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Examinateur Alain Barrat Centre de Physique Théorique, Marseille & CNRS
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et je remercie ceux qui m’ont permis de profiter de ces environnements sci-
entifiques excellents.

Finalement, je ne peux pas conclure ce paragraphe sans un mot tendre
pour Magali, Camille et Jeanne. Si le temps consacré à mes deux filles a
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Introduction to the dissertation

This dissertation presents my scientific activities since the end of my PhD
in 2003. During this period, I spent two years as a post doc at the Los Alamos
National Laboratory (USA), in the Center for Non Linear Studies (CNLS)
and the Condensed Matter group. Then, in Fall 2005, I was recruited as
a ”Mâıtre de Conférences” at the Nice-Sophia Antipolis University, in the
Mathematics Department.

At first glance, my activity can be divided in two rather distinct themes:
rigidity percolation on one side, and long range interacting systems on the
other side, the latter regrouping a rather diverse body of works. However,
my works in these two directions have several features in common. First, at
the level of methods. In both cases, the problem is usually to understand
some macroscopic properties starting from a microscopic modeling, using
probabilistic tools: this might be a definition of the statistical mechanics
endeavor in general. More precisely, tools from large deviation theory play
an important role in many of the works presented here, both for rigidity
percolation and long range interacting systems. Second, there are similarities
in the strategies to attack the problems: I have often concentrated first on
simple models, on which a detailed study is possible, before trying to extract
a generic behavior.

Although the statistical mechanics of long range interacting systems was
already the subject of my PhD thesis, done under the joint supervision of
Thierry Dauxois and Stefano Ruffo, my research on the subject has followed
new directions since 2003: my position in a mathematics department gave
me the opportunity to start a mathematically oriented research project on ki-
netic limits for systems of interacting particles, with Pierre-Emmanuel Jabin
and Maxime Hauray; at the same time, I started a collaboration with an
experimental team on cold atoms in INLN (Institut Non Linéaire de Nice).

The dissertation is organized in two chapters: the first one is devoted to
rigidity percolation, and the second one to long range interacting systems. In
each case, I have tried to give a detailed and non technical introduction to the
subject, to emphasize the motivations and questions behind my works, and
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to present and summarize my contributions. I then append to each chapter
a few articles which I consider to best illustrate my scientific activity since
2003.

There is one bibliography at the end of each chapter. Citations of the
type [B*] refer to works of which I am a coauthor. These references are
gathered at the end of the document for clarity.

The works presented in this dissertation owe much to my numerous col-
laborators during these years; I take this opportunity to warmly thank all of
them!
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Chapter 1

Contributions to rigidity
percolation

Rigidity percolation is less known and much less studied than ordinary con-
nectivity percolation. I will start this chapter by an introduction to the
subject in 1.1, which is of course far from being exhaustive. I will then list
some open problems in this field; some of them are motivated by purely the-
oretical considerations, see section 1.2, and others are related to the use of
rigidity concepts in modeling real physical systems, notably network glasses,
see section 1.3. In section 1.4, I introduce more precisely my contributions
to the field, which are published in articles [B4,B5,B7,B15], and the book
chapter [Bbook]. As this book chapter presents more technical details than
[B5] and [B7], I have chosen to reproduce it in this report, as well as [B15].

My collaborators on this topic are Alan Bishop, Turab Lookman, Avadh
Saxena and Olivier Rivoire. Although Olivier Rivoire did not participate to
the writing of the book chapter, the work it reviews owes much to him.

1.1 Introduction to rigidity percolation

1.1.1 Some definitions

Rigidity theory considers structures made of sites connected by links. Each
link imposes a constraint, by prescribing the distance between the two sites
it connects: if the actual distance between the two sites is different from the
prescription, there is an associated energy cost. Rigidity theory deals with
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Figure 1.1: On the left hand side: Ns = 6 sites, Nl = 8 links; the bold links
form a rigid but not overconstrained cluster; the total number of degrees
of freedom of the network is Nflop = 4. Constraint counting is correct, as
it gives Nflop = 2Ns − Nl = 4. On the left hand side: 6 sites, 9 links;
the bold links form a rigid and overconstrained cluster; the total number of
degrees of freedom of the network is still 4, since the added link is redundant.
Constraint counting is not correct, as it would give Nflop = 3.

properties associated with the structure’s topology, which do not depend on
the physical nature of the constraints, nor on the precise form of the energy
cost. Typical questions asked by rigidity theory are: how many degrees of
freedom are left in the system? Is there a macroscopic cluster of sites rigidly
connected one with the others? By contrast, questions related to the elastic
properties of the structure do depend on the specification of the constraints.
Examples of simple networks, with their number of degrees of freedom and
decomposition in rigid clusters are presented in Fig. 1.1.

When the number of links in the structure is increased, the phenomenol-
ogy is as follows. For a small enough number of links, that is a small mean
connectivity of the structure, there are many more degrees of freedom than
constraints; there is no macroscopic rigid cluster, and many degrees of free-
dom are left in the system: the system is said to be floppy. At large mean
connectivity, there are many more constraints than degrees of freedom; there
is a macroscopic rigid cluster, and many constraints cannot be satisfied: the
system is said to be stressed rigid. In between these two phases takes place
the rigidity percolation transition. There is a very simple way to estimate the
number of degrees of freedom, or ”floppy modes”, left in a system: count the
total number of degrees of freedom (for instance 2N for a network with N
sites in 2D), and subtract the total number of constraints (one constraint per
link in the setting presented here). The percolation threshold corresponds to
the point where the number of floppy modes vanishes. This procedure is usu-
ally called ”Maxwell constraint counting”; it is clearly only approximate, as
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Figure 1.2: A region from a large generic triangular lattice; each bond is
present with probability p = 0.6603, which is approximately the percolation
threshold. Bold lines correspond to overconstrained bonds. Open circles
represent sites acting as pivots between two or more rigid clusters. On this
sample, there is a rigid cluster percolating from top to bottom and from left
to right (the cluster containing no pivot); the overconstrained region does
not percolate. This figure is drawn from the article [13], by D. Jacobs and
M. Thorpe.

it forgets the redundant constraints below the rigidity percolation threshold,
and the remaining floppy modes above the percolation threshold.

Fig. 1.2 shows a 2D triangular lattice close to the rigidity percolation
threshold. In the literature, and in particular in the works I will present, the
emphasis has been on bond percolation; however, a site rigidity percolation
may also be defined, in analogy with ordinary percolation.

1.1.2 Generic rigidity

As explained above, some properties related to the rigidity of a network, such
as the number of floppy modes, or the distribution of rigid clusters, depend
only on the graph’s topology. This means that they depend only on the
network defined as a collection of sites and edges connecting the sites, and not
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Figure 1.3: The graph on the upper row is non-generic, since for instance,
the three dashed bonds are parallel. It is not rigid, as it may be “sheared”,
as shown on the right. This “shearing” floppy mode is due to the parallelism
of the three dashed bonds. In contrast, the lower graph is topologically
equivalent to the upper one, but is generic; it is rigid.

on the precise embedding of the graph in R2 or R3. The analogous statement
for ordinary percolation is clear: the connectivity properties of a graph do
not depend on its spatial embedding. In the case of rigidity percolation, it is
less obvious, and it is actually true only for generic rigidity. To be a little bit
more precise, an embedding of a graph in R2 is said to be generic if sites and
bonds do not present any ”special” property, like two parallel bonds, or three
aligned sites. Obviously, a slight perturbation of a non-generic embedding
turns it into a generic one. For a clear and rigorous presentation of generic
2D rigidity, we refer to [10, 11]. To make the point clearer, Fig. 1.3 shows
two embeddings of the same topological structure. One is generic and the
other is not, and they do not have the same rigidity properties.
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1.1.3 The pebble game algorithm

From now on, I will consider only generic rigidity. All properties considered
then depend only on the topological structure of the graph. However, until
the mid-nineties, it was not known how to compute these properties using
only the network topology. Indeed, the basic method is as follows: consider
an embedding of a graph; replace all bonds by springs; linearize the dynamics
of the sites; then diagonalize the associated matrix, and count the number
of zero eigenvalues. The diagonalization procedure may be slow, and, worse,
it may be difficult to distinguish numerically between a mode with small
frequency, and a genuine floppy mode with strictly zero frequency. Thus,
this method led to slow algorithms and severe limitations on the size of
the systems studied. A decisive theoretical progress was then made for 2D
rigidity, with the introduction of combinatorial algorithms [12, 22], based on
Laman’s theorem [16].

Theorem :
A graph G with N ≥ 3 sites and M = 2N − 3 bonds, such that every
subgraph S of G containing NS sites contains at most 2NS−3 bonds is rigid.

Laman’s theorem essentially states that for 2D generic rigidity, Maxwell’s
constraint counting is correct if done for each subgraph, and not only at the
level of the whole graph. The algorithms in [12, 22] implement this idea in
an efficient way, which avoids the combinatorial problem of having to deal
with all subgraphs. These new algorithms allow for the study of much larger
samples than before, as well as more precise estimates around the critical
point [13]. The algorithm in [12] was called the “pebble game”; this is the
one I have used in my own works.

Laman’s theorem is valid in two dimensions. Its generalization to three
dimension would read (taking into account the fact that a rigid body in three
dimensions has 6 degrees of freedom):
A graph G with N ≥ 3 sites and M = 3N−6 bonds, such that every subgraph
S of G containing NS sites contains at most 3NS − 6 bonds is rigid.
Unfortunately, this statement is wrong! A counterexample, sometimes called
in the literature the “double-banana” graph, is shown on Fig. 1.4.

The lack of a Laman’s like theorem in three dimension essentially prevents
the generalization of the pebble-game algorithm. However, M. Thorpe and
M. Chubynsky have recently shown that in some cases, the errors induced
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Figure 1.4: This graph has N = 8 sites and M = 3N − 6 = 18 bonds.
One may check easily that each subgraph with NS sites contains at most
3NS − 6 bonds. However, both “bananas” may freely rotate around the axis
defined by the sites labeled A and B. It is thus a counter example to the 3D
generalization of Laman’s theorem.

by the dangerous configurations, such as the one in Fig. 1.4, are extremely
small. In these cases, the pebble-game can be safely used. [5].

Up to now, I have presented only the standard rigidity percolation picture,
where each bond brings only one constraint. It is usually called rigidity
percolation in “central force” networks. In a variant, very important for
modeling purposes 1.3, one considers that the angles between adjacent bonds
are fixed, in addition to the bond’s lengths. Networks with this type of
angular constraints are usually called “bond bending” networks. Although
there is no proof of a “Laman like” theorem for bond-bending networks, it has
been conjectured that a statement generalizing Laman’s theorem holds in 3D
in this case. An associated pebble-game algorithm has thus been developed,
and is conjectured to be exact [14]. As a final remark, let us mention that
rigidity percolation on a 2D bond-bending network is actually equivalent to
ordinary connectivity percolation.
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1.2 Some analytical approaches and open ques-

tions

Since the introduction of the pebble game algorithm in 1995, numerical in-
vestigations of the rigidity percolation are much more precise. On the other
hand, rigorous results, and even analytical results obtained with physicist’s
methods are still rare. I briefly review here the works I am aware of.

1.2.1 Some rigorous results

The problem of rigidity percolation, which mixes combinatorics and probabil-
ities, has attracted the attention of mathematicians, at least since Laman [16].
Yet, the mathematical studies are much less numerous than in the field of
ordinary percolation. Holroyd [11] has proved the existence of a critical prob-
ability pr for bond rigidity percolation on the triangular lattice, with pr < 1,
and pr strictly larger than the ordinary percolation critical probability, which
is 2 sinπ/18 ' 0.347 on a triangular lattice. He also proved the uniqueness
of the infinite rigid cluster above the threshold, a result extended for per-
colation in any dimension by Häggström [8]. Some results for Erdös-Rényi
random graphs were recently obtained [29], but there is no rigorous proof yet
of a threshold in this case.

In any case, I am not aware of any rigorous result precise enough to
compute exactly a rigidity threshold, nor give insight into the order of the
phase transition or the critical exponents.

1.2.2 Dimension two

For rigidity percolation on 2D regular lattices (typically, triangular), the sce-
nario of a second order phase transition in a different universality class than
ordinary percolation seems favored by the numerics, although there has been
some debate on the subject [6]. To my knowledge, there has been no satisfac-
tory analytical estimation of the critical exponents, which could be compared
with the numerics. This is in sharp contrast with the ordinary percolation
case, where the exponents are exactly known, and various approximation
schemes have been used (series expansions, renormalization procedures, ε-
expansions...). We quote here a field theoretical attempt by Obukhov [24],
which predicts a first order phase transition in 2D. This, in the light of the
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numerics, seems to be a non generic feature. There has been also earlier
attempts to study rigidity percolation through Position Space Renormal-
ization Group [7, 15]; based on small renormalization cells, the associated
predictions for the critical exponents are unprecise, and cannot discriminate
between ordinary and rigidity percolation.

1.2.3 Dimension three

Central force rigidity percolation in 3D networks has been studied numeri-
cally using the pebble-game algorithm by M. Chubynsky and M. Thorpe [5]
(in this paper, they first show that the error incurred by using the pebble
game, which is not exact in this case, is negligible).

They present convincing numerical evidence that the transition is first
order on a Face Centered Cubic (FCC) lattice, but second order on a Body
Centered Cubic (BCC) lattice. This result, which is very surprising in views
of the standard “universality” picture, has not yet received any explanation.

1.2.4 Models on trees and random graphs

The only known exactly solvable models (in a physicist’s sense) of rigidity
percolation are models on trees, or random graphs having a locally tree-
like topology [23, 31, 6, 2] (see section 1.4 for more details). However, in
these types of models, the rigidity percolation transition is usually first order,
whereas it is second order for generic 2D rigidity. Thus, they should be use
with caution.

Despite the previous remark, notice that these models on random graphs
may be used to “mimick” rigidity percolation in any dimension: although
the graph has no dimension (and one may argue it has an effective infinite
dimension), one chooses in the model the number of degrees of freedom f
attributed to each site. f = 1 corresponds to usual connectivity percolation;
f = d > 1 to rigidity in d dimensions 1.

1More genrally, the dimension of the lattice on which one studies the percolation phe-
nomenon needs not in principle be equal to the number of degrees of freedom of a single
site.
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1.3 Modeling issues

1.3.1 Network glasses

Despite its clearly mechanical origin, the problem of rigidity percolation has
also attracted attention in the last 30 years because of its applications in
understanding the properties of network forming glasses, like GeSe or GeAsSe
alloys [25, 30]. In this case, the atomic bonds and the angles between adjacent
atomic bonds should be considered as constraints. Such glasses are thus
modeled as bond-bending networks.

It is interesting to perform the constraint counting approximation in this
setting. Consider a Selenium atom, which has connectivity 2. It brings two
length constraints, and one angular constraint. A Germanium atoms has
connectivity 4, and brings 4 length constraint and 5 angular constraint. In
general, an atom with connectivity k brings k length constraints and 2k − 3
angular constraints. The length constraints should be counted with weight
one half, as they are shared between two neighboring atoms. Thus, calling
r the mean connectivity of an atomic network, the number of constraints
per atom is c = r/2 + 2r − 3. Maxwell’s approximation predicts a rigidity
transition when c ' 3, which translates in r ' 2.4. On the basis of this
approach, one would then expect some changes in the properties of a glassy
alloy GexSe1−x for x ' 0.2.

The modeling problems I have considered were related to this application
to glasses, see section 1.4.2. Other models, such as cross linking stiff fibers
forming random networks were shown to fall in the same universality class
as central force 2D rigidity [17], and this type of system has been used to
model network forming proteins [9].

1.3.2 Self-organization and the intermediate phase

About 10 years ago, Thorpe et al. have opened a new research direction
by introducing the notion of network self-organization in rigidity percolation
models [32]. This is a natural idea in the context of network glasses model-
ing: constraints that are not satisfied create stress and bear an energy cost;
the network should then self-organize, i.e. tend to modify its structure, in
order to minimize this energy cost. In [32], numerical simulations allowing
self organization point to the existence of a new phase in between the usual
floppy and rigid ones. As a function of the mean connectivity, the phase
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diagram would then show two phase transitions instead of one. Around the
same time, several experiments on network glasses drew a picture compati-
ble with this predicted phenomenology [28, 33, 1]. A problem of the original
simulations of [32] was their strongly out of equilibrium character; some the-
oretical studies improved on this, and seemed to confirm the “three phases”
picture [20, 21].

1.4 Contributions

1.4.1 Using the cavity method [B4]

To go beyond the simple Maxwell ”constraint counting” approximations,
rigidity percolation models have been solved on trees; using the same method,
called in the literature the ”transfer matrix method”, various types of random
graphs can be solved as well [23, 31, 6, 2]. The important point is that the
graph should be locally tree-like. In other words, small loops should have a
negligible effect. In this case, two sites that share a common neighbor may be
considered practically statistically independent, once their common neighbor
is removed. This independence hypothesis, which is fulfilled on a tree, and
is a reasonable approximation in the absence of small loops, allows to solve
the corresponding models. This is nothing but the traditional idea of solving
models on Bethe lattices, adapted to rigidity percolation.

The cavity method was introduced in the 80’s in the context of spin
glasses [18]. In the last 10 years, it was revisited, and proved extremely pow-
erful to compute various quantities related to probabilistic and combinatorial
models on random graphs [19], including in the event of replica symmetry
breaking.

In this paragraph we introduce a combinatorial optimization problem,
which we conjecture to be equivalent to rigidity percolation in the large N
limit, in the case of random graphs. Let us consider first a network where
each atom has d degrees of freedom, and each bond carries only one constraint
(bond stretching). A bond removes one degree of freedom assigned to one of
its neighboring atoms; we represent this by orienting the bond towards the
atom which loses one degree of freedom. Once all bonds are oriented, one
may count all the degrees of freedom (=floppy modes) remaining; this yields
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Figure 1.5: Upper-left oriented graph a): Nω
flop = 4 but the bond orientation

ω is not optimal. Upper-right oriented graph b): Nω
flop = 3 and the bond

orientation ω is optimal. Indeed, the graph a) and b) is rigid, and has three
degrees of freedom. Lower oriented graph: this is an example where Eq. (1.2)
does not yield the correct result. An optimal orientation ω uields Nflop = 3,
whereas the true result is Nflop = 5.

the following formula, for a given orientation of the bonds, ω:

Nω
flop =

∑
atoms

max(0, d− dini ) , (1.1)

where dini is the number of bonds oriented towards atom i. The “max” ex-
presses the fact that the number of degrees of freedom of an atom cannot be
negative. Eq. (1.1) attributes a number of floppy modes to a given orienta-
tion of the bonds. The number of degrees of freedom of the network is the
minimum of this quantity over all orientations of the network, that is,

Nflop = min
ω∈O

Nω
flop , (1.2)

where O represents all orientations of the network. Examples are given in
Fig. 1.5.

Eqs. (1.1) and (1.2) recast rigidity percolation as finding the minimum of
a function over an ensemble of 2Nbonds possible orientations. We stress once
again that, in contrast to the combinatorial representation used in the peb-
ble game algorithm, this combinatorial optimization formulation of rigidity

17



percolation, as given by Eqs. (1.1) and (1.2), is not strictly equivalent to the
original problem. Fig. 1.5 provides an example of this fact. One sees that the
discrepancy comes from the three global degrees of freedom that each graph
always has: two translations and one rotation. Eqs. (1.1) and (1.2) wrongly
allows the bonds to remove these degrees of freedom. The error incurred for
one cluster is at most 3, which is negligible in the large N limit, as there is
an extensive number of degrees of freedom. However, if there are many small
rigid clusters, the errors may sum up. For a diluted random graph, one ex-
pects that this does not happen. Hence, we rely on the following conjecture,
which seems reasonable but is unproved, despite the previous arguments:

The error incurred in the computation of floppy modes by using Eq. 1.2
is subdominant in the large N limit for diluted random graphs.

Recast in this combinatorial optimization form, the problem becomes per-
fectly suited for the cavity method. This remark, illustrated by an example
of rigidity percolation in a small world chain was my first contribution to the
rigidity percolation field [B4].

It turns out that the combinatorial optimization problem associated with
rigidity percolation does not seem to present replica symmetry breaking, at
least in all the forms it was studied so far. A priori, this makes the use
of the cavity method only a minor technical improvement with respect to
the traditional techniques used in models of rigidity percolation on trees.
However, it is the basis for the use of the more sophisticated ”large deviation
cavity method”, which gives access to informations not available with the
traditional techniques (see 1.4.3).

1.4.2 A solvable model for the intermediate phase [B5]

The goal of [B5] was to get a clear picture of the effect of self-organization on
rigidity percolation, by studying simple solvable models. Since the only solv-
able models at hand at this time were models on trees and random graphs, the
starting idea was to introduce self-organization in a random graph model of
rigidity percolation. We chose the following model. A random graph is made
of Nx1 = N1 sites with one bond and Nx3 = N3 sites with 3 bonds, with
x1 + x3 = 1 . Each site originally carries 3 degrees of freedom. The length
of the bonds are considered as constraints, as well as the angles between two
adjacent bonds. The number of length constraints is then (N1 +3N3)/2, and
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the number of angles constraints is 3N3 (each 3-coordinated site brings three
angular constraints). When x3, the fraction of 3-coordinated sites, increases,
this model presents a rigidity percolation transition, which may be studied
using for instance the cavity method introduced in section 1.4.1. This study
assumes that the two types of sites are linked in the graph in a maximally
random manner. Self-organization of the network now has a precise meaning:
it corresponds to the building of correlations between neighboring sites, so
that the random graph is not maximally random any more. A combinato-
rial entropy can be associated to these correlations, by counting the graph
configurations.

We introduced an energy, which associates to each configuration of the
graph the number of constraints that are not satisfied. Using combinatorial
methods, we were also able to compute approximately the entropy of a given
graph configuration: the higher the correlations between sites, the further
is the configuration from the maximally random case, and the lower is the
entropy. Putting everything together, we analytically predicted in this model
two phase transitions, when x3 is increased. At low x3, all constraints are
easily satisfied, energy is zero, and the graph is maximally random; at in-
termediate x3, the graph is still able to satisfy all constraints so that energy
is zero, but at the cost of some self-organization: the entropy decreases; at
high x3, the self -organization is not sufficient to satisfy all constraints, and
rigidity and stress percolate; energy is now positive.

All these findings were compared with Monte Carlo simulations, per-
formed using an implementation of the pebble-game algorithm made available
to us by M. Chubynsky. The pebble game allows us to compute the energy
of a given graph configuration, that is the number of unsatisfied constraints.
It is then coupled with a procedure of random rewiring of the network and a
Metropolis algorithm to sample the different network’s configurations. The
results are in qualitative agreement with the theory, and the agreement im-
proves when the approximation in the entropy computation is refined, see
Fig 1.6.

The main advantage of this work is that it introduces simple models of
rigidity percolation incorporating self-organization in an equilibrium statisti-
cal mechanics context; these models are amenable to analytical treatment. It
also provides a picture of the intermediate phase as being exactly on the verge
of rigidity percolation, in a way somewhat similar to self organized criticality
The main drawback is that this work is based on a random graph, which
topology is far from that of the networks one would like to model. Chubyn-
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Figure 1.6: Lower curve: the number of floppy modes per site. The straight
line at small connectivity (small x3) indicates the absence of overconstrained
clusters. Upper curve: a parameter characterizing the departure from a
maximally random graph, ie the self-organization. a = 1 corresponds to the
maximally random case. Symbols are from Monte-Carlo simulations, solid
lines are approximate theoretical computations. The bold line takes better
into account (although not exactly) the correlations between neighboring
sites, and thus lies closer to the numerical datas.
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sky et al. then used an idea similar to the one above, using an underlying 2D
lattice instead of a random graph, and working at zero temperature. Their
study then had to be numerical. The results in [3, 4] are similar to the one
in [B5]. One may wonder however if this phenomenology persists at non zero
temperature.

1.4.3 Exact solution using the large deviation cavity
method [B7,Bbook]

In [B5], the computation of the entropy of a graph configuration was done in
an approximate way, with simple combinatorial methods. Computing exactly
this entropy is equivalent to computing the probability for a random graph to
have a given number of redundant constraints, or rather the large deviation
function associated with this probability.

From the conjecture of section 1.4.1, the number of redundant constraints
Nred of a graph g is the solution of an optimization problem, up to terms in
o(N), where N is the size of the graph: see Eqs. (1.1) and (1.2). The problem
then boils down to computing a large deviation function with respect to the
randomness of the graph g for the solution of a combinatorial optimization
problem on this graph.

It turns out that this kind of questions was studied in 2005 by O. Rivoire,
who introduced a refinement of the cavity method, called the ”large deviation
cavity method”, which is well-suited to perform explicit computations in this
case [27]. Using [B4] and [27], it is then possible to compute exactly the
entropy of a self-organizing rigidity percolation model on a random graph.

This computation is performed in [B7], and the details are published
in [Bbook]. For simplicity, we used an Erdös-Rényi random graph, with the
connectivity γ as control parameter.

The results are qualitatively the same as in section 1.4.2: there are two
true phase transitions, and an intermediate phase, when increasing γ. The
results were again compared with numerics obtained from Monte Carlo sim-
ulations.

1.4.4 Hierarchical lattices [B15]

My most recent contribution to the field is the introduction of a class of
solvable models of rigidity percolation, distinctly different from the class of
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Figure 1.7: Four examples of hierarchical lattices. On the left, the graphs at
step t = 0, with two sites and one bond; on the right, the graphs at t = 1. We
call the t = 1 graph the “elementary cell”. 1), 2), 3) and 4) have elementary
cells with respectively 4 sites and 5 bonds, 5 sites and 9 bonds, 7 sites and
12 bonds, and 6 sites and 12 bonds. At step t, each bond of step t − 1 is
replaced by a subgraph identical to the t = 1 graph.

”locally tree-like” models. The idea is to use hierarchical lattices, on which
it is possible to define an exact renormalization transformation in the real
space.

Hierarchical lattices are constructed as follows. We start from two sites,
connected by one bond. The graph is then constructed iteratively; at each
step, all bonds are replaced by a given elementary cell. Four examples of
elementary cells, corresponding to four examples of hierarchical graphs, are
given on Fig. 1.7.

In [B15], I show how to compute exactly the rigidity percolation threshold
and the number of floppy modes for hierarchical lattices; I also analyze these
models in relation with the ”intermediate phase” discussed above. Contrary
to all trees and random graphs, rigidity percolation on these hierarchical
lattices is a second order transition; this makes it closer to the case of a
regular 2D lattice. However, the critical exponents strongly depend on the
hierarchical lattice; it is then impossible to infer an estimation of the critical
exponents of 2D generic rigidity percolation from the simple hierarchical
lattices studied in [B15].

To this date and to my knowledge, there is still no analytical or semi-
analytical theory for generic rigidity percolation on regular lattices, that
would predict the critical exponents, and even the order of the transition
(apparently second order in 2D, and first order in 3D). The hierarchical lat-
tices may give a way to attack this problem. Indeed, in ordinary connectivity
percolation, real space renormalization transformations on large elementary
cells have been used to obtain fairly accurate estimates of the critical expo-
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nents [26]. One could think of using a similar approach in the rigidity case,
although it is not clear how to do it.
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Chapter 2

Long range interacting systems

2.1 Introduction

2.1.1 Short introduction to long range interacting sys-
tems

The basic problem of statistical physics is to understand the macroscopic
behavior of a system starting from its microscopic components and their
interactions. The onset of a macroscopic collective behavior, like a phase
transition for instance, is an especially fascinating topic. When the interac-
tions between the microscopic components of a system are long range, that
is, act on a length scale comparable to the size of the system, the collective
effects in the system may be even more dramatic: gravitational collapse, large
scale structure formation, clustering... Research on these long range interact-
ing systems has been historically driven by its connection with astrophysics,
plasma physics, and two dimensional fluid dynamics (vortices interact at long
range).

The field has seen a lot of development recently, motivated by the in-
triguing theoretical properties of these systems, especially the possibility of
negative specific heat, or long lived quasi stationary states, as well as by the
wide range of potential applications.

In the astrophysics community, it has been known for a long time that
equilibrium properties of self gravitating systems are rather peculiar: neg-
ative specific heat, canonical (fixed temperature) and microcanonical (fixed
energy) ensembles are not equivalent... These anomalous equilibrium fea-
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tures of long range interacting systems have been fully appreciated by other
physicists’ communities only later. For instance, in the seminal works [80, 42],
Hertel and Thirring exactly solve very simple toy models exhibiting the above
properties. Many contributions followed, and several reviews are available
[62, 21]. In our opinion, equilibrium characteristics of long range interacting
systems are now very well understood. The main remaining problem is the
absence of a controllable experimental system showing the predicted pecu-
liarities (see however [36], which claims the observation of a negative specific
heat region in a small atomic cluster, a system which is not strictly speaking
long range).

A large part of the research on long range interacting systems focuses on
their relaxation to equilibrium. Indeed, these systems usually relax to equi-
librium very slowly, over a time scale diverging with the number of particles.
This makes statistical equilibrium techniques often irrelevant, and calls for
a detailed dynamical understanding. This slow relaxation may be under-
stood as follows: over short time scales, the dynamics is governed by the
Vlasov equation, sometimes called collisionless Boltzmann equation, which
does not relax towards statistical equilibrium. Instead, the system of parti-
cles is usually stuck for a long time (diverging with the number of particles)
close to a stable stationary state of the Vlasov equation; this is called a Quasi
Stationary State (QSS) for the discrete system.

In the astrophysical context, this phenomenology is known since the six-
ties [41, 55]. The approach of a QSS is in some cases called “violent relax-
ation” to make a difference with the collisional relaxation - to the “true” ther-
modynamical Boltzmann-Gibbs equilibrium- which occurs on much longer
time scales. There is some numerical evidence of universality for these QSS
(see [81, 64, 65] in a cosmological context). However, the analytical under-
standing of the strongly non linear physics involved in the formation of these
quasi-equilibrium states is, despite the importance of the problem and many
attempts to solve it, extremely limited. Among these attempts, the most
noticeable is due to Lynden-Bell [55]. His theory is believed to be inade-
quate for gravity (see e.g. [3, 4]), but recent works indicate that it could give
adequate quantitative results for some class of initial conditions [54], which
encourages to search in this direction. Quite often, the concepts outlined
above for gravitation are actually relevant for all types of long range inter-
actions. For instance, the links between violent relaxation in astrophysics
and the Landau damping phenomenon well known in plasma physics are de-
veloped in [47]. The Lynden-Bell theory has a direct equivalent in 2D fluid
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dynamics: the Robert-Sommeria-Miller theory [59, 71]. This deep analogy
has been emphasized in [25]. The direct connection with the physics of wave-
particles interactions, crucial for instance in plasma physics and free electron
lasers, has also been seen [34]. The growing recognition that all these systems
share a lot of physical phenomena fostered the detailed study of toy models,
notably the Hamiltonian Mean Field model: it is a simplified 1D self gravi-
tating system, without the small scale singularity, and will be hereafter called
HMF. The hope is that general theories may be developed and tested more
easily in this simplified setting. There have been several developments in this
context, related to kinetic theory [10], to tests of Lynden-Bell theory [2], or
to Tsallis statistical mechanics [53, 28].

2.1.2 Short summary of my PhD work

My PhD work was concerned with statistical mechanics of long range in-
teracting systems. It seems useful to quickly summarize here the results
obtained, and then to emphasize the new research directions I have pursued
since the end of my PhD.

The starting point of my PhD work was the recognition of deep analo-
gies between very different systems, all sharing the long range character of
the interactions. The general idea was then to point out and develop these
analogies, and possibly to emphasize their limit.

A first part of my PhD thesis was devoted to equilibrium statistical me-
chanics of long range interacting systems. Starting from the study of ex-
actly solvable toy models [BP3], we developed with Freddy Bouchet a clas-
sification of the peculiar phase transitions and inequivalence of ensemble
situations [BP9]. In a second part, I studied the approach to equilibrium
in toy models (violent relaxation, Quasi Stationary State, and slow relax-
ation). We illustrated precisely this behavior on the Hamiltonian Mean Field
model [BP7] and used Lynden-Bell theory to approximately characterize the
short time behavior of a wave-particle model used in Free Electron Laser
physics [BP8]. A last part of my PhD was devoted to the detailed analysis of
the formation of a complex structure in a toy model, a situation which does
not fit in the standard theory [BP2,BP5,BP6]. It turns out that this route
to complex structure formation should not be generic.
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2.1.3 Research directions and contributions

I try to classify here the different aspects of my works on long range inter-
acting systems since the end of my PhD. I precise that these works only deal
with classical (non quantum) systems, including in the ”cold atoms” section.

1. Equilibrium statistical mechanics. The equilibrium statistical mechan-
ics of long range interacting systems is in my opinion well understood.
Recently, I have been interested in pointing out some similarities be-
tween equilibrium statistical mechanics in presence of long range inter-
actions and on random graphs (sparse or not). This implied the use of
techniques from disordered statistical mechanics, see Sec. 2.2.

Although it is rather a dynamical problem, I have also included in this
item the study of ergodicity breaking in long range interacting systems,
because our strategy was actually based on equilibrium concepts, and
on large deviation techniques.

2. Rigorous results in kinetic theory. This new direction is related to my
present position in a mathematics department, and collaboration with
P.E. Jabin and M. Hauray, see Sec. 2.3. The driving question here
is: is it possible to derive the Vlasov equation for particles interacting
through Coulombian or gravitational forces?

3. Contributions to the old problem of Quasi Stationary States, described
in sec. 2.1. The main questions at stake here are: what is the long-time
behavior of the Vlasov equation? what is the long-time behavior of a
long-range interacting system of particles? The contributions described
in Sec. 2.4 aim at very partial answers.

4. Long range interactions and cold atoms. I started to develop this new
research axis very recently, thanks to a collaboration with experimen-
talists in the nearby physics laboratory INLN (Robin Kaiser, David
Wilkowski, Maryvonne Chalony). The starting point is the existence
of long range interactions between atoms trapped in a Magneto-Optical
Trap, created by their interactions with the trap lasers. The system
of atoms is however very different from those described above, at it
involves non potential forces, stochastic forcing and dissipation.

The four sections of this chapter will be devoted to these four items.
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2.2 Equilibrium statistical mechanics

2.2.1 Large deviations [B1]

As explained above, equilibrium statistical mechanics of long range interact-
ing systems display some unusual phenomena, such as inequivalence between
ensembles, and negative specific heat regions. It does not mean however
that it is a difficult problem, in the physical or mathematical sense. One
could actually argue just the contrary. In a long range interacting system,
each particle, or site in a lattice, feels many other particles or sites; this im-
plies that the statistical fluctuations of the potential or force that it feels are
small. In physical terms, this means that a mean-field like approximation
becomes exact in the large system size limit. The mathematical side of this
remark is that many long range interacting systems are exactly solvable us-
ing large deviation techniques, once an appropriate scaling is chosen. A clear
account of this general idea is given for instance in [33]. These large devia-
tion techniques were already extensively used in my PhD thesis. In [B2], we
give several simple physical applications of this technique. Since this work
is rather directly related to my PhD thesis, I have chosen not to develop it
here.

2.2.2 Metastable states and small systems [B3]

We consider a many-body Hamiltonian, with some conserved quantities, typ-
ically the energy per particle e. We describe the macroscopic state of this
system by a few intensive parameters beyond the energy, typically the mag-
netization m for a spin system. We define the entropy as a function of energy
and the intensive parameters s(e,m) as the logarithm of the phase space vol-
ume compatible with these intensive parameters. The domain of definition
of s(e, .), that is the region in the m space where s(e,m) is not −∞, is the
accessible parameter region at energy e.

In short range interacting systems, this accessible region is always con-
nected. Indeed, take two accessible points m1 and m2; then it is easy to show
that any point in [m1,m2] is accessible, using the possibility of phase sep-
aration (this argument actually shows that the accessible region is convex).
This is not necessarily true any more for long range interacting systems: the
domain of definition of the entropy may not be connected. Indeed, this situ-
ation was pointed out and recognized as generic in [23], and studied in more
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Figure 2.1: Sketches of the entropy curve as a function of an intensive param-
eter m, for various energies e. From left to right, e = e1 , e = e2 , e = e3, see
text. The accessible region in the m space becomes disconnected at e = ec,
with ec between e2 and e3.

details in [24, 63].

When the energy is varied, the region accessible to the system may change
topology, from connected to disconnected. In [B3], we were interested in the
properties of dynamical trajectories of a system close to the non-connectivity
threshold described above. It turned out that large deviations techniques
were again useful in this case, and allowed to extract some generic results.

Take for instance a model of a ferromagnet, with long range interactions,
and consider the entropy as a function of magnetization and energy per spin
s(e,m). A typical situation is as follows, illustrated by Fig. 2.1:

1. for high energy e1, the entropy has a single maximum atm = 0 (Fig. 2.1,
left panel), the phase space is connected. A typical dynamical trajec-
tory spends most of its time close to m = 0.

2. For lower energy e2, s(e2, .) has two maxima at m = m∗ 6= 0, and
m = −m∗ (Fig. 2.1, center panel); the phase space is still connected,
but there is an ”entropic bottleneck” between configurations around
m = m∗ and configurations around m = −m∗. We stress again that the
total number of spins is finite. A typical dynamical trajectory switches
randomly between configurations close to m = m∗ and configurations
close to m = −m∗. The waiting times between switches are expected
to follow approximately an exponential distribution, with characteristic
time τ(e).

3. For even lower energy e3, s(e3, .) has two maxima, and is not defined
for m = 0 (one might also say: s(e3, 0) = −∞); the phase space is now
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disconnected( Fig. 2.1, right panel). A typical dynamical trajectory
spends most of its time close to m = m∗ or close to m = −m∗, and no
switch is possible.

The characteristic time τ(e) diverges when the energy per spin e decreases
towards ec, where ec is the energy at the non connectivity threshold. Numer-
ical simulations showed a power law behavior:

τ(e) ∼ Cte (e− ec)
−α(N) (2.1)

with α(N) an exponent depending on the total number of spins N . More
precisely, numerics showed α(N) ' cN .

In [B3], we used large deviation techniques to understand the behavior
of the entropy s close to the non connectivity threshold. This gives infor-
mations on τ and the exponent α, and explains the results of the numerical
simulations. It is worth noticing that the large deviation results give valuable
insight into simulations with a small number of spins, as small as N = 6.

The basic idea is to understand how a large deviation function for a sum
of independent random variables becomes infinite. Consider N i.i.d. random
variables X1, . . . , XN . Assume that their common density is ρ(x), and that
the support of ρ is included in [0, 1]. We call

mN =
X1 + . . .+XN

N
(2.2)

The behavior of τ is related to the following question: what is the behavior
of P(mN < δ), when δ → 0 and N is fixed? In [B3], we give large deviation
estimates for this quantity (detailed in an Appendix), and apply this idea to
understand the numerical results for τ . Since this idea is generic, it suggests
that the results obtained in [B3] are valid beyond the specific model studied
in this case.

2.2.3 Random graphs and cavity method [B9,B13]

In (macroscopic) short range interacting systems, entropy must be a concave
function of an intensive parameter, say the energy per particle e. The argu-
ment for this is the usual ”Maxwell construction”, summarized in Fig.2.2. It
rests on the fact that for any λ ∈ [0, 1], it is possible to divide the system
in two subsystems 1 and 2, of respective weights λ and 1− λ, such that the
interaction energy between the subsystems is negligible. The total energy is
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Figure 2.2: An example of Entropy (S) vs Energy (E) curve. If the system
can phase separate, then the non concave part of the entropy has to be
substituted by the dashed straight line, and the S(E) curve is concave.

then the sum of the energies of the two subsystems. This is of course wrong
in the presence of long range interacting systems; there is then no reason for
the entropy as a function of the energy (or another intensive parameter) to
be concave, and inequivalence of ensembles is possible.

Random graphs of the Erdös-Rényi type, or random regular graphs, have
a finite mean connectivity; in this respect, they look like short range interact-
ing systems. However, they cannot be separated in two almost independent
subsystems as a regular lattice for instance. From the previous discussion,
one may expect that inequivalence of ensembles is possible for models on
this type of random graphs. The goal of our work with Bruno Gonçalves was
to show on a simple example that indeed it is the case, and that the same
unusual phenomenology of microcanonical phase transitions observed in long
range interacting systems should be expected for models on random graphs.

As already explained in the chapter on rigidity percolation, the cavity
method is well suited to solve models on random graphs. When no disor-
der and no large deviation on the graph structure is involved, the cavity
method is a rephrasing of the standard Bethe lattice solution, well suited for
a microcanonical analysis. In [B9], we have solved in the canonical and mi-
crocanonical ensembles a 3-state Potts model on a regular random graph. We
have found a region of negative specific heat in the microcanonical ensemble,
and we have checked that this region is visible in Monte Carlo simulations,
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using a Creutz algorithm for the microcanonical simulations. The article
summarizing this work is appended at the end of this section.

[B13] is another work investigating the links between statistical mechanics
with long range interactions and statistical mechanics on random graphs.
The starting idea is to study spin models on random graphs with N sites
and M = O(Nγ) links, with 1 < γ < 2. γ = 2 corresponds to the complete
graph, that is a standard ”mean-field” system where each site is coupled to
all the others; γ = 1 is the case of the Erdös-Rényi random graph. For
1 < γ < 2, it is known that in the proper scaling limit, the γ = 2 solution
is exactly recovered [14]. However, the Metropolis Monte-Carlo simulations
showed rather strong finite-size effects. It is thus important to understand
the finite N corrections to the N →∞ limit.

We have used two theoretical approaches to investigate these finite-size
effects.

1. an expansion in powers in 1/N followed by computations using the
replica method

2. we have considered a graph with N sites and M = O(Nγ) links as
a high connectivity Erdös-Rényi random graph, and used the cavity
method

We have shown that the second option provides a much more accurate de-
scription of the finite-size effects. This work could be the starting point of a
study a Quasi Stationary States for models defined on such random graphs
interpolating between the complete graph and an Erdös-Rényi graph.

2.3 Kinetic theory, mathematical results

2.3.1 Introduction

As already stated in Sec.2.1, the dynamics of a long range interacting system
is often described by a Vlasov equation in the adequate scaling limit and
timescale, and this fact is of central importance in the traditional under-
standing of these systems; this point will be further developed in Sec. 2.4.

The classical proof of the Vlasov limit, valid for sufficiently regular inter-
action potentials [66, 32, 15], may be sketched as follows. Take two solutions
f1 and f2 of the Vlasov equation. Then their distance increases at an ex-
ponential rate: d(f1(t), f2(t)) ≤ eCtd(f1(0), f2(0)), where d is an adequate
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distance to measure how close are two probability measures. Now take a
sequence of discrete initial conditions with N particles

fN(x, v, t = 0) =
1

N

N∑
i=1

δ(x− xi(0))δ(v − vi(0))

indexed by N . The crucial point is that the discrete measures

fN(x, v, t) =
1

N

N∑
i=1

δ(x− xi(t))δ(v − vi(t)) ,

which are built with the solutions (xi(t), vi(t)) of the N -body dynamics with
initial condition (xi(0), vi(0)), are actually solutions of the Vlasov equation.

Thus, if d(fN(., ., t = 0), f(., ., t = 0)) tends to 0 when N tends to infinity,
then the discrete dynamics is adequately described by the Vlasov equation
with initial condition f0, on a time scale T (N) which depends on the rate
of convergence of d(fN , f0). Typically, if d(fN , f0) = O(1/Nγ), then T (N) =
O(lnN).

This strategy deals with smooth interactions (C2 potential for instance)[15,
66, 32]. It has proved very difficult to relax this regularity hypothesis down to
the most physically interesting potentials, Coulomb and Newton. There are
results using a short range regularization to the potential [87], and recently
P.E. Jabin and M. Hauray [39] have introduced a new strategy and were able
to prove the convergence of the finite N dynamics to the Vlasov dynamics
for less regular potentials. Nevertheless, the paper [39] stays far from the
Coulomb or gravitational potentials. This situation was the incentive for the
contributions shortly described in the next two paragraphs, which do not
solve the question of the Vlasov limit for Coulomb or Newton interactions.

2.3.2 Short range potentials [B11]

We have outlined the main ideas underlying the classical proofs of the rigor-
ous results proving the convergence of the discrete dynamics to the Vlasov
dynamics, and emphasized that these rigorous results do not hold for 1/r
potentials, because of the short range singularity.

The idea in [B12] was then to start from a potential with a strong short
range singularity, and to try to control its effect on the large scale dynamics.
For this purpose, the long range part of the interaction is then set to zero.
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Strictly speaking, this work then deals with very short range interactions:
the force between two particles vanishes if their distance is larger than R,
with in dimension 3, NR2 � 1 (N is the number of particles). This is
a simplification of the more usual (and more interesting) so called ”dilute
limit” NR2 = const. With this scaling, one expects to obtain in the limit
the Boltzmann equation; this is exactly what is proved by Lanford in the
famous work [52], for hard spheres and small times.

In the scaling NR2 � 1, one expects a free transport equation as kinetic
limit. A rigorous proof for this is not so easy to obtain for general potentials
(for hard spheres, Lanford’s proof applies). In [B12], we prove this limit for
general repulsive potentials, and for general attractive potentials, with the
more stringent hypothesis R� N−3/5. In this last case, we actually describe
all possible collision sequences between particles. The core of the proof is to
ensure that the build up of correlations between particles does not destroy
the validity of simple scaling arguments.

2.3.3 Stability results for N-particles dynamics with
singular potential [B16]

We consider the Hamiltonian dynamics of N particles{
ẊN
i = V N

i

V̇ N
i = EN(XN

i ) = 1
N

∑
jK(XN

i −XN
j )

(2.3)

where for simplicity all the positions XN
i belong to the torus T3 (= [0, 1]3

with periodic boundary conditions) and all the velocities V N
i belong to R3.

We note ZN = (XN
1 , . . . , X

N
N , V

N
1 , . . . , V N

N ); φ is the interaction potential,
such that K = −∇φ. The Hamiltonian is

HN [ZN ] =
1

2

N∑
i=1

(V N
i )2 +

1

N

∑
i6=j

φ(XN
i −XN

j )

The classical strategy to prove the Vlasov limit for a system of interacting
particles deeply relies on a stability estimate: two solutions of the Vlasov
equation with close initial conditions separate at a rate which is at most
exponential in time. At the level of the N -particles dynamics, one may hope
for estimates such as

‖ZN(t)− ZN,δ(t)‖1 ≤ ‖ZN(0)− ZN,δ(0)‖1 exp(Ct), (2.4)
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where δ is a shift in the initial conditions (so that ZN,δ(0) = ZN(0)+ δ), C is
independent of the number of particles N , and where we have used the norm
on T3N × R3N

‖Z‖1 =
1

2N

N∑
i=1

(|Xi|+ |Vi|).

Estimates such as 2.4 are easy to obtain if the force K is regular enough. For
instance, if K is C2, ∇K is bounded and one can take C = 1 + ‖∇K‖L∞ .

Our goal was to prove a stability result analogous to (2.4) for a singular
two-body force K (say K(X) ∼ C/|X|α), which would be uniform in the
number of particles. For this purpose, we adapt a method introduced in [31].
One cannot hope for a version of (2.4) valid for all initial conditions Z0, so
that we will use an average over the initial condition Z0; this average will be
taken with respect to the canonical Gibbs measure µN :

dµN [ZN ] = N e−βHN [ZN ]

where N is a normalization factor. Likewise, an estimate like (2.4) cannot
be true for all initial shifts δ. Thus, we will also average over different δ.

Finally, we study the quantity

Q(t) =

∫
dµN(ZN

0 )

∫
δ∈Π3N×R3N

ψN(ZN
0 , δ)

ln

(
1 +

‖ZN(t, ZN
0 )− ZN(t, ZN

0 + δ)‖1

δN

)
dδ ,

(2.5)

where δN is a small parameter which will go slowly to zero when N goes to
infinity and which gives the order of magnitude of the shift δ. The function
ψN is any non negative function representing the shift distribution. It is
reasonable to impose that the initial shift does not change too much the
energy, requiring for instance that for δ in the support of ψN , and for some
C independent of N , we have:

|HN [ZN
0 + δ]−HN [ZN

0 ]| ≤ C

Beyond this “reasonable” assumption, which is already rather strong, the
condition we have to impose on the shift distribution is actually a bit stronger.

The quantity Q(t) then measures the mean deviation between two tra-
jectories in the configuration space starting very close one from the other: as
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long as Q(t) remains of order 1, ZN(t, ZN
0 )−ZN(t, ZN

0 + δ) remains of order
δN in some average sense.

The main result of the paper is a control on the growth on this quantity
Q:

Theorem 2.3.1 Assume that φ ≥ 0, that is the potential is repulsive, and
for some constant C, and for α < 2

|φ(x)| ≤ C

|x|α−1
, |∇φ| ≤ C

|x|α
, |∇2φ| ≤ C

|x|α+1
.

Then taking δN = N−ε for any ε < 1− α/3 one has for N large enough

Q(t) ≤ Ca,α
(
1 + cβ + caβ

)
t+Q(0) ,

where cβ = (β3/2eβe0)/(2π)3/2, a is any exponent strictly larger than 2α/3
and Cα is a constant depending on α and a and blowing up as α → 2 or
a→ 2α/3.

The Coulombian case α = 2 is the limit case for the theorem, but is
excluded. This is a result of stability ”on average” for trajectories starting
close one to another; the average over the initial condition is taken against the
Gibbs measure. Note that the linear in time behavior of Q is the counterpart
of the exponential separation of trajectories in Eq. (2.4). The proof deeply
relies on the fact that the Gibbs measure is invariant by the flow, and on
good estimates on its marginals: it is then not straightforward to extend the
result.

2.4 Dynamics of N particles with long range

interactions; Quasi Stationary States [B1,B8,B12,B17]

2.4.1 Introduction

I start this section by recalling the standard scenario for the relaxation
to equilibrium of a long range interacting system, already sketched in sec-
tion 2.1.

Over small enough time scales, we have seen that the dynamical evolution
of such a system is governed by the Vlasov equation. This is the basis of the
following scenario:
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equilibrium
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Violent relaxation

t=O(1)
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t>>1

Statistical equilibrium

Figure 2.3: Illustration of a generic scenario for the relaxation to equilibrium
of a long range interacting system of N particles. The violent relaxation time
scale is of the order of the dynamical time scale, that is the time scale of the
associated Vlasov equation. The slow ”collisional” relaxation takes place on
a time scale which diverges with the number of particles N , if the dynamical
time scale is taken as fixed.

1. The Vlasov dynamics leads the N -particles system close to a stable
stationary state of the Vlasov equation (there is an uncountable infinity
of such states), in times of order 1, the time scale of the Vlasov equation.
This state is then sometimes called a Quasi Stationary State (QSS in
the following) for the discrete dynamics.

2. Then, the system does not evolve any more under the action of the
mean field force; rather, it is driven by the finite N fluctuations. This
evolution is slow, typically it takes place over times of order N , but
this is not always the case; it is described by the Lenard-Balescu equa-
tion [8], or its simplified version the Landau equation.

3. This evolution under the action of the finite N fluctuations then drives
the system to its final state, the Boltzmann-Gibbs equilibrium.

This scenario, illustrated in Fig. 2.3, is well established and well studied,
both for the Coulomb and gravitational interactions. There are still however
many questions related to it and to its extensions. I try to summarize below
some of these questions, that drove my research in this field.

• Selection of the quasi-stationary state among the infinite number of sta-
ble stationary states of the Vlasov equation. The traditional answer is
based on a maximum entropy criterion for the Lynden-Bell entropy (or
equivalently the Robert-Sommeria-Miller entropy for 2D fluids). How-
ever, it has been known for a long time that this theory does not always
provide a good answer (see the discussion and references in section 2.1).
Trying to improve the Lynden-Bell criterion for the selection of the QSS
is certainly an important, but difficult, question.
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• Understanding the behavior of small perturbations to a QSS : this is
a less ambitious, but still far from easy, challenge. In this case, the
starting point is the linearized Vlasov equation. This is the realm for
instance of Landau damping and much is known in this case in plasma
physics, and more generally as soon as the QSS is homogeneous in
space. When the QSS is not homogeneous, the technical difficulties are
much greater. Because this is of central importance in many respects,
there has been a lot of works in this direction despite the difficulties,
both for self-gravitating systems and 2D fluids. However, there still
are some open questions related to non homogeneous QSSs, see section
2.4.3.

• The time scales for the relaxation to equilibrium of a QSS. In this
case also, there is a well established theory, based on the Landau, or
Lenard-Balescu equations. On the basis of a formal 1/N expansion,
one would generically expect this time scale for relaxation tR to scale
as N for a regular enough interaction potential. For a gravitational
interaction, this time is expected to be tR ∝ N/ lnN . There is an
exception for homogeneous 1D systems, where the dominant relaxation
term vanishes; one expects then tR � N , and simulations suggest an
exponential time [19]. When the system is brought in the course of the
relaxation close to a neutrally stable state of the underlying Vlasov
dynamics, the situation is less clear. Some simulations on the toy
model HMF have yielded tR ∝ N1.7, but there is no clear theory, nor
indications that this exponent is universal.

• Forced and dissipative systems. Most of the literature on long range
interacting systems deals with Hamiltonian systems. There is still much
to understand when such systems undergo forcing and dissipation (see
for instance [83] for an example of forced systems in astrophysics).
The case of a simple friction and a white noise forcing has received
some attention, notably by P.H. Chavanis (see [26, 27] and subsequent
works). QSS have been investigated in a non Hamiltonian setting [7,
38]. Another interesting aspect is the possibility of out of equilibrium
phase transitions, as in [12]. One of the basic building blocks to progress
in this direction is the linearized Vlasov equation.

Several of my works try to answer some of the questions underlined above.
My general approach is to use toy models as simple as possible to reduce the
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technical difficulties. The hope is that the analytical and numerical studies
can then be pushed further than is usually done, and that it could give the
possibility to unveil generic phenomena. Articles [B8], [B12] and [B17] are
along these lines. I have chosen to develop [B17], which is appended at the
end of this section.

[B8] is an application of the Lynden-Bell theory to the violent relaxation
of the HMF model. It is shown that the equilibrium statistical theory is qual-
itatively correct for the initial conditions used, and sometimes quantitatively.
It is also well-known in plasma physics that the process of violent relaxation,
or Landau damping when the initial perturbation is not too small, sometimes
does not drive the system close to a stationary state of the Vlasov equation,
but rather to a periodic solution. The situation is not as well studied for
attractive long range interacting systems. In [B12], we derive and study
numerically criteria for the appearance of these ”quasi asymptotic periodic
states” both for the repulsive (plasma like) and attractive HMF models, close
to a spatially homogeneous stationary state.

2.4.2 “Quasi asymptotic periodic states” [B12]

The first stage of the relaxation of a long range interacting system follows a
Vlasov evolution, and it usually settles after some time close to a stationary
solution of the Vlasov equation. One may wonder however if the system of
particles may approach instead a periodic solution of the Vlasov equation. In
this case, one would expect an almost periodic behavior of the system, until
finite size fluctuations drive it to the thermodynamical equilibrium: hence the
formulation “quasi asymptotic periodic state”. Although the general problem
of finding periodic solutions for the Vlasov equation is clearly of interest (and
indeed has been the subject of several studies), I will concentrate on periodic
solutions which are perturbations of a stationary state. In this case, one may
hope to have a better analytical control on the dynamics, using the Vlasov
equation linearized around the stationary state.

Indeed such a phenomenology is well known in plasma physics. In this
case, BGK modes [9] and their non linear superposition [17] form periodic
solutions of the Vlasov equation, and these periodic solutions have been
shown to be possible attractors for the Vlasov dynamics, close to stationary
solutions [56]. It is important to notice that a periodic solution of the Vlasov
equation induces a periodic mean field; this creates a resonance phenomenon
with particles moving along trajectories with the same frequency. Thus, the
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solutions found in [17, 56] are genuinely non linear, despite the fact that they
are small perturbations of a stationary state. In particular, they may exist
only if the non linear effects are strong enough to counterbalance the Landau
damping (see for instance [67, 50]).

Besides these non linear solutions, there may exist purely oscillatory linear
modes close to a stationary state of the Vlasov equation, if no particle is
resonant with the mode’s frequency. This happens and indeed has been
found numerically in 1D self gravitating systems [57, 84]

In [B12], we were interested in the existence of periodic attractors for
attractive long range interacting systems, of the type studied in [56], thus
genuinely non linear. On the example of the HMF model, we have found that
indeed such periodic states and their associated clusters of particles may exist
and be attractors for the N -body dynamics. However, the application of the
standard criteria requiring strong enough non linear effects (or equivalently
weak enough Landau damping) is much more restrictive in this case: thus,
these periodic states do not seem as easy to reach in attractive systems.

One may wonder if these nonlinear periodic solutions may exist also close
to non homogeneous stationary states of the Vlasov equation, which is clearly
the relevant situation for astrophysics. Answering this question was one of
the incentives for the work described in the following section.

2.4.3 Perturbation of inhomogeneous stationary states
in the HMF model [B17]

Introduction

Besides being a natural question, the understanding of the linearized Vlasov
equation around a stationary state is also an important first step to address
more difficult problems, such as the relaxation to the statistical equilibrium
of a long range interacting Hamiltonian systems, or the response of a system
to small forcing and dissipation.

Since the first study by Landau of the relaxation of a perturbation in
a plasma [51], Landau damping is a basic concept in plasma physics. It is
also very often invoked in astrophysics, where galaxies for instance are usu-
ally modeled as stable stationary states of the Vlasov equation; the linear
response of a perturbed galaxy is then of course of central interest. However,
in astrophysics, the stationary state is usually inhomogeneous. On the math-
ematical side, there has been several rigorous studies, restricted to homoge-
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neous stationary states. [30] shows the exponential decay of a perturbation
evolving through the linearized Vlasov equation, under precise conditions and
in a certain sense. Glassey and Schaeffer [35] have given counter examples
to this exponential decay, for non analytic stationary states, or unbounded
systems. Finally, in a recent and impressive work [60], Mouhot and Villani
have tackled the fully nonlinear problem, showing the exponential decay of
a small enough perturbation evolving according to the Vlasov equation in a
bounded domain.

A non homogeneous reference state adds a lot of technical difficulties to
the linearization of the Vlasov equation and also, as we will see, qualitative
changes with respect to the standard homogeneous case. The root of the
difficulties is the following: when the background stationary state is homo-
geneous, its self consistent potential vanishes, so that the angle-action coor-
dinates of a particle traveling in this potential are just the original position-
velocity variables, and the trajectories are straight lines. This is not true
anymore when the background stationary state is not homogeneous; one
needs to transform the linearized Vlasov equation to angle-action variables.
As a consequence, different Fourier modes (in the angle variables) are now
usually coupled, and the ”dispersion function” D(ω) is the determinant of
an infinite matrix1. Despite these difficulties, the computation of D(ω) in
the half plane Im(ω) > 0 has been done for self-gravitating disks [46] and
spherically symmetric systems [70]. This provides information on the possi-
ble instability of the background state, and on the associated growth rate,
given by the solution of D(ω) = 0. However, studying the relaxation of a
perturbation around a stable background requires the analytical continuation
of D(ω) to the lower half plane Im(ω) ≤ 0, or at least the understanding of
its singularity on the real line. In particular, the gravitational analog of the
Landau damping rate would be given by roots of the equation D(ω) = 0 in
the lower half plane. In the general self-gravitating case, this analytical con-
tinuation is very difficult. As a consequence, despite the fact that ”Landau
damping” is a common concept in astrophysics, I am aware of only a few
papers actually computing a Landau damping rate in this setting [85, 86].
These papers use the following approximate procedure: they fit the computed
function D(ω) in the upper half plane by a rational function, and continue
this rational function into the lower half plane.

This exponential “Landau-like” damping may be expected to be relevant

1Here, ω is the argument of a Laplace transform in time.
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at intermediate times. However, one rather expects asymptotically a power
law decay for a solution of the linearized Vlasov equation around an inhomo-
geneous steady state. This question has apparently not been studied in the
astrophysical literature, and I am aware of only one reference, for a particular
class of Hamiltonians [77].

The linearization of the 2D Euler equation around a stationary vortex,
or stationary shear flow shares many features with the similar problem for
the Vlasov equation, and has been much more studied. To tackle the Vlasov
problem, we have drawn ideas from the literature on the 2D Euler equation,
such as [16, 13].

The basic idea of the work [B17] is to use a very simplified caricature
of self-gravitating system. The hope was to reduce as much as possible the
technical difficulties, to be able to push as far as possible both the analytical
understanding and the numerical computations. The HMF model is a well
suited toy model for this purpose.

Recently, the dynamical stability of inhomogeneous stationary state of a
Vlasov equation has been studied in several papers, using toy models (HMF
or others) to simplify the computations [43, 20, ?, 6]. However, the methods
used in these papers, different from the “classical” Fourier-Laplace route we
have followed, give access only to the stability threshold and the growth rate;
the Landau damping rate and more generally the decay of a perturbation
around a stable stationary state remain inaccessible.

I list here the specific goals and the results obtained in this joint work
with A. Olivetti and Y. Yamaguchi:

1. We have computed the dispersion relation of the system around a non
homogeneous stationary state. In particular, in view of the literature
on the 2D Euler equation, branch points on the real axis were to be
expected. Indeed we have found a (discrete) infinite number of branch
points in the dispersion relation, and studied the precise form of the
singularities.

2. We have computed explicitly for some families of stationary distribu-
tions the ”Landau poles” in the lower half plane, from the analytic
continuation of the dispersion relation, and exhibited quasi modes,
that is perturbations with a very small Landau damping rate. We
have performed these computations for ”water-bags” stationary dis-
tributions (step profiles), statistical equilibrium distributions, and a
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2-parameter family of distributions interpolating between the previous
two 1-parameter families (sometimes called the Lynden-Bell distribu-
tions). We have obtained maps of Landau poles, showing some com-
plicated crossing phenomena between poles.

3. We have looked for signatures of these Landau poles and quasi modes
in direct numerical simulations of the N -body system. Although more
systematic N -body simulations are needed, computations for water-
bags and equilibrium stationary distributions have indeed shown such
signatures, revealing an oscillating exponential decay in an intermediate
time window, when a Landau pole exists.

The next logical goal, which is currently under study, is to understand in
details the asymptotic behavior of a decaying perturbation. The basic idea
is to characterize precisely the different singularities appearing in solving
the linearized Vlasov equation by Fourier-Laplace transform. An algebraic
decay, similar to what is obtained for the 2D Euler equation may be expected.
Indeed such a decay was found in [77], but the exponent is probably not
correct, since the perturbations used were not generic. Other questions are
related to the phenomenon of ”vorticity depletion” near the extrema of the
angular frequency in phase space, as was found in [13] for 2D shear flows.
Clearly, if HMF is a good starting point to perform explicit computations,
it is important to understand which features can be valid in a more general
setting, such as a 3D self gravitating system.

A few technical details

I try in this paragraph to give a flavor of the technical part of the work done
in [B17].

The HMF model is described by the following Hamiltonian

H =
1

2

N∑
i=1

p2
i −

1

2N

∑
i6=j

cos(θi − θj). (2.6)

where the position of particle i is given by θi ∈ (−π, π], and its conjugate
momentum is pi. The associated Vlasov equation is

∂f

∂t
+ p

∂f

∂θ
−M sin(θ − ψ)

∂f

∂p
= 0 , (2.7)
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where the magnetization is defined as

M = Meiψ = Mx + iMy =

∫ ∞

−∞
dp

∫ π

−π
dθ f(θ, p, t)eiθ , (2.8)

We consider a stationary solution f0(θ, p) of Eq. (2.7). f0(θ, p) is actually a
function of the action variable J(θ, p) alone. With an abuse of notation, we
write the stationary solution f0(J). We write Ω(J) the angular frequency
associated with the action J . We study a perturbation f1 around f0, by
linearizing Eq. (2.7). This equation is solved by a Fourier-Laplace trans-
form. Calling ΣC(ω) and ΣS(ω) the Laplace transforms of Mx(t) and My(t)
respectively, we obtain:

ΣC(ω) =
GC(ω)

εC(ω)
(2.9)

ΣS(ω) =
GS(ω)

εS(ω)
(2.10)

where GC,S contain the initial condition; εC,S are dispersion functions and
read

εC(ω) = 1 +
1

2π

∑
m

∫
mf ′0(J)

mΩ(J)− ω
|cm(J)|2dJ (2.11)

εS(ω) = 1 +
1

2π

∑
m

∫
mf ′0(J)

mΩ(J)− ω
|sm(J)|2dJ (2.12)

In these expressions, cm and sm are complex functions related to the switching
between Fourier basis in the original θ variable and in the angle variable
associated with the action J . εC,S are a priori defined in the upper half
ω-plane, that is Im(ω) > 0. Note that Eqs. (2.11)-(2.12) are not properly
defined for ω ∈ R.

To get the time evolution of the magnetization, we now need to compute
the inverse Laplace transform of (2.9)-(2.10). The standard procedure in-
volves the deformation of the complex integration contour in the lower half
ω-plane, see Fig. 2.4. This requires the analytical continuation of (2.11)-
(2.12). From (2.11)-(2.12), it can be shown that εC,S have branch cuts sin-
gularities for ω = mω0, where ω0 = mΩ(J = 0). More precisely, we have for
the singular parts of εC,S:

εsingC (ω) ∼ const.× (ω −mω0)
m ln(ω −mω0) if m even, (2.13)

εsingS (ω) ∼ const.× (ω −mω0)
m ln(ω −mω0) if m odd. (2.14)
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Figure 2.4: Two possible choices for the branch cuts in the ω-plane. The
integration path running from −∞ to +∞ to compute the inverse Laplace
transform must be deformed avoiding the singularities.

Taking care of the branch cuts, we have performed the analytical con-
tinuation and computed the roots of εC,S(ω). In the upper half-plane, they
correspond to an exponential instability; in the lower half plane, they corre-
spond to a Landau damping-like phenomenon.

2.5 Long range interactions and cold atoms

This axis of research started two years ago, thanks to the collaborations with
experimental groups working with cold atoms in nearby INLN (in Sophia
Antipolis).

One motivation for this move is that, despite the fact that many forces
in the universe are long range, it is not easy to design a well controlled
experimental system with long range interactions. Thus, it is not easy to
test the different theories and predicted strange phenomena. There is a
huge body of experiments on plasmas, but the long range force is in this case
repulsive, precluding the observation of some of the most striking phenomena,
like negative specific heat. There has been some proposals to remedy this
situation (for instance [48, 18]), but the realization of a tabletop galaxy
remains a dream. It is then tempting to look for signatures of long range
interactions in experimental systems, and cold atoms are a possibility.

The experimental systems considered in the following are as follows. An
atomic vapor is stored, either in a Magneto-Optical Trap (MOT) or in a
dipolar trap; see Fig. 2.5 for a schematic picture of a MOT. When the atoms
interact with a laser slightly red-detuned with respect to an atomic transition,
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Figure 2.5: In the center, the atomic cloud. At INLN, there are experiments
with Rubidium and Strontium. The blue arrows represent the 6 quasi reso-
nant, but slightly red-detuned, laser beams. In red, the solenoids creating a
static space dependent magnetic field. All forces acting on the atoms come
from the complex photon/atom interactions.

several phenomena happen:

• the atoms are slowed down by Doppler effect, and feel a trapping force,
in presence of a magnetic field gradient (these two effects are at the
root of a MOT);

• the spontaneous emission of photons adds a stochastic noise on the
atoms’ velocities;

• the multiple scattering of photons by the atoms induces an effective
repulsion between atoms;

• finally, the laser intensities decrease as the beams cross the atomic
cloud, and this ”shadow effect” induces an effective attractive force.

A complete description of all these effects would be very complicated. The
following simplifications are standard, but not always completely justified:

1. We will assume that the trapping force induced by the magnetic field
can be considered as an external harmonic potential. In the case of a
dipolar trap (see 2.5.2), we will also take it as harmonic.
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Figure 2.6: Left: a sketch to explain the effective repulsive force due to
multiple scattering. An atom is excited by absorbing a photon coming from
the left. It then goes back to its fundamental state by spontaneous emission
of a photon, with isotropic probability. The re-emitted photon may then be
absorbed again by another atom at distance r, with probability proportional
to 1/r2; the recoil effect due to this second absorption is equivalent to a
repulsive force. Right: a sketch to explain the attractive force due to the
”shadow effect”. Without attenuation, the optical pressures due to the right
and left lasers (blue arrows) cancel at any point in the cloud. However, each
photon has a certain probability to be absorbed when crossing the cloud;
then, the optical pressures do not balance any more, resulting in an effective
net force directed towards the center of the cloud (green arrow). In the
small optical width limit, it may be written as a two-body interaction force,
directed along the laser axis and independent of the distance between atoms.

79



2. In principle, friction and diffusion depend on space and velocity, and
even functionally on the whole one-particle distribution function; we
will often assume a constant friction coefficient κ and a constant ve-
locity diffusion coefficient D. We have to keep in mind that some
experiments with large clouds seem to require a better modeling of
friction [49, 69].

3. When the atomic cloud is not too optically thick, the repulsive force
induced by multiple scattering of photons can be written as a long
range two-body interacting force decaying as 1/r2: it is thus an effective
“Coulomb” force [82].

4. Always in the small optical width limit, the attractive force induced
by the shadow effect can also be written as a long range two-body
interacting force. The divergence of this force is proportional to mi-
nus the atomic density, which makes this force similar to an effective
“gravitation” [82]. However, it does not derive from a potential.

Making use of these approximations, the system may be modeled by a
Vlasov-Fokker-Planck equation for the one-particle distribution f(r,v, t):

∂f

∂t
+∇r.(vf) + Ftrap.∇vf + Fint[f ].∇vf = ∇v (κvf +D∇vf) (2.15)

where Ftrap(r) is a harmonic trapping force, and Fint[f ] is the interaction
term given by:

Fint[f ](r) =

∫
Fbin(r, r̃)f(r̃,v, t) dr̃dv. (2.16)

In the above equation, Fbin is the binary long range interaction force. I stress
again that the modeling of an atomic cloud with Eq. (2.15) already implies
a number of approximations, not necessarily well controlled.

A further step in the approximations, which is often taken, is to replace
the attractive non potential force by an effective gravitation [58]. Then
Eq. (2.15) becomes an equation for Brownian particles with long range po-
tential interactions, about which much is known: in particular, one may
use equilibrium statistical mechanics to compute the stationary states, and
H-functions to understand the dynamics.
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However, at the level of Eq. (2.15), one may keep the more realistic non
potential attractive interaction. We feel it is an incentive to develop an out-
of-equilibrium thermodynamics for these long range interacting systems.

Part of Alain Olivetti’s PhD thesis is devoted to the study of long range
interactions in MOTs. Beyond him, the works described in the following
were done in collaboration with Bruno Marcos, Robin Kaiser, Maryvonne
Chalony, David Wilkowski and Freddy Bouchet.

2.5.1 Breathing dynamics [B14,B18]

The first axis in our collaboration with the group of R. Kaiser was to un-
veil phenomena which could characterize the interactions within the system,
and be accessible both theoretically and experimentally. We decided to fo-
cus on the study of the oscillations of the system. Narrowing our study to
the breathing dynamics, it turned out that a rather general study of these
oscillations for trapped interacting particles was possible, encompassing a
wide range of power law interactions, temperatures, at linear and non linear
levels, in the underdamped regime. Although inspired by the modeling of
Magneto-Optical Traps, this work is thus much more general.

We start from a Vlasov-Fokker-Planck equation like Eq. (2.15). The gen-
eral idea to study the breathing dynamics is to assume the existence of a
stationary state f0 solution of Eq. (2.15), say for instance thermal equilib-
rium, at a temperature given by the balance between friction and diffusion. If
friction and diffusion vanish, Eq. (2.15) becomes the Vlasov equation, which
has an infinite number of stable stationary solutions. We first consider this
limit, and we now drastically simplify the dynamics by using a scaling ansatz
which describes the breathing dynamics [37, 22, 45]:

f(r,v, t) = f0(ϕ(r,v)), (2.17)

with
ϕ(r,v) = (R = r/λ,V = λv− λ̇r). (2.18)

With this hypothesis all the time dependence in the dynamics is now included
in the positive parameter λ. This ansatz is tailored to capture the radial
dynamics; thus, we will not be able to look at higher order modes of then
system, like quadrupole modes. Using moment equations up to second order,
we then show that λ should satisfy the equation

λ̈+

(
λ− p

λ3
+
p− 1

λk

)
ω2

0 = 0 (2.19)
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where we have assumed that the trap has spherical symmetry, with frequency
ω0, and that the binary interaction between particle is homogeneous (in the
mathematical sense), with degree −k. p ∼ (kBT )/(Etrap) is the ratio of
thermal energy to the typical trap energy; this is a parameter characterizing
the strength of the binary interaction in the cloud. We stress that Eq. (2.19)
does not provide an exact solution, and that its validity must be limited in
time.

In the T = 0 limit with repulsive interactions (that is p = 0 with the
notation introduced above), the system is crystallized and the particles os-
cillate around their equilibrium positions. The breathing dynamics is in this
case exactly described by (see [40] for a similar computation restricted to the
linear regime):

λ̈+ κλ̇+

(
λ− 1

λk

)
ω2

0 = 0 (2.20)

where we have assumed that the friction κ does not depend on space or
velocity.

We consider now the following equation:

λ̈+ κλ̇+

(
λ− p

λ3
+
p− 1

λk

)
ω2

0 = 0 (2.21)

It coincides with Eqs (2.19) and (2.20) in the D = 0, κ = 0 and the p = 0
limits respectively. Extensive numerical simulations have shown that this
equation describes with a very good approximation the frequency of the
breathing oscillations of an N -particle systems in the underdamped regime.
The agreement for the oscillation amplitude is not as good. Eq. (2.21) gener-
alizes and puts in a common framework many results already present in the
literature [1, 75, 76, 44, 79, 73, 68, 5, 40]

An account of this work is published in [B14], and a more precise discus-
sion is given in [B18].

2.5.2 A 1D self gravitating system?

In a magneto-optical trap, if an atom absorbs one photon from a laser, this
photon is not available any more to interact with atoms behind the first one.
This is the ”shadow effect” sketched on the right panel of Fig. 2.6. As ex-
plained above, it may be modeled in the small optical width limit as a long
range attractive two-body interaction. In principle, it raises the possibility
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Figure 2.7: Sketch of the experiment. A cloud of Strontium is trapped in
a very elongated dipolar trap (the dipolar trap is not represented). Two
slightly red detuned laser beams are aligned along the z-axis; their frequency
and intensity can be tuned. The shadow effect gives rise to an effective
long-range attractive force within the cloud. The typical length of the cloud
without the attraction is 0.5mm; a typical temperature is 2µK.

to study in the lab an experimental system with attractive long range in-
teractions. Unfortunately, in normal experimental conditions, this attractive
interaction is dominated by the repulsive Coulomb-like interaction resulting
from the multiple scattering of photons. However, in quasi one dimensional
systems, such as atomic clouds trapped in very anisotropic external poten-
tials, one may hope that multiple scattering becomes negligible.

Maryvonne Chalony and David Wilkowski have devised an experimental
system to implement this idea, see Fig. 2.7.

To present as simply as possible the theoretical ideas, I use in this section
a purely 1D model. In principle, one could start with a 3D model, and
integrate over the small transverse directions to obtain a 1D model.

I write here more precisely the force exerted on an atom at position z
and with velocity vz by a laser coming from the left of intensity I+(z) and
wavenumber k:

F+(z, vz) = c
I+(z)

Γ2/4 + (δ + kvz)2
(2.22)

where c is a constant, Γ is the natural width of the atomic transition and δ is
the detuning of the laser with respect to this transition (δ < 0 as the lasers
are slightly red-detuned). Similarly, one may write the force exerted by the
laser coming from the right:

F−(z, vz) = −c I−(z)

Γ2/4 + (δ − kvz)2
(2.23)

We linearize Eqs. (2.22)-(2.23) with respect to vz; then the total force F =
F+ + F− can be written as a standard friction, linear in vz, plus a space
dependent force, linear in I+(z) − I−(z). The atoms also feel an external
trap, which we assume to be harmonic.
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Calling f(z, vz) the density of atoms at position z with velocity vz, we
can write a differential equation for the laser intensities

dI+
dz

= −c′
∫
σ(vz)f(z, vz)dvz I+(z) (2.24)

dI−
dz

= c′
∫
σ(vz)f(z, vz)dvz I−(z) (2.25)

where c′ is a constant, and σ(vz) is related to the probability of absorption of
a photon by an atom with velocity vz. Putting together Eqs. (2.22) to (2.25),
and adding an equation for the density ρ(z) =

∫
f(z, vz)dv, we obtain, for

the stationary state and for reduced variables:

−L
2
i

L2
g

z̄ρ̄+
1

b
(Ī+ − Ī−)ρ̄− dρ̄

dz̄
= 0 (2.26)

dĪ+
dz̄

= − b
2
Ī+ρ̄ (2.27)

dĪ−
dz̄

=
b

2
Ī−ρ̄ (2.28)

We have introduced Lg, the characteristic size of the cloud when interactions
are negligible; Li, the characteristic size of the cloud when the trap is negli-
gible; b the optical width of the cloud (it characterizes the probability that
a photon is absorbed while crossing the cloud); z̄ = z/Li; ρ(z) = (N/Li)ρ̄(z̄)
(N is the total number of atoms in the cloud); I±(z) = I0Ī±(z̄) (where I0 is
teh laser intensities before they enter the cloud).

In the limit Li/Lg � 1 and b� 1, Eqs. (2.26)-(2.28) reduce to

−dρ̄
dz̄

+
1

2

∫ +∞

−∞
FG(s− z̄)ρ̄(s)ds = 0 (2.29)

with FG(u) = sgn(u). This is exactly the equation for the stationary state of
a 1D system of Brownian self gravitating particles [26, 27]. In these limits,
the ”shadow effect” acts as a 1D gravitation-like force between atoms. The
solution of (2.29) is well known [72]:

ρ̄(z̄) =
1

8

1

cosh2( z̄
4
)

(2.30)

Without the hypothesis b � 1, but keeping the hypothesis Li/Lg � 1,
we were still able to find an exact solution to Eqs. (2.26)-(2.28), generalizing
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the solution (2.30):

ρ(z̄) =
2(1− e−b/4)2

b2
1− tanh2

[
(1− e−b/2)z̄/2b

]
1− (1−e−b/4)2

(1+e−b/4)2
tanh2 [(1− e−b/2)z̄/2b]

(2.31)

A preliminary analysis of the experimental datas (taken by Maryvonne
Chalony) has shown that the experimental parameters are not exactly in the
range of validity of the ”self-gravitating limit”, but not far from it. As a
consequence, it seems that some qualitative features predicted by the ”self-
gravitating model” are observed: effective attractive force within the cloud,
density profile closer to a 1/cosh2 than to a gaussian. Unfortunately, more
detailed comparisons between the ”self-gravitating” theory and experiments
seem precluded by the too many approximations made: the system cannot
be really considered as a lab toy model of a 1D self-gravitating system.

This is still a work currently in progress. A more detailed account of the
experimental results should be available soon.

2.5.3 Perspectives

This part of my research activity is quite recent. I try to list here some
possible future directions.

1. A possible way to characterize the interactions in an atomic cloud inside
a MOT is to study the spectrum of its oscillations. On the theoretical
side, it requires to go beyond the breathing dynamics.

2. A transition to complex spatio-temporal dynamics has been observed
in a numerical model of a large MOT [69]. This model includes a rather
complete description of the complex photon-atom interaction. A nat-
ural question is: what are the minimal ingredients for the appearance
of complex spatio temporal dynamics in such systems?

3. The 2D analog of the experiment described in Sec.sec:1D has several
interests: first, in this case the shadow effect must be modeled as a non
potential force; second, in 2D a collapse transition may be expected (see
for instance [78]).

4. More generally, these systems are an incentive to develop the theory of
out of equilibrium thermodynamics in long range interacting systems.
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[BP2] Julien Barré, Thierry Dauxois, Stefano Ruffo ”Clustering in a Hamil-
tonian with repulsive long range interactions”, Physica A 295, 254 (2001).
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[BP7] Y. Yamaguchi, J. Barré, F. Bouchet, T. Dauxois, S. Ruffo, “Stabil-
ity criteria of the Vlasov equation and quasi stationary states of the HMF
model”, Physica A 337, 36 (2004).
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[B1] Julien Barré, F. Bouchet, T. Dauxois, S. Ruffo, ”Large deviation tech-
niques applied to systems with long range interactions”, J. Stat. Phys. 119,
677 (2005).
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