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VERS DES ROBOTS COLLABORATIFS AUTONOMES SURS DE FONCTIONNEMENT

Résumé : Ce manuscript d’Habilitation & Diriger des Recherches (HDR) présente les
travaux menés par Jérémie Guiochet au LAAS-CNRS au sein de ’équipe Tolérance aux
Fautes et Sireté de fonctionnement informatique (TSF). Ces travaux se sont principale-
ment articulés autour de la problématique de la stireté de fonctionnement des systémes
robotique collaboratifs autonomes. Les spécificités de ces systémes, notamment les in-
teractions physiques humain-robot et la présence d’incertitudes liées aux mécanismes de
perception ou de décision, font que les méthodes de stireté de fonctionnement ou d’analyse
du risque utilisées pour les systémes critiques doivent étre reconsidérées. Les principales
contributions se concentrent sur deux axes : les méthodes d’analyse de la sécurité-innocuité
pour des systémes robotique collaboratifs (Identification des dangers avec HAZOP-UML
et évaluation quantitative de la confiance dans un argumentaire de sécurité de type safety
case), et les mécanismes de tolérance aux fautes pour des systémes robotique autonomes
(planification redondante et synthése de régles de sécurité vérifiables en ligne). Ces travaux
ouvrent également des perspectives concernant le test des systémes autonomes dans des
mondes virtuels, la gestion des incertitudes pour la certification des robots autonomes en
milieu humain, et la surveillance en ligne des différents niveaux d’une architecture logicielle
de robot autonome.

Mots clés : Sureté de fonctionnement, sécurité des robots, systémes autonomes cri-
tiques, analyse du risque, tolérance aux fautes, argumentaire de sécurité, évaluation de la
sécurité.

TRUSTING ROBOTS — CONTRIBUTIONS TO DEPENDABLE AUTONOMOUS
COLLABORATIVE ROBOTIC SYSTEMS

Abstract: This manuscript of HDR (Habilitation & Diriger des Recherches, french ac-
creditation to supervise research) presents research work of Jérémie Guiochet carried out at
LAAS-CNRS in the Dependable computing and Fault Tolerance (TSF) team. His research
work is mainly related to the dependability of collaborative autonomous robotic systems.
Specific challenges raised by these systems, including human-system physical interactions
and the presence of uncertainties in the perception and decision mechanisms, induce the
need to revisit dependability and risk analysis methods. The main contributions address
the following topics: safety assessment of collaborative robotic systems (hazard Identi-
fication with UML-HAZOP and quantitative assessment of confidence in safety cases),
and fault tolerance mechanisms for autonomous robotic systems (redundant planning and
synthesis of on-line verifiable safety rules). This manuscript also opens perspectives in
the fields of testing of autonomous robots in virtual worlds, uncertainty management for
the certification of autonomous robots in human environments, and safety monitoring at
different levels in an autonomous software architecture.

Keywords : Dependability, robot safety, safety critical autonomous systems, risk
analysis, fault tolerance, safety case, confidence assessment
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Introduction

Even if fictional fantasies are still far from real robots, technological improvements make
them approaching reality. Besides ethical discussions, how to build such systems is a crucial
issue. But if we plan that some of these fantasies come to reality in next decades, another
issue can be raised, which is how to better build them? It is already a main challenge in
critical applications, from transportation to aeronautics, and it will be obviously a core
challenge for robots deployment. "Build better systems" may be interpreted in terms of
quality of the functionalities, but also in terms of reliability or safety which are encompassed
in the concept of dependability.

A first step is to apply dependability techniques used in other safety critical embedded
systems to robotics. Nevertheless, these techniques need to be adapted and extended in or-
der to manage specificities of new robotics. Indeed if such systems actually belong to more
general classes of systems such as embedded or cyber-physical systems, the collaborative
and autonomous properties induce important issues in dependability.

Collaborative robots, or cobots, enable closer collaboration between human and robots.
This collaboration implements robots operating without fences, in contact with humans
or other operators in the same workspace. It thereby allows collaborative activity, com-
bining physical and cognitive abilities of man with machine. This decompartmentalization
of space and activity between man and the machine might facilitate the deployment of
robots in private or professional environments. The main curb to their deployment is
then the confidence one can place during human-robot interaction. Uncertainties in robot
perception or in robot and user reactions, lead to major challenges in safety analysis and
argumentation that need to be addressed. A direct consequence would be to convince
regulators of the ability of the system to deliver trustworthy and dependable services.

Autonomous robots are able to build plans to perform tasks without human interven-
tions. This is of course a feature with unlimited potential applications. It is also a source of
distrust (see for instance the recent open letter about autonomous weapons'), considering
that zero failure is not possible in such a system. As for collaborative robots, uncertainties
in the perception, combined with complex and non deterministic decisional mechanisms,
limit the efficiency of classical dependability techniques.

"http://futureoflife.org/AI/open_letter_autonomous_weapons, accessed august 2015
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Hence, considering these limitations in the application of risk analysis and depend-
ability techniques, how can users and regulatory bodies trust a collaborative autonomous
robot? More than an application domain for the dependability community, such systems
raise new challenges further discussed in the introductory Chapter 1. This review chapter
shows that the issue of trusting cannot be easely answered, and even if more and more
researchers are contributing, it is still an important and open issue.

My contributions to this challenge which are presented in this manuscript, fall in two
topics:

e analysis methods for safety assessment

e architectural mechanisms for dependability

Safety assessment methods have been widely used in safety critical embedded systems for
years. An important recent improvement of those methods leads to risk analysis tech-
niques based on system models (architectural or behavior). Nevertheless, very few are
focusing on scenario description and analysis of their deviation, and no specific method
to analyse safety of human-robot interactions is actually proposed in the standards or
studied in the robotic community. In Chapter 2, we propose a method for the identifica-
tion of hazardous scenarios, HAZOP-UML, mixing a well-known risk analysis technique
(HAZOP, Hazard Operability) and a system description notation (UML, Unified Modeling
Language). HAZOP-UML main advantages are that it is applicable at the very beginning
of the development process, it includes the humans as a source of hazard (human error),
it provides guidance for analysts with list of guide words, and it focuses on operational
hazards, i.e., hazards linked with the robot tasks and interactions. This approach was ap-
plied to several real robots working in collaboration with workers. A second main issue in
safety assessment, is the construction of safety argumentation or safety case (usually used
for certification), initially done in safety critical systems through textual description. This
activity has been recently studied through the use of graphical notations, aiming at struc-
turing the arguments making more explicit the expert judgment. Such an approach might
be an interesting direction in the field of autonomous and collaborative robots, where no
standard actually fully covers such applications. Nevertheless, while constructing such an
argument, analysts are faced to many uncertainties such as impacts of robot perception
uncertainties, human or robot behaviors, or occurrence of unknown situations. Hence, if
we consider that such systems will always have some uncertainties, the issue of how to
assess confidence in the arguments of the safety case is raised. A recent challenge is to
assess quantitatively the confidence associated to a safety case modeled in GSN (Goal
Structuring Notation). We developed and present in Chapter 3 an approach based on
belief theory and Bayesian Networks to define and assess the confidence in safety cases.
This approach has been applied to an assistive robot for standing, walking and sitting,
that has been validated during clinical trial tests.

My second research topic is motivated by the fact that even with the use of methods
to reduce the number and consequences of hazards in the systems, there will still exist
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some residual hazards. To cope with these residual hazards, fault tolerance, is widely used
in safety critical applications (mainly in aeronautics). It is defined in the dependability
community as the mean to avoid service failures in the presence of faults. More generally,
it is carried out with error or hazardous situations detection, and system recovery mecha-
nisms. A first contribution to this topic is the development of a fault tolerant task planner
(FTPlan) presented in Chapter 4. As the main decisional software component of the au-
tonomous architecture, many errors may occur coming both from the inference mechanism
or the knowledge representation. For this, we show through a fault injection campaign,
that using a redundant planner for a mobile autonomous robot increases dependability
without reducing performances. Another contribution in the field of fault tolerance, pre-
sented in Chapter 5, is the development of a safety monitoring framework (SMOF'). Safety
monitors are a popular form of fault tolerance mechanism, aimed at assuring that the
system will stay in safe states despite faults and adverse situations occurrence. They are
designed to observe the system and its environment, and to react using a safety margin
to keep the system in a safe state. Specification and design of such mechanisms is usually
done in an ad hoc manner, with simple safety rules implemented (e.g., in case of contact
with an obstacle, an bumper directly disconnect the power of the actuator of a mobile
robot). We argue that in the future, versatile autonomous systems, will have to deal with
complex safety rules, that might be activated or deactivated according to the tasks, and
with the possibility of reacting with many different ways that might be non consistent.
This chapter presents a framework to specify such rules, starting from a hazard analysis,
and using formal verification techniques to synthesized them. This framework also inte-
grates the issue of assuring safety while preserving functionality of the considered system.
This approach has been applied to a real case study of a robotic co-worker.

The concluding chapter 6, outlines my main contributions in this field, but also present
some other research activities that are not detailed in this manuscript. Finally, I present my
main research perspectives in the fields of safety monitoring for autonomous architecture,
robot testing in virtual worlds and certification of collaborative and autonomous robots

After my PhD on robot safety, I joined the dependable computing and fault tolerance
research team at LAAS-CNRS in 2004, and had the opportunity to continue to contribute
to the field of dependable robots. The work presented in this manuscript is the result
of close collaborations with my colleagues at LAAS-CNRS coming from dependability re-
search group but also from the robotics research group. After 11 years, my activities on
this multidisciplinary topic resulted in several PhDs, postdocs, co-organization of work-
shops, and several French and European projects. Figure 1 presents a temporal overview
of the four main contributions (and one perspective), and also my PhD students status.
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Figure 1: An overview of my main research activities, and associated PhD



Can we trust collaborative
autonomous robots?

During my PhD on robot safety (defended in 2003), most publications on robot
dependability were focusing on industrial automatic robots. Thirteen years later,
many projects, Phds, dedicated research groups, and new standards, are focus-
ing on dependable advanced robots. This chapter presents an overview of these
activities and also provides some background for next chapters.

trust | trost |
noun
1 firm belief in the reliability, truth, ability, or strength of someone or some-

thing: relations have to be built on trust | they have been able to win the trust
of the others.

1* firm belief in the reliability, truth, ability, or strength of a robot: inter-
actions have to be built on trust | robots have been able to win the trust of the
humans.

Adapted from New Ozford American Dictionary - online version - 2015

As defined by international regulatory bodies, the accepted failure rate of a critical
function in aeronautics is today 107Y failure per hour of flight for one plane. Based
on this calculation, manufacturers and end-users build a relation based on trust: (most
of) people accept to travel in an aircraft, even if a failure during a flight is perceived
as catastrophic. On the contrary, a failure of a robot which is actually potentially less
catastrophic (compared to an aircraft, only few people are exposed), seems to be less
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accepted. One reason may be that robots originally replace humans, and users expect that
their failures and induced consequences are less frequent and severe than human ones'.
Trust is thus partly based on the perception of that likelihood and consequences of failures
(a more complete definition of trust in robotics is studied by Schaefer (2013)). Many robots
developed in laboratories cannot be deployed in real life due to this lack of trust.

Nevertheless, several recent research European projects consider safety as the main
challenge of human-robot cooperation like PHRIENDS (2006-2009); SAPHARI (2011-
2015); SAFROS (2009-2013); ROBOT-PARTNER (2013-2016) or as a key objective in
ROSETTA (2009-2013); BRICS (2009-2013); CHRIS (2008-2012); CARLOS (2012-2014).
National projects such as ROBOSAFE (2013) in UK, SIMERO (2003) in DE, or NREC
(2015) in the US, or dedicated research teams (e.g., Verifiable Robotics Research Group
(2015)) also focus on robot dependability. Moreover, many research laboratories address
robotics or embedded system dependability (or both like LAAS-CNRS). In this context,
the number of PhD and published papers increased significantly in the last ten years.
However, considering the vast and transversal domain, it is difficult to classify and review
all works in this field. Hence, we focus in this section on activities which have a direct and
explicit impact on dependability, and mainly on safety. Many works on robotics functions
development may impact safety (for instance gripping issues), but as they do not explicitly
focus on faults, they will not be reviewed in this chapter.

In order to present what is done to increase this trust, I start in Section 1.1 from
a description of fundamentals elements of new robotics, i.e. autonomy and interaction,
to an analysis of hazards and risks. It is followed by Section 1.2 dealing with European
standards for robot safety. I also present major works done for dependability in robotics
in Section 1.3. The last Section 1.4 presents main challenges in the field of dependable
robots, and then focus on my research contributions, that presented in more detail in the
following chapters.

1.1 From industrial robots to collaborative autonomous robots
- Hazards and risks

Among the large diversity of robotics applications and their associated ethical issues (Roy-
akkers and van Est, 2015), safety is not a new concept. It has been studied for years in
industry, and particularly for industrial robots use. But the development of new robots
leads to consider new paradigms which impact traditionally approaches by robotic com-
munity for addressing safety. This section starts from a definition of autonomy and its

'To illustrate this statement, several newspaper articles (e.g., http://www.ft.com/cms/s/0/
0c8034a6-200f-11e5-aaba-398b2169cf79.html#axzz3gWieOxAT) state that it is about eight times more
dangerous to work in a bar in the US than in manufacturing (including manufacturing with robots, so it
should be less for manufacturing with robots)


http://www.ft.com/cms/s/0/0c8034a6-200f-11e5-aa5a-398b2169cf79.html#axzz3gWie0xAT
http://www.ft.com/cms/s/0/0c8034a6-200f-11e5-aa5a-398b2169cf79.html#axzz3gWie0xAT
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impact on software architecture, followed by a discussion on hazards and risks such systems
induce.

1.1.1 Autonomous robots

Most of the robots used in industrial processes are automatic machines, performing re-
peated tasks, in a well defined workspace, segregated from operators with fences. These
robots have been adapted to perform other useful tasks for humans at home, in hospitals,
etc. Now, a new generation of robots, different from the industrial ones, have emerged
completely dedicated to these new tasks, without any human intervention, in uncertain
environments. Besides this development, autonomous mobile robots and drones are also
developed to avoid human presence in the control loop.

Autonomy has several definitions in the literature; in its most generic sense, it is defined
as “the ability to self-manage, to act or to govern without being controlled by others”. A
less generic and more suitable definition of autonomy of robotic systems can be found in
Huang et al. (2005) as:

Autonomy is the ability of integrated sensing, perceiving, analyzing, commu-
nicating, planning, decision-making, and acting/executing, to achieve its goals
as assigned. The autonomy level is determined by the complexity of the missions
that the system is able to perform, the degrees of difficulty of the environments
within which the system can perform the missions, and the levels of operator
interaction that are required to perform the missions.

This definition focuses on two important aspects of autonomous robots: the first is the
uncertain environment in which the system operates, the second is its ability to make
decisions in this environment. Nowadays, such robots are even considered to replace classic
industrial robots in factories, in order to perform collaborative tasks with human operators
(known as co-workers, see e.g., Haddadin et al. (2011)). Hence, current classifications of
robots, segregating industrial robots from others (see for instance definition of service
robots?) are about to be outdated.

The issue of categorizing autonomous systems (and decide if a system belongs or not
to autonomous systems) is actually complex. Some works present classifications (see for
instance Parasuraman et al. (2000); Huang (2008)) from complete control by human (e.g.,
DaVinci medical robot?), to full autonomy (e.g., Mars Rover?), which permit to avoid a
binary classification autonomous / not autonomous, which can be impossible for many
systems at the boundaries of this classification.

2 According to 1SO13482 (2014) a service robot is a Robot that performs useful tasks for humans or
equipment excluding industrial automation applications

3http://www.davincisurgery.com/

“http://mars.nasa.gov/mer/technology/is_autonomous_mobility.html
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Objectives

Autonomous System

\4
| Decisional layer |

v 4

| Executive layer |

v 4

| Reactive/Functional layer |

Physical Environment

Figure 1.1: A three layer architecture for autonomy

In order to consider hazards induced by these applications, we will then consider two
main characteristics of new robotics: the presence of a decisional layer which is non de-
terministic in the software architecture, and a highly interactive relation between a robot
and humans, including physical human-robot interactions.

1.1.2 Autonomous software architecture

Considering the previous definition for an autonomous system, several architectures can
be found in the literature. As stated in the survey on deliberative systems by Ingrand
and Ghallab (2014), hierarchical architectures are probably the most used in autonomous
robotics. It is usually composed of several layers, from hardware level to decisional (or
deliberative) level. While some architectures might be classified as two-layer architectures,
one for elementary tasks (like sensing), and another one for decisional aspects (e.g. see
4D/RCS Albus et al. (2002), ORCCAD Borrelly et al. (1998), CLARATY Volpe et al.
(2001); Nesnas et al. (2003)) others propose to use a three layer architecture (Gat, 1998;
Alami et al., 1998; Ingrand et al., 2007). In this latter case, the proposed software layers
presented in Figure 1.1 are:

Decisional /deliberative layer is the highest abstracted level of the architecture. Ob-
jectives are received (from another system, or an operator) and it generates some
plans according to an abstract representation of the system and its environment.
Functions for deliberation (e.g., planning, learning or goal reasoning (Ingrand and
Ghallab, 2014)) are usually composed of knowledge specific to the system’s domain
of application (such as heuristics or a model of the environment) and an inference
mechanism used to solve problems by manipulating this knowledge. No guarantee



1.1 From industrial robots to collaborative autonomous robots - Hazards and risks 19

can be delivered for execution time, and output is also not deterministic. The use of
heuristics is not guaranteed to be optimal or perfect, but sufficient to find solutions.

Executive/sequencing layer converts plans sent by the decisional layer, into primitive
functions for the functional level. Real time requirements are included.

Reactive/Fonctional level is in charge of feedback control loops coupling sensors to
actuators, of perception facilities and trajectory computation. It is composed of ele-
mentary functions sharing information without any global representation. Execution
time is adapted to the sensors and actuators performances.

Each level sends to the highest level the results of task execution (including errors that
cannot be managed at the lowest level). Hybrid versions with combined layers or direct
communications links between functional and decisional layers also exist, but this simple
three layer description is useful for aggregating most of the current hierarchical architec-
tures.

1.1.3 Human-robot interaction

Among the topics of the research domain of human-robot interaction (see Yanco and Drury
(2004) for a classification), two main branches can be cited: cognitive and social Human-
Robot Interaction (cHRI), and physical Human-Robot Interaction (pHRI). Cognitive HRI
focus on the social and psychological aspects of interactions mixing research domains as
psychology, cognitive science, human-computer interfaces, human factors, and artificial
intelligence. Physical HRI deals with issues due to physical interaction, especially from
the view of robot design and control. As any classification, it has some limits, and both may
impact or cover each other. For instance, in Mainprice et al. (2010), movement trajectories
are computed to comply with users expectations and habits (human-aware movements,
part of cHRI research), in the context of robot in human vicinity with potential contacts
(part of pHRI research).

Apart from those human-robot interactions studies, we can first just consider the com-
munication means between a human and a robot. A simple classification may be:

Remote communication : use of hardware components (teach pendant, buttons, graph-
ical user interfaces, etc...)

Physical communication : physical contact between the human and a mobile part of
the robot.

Cognitive communication : communication through cognitive signals like posture, move-
ment, noise, speech, etc.

All these possible communication channels are bidirectional. For instance, a robot can
engage an interaction through a desired physical contact with a user. Challenges in pHRI
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require to cover many domains (Alami et al., 2006), and an important work was done
in projects like SAPHARI (2011-2015) or PHRIENDS (2006-2009)). For pHRI, the way
a human and a robot may interact depends on the level of “closeness” both can achieve.
Physical interaction may be direct or indirect: if the robot is carrying an object the human
is touching, then the interaction is termed indirect. A direct human-robot interaction
involves the robot itself or an attached tool touching the human (or vice-versa). Direct
pHRI may also be termed hands-on pHRI when the operator or user is supposed to work
in physical contact with the robot, thereby exchanging forces and torques between the
user and the robot. An extreme form of direct pHRI is (minimally invasive) surgery where
robotic devices are used to work on or inside a human body. Another term to denote
indirect pHRI is hands-on-payload, which is common with intelligent assist devices (IAD).
To assess the risks associated with human-robot interaction it is important to not only
classify these types of physical contact, but to also specify the level of closeness as outlined
in the following taxonomy we developed during the PHRIENDS project:

1. Far (no pHRI possible): Human and robot are not sharing the same workspace; a
direct physical contact is not possible. The interaction with a far robot is usually
carried out via remote communication. This may be through a teach pendant or
jogging device (when there is a line of sight with the robot) or over some network.

2. Close (accidental pHRI possible, “hands-off” pHRI): In this case the human and
robot are sharing the same workspace. Since the human is within the robot’s reach
there is a risk of unwanted, potentially harmful physical contact. An example is the
programming of the robot system while the programmer is within the robot’s work
cell. Another example could be the exchange of objects between a human and a
robot through a dedicated exchange position within the workspace (e.g., a table or

shelf).

3. Touching without simultaneous movement (direct or indirect pHRI): The robot
shares its workspace with the human. Both are simultaneously moving through
the workspace, but physical contact with the moving robot is avoided. In this cat-
egory interaction only takes place when the robot stops. An example for this type
of interaction is a robot delivering an object. The system approaches the human (or
vice versa), the robot (safely) stops temporarily when the human reaches the object
and only starts moving again after the interaction is completed.

4. Touching with simultaneous movement (direct or indirect pHRI): The robot shares its
workspace with the human. Both are moving simultaneously and physical interaction
is possible and intended. An example of direct pHRI may be a robot which is
programmed by being manually guided through the workspace. Interaction could
also take place during task execution. The robot may assist the human with its
greater force and /or precision. An example of indirect pHRI may be a robot assisting
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elderly people by feeding them. This may involve simultaneous direct and indirect
pHRI with one or more manipulators.

5. Supporting (direct pHRI): Here the physical interaction occurs continuously over
extended periods of time, usually in the form of exoskeletons which are worn by the
user, or when the robot is carrying a human (for example in healthcare applications
or rescue operations).

6. Invasive (direct pHRI): Surgical robots or their tools are designed to invade the
human body, which is considered as the robot workspace.

We believe that these 6 levels should be part of a safety analysis. It is indeed obvious
that the consequence of failure of the system will be strongly related to the type of closeness.
A direct adaptation of such a classification could be the definition of the workspaces and
associated safety rules in the case of a co-worker (Haddadin et al., 2011).

1.1.4 Harms, Risks and Hazards

The first and obvious concern when dealing with robot safety, is the possible harm due to an
unwanted collision between a human and a robot. Most of work done on harm induced by
robots is on the biomechanical analysis of human robot contact inducing impact, crushing,
cutting, etc. and associated control loop or actuators for reducing harm severity (e.g.
see Ulrich et al. (1995); Zinn et al. (2004); Povse et al. (2010); Haddadin (2014, 2015)).
Some results of these researches are part of the technical specification of ISO/TS 15066
‘Collaborative robots’, which has been analyzed by the HSE (2012). Authors note that it is
still difficult in this document to validate the forces calculation, as the situations in terms
of probability of exposure and complexity of interaction (human moving or not, which
direction, etc.) are difficult to describe. It is hence nearly impossible to determine an
acceptable speed or force, without knowing the robotic application (diversity goes against
generality).

Besides these researches specific to robotics, a more generic approach to study safety
is based on the concept of risk, widely used in safety critical systems. It has been defined
in I[SO/IEC-Guide51 (1999) as the combination of the probability of occurrence of harm
and the severity of that harm, where a harm is defined as a physical injury or damage to
the health of people, or damage to property or the environment. We also include in harm
definition the damage to the robot itself. A risk management process is usually composed
of three steps (a more complete view is given in ISO31000 (2009)): hazard (any potential
source of harm) identification and analysis, induced risk estimation, and risk evaluation to
decide if the risk is acceptable. If not, actions to reduce risk are performed.

A major difficulty when using the risk management approach, is the occurrence prob-
ability estimation. It is hence, in such systems, very hard to estimate probabilities of
failures of the software, human errors, adverse situations occurrence, etc. One approach is
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then to set probability to one, and to deal with severity, considering that everything can
occur! (It is even mentioned explicitly in risk management standards like ISO/FDIS14971
(2006), p. 37). This simplification has obviously some drawbacks, the most important
being that this approach can outcome many unacceptable risks, and reducing all risks has
a cost (performance, physical space, development time) that may cannot be covered for the
development of robots (where power and physical space are limited for instance). Another
difficulty is due to the definition of hazard (any potential sources of harm) which can be
used to define its origin or the nature of the expected harm (e.g., electric shock hazard,
crushing hazard, cutting hazard, collision hazard, fire hazard). This thus could designate
a source or a consequence. For instance, in a hazard analysis of a manipulator, a hazard
might be a controller reboot due to high temperature, and an unwanted movement is also
a hazard. There is a possible cause/consequence chain between those two hazards. This
could lead to ambiguities and difficulties into the application of hazard analysis techniques.

Main works aiming at identifying main hazards present in robotics applications are
reviewed hereafter. Even if the study of Malm et al. (2010) states that crushing and
clamping might be the major hazards in robot cells or in future applications, an important
challenge is to identify all possible hazards that may change according to the task and the
context. Most of classical hazards if robots are considered as Machines (according to the
European Directive 2006/42/EC (2006)) induce same hazards as other industrial machines
(electric shocks, cut, etc.), and more specific ones that can be found in ISO13482 (2014),
Annex A. However, as illustrated in Table 1.1, many evolutions of robot properties need
to be taken into account to identify the new hazards. A study of Carlson and Murphy
(2003), was on failures of indoor and outdoor robots, not all autonomous. Thirteen robots
were observed for nearly two years, displaying a MTBF (Mean Time Between Failure) of
about 8 hours, and a reliability of less than 50%. Outdoor robots were seen to fail more
often than indoor ones (maybe because of the more demanding outdoor environment), and
while hardware faults were the most common cause of failures (42%), the control systems
(including the operating systems) were also significant sources of failures (29%). On the
contrary, when autonomy increases, so do the failures of the software part. For instance
Tomatis et al. (2003a) presents the implementation of the autonomous museum tour guide
RoboX9 and a study of its failures during five months of operation. 96% of failures were
caused by the software components (80% due to the non-critical human interaction process,
and 16% due to the critical navigation and localization process). Same conclusions were
drawn by Steinbauer (2013), who presents a review on detected faults on 17 robots of the
Robocup. Failures of the mission goal are considered. Software faults in these systems
are more frequent than hardware faults, and belong to operational system, middleware or
robot controller (including localization, or planners). Actuators and sensors fail with a
similar rate, but the sensors ones were more critical for the mission success.

Among hazards induced by software, we identified in Lussier et al. (2005) that the
software faults in decisional layer could be faults in the inference mechanism or in its
knowledge representation. As presented in Figure 1.2, faults in the inference mechanism
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Industrial robotics

Advanced robotics

New hazards examples

Motion

No robot motion when
human presence

Simultaneous motion
(human and robot)

Bad synchronization between human
and robot / Non human legible move-
ments

Human-robot
closeness

Human is far

Human is close /
Physical contact

Collisions, contact forces too high

Human-robot

Teach pendant

Advanced interaction

Mode confusion / communication errors

interaction (cognitive)
Robot control Automatic Autonomous Hazardous decisions
Light / Com-
Mechanical pliant / limited
Heavy / Stiff / Powerful | power("intrinsically Precision hazards /energy storage due

architecture

safe" Ulrich et al.
(1995))

to compliance

Task complexity

Mono-function

Multi-functions

Safety rules not adapted (diverse and
evolving rules)

Workspace

Structured

Non structured (un-
certainties)

Adverse situations / uncertainties in per-
ception

Table 1.1: Core properties of industrial and advanced robotics, and examples of induced
hazards

may be introduced during development of the system, either as a design fault (for example
if the decisional mechanism is not adapted to the system function, or if its principle is
flawed) or as a programming fault (such as a typing or algorithm error). Faults in the
system knowledge may be introduced either during development (design or programming)
or in operation. Design faults may be either an explicitly-specified adverse situation that
has not been covered by the developers (such as a missing procedure or an action needed to
treat the adverse situation, or missing example sets used in learning for neural networks), or
an imperfection in the choice criterion that possibly causes wrong conclusions to be drawn
by the inference mechanism (such as faults in heuristics, or facts used for decision that
are wrong in particular situations). Knowledge programming faults include both missing
and faulty information in the knowledge of the decisional mechanism. Operational faults
are incorrect dynamic information in the knowledge of the decisional mechanism, such as
the current state of the system or information learned from the environment; these faults
may be caused for example by sensor failures or imperfections, or undetected memory
corruption.

Most of faults presented in Figure 1.2, like neglected situations or incorrect dynamic
knowledge, result from a lack of knowledge (also called epistemic uncertainties), are hardly
treated using common techniques like testing or formal verification for instance.
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DECISIONAL MECHANISMS

INFERENCE KNOWLEDGE
‘ [ |
DEVELOPMENT DEVELOPMENT OPERATIONAL
DESIGN IMPLEMENTATION DESIGN IMPLEMENTATION
INFERENCE INFERENCE NEGLECTED IMPERFECT KNOWLEDGE INCORRECT
DESIGN PROGRAMMING SITUATIONS DECISION PROGRAMMING DYNAMIC
FAULTS FAULTS CRITERIA FAULTS KNOWLEDGE

Figure 1.2: Internal faults in decisional mechanisms

1.2 Robot safety standards

In Europe, in order to commercialize a machine (including an industrial robot), the only
requirement is to get a CE mark following the 2006/42/EC (2006). This is done through
a process, from an auto-declaration of the manufacturer to a complete reviewing process
by independent regulation bodies. ISO standards (e.g., ISO13849-1 (2006); ISO12100
(2010) for machines safety) are highly recommended as it gives confidence to the regulatory
bodies to deliver certification. However, due to properties of new robots, such directives
or standards are not entirely applicable, in particular due to physical contact between
human and mobile parts of the robot. The generic standard IEC61508 (2010) dedicated
to safety-related hardware and software, based on the concept of Safety Integrity Level
(SIL), is also hard to apply because the entire robotic systems might be classified as a
safety-related system. For cost reason, it is then quite impossible for a manufacturer to
apply all the requirements of this standard. Moreover, in this standard it is recommended
to avoid artificial intelligence technique for fault correction (IEC61508-3:2010, p48) for all
the safety integrity levels except the lowest one !

More recently, the standard ISO10218-1 (2011); ISO10218-2 (2011)°, for robot in in-
dustrial environment, has been followed by the standard ISO13482 (2014) for personal
robots (a standard dedicated to collaborative robots is under development, current name
is ISO/TS 15066 — Robots and robotic devices — Safety requirements for industrial robots —
Collaborative operation). In this standard a list of typical safety related functions are given:

°In the US, the safety standard R15.06-2012 (2012) is an adoption of ISO 10218:2011 Parts 1 and 2,
providing guidance on the proper use of the safety features embedded into robots, as well as how to safely
integrate robots into factories and work areas.
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emergency stop, protective stop, limits to workspace (including forbidden area avoidance),
safety-related speed control, safety-related force control, hazardous collision avoidance.
For each function a Performance Level (PL) equivalent to a Safety Integrity level (SIL),
is assigned leading to a set of recommendations from ISO13849-1 (2006) (for software a
more detailed list of recommendations are given in IEC61508-5 (2010)). This approach is
appropriate when it is possible to clearly identify and separate the safety functions from
the main robot controller. Nevertheless, if we consider for instance a mobile robot and the
safety related function "hazardous collision avoidance", it is completely part of the main
robot controller, with perception, decision and reaction. It then leads to assign the whole
robot controller a high integrity level, which is too demanding for manufacturers. It is
still hard to estimate adoption of such robotic standards by manufacturers, partly because
their novelty, but considering the wide and growing variety of robots, we can expect that
they may not be covered by such standards. Hence producing generic standards in this
field is really challenging.

Until now, very few robots have been certified. For instance, in the technical documen-
tation of the UR5 from Universal Robots (UR5-Robot, 2015), it is specified that 15 safety
functions have been tested by the TUV (Technischer Uberwachungs-Verein) in accordance
with the "EN ISO 13849:2008 PL d, and EN ISO 10218-1:2011, Clause 5.4.3". It is im-
portant to note that this certificate only validates the presence of a safety function (clause
5.4.3), with a Performance Level (PL) d. Such a level, is equivalent to an integrity level
SIL2 in IEC61508 (2010) (maximum is SIL4). This does not give any guarantees when
using the robot for a dedicated task, that safety will be respected. Same limitation will
come with the ISO13482 (2014) for personal robots. Another limitation, is that few details
are provided regarding the embedded software in such robots. It is important to note
that this standard, explicitly does not include medical robots, which are "active medical
devices" covered by the directive 93/42/EEC (1993), and by a set of standards from risk
analysis (ISO/FDIS14971, 2006) to medical software development (IEC62304, 2006). Even
if this domain, more standards seem to be applicable, only a part of the standard can be
applied as presented in Guiochet et al. (2012).

A direct impact is a lack of widely accepted methods for certification of robots, and
particularly for autonomous robots. Alexander et al. (2007, 2008, 2010) conclude that even
if some formal methods can be efficiently applied to autonomous systems, it is not sufficient
to build a safety argumentation to obtain certification (safety case). Even if important
efforts have been done in recent standards towards new robotic systems, certification of
collaborative robots with a decisional layer is still an open issue.

1.3 Dependability means

Dependability is defined by Avizienis et al. (2004) as the "ability to deliver service that can
justifiably be trusted". Dependability encompasses many attributes, such as reliability,
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safety or availability. In the dependability community, safety is defined as the absence of
catastrophic consequences on the user and the environment, whereas in risk management
standards it is defined as the absence of unacceptable risk. This latter definition is more
adapted to the analysis of new robots, where an absolute definition of safety is actually
difficult to applicable. Actually, another definition of dependability by AviZienis et al.
(2004) takes into account this issue: "Dependability is the ability to avoid service failures
that are more frequent and more severe than is acceptable". These authors define depend-
ability’s threats as failures, error and faults. A service failure happens when delivered
service deviates from correct service. An error is a deviation in the system’s state. Errors
can propagate though the system and may ultimately lead to a failure. Finally, a fault is
the adjudged or hypothesized cause of an error. A fault is active when it causes an error,
otherwise it is dormant. To avoid service failures that are more frequent and more severe
than is acceptable, dependability proposes four means:

Fault prevention : to prevent the occurrence or introduction of faults, including tech-
niques coming from system engineering, good practices to design the system (sec-
tion 1.3.1)

Fault removal : to reduce the number and severity of faults mainly using validation and
verification techniques (section 1.3.2).

Fault forecasting : to estimate the present number, the future incidence, and the likely
consequences of faults. It includes risk analysis methods. (section 1.3.3)

Fault tolerance : to avoid service failures in the presence of faults using redundancy,
error detections, etc. (section 1.3.4)

The term "fault" which is used in these means may actually mean failure, error or fault.
In robotics the term "fault" is sometimes misleading. For instance, uncertainties in envi-
ronment perception, heuristics limits, or adverse situations, are not qualified as "faults" in
its common sense, where are they are typical threats to dependability. To avoid confusion,
I will use in this manuscript the term fault to encompass all threats to dependability.
Many techniques traditionally used for safety critical systems development may be
used for autonomous robot development like hardware redundancy to increase reliability.
But main techniques are actually not adapted to deal with new hazards of collaborative
autonomous robots. For instance, redundancy with error masking which is used in all
aircrafts, may be ineffective for a decisional component (two different plans may be correct),
which lead to an impossible detection. I thus focus in the next sections on what has
been done in dependability when it is specific to analysis and development of autonomous
and collaborative robots, and different from what can be found in common dependability
literature. As a robot is a multi-disciplinary artifact, techniques in order to improve its
dependability come from computer science, robotics, automatics, mechanical engineering,
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electronics, and cognitive sciences. Of course it is impossible to review all the works done
in all those domains, hence I mainly focus on contributions coming from computer science.

1.3.1 Fault prevention

In a hierarchical architecture, developers have to deal with heterogeneous models and
abstractions. As it is done in other domains, fault prevention in autonomous systems
software is mainly implemented through the modularity of software components and the
use of appropriate development tools for dealing with this heterogeneity. Component-based
software or modularity first appears in generic architectures such as LAAS (Alami et al.,
1998), RAX (Muscettola et al., 1998), CLARAty (Volpe et al., 2000) or IDEA (Muscettola
et al., 2002). Such layered architectures can be supported by standardized middleware like
ROS (Robot Operating System) (Quigley et al., 2009; ROS, 2015), OROCOS (Bruyninckx,
2001; Orocos, 2015), or Genom (Fleury et al., 1997; Mallet et al., 2010; Genom, 2015),
which improves reuse, provide communication functions, and code generation.

Other environments, providing tools for formal specification and verification, has also
been applied in the context of robotics (see ControlShell (Schneider et al., 1998); ORCCAD
(Borrelly et al., 1998) or SIGNAL (Marchand et al., 1998)), but they were based on specific
languages, which are not interfacing with current robotic development tools.

Associated to such tools, some researches also deal with model-driven engineering for
autonomy (Brodskiy et al., 2014), in order the reduce the faults that may occur due to
errors in specification or design. The Robotic Application development Process (RAP)
(Kraetzschmar et al., 2010) proposed in the context of the project BRICS (2009-2013), is
motivated by the absence of such methods in autonomous software development.

A way of preventing the occurrence of hazardous situations, is also to limit the robot
performances or tend to reach an "intrinsically safe robot" (Ulrich et al., 1995). It concerns
weight, forces, power, speed, acceleration, working area, mechanical mobility etc. Some
of well known manipulators are the LWR (lightweight Robot III), developed by DLR®
and commercialized by KUKA or Universal Robots®. Another limitation concerns the
number of degrees of freedom. It is indeed sometimes recommended like in the medical
field (Glauser et al., 1993), to reduce to the lowest number of DOF necessary for the
task in order to reduce complexity and thus potential faults. This approach may not
be applicable when the robot must adapt itself to the environment. Additionally, all
the work on compliance of robot actuation (passively safe actuators, control of active
compliance/stiffness, see for instance Filippini et al. (2008); Albu-Schaffer et al. (2008);
Flacco et al. (2012)) also contributes to prevent hazardous situation occurrence. Indeed,
more compliant movements, will avoid harmful collisions and also induce more "natural"
movements.

Shttp://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3803/
"http://www.kuka-1labs.com/en/medical _robotics/lightweight_robotics/
8http://www.universal-robots.com/GB/Products.aspx
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Also in order to prevent hazardous situations occurrence, some work focus on human
error avoidance through more human aware robot movements (see the review of Kruse et al.
(2013). For instance human legible motion planning and reactive planning for collision
avoidance is about calculating trajectories in order to produce movements which are more
natural for humans (Mainprice et al., 2010). A robot holding an object to a human should
move in front of him, and not behind; a robot arm movement should avoid to come close to
human while performing a movement in its workspace (for instance move away the elbow
joint from human body while interacting with him).

1.3.2 Fault removal

Fault removal aims to identify, diagnose and remove faults in the considered system. Only
the first step is presented here, as the two others are quite generic. This activity includes
verification activities which are mainly dynamic (run tests and detect faults through anal-
ysis of logs or with a run-time monitor) or static (static analysis, model checking, theorem
proving). Nevertheless, as mentioned by Pecheur (2000); Tiwari and Sinha (2003); Men-
zies and Pecheur (2005), the classic issues faced by verification in control systems, are
exacerbated for autonomous systems. Major issues are:

e cxecution contexts in autonomous systems are neither controllable nor completely
known; even worse, consequences of the system actions are often uncertain.

e decisional mechanisms have to be wvalidated in a complete architecture, since they
aim to enhance functionalities of the lower levels through high-level abstractions and
actions. Integrated tests are thus necessary very early in the development cycle,
which is often impossible.

e the oracle problem® is particularly difficult since (a) equally correct decisions may
be completely different (e.g., two different trajectories), (b) non-deterministic action
outcomes and temporal uncertainties can cause otherwise correct plans to sometimes
fail when executed, and (c) unforeseen adverse environmental situations may com-
pletely prevent any plan from achieving all its goals (for example, cliffs, or some
other feature of the local terrain, may make a position goal unreachable).

Note that in dynamic and static verification techniques, models and mathematical tools
are usually transversal and useful for other dependability means. For instance, model
checking techniques might be used to specify testing oracle, or fault tolerance detection
mechanisms as presented in Chapter 5.

9How to conclude on correctness of a program’s outputs to selected test inputs?
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Dynamic verification

Testing is the most intuitive way to reveal a fault: a test case is provided to system inputs,
then its outputs are analyzed to determine if they are correct, which constitutes the oracle
issue. When a complete behavioral model exists, it is used as an oracle: system and oracle
outputs are compared. Otherwise, a partial oracle is used, which verifies properties of
outputs. Mainly two types of test can be carried out in robotics. Conformity testing aims
at revealing faults (and remove them), and robustness testing aims at assessing system
resistance to stressful environmental conditions. In robotics, it is difficult to completely
specify all situations the system is designed for. During navigation testing, it is quite
impossible to define the boundary between conformity and robustness testing (e.g., when
do environment conditions switch from "normal" to "stressful"? this is also called the
"situation coverage" issue by Alexander et al. (2015)). This issue has an important impact
on techniques chosen for testing autonomous systems. Robustness testing may also be
deployed at the component level in an autonomous architecture, as it is done in Powell
et al. (2012), where the functional layer is tested considering timing errors (typically delays
between requests coming from the decisional layer).

One conclusion of Pecheur (2000) is that for autonomous controller, "scenario-based
testing provides a very limited coverage". Indeed, in autonomous systems, their role is of-
ten limited to debugging rather than proving a thorough validation. Especially in the case
of research platforms, developers check correct execution of the system for few situations.
Intensive testing was however carried out on the RAX architecture for the DS1 project
(Bernard et al., 2000): six test beds were implemented throughout the development pro-
cess, incorporating 600 tests. The authors underline the relevance of intensive testing, but
acknowledge particular difficulties regarding autonomous systems, notably the problem of
defining suitable test oracles. However, new development of technologies (particularly in
simulation and system modeling) lead to an increase of activities in this domain.

In Micskei et al. (2012), a framework has been developed to generate test cases for
robustness testing of mobile autonomous systems. It is based on a model of system tasks
(represented by UML sequence diagrams), and on a modeling of the environment (coming
from ontology, specifying all possible objects of the environment and their properties). A
complete oracle is impossible as it will be as complex as the system under test, and also
because of the non-determinism of the decisional layer. Hence authors use a partial oracle
described with sequence diagrams in order to compare messages occurrence (Horanyi et al.,
2013a). Also in the field of test case generation, Zou et al. (2014) present an approach based
on genetic mutation. The goal is to generate cases to test collision avoidance between two
drones. Considering that the oracle is based on estimation of a distance between drones
equivalent to collision, the fitness function is easily implemented. Arnold and Alexander
(2013) also generate test inputs including 2D worlds (map and obstacles), using procedural
content generation as it is done in video games.
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A major improvement for testing is the development of simulators, allowing to plug
robot controller to a simulated mechanical and hardware architecture of the robot in a
simulated environnement. Testing in robotics is indeed costly in terms of time, and can be
harmful for the system or its environment (when testing safety for instance), and is usually
performed with a limited set of environmental conditions. Simulators will cope with these
issues. Actually a few simulators are sufficiently generic to integrate several software
controller architecture, able to simulate gravity, frictions, and dynamic environment. We
can cite Morse (2015); Echeverria et al. (2011) based on the 3D engine Blender Blender3D
(2015), or Gazebo (Gazebo, 2015) (see a comparaison in Cook et al. (2014)). Most of work
using those simulators for robots, aims at testing a function in relative simple conditions,
and not to focus on fault identification or robustness estimation (Powell et al., 2012), but
we can forecast that such testing campaigns in autonomous and collaborative robots using
simulators will increase.

Another research direction in dynamic verification, is the use of runtime verification
techniques reviewed by Leucker and Schallhart (2009); Delgado et al. (2004). This tech-
nique generates an oracle from properties (mainly temporal properties), which are specified
by adding code into the controller software. Verification is then performed during oper-
ational life of the system. Such approach usually used in cyber-physical systems (e.g.,
Goodloe and Pike (2010), Kane et al. (2014)), has been used by Goldberg et al. (2005) for
non regression testing of planning in robotics.

Static verification

The main difference with dynamic verification, is that static verification guarantees that all
execution of a system are correct regarding the specifications. They are generally based on
a system model which is an abstraction of the real system. It encompasses static analysis,
model checking, and theorem proving. Some works address theorem proving (see Taubig
et al. (2012) for obstacle avoidance algorithm proving) but most of the works applied to
robotics are on model checking.

Model checking is based on the verification of properties of execution traces (or a
reduced set) of a dynamic model (usually a state machine). Temporal logics, like CTL
(Computation Tree Logic), are widely used to define these properties. In computer science
the main drawbacks of these approaches are that the modeling step is not error prone
(specific language) and also may not be representative of the real system. Tools also
suffer from combinatory explosion. Nevertheless, increasing performances of calculators
and algorithms should reduce such limitations, and increase model checking applicability
in the future.

In robotics, Pathak et al. (2013) and O’Brien et al. (2014) propose to use model checking
with an extension to estimate the probability that the properties are satisfied. In Scherer
et al. (2005), the functional layer of a robot is verified using model checking. In this paper,
verification is directly done on the Java code, which permits to avoid the modeling of the
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software (but actuators have to be modeled). Simmons et al. (2000) present a way to verify
the decomposition and synchronization of the controller tasks written in C++, using the
model checker NuSMV.

Static verification of the planners is also an important issue in robotics. One way to
validate a planning model is to define an oracle as a set of constraints that characterize
a correct plan: plans satisfying the constraints are deemed correct. Such a technique was
used for thorough testing of the RAX planner during the NASA Deep Space One project
(Bernard et al., 2000), and is supported by the VAL validation tool (Howey et al., 2004).
However, extensive collaboration of application and planner experts is often necessary to
generate the correct set of constraints. Moreover, when the plans produced by the planner
are checked against the same constraints as those included in the planning model, this ap-
proach only provides confidence about the planning engine and not the application-specific
planning model. Some works (Khatib et al., 2001; Penix et al., 1998) have attempted to
validate application-specific models by means of model-checking, which usually implies a
manual conversion of the model into the syntax accepted by the model checker. This re-
quires an intimate knowledge of the model checker and it is thus usually carried externally
by a formal method expert, rather than by the system designer. However, some research
has studied how this model transformation can be automated Cesta et al. (2010). More
generally, Bensalem et al. (2014) show how planning and verification may contribute to
each other.

A technique linked to model checking theoretical issues, is the supervisor synthesis orig-
inally defined by Ramadge and Wonham (1987) and Wonham (2005). Properties to check
are combined with a dynamic model of the system in order to synthesize correct-by-design
control software while providing formal guarantees of correctness and performance. Such
approach has been used by Rutten (2001) and Bensalem et al. (2011) in order to guaran-
tee properties like deadlock free or data freshness for instance. Johnson and Kress-Gagzit
(2015) studied the issue of synthesizing a robot controller taking into account uncertainties
in sensing and actuating is studied (more generally robot controller synthesis is studied by
Verifiable Robotics Research Group (2015)).

1.3.3 Fault forecasting

Fault forecasting aims at estimating the number, the future incidence, and the likely con-
sequences of faults (Avizienis et al., 2004). It encompasses well-known risk analysis tech-
niques usually classified into two categories :

e Bottom-up: a fault effect on the system is estimated in terms of cause-consequence,
severity and probability, e.g. FMECA (Failure Modes Effects and Criticality Anal-
ysis), HAZOP (Hazard Operability). These methods are based on the use of tables
listing deviations (or failure modes), their consequences and possible corrective ac-
tions.
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e Top-down: induction of faults (and their combination) inducing an identified un-
wanted effect. FTA (Fault Tree Analysis) is used to deduce and represent with a
logical tree the combinations of events (like faults) leading to an unwanted top event.

Such methods have been widely used for industrial robots development (Dhillon, 1991;
Dhillon and Anude, 1993; Dhillon and Fashandi, 1997; Walker and Cavallero, 1996; Visin-
sky et al., 1994). However, several challenges appear when applying them to autonomous
collaborative robots:

e cause-consequence analysis is limited due to the complexity and non determinism of
the decisional layer

e probabilities of some unwanted events (e.g., software failures, human errors, adverse
situations occurrence) are difficult to estimate

e hazardous situations may appear in the long term due to several decisions, and not
by logical combinatory of events

e uncertainties in perception or heuristics, or human-robot interactions may induce
hazardous behavior, which is difficult to analyse with the current risk analysis tech-
niques usually focusing on fault propagation

A few studies in robotics are focusing on such issues. Suwoong and Yamada (2012)
apply FMEA and FTA to a collaborative robot (not autonomous) for industry focusing on
the safety related functions (emergency stop, etc.) using SIL from IEC61508 (2010). This
paper actually applies those techniques to analyse safety functions which are not specific to
collaborative robots. The conclusion is that new approaches are needed to analyse human-
robot interactions risks. A similar approach is done for medical robots by Kazanzides
(2009), where risk analysis is slightly adapted without taking account the previous issues.
Bohm and Gruber (2010) chose to decompose the system into components and functions,
and perform an analysis using HAZOP but they also do not adapt these techniques to
take into account specificities like environment and interactions. Woodman et al. (2012)
use a variant of HAZOP for software, SHARD (Software Hazard Analysis and Resolution
in Design), associated with a predefined list of hazardous environmental conditions in the
context of mobile robotics. A method called STPA (System Theoretic Process Analysis)
developed by Leveson (2011), which provides guidance to users combining guide words
(like in HAZOP) and fault models, applied to models, based on a process/controller/actu-
ator/sensor representation. It has been applied to several safety critical systems, including
robotics (Alemzadeh et al., 2015). All these studies actually do not address specifically
the issue of deviations due to autonomy and human-robot interactions. For instance, none
of them integrates a scenario-based analysis which is the basic requirement for interaction
analysis as presented in Chapter 2.

Alexander et al. (2009) propose to associate several techniques. Hazard list templates
and ETBA (Energy Trace and Barrier Analysis) are combined. This technique starts
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from an unwanted release of energy, to infer the causes of this physical event. HAZOP
and FFA Functional Failure Analysis) are used to analyse functions and data flow. Then,
a FTA is performed using the results of the previous techniques. Combining all these
techniques aimed at creating a reasonable approach for autonomous systems analysis, but
as mentioned by the authors, it is still a combination of techniques, and further studies
are required to improve applicability to autonomous systems. They also suggest (as it was
done by Alexander et al. (2008)) to use the safety case approach based on the notation
GSN (Goal Structure Notation)) for safety argumentation for autonomous system. This
approach has the advantage to integrate in a single argument all evidences in favor of
safety, which is an interesting approach particularly when no standards can be applied.
We explore this direction in Guiochet et al. (2015) and Chapter 3 focusing on the issue of
confidence in such argumentation, particularly when there are uncertainties. We propose a
new model for quantitative confidence estimation based on Belief Theory for its definition,
and on Bayesian Belief Networks for its propagation in safety case networks in the context
of a collaborative robot development.

Taking into account the importance of the environment, Dogramadzi et al. (2014)
develop a specific method called ESHA (Environmental Survey Hazard Analysis), for ana-
lyzing environmental hazardous situations that may occur (due to terrain, obstacles, etc.),
without taking account the mission, or the robot tasks. The objective is to maximize the
analysis using templates and checklists to stimulate the analyst study.

In conclusion, as mentioned in Dogramadzi et al. (2014), the method HAZOP-UML we
developed at LAAS (Guiochet et al., 2010; Martin-Guillerez et al., 2010; Do Hoang et al.,
2012; Guiochet et al., 2013), is the only approach focusing on human-robot interaction
safety analysis. This method is presented in Chapter 2. It is based on an adaptation of
a hazard identification technique, HAZOP (Hazard Operability), coupled with a system
description notation, UML (Unified Modeling Language). This systematic approach has
been applied successfully in research projects, and is now applied by robot manufacturers.

1.3.4 Fault tolerance

In dependability community, fault tolerance defined by Avizienis et al. (2004) as the means
to avoid service failures in the presence of faults, is carried out with error detection and
system recovery mechanisms. Fault tolerance is rarely explicitly mentioned in literature on
autonomous robotic systems, where the concept of monitoring is preferred when referring
to planning (see Ingrand and Ghallab (2014) for a discussion on the subject). Although
some techniques for error detection (such as temporal control by a watchdog, model-based
diagnosis monitoring, redundancy and voting) or system recovery (error containment, po-
sitioning in a safe state, and hardware and software reconfiguration) are quite common, we
believe that their use is far from systematic, partly because most autonomous systems are
still research platforms focusing on autonomous function development (and not on their
fault tolerance). Another important point is that fault tolerance increases significantly
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the cost for the development in terms of physical space or power autonomy, which are all
critical challenges for embedded systems, and a fortiori for autonomous robots. Several
fault tolerance mechanisms are presented in the following sections, according to the layer
they are implemented (using layers presented in Figure 1.1. There are of course several
mechanisms which are observing data and able to perform recovery actions at different
levels in the autonomous architecture. We thus classify the mechanisms according to the
layer where most of their error observations and recovery actions are implemented.

Functional layer

At the functional level, fault tolerance in robotics has been experimented for actuators,
sensors or perception software errors. For instance, Crestani et al. (2015) propose to
develop dedicated monitors for each software component, which is also done by Zaman
et al. (2013). In these papers, timing or reasonableness checks are performed for hardware
and software modules as it is done in embedded systems, but with robotic specific recovery
actions impacting the decisional level (for instance, in case of error detection, Crestani et al.
(2015) propose to reduce the autonomy level of the robot).

In, (Bader et al., 2014), the authors use data fusion for tolerating faults of perception
in an autonomous vehicle. Such an issue is an important challenge in current applications,
and will certainly increase while mobile robots may mix indoor and outdoor tasks.

Works at this level of architecture may be comparable to the ones in safety critical
embedded systems. Nevertheless, a specific issue is how recovery mechanisms at the func-
tional layer may have impacts on the decisional level.

Executive layer

In Durand et al. (2010), even if they do not explicitly mention the three layer architecture,
the environment and sensors faults are detected and recovered in layer responsible of
actions sequencing and execution. In case of error detection, the corresponding function
is executed in a fall-back mode, and choose other functions to deliver the same task. It is
also proposed to reduce the level of autonomy switching to a tele operated mode. In this
case, the decisional layer is disconnected.

As previously mentioned in Section 1.3.2, controller synthesis and model-checking tech-
niques may be used to develop fault tolerant layers in an autonomous architecture. It is
the case in Py and Ingrand (2004), where a layer has been developed (conceptually close to
supervisor synthesis) to observe events coming from both decisional layer and functional
layer, and to block requests from decisional layer or interrupt execution of functional
modules. Inconsistent requests regarding the environment are some errors in functional
modules are then covered. A comparable approach, with completely different technologies
is used in Bensalem et al. (2009), where a robot controller is synthesized using the BIP
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technology (Behavior, Interaction, Priority). This framework is composed of a language
and a tool set, to support a rigorous design, including verification and code generation.

Major issues which are still open in these approaches are the coverage rate (com-
pleteness of covered faults) and performance decrease due to the additional components
or behavior. It is thus an important direction to relate risk analysis techniques to such
approaches, and to perform test campaigns to compare performances.

Decisional layer

Detecting plan execution errors is known in robotics as execution monitoring (Bouguerra
et al., 2008; Pettersson, 2005; Mendoza et al., 2012)). These works actually do not focus
on faults in the planner itself. Moreover, studied mechanisms focus on the capacity of the
decisional level to deal with errors coming from other layers. For instance, in Ertle et al.
(2010), the decision level integrates mechanisms to deal with environment hazards. The
planner has a model of reachable states, and it checks if safety properties are respected.
It computes a distance between intermediary states and hazardous states. Gspandl et al.
(2012) point out that the decisional layer may also cover faults in the hardware layer.
Observations and actuator states are compared to a supposed system state. A belief
management system establish some hypothesis which are transmitted to the planner.

Very few works are focusing on faults of the planner itself. Chen et al. (1995) proposes
a measure for planner software reliability and compares theoretical results to experimental
ones, showing a necessary tradeoff between temporal failures (related to tractability of
decisional mechanisms) and value failures (related to correctness of decisional mechanisms).
Later work (Chen, 1997) addresses this tradeoff through a fault tolerance approach based
on concurrent use of planners with diversified heuristics: a quick but dirty heuristic is used
when a slower but more focused heuristic fails to deliver a plan in time. To our knowledge,
no other fault tolerance mechanisms have been proposed in this domain for this layer. We
thus proposed (Lussier et al., 2007¢,b) an approach for temporal planners which are a major
class of decisional software components in complex autonomous systems. It is presented
in Chapter 4. The fault tolerance mechanisms focus on residual development faults in
planning models and heuristics. Recovery from possible errors is achieved using redundant
diversified planning models. A validation framework has been used to evaluate the cost
and efficacy of the fault tolerance mechanisms of a real robot software with simulated robot
hardware.

Independent safety monitoring layer

A popular form of fault tolerance dedicated to safety is safety monitoring, through which
the functional system is forced to a safe state (recovery) should some hazardous behavior be
detected (error detection) by an external and independent layer. Safety monitors appear
in the literature under many different terms, such as safety bag (Klein, 1991), diverse
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monitor (IEC61508-7, 2010) or safety kernel (Rushby, 1989). In robotics and decisional
systems, it has also been called safety manager (Pace and Seward, 2000), autonomous
safety system (Roderick et al., 2004), checker (Py and Ingrand, 2004), guardian agent
(Fox and Das, 2000), or emergency layer (Haddadin et al., 2011). Nevertheless, most of
these works deal with non completely independent layers, with dependency issues between
the safety layer and the main controller. In Tomatis et al. (2003b), safety of a museum
tour-guide robot is managed through several mechanisms like operating system exception
handling, a redundant monitoring software, and a redundant monitoring hardware. As
the redundant software runs on the same layer as the robot controller, an independent
hardware monitor has been added as an ultimate barrier. Observations and reaction means
are limited to velocity and bumper monitoring triggering a shutdown of the power. An ad
hoc approach has been used to establish the safety rules implemented in this mechanism.
On the contrary, Woodman et al. (2012) propose a method based on risk analysis to
establish the safety rules, and an implementation in an independent layer. In case of
uncertainties or when safety rules are not verified, commands to actuators are filtered, or
the robot is stopped. However, the mechanism is not completely independent from the
main controller for observation means, and thus its own system state representation can
be erroneous due to failures of the main controller (whereas it should also cover failures of
the main controller).

Even if those latter works can be extended to the development of independent safety
layers, no process for safety rule production is studied, which is still an unexplored subject.
We propose in Machin et al. (2014a, 2015) and in Chapter 5 a complete framework for the
generation of these safety rules taking advantage of the concept of safety margin. It starts
from a hazard analysis, and is based on formal verification techniques to automatically
synthesize consistent safety rules. We also study and integrate in our framework the nec-
essary tradeoff between safety and functionality level. This approach has been successfully
applied to an industrial use case on a mobile manipulator robot for co-working. Safety
rules have been implemented in a real safety monitor and a fault injection campaign has
been carried out to validate the approach.

1.4 Challenges for dependability of autonomous systems

As presented in Robotics-VO (2013), the roadmap in the USA at 15 years for collaborative
robots is to achieve the commercialization of systems that can recognize, work with, and
adapt to human or other robot behaviors in an unstructured environment (e.g. construction
zones or newly configured manufacturing cells). If we mix this roadmap with the one of
autonomous vehicles, we get an objective of a robot that is also capable of moving in any
environment in which humans can be. Robots will be able to learn on their own how to
move in previously unseen scenarios (e.g., extreme weather, sensor degradation). It is of
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course implicit that such services should be delivered with a justified level of trust, i.e.,
with an acceptable level of dependability.

To achieve such objectives, important efforts should be done in several directions.
We propose the following ones, which are of course not exhaustive, and just focusing on
dependability (and not on robotics features):

Learning and adaptation Adaptation to extreme conditions, or hazardous situations
is of particular interest and an important issue. For instance, while the system
accomplishes its missions, the safety rules checked online should also change and be
adapted according to the context. The basic safety axiom "simple is safe" usually
used in industrial safety mechanisms (usually to switch off power) cannot be used
any longer.

Modeling, analysis, simulation and control This vast field is a key issue in safety
analysis in robotics. Model-based safety analysis for collaborative and autonomous
robotic systems will allow analysis at the first step of development. It might have
then important impacts on the system design. The development of robot simulators
integrating more accurately physical phenomena, and able to test the robot software,
is also important in order to promote and increase testing methods.

Formal methods Verification of robot controllers is a real challenge, as many techniques
used in embedded systems are hardly applicable due to the decision layer in au-
tonomous architectures. For instance, verification of planners using formal methods
is still an open issue. For instance, model-checking is more and more studied to
improve dependability in robotics.

Control and planning Besides verification, we also point out the area of supervisor
synthesis, which should lead to more confidence in the software of the controllers.
Some works are on progress, but usually focusing on the functional layer, and not on
the decisional one. Note that synthesis based on formal methods may also be used
for safety monitors development.

Perception The important development of perception means (particularly in 3D) did not
resolve the issue of hazardous situation perception which can be really complex for
autonomous collaborative systems. The integrity, and its corollary, uncertainty, of
perception mechanisms, is still an open issue, for robotics that may evolve indoor to
outdoor, or in physical interaction with user. For instance, with manipulator robots,
it is a challenge to detect if a collision between a human and a robot is wanted or
not (in some case the human may want to stop the robot by touching it).

Mechanisms and actuator Even if it is out of the scope of this manuscript, we want
to mention researches done in the field of mechanisms and actuators, like compliant
(v.s. stiff) actuators or parallel architectures. They will actually have an important
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Figure 1.3: Relations between challenges and dependability means contributions

impact on the robot controllers behavior, and particularly safe reaction strategies in
case of failures.

Human-robot interaction A major contribution, which is similar to the Modelling chal-
lenge, would be to have usable interaction models, in order to perform model-based
risk analysis. Such models, should provide sufficient information to determine haz-
ards, but also to induce sources of such hazards, regardless of whether they are
human, mechanical, hardware or software, or a combination.

Certification The fact that such systems behavior and environmental conditions will
never be deterministic, applying design standards (and adapt them) will not be
sufficient. We believe that we need to provide tools in order to build safety argumen-
tations for such systems. The issue of confidence in such arguments is particularly
not explored in the robotics field.

1.5 Challenges addressed and contributions

Chapters in this manuscript address several challenges mentioned above, and cover two
of the dependability means: fault forecasting (HAZOP-UML and Safety Case Confidence)
and fault tolerance (SMOF and FTPlan) as presented Figure 1.4 (corresponding relations
between our contributions and the field are given in Figure 1.3):

HAZOP-UML Model based hazard analysis for human-robot interaction: starting from
a description of scenario of use in UML, we propose an adaptation of HAZOP to
perform a systematic analysis of operational hazards occurring during robot tasks
execution. This is presented in Chapter 2.

Safety Case Confidence Confidence quantification for safety argumentation for collab-
orative robots: based on the results of the HAZOP-UML (risk and recommendation
list), we build a safety case (safety argument) aimed at making explicit all arguments.
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Nevertheless, confidence in the arguments themselves need to be estimated, particu-
larly when facing uncertainties. Chapter 3 presents a method based on quantitative
techniques to estimate confidence propagation in the context of a collaborative robot.

Fault Tolerant Planner (FTPlan) Redundant temporal planners: a classic approach
of dependability has been applied to a decisional component, a temporal planner.
Two redundant planners are used to detect errors and perform recovery actions.
Chapter 4 presents the main mechanisms and the validation of this approach through
several fault injection campaigns.

Safety monitoring framework (SMOF) Producing independent safety monitoring rules
has been achieved through the definition of a complete framework. It starts taking
as input the results of HAZOP-UML (hazard list), and ends with the use of a tool
we developed for automatic synthesis of the rules (this tool uses a model checker).
Chapter 5 presents this framework. The synthesized rules are then implemented in
a independent safety monitor.
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bodies
SMOF

Main Controller
Decisional layer
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| Executive layer | Safety
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Figure 1.4: Contributions and chapters overview







Model based risk analysis for
human robot interactions

This chapter presents a method we developed at LAAS, for the identification of haz-
ards induced by human-robot interactions (HAZOP-UML website, 2015). This work
has been done in collaboration with David Powell and Mohammed Kaaniche (LAAS-
TSF), and has been published in international conferences (Guiochet et al., 2004, 2010;
Martin-Guillerez et al., 2010; Do Hoang et al., 2012; Guiochet et al., 2013) and a jour-
nal (Pasqui et al., 2012), a journal has been submitted in 2015. I was co-advisor of
one PhD (Quynh Anh Do Hoang, 2011-2015), a post-doc (Damien Martin-Guillerez,
2009-2010) and several internships. We validate this method on several case studies,
in the context of a French Project (MIRAS, 2009-2013), and two European Projects
(PHRIENDS, 2006-2009; SAPHARI, 2011-2015). We are starting to transfer this
method to industry in the context of the European Project CPSELabs (2015-2018).

As already stated in Section 1.3.3, most safety analysis techniques coming from the de-
pendability (Avizienis et al., 2004) or risk management (ISO31000, 2009) domains, could
be used for the safety analysis of collaborative robots, but some specificities reduce their
efficiency. For instance, the fact that robots move in unstructured and unknown environ-
ments make the verification and validation (mainly with test) non sufficient (it is impossible
to guarantee that all main scenarios have been tested); the presence of users and complex
non deterministic software (with decisional mechanisms) limit the use of quantitative risk
analysis techniques; classical hazard analysis techniques are also not adapted to the com-
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plexity of human-robot interactions. Safety standards describe overall requirements, but
not specific risk analysis techniques.

Among requirements for the development of such methods, we want to stress the fol-
lowing ones :

1. applicable at the very beginning of the development process
2. includes the humans as a source of hazard (human error)
3. provides guidance for analysts (e.g., with guide words list)

4. focuses on operational hazards, i.e., hazards linked with the robot tasks and interac-
tions

Among risk analysis techniques, the most widely used are Preliminary Hazard Analysis
(PHA), Hazard Operability Analysis (HAZOP), Fault Tree Analysis (FTA), and Failure
Mode, Effects, and Criticality Analysis (FMECA). The two first focus on hazard anal-
ysis at the very early steps of a development process, whereas FTA and FMECA are
more dedicated to more advanced steps, and more focusing on reliability aspects. Thus,
we chose to base our method on HAZOP, and to combine it with the system modeling
language UML (Unified Modeling Language). This method developed at LAAS (HAZOP-
UML website, 2015; Guiochet et al., 2010; Martin-Guillerez et al., 2010; Guiochet et al.,
2013), has been successfully applied in several French and European projects (PHRIENDS,
2006-2009; SAPHARI, 2011-2015; MIRAS, 2009-2013) in collaboration with robot manu-
facturers (KUKA Robotics, AIRBUS Group and Robosoft). This chapter synthesizes our
work on HAZOP-UML, and analyses the main lessons learned from the applications in
these projects.

The remainder of this chapter is structured as follows. Section 2.1 provide background
on UML and HAZOP. In Section 2.2, we present the HAZOP-UML method, and in Sec-
tion 2.3, results of several experiments are analyzed and discussed. In Section 2.4, related
work on model-based safety analysis is compared to our approach. We conclude in Sec-
tion 2.5 by outlining the benefits and limits of HAZOP-UML, and listing some future
directions.

2.1 Background

2.1.1 Unified Modeling Language

UML (Unified Modeling Language) is a graphical notation, widely used in software and
system engineering domains to support early steps of the development process. Its spec-
ification is available on the Object Management Group UML page'. The current version

www.uml.org : accessed 2015-05-15
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Figure 2.1: MIRAS robot prototype during clinical investigation

(UML 2), has thirteen diagrams, that could be classified in static diagrams (e.g., class
diagram) and dynamic diagrams (e.g., use case, sequence and state machine diagrams).
UML is a language, and not a method, as it is not specified when each diagram must
be used in which order. But, use cases and sequence diagrams are typically used at the
beginning of project development.

As a running example, we will use some models of the case study MIRAS (2009-
2013), an assistive robot presented Figure 2.1, for standing up, sitting down and walking,
and also capable of health-state monitoring of the patients. It is designed to be used in
elderly care centers by people suffering from gait and orientation problems where a classic
wheeled walker (or “rollator"), is not sufficient for patient autonomy. The robotic rollator
is composed of a mobile base and a moving handlebar.

Use case diagrams This diagram is the basic requirement UML model, presenting
the system to analyse, the actors communicating with it, and the objectives for the use
of the system: the use cases. The example of Figure 2.2 only presents a subset of the
complete use case diagram (15 use cases), and the two involved actors. In this diagram,
the proposed services are to help the patient to stand up (UC02), deambulate (UC01),
and sit down (UCO03). The system is also able to detect physiological issues and trigger an
alarm (patient heartbeat and fatigue, in UC08). We also represent that the system offers
the profile learning facility (UC10). In some projects using UML the mechanical part of a
robot is represented as a UML actor, and the system boundary (the box around use cases)
defines the robot controller (including software and hardware). We do not recommend
using such an approach to perform the hazard identification, indeed, the complete system
has to be studied as a whole.

This diagram provides an expressive and simple mean to communicate between devel-
opers, analysts and users. This graphical representation is always completed with a tex-
tual descriptionlmportant information such pre and post conditions, and non-functional
requirements are included. Use case diagram only represents functional requirements. Tex-
tual description of the normal, alternative and exception flows may also be presented with
sequence diagrams as presented hereafter.
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Use case Studied system boundary

Actor \q MIRAS Robot

Association uco1
Strolling uco2
Standing up
operation
-

N ucos

\ Sitting down
Patient operation

ucos8
/
—_—

Alarm
Medical Staff

Handling

uc1o
Patient profile
learning

Figure 2.2: Extract of MIRAS use case diagram from Guiochet et al. (2013)

In order to prepare the HAZOP-UML study, an extract from the use case textual
description should be done, with only the pre and post conditions, and also the invariants
coming from safety properties in the “Non functional requirements" category. An example
of such a table is given Figure 2.4 for the UC02 of the MIRAS running example.

Sequence diagrams As presented Figure 2.5, a sequence diagram describes a possible
scenario of use, which is actually an instance of an UML use case. This diagram shows a
nominal scenario for the UC02. Other scenarios are possible for the UC02, like alternative
flow of events (e.g., the patient releases the handles while she is standing up). This second
scenario will be represented with another sequence diagram (not presented here). The
expressiveness of such diagram is well adapted to represent human-robot interactions, and
have proven to be useful while discussing with other stakeholders who are not experts of
this language (doctors, mechanical engineers, etc.). All messages exchanged between actors
and the system are represented along their lifelines. In our case three types of messages
are used:

e indirect interaction through robot teach pendant (hardware or software interfaces)
e cognitive interaction, e.g., gesture or voice/audio signals are exchanged

e physical interaction, direct contact between physical structure of the robot and the
user
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Use Case Name

[Name of the use case]

Actors

[An actor is a person or other entity external to the system being
specified who interacts with the system and performs use cases
to accomplish tasks]

Preconditions

[Activities that must take place, or any conditions that must be
true, before the use case can be started]

Normal | Description
Flow

[User actions and system responses that will take place during
execution of the use case under normal, expected conditions.]

Postconditions

[State of the system at the conclusion of the use case execution
with a normal flow (nominal)]

Alternative flows and
exceptions

[Major alternative flows or exceptions that may occur in the flow
of event]

Non functional
requirements

[All non-functional requirement: e.g., dependability (safety,
reliability, etc.), performance, ergonomic]

Figure 2.3:

Use case textual description template

Use case name |UCO02. Standing up operation

Abstract

The patient stands up with the help of the robot

Precondition

The patient is sitting down

The robot is waiting for the standing up
operation

Battery charge is sufficient to do this task and to
help the patient to sit down

The robot is in front of the patient

Postcondition |The patient is standing up

The robot is in admittance mode

Invariant

The patient holds both handles of the robot
The robot is in standing up mode
Physiological parameters are acceptable

45

Figure 2.4: UC02 use case textual description with pre,post conditions and invariant
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Lifeline

Message argument /
Message : MIRASRobot

signature

:Patient :
|
]
]

DZ 1.1 : detectCatching()

1
2: initiateStandingUp(force) i

Time 2.1 : activate
¢ El: StandingUpMode()
3. patientStandingUp

0 |
7 . )
(Sending) /Dz 3.1 : courseAssistance()

Occurrence L
Specificatio (Receiving) D:l 4 : [end of course]
' Oceurrence ivateStrollingMode
Specification (- .
Interaction’constraint

(Guard condition)

1: catchHandles()

Figure 2.5: Sequence diagram for the nominal scenario of UC01: Standing up operation

In the example of Figure 2.5, the messages are all physical contacts, so we did not add this
information which can be done using a UML annotation. In UML, a sequence diagram is a
representation of an Interaction, where actors and the system ( Lifeline), send some Message
that might have Arguments and Constraints. Here the message 2:initiateStandingUp is sent
to the robot with a force exerced on the handles. As the time increases from top to bottom,
each message has a sending and receiving occurrence event. 1t is also possible to represent
on a message a guard condition for its execution (e.g., [end of course| of message 4).

2.1.2 HAZOP

HAZOP (HAZard OPerability) is a collaborative hazard identification technique, developed
in the 70’s, and is widely used in the process industries. It is now standardized by the
standard TEC61882 (2001). Its success mainly lies in it simplicity and the possibility to
apply it at the very beginning of the development process. It is also adaptable to the
formalism used to describe a system as presented in the standard DefStan00-58 (2000).
HAZOP does not consider failure modes as FMECA, but potential deviations of the main
parameters of the process. For each part of the system, the identification of the deviation
is systematically done with the conjunction of:

e system parameters, e.g., in the case of an industrial process : temperature, pressure,
flow, etc.

e guide words like: No, More, Less or Reverse
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Guideword Interpretation

No/None Complete negation of the design intention / No part of the
intention is achieved and nothing else happens

More Quantitative increase

Less Quantitative decrease

As Well As All the design intention is achieved together with additions

Part of Only some of the design intention is achieved

Reverse The logical opposite of the design intention is achieved

Other than Complete substitution, where no part of the original intention is
achieved but something quite different happens

Early Something happens earlier than expected relative to clock time

Late Something happens later than expected relative to clock time

Before Something happens before it is expected, relating to order or
sequence

After After Something happens after it is expected, relating to order or
sequence

Figure 2.6: Guide words list adapted from IEC61882 (2001)

The role of the guide word is to stimulate imaginative ideas and initiate discussions. A
proposed list of guide words is given Figure 2.6. For instance, we can have the following
conjunctions (e.g., for a chemical process):

® Temperature ® More — Temperature too high
e Flow @ Reverse — Product flow reversal

For each deviation, the procedure is then to investigate causes, consequences and protec-
tion, and produce document usually in a table form (similar to FMECA), with columns like:
Guide word, Element, Deviation, Possible causes, Consequences, Safeguards, Comments,
Actions required, etc.

Even though the HAZOP method has proved to be efficient, the results may be ques-
tionable when the boundary of the study is too vast or not well defined, or when the guide
words are either too numerous or too limited for the analysis to be relevant. Another lim-
itation is that there is no systematic method to adapt the guide words to the considered
domain, so adaptation depends on the expertise of the initiators of the method. Addi-
tionally, the HAZOP method needs the allocation of human resources and suffers from
combinatorial explosion when too many deviations are considered or when the analysts
go into too much details. Hence, the success of a HAZOP study depends greatly on the
ability of the analyst and the interactions between team members. The choice of the con-
sidered “system parameters", is of high importance, because all the study relies on it. The
HAZOP-UML method proposed in this chapter is aimed at providing more guidance to
analysts to identify which parameters they have to consider.
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2.2 HAZOP-UML

One main issue when applying HAZOP is to identify the system parameters. We propose
to use UML to partition and describe the system. The considered parameters will be then
some elements of the UML diagrams. In this section we will give guidelines to identify
those parameters, and the associated guide words to identify possible deviations. This
work is the result of several applications and refinement, and may also be completed or
modified by the analysts. Even if our objective is to propose a systematic approach, it is
important to note that HAZOP-UML does not identify all hazards; First because no single
hazard identification technique is actually capable of finding all the hazards (Cantrell and
Clemens, 2009), and also because we will focus on the identification of the operational
hazards, i.e. hazards linked to the human-robot interactions, through dynamic models of
the system.

As already presented, we propose to focus on the three main dynamic UML diagrams:
use case, sequence and state diagrams. For those diagrams, some generic deviations are
presented in Section 2.2.1. The whole process is then introduced in Section 2.2.2, and
Section 2.2.3 presents a prototype of a tool for HAZOP-UML.

2.2.1 Guide words

Instead of using the term “parameter" usually used in HAZOP studies, entities and at-
tributes of UML elements are introduced in this section. Then for each element, a generic
interpretation for a deviation is proposed. This analysis is based on the UML metamodel
(OMG-UML2, 2007). The selected UML entities are : use case, message. A similar work
has been done for state machines, and is presented in Do Hoang (2015).

Guide words for use cases

Figure 2.7 presents an extract from the UML metamodel, focusing on a use case. The
UML class diagram notation is used to represent this metamodel. This diagram specifies
that a use case may ne composed of 0 to several (noted as “*") Behaviors. Indeed, a
use case is usually composed of a nominal behavior (or nominal scenario), and several
exceptions. Each Behavior may have 0 to several Constraints, which are pre and post
conditions. As introduced in section 2.1.1, we add to this metamodel one constraint to
the Behavior of a UseCase: the invariant. Indeed, when an analyst will study all possible
deviations, we argue that the non-functional requirements, which may be safety invariants
(e.g., robot velocity should not exceed 20cm/s) must be taken into account. We should
then consider that the attributes of a use case are: preconditions, postconditions, and
invariants, which are all UML Constraints. For this reason, we apply the classical HAZOP
guide words to the concept of constraint in a generic way and formulate an interpretation
to guide the analyst. The result of this work is given in Figure 2.1. Only six guide words
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UseCase
01
*
Behavior
0.1 0.1
+precondition [,* * +postcondition
Constraint

Figure 2.7: Reduced concepts for specification of use cases

Entity = Use Case

Attribute Guideword | Interpretation
No/none The condition is not evaluated and can have any value
Other than | The condition is evaluated true whereas it is false, or vice versa
As well as | The condition is correctly evaluated but other unexpected conditions are true

;retcontzjif[tipns// Part of The condition is partially evaluated

ostconaitions Some conditions are missing
Invariants
Early The condition is evaluated earlier than required for correct synchronization
with the environment

Late The condition is evaluated later than required for correct synchronization with

the environment

Table 2.1: Guide words list and generic interpretation for use cases

49
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Interaction v1 2 LifeLine Constraint
14 1
* +sendEvent * Zr
o1 0 Occurrence +guard i .
Message y o Specification ﬁ > InteractionConstraint

0.1 +receiveEvent

*

1 1
+before |+after
+argumen

(3

*[+toAfter *|+toBefore

Value Specification

GeneralOrdering

+signature¢lo__1

NamedElement

Figure 2.8: Reduced metamodel for interactions in UML (sequence diagrams) extracted

from OMG-UML2 (2007)

were interpreted, we also remove many redundancies in the interpretation. Taking the
example of use case “UC02 : standing up operation" described in Figure 2.4, the resulting
combination of the precondition “The robot is in front of the patient" with the guide word
“No", leads to the following scenario: the patient tries to standup while the robot is not
properly positioned, this might induce excessive effort for the patient and a fall which is
catastrophic in our application. If we consider this use case, with 9 conditions and 6 guide
words, this leads to 54 possible deviations. Moreover, the interpretation of a guide word
may change from an analyst to another. Nevertheless, the objective is to finally identify
all hazards, and the original guide word used for the identification is of no real importance.

Guide words for sequence diagrams

Sequence diagrams are one of the graphical representation of the Interaction UML concept.
It is composed of Lifelines exchanging Messages. This is represented in the simplified
metamodel Figure 2.8. This metamodel extracted from OMG-UML2 (2007) has very little
differences with the version (OMG-UML2, 2011), so we kept this representation which is
simpler, and enough expressive for its use in HAZOP-UML. Based on this metamodel, we
define five attributes for the Message:

1. General Ordering: the general order of the messages within the interaction
2. Send/receive event timing: event related to the clock time
3. Lifelines: send and receiving lifelines of a message

4. Interaction Constraint: guard condition on a message
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Apply a . .
Select system Select entity deviation Identify possible causes
. > . > . —| and consequences of
entity attribute attribute + o
. deviation
guideword
A A A
A
Evaluate the risk of the
deviation effect
yes yes yes A
Formulate
no M More More recommendations for
ore ) - . -
entities ? attributes deviations >« prevention of deviation
’ ? to apply? and protection against
consequences

Figure 2.9: HAZOP-UML process

5. Message argument: parameters of a message

Other elements of the metamodel have not been considered, as we did not find any possible
deviation or we intentionally avoid to consider them because they would have produced
redundant possible deviations (interested reader may find more about UML interaction
fragments in OMG-UML2 (2011). The resulting table for the generic deviations and their
interpretation is given Table 2.2. In tOMG-UML2 (2011) the following explanation is given:
“A GeneralOrdering represents a binary relation between two OccurrenceSpecifications, to
describe that one OccurrenceSpecification must occur before the other in a valid trace.
This mechanism provides the ability to define partial orders of OccurrenceSpecifications
that may otherwise not have a specified order." This could be interpreted as the fact that in
some diagrams a GeneralOrdering relation can be added as a constraint. But in a sequence
diagram, the physical position of the message already specifies an order for a valid trace.
Hence, in our approach, we will interpret a sequence diagram as a valid trace, i.e. with a
valid specified ordering of the message. This trace is descriptive (and not prescriptive like
the state machine), but changing the ordering may lead to hazardous interactions.

2.2.2 HAZOP-UML process and outputs

According to the previous tables, the process to perform HAZOP-UML is the following
procedure: for each entity, for each attribute, for each guide words, identify one or several
possible deviations and analyse it (them). A graphical view is given Figure 2.9. The anal-
ysis of the deviation may include the identification of possible causes and consequences.
Depending on the project, it is also possible to evaluate the risk (consequence of the devi-
ation effect, and likelihood of the considered deviation). Nevertheless, this information is
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Entity = Message
Attribute Guideword | Interpretation
No Message is not sent
Other than | Unexpected message is sent
As well as | Message is sent as well as another message
More than | Message sent more often than intended

g:éigerirr?gl; Less than | Message sent less often than intended
Before Message sent before intended
After Message sent after intended
Part of Only a part of a set of messages is sent
Reverse Reverse order of expected messages
. As well as | Message sent at correct time and also at incorrect time
Send/receive ) . :
event timing Early Message sent earlier than intended time
Later Message sent later than intended time
No Message sent to but never received by intended object
. Other than | Message sent to wrong object
Lifelines

= As well as | Message sent to correct object and also an incorrect object
(receiving and

sending objects) Reverse Source and destination ot?jects are reversed
More Message sent to more objects than intended
Less Message sent to fewer objects than intended
No/none The condition is not evaluated and can have any value
Interaction Other than | The condition is evaluated true whereas it is false, or vice versa
Constraint As well as [ The condition is well evaluated but other unexpected conditions are true
(Message guard | Part of Only a part of condition is correctly evaluated
condition) Late The condition is evaluated later than correct synchronization with the

environment
No/None Expected parameters are never set / returned

More Parameters values are higher than intended
Message Less Parameters values are lower than intended
arguments As Well As | Parameters are also transmitted with unexpected ones
(Parameters) | Part of Only some parameters are transmitted

Some parameters are missing
Other than | Parameter type / number are different from those expected by the receiver

Table 2.2: Guide words list and generic interpretation for sequence diagram messages
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usually too complex or impossible to obtain. On the contrary, such analysis always includes
identification of recommendations to treat the deviation or its causes or it consequences
(prevention and protection means). To establish such a study, the columns of a table as
in Figure 2.10 are given hereafter:

1. Entity: the UML element on which the deviation is applied (here UC02 is the same
for all the table so it is in the head of the table)

Line number: for traceability (UCx.line number)
Attribute: the considered attribute (e.g., a use case precondition)

Guide word: the applied guide word

AN B B

Deviation: the deviation resulting from the combination of the entity attribute and
the guide word based on Tables 2.1 and 2.2

Use Case Effect: effect at the use case level.
Real World Effect: possible effect in the real world.

Severity: rating of effect of the worst case scenario in the real world.

© »®» e

Possible Causes: possible causes of the deviation (software, hardware, human, etc.).
10. Safety Recommendations for prevention or protection
11. Remarks: explanation of analysis, additional recommendations, etc.

12. Hazard Numbers: real world effects are identified as hazards and assigned a number,
helping the users to navigate between results of the study and the HAZOP-UML
tables.

In the given example Figure 2.10, a precondition of UC02 (previously presented Figure 2.4)
is analyzed using the guide words No and Other than. It leads to identify the hazard HN6
(Fall of the patient due to imbalance caused by the robot).

The resulting documents are the tables as the raw artefacts, but also:

e a concatenated list of identified hazards

e a list of hypotheses made to perform the analysis, which need to be confirmed by
domain experts to validate the study

e a list of safety recommendations

All those documents reference each others using numbered labels for lines, hazards (HN),
recommendations (Rec), and hypothesis. Examples of a hazard table and recommendation
list are given Figure 2.11 and Figure 2.12. As an example, recommendation Rec2 from
Figure 2.12, covers hazards HNG (fall of the patient), and has been formulated in the
HAZOP table UC02 line 15 (UC02.15).
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Project: MIRAS Date: 04/08/2009
HAZOP table number: UC02 Prepared by: DMG
Entity: UC02.Standing up operation Revised by: JG
: . Guide - Use Case Real World ) Possible Safety Hazard
Line Number Attribute word Deviation Effect Effect Severity Causes Recommandation Remarks Num.
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
Worst-case
Battery electrical If the robot stops
charge is Battery The robot consumption during standing
sufficient to charge is too | . . HW/SW must be operation, the
] interrupts its Loss of .
do this task No/ low but the . Failure evaluated most probable
uCo02.15 movement |balance or fall| Serious e L HN6
and to help | none | robot starts " . Specification | beforehand. Take| scenario is that
N K (standing up | of the patient X N
the patient to the standing or walking) error the lower bound | the patient will
sit down up operation 9 of the battery | fall back on the
(precond) charge seat.
estimation
Battery
charge is high HW/SW
Other| enough but Robot refuses Patient is Failure
ucoz2.16 to start stand None PR None
than the robot - confused Specification
X up operation
thinks error
otherwise

Figure 2.10: HAZOP-UML Table extract

Num. Hazard Severity References
HN4 Fall of the patient without alarm or with a Severe UC13.SD01.29
late alarm
HN5 Pt_1y5|olog|cal probl(—__‘m of the patient Severe UC03.SD02.57
without alarm or with a late alarm
HN6 Fall of the patient due to imbalance caused Severe UC12.5D01.19,30
by the robot
Failure to switch to safe mode when a
HN7 [problem is detected. The robot keeps Severe UC12.5D01.62,89
moving
HN1 Incorrect position of the patient during Serious UC13.SD01.1,2,3
robot use
Figure 2.11: Hazard list extract
. Hazard
Num. Safety recommandation Num References
Recl The standing-up profile should be validated by a HNS, UC03.5D02.91,96

human operator HN12

Worst-case electrical consumption must be
Rec2 |evaluated beforehand (and display of the mean HN6 UC02.15
battery time left by the robot)

Send regularly a network heartbeat from the
Rec22 |robot to the medical staff control panel. Launch HN6 UCO01.SD1.15,24
alarm on time-out.

Safety margins should determined for maximum
Rec31 |and minimum height of the robot (monitoring is HN8 |UC03.SD02.91
required)

Figure 2.12: Recommendation list extract
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2.2.3 A tool for HAZOP-UML

To ease the analysis of complex systems, we developed a prototype of a tool to support the
method. It helps to manage the combinatorial aspects of the HAZOP method by maintain-
ing consistency between UML models and HAZOP tables and by providing document gen-
eration and management features. The tool is built as an Eclipse plugin (www.eclipse.org)
using the Graphical Modelling Framework (GMF). In this tool presented Figure 2.13, the
analyst can draw UML use case and sequence diagrams. Using guide word templates,
HAZOP tables are automatically generated, ready to be filled out by the analyst using
choices lists.

The list of guide words, the list of columns and the list of severities are editable using the
main project view. Using the template, the analyst can add a line in the table by selecting a
message, and then select applicable deviations and fill the corresponding columns. When
filling the table, the recommendation list and corresponding hazards are automatically
generated in the project view. The toolbox of the HAZOP guide words enables deviations
to be added (for example, several deviations for the same keyword). Finally a report
in HTML can be generated consisting of HAZOP tables, UML diagrams, and hazards,
recommendations and hypotheses lists.

2.3 Experiments and results

This section provides results of the experimentation of HAZOP-UML on three robotic
applications developed within the following projects:

e ANR-MIRAS (Multimodal Interactive Robot of Assistance in Strolling) (MIRAS,
2009-2013) an assistive robot for standing up, sitting down and strolling already
presented in Section 2.1.1.

e FP6-PHRIENDS (Physical Human-Robot Interaction: depENDability and Safety)
(PHRIENDS, 2006-2009). The system is a mobile robot with a manipulator arm.
The considered environments are workshops and factories with human workers. Col-
laborative work between a human and a robot is possible (e.g., the robot can give
an object to the human). The arm is the KUKA Light Weight Robot (LWR), a
seven degrees of freedom arm which contains torque and motor position sensors.
The mobile base is the KUKA omnirob product.

e FP7-SAPHARI (Safe and Autonomous Physical Human-Aware Robot Interaction)
(SAPHARI, 2011-2015). As in PHRIENDS, an Industrial co-worker operates in a
manufacturing setting accessible to human workers. The mobile manipulator may
encounter humans while moving between the different workstations because the op-
eration area is freely accessible to human workers. It takes and places part boxes on
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PHRIENDS \ MIRAS \ SAPHARI

Use cases 9 11 15
Conditions 39 45 54
Analyzed deviations 297 317 324
Interpreted deviations 179 134 65
Interpreted deviations with 120 72 50
recommendation

Sequence diagrams 9 12 16
Messages 91 52 122
Analyzed deviations 1397 676 2196
Interpreted deviations 589 163 87
Interpreted deviations with 274 85 36
recommendation

Number of hazards 21 ‘ 16 ‘ 28

Table 2.3: Statistics for the application of HAZOP-UML for the three projects

shelves, work stations, or on the robot base in order to convey them. The robot nav-
igates autonomously in its operation area. When the robot encounters unexpected
or difficult situations the worker might intervene and help by giving the robot direct
haptic instructions.

2.3.1 HAZOP-UML applicability

Classic HAZOP is usually applied in collaborative workshops, involving many partners
to maximize the chances of study completeness. On the contrary, HAZOP-UML can be
applied by a single analyst and then validated by experts. This comes from the fact that
the study is always based on a UML model, which has been done in collaboration with
stakeholders (e.g., robotic engineers or medical staff). The fact that their knowledge has
been captured by UML models, makes the safety analyst task more independent from
domain experts. Of course, during analysis many questions raise, and hypotheses need to
be done to carry out the analysis. They need then to be validated by the experts (this is
why we propose to produce a hypotheses list).

Considering that a single analyst can perform most of the work, we also analyse the
effort to perform the complete analysis. Numbers are given in Table 2.3 for the three
robotic projects.

For the three projects, the complexity was nearly the same (between 39 and 54 use
case conditions, and 91 and 122 messages in sequence diagrams). For each project one
analyst has been recruited. Those three analysts, were a post-doctoral, an engineer, and
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a Dr-engineer. “Analyzed deviations" stands for the number of deviations the analyst has
considered, but only a part of them leads to an ‘Interpreted deviations".

The resulting numbers show that no combinatory explosion happens, and less than 0.5
man-month was necessary for each study. Few iterations for table updates were needed
(between 2 and 3). The presented tool in Section 2.2.3 was under development during
those three projects, so we used a classic spreadsheet software with templates and macros.
The cross checking between HAZOP tables and UML diagrams was then done by hand,
which is clearly a limit that we want to reduce with our tool. However, those three projects
were successful regarding the applicability of our method.

2.3.2 HAZOP-UML guide words relevance

For all projects, statistics of guide word usage have been done (see Guiochet et al. (2008b,c,
2009) for details for PHRIENDS project). Results shows that all guide words have been
used by the analysts, and no guide word were redundant (i.e. no couple of guide words lead
to exactly same deviations). It is possible to find the same deviation using two different
guide words used by two different analysts, but this is actually not an issue, because
our main objective is to find a list of hazard, what ever guide word used to identify it.
To determine if the guide words list is not limiting, we only rely on the results of the
application on the three projects. A formal demonstration is actually impossible, and as
already discussed, no single hazard identification technique is actually capable of finding
all the hazards. We thus consider that in order to propose a systematic approach, the
selected guide words are sufficient to identify all the major hazards.

2.3.3 HAZOP-UML validity

Table 2.6 presents two results for validity. First, this study shows that all hazards found
during the PHA (Preliminary Hazard Analysis), done by collaborative workshop between
a safety analyst and robotic experts, were also identified during HAZOP-UML (performed
by the analyst), and that new hazards were also found. The fact that all scenarios of use
were modeled in UML significantly improves the analysis. For instance, the hazard HN11
(Disturbance of medical staff during an intervention), was only identified during use case
analysis, and never mentioned during the PHA, whereas it is highly relevant in case of
emergency intervention.

The second analysis presented in this Table shows that use cases (UC) and messages
(Seq) analysis are complementary, whereas state machine analysis has a redundant con-
tribution for hazard identification. For instance, HN4 identified 11 and 13 times during
use case and sequence diagrams analyses, has been identified 32 more times during state
machine analysis. Nevertheless, we believe that state machine analysis is also interesting
to identify more sources of deviations that could be used in other risk analysis methods,
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al\:terisbs:tii Guidewords | Deviations | Interpretations
No 91 75
Other than 97 25
As well as 91 13
More than 91 7
16%2?; r:l Less than 0 0
Before 92 32
After 91 15
Part of 0 0
Reverse 91 43
2. M ge Early 91 28
timing Later 91 28
o Not applicable in our case study, which
3. Lifelines considers only a single robot (and a single
human)
482;22?::5" No constraint were specified in the UML models
No/None 91 59
More 91 52
5 M e Less 91 62
argumen?s As Well 71 2
As
Part of 95 31
Other than 112 98

Table 2.4: Sequence diagram guide words utility in PHRIENDS

:tfzbc:tzi Guidewords Deviations Interpretation
No/none 42 39
Other than 95 95
Conditions (39) As well as 41 23
(pre/post/inv) Part of 40 10
Early 40 9
Late 39 3

Table 2.5: Use case guide words utility in PHRIENDS
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N b ipti PHA HAZOP-UML
um escription
i uc [ Seq. [ achine

HN1 Incorrect posture of the patient during robot use 2 4 3 4
HN2 Fall of patient due to imbalance not caused by the robot 29 27 30
HN3 Robot shutdown during its use 1 2 5
HN4 Patient falls without alarm or with a late alarm 11 13 32
HNS Physiological problem of the patient without alarm or with 15 10

a late alarm
HN6 Fall of the patient due to imbalance caused by the robot 10 51 37 10
HN7 Failure to switch to safe mode when a problem is 3

detected. The robot keeps on moving
HN8 Robot parts catching patient or clothes 3 5 4
HN9 | Collision between the robot (or robot part) and the patient | 2 14 14
Collision between the robot and a person other than the

HN10 h 5 14 2
patient

HN11 Disturbance of medical staff during an intervention 1

HN12 Patient loses his/her balan(_:e due to the robot (without 1 1 70 1
falling)

HN13 Robot manipulation causes patient fatigue 12 1 53 21

Injuries of the patient due to robot sudden movements
HN14 . . N N 3
while carrying the patient on its seat
HN15 Fall of the patient from the robot seat 2 10 12
HN16 Frequent false positive alarms (false alarm)

Table 2.6: Hazard list and occurrences in PHA and HAZOP-UML in MIRAS

and also provide safety recommendations which are different from use cases and messages
ones.

2.3.4 HAZOP-UML usability

A major advantage of HAZOP-UML lies in its simplicity. Indeed, UML models have been
simplified to be easily understandable by non experts without reducing its expressiveness.
HAZOP is also an intuitive method. Several engineers from different domains (electronics,
computer science or risk management), have been trained to the method in few days.

HAZOP-UML is completely integrated and consistent with the development process.
Indeed, same UML diagrams were used in the projects, to define the scenarios. This helped
us for each iteration in the development process to easily update the HAZOP tables. This
traceability is an important issue in safety analysis methods, which are usually applied
once due to the cost to apply them.

Among HAZOP-UML limitations, we remind that HAZOP-UML is focusing on oper-
ational hazards (linked with the robot tasks). We thus do not consider “machine" hazards
already defined in many standard, like electrocution, explosion, etc. As already mentioned,
this method should be completed by other hazard analysis techniques. A second limitation
is the fact that the UML models and HAZOP tables do not explicitly mention the environ-
ment conditions of execution. For instance, a similar scenario but with high or low level of
light might change the deviations and their consequences. It is still an open issue and an
integration in the UML models would be an interesting direction. Last but not least, the
HAZOP-UML has the same drawback as other risk analysis methods, which is a difficult
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determination and expression of the hazard because of the fuzziness of a hazard definition
(“potential source of harm", from ISO/IEC-Guide51 (1999)) which may designates both
a cause or a consequence. Three columns in the HAZOP table can represent a hazard:
deviation, use case effect, real word effect. In many tables, we found that some real word
effects were already mentioned as use case effects in other HAZOP table lines. We chose to
reduce the number of hazards, taking into account only the “real word effect" as a hazard,
but for some cases where it was obvious that the treatment would be completely different,
we also took into account the deviation and use case effect. For instance, in Table 2.6, the
hazard HN2 (Fall of patient due to imbalance not caused by the robot) and HN6 (Fall of
the patient due to imbalance caused by the robot), lead both to the fall of the patient,
but have been differentiated. Even if we provide a well guided method, extraction and
formulation of hazards list requires a high level of expertise of the safety analyst, in order
to choose the right level of description of a hazard.

2.4 Related work on model-based hazard identification, tools
and methods

This section presents related work, focusing on model-based safety analysis, and more
particularly those using UML. The concept of “model-based" refers to the fact that a
safety analysis technique (e.g., FTA) is based on an abstract representation of the studied
system. This was already done at the very first hours of the risk analysis techniques using
for instance block diagrams, or had-hoc representations. The quite recent model-based
term, usually refers to the use of standardized models (like UML) and the possibility to
have tools assisting analysts to produce automatic, or semi-automatic safety analysis based
on a system model. Generally, model-based safety analyses focus on the following issues
(Blanquart, 2010):

1. Fault propagation analysis

(a) bottom-up: a fault effect on the system

(b) top-down: induction of faults inducing an unwanted effect
2. Dependability (or safety) properties verification
3. Quantification of probability of unwanted events

Many high-level modeling languages for safety analyses have been defined to cover those
points. Just to cite some of them, HIPS-HOPS (Hierarchically Performed Hazard Origin
and Propagation Studies) and its associated tool developed at Hull university 2, automati-
cally generates fault trees and FMECA tables starting from system models (e.g., Simulink

2http://hip-hops.eu (accessed 2015-05-15)
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models). For each component, fault annotations are given, and the tool propagates those
faults to build safety models (e.g., Fault trees). Altarica (Boiteau et al., 2006; Lipaczewski
et al., 2015) also propose means for fault tree generation or properties verification from
system and reliability models. Additionally, many European research projects addressed
model-based safety analysis: ESACS (2001-2003)° in transportation domain, followed by
ISAAC (2004-2007) * in avionics, then CESAR (2009-2012) °® followed by CRYSTAL (2013-
2017) Y for embedded systems. Previous techniques and works, usually rely on a precise
description of the system behavior, which is usually not available at the beginning of a
human-robot project.

The proposed method in this chapter falls within the scope of fault propagation anal-
ysis, and can be described as a “middle-up approach", as we do not start from “faults"
but from deviations. Our objective is then to identify hazards (and hazardous situations)
during human-robot interaction. Very close work is proposed by Leveson (2011), with a
method called STPA (System Theoretic Process Analysis), which provides guidance to
users combining guide words (like in HAZOP) and fault models, applied to models, based
on a process/controller /actuator /sensor representation. Many recent applications of STPA
can be found, e.g., in robotics (Alemzadeh et al., 2015), space (Ishimatsu et al., 2010), rail-
way (Thomas and Leveson, 2011) or automotive (Sulaman et al., 2014). One difference
with our approach is that scenarios are actually not modeled in this approach. Users are
represented as “controllers", which is not clear while describing human-robot interactions.
STPA objective is also different in the way that it really focuses on the identification of
cause-consequence chain, which is not the objective of HAZOP-UML (only find the hazards
and hazardous situations). We also propose to use UML which is not the case in STPA.
On the contrary, the work done in the CORAS project (CORAS, 2014; Bjorn Axel Gran
and Thunem, 2004), is based on UML to analyse security. Even if we focus on safety, our
objectives are the same as this project. A major difference is that we strongly interconnect
UML models and the risk analysis technique HAZOP, which was not addressed in CORAS.

Our risk analysis approach is based on a re-interpretation of HAZOP guidewords in the
context of some UML diagrams. A similar approach has been followed in some previous
studies considering UML structural diagrams (Hansen et al., 2004; Gorski and Jarzebowicz,
2005; Jarzebowicz and Gorski, 2006) and dynamic diagrams (Johannessen et al., 2001;
Allenby and Kelly, 2001; Arlow et al., 2006; Frantz et al., 2007; Srivatanakul, 2005). In
all those papers, the guide words were quite reduced (e.g., only omission and commission)
or the link with UML language elements was not fully explored. We actually extend the
results of those studies, focusing only on use case, sequence and state machine diagrams
(not presented here), in order to explore deviations during operational life. We also paid

3www.transport-research.info/web/projects/project_details.cfm?ID=2658

4http://ec.europa.eu/research/transport/projects/items/isaac_en.htm
Swww.cesarproject.eu
6www.crystal—artemis.eu
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a particular attention to the human errors expression and analysis in this method, which
was absent from the previous papers.

2.5 Conclusion

We proposed in this chapter a new method for the safety analysis of human-robot interac-
tion called HAZOP-UML. To build this method we used the UML metamodel to identify
the basic elements of three dynamic models. We then proposed three guide words tables
for use cases, messages of sequence diagrams (and state machines as presented in Do Hoang
(2015)). Those guide words tables help the safety analyst to imagine possible deviations for
every elements of those dynamic models. Those deviations are then reported in HAZOP
tables, where causes, consequences, and recommendations are formulated. This process
produces lists of hazards, recommendations, and hypotheses.

This method has been applied successfully on several projects, and we presented in this
chapter a general analysis of the benefits and the limits of the method. We particularly
focus on the applicability and validity of the approach. Main advantages of HAZOP-UML
are:

e simple (training and application)
e applicable at the first step of the development process
e limits the combinatory explosion

e consistent with system models, and inherits of system modeling benefits: traceability
and modifiability

e casily supported by a computer assisting tool

Even if the models and HAZOP tables can be easily achieved, the main limit lies in the
necessity of a high expertise to formulate hazards from HAZOP tables. It is up to the
safety analyst to determine the right level of detail for the hazard identification.

Additionally to the three projects presented in this chapter, HAZOP-UML has also
been used as a first step of the safety argumentation presented in Chapter 3. It is also
an entry point for our method to build independent safety monitors in the context of
autonomous robots presented in Chapter 5. We also plan to use it as an entry point for
defining virtual words for testing mobile robots in simulation. A future direction is the
complete transfer to industry, which is already started in the European project CPSELabs
(2015-2018).






Safety argumentation confidence
assessment

The work presented in this section is more recent than the previous one on HAZOP-
UML. Nevertheless, it is a new important direction we want to develop at LAAS. I
collaborated with David Powell and Mohamed Kaaniche (LAAS-TSF) while we were
supervising PhD of Quynh Anh Do Hoang (2011-2015). Preliminary results have been
published in workshops and international conferences (Do Hoang et al., 2012; Guiochet
et al., 2013, 2015). Since 2014, I collaborate with Gilles Motet (LAAS-TSF) on this
subject. We are now supervising a PhD (Rui Wang, started in 2014), to extend the
results to the confidence assessment of safety critical development processes.

Safety cases are used in several critical industrial sectors to justify safety of installa-
tions and operations. As defined in the standard DefStan 00-56 (2004): "a Safety Case is a
structured argument, supported by a body of evidence, that provides a compelling, compre-
hensible and valid case that a system is safe for a given application in a given environment".
An important research work has also been initiated to deliver guidelines to document safety
cases. An initial work developed at York University Kelly (1998), based on an adaptation
of Toulmin argumentation model Toulmin (1958), led to the proposal of the Goal Structur-
ing Notation (GSN). Other proposals such as CAE for Claims-Argument-Evidence Bishop
et al. (2004) and KAOS (Knowledge Acquisition and autOmated Specification) Dardenne
et al. (1993), but they did not reach the maturity of GSN GSN-Standard (2011). The
Object Management Group (OMG) has also delivered a metamodel for the argumentation
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approach OMG-ARM (2013). The goal of these approaches is to make more explicit the
supporting arguments for a top-level claim.

Given a claim and a supporting argument, an important and growing issue is to under-
stand how much confidence one could have in the claim and how the different arguments
contribute to such confidence. For instance, let us consider the classical example of the
claim "{System X} is safe", supported by the evidence that all specific hazards have been
eliminated as presented in Figure 3.1. Main concepts of GSN are presented here: goals
present claims forming part of the argument; Strategies describe the nature of inferences
that exist between a goal and its supporting sub-goal(s); Solutions present a reference to
an evidence item (results of a fault tree analysis for instance); Contexts present contex-
tual artifacts (they could be a reference to contextual information, or statements). Other
elements are used in GSN but not presented here as our proposal focuses on these main
components of GSN. Each element of such an argument may be subject of uncertainties,
such as "do all the hazards have been identified?" or "is the treatment of hazard n ef-
fective?". Moreover, considering that argument structures tend to grow excessively, it
may become too complex for third parties to analyse the argument. Therefore, appro-
priate methods to assess confidence in the argument structures and supporting evidence
are required. Three main challenges are of particular interest: how confidence could be
formally defined, how confidence could be quantitatively estimated, and how confidence in
argument leaves could be propagated to assess the impact on the main claim confidence.

In this chapter we mainly address the first and third issues by introducing a new
method for defining and propagating a quantitative estimation of confidence of a safety
case. After presenting related work in Section 3.1, we introduce our definition of confidence
based on belief theory in Section 3.3. This definition is used in Section 3.4 where details
about confidence propagation are given. Finally, in the conclusion we will discuss about
first results and open issues in this area.

3.1 Related work

The issue of confidence in argument structures has already been addressed by several works,
with slightly different objectives and scopes. Table 3.1 presents a common framework to
analyze some relevant related work considering the following dimensions:

e Argument modelling: construction of the "case" which may be based on GSN or
other notations

e Argument uncertainties identification: uncertainties in inferences and arguments el-
ements are identified

e Confidence modelling: construction of a confidence case, with explicit representation
of dependencies between the uncertainties
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Figure 3.1: GSN example adapted from Hazard Avoidance Pattern Kelly and McDermid
(1997)

e Confidence estimation: theoretical framework for quantitative estimation of the con-
fidence

e Decision support: provide support based on the quantitative estimation in order to
make a decision for the acceptability of the argument, or its improvement.

Qualitative approaches

In Hawkins et al. (2011), the inventors of GSN address the confidence issue, by proposing
to split a traditional safety case in two pieces. The first is the safety argument, showing
all evidences, and the second is a confidence argument that addresses confidence in evi-
dences, contexts, and individual inferences. This confidence argument is also represented
with GSN. It starts by adding to the safety case some possible uncertainty sources, which
are called Assurance Claim Points (ACP), that are attached to inferences (the arrows con-
necting claims), contexts (explanatory information), or solutions. Then, for each ACP,
an argumentation mainly focuses on demonstrating that the ACP is trustworthy and ap-
propriate, which is built using GSN. Another proposal Anaheed et al. (2012), is based on
the ACP but only focuses on Context and Solution elements. The authors propose to use
a map (Common Characteristic Map) as a check list to identify sources of uncertainties,
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Argument Argument Confidence Confidence Decision
modelling uncertainties modelling estimation support
identification
Littlewood
and Bayesian network |  Probability law
Wright y y
(2007)
Zhao
et al Argumentation Based on Toulmin | Bayesian network Probability law
(2012) Metamodel model (with Hitchcock (with basic logical
(ARM) based criteria) gates)
case
Denney
et al GSN Bayesian network Probability law
(2011) and tool support
with AgenaRisk
Cyra
an’d . Trust case based Dempster-Shafer Decision level
Gorski ) ¢
on Toulmin model Theory associated to
(2011) )
confidence level
Anaheed
et al GSN Dempster-Shafer Decision based
(2013) Theory on the confidence
value
Anaheed
et al GSN Common Confidence case
(2012) Characteristic based on GSN
Map (CCM)
Goodenouligh
et al GSN Based on Confidence case Baconian
(2012) Assurance Claim in GSN probability
Points (ACP)
Hawkins
et al GSN Based on Assurance case

(2011)

Assurance Claim
Points (ACP)

in GSN

Table 3.1: Different approaches for managing confidence in safety case
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with recursive dependencies. For instance, if a safety case includes a solution which is a
"Process result", they propose the generic uncertainties related to "the use of a language",
"the use of a tool", "the use of a mechanism", "the involved artifacts", etc. All those
characteristics are then refined, with possible recursive dependencies.

The proposed approach in Goodenough et al. (2013) is quite similar, adapting the
defeater concept from Defeasible Reasoning theory introduced by Pollock (2008). These
defeaters that could be compared to previous ACP, or weaknesses in the argumentation,
are then analyzed to be reduced one by one.

Both previous proposals focus on the identification of the weaknesses in an argumenta-
tion, and present methods for a well structured approach. Nevertheless, such approaches
may lead to complex confidence cases. Although controversial, we believe that quantitative
estimation approaches may help to analyze the safety case confidence. For instance, it can
support sensitivity analyses to identify the weak elements of an argumentation.

Quantitative approaches

This group of approaches tries to apply mathematical formalism to capture lack of con-
fidence in argument elements. Apart from some proposals based on simple mathematical
models as in Goodenough et al. (2012) where the number of uncertainties is estimated,
two main ways of approaching the problem can be identified:

e Bayesian Belief Networks (BBNs): in this case the uncertainty is interpreted as a
probability. BBNs are then applied to deduce the confidence in a goal from credibility
of its backing arguments. Some authors directly use BBNs for modeling arguments
and confidence. For instance, in Hobbs and Lloyd (2012), they only use BBNs and
commercial tools to calculate "trustworthy", which is actually a conditional probabil-
ity. With a similar approach, authors of Littlewood and Wright (2007) particularly
focus on the diversification in argumentation, calculating how a "multilegged" argu-
ment (a claim is supported by two evidences) impacts the probability (interpreted
as a confidence level) of achieving the main claim. However, they directly use BBNs,
without any safety case. On the contrary, Zhao et al. (2012) propose to apply to
each claim of a Toulmin model argument, a Bayesien network pattern showing re-
lationships between uncertainties in the argumentation based on Hitchock criteria
Hitchcock (2005). However, confidence propagation is not clearly analyzed and jus-
tified. In Denney et al. (2011), the authors present an interesting approach to build
a BBN from the safety case, and use the work of Fenton and Neil (2012), to define a
distribution of confidence for each argument element, but they do not propose trans-
formation rules between safety case in GSN and the confidence BBN. The confidence
propagation formulas are also not justified.

e Dempster—Shafer (D-S) theory of evidence. These approaches are based on the be-
lief theory developed by P. Dempster in 1967, and extended by G. Shafer in 1976.
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A common justification for its use, is that probability theory does not make differ-
ence between epistemic and aleatory uncertainties Aguirre et al. (2013). In the D-S
approach, belief, disbelief and epistemic uncertainty are explicitly quantified. An
important work by Cyra and Gorski (2011) is based on this theory. The authors,
propose to build "Trust cases" based on Toulmin concepts, and to directly associate
levels for belief and uncertainties, linked with a decision to accept or not an argument
element. In this case, they do not build a confidence case, but directly propose a
method and a tool for decision support. As presented later, they do not explicitly
take into account confidence in the inferences of the argument. Anaheed et al. (2013)
directly reuse the previous work, with a limited version, only considering that for
each argument element it exists a level for "sufficiency".

In summary, defining and measuring confidence in assurance claims is an important and
open issue. A framework for determining confidence is needed, and this chapter presents
some initial steps to fulfill this objective.

3.2 Proposed approach overview

Our objective is to propose a method to identify weaknesses in safety case, in order to
improve it. Referring to Table 3.1, our contribution focuses on the following steps presented
Figure 3.2:

e Argument modelling: the safety case is built using GSN

e Confidence modelling: we propose to annotate the GSN models and transform them
into a confidence network

e Confidence estimation: confidence in the network leaves are estimated and propaga-
tion formulas are used

e Sensitivity analysis: impact of confidence variations is analyzed to identify weak-
nesses of the safety case.

3.3 Measuring confidence

Confidence may be used as a common concept for different theories, including probability,
and D-S. As Cyra and Gorski (2011); Anaheed et al. (2012), we define confidence using
the D-S approach. In this theory, a belief function is defined from the powerset P(2) of
possible events into [0; 1]. For instance, let w be the state of an indicator light that can have
two values on and of f, then Q = {on,of f} and P(Q) = {{on},{off},{on,of f},2}. In
this example the belief function Bel, is defined as the mass m of belief such as Bel({on})
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Figure 3.2: Overview of the proposed method
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Figure 3.3: D-S theory concepts, with a Boolean set

represents the credibility of the light to be ON. As an example, a possible estimation
would be Bel({on}) = m({on}) = 0.2, Bel({of f}) = m({off}) = 0.5 et m({on,of f}) =
m(Q) = 0.3. When events are Boolean, like in this example, we can sum-up the D-S
concepts with the Figure 3.3 (Plausibility is another D-S concept which is not included in
this chapter).

We will consider in a safety case that all elements leaves are observed, and that they

cannot be false. Hence, for an element A, Bel(A) = 0. This led us to define confidence
and uncertainty as the belief functions:

m(A) = Bel(A) = g(A) € [0,1] : confidence
m(A,A) =1—g(A) €0,1] . uncertainty (3.1)
m(A) =0

In the context of safety case, we consider two types of uncertainty sources, which
are similar to those presented in Hawkins et al. (2011) named "appropriateness" and
"trustworthiness". For instance, in the very simple safety case presented in Figure 3.4,
two sources of uncertainties may be identified:

e uncertainty in the fact that B is appropriate for the inference "A is Supported by B"

e uncertainty in the solution B itself : are the tests trustworthy?
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Goal

A
System is acceptably
safe

my Uncertainty in “B supports A”

Solution 2 Uncertainty in Solution B
B
Tests are
conclusive

Figure 3.4: Uncertainty points in a simple inference

3.4 Propagating confidence

3.4.1 Argument types

The very basic inference is the simplest one, "A is Supported by B". Nevertheless, most of
arguments are more complex than direct one-to-one inference. For instance, let us consider
the example presented with the main claim "A: System is fit for use", supported by both
"B: Tests are conclusive" and "C: Formal verification has been performed". In that case,
we can expect that both evidences independently increase the level of confidence in A.
This concept is presented as "alternative argument" in Cyra and Gorski (2011): even if
there is no confidence in B, the fact that C also independently supports A will preserve
some level of confidence.

An another form of inference, is presented in the GSN «Hazard Avoidance Pattern»
proposed in Kelly and McDermid (1997), presented Figure 3.1. In that case, the main Goal
"System is Safe", depends on all the sub goals together (we do not consider "Strategy" as
a node, because it is only a descriptive element). Each of the premises covers a part of
the goal. Cyra and Gorski (2011) propose to name such an argument a "complementary
argument".

Figure 3.5 present those two types of arguments, with the inference "A supported by
B and C". We also illustrate the fact that in both types of argument, the sub nodes may
have a different weight in the overall confidence in the claim A. Other types of arguments
may be included, as introduced in Cyra and Gorski (2011); Anaheed et al. (2013), but
they are not included in this chapter.

3.4.2 Simple argument

The basic inference, "A is supported by B" can apply to the cases (a) a goal is refined into
a subgoal and (b) a goal is supported by an evidence, as presented in Figure 3.6. In this
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Figure 3.6: (a) GSN Simple argument transformation into confidence network and (b)

g(A) in function of g(B), for p € [0;1]
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case, the confidence network is represented like a BBN, using two nodes and one edge. We
propose to use the following table to describe the confidence propagation:

gB) | o | 1

gA) [ o | p
In this table, the confidence in A is estimated when there is no confidence in B (i.e.
when g(B) = 0), then g(A) = 0, and when there is a maximum confidence in g(B). In
this case, the confidence in A depends on a factor p, which represents the confidence in
the inference "A is supported by B". The final confidence is obtained using this table as a

probability table: g(A) = p % g(B). The result is a linear dependency g(A), illustrated in
Figure 3.6 considering different values for p and g(B).

3.4.3 Alternative arguments

As presented Figure 3.5, several arguments may support a claim with an independent
influence. It is important to note that in this Figure, we do not represent the confidence,
but the way each argument supports the main claim. In this case, the confidence in A,
may be increased by the confidence in both B and C. Such approach could be applied
to Solutions or sub-goals as presented Figure 3.7. The Strategy node is not part of the

1)

<<alternative>>

Solution ‘ Solution
B C

Goal

Goal

—

<<alternative>> °

<<alternative>> Goal Goal
B C

o ¥ X,
e L

GSN safety case Confidence Network

Figure 3.7: Alternative argumentation transformation into confidence network

confidence network, as it only gives explanations on the choices made for argumentation.
We chose for this argument type to use a leaky noisy-or as defined in probability theory
Diez and Druzdzel (2007). It was originally introduced in Pearl (1988), and it is based on
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a logical OR between parent nodes (Y;) and a child node(X), but it includes the fact that
the relationship between parents and the child node are not necessary deterministic. The
leaky effect corresponds to the fact that even when both parents (B and C) have 0-value
probability, there is still a "leaky" probability for the child node. For probabilities, the
mathematical function is, with Y, the set of Y; in state {T'rue}:

P(X = {True}Vi) = 1— (1=« [] 1 —py) (3.2)
Y;eYy

with p; = P(X|Y;,{Yi};). In its application to confidence, we do not consider the leaky
effect, it is indeed obvious that if there is no confidence in B and C (¢(B) = ¢(C) = 0),
then the confidence in A is zero, i.e. g(A) = 0. Consequently, we obtain the following
equation:

g Xy =1- 1] 0 -p) (3.3)

YieYy,

According to 3.3, the resulting table for two parents is:

g(B) 0 1
g(C) 0 1 0 1
g(A) 0 q p | 1-(1-p)(1-q)
This leads to the confidence formula g(A) = p* g(B) + ¢* g(C) — g(B) * g(C) * p * q.

p and g respectively represent the confidence in A in case one only has confidence in B or
C. Figure 3.8 illustrates the evolution of confidence g(A) for different situations:

e Figure (a) where p = ¢ = 1 illustrates that increasing the confidence in g(B) alone
or g(C) alone, automatically increases g(A). For instance, for g(C') = 0.75 and
g(B) = 0.5, the resulting confidence is 0.875. Confidence of 1 for A, occurs only if
g(B) or g(C) reaches 1.

e Figure (b) shows influence of p on g(A). For a low confidence p in the inference "A
is supported by B", the confidence in A only depends on confidence in C (g(A) is
constant for p = 0).

e Figure (c) shows that for a low value of g(C') (0.1), the variation of ¢, which is the
confidence in the inference "A supported by C", has no effect on g(A).

3.4.4 Complementary arguments

Complementary arguments are used when a set of solutions or subgoals are required simul-
taneously for supporting the main goal. However, a weight for each element is assigned
to rate its relative importance. For instance, in the "Hazard Avoidance Pattern", some
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Figure 3.8: Alternative argument: g(A), in function of g(B), g(C), p and g

hazards may have a less impact on the overall safety, and the lack of confidence in their
treatment, may induce less reduction in the main confidence, than for other more severe
hazards. Several models are used in the literature for such arguments, such as simple
And-gate Zhao et al. (2012), weighted mean Denney et al. (2011), or Noisy-And Hobbs
and Lloyd (2012). In our case, after several simulations, we decided to define our own
Noisy-And, to obtain the trends that are relevant for complementary argumentation. In
this case, we based our calculation on the uncertainty as defined in equation 3.1 and using
the leaky noisy-or defined in equation 3.2, but taking for the leak v = 1 — . We then
obtain the following confidence table:

m(B, B) 0 1
m(C,C) 0 1 0 1
m(A, A) 1-v 1—v.(1—gq) 1—v.(1-p) 1—v.(1=p).(1-gq)

To calculate the confidence table, we apply the relation g(X) = 1 — m(X, X), and we
also decided to fix g(A) = 0 when g(B) = g(A) = 0 (which should be obtain for whatever
weight of B and C). We thus obtain the following table:

9(B) 1 0
gO) I 1 0 1 0
g(4) || v v.(1-q) v.(1-p) 0

One main difference with other research works, lies in the interpretation of the param-
eters. In our case, p and ¢ represent the weight of B and C to decrease confidence (increase
uncertainty). In the context of confidence calculation, we also propose to introduce a rela-
tion between leak value v, p,and ¢ such as: v = (p+ ¢)/2. Indeed, when p and q are lower
than 1, it means that the confidence in the inference is less than one. The generalization
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Figure 3.9: Complementary argument: g(A) in function of g(B), p and q

of this constraint to a complementary argument with n parents is:

1 n
v=— Z;pi (3.4)
1=

The values in the confidence table are:

k
g(X|V1, ... V%) = v. [[(1 - pi)
i=1
where p; represent the weight of Y; in the argument. We consider in the following discussion
that having a value of 0, for any confidence is not considered, has such an element (no
confidence at all), will be removed from a safety argument. Figure 3.9 presents the result
for 2 parents, B, and C, and one child, A. In (a) and (b) we illustrate that when q decreases
(g=1, q=0.5) then the influence of g(C') decreases. On the figure, the lines for different
values of ¢g(C) are close depending only on ¢g(B) (with a value of 0.5, not presented here
due to limitation space). We also illustrate in (b), that when p and q are less than 1, we
obtain a residual confidence when g(B) = 0 and ¢g(C) > 0. This is actually an expected
result, because, when the weights are less than one, this means that the argument is not
a perfect AND gate. In (c), p is low (0.1), which is interpreted as a low influence of g(B),
and characterized by the fact that all lines are nearly horizontals (i.e. with no influence of
g(B)). A complete analysis of limits, which is not presented here, has demonstrated that
the variations of g(A) are compliant with a complementary argument Do Hoang (2015).

3.4.5 Mixed arguments

The previous arguments could be used also to integrate the confidence in the GSN "Con-
text" element. Indeed, a context is actually a complementary element for the considered
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Figure 3.10: Mixed argumentation 1

argument. Figure 3.10 presents a complementary argument, where a context has also been
defined. In this case, the resulting network, is a node A, with three parents (B, C, D), and
a noisy-and table for node A. When an alternative argument is used between B and C,
then, an intermediate node I _BC is included, with an alternative table for B and C. The
confidence table in A is a noisy-and between D and I BC.

3.4.6 Sensitivity analysis

We propose to perform a sensitivity analysis using a tornado graph. It is a simple statistical
tool, which shows the positive or negative influence of basic elements on main function. Ba-
sically, considering a function f(z1,...x,), where values X1, ..., X,, of the variables x; have
been estimated, the tornado analysis consists in the estimation for each z; € [Xin, Xmaz),
of the values (X7, ..., Xi—1, Xmin, Xit+1, ---Xn) and f( X1, ..., Xi—1, Xomaz, Xit1, ---Xpn), where
Xonin and X0 the maximum and minimum admissible values of variables x;. Hence for
each z;, we get an interval of possible variations of function f. The tornado graph is a
visual presentation with ordered intervals. In our case, we estimate the intervals of g()
with X,in = 0 and X0, = 1.

If we take the example of alternative argument, with arbitrary values ¢ = 0.7 and
p = 0.9, we get the following table:

g(C) 0 1 0 1
gA) |0 [ 07 | 09 | 097

If we choose the values of g(B) = 0.8 and ¢g(C) = 0.7, the confidence table leads to
the value g(A) = 0.8572, also computed with the tool AgenaRisk!, presented Figure 3.11.
In this example, to determine the sensitivity to g(B), we keep all the values for p, q, and

"http://www.agenarisk.com
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Figure 3.11: (a) Example of an alternative argument with the tool Agenarisk and (b)
Corresponding Tornado graph

g(C), and only calculate the values g(A) for g(B) = 0 and g(B) = 1 (we obtain the values
0.49 and 0.949).

The same approach is used for other variables p, q, and g(C'). The result is presented
Figure 3.11 (b). In this tornado graph, g(B) appears to be the most influent parameter to
decrease or increase the confidence in A. The left part is between 0.49 and 0.872, which
means that if g(B) is equal to its lower limit, then the confidence in A could be reduced to
0.49. On the opposite, with a maximum value of g(B), then confidence in A could reach
0.949.

Such an analysis leads to identify some sensitive points in a confidence network. This
could be used to increase the confidence focusing first on the most positive sensitive points,
or to focus on the elements where confidence should never be decreased (to consolidate the
safety case confidence). Nevertheless, two main limits appear: it is not possible to identify
combination of confidence variations, and such a diagram does not identify which variables
are the easiest to increase. For instance, even if g(C') appears to be less influent, it may
be easier to increase its confidence than the one in g(B). Our approach does not focus on
those aspects, but they are important points to study.

3.5 Conclusion

This chapter presented a new approach for the definition and estimation of confidence in a
safety case. We argue that it is important to have a separation between the safety case and
the confidence case. Our aim is to analyze uncertainties that may be present in a safety
case, using a sensitivity analysis. Our approach is based on the Dempster-Shafer theory
for the definitions of confidence and uncertainty. But the constraint m(X, X) = 0, brings
the main benefit of letting use mathematical tools, such as BBN. Hence, we proposed for
most common safety case models in GSN, some transformation rules into a confidence
network. We particularly introduce the use of noisy-or for alternative arguments, and an
adapted version of noisy-and for complementary arguments. An experiment on a real case
study of a rehabilitation robot has been carried out by Do Hoang (2015). A confidence
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graph of 65 nodes has been identified with only two alternative arguments (all the others
were complementary). The complete analysis is still under development but, we were
able to compute the complete graph and get a tornado graph in few minutes with the
AgenaRisk tool with consistent results. In this chapter, we only focus on the feasibility
of a quantitative estimation of confidence, and its propagation in a confidence network.
But this is obviously completely dependent on the determination of the confidence values
themselves. As already mentioned, this important issue is part of our future work.



Fault tolerant planning

The work presented in this chapter has been initiated when I was recruited at LAAS
after my PhD. I co-advise with Marc-Olivier Killijian and David Powell from the
dependability group, and Felix Ingrand from the robotic group of LAAS, the PhD of
Lussier (2007). This collaboration leads to publications in international conferences
(Lussier et al., 2007b,c) and one workshop (Lussier et al., 2007a).

Despite successes in autonomous navigation, exemplified by Mars rovers and the clear-
ing of the DARPA Grand Challenge (Monterlo et al., 2006) and DARPA Urban Challenge
(Urmson et al., 2008), and more recently by the Google and Delphi experiment cars, fully
autonomous systems are not yet accepted for real-life applications. Such systems should be
able to choose and execute high-level actions without any human supervision, in practice
using planners as a central decisional mechanism. However, one of the major stumbling
blocks is the difficulty of verifying and validating the behavior of such decisional software
in an open, unstructured and dynamic environment. One way to increase the confidence
that can be placed in planners despite imperfect verification and validation is to consider
a tolerance approach with regard to residual development faults (such as design faults and
programming faults). We investigate such an approach in this chapter, focussing on faults
in the planner’s declarative planning models. To the best of our knowledge, very little work
has been published on such an approach whereas we have shown in Lussier et al. (2007b,c)
that such mechanisms can really improve the level of confidence that can be placed in an
autonomous system. Possible reasons for this limited use may result from the following
points:
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e fault tolerant mechanisms must be implemented through redundancy in a context
with limited resources (space, power, etc.)

e fault tolerance mechanisms proposed in control engineering are efficient for dealing
with sensor or actuator faults, but they generally do not consider faults related to
decisional levels.

The proposed approach in this chapter is based on the well known fault-tolerant soft-
ware method called Recovery Block Randell (1975). It implements error detection and
system recovery to avoid system failures. The Recovery Block pattern, as presented in
Armoush (2010), includes N diverse, independent, and functionally equivalent software
modules called “versions” from the same initial specification. These diverse blocks are
usually obtained using different programming languages, compilers, etc. and developed by
different teams. These blocks are classified into primary and N — 1 secondary versions.
The primary version (Block) is executed first and submitted to an error detection test.
If an error is detected, a secondary alternate version (Recovery Block) is executed and
tested. This last step is repeated until either one alternate passes is tested error-free, or
all alternates are exhausted and an overall system failure is reported.

The main contribution of this chapter is a fault tolerant architecture targeting software
faults in planners, extendable to most decisional mechanisms, and to validate it through
fault injection experiments.

This chapter is structured as follows. Section 4.1 introduces basic concepts of de-
pendability, robust planning, and current means for increase confidence in planers. In
Section 4.2, we present a framework for developing planners that are able to tolerate devel-
opment faults in their application-dependent knowledge, and an implementation example
on an existing robot architecture. An experimental framework is proposed in Section 4.3
for evaluating the efficacy of the proposed fault-tolerance mechanisms. Section 4.4 presents
our evaluation results and discusses the relevance of planning model diversification in our
application. Finally, Section 4.5 concludes and suggests future research directions.

4.1 Background in robust planning

On-line real-time planning is essential for any system that claims to be autonomous and
able to fulfill its goals in an unpredictable open environment. Planning is the activity
of producing a plan to reach a goal from a given state (e.g., the mission goals for the
upcoming day of an exploration rover), using a given planning model. Planning can be
implemented in several ways but, in practice, two approaches predominate:

e Search in a state space manipulates a graph of actions and states. It explores different
action sequences from an initial state to choose the most suitable one to achieve given
goals.
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e Search in plan space manipulates a graph of incomplete plans. It starts with an
empty plan containing the initial state and the final state (the planner’s objectives),
then considers ways to refine it by adding possible and useful actions until the search
comes up with a complete plan that satisfies the planner goals. Unlike the search in
a state space, actions are not added sequentially to the plan: the first action added
to the empty plan may be the second to be executed. CSP (Constraint Satisfaction
Problem) solving is an iterative algorithm commonly used in this approach, assign-
ing successively possible values to each of the system variables and verifying that
constraints between the variables remain satisfied.

In both cases, the planner typically consists of two parts: (a) a declarative planning
model describing the system, the objects it can interact with, the system’s possible actions
and the associated constraints, and (b) a planning search engine that can reason on the
planning model and produce a plan of actions enabling goals to be reached. A planner
typically need two inputs: the current state of the system (position, sensors and actuators
status, etc.) and its mission objectives (goals). The planning model is specific to the
application, while the planning engine may be independent from the application. However
planning model and search engine are often tightly linked by heuristics, that are included
within the model to guide the search of the engine. Moreover, the planning model must be
written in a way exploitable by the planning engine, and is usually not easily translated
to another engine, nor easily understood by human developers or testers.

The robustness of a planner, that is its ability to achieve the system’s assigned goals
despite adverse situations (lighting conditions, unexpected obstacles, etc.), may be attained
through either implicit or explicit handling of adverse situations (Lussier et al., 2005).

Robustness through implicit handling of adverse situations is typically achieved by
commitment strategy: planners seek to produce flexible plans that contain as much latitude
and adaptability as possible Ghallab and Laruelle (1994); Muscettola et al. (2002). The
plan produced is in fact a family of plans consistent with the constraints of the system.
Inflexible plans, where all actions parameters are defined in advance, including the start
and end dates of each action Chien et al. (2005), need to rely heavily on adaptation
capabilities at lower system layers to tolerate small discrepancies in plan execution.

Robustness through explicit handling of adverse situations, i.e., when actions of the
current plan fail, may be achieved through two strategies:

e Re-planning, which consists in developing a new plan from the current system state
and still unresolved goals. Depending on the planning model complexity, replanning
may be significantly time costly. Other system activities are thus generally halted
during replanning.

e Plan repair, which attempts to reduce the time lost in re-planning by salvaging parts
of the previous failed plan, and executing them while the rest of the plan is being
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repaired. However, if reducing the salvaged plan conflicts with unresolved goals, plan
repair is stopped and re-planning is initiated.

Note however that such approaches do not cover residual faults in the planning engine
nor in the planning models.

4.2 An approach of fault tolerant planning: FTPlan

This section presents our approach using diversity to tolerate development faults in plan-
ning models and heuristics. We first introduce the general principles of our approach,
before giving an implementation example.

As previously stated, we focus on development faults in planners, such as design faults
(an incorrect model, improperly used heuristics, etc.) or programming faults (programming
mistakes in the inference mechanism, faulty variable values, etc.).

4.2.1 General principles

The proposed fault tolerant planner architecture is based on the Recovery Block pattern.
It uses only two diverse blocks, with an additional component, called FTPlan, in charge of
detecting errors and performing the recovery. We first introduce this FTPlan component,
then detail its error detection mechanisms. Finally, we propose a sequential policy for
system recovery. A concurrent one has also been studied and is presented in Lussier et al.
(2015).

FTplan component

From a dependability point of view, the fault tolerance mechanisms have to be as indepen-
dent as possible from the planners. This is why we propose to handle both the detection and
recovery mechanisms, and the services necessary for their implementation, in a middleware
level component called FTplan, standing for Fault-Tolerant PLANner coordinator. This
component has to integrate the fault tolerance mechanisms into the autonomous system
architecture. This implies essentially communication, synchronization and coordination
between the error detection mechanisms and the redundant planners.

FTplan is intended to allow tolerance of development faults in planners (and partic-
ularly in planning models). FTplan itself is not fault-tolerant, but being much simpler
than the planners it coordinates, classic verification and testing (such as formal method
or exhaustive testing) can be applied to check that it is fault-free.

Error detection

Implementing error detection for decisional mechanisms in general, and planners in particu-
lar, is complex Lussier et al. (2005). There are often many different valid plans, which can
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be quite dissimilar. Therefore, error detection by comparison of redundantly-produced
plans is not a viable option. Thus, we must implement error detection by independent
means. Here, we propose four complementary error detection mechanisms:

1. A watchdog timer can be used to detect when the search process is too slow or when
a critical failure such as a deadlock occurs. Timing errors detected in this way can
be due to faults in the planning model, in its search engine, or ineffectiveness of the
search heuristics.

2. A plan analyzer (i.e., an on-line plan oracle) can apply an acceptance test to the
produced plan to check that it satisfies a number of constraints and properties. This
set of constraints and properties can be obtained from the system specification and
from domain expertise but it must be independent with respect to the planning
model. A plan analyzer is able to detect errors due to faults in the planning model
or heuristics, and in the planner itself.

3. A plan failure detector is a classic mechanism used in robotics for execution control.
Failure of an action which is part of the plan, may be due to an unresolvable adverse
environmental situation, or may indicate errors in the plan due to faults in the
knowledge or in the planning engine. Usually, when such an action failure is raised,
the planning engine tries to repair the plan. When this is not possible, it raises a
plan failure. We can use these plan failure reports for detection purposes.

4. An on-line goal checker verifies whether goals are reached while the plan is executed.
A plan can be declared as (partially) failed if every action of the plan has been carried
out but not all goals have been achieved. The on-line goal checker can resubmit
unfulfilled goals to the planner at the start of the next replanning.

Note that both watchdog timer and plan analyzer detect errors during planning and thus
before plan execution, while the plan failure detector and the on-line goal checker monitor
the plan execution itself.

System recovery

With the sequential mechanism, the planners are executed sequentially, one after another.
The principle is given in Fig. 4.1. Basically, each time an error is detected, we switch to
another planner until all goals have been reached or until all planners fail one after another
when starting from the same initial system state. In the latter case, no models allow the
planner to tackle the planning problem successfully: an exception must be raised to inform
the operator of mission failure and to allow the system to be put into a safe state (line
29). When all planners have been used but some goals are still unsatisfied, we revert to
the initial set of planners (while block: line 4 to 32). This algorithm illustrates the use of
the four detection mechanisms presented in Section 4.2.1: watchdog timer (lines 9 and 25),
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plan analyzer (line 14), plan failure detector (line 16 and 18), on-line goal checker (lines 4,
6 and 17).

Until all goals have been achieved, the proposed algorithm reuses planners that have
previously been detected as failed (line 5). This makes sense for two different reasons:
(a) a perfectly correct plan can fail during execution due to an adverse environmental
situation, and (b) some planners, even faulty, can still be efficient for some settings since
the situation that activated the fault may have disappeared.

It is worth noting that the choice of the planners, and the order in which they are
used, is arbitrary in this particular example (line 7): we only chose to exclude the last
planner that led to an execution failure. However, the choice of the planner could take
advantage of application-specific knowledge about the most appropriate planner for the
current situation or knowledge about recently observed failure rates of the planners.

4.2.2 Implementation on a real robot

We present in this section an implementation of the previously proposed sequential plan-
ning policy in the LAAS hierarchical software architecture for autonomous systems.

LAAS architecture

The LAAS architecture Alami et al. (1998); Lemai and Ingrand (2004) has been successfully
applied to several mobile robots, some of which have performed missions in real situations
(human interaction or exploration). It is composed of three main layers as presented in
Fig. 4.2.

The functional layer is composed of a set of automatically generated GenoM mod-
ules, each of them offering a set of services, which perform computation (e.g., trajectory
movement calculation) or communication with physical devices (sensors and actuators). A
service request gives rise to the execution of an elementary action, the success or failure
of which is reported to the requester, along with other action-specific information. Data
exchange between modules is performed through the use of “posters”, each of which is a
shared memory space attached to a module, and readable by the others.

The procedural executive OpenPRS (Open Procedural Reasoning System), is in charge
of decomposing and refining plan actions into lower-level actions executable by functional
components, and coordinating their execution. This component links the decisional com-
ponent (IxTeT) and the functional layer. During execution, OpenPRS reports any action
failures to the planner, in order to re-plan or repair the plan. As several IxTeT actions
can be performed concurrently, it has also to schedule sequences of refined actions.

IzTeT (IndeXed TimE Table) Ghallab and Laruelle (1994) is a temporal constraint
planner, combining high-level actions to build plans. It uses CSP to search in plan space,
as presented in Section 4.1. Its deliberations are based on piecewise constant functions
called attributes that represent the evolution of the system state, of its resources, and of
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begin mission
exec_failure < NULL;
failed_planners <+ 0;

while (attainable_goals # ())
candidates < planners;
while (candidates # () & attainable_goals # ()
choose k such as (k € candidates)
& (k ¢ failed_planners)
& ( (k # exec_failure)
| (k U failed_planners = candidates));
candidates < candidates \ k;
init_watchdog(max_duration);
send(plan_request) to k;
wait / for either of these two events
O receive (plan_found) from k
stop_watchdog() ;
if analyze(plan)=0K then
failed_planners < 0;
res_exec < k.execute_plan();
update(attainable_goals);
if res_exec # OK then
exec_failure < k;

end if

X if the plan fails, then
/ attainable_goals != empty and the
/ online goal checker will loop line 3 or 5

else

log(k.invalid_plan);
failed_planners <~ failed_planners U k;

end if

0 watchdog timeout
failed_planners < failed_planners U k;

end wait

if failed_planners = planners then
raise exception ‘no valid plan found in time’;
/ no remaining planner,
/ the mission has failed

end if

end while
end while
end mission

Figure 4.1: Sequential Planning Policy
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Figure 4.2: The LAAS architecture
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its environment. The different actions are described in a planning model file as a set of
constraints either on the system attributes (e.g., robot position, energy consumption, and
environment evolution) or on temporal and numerical variables (e.g., action duration). A
valid plan is a partially-ordered set of possibly concurrent, non-conflicting actions that
together achieve the system goals.

Constraints (C) are defined using:

e classical mathematical operators for temporal and numerical variables (V),

e the consume, produce and use predicates for consumption, production or usage of a
system resource,

e the hold (H) and event (E) predicates for the other system attributes. The hold
predicate represents persistence of an attribute value over a given period of time
(e.g., hold(robot, position, (start,end))), whereas the event predicate represents an
instantaneous change of value (e.g., event(photo, (to_do, done), time)).

Actions are modeled through IxTeT tasks. Fig. 4.3 gives the example of a high-level
action that can be used to photograph a scientific object in an exploratory mission. Line
1 declares the task and its numerical and temporal parameters: x and y are the Cartesian
coordinates of the scientific object to be photographed, while t_start and t_end are
temporal constraints representing respectively the starting and ending time of the task.
Lines 3 to 5 define the constraints on the system attributes required for all the task
duration: lines 3 and 4 stipulate that the robot position must not change while taking a
picture, whereas line 5 requires that the camera points down to the object that need to
be photographed. Line 6 marks the photo as successfully taken when the task terminates.
Line 7 presents an example of resource management: the resource CAMERA is used for
the duration of the task. Line 8 presents an example of constraints on temporal values
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1. task TAKE_PHOTO(?x, 7y)(t _start, t_end) {
?x in [-00,+00]; 7y in [-o00,+00];
hold(POS_X():7x, (t_start, t_end));

hold(POS_Y() :?y, (t_start, t_end));

2
3
4
5. hold(POS _CAMERA() :down, (t_start, t_end));
6 event (IMAGE(?7x, 7y):(to_do,done),t_end);

7 use(CAMERA() :1, (t_start, t_end));

8 (t_start - t_end) in [10,60];

9

}nonPreemptive

Figure 4.3: An Action in the IxTeT Formalism

by specifying the possible duration of the task (from ten to sixty seconds). Finally, line 9
closes the task definition and states that executions of the task cannot be preempted.

Fault tolerant planner implementation

The fault tolerance principles presented in Section 4.2.1 have been implemented in a fault
tolerant planner component as presented in Fig. 4.4. This component replaces the orig-
inal component “Planner” presented in Fig. 4.2. The FTplan component is in charge of
communicating with OpenPRS as the original planner does. To be consistent with the
current implementation, FTplan uses the same technologies as OpenPRS and IxTeT for
communication.

The current version of FTplan implements the sequential redundant planner coordina-
tion algorithm presented earlier (Section 4.2.1, Fig. 4.1) with two IxTeT planners. Cur-
rently, the plan analysis function is empty (it always returns true) so error detection relies
solely on just three of the mechanisms introduced earlier: watchdog timer, plan failure
detection, and on-line goal checker.

Fig. 4.5 presents an example of a fault tolerance scenario using the sequential policy:
a first plan is produced and executed using the planner, but an action failure is detected
during execution. To simplify the diagram, the plan failure detector service is represented
with the message “executionFailure". The first planner is then re-initialized while the
second one is asked for a new plan from the current situation. However this planning lasts
too long (a model fault may have caused the planner to freeze) so the watchdog times
out, FTplan reinitializes the second planner before switching back to the first planner and
asking for a new plan. The plan is then produced and successfully executed.
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Figure 4.4: Fault tolerant planner

Model diversification

In our implementation, two different planning models are used with the IxTeT planning
engine. The first model (which we will call Model;) was originally developed to validate
implementation of the LAAS architecture (and particularly the IxTeT component) on a
real robot. It is the result of iterative efforts from a different team of researchers. It
contains actions needed for a space exploration rover, such as moving to a designated
position, photographing objects, and communicating with an orbiter.

A second variant (called Modely) for the same target application has been developed
by a different team. Diversification with respect to Model; has been also forced through
specific design choices. For example, robot position is defined using Cartesian coordinates
in Model, whereas Models uses a symbolic representation, thus implementing fundamen-
tally different algorithms to those of the Cartesian one. Overall, numerous modifications
were carried out, such as pruning redundant system attributes and constraints, or “merg-
ing” complementary attributes (e.g., a system position attribute can be combined with
a moving/still boolean attribute to give a single attribute that gives the system position
when it is motionless, or else the value MOVING).

4.3 Framework for Validation

Our validation framework relies on fault injection at the decisional layer of a full stack of
robot controller software, and simulation of robot hardware. Only the robot hardware is
simulated, all the software components otherwise execute and interact in real time, in the
same way as on a real robot. Although the considered robot controller software stack has
been extensively used in demonstrations of a real robot, we preferred to resort to simulation
because the behavior of a real robot may become hazardous when we inject faults and it



4.8 Framework for Validation

:FTplan
B create() create() R
:watchdog : :IxTeT1
. : create()

[ IxTeT2

H start plan()
H thePlan
sto [ 0. T
execute(thePlan)
. __ executionFailure | |
kill() ><
: H create
start()
hoeee timeout ,>E stop()
: ! kill) | ><
create() IxTeT2
start() ! :
plan()
: thePlan
stop() [ o
execute(thePlan)
. executionSuccess _ |

Figure 4.5: A fault tolerance scenario with the sequential planning policy

91



92 Fault tolerant planning

could cause damage to itself or its direct surroundings. A second reason is that numerous
repetitive experiments on real robots would be both expensive and hard to automate.

Fault injection is used since it is the only way to test the proposed fault tolerance
mechanisms with respect to their specific inputs, i.e., faults in planning knowledge. In the
absence of any data regarding real faults in declarative models, there is no other practical
choice than to rely on mutations', which have been found to efficiently simulate real faults
in imperative languages Daran and Thévenod-Fosse (1996).

We present in this section the framework that has been used to validate the proposed
fault tolerant mechanisms: its software architecture, the workload and faultload generated
as experiment inputs, the data recorded for each basic experiment and, based on that data,
the measurements that represent the output of each set of experiments.

4.3.1 Testing software architecture

The whole simulation environment is represented in Fig. 4.6. It incorporates three ele-
ments: an open source robot simulator named Gazebo, an interface library named Pocosim,
and the components of the LAAS architecture already presented in Section 4.2.2.

The robot simulator Gazebo® is used to simulate the physical world and the actions
of a mobile robot in that world. It generates realistic sensor feedback and physically
plausible interactions between objects through a simulation of rigid-body physics in three
dimensions.

The Pocosim library Joyeux et al. (2005) is a software bridge between the simulated
robot executed on Gazebo and the software commands generated by the GenoM modules.

Our target autonomous system is an existing ATRV (All Terrain Robotic Vehicle)
robot commercialized by iRobot, and employs GenoM software modules interfaced with
the Gazebo simulated hardware (see Figure 4.7). The upper layer of the LAAS architecture
executes as presented in the previous section. The functional layer consists of eight GenoM
modules that can be categorized into three groups:

e The SICK and RFLEX modules both control hardware components through the
Pocosim library: SICK controls a laser sensor whereas RFLEX controls wheel mo-
tions and an odometer.

e NDD, ASPECT and POM are software modules that use SICK and RFLEX to
implement navigation and obstacle avoidance. POM establishes position data of
the robot according to the odometer and other possible localization mechanisms.
ASPECT uses this position and feedback from SICK to create a map of the robot’s
immediate surroundings, which is used by NDD to generate navigation commands
using a nearness diagram algorithm.

! A mutation is a syntactic modification of an existing program.
2 The player/stage project, http://playerstage.sourceforge.net
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e PLATINE, ANTENNA and CAMERA control hardware components that are not
simulated by Gazebo but by software simulation in the GenoM modules themselves
(respectively, a camera orientation device, a communication antenna, and two cam-
eras).

4.3.2 Workload

Autonomous systems move in unpredictable, open and unknown environments. They do
not know a priori the obstacles (static or dynamic) that they will encounter, the terrain
configuration, the available roads, the presence of external perturbations (weather, lack of
brightness, etc.).

Our workload mimics the possible activity of a space rover. The system is required to
achieve three subsets of goals during a mission: take science photos at specific locations
(in any order), communicate with an orbiter during specified visibility windows, and be
back at the initial position at the end of the mission.

To partially address the fact that the robot must operate in an open unknown environ-
ment, we need to confront the system with several different missions, in several different
“worlds”. Each mission encompasses the number and location of photos to be taken, and
the number and occurrence times of orbiter visibility windows. Each world is a set of static
obstacles unknown to the robot. These unknown obstacles stress the robot’s navigation
and obstacle avoidance mechanism (see Section 4.3.1). At the plan execution level, the
unknown obstacles create uncertainty as regards the outcome of action executions, and
can possibly prevent the robot from achieving some of its goals.

We implemented four missions and four worlds, thus applying sixteen execution con-
texts to each fault situation. The missions and worlds are defined with respect to 12m x 12m
environment. The initial position of the robot is set equal to the center of this square, at
coordinates (0,0). Missions are referenced as gradually more difficult M1 to M4 (Fig. 4.8):
M1 consists in three photos in nearby locations and two communication goals (shown as
shaded intervals on the mission time axis), whereas M4 consists in four communications
goals and five far apart photo locations. The maximum duration of a mission is 800
seconds, during which it is physically possible to achieve all the objectives. Worlds are
referenced as W1 to W4 (Fig. 4.9). W1 is an empty world with no obstacles to hinder
plan execution, while W2 and W3 contain small cylindrical obstacles that are avoidable
by our robot navigation and obstacle avoidance mechanism. However, W4 includes larger
rectangular obstacles that may be impossible for the navigation module to circumnavigate,
and thus susceptible to irremediably block the robot path.

The experiments are inherently non-deterministic, due to asynchrony of the various
robot subsystems and in the underlying operating systems. Task scheduling differences
between similar experiments may degrade into task failures and possibly unsatisfied goals,
even in the absence of faults. To address this non-determinacy, we execute each basic
experiment three times, leading to a total of 48 experiments per fault scenario (3 executions
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* 4 missions * 4 worlds). Ideally More repetition would be needed for statistical inference on
the basic experiments, but this would have led to a total number of experiments higher than
that which could have been carried out with our available resources (including initialization
and data processing, each basic experiment lasts about 20 minutes).

4.3.3 Faultload

To assess performance and efficacy of the proposed fault tolerance mechanisms, we inject
faults in a planning model by random mutation of the model source code (i.e., in Model;
of Fig. 4.4).

From a syntactical analysis of the IxTeT formalism, five types of possible mutations
were identified:

i) Substitution of numerical values: each numerical value is exchanged with members of
a set of real numbers that encompasses (a) all numerical variables in all the tasks of
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the model, (b) a set of specific values (such as 0, 1 or -1), and (c) a set of randomly-
selected values.

ii) Substitution of variables: since the scope of a variable is limited to the task where it
is defined, numerical (resp. temporal) variables are exchanged successively with all
numerical (resp. temporal) variables of the same task.

iii) Substitution of attribute values: in the IxTeT formalism, attributes are the different
variables that together describe the system state. Attribute values in the model are
exchanged with other possible values in the range of the attribute.

iv) Substitution of language operators: in addition to classic numerical operators on
temporal and numerical values, the IxTeT formalism employs specific operators,
such as “nonPreemptive” (that indicates that a task cannot be interrupted by the
executive).

v) Removal of a constraint relation: a randomly selected constraint on attributes or
variables is removed from the model.

Substitution mutations were automatically generated using the SESAME tool Crouzet
et al. (2006).

All in all, more than 1000 mutants were thus automatically generated from the 300
lines planning model. To improve representativeness of injected faults, we also chose to
discard mutants where no plan is found in any mission (we consider that models that
systematically fail would easily be detected during the development phase).

4.3.4 Recorded data and measurements

Numerous log files are generated by a single experiment: simulated data from Gazebo
(including robot position and hardware module activity); output messages from GenoM
modules, the OpenPRS procedural executive and FTplan; requests and reports sent and
received by each planner, as well as outputs of the planning process. For each basic
experiment, these uncompressed text files require from 4 to 16 Mb; the 48 experiments
characterizing one mutant require nearly 320 Mb.

Condensing this amount of data into significant relevant measures is problematic.
Moreover, contrary to more classic mutation experiments, the result of an experiment
cannot be easily dichotomized as either failed or successful. As previously mentioned, an
autonomous system is confronted with partially unknown environments and situations,
and some of its goals may be difficult or even impossible to achieve in some contexts.
Thus, assessment of the results of a mission must be graded into more than just two lev-
els. Additionally, detection of equivalent mutants is becoming more complex due to the
non-deterministic execution context of autonomous systems.
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To address these issues, we chose to categorize the quality of the result of an exper-
iment according to: (a) mission dependability, defined in terms of the goals that have
been successfully achieved (or alternatively, through the inverse notion of mission un-
dependability), (b) mission performance indicators such as the mission execution time
and the distance covered by the robot to achieve its goals, and (c¢) internal measures of
planning behavior.

Considering the sets of missions M given to the system, worlds W in which it evolved
and faults F injected into the system, mission un-dependability for an elementary experi-
ment is given by:

® ©,(M, W, F), the average proportion of unachieved photo goals,
o 0. (M, W,F), the average proportion of unachieved communication goals,
e 0. (M, W,F), the average proportion of unachieved returns to the initial position,

o (M, W, F), the average proportion of failed missions, where a mission is pessimisti-
cally defined as failed if any goal (photo, communication, return) is not achieved.

For example, ¢p(M 3,W4,39) represents the mean proportion of failed photos for the
mission M3, in the world W4, with the injected fault 39, averaged over the several el-
ementary experiments (currently three) carried out with each injected fault. We de-
fine M* = {M1, M2, M3, M4} (and, similarly, W* = {W1,W2,W3,W4}), such that
¢p(M*,W4,@) represents the mean proportion of failed photos for all four missions in
world W4, with no injected faults; it characterizes twelve elementary experiments.

We define two measures to characterize the performance of the rover during its mission:

e D(M, W, F), the average distance (in meters) covered by the rover,

o T(M,W,F), the average duration (in seconds) of rover activity, i.e., the time at
which it performed its last action.

Finally, to characterize the internal behavior of plan execution, we define:

e R(M,W,F), the average number of replannings during an experiment.

4.4 Results

Experiments were executed on i386 Linux-based systems with a 3.2 GHz CPU and the
Linux OS. We first study the performance cost of the proposed mechanisms, then give
three examples of fault injection results, and finally present global results of the fault
injection campaign.
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We particularly focus on three systems: a non-redundant robot using Model; (referred
to as Robot;), another non-redundant robot using Models (referred to as Robots) and a
diversely redundant robot using FTplan with Model; and Models (referred to as Robot /2).

Two further systems are considered when analyzing the performance impact of our
mechanisms. Both implement a version of IxTeT with no plan repair capability, thus
leading to increased numbers of replannings and model switches: Robot] uses Model;, and
Robot] /1 uses FTplan with the same Model; for both planners.

Detailed results are given in Lussier et al. (2015). We only present here the main
conclusions. We first analyse fault free (no faults are injected) performance to determine
the overhead of the proposed sequential mechanism. We also consider the worst case, i.e.
when the replanting functionality is deactivated (it then lead to more failed missions).
This analysis show that the overhead for the execution time is 15% when the controller
includes FTPlan. We deem these results to be quite acceptable considering the negative
impact of discarding plan repair.

We analyses then the fault tolerance efficacy, with records as the one in Figure 4.10.
We do not provide here the complete analysis and explanations, but we draw the two main
conclusions:

e The redundant diversified models of the fault-tolerant Robot;/, provide a notable
improvement to dependability in the presence of faults: in all cases, the proportions
of failed goals decrease compared to the non-redundant Robot.

e Even when considering the pessimistic measure of the proportion of failed missions
(recall that a mission is considered as failed even if only a single elementary goal is not
achieved), the improvement procured by redundant diversified models is appreciable:
41% in worlds W1-W3, 29% when world W4 is also considered.

Note, however, that in the presence of injected faults, the fault-tolerant Robot/ is
less successful than a single fault-free model. This apparent decrease in dependability is
explained by the fact that incorrect plans are only detected when their execution has failed,
possibly rendering one or more goals unachievable, despite recovery. This underlines the
importance of plan analysis procedures to attempt to detect errors in plans before they are
executed.

4.5 Conclusion and perspectives

Lack of dependability remains a severe impediment to the take-up and practical utilization
of autonomous systems. At the software level, the dependability of decisional mechanisms
such as planners, which are essential for truly autonomous operation, is particularly chal-
lenging. The difficulty of validating such autonomy software makes it very difficult to
provide safety and reliability guarantees for autonomous systems.
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In this chapter, we focused on the reliability aspect of the problem, proposing an in-
novative fault tolerance approach for temporal planners. The proposed approach aims
to complement verification and testing by providing tolerance to residual design faults in
coded domain-specific knowledge. To this end, we advocate the use of diversified plan-
ning models and search heuristics. We proposed a component providing error detection
and recovery appropriate for fault-tolerant planning, and implemented it in the LAAS
architecture. Our current implementation is that of sequential planning associated with
the first three error detection mechanisms. To assess the performance overhead and the
efficacy of the proposed mechanisms, we developed a validation framework that exercises
the software on a simulated robot platform, and carried out what we believe to be the first
ever mutation experiments on declarative models. These experiments were conclusive in
showing that the proposed mechanisms do not severely degrade the system performance
in the chosen scenarios, yet usefully improve the system behavior in the presence of model
faults.

There are many directions for future research. First, implementation of a plan analyzer
should allow much better goal success levels to be achieved in the presence of faults since
it should increase error detection coverage and provide lower latency. Implementation of
the concurrent planning policy and comparison with the sequential planning policy are
also of interest. It would also be worthwhile to assess the impact of diversification in
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planning heuristics rather than just models, and study the possible benefits of using more
than two diversified versions. An interesting point would also be to keep traces of success
scores of the planners to define a preferred order for planners (e.g., invoke less successful
planners when the “best" planners have failed). In addition, the statistical relevance of
the results would benefit from many more experiments. The use of a large computer grid
would drastically improve the number of experiments that could be executed in reasonable
time and eliminate the need for manual inspection to remove trivial mutants.






Active safety monitoring

This chapter presents the last results of a continuous and intensive work in my re-
search activities. I started this work when I joined LAAS (Guiochet and Powell,
2006; Guiochet et al., 2008a) and initially collaborated with David Powell and then
with Hélene Waeselynck, to supervise two PhD (Mathilde Machin in 2015 and Mekki-
Mokhtar (2012)), and with Matthieu Roy to supervise the postdoc of Fanny Dufossé
(2013-2014). This work led to several publications in international conferences (Mekki-
Mokhtar et al., 2012; Machin et al., 2014a, 2015) and a submission to a journal. This
work has been applied in several case studies in the context of a direct collaboration
with Airbus-ASTRIUM and in two European projects (PHRIENDS (2006-2009) and
SAPHARI (2011-2015)). A new PhD just started in 2015 (Lola Masson), to extend
the method to more complex autonomous architectures.

To deal with residual faults and adverse situations in autonomous systems, fault tol-
erant mechanisms are one main alternative to increase safety. “Safety monitors" are a
type of such mechanisms, and are in charge of assuring that the system, despite faults
and adverse situations, stays in safe states. They are able to observe the system and its
environment, and to react using a safety margin to keep the system in a safe state. Speci-
fication and design of such devices is usually done in an ad hoc manner, with very simple
safety rules implemented (e.g., in case of contact with an obstacle, an bumper directly
disconnect the power of the actuator of a mobile robot). We argue that in the future,
versatile autonomous systems, will have to deal with complex safety rules, that might be
activated or deactivated according to the tasks, and with the possibility of reacting with
many different ways that might be non consistent. The work presented in this chapter
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presents a framework to specify such rules, starting from a hazard analysis, and using for-
mal verification techniques to synthesized them. This framework also integrates the issue
of assuring safety while preserving functionality of the considered system.

Even if as presented in Chapter 1, many works deal with architecture and verification
mechanisms of safety monitors, very few research has been carried out on the generation of
safety rules with an explicit integration of the permissiveness issue. We propose a complete
method and a tool available online (SMOF, 2015), which has been used in an industrial
use case.

The reminder of the chapter is structured as follows. Section 5.1 introduces baseline
and concepts around safety monitoring, and provides an overview of the proposed frame-
work. Section 5.2 presents how the system and properties and modeled using formal logic.
In Section 5.3, the safety rule synthesis algorithm using the NuSMV model-checker is ex-
plained. Section 5.4 deals with the last step of the process, which is the verification of the
consistency between the synthesized safety rules. Section 5.5 presents an application to a
real industrial case study, and the experiment results of a fault injection campaign. We
conclude in Section 5.6, outlining the benefits and limitations of SMOF, and citing future
directions.

5.1 Baseline and concepts

5.1.1 Concepts

Taking inspiration from the diverse monitor defined by IEC61508 (2010), we define a
safety monitor as a device responsible for safety, in opposition to the main control channel
which is responsible for all other functional and non-functional requirements of the system.
The monitor is equipped with means for context observation (i.e., sensors) and able to
trigger safety interventions. The safety monitor is required to protect against all faults
that adversely affect safety, including interaction faults. In particular, the monitor must
accommodate any variation of the environment and any dysfunction of the control channel,
including arbitrary behavior of the latter, e.g., when it is faulty. To this end, the whole
safety channel is assumed fault-free. For example we consider that the sensors available
to the monitor are perfect, without uncertainty. In practice, of course, these assumptions
must be enforced by appropriate use of self-checking, verification, redundancy and some
degree of independence between the safety channel and the main channel.

Assuming such a perfect monitor, a system developer faces the problem of specifying the

behavior of the monitor, i.e., which intervention should be applied, and when. Prerequisite
elements to address this issue are the following :
A safety invariant (SI) is a necessary and sufficient condition to avoid a hazardous
situation, resulting from a hazard analysis. If a safety invariant is violated, we assume
that damage is immediate and irreversible, with no possible recovery. We refer to any
state violating the safety invariant as a catastrophic state.
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Ezample: “the robot speed shall not exceed 3 m/s” (where 3 m/s is the speed
beyond which harm is considered to be inevitable).

A safety intervention is an ability of the monitor to constraint the system behavior
in order to prevent the system from violating a safety invariant. An intervention is only
effective when its preconditions are satisfied. We distinguish two types of interventions:
inhibitions and actions.
A safety inhibition prevents a change in system state. When triggered, an inhibition is
assumed to be immediately effective.

Ezxample : “lock the wheels”, with “robot stationary” as precondition.

A safety action triggers a change in system state.
Ezample : “apply emergency brake”. The expected effect “the speed will not ex-
ceed 5 m/s” occurs only if the intervention is applied while the precondition
“the speed is less than 2.5 m/s” is true.

Safety. The monitor is said safe if it ensures the safety invariant in the monitored system,
i.e., it guarantees the non-reachability of the catastrophic states.

Permissiveness. The monitor is said permissive if the monitored system is able to freely
move about in its state space.

For example, a monitor allowing the system to operate at high speed, manipulating a
sharp object in human presence would be very permissive. As autonomous systems are
particularly versatile, they are supposed to operate in many different states. To achieve
the assigned tasks, the system need to reach a wide range of states. As soon as the monitor
triggers intervention, it damages permissiveness.

Now, by nature, safety is ensured by reducing the possible behavior of the system.
Safety and permissiveness are antagonistic. We take this antagonism into account by
designing the monitor to be mazimally permissive with respect to safety, i.e., to restrict
functionality only to the extent necessary to ensure safety.
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Figure 5.1: Partition of system states in catastrophic, warning and safe states
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As illustrated in Figure 5.1, a safety invariant defines a partition into catastrophic and
non-catastrophic states of the monitored system, and thus enable to assess whether the
monitor ensures the safety of the system.

As recovery is not possible, interventions have to be applied before the catastrophe,
i.e., in non-catastrophic states with some margin from the catastrophic border. Now,
interventions add constraints to the system behavior, reducing the permissiveness. So the
set of non-catastrophic states is partitioned into warning states, where interventions are
applied, and safe states, in which the system operates without constraint. The warning
states are defined such that every path from a safe state to a catastrophic state passes
through a warning state. Applying interventions only in warning states is a first choice in
the strategy production to ensure permissiveness.

In this paper, we address the issue of producing the high-level requirements of the
monitor that ensure safety invariants and are maximally permissive with respect to safety.
A safety rule defines a way of behaving in some potentially hazardous states. It is
composed of a condition and an intervention, to apply when the condition is true. The
condition is chosen such that it becomes true before the safety invariant is violated.

Ezample: “if the robot speed is greater than 2 m/s then apply emergency brake.”

A safety strategy is a set of safety rules intended to ensure one safety invariant.
Example: “If the robot speed is greater than 2 m/s then apply emergency brake.
And, if the slope is greater than 10% then apply emergency brake.”

5.1.2 Process overview

Figure 5.2 presents the overall process to use the SMOF framework. The process starts
with a HAZOP-UML hazard analysis, which outputs safety invariants expressed in natural
language. We consider as a running example a mobile robot with a manipulator arm and
the informal safety invariant: The arm must not be extended beyond the platform when the
platform velocity is greater than Vj.

The safety invariant is then expressed formally with predicates on variables that are
observable by the monitor. We focus for now only on predicates involving a variable com-
pared to a fixed threshold. This type of safety threshold is amenable to formal verification
and is used in many real systems. Considering the two monitor observations: the absolute
speed v, and a Boolean observation of the arm position a (true when the arm is above
the base, false, when the arm is extended), the example safety invariant is formalized
as SI1 = (v < V) V (a = true). It is equivalent to define the catastrophic state as
v > Vo Aa = false.

To synthesize strategies, this invariant is modeled in a SMOF template, as detailed in
Section 5.2. In order to keep models simple enough to be validated, each safety invariant
is modeled separately. In this step, we determine the partition of non-catastrophic states
into safe states and warning states by splitting variable value intervals or sets. This is
done one variable after another. For example, the speed interval [0, Vj[ from the safety
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Figure 5.2: Overview of the process

invariant ST1 is partitionable according to a margin m in two intervals [0, Vp — m[ and
[Vo — m, Vp[. In the case of arm position, the observation is Boolean. The singleton value
set {true} cannot be partitioned, hence no margin exists. The resulting states are shown
in Figure 5.3 where only two possible interventions have been considered: the monitor is
able to engage brakes (action) and to prevent the arm from extending (inhibition).

Then, the strategy synthesis can be done, as detailed in Section 5.3. Figure 5.4 il-
lustrates a satisfying strategy, which applies braking in s1 and arm inhibition in s2 and
s3. Additionally to the transitions leading directly to the catastrophic state, several other
transitions are deleted, but the system can still carry out tasks. This strategy is safe and
permissive with respect to safety. When the model does not admit satisfying strategies,
the user has several choices: 1) add new interventions; 2) try to reduce permissiveness, for
example accept that this warning state is no longer reachable and recompute the set of
warning states; 3) modify the safety invariant.

As safety invariants are processed separately, the final step is to check the consistency
between the strategies that ensure different safety invariants. This is addressed in Sec-
tion 5.4.
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Figure 5.4: The example behavior, modified by a safety strategy

The final safety strategies are then implemented in a real time safety monitor, for
on-line verification, as presented in the application Section 5.5.

5.2 Modeling with a SMOF template

A SMOF model is a model of the part of the system related to one safety invariant, seen
from the monitor point of view. A SMOF model is based on one formalized safety invariant.

The SMOF model gathers all information necessary to produce strategies that ensure
the safety invariant:

e Behavior: automaton of the system in absence of the monitor, which in particular
contains all paths reaching a catastrophic state.
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e Interventions: Abilities of the monitor to constrain the system behavior.
e Properties: Desired properties of the monitor action (e.g., safety and permissiveness).

Each item is modeled using the variables that are observable by the monitor, relevant to
the (formalized) safety invariant and discretized. If the variables can be constrained by
interventions, they are also controllable.

The SMOF model is seen from an abstract point of view in Fig 5.5. A strategy is
composed of safety rules; each safety rule associates an intervention (or a combination of
interventions) to a warning state, contained in the behavior. Safety and permissiveness are
satisfied by the pair of the behavior and the strategy. Validity is a side-property linked to
the intervention preconditions (see Section 5.2.2). During the synthesis process, the rules,
and so the strategy, are modified whereas the rest of the SMOF model remains unchanged.

To formally described our model, we choose to use languages and tools available in the
formal verification community, in particular model checking. To express the properties,
propositional logic is too limited, whereas temporal logic, like CTL (Computational Tree
Logic), is particularly well adapted to express our permissiveness properties (presented
section 5.2.3). Our framework is based on the model-checker NuSMV2 from Cimatti et al.
(2002). In the following, code and output of NuSMV are given in typewriter font.

= Behavior 1
1

1.
= warningState

—————————— & Property
H Inhibition E| Action . 1 A A A
L ‘ ( = Rule
— . o
= Intervention = 1 :
1 1 ) = Strategy
1 il il il
SyTaslzed e H validity H safety = Pegmissiveness
1 X X 1 :
H SimpleReachability

= Effect || & PrecondSeq = PrecondState : :
= safety Invariant = UniversalReachability

Figure 5.5: Meta-model of the SMOF modeling template
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5.2.1 Behavior

The safety invariant, formalized with observable variables, partitions the variable ranges
in two. Another partition is done to take a margin (formal conditions for the existence of
a margin are studied in Mekki-Mokhtar et al. (2012)). To ease the modeling in NuSMV,
the parts are numbered with integers, as illustrated in Figure 5.3. The behavior states
result from the Cartesian product of the range partitions. NuSMV is well-suited to SMOF
modeling as it transparently builds the Cartesian product of the ranges of all variables.
When no constraint is declared, all the combinations of variable values (i.e., states) are
possible and all transitions between each pair of states are implicitly declared. Declaring
variables in NuSMV amounts to generate a complete graph. Constraints are then added
to delete undesired states and transitions of the graph. Transitions are only identifiable
by their starting and arriving states, using the NuSMV operator next ().

The most common constraint is the continuity of variable, e.g., the velocity cannot
“jump” from 0 (standing for [0, V) — m]) to 2 ([Vb, Vinaz]). The module Continuity of
the template declares a variable x with the constraint next(x) = x | x+1 | x-1,i.e., the
next value of x can stay in the same interval or move to an adjacent interval, but it cannot
jump from one interval to another that has no common boundary. The parameters of
Continuity () are the maximal value (the minimal value is 0) and the initial value.

5.2.2 Interventions

An intervention is modeled by its effect and its preconditions. The effect is a constraint
that cuts some transitions from a state, to reduce the set of possible next states.

The effect is guaranteed only if the preconditions are satisfied. We distinguish two
preconditions. State preconditions, further denoted by Precondgsiqte, model the states in
which the intervention can be applied. For example, it is not desirable to physically lock the
wheels of a moving vehicle. The strategy is said valid if it applies always the intervention
properly with respect with Precondgiqie (Validity property). Intervention efficiency may
also depends on the system history. We choose to take into account only the previous state,
and model it by sequential preconditions denoted by Precondse,. They specify constraints
on the originating state of the transition where the intervention is applied. An example
with two observation variables (a and v) is given Figure 5.6 (in this example a is not a
boolean, and can have 3 discrete values).

We propose to express these conditions in a SMV module, defined for the specification
of the intervention. An example of its use is given below:

-- myInterv : Interv(precondState, precondSeq, flag_mylnterv, effect)
brakel : Intervention(TRUE, v=0 & next(v)=1, flag_brakel, next(v)!=v+1l);

In this example, brakel has no Precondsiate (TRUE value is given). The Precondge,
parameter specifies that the effect is only guaranteed if the braking is triggered on a
transition from the state v=0 to state v=1 (using the operator next). the flag_myInterv
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Figure 5.6: Example of sequential precondition. We consider the intervention “braking”. The expected
effect is “the velocity v cannot be greater than V.”. Let assume a rule that applies braking in Wy. If the
system is on the path Pi, the braking is triggered when v €]Jvc — vy, [. Whereas on the path P, the braking
is triggered at v. —ve. Let now consider the delay between the brake command and the brake effectiveness.
This delay, taken into account in the choice of v, (safety margin), avoid the system to reach v.. On the
contrary, in P», the system may reach v = v. because the required delay for brake effectiveness is not
respected. Hence, the intervention is efficient when coming from S; but not when coming from Wi. As a

consequence, a sequential precondition is added: “braking can be triggered only on a transition originating
in a state satisfying v < v, — vy,

variable specify the safety rule condition. The considered effect is that next value of v
cannot increase.

5.2.3 Properties

Safety and permissiveness properties are modeled in CTL (Computation Tree Logic), which
is entirely supported by NuSMV without any syntax change. Time along paths is modeled
by three operators: X for a property to hold in the next state, G to hold on the entire
path, F' to hold eventually. The branching aspect is modeled by A, all the branches, and
FE, there exists a branch. A CTL operator is composed of one branching operator and one
time operator. It is applied on states, or more generally on statements on the system state.

To model safety, we use the atomic property cata to denote the catastrophic states.

cata is the negation of the safety invariant, e.g., cata := speed=2 & arm_pos=0. Safety
is modeled as the unreachability of the catastrophic states, i.e., in CTL, AG-cata.

Permissiveness is modeled by two reachability properties applied to any non-catastrophic
state spc:

e SIMPLE REACHABILITY FEF s,
The state is reachable from the initial state.
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e UNIVERSAL REACHABILITY AG EF sy,
The state is reachable from any reachable state.

For safety, we pessimistically consider that several independent variables may change
their values simultaneously in the behavior. We call such simultaneous modifications diag-
onal transitions by reference to the two variable case (see Figure 5.3, transition from initial
state to s1). Relying on those possible but unlikely transitions to ensure permissiveness is
not desirable. A more complete definition of reachability properties that ignore diagonal
transitions during permissiveness checking is provided in Machin et al. (2014b) and used
by the tools we developed.

Permissiveness is encoded in the template through a module containing the simple and
universal reachability for one state. The reachability instanciation of each non-catastrophic
state is automatically generated. As a consequence, permissiveness is defaultly checked
through universal reachability for every non-catastrophic state. For models where no safe
and permissive strategies can be defined, it is also possible to reduce permissiveness to the
simple reachability. Of course, this induce some modification to the resulting behavior of
the robot and it should be validated by the robotic experts.

5.2.4 Strategies

A strategy is a function associating interventions to warning states. A strategy applies the
interventions (e.g., control brake engagement and disengagement) according to the current
and past states of the system as follows:

e No intervention is applied in the initial state.

e Within a path P = (s1,..., Sk, Sk+1,.--), the intervention ¢ is associated to sxyi is
applied if:

— Sgy1 satisfies the Precondgiqe of 4, and,

— 4 was already applied in sy, or the transition (s, si41) satisfies the Precondge,
of 1.

5.3 The strategy synthesis

From the theoretical SMOF model detailed previously, we have developed the associated
algorithm and tools, based on the SMV model-checker, to assist the SMOF framework.
5.3.1 Synthesis overview

An overview of the synthesis inputs and outputs is given Figure 5.7. Behavior, proper-
ties and interventions are the inputs, and a strategy is then produced as output of the
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Figure 5.7: Production of safety strategies, for one safety invariant

algorithm. If we consider a system with n warning states, and m possible interventions
by the monitor, the number of possible strategies is then 2"" (all combinations of the
interventions in the warning states). Among these strategies, the objective is to determine
strategies satisfying properties. A basic synthesis algorithm could enumerate every possible
strategy to check whether it satisfies the requested properties. But complete enumeration
is not desirable due to the exponential number of strategies. Hence we build a strategy
tree, enabling us to prune branches during the exploration (branch-and-bound algorithm).
A formal description fo strategy sets and pruning criteria are presented hereafter.

5.3.2 Strategy set

Let I be the set of interventions, of size m, and Io = 2! the set of intervention combi-
nations. In the running example, I = {a,b} and Ic = {a,b,adb,} (abbreviating the set
notation). Let Sy, = {s1,...,sn} be the set of warning states of the behavior, of size n. A
strategy N is a function that associates to a warning state an intervention combination.

N : Sw — IC
For a given SMOF model, if we consider n warning states, a strategy will be noted:

N = {(s1,i1),. ., (Sj’ij)v <o (8nyin) }

The potential results of the synthesis are the safe and permissive strategies. To restrict
the set of solutions, we search for satisfying strategies, i.e., strategies that are valid, safe
and permissive. Furthermore, we focus on minimal satisfying strategies, i.e., strategies
for which each intervention is necessary to satisfy the requested properties. A satisfying
strategy N = {(s1,41),..., (Sn,in)} is minimal if there does not exist a different satisfying
strategy N’ = {(s1,%}),...,(sn,4),)} such that Vk € [1,n],i, C i,. For instance, let
N1 = {(s1,ab), (s2,b)} and Ny = {(s1,a), (s2,0)} be satisfying strategies, N2 is minimal,
as a C ab, and () C b.

To define the required set structure as a tree, we introduce the undefined intervention,
denoted by L. To check the properties, it is interpreted in the model as no intervention
(@ specify that the defined intervention is the void intervention). As illustrated in Figure
5.8, the tree root is the fully undefined strategy No = {(s1,L1),...,(sn,L)}. Given a
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Ng ={(s1,1),(s2,1),(s3, L)}
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Figure 5.8: Search tree for our example. The choice of states s|, which define the tree
structure, are mentioned in frames. The nodes that are crossed out or unmentionned are
not generated and checked. The dotted lines corresponds to the pruning of combined
siblings. The results of the tree traversal is the only node labelled by sat.

partially defined strategy IV, building its children requires to choose a state s| where the
intervention to apply is not yet defined, i.e., N(s;) = L. If such a state does not exist,
N is a fully defined strategy and a tree leaf. The 2™ children of N, denoted NN;, are the
nodes such as Vs # s, N;(s) = N(s) and N;(s;) =1, with i € I¢.

We define another relation between tree nodes. Let N and N’ be children of N, by the
state s;. N'is a combined sibling of N if N'(s}) C N(s;). For example {(s1,a), (s2,ab), (s3, L)}
is a combined sibling of {(s1,a), (s2,a), (s3,L)}.

5.3.3 Pruning criteria

Table 5.1 gives an overview of the pruning criteria. The first pruning criterion applies to a
strategy N that is !valid. For instance, in Figure 5.8, strategy N1 = {(s1, a), (s2, L), (s3, L)}
is !'valid because the intervention that locks the arm folded is applied in a warning state
where the arm is unfolded. Child strategies of N define interventions in other warning
states, but this will not fix the problem in the first one. Either the first warning state
becomes unreachable, and so the child strategy is not minimal, or the state is reachable
and the child strategy remains invalid. So, the children of an invalid strategy are either
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invalid or not minimal. Similarly, a combined sibling of Nj define other interventions in the
same warning state, and the first intervention still makes the strategy invalid. Recursively
none of the children of the combined siblings are solutions to the problem, we can prune
the subtrees of the combined siblings.

Consider now a partial strategy that is not permissive, e.g., N3. All its children are
Iperm as well, because adding interventions can only cut transitions. In the same way,
its combined siblings are !perm. This second criterion prunes descendants and combined
siblings of non-permissive strategies.

The third criterion, sat, which includes safe, valide and permissive criteria, discards
strategies that are not minimal. Assume Ny is a satisfying strategy. Its descendants and
combined siblings might be sat as well, but they involve additional interventions and are
thus not minimal. This corresponding subtrees can be pruned. N is appended to the list
of solutions returned by the search.

The fourth and fifth criteria are evaluated using a subgraph of the behavior, where the
warning states with an undefined (L) intervention are removed. This subgraph focuses on
reaching the catastrophic state via the warning states for which a decision has been taken,
and specifically via the state s, targeted by the most recent decision. If the strategy is
safe in this subgraph we say that it is partially safe (p_safe). The evaluation of p_safe
for Ny is illustrated in Figure 5.9. The resulting subgraph is composed of all safe states
and the warning state s; (s2 and s3 are removed because no intervention are associated).
There is a path to the catastrophic state in this subgraph. The descendants of Ny would
add interventions that can only delete transitions exiting warning states that are outside
the current subgraph. So, all descendants of N are unsafe and can be pruned (fourth
pruning criterion).

s3

v=2&a=1

effect of b

Figure 5.9: A view to check whether (s1,b), (s2, L), (s3, L) is p_safe. The states and
transitions in plain line constitute the considered subgraph.
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Additionally to the pruning criteria, an important parameter of the traversal is the
choice of the warning state s| to deploy the children of a strategy IN. Let remind the
only constraint on this choice is N(s;) = L, i.e., the interventions applied in s are not
yet determined. Assume N is p_safe. There is no path to the catastrophic state in the
subgraph, either because the rules of N cut hazardous transitions, or removing states
induced absence of transition to catastrophic states. The p_safe property is true but this
does not provide valuable information for further strategy synthesis.

To avoid this situation, we add a constraint on the s| choice. It is now selected such
that N’ is 'p_safe, with N’ defined by:

N'(s)) =0 and Vs # s, N'(s) = N(s)

Thus, p_safe is not trivially true, and the fourth criterion is more efficient.

The fifth pruning criterion exploits the, untrivial, piece of information p_safe=TRUE.
When a strategy is p_safe, it means that the considered subgraph is safe. Intuitively,
no more intervention are required in the subgraph. It is then useless to consider the
combined siblings of such a strategy, and they are pruned by the fifth criterion. The
children, corresponding to add interventions outside of the subgraph are explored. This
reasoning is underlain by the assumption that the intervention application in one state
does not depend on interventions applied in other states, and in particular on the states
that are not part of the subgraph. As soon as the Precondse, are used, this assumption
is not verified. Hence, the fifth criterion may prune satisfying strategies. Conversely, this
criterion guarantees that the returned solutions are minimal. An unminimal satisfying
strategy is, either a descendant of a minimal satisfying strategy (and it is pruned by the
third criteria), or a combined sibling of a minimal satisfying strategy, pruned by the fifth
criterion.

Node property Pruned relative nodes
1 lvalid Descendants and combined siblings
2 !perm Descendants and combined siblings
3 sat Descendants and combined siblings
4 'p_safe Descendants
5 p_safe Combined siblings

Table 5.1: Pruning criteria

5.3.4 Synthesis tool

After the presentation of the algorithm, we present some features of the implementation.
The tool has several variants of tree traversal. It has been implemented in a parallel
manner to improve performance.
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Variants of implementation We have developed two variants of the tree traversal. Of
course, all the variants return only satisfying strategies.

Variant 1 Only the first four pruning criteria are used, then only unsatisfying or unminimal
strategies are discarded. The returned set contains all the minimal strategies, and
some unminimal strategies. No returned solution allows to conclude that no solution
exists for the model, and that the model must be changed. The traversal is in absence
of solution is very fast, notably thanks to the fourth criterion. Conversely, when there
are many solutions, this version is very long to execute as it explores all of them.

Variant 2 The five criteria guarantee that the returned strategies are minimal. When a solution
exists, this tree traversal is shorter than variant 1.

Implementation Before the tree traversal, an initialization is required and has been
automated to:

e determine the warning states

e generate the default permissiveness properties

e generate the validity property

e check for non-safety and permissiveness of the initial model

We have implemented the tree traversal in an parallel manner. The structure of the
implementation is the following. A master thread launches slave threads. Each slave has a
local version of the SMOF model defined by the user. The master sends nodes to the slaves.
The slaves generate the SMOF model corresponding to the node and check properties by
calling NuSMV. From the results, pruning criteria are assessed. The nodes are sent back to
the master, with the required deployment policy (i.e., deploy children, combined siblings
or not). The master generates the corresponding nodes and send them to the slaves.

Performance A performance assessment of the SOMF synthesis tool has been carried
out using artificial models. It allows us to consider search spaces ranging for a few thou-
sands strategies to more than 10'®. The models are generated as follows. One variable has
3 values, the others have 2 values. The initial state has all variables at value 0, and the only
catastrophic state has variables at their maximum values. There are three possible models
for interventions. Suffix _a corresponds to action decreasing a variable value. An action
is defined for each variable. Suffix _i is the same for inhibition : a freezing intervention is
defined for each variable. Then, both actions and inhibitions are defined for each variable.
For example, 3var_6 has 3 variables and 6 interventions (3 actions and 3 inhibitions).
Performance is assessed running the SMOF synthesis tool on a Intel Core 17-4770
processor running at 3.4GHz with 16 GB of memory. Results are presented in Table 5.2.



118 Active safety monitoring

For each model, the number of complete strategies (i.e., of tree leaves) is given. It would
be the number of steps of brute-force search. The two variants are assessed. To compare
our algorithm to brute-force search, the first column gives the percentage of examined
nodes (i.e., tree nodes), with respect to the number of complete strategies. These values
are very low, which demonstrates the overall efficiency of the defined pruning criteria. The
second column gives the number of solutions found. The results of variant 1 demonstrate
that models only with actions (suffix a) have no solution. Intuitively, as the actions force
the variables to change, no permissive strategy can be found. The third column gives the
execution time. Its increase is kept reasonable, if one considers that there are orders of
magnitude in size between the smallest and largest search spaces, and that we do not stop
the algorithm after a first solution is found.

As can be seen in Table 5.2, Variant 1 is quite long to execute when the model size
increase. Furthermore, it is not realistic to require from the end user to review 17106
strategies returned for 3var_6, even if assisted by criteria computed on strategies. For
the same model, Variant 2 returns around 10 times less solutions, with the guarantee of
minimality and a shorter execution time. The only inconvenient of the Variant 2 is that
it does not return all the minimal solutions and thus cannot allow to conclude that the
model does not admit a solution. The synthesis on _a models show that the Variant 1 is
very fast in case of non-existence of solutions.

It may be surprising that a model with few variables requires a 4-hours synthesis (for
variant 1) or half an hour (with variant 2). One might wonder whether the approach
is useful in realistic cases. Firstly, the number of variables is not unrealistic. A safety
invariant models only one safety-relevant aspect of a system. In the real system studied
by Mekki-Mokhtar et al. (2012), each invariant had no more than two variables. Secondly,
the artificial models we used are generic, i.e., they have many interventions and no variable
dependencies. It induces that there are numerous solutions to find (except the _a models),
much more than in real cases. This case is supported by the performance results of the
following industrial case study. Synthesis done with Variant 1 spends 0.15s for SI4, 0.32s
for SI5 and 0.09s for SI6. Moreover, our tool is thrifty in memory. In all these synthesis,
it uses maximum 15 MB.

5.4 Analysis of consistency

Within the strategy production process, each safety invariant is modeled separately by
one SMOF model, and is ensured by a separate strategy. As a consequence, two strategies
that ensure two different safety invariants may apply interventions at the same time. Now
these two interventions can be incompatible (e.g., braking and accelerating).

To check that no incompatible interventions are applied concomitantly, the different
SMOF models are turned into SMV modules and gathered in one SMV model. The
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Table 5.2: Experimental pruning performance
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Number Variant 1 Variant 2
Model of Examined Solutions Time | Examined Solutions Time
strategies | nodes (%) nodes (%)
2var_2a 64 4.7 0 5s 4.7 0 50ms
2var _2i 64 12.5 1 23s 12.5 1 150ms
2var_4 4096 0.56 9 21s 0.44 6 170ms
3var 3a  10° 1073 0 20s 1074 0 200ms
3var_3i 10° 1072 40 3min| 1073 12 1.0s
3var_ 6 102 107° 17106 4h 1078 1128  18.3s
4var_da  10'8 107 0 3s 1071 0 2.7s
4var_4i  10'® - - - 107 12954  26min

main module of this model has to ensure consistent behaviors in SMOF models, as for
interventions and observations. Then, the intervention concomitancy is checked.

Interventions applied for one invariant have consequences on the whole system. In
models, as soon as an intervention is applied in one SMOF model, it is globally applied,
i.e., in all the SMOF models in which it is modeled. Intervention application is done with
the effect and preconditions defined locally in each SMOF model.

Some observations from different SMOF models may be dependent. The dependency
has to be modeled in the same way as it is inside of a SMOF model. A particular case of
dependency is to use the same observation in two different SMOF models. For example,
the velocity may be used for an invariant of velocity limitation and for an invariant that
required to observe whether the system is at stop or not. The two invariants share a
common observation but they have different partition of that. Constraints are declared to
put in consistency the two partitions, as illustrated in Figure 5.10.

The non-concomitancy properties for each pair of intervention (7, j) (two interventions
are never simultaneously activated) can be formulated with:

AG~— ( flagInterv; N flaglntervj)

where flagInterv; represents the activation of intervention i.

Permissiveness properties of each SMOF model are re-checked, as the added constraint
may reduce the permissiveness. The more the dependencies are modeled, the more accurate
are the permissiveness results.

5.5 Industrial case study

To demonstrate our approach, we apply the whole process, from HAZOP to implemen-
tation, to a case study provided by KUKA Robotics within the framework of the Euro-
pean project SAPHARI (Safe and Autonomous Physical Human-Aware Robot Interaction
SAPHARI (2011-2015)).
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INVAR arm_vel=0 <-> si6.arm_vel=0 sil0.arm_vel=0;
INVAR arm_vel=1 <-> si6.arm_vel=1 sil0.arm_vel=0;
<->
<->

F

INVAR arm_vel=2 si6.arm_vel=1 sil0.arm_vel=1;
INVAR arm_vel=3 si6.arm_vel=1 & sil0.arm_vel=2;

(b) Constraint on variables

Figure 5.10: Mapping of the arm velocity observation for velocity limitation (SI1) and standstill deter-
mination (in SI2). The partition from SI1 is divided in three intervals: normal 0, in the margin 1, greater
than the limit 2. The partition from SI2 has two values: standstill 0, movement 1. To make consistent
the velocity values in SI1 and SI2, a global variable is created. Its partition is the intersection of the local

partitions, as seen in 5.10a. Constraints are added in the model to map global and local partitions 5.10b.

The system is composed of a mobile platform and an articulated arm with 7 axis, as
shown in Figure 5.11. It is an industrial co-worker in a manufacturing setting, intended to
share its workspace with human workers. It takes and places boxes, which contain parts,
on shelves, tables, or on the top of the robot platform in order to convey them. A restricted
area is defined ; it is an area forbidden to the robot.

The system is equipped with a safety layer, a separate and redundant control, satisfying
most of our assumptions about the theoretical safety monitor. In particular, the safety
monitor specification associates interventions and logic formula of predicates on observation
variables. Only thresholds are admitted to define predicates. The safety layer has only two
interventions: engaging the arm brake and engaging the platform brake. The monitor can
only observe a small subset of the system variables. All observations used in the following
are available in the safety layer.

The system has been modeled in UML, resulting in 15 Use Cases with around 50
attributes and 15 sequence diagrams. The HAZOP analysis results in more than hundred
HAZOP lines with a non-zero severity. Each line is intended to be modeled as a safety
invariant. In practice, the HAZOP experience and the PHA (Preliminary Hazard Analysis)
enable to fast group similar HAZOP lines. Thirteen safety invariants are formulated and
presented in Table 5.3.

We have implemented strategies of SI1, SI2, SI3, SI4 and SI6. As the robot we use
was not equipped with a gripper, it was not possible to implement SI5. To test our fault
tolerance approach, we carry out fault injection experiments. Fault injection (see Arlat
et al. (1989)) consists in adding intentionally faults in the system to test the fault tolerance
device, i.e., the safety monitor. The consequences of the faults are assessed during an
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Figure 5.11: Case study robot

The velocity of robot arm must not be greater than V5.

The velocity of robot platform must not be greater than V4.

The robot must not enter the restricted area.

The robot arm must not be extended beyond the platform footprint when the platform
moves.

A gripped box must not be tilted more than «yg.

A collision between a human and the robot arm must not hurt the human.
The robot platform must not collide a human

The velocity of any point of the robot must not be greater than V5.

The robot arm must not drop a box.

The robot arm must not clamp human parts.

The robot gripper must not clamp human parts.

The robot must not override boxes laid on tables, shelves and robot storage.

Table 5.3: Safety invariants, resulting from HAZOP-UML analysis
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activity, or mission, of the system. Experiments outputs are read-outs that are used to
compute measures.

The implemented strategies ensure the safety, and more precisely the safety invariants
SI1 to SI6. The only safety problems were due to experimental bias, on more precisely
on the calculation of the safety margins. This underlines the strong dependence of this
method on the margin calculation. The system expertise is needed to compute margins
that take into account all dynamic and control parameters. The monitor is assessed as
permissive in all the cases that enable the assessment.
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5.6 Conclusion

Active safety monitors for autonomous systems have to deal with complex safety rules,
inducing several interventions that should be consistent. To develop such active monitors,
we proposed a formalized process based on the definition of warning states linked to a
safety margin. In these warning states it is possible to trig some interventions before the
system goes in catastrophic states. We proposed a complete framework, SMOF, starting
from hazard analysis and ending in safety rules synthesis. In this paper, we particularly
focus on the safety rule generation algorithm, and on its validation on a real industrial
case study.

A major benefit of SMOF, is that it provides a systematic and formal approach for the
expression of safety rules, where it is usually done ad hoc and only based on the expertise
of the analysts. The models are also of great importance to describe the monitor behavior
in order to take it into account for the development of the functional layer. Indeed, safety
margins and interventions need to be non-ambigus to determine controller reactions. Our
approach is based on the use of a well-known formal language (CTL), and we proposed a
template available online to simplify the use of our tool. Most of the complex verifications
(like permissiveness) are automatically generated and checked. More precisely on the
intervention selection, we propose in this paper to take into account the warning state
where the system is, but also the path followed to reach this state. A last notable result, is
that after application on a real use case, there is no combinatory explosion of the algorithm,
and its performance is acceptable.

A main limitation of using our approach lies in the expression of dependencies or
partitions of observable variables. Indeed, the efficiency of the generation could be highly
increased when the analyst has a good level of expertise. Another, is the fact that the
current version of SMOF does not include a mechanism to activate/deactivate the safety
rules depending on the task performed by the system. In most of autonomous applications
this would be an important issue as systems tends to be more and more versatile. The
proposed approach is also limited to the functional level, with simple expression of the
safety invariant using propositional logic. For instance, we do not consider interventions
like blocking requests from decisional layer.

Future directions concern the extension of the framework to the definition of a several
warning regions, in order to trig intervention with different level of efficiency. For instance,
a soft intervention might reduce the speed, and if needed a second hard intervention could
activate emergency stop. This approach is also linked to the implementation on different
layers (hardware and software) with different integrity levels. We also plan to extend
SMOF to the observation of the decisional layer (e.g., task or trajectory plans), and possible
intervention as rejecting requests from the decisional layer. Finally, the SMOF is about to
be transferred to the industry in the context of the European CPSE Lab project CPSELabs
(2015-2018), for mobile robot systems in human environment.



Conclusion and perspectives

This chapter concludes this manuscript, but also presents some research works which are
out of the scope of dependable robots. My research perspectives are presented in the last
section.

6.1 What is here

The work presented here falls in two main research axes of dependable system development:
safety analysis and assessment (Chapters 2 and 3) and fault tolerant architecture (Chapters
4 and 5).

In Chapter 2, the HAZOP-UML method for hazard identification for human robot
interactions has been presented. This method is based on a system modeling language,
and provides guidance for analysts with a list of guide words associated to potential de-
viations of interaction elements. Main benefits are that it is applicable in early steps of
the development process, with a systematic approach, providing traceability and complete
integration in the development (same models could be used for development and for safety
analysis). This collaborative method has been successfully experimented on several real
robotic applications in order to analyse human-robot interactions. It is now mature enough
to be transferred to industrial projects. An additional effort should be done to completely
integrate in the UML models a description of the context and induced adverse situations,
which is part of my perspectives.

Chapter 3 on safety case confidence, is a more recent work. The initial motivation
which was to apply safety case to a robotic application, led us to analyse how to deal
with the uncertainties inherent to such systems. Indeed, while building a safety argument
some uncertainties may exist due to non deterministic robot behavior or unknown human
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reactions for instance. We proposed to use Dempster-Shafer theory for the definitions of
confidence and uncertainty, and some Bayesian Networks formulas for confidence propaga-
tion in a safety case. For now, we only use this quantitative approach to perform sensitivity
analysis. As presented in the perspective section, an interesting direction is to work on a
real interpretation and identification of the confidence values.

Besides these works focusing on safety analysis and assessment, I also presented in
chapter 4, a contribution to fault tolerance in an autonomous software architecture. For
this work, we proposed a recovery mechanism in case of a detection of an error of a
planner (timeout of the planner, property violation of the plan, failed planned action, or
failed goal). We assessed one mechanism through an intensive fault injection campaign,
and showed that it is possible without reducing performance, to increase dependability
with a redundant task planner. We believe that such an approach is still seldom used in
robotics mainly due to a resource limitation, an absence of dependability culture in this
community, and thus not a priority considering issues still open in path or task planning
for instance. Nevertheless, as for other safety critical applications, robotics will surely
come to such techniques in a short term.

A second contribution in the field of fault tolerance, is presented in chapter 5. The main
objective is to provide for autonomous systems an independent device able to guarantee
that safety properties will be verified in case of a failure or an adverse situation that the
system cannot manage. We called this component an active safety monitor, in the sense
that it is able to observe the system and the environment but also can trigger some actions.
The challenge for autonomous systems is to produce the safety properties that might be
complex or inconsistent. For that we developed a framework SMOF (Safety Monitoring
Framework), for safety rules synthesis. It is actually composed of a formalization of the
safety rules concept, and a tool based on model checking technique, which permit to
synthesize these rules. For now only one real system has been used as a case study, but
first results show that our formalization and the associated tool are fully applicable. This
framework (with a dedicated tool) was developed during two PhDs, and is now ready to
be extended to more complex architectures and applications.

6.2 What is not here

Besides development of techniques for robot dependability, I was involved in several other
researches which are presented here.

6.2.1 Game theory for safety rule synthesis

During the development of SMOF, I also coordinated an exploratory work on game theory
applied to the synthesis of safety rules. Intuitively, this approach considers a 2-player
game where the safety monitor plays against a malicious adversary that stands for a faulty
controller or a disobliging environment. The adversary fires transitions in the system
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model. Its aim is to reach a catastrophic state. To counteract the adversary’s moves, the
monitor may trigger safety interventions. It has a winning strategy if it always succeeds
in maintaining both safety and universal liveness, whatever the moves of the adversary.
The game theory tool used is the UPPAAL extension for game theory, TIGA. We have
succeeded in modeling variable-oriented safety invariants and permissiveness in TIGA,
which is state-oriented and supports a small part of CTL. Nevertheless, due to a limited
set of CTL operators in TIGA, we had to add new variables, which led to some combinatory
explosions, and decrease TIGA performances for the synthesis. In contrast, our tool based
on NuSMV, presented in Chapter 5, provides relatively efficient performance at the price of
having to develop a branch-and-bound algorithm to explore efficiently the set of possible
strategies. We believe that when UPPAL or new tools will be published, game theory
would be an interesting candidate for the safety rule synthesis. This work was done in
collaboration with Matthieu Roy and Héléne Waselynck. I also co-supervises the post-
doctoral of Fanny Duffosé. Results are presented in Machin et al. (2015).

6.2.2 A UML profile for robustness testing

I also contributed to a collaborative work between LAAS (H. Waeselynck and myself)
and a professor of UNICAMP, Brazil (Regina Moraes), on the formalization of robustness
testing. It is a specific form of black-box testing that complements conformance testing
by studying whether erroneous or stressful input conditions (e.g., faults, or attacks) may
alter the system’s regular behavior. The dependability community has a long tradition of
robustness testing based on fault injection. A recurring problem is the lack of approaches
to document experiments, which might be one of the reasons why studies reusing tests to
compare and to consolidate results are seldom available. Our research investigates whether
the Unified Modelling Language (UML) could be used for documenting robustness testing.
We developed a specialization and extension of UML profile (U2TP) that addresses the
documentation of robustness testing experiments. In this collaboration I was in charge of
developing the UML extensions and responsible of the UML semantics conformance. This
work led to the publication Moraes et al. (2014), and will be reused in the prospective of
robot testing in virtual words.

6.2.3 Geo-privacy risk assessment

An on-going collaboration is in the field of geo-privacy. In this context, I used my expertise
in risk analysis to develop a method for geo-privacy risk estimation. In the context of
Location-Based Services (LBS), for instance find a point of interest using a mobile phone,
there exist many and various challenges for their deployment. The need for identifying
the risk related to the processing of personal data before determining the appropriate
means to reduce them, is without doubt, one of the most important in the domain of
LBS. Unfortunately, to date there is a lack of methodologies to adequately address this
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problem. The risk assessment proposals found in security standards are so generic, that
they are really difficult to map to Privacy and, even more to the domain of LBS. This work
makes a step forward to provide useful tools for the geo-privacy assessment of services and
applications of future [oT. In particular, the goal pursued is to provide a geo-privacy Risk
Assessment Methodology for LBS (we called it G-PRIME). This work has been done in the
context of an ANR project AMORES, led by Marc-Olivier Killijian. We co-supervised a
post-doctoral (Jesus Friginal), and we published the results in an international conference
and in a journal (Friginal et al. (2014, 2013)).

6.3 Perspectives

This section points out the main perspectives I propose to develop in the field of dependable
robots. The first one is the extension of safety monitoring framework presented in Chapter
5, the second one is a new direction in the field of robot testing, and the last one is an
extension of the safety argumentation work presented in Chapter 3.

6.3.1 Multi-layered safety monitoring for autonomous architecture

The work presented in Chapter 5 on safety monitoring is limited to combinatory safety
rules based on observations of the functional level (e.g., speed, acceleration). We propose
to extend this work towards two dimensions. The first one is to adapt the monitoring
framework to observations and interventions at the decisional or executive levels of an
autonomous architecture. This would imply that the considered monitor (or several mon-
itors), may observe decisional layer outputs such as plans or requests from the executive
level. Interventions may also concern both layers (e.g. block a request, reject a plan).
While exploring this multi-layered monitoring, we believe that some interventions may be
ordered and applied according to their efficiency and impact on the system. For instance,
in case of a rule violation, a monitor may first trig a "soft" intervention at the executive
level (like blocking a request), and in case of a second violation stop the robot engaging the
brakes. The new monitoring framework should be able to take into account the possibility
to trig intervention at several levels of the autonomous architecture, according to different
levels fo observation.

This work will be carried out in close collaboration with robotics experts to determine
the possible observations and interventions, before modeling them. We plan to develop new
concepts for a monitoring and also an improvement of the current tool based on NuSMV.
We just started to collaborate in 2015, through a co-supervision with Héléne Waeselynck of
a PhD student (Lola Masson). A longer term investigation will be to take into account the
fact that safety rules may be changed or adapted due to history of the system. Learning,
which is part of artificial intelligence techniques, is an interesting candidate, but for now
too uncertain to be a core function in a safety channel.
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6.3.2 Testing robots in virtual worlds

An autonomous robot should perform a variety of tasks without any human supervision, in
various, complex and uncertain environments. In order to deploy such systems in human
or critical environments, rigorous validation is of paramount importance. The tests, for
safety and cost constraints, may be first realized using simulation of the robot moving in
virtual worlds. The objective of this work is to develop a test method that exploits such
simulation facilities to place the robotic system in a wide variety of operational situations
and observe how it faces them. A few studies have focused on the intensive testing of
autonomous systems in realistic simulation environments. This topic was addressed in
the European project R3COP (2015). In this project, an inventory of relevant features
for vision algorithms has been prepared, and some work explored methods of generating
random 3D scenes including these characteristics (Zendel et al., 2013). Other works of this
project addressed the automatic analysis of mobile robots tests (Horanyi et al., 2013b),
using a formal language developed at LAAS to analyze test traces (Waeselynck et al.,
2010). Apart from this project, we can also cite the work using the Perlin noise to generate
rudimentary 2D worlds and test the robot navigation (Arnold and Alexander, 2013).

In our perspective, we plan to develop an automatic generation of virtual worlds, like
worlds generated in video games (e.g., procedural generation). The main contribution will
be to synthesize the virtual worlds in such a way that they exhibit the safety-relevant cases,
and ensure adequate coverage of the functionalities deployed on the robot. We also plan
to explore how to automatically change the virtual worlds according to the results of the
tests. This work should be done in close collaboration with robotics experts, particularly
for the simulation tool. We plan to use MORSE (Modular OpenRobots Simulation Engine)
Morse (2015) which is developed at LAAS-CNRS to serve that purpose. It provides the
right level of simulation (perception/action) to validate the execution of complex plans.
A first proposal would be to apply this method to the navigation functionality developed
in Genom (2015), which is deployed on real mobile robots at LAAS. A final objective
would be to deploy a method and models independent from the simulator and the robot
architecture. Hence, the implementation of such an approach aimed at providing the
following contributions:

e a model of the worlds, missions and uncertainties, related to safety analysis;
e identify a set of relevant criteria to select the tests;

e test input generation algorithms, by combining generation processes from the field
of the "classical" test and procedural methods of generating worlds from the field of
video games;

e analyze simulation traces, with both qualitative aspects (properties of satisfaction)
and quantitative measures;
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e a model-driven approach to facilitate the reuse of the building blocks of the approach.

A PhD, which I co-advise with Helene Waeselynck (dependability group) and Felix Ingrand
(robotic group) on those issues started in 2014. But it is obvious that a complete generic
framework development will require more resources than a single PhD.

6.3.3 Certification of collaborative autonomous systems

Certification of robotic systems is today a major issue for their deployment. Guarantees
of safe behavior of such systems cannot indeed be provided to regulatory bodies. We
proposed in Chapters 2 and 3, two approaches that may contribute to the certification
process: hazard identification and safety argument production. We still need to improve
and extend them. First, it is important to extend HAZOP-UML to take into account
the system context (light, surfaces, noises, etc.) in UML models in order to analyse their
impact on safety. One direction is to model the context as it is done by Horényi et al.
(2013b) for obstacles. For now, we only integrate this aspect in the HAZOP tables. Such a
contribution may increase traceability through the use of models, but also help to perform
a more systematic analysis of adverse situations. Another improvement is to link HAZOP-
UML with safety arguments, using for example the result HAZOP hazard list to instantiate
a safety case pattern. Such an approach is equivalent to the one proposed by Denney and
Pai (2012), but our approach starting from system modeling and ending in a safety case
would cover more steps of the development process.

Once a safety argument built, we expect to still have many uncertainties in the in-
ferences and evidences in the context of a collaborative and autonomous robot. A main
issue is how to model and estimate residual uncertainties in an argument. We will extend
previous work for confidence assessment of safety cases to take into account uncertainties
specific to collaborative autonomous system. It would be particularly interesting to be
fully compliant with the belief theory as it is done by Pichon et al. (2012). This may lead
to integrate that disbeliefs may exist in elements of a safety argument. This would release
the hypothesis done in Chapter 3 (we assumed that if an element of an argument has a
disbelief different from zero, then this element was removed from the safety case). For
this task we wish to collaborate with experts in belief theory particularly in France, from
IRIT at Toulouse or UTC in Compiegne. I co-supervise with Gilles Motet, a PhD student
(Rui Wang), which started in 2014, partly on this subject (focusing on the belief theory
aspects). We just started to work on certification in aeronautics, but we expect that the
results might be applicable to systems such as collaborative autonomous robots.
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