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d’avoir accepté de rapporter ce manuscrit, ainsi que Pauline Lafitte, Christophe
Besse, Fanny Delebecque Louis Casteilla et Pierre Degond d’avoir accepté de faire
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Abstract (version française)

Dans cette thèse, nous nous intéressons aux mécanismes en jeux dans l’auto-
organisation d’agents dans les systèmes biologiques. Ces systèmes complexes
sont formés d’un grand nombre d’individus intéragissant à différentes échelles
(moléculaire, génomique, cellulaire), et s’auto-organisant pour former et maintenir
des structures complexes fonctionnelles (telles que les organes).

Dans un premier temps (travail en collaboration avec l’équipe de biologistes
de Louis Casteilla), nous utilisons le tissu adipeux comme modèle et nous nous
intéressons à l’étude de l’émergence de structures cellulaires de forme lobulaire
dans un réseau organisé de fibres. Dans ce but, nous introduisons un modèle de
cellules intéragissant avec la matrice extra-cellulaire composée d’éléments de fibres.
Nous développons une méthode de traitement d’images permettant d’extraire des
données quantitatives à partir des images biologiques, afin de comparer quantita-
tivement les expériences numériques et biologiques. Nous sommes alors capables
de montrer la concordances des données du modèle avec les données extraites de
tissus réels. Une analyse approfondie de l’influence des paramètres du modèle
sur les résultats numériques nous permet de montrer que l’émergence de struc-
tures biologiquement cohérentes peut être reproduite par un modèle basé essen-
tiellement sur des règles mécaniques entre les cellules et le réseau de fibres de
collagène. L’originalité de ce modèle réside dans l’utilisation d’une méthode de
minimisation pour décrire le mouvement des agents. Cette approche nous per-
met de modéliser des structures géométriques complexes (comme des réseaux de
fibres) par un ensemble d’unités élémentaires connectées, les connections étant
traitées comme des contraintes à l’aide de fonctionnelles simples. Cette nouveauté
a donné lieu à d’autres types de modèles, comme (i) un modèle pour la formation
de tissus épithéliaux, dans lequel les cellules épithéliales de géométrie complexe
sont modélisées par un ensemble de sphères 2D connectées et (ii) un modèle pour
l’auto-organisation de la vascularisation dans un milieu poreux. Dans ce dernier,
le réseau vasculaire est modélisé par un ensemble de tubes connectés.

Afin d’obtenir un modèle macroscopique nous permettant d’étudier le tissu
adipeux dans sa globalité, nous nous concentrons ensuite sur le réseau de fibres,
et dérivons un modèle macroscopique de fibres interconnectées et sujettes à une
force d’alignement en ses points d’attache. Nous obtenons formellement la limite
quand le nombre de particules tend vers l’infini, et montrons que nous otbenons
un système fermé de deux équations: une pour la distribution à une particule
(décrivant la probabilité de trouver une fibre à un endroit donné pour une orienta-
tion donnée) et la seconde pour la distribution des liens de fibres. L’originalité de
notre résultat réside dans le fait qu’aucune hypothèse supplémentaire sur le modèle
n’est nécessaire pour obtenir la fermeture du système. L’évolution de la distribu-
tion des liens de fibres, reliée à la distribution à deux particules, est entièrement
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décrite par une équation non linéaire.
La limite hydrodynamique de l’équation cinétique nous amène à l’obtention

d’un modèle macroscopique pour le réseau de fibres. Cette limite est obtenue
à l’aide de techniques non conventionnelles dûes à un manque d’équation de
conservation pour le système étudié. Nous obtenons finalement un système de
deux équations: (i) une équation de continuité décrivant l’évolution de la densité
de fibres, et (ii) une équation parabolique non linéaire décrivant l’évolution de
l’orientation locale moyenne des fibres. Dans le cas d’une densité homogène de
fibres, nous prouvons l’existence de solutions à l’équation (ii).

Finallement (travail en collaboration avec S. Motsch), nous nous sommes intéressés
à l’influence d’intéractions de type répulsion cellules-cellules dans un modèle sim-
ple de croissance tumorale. Dans ce travail, nous voulons étudier comment des
intéractions de type congestion modifient les propriétés d’invasion (vitesse, forme...)
d’une masse croissante de cellules. La dynamique microscopique présente des car-
actéristiques intéressantes comme la formation d’ondes progressives que le modèle
macroscopique dérivé ne capture pas. Nous montrons que ceci est dû au fait que
les masses de Dirac ne sont pas stables pour l’équation macroscopique, expliquant
la différence de solutions entre le modèle microscopique et macroscopique. Nous
proposons une version modifiée de l’équation macroscopique que nous sommes ca-
pables de relier à la dynamique cellulaire, et montrons la bonne correspondance
entre les deux modèles.

Mots clés: Biologie mathématique, modélisation, modèles individus-centrés,
théorie cinétique, modèles macroscopiques, étude asymptotique
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Abstract (english version)

In this thesis, we want to understand the mechanisms involved in the self-organization
of agents in biological systems. These complex systems involve a large number of
different entities interacting at different scales (molecular, genomic, cellular) and
self-organizing to create and maintain complex and functional structures (such as
organs).

First, (work in collaboration with L. Casteilla and his team (StromaLab)) we
use adipose tissue as a biological model and aim at studying the formation of lob-
ular cell structures surrounded by an organized fiber network. To this aim, we
introduced a new individual based model for cells interacting with extra-cellular-
matrix fiber elements. We implemented an image processing methodology to en-
able the quantitative comparison between numerical and biological experiments,
and showed a good correspondance between the model and the data. We per-
formed a parametric analysis on the role of the model parameters on the numerical
structures observed, and prove that the emergence of biologically relevant struc-
tures can be explained by simple mechanical interactions between the cells and the
collagen fibers. The originality of this model mainly relies in the use of a minimiza-
tion method to describe individual motion. By this mean, complex geometrical
structures such as fiber networks can be modeled as sets of connected elementary
units, which connections are seen as constraints through the use of functionals.
This novelty has been used to build other types of models, such as (i) a model
for epithelial tissue formation, in which the complex geometry of epithelial cells is
described by a set of connected spheres (work in progress), and (ii) a model for
self-organization of vascularization from a porous media flow, where the vascular
network is modeled as a set of elementary connected segments (work in progress).

In order to obtain a macroscopic model and gain insight into the global dynam-
ics of a fiber network as described by our individual based model (interconnected
elements with alignment interactions), we then performed a derivation of a kinetic
model for fibers, closely linked to the microscopic one. We were able to entirely
describe the fiber one-particle distribution function evolution thanks to the fiber
two-particle distribution function (which describes the fiber connections). The
originality of our result lies in the fact that no additional hypothesis on the model
is required to obtain a closure relation for the fiber two-particle distribution func-
tion, which is entirely described by a non linear equation.

The hydrodynamic limit of the kinetic equation led us to a macroscopic model
for fiber links. Using non conventional techniques because of the lack of conserva-
tion equations, we were able to obtain a continuity equation for the fiber density
and a non linear conservative equation for the fiber mean orientation. This equa-
tion is a non linear elliptic equation and we were able to show existence of solutions
by using methods of functional analysis.
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Finally (work in collaboration with S. Motsch), we used cell-cell interactions to
produce an individual based model for brain tumor invasion. We were interested
in the role of cell-cell interactions in the invasion properties (speed, geometry...) of
a growing mass of cells. The asymptotic behavior of solutions to the kinetic model
derived from the microscopic one had interesting features such as the convergence
towards dirac deltas that remains to be theoretically proved. We proposed a
modified expression for the potential kernel to take into account congestion features
and performed a hydrodynamic limit of the modified kinetic model. The numerical
simulations of the macroscopic model obtained have shown the relevance of the
macroscopic model to describe the microscopic dynamics at large scale.

Key words: Mathematical biology, Modelisation, Individual based models,
Kinetic theory, Macroscopic models, Asymptotic study
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Introduction(version française)

1 Motivations
Dans cette thèse, nous nous intéressons à l’étude des mécanismes en jeux dans
l’auto organisation des systèmes biologiques. Ces systèmes complexes sont formés
d’un grand nombre d’individus s’auto-organisant pour former des structures com-
plexes (telles que des organes). Nous cherchons à comprendre quels sont les
mécanismes et agents principaux qui mènent à la morphogénèse et homéostasie
des tissus et lesquels sont secondaires à cette organisation. L’auto-organisation
d’agents dans les systèmes biologiques a donné lieu à de nombreuses études mais
reste encore largement inconnue [2]. Il est très difficile de déterminer quels mécanismes
individuels mènent à l’apparition de structures complexes à l’échelle du tissu
entier. Cette difficulté provient du fait que les interactions sont de plusieurs
types (génomique, cellulaire, moléculaire, mécaniques) et se font à différentes
échelles. Afin de mieux comprendre ces problèmes, une approche naturelle est
de développer un modèle mathématique. En effet, la construction d’un modèle bi-
ologiquement adéquat permet de tester des hypothèses sur l’émergence et le main-
tien de structures fonctionnelles et d’explorer différents scénarios. La modélisation
mathématique a pour autre avantage clef d’être développée dans un cadre général,
ce qui permet à un même modèle d’être utilisé pour étudier différents problèmes
physiques ou biologiques. Un modèle pourra valider une hypothèse sur des in-
teractions si les solutions numériques obtenues sont en adéquation avec les struc-
tures observées dans les systèmes réels. Cependant, il faut noter qu’un modèle
mathématique n’a pas pour but de reproduire fidèlement la réalité, mais seule-
ment d’aider à la compréhension d’un phénomène observé. De plus, il est sou-
vent difficile d’avoir accès/de mesurer des faits biologiques, rendant difficile la
comparaison des données expérimentales avec les résultats du modèle. Ainsi, la
construction d’un modèle mathématique requiert des expériences biologiques, des
techniques avancées de segmentation et de traitement d’images, de l’analyse de
données expérimentales etc. Finalement, la confrontation des résultats du modèle
à une réalité biologique est délicate pour deux raisons. Premièrement, les résultats
expérimentaux sont sujets à des bruits aléatoires dûs aux instruments de mesures
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et aux conditions expérimentales, et peuvent donc varier d’une expérience à une
autre. De plus, le nombre d’expériences est limité tandis qu’un modèle requiert
un grand nombre de paramètres.

Dans notre étude, nous considérons le tissu biologique comme un système
écologique engageant un nombre réduit d’agents et d’interactions. Nous prenons
l’exemple du tissu adipeux qui est le principal réservoir d’énergie de l’organisme
et qui joue un rôle fondamental dans la régulation du poids et de l’énergie.

2 Le Tissu Adipeux
Il existe deux types de tissus adipeux jouant des rôles distincts et complémentaires:
le tissu adipeux blanc (WAT) et le brun (BAT). Le WAT est composé principale-
ment d’adipocytes blancs qui stockent le surplus d’énergie de l’organisme. Au
contraire, le BAT est composé d’adipocytes bruns dont la couleur est due à une ir-
rigation plus dense comparé au WAT. Le BAT est spécialisé dans la thermogénèse
adaptative: sa fonction principale est de transférer l’énergie des nutriments en
chaleur. Dans notre étude, nous nous intéressons au premier type de tissu adipeux:
le WAT. Il est composé d’adipocytes matures (gouttes de lipides), de préadipocytes
(leur précurseurs) et d’une fraction de stroma vasculaire contenant du sang, des
cellules endothéliales et des macrophages. Un extrait de tissu adipeux extrait
d’une souris mature saine (expériences faites au StromaLab) est montré en Figure
1. Le tissu adipeux inguinal entier de la souris est prélevé, fixé dans de l’agarose et
coupé en tranches. Les tranches sont traitées par un colorant lipophile fluorescent
rouge (CD34-BODIPY) (travail de spécialistes ed l’ITAV). Dans la Figure 1, les
adipocytes apparaissent en rouge, les cellules souches en vert et la matrice extra-
cellulaire (ECM) en bleu. Cette image montre qu’à l’équilibre, le tissu adipeux
mature est composé d’adipocytes regroupés en formes spécifiques, nommées lob-
ules, et entourés d’une matrice extra-cellulaire organisée.
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Figure 1: Image 2D Image d’un tissu adipeux sous-cutané extrait d’une souris
saine. CD34-Bodipy-Second harmonics / visualization IMARIS.

En influençant le statut physiologique et le devenir des cellules précurseures,
le métabolisme est un facteur important de l’adipogénèse. Dans ce contexte, la
vascularisation apporte des nutriments et de l’oxygène. L’innervation contrôle les
cellules immatures et les processus de régénération . En drâınant des métabolites
telles que le CO2, le flux sanguin participe à la formation de niches, de gradients et
à l’activité cellulaire. D’un autre côté, l’ECM et les cellules régénératives de l’ECM
(myofibroblastes) jouent un rôle majeur dans l’homéostasie du tissu adipeux : elles
créent des contraintes mécaniques, servent de points d’attache aux cellules, et
participent à la migration cellulaire en donnant une directionalité au mouvement
des cellules. Par leur capacité à se différencier et devenir des cellules fonctionnelles
du tissu (adipocytes), les cellules souches sont un autre déterminant clef dans la
morphogénèse et homéostasie des tissus adipeux.

Tous ces éléments chimiques, biologiques et mécaniques jouent des rôles différents
et complémentaires dans l’émergence et le maintien de structures fonctionnelles des
tissus. Cependant, les prendre tous en compte amènerait à des modèles trop com-
plexes et difficiles à interpréter. Notre travail donne, dans le cas des tissus adipeux,
des modèles simplifiés mettant en jeux un nombre réduit d’agents et d’interactions
.
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Figure 2: Image 2D Image d’un tissu adipeux inguinal entier extrait d’une souris
saine.

Pour finir, comme montré en Figure 2 (extrait de tissu adipeux entier), il est à
noter que le niveau d’organisation en lobules varie selon la zone de tissu observée.
Si les structures lobulaires sont organisées et distinctes dans la partie supérieure, les
groupements de cellules sont désorganisés et plus allongés dans la partie inférieure.
Nous sommes donc amenés à développer des modèles décrivant une dynamique à
plusieurs échelles : (i) une échelle microscopique pour étudier le tissu à l’échelle
des cellules et (ii) une échelle macroscopique pour étudier l’organisation à l’échelle
du tissu entier.

3 Modèles mathématiques
Comme expliqué précédemment, nous avons besoin dans notre étude de considérer
une dynamique à plusieurs échelles: à l’échelle des cellules et du tissu entier. Pour
la première, nous sommes amenés à développer un modèle individu-centré (IBM)
qui permet de décrire la dynamique de chaque agent et chaque intéraction. Pour
obtenir un modèle à une échelle plus grande, nous avons besoin de développer un
modèle macroscopique.

3.1 Modèles Individu-centrés
La majorité des modèles développés pour adresser une question biologique sont des
modèles dits ’individus-centrés’. L’avantage principal de ce type de modèles réside
dans le fait qu’ils permettent de décrire chaque individu à l’aide de variables qui
lui sont propres telles que sa position, vitesse, forme etc. Ces modèles permettent
de décrire précisément les différentes interactions entre agents à l’aide de fonction-
nelles définies à partir de règles heuristiques venant de la réalité biologique. Ils
décrivent en effet l’évolution des variables de manière discrète ou continue. Dans
les systèmes dynamiques, les agents peuvent être auto-propulsés ou sujets à des
forces mécaniques induisant un mouvement. Dans ce dernier cas, les équations du
mouvement sont déduites de lois physiques comme le principe fondamental de la
dynamique ou la minimisation d’une énergie par exemple.
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De nombreux modèles individus centrés ont été proposés pour décrire les intéractions
et les agents en jeux dans l’auto-organisation de systèmes biologiques. On se pro-
pose içi de donner un bref aperçu de modèles présents dans la littérature.

Quand il s´ agit de modéliser un système impliquant une organisation de struc-
tures cellulaires et fibreuses, les principales intéractions peuvent être de trois types:
(i) cellules-cellules, (ii) cellules-fibres ou (iii) fibres-fibres. Les modèles basés sur des
intéractions de type (i) [4] sont développés pour comprendre l’emergence de struc-
tures cellulaires et modélisent la croissance tumorale par exemple. Ils supposent
souvent que le déplacement des cellules est indépendant de la nature du mileu dans
lequel elles évoluent. De nombreux travaux [5] ont montré que le déplacement des
agents dans un milieu fibreux pouvait être trés différent de celui dans un milieu
homogène. Ainsi, de nombreux modèles mathématiques ont été proposés pour
comprendre le rôle d’interactions de type (ii) dans la morphogénèse tissulaire.
La littérature autour de cette question peut être divisée en trois grands types
d’intéractions: (a) des intéractions de type chimiques ( [7, 9] ), où le déplacement
des cellules suit la présence de gradients chimiques dans le milieu, (b) des modèles
de transport ([9, 10, 12, 13]) où la matrice extra-cellulaire donne de l’information
directionnelle au mouvement cellulaire [13]), ou (c) des modèles de type mécanique
[8] où les cellules exercent et subissent une tension sur l’ECM.

Enfin, de nombreux auteurs ont étudié l’influence d’interactions de type fibres-
fibres (iii) sur la morphogénèse [14, 15]. Différentes approches sont généralement
employées pour modéliser les structures de fibres: la première consiste à développer
un modèle discret en temps et en espace pour les fibres et les ponts de fibres
(par exemple [16, 18, 19]). Le réseau de fibres peut être encore traité comme un
matériau viscoélastique [20], un milieu poreux [21], un fluide visqueux [12] ou un gel
actif [22]. Finalement, dans [14], les auteurs présentent un modèle individu-centré
pour un réseau de fibres d’actine, où les fibres sont vues comme des particules et
l’action des liens de fibres est modélisé par des interactions moyennes.

3.2 Modèles macroscopiques
Car les IBM décrivent le mouvement de chaque cellule et l’effet de chaque intéraction,
ils deviennent rapidement lourds en temps de calcul. Pour des systèmes com-
posés de plusieurs millions d’individus, il est donc plus efficace de développer un
modèle continu qui considère la masse d’agents dans son ensemble. Les modèles
macroscopiques décrivent l’évolution de cette masse, et ont donc un coût de cal-
cul indépendant de la taille du système [31, 28]. Les modèles macroscopiques ont
aussi pour avantage d’être analysés théoriquement. Nous disposons d’un cadre
mathématique permettant de démontrer et prédire le comportement des solu-
tions du modèle. Au contraire, pour les IBM, peu de résultats théoriques sont
disponibles et la plupart des travaux sont empiriques. Cependant, les modèles
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macroscopiques engendrent une perte d’information à l’échelle de l’individu. Afin
de garder au mieux la description au niveau microscopique, il est donc important
de relier aussi rigoureusement que possible les deux visions, càd dériver un modèle
macroscopique à partir d’un modèle microscopique. Le passage de l’un à l’autre
s’effectue par changement d’échelle en temps et en espace [33]. Le modèle macro-
scopique ainsi construit décrira la dynamique du modèle microscopique de départ à
grande échelle de temps et d’espace, et sera ainsi étroitement lié à une dynamique
mesurable expérimentalement. Etablir rigoureusement un modèle macroscopique
de son IBM est la tâche centrale de la théorie cinétique [32, 32, 34, 35]. Cepen-
dant, certaines techniques classiques ne sont pas applicables à cause de la nature
des interactions entre agents, i.e (i) le manque d’équations de conservations (ii)
l’apparence d’équilibres multiples et de transitions de phases ou encore (iii) la perte
de propriété de propagation du chaos due à l’apparence de corrélations. Cepen-
dant, une théorie récente d’Invariant Collisionels Généralisés (GCI) [29, 30, 23, 37]
a été développée, et permet d’obtenir une limite macroscopique pour des systèmes
avec des nombres réduits de lois de conservation.

4 Vue générale du projet
Dans cette thèse, nous voulons comprendre les mécanismes en jeu dans la mor-
phogénèse des tissus adipeux. Dans ce but, nous avons suivi la méthodologie
indiquée en Diagramme 3. En collaboration étroite avec une équipe de biolo-
gistes du StromaLab et de spécialistes du laboratoire d’imagerie de l’ITAV, nous
avons d’abord construit un modèle IBM à partir de règles heuristiques données
par la réalité biologique (chap I). Le but de ce modèle était de montrer que l’auto-
organisation de cellules et de fibres en structures cellulaires de forme lobulaires
dans un réseau de fibres organisé pouvait être reproduite par un modèle simple
construit principalement sur des règles mécaniques.
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Figure 3: Un diagramme de l’utilisation de la modélisation mathématique pour
répondre à une question biologique. A partir de règles heuristiques extraites du
système réel, un modèle individu-centré est développé. Une analyse statistique
des structures couplées à un processus de traitement d’images permet de cali-
brer les données expérimentales des données du modèle, permettant une première
validation du modèle mathématique. En utilisant les concepts de la théorie
cinétique, un modèle cinétique est développé, et sa limite asymptotique amène
à un modèle macroscopique. Ce dernier peut alors être étudié analytiquement et
numériquement et comparé à son IBM correspondant.
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Le modèle individu centré proposé dans ce chapitre a été qualitativement et
quantitativement comparé aux données expérimentales, et montre un bon accord
avec les observations extraites des tissus réels. La confrontation des résultats du
modèle aux données réelles a été réalisée dans le cadre d’un projet multidisciplinaire
impliquant biologistes, spécialistes du traitement d’images et mathématiciens.

Afin de modéliser le tissu à grande échelle, nous avons ensuite développé un
modèle mesoscopique puis dérivé un modèle macroscopique à partir du modèle
IBM du chapitre I, en utilisant des techniques de la théorie cinétique. Nous nous
sommes d’abord concentrés sur le réseau de fibres et voulions obtenir un modèle
pour des fibres ayant la possibilité de se lier et de se détacher, sujettes à un poten-
tiel extérieur et s’alignant en ses points d’attache. Afin de capturer les effets de
la dynamique microscopique sur les structures à grande échelle, le modèle macro-
scopique a été lié le plus rigoureusement possible à son IBM. La dérivation d’un
modèle macroscopique est présentée au chapitre II, où nous dérivons d’abord un
modèle cinétique pour un réseau complexe de fibres inter-connectées, puis intro-
duisons une approximation de diffusion sur ce modèle pour parvenir à un modèle
continu. Le modèle cinétique apporte une description statistique de son IBM cor-
respondant, en décrivant l’évolution temporelle de la distribution de probabilités
en espace et orientation des fibres individuelles. Nous obtenons un système fermé à
deux équations décrivant l’évolution de deux fonctions de distribution : la distribu-
tion de probabilités des fibres et celle de leur points d’attache. Nous considérons
ensuite un régime où le processus d’attachement/de détachement des fibres est
quasi-instantané, ce qui nous permet d’exprimer la fonction de distribution des
liens de fibres en fonction de celle des fibres individuelles.

Comme la dérivation du modèle macroscopique est seulement formelle, la cor-
respondance des deux formulations (modèle continu et IBM) doit être confirmée
par des simulations numériques et des preuves mathématiques. Ceci est l’objet
du chapitre III, où nous présentons une première étude du modèle macroscopique.
Dans ce chapitre, nous prouvons d’abord l’existence de solutions à l’équation con-
tinue dans le cas d’une distribution homogène de fibres et sous réserve de conditions
structurelles du potentiel extérieur. Nous nous intéressons ensuite aux propriétés
des solutions, et analysons numériquement le profil des solutions stationnaires.
Nous montrons que le modèle macroscopique fait apparâıtre un phénomène de
flambement dépendant des paramètres du modèle et de la force appliquée au
réseau, ce qui nous permet de déduire des premières propriétés mécaniques de
notre modèle macroscopique. Nous comparons ensuite numériquement les profils
des solutions du modèle continu et du modèle microscopique, et montrons une
bonne concordance entre les deux modèles.

Les chapitres IV et V sortent du contexte des tissus adipeux. Le chapitre IV est
le résultat d’un travail en collaboration avec S. Motsch, où nous nous intéressons à
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l’effet de contraintes de congestion sur les propriétés (forme, vitesse..) d’une masse
croissante de cellules. Les contraintes de non recouvrement entre cellules sont om-
niprésentes dans les modèles de mouvement collectif et, plus particulièrement, dans
les modèles de croissance tumorale. Elles consistent à considérer que seulement
un nombre fini d’agents peut occuper un certain espace à un temps donné. Ceci
peut être utilisé pour modéliser des fluides incompressibles par exemple. Nous pro-
posons en premier lieu un modèle individus-centré pour des cellules - représentées
par des sphères 2D- se déplaçant de manière aléatoire et interagissant à travers des
forces de non recouvrement. Nous dérivons un modèle continu de cet IBM, et mon-
trons que le modèle macroscopique ne capture pas les mêmes effets que le modèle
individu-centré de départ. Nous montrons que cette différence est dûe au fait que
les masses de Dirac ne sont pas stables pour le modèle macroscopique. Afin de
relier les deux visions, nous proposons alors une version modifiée du modèle macro-
scopique que nous sommes capables de relier avec la dynamique microscopique. Ce
modèle montre une bonne correspondance avec l’IBM.

Pour finir, le chapitre V présente les extensions de nos travaux. Dans une
première partie, nous présentons les travaux (en cours) effectués avec P. Degond
et B. Aymard sur la modélisation de la vasculogénèse. Dans ce modèle, quatre
acteurs sont considérés : les capillaires, le flux sanguin, l’oxygène et le tissu. Le
but de cette étude est de construire un modèle hybride dans lequel l’oxygène est
décrit par des variables macroscopiques (le flux et la pression), et le réseau de
capillaires comme un ensemble d’éléments discrets. La connexion avec nos travaux
réside dans la modélisation du réseau capillaire qui est analogue à notre traitement
de la matrice extra-cellulaire du modèle du chapitre I.

Le second modèle est un travail en cours avec M. Ferreira, P. Degond et S.
Motsch et a pour but de modéliser l’agrégation balistique. L’idée sous-jacente
de ce travail, commune avec notre travail sur les tissus adipeux, est de modéliser
des structures de géométrie complexes comme un ensemble d’unités élémentaires
de géométrie simple (par exemple des sphères 2D) connectées. Comme point
de départ, nous présentons un modèle d’agrégation pour des sphères 2D auto
propulsées se connectant quand elles s’entre-choquent. Le but est d’étudier le type
de structures obtenues à l’équilibre avec un tel processus de recrutement.
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5 Contributions des travaux
5.1 Sur la dérivation d’un modèle microscopique pour le

tissu adipeux
Le modèle que nous avons développé dans le cadre de la morphogénèse des tis-
sus adipeux a été le fruit d’une collaboration étroite avec l’équipe de biologistes
de L. Casteilla (StromaLab), et d’une équipe de spécialistes du traitement de
l’image à l’ITAV. Nous avons d’abord construit un IBM biologiquement signifi-
catif décrivant l’organisation de cellules dans une matrice extra-cellulaire com-
posée de fibres. L’originalité de notre travail réside dans l’hypothèse que cette
auto-organisation peut être reproduite par un modèle engageant un nombre réduit
d’agents et d’interactions. Nous avons conduit une analyse quantitative appro-
fondie sur les structures numériques et les données expérimentales pour tester
différentes hypothèses sur l’émergence de structures lobulaires de cellules dans les
tissus adipeux. Munis d’une méthode de traitement d’images que nous avons
développée ainsi que de descripteurs appropriés pour les structures cellulaires
et fibreuses, nous avons été en mesure de montrer la correspondance entre les
résultats du modèle et les données expérimentales. Ce modèle montre que l’auto-
organisation d’agents dans les tissus adipeux peut être le résultat de règles mécaniques
impliquant un nombre réduit d’entités.

D’un point de vue biologique et à notre connaissance, c’est la première fois
qu’un modèle mathématique est développé et confronté à des données biologiques
pour comprendre les mécanismes d’auto-organisation des tissus adipeux. Notre
modèle suggère, étonnamment, que la vascularisation pourrait être secondaire dans
la formation de lobules dans les tissus adipeux.

D’un point de vue mathématique, ce travail suggère que des structures géométriques
complexes comme des réseaux inter-connectés de fibres peuvent être modélisées
comme un ensemble d’unités élémentaires de géométrie simple connectées, ces
connexions vues comme des contraintes à travers l’utilisation de fonctionnelles
simples. Cette nouveauté a été utilisée pour construire d’autres modèles comme
(i) un modèle pour la vasculogénèse, où le réseau vasculaire est modélisé comme un
ensemble de segments connectés, et (ii) un modèle d’agrégation balistique, où des
cellules de forme complexe sont modélisées par un ensemble de sphères connectées.
Ces travaux sont présentés en chapitre V.

5.2 Sur la dérivation d’un modèle continu pour un réseau
complexe de fibres interconnectées

La deuxième partie de cette thèse a porté sur la dérivation d’un modèle macro-
scopique à partir du modèle microscopique introduit en première partie. Dans
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ce but, nous avons d’abord dérivé un modèle cinétique basé sur les intéractions
fibres-fibres. Le challenge était de réussir à obtenir une description macroscopique
d’un milieu constitué d’une multitude de fibres ayant la possibilité de se lier et su-
jettes à des forces extérieures. Dans un premier temps, la dérivation d’un modèle
cinétique nous a conduit à une équation décrivant l’évolution de la distribution de
fibres individuelles (i.e la probabilité de trouver une fibre dans un certain endroit
du domaine), mais aussi à une équation décrivant l’évolution de la distribution
à deux particules (i.e la probabilité de trouver deux fibres liées à un certain en-
droit du domaine). Ainsi, le mouvement des fibres seules pouvait être décrit en
fonction de la fonction de distribution à deux particules, elle-même entièrement
déterminée grâce à un système de fermeture simple ne demandant pas d’hypothèse
supplémentaire sur le modèle.

A l’aide de techniques récentes non conventionnelles [23] dûes au manque de
lois de conservation pour ce système, nous avons pu obtenir formellement la limite
à grande échelle du modèle cinétique, dans un régime d’attachement/détachement
de liens de fibres quasi-instantané. Dans ce régime, nous obtenons un système
de deux équations : une équation classique de continuité décrivant l’évolution de
la densité de fibres ainsi qu’une équation non linéaire décrivant leur orientation
moyenne. L’étude analytique complète du modèle macroscopique obtenu reste un
problème ouvert. Nous avons premièrement obtenu l’existence de solutions dans un
cadre simplifié, puis nous nous sommes concentrés sur les simulations numériques
du modèle macroscopique. Ces questions sont présentées en chapitre III.

5.3 Modèle macroscopique pour un réseau complexe de fi-
bres : existence de solutions et simulations numériques.

Dans ce chapitre, nous proposons une première analyse théorique et numérique
du modèle macroscopique du chapitre II. Nous étudions le cas où la densité de
fibres est homogène, et prouvons l’existence de solutions sous hypothèse struc-
turelle pour le potentiel extérieur. Les simulations numériques du modèle macro-
scopique font apparâıtre un phénomène de flambage, permettant de déduire des
propriétés physiques du modèle macroscopique de fibres. Nous proposons ensuite
une première comparaison numérique entre le modèle continu et son IBM cor-
respondant. Nous montrons que la distribution de l’orientation moyenne locale
des fibres est en bon accord avec la distribution théorique prédite par le modèle
macroscopique. En particulier, nous sommes en mesure de calculer le paramètre
d’ordre du système à partir des expériences numériques du modèle microscopique.
Nous montrons ensuite que dans un certain régime de paramètres, nous obtenons
une bonne correspondance entre les structures des deux modèles. Cette étude
préliminaire est proposée comme une première validation de la dynamique macro-
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scopique par comparaison aux prédictions du modèle IBM.

5.4 Amélioration dún modèle de croissance tumorale
Une application directe de notre travail a consisté à introduire notre dynamique
cellulaire dans un modèle de croissance tumorale. Ce travail, fait en collabo-
ration avec S. Motsch, a consisté à enrichir un modèle existant en incluant des
intéractions cellules-cellules afin d’étudier l’influence de contraintes de congestion
dans un modèle de diffusion. Au cours de cette étude, nous avons été amenés
à dériver un modèle macroscopique de croissance tumorale, et à effectuer une
comparaison entre le modèle microscopique et macroscopique. Ce travail nous a
permis d’approfondir l’étude de l’influence d’interactions de type cellules-cellules
sur la forme et l’évolution de structures cellulaires.

6 Résultats
6.1 Chap. I : Modèle individu centré pour l’auto-organisation

dans les tissus adipeux
Dans ce chapitre, nous introduisons un modèle pour la morphogénèse des tissus
adipeux. Les expériences biologiques montrent qu’à l’équilibre, le tissu adipeux est
composé d’adipocytes groupés en formes lobulaires entourées d’un réseau de fibres
organisées [1]. A partir de ces observations, nous proposons un modèle 2D où les
cellules sont représentées par des sphères qui ne peuvent pas se recouvrir, et les
fibres sont modélisées par des segments de longueur fixe qui ont la possibilité de se
lier quand ils se croisent. Nous supposons que les forces mécaniques agissant sur
les cellules et les fibres sont de deux types: (i) une force de répulsion entre cellules
et fibres Wpot et (ii) une force d’alignement entre les fibres liées, générant un couple
à la jonction des fibres. L’action de ce couple est modélisé par une énergie Walign.
Nous incorporons les phénomènes biologiques suivants : (a) La différenciation des
cellules souches est modélisée par l’apparition de nouvelles cellules dans le domaine
par un processus stochastique en temps, (b) la croissance cellulaire est supposée
être un phénomène régulier, (c) la plasticité du réseau de fibres est modélisée en
donnant la possibilité aux fibres se croisant de se lier ou aux fibres liées de se
décrocher. Ces processus sont supposés être des processus stochastiques dont les
fréquences temporelles sont des paramètres du modèle. Nous supposons ensuite
qu’à chaque temps d’observation, le système est à l’équilibre mécanique, c’est à
dire que les agents se déplacent vers la configuration de potentiel minimal, où
le potentiel est défini comme la somme les forces agissant entre chacune des en-
tités. Selon ce principe physique, nous sommes amenés à résoudre, entre deux pas
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de temps, un problème de minimisation d’un potentiel, sous contraintes de non
recouvrement des cellules et de maintien des liens de fibres:

(X, Y, θ) = argmin W (X1, Y1, θ1)
X1 |Φ(X1)≤0,(Y1,θ1) | Ψ(Y1,θ1)=0

, (6.1)

où (X, Y, θ) est l’ensemble des vecteurs position X = {Xi ∈ R2 1 ≤ i ≤ N} des
N cellules, les vecteurs de position Y = {Yf ∈ R2 1 ≤ f ≤ Nf} des Nf centres de
fibres, et les angles des vecteurs orientation θ = {θf ∈ [−π

2 ,
π
2 ) 1 ≤ f ≤ Nf} des

Nf fibres. L’énergie libre totale du système W (X, Y, θ) inclue les fonctionnelles
d’énergie des phénomènes (i) et (ii):

W (X, Y, θ) = Wpot(X, Y, θ) +Walign(Y, θ). (6.2)

Finalement, Φ(X) et Ψ(Y, θ) sont les fonctionnelles pour le non recouvrement des
cellules (contraintes d’inégalité) et pour le maintien des liens de fibres (contraintes
d’égalité) respectivement: Φ(X) = {Φij(X) , 1 ≤ i < j ≤ N}, où Φij est une
fonctionnelle telle que Φij(X) > 0 si les cellules i et j se recouvrent. Pour les liens
de fibres, Ψ(Y, θ) = {~Vi(k)j(k)(Y, θ) , 1 ≤ k ≤ K}, où K est le nombre total de
liens de fibres et ~Vi(k)j(k) est le vecteur joignant les positions des points d’attache
sur chaque paire de fibres (i(k), j(k)) liées par le lien k (le maintien des liens de
fibres correspondant au cas où ce vecteur est nul, comme représenté en Fig. 4).

Figure 4: Liens de fibres s’intersectant. A. Situation au moment du lien. B.
Potentiel Vij apres mouvement des fibres liées.

Le Lagrangien du système L(X, Y, θ, λ, µ) dépend de la position des cellules et
des fibres, ainsi que de l’angle d’orientation des fibres θ, et des multiplicateurs de
Lagrange λ et µ associés aux contraintes d’inégalités pour le non recouvrement
des cellules et aux contraintes d’égalité de maintien des liens respectivement. Son
expression est donnée par:

L(X, Y, θ, λ, µ) = W (X, Y, θ)+ < λ,Φ > + < µ,Ψ >,
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où < . > désignant le produit scalaire. Le problème de minimisation (6.1) est
ensuite résolu à chaque temps discret par un algorithme d’Uzawa.

L’évolution du système entre les temps discrets tn et tn+1 = tn + ∆t est donnée
par:

1. Croissance cellulaire:∀i ∈ [1, N ]:
R3
i (tn+1/2) = R3

i (tn) +Kg(1 + ηρg)
où η est un nombre aléatoire et Kg, ρg deux paramètres du modèle.
2. Creation de nouvelles cellules: processus de Poisson de fréquence temporelle νe.

Probabilité d’ensemencer au point X:
P(X,R) = χα,

où χ désigne la densité locale de cellules, α un paramètre du modèle
3. Attachement/détachement des liens: creation et suppression des liens

selon des processus de Poisson de fréquences νf et νd
4. Mouvement des cellules et fibres:

Pour une configuration initiale (Xn+1/2, Y n+1/2, θn+1/2)
trouver (Xn+1, Y n+1, θn+1) tel que

(Xn+1, Y n+1, θn+1) = argmin W (X1, Y1, θ1)
X1 |Φ(X1)≤0,(Y1,θ1) | Ψ(Y1,θ1)=0

.

Nous définissons ensuite un ensemble de quantificateurs statistiques pour décrire
les structures cellulaires et fibreuses à l’équilibre. Dans ce but, un groupement
de cellules est défini comme un ensemble de sphères presque en contact, et nous
avons accès au nombre total de groupements, ainsi qu’à leur élongation moyenne
et l’écart-type de la distribution de leur anisotropie de forme. Les groupements
de fibres sont définis comme les ensembles de fibres voisines presque alignées, et
nous mesurons le nombre de groupements de fibres, leur élongation moyenne et
l’alignement moyen de leurs constituants. Nous effectuons ensuite une analyse
statistique en moyennant les valeurs de ces quantificateurs sur un grand nombre
de simulations afin de les représenter en fonction des paramètres du modèle.

Afin de comparer les simulations numériques avec les données expérimentales,
nous développons une méthode de traitement d’images pour (a) la détection des
cellules et (b) la détection des groupements cellulaires. Comme seuls les adipocytes
et lobules sont accessibles à partir des images biologiques, les quantificateurs pour
les structures cellulaires uniquement peuvent être utilisés dans cette comparaison.
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6.2 Chap. II: Modèle macroscopique pour un réseau com-
plexe de fibres.

Dans ce chapitre, nous étudions la limite à grande échelle du modèle du chapitre
I. Afin de simplifier le modèle, nous supposons que la présence de cellules est
modélisée par un potentiel extérieur Wext(Y, θ) dépendant des positions des centres
de fibres et de leur angle d’orientation, et nous nous concentrons sur le réseau de fi-
bres. Nous cherchons donc à étudier les propriétés d’un réseau de fibres composé de
segments de longueur fixe qui se fixent et se détachent, et sujets à des interactions
mécaniques. Pour modéliser les mouvements du tissu biologique, nous considérons
aussi un bruit aléatoire en position et orientation à l’aide d’un terme d’entropie
Wnoise(Y, θ). Il est à noter que la dérivation d’un modèle macroscopique nécessite
une description continue du modèle discret, et que la procédure de minimisation
(6.1) est discrète en temps pour le modèle microscopique. Ainsi, le problème de
minimisation est modifié en une descente de gradient pour une pénalisation quadra-
tique de l’équation (6.1). Dans ce but, la fonctionnelle Ψ(Y, θ) pour les contraintes
d’égalité de maintien des liens de fibres est incorporée dans l’énergie libre totale
du système tel que :

W (Y, θ) = Wext(Y, θ) +Walign(Y, θ) +Wnoise(Y, θ) + κ

2 |Ψ(Y, θ)|2,

où κ est le facteur de pénalisation. Le mouvement et la rotation des fibres sont
supposés suivre la direction de descente du gradient de cette énergie:

dY

dt
= −µ∇X

(
Wext +Walign +Wlinks +Wnoise

)
(6.3)

dθ

dt
= −λ∂θ

(
Wext +Walign +Wlinks +Wnoise

)
. (6.4)

où µ et λ sont des coefficients de mobilité.
Afin de dériver un modèle macroscopique à partir des équations (6.3)-(6.4),

nous utilisons l’équation cinétique associée à cette dynamique particulaire. Dans ce
but, nous définissons la fonction de distribution à une particule f(x, θ) décrivant les
N fibres individuelles, et la fonction de distribution à deux particules g(x1, θ1, `1, x2, θ2, `2)
décrivant les K liens de fibres:

fN(x, θ, t) = 1
N

N∑
i=1

δ(Xi(t),θi(t))(x, θ),

gK(x1, θ1, `1, x2, θ2, `2, t) = 1
2K

K∑
k=1

δ(Xi(k),θi(k),`
k
i(k),Xj(k),θj(k),`

k
j(k))

(x1, θ1, `1, x2, θ2, `2)

+ δ(Xj(k),θj(k),`
k
j(k),Xi(k),θi(k),`

k
i(k))

(x1, θ1, `1, x2, θ2, `2),



6 Résultats 25

où δx(y) désigne la fonction de Dirac en x, i.e la distribution agissant sur les
fonctions test φ(y) tel que < δx(y), φ(y) >= φ(x). Par une simple relation de fer-
meture, nous parvenons à obtenir la limite formelle d’un grand nombre d’individus
et de liens et obtenons le théorème suivant:

Theorem 6.1. La limite formelle des Equations (6.3), (6.4) pour K,N → ∞,
K
N
→ ξ, où ξ > 0 est un paramètre fixé est donnée par:

df

dt
− µ

(
∇x.((∇xU)f) + ξ∇x.F1 + d∆xf

)
− λ

(
∂θ((∂θU)f) + ξ∂θF2 + d∂2

θf

)
= 0,

(6.5)
et

dg

dt
− µ

[
∇x1 .

(
g∇xU(x1, θ1) + ξ

g

f(x1, θ1)F1(x1, θ1) + d
g

f(x1, θ1)∇xf(x1, θ1)
)

+∇x2 .

(
g∇xU(x2, θ2) + ξ

g

f(x2, θ2)F1(x2, θ2) + d
g

f(x2, θ2)∇xf(x2, θ2))
)]

−λ
[
∂θ1

(
g∂θU(x1, θ1) + ξ

g

f(x1, θ1)F2(x1, θ1) + d
g

f(x1, θ1)∂θf(x1, θ1)
)

+ ∂θ2

(
g∂θU(x2, θ2) + ξ

g

f(x2, θ2)F2(x2, θ2) + d
g

f(x2, θ2)∂θf(x2, θ2)
)]

= S(g),

(6.6)

où

F1(x1, θ1) =
∫

(g∇x1V )(x1, θ1, `1, x2, θ2, `2)d`1d`2
dθ2

π
dx2,

F2(x1, θ1) =
∫ (

g(∂θ1V + ∂θ1b)
)
(x1, θ1, `1, x2, θ2, `2)d`1d`2

dθ2

π
dx2.

(6.7)

Içi, le terme S(g) décrit la dynamique de création/suppression de liens de fibres
et son expression est donnée par :

S(g) = νff(x1, θ1)f(x2, θ2)δ¯̀(x1,θ1,x2,θ2)(`1)δ¯̀(x2,θ2,x1,θ1)(`2)− νdg, (6.8)

La nouveauté de cette équation cinétique réside dans le fait qu’elle est un moyen
simple de suivre les interactions à deux particules. Ces paires d’interactions peu-
vent être vues comme un graphique aléatoire des liens de fibres. En effet, comme
les points d’attache sont localisés sur les fibres, ils sont transportés et suivent
l’évolution des fibres individuelles. En même temps, ils contraignent le mouve-
ment des fibres en forçant les fibres attachées à évoluer ensemble. Le potentiel de
renforcement généré par les liens de fibres, V , est exprimé au niveau cinétique par
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des forces non locales F1 et F2 dans les équations Eqs. (6.5),(6.6). Les deuxième et
troisième termes décrivent le transport en espace physique et en orientation dû au
potentiel extérieur U , tandis que les quatrième et cinquième termes expriment la
diffusion d’amplitude λd ou µd et représentent le mouvement individuel des fibres.
Le potentiel d’alignement entre fibres liées, b, s’exprime au niveau cinétique en
une force F2 et agit seulement sur les orientations des fibres. La partie gauche de
l’équation S(g) décrit le processus de Poisson de création/destruction des liens de
fréquences respectives νf et νd. La transition entre la dynamique particulaire et
l’équation cinétique est seulement formelle.

Une fois que nous avons le modèle cinétique Eqs. (6.5)-(6.6), nous utilisons
un changement d’échelle pour dériver le modèle macroscopique. Plus précisément,
nous introduisons les variables macroscopiques :

t̃ = εt , x̃ =
√
εx,

et montrons que dans un régime d’attachement/détachement très rapide des liens,
la fonction de distribution à deux particules gε peut être écrite comme le produit
de deux fonctions de distribution à une particule f ε:

gε(x1, θ1, `1, x2, θ2, `2) = νf
νd
f ε(x1, θ1)f ε(x2, θ2)δ¯̀(x1,θ1,x2,θ2)(`1)δ¯̀(x2,θ2,x1,θ1)(`2)+O(ε2).

Cette relation de fermeture nous permet alors de simplifier le système (6.5) et
nous pouvons alors passer à la limite grande échelle ε → 0. Nous montrons que
les solutions d’équilibre de l’équation cinétique sont de la forme :

f(x, θ) = ρ(x)Mθ0(x)(θ), Mθ0(x)(θ) = 1
Z
e−r cos 2(θ−θ0(x))

où r est un paramètre du modèle, Z une fonction de normalisation telle que f est
une densité de probabilité, ρ(x) est la densité locale des fibres et θ0(x) leur angle
d’orientation. En utilisant le nouveau concept d’invariants collisionnels généralisés
([23]), nous obtenons la limite macroscopique de l’équation cinétique. Quand ε
tend vers 0, nous obtenons un système à deux équations : une pour la densité ρ:

∂tρ−∇x.(∇xU
0ρ)− d∆xρ = 0, (6.9)

où l’on a supposé : U(x, θ) = U0(x)+U1(θ), avec U0 le potentiel extérieur agissant
sur les positions des fibres et U1 agissant sur l’orientation des fibres. La deuxième
équation décrit l’évolution de l’orientation moyenne locale des fibres θ0(x):

ρ∂tθ0 − ρ∇xU
0.∇xθ0 − 2α2∇xρ.∇xθ0 − α2ρ∆xθ0

+α3(ρ∇2
xθ0 +∇xθ0 ⊗∇xρ+∇xρ⊗∇xθ0) : [ω0 ⊗ ω0 − ω⊥0 ⊗ ω⊥0 ]

+
(
2ρα3∇xθ0 ⊗∇xθ0 − α4∇2

xρ
)

: [ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0] + α5ρ < ∂θU
1 >= 0,

(6.10)
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où ω0 = (cos θ0, sin θ0) désigne le vecteur directionnel 2D de norme 1 associé à

l’angle θ0, ω⊥0 désigne son orthogonal et < h >=
π/2∫
−π/2

h(θ)Mθ0(θ)dθ
π

pour toute fonc-

tion h de θ ∈ [−π
2 ,

π
2 ). Les coefficients α1, α2, α3, α4, α5 sont entièrement déterminés

par les paramètres du modèle.

6.3 Chap III: Modèle macroscopique pour des fibres liées
avec interactions d’alignement: théorie d’existence et
simulations numériques

Dans ce chapitre, nous cherchons à valider numériquement le modèle macrocopique
en le comparant à son IBM. Nous montrons d’abord la bonne correspondance entre
les modèles IBM du chapitre I et II dans un régime de paramètres. Afin de com-
parer la dynamique microscopique au modèle macroscopique, nous avons besoin
de mieux comprendre le modèle macroscopique. Pour ce faire, nous considérons
dans un premier temps que la distribution de fibres est homogène, i.e ρ(x) = ρ0
avec ρ0 > 0 une constante, et nous intéressons aux solutions stationnaires. Nous
montrons que dans ce cas, l’orientation locale moyenne des fibres θ0(x) résoud une
équation elliptique quasi linéaire qui est résolvable sous une condition structurelle
pour le potentiel extérieur.
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Figure 5: Distribution des angles de fibres dont le centre est proche du centre du
domaine, moyennée sur 20 simulations (courbe noire), comparée à sa distribution
théorique (courbe rouge).
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Les simulations numériques du modèle macroscopique montrent un phénomène
de flambement en fonction des paramètres du modèle ainsi que de la force du po-
tentiel extérieur, ce qui nous permet de déduire des propriétés physiques à notre
réseau macroscopique de fibres. Ensuite, nous comparons numériquement les solu-
tions du modèle macroscopique à son IBM correspondant. Nous montrons que la
distribution des orientations locales de fibres du modèle microscopique correspond
à celle prédite par le modèle macrocopique, et nous sommes en mesure de cal-
culer un paramètre d’ordre pour le modèle IBM (voir Fig. 5). Le coût de calcul du
modèle IBM ne nous permet pas d’être dans la limite cinétique, ce qui amène à des
solutions différentes dans certains régimes de paramètres. Cependant, nous mon-
trons que pour un ensemble de paramètres les structures obtenues par le modèle
IBM sont en concordance avec les prédictions du modèle macroscopique. Ce tra-
vail est donc une première étape dans la validation du modèle macroscopique par
comparaison à son IBM.

6.4 Chap IV. Modèle de croissance tumorale
Dans ce chapitre, nous cherchons à comprendre le rôle des contraintes de densité
sur les propriétés de propagation d’une masse croissante de cellules. Les cellules
sont modélisées comme des sphères 2D de centre Xi ∈ R2 et de rayon R > 0.
Afin de modéliser les interactions de courte portée, nous introduisons une fonction
d’interaction φ ≥ 0 et considérons la dynamique suivante :

dxi
dt

= −
N∑
j=1

φij(xi − xj), with φij = φ(xi − xj2R ), (6.11)

où i et j sont les indices des cellules, et :

φ(r) =
|1− rα|, if 0 ≤ r ≤ 1

0 otherwise,

pour α = 1 ou −1. Il est à noter que la répulsion est active seulement quand deux
particules sont à une distance inférieure à 2R.

En utilisant des arguments classiques de la théorie cinétique, nous obtenons le
modèle cinétique associé à (6.11) :

∂tρ+∇x · (G[ρ]ρ) = 0, (6.12)

avec
G[ρ](x) = −

∫
y∈R2

φ

(∣∣∣∣x− y2R

∣∣∣∣2
)

(y − x)ρ(y) dy. (6.13)
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Dans la limite asymptotique R→ 0, nous montrons que le modèle consiste en une
équation en milieu poreux :

∂tρ = αR∇x ·
(
ρ∇xρ

)
, (6.14)

avec
αR = π(2R)4

∫
r≥0

φ(|r|2)r3dr. (6.15)

Les simulations numériques montrent que les solutions de ce modèle se répandent
en espace, tandis que la dynamique microscopique prédit des solutions à support
compact fixe à l’état stationnaire. Nous montrons numériquement que la différence
entre les deux modèles peut être expliquée par le fait que les masses de Dirac ne
sont pas stables pour l’équation macroscopique.

Afin d’obtenir une meilleure correspondance entre les deux échelles, nous pro-
posons de modifier le noyau d’intéraction du modèle cinétique, afin de prendre en
compte le fait que la répulsion n’agit que lorsque la densité de particules dépasse
le seuil ρmax. Dans ce but, nous définissons la fonction W [ρ]:

W [ρ] = −2
∫
|x−y|<2R

(ρ− ρmax)+(y − x)dy.

L’équation d’évolution pour la densité de particules ρ s’écrit alors :

∂tρ+∇x.(W [ρ]ρ) = 0.

Par ce moyen, la diffusion n’est active que dans un disque où la densité est
supérieure à ce seuil ρmax. Nous montrons que dans la limite R→ 0, nous obtenons
l’équation continue suivante :

∂tρ = β(R)∇x.(1ρ(x)≥ρmaxρ∇xρ),

où β(R) est un coefficient dépendant de la taille des particules et 1ρ(x)≥ρmax une
fonction égale à 1 si ρ ≤ ρmax, 0 sinon. Ainsi, nous obtenons une équation de
diffusion non linéaire, où la diffusion n’est active que lorsque la densité locale est
supérieure à un seuil. Les simulations numériques montrent un bon accord entre
le modèle ainsi obtenu et l’IBM. En ajoutant un terme source, nous montrons que
nous obtenons des ondes progressives prédites par les deux modèles.

6.5 Chap V. Extensions des travaux
Dans ce chapitre, nous présentons les extensions de nos travaux. Nous proposons
deux modèles (en cours) construits sur les mêmes principes que ceux développés
pour notre modèle IBM du chapitre I. Le premier est un modèle pour la vascu-
logénèse, le deuxième pour l’agrégation balistique.
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6.5.1 Un modèle pour la vasculogénèse

Dans cette section, nous présentons les points principaux du modèle développé
avec B. Aymard et P. Degond pour la vasculogénèse. Dans ce modèle, quatre
acteurs sont considérés : les capillaires, le flux sanguin, l’oxygène et le tissu. Les
K capillaires sont modélisés comme des tubes de longueur fixe décrits par un
vecteur position Xk = (xk, yk) ∈ R2 de leur centre et un vecteur orientation ωk =
(cos θk, sin θk) ∈ S1 d’angle θk défini modulo π pour modéliser l’isotropie du flux
sanguin. Chaque unité élémentaire de capillaire est supposée générer une matrice
de porosité élémentaire et une matrice de diffusion élémentaire, qui participent
à la porosité et diffusivité globale du milieu. Afin de modéliser l’apparence et
la destruction de capillaires selon les besoins du tissu, les unités de capillaire sont
créées et supprimées selon des processus de Poisson de fréquence νc et νr dépendant
du gradient d’oxygène.

La matrice de porosité globale du milieu K(X) mesurée au point X = (x, y) ∈
R2 (respectivement la matrice de diffusion D(X)) est ensuite définie comme la
somme de toutes les matrices élémentaires de porosité (respectivement matrices
élémentaires de diffusion) générées par le réseau capillaire et de la matrice de
porosité d’un milieu homogène :

K(X) = khI2 +
∑

k s.t.||Xk−X||≤R
κ (ωk ⊗ ωk),

D(X) = dhI2 +
∑

k s.t.||Xk−X||≤R
d (ωk ⊗ ωk),

où kh, dh, κ, d et R sont des constantes positives réelles et I2 la matrice identité
de taille 2.
Le flux sanguin u est ensuite supposé suivre la loi de Darcy :u = −K∇p

−div(K∇p) = 0
(6.16)

où ∇p désigne le gradient de pression du flux sanguin. L’oxygène est modélisé
par sa densité ρ. Le mouvement de l’oxygène est supposé être déterminé par deux
éléments : (i) transport par le sang et (ii) diffusion à travers le tissu. De plus,
l’oxygène est consommé par le tissu. Dans ce premier travail, nous supposons que
la consommation d’oxygène est homogène. Ces trois hypothèses amènent à une
équation de transport diffusion avec terme source :

∂tρ+∇.(ρu)−∇.(ρD∇ρ) = −βρ, (6.17)

où β est un réel positif modélisant la consommation d’oxygène et D est la matrice
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de diffusion du système. Le système complet s’écrit :
1. Flux sanguinu = −K∇p

div(u) = 0
2. Oxygène: transport diffusion avec terme source{

∂tρ+∇.(ρu)−∇.(ρD∇ρ) = −βρ
3. Réseau de capillaires : création et destruction par processus de Poisson de fréquences νc et νr
4. Tissu (matrice de porosité et de diffusion)

K(X) = khI2 +
∑

k s.t.||Xk−X||≤R
κ (ωk ⊗ ωk)

D(X) = dhI2 +
∑

k s.t.||Xk−X||≤R
d (ωk ⊗ ωk)

Les premières simulations numériques du modèle seront montrées dans cette sec-
tion.

6.5.2 Un modèle d’agrégation balistique

Dans cette section, nous présentons les travaux en cours avec P. Degond et M. Fer-
reira sur la modélisation de l’agrégation balistique. Le but final de ce modèle est
de parvenir à comprendre la formation du tissu épithélial. Les cellules épithéliales
sont groupées ensemble en bandes de tissu, et maintenues ensemble par l’action de
plusieurs interactions : jonction étanche, adhérents, desmosomes, jonction lacu-
naire... Différents types d’épithélium sont présents dans les systèmes réels, et sont
distingués par la forme de leurs cellules. Par exemple, si les cellules squameuses
sont fines et plates, d’autres sont allongées et prennent la forme de colonnes. Le
but de ce projet est de construire un modèle mathématique permettant de prendre
en compte plusieurs géométries de cellules. L’idée est de modéliser les cellules de
géométrie complexe comme un ensemble d’unités élémentaires de géométrie simple
connectées, comme des sphères 2D par exemple.

Comme point de départ, un modèle de cellules auto-propulsées s’attachant
lorsqu’elles s’entre-choquent est proposé. Dans ce modèle, les cellules sont auto-
propulsées à vitesse constante (dans une direction fixe aléatoire) tant qu’elles ne
s’entrechoquent pas. Quand deux cellules entrent en collision, elles se lient et
restent attachées tout au long du mouvement, avec une même vitesse et dans
la même direction. Afin d’éviter le recouvrement de cellules, une méthode de
minimisation est proposée pendant chaque collision. Le système complet s’écrit :
• 1. Mouvement :

∀i = 1 . . . N, X̂n
i = Xn−1

i + δtV
n−1
i .
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• Réajustement par minimisation :
Pour (Xi, Xj) ∈ A× A,

φ(Xi, Xj) = (Ri +Rj + εmin{Ri, Rj})2 − d(Xi, Xj)2

où S est l’ensemble de sphère presque en contact :

S = {(i, j) ∈ {1 . . . N} | φ(Xi, Xj) ≥ 0} .

Nous considérons le potentiel suivant :

W (X1, ..., XN) = 1
2

∑
(i,j)∈S0

d(Xi, Xj)2;

l’ajustement consiste en la minimisation suivante :

(Xn
1 , ..., X

n
N) = argmin

φ0(Xi,Xj)<0, i,j=1,...,N
W (X1, ..., XN),

avec comme condition initiale (X̂n
1 , ..., X̂

n
N).

• Actualisation des vitesses :

∀k = 1, ...,Mn, ∀i ∈ Cn
k , V n

i =
∑
j∈Cn

k
V n−1
j

card(Cn
k ) ,

où Cn
1 , ..., C

n
Mn

désigne les groupements de cellules.
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7 Motivations
In this Thesis, we study the mechanisms involved in the self-organization of biologi-
cal systems. These complex systems are composed of numerous agents interacting
at different scales and self-organizing to form and maintain complex functional
structures (for instance organs). We aim at understanding which mechanisms and
agents primarily drive tissue morphogenesis and homeostasis and which are sec-
ondary to this organization. The self-organization in biological systems has given
rise to a large variety of studies, but is still largely unknown [2]. It is very difficult
to understand which individual mechanisms lead to the appearance of organized
and stable structures at the level of the tissue. This difficulty comes from the
fact that the interactions are of several types (chemical, mechanical, molecular,
genomics), and imply several agents and interactions at different scales. To gain
insight into such problems, a natural approach is to use mathematical modeling.
Indeed, the building of a biologically-relevant model enables to test several hy-
pothesis on the emergence and/or maintain of functional structures and to explore
different scenarios. A further key advantage of mathematical models is that they
are developed in a general framework, therefore the same models are not specific
to the system considered but can be used to study further physical or biological
problems. A model will validate an hypothesis on the interactions if the structures
obtained are in good agreement with the structures of real tissues. However, it is
noteworthy that a mathematical model does not aim at faithfully reproduce the
reality but it helps the understanding of an observed phenomenon. Moreover, the
biological reality may be difficult to access/measure, making the model difficult
to compare with biological data. Therefore, the building of mathematical models
often requires further biological experiments, segmentation and image processing
methods, analysis of the experimental data etc. The confrontation between the
model and the experimental results is delicate because of two main reasons. First,
the experimental results may vary from one experience to another and therefore
measurements are subject to random fluctuations. Secondly, we have a limited
number of experiments while a model requires many parameters.
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In our study, we consider the biological tissue as a spatially organized ecological
system engaging a reduced number of agents and interactions. We take the example
of the adipose tissue which is the principal energy store of the organism and plays
a key role in energy and weight regulation.

8 The Adipose Tissue
There exist two types of Adipose Tissues which play distinct and complementary
roles: the white (WAT) and brown (BAT). The WAT is principally composed
of white adipocytes which store the extra energy of the organism. It represents
the largest energy store of the organisms. On the contrary, the BAT is made
of brown adipocytes because of a denser irrigation compared to the WAT. It is
specialized into adaptive thermogenesis: its main function is to transfer energy
from food into heat. In our study, we investigate the WAT. It is composed of
mature adipocytes (lipid droplets), preadipocytes (their precursors), and a stroma
vascular fraction containing blood cells, endothelial cells and macrophages. Figure
6 shows a part of a sub cutaneous mature adipose tissue extracted from a healthy
mouse (experiments in the StromaLab). Then, the whole mouse inguinal adipose
tissue is fixed, embeded in agarose and cut into slices. The slices are treated by
a CD34-BODIPY lipophilic bright red fluorescent dye (work of specialists from
ITAV). In Fig. 6, adipocytes appear in red, stem cells in green and the extra
cellular matrix (ECM) in blue. This image shows that the mature state of adipose
tissues consist of adipocytes grouped into clusters of specific forms, referred to as
lobules, surrounded by an aligned and organized fiber network.

Figure 6: 2D Image of a subcutaneous mature adipose tissue extracted from a
healthy mouse. CD34-Bodipy-Second harmonics / visualization IMARIS.
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The metabolism is an important factor in adipogenesis by determining and in-
fluencing the physiological status and the fates of precursor cells. In this context,
vascularization supplies nutrients and oxygen. Innervation controls immature cells
and regeneration processes. By draining metabolites such as CO2, blood supply
also participates into the formation of niches, gradients, and cell activity. On the
other hand, the ECM and ECM regenerating cells (myofibroblasts) play a key role
in tissue homeostasis: they create mechanical constraints, serve as attachment
points for cells and contribute to cell migration by giving directionality to cell
motion. Another key determinant in adipose tissues are the stem cells (or undif-
ferentiated cells), which have the ability to become functional entities of the tisse
(adipocytes).

All together, these chemical, biological and mechanical phenomena play differ-
ent combined roles in the emergence of functional structures and in the homeostasis
of the tissue. Taking all of them into account would lead to models with overall
complexity and difficult to interpret. Our work here provides, in the case of adipose
tissue, simplified models engaging a reduced number of agents and interactions.

Figure 7: 2D Image of a whole mouse inguinal adipose tissue.

Finally, as shown by Fig. 7 (large portion of adipose tissue), it is noteworthy
that the organizational level into lobules varies from high to low according to the
position in the adipose tissue. It reveals well-organized lobular structures in its
upper part and more disordered structures in its lower part. We are thus led
to develop models at different scales: (i) a microscopic scale where we want to
understand the organization of cells within an extra cellular matrix, and (ii) a
larger scale to adress the question of the organization of the whole tissue.

9 Models
As previously explained, we need to consider the biological tissue at different scales:
at the scale of the agents and at the scale of the whole tissue. To study the system
at the scale of the agents, we developed an Individual Based model which enabled
us to describe each agent and interaction. To obtain a description at a larger scale
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and describe more global structures, we then needed to develop a macroscopic
model.

9.1 Individual Based Model
Most of the models used to adress a biological question are Individual Based Models
(IBM), or ’microscopic models’. The main advantage of such models lies in the
fact that they enable the description of each agent and interaction through the use
of variables such as their positions, speed, form... These models allow to precisely
describe the different interactions thanks to functionals defined from heuristic rules
deduced from the real system. They indeed describe the time evolution of these
variables, either at continuous or discrete times. In dynamical systems, the agents
can either be self-propelled or be subjected to external forces driving their motion.
In this second case, equation of motions can be deducted from physical laws such
as the principle of dynamics or the minimization of an energy for instance.

Several IBM have been proposed to understand the self-organization of biolog-
ical systems. Here, we give an overview of the models that can be found in the
literature.

The study of biological systems that involve emergence of both cell and fiber
structures has given rise to a wild variety of models. In such systems, interactions
can be of three types : (i) cell/cell, (ii) cell/fiber and (iii) fiber/fiber. Models
focusing on interactions of type (i) such as [4] are developed to understand the
emergence of cell structures such as tumors. They often suppose that cell motion
is free from cell/Extra Cellular Matrix (ECM) interactions, or consider the action
of the ECM on cell motion via external forces. Recently, it has been biologically
demonstrated in [5] that cell motion is highly dependent on the medium and can
involve complex chemical processes. Thus, many authors have developed models
incorporating interactions of type (ii). The mathematical literature on this sub-
ject can be partitioned into three main viewpoints: (a) mechanical models like
in [8], where cells exert a tension on the ECM (and inversely), (b) chemotaxis-
type models ( [7, 9] ), where cell motion is driven by chemical gradients or (c)
transport models ([9, 10, 12, 13]) where the ECM gives directional information for
cell motion (contact guidance [13]).

Recently, authors like in [14, 15] have been focusing on the properties of bio-
logical fibrous networks, i.e interactions of type (iii) mainly driven by fiber/fiber
interactions. Different approaches are usually employed to model fiber structures:
the first idea is to create a time discrete model for fibers and cross links (see for
instance [16, 18, 19]). Models like [20] treat the fiber network as a viscoelastic
material while others consider it as a porous medium [21], a two-phase viscous
fluid [12], or an active gel [22]. In [14], the authors present a particle-interaction
model for biological networks where fibers are seen as particles and the cross-links
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as means of interactions.

9.2 Macroscopic models
Because IBM’s describe the motion of each agent and interaction, they quickly
become computationally challenging. For systems involving several million of in-
dividuals, it is more efficient to look for continuum models, and model the mass of
agents as a whole. Macroscopic models describe the evolution of this mass and keep
a computational cost independent of the size of the system [31, 28]. Macroscopic
models also have the advantage to be theoretically analysed. A mathematical
framework is available in which we can predict and demonstrate the behaviour of
solutions to the model. For IBM’s, few theoretical results are available and a ma-
jority of the works are empirical. However, macroscopic models lose information
at the individual scale. In order to keep at best the description at the microscopic
scale, it is important to rigourously link both models, i.e derive a macroscopic
model from an IBM. The passage from one to the other is performed through a
change of scale in space and time [33]. The macroscopic model then describes
the dynamics of the microscopic model on large time and space distances. If the
macroscopic model is derived from a microscopic one, it is then closely linked to a
microscopic dynamics that can be experimentally measured. Rigorously establish-
ing macroscopic models from their microscopic counterpart is the central task of
kinetic theory [32, 32, 34, 35]. However, some of the classical techniques fail due
to the specific nature of the agent’s interactions in complex systems, specifically:
(i) the lack of conservation relations, (ii) the appearance of multiple equilibria
and symmetry-breaking phase transitions, (iii) the breakdown of propagation of
chaos due to the appearance of correlations. A theory of Generalized Collision
Invariants (GCI) have been recently developed [29, 30, 23, 37] which enables to
obtain a macroscopic limit even for systems with a reduced number of conservation
properties.

10 Overview of the project
In this thesis, we wanted to understand the main mechanisms involved in the
self-organization of adipose tissues. To this aim, we followed the methodology
represented in the diagram of Figure 8. In close collaboration with a team of
biologists and of image specialists, we first built an individual based model thanks
to heuristic rules coming from the biological reality (chap I). The goal of this model
was to show that the self-organization of cells and fibers into lobule-like structures
of cells in an organized fiber network was mainly driven by mechanical rules and
could be reproduced by a simple model engaging few agents and interactions.
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Figure 8: A diagram of the use of mathematical modeling to answer a biological
question. Based on heuristic rules coming from the biology, an individual based
model is developed. A statistical analysis of the numerical structures obtained with
the microscopic model together with a treatment of the experimental data allow a
calibration and estimation of the model parameters for the microscopic model. A
first validation of the IBM appears from the comparison model/experimental data.
By the use of kinetic theory, a kinetic model linked to the microscopic dynamics
is developed, and its asymptotic limit leads to the derivation of a macroscopic
equation, which can be analysed theoretically and numerically compared to its
microscopic corresponding model.
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The individual based model we proposed for adipose tissue morphogenesis was
qualitatively and quantitatively compared to experimental data as a validation,
and showed good agreement with the observations of real tissues. The confronta-
tion of the model results to the experiments was in the frame of an interdisciplinary
network with biologists, image processing specialists and computer scientists.

In order to model the tissue at a larger scale, we aimed to derive meso and
macroscopic models from the IBM of chapter I using techniques of kinetic theory.
We first concentrate on the fibrous network and aim at obtaining a macroscopic
model for fiber elements having the ability to cross-link or unlink each other and
to align with each other at the cross links. In order to capture the correct effects
of the microscopic dynamics on the large-scale structures, we aimed at linking the
macroscopic model to its microscopic version as rigorously as possible. This is the
aim of Chapter II, where we first derive a kinetic model from the underlying IBM
and secondly, we perform a diffusion approximation of the latter to obtain the
continuum model. The kinetic model provides a statistical mechanics description
of the underlying IBM by investigating how the probability distribution of fibers
in position and orientation space evolves in time. We obtain a close system of
two equations describing the evolution of two distribution functions: the fiber
distribution function and the cross-link distribution function. We then consider
the fast linking/unlinking regime in which the model can be reduced to the fiber
distribution function only and investigate its diffusion limit.

As the derivation of the macroscopic model is only formal, the correspondence
between the obtained model and the underlying IBM needs to be confirmed by
numerical simulations and mathematical proofs. This is the aim of Chapter III,
where we perform a first study of the macroscopic model. In this chapter, we first
show existence of stationary solutions to the macroscopic equation for fiber mean
orientation, in the case of a homogeneous fiber density. We then numerically study
the properties of the solutions, and show that the macroscopic model features
a buckling phenomenon depending on the external force applied to the fibrous
network and in a range of model parameters. This observation highlights physical
properties of the fiber network featured by the macroscopic equation. As a first
validation of the macroscopic model, we then compare numerically its solutions to
the ones of its underlying IBM. In a range of parameters, we are able to show a
good correspondence between the two models.

Chapter IV and V are beyond the scope of adipose tissues. Chapter IV is the
result of a collaborative work with S. Motsch, where we are interested in under-
standing how density constraints impact the propagation properties of a growing
mass of cells. Cell-cell non overlapping constraints are ubiquitous in models for
collective behaviors and, of particular interest, in modeling of tumor growth. It
consists of considering that only a finite number of individuals/agents can occupy a
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given space. This can be used for modeling incompressible fluids for instance. We
first propose an agent-based model for cells -represented as 2D spheres- randomly
moving and interacting through non overlapping interactions. The introduction
of cell division and cell apoptosis in this model leads to special solutions such as
propagation waves at the microscopic level. We then derive a macroscopic model
from the underlying IBM, and show that if the particle dynamics features compact
supported solutions, the macroscopic density keeps spreading. We therefore pro-
pose a modified version of teh macroscopic model that we are able to link to the
microscopic dynamics. We finally show that the two models are in good agreement.

Finally, chapter V is devoted to the extensions of our works. In a first part,
we present the works (in progress) of B. Aymar and P. Degond for modeling the
vasculogenesis. In the proposed model, four actors are considered: the capillaries,
the blood flow, the oxygen and the tissue. In this model, we aim to build a hybrid
model, in which the blood flow and oxygen are described by macroscopic variables
(flow and density respectively), and the capillary network as a set of discrete
elementary capillaries. The connection with our works lies in the way of modeling
the capillaries, which bear analogies with the modeling of the fiber network in the
model of chapter I. The second model is a work in progress with M. Ferreira, S.
Motsch and P. Degond and aims at modeling ballistic aggregation. The underlying
idea of this work, common with our works on adipose tissue, consists in saying that
complex geometrical structures can be modeled by means of connected elementary
units of simple geometry: 2D spheres for instance. As a starting point of this work,
we aim to develop a model for self-propelled 2D spheres that connect and remain
together when they collide. We then study the type of geometrical structures that
can be obtained at equilibrium with such a recruitment process.
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11 Contributions of the work
11.1 On the microscopic model for Adipose Tissue
The model we developed on adipose tissue morphogenesis is the fruit of a close
collaboration with a team of biologists from the StromaLab and a team of image
specialists from the Institute of Advanced Technologies of Toulouse. We first built
a biologically relevant individual based model describing the self-organization of
cells and extra cellular matrix fiber elements. The originality of our work lies in
the hypothesis that this self-organization can be reproduced by only considering
simple mechanical interactions between a reduced number of agents. We conducted
an in-depth quantitative analysis of the experimental and numerical data to test
several hypothesis on the emergence of lobule-like structures of cells in the adipose
tissue. Thanks to an image processing method we developed for the biological
images and appropriate quantitative descriptors of the fiber and cell structures,
we show a good correspondence between the biological and numerical structures.
This model shows that the self-organization of agents of adipose tissues can be the
result of simple mechanical interactions involving a reduced number of agents and
biological phenomena.

On a biological viewpoint, this work is the first attempt to understand the emer-
gence of the lobular structure of the adipose tissue by interfacing a mathematical
model and experimental results. It suggested that, surprisingly, the appearance of
lobule-like structures of cells could be anterior to vasculogenesis in adipose tissue
morphogenesis.

On a mathematical viewpoint, this work shows that complex geometrical struc-
tures such as fiber networks can be modeled as sets of connected elementary units,
which connections are seen as constraints through the use of functionals. This
novelty has been used to build other types of models, such as (i) a model for
epithelial tissue formation, in which the complex geometry of epithelial cells is
described by a set of connected spheres (work in progress), and (ii) a model for
self-organization of vascularization from a porous media flow, where the vascular
network is modeled as a set of elementary connected segments (work in progress).
These works are presented in Chap V.

11.2 On the derivation of a macroscopic model for a com-
plex fiber network

The second part of this work consists in the derivation of a continuous model from
the IBM proposed in the first part. The challenge is to obtain a macroscopic
description of a complex fiber network composed of a huge number of individual
fibers which can link/unlink together and interact through local interactions. We
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successfully derive a system of two kinetic equations: one for the evolution of the
individual fiber distribution function (which is linked to the probability of finding
a fiber around a given point of the domain) and the second for the two particle
distribution function (linked to the probability of finding a pair of fibers linked
in a given configuration). Without any supplementary hypothesis, we obtained a
closed problem for these two distribution functions. Thanks to newly developed
generalized collision invariant technique because of the lack of conservation equa-
tion (see [23]), we were able to formally obtain the large scale limit in space and
time in a regime of fast linking/unlinking of fibers. Under this regime, we obtain a
system of two equations: a classical continuity equation for the fiber density and a
non linear equation for the fiber mean orientation. For the obtained macroscopic
model, analytical studies remain open. We thus focus on the numerical simula-
tion of the macroscopic model and we show a good correspondence between the
simulations of the macroscopic model and the microscopic one.

11.3 Macroscopic model for linked fibers with alignment
interactions: existence theory and numerical simula-
tions

In this chapter, we aimed to provide a first theoretical and numerical study of the
macroscopic model of chapter II. We first performed an analytic and numerical
study of the macroscopic equation in the case of a homogeneous fiber density. Un-
der some regularity assumptions for the external fiber rotation potential, we were
able to prove existence of solutions to the equation for the fiber mean local orien-
tations. Numerical simulations of the macroscopic model had interesting features
such as the appearance of a buckling phenomenon which highlights the physical
properties of the macroscopic fiber network.

We then performed a first numerical comparison between the macroscopic
model and the underlying IBM. We showed that the distribution of fiber mean
local orientation of the microscopic model were in good agreement with the pre-
dictions of the macroscopic model. In particular, we were able to estimate numer-
ically the order parameter in the individual based model. However, because of the
computational cost of the particle simulations, the simulations of the microscopic
model were still far from the kinetic regime with the numerical parameters of the
microscopic model. This led to a poor quantitative correspondence between the
microscopic and macroscopic values of the order parameter. However, we showed
that an adapted regime of the macroscopic model enabled the comparison between
the profiles of the solutions.
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11.4 On the study of the influence of density constraints
in a model for tumor growth

In order to understand the role of cell-cell non overlapping interactions in the
propagation properties of a growing mass of cells, we introduced the cell dynamics
used to build the model of Chap I in a model for tumor growth (Chap. IV). The
microscopic dynamics showed interesting features such as traveling wave solutions
that were not predicted by the derived macroscopic model. This was due to the fact
Dirac masses are unstable for the macroscopic equation. We proposed a modified
version of the macroscopic model which took into account congestion features for
the cell density and we were able to show a good correspondence between the
macroscopic model and the individual based model.

12 Results
12.1 Chap. I: Individual Based model for adipose tissues
In this chapter, we introduce a model for adipose tissue morphogenesis. The
experiments show that at homeostasis, adipose tissues are composed of adipocytes
grouped into lobule-like structures surrounded by an aligned fiber network [1]. We
build an IBM starting from these observations. We consider that the principal
agents involved in this self-organization are the adipocytes - reprensented as 2D
spheres that cannot overlap- and the fibers - modeled as sets of interconnected
segments of fixed length-. We introduce the following set of heuristic rules: (i)
cells and fibers are supposed to interact through a mechanical repulsion potential
Wpot. (ii) linked fibers are supposed to be subjected to a potential torque at their
junction which forces them to align. The action of the torque is modeled as an
energy Walign. We introduce the following biological features: (a) The connections
between fiber pairs are supposed to be dynamical in time, i.e the linking and
unlinking of fibers are supposed to follow Poisson processes of chosen frequencies.
(b) Stem cell differentiation is modeled through the appearance of new cells in the
domain, either random in space or biased by the local density of existing cells.
This process is supposed to be random in time. (c) Cell apoptosis is neglected and
we only consider fat storage by a regular volumic growth of cells.

The underlying physical principle in our model consists in considering that at
each time, the system is at mechanical equilibrium, i.e cell and fiber positions and
fiber orientation angles solve:

(X, Y, θ) = argmin W (X1, Y1, θ1)
X1 |Φ(X1)≤0,(Y1,θ1) | Ψ(Y1,θ1)=0

, (12.18)

where (X, Y, θ) is the set of the position vectors X = {Xi ∈ R2 1 ≤ i ≤ N} of the
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N cells, the position vectors Y = {Yf ∈ R2 1 ≤ f ≤ Nf} of the Nf fiber centers,
and the fiber orientation angles θ = {θf ∈ [−π

2 ,
π
2 ) 1 ≤ f ≤ Nf} of the Nf fibers.

The total free energy W (X, Y, θ) of the system includes both mechanical energy
functions associated to (i) and (ii) and reads:

W (X, Y, θ) = Wpot(X, Y, θ) +Walign(Y, θ). (12.19)

Finally, Φ(X) and Ψ(Y, θ) are the vectors of the cell-cell non overlapping inequality
constraints and equality constraint for the maintain of fiber links respectively:
Φ(X) = {Φij(X) , 1 ≤ i < j ≤ N}, where Φij a functional such that Φij(X) > 0
if cells i and j are overlapping. For fiber links, Ψ(Y, θ) = {~Vi(k)j(k)(Y, θ) , 1 ≤ k ≤
K}, where K is the total number of fiber links and ~Vi(k)j(k) is the vector joining
the joint positions on fibers of the linked pair (i(k), j(k)) associated to link k (note
that this vector must remain 0 to model the maintain of fiber links, see Fig. 9).

Figure 9: Intersecting linked fibers. A. Situation at linking time. B. Restoring
potential Vij after motion of the fibers.

The Lagrangian L(X, Y, θ, λ, µ) of the system depends upon cell and fiber po-
sitions, fiber orientation angles θ and Lagrangian multipliers λ and µ associated to
the inequality constraints of cell-cell no overlapping and to the equality constraints
of maintain of fiber links respectively. Its expression then reads:

L(X, Y, θ, λ, µ) = W (X, Y, θ)+ < λ,Φ > + < µ,Ψ >,

where < . > denotes the scalar product. The minimization problem (12.18) is then
solved at each discrete time using an Uzawa algorithm.
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The evolution of the system between discrete times tn and tn+1 = tn+∆t reads:

1. Cell growth: for all i ∈ [1, N ]:
R3
i (tn+1/2) = R3

i (tn) +Kg(1 + ηρg)
where η a random number and Kg, ρg two model parameters.
2. Creation of new cells: Poisson process of frequency νe in time.

Probability of inseminating at point X:
P(X,R) = χα,

where χ is the local cell density, α a model parameter
3. Fiber linking/unlinking: creation and removal of fiber cross-links

with Poisson processes of frequencies νf and νd

4. Cell and fiber motion:
For initial configuration (Xn+1/2, Y n+1/2, θn+1/2)
find (Xn+1, Y n+1, θn+1) such that

(Xn+1, Y n+1, θn+1) = argmin W (X1, Y1, θ1)
X1 |Φ(X1)≤0,(Y1,θ1) | Ψ(Y1,θ1)=0

.

We then define a set of statistical quantifiers to describe the cell and fiber
structures obtained at equilibrium. To this aim, a cell cluster is defined as a
set of cells almost in contact and we compute the total number of cell clusters,
their averaged elongation and the standard deviation of their shape anisotropy
direction. Fiber clusters are defined as sets of neighboring quasi-aligned fibers,
and we measure the number of fiber clusters, their elongation and their mean
alignment. We then perform a statistical analysis by averaging the values of these
quantifiers over numerous simulations and represent them as functions of the model
parameters.

In order to compare the numerical simulations with the experimental data, we
developed segmentation techniques on the biological images for (a) cell detection
and (b) cell cluster detection. Adipocytes and lobules only were visualized in
biological images at hand, therefore the statistical quantifiers for the cell structures
only were accessible from biological images.

12.2 Chap. II: Macroscopic model for fibers interacting
through alignment interactions

In this chapter, we are interested in the large-scale dynamics of one part of the
microscopic model of chapter I. To simplify the model, we focus on the modeling
of the fiber network only. The presence of the cells in the medium is reduced to an
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external potential Wext(Y, θ) which depends on fiber positions and orientation an-
gles. We are thus interested in the properties of a fiber network composed of fiber
elements of fixed length which have the ability to connect together, disconnect,
and are subjected to mechanical interactions. We also incorporate random fiber
motion which may occur in association with the movements of the tissue through
the use of an entropy term Wnoise(Y, θ). Note that the derivation of macroscopic
equations needs a continuous description of the agent’s motion and that the mini-
mization procedure (12.18) is discrete in time in the microscopic model. Therefore,
we consider a gradient descent for a quadratic penalization of the minimization
problem (12.18). To this aim, the functional Ψ(Y, θ) for the equality constraints of
maintain of fiber links is incorporated in the total free-energy of the system such
that:

W (Y, θ) = Wext(Y, θ) +Walign(Y, θ) +Wnoise(Y, θ) + κ

2 |Ψ(Y, θ)|2,

where κ is the penalization factor. Fiber motion and rotation is then supposed to
be in the steepest descent of the gradient of this energy:

dY

dt
= −µ∇X

(
Wext +Walign +Wlinks +Wnoise

)
(12.20)

dθ

dt
= −λ∂θ

(
Wext +Walign +Wlinks +Wnoise

)
. (12.21)

where µ and λ are mobility coefficients.
To derive a macroscopic model from this microscopic model, we use the kinetic

equation associated with this particle dynamics. To this aim, we define the one-
particle distribution function f(x, θ) describing the N individual fibers, and the
two particle distribution function g(x1, θ1, `1, x2, θ2, `2) describing the K fiber links:

fN(x, θ, t) = 1
N

N∑
i=1

δ(Xi(t),θi(t))(x, θ),

gK(x1, θ1, `1, x2, θ2, `2, t) = 1
2K

K∑
k=1

δ(Xi(k),θi(k),`
k
i(k),Xj(k),θj(k),`

k
j(k))

(x1, θ1, `1, x2, θ2, `2)

+ δ(Xj(k),θj(k),`
k
j(k),Xi(k),θi(k),`

k
i(k))

(x1, θ1, `1, x2, θ2, `2),

where δx(y) denotes the dirac function at x, i.e the distribution acting on test
functions φ(y) such that < δx(y), φ(y) >= φ(x). By a simple closure relation, we
successfully obtain the formal limit of a large number of individual fibers and links
and prove the following theorem:
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Theorem 12.1. The formal limit of Eqs. (12.20), (12.21) for K,N →∞, K
N
→ ξ,

where ξ > 0 is a fixed parameter reads:

df

dt
− µ

(
∇x.((∇xU)f) + ξ∇x.F1 + d∆xf

)
− λ

(
∂θ((∂θU)f) + ξ∂θF2 + d∂2

θf

)
= 0,

(12.22)
and

dg

dt
− µ

[
∇x1 .

(
g∇xU(x1, θ1) + ξ

g

f(x1, θ1)F1(x1, θ1) + d
g

f(x1, θ1)∇xf(x1, θ1)
)

+∇x2 .

(
g∇xU(x2, θ2) + ξ

g

f(x2, θ2)F1(x2, θ2) + d
g

f(x2, θ2)∇xf(x2, θ2))
)]

−λ
[
∂θ1

(
g∂θU(x1, θ1) + ξ

g

f(x1, θ1)F2(x1, θ1) + d
g

f(x1, θ1)∂θf(x1, θ1)
)

+ ∂θ2

(
g∂θU(x2, θ2) + ξ

g

f(x2, θ2)F2(x2, θ2) + d
g

f(x2, θ2)∂θf(x2, θ2)
)]

= S(g),

(12.23)

where

F1(x1, θ1) =
∫

(g∇x1V )(x1, θ1, `1, x2, θ2, `2)d`1d`2
dθ2

π
dx2,

F2(x1, θ1) =
∫ (

g(∂θ1V + ∂θ1b)
)
(x1, θ1, `1, x2, θ2, `2)d`1d`2

dθ2

π
dx2.

(12.24)

Here, S(g) describes the dynamics of creation/deletion of fiber links and reads:

S(g) = νff(x1, θ1)f(x2, θ2)δ¯̀(x1,θ1,x2,θ2)(`1)δ¯̀(x2,θ2,x1,θ1)(`2)− νdg, (12.25)

The main novelty of this kinetic equation is that it is a simple way of keeping track
of the two-particle interactions. These pair of interactions can be seen as a way
of describing a random graph of the links of the fibers. Indeed, as the links are
located on the fibers, they are convected and follow the motion of the fibers. At
the same time, they constrain the linked fibers to move together, so they directly
impact their motion. The restoring potential generated by the maintain of the
links, V , is expressed as non local forces F1 and F2 in Eqs. (12.22),(12.23). The
second and fifth terms describe transport in physical and orientational spaces due
to the external potential U , while the fourth and seventh terms are diffusion terms
of amplitude λd or µd which represent the random motion of the fibers. The
kinetic counterpart of the alignment force between linked fibers b is comprised in
the force F2 and only acts on the orientation of the fibers. The right hand side S(g)
of equation describes the Poisson processes of linking/unlinking at frequencies νf
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and νd, respectively. The transition between the particle dynamics to the kinetic
equation is only formal.

Once we have the kinetic equation Eqs. (12.22)-(12.23), we use an hydrodynam-
ics scaling in order to derive a macroscopic model. More precisely, we introduce
the new macroscopic variables:

t̃ = εt , x̃ =
√
εx,

and show that in a regime of fast linking/unlinking, the two-particle distribution
function gε can be written as a product of two one particle distributions f ε:

gε(x1, θ1, `1, x2, θ2, `2) = νf
νd
f ε(x1, θ1)f ε(x2, θ2)δ¯̀(x1,θ1,x2,θ2)(`1)δ¯̀(x2,θ2,x1,θ1)(`2)+O(ε2).

This closure relation simplifies system (12.22) and we are able to obtain the large
scale limit ε→ 0. We show that the equilibrium solutions of the kinetic equation
obtained are of form

f(x, θ) = ρ(x)Mθ0(x)(θ), Mθ0(x)(θ) = 1
Z
e−r cos 2(θ−θ0(x))

where r is a model parameter, Z a normalization function such that f is a density
distribution, ρ(x) is the local density of fibers and θ0(x) their local orientation
angle. By the use of the concept of generalized collision invariant ([23]), we obtain
the macroscopic limit of our kinetic equation. When ε goes to 0, we obtain a
system of two equations, one for the fiber density ρ:

∂tρ−∇x.(∇xU
0ρ)− d∆xρ = 0, (12.26)

where we have supposed U(x, θ) = U0(x)+U1(θ), where U0 is the external potential
acting on the fiber positions and U1(θ) acting on fiber orientations. The evolution
equation for the fiber mean direction angle θ0(x) reads:

ρ∂tθ0 − ρ∇xU
0.∇xθ0 − 2α2∇xρ.∇xθ0 − α2ρ∆xθ0

+α3(ρ∇2
xθ0 +∇xθ0 ⊗∇xρ+∇xρ⊗∇xθ0) : [ω0 ⊗ ω0 − ω⊥0 ⊗ ω⊥0 ]

+
(
2ρα3∇xθ0 ⊗∇xθ0 − α4∇2

xρ
)

: [ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0] + α5ρ < ∂θU
1 >= 0,
(12.27)

where ω0 = (cos θ0, sin θ0) denotes the 2D directional vector of norm 1 associated

to the angle θ0, ω⊥0 denotes its orthogonal vector and < h >=
π/2∫
−π/2

h(θ)Mθ0(θ)dθ
π

for any function h of θ ∈ [−π
2 ,

π
2 ). The coefficients α1, α2, α3, α4, α5 are fully

determined by the model parameters.
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12.3 Chap III: Macroscopic model for linked fibers with
alignment interactions: existence theory and numer-
ical simulations

In this chapter, we aim at validating numerically the macroscopic model developed
in the previous chapter by comparing its solutions to the ones obtained with the
microscopic model. We first aim at comparing the IBM of chap I to its modified
version which serves as starting point of Chap II. We show the correspondence
between the two formulations in a well chosen regime. To perform the compar-
ison between the particle dynamics and the macroscopic model, we must better
understand the macroscopic model. To simplify its analysis, we study the case
of a homogeneous fiber distribution ρ(x) = ρ0 for ρ0 > 0 a constant, and take
an interest in the stationary solutions. We show that in this case, the stationary
mean local orientation of fibers θ0(x) solves a quasi linear elliptic equation that is
solvable under a structural condition for the external potential.
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Figure 10: The distribution of fiber local mean orientation angles near the center
of the domain in x averaged over 20 simulations (black line), compared with its
theoretical distribution (red line).

The numerical simulations of the macroscopic model show a buckling phe-
nomenon which enables first conclusions on the physical properties of the macro-
scopic fiber network. Then, we aim to compare numerically the macroscopic model
to the underlying IBM. We show that the distribution of fiber mean local orienta-
tion of the microscopic model are in good agreement with the predictions of the
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macroscopic model and we are able to compute the order parameter of the micro-
scopic model (see Fig. 10). The computational cost of the IBM does not allow us
to perform simulations of the microscopic model under the kinetic regime, which
leads to different solutions for the microscopic and macroscopic models for the
same set of parameters. However, we show that for each set of parameters for the
microscopic model, there exist a regime in which the macroscopic model has the
same features as its microscopic version.

12.4 Chap IV. Tumor growth model
In this chapter, we aim at understanding the role of density constraints in the
propagation properties of a growing mass of cells. Cells are modeled as 2D spheres
of center Xi ∈ R2 and of radius R > 0. In order to model short-range interactions
among particles, we introduce an interaction function φ ≥ 0 and consider the
following dynamics:

dxi
dt

= −
N∑
j=1

φij(xi − xj), with φij = φ(xi − xj2R ), (12.28)

where i and j are the indexes of the cells, and:

φ(r) =
|1− rα|, if 0 ≤ r ≤ 1

0 otherwise,

for α = 1 or −1. Note that repulsion is only active when two particles are at
distance smaller than 2R.

Using classical arguments of kinetic theory, we then obtain the following kinetic
model related to (12.28):

∂tρ+∇x · (G[ρ]ρ) = 0, (12.29)

with
G[ρ](x) = −

∫
y∈R2

φ

(∣∣∣∣x− y2R

∣∣∣∣2
)

(y − x)ρ(y) dy. (12.30)

In the asymptotic limit R → 0, we show that the model reduces to the porous
media equation:

∂tρ = αR∇x ·
(
ρ∇xρ

)
, (12.31)

with
αR = π(2R)4

∫
r≥0

φ(|r|2)r3dr. (12.32)

The numerical simulations show a spreading of the particles, whereas the micro-
scopic dynamics predicts compact-supported stationary solutions. We numerically
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show that the difference between the two solutions can be explained by the fact
that Dirac mass are unstable solutions of the macroscopic model.

In order to obtain a better description of the microscopic model at a macro-
scopic scale, we propose a modified version of the interaction kernel of the kinetic
model. For this purpose, we consider that the repulsion is active only when the
density of particles is above a threshold ρmax and we introduce the function W [ρ]:

W [ρ] = −2
∫
|x−y|<2R

(ρ− ρmax)+(y − x)dy.

The evolution equation for the particle density ρ then reads:

∂tρ+∇x.(W [ρ]ρ) = 0.

By this mean, repulsion is only active in a disc where the density is above the
threshold ρmax. We show that in the limit R→ 0, we obtain the following macro-
scopic equation:

∂tρ = β(R)∇x.(1ρ(x)≥ρmaxρ∇xρ),
where β(R) is a coefficient depending on the size of the particles and 1ρ(x)≥ρmax the
function equals to 1 if ρ ≤ ρmax, 0 otherwise. By this mean, we obtain a non linear
diffusion equation the diffusion being active only where the cell density exceeds
a given threshold. The numerical simulations show the good agreement with the
solutions of this modified macroscopic model with the IBM. When adding a source
term, we show analogous wave solutions featured by both models.

12.5 Chap V. Extensions of the works
This chapter is devoted to the extensions of our work. We present two models
that are built using the concepts we developed for our individual based model
presented in Chap I. These two models are preliminary works. The first one aims
at modeling the self-organization of vascularization, the second one is a model for
ballistic aggregation.

12.5.1 A model for vasculogenesis

In this section, we present the main features of a model developed with B. Amard
and P. Degond for vasculogenesis. In this model, four major actors are considered:
the capillaries, the blood flow, the oxygen and the tissue. The K capillaries are
modeled as tubes of fixed length and are described by a (two-dimensional) position
vector Xk = (xk, yk) ∈ R2 of their center and a two-dimensional orientation vector
ωk = (cos θk, sin θk) ∈ S1, with an orientation angle θk defined modulo π to model
the isotropy of the blood flow. Each capillary unit is supposed to generate an
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elementary porosity matrix and an elementary diffusion matrix which participate
into the global porosity and diffusion properties of the medium. In order to model
appearance and destruction of capillaries according to the needs of the tissue, cap-
illary units are created and deleted with (random) Poisson processes of frequencies
νc and νr depending on the gradients of the oxygen concentration.

The global porosity matrix K(X) of the medium computed at point X =
(x, y) ∈ R2 (resp. diffusion matrix D(X)) is then defined as the sum of all the
elementary porosity matrices (resp. elementary diffusion matrices) generated by
the capillary network and a porosity matrix of a homogeneous medium:

K(X) = khI2 +
∑

k s.t.||Xk−X||≤R
κ (ωk ⊗ ωk),

D(X) = dhI2 +
∑

k s.t.||Xk−X||≤R
d (ωk ⊗ ωk),

with kh, dh, κ, d and R real positive constants and I2 the identity matrix of size 2.
The blood flow u is then supposed to be described by Darcy’s law:u = −K∇p

−div(K∇p) = 0
(12.33)

where ∇p denotes the blood pressure gradient vector. The oxygen is modeled by
its density ρ. Oxygen motion is supposed to be driven by two different phenomena:
(i) convection by the blood, or (ii) diffusion through the tissue. Moreover, oxygen
is supposed to be consumed by the tissue. In this first work, the consumption does
not depend on time neither space. These three hypothesis lead to a convection-
diffusion equation with a source term:

∂tρ+∇.(ρu)−∇.(ρD∇ρ) = −βρ, (12.34)

where β is a real positive parameter modeling oxygen consumption and D is the
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diffusion matrix of the medium. The full system writes:

1. Blood flowu = −K∇p
div(u) = 0

2. Oxygen convection/diffusion/consumption{
∂tρ+∇.(ρu)−∇.(ρD∇ρ) = −βρ

3. Capillary network: creation and removal with Poisson ’s processes of frequencies νc and νr

4. Tissue (porosity matrix and diffusion matrix)
K(X) = khI2 +

∑
k s.t.||Xk−X||≤R

κ (ωk ⊗ ωk)

D(X) = dhI2 +
∑

k s.t.||Xk−X||≤R
d (ωk ⊗ ωk)

First numerical simulations of this model will be shown.

12.5.2 A model for ballistic aggregation

In this chapter, we present the works in progress with P. Degond and M. Ferreira
on the modeling of epithelial tissue formation. Epithelial cells are bound together
in sheets of tissue called epithelia. These sheets are held together through several
types of interactions, including tight junctions, adherens, desmosomes, and gap
junctions. Several types of epithelia can be found in real systems. They are defined
by the shape and function of its cells. For instance, squamous cells (belonging to
the squamous epithelium) have the appearance of thin, flat plates while columnar
epithelial cells are elongated and column-shaped. The goal of the project is to
build a mathematical model which can take into account different geometries for
the cells. The idea is to model a cell as a set of connected elementary units of
simple geometry such as 2D spheres.

As a starting point, a model for self-propelled particle which attach together
throughout motion is being developed. In this model, cells move with a constant
velocity in a given direction as long as they don’t collide. When two cells collide,
they link together and remain attached during motion afterwards: they keep mov-
ing together with the same velocity and in the same direction. In order to avoid
cell overlapping, a minimization method is used during each collision. By this
mean, the colliding cells will rearrange to be in a non overlapping configuration
which minimizes their distance. The full system can be written:
• First step: free motion.

∀i = 1 . . . N, X̂n
i = Xn−1

i + δtV
n−1
i .
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• Second step: Readjustment by minimization
Define, for (Xi, Xj) ∈ A× A,

φ(Xi, Xj) = (Ri +Rj + εmin{Ri, Rj})2 − d(Xi, Xj)2

and S the set of the pairs of quasi-touching spheres :

S = {(i, j) ∈ {1 . . . N} | φ(Xi, Xj) ≥ 0} .

Consider the following potential :

W (X1, ..., XN) = 1
2

∑
(i,j)∈S0

d(Xi, Xj)2;

the adjustment is then made by solving locally the minimization problem

(Xn
1 , ..., X

n
N) = argmin

φ0(Xi,Xj)<0, i,j=1,...,N
W (X1, ..., XN),

starting with (X̂n
1 , ..., X̂

n
N).

• Third step: Actualization of the velocity;

∀k = 1, ...,Mn, ∀i ∈ Cn
k , V n

i =
∑
j∈Cn

k
V n−1
j

card(Cn
k ) ,

where Cn
1 , ..., C

n
Mn

denote the different cell clusters.
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Chapter 1

Simple mechanical cues could
explain adipose tissue morphology

This chapter has been written in collaboration with F. Delebecque, P. Degond, A.
Lorsignol, C. Barreau, J. Rouquettes, X. Descombes and L. Casteilla. It has been
submitted to the journal PloS computational Biology.

Abstract: The mechanisms by which organs acquire their functional struc-
ture and realize its maintenance (or homeostasis) over time are still largely un-
known. In this paper, we investigate this question on adipose tissue. Adipose tissue
can represent 20 to 50% of the body weight. Its investigation is key to overcome
a large array of metabolic disorders that heavily strike populations worldwide.
Adipose tissue consists of lobular clusters of adipocytes surrounded by an orga-
nized collagen fiber network. By supplying substrates needed for adipogenesis,
vasculature was believed to induce the regroupment of adipocytes near capillary
extremities. This paper shows that the emergence of these structures could be ex-
plained by simple mechanical interactions between the adipocytes and the collagen
fibers. Our assumption is that the fiber network resists the pressure induced by
the growing adipocytes and forces them to regroup into clusters. Reciprocally, cell
clusters force the fibers to merge into a well-organized network. We validate this
hypothesis by means of a two-dimensional Individual Based Model (IBM) of inter-
acting adipocytes and extra-cellular-matrix fiber elements. The model produces
structures that compare quantitatively well to the experimental observations. Our
model seems to indicate that cell clusters could spontaneously emerge as a re-
sult of simple mechanical interactions between cells and fibers and surprisingly,
vasculature is not directly needed for these structures to emerge.
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1 Significance statement
Because of the key role of adipose tissue in the energy homeostasis and associ-
ated diseases, there is a great deal of interest in understanding the biology of this
tissue. Very few is known about the key to understanding its structuration as
lobules. We postulate that lobule emergence is the result of a self-organization
process driven by bidirectional mechanical interactions between adipocytes and
fibers. We test this hypothesis by means of a 2D individual based model of inter-
acting adipocytes and fiber elements. Indeed, our model produces structures that
compare quantitatively well to the experimental observations. This clearly shows
that cell clusters of adipose tissue could spontaneously emerge as a result of simple
mechanical interactions, with no direct involvement of vasculature.

2 Introduction
White adipose tissue (WAT) is the main energy store of the organism. It is inter-
connected with all physiological functions via its endocrine functions. It plays a
key role in the energy homeostasis and weight of the organism. It is a highly plastic
tissue composed of differentiated adipocytes that are able to store and release fatty
acids as well as to secrete numerous cytokines and hormones [1]. Mature adipocytes
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represent only 40 to 60% of the whole cell population. The other cells form a het-
erogeneous population named stroma-vascular fraction (SVF). Adipocyte progen-
itors are present in the SVF throughout adult life [2]. They can proliferate and/or
be recruited according to physiological or pathological situations, participate to
the turnover of adipocytes and are also believed to be supporting cells. Because of
their important role and due to the explosive worldwide development of obesity,
the molecular pathways driving adipocyte differentiation are now well investigated
and described [3]. In contrast, the global organization at the tissue scale is poorly
understood. Since Wassermann’s work in 1960 [4], very few investigations have
been performed at this scale. These seminal investigations revealed that adipose
tissue is constituted of distinct lobules containing clusters of adipocytes. More-
over, observing its development, Wassermann described the emergence of mature
WAT from primitive structures constituted of an unstructured fiber network con-
taining endothelial cells and fibroblast-like cells. The latter are believed to be
preadipocytes. In adult adipose tissue, lobules housing adipocytes are separated
from each other by well-structured separations (or septa) composed of extracel-
lular matrix (ECM) [5]. Thereafter the number of lobular unit seems to remain
approximately constant. In excessive development of adipose tissue occurring dur-
ing obesity, increased fibrosis (formation of excess fibrous tissue) is observed and
many reports associate these changes with adipocyte dysfunctions [6, 7]. This
suggests that a proper maintenance of adipose tissue architecture is critical for its
normal functionality.

Because the global architecture of adipose tissue and its organization into lob-
ules are robust throughout adult life and seem fundamental elements of adipose
tissue homeostasis, modeling the process of lobule emergence will greatly improve
our understanding of adipose tissue biology and plasticity in physiological or patho-
logical conditions. Numerous models of tissue morphogenesis can be found in the
literature, describing the emergence of self-organization of cells and fibers. Due to
their simplicity and flexibility, the most widely used models are Individual Based
Models (IBM) (see [8], [9] and references therein). They describe the behavior of
each agent (e.g. a cell or a fiber element) and its interactions with the surrounding
agents over time. Due to the high computational cost of IBM, mean-field kinetic or
continuous models, which are more efficient to describe the large scales, are often
preferred. All these models include one or several of the following interactions:
(i) cell/cell, (ii) cell-fiber and (iii) fiber-fiber interactions. Models of interacting
cells moving in ECM-free media such as [10] focus on interactions of type (i).
Based on the mechanisms reviewed in [34], a wide variety of models incorporat-
ing interactions of type (ii) have been proposed such as: (a) mechanical models
[12], (b) chemotaxis-type models ([13, 14] and references therein), where cell mo-
tion is driven by chemical gradients or (c) models of contact guidance [15] (see
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[16, 17, 18]) where the ECM gives directional information for cell motion. How-
ever, how the processes are coordinated to produce directed motion is not well
understood. Fiber-fiber interactions have been explored in [19], where a model
of a fibrous network composed of cross-linked fiber elements is proposed. Other
authors treat the fibrous network as a continuum, such as a porous medium [20]
or an active gel [21] for instance. However, the literature so far provides little
clues on the mechanisms underlying contact guidance or fiber self-organization.
In the present paper, we demonstrate that directionally organized cell and fiber
structures can emerge without appealing to contact guidance or fiber directional
interactions, as a result of simple mechanical interactions between the cells and the
fiber network. Our model is of more microscopic nature than previously proposed
mechanical models [12, 22] and aims at describing the emergence of the lobular
structures observed in adipose tissue.

The scenario is that, due to the fiber resisting the pressure induced by the grow-
ing adipocytes, the latter are forced to regroup into clusters. Adipocyte clusters
in turn force the fibers to merge into a well-organized network. To validate this
scenario, we developed a two-dimensional IBM modelling adipocytes interacting
with ECM fiber elements. The model and experiment data showed strikingly sim-
ilar lobule-like structures and revealed that vasculature was not needed for lobular
self-organization to emerge.

3 Results
Experiments and image processing. Fig. 1.11 shows part of a sub-cutaneous
adipose tissue from an adult mouse. The adipocytes were visualized by immuno-
staining of perilipin, a protein that surrounds the unilocular lipid droplets. In
Fig. 1.11A, the ECM fiber network appears in black as a background. This picture
clearly reveals the organization of the adipose tissue in lobules. We implemented
classical image processing methods to extract the centers and radii of the cells (Fig.
1.11B) and the different lobules (Fig. 1.11C) (see SI for details). The quality of
the cell and lobule segmentation methods were carefully checked.
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Figure 1.11: (A) 2D Image of a part of mouse sub-cutaneous adipose tissue. Lipid
droplets were immunostained for perilipin (green). ECM between adipocyte clus-
ters appears in black. (B) Magnification of the part enclosed by the red line
on image (A), showing the result of cell detection. Cells appear as red circles.
(C) Image (A) after lobule detection. Detected lobules have been distinguished
by different colors.

Description of the model. We postulated that, in WAT, the agents contribut-
ing the most to mechanical balance were the fibers and the adipocytes. The fibers
were modelled as straight segments of fixed and uniform length described by their
centers and their directional unit vectors. The cells were represented as 2D spheres
described by their centers and radii. At any given time, the two sets of agents were
supposed to realize the minimum of the mechanical energy of the system (described
below). We incorporated the following biological features : (i) Pre-adipocyte differ-
entiation: Immature cells are much smaller than adipocytes. So, we supposed that
they had negligible impact on the mechanical equilibrium and we did not incorpo-
rate them in the model. The transformation of an immature cell into an adipocyte
was modelled as the creation (or “insemination”) of a new adipocyte. All new
adipocytes were inseminated with the same small radius. New adipocytes were
inseminated at random times following a Poisson process. The location of the in-
semination was also random with either uniform probability in the domain or with
a bias resulting in a higher insemination probability at locations where existing
adipocytes were already present. In this last case, the existing cell density in a disk
of radius R around the randomly chosen insemination point X was computed and
normalized by the maximal possible density (corresponding to adipocytes in con-
tact with each other), resulting in a dimensionless parameter χ comprised between
0 and 1. Then, the insemination probability at X was taken proportional to χα,
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with biasing parameter α > 0. This modelled a quorum-sensing process where a
pre-adipocyte sensed the adipocyte density χ up to a sensing distance R and made
a decision whether to differentiate into an adipocyte according to the value of the
quorum-sensing parameter χα (the larger α, the larger the local adipocyte density
needed to be to trigger differentiation). (ii) Adipocyte growth: The ability to store
and release energy according to the needs of the organism was modelled through
the regular growth of the cells. Therefore, thanks to (i) and (ii), we incorporated
both hyperplasia (cell number increase) and hypertrophy (cell size increase). As
the turnover of adipocytes is small and not related to adipose tissue morphology
[23], we neglected the apoptosis of adipose cells. We assumed that the volume of
each adipocyte reached a maximal value beyond which it stayed constant. (iii)
Adipocyte incompressibility and non-overlapping: Adipocytes are reservoirs of fat,
which is an incompressible liquid, and they cannot overlap. Therefore, we assumed
that the radius of each disk was unaffected by whatever mechanical efforts were
exerted onto it and that two neighboring disks could not overlap. (iv) Fiber resis-
tance to adipocyte pressure: To model adipocyte confinement by fiber elements, we
supposed that fibers and adipocytes repelled each other. For the sake of simplic-
ity we assumed that the fiber-cell repulsion potential iso-lines were ellipses with
focii at the two ends of the fiber segment and that the potential vanished beyond
a certain distance from the fiber. These features modelled the anisotropy of the
fiber confinement force and the fact that it is a contact force. (v) Fiber growth and
elongation: Fiber elongation [24] was modelled by giving the possibility for fibers
to attach to each other. Pairs of unlinked intersecting fibers could link to each
other at random times following a Poisson process. Similarly, pairs of linked fibers
could unlink at random times following a Poisson process in order to model fiber
breakage due to ECM remodelling processes. The linking and unlinking frequen-
cies were referred to as νf and νd respectively, and the parameter χ` = νf

νf+νd
, where

χ` ∈ [0, 1] represented a measure of the fraction of linked fibers among the pairs of
intersecting fibers. (vi) Fiber alignment and resistance to bending: To model fiber
resistance to bending, linked fibers were subjected to a potential torque at their
junction. This torque vanished when the fibers were aligned, and consequently
acted as a linked-fiber alignment mechanism. This torque was characterized by a
stiffness parameter c1 > 0 playing the role of a flexural modulus. The larger the
c1 the more rigid the fiber assembly was.
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Figure 1.12: (I): Model results with random insemination and flexural modulus
c1 = 1. First line (Figs. (I A), (I B), (I C)): for linked fiber fraction χ` = 0.35.
Second line (Figs. (I D), (I E)): for χ` = 0.1. On each line, the unlinking frequency
νd is increasing from left to right (Figs (1 A), (1 D): νd = 10−3), (Figs (1 B), (1
E): νd = 10−2), (Figs (1 C) νd = 0.2). As the unlinking frequency νd increases,
cell cluster morphology changes from compactly shaped in (I A), (I B) and (I
D) to elongatedly shaped in (I C), (I E), while fiber cluster morphology changes
from disordered in (I A) or (I D) to long and aligned in (I C). (II): Model results
with biased insemination for α = 10−3 for χ` = 0.35, c1 = 1 and increasing
values of the unlinking frequency νd from left to right (Fig. (II A): νd = 10−3

; Fig. (II B): νd = 10−2). Biased insemination does not significantly lead to
different morphologies compared with random insemination. (III): cell cluster
number NC (in green) and mean cell cluster elongation E (in black), averaged
over 10 simulations and plotted as functions of the unlinking frequency νd for
linked fiber fraction χ` = 0.1 (Fig. (III A)) and χ` = 0.35 (Fig. (III B)).The
mean cell cluster elongation E increases with νd, with two plateaus for νd ≤ 10−2

and νd ≥ 10−1 whatever χ` is. For χ` = 0.1, the cell cluster number NC is almost
independent of νd while for χ` = 0.35, NC increases after νd ≈ 10−3 and then
reaches a constant value around νd ≈ 0.05.



3 Results 65

The mechanical energy of the system included the cell-fiber interaction poten-
tials (iv) and the linked fiber-fiber alignment potential (vi). At each time step,
a minimum of this mechanical energy subject to the nonoverlapping constraint
between cells (iii) and to the linkeage constraint between linked fibers (v) was
sought. At the beginning of the next time step, new adipocytes were inseminated
(i), adipocyte radii were increased (ii) and pairs of fibers were linked/unlinked (v).
These phenomena induced disruption of the mechanical equilibrium and a mini-
mum of this new energy was again sought, and so on. The model was implemented
on a 2D square domain and boundary conditions were assumed periodic (i.e. each
agent was assumed periodically repeated beyond the boundary of the square do-
main). The numerical simulations were initialized with a randomly distributed
fiber network (according to a uniform distribution over all possible direction an-
gles or over a sub-interval of directions angles centered about a given angle θ1 and
of width 2θ2). New cells were inseminated at a constant rate until reaching a cell
volume fraction of 50%, a number consistent with the experimental observations.

Influence of the model parameters. Fig. 1.12 (I) was obtained using ran-
dom adipocytes insemination. It illustrates that the linking-unlinking dynamics
strongly influenced the morphology of the final structures. The first line of figures
(Fig. 1.12 (I A) to (I C)) corresponds to a large fraction of linked fibers χ` = 0.35
and, from left to right, to an increasing unlinking frequency νd. Larger values of
νd allow for faster remodeling of the fiber network topology. We observed that the
cell cluster morphology changed from compactly shaped (Fig. 1.12 (I A) or (I B))
to elongatedly shaped (Fig. 1.12 (I C)), while the fiber cluster morphology changed
from disordered (Fig. 1.12 (I A)) to aligned (Fig. 1.12 (I B)). Finally the fibers self-
organize into rigid long fiber threads (Fig. 1.12 (I C)). For a slow linking-unlinking
process (Fig. 1.12 (I A)), the fiber network topology was almost frozen and this
generated rigidly connected fiber structures that were too stiff to self-organize. A
faster linking-unlinking process (Fig. 1.12 (I B)) allowed for the remodeling of the
network topology and for the local alignment of the fibers thanks to the alignment
torque generated at the links. However, for a very fast linking-unlinking dynamics
(Fig. 1.12 (I C)), the aligned fiber threads were reinforced by the fast creation
of links, increasing the rigidity of the network. A preferred fiber direction locally
emerged and favored the growth of cell clusters in that particular direction, thereby
generating elongated cell clusters. The second line of figures (Fig. 1.12 (I D) and
(I E)) corresponds to a smaller fraction of linked fibers χ` = 0.1. In this case, the
fiber network was less rigid compared to the previous case. Fiber clusters were
consequently smaller, and failed to surround the cell structures, generating bigger
cell clusters. Fig. 1.12 (II) was obtained using biased insemination with α = 0.001
and the larger fraction of linked fibers χ` = 0.35. Again, the unlinking frequency
νd increases from left to right. It shows that biased insemination did not have a
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significant influence on the final cell and fiber structures (see Supplementary Infor-
mation for more details). For a well calibrated fiber linking-unlinking dynamics,
the model was able to produce lobule-like structures without the need of biased
insemination (see 1.12 (I)).

Quantitative analysis. In order to quantify cell and ECM fiber structures,
we defined a set of statistical descriptors (SQ). A cell cluster was defined as a group
of at least 5 adipocytes in contact with each other, and NC was the number of cell
clusters per 100 adipocytes. Parameter E measured the average elongation of cell
clusters. It was comprised between 0 (for disk-like cell clusters) and 1 (for cord-like
clusters). We verified that our conclusions did not depend on the chosen minimal
size (here 5) of the cell clusters. The SQ Θ measured the standard deviation of the
shape anisotropy direction of cell clusters. For this purpose, each cell cluster was
best-matched to an ellipse and the cluster shape anisotropy direction was defined
as the angle of the ellipse semi-major axis with a reference direction. Small values
of Θ indicated a preferred shape anisotropy direction of cell-clusters. We also
defined fiber cluster SQ (see SI for details)).

Identification of different morphologies For each set of model parameters,
we computed the SQ on the obtained final structures and averaged them over
10 realizations. In Fig. 1.12 (III), we plotted the mean cluster number NC (in
green) and the mean cell cluster elongation E (in black) as functions of the fiber
unlinking frequency νd for two values of the linked fiber fraction χ` = 0.1 (Fig.
1.12 (III A)) and χ` = 0.35 (Fig. 1.12 (III B)). These plots revealed an increase
of the cell cluster elongation E as the unlinking frequency νd increases, whatever
value the linked fiber fraction χ` took. We identified two plateaus of values of
E: E ≈ 0.8 for νd ≤ 10−2 and E ≈ 0.95 for νd ≥ 10−1. The corresponding
cell structures were compactly shaped (Fig. 1.12 (I A) (I B), (I D) or (I E)) or
elongatedly shaped (Fig. 1.12 (I C)) respectively. For a value of the linked fiber
fraction χ` = 0.1, no significant change in the mean cluster number NC arose
as the unlinking frequency νd increased (Fig. 1.12 (III A)). By contrast, for a
value of the linked fiber fraction χ` = 0.35, the mean cluster number NC increased
with increasing unlinking frequency νd in the range [10−3, 0.05] and then stayed
constant for larger values of νd (Fig. 1.12 (III B)). The most biologically relevant
structures, composed of well-separated lobule-like cell clusters in an organized fiber
network, were characterized by a low value of the mean elongation E and a large
value of the mean cluster number NC . From Fig. 1.12 III, we realized that the
best combination of parameters was a linked fiber fraction of χ` = 0.35 and an
unlinking frequency νd ∈ [10−2, 10−1]. For these parameters, the model produced
biologically relevant cell and fiber structures (Fig. 1.12 (I B)), without the need
for biased insemination. We refer to the SI for a discussion of the influence of the
biasing parameter α and of the role of the alignment force c1.
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Comparisons with experimental data. The image processing enabled the
computation of the SQ NC , E and Θ on the biological images, thus allowing for
a quantitative comparison between the model and the experimental results. To
compare the biological and numerical SQ, we non-dimensionalized the mean cluster
number NC and the mean elongation of cell clusters E by reference values referred
to as Nref and Eref respectively. The numerical (respectively biological) reference
values Nref , Eref were defined as the mean value of NC or E over all the numerical
(respectively biological) experiments. As biological images suggest that parts of
adipose tissue exhibit a preferred direction, we ran simulations for different initial
fiber configurations such that the initial fiber angles θinit were uniformly chosen
in the range [θ1 ± θ2]. Parameter θ1 measured the mean initial fiber direction
and θ2 was related to its standard deviation. The larger θ2, the more disordered
the initial network was (with θ2 = π as the extreme case where the fiber initial
distribution was fully isotropic). We also considered the case where the mean
fiber direction could depend on the position in the form θ1(x1, x2) = θ+

1 if x1 > 0
and θ1(x1, x2) = θ−1 if x1 < 0 where (x1, x2) are the coordinates of a point in the
computational domain and x1 = 0 corresponds to the vertical middle line. This
corresponded to the case where the initial fiber mean direction changed abruptly
from θ−1 to θ+

1 across the vertical middle line. We realized a database containing,
for each set of model parameters (νd, θ1, θ2) (or in the case of position-dependent
initial mean fiber direction, (νd, θ−1 , θ+

1 , θ2)), the SQ NC , E and Θ for 10 different
simulations. The simulations were performed with random insemination and the
other parameters were chosen to the value χ` = 0.35 and c1 = 1, according to
the previous analysis. For each biological image, we first searched the database of
numerical simulations to find the combination of parameters which minimized the
quadratic difference between the experimental SQ and the mean of the model SQ.
Then, within the 10 simulations generated for this set of parameters, we selected
the one minimizing the quadratic difference between the experimental and model
SQ.
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Figure 1.13: (A) to (C) : (I) Biological images of perilipin immunostained adipose
tissue. The white scale bar at the bottom right is for 100µm. (II) Biological images
after lobule detection. (III) Numerical simulation with parameter values offering
the best correspondence with biological images. The parameter values for each
simulation are indicated on the right. (D) Table showing the SQ computed on the
biological data and numerical simulations. The model reproduces the observed
structures qualitatively and quantitatively well. (E): image of a large portion of
adipose tissue. The white scale bar at the bottom right is for 500µm : we notice
the coexistence of similar structures as in images (A), (B) and (C) at different
locations in the tissue.

Fig. 1.13 (A) to (C) show three biological images before (I) and after (II)
lobule detection, as well as the corresponding best simulation (III) applying the
previously detailed method and the associated set of parameters νd, θ1 (or θ±1 ) and
θ2. Table (D) provides the SQ corresponding to images (A) to (C) for both the
experimental data and numerical simulations. Finally, in Fig. 1.13 (E), a larger
portion of the adipose tissue is shown (the white scale bar at the bottom right
indicates 500µm for (E) and 100µm for (A) to (C)).

The lobule segmentation (column (II)) revealed that the elongation of the lobu-
lar structures increased from (A) to (C). We notice that the value of the unlinking
frequency νd corresponding to the best numerical fit increases as well, confirming
the analysis made above. In these three cases, the lobule-like cell structures of
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the numerical simulations are similar to the ones observed in the corresponding
biological images (compare columns (II) and (III) of Fig. 1.13), and the values
of the SQ given by the model are very close to the experimental ones (see Table
(D)). These results show that the model is able to reproduce the data in a fairly
wide range of situations by simply modifying the model parameters. In real tis-
sues the organizational level varies from high to low according to the position in
the tissue. In Fig 1.13 (E), a large portion of adipose tissue is shown. It reveals
well-organized lobular structures in its upper part and more disordered structures
in its lower part. Simulation of the entire tissue using the model would be possi-
ble (although computationally intensive) by simply varying the parameters of the
model to match the variation of the organizational level of the tissue.

4 Discussion
To our knowledge, this work is the first attempt to understand the emergence of
the lobular structure of the adipose tissue by interfacing a mathematical model and
experimental results. The originality of our work lies in the assumption that adi-
pose tissue architecture results from a self-organization process principally driven
by mechanical interactions between adipocytes and the ECM. This corresponds to
a co-organization where the cell clusters and the fiber structures evolve simultane-
ously. Our mathematical model is able to reproduce the clustering of adipocytes
into lobular units surrounded by the ECM fiber network. Simply varying a few
parameters allowed us to span a large variety of morphologies. Our results sug-
gest that adipose tissue organization could be principally driven by mechanical
cues, in addition to a limited number of biologically-controlled phenomena such as
fiber-fiber chemical linking.

The structures that emerged from the mathematical model can be classified
into three types: (a) middle-sized compact cell clusters surrounded by a disor-
ganized fiber network, (b) middle-sized compact cell clusters surrounded by a
well-organized network of thick fiber threads, or (c) elongated clusters surrounded
by a network of thin and rigid fiber threads. Each type of structure corresponded
to a range of model parameters of the fiber linking-unlinking dynamics.

Structures of type (a) were obtained for a slow fiber linking-unlinking dynam-
ics. The rigidly connected fiber structures could not self-organize, leading to a
disordered fiber network. However, the system was able to produce middle sized
cell clusters of lobular shape as a result of cell-fiber repulsion. This reflected the
ability for a connected fiber network to exert a pressure on the cell structures and
confine them into separated zones. For a faster fiber linking-unlinking dynamics,
the remodeling of fiber structures was enabled, and fibers could arrange more eas-
ily into organized patterns, thanks to the torque acting on linked fibers. For a
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well chosen range of the unlinking frequency νd and of the flexural modulus c1
(see discussion of c1 in SI), the model produced biologically relevant cell and fiber
structures of type (b). Finally, structures of type (c) were observed for fast fiber
linking-unlinking dynamics. In this case, fibers easily aligned with each other and
fiber stiffness was reinforced by the links and associated torque acting on linked
fibers. This imposed local directional constraints to cell cluster growth, favor-
ing cell cluster elongation. Moreover, due to increased fiber rigidity, the fibers
failed to surround the cell structures. The model matched experimental results
qualitatively well with the most simple insemination rule, namely random cell in-
semination. This result is of major importance since it suggests that no preferred
location for differentiation of immature cells into adipocytes is required.

It is noteworthy that the global organization of the tissue can be obtained with-
out any direct involvement of vasculature. This is what is suggested by the minor
influence of biased insemination on the morphology of the obtained cell structures.
Therefore, our results suggest that the global architecture of adipose tissue would
not be primarily driven by vasculature as suggested by Wassermann’s pictures
[4] and several papers describing the key role of angiogenesis in adipogenesis [27].
However by correlating the appearance of new adipocytes to a larger concentration
of existing adipocytes, biased insemination provides an indirect way to account for
vasculature. Indeed, blood supplies the substrates required for adipogenesis and
favors the appearance of new adipocytes at the extremities of capillaries where
existing adipocytes are already present.

Other phenomena have been explored, such as random cell motion or ran-
dom fiber motion (which may occur in association with the movements of the
tissue), fiber local alignment (to model ECM reorganization by stem cells) and the
suppression of isolated cells (to model isolated cell apoptosis). These additional
phenomena led to a broad range of tissue structures. Although not necessarily
relevant for adipose tissue, these structures could account for other organs (such
as muscles, liver, etc.) or pathological adipose tissues (such as fibrotic ones). More
quantitative work is needed and these questions will be developed in future works.

Further improvements of the model could be made. Vasculature formation
could be explicitly introduced in the model and would provide more hints about
its role on adipogenesis. Incorporating immature cells could help investigating
their role in the reconstruction of the ECM [28]. Similarly, coupling cell apoptosis
with spontaneous ECM reconstruction [29] would improve the treatment of the
latter. The adipocyte growth law could be made dependent on the local stress
as in [30, 31]. Macroscopically, introducing a disruption of the equilibrium by
suppressing a part of the tissue would open up new applications of the model,
such as the investigation of the spatial reorganization of the tissue in the process of
wound healing. From a mathematical viewpoint, the development of a macroscopic
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model from the present IBM would allow us to perform simulations on larger
domains and address the question of the organization of the whole tissue.

5 Materials
Model. Numerical simulations were performed on a 2D square grid with periodic
boundary conditions. Each of the Na cells was modelled as a 2D sphere described
by its center and its radius. Two adjacent spheres could not overlap. The Nf fiber
elements were represented as straight segments of fixed and uniform length and
described by their center and their directional angle. We started the simulations
with Nf fibers randomly distributed in the domain and no cell. The interactions
between the agents were of 3 types: (i) fiber-cell interactions, (ii) cell-cell inter-
actions and (iii) fiber-fiber interaction. (i) was modelled by a repulsive potential
between fiber elements and cells. (ii) was modelled as a non-overlapping con-
straint between adjacent adipocytes and (iii) contained (a) the constraint relating
two linked fibers at their common joint (the position of the joint within each fiber
was supposed fixed) and (b) the torque forcing two linked fibers to align, which
modelled fiber resistance to bending. At each time, a minimum of the mechan-
ical energy expressing (i) and (iii b) was sought under the cell non-overlapping
constraint (ii) and the linked fiber constraint (iii a). The potentials modelling
(i) and (iii b) were supposed to be sums of elementary binary potential elements
computed between two agents (cells and fibers for (i), two fibers for (iii a)). The
cell-fiber potential iso-lines were ellipses with the two ends of the fiber as focii.
The potential vanished beyond a certain distance from the fiber. The linked fiber-
fiber potential was proportional to the square of the sine of the angle between
the two fibers. The cell-cell non-overlapping condition was ensured by inequality
constraints of the form Φij ≥ 0 expressing that cells numbered i and j could not
overlap. Specifically, Φij was the square of the distance of the cell centers minus
the square of the sum of the radii. The constraints relating two linked fibers num-
bered ` and m at their joint was defined by a vector equality constraint of the form
Ψ`,m = 0 where Ψ`,m is the vector joining the joint position on fiber ` and that on
fiber m. The constraints were taken into account by a min-max approach. With
this aim, a Lagrangian was formed by combining the mechanical potential with
the constraints, the coefficients of this combination being the Lagrange multpliers.
The min-max problem was solved by means of a classical Uzawa algorithm. A
precise expression of the Lagrangian and details about the Uzawa algorithm can
be found in the SI. At each time step, the mechanical equilibrium was disturbed by
the biological phenomena, namely (i) new adipocyte insemination, (ii) adipocyte
growth and (iii) the formation of new fiber links and the removal of some existing
links. After disturbance by these biological phenomena, a new constrained mini-
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mization of the mechanical energy was realized in order to restore the mechanical
equilibrium. Then, time was incremented and the process started again until final
time. The computation was stopped when a cell volume fraction of about 50% is
reached. Cell growth was modelled as a linear-in-time volumic growth with rate νg.
The time-dynamics of the creation/deletion of fiber links and the insemination of
new cells were supposed to follow Poisson processes. Each frequency associated to
a Poisson process was a parameter of the model. The selection of these parameters
is detailed in the SI. When biased insemination was activated, the location of new
inseminated cells was biased by the biasing parameters α and sensing distance R.
For this purpose, we let the probability of inseminating a new cell at a randomly
chosen point X be a function of the local density of existing adipocytes. More
precisely, we computed the number of existing cells contained in the ball of radius
R centered in X. This number was normalized by the total number of maximal
radius cells that could be contained in such a ball, giving rise to a normalized
density χ. The probability of inseminating at point X was then set equal to χα.

Immunohistochemistry and confocal microscopy. Whole mouse inguinal
adipose tissue (AT) were fixed, embeded in agarose and cut into 300µm slices.
Slices were permeabilized in PBS/2% Normal Horse serum 0.2% triton 4h at, room
temperature (RT), and then incubated in anti-perilipin antibody (1/250, P1873
Sigma, 24h RT). After washing, slices were incubated in alexa488-conjugated goat
anti-rabbit IgG (1/250, A11008 Molecular Probes). Imaging was performed using
a Confocal Laser Scanning microscope (LSM510 NLO - Carl Zeiss, Jena, Germany)
with an objective lens LCI “Plan- Neofluar” 25x/0,8 and excited using a 488 nm
argon laser. Images were obtained by the stitching of 45 acquired images with
10% overlapping with Fiji defined by image metadata Grid/collection stitching
plugins [32]. Automatic image segmentation techniques were developed for (i) cell
segmentation and (ii) lobule segmentation. A fully-automatic method for (i) based
on a marker-controlled watershed technique [33] was implemented. The watershed
function was defined as the gradient of the image intensity after gaussian filter-
ing. Foreground markers (cell centers) were localized by inferior tresholding and
research of local maxima of the image intensity and background markers (fiber net-
work) by superior tresholding. (ii) was performed with a semi-automatic method,
by (a) thresholding and morphological opening-by-reconstruction of the binary im-
age (automatic) and (b) manual separation of the lobular structures by straight
lines (visually determined) when (a) was not efficient enough. More information
on the image processing can be found in the SI.
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6 Supporting Information
6.1 Introduction
The outline of this Supporting information is the following: the first section is
devoted to the mathematical modeling: section 6.2.1 describes the mechanical in-
teractions in the model. The computation of the constraints is detailed in section
6.2.2. Sections 6.2.3 details the modeling of the biological phenomena. The mini-
mization algorithm is given in section 6.2.4. Sections 6.2.5 and 6.2.6 are dedicated
to the fitting of the numerical parameters and to computing considerations respec-
tively. In section 6.3, statistical quantifiers are defined to allow the comparison
between numerical simulations and biological images. Section 6.4 is devoted to
image processing. Finally, the results are presented in section 6.5: in section 6.5.1
additional results supporting the conclusions of the main text are given. Section
6.5.2 is dedicated to the analysis of the influence of the flexural modulus c1. Section
6.5.3 gives a more detailed analysis of the biased insemination process. Finally,
section 6.5.4 presents the study of an initial anisotropic fiber network.

6.2 Mathematical model
We refer to section Description of the model of the main text for an overview
of the model. Let us recall the main features and introduce some notations. The
two-dimensional Individual Based Model (IBM) consists of Na adipocytes, which
are modeled as 2D growing spheres of center Xi and radius Ri for i in [1, Na], and
Nf extra-cellular-matrix fiber elements which are represented by straight lines of
fixed length Lf , of center Yk and orientational angle θk for k ∈ [1, Nf ]. Adipocytes
are prevented to overlap to model volume exclusion between cells. Fiber elements
have the ability to link to or unlink from each other to model fiber elongation or
rupture. The resistance of fibers to growing adipocytes is modeled by a repul-
sion potential Wpot between cells and fibers. Additionally, fibers offer resistance
to bending through an alignment potential Wal acting between two linked fiber
elements. Cells and fibers seek to minimize their mechanical interaction energy
resulting from these two potentials, subject to the non-overlapping constraint be-
tween cells and to the linkeage constraint between linked fibers. In the course of
the simulation, adipocytes grow, new adipocytes appear as a result of stem-cell
differentiation, new fiber links can appear and existing links can disappear. These
phenomena disrupt the mechanical equilibrium and force the cells and fibers to
move in order to restore the equilibrium.
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6.2.1 Mechanical interaction potential

Given a configuration at a fixed time, let C be the set of cell center positions and
radii: C = {(Xi, Ri) , i ∈ [1, Na]} and F the set of fiber center positions and fiber
directional angles: F = {(Yk, θk) , k ∈ [1, Nf ]}. The global mechanical energy of
the system reads:

W(C,F ) = Wpot(C,F ) +Wal(F ). (6.1)
where Wpot and Wal read:

Wpot(C,F ) =
∑

1≤i≤Na

∑
1≤k≤Nf

Wi,k(Xi, Yk, θk) (6.2)

Wal(F ) = c1
∑

(k,m)∈[1,Nf ]
ptkm sin2(θk − θm). (6.3)

Here, ptkm are time-dependent coefficients that are equal to 1 if fibers k and m are
linked and are equal to 0 otherwise. Their time-evolution is given section I.3. The
alignment potential Wal is supposed to be of intensity c1 and consists of the sum
of elementary alignment potentials between fibers of a linked pair. This potential
tends to align two linked fibers together. The repulsion potential Wpot is supposed
to be the sum of two-particle potential elements, Wi,k, modeling the mechanical
interaction between cell i and fiber k. For two given vectors X and Y of R2 and
an angle θ ∈ [−π, π], Wi,k(X, Y, θ) reads:

Wi,k(X, Y, θ) =

W̃ (λ+

k
)

d0,i
(d0,i − d(X, Y, θ)) if d(X, Y, θ) ≤ d0,i

0 otherwise
(6.4)

where:
d(X, Y, θ) = |X − Y + Lf

2 ω(θ)|+ |X − Y − Lf
2 ω(θ)| − Lf , (6.5)

and ω(θ) =
(

cos θ
sin θ

)
is the unit vector associated to the fiber angle θ. The fiber-cell

repulsion potential iso-lines are ellipses with focii located at the two ends of the
fiber segment. The potential vanishes beyond distance d0,i to the fiber center (see
Fig. 1.14). Parameter d0,i is set such that the length of the ellipse semi-minor axis
is τRi (see Fig. 1.14), with τ a parameter set equal to 3 in the simulations. In
this case, a fiber repels cell i up to a distance τRi in its orthogonal direction. A
direct computation gives:

d0,i = −Lf + 2
√

∆i, ∆i = (Lf2 )2 + (τRi)2.
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Figure 1.14: A: Cell i of radius Ri. B: Isolines of a potential generated by an
horizontal fiber k with τ = 2. Maximal repulsion distance τRi in the orthogonal
direction of the fiber.

Table 1.1: Model parameters
Name Value Description

Domain
Ns 100 Total number of numerical boxes
Ls 3 Length side of a numerical box

xmax − xmin 30 Length side of the square domain
Agents

Na 180 Number of adipocytes
Nf 800 Number of fibers
Rmax 0.66 Maximal radius of cells
Lf 3 Fiber length
Mechanical cell-fiber repulsion potential
W0 5 Minimal potential force
W1 15 Maximal potential force

τRmax 3Rmax Fiber-cell repulsion distance

Finally, the factor W̃ (λ+
k ) in (6.4) measures the strength of each repulsion potential

element. In order to model the fact that a fiber network is stiffer when the fibers
are aligned [34], W̃ (λ+

k ) is assumed to be a linear increasing function of the fiber
local alignment λ+

k . The local alignment of fibers around fiber k is computed in
a neighborhood B(Yk, Ral), where Ral is the sensing distance up to which fiber k
senses the direction of its neighbors. Let Pk denote the mean of the projection
matrices on the direction vectors of the fibers in B(Yk, Ral):

Pk = 1
nk

∑
m|Ym∈B(Yk,Ral)

ωm ⊗ ωm, (6.6)
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where nk denotes the number of fibers contained in B(Yk, Ral), and ωm is the
directional vector of fiber m. The maximal eigenvalue λ+

k of Pk measures the mean
alignment of the fibers in B(Yk, Ral). Its corresponding normalized eigenvector
gives the mean direction of the fibers in B(Yk, Ral). A direct computation leads
to:

λ+
k = 1 +

√
∆

2
where

∆ = 1 + 4
n2
k

[( ∑
m|Ym∈B(Yk,Ral)

cos θm sin θm
)2

−
∑

m|Ym∈B(Yk,Ral)
(cos θm)2 ∑

m|Ym∈B(Yk,Ral)
(sin θm)2

]

Note that λ+
k = 1 when all the fibers in B(Yk, Ral) have the same direction and

λ+
k = 0 when the fiber directions are fully random. The intensity of the potential

element is then set to:

W̃ (λ+
k ) = (W1 −W0)λ+

k +W0,

where W0 and W1 are the intensities of the repulsion potential between fiber k and
cell i, when the local alignment around fiber k is weak or strong respectively.

6.2.2 Constraints

In order to model adipocyte incompressibility and non overlapping, we assume
that the radius of each disk is unaffected whatever mechanical efforts are exerted
onto it. The non overlapping constraint between cells i and j is written as an
inequality constraint on the following function Φij:

Φij(Xi, Xj) = (Ri +Rj)2 − |Xi −Xj|2. (6.7)

One immediately notes that cells i and j do not overlap if and only if Φij(Xi, Xj) ≤
0.

To model fiber growth and elongation or conversely rupture, unlinked (resp.
linked) intersecting fibers have the possibility to link (resp. unlink) at random
times. As long as a pair of linked fibers remains linked, the attachment sites of
the two linked fibres are kept at the same point. The maintain of the link between
fibers k and m is modeled as equality constraints ~Ψkm = 0 with:

~Ψkm(Yk, Ym, θk, θm) = Yk + `kmω(θk)− Ym − `mkω(θm), (6.8)
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where `km is the distance of the center of fiber k to its attachment site with fiber m
(see Fig. 1.15) at the moment when the link is created. We use, if sin(θm−θk) 6= 0:

`km = (x0
m − x0

k) sin θ0
m − (y0

m − y0
k) cos θ0

m

sin(θ0
m − θ0

k)
(6.9)

where Y 0
k = (x0

k, y
0
k) are the 2D coordinates of the center of fiber k when the link

is created (and similarly for fiber m, see Fig. 1.15).

Figure 1.15: A. Creation of a link between intersecting fibers Ym and Yk. Link
lengths `mk and `km. B. Constraint vector ~Ψkm (see Eq. (6.8)) after fiber motion.

Finally, cell radii are assumed to be kept fixed during the minimization of
the global energy. This amounts to excluding cell radii from the variables of
the minimization problem. At each time step, the minimization of the global
mechanical energy under the above detailed constraints is written:

(C,F ) = argmin
Φ(C̃)≤0, Ψ(F̃ )=0

W(C̃, F̃ ), (6.10)

where:

Φ(C) =
(
Φij(Xi, Xj)

)
(i,j)∈[1,Na]2

,

Ψ(F ) =
(
~Ψkm(Yk, Ym, θk, θm)

)
(k,m)∈Nf

,

where Nf denotes the set of linked fiber pairs: Nf = {(k,m) ∈ [1, Nf ]2, k <
m, ptkm = 1}.

6.2.3 Modeling of the main biological phenomena

Pre-adipocyte differentiation: New adipocytes of minimal radius Re are insemi-
nated at random times following a Poisson process of frequency νe. The location
of the insemination is random with either uniform probability in the domain or
with a bias resulting in a higher insemination probability at locations where exist-
ing adipocytes are already present. In this last case, the probability of inseminating
at a random point X, P(X,R) is a function of the cell density computed in the
ball of center X and of radius R and normalized by the maximal possible density
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in this ball. This models a quorum-sensing process around point X where a pre-
adipocyte senses the adipocyte density χ(X,R), up to a sensing distance R. This
normalized density reads:

χ(X,R) =

∑
i|Xi∈B(X,R)

πR2
i

πR2
maxNR

,

where NR is the maximal number of cells of radius Rmax contained in B(X,R) (for
instance NR = 7 for R = 2Rmax). Note that χ ∈ [0, 1]. Then, the probability of
inseminating at X, P(X,R), reads:

P(X,R) = χα,

where α > 0 is the biasing parameter. We define the characteristic time of the
insemination process, te, as the mean time needed to inseminate Nmax cells:

te = Nmax

νe
.

Adipocyte growth The volumes of the cells are supposed to grow linearly with time.
Given a cell i at time t, the radius of cell i at time t+ ∆t reads:

R3
i (t+ ∆t) = R3

i (t) +Kg(1 + ηρg)

where η is a random number chosen uniformly in [0, 1] and Kg, ρg are two param-
eters such that Kg

∆t is the mean volumic cell growth per unit of time and Kgρg
∆t is

related to the standard deviation of the volumic cell growth per unit of time. The
characteristic time of cell growth tg is defined as the mean time needed for a cell
to reach its maximal radius Rmax and reads:

tg = R3
max∆t
Kg

.

Fiber growth or rupture: Fiber elongation is modeled by giving fibers the ability to
attach to each other. Pairs of unlinked intersecting fibers link together at random
times following a Poisson process of frequency ν`. To model fiber rupture, two
linked fibers unlink following a Poisson process of frequency νd. Let (k,m) ∈
[1, Nf ]2 and define ptkm such that ptkm = 1 if fibers k and m are linked, 0 otherwise.
The time evolution of ptkm is given by:

P(pt+∆t
km = 1|ptkm = 0) = 1− e−ν`∆t if max(`km, `mk) ≤

Lf
2

= 0 otherwise
P(pt+∆t

km = 0|ptkm = 1) = 1− e−νkmd ∆t,
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where `km and `mk are given by Eq. (6.9). P(pt+∆t
km = 1|ptkm = 0) describes the

transition probability for a transition of ptkm from 0 to 1 during the time interval
[t, t + ∆t] while P(pt+∆t

km = 0|ptkm = 1) refers to the transition probability for the
reverse process. We define t` and td as the characteristic times of the linking and
unlinking of fibers: respectively:

t` = 1
ν`
, td = 1

νd
.

In order to analyse the fiber linking/unlinking process, we define the ratio χ`:

χ` = νf
νf + νd

Note that χ` is directly correlated to the fraction of linked fibers (among pairs of
intersecting fibers) at equilibrium if the linking-unlinking process was acting alone
and will be referred to as the ’linked fiber fraction’ for short. For each unlinking
frequency νd and each linked fibers fraction χ`, the linking frequency is set to
νf = χ`

1−χ`
νd.

6.2.4 Uzawa algorithm

The constrained minimization problem (6.10) is solved with an Arrow-Hurwicz-
Uzawa type algorithm [35]. To perform the minimization, we introduce a La-
grangian:

L(C,F, λ, ~µ) =W(C,F ) + Φλ(C) + Ψ~µ(F ),
Φλ(C) =

∑
1≤i,j≤Na

λijΦij(C)

Ψ~µ(F ) =
∑

(k,m)∈Nf

~µkm. ~ψkm(F ),
(6.11)

where λ =
(
λij
)

(i,j)∈[1,Na]2
, λij > 0 and ~µ =

(
~µkm

)
(k,m)∈Nf

, ~µkm ∈ R2 are the sets
of Lagrange multipliers of the constraints.

Given a configuration (C(tn), F (tn)) at time tn = n∆t the configuration (C(tn+1), F (tn+1))
at time tn+1 = (n+ 1)∆t is defined as the limit as p→∞ of the iterative sequence
(Cp, F p) where (Cp, F p, λp, ~µp) is defined for all (i, j) ∈ [1, Na]2 and all (k,m) ∈ Nf
by:

Xp+1
i = Xp

i − αia∇XiL(Cp, F p, λp, ~µp)
Y p+1
k = Y p

k − αkf∇YkL(Cp, F p, λp, ~µp)
θp+1
k = θpk − αkθ∂θkL(Cp,Fp, λp, ~µp) (6.12)
λp+1
ij = max(0, λpij + λ1Φij(Cp+1)),
~µp+1
km = ~µpkm + µ2~Ψkm(F p+1)).
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with initial condition (C0, F 0, λ0, ~µ0) = (C(tn), F (tn), λ0, ~µ0) and λ0
ij = 0, ~µ0

km = 0,
for all (i, j) ∈ [1, Na]2 and all (k,m) ∈ Nf . The parameters λ1 and µ2 control the
actualization of the constraints and their choice is detailed in the next section.
The minimization steps αia, αkf and αkθ control the elementary motion of cell i and
fiber k and the elementary rotation of fiber k respectively. Their computation is
detailed in the next section. The convergence test of the algorithm reads:

|L
p+1 − Lp

Lp
| ≤ εr, (6.13)

for a chosen εr > 0. Here, Lp is the value of the Lagrangian at iteration p. Because
of the non convexity of the minimization problem, the uniqueness of the solution
to (6.10) is not ensured and a configuration at each time step corresponds to a
local minimum of the minimization problem.

6.2.5 Choice of the numerical parameters

In this section, the numerical parameters αia, αkf and αkθ of (6.12) are chosen such
that the amplitude of the change of each variable remains controlled. Given three
bounds δa, δf and δθ, the goal is to ensure |Xp+1

i −Xp
i | ≤ δa, |Y p+1

k −Y p
k | ≤ δf and

|θp+1
k − θpk| ≤ δθ, for each cell i and fiber k. Using (6.11) and (6.12), the following

expressions hold:

|Xp+1
i −Xp

i | = αia|∇XiW +∇XiΦλ|
|Y p+1
k − Y p

k | = αkf |∇YkW +∇YkΨ~µ|
|θp+1
k − θpk| = αkθ |∂θkW + ∂θkΨ~µ|.

The parameters αia, αkf and αkθ are consequently set such that:

αia = δa
2 min( 1

|∇XiW|
,

1
|∇XiΦλ|

)

αkf = δf
2 min( 1

|∇YkW|
,

1
|∇YkΨµ|

)

αkθ = δθ
2 min( 1

|∂θkW|
,

1
|∂θkΨµ|

.

(6.14)
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The gradients of the potentialW have the following upper bounds for all i ∈ [1, Na]
and k ∈ [1, Nf ] (see (6.1)-(6.5)):

|∇XiW| ≤
∑

1≤k≤Nf

W1

d0,i
∼ W1n

f
i

d0

|∇YkW| ≤
∑

1≤i≤Na

W1

d0,i
∼ W1n

a
k

d0

|∂θkW| ≤
∑

1≤i≤Na

LfW1

2d0,i
+ 2

∑
m | (k,m)∈Nf

c1 ∼
LfW1n

a
k

d0
+ 2`fkc1,

where nfi , nak and `fk denote the number of fibers interacting with cell i, the num-
ber of cells interacting with fiber k and the number of fibers linked to fiber k
respectively. Here, d0 is the value of d0,i evaluated with Ri = Rmax. The following
upper bounds for the gradients of the constraint functions (see Eqs. (6.7)-(6.9))
are chosen:

|∇XiΦλ| ≤ 4Ri

∑
j 6=i
|λij|,

|∇YkΨµ| ≤
∑

m | (k,m)∈Nf

|~µkm|,

|∂θkΨµ| ≤
Lf
2

∑
m | (k,m)∈Nf

|~µkm|.

These three gradient bounds are estimated at each iteration of the minimization
algorithm and are included into Eqs. (6.14) to compute the values of the numerical
steps. We now turn towards the determination of λ1 and µ2 of Eqs. (6.12).
Dimensionnally, the following estimations can be set from the expression of the
Lagrangian Eq. (6.11) (for all pairs (i, j) and (k,m)):

λij = O( W0

R2
max

), |~µkm| = O(W0

Lf
).

From the actualization of the constraints given by iterations of Eqs. (6.12), we
set:

λij ∼ λ1R
2
max, ~µkm ∼ µ2Lf

Then, parameters λ1 and µ2 are set equal to:

λ1 = W0

R4
max

, µ2 = W0

L2
f
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The values of the parameters δa, δf and δθ are taken of the order of 10−3 and
the convergence test tolerance to εr = 10−5 (the complete set of the numerical
parameters can be found in Table 1.3).

Table 1.2: Model parameters for pre-adipocyte differentiation (Poisson process)
and adipocyte growth (regular process). Associated time frequencies.

Phenomenon Parameters Frequencies
Pre-adipocyte differentiation R = 1.32, Re = 0.001 νe = 10

Adipocyte growth Kg = 0.0016, ρg = 0.2 νg = 10

Table 1.3: Numerical parameters
Name Value Phenomenon

∆t 0.1 Time step
δa 10−3 Adipocyte maximal displacement
λ1 30 Lagrange multiplier actualization
δf 10−3 Fiber maximal displacement
δθ 10−2 Fiber maximal angular change
~µ2 30 Lagrange multiplier actualization
imax 2500 Iteration number
εr 10−5 Convergence test tolerance

6.2.6 Decreasing the computational time

The simulations are performed on a 2D-domain Ω = [xmin, xmax]× [ymin, ymax]. In
order to reduce the computational time, the domain is divided into sub-squares
whose side length Ls is a measure of the maximal distance of the agent interactions.
The goal is to compute each interaction potential element with the agents located in
neighboring sub-squares of the domain only. The procedure is classical and details
are omitted. Periodic boundary conditions are set by creating ghost numerical
boxes of length Ls at each boundary of the domain.

6.3 Statistical quantifiers
This section is devoted to the computation of statistical quantifiers used to describe
cell and fiber structures in both numerical simulations and biological images. A
cell cluster is defined as a set of cells almost in contact. Let ∼a be the reflexive
and symmetric relation:

j ∼a i ⇔ j ∈ Ni,
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where Ni is the set of cell i neighbors:

Ni = {j ∈ [1, Na] , j 6= i, | |Xi −Xj| ≤ (Ri +Rj + εa)2}, (6.15)

where εa is the maximal allowed distance up to which two cells not in contact are
defined as neighbors and is set to 50% max(Ri, Rj). The equivalence relation ∼A
then reads:

j ∼A i⇔∃n ∈ N∗,∃(a1..an)
such that j ∼a a1 ∼a ... ∼a an ∼a i.

Cells i and j belong to the same cluster if and only if i ∼A j. Fig. 1.16 shows an
example of cell cluster separation.

Figure 1.16: Example of cell cluster detection. Left: original numerical simulation.
Cells are represented as 2D black spheres, fibers as black segments. Right: After
cell cluster detection. Cells which belong to the same cluster are indicated with
the same color.

The statistical quantifier NC is defined as the total number of cell clusters
which have more than 5 adipocytes per 100 adipocytes.

The statistical quantifier E measures the mean elongation of the cell clusters,
and is defined as the number of cells at the boundary of the clusters normalized
by the total number of cells in the clusters. As the parameter E is irrelevant for
clusters with less than 5 cells, its computation is restricted for clusters c such that
nc > 5 and reads:

E =
∑NC
c=1 Card(R∩ Cc)∑NC

c=1 nc
.

Here, Cc is the set of indices of the cells belonging to cluster c, nc is the number of
cells in cluster c and R is the set of indices of all cells with less than 5 neighbors:

R = {i ∈ [1, Na], Card(Ni) ≤ 5},

where Ni is defined by Eq. (6.15).



6 Supporting Information 84

Finally, in order to determine if the cell clusters have anisotropic shape with a
preferred direction, we define the SQ Θc as the angle of cluster c shape anisotropy
direction. For this purpose, let Xc be the center-of-mass of cluster c, i.e:

Xc = 1
nc

∑
i∈Cc

Xi.

Then, we define P c as the mean of the projection matrices on the vectors Xi−Xc,
for all i in cluster c:

P c = 1
nc

∑
i∈Cc

(Xi −Xc)⊗ (Xi −Xc).

The maximal eigenvalue λ+
c of P c gives a measure of the shape anisotropy of cell

cluster c and its associated eigenvector uc = (uc1, uc2) gives the shape anisotropy
direction. Then, Θc is defined as:

Θc = arctan(u
c
2
uc1

).

Note that Θc ∈ [−π
2 ,

π
2 ]. The SQ Θ is then defined as the circular standard

deviation of all the angles Θc for all clusters:

Θ =
√
−2 ln(R̄),

where R̄ reads:

R̄ =

√√√√( NC∑
c=1

cos Θc

)2

+
(
NC∑
c=1

sin Θc

)2

NC

.

Finally, the mean Θ̄ of Θc over all the cell clusters reads:

Θ̄ = 1
2 arg

( NC∑
c=1

e2iΘc
)
,

which ensures that Θ̄ ∈ [−π
2 ,

π
2 ]. Note that large Θ corresponds to fully isotropic

cell cluster organization, while small Θ indicates that cell clusters have a prefer-
ential direction.

In order to describe the fiber structures, we define a fiber cluster as a set
of neighboring quasi-aligned fiber elements and Λ as an estimate of the average
curvilinear length of such fiber clusters. Finally, A measures the mean alignment
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of the fibers of a cluster. For this purpose, let us defineMk as the set of neighbors
of fiber k, quasi-aligned with fiber k. Then:

Mk = {m ∈ [1, Nf ] ,m 6= k,

min(df (Yk, Ym), df (Ym, Yk)) ≤ 0

and | sin(θk − θm)| < sin(π4 )},

where df (Yk, Ym) reads:

df (Yk, Ym) = d(Yk, Y −m ) + d(Yk, Y +
m )− 2

√
(Lf2 )2 + (τfLf )2.

Here, Y ±m = Ym ± Lf
2 ωm and d(X, Y ) is the distance of point X to point Y . Note

that df (Yk, Ym) ≤ 0 (resp. df (Ym, Yk) ≤ 0) if the center of fiber k (resp. m) is
contained in the ellipse of focii Y ±m (resp. Y ±k ) with semi minor axis of length
τfLf and semi major axis of length

√
(Lf2 )2 + (τfLf )2. We chose τf = 1

3 , which
means that a fiber detects a neighboring fiber up to a distance Lf

3 in its orthogonal
direction. This allows us to define fiber clusters as sets of quasi-aligned neighboring
fibers. Let us define the reflexive and symmetric relation ∼f by:

k ∼f m ⇔ m ∈Mk.

Define the equivalence relation ∼F such that:

k ∼F m⇔∃n ∈ N∗,∃(a1..an)
such that k ∼f a1 ∼f ... ∼f an ∼f m.

Then, we say that fibers k and m belong to the same cluster if and only if m ∼F k.
Fig. 1.17 shows the results of fiber cluster detection from the numerical simulation
displayed on Fig. 1.16.

Figure 1.17: Example of fiber cluster detection, corresponding to simulation of
Fig. 1.16. Fibers which belong to the same cluster are indicated with the same
color.
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The mean elongation of fiber clusters is estimated by Λ. Given a fiber cluster cf
and a division of the simulation domain into squares of side length Lf , the length
of cf is estimated by LfΛ

cf
F , where Λcf

F is the number of squares which contain
the centers of at least one fiber of cf . Then, the dimensionless mean fiber cluster
elongation Λ is defined as the mean of LsΛ

cf
F over all the fiber clusters, normalized

by the maximal cell diameter:

Λ = Lf
2RmaxNTf

∑
1≤cf≤NTf

Λcf
F ,

where NTf is the total number of fiber clusters. The longer the fiber clusters, the
larger the Λ.

Finally, we define the SQ A to quantify the mean alignment of the fibers of
a cluster. Given a fiber cluster cf , the mean alignment of its fibers is defined as
the maximal eigenvalue λ+

cf
of the mean projection matrix defined by Eq. (6.6),

where the set B(Vk, Ral) is replaced by the set of all fibers of cluster cf . Then, A
is defined as the mean of the fiber cluster alignment, weighted by the number of
fibers in the cluster:

A = 1
NF

∑
1≤cf≤NTf

λ+
cf
ncf ,

where ncf is the number of fibers in cluster cf .

6.4 Image processing
This section is devoted to the algorithms and results of the image processing. The
goal is to develop segmentation techniques for (a) cell detection and (b) cell cluster
detection, in order to compute the SQs on biological images and compare them to
those of numerical simulations. It is noteworthy that adipocytes and lobules only
are visualized in biological images at hand, therefore SQs E, NC and Θ only are
accessible from biological images.

(a) Detection/separation of cells First, a fully-automatic method for cell detec-
tion based on marker-controlled watershed segmentation has been realized.We use
Marker-controlled watershed segmentation, according to the following procedure:

(i) The biological image is first filtered by a local median filter which associates
to each pixel its median value in its local neighborhood

(ii) The segmentation is performed on the gradient of the transformed image.
The gradient is high at the borders of the objects and low inside the objects.

(iii) Compute foreground markers. These are connected blobs of pixels within
each of the objects. The morphological techniques ’opening-by-reconstruction’
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and ’closing-by-reconstruction’ are used to clean up the image. These oper-
ations create flat maxima inside each object that can be located using the
intrinsic Matlab function imregionalmax.

(iv) Compute background markers. These are pixels that are not part of any
object. We perform a simple thresholding of the intensity image: each pixel
whose intensity is lower than the mean intensity of the image is set to 0.

(v) Modify the gradient map so that it only has minima at the foreground and
background marker locations.

(vi) Compute the watershed transform of the modified gradient map.

Object boundaries are located where W = 0, where W is the watershed transform
of the marked image gradient. This method enables the separation of multiple
objects. Each object is characterized by a center (center of mass of the detected
region) and a radius R (radius of a circle which has the same area a as the object):
R is thus computed as

√
a/π.

(b)Detection/separation of lobule-like clusters. For cell cluster detection, a
semi-automatic method has been developed. Each sub-images (squares occupying
0.1% of the image area) is filtered by median filtering with the intrinsic function
medfilt2 of Matlab. Each output pixel contains the median value in the 3-by-3
neighborhood around the corresponding pixel in the input image. A thresholding
of the intensity image fixed at 40% of the mean intensity of the subimage is then
applied. This threshold appeared to be robust and was used for each studied bio-
logical image. The connected objects with 8-connectivity are computed using the
Matlab intrinsic function bwlabel. Finally, objects containing less than 2000 pixels
(noise objects) are suppressed with the intrinsic Matlab function bwareaopen. If
neighboring cell clusters are still visually connected at a point, a line is plotted by
hand to separate the two clusters. The process of cell cluster detection is semi-
automatic in this sense, but this procedure is sufficient for the purpose of this
work, given the low number of biological images to be treated.

6.5 Results and their analysis
6.5.1 Simulations of the main text

Here, supplementary results on the simulations of the main text are given. Fig.
1.18 shows the values of the Statistical Quantifiers Λ and A corresponding to the
simulations of the main text, with random insemination and flexural modulus
c1 = 1 (see Fig. 3 (I) of Main Text). The values of the SQ are averaged over 10
simulations and plotted as functions of the fiber unlinking frequency νd for two
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different linked fiber fraction χ` = 0.1 (black curve) and χ` = 0.35 (blue curve).
We refer the reader to section ’Results’ of Main Text for the analysis of the cell
structures, and we focus here on the fiber network.

Figure 1.18: Statistical Quantifiers Λ and A of the simulations of Main Text
(see Fig. 3 (I) of Main Text), with random insemination, flexural modulus c1 =
1, as functions of the fiber unlinking frequency νd for two different linked fiber
fraction χ` = 0.1 (black curve) and χ` = 0.35 (blue curve). The mean fiber cluster
elongation Λ is a non monotonous function of the unlinking frequency νd, that
first increases and then decreases with νd ∈ [10−3, 0.1]. The mean alignment of
the fiber clusters A increases with νd, with two plateau values for νd ≤ 10−3 and
νd ≥ 10−1. Values corresponding to the simulations of Main Text with biased
insemination with biasing parameter α = 10−3 are indicated as blue stars for
χ` = 0.35 and black ones for χ` = 0.1. The values of A and Λ for random and
biased inseminations are similar in the range of νd ∈ [10−3, 10−2].

Fig.1.18 first reveals that the fiber SQ have plateau values for νd ≤ 10−3. For
a slow fiber linking-unlinking process (νd ≤ 10−3), the fibers in the clusters are
poorly aligned (low value of A) and the mean fiber cluster elongation Λ is fairly
large, meaning that the fibers keep their initial entanglement. As νd increases, the
mean fiber cluster elongation Λ increases until reaching a maximal value for νd ≈
0.005. Then, Λ loses 50% of its value when νd increases in the range [0.005, 0.1].
The mean elongation A increases with νd from the value A ≈ 0.6 to A ≈ 0.8
as νd increases in the same range. This tends to show that the fiber linking-
unlinking dynamics strongly influences the final structures. For a slow fiber linking-
unlinking dynamics, due to fiber interconnections the fiber network is extremely
ridig. In this case, fibers fail to align because of the high connectivity of the network
which prevents any configurational change. As νd increases, the lifetime of each
link decreases, allowing the remodeling of the fiber network. Consequently, fiber
structures are more flexible and more aligned. However, if the linking-unlinking
process is too fast, the fiber structures easily align, forming long fiber threads.
These fiber threads are then reinforced by the fast creation of links, increasing
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the rigidity of the fiber patterns. Preferred directions locally emerge in the fiber
network and favor the growth of cell clusters in these directions. The cell clusters
are consequently elongated. In Fig. 1.18, blue and black stars show the values of Λ
and A with biased insemination for α = 10−3, for two different values of νd = 0.005
and νd = 10−2. Blue stars correspond to χ` = 0.35, black ones for χ` = 0.1. These
plots reveal that biased insemination does not influence the fiber structures in the
range of νd ∈ [10−310−2]. We refer to section IV.3 for more details on the role of
biased insemination.

Three different morphologies (which will be referred to as “phases”) are ob-
tained according to the values of the parameters: (A) Lobule-like cell clusters
surrounded by a disorganized (unaligned) fiber network, (B) lobule-like cell struc-
tures in an aligned fiber network, and (C) elongated cell structures in a network
composed of long and rigid fiber threads. Each type of structure is obtained in a
specific range of the parameters νd and χ` of the fiber linking-unlinking dynamics
and can described by a convenient set of SQs. In order to quantify the passage
from one morphology to another, we choose the following SQ: the mean fiber clus-
ter alignment A and the mean cell cluster elongation E. We identify the threshold
values A∗ = 0.68 for A and E∗ = 0.89 for E. Structures of type (A) correspond
to A < A∗ and E < E∗. Type (B) is described by A > A∗ and E < E∗ and
finally type (C) by A > A∗ and E > E∗. Fig. 1.19 shows a phase diagram rep-
resenting the various obtained morphologies in the (E,A) plane. Each point in
this phase diagram has been obtained by averaging the SQ over 10 simulations.
The separatrix between phases (A) and (B) (i.e. the line A = A∗) is shown in red
and the separatrix between phases (B) and (C) (i.e. the line E = E∗) is shown
in blue. For each region, we show simulation results in the corresponding range of
the parameters νd and χ` for the sake of illustration.
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Figure 1.19: Phase diagram representing the separation lines between the three
morphologies (A), (B) and (C) (Phase (A): A < A∗ and E < E∗ ; Phase (B):
A > A∗ and E < E∗ ; Phase (C): A > A∗ and E > E∗), as function of the
unlinking frequency νd and of the linked fiber fraction χ`. The separatrix A = A∗

between Phases (A) and (B) is plotted in red, while the separatrix E = E∗ between
Phases (B) and (C) is plotted in blue. For each phase, two simulations in the
corresponding range of parameters νd and χ` are shown.

Fig. 1.19 first shows that the SQ describe the final cell and fiber structures
fairly well. The simulations corresponding to morphology of type (B) are obtained
for νd ∈ [10−2, 10−1] in the case of random insemination and c1 = 1. Moreover,
if we take also into account the other SQs (see main text for the values of NC),
the more biologically relevant structures are obtained in this range of νd and for
χ` > 0.2.

6.5.2 Influence of the flexural modulus c1

Here, we perform a statistical analysis of the influence of the fiber flexural modulus
c1. Fig. 1.20 (I) shows simulations with random insemination and two different
flexural moduli c1 = 0.01 (first row) and c1 = 10 (second row), for χ` = 0.35
and three different unlinking frequencies νd = 10−3 (Fig. 1.20 (I A) and (I D)),
νd = 10−2 (Fig. 1.20 (I B) and (I E)) and νd = 0.2 (Fig. 1.20 (I C) and (I F)). Fig.
1.20 (II) shows the values of the fiber SQ A (Fig. 1.20 (II a)), Λ (Fig. 1.20 (II b)),
E (Fig. 1.20 (II c)) and NC (Fig. 1.20 (II d)), averaged over 10 simulations and
plotted as functions of the unlinking frequency νd for two different values c1 = 0.01
(black curve) and c1 = 10 (blue curve) of the flexural modulus.
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Figure 1.20: (I) Simulations with random insemination and two different flexural
moduli c1 = 0.01 (first row) and c1 = 10 (second row), for linked fiber fraction
χ` = 0.35 and three different unlinking frequencies νd = 10−3 (Figs. (I A) and (I
D)), νd = 10−2 (Figs. (I B) and (I E)) and νd = 0.2 (Figs. (I C) and (I F)). For a
small flexural modulus c1 = 0.01, fiber structures change slowly from disorganized
clusters (Figs. (I A) and (I B)) to more aligned fiber patterns (Fig. (I C)) as
νd increases. A larger value of c1 = 10 leads to more aligned fiber clusters. The
morphology changes from well-organized fiber clusters surrounding separated cell
clusters (Figs. (I D) and (I E)) to long and rigid fiber threads that fail to surround
cell structures (Fig. (I F) as νd increases. (II) Fiber cluster mean alignment A (Fig.
(II a)), fiber cluster mean elongation Λ (Fig. (II b)), cell cluster mean elongation
E (Fig. (II c)) and mean cell cluster number NC (Fig. (II d)) as functions of the
unlinking frequency νd for two different values c1 = 0.01 (black curve) and c1 = 10
(blue curve) of the flexural modulus.

The first row of Figs. 1.20 (I) (Fig. 1.20 (I A), (I B) and (I C)) shows that for
a small flexural modulus c1 = 0.01, the cell structures change from well-separated
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lobule-like cell clusters (Fig. 1.20 (I A)) to slightly more elongated clusters (Fig.
1.20 (I C)) and the fiber structures change from a disorganized fiber network (Fig.
1.20 (I A) or (I B)) to more aligned fiber clusters (Fig. 1.20 (I C)), as νd increases.
For a large flexural modulus c1 = 10 (second row of Fig. 1.20 I, i.e. Fig. 1.20 (I
D), (I E) and (I F)), the fiber structures are more aligned: the model generates
organized fiber clusters able to bend around the cell structures (Fig. 1.20 (I D)
and (I E)). For a fast linking-unlinking (Fig. 1.20 (I F)), a rigid fiber network
composed of long fiber threads which fail to surround the cell clusters is observed.

These observations are confirmed by the values of the Statistical Quantifiers A
and Λ (for fiber clusters) and E and NC (for cell clusters) shown in Figs. 1.20 (II)
as functions of the unlinking frequency νd, for c1 = 0.01 (black curves) and c1 = 10
(blue curves). Figs. 1.20 (II a) shows that the mean alignment of the fiber clusters
increases with c1 (compare the black and blue curves), and the difference between
the values of A for c1 = 0.01 and for c1 = 10 increases with the fiber unlinking
frequency νd. This is because the fibers are more rigidly maintained with a slow
linking-unlinking dynamics than with a fast one (see previous section), and are
thus less sensitive to alignment. Fig. 1.20 (II b) shows that the mean fiber cluster
elongation Λ is a non monotonous function of νd for c1 = 0.01 (black curve) and a
monotonically decreasing function for c1 = 10 (blue curve). For c1 = 0.01, Λ first
increases to reach a maximal value at νd ≈ 0.05 and then decreases. This reflects
the ability that the fibers have to surround the cell clusters when the flexural
modulus is small and the unlinking frequency νd is moderate, as already seen in
the previous section. This ability is lost with a larger flexural modulus and Λ
becomes just a decreasing function of νd.

Fig. 1.20 (II c) shows that the flexural modulus c1 does not seem to significantly
change the mean cell cluster elongation. Finally, Fig. 1.20 (II d) reveals that the
number of cell clusters NC is significantly lower for c1 = 10 than for c1 = 0.01 for
νd > 10−3. For c1 = 10 and νd ∈ [10−3, 0.1], this is because ECM rigidity is too
large and the fibers fail to separate cell structures, compared to the case c1 = 1 (see
Main Text). For νd > 0.1, we recover the previously described case of a fast fiber
linking-unlinking dynamics. As fibers fastly self-organize into long and directed
rigid threads, they force the cells to group into chord-like unseparated structures.

To sum up, large flexural modulus favors fiber alignment and ECM rigidity
compared to small c1. Moreover, the choice of the flexural modulus has to be
carrefully linked to the fiber linking-unlinking dynamics, which also triggers fiber
network alignment and rigidity. For a well calibrated fiber linking-unlinking pro-
cess and increasing values of c1, the structures change from (a) compact middle
sized cell clusters in a disorganized fiber network (c1 = 0.01), (b) compact middle
sized cell clusters in an organized fiber network (c1 = 1) and (c) elongated cell clus-
ters in fewer quantities inside an organized network (c1 = 10). For c1 < 1, ECM



6 Supporting Information 93

alignment is small and the fiber network cannot easily organize. By contrast, when
c1 = 1, ECM alignment is moderate and the fibers that are not too constrained can
align. However for c1 > 1, ECM rigidity is too large and this results in elongated
cell clusters. Experimentally, it is observed that the lobules are more elongated
at the periphery of the tissue than inside. Thus, our results suggest that fibers
could be more stretched at the periphery. To support this hypothesis, it would be
interesting to develop an experimental quantification method to estimate a local
stress tensor similar to what has previously been done for adipocyte stiffness [36].
This analysis suggests that the different morphologies observed in adipose tissues
of healthy mice according to the location of fat (central or peripheral)can be due
to ECM stiffness. Varying its value is sufficient to break the architecture of the
tissue.

6.5.3 Influence of the biased insemination

Figs. 1.21 (I) shows simulation results obtained with random insemination (Figs.
1.21 (I A), (I B), (I C)) and with biased insemination for α = 10−3 (Figs. 1.21 (I
D), (I E), (I F)), for three values of the unlinking frequency νd (from left to right,
νd = 10−4, νd = 10−2 and νd = 0.2). Fig. 1.21 (II) shows the values of the SQ A
(Fig. 1.21 (II a)), Λ (Fig. 1.21 (II b)), E (Fig. 1.21 (II c)) and NC (Fig. 1.21
(II d)), averaged over 10 simulations, as functions of the unlinking frequency νd,
for random insemination (in black) and for biased insemination with α = 10−3 (in
blue). In these simulations, the flexural modulus between linked fibers is c1 = 1
and the linked fiber fraction χ` = 0.35. The numerical and model parameters can
be found in Table 1.2.
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Figure 1.21: (I) Simulations with random insemination (Figs. (I A), (I B), (I C))
and with biased insemination with α = 10−3 (Figs. (I D), (I E), (I F)), for three
values of the unlinking frequency νd (from left to right, νd = 10−4, νd = 10−2

and νd = 0.2). Values of the flexural modulus c1 = 1 and linked fiber fraction
χ` = 0.35 have been used. (II) Fiber cluster mean alignment A (Fig. (II a)), fiber
cluster mean elongation Λ (Fig. (II b)), cell cluster mean elongation E (Fig. (II
c)) and mean cell cluster number NC (Fig. (II d)) averaged over 10 simulations
as functions of the unlinking frequency νd with random insemination (in black) or
with biased insemination with α = 10−3 (in blue).

Figs. 1.21 (I D), (I E), (I F) show that biased insemination leads to the
creation of a smaller number of bigger cell clusters than random insemination
(compare with Figs. 1.21 (I A), (I B), (I C)). This is because biased insemination
favors insemination of new adipocytes at locations where cell clusters pre-exist.
The regroupment of cells into clusters leaves regions devoid of cells (see Figs.
1.21 (I E)). Figs. 1.21 (II a) and (II b) show that biased insemination does not
have a significant influence on the fiber cluster alignment A, but seems to slightly
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reduce the fiber elongation. For cell clusters, Fig. 1.21 (II c) shows that biased
insemination seems to reduce cell cluster elongation. This can be explained by
the fact that cell clusters are larger with biased insemination than with random
insemination, which results in a decrease of E. In this case, the statistical quantifier
E does not allow us to conclude on the form of the cell clusters. Finally, Fig. 1.21
(II d) shows that biased insemination leads to cell clusters in fewer number than
random insemination. Indeed, biased insemination favors the recruitement of new
cells by existing clusters, leading to larger clusters in fewer number.

Altogether, this analysis demonstrates that biased insemination with small α
does not have a significant impact on the cell and fiber structures for a properly
chosen fiber linking/unlinking dynamics. This suggests that, in a sufficiently rigid
fiber network, cell clusterization is mainly driven by cell-fiber interactions. Cells
and fibers self-organize into middle-sized well-separated cell clusters and aligned
fiber structures whatever the type of insemination (random or biased with small
α) is.

6.5.4 Anisotropic initial fiber network

As discussed in Main Text, parts of the adipose tissue reveal an anisotropic cell
and fiber organization. In order to obtain oriented cell clusters, we studied the
properties of the model starting from an initially anisotropic fiber network. For
this purpose, we let the initial fiber directional angles θ0

f be randomly chosen
according to a uniform distribution in the interval [θ1 − θ2, θ1 + θ2], where θ2 is
related to the standard deviation of the distribution. Note that the smaller θ2,
the more aligned the fibers initially are. By contrast, the simulations shown so far
correspond to a fully isotropic initial network, i.e. to the case θ2 = π/2. The initial
number of fiber links was carefully adjusted to be independent of the initial value
of θ2 throughout the forthcoming simulations. Indeed, the probability that pairs
of fibers intersect is much smaller in an aligned network than in a fully isotropic
one. Simulations of Fig. 1.22 have been obtained with random insemination,
flexural modulus c1 = 1 and linked fiber fraction χ` = 0.35, for different unlinking
frequencies νd and different values of θ2. Three types of structures have obtained
according to the values of νd and θ2: (a) lobule-like non oriented cell clusters, (b)
lobule-like oriented cell clusters, and (c) elongated and oriented cell clusters. In
order to quantify the passage from one morphology to another one, we use the
following SQ: the mean cell cluster elongation E and the standard deviation of
cell cluster shape anisotropy Θ. We identify the threshold values E∗ = 0.89 for
E (the same value as in section IV-1) and Θ∗ = 0.7 for Θ. Structures of type (a)
correspond to Θ > Θ∗ and E < E∗. Type (b) is described by Θ < Θ∗ and E < E∗

and finally type (c) by Θ < Θ∗ and E > E∗. Fig. 1.22 shows a phase diagram
in the (E,Θ) plane. Each point in this phase diagram correspond to statistical
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quantifiers (E,Θ) averaged over 10 simulations. The red and blue lines correspond
to the separatrix between phases (a) and (b) (of equation Θ = Θ∗) and between
phases (b) and (c) (of equation E = E∗) respectively. Fig. 1.22 also shows a
typical simulation result for each phase, and its position on the phase diagram
according to the values of E and Θ.

Figure 1.22: Simulation results for an anisotropic initial fiber network. According
to the values of the model parameters νd and θ2, three phases have been obtained
and classified by means of the mean cell cluster elongation E and the standard
deviation of cell cluster shape anisotropy Θ: Phase (a): for Θ > Θ∗ and E < E∗.
Phase (b) for Θ < Θ∗ and E < E∗. Phase (c) for Θ < Θ∗ and E > E∗. This figure
displays the phase diagram in the (E,Θ) plane. Each point in this phase diagram
correspond to statistical quantifiers (E,Θ) averaged over 10 simulations. The red
and blue lines correspond to the separatrix between phases (a) and (b) (of equation
Θ = Θ∗) and between phases (b) and (c) (of equation E = E∗) respectively. The
figure also displays a typical simulation result for each phase, and its position
on the phase diagram according to the values of E and Θ. The simulations were
performed with random insemination, linked fiber fraction χ` = 0.35, fiber flexural
modulus c1 = 1.

Fig. 1.22 shows that, when the initial fiber network is anisotropic, the emer-
gence of a shape anisotropy of the cell clusters depends on the fiber linking-
unlinking dynamics. For a slow linking-unlinking dynamics (νd = 10−3) the initial
orientation of the fibers must be strongly biased to obtain directionality in the
cell and fiber final structures. Otherwise (for θ2 >

π
5 ), the initial orientation of

the network is lost, and cell structures without preferential direction are obtained
(see Fig. 1.22 A). This suggests that for this slow linking-unlinking frequency,
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cells disturb the initial organization of the fiber network so much that this initial
organization is lost. For a fast fiber linking-unlinking dynamics (νd = 0.2 see Fig.
1.22 C), cell structures are elongated due to the rigidity of the fiber network in-
duced by the fast linking frequency and the action of the alignment torque at the
created links. In this case, the fiber network imposes its preferred direction to cell
cluster growth and we recover elongated cell clusters as in the case of an initially
isotropic fiber network (see section IV.1). Fig. 1.22 (B) shows that there exist
a range of values of νd and θ2 for which the model is able to generate lobule-like
cell clusters having anisotropic shapes and a preferred shape anisotropy direction.
These configurations are obtained for νd ∈]10−3, 10−2[ and for θb ∈ [π8 ,

π
4 ].
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Chapter 2

Macroscopic model for linked
fibers with alignment interactions

This chapter have been written in collaboration with P. Degond and F. Delebecque
and has given rise to an article to be submitted.

Abstract: We introduce an individual-based model for fiber elements having
the ability to cross-link or unlink each other and to align with each other at the
cross links. We first formally derive a kinetic model for the fiber and cross-links
distribution functions. We then consider the fast linking/unlinking regime in which
the model can be reduced to the fiber distribution function only and investigate its
diffusion limit. The resulting macroscopic model consists of a system of nonlinear
diffusion equations for the fiber density and mean orientation. In the case of a
homogeneous fiber density, we show that the model is elliptic.
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1 Introduction
The topic of complex systems is attracting an increasingly abundant literature, due
to its paramount importance in life and social sciences. Complex systems consist of
a large number of agents interacting through local interactions only and yet able to
self-organize into large-scale coherent structures and collective motion [36]. Among
examples of interactions leading to collective motion, the alignment interaction has
been the subject of many studies since the seminal work of Vicsek and co-authors
[35]. In Vicsek’s model, self-propelled point particles tend to align with their
neighbors up to some noise. Vicsek’s particles are polar: they carry a definite
direction and orientation defined by the unit vector of their propulsion velocity.
Their alignment interaction is also polar in the sense that a particle moving in an
opposite direction to its neighbors will eventually reverse its direction of motion.
However, other alignment rules have been studied as well. Polar particles can
be subjected to nematic alignment. In this case, a particle moving in an opposite
direction to its neighbors will not reverse its direction of motion, as opposed to the
polar alignment case. Nematic alignment has been used as a model for the volume
exclusion interaction [5, 20, 29]. Particles can also be apolar, for instance if they
randomly reverse their direction of motion. Apolar particles interacting through
nematic alignment have been proposed as a model for vibrating rods [6] or fiber
networks [1]. In the related field of nematic liquid crystals, volume exclusion
interactions between rod-like particles are also modelled as an alignment force [18,
24, 28]. But additionally, the molecules are convected by the background solvent
and are subjected to rotation by the fluid shear. Additionally, they contribute to
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the fluid dynamics of the liquid solvent through an additional extra-stress tensor.
Usually, the polymer chains are supposed of fixed length, although lately, models
of polymer chains of variables lengths have appeared [12].

In the present work, we are interested in a system consisting of fibers (or
polymer chains) of variable lengths. This model aims to describe the network
of collagen fibers in a fibrous tissue. We model fiber length variation (through
polymerization / depolymerization) as well as the ability for the fibers to establish
cross-links between them by the same basic rules described as follows. We assume
the existence of a fiber unit element (or monomer) modeled as a line segment of
fixed length L. We suppose that two fiber elements that cross each-other may
form a link, thereby creating a longer fiber. There is no limit to the number of
cross-links a given fiber can make. Therefore, the fibers have the ability to branch
off and to achieve complex network topologies. We include fiber resistance to
bending by assuming the existence of torque which, in the absence of any other
force, makes the two linked fiber elements align with each other. Fibers are also
subject to random positional and orientational noise and to external positional and
orientational potential forces. Finally, cross-links may also be removed to model
possible fiber breakage or depolymerization.

Our model features apolar fiber particles (since they are not self-propelled),
interacting through nematic alignment with the other fibers they are linked to.
Thus, the model bears analogies with previous models of apolar particles interact-
ing through nematic alignment [6, 1]. However, the interaction network topology
(which keeps track of which fiber pairs are cross-linked) is different, as ours is
determined by the distribution of cross-links. The fact that this network topol-
ogy changes with time through dynamic cross-linking or unlinking processes is
one specific feature of the present work. In the absence of cross-link remodeling,
i.e. when the cross-links lifetime is infinite and no new cross-links is created, each
connected component of the fiber network can be seen as an unstretchable elastic
string since all connected fiber elements will spontaneously align with each other.
However, cross-link removal or creation events (supposed to occur at Poisson dis-
tributed random times) introduce a fluid-like component to the rheology of the
fibers, thereby confering some visco-elastic character to the medium. Cross-link-
governed statics and dynamics of fiber networks have been intensely studied in
the literature [3, 8, 9, 21, 27]. However, most models consider passive cross-links
which only act on the fibers by a spring-like attractive force. Here, our description
introduces active links which tend to align the two fibers with each other. By doing
so, we are also able to take into account fiber breakage, elongation and branch-
ing just in addition to and in the same way as fiber linking/unlinking because
cross-linked fiber elements can be seen as two parts of the same fiber. Another
difference from previous literature is that fibers in our model are subject to noise
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making the system more akin to a fluid or a gas than to a solid. By contrast to
classical polymeric fluid studies, we do not assume that the fibers are transported
by a fluid and modify its rheological properties but this feature could be added in
future work.

This model was first introduced in [30] where it was coupled with the dynamics
of spherical particles modelling cells. This model has been built to describe the self-
organization of the adipose tissue, where spheres represent adipocytes and fibers,
the surrounding collagen fibers. In this work, we demonstrated that the interaction
between cells and fibers led to the spontaneous formation of cell clusters of ovoid
shape akin to the adipose lobules that form the functional subunits of the adipose
tissue. In [30], only a discrete Individual-Based Model (IBM) was considered.
The present work focuses on the fibrous medium only and aims to derive meso
and macroscopic models from the background IBM using techniques of kinetic
theory. Indeed, the computational cost of an IBM scales polynomially with the
number of agents, which makes them practically untractable for large systems.
Continuum models allow to break this curse of scaling but they suppose that a
suitable coarse-graining procedure which averages out the fine-scale structure has
been applied to the IBM. In order to capture the correct effects of the fine-scale
dynamics on the large-scale structures, it is of paramount importance to perform
this coarse-graining as rigorously as possible. This is the aim of the present work.

The derivation of a continuum model from the fiber dynamics is done in two
steps. We first derive a kinetic model from the underlying IBM and secondly, we
perform a diffusion approximation of the latter to obtain the continuum model.
The kinetic model provides a statistical mechanics description of the underlying
IBM by investigating how the probability distribution of fibers in position and
orientation space evolves in time. Here, we will show that the mere distribution
of fibers is not sufficient to close the system and that the cross-link probability
distribution needs to be introduced. The cross-links provide correlations between
the fibers and consequently their distribution can be viewed as similar to the two-
particle fiber distribution. We will formally show that the knowledge of the one-
and two-particle distributions is enough to provide a valid kinetic description of
the system. Of course, this fact needs to be confirmed by numerical simulations
and mathematical proofs. But if it proves correct, this model provides a unique
example, to our knowledge, of a kinetic model which is closed at the level of the
two-particle distribution function. Indeed, the question whether or not kinetic
descriptions must include higher order distribution functions has been actively
discussed in the recent years [10, 11, 25, 26]. We also note that the introduction
of the cross-link distribution functions provides an economic and efficient way of
statistically tracking the fiber network topology. This methodology could prove
interesting for other situations of dynamically evolving networks.
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The second step consists of a diffusion approximation of the previously derived
kinetic model. It starts with changing the time and space units to macroscopic
ones. The macroscopic space unit is large compared to the typical spatial scale of
the fibers, e.g. their length and the macroscopic time unit is large to the typical
time scale of the fibers, e.g. the time needed for two linked fibers to align with each
other. A diffusive rescaling relates the time and space rescaling in such a way that
the ratio of the microscopic to macroscopic time units is the square of that of the
spatial units. This choice is made necessary by the absence of any polarization in
the medium which makes diffusive behavior dominate. A key assumption that we
make here is to assume that the linking/unlinking frequencies are very large: the
typical linking/unlinking time measured in the macroscopic time unit scales like
the square of the typical fiber alignment time (also measured in macroscopic unit),
which is very small. This allows us to deduce an algebraic relation between the
cross-link distribution function and the fiber distribution function, and to realize
a closure of the kinetic equation at the level of the fiber distribution function
alone. This assumption is questionable given the biological applications we have
in mind, but it provides a first step towards a more complete theory involving
finite linking/unlinking times.

From these assumptions, we derive a singular perturbation problem for the
fiber kinetic distribution function that has the form of a classical diffusion approx-
imation problem [4, 16, 31], whose leading order collision operator comes from the
nematic alignment of the fibers due to the alignment torque at the cross-links.
This operator has equilibria in the form of generalized von Mises distributions of
the fiber directions. The von Mises distribution extends Gaussian distributions to
probabilities defined on the unit circle. It is peaked around a mean fiber direc-
tion angle θ0. The continuum model describes how the local fiber density ρ and
the local fiber direction θ0 vary as functions of position x and time t. To obtain
these evolution equations, we must integrate the kinetic equation against suitably
chosen collision invariants. This operation cancels the singularly perturbed term.
Here, the difficulty it that there exists only one such collision invariant in the
classical sense, which allows us to find an equation for the density ρ only. To find
an equation for the mean fiber direction θ0, we use the recently developed theory
of Generalized Collision Invariants (GCI) [14, 15, 17, 19]. The resulting system is
a nonlinear coupled system of diffusion equations for ρ and θ0. In the case of a
homogeneous fiber distribution, when the density is uniform in space and constant
in time, we show that the resulting nonlinear diffusion model for θ0 is parabolic. In
future work, it will be shown that this system is well-posed. Numerical simulations
will demonstrate that the continuum model provides a consistent approximation
of the underlying IBM for the fiber dynamics. Numerous macroscopic models
for fibrous media have been previously considered in the literature but very few
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of them have been derived from an underlying IBM. Most of them are heuristi-
cally derived from continuum theories such as mechano-chemical principles [2, 33],
thermodynamics [22] or viscous fluid mechanics [23].

The outline of this paper is as follows. In Section 2, we start with the descrip-
tion of the IBM. Section 3 is devoted to the derivation of the kinetic model. The
scaling assumptions and the scaled kinetic equations are derived in Section 4. In
Section 5, we perform the large scale limit of the so-obtained equations. Finally,
Section 6 is devoted to the analysis of the model in the case of a homogeneous
fiber density. Conclusions and perspectives are drawn in Section 7. Some technical
computations are detailed in Appendices.

2 Individual Based Model for fibers interacting
through alignment interactions

We intend to model a medium consisting of interconnected fibers. To simplify the
geometric description of fibers, we decompose them into fiber elements of uniform
fixed length and consider that a fiber consists of several connected fiber elements.
The link between two connected fibers can be positionned at any point along the
fibers (not only the extremities) and a given fiber can be connected to any number
of other fibers, thereby allowing to model the branching off of a fiber into several
branches. The links are not permanent. The topology of the fiber network is
constantly remodelled through link creation/deletion processes. To model fiber
resistance to bending, we suppose that pairs of linked fibrs are subject to a torque
that tends to align the two fibers with respect to each other. Finally, the fibers are
subject to random positional and orientational noises to model the movements of
the tissue and to positional and orientational potential forces to model the action
of external elements. In the case of a fibrous tissue, these external elements may
consist of cells or other tissues.

In this paper, we restrict ourselves to a two-dimensional model. We consider
a set of N fiber elements modelled as small line segments of uniform and fixed
length L, described by their center Xi ∈ R2 and their angle θi with respect to a
fixed reference direction. As the fiber elements are assumed apolar, θi is an angle
of lines, i.e. θi ∈ [−π

2 ,
π
2 ) modulo π. We define energies related to each of the

phenomena described above namely an energy for the maintenance of the links
Wlinks, an energy for the alignment torque Walign, an energy for the action of the
external elements Wext, an energy for the noise contribution Wnoise and a total
energy made of the sum of all these energies:

Wtot = Wlinks +Wext +Walign +Wnoise, (2.1)
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All these energies are functions of the N fiber positions (Xi)Ni=1 and orientations
(θi)Ni=1. Note that Wnoise is rather an entropy than an energy, so that Wtot is
indeed the total free energy of the system. Fiber motion and rotation during a
time interval between two fiber linking-unlinking events is supposed to occur in
the steepest descent direction to this free energy, namely according to:

dXi

dt
= −µ∇XiWtot, ∀i ∈ {1, . . . , N}, (2.2)

dθi
dt

= −λ ∂θiWtot, ∀i ∈ {1, . . . , N}, . (2.3)

Eqs. (2.2) and (2.3) express the motion and rotation of the individuals in an
overdamped regime in which the forces due to friction are very large compared
to the inertial forces. Fiber velocity and angular speed are proportional to the
force exerted on the fiber through two mobility coefficients µ and λ which are
considered given. We now detail the expressions of the four energies involved in
the expression (2.1) of the total free energy of the system, as well as how Eqs. (2.2)
and (2.3) are supplemented by Poisson jump processes when a linking/unlinking
event occurs.

To define the expression ofWlinks, we consider a time at which no linking/unlinking
process occurs. Then, the set of links is well-defined and supposed to have K el-
ements. Let k ∈ {1, . . . , K} be a given link and denote by (i(k), j(k)) the pair of
indices corresponding to the two fibers connected by this link. To make the label-
ing of the pair unique, we assume without loss of generality that the first element
of the linked pair is always the one with lowest index, i.e. i(k) < j(k). The link is
supposed to connect two points Xk

i(k) and Xk
j(k) on fibers i(k) and j(k) respectively.

These points are determined by the algebraic distances `ki(k) and `kj(k) to the centers
Xi(k) and Xj(k) of the two fibers respectively; We thus have the relation:

Xk
i(k) = Xi(k) + `ki(k)ωi(k), Xk

j(k) = Xj(k) + `kj(k)ωj(k),

where `ki(k), `kj(k) ∈ [−L/2, L/2] and where, for any fiber i, we let ωi = (cos θi, sin θi)
be the unit vector in the direction of the fiber. All along the link lifetime, the link
places a spring-like restoring force that attracts Xi(k) back to Xj(k) (and vice-versa)
as soon as their are displaced one with respect to each other. This restoring force
gives rise to a potential energy V (Xi(k), θi(k), `

k
i(k), Xj(k), θj(k), `

k
j(k)), with

V (X1, θ1, `1, X2, θ2, `2) = κ

2 |X1 + `1ω(θ1)− (X2 + `2ω(θ2))|2, (2.4)

where κ is the intensity of the restoring force. Obviously, the larger κ, the better
the maintainance of the link is ensured. The potential Wlinks is then assumed to
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be the sum of all the linked fiber spring forces:

Wlinks = 1
2

K∑
k=1

V (Xi(k), θi(k), `
k
i(k), Xj(k), θj(k), `

k
j(k)). (2.5)

We stress the fact that the quantities `ki(k) and `kj(k) remain constant throughout
the link lifetime. They are determined at the time of the creation of the link (see
below and Fig. 2.23).

Figure 2.23: Intersecting linked fibers. lij and lji refer to ¯̀(Xi, θi, Xj, θj) and
¯̀(Xj, θj, Xi, θi) (2.12). A. Situation at linking time. B. Restoring potential Vij (2.4)
after motion of the fibers.

The external potential Wext associated with the external forces is supposed to
be the sum of potential forces U(Xi, θi) acting on each of the N fibers:

Wext =
N∑
i=1

U(Xi, θi). (2.6)

Here, U(x, θ) is a given, possibly time-dependent smooth function. In the case
where the system describes the collagen fibers in a tissue, U aims to model the
presence of cells or other organs.

Linked fibers are subjected to an alignment force at their junction to model
fiber resistance to bending. This force tends to align linked fibers i(k) and j(k)
and derives from the potential b(θi(k), θj(k)) which reads:

b(θ1, θ2) = α| sin(θ1 − θ2)|β, (2.7)

where α plays the role of a flexural modulus and β is a modeling parameter. The
binary alignment potential only depends on the angles θ1 and θ2, and the total
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alignment energy Walign is supposed to be the sum of all the binary alignment
interactions:

Walign = 1
2

K∑
k=1

b(θi(k), θj(k)). (2.8)

We include random positional and orientational motion of the fiber elements
which, in the context of tissue dynamics, originate from the random movements
of the subject. With this aim, we introduce an entropy term:

Wnoise = d
N∑
i=1

log(f̃)(Xi, θi), (2.9)

where f̃ is a ’regularized density’:

f̃(x, θ) = 1
N

N∑
i=1

ξN(x−Xi) ηN(θ − θi).

Here, ξN and ηN are regularization functions which allow to define the logarithm
of f̃ and have the following properties:

ξN ∈ C∞(R2), ηN ∈ C∞per([−
π

2 ,
π

2 ]), ξN ≥ 0, ηN ≥ 0,∫
ξN(x)dx = 1,

∫ π

−π
ηN(θ)dθ2π = 1,

Supp(ξN) ⊂ B(0, RN), Supp(ηN) ⊂ [−MN ,MN ],

where C∞(R2) is the set of infinitely differentiable functions on R2, C∞per([−π
2 ,

π
2 ])

the set of periodic C∞ functions of [−π
2 ,

π
2 ] and Supp stands for the support of

a function. Here, RN and MN are chosen such that
√
NRN and NMN → ∞ as

N →∞. The mean interparticle distance in x and θ are respectively of order 1√
N

and 1
N

. This condition is equivalent to 1√
NRN

→ 0 and 1
NMN → 0, which means

that as N →∞, the number of particles inside the support of a regularizing kernel
tends to infinity. This way of modeling the influence of the noise is customary in
polymer dynamics [7]. In the next section, we show that such an entropy term
gives rise to diffusion terms at the level of the mean-field kinetic model.

By inserting (2.5), (2.6), (2.8) and (2.9) into (2.2), (2.3), we find the fiber
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equation of motion, during any time interval between two linking/unlinking events:

dXi

dt
=− µ

[
1
2

K∑
k=1,i(k)=i

∇x1V (Xi(k), θi(k), `
k
i(k), Xj(k), θj(k), `

k
j(k))

+ 1
2

K∑
k=1,j(k)=i

∇x2V (Xi(k), θi(k), `
k
i(k), Xj(k), θj(k), `

k
j(k)) +∇x(U + log f̃N)(Xi, θi)

]
,

dθi
dt

=− λ
[

1
2

K∑
k=1,i(k)=i

∂θ1V (Xi(k), θi(k), `
k
i(k), Xj(k), θj(k), `

k
j(k))

+ 1
2

K∑
k=1,j(k)=i

∂θ2V (Xi(k), θi(k), `
k
i(k), Xj(k), θj(k), `

k
j(k)) + ∂θ(U + log f̃N)(Xi, θi)

+ 1
2

K∑
k=1,i(k)=i

∂θ1b(θi(k), θj(k)) + 1
2

K∑
k=1,j(k)=i

∂θ2b(θi(k), θj(k))
]
,

which we can write:

dXi

dt
=− µ

[(
1
2

K∑
k=1

δi(k)(i)∇x1V + 1
2

K∑
k=1

δj(k)(i)∇x2V

)
(Ck

i(k),j(k))

+∇x(U + log f̃N)(Xi, θi)
]
, (2.10)

dθi
dt

=− λ
[(

1
2

K∑
k=1

δi(k)(i)∂θ1V + 1
2

K∑
k=1

δj(k)(i)∂θ2V
)

(Ck
i(k),j(k)) + ∂θ(U + log f̃N)(Xi, θi)

(2.11)

+
(

1
2

K∑
k=1

δi(k)(i)∂θ1b+ 1
2

K∑
k=1

δj(k)(i)∂θ2b
)

(θi(k), θj(k))
]
,

with Ck
i(k),j(k) = (Xi(k), θi(k), `

k
i(k), Xj(k), θj(k), `

k
j(k)) and δi(k)(i) is the Kronecker sym-

bol, i.e. δi(k)(i) = 1 if i(k) = i and δi(k)(i) = 0 otherwise.
When two fibers i and j intersect each other, because of the continuity of

their motion, they are going to intersect each other during a time interval [t∗, t∗].
We assume that, during this time span, the linking probability follows a Poisson
process of parameter νf , i.e. the probability that a link is formed during the interval
[t∗, t] with t < t∗ is 1 − e−νf (t−t∗). Only one link can be formed between the two
fibers of the same fiber pair. Supposing that a link, indexed by k is formed between
the fibers i and j (such that i = i(k) and j = j(k) if i < j) at a time tk ∈ [t∗, t∗], we
denote by Xk the attachment site of the link. The distance ¯̀(Xi(k), θi(k), Xj(k), θj(k))
between the center Xi(k) of fiber i(k) to the k-th link attachment site Xk with fiber
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j(k) (see Figure 2.23.B) can be directly computed by:

¯̀(Xi(k), θi(k), Xj(k), θj(k)) = (xj(k) − xi(k)) sin θj(k) − (yj(k) − yi(k)) cos θj(k)

sin(θj(k) − θi(k))
, (2.12)

where Xi(k) = (xi(k), yi(k)) are the coordinates of the center of fiber i(k). For
X = (x, y) and ω = (α, β), we denote by X × ω = xβ − yα.

Then, ¯̀(Xi(k), θi(k), Xj(k), θj(k)) can be written:

¯̀(Xi(k), θi(k), Xj(k), θj(k)) = |(Xj(k) −Xi(k))× ω(θj(k)|
|ω(θi(k))× ω(θj(k))|

,

where again, ω(θ) = (cos θ, sin θ) is the directional vector associated to angle θ.
The fact that the two fibers are intersecting each other at time tk is written:

|¯̀(Xi(k), θi(k), Xj(k), θj(k))| ≤
L

2 , and |¯̀(Xj(k), θj(k), Xi(k), θi(k))| ≤
L

2 ,

where L is the fiber length and where all positions and angles are evaluated at
time tk. The quantities ¯̀(Xi(k), θi(k), Xj(k), θj(k)) and ¯̀(Xj(k), θj(k), Xi(k), θi(k)) at
the time tk of the formation of the link set the positions of the attachment sites
Xk
i(k) and Xk

j(k) of the link on fibers i and j. Therefore, `ki(k) and `kj(k) remain
constant throughout the link lifetime and equal to their value at the time tk. So,
we have

d

dt
`ki(k) = d

dt
`kj(k) = 0,

throughout the lifetime of the link.
We also assume that existing links can disappear according to a Poisson random

process of parameter νd, i.e. the probability that the link disappears in the time
interval [tk, t] is 1− e−νd(t−tk).

The next section is devoted to the asymptotic limit N,K →∞ of this model.

3 Derivation of a kinetic model
Here, the derivation of a kinetic model from the Individual Based Model of section 2
is performed. The empirical measure fN(x, θ, t) of the fibers is introduced:

fN(x, θ, t) = 1
N

N∑
i=1

δ(Xi(t),θi(t))(x, θ),

where δ(Xi(t),θi(t))(x, θ) denotes the Dirac delta located at (Xi(t), θi(t). It gives the
probability to find a fiber at point x and orientational angle θ at time t. The
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empirical measure gK(x1, θ1, `1, x2, θ2, `2, t) of the fiber links is given by:

gK(x1, θ1, `1, x2, θ2, `2, t) = 1
2K

K∑
k=1

δ(Xi(k),θi(k),`
k
i(k),Xj(k),θj(k),`

k
j(k))

(x1, θ1, `1, x2, θ2, `2)

+ δ(Xj(k),θj(k),`
k
j(k),Xi(k),θi(k),`

k
i(k))

(x1, θ1, `1, x2, θ2, `2),

with a similar definition of the Dirac deltas. It gives the probability of finding
a link with associated lengths within a volume d`1d`2 about `1 and `2, this link
connecting a fiber located within a volume dx1

dθ1
π

about (x1, θ1) with a fiber located
within a volume dx2

dθ2
π

about (x2, θ2). One notes that (`1, `2) is defined in [−L
2 ,

L
2 ]2.

Then, at the limit N,K →∞, K
N
→ ξ, where ξ > 0 is a fixed parameter, fN → f ,

gK → g where f and g satisfy equations given in the following theorem:

Theorem 3.1. The formal limit of Eqs. (2.2), (2.3) for K,N →∞, K
N
→ ξ, where

ξ > 0 is a fixed parameter reads:

df

dt
− µ

(
∇x · ((∇xU)f) + ξ∇x ·F1 + d∆xf

)
− λ

(
∂θ((∂θU)f) + ξ∂θF2 + d∂2

θf

)
= 0,

(3.1)
and
dg

dt
− µ

[
∇x1 .

(
g∇xU(x1, θ1) + ξ

g

f(x1, θ1)F1(x1, θ1) + d
g

f(x1, θ1)∇xf(x1, θ1)
)

+∇x2 .

(
g∇xU(x2, θ2) + ξ

g

f(x2, θ2)F1(x2, θ2) + d
g

f(x2, θ2)∇xf(x2, θ2))
)]

−λ
[
∂θ1

(
g∂θU(x1, θ1) + ξ

g

f(x1, θ1)F2(x1, θ1) + d
g

f(x1, θ1)∂θf(x1, θ1)
)

+ ∂θ2

(
g∂θU(x2, θ2) + ξ

g

f(x2, θ2)F2(x2, θ2) + d
g

f(x2, θ2)∂θf(x2, θ2)
)]

= S(g),

(3.2)

where

F1(x1, θ1) =
∫

(g∇x1V )(x1, θ1, `1, x2, θ2, `2)d`1d`2
dθ2

π
dx2,

F2(x1, θ1) =
∫ (

g(∂θ1V + ∂θ1b)
)
(x1, θ1, `1, x2, θ2, `2)d`1d`2

dθ2

π
dx2,

(3.3)

and S(g) is given by:

S(g) = νff(x1, θ1)f(x2, θ2)δ¯̀(x1,θ1,x2,θ2)(`1)δ¯̀(x2,θ2,x1,θ1)(`2)− νdg, (3.4)

where δ¯̀(`1) denotes the Dirac delta at ¯̀, i.e. the distribution acting on test func-
tions φ(`1) such that 〈δ¯̀(`1), φ(`1)〉 = φ(¯̀)
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This kinetic model consists of two evolution equations. The first one (Eq. (3.1))
is an equation for the individual fibers and describes the evolution of the one-
particle distribution function f . Eq. (3.2) is an equation for the links between fiber
pairs. The distribution function g describes the correlations between fiber pairs
brought by the presence of links. It can be viewed as a kind of two-particle fiber
distribution function. This model is, to our knowledge, a unique explicit example of
a kinetic model written in terms of the one and two particle ditributions and closed
at this level. Also, the distribution function g can be seen as a way of describing the
random graph of the fiber links, namely the graph where the nodes are the fibers
and the edges are the links. This statistical description of a random graph could
be useful to describe other kinds of random networks, notably in social sciences.
As the links are tightly tied to the fibers, they are convected by them and follow
their motion. Simultaneously, they constrain the linked fibers to move together, so
they directly influence their motion. The action of the links on the individual fiber
motion is contained in the third and sixth force terms F1 and F2 of Eq. (3.1) and are
the kinetic counterparts of (2.4). The second and fith terms describe transport
in physical and orientational spaces due to the external potential and are the
kinetic counterparts of (2.6). The fourth and seventh terms are diffusion terms of
amplitude λd and µd respectively. They represent the random motion of the fibers
and originate from the interactions described by Eq. (2.9). The individual motion
of the fibers is thus related to the motion of its linked neighbors. The left-hand
side of Equation (3.2) describes the evolution of the links between fibers. Indeed,
it is composed of the convective terms generated by the external potential and by
the diffusion terms. The forces induced by the restoring potential generated by
the links again gives rise to the non local terms F1 and the first term of F2. The
kinetic counterpart of the alignment force between linked fibers (see Eq. (2.8)) is
encompassed in the second term of the force F2 and only acts on the orientation
of the fibers. The right hand side S(g) of equation (3.2) describes the Poisson
processes of linking/unlinking at frequencies νf and νd, respectively. The first
term describes the formation of the link and the Dirac deltas indicate that, at the
link creation time, the link lengths `1 and `2 are set by the geometric configuration
of the fibers at the attachment time. Also, because `1 and `2 are restricted to lie in
the interval [−L/2, L/2], we see that the link creation term is non-zero only when
two fiber elements are intersecting each other. The second term just describes a
decay of the link distribution at the rate set by the Poisson process, i.e. νd.

The formal proof of this result is inspired from [32], and the detailed compu-
tations can be found in appendix 8. The rigorous proof of this result is an open
question and is left for future work.
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4 Scaling
4.1 Dimensionless Equations
We express the problem in dimensionless variables. For this purpose, let t0 be the
unit of time and x0, f0 = 1

x2
0
, g0 = 1

x6
0

and U0 = x2
0
t20

the units of space, distribution
function and energy. The scaling of f(x, θ) and g(x1, θ1, `1, x2, θ2, `2) comes from
the fact that they are probability distribution functions on a 2D domain. The
following dimensionless variables are defined:

x̄ = x

x0
, ¯̀= `

x0
, f̄ = f

f0
= fx2

0, ḡ = g

g0
= gx6

0, Ū = t20U

x2
0
.

and the following dimensionless parameters are introduced:

µ′ = µ

t0
, λ′ = λx2

0
t0
, ν ′f = t0νf , ν

′
d = t0νd, L

′ = L

x0
, d′ = dt20

x2
0
, α′ = αt20

x2
0
, κ′ = κt20.

First of all, from the expression of V (see Eq. (2.4)), we get:

V (x1, θ1, `1, x2, θ2, `2) = κ′

2t20
(x1 + `1ω(θ1)− x2 − `2ω(θ2))2

= x2
0
t20
V̄ (x̄1, θ1, ¯̀1, x̄2, θ2, ¯̀2),

with
V̄ (x̄1, θ1, ¯̀1, x̄2, θ2, ¯̀2) = κ′

2 (x̄1 + ¯̀1ω(θ1)− x̄2 − ¯̀2ω(θ2))2.

Now, from Eq. (3.3), one notes that:

F1(x1, θ1) = 1
x0t20

F̄1(x̄1, θ1),

where

F̄1(x̄1, θ1) =
∫
R2

π
2∫

−π2

L′/2∫
−L′/2

L′/2∫
−L′/2

∇x̄1V̄ (x̄1, θ1, ¯̀1, x̄2, θ2, ¯̀2)ḡ(x̄1, θ1, ¯̀1, x̄2, θ2, ¯̀2)d¯̀1d¯̀2
dθ2

π
dx̄2.

Similarly, F2(x1, θ1) = 1
t20
F̄2(x̄1, θ1), where:

F̄2(x̄1, θ1) = F̄al(x̄1, θ1) + F̄link(x̄1, θ1),

F̄link(x̄1, θ1) =
∫
R2

π
2∫

−π2

L′/2∫
−L′/2

L′/2∫
−L′/2

(
ḡ∂θ1V

)
(x̄1, θ1, ¯̀1, x̄2, θ2, ¯̀2)d¯̀1d¯̀2

dθ2

π
dx̄2,

F̄al(x̄1, θ1) =
∫
R2

π
2∫

−π2

L′/2∫
−L′/2

L′/2∫
−L′/2

(
ḡ∂θ1 b̄

)
(x̄1, θ1, ¯̀1, x̄2, θ2, ¯̀2)d¯̀1d¯̀2

dθ2

π
dx̄2,
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where b̄(θ1, θ2) = α′ sin(θ1 − θ2)β. In this new set of variables, Eqs. (3.1)-(3.2)
become:

∂t′ f̄ − χλ′∇x̄ · (∇x̄Ū f̄)− λ′∂θ(∂θŪ f̄)− ξλ′∂θF̄2 − χξλ′∇x̄ · F̄1 − d′λ′∂2
θ f̄ − d′χλ′∆xf̄ = 0,

and

∂t′ ḡ − χλ′∇x̄1 · (ḡ∇x̄U(x̄1, θ1) + ξ
ḡ

f̄(x̄1, θ1)
F̄1(x̄1,θ1))

−λ′∂θ1(ḡ∂θU(x̄1, θ1) + ξ
ḡ

f̄(x̄1, θ1)
F̄2(x̄1, θ1))

−χλ′∇x̄2 · (ḡ∇x̄U(x̄2, θ2) + ξ
ḡ

f̄(x̄2, θ2)
F̄1(x̄2, θ2))

−λ′∂θ2(ḡ∂θU(x̄2, θ2) + ξ
ḡ

f̄(x̄2, θ2)
F̄2(x̄2, θ2))

−d′χλ′∇x̄1 · (
ḡ

f̄(x̄1, θ1)
∇x̄f̄(x̄1,θ1))

−d′χλ′∇x̄2 · (
ḡ

f̄(x̄2, θ2)
∇x̄f̄(x̄2, θ2))

−d′λ′∂θ1( ḡ

f̄(x̄1, θ1)
∂θf̄(x̄1, θ1))

−d′λ′∂θ2( ḡ

f̄(x̄′, θ2)
∂θf̄(x̄2, θ2)) = S̄(ḡ),

where χ = µ′

λ′
and:

S̄(ḡ)(x̄1, θ1, ¯̀1, x̄2, θ2, ¯̀2) =ν ′f f̄(x̄1, θ1)f̄(x̄2, θ2)δ¯̀(x̄1,θ1,x̄2,θ2)(¯̀1)δ¯̀(x̄2,θ2,x̄1,θ1)(¯̀2)
− ν ′dḡ(x̄1, θ1, ¯̀1, x̄2, θ2, ¯̀2).

Finally, if the space and time scales x0, t0 are chosen such that λ′ = χ = 1, i.e:

x2
0 = µ

λ
, t0 = µ,

the dimensionless equations for f̄ and ḡ read (dropping the primes and tildes for
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the sake of clarity):

∂tf −∇x · (∇xUf)− ∂θ(∂θUf)− ξ∂θF2 − ξ∇x · F1 − d∂2
θf − d∆xf = 0,

∂tg −∇x1 · (g∇x1U(x1, θ1) + ξ
g

f(x1, θ1)F1(x1, θ1))− ∂θ1(g∂θU(x1, θ1) + ξ
g

f(x1, θ1)F2(x1, θ1))

−∇x2 · (g∇xU(x2, θ2) + ξ
g

f(x2, θ2)F1(x2, θ2))− ∂θ2(g∂θU(x2, θ2) + ξ
g

f(x2, θ2)F2(x2, θ2))

−d∇x1 · (
g

f(x1, θ1)∇x1f(x1, θ1))− d∇x2 · (
g

f(x2, θ2)∇xf(x2, θ2))

− d∂θ1( g

f(x1, θ1)∂θf(x1, θ1))− d∂θ2( g

f(x2, θ2)∂θf(x2, θ2)) = S(g)(x1, θ1, `1, x2, θ2, `2),

(4.1)

with

F1(x1, θ1) =
∫
R2

π
2∫

−π2

L/2∫
−L/2

L/2∫
−L/2

∇x1V (x1, θ1, `1, x2, θ2, `2)g(x1, θ1, `1, x2, θ2, `2)d`1d`2
dθ2

π
dx2,

F2(x1, θ1) = Fal(x1, θ1) + Flink(x1, θ1),

Flink(x1, θ1) =
∫
R2

π
2∫

−π2

L/2∫
−L/2

L/2∫
−L/2

(
g∂θ1V

)
(x1, θ1, `1, x2, θ2, `2)d`1d`2

dθ2

π
dx2,

Fal(x1, θ1) =
∫
R2

π
2∫

−π2

L/2∫
−L/2

L/2∫
−L/2

(
g∂θ1 b̄

)
(x1, θ1, `1, x2, θ2, `2)d`1d`2

dθ2

π
dx2,

and

S(g)(x1, θ1, `1, x2, θ2, `2) =νff(x1, θ1)f(x2, θ2)δ`(x1,θ1,x2,θ2)(`1)δ`(x2,θ2,x1,θ1)(`2)
− νdg(x1, θ1, `1, x2, θ2, `2).

4.2 Scaled equations
So far, the chosen time and space scales are microscopic ones, and describe the
system at the scale of the agent interactions. In order to describe the system at
a macroscopic scale, a small parameter ε � 1 is introduced and the space and
time units are set to x̃0 = ε−1/2x0, t̃0 = ε−1t0. The fiber length measured at scale
x0 is supposed to stay of order 1 as ε → 0, i.e. L = O(1). The variables x, t, `
and unknowns f and g are then correspondingly changed to x̃ =

√
εx, t̃ = εt, ˜̀=√

ε`, f̃(x̄, θ) = ε−1f(x, θ) and g̃(x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2) = ε−3g(x1, θ1, `1, x2, θ2, `2). We
suppose that the external potential U(x, θ) is decomposed into U(x, θ) = U0(x) +
U1(θ), where U0 is acting on the space variable only and U1 is a π-periodic potential
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acting on fiber orientation angles only. The external potential acting on the space
variables is supposed to be one order of magnitude stronger than the one acting
on the fiber rotations: U0 = O(1), U1 = O(ε), i.e. Ũ1 = ε−1U1 with Ũ1 = O(1).
The strength of the alignment potential is supposed to be large α = O(ε−1), i.e.
α̃ = εα with α̃ = O(1), and we choose the exposant β = 1. The intensity of the
alignment potential between linked fibers is supposed to be small κ = O(ε), i.e.
κ̃ = ε−1κ with κ̃ = O(1) and the diffusion coefficient and parameter ξ are supposed
to stay of order 1: d, ξ = O(1). In order to simplify the analysis of the system,
the process of linking/unlinking is supposed to occur at a very fast time scale, i.e.
ν̃f = ε2νf and ν̃d = ε2νd, with ν̃f , ν̃d = O(1). The macroscopic restoring potential
Ṽ is defined such that:

Ṽ (x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2) = κ̃

2 |x̃1 + ˜̀1ω(θ1)− x̃2 − ˜̀2ω(θ2)|2,

Then,
V (x1, θ1, `1, x2, θ2, `2) = Ṽ (x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2),

∂θV (x1, θ1, `1, x2, θ2, `2) = ∂θṼ (x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2),
∇xV (x1, θ1, `1, x2, θ2, `2) =

√
ε∇x̄Ṽ (x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2).

Similarly, we have

b(θ1, θ2) = α| sin(θ1 − θ2)| = α̃

ε
| sin(θ1 − θ2)| = 1

ε
b̃(θ1, θ2),

and consequently,
∂θ1b(θ1, θ2) = 1

ε
∂θ1 b̃(θ1, θ2).

Then we have:

∇x1F1 =
√
ε∇x̃1

(∫
Lε

√
ε∇x̃1Ṽ (x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2)ε3g̃(x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2)

dx̃2
dθ2
π
d˜̀1d˜̀2

ε2

)
= ε2∇x̃1F̃1,

Flink(x1, θ1) =
∫
Lε
∂θ1Ṽ (x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2)ε3g̃(x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2)

dx̃2
dθ2
π
d˜̀1d˜̀2

ε2

= εF̃link,

Fal(x1, θ1) =
∫
Lε

1
ε
∂θ1 b̃(θ1, θ2)ε3g̃(x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2)

dx̃2
dθ2
π
d˜̀1d˜̀2

ε2 = F̃al,

where Lε = R2 × [−π
2 ,

π
2 ]× [−

√
εL
2 ,

√
εL
2 ]2. Finally, we define X1 and X2 such that:

X1(x1, θ1) =
√
ε∇x̃Ũ

0(x̃1) + ξε
3
2
F̃1

εf̃
(x̃1, θ1) =

√
εX̃1(x̃1, θ1),

X2(x1, θ1) = εd∂θ1 f̃ + ξεF̃link

εf̃
= X̃2(x̃1, θ1),
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with X̃1(x̃1, θ1) and X̃2(x̃1, θ1) defined by

X̃1(x̃1, θ1) = ∇x̃Ũ
0(x̃1) + ξ

F̃1

f̃
(x̃1, θ1),

X̃2(x̃1, θ1) = d∂θ1 f̃ + ξF̃link

f̃
.

The macroscopic fiber linking/unlinking operator S(g̃) is similar to the one defined
Eq. (3.4). Indeed, from Eq. (2.12): ¯̀(x1, θ1, x2, θ2) = ε−1/2 ¯̀(x̃1, θ1, x̃2, θ2) and thus:

S(g̃) = ν̃f f̃(x̃1, θ1)f̃(x̃2, θ2)δ¯̀(x̃1,θ1,x̃2,θ2)(˜̀)δ¯̀(x̃1,θ1,x̃2,θ2)(˜̀2)− ν̃dg̃.

Altogether, the macroscopic version of Eqs. (4.1) reads (dropping the tildes for the
sake of clarity):

−ξ∂θ1Fal−ε
(
ξ∂θFlink + d∂2

θf

)

+ ε2
(
∂tf −∇x · (∇xUf)− ∂θ(∂θUf)− ξ∇x · F1 − d∆xf

)
= 0,

(4.2)

and

−S(g)− εξ
(
∂θ1(gFal(x1, θ1)

)
+ ∂θ2

(
gFal(x2, θ2)

))
− ε2

(
∂θ1(gX2(x1, θ1)

)
+ ∂θ2

(
gX2(x2, θ2)

))

+ε3
(
∂tg −∇x1 · (gX1(x1, θ1))−∇x2 · (gX1(x2, θ2))− ∂θ1

(
g∂θU

1(θ1)
)
− ∂θ2(g∂θU1(θ2)

)
− d∇x1 · (g

∇xf

f
(x1, θ1))− d∇x2 · (g

∇xf

f
(x2, θ2))

)
= 0.

(4.3)

From now on, we note f ε = f̃ and gε = g̃. The following proposition holds:

Proposition 4.1. Assuming f ε and gε exist, then, formally, they satisfy:

−ξ∂θ
(
∂θΦ[f ε](x, θ)f ε

)
− d∂2

θf
ε

+ ε

[
∂tf

ε −∇x · (∇xU
0f ε)− ∂θ

([
∂θU

1 + ξG[f ε](x, θ)
]
f ε
)
− d∆xf

ε

]
= O(ε2),

(4.4)

and

gε(x1, θ1, `1, x2, θ2, `2) = νf
νd
f ε(x1, θ1)f ε(x2, θ2)δ¯̀(x1,θ1,x2,θ2)(`1)δ¯̀(x2,θ2,x1,θ1)(`2)+O(ε2),

(4.5)
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with

Φ[f ε](x1, θ1) = C1

π
2∫

−π2

sin2(θ − θ2)f ε(x1, θ2)dθ2

π
(4.6)

G[f ε](x1, θ1) = C2

2∑
i,j=1

∂2

∂xi∂xj

π
2∫

−π2

f ε(x1, θ2)Bij(θ1, θ2)dθ2

π
, (4.7)

C1 = αL2νf
2νd

, C2 = αL4νf
48νd

, (4.8)

and

B(θ1, θ2) = sin 2(θ1−θ2)[ω(θ1)⊗ω(θ1)+ω(θ2)⊗ω(θ2)] =
(
Bij(θ1, θ2)

)
i,j=1,2

. (4.9)

Remark 4.1. In the proof of proposition 4.1, we will show that

F ε
1 (x1, θ1) = O(ε3),

F ε
link(x1, θ1) = O(ε3),
F ε
al(x1, θ1) = ε∂θ1Φ[f ε](x1, θ1) + ε2G[f ε](x1, θ1) +O(ε3).

(4.10)

The proof of this proposition is given in section 4.3. From these equations, one
notes that the hypothesis of dominant creation/deletion of links makes the reaction
forces F1 and Flink of order O(ε3). In this case, the process of linking/unlinking is
so fast that the constraint is satisfied at all times. Moreover, under this assump-
tion, the first contribution of the alignment force acting on a fiber is the sum of
elementary alignment forces generated by its intersecting fibers, weighted by νf

νd
.

One also notes that the alignment force Fal is local in space.
Under these scaling assumptions, the leading order of the left-hand side of

Eq. (4.4) takes the form of a collision operator of kinetic theory. It acts on the
orientation vector θ only and it expresses that the alignment potential (2.8) is
counter-balanced by the diffusion term which tends to spread the particles isotrop-
ically on the sphere. The other terms act at lower order ε.

As the large scale limit involves an expansion of the solution around a local
equilibrium, the study of the local equilibria of the collision operator are of key
importance. Therefore, section 5 will be dedicated to the study of the properties
of the left-hand side of (4.4).
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4.3 Proof of proposition 4.1
Proof. From Eq. (4.3), one notes that the source term S(gε) is of order O(ε). Thus:

gε(x1, θ1, `1, x2, θ2, `2) = νf
νd
f ε(x1, θ1)f ε(x2, θ2)δ¯̀(x1,θ1,x2,θ2)(`1)δ¯̀(x2,θ2,x1,θ1)(`2) +O(ε).

(4.11)

Inserting this expression into the relations for F ε
1 and F ε

link and F ε
al (see Eqs. (3.3)),

one obtains (dropping the tildes for the new variables, and denoting Ṽ = Ṽ (x1, θ1, `1, x2, θ2, `2)
and bε = bε(θ1, θ2)):

F ε
1 =νff

ε(x1, θ1)
νd

∫
Lε

(
∇x1Ṽ f

ε(x2, θ2)δ¯̀(x1,θ1,x2,θ2)(`1)δ¯̀(x2,θ2,x1,θ1)(`2) +O(ε)
)
dx2

dθ2

π
d`1d`2,

F ε
link = νff

ε(x1, θ1)
νd

∫
Lε

(
∂θ1Ṽ f

ε(x2, θ2)δ¯̀(x1,θ1,x2,θ2)(`1)δ¯̀(x2,θ2,x1,θ1)(`2) +O(ε)
)
dx2

dθ2

π
d`1d`2,

F ε
al =νff

ε(x1, θ1)
νd

∫
Lε

(
∂θ1b

εf ε(x2, θ2)δ¯̀(x1,θ1,x2,θ2)(`1)δ¯̀(x2,θ2,x1,θ1)(`2) +O(ε)
)
dx2

dθ2

π
d`1d`2.

(4.12)

We note that if φ(x1, θ1, `1, x2, θ2, `2) ∈ L∞(Lε) with sufficient decay at infinity,
then ∫

Lε
∇x1Ṽ φ dx2

dθ2

π
d`1d`2 ≤ εC,

since the measure of Lε intersected with any compact set of R2× [−π/2, π/2]×R2

is of order ε. Indeed, the domain of integration with respect to `1 or `2 has a
measure of order ε. Thus, assuming that the O(ε) remainder in (4.11) is an L∞

function, which is legitimate in view of the diffusive character of (4.3), we get:

F ε
1 =νff

ε(x1, θ1)
νd

∫
Kε(x1,θ1)

∇x1Ṽ (x1, θ1, ¯̀(x1, θ1, x2, θ2), x2, θ2, ¯̀(x2, θ2, x1, θ1))f ε(x2, θ2))dx2
dθ2

π

+O(ε2),

F ε
link = νff

ε(x1, θ1)
νd

∫
Kε(x1,θ1)

∂θ1Ṽ (x1, θ1, ¯̀(x1, θ1, x2, θ2), x2, θ2, ¯̀(x2, θ2, x1, θ1))f ε(x2, θ2)dx2
dθ2

π

+O(ε2),

F ε
al = νff

ε(x1, θ1)
νd

∫
Kε(x1,θ1)

∂θ1b(θ1, θ2)f ε(x2, θ2)dx2
dθ2

π
+O(ε2),

(4.13)
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where Kε(x1, θ1) is the set of fibers intersecting fiber in (x, θ), given by:
Kε(x1, θ1) = {(x2, θ2) | |¯̀(x1, θ1, x2, θ2)| ≤

√
εL/2 , |¯̀(x2, θ2, x1, θ1)| ≤

√
εL/2}.

(4.14)
From the fact that Ṽ is a quadratic function of x1 + `1ω(θ1) − x2 − `2ω(θ2) and
the fact that setting `1 = ¯̀(x1, θ1, x2, θ2) and `2 = ¯̀(x2, θ2, x1, θ1) just cancels this
expression, one immediately notes that:

∇x1Ṽ (x1, θ1, ¯̀(x1, θ1, x2, θ2), x2, θ2, ¯̀(x2, θ2, x1, θ1)) = 0,
∂θ1Ṽ (x1, θ1, ¯̀(x1, θ1, x2, θ2), x2, θ2, ¯̀(x2, θ2, x1, θ1)) = 0.

So, finally:
F ε

1 = O(ε2), F ε
links,2 = O(ε2). (4.15)

We are left with:

F ε
al = νf

νd
f ε(x1, θ1)

∫
Kε(x1,θ1)

∂θ1b(θ1, θ2)f ε(x2, θ2)dx2
dθ2

π
+O(ε2). (4.16)

From now on, we write ω1 = ω(θ1) and ω2 = ω(θ2). By the change of variables
x2 7→ (s1, s2) defined by

x2 = x1 +
√
εL

2 s1ω1 −
√
εL

2 s2ω2,

with associated Jacobian

Jx2 = L
√
ε

2

(
cos θ1 − cos θ2
sin θ1 − sin θ2

)
,

and | det(Jx2)| = L2ε
4 | sin(θ1 − θ2)|, we have:

F ε
al(x1, θ1) = εC(x1, θ1)

π
2∫

−π2

∫
|s1|,|s2|≤1

| sin(θ1 − θ2)|∂θ1b(θ1, θ2)f ε(x1 +
√
εL

2 s1ω1 −
√
εL

2 s2ω2, θ2)

ds1ds2
dθ2

π
+O(ε2),

where C(x1, θ1) = L2νff
ε(x1,θ1)

4νd
. Thanks to (2.7) with β = 1, one notes that

∂θ1b(θ1, θ2) = α∂θ1 | sin(θ1−θ2)|, and then, | sin(θ1−θ2)|∂θ1b(θ1, θ2) = α
2∂θ1 sin2(θ1−

θ2). Then,

F ε
al(x1, θ1) = εα

2 C(x1, θ1)

π
2∫

−π2

∫
|s1|,|s2|≤1

∂θ1 sin2(θ1 − θ2) f ε(x1 +
√
εL

2 s1ω1 −
√
εL

2 s2ω2, θ2)

ds1ds2
dθ2

π
+O(ε2).

(4.17)
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By Taylor expansion, we have:

f ε(x1 +
√
εL

2 s1ω1 −
√
εL

2 s2ω2, θ2) = f ε(x1, θ2) +
√
εL

2 ∇xf
ε(x1, θ2).(s1ω1 − s2ω2)

+εL
2

4 (s1ω1 − s2ω2)T∇2
xf

ε(x1, θ2)(s1ω1 − s2ω2)

+O((
√
εL

2 |s1ω1 − s2ω2|)3),

where ∇2
xf

ε is the spatial-hessian matrix of f ε ((∇2
xf)ij = ∂2f

∂xi∂xj
), and for any

vector a of R2 and any 2 × 2 matrix B : aTBa = ∑
(i,j)∈[1,2]2 Bijajai. Integrating

over s1, s2 ∈ [−1, 1], the odd terms with respect to either s1 or s2 vanish. Therefore:
π
2∫

−π2

∫
|s1|,|s2|≤1

∂θ1 sin2(θ1 − θ2)f ε(x1 +
√
εL

2 s1ω1 −
√
εL

2 s2ω2, θ2)ds1ds2
dθ2

π

= 4

π
2∫

−π2

∂θ1 sin2(θ1 − θ2)f ε(x1, θ2)dθ2

π

+ εL2

6

π
2∫

−π2

∂θ1 sin2(θ1 − θ2)∇2
xf

ε(x1, θ2) : [ω1 ⊗ ω1 + ω2 ⊗ ω2]dθ2

π
+O(ε2),

(4.18)

where ∀A,B ∈ R2 , A : B = ∑
i,j∈[1,2]AijBij and for any vectors ω, ω′ ∈ R2, we

write (ω ⊗ ω′)ij = ωiω
′
j. Then:

π
2∫

−π2

∂θ1 sin2(θ1−θ2)∇2
x1f

ε(x1, θ2) : [ω1⊗ω1+ω2⊗ω2]dθ2

π
=

2∑
(i,j)=1

∂2

∂xixj

π
2∫

−π2

f ε(x1, θ2)Bij(θ1, θ2)dθ2

π
,

(4.19)
where:

Bij(θ1, θ2) = [ωi(θ1)ωj(θ1) + ωi(θ2)ωj(θ2)] sin(2(θ1 − θ2)).
A first consequence of what precedes is that F ε

al = O(ε). Therefore, S(gε) = O(ε2)
(instead of formally O(ε) as seen from Eq. (4.3)). As a consequence, the remainder
in (4.11) is O(ε2) instead of being O(ε), and the same is true for the remainders
in (4.12). Consequently, the remainders in (4.13) are O(ε3) instead of being O(ε2)
as before. It follows that the remainders in (4.15)-(4.16) are O(ε3) as well. Then,
inserting (4.18) and (4.19) into (4.16) (with remainder O(ε2)), we get (4.5)-(4.4),
which ends the proof.
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From now on, we focus on Eq. (4.4) in which we neglect the O(ε2) terms,
namely

−ξ∂θ
(
∂θΦ[f ε](x, θ)f ε

)
− d∂2

θf
ε

+ ε

[
∂tf

ε −∇x · (∇xU
0f ε)− ∂θ

([
∂θU

1 + ξG[f ε](x, θ)
]
f ε
)
− d∆xf

ε

]
= 0,

(4.20)

where Φ and G are given by (4.6)-(4.7) respectively, and we investigate the limit
ε→ 0. This is the object of the next section.

5 Large scale limit
In this section, the limit ε → 0 of the solution f ε to (4.20) is explored. For this
purpose, Eq. (4.20) is rewritten

∂tf
ε −∇x · (∇xU

0f ε)− ∂θ
(
(∂θU1 + ξG[f ε])f ε

)
− d∆xf

ε = 1
ε
Q(f ε), (5.1)

where the collision operator Q(f ε) is defined by

Q(f) = d∂2
θf + ξ∂θ(∂θΦ[f ])f), (5.2)

Φ[f ] = C1

∫ π
2

−π2
sin2(θ − θ2)f dθ2

π
, (5.3)

and where we recall that C1 and G[f ] are defined by (4.7) and (4.8) respectively.
The operator Q is a non linear operator on f which acts on θ only and leaves x
and t as parameters. For each function Φ(θ), we define MΦ(θ) by:

MΦ(θ) = 1
Z
e−ξΦ(θ)/d, (5.4)

where Z is a normalization factor such that Z =
∫ π

2
−π2

e−ξΦ(θ)/d dθ
π

. Thus, MΦ(θ) is a
probability distribution of θ. Such functions are called generalized Von Mises dis-
tributions (the Von Mises distribution being the case of Φ(θ) = − cos θ). The next
section is devoted to the analysis of the properties of Q(f) and follows closely [13].

5.1 Properties of Q
5.1.1 Equilibria

In this section, the equilibria of the operator Q are studied, and the following
proposition is proven:
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Proposition 5.1. Here, we restrict ourselves to functions of θ only.
(i) The operator Q can be written:

Q(f) = d∂θ

(
MΦ[f ]∂θ(

f

MΦ[f ]
)
)
. (5.5)

(ii) The equilibrium solutions of Q, i.e. the functions f such that Q(f) = 0 are
of the form f(θ) = ρMΦ[f ], where MΦ[f ] is defined by Eq. (5.4) and ρ is a positive
constant.

This proposition shows that the equilibria of operator Q are generalized Von
Mises distributions of θ, weighted by the particle density.

Proof. To prove (i), one can note that:

d∂θ

(
MΦ[f ]∂θ(

f

MΦ[f ]
)
)

= d∂θ

(
∂θf−f∂θ(log(MΦ[f ]))

)
= ∂θ

(
d∂θf+ξ∂θΦ[f ]f

)
= Q(f).

To prove (ii), note that f = ρMΦ[f ] is solution of (5.5). Conversely, suppose that
f is such that

d∂θ

(
MΦ[f ]∂θ(

f

MΦ[f ]
)
)

= 0.

We define the sets Hf and Vf by:

Hf = {φ measurable on [−π2 ,
π

2 ] |
∫ π

2

−π2

∣∣∣∣∣ φ

MΦ[f ]

∣∣∣∣∣
2

MΦ[f ]
dθ

π
< +∞},

and
Vf = {φ ∈ H |

∫ π
2

−π2

∣∣∣∣∣∂θ( φ

MΦ[f ]
)
∣∣∣∣∣
2

MΦ[f ]
dθ

π
< +∞}.

The norms ‖ · ‖Hf , ‖ · ‖Vf on Hf and Vf are then defined such that:
‖φ‖2

Vf
= ‖φ‖2

Hf
+ |φ|2Vf .

where
‖φ‖Hf =

∫ π/2

−π/2

∣∣∣∣∣ φ

MΦ[f ]

∣∣∣∣∣
2

MΦ[f ]
dθ

π
,

and
|φ|Vf =

∫ π/2

−π/2

∣∣∣∣∣∂θ( φ

MΦ[f ]
)
∣∣∣∣∣
2

MΦ[f ]
dθ

π
.

For f ∈ Vf using Green’s formula, we get:∫ π/2

−π/2
d∂θ

(
MΦ[f ]∂θ(

f

MΦ[f ]
)
)

f

MΦ[f ]

dθ

π
= −d

∫ π/2

−π/2
MΦ[f ]

∣∣∣∣∣∂θ( f

MΦ[f ]
)
∣∣∣∣∣
2
dθ

π
= 0,

and thus, ∂θ( f
MΦ[f ]

) = 0. Then, f = ρMΦ[f ], with ρ > 0, which ends the proof.
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Now, the following lemma is proven:

Lemma 5.2. For any function f(θ), the potential function Φ[f ](θ) of Eq. (5.3)
can be written:

Φ[f ](θ) = C − C1

2 ηf cos 2(θ − θf ), (5.6)

where C1 is given by (4.8), C = C1ρf
2 , ρf =

∫ π/2
−π/2 f

dθ
π

and (ηf , θf ) ∈ R+ × [−π
2 ,

π
2 )

are uniquely defined by:

ηf

(
cos 2θf
sin 2θf

)
=
∫ π

2

−π2

(
cos 2θ′
sin 2θ′

)
f(θ′)dθ

′

π
,

or equivalently by:∫ π
2

−π2
cos 2(θ′ − θf )f(θ′)dθ

′

π
= ηf ,

∫ π
2

−π2
sin 2(θ′ − θf )f(θ′)dθ

′

π
= 0. (5.7)

Remark that the second condition is equivalent to saying that

θf = 1
2 tan−1

( ∫ sin 2θ′f(θ′)dθ′∫
cos 2θ′f(θ′)dθ′

)
,

and this defines θf uniquely modulo π.

Proof. As sin2(θ−θ′) = 1
2(1−cos 2θ cos 2θ′−sin 2θ sin 2θ′), Φ[f ] can be decomposed

into:

Φ[f ](θ) = C1

∫ π
2

−π2
sin2(θ − θ′)f(θ′)dθ

′

π

= C1

2

(∫ π
2

−π2
f(θ′)dθ

′

π
− cos 2θ

∫ π
2

−π2
cos 2θ′f(θ′)dθ

′

π
− sin 2θ

∫ π
2

−π2
sin 2θ′f(θ′)dθ

′

π

)

= C1

2

(
ρ− ηf cos 2(θ − θf )

)
,

The result follows.

Let us now suppose that νf
νd

depends on ηf :

Hypothesis 5.1. The parameter νf
νd

is supposed to be inversely proportional to the
local fiber density: νf

νd
= γ

ηf
, with γ a constant.

Note that, thanks to Hypothesis 5.1, we have

ξC1ηf
2d = α

ξL2νf
2νd

ηf
1
2d = ξαL2γ

4d = r, (5.8)

where r is a constant depending only on the data of the problem.
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Proposition 5.3. Here, we restrict ourselves to functions of θ only. Under
Hypothesis 5.1, the equilibrium solutions of Q, i.e. the functions feq such that
Q(feq) = 0 are of the form:

feq(θ) = ρMθ0(θ), (5.9)
for arbitrary ρ ∈ [0,∞) and θ0 ∈ [−π

2 ,
π
2 ) and where:

Mθ0 = er cos 2(θ−θ0)

Z
,

Z = Z(r) =
∫ π

2

−π2
er cos 2(θ−θ0)dθ

π
,

(5.10)

with r given by (5.8). We have ηf = ρc(r) with

c(r) =
∫ π

2
−π2

cos 2θer cos 2θ dθ
π∫ π

2
−π2

er cos 2θ dθ
π

. (5.11)

Proposition 5.3 gives a precise description of the equilibria ofQ, in terms of classical
von Mises-Fisher distributions.

Proof of proposition 5.3. From Proposition 5.1, the equilibria of the collision op-
erator Q(f) are of the form

f = ρ
e−ξ

Φ[f ](θ)
d∫ π

2
−π2

e−ξ
Φ[f ](θ)
d

dθ
π

.

Thanks to Eq. (4.8), Lemma 5.2,Eqs. (5.8) and (5.11), we get:

f(θ) = ρ
e−

ξC
d

+ ξC1
2d ηf cos 2(θ−θf )∫ π

2
−π2

e−
ξC
d

+ ξC1
2d ηf cos 2(θ′−θf ) dθ′

π

= ρ(x) er cos 2(θ−θf )∫ π
2
−π2

er cos 2(θ′−θf ) dθ′
π

, (5.12)

where (ηf , θf ) ∈ R+ × [−π
2 ,

π
2 ) satisfy Eq. (5.7). Therefore, f is of the form (5.9)

with r = ξC1ηf
2d . By Hypothesis 5.1 and (4.8), r = ξαL2γ

4d . Conversely, let f be given
by (5.9). Then, by (5.6),and (5.8), φ[f ] = C − r d

ξ
cos 2(θ − θf ) with θf uniquely

determined by
∫ π/2
−π/2 sin 2(θ − θf )f(θ)dθ

π
= 0. But

∫ π/2
−π/2 sin 2(θ − θ0)f(θ)dθ

π
= 0 by

symmetry, showing that θf = θ0 mod(π). Therefore, Mφ[f ] = Mθ0 and f = ρMφ[f ]
showing that f is an equilibrium, which ends the proof.

Thanks to Eq. (5.11), Hypothesis 5.1 amounts to supposing that the ratio νf
νd

is inversely proportional to the fiber density.
Since there is no obvious conservation relation other than the conservation of

the local fiber density, the only collision invariants in this model are the constants.
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The integration of equation (4.4) against these invariants does not allow us to find
the evolution equation for the mean orientation. In order to obtain an equation on
θ0, inspired from [17], the concept of Generalized Collision Invariants (GCI), i.e. of
collision invariants when acting on a restricted subset of functions f , is introduced.

5.1.2 Collision invariant

A collision invariant is a function Ψ such that for all function f of θ,
∫
Q(f)Ψdθ =

0. However, due to the lack of momentum conservation, the only collision invari-
ants are the constants. This is not enough to determine both ρ and θ0. To this
aim, following [19] and [17], we introduce the notion of GCI. For any θ0 ∈ [−π

2
π
2 ),

we define Lθ0 as the following linear operator:

Lθ0f = d∂θ

(
Mθ0∂θ(

f

Mθ0

)
)
.

Note that Q(f) = Lθff where θf satisfies Eq. (5.7).

Definition 5.4. For a given θ0 ∈ [−π
2 ,

π
2 ) a GCI associated to θ0 is a function Ψ

such that: ∫ π
2

−π2
Lθ0fΨdθ

π
= 0 ∀fsuch that θf = θ0 mod(π). (5.13)

The set of the GCI associated to a given θ0 ∈ [−π
2 ,

π
2 ) is a linear space denoted by

Gθ0.

Lemma 5.5. Ψ ∈ Gθ0 if and only if ∃β ∈ R such that:

L∗θ0Ψ = β sin 2(θ − θ0), (5.14)

where L∗θ0 is the L2 formal adjoint of Lθ0, i.e.

L∗θ0Ψ = − d

Mθ0

∂θ

(
Mθ0∂θΨ

)
.

Proof. By (5.7), the condition θf = θ0 mod(π) is equivalent to the linear constraint:∫ π
2

−π2
f sin 2(θ − θ0)dθ

π
= 0.

By a classical duality argument [17], we deduce that Ψ ∈ Gθ0 if and only if:

∃β ∈ R such that
∫ π

2

−π2
Lθ0fΨdθ

π
= β

∫ π
2

−π2
f sin 2(θ − θ0)dθ

π
∀f.

Note that now, there are no more constraints on f . Therefore, we can eliminate f
and get (5.14).
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Proposition 5.6. Any GCI Ψθ0 associated to θ0 can be written:

Ψθ0(θ) = C + βg(θ − θ0), (5.15)

with arbitrary C, β ∈ R and with g an odd π periodic function belonging to
H1

0 (0, π2 ), whose expression is:

g(θ) = 1
2r

(
θ − π

2

∫ θ
0 e
−r cos 2θ′ dθ′

π∫ π
2

0 e−r cos 2θ′ dθ′
π

)
. (5.16)

Proof. Following [19], [17], using Lax-Milgram’s theorem and Poincaré’s inequality,
it is easy to show that the problem L∗θ0(Ψ) = d

ξ
β sin 2(θ−θ0) has a unique solution

in the space Ḣ1(−π
2 ,

π
2 ) of functions H1(−π

2 ,
π
2 ) with zero mean. Then, the change

of variables θ′ = θ− θ0 is performed, and functions of the form Ψ(θ) = βg(θ) with
g odd are searched. Then, Ψ ∈ Ḣ1([−π

2 ,
π
2 ]) if and only if g belongs to H1

0 (0, π2 ).
Straightforward computations show that Ψ is a solution of (5.14) if and only if g
is a solution of

(M0g
′)′ = − sin 2θM0. (5.17)

As M0(θ) = er cos 2θ

Z
and as we search for g ∈ H1

0 (0, π2 ), an analytic expression for
g can be found. Indeed, since − sin 2θM0 = 1

2rM0, integrating (5.17) with respect
to θ once, we get:

g′(θ) = 1
2r + CZe−r cos 2θ,

for an appropriate constant C. Then, since g ∈ H1
0 (0, π2 ),

g(θ) = θ

2r + CZ
∫ θ

0
e−r cos 2θ′dθ′.

Finally, as g ∈ H1
0 (0, π), g(0) = g(π) = 0 and C can be determined:

C = − π

4rZ
∫ π

2
0 e−r cos 2θ′dθ′

= − 1
2rZ

∫ π/2
−π/2 e

−r cos 2θ′dθ′
= − 1

2rZ2 .

Indeed, we have: ∫ π/2

−π/2
e−r cos 2θ′dθ′ =

∫ π/2

−π/2
er cos 2θ′dθ′,

by the change of variable θ → π
2 − θ for θ > 0 and θ → −π

2 − θ for θ < 0. This
yields the result. For further usage, we note that

g′(θ) = 1
2r (1− 1

M0Z2 ). (5.18)
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5.2 Limit ε→ 0
In this section, the formal limit ε→ 0 of Eq. (4.4) is studied. We aim to prove the
following theorem:

Theorem 5.7. Under the scaling 4.2 and 5.1, the solution f ε of eq. (5.1) formally
converges to f(x, θ, t) given by

f(x, θ, t) = ρ(x, t)Mθ0(x,t)(θ), (5.19)

where Mθ0 is given by (5.10) and ρ(x, t) and θ0(x, t) satisfy the following system:

∂tρ−∇x · (∇xU
0ρ)− d∆xρ = 0, (5.20)

and

ρ∂tθ0 − ρ∇xU
0 · ∇xθ0 − 2α2∇xρ · ∇xθ0 − α2ρ∆xθ0

+α3(ρ∇2
xθ0 +∇xθ0 ⊗∇xρ+∇xρ⊗∇xθ0) : [ω0 ⊗ ω0 − ω⊥0 ⊗ ω⊥0 ]

+
(
2ρα3∇xθ0 ⊗∇xθ0 − α4∇2

xρ
)

: [ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0] + α5ρ〈∂θU1〉 = 0,
(5.21)

where 〈h〉 =
π/2∫
−π/2

h(θ)Mθ0(θ)dθ
π

for any function h of θ ∈ [−π
2 ,

π
2 ), and where the

coefficients α2, α3, α4, α5 are given by:

α2 = d

α1
(α1 + ξαL4γc(r)

24 ),

α3 = ξαL4γ

24α1
( 1
4Z2 − 1 + 6dc(r)

ξαL2γ
),

α4 = ξαL4γ

192Z2α1
,

α5 = 1
α1
,

(5.22)

with α1 given by:
α1 = 1− 1

Z2 . (5.23)

Proof. Suppose that all the functions are as smooth as needed and that all conver-
gences are as strong as needed. In the limit ε→ 0, let f ε → f . As Q(f ε) = O(ε),
then Q(f) = 0. By proposition 5.6, we deduce that f is given by (5.19) with ρ ≥ 0
and θ0 ∈ [−π

2 ,
π
2 ) to be determined. In order to find the equations for ρ and θ0, we

use the set of GCI given by Prop. 5.3.
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Equation for ρ The use of the constant GCI amounts to integrating Eq. (5.1)
over [−π

2 ,
π
2 ). This gives:

∫ π
2

−π2

{
∂tf

ε −∇x · (∇xU
0f ε)− ∂θ

([
∂θU

1 + ξG[f ε](θ)
]
f ε
)
− d∆xf

ε

}
dθ

π
= 0,

which leads to the continuity equation for ρε:

∂tρ
ε −∇x · (∇xU

0ρε)− d∆xρ
ε = 0.

In the limit ε→ 0, ρε → ρ which leads to Eq. (5.20).
Equation for θ0 We multiply Eq. (5.1) by the GCI Ψθfε associated with the

direction θfε of f ε, namely Ψθfε = g(θ − θfε) where g is the function defined in
Prop. 5.6. We integrate with respect to θ and first note that:∫ π

2

−π2
Q(f ε)Ψθfεdθ =

∫ π
2

−π2
Lθfεf

εΨθfεdθ = 0,

by (5.13). Since f ε → ρMθ0 , we have θfε → θ0 and Ψθfε → Ψθ0 . Therefore, in the
limit ε→ 0, we get:
∫ π

2

−π2

(
∂t(ρMθ0)−∇x·(∇xU

0ρMθ0)−∂θ
([
∂θU

1+ξG[ρMθ0 ](θ)
]
ρMθ0

)
−d∆x(ρMθ0)

)
Ψθ0dθ = 0.

(5.24)
For simplicity, we denote Mθ0 = M . We have:

∆x(ρM) = M∆xρ+ ρ∆xM + 2∇xρ · ∇xM,

∇x · (∇xU
0ρM) = M∇x · (∇xU

0ρ) + ρ∇xU
0 · ∇xM.

Using the continuity equation (5.20), we have:

∂t(ρM) = ρ∂tM +M∂tρ = ρ∂tM + (∇x · (∇xU
1ρ) + d∆xρ)M.

So:

∂t(ρM)−∇x·(∇xU
0ρM)−d∆x(ρM) = ρ∂tM−ρ∇xU

0·∇xM−dρ∆xM−2d∇xρ·∇xM.

Therefore, Eq. (5.24) reads:

ρ
∫ π

2

−π2
∂tMΨdθ

π
−X1 −X2 −X3 −X4 = 0, (5.25)
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where:

X1 =
∫ π

2

−π2

(
ρ(∇xU

0 + 2d∇xρ

ρ
) · ∇xM

)
Ψdθ
π
, (5.26)

X2 =
∫ π

2

−π2
∂θ

(
∂θU

1ρM

)
Ψdθ
π
, (5.27)

X3 = ξ
∫ π

2

−π2
∂θ

(
G[ρM ](θ)ρM

)
Ψdθ
π
, (5.28)

X4 = dρ
∫ π

2

−π2
∆xMΨdθ

π
. (5.29)

We now turn to the development of each term of Eq. (5.25). We have:

∇xM = 2r sin 2(θ − θ0)M∇xθ0. (5.30)

Then,

(∇xU
0 + 2d∇xρ

ρ
) · ∇xM = 2r sin 2(θ − θ0)M

(
∇xU

0 + 2d∇xρ

ρ

)
· ∇xθ0,

and thus, X1 can be written:

X1 = 2rρ
(
∇xU

0 · ∇xθ0 + 2d∇xρ · ∇xθ0

ρ

)
〈sin 2(θ − θ0)Ψ〉.

From integration by parts, the following relations can be written:

〈sin 2(θ − θ0)Ψ〉 = 1
4r2 (1− 1

Z2 ) = 1
4r2α1. (5.31)

Therefore, we have:

X1 = ρα1

2r (∇xU
0 · ∇xθ0 + 2d∇xρ · ∇xθ0

ρ
). (5.32)

Since X2 is the integral of a π-periodic function over a period, we can write

X2 =
∫ θ0+π/2

θ0−π/2
∂θ
(
∂θU

1ρM
)
Ψdθ
π
.

Now, by construction, (see prop 5.6), Ψ(θ0 − π
2 ) = Ψ(θ0) = Ψ(θ0 + π

2 ) = 0. So,
integrating by parts, we have

X2 = −
∫ θ0+π

2

θ0−π/2
ρM ∂θU

1 ∂θΨ
dθ

π
.
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Now, by construction again (see (5.18)), we have

∂θΨ = 1
2r (1− 1

MZ2 ). (5.33)

Using again the π-periodicity of U1, we obtain:

X2 = − ρ

2r 〈∂θU
1(1− 1

MZ2 )〉 = − ρ

2r 〈∂θU
1〉. (5.34)

Now, let us turn to X3. The details of this computation are postponed to ap-
pendix 9. We find:

X3 = −dL
2

12

[
− c(r)(ρ∆xθ0 + 2∇xθ0 · ∇xρ)

+
(
2ργ1∇xθ0 ⊗∇xθ0 −

1
8Z2∇

2
xρ
)

: [ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0]

+ γ1(ρ∇2
xθ0 +∇xθ0 ⊗∇xρ+∇xρ⊗∇xθ0) : [ω0 ⊗ ω0 − ω⊥0 ⊗ ω⊥0 ]

]
,

(5.35)

where, using (5.8),

γ1 = 1
4Z2 − 1 + 3c(r)

2r = 1
4Z2 − 1 + 6dc(r)

αL2ξγ
.

We note that αL4γ
48r γ1 = 1

2rα3. Finally, let us explicit the last term X4. A direct
computation gives:

∆xM = M

[
4r
[
r sin2 2(θ − θ0)− cos 2(θ − θ0)

]
|∇xθ0|2 + 2r sin 2(θ − θ0)∆xθ0

]
.

Then, we deduce that

X4 = dρ

[
2r∆xθ0〈sin 2(θ − θ0)Ψ〉

+ |∇xθ0|24r[−〈cos 2(θ − θ0)Ψ〉+ r〈sin2 2(θ − θ0)Ψ〉]
]
.

By symmetry, we have:

〈sin2 2(θ − θ0)Ψ〉 = 1
r
〈cos 2(θ − θ0)Ψ〉.
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Therefore, with (5.31), we get:

X4 = dρ

2r (1− 1
Z2 )∆xθ0 = dρ

2rα1∆xθ0. (5.36)

Now, ∂tM = 2r sin 2(θ − θ0)M∂tθ0, and

ρ
∫ π

2

−π2
∂tM Ψ = 2rρ〈sin 2(θ − θ0)Ψ〉∂tθ0 = ρ

2r (1− 1
Z2 )∂tθ0 = α1ρ

2r ∂tθ0 (5.37)

Collecting (5.32) to (5.36) and inserting them into (5.25) leads to (5.21).

6 Case of a homogeneous fiber distribution: sta-
tionary solutions

In this section, we study the stationary solutions of (5.20)-(5.21) in the case of
a spatially homogeneous fiber distribution and consequently no external spatial
potential U0 = 0. We make the following assumption:

Hypothesis 6.1. The fiber spatial distribution is supposed to be homogeneous, i.e.
there exists a constant ρ0 > 0 such that ρ(x, t) = ρ0 for all (x, t) ∈ R2 × [0,∞).
We also suppose that there are no external spatial forces, i.e. U0 = 0.

We first note that in the absence of external forces, a uniform and constant
density ρ0 is a solution of Eq. (5.20). Now, we are interested in the stationary
solutions for the fiber orientation equation (5.21). Noting that the terms involv-
ing the spatial derivatives of ρ, we find that such stationary solutions satisfy the
following equation:

α2∆xθ0−α3[ω0 ⊗ ω0 − ω⊥0 ⊗ ω⊥0 ] : ∇2
xθ0

− 2α3[ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0] : ∇xθ0 ⊗∇xθ0 = α5〈∂θU1〉.
(6.1)

In this equation, the coefficients r, α1, α2 and α3 are constants thanks to (5.8).
Moreover, using (5.22), they can be written as functions of d, L2 and r as follows:

α1(r) = 1− 1
Z(r)2 , (6.2)

α2(d, r, L2) = d

(
1 + L2rc(r)

6α1(r)

)
, (6.3)

α3(d, r, L2) = dL2r

6α1(r)A(r). (6.4)
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with
A(r) = dL2r

6α1(r)

(
1

4Z(r)2 − 1 + 3
2
c(r)
r

)
. (6.5)

We now show that (6.1) is an elliptic equation. We first introduce some definitions.
Given a function f(x,E) smooth in its arguments x ∈ Ω, E ∈ R×R2×S2(R),

where S2(R) is the space of 2 × 2 symmetric matrices with real coefficients, we
define the non linear differential operator F : C∞(R2) → C∞(R2) such that for
any x ∈ R2 and any u ∈ C∞(R2), we have

F (u(x)) = f(x,D2u(x)),

where D2u = {Dαu, α ∈ N2, |α| ≤ 2} and where, for a multi-index α = (α1, α2) ∈
N2, |α| = α1 + α2 and Dαu = ∂|α|u

∂
α1
x1 ∂

α2
x2

. The operator F is said to be elliptic at
u1 ∈ C∞(R2) (see [34]) if its linearization DF (u1) is an elliptic, linear differential
operator. We state the following proposition:

Proposition 6.1. Eq. (6.1) can be put in the form

f(x,D2θ0(x)) = 0, x ∈ R2, (6.6)

where f(x,D2θ0) is the following operator, quasi linear in θ0:

f(x,D2θ0) =
2∑

i,j=1
∂xi
(
aij(θ0)∂xjθ0

)
− α5h(θ0). (6.7)

Here, h(θ0) = 〈∂θU1〉 and A(θ0) = (aij(θ0))i,j=1,2 is a 2× 2 matrix such that:

A(θ0) =
(
α2 − α3 cos 2θ0 −α3 sin 2θ0
−α3 sin 2θ0 α2 + α3 cos 2θ0

)
. (6.8)

Moreover, if the following condition is satisfied for all r ∈ R+:

A(r) + c(r) ≥ 0, (6.9)

where A(r) is given by (6.5), then F (θ) = f(x,D2θ) is elliptic at θ1 for all θ1 ∈
C2(R2).

Proof. For any θ ∈ [−π
2 ,

π
2 ), letting ω(θ) = (cos θ, sin θ) and ω⊥(θ) = (− sin θ, cos θ),

we have:

d

dθ
[ω(θ)⊗ ω(θ)− ω⊥(θ)⊗ ω⊥(θ)] = 2[ω(θ)⊗ ω⊥(θ) + ω⊥(θ)⊗ ω(θ)].
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Let F : C∞(R2)→ C∞(R2) be the non linear differential operator defined by:

F (θ0) = f(x,D2θ0),

for f defined by (6.7). Let DF (θ1) denote its linearization at θ1. Then, DF (θ1) is
a linear map from C2(R2) to C0(R2) and reads, for v ∈ C2(R2):

DF (θ1)v = ∂F (θ1 + sv)
∂s

∣∣∣∣∣
s=0

=
2∑

i,j=1

(
aij(θ1)∂xi∂xjv

)
+ Lv, (6.10)

where L is a linear differential operator of order 1 the coefficients of which depend
on Dθ1:

Lv =
2∑

i,j=1

(
a′ij(θ1)(∂xiθ1∂xjv + ∂xiv∂xjθ1)

)
+

2∑
i=1

∂xiU
0∂xiv

+
2∑

i,j=1

(
a′′ij(θ1)∂xiθ1∂xjθ1 + a′ij(θ1)∂xixjθ1 − α5h

′(θ1)
)
v,

where a′ij(θ1) and a′′ij(θ1) are the first and second order derivatives of the coefficients
of matrix A which read:

(a′ij(θ1))i,j=1,2 = 2α3

(
sin 2θ1 − cos 2θ1
− cos 2θ1 − sin 2θ1

)
,

(a′′ij(θ1))i,j=1,2 = 4α3

(
cos 2θ1 sin 2θ1
sin 2θ1 − cos 2θ1

)
.

Therefore, the linearization of F at θ1 is elliptic provided that the matrix A(θ1) =(
aij(θ1)

)
i,j=1,2

is positive-definite.
Note that the determinant of the matrix A(θ1) = (aij(θ1))i,j=1,2 is given by

det(A(θ1)) = α2
2 − α2

3 and does not depend on θ1. Moreover, det(A(θ1)) > 0
provided that |α2

α3
| > 1. The eigenvalues of the matrix A(θ1) solve

det(A(θ1)− λI) = λ2 − 2λα2 + α2
2 − α2

3 = 0

and the determinant ∆ = 4α2
3 is strictly positive as long as α3 6= 0. In this case,

the matrix A(θ1) has two distinct real eigenvalues given by:

λ± = (α2 ± α3).

Therefore, the matrix A(θ1) is positive definite if and only if α2 > |α3|.
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We now analyse the sign of each coefficient α1, α2, α3. First of all (see Eq. (5.10)),
the p-th derivative Z(p) of Z with respect to r reads:

Z(p)(r) =
π/2∫
−π/2

(cos 2θ)per cos 2θ dθ

π
,

and we have Z(2k)(r) ≥ 0 for all k ∈ N+ and all r ∈ R+ as the functions
θ → (cos 2θ)2ker cos 2θ are positive for any r ∈ R+. We deduce that Z(2k+1)(r)
are increasing functions of r for any k ∈ N+. Note that from the symmetry of the
function cos 2θ, we have for any k ∈ N+:

π/2∫
−π/2

(cos 2θ)2k+1dθ

π
= Z(2k+1)(0) = 0.

Therefore, we also have that Z(2k+1)(r) ≥ Z(2k+1)(0) ≥ 0 for any k ∈ N. We thus
obtain that for any p ∈ N and any r ∈ R+:

Z(p)(r) ≥ Z(p)(0) ≥ 0,

and we note that Z(r)→∞ as r →∞. Moreover, as Z(0) = 1 we deduce Z(r) ≥ 1
for any r ∈ [0,+∞). We also note that:

c(r) = Z(1)(r)
Z(r) ≥

Z(1)(0)
Z(r) ≥ 0,

and we have:

α1(r) ≥ 0, α2(d, r, L2) ≥ 0 ∀(r, L, d) ∈ R+ × R× R+.

Now, by integration by parts, we can write:

c(r)
r

= 1
rZ(r)

π/2∫
−π/2

cos 2θer cos 2θ dθ

π
= 1
Z(r)

(
1−

π/2∫
−π/2

cos2 2θer cos 2θ dθ

π

)

= 1
Z(r)(1− Z(2)(r)),

(6.11)

and using the previous analysis, we have:

Z(2)(r) ≥ Z(2)(0) = 1
2 .
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Therefore, (since Z(r) ≥ 1):
c(r)
r
≤ 1

2 ,

for any r ∈ R+. This relation together with the fact that 1− 1
4Z2(r) ≥

3
4 leads to:

α3(d, r, L2) = dL2r

6α1(r)(3c(r)
2r − (1− 1

4Z2 )) ≤ 0.

Now, we can write:
|α2

α3
| > 1 ⇔ α2 > −α3,

or equivalently, using Eqs. (6.3) and (6.4):

|α2

α3
| > 1 ⇔ 6α1(r)

drL2 > −(A(r) + c(r)).

Therefore, if (6.9) holds, then α2 > |α3| and the matrix A(θ1) is positive definite
for all r ∈ [0, 1], L ∈ R+, d ∈ R, independently of θ1 ∈ C2(R2). We conclude that
F is elliptic at θ1 for all θ1 ∈ C2(R2), provided (6.9) holds.

Remark 6.1. As shown by Fig. 2.24 , A(r)+ c(r) is positive for any r ∈ R+. The
rigorous proof of this fact will be the subject of future work.

0 0.5 1
−0.2

0

0.2

0.4

0.6

r

A(r)
c(r)
A(r)+c(r)

Figure 2.24: Functions A(r) (black), c(r) (green) and A(r)+c(r) (red) as functions
of r ∈ [0, 100].
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7 Conclusion
In this paper, we have formally derived a macroscopic model for temporarily linked
fibers interacting through alignment at the links. We have shown that the corre-
sponding kinetic model involves two distribution functions: the fiber distribution
function and the cross-link distribution function. The latter can be seen as a
joint two-particle fiber distribution function. This model provides a unique ex-
plicit example of a kinetic model closed at the level of the two particle distribution
function. We then considered the regime of a fast fiber linking/unlinking process,
where the link distribution function can be expressed simply in terms of the fiber
distribution function. We studied the diffusive limit of the resulting equation and
obtained a system of two coupled nonlinear diffusion equations for the fiber density
and mean orientation. In the homogeneous fiber density case, we showed that the
resulting quasilinear problem is elliptic. Future works will deeper investigate the
mathematical properties of the models, such as rigorously proving the mean-field
kinetic limit of the particle system or proving existence and uniqueness of smooth
solutions for the macroscopic diffusion system. Numerical simulations will be per-
formed to validate the macroscopic model by comparison with the individual based
model. Further perspectives are the removal of the fast fiber linking/unlinking hy-
pothesis, in order to understand how a finite lifetime of the cross-links affects the
macroscopic dynamics.
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hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys. 152
(2013) 1033-1068.

[14] P. Degond, G Dimarco, T. B. N. Mac and N. Wang, Macroscopic models
of collective motion with repulsion, Commun. Math. Sci., to appear, arxiv
preprint # 1404.4886.

[15] P. Degond, J-G. Liu, S. Motsch and V. Panferov, Hydrodynamic models of
self-organized dynamics: derivation and existence theory, Methods Appl. Anal.
20 (2013) 089-114.

[16] P. Degond and S. Mas-Gallic, Existence of solutions and diffusion approxi-
mation for a model Fokker-Planck equation, Transport Theory and Statistical
Physics 16 (1987) 589-636.

[17] P. Degond and S. Motsch, Continuum limit of self-driven particles with orien-
tation interaction, Math. Models Methods Appl. Sci. 18 Suppl. (2008) 1193-
1215.

[18] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, International
Series of Monographs on Physics, Vol 73, Oxford University Press, Oxford,
1999.

[19] A. Frouvelle, A continuum model for alignment of self-propelled particles with
anisotropy and density-dependent parameters, Math. Models Methods Appl.
Sci. 22 (2012) 1250011.

[20] F. Ginelli, F. Peruani, M. Bär and H. Chaté, Large-scale collective properties
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8 Proof of Theorem 3.1
8.1 Evolution equation for the fibers
For all observable functions Φ(x, θ), we define:

〈fN ,Φ〉 =
∫

Φ(x, θ)fN(t, x, θ)dx1dθ = 1
N

N∑
i=1

Φ(Xi(t), θi(t)).

Similarly, for all two-particle observable functions Ψ(x1, θ1, `1, x2, θ2, `2), we define:

〈〈gK ,Ψ〉〉 =
∫

Ψ(x1, θ1, `1, x2, θ2, `2)gK(x1, θ1, `1, x2, θ2, `2)dx1dx2
dθ1

π

dθ2

π
d`1d`2

= 1
2K

K∑
k=1

(
Ψ(Xi(k), θi(k), `

k
i(k), Xj(k), θj(k), `

k
j(k)) + Ψ(Xj(k), θj(k), `

k
j(k), Xi(k), θi(k), `

k
i(k))

)
,

where integrals over x are carried over R2, in θ over (−π
2 ,

π
2 ) and in ` over (−L

2 ,
L
2 ).

We recall the notations Ck
i(k),j(k) = (Xi(k), θi(k), `

k
i(k), Xj(k), θj(k), `

k
j(k)) (resp. Ck

j(k),i(k) =
(Xj(k), θj(k), `

k
j(k), Xi(k), θi(k), `

k
i(k))). Then:

d

dt
〈fN ,Φ〉 = 1

N

N∑
i=1

(
∇xΦ(Xi(t), θi(t)) ·

dXi(t)
dt

+ ∂θΦ(Xi(t), θi(t))
dθi(t)
dt

)
.

Using (2.10) and (2.11), we obtain:

d

dt
〈fN ,Φ〉

= − 1
N

N∑
i=1

[
(µ∇xΦ · ∇xU + λ∂θΦ∂θU)(Xi, θi) + d(µ∇xΦ · ∇x log(f̃N) + λ∂θΦ∂θ log(f̃N))(Xi, θi)

+µ∇xΦ(Xi, θi) ·
1
2

K∑
k=1

(∇x1V δi(k)(i) +∇x2V δj(k)(i))(Ck
i(k),j(k))

+λ∂θΦ(Xi, θi)
1
2

K∑
k=1

(∂θ1V δi(k)(i) + ∂θ2V δj(k)(i))(Ck
i(k),j(k))

+ λ∂θΦ(Xi, θi)
1
2

K∑
k=1

(∂θ1b δi(k)(i) + ∂θ2b δj(k)(i))(θi(k), θj(k))
]
.
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We get, using the definition of a distributional derivative:

d

dt
〈fN ,Φ〉 = 〈µ∇x·

(
fN∇x(U + d log f̃N)

)
+ λ∂θ

(
fN∂θ(U + d log f̃N)

)
,Φ〉

− µ

2N

N∑
i=1

(
∇xΦ(Xi, θi) ·

K∑
k=1

(∇x1V δi(k)(i) +∇x2V δj(k)(i))(Ck
i(k),j(k))

)

− λ

2N

N∑
i=1

(
∂θΦ(Xi, θi)

K∑
k=1

(∂θ1V δi(k)(i) + ∂θ2V δj(k)(i))(Ck
i(k),j(k))

)

− λ

2N

N∑
i=1

(
∂θΦ(Xi, θi)

K∑
k=1

(∂θ1b δi(k)(i) + ∂θ2b δj(k)(i))(θi(k), θj(k))
)
.

Now, exchanging the sums in i and k in the previous equation, one obtains:

d

dt
〈fN ,Φ〉 = 〈µ∇x ·

(
fN∇x(U + d log f̃N)

)
+ λ∂θ

(
fN∂θ(U + d log f̃N)

)
,Φ〉

− µ

2N

K∑
k=1

(
∇x1V (Ck

i(k),j(k)) · ∇xΦ(Xi(k), θi(k)) +∇x2V (Ck
i(k),j(k)) · ∇xΦ(Xj(k), θj(k)))

)

− λ

2N

K∑
k=1

(
∂θ1V (Ck

i(k),j(k))∂θΦ(Xi(k), θi(k)) + ∂θ2V (Ck
i(k),j(k))∂θΦ(Xj(k), θj(k)))

)

− λ

2N

K∑
k=1

(
∂θ1b(θi(k),θj(k))∂θΦ(Xi(k), θi(k)) + ∂θ2b(θi(k), θj(k))∂θΦ(Xj(k), θj(k))

)
.

From the symmetry of V (see Eq. (2.4)), the following expressions hold:

∇x2V (Ck
i(k),j(k)) = ∇x1V (Ck

j(k),i(k)), ∂θ2V (Ck
i(k),j(k)) = ∂θ1V (Ck

j(k),i(k)),

and from the symmetry of b, we have:

∂θ2b(θi(k), θj(k)) = ∂θ1b(θj(k), θi(k)),

leading to:

d

dt
〈fN ,Φ〉 = 〈µ∇x·

(
fN∇x(U + d log f̃N)

)
+ λ∂θ

(
fN∂θ(U + d log f̃N)

)
,Φ〉

− µ

2N

K∑
k=1

(
∇x1V (Ck

i(k),j(k)) · ∇xΦ(Xi(k), θi(k)) +∇x1V (Ck
j(k),i(k)) · ∇xΦ(Xj(k), θj(k)))

)

− λ

2N

K∑
k=1

(
∂θ1V (Ck

i(k),j(k))∂θΦ(Xi(k), θi(k)) + ∂θ1V (Ck
j(k),i(k))∂θΦ(Xj(k), θj(k)))

)

− λ

2N

K∑
k=1

(
∂θ1b(θi(k), θj(k))∂θΦ(Xi(k), θi(k)) + ∂θ1b(θj(k), θi(k))∂θΦ(Xj(k), θj(k))

)
,
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or again:
d

dt
〈fN ,Φ〉 = 〈µ∇x ·

(
fN∇x(U + d log f̃N)

)
+ λ∂θ

(
fN∂θ(U + d log f̃N)

)
,Φ〉

−K
N
〈〈 1

2K

K∑
k=1

(
δ(Ck

i(k),j(k))
+δ(Ck

j(k),i(k))

)
(x1, θ1, `1, x2, θ2, `2),

(
µ∇x1V (x1, θ1, `1, x2, θ2, `2) · ∇xΦ(x1, θ1)

+λ∂θ1V (x1, θ1, `1, x2, θ2, `2)∂θ1Φ(x1, θ1) + λ∂θ1b(θ1, θ2)∂θ1Φ(x1, θ1)
)
〉〉.

Therefore, we obtain:
d

dt
〈fN ,Φ〉 = 〈µ∇x ·

(
fN∇x(U + d log f̃N)

)
+ λ∂θ

(
fN∂θ(U + d log f̃N)

)
,Φ〉

−K
N
〈〈gK , µ∇x1V (x1, θ1, `1, x2, θ2, `2) · ∇xΦ(x1, θ1)〉〉

− K

N
〈〈gK , λ

(
∂θ1V (x1, θ1, `1, x2, θ2, `2) + ∂θ1b(θ1, θ2)

)
∂θΦ(x1, θ1)〉〉.

Finally, we get:
d

dt
〈fN ,Φ〉 =〈µ∇x ·

(
fN∇x(U + d log f̃N)

)
+ λ∂θ

(
fN∂θ(U + d log f̃N)

)
,Φ〉

+ µ
K

N
〈〈∇x1 ·

(
gK∇x1V

)
,Φ(x1, θ1)〉〉+ λ

K

N
〈〈∂θ1

(
gK∂θ1V + ∂θ1b

)
,Φ(x1, θ1)〉〉.

=〈µ∇x ·
(
fN∇x(U + d log f̃N)

)
+ λ∂θ

(
fN∂θ(U + d log f̃N)

)
+ K

N
[[µ∇x1 ·

(
gK∇x1V

)
+ λ∂θ1

(
gK(∂θ1V + ∂θ1b)

)
]](x1, θ1),Φ(x1, θ1)〉,

(8.1)
where, for a distribution T acting on functions of (x1, θ1, `1, x2, θ2, `2), we denote
by [[T ]](x1, θ1) the distribution which to any function Φ(x1, θ1) associates

〈[[T ]](x1, θ1),Φ(x1, θ1)〉 = 〈〈T,Φ1〉〉,
and where 1 is the constant function of the variables (x1, θ1, `1, x2, θ2, `2) equal to 1.
In the formal limit N →∞, K

N
→ ξ and given the assumptions on the regularizing

sequences ξN , ηN , we get that fN → f , f̃N → f . Then, ∇x · (f∇x log f) = ∆xf
and ∂θ(f∂θf) = ∂2

θf and we obtain:
df

dt
−µ∇x·((∇xU)f)−λ∂θ((∂θU)f)−µξ∇x·F1−λξ∂θF2−dµ∆xf−dλ∂2

θf = 0, (8.2)

where,

F1(x, θ) =
∫

(g∇xV )(x1, θ1, `1, x2, θ2, `2)dx2
dθ2

π
d`1d`2,

F2(x, θ) =
∫

((g∂θ1V )(x1, θ1, `1, x2, θ2, `2) + g(x1, θ1, `1, x2, θ2, `2)∂θ1b(θ1, θ2))dx2
dθ2

π
d`1d`2.



Appendix A 145

8.2 Evolution equation for the fiber links
Following the same principle as for fN and given that the links are maintained
over time, i.e. d`k

i(k)
dt

= d`k
j(k)
dt

= 0, ∀ k ∈ [1, K], one can write:

d

dt
〈〈gK ,Ψ〉〉 = 1

2K

k∑
k=1

[
∇x1Ψ(Ck

i(k),j(k)) ·
dXi(k)

dt
+∇x1Ψ(Ck

j(k),i(k)) ·
dXj(k)

dt

+∇x2Ψ(Ck
i(k),j(k)) ·

dXj(k)

dt
+∇x2Ψ(Ck

j(k),i(k)) ·
dXi(k)

dt

+ ∂θ1Ψ(Ck
i(k),j(k))

dθi(k)

dt
+ ∂θ1Ψ(Ck

j(k),i(k))
dθj(k)

dt

+ ∂θ2Ψ(Ck
i(k),j(k))

dθj(k)

dt
+ ∂θ2Ψ(Ck

j(k),i(k))
dθi(k)

dt

]
= E1 + . . .+ E4,

(8.3)

where Ek corresponds to the k-th line of (8.3). For the sake of simplicity, the
computation of E1 only is developed here. The computation of the other ones are
similar and omitted. From Eqs. (2.2), (2.3), one obtains:

E1 = 1
2K

k∑
K=1

[
∇x1Ψ(Ck

i(k),j(k)) ·
dXi(k)

dt
+∇x1Ψ(Ck

j(k),i(k)) ·
dXj(k)

dt

]

= − µ

2K

K∑
k=1

[(
∇x1Ψ(Ck

i(k),j(k)) · ∇x

(
U + d log f̃N

)
(Xi(k), θi(k))

+∇x1Ψ(Ck
j(k),i(k)) · ∇x

(
U + d log f̃N

)
(Xj(k), θj(k))

+ 1
2∇x1Ψ(Ck

i(k),j(k)) ·
K∑
k′=1

(
∇x1V δ(i(k′),i(k)) +∇x2V δ(j(k′),i(k))

)
(Ck

i(k′),j(k′))

+ 1
2∇x1Ψ(Ck

j(k),i(k)) ·
K∑
k′=1

(
∇x1V δ(i(k′),j(k)) +∇x2V δ(j(k′),j(k))

)
(Ck

i(k′),j(k′))
]
,

where we write V = V (x1, θ1, `1, x2, θ2, `2). Now, exchanging the sums in k and k′
and using the symmetry of V , one obtains:

E1 = −µ〈〈gK ,∇x1Ψ(x1, θ1, `1, x2, θ2, `2) ·
(
∇xU + d log f̃

)
(x1, θ1)〉〉

− µ

4K

K∑
k′=1

(
∇x1V (Ck

i(k′),j(k′)) ·
K∑
k=1

(
∇x1Ψ(Ck

i(k),j(k))δ(i(k),i(k′)) +∇x1Ψ(Ck
j(k),i(k))δ(j(k),i(k′))

))

− µ

4K

K∑
k′=1

(
∇x1V (Ck

j(k′),i(k′)) ·
K∑
k=1

(
∇x1Ψ(Ck

i(k),j(k))δ(i(k),j(k′)) +∇x1Ψ(Ck
j(k),i(k))δ(j(k),j(k′))

))
.

(8.4)
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Because there is no restriction on the number of links per fiber, the sums over k
cannot be simplified in this case. In order to express the third and fourth terms,
the number Ck′

i (resp. Ck′
j ) of fibers linked to fiber i(k′) (resp. j(k′)) is introduced:

Ck′

i = Card({k | i(k) = i(k′) or j(k) = i(k′)},
Ck′

j = Card({k | i(k) = j(k′) or j(k) = j(k′)},

where Card denote the cardinal of a set. Then, as K →∞, the following expression
holds for any chosen fiber k′:

1
2Ck′

i

K∑
k=1

(
Ψ(Ck

i(k),j(k))δi(k),i(k′) + Ψ(Ck
j(k),i(k))δj(k),i(k′))

)
→

K→∞

∫
(ΨP )(Xi(k′), θi(k′), `1, x2, θ2, `2)dx2

dθ2

π
d`1d`2,

where

P (Xi(k′), θi(k′), `, x2, θ2, `2) = g(Xi(k′), θi(k′), `, x2, θ2, `2)∫
g(Xi(k′), θi(k′), `1, x2, θ2, `2)dx2

dθ2
π
d`1d`2

,

is the conditional probability of finding a link conditioned on the fact that one of
the fibers of this link has the same location and orientation as i(k′). Then, as N →
∞, K →∞ such that K

N
→ ξ > 0 , Ck′

i is the mean number of links per fiber. The
mean number of links in the volume dXi(k′)dθi(k′) isK

∫
g(Xi(k′), θi(k′), `, x2, θ2, `2)dx2

dθ2
π
d`1d`2

and the mean number of fibers in dXi(k′)dθi(k′) is Nf(Xi(k′), θi(k′)). Thus:

Ck′

i →
N→∞
K→∞
K
N
→ξ>0

ξ

∫
g(Xi(k′), θi(k′), `1, x2, θ2, `2)dx2

dθ2
π
d`1d`2

f(Xi(k′), θi(k′))
.

So, we get:
K∑
k=1

(
Ψ(Ck

i(k),j(k))δi(k),i(k′)+Ψ(Ck
j(k),i(k))δj(k),i(k′)

)
→

N→∞
K→∞
K
N
→ξ>0

2ξ
f(Xi(k′), θi(k′))

∫
(Ψg)(Xi(k′), θi(k′), `1, x2, θ2, `2)dx2

dθ2

π
d`1d`2.

Inserting these expressions in Eq. (8.4), one obtains:

E1 →
N→∞
K→∞
K
N
→ξ>0

− µ〈〈g,∇x1Ψ(x1, θ1, `1, x2, θ2, `2) ·
(
∇xU + d log f̃

)
(x1, θ1)〉〉

− µ ξ

2K

K∑
k′=1

(
∇x1V (Ck

i(k′),j(k′)) · ψ1(Xi(k′), θi(k′)) +∇x1V (Ck
j(k′),i(k′)) · ψ1(Xj(k′), θj(k′))

)
,
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where,

ψ1(x1, θ1) = 1
f(x1, θ1)

∫ (
g∇x1Ψ

)
(x1, θ1, `1, x2, θ2, `2)dx2

dθ2

π
d`1d`2. (8.5)

Finally, we find:

E1 →
N→∞
K→∞
K
N
→ξ>0

− µ〈〈g,∇x1Ψ(x1, θ1, `1, x2, θ2, `2) ·
(
∇xU + d log f̃

)
(x1, θ1)〉〉

− ξµ〈〈g,∇x1V (x1, θ1, `1, x2, θ2, `2) · ψ1(x1, θ1)〉〉.

After the same treatment for the four other terms of Eq. (8.3) and in the limit
K,N → ∞, K

N
→ ξ > 0, one obtains the final equation for g (writting X for

(x1, θ1, `1, x2, θ2, `2)):

d

dt
〈〈g(X),Ψ(X)〉〉

= −µ〈〈g(X),∇x1Ψ(X) · ∇xU(x1, θ1)〉〉 − µ〈〈g,∇x2Ψ(X) · ∇xU(x2, θ2)〉〉
− λ〈〈g, ∂θ1Ψ(X)∂θU(x1, θ1)〉〉 − λ〈〈g, ∂θ2Ψ(X)∂θU(x2, θ2)〉〉
− dµ〈〈g,∇x1Ψ(X) · ∇x log f(x1, θ1)〉〉 − dµ〈〈g,∇x2Ψ(X) · ∇x log f(x2, θ2)〉〉
− dλ〈〈g, ∂θ1Ψ(X)∂θ log f(x1, θ1)〉〉 − dλ〈〈g, ∂θ2Ψ(X)∂θ log f(x2, θ2)〉〉
− µξ〈〈g,∇x1V (X) · ψ1(x1, θ1)〉〉 − µξ〈〈g,∇x1V (X) · ψ2(x1, θ1)〉〉
− λξ〈〈g,

(
∂θ1V (X) + ∂θ1b(θ1, θ2)

)
χ1(x1, θ1)〉〉

− λξ〈〈g,
(
∂θ1V (X) + ∂θ1b(θ1, θ2)

)
χ2(x1, θ1)〉〉,

(8.6)

where,

ψ2(x1, θ1) = 1
f(x1, θ1)

∫ (
g∇x2Ψ

)
(x2, θ2, `2, x1, θ1, `1)dx2

dθ2

π
d`1d`2, (8.7)

χ1(x1, θ1) = 1
f(x1, θ1)

∫ (
g∂θ1Ψ

)
(x1, θ1, `1, x2, θ2, `2)dx2

dθ2

π
d`1d`2, (8.8)

χ2(x1, θ1) = 1
f(x1, θ1)

∫ (
g∂θ2Ψ

)
(x2, θ2, `2, x1, θ1, `1)dx2

dθ2

π
d`1d`2. (8.9)

We introduce the notation Y1 = (x1, θ1, `1) and Y2 = (x2, θ2, `2), and prove the
following lemma:
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Lemma 8.1. For any function h(Y1, Y2), we have:

〈〈g, h(Y1, Y2)ψ1(x1, θ1)〉〉 = −〈〈∇x1

(
g(X)Fh(x1, θ1)

f(x1, θ1)
)
,Ψ(X)〉〉,

〈〈g, h(Y1, Y2)ψ2(x1, θ1)〉〉 = −〈〈∇x2

(
g(X)Fh(x2, θ2)

f(x2, θ2)
)
,Ψ(X)〉〉,

〈〈g, h(Y1, Y2)χ1(x1, θ1)〉〉 = −〈〈∂θ1
(
g(X)Fh(x1, θ1)

f(x1, θ1)
)
,Ψ(X)〉〉,

〈〈g, h(Y1, Y2)χ2(x1, θ1)〉〉 = −〈〈∂θ2
(
g(X)Fh(x2, θ2)

f(x2, θ2)
)
,Ψ(X)〉〉,

(8.10)

where ψ1, ψ2, χ1 and χ2 are defined by Eq. (8.5) and Eqs. (8.7)-(8.9), and where :

Fh(x1, θ1) =
∫

(gh)(x1, θ1, `1, x2, θ2, `2)dx2
dθ2

π
d`2d`1. (8.11)

Proof. Note that for any function h(Y1, Y2), we have:

〈〈g, h(Y1, Y2)ψ1(x1, θ1)〉〉

=
∫ (

gh
)
(Y1, Y2)

(
1

f(x1, θ1)

∫
(g∇x1Ψ)(x1, θ1, `4, x3, θ3, `3)dx3

dθ3

π
d`4d`3

)
dx1

dθ1

π
d`1dx2

dθ2

π
d`2

=
∫ (

1
f(x1, θ1)

∫
(gh)(Y1, Y2)dx2

dθ2

π
d`2d`1

)(
g∇x1Ψ

)
(x1, θ1, `4, x3, θ3, `3)dx1

dθ1

π
d`4dx3

dθ3

π
d`3

= −
∫
∇x1

(
g(x1, θ1, `4, x3, θ3, `3)Fh(x1, θ1)

f(x1, θ1)

)
Ψ(x1, θ1, `4, x3, θ3, `3)dx1

dθ1

π
d`4dx3

dθ3

π
d`3

= −〈〈∇x1

(
g(X)Fh(x1, θ1)

f(x1, θ1)
)
,Ψ(X)〉〉,

with Fh defined by (8.11). Similarly, we have:

〈〈g, h(Y1, Y2)ψ2(x1, θ1)〉〉

=
∫ (

gh
)
(Y1, Y2)

(
1

f(x1, θ1)

∫
(g∇x2Ψ)(x3, θ3, `3, x1, θ1, `4)dx3

dθ3

π
d`4d`3

)
dx1

dθ1

π
d`1dx2

dθ2

π
d`2

=
∫ (

1
f(x1, θ1)

∫
(gh)(Y1, Y2)dx2

dθ2

π
d`2d`1

)(
g∇x2Ψ

)
(x3, θ3, `3, x1, θ1, `4)dx1

dθ1

π
d`4dx3

dθ3

π
d`3

=
∫ ((

g∇x2Ψ
)
(Y ′1 , Y ′2) 1

f(x′2, θ′2)

∫
(gh)(x′2, θ′2, `′4, x′3, θ′3, `′3)dx′3

dθ′3
π
d`′3d`

′
4

)
dx′1

dθ′1
π
d`′1dx

′
2
dθ′2
π
d`′2

= −
∫
∇x′2

(
g(Y ′1 , Y ′2)Fh(x

′
2, θ
′
2)

f(x′2, θ′2)

)
Ψ(Y ′1 , Y ′2)dx′1

dθ′1
π
d`′1dx

′
2
dθ′2
π
d`′2

= −〈〈∇x2

(
g(X)Fh(x2, θ2)

f(x2, θ2)
)
,Ψ(X)〉〉,
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After the same computations for χ1 and χ2, we obtain Eqs. (8.10).

Now, lemma 8.1 allows us to write the formal limit K,N → ∞, K
N
→ ξ of

Eq. (8.6) which reads:

dg

dt
− µ∇x1·

(
g∇xU(x1, θ1) + ξ

g

f(x1, θ1)F1(x1, θ1)
)
− λ∂θ1(g∂θU(x1, θ1) + ξ

g

f(x1, θ1)F2(x1, θ1))

−µ∇x2 · (g∇xU(x2, θ2) + ξ
g

f(x2, θ2)F1(x2, θ2))− λ∂θ2(g∂θU(x2, θ2) + ξ
g

f(x2, θ2)F2(x2, θ2))

−dµ∇x1 · (
g

f(x1, θ1)∇xf(x1, θ1))− dµ∇x2 · (
g

f(x2, θ2)∇xf(x2, θ2))

− dλ∂θ1( g

f(x1, θ1)∂θf(x1, θ1))− dλ∂θ2( g

f(x2, θ2)∂θf(x2, θ2)) = 0,

(8.12)

where F1 and F2 read:

F1(x1, θ1) =
∫
∇x1V (x1, θ1, `1, x2, θ2, `2)g(x1, θ1, `1, x2, θ2, `2)dx2

dθ2

π
d`1d`2,

F2(x1, θ1) =
∫ (

g
(
∂θ1V + ∂θ1b

))
(x1, θ1, `1, x2, θ2, `2)dx2

dθ2

π
d`1d`2.

Finally, the link creation/deletion Poisson processes, of frequencies νf and νd
respectively, classically lead to a source term S(g) for Eq. (8.12). We recall that
a link between two fibers is formed only if the fibers intersect each other, whereas
the link deletion process obviously acts on existing links only. This leads to the
following source term:

S(g)(x1, θ1, `1, x2, θ2, `2) =νff(x1, θ1)f(x2, θ2)δ(`1, ¯̀(x1, θ1, x2, θ2)δ(`2, ¯̀(x2, θ2, x1, θ1)
− νdg(x1, θ1, `1, x2, θ2, `2),

where the first term corresponds to the link creation process while the second one,
to the link deletion process. Here, the quantity f(x1, θ1)f(x2, θ2)δ(`1, ¯̀(x1, θ1, x2, θ2)
δ(`2, ¯̀(x2, θ2, x1, θ1)dx1

dθ1
π
dx2

dθ2
π
d`1d`2 gives the probability of finding a fiber lo-

cated within a volume dx1
dθ1
π

about (x1, θ1) and a fiber located within a volume
dx2

dθ2
π

about (x2, θ2), such that they intersect with associated lengths within a
volume d`1d`2 about (`1, `2). The link creation process generates a new link dis-
tribution function proportional to this probability at a rate νf . The quantity
−νdg(x1, θ1, `1, x2, θ2, `2) corresponds to the decay of the link distribution function
with rate νd due to the link deletion process.
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9 Computation of the non linear term ∫
∂θ(G[ρM ]ρM)Ψdθ

This section is devoted to the computation of the term X3 given by (5.28). For
the sake of clarity, the following notations are introduced:

M = Mθ0 , s0 = sin 2(θ − θ0), c0 = cos 2(θ − θ0). (9.13)

By symmetry, 〈h(2(θ − θ0))〉 = 0 for all odd functions h on [−π
2 ,

π
2 ], where 〈·〉 is

the average defined in Theorem 5.7. We also note from Eq. (4.8), Hypothesis 6.1
and Proposition 5.6 that we have:

C2 = αL4γ

48ηf
= 4rdL2

ξ48rhoc(r)
= rdL2

12ξρc(r) . (9.14)

Using Green’s formula, Eqs. (4.7), (5.33) and the same arguments as for X2, we
get:

X3 = −

π
2∫

−π2

(G[ρM ]ρM)∂θΨ
dθ

π

= −C2

π
2∫

−π2

( π
2∫

−π2

∇2
x(ρM(θ′)) : B(θ, θ′)dθ

′

π

)
ρM(θ)∂θΨ

dθ

π

= −ρC2

π
2∫

−π2

∇2
x(ρM(θ′)) :

( π
2∫

−π2

B(θ, θ′)M(θ)∂θΨ
dθ

π

)
dθ′

π

= −ρC2

2r

π
2∫

−π2

(
∇2
x(ρM(θ′)) :

π
2∫

−π2

B(θ, θ′)(M(θ)− 1
Z2 )dθ

π

)
dθ′

π
.

Let us first compute ∇2
x(ρM). We have:

∇2
x(ρM) = M∇2

xρ+∇xM ⊗∇xρ+∇xρ⊗∇xM + ρ∇2
xM,

where ∇xM is given by (5.30). A direct computation gives:

∇2
xM = 2rM

[
s0∇2

xθ0 + 2
(
rs2

0 − c0
)
∇xθ0 ⊗∇xθ0

]
,

and thus:

∇2
x(ρM) =M

[
∇2
xρ+ 2ρrs0∇2

xθ0

+ 2rs0(∇xθ0 ⊗∇xρ+∇xρ⊗∇xθ0) + 4ρr(rs2
0 − c0)∇xθ0 ⊗∇xθ0

]
.
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We now turn towards the computation of
π
2∫

−π2

(
B(θ, θ′)M(θ)− 1

Z2B(θ, θ′)
)dθ
π
,

where B(θ, θ′) is given by (4.9). For this purpose, we decompose:
ω = (ω.ω0)ω0 + (ω.ω⊥0 )ω⊥0 = cos(θ − θ0)ω0 + sin(θ − θ0)ω⊥0 ,

where ω0 = ω(θ0) and ω⊥0 such that (ω0, ω
⊥
0 ) is a direct ortho-normal basis of R2.

Using basic trigonometric formulae, one notes that:

ω ⊗ ω = 1
2

[
(1 + c0)(ω0 ⊗ ω0) + (1− c0)ω⊥0 ⊗ ω⊥0 + s0[ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0]

]

= 1
2

[
I + c0[ω0 ⊗ ω0 − ω⊥0 ⊗ ω⊥0 ] + s0[ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0]

]
,

where I is the identity matrix. Denoting c0 = c0(θ), s0 = s0(θ), c′0 = c0(θ′) and
s′0 = s0(θ′), we get:

B(θ, θ′) = sin 2(θ − θ′)[ω ⊗ ω + ω′ ⊗ ω′]

= 1
2[s0c

′
0 − s′0c0]

[
2I + (c0 + c′0)[ω0 ⊗ ω0 − ω⊥0 ⊗ ω⊥0 ]

+ (s0 + s′0)[ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0]
]

= [s0c
′
0 − s′0c0]I

+ 1
2[c0s0c

′
0 + s0c

2
0(θ′)− s′0c2

0(θ)− s′0c′0c0][ω0 ⊗ ω0 − ω⊥0 ⊗ ω⊥0 ]

+ 1
2[s2

0c
′
0 + s0s

′
0c
′
0 − s′0c0s0 − s′20 c0][ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0].

Note that B is anti-symmetric, i.e. B(θ′, θ) = −B(θ, θ′). From the properties of
M , we get:

π
2∫

−π2

B(θ, θ′)dθ
π

= −[ω0 ⊗ ω0 − ω⊥0 ⊗ ω⊥0 ]s
′
0

4 + [ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0]c
′
0
4 ,

π
2∫

−π2

M(θ)B(θ, θ′)dθ
π

= −s′0〈c0〉I

− 1
2[ω0 ⊗ ω0 − ω⊥0 ⊗ ω⊥0 ](c′0s′0〈c0〉+ s′0〈c2

0〉)

+ 1
2[ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0](c′0〈s2

0〉 − s′20 〈c0〉).
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Then, we have:
π
2∫

−π2

B(θ, θ′)
(
M(θ)− 1

Z2

)dθ
π

= −s′0〈c0〉I

+ [ω0 ⊗ ω0 − ω⊥0 ⊗ ω⊥0 ]T1 + [ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0]T2,

with
T1 = s′0

4Z2 −
c′0s
′
0〈c0〉+ s′0〈c2

0〉
2 , T2 = c′0〈s2

0〉 − s′20 〈c0〉
2 − c′0

4Z2 .

Note that this expression is decomposed into an even function T2 of θ′ and an
odd function of θ′ composed of s′0〈c0〉 and T1. Therefore, 〈h, T1〉 = 0 for all even
functions h and 〈h, T2〉 = 0 for all odd functions h. Moreover, from integration by
parts, the following relations hold:

〈s2
0〉 = 〈c0〉

r
,

〈c2
0〉 = 1− 〈c0〉

r
,

〈c3
0〉 = 〈c0〉 −

1
r

+ 2〈c0〉
r2 ,

〈c4
0〉 = 1− 2〈c0〉

r
+ 3
r2 − 6〈c0〉

r3 ,

〈c0s
2
0〉 = 1

r
(1− 2〈c0〉

r
),

〈s4
0〉 = 3

r2 (1− 2〈c0〉
r

).

(9.15)

Then,
π
2∫

−π2

∇2
x(ρM(θ′)) :

( π
2∫

−π2

(B(θ, θ′)(M(θ)− 1
Z2 ))dθ

π

)
dθ′

π

= ∇2
xρ : [ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0]〈T2〉

+ 4ρr∇xθ0 ⊗∇xθ0 : [ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0]
(
r〈s2

0T2〉 − 〈c0T2〉
)

+ 2r(∇xρ⊗∇xθ0 +∇xθ0 ⊗∇xρ) :
[
− 〈c0〉〈s2

0〉I + [ω0 ⊗ ω0 − ω⊥0 ⊗ ω⊥0 ]〈s0T1〉
]

+ 2ρr∇x(∇xθ0) :
[
− 〈s2

0〉〈c0〉I + [ω0 ⊗ ω0 − ω⊥0 ⊗ ω⊥0 ]〈s0T1〉
]
,

(9.16)



app3 153

where (using Eqs. (9.15) and integration by parts):

〈T2〉 = −〈c0〉
4Z2 ,

〈c0T2〉 = 〈c0〉2

2r2 −
1

4Z2 (1− 〈c0〉
r

),

〈s2
0T2〉 = (−1

r
+ 2〈c0〉

r2 ) 1
4Z2 + 2〈c0〉2

r3 −
〈c0〉
r2 ,

〈s0T1〉 = −〈c0〉
r

+ 3〈c0〉2

2r2 + 〈c0〉
4rZ2 ,

r〈s2
0T2〉 − 〈c0T2〉 = 〈c0〉

r

[ 1
Z2 − 1 + 3〈c0〉

2r
]
.

Then, after some computations and using Eq. (9.14), Eq. (9.16) simplifies into:

X3 = − dL2

24ξc(r)

π
2∫

−π2

∇2
x(ρM(θ′)) :

( π
2∫

−π2

(B(θ, θ′)(M(θ)− 1
Z2 ))dθ

π

)
dθ′

π

= − dL2

24ξc(r)

(
−∇2

xρ : [ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0]〈c0〉
4Z2

+ 4ρ〈c0〉∇xθ0 ⊗∇xθ0 : [ω0 ⊗ ω⊥0 + ω⊥0 ⊗ ω0]( 1
4Z2 − 1 + 3〈c0〉

2r )

+ 2〈c0〉(ρ∇x∇xθ0 +∇xρ⊗∇xθ0 +∇xθ0 ⊗∇xρ) :
[
− 〈c0〉I

+ [ω0 ⊗ ω0 − ω⊥0 ⊗ ω⊥0 ]( 1
4Z2 − 1 + 3〈c0〉

2r )
)]
.

(9.17)

We note that 〈c0〉 = c(r). Eq. (9.17) leads to (5.35).



Chapter 3

Macroscopic model for linked
fibers with alignment
interactions: existence theory and
numerical simulations

This chapter is about to be submitted.

Abstract:
In this paper, we study the macroscopic model of [2] for fibers interacting

through linking/unlinking and alignment interactions. As the continuous model
has been derived from the particle dynamics, we here aim to (i) gain insight into
the properties of the solutions to the macroscopic model and (ii) propose a vali-
dation of the macroscopic model via numerical comparison between its solutions
and the ones obtained with the particle model. We provide an existence result
and perform numerical simulations of the stationary solutions of the macroscopic
equation. The numerical simulations of the macroscopic model lead to interest-
ing features such as the emergence of a buckling phenomenon which highlights
the physical properties of the macroscopic fiber network. We finally propose a
first numerical comparison between the microscopic and macroscopic models. The
numerical simulations reveal that the microscopic and macroscopic models are in
good agreement, providing we adapt the regime of study.

keywords: cross-linked fibers, alignment, individual based model, mean-field
limit, macroscopic model, non linear elliptic equation, numerical simulations

AMS classification: 35J60, 35Q92, 82C40, 82C22, 82C31, 82C70, 92C10,
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1 Introduction
Biological fiber networks such as the Extra-cellular Matrix of adipose tissues are
complex cross-linked structures providing internal and external mechanical sup-
port to cells, playing major roles in cell and tissue functions [3, 4]. The plasticity
of these dynamical networks results from their ability to break and reform cross-
links, giving to the tissue the ability to change shape and adapt in response to
biological and mechanical stimuli [5, 6]. Because of their vital role in the mechan-
ical behavior of cells and tissues, there is a great deal of interest in understanding
such structures. However, they are challenging to model due to the large number
of components and the complexity of the interactions within the structure. Sev-
eral Individual Based Model (IBM) have been proposed to understand the elastic
properties of fibrous networks [14, 7, 19, 16], but the computational cost of an IBM
tremendously increases with the size of the system. Therefore, IBM for fiber net-
works remain spatially limited. To model larger systems, some authors treat the
network as a continuous medium [21, 20, 22] or couple both particle and continuous
visions by homogenization methods to create a less detailed regularly-patterned
discrete model [17]. The challenge for these last models is to construct accurate
constitutive laws and homogenization techniques to encompass the dynamics of
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the fiber network, even if it implies a loss of information at the individual level.
To overcome this weakness of the macroscopic models, a solution is to derive a
macroscopic model from a microscopic one. The macroscopic model will gain in
predictability compared to models based on phenomenological considerations [11].
The derivation of macroscopic models from microscopic ones has been intensively
studied by many authors, and consists in the large scale limit of a kinetic version
of the microscopic model [23]. The kinetic equation of the microscopic model is
obtained by considering the limit of a large number of individuals. It describes the
evolution of a particle distribution function which is the probability density for a
particle to be in a given configuration at a given time. The hydrodynamic limit of
this kinetic model is then obtained using conservation properties of the system.

In [2], the authors performed the formal derivation of a kinetic model starting
from an individual based model for a dynamical cross-linked network interacting
through alignment interactions. The hydrodynamic limit of the kinetic model
then leads to a macroscopic model. We here want to provide a first study of the
proposed macroscopic model, and compare it to its microscopic version.

The 2D IBM consists of fibers represented as straight lines of fixed length which
have the ability to connect and disconnect to their crossing neighbors. Fiber mo-
tion is driven by a reaction to an external mechanical potential modeling the action
of the cells in the medium (the cells are not modeled as proper agents). Cross-
linked fibers are supposed to continuously align together, and we consider small
random fiber motion and random fiber reorientation. The maintain of fiber links
is modeled through the use of a distance-based potential which cancels when the
fiber links are maintained. In [2], it has been shown that such a system leads, at
the limit of large number of particles, to a system of two kinetic equations: (i) one
for the one-particle distribution function - probability for a fiber to have a given
orientation and position-, and (b) one for the two-particle distribution function
- probability for two fibers to be in a given configuration in the domain-. The
authors show that the system has an intrinsic closure relation and that it can be
entirely described by these two distribution functions. Then, in a regime of fast
linking/unlinking of fibers, it is shown that the two-particle distribution function
reduces to the product of two one-particle distribution functions. This is due to the
fact that this scaling hypothesis reduces the action of fiber links and the memory
effect of the links is therefore lost. Through the use of the concept of generalized
collision invariant introduced in [23], the one-particle distribution function con-
verges towards the equilibria of a collision operator composed of the cross-linked
fiber alignment interactions and of the noise intensity. In the hydrodynamic limit,
two evolution equations are obtained: (a) for the density function and (b) for the
mean local orientation of fibers.

In this paper, we aim to provide a first analysis of the macroscopic model of [2]
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and to compare the macroscopic model to its microscopic version. In a first part
(section 2), we present the microscopic model and show in appendix 6 that the
IBM for fiber motion can be seen as a gradient descent for a quadratic penalization
of a minimization problem that was proposed in [1]. We then introduce the kinetic
equation associated to the IBM and the scaling for the derivation of the macro-
scopic model. In a second part (section 3), we present the macroscopic model
and provide an existence result for the stationary solutions in the case of homoge-
neous fiber density. Then, we perform numerical simulations for the macroscopic
model, and show that interesting physical features appear such as a buckling phe-
nomenon depending upon the model parameters. Finally (section 4), we provide
a first numerical comparison between the macroscopic model and the underlying
IBM.

2 Microscopic model and mean-field limit
2.1 Microscopic model
The microscopic 2D model consists of N fibers of uniform and fixed length L,
described by their center Xi ∈ R2 and their orientation angle θi. As θi is an angle
of line, θi ∈ [−π

2 ,
π
2 ). The following biological features are considered: (i) Fiber

growth and elongation: In order to model fiber growth and elongation, pairs of
unlinked intersecting fibers have the possibility to link to each other at random
times following a Poisson process. Each link k of the K links at time t is associated
to a unique pair of fibers (i(k), j(k)), i(k) < j(k). (ii) Mechanical external forces:
In order to model the contribution of external elements in the tissue, external
mechanical forces are considered. This can model -for instance- the repulsion
of fibers by growing confined adipocytes. (iii) Fiber resistance to bending: To
model fiber resistance to bending, linked fibers are subjected to an alignment
potential force at their junction, in order to increase their rigidity. This alignment
potential is characterized by a stiffness parameter α > 0 playing the role of a
flexural modulus. (iv) Movements of the tissue: To model tissue movements, we
consider random fiber motion and fiber orientation changes of respective amplitude
dX , dθ > 0.

Phenomenon (i) : Fiber links. In order to model long biological fibers as sets
of connected segments, intersecting fibers have the ability to link together and
linked fibers to unlink at random times, following Poisson processes of frequencies
νf and νd respectively. To define the expression of Wlinks, we consider a time at
which no linking/unlinking process occurs. Then, the set of links is well-defined
and supposed to have K elements. Let k ∈ {1, . . . , K} be a given link and denote
by (i(k), j(k)) the pair of indices corresponding to the two fibers connected by this



2 Microscopic model and mean-field limit 158

link. To make the labeling of the pair unique, we assume without loss of generality
that the first element of the linked pair is always the one with lowest index, i.e.
i(k) < j(k). The link is supposed to connect two points Xk

i(k) and Xk
j(k) on fibers

i(k) and j(k) respectively. These points are determined by the algebraic distances
`ki(k) and `kj(k) to the centers Xi(k) and Xj(k) of the two fibers respectively; We thus
have the relation:

Xk
i(k) = Xi(k) + `ki(k)ωi(k), Xk

j(k) = Xj(k) + `kj(k)ωj(k),

where `ki(k), `kj(k) ∈ [−L/2, L/2] and where, for any fiber i, we let ωi = (cos θi, sin θi)
be the unit vector in the direction of the fiber. All along the link lifetime, the link
places a spring-like restoring force that attracts Xi(k) back to Xj(k) (and vice-versa)
as soon as their are displaced one with respect to each other. This restoring force
gives rise to a potential energy V (Xi(k), θi(k), `

k
i(k), Xj(k), θj(k), `

k
j(k)), with

V (X1, θ1, `1, X2, θ2, `2) = κ

2 |X1 + `1ω(θ1)− (X2 + `2ω(θ2))|2, (2.1)

where κ is the intensity of the restoring force. Obviously, the larger κ, the better
the maintainance of the link is ensured. The potential Wlinks is then assumed to
be the sum of all the linked fiber spring forces:

Wlinks = 1
2

K∑
k=1

V (Xi(k), θi(k), `
k
i(k), Xj(k), θj(k), `

k
j(k)). (2.2)

We stress the fact that the quantities `ki(k) and `kj(k) remain constant throughout
the link lifetime. They are determined at the time of the creation of the link.

Phenomenon (ii): External mechanical forces. The external potential Wext is
supposed to be the sum of potential forces U(θi) acting on each of the N fibers.
In this paper, we consider rotation external forces acting on the fiber orientations
only and of the form:

U(θ) = cu sin2(θ − θu), (2.3)
where cu is the intensity of the force and θu a parameter of the model. This
potential tends to force the fibers to be oriented with directional angle θu. Then,
the total external potential is the sum of all the rotation interactions:

Wext =
N∑
i=1

U(θi). (2.4)

Phenomenon (iii): Fiber resistance to bending. As previously described, linked
fibers are submitted to an alignment force at their junction to increase their
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rigidity. This force tends to align linked fibers i(k) and j(k) and has potential
b(θi(k), θj(k)) which reads:

b(θ1, θ2) = α| sin(θ1 − θ2)|, (2.5)

where α is the flexural modulus. The binary alignment potential depends on the
angles θ1 and θ2 only, and the total alignment energy Walign is supposed to be the
sum of all the binary alignment interactions :

Walign = 1
2

K∑
k=1

b(θi(k), θj(k)). (2.6)

Phenomenon (iv): Tissue movements. Finally, in order to model random motion
of biological elements, fiber positions as well as fiber orientations are submitted
random changes supposed to be regular in time. This is modeled by an entropy
term Wnoise:

Wnoise = d
N∑
i=1

log(f̃)(Xi, θi), (2.7)

where f̃ is a ’regularized density’ :

f̃(x, θ) = 1
N

N∑
i=1

ξN(x−Xi)⊗ ηN(θ − θi).

Here, ξN and ηN are regularization terms which allow to define the logarithm of
f̃ . We refer to [2] for the properties of these terms.

The total potential of the system is defined as the sum of all the previously
described potentials (Eqs. (2.2),(2.4) (2.6) and (2.7)), and fiber motion follows the
steepest descent of the gradient of this potential. Equations for fiber motion and
rotation then read:

dXi

dt
= −µ∇Xi

(
Wext +Walign +Wlinks +Wnoise

)
dθi
dt

= −λ∂θi
(
Wext +Walign +Wlinks +Wnoise

)
.

where µ and λ are mobility coefficients. Using the fact that Walign and Wext do
not depend on the space variable (see Eqs. (2.6)-(2.4)):

dXi

dt
= −µ∇Xi

(
Wlinks +Wnoise

)
(2.8)

dθi
dt

= −λ∂θi
(
Wext +Walign +Wlinks +Wnoise

)
. (2.9)
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Remark The IBM defined by Eqs. (2.8)-(2.9) corresponds to a gradient descent
for a quadratic penalization of a minimization problem related to the model of [1].
These results are shown in Appendix 6, where a numerical comparison between
both models is performed.

We now introduce the mean field kinetic equation which describes the time
evolution of the particle system in the limit of a large number of fibers. This is
generally performed using the one-particle distribution f(x, θ, t) which depends on
the position x ∈ R2, orientation angle θ ∈ [−π

2 ,
π
2 ) and the time t. As shown in [2],

the presence of fiber links oblige to keep track also of the fiber links distribution
function g(x1, θ1, `1, x2, θ2, `2, t) which can be seen as a two-particle distribution
function. In [2], we show that the formal limit of Eqs. (2.8), (2.9) for K,N →∞,
K
N
→ ξ, where ξ > 0 is a fixed parameter reads:

df

dt
− µ

(
ξ∇x · F1 + d∆xf

)
− λ

(
∂θ((∂θU)f) + ξ∂θF2 + d∂2

θf

)
= 0, (2.10)

where

F1(x1, θ1) =
∫

(g∇x1V )(x1, θ1, `1, x2, θ2, `2)d`1d`2
dθ2

π
dx2,

F2(x1, θ1) =
∫ (

g(∂θ1V + ∂θ1b)
)
(x1, θ1, `1, x2, θ2, `2)d`1d`2

dθ2

π
dx2.

(2.11)

The two-particle distribution function is described by:

dg

dt
− µ

[
∇x1 .

(
g∇xU(x1, θ1) + ξ

g

f(x1, θ1)F1(x1, θ1) + d
g

f(x1, θ1)∇xf(x1, θ1)
)

+∇x2 .

(
g∇xU(x2, θ2) + ξ

g

f(x2, θ2)F1(x2, θ2) + d
g

f(x2, θ2)∇xf(x2, θ2))
)]

−λ
[
∂θ1

(
g∂θU(x1, θ1) + ξ

g

f(x1, θ1)F2(x1, θ1) + d
g

f(x1, θ1)∂θf(x1, θ1)
)

+ ∂θ2

(
g∂θU(x2, θ2) + ξ

g

f(x2, θ2)F2(x2, θ2) + d
g

f(x2, θ2)∂θf(x2, θ2)
)]

= S(g),

(2.12)

where S(g) is the term for creation/deletion of fiber links:

S(g) = νff(x1, θ1)f(x2, θ2)δ¯̀(x1,θ1,x2,θ2)(`1)δ¯̀(x2,θ2,x1,θ1)(`2)− νdg, (2.13)

where δ¯̀(`1) denotes the Dirac delta at ¯̀, i.e. the distribution acting on test func-
tions φ(`1) such that 〈δ¯̀(`1), φ(`1)〉 = φ(¯̀).
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2.2 Scaling and kinetic equation
In order to highlight the role of the different variables, we write the system in di-
mensionless variables. We choose t0 and x0 as units of time and space respectively,
and f0 = 1

x2
0
, g0 = 1

x6
0

and U0 = x2
0
t20

for units of distribution functions and energy.
The scaling of f(x, θ) and g(x1, θ1, `1, x2, θ2, `2) comes from the fact that they are
probability distribution functions on a 2D domain. The following dimensionless
variables are defined:

x̄ = x

x0
, ¯̀= `

x0
, f̄ = f

f0
= fx2

0, ḡ = g

g0
= gx6

0, Ū = t20U

x2
0
, (2.14)

and the following dimensionless parameters are introduced:

µ′ = µ

t0
, λ′ = λx2

0
t0
, ν ′f = t0νf , ν

′
d = t0νd, L

′ = L

x0
, d′ = dt20

x2
0
, α′ = αt20

x2
0
, κ′ = κt20.

Then, as shown in [2], Eq. (2.10) is written in this new set of variables as:

∂t′ f̄ − λ′∂θ(∂θŪ f̄)− λ′ξ∂θF̄2 − µ′ξ∇x̄ · F̄1 − d′λ′∂2
θ f̄ − d′µ′∆xf̄ = 0,

where

F̄1(x̄1, θ1) =
∫
R2

π
2∫

−π2

L′/2∫
−L′/2

L′/2∫
−L′/2

∇x̄1V̄ (x̄1, θ1, ¯̀1, x̄2, θ2, ¯̀2)ḡ(x̄1, θ1, ¯̀1, x̄2, θ2, ¯̀2)d¯̀1d¯̀2
dθ2

π
dx̄2,

V̄ (x̄1, θ1, ¯̀1, x̄2, θ2, ¯̀2) = κ′

2 (x̄1 + ¯̀1ω(θ1)− x̄2 − ¯̀2ω(θ2))2.

and

F̄2(x̄1, θ1) = F̄al(x̄1, θ1) + F̄link(x̄1, θ1),

F̄link(x̄1, θ1) =
∫
R2

π
2∫

−π2

L′/2∫
−L′/2

L′/2∫
−L′/2

(
ḡ∂θ1V

)
(x̄1, θ1, ¯̀1, x̄2, θ2, ¯̀2)d¯̀1d¯̀2

dθ2

π
dx̄2,

F̄al(x̄1, θ1) =
∫
R2

π
2∫

−π2

L′/2∫
−L′/2

L′/2∫
−L′/2

(
ḡ∂θ1b̄

)
(x̄1, θ1, ¯̀1, x̄2, θ2, ¯̀2)d¯̀1d¯̀2

dθ2

π
dx̄2,

and where b̄(θ1, θ2) = α′| sin(θ1− θ2)|. In [2], we set the time and space scale such
that λ′ = µ′ = 1. In order to keep a degree of freedom, we here chose t0 and x0
such that λ′ = 1 and let µ′ as a free parameter. To this aim, we consider only
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the case where λ = t0
x2

0
. Therefore, the scaled version of the kinetic model reads

(dropping the tildes and primes for the sake of clarity):

∂tf − ∂θ(∂θUf)− ξ∂θF2 − µξ∇x · F1 − d∂2
θf − dµ∆xf = 0. (2.15)

We now define the regime of interest. We use the same scaling as for [2]:a small
parameter ε� 1 is introduced and the space and time units are set to x̃0 = ε−1/2x0,
t̃0 = ε−1t0. The fiber length measured at scale x0 is supposed to stay of order 1
as ε → 0, i.e. L = O(1). The variables x, t, ` and unknowns f and g are then
correspondingly changed to x̃ =

√
εx, t̃ = εt, ˜̀ =

√
ε`, f̃(x̄, θ) = ε−1f(x, θ)

and g̃(x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2) = ε−3g(x1, θ1, `1, x2, θ2, `2). The external potential is
supposed to be of order ε: U1 = O(ε), i.e. Ũ1 = ε−1U1 with Ũ1 = O(1). The
strength of the alignment potential is supposed to be large α = O(ε−1), i.e. α̃ = εα
with α̃ = O(1). The intensity of the alignment potential between linked fibers is
supposed to be small κ = O(ε), i.e. κ̃ = ε−1κ with κ̃ = O(1) and the diffusion
coefficient and parameter ξ are supposed to stay of order 1: d, ξ = O(1). In order
to simplify the analysis of the system, the process of linking/unlinking is supposed
to occur at a very fast time scale, i.e. ν̃f = ε2νf and ν̃d = ε2νd, with ν̃f , ν̃d = O(1).
In this paper, we chose to consider that µ is of order 1:µ = O(1). As shown in [2],
the macroscopic version of Eqs. (2.15) reads:

−ξ∂θ1F̃al−ε
(
ξ∂θF̃link + d∂2

θ f̃

)
+ ε2

(
∂tf̃ − ∂θ(∂θŨ f̃)− ξµ∇x̃ · F̃1 − dµ∆x̃f̃

)
= 0.

(2.16)

where:

F̃1 =
∫
Lε
∇x̃1Ṽ (x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2)ε3g̃(x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2)dx̃2

dθ2

π
d˜̀1d˜̀2

= 1
ε2F1 = O(ε3),

F̃link =
∫
Lε
∂θ1Ṽ (x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2)ε3g̃(x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2)dx̃2

dθ2

π
d˜̀1d˜̀2

= 1
ε2 εFlink(x1, θ1) = O(ε3)

F̃al =
∫
Lε
∂θ1 b̃(θ1, θ2)ε3g̃(x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2)dx̃2

dθ2

π
d˜̀1d˜̀2 = Fal(x1, θ1)

= ε∂θ1Φ[f ε](x1, θ1) + ε2G[f ε](x1, θ1) +O(ε3),

and where Lε = R2 × [−π
2 ,

π
2 ]× [−

√
εL
2 ,

√
εL
2 ]2. Finally,

g̃ = ν̃f
ν̃d
f̃(x̃1, θ1)f̃(x̃2, θ2)δ¯̀(x̃1,θ1,x̃2,θ2)(˜̀1)δ¯̀(x̃2,θ2,x̃1,θ1)(˜̀2) +O(ε2), (2.17)

We now aim to apply this scaling to the microscopic model (2.8)-(2.9).
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2.3 Scaled microscopic model
Using the scaling of previous section, we have:

X̃i =
√
εXi,

dX̃i

dt̃
= 1√

ε

dXi

dt
.

From Eq. (2.1), (2.5) and (2.3), the scaled expressions of the potentials read:

Ṽ (x̃1, θ1, ˜̀1, x̃2, θ2, ˜̀2) = κ̃

2 |x̃1 + ˜̀1ω(θ1)− x̃2 − ˜̀2ω(θ2)|2 = V (x1, θ1, `1, x2, θ2, `2),

b̃(θ1, θ2) = α̃| sin(θ1 − θ2)| = εb(θ1, θ2).

Using these expressions together with Eqs. (2.2), (2.4), (2.7) and (2.6) we have

W̃links = Wlinks, W̃ext = Wext

ε
, W̃noise = Wnoise, W̃align = εWalign. (2.18)

Introducing these expressions in (2.8)-(2.9), the scaled version of the microscopic
model reads (dropping the tildes):

dXi

dt
= −µ∇Xi

(
Wlinks +Wnoise

)
(2.19)

dθi
dt

= − 1
ε2∂θi

(
ε2Wext +Walign + εWlinks + εWnoise

)
. (2.20)

Note that system (2.19)-(2.20) can be recovered from Eq. (2.16). Indeed, letting
f and g be the one and two-particle distribution functions:

f(x, θ, t) = 1
N

N∑
i=1

δ(Xi(t),θi(t))(x, θ),

g(x1, θ1, `1, x2, θ2, `2, t) = 1
2K

K∑
k=1

δ(Xi(k),θi(k),`
k
i(k),Xj(k),θj(k),`

k
j(k))

(x1, θ1, `1, x2, θ2, `2)

+ δ(Xj(k),θj(k),`
k
j(k),Xi(k),θi(k),`

k
i(k))

(x1, θ1, `1, x2, θ2, `2),

where δ(Xi(t),θi(t))(x, θ) denotes the Dirac delta located at (Xi(t), θi(t), we cant write
for instance:

F1(x1, θ1) =
∫

(g∇x1V )(x1, θ1, `1, x2, θ2, `2)d`1d`2
dθ2

π
dx2

= 1
2K

K∑
k=1
∇x1V (Xi(k), θi(k), `

k
i(k), Xj(k), θj(k), `

k
j(k)) = ∇XiWlinks.

With the same treatment for the other terms, we obtain that Fal is the contin-
uous counterpart of Walign, Flink the continuous counterpart of Wlinks for fiber
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rotation, d∂θf and dµ∇xf the continuous counterparts of Wnoise for fiber rotation
and motion respectively, and ∂θUf the counterpart of the external potential Wext.
System (2.19)-(2.20) shows, in accordance with Eq. (2.16), that the restoring po-
tential Wlinks and the noise Wnoise act at the same order for fiber motion, and that
fiber rotation is mainly driven by the alignment potential between linked fibers
Walign which acts at leading order in O( 1

ε2
). For fiber rotation, the restoring po-

tential and the noise act at the same order O(1
ε
) and the external potential Wext

is of order O(1). Therefore, the two scaled models are in good agreement. We
recall however that the rigorous convergence of the particle system to the kinetic
equation (2.16) is still an open problem.

3 Macroscopic derived model
In the regime previously defined, as shown in [2] and restoring the parameter µ,
we obtain that f ε and gε formally satisfy:

−ξ∂θ
(
∂θΦ[f ε](x, θ)f ε

)
− d∂2

θf
ε

+ ε

[
∂tf

ε − ∂θ
([
∂θU

1 + ξG[f ε](x, θ)
]
f ε
)
− dµ∆xf

ε

]
= O(ε2),

(3.21)

with

Φ[f ε](x1, θ1) = C1

π
2∫

−π2

sin2(θ − θ2)f ε(x1, θ2)dθ2

π
(3.22)

G[f ε](x1, θ1) = C2

2∑
i,j=1

∂2

∂xi∂xj

π
2∫

−π2

f ε(x1, θ2)Bij(θ1, θ2)dθ2

π
, (3.23)

C1 = αL2νf
2νd

, C2 = αL4νf
48νd

, (3.24)

and

B(θ1, θ2) = sin 2(θ1−θ2)[ω(θ1)⊗ω(θ1)+ω(θ2)⊗ω(θ2)] =
(
Bij(θ1, θ2)

)
i,j=1,2

. (3.25)

Finally, neglecting the terms in O(ε2) and defining the collision operator Q(f ε)
such that:

Q(f) = d∂2
θf + ξ∂θ(∂θΦ[f ])f), (3.26)

we obtain:

ε

[
∂tf

ε − ∂θ
([
∂θU

1 + ξG[f ε](x, θ)
]
f ε
)
− dµ∆xf

ε

]
= Q(f ε). (3.27)
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Like many macroscopic models, the derivation of the macroscopic equations is
based on the convergence of the particle distribution function to local equilibrium
at large scales in space and time. In [2], it is shown that the microscopic fiber
distribution function f ε converges as ε→ 0 to a Von Mises distribution f(x, θ, t):

f(x, θ, t) = ρ(x, t)Mθ0(x,t)(θ)

Mθ0(x,t)(θ) = er cos 2(θ−θ0(x,t))∫ π
2
−π2

er cos 2θ dθ
π

,
(3.28)

where r is the order parameter given by:

r = ξαL2ρ(x, t)c(r)νf
4dνd

,

and c(r) does not depend on θ0 and reads:

c(r) =
∫ π

2

−π2
cos 2(θ)M0(θ)dθ

π
. (3.29)

In the case of a homogeneous fiber distribution ρ(x, t) = ρ0, the local fiber orien-
tation θ0(x, t) solves:

∂tθ0 −
2∑

i,j=1
∂xi
(
aij(θ0)∂xjθ0

)
+ α5h(θ0) = 0, (3.30)

where aij ∈ R for i, j = 1, 2 are the coefficients of a 2× 2 matrix A such that:

A(θ) =
(
α2 − α3 cos 2θ −α3 sin 2θ
−α3 sin 2θ α2 + α3 cos 2θ

)
.

Finally, the function h is the macroscopic counterpart of the external potential U
and reads:

h(θ0) =
∫ π

2

−π2
U ′(θ)Mθ0(θ)dθ

π
. (3.31)

The coefficients α1, α2, α3 and α5 are fully determined by parameters r, d and L
and their expression can be found in appendix 8. Note that from (2.3), we have:

U ′(θ) = cu sin 2(θ − θu),

and thus: ∫ π
2

−π2
U ′(θ)Mθ0(θ)dθ

π
= cu sin 2(θ0 − θu)c(r), (3.32)
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3.1 Theoretical analysis of the macroscopic model
In this section, we are interested in the existence of stationary solutions to Eq.
(3.30), i.e we study the following quasi linear partial differential equation:

2∑
i,j=1

(
aij(θ)∂ijθ

)
+

2∑
i,j=1

(
bij(θ)∂iθ∂jθ

)
− h(θ) = 0. (3.33)

Here, bij ∈ R for i, j = 1, 2 are the coefficients of the following 2× 2 matrix B:

B(θ) = 2α3

(
sin 2θ − cos 2θ
− cos 2θ − sin 2θ

)
.

Note that bij(ξ) = a′ij(ξ) for all i, j = 1, 2. Let us denote by F : C∞(Ω)→ C∞(Ω)
the non linear differential operator defined by the left hand side of Eq. (3.33):

F (θ) =
2∑

i,j=1

(
aij(θ)∂ijθ

)
+

2∑
i,j=1

(
bij(θ)∂iθ∂jθ

)
− h(θ). (3.34)

We consider Dirichlet boundary conditions θ = φ on ∂Ω and we aim to prove the
following theorem:

Theorem 3.1. Let Ω be a bounded domain in Rn with boundary ∂Ω ∈ C2,γ(Ω̄).
Suppose that there exists M > 0 such that:

h(z) ≥ 0 z ≥M

h(z) ≤ 0 z ≤ −M.
(3.35)

Then, if φ ∈ C2,γ(Ω̄), there exists a solution θ ∈ C2,γ(Ω̄) of the Dirichlet problem
F (θ) = 0 in Ω, θ = φ on ∂Ω where F (θ) is defined by (3.34).

Proof. We first give some definitions and arguments to show that Eq. (3.33) for F
given by (3.34) is a quasi linear elliptic equation. Let DF (θ0) be the linearization
of F at θ0:

DF (θ0)v = ∂

∂s
F (θ0 + sv)|s=0 =

2∑
i,j=1

(
aij(θ0)∂ijv

)
+ Lv,

where L is a linear differential operator of order 1 which coefficients depend on
D1θ0:

Lv =
2∑

i,j=1

(
a′ij(θ0)(∂iθ0∂jv + ∂iv∂jθ0)

)

+
2∑

i,j=1

(
a′′ij(θ0)∂iθ0∂jθ0 + a′ij(θ1)∂xixjθ0 − h′(θ0)

)
v,

(3.36)
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Thus, the linearization at θ0 is elliptic provided the matrix A(θ0) is definite positive.
As shown in [2], this condition is ensured for all model parameters, independently
of θ0.

To obtain existence of solutions to equation (3.33), we consider the following
operator Q : C2(Ω)→ C(Ω):

Qu =
2∑

i,j=1
aij(x, u)∂iju+ g(x, u,Du), (3.37)

Note that F coincides with Q if:

g(x, u,Du) =
2∑

i,j=1

(
bij(u)∂iu∂ju

)
− h(u). (3.38)

We first obtain existence provided the solutions of a related family of problems are
uniformly bounded in Ω, thanks to the following fundamental existence theorem:
Theorem 3.2. ([25], chap 12) Let Ω be a bounded domain in Rn and suppose that
the operator Q is elliptic in Ω̄ with coefficients

aij ∈ C1(Ω̄× R), g ∈ Cγ(Ω̄× R× Rn), 0 < γ < 1,

Let ∂Ω ∈ C2,γ and φ ∈ C2,γ(Ω̄). Then, if there exists a constant M , independent
of u and τ , such that every C2,γ(Ω̄) solution of the Dirichlet problems

Qτu = aij(x, u,Du)Diju+ τg(x, u,Du) inΩ
u = τφ on∂Ω, 0 ≤ τ ≤ 1

(3.39)

satisfies
||u||C1(Ω̄) = sup

Ω
|u|+ sup

Ω
|Du| < M,

it follows that the Dirichlet problem Qu = 0 in Ω, u = φ on ∂Ω is solvable in
C2,γ(Ω̄).
The existence of solutions for the Dirichlet problem with such an elliptic operator
thus depends upon the existence of a uniform bound for solutions of related prob-
lems. As shown in [25], a priori estimates for the gradient of C2(Ω) solutions can
be obtained in terms of the gradients on the boundary δΩ and the magnitudes of
solutions, and there exist a variety of hypothesis that guarantee a boundary gradi-
ent estimate for solutions to such problems. Altogether, solutions to the Dirichlet
problem Qu = 0 in Ω, u = φ on ∂Ω can be obtained using the following hypothesis:
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Hypothesis 3.1. Suppose that there exist positive constants µ1 and µ2 such that
g(x, z, p)sign z
λ(x, z, p) ≤ µ1|p|+ µ2 ∀(x, z, p) ∈ Ω× R− {0} × Rn

where λ(x, z, p) is the smallest eigenvalue of matrix A = (aij)i,j=1,2.
Hypothesis 3.2. Suppose that there exists a constant M such that

zg(x, z, 0) ≤ 0 for x ∈ Ω, |z| ≥M

And the following theorem ensures existence of solutions under structural condi-
tions for function g and smoothness of the boundary ∂Ω:
Theorem 3.3. ([25], chap 14) Let Ω be a bounded domain in Rn and suppose that
the operator Q is elliptic in Ω̄ with coefficients

aij ∈ C1(Ω̄× R), g ∈ Cγ(Ω̄× R× Rn), 0 < γ < 1,
satisfying g = O(|p|2) as |p| → ∞, uniformly for x ∈ Ω and bounded z, together
with hypothesis 3.1, or 3.2. Then, if ∂Ω ∈ C2,γ and φ ∈ C2,γ(Ω̄), there exists a
solution u ∈ C2,γ(Ω̄) of the Dirichlet problem Qu = 0 in Ω, u = φ on ∂Ω.
Therefore, the existence of solutions to (3.33)-(3.41) is ensured provided we have
3.1 (or 3.2), b = O(|p|2) as p→∞, a smooth boundary ∂Ω and φ ∈ C2,γ. We now
aim to explicit these conditions.

Since the coefficients bij(z) are bounded by 2α3 for all i, j = 1, 2 and all θ, for
p→∞, using Eq. (3.38):

g(x, z, p) ≤ µ(z)|p|2

where µ(z) is a function which depends on z only. Therefore, we obtain b = O(|p|2)
as p→∞ for bounded z. Moreover, we have:

zg(x, z, 0) = −zh(z)
Therefore, Hyp. 3.2 reduces to a condition for function h(z): there exist M such
that

h(z) ≥ 0 z ≥M

h(z) ≤ 0 z ≤ −M.
(3.40)

Altogether, if the external potential U is such that (3.40) is satisfied, the Dirichlet
problem F (θ) = 0 on Ω, θ = φ in ∂Ω has a solution θ ∈ C2,γ(Ω̄). If we do not
assume Hypotheses 3.1 or 3.2 (i.e (3.40)), the Dirichlet problem Qu = 0 in Ω,
u = φ on ∂Ω is solvable provided the solutions of a related family of problems such
as (3.39) are uniformly bounded on Ω (theorem 3.2).

In order to gain insight into the properties of the solutions to the macroscopic
model, we provide in next section a numerical study of this model.
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3.2 Numerical simulations of the macroscopic model
Here, we aim to study numerically the macroscopic equation in the case of a
homogeneous fiber density ρ. We first write Eq. (3.42) in a semi conservative
form, and test the proposed numerical method. We then present the numerical
profiles of the solutions as functions of the model parameters.

3.2.1 Semi-conservative form of the macroscopic equation

As for the microscopic model, we consider a 2D square domain of side length 2S,
Ω = [−S, S]× [−S, S], with periodic boundary conditions on the top and bottom
and Dirichlet boundary conditions θ1 and θ2 on the left and right sides of the
domain:

θ(x,−S) = θ(x, S) ∀ x ∈ [−S, S]
∂yθ(x,−S) = ∂yθ(x, S) ∀ x ∈ [−S, S],

θ = θ1 on ΓL,
θ = θ2 on ΓR.

(3.41)

The stationary solutions θ(x) of Eq. (3.30) solve:

α−(θ)∂xxθ + α+(θ)∂yyθ + 2α3 sin(2θ)((∂xθ)2 − (∂yθ)2 − ∂xyθ),
−4α3 cos(2θ)∂xθ∂yθ − h(θ) = 0 in Ω,

(3.42)

where α±(θ) = α2 ± α3 cos(2θ). In order to introduce the numerical scheme, we
aim to write Eq. (3.42) in a semi conservative form. For this purpose, we note
that:

cos 2θ∂xxθ − 2 sin 2θ(∂xθ)2 = ∂x
(

cos 2θ∂xθ
)

= 1
2∂xx sin 2θ,

cos 2θ∂yyθ − 2 sin 2θ(∂yθ)2 = 1
2∂yy sin 2θ,

sin 2θ∂xyθ + 2 cos 2θ∂xθ∂yθ = ∂x(sin 2θ∂yθ) = −1
2∂xy cos 2θ.

Then, Eq. (3.42) can be written:

α2
(
∂xxθ + ∂yyθ

)
− α3

(
1
2∂xx sin 2θ − 1

2∂yy sin 2θ − ∂xy cos 2θ
)
− h(θ) = 0 in Ω

(3.43)

The numerical scheme used to solve Eqs. (3.43) with boundary conditions (3.41)
can be found in appendix 6.3. As this equation contains non linear terms, we
discretize the equation with simple finite differences and apply a Newton algorithm.
As Newton solutions are sensitive to initial conditions, we proceed by continuation
on a set of sub-problems, the solution of the first one being known.
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3.2.2 Comparison with exact solutions

Here, we aim to validate the numerical method proposed in Appendix (6.3) by
comparing its solutions to exact solutions.

Test case I: We first aim to test our numerical scheme on the following test
case:

∆θ + π2θ

S2 = sin(π y
S

) + π2

S2

(θ2 − θ1

2S (x− S) + θ2
)

θ = θ1 on ΓL
θ = θ2 on ΓR

for which the exact solutions θex read:

θex(x, y) = sin(π y
S

)x
2 − S2

2 + θ2 − θ1

2S (x− S) + θ2. (3.44)

Note that this equation can be obtained using (3.43) with α2 = 1, α3 = 0 and

h(x, y, θ) = π2θ

S2 − sin(π y
S

)− π2

S2

(θ2 − θ1

2S (x− S) + θ2
)
. (3.45)

Therefore, we can apply the numerical method proposed in 6 with α3 = 0 and
using

∂h(x, y, θ)
∂θ

= π2

S2 .

To validate the numerical scheme, we investigate the convergence when the space
step (∆x,∆y) tends to (0, 0). For this purpose, we use ∆x = ∆y = 0.1

2n for n from
0 to 5 and compute the L2 norm of the error between the numerical solution θ and
the exact solution θex (see Eq. (3.44)). Fig. 3.1 shows the error curve plotted as
function of ∆x in log log scale.
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Figure 3.1: L2 error for the orientation θ as function of ∆x in log log scale. Red
curve: linear fit (the equation of the linear fit is indicated on the graph). The
scheme is numerically of order 1.

As shown by Fig. 3.1, the log of the error linearly increases as function of the log
of the space step ∆x, with slope 1. This shows that the numerical scheme is of
order 1.

test case II In the case α3 6= 0 and for h(θ) = 0, the solutions θ(x, y)
of (3.43) can be written as solutions of the following fixed-point problem for all
(x, y) ∈ [−S, S]2:

θ(x, y) = g(θ(x, y)),
where g : R→ R is such that

g(ξ) = α3

2α2
sin 2ξ + ax+ b

a = 1
2S
( α3

2α2
(sin 2θ1 − sin 2θ2) + θ2 − θ1

)
b = θ1 −

α3

2α2
sin 2θ1 + aS

(3.46)

Note that θ(x, y) = θ(x) for all y ∈ [−S, S] in this case. Figs. 3.2 show the profile
of the solutions to (3.43) for h(θ) = 0, α2 = 1 and α3 = −1 (A) or α3 = 1 (B).
The profiles of the numerical solutions (which do not depend on y) are plotted as
functions of x for y = −0.2 for these two α3. The error between the numerical
solution θ and its corresponding value g(θ) in log log scale is of order 10−15 whatever
the mesh size ∆x.
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Figure 3.2: Black dots: Numerical solution θ(x,−0.2) of (3.43) for α2 = 1 and
h(θ) = 0, as function of x, red curve: function g(θ(x,−0.2)). (A): for α3 = −1,
(B): for α3 = 1.

Figs. 3.2 (A) and (B) show that the numerical solutions θ(x, y) of (3.43) (black
dots) match the values of g(θ(x, y)) (red curve) for all x ∈ [−S, S] and a given
y. As shown by Fig. 3.2 (C), the L1 error between the numerical values of θ and
g(θ) is of order 10−15 for all ∆x. Therefore, the numerical solutions of (3.43) are
solutions to the fixed point problem ξ = g(ξ) for all (x, y) ∈ Ω. This tends to
validate the numerical method of 6 when α3 6= 0.

It is noteworthy that the non linear term have a non negligible impact on the
profile of the solutions. Indeed, for α3 = 0 and no external forces (h(θ) = 0),
the solution is linear in x. The deformation from this linear profile is stronger for
α3 = 1 (Fig. 3.2 (B)) than for α3 = −1 (Fig. 3.2 (A)). This is due to the fact that
the non linear terms are the macroscopic counterpart of the alignment potential
between cross-linked fibers (note that in [2], it is shown that physically-relevant
values for the model parameters lead to α3 ≤ 0). As shown by the profile of Fig.
3.2 (A), this leads to a diffusion of the orientations from the center of the domain
(where fibers are oriented horizontally), while α3 > 0 leads to a propagation of
the orientations from the borders of the domain (where the Dirichlet conditions
impose an orientation towards ±π

4 ).

3.2.3 A buckling phenomenon induced by the rotation potential

Here, we study the influence of the rotation potential contained in the term h(θ)
of Eq. (3.43) on the profile of the solutions. Fiber orientations are initially set to,
for all (x, y) ∈ Ω:

θ(x, y) = θ1 + (θ2 − θ1)x, (3.47)
which is compatible with the boundary conditions (3.41). Figs. 3.3- 3.5 show the
profiles of the solutions as functions of x for y = −0.2, α2 = 0.1 and three different
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values of α3 ≤ 0: α3 = 0 (A), α3 = −10−3 (B) and α3 = −0.01 (C). For each, the
rotation potential intensity cu (see (2.3)) varies from cu = 0 (black dots), cu = 1
(red curve) and cu = 10 (green curve). The boundary conditions (3.41) are chosen
with θ1 = π

4 and θ2 = −π
4 (symmetric) for Fig. 3.3, while we have perturbed θ1 of

a small quantity for Fig. 3.4 (θ1 = 0.98π4 ) and θ2 for Fig. 3.5 ( θ2 = −0.98π4 ).
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Figure 3.3: Profiles of the solutions to (3.43)-(3.41) for α2 = 0.1, θ1 = −θ2 = π
4

(symmetric boundary conditions). Black dots: cu = 0, red curve: cu = 1, green
curve: cu = 10. (A) α3 = 0, (B) α3 = −0.05, (C) α3 = −0.1.
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Figure 3.4: Profiles of the solutions to (3.43)-(3.41) for α2 = 0.1, θ1 = 0.98π4 ,
θ2 = −π

4 (assymmetric boundary conditions). Black dots: cu = 0, red curve:
cu = 1, green curve: cu = 10. (A) α3 = 0, (B) α3 = −0.05, (C) α3 = −0.1.

As shown by Figs. 3.3-3.5, three stationnary states are obtained when intro-
ducing the rotation potential (2.3): (i) a symmetric state in which fibers of the left
side of the domain are oriented in π

2 and fibers of the right side in −π
2 (Fig. 3.3),

(ii) an asymmetric state in which all the fibers are oriented in π
2 (Fig. 3.4) and (iii)

an asymmetric state in which all the fibers are oriented in −π
2 (Fig. 3.5). These

plots show that there exists a critical cu for which the solutions are in the unstable
configuration (i): a slight increase of cu will lead the solution to buckle and change
for configurations (ii) or (iii). The boundary conditions determine the mode of
bending (i.e the passage (i) - (ii) or (i) - (iii)). The critical cu depends upon the
value of the parameter α3, which plays the role of an elastic modulus. Indeed, for
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Figure 3.5: Profiles of the solutions to (3.43)-(3.41) for α2 = 0.1, θ1 = π
4 , θ2 =

−0.98π4 (assymmetric boundary conditions). Black dots: cu = 0, red curve: cu = 1,
green curve: cu = 10. (A) α3 = 0, (B) α3 = −0.05, (C) α3 = −0.1.

α3 = 0.1 (Figs. 3.3-3.5 (C)), the buckling phenomenon appears between cu = 1
and cu = 10 while smaller values of α3 leads to buckled situations for cu between
0.5 and 1.

These observations enable us to gain insight into the physical meaning of pa-
rameters α2 and α3 for the macroscopic model. It tends to show that the whole
fiber structure could be seen as an elastic material. In this case, its elastic modulus
is linked to parameters α2 and α3. In this configuration, the external potential
contained in the term h(θ) could be seen as a force generating compressing stress.

To continue our analysis of the macroscopic model, a natural approach is to
numerically compare its solutions to the ones obtained with its microscopic corre-
sponding model. In the next section, we present a first step towards the comparison
between the macroscopic system of equations and the microscopic dynamics.
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4 Comparison between the macroscopic model
and the particle dynamics

In this section, we perform numerical simulations of the microscopic scaled equa-
tions and compare numerically the obtained solutions to the ones of the macro-
scopic model.

4.1 Equilibria
We first compare the distribution of the fiber orientations θi with the theoretical
distribution Mθ0(x) given by (3.28). For the microscopic simulations, the noise dX
on the fiber space motion is fixed and chosen such that the fiber density is homo-
geneous and constant in time. As explained in appendix 7, this is performed by
adapting the value of the free parameter µ. As the macroscopic fiber distribution
does not depend on y (because of the boundary and initial conditions which do
not depend on y), the mean orientation θ0(x) for x = (x1, x2) ∈ R2 of the fibers
of the microscopic model is computed as the circular mean of the fiber orienta-
tions, over all the fibers such that the x-coordinate of their center is contained in a
neighborhood of x1. More explicitly, for each x ∈ [−S+ sD/2, S+ sD/2]× [−S, S]:

θ0(x) = 1
2 arg

( ∑
i∈I(x)

e2iθi

)

where I(x) is the set of fibers the center of which has x coordinate near x1:
I(x) = {i | xi ∈ [x1 − sD

2 , x1 + sD
2 [}, xi being the x-coordinate of fiber i center. In

order to reduce the noise in the representation, we average the observables over 10
simulations.
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Figure 3.6: (A) Particle simulation N = 1500, θ1 = −θ2 = π
4 , ε = 0.1, α = 0.1,

cu = 0, d = 1e − 5, νf = 0.1, χ = νf
νd

= 0.1. Zones of the domain for the
computation of r in Figs. (B) and (C) are indicated as green and blue rectangles
respectively. (B) Distribution of the circular mean of the orientation angles θi for
fibers the center of which is close to x = 0.2 (red), compared to its theoretical
distribution (black), averaged over 10 simulations. (C) Distribution of the circular
mean of the orientation angles θi for fibers which the center of which is close to
x = 0 (red) compared to its theoretical distribution (black), averaged over 10
simulations.

As shown in Fig. 3.6, the theoretical distribution of orientations and the mi-
croscopic one are in good agreement for a fitted value of r. We find the same
order parameter r ≈ 7.5 for fibers in a neighborhood of the center of the domain
x = 0 as well as for x = 0.2, for this set of parameter. This tends to show that the
order is conserved in the whole domain. In appendix 9, we show that the order
parameter does not depend on the size sD of the numerical boxes used to compute
its value.
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4.2 Order parameter
We now want to study how the order parameter r depends upon the model param-
eters. The order parameter fitted from the simulations of the microscopic model
as previously explained is referred to as rfit, and rnfit denotes its value normalized
by function c, i.e rnfit = rfit

c(rfit)
. We denote by rnth its expected value from the

macroscopic model:

rnth = rth
c(rth)

= ξαL2νfρ

4dνd
= ξαL2χρ

4d , (4.48)

where χ = νf
νd

is the ratio between the fiber linking and unlinking frequencies. Note
that the macroscopic order parameter r depends upon the model parameters but
also on the quantity ξ (ratio between the number of fiber links and total number
of fibers). If the values of the model parameters are well determined for the
microscopic and macroscopic models, the relation between the microscopic value
of ξ and its macroscopic one is more difficult to obtain. In order to highlight this
phenomenon, we show in Fig. 3.7 (A) the value of rnfit as function of the noise
intensity d, for χ = 0.1 and χ = 1. Note that rnfit decreases as function of d. In
Fig. 3.7 (B), we show the logarithm of rnfit as function of the logarithm of d (green
and blue curves for χ = 0.1 and χ = 1 respectively), and their corresponding linear
fits (black and red curves). We obtain slopes of −0.2 for χ = 0.1 and −0.1 for
χ = 1. This suggests that ξ depends non trivially upon d and χ.
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Figure 3.7: (A): values of rnfit as function of the noise d for χ = 0.1 (black curve)
and χ = 1 (red curve). (B): values of rnfit as function of the noise d in loglog scale
for χ = 0.1 (green curve) and χ = 1 (blue curve) and their respective fit (black
and red curve).

As a first validation, we would like to compare the profiles of the solutions for
the macroscopic and microscopic models. This is performed next section.
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4.3 Profiles of the solutions
Here, we use the order parameter fitted in the microscopic simulations to com-
pute the solutions of the macroscopic model for the same set of parameters. As
explained in Appendix 7, simulations are performed on the same square domain
for the microscopic and macroscopic model: [−S, S] × [−S, S] with side length
2S for S = 0.5. The numerical grid for the macroscopic simulations is such that
∆x = ∆y = 0.025 and the time step respect the CFL condition (see appendix
7) with δf = L

2 . If not differently stated, the macroscopic values of the model
parameters are chosen such that:

νf = νd = 0.1, cu = 0.1, α = 0.1, κ = 0.1, dX = 5e−5, N = 1500, L = 0.2,

and ε = 0.1. Fig. 3.8 shows the simulations performed for χ = 0.1 and different
values of the noise intensity d and for external potential cu = 0.01 (A) and cu = 0.1
(B). We recall that the noise in the space variables is fixed, i.e µ is chosen such
that dµ = dX = 5e−5. As highlighten by the study of the macroscopic model (see
section 3.2.3), buckled solutions are obtained for a certain set of parameters. Due
to the randomness of the phenomena of the microscopic model (random noise,
fiber linking unlinking, random initial configurations), the final solutions of the
microscopic model will converge randomly to one of the buckled situations, with
no preference for one or the other. Therefore, in order to enable the comparison
between the microscopic and macroscopic buckled situations, we use the symmetry
of the buckled situations and study the absolute value of the fiber orientations
|θ(x)|. Fig. 3.8 shows simulations for different noise parameter d as well as different
external potential forces cu. For each set of parameter, we show the profiles of
θ(x) for both microscopic and macroscopic models in unbuckled situations, and
|θ(x)| for both models in case of buckled situations. Red curves correspond to the
solutions of the macroscopic model, black curves to the solutions of the microscopic
one. As shown by Fig. 3.8, we obtain a very good agreement between the solutions
of the microscopic and macroscopic models in the case χ = 0.1 (small amount of
fiber links).
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Figure 3.8: (A) Simulations of the microscopic model with ε = 0.1, external
potential cu = 0.01 and fiber linking/unlinking frequencies such that χ = 0.1 (first
line). From A1 to A3: for increasing values of the microscopic noise d: d = 10−5,
d = 10−4 and d = 10−3. For each, we show the profiles of the solutions averaged
over the y direction and over 10 simulations for the microscopic model (black
curves, second line). For each set of parameters, we superimpose the profiles of
the solutions to the macroscopic model (red curve). For small d and small external
potential cu = 0.01 (A1,A2), fiber orientation angles reach π

2 and −π
2 on the left

and right hand sides of the domain, with a zone of quasi horizontal fibers in the
middle, as predicted by the macroscopic model. For increasing d (A3), the profile
flattens and fibers no longer reach the orientation angles π

2 . The macroscopic
model captures the same features for the same parameters. (B) Case cu = 0.1. In
this case, all fibers reach orientation ±π

2 due to the large intensity of the external
potential for both the microscopic and macroscopic model.
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As shown by Fig. 3.8 (A), for small noise intensity d and small external po-
tential cu = 0.01, fibers reach π

2 and −π
2 on the left and right hand side of the

domain, while fibers in the middle are quasi horizontally disposed, as predicted by
the macroscopic model (Figs. 3.8 (A1-A2)). For increasing d, the profile of the
fiber orientation flattens and fibers no longer reach the orientation angles π

2 (Fig.
3.8 (A3)). The macroscopic model captures the same features for the same param-
eters. In the case of a larger external potential, all the fibers are vertically disposed
in the domain (except on the boundaries because of the Dirichlet conditions, see
Fig. 3.8 (B)). This is also predicted by the macroscopic model. This tends to
show that the macroscopic model captures the same features as the microscopic
model in case of a small value of χ. However, different solutions are obtained when
comparing both models for χ = 1. As shown in Fig. 3.9, for the same parameters,
the profile of the solution of the microscopic model is much more flattened than
for the macroscopic model with χ = 1.
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Figure 3.9: Simulation of the microscopic model with ε = 0.1, external potential
cu = 0.01, d = 10−4 and fiber linking/unlinking frequencies such that χ = 1. For
the same parameters and χ = 1, the profile of the solution of the microscopic
model (black curve) is much more flattened than for the macroscopic model (red
curve).

This suggests that the noise must be much larger in the macroscopic model for
both profiles to correspond. From this observation, we deduce that the amount of
fiber links has a strong effect on the ’temperature’ of the system. This is due to
the fact that fibers have a finite length in the microscopic model, whereas the large
scale limit supposes that fiber length tends to 0. To highlight this phenomenon, we
plot (in loglog scale) in Fig. 3.10 the L2 norm of the difference between the solution
of the microscopic model and the one of the macroscopic model, as function of the
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fiber length L. We explore the fiber lengths L ≈ 0.16, L ≈ 0.2 and L ≈ 0.22
(respective microscopic values: 0.05,0.06 and 0.07), and the respective number of
fibers are chosen to Nf = 1800, Nf = 1500 and Nf = 1250. For each, three
different noise intensities are tested d = 10−5, 10−4 and d = 10−3. Figs. 3.10 (A)
and (B) are obtained for χ = 0.1 and χ = 1 respectively. The external potential
is cu = 0.01.
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Figure 3.10: (A) L2-norm of the difference between the microscopic fiber orien-
tation and the macroscopic one for cu = 0.01, χ = 0.1, plotted in loglog scale as
function of the (microscopic) fiber length L for three different values of the noise
intensity d: d = 10−5 (blue curve), d = 10−4 (black curve) and d = 10−3. (B)
Same plots in the case χ = 1.

As shown by Fig. 3.10, the difference between the microscopic and macroscopic
profiles decreases when the fiber length decreases. For χ = 0.1, we obtain a
small error of order 0.6 whereas for χ = 1 the error is 1.64 for the smallest fiber
length considered. These results are a first step towards the numerical proof of
convergence of the microscopic model to the macroscopic one as the fiber length
goes to zero.

5 Conclusion
In this paper, we have analyzed the macroscopic model derived from a microscopic
model for fibers interacting through linking and unlinking interactions, alignment
between cross-linked fibers and external rotation potential. We have shown that
the starting Individual based dynamics can be written in form of a minimization
problem under a given regime, showing the analogy between the models of [1]
and [2]. Under some regularity assumptions for the external potential, we were
able to obtain existence of stationary solutions to the macroscopic derived model.
The numerical simulations of the macroscopic model showed the apparition of
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a buckling phenomenon, giving a first insight into the mechanical properties of
the system. We showed that the distribution of fiber mean local orientation of the
microscopic model were in good agreement with the predictions of the macroscopic
model and we were able to compute the order parameter of the microscopic model.
The numerical simulations of the microscopic model showed that in a well chosen
regime, the microscopic and macroscopic models were in good agreement. We
finally gave a first numerical analysis towards the proof of the convergence of the
microscopic model to the macroscopic one.

We have seen that the fiber links density have a strong impact on the final
structures that the macroscopic model does not capture. This is due to the fact
that the scaling suppose that the linking/unlinking process is quasi instantaneous.
This assumption makes the action of the links vanish in the macroscopic model, and
no memory effect of the fiber cross-links remain. Works are in progress to better
understand the effects of the links on the temperature of the system. Further
perspectives of this model include numerical simulations of the complete kinetic
model, or the establishment of a hydrodynamic scaling based on a more realistic
assumption for fiber linking/unlinking dynamics.

Many questions remain open concerning the macroscopic model. On an an-
alytical viewpoint, unicity results for the stationary solutions of the macroscopic
model are the subject of future work. On a numerical viewpoint, we plan to de-
velop numerical techniques to enable the microscopic simulations to be performed
under the kinetic regime. An other direct perspective of this work is to consider
non homogeneous density. As shown in [2], this leads to a much more complex
system of two coupled highly non linear equations requiring advanced numerical
methods.
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6 The microscopic model as a penalization method
of a minimization problem

In this appendix, we aim to compare the microscopic model (2.8)-(2.9) with the
model proposed in [1]. In [1], we developed an IBM for a fiber network with the
same characteristics as the one described in section 2. Contrary to the IBM of this
paper, in [1], the maintain of fiber links is modeled as a constraint and at each time
step, fibers seek to minimize their mechanical interaction energy resulting from the
total potential of the system, under the linkeage constraint between linked fibers.
From now on, we will refer to as model I for the model of this paper (Eqs. (2.8)-
(2.9)) and as model II for the model of [1]. In a first section, we present the main
features of model II, and its numerical scheme is detailed in section 6.2. Section
6.3 is devoted to the numerical scheme for model I and shows the analogy between
the two formulations. Finally, numerical simulations to compare models I and II
are presented in section 6.4.

6.1 Individual Based Model of [1]
The total mechanical potential of the system is defined as a sum of the contribu-
tions of phenomena (ii) and (iii) (see section 2.1):

Wtot = Wext +Walign. (6.1)

All along the link life, linked fibers must remain attached. The maintain of the link
is modeled as an equality constraint ~Vi(k)j(k) = 0, where ~Vi(k),j(k)(X, θ) is defined
by Eq. (2.1).

During the simulation, fibers are submitted to random motion (phenomenon
(iv)), new fiber links can appear and existing links can disappear (phenomenon (i)).
These phenomena disrupt the mechanical equilibrium and force the fibers to move
in order to restore the equilibrium. This can be written in form of a minimization
problem. For this purpose, we consider a time discretization tn = n∆t, ∆t ∈ R,
n ∈ N. At each time tn, fiber positions and orientation angles solve:

(Xn, θn) = argmin
(X,θ)∈C

Wtot(X, θ) (6.2)

where C = {(X, θ) | ~Vi(k),j(k)(X, θ) = 0 ∀ k ∈ [1, K]}. In [1], tissue movements are
modeled as time regular random changes, i.e fiber positions Xi and orientations θi
are actualized between time steps tn and tn+1 as follows for all i ∈ [1, N ]:

X
n+1/2
i = Xn

i + η1

√
2dX∆t, θn+1/2

i = θni + η2

√
2dθ∆t, (6.3)

where η1 and η2 are random numbers chosen from a Gaussian distribution and dX
and dθ are the respective amplitudes of fiber random motion and rotation.
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6.2 Numerical scheme for the minimization problem
We propose to solve the minimization problem (6.2) by an Uzawa type algorithm.
For this purpose, we define the Lagrangian L of the system:

L(X, θ) = Wtot +
K∑
k=1

~λi(k),j(k)~Vi(k),j(k)(X, θ)

=
N∑
i=1

U(θi) +
K∑
k=1

(
sin(θi(k) − θj(k)) + ~λi(k),j(k).~Vi(k),j(k)(X, θ)

)
.

(6.4)

Given an initial configuration (Xn+1/2, θn+1/2), the configuration (Xn, θn) at time
tn is defined as the limit as p → ∞ of the iterative sequence (Xp, θp) where
(Xp, θp, ~λp) is defined for all i ∈ [1, N ], k ∈ [1, K] by:

Xp+1
i = Xp

i − αiX∇XiL(Xp, θp, λp)
θp+1
i = θpi − αiθ∂θiL(Xp, θp, λp) (6.5)
~λp+1
i(k)j(k) = ~λpi(k)j(k) + λ~Vi(k)j(k)(Xp+1, θp+1)).

with initial condition (X0, θ0, ~λ0) = (Xn+1/2, θn+1/2, ~λ0) and ~λ0
i(k)j(k) = 0, for all

(k) ∈ [1, K]. The parameter λ controls the actualization of the constraints and
is further described. The minimization steps αX , αθ control fiber i elementary
motion and rotation respectively and their actualization is further described. The
convergence test of the algorithm reads:

|L
p+1 − Lp

Lp
| ≤ εr, (6.6)

for a chosen εr > 0. Here, Lp is the value of the Lagrangian at iteration p.
Because of the non convexity of the minimization problem, the uniqueness of the
solution to (6.2) is not ensured and a configuration at each time step corresponds
to a local minimum of the minimization problem. The numerical parameters αiX
and αiθ are chosen such that the amplitude of the change of each variable remains
controlled. Given the bounds δX and δθ, the goal is to ensure |Xp+1

i −Xp
i | ≤ δX and

|θp+1
i − θpi | ≤ δθ, for each fiber i. Using (6.4) and (6.5), the following expressions

hold:
|Xp+1

i −Xp
i | = αia|∇XiWtot +∇Xi

~V~λ|
|θp+1
i − θpi | = αkθ |∂ΘkWtot + ∂Θk

~V~λ|.
The parameters αia, αkf and αkθ are consequently set such that:

αia = δX
2 min( 1

|∇XiWtot|
,

1
|∇Xi

~V~λ|
)

αiθ = δθ
2 min( 1

|∂ΘkWtot|
,

1
|∂Θk

~V~λ|
.

(6.7)
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The gradient bounds are estimated at each iteration of the minimization algorithm
and are included into Eqs. (6.7) to compute the values of the numerical steps. We
refer to [1] for more details on the calibration of the numerical parameters.
For fiber linking/unlinking, we define ptk the coefficients such that ptk = 1 if the pair
of fibers (i(k), j(k)) are linked at time t, ptk = 0 otherwise. The time evolution of
this coefficient between t and t+∆t reads, using the fact that ν ′f = ε2νf , ν ′d = ε2νd:

P(pt+∆t
k = 1 | ptk = 0) =1− e−ν′f∆t if max(`i(k),j(k), `j(k),i(k)) ≤

L

2
=0 otherwise

P(pt+∆t
k = 0 | ptk = 1) =1− e−ν′d∆t

where `i(k)j(k) = ¯̀(Xi(k), θi(k), Xj(k), θj(k)) such that:

¯̀(Xi(k), θi(k), Xj(k), θj(k)) = (xj(k) − xi(k)) sin θj(k) − (yj(k) − yi(k)) cos θj(k)

sin(θj(k) − θi(k))
, (6.8)

where Xi(k) = (xi(k), yi(k)) are the coordinates of the center of fiber i(k). Finally,
νf and νd are the macroscopic frequencies of the linking and unlinking processes,
respectively.

6.3 Link between the model of section 2.1 and its numer-
ical scheme

Coming back to the model of this paper, if we perform an explicit Euler scheme of
(2.8)-(2.9) at discrete times tk = k∆t, and splitting the random motion part, we
can write for all i ∈ [1, N ]:

X
k+1/2
i = Xk

i + η1
√

2d∆t, θk+1/2
i = θki + η2

√
2d∆t, (6.9)

Xk+1
i = X

k+1/2
i − µ∆t∇Xi

(
Wtot +Wlinks

)
(Xk+1/2, θk+1/2) (6.10)

θk+1
i = θ

k+1/2
i − λ∆t∂θi

(
Wtot +Wlinks

)
(Xk+1/2, θk+1/2), (6.11)

where η1 and η2 are random numbers chosen from a gaussian distribution and from
a uniform one respectively. Note that the random motion has been here approxi-
mated by Gaussian noises on the fiber positions and orientations. From (2.2), it is
clear that iterations (6.10)-(6.11) correspond to a gradient descent for a quadratic
penalization of the minimization problem (6.2), with penalization factor κ. Then,
as we will show in next section, the solutions of (6.2) at each time tn match the
solutions of (6.10)-(6.11) for large k if the penalization factor κ is well chosen
and if we consider fiber alignment and external potential only. Therefore, these
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two different formulations model the same dynamics at two different time scales.
However, random fiber motion and reorientation as well as fiber linking/unlinking
must be carrefully fitted if one wants to compare the two models. Indeed, each
configuration at time tn of model I corresponds to a converged configuration of
model II between two linking/unlinking events, or two significant fiber random
motion and reorientation. The model parameters of model II (α, cu, κ, d, νf , νd)
act at the same time scale whereas for model I, the time scale of νf , νd and d are
much larger than the ones of α, cu.

In order to bound the maximal motion for fibers by δf , we use the following
CFL condition in the numerical simulations:

∆t = δf
max(cu, κ, αL) .

Finally, the fiber linking/unlinking process is treated as for model II (see 6.2).

6.4 Comparison of the microscopic models I and II
We consider a 2D square domain [−S, S] × [−S, S], with periodic boundary con-
ditions at the top and bottom and Dirichlet boundary conditions for fiber po-
sitions and orientations at the right and left sides of the domain. Fibers are
thus fixed at the left and right sides and have orientations θ1 and θ2, for cho-
sen (θ1, θ2) ∈ (−π

2 ,
π
2 ]. These conditions are modeled at the individual level

as zones ΓL = [−S,−S + sD] × [−S, S] (left side of the domain) and ΓR =
[S − sD, S] × [−S, S] (right side of the domain), where sD is the size of these
zones. We refer to ΓD = ΓL ∪ ΓR as the ’Dirichlet zone’, for which the positions
and orientations of the fibers in this zone are fixed. We initialize the system by
randomly inserting N fibers in the domain. We decompose the domain in the x
direction into Ns + 1 points distant of sD, and fiber orientations are initially set
to, for all i ∈ [1, N ]:

θi = θ1 + (θ2 − θ1) ki
Ns

, (6.12)

where ki ∈ [0, Ns] is such that the interval [−S + kisD,−S + (ki + 1)sD] contains
the x coordinate of fiber i center. Note that fibers of center in ΓR have orientation
θ2, and fiber of center in ΓL have orientation θ1. Fig. 3.11 shows simulations at
equilibrium for model I and II, without random noise (dX = dθ = 0). The simula-
tions are performed for S = 0.6 and for N = 400 fibers of length L = 0.2, initially
linked to each of its intersecting neighbors. Figs. 3.11 (A) and (B) are performed
without fiber linking/unlinking for models I and II respectively. For Figs. 3.11
(C) and (D), fiber linking/unlinking is activated with frequencies νf = νd = 10
for the two models. The rotation external potential is supposed to act on linked
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Model I Model II

(A) (B)

(C) (D)

Figure 3.11: Model parameters α = 1, u = 1. (A) Stationary solutions of model
II for νf = νd = 0, ∆t = 0.1. (B) Stationary solutions of model I for νf = νd = 0
and κ = 10, ∆t2 = 0.01. (C): Stationary solutions of model II for ∆t = 0.1
and linking/unlinking νf = νd = 10. (D): stationary solutions of model I for
∆t2 = 0.01, κ = 10 and linking/unlinking νf = νd = 10, µ = λ = 1

fibers only. As shown by Figs. 3.11 (A) and (B), the two models produce the same
structures when no linking/unlinking is introduced and for a penalization parame-
ter κ = 10 for model I. However, for the same linking/unlinking frequencies (Figs.
3.11 (C) and (D)), the two models produce very different structures. For this fiber
linking/unlinking dynamics, model II creates localized and aligned fiber clusters
while model I does not generate fiber clustering. This is due to the fact that fiber
linking/unlinking does not act at the same scale for the two models. For model
II, the fiber cross-links are necessarily maintained throughout motion (motion in-
duced by the alignment force between cross-links and by the external potential),
which gives to the system a memory of the cross-links. During fiber alignment and
rotation, the pair of linked fibers remain attached and recruit neighboring fibers
thanks to the linking process. For model I, fiber cross-links are modeled as forces
between fibers. Therefore, there is a competition between rotation, alignment, and
retraction potential between fibers of a linked pair. With this model, the attach-
ment sites on linked fibers can be distant from each other during fiber motion.
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At the time fibers are detached by the unlinking process, they are not necessarily
crossed, preventing them to be reattached by the linking process.

To sum up, the two models show a good correspondence for fixed fiber links
with no fiber linking/unlinking. This confirms that model I can be viewed as
a gradient descent for a quadratic penalization of model II. However, when the
same dynamical linking/unlinking is considered for both models, model II can
generate fiber patterns which are not observed with model I. The major difference
between both models is that alignment, rotation and retraction potential between
fiber cross-links acts at the same time scale for model I, while the retraction is
much larger in model II (because it is seen as a constraint). For the two models
to be equivalent with dynamical fiber linking/unlinking, the frequencies of these
processes must be fitted with the rotation and alignment potentials. Either smaller
linking/unlinking frequencies for model I (compared to model I), either smaller
rotation and alignment potential intensities for model II compared to model I lead
to the same structures.

Remark: The choice of model I as a starting point for the derivation of a
macroscopic model was motivated by two reasons. First of all, a minimization al-
gorithm is by nature a discrete method whereas we needed a continuous description
of the motion for the derivation. Moreover, the macroscopic equation is obtained
in the limit of large linking/unlinking frequencies. By construction, model II in-
trinsically have a memory of the links and is not suited to this scaling limit.

7 Numerical algorithm for the particle dynamics
Here, we propose a numerical scheme for the scaled version of the IBM of section
2.1. The numerical scheme for model (2.8)-(2.9) can be found in appendix 6.3

Scaling Following Section 2.2, we set:
X̃i =

√
εXi , L̃i = Li, θ̃i = θi,∆t̃ = ε∆t .

Inserting these expressions into Eq. (6.9), we obtain:

X̃
k+1/2
i = X̃k

i + η1

√
2d′µ′∆t̃, θ̃

k+1/2
i = θ̃ki + η2

√
2d
′

ε
∆t̃. (7.1)

where η1 and η2 are random numbers chosen from Gaussian distributions and d′

is the macroscopic noise on fiber random motion and rotation. With the same
treatment for the other terms (using Eqs. (2.18) together with Eqs. (6.10),(6.11)),
fiber motion and rotation between time steps t̃k and t̃k+1 are such that:

X̃k+1
i = X̃

k+1/2
i − µ′∆t̃∇X̃i

W̃links(X̃k+1/2, θk+1/2)

θk+1
i = θ

k+1/2
i − ∆t̃

ε2 ∂θi
(
ε2W̃ext + W̃align + εW̃links

)
(X̃k+1/2, θk+1/2).
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Note that the CFL condition becomes:

∆t̃ = ε2δf
max(cu, κ, αL) .

The numerical scheme obtained is thus in agreement with the microscopic scaled
equations (2.19)-(2.20).

For fiber linking/unlinking, we define pt̃k the coefficients such that pt̃k = 1 if the
pair of fibers (i(k), j(k)) are linked at time t̃, pt̃k = 0 otherwise. The time evolution
of this coefficient between t̃ and t̃ + ∆t̃ reads, using the fact that ν ′f = ε2νf ,
ν ′d = ε2νd:

P(pt̃+∆t̃
k = 1 | pt̃k = 0) =1− e−

ν′
f

ε2
∆t̃ if max(`i(k),j(k), `j(k),i(k)) ≤

L

2
=0 otherwise

P(pt̃+∆t̃
k = 0 | pt̃k = 1) =1− e−

ν′
d
ε2

∆t̃

where νf and νd are the macroscopic frequencies of the linking and unlinking
processes, respectively.

7.1 Initialization and model parameters
Model parameters The previous scaling obliges us to work on larger domains
as ε becomes smaller. For convenience, we rather want to perform the simulations
with fixing the space domain Ω, i.e making it independent of ε. Note that this
amounts to consider that the space scale is such that ˜̃x0 = x0 instead of x̃0 =
ε−1/2x0 as before. All the variables with a space dimension are thus adapted in
this new scaling such that (using (2.14)):

˜̃λ = λ

ε
= 1
ε
, ˜̃L =

√
εL , ˜̃d = εd , ˜̃α = εα ,

and the other ones remain unchanged. In this new set of variables, equations for
fiber motion and rotation read:

X̃
k+1/2
i = X̃k

i + η1

√
2 ˜̃dεµ′∆t̃, θ̃

k+1/2
i = θ̃ki + η2

√√√√2
˜̃d
ε

∆t̃. (7.2)

and

Xk+1
i = X

k+1/2
i − µ′ε∆t̃∇Xi

˜̃Wlinks(Xk+1/2, θk+1/2)

θk+1
i = θ

k+1/2
i − ∆t̃

ε2 ∂θi
(
ε2 ˜̃Wext + ˜̃Walign + ε ˜̃Wlinks

)
(Xk+1/2, θk+1/2).
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Note that fiber rotation remains unchanged while fiber motion acts at lower order
O(ε). This is expected results since in this new scaling, fibers smaller than before
are considered. Finally, in order to control the amplitude of fiber random motion,
the parameter µ is chosen such that dµ is a constant dX . To this aim, for each
value of the noise d, we set:

µ = dX
d
.

Initialization We consider a 2D square domain with periodic boundary con-
ditions at the top and bottom and Dirichlet boundary conditions θ1 and θ2 at the
right and left sides of the domain, for chosen (θ1, θ2) ∈ (−π

2 ,
π
2 ]. These conditions

are modeled at the individual level as zones ΓL = [−S,−S+sD]× [−S, S] (left side
of the domain) and ΓR = [S − sD, S] × [−S, S] (right side of the domain), where
sD is the size of these zones. We refer to ΓD = ΓL ∪ ΓR as the ’Dirichlet zone’,
for which the positions and orientations of the fibers in this zone are fixed. We
initialize the system by randomly inserting N fibers in the domain. We decompose
the domain in the x direction into Ns + 1 points sD apart, and fiber orientations
are initially set to, for all i ∈ [1, N ]:

θi = θ1 + (θ2 − θ1) ki
Ns

, (7.3)

where ki ∈ [0, Ns] is such that the interval [−S + kisD,−S + (ki + 1)sD] contains
the x coordinate of fiber i center. Note that fibers of center in ΓR have orientation
θ2, and fiber of center in ΓL have orientation θ1.
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8 Numerical scheme for the macroscopic model
8.1 Coefficients of the macroscopic model
Here, we give the details of the coefficients α1, α2, α3, α4, α5 of Eq. (3.30) (see [2]
and restoring the µ):

α1 = 1− 1
Z2

α2 = d

α1
(µα1 + ξαL4γc(r)

24 )

α3 = ξαL4γ

24α1
( 1
4Z2 − 1 + 6dc(r)

ξαL2γ
)

α5 = 1
α1
,

(8.1)

where we recall that α is the intensity of the alignment potential between cross-
linked fibers, d the noise intensity, ξ the ratio between the numebr of fiber links
and the total number of fibers, L the fiber length, r the order parameter and:

Z =
∫ π

2

−π2
er cos 2θ dθ

π
.

Next section is devoted to the numerical method used for numerically computing
the solutions of the macroscopic model written in a semi conservative form given
by Eq. (3.43).

8.2 Numerical method
First, the square space domain Ω is discretized into Nx (resp Ny) points in x (resp
y) direction, such that xj = −S + j∆x, yi = −S + (i − 1)∆y for all (j, i) ∈
[1, Nx] × [1, Ny]. We refer to the discretized domain as ΩN = {(xj, yi), (i, j) =
[1, Nx]× [1, Ny]}. Eq. (3.43) is discretized with simple centered finite differences.
For this purpose, we define Θ as the NxNy vector such that Θk = θ(xj, yi), where
k = j+(i−1)Nx, k ∈ [1, NxNy]. Note that θ(xj+1, yi) = Θk+1, θ(xj, yi+1) = θk+Nx .
We use trapezoidal method for computing the values of the integrals contained in
the terms Z and c(r) of the coefficients α1, α2 and α3. For this purpose, [0, 2π] is
discretized into N ′ + 1 points ξi = (i− 1) 2π

N ′
and the integral of a function f(θ) is

approximated by:

∫
[0,2π]

f(θ)dθ2π =
N ′∑
i=1

(ξi+1 − ξi)(f(ξi) + f(ξi+1))
4π .
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By the use of centered finite differences of order 2, Eq. (3.43) can be written

F (Θ) = O(∆x2 + ∆y2 + ∆x∆y), (8.2)

where F is a NxNy vector such that for all k ∈ [1, Nx]× [1, Ny]

Fk(Θ) = α2(Dk
xxΘ +Dk

yyΘ)− α3

2
(
Dk
xxS −Dk

yyS − 2Dk
xyC

)
− h(Θk).

Here, S, C are NxNy vectors such that Sk = sin 2Θk, Ck = cos 2Θk for all k and
Dk
xxΘ, Dk

yyΘ and Dk
xyΘ (resp. Dk

xxS, Dk
yyS and Dk

xyS and similarly for C) are
the approximations of the second order derivatives of θ (resp. sin 2θ and cos 2θ)
evaluated at point (xi, yj) (k = j + (i− 1)Nx). For a given vector G ∈ RNxNy :

Dk
xxG = GR

k − 2Gk +GL
k

∆x2 , Dk
yyG = GT

k − 2Gk +GB
k

∆y2 Dk
xyG = GRT

k −GRB
k −GLT

k +GLB
k

4∆x∆y

where GR
k , G

L
k , G

T
k , G

B
k are the values of vector G on the right (R), left (L), top

(T) and bottom (B) numerical grid points of point k respectively (same principle
for RT,RB,LT and LB). We recall that each k is associated to a unique (i, j) such
that k = j + (i − 1)Nx. The left side of the domain corresponds to j = Nx, the
right side to j = 1, the top to i = Ny and the bottom to i = 1. For implementing
Dirichlet boundary conditions on the right side for instance, we consider that the
left neighbor Gk+1 of Gk is such that Gk+1 = G2 for the k such that j = Nx

(for instance Θk+1 = θ2 if G is the fiber orientation). For periodic boundary
conditions, we simply connect the top and bottom of the domain. If k is such
that i = Ny (top), then Gk+Nx (top neighbor) becomes Gk−Nx(Ny−2), its symmetric
point (regarding y direction) located at the bottom of the domain. Altogether,
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GR
k , G

L
k , G

T
k , G

B
k are computed thanks to:

GR
k =Gk+1 (1 ≤ j ≤ Nx − 1), (1 ≤ i ≤ Ny)

G2 j = Nx, (1 ≤ i ≤ Ny)
GL
k =Gk−1 (2 ≤ j ≤ Nx), (1 ≤ i ≤ Ny)

G1 j = 1, (1 ≤ i ≤ Ny)
GT
k =Gk+Nx (1 ≤ i ≤ Ny − 1), (1 ≤ j ≤ Nx)

Gk−Nx(Ny−2) i = Ny, (1 ≤ j ≤ Nx)
GB
k =Gk−Nx (2 ≤ i ≤ Ny), (1 ≤ j ≤ Nx)

Gk+Nx(Ny−2) i = 1, (1 ≤ j ≤ Nx)
GRT
k =Gk+Nx+1 (1 ≤ i ≤ Ny − 1), (1 ≤ j ≤ Nx − 1)

G2 j = Nx, (1 ≤ i ≤ Ny)
Gk−Nx(Ny−2)+1 i = Ny, (1 ≤ j ≤ Nx − 1)

GLT
k =Gk+Nx−1 (1 ≤ i ≤ Ny − 1), (2 ≤ j ≤ Nx)

Gk−Nx(Ny−2)+1 i = Ny, (1 ≤ j ≤ Nx − 1)
G1 j = 1, (1 ≤ i ≤ Ny)

GRB
k =Gk−Nx+1 (2 ≤ i ≤ Ny), (1 ≤ j ≤ Nx − 1)

G2 j = Nx, (1 ≤ i ≤ Ny)
Gk+Nx(Ny−2)+1 i = 1, (1 ≤ j ≤ Nx − 1)

GLB
k =Gk−Nx−1 (2 ≤ i ≤ Ny), (2 ≤ j ≤ Nx)

G1 j = 1, (1 ≤ i ≤ Ny)
Gk+Nx(Ny−2)−1 i = 1, (1 ≤ j ≤ Nx − 1),

for G1 and G2 given by the Dirichlet boundary conditions as previously explained.
We now aim to apply a Newton algorithm to Eq. (8.2). For this purpose, we
compute the NxNy×NxNy jacobian matrix F ′ of function F : ΩN → ΩN . Given an
initial configuration θ0, the solution θ of Eq. (8.2) corresponds to the convergence
in k of the sequence:

F ′(θk)(θk+1 − θk) = −F (θk). (8.3)
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The jacobian F ′(Θ) of F (Θ) is such that F ′kl(Θ) = ∂Fk(Θ)
∂Θl

for all (k, l) ∈ [1, NxNy]2
and reads:

F ′k,k = −α2( 2
∆x2 + 2

∆y2 )− α3(− 2Ck
∆x2 + 2Ck

∆y2 )− h′(Θk) (1 ≤ j ≤ Nx), (1 ≤ i ≤ Ny)

F ′k,k+1 = α2
1

∆x2 − α3
Ck+1

∆x2 (1 ≤ j ≤ Nx − 1), (1 ≤ i ≤ Ny)

F ′k,k−1 = α2
1

∆x2 − α3
Ck−1

∆x2 (2 ≤ j ≤ Nx), (1 ≤ i ≤ Ny)

F ′k,k+Nx = α2
1

∆y2 + α3
Ck+Nx
∆y2 (1 ≤ j ≤ Nx − 1), (1 ≤ i ≤ Ny − 1)

F ′k,k−Nx = α2
1

∆y2 + α3
Ck−Nx
∆y2 (1 ≤ j ≤ Nx − 1), (2 ≤ i ≤ Ny)

F ′k,k−Nx(Ny−2) = α2
1

∆y2 + α3
Ck−Nx(Ny−2)

∆y2 (1 ≤ j ≤ Nx − 1), i = Ny

F ′k,k+Nx(Ny−2) = α2
1

∆y2 + α3
Ck+Nx(Ny−2)

∆y2 (1 ≤ j ≤ Nx − 1), i = 1

F ′k,k+Nx+1 = −α3
Sk+Nx+1

2∆x∆y (1 ≤ j ≤ Nx − 1), (1 ≤ i ≤ Ny − 1)

F ′k,k−Nx(Ny−2)+1 = −α3
Sk−Nx(Ny−2)+1

2∆x∆y (1 ≤ j ≤ Nx − 1), i = Ny

F ′k,k−Nx−1 = −α3
Sk−Nx−1

2∆x∆y (2 ≤ j ≤ Nx), (2 ≤ i ≤ Ny)

F ′k,k+Nx(Ny−2)−1 = −α3
Sk+Nx(Ny−2)−1

2∆x∆y (2 ≤ j ≤ Nx), i = 1

F ′k,k−Nx+1 = α3
Sk−Nx+1

2∆x∆y (1 ≤ j ≤ Nx − 1), (2 ≤ i ≤ Ny)

F ′k,k+Nx(Ny−2)+1 = α3
Sk+Nx(Ny−2)+1

2∆x∆y (1 ≤ j ≤ Nx − 1), i = 1

F ′k,k+Nx−1 = α3
Sk+Nx−1

2∆x∆y (2 ≤ j ≤ Nx), (1 ≤ i ≤ Ny − 1)

F ′k,k−Nx(Ny−2)−1 = α3
Sk−Nx(Ny−2)+1

2∆x∆y (2 ≤ j ≤ Nx), i = Ny

8.3 Continuation method
As Newton’s method strongly depends on the initial conditions, we proceed by
continuation. For this purpose, we introduce a numerical parameter τ into the
boundary conditions as well as in front of the external potential h and apply the
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previous algorithm on the following set of sub-problems:

Fτ,k(Θ) = α2(Dk
τ,xxΘ +Dk

τ,yyΘ)− α3

2
(
Dk
τ,xxS −Dk

τ,yyS − 2Dk
τ,xyC

)
− τh(Θk),

for boundary conditions:

θ = θ1 on ΓL
θ = τθ2 on ΓR.

Note that Θ = θ1 is solution to these sub-problems for τ = 0, and that we recover
the full system for τ = 1. We then discretize the interval [0, 1] into P points.
Given the initial configuration for τ = 0, the final solution θ of the full system is
given by the P iteration of the sequences θτp such that each θτp is the converged
solution of Eq. (8.3) for initial configuration θτp−1 .

9 Order Parameter
In this section, we study how the order parameter depends on the size sD of the
numerical boxes used to average the orientations of the fibers. Fig. 3.12 (A) shows
the values of r as function of sD averaged over 20 simulations for cu = 0 and
for two different points of the domain: around x = 0 (black curve) and around
x = 0.2 (green curve). Figs. 3.12 (B) and (C) show the values (averaged over 20
simulations) of the mean orientation θ0 and density ρ as function of x. For each,
we used sD = 0.02 (black curve) and sD = 0.05.
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Figure 3.12: Parameter r for x = 0 (black curve) and x = 0.2 (green curve),
averaged over 20 numerical simulations and plotted as function of sD. Numerical
parameters for the simulations: N = 1500, θ1 = −θ2 = π

4 , ε = 0.1, α = 0.1, cu = 0,
dθ = 5e− 5

Fig. 3.12 (A) shows that for cu = 0 the parameter r which corresponds to the
distribution of fiber orientations is almost constant as function of the size sD. We
choose sD = 0.05 for the rest of the simulations. Figs. 3.12 (B) and (C) reveal that
the mean orientation (B) and fiber density (C) for cu = 0 do not depend upon
the size of the numerical boxes used to compute their value. With no external
potential, the microscopic distribution of fibers varies linearly from θ0(−S) = θ1
to θ0(S) = θ2 as expected. The fiber density is homogeneous and equal to 1, except
close to the Dirichlet zone where the fibers accumulate. This is due to the way
of implementing the Dirichlet conditions at the individual level, but this effect is
neglected here.



Chapter 4

Large-scale dynamics of
short-range repulsion and cell
division

This chapter is a work in collaboration with S. Motsch

Abstract Non overlapping constraints arise naturally in the study of incom-
pressible fluids and in biological/social systems. It consists in considering that the
density of individuals cannot exceed a maximal density threshold corresponding to
jamming. In this work, we explore the effects of density congestion at the macro-
scopic level. At the individual scale, the particles are modeled as 2D spheres which
move in order to be in non-overlapping configuration. We derive a macroscopic
model starting from the mean-field description of the particle model, and show that
it leads to a porous media equation. The solutions of the macroscopic equation
show different features compared to its underlying agent-based model, and this is
due to the fact that Dirac masses are unstable for the macroscopic model. We
propose a modified version of the macroscopic equation and numerically validate
the new formulation by comparison with the particle model.
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1 Introduction
One of the main difficulties in the modeling of complex systems such as fish school-
ing or tumor growth is the lack of fundamental laws. However, there is always one
rule that agents have to satisfy: two agents cannot occupy the same space at the
same time. Despite the simplicity of the rule, this constraint has several intrigu-
ing effects (non-convex problems). The goal of this work is to explore how this
constraint manifests itself at large-scales both analytically and numerically using
a generic model of short-range repulsion as a starting point.

In the literature, the problem of non-overlapping is ubiquitous in the modeling
of collective behavior. When pedestrians are crossing [26, 35, 33] or when birds
flock together [4], avoidance of neighbors is always necessary. Usually, this rule
is modeled by a repulsion interaction [1, 41, 18]. At the macroscopic scale, the
density constraint is a key factor and is responsible for instance in the formation
of car traffic jam [7, 8, 6]. The effect of congestion leads to numerous challenging
mathematical models such as non-linear diffusion [14, 15] and two-phase flows
[9, 21]. More generally density constraints have been studied for fluid models in [5,
19, 28, 10, 37, 22, 20]. Incompressibility constraints have also been analyzed using
optimal transport theory [32]. Finally, the derivation of macroscopic equations
from microscopic dynamics have been extensively studied in the case of repulsion
interaction [13, 34, 36, 27] and in case of volume exclusion [11, 12].

In the understanding of cancer development, mathematical modeling now com-
plements experimental and clinical studies. Models for tumor growth present sev-
eral levels of complexity, at the biomedical level as well as at the mathematical
level [23]. The simplest models contain competition for space using fluid mechan-
ical concepts [30], and become more complex when studying the role of nutrient
supplies. When coupling growth and diffusion, one common dynamics used is the
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so-called KKP equations [25, 42]. The density constraint is ’implicit’ in a source
term as cells die if a threshold is reached. However, a drawback of this approach
is that dead cells should not ’vanish’. In practical case, the so-called Swanson’s
model is used without density threshold and therefore the density keeps increasing.
Other models have been proposed in which growth is limited by the competition
for space [39, 38, 40]. In this approach, tumor growth with nutrients is modeled
through a Hele-Shaw model which lead to traveling wave solutions. If microscopic
models for tumor growth were proposed in [29, 20], the majority of models of in-
terest are macroscopic ones and describe the evolution of the density of particles.
In this paper, we want to link as rigorously as possible the macroscopic dynamics
to the microscopic one.

The focus of this paper is to explore the effects of density constraint in a simple
model of tumor growth. Starting from an agent-based model with short-range
repulsion, we are interested in the large scale behavior of the dynamics using partial
differential equations. In a first attempt, we derive a macroscopic model using the
weak equation satisfied by the so-called empirical distribution. We observe that
micro- and macro- dynamics have drastically different behaviors: the microscopic
solutions converge to a stationary state, whereas the macroscopic solutions keep
spreading in space. Here, as we are interesting in the long time behavior, there
is no guarantee that both micro- and macro- dynamics remain close, even if the
number of particles N is large. Moreover, for short range repulsion, Dirac masses
are not stable [3] which also explains why the macroscopic dynamics diverges from
the particle simulations.

The difficulty comes from the ’local’ range of interaction: repulsion should
only apply when particles are ’close enough’. But this notion of closeness is lost
when looking at the density distribution ρ(x). For this reason, we modify in a
second step the dynamics at the macroscopic level to de-activate repulsion at low-
density. Such modifications allows to retrieve the same dynamics as observed in
the microscopic description.

Finally, we combine short-range repulsion and ’growth’ to deduce new types
of solutions. In this dynamics, the solution first increases on his support until it
reaches a density threshold, then the solution starts to spread. But in contrast to
the Swanson’s model, the spread actually propagates exponentially fast in time.

2 Short range repulsion: I
2.1 Agent-based models
In this section, we introduce a dynamics of short range repulsion of N particles
{xi}o moving in R2. All the particles have the same size R > 0 and their evolution



2 Short range repulsion: I 202

is governed by the following system of equations:

ẋi = −
N∑

j=1,j 6=i
φij(xj − xi), with φij = φ

(∣∣∣∣xj − xi2R

∣∣∣∣2
)
. (2.1)

where φ ≥ 0 is the interaction function. As we intend to model short-range
repulsion, φ is defined such that:

φ(s) =
{
|1− sα| , if 0 < s ≤ 1
0 , otherwise. (2.2)

Of particular interest will be the two cases: α = 1 and α = −1. Repulsion is only
active when two particles are at a distance smaller than 2R from each other.

There is an energy associated with this dynamics, namely:

E({xi}) = −1
2
∑
i 6=j

Φ
(∣∣∣∣xj − xi2R

∣∣∣∣2
)
, (2.3)

with Φ an anti-derivative of φ. The functional E is decaying along the solutions
{xi(t)}i of (2.1). More precisely, using that ẋi = − 1

4R2∇xiE , we find:
d
dtE({xi(t)}) =

∑
i

∇xiE · ẋi = − 1
4R2

∑
i

|ẋi|2 ≤ 0.

This property is used to build an adapted numerical scheme (see appendix), the
time step ∆t is chosen such that the energy is always decaying numerically.

As in an illustration of the dynamics, we propose in figure 4.13 four snapshots of
a simulation run with N = 100 particles. We observe that the dynamics converges
to a stationary state with a ’hexagonal lattice’ structure. Each particle is separated
from the others by a distance of at least 2R. In other words, the stationary state
belongs to the set:

C =
{
{xi}i : |xi − xj| ≥ 2R

}
.

Thus, the evolution equation (2.1) can be seen as a penalizing method to enforce
a non-overlapping constraint |xi − xj| ≥ 2R for all i, j. We notice that a direct
implementation of such non-overlapping constraint would be challenging since the
set C is non-convex [31, 33].

We can even estimate the radius L of the disc surrounding the whole structure
of particles, is we suppose that they are in a configuration of optimal arrangement.
Indeed in 2D, the highest density among all the possible packing arrangements for
circles of constant radius is π/2

√
3. This result, due to the works of Gauss [24],

corresponds to an hexagonal lattice. Thus, in this simulation, the radius can be
computed with:

L =
√
N · 2

√
3

π
·R ≈ 2.1

since we use N = 100 particles with radius R = .2 space units.
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Figure 4.13: Evolution of the positions of the particles following the dynamics (2.1).
Initially (top-left), the cells are distributed in the unit circle (draw in orange) .
Then, the cells spread over time (t = 2, 5 time units) until reaching an equilibrium
at t = 20 time units (bottom-right). We draw in red the diameter circle predicted
by the maximum packing number of circles.. Parameters: N = 100 cells, radius
R = .2, α = −1, ∆t = 10−1.
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2.2 Macroscopic dynamics
We would like to analyze the microscopic dynamics (2.1) from a macroscopic point
of view. With this aim, we introduce the so-called empirical distribution:

ρ(x, t) =
∑
i

δ(x− xi(t)), (2.4)

where {xi(t)}i are solution of the dynamical system (2.1). To find the equation
satisfied by the empirical distribution ρ, we integrate ρ against a test function ϕ
and take the time derivative. One deduces that ρ satisfies (weakly) the following
PDE:

∂tρ+∇x · (G[ρ]ρ) = 0, (2.5)
with

G[ρ](x) = −
∫
y∈R2

φ

(∣∣∣∣x− y2R

∣∣∣∣2
)

(y − x)ρ(y) dy. (2.6)

We refer to equations (2.5)(2.6) as the macroscopic dynamics associated with the
microscopic dynamics (2.1).

Similar to the microscopic dynamics, there is an energy associated with this
dynamics:

E(ρ) = −1
2

∫
x,y∈R2

Φ
(∣∣∣∣x− y2R

∣∣∣∣2
)
ρ(x)ρ(y) dxdy, (2.7)

where Φ is an antiderivative of φ. The energy satisfies:

d
dtE(ρ) = − 1

2R2

∫
x∈R2

(
G[ρ](x)

)2
ρ(x) dx ≤ 0.

Remark 2.1. We do not normalize the empirical distribution (2.4) by 1/N in order
to keep the information of the number of particles. The total mass is essential at
the particle level to determine the size of the support of the stationary state. If one
would like to study the asymptotic limit N →∞, one would have to normalize by
N and investigate a limit R→ 0.

As an illustration of the macroscopic dynamics, we perform a numerical simu-
lation in a similar situation as the microscopic dynamics. We initiate the density
ρ0 with 100 particles distributed in the unit circle:

ρ0(x) =
{

100
π

if |x| ≤ 1
0 if |x| > 1 (2.8)

We plot in figure 4.14 the density ρ(x, t) at t = 1 and t = 5 time units. We observe
that the distribution is spreading and does not seem to converge to a stationary
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Figure 4.14: The solution ρ(x, t) of the macroscopic dynamics (2.5)(2.6) with initial
condition (4) at t = 1 and t = 5 unit times. The density keeps spreading in space.
Parameters: ∆x = ∆y = 10−1, ∆t = 2.5 · 10−2. Total density is 100 with R = .2,
CFL = .75.
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Figure 4.15: Solutions of the macroscopic dynamics on the line (x, 0): solving
the convolution equation (2.5)(2.6) (dashed line) and solving the porous media
equation (2.9) (dotted). Both simulations are in perfect agreement with small dis-
crepancy at the boundary of the support of ρ(x, t). Parameters of the simulations:
R = .2, total density

∫
x ρ0(x) dx = 100, ∆x = ∆y = 10−1. Due to CFL condition,

we use ∆t = 2.5 · 10−2 to solve (2.5)(2.6) (dashed line) and ∆t = 2 · 10−3 to solve
(2.9) (dotted).
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state as the microscopic dynamics (fig. 4.13). A more detailed comparison will be
performed later on.

As the radius of the particle R is expected to be small compared to the spatial
length of the dynamics, we would like to investigate the asymptotic behavior of
the macroscopic dynamics (2.5)(2.6) as R tends to zero. Formally, we have:

G[ρ](x) = −(2R)3
∫
z∈R2

φ(|z|2)zρ(x+ 2Rz) dz

= −(2R)4
(∫

z∈R2
φ(|z|2)z ⊗ z dz

)
∇xρ(x) +O(R6),

by symmetry of φ(|z|). Polar coordinates yields:

G[ρ](x) = −(2R)4
∫
r≥0

φ(|r|2)r3 dr
[
π 0
0 π

]
∇xρ(x)+O(R6) = −αR∇xρ(x)+O(R6),

with αR = π(2R)4 ∫
r≥0 φ(|r|2)r3 dr. From the expression of φ (2.2), αR is finite

if α > −2. Thus, neglecting the higher order term, we deduce that the model
(2.5) (2.6) reduces to the porous media equation:

∂tρ = αR∇x ·
(
ρ∇xρ

)
, (2.9)

with
αR = π(2R)4

∫
r≥0

φ(|r|2)r3dr. (2.10)

In contrast to a diffusion equation, the support of the solution to the porous media
equation remains compact. Still, as we observe in figure 4.15, the solution spreads
until it eventually becomes flat.

2.3 Microscopic versus macroscopic
From the figures 4.14 and 4.15, we observe that the simulations of both macroscopic
dynamics (2.5) and (2.9) do not reflect the simulations of the microscopic dynamics
(2.1) (figure 4.13). The stationary state predicted by the microscopic dynamics
consists in the whole mass of cells uniformly distributed on a disk. Whereas for
the macroscopic dynamics, the density keeps spreading overtime.

To better illustrate this observations, we perform a comparison of the radial
distribution of the density for both micro- and macro equations overtime starting
from an uniform distribution in the unit disc. In figure 4.16, we plot the evolution
of the radial distribution at different times for both dynamics with an average of
100 realizations for the microscopic dynamics to reduce the fluctuations (due to the
randomness of the initial configurations in the microscopic model). In both figures,
we observe a spread of the distribution initially. But in the microscopic dynamics,
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the spread stops around T ≈ 20 time units, whereas in the macroscopic dynam-
ics, the distribution keeps spreading. Thus, the microscopic dynamics converges
to a stationary state supported on a compact domain, whereas the macroscopic
dynamics will continue spreading.
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Figure 4.16: Evolution of the radial distributions over time. We observe that in the
microscopic dynamics (left), the distribution converges to a stationary distribution
(constant on a compact set). In contrast, the distribution of the macroscopic
dynamics (right) keeps spreading and does not reach an equilibrium. Parameters:
see figures 4.13 and 4.14. An average of 100 simulations have been done for the
microscopic dynamics to remove fluctuation.

Since the macroscopic dynamics (2.5)-(2.6) is derived from the microscopic
dynamics (2.1), the discrepancies between the two dynamics require some expla-
nations. There are two factors to take into account. First, the correspondence
between the dynamics can only be proven as the number of particles N tends to
infinity. Here, we have fixed the number of particles equal to N = 100. Secondly,
we have investigated the large time behavior of the dynamics (i.e. t → ∞), and
since there is no ’uniform’ bounds in time between microscopic and macroscopic
dynamics, one cannot guarantee that the two solutions will remain close.

Now concerning our specific dynamics of short-range repulsion, there is one key
observations: Dirac masses are not stable for the macroscopic dynamics. Starting
from ρ0(x) a perturbation of a Dirac mass in equation (2.5)-(2.6), the solutions
ρ(x, t) will diffuse in space and thus departs from the Dirac distribution. A more
detailed analysis of the stability of ’shell solutions’ is provided in [3]. Therefore,
even though the macroscopic dynamics have formally as a solution the empirical
distribution (2.4), this solution is unstable. Thus, it will not be observed numeri-
cally. Notice that in the case of an attractive potential, a Dirac distribution would
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have been stable.

3 Short range repulsion: II
3.1 Introduction
As we have shown previously, the simulations of the macroscopic dynamics (2.5)-
(2.6) do not match the solutions of the microscopic dynamics (2.1). One explana-
tion is that Dirac masses are not stable solution for the dynamics. In this section,
we would like to propose another PDE to describe the particle dynamics.

The main idea is as follows: particles stop interacting once they are at a dis-
tance greater than 2R. Unfortunately, the information of inter-particle distance is
lost when we describe a system by a density distribution ρ(x). To overcome this
problem, let assume that particles are actually discs of size R. Then particles in-
teract only when they overlap (see figure 4.17). Thus, if we describe the dynamical
system by the modified empirical distribution:

ρ̃(x, t) = 1
πR2

N∑
i=1

1B(xi(t),R)(x),

interaction occurs only in the region when {ρ̃ > ρ∗} where ρ∗ = 1
πR2 .

Figure 4.17: The two particles located at xi and xj interact when they are at a
distance less than 2R from each other. On this region, the modified empirical
distribution ρ̃ is larger than the threshold ρ∗ = 1

πR2 .

3.2 Modified macroscopic dynamics
We propose to modify the macroscopic dynamics (2.5)(2.6) only in the region of
low density. With this aim, we fix a threshold ρ∗ and identify the region of low
density as {ρ < ρ∗}. Then, we propose the following dynamics:

∂tρ+∇x · (G[ρ]ρ) = 0, (3.1)
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with
G[ρ](x) = −

∫
y∈R2

φ

(∣∣∣∣x− y2R

∣∣∣∣2
)

(y − x)h(ρ(y)) dy, (3.2)

and (see figure 4.19):

h(ρ) =
{

0 if ρ < ρ∗,
ρ− ρ∗ if ρ ≥ ρ∗.

(3.3)

If there is no low density region (i.e. ρ(x) > ρ∗ for all x), then:

G[ρ](x) = −
∫
y∈R2

φ

(∣∣∣∣x− y2R

∣∣∣∣2
)

(y − x)
(
ρ(y)− ρ∗

)
dy

= G[ρ](x),

by symmetry. Therefore, the dynamics (3.1)-(3.3) only modifies the previous dy-
namics (2.5)-(2.6) inside and nearby the low density region.

The proposed dynamics (3.1)-(3.2) shares similarities with Hele-Shaw type
models [39, 16] where a pressure law is modified to distinguish low and large
density. In our approach, the modification is in the estimation of the density.

We illustrate the dynamics using the same initial condition ρ0 (4) in figure 4.18
with the threshold ρ∗ = c

πR2 where c = π/2
√

3 ≈ .907 is the ’packing number’ of
circles in 2D. In contrast to figure 4.14, the solution is converging to a stationary
state compactly supported.

As in the previous section, we can once again derive the asymptotic equation
as the radius of the particle tends to zero (i.e., R → 0). Following the same
calculation, we find:

G[ρ](x) = −(2R)3
∫
z∈R2

φ(|z|2)zh
(
ρ(x+ 2Rz)

)
dz

= −αRh′(ρ(x))∇xρ(x) +O(R6),

with αR given by (2.10). We deduce formally the following modified porous media
equation:

∂tρ = αR∇x ·
(
h′(ρ)ρ∇xρ

)
. (3.4)

This equation does not have classical solution as h′ is a discontinuous function at
ρ = ρ∗. To avoid this discontinuity, one can ’smooth’ the function h near ρ∗ such
that h′ becomes continuous. Moreover, we can introduce the function H satisfying:

H ′(ρ2) = h′(ρ). (3.5)

For the function h given by eq. (3.3), we obtain: H(s) = (s− ρ2
∗)+. The equation

(3.4) becomes:
∂tρ = αR

2 ∆xH(ρ2). (3.6)
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Figure 4.18: Simulation of the macroscopic dynamics (3.1)-(3.3) with the initial
condition (4) at t = 1, 5 and 20 unit times. The solution converges to a stationary
state uniformly distributed on a disc. Parameters: see figure 4.14.
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Figure 4.19: Example of function h(ρ) = (ρ − ρ∗)+ used to modify the dynamics
in low density region.

To compare the modified macroscopic dynamics (3.1)-(3.3) and its asymptotic
limit (3.4), we run two simulations with the same initial condition as in figure 4.15.
We observe in figure 4.20 that both simulations are in excellent agreement with
each other.

3.3 Microscopic versus macroscopic
Thanks to the modification of the dynamics in the low density in (3.2), we have
observed that the dynamics stops spreading at low density and eventually con-
verges to stationary states (Fig. 4.18). We would like now to make a more detailed
comparison with the microscopic dynamics.

To this aim, we once again perform a comparison between the radial distribu-
tion of the micro- and modified macro- dynamics (resp. (2.1) and (3.1)). In figure
4.21, we observe that the distribution are in fairly good agreement. There are some
discrepancy at the transition of zero density (r ≈ 2 space unit), the macroscopic
dynamics give a sharper transition. Moreover, the microscopic dynamics spread
slightly more. This can be explained by the underlying hypothesis for estimating
the equivalent radius, i.e cells are not necessarily in a configuration of optimal
packing (see Fig. 4.13).

In appendix, we run a second comparison between microscopic and macroscopic
dynamics where we divide the radius of particles by 2: R = .1 and multiply the
number of particles by 4 (N = 400). We find once again that both simulations
are in excellent agreement, the microscopic still have a tendency to spread slightly
more.
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Figure 4.20: Simulations of the modified dynamics (3.1)-(3.3) (dashed line) and
(3.6) (dotted). See fig. 4.15 for the parameters.
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Figure 4.21: Evolution of the radial distributions for the microscopic dynamics
(diamond) and macroscopic dynamics (3.1) (line). Both curves are in good agree-
ments except that the microscopic dynamics spreads slightly more. Parameters:
see figures 4.13 and 4.14. An average of 100 simulations have been done for the
microscopic dynamics to remove fluctuation.
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4 Repulsion and cell division
We would like to explore the combination of short-range repulsion dynamics with
cell division. Thanks to our previous investigation, we can use the description of
short-range repulsion using the porous media equation (3.6). In its simplest form,
cell division at a constant rate µ modifies the dynamics in the following way:

∂tρ = αR
2 ∆xH(ρ2) + µρ. (4.7)

We would like to observe what is the large time behavior of solutions.
With this aim, we explore numerically the solution for initial condition:

ρ0(x) =
{

10
π

if |x| ≤ 1
0 if |x| > 1

corresponding to N = 10 particles uniformly distributed on the unit circle. We
run a simulation with the seeding parameter µ = .05. In figure 4.22, we plot the
distribution on the x-axis for different times. We observe two phases: first the
distribution is only increasing on its support without spatial diffusion. This phase
corresponds that the density constraint has not been reached on the unit circle.
After around t = 20 time units, the density ρ(x, t) has reached the density ρ∗ is
therefore short-range repulsion starts to have an effect. As a result, the density ρ
starts to spread in space. But in contrast to the classical Fisher’s equation, the
density is actually spreading exponentially fast.

To better observe this property, we plot in Fig. 4.23 the position of the front
of the density (estimated using the level curves of ρ(x, t)). From t = 0 to t = 20
time units, the front remains close to 1 (corresponding to the initial condition
distributed on the unit circle). Then, the position of the front starts to increase
rapidly in time. An exponential fit is provided in green.

This result can be put in perspective with recent work on tumor cancer of
glioma [30]. Experimentally, it has been shown that the tumor of glioma cells
have different phases of growth corresponding to different level of congestion.

5 Conclusion
In this work, we provided a first step towards the understanding of how cell-cell
non overlapping interactions impact the propagation properties of a growing mass
of cells. Starting from a simple agent-based model for cells interacting through
repulsion interactions (with no diffusion), we showed that the derived macroscopic
model did not capture the same features as predicted by the microscopic dynamics.
Indeed, the solutions of the microscopic model converge in time to a compact
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Figure 4.22: Short-range repulsion and cell division. Solution of (4.7) for µ = .05.
We observe two phases of growth, before and after t = 20 time units.
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supported spherical structure of a given size, while the solutions of the macroscopic
model keep spreading. We showed that this is due to the fact that Dirac masses
are unstable for the macroscopic equation. The slightest perturbation of a Dirac
mass in the macroscopic model will cause the cell structure to start spreading. In
order to obtain a macroscopic model in accordance to the microscopic dynamics,
we proposed a modified version of the macroscopic equation. The idea was to
introduce congestion features in the interacting kernel. We showed that this model
led to a modified porous media equation in the limit of small number of particles,
where the diffusion is only active in regions of large enough density. We obtained a
good agreement between the numerical solutions of the microscopic and modified
macroscopic model. This confirmed the relevance of the proposed model. By
introducing cell division into the macroscopic model, we observed traveling wave
type solutions spreading exponentially fast.

Many questions remain open with this work. On a mathematical viewpoint, the
rigorous derivation of the macroscopic model from its underlying particle model
is still an open question. The instability of the Dirac masses for the macroscopic
model remains to be theoretically demonstrated. Further numerical tests will be
perform to deeper understand the propagation properties of the model with source
term. On a biological viewpoint, this model will be used to explore the mechanisms
of glioma formation.
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[28] S. Labbé and E. Maitre. A free boundary model for Korteweg fluids as a limit
of barotropic compressible Navier-Stokes equations. Methods and Applications
of Analysis, 20(2):165–178, 2013.

[29] M. Leroy Leretre. Etude de la croissance tumorale via la mod\’elisation agent-
centr\’e du comportement collectif des cellules au sein d\’ une population
cellulaire. PhD thesis, Univ. Paul Sabatier, Toulouse, 2014.

[30] J. Lowengrub, H. Frieboes, F. Jin, Y-L. Chuang, X. Li, P. Macklin, S. Wise,
and V. Cristini. Nonlinear modelling of cancer: bridging the gap between
cells and tumours. Nonlinearity, 23(1):R1–R91, January 2010.

[31] B. Maury. A time-stepping scheme for inelastic collisions. Numerische Math-
ematik, 102(4):649–679, January 2006.

[32] B. Maury, A. Roudneff-Chupin, and F. Santambrogio. A macroscopic crowd
motion model of gradient flow type. Mathematical Models and Methods in
Applied Sciences, 20(10):1787–1821, 2010.

[33] B. Maury and J. Venel. A discrete contact model for crowd motion. ESAIM:
Mathematical Modelling and Numerical Analysis, 45(01):145–168, January
2011.



BIBLIOGRAPHY 219

[34] D. Morale, V. Capasso, and K. Oelschläger. An interacting particle system
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6 Numerical schemes
6.1 Particle dynamics
To discretize the particle dynamics (2.1), we use an Euler method with an adaptive
time step ∆t to ensure that the energy (2.3) is decaying:

1) Let {xi(tn)}i, E(tn) the corresponding energy and a time step ∆t

2) For all i ∈ {1, N}, compute:

xi(tn+1) = xi(tn)−∆t
N∑

j=1,j 6=i
φij ·

(
xj(tn)− xi(tn)

)
Deduce the corresponding energy E(tn+1).

3) If E(tn+1) > E(tn), go back to 2) with ∆̃t = ∆t/2.
Otherwise update tn to tn+1.

6.2 PDE dynamics
We use an upwind-method to solve equation (2.5)-(2.6). To simplify the notation,
we illustrate the method in 1D. We use a uniform grid in space and time and
denote: ρni = ρ(xi, tn) with xi = i∆x and tn = n∆t. The scheme is based on the
following discretization:

ρn+1
i − ρni

∆t + (ρG)i+1/2 − (ρG)i−1/2

∆x = 0,

where (ρG)i+1/2 is the value of ρ(x)G[ρ](x) at the interface xi+1/2. To estimate
this value, we first estimate the ’velocity’ at the interface xi+1/2: Gi+1/2 = Gi+Gi+1

2 .
Then, we decentralize:

(ρG)i+1/2 =
{

(ρG)i if Gi+1/2 > 0,
(ρG)i+1 if Gi+1/2 < 0.

The CFL condition associated with this scheme is given by λ∆t/∆x where λ =
2 max |G|.

For the porous media equation (2.9), we use the formulation (in 1D) ∂tρ =
αR∂xx(ρ2)/2 to deduce

ρn+1
i − ρni

∆t = αR
2

(ρni+1)2 − 2(ρni )2 + (ρni−1)2

∆x2 .

In our all simulations, we have verified that both positivity and energy decaying
were satisfied. A more sophisticated scheme has been proposed in [17] that can
guarantee both properties.
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7 Micro- and macro- dynamics (R = .1, N = 400)
We propose to conduct similar numerical simulations as in section 3.3 for a different
setting. We multiply the number of particles by 4 and divide the radius of the
particles by 2. The positions of the particles and the density distribution at t = 20
time units are plotted in figure 4.24 (resp. top-left and top-right). An average of
100 realization is performed to estimate the radial distribution of particles over
time in figure 4.24 (bottom).
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Figure 4.24: Top-left: positions of the particles after t = 20 unit time running
the microscopic dynamics (2.1). Parameters: N = 400 particles, R = .1, α = −1,
∆t = 10−1. Top-right: density ρ(x, t) solution of the macroscopic dynamics (3.1).
Bottom: radial distributions for the micro- and macro- dynamics (resp. diamond
and plain).



Chapter 5

Extensions of the works

In this chapter, we present two works in progress which are built using the concept
developed for the individual based model for adipose tissues (Chap I). The first
work (with P. Degond and B. Aymard) is a hybrid model for vasculogenesis, the
second one (with P. Degond, M. Feireira and S. Motsch) aims at modeling the
mechanisms of ballistic aggregation.

Sommaire
1 A model for vasculogenesis . . . . . . . . . . . . . . . . . 222
2 A model for ballistic aggregation . . . . . . . . . . . . . 230

1 A model for vasculogenesis
In this section, we present the preliminary works of [19]. In this study, we aim
at understanding the emergence of a vascular network in a porous media flow. In
a first section, we present the main features of the model and in section 1.2 we
show the first numerical simulations. Section 1.3 highlights some conclusions and
perspectives of this preliminary work.

1.1 Model
A vascular network is a complex system which involves transition phases between
porous media flow and network flow. Here, four major actors are considered:
capillaries, blood, oxygen and tissue. The capillaries are modeled as tubes of fixed
length which are supposed to be created and deleted according to the needs of the
tissue. In order to model the influence of oxygen on the capillary distribution [18],
the new capillaries are supposed to be oriented towards the gradient of oxygen. The
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local porosity of the tissue is supposed to be directly linked to the local amount of
capillaries. The blood is modeled through its speed and pressure, and is supposed
to follow Darcy’s law. Finally, oxygen is modeled through its density distribution
ρ and is supposed to be (i) convected by the blood flow, (ii) diffused in the tissue
and (iii) consumed by the elements of the tissue. The next paragraphs provide the
details of each element of the model.

Capillary network The capillary network is modeled as a set ofK elementary
capillaries. They are modeled as tubes of fixed length described by a position vector
Xk = (xk, yk) ∈ R2 of their center and an orientation vector ωk = (cos θk, sin θk) ∈
S1. The orientation angle θk is defined modulo π to model the isotropy of the
blood flow. Each capillary unit located at point X is supposed to generate an
elementary porosity matrix Kk(X) and an elementary diffusion matrix Dk(X):Kk(X) = κ (ωk ⊗ ωk) δXk

(X),
Dk(X) = d (ωk ⊗ ωk) δXk

(X),

where δx(X) is the Dirac function, and κ, d real positive constants. These elemen-
tary porosity and diffusion matrices are supposed to participate into the global
porosity and diffusion properties of the medium (further described). In order to
model apparition and destruction of capillaries according to the needs of the tis-
sue, capillary units are created and deleted with (random) Poisson processes of
frequencies νc and νr respectively. The rate of creation is supposed to depend
upon the local density ρ, and reads:

νc(X) = ν∗cψ

(
g(ρ(X),∇ρ(X))− gc

hc

)
S(ρ(X)), (1.1)

with 
ψ(x) = 1

2(1 + tanh(x)),
g(ρ,∇ρ) = L0

||∇ρ(X)||
ρ(X)+ρ∗ ,

S(ρ) =
(
supX ||ρ||−ρ
supX ||ρ||

)
,

where ν∗c , gc, hc, L0, ρ∗ real positive constants. If a capillary is created at a point
X, then its direction is defined by

ω = ∇ρ(X)
||∇ρ(X)|| . (1.2)

We assume that nk new capillaries are created at each time step. The removal of
capillaries is also modeled as a Poisson ’s process of frequency depending upon the
density ρ:

νr(X) = ν∗rψ

(
gr − g(ρ(X),∇ρ(X))

hr

)
(1− S(ρ(X))) , (1.3)
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where ν∗r , gr and hr are real positive constants. It is also assumed that at initial
time t = 0, there is no capillary in the tissue.

Tissue (Porous medium) The tissue is a porous medium modeled by a
porosity matrix K and a diffusion matrix D. As previously explained, the capil-
laries participate into the global porosity and diffusion of the medium: the global
porosity matrix K and the global diffusion matrix D are defined by:

K(X) = khI2 +
∑

k s.t.||Xk−X||≤R
κ (ωk ⊗ ωk),

D(X) = dhI2 +
∑

k s.t.||Xk−X||≤R
d (ωk ⊗ ωk),

(1.4)

where I2 is the 2 × 2 identity matrix, kh, dh and R real positive constants. For
each, the first term models a homogeneous medium, and the second term models
the network of capillaries. For the sake of consistency with the model of capillary
network, the following compatibility condition is considered:

R = Lc.

Blood flow The blood flow through the porous medium of porosity matrix
K is supposed to be described by Darcy’s system:u = −K∇p

−div(K∇p) = 0
(1.5)

where p is the blood pressure and u the blood velocity. In order to close the
problem, the following boundary conditions are considered: (i) The pressure is
known at the left and the right border of the domain (see ). (ii) For the sake of
simplicity, periodic boundary conditions are set at the top and the bottom of the
domain: 

p(0, y) = pL

p(Lx, y) = pR

p(x, Ly) = p(x, 0)
(1.6)

The length of the domain (Lx,Ly) is taken of the order of 1000[µm]. Artery
blood pressure entering the capillaries is approximately 37.7[mmHg], while exiting
blood pressure is of the order of 19.6[mmHg] (see [12]). The blood velocity in the
capillaries is of the order of 400[µm

s
] (see [12]).

Oxygen Oxygen is described by a density function ρ. Oxygen motion is
supposed to be driven by three different phenomena: (i) it is convected by the
blood, (ii) diffused through the tissue and (iii) consumed by the tissue by cell
breathing phenomena. For the sake of simplicity, the rate of oxygen consumption
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is supposed to be constant and measured by β in this preliminary work. The
summary of these 3 rules leads to the following convection-diffusion equation with
a source term:

∂tρ+∇.(ρu)−∇.(ρD∇ρ) = −βρ, (1.7)
where D is the diffusion matrix previously described. Note that oxygen consump-
tion is generally not homogeneous due to the different types of cells in the medium,
such as stem cells, differentiated cells etc which consume oxygen at different rates
and in different zones in the domain. This could be taken into account in this
model by considering a non constant rate β. At initial time t = 0 the oxygen rate
is supposed to be maximal:

ρ(x, y, 0) = ρmax.

As previously mentioned, an artery brings oxygenated blood at the left part of the
domain, and a vein pumps out the blood on the right part. Periodic boundary
condition are assumed on y-axis. This leads to the following set of boundary
conditions: 

ρ(0, y, t) = ρ0,

∂xρ(Lx, y, t) = 0,
ρ(x, Ly, t) = ρ(x, 0, t).

Summary of the model
The full system writes:

Blood flowu = −K∇p
div(u) = 0

Oxygen convection/diffusion/consumption{
∂tρ+∇.(ρu)−∇.(ρD∇ρ) = −βρ

Capillary network, creation and removal
(Xk,ωk)k=1,...,N(t)

Creation: Poisson ’s process of frequency νc
Removal: Poisson ’s process of frequency νr

Tissue (porosity matrix and diffusion matrix)
K(X) = khId +

∑
k s.t.||Xk−X||≤R

κ (ωk ⊗ ωk)

D(X) = dhId +
∑

k s.t.||Xk−X||≤R
d (ωk ⊗ ωk)

with the following boundary conditions:
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Left boundary: arteryp(0, y) = p0

ρ(0, y, t) = ρ0

Right boundary: veinp(Lx, y) = p1

∂xρ(Lx, y, t) = 0
Top and bottom boundaries: periodicity

u(x, Ly, t) = u(x, 0, t)
p(x, Ly, t) = p(x, 0, t)
ρ(x, Ly, t) = ρ(x, 0, t)

and the following initial conditions:

Maximal oxygen rate at initial time
ρ(x, y, 0) = ρmax

No capillary at initial time
Tissue (porosity matrix and diffusion matrix) at initial timeK(X) = khId(X)

D(X) = dhId(X)

1.2 Numerical simulations - capillary network
In this section, numerical simulations for the capillary network are presented. The
goal is to study how a capillary network self-organizes given an initial O2 density ρ
without blood flow. Simulations are performed on a domain Ω = [0, Lx]× [0, Ly].
In the following, different initial O2 densities are considered.

Test case 1 In this paragraph, the initial density ρ is of the form (see Fig.
5.25):

ρ(x, y) = 100×
(

1 + cos(Ax) cos(By)
2

)
with:

A = 2π
Lx

, B = 2π
Ly
.

Note that in this case, the oxygen gradient reads:

∇ρ(x, y) =
(

(−50A) sin(Ax) cos(By)
(−50B) cos(Ax) sin(By)

)
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Figure 5.25: Test case 1: Top line oxygen density and capillary network. Bottom
line: Coefficients k1, k2 and k3 of porosity matrix K

As shown by Fig. 5.25, a good correspondence between the capillary network and
the oxygen density is obtained. At equilibrium, the capillary density is directly
connected to the oxygen density. This is due to the fact that the Poisson process
for creating/removing elementary capillaries are functions of the oxygen density.
Moreover and as expected, the capillaries are oriented towards the gradient of
oxygen. This results in the creation of a connected network denser in poorly oxy-
genated regions. In Fig. 5.25, using the symmetry of the porosity matrix defined
by (1.4), the three coefficients K11, K22 and K12 of matrix K are shown. Note that
K is the projection matrix of the mean orientation of capillaries. Therefore, K11
is maximal if all the capillaries are horizontally disposed, and K22 if their orienta-
tion is vertical. This figure shows the good agreement between the distribution of
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the capillary orientations and the oxygen gradient. A blood flow in such porous
medium is therefore expected to be convected from one highly oxygenated region
to another following the gradient of the oxygen. This is the subject of future work.

Test case 2 Here, the oxygen density ρ is of the same form as previously, but
the number of maxima in the domain is increased (see Fig. 5.26). As shown by this
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Figure 5.26: Test case 2: top line: oxygen density and capillary network. Bottom:
Coefficients k1, k2 and k3 of porosity matrix K.

figure, the resulting capillary network is again in good agreement with the oxygen
density distribution, and the capillary orientations seems to follow the gradient of
the oxygen density.

These results show that given a fixed oxygen distribution, a capillary network
with specific properties emerges. This network is denser in less oxygenated zones
and the capillaries are oriented towards the gradient of the oxygen density.
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1.3 First conlusions
These first simulations tend to validate the numerical method for building a capil-
lary network given a fixed oxygen distribution. The perspective of this preliminary
work is the introduction of a blood flow following Darcy’s law to study how such a
porous medium will transport a fluid. Further perspectives are the exploration of a
dynamical oxygen density ρ. Such a study will aim to answer the question of how
the capillary network reorganizes if the oxygen is convected by the blood. More
specifically, some properties on the speed, form etc of the capillary network are
expected to be deduced. The final full model is expected to bring new perspectives
on the understanding of how the complex coupled organization of capillaries, blood
flow and oxygen can lead to the emergence of an organized and stable vascular
network.
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2 A model for ballistic aggregation
In this section, we present the preliminary works of [1], where we aim at un-
derstanding the mechanisms of ballistic aggregation. Epithelial cells are bound
together in sheets of tissue called epithelia. The cells are held together through
several types of interactions. The goal of the project is to build a mathematical
model which can take into account different geometries for the cells. The idea is
to model a cell as a set of connected elementary units of simple geometry such as
2D spheres. Here, we present the main features of a preliminary work which serves
as a starting point for cell aggregation.

2.1 Introduction
As a starting point, a model for self-propelled particle which attach together
throughout motion is being developed. In this model, cells move with a con-
stant velocity in a given direction as long as they don’t collide. When two cells
collide, they link together and remain attached during motion afterwards: they
keep moving together with the same velocity. In order to avoid cell overlapping,
a minimization method is used during each collision. By this mean, the colliding
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cells will rearrange to be in a non overlapping configuration which minimizes their
distance. The main steps are represented in Fig. 5.27.

1 2 3

Figure 5.27: Steps for cell motion. 1: self-propelled cells with proper velocity vec-
tors. 2: Collision 3: motion after rearrangement and actualization of the velocities.

More precisely, the N cells are modeled by N non-overlapping spheres in R2,
with radius Ri > 0 and center Xi = (xi1 , xi2), i = 1, ..., N denoted by si, i =
1, ..., N . Suppose each cell i moves with constant velocity Vi = (v1,i, v2,i) as long
as it doesn’t collide with any cell. The respective positions of the N cells, before
any collision is therefore guided by the following system of N ODEs :

dXi

dt
(t) = Vi, t ≥ 0, Xi(0) = X0

i . (2.8)

When they collide, cells are supposed to rearrange to be in non-overlapping con-
figuration. In that prospect, we define the following constraints :

∀i, j = 1, ..., N |i 6= j, ‖Xi −Xj‖ > Ri +Rj,

where ‖‖ demotes the Euclidian norm.
When two 2D-spheres si and sj (for i 6= j of course) collide, they bind and

stay together as a ”2-bodies cell” with new velocity (Vi + Vj)/2. More generally,
if a cluster of k spheres ”encounters” a cluster of m cells, they bind, giving rise
to a new cluster of m + n cells with a velocity that is the arithmetic mean of the
previous velocities of each cell constituting the new cluster.

The goal is to investigate the dynamics behind this phenomenon until all the
spheres are connected, namely, how long does this process take, which kind of
structures can arise at the end and what is the relation with the velocity a priori
defined.

2.2 Individual based model for cell aggregation
In order to gain some insight about the phenomenon of the aggregation of N
spheres without overlapping, a numerical approach is proposed through the de-
velopment of an individual based model. The computational domain is a square
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A = [0, L] × [0, L] with periodic boundary conditions. The distance d between
two spheres corresponds to the Euclidean distance on a torus surface, i.e. for
Xi, Xj ∈ A,

d(Xi, Xj)2 = min{|xi1 − xj1 |, L− |xi1 − xj1|}2 + min{|xi2 − xj2|, L− |xi2 − xj2|}2.

The dynamics is discrete in time, with time-step δt. Consider the initial conditions
(X0

i )i=1,...,N and (V 0
i )i=1,...,N , in order to define the dynamics of center of cell i, Eq.

(2.8) is discretized with a Euler-Explicit discretization scheme. Then, in case of
overlapping situations, the positions are reajusted such that the binded cells stay
close but do not overlap. This amount to solve a minimization under constraints
problem. Indeed, if cells i and j collide, then d(Xi, Xj)2 is defined as the global
to-be-minimized potential. The minimization of the global potential therefore
tends to keep touching cells binder, under non-overlapping constraints. Finally
the velocity of each sphere is actualized. The process ends when there is just one
cluster left.

More precisely, the full algorithm reads:
• First step: free motion.

∀i = 1 . . . N, X̂n
i = Xn−1

i + δtV
n−1
i mod L.

• Second step: Readjustment by minimization
Define, for (Xi, Xj) ∈ A× A,

φε(Xi, Xj) = (Ri +Rj + εmin{Ri, Rj})2 − d(Xi, Xj)2

and Sε the set of the pairs of quasi-touching spheres :
Sε = {(i, j) ∈ {1 . . . N} | φε(Xi, Xj) ≥ 0} .

Consider the following potential :

W (X1, ..., XN) = 1
2

∑
(i,j)∈S0

d(Xi, Xj)2;

the adjustment is then made by solving locally the minimization problem
(Xn

1 , ..., X
n
N) = argmin

φ0(Xi,Xj)<0, i,j=1,...,N
W (X1, ..., XN),

starting with (X̂n
1 , ..., X̂

n
N).

• Third step: Actualization of the velocity;
after identifying the clusters, Cn

1 , ..., C
n
Mn

, actualization of the velocity of
each sphere

∀k = 1, ...,Mn, ∀i ∈ Cn
k , V n

i =
∑
j∈Cn

k
V n−1
j

card(Cn
k ) .
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2.3 Minimization algorithm
The constrained non-linear minimization problem arising on the second step can
be solved by a modification of the Arrow-Hurwicz-Uzawa algorithm as described
in the following. Since the potential W is not strictly convex, the solution to this
problem is not unique.

The algorithm includes two loops: an outer and an inner loop. The inner loop
stands for the minimization algorithm itself and is described later on. Let Sm−1
be the set of pairs of overlapping spheres at the (m − 1)th iteration of the outer
loop. At the mth iteration, Sm−1 is first actualized to Sm. Secondly, if there was
no change, i.e if Sm−1 = Sm, the outer loop stops, otherwise the minimization
algorithm is performed for the set of spheres defined by Sm only. The aim of using
these two loops is to avoid the undesired recruitment of spheres to a cluster due
do numerical oscillations.

The Lagrangian of the system reads:

L(X1, ..., XN , λ) = W (X1, ..., XN) + Φ(X1, ..., XN , λ),
Φ(X1, ..., XN , λ) =

∑
i,j=1,...,N

λi,jφ(Xi, Xj),

where λ = (λi,j)i,j=1,...,N , with λi,j ≥ 0 for (i, j) ∈ S and λi,j = 0 otherwise, is the
set of Lagrange multipliers of the constraints. Denoting λS = (λi,j)(i,j)∈S, L can
be rewritten such as

L(X1, ..., XN , λS) =
∑

(i,j)∈S

[1
2d(Xi, Xj)2 + λi,jφ(Xi, Xj)

]

=
∑

(i,j)∈S

[1
2d(Xi, Xj)2 + λi,j((Ri +Rj)2 − d(Xi, Xj)2)

]

=
∑

(i,j)∈S

[
λi,j(Ri +Rj)2 + d(Xi, Xj)2

(1
2 − λi,j

)]
.

and therefore:

∇XiL(X1, .., XN , λS) = 2
∑

j|(i,j)∈S

(1
2 − λi,j

)
(Xi −Xj)− 2

∑
j|(i,j)∈S

(1
2 − λj,i

)
(Xj −Xi)

= 2
∑

j|(i,j)∈S
(1− 2λi,j) (Xi −Xj), i = 1, ..., N

Let an initial configuration (X0
1 , ..., X

0
N) and initial values for the multipliers

λ0
i,j, i, j = 1, ..., N be given, such that λ0

i,j ≥ 0, for (i, j) ∈ S and 0 otherwise. A
local minimizer of W , (X∞1 , ..., X∞N ), satisfying φ(X∞i , X∞j ) < 0, i, j = 1, ..., N ,
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corresponds to the convergence in p of the sequence (Xp
1 , ..., X

p
N)p∈N, which is de-

fined recursively by

Xp+1
i = (Xp

i − αi∇XiL(Xp
1 , ..., X

p
N , λ

p
S))(modL), i = 1, ..., N (2.9)

λp+1
i,j = max(0, λpi,j(1− 2ci,j) + βφ(Xp+1

i , Xp+1
j ) + ci,j), (i, j) ∈ S

where β is a numerical parameter controlling the actualization of the constraints,
αi is the minimization step which controls the motion of each elementary sphere
i, i = 1, ..., N and ci,j = (Ri +Rj)

√
(αi + αj)β further described.

The convergence test of the minimization algorithm reads∣∣∣∣∣Lp+1 − Lp

Lp

∣∣∣∣∣ ≤ εL, max
i=1,...,N

|Xp+1
i −Xp

i |
Ri

≤ εX ,

for chosen small positive constants εL and εX , where Lp = L(Xp
1 , ..., X

p
N , λ

p
S). As

the minimization problem is not convex, it is noteworthy that the uniqueness of a
minimum is not ensured. Moreover, the Uzawa algorithm as previously defined can
lead to oscillations around the minima. To avoid this phenomenon, next sections
aim at presenting a modified version of the Uzawa algorithm which proves more
efficient for our problem.

2.4 Modified Uzawa algorithm
In this section, we aim to modify the Uzawa algorithm of previous section to avoid
oscillations around the solutions. We consider the Lagrangian in the general case:

L(X1, . . . , XN , λ1, . . . λM) = W (X1, . . . , XN) +
M∑
j=1

λjΦj(X1, . . . , XN).

The constraints are

Φj(X1, . . . , XN) ≤ 0, ∀j = 1, . . . ,M,

and consequently:
λj ≥ 0, ∀j = 1, . . . ,M.

Then, the Uzawa algorithm is written:

Xp+1
i = Xp

i − α[∂XiW (Xp) +
M∑
j=1

λpj∂XiΦj(Xp)], (2.10)

λp+1
j = max{0, λpj + βΦj(Xp)}. (2.11)
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The first equation, upon dividing by ∆t and adjusting the α (namely changing α
in α̃∆t) is a discretized form of the differential equation

Ẋi = −α̃[∂XiW (X) +
M∑
j=1

λj∂XiΦj(X)].

The problem is that the second equation cannot easily be put in the form of a
differential equation because of the max.

But we can try ... We get (with β = β̃∆t):

λp+1
j = max{0, λpj + βΦj(Xp)}

⇔ 0 = max{−λp+1
j ,−λp+1

j + λpj + βΦj(Xp)}

⇔ 0 = max{−
λp+1
j

∆t ,
−λp+1

j + λpj
∆t + β̃Φj(Xp)}

⇔ 0 = min{
λp+1
j

∆t ,
λp+1
j − λpj

∆t − β̃Φj(Xp)}

Now, we disassociate the ∆t on the left and the right arguments of the max and
we call τ the first ∆t. We get in the limit ∆t→ 0, keeping τ fixed:

min{λj
τ
, λ̇j − β̃Φj(X)} = 0

with is equivalent to the following alternative (we disregad the equality case for
simplicity):

• either λj
τ
< λ̇j − β̃Φj(X), then λj = 0 and λ̇j > β̃Φj(X),

• or λj
τ
> λ̇j − β̃Φj(X), then λ̇j = β̃Φj(X) and λj > 0.

We see that

λj ≡ 0 on an interval of time ⇒ Φj(X) < 0 on this interval.

Therefore, the differential analog of (2.11) is:{
λ̇j = β̃Φj(X), if λj > 0
λj = 0 and Φj(X) < 0, otherwise.

We note that the particular choice of τ is irrelevant in the final result. We see also
that the signal for λj to start to become > 0 is that Φj(X) > 0.
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The differential system is written (dropping the tildes):

Ẋi = −α[∂XiW (X) +
M∑
j=1

λj∂XiΦj(X)], (2.12)
{
λ̇j = βΦj(X), if λj > 0
λj = 0 and Φj(X) < 0, otherwise. (2.13)

Now, we take the second order version of (2.12). This gives:

Ẍi = −α
N∑
k=1

∂Xk
[
∂XiW (X) +

M∑
j=1

λj∂XiΦj(X)
]
Ẋk − α

M∑
j=1

λ̇j∂XiΦj(X). (2.14)

Using (2.13), we can replace λ̇j in (2.14) by βΦj(X)H(λj), whereH is the Heaviside
function. It also proves more efficient to modify it by replacing H(λj) by λjH(λj).
We get:

Ẍi = −α
N∑
k=1

∂Xk
[
∂XiW (X) +

M∑
j=1

λj∂XiΦj(X)
]
Ẋk

−αβ
M∑
j=1

Φj(X)H(λj)λj∂XiΦj(X),(2.15)

It turns out that passing to second order introduces exponentially growing modes.
To remove them, we replace the complicated expression

α
N∑
k=1

∂Xk
[
∂XiW (X) +

M∑
j=1

λj∂XiΦj(X)
]
Ẋk,

by a simple second order dynamics in the force field given by the right hand side
of (2.12). We get:

Ẍi = −α2[∂XiW (X) +
M∑
j=1

λj∂XiΦj(X)]− αβ
M∑
j=1

Φj(X)H(λj)λj∂XiΦj(X),(2.16)

Now, we just add a velocity damping term in the form of −CẊi and we finally
obtain:

Ẍi = −α2[∂XiW (X) +
M∑
j=1

λj∂XiΦj(X)]− αβ
M∑
j=1

Φj(X)H(λj)λj∂XiΦj(X)− CẊi,(2.17)

We end up with the final system:

Ẍi = −α2[∂XiW (X) +
M∑
j=1

λj∂XiΦj(X)]− αβ
M∑
j=1

Φj(X)H(λj)λj∂XiΦj(X)− CẊi,(2.18)
{
λ̇j = βΦj(X), if λj > 0
λj = 0 and Φj(X) < 0, otherwise. (2.19)
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We now consider the equilibria of this system. If (Xi)i=1,...,N , (λj)j=1,...,M is
an equilibrium, then the λ’s are equilibria of the first order system (2.12), (2.13)
because we have not modified the equations for λ. Furthermore, note that we get
Φj ≤ 0, λj ≥ 0, and λj > 0 ⇒ Φj = 0. So, we get λjΦj = 0. We also get Ẋi = 0.
So, the equilibria of (2.18) are such that

∂XiW (X) +
M∑
j=1

λj∂XiΦj(X) = 0, ∀i = 1, . . . , N.

which defines the equilibria or the first order system.

2.5 Special case
We now specialize with

W (X1, . . . , XN) = 1
2

∑
1≤i<j≤N

|Xi −Xj|2

Φij(X1, . . . , XN) = d2 − |Xi −Xj|2,

and the unknowns are (Xi)i=1,...,N and (λij)1≤i<j≤N . For simplicity, we define
λij = λji when j < i.

Now, we compute:

∂XiW (X1, . . . , XN) =
∑
j 6=i

(Xi −Xj)

∂XkΦij(X1, . . . , XN) =


0 if k 6= (i or j)
−2(Xi −Xj) if k = i
−2(Xj −Xi) if k = j

Then, the first order model is written:

Ẋi = −α[∂XiW (X) +
∑

1≤k<`≤N
λk`∂XiΦk`(X)], (2.1)

{
λ̇k` = βΦk`(X), if λk` > 0
λk` = 0 and Φk`(X) < 0, otherwise. (2.2)

And the second order model with damping is written:

Ẍi = −α2[∂XiW (X) +
∑

1≤k<`≤N
λk`∂XiΦk`(X)]

−αβ
∑

1≤k<`≤N
Φk`(X)H(λk`)λk`∂XiΦk`(X)− CẊi, (2.3)

{
λ̇k` = βΦk`(X), if λk` > 0
λk` = 0 and Φk`(X) < 0, otherwise. (2.4)
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Now, we replace the derivatives of W and Φk` by the expressions computed above
and we find for the first order model:

Ẋi = −α
∑
j 6=i

(1− 2λij)(Xi −Xj), (2.5)
{
λ̇k` = β(d2 − |Xk −X`|2), if λk` > 0
λk` = 0 and d2 − |Xk −X`|2 < 0, otherwise. (2.6)

For the second order model, we find:

Ẍi = −α2∑
k 6=i

(1− 2λik)(Xi −Xk)

−2αβ
∑
k 6=i

(d2 − |Xi −Xk|2)(Xk −Xi)λikH(λik)− CẊi,(2.7)
{
λ̇k` = β(d2 − |Xk −X`|2), if λk` > 0
λk` = 0 and d2 − |Xk −X`|2 < 0, otherwise. (2.8)

2.6 Discretization
We discretize (2.7) in a centered way with explicit treatment of the first order
differential term. We keep the ∆t although when writing the Uzawa algorithm, it
is better to set ∆t = 1 and to find the best set of parameters α, β:

Xn+1
i −Xn

i +Xn−1
i

∆t2 = −α2∑
k 6=i

(1− 2λnik)(Xn
i −Xn

k )

−2αβ
∑
k 6=i

(d2 − |Xn
i −Xn

k |2)(Xn
k −Xn

i )λnikH(λnik)− C
Xn+1
i −Xn−1

i

2∆t ,(2.1)

λn+1
k` = max{λnk` + ∆t β(d2 − |Xn

k −Xn
` |2), 0}. (2.2)

In practice, we will choose C close to the critical damping

C = 4d
√
αβ.

2.7 Conclusion
Numerical simulations will be performed to validate the numerical method pro-
posed for this model of aggregating spheres. Such a preliminary work is expected
to explain how self-propelled particles aggregate when they collide. More precisely,
properties such as the speed, form and mean velocity of the global cell structure
are expected to be deduced with this model. The final goal of the project is to
use the minimization approach to model a cell of complex geometry as a set of
connected aggregated elements remaining attached throughout motion.
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Conclusion

In this thesis, we studied theoretically and numerically models of complex sys-
tems coming from the biology. Of particular interest was the modeling of adipose
tissue morphogenesis and homeostasis. We first developed an individual-based
model for adipose tissues in which the motion of adipocytes and collagen fibers
was mainly driven by simple mechanical cues. An in-depth parametric analysis of
this model was performed to explore different scenarios and biological phenomena.
We developed numerical segmentation techniques on the biological images in order
to enable the quantitative comparison between the model results and the experi-
ments. As a validation, the model results showed a quantitative agreement with
the experiments on real tissues. Then (Chap II and III), we derived a macroscopic
model for a fiber network as characterized by the IBM of chapter I. The kinetic
model associated to the IBM for fibers is the first example of a model closed at the
level of the two-particle distribution function. In a hydrodynamic regime, we ob-
tained a macroscopic model and proposed its first theoretical and numerical study.
We were able to obtain existence of stationary solutions under some hypothesis,
and the numerical simulations highlighted physical properties of the macroscopic
equation. A first numerical comparison with the underlying IBM offered promising
prospects towards the validation of the macroscopic model.

If Chap V gives the first prolongations of this PhD work, there are numerous
other directions in which the work can be extended. On a biological viewpoint,
the IBM of Chap. I could be used to understand the mechanisms of adipose tissue
homeostasis disruption, and therefore could help understanding the processes of
wound healing, obesity etc.. This model could also be extended in 3D. Through
an in-depth analysis of the macroscopic model (started in Chap III), we expect
to show the relevance of this model by comparison to its underlying IBM. On a
mathematical viewpoint, the rigorous derivation of the macroscopic equation from
its underlying IBM is still an open question. Future works will deeper investigate
the unicity of solutions to the macroscopic equation in case of a homogeneous fiber
density. The theoretical and numerical study of the case of a non homogeneous
fiber density is the subject of future works. Finally, further perspectives are the
removal of the fast fiber linking/unlinking hypothesis, in order to understand how
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a finite lifetime of the cross-links affects the macroscopic dynamics.
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