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Instabilités des écoulements non isothermes et
Écoulements diphasiques

Abstract
This manuscript is composed of three parts. Part I is devoted to theoretical investigations of the
thermo-electrohydrodynamic (TEHD) convection. This convection is generated by an electrohydro-
dynamic (EHD) e↵ect, called dielectrophoretic (DEP) force, on non isothermal fluid layer. This
thermal force can be assimilated with the thermal Archimedean force by introducing an electric ef-
fective gravity. This gravito-EHD analogy enables us not only to understand intuitively the flow
motion under the DEP force, but also to simulate geophysical flows at global scales by EHD ex-
periments. Similarities and di↵erences between the TEHD convection and the thermal convections
in gravitational fields are clarified. In Part II, non-isothermal Taylor-Couette (TC) flows are inves-
tigated by linear perturbation theory. Flows in a vertical TC system as well as in a TC system in
microgravity that is subjected to the radial DEP force are considered. Focus is the e↵ects of two ra-
dial thermal forces on flow behavior: one, called centrifugal buoyancy, arising from the centrifugal
acceleration; the other being the DEP force. Oscillatory modes associated with these two forces are
discovered in certain parameter ranges. In Parti III, three experimental investigations on di↵erent
two-phase flow systems are reported: the stability of a bubble in an oscillatory flow; the dynamics
of vapor bubbles on a heating wall surface in a shear flow; formation of spiral patterns by bubbles at
a liquid free surface.

Résumé
Ce manuscrit se compose de trois parties. La Partie I est consacrée aux études théoriques de
la convection thermo-électrohydrodynamique (TEHD). Cette convection est générée par un e↵et
électrohydrodynamique (EHD), appelé force diélectrophorétique (DEP), sur une couche de fluide
non isotherme. Cette force thermique peut être assimilée à la force d’Archimède thermique, en
introduisant une gravité e↵ective électrique. Cette analogie gravito-EHD nous permet non seule-
ment de comprendre intuitivement le mouvement de fluide sous la force DEP, mais aussi de simuler
des écoulements géophysiques à l’échelle globale par des expériences EHD. Des similitudes et
di↵érences entre la convection TEHD et les convections thermiques dans des champs gravitation-
nels sont clarifiées. Dans la Partie II, des écoulements de Couette-Taylor (CT) non isothermes sont
analysés par la théorie des perturbations linéaires. Les écoulements dans un système CT vertical ainsi
que dans un système de CT en microgravité qui est soumis à la force radiale DEP, sont considérés.
On s’intéressera particulièrement aux e↵ets de deux forces radiales thermiques sur le comportement
des écoulements: l’une due à l’accélération centrifuge; l’autre étant la force DEP. Les modes os-
cillatoires associés à ces deux forces sont mis en évidence dans certaines gammes de paramètres.
En Partie III, trois études expérimentales sur di↵érents écoulements diphasiques sont présentées: la
stabilité d’une bulle dans un écoulement oscillant; la dynamique des bulles de vapeur sur une surface
chau↵ante dans un écoulement pariétal; la formation de motifs spiralés de bulles à la surface libre
d’un liquide.
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Preface

This manuscript gives a summary of my research activities after the completion of my PhD in 2006. The majority
of the presented researches were carried out during my postdoctoral experiences (2007–2013) outlined in General
Introduction at the beginning of the manuscript as well as in my CV included in appendix A.
In the manuscript, the presentation of obtained results by these researches is made with classifying the researches
into the following two large categories according to subjects regardless their chronological order: Instabilities of
non isothermal flows (Parts I & II) and Two phase flows (Part III).
The description of each research is only a brief summary. Interested readers are invited to refer to related publica-
tions found in a publication list given in appendix B. Some of the publications are included in appendix C.

All the chapters have been written in English for non French speaking jury members of the present “Habilitation à
Diriger des Recherches.”
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INTRODUCTION GÉNÉRALE EN FRANÇAIS

Introduction générale (Traduction en français des pages 1–4)

Carrière scientifique

Doctorat et Expériences postdoctorales

J’ai obtenu mon diplôme de bachelier en génie électronique à l’Université Doshisha à Kyoto au Japon en mars
2000. Puis, je fis mes études de master en génie électronique à la même université (de l’avril 2000 au mars 2002),
en travaillant au Laboratoire de Physique Appliquée sur la dynamique des plasmas non-neutraux sous la direction
du Prof. Motoi Wada et du Dr. Toshiro Kasuya . Ma recherche a été consacrée aux e↵ets de la di↵usion moléculaire
sur le profil de vitesse d’un jet de gaz d’électrons. Pendant ces études de master, j’ai été sélectionné pour un
programme d’échange d’étudiants entre la Faculté de génie de l’Université et de l’Ecole Supérieure de Physique et
de Chimie Industrielles (ESPCI). Ainsi, j’ai eu une opportunité de faire un stage au seins du laboratoire de Physique
et Mécanique des Milieux Hétérogènes (PMMH) sous la direction du Dr José Eduardo Wesfreid (Septembre 2000 -
Juillet 2001). J’ai découvert les problèmes de stabilité hydrodynamique, en travaillant sur l’instabilité Rosensweig
de la surface libre d’une couche de ferrofluide dans un champ magnétique.

Après l’obtention du diplôme de master, j’ai commencé en 2002 ma carrière scientifique, en préparant ma thèse au
laboratoire PMMH sous la direction du Dr Wesfreid. Au début, je me suis intéressé à la stabilité de la surface d’un
milieu granulaire cisaillé par un liquide visqueux et j’ai travaillé sur la formation des rides de sable sous l’influence
d’un écoulement oscillant [67]. J’y ai appris des méthodes de résolution des problèmes de stabilité pour un état de
base et j’ai développé un code numérique. Puis, je suis retourné à un problème analogue pour une interface liquide-
liquide non miscibles, où le cisaillement oscillant tangentiel provoque une instabilité pour former des ondulations
à l’interface [102,103]. Ce problème a été moins étudié que la stabilité d’une surface libre de liquide soumis à des
vibrations verticales, c.-à-d., le problème de l’instabilité de Faraday. J’ai e↵ectué l’analyse de stabilité linéaire et
comparé les résultats obtenus avec des résultats expérimentaux obtenus dans une expérience que j’avais conçue et
réalisée. Ma thèse, intitulé ⌧ Instabilités des interfaces sous oscillations �, est constituée par ces travaux théoriques
et expérimentaux. Elle a été soutenue en 2006 devant le jury composé des Prof. Stéphane Zaleski, Prof. Tatyana
Lyubimova, Prof. Philippe Gondret, Prof. Innocent Mutabazi, et Dr. José Eduardo Wesfreid.

Après la thèse, j’ai travaillé en tant que chercheur postdoctoral dans di↵érents laboratoires en France avec di↵érents
chercheurs. Tout d’abord, je me suis joint à une équipe de recherche des Drs Philippe Petitjeans et Pascal Kurowski
au PMMH et j’ai étudié la stabilité de bulles soumises à un écoulement oscillant en micropesanteur (Février 2007
- Août 2007). En travaillant avec le Dr Farzam Zoueshtiagh (IEMN, Lille) et le Dr Hervé Caps (Université de
Liège), j’ai réalisé des expériences et analysé les résultats obtenus afin de caractériser la stabilité des bulles et de
révéler le mécanisme de scission observée. Nous avons montré que la taille des bulles stables était limitée par la
longueur capillaire basée sur l’accélération de l’écoulement oscillant et que l’inertie de l’écoulement du liquide
était responsable de la scission [94,104].
Après cette première expérience dans le domaine de la micropesanteur, j’ai obtenu une bourse postdoctorale du
Centre National d’Etudes Spatiales (CNES) et travaillé avec le Prof. Catherine Colin à l’Institut Mécanique des
Fluides de Toulouse pour un projet expérimental sur l’ébullition nucléée en micropesanteur (Septembre 2007 -
Août 2009). Je ai conçu et réalisé une expérience, en participant aux deux campagnes de vols paraboliques, l’une
organisée par le CNES et l’autre par l’Agence spatiale européenne (ESA) [88,95]. Nous avons développé un modèle
mécanistique de la dynamique d’une bulle de vapeur isolée, qui se développait et était en mouvement au voisinage
d’une paroi chau↵ée. Nous avons examiné ce modèle, en le comparant avec les données obtenues dans l’expérience.
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INTRODUCTION GÉNÉRALE EN FRANÇAIS

Les deux expériences postroctorales m’ont fait connaı̂tre les sujets et les problèmes des sciences et technologies
en micropesanteur.
En Septembre 2009, je me suis installé à Nice pour un autre poste postdoctoral et je me suis joint à une équipe de
recherche des Dr Christian Mathis, Philippe Maı̈ssa et Germain Rousseaux au Laboratoire J.-A. Dieudonné (Sep-
tembre 2009 - Décembre 2011). Nous étions intéressés par la formation de motif dans un système d’un écoulement
diphasique qui semblait être similaire à la phyllotaxie, c.-à-d., la formation de l’arrangement régulier des feuilles
autour d’une tige d’une plante. Par des expériences et une modélisation théorique, nous avons montré que le
mécanisme de la formation était similaire à celui proposé pour la phyllotaxie [98,99]. A la fin de ce poste postdoc-
toral, j’ai aussi travaillé pour un projet sur l’ébullition nucléée pendant quelques mois. J’ai mené la recherche sur
le champ de température entourant une bulle de vapeur en croissance sur une surface chau↵ante. La thermométrie
à fluorescence induite par laser à deux colorants a été appliquée pour la mesure de température [42].
Ma dernière expérience postdoctorale était au Havre (Janvier 2012 - Août 2013) avec le Prof. Innocent Muta-
bazi au Laboratoire Ondes et Milieux Complexes (LOMC). La première année a été consacrée à une analyse
théorique de la convection thermique d’un fluide diélectrique dans un champ électrique. Cette convection, appelée
la convection thermo-électrohydrodynamique, est induite par une composante de la force électrohydrodynamique.
Pour mener la recherche sur ce sujet, j’ai aussi travaillé avec le Dr Olivier Crumeyrolle. Nous avons établi, par
une analyse de stabilité linéaire, des critères pour que la convection se développe dans di↵érentes configurations
d’électrodes [52,96,97]. Nous avons également calculé le transfert de chaleur par une simulation numérique directe
dans une géométrie particulière. Pendant huit derniers mois de ce poste postdoctoral, j’ai travaillé sur la stabilité
d’un écoulement de Taylor-Couette, soumis à un gradient radial de température et clarifié les e↵ets de ce gradient
sur la stabilité de l’écoulement [101]. Je me suis consacré également à un problème similaire mais avec un champ
électrique radial. J’ai constaté que les forces thermiques radiales pourraient générer des ondes [100]. À la fin de
ce postdoctorat, j’ai commencé à travailler sur le transfert de chaleur dans les tourbillons de Görtler développés
sur une surface de paroi concave en collaboration avec le Dr Jorge Peixinho. Nous avons développé un modèle
théorique qui a pris en compte la conductivité thermique finie de la paroi [36].

Pendant le développement de ma carrière scientifique en tant que chercheur, comme décrit ci-dessus, j’ai aussi
enseigné en sciences physiques : j’ai encadré des stages de licence et master (voir Annexe A pour plus de détails).
J’ai aussi participé à la formation de thésards pendant mes séjours à Nice et au Havre. Lorsque je travaillai à Tou-
louse, j’ai donné des cours sur l’automatisme (systèmes de contrôle analogiques, systèmes de contrôle numérique)
au Département d’Electronique de l’Institut Catholique d’Arts et Métiers pour des élèves en premier cycle ainsi
que pour les ingénieurs.

Après ces expériences de recherche et d’enseignement, j’ai obtenu en 2013 un poste de Maı̂tre de Conférences de
Section 60 (Mécanique, Génie mécanique, Génie civil) du CNU àl’Université Nice Sophia Antipolis (UNS).

Poste actuel à l’Université Nice Sophia Antipolis

Depuis Septembre 2013, je suis maı̂tre de conférence à Université Nice Sophia Antipolis. Je suis attaché à l’école
d’ingénieur, École Polytechnique Universitaire de Nice Sophia, et j’assure des cours et TDs pour les élèves de
première année du Département Bâtiments. J’enseigne actuellement en Mécanique générale, Thermodynamique,
Outils numériques, et Mécanique des fluides afin de donner aux élèves une base scientifique qui leur permette une
spécialisation ultérieure en ingénierie du bâtiment. Je suis responsable du programme de formation et des élèves
de la première année. J’ai aussi la responsabilité de la démarche qualité du département en vue de maintenir le
certificat ISO 90001.
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INTRODUCTION GÉNÉRALE EN FRANÇAIS

Pour ma recherche, je travaille au laboratoire J.-A. Dieudonné, où j’ai déjà séjourné en tant que chercheur post-
doctoral. Je suis intégrée à l’équipe de recherche Modélisation numérique et dynamique des fluides, dirigé par le
Prof. Didier Clamond. Je suis un membre du groupe expérimental au sein de l’équipe, composé des Drs Christian
Mathis, Philippe Maı̈ssa et Pascal Henry Biwole.

Activités de recherche actuelles

Mes activités de recherche actuelles sont concentrées aux instabilités électrohydrodynamiques (EHD) d’écoulements
non isothermes. La recherche sur ce sujet est est motivée par l’analogie entre une force EHD thermique et la
poussée d’Archimède thermique. En utilisant cette analogie, on peut simuler une certaine classe d’écoulements
géophysiques par des expériences en laboratoire. Cette recherche est aussi motivée par l’application potentielle
de la force EHD thermique aux systèmes thermiques qui sont utilisés en micropesanteur et dans des dispositifs
microfluidiques. Je suis familier avec la force EHD thermique depuis mon expérience postdoctorale au Havre. En
continuant la collaboration avec le groupe du LOMC au Havre et en développant une collaboration avec le Prof.
Masato Nagata de l’Université de Tianjin en Chine, je mène des analyses théoriques sur des écoulements générés
par la force EHD thermique, soit dans un condensateur plan, soit dans un condensateur cylindrique. Depuis mon
arrivée à Nice en Septembre 2013, j’ai déposé des projets de recherches sur ce sujet à di↵érents appels de l’ANR
et du CNRS. Un des projets a été retenu pour l’appel ⌧ Projet Exploratoire Premier Soutien - Physique Théorique
et ses Interfaces � en 2014. L’UNS soutient également ce projet en finançant la collaboration avec le Prof. Nagata
en 2014 et 2015.

Je travaille aussi sur deux autres sujets. Le premier concerne la convection Rayleigh-Bénard avec des bulles
de vapeur injectées. La recherche est motivée par l’importance de l’intensification du transfert de chaleur par
des écoulements diphasiques dans l’industrie. L’objectif est d’améliorer, par des études expérimentales, notre
compréhension actuelle sur les e↵ets thermiques et mécaniques des bulles de vapeur sur le flux et le transfert
thermique global. En particulier, l’interaction thermique et mécanique entre des bulles et des plumes thermiques
dans des régimes non linéaires de l’écoulement sera étudiée. Cette recherche, menée avec l’un de mes collègues, le
Dr Christian Mathis, est soutenu par l’UNS. Elle fait partie d’un projet de collaboration avec le Prof. Thierry Cou-
pez (Institut du Calcul Intensif, Nantes) et le Dr Séverine Boyer (PPRIME, Poitiers), qui e↵ectuent la simulation
numérique et la modélisation théorique.

Le deuxième sujet est le mouillage d’une surface solide, en présence de particules de taille submillimétriques. Le
comportement dynamique des lignes de contact sur une surface contaminée par des particules est étudié par des
approches expérimentales, théoriques et numériques. La recherche est motivée par la propriété d’auto-nettoyage de
surfaces solides, qui se rapporte à de nombreuses applications industrielles. Cette recherche vient de commencer
dans le cadre d’un projet de collaboration internationale coordonné par le Prof. Farzam Zoueshtiagh (IEMN, Lille)
et le Prof. Ichiro Ueno (Université des Sciences de Tokyo, Japon), avec un soutien financier du CNRS et de la
JSPS 1. Le travail expérimental est mené à l’IEMN et à l’Université des Sciences de Tokyo avec des dispositifs
expérimentaux existants. Je travaille sur la modélisation théorique du comportement de la ligne de contact et
j’e↵ectue également l’analyse des données expérimentales en collaboration avec d’autres partenaires en France et
au Japon.

1. Japan Society for the Promotion of Science
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Organisation du mémoire

En rédigeant le présent mémoire, j’ai essayé de résumer les résultats scientifiques essentiels que j’ai obtenus depuis
l’obtention de mon diplôme de doctorat. Puisque j’ai fait quatre postdoctorats, les sujets abordés sont variés.
L’accent du mémoire est, cependant, mis sur les instabilités électrohydrodynamiques : ce sont les sujets sur lesquels
porteront essentiellement mes activités de recherche dans les années qui viennent.
La Partie I est consacrée à la convection TEHD. La base de la modélisation théorique des écoulements EHD
est donnée dans le Chap. 1, en soulignant l’analogie entre la force EHD thermique et la poussée d’Archimède
thermique due à la pesanteur. Le Chapitre 2 traite l’instabilité TEHD et la convection en résultant, dans une couche
de fluide entre deux électrodes planes parallèles. Le Chapitre 3 concerne l’instabilité TEHD en géométrie annulaire
cylindrique, où une couche de fluide est soumise à un champ électrique imposé par deux électrodes cylindriques
concentriques. La Partie II est consacré à la stabilité de l’écoulement Couette-Taylor soumis au chau↵age radial.
Dans le Chap. 4, un système de Couette-Taylor vertical est considéré. Dans le Chap. 5, un système de Couette-
Taylor soumis également à un champ électrique radial est considéré en micropesanteur. La Partie III contient trois
travaux expérimentaux sur di↵érents écoulements avec des bulles. Les résultats sur la stabilité d’une bulle dans un
écoulement oscillant, le comportement d’une bulle de vapeur sur une paroi chau↵ée dans un écoulement parietal,
et la formation d’un motif de bulles sur une surface libre sont présentés dans les Chaps. 6, 7, et 8, respectivement.
Un projet de recherche pour les années qui viennent est donnée dans la Partie IV.

viii



RÉSUMÉS EN FRANÇAIS DES CHAPITRES 1-8

Résumés en français des Chapitres 1–8

PARTIE I. INSTABILITÉ THERMO-ELECTROHYDRODYNAMIQUE (TEHD)

Chapitre 1. Analogie Gravito-EHD
La première partie du présent mémoire est consacrée à une convection thermique, appelée convection thermo-
électrohydrodynamique (TEHD), générée par une force électrohydrodynamique. Au chapitre 1, la base théorique
de cette convection est donnée pour les analyses présentées dans les chapitres ultérieurs. On souligne l’analogie
de la force motrice de la convection TEHD avec la poussée d’Archimède thermique, en introduisant la notion de
la gravité électrique (Sec. 1.1). Après avoir discuté des conditions nécessaires de la domination de cette force sur
d’autres e↵ets du champ électrique appliqué au fluide en Sec. 1.2, les équations régissant la convection TEHD sont
présentées en Sec. 1.3. La section 1.4 est consacrée à des états conductifs du fluide dans trois configurations par-
ticulières d’électrodes. En Sec. 1.5, les nombres adimensionnels caractérisant la convection TEHD sont introduits
avec une version adimensionnelle des équations régissant la convection TEHD.

Chapitre 2. Convection TEHD dans une géométrie plane
Des études théoriques et numériques de la convection TEHD en géométrie parallèle plane sont menées afin d’exa-
miner l’analogie de la convection TEHD avec la convection de Rayleigh-Bénard (RB). Bien que cette analogie soit
connue depuis le début des études théoriques et expérimentales de la convection TEHD, elle n’a pas été étudiée en
détails. En menant des études théorique et numérique, nous confirmons les similitudes entre ces deux phénomènes
de convection par rapport aux paramètres critiques et au comportement faiblement non linéaire des écoulements
convectifs développés. Cependant, des analyses détaillées montrent des di↵érences essentielles dues à deux fac-
teurs : la non-uniformité du champ de gravité électrique et la rétroaction du champ électrique sur le champ de
température. Le premier e↵et est significatif seulement si la variation thermique de la permittivité diélectrique
est importante : 1

✏
d✏
dT �T > 1. En revanche, le second e↵et di↵érencie toujours la convection TEHD de celle de

RB : dans une convection TEHD, une perturbation en champ de température induit une perturbation du champ
électrique, et donc une perturbation de la gravité électrique. Cette rétroaction a tendance à stabiliser l’état conductif.
Donc, pour que la convection se développe, la force thermoélectrique doit surmonter non seulement la dissipation
visqueuse de l’énergie mais aussi la stabilisation de la rétroaction. Par conséquent, les paramètres critiques sont
di↵érents de ceux de l’instabilité de RB. La composante de la force thermoélectrique liée à la gravité électrique per-
turbée pénalise aussi l’écoulement convectif dans son régime nonlinéaire : la convection est a↵aiblie et le transfert
de chaleur est moins e�cace en comparant avec la convection RB.

Les travaux présentés dans ce chapitre ont été réalisés en 2012 au Laboratoire Ondes et Milieux Complexes au
Havre en collaboration avec Mireille Tadie Fogaing, Olivier Crumeyrolle et Innocent Mutabazi. Les résultats ob-
tenus ont été communiqués dans plusieurs conférences et dans des séminaires. Ils ont été publiés dans Eur. Phys.
J. E [28] et Phys. Rev. E [101]. Ces articles sont inclus dans l’Annexe C.

Chapitre 3. Convection TEHD dans une géométrie annulaire cylindrique
La convection TEHD dans une géométrie annulaire cylindrique a intéressé des géophysiciens en raison de la simi-
litude de cet écoulement avec certains écoulements géophysiques. Des études existantes sur la convection TEHD
dans une géométrie annulaire cylindrique ont concerné seulement des perturbations axisymétriques pour les pe-
tits entrefers (c.-à-d., le rapport des rayons ⌘ & 0, 9). En élargissant la plage des paramètres, nous considérons
di↵érentes configurations de la gravité électrique de base (Voir Fig. 1.1 récapitulant les configurations). La relation
étroite entre la stabilité de l’etat conductif et la gravité électrique de base est montrée. L’instabilité se produit uni-
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RÉSUMÉS EN FRANÇAIS DES CHAPITRES 1-8

quement dans les Zones I et IV, où la gravité électrique se dirige dans le même sens que le gradient de température
imposé à travers la couche de fluide. Il est aussi montré que le mode critique est toujours non-axisymétrique. L’hy-
pothèse de perturbations axisymétriques aboutira à la surestimation du seuil d’instabilité, en particulier, dans le cas
de petit ⌘. Nous analysons aussi le processus de transfert d’énergie à partir de l’écoulement de base à l’écoulement
de perturbation grâce à une équation sur l’évolution de l’énergie cinétique (Eq. 2.5). Selon l’analyse, l’analogie
gravito-EHD est exacte pour petites valeurs de ⌘, où l’e↵et stabilisant de la gravité électrique de perturbation est
négligeable. Cette conclusion valide l’application géophysique de la convection TEHD.

Ce travail a été réalisé en 2012 au Laboratoire Ondes et Milieux Complexes au Havre en collaboration avec Satish
Malik, Olivier Crumeyrolle et Innocent Mutabazi. Les résultats ont été présentés dans plusieurs conférences et
publiés dans Acta Astronaut. [55] et Phys. Fluides [100]. Ce dernier est inclus dans l’Annexe C.

PARTIE II. Ecoulements de Couette-Taylor soumis à des forces thermiques radiales

Chapitre 4. Ecoulement de Couette-Taylor soumis à un gradient de température radial
Le problème de la stabilité d’un écoulement de Couette circulaire, dans l’entrefer de deux cylindres concen-
triques verticaux et soumis à un gradient de température radial, est réexaminé par une analyse de stabilité linéaire.
L’analyse clarifie le rôle de la force de flottabilité due à l’accélération centrifuge. Pour de petites valeurs du pa-
ramètre F = ⌫/

p
gd3, l’e↵et de cette force est négligeable en comparant avec la poussée d’Archimède thermique.

La stabilité du système est indépendant de la direction de chau↵age, comme prédit par Ali & Weidman [1]. Le
chau↵age stabilise l’état conductif pour une petite di↵érence de température �T . Pour de grandes valeurs de F,
la force de flottabilité centrifuge influence de manière significative le comportement du système. La stabilité est
sensible à la direction de chau↵age : à petit �T , le système est plus stable dans un gradient de température positif
que dans celui négatif.
L’analyse montre également que la force de flottabilité centrifuge modifie de façon significative la nature des
modes critiques. Même en l’absence d’advection par la vitesse axiale de l’écoulement de base (c.-à-d., quand
|Gr| est petit), des modes axisymétriques oscillatoires peuvent se développer à partir de l’état conductif sous un
gradient de température négatif. La fréquence de ces modes est donnée par la fréquence de Brunt-Bäisälä basée sur
l’accélération centrifuge. Ce résultat indique une relation étroite des modes d’oscillation avec les ondes internes se
propageant dans une couche fluide stratifiée.

Cette étude théorique sur la stabilité de l’écoulement de Couette-Taylor non isotherme a été menée en 2013 en
collaboration avec Antoine Meyer (LOMC), Innocent Mutabazi (LOMC), and Masato Nagata (Université de Tian-
jin). Certains résultats ont été communiqués dans di↵érentes conférences et publiés dans Phys. Fluides [105]. Ce
dernier article est inclus dans l’Annexe C.

Chapitre 5. Ecoulement de Couette-Taylor soumis à une force thermoélectrique radiale
La stabilité d’un écoulement de Couette-Taylor soumis à un gradient de température et aussi à une force radiale
de flottabilité due à la gravité électrique ge est étudiée par la théorie de la perturbation linéaire. La théorie prend
en compte une autre force de flottabilité due à l’accélération centrifuge gc. Il est montré que le comportement de
l’écoulement est sensible à la direction de chau↵age. Di↵érents régimes de l’instabilité sont distingués : le mode
critique peut être axisymétrique oscillant (OA), soit à forte flottabilité thermoélectrique (c.-à-d., à grande valeur du
nombre de Rayleigh électrique |L|) sous un gradient de température positif ou à faible flottabilité thermoélectrique
(c.-à-d., à petit |L|) sous un gradient de température négatif dans un liquide à grand nombre de Prandtl. Dans ce
régime OA, l’instabilité est provoquée par la force centrifuge comme dans l’instabilité de Taylor. L’e↵et net de ces
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deux forces de flottabilité thermique stabilise l’écoulement de base et produit l’oscillation du mode critique. La
fréquence du mode critique est donnée par la fréquence de Brunt-Väisälä (Eq. 5.2), basée sur les deux forces de
flottabilité, qui caractérise les ondes internes se propageant dans une couche fluide stratifié.
Ce résultat sur la relation entre modes critiques OA et ondes internes est une généralisation de la relation étroite
trouvée dans notre étude sur l’écoulement Couette-Taylor non-isotherme dans le Chap. 4. Dans le dernier système,
la force de flottabilité centrifuge génère des modes OA uniquement dans un gradient de température négatif,
puisque, seulement dans cette configuration, la stratification thermique de la masse volumique est stable dans
le champ d’accélération centrifuge gc et peut ainsi permettre la propagation des ondes. Dans l’écoulement de
Couette-Taylor considéré dans le présent chapitre, la stratification peut également permettre des ondes dans un
gradient de température positif si la force de flottabilité due à la gravité électrique ge est supérieure à celle due
à l’accélération centrifuge gc. Nous pourrions espérer la génération d’ondes similaires dans d’autres systèmes de
Couette-Taylor non-isothermes, comme celui d’un ferrofluide soumis à un champ électrique.

Ce travail a été commencé en 2013 en collaboration avec Antoine Meyer (LOMC) et Innocent Mutabazi (LOMC).
Les résultats obtenus ont été présentés dans plusieurs conférences et publiés dans Phys. Rev. E [104]. Cet article
est inclus dans l’Annexe C.

PARTIE III. Ecoulements avec des bulles

Chapitre 6. Stabilité de bulles dans un écoulement oscillant
La stabilité d’une bulle à taille centimétrique dans un écoulement oscillant est étudiée par des expériences en mi-
cropesanteur. La scission de la bulle se produit à une accélération constante A!2 dans un liquide donné. L’analyse
de la translation de la bulle et l’analyse sur le seuil de scission de bulle révèlent que le critère inertiel We > 12
(c.-à-d., Eq. 6.7) explique bien les résultats expérimentaux. Ce mécanisme inertiel de la scission est indépendante
de la viscosité du liquide et le critère prédit que la scission se produit à une vitesse constante Ub de la bulle pour
une taille de bulle donnée et dans un liquide donné. La viscosité du liquide, cependant, influence le mouvement de
la bulle : dans un liquide visqueux, la bulle se déplace avec un amplitude d’oscillation Ab = Ub/! faible (Eq. 6.2)
et, par conséquent, avec une petite vitesse Ub. Ainsi, la bulle est plus stable dans un liquide plus visqueux, comme
nous l’avons observé dans les expériences (Fig. 6.5).

En provoquant la scission par un écoulement oscillant, on peut contrôler la taille de bulles dans un écoulement
diphasique liquide-gaz. Selon le critère (Eq. 6.4) obtenu dans nos études expérimentales, on peut briser des bulles
plus grandes que

De = 1.27

s
�0.846⌫0.229

⇢0.846A0.995 f 1.92 ⇡ 8.0 `0cap

 
⇢2⌫3 f
�2

!0.017

(0-1)

par un écoulement oscillant, où `0cap est la longueur capillaire basée sur l’accélération de l’écoulement oscillant.
Ce résultat confirme les résultats précédents reportés dans Zoueshtiagh et al. [110] et les généralise pour di↵érents
liquides avec di↵érentes viscosités.

Ce travail a été réalisé en collaboration avec Farzam Zoueshtiagh (IEMN, Lille), Hervé Caps (GRASP, Liège),
Pascal Kurowski (PMMH, Paris) et Philippe Petitjeans (PMMH, Paris). Les résultats ont été communiqués dans
plusieurs conférences et publiés dans Microgravity Sci. Technol. [98] et Eur. Phys. J. E [108]. Ce dernier article est
inclus dans l’Annexe C.
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Chapitre 7. Dynamique de bulles en micropesanteur
La dynamique d’une bulle de vapeur isolée dans un écoulement parietal est étudiée par une expérience en micrope-
santeur. La mesure optique du mouvement de la bulle est e↵ectuée afin d’estimer les di↵érentes forces exercées sur
la bulle au site de nucléation sur la paroi chau↵ante. Les forces calculées confirment l’équilibre des forces pendant
le développement de la bulle et suggère que le départ de la bulle à partir du site de nucléation pourrait être associé
avec la rupture de l’équilibre des forces. La modélisation de la dynamique des bulles de vapeur par l’équilibre
des forces est donc une façon prometteuse pour prédire le comportement des bulles de vapeur. Il est cependant
nécessaire d’a�ner les modèles de forces, parce que l’accord quantitatif entre le modèle et l’expérience n’est pas
satisfaisant.

Ce travail a été réalisé en collaboration avec Catherine Colin (IMFT, Toulouse) et Cees van der Geld (Université
de technologie d’Eindhoven). Les résultats ont été communiqués dans di↵érents conférences et publiés dans les
actes de conférences internationales [49,99] ainsi que dans Phys. Fluides [92].

Chapitre 8. Formation de motifs spiralés dans un système liquide-gaz simple
La formation de motifs exposés par des bulles émergeant périodiquement à partir de la surface libre d’un liquide
est étudiée par une expérience avec un système diphasique liquide-gaz simple. L’observation expérimentale du
comportement des bulles montre que l’interaction bulle-bulle dans une bosse de la surface (appex) joue un rôle
décisif dans la formation de motif. Cela indique l’analogie avec le développement méristématique au sommet de
la pousse d’une plante qui conduit à un arrangement régulier des feuilles, appelé phyllotaxie. Un modèle théorique
simple est développé pour notre système diphasique. Le modèle se base sur l’équilibre des forces sur chaque bulle et
prend en compte l’advection des bulles par l’écoulement du liquide et l’interaction bulle-bulle, les deux influençant
la compaction de bulles dans l’apex. Le modèle peut reproduire le comportement de l’angle de divergence  

observé dans l’expérience, en particulier, la transition entre le régime distique et le régime spiral.
Cette recherche a été réalisée en collaboration avec Christian Mathis, Philippe Maı̈ssa et Germain Rousseaux du
Laboratoire J.-A. Dieudonné, ainsi qu’avec Stéphane Douady (MSC, Paris). Les résultats ont été publiés dans Eur.
Phys. J. E [103] et dans un livre des actes d’un colloque [102]. Le premier article est inclus dans l’Annexe C.
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GENERAL INTRODUCTION

Scientific career

PhD and Postdoctoral experiences

I graduated from the Department of Electronics at Doshisha University in Kyoto, Japan in March 2000. I did my
master in electrical engineering at the same university (April 2000 – March 2002), doing my master research on the
dynamics of non-neutral plasma in the Applied Physics Laboratory under the supervision of Prof. Motoi Wada and
Dr. Toshiro Kasuya. My research was concerned with the e↵ects of molecular di↵usion on the velocity profile of
an electron gas jet. During this master course, I was selected for a student exchange program between the Faculty
of Engineering of the university and the Ecole Supérieure de Physique et de Chimie Industrielles (ESPCI) in Pairs.
I was thus able to do my internship in the laboratory Physique et Mécanique des Milieux Hétérogènes (PMMH)
with Dr. José Eduardo Wesfreid (Septembre 2000 – July 2001). I worked for the first time on hydrodynamic
stability problems, analyzing the Rosensweig instability of the free surface of a ferrofluid layer in a magnetic field.

After obtaining the master degree, I started in 2002 my scientific career, preparing my PhD thesis at PMMH under
the supervision of Dr. Wesfreid. At the beginning of my PhD research I was interested in the stability of the surface
of granular material sheared by viscous liquid and worked on the formation of sand ripples under oscillatory flow
[67]. I learned to solve a stability problem for an unsteady base state by developing a numerical code. Then, I
turned to an analogous problem for an immiscible liquid-liquid interface, where tangential oscillatory shear pro-
vokes an instability to form ripples at the interface [102, 103]. This problem had been investigated less compared
with the stability of a liquid free surface subjected to vertical vibration, i.e., the Faraday instability problem. I
performed linear stability analyses and compared results obtained from the experiments that I had designed and
performed. My thesis, consisting of these works and entitled “Instabilités des interfaces sous oscillations,” was de-
fended in 2006 in front of the jury composed of Prof. Stéphane Zaleski, Prof. Tatyana Lyubimova, Prof. Philippe
Gondret, Prof. Innocent Mutabazi, and Dr. José Eduardo Wesfreid.

After the thesis I worked as a postdoctoral research fellow with di↵erent researchers in di↵erent laboratories
in France. First, I joined a research team of Dr. Philippe Petitjeans and Dr. Pascal Kurowski at PMMH and
investigated the stability of bubbles in oscillatory flow in microgravity environments (February 2007 – August
2007). Collaborating with Dr. Farzam Zoueshtiagh (IEMN, Lille) and Dr. Hervé Caps (Université de Liège), I
realized experiments and analyzed the results in order to characterize the stability and to reveal the mechanism
of observed bubble splitting. We showed that the size of stable bubbles was limited by the capillary length based
on the acceleration of oscillatory flow and that the inertia of liquid flow was responsible for the bubble splitting
[94, 104].
After this first experience in microgravity science I obtained a postdoctoral fellowship from the CNES (Centre
National d’Etudes Spatiales) to work with Prof. Catherine Colin at Institut Mécanique des Fluides in Toulouse
for an experimental project on nucleate boiling in microgravity environments (September 2007 – August 2009). I
designed and performed experiments, participating in two parabolic flight campaigns, one organized by the CNES
and the other by the European Space Agency [88, 95]. We developed a mechanical model of the dynamics of
a single vapor bubble growing and moving on a heated wall. We examined this model by comparing it with
experimental measurements. These two postdoctoral experiences have made me familiar with topics and problems
in microgravity technologies.
In September 2009, I moved to Nice for another postdoctoral research fellowship and joined a research team of Dr.
Christian Mathis, Dr. Philippe Maı̈ssa and Dr. Germain Rousseaux at Laboratoire J.-A. Dieudonné (September
2009 – December 2011). We were interested in a pattern formation in a liquid-gas two phase flow system that
seemed to be similar to the phyllotaxis, i.e., the formation of the regular arrangement of leaves around a stem
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of a plant. By experiments and theoretical modeling, we showed that the mechanism of the pattern formation
was similar to that proposed for the phyllotaxis [98, 99]. During some months at the end of this postdoctoral
fellowship, I also worked on a subject about the nucleate boiling. I investigated the temperature field surrounding a
vapor bubble growing on a heated surface by applying the two-color laser induced fluorescence thermometry [42].
My final experience as a postdoctoral research fellow was in Le Havre (January 2012 – August 2013) with Prof.
Innocent Mutabazi at Laboratoire Ondes et Milieux Complexes (LOMC). The first year was devoted to a theo-
retical analysis of thermal convection of dielectric fluid in an electric field. This convection, called the thermo-
electrohydrodynamic (TEHD) convection, is induced by a component of the electrohydrodynamic force. For re-
search on this subject, I also collaborated with Dr. Olivier Crumeyrolle. By linear stability analyses, we established
the criteria for convection to develop in di↵erent configurations of electrodes [52, 96, 97]. We also computed heat
transfer by a direct numerical simulation in a particular geometry. During the final 8 months, I worked on the
stability of a Taylor-Couette flow in radial heating to clarify the e↵ects of the radial temperature gradient on the
flow stability [101]. I also considered a similar problem but with a radial electric field and found that the radial
thermal forces could generate waves [100]. At the end of this postdoctoral position, I started to work on the heat
transfer in Görtler vortices developed on a concave wall surface in collaboration with Dr. Jorge Peixinho. We
developed a theoretical model that took into account the finite thermal conductivity in the wall [36].

Developing my scientific career as a researcher, I also taught science either by supervising researches or by giving
courses. I supervised research internships of undergraduates and master students in di↵erent laboratories (see
appendix A for details). I also participated in research training of PhD students during my stay in Nice and in
Le Havre. When I worked in Toulouse, I gave courses of automatics (Analog control systems, Digital control
systems) to undergraduates as well as to engineers at the Department of Electronics of the Institut Catholique
d’Arts et Métiers.

After these research and teaching experiences, I obtained in 2013 a position of Maı̂tre de Conférences of the section
60 (Mechanics, Mechanical Engineering, Civil Engineering) of the CNU1 at Université Nice Sophia Antipolis
(UNS).

Current Position at Université Nice Sophia Antipolis

Since September 2013, I am a Maı̂tre de Conférences at Université Nice Sophia Antipolis. I’m attached to the
engineering school, École Polytechnique Universitaire Nice Sophia, and give courses to the first year students of
the Department of Buildings. I teach currently General Mechanics, Thermodynamics, Numerical Methods, and
Fluid Mechanics. They form the basis for students to master courses more specialized to building engineering.
I’m responsible for the first year program, being the director of studies for the first year students. I also take a
responsibility for the department to be certified for ISO 9001.

For research I work at the laboratory J.-A. Dieudonné, where I did one of my postdoctoral positions. I’m integrated
to the research team Numerical Modeling and Fluid Dynamics headed by Prof. Didier Clamond. I’m a member of
experimental fluid mechanics group in it, consisting of Dr. Christian Mathis, Dr. Philippe Maı̈ssa and Dr. Pascal
Henry Biwole.

1Conseil National des Universités (National Council of Universities)
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Current research

My current research activities are concentrated on electrohydrodynamic (EHD) instabilities of non-isothermal
flows. The investigation is motivated by the analogy between a thermal EHD force and the thermal Archimedean
buoyancy. Using this analogy one can simulate a certain class of geophysical flows by laboratory experiments.
The research is also motivated by potential application of the thermal EHD force to thermal management systems
working in microgravity conditions and to microfluidic devices. I have been familiar with flows driven by the
thermal EHD force since my postdoctoral experience in Le Havre. Continuing the collaboration with the LOMC
group in Le Havre and developing a collaboration with Prof. Masato Nagata of Tianjin University in Tianjin, China,
I am performing theoretical analyses of the thermal EHD flows generated either in a plane parallel capacitor or
in a cylindrical annular capacitor. Since my arrival at Nice in September 2013, I have applied for di↵erent calls
for projects of CNRS and ANR with research proposals on this subject. One of these proposals was selected
and I obtained a financial support from CNRS (Projet Exploratoire Premier Soutien – Physique Théorique et ses
Interfaces) in 2014. My university also supports the project by funding collaboration with Prof. Nagata in 2014
and 2015.

I’m also working for other two subjects. The first one is concerned with the Rayleigh-Bénard convection with
injected vapor bubbles. The investigation is motivated by importance of the heat transfer enhancement by two-
phase flow systems in industries. The goal is to improve by experimental studies our current understanding on the
thermal and mechanical e↵ects of vapor bubbles on flow and global heat transfer. In particular, the thermal and
mechanical interaction between bubbles and thermal plumes in highly non-linear flow regimes will be investigated.
This research, carried out with one of my colleagues, Dr. Christian Mathis, is supported by UNS. It is a part of
a collaboration project with Prof. Thierry Coupez (Institut du Calcul Intensif, Nantes) and Dr. Séverine Boyer
(PPRIME, Poitiers), who perform numerical simulation and theoretical modeling.
The second subject is the wetting of a solid surface in the presence of submillimeter-sized particles. The dynamical
behavior of contact lines on a surface contaminated by particles is investigated by experimental, theoretical, and
numerical approaches. The research is motivated by self-cleaning property of solid surfaces, which pertains to
many industrial applications. This research has just started in the framework of an international collaboration
project coordinated by Prof. Farzam Zoueshtiagh (IEMN, Lille) and Prof. Ichiro Ueno (Tokyo University of
Science, Japan), with a financial support from CNRS and JSPS2. Experiments are performed at IEMN and Tokyo
University of Science by using existing experimental facilities. I work for theoretical modeling of the contact line
behavior and also perform analysis of experimental data in collaboration with other partners in France and in Japan.

Organization of manuscript

Writing the present manuscript, I tried to summarize essential scientific results that I had obtained since completion
of my PhD. I did four postdoctoral positions so that the subjects are varied. The manuscript focus, however, to the
electrohydrodynamic instabilities, as my research for coming years will be concentrated to this topic.
Part I is concerned with the TEHD convection. The basis of theoretical modeling of this EHD flow is given in
Chap. 1, with underlining the analogy between a thermal EHD force and the thermal Archimedean force due to
the gravity. Chapter 2 deals with the TEHD instability and the resulting convection in a fluid layer between two
plane parallel electrodes. Chapter 3 is concerned with the TEHD instability in cylindrical annular geometry, where
a fluid layer is subjected to an electric field applied by two concentric cylindrical electrodes. Part II is devoted to
the stability of Taylor-Couette flows in radial heating. A vertical Taylor-Couette system is considered in Chap. 4.

2Japan Society for the Promotion of Science
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GENERAL INTRODUCTION

In Chap. 5, a system subjected also to a radial electric field is considered in microgravity conditions. Part III
contains three experimental investigations on di↵erent flows with bubbles. The results on the stability of a bubble
in oscillatory flow, the behavior of a vapor bubble on a heated wall in a shear flow, and the pattern formation of
bubbles on a free surface are presented in Chaps. 6, 7, and 8, respectively. A research project for coming years is
given in Part 8.4.
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Chapter 1

Gravito-EHD analogy

The first part of the present manuscript is concerned with a thermal convection, called the thermo-
electrohydrodynamic (TEHD) convection, induced by an electrohydrodynamic force. In the present chapter,
the general basis for the theoretical analysis of this convection is given. The analogy of the driving force of
the TEHD convection with the thermal Archimedean force is pointed out by introducing the concept of the
electric gravity in Sec. 1.1. After discussing the necessary conditions for neglecting other e↵ects of applied
electric fields on fluid motion in Sec. 1.2, the governing equations of the TEHD convection are presented in
Sec. 1.3. Section 1.4 is devoted to a summary of the conductive states of fluid in three particular electrode
configurations In Sec. 1.5, the dimensionless numbers characterizing the TEHD convection are introduced
with a nondimensionalized governing equations.

1.1 Introduction

Interaction of fluids with electromagnetic fields is an important subject in di↵erent scientific fields and modern
technologies. Micro-encapsulation process in electric fields for biomedical application and levitation of liquid
metal drops for metallurgical operations are examples at small scales where the interaction provides means of
control of fluid motion. The control of plasma in a nuclear fusion reactor by magnetic fields is another example
but at larger scale. Magneto rotational instabilities regarded as the mechanism of angular momentum transport in
an accretion disk is an example at galaxy scales.
The electrohydrodynamics (EHD) is concerned with the mechanics of electrically poorly conducting fluids and
dielectric fluids in electromagnetic fields. The time and length scales, ⌧, `, of their flows are assumed to satisfy the
following conditions:

⌧, ⌧e � ⌧em, (1-1)

where ⌧e = ✏/�e is the charge relaxation time characterizing the charge accumulation process through electrical
conduction in the fluid (�e, ✏: the electrical conductivity and the dielectric permittivity of the fluid, respectively).
The length scale ` is involved in the electromagnetic transit time ⌧em = `/c, where c is the speed of light. Under
the conditions (1-1), electromagnetic fields can be analyzed in the electroquasistatic approximation and the force
exerted by the field on the fluid can be computed from the EHD stress tensor that is independent from the magnetic
field (Sec. 1.2).
The EHD force is used widely for manipulating dispersed phases (i.e., bubbles, drops and particles), e.g., in
pollution control [90], levitation, powder deposition, and other applications in biomedical fields. The EHD force
is also used to control and pump single-phase flow. Since strong EHD force can be generated by a reasonable
value of electric tension at small scales, the use of EHD e↵ects to transport mass, momentum, and energy in fluid
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CHAPTER 1. GRAVITO-EHD ANALOGY

Table 1.1: Properties of some electrically poorly conducting and dielectric fluids

⇢ ⌫ �e ✏r ↵ = 1
⇢

⇣
d⇢
dT

⌘
e = 1

✏

⇣
d✏
dT

⌘
Pr Polarity

[ kg/m3 ] [ 10�6 m2/s ] [ 10�6 S/m ] [ – ] [ 10�3 K�1 ] [ 10�3 K�1 ] [ – ] [ – ]
Acetonitrile 777 0.439 700 36.0 1.38 155 4.7 5.8

Nitrobenzene 1198 1.52 0.5 34.7 0.83 188 19 4.5
Acetone 785 0.386 6 19.1 1.43 86 4.2 5.1

Chlorobenzene 1101 0.686 – 5.61 0.985 15.7 7.9 2.7
Cyclohexane 774 1.17 < 10�6 2.02 1.22 1.60 14 0.2
Silicone oil 920 5.0 < 10�6 2.70 1.08 1.065 59.9 –
Silicone oil 968 99.2 < 10�6 2.73 0.96 3.2 910 –

is common practice in microfluidics. µTAS (micro total-analysis systems) and MEMS (microelectromechanical
systems) are the area where the EHD forces can play important roles.

The dielectrophoresis is one of the manipulation techniques of dispersed phases by a component of the EHD force,
called the dielectrophoretic (DEP) force, that results from the di↵erence in polarization between the dispersed
phases and the surrounding continuous phase [58]. For a spherical particle of radius a that is small compared with
the length scale of the electric field spatial variation, the DEP force is given by

FDEP = 2⇡a3✏ref.KCMrE2, (1-2)

where ✏ref. is the dielectric permittivity of the continuous phase [35, 61]. The coe�cient KCM is the Clausius-
Mossotti factor: KCM = (✏ � ✏ref.)/(✏ + 2✏ref.), where ✏ is the permittivity of the particle. The DEP force (1-2) can
also act on a fluid particle of the same fluid as the continuous phase, if the particle has a di↵erent temperature from
the surrounding fluid. This thermal DEP force has an interesting feature: it behaves in a similar way to the thermal
Archimedean buoyancy. This gravito-EHD analogy enables us to introduce an electric e↵ective gravity.
The dielectric permittivity varies with temperature. For a small temperature variation, its behavior can be modeled
by the linear equation:

✏ = ✏ (T ) = ✏ref. (1 � e✓) , (1-3)

where ✓ is the deviation of the fluid temperature T from a reference temperature Tref.: ✓ = T�Tref.. The coe�cient e
is positive except for some polar liquids (e.g., acetic and butyric acids). It takes a value of the order of 10�3 K�1 for
non-polar fluids, of 10�2-10�1 K�1 for polar fluids (Table 1.1). The thermal DEP force on a spherical fluid particle
is computed by substituting Eq. (1-3) to Eq. (1-2). The Clausius-Mossotti factor is given by KCM = �e✓/3, leading
to the following expression of the DEP force:

FDEP = �2⇡
3

a3e✓✏ref.rE2 = �4⇡
3

a3⇢↵✓ge, (1-4a)

with ge =
e
↵⇢
r

 
✏ref.E2

2

!
. (1-4b)

The coe�cient of thermal expansion ↵ has been introduced. The last term in Eq. (1-4a) takes the same form as the
thermal Archimedean buoyancy force on a spherical particle but in an e↵ective gravity field ge. This gravito-EHD
analogy is useful to understand the e↵ects of FDEP on fluid motion. One may expect that thermal convection would
develop if the electric gravity were directed from low to high temperature zones of a fluid layer. This convection
is indeed known as the thermo-electrohydrodynamic (TEHD) convection. The heat transfer enhancement by this
convection is expected to reduce the weight and volume of thermal systems. This electrohydrodynamically induced
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CHAPTER 1. GRAVITO-EHD ANALOGY

convection is hence of great importance for aeronautical and astronautical heat exchanger components [57, 73].

The concept of the electric gravity can enable us not only to understand the e↵ects of the thermal DEP force on fluid
motion in the light of the analogy with the thermal Archimedean buoyancy, but also to simulate some large-scale
geophysical flows by EHD laboratory experiments. For understanding geophysical flows, laboratory experiments
are often desired to check theoretical ideas. For thermal convection at planetary scales, the Rayleigh number is
huge, e.g., it is of the order of 107 for the convection in the Earth’s mantle [72]. The flow is highly nonlinear and the
approach by direct numerical simulations to the problem is limited. One can use an EHD laboratory experiment
to simulate experimentally such geophysical flows.1 For this aim, the electric gravity should be isotropic and
centripetal, similar to the Earth’s gravity. We can realize such an electric gravity field by using two concentric
spherical electrodes maintained at di↵erent temperatures and di↵erent electrostatic potentials (Sec. 1.4).

Attempts of geophysical flow simulations by EHD experiments have been made in di↵erent geometries and in
di↵erent gravity conditions. To the best of my knowledge, Chandra & Smylie [11] were the first who studied
experimentally the TEHD convection to simulate geophysical flows. They performed experiments with two con-
centric cylindrical electrodes on the ground. Later, TEHD convection experiments for geophysical flows were
performed rather in microgravity environments. In fact, the Earth’s gravity is undesired, since it can induce spuri-
ous fluid motions in a tentative of establishing a radial temperature gradient. Sitte et al. [73] and Dahley et al. [21]
performed experiments in cylindrical geometries in a drop tower and during parabolic flights, respectively. Hart
et al. realized experiments in semi-spherical geometry on board of the space shuttle Challenger [31]. Recently,
the GEOFLOW experiments were realized in the science laboratory Columbus on board of the International Space
Station (ISS) [28].

1.2 EHD force

The EHD force has components other than the DEP force. For the gravity-EHD analogy, these components should
be negligible in fluid dynamics. In general, the EHD force consist of a component FE arising from the Coulomb
forces on free charges (i.e., ions, charged impurities suspended in the fluid) and a dielectric component FD due to
the polarization of fluid. Free charges accelerated by the Coulomb forces transfer their momentum to surrounding
electroneutral molecules through collisions. The fluid is thus subjected to the force FE = ⇢eE per unit volume in
macroscopic view. The dielectric force FD is computed from the dielectric stress tensor �D, which is obtained
from the Maxwell’s stress tensor by replacing the permittivity of vacuum ✏0 by the dielectric permittivity ✏ and by
adding an electrostriction component. In dyadic representation, the tensor is given by

�D = ✏EE � ✏E
2

2
I +

⇢

2

 
@✏

@⇢

!

T
E2I, (1-5)

where the first two terms in the right-hand-side correspond to the Maxwell’s tensor and the last term represents
the electrostriction e↵ect [45, 54]. The second-order unit tensor is denoted by I. The total EHD body force
density FEHD = FE + FD is given by [34]

FEHD = ⇢eE � 1
2

E2r✏ + r
"
⇢

2

 
@✏

@⇢

!

T
E2

#
. (1-6)

1One can also realize such experimental simulation of geophysical flows with non-isothermal ferrofluid in magnetic fields [56, 66, 80, 7].

7
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When the variation of the permittivity ✏ arises only from thermal e↵ects, we can cast the EHD force (1-6) into a
form revealing the gravito-EHD analogy. Substituting Eq. (1-3) into Eq. (1-6), we have

FEHD = ⇢eE � rpEHD � ⇢↵✓ge, (1-7a)

with pEHD = �
"
e✓✏ref.E2

2
+
⇢

2

 
@✏

@⇢

!

T
E2

#
, (1-7b)

ge =
e
⇢↵
r

 
✏ref.E2

2

!
, (1-7c)

where pEHD is the EHD pressure that can be lumped with the hydrodynamic pressure p in the momentum equation.
The last term of Eq. (1-7a) is the generalization of the thermal DEP force (1-4a) on a spherical fluid particle to
continuous fluid. It confirms the gravito-EHD analogy. Indeed, it has the same form as the thermal Archimedean
buoyancy in the Boussinesq approximation. The electric gravity (1-7c) is identical to the earlier definition (1-4b).

In a d.c. electric field or an a.c. electric field of frequency f smaller than the inverse of the charge relaxation
time ⌧e, the accumulation of free charges occurs in the fluid where its electric properties vary in space, e.g., at
the surface of the fluid and in a zone with a sharp temperature gradient. In general, the Coulomb force FE on the
accumulated charges have stronger e↵ects on the fluid motion than the dielectric force FD.
If the frequency of an a.c. field is high compared with the charge relaxation time and the viscous relaxation
time ⌧⌫ = d2/⌫, i.e., if

f � 1
⌧e
,

1
⌧⌫
, (1-8)

the charge accumulation will not occur (d: the distance between the electrodes; ⌫: the kinematic viscosity of the
fluid). Initially non-charged fluid will remain electroneutral so that the Coulomb force is negligible. Even if the
fluid has initially charged in certain zone, no net dynamical e↵ects can arise from the Coulomb force FE , since
it completes a cycle before the fluid motion is induced and the time average of this force is zero. In contrast, the
dielectric force FD involves the electric field squared so that it has a non-zero time averaged component. The
dielectric force FD is hence dominant compared with the Coulomb force in the conditions (1-8).

1.3 Governing equations of the TEHD convection

We consider convection induced by the thermal DEP force, �⇢↵✓ge in (1-7a), in a single-phase dielectric fluid
between two stationary solid electrodes which are kept at di↵erent temperatures T1 and T2 with an imposed di↵er-
ence �T = T1 �T2. For dominance of the dielectric force FD over the Coulomb force FE , we apply an a.c. electric
tension V(t) =

p
2�0 sin(2⇡ f t) between the electrodes and assume the conditions (1-8). We also assume that the

fluid is initially electroneutral everywhere. As no charge accumulation can occur, the latter assumption implies
that ⇢e = 0 throughout the fluid motion.

For modeling the TEHD convection mathematically, the following continuity, momentum and heat conduction
equations can be used [87]:

r ·u = 0, (1-9a)

⇢

 
@u
@t
+ u ·ru

!
= �r⇡ + ⇢⌫r2u � ⇢↵✓ (g + ge) , (1-9b)

@✓

@t
+ u ·r✓ = r2✓, (1-9c)
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where ⇡ is the generalized pressure ⇡ = p + pEHD + ⇢g · r and  is the thermal di↵usivity of the fluid (g: the grav-
itational acceleration of the Earth; r: the position vector). In Eqs. (1-9a) & (1-9b), the Boussinesq approximation
has been adopted, whose validity can be justified by a similar argument for the ordinary thermal convections [87].
The pressure force term, �r⇡, and hence the EHD pressure will not a↵ect the fluid motion in this approximation,
as it cannot generate any vorticity and the fluid has no mobile boundary. In Eq. (1-9c), the viscous energy dissi-
pation and the ohmic heating have been neglected. These e↵ects, which might appear in the right-hand-side of the
equation in the form (2⇢⌫ė : ė + �eE2)/(⇢cp), are negligible compared with the thermal conduction [91] (cp: the
specific heat; ė: the rate-of-strain tensor).

We have the electric gravity in the momentum equation (1-9b), which should be computed from Eq. (1-7c). The
electric field E is required for this computation. It is governed by the Maxwell’s equations for E:

r · [✏ref. (1 � e✓) E] = 0, (1-10a)

r ⇥ E = 0. (1-10b)

The thermal permittivity variation (1-3) and the electroneutrality assumption (⇢e = 0) have been taken into account
when writing the Gauss’ law (1-10a). The Faraday’s law (1-10b) implies that the electric field can be computed
from an electrostatic potential �: E = �r�.
The electric gravity ge oscillate in time, as the applied electric voltage is a.c. However, due to the viscous filtering
of high frequency fluctuations, only the time-averaged component of ge a↵ects the motion of the fluid. We can
compute directly this time-averaged component of the electric gravity by converting the a.c. electric field problem
to an equivalent d.c. problem. This conversion is made by replacing the actual electric voltage

p
2�0 sin(2⇡ f t)

imposed between the electrodes by its root-mean-square �0. The boundary conditions for modeling the TEHD
convection are thus given by

u = 0, ✓ = ✓1, � = �0 at S 1, (1-11a)

u = 0, ✓ = ✓2, � = 0 at S 2, (1-11b)

where S 1 and S 2 denote the surfaces of the first and second electrodes, respectively. The temperatures of the
electrodes are specified by their deviations from the reference temperature: ✓1 = T1 � Tref., ✓2 = T2 � Tref.. This
time-averaged description based on the high frequency assumption (1-8) is valid when 2⇡ f & 100/⌧⌫ according to
a theoretical investigation by Smorodin & Velarde [74].

1.4 Electric gravity in elementary electrode configurations

Three geometrical configurations of the electrodes are of particular interest in applications: plane parallel, cylindri-
cal annular and spherical shell geometries (see illustrations in Table 1.2). This section is devoted to the summary
of the electric gravity generated in stationary conductive flow states in these geometries. We will denote by ⇣ a
spatial coordinate in the direction normal to the electrode surfaces: ⇣ means y in the plane geometry (Table 1.2a)
and it means the radial coordinate r in cylindrical and spherical configurations (Table 1.2bc).

When the fluid is at rest, thermal energy is transported only by conduction.2 In this conductive state, the tempera-
ture varies only in the ⇣ direction: ✓ = ✓(⇣), since the temperature di↵erence is applied by the electrodes. Similarly,

2The fluid is also in a conductive state, when the flow velocity field is perpendicular to the temperature gradient, e.g., in a Couette flow
induced by the motion of electrodes along their surfaces.
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Table 1.2: Three elementary electrode configurations and the fields in the stationary conductive state u = 0. A
temperature di↵erence �T = T1 � T2 and an electric tension V(t) =

p
2�0 sin(2⇡ f t) are applied to the electrodes.

Dimensionless parameters are used for brief expression: the thermoelectric parameter �e = e�T and the radius
ratio ⌘ = R1/R2.

(a) Plain parallel geometry

d

T1

T2

ge
V(t)

Dielectric
fluid

ρ, ν, κ

x

y
✓ = ��T

y
d

with Tref. =
T1 + T2

2
, (1-12)

E = ��0

d
�e

log
⇣

1��e/2
1+�e/2

⌘
1

1 + �ey/d
ey, (1-13)

ge = �
e✏ref.�

2
0�e

↵⇢d3

2
66666664

�e

log
⇣

1��e/2
1+�e/2

⌘

3
77777775

2 ✓
1 + �e

y
d

◆�3
ey (1-14)

(b) Cylindrical annular geometry

R1
R2

T1
T2

ge

V(t)

✓ = �T
log (r/R2)

log ⌘
with Tref. = T2, (1-15)

E = �0

r log ⌘
�e

log (1 � �e)

"
1 � �e

log (r/R2)
log ⌘

#�1

er, (1-16)

ge = �
e✏2

↵⇢

 
�0

log ⌘

!2 "
�e

log (1 � �e)

#2 1 � �e
log ⌘

⇣
1 + log r

R2

⌘

r3
h
1 � �e

log(r/R2)
log ⌘

i3 er. (1-17)

(c) Spherical shell geometry

R1

R2T1
T2

ge

V(t)

✓ =
⌘

1 � ⌘�T
✓R2

r
� 1

◆
with Tref. = T2, (1-18)

E = � ⌘�0

(1 � ⌘) R2

�e

log (1 � �e)

✓R2

r

◆2 "
1 � ⌘�e

1 � ⌘
✓R2

r
� 1

◆#�1

er, (1-19)

ge = �
2e✏2�

2
0

↵⇢R3
2

 
⌘

1 � ⌘
!2 "

�e

log (1 � �e)

#2 ✓R2

r

◆5 1 � ⌘�e
2(1�⌘)

⇣
R2
r � 2

⌘

h
1 � ⌘�e

1�⌘
⇣

R2
r � 1

⌘i3 er. (1-20)

� = �(⇣), so that the electric field is in the ⇣ direction. The heat conduction equation (1-9c) and the Gauss’ law
(1-10a) are then imply that the heat and electric fluxes are constant:

Sd✓
d⇣
= cst., ✏Sd�

d⇣
= cst., (1-21)

where S is the geometrical factor: S = 1, r, and r2 for the plane, cylindrical, and spherical cases. The temperature
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field can be obtained by integrating the first equation with taking into account the boundary conditions (1-11).
Eliminating ⇣ from these two equations and, then, eliminating ✓ from the result with making use of the linear
relationship (1-3), we have ✏d�/d✏ = cst., of which the solution under the boundary conditions (1-11) is given by

� = �0
log [✏(✓)/✏2]
log (✏1/✏2)

. (1-22)

The values of the permittivity at the electrodes S 1 and S 2 are denoted by ✏1 and ✏2, respectively: ✏1 = ✏(✓1),
✏2 = ✏(✓2). Substituting this result in Eq. (1-7c), we get:

ge = � e✏2

⇢↵✏2

"
�0

log (✏1/✏2)

#2  
d✏
d⇣

!2  
1
✏

d✏
d⇣
+

1
S

dS
d⇣

!
e⇣ . (1-23)

The electric gravity is aligned with the ⇣ axis. The temperature, the electric field and the electric gravity calculated
with Eqs. (1-22), & (1-23) for di↵erent electrode configurations are summarized in Table 1.2.

The two terms inside the last parenthesis in Eq. (1-23) represent the competition between the permittivity strat-
ification and the geometry curvature. In the plane geometry, the latter e↵ect is absent and the direction of the
electric gravity is opposite to the permittivity gradient. Since the permittivity decreases with the temperature, ge is
in the same direction as the temperature gradient. This result also holds in curved geometries when the curvature is
small: the gravity is centripetal if the inner electrode is hotter than the outer one (outward heating); it is centrifugal
otherwise. If the curvature e↵ect dominates over the stratification, the electric gravity is centripetal independently
of heating direction. When the permittivity stratification and the curvature are comparable, the electric gravity can
change its direction inside the gap. The phase diagram in Fig. 1-1 summarizes the direction of the electric gravity
in curved geometries, where �e is the thermoelectric parameter �e = e�T and ⌘ is the radius ratio ⌘ = R1/R2 (< 1)
of the inner to outer cylinder radii. The thermoelectric parameter �e quantifies the permittivity stratification. The
radius ratio ⌘ characterizes the geometry curvature. A small ⌘ means a large curvature.

γe 1

-1

I

II
III IV

0 1
η

Boundaries between neighboring zones

Cylindrical annular geometry
Boundary II-III : �e = log ⌘

Boundary III-IV : �e =
log ⌘

1 + log ⌘
Spherical shell geometry

Boundary II-III : �e = �2 (1 � ⌘)
⌘

Boundary III-IV : �e = �2 (1 � ⌘)
2⌘ � 1

Figure 1-1: Phase diagram of the electric gravity configuration in cylindrical and spherical geometries. The ther-
moelectric parameter �e = e�T is positive (negative), when the heating is outward (inward). The parameter ⌘ is
the ratio of the inner to outer cylinder radii: ⌘ = R1/R2.
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1.5 Control parameters and nondimensionalized governing equations

In the light of the analogy of the thermal DEP force with the thermal Archimedean buoyancy force, we can find
dimensionless parameters characterizing the TEHD convection. In the ordinary thermal convection, the Rayleigh
number R = ↵�Tgd3/⌫ controls the stability of the conductive state. The nonlinear development of the convection
depends on the Rayleigh number as well as the Prandtl number Pr = ⌫/ that compares momentum to thermal
di↵usions. For the TEHD convection, Roberts introduced a dimensionless number L that plays an equivalent role
to the Rayleigh number [65]:

L =
↵�TGe,0 d3

⌫
, (1-24)

where Ge,0 is the electric gravity estimated at some reference point in the fluid. The TEHD convection will also
depend on the Prandtl number.
For the TEHD convection, we need also the thermoelectric parameter �e = e�T . It appears, indeed, in the formulae
of the electric gravity in the conductive state (Table 1.2).

These three dimensionless numbers emerge naturally when we nondimensionalize the governing equations (1-9)
and (1-10) with the scales d of length, ⌧⌫ of time, d/⌧⌫ of velocity, �T of temperature, �0 of electrostatic potential
and Ge,0 of electric gravity:

r ·u = 0, (1-25a)
@u
@t
+ u ·ru = �r⇡ + r2u � L

Pr
✓ge, (1-25b)

@✓

@t
+ u ·r✓ = 1

Pr
r2✓, (1-25c)

r · ⇥(1 � �e✓)r�
⇤
= 0. (1-25d)

The last equation is the Gauss’ law (1-10a), nondimensionalized and expressed in terms of the electrostatic poten-
tial �. The electric gravity ge in Eq. (1-25b) is related to the electric field by

ge = Gr (r�)2

2
. (1-26)

The factor G = e✏ref.�
2
0/⇢↵d3Ge,0 is not independent of other dimensionless numbers. It is a function of �e in the

plane geometry and of (⌘, �e) in the curved geometries.
The boundary conditions (1-11) is nondimensionalized as follows:

u = 0, ✓ = ✓1, � = 1 at S 1, (1-27a)

u = 0, ✓ = ✓2, � = 0 at S 2, (1-27b)

where the nondimensionalized temperature deviations ✓1 and ✓2 should satisfy ✓2 � ✓1 = 1. The set of equations (1-
25) and (1-26) with the boundary conditions (1-27) provides the theoretical basis for the analysis of the TEHD
convection.
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Chapter 2

TEHD convection in plane geometry

Theoretical and numerical investigations on the TEHD convection in plane parallel geometry are reported in
this chapter. These investigations were performed in 2012 at the Laboratoire Ondes et Milieux Complexes
in Le Havre in collaboration with Mireille Tadie Fogaing, Olivier Crumeyrolle and Innocent Mutabazi.
Obtained results were communicated at a number of conferences and seminars. They were published in
Eur. Phys. J. E [27] and in Phys. Rev. E [97]. These articles are included in appendix C.

2.1 Introduction

The temperature and electric fields, (u,E), in the conductive state are given in Table 1.2 (Eqs. 1-12 & 1-13). The
temperature is a linear function of the coordinate normal to the wall surfaces (y) as in the Rayleigh-Bénard (RB)
problem. The electric field is intense in the hot fluid zone near the hot electrode, where the permittivity is small.
The electric gravity given by Eq. (1-14) is directed from cold to hot electrodes so that the thermoelectric buoyancy
is expected to have destabilizing e↵ects on the conductive state.
Figure 2-1 shows some profiles of the electric gravity normalized by its value at the mid-gap. For small ther-
moelectric parameters, �e < 0.1, the gravity ge is almost uniform throughout the fluid layer. In contrast, the
non-uniformity is significant for �e > 0.1: the gravity takes large values in the vicinity of the hot electrode and
attenuates near the cold electrode. This non-uniformity at large �e will di↵erentiate the TEHD convection from the
classical RB convection, in which the Earth’s gravity g is uniform.
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Figure 2-1: Electric gravity ge = �Ge(y) ey in the conductive state in plane geometry for di↵erent values of the
thermoelectric parameter �e. (a) Normalized profiles G⇤e(y) = Ge(y)/Ge(0). (b) Values Ge(0) in acetonitrile for an
electrode configuration with a gap d = 10 mm and an electric tension �0 = 1 kV.
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CHAPTER 2. TEHD CONVECTION IN PLANE GEOMETRY

The instability generating the TEHD convection has been investigated theoretically in plane geometry since the
pioneering work of Roberts [65] and Turnbull [87] at the late 60’s. They investigated the stability of the conduc-
tive state, with or without the Earth’s gravity. In microgravity conditions, Roberts predicted the critical electric
Rayleigh number Lc = 2128.696, beyond which a stationary critical mode of wavenumber kc = 3.2260 started to
grow. This result was confirmed by later theories of Takashima & Hamabata [82] and Stiles [77]. Stiles et al. [79]
performed a weakly nonlinear analysis and computed the heat transfer coe�cient in the framework of the Lan-
dau theory. Their results show that the Nusselt number Nu, which is the ratio of the convective to conductive heat
transfer, is given by Nu = 1+a� with a ⇡ 0.8, where � is the normalized distance from the criticality: � = L/Lc�1.
The coe�cient a characterizes the heat transfer improvement beyond but in the vicinity of the critical condition.

Even though all these theoretical works were performed for vanishing thermoelectric parameter: �e ! 0 and,
hence, for a uniform electric gravity field, the instability threshold Lc is 20 % above the critical Rayleigh number Rc

of the RB convection (Rc = 1707.762). The critical wavenumber kc is slightly larger than that of the RB instability
kRB

c = 3.117 [12]. The heat transfer improvement coe�cient a of the RB convection is given by aRB = 1.43 [71].
The conductive state is, therefore, more stable against the electric gravity than against the Earth’s gravity and the
TEHD convection is less e�cient in transferring heat than the RB convection.
The origins of these quantitative di↵erences between the TEHD and RB convections have not been clarified by the
existing studies. Our investigations are intended to reveal how these di↵erences arise. A linear stability analysis
(Sec. 2.2) and a direct numerical simulation (Sec. 2.3) are performed for this aim. The e↵ects of the Prandtl number
on the heat transfer (Sec. 2.4) are also examined, since the dependence of the flow behavior on the fluid properties
is of practical interest in application.

2.2 Linear stability analysis

Flow states slightly deviated from the conductive state (1-12)–(1-14) are governed by Eqs. (1-25) linearized around
the conductive state:

r ·u0 = 0, (2-1a)
@u0

@t
= �r⇡0 + r2u0 � L

Pr
✓0ge �

L
Pr
✓g0e, (2-1b)

@✓0

@t
+ u0 ·r✓ = 1

Pr
r2✓0, (2-1c)

r ·
h⇣

1 � �e✓
⌘
r�0 + �e✓

0E
i
= 0, (2-1d)

where u0, ✓0, and �0 are the perturbation components of the velocity, temperature, and electrostatic potential,
respectively. The perturbation component of the electric gravity, g0e, is computed from the perturbation electric
field by

g0e = Gr
⇣
E ·E0

⌘
= �Gr

h
E ·r�0

i
. (2-2)

The boundary conditions (1-27) read for the perturbation fields:

u0 = ✓0 = �0 = 0 at y = ± 1
2 . (2-3)

Equation (2-1b) is identical to the linearized momentum equation governing the RB instability except the last
term involving the perturbation electric gravity g0e. This component is a consequence of a feedback process of the
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CHAPTER 2. TEHD CONVECTION IN PLANE GEOMETRY

electric field to the temperature field: since the temperature perturbation ✓0 modifies the electric field through the
Gauss’ law (2-1d), the electric gravity also has a perturbation component. In addition to the non-uniformity of
the gravity field ge (Fig. 2-1), this thermoelectric feedback would di↵erentiate the TEHD convection from the RB
convection.

Assuming an infinite lateral extent of the flow system, we can examine the stability of the conductive state by
considering Eqs. (2-1) for a normal mode of exp[st + ikx], where s = � � i! is the complex growth rate (�: the
growth rate; !: the frequency) and k is the wavenumber in the x direction. For this normal mode, Eqs. (2-1) read
the set of ordinary di↵erential equations with respect to the transversal coordinate y:

AX = sBX, (2-4)

where X = [û0 ⇡̂0 ✓̂0 �̂0]tr is the complex amplitude of the normal mode and B is a constant matrix. The di↵erential
matrix operator A depends on the wavenumber k and involves the parameters (Pr, L, �e). We solve this eigenvalue
problem numerically by invoking a spectral collocation method based on the Chebyshev polynomials. If the growth
rate � is negative for any wavenumber k, the conductive state is judged to be stable for a given set of parameters
(L,Pr, �e). Otherwise, the conductive state is unstable.

Critical parameters

A marginal stability curve L = L(k) is obtained for a given parameter set (Pr, �e) by determining the value of L at
which the eigenvalue s crosses the imaginary axis in the complex plain. The minimum of a marginal curve gives
the critical conditions for instability. Some marginal curves for di↵erent values of the thermoelectric parameter �e

are shown in Fig. 2-2(a). Marginal curves are independent of the Prandtl number Pr. This observation is consistent
with the fact that no oscillatory mode is found in the analysis. In fact, we can show from Eqs. (2-1) that the marginal
conditions cannot depend on the Pr if the instability is stationary.1 Marginal conditions, in contrast, depend on the
thermoelectric parameter �e. While only slight influence is detected at small �e (. 0.1), the marginal curve shifts
downward with increasing �e (& 0.1).
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Figure 2-2: Predictions of the linear stability theory: (a) Marginal curves for di↵erent values of the thermoelectric
parameter �e = e�T , (b) Critical electric Rayleigh number Lc and wavenumber kc. In (a), the marginal curve of
the Rayleigh-Bénard instability is also shown for reference.

1Once the time, velocity, and pressure are rescaled by Pr�1, Pr, and Pr, respectively, i.e., when we substitute Pr t, Pr�1u, and Pr�1⇡ to t, u,
and ⇡ in the governing Eqs. (2-1), the Prandtl number appears only as coe�cients of the time derivative terms. The Prandtl number can hence
not influence any stationary mode in marginal conditions.
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As this behavior of the marginal curve implies, the critical electric Rayleigh number and wave number are constant
for �e smaller than 0.1 (Fig. 2-2b). They are Lc = 2128.7 and kc = 3.226, recovering the results reported in
early investigations [65, 77, 82]. Significant variation is found both in Lc and kc for �e > 0.1. This variation
would arise from the non-uniformity of the electric gravity ge: according to its profiles in Fig. 2-1, a sublayer with
intense gravity appears in the vicinity of the hot electrode beyond �e = 0.1. The instability would occur within this
sublayer rather than in the whole gap. Eigenfunctions of the critical modes confirm this conjecture (Fig. 2-3). The
convection is concentrated in a sublayer attached on the hot electrode. The reference electric gravity Ge,0 taken
at the mid-gap will underestimate the electric gravity in this sublayer. This explain the decrease of the critical
electric Rayleigh number for large �e (> 0.1). The sublayer also gives an explanation to the increase of the critical
wavenumber at large �e, as its thickness is smaller than the whole layer thickness.

Hot electrode Hot electrode

Cold electrode Cold electrode

0 3 0 3
(a) γe = 0.01 (b) γe = 1.9

Figure 2-3: Eigenfunctions of critical modes for di↵erent values of the thermoelectric parameter �e. Velocity and
temperature fields are shown by streamlines and by colors, respectively.

Energy transfer from base to perturbation flows

The critical parameters (Lc, kc) take values di↵erent from the RB instability in spite of the gravito-EHD analogy.
This di↵erence is significant even at vanishing �e, where the electric gravity is uniform (Fig. 2-1). Its origin should
be attributed to the perturbation electric gravity, g0e. In order to quantify the e↵ects of this perturbation component,
we can use an evolution equation for the kinetic energy of perturbation flow. This equation is derived from the
linearized momentum Eq. (2-1b) by taking inner products with u0. By averaging the result over a spatial period in
the x direction and by integration over the gap, we have

dK
dt
= WBG +WPG � Dv, (2-5)

where K is the kinetic energy of the perturbation flow, WBG and WPG are the power by the buoyancy forces
associated with the base and perturbation electric gravities, and Dv is the viscous energy dissipation rate. These
terms are computed from the volumetric density of corresponding quantities:

K = hKi , WBG = hwBGi , WPG = hwPGi , Dv = hdvi , (2-6a)

with the densities K = 1
2

u02, wBG = � L
Pr
✓0ge ·u0, wPG = � L

Pr
✓g0e ·u0, dv = ė : ė, (2-6b)

where ė is the rate-of-strain tensor. The angle brackets mean the averaging and integrating operation:

h · i = k
2⇡

Z 2⇡/k

0
dx

Z 1/2

�1/2
dy · . (2-7)
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Equation (2-5) is the Reynolds-Orr equation truncated at the first order. It states that the growth of the perturbation
flow occurs, if the sum of the energies transferred from the base state through the powers WBG and WPG is larger
than the viscous energy dissipation Dv.

Figure 2-4 shows the powers and the viscous dissipation rate in Eq. (2-5) normalized by 2K. They are computed at
critical conditions so that the sum of them is null. It is seen that WBG, WPG, and Dv are all constant at small �e until
�e ⇡ 1. As expected from the gravito-EHD analogy, the buoyancy due to the base electric gravity ge is responsible
for the instability. In contrast, the buoyancy due to the perturbation electric gravity g0e is stabilizing (WPG < 0). Its
magnitude is about 0.2 times WBG. This implies that the buoyancy due to ge must overcome not only the viscous
energy dissipation but also the stabilizing contribution of g0e. This explains why the critical value of L of the TEHD
instability is larger than the critical Rayleigh number of the RB instability by 20 %.
At �e larger than 1, the power WBG increases to compensate the increase in the viscous dissipation Dv. The behavior
of Dv would be associated with the non-uniformity of the base gravity ge. The concentration of the flow in the
sublayer attached on the hot electrode (Fig. 2-3b) gives rise to a smaller flow structure, leading to intense viscous
energy dissipation.
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Figure 2-4: Di↵erent terms in the kinetic energy equation (2-5): WBG: the power by the buoyancy due to the base
electric gravity; WPG: the power by the buoyancy due to the perturbation electric gravity; Dv: the viscous energy
dissipation rate. All the terms are computed for critical modes and normalized by the twice of the kinetic energy K.

Dispersion relation

The growth rate � of the TEHD instability exhibits a typical dispersion relation of a type-I instability, i.e., the
instability with a critical mode of finite wavenumber (Fig. 2-5). The maximum of the dispersion curve varies with
(L, �e) and the detailed shape of the curve depends on the Prandtl number. From the variation of � in function of k
and � (= L/Lc � 1), we can determine a time scale ⌧0 and a length scale ⇠0, both characterizing the behavior of the
system in the vicinity of the criticality [18]:

⌧0 =

 
@�

@�

!

cr
, ⇠0 =

s
⌧0

2

 
@2�

@k2

!

cr
. (2-8)

The time scale ⌧0 gives the perturbation growth rate by �/⌧0 and the length ⇠0 specifies a spatial scale of ampli-
tude modulation in the weakly nonlinear state of the system. They appear in the Ginzburg-Landau equation as
coe�cients (Sec. 2.3).
Similar to the RB convection, the scale ⌧0 increase with the Prandtl number Pr and the scale ⇠0 is independent
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of Pr. As shown in Fig. 2-6(a), the variation of ⌧0 agrees well with the result obtained for the RB instability:
⌧RB

0 = (Pr+ 0.5117)/19.65 [19]. Both scales are independent of �e at small �e (. 0.5), while they decrease slightly
with �e, about 5 % over the range 0.5  �e  1.5 (Fig. 2-6b for ⇠0).
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Figure 2-5: Dispersion curves � = �(k) at di↵erent distances � (= L/Lc � 1) from the criticality and for di↵erent
values of the thermoelectric parameter �e.

0.01 0.1 1 10 100
Pr

0.01

0.1

1

10

     = 0.01
        0.1
        1.0
        1.5

τ0 = (Pr+0.5117)/19.65
γe

τ0

0.01 0.1 1
0.3

0.32

0.34

0.36

0.38

0.4ξ0

γe
(a) (b)

Figure 2-6: Time scale ⌧0 and length scale ⇠0 computed from the dispersion relation � = �(k).

2.3 2D numerical simulation

We investigate the nonlinear behavior of the convection developing from the TEHD instability by a direct numerical
simulation. In the simulation, the flow is assumed two-dimensional and confined in a finite lateral extent �d. The
aspect ratio � is fixed at a large value: � = 117 (Fig. 2-7). The lateral walls are rigid and suppress perturbations by
the following imposed boundary conditions:

u = 0,
@✓

@x
= 0,

@�

@x
= 0 at x = ±�

2
, (2-9)

i.e., no heat flux and no electric flux across the lateral wall surfaces. These conditions are compatible with the
conductive state (1-12)–(1-14) that was regarded as the base state in the linear stability theory in Sec. 2.2. The
condition of no electric flux is valid for a wall material of small permittivity ✏wall compared with ✏.2 If the wall

2The Gauss’ law requires ✏(E?) f luid = ✏wall(E?)wall for non charged wall surface [33], where E? stands for the normal component of
electric field to the surface. Thus, the condition of no electric flux means @�/@x = (E?) f luid = (✏wall/✏)(E?)wall = 0.
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material does not satisfy this requirement, we should modify no electric flux condition. The lateral walls wouldn’t
however produce any significant e↵ects at the convection in the central part (x ⇡ 0) for such a large aspect ratio as
the considered geometry.

117

Δx = 0.15
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∂θ
∂x = 0,
∂φ
∂x = 0. ∂θ

∂x = 0,
∂φ
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θ = φ = 0

θ = φ = 1

1

Figure 2-7: Grids and boundary conditions employed in the DNS.

The numerical code is based on the finite element method and implemented on a commercial CFD software (COM-
SOL Multiphysics 3.5). A regular grid system has been employed with sides �x = 0.15 and �y = 0.1 (Fig. 2-7).
The initial velocity, temperature and electric fields are specified as null everywhere and a temperature di↵erence �T
(= 1) and electric tension �0 (= 1) are applied instantaneously at t = 0. Simulations are performed for di↵erent
Prandtl numbers, while the thermoelectric parameter is kept at a small value (�e = 0.03).

No convection is observed at small electric Rayleigh number L and the heat transfer is only due to thermal conduc-
tion in the fluid. For L larger than 2130, stationary convection rolls develop through a supercritical bifurcation and
improve the heat transfer. The rolls have a well-defined spatial period in the x direction with a wavenumber about
3.2 (Fig. 2-8a). Observed wavenumber values are shown in Fig. 2-8(b), where the Eckhaus instability boundary
� = 3⇠2

0(k � kc)2 is also shown. The value of ⇠0 determined in Sec. 2.2 is used for tracing this boundary. All
the wavenumbers are found inside the curve so that the observed convection flows are stable against the Eckhaus
instability.
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Figure 2-8: Saturated TEHD convection. (a) Fields at L = 2200: (a1) the temperature and velocity; (a2) the power
density wBG by the buoyancy due to the base electric gravity; (a3) the power density wPG by the buoyancy due to
the perturbation electric gravity as well as the perturbation gravity itself. (b) Wavenumbers at di↵erent distances �
(= L/Lc � 1) from the criticality. The curve labeled as LS is the marginal stability curve determined by the linear
stability theory. The curve EI is the Eckhaus instability boundary.
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The energy transfer from the base to perturbation flows can be analyzed by the same kinetic energy equation as
Eq. (2-5), but with WPG completed by a higher order contribution of the perturbation electric gravity:

WPG = hwPGi , with the density wPG = � L
Pr

⇣
✓g0e ·u0 + ✓0g0e ·u0

⌘
. (2-10)

The buoyancy due to the base electric gravity ge transfers energy at the mi-gap (Fig. 2-8a2), while the power by the
buoyancy due to the perturbation electric gravity g0e is e�cient rather in the vicinity of the electrodes (Fig. 2-8a2).
The viscous energy dissipation occurs on the electrodes, as in the RB convection.
Figure 2-9 shows di↵erent energy transfer terms of the kinetic energy Eq. (2-5) computed for saturated flow states.
Each term is proportional to the normalized distance from the criticality �. The base and perturbation electric
gravities have destabilizing and stabilizing e↵ects, respectively, similar to the results obtained by the linear theory
(Sec. 2.2). Their ratio of WBG/|WPG | is also around 0.2. The perturbation electric gravity persists to impede the
convection flow so much as in the linear flow regime.
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Figure 2-9: Energy transfer terms in the kinetic energy equation (2-5) for saturated convection (Pr = 100, �e =
0.03). The horizontal axis is the distance � (= L � Lc � 1) from the criticality.

Weakly nonlinear model

The TEHD instability is of type I-s [20, 18]. The behavior of the flow in the weakly nonlinear regime can be
described by the Ginzburg-Landau equation with real coe�cients:

⌧0
@A
@t
= �A + ⇠2

0
@2A
@x2 � ` |A|2 A, (2-11)

where A is the amplitude of perturbation flow. We have already obtained the values of ⇠0 and ⌧0 from the dispersion
relation in Sec. (2.2). We can confirm these values by determining them from the DNS results.
From the initial stage of the convection development in DNS where the amplitude increases exponentially, we can
determine the growth rate �. Repeating this determination at di↵erent distances �, we obtain ⌧�1

0 as the coe�cient
of proportionality between � and �: � = ⌧�1

0 �. The value of ⇠0 can be determined from the saturated flow near one
of the lateral walls. In a system with a large lateral extent as in the present case, the suppressing e↵ect of a lateral
wall results in a hyperbolic tangent variation of the amplitude: |A| = p�/` tanh[(x � xw)/⇠], where ⇠ =

p
2⇠0��1/2

and xw is the coordinate of the wall. This envelope function predicts correctly the amplitude behavior (Fig. 2-10a2).
The best fitting hyperbolic tangent profile gives a value of ⇠. Determining ⇠ for di↵erent �, we obtain ⇠0 as the
coe�cient of proportionality of the relationship ⇠�2 = �/2⇠2

0 (Fig. 2-10b). Determined values recover the results
from the dispersion relation reported in Sec. 2.2.
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The coe�cient of the nonlinear term, `, can be determined from the amplitude A0 of saturated flow at the central
zone. In a system with a large lateral extent, the amplitude is constant (@xA = 0) in the central zone so that
A0 =

p
�/` according to Eq. (2-11). Plotting A2

0 in function of �, the constant ` is determined from the coe�cient
of proportionality between them (Fig. 2-10b).
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v’(y = 0) v’A

Figure 2-10: Suppressing e↵ects of a lateral wall at x = �57 (Pr = 10, L = 2200, �e = 0.03). (a1) Velocity and
perturbation temperature fields, (a2) Transversal velocity component v0 at the mid-gap with a hyperbolic tangent
envelop A; (b) The saturated amplitude at the central zone, A0, and the constant ⇠ that characterizes the hyperbolic
tangent envelop.

2.4 Heat transfer

As in the RB convection, the heat transfer is improved by TEHD convection (Fig. 2-11a). In the vicinity of the
criticality, the enhancement is given by Nu = 1 + a� with a = 0.78 for Pr larger than the unity. This value of
the improvement coe�cient recovers the result of Stiles et al. [79] obtained by a weakly nonlinear analysis. It is
significantly smaller than the coe�cient for the RB convection. In the simulations, �e is small so that the electric
gravity ge is uniform. The observed di↵erence in the value of a between the two convections should be attributed
to the buoyancy associated with the perturbation electric gravity. Indeed, as we have seen earlier, WPG takes non-
negligible value even in saturated state of convection. The impeding e↵ect of g0e on the flow leads to a smaller
e�ciency of the heat transfer enhancement in the TEHD convection than in the RB convection.
Figure 2-11 (b) shows the values of the coe�cient a for di↵erent Prandtl numbers. For Pr < 0.1, a increases
with Pr, while it is constant for Pr & 1. In the RB convection, the variation of the coe�cient is given by aRB =

(0.69942 � 0.00472 Pr�1 + 0.00832 Pr�2)�1 [71]. Seeking for a similar equation, we obtain the correlation for the
TEHD convection heat transfer:

a =
 
1.28 � 0.0273

Pr
+

0.0077
Pr2

!�1

. (2-12)

The curves a = a(Pr) and aRB = aRB(Pr) are shown in Fig. 2-11 (b). The di↵erence between the two convections is
significant at Pr larger than 0.1.

2.5 Conclusion

The analogy between TEHD convection and RB convection has been known since the beginning of its theoretical
and experimental investigations. However, any critical examination of this analogy has not been done before our
investigations. We confirmed similarities between these convection phenomena in the critical parameters and in
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Figure 2-11: Heat transfer enhancement by TEHD convection: (a) the Nusselt number in function of the distance
from the criticality � (L/Lc � 1) for Prandtl numbers Pr larger than the unity; (b) the heat transfer improvement
coe�cient a.

their behavior in nonlinear flow regime. However, detailed analyses showed essential di↵erences arising from two
factors: the non-uniformity in the electric gravity field and the feedback of electric field to temperature field. The
former e↵ect is prominent only at large �e & 1, while the latter always di↵erentiates the TEHD convection from
the RB one. The feedback gives rise to a perturbation component in the thermoelectric buoyancy force. For the
convection to develop from the conductive state, the driving buoyancy force should overcome the stabilizing e↵ect
of this perturbation component as well as the viscous energy dissipation. Consequently, the critical parameters
are di↵erent from those of the RB instability. The perturbation buoyancy component also impedes the flow in the
nonlinear regime. The convection is weakened by it and the heat transfer is less e�cient compared with the RB
convection.
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Chapter 3

TEHD convection in cylindrical annular
geometry

Theoretical investigation on the TEHD convection in cylindrical annular geometry is reported. This research
was done in 2012 at the Laboratoire Ondes et Milieux Complexes in Le Havre in collaboration with Satish
Malik, Olivier Crumeyrolle and Innocent Mutabazi. The results were presented at a number of conferences
and published in Acta Astronaut. [52] and in Phys. Fluids [96]. The latter article is included in appendix C.

3.1 Introduction

In the TEHD convection in plane geometry (Chap. 2), three dimensionless numbers are essential to characterize the
system: the thermoelectric parameter �e, the Prandtl number Pr and the electric Rayleigh number L. An additional
parameter is required in cylindrical annular geometry, which specifies the geometry curvature. We will adopt the
ratio ⌘ = R1/R2 of the inner cylinder radius R1 to the outer one R2 as this parameter. Coupled with the direction
of heating specified by the sign of �e, the fourth dimensionless number a↵ects the system behavior significantly.
Indeed, the electric gravity in the conductive state (Eq. 1-17) changes its direction in function of (⌘, �e) as illustrated
in the electric gravity diagram in Fig. 1-1.
In outward heating, i.e., if the inner electrode is hotter than the outer one (�e > 0), the electric gravity (1-17) is
centripetal for any ⌘ (Zone I in the electric gravity diagram). If the heating is inward (�e < 0), the direction of
the electric gravity depends on ⌘: centripetal when �e > log ⌘ (Zone II); centrifugal when �e < log ⌘/(1 + log ⌘)
(Zone IV). When �e is found in the narrow zone log ⌘ < �e < log ⌘/(1 + log ⌘) (Zone III), the gravity is centripetal
in an inner layer and centrifugal in the outer layer. Fig. 3-1 (a) and (b) shows some profiles of the electric gravity.
The gravity has been normalized by its magnitude at a reference position r = rref. inside the gap.

Early theoretical studies on the TEHD convection in cylindrical annular geometry focused to the stability of the
conductive state against axisymmetric perturbations. Considered geometries were of small gap (⌘ & 0.9) and
researchers had not been aware of the variety of the electric gravity behavior shown in the electric gravity diagram
(Fig. 1-1). Chandra & Smylie[11], who pointed out the geophysical interest of the TEHD convection in curved
geometries, performed a linear stability analysis with assuming vanishing thermoelectric parameter �e ! 0 and
axisymmetric perturbations. Their analysis was restricted to the case where the electric gravity was centripetal
with outward heating. The thermoelectric feedback e↵ect, i.e., the perturbation electric gravity g0e, was neglected
without any justification. For ⌘ = 0.899 that was a particular case corresponding to their experiment, they obtained
the critical parameters (Lc, kc) = (2119.346, 3.117). In the experiment, they used a vertically installed cylindrical
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Figure 3-1: The electric gravity ge = �Ge(r)er in the conductive state in cylindrical annular geometry: (a) profiles
for di↵erent radius ratios ⌘ in outward heating (�e > 0) and (b) profiles in outward and inward heatings at ⌘ = 0.95.
The centripetal acceleration is regarded as positive. The acceleration is normalized by its magnitude at a reference
point r = rref. = 1/| log ⌘|: G⇤e = Ge(r)/|Ge(rref.)|. The origin of the normalized shifted coordinate r⇤ coincides with
the inner cylinder. The outer cylinder position corresponds to r⇤ = 1.

electric capacitor of large aspect ratio. The gap of the capacitor was small (d = 1.92 mm) and filled by a silicone
oil of Pr = 154. The Grashof number Gr = ↵�Tgd3/⌫2 was kept at small values (Gr . 3.5) so that e↵ects of
the Earth’s gravity were negligible. Their measurements showed continuous increase of the Nusselt number from
the unity at a critical value of the electric Rayleigh number L, implying that the TEHD convection developed
beyond the instability threshold through a supercritical bifurcation. The predicted value of Lc agreed well with the
experiments. No flow visualization was realized and the wavenumber of the convection was not determined.
Takashima [81] performed a more systematic theoretical study with varying the imposed temperature di↵erence
and the radius ratio ⌘, but with keeping the assumption of axisymmetric perturbations. He considered both inward
and outward heating for narrow gap geometries: 0.9091  ⌘  0.9999. He took into account partially the ther-
moelectric feedback e↵ect. His analysis showed strong sensitivity of the stability to the heating direction. With
decreasing ⌘, the critical electric Rayleigh number decreased in outward heating, while it increased and seemed to
diverge in inward heating. The critical wavenumber varied little and was around 3.2 in outward heating. In inward
heating, it increased rapidly with decreasing ⌘.
Recently, Sitte et al. [73] have realized flow visualization by a schlieren technique in a microgravity environment
during parabolic flights. Their cylindrical capacitors had large gap (⌘ = 0.29 and 0.45). They obtained temperature
fields integrated in the axial direction. The fields indicated that the developed convection was non axisymmetric.

All the existing theories were concerned only with small gap geometries (⌘ & 0.9). They were all based on the as-
sumption of axisymmetric perturbations, even though an experiment indicated non-axisymmetric convective flows.
In our investigation, we explore the whole range of ⌘ and to consider both axisymmetric and non-axisymmetric
perturbations. The role of thermoelectric parameter is also examined, considering both outward and inward heating
cases. The investigation is also intended to get insights into the instability mechanism in order to check the idea of
the experimental simulations of geophysical flows: we try to clarify similarities with and di↵erences from thermal
convections in a radial gravity field.

Our theoretical work is based on the nondimensionalized governing equations (1-25). The electric Rayleigh num-
ber L in the momentum Eq. (1-25b) is based on the electric gravity Ge,0 at a reference point rref. (Eq. 1-24). In the

24



CHAPTER 3. TEHD CONVECTION IN CYLINDRICAL ANNULAR GEOMETRY

present chapter, we adopt

rref. =
1���log ⌘

���
. (3-1)

This coordinate is a radial position where the e↵ect of the geometry curvature cancels in the sense that the heat
flux density at r = rref. takes the same value as in a plane geometry of the same gap size and the same imposed
temperature di↵erence. This reference point is found inner than the mid-gap r = (r1 + r2)/2, where r1 and r2 are
the nondimensionalized radial positions of the inner and outer cylinders: r1 = ⌘/(1 � ⌘), r2 = 1/(1 � ⌘).

3.2 Linear stability analysis

The evolution of small perturbations around the conductive state is governed by the linearized governing Eqs. (2-1)
given in the previous chapter, but with the base conductive state (1-15)–(1-17). The perturbation electric gravity is
computed by Eq. (2-2) with the coe�cient G adapted to the cylindrical geometry and to the reference position r =
rref.. The boundary conditions (1-27) read:

u0 = 0, ✓0 = �0 = 0 at r = r1, r2. (3-2)
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Figure 3-2: Marginal curves for di↵erent azimuthal modes in geometries of small and large radius ratios ⌘ (�e =
0.01).

We assume cylinders of infinite length. The stability of the conductive state can then be determined by considering
normal mode perturbation fields exp[st + im' + ikz], where s = � � i! is the complex growth rate (�: the
growth rate; !: the frequency), m is the azimuthal mode number, and k is the axial wavenumber. The azimuthal
and axial coordinates are denoted by ' and z, respectively. For this mode, the governing Eqs. (2-1) forms an
eigenvalue problem AX = sBX, where X = [û0 ⇡̂0 ✓̂0 �̂0]tr is the complex amplitude of the normal mode and B is a
constant matrix. The di↵erential matrix operator A depends on the mode and wave numbers (m, k) and involves the
parameters (L, ⌘, �e,Pr). We solve this eigenvalue problem numerically by invoking a spectral collocation method
based on the Chebyshev polynomials.
The eigenvalue s with the maximum real part crosses the imaginary axis in the complex plane at a certain value of
L for given (m, k) and for given parameters (⌘, �e,Pr). Determining this value of L with varying the wavenumber
k, we obtain the marginal stability curve L = L(k) for the azimuthal mode m.
Figure 3-2 shows marginal curves at small and large ⌘ for di↵erent azimuthal modes. The abscissas are the
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total wavenumber q (Fig. 3-3) that is computed from the axial wavenumber k and the azimuthal wavenumber k'
estimated at the reference radial position rref. (Eq. 3-1):

q =
q

k2 + k2
' with k' =

m
rref.
. (3-3)

ψ �

q

Reference cylindrical
surface r = r

z

ref.

Figure 3-3: Definitions of the total wavenumber q and the inclination angle  

In Fig. 3-2, certain curves end at finite values of q, since q � |k'| > 0 for non-axisymmetric modes (m , 0).
Marginal curves for di↵erent azimuthal modes are distinct from each other at small ⌘ (Fig. 3-2a), while mode
degeneration is observed at large ⌘ (Fig. 3-2b). The degeneration reflects the fact that, as ⌘ ! 1, the annular
geometry approaches a plane geometry where no distinction between axial and azimuthal direction is possible.
Instability is found to be stationary (! = 0), as in the TEHD convection in plane geometry (Chap. 2). This implies
that the marginal curves are independent from the Prandtl number Pr (see the argument given in the paragraph
Critical parameters in Sec. 2.2). For characterizing the stability of the conductive state, we need hence explore
only the parameter plane (⌘, �e).

Seeking marginal curves for di↵erent azimuthal modes m in di↵erent zones of the ⌘-�e plane, we find no instability
in Zones II & III in the electric gravity diagram (Fig. 1-1). The conductive state is hence stable in inward heating
except in the case where the electric gravity is centrifugal throughout the fluid layer (Zone IV). The stability in
Zone II can be understood from the gravito-EHD analogy. The temperature gradient is opposed to the electric
gravity in this zone so that the buoyancy due to the electric gravity attenuates perturbations. The stability in
Zone III is associated with the thermoelectric feedback, as we will reveal it later by an energetic analysis.
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For given (⌘, �e) in other parameter zones than Zones II & III, we seek the azimuthal mode m = mc that gives
the lowest marginal curve. Determining the minimum of this marginal curve, we obtain the critical parameters
(mc, qc, Lc). Figure 3-4 shows Lc and the total wavenumber k = qc of the critical mode (mc, kc). The inclination
angle  (Fig. 3-3) of the convection rolls at the reference position rref. is also plotted:  = arctan(k'/k). The critical
mode is non axisymmetric independently from ⌘ and �e, except in the indeterminable case at large ⌘ due to the
mode degeneration. For outward heating, i.e., in Zone I in the electric gravity diagram (Fig. 1-1), Lc and qc take
similar values to the critical parameters of the RB instability (Rc = 1708, kRB

c = 3.117). Discontinuities seen in
the qc-curves correspond to changes of the critical azimuthal mode number mc. When ⌘ approaches the unity, the
curves of Lc and qc converge to their values in the plane geometry, as expected. For inward heating (�e < 0), the
instability occurs in Zone IV, but with higher critical electric Rayleigh number Lc than in outward heating. As ⌘
decreases inside Zone IV, the critical Rayleigh number diverges at the boundary with Zone III where no instability
is found. The critical wavenumber increases significantly with decreasing ⌘. This behavior of Lc and qc for inward
heating agrees with Takashima’s results [81].
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Figure 3-5: Critical eigenmodes for small and large radius ratios ⌘. For ⌘ = 0.3, m = 2, k = 1.91 and L = 1177.
For ⌘ = 0.9, m = 25, k = 1.68 and L = 1732. For both cases , the heating is outward (�e = 0.01) so that the electric
gravity is centripetal. In the third column, the fields at the mid-gap are visualized with the coordinate r0', where
r0 is the mid-gap radial position.
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Eigenfunctions

Eigenfunctions of the critical modes are shown in Fig. 3-5 for small and large ⌘. In both cases, the inner cylinder
is hotter than the outer one so that the electric gravity ge is centripetal (Zone I). Similar to ordinary thermal
convections, flow goes radially outward against ge inside hot cells, while it does inward inside cold cells. At small
⌘, fluid flow is concentrated in an inner region: the centers of convection rolls and temperature cells are found inner
than the mid-gap. This justifies our choice of the reference position rref. (Eq. 3-1) to compute the electric Rayleigh
number. The reference position r = rref. is found inner than the mid-gap and approaches the inner cylinder as ⌘
decreases. The electric gravity ge at r = rref. would be more representative than that at the mid-gap in geometries
with small ⌘.

Energetic analysis

In the analysis of the TEHD convection in plane geometry (Chap. 2), we revealed the role of the perturbation
electric gravity by the evolution Eq. (2-5) of the kinetic energy. We can also apply this equation to the current
cylindrical geometry. Figure 3-6 shows the powers WBG and WPG by the buoyancy forces associated with the
base and perturbation electric gravities, ge and g0e, respectively. Both powers are computed for critical modes and
normalized by the twice of the kinetic energy, 2K (see Eqs. 2-6 for the definitions of WBG, WPG, and K). As in the
TEHD instability in plane geometry, the buoyancy due to ge is responsible for the destabilization (WBG > 0), while
the buoyancy associated with g0e is stabilizing (WPG < 0). In inward heating (�e > 0), the contribution of WPG is
negligible at small ⌘, while it becomes significant at large ⌘. When ⌘ ⇡ 1, the magnitude of WPG is around 20 %
of WBG as in the plane geometry case. This behavior of WPG explains why the critical parameters (Lc, qc) recovers
the results of the RB instability at small ⌘, although they converge to the values of the TEHD instability in plane
geometry as ⌘! 1. Except for large ⌘, the thermoelectric feedback is negligible in the TEHD instability in annular
geometry. The TEHD instability at small ⌘ is hence an exact analogue to the ordinary thermal convection in a given
radial gravity field g = ge. This validates the attempts to simulate geophysical flows by the TEHD instability.

In inward heating, the instability can occur only in Zone IV where ⌘ is large and the stabilizing e↵ect of the
perturbation electric gravity is significant. As ⌘ decreases, the stabilization becomes more and more important.
The buoyancy due to ge cannot overcome this stabilization even in Zone III where the density stratification is
potentially unstable in a sublayer against the base electric gravity ge. The absence of the TEHD instability in
Zone III arises from the dominance of the perturbation electric gravity over the base electric gravity.
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3.3 Conclusion

Existing theories on the TEHD instability in annular geometry have been concerned only with axisymmetric per-
turbations in small gap geometries (⌘ & 0.9). These limits disabling to explain experimental results were removed
in the present work. We considered the whole area of the ⌘-�e plain and showed the close relation of the stability
with the behavior of the base electric gravity, e.g., with the electric gravity diagram (Fig. 1-1). The instability
occurs only in Zones I & IV, where the base electric gravity ge has the same direction as the imposed temperature
gradient throughout the fluid layer. Our analysis also showed the non-axisymmetry of critical modes: the hypothe-
sis of axisymmetric perturbations will overestimate the instability threshold, in particular at small ⌘. We examined
the energy transfer process from the base to perturbation flows by an evolution Eq. (2-5) of the kinetic energy. An
important conclusion was derived: the gravito-EHD analogy is exact at small ⌘, where the thermoelectric feedback,
i.e., the perturbation electric gravity g0e, is negligible. This conclusion validates the geophysical application of the
TEHD convection.

The negligibility of the thermoelectric feedback at small ⌘ would hold even in the nonlinear flow regime. Recently,
Travnikov et al. [86] realized a direct numerical simulation for di↵erent fluids of di↵erent Prandtl numbers (0.7 
Pr  100) in geometries with small ⌘ (0.1  ⌘  0.5). They confirmed the development of non-axisymmetric
convection rolls and computed heat transfer. The coe�cient a of the heat transfer improvement, i.e., a in the
relationship Nu = 1+ a(L/Lc � 1), is significantly larger than in the plan geometry case. For example, a = 1.42 for
⌘ = 0.5 and Pr & 1. In plane geometry, the coe�cient a takes a small value 0.78 for Pr & 1, as a consequence of the
impeding e↵ects of the thermoelectric feedback (Sec. 2.4). The large values of a obtained by Travnikov et al. [86]
are comparable with the coe�cient for the RB instability (aRB = 1.43) and would indicate that the perturbation
electric gravity is negligible in nonlinear convection in curved geometries of small ⌘.
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Chapter 4

Taylor-Couette flow with a radial
temperature gradient

Theoretical investigation on the stability of the flow in a vertical non-isothermal Taylor-Couette system is
reported. The considered flow is induced by di↵erential heating of the cylinders and by the inner cylinder
rotation. This investigation was started in 2013 in collaboration with Antoine Meyer (LOMC), Innocent
Mutabazi (LOMC), and Masato Nagata (University of Tianjin). Some results were communicated at di↵er-
ent conferences and published in Phys. Fluids [101]. The latter article is included in appendix C.

4.1 Introduction

Heat removal through fluid between stationary and rotating elements is one of the keys for e�cient and reliable
operation of mechanical systems [5, 43, 47]. For controlling heat transfer between the elements, it is important to
explore the conditions under which vortices emerge due to an instability from non-vortical flow at low Reynolds
number. A prototype of such systems is a Taylor-Couette flow between two coaxial cylinders with a radial temper-
ature gradient and with the inner cylinder rotating.
In this axisymmetric system, the fluid is stratified in density and viscosity, as they vary with the fluid temperature
T . If the temperature variation is small, the fluid flow can be modeled by the following continuity and momentum
equations in the Boussinesq approximation:
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where (u, v,w) are the radial, azimuthal and axial components of the velocity field. The Laplacian operator in the
cylindrical coordinates (r,', z) for scalars is designated by 4: 4 = @2

r +
1
r @r +

1
r2 @

2
' + @

2
z . The fluid density and

kinematic viscosity are denoted by ⇢ and ⌫, respectively. The subscript ref. means “at a reference temperature
T = Tref.” and ✓ is the deviation of the fluid temperature T from the reference temperature: ✓ = T � Tref.. The
gravitational acceleration g has been assumed to be directed in the negative z direction.
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The temperature dependence of the density ⇢(✓) = ⇢ref.(1 � ↵✓) is retained only in the terms involving either the
acceleration v2/r or the gravity g, since the fluid acceleration induced by these terms can be significant compared
with the e↵ects of other terms even for a small ✓. Equations (4-1b)–(4-1d) can be written in a vectorial form:

⇢

 
@u
@t
+ u ·ru

!
= �r⇡ + ⇢⌫r2u � ⇢↵✓ (gc + g) (4-2)

where gc stands for the centrifugal acceleration: gc = (v2/r) er and ⇡ is the generalized pressure: ⇡ = p + ⇢g · r
(r: the position vector). In Eq. (4-2), the subscript ref. has been omitted. The last term in Eq. (4-2) consists of
two parts: the first one, �⇢↵✓gc, is the thermal buoyancy force arising from the centrifugal acceleration gc and the
second one, �⇢↵✓g, is the thermal Archimedean buoyancy force due to the Earth’s gravity g. We call the former
the centrifugal buoyancy force to underline the origin of this buoyancy, although its direction can be centripetal or
centrifugal depending on the temperature deviation ✓.

The stability of Taylor-Couette flow with radial heating has been investigated both experimentally and theoretically.
In an experiment with a small gap of radius ratio ⌘ = 0.958 and with di↵erent fluids of Prandtl number Pr ⇡ 5
and 19, Snyder & Karlsson [75] found that a temperature di↵erence �T imposed on the system stabilized the
flow if its magnitude |�T | is small, while it was destabilizing for large |�T |. In the stabilizing temperature range,
toroidal vortices were observed. Spiral flow consisting of pairs of counter rotating vortices of uneven sizes was
observed in the destabilizing temperature range. The wavelength of this flow pattern was almost constant, while the
azimuthal wavenumber varied with �T . The flow pattern moved in the azimuthal direction with an angular velocity
almost the half of the inner cylinder rotation speed. Sorour & Coney [76] performed experiments also in small gap
geometries (⌘ = 0.911 or 0.948). Their fluid was viscous oil with the kinematic viscosity either ⌫ = 41 mm2/s or
⌫ = 75 mm2/s. They found continuous destabilization with increasing |�T |. The observed toroidal flow consisted
of uneven sized vortices. Lepiller et al. [49] performed an experiment in wide gap geometry (⌘ = 0.8) with
deionized water (Pr = 5.5). Their experiment showed continuous destabilization with increasing temperature
di↵erence independently of its sign. The observed flow was spiral. The size of the spiral vortices increased with
�T until a certain value, beyond which flow pattern became insensitive to further increase of the temperature
di↵erence.

Theoretical studies of non-isothermal Taylor-Couette flows have been based on the Boussinesq approximation, i.e.,
on the continuity Eq. (4-1a) and the momentum Eq. (4-2). Many of them assumed axisymmetric perturbations so
that experimentally observed spiral vortices could not be explained by these theories. Furthermore, other assump-
tions were often made. Some of the existing investigations were concerned only with the case where the thermal
Archimedean buoyancy is negligible [2, 3, 25, 26, 41, 49, 51, 75, 78, 83, 89, 93], because of the interests in partic-
ular flow systems (e.g., centrifugal pumps used in microgravity environments) and in astrophysical applications.
It was shown that the role of the temperature gradient on the flow stability was dependent of the geometry (i.e.,
the radius ratio ⌘) and the fluid di↵usion properties (i.e., the Prandtl number Pr) [41, 78, 83, 89]. Only a few of
the existing studies [25, 75] highlighted the sensitivity of the flow behavior to the heating direction. A thorough
linear stability analysis has been performed by Ali & Weidman [1] for both axisymmetric and non-axisymmetric
perturbations with varying the radius ratio ⌘ and the Prantdl number Pr. Inward heating (i.e., the outer cylinder
is hotter than the inner one) as well as outward heating (i.e., the inner cylinder is hotter than the outer one) were
considered. The theoretical model took into account the Archimedean buoyancy, but neglected the centrifugal
buoyancy. The stabilization by the temperature gradient was shown to depend both on ⌘ and Pr. The authors dis-
cussed the symmetry properties of their theoretical model and derived important conclusions: the stability of the
system is independent of the heating direction, while the axial phase velocity of perturbation flow changes the sign

32



CHAPTER 4. TAYLOR-COUETTE FLOW WITH A RADIAL TEMPERATURE GRADIENT

if the heating direction is inverted. These conclusions are consistent with the experiment of Lepiller et al. [49], but
inconsistent with the results of Snyder & Karlsson [75]. The latter authors found that their flow system was more
stable in outward heating than in inward heating.

In the existing theoretical studies, there are discrepancies between them regarding the stabilizing temperature e↵ect
and the sensitivity to the heating direction. Furthermore, the centrifugal buoyancy has not been taken into account
in any theories for non-axisymmetric perturbations. We revisit the linear stability problem of non-isothermal
Taylor-Couette flows, considering a system with inner and outer cylinders maintained at temperatures T1 and
T2, respectively (Fig. 4-1a). Only the inner cylinder rotates with an angular velocity ⌦. We employ the full
momentum Eq. (4-2) in the Boussinesq approximation, with the centrifugal and Archimedean thermal buoyancy
terms. We examine the stability against axisymmetric and non-axisymmetric perturbations. In order to clarify
the e↵ects of the heating direction, both outward and inward heatings are considered by setting the temperature
di↵erence �T = T1 � T2 at positive and negative values. The results reported in the present chapter are concerned
mainly with a particular geometry of ⌘ = 0.8, which corresponds to the experiment of Lepiller et al. [49].
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Figure 4-1: A non-isothermal Taylor-Couette flow. (a) Schematic illustration of the considered system. (b) Nor-
malized vertical velocity in the conductive state w⇤ = w/Gr for di↵erent values of the radius ratio ⌘. The abscissa
r⇤ is the normalized shifted coordinate: r⇤ = r � r1. The origin of r⇤ coincides with the inner cylinder, while r⇤ = 1
corresponds to the outer cylinder position.

Nondimensionalized governing equations and dimensionless parameters

Our theoretical model is based on the continuity and momentum equations in the Boussinesq approximation,
Eqs. (4-1a) & (4-2), as well as the heat conduction equation. Nondimensionalizing them with the scales d (=
R2 � R1) of length, ⌧⌫ = d2/⌫ of time, d/⌧⌫ of velocity and �T of temperature, we have

r ·u = 0, (4-3a)
@u
@t
+ u ·ru = �r⇡ + r2u � Gr F2✓gcer + Gr✓ez (4-3b)

@✓

@t
+ u ·r✓ = 1

Pr
r2✓, (4-3c)
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where gc = v2/r is the dimensionless centrifugal acceleration. In the heat conduction Eq. (4-3c), the viscous
heating has been neglected. The boundary conditions on the inner and outer cylinders are given by

u =
r

⌘

1 � ⌘ Ta e', ✓ = 1 at r = r1; u = 0, ✓ = 0 at r = r2, (4-3d)

where r1 and r2 are the coordinates of the inner and outer cylinders: r1 = ⌘/(1 � ⌘) and r2 = 1/(1 � ⌘).
The Taylor number and the Grashof number as well as another dimensionless number F have been introduced:

Ta =
R1⌦d
⌫

r
d
R1
, Gr =

↵�Tgd3

⌫2 , F =
⌫

p
gd3
. (4-4)

A positive value of the Grashof number Gr implies outward heating, while a negative Gr means inward heating.
The parameter F depends on the geometry and the fluid viscosity only. It represents the relative importance of
the centrifugal buoyancy to the Archimedean buoyancy. The square of F is identical to the inverse of the Galileo
number Ga = gd3/⌫.

4.2 Conductive state

Even in the absence of the cylinder rotation, di↵erential heating by cylinders creates fluid vertical motion. The
fluid rises and falls in the vicinity of hot and cold cylinders, respectively. For a cylinder annulus of large height �d
(� > Pr Gr/400), this vertical flow is in the conduction regime [1] and homogeneous in the azimuthal and axial
directions.
Supposing this homogeneity in the ' and z directions, we can determine the flow state from Eqs. (4-3a)–(4-3d)
when both inner cylinder rotation and di↵erential heating are applied to the system. The velocity and temperature
fields (u, ✓) are given by

u = v(r) e' + w(r) ez, ✓ =
log (1 � ⌘) r

log ⌘
with (4-5a)

v =
⌘3/2Ta

(1 � ⌘)5/2 (1 + ⌘)

"
1
r
� (1 � ⌘)2 r

#
(4-5b)

w = Gr
 
C

h
(1 � ⌘)2 r2 � 1 +

⇣
1 � ⌘2

⌘
✓
i
� r2 (1 � ⌘)2 � ⌘2

4 (1 � ⌘)2 ✓

!
. (4-5c)

The coe�cient C is a function of ⌘ (see Eq. 16 in Yoshikawa et al. [101] for an explicit expression of C). During
the determination of the vertical velocity component w, the following no net flux condition has been used:

Z 2⇡

0
d'

Z r2

r1

dr rw = 0. (4-6)

The profiles of the velocity components and the temperature in this conductive state depend only on the radius
ratio ⌘. The velocity v is identical to the classical circular Couette flow generated by the inner cylinder rotation.
Some profiles of the axial velocity w are shown in Fig. 4-1(b), where the normalized vertical velocity w⇤ = w/Gr
is shown as function of the shifted coordinate r⇤ = r � r1. The profile w is almost antisymmetric at large ⌘ with
respect to the mid-gap, while the flow is concentrated in an inner region at small ⌘. As w⇤ depends only on ⌘, the
shape of the velocity profile at a given ⌘ is the same for any value of Gr. When Gr is negative, the profile is the
same as that for |Gr|, but the flow direction is inverted.
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4.3 Linear stability analysis

The evolution of small perturbations (u0, ✓0) is governed by Eqs. (4-3) linearized around the conductive state (4-5):

r ·u0 = 0, (4-7a)

@u0

@t
+ u ·ru0 + u0 ·ru = �r⇡0 + r2u0 � Gr F2

 
✓0Gc + ✓

2vv0

r

!
er + Gr✓0ez (4-7b)

@✓0

@t
+ u ·r✓0 + u0 ·r✓ = 1

Pr
4✓0, (4-7c)

where Gc is the centrifugal acceleration in the base conductive state: Gc = v2/r. The boundary conditions (4-3d)
read for perturbation fields:

u0 = 0, ✓0 = 0 at r = r1, r2. (4-7d)

Assuming cylinders of infinite length, we can determine the stability of the conductive state by considering the
linearized governing equations (4-7) for a normal mode exp[st+ im'+ ikz], where s = �� i! is the complex growth
rate (�: the growth rate; !: the frequency), m is the azimuthal mode number, and k is the axial wavenumber. For
this mode, the governing equations form an eigenvalue problem AX = sBX, where X = [û0 ⇡̂0 ✓̂0 �̂0]tr is the
complex amplitude of the normal mode and B is a constant matrix. The di↵erential matrix operator A depends on
the mode and wave numbers (m, k) and involves the parameters (Ta, ⌘,Pr,F). We solve this eigenvalue problem
numerically by invoking a spectral collocation method based on the Chebyshev polynomials.
The determined eigenvalue s with the maximum real part crosses the imaginary axis in the complex plane at a
certain value of Ta for given (m, k) and for given parameters (⌘,Pr,F). Seeking this value of Ta with varying
the wavenumber k, we obtain the marginal stability curve Ta = Ta(k) for the azimuthal mode m. The critical
parameters (!c, kc,mc,Tac) are given by the lowest minimum among the marginal curves for di↵erent m, where !c

is the critical frequency.

Results for a small F

We consider a particular case corresponding to the experiment of Lepiller et al. [49], where ⌘ = 0.8, Pr = 5.5
and F = 7.3 ⇥ 10�4. This small value of F indicates that the e↵ects of the centrifugal buoyancy would be weak.
According to Ali & Weidman [1], if the centrifugal buoyancy is negligible, the stability should exhibit symmetry
with respect to the heating direction, i.e., the critical Taylor number for a given Grashof number Gr should be
identical to that for the corresponding negative Grashof number: Tac(Gr) = Tac(�Gr). Indeed, the determined
critical Taylor number shows this symmetry (Fig. 4-2a). The total wavenumber q of the critical mode also exhibits
the symmetry with respect to the heating direction (Fig. 4-2b). In contrast, the inclination angle  of the critical
mode and the axial phase velocity cz = !c/kc are antisymmetric (Fig. 4-2cd), where the total wavenumber q and
the inclination angle  have been estimated at the mid-gap r = r0 by

q =
q

k2 + k2
' with k' =

m
r0

;  = arctan
k'
k
. (4-8)

With increasing the magnitude of Gr from 0, the conductive state is first stabilized (Fig. 4-2a), where the critical
mode is axisymmetric and has a small frequency proportional to Gr: !c = �0.006Gr. This stabilized range (|Gr| <
23) could not be identified by Lepiller et al. [49], since the smallest |Gr| in their non-isothermal experiments was
around 160. At Gr larger than 23, the destabilization by heating is observed. The critical mode is non axisymmetric
and its mode number mc is negative and positive for Gr > 23 and Gr < �23, respectively. The magnitude |mc|
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increases with increasing |Gr|. For |Gr| & 1700, the critical mode number becomes constant (mc = ±10). The
Taylor number also becomes almost constant and the wavenumber and the inclination angle vary slightly (Fig. 4-
2bc). Once |Gr| attains 7930, the critical mode becomes again axisymmetric and Tac decreases toward zero, where
the flow is driven only by the di↵erential heating of cylinders.
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Figure 4-2: Critical parameters for ⌘ = 0.8, Pr = 5.5, and F = 7.3⇥10�4.

Eigenfunctions at di↵erent Gr are shown in Fig. 4-3. When the mode is axisymmetric at small |Gr|, vortices are
circular and no inclination of temperature cells are observed (Panel a1). With increasing |Gr| beyond 23 where
the flow is non axisymmetric, vortices are deformed and temperature cells are inclined (Panels a2&a3). Beyond
|Gr| = 7930, the eigenmode returns to be axisymmetric, but flow is more complex than the axisymmetric flow at
small |Gr| (Panel a4). Temperature cells are inclined steeply. Panel (b) shows two flow states at the codimension-
two point (Gr,Ta) = (7932, 9.88), where non-axisymmetric mode with mc = �10 and axisymmetric mode are both
critical.

The roles of di↵erent forces in the instability can be clarified by the evolution equation of the kinetic energy, as we
employed it for the TEHD instability (Chaps. 2 & 3). This equation for the present problem can be obtained from
the linearized momentum equation (4-7b) and is given by

dK
dt
= WTa +WHy +W✓ +WC � Dv, (4-9)

where K is the kinetic energy of perturbation flow. The first term WTa in the right-hand-side represents the power by
the centrifugal force that is responsible for the centrifugal instability. The power WHy is produced by the Reynolds
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Figure 4-3: Critical eigenfunctions for ⌘ = 0.8, Pr = 5.5, and F = 7.3⇥10�4: Perturbation velocity and temperature
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stress on the baroclinic vorticity. The terms W✓ and WC are the powers by the thermal Archimedean buoyancy and
by the centrifugal buoyancy, respectively. The viscous energy dissipation rates is designated by Dv. The explicit
definitions of these terms are

K =
*

1
2

u02
+
, WTa = �

* 
dv
dr
� v

r

!
u0v0

+
, WHy = �

*
dw
dr

u0w0
+
, (4-10a)

W✓ = Gr
⌦
✓0w0

↵
, WC = �GrF2

*
u0

v
r

⇣
✓0v + 2✓v0

⌘+
, Dv = hė : ėi , (4-10b)

where ė is the rate-of-strain tensor. The angle brackets mean the following averaging and integration operation:

h · i = !

2⇡

Z 2⇡/!

0
dt

1
2⇡

Z 2⇡

0
d'

k
2⇡

Z 2⇡/k

0
dz · , (4-11)

where the averaging operations with respect to ' and t should be omitted for axisymmetric and stationary normal
modes, respectively.

Computing these power terms at critical conditions, we can distinguish the force that plays the major role in the
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energy transfer from the base to perturbation flows (Fig. 4-4). The stabilization at small |Gr| (< 23) is due to
the stabilization by the thermal Archimedean buoyancy on the axisymmetric mode. Indeed, W✓ takes negative
values in this range of Gr. The drastic decrease of Tac within 30 < |Gr| < 2000 is associated with the increasing
destabilization by the thermal Archimedean buoyancy on non axisymmetric modes. The power W✓ increases
with |Gr|. It is the major energy transfer mechanism for |Gr| > 500, while the power on the baroclinic vorticity,
WHy, contributes also destabilization. When the |Gr| attains 7930, the power WHy becomes dominant suddenly.
This sudden change corresponds to the qualitative change of the eigenfunctions at the codimendion-two point
|Gr| = 7930 (Fig. 4-3b).
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Figure 4-4: Power terms in the kinetic energy Eq. (4-9) normalized by the twice of the kinetic energy K (⌘ = 0.8,
Pr = 5.5, F = 7.3 ⇥ 10�4).

Results for large F

When the parameter F is large, the centrifugal buoyancy is important compared with the thermal Archimedean
buoyancy. It will play a significant role in the instability mechanism and could break the symmetry of the stability
with respect to the heating direction. In fact, as we saw in the analysis of the TEHD instability in cylindrical annular
geometry (Chap. 3), a thermal buoyancy due to a radial acceleration field ge stabilizes a conductive fluid state when
the temperature gradient is directed opposite to the acceleration. If the gradient is in the same direction as ge, the
buoyancy is destabilizing. One can hence expect that the centrifugal buoyancy is stabilizing and destabilizing in
outward and inward heating, respectively. Indeed, for large F, the critical Taylor number shows a clear tendency
of increase and decrease for positive and negative values of Gr, respectively (Fig. 4-5a). An analysis of the energy
transfer by Eq. (4-9) confirms that this symmetry breaking is due to the centrifugal buoyancy (Fig. 4-5b): the
power WC is negative and positive in outward and inward heating, respectively.

The centrifugal buoyancy can not only a↵ect the instability threshold but also change the nature of critical flow.
Figure 4-6(a) shows a phase diagram of the temporal and spatial nature of critical modes. For focusing on the e↵ects
of the centrifugal buoyancy, the diagram is drawn for the case where the Grashof number vanishes with keeping the
product �a = GrF2 = ↵�T finite. Since �e is independent of the gap size and the gravity, the situation of vanishing
Gr with a finite �a can be realized by a system either with a tiny gap or in a microgravity environment. The
diagram indicates clearly the asymmetry of the system behavior with respect to the heating direction. Oscillatory
axisymmetric modes can emerge from the conductive state only in outward heating.
The oscillatory behavior of these modes in outward heating is not a consequence of the advection by the base flow,
since the vortices are toroidal and the base flow has no axial velocity component for Gr = 0. The oscillation is

38



CHAPTER 4. TAYLOR-COUETTE FLOW WITH A RADIAL TEMPERATURE GRADIENT

-100 -50 0 50 100
20

30

40

50

60

70

80

Ta

Gr

0.00073

F = 0.1

0.08

0.04
0.02

c

(a)

-100 -50 0 50 100
-5

0

5

10

15

20

25

En
er

gy
 tr

an
sf

er
 ra

te

Gr

WTa
Wθ
WHy
WC

(b)

Figure 4-5: Stability for large F. (a) Critical Taylor number for di↵erent F. (b) Di↵erent power terms in the kinetic
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related to internal waves propagating in a stratified fluid layer. In fact, the centrifugal buoyancy is stabilizing in
outward heating. It follows that the buoyancy force has tendency to restore any fluid particle deviated from its
equilibrium position. One may compute the buoyancy frequency N by comparing this restoring buoyancy force
(d⇢/dr)Gc�r = (d⇢/dr)(v2/r)�r with fluid inertia ⇢N2�r, where �r is a radial deviation of a fluid particle from its
equilibrium position. The frequency N is hence given in dimensional form by

N2 =
Gc

⇢

d⇢
dr
= �↵v2

r
d✓
dr
. (4-12)

This frequency takes a real value only in outward heating.
The critical frequencies of observed oscillatory axisymmetric modes are correlated well with N (Fig. 4-6b). The
frequencies !c for di↵erent Prandtl numbers seem to be proportional to the buoyancy frequency, when N > ⌧�1

⌫ ,
i.e., when the fluid viscosity does not influence significantly wave motion. This result suggests that the critical
oscillatory modes arise from internal waves in a fluid with a stable stratification against the centrifugal acceleration
field.
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cating the parameter region for OA modes, (b) Comparison of the critical frequency with the buoyancy frequency.
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4.4 Conclusion

The problem of the stability of a circular Couette flow with a radial temperature gradient was revisited. Our analysis
clarified the role of the centrifugal buoyancy. For small values of the parameter F = ⌫/

p
gd3, this buoyancy is

negligible compared with the thermal Archimedean buoyancy. The stability of the system is independent of the
heating direction, as predicted by Ali & Weidman [1]. Heating stabilizes the conductive state at small temperature
di↵erence. For large values of F, the centrifugal buoyancy a↵ects significantly the system behavior. The stability is
sensitive to the heating direction: at small Gr, the system is more stable in outward heating than in inward heating.
Our analysis also showed that the centrifugal buoyancy also modified significantly the nature of critical modes.
Even in the absence of axial advection by the base flow (i.e., when Gr vanishes), oscillatory axisymmetric modes
can develop from the conductive state in outward heating. The frequency of these modes is given by the buoyancy
frequency based on the centrifugal acceleration. This result indicates a close relation of the oscillatory modes with
the internal waves propagating in a stratified fluid layer.
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Chapter 5

Taylor-Couette flows subjected to radial
thermoelectric buoyancy

Theoretical investigations on the Taylor-Couette flows of a dielectric fluid subjected to a radial tempera-
ture gradient and a radial electric field are reported. This work was started in 2013 in collaboration with
Antoine Meyer (LOMC) and Innocent Mutabazi (LOMC). Obtained results were presented in a number of
conferences and published in Phys. Rev. E [100].

5.1 Introduction

In Taylor-Couette systems subjected to a radial temperature gradient (Chap. 4), the radial buoyancy force associated
with centrifugal acceleration gc = (v2/r) er can change significantly the stability of the conductive state and the flow
behavior (v: the azimuthal flow velocity; r: the radial coordinate). Due to this force the behavior of the flow system
loses the symmetry with respect to the heating direction. In fact, the thermal stratification in density is stable and
potentially unstable in the centrifugal acceleration field gc in negative and positive radial temperature gradients,
respectively. As a consequence, when the radial buoyancy force is significant compared with other e↵ects, the
conductive state is more and less stable than the isothermal flow in outward and inward heating, respectively.
We have considered in Chap. 3 the thermo-electrohydrodynamic (TEHD) convection in cylindrical annular geom-
etry, which was induced by a radial thermal buoyancy associated with a radial acceleration field ge called electric
gravity. If this electric gravity is applied to a no-isothermal Taylor-Couette system, it would change the system
behavior as the centrifugal acceleration does so. Since the electric gravity can be adjusted to a desired value by
varying the electric tension applied to the cylinders, we would be able to control the Taylor-Couette flow. This
control can be used for enhancing the heat transfer in rotating machines. Such fluid systems are also of interest in
geo- and astro-physics, where convective flows and stratified shear flows in the central gravity field are of primary
importance.

The stability of the Taylor-Couette flow subjected to a radial thermal buoyancy force other than the centrifugal
one has been investigated theoretically. Stiles et al. [78] considered a flow induced by the inner cylinder rotation,
restricting their analysis to axisymmetric steady perturbations in a small gap geometry. Only outward heating was
considered. They found that the critical Taylor number dropped e↵ectively with increasing the temperature di↵er-
ence. Tagg & Weidman [80] considered a magnetic fluid in a vertical Taylor-Couette system with only the inner
cylinder rotating. The thermal variation of the magnetization leads to a thermomagnetic body force density, which
can be viewed as a thermal buoyancy force associated with a magnetic e↵ective gravity in the radial direction. The
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authors analyzed the linear stability of the base flow driven both by the inner cylinder rotation and by the di↵er-
ential heating under the Earth’s gravity. Both axisymmetric and non-axisymmetric perturbations were considered.
The behavior of the critical parameters in function of the Grashof number was examined. Outward heating was
found to destabilize the flow significantly when the thermomagnetic buoyancy force was of the same order of mag-
nitude as the thermal Archimedean force. When the heating direction was inverted, the thermomagnetic force had
significant stabilizing e↵ects.

In these existing theoretical investigations, oscillatory critical modes have not been highlighted. Although Tagg &
Weidman [80] found oscillatory modes in the thermomagnetic Taylor-Couette flows, the origin of the oscillation
was not discussed. Our investigation is intended to examine the e↵ects of the radial thermoelectric buoyancy
on the behavior of non-isothermal Taylor-Couette flows. In particular, we are interested in how this buoyancy
a↵ects the nature of critical modes. In fact, as shown in the electric gravity diagram in Fig. 1-1, the direction of
the electric gravity ge in a curved geometry depends on the radius ratio ⌘ of inner to outer cylinder radii and the
thermoelectric parameter �e = e�T that characterizes the stratification of a fluid layer in dielectric permittivity
(�T : the temperature di↵erence between the cylinders; for the definition of e, see Eq. 1-3). When the temperature
gradient and the electric gravity are opposite to each other, i.e., in Zone II of the diagram, the density stratification
is stable in the electric gravity field. In this situation, the thermoelectric buoyancy force has a tendency to restore
any deviated fluid particle to its equilibrium position. We can expect that the inner cylinder rotation then provokes
an oscillatory instability, as we found oscillatory modes in non isothermal Taylor-Couette flows in Chap. 4. The
frequency of growing oscillatory perturbations would be associated with the buoyancy frequency N based on the
thermoelectric buoyancy force. Such oscillatory instability has not been reported in the existing studies [78, 80].1

We perform a linear stability analysis based on a theoretical model that takes into account not only the thermoelec-
tric buoyancy but also the centrifugal buoyancy, i.e., the thermal buoyancy due to the centrifugal acceleration gc. In
order to focus on these radial thermal buoyancy forces, the analysis is restricted to the situation where the Earth’s
gravity is negligible. Di↵erent from the existing study [78], we consider arbitrary perturbations and both inward
and outward heating. The results presented in this chapter are concerned only with the centripetal electric gravity
configuration, i.e., with only Zones I & II in the electric gravity diagram (Fig. 1-1). This case is the most relevant
to the application in geo- and astro-physics. Results in the other electric gravity configurations are reported in
Yoshikawa et al. [100].

Governing equations

We consider the Taylor-Couette flow of a dielectric fluid within the gap between two concentric cylindrical elec-
trodes of infinite length (Fig. 5-1a). The inner cylinder of radius R1 is maintained at a constant uniform tempera-
ture T1, while the outer cylinder of radius R2 is kept at T2. An alternative electric tension V(t) =

p
2�0 sin(2⇡ f t)

is applied to the gap. The flow is induced by the inner cylinder rotation with an angular velocity ⌦.
Non-isothermal Taylor-Couette flows can be modeled by the set of governing Eqs. (4-3) in the Boussinesq approx-
imation, if the temperature variation is small. Taking into account the EHD force (Eq. 1-7a) as an external force
in the momentum equation and adding the Gauss’ law of electricity to the equation set, we have the following sys-
tem of equations that governs the Taylor-Couette flow subjected to both centrifugal and thermoelectric buoyancy

1The oscillatory modes reported by Tagg & Weidman [80] for the thermomagnetic Taylor-Couette systems were observed when the radial
thermomagnetic force was destabilizing. So, these modes do not have relation with any buoyancy frequency.
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forces:

r ·u = 0, (5-1a)
@u
@t
+ u ·ru = �r⇡ + r2u � �a✓gcer � L

Pr
✓ge (5-1b)

@✓

@t
+ u ·r✓ = 1

Pr
r2✓, (5-1c)

r · ⇥(1 � �e✓)r�
⇤
= 0, (5-1d)

where the equations have been nondimensionlized with the scales d (= R2�R1) of length, ⌧⌫ = d/⌫2 of time, d/⌧⌫ of
velocity, �T (= T1�T2) of temperature and�0 of electric potential. The thermal expansion parameter �a = ↵�T has
been introduced (↵: the coe�cient of thermal expansion) in addition to the following four dimensionless numbers
used in Chap. 3: the radius ratio ⌘ = R1/R2, the Prandtl number Pr = ⌫/, the thermoelectric parameter �e = e�T
and the electric Rayleigh number L defined by Eq. (1-24). In outward heating, the three parameters (�a, �e, L) are
all positive, while they take negative values in inward heating.

Following the same argument as that developed in our analysis on the TEHD convection (Sec. 1.3), we assume a
high frequency electric tension to adopt the time-averaged description. The boundary conditions on flow fields are
then given by

u =
r

⌘

1 � ⌘ Ta e', ✓ = 1, � = 1 at r = r1, (5-1e)

u = 0, ✓ = 0, � = 0 at r = r2, (5-1f)

where the Taylor number Ta has been introduced with the same definition as Eq. (4-4). The radial coordinates r1

and r2 indicate the inner and outer cylinder positions: r1 = ⌘/(1 � ⌘) and r2 = 1/(1 � ⌘).
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Figure 5-1: Taylor-Couette flow subjected to the radial electric gravity. (a) Schematic illustration of the considered
system. (b) Phase diagram of the nature of the density stratification in the L-Ta plane (⌘ = 0.5, �a = �e = ±0.01).
Some profiles of N2 are shown in insets placed at relevant locations in the plane. In the present chapter, the
reference electric gravity Ge,0 is the electric gravity ge in the conductive state at the mid gap: Ge,0 = |ge( R1+R2

2 )|.
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Conductive state and wave sustainability

We consider a Taylor-Couette system of infinite length. If the imposed temperature and electric field are weak
and small, the state of flow will respect the symmetry of the system: it will be axisymmetric, be stationary, have
mirror symmetry with respect to any plane perpendicular to the axis and be invariant to translation in the axial
direction. The conductive state hence depend only the radial coordinate r. As a consequence, no advection occurs
and the velocity decouples from the temperature. The velocity u is the classical circular Couette flow induced by
the inner cylinder rotation: u = v(r)e', with v found in Eq. (4-5). The temperature and electric fields are given by
Eqs. (1-15)–(1-16). The electric gravity ge = �Ge(r) er, given by Eq. (1-17), depends on (�e, ⌘). Some profiles of
the electric gravity are illustrated in Fig. 3-1.

In this conductive state, the stratified fluid layer is subjected to the thermal buoyancy forces due to the centrifugal
acceleration gc = Gc(r) er and to the centripetal electric gravity ge = �Ge(r) er, where Gc = v2/r. The buoyancy
frequency associated with these forces can be computed by

N2 =
�Ge +Gc

⇢

d⇢
dr
. (5-2)

The quantity N2 is a function of the radial position r. If N2 is positive around a radial position r, we may expect
internal wave propagation in the vicinity of the position r.
According to the sign of the buoyancy frequency, we can distinguish three parameter regions in the L-Ta plane as
illustrated in Fig. 5-1(b). The function N2 is positive throughout the layer in the wave sustaining region, while
N2 < 0 in the non wave sustaining region. Between these two regions, we find the partially wave sustaining
region, where N2 is positive only in a sublayer of fluid. This diagram suggests that the heating direction would
have prominent e↵ects on the stability and that the instability may be oscillatory either in the wave sustaining
region or in the partially wave sustaining region.

5.2 Linear stability theory

The evolution of small perturbation fields can be analyzed by the governing Eq. (5-1) linearized around the con-
ductive state (u, ✓, �):

r ·u0 = 0, (5-3a)
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@✓0
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+ u ·r✓0 + u0 ·r✓ = 1

Pr
4✓0, (5-3c)

r ·
h⇣

1 � �e✓
⌘
r�0 � �e✓

0r�
i
= 0, (5-3d)

u0 = 0, ✓0 = �0 = 0 at r = r1, r2, (5-3e)

where (u0, ✓0, �0) are the perturbation velocity, temperature, and electrostatic potential, respectively.
We can determine the stability by considering Eqs. (5-3) for a normal mode exp[st + im' + ikz], where s = � � i!
is the complex growth rate (�: the growth rate; !: the frequency), m is the azimuthal mode number, and k is the
axial wavenumber. For this mode, Eqs. (5-3) forms an eigenvalue problem AX = sBX, where X = [û0 ⇡̂0 ✓̂0 �̂0]tr is
the complex amplitude of the normal mode and B is a constant matrix. The di↵erential matrix operator A depends
on the mode and wave numbers (m, k) and involves the parameters (L,Ta, ⌘, �e, �a,Pr). We solve this eigenvalue
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problem numerically by invoking a spectral collocation method based on the Chebyshev polynomials.
The eigenvalue s with the maximum real part crosses the imaginary axis in the complex plane at a certain value of
Ta for given (m, k) and for given parameters (L, ⌘, �e,Pr). Determining this value of Ta with varying the wavenum-
ber k, we obtain the marginal stability curve Ta = Ta(k) for the azimuthal mode m. We then seek the smallest
minimum from marginal curves for di↵erent azimuthal modes to obtain the critical parameters (mc, kc,Tac,!c) for
a parameter set (L, ⌘, �e, �a).

The phase diagram in Fig. 5-2 summarizes the basic nature of determined critical modes in the L-Pr plane. The
mode is oscillatory axisymmetric (OA), stationary axisymmetric (SA), or oscillatory non axisymmetric (ONA).
This diagram is not symmetric with respect to the line L = 0. The radial buoyancy forces break the symmetry with
respect to the heating direction.
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Figure 5-2: Phase diagram of the nature of the critical modes (⌘ = 0.5, �a = �e = ±0.01): OA: oscillatory
axisymmetric; SA: stationary axisymmetric; ONA: oscillatory non axisymmetric.

For a given fluid (i.e., Pr) and a given temperature di↵erence (i.e., �e and �a), we can explore di↵erent instability
regimes by varying electric Rayleigh number L. In inward heating the instability is in the OA regime at large
negative L. With increasing L, the critical Taylor number decreases slightly (Fig. 5-3a). The total wavenumber q,
which is defined by Eq. (4-8) and identical to the axial wavenumber k for axisymmetric modes, is almost constant
(Fig. 5-3b). The frequency |!c| decreases toward zero (Fig. 5-3c). At a certain finite negative value L = L�, both
OA and SA modes become critical. This coordinate of a codimension-two point varies with Pr, as illustrated by
the boundary between the OA and SA regimes found in negative L plane in Fig. 5-2. For negative L larger than L�,
the critical mode is SA. The critical Taylor number decreases rapidly. The critical wavenumber qc takes slightly
larger values than in the OA regime.
In outward heating the instability is in the OA regime at small L if the Prandtl number is larger than a certain value.
With increasing L, the critical Taylor number decreases slightly until another codimension-two point L = L⇤,
through which the instability regime changes to SA. In this SA regime, Tac decreases significantly. The value of
the coordinate L⇤ also varies with Pr, as illustrated by the boundary between OA and SA in positive L plane in
Fig. 5-2. If the Prandtl number is smaller than the lowest point of this boundary, the OA regime does not exist even
at small L. Finally, at large positive L, the instability is TEHD and the critical mode is ONA. In this regime, the
thermoelectric buoyancy generates spiral convection rolls and these rolls are advected by a slow azimuthal base
flow to yield oscillatory behavior of the critical mode.
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Figure 5-3: Critical parameters for ⌘ = 0.5 and Pr = 60. Thermal expansion and thermoelectric parameters are set
at �a = �e = �0.01 for inward heating and at �a = �e = 0.01 for outward heating.

Eigenfunctions

In the SA regimes, the velocity field has a fixed phase advance or delay by ⇡
2 to the temperature fields (Fig. 5-4).

Flow goes from the hot to cold cylinders passing through hot temperature cells, as in thermal convection. In the
OA regimes, the phase between the velocity and temperature fields varies with L. In the ONA regime, vortices are
spiral and distorted in the r-z plane.
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Figure 5-4: Perturbation velocity and temperature fields in the r-z plane in di↵erent instability regimes (⌘ = 0.5,
Pr = 60, �a = �a = ±0.01). Solid black curves in each panel are isotherms ✓0 = 0.
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5.3 Analysis

Dispersion relations

The dispersion relation s = s(k) shows qualitative di↵erences between di↵erent instability regimes (Fig. 5-5). In
SA regimes, a series of dispersion curves � = �(k) are found that are almost parallel to each other (Panel a). In
OA regime, the parallel curves are also found in the k-� plane (Panel b). They are intersected by another curve of
larger curvature and the critical mode belongs to the latter curve. Only the normal modes in a limited range of k
have frequencies. In ONA regime, the parallel dispersion curves are found again in the k-� plane (Panel c). All the
normal modes have frequencies. As this oscillation behavior is a consequence of the advection of spiral vortices
by the slow base flow, the values of the frequencies are almost identical to each other.
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Figure 5-5: Dispersion relations in di↵erent instability regimes. The azimuthal model number and the Taylor
number are set at critical ones, i.e., m = mc and Ta = Tac. (⌘ = 0.5, Pr = 60, �e = ±0.01). Black and red dots mean
stationary and oscillatory eigenmodes, respectively.

All the observed critical modes have a finite wavelength, i.e., all the instabilities are of type-I. The nonlinear
evolution of the perturbation flow can hence be described by the complex Ginzburg-Landau equation:

⌧0

 
@A
@t
+ cg

@A
@z

!
= � (1 + ic0) A + (1 + ic1) ⇠2

0
@2A
@z2 � (1 � ic3) g0 |A|2 A, (5-4)

where c0, c1, c3, ⌧0, ⇠0 and g0 are real constants. Writing this complex Ginzburg-Landau equation, we have
restricted our attention to the OA and SA regimes. The values of the constants involved in Eq. (5-4), except c3 and
g0, can be determined from the dispersion curves by invoking Eqs. (2-8) and the following equations:
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Computed values of these coe�cients indicate that the nonlinear behavior of the flow will also be distinct in
di↵erent instability regimes. For example, the coe�cients ⌧0 and ⇠0 shown in Fig. 5-6 behave very di↵erently in
SA and OA regimes. In OA regimes, the coe�cients are constant and recover the values of the ordinary Taylor
instability, while their values in the SA regimes are sensitive to L.
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Figure 5-6: Some coe�cients of the complex Ginzburg-Landau equation (⌘ = 0.5, �e = ±0.01, Pr = 60)

Energetic analysis

The evolution equation of the kinetic energy of the perturbation flow is derived from the linearized momentum
Eq. (5-3b) by taking the inner products with u0, averaging in space and time and integrating the result over the gap:

dK
dt
= WTa +WC +WBG +WPG � Dv, (5-6)

where K is the kinetic energy of the perturbation flow. WTa is the power by the centrifugal force, WC is the power
by the centrifugal buoyancy force. The contribution of the thermoelectric buoyancy is represented by WBG and
WPG: the former by the component associated with the base electric gravity ge and the latter with the perturbation
electric gravity g0e. The latter power is much smaller than the former power at small ⌘, as we found in the study of
TEHD instability in cylindrical geometry (Sec. 3.2). The term Dv is the viscous energy dissipation rate.
Except the case of large L in outward heating, the centrifugal power (WTa) is always responsible for the instability
(Fig. 5-7). The centrifugal buoyancy and the thermoelectric buoyancy take only small values compared with WTa

except in ONA case, where the thermoelectric buoyancy generates the TEHD convection flow. The radial thermal
buoyancy forces, however, change the nature of the instability. In fact, the codimension-two point L� in inward
heating coincident with the moment where the e↵ects of the two buoyancy forces cancel each other: WC+WBG = 0.
This is also the case for the codimension-two point L⇤ in outward heating. The net contribution of the two thermal
buoyancy forces is destabilizing, WC + WBG < 0, in both SA regimes. In contrast, in both OA regimes, the net
contribution of the two thermal buoyancy forces is negative WC +WBG < 0, i.e., the thermal buoyancy plays a role
of a restoring force. This suggests that the oscillatory motion in OA regimes bears a close relation with internal
waves propagating due to the restoring force.

Frequency analysis

We found three oscillatory instability regimes. If a strong electric field is applied in outward heating, the instability
is in ONA regime. The oscillatory behavior of the critical mode arises from the advection of spiral vortices by the
slow base flow. Indeed, the observed azimuthal phase velocity c' is proportional to the cylinder rotation, i.e., the
Taylor number (Fig. 5-8a).

In the other oscillatory regimes, the net thermal buoyancy has restoring e↵ects. The thermal stratification of the
fluid would then be able to sustain wave motion, as discussed earlier. Indeed, the OA regimes are found either
in the wave sustaining region or in the partially wave sustaining region in the diagram presented in Fig. 5-1 (b).
Furthermore, the buoyancy frequency N, computed by Eq. (5-2), is proportional to the observed critical frequency
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normalized by the twice of the kinetic energy K. (⌘ = 0.5, Pr = 60, �a = �e = ±0.01)

independently from the values of (Pr, �a), if the frequency is higher than the inverse of the viscous time ⌧⌫ (5-8b).
This result suggests that the OA mode is internal waves propagating in a stratified fluid layer.
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Figure 5-8: Critical frequencies in di↵erent oscillatory regimes. (a) ONA regime. (b) OA regimes in outward and
inward heating.

5.4 Conclusion

We investigated the stability of a non-isothermal Taylor-Couette flow subjected to a radial buoyancy force due to
the electric gravity ge by the linear perturbation theory. The theory also took into account another radial thermal
buoyancy due to the centrifugal acceleration gc. The flow behavior was sensitive to heating direction. Di↵erent
instability regimes were distinguished. The critical mode can be oscillatory axisymmetric (OA), either at strong
thermoelectric buoyancy (i.e., at large |L|) in inward heating or at weak thermoelectric buoyancy (i.e., at small |L|)
in outward heating in fluid of large Prandtl number. In this OA regime, the instability is provoked by the centrifugal
force as in the Taylor instability. The e↵ects of the two thermal buoyancy forces are, in contrast, stabilizing in total
and this net restoring e↵ect produces the oscillation of the mode. The frequency of the critical modes is given by the
buoyancy frequency (Eq. 5-2) based on the two buoyancy forces, which characterizes internal waves propagating
in a stratified fluid layer.

This result on the relation between the OA critical modes and the internal waves is a generalization of the close
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relation between them found in our study on non-isothermal Taylor-Couette flows in Chap. 4. In the latter systems,
the centrifugal buoyancy generated OA modes only in outward heating, since only in this heating direction thermal
stratification in density was stable in the centrifugal acceleration field gc and could sustain waves. In the present
thermoelectric Taylor-Couette flows, the stratification can also sustain waves in inward heating when the centripetal
electric gravity ge is superior to the centrifugal gc. We can expect similar wave generation in other non-isothermal
Taylor-Couette systems, e.g., the Taylor-Couette flow of ferrofluid subjected to a radial thermomagnetic buoyancy
force.
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Chapter 6

Stability of bubbles in oscillatory flow

An experimental investigation on the stability of a centimeter-sized bubble is presented. The bubble is sub-
jected to oscillatory flow in a microgravity environment. This investigation was performed in collaboration
with Farzam Zoueshtiagh (IEMN, Lille), Hervé Caps (GRASP, Lig̀e), Pascal Kurowski (PMMH, Paris) and
Philippe Petitjeans (PMMH, Paris). The obtained results were communicated at a number of conferences
and published in Microgravity Sci. Technol. [94] and in Eur. Phys. J. E [104]. The latter article is included
in appendix C.

6.1 Introduction

Liquid flows with a dispersed gas phase are involved in a wide range of geophysical and industrial processes.
Volcanic fluids at a shallow depth often contain ample quantity of gases [38]. Bubble column reactors are widely
used in chemical, biochemical, and petrochemical industries [37]. The average size of bubbles is one of the key
parameters in modeling these two-phase flows, as the liquid-gas interfacial area a↵ects the local and global transfer
of momentum, heat, and mass. Bubbles can breakup and coalesce with others in liquid flow and, as a consequence,
their average size can vary in time. The stability of bubbles at a given flow condition is hence of primary importance
in two-phase flow modeling.

On the ground the buoyancy in the Earth’s gravitational field g is one of the dominant forces in the dynamics of
bubbles. The size of stable bubbles is often limited by the capillary length `cap, i.e., the length scale at which the
hydrostatic and capillary pressures are in equilibrium: `cap =

p
�/⇢g (�, ⇢: the surface tension and the density

of the liquid). This length is of the order of a few millimeters for most liquids. In microgravity conditions there
is no corresponding limit1. It is observed in many situations in microgravity environments that bubbles have
a tendency to coalesce and to become larger in an imposed geometry. Liquid-gas interfacial area and, hence,
interfacial transports are modest. The bubble size control is therefore an important issue in microgravity science
and technologies.
Zoueshtiagh et al. [106] investigated the stability of a bubble in oscillatory liquid flow for bubbles of centimeter
size. They performed an experiment on the ground with a setup illustrated in Fig. 6-1. A parallelepiped cell filled
by a test liquid with a single air bubble of a given volume Vb (⇠ 2–7 cm3) was put into oscillatory translational
motion of a given frequency f and a given amplitude A. They observed the splitting of large bubbles that reduced
e�ciently the average bubble size. The size of the split bubbles was scaled by the capillary length `0cap based on
the acceleration of the cell: `0cap =

p
�/(⇢A!2), where ! = 2⇡ f is the angular frequency. In other words, bubbles

1`cap is of the order of 1 m in a microgravity condition of 1 µg = 9.81 ⇥ 10�6 m/s2.
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of such a large size De that De & `0cap were unstable in oscillatory flow and split into smaller ones, where De is the
volume equivalent diameter defined by ⇡D3

e/6 = Vb.
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Mirror

45°

Figure 6-1: Experimental setup

After this preliminary experiment on the ground, we performed experiments in microgravity environments during
several parabolic flight campaigns organized by the CNES (Centre National d’Etudes Spatiales). The bubble
motion induced by the oscillation and the threshold of bubble splitting were determined in liquids of di↵erent
viscosities and di↵erent surface tensions. We also performed similar experiments on the ground for wider ranges of
experimental parameters than in the preliminary experiment. The obtained data in both gravitational environments
were analyzed in details in order to reveal the mechanism of splitting. The present chapter is concerned only with
the results in microgravity environments. The results in the normal gravity environment can be found in Yoshikawa
et al. [104].

Dimensionless numbers

The dynamics of a bubble in oscillatory liquid flow involves di↵erent time scales. The viscous time ⌧⌫ = D2
e/⌫ and

the advection time ⌧adv = De/(A!) characterize di↵usive and advective transports, respectively (⌫: the kinematic
viscosity of the liquid). The inertial/capillary time ⌧cap = (⇢D3

e/�)1/2 is the time scale for a deformed bubble to
restore its equilibrium shape. Comparing these time scales with the oscillation time ⌧osci = 2/!, we can find the
following three dimensionless numbers:

⌦ =
!D2

e

2⌫
, KC =

2A
De
, Oh =

s
⇢⌫2

De�
. (6-1)

The first number, ⌦, is a dimensionless frequency. The dimensionless amplitude is denoted by KC , as it is iden-
tical to the Keulegan-Carpenter number. The Ohnesorge number Oh depends only on the fluid properties. In
our experiments, these numbers take values in the following ranges: 12 < ⌦ < 2600, 0.018 < KC < 14, and
8.8⇥10�4 < Oh < 0.16.
If the wall e↵ects on liquid and bubble motion are not significant, these three numbers form a complete set of
dimensionless numbers to characterize the dynamics of a bubble in oscillatory flow. Indeed, only three dimension-
less numbers can be composed from the dimensional parameters ⇢, ⌫, �, De, A and !. In the following sections,
we shall use the parameters (6-1) to present and discuss experimental results.
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6.2 Results

Bubble translational motion

When the frequency and amplitude of the oscillatory motion of the parallelepiped cell are both small, the bubble
is in oscillatory translational motion without any splitting (Fig. 6-2). During each oscillation period, the bubble
deforms from elliptical to spherical cap shapes and vice versa. The translational motion has the same frequency as
the cell’s motion and a well-defined amplitude (Fig. 6-3a). The motion has a phase advance ✓ compared with the
cell’s motion. The phase ✓ is significantly larger than the value, ⇡/8, expected for a bubble in creeping liquid flow.
The observed shapes and the phase advance indicate that the bubble Reynolds number Reb = UbDe/⌫ would be
large (& 102) [15], where Ub is the velocity amplitude of the bubble’s relative motion to the cell.
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Figure 6-2: Bubble motion in side view (in silicone oil of ⌫ = 50 mm2/s, A = 40 mm, f = 1.0 Hz).
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Figure 6-3: Amplitude Ab of bubble motion relative to the cell. (a) Space-time diagram of the bubble translational
motion used for amplitude measurements. The diagram is created from a series of images in side view by extracting
a narrow band passing the bubble centre at di↵erent instants and arranged them chronologically. (b) Results of the
measurements for di↵erent silicone oils. The amplitude Ab is nondimensionalized by the amplitude A of cell’s
motion.

The bubble translational motion is a consequence of the cell’s acceleration. In the reference frame of the cell, the
fluid system is subjected to the oscillatory acceleration field of amplitude A!2. The velocity Ub of the bubble
relative to the cell is expected to be scaled by the bubble terminal velocity in this acceleration field so that Ub ⇠p

A!2De. The amplitude Ab of the bubble motion relative to the cell is then given by Ab/A = Ub/(!A) ⇠ pDe/A.
We hence expect the relation Ab/A ⇠ K�0.5

C . Indeed, the experimental data obtained for di↵erent liquids of di↵erent

53



CHAPTER 6. STABILITY OF BUBBLES IN OSCILLATORY FLOW

viscosities can be correlated well by the following empirical law (Fig. 6-3b):

Ab

A
= 0.59 Oh�0.15K�0.5

C . (6-2)

The bubble Reynolds number Reb can be computed from the empirical relationship (6-2):

Reb =
UbDe

⌫
= 0.588 Oh�0.15

p
KC⌦2, (6-3)

which gives estimates for Reb of the order of 100 or larger for the examined ranges of (⌦,KC ,Oh). This result
agrees with our earlier conjecture on Reb from the bubble shapes and the phase advance.

Splitting

When the cell’s oscillatory motion is strong enough, the bubble is pinched at the middle of the body and splits into
two pieces of almost identical volume (Fig. 6-4). This splitting occurs during an interval less than 0.1 s. Splitting
into several parts is also observed, but it is provoked by stronger oscillatory motion of the cell. The threshold for
the splitting is determined by increasing the frequency f successively with a step of 0.1 Hz at a given amplitude A.
For a given bubble size and a given liquid, the acceleration of the cell is almost constant at splitting thresholds
(Fig. 6-5a). The determined critical acceleration increases with the liquid viscosity and surface tension. Indeed,
seeking a power low for splitting thresholds by the least square method, we find the following relationship that
correlates well all the threshold data (Fig. 6-5b):

KCOh1.7⌦1.93 = 29.3, (6-4)

and this empirical law implied the following dependence of the critical acceleration ac on liquid properties: ac /
⇢�0.85⌫0.23�0.85.
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Figure 6-4: Splitting of a bubble. Upper half of each image shows a splitting bubble in axial view. Lower half is
the image at the corresponding instant in side view.

6.3 Discussion on the splitting mechanism

The mechanisms of bubble splitting or breakup due to the flow in continuous phase can be classified into three
categories [64]. At small Reynolds number, viscous shear at the bubble surface is responsible for the distortion
and breakup of bubbles. The threshold of the breakup is given in terms of the capillary number Ca that compares
viscous to capillary forces. At large Reynolds number, inertia of the flow is responsible for the breakup. The

54



CHAPTER 6. STABILITY OF BUBBLES IN OSCILLATORY FLOW

0.1 1 10 100

1

10

100

A  [mm]

f cr
  [

H
z]

 Different
dynamical
   regime

water
1 mm2/s
10 mm2/s

20 mm2/s
50 mm2/s
100 mm2/s

water
1 mm2/s
10 cm2/s

20 mm2/s
50 mm2/s
100 mm2/s

- Microgravity -

- Normal gravity -

1x10-6 1x10-5 1x10-4 0.001 0.01 0.1 1

10

100

1000

10000

KCOh1.7

Ω

KCOh
1.7Ω1.93 = 29.3

KCOh
1.7Ω1.98 = 208

KCOh
1.7Ω2 = 34

- Normal gravity -
water

1 mm2/s

10 mm2/s

20 mm2/s

50 mm2/s

100 mm2/s

- Microgravity -
water

1 mm2/s
10 mm2/s

20 mm2/s

50 mm2/s
100 mm2/s

(a) (b)

Figure 6-5: Thresholds of bubble splitting: (a) in terms of dimensional oscillation parameters and (b) in terms of
dimensionless numbers. Experimental results on the ground are also shown.

breakup criterion is expressed in terms of the Weber number We that represents the relative importance of the
inertia to capillarity. For a bubble subjected to unsteady flow, resonance may be responsible for bubble breakup, if
the flow has a component at the natural frequencies of bubble’s free oscillation.
While these three mechanisms rely on the liquid flow surrounding the bubble, the Rayleigh-Taylor instability can
destabilize a bubble in quiescent liquid. It is indeed considered as the mechanism responsible for the instability of
bubbles ascending in stagnant liquid and for the instability of bubbles at the rebound stage of cavitation collapse
[29, 9].

Among the above-mentioned fours types of splitting mechanism, the mechanisms due to viscous shear and to
resonance are not plausible. The bubble Reynolds number is high (& 100) at the splitting threshold observed in our
experiments and no preferred frequency is detected in the splitting threshold curves (Fig. 6-5a).
The Rayleigh-Taylor instability might seem to be the most plausible mechanism, since the splitting threshold is
characterized by a constant acceleration. According to the theoretical study of Kitscha and Kocamustafaogullari
[40], a spherical bubble of diameter D is unstable against the Rayleigh-Taylor instability, when the following
inequality holds:

⇢aD2

�
> 732.8

0
BBBBB@1 +

4

r
⇢aD2

�
Oh

1
CCCCCA

1.66

, (6-5)

where a is the acceleration to which the bubble is subjected. For the present experiment, this acceleration is
calculated by a = �A!2 cos!t�Ab!2 cos(!t+ ✓). Since Ab is less than A for most cases (e.g., Fig. 6-3b) and there
is a phase advance ✓ larger than ⇡/8 in the bubble motion, the maximum acceleration during an oscillation period
can be estimated by (a)max ⇡ A!2 without much error. First splitting would be possible only if the criterion (6-5)
is satisfied for this maximum acceleration. Substituting a = A!2 and D = De into the inequality (6-5), we obtain
a necessary condition of the bubble splitting for our experiments : A!2 > 732.8�/(⇢D2

e). This criterion yields the
critical acceleration ac = 48.70 m/s2 that is fifty times larger than the observed critical acceleration. Hence, the
Rayleigh-Taylor instability mechanism cannot explain the observed splitting.

The splitting due to the inertial mechanism occurs, when the pressure perturbation in continuous phase overcomes
the stabilizing capillary pressure. For a spherical drop of diameter D subjected to a steady stream U at high
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Reynolds number, the following criterion is used for predicting the drop breakup [32, 84]:

We =
⇢U2D
�
> 12. (6-6)

Since this inequality does not depend on the fluid properties of the drop, it would be applicable to the present
bubble splitting problem.2 First splitting would be expected when the criterion (6-6) holds for the maximum
stream velocity U = Ub = Ab!. Substituting this maximum velocity as well as D = De into the criterion (6-6),
making use of the correlation (6-2) to estimate the amplitude Ab of bubble motion, and expressing the result in
terms of the dimensionless numbers (⌦,KC ,Oh), we obtain the following splitting criterion from Eq. (6-6):

KCOh1.7⌦2 > 34. (6-7)

This prediction is very close to the empirical correlation (6-4). Indeed, comparison with the experimental results
shows that the criterion (6-7) agrees excellently with the data, as the correlation (6-4) does (Fig. 6-5b). The inertial
mechanism is hence responsible for the observed splitting.

6.4 Conclusion

The stability of a centimeter-sized bubble in oscillatory flow was investigated in microgravity environments. The
bubble splitting occurred at a constant acceleration A!2 in a given liquid. The analyses of the bubble translational
motion and of the bubble splitting thresholds revealed that the inertial criterion We > 12 (i.e., Eq. 6-6) explained
the experimental results. This inertial splitting mechanism is independent of the liquid viscosity and it predicts a
constant bubble velocity Ub for a bubble of a given size in a given liquid. The liquid viscosity, however, a↵ects the
bubble translational motion: in a more viscous liquid, the bubble moves with a smaller oscillation amplitude Ab

(Eq. 6-2) and, hence, with a smaller velocity Ub relative to the liquid phase. Consequently, the bubble is more
stable in a more viscous liquid, as we observed in experiments (Fig. 6-5a).

Applying the investigated bubble splitting technique to a liquid-gas two-phase system, we can disperse the gas
phase in liquid phase with controlling the diameter of gas bubbles. According to the criterion (6-4), one can break
bubbles whose diameter is larger than

De = 1.27

s
�0.846⌫0.229

⇢0.846A0.995 f 1.92 ⇡ 8.0 `0cap

 
⇢2⌫3 f
�2

!0.017

, (6-8)

by oscillatory flow, where `0cap is the capillary length based on the acceleration of the cell. This result is similar
to that obtained by Zoueshtiagh et al. [106] in their experiments on the ground, but with a correction factor that
represents the stabilizing e↵ects of the liquid viscosity.

2The flow unsteadiness would not matter, since the oscillation time ⌧osci remains large compared with the time scale of splitting (⇠ 0.1 s) in
our experiments.
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Chapter 7

Vapor bubble dynamics in microgravity
environments

An experimental investigation on the dynamics of a vapor bubble is presented. The bubble nucleates and
grows at an artificial nucleation site on a heated wall in a liquid shear flow. Experiments were performed in
microgravity conditions. Obtained data were used to compute hydrodynamic and capillary forces in order
to assess a theoretical model of the vapor bubble dynamics. This investigation was done in collaboration
with Catherine Colin (IMFT, Toulouse) and Cees van der Geld (Eindhoven University of Technology). It
was communicated at a number of conferences and published in proceedings of international conferences
[46, 95] as well as in Phys. Fluids [88].

7.1 Introduction

Nucleate boiling is a heat transfer mode of large capacity. Its application to power consuming devices in orbital
systems is waited for managing waste heat in an e�cient way. Many studies have been devoted to this mode of
heat transfer on the ground, see, e.g., Collier & Thome [17]. However, because of the Archimedean buoyancy
that often plays a dominant role in the dynamics of liquid-gas two phase flows on the ground, the results of these
studies cannot be extrapolated to the nucleate boiling in other gravitational environments.
Boiling heat transfer involves complex hydrodynamic and thermodynamic processes. Vapor bubbles nucleate at
imperfections (e.g., micro cavities, scratches) of a heated surface. They grow at the nucleation sites due to the
vaporization of surrounding liquid. Once a bubble attains a certain size, it departs from its nucleation site along the
surface or detaches from the surface. This bubble motion disturbs the thermal boundary layer on the heated surface
and provokes unsteady heat conduction in the liquid phase. For successful use of nucleate boiling heat transfer
in microgravity environments, it is necessary to improve our current understanding on this vapor bubble behavior
from a dynamical point of view.

Developing a mechanistic model seems a promising way to predict the complex processes of the nucleate boiling
heat transfer [6, 44, 92, 105]. In mechanistic models, the three fundamental processes of heat transfer are identified:
liquid vaporization at bubble surface; the unsteady heat conduction during the restitution of the thermal boundary
layer on a heated wall that has been disturbed by the passage of a bubble; the steady heat conduction after the
restitution of the thermal layer and before the passage of the next bubble. These processes can be parameterized
by the bubble size (radius RD) at its detachment from the wall, the frequency of bubble nucleation and the density
of active nucleation sites on the wall surface. Among these parameters, the bubble size RD is sensitive to the
gravitational environment. In mechanistic models, the vapor bubble behavior near the wall is analyzed by a force
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balance equation in order to predict RD, but this approach has never been validated in microgravity conditions.

Intending to develop a reliable model of the vapor bubble dynamics in the vicinity of a heated wall, we perform
experiments in microgravity conditions. The growth and motion of a vapor bubble nucleating at an artificial cavity
on a heated wall surface is measured by optical observation. Forces exerted on the bubble are estimated from
the data obtained about the bubble’s geometrical characteristics and motion. These estimates are used to examine
whether the balance of the forces can predict the bubble behavior.
The force balance equation to be examined is written [85, 92]:

FAM + FD + FL + FC + FP = 0, (7-1)

The added-mass force FAM arises from the inertia of the liquid portion displaced by the bubble. It is associated with
bubble’s growth and unsteady motion. The hydrodynamic drag FD and lift FL represent the viscous and inertial
e↵ects of the liquid flow. Two forces are exerted by the wall: the capillary force FC and the contact pressure force
FP. The former arises from the capillary attraction at the contact line. The latter is the reaction of the wall to the
vapor pressure at the bubble base on the wall.
The forces involved in Eq. (7-1) are not completely known. Their modeling forms an major part of the e↵orts
to develop a force balance model of the bubble dynamics. In our investigation, we follow the work of Montout
[55] for this modeling. His force balance model agrees favorably with experimentally determined vapor bubble
behavior on the ground. The adopted mathematical expressions of the forces are summarized in Table 7.1 (see
also Fig. 7-1a, where the geometrical characteristics of a bubble are illustrated). For the added mass force FAM ,
the expression derived by Duhar et al. [24] for a spherical bubble in the vicinity of a solid wall is adopted. The
drag coe�cient CD and the lift coe�cient CL in Eqs. (7-2b) and (7-2c) are estimated from the results of a numerical
study of Legendre et al. [48]. In Eq. (7-2d) for the capillary force FC , � = �(') is the local contact angle at the
azimuthal position '. Following Thorncroft et al. [85], we assume that the angle � can be estimated from the
upstream and downstream contact angles, ↵ and �, by a polynomial equation � = �+ (↵� �)[3(|'|/⇡)2 � 2(|'|/⇡)3].
To calculate the contact pressure FP, the arithmetic mean curvatureH is supposed to be given by the inverse of the
bubble radius: H = 1/R.

In the next section, we describe the experimental setup and conditions. Results obtained on the bubble behavior
are given and analyzed by computing the forces.

Table 7.1: Forces exerted on a bubble of volume Vb.

Force Equation
Added mass FAM � ⇢

2
d
dt

h
11
8 Vbvey +

19
16 Vb (w �W) ez

i
+ 3

32⇢
d2

dt2 (RVb) ey (7-2a)

Drag FD
⇢
2 CD⇡R2 |U0|U0 (7-2b)

Lift FL
⇢CLVbU0 ⇥ r (Wez) (7-2c)

Capillary FC
��r f

R ⇡

�⇡ sin �d'ey � �r f
R ⇡

�⇡ cos' cos �d'ez (7-2d)

Contact pressure FP
2⇡r2

f�Hey (7-2e)
v, w: the components of the bubble velocity: v = dyc/dt, w = dzc/dt.
U0: the relative flow velocity: U0 = Wez �

⇣
vey + wez

⌘
.

' : the azimuthal angle (see Fig. 7-1a).
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(a) Schematic illustration (b) Experimental observation

Figure 7-1: A vapor bubble on a heated wall. In (b), the bubble centre and contact angles detected by image
analysis are indicated.

7.2 Experiments

Setup & Conditions

A linear duct of rectangular cross section 5 ⇥ 40 mm2 is used to establish a two-dimensional flow (Fig. 7-2a).
The duct has 650 mm in length and a vapor bubble generator (Fig. 7-2b) is flush-mounted on a wider wall at a
distance 460 mm downstream from the inlet. The test liquid is HFE-7000 (C3F7OCH3) that has a low saturation
temperature (Table 7.2). Typical values of the temperature and the pressure of the liquid are 32 �C and 1.4⇥105 Pa
corresponding to a subcooling of 10 �C. The mass flow rate is measured by a Coliolis flow meter which works
independently of gravitational environments.
The vapor bubble generator is a thin layer of gold (⇠ 200 nm) sputtered on a glass substrate. A cavity of mouth
size around 50 µm on the layer provides a nucleation site. The electrical resistance of the gold layer is 20 ⌦ at
room temperature. It is powered by a constant temperature anemometer for keeping the temperature of the layer
constant.

(a) Setup (b) Vapor bubble generator

Figure 7-2: Experimental setup and bubble generator

Table 7.2: Properties of HFE-7000 (3MTM, NovecTM7000) at an atmospheric pressure and at 25 �C.

Density ⇢ 1400 kg/m3

Viscosity ⌫ 0.32⇥10�6 m2/s
Surface tension � 12.4⇥10�3 N/m

Specific heat cp 1300 J/kgK
Latent heat of vaporization L 1.42⇥105 J/kg
Saturation temperature Tsat 34 �C
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Figure 7-3: Velocity profile at di↵erent flow rate

Bubbles growing and moving on the wall are subjected to liquid wall flow. Profiles of the velocity field W(y) ez

measured by the particle image velocimetry at the bubble nucleation site are shown in Fig. 7-3 for di↵erent flow
rates Q. For small Q (0.0030 and 0.0178 kg/s), the Saint-Venant solution [70] for steady laminar flow is also shown
in broken line. Turbulent flow profiles of Reichardt type [63] are plotted with solid line for larger Q (0.0333, 0.0639
and 0.0933 kg/s):

W = w⇤
"
1


log
�
1 + y+

�
+ c

 
1 � e�y+/� � y+

�
e�0.33y+

!#
(7-3)

with y+ = w⇤y/⌫, where w⇤ is the friction velocity. The von Karman constant  is given by  = 0.41. The other
constants are set at � = 11 and c = 8.67. As seen in the figure, the laminar and turbulent velocity profiles predict
well the velocity fields at low and high flow rates, respectively. The laminar-turbulent transition that is found
between Q = 0.0178 and 0.0333 kg/s corresponds to a reasonable value of the Reynolds number Re (⇡ 3000). The
bubble behavior reported in the next section was obtained at Q = 0.0333 kg/s. The calculation of di↵erent forces
will be based on the velocity profile (7-3). The friction velocity w⇤ for this flow rate is 0.00568 m/s.

Experiments were performed in a microgravity environment realized by parabolic flights of the aircraft Airbus
A300 ZERO-G during the 50th ESA Parabolic Flight Campaign in May 2009. At each parabola, the microgravity
state lasted 22 s with a typical quality of 10�2g (g: the gravitational acceleration). The temperature in the cabin is
kept at 20 �C by air conditioning.

Results

Growth and motion of bubbles at the bubble generator are observed by a high-speed camera whose optical axis is
perpendicular to the flow plane (i.e., the y-z plane). A typical rate of image acquisition is 500 images per second.
The resolution of images is 508 pixels/mm. Recoded images are processed to determine the radius R and centre
of the bubble (yc, zc) as well as the positions of bubble feet, zu, zd, and the contact angles, ↵, � (Fig. 7-1a). A
typical result of the processing is shown in Fig. 7-1(b), where determined best fitting circle and contact angles are
superposed on an experimental image.
A bubble at the nucleation site of the bubble generator grows as shown in Fig. 7-4 where the time evolution of
the bubble radius R is plotted. A fitting curve for R indicates a time dependency R / t1/3, which is slower than
the growth in the di↵usion-controlled regime (/ t1/2) [10]. This might be a result of the condensation of vapor at
the bubble top where a luminous plume indicating a high liquid temperature is observed (Fig. 7-1b). At the same
instant as the departure from the nucleation site, the bubble detaches from the wall. This detachment occurs within
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Figure 7-4: Evolution of the bubble radius R and the radius r f of the bubble-wall contact area (see Fig. 7-1a for the
definition of r f ).
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Figure 7-5: Bubble motion: (a) the evolution of the bubble center and (b) evolution of the upstream and downstream
contact angles.

a very short time interval (⇠ 1 ms). After the detachment, the bubble radius R decreases due to recondensation of
vapor in subcooled surrounding liquid. In Fig. 7-4, the radius r f of the bubble-wall contact circle: r f = (zd � zu)/2,
is also shown. It increases at a small rate at the beginning (t < 130 ms) and at a larger rate at the end until the
detachment (130 < t < 190 ms).

Figure 7-5(a) shows the displacement of the bubble center (yc, zc). At the nucleation site, the bubble is pulled
downstream by the flow only a little. Indeed, the position zc along the wall does not vary much until the departure.
After the detachment, the bubble is advected by the liquid flow. The coordinate yc increases due to the bubble
growth. Its variation merges with the evolution of the bubble radius R.
Figure 7-5(b) shows the time evolution of the contact angles (↵, �), with tendency curves shown in solid and broken
lines. At the beginning (t < 80 ms), hydrodynamic e↵ects of the liquid flow are small compared with capillary
e↵ects because of the small size of the bubble. Consequently, the bubble has a symmetrical shape with respect to its
normal axis to the wall. The upstream contact angle ↵ and the downstream contact angle � are hence almost equal
to each other. The symmetric bubble shape is observed until the bubble size becomes R ⇠ 0.15 mm (Fig. 7-4).
Once the bubble becomes larger, the forces exerted by the flow breaks the symmetry: the upstream contact angle ↵
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increases, while the downstream one � remains constant (t > 130 ms). The lost of symmetrical shape is coincident
with the change of the rate of increase found in the behavior of the contact area radius r f (Fig. 7-4).

Analysis

Forces calculated by Eqs. (7-2) are shown in Fig. 7-6. All the time derivatives needed for the calculations have
been computed by using the tendency curves shown in Figs. 7-4 & 7-5 in solid lines. In the normal direction to
the wall (i.e., in the y direction), the dominant forces are the capillary force FC and the contact pressure force FP

(Fig. 7-6a). They are directed opposite to each other and, qualitatively, they balance each other out. Even at the
departure (t = 190 ms), no indication of the violation of the force balance is seen. In the stream direction (i.e., in
the z direction), the drag and capillary forces are dominant compared with the other forces (Fig. 7-6b). The former,
which tends to remove the bubble from the nucleation site, increases linearly in time until the bubble detachment.
Qualitatively, this force is equilibrated by the capillary force until t ⇠ 130 ms, except at the beginning of bubble
growth (t . 70 ms), where contact angle measurements would include large errors due to small bubble sizes. After
t ⇠ 130 ms, the upstream contact angle ↵ increases rapidly (Fig. 7-5b) and, as a consequence, the capillary force
decreases rapidly. The balance between capillary and drag forces cannot be expected. Even though the observed
departure occurred at t = 190 ms, this indication to the break of the force balance would be regarded as a sign of
the bubble departure.
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Figure 7-6: Di↵erent forces before the departure from the nucleation site.

7.3 Conclusions

Dynamics of a isolated vapor bubble was investigated experimentally in microgravity environments. Optical ob-
servation of the bubble behavior was performed to calculate di↵erent forces exerted on the bubble attached on the
wall at the nucleation site. Calculated forces confirmed the balance of these forces and suggested that the bubble
departure could be associated with the break of this force balance. Modeling the vapor bubble dynamics by the
force balance is hence a promising way for prediction vapor bubble behavior. It is however necessary to refine
substantially the models of forces, as the quantitative agreement is not satisfactory.

62



Chapter 8

Formation of spiral patterns in a simple
liquid-gas system

An experimental investigation on the formation of regular patterns in a simple liquid-gas two-phase flow
system is reported. A theoretical model developed for getting insights into the pattern formation mechanism
is also presented. This investigation was motivated by the analogy of observed patterns with the formation
of botanical patterns, the phyllotaxis. This research was performed in collaboration with Dr. Christian
Mathis, Dr. Philippe Maı̈ssa and Dr. Germain Rousseaux of Laboratoire J.-A. Dieudonné as well as with
Dr. Stéphane Douady (MSC, Paris). The results were published in Eur. Phys. J. E [99] and in a proceedings
book of a conference [98].

8.1 Introduction

Liquid-gas two-phase flows are observed in many natural and industrial processes. Experimental, theoretical, and
numerical investigations on their dynamics have been performed in a variety of flow configurations. Due to the
complex interaction between liquid and gas phases, much e↵ort still must be made to understand these two-phase
flows. Even a simple flow system, in which bubbles are formed by continuous gas supply through a tube or an
orifice, exhibits rich dynamical behavior [16, 60]. In the present chapter, we report an experiment on a pattern
formation in a very simple system illustrated in Fig. 8-1(a), where gas bubbles of volume Vb are injected one by
one with a period T into a liquid of density ⇢ and kinematic viscosity ⌫ contained in a cylindrical tank. We are
interested in the patterns exhibited by these bubbles after their emergence from the liquid free surface. The main
motivation for investigation comes from the analogy between these patterns and patterns in plants.

The arrangement of leaves on plant stems, called phyllotaxis, has interested scholars for a long time [13, 69]
because of its astonishing regularity. Leaves often exhibit a spiral pattern that results from a constant angular
shift, called the divergence angle, around the stem between two consecutive leaves. Phyllotaxis is known for
its mathematical richness: it has a close relation with the golden mean ⌧ =

⇣p
5 + 1

⌘
/2 and the Fibonacci series.

Microscopic observation of shoot apexes, where leaf primordia are born, and surgical experiments on them suggest
that the compaction of the primordia during the meristematic development plays a crucial role in phyllotaxis [69].
Recently, considering systems other than plants, Levitov [50] and Douady & Couder [22, 23] showed that repulsive
objects1 under a geometric constraint can exhibit phyllotaxis-like patterns characterized by a constant angular
shift  between two consecutive objects. Increasing the compaction of the objects, they found that the angular

1Abrikosov vortices in a superconductor in [50]; ferrofluid drops in a magnetic field in [22, 23]
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Figure 8-1: Schematic illustration of the investigated flow system with measurement devices.

shift  experienced a series of quasi-bifurcations and converged to the Fibonacci angle  F = 360�/⌧2 = 137.5�,
which is the most frequently observed angle in natural plants. These results suggest that the phyllotactic pattern
formation would be observed in a wide class of non-botanical systems.

8.2 Experiments

The experimental setup is illustrated in Fig. 8-1(a). Nitrogen gas is injected into silicone oil through an orifice
placed at the center of the bottom of a vertical cylindrical tank. The orifice has a diameter ranging from 0.8 to
3.0 mm. Bubbles of a constant volume Vb form at and detach from the orifice with a constant period T . The
volume-equivalent diameter De of the bubbles is about 6 mm. After being released from the orifice, bubbles rise
along the system’s symmetry axis in a regular chain (Fig. 8-2a1) and emerge from the free surface with a period
identical to the bubble injection period T . This bubble motion induces a liquid jet along the bubble rising path,
which impinges the free surface to make a bump (apex). The jet is then converted into a diverging radial flow along
the surface (Fig. 8-2b). Bubbles emerging from the free surface are advected radially by this surface flow.
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Figure 8-2: Rising motion of bubbles and induced velocity field. (a1) Rising bubbles in side view. z = H indicates
the level of the free surface. (a2) A space-time diagram constructed from a series of successive images in side
view. Oblique gray stripes signify the motion of bubbles. (b) A velocity field in the vicinity of the free surface.
Background colors show vorticity.

64



CHAPTER 8. FORMATION OF SPIRAL PATTERNS IN A SIMPLE LIQUID-GAS SYSTEM

(a) Distichous regime
   Stationary two arms

(b) Spiral regime
    Rotating two arms

(c) Spiral regime
   Rotating five arms

(d) Spiral regime
    Stationary five arms

ψ

Q = 2200 mm3/s, 
T = 55.6 ms.

Q = 1270 mm3/s, 
T = 53.8 ms.

Q = 1460 mm3/s, 
T = 49.6 ms.

Q = 1400 mm3/s, 
T = 50.6 ms.

Figure 8-3: Patterns of bubbles formed on the free surface of a silicone oil of 0.033 Pa s at di↵erent gas flow
rates Q. The measured value of the bubble formation period T is shown at the side of each image. The definition
of the divergence angle  is illustrated in (b).

At a small flow rate Q of nitrogen gas, emerged bubbles are clustered at the central zone of the surface due to the
capillary attraction between floating bubbles. With increasing Q, the frequency of bubble injection, 1/T , increases
and the induced liquid jet and surface flow become strong. The resulting strong advection of bubbles by the surface
flow makes each emerged bubble move individually in a radial direction at the surface. The angle of divergence,  ,
i.e., the angular shift between the radial directions of two consecutive bubbles, is constant and equal to 180 degrees.
In this distichous regime, a straight arrangement of bubbles is observed on the surface (Fig. 8-3a). Further increase
of Q leads to another regime, spiral regime, where  is a constant smaller than 180 degrees: a spiral arrangement
is formed at the surface (Fig. 8-3b-d). The transition between these two regimes occurs through a supercritical
bifurcation. The divergence angle  decreases with Q. If the flow rate exceeds a certain value, bubbles emerge
from the free surface with a period two times larger than the bubble injection period T . This is a consequence of an
instability in bubble chains [68], which leads to bubbles’ pairing and period doubling behavior. This third regime
is out of scope of the present investigation.

Figure 8-4 summarizes our experimental observations, where the following three dimensionless numbers are used
for presentation: the Bond number Bo, the Ohnesorge number Oh and the dimensionless frequency ⌦ of bubble
injection. These numbers are defined by

Bo =
⇢gD2

e

�
, Oh =

s
⇢⌫2

�De
, ⌦ =

D2
e

⌫T
, (8-1)

where � is the surface tension of the liquid. Figure 8-4(a) shows behavior of the divergence angle  for di↵erent
silicone oils of di↵erent viscosities. Figure 8-4(b) illustrate the parameter zones corresponding to the distichous,
spiral and period doubling regimes. In the spiral regime, the values of the divergence angle are indicated by
iso-value curves.

The transition from distichous to spiral regimes is closely related to the interaction between emerging bubbles in
the apex. Indeed, the bubble motion observed in side view (Fig. 8-2a) gave no indication to the transition, while the
behavior of bubbles in the apex changes qualitatively at the transition. Optical observation of the latter behavior
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Figure 8-4: Divergence angle  observed in the spiral regime. (a) Variation of  with the dimensionless fre-
quency ⌦ for di↵erent liquids. (b) Phase diagram. The divergence angle  is shown by iso-value curves in the
spiral regime.

shows that the number N of the bubbles with which each bubble interacts during the emergence increases at the
distichous-spiral transition. In the distichous regime, superposition of two bubbles is observed just before a bubble
emerges from the free surface. It follows that each bubble interacts with its preceding and succeeding ones during
the emergence so that N = 2. In contrast, superposition of three bubbles occurs in the spiral regime (Fig. 8-5),
implying N = 4. This finding suggests that the transition is a consequence of the increase of compaction in the
apex, where emerging bubbles are subjected to geometric constraint. The mechanism of the formation of observed
patterns would hence be similar to that of phyllotaxis.
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Figure 8-5: Successive images showing bubble behavior at their emergence from the free surface in the spiral
regime. Images were taken by a horizontal camera with its optical axis tilted slightly downward. The bubbles are
numbered chronologically. The liquid is a silicone oil of 0.033 Pa s.

8.3 Theoretical model

We develop a theoretical model in order to substantiate the idea that the interaction of bubbles in the apex gives
rise to di↵erent observed patterns. The model is based on the equation of motion for each bubble:

0 = 2⇡⇢⌫De

 
U � dr j

dt

!
+

X

i

f ji + ⇢
⇡

6
D3

egez + S ( j = 1, 2, . . . ), (8-2)

where r j is the position of the j’th bubble’s centre. The first term in the right-hand-side is the Stokes drag that
represents the advection of the bubble by the liquid flow. The liquid flow velocity field U is assumed of the form
U(r,', z) = a(rer � 2zez) that mimics measured velocity fields in the vicinity of the free surface (a: an adjustable
constant of the order of 20 s�1). The second term represents the interactions with other bubbles: f ji is the force
exerted by the i’th bubble. This bubble interaction can be significant only when the inter-bubble distance becomes
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small, i.e., only when bubbles are found in the apex. As we observed strong distortion of bubbles in the apex,
we assume repulsive interaction arising from the capillarity: f ji = K

⇣
r j � ri

⌘
with the coe�cient K = b� (b: an

adjustable constant of the order of unity). This force is e↵ective only for two neighboring bubbles of inter-bubble
distance smaller than a bubble diameter:

���r j � ri
��� < De. The third term is the Archimedean buoyancy force. A

correction to the latter force after the bubble emerges from the surface and the interaction with the free surface are
taken into account in the fourth term S, which is a vertical force pushing the bubble downwards at the surface.

Nondimensionalizing Eq. (8-2) with a time scale T and a length scale De, we get the following coupled ordinary
equation set:

dr j

dt
= AU + F

X

j,i

⇣
r j � ri

⌘
H

⇣
1 � ���r j � ri

���
⌘
+ S (ri,Bo,⌦) ez ( j = 1, 2, . . . ), (8-3)

where H stands for the Heaviside step function. The dimensionless parameters A and F represent the advection by
the flow and the bubble-bubble interaction, respectively:

A = T
 
@Ur

@r

!

(r,z)=0
, F =

KT
2⇡⇢⌫De

. (8-4)

where Ur is the radial flow velocity and the point (r, z) = 0 indicates the center of the free surface. The advection
parameter A is of the order of the unity for our experiments.

Numerical simulation of the model is carried out by integrating the ordinary di↵erential equation set (8-3) with
the initial condition that bubbles are injected at z = z0 (< 0) without any velocity with a constant period. For the
integration of each equation, the fourth-order Runge-Kutta method was adopted. Results of the simulation show
that, as speculated, any bubble interacts with others only when it is emerging from the surface at a small central
zone (r . 1). After leaving this zone, the bubble moves in a radial direction without any more interaction with other
bubbles. We can then determine the radial direction of the surface motion of a bubble and can compute its angular
deviation from the direction of the preceding bubble. Figure 8-6(a) shows the behavior of this divergence angle  j

between the j’th and ( j+1)’th bubbles ( j = 1, 2, . . . ) for a given value of A. After 50 bubbles, the divergence angle
converges to a constant value  . The final value  of the divergence angle is 160 degrees: a spiral arrangement
will be observed on the free surface. In the figure, the number Nj of the bubbles with which the bubble j interacts
is also plotted. While Nj takes odd values (3 and then 5) at the beginning, it converges to the final value N = 4, the
expected value in the spiral regime.
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Figure 8-6: Divergence angles obtained in simulations of the theoretical model (Eq. 8-3). (a) Angle  j between
two consecutive bubbles at A = 0.6. (b) Final constant value  . The bubble interaction number Nj and its final
value N are also shown in these graphs. (F = 0.3 and Bo = 17 for both panels).
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The final value of the divergence,  , depends on the advection parameter A and the interaction parameter F.
Varying these parameters, the model can reproduce the bifurcation from the distichous to spiral regimes observed
in the experiment. Figure 8-6(b) shows the behavior of  when the advection parameter A is varied. For large A,
the angle  is 180� so that the system is in the distichous regime. Below a critical value Acr = 0.66, the divergence
 decreases with decreasing A. This behavior is similar to that observed in the experiment (Fig. 8-4a), where  
decreases with increasing dimensionless frequency⌦which is inversely proportional to the advection parameter A.
Further decrease of A leads to another transition at A0cr = 0.34, where  starts increasing. This corresponds to the
first quasi-bifurcation observed in the theoretical studies on phyllotactic pattern formations [50, 22]. In Fig. 8-6(b),
the number N of interacting bubbles is also plotted. For large A, the number N is equal to 2. With decreasing
A, the number N jumps to 4: the bubble j interacts with the bubbles j � 2, j � 1, j + 1 and j + 2. This jump
occurs at A = A24 which is larger than Acr. For A in the rage A24 < A < Acr, the interactions with the bubbles
j ± 2 are not strong enough and, consequently, the system would remain in the distichous mode. Similar delay of
regime transition is also found for the transition at A0cr: with decreasing A, the number N jumps to 6 slightly before
A = A0cr. In our experiment, the transition at A = A0cr was not observed, since instability of ascending bubble chain
[68], which is not taken into account in the model, occurred before.
The behavior of  and N predicted by the simulation is consistent with the experimental observations, as described
above. It supports the conjecture that the increasing compaction of bubbles in the apex provokes the distichous-
spiral transition and gives rise to the decrease of  in the spiral regime.

8.4 Conclusion

We investigated the formation of patterns exhibited by periodically emerging bubbles from a liquid free surface.
Experimental observation of bubble behavior shows that the bubble-bubble interaction in a bump of the surface
(apex) plays a decisive role in the pattern formation. This indicates the analogy with the meristematic development
in a shoot apex of a plant that leads to a regular leaf arrangement, phyllotaxis. A simple theoretical model was
developed for our experiment. The model is based on the balance of the forces on each bubble and takes into
account the advection by the liquid flow and the bubble-bubble interaction, both of which a↵ect the compaction of
bubbles in the apex. The model can reproduce the experimentally observed behavior of the divergence angle  , in
particular, the transition from the distichous regime to the spiral regime. The predicted behavior of the number N
of interacting bubbles in the apex is consistent with experimental observations. The compaction of bubbles in the
apex is hence the origin of observed spiral patterns. The mechanism of the pattern formation is a phyllotactic one.
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Research project for coming years
For coming years, my research activities will be concentrated on non-isothermal electrohydrodynamic
(EHD) flows driven by the thermal DEP force in cylindrical annular and spherical shell geometries. Non-
linear flow states and related heat transfer will be investigated by theoretical analyses as well as by direct
numerical simulations. This is a continuation of my preceding works (Chaps. 2, 3, & 5) in the sense that
the gravito-EHD analogy motivates the research. However, the focus of investigations is the propagation
of waves due to the thermoelectric buoyancy in a stratified fluid layer. My investigations aim to establish a
theoretical basis for these EHD internal waves.

Fluids in electric fields can sustain wave motion due to forces exerted by the field. EHD surface waves on a liquid
film and on a liquid jet have been investigated by many researchers (e.g., [14, 53] among others), as they pertain to
many applications (control of coating process, heat transfer enhancement at a liquid surface, atomization of a liquid
jet, etc.). The behavior of free charge carriers at an isotype heterogeneous junction of a semiconductor was modeled
by an electrohydrodynamic approach and wave propagation was predicted [8]. The waves were characterized by
a Brunt-Väisälä frequency associated with the stratification of the junction. Electrohydrodynamic e↵ects on the
gravity waves that generate the traveling ionospheric disturbances in the Earth’s upper atmosphere have also been
discussed [39]. All these waves are, however, related to the Coulomb forces on free charges suspended in the fluid.
There are few studies on waves sustained by the dielectric force.

According to the gravito-EHD analogy, however, it is expected that internal waves propagate in a thermally strati-
fied fluid layer in an electric field due to the thermal DEP force. Indeed, a dispersion relation similar to the relation
of the classical internal waves was obtained for a fluid layer in a cylindrical capacitor in the limit of vanishing vis-
cosity.1 The maximum value of the frequency of these EHD internal waves is given by the buoyancy frequency N
based on the centripetal electric gravity Ge: N =

p�(Ge/⇢)d⇢/dr. Furthermore, in my preceding research on a
non-isothermal Taylor-Couette system with a radial electric field (Chap. 5), we found the oscillatory eigenmodes
that are characterized by this buoyancy frequency N. Investigations on the EHD internal waves will be of great in-
terest in geo- and astro-physics, since laboratory experiments on these waves can enable us to simulate large-scale
wave motions in atmosphere and ocean up to highly nonlinear flow regimes.

Theoretical and numerical investigations are needed for guiding experiments on the EHD internal waves and un-
derstanding their results. In particular, we should know, by theories and DNS, under which conditions the analogy
works precisely. In fact, the gravito-EHD analogy is broken by thermoelectric feedback e↵ects, which is repre-
sented by the perturbation component of the electric gravity g0e (Chaps. 2&3).

To establish the theoretical basis of experiments on the EHD internal waves, I plan to perform the following tasks
for flows, mainly in cylindrical annular geometry:

1. Determination of non-linear states of oscillatory modes found in a Taylor-Couette system (Chap. 5),

2. Characterization of the EHD internal waves in the linear regime with/without cylinder rotation,

3. Characterization of the EHD internal waves in the non-linear regimes with/without cylinder rotation, by
theoretical modeling and by direct numerical simulations.

For Task 1, the exact traveling wave solutions of the governing equations (5-1) are determined. For this determina-
tion, we will follow the path of the bifurcation from the conductive state, whose stability is considered in Chap. 5.

1My result communicated at APS DFD conference in 2014.



The governing equation will be solved in Fourier-Chebyshev spectral space by the Newton-Raphson method. For
Task 2, dispersion relations will be determined by solving linearized governing equations with exploring di↵er-
ent ranges of flow parameters. For Task 3, the wave equations that model the non-linear wave behavior will be
sought. They may take the forms of the Korteweg-de Vries equation or of the non-linear Schrödinger equation,
depending on geometrical constraints and flow parameters. DNS aims to validate these model equations as well as
to examine the parameter ranges at which the models lost their validity. Simulations will be performed by devel-
oping existing spectral codes and/or finite volume codes. Throughout these investigations, the contribution of the
thermoelectric feedback to wave dynamics will be distinguished in order to clarify the validity of the gravito-EHD
analogy. In non-linear regimes, momentum and heat transfer associated with the waves will be determined for
future comparisons with experiments.

In Task 3, particular focus will be placed on the propagation of solitary waves in annular geometry. This type of
nonlinear wave, which can travel a long distance with keeping their shape due to the balance between the non-
linearity and dispersion of the waves, is observed in a variety of physical systems [59]. Propagation of solitary
waves is also observed in geophysics. These waves play an important role in the large-scale transport phenomena
and in the energy exchange between flows of di↵erent scales. They have been studied for waves in the atmosphere,
e.g., for gravity waves and for Rossby waves [30, 62]. Solitary waves are also subject of intense research in
oceanography. Many observations of solitary waves by satellites have been reported [4]. The gravito-EHD analogy
can o↵er laboratory experiments to simulate this important class of geophysical waves.

The research will be carried out in collaboration with other researchers. The determination of non-linear exact so-
lutions will be performed in collaboration with Prof. M. Nagata (Tianjin University). Direct numerical simulation
would benefit from a future collaboration with experts in computational fluid dynamics of EHD flows. I will also
keep the actual close relation with a research team of the Laboratoire Ondes et Milieux Complexes in Le Havre
(Prof. I. Mutabazi, Dr. O. Crumeyrolle), which plans to perform experiments in annular geometry.
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Mar. 2002 M.Eng. (Electrical Engineering), Doshisha University
Master thesis: “The momentum di↵usion of a planar plasma jet in a homogeneous plasma,” Supervisor:
Prof. Motoi Wada

Mar. 2000 B.Eng. (Electronics), Doshisha University

Professional positions
Sep. 2013 – Associate Professor (MCF, Sec. 60; Université Nice Sophia-Antipolis)
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Involved other investigators: Prof. Didier Clamond, Prof. Innocent Mutabazi, Dr. Olivier Crumeyrolle. Allocated
amount: 3 000e.

2013 Co-proposer of the Labex EMC3 Projet:
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2014 - Antoine Mayer Université du Havre Thermoelectric instability of the Taylor-
Couette flow
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81



!



Appendix B

List of Publications

Articles in Refereed Journals

1. Meyer, A., Yoshikawa, H., Mutabazi, I., “E↵ect of the radial buoyancy on a circular Couette flow,” Phys. Flu-
ids, 27, 114104, 2015

2. Yoshikawa, H., Meyer, A., Crumeyrolle, O., Mutabazi, I., “Linear stability of a circular Couette flow under
a radial thermoelectric body force,” Phys. Rev. E, 91, 033003, 2015

3. Tadie Fogaing, M., Yoshikawa, H., Crumeyrolle, O.,Mutabazi, I., “Heat transfer in the thermo-electro-
hydrodynamic convection under microgravity conditions,” Eur. Phys. J. E, 37(4), 35, 2014

4. Yoshikawa, H., Nagata, M., Mutabazi, I., “Instability of the vertical annular flow with a radial heating and
rotating inner cylinder,” Phys. Fluids, 25, 114104, 2013

5. Yoshikawa, H., Tadie Fogaing, M., Crumeyrolle, O., Mutabazi, I., “Dielectrophoretic Rayleigh-Bénard con-
vection under microgravity conditions,” Phys. Rev. E, 87, 043003, 2013

6. Kosseifi, N., Biwole, P.H., Mathis, C., Rousseaux, G., Boyer, S.A.E., Yoshikawa, H., Coupez, T., “Applica-
tion of two-color LIF thermometry to nucleate boiling,” J. Mater. Sci. Eng. B (David Publishing), 3(5), pp.
281–290, 2013

7. Yoshikawa, H., Crumeyrolle, O., Mutabazi, I., “Dielectrophoretic force-driven thermal convection in annular
geometry,” Phys. Fluids, 25(2), 024106, 2013

8. Malik, S., Yoshikawa, H., Crumeyrolle, O., Mutabazi, I., “Thermo–electro–hydrodynamic instabilities in a
dielectric liquid under microgravity,” Acta Astronaut., 81(2), pp. 563–569, 2012

9. van der Geld, C.W.M., Segers, Q., Pereira da Rosa, V.H., Colin, C., Yoshikawa, H., “Forces on a boiling bub-
ble in a developing boundary layer, in microgravity with g–jitter and in terrestrial conditions,” Phys. Fluids,
24, 082104, 2012

10. Yoshikawa, H., Wesfreid, J.E., “Oscillatory Kelvin-Helmholtz instability. Part 1. A viscous theory,” J. Fluid Mech.,
675, pp. 223–248, 2011

11. Yoshikawa, H., Wesfreid, J.E., “Oscillatory Kelvin-Helmholtz instability. Part 2. An experiment in fluids
with a large viscosity contrast,” J. Fluid Mech., 675, pp. 249–267, 2011

83



12. Yoshikawa, H., Mathis, C., Maı̈ssa, P., Rousseaux, G., Douady, S., “Pattern formation in bubbles emerging
periodically from a liquid free surface,” Eur. Phys. J. E, 33(1), pp.11-18, 2010

13. Yoshikawa, H., Zoueshtiagh, Z., Caps, H., Kurowski, P., Petitjeans, P., “Bubble splitting in oscillatory flows
on ground and in reduced gravity,” Eur. Phys. J. E, 31(2), pp.191-199, 2010

14. Yoshikawa, H., Zoueshtiagh, Z., Caps, H., Kurowski, P., Petitjeans, P., “Bubble rupture in a vibrated liquid
under microgravity”, Microgravity Sci. Technol., 19(3-4), pp.155-156, 2007

15. Rousseaux, G.†, Yoshikawa, H.†, Stegner, A. and Wesfreid, J.E., “Dynamics of transient eddy above rolling-
grain ripples,” Phys. Fluids, 16(4), pp.1049-1058, 2004

† Co-first authors

Book chapter

1. Futterer, B., Yoshikawa, H., Mutabazi, I., Egbers, C., “Electric fields,” in Generation on Earth of an extra-
terrestrial environment, Ed. J. van Loon & D. Beysens, River Publisher, 2015

2. Yoshikawa, H., Mathis, C., Maı̈ssa, P., Rousseaux, G., “Spiral pattern formation in a simple two-phase flow
system,” Chaos, Complexity and Transport, Ed. X. Leoncini & M. Leonetti, World scientific, pp. 113–122,
2012

Conference Papers

1. Lebon, M., Yoshikawa, H., Sebilleau, J., Colin, C., “Bubble formation in a quiescent liquid and in a shear
flow,” Article #NSB 6 in 9 th International Conference on Boiling & Condensation Heat Transfer, Boulder,
Colorado, 2015

2. Kahouadji, L., Yoshikawa, H., Peixinho, J., Mutabazi, I., “Heat transfer by Görtler vortices developed on a
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wall with finite conductivity,” Rencontre du Non-Linéaire, Paris, 2014
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