution du compilateur.

3 Peut-on avoir confiance en un analyseur statique?

Il peut paraître douteux que de reposer sur un analyseur statique pour justifier qu’un
programme en particulier est sûr. L’analyseur statique étant lui-même un programme, il
peut aussi contenir des erreurs de programmation. Pire, pour s’assurer qu’un programme
est sûr, il faut désormais s’assurer qu’un autre programme — l’analyseur — est correct et
remplit sa fonction. Cette dernière propriété étant à priori bien plus délicate à établir. À
nouveau, l’interprétation abstraite est une méthodologie qui permet de construire des
analyseurs statiques corrects.

Pour établir formellement qu’un programme ne peut produire d’erreur à l’exécution, ou
qu’il calcule quelque chose de correct, il faut au préalable définir formellement le sens des
programmes. La sémantique formelle d’un langage de programmation est une description
mathématique de la signification des programmes. Elle définit précisément comment un
programme s’exécute, quelle fonction il calcule.

La preuve de correction d’un analyseur statique, qui lie ses résultats aux comportements
des programmes analysés, est généralement un effort manuel distinct de l’effort d’implan-
tation de l’analyseur. Cela pose deux problèmes : d’une part, une preuve manuelle est
sujette aux erreurs et est délicate à vérifier ; d’autre part, il y a un écart entre le modèle
vérifié et le programme implanté.

Ces deux problèmes peuvent être palliés par un recours à un outil d’aide à la preuve
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tel que Coq [Coq15]. Un tel outil est en premier lieu un démonstrateur de théorèmes
sceptique : il peut être utilisé pour énoncer des propriétés et des preuves, et étant donné
un terme de preuve — un objet syntaxique qui représente la justification qu’un énoncé est
valide — Coq peut vérifier la validité de cette preuve. Même si le démonstrateur dispose
de moyens de recherche de preuve automatiques et des procédures de décision qui aident
l’utilisateur dans la construction des termes de preuve, il est seulement nécessaire de faire
confiance au noyau, généralement réduit, qui vérifie les termes de preuve.

Coq est en outre un langage de programmation purement fonctionnel : on peut écrire,
dans un même formalisme, des programmes et des propriétés. Ces programmes peuvent
être exécutés directement dans Coq, mais ils peuvent aussi être extraits pour produire un
programme OCaml qui peut être lié à d’autres programmes. Ceux-là peuvent effectuer
des entrées-sorties et ainsi communiquer avec le monde extérieur.

Le compilateur CompCert est un exemple notable de programme extrait d’un déve-
loppement Coq. La syntaxe et la sémantique des langages de programmation manipulés
par ce compilateur (du C jusqu’à l’assembleur) ainsi que les passes de compilations sont
définies en Coq de sorte que les propriétés, aussi écrites en Coq, peuvent mentionner le
code effectif du compilateur pour en énoncer la correction. Le fossé entre le programme
vérifié et le programme qui s’exécute est ainsi comblé.

La preuve mécanisée a été récemment appliquée avec succès dans divers domaines :
des résultats mathématiques tels que la conjecture de Kepler [Hal+15], le théorème des
quatre couleurs [Gon07] et le théorème de Feit-Thompson [Gon13] ; la vérification de
l’implantation de systèmes d’exploitations [Kle+10].

La vérification mécanisée d’analyses statiques a été par le passé généralement appliquée
au cadre classique de l’analyse de flot de données plutôt qu’à l’interprétation abstraite,
plus générale. Klein et Nipkow ont proposé une inférence de type pour le bytecode Java
au moyen d’une analyse de flot de données [KN06] ; Coupet-Grimal et Delobel [CD04]
ainsi que Bertot et al. [BGL06] ont appliqué ce cadre d’analyses à des optimisations de
compilateurs et Cachera et al. [Cac+05] à l’analyse de flot de contrôle. Vafeiadis et al. [VN11]
s’appuient sur une simple analyse de flot de données pour vérifier une optimisation qui
élimine des barrières de synchronisation dans des programmes C concurrents.

David Pichardie, dans sa thèse de doctorat [Pic05], propose une méthodologie pour
vérifier la correction d’analyseurs statiques basés sur l’interprétation abstraite. Il applique
cette méthodologie à des analyseurs qui manipulent des programmes écrits, à des fins
d’illustration, dans des mini-langages.

Dans cette thèse, nous étendons cette méthodologie pour construire et vérifier des analyseurs
statiques corrects, basés sur l’interprétation abstraite, qui manipulent des programmes exécutables :
soit du code binaire, soit du code source qui peut être compilé par un compilateur vérifié ; un tel
compilateur préserve la validité des résultats de l’analyse. Nos analyses visent des langages réalistes
et prennent en considération les subtilités intrinsèques à l’analyse de langages de bas niveau.

4 Contributions et organisation de ce document
Dans cette thèse, nous montrons comment les méthodes de vérification mécanisée peuvent
être appliquées à la construction d’analyseurs statiques certifiés qui ciblent des langages
de bas niveau et tout particulièrement des représentations intermédiaires du compilateur
CompCert : les langages CFG (aux chapitres 3 et 5) et C♯minor (au chapitre 6) ; et un
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langage binaire jouet (au chapitre 4). Tout au long de ce document, nous décrivons
plusieurs analyseurs statiques qui ont tous été prouvés corrects au moyen de l’assistant à
la preuve Coq. Leur correction est établie vis-à-vis d’une sémantique du langage ciblé, et
cette sémantique est aussi définie en Coq. Lorsque c’est possible, les définitions de ces
sémantiques sont partagées avec le compilateur CompCert.

Le chapitre 2 présente la vérification formelle d’analyseurs statiques en Coq : comment
on définit la syntaxe et la sémantique des langages de programmation, quelle est la forme
générale d’un analyseur statique basé sur l’interprétation abstraite, et comment on conduit
la preuve de correction d’un tel analyseur.

Nous présentons au chapitre 3 une méthodologie générale, que nous appliquons tout au
long de ce document. Cette méthodologie est appliquée dans ce chapitre-là à un langage
relativement simple (un sous-ensemble de la représentation intermédiaire CFG du compi-
lateur CompCert : pas de mémoire globale, pas d’appels de fonction, pas d’arithmétique
en virgule flottante), et nous obtenons néanmoins une analyse de valeur qui produit des
résultats comparables à ceux des analyseurs à l’état de l’art.

En suivant la même méthodologie et en réemployant des composants de l’analyseur pré-
cédent (en particulier les interfaces et implantations des domaines numériques abstraits),
nous étudions au chapitre 4 l’analyse de programmes dont la structure (notamment leur
graphe de flot de contrôle) n’est pas connue avant l’analyse. Nous nous intéressons à
la problématique du désassemblage correct de programmes binaires et construisons un
analyseur statique vérifié pour un langage binaire jouet. Quoique très simple, ce langage,
inspiré de l’assembleur x86, dispose d’un encodage des instructions à taille variable et des
branchements conditionnels basés sur des drapeaux. L’analyseur est capable de désassem-
bler les programmes, même quand leurs instructions se chevauchent ou sont produites
pendant l’exécution du programme (programmes auto-modifiants). Il peut alors prouver
que les programmes analysés sont sûrs, c’est-à-dire qu’ils ne peuvent pas produire d’er-
reur lors de leur exécution (les erreurs pourraient provenir d’une impossibilité à décoder
les instructions).

Le chapitre 5 revient sur l’analyse de programmes structurés (présentés sous la forme
d’un graphe de flot de contrôle immuable) mais qui opèrent sur une mémoire faiblement
structurée : les variables n’y sont pas de simple entités disjointes mais des données
agrégées (tableaux, structures) auxquelles on accède partiellement via des pointeurs.

Enfin, le chapitre 6 est dévolu à un analyseur pour le langage C♯minor, assez proche de C,
qui prouve automatiquement la pré-condition de théorème de correction de CompCert.

Tous les programmes présentés dans ce manuscrit sont disponibles en ligne sur le
site web associé [Web]. Ce travail s’inscrit dans le projet ANR Verasco. En particulier, ce
document présente par souci de complétude des contributions d’autres doctorants.

— L’évaluation expérimentale de l’analyse de CFG présentée section 3.5 a été menée
par André Maroneze [Mar14].

— Le domaine abstrait de polyèdres de l’analyseur Verasco, présenté section 6.4.2 est
dû à Alexis Fouilhé [FB14].

— L’itérateur intra-procédural pour C♯minor (§ 6.1), le foncteur de domaines numé-
riques abstraits entre entiers idéaux et entiers machines (§ 6.4.1) ainsi que le méca-
nisme de canaux de communication entre domaines (§ 6.4.3), présentés chapitre 6
sont dûs à Jacques-Henri Jourdan [Jou+15].

xii



Chapter 1

Introduction

1.1 Static Verification of Software

Software is pervasive; and everywhere it has bugs. A bug manifests when a program
behaves differently than what is expected. This may be a design or usage issue: the
software is used for a certain purpose whereas it is designed for a different one. The
bug may result from a functional error: the program is not functionally correct, it fails at
fulfilling its specification. Or the bug can be a run-time error; for instance, the program
crashes. In many cases, a bogus software is not an issue; at most an unpleasantness.
However, when the failing software is safety-critical, consequences of a bug can be dramatic.
A software is called “safety-critical” when a mis-behavior of this software would threaten
the safety or the integrity of its users or its run-time environment. Such softwares are
found in many places including airbags, fly-by-wire avionics, railway signalization, and
power plant control.

Programming errors have many causes and there have been many attempts to prevent
them or to limit their effects. The design of programming languages itself can help in
avoiding whole families of errors. For instance, automatic memory management [JHM11],
featured by many languages, avoids all safety errors related to memory management (e.g.,
double free, use after free). If programming errors cannot be avoided, their consequences
can be mitigated by a dynamic enforcement of safety policies: in case a programming
error would lead to a buggy behavior, the program aborts without causing any more
harm. For instance, some consequences of buffer overflows [Ale96] can be avoided by using
canaries [Cow+98], that enable to check at run-time the integrity, to some extent, of return
addresses stored on the stack. Similarly, memory access protocols can be dynamically
enforced by integrity checks introduced at compile-time [CCH06]. High-level languages
like Java™ systematically check that array accesses are in-bounds and obey a typing
discipline: any violation results in an error that may be caught by the program itself or
halts it.

Such run-time enforcement of safety properties has costs, as it may increase the execution
time, code size, or memory footprint of the running program. Fortunately, some checks
can be statically proved to be unnecessary: before the execution, simply by looking at the
source code, it can be proved that some checks cannot fail: therefore, they can be removed.
This is what is done in optimizing compilers; for instance, the Java HotSpot™ compiler
systematically inserts checks and then tries to remove them by automatically proving that
they are not needed [WWM07]. An other approach is to statically prove that unchecked
operations are safe (e.g., array accesses are in-bounds), and insert checks whenever the
static analysis result is not precise enough. This approach is taken by CCured [Nec+05]
and WIT [Akr+08] which instrument C programs to perform safety checks. Low-level
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languages can also be designed with safety in mind, as for instance Cyclone [Jim+02;
Gro+05] or Rust [Rust]. In these languages, safety is the default: the compiler will reject
programs that it cannot prove safe. The programmer has to explicitly annotate the parts
of the programs where safety properties must be dynamically checked.

These dynamic or hybrid approaches are very effective to prevent exploitation of bugs
and avoid some bad consequences of programming errors, as in the case of the Heartbleed
bug [CVE13]: buggy servers silently leaked kibi-bytes of secret data (user passwords,
secret cryptographic keys…) by reading arrays out-of-bounds. Nonetheless, such dynamic
avoidance of errors is no panacea: in critical settings, programs should not halt nor crash
because of programming errors. Also, in low-level languages, in which it is allowed to
break the abstractions (the programmer is trusted), dynamic checks are not possible or
extremely costly.

Therefore, to ensure that a program is meaningful and that its execution cannot produce
an error, said program must be statically studied. This means to predict all possible
behaviors, prior to any execution of the program, taking into account any possible envi-
ronment. Static analyzers are tools that automatically inspect a program text and infer
properties about the executions of the program, for instance that no error of some family
can occur. There is a wide range of such tools, with different aims. Some like the coverity
tool [Bes+10] aim at finding as many programming errors as possible: they apply to de-
velopment versions of software so as to find bugs as early as possible in the development
process. Such tools do not pretend to be sound: if they find no bug, it does not mean
that there are none. Some analyzers make practical assumptions and are sound under
them. As an example, the Infer tool [Cal+15] targeting applications for smartphones
assumes that there is no “concurrency or dynamic dispatch”. Similarly, the Static Driver
Verifier [Bal+06] that targets device drivers for Microsoft Windows that are written in C, is
sound provided the analyzed program is memory-safe. This analyzer verifies that specific
software (device drivers) satisfy specific requirements (that the driver API is correctly
used). Finally, some analyzers are sound. For instance, Astrēe [Mau04; Cou+05] aims at
verifying software, at proving that they cannot produce any run-time error. It is used by
the Airbus company to prove the fly-by-wire program of some of its planes.

In this work, we focus on such sound static verification of programs, which faces the two
following issues: the problem at hand is undecidable; and the analyzer should be reliable.
By Rice’s theorem, no static analyzer can yield precise results for all programs. It must
resort to approximations and fail to produce any useful result in many cases. Designing a
static analysis involves finding the right trade-off: what kinds of program are precisely
analyzed and in which cases the analyzer gives up. A useful analyzer must give up in
(infinitely) many cases but be precise enough on the family of programs of interest. An
other sensible property of an analyzer is its efficiency: it must yield a meaningful answer
fast enough. Abstract interpretation [CC77] provides a theoretical framework to build
families of static analyzers with various precisions and costs.

1.2 Analysis of Low-level Languages

Static analyzers rely, to get precise and sound results, on the abstractions provided by the
targeted programming language: variables, functions, objects, types, automatic memory
management, etc. Low-level languages feature less abstractions, or the programmer is
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allowed to break them. This would thus suggest to preferably analyze programs written
in higher-level languages. This is however not always possible or even desirable.

Some programs are directly written in low-level languages, because they need the
power of breaking the abstractions, so as to implement low-level services like the standard
library and run-time support for higher-level languages, hardware drivers or operating
systems. In such cases, there is no high-level artifact that can be analyzed. And even if it
exists, it may not be available, e.g., for intellectual property reasons.

Scade design

C

RTL optimization

Assembly

Binary execution

Anyway, programs are usually written in languages friendly
to the programmers and, before they can be actually run on
a machine, they undergo several transformations, collectively
referred to as compilation, to produce a corresponding program
in a form friendly to the executing machine. The picture on
the right sketches various steps in the compilation of an avionic
program initially written in Scade. This compilation process may
itself be wrong and introduce bugs, or more simply invalidate
analysis results obtained on the source code.

An analysis can therefore take place at the lowest-possible
level, operating on the program as it is executed. This approach
is notably taken by Reps [BR08; RBL06] and applied in Chapter 4.
Its main advantage is that there is no gap between the analyzed program and the run one.
This is also its main drawback: the program is analyzed at a very low level, at which the
programming language (if that can be called so) features little or no abstraction and it
is very hard to do any hypothesis about the program shape. Adequate approximations
cannot be chosen: what is the right abstract domain to analyze a given family of programs?

In addition, most static analyses are designed for higher-level languages which feature
some abstractions (functions, variables, types…); and an analyzer can rely on these
abstractions so as to be precise: it can be designed as very imprecise when the analyzed
program does not adhere to the abstractions: while it does, the analysis is as precise as
possible, and as soon as it does not, the analysis result, while correct, gets very coarse.

It is therefore judicious to analyze, when this is possible (i.e., when the source code is
available) a high-level form of the program and to prove that properties inferred on this
high-level form are preserved by the compilation process. There are two approaches to
establish such properties: verified compilation and translation valitation.

The use of a verified compiler can justify that properties established on the source
program hold for all executions of the compiled program. A verified compiler is a
compiler which comes with a correctness theorem; it is proved once and holds for all runs
of the compiler. For instance, the CompCert compiler guarantees that the compilation
does not introduce behaviors in the compiled program and preserves all safety properties
established on the source code. The compiled program must nonetheless be free of
run-time error, which fortunately is the kind of properties that a static analyzer may infer.

Translation validation [PSS98; Nec00] consists in verifying that a particular result is
correct for a particular program. This involves an additional computation on every
execution of an analyzer. Such approach has been applied to the verification of the
Sparrow analyzer [Kan+14].

The example of CompCert shows that both method can be combined: some compilation
passes are certified while other are validated (as the register allocation, for instance).
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1.3 Trusting a Static Analyzer

Relying on a static analyzer to justify that a given program is safe may look dubious. The
static analyzer itself being a program, it is also subject to bugs. Worse, to believe that
some program is safe, we now have to trust that an other program is functionally correct.
This last property being a priori much harder to establish. Again, abstract interpretation
is a methodology to design sound static analyzers.

So as to formally establish that a program cannot produce an error, or that it computes
the right thing, we need to formally give meanings to programs. The formal semantics of
a programming language is a mathematical description of the meaning of programs. It
precisely defines how a program is executed, what function it computes.

The soundness proof of static analyzers, which links their results to the behaviors of
the analyzed programs, is often a pen-and-paper effort, distinct than the implementation
effort. This raises two issues: first, the proof effort is error-prone and difficult to check;
second, there is a gap between the verified model and the implemented program.

Both issues can be addressed by resorting to a proof assistant like Coq [Coq15]. Such a
tool is first a skeptical theorem prover: it can be used to write statements and proofs, and
given a proof term —a syntactic object that conveys the argument that some statement
holds—, Coq can check its validity. Even if the theorem prover features some automated
proof search and decision procedures that help the user in the process of building the
proof terms, we only need to trust a reduced kernel that performs the proof checking.

Coq is also a purely functional programming language: we can write, in a single
formalism, programs and properties. These programs can be directly run inside Coq, but
they can also be extracted to the OCaml programming language, so as to be linked with
other programs which may perform inputs and outputs and communicate with the outer
world.

The CompCert compiler is a notable example of program that is extracted from a Coq
development. The syntax and semantics of the programming languages manipulated by
the compiler (from C to assembly) and the compilation passes are defined in Coq so that
properties, also written in Coq, can mention the actual code of the compiler to state its
correctness. There is no more gap between the code that is verified and the code which
runs.

Mechanized proof has been recently applied with great success to various domains:
mathematical results as the Kepler conjecture [Hal+15], the Four Colour Theorem [Gon07],
and the Feit-Thompson theorem [Gon13]; verification of the implementation of operating
systems [Kle+10].

Previous work on mechanized verification of static analyses has been mostly based
on classic data-flow frameworks rather than on the more general abstract interpretation.
Klein and Nipkow instantiate the data-flow framework for inference of Java bytecode
types [KN06]; Coupet-Grimal and Delobel [CD04] and Bertot et al. [BGL06] for compiler
optimizations, and Cachera et al. [Cac+05] for control-flow analysis. Vafeiadis et al.
[VN11] rely on a simple data-flow analysis to verify a fence elimination optimization for
concurrent C programs.

David Pichardie, in his Ph.D. [Pic05], proposes a methodology to verify the soundness
of static analyzers based on abstract interpretation. He applies this methodology to
analyzers which operate on mini languages and programs written for the purpose of
illustration.
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1.4 Contributions and Structure of this Document

In this work, we extend this methodology and build and verify sound static analyzers, based on
abstract interpretation, that analyze programs that can be executed: either binary code, or source
code that can be compiled by a verified compiler; said compiler preserves the analysis results. Our
analyses target realistic languages and take into account the subtleties inherent to the analysis of
low-level languages.

1.4 Contributions and Structure of this Document

In this work we show how mechanized verification methods can be applied to the construc-
tion of certified static analyzers that target low-level languages, in particular intermediate
representations of the CompCert compiler: CFG (in chapters 3 and 5) and C♯minor (in
chapter 6); and a toy binary language (in chapter 4). Throughout this document, we
describe several static analyzers that are all proved sound within the Coq proof assistant.
The soundness is established with respect to a semantics of the target languages, also
defined in Coq. Where relevant, the definitions of theses semantics are shared with the
CompCert compiler.

The chapter 2 introduces to the formal verification of static analyzers in Coq: how a
programming language syntax and semantics can be defined, what is the general shape
of an abstract-interpretation-based static analyzer and of its soundness proof.

We then present in chapter 3 a general methodology that is used throughout this docu-
ment, and applied to a simple language (a subset of the CFG intermediate representation
of CompCert: no memory, no function calls, no floating-point values), and get nonetheless
a value analyzer which yields results comparable to state-of-the art analyzers.

Following the same methodology, and reusing parts of the aforementioned analyzer
(interfaces and implementations of numerical domains in particular), we study in chapter 4
the analysis of programs whose structure (notably their control-flow graph) is not known
before the analysis. We address the issue of sound disassembling of binary programs,
and build a verified static analyzer for a toy binary language. Despite being very small,
this language, which is inspired from x86 assembly, features a variable-length encoding
and flag-based conditional branches. The analyzer is able to disassemble programs, even
when instructions overlap or are produced during the program execution. It then proves
that analyzed programs are safe, i.e., cannot produce any error when they are run. (Errors
correspond to decoding failures.)

The following chapter 5 comes back to the analysis of well-structured programs (given
as an immutable control-flow graph) but that operate on a loosely structured memory:
variables are not simple disjoint entities but aggregated data (arrays, structures) accessed
chunk-wise through pointers.

Bringing all together, chapter 6 is devoted to an analyzer for the C♯minor language,
close to C, so as to automatically discharge the precondition of the CompCert correctness
theorem.

All programs that are shown in this document are available on the companion web-site
[Web]. This is joint work in the Verasco ANR project. In particular, this document presents,
for completeness, the following contributions of other Ph.D. students.

• The experimental evaluation of the CFG analyzer presented in Section 3.5 is due to
André Maroneze [Mar14].
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Chapter 1 Introduction

• The polyedral domain of the Verasco analyzer presented in Section 6.4.2 is due to
Alexis Fouilhé [FB14].

• The intra-procedural iterator for C♯minor (§ 6.1), the functor from ideal integers to
machine integers (§ 6.4.1), and the channel mechanism for communication between
domains (§ 6.4.3) presented in chapter 6 are due to Jacques-Henri Jourdan [Jou+15].
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Chapter 2

Context

In this chapter we briefly introduce to the main tools our work is built on: static analysis
based on abstract interpretation and the CompCert verified C compiler, both verified with
the Coq proof assistant.

2.1 Introduction to abstract-interpretation-based static analysis
in Coq

So as to describe the design, implementation and proof of static analyzers in Coq, we will
first present how a programming language syntax and semantics can be defined. This
will be the opportunity to highlight some aspects of Coq that are used throughout this
work. Then we will discuss the abstract-interpretation framework that encompasses all
interpreters that will be presented in this document.

All Coq snippets in this section are extracted from a short development (about a thou-
sand lines of Coq) available on the companion web page [Web].

2.1.1 Syntax of a Toy Language

Let’s start with a (minimalist) toy language, called ge (as graph & expressions), with
(unbounded) integer variables, arithmetic expressions, and basic instructions (assign and
branch) arranged in a control-flow graph. Its formal abstract syntax is given in Figure 2.1.
Program variables (type var) are represented by positive numbers. Expressions (type
expr) are represented as abstract syntax trees whose leaves are constant values or variable
names and nodes represent addition, multiplication or comparison of their subtrees. A

Definition var : Type := positive.

Inductive expr : Type :=
| EConst (v: Z)
| EVar (x: var)
| EAdd (e₁ e₂: expr)
| EMul (e₁ e₂: expr)
| ELt (e₁ e₂: expr).

Definition node : Type := positive.

Inductive instr : Type :=
| IAssn (x: var) (e: expr) (s: node)
| IIf (g: expr) (s₁ s₂: node)
| IStop.

Definition prog : Type := Map [ node, instr ].

Figure 2.1: Syntax of ge, a toy control-flow graph language with structured expressions
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Chapter 2 Context

Example fact (x y n: var) : prog := of_list (
(1, IAssn n (EConst 0) 2)

:: (2, IAssn y (EConst 1) 3)
:: (3, IIf (ELt (EVar n) (EVar x)) 4 6)
:: (4, IAssn n (EAdd (EVar n) (EConst 1)) 5)
:: (5, IAssn y (EMul (EVar y) (EVar n)) 3)
:: (6, IStop)
:: nil).

(*
1: n ← 0
2: y ← 1
3: while ( n < x ) {

4: n ← n + 1
5: y ← y × n }

6: stop
*)

Figure 2.2: Example ge program computing the factorial function

program (type prog) is a finite map1 from program points (type node) to instructions (type
instr). Each instruction embeds the name of its successors nodes. An instruction is either
an assignment IAssn x e s of an expression e to a variable x (and execution proceeds at
node s), a conditional branch IIf g s₁ s₂ to node s₁ or s₂, depending on the value of the
guard g, or IStop that terminates the program execution.

As an illustration, we can build the program fact, shown on Figure 2.2, which computes
the factorial of x in variable y using auxiliary variable n (the same program is given on the
right in an informal concrete syntax). The of_list function builds a map from an association
list.

So as to be able to reason about such programs, we need to define the language semantics.
To this end, we first introduce two aspects of Coq: how properties about sets can be
expressed, and how we specify abstract data types, cornerstone of modular developments.

2.1.2 Sets as Propositions

When used in specifications (as opposed to programs and computations), sets of values of
some type A can be described by predicates over this type, i.e., functions of type A → Prop
that map every value of type A to a proposition (of type Prop) that expresses whether
this value is a member of the set. Figure 2.3 shows how various set operations are thus
defined. Given a set X, i.e., a predicate over A, the fact that an element a is a member
of this set is reflected by the property (X a), that we conveniently write “a ∈ X”. Set
inclusion, intersection and union are described respectively as implication, conjunction
and disjunction of membership facts. The empty set is the predicate that is always false.
A singleton is defined as the equality to its element. Given two sets X and Y, their product
X × Y is the sets of pairs (x, y) such that x is a member of X and y is a member of Y. The
term (Union A B X f) represents the set ⋃u�∈X f(𝑎). We use the Notation keyword to define
non-alphabetic symbols and infix notations. The Union operator is defined as usual, with
a plain Definition; a notation for it will be defined later (after type classes are introduced).

2.1.3 Abstract Data Types

The Coq infrastructure proposes at least two mechanisms to define and use abstract data
types: modules and records. The main difference is that records are first-class objects:

1 The notation Map [ K, V ] represents the type of finite maps whose keys have type K and values type V; it
comes from the Containers library, contributed by Stēphane Lescuyer.
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2.1 Introduction to abstract-interpretation-based static analysis in Coq

Notation ℘(A) := (A → Prop).
Notation a ∈ P := (P a).
Notation X ⊆ Y := (∀ a, a ∈ X → a ∈ Y).
Notation X ∩ Y := (λ a, a ∈ X ∧ a ∈ Y).
Notation X ∪ Y := (λ a, a ∈ X ∨ a ∈ Y).
Notation ∅ := (λ _, False).
Notation {{ a }} := (eq a).
Notation X × Y := (λ a, let (x, y) := a in x ∈ X ∧ y ∈ Y).
Definition Union (A B: Type) (X: ℘(A)) (f: A → ℘(B)) : ℘(B) := λ b, ∃ a, a ∈ X ∧ b ∈ f a.

Figure 2.3: Sets as propositions

abstracting over a module requires a functor (i.e., a construction specific to modules),
when abstracting over a record is the usual for-all quantification. A decisive advantage of
records is the type-classes mechanism built atop them (briefly described below). Here we
focus on describing our use of records to specify, define and use abstract data types in
this work.

As an example, we define an abstract type of monads. Given a type constructor M, its
monad structure is defined by a record with two fields, named unit and bind. The first
one takes as argument a type A, of value a of this type, and builds the corresponding
monadic value of type M A. The second takes as arguments two types A and B, and
composes a monadic value of type M A with a function from A to M B. These functions are
polymorphic: for instance unit takes as argument any type and a value of this type. There
is no specific concept of polymorphism is Coq: it is a particular instance of a dependent
type. After their definition, the fields of the record take two additional arguments: the
type constructor M and the record itself (of type monad M).

Record monad (M: Type → Type) : Type := {
unit : ∀ A, A → M A;
bind : ∀ A B, M A → (A → M B) → M B

}.

This defines a new type constructor, monad, that can be used to define generic programs,
over any monad. For instance, given a type constructor M and its monad structure S, we
can define a generic lift that takes any function (f: A → B) into the corresponding lifted
function (lift f: M A → M B). The Context keyword introduces hypotheses (or variables)
that are shared by several definitions; their scope is bounded by sections. To ease the
readability, we define the usual notations ret and >>= for the two monadic operators. This
program does not know what the actual monad is, but it can refer to the fields of the
structure S. Underscores _ in terms are placeholders that are automatically filled by the
type-inference engine of Coq.

Context (M: Type → Type) (S: monad M).
Notation "'ret' x" := (unit M S _ x).
Notation "x >>= f" := (bind M S _ _ x f).

Definition lift (A B: Type) (f: A → B) (m: M A) : M B := m >>= λ a, ret (f a).
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Chapter 2 Context

To define an actual monad structure for some concrete type constructor, we have to
define a particular record with the appropriate operators. For instance, the set monad
can be defined as follows. The unit operator builds a singleton set and the bind operator
is the Union that we have previously defined.

Definition set A := ℘(A).
Definition set_monad : monad set := {|
unit := λ A a, {{ a }};
bind := λ A B (X: set A) (f: A → set B), Union _ _ X f

|}.

In order to be able to prove facts about programs that use monads, we need to specify
the monad abstract data-type. As for the operators, the specification of an abstract data
type can be defined as a record, whose fields are invariants of the data type. In the
case of monads, the three monad laws can be specified as follows. This specification is
parameterized by an equivalence relation e over monadic values (with the infix notation ·
=== ·). The parameter E is a proof that this relation is actually an equivalence.

Context (e: ∀ A, relation (M A)) (E: ∀ A, Equivalence (e A)).

Record monad_spec : Prop := {
unit_left : ∀ A B (a: A) (f: A → M B), (ret a >>= f) === f a;
unit_right : ∀ A (m: M A), (m >>= (λ x, ret x)) === m;
bind_assoc: ∀ A B C (m: M A) (f: A → M B) (g: B → M C),
((m >>= f) >>= g) === (m >>= (λ x, f x >>= g))

}.

Then, we can prove properties about generic programs. For instance, that the lifted
identity is the identity (up to functional extentionality).

Context (S_correct: monad_spec).

Lemma lift_id A : lift A A id === id.
Proof. intros x . apply S_correct . Qed.

Finally, to be able to use such a theorem for a particular monad instance, we have to
prove the monad laws. In the case of the set monads, we prove them for a particular
equivalence relation, eq_set, which is extensional.

Definition eq_set A : relation (set A) := λ X Y, ∀ a, a ∈ X ↔ a ∈ Y.
Lemma eq_set_equiv A : Equivalence (eq_set A).
Proof. vm_compute; firstorder . Qed.

Lemma set_monad_correct : monad_spec set set_monad eq_set eq_set_equiv.
Proof. now split; vm_compute; firstorder; subst . Qed.
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2.1 Introduction to abstract-interpretation-based static analysis in Coq

2.1.4 Type Classes

This is a brief introduction to type-classes in Coq [SO08; SW11], that presents sufficient
material to understand the uses of this feature in this work. Many aspects are not discussed.
In particular how it relates to canonical structures — an other Coq feature somehow similar
to type-classes — and how to automate proof search thanks to the inference mechanism.

Type classes provide a facility for (static) overloading, i.e., using the same name for
different functions, ambiguities being resolved from the context during type inference.

As an example, consider join, a binary operator defined on several data-types (say A
and B). These operators have similar properties and similar uses, thus deserve the same
name. The different operators could simply be named joinA and joinB, but the name of
the type of its argument is often easily guessed from the arguments themselves. Also, it
is convenient to use a notation — say x ⊔ y — for both operators.

The basic idea is to add a level of indirection and define a generic join function:

Definition join (X: Type) (j: X → X → X) : X → X → X := j.

Then, we can use (join A joinA a a′) in lieu of (joinA a a′) and similarly (join B joinB b b′) in
lieu of (joinB b b′). The type-classes feature provides a powerful inference mechanism that
allows to leave arguments X and j of join as implicit and simply write (join a a′) and (join b
b′), or more conveniently (a ⊔ a′) and (b ⊔ b′) respectively, after the corresponding notation
has been defined. Those expressions have holes that are automatically filled.

This mechanism requires some annotations. The types of the holes need to belong to a
declared class and the value that will fill this hole has to be declared an instance of this
class. To come back to the example of join, the class of types with such an operator could
be defined as follows.

Class join_op (X: Type) :=
join : X → X → X

.

This reads as: a type X belongs to the class join_op only if there is an operator with
type X → X → X. This operator can then be referred to using the generic name join. The
inference mechanism does not pick any term with the right type, but only one that has
been explicitly designated. To label a term of the right type as a join operator for a given
type, the Instance keyword is to be used as follows.

Instance join_op_A : join_op A := joinA.

Then, when join is applied to arguments of type A, the inference machinery will kindly
find the expected operator. The final step is to define a nice notation for this overloaded
operator.

Notation "x ⊔ y" := (join x y).

Usually, in a given context, there is only one instance for a given class with a given set
of arguments. The Global and Local keywords, used with the Section facility, enable to
control the scopes of the instance declarations.

Some instances can be parameterized by other instances. As an example, consider the
data-type X+⊥ (a notation for botlift X) that adds a new element Bot to an existing type X.
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Chapter 2 Context

Inductive botlift (X: Type) : Type :=
| NotBot (x: X)
| Bot.

This element is meant to be an identity with respect to a join operator. Therefore, we can
define a generic join operator for any lifted data-type that belongs to the join_op class:

Instance botlift_join (X: Type) (J: join_op X) : join_op (X+⊥) :=
λ x y : X+⊥,
match x, y with
| Bot, _ => y
| _, Bot => x
| NotBot x′, NotBot y′ => NotBot (x′ ⊔ y′)
end.

Now, in a context in which terms u and v have type B+⊥, the expression u ⊔ v, which
actually is the term (join _ _ u v) with two holes, will be filled with respectively B+⊥ (from
the types of u and v) and (botlift_join B join_op_B) from the available instances.

Similarly, given an instance for a lifted type (X+⊥), we could define an instance for the
corresponding base type X:

Instance botunlift_join (X: Type) (J: join_op (X+⊥)) : join_op X :=
λ x y : X, NotBot x ⊔ NotBot y.

This would be a bad idea in general. Indeed, instance inference may now loop: to find
an instance of (join_op X), apply botunlift_join and botlift_join and start again.

In this work, the main type classes are for: decidable equality; for debugging purposes, a
to_string function that produces a readable representation of its argument; lattice structure
(maximal element, join, widening); concretizations; reductions; abstract domains.

2.1.5 Concrete Semantics

With powerful Coq tools at hand, we can come back to our toy programming language
and define its semantics.

The semantics of expressions is given in Figure 2.4. Programs operate on an environment
(type env) that maps program variables to integers. Truth values are encoded with integers
zero and one. Any non-zero integer is considered true. Semantics of expressions is defined
through an evaluation function, that can be seen as a big-step operational semantics.

The meaning of programs is defined as a small-step operational semantics in Figure 2.5.
The state of (the machine executing) the program (type exec_state) is made of a program
counter (the node, in the program control graph, corresponding to the next instruction to
execute) and an environment. The step function returns the next execution state or None
when the execution is over or stuck (execution is stuck when the program point is not
bound in the program control-flow graph, or when an expression evaluates an unbound
variable). The run function executes at most n steps of a program. We can then define
the set of reachable states from an initial state i when running a program p. A state is
said initial when the program counter is 1; notice that the environment is not necessarily
empty in an initial state (bound variables can be seen as input data). Finally, we define
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2.1 Introduction to abstract-interpretation-based static analysis in Coq

Definition env : Type := Map [ var, Z ].

Definition of_bool (b: bool) : Z :=
if b then 1 else 0.

Definition val_is_true (v: Z) : bool :=
if v == 0 then false else true.

Definition zlt (a b: Z) : Z :=
of_bool (a <? b).

Fixpoint eval_expr (e: expr) (ρ: env)
: option Z :=
let binop op e₁ e₂ :=

eval_expr e₁ ρ >>= λ v₁,
eval_expr e₂ ρ >>= λ v₂,
ret (op v₁ v₂) in

match e with
| EConst v => ret v
| EVar x => ρ[x]
| EAdd e₁ e₂ => binop Z.add e₁ e₂
| EMul e₁ e₂ => binop Z.mul e₁ e₂
| ELt e₁ e₂ => binop zlt e₁ e₂ end.

Figure 2.4: Semantics of ge expressions

Definition exec_state: Type := (node * env).

Definition step (p: prog) (st: exec_state)
: option exec_state :=
let (pc, ρ) := st in
p [ pc ] >>= λ i,
match i with
| IAssn x e s =>
eval_expr e ρ >>= λ v,
let ρ' := ρ [ x <- v ] in
Some (s, ρ')

| IIf g t e =>
eval_expr g ρ >>= λ v,
let pc' := if val_is_true v then t else e in
Some (pc', ρ)

| IStop => None end.

Definition stuck (p: prog): ℘(exec_state) :=
λ e, step p e = None ∧ p[fst e] ≠ Some IStop.

Fixpoint run (p: prog) (n: nat) (st: exec_state)
: exec_state :=
match n with
| O => st
| S n′ => match step p st with
| Some st′ => run p n′ st′
| None => st end end.

Definition reachable (p: prog) (i: exec_state)
: ℘(exec_state) :=
λ e, ∃ n, run p n i = e.

Definition initial: ℘(exec_state) :=
λ e, fst e = 1.

Definition sem (p: prog): ℘(exec_state) :=
Union initial (reachable p).

Notation "⟦ p ⟧" := (sem p).

Figure 2.5: Semantics of ge programs
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the reachability semantics sem of a program p as the set of states reachable (in some finite
number of steps) from any initial state. An interesting characterization of this semantics
is that it is the least post-fixpoint2 of the following function, where of_opt casts the result
of step into a set of states.

Definition SEM (p: prog) := λ s, initial_state ∪ Union s (of_opt ∘ step p).

This collecting semantics of programs is precise enough to express safety properties of
programs as “in all reachable states, variable x is non-negative” or “execution cannot be
stuck”.

In the following, we will describe how abstract interpretation enables the automatic
proof of such properties.

2.1.6 Abstract Semantics

Abstract interpretation is a wide topic that provides a general framework to design and
prove correct sound static analyzers [CC77]. The meaning of “interpretation” is twofold.
On one hand it is a way to “give a meaning to” programs, i.e., a non-standard semantics.
On the other hand it describes a way to execute programs. We use abstract interpretation
as a tool for building sound static analyzers; we do not formalize this theory. Also, since we
will only prove results about soundness of the analyses (and none about their precision),
we do not introduce abstraction functions nor Galois connexions.

A static analysis computes facts about programs. These facts belong to some class
specific to the analysis. This class is defined through a so-called “abstract domain”,
a machine representation of these properties. This data-type is partially-ordered by a
relation le, noted ·⊑·. Each element of the abstract domain represents a collection of
execution states: this is formalized through a concretization relation, usually called γ.
The partial order of the domain reflects the precision of the elements: greater elements
denote coarser properties (i.e., larger sets of execution states).

Context (A: Type) (le: A → A → bool) (γ: A → ℘ exec_state).
Infix "⊑" := le.
Context (le_sound: ∀ a a', a ⊑ a' → γ a ⊆ γ a').

The abstract semantics of a program p is defined as a (usually monotone) function
f: A → A. It should be correct w.r.t. the concrete semantics in the following sense: given
an abstract value a and a concrete state e in the concretization γ(a) of the abstract value,
for every step of the program p from e to some state e', then this final state e' is in the
concretization of the abstract result f(a). This soundness condition is depicted by the
diagram on the right, in which the right-most γ edge is the conclusion.

Context (f_sound: ∀ a e,
e ∈ γ(a) → step p e ⊆ γ(f a)

).

a f a

e e'

f

step p
γ γ

In this setting, any post-fixpoint of the abstract semantics that also over-approximates
initial states approximates all reachable states, as summarized by the following theorem.

2 The least post-fixpoint of a function SEM is the smallest set s that satisfies: (SEM s) ⊆ s.
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(* Iterates f at most n times from a. *)
Fixpoint iter (n: nat) (a: A): A * nat :=
match n with
| O => (a, n) (* give up: no more fuel *)
| S n' =>
let a' := f a in (* do one step *)
if a' ⊑ a (* post-fixpoint reached? *)
then (a, n)
else iter n' a' (* continue *)

end.

(* The possible analysis outcomes. *)
Inductive outcome: Type := OK | Fuel.

(* Analysis from an initial state. *)
Definition analyzer n (ι: A) : A * outcome :=
let (π, n) := iter n ι in
(π, if n == O then Fuel else OK).

(* Soundness of this generic analyzer. *)
Theorem analyzer_pfp n ι π:
analyzer n ι = (π, OK) → f π ⊑ π.

Figure 2.6: Generic post-fixpoint solver

Theorem soundness: ∀ a: A, initial_state ⊆ γ(a) → f a ⊑ a → ⟦p⟧ ⊆ γ(a).

We can then build a simple iterator, as shown on Figure 2.6, that starts from an initial
state ι and repeatedly applies the abstract semantics until a post-fixpoint is found. This
iterator may not terminate: if the abstract semantics is not monotone, if ι ⊑ f(ι) does not
hold (i.e., the sequence is not initially increasing), or if the domain A has infinite ascending
chains. Therefore, so as to guarantee the termination of the analyzer, we rely on fuel, i.e., a
counter that decreases on every recursive call; when the analyzer runs out of fuel, it gives
up.

However, we take care to design analyses such that all three conditions hold. In partic-
ular, when dealing with domains with infinite (or very long) ascending chains, we use
widening operators so as to accelerate the iteration and ensure its termination. A widening
is a binary operator, usually written ·∇·, that enjoys the following condition: for each
sequence (𝑥u�)u�∈𝐍 that is increasing (i.e., ∀𝑖 ∈ 𝐍, 𝑥u� ⊑ 𝑥u�+1), the sequence (𝑦u�)u�∈𝐍 defined as
𝑦0 = 𝑥0 and ∀𝑖 ∈ 𝐍, 𝑦u�+1 = 𝑦u�∇𝑥u�+1 is such that there is a rank 𝑘 after which the sequence
is constant (i.e., ∀𝑖 ∈ 𝐍, 𝑦u�+u� = 𝑦u�) [CC77].

2.1.7 Flow-Sensitive Analyzer

The generic iterator that we have just shown is somehow too general. All analyzers that
we will describe in this document have a more specific shape: the abstract domain (of
some type Σ) only represents environments (rather than execution states). From this
domain, we build an abstraction of states by attaching to each program point a value of
this domain: the previous framework is instantiated with the type Map [ node, Σ ].

The abstraction for environments comes with two operators (in addition to the usual
partial order and join) that model the two fundamental instructions of the language:
assignments and conditional branches. These operators may return no value when they
discover a contradiction: for instance, a call to (assume e b σ) may prove that in no concrete
environment in the concretization of σ the expression e can evaluate to a value whose
boolean interpretation is b; in such a case it returns None. These operators come with
soundness conditions (in which γo is the concretization relation of Σ lifted to options, and
ρ[x <- v] is the map ρ updated at key x with the value v).
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Context (assign: var → expr → Σ → option Σ) (assume: expr → bool → Σ → option Σ)
(assign_sound: ∀ x e σ ρ v,

ρ ∈ γ(σ) → v ∈ eval_expr e ρ → ρ[x <- v] ∈ γo (assign x e σ))
(assume_sound: ∀ g σ ρ v,

ρ ∈ γ(σ) → v ∈ eval_expr g ρ → ρ ∈ γo (assume g (val_is_true v) σ)).

The abstract semantics f of a program p performs one execution step from an abstract
state π. For every program point n of the program, the new abstract environment at
(f π)[n] is computed as the join of all states coming from the predecessors of n. The map
predecessors p attaches to each program point n the set of nodes k such that there is an
edge in p from k to n. The function mapio applies a function f to each binding in a map
to build a map with the results; when f returns None, the binding is removed from the
resulting map. The function set_map_reduce applies a function to each elements of a set
in parallel, then joins all the results.

Context (p: prog).
Definition f (π: Map [ node, Σ ]) : Map [ node, Σ ] :=
mapio (λ (n: node),
set_map_reduce (λ k,
π[k] >>= λ σ,
match p[k] with
| Some (IAssn x e _) => assign x e σ
| Some (IIf g t e) => assume g (t == n) σ
| _ => None
end)

) (predecessors p).

Definition fs_analyzer (n: nat) (ι: Map [ node, Σ ]) : Map [ node, Σ ] * outcome :=
analyzer _ fs_leb (λ π, ι ⊔ f π) n ι.

Definition γ_fs (π: Map [ node, Σ ]) : ℘ exec_state := λ e, snd e ∈ γo(π[fst e]).

Theorem fs_analyzer_sound n ι π :
initial_state ⊆ γ_fs(ι) → fs_analyzer n ι = (π, OK) →
⟦p⟧ ⊆ γ_fs(π).

The flow-sensitive analyzer is finally defined by specializing the generic analyzer with
the function λ π, ι ⊔ f π. This function is the abstract counterpart of the concrete SEM
previously defined. It therefore yields a sound analyzer, as stated by the fs_analyzer_sound
theorem: if the initial abstract state is a correct approximation of the concrete initial states,
the analysis result is a correct abstraction of the program behaviors. The γ_fs concretization
relation lifts the concretization γo of abstract environments to flow-sensitive abstract states.

The analysis could be defined as a post-fixpoint of other functions: using λ π, π ⊔ f π
would also work. Moreover, if the domain Σ has infinite ascending chains, we could
define a widening operator ∇ and compute a post-fixpoint of λ π, π ∇ f π. However, since
these two last functions are not known to be monotone, there is no guarantee that their
post-fixpoints (if any) are greater than the initial abstract state ι. Therefore, the analyzer
should check this fact in order to be sound.
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More generally, there are more subtle ways to compute a solution to this analysis
problem than iterating the abstract semantics. One of them is described by Bourdoncle
[Bou93] along with a suitable widening operator.

Example: definite initialization This flow-sensitive analyzer can be used to define data-
flow analyses; for instance, the following one computes, for each program point, the set
of variables that are known to be initialized when the execution reaches said point.

In this domain, an abstract value is a set of variables. These sets are ordered by inclusion,
the greatest set being the empty one. The join operation is the set intersection. Assignment
of variable x with the result of the evaluation of expression e is modeled, in an abstract
state m, as adding x to the set m. The assume operator is just the identity.

Finally, to analyze a program, we run the analyzer from an initial state [][1 <- {}] (the
empty map in which is added one binding from the node 1 to the empty set {}), which
maps the initial node to the greatest element (no variable is (known to be) initialized
before the execution starts) and other nodes to nothing (they may be unreachable).

Definition di : Type := set var.
Definition di_leb (x y: di) : bool := subset y x.
Definition di_join (x y: di) : di := inter x y.
Definition di_assign (x: var) (e: expr) (m: di) : option di := Some (add x m).
Definition di_assume (g: expr) (b: bool) (m: di) : option di := Some m.

Definition di_analyze (p: prog) (n: nat) : Map [ node, di ] * analyze_t :=
analyze di di_leb di_join di_assign di_assume p n [][1 <- {}].

This abstract domain is specified through the following concretization relation: any
variable x in an abstract set a is bound in all environments ρ represented by this set.

Definition di_gamma (a: di) (ρ: env) : Prop := ∀ x, x ∈ a → ρ[x] ≠ None.

Given an analysis result, we can perform a safety check and establish, for instance, the
following safety property: any program whose analysis result π satisfies the safety check
cannot be stuck.

Theorem is_safe_not_stuck p n π :
di_analyzer p n = (π, OK) →
is_safe p π = true →
⟦p⟧ ∩ stuck p ⊆ ∅.

The safety check is_safe verifies that the control-flow graph is properly defined (no
successor of an instruction is outside the graph) and that all free variables of expressions
are definitely initialized when the execution evaluates said expressions. This analyzer
coupled with the safety check cannot prove that our fact program is safe: indeed, it is
not if the variable x is not initialized in the initial environment. We could refine the
analyzer to take into account some additional knowledge about the initial execution
state, so as to establish facts like: “the program is safe provided the variable x is initially
bound”. Notice that the correctness property of the safety analysis does not involve
the concretization relation of the abstract domain: it only refers to the semantics of the
programming language.
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Such an analysis does not need all the power of abstract interpretation. We discuss next
a more involved class of analyses.

2.1.8 Non-Relational Value Analysis

This particular class of analyses computes, for each program variable, an abstraction of
the value it may hold; for instance, an interval. We will build such analyses on top of the
flow-sensitive analyzer that we have just defined.

This analyzer is parameterized by the domain of abstract values of type V with a partial
order and a join operator. The meaning of abstract values is defined by a concretization
relation γ: V → ℘(Z).

The flow-sensitive analyzer is instantiated with the type Σ := Map [ var, V ], with the
convention that variables that are not bound may have any value. We then implement,
in addition to the ordering and join operators, the abstract transfer functions assign and
assume. To do so, we first define forward and backward evaluations of expressions, relying
on abstract forward and backward operators modeling the basic concrete operators.

The forward evaluation function is very similar to its concrete counterpart and enjoys
a soundness property: the evaluation of an expression e in an abstract state a yields a
result that over-approximates all concrete results of the evaluation of e in any environment
represented by a.

The backward evaluation is more interesting. It takes as argument an expression e and
an abstraction res of the result of the evaluation of this expression. It is a reduction: it
receives an abstract state a and tries to return a smaller one after taking into account the
information that e is known to evaluate to res.

⊤

NZ PZ

N Z P

As an example, suppose a sign domain, with six abstract val-
ues: Z for zero, P (resp. N) for strictly positive (resp. negative)
numbers, and PZ (resp. NZ) for non-negative (resp. non-positive)
numbers and ⊤ (read top) for all numbers. These values are orga-
nized in a lattice as depicted on the right. The abstract backward
multiplication operator, when applied to three abstract values
x, y and z, returns better approximations for x and y taking into
account that the concrete multiplication returns a value repre-
sented by z. More specifically, (ab_mul_bw PZ PZ P) returns Some (P, P): the product of
two non-negative numbers is non-zero only if both numbers are also non-zero. The call
(ab_mul_bw P P Z) returns None: no product of positive numbers can be zero.

Equipped with a backward operator for each primitive of the expression language, we
build a backward evaluation function. It works backwards: starting from the result, it
applies binary operators until it reaches the expression leaves. To evaluate a compound
expression as (EMul e₁ e₂), the backward operator for multiplication is applied first; this
yields approximations for the results of the sub-expressions, which are then recursively
evaluated. Evaluating a variable sets it in the abstract environment.

Finally, we can implement the assume function: to take into account that an expression
is false when evaluating the else branch of a conditional, the guard is evaluated backwards
from the abstraction of the boolean false (i.e., the integer zero). The case of the then branch
is more involved, since we have no easy way to abstract all non-zero values. When the
guard is a comparison e₁ < e₂, we can assume that a negated form of this expression, e₂ <
e₁ + 1, evaluates to false, and do as in the case of the else branch.
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2.2 CompCert

To come back to the example program of Figure 2.2, the value analysis using the sign
domain yields in particular the following results: the final value of y is strictly positive,
the final value of n is non-negative, and inside the loop (program points 4 and 5), the
value of x is strictly positive. This last property is inferred by the backward evaluation of
the loop guard, even though x is an input value never set in the program.

2.2 CompCert
CompCert [Ler06] is a full-fledged compiler for the C programming language, targeted
at the compilation of safety-critical applications (e.g., fly-by-wire flight control system).
It has been formally specified and proved correct within the Coq proof assistant: each
intermediate language comes with a formal description of its semantics and, for each
compilation pass, a theorem states that this pass does not introduce new behaviors in the
compiled program.

CompCert C

Clight

C♯minor

CFG

RTL

Compilation is performed in many steps, as sketched on the right,
doing one transformation or optimization at a time, and going through
various intermediate representations. The main stages of the front-end
are as follows. The source language is called CompCert C, a sibling
of C99. Then comes Clight, in which all expressions are pure (i.e.,
without side effects). The next step is C♯minor, which has a simpler
structure (e.g., only one kind of loops) and no overloaded operators.
Finally, stack-allocated variables are merged into a single stack block,
control is represented as a graph, and expressions are transformed
into three-address code: this leads to the RTL language.

This last language of CompCert’s front-end is architecture depen-
dent: the instruction set depends on the architecture for which the program is compiled.
The back-end, which compiles RTL towards assembly, is less relevant to this document
[Ler09].

For the purpose of building static analyzers into CompCert, an additional intermediate
representation has been introduced between C♯minor and RTL. It is called CFG3, is
structured as a graph (as RTL) but features a rich expression language (as C♯minor). We
will highlight some properties of these languages.

CompCert C

CompCert C deviates from the C99 standard [C99] in various cases. In particular, op-
erations on machine integers are (almost) completely defined in CompCert. Notable
exceptions include division by zero, logical shifts by negative quantities. Many more
operations have undefined behaviors in C99, for instance overflows in signed arithmetic.

An other important example is the strict aliasing rule, that roughly says that no two
pointers of different types alias. The following program has undefined behavior in
standard C (and its execution leads to an assertion violation when compiled with gcc or
clang at optimization level 2), as in function check, pointers h and k alias but have distinct
types. However, in CompCert C, this program is well-defined.

3CFG is also a common abbreviation for “control-flow graph”; in this document however, it is used consis-
tently as the name of the CompCert intermediate representation.
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Inductive expr : Type :=
| Evar (x: ident)
| Econst (cst: constant)
| Eunop (op: unary_operation) (e: expr)
| Ebinop (op: binary_operation) (ℓ r: expr)
| Eload (κ: memory_chunk) (addr: expr)
| Econdition (b ℓ r: expr).

Inductive unary_operation : Type :=
| Onegint | Oboolval | …

Inductive binary_operation : Type :=
| Oadd | Osub | Omul | …
| Ocmp (c: comparison)
| Ocmpu (c: comparison)

Inductive comparison : Type :=
| Ceq | Cne | Clt | Cle | Cgt | Cge.

Inductive constant : Type :=
(* numerical constant *)
| Ointconst (i: int) | Ofloatconst (f: float)
(* address of the symbol plus the offset *)
| Oaddrsymbol (g: ident) (ofs: int)
(* stack pointer plus the given offset *)
| Oaddrstack (ofs: int).

Inductive instruction : Type :=
| Iskip (s: node)
| Iassign (x: ident) (e: expr) (s: node)
| Istore (κ: memory_chunk) (a e: expr)(s: node)
| Iifthenelse (g: expr) (s₁ s₂: node)
| Iswitch (e:expr) (tbl: list (int * node)) (s:node)
| Icall (x: option ident) (sig: signature)

(f: expr) (args: list expr) (s: node)
| Ireturn (r: option expr)
| …

Figure 2.7: Syntax of CFG programs

1 void check (int *h, long *k)

2 {

3 *h = 5;

4 *k = 6;

5 assert ( *h == 6 );

6 }

7 int main (void)

8 {

9 long k;

10 check((int *)&k, &k);

11 return 0;

12 }

The CFG Intermediate Language

The syntax of CFG expressions is shown in Figure 2.7. They include reading local
variables, constants and arithmetic operations, reading store locations, and conditional
expressions (similar to b ? e₁ : e₂ in C). The set of unary and binary operators is quite large
so as to handle the diversity of values: machine integers, floats and pointers.

The instructions of the language are arranged in a graph: each program point is bound
to an instruction which holds the names of its successors. They feature GOTOs (Iskip),
assignments of temporary variables (Iassign), memory writes (Istore), conditional branches
(Iifthenelse), multiway branches (Iswitch), and function calls and returns.

The C♯minor Intermediate Language

C♯minor has expressions very similar to CFG; their syntax is therefore not shown. The
only difference is that taking the address of a variable is an expression in C♯minor whereas
it is a constant in CFG.

The syntax of statements however is very different; it is shown on Figure 2.8. A statement
is a tree, and every function is made of only one such statement. This language features
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Inductive stmt : Type :=
| Sskip
| Sset (x: ident) (e: expr)
| Sstore (κ: memory_chunk) (a e: expr)
| Sseq (s₁ s₂: stmt)
| Sifthenelse (g: expr) (s₁ s₂: stmt)
| Sloop (body: stmt)

| Sblock : stmt → stmt
| Sexit (d: nat)
| Scall (x: option ident) (sig: signature)

(f: expr) (args: list expr)
| Sreturn (r: option expr)
| …

Figure 2.8: Syntax of C♯minor statements

as control structures sequences, conditionals, infinite loops, nested blocks and associated
exits, as well as function calls, switches, and GOTOs to named labels (not shown).

Soundness Theorem

The soundness theorems of the compilation passes are of the following form:

∀𝑝 ∶ good, ∀𝑝′, Compile(𝑝) = ⌊𝑝′⌋ → ⟦𝑝′⟧ ⊆ ⟦𝑝⟧.

In this statement, ⟦𝑝⟧ is the set of all behaviors of program 𝑝, according to the semantics
of the language in which 𝑝 is written, and good is the set of programs whose behavior
cannot go wrong.

The behaviors of programs, or their observable semantics, are defined independently of
the programming language: this enables to compare the behaviors of programs written
in several languages, as is the case of a source program and the corresponding output of
the compiler. A program has four possible kinds of behaviors:

• it produces a finite sequence of events and returns a final value;

• it produces a finite sequence of events and its execution continues forever without
emitting any further event;

• it produces an infinite stream of events; or

• it produces a finite sequence of events and then goes wrong (i.e., its execution is
stuck).

An event is either a call to an external function, a volatile memory access (i.e., read from
or write to a variable whose declaration is annotated with the C keyword volatile), or the
execution of an annotation (i.e., a special kind of instruction, whose execution has no other
effect that being visible in the semantics).

The soundness property ensures that, for every program whose execution cannot go
wrong, the compilation does not introduces new behaviors. The compiler is free however
to remove behaviors from source programs. Also, it can turn a wrong program (i.e., whose
execution can get stuck) into a good one (i.e., whose execution cannot get stuck). Two
examples of such programs are given on Figure 2.9. In the first one, the execution gets
stuck when evaluating the expression j + 1. The + operator is statically resolved, according
to the declared types of its arguments, as the addition on integers. At run-time, variable j
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1 int

2 main(void)

3 {

4 int i;

5 int *pi = &i;

6 int j = (int)pi;

7 int k = j + 1; /* Error! */

8 return 0;

9 }

1 int

2 main(void)

3 {

4 int x, y;

5

6 (&y)[0] = 1;

7 (&x)[1] = 2; /* Error! */

8 return y;

9 }

Figure 2.9: Two C programs that get more defined when compiled by CompCert

evaluates to a pointer, so that the addition cannot proceed. However, in C♯minor, there
is only one operator for the addition of integers and pointers: therefore, after a few
compilation passes, the program only has good behaviors.

In the program on the right of the figure, the store on line 7 is out-of-bounds. However,
during the compilation of this program, CompCert first allocates the two stack variables x
and y contiguously, so that the offending store becomes well-defined as an overwrite of
variable y. Further optimizations will then remove both variables and yield a very simple
program that immediately returns 2.

An other example is the expression &(*p) when p is a null pointer. It is undefined at the
Clight level but is simplified to p in C♯minor4.

Machine Arithmetic

Most integer types in programming languages are bounded, with arithmetic overflows
treated either as run-time errors or by “wrapping around” and taking the result modulo
the range of the type. In C♯minor, integer arithmetic is defined modulo 2u� with 𝑁 = 32
or 𝑁 = 64 depending on the operation. Moreover, C♯minor does not distinguish between
signed and unsigned integer types: both are just 𝑁-bit vectors. Some integer operations
such as division or comparisons come in two flavors, one that interprets its arguments as
unsigned integers and the other as signed integers; but other integer operations such as
addition and multiplication are presented as a single operator that handles signed and
unsigned arguments identically.

Memory Model

The concrete memory model of CompCert defines the behavior of the C store (of type
Mem.mem), that encompasses the heap (dynamically allocated calling malloc), the stack
(holding local variables that cannot be allocated to machine registers), and global variables.

This store is organized in blocks, each having a unique name. A fresh block is allocated
by a call to Mem.alloc (which never fails) and released by a call to Mem.free (which may
fail).

A particular byte in a given block can be referred to by an (unsigned) 32 bit machine
integer. Therefore, a pointer is a value (Vptr b ofs) that represents the address of the byte
at offset ofs in the block b.

4This expression is well-defined in C99, and is equivalent to a null pointer [C99, § 6.5.3.2].
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An access to the content of a block, either to read from it (Mem.loadv) or to write to it
(Mem.storev), is defined by a pointer and a chunk, which is one of the following variants.

Inductive memory_chunk : Type :=
| Mint8signed | Mint8unsigned | Mint16signed | Mint16unsigned
| Mint32 | Mfloat32 | Mfloat64.

It describes the type of the data being transferred, its size, and signedness.
Many memory operations may fail, e.g., dereferencing a dangling pointer. This is

modeled through a permission system: each pointer (i.e., each block·offset pair) is mapped
to a permission. The permissions are, in increasing order:

None dangling pointer;

Nonempty valid pointer, comparisons are permitted (e.g., pointer to a function);

Readable loads are also permitted (e.g., constant static data);

Writable stores are also permitted (e.g., global variable);

Freeable free is also permitted (e.g., stack allocated local variable).

This permission system is very fine-grained: a different permission may be given to
every offset in a block. During the execution of a C program, actual permissions do not use
all this flexibility. Blocks are like arrays: they have bounds such that there is no permission
outside the bounds and all offsets within the bounds have the same permission.

This permission system does not enable modeling const-qualified local variables that
are read-only but may be freed on function exit. The Freeable property implies the Writable
one. Some other properties cannot be expressed in this model, for instance sizes of nested
arrays, as illustrated by the following example. In C99, this program has undefined
behavior (the array denoted by a[1] only has five elements), whereas in CompCert it
returns 42.

1 static int a[4][5];

2

3 int

4 main(void)

5 {

6 a[1][7] = 42; /* Error */

7 return a[2][2];

8 }

2.3 Conclusion
Verified construction of sound static analyzers based on abstract interpretation is well
understood when applied to small and simple languages [Pic05]. The development of the
CompCert compiler has shown that the complexity of programming languages as C is
within the scope of formally verified tools. In the following chapters, we describe how we
have built and verified static analyzers, on the model of the ones presented in this chapter,
for programs written in CompCert intermediate representations: Chapters 3 and 5 present
analyses for the CFG language, and Chapter 6 presents an analyzer of C♯minor. This
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methodology also applies at the lowest level of programming languages, binary, as shown
in Chapter 4.
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Chapter 3

Modular construction of static analyzers of a
C-like language in Coq

The static analyzer Astrēe, that operates on embedded programs written in C, is an
achievement in terms of software engineering. Its soundness is formally assessed in
the abstract interpretation framework. Unfortunately, the soundness proof is neither
machine-checked nor directly related to the actual implementation.

On the other hand, there have been recently various static analyzers implemented
and proved correct within a proof assistant [KN06; Cac+05; VN11; CP10; Nip12; RL12].
However, most of these works apply to simple, ideal, languages. The CompCert compiler
verification has shown that providing a machine-checked proof of the soundness of a large
software, dealing with the semantics of real-life languages, is a realistic task. Moreover,
various components of this compiler are of great interest for implementing a static analyzer
and can be reused as-is. In particular, intermediate languages — together with the formal
definition of their semantics, defined with respect to a formal memory model [LB08] —,
and the (verified) front-end to bring source code (from files) into such representations.

In this chapter, we present the implementation and machine-checked verification of a
static analysis for a language close to C in terms of realism and complexity. It is built on
CompCert and operates on one of its intermediate languages, CFG. This demonstrates
the usability of theorem proving in static analysis of real programs. This implementation
focuses on the modularity of its design, with precise interfaces to promote flexibility
(various components may be composed in various ways to yield a range of analyses each
with its own precision and cost), extensibility (it is easy to replace a component or to add
a new one) and reuse (some components may be reused as is or with little modification,
e.g., in the other analyzers presented in the following chapters). In addition, the proof
effort benefits from such a modularity: each component has a clear interface and a precise
specification; the proof of each component is therefore independent of the proofs of the
other components.

The implementation of such a value analysis faces the following difficulties.

Machine Arithmetic The object language operates on machine integers rather than on
ideal unbounded integers. The analysis has to be sound (and hopefully precise) even in
case of arithmetic overflows.

Pointer Arithmetic Low-level languages, as every intermediate representation in Comp-
Cert, allow complex expressions to describe memory locations, and more generally feature
a subtle arithmetic of pointer values. This mandates the use of dedicated techniques. In
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this chapter, we only set down the required architecture along with an implementation
that do not track the contents of the memory; the actual implementation of a precise
domain devoted to memory will be discussed in Chapter 5.

Extensibility and Reuse All components of the analyzer shall be clearly separated, with
precise interfaces and specifications. Therefore, further components may be developed
and proved independently, and optionally plugged into the analyzer. In addition, some
components that are of independent interest — e.g., a numerical abstract domain — can
be reused in different analyzers, as we will do, for instance, in the next chapter.

Mitigation of the proof effort We have at hand various techniques to assess various
properties of the analyzer: proof of the implementation, proof of a validator that treats the
implementation as an untrusted oracle, testing the implementation on some inputs. Both
first methods can be applied to critical properties (soundness), whereas the last method
can be applied to non critical properties (termination, precision, cost as analysis time and
memory usage). Each method having its own advantages and drawbacks. In particular,
quantitative and hardly defined properties (as performance) are empirically evaluated by
comparing the behaviors of different implementations on the same inputs.

Overview of the analysis The static analysis that is described in this chapter is a value
analysis. It means that it computes an over-approximation of the values held in the
variables of the analyzed program. It is flow-sensitive: there is one result for every
program-point; the result for a given variable at a given program-point represents at least
all possible values of this variable when the execution reaches this program-point. It
operates on the CFG intermediate language, described in Section 2.2.

The analyzer is built as sketched on Figure 3.1 (white boxes represent the interfaces of
each component; red boxes are the implementations of these interfaces that are discussed
in this chapter; dotted boxes are other implementations that will be incorporated in
following chapters to enhance the precision of the analyzer). Most of the components
share a common interface of abstract domain (adom) that we describe in Section 3.1. The
main component, the CFG iterator, is parameterized by the memory abstraction. Our
implementation uses an external solver, whose result is validated. This iterator is the
subject of Section 3.2. The implementation of the memory abstraction is parameterized by
a relational numerical domain. The interface of numerical domains is given in Section 3.3,
as well as methods to build them, and in particular how to combine them. Finally, an
experimental evaluation of the analyzer is presented in Section 3.5.

A short version of this chapter has been published at the international Static Analysis
Symposium (SAS) [Bla+13].

3.1 Abstract Domain Library

This section describes the library we have designed to represent our abstract domains.
First, it defines generic abstract domains. Then, it details the interval abstract domain.
Last, it explains how to combine abstract domains.

26



3.1 Abstract Domain Library

M
em

or
y 

A
bs

tra
ct

io
n

N
um

. E
nv

. A
bs

tra
ct

io
n

N
um

. A
bs

tra
ct

io
n

CFG analyzer

Local Memory Abstraction

Non Relational Env. Abstraction

Reduced Product

Unsigned
Intervals

Signed
Intervals

Relational Abstract 
Domain

Miné’s Memory 
Abstract Domain

Congruence Abstract 
Domain

Figure 3.1: Overview of the architecture of the analyzer

3.1.1 Abstract Domain Interface

The basic structure of an abstract domain is a (weak) lattice with widening, as described
by the following signature.

Class weak_lattice (A: Type) : Type := {
leb: A → A → bool;
top: A;
join: A → A → A;
widen: A → A → A

}.

Notation "x ⊑ y" := (leb x y).
Notation "⊤" := top.
Notation "x ⊔ y" := (join x y).
Notation "x ∇ y" := (widen x y).

Figure 3.2: Signature of weak lattices with widening

Here, A is the type of abstract values. A record of type (weak_lattice A) holds various
operators. Values of type A are partially ordered by a comparison operator called leb;
a distinguished element of type A is called top and is meant to represent the greatest
element of the lattice; two binary operators join and widen compute upper bounds of their
arguments, the first being expected to be more precise than the last, whereas the last
should ensure termination of the analysis, as discussed in Section 2.1.6.

The use of type-classes allows in particular to define overloaded notations for the various
components of the weak_lattice record. For instance, the greatest element of any lattice
will be written ⊤.

Such a lattice is specified with respect to a concretization relation, which relates the
type A of abstract values to the type B of concrete values (see Figure 3.3). The adom record
contains only three properties: the monotonicity of the gamma operator, the soundness
of the top element and the soundness of the least upper bound operator join. We do not
provide formal proof relating the abstract order with top or join. Indeed any weak-join
will be suitable here. The lack of properties about the widening operator is particularly
surprising at first sight. In fact, as we will explain in Section 3.2, the widening operator
is used only during fixpoint iteration and this step is validated a posteriori. Thus, only
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Class gamma_op (A B: Type) : Type := γ : A → ℘(B).

Record adom (A B:Type) (WL:weak_lattice A) (G:gamma_op A B) : Prop := {
(* monotonicity of gamma *)
gamma_monotone: ∀ a₁ a₂, a₁ ⊑ a₂ → γ a₁ ⊆ γ a₂;
(* top over-approximates any concrete property *)
gamma_top: ∀ b, b ∈ γ(⊤);
(* join over-approximates concrete union *)
join_sound: ∀ a₁ a₂, γ a₁ ∪ γ a₂ ⊆ γ (a₁ ⊔ a₂)

}.

Figure 3.3: Specification of weak lattices

the result of this iteration step is verified and we don’t need a widening operator in the
verification process.

3.1.2 Example of Abstract Domain: Intervals

Our value analysis operates over compositions of abstract domains. One of the most basic
abstract domains is the domain of intervals [CC76]. Using an interval to represent a set of
machine integers is not straightforward. Indeed, machine integers form a circle, whereas
an interval is a segment on a straight line. Also, depending on the operator applied to
a machine integer, it may be interpreted as signed or unsigned. Here we focus on the
signed interpretation; this signedness problem will be dealt with in Section 3.3.3.

Figure 3.4 defines an abstract domain of intervals; one element of this domain represents
the machine integers whose signed interpretation falls into this range. This instance is
called signed_itv_adom. The definitions of leb and join are standard: the order corresponds
to interval inclusion and the union of two intervals is their convex hull (the boolean
operator x <=? y tests if x is less than or equal to y). The widen operator is parameterized
by two functions, next_smaller and next_larger that enable a family of widening strategies.
In particular, such a strategy may depend on the very program being analyzed. The
basic widening operator for the domain of intervals over-approximates a non-stable
bound by the largest (resp. smallest) integer. This is captured by a next_larger function
(resp. next_smaller) that always returns Int.max_signed (resp. Int.min_signed). A refined
strategy would try several thresholds between the current bound and the limit integer.
For instance, (next_larger m) may return the smallest power of two larger than m. Also,
to capture the frequent pattern of constant for-loops, e.g., when folding an array tab of
constant size N, next_larger may return a value that appears as a literal constant in the
analyzed program. For instance, when analyzing the following C snippet, trying N as a
widening threshold would lead to a correct interval for the variable i.

1 for (int i = 0; i < N; ++i) { /* ... */ tab[i] /* ... */ }

An interval represents the range of the signed interpretation of a machine integer, as
defined by the relation sgamma. Thus, top is defined as the largest interval with bounds
Int.min_signed and Int.max_signed. The concretization is defined as follows. A machine
integer n belongs to the concretization of an interval itv iff (Int.signed n) belongs to itv.
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3.1 Abstract Domain Library

Record itv := { min: Z; max: Z }.

Instance signed_itv_wl : weak_lattice itv := {
leb := λ i₁ i₂,
let (min₁, max₁) := i₁ in
let (min₂, max₂) := i₂ in
(min₂ <=? min₁) && (max₁ <=? max₂);

top := { min := Int.min_signed; max := Int.max_signed };
join := λ i₁ i₂,
let (min₁, max₁) := i₁ in
let (min₂, max₂) := i₂ in
{ min := Z.min min₁ min₂; max := Z.max max₁ max₂ };

widen := λ i₁ i₂,
let (min₁, max₁) := i₁ in
let (min₂, max₂) := i₂ in
{ min := if min₁ <=? min₂ then min₁ else next_smaller min₂
; max := if max₂ <=? max₁ then max₁ else next_larger max₂ }

}.

Instance sgamma : gamma_op itv int := λ i v,
min i <= Int.signed v <= max i.

Lemma signed_itv_adom : adom itv int signed_itv_wl sgamma.
Proof. (* proof omitted here *) Qed.

Figure 3.4: Domain of intervals, abstracting signed machine integers

We also define a variant of this domain with a concretization using an unsigned interpre-
tation of machine integers: (λ i n, min i ≤ Int.unsigned n ≤ max i). As explained in Section 3.3,
combining both domains recovers some precision that may be lost when using only one
of them.

The itv record type provides only lower and upper bounds of type Z. Using the expres-
siveness of the Coq type system, we could choose to add an extra field requiring a proof
that min ≤ max holds. While elegant at first sight, this would be rather heavyweight in
practice, since we must provide such a proof every time we build a new interval. For the
kind of proofs we perform, if such a property was required, we would generally have an
hypothesis of the form n ∈ 𝛾(i) in our context and it would imply that min i ≤ max i holds.

3.1.3 Abstract Domain Functors

Our library provides several functors that build complex abstract domains from simpler
ones.

Direct Product A first example is the product (adom (A * A′) B WLx Gx) of two abstract do-
mains (adom A B WL G) and (adom A′ B WL′ G′), where the lattice structure WLx is straight-
forward: maximal element, join and widening are defined component-wise, and two
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Instance lift_bot_wl (A: Type)
(WL:weak_lattice A)
: weak_lattice (A+⊥) := {

top := NotBot(⊤);

leb x y :=
match x, y with
| Bot, _ => true
| _, Bot => false
| NotBot x, NotBot y => x ⊑ y
end;

join x y :=
match x, y with
| Bot, _ => y
| _, Bot => x
| NotBot x, NotBot y => NotBot (x ⊔ y)
end;

widen x y :=
match x, y with
| Bot, _ => y
| _, Bot => x
| NotBot x, NotBot y => NotBot (x ∇ y)
end

}.

Figure 3.5: Lattice structure of a domain with bottom

pairs are ordered if and only if both of theirs components are respectively ordered:

Definition leb : (A * A′) → (A * A′) → bool :=
λ x y, let (x, x′) := x in let (y, y′) := y in x ⊑ y && x′ ⊑ y′.

The concretization Gx of a pair (a, a′) is the intersection (γ a) ∩ (γ a′) of their concretizations.

Lifting a Bottom Element A bottom element is not mandatory in our definition of
abstract domains because some sub-domains do not necessarily contain one. For instance,
the domain of intervals does not contain such a least element. Still in our development,
the bottom element plays a specific and important role since it represents the empty set
of concrete values, i.e., any contradiction (for instance, unreachable states). We hence
introduce a polymorphic type A+⊥ that lifts a type A with an extra bottom element called
Bot1.

Definition botlift (A:Type): Type := Bot | NotBot (x:A).
Notation A+⊥ := (botlift A).

We then define a simple functor lift_bot that lifts any domain (adom A B) on a type A to
a domain on A+⊥ (see Figure 3.5). The maximal element is the lifted maximal element
of the original domain A. The partial order extends the original one such that the new
element is actually minimal. The join and widening operators extend the original ones
such that the new element is a unit.

In this new domain, the concretization function extends the concretization of the input
domain with γ Bot = ∅. We can then prove that the lifted lattice satisfies the specification,
provided the original lattice is correct.

Instance lift_gamma (A B: Type) (G:gamma_op A B) : gamma_op (A+⊥) B :=
λ x, match x with Bot => ∅ | NotBot x => γ(x) end.

1The lifted data-type is an instance of the error monad; we will use the notation “do_bot a <- e; f(a)” for its
bind operator.
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3.2 Fixpoint Resolution

Lemma lift_bot (A B: Type) WL G (D: adom A B WL G)
: adom (A+⊥) B (lift_bot_wl WL) (lift_gamma G).

Proof. (* proof omitted here *) Qed.

Finite Reduced Map Finite maps are a pervasive data structure: they are used to bind
abstract states to program points, abstract values to program variables, and so on. When
building abstract domains, such maps are generally used to represent functions. We thus
provide a generic functor, parameterized by an abstract domain of type adom A B WL G,
i.e., a domain in which abstract elements have type A and represent sets of values of
type B. It then builds an abstract domain whose abstract elements have type Map [ K, A ]
(for some type K of keys) and represent sets of functions of type K → B as described by
the following definitions.

Definition get (m: Map [ K, A ]) (r: K) : A :=
match m[r] with None => ⊤ | Some i => i end.

Instance gamma : gamma_op t (K → B) :=
λ m rs, ∀ r, rs r ∈ γ (get m r).

Keys that are not bound in the abstract map are implicitly bound to the greatest element
in A. Therefore, bindings to this element are lazily represented and we ensure that no
binding to it is actually present in the map. This invariant could be enforced by typing,
using a method similar to the above bottom-lifting.

There is a variant of this domain in which keys that are not bound in the map implicitly
represent the least element in A. This variant is useful to represent flow-sensitive informa-
tion, i.e., when keys are program points. In that case, program points that are not bound
are known to be unreachable, i.e., dead code.

3.2 Fixpoint Resolution

As many data flow analyses, our value analysis can be turned into the fixpoint resolution
of an equation system on a lattice. CompCert already provides a classical Kildall iteration
framework [Kil73] to iteratively find the least fixpoint of an equation system. But using
such a framework is impossible here for two reasons. First, the lattice of bounded intervals
contains very long ascending chains that make standard Kleene iterations too slow. Second,
the non-monotonic nature of widening and narrowing makes fixpoint iteration sensible
to the iteration order of each equation.

We have therefore designed a new fixpoint resolution framework that relies on the
general iteration techniques defined by Bourdoncle [Bou93]. First, Bourdoncle provides
a strategy computation algorithm based on Tarjan’s algorithm to compute strongly con-
nected subcomponents of a directed graph and find loop headers for widening positioning.
This algorithm also sorts each strongly connected subcomponent in order to obtain an
iteration strategy that iterates inner loops until stabilization before iterating outer loops.
Bourdoncle then provides an efficient fixpoint iteration algorithm that iterates along
the previous strategy and requires a minimal number of abstract order tests to detect
convergence.

31



Chapter 3 Modular construction of static analyzers of a C-like language in Coq

Definition check_fxp t instruction wl transfer entry code init (fxp: node → t+⊥) : bool :=
NotBot init ⊑ fxp entry
&&
map_forall code (λ pc ins,
match fxp pc with
| NotBot ab => List.forallb (λ x, let (pc′, tf) := x in tf ab ⊑ fxp pc′) (transfer pc ins)
| Bot => true
end).

Figure 3.6: Fixpoint checker

This algorithm relies on advanced reasoning in graph theory and formally verifying
it would be highly challenging. This frontal approach would also certainly be too rigid
because widening iteration requires several heuristic adjustments to reach a satisfac-
tory precision in practice (loop unrolling, delayed widenings, decreasing iterations). We
have therefore opted for a more flexible verification strategy: Bourdoncle strategies and
fixpoints are computed by an external tool (represented by the function called get_ex-
tern_fixpoint) and we only formally verify a fixpoint checker (called check_fxp).

The external tool has the following type.

Parameter get_extern_fixpoint (t: Type) (instruction: Type) (wl: weak_lattice t)
(transfer: node → instruction → list (node * (t → t +⊥)))
(P: Map [ node, instruction ]) (entry: node)
(init: t)
: node → t+⊥.

It is parameterized by an abstract domain (type t and lattice wl), and the instruction
set (type instruction and abstract semantics transfer). The transfer function defines the
abstract semantics of the CFG programming language: given a node and the instruction
at this node, it yields a list of possible successors with the corresponding abstract transfer
function. The output of the oracle is flow-sensitive: at each node of the program is attached
an abstract value. Nodes that are not bound in the result are unreachable.

This external oracle is not trusted. Instead, its output is validated after each call. The
code of the checker is given on Figure 3.6. Given a program to analyze and the putative
solution fxp, the checker ensures two properties:

1. the solution for the entry node is larger than the initial abstract state init; and

2. for every program point pc, at which the instruction is ins, the solution at this
program point is either Bot (i.e., this program point is unreachable), or NotBot ab
such that any possible abstract step from ab leads to an abstract state that is actually
predicted by the solution.

Our fixpoint analyzer is defined below. Given an abstract domain ab, the transfer
functions transfer, a program P, its entry point entry, and the initial abstract value init,
it calls the external oracle, and checks its answer. If the check succeeds, this answer is
returned; otherwise, a trivial result is returned.
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Definition solve_pfp (ab: adom t B wl G)
(transfer: node → instruction → list (node * (t → t+⊥)))
(P: Map [ node, instruction])
(entry: node)
(init: t)
: node → t+⊥ :=
let fxp := get_extern_fixpoint ab transfer P entry init in
if check_fxp ab transfer P entry init fxp
then fxp
else (λ _, ⊤).

The verification of the fixpoint checker yields the following property: the concretization
of the result of the solve_pfp function is a post-fixpoint of the concrete transfer function.
That is, given the analysis result fxp, for each node pc of the program, applying the
corresponding transfer function tf to the analysis result yields an abstract value included
in the analysis result.

Lemma solve_pfp_postfixpoint: ∀ ab entry P transfer init fxp,
fxp = solve_pfp ab P entry transfer init →
∀ pc i, P[pc] = ⌊i⌋ →
∀ pc′ tf,
In (pc′, tf) (transfer pc i) →
γ(tf (fxp pc)) ⊆ γ(fxp pc′).

Proof. (* proof omitted here *) Qed.

The proof goes as follows. First we examine the outcome of the fixpoint checker. If it
failed, the analysis result is ⊤, whose soundness is one of the properties of all abstract
domains (gamma_top in Figure 3.2). Otherwise, every possible step has been examined
by the checker: in particular, for the step from pc to pc′, the checker enforces that the
abstract states are correctly ordered: tf(fxp pc) ⊑ fxp pc′. Then, the monotonicity of the
concretization yields the conclusion.

The actual soundness proof of the analysis now relies on the soundness of the abstract
semantics, as represented by the transfer function given to the solver. Our implementation
of this function is built from a memory abstraction: a type with abstract transformers
that model the CFG instructions. This memory abstraction is, in turn, parameterized by a
numerical abstraction, which is the topic of the next section.

3.3 Numerical Abstraction

Following the design of the Astrēe analyzer [Cou+05], our value analysis is parameterized
by a numerical abstract domain that is unaware of the C memory model. We first present
the interface of abstract numerical environments, then how we abstract numerical values
in order to build non relational abstract environments. Finally, we show concrete instances
of numerical domains and how they can be combined.
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3.3.1 Abstraction of Numerical Environments

The first interface captures the notion of numerical environment abstraction. This interface
matches with most implementations of a relational abstract domain [CH78; Min04] on
machine integers. It relies on a numerical expression language (type nexpr) defined
in Figure 3.7. These expressions are parameterized by the type var of their variables.
The unary and binary operations are the same as in CompCert’s CFG language. The
constant constructor NOintunknown denotes any machine integer; it enables to write non-
deterministic expressions.

These expressions are associated with a big-step operational semantics eval_nexpr of type
(var → int) → nexpr → ℘(int). This semantics depends on a valuation ρ of the variables. It
returns a set of machine integers as expressions are non-deterministic and can be stuck.
Its formal definition is given on Figure 3.8.

The interface ab_env of relational numerical domains, given in Figure 3.9, includes an
abstract domain id_adom with a concretization id_gamma to sets of functions from variables
to machine integers, and three operators: range, assign, and assume. Each operator comes
with a correctness property, defined in terms of the concretization relation. The range
e ab query returns two intervals from the interval domain previously defined (one for
each signedness) that represent all values that expression e may evaluate to given any
valuation ρ in the concretization of ab. The assign x e ab transformer returns an abstract
element that represents functions in which variable x is now bound to the result of the
evaluation of expression e. The assume e ab transformer refines the abstract element ab to
take into account that expression e evaluates to true.

3.3.2 Building Non-relational Abstraction of Numerical Environments

Implementing a fully verified relational abstract domain is a challenge in itself and it
is not the topic of this dissertation. Advances on this subject can be found in the work
of Fouilhē et al. [FB14; FMP13]. We implement instead the previous interface with a
standard non relational abstract environment of the form var → V♯ where V♯ abstracts
numerical values. The notion of abstraction of numerical values is captured by the
interface num_dom shown on Figure 3.10. It is defined as a carrier t, an abstract domain
structure num_adom and several abstract transformers. Some operators are forward ones:
they provide properties about the output of an operation. For instance, the operator const
builds an abstraction of a single value. Some operators are backward ones: given some
properties about the input and expected output of an operation, they provide a refined
property about its input. These backward operators are needed to implement a precise
assume transformer (see § 2.1.8). Each operator is required to come with a soundness

Variable var : Type.

Inductive nconstant : Type :=
| NOintconst: int → nconstant
| NOintunknown : nconstant.

Inductive nexpr : Type :=
| NEvar (v: var)
| NEconst (cst: nconstant)
| NEunop (op: unary_operation) (e: nexpr)
| NEbinop (op: binary_operation) (e₁ e₂: nexpr)
| NEcondition (b: nexpr) (e₁ e₂: nexpr).

Figure 3.7: Syntax of numerical expressions (nexpr)
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Definition eval_nconstant (c: nconstant) : ℘(int) :=
match c with
| NOintconst i => {{ i }}
| NOintunknown => λ _, True
end.

Definition Ntrue: int := Int.one.
Definition Nfalse: int := Int.zero.

Definition eval_nunop (op: unary_operation) (i: int) : ℘(int) :=
match op with
| Ocast8unsigned => {{ Int.zero_ext 8 i }}
| Onegint => {{ Int.neg i }}
| Onegf => ∅
| …
end.

Definition eval_nbinop (op: binary_operation) (i_j: int * int) : ℘(int) :=
let (i, j) := i_j in
match op with
| Oadd => {{ Int.add i j }}
| Odiv =>

if Int.eq j Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq j Int.mone
then ∅
else {{ Int.divs i j }}

| Oaddf => ∅
| …
end.

Variable ρ: var → int.
Fixpoint eval_nexpr (ne: nexpr) : ℘(int) :=
match ne with
| NEvar v => {{ ρ v }}
| NEconst cst => eval_nconstant cst
| NEunop op e =>

Union (eval_nexpr e) (eval_nunop op)
| NEbinop op e₁ e₂ =>

Union (eval_nexpr e₁ × eval_nexpr e₂) (eval_nbinop op)
| NEcondition b e₁ e₂ =>

Union (eval_nexpr b) (λ k, eval_nexpr (if Int.eq Int.zero k then e₂ else e₁))
end.

Figure 3.8: Semantics of numerical expressions
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Inductive signedness := Signed | Unsigned.
Definition ints_in_range (r: signedness → itv+⊥) : ℘(int) := (γₛ (r Signed)) ∩ (γu (r Unsigned)).
Class ab_env (var t: Type) {E:EqDec var} : Type := {
id_wl:> weak_lattice t;
id_gamma:> gamma_op t (var → int);
id_adom:> adom t (var → int) id_wl id_gamma;

range: nexpr var → t → signedness → Interval.itv+⊥;
assign: var → nexpr var → t → t+⊥;
assume: nexpr var → t → t+⊥;

range_correct: ∀ e ρ ab,
ρ ∈ γ ab →
eval_nexpr ρ e ⊆ ints_in_range (range e ab);

assign_correct: ∀ x e ρ n ab,
ρ ∈ γ ab →
n ∈ eval_nexpr ρ e →
(upd ρ x n) ∈ γ (assign x e ab);

assume_correct: ∀ e ρ ab,
ρ ∈ γ ab →
Ntrue ∈ eval_nexpr ρ e →
ρ ∈ γ (assume e ab)

}.

Figure 3.9: Signature of relational numerical domains
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Class num_dom (t:Type) := {
(* abstract domain structure *)
num_wl: weak_lattice t;
num_gamma: gamma_op t int;
num_adom : adom t int num_wl num_gamma;
(* over-approximation of the concrete intersection *)
meet: t → t → t+⊥;
meet_sound: ∀ x y, (γ x) ∩ (γ y) ⊆ γ (meet x y);
range: t → signedness → itv+⊥; (* signed/unsigned range *)
range_sound: ∀ x:t, γ x ⊆ ints_in_range (range x);
const: int → t;
const_sound: ∀ n, n ∈ γ(const n);
forward_unop: unary_operation → t → t+⊥;
forward_unop_sound: ∀ op x,
Eval_unop op (γ x) ⊆ γ (forward_unop op x);

forward_binop: binary_operation → t → t → t+⊥;
forward_binop_sound: ∀ op x y,
Eval_binop op (γ x) (γ y) ⊆ γ(forward_binop op x y);

backward_unop: (* omitted *); backward_unop_sound: (* omitted *);
backward_binop: binary_operation → t → t → t → (t * t)+⊥;
backward_binop_sound: ∀ op x y z i j k,
k ∈ eval_binop op i j → i ∈ γ x → j ∈ γ y → k ∈ γ z →
(i, j) ∈ γ(backward_binop op x y z).

}.

Figure 3.10: Signature of non-relational numerical domains

proof.
We also implement a functor that lifts any abstraction of numerical values into a nu-

merical environment abstraction. It relies on the functor for finite reduced maps that we
have presented at the end of Section 3.1.3.

NonRelDom.make(t): num_dom t → ab_env ((Map [ var, t])+⊥)

The most advanced operator in this functor is the assume function. It relies on a backward
abstract semantics of expressions.

Fixpoint backward_expr (e: nexpr) (ab: (Map [ var, t])+⊥) (itv: t) : (Map [ var, t])+⊥ :=
match e with
| …
| NEcond b ℓ r =>

(backward_expr b (backward_expr r ab itv) (const Nfalse))
⊔
(backward_expr b (backward_expr ℓ ab itv)

(backward_unop Oboolval (eval_expr b ab) (const Ntrue)))
end.
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We just show and comment the case of conditional expressions. Given such an expression
NEcond b ℓ r, an abstract environment ab and the expected value itv of this expression, we
explore the two branches of the condition. In one case, the condition b evaluated to Nfalse
and the right branch r evaluated to itv. In the other case, the condition b evaluated to
anything whose boolean value is Ntrue and the left branch ℓ evaluated to itv. Then we
have to consider that any of the two branches might have been taken, hence the join.

Equipped with such backward operators, the analysis is then able to deal with complex
conditions like the following:

if (0 <= x && x < y && y < z && z < t && t < u && u < v && v < 10).

When analyzing the true branch of this if, it is sound to assume that the condition holds.
The backward operator will propagate this information and infer one bound for each
variable. Since backward evaluation of conditions goes right to left, the following bounds
are inferred: 𝑣 < 10, 𝑢 < 9, 𝑡 < 8, 𝑧 < 7, 𝑦 < 6, and 0 ≤ 𝑥 < 5. Unfortunately, no
information is propagated from left to right. However applying again the assume function
does propagate information between the various conditions. Iterating this process finally
yields the most precise intervals for all variables involved in this condition.

Notice that inferring such precise information is possible thanks to the availability of
complex expressions in the analyzed CFG program. Compare for example with Frama-C
which, prior to any analysis, and as part of the parsing phase, destructs boolean operations
into nested ifs; it is thus unable to give both bounds for each variable. Nevertheless, it
is possible to recover similar precision in absence of complex expressions, thanks to
dedicated relational symbolic domains [Bla+03; Jou+15]. This is also more general: good
precision can be achieved even if the original source code does not feature the rich
expressions.

3.3.3 Abstraction of Numerical Values: Instances and Functor

We gave two instances of the numerical value abstraction interface: the intervals of signed
integers and the intervals of unsigned integers. In both domains, intervals are represented
using unbounded integers (type Z), but we have to take into account that they model
bounded integers that wrap around on overflows. Therefore, we systematically test if
an overflow may occur and fall back to top when we can’t prove the absence of overflow.
This logic is implemented in the repr operator, which is systematically used to implement
abstract operators, as exemplified by the definition of the addition of intervals.

Definition repr (i: itv): itv := if i ⊑ ⊤ then i else ⊤.
Definition add (i j: itv): itv := repr {| min := min i + min j; max := max i + max j |}.

We also rely on a reduction operator when the result of an operation may lead to an
empty interval. Since our representation of intervals contains several elements with
the same (empty) concretization, it is important to always use a same representative for
them.2 This function is in particular used in the implementation of backward operators
(as backward_lt below) that are reductions.

Definition reduce (ℓ u:Z): itv+⊥ :=
if ℓ <=? u then NotBot {| min := ℓ ; max := u |} else Bot.

2Otherwise the analyzer may encounter two equivalent values without noticing it and lose precision.
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Definition backward_lt (i j: itv): itv+⊥ * itv+⊥ :=
(meet i (reduce Int.min_signed (max j - 1)), meet j (reduce (min i + 1) Int.max_signed)).

At run-time, there are no signed or unsigned integers; there are only machine integers that
are bit arrays whose interpretation may vary depending on the operations they undergo.
Therefore choosing one of the two interval domains may hamper the precision of the
analysis. Consider the following example C program, in which (*) denotes a boolean
condition unknown to the analyzer and INT_MAX is the maximal signed integer that is
called Int.max_signed in CompCert.

1 int main(void) {

2 signed s; unsigned u;

3 if (*) u = INT_MAX; else u = INT_MAX + 1;

4 if (*) s = 0; else s = -1;

5 return u + s;

6 }

At the end of line 3, an unsigned interval can exactly represent the two values that the
variable u may hold. However, the least signed interval that contains them both is top.
Similarly, at the end of line 4, a signed interval can precisely approximate the content
of variable s whereas an unsigned interval would be extremely imprecise. Moreover,
comparison operations can be precisely translated into operations over intervals (e.g.,
intersections) only when they share the same signedness. Therefore, so as to get as precise
information as possible, we need to combine the two interval domains. This is done
through reduction.

To combine abstractions of numerical values in a generic and precise way, we implement
a functor that takes two abstractions and a sound reduction operator and returns a new
abstraction based on their reduced product.

Instance reduced_product A₁ A₂ {N₁:num_dom A₁} {N₂:num_dom A₂}
(Ρ: reduction A₁ A₂) : num_dom (A₁ * A₂) := (* omitted definition *).

A reduction is made of an operator ρ and a proof that this operator is a sound reduction.

Class reduction A₁ A₂ : Type := ρ: A₁+⊥ → A₂+⊥ → (A₁ * A₂)+⊥.

Class reduction_correct A₁ A₂ B
(G₁: gamma_op A₁ B) (G₂: gamma_op A₂ B) (R: reduction A₁ A₂) :=
reduction_spec: ∀ (a: A₁+⊥) (b: A₂+⊥), γ a ∩ γ b ⊆ γ (ρ a b).

Each operator of this functor is implemented by first using the operator of both input
domains and then reducing the result with ρ. We hence ensure that each encountered
value is systematically of the form (ρ a b) but we do not prove this fact formally, avoiding
the heavy manipulation of quotients. Note also that, for soundness purposes, we do not
need to prove that reduction actually reduces (i.e., returns a lower element in the abstract
lattice).

In the next section, we discuss how the numerical domains that we have built in this
section are connected to the iterator defined in the previous section.
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3.4 Memory Abstraction

The last layer of our modular architecture connects the CFG abstract interpreter with
numerical abstract domains. It fills the gap between the CFG constructs that manipulate
memory locations through pointers and the numerical domain that operates over a set of
identified variables. The memory domain aims at translating every C feature into useful
information in the numerical world. On the interpreter side, the interface with this abstract
memory model is called mem_dom. It provides a basic domain structure, a query operator
range that returns an interval for each program variable, and four abstract transformers,
forget, assign, store and assume.

Our final analyzer (value_analysis, whose signature is given below) is parameterized by
a structure of this type. The analysis of a program returns a function that for each node
returns either Bot, meaning that this node is unreachable, or some function that attaches
an interval to each local variable and each signedness.

Definition value_analysis (t:Type) : mem_dom t → program →
node → (ident → sign_flag → Interval.itv+⊥)+⊥.

We first present the specification of this domain then describe a basic implementation
that do not track the contents of the memory.

3.4.1 Specification

The signature of this domain is given in Figure 3.11. It features, as every other domain,
a sound lattice structure. The query operator range, as before, provides two intervals for
each local variable. The four transformers forget, assign, store and assume model the basic
operations of the CFG language: updating a local variable or a memory location, and
conditional execution. Indeed, the transfer function to be given to the external fixpoint
solver (see § 3.2) is defined as shown on Figure 3.12 (given some abmem implementing
the interface mem_dom), mapping each CFG instruction to the corresponding abstract
semantics.

These transformers are specified as over-approximations of their concrete counterparts
(with a capital initial letter) that operate on sets of concrete states (defined as strongest
post-conditions). For instance, a concrete state em′ is in the set (Assign x q E) if and only if
em′ is the result of updating some concrete state (e, m) in E at local variable x with a value
v that results from the evaluation of expression q in this concrete state.

Definition Assign (x: positive) (q: expr) (E: ℘ memory) : ℘(memory) :=
λ em′, ∃ e m, (e, m) ∈ E ∧
∃ sp, ∃ v,
eval_expr ge (Vptr sp Int.zero) e m q v ∧
em′ = (PTree.set x v e, m).

Before we describe an implementation of this interface, we describe how to combine
the soundness of a memory domain with the soundness of the iterator to yield the final
soundness theorem of the analysis. This theorem is stated on Figure 3.13, for a given sound
memory domain, not shown here. It means that given a program p, for each reachable
state of this program, at program point pc in function f, the analysis result for this program
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Record mem_dom (t:Type) := {
(* abstract domain with concretization
to local environment and global memory *)

mem_wl : weak_lattice t;
mem_gamma: gamma_op t (env * mem);
mem_adom: adom t (env * mem) mem_wl mem_gamma;
(* consult the range of a local variable *)
range: t → (ident → signedness → itv+⊥);
range_sound: ∀ ab e m,
(e,m) ∈ γ ab →
∃ ab′, ab = NotBot ab′ ∧
∀ x, match e ! x with Some (Vint i | Vptr _ i) => i ∈ ints_in_range (range ab′ x)

| _ => True end;
(* project the value of a local variable *)
forget: ident → t → t+⊥;
forget_sound: ∀ x ab, Forget x (γ ab) ⊆ γ (forget x ab);
(* assign a local variable *)
assign: ident → expr → t → t+⊥;
assign_sound: ∀ ge x e ab, Assign ge x e (γ ab) ⊆ γ (assign x e ab);
(* assign a memory cell *)
store: memory_chunk → expr → expr → t → t+⊥;
store_sound: ∀ ge κ a e ab, Store ge κ a e (γ ab) ⊆ γ (store κ a e ab);
(* assume an expression evaluates to non-zero value *)
assume: expr → t → t+⊥;
assume_sound: ∀ ge e ab, Assume ge e (γ ab) ⊆ γ (assume e ab)

}.

Figure 3.11: Signature of abstract memory domains

Definition transfer (n : node) (ins: instruction) : list (node * (abmem → abmem+⊥)) :=
match ins with
| Iskip s => (s, λ ab, NotBot ab) :: nil
| Iassign x e s => (s, assign x e) :: nil
| Istore κ e a s => (s, store κ e a) :: nil
| Iifthenelse e ifso ifno => (ifso, assume e) :: (ifno, assume (Eunop Onotbool e)) :: nil
| …
end.

Figure 3.12: Abstract semantics of CFG
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Theorem value_analysis_sound : ∀ (p: program) (stk: list stackframe) (f: function)
(sp: val) (pc: node) (e: env) (m: Mem.mem),
Reach p (State stk f sp pc e m) →
∃ range, vanalysis f pc = NotBot range ∧
∀ x, match e ! x with

| Some (Vint i | Vptr _ i) => ints_in_range (range x) i
| _ => True end.

Proof. (* proof omitted here *) Qed.

Figure 3.13: Soundness theorem of the analysis

point is some range function that conservatively approximates the (numerical) content of
each local variable x (the property ints_in_range has been defined in Figure 3.9).

This theorem follows from the fact that the following property is a state invariant:

Definition gamma_state : ℘(state) :=
λ s,
match s with
| State s f sp pc rs m => (rs, m) ∈ γ (solve_pfp f pc)
… (* omitted details *)
end.

This invariant expresses that at program point pc, the contents of the registers (rs) and
memory m are over-approximated by the analysis result at this program point. The
omitted details deal with call stacks and enable the handling of (external) function calls.

The proof that this is an invariant follows from the soundness of the abstract memory
transformers and the solve_pfp_postfixpoint lemma discussed before (§ 3.2).

3.4.2 Basic Implementation

The implementation of this interface leverages the (possibly relational) numerical domains
previously introduced to compute over approximations of memory states. A concrete
memory state is made of a local environment of type env that maps temporary variables
(registers) to values and a global CompCert memory.

The simple implementation that we present here does not recover any information
about the global memory. It only keeps track of the content of the registers, which are
variables that do not have an address: there cannot be targeted by a pointer expression
and are always referred to explicitly. Nonetheless, this implementation features the
basic architecture that will be expanded further on (this is the topic of Chapter 5). It is
parameterized by a numerical domain over some type N.

The concretization of this domain (of type N → ℘(var → int)) is extended to represent
sets of concrete memory states (the γ in the definition refers to the concretization of the
numerical domain N):

Instance gamma_mem : gamma_op N memory :=
λ (ab: N) (em: env * mem),
let (e,_) := em in
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∃ ρ: var → int,
ρ ∈ γ ab ∧
(∀ x, match e ! x with Some (Vint i | Vptr _ i) => ρ x = i | _ => True end).

This means that the memory domain uses the numerical domain to compute, for each
temporary variable that holds an integer or pointer value, an over-approximation of the
integer component of this value (i.e., the values of integers and the offsets of pointers).

The core operation of this domain is the conversion from CFG expressions (type expr,
defined in Figure 2.7) to numerical expressions (type nexpr, defined in Figure 3.7). This
transformation is performed in two steps, to remove loads then pointers. The first step
produces an intermediate expression of type pexpr, similar to a CFG expression, but
without loads (the details of this expression type will be discussed in a following chapter,
and in particular in Section 5.3.1). In this basic implementation that does not compute
anything about the content of the memory, loads are trivially removed. Removing pointers
mostly consists in translating pointer operations into the corresponding operations on
their offsets. The only corner case is with comparisons and conditional expressions: to
compare two pointers, it is not enough to compare their offsets; no pointer is equal to an
integer; and all pointers are “true”.

As an example, consider the expression x ==u y (unsigned equality test). If x and y both
are integers, it is already a numerical expression. If both are pointers, the analyzer needs
some information about the blocks these pointers point to (if the blocks are equal, the
offsets are to be compared; if the blocks are different, the pointers are different). Finally, if
one is a pointer whereas the other is an integer, then the result is always false. Therefore,
to correctly translate comparisons and conditional expressions, the analyzer must be
able to predict the types of the involved subexpressions. The numerical analysis is thus
complemented with a (parallel, non-relational) type analysis that computes, for each
temporary variable, an approximation of its contents: is it definitely an integer, definitely
a (non-null) pointer, or any value. The type IOP.t is made of the two constants VI and VP to
represent integers and pointers respectively; it is complemented with a generic All element
to form the type IOP.t+⊤. This leads to the following type for the memory domain.

Definition t := (N * Map [ var, IOP.t ]).

Then, each transfer function applies the conversion to feed the numerical domain and
the type analysis. For instance, the assign operator, applied to variable x and expression e,
takes the following form. First loads are removed from the CFG expression e by the convert
function. If this conversion fails (i.e., returns None), everything known about variable x is
invalidated (forget). Otherwise, the resulting expression pe given on one hand to the type
analysis that infers the type of the result and on the other hand to the numerical domain
after a second step of conversion.

Definition assign (x: ident) (e: expr) (ab: t) : t+⊥ :=
match convert e with
| None => forget x ab
| Some pe =>
let (nm, tp) := ab in
do_bot ty <- Eval.eval_expr IOP.adom tp pe;
do_bot nm′ <- assign x (nconvert tp pe) nm;
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NotBot (nm′, TDom.set tp x ty)
end.

In the previous sections, we have seen how our value analysis is built and proved correct.
Next section discusses some unproved properties of this analysis such as its precision.

3.5 Experimental Evaluation

The soundness theorem of the analyzer states that if the analysis produces a result, then
this result over-approximates all possible behaviors of the analyzed program. It does
not guarantee that the analysis indeed terminates or produces any result; it does not say
anything about the precision of the result. A sound analyzer may fail to terminate within a
reasonable amount of time or may return imprecise results. Therefore, we have conducted
some experiments to evaluate the precision and the efficiency of our analyzer. A more
detailed description of this evaluation can be found in the dissertation of A. Maroneze
[Mar14, § 6.3].

We compare our analyzer to two interval-based analyzers operating over C programs: a
state-of-the-art industrial tool, Frama-C [Cuo+12], and an implementation of a value-range
analysis [Nav+12] which will be referred to as Wrapped). Frama-C is an industrial-strength
framework for static analysis, developed at CĒA. It integrates an abstract interpretation-
based inter-procedural value analysis on interval domains with congruence, 𝑘-sets and
memory analysis. It operates over C programs and has a very deep knowledge of its
semantics, allowing it to slice out undefined behaviors for more precise results. It cur-
rently does not handle recursive functions. The Wrapped value-range analyzer relies on
the LLVM compiler infrastructure and operates over its intermediate representation to
perform an interval analysis in a signedness-agnostic manner, using so-called “wrapped”
intervals (hence its name) to deal with machine-integer issues such as overflows while
retaining precision. It is an intra-procedural tool, but can benefit from LLVM’s inlining to
perform inter-procedurally in the absence of recursion and function pointers.

The three tools have been compared on significant C programs from CompCert test
suite. They range from a few dozen to a few thousand statements. To relate information
from different analyses, we annotated the programs to capture information on integer
variables at function entries and exits and at loops (for iteration variables). This amounts
to 545 annotations in the 20 programs considered. For each program point, we counted
the number of bounded variables. We consider as bounded any variable whose inferred
interval has no more than 231 elements, and hence rule out useless intervals like x ∈
[−231; 231 − 2], inferred after a guard like x < y. Finally, to be able to compare the results
of an inter-procedural analysis with those of two intra-procedural analyses with inlining,
we considered for each annotation the union of the intervals of all call contexts. Less than
10% of intervals present a union of different intervals, and among those several preserve
the boundedness for all contexts. Overall, its impact on the results is negligible.

The results are shown in Figure 3.14, which displays the number of bounded variables
per program and per analyzer. In total, Frama-C bounded 398 variables, our analyzer
got 355, and Wrapped ended up with 305. The main differences between our analyzer
and Frama-C, especially on the larger benchmarks (lzw, arcode and lzss) result from global
variable tracking and congruence information. Such reasoning is not handled by our
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Figure 3.14: Number of bounded intervals (bounded per program and analyzer)

analyzer. On the other hand, the precision of our product of signed and unsigned domains
allows us to bound more variables (e.g., on fannkuch), where Wrapped also obtains a good
score, mainly due to variables bounded as [0, 231 − 1] and similar values. Some issues
with the inlining used by Wrapped explain its worse results in fft, knucleotide and spectral.

We also compared the execution times of the analyses. Overall, our analysis runs faster
than Frama-C because we track less information, such as pointers and global variables.
For programs without these features, both analyses run in roughly the same time, from a
few tenths of seconds for the smaller programs up to a few seconds for the larger ones.
Wrapped’s analysis is faster than the others. On a larger benchmark (over 3,000 lines of C
code and about 10,000 CFG instructions after inlining) our analysis took 34 seconds to
perform.

It is hard to draw final conclusions about the precision of our tool from these experiments.
Frama-C, for instance, is likely to perform better on specific industrial critical software
for which it has been specially tuned. Nevertheless we give evidence that our analyzer
performs non-trivial reasoning over the C semantics, close to that of state-of-the-art
(non-verified) tools.

3.6 Related Work and Conclusion

So as to be confident in the results of value analyzers, special care has to be given to the
verification of such tools. In this chapter, we have described the design, implementation,
and soundness proof in the Coq proof assistant of a value analyzer for a realistic language
close to C: the CFG intermediate representation of the CompCert compiler.

The current formalization of this analyzer is directly inspired by the design choices
of the Astrēe static analyzer [Cou+05], trying to capture some of its key interfaces. Our
current abstract memory model is aligned with the model developed by Minē [Min06]
because we connect a C abstract semantics with a generic notion of numerical abstract
domain. Still our treatment of memory is simplified since we only track values of local
variables in the current implementation of our analyzer. This analyzer is also inspired by
the static analyses devoted to a precise handling of signed and unsigned integers [SK07;
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Nav+12].
The precision of the analysis has been experimentally evaluated and compared on

several benchmarks. It performs comparably to existing off-the-shelf (unverified) tools,
Frama-C [Cuo+12] and Wrapped [Nav+12].

Our work constitutes the first machine-checked proof of a nontrivial value analysis
based on abstract interpretation and a reference implementation of a tool. Previous
work on mechanized verification of static analyses has been mostly based on classic data
flow frameworks: Klein and Nipkow instantiate this framework for inference of Java
bytecode types [KN06]; Coupet-Grimal and Delobel [CD04] and Bertot et al. [BGL06] for
compiler optimizations, and Cachera et al. [Cac+05] for control flow analysis. Vafeiadis
et al. [VN11] rely on a simple data flow analysis to verify a fence elimination optimization
for concurrent C programs. Compared to these prior works, our value analysis relies on
fixpoint iterations that are accelerating with widening operators. Cachera and Pichardie
[CP10] and Nipkow [Nip12] describe a verified static analysis based on widenings but their
technique is restricted to structured programs and targets languages without machine
arithmetic nor pointers. Robert and Leroy [RL12] have developed a points-to analysis in
the CompCert framework. This static analysis technique is quite orthogonal to what we
formalize here. Hofmann et al. [HKS10] provide a machine-checked correctness proof
in Coq for a generic post-fixpoint solver named RLD. That solver takes as input a set of
constraints and finds a suitable solution by implementing an optimized dynamic iteration
strategy. The formalized algorithm is not fully executable and cannot be extracted to
OCaml code.

The proof effort required to establish the soundness of our analyzer has been miti-
gated by several design choices. We have adopted a lightweight abstract interpretation
framework that requires few properties on the abstract domains. For instance, we do
not prove that abstract domains enjoy a lattice structure, nor that the analysis always
terminates. Following lessons learned from the CompCert development, we rely on a
posteriori validation of complex algorithms: the Bourdoncle algorithm that computes the
iteration strategy and the actual computation of the analysis result are seen as untrusted
external solvers whose results are checked as part of the analysis. Finally, properties that
are not critical (but still important, like the precision of the analysis result), are assessed
experimentally rather than formally specified and proved.

This analyzer has some weaknesses that we will address in the next chapters. In
particular we will implement all the dotted boxes mentioned on Figure 3.1. First, we
want to replace the current memory abstraction with a domain similar to Minē’s memory
model [Min06]; this is the topic of chapter 5. We also intend to connect more numerical
domains to the interface for numerical environments, and in particular relational abstract
domains. Several such improvements will be discussed in chapter 6.

Meanwhile, we explore in chapter 4 methods for verified static analysis of lower-level
programming languages, in which the control-flow graph of programs is unknown to the
analyzer and discovered as part of the analysis.
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Chapter 4

Verified value analysis & self-modifying
programs

The previous chapter has introduced general methodology and techniques to build verified
static analyzers. These techniques assumed that the programs to analyze are given as a
control-flow graph. However, static analysis can be applied to various kinds of programs:
it is generally applied to source code or some intermediate representation as CFG, but
it is sometimes more suitable to apply it on lower-level representations as binary code.
Indeed, no source code may be available or the compiler might not be trusted. Indeed,
even correct compiler may not preserve the property of interest (e.g., if this property is
not functional); this is sometimes referred to as the wysinwyx phenomenon [BR10].

Static analysis techniques should be adapted when they are applied to binary programs,
i.e., when the program to be analyzed comes in the form of a sequence of bits and must first
be disassembled. Disassembling is the process of translating a program from a machine
friendly binary format to a textual representation of its instructions. It requires to decode
the instructions (i.e., understand which instruction is represented by each particular bit
pattern) but also to precisely locate the instructions in memory. Indeed instructions may
be interleaved with data or arbitrary padding. Moreover once encoded, instructions may
have various byte sizes and may not be well aligned in memory, so that a single byte may
belong to several instructions.

The two main disassembling techniques are known as linear sweep and recursive traversal
[LD03]. The first decodes each code segment from its beginning and assumes that each
further instruction starts where the previous one ends; as it ignores the control-flow of the
program, it may unexpectedly decode data or padding or fail to identify the beginning
of instructions. Recursive traversal tries to address these weaknesses by following the
control-flow rather than blindly following the linear ordering of the bytes in the binary:
after decoding one instruction, disassembling continues for all possible successors of this
instruction. This in turn suffers from the limitation that computed jumps have unknown
targets. So this technique may fail to disassemble some parts of the code.

To succeed in disassembling all code without performing a linear sweep from each byte,
a static analysis must predict a sound but hopefully precise over-approximation of the
targets of every reachable computed jump.

In addition, instructions may be produced at run-time, as a result of the very execution
of the program. A simple example is the modification of some operands (e.g., registers) of
existing instructions. Another example is the creation of new sequences of instructions in
an existing code. Such programs are called self-modifying programs; they are commonly
used in security as an obfuscation technique (e.g., to protect the intellectual property of the
program authors, to increase the stealth of a malware) [Szo05], as well as in just-in-time
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compilation and in operating systems (mainly for improving performances).
Because the instructions of a self-modifying program are not the instructions that will

be executed, most of standard reverse engineering tools (e.g., the IDA Pro disassembler
and debugger, a de facto standard for the analysis of binary code) cannot disassemble and
analyze self-modifying programs. In order to disassemble and analyze such programs,
one must very precisely understand which instructions are written and where. And for
all programs, one must check every single memory write to decide whether it modifies
the program code.

As the real code of a self-modifying program is hidden and varies over time, self-
modifying programs are also beyond the scope of the vast majority of formal semantics
of programming languages. Indeed a prerequisite in such semantics is the isolation and
the non-modification of code in memory. To address the challenge of formal reasoning
on self-modifying code, Shao et al. [CSV07] propose a Hoare-logic-like framework, called
GCAP, and illustrate its use and effectiveness on a dozen of programs that manipulate
their code at run-time. They can establish safety properties of all these programs.

In this chapter, we formalize, with the Coq proof assistant, key static analysis tech-
niques to predict the possible targets of the computed jumps and make precise which
instructions alter the code and how, while ensuring that the other instructions do not
modify the program. This allows automatic reasoning about self-modifying programs
and to automatically prove their safety.

Our formalization effort is divided in three parts. Firstly, we formalize a small binary
language (called Goto★) in which code is handled as regular mutable data. This language
has little constructions so as to limit the cost of its formal definition. Nonetheless, it
features properties that are inspired from real languages like x86 assembly: computed
memory accesses and jumps, variable-length encoding of instructions, and conditional
branches based on flags. We formally define an executable concrete semantics for this
language and a non-trivial class of “safe” programs. Secondly, we formalize and prove
correct an abstract interpreter that takes as input an initial memory state, computes an
over-approximation of the reachable states that may be generated during the program
execution, and then checks that all reachable states maintain memory safety. Good
precision of the analyzer is achieved through specific techniques including a simple form
of trace partitioning. Finally, we extract from our formalization an executable OCaml tool
that we run on several self-modifying challenges [CSV07].

A short version of this chapter has been published at the international conference on
Interactive Theorem Proving (ITP) [BLP14], and submitted for publication at the Special
issue for ITP 2014 of the Journal of Automated Reasoning (JAR).

4.1 Disassembling by Abstract Interpretation

We now present the main principles of our analysis on the program shown in Figure 4.1.
It is printed as a sequence of bytes (on the extreme left) as well as under a disassembled
form (on the extreme right) for readability purposes. This program, as we will see, is self-
modifying, so these bytes correspond to the initial content of the memory from addresses
0 to 11. The remainder of the memory (addresses in [−231; −1] ∪ [12; 231 − 1]), as well as
the content of the registers, is unknown and can be regarded as the program input.

All our example programs target a machine operating over a low-level memory made
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Initial program Possible final program Initial assembly listing
07000607 07000607 0: cmp R6, R7
03000000 03000000 1: gotoLE 5
00000005 00000004 2:
00000000 00000000 3: halt R0
00000100 00000100 4: halt R1
09000000 09000000 5: cst 4 → R0
00000004 00000004 6:
09000002 09000002 7: cst 2 → R2
00000002 00000002 8:
05000002 05000002 9: store R0 → *R2
04000000 04000000 10: goto 1
00000001 00000001 11:

Figure 4.1: A self-modifying program: as a byte sequence (left); after some execution
steps (middle); assembly source (right).

of 232 cells, eight registers, and flags — boolean registers that are set by comparison
instructions. Each memory cell or register stores a 32 bits integer value1, that may be used
as an address in the memory. Programs are stored as regular data in the memory; their
execution starts from address zero.

Nevertheless, throughout this chapter we write the programs using the following
custom syntax. The instruction cst v → r loads register r with the given value v. The
instruction cmp r, r' denotes the comparison of the contents of registers r and r'. The
instruction gotoLE d is a conditional jump to d, that is taken if in the previous comparison
(cmp r, r') the content of r' was less than or equal to the one of r; goto d is an unconditional
jump to d. The instructions load *r → r' and store r' → *r denote accesses to memory at the
address given in register r; and halt r halts the machine with as final value the content of
register r.

The programming language we consider is inspired from x86 assembly; notably instruc-
tions have variable size (one or two bytes, e.g., the length of the instruction gotoLE 5 stored
at line 1 is two bytes, the byte 03000000 for goto and one byte for 5) and conditional jumps
rely on flags. In this setting, a program is no more than an initial memory state, and a
program point is simply the address of the next instruction to execute.

In order to understand the behavior of this program, one can follow its code as it is
executed starting from the entry point (byte 0). The first instruction cmp R6, R7 compares
the (statically unknown) content of two registers. This comparison modifies only the states
of the flags. Then, the gotoLE 5 instruction is executed and, depending on the outcome
of this comparison, the execution proceeds either on the following instruction (stored at
byte 3), or from byte 5. Since the analysis cannot predict which branch will be taken, both
branches must be analyzed.

Executing the block from byte 5 will modify the byte 2 belonging to the gotoLE instruction
(highlighted in Figure 4.1); more precisely it will change the jump destination from 5
to 4: the store R0 → *R2 instruction writes the content of register R0 (namely 4) in memory

1 Each byte — addressable unit of storage data — is therefore four octets long.
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at the address given in register R2 (namely 2). Notice that a program may directly read
from or write to any memory cell: we assume that there is no protection mechanism as
provided by usual operating systems. After the modification is performed, the execution
jumps back to the modified instruction, jumps to byte 4 then halts, with final value the
content of register R1.

This example highlights that the code of a program (or its control-flow graph) is not
necessarily a static property of this program: it may vary as the program runs. To correctly
analyze such a program, one must discover, during the fixpoint iteration, the two possible
states of the goto instruction at program points 1 and 2 and its two possible targets (i.e., 4
and 5). More generally, we need at least to know, for each program point (i.e., memory
location), which instructions may be decoded from there when the execution reaches this
point. This in turn requires to know what are the values that the program operates on.
We therefore devise a value analysis that computes, for each reachable program point
(i.e., in a flow sensitive way) an over-approximation of the content of the memory and the
registers, and the state of the flags, when the execution reaches that point.

The analysis relies on a numeric abstract domain 𝖭♯ that provides a representation for
sets of machine integers and abstract arithmetic operations. 𝛾𝖭 ∶ 𝖭♯ → ℘(int) denotes the
associated concretization function. Relying on such a numeric domain, one can build
abstract transformers. They model the execution of each instruction over an abstract
memory that maps locations (i.e., memory addresses2 and registers) to abstract numeric
values. An abstract state is then a mapping that attaches such an abstract memory to each
program point of the program, and thus belongs to addr → ((addr + reg) → 𝖭♯).

To perform one abstract execution step, from a program point pp and an abstract memory
state m♯ that is attached to pp, we first enumerate all instructions that may be decoded
from the set 𝛾𝖭(m♯(pp)). Then for each of such instructions, we apply the matching
abstract transformer. This yields a new set of successor states whose program points are
dynamically discovered during the fixpoint iteration.

The abstract interpretation of a whole program iteratively builds an approximation
executing all reachable instructions until nothing new is learned. This iterative process
may not terminate, since there might be infinite increasing chains in the abstract search
space. As usual in abstract interpretation, we accelerate the iteration using widening
operations [CC77]. Once a stable approximation is finally reached, an approximation of
the program listing or control-flow graph can be produced.

To illustrate this process, Figure 4.2 shows how the analysis of the program from
Figure 4.1 proceeds. We do not expose a whole abstract memory but only the underlying
control-flow graph it represents. On this specific example, three different graphs are
encountered during the analysis. For each program point pp, we represent a node with
same name and link it with all the possible successor nodes according to the decoding of
the set 𝛾𝖭(m♯(pp)). The array shows the construction of the fixpoint: each line represents
a program point and the columns represent the iterations of the analysis. In each array
cell lies the name of the control-flow graph representing the abstract memory for the
given program point during the given iteration; the symbol ⊥ stands for an unreachable
program point. The shaded array cells highlight the program points that need to be
analyzed: they are the worklist.

Initially, at iteration 0, only program point 0 is known to be reachable and the memory

2 Type addr is a synonym of int, the type of machine integers.
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0 a a a a a a a a a a
1 ⊥ a a a a a c c c c
2 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
3 ⊥ ⊥ a a a a a c c c
4 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ b b b
5 ⊥ ⊥ a a a a a a a a
6 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
7 ⊥ ⊥ ⊥ a a a a a a a
8 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
9 ⊥ ⊥ ⊥ ⊥ a a a a a a

10 ⊥ ⊥ ⊥ ⊥ ⊥ b b b b b
11 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
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Figure 4.2: Iterative fixpoint computation

is known to exactly contain the program, denoted by the first control-flow graph (called a
in Figure 4.2 and corresponding to the initial program of Figure 4.1). The only successor
of point 0 is point 1 and it is updated at the next iteration. After a few iterations, point 9
is reached and the abstract control-flow graph a is updated into the control-flow graph b
that is propagated to point 10. This control-flow graph corresponds to the possible final
program of Figure 4.1, where program-point 5 became unreachable. At the next iteration,
program point 1 (i.e., the loop condition) is reached again and the control-flow graph b is
updated into the control-flow graph c that corresponds to the union of the two previous
control-flow graphs. After a few more iterations, the process converges.

In addition to a control-flow graph or an assembly listing, more properties can be
deduced from the analysis result. We can prove safety properties about the analyzed
program, like the fact that its execution is never stuck. Since the semantics only defines
the good behaviors of programs, unsafe programs reach states that are not final and from
which no further execution step is possible (e.g., the byte sequence at current program
point is not the valid encoding of an instruction).

The analysis produces an over-approximation of the set of reachable states. In particular,
a superset of the reachable program points is computed, and for each of these program
points, an over-approximation of the memory state when the execution reaches this
program point is available. Thus we can check that for every program point that may
be reached, the next execution step from this point cannot be stuck. This verification
procedure is formally verified, as described in the following section.

4.2 Semantics of Goto★

This section defines the abstract syntax and semantics of the low-level language our static
analyzer operates over. The semantics uses a decoding function from binary code to our
low-level language. The semantics is presented as a small-step operational semantics that
can observe self-modifying programs.

4.2.1 Abstract Syntax
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Chapter 4 Verified value analysis & self-modifying programs

Definition addr := int.
Inductive reg := R0 | R1 | R2 | R3 | R4 | R5 | R6 | R7.
Inductive flag := FLE | FLT | FEQ.

Inductive comparison := Ceq | Cne | Clt | Cle | Cgt | Cge.
Inductive binop := OpAdd | OpSub | OpMul | OpDivs | OpShl | OpShr | OpShru
| OpAnd | OpOr | OpXor | OpCmp (c: comparison) | OpCmpu (c: comparison).

Inductive instruction :=
(* arithmetic *)
| ICst (v:int) (dst:reg) | ICmp (src dst: reg) | IBinop (op: binop) (src dst: reg)
(* memory *)
| ILoad (src dst: reg) | IStore (src dst: reg)
(* control *)
| IGoto (tgt: addr) | IGotoInd (r: reg) | IGotoCond (f: flag) (tgt: addr) | ISkip | IHalt (r: reg).

Figure 4.3: Abstract syntax of Goto★

The programming language in which are written the programs to analyze is formalized
using the abstract syntax shown on Figure 4.3. In the Coq formalization, the abstract
syntax is presented as inductive data types. Machine integers (type int) are those of
the CompCert library Int of 32 bits machine integers [BL09]. The eight registers of our
language are called R0, … R7 and there are three register flags called FLE (for “less or
equal” comparisons), FLT and FEQ.

Instructions are either arithmetic expressions, or memory accesses or control-flow in-
structions. Instructions for accessing memory are ILoad and IStore; their operands are
registers. So as to keep the language simple, memory accesses are limited to these two
instructions: the other instructions, which are described next, only operate on regis-
ters. Arithmetic expressions consist of integer constants, signed comparisons and binary
operations. Control-flow instructions consist of unconditional and conditional jump
instructions, the empty instruction ISkip and the IHalt instruction which halts the program
execution. For unconditional jumps, we distinguish register-indirect jumps (IGotoInd r
instructions, where r is a register) from other jumps (i.e., absolute jumps, written as IGoto v,
where v is a literal constant address).

In a binary language, there is no distinction between code and data: a value stored
in memory can be interpreted either as representing data or as encoding instructions.
So as to model a binary language, we first introduce a decoding function called de-
code_from. Its type is (addr→int) → pp → option(instruction×nat). Given a memory mem of
type addr → int (i.e., a function from addresses to values) and an address pp of type addr,
this function yields the instruction stored at this address along with its byte size (so as to
know where the next instruction begins). This size is of type nat, the Coq type for natural
numbers. Since not all integer sequences are valid encodings, this decoding may fail
(hence the option type). In order to be able to conveniently write programs, there is also
a matching encoding function called enc, whose type is instruction → list int. However
the development does not depend on it at all: properties are stated in terms of already
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Definition decode_register (v: Z) : option register :=
match v with
| 0 => ⌊R0⌋ | 1 => ⌊R1⌋ | … | 7 => ⌊R7⌋
| _ => None end.

Definition decode_flag (v: Z) : option flag :=
match v with
| 0 => ⌊FLE⌋ | 1 => ⌊FLT⌋ | 2 => ⌊FEQ⌋
| _ => None end.

Definition decode_binop (v: Z) : option binop :=
match v with
| 0 => ⌊OpAdd⌋ | 1 => ⌊OpSub⌋ | … | 9 => ⌊OpXor⌋
| _ => None end.

Definition split_instruction (v: int) : Z × Z × Z × Z :=
let v := Int.unsigned v in
let (v, dst) := Z.div_eucl v 256 in
let (v, src) := Z.div_eucl v 256 in
let (v, arg) := Z.div_eucl v 256 in
let (v, typ) := Z.div_eucl v 256 in
(typ, arg, src, dst).

Definition decode_from (m: addr → int) (base: addr) : option (instruction × nat) :=
match split_instruction (m base) with
| (0, 0, src, 0) => do rs <- decode_register src; ⌊(IHalt rs, 1)⌋
| (1, 0, 0, 0) => ⌊(ISkip, 1)⌋
| (2, 0, src, 0) => do rs <- decode_register src; ⌊(IGotoInd rs, 1)⌋
| (3, flg, 0, 0) => do f <- decode_flag flg; ⌊(IGotoCond f (m (base+1)), 2)⌋
| (4, 0, 0, 0) => ⌊(IGoto (m (base+1)), 2)⌋
| (5, 0, src, dst) => do rs <- decode_register src;

do rd <- decode_register dst; ⌊(IStore rs rd, 1)⌋
| (6, 0, src, dst) => do rs <- decode_register src;

do rd <- decode_register dst; ⌊(ILoad rs rd, 1)⌋
| (7, 0, src, dst) => do rs <- decode_register src;

do rd <- decode_register dst; ⌊(ICmp rs rd, 1)⌋
| (8, o, src, dst) => do op <- decode_binop o;

do rs <- decode_register src;
do rd <- decode_register dst; ⌊(IBinop op rs rd, 1)⌋

| (9, 0, 0, dst) => do rd <- decode_register dst; ⌊(ICst (m (base+1)) rd, 2)⌋
| _ => None end.

Figure 4.4: Decoding binary code
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Definition flag_state : Type := flag → bool.
Definition register_state : Type := register → int.
Definition memory : Type := addr → int.

Record machine_config : Type := {
pc : int; mc_flg : flag_state; mc_reg : register_state; mc_mem : memory

}.
Inductive machine_state := Halted (v: int) | Running (c: machine_config).
Notation "⌈ v ⌉" := (Halted v).
Notation "⟨ pp , f , r , m ⟩" := (Running {| pc := pp; mc_flg:= f; mc_reg:= r; mc_mem := m |}).

Figure 4.5: Concrete execution states of Goto★

encoded programs.
The decoding function is defined in Figure 4.4. The binary decoding of a sequence of

bytes stored in memory m at program point pp is written (decode_from m pp). A successful
decoding yields a pair ⌊(i,sz)⌋, where sz is the size of i, the instruction stored at address
pp in m3. The notation ⌊·⌋ denotes a successful result as opposed to a failure represented
by None.

The binary format of instructions is arbitrary and has little impact on the design of
the analyzer. We rely on the fact that the encoding length can be inferred from the first
byte of any encoded instruction4. The self-modifying programs that we consider rely
on the particular encoding that we chose. This encoding works as follows. Instructions
that hold a value (e.g., IGoto 5) require two bytes: the value occupies the second byte;
other instructions require one byte. The first byte is made of four fields of one octet
each: the decoding of this first byte first extracts the content of each field using Euclidean
divisions (performed by the split_instruction function). The first field (typ) corresponds
to the constructor of the instruction data type. From its value, one can deduce the size of
the instruction and how to interpret the next fields. The second field (flg) holds a flag
(only used in the IGotoCond instruction). The third and fourth fields hold respectively
the source and destination registers. Depending on the instruction, none, both or only
one of them may be relevant. Unused fields always have the value zero. This encoding is
very sparse: many byte sequences do not represent any valid instruction. Moreover, in
the decoding function, errors are propagated by the bind operator of the error monad,
written do a <- m; b.

4.2.2 Semantics

The language semantics is given as a small-step transition relation between machine
states (see Figure 4.5). A machine state may be ⟨pp, f, r, m⟩ where pp is the current program
point (address of the next instruction to be executed), f is the current flag state, r is the
current register state, and m is the current memory. Such a tuple is called a machine

3The size cannot be deduced from the instruction as: 1. the encoding function is not known; and 2. they
may be several encodings, of various sizes, for a single instruction.

4This is not the case, for instance, of the encoding of x86 instructions, that may begin with an arbitrary
number of one-byte prefixes
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Definition compare (i j: int) (f: flag) : bool :=
match f with
| FLE => negb (Int.lt j i) | FLT => Int.lt i j | FEQ => Int.eq i j end.

Definition step (ms: machine_state) : option machine_state :=
match ms with
| ⟨ pp, f, r, m ⟩ =>
do i_sz <- decode_from m pp;
let (i, sz) := i_sz in
⌊match i with
| ICst v rd => ⟨pp+sz, f, r#rd ← v, m⟩
| ICmp rs rd => ⟨pp+sz, compare (r rd) (r rs), r, m⟩
| IBinop op rs rd => ⟨pp+sz, f, r#rd ← (r rs [op] r rd), m⟩
| ILoad rs rd => ⟨pp+sz, f, r#rd ← m (r rs), m⟩
| IStore rs rd => ⟨pp+sz, f, r, m # r rd ← r rs⟩
| IGoto v => ⟨v, f, r, m⟩
| IGotoCond c v => ⟨if f(c) then v else pp+sz, f, r, m⟩
| IGotoInd rd => ⟨r(rd), f, r, m⟩
| ISkip => ⟨pp+sz, f, r, m⟩
| IHalt rd => ⌈r rd⌉
end⌋

| ⌈ _ ⌉ => None end.

Definition small_step : relation machine_state := λ a b, step a = Some b.
Infix "⇒" := small_step.

Figure 4.6: Concrete semantics

configuration (type machine_config). Otherwise, a machine state is ⌈v⌉, meaning that the
program stopped returning the value v. Values are machine integers (type int).

The semantics is defined in Figure 4.6 by a partial function code from machine states
to machine states. This function is then lifted to the small_step relation. A step can only
be performed from a running configuration ⟨pp, f, r, m⟩. From such a configuration, the
contents of the memory m from address pp is first decoded. If this decoding fails, the
execution is stuck. Otherwise, the decoding yields a pair made of an instruction i and
its size sz. Then, depending on the actual instruction, the step function builds the state
resulting from its execution. In each case, most of the state is kept unchanged. Instructions
that are not branching proceed their execution at program point pp+sz (since sz is the size
of the instruction that has been decoded). In the code, the notation s # id ← v stands for
the update of s with a new value v for register or memory cell id; and the notation [op]
stands for the denotation of the binary operator op on machine integers.

Instruction ICst v rd updates destination register rd with value v. Instruction ICmp rs rd
updates the flag state according to the comparison (compare) of the values held by the
two involved registers. Instruction IBinop op rs rd applies the denotation [op] of the given
binary operator op to the contents r(rs) and r(rd) of registers rs and rd. Then, it updates the
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state of register rd: in r, the new value of rd thus becomes (r rs) [op] (r rd). Instruction ILoad
rs rd updates register rd with the value m(r(rs)) found in memory at the address given in
register rs. Instruction IStore rs rd updates the memory at the address given in register rd
with the value given in register rs.

Instruction IGoto v sets the program point to v. Instruction ISkip does nothing: execution
proceeds at next program point. Conditional jump instruction IGotoCond c v jumps to
address v or falls through to pp+sz depending on the current state of flag c. Indirect jump
instruction IGotoInd rd proceeds at the program point found in register rd. Instruction
IHalt rs terminates the execution, returning the content of register rs.

Finally, we define the semantics ⟦P⟧ of a program P as the set of states 𝑠 that are reachable
from an initial state ⟨0, f, r, P⟩, with current program point zero and memory P (where ⇒⋆

denotes the reflexive-transitive closure of the small-step relation):

⟦P⟧ = { 𝑠 ∣ ∃f r, ⟨0, f, r, P⟩ ⇒⋆ 𝑠 } .

Notice that the program P belongs to the state: it is initially known, but can be modified
as the execution goes on.

4.3 Abstract Interpreter
The static analysis that we devise in this chapter is parameterized by an abstract memory
domain (of type ab_mc) and an abstract numerical domain (of type int♯). The interface of
the memory abstract domain is presented in Section 4.3.1 as well as its implementation.
The numerical domain specification is the same as the (non-relational) one from the
previous chapter (§ 3.3.2). This memory domain interface enables the definition of an
abstract semantics that is discussed in Section 4.3.2. The analysis is flow-sensitive: it com-
putes an abstract state for each (reachable) program point. It also computes a numerical
approximation of the final value (produced by instruction IHalt). Thus, the result of the
analysis has the following type.

Definition AbEnv : Type := (Map [ addr, ab_mc ] * int♯+⊥).

The iterative computation of the analysis result, that will be described in Section 4.3.3,
follows a different algorithm than in the previous chapter. Indeed, the control-flow graph
of the program is not known until the analysis completes; the dependencies between
the abstract states at different program points are discovered during the analysis. A
pre-computation of an iteration strategy is therefore not possible.

4.3.1 Memory Abstract Domain

An abstract memory domain is a carrier type along with some primitive operators whose
signatures are given in Figure 4.7. The carrier type ab_mc is equipped with a lattice
structure (defined in § 3.1.1). An object of this type represents a set of triples flag-state ×
register-state × memory, as described by the primitive as_gamma. Such a triple ultimately
represents any machine configuration with matching components at any program point
(see gamma_to_mc).

A memory domain can be queried for the values stored in some register (var) or at some
known memory address (load_single); these operators return an abstract numeric value.
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Definition pre_machine_config: Type := flag_state × register_state × memory.
Instance gamma_to_mc A (G:gamma_op A pre_machine_config): gamma_op A machine_config :=
λ a mc, (mc_flg mc, mc_reg mc, mc_mem mc) ∈ γ(a).

(* [mem_dom] is parameterized by a numerical domain. *)
Context (int♯: Type) (ab_num: num_dom int♯).

Record mem_dom (ab_mc: Type) : Type :=
(* abstract domain with concretization to machine configurations *)
{ as_wl: weak_lattice ab_mc
; as_gamma : gamma_op ab_mc pre_machine_config
; as_adom : adom ab_mc machine_config as_wl as_gamma
(* consult the contents of a register *)
; var: ab_mc → reg → int♯

; var_sound: ∀ ab:ab_mc, ∀ m: machine_config,
m ∈ γ(ab) → ∀ r, mc_reg m r ∈ γ(var ab r)

(* consult the contents of the memory at a particular address *)
; load_single: ab_mc → addr → int♯

; load_sound: ∀ ab:ab_mc, ∀ m: machine_config,
m ∈ γ(ab) → ∀ a:addr, mc_mem m a ∈ γ(load_single ab a)

(* update the contents of the memory at a particular address *)
; store_single: ab_mc → addr → int♯ → ab_mc
; store_sound: ∀ ab:ab_mc, ∀ dst v,

Store (γ ab) dst v ⊆ γ (store_single ab dst v)
(* update the flag state *)
; compare: ab_mc → register → register → ab_mc
; compare_sound: ∀ ab:ab_mc, ∀ rs rd,

Compare (γ ab) rs rd ⊆ γ(compare ab rs rd)
(* update the contents of a register *)
; assign: ab_mc → reg → int♯ → ab_mc
; assign_sound: ∀ ab:ab_mc, ∀ rd v,

Assign (γ ab) rd v ⊆ γ(assign ab rd v)
(* assume a flag is in a known state *)
; assume: ab_mc → flag → bool → ab_mc+⊥
; assume_sound: ∀ ab:ab_mc, ∀ f b,

Assume (γ ab) f b ⊆ γ(assume ab f b)
(* abstraction of a fragment of a concrete memory *)
; init: memory → list addr → ab_mc
; init_sound: ∀ (m: memory) (dom: list addr) f r (m′: memory),

(∀ a, List.In a dom → m a = m′ a) → (f, r, m′) ∈ γ(init m dom)
}.

Figure 4.7: Signature of abstract memory domains for analysis of Goto★
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Other operators enable us to alter an abstract state, like assign that sets the contents of
a register to a given abstract numeric value, and store_single that similarly updates the
memory at a given address.

The operator compare updates the abstract counterpart of the flag state when two given
registers are compared. We can also use the operator assume when we know the boolean
value of a flag. This operator is a reduction. It is always sound to return the same abstract
state as the first argument, but a more precise information may allow to gain precious
information when reaching a conditional branch. Indeed, our first implementation of this
operator is the identity; we will then refine it in our first extension (§ 4.4.2). The operator
init is used when initializing the abstract interpreter with an abstraction of the initial
memory. Part of the initial memory is exactly known: the initial program text, static data
and so on. Therefore the init operator gets a list dom of addresses and a function m that
gives the values of the actual initial memory m′ at these addresses.

All these operators obey some specifications. As an example, the load_sound property
states that given a concrete state m in the concretization of an abstract state ab, the concrete
value stored at any address a in m is over-approximated by the abstract value returned by
the matching abstract load. The γ symbol is overloaded through the use of type classes:
its first occurrence refers to the concretization from the abstract memory domain (the
as_gamma field of record mem_dom) and its second occurrence is the concretization from
the numeric domain ab_num.

This signature is similar to the one of the previous chapter (Figure 3.11 on page 41) as
it features a lattice structure and basic operators to model the programming language
instructions. The main difference is that operators do not take expressions as arguments
but directly values. Consider for instance the load_single operator; it takes as argument a
concrete address whereas the assign operator of Figure 3.11 receives an expression (and that
expression may contain loads). This prevents the implementation to reason symbolically
about addresses: this would be mandatory to deal with dynamically allocated memory
(either with a system call like mmap or VirtualAlloc, or from a memory manager that is
part of the program) but is beyond the scope of this work.

Such an abstract memory domain is implemented using two maps: from registers to
abstract numeric values to represent the register state and from values to abstract numeric
values to represent the memory.

Record ab_machine_config :=
{ ab_reg: Map [ reg, int♯ ] ; ab_mem: Map [ addr, int♯ ] }.

To prevent the domain of the ab_mem map from infinitely growing, we bound it by a
finite set computed before the analysis: the analysis will try to compute some information
only for the memory addresses found in this set. The content of this set does not alter
its soundness: the values stored at addresses not in it are unknown and the analyzer
makes no assumptions about them. On the other hand, the success of the analysis and its
precision depend on it. In particular, the analyzed set must cover the whole code segment.
To compute this set, one possible method [BR10] is to start from an initial guess and, every
time the analysis discovers that the set is too small (when it infers that control may reach
a point that is not is the set), the analysis is restarted using a larger set. In practice, for all
our examples, running the analysis once was enough, taking as initial guess the addresses
of the instructions of the initial program.
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Definition load_many (m: ab_mc) (a: int♯) : int♯+⊥ :=
match concretize a with
| Just addr_set => IntSet.fold

(λ acc addr, acc ⊔ NotBot (T.(load_single) m addr)) addr_set Bot
| All => NotBot top
end.

Figure 4.8: Example of abstract transformer

4.3.2 Abstract Semantics

As a second layer, we build abstract transformers over any such abstract domain. Con-
sider for instance the abstract load called load_many and presented in Figure 4.8; it is
used to analyze any ILoad instruction (T denotes a record of type mem_dom int♯ ab_mc).
The source address may not be exactly known, but only represented by an abstract nu-
meric value a. Since any address in γ(a) may be read, we have to query all of them and
take the least upper bound of all values that may be stored at any of these addresses:
⨆ {T.(load_single) m x ∣ x ∈ 𝛾(a)}. However the set of concrete addresses may be huge and
care must be taken: if the size of this set exceeds some threshold, the analysis gives up on
this load and yields top, representing all possible values.

We build enough such abstract transformers to be able to analyze any instruction (func-
tion ab_post_single, shown in Figure 4.9). This function returns a list of possible next states,
each of which being either Hlt v (the program halts returning a value approximated by v)
or Run pp m (the execution proceeds at program point pp in a configuration approximated
by m) or GiveUp (the analysis is too imprecise to compute anything meaningful).

The computed jump (IGotoInd) also has a dedicated abstract transformer (inlined in
Figure 4.9): in order to know from where to continue the analysis, we have to enumerate
all possible targets; the assign operation in each branch refines the knowledge about the
value of the branching register rs). The abstract transformer for the conditional jump
IGotoCond f v returns a two-element list. The first element means that the execution may
proceed at pp + sz (i.e., falls through) in a state where the branching flag f is known to
evaluate to false; the second element represents the case when the branch is taken: the
flag is known to evaluate to true, and the next program point, v, is the one given in the
instruction. Since each assume may return ⊥ meaning that the considered branch cannot
be taken, we use the combinator bot_cons that propagates this information: the returned
list does not contain the unreachable states.

Then, function ab_post_many performs one execution step in the abstract. To do so, we
first need to identify what is the next instruction, i.e., to decode in the abstract memory
from the current program point (function abstract_decode_at, not shown). This may require
to enumerate all concrete values that may be stored at this address. Therefore this abstract
decoding either returns a set of possible next instructions or gives up. In such a case, the
whole analysis will abort since the analyzed program is unknown.
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Inductive ab_post_res := Hlt (v: int♯) | Run (pp: addr) (m: ab_mc) | GiveUp.

Definition bot_cons A B (f: A → B) (a: A+⊥) (b: list B) : list B :=
match a with NotBot a′ => f a′ :: b | Bot => b end.

Definition ab_post_single (m: ab_mc) (pp: addr) (instr: instruction × nat)
: list ab_post_res :=
match instr with
| (IHalt rs, sz) => Hlt (T.(var) m rs) :: nil
| (ISkip, sz) => Run (pp + sz) m :: nil
| (IGoto v, sz) => Run v m :: nil
| (IGotoInd rs, sz) =>

match concretize (T.(var) m rs) with
| Just tgt => IntSet.fold (λ acc addr,

Run addr (assign m rs (const_int addr)) :: acc) tgt nil
| All => GiveUp :: nil
end

| (IGotoCond f v, sz) =>
bot_cons (Run (pp + sz)) (T.(assume) m f false)
(bot_cons (Run v) (T.(assume) m f true) nil)

| (IStore rs rd, sz) =>
Run (pp + sz) (store_many m (T.(var) m rd) (T.(var) m rs)) :: nil

| (ILoad rs rd, sz) =>
match load_many m (T.(var) m rs) with
| NotBot v => Run (pp + sz) (T.(assign) m rd v) :: nil
| Bot => nil
end

| (ICmp rs rd, sz) => Run (pp + sz) (T.(compare) m rs rd ) :: nil
| (ICst v rd, sz) => Run (pp + sz) (T.(assign) m rd v) :: nil
| (IBinop op rs rd, sz) =>

match T.(forward_int_binop) op (T.(var) m rs) (T.(var) m rd) with
| NotBot v => Run (pp + sz) (T.(assign) m rd v) :: nil
| Bot => nil
end

end.

Definition ab_post_many (pp: addr) (m:ab_mc) : list ab_post_res :=
match abstract_decode_at pp m with
| Just instr => flat_map (ab_post_single m pp) instr
| All => GiveUp :: nil
end.

Figure 4.9: Abstract small-step semantics of Goto★
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Record analysis_state := {
worklist : list int (* list of program points remaining to visit *);
result_fs : Map [ int, ab_mc ] (* one value per program point; unbound values are ⊥ *);
result_hlt: d+⊥ (* final value *) }.

Definition analysis_init P : analysis_state :=
{| worklist := Int.zero :: nil ; result_fs := ([])[ Int.zero <- P ] ; result_hlt := Bot |}.

Figure 4.10: Internal state of the Goto★ analyzer

4.3.3 Fixpoint Computation

Finally, a full program analysis is performed applying this abstract semantics iteratively.
The analysis follows a worklist algorithm as the one found in [BR10, § 3.4]. It maintains a
state holding three pieces of data (see Figure 4.10):

1. the worklist, a list of program points left to explore; initially a singleton;

2. the current solution, mapping to each program point an abstract machine configu-
ration; initially empty, but at program point zero, where it holds an abstraction of
the program;

3. an abstraction of the final value, initially ⊥.

A single step of analysis is performed by the function analysis_step shown in Figure 4.11.
It picks a node n in the worklist — unless it is empty, meaning that the analysis is over —
and retrieves the abstract configuration ab_mc associated with this program point in the
current state (function bot_get finds a value bound to a key in a map and returns Bot if
the key is not bound). The abstract semantics is then applied to this configuration; it
yields a list next of outcomes (see Figure 4.9) that are then propagated to the analysis state
(function propagate). If the outcome is GiveUp, then the whole analysis aborts. Otherwise,
if it is Run n′ ab — meaning that ab describes reachable configurations at program point
n′ —, this abstract configuration is joined with the one previously associated with that
program point (function bot_set updates a binding in a map and ensures that no key is
ever bound to the Bot value). In case that something new is learned, the program point n′
is pushed on the worklist. If it is Hlt res, then the abstraction of the final value is updated
similarly.

Since there may be infinite ascending chains, so as to ensure termination, we need to
apply widening operators instead of regular joins frequently enough during the search.
Therefore the analysis is parameterized by a widening strategy that decides along which
edges of the control-flow graph widening should be applied instead of a plain join.
The implementation allows to easily try different strategies. The one we implemented
mandates a widening on every edge from a program point to a smaller one.

The analysis repeatedly applies the analysis step until the worklist is empty (see bottom
of Figure 4.11). So as to ensure that the analysis indeed terminates, we rely on a counter
(known as fuel) that obviously decreases at each iteration; when it reaches zero, the
analyzer must give up.
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Definition analysis_step (E:analysis_state) : analysis_state+⊤ :=
match E.(worklist) with
| nil => Just E (* fixpoint reached *)
| n :: w =>
match bot_get E.(result_fs) n with
| NotBot ab_mc =>
let next := ab_post_many n ab_mc in
List.fold_left
(λ acc res, do E′ <- acc; propagate (widen_oracle n res) E′ res)
next
(Just {| worklist := w

; result_fs := E.(result_fs)
; result_hlt:= E.(result_hlt) |})

| Bot => All end end.

Definition propagate (widenp: bool) (E: analysis_state) (n: ab_post_res)
: analysis_state+⊤ :=
match n with
| GiveUp => All
| Run n′ ab =>
let old := bot_get E.(result_fs) n′ in
let new := (if widenp then widen else join) old (NotBot ab) in
if new ⊑ old
then Just E
else Just {| worklist := push n′ E.(worklist)

; result_fs := bot_set E.(result_fs) n′ new
; result_hlt := E.(result_hlt) |}

| Hlt res => (* similar case, not shown. *) end.

Fixpoint analysis_loop (fuel: nat) (E: analysis_state) : analysis_state+⊤ :=
match fuel with
| O => Just E
| S fuel′ => do E′ <- analysis_step E;

if is_final E′ then Just E′ else analysis_loop fuel′ E′ end.

Definition analysis (P: memory) (dom: list int) fuel : analysis_state+⊤ :=
analysis_loop fuel (analysis_init (T.(init) P dom)).

Figure 4.11: Main loop of the Goto★ analyzer
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4.3 Abstract Interpreter

This iteration strategy is different from the one used in the previous chapter (§ 3.2),
which relies on the knowledge of the control-flow graph to compute, at the beginning of
the analysis, the iteration order and the widening points. Here, the control-flow graph is
discovered during the analysis; so the iteration order has to be adapted as the edges of
the graph are discovered. Similarly, loops are not a priori known, and an optimal set of
widening points cannot be pre-computed.

4.3.4 Soundness of the Abstract Interpreter

We now describe the formal verification of our analyzer. The soundness property we
ensure is that the result of the analysis of a program P over-approximates its semantics ⟦P⟧.
This involves on one hand a proof that the analysis result is indeed a fixpoint of the
abstract semantics and on the other hand a proof that the abstract semantics is correct
with respect to the concrete one.

The soundness of the abstract semantics is expressed by the following lemma, which
reads: given an abstract state ab and a concrete one m in the concretization of ab, for each
concrete small-step m ⇒ m′, there exists a result ab′ in the list ab_post_many m.(pc) ab that
over-approximates m′. Our use of Coq type classes enables us to extensively overload the
𝛾 notation and write this statement in a concise way as follows.

Lemma ab_post_many_correct : ∀ (m: machine_config) (m′: machine_state) (ab: ab_mc),
m ∈ γ(ab) → m ⇒ m′ → m′ ∈ γ(ab_post_many m.(pc) ab).

The proof of this lemma follows from the soundness of the various abstract transformers
(as load_sound in Figure 4.7) and of the decoder:

Lemma abstract_decode_at_sound : ∀ (m: machine_config) (ab: ab_mc) (pp: addr),
m ∈ γ(ab) → decode_from m.(mc_mem) pp ∈ γ(abstract_decode_at pp ab).

The proof that the analyzer produces a fixpoint is not done directly. Instead, we rely on
a posteriori verification: we do not trust the fixpoint computation and instead program and
prove a checker called validate_fixpoint. Its specification, proved thanks to the previous
lemma, reads as follows.

Lemma validate_correct : ∀ (P: memory) (dom: list addr) (E: AbEnv),
validate_fixpoint P dom E → ⟦P⟧ ⊆ γ(E).

Going through this additional programming effort has various benefits: on the one
hand, a direct proof of the fixpoint iterator would be very hard; on the other hand, we can
adapt the iteration strategy, optimize the algorithm and so on with no additional proof
effort.

This validation checks two properties of the result E: that the result over-approximates
the initial state; and that the result is a post-fixpoint of the abstract semantics, i.e., for
each abstract state in the result, performing one abstract step leads to abstract states that
are already included in the result. These properties, combined to the soundness of the
abstract semantics, ensure the conclusion of this lemma.

Finally we pack together the iterator and the checker with another operation performed
on sound results that checks for their safety. The resulting analysis enjoys the following
property: if, given a program P, it outputs some result, then that program is safe.
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Theorem analysis_sound : ∀ (P: memory) (dom: list addr) (fuel: nat) (int♯: num_dom_index),
analysis int♯ P dom fuel ≠ None → P ∈ safe.

The arguments of the analysis program are the program to analyze, the list of addresses
in memory to track, the counter that enforces termination and the name of the numeric
domain to use. We provide two numeric domains: intervals with congruence information
(also known as strided intervals [Bal07]) and finite sets.

To enhance the precision, we have introduced three more techniques: a dedicated
domain to abstract the flag state, a partitioning of the state space, and a use of abstract
instructions. They will be described in the next section.

4.4 Case Studies and Analysis Extensions

The extraction mechanism of Coq enables us to generate an OCaml program from our de-
velopment and to link it with a front-end. Hence we can automatically analyze programs
and prove them safe. This section shows the behavior of our analyzer on chosen examples,
most of them taken from [CSV07] (they have been rewritten to fit our custom syntax). All
examples are written in an assembly-like syntax with some syntactic sugar: labels refer
to byte offsets in the encoded program, the enc(i) notation denotes the encoding of the
instruction i. The study of some examples highlights the limits of the basic technique pre-
sented before and suggests to refine the analyzer as we describe below. These extensions
have been integrated to our formalization and proved correct. The source code of all the
examples that are mentioned thereafter is available on the companion web site [Web].

4.4.1 Basic Example

The multilevel run-time code generation program of Figure 4.12 is a program that, when
executed, writes some code to the addresses starting at line gen and runs it; this generated
program, in turn, writes some more code at line ggen and runs it. Finally execution starts
again from the beginning. Moreover, at each iteration, register R6 is incremented.

The analysis of such a program follows its concrete execution and exactly computes the
content of each register at each program point. It thus correctly tracks what values are
written and where, so as to be able to analyze the program as it is generated.

However, when the execution reaches program point loop again, both states that may
lead to that program point are merged. And the analysis of the loop body starts again.
After the first iteration, the program text is exactly known, but each iteration yields more
information about the dynamic content of register R6. Therefore we apply widening steps
to ensure the termination of the analysis: the widening operator (of the memory domain)
is used instead of the join operator on every edge from a program point to a smaller
program point (i.e., in this example, from program point ggen to program point loop).
Finally, the set of reachable program points is exactly computed and for each of them, we
know what instruction will be executed from there.

Many self-modifying programs are successfully analyzed in a similar way: opcode
modification, code obfuscation, and code checking [Web].
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cst 0 -> R6
cst 1 -> R5

loop: add R5 -> R6
cst gen -> R0
cst enc(store R1 -> *R2) -> R1
store R1 -> *R0
cst enc(goto R2) -> R1
cst gen + 1 -> R0
store R1 -> *R0
cst ggen -> R2
cst loop -> R0
cst enc(goto R0) -> R1
goto gen

gen: skip
skip

ggen: skip

Figure 4.12: Multilevel run-time code generation

cst -128 -> R6
add R6 -> R1
cmp R6, R1
gotoLT ko
cst -96 -> R7
cmp R1, R7
gotoLE ko
store R0 -> *R1

ko:halt R0

Figure 4.13: Array bounds check

4.4.2 A First Extension: Dealing with Flags

The example program in Figure 4.13 illustrates how conditional branching relies on
implicit flags. This program stores the content of R0 in an array (stored in memory from
address −128 to address −96) at the offset given in register R1. Before that store, checks
are performed to ensure that the provided offset lies inside the bounds of the array. The
destination address is compared against the lowest and highest addresses of the array; if
any of the comparisons fails, then the store is bypassed.

To properly analyze this program, we need to understand that the store does not alter
the code. When analyzing a conditional branch instruction, the abstract state is refined
differently at its two targets, to take into account that a particular branch has been taken
and not the other. However, the only information we have is about one flag, whereas the
comparison that set this flag operated on the content of registers. We therefore need to
keep the link between the flags and the registers.

To this end, we extend our ab_machine_config record5 with a field containing an optional
pair of registers ab_reg: (reg × reg)+⊤. It enables the analyzer to remember which registers
were involved in the last comparison (the All value is used when this information is
unknown). With such information available, even though the conditional jump is not
directly linked to the comparison operation, we can gain some precision in the various
branches. More precisely, the compare operator can now be implemented as follows.

Definition compare ab rs rd := lift (λ ab', {| ab_flg := ⌊(rs, rd)⌋
; ab_reg := ab'.(ab_reg) ; ab_mem := ab'.(ab_mem) |}) ab.

Back to the example of Figure 4.13, when we assume that the first conditional branch
is not taken, the flag state is abstracted by the pair ⌊(R6,R1)⌋, so we refine our knowledge

5This record has been introduced in Section 4.3.1.
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Definition assume (x: ab_machine_config+⊤) (f: flag) (b: bool)
: ab_machine_config+⊤+⊥ :=
match x with
| ⌊x'⌋ =>
match x'.(ab_flg) with
| ⌊(Ru, Rv)⌋ =>
let u := find_def x'.(ab_reg) Ru in let v := find_def x'.(ab_reg) Rv in
let op := match f with FLE => Cle | FLT => Clt | FEQ => Ceq end in
let v'u' := backward_int_binop (OpCmp op) v u (const_int (of_bool b)) in
match v'u' with
| (NotBot v', NotBot u') =>
NotBot (⌊{| ab_reg := (x'.(ab_reg)) [ Ru <- u' ] [ Rv <- v' ]

; ab_flg := x'.(ab_flg); ab_mem := x'.(ab_mem) |}⌋)
| _ => Bot
end

| _ => NotBot x
end

| _ => NotBot x
end.

Figure 4.14: Implementation of the assume transfer function

about register R1: its content is not less than the content of register R6, namely −128.
Similarly, when we assume that the second conditional branch is not taken, the abstract
flag state is ⌊(R1,R7)⌋, so we can finally infer that the content of register R1 is in the bounds.

The actual implementation of such a precise assume relies on a backward transfer function
of the numeric domain, discussed in Section 3.3.2. Given such a backward transfer
function, assume can be implemented as shown in Figure 4.14: if the registers Ru and Rv
involved in the last comparison are known, then the abstract values u and v associated to
them can be refined using the backward operator for the given comparison. In case any
of these refined values is ⊥, this information is propagated to the whole abstract state:
the branch is unreachable and should not be analyzed any further.

Special care has to be taken in the assign transfer function. If a register that is part of
the abstract flag is updated, then no information about its new content can be inferred
from the outcome of the comparison. Therefore, in such cases, the abstract flag is simply
forgotten, i.e., set to All.

This extension of the abstract domain has little impact on the formalization, but greatly
increases the precision of the analyzer on programs with conditional branches. Indeed,
without this extension, the analyzer cannot deduce anything from the guards of condi-
tional branches as it ignores all comparison instructions.

4.4.3 A Second Extension: Trace Partitioning

During the execution of a self-modifying program, a given part of the memory may
contain completely unrelated code fragments. When these fragments are analyzed, since
they are stored at the same addresses, flow sensitivity is not enough to distinguish them.
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0: cst 40 -> R7
2: cst 21 -> R0
4: cst 13 -> R4
6: load *R4 -> R1
7: cst 14 -> R4
9: load *R4 -> R2
10: cst 13 -> R4
12: store R2 -> *R4
13: goto R7
14: add R0 -> R3

15: cst 14 -> R4
17: store R1 -> *R4
18: cst 11 -> R4
20: load *R4 -> R2
21: cst 16 -> R4
23: load *R4 -> R1
24: store R2 -> *R4
25: cst 11 -> R4
27: store R1 -> *R4
28: cst 12 -> R4

30: load *R4 -> R2
31: cst 17 -> R4
33: load *R4 -> R1
34: store R2 -> *R4
35: cst 12 -> R4
37: store R1 -> *R4
38: goto 4
40:

Figure 4.15: Polymorphic program

If these fragments are merged in the abstract state, then the two programs get mixed
and it is no longer possible to predict the code that is executed with sufficient precision.
To prevent such a precision loss, we use a specific form of trace partitioning [Kin12] that
makes an analysis sensitive to the value of a particular memory location.

Consider as an example the polymorphic program of Figure 4.15. Polymorphism here
refers to a technique used by for instance viruses that change their code while preserving
their behavior, so as to hide their presence. The main loop of this program (bytes 4
to 39) repeatedly adds forty-two to register R3 (two add instructions at bytes 13 and 14).
However, it is obfuscated in two ways. First, the source code initially contains a jump to
some random address (byte 13). But this instruction will be overwritten (bytes 7 to 12)
before it is executed. Second, this bad instruction is written back (bytes 4 to 6 and 15 to 17),
but at a different address (byte 14 is overwritten). The remainder of the loop swaps the
contents of memory at addresses 11 and 16, and at addresses 12 and 17 (execution from
byte 18 to byte 27, and from byte 28 to byte 37, respectively). So when the execution reaches
the beginning of the loop, the program stored in memory is one of two different versions,
both featuring the unsafe jump. In other words, this program features two variants that
are functionally equivalent and look equally unsafe. And running any version changes
the program into the other version.

When analyzing this program, the abstract state computed at the beginning of the loop
must over-approximate the two program versions. Unfortunately it is not possible to
analyze the mere superposition of both versions, in which the unsafe jump may occur.
The two versions can be distinguished through, for instance, the value at address 12. We
therefore prevent the merging of any two states that disagree on the value stored at this
address. Two different abstract states are then computed at each program point in the
loop, as if the loop were unrolled once.

More generally, the analysis is parameterized by a partitioning criterion δ: ab_mc → K
that maps abstract states to keys (of some type K). No abstract states whose keys differ
according to this criterion are merged. Taking a constant criterion amounts to disabling
this partitioning. The abstract interpreter now computes for each program point a map
from keys to abstract states (rather than only one abstract state).

Definition vpAbEnv : Type := (Map [ addr, Map [ K, ab_mc ] ] * int♯+⊥).

Such an environment 𝐸 represents the following set of machine configurations (ignoring
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the halted configurations represented by the second component):

𝛾(𝐸) = {𝑐 ∈ machine_config ∣ ∃𝑘, 𝑐 ∈ 𝛾 ((fst 𝐸)[𝑐.(pc)][𝑘])}

This means that the actual key under which an abstract state is stored has no influence on
the concrete states it represents. It can only improve the precision: if two abstract states 𝑥
and 𝑦 are mapped to different keys hence not merged, they can represent the concrete set
𝛾(𝑥) ∪ 𝛾(𝑦) which may be smaller than 𝛾(𝑥 ⊔ 𝑦).

For instance, the criterion used to analyze the polymorphic program of Figure 4.15
maps an abstract state 𝑚 to the value stored at address 12 in all concrete states represented
by 𝑚; or to an arbitrary constant if there may be many values at this address.

To implement this technique, we do not need to modify the abstract domain, but only
the iterator and fixpoint checker. The worklist holds pairs (program point, criterion value)
rather than simple program points. The iterator and fixpoint checker (along with its proof)
are straightforwardly adapted. The safety checker does not need to be updated since we
can forget the partitioning before applying the original safety check.

Thanks to this technique, we can selectively enhance the precision of the analysis and
correctly handle challenging self-modifying programs: control-flow modification, mutual
modification, and code encryption [Web]. However, the analyst must manually pick a
suitable criterion for each program to analyze; the analyzer itself is not able to figure out
what criterion to use. In practice, we have used the contents of some particular register or
memory location.

When using this extension, the termination of the analysis may not be guaranteed
any longer as the type K may have infinitely many values (or too many for the analysis
to enumerate them all). To ensure termination, Kinder [Kin12] proposes a widening
operator that merges keys at a particular program point when the number of different
keys encountered at this program point exceeds some threshold. We did not implement
such a widening operator and require the analyst to be careful when the partitioning
criterion is designed.

4.4.4 A Third Extension: Abstract Decoding

The program in Figure 4.16 computes the 𝑛th Fibonacci number in register R2, where 𝑛 is
an input value read from address −1 and held in register R0. There is a for-loop in which
register R1 goes from 1 to 𝑛 and some constant value is added to register R2. The trick is
that the actual constant (which is encoded as part of an instruction and is stored at the
address held in R6) is overwritten at each iteration by the previous value of R2.

When analyzing this program, we cannot infer much information about the content of
the patched cell. Therefore, we cannot enumerate all instructions that may be stored at
the patched point. So we introduce abstract instructions: instructions that are not exactly
known, but of which some part is abstracted by a suitable abstract domain. Here we only
need to abstract values using a numeric domain: the resulting instruction set is shown in
Figure 4.17. This abstraction of the instructions could be pushed further to capture other
self-modification patterns. For instance a program might modify only the encoding of
a register; in such a case, the “register” part of the instructions could be abstracted by a
finite set of registers.
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cst -1 -> R7
load *R7 -> R0
cst key+1 -> R6
cst 1 -> R1
cst 1 -> R2

loop: cmp R1, R0

gotoLE last
cst 1 -> R7
add R7 -> R1
cst 0 -> R3
add R2 -> R3

key: cst 0 -> R4

add R4 -> R2
store R3 -> *R6
goto loop

last: halt R2

Figure 4.16: Self-modifying Goto★ program computing Fibonacci numbers

Inductive ab_instruction (int♯: Type) : Type :=
| AICst (v:int♯) (dst:reg) | AICmp (src dst: reg)
| AIBinop (op: int_binary_operation) (src dst: reg)
| AILoad (src dst: reg) | AIStore (src dst: reg)
| AIGoto (tgt: int♯) | AIGotoInd (r: reg)
| AIGotoCond (f: flag) (tgt: int♯) | AISkip | AIHalt (r: reg).

Figure 4.17: Abstract instructions

With such a tool, we can decode in the abstract: the analyzer does not recover the exact
instructions of the program, but only the information that some (unknown) value is
loaded into register R4, which is harmless (no stores and no jumps depend on it).

This self-modifying code pattern, in which only part of an instruction is overwritten
occurs also in the vector dot product example [Web] where specialized multiplication
instructions are emitted depending on an input vector.

For this technique to be effective, the numeric abstract domain has to support it: mapping
abstract values to abstract instructions (i.e., abstract decoding) should be more efficient
than just enumerating all concrete values.

The abstract semantics (Figure 4.9) has to be slightly modified to deal with this new
instruction set. In particular, all jumps behave like indirect jumps: their targets are
only known as abstract values. For the analysis to follow such a jump, all concrete

cst 0 -> R5
cst j+1 -> R0
cmp R5, R6
gotoLE h
store R7 -> *R0

j: gotoLE 0
h: halt R5

Figure 4.18: Not-a-branch

(* … slice of ab_post_single … *)
| (AIGotoCond f tgt, sz) =>
bot_cons (Run (pp + sz)) (T.(assume) m f false)
match T.(assume) m f true with
| NotBot m' =>
match concretize tgt with
| Just tgt => IntSet.fold (λ acc tgt, Run tgt m' :: acc) tgt nil
| All => GiveUp :: nil
end

| Bot => nil
end

Figure 4.19: Abstract conditional jump
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Program Result Comment
Opcode modification ✔
Multi-level run-time code gen. ✔
Bootloader ✘ needs a model of system calls and interrupts
Control-flow modification ✔ partitioning on the jump target (address 15)

Vector dot product ✔ partitioning on loop counter (register R0);
and abstract decoding

Run-time code checking ✔
Fibonacci ✔ abstract decoding
Self-replication ✘ code segment is “infinite”

Mutual modification ✔ partitioning on the instruction to write (held
in register R0)

Polymorphic code ✔ partitioning according to the different ver-
sions of the program (e.g., address 12)

Code obfuscation ✔
Code encryption ✔ partition on the loop counter (register R0)

Figure 4.20: Summary of self-modifying examples

destinations need to be enumerated. However, consider the example shown Figure 4.18.
The conditional jump on line j is unsafe: its target is overwritten on the line before with
some input value (the contents of register R7). But the whole program is actually safe,
because the branching condition is always false6. Therefore, the abstract transformer
for conditional jumps (Figure 4.19) tries to prove that the branch cannot be taken (with
the call T.(assume) m f true) before it enumerates its possible targets; and the program of
Figure 4.18 can be proved safe by our analyzer.

The techniques presented here enable us to automatically prove the safety of various
self-modifying programs including almost all the examples of Cai et al. [CSV07], as sum-
marized in Figure 4.20. Out of twelve, only two cannot be dealt with. The comment column
of the table lists the extensions that are needed to handle each example (if any), or the
limitation of our analyzer. The boot loader example does not fit in the considered machine
model, as it calls BIOS interrupts and reads files. The self-replicating example is a program
that fills the memory with copies of itself: the code, being infinite, cannot be represented
with our abstract domain. Our Coq development features all the extensions along with
their correctness proofs, and several Goto★ examples including the implementation of
the programs listed in Figure 4.20.

4.5 Related Work

Most of the previous works on mechanized verification of static analyses focused on stan-
dard data-flow frameworks [KN06; CD04; BGL06; Cac+05] or abstract interpretation for
small imperative structured languages [Ber09; CP10; Nip12]. Klein and Nipkow instantiate

6Such spurious branching instructions are known as “opaque predicates” and are mainly used for obfusca-
tion [CTL98].
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such a framework for inference of Java bytecode types [KN06]; Coupet-Grimal and Delo-
bel [CD04] and Bertot et al. [BGL06] for compiler optimizations, and Cachera et al. [Cac+05]
for control flow analysis.

Our current work formalizes advanced abstract interpretation techniques, complemen-
tary to the ones described in the previous chapter, but targeting self-modifying low-level
code; it is based on several recent non-verified static analyses. A large amount of work
was done by Balakrishnan et al. in this area [BR10]. Control-flow graph reconstruction
was specially studied by Kinder et al. [KV08] and Bardin et al. [BHV11]. Still, these works
are unsound with respect to self-modifying code.

The first formal semantics for self-modifying programs are defined by Debray et al.
[DCT08] and Bonfante et al. [BMR09]. These are paper-and-pencil semantics that operate
over small low-level languages as ours; they are used in a very different way from our
semantics. In the first one, a denotational semantics based on traces is used to identify
the different phases of successive program modifications during a program execution.
An operational semantics is defined in the second one, where a rewriting process from
self-modifying programs to non-modifying programs is defined.

Our current work tackles a core subset of a self-modifying low-level programming
language. More realistic formalizations of x86 semantics were proposed [Myr10; Mor+12;
Ken+13] but none of them handles the problem of disassembling self-modifying programs.
Our work complements other verification efforts of low-level programs [Chl11; CSV07;
JBK13] based on program logics. While we provide automatic inference of loop invariants,
they are able to handle more expressive correctness properties.

The RockSalt project [Mor+12] features a formally verified checker of the safety policy of
Native Client, a facility for running untrusted binary programs within a web browser. The
safety policy is draconian (and in particular implies that the code is not self-modifying),
so that checking it is relatively simple; therefore, the verification of the checker is in some
aspect simpler than the verification of our value analysis. However, RockSalt tackles a
large part of the x86 syntax including the many addressing modes, the quirky encoding
(prefixes, w bit) etc. Their formalization is particularly interesting in that it features a core
intermediate representation, which is then used to define the semantics of all supported
instructions of x86.

So as to precisely analyze programs that are obfuscated by virtualization, Kinder [Kin12]
proposes an abstract domain that is similar to our ad-hoc trace partitioning: a particular
location is identified as holding the virtual program counter and the abstract domain
is partitioned on the value at this location. A more general trace partitioning domain
is proposed by Rival and Mauborgne [RM07]. The formal verification in Coq of such
techniques is beyond the scope of this work.

4.6 Conclusion and Perspectives

This work provides the first verified static analysis for self-modifying programs. In order
to tackle this challenge, we formalized original techniques such as control-flow graph
reconstruction and partitioning. We formalized these techniques on a small core language
but we managed to verify ten out of twelve of the challenges proposed by Shao et al.
[CSV07].

An important further work is to scale these technique on more realistic Coq language
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models [Mor+12; Ken+13]. Developing directly an analyzer on these representations may
be a huge development task because of the number of instructions to handle. One strategy
could be to relate on a good intermediate representation such as the one proposed by
Rocksalt [Mor+12]. It could be very interesting to integrate our analyzer architecture
within their language formalization; it would in particular enable the handling of compiled
programs whereas our analyzer is currently limited to tediously hand-written Goto★

code.
Our language lacks some realistic features, as for instance floating-point arithmetic

or SIMD instructions. More importantly, there is no mechanism as interrupts or system
calls to interact with the environment and perform run-time I/O. Also, there are no
explicit instructions for function call and return, though they could be emulated with
computed jumps. Our current work does not consider the specific challenge of call stack
reconstruction [BR10; Fle+10] that may require some form of verified alias analysis [RL12].
This is an important place for further work.

More generally, our memory domain signature prevents any symbolic reasoning on
memory addresses: all accessed addresses have to be exactly known at analysis time. Also,
the lack of expressions in the interface prevents the computation of relational invariants,
i.e., properties that may relate the contents of different registers and memory cells.

Next chapter is dedicated to a more general and more powerful memory domain. It is
targeted at the analysis of the CFG language in which the control-flow is statically known
and memory is a little bit structured; it implements the memory domain signature of
previous chapter (Figure 3.11).
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Chapter 5

Precise abstraction of C-like memories

The value analyses that have been presented in the two previous chapters feature a
memory domain. This component is in charge of representing the data manipulated by the
analyzed program, and of modeling basic instructions that affect this data (as opposed
to the control that is handled by the iterator). The implementations of such domains in
previous chapters have some limitations. The memory domain of chapter 3 computes
precise information about the contents of the registers only and ignores the contents of the
memory. The domain of chapter 4 is a simple map from addresses to abstract numerical
values: it cannot represent relational invariants about the contents of different locations
and needs, when modeling a memory access, to know the exact (concrete) address being
accessed. It also operates on a simple memory in which all accesses target only one byte,
whereas common languages (as C) usually provide means to access several bytes at once.

A basic and important component of a memory domain is usually a (relational) numer-
ical domain. An extensive literature is dedicated to them [Min04; CC76; Gra89; Kar76;
Gra91; CH78], various efficient libraries are available and they usually agree on their
interface, similar to the one given in a previous chapter (§ 3.3.1). These domains operate
on variables that need to be explicitly named: they do not permit referencing variables
through pointers, and no wonder about pointer arithmetic.

Analyses of programs with pointers require dedicated treatments, known as points-to
analysis. Indeed, the analysis needs to predict pointer targets in order to infer something
about a value accessed through said pointer. However points-to analysis in presence of
pointer arithmetics requires a numerical analysis: when the offset of a pointer is expressed
as an arbitrary arithmetic expression, predicting the values of this offset amounts to
analyzing this expression.

Such an analysis that integrates points-to and numerical analyses has been described by
Miné [Min06]. We propose in this chapter to implement a memory domain that follows
that work and integrates into the value analyzer for the CFG intermediate representation of
the CompCert compiler presented in chapter 3. This implementation is also mechanically
verified in Coq.

This contribution is part of a larger work that has been recently published [Jou+15].
This chapter goes into the details of the memory domain, that was only briefly sketched
in that publication.

5.1 Background

The value analysis discussed in this chapter builds up on the one of chapter 3. The main
difference with that work is the memory domain at the heart of this chapter. We briefly
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Class pre_mem_dom (t: Type) : Type := {
(* abstract domain structure *)
mem_wl : weak_lattice t;
(* consult the range of a local variable *)
range: t → ident → signedness → itv+⊥;
(* assignment to a local variable *)
assign: ident → expr → t → t+⊥;
(* assignment to a memory cell *)
store: memory_chunk → expr → expr → t → t+⊥;
(* assume an expression evaluates to non-zero value *)
assume: expr → t → t+⊥;
(* non-deterministic assignment to a local variable *)
forget: ident → t → t+⊥

}.

Figure 5.1: Interface of the memory domain

recall the overall design of the analyzer and its two main components: an abstract domain
and a fixpoint solver.

The fixpoint solver takes as input the code of a function and an abstract semantics of the
CFG programming language. It then computes a flow-sensitive invariant that is sound
w.r.t. the given semantics. It uses Bourdoncle’s algorithm [Bou93] programmed in OCaml;
the output of this solver is therefore not trusted and validated a posteriori.

The abstract domain is a data-type whose values represent sets of concrete memory
states (local variables and global memory). Its signature is given on Figure 5.1. The
type of the abstract values is t. The domain is equipped with a lattice structure (mem_wl)
and a query operator (range ab x) that returns an over-approximation of the values of
local variable x in any state represented by ab, as a pair of intervals (one if the value is
interpreted as a signed integer, one if it is interpreted as an unsigned integer; this prevents a
premature loss of precision due to an early choice of the signedness interpretation). It also
features operators that model CFG statements: assign, store and assume. The last operator,
forget, performs a non-deterministic assignment and can be used to model inputs, for
instance. The t+⊥ notation refers to the type t extended with an extra Bot element whose
concretization is empty: it means that a contradiction has been found and that no concrete
state can satisfy the given constraints. For instance, when analyzing a conditional branch,
the analyzer may prove that the condition never holds, i.e., that the branch cannot be
taken, hence returns Bot. There is no operator in this interface that enables to model
function calls. Therefore, the analysis will be restricted to programs without functions
calls. This is a limitation that will be relaxed in a following chapter (§ 6.2) where inter-
procedural analysis is discussed. Meanwhile, we consider programs without function
calls, or, equivalently, programs without recursion nor function pointers in which all
function calls can be inlined before the analysis.

A key building block of such an abstract domain is a (relational) numerical domain. It
has similar operators (range, assume and assign) that rely on numerical expressions (no
loads, no pointers) of type nexpr. The precise definition of a numerical domain is given in
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a previous chapter (§ 3.3).
The remainder of this chapter is organized as follows. Section 5.2 gives a high-level

overview of the implementation of such a memory domain, and Section 5.3 a more detailed
description of this domain. Section 5.4 reviews its soundness proof. Finally, Section 5.5
describes some extensions to the domain that enhance the precision of the analysis.

5.2 Overview of the Memory Domain
Relational numerical domains are well suited to represent numerical environments, i.e.,
concrete sets of functions from named variables to numbers. The operators of such
domains always refer to the variables through their names (as in “assign x + 2 · y to z”).
Such a domain cannot be directly applied to the analysis of languages like C in which:
values are not only numerical but also comprise pointers; and variables are referred to
by expressions which may involve arithmetic (as in “assign *(x + 2 · y) to *(z+4)”, where *p
denotes the dereference of pointer p). Such an assignment may modify several memory
locations: the exact variable targeted by a pointer expression may not be known statically.
The analyzer must account for this uncertainty and consider that any of the possibly
targeted location has been updated.

Programs to analyze manipulate data that is stored in various locations: registers, local
and global variables, dynamically allocated memory. The numerical content of these
locations is represented as a point in a (relational) numerical domain. The “numerical
content” refers to the actual value of integers and the offset part of pointers.

One of the main tasks of the memory domain is to translate the queries that it receives
in terms of CFG expressions (with pointer arithmetic and memory loads) into queries for
the numerical domain, in terms of purely numerical expressions.

Let’s consider an example program to be analyzed. The analyzer operates on the CFG
intermediate representation but the program is written here in concrete C syntax for the
sake of readability. Note that scaling (i.e., multiplication of the offset by the size of target
type) is explicit in CFG expressions (but hidden here, when incrementing pointers).

1 int S[2], T[2];

2 int main(void) {

3 int b1 = any_bool(), b2 = any_bool(), *x = S, *p = T;

4 S[0] = T[1] = 0; S[1] = T[0] = 1;

5 if (b1) p = S; if (b2) ++p;

6 x = x + *p;

7 return *x;

8 }

In this program, there are two global variables (arrays S and T), that are initialized at
the beginning of the main function. This program builds a pointer p to some element
of the arrays S and T, depending on the values of b1 and b2 that can be seen as input in
this example (as suggested by the assignment to any_bool(); we will come back on the
modeling of user input in next chapter, § 6.5). It then uses the value of this element as an
offset in array S (pointer x) and returns the value referenced by x.

The following pictures schematically shows a possible concrete state when reaching
line 6. Variables S and T are allocated respectively to blocks 100 and 101. Registers b1 and
b2 contain respectively integers 0 and 1. Therefore p points to offset 4 in block 101.
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Figure 5.2: Sketch of the memory domain

Memory: Registers:

+----------+----------+ b1: Vint 0 p: Vptr 101 4

100: | Vint 0 | Vint 1 | b2: Vint 1 x: Vptr 100 0

+----------+----------+

+----------+----------+

101: | Vint 1 | Vint 0 |

+----------+----------+

0 4 8

We will focus on line 6. When analyzing this line, the memory domain is asked to model
the assignment to variable x of the value resulting from the evaluation of expression x + *p.
This query is expressed using CFG expressions, which cannot be directly given to the
numerical domain. One difficulty in answering this query lies in the load; the memory
domain needs to predict what are the locations that may be targeted by pointer p.

To do so, the memory domain embeds a (generic) numerical domain (as shown on the
right of Figure 5.2) and a points-to domain (at the top). Queries addressed to the memory
domain flow (plain arrows) to the points-to and numerical domains. On the way, they are
converted to load-free queries for the points-to domain (using load-free expressions of
type pexpr) and numerical queries for the numerical domain (using numerical expressions
of type nexpr). These conversions use (dashed arrows) the information provided by these
domains: the numerical conversion uses the points-to information to distinguish integers
from pointers and the load-elimination uses the both points-to and numerical information
to resolve loaded addresses.

We now roughly describe each component of the memory domain.

5.2.1 Memory Cells

In the CFG language, when a program accesses an array element or a structure field (as
in “S[1] = 1”), the variable (here S) is not fully involved but only a chunk of it. Therefore,
we introduce a notion of abstract cell (and the corresponding data-type acell) to represent
locations that are accessed by the program. Such an abstract cell is either a chunk of a
global variable or a register. (The discussion of stack-allocated local variables is delayed
until Section 5.5.1.)
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Inductive acell : Type :=
| ACglobal (s: ident) (κ: memory_chunk) (ofs: Z)
| ACreg (x: ident).

The memory chunk in the global-variable location describes how this cell is accessed (in
particular, it gives the size of the cell and how to interpret its contents). There is no such
meta-data for the register location, since the contents of registers are accessed directly
and as-is (i.e., without transformation nor reinterpretation of the data).

For instance, the (abstract) memory cells involved in the analysis of our example program
are: ACglobal S Mint32 0 and ACglobal S Mint32 4, that represent the two elements of array S;
ACglobal T Mint32 0 and ACglobal T Mint32 4, that represent the two elements of array T;
ACreg b1, ACreg b2, ACreg p, and ACreg x, that represent the four register variables of this
program.

These abstract cells are used as variables of the numerical and points-to domains: they
operate as if the program were manipulating cells rather than anything else. The role of
the memory domain is to make this illusion correct, by converting queries about CFG
expressions into queries about cells.

Notice that cells may overlap: two cells may refer to the same address with different
chunks, or to overlapping chunks of the memory. For instance, if the program wrote
a 64 bits integer at the address of array T, the cell ACglobal T Mint64 0 would be used to
describe this access; and this cell overlaps with the two other cells about T. Most often,
the abstract domains will not compute invariants about overlapping cells. Would this
happen, the conjunction of these invariants would apply to the concrete part of memory
they represent. Therefore, we need to take care of overlapping cells on stores (all possibly
written cells have to be updated) rather than on loads (reading only one of the read cells
always return a sound invariant).

5.2.2 Points-to Domain

In order to precisely understand expressions involving loads and pointers, the memory
domain needs to: distinguish pointers from integers; and predict the set of blocks a pointer
may target. We thus attach to each cell a type (integer (Int), pointer (Ptr) or unknown (All))
and, if it is a pointer, a finite set of blocks.

In the example program, when reaching line 6, the points-to domain state is as depicted
in the following table.

Cell ACglobal S Mint32 0 ACglobal S Mint32 4 ACglobal T Mint32 0

Points-to Int Int Int

Cell ACglobal T Mint32 4 ACreg b1 ACreg b2 ACreg p ACreg x

Points-to Int Int Int Ptr({S; T}) Ptr({S})

5.2.3 Underlying (Relational) Numerical Domain

In addition to the points-to domain, the memory domain embeds a relational numerical
domain whose abstract values (of type num) represent sets of functions from (abstract)
cells to numerical values (machine integers, of type int). The signature of such domain
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is given in Section 3.3.1. It is used to represent the numerical part of the contents of the
abstract cells: the values of integers and the offsets of pointers.

5.2.4 Conversion

To analyze an instruction as the one on line 6 above, the numerical domain needs to
translate the CFG expression x + *p into numerical expressions to hand them over to the
numerical domain. This translation is decomposed into two steps: elimination of the
loads; and elimination of the pointers. Theses two steps are now described.

Load elimination In order to eliminate a sub-expression of the form *e, the memory
domain first computes an over-approximation of the set of cells that may be designated
by expression e. This results in a set of expressions, replacing in the original expression
the load *e by every possible cell it may read from.

To compute this set of cells, the loads from sub-expression e are recursively eliminated;
this yields a set of expressions without loads. Then each expression is given to: a points-to
domain that computes a set of blocks (i.e., names of global variables); and the numerical
domain (after pointer-elimination) that computes a concrete set of offsets.

In our example, the load to eliminate is the dereference of p. The points-to evaluation
may result in the set { S; T } since this pointer points inside one of these two arrays. The
numerical evaluation may result in the set { 0; 4}. Finally, we get a set of four load-free
expressions: ACreg x + 4 × (ACglobal S Mint32 0), ACreg x + 4 × (ACglobal S Mint32 4), ACreg
x + 4 × (ACglobal T Mint32 0), and ACreg x + 4 × (ACglobal T Mint32 4).

Pointer elimination The expressions resulting from the load-elimination may still con-
tain pointers: pointer constants or pointer arithmetic. To translate such expressions into
purely numerical ones, constants are replaced by their offsets and operators by their
numerical counterparts. This translation is mostly unsurprising: addition is mapped to
addition and so on. The (only) non-trivial point is about boolean operations: all (non-null)
pointers are true.

Therefore, to correctly translate a boolean operation (e.g., the C expression !q), the
analyzer needs to predict whether q is always a non-null pointer (in which case this
expression is always false) or it is always an integer (in which case this expression is
already purely numerical) or may be any of them (in which case this expression may
return any boolean). This information is available thanks to the points-to domain.

In the next section, we look more precisely at each component of this domain.

5.3 Technical Details

One central operation of this memory domain is conversion. It relies on an intermediate
expression language that we present first. Then we dig into the details of the two phases
of the conversion. Finally we describe how the abstract transformers are implemented.
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All

Int Ptr ( All )

{S; T}

{S} {T}

Figure 5.3: Lattice of types and points-to abstract values

5.3.1 Pointer Expressions

The pointer-expressions, of type pexpr, are CFG expressions without loads, or equivalently
numerical expressions with pointers. They are parameterized by the type of the variables
they may contain.

Inductive pexpr (var: Type) : Type :=
| PEvar (v: var)
| PEconst (cst: constant)
| PEunop (op: unary_operation) (e: pexpr var)
| PEbinop (op: binary_operation) (e₁ e₂: pexpr var)
| PEcond (b e₁ e₂: pexpr var).

They use the same constants (type constant) and the same operators (types unary_opera-
tion and binary_operation) as plain CFG expressions.

The concrete semantics of these expressions is very similar to the one of CFG expressions,
except that it does not depend on a memory (for loads) but only on the permissions (for
pointer comparisons).

5.3.2 Points-to Domain

The purpose of this domain is two-fold:

1. distinguish cells holding integers from cells holding pointers; and

2. predict the set of blocks a pointer may target.

This domain is non-relational and independent from the numerical domain. It attaches
an abstract value to each (abstract) cell. The abstract value combines a type information
(integer, pointer, or don’t-know) and, in case of pointers, a points-to set.

This set is either a subset of the finite sets of all global variables, or the special All value
that denotes any block and is used, for instance, to abstract pointers to stack-allocated vari-
ables. We finally get a semi-lattice (of type pointsto+⊤) that can be pictured as Figure 5.3.

This domain features in particular a forward evaluation function,

eval_ptr: Map [ acell, pointsto ] → pexpr acell → pointsto+⊤
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that, in a context of an abstract state that maps each cell to its points-to approximation,
given an expression, computes the points-to information corresponding to the result of
the evaluation of this expression.

The abstract memory type is thus a pair made of a points-to information, and a point in
the numerical domain:

Definition t : Type := ( Map [ acell, pointsto ] * num ).

5.3.3 Numerical Conversion

The second phase1 of conversion, implemented by the function nconvert, produces a
numerical expression (of type nexpr) from a pointer expression (of type pexpr). Its code is
shown at the top of Figure 5.4.

To convert a pointer-expression, it is recursively traversed and its structure is mostly
kept; e.g., a negation of an integer expression is mapped to the negation of the converted
sub-expression. When converting constants, integers are kept, floats are forgotten, and
pointers are replaced by their offsets. Non-trivial cases occur when converting boolean
expressions. For instance, the Oboolval unary operator casts its argument into a boolean
(i.e., integer zero or one). To correctly convert such an expression, we need to distinguish
whether the argument is an integer or a pointer:

• if it is an integer, the conversion goes on as usual;

• if it is a pointer, the whole expression is mapped to the constant expression that
evaluates to integer one; indeed, all (non-null) pointers are true;

• if its type is not known at analysis time, the result is soundly over-approximated by
the expression that may evaluate to integers zero and one.

5.3.4 Load Elimination

The first phase of the conversion, implemented by the function convert, is shown at the
bottom of Figure 5.4. It produces a set of pointer expressions out of one CFG expression
(or gives up and returns All). It traverses an expression, converts sub-expressions, and
combines all possible results (as in a regular set monad). When encountering an expression
of the form (Eload κ e′), the sub-expression e′ is recursively converted. This produces a set
lp of pointer-expressions. This set is dereferenced, i.e., the set of cells that may be targeted
by these expressions is computed: each expression pe in the set lp is evaluated by the
points-to domain; this yields a set bs of blocks; the expression pe is also converted to a
numerical expression (as described in Section 5.3.3) that, thanks to the concretize operator
of the numerical domain, yields a concrete set of offsets (or gives up, if the result is not
known to be small enough). The Cartesian product of these two sets produces a concrete
set of cells. This logic is implemented by the deref_pexpr function, whose code follows.

Definition deref_pexpr (ab: t) κ (lp: set (pexpr acell)) : set acell+⊤ :=
let (pt, nm) := ab in

1The first phase depends on the second one and is described in the next section.
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Definition nconvert_constant (cst: constant) : nconstant :=
match cst with
| Ointconst n => NOintconst n
| Ofloatconst n => NOintunknown
| Oaddrsymbol _ ofs | Oaddrstack ofs => NOintconst ofs end.

Fixpoint nconvert (pe: pexpr acell) : nexpr acell :=
match pe with
| PEvar x => NEvar x
| PEconst cst => NEconst (nconvert_constant cst)
| PEunop op pe′ => match op with
| Onegint | Onotint => NEunop op (nconvert pe′)
| Oboolval => match eval_type pe′ with

| Just PtInt => NEunop op (nconvert pe′)
| Just (PtPtr _) => ne_true
| All => any_bool end end

| PEbinop op pe₁ pe₂ => match op with
| Oadd | … => NEbinop op (nconvert pe₁) (nconvert pe₂)
| Ocmpu c =>
match eval_type pe₁, eval_type pe₂ with
| All, _ | _, All => any_bool
| Just ty₁, Just ty₂ =>
match ty₁, ty₂ with
| PtInt, PtInt => NEbinop op (nconvert pe₁) (nconvert pe₂)
| PtInt, PtPtr _
| PtPtr _, PtInt => match c with Cne => ne_true | _ => ne_false end
| PtPtr bs₁, PtPtr bs₂ => …
end end end

| … end.

Fixpoint convert (e: expr) (ab: t) : (set (pexpr acell))+⊤ :=
match e with
| Evar s => Just (singleton (PEvar (ACreg s)))
| Econst cst => Just (singleton (PEconst cst))
| Eunop op e′ => do_top pe′ <- convert e′ ab;

Just (SetConstructs.map (PEunop op) pe′)
| Eload κ e′ => do_top lp <- convert e′ ab;

do_top cells <- deref_pexpr ab κ lp;
Just (SetConstructs.map PEvar cells)

| … end.

Figure 5.4: Conversion (excerpt)
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SetInterface.fold
(λ (pe: pexpr acell) (s: set acell+⊤),
do_top s′ <- s;
do_top ptr <- eval_ptr pt pe;
match ptr with | PointsTo.PtPtr bs =>

do_top bs <- bs;
let ne := nconvert pt pe in
do_top ofs <- concretize ne nm;
Just (cell_product bs κ ofs ++ s′)

| _ => s end)
lp (Just {}).

In the example from section 5.2, to analyze the line 6, one CFG expression to convert is (in
a more readable syntax): EVar x + 4 × ELoad Mint32 (EVar p). To do so, we first dereference
the sub-expression (EVar p):

1. This sub-expression is converted to a set of pointer expressions, namely to the
singleton {PEVar (ACreg p)}.

2. All expressions in this set (there is only one) are evaluated (in parallel) in the points-
to domain and in the numerical one. In the points-to domain, cell ACreg p is mapped
to the value Ptr({ S; T}) which represents all pointers to some cell of blocks to which
global variables S or T are allocated. Evaluation in the numerical domain may result
in the precise set { 0; 4}. 2

3. The Cartesian product of these sets yields a set of four abstract cells:

{ ACglobal S Mint32 0; ACglobal S Mint32 4; ACglobal T Mint32 0; ACglobal T Mint32 4 }.

Then conversion proceeds and builds an expression PEVar x + 4 × c for each cell c from the
above set.

5.3.5 Abstract Transformers

Conversion enables the implementation of the operators that model CFG instructions:
forget, assume, assign, and store. We describe their design in this section.

Forget

The forget operator over-approximates any instruction that may overwrite a temporary in
an unknown way, e.g., an input instruction. During the analysis, we need a more general
operator that enables to forget the content of any cell. We therefore provide a forget_cells
function that forgets anything about a set of cells. It removes them from the points-to
map and calls the corresponding forget operator of the numerical domain. This operation
involves no conversion.

2Such precision is achieved using a product of interval and congruence domains.
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Definition assume (e: expr) (ab: t) : t+⊥ :=
match convert (Eunop Oboolval e) ab with
| All => NotBot ab
| Just pes =>
let (pt, nm) := ab in
set_map_reduce (λ pe,
do_bot pt′ <- pt_assume pe pt;
do_bot nm′ <- assume (nconvert pt′ pe) nm;
NotBot (pt′, nm′)

) pes
end.

Figure 5.5: Implementation of assume

1 int x, y, z;

2

3 int main(void)

4 {

5 int *p = any_bool() ? & x : & y;

6 if ( x < z && y < z) {

7 if ( 0 < *p ) {

8 assert ( 1 < z );

9 }

10 }

11 return 0;

12 }

Figure 5.6: Test case for assume

Assume

The purpose of the assume e ab transformer is to refine an abstract state ab to take into
account the fact that expression e evaluated to a true value. Its implementation is given in
Figure 5.5.

The expression is first prefixed by the operator Oboolval to ensure that the result is
actually cast to a boolean. The resulting expression is then converted to a pexpr in order
to eliminate the loads in the expression. This conversion may fail, in which case nothing
new can be learned. Otherwise, the conversion returns a set pes of pointer expressions.

All these expressions are then given to the pt_assume transformer of the points-to domain
and to the assume transformer of the underlying numerical domain (recall that nconvert
casts a pointer-expression into the corresponding numerical expression).

The combinator set_map_reduce iterates over the set pes, runs the function it gets as
argument in parallel for each element pe in the set, then joins all the results.

The pt_assume operator is in charge of refining the points-to information. It cannot do
anything useful yet. It will be discussed in more details later (§ 5.5.3).

Example Consider the analysis of the program shown on Figure 5.6, using a relational
numerical domain (e.g., polyhedra) that is able to infer, after the first if, that z is larger
than both x and y. When the analysis reaches line 8, it knows that the guard 0 < *p is true.
However, pointer p targets either x or y, so conversion of the guard yields two numerical
expressions: one about x, the other about y. Since in both cases the numerical domain
is able to infer that z is larger than one, in spite of uncertainty about the target of p, the
analysis is able to prove the assertion on line 8.

This implementation is not the most precise that can be thought of. To illustrate the
loss of precision, consider the following C snippet.

1 int x = 0, y = 1; int *p = any_bool() ? & x : & y;

2 if ( *p ) { /* p points to y */ } else { /* p points to x */ }

The conversion of the expression *p yields two expressions: one corresponding to variable
x, one corresponding to variable y. The numerical domain is then able to prove that as-
suming that x is true leads to a contradiction. However, this information is not propagated
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Definition assign (x: ident) (e: Cminor.expr) (ab: t) : t+⊥ :=
assign_cells None (singleton (ACreg x)) e ab.

Definition store (κ: memory_chunk) (ℓ r: Cminor.expr) (ab: t) : t+⊥ :=
match (do_top ptr <- convert ab ℓ; deref_pexpr ab κ ptr) with
| All => NotBot( ⊤ ) (* give up: the whole heap may be modified *)
| Just cells => assign_cells (Some κ) cells r ab
end.

Definition assign_cells (κ: option memory_chunk) (dst: set acell) (e: expr) (ab: t) : t+⊥ :=
match convert ab e with
| All => forget_cells (overlapping_cells dst ++ dst) ab
| Just pes =>
let (pt, nm) := ab in
do_bot ab′ <- set_map_reduce (λ c,
do_bot res <- set_map_reduce (λ pe,
let ty := eval_ptr pt pe in
if chunk_type κ ty then
let ne := nconvert pt (ensure_cast_for_chunk κ pe) in
do_bot nm′ <- assign c ne nm;
NotBot (ty, nm′)

else NotBot (⊤))
) pes;
let (ty, nm′) := res in NotBot (map_assign pt c ty, nm′)

) dst;
forget_cells (overlapping_cells dst) ab′ end.

Figure 5.7: Updating cells: assign and store

to the points-to domain. Indeed no information about the choices that are made during
the conversion is kept. To address this limitation, the conversion could not only produce
a set of expressions, but a set of pairs made of an expression and an abstract-environment,
where the abstract environment is the original one refined with the choices done during
conversion. This would also address the precision loss in expressions like *x + *x. Such an
improvement is left as future work.

5.3.6 Assign & Store

Both operators assign and store, whose implementation is given in Figure 5.7, share the
same logic: evaluate an expression, and store its result at some location. The difference
between the two is that the destination is definitely known in the case of assign whereas it
is denoted by an expression in the case of store. Therefore, this second operator needs
first to compute an over-approximation of the set of cells that may be designated by this
expression (thanks to deref_pexpr, also used in the load elimination phase). Then, both
operators rely on the more general assign_cells that updates a set of cells.

Abstract cells may overlap. Therefore, an explicit update to one cell may hide implicit
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updates to overlapping cells. To soundly model this property, we conservatively forget
anything that is known about any overlapping cell. To do so we rely on an auxiliary
function overlapping_cells that computes a set of all cells that are distinct from all cells in a
given set but overlap with some of them.

To assign to a set of cells the result of a given expression e, this expression is first
converted to a set of pointer-expressions. In case of failure of the conversion, the target
cells (and the overlapping ones) are erased. Otherwise, for each destination cell c and each
pointer expression pe resulting from the conversion, the assignment of this expression to
that cell is performed, in parallel, in the points-to domain and in the numerical one. All
these parallel assignments are then joined together. This results in a strong update if the
destination set is a singleton; a weak update otherwise. Finally, all overlapping cells are
erased.

Abstract cells have a memory chunk as meta-data. It simplifies the view of the memory.
Otherwise when reading a cell, we would have to decode its contents. In contrast, we
chose to perform the trans-coding on stores. That’s why there is first a check of the type
of the value to store. And the expression is changed to add an explicit cast, so that the
numerical domain knows that the value has to be trans-coded. For instance, when adding
a cast to 8-bit unsigned integer, the numerical domain truncates the abstract value to the
interval [0; 255].

5.4 Soundness
We have seen so far the implementation of the memory domain. We now move on
its soundness proof. We first introduce an intermediate specification of the concrete
memory in Section 5.4.1, then discuss the concretization relation of the points-to domain
in Section 5.4.2 and of the whole memory domain in Section 5.4.3. Finally we present the
central lemmas of the soundness proof in Section 5.4.4.

5.4.1 Functional Memory

The (concrete) memory model of CompCert has been defined to enable the specification
of various programming language semantics, and the verification of the compiler. Unfor-
tunately, it is not very convenient for the verification of the abstract domain. Therefore, we
introduce an intermediate specification of the concrete memory which is structurally close
to the abstract memory. This concrete memory is made of cells. Each such cell represents
a location from which some data can be fetched. A memory is then simply a total function
from cells to values. The value Vundef represents uninitialized data and thus enables to
see the memory as a total function.

There are two kinds of cells: cells that are in memory (global variables and local variables
whose address is taken); and temporary variables (a.k.a. registers). The similarity with
the abstract memory is intentional.

Inductive ccell : Type :=
| CCmem (b: block) (κ: memory_chunk) (ofs: Z)
| CClocal (s: ident).

To be able to correctly define the semantics of the CFG expressions in this model,
we need to keep track of a little bit more information. Indeed, pointer comparison in
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CompCert behaves differently whether its arguments are valid pointers or not. The validity
of pointers is defined in term of permissions attached to each memory address.

Therefore, the memory is defined as the following record type.

Record fmem : Type := {
f_of_fmem:> ccell → val;
perm: block → Z → option permission

}.

The first field, namely f_of_fmem, is a coercion (as denoted by :>); this means that a
value of type fmem can be used as a function of type cell → val. Therefore, reading the
content of a cell c in a memory f amounts to the function application written f(c).

Writing to the memory is a little bit more intricate. Indeed, memory cells can overlap.
We introduce a notion of disjointness (i.e., non-overlap) with the following predicates.
Overlapping cells are either the same temporary or overlapping chunks of the same
memory block.

Definition disjoint_ranges (r r′: Z * memory_chunk) : Prop :=
let (i, κ) := r in let (i′, κ′) := r′ in
i′ + size_chunk κ′ <= i ∨ i + size_chunk κ <= i′.

Definition disjoint_cells (c c′: ccell) : Prop :=
match c, c′ with
| CCmem b κ ofs, CCmem b′ κ′ ofs′ => b′ ≠ b ∨ disjoint_ranges (ofs, κ) (ofs′, κ′)
| CClocal i, CClocal i′ => i ≠ i′
| _, _ => True end.

Then a store can be specified by the following relation between memories. It says that
the memory resulting from the store, f′, holds the new value v at the target cell c, and
agrees with the original memory f for all cells disjoint from c3.

Definition fmem_update (c: ccell) (v: val) (f f′: fmem) : Prop :=
f′ c = v ∧ (∀ c′, c′ ∈ disjoint_cells c → f′ c′ = f c′).

The abstract transformers of the memory domain can then be specified against this
concrete view of the memory, as shown on Figure 5.8. The forget_sound property reads
as follows. The concretization of the result of (forget x ab) contains (at least) all concrete
memories obtained after updating an initial memory f (in the concretization of ab) at the
target cell with any value v.

The specification for the assign transformer is very similar, except that the value v is
taken among the possible results of the evaluation of the expression e.

Again, the specification of the store transformer is similar, except that the updated
cell (CCmem b κ (Int.unsigned i)) is built from any result (Vptr b i) of the evaluation of the
address expression ℓ, and that the stored value v is transformed according to the chunk κ
specifying the memory access (as defined by CompCert’s Val.load_result function). In

3This does not specify the value of overlapping cells, and is therefore not sufficient for a precise analysis of
programs performing type-punning; see § 5.5.2 for a discussion.
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Class fmem_dom (ge: Genv.t) (t: Type) (D:pre_mem_dom t) (G:gamma_op t fmem) : Prop := {
range_sound: ∀ (ab: t) (f: fmem) (x: ident),
f ∈ γ ab →
match f (CClocal x) with
| Vint i | Vptr _ i => i ∈ ints_in_range (range ab x)
| _ => True end;
forget_sound : ∀ (x: ident) (ab: t) (f: fmem) (v: val),
f ∈ γ ab →
fmem_update (CClocal x) v f ⊆ γ(forget x ab);

assign_sound : ∀ (x: ident) (e: expr) (ab: t) (f: fmem) (v: val),
f ∈ γ(ab) →
v ∈ eval_expr ge f e →
fmem_update (CClocal x) v f ⊆ γ(assign x e ab);

store_sound : ∀ (κ: memory_chunk) (ℓ r: expr) (ab: t) (f: fmem) (b: block) (i: int) (v: val),
let c := CCmem b κ (Int.unsigned i) in
f ∈ γ(ab) →
Vptr b i ∈ eval_expr ge f ℓ →
v ∈ eval_expr ge f r →
c ∈ writable_cell f →
fmem_update c (Val.load_result κ v) f ⊆ γ(store κ ℓ r ab);

assume_sound : ∀ (e: expr) (ab: t) (f: fmem),
f ∈ γ(ab) →
true ∈ Union (eval_expr ge f e) Val.bool_of_val →
f ∈ γ(assume e ab) }.

Figure 5.8: Abstract memory specification

addition, this transformer may use the fact that the destination cell is writable, i.e., that
the offset i is correctly aligned and that there are sufficient permissions to write there.

The whole specification is parameterized by a global environment ge, corresponding to
the program being analyzed.

5.4.2 Points-to Domain

The soundness of the points-to domain is established against a concretization relation
defined as follows. The Int abstract value represents all machine integers. The abstract
values of the form Ptr(bs) represent all pointers whose block is in the set bs (the offset is
not constrained). The trivial abstract type All is related to any value. In particular, it is the
only abstract value that represents the bogus value Vundef.

This invariant enables to prove that some value cannot be Vundef. This is particularly
useful for proving progress (see next chapter § 6.3) and to precisely analyze programs
with type-punning (see § 5.5.2).
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5.4.3 Concretization Relation

The relational domain comes with a concretization to functions from (abstract) cells to
numerical values (machine integers). Using the ncompat relation (see below) it can be
given a concretization to functions from cells to values (including pointers). The type
domain, that maps abstract cells to an abstraction of their types, also concretizes to a
function from abstract cells to values. We can then define the following concretization
relation for the abstract memory domain; here concrete values are functions from abstract
cells to values.

Definition ncompat (v: val) (j: int) : Prop :=
match v with
| Vint i | Vptr _ i => i = j
| Vfloat _ | Vundef => True
end.

Instance pre_gamma : gamma_op t (acell → val) :=
λ ab f,
let (pt, nm) := ab in
f ∈ γ(pt) ∧ ∃ (ν: acell → int), ν ∈ γ(nm) ∧ ∀ c, ncompat (f c) (ν c).

The set pre_gamma(pt, nm) is the intersection of the concretization γ(pt) of the points-
to map and of the set of all memories related (by the point-wise lifting of the ncompat
relation) to some function ν in the concretization γ(nm) of the numerical abstraction.

In order to relate an abstract memory to a concrete one, we still have to relate abstract
cells to concrete cells. This is done through an allocation partial function, that maps abstract
cells to concrete cells. One such allocation function is given below and called δ₀. Since the
set of abstract cells is a bit limited, this function is not so far from the identity function
(modulo the correspondence between blocks identifiers and variable names). It will be
refined when the type acell will be extended (such as with local variables).

Definition allocation : Type := acell → option ccell.

Definition δ₀ : allocation :=
λ ac,
match ac with
| ACglobal g κ o => do_opt b <- Genv.find_symbol ge g; Some(CCmem b κ o)
| ACreg i => Some(CClocal i)
end.

Given such an allocation function, we can relate memories as follows: related cells are
mapped to equal values (and cells that are related to nothing have unconstrained value).

Definition mem_rel (δ: allocation) (m: fmem) (ρ: acell → val) : Prop :=
∀ c a, δ(a) = Some c → m(c) = ρ(a).

Notice that, given an allocation function δ and a memory m, the set mem_rel δ m is not
empty: there is in it at least the function m ∘ δ′, where δ′ allocates every unallocated cell to
a dummy one (e.g., δ′ a := match δ a with Some c => c | None => CClocal 1 end).
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Then we can define the concretization relation for the memory abstract domain to
concrete memories. A memory m is in the concretization of an abstract memory ab
whenever all functions in the pre_gamma concretization of ab are related to m.

Instance gamma : gamma_op t fmem := λ ab m, mem_rel δ₀ m ⊆ pre_gamma(ab).

By using a for-all quantification (i.e., set inclusion) when a there-exists (i.e., non-emptiness
of the intersection) would be plausible as well, we insist on the fact that we do not care
about the value of the non-allocated cells, and that the memory domain should not
compute anything about these cells.

5.4.4 Key Lemmas

So as to depict how the soundness proof of the memory domain is carried on, this section
highlights the most important lemmas; their proofs are done in Coq and not described
here.

Conversion

There are two phases during conversion: load elimination; and pointer elimination. The
first phase produces a set of expressions such that, collectively, the resulting expressions
may evaluate to all possible values of the original expression.

Lemma convert_correct (m: fmem) (ρ: acell → val) (ab: t) (e: expr) pes :
mem_rel δ₀ m ρ →
m ∈ γ(ab) →
convert e ab = Just pes →
eval_expr m e ⊆ Union pes (eval_pexpr ρ).

The second phase produces, for each pointer-expression, a purely numerical expression.
Numerical expressions evaluate to numerical values (machine integer) whereas pointer-
expressions may also evaluate to pointers. Therefore, the soundness property of this
second phase states that for each possible value v of the original expression, the resulting
expression evaluates to some number n that is compatible with value v. The compatibility
relation has been defined in Section 5.2.3. It relates in particular numbers to themselves
and pointers to their offsets.

Lemma nconvert_correct pe :
∀ v, v ∈ eval_pexpr pe →
∃ n, n ∈ (eval_nexpr (nconvert pe) ∩ ncompat v).

Assign

The soundness lemma for the (assign_cells dst e ab) operation reads as follows. For every
concrete memory f and value v the expression e may evaluate to in f, for every destination
cell a (related to the concrete cell c through δ₀), the concrete memories obtained by updat-
ing f at c with value (Val.load_result κ v) are in the concretization of the resulting abstract
state. The stored value is trans-coded according to chunk κ.
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1 union {

2 int i;

3 unsigned char b[4];

4 } u;

5 u.i = 0x12345678;

6 switch (u.b[0]) {

7 case 0x12:

8 return BIG_ENDIAN;

9 case 0x78:

10 return LITTLE_ENDIAN;

11 }

1 void*

2 memcpy(void *dest, const void *src, size_t n)

3 {

4 uint8_t *d = dest;

5 const uint8_t *s = src;

6 int i;

7 for ( i = 0 ; i < n ; ++i ) {

8 d[i] = s[i];

9 }

10 return dest;

11 }

Figure 5.9: Type punning examples

Lemma assign_cells_sound (κ: option memory_chunk) (dst: set acell) (e: expr) (ab: t) :
∀ m, m ∈ γ ab →
∀ v, v ∈ eval_expr m e →
∀ a, a ∈ dst →
∀ c, δ₀ a = Some c →
fmem_update c (Val.load_result κ v) m ⊆ γ(assign_cells κ dst e ab).

5.5 Extensions

The memory domain presented so far has various limitations; in this section we sketch
how to remove some of them.

5.5.1 Local Variables

In the CFG language, (non-temporary) variables that are local to a function are allocated
to one single memory block, corresponding to the stack frame of this function. Since
we consider programs without function calls, the stack pointer (i.e., the pointer to the
beginning of the stack frame) is constant and can be statically predicted.

The type of abstract blocks is therefore enriched with a name for the stack block. Sim-
ilarly, the type of abstract cells is enriched with a constructor for stack-allocated local
variables; it is parameterized, as for global variables, by a memory chunk and an offset.
The allocation function is also defined for these cells.

The points-to domain can then be refined to precisely abstract constant stack pointers.
Modeling of local variables would be more involved in the presence of function calls.

We defer the description of the analysis of programs with functions until next chapter
(§ 6.2).

5.5.2 Realization & Type Punning

Some low-level programs perform so-called type-punning. This means accessing some
data of a given type (say a 32-bits integer) as if it were of a different type (say an array
of four 8-bit integers). This is usually used to access the bit-level representation of some
data.
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For instance, the program on the left of Figure 5.9 is a C snippet that discovers at
run-time the endianness of the architecture. Such puns are only loosely specified by the
C standard. Most of them are however precisely defined in the CompCert semantics.

There are several kinds of puns. They all involve reading some data with a different
chunk than the one that had been used to write it. We will focus on the following two
cases.

• Reading at the same address with a chunk of the same size. This covers changes in
signedness and manipulations of the bit-level representation of floats4. The first are
similar to casts (with the Ocast8unsigned operator, for instance) whereas the last are
no standard C operations and are not handled by the numerical abstract domains.

• Reading one byte of a multi-byte data, as in the implementation of the memcpy
function given on the right of Figure 5.9.

In case of type-punning, a cell whose content has to be read is not bound in the abstract
domain. Indeed, when a cell is written, the (abstract) contents of all overlapping cells are
forgotten. To precisely approximate the read value, the cell needs to be realized [Min06],
that is, bound to some non-trivial abstract value derived from the values of overlapping
cells.

We expect the following property from the realize c ab function, meant to realize the
cell c in the abstract state ab: all memories in the concretization of some abstract value ab
before realization, are in the concretization after realization.

Lemma realize_sound (c: acell) (ab: t) : γ(ab) ⊆ γ(realize c ab).

However, this is hardly provable, since in the functional view of the concrete memory,
the values of overlapping cells are not constrained. One way to address this issue is to
further constrain the fmem type. In a first step, we can add the following property:

Definition pun_similar (f: cell → val) := ∀ b κ κ′ ofs,
size_chunk κ = size_chunk κ′ →
align_chunk κ = align_chunk κ′ →
∃ bytes,
f (CCmem b κ ofs) = decode_val κ bytes ∧
f (CCmem b κ′ ofs) = decode_val κ′ bytes.

This is enough to handle some kinds of puns: when some data is written with some
chunk and read back with a different one, but at the exact same offset with similar
alignment constraints. This covers reinterpretation of the signedness of a small int and
manipulating the bit-level representation of floats.

An other helpful property, which covers the endianness check and memcpy function of
Figure 5.9 is as follows.

Definition pun_u8 (f: cell → val) := ∀ b κ ofs,
(align_chunk κ | ofs) →
∃ bytes,

4Fast computations of approximations of inverse square roots are a notable example of floating-point
operations performed on the bit-level representation of floats.
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1 int x;

2

3 int main(void)

4 {

5 int * p = 0;

6 x = 0;

7 if ( any_bool() ) p = & x;

8 if ( p != 0 ) *p = 1;

9 int z = x;

10 return z;

11 }

1 int x[2];

2

3 int main(void)

4 {

5 int * p = 0;

6 x[0] = 0; x[1] = 1;

7 if ( any_bool() ) p = & x[1];

8 if ( p != 0 ) *p = 1;

9 int z = x[0];

10 return z;

11 }

Figure 5.10: C programs checking for null pointers

f (CCmem b κ ofs) = decode_val κ bytes ∧
length bytes = size_chunk κ ∧
∀ i (LT: i < length bytes),
f (CCmem b Mint8unsigned (ofs + i)) = decode_val Mint8unsigned (get i bytes LT :: nil).

It states that for every value read through some chunk κ at a properly aligned address,
there is a sequence of bytes from which this value is decoded, such that reading in memory
at the same address the ith Mint8unsigned chunk yields the decoding of the ith byte in
the sequence5. Notice that this would not hold without the alignment requirement:
mis-aligned reads of multi-byte chunks always yield Vundef, even though the byte-wise
readings return well-defined values.

These properties of the memory are added as invariants of the type fmem. This enables
to prove the soundness of realization functions that bind new cells in the memory domain
(i.e., in both points-to and numerical domains) from information about overlapping cells.
Such functions are called optimistically when expressions dereference unbound cells, so
as to try to bind them to some non-trivial value.

Realization needs to take place during conversion. Here is an example: there is a pun
on variable x, that is written as a 32-bit integer, and read as an 8-bit unsigned integer.

1 int t[2] = { 1, 2 };

2 union { int i; uint8_t[4] c; } x;

3 x.i = 1;

4 int v = t[x.c[0]];

To understand what cells are targeted by the array access, we need to numerically eval-
uate the subscript expression. This requires the 8-bit cell to be realized during conversion.
The conversion function is therefore adapted to manipulate the abstract state as in the
state monad, rather than as an input value.

5.5.3 The Case of Null Pointers

5 The get function takes as argument a proof LT that there are at least i elements in the list, to be sure to be
able to return a meaningful value.
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All

Int

Null

Maybe-null pointer

Not-null pointer

Figure 5.11: Lattice of abstract types to handle null pointers

The analyzer described so far is not able to prove that, after a test ensuring that a pointer
is not null, said pointer is actually not null. Consider for instance the program on the
left of Figure 5.10. There, pointer p is either null or points to variable x, depending on
unknown input. The assignment on line 8 is guarded so that it is safe and it updates
variable x.

The problem comes from the fact that zero and null pointers are the same value (in
CompCert as in standard C99 [C99, § 6.3.2.3]). Indeed, in the above example, variable p
may have two distinct types: integer or pointer. In other circumstances, the memory
domain soundly ignores variables whose type cannot be inferred: a safe program is not
expected to store values of different types in a same variable. The null pointer is an
exception to this typing rule: a pointer can be used as an integer without explicit cast,
provided it is null (and symmetrically).

We therefore refine two components of the memory domain, as we describe below.

Richer types Currently, the points-to domain loses precision when joining the abstrac-
tion for a null value (an integer) and a non-null pointer. This domain is therefore refined
to still precisely handle maybe-null pointers (see Figure 5.11). Value with pointer-type
are also associated to a points-to set, as before (not shown on the picture).

Assume When analyzing a guard as ( p != 0 ), if p is known to be a maybe-null pointer,
its abstract type has to be refined to the not-null pointer with the same points-to set.

More generally, we introduce a backward evaluation function in the points-to domain,
similar to the one presented in the cases of numerical environments in Section 3.3.2.
This backward evaluation function corresponds to the implementation of the pt_assume
introduced in Section 5.3.5.

This enhancement enables the analysis of programs that manipulate pointers that may
be null. However, precision could still be improved, as illustrated by the program on the
right of Figure 5.10. This program is very similar to its neighbor, but variable x is now an
array of two integers and p, when not null, targets the second cell (i.e., its offset is four).
Thus, when the analysis reaches line 8, the points-to domain knows that p, when not null,
points to the block of x, and the numerical domain knows that the offset of p is zero or
four. This comes from the join, in both domains, of the information about the initial null
value of p and the information about the non-null pointer to the second cell of x. Thus
the analyzer considers that the store on line 8 may target both cells of x, resulting in a
precision loss. This situation could be improved by a better communication between the
numerical and points-to domains, left as future work.
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5.6 Conclusion
In this chapter, we have described an abstract domain that represents the state of the
global memory and the local environment of a CFG program. This domain is vastly
inspired by Antoine Miné’s [Min06]. This state is abstracted as a collection of cells. This
domain is fully parameterized by a numerical domain, and, if that domain is relational,
the memory domain leverages this feature and computes relational invariants about the
contents of the cells. For instance, it is able to prove that an array resulting from a bubble
sort is indeed sorted (provided that the size of the array is known, that the loops are
unrolled, and that the numerical domain, e.g., the domain of polyhedra, can represent
inequalities between variables).

A more precise analysis of the points-to relations, known as the shape of the memory,
could be achieved by dedicated shape analyses [CR13]. Such analyses are beyond the
scope of this memory domain, as they usually focus on dynamically allocated linked data
structures, whereas we target embedded programs without dynamic memory allocation.

The cells of the memory domain may overlap, and care is taken so that overlapping
cells are associated with consistent information. Cells can be opportunistically realized
when needed, in particular in case of type punning.

This domain is fully verified in Coq against the CompCert semantics of the CFG lan-
guage. The proof introduces a functional view of the (concrete) memory that is much
more convenient to relate to its abstract counterpart.

Future improvements of this memory domain include the ability to hold so called
summary cells, i.e., cells in the abstract domain that represent several cells at once in the
concrete state. This is required to efficiently represent large arrays, and model dynamic
memory allocation and recursion. This has been overlooked as we target safety-critical, em-
bedded, programs in which the use of such features hardly occurs. Such an enhancement
would require to generalize the allocation function and adapt the conversion function, for
instance by replacing weak cells by a conservative interval.

The next chapter discusses how the various methods presented in this chapter and the
previous ones are applied and refined to construct a verified static analyzer for safety-
critical C programs.
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Practical static analyzer for safety-critical C

In the previous chapters, we have seen how to implement executable verified value
analyzers. Still, so as to analyze actual programs and have stronger guarantees about the
analysis results, the following issues need to be addressed.

Source vs. intermediate representation The analyzers of chapters 3 and 5 operate on
the CFG intermediate representation of CompCert. When they are used to analyze C
programs, the analysis takes place after a fair amount of program transformations: most
notably, local variables have been allocated to stack slots or registers, and the control flow
is expressed in CFG as a graph rather than as a sequence of nested statements. In addition,
the compiler may remove behaviors and, if the source program is unsafe, even introduce
new ones. Therefore, it is unlikely that the results that hold for the CFG programs directly
apply to the source C program.

Programs with functions The case of function calls has been put aside in the previous
chapters: an easy work-around was to inline all function calls. However, this is not
always possible (e.g., when they are recursive calls or function pointers) nor desirable
(e.g., because of the increase in code size).

Result validity The analyzers assume that the analyzed programs are free of undefined
behaviors, but there is no guarantee that this assumptions hold. However, a value analysis
could be used to prove such facts (no division by zero, array accesses are in-bounds etc.).
To tie the knot, we will implement in a value analyzer the required checks so as to prove,
at once, that 1. the analyzed program is free of undefined behaviors; and 2. the analysis
results hold for all executions of the program.

Rudimentary numerical abstract domains All analyzers are parameterized by an un-
derlying numerical domain. In practice, only intervals, or at best intervals with congruence
information, have been implemented. It would be preferable to be able to reuse existing
abstract domain libraries without completely re-implementing them in Coq.

Partial programs Actual programs to be analyzed do call library functions and perform
I/O. In chapter 3, the issues was eluded since the memory was not analyzed, and library
functions cannot tamper with the contents of local registers. In chapter 4, input was
allowed before the program is loaded, and no more. A practical analyzer should provide
means to precisely handle programs that perform I/O at any time and call external
functions whose code is not available for analysis.
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source→ C→ Clight→ C#minor→ Cminor→ · · ·
CompCert compiler

Abstract interpreter

State abstraction

Z→ int

×
×

NR→ R NR→ R

Integer & F.P.
intervals

Integer
congruences

×

Symbolic
equalities

Convex
polyhedra

OK / AlarmsControl

State

Numbers

Figure 1. Modular architecture of the Verasco static analyzer

either focuses on simple static analyses (dataflow analyses, no
widening, non-relational domains only) or on mini-languages such
as IMP. Compared with this earlier work on verified static analyzers,
Verasco is a quantitative jump: the source language analyzed (most
of C) is much more complex, and the static analysis technique
used (combination of several abstract domains, including relational
domains) is much more sophisticated.

This paper reports on the design and Coq verification of the
Verasco static analyzer. In addition to the the quantitative jump
mentioned above, we emphasize as a contribution the modular
architecture of the analyzer and its verification, including fully-
specified interfaces for the various components that makes it easy
to connect new abstract domains to Verasco, as well as to reuse
Verasco’s domains in other projects. The full Coq development is
available at http://compcert.inria.fr/verasco/.

The paper is organized as follows. Section 2 presents the general
architecture of the analyzer. The next five sections give more
details on the source language (§3), the abstract interpreter (§4), the
state and memory abstraction (§5), the numerical abstract domains
(§6) and how multiple domains communicate (§7). We finish by
some notes on the Coq development (§8), preliminary experimental
results (§9), discussion of related work (§10), and conclusions and
perspectives (§11).

2. Architecture of the analyzer
The general architecture of the Verasco analyzer is depicted in
figure 1. It is inspired by that of ASTRÉE [6] and is structured
in three layers. At the top sits the abstract interpreter that infers
abstract states at every program point and checks for potential run-
time errors, raising alarms along the way. The abstract interpreter
operates over the C#minor intermediate language described in
section 3. This language is the second intermediate language in
the CompCert compilation pipeline. The Verasco analyzer reuses
the CompCert front-end to produce C#minor from the source C
code. The semantics preservation theorem of CompCert guarantees
that any safety property established on the C#minor intermediate
language carries over to the assembly code generated by CompCert.
Combining this theorem with the soundness theorem for Verasco,
we obtain that any C#minor program that passes analysis without
raising an alarm compiles to assembly code that is free of run-time

errors. The Verasco abstract interpreter proceeds by fixpoint iteration
that follows the structure of the C#minor program. Section 4 gives
more details on this abstract interpreter and its soundness proof.

The middle layer of Verasco is an abstract domain for execution
states, tracking the values of program variables, the contents of
memory locations, and the chain of function calls. This state abstract
domain is described in section 5. It is a parameter of the abstract
interpreter, and has a well-defined interface (in terms of abstract
operations provided and their specifications) outlined below. This
parameterization makes it possible to experiment with several state
domains of various precision, even though we currently have only
one implementation of the state domain. Concerning values that
arise during program execution, the domain tracks pointer values
itself via points-to analysis, but delegates the tracking of numerical
values to a numerical domain (bottom layer).

At the bottom layer of Verasco, the numerical abstract domain is
itself an extensible combination of several domains. Some are non-
relational, such as intervals and congruences, and track properties
of the (integer or floating-point) value of a single program variable
or memory cell. Others are relational, such as convex polyhedra
and symbolic equalities, and track relations between the values
of several variables or cells. Two domain transformers perform
adaptation over domains: the “NR → R” transformer gives a
relational interface to a non-relational domain, and the “Z→ int”
transformer handles the overflow and wrap-around behaviors that
occur when mathematical integers (type Z) and their arithmetic
operations are replaced by machine integers (n-bit vectors) and their
modulo-2n arithmetic. Section 6 describes these abstract domains
and their verification; section 7 explains how they are combined and
how they can exchange information during analysis.

Supporting such a modular composition of formally-verified
abstract domains requires that they adhere to well-defined interfaces.
Figure 2 shows one of the three major interfaces used in Verasco
(slightly simplified), the one for “machine” relational domains
that acts as gateway between the numerical domains and the state
domain. All Verasco interfaces are presented as Coq’s type classes.
A machine relational domain consists of a type t equipped with a
semi-lattice structure: a decidable ordering leb, a top element, a
join operation that returns an upper bound of its arguments (but
not necessarily the least upper bound), and a widen operation used
to accelerate the convergence of fixpoint iteration with widening.
There is no bottom element in Verasco’s domains: instead, when we
need to represent unreachability, we use the type t+⊥ that adds a
generic Bot element to the domain t.

The three most important operations are forget, assign and
assume. The forget x A operation removes all information asso-
ciated with the variable x in state A, simulating a nondeterministic
assignment to x. The type var of variables is another parameter of
the class: it can be instantiated by program variables or, as the state
abstract domain does, by abstract memory cells.

The assign x e A operation updates A to reflect the assignment
of expression e to variable x. Numerical expressions e are built
upon variables and constants using the arithmetic, logical and
comparison operators of C#minor. (They are similar to C#minor
expressions except that they do not feature memory loads and
that intervals can occur instead of numerical constants, capturing
some amount of nondeterminism.) When analyzing source-level
assignments, it is crucial that the numerical domains receive a
numerical expression as close as possible to the right-hand side of
the source-level assignment, typically the same expression modulo
the replacement of memory loads by variables representing the
memory cells accessed; then, each domain can treat it to the best
of its abilities. For example, on treating x = y + z, an interval
domain will simply set x to the sum of the intervals associated with

Figure 6.1: Global architecture of the Verasco analyzer

In this chapter we present an analyzer for the C♯minor intermediate representation
of CompCert, named Verasco. It is structured as sketched on Figure 6.1: the interpreter
reuses CompCert front-end from source code to C♯minor, it is parameterized by a state
abstraction that has been described in chapter 5, and it uses a rich composition of numerical
domains; non-relational domains are adapted to the relational interface by a generic
functor (“NR → R” on the figure); numerical domains are designed to operate on ideal
arithmetic and adapted to machine arithmetic by a functor (“ℤ → int”) described in
Section 6.4.1. This analyzer aims at proving that analyzed programs are free of undefined
behavior, i.e., that their execution cannot be stuck. These undefined behaviors include
the ones produced by failing assertions. Standing on CompCert, this analyzer targets the
analysis of safety-critical programs and therefore requires that said programs do not use
features as recursion or dynamic memory allocation.

This chapter does not describe how floating point arithmetic is handled. It must be
noted that the Verasco analyzer features a non-relational abstract domain of float intervals
that is able to infer invariants about the range of floating point values.

Part of the contents of this chapter has been published at the Symposium on Principles
of Programming Languages [Jou+15].

6.1 Abstract Interpretation of Structured Programs with Gotos

All analyzers presented in previous chapters operate on a graph-based representation
of programs. The C♯minor intermediate representation, that has been presented in
Section 2.2, relies on a structured abstract syntax that prevents a direct application of the
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⟦x := e⟧♯(Ai, Aℓ) = (assign x e Ai, ⊥, ⊥, ⊥)
⟦b; c⟧♯(Ai, Aℓ) = (Co, Br ⊔ Cr, Be ⊔ Ce, Bg ⊔ Cg)

where (Bo, Br, Be, Bg) = ⟦b⟧♯(Ai, Aℓ) and (Co, Cr, Ce, Cg) = ⟦c⟧♯(Bo, Aℓ)
⟦if e then b else c⟧♯(Ai, Aℓ) = ⟦b⟧♯(assume e true Ai, Aℓ) ⊔ ⟦c⟧♯(assume e false Ai, Aℓ)
⟦loop s⟧♯(Ai, Aℓ) = (⊥, Ar, Ae, Ag)

where (Ao, Ar, Ae, Ag) = pfp (λ (Xo, Xr, Xe, Xg), ⟦s⟧
♯(Ai ⊔ Xo, Aℓ)) ⊥ Nwiden

⟦exit n⟧♯(Ai, Aℓ) = (⊥, ⊥, (λ m, m = n ? Ai : ⊥), ⊥)
⟦block s⟧♯(Ai, Aℓ) = (Ao ⊔ Ae(0), Ar, (λ n, Ae(n+1)), Ag) where (Ao, Ar, Ae, Ag) = ⟦b⟧♯(Ai, Aℓ)
⟦goto L⟧♯(Ai, Aℓ) = (⊥, ⊥, ⊥, (λ X, X = L ? Ai : ⊥))
⟦L: s⟧♯(Ai, Aℓ) = ⟦s⟧♯(Ai ⊔ Aℓ(L), Aℓ)

Figure 6.2: Representative cases of the C♯minor abstract interpreter

iteration techniques discussed in previous chapters (§ 3.2, § 4.3.3).
It would be possible to make explicit the graph structure of C♯minor programs by

introducing program points. However, this task is not trivial, and the analyzer can
instead take advantage of the structured form of programs (only goto statements are
unstructured). For instance, structural abstract interpreters use less memory than graph-
based ones, maintaining only a few different abstract states at any time, instead of one per
program point [Cou+09]. The transfer function, noted ⟦·⟧♯, is defined over basic as well
as compound statements: given the abstract state A “before” the execution of statement
s, it returns ⟦s⟧♯(A), the abstract state “after” the execution of s. For sequences, we have
⟦s₁; s₂⟧♯ = ⟦s₂⟧♯ ∘ ⟦s₁⟧♯. For loops, the transfer function takes a local fixpoint of the transfer
function for the loop body.

However, the transfer function for our abstract interpreter is more involved than usual,
because control can enter and leave a C♯minor statement in several ways. A statement s can
be entered normally at the beginning, or via a goto that branches to one of the labels defined
in s. Likewise, s can terminate either normally by running to the end, or prematurely
by executing a return, exit, or goto statement. Consequently, the transfer function is of
the form ⟦s⟧♯(Ai, Aℓ) = (Ao, Ar, Ae, Ag) where Ai (input) is the abstract state at the beginning
of s, Ao (output) is the abstract state after s terminates normally, Ar (return) is the state
if it returns, and Ae (exits) maps exit numbers to the corresponding abstract states. The
goto statements are handled by two maps from labels to abstract states: Aℓ (labels) and Ag
(gotos), the first representing the states that can flow to a label defined in s, the second
representing the states at goto statements executed by s. Figure 6.2 excerpts from the
definition of the transfer function and shows all these components in action.

The loop case computes a post-fixpoint with widening and narrowing, starting at ⊥ and
iterating at most 𝑁widen times. The pfp iterator is, classically, defined as

pfp 𝐹 𝐴 𝑁 =

⎧{{
⎨{{⎩

⊤ if 𝑁 = 0
narrow 𝐹 𝐴 𝑁narrow if 𝐴 ⊒ 𝐹 𝐴
pfp 𝐹 (𝐴 ∇ 𝐹 𝐴) (𝑁 − 1) otherwise
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with the narrowing phase defined as

narrow 𝐹 𝐴 𝑁 =

⎧{{
⎨{{⎩

𝐴 if 𝑁 = 0
narrow 𝐹 (𝐹 𝐴) (𝑁 − 1) if 𝐴 ⊒ 𝐹 𝐴
𝐴 otherwise

Each iteration of pfp uses the widening operator ∇ provided by the abstract domain to
speed up convergence. Once a post-fixpoint is found, 𝐹 is iterated up to 𝑁narrow times in
the hope of finding a smaller post-fixpoint. In both widening and narrowing iterations,
we use “fuel” 𝑁 to convince Coq that the recursions above are terminating, and to limit
analysis time.

Optionally, the abstract interpreter can unroll loops on the fly: the 𝑁 first iterations of
the loop are analyzed independently in sequence; the remaining iterations are analyzed
with a pfp fixpoint. This delays widening and gains precision. The unrolling factor 𝑁 is
currently given by an annotation in the source code.

In addition to the analysis of loop statements, a post-fixpoint is computed for every
C♯minor function to analyze goto statements. This function-global iteration ensures that
the abstract states at goto statements are consistent with those assumed at the correspond-
ing labeled statements. In other words, if s is the body of a function and ⟦s⟧♯(Ai, Aℓ) = (Ao,
Ar, Ae, Ag) is its analysis, the analysis iterates until Ag(L) ⊑ Aℓ(L) for every label L. When this
condition holds, the abstraction of the function maps entry state Ai to exit state Ao ⊔ Ar
corresponding to the two ways a C♯minor function can return (explicitly or by reaching
the end of the function body).

Concerning functions, the abstract interpreter reanalyzes the body of a function at every
call site, effectively unrolling the function definition on demand. We use fuel again to
limit the depth of function unrolling. More details on inter-procedural analysis are given
in next Section.

The soundness proof for the abstract interpreter is massive, owing to the complexity of
the C♯minor language. To keep the proof manageable, we break it in two parts: 1. the
definition and soundness proof of a suitable Hoare logic for C♯minor; and 2. a proof that
the abstract interpreter infers Hoare “triples” that are valid in this logic.

C♯minor statements can terminate in multiple ways: normally, or prematurely on an
exit, return or goto statement. They can also be entered in two ways: at the beginning of
the statement, or via a goto to a label defined within. Consequently, our program logic for
C♯minor manipulates Hoare “heptuples” of the form { P, Pℓ } s { Q, Qr, Qe, Qg } where P is
the precondition if s is entered normally, Pℓ(L) the precondition if s is entered by a goto L, Q
the postcondition if s terminates normally, Qr(v) the postcondition if s terminates by a return
of value v, Qe(i) the postcondition if s terminates by exit(i), and Qg(L) the postcondition if
s terminates by goto L. The rules of this logic are similar to those of the program logics
for Cminor and Clight by Appel and Blazy [AB07; App14] (without the separation logic
aspects).

6.2 Inter-Procedural Analysis

Inlining all function calls before analyzing a program is a convenient work-around to
make up for the lack of inter-procedural analysis in an analyzer. Unfortunately, this is not
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Class mem_dom (t: Type) : Type := { (* … *)
deref_fun: (* dereference a function pointer *)
expr → t → list (ident * fundef);

push_frame: (* push a new stack frame *)
(* function to call *) ident → function →
(* parameter values *) list expr →
t → t+⊥;

pop_frame: (* pop a stack frame *)
(* return value *) option (expr) →
(* temporary to write to *) option(ident) →
t → t+⊥

}.

Definition concrete_state : Type := list (ident * (temp_env * env)) * mem.

Figure 6.3: Operators of the memory domain for inter-procedural analysis

always possible, in particular when functions are called through (non-trivial) pointers or
recursively; it may dramatically increase the code size (when a large function is called many
times); and it prevents clever inter-procedural analyses (approximations for faster/smaller
results).

Here we present an extension of our analyzer to inter-procedural analysis that is very
similar to inlining (without any increase in the code size) but supports function pointers:
each function is analyzed in every calling context, by a recursive call of the analyzer. We
do not attempt to summarize or merge different calling contexts.

Extending the iterator The memory domain signature (presented on Figure 5.1) is
completed (see Figure 6.3) with two operators that model function calls and returns, and
an operator (deref_fun) that, given an expression and an abstract state, returns a super-set
of all functions that may be designated by that expression in this state.

The concrete state against which the memory domain is specified is now a pair made of
a call-stack and a concrete memory. The call-stack holds the name of the called functions
and, for each called function, an allocation map of the local variables (mapping variable
names to memory blocks) and an environment (mapping each temporary variable to its
value).

To analyze a function call such as x := f(args), where f is an expression, the iterator first
resolves the function by calling deref_fun. Then the abstract state at function entry is
prepared by calling push_frame. Finally the function body is (recursively) analyzed from
this state. There, the analysis of return statements will compute the abstract state after the
call and assignment to x thanks to the function pop_state.

As an illustration, consider the following program. The external any_int64 function is
interpreted as returning a non-deterministic value.
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1 # include <assert.h>

2

3 extern long long any_int64(void);

4

5 int z = 0;

6

7 int f(int n) { return 1 / n; }

8

9 int main(void) {

10 while ( any_int64() ) {

11 z += f(-1);

12 z += f(+1);

13 }

14 assert ( z == 0 );

15 return 0;

16 }

The body of the function f will be analyzed twice each time the loop body is analyzed:
once with the local variable n bound to (an abstraction of) -1, once bound to +1. The two
possible abstract states at the beginning of f are never merged: this simple approach to
inter-procedural analysis is also the most precise. Merging the numerical abstractions
of variable n using a convex domain (e.g., intervals or polyhedra) could indeed lead to a
false alarm about a division by zero in f.

Extending the memory domain The main issue is how to handle stack-allocated local
variables. In C♯minor, each stack variable is allocated in its own block, and the particular
name of this block cannot be (in general) predicted at analysis time. Since we only consider
programs without recursive calls, stack variables can be unambiguously represented by a
pair made of a function name and the variable name.

To implement the interface for inter-procedural analysis in the memory domain, the
abstract domain is extended with a stack that keeps track of the names of the called
functions. In addition, to be able to distinguish local from global variables in expressions,
the set of variables local to each function is remembered in this abstract stack.

Function resolution uses points-to information to compute a set of functions that ex-
pression f may point to: forward evaluation of expression f in the points-to domain yields
a set of blocks which can be mapped to a set of functions by looking at the program.

The push_frame operation of the state abstract domain performs the assignments corre-
sponding to argument passing: arguments are evaluated in the context of the caller and
then assigned to local variables of the callee.

Symmetrically, the pop_frame operation is used when analyzing return 𝑒 statements.
The expression 𝑒 is analyzed in the callee context and assigned to a temporary in the
caller context. Then, pop_frame simulates the freeing of local variables on function exit:
this consists in invalidating the information associated to them, as well as invalidating
pointers that may point to them. This is a costly operation: the whole points-to state has
to be scanned for pointers to the top stack-frame. The following program illustrates the
need for this freeing.

1 int *

2 f(int b, int *pz)

3 {

4 int i = 0;

5 if (b)

6 return &i + *pz;

7 return &i;

8 }

9 int

10 main(void)

11 {

12 int *p = f(0, 0);

13 int *q = f(1, p);

14 return 0;

15 }

This program calls a function f twice. The first time, this function returns a pointer
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Definition block_mon (A:Type) : Type := (A * list string).

Inductive block_t (B: Type) : Type :=
| Blocked
| NotBlocked (b: B).

Instance block_mon_gamma A B (G:gamma_op A B): gamma_op (block_mon A) (block_t B) :=
λ t: block_mon A,
let (a, alarms) := t in
match alarms with
| nil => λ b, match b with NotBlocked b' => b' ∈ γ(a) | Blocked => False end
| _ => λ _, True
end.

Figure 6.4: The non-block monad

to its local variable i. The second time, it gets this pointer back in its argument pz and
dereferences it, which is an error, even though it is a pointer to the local variable of
this function! Therefore, pointers to stack-allocated variables have to be invalidated on
function returns, to prevent any further use, even in contexts that may look safe.

6.3 Progress Verification

At the same time we transform abstract states, we perform verifications to prove that every
C♯minor statement or expression evaluates safely (without blocking) in its evaluation
context.

These checks are scattered all over the analyzer: in the numerical domains (e.g., no
division by zero), in the memory domain (e.g., load and store are performed within
bounds and with the correct alignment) and in the iterator (e.g., function must be called
with the right number of arguments). So the interfaces of the analyzer are recast in term
of a so-called non-block monad that enables the proof of progress.

6.3.1 The Non-Block Monad

Every operator of the memory domain now wraps its result in a logging monad: alongside
the result, a list of alarms (unspecified strings) is returned. The block_mon type constructor
is defined in Figure 6.4. For instance, the assign operator is now given the following type,
in which the result type is wrapped in block_mon:

assign: ident → expr → t → block_mon (t+⊥).

The soundness of the result is only guaranteed when there are no alarms: a sound
implementation is allowed to return any result provided there is at least an alarm. This
enables the analyzer to do unsound assumptions when an alarm is raised. For instance,
when the target of a store cannot be precisely determined, an alarm is raised (unsafe store)
but the analysis continues (e.g., ignoring the possible effects of said store).
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The specification of this block_mon data-type, i.e., its concretization, is given in Figure 6.4.
It combines two aspects of this data-type. First, the list of alarms needs to be empty for
the value to actually represent a non-trivial concrete set. Second, if the list of alarm is
empty, then evaluation is not stuck.

This last fact is not directly stated in the definition of the concretization relation, since
there we do not know what computation it is about. However, concrete values are wrapped
in the NotBlocked constructor so that the Blocked value can appear in the concretization
only when the list of alarms is not empty. We use this property in the specifications of the
abstract transformers.

Consider for instance the case of (assign x q ab), that models the assignment of the result
of evaluating expression q to variable x in any concrete state represented by ab. Recall the
definition given in Section 3.4, on page 40, of the strongest post-condition of an assignment.
The following definition refines that one to additionally express that the expression is
not stuck when there are no alarms. This specification relies on the fact that eval_expr is
deterministic: there cannot be two (different) values v and v' in the set eval_expr ge e t m q.

Definition Assign (x: ident) (q: expr) (E: ℘ concrete_state) : ℘ (block_t concrete_state) :=
λ cs: block_t concrete_state,
∃ f t e s m,
((f, (t, e)) :: s, m) ∈ E

∧ ∀ v, v ∈ eval_expr ge e t m q →
cs = NotBlocked ((f, (PTree.set x v t, e)) :: s, m).

Definition assign_sound := ∀ x q ab, Assign x q (γ ab) ⊆ γ (assign x q ab).

The idea is that the set (Assign x q (γ ab)) contains Blocked only if there is a concrete state
in (γ ab) from which the evaluation of expression q is stuck. Indeed, in such a case, the
hypothesis (v ∈ eval_expr … q) is a contradiction from which (Blocked = NotBlocked (…)) can
be proved.

If the list of alarms returned by assign x q ab is empty, then Blocked is not in its concretiza-
tion, and the assign_sound property states that the evaluation of expression q cannot be
stuck.

6.3.2 Progress Verification in the Memory Domain

Proving that the execution cannot be stuck, as opposed to taking that fact as an hypothesis,
requires to prove various additional properties of the concrete execution states. Some of
these properties hold for all executions of all programs: they follow from the semantics of
the programming language. However, they are not easily available: states do not come
with any side well-formedness condition. We thus prove them for each analyzed program,
i.e., check them at analysis time. To this purpose, we maintain as an invariant of the abstract
memory domain that all concrete states (in the concretization of the current abstract
memory) satisfy said properties (an excerpt of this invariant is shown on Figure 6.5).

An example of such property is about the allocation of global variables (globalValid): each
global variable x of the analyzed program (i.e., that is bound in the global environment to
some memory block b) is in a valid block. This is a useful invariant since the properties
of valid blocks (permissions, contents…) are preserved when allocating new blocks, i.e.,
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Record invariant (cs: concrete_state) : Prop := {
globalValid: (* Globals are allocated *)
∀ x b, Genv.find_symbol ge x = Some b → b ∈ Mem.valid_block (snd cs);

localNotGlobal: (* Globals and locals are in different blocks *)
∀ f t e, In (f, (t, e)) (fst cs) →
∀ x b y b' z,
Genv.find_symbol ge x = Some b →
e ! y = Some (b', z) →
b ≠ b';

noRec: (* All functions are different (i.e., no recursion) *)
list_norepet (map fst (fst cs))
(* … *)

}.

Figure 6.5: Invariant of the reachable concrete states

Definition permissions : Type := Map [ ablock, (Z * permission) ].
Definition permissions_gamma stk : gamma_op permissions fmem :=
λ ab m,
∀ b sz p b',
get_perm ab b = Just (sz, p) →
b' ∈ ablock_gamma stk b →
∀ i, 0 <= i < sz → m.(perm) b' i = Some p.

Figure 6.6: Permission domain

when calling functions, whereas nothing is guaranteed about invalid blocks: this justifies
that abstract properties known about global variables are not invalidated by function calls.
An other important property that is stated in the invariant is that global and local variables
never alias (localNotGlobal): no global variable can be allocated in the same block as a
(stack) variable. This is indeed needed to justify the fact that updating some information
about one cell preserves what is known about other cells.

Using this kind of invariant in the concretization relation enables to prove properties
that do not hold for all programs but only for some. For instance, we state in the invariant
that no function appears twice in the call-stack (noRec); and this is only true because the
analyzer aborts when it encounters recursive calls.

One of the main roles of the memory domain w.r.t. progress verification is to ensure
that pointers are properly used. This is enforced in the concretization relation of the types
domain: whenever a cell is given a non-trivial (abstract) type, then accessing to this cell
cannot result in an undefined behavior. This is in particular established on stores: for
every cell that may be assigned during a store, we check that it is in bounds, i.e., that its
offset lies within the bounds that are known for its block.

This requires an additional component in the memory domain: a permission domain

103



Chapter 6 Practicalities

(shown on Figure 6.6). For each (abstract) block, we keep track of its size and the permission
associated to the cells in this block. The specification of this domain states that an abstract
permission map ab represents all memories m such that, for each (abstract) block b bound
to size sz and permission p, any offset i between 0 and sz in the concrete block b' represented
by b has permission p.

6.3.3 Progress Verification in Numerical Domains

Wrapping all numerical domains in the block_mon monad would require to rewrite them
all. We chose a more light-weight modification of the interface of these numerical domains:
one function is added to the interface:

nonblock: nexpr var → t → bool

This function is used by the memory domain at the end of numerical conversion, after
calling nconvert (see § 5.3.3), to ensure that every numerical expression considered during
the analysis is not stuck.

6.3.4 Summary of progress checks

All progress checks that are performed during the analysis are summarized in Figure 6.7.
They are grouped in four categories.

Numerical checks correspond to the ones done in the nonblock function of the numerical
domains; they amount to verifying for each operator, that the types and ranges of their
arguments are correct.

Memory checks are performed in the memory domain: they relate to permissions,
variable initialization, and pointer validity. Pointer subtraction is only allowed between
pointers of the same block; pointer equality (== and !=) is only defined for valid pointers;
pointer inequality (<, <=, > and >=) is only defined for weakly valid pointers of the same
block. Checking that a pointer (expression) is valid involves the points-to domain, which
predicts a set of targeted blocks, the permission domain, which knows the sizes and
permissions associated to these blocks, and the numerical domain, which is able to prove
that the offset is between zero and the smallest size of these blocks.

Well-formedness checks are mostly syntactic and not really interesting. Programs failing
to pass them may nonetheless reveal bugs in their generation process: for instance, a
development version of CompCert would give the same name to two built-in functions.

The last category, named “analyzer limitations”, corresponds to checks that are not
required by the semantics. Some features of the language are not handled by the analyzer
(recursion, external function calls, inline assembly etc.) and failing on programs that do
use them is mandatory for the analyzer to be sound. Finally, since the memory domain
enumerates all possible targets of pointers when they are dereferenced, the analysis
raises an alarm, for efficiency reasons, if there are too many such targets to explore when
performing an abstract store.

6.4 More Numerical Domains
The Verasco analyzer, is by design parameterized by the underlying numerical domain.
In addition, the interface of this domain is general enough so that any domain from the
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Numerical

• Expressions are well-typed
• Divisions and modulo: divisor is not null and, in the signed case, we don’t

divide min_signed by -1

• Shifts: the shift amount, as an unsigned integer, is smaller that the bit-width

Memory

• Alignment of memory accesses
• No dereference of a non-pointer value
• No read from uninitialized register or memory location
• Targets of stores have sufficient permissions (in-bound access in a writable

block)
• Function pointers have a null offset, and target a function
• The main function returns an integer value
• Pointer comparisons and subtractions

Program well-formedness

• There is a non-extern main function
• Signature on call-site agrees with the declaration of the called function
• Good number of arguments
• No two local variables (including function parameters) have the same name
• Goto targets are existing labels
• All used symbols (e.g., variables in expressions) are declared
• Chunks ManyXX are not used for memory access
• No two functions have the same name

Analyzer limitations

• No recursive calls
• No unknown external function
• No annotations, built-ins, inline assembly fragments etc.
• Pointers used in store instructions should be known to have less targets than

the value of the max_concretize run-time parameter

Figure 6.7: Summary of progress checks in the Verasco analyzer
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literature can implement it. A major issue is that numerical domains usually represent
unbounded integers rather than machine integers.

Therefore, Verasco provides a generic functor that makes any relational numerical
domain cognizant of the wrapping behavior of integers on overflows. This functor has
been applied to non-relational domains as intervals and congruences, and also to the
domain of polyhedra. Several domains can also be combined so as to communicate.

6.4.1 Handling Machine Integers

Numerical domains such as intervals and polyhedra are well understood as abstractions
of unbounded mathematical integers. Subtleties of machine-level integer arithmetic com-
plicate static analysis. For specific abstract domains such as intervals and congruences, ad
hoc approaches are known, such as strided intervals [RBL06], wrapped intervals [Nav+12],
or reduced product of two intervals of 𝐙, tracking signed and unsigned interpretations
respectively, as we have seen in a previous chapter (§ 3.3.3). These approaches are difficult
to extend to other domains, especially relational domains (notice however the polyhedral
domain with wrapping of Simon and King [SK07]). In Verasco, we use a more generic
construction that transforms any relational domain over mathematical integers (𝐙) into a
relational domain over 𝑁-bits machine integers with modulo-2u� arithmetic, provided this
domain satisfies the interface of “ideal” relational domains (similar to the interface given
in Figure 3.9, using ideal expressions rather than CFG expressions; ideal expressions
operate on ideal numbers rather than machine integers). Consider such a domain, with
abstract states A, that represents, through its concretization relation γ, ideal environments
ρ: var → Z. We can build an abstract domain, as we did in the memory domain (§ 5.4.3),
with the same data-type A. The concretization is weakened by point-wise lifting of the
following compatibility relation:
Definition compat (z: Z) (i: int) : Prop := (i = Int.repr z).

The abstract transformers, which are defined over ideal expressions in the original domain,
are composed with a conversion function that translates numerical expressions (of type
nexpr, see § 3.3.1) into ideal expressions.

The conversion of numerical expressions is non-trivial only in the case of operators
that are not compatible with the compat relation, i.e., the ones that come in two flavors,
depending on the signedness interpretation of their operands (division, comparison…).
These operators behave consistently with the compat relation only when their arguments
are in a specific range: [0; Int.max_unsigned] for unsigned operators, and [Int.min_signed;
Int.max_signed] for signed operators. The conversion tries to shift the arguments of these
operators, by adding to them a constant multiple of 232; if this fails, an interval covering
the whole range is returned. The correctness of the conversion of expression is expressed
by a theorem similar to nconvert_correct, stated in Section 5.4.4.

In addition, the conversion performs the progress checks discussed in Section 6.3.
Indeed, the nonblock operator is specific to our analyzer and usually not provided in
standard numerical domains.

6.4.2 Polyhedral Domain

Thanks to this generic adaptation of (relational) numerical domains, various existing
domains can be used. The most notable example is the domain from the Verasco Polyhedra
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Library [FB14]. This implementation uses the methodology of a posteriori validation: it is
programmed in OCaml and each operator returns certificates along with the results. Said
certificates enable a checker, written in Coq, to verify that the result is valid. Only the
checker is proved correct, which is dramatically simpler that verifying the full optimized
implementation of the domain. Experiments assess that the run-time cost of the additional
validation is acceptably low.

6.4.3 Communication Between Domains

Numerical domains are complementary: they are able to infer different kinds of properties
that may all be needed to achieve good precision. Moreover, domains may be able to
use the properties inferred by other domains to discover more precise invariants. The
following example program illustrates that the domain of interval needs the information
discovered by the domain of congruences to prove the safety of the analyzed program.

1 int t[N];

2

3 int main(void)

4 {

5 int * p = t;

6 while ( p < t + N )

7 ++p;

8 return 0;

9 }

In this example, pointer p visits in sequence all N cells of array t (where N is a compile-
time constant). Since this is an array of 32 bit integers, the size of t is 4×N octets and the
offset of p will successively take the values 0, 4…4×N. The critical point for the analysis is
the comparison between p and the end of array t, at line 6. The value t + N is one past the
address of the last byte of the array. This is known as a weakly valid pointer: comparison
of such pointers is allowed, but dereferencing them is forbidden. In order to prove that
this comparison is safe, the analyzer needs to establish that pointer p is always weakly
valid, i.e., that its offset is in range [0; 4×N].

An interval domain can infer that, at the beginning of the loop body, before the in-
crementation of p, the offset of this pointer is in the range [0; 4×N − 1]. Thus, after the
incrementation, this offset is known to be in the range [4; 4×N + 3]. Therefore, when the
guard at line 6 is evaluated, the interval domain knows that the offset of p is in the range [0;
4×N + 3]. This is not enough to prove that the comparison is safe, since offsets 4×N + 1, 4×N
+ 2 and 4×N + 3 are not weakly valid.

Fortunately, the congruence domain is able to infer that the offset of p is a multiple of
four. This fact alone is not enough to prove that the pointer is weakly valid: both domains
need to interact to discharge this proof obligation.

The most precise approach for combining domains is to build their reduced product [CC79].
However, this approach has some known drawbacks: a new domain has to be designed,
implemented and proved for each possible combination of domains; and the reduced
product may not exist or be efficiently implemented. In Verasco, we rely on a more flexible
scheme, inspired from Astrēe, mostly contributed by J.-H. Jourdan [Jou+15].

Domains are composed in sequence, and communication between them is directed
from the beginning of the sequence towards its end. The interface of numerical domains
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comprises a finite set of channels in which a domain may read information coming from
another domain that comes before it, or send information to the domains that come after
it. The composition operator is thus generic (i.e., it does not depend on the particular
abstract domains it operates on) and plugs the output port of each domain into the input
port of the next one. Notice that channels are lazy: a domain will write to it only when an
other one attempts to read from this channel.

For instance, the congruence domain implements the get_congr channel, and the interval
domain queries it when performing backward evaluation, so as to tighten the bounds of
an interval, as in the example above: from the interval [0; 4×N + 3] and the congruence
information “multiple of 4”, the more precise interval [0; 4×N] can be deduced.

6.5 On Using the Analyzer

We conducted preliminary experiments with the executable C♯minor static analyzer
obtained after extraction. We ran the analyzer on a number of small test C programs (up
to a few hundred lines). The purpose was to verify the absence of run-time errors in these
programs, including violations of user-defined assertions (invariants that are expressible
as C expressions).

6.5.1 Common Pitfalls

We now describe some issues encountered when running the Verasco analyzer on these
programs.

Wrong main signature The Verasco analyzer rejects programs with the common sig-
nature int main(int argc, char** argv); since, as stated in the CompCert manual [Ler15b],
programs do not have access to command line arguments.

The analyzed program could be (automatically) wrapped into one with a suitable main
function that calls the original one with null arguments, as it is done in the reference
interpreter. This might not be desirable, as highlighted by the following example.

1 int

2 main(int argc, char **argv)

3 {

4 if ( argc < 2 )

5 exit ( EXIT_FAILURE );

6 // ...

7 }

If this program is analyzed only with null arguments, then most of the code (not shown
but suggested by the ellipsis) will be considered dead and silently ignored.

External calls Some programs rely on library functions, whose code is not available or
trusted. Unfortunately, since external calls may completely obliterate the memory, the
Verasco analyzer fails on such calls: it raises an alarm and the current branch is cut (as if
that function never returned). (Another possibility would be to assume that the external
call behaves as a no-op, still raising an alarm, but continuing the analysis.)
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So as to be able to analyze programs with such library calls, the analyzer provides
three primitives: any_int64(), any_double(), and verasco_assume(b). The two first functions
nondeterministically return a value of the requested type. The last one constrains the
set of possible executions: the boolean expression b is necessarily true when the call
verasco_assume(b) is reached.

All other library functions need to be defined, as exemplified below, either with a (pos-
sibly naive) deterministic implementation, or with calls to the aforementioned primitives
to specify the function. The resulting specification may be partial; its precision may be
refined depending on the analyzed program.

1 double

2 fabs(double d)

3 {

4 if (d <= 0.)

5 return - d;

6 return d;

7 }

8 double

9 cos(double d)

10 {

11 double res = any_double();

12 verasco_assume(-1. <= res && res <= 1.);

13 return res;

14 }

These primitives can also be used to model user inputs, or more generally any interaction
between the analyzed programs and their environments.

Large arrays Some programs operate on large arrays to perform I/O or to hold static
data. When reading from a large array, a summary of all cell contents that may be fetched
is computed. This is done by enumerating all these cells. The command-line parameter
-max-concretize enables to set the limit.

Therefore, analyzing programs with such arrays can be very costly, in both time and
memory footprint. When precisely knowing the contents of these arrays is not required
for the analysis, they can be abstracted as described in a following paragraph (about
abstract data-types).

Array initialization Proving that an array is properly initialized is known to be a difficult
task that requires dedicated analyses or domains [GRS05; NS13; HP08]. Indeed, consider
the following example program that initializes an array a with zeros, in which N is a
strictly positive constant.

1 int a[N];

2 for ( int i = 0; i < N; ++i )

3 {

4 a[i] = 0;

5 }

When the analysis first reaches the loop header, nothing is known about the array
contents and i is known to be zero. At the end of the loop body, the first cell is known to
be initialized (with value zero) and i is known to be 1. The analysis thus considers again
the loop header with an over-approximation of both states, loosing the information about
the contents of the first cell.

To overcome this difficulty, array initialization loops can be unrolled. The iterator will
recognize calls to a function named verasco_unroll as a hint for unrolling, at analysis time,
the enclosing loop.
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Relational loop invariants A frequent enough pattern is to use a pointer as loop index,
preferring, in the examples below, the second form to the first one.

1 for ( i = 0 ; i < len ; ++i)

2 /* ... */ p[i] /* ... */

3

4 for ( ; 0 < len ; --len, ++p )

5 /* ... */ *p /* ... */

In order to prove that the array access is valid, the required loop invariant is, in the
first case 0 <= i <= len, and in the second case 0 <= p ∧ 0 <= len ∧ p + len = len₀, where len₀ is
the initial value of the variable len. This last invariant is relational, hence it can only be
represented in a relational domain, such as polyhedra. Unfortunately, this domain is
very expensive: applying weakly relational domains [Min04] or techniques like packing
[Bla+03] could be helpful. These improvements are left as future work; for now the analyst
is kindly required to rewrite the loops.

6.5.2 Sample Results

We now present various interesting sample programs that we have analyzed. They are
distributed with the source code of Verasco [Web].

Function integration The example integr.c is a small program adapted from a CompCert
benchmark. Most of its code is given below.

1 typedef double (*fun)(double);

2 fun functions[N] = { id, square, fabs, sqrt };

3

4 double

5 integr(fun f, double low, double high, int n) {

6 double h, x, s; int i;

7 h = (high - low) / n; s = 0;

8 for (i = n, x = low; i > 0; i--, x += h)

9 s += f(x);

10 return s * h;

11 }

12

13 int main(void) {

14 for (int i = 0; i < any_int(); ++i) {

15 double m = any_double();

16 verasco_assume( 1. <= m );

17 int n = any_int();

18 verasco_assume (0 < n);

19 integr(functions[i % N], 0., m, n);

20 }

21 return 0;

22 }

This program repeatedly computes an approximation of the integral of a positive
function between zero and some number greater than one. The function in question is
picked from a constant array. It stresses various aspects of the analyzer such as function
pointers, arrays, floating point and machine arithmetic.
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Numerical simulations Two programs of a few hundred lines taken from the CompCert
benchmark, nbody.c and almabench.c, feature heavy numerical (floating point) computa-
tions and array manipulation.

Cryptographic routines The smult.c example performs scalar multiplication. It is taken
from the cryptography library NaCl. Scalars and group elements are stored in arrays
of bytes or unsigned integers. Many of these arrays are initialized within a loop: to be
able to prove that they are indeed initialized, we annotated the program to request full
unrolling of these loops during analysis.

Abstract data-type specification The example spectral.c comes from the shootout bench-
mark, is only 81 lines long, and performs many numerical (floating point) computations
in arrays. It computes the so-called spectral norm of the infinite matrix 𝐴 such that:

𝐴u�,u� =
1

(u�+u�)×(u�+u�+1)
2 + 𝑖 + 1

This program takes as input a size N; a typical value for this input is 5500. It then builds
a unit vector of size N and multiplies it twenty times by matrix 𝐴 and its transposed 𝐴u�

(both truncated to the square matrix of size N²). It uses three arrays of size N, that are
dynamically allocated (since their sizes are a run-time parameter).

This is an issue for the Verasco analyzer which is currently not able to deal with such
data structures (dynamically allocated arrays). However, we can treat this data structure
as an abstract data type whose implementation is trusted, give it a specification and
analyze the program nonetheless. The specification needs not be complete; in particular
no information is needed about the contents of the array (apart from being well-defined
floating-point values). The signature of the array abstract data-type follows.

1 /** Arrays as an abstract data type. */

2 struct Array;

3 typedef struct Array array;

4

5 void array_init(array*, int);

6 double array_get(array*, int);

7 void array_set(array*, int, double);

8 void array_free(array*);

This abstract data-type is given two implementations (see Figure 6.8): one for program
execution (on the left) and one for program analysis (on the right). The concrete imple-
mentation is a naked array that is directly accessed. The weak specification only checks
that accesses are in-bounds; it does not specifies what happens to the array contents.

Analyzing a specification rather than the actual implementation yields weaker guaran-
tees on the actual program. However, it has various benefits.

• The program, seen as a client of the trusted array library, can be proved free of
undefined behaviors, provided that the library specification characterizes all sources
of undefined behaviors.

• Analysis time and memory consumption do not depend on the size of the arrays.
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1 /* Concrete array implementation. */

2 struct Array {

3 double *data;

4 };

5 double array_get(array *a, int i)

6 {

7 return a->data[i];

8 }

9 void

10 array_set(array *a, int i, double d)

11 {

12 a->data[i] = d;

13 }

14 void array_init(array *a, int size)

15 {

16 a->data = calloc(size,

17 sizeof(*a->data));

18 }

19 void array_free(array *a)

20 { free(a->data); }

21 /* Weak array specification. */

22 struct Array {

23 int size;

24 };

25 double array_get(array *a, int i)

26 {

27 int size = a->size;

28 assert(0 <= i && i < size);

29 return any_double();

30 }

31 void

32 array_set(array *a, int i, double d)

33 {

34 int size = a->size;

35 assert(0 <= i && i < size);

36 }

37 void array_init(array *a, int size)

38 { a->size = size; }

39 void array_free(array *a)

40 {}

Figure 6.8: Two “implementations” of arrays

• Using relational domains (e.g., polyhedra), the size of the arrays can be left unknown.

Notice finally that this transformation cannot be performed automatically during the
analysis because of the issue of array initialization. Moreover, such transformation is not
beneficial if the contents of the arrays needs to be precisely tracked.

Preliminary results On the examples described above, Verasco was able to prove the
absence of run-time errors. This is encouraging, since these examples exercise many
delicate aspects of the C language: arrays, pointer arithmetic, function pointers, and
floating-point arithmetic. The table below gather some of the examples and gives the
order of magnitude of the analysis time (on a laptop with a 3 GHz CPU).

Program Size (lines) Time (s) Comment
integr.c 42 1 ⋅ 10−1

smult.c 330 4 ⋅ 101

nbody.c 179 1 ⋅ 101

almabench.c 352 8 ⋅ 101

arc4.c 157 2 ⋅ 102

bubble.c 65 1 ⋅ 101 array of size 10, with polyhedra
spectral.c 213 1 array of size 5500
spectral.c 213 1 ⋅ 102 array of unknown size, with polyhedra

The analysis times are quite high, in particular when the analyzed program manipulate
large arrays. A pre-analysis program transformation (triggered by the -funload command-
line argument) dramatically shortens the analysis time on some examples: it pulls loads
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out of expressions and prevents combinatorial explosion of the conversion function of the
memory domain.

6.6 Conclusion
This chapter presents the Verasco static analyzer: it operates on an intermediate repre-
sentation of the CompCert compiler (C♯minor) to automatically prove that the analyzed
program is free of undefined behaviors, and its soundness proof is machine-checked. It is
built following the modular architecture discussed in Chapter 3, it features the precise
memory domain detailed in Chapter 5 along with several numerical domains.

Simple experiments assess that this analyzer is able to prove the safety of several non-
trivial programs featuring most of the C language constructs. Still, this analyzer could
be improved in various directions. In particular, when the analyzer fails to prove that a
program is safe and raises an alarm, understanding the meaning and the origin of this
alarm can be very difficult. The Astrēe analyzer features a sophisticated framework for a
better understanding of the analysis results [Riv05a; Riv05b]. Integrating similar facilities
in the Verasco analyzer could tremendously improve its usability.

The execution times of the analyzer are in some cases higher that what could be ex-
pected for such an analyzer. The Astrēe analyzer, which is a major source of inspiration
for this work, is both precise and efficient. Our primary focus has been on precision,
in particular by using suitable interfaces which enable the implementation of precise
relational numerical domains.

The analyzer operates on the C♯minor intermediate language, thus some analysis results
may not apply to intermediate representations that come earlier in the compilation chain.
For instance, some C programs are unsafe but become safe when compiled to C♯minor,
since some type annotations are erased in the process. The C♯minor analyzer could be
complemented so as to perform additional safety checks to ensure that the original Clight
program is actually safe.
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Conclusion

7.1 Summary

Static analyzers are a key tool to increase reliability of software and our trust in it. The
soundness of an analyzer is even more critical that the safety of the analyzed program,
since a buggy analyzer could increase our confidence in a wrong program. In this work,
we have shown how to build sound static analyzers with very strong guarantees: in order
to trust an analysis result, there is no need to trust the implementation of the analyzer
and even its proof; only the definition of the semantics of the analyzed program, the
soundness statement of the analyzer, and the Coq kernel.

Throughout this document, we have described and applied a methodology to design
and prove sound static analyzers in Coq, and shown central interfaces of core components.
The three analyzers described in this work all share the same architecture and some
modules, even though they operate on different languages.

This work focuses on low-level languages, i.e., languages which feature little abstractions
(e.g., objects, functions, variables, types) or in which abstractions are broken on purpose
by the programmers. These languages are pervasive as they are closer to the concrete
machines that actually run the programs: every program eventually gets transformed
into a low-level one so as to be executed; or some programs are directly written in such
languages because they need this freedom of breaking the abstractions, for instance to
implement operating systems, drivers, or standard library of higher-level languages.

In order to soundly analyze programs written in such languages, it is not possible to
assume that the analyzed programs does not break the abstractions. At least, if the analysis
makes such assumptions, it must verify, as part of the analysis, that the assumption holds.

On one the most extreme examples of abstractions that can be broken in low-level
languages is the notion of program text: an immutable document that the machine executes.
In self-modifying programs, this document is an ordinary piece of data that can be read
and even modified and extended at execution time. In chapter 4 we studied the how to
design and verify sound static analyses of such programs. The resulting analyzer is able
to verify safety properties of several self-modifying programs.

Low-level languages provide a low-level view of the memory. Notably, fields of struc-
tures are referred to by offset (i.e., a number) rather than by name, making pointer
arithmetic pervasive; a given piece of data can be accessed piecewise rather than at once;
and a given bit pattern can be interpreted as data of different types. All these properties
are soundly taken into account in the abstract memory domain presented in chapter 5.
This domain is plugged into a value analysis of the CFG intermediate representation of
the CompCert compiler.

Finally, chapter 6 reports on the Verasco static analyzer, a result of the combined effort
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1 void *

2 f(int x, int* p)

3 {

4 if (x <= 0)

5 return (void*)(-1);

6 return p;

7 }

8 int

9 main(void)

10 {

11 int i;

12 int * p = f(0, &i);

13 return p + 1 < p; /* Error! */

14 }

Figure 7.1: Incorrect C program which is proved safe by Verasco

of the Verasco team. This analyzer has been built following the methodology and using
abstract domains described in this document; it operates on the C♯minor intermediate
representation of CompCert and automatically proves the safety of the analyzed programs.
It soundly handles all features of the C programming language but is extremely imprecise
when the analyzed program resorts to recursive calls or dynamic memory allocation,
which is unexpected form safety-critical embedded softwares.

7.2 Perspectives

7.2.1 Improving the usability of the Verasco analyzer

The Verasco analyzer could be improved in various ways. We describe here some shallow
improvements, mostly related to the usability of the analyzer.

Analysis closer to the source The analysis could take place closer to the source code,
for instance at the Clight level. For programs in which all expressions are side-effect free
(which can be syntactically checked), the compilation from CompCert C to Clight is the
identity. So analyzing Clight would indeed achieve analysis of the source code. Rewriting
the analyzer to operate at the Clight level would be tedious and difficult. A more efficient
approach would be to complement the analysis at C♯minor level with a simple analysis
at the Clight level which would prove that the compilation from Clight to C♯minor does
not remove errors. This amounts to proving that the evaluation of expressions in Clight
cannot be stuck because of typing errors. The analysis at the C♯minor level provides
enough information to type-check the program at Clight level.

Consider the C program shown on Figure 7.1. There, the function f takes an argument x
and checks that it satisfies some condition; if it does, then the execution proceeds normally
and the function returns a valid pointer. Otherwise, if the condition does not hold, an
error is returned. Such a protocol is found in several POSIX functions (e.g., mmap, shmat).

So as to prove that a program calling a function similar to f is safe, the analyzer must
prove that for every call, the precondition holds. Unfortunately, this example program
is unsafe, as it uses the erroneous result of f as if it were a pointer. But this error is not
caught by Verasco since it operates on the C♯minor intermediate representation: at this
level, the addition does not verify the type of its arguments as at the Clight level.

In order to verify that such a Clight program is well-typed, the type-checker needs to
verify that all calls to f satisfy its precondition, which involves reasoning about arithmetic.
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Such a type-checker can therefore benefit from the results of a prior analysis at the C♯minor
level.

Understanding alarms When the analyzer fails, it is very difficult to understand the
alarms. When the error is raised, the error message is very local: the only available
information is the current abstract transformer being executed and the current abstract
state. The location of the offending instruction is not available, and no context is given.
One way to recover some context would be to log every step of the analysis. This does
not work in practice as traces are huge and unreadable: too much data is as useless as no
data, without proper tooling to mine it. X. Rival [Riv05a; Riv05b] proposes some inspiring
work on this topic applied to Astrēe.

Annotation language The analyzer can only be used to prove, in addition to safety,
properties that are expressible as C expressions. However, as it stands, the analyzer infers
more involved properties. To broaden the application range of the analyzer, one could
design an assertion language richer that the C expression language, and ask to check
properties like: a given expression has a given type; a pointer is valid; two pointers are
comparable (i.e., point to the same block); two pointers are incomparable (so as to check
restrict annotations).

Moreover, such a communication mechanism between the source code and the an-
alyzer could include debugging primitives that would be a first step towards a better
understanding of the raised alarms.

Use analysis results for compilation The analyzer could be better integrated to the
CompCert compiler: the analysis results could be used by the compiler, e.g., for opti-
mizations (replace constant expressions by they result, remove useless tests and dead
code). One major issue is that an analysis result may no longer be sound after any pro-
gram transformation (optimization or compilation pass). In particular, when a program
transformation moves code around, changes the scopes of variables, it is unlikely that
the analysis result holds as is. It would be nice to be able to transform the result along
with the program rather than re-analyzing the transformed program. Kunz [Kun09]
describes some techniques of certificate translation to transform the description of semantic
properties across several compilation passes.

7.2.2 Weak cells and summarization

In the current state of the memory abstract domain (discussed mainly in chapter 5), each
abstract cell represents exactly one concrete cell (or none). All allocation functions (which
map abstract cells to the concrete cells they may represent) agree on all (valid) cells.

Relaxing this invariant and allowing a single abstract cell to represent several concrete
cells at one has various uses but raises new challenges; in particular, no strong update
can be performed on such summary cells: the properties inferred about the contents of
these cells can only loose precision during the analysis, they never get more precise.

Array summarization A single abstract cell can be used to represent a summary of all
elements in an array. This prevents the analyzer to compute a precise approximation
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for each element, but in some cases the analyzer cannot achieve great precision (e.g.,
when the array holds input data, or when the contents of the array is produced by a
program beyond the capacity of the analyzer, say a cryptographic hash function). Using
one cell for the whole array instead of one cell per element should improve the efficiency
of the analyzer: the memory footprint is lower since only one cell is bound in the abstract
states rather than many; the conversion of an expression involving an access to some cell
produces only one expression rather than one expression per cell.

Since only weak updates can be performed on weak cells, it is harder to prove that
such cells are initialized. A possibility would be to summarize an array after it has been
initialized. As in the case of unrolling of initialization loops, the user could be asked to
write down annotations in the program to suggest which arrays should be summarized
and when. For instance, in the case of the following initializing loop:

1 for (int i = 0; i < 4096; ++i) { t[i] = 0; }

the current state of the memory model requires this loop to be fully unrolled and the
array not summarized. It is unfortunate to have to go through four thousands iterations to
prove that this loop indeed initializes the array, and relying on dedicated abstract domains
could improve this situation.

Recursive calls Programs with recursive function calls are challenging first for the
termination of the iterator, since a systematic (recursive) analysis of all recursive calls may
not terminate. Therefore, different calling contexts must be merged so as to guarantee that
each function is analyzed in finitely many such contexts. In particular, this may involve
merging abstract states with different call stacks.

Also, each concrete cell which represents a local variable cannot be exactly represented
by one abstract cell: when analyzing a recursive function f with a local variable x, there
cannot be as many abstract cells as live variables x (one per running or suspended func-
tion f). Indeed, so as to guarantee the termination of the analysis, at least one abstract cell
should represent many variables x.

Therefore, being able to reason about summary cells in the abstract memory domain is
a prerequisite for analyzing programs with (statically unbounded) recursive calls. But as
we have seen, it is far from enough.

Dynamic memory allocation As for variables that are local to recursive functions, a
static analyzer may not be able to bound the number of dynamically allocated cells (for
instance, if such allocation occurs inside loops). Therefore a single abstract cell should
represent several dynamically allocated concrete cells.

A possibility is to introduce one abstract block to represent the dynamically allocated
heap and have malloc return the pointer to the offset zero in this block. This implies that all
dynamically allocated regions are merged. This is far from ideal and completely useless
since there will be no way to prove that such memory is at some point initialized. Indeed,
only weak updates can be performed on summarized cells; so if malloc returns a pointer
to an uninitialized summarized cell, no information about the contents of such cell can
ever be computed. Balakrishnan and Reps [BR06] present an abstract domain targeting
this issue.

Having several abstract blocks for dynamically allocated memory could improve the
precision. A common practice is to have one abstract block per static call to malloc (known
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7.2 Perspectives

as the allocation-site abstraction). Due to the structure of the iterator, it is unclear how to
produce identifiers.

Notice that safe memory reclamation of summarized cells is out of scope. The analysis
is unlikely to be able to prove safe any use of maybe-reclaimed memory1.

So as to properly handle summary cells in relational numerical domains, particular
care is required. Suppose that a guard like if (t[i] < 0) is analyzed, and that there is one
summary cell s representing the contents of the array t. This could result in the query
assume (s < 0) addressed to a numerical domain. If this domain is unaware of summary
cells, it would infer that all elements of the array are negative in the true branch, and
that all of them are positive in the else branch; which is not valid (unless the array has
only one element). Gopan et al. [Gop+04] propose to extend the interface of relational
numerical domains with additional primitives and implement support for summary cells
with these primitives. A less intrusive and simpler approach would be to systematically
replace, in queries directed to numerical domains, summary cells by a conservative
interval over-approximating their contents.

7.2.3 Verified static analysis of concurrent programs

All programs and programming languages that have been considered in this work are
sequential, or single-threaded. However, the current way to improve the performances
of software is to execute several tasks at the same time: most processors are multi-cores,
they feature distinct processing units that operate simultaneously on the same memory.
Programming such multiprocessors introduces new kinds of errors, including in particular
data-races: several concurrent accesses to a same memory location, one of them being a
write.

Static analyses can help in proving that concurrent programs are free of data-races. To
build and verify a sound static analyzer for languages featuring concurrency, a precise
formal semantics of these languages is first needed. The interleaving semantics composes
per-thread semantics with a non-deterministic scheduler which runs one step in one
thread at a time. Taking into account all possible interleavings during an analysis seems
to be too costly. A. Miné proposes a scalable approach [Min11; Min13], featuring rely-
guarantee reasoning [Jon83]: each thread is analyzed independently (no interleaving at
all) under an assumption, named interference, about the changes that the shared memory
may undergo as a result of the execution of the concurrent threads. These interferences
are deduced from the results of the analysis of each thread. The dependency between
the computation of the interferences and the per-thread analysis is solved as an other
fix-point problem.

Unfortunately, interleaving semantics do not accurately model multiprocessors or lan-
guages featuring concurrency: actual behaviors, referred to as weak memory models, are not
captured by interleavings. For instance, x86 processors feature store-buffers: when a thread
writes a value to some location, this value hits the shared memory only after it exits the
buffer; meanwhile, other threads may read past values at that location. This introduces
behaviors that cannot be explained by a simple interleaving of the reads and writes of the
threads.

1Moreover, the semantics of free —the function that releases dynamically allocated memory— in CompCert
is not yet satisfactory [Ler15a].
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Chapter 7 Conclusion

So as to precisely take into account these weak behaviors in an analysis, Meshman et al.
[Mes+14] propose a program transformation that makes explicit the store-buffers in the
source code and analyze it under an interleaving semantics. This completely isolates
the verification problems due to the weak memory model. However, since the analysis
is unaware of the memory model, it cannot be designed in order to precisely take into
account the buffers.

The set of behaviors introduced by weak memory models is, in some cases (including
the memory model of x86 processors), characterized by a small family of reorderings.
If the abstract semantics is preserved by these reorderings, then an analysis which only
considers the interleavings is sound in the weaker memory model. The interference
semantics of Miné is indeed preserved by a set of “reasonable” reorderings.

In case of weaker semantics, as for instance the one of POWER multiprocessors, or of
the Java programming language, it is unclear how to encode the memory model as a
program transformation or as reorderings. Designing sound and precise analyses aware
of such weak memory models would benefit from a better understanding of these models.
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