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Abstract

Recent advance in cloud computing has transformed the way information is managed
and consumed, since this new paradigm provides cost efficient solutions that allow the
transmission, storage, and intensive computing of information. Therefore, Cloud ser-
vice providers are increasingly required to take responsibility for the storage as well as
the efficient and reliable sharing of information, thus carrying out a "data outsourcing"
architecture. Despite that outsourcing information on Cloud service providers may cut
down data owners’ responsibility of managing data while increasing data availability,
data owners hesitate to fully trust Cloud service providers to protect their outsourced
data. Recent data breaches on Cloud storage providers have exacerbated these security
concerns. In response, security designers defined approaches that provide high level
security assurance, such as encrypting data before outsourcing them to Cloud servers.
Such traditional approaches bring however the disadvantage of prohibiting useful infor-
mation release (e.g., efficient querying of outsourced data). This raises then the need
to come up with new models and approaches for defining and enforcing security and
utility policies on outsourced data.

This thesis aims to address this trade-off, while considering two kind of security
policies.

In the first hand, we focus on confidentiality policies specification and enforcement,
which requires enforcing the secrecy of outsourced data stored by an untrusted Cloud
service provider, while providing an efficient use (e.g., searching and computing) of
the outsourced data by different authorized users. To this end, first, we proposed
an approach ensuring the confidentiality of sensitive information in outsourced multi-
relational databases by combining data fragmentation and encryption techniques. We
then defined a secure and effective querying method for data hosted on several ser-
vice providers. Afterwards, we improved the security of the querying technique we
defined in order to protect data confidentiality under a collaborative Cloud storage
service providers model. Second, We defined a policy-based configuration framework
for sensitive outsourced data allowing the data owner to specify the confidentiality re-
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quirements (e.g., the set of sensitive information) and utility requirements (e.g., SQL
queries that should be executed over the encrypted data) over the data to be out-
sourced. We then proposed an efficient technique to find a combination of encryption
schemes that satisfies a near optimal trade-off between confidentiality requirements
and utility requirements.

On the other hand, we address the problem of heterogeneous security policies (e.g.,
confidentiality requirements, privacy requirements, ownership requirements, etc) spec-
ification and deployment. First, we defined an expressive formal language allowing to
specify as finely as possible heterogeneous security and utility requirements over the
data structure to be outsourced, as well as existing security mechanisms that can be
used to enforce them. Second, we defined a reasoning method for our formal model
allowing outsourced data owners to automatically get the combination of security mech-
anisms providing a near optimal trade-off between the security and the utility of the
data to be outsourced and the complexity of its application over the used system.
Finally, we used a data tainting method to extend our previously defined reasoning
method. That is, in cases in which no combination of security mechanisms could fully
satisfy the chosen heterogeneous policy, our improved reasoning method figure out a
combination of security mechanisms ensuring the best compromise between security
requirements to be enforced and the set of utility requirements to satisfy over the
outsourced data.



Résumé

Les avancées récentes dans les domaines de l’informatique en nuage sont en train de
transformer la manière dont les informations sont gérées et consommées. Ceci est dû
au fait que ce nouveau paradigme offre des solutions rentables permettant, la transmis-
sion, le stockage, et le calcul intensif des informations. Par conséquent, les fournisseurs
de services de l’informatique en nuage sont de plus en plus tenus d’assumer leur re-
sponsabilité par rapport au stockage, ainsi que du partage efficace et fiable des données
externalisées. En effet, bien qu’ils soient convaincus que l’externalisation des données
puisse contribuer à réduire leurs responsabilités relativement à la gestion des données
et à augmenter la disponibilité de leurs données, les propriétaires des données hési-
tent à accorder une confiance aveugle aux fournisseurs de services Cloud quant à la
protection de leurs données externalisées. Ce manque de confiance est dû au fait que,
pour les récentes fuites de données externalisées, des vulnérabilités au sein des services
Cloud ont été exploitées. En réponse à ces préoccupations, plusieurs approches ont été
définies afin d’assurer un niveau élevé de sécurité, telles que le chiffrement des don-
nées avant leur externalisation. De telles approches traditionnelles apportent toutefois
l’inconvénient d’empêcher une utilisation efficace des données externalisées (par ex-
emple, interroger une base de données externalisées). Cela soulève alors la nécessité
d’inventer de nouveaux modèles et de nouvelles approches permettant la définition et
la mise en application des politiques de sécurité et de fonctionnalité sur les données
externalisées.

Cette dissertation vise à surmonter ce dilemme, tout en tenant compte de deux
types de politiques de sécurité.

En premier lieu, nous nous concentrons sur la spécification et le déploiement des
politiques de confidentialité, qui nécessite : (1) la protection des données sensibles
externalisées stockées dans des serveurs Cloud considérés comme étant non fiables, et
(2) l’utilisation efficace des données externalisées par les utilisateurs autorisés. Pour
répondre à cette préoccupation, nous avons, d’une part, proposé une approche combi-
nant la fragmentation et le chiffrement des données afin d’assurer la confidentialité des



vi RÉSUMÉ

informations sensibles stockées dans des bases de données multi-relationnelles. Nous
avons ensuite défini une méthode sûre et efficace permettant l’interrogation des don-
nées hébergées sur des fragments distribués dans différents fournisseurs de services
Cloud. Finalement, nous avons amélioré notre approche avec l’utilisation d’une tech-
nique d’interrogation de données basée sur le retrait d’informations privé (PIR) afin
d’assurer la confidentialité des données dans le cas de collaboration entre les four-
nisseurs de services. D’autre part, nous avons défini une solution permettant aux
propriétaires des données de spécifier leurs besoins de confidentialité (par exemple, les
données sensibles à protéger) ainsi que leurs besoins de fonctionnalité (par exemple,
les requêtes SQL qui doivent être exécutées) sur les données externalisées. Notre solu-
tion implémente une technique efficace pour trouver la combinaison de mécanismes de
chiffrement permettant de satisfaire le meilleur compromis entre la sécurité et l’utilité
des données externalisées.

En deuxième lieu, nous abordons la problématique de la spécification et le dé-
ploiement des politiques de sécurité hétérogènes (par exemple, les politiques de confi-
dentialité, de protection de la vie privée, d’intégrité, etc.) sur les données externalisées.
À cet effet, nous avons, tout d’abord, défini un langage formel suffisamment expressif
permettant de spécifier le plus finement possible les besoins hétérogènes de sécurité
et de fonctionnalité sur les données externalisées, ainsi que les mécanismes de sécu-
rité existants pouvant être utilisés pour satisfaire et déployer ces besoins. Ensuite,
nous définissons une méthode de raisonnement pour notre modèle formel permettant
de choisir automatiquement la combinaison de mécanismes de sécurité assurant un
compromis optimal entre la sécurité, la fonctionnalité des données externalisées, et la
complexité de son déploiement sur le système utilisé. Enfin, nous utilisons une méth-
ode basée sur le teintage de données afin d’améliorer notre méthode de raisonnement
précédemment définie.
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CHAPTER

1 Introduction

The ever-increasing of technological advancements is breaking down the classical way of
electronic data storage and retrieval. Principally for economical benefits, these days,
both individuals and companies are increasingly using remote storage services (e.g.,
Google Drive [GoogleDrive ], Dropbox [Dropbox ] and CloudMe [CloudMe ]). These
storage services enable data sharing and ensure availability of data from anywhere at
any time. However, this new paradigm brings several cloud-specific security issues,
particularly when the storage servers offering such services are untrusted.

1.1 Data Outsourcing Basics

In the last decade, the popularity of cloud storage services has increased dramatically
because of the explosive growth of digital contents. According to the US International
Data Corporation, the digital universe will increase by a factor of 300 to reach around
40 trillion gigabytes of outsourced data by 2020 [J. Gantz 2012]. This rapid growth of
digital universe is raising the need for new storage space. For these reasons, private
organizations and companies need to make large investments into their IT infrastruc-
ture. Additional hardware and software are required, as well as staff for its operation
and maintenance. However, these expenses are contradictory with the perpetual need
to reduce costs in order to stay competitive. As a consequence, Cloud storage-based
services are being more and more attractive since they are providing user-friendly,
easily accessible and cost-saving ways of storing arbitrary data in a pay per use busi-
ness model. Business organizations and government agencies does no longer need to
spend large amounts of money on buying and managing complex software and hard-
ware systems that will be used to store collected data. In several ways, Cloud storage
is collapsing our models of what is accepted as being possible and even reasonable to
do with computers.
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Cloud storage is further distinguished between public, private, community and hy-
brid Clouds. A private cloud is hosted internally and operated by the end user and
is used inside its intranet only or by using VPN access from outside. In contrast to
a private cloud, a public Cloud is located externally to its end users and is open and
accessible for every one since it can be used by both business users and private users.
Community Clouds allow several independent entities to profit the cost benefits of a
shared nonpublic cloud. Community Clouds have huge potential for companies and
entities having to comply with identical regulatory, or legal restrictions. Finally, hy-
brid Clouds are just as the name indicates, are a combination of two or more distinct
cloud infrastructures (e.g. public and private Clouds).

According to their deployment models as public, private or hybrid clouds, cloud
systems are classified to support three cloud service models [Mell and Grance 2011].
Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a
Service (IaaS).

• Software as a Service (SaaS): A SaaS cloud implementation provides generally
software or, in more general way, an application to its end users. There is no
need for end users to be concerned with the backend infrastructure used by the
application. The backend infrastructure of the provided application are hidden and
offered as-a-service behind the scene of that application. The increasing number
of applications that are provided, such as Google’s GMAIL [GMail ], Yahoo Mail
[YahooMail ] or Microsoft Share Point [Microsoft ], illustrates the prosperity of
SaaS.

• Platform as a Service (PaaS): A PaaS cloud provides a package of software and
infrastructure as a programmable environment (called a container). With PaaS,
the provided service is represented by the entire application environment including
the computing platform as well as the development and solution stack. This
cloud service model is mostly used by new startups and small companies since it
allows them to develop and deploy their solutions and services without the need
to acquire in-house servers and working teams to manage them. Salesforce.com’s
Force.com platform [Salesforce ] and Google Google App Engine [Google ] are
excellent examples of a PaaS architecture.

• Infrastructure as a Service (IaaS): Generally speaking, an IaaS cloud provides
virtualized resources, such as virtual machines that are fully controlled by cos-
tumers, including choosing operating system and the amount of needed storage
space that best meet their requirements. However, IaaS cloud users cannot manage
or control the underlying cloud infrastructure. Amazon’s Web Services [Amazon ]



1.2. DATA OUTSOURCING SECURITY CHALLENGES 3

and RackSpace’s Cloud Services [RackSpace ] are both good examples of IaaS
providers.

1.2 Data Outsourcing Security Challenges

Data outsourcing consists in deporting on remote servers storage and management of
information traditionally stored and managed by in-house facilities, which basically
signifies entrusting data to a third party with which no prior trust relationship has
been established. In the first hand, individuals who may use Cloud storage services to
store their personal information want to be sure that only specific persons can access
it, and of course this should also exclude storage service providers, since there is no
tangible reasons for them to access the outsourced data. In the other hand, the data
collected and managed by companies contain often highly sensitive information which
poses a serious threat to a company’s business when they are disclosed to unauthorized
parties.

Many incidents (e.g., [Mulazzani et al. 2011], [Newton 2011] and [Lewis 2014]), in
which Cloud storage services’ vulnerabilities have been exploited, prove that doubts
about their usage are well justified. According to a recent study led by Verizon
[Verizon 2015], around 80,000 security incidents have been detected in 2014 and that
around 2200 of these security incidents have caused a leakage of information.

In fact, data outsourcing paradigm gave birth to several security issues particularly
when the data is stored and managed by a honest-but-curious server, These security
issues are related mainly to four problems as briefly outlined in the following.

• Data Confidentiality. The data collected and managed by companies and orga-
nizations contain often highly sensitive information that should not be disclosed
to unauthorized entities including cloud storage service providers. The US Na-
tional Institute of Standards and Technology (NIST) [NIST 1985] specifies that
the Cloud users’ confidential data is disclosed to an unauthorized entity if it has
the privilege to access the outsourced data, to collect the users’ confidential data,
and to understand the meaning of the collected confidential data. Indeed, sen-
sitive outsourced data confidentiality remains one of the greatest security issues
with regards to cloud computing, as the data will be controlled and managed
by potentially untrustworthy cloud service storage providers, since according to
[datalossdb 2015], around 40% of data breach incidents are caused by cloud ser-
vices’ insiders. It is then challenging to define new solutions that grant data
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confidentiality while allowing an efficient manipulation (e.g., search, modification,
and computation) of the outsourced data.

• Data Privacy. The data stored and processed may be a subject to regulatory and
compliance requirements. Recent European regulation [UE2 2014] explicitly spec-
ifies that specific categories of identifier information should be either encrypted or
kept separated in order to grant privacy. Therefore, it is interesting for data owners
or data collectors to implement additional security controls that meet regulatory
or legal requirements even when an underlying Cloud storage service provider that
does not fully meet those same requirements is used to outsource the data.

• Data Integrity. Integrity is yet another critical concern with regards to cloud en-
vironments. It concerns both data storage and data process integrity. Data storage
integrity means that data have to be stored honestly by Cloud service providers
and any integrity violation (e.g., unauthorized modification or loss) should be de-
tected by the Cloud user who has outsourced the data. Querying and computation
integrity means verifying whether or not queries and computations are faithfully
performed by the Cloud storage service provider over the outsourced data. Hence,
storage and process integrity need to be taken in consideration when designing a
system for ensuring security of data stored and managed by a honest-but-curious
Cloud storage service provider.

• Data Ownership. Further outsourced data concern emerges with the ownership
of information assets. Data ownership and being responsible as a data custo-
dian are fundamentally different. There is potential for erosion of information
asset ownership when moving valuable data to any external Cloud storage service
provider. For illustration purpose, if we suppose that a valuable outsourced data
has been used by an untrustworthy Cloud storage service provider or by an exter-
nal adversary to make economical profits, it is then interesting for the data owner
to be able to accuse the entity having illegally used the outsourced data.

1.3 Objectives and Contributions

Data outsourcing rises many challenging security issues, mainly due to the loss of phys-
ical control. These challenges influence significantly on the security of the outsourced
data.

On one side, enforcing data confidentiality in Cloud storage environments becomes
more challenging when the data is stored and managed by untrusted third party. One
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possible solution consists of encrypting the data to be outsourced on the client machine
(which is supposed to be trusted) before uploading it to the Cloud storage server.
Encrypting the outsourced data is considered as the last effective line of defense allowing
to protect the outsourced data from both external hackers and malicious Cloud storage
server administrators, since obviously, if the encryption keys are not compromised by a
hacker or a malicious administrator that manages the server, the confidentiality of the
outsourced data remains ensured. This solution is useless when dealing with big in-
production databases since it raises significantly the cost of data querying, as in order
to process queries, we need to read back the encrypted data from the server to the
client, decrypting the data, and executing the queries on the client machine. The first
objective of this thesis is to define new solutions allowing to ensure the best compromise
between outsourced data confidentiality and utility. To meet this objective, we propose
the following contributions:

• Contribution 1. We propose an approach [Bkakria et al. 2013a,
Bkakria et al. 2013b] allowing the protection of confidentiality of sensitive
information in outsourced multi-relational databases by improving existing ap-
proaches [Ciriani et al. 2007, Ciriani et al. 2009] based on a combination of data
fragmentation and encryption. These approaches have a major limitation as they
assume that data to be outsourced is represented within a single relation schema
(or table) which is too strong and seldom satisfied in real environments. Then we
define a secure and effective technique for querying data hosted on several service
providers. Finally, we improve the security of the querying technique in order to
protect data confidentiality under a collaborative Cloud storage service providers
model.

• Contribution 2. We define a policy-based configuration framework
[Bkakria et al. 2014b] for encrypted data allowing the data owner to spec-
ify the policy to be applied over the outsourced data. Then, we provide an
efficient method allowing to detect conflicts between confidentiality requirements
(e.g., the set of sensitive information) and utility requirements (e.g., SQL
queries that should be executed over the encrypted data) specified by the data
owner. Finally, we propose an heuristic polynomial-time algorithm for finding a
combination of encryption schemes that satisfies a near optimal trade-off between
confidentiality requirements and utility requirements.

On the other side, by analyzing some real-life scenarios of applications that need
mechanisms to securely outsource data, we realize that the security and utility require-
ments specified by data owner are different in each scenario. In addition, they are
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in some cases heterogeneous (e.g., confidentiality requirements, privacy requirements,
ownership requirements, etc.). Security mechanisms allowing to enforce those security
requirements have recently been the focus of huge interest, especially cryptographic
and information hiding techniques. These techniques greatly help in tackling security
issues: copyright protection (cryptography, watermaking, fingerprinting), content/data
confidentiality (cryptography through encryption, fragmentation, access control), con-
tent/data integrity (cryptography through digital signature or message authentication
codes, watermaking), authentication of entities (cryptography), anonymity (anony-
mous networks or granting), and privacy (cryptography, k-anonymity and its exten-
sions, and the more recent differential privacy). These mechanisms are known to be
efficient when used independently. However, in many situations they have to be com-
bined in an appropriate way to provide the security functionalities without one harming
the other. The second objective of this thesis is then to design support tools that allows
data owners to easily specify their security requirements and automatically choose the
best set of security mechanisms, and the best way to combine them (e.g. the best
order in which they are applied) to get the best tradeoff between complexity, secu-
rity and utility in the final choices. To meet this objective, we propose the following
contributions:

• Contribution 3. Using an Epistemic Linear Temporal Logic (Epistemic LTL), we
defined an expressive language [Bkakria et al. 2014a] allowing to: (1) formally
model a system composed of involved entities (e.g., data owner, Cloud Storage
server administrator, external adversary, etc.) and the data structure on which
the security policy should be enforced. (2) formally express as finely as possible
the security policy defined by the data owner. Then, we define a reasoning method
for our formal model allowing to identify the relevant combination of mechanisms
to efficiently enforce the defined security policy.

• Contribution 4. In [Bkakria et al. 2014a], we suppose that the security mecha-
nisms that can satisfy a policy are applied parallelly over the target system. How-
ever, we have seen that in some cases, some security mechanisms should be applied
over the same part of the data to be outsourced to satisfy the required security
properties. Obviously, in those cases, we should take into consideration conflicts
that may occur between security mechanisms which makes finding a combination
of security mechanisms that satisfy many security requirements much harder to
fulfill. We define an approach that extends [Bkakria et al. 2014a] and uses a plan-
ning graph based method to find the combination of security mechanisms providing
the near optimal trade-off between the security and the utility of the data to be
outsourced and the complexity of its application over the used system.
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• Contribution 5. Using our reasoning method proposed in the previous contribu-
tion, defined policies over outsourced data are either wholly satisfied or violated.
This contribution strive to overcome this limitation by designing an approach
allowing outsourced data owner, in the case in which no combination of security
mechanisms could fully satisfy the chosen policy, to come up with the best compro-
mise between security constraints to be enforced and the set of goals to satisfy over
the outsourced data. To this end, we extend the planning graph based approach
presented in [Kautz and Selman 1999] by using a data tainting based method al-
lowing to (1) mark the set of fact nodes that violate safety constraints and (2)
effectively propagate those taints to fact nodes representing the goals that need
to be satisfied. Later on, based on the propagated taints, we define a reasoning
method allowing to get the near optimal compromise between the goals to satisfy
and the security constraints to ensure.

1.4 Organization of the dissertation

This dissertation is divided into 2 parts described below.

Part I – Preserving Outsourced Data Confidentiality – this part focuses
on data confidentiality preservation which becomes more challenging when the data is
outsourced to an untrusted Cloud storage provider.

Chapter 2 – Outsourced Data Confidentiality: State of the Art – we discuss
research investigations and technologies aiming to overcome cloud data confidentiality
issue. It depicts the main results published in the data outsourcing scenario, focusing
on data confidentiality and mechanisms for outsourced data querying and processing.

Chapter 3 – Preserving Multi-relational Outsourced Databases Confiden-
tiality using Fragmentation and Encryption – proposes to combine data fragmen-
tation and encryption to ensure the confidentiality of multi-relational Databases stored
at a honest-but-curious cloud server and provides an efficient and secure technique for
querying outsourced data.

Chapter 4 – Combining Encryption-based Mechanisms to ensure Out-
sourced Data Confidentiality – proposes a policy-based configuration framework
that combines encryption-based security mechanisms over outsourced data to ensure
the best trade-off between the confidentiality and the utility of the outsourced infor-
mation.
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Part II – Heterogeneous Security and Utility Requirements Specification
and Enforcement over Outsourced Data – this part focuses on defining approaches
allowing to specify and enforce heterogeneous security and utility requirements (e.g.,
confidentiality, privacy, ownership, computation, etc) over outsourced data.

Chapter 5 – A new Epistemic Temporal Logic based language for Specify-
ing Security Policy and Security Mechanisms – proposes a formal model allowing
the specification of heterogeneous security and utility requirements over a data struc-
ture to be outsourced, as well as the specification of existing security mechanisms that
can be used to enforce them.

Chapter 6 – Formal Reasoning Method to enforce Security Policies over
Outsourced Data – defines a reasoning method for our formal model allowing out-
sourced data owners to automatically get the combination of security mechanisms
providing a near optimal trade-off between the security and the utility of the data
to be outsourced and also the complexity of its application over the used system.

Chapter 7 – Best effort based approach for security mechanisms planning
to enforce security policies over outsourced data – extends the reasoning method
proposed in Chapter 6 and proposes an approach that gets the mechanisms execution
plan that provides the best compromise between security constraints to enforce and
the set of goals to satisfy over the outsourced data.

Chapter 8 – Conclusions and Perspectives – this Chapter concludes the dis-
sertation by summarizing the contributions and presenting the perspectives for future
work.



Part I

Preserving Outsourced Data
Confidentiality





CHAPTER

2 Outsourced Data
Confidentiality: State of
the Art

2.1 Introduction

Cloud storage is an emerging paradigm, outsourcing the computation and storage ca-
pabilities to external service providers. Mainly because of this loss of control on out-
sourced data, data owners hesitate using Cloud storage services. During the last few
years, outsourced data confidentiality concerns was becoming more and more legit-
imate regarding the latest data breach and capture mediated events. In November
2013, the Washington Post reveals more indiscriminate data capture, by the US Na-
tional Security Agency (NSA). This collection of data is done by intercepting private
communications that links Google and Yahoo data centers around the world and de-
crypting the traffic that should be protected in transit 1 [NSA 2013b]. As a result, in
December 2013, a survey conducted by PriceWaterhouseCoopers points that around 50
percents of companies in Germany consider storing data in the Cloud risky after hear-
ing about NSA data spying [NSA 2013a]. To cope with this confidentiality problem,
several approaches have been proposed.

In order to protect the confidentiality of outsourced data in an honest but curi-
ous server storage model, outsourced sensitive information are encrypted preventing
the access of outside unauthorized entities (attackers) as well as insider entities (ma-
licious administrators) from the Cloud server itself [Davida et al. 1981]. This solution
introduces an interesting research challenge consisting of the problem of efficient out-
sourced encrypted data querying. When dealing with encrypted data, confidentiality
requires that data decryption operations should be only performed at the data owner

1Data in transit is data being accessed over the network, and therefore could be intercepted by
someone else on the network or with access to the physical media the network uses
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site. Therefore, enabling external entities to directly execute queries on encrypted
outsourced data became a key challenge. In addition to encryption-based approaches,
secret sharing based approaches indicates a promising prospect to solve the challenges
of preserving outsourced data confidentiality. Moreover, in specific domains, outsourced
data confidentiality can be ensured using other approaches, such as data fragmenta-
tion. These methods suppose that the associations between different data objects to
be outsourced are more sensitive than their values.

In this chapter, we survey the main existing approaches addressing the confiden-
tiality issues arising from the loss of control on outsourced data. The remainder of
the chapter is organized as follows. Section 2.2 gives an overview of the main existing
encryption-based approaches and their proposed methods for querying encrypted data.
Section 2.3 presents and discusses existing fragmentation-based approaches to ensure
outsourced data confidentiality. Finally, we conclude this chapter in Section 2.4.

2.2 Outsourced data Confidentiality by Encryption

Despite that traditional encryption mechanisms (e.g., Data Encryption Standard
(DES) [NIST 1999] and Advanced Encryption Standard (AES) [FIPS. 2001]) ensures
strong confidentiality guarantees. They are suffering from two main limitations that
reduce the effectiveness of these traditional schemes, especially because of the large
amount of outsourced data.

First, when outsourcing the data to an untrusted (honest by curious) service
provider, data owners generally encrypt the data before its outsourcing to the remote
storage server. However, the employment of traditional encryption schemes is incon-
venient for huge amount of data as it reduces significantly the computation capacity
both at the client and the server sides.

Second, these traditional encryption approaches are deterministic, they are not
adaptable and do not allow performing operations over encrypted data (e.g., search,
computation, etc.).

Search over encrypted data is very useful to overcome the traditional all-or-nothing
retrieval policy of encrypted data. When designing an approach for searching over
encrypted data, the computation on the client-side, as well as the communication
overhead, plays critical roles for deciding its efficiency. More the computation on the
client-side is minimized and the communication overhead is reduced, more the searching
over encrypted data approach is efficient.
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Several approaches have emerged to allow efficient search over encrypted
outsourced data. They can be classified into several classes: Bucketing-based
approaches [Hacigümüs et al. 2002, Hore et al. 2004], techniques that are based
on some specialized data structures [Damiani et al. 2003b, Damiani et al. 2003a,
Shi et al. 2007, Park 2011, Wang et al. 2014], order preserving encryption based
approaches [Agrawal et al. 2004, Boldyreva et al. 2009, Boldyreva et al. 2011,
Boldyreva et al. 2012], Searchable Encryption based approaches [Song et al. 2000,
Goh 2003a, Golle et al. 2004, Curtmola et al. 2006, Amanatidis et al. 2007,
Chase and Kamara 2011, Kamara et al. 2012, Kamara and Papamanthou 2013],
and Homomorphic Encryption based approaches [Boneh et al. 2005, Paillier 1999,
Gentry 2009].

2.2.1 Bucketing Based Approaches

Hakan Hacigümüs et al. [Hacigümüs et al. 2002] have introduced a model for ensuring
the confidentiality of outsourced databases based on a bucketization-based technique.
This technique consists of segmenting the domain of attributes, which their assumed
values are considered sensitive, into a number of non-intersecting subsets of values
called buckets and having the same size. Then, a unique random identifier ID is
associated to the set of unencrypted values in each Bucket. Finally, the encrypted
tuples together with buckets IDs are outsourced to a cloud storage server. Let us
suppose that a database D composed of a finite set of relational tables {T1, · · · , Tn}
has to be outsourced. For each tuple ti = {vi

1, · · · , vi
mi
} in the relational table Ti of

D, tsi = {etuple, IDvi
1
, · · · , IDvi

mi
} will be outsourced to the cloud server, where etuple

represents the encryption of the tuple (vi
1, · · · , vi

mi
) and IDi

j represents the identifier of
the bucket containing each vi

j, 1 ≤ j ≤ mi. The bucketization method (segmentation
function) used to generate the corresponding bucket IDs for the values of each attribute
are stored privately by the data owner.

For illustrative purpose, let us consider that the relational table Patient (Figure 2.1
(a)) will be outsourced. Figure 2.1 (b) represents the bucketization method used for
the values of the attribute Yob and Figure 2.1 (c) represents the encrypted form of the
relation Patient that will be outsourced. The values of the attribute IC in Figure 2.1
(c) are indexes obtained by the application of the bucketization method in Figure 2.1
(b) for the attribute Y ob. In order to query the outsourced relation, an authorized user
replaces the values used to search over each attribute by their corresponding buckets
IDs calculated using the adopted bucketization method. For example, if an authorized
user wants to execute the query q : πP atient.SSN(σP atient.Dob=1965(Patient)) over the
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(a)
SSN Name_pat Yob Illness
865746129 A. Barrett 1976 Illness1

591674603 C. Beat 1981 Illness2

880951264 N. Baines 1986 Illness1

357951648 S. Brandt 1951 Illness3

(b)
2 9 7 4

1950 1960 1970 1980 1990
(c)

etuple IA IB IC ID

Njk6%lk$djI=w 19 101 7 52
*lNvsdIkj**/w=u 31 18 4 42
ppUt*%diHgW 77 18 4 96
JgedŶdd#=Az 41 83 2 0

Figure 2.1 – (a) Patient relation, (b) partition function used for attribute Dob, and (c)
the encrypted relation Patients stored in the cloud server.

outsourced relation, he or she needs to rewrite the query q by replacing the value 1965
by it corresponding bucket ID 9.

Hacigümüs’s bucketization technique suffers from three main disadvantages. First,
despite this method allows to perform exact search over outsourced relational databases
as equal values are indexed with equal bucket IDs, it does not support order search since
the bucketization method used to generate bucket IDs does not necessarily preserve
the plaintext domain ordering (e.g., the bucketization method used in Figure 2.1 (b)).
Second, it is clear that the final results provided by this encrypted data querying
method contain false positives and needs to be filtered to remove out any tuples that
do not satisfy the original query conditions. Third, this technique may give rise to a
possible privacy violations at server side.

Enhancing Hacigümüs’s technique, Hore et al. [Hore et al. 2004] investigated firstly
the problem of performing order search over encrypted relational databases while min-
imizing the number of false positives in the queries results. In a second time, they
studied the leakage of information due to the bucketization-based technique. A two
levels analysis is provided. In the first level, the leakage of information due to the pub-
lication of the bucket IDs of only one attribute is considered. In the second level, they
consider the leakage of information due to the publication of the bucket IDs of all at-
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tributes. They propose two metrics for privacy measures relevant to data bucketization:
a measure based on the distribution of the values within each bucket and a measure
based on the distribution entropy of the values within a bucket. To ensure the best
level of privacy, the data owner has to maximize the distribution entropy of the values
within each bucket. Finally, they prove that finding the best trade-off between data
privacy and querying efficiency when using bucketization techniques is NP-complete.
To overcome this problem, they propose an heuristic-based method fixing a maximum
permitted degradation threshold of querying performance.

Another problem related to this bucketization techniques is that, to achieve the
best level of data protection, the buckets should all have the same size (the number of
tuples in each bucket is the same). Despite this property can be ensured in the case of
data at rest databases 2, it is too hard to maintain it for data in motion databases 3.

2.2.2 Specialized Data Structures Based Techniques

Damiani et al. [Damiani et al. 2003a, Damiani et al. 2003b] introduced an approach
allowing to perform exact and order searches over encrypted data using a B+– tree based
indexing method. The proposed technique is used for each attribute to efficiently allows
order and exact searches over it. That is, a B+– tree is created over the unencrypted
values of the attributes to be used to search the data. Then, for each node in the
created trees, a couple (id, enode) is created and outsourced to the cloud server, where
id is a node identifier and enode = 〈lid, E(value), rid〉 represents the encrypted form of
the cleartext node using a deterministic encryption E, lid and rid represent respectively
the left and the right nodes identifiers.

To perform an order search (i,e,. range query) over an attribute attr, as a first step,
the client (or data owner) selects the root node of the outsourced B+– tree created
over the values of attr. In the second step, the client decrypts E(value) and compares
value with the search condition to figure out with branch (left or right) is to be taken.
This procedure repeats until the leaf level of the B+– tree is reached. Finally, the
client navigates through the leaves to select the corresponding values. Although the
final querying results produced using this method are accurate (no false positive), to
perform a single search operation, we still need to perform many interactions (the
height of B+– tree) between the client and the cloud server.

Shi et al. [Shi et al. 2007] proposed MRQED – a confidentiality-preserving search-
able scheme supporting multi-dimensional order search over encrypted data. In this

2inactive data which is stored in relational database
3active data which is stored in relational database
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approach, a discrete integer values 1 throught D is used to encode each attribute, where
D represents the number of possible values that might be assumed by each attribute.
Therefore, a binary interval tree BIT (D) is created over integers 1 from D. Despite
this approach ensures provably strong security, it is useless in practice since a server
needs to fully scan the whole encrypted relation to perform single order search request.

Based on the work proposed by Dan Boneh et al. in [Boneh and Waters 2007],
a public key based approach called Hiden Vector Encryption (HVE) is introduced in
[Park 2011] supporting equality and order searches over encrypted data. Nonetheless,
the complexity of range search per data item is linear in the range size, which can be
too much expensive in terms of execution time when the range size is large. Moreover,
the proposed technique does not use any form of indexing to reduce access complexity
that might be extremely expensive when dealing with large datasets.

Recently, Wang et al. [Wang et al. 2014] enhance the efficiency of the ap-
proach proposed in [Shi et al. 2007] by introducing Maple – a scalable multi-
dimensional range search over encrypted outsourced data with MRQED tree-based
index. They formally define the leakage function and security game associated to a
tree-based public-key MDRSE. Then, by combining R-Trees [Guttman 1984] and HVE
[Boneh and Waters 2007], they improve search efficiency while the protection of single-
dimensional range queries’ privacy is ensured.

2.2.3 Order-Preserving Encryption Based Approaches

An order-preserving encryption (or OPE) scheme is a deterministic symmetric encryp-
tion scheme based on an encryption algorithm that produces ciphertexts preserving
the order of the plaintexts. Formally speaking, let D and De be finite ordered sets (for
the sake of simplicity, we can consider them to be subsets of natural numbers). OPE
is an order-preserving encryption with plaintext space D, ciphertext space De, and key
space K if and only if for any key k ∈ K and any plaintext values v1, v2 ∈ D, v1 < v2

then OPE(v1, k) < OPE(v2, k).

OPE has been introduced to the database community by Agrawal et al.
[Agrawal et al. 2004] as an approach to efficiently perform order search over encrypted
databases. The OPE algorithm is constructed in three steps: (1) model the input and
target distributions, (2) flatten the plaintext data into a flat database, and (3) trans-
form the flat database into the cipher database. It allows a remote untrusted database
server to index the data it receives in encrypted form, in a data structure that permits
time logarithmic range queries (in the size of the database). However, this approach
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can only deal with numerical data and gives rise to serious security risks associated
with revealing data order.

Through a formal cryptographic study of OPE, Boldyreva et al
[Boldyreva et al. 2009] prove that order-preserving technique proposed by Agrawal et
al. [Agrawal et al. 2004] does not fulfill all the standard notions of security since the
used encryption algorithm is required to be deterministic, which discloses the frequency
of each distinct value in the database. OPE security is measured by comparing it with
an ideal object satisfying the order-preservation and information hiding properties.
This object is defined by Boldyreva et al. to be a random order-preserving function
(ROPF) which is randomly chosen from the set of all order-preserving functions that
map D to De. Although the well-understood notion of random function, ROPF is
a less intuitive object since it is unclear what information ROPF leaks about the
encrypted data. Boldyreva et al. characterize the security offered by the ideal ROPF
function and warn that the provided characterization is a weak.

One-wayness is a cryptographic property requiring that given a function, evaluated
using a random value, an adversary is enable to invert it. It is one of the most basic
(and weakest) cryptographic properties and was not ensured for ROPF proposed in
[Boldyreva et al. 2009]. The one-wayness property is shown to hold in a subsequent
papers [Boldyreva et al. 2011, Boldyreva et al. 2012]. These papers introduce what
they call a necessary adjustments to the typical definition of one-wayness. In the new
definition, an adversary cannot forward-evaluate ROPF, since otherwise the knowledge
of the secret key is required. Nonetheless, this is a relatively hard requirement, which
is seldom satisfied in practice. Moreover, their new definition uses what they call the
uniformity assumption requiring the pre-image to be uniformly random distributed.
The authors notify in advance that the provided security analysis of ROPF may not
hold in cases where the uniformity assumption is not ensured. In addition, they indicate
(and we fully agree) that in practice, the uniformity assumption is extremely difficult
to ensure.

Boldyreva’s OPE is proved to be one-way in the previously described restricted
sense. Nonetheless, Kolesnikov and Shikfa [Kolesnikov and Shikfa 2012] prove that
standard stronger security notions do not provably hold for ROPF (and Boldyreva’s
OPE). Finally, it was concluded in [Xiao and Yen 2012] that order-preserving encryp-
tion leaks at least half of the plaintext bits. As a conclusion, we said that despite OPE
based approaches are not proved to ensure standard stronger security notions, they
are better than no encryption at all. We believe that this kind of encryption should
only be used in the cases where the leakage of some information about the data to be
outsourced will not cause grave damage to the data owner.
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2.2.4 Searchable Symmetric Encryption Based Approaches

The first practical scheme for searching over encrypted data (SWP) was proposed
by [Song et al. 2000] based on the use of a special two-layered encryption construct
allowing searching the encrypted data with a sequential scan. The idea consists of
encrypting each word separately and then a hash value having a special format is
embedded inside the ciphertext. This encryption method gives the server the search
ability by extracting this hash value and checking if the value is of a given special
form (which indicates a match). The main disadvantage of (SWP) is that their specific
two-layer encryption method has to be used, which makes it useless, for example,
when dealing with compressed data. From the security point of view, SWP leaks the
potential positions of the queried keywords in a document. As a consequence, by
performing several queries, it is possible for an adversary to use statistical analysis to
figure out the words inside the documents.

In [Goh 2003a], Goh attempts to overcome some of the limitations of the SWP
scheme (e.g, special document encryption and fixed-size words) using a Bloom filter
(BF) [Bloom 1970] as a per-document index. That is, a new index is embedded for each
encrypted file. This index is independent of the underlying encryption algorithm. In
one hand, the use of a BF per document reduces the search time to linear in the number
of documents. In the other hand, Bloom filters introduce two serious problems: (1) an
accuracy problem; That is, the possibility of false positives which can be reduced to an
acceptable level by using appropriate parameter settings. (2) a security problem; That
is, in each BF related to a document, the number of 1s is a function of the number of
BF entries which represents in reality the number of distinct keywords per document.
As a result, Goh’ scheme leaks the number of keywords in each document.

Golle et al. [Golle et al. 2004] propose the first conjunctive keyword search scheme
based on the idea assuming that special keyword fields are associated with each doc-
ument. For instance, in the case of emails, the keyword fields might be From, To,
and Subject. Conjunctive keyword search means that a user is able to find documents
containing all of several keywords in a single search query. However, with the proposed
scheme and in order to search over the encrypted documents, the user is required
to know in which keyword field the search should be performed. Unfortunately, this
scheme does not scale for large databases since the costs of communication and stor-
age linearly depend on the number of stored documents in the outsourced database.
The security of Golle et al.’s scheme relies on the Decisional Diffie-Hellman (DDH)
assumption [Boneh 1998].
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Curtmola et al. [Curtmola et al. 2006] proposed two new schemes based on the
idea of adding an inverted index. Instead of an index per document, an inverted index
create an index per distinct word in the database, which reduces the search time to
sub-linearity to the number of documents containing the keyword. This is not only
sub-linear but also optimal. Both proposed schemes are based on the use of FKS
dictionary [Fredman et al. 1984] as a look-up table which compacts more the used
index and decreases the look-up time to O(1). Unfortunately, updating encrypted
data is expensive because of the way in which the data is stored in the server. In
consequence, the proposed schemes are more suitable for data in rest than dynamic
data.

Amanatidis et al. [Amanatidis et al. 2007] proposed two new constructions based
on the use of deterministic message authentication codes (MACs) to perform search
over encrypted data. The first proposed scheme (Curt-I) relies on appending a deter-
ministic MAC to a secure encryption of a keyword indistinguishable against chosen
plaintext attacks (IND-CPA). Informally speaking, an encryption scheme is IND-CPA
secure if an adversary A cannot distinguish the encryption values of two arbitrary mes-
sages chosen by A, even if A can adaptively query an encryption oracle. In the second
proposed construction (Curt-II), the MAC of the plaintext is used as the randomness
inside of the encryption. Curt-I allows a client to search by simply generates the MAC
of a keyword and stores it together with the encrypted keyword on the server. Then,
the server will use the indexed MACs to find the correct answer. With Curt-II, the
user calculates and embeds the MAC inside the ciphertext of the keyword allowing
the server to search for the queried ciphertexts. Curt-I is proved to be secure if and
only if the encryption scheme is IND-CPA secure and the MAC is unforgeable against
chosen message attacks. Curt-II is proved to be secure under the assumptions that the
encryption scheme is IND-CPA secure and the MAC is a pseudo-random function.

Based on the schemes proposed in [Curtmola et al. 2006], Chase and Kamara
[Chase and Kamara 2011] proposed an adaptively secure construction relying on the
generation of an inverted index to create a padded and permuted dictionary. An op-
timal search time can be provided through a hash tables based implementation of the
dictionary. Conceptually, the proposed scheme is IND2-CKA [Goh 2003b] secure hid-
ing the data structure. However, the proposed construction still disclose the access and
search pattern.

Kamara et al. [Kamara et al. 2012] extend the constructions proposed in
[Curtmola et al. 2006] to allow efficient updates (add, delete, and modify documents)
over the encrypted data. The proposed extension is based on adding special arrays
called "deletion arrays" to keep track of the search array positions that need to be
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modified in case of an update query. Moreover, in order to modify the pointers without
decrypting them, the proposed scheme uses homomorphically encrypted array point-
ers. From the security point of view, update operations in the defined scheme leak the
trapdoors of the keywords contained in an updated document.

Thanks to the advances in multicore architectures, Kamara and Papamanthou
[Kamara and Papamanthou 2013] proposed a highly parallelizable new scheme that
provides a new way to achieve sublinear search time. It is based on the use of data
structure called keyword red-black (KRB) trees which are similar to binary trees having
pointers to a file as leaves. Each node in a KRB tree stores information when at least
one of its following nodes is a path to a file identifier containing the keyword. Concep-
tually, the security definition of the proposed scheme is a generalization of IND2-CKA.
The authors proved the security of their construction under the random oracle (RO)
model.

2.2.5 Homomorphic Encryption Based Approaches

Homomorphic encryption are based on cryptographic schemes whose encryption func-
tion is a homomorphism. That is, they preserve group operations performed on en-
crypted data. Homomorphic encryption algorithms give the ability to a third party to
perform computations over encrypted data which ensures privacy preservation.

Rivest et al. [Rivest et al. 1978] introduced the idea of performing soft computa-
tions on encrypted data. Their motivation was the ability to use an untrusted third
party to store an encrypted database and allows the owner to perform simple updates
and queries while ensuring that nothing about the database contents is revealed.

Homomorphic cryptosystems are mainly defined over algebraic groups or rings
[Cohn 2000]. In the first hand, algebraic groups based homomorphic cryptosystems
allow a single operation to be performed over encrypted data, usually denoted by mul-
tiplication or addition.

Definition 1. (Algebraic group-based homomorphic encryption.)An encryp-
tion scheme S = (Enc,Dec,K) is homomorphic if for all k ∈ K, it is possible to define
groupsM and C so that:

• ∀m ∈M : c = Enc(m), it holds that c ∈ C.

• ∀m1,m2 ∈M,∀c1, c2 ∈ C with m1 = Dec(c1) and m2 = Dec(c2), it holds that:

Dec(c1 ~ c2) = m1 ~m2
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where ~ are the respective group operations in C andM.

In the literature, algebraic group based homomorphic cryptosystems are consid-
ered as partially homomorphic encryption (PHE). Several PHE cryptographic sys-
tems were proposed to allow simple computations over encrypted data. El Gamal
[ElGamal 1985] proposes a cryptosystem that computes multiplication over encrypted
data. Goldwasser and Micali [Goldwasser and Micali 1982] propose a cryptosystem
that computes XOR of encrypted bits. Paillier [Paillier 1999] proposed a cryptosys-
tem that is able to computes addition over outsourced data. Later on, Boneh et al.
[Boneh et al. 2005] introduce the BGN cryptosystem allowing to perform an arbitrary
number of additions, one multiplication, followed by an arbitrary number of additions.
PHE provides semantic security [Goldreich 2004] which represents a strong security
guarantees. Informally speaking, semantic security means that any adversary knowing
only the public key and an encrypted value cannot learn any information about the
underlying unencrypted value, other than its length. Due to their specialized nature,
PHEs are quite efficient and can be used in practice.

In the other hand, ring-based homomorphic cryptosystems naturally support two
operations: addition and multiplication. Definition 1 can be extended to a ring based
homomorphic cryptosystems as follows.

Definition 2. (Ring-based homomorphic encryption.)An encryption scheme
S = (Enc,Dec,K) is said to be ring homomorphic if for all k ∈ K, it is possible
to define groupsM and C so that:

• ∀m ∈M : c = Enc(m), it holds that c ∈ C.

• ∀m1,m2 ∈M, ∀c1, c2 ∈ C with m1 = Dec(c1) and m2 = Dec(c2), it holds that:

Dec(c1 × c2) = Dec(Enc(m1, k)× Enc(m2, k)) = m1 ×m2

Dec(c1 + c2) = Dec(Enc(m1, k) + Enc(m2, k)) = m1 +m2

where × and + are the respective ring operations in C andM.

Based on the rings, Gentry [Gentry 2009] introduces the first Fully
Homomorphic Encryption (FHE) allowing to perform any number of
additions and multiplications. Later on, there have been a lot of
FHE schemes proposed [van Dijk et al. 2010, Stehlé and Steinfeld 2010,
Brakerski and Vaikuntanathan 2011b, Brakerski and Vaikuntanathan 2011a,
Vaikuntanathan 2011, Brakerski et al. 2012, Gentry et al. 2013] which improved
the performance of the original FHE scheme scrupulously. However, up to now, FHE
continues to be extremely slow for performing arbitrary functions or for implementing



22 CHAPTER 2. OUTSOURCED DATA CONFIDENTIALITY: RELATED WORK

the complex systems used today. This was illustrated through an evaluation of the
AES circuit reporting that 40 minutes are needed to perform a single AES block on a
machine with very large memory [Gentry et al. 2012]. In fact, two main factors make
FHE inefficient: the cryptographic overhead and the used security definition. The
cryptographic overhead represents the needed time to perform operations for each
gate of the circuit implementing the program to evaluate. The security guarantees
provided by FHE are to much strong in a way that makes some needed optimizations
unenforceable.

2.3 Outsourced Data Confidentiality by Dissocia-
tion

Traditional solutions used to ensure the confidentiality of outsourced data are based on
encryption. Unfortunately, the use of encryption makes performing search operations
as well as other functionalities (e.g., computation) over the outsourced data costly.
Nonetheless, if we look carefully to analyze the sensibility of the outsourced data, we
realize that in most cases, mainly when dealing with outsourced relational databases,
the associations between the information to be outsourced are more sensitive than the
information themselves. As a consequence, many solutions based on data dissocia-
tion have been proposed. In the first part of this section, we will present and discuss
proposed approaches based on data fragmentation to ensure the confidentiality of out-
sourced data. In the second part of this section, we will focus on approaches combining
encryption and fragmentation to ensure outsourced data confidentiality.

2.3.1 Confidentiality by Fragmentation

Traditionally, data fragmentation techniques are aimed to enhance the data manipu-
lation process, reducing the time needed to data processing by distributing data pro-
cessing, optimizing data storage, etc [Randell 1969]. Nonetheless, data fragmentation
based techniques are not designed with confidentiality preserving in mind.

Hudic et al. [Hudic et al. 2013] proposed an approach based on data fragmentation
to protect outsourced relational databases confidentiality. The proposed solution is
based on the use of a distribution model composed of two domains: a trusted local
domain from where the data originates and a honest but curious public domain to
where the data are distributed. The proposed fragmentation model relies on the clas-
sification of the relational tables composing the relational database to be outsourced
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into different levels of confidentiality which are depending on the information that the
respective relational tables store. Three different confidentiality levels are used: High
Confidentiality tables, Medium Confidentiality Tables and, Low Confidentiality Tables.
High Confidentiality tables store highly sensitive data, such as credit card numbers,
personal identification numbers, which need to be protected appropriately. In order
to minimize the use of encryption, High Confidentiality tables have to be stored in
the trusted local domain without encryption. Medium Confidentiality Tables and Low
Confidentiality Tables will be outsourced to different Cloud storage service providers.

Sai Krishna et al. [Krishna et al. 2012] propose a solution based on hybrid frag-
mentation, i.e., a combination of horizontal and vertical fragmentation to minimize the
amount of data to be stored at the owner site. They have employed graph-coloring
algorithms to determine which parts of a relational database can be outsourced and
which parts need to be kept at the owner.

Clearly, [Hudic et al. 2013] and [Krishna et al. 2012] are not good approaches since
the data owner must always manage and protect the relational tables containing highly
sensitive information.

2.3.2 Confidentiality by Combining Fragmentation and En-
cryption

The use of data fragmentation to enforce outsourced data confidentiality has been first
proposed, in conjunction with encryption, by Aggarwal et al. [Aggarwal et al. 2005].
The main idea consists of allowing the data owner to fragment its data across two or
many Cloud storage service providers that cannot communicate with each other. The
data fragmentation is performed in such a way as to be sure that the disclosure of the
contents of any one fragment does not lead to violate the confidentiality contraints.
Then, to perform queries over the fragmented and distributed database, a client sends
appropriate sub-queries to each Cloud storage service provider that stores a fragment
of the original database, and then piecing together sub-queries results at the client side.
The main drawback of this approach is that it is extremely hard in the real word to
ensure that the Cloud storage service providers to which the data is distributed cannot
communicate with each other.

Following the same idea proposed in [Aggarwal et al. 2005], Ciriani et al.
[Ciriani et al. 2007, Ciriani et al. 2009] define an approach considering that associa-
tions between a relational table attributes as well as the values assumed by some of
them can be sensitive. They define two kinds of constraints to allow the data owner



24 CHAPTER 2. OUTSOURCED DATA CONFIDENTIALITY: RELATED WORK

to specify his/her confidentiality requirements: Singleton constraints and Association
constraints. A singleton constraint is used to specify that the values assumed by an at-
tribute are sensitive. An association constraint is used to specify that the associations
between two or more attributes are sensitive and must be protected. The fragmentation
mechanism used is as following. Consider a set of confidentiality constraints and a set
of attributes A that should be fragmented (all attributes belonging to the database to
be outsourced, except those concerned by singleton constraints). The result of the frag-
mentation is represented by a set of fragments F = {F1, · · · , Fn} where each fragment
should verify three properties: (1) Ensure that only the attributes in A are concerned
by the fragmentation, (2) ensure that each attribute in A appears at least one time
in plaintext in a fragment, and (3) guarantee the unlinkability between the fragments
in F (no plaintext attribute in common between the fragments in F). The authors
show that the satisfaction of confidentiality constraints while respecting the three previ-
ously mentioned properties makes the fragmentation problem so far from being trivial.
Moreover, they prove that satisfy the confidentiality constraints while minimizing the
number of fragments (in order to avoid the unnecessary fragmentation of attributes)
makes the fragmentation problem NP-complete [di Vimercati et al. 2010]. To over-
come this problem, Ciriani et al. in [Ciriani et al. 2012] proposed a new modeling of
the fragmentation problem that exploits the compact representation of confidentiality
constraints as Boolean formulas, which makes finding a solution to the fragmentation
problem relies on the efficiency of representation and manipulation of those Boolean
formulas. To meet this requirements, the authors have used Ordered Binary Decision
Diagram (OBDDs) allowing an efficient manipulation of Boolean formulas.

Unfortunately, the approaches proposed in [Ciriani et al. 2007, Ciriani et al. 2009]
suffer from a major limitation since they suppose that the data to be outsourced are
stored in only one relational table. Clearly, this hypothesis is seldom in the real pro-
duction environments.

2.4 Conclusion

Outsourced data confidentiality is becoming an emerging paradigm that introduces
many research challenges. In this chapter, we presented and discussed existing solutions
related to ensuring outsourced data confidentiality. Two simple lessons can be taken
from the above discussions: (1) There are several ways to protect the confidentiality of
outsourced data providing different tradeoffs in the space of security, functionality, and
efficiency. (2) When solutions providing strong security guarantees (e.g., homomorphic
schemes) cannot provide a practical solution, we should take advantage of controlled
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leakage solutions. That is, choosing the information to be revealed to the Cloud storage
service provider in a way that enables search optimizations, while ensuring a meaningful
confidentiality guarantee.

In the next chapter, we propose an approach allowing the protection of confiden-
tiality of sensitive information in outsourced multi-relational databases by improving
existing approaches [Ciriani et al. 2007, Ciriani et al. 2009] based on combining data
fragmentation together with encryption.





CHAPTER

3 Preserving
Multi-relational
Outsourced Databases
Confidentiality using
Fragmentation and
Encryption

3.1 Introduction

Database as a service models give rise to two significant challenges. The first challenge
is how service providers protect outsourced databases from not authorized users. A
straightforward solution to protect outsourced databases consists in encrypting data
before their outsourcing. Unfortunately, it has been previously mentioned in Chapter
2 that querying data becomes in this case expensive (heavy computational overheads)
and can be impossible for several kind of queries. The second challenge is more complex
as it concerns the protection of outsourced databases from the storage service providers,
as in this case, they are not considered to be fully trusted. Therefore, our main focus
in this chapter is to define an approach that preserves outsourced data confidentiality
while providing a secure and efficient querying technique.

3.1.1 Motivating Scenario

In our working scenario, we strive to protect the confidentiality of an outsourced
relational hospital database D composed of two relations (primary keys are underlined
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and foreign keys indicated by *) :

Patient(Id_P, Name,ZIP, Illness, Id_Doctor *)
Doctor(Id_D, Name, Specialty)

The relationship between the tables Patient and Doctor is defined between the
foreign key of the table Patient (Id_Doctor) and the primary key of the table Doctor
(Id_D). We assume that the database will be outsourced to a third party. Therefore,
sensitive information stored in D should be protected. One classic solution is to
encrypt all information before outsourcing the database, a costly operation. However,
if we look carefully, the list of patients and their attributes (Id_P,Name, Zip) can
be considered as insensitive, and also that the list of illnesses could be made public.
Nevertheless, data sensitivity arises from the relationship between these two lists
(list of patients and list of illnesses). Therefore if we can find a way (e.g. vertical
fragmentation [Navathe et al. 1984]) to break relationships between patients and their
respective illnesses, there is no need to encrypt all records of the Patient relation. On
the other hand, the list of doctors and the list of patients are not sensitive. However,
the relationship between a patient and his doctor should be protected. The good way
to protect the relationship between the two relations Patient and Doctor consists in
encrypting the foreign key Id_Doctor or the primary key Id_D. The encryption of the
foreign key appears to be more beneficial as a foreign key references only one relation
(only the relationship between the two relations is protected) while a primary key can
be referenced by many relations. Therefore, if we encrypt the primary key, we will
protect all relationships between the relation containing the primary key and other
relations referencing the encrypted primary key. Thus, when the security requirement
specifies that only the a relationship between data is sensitive, our apporach is more
appropriate than the one based on full encryption.

3.1.2 Contributions

In this chapter, we propose an approach to protect the confidentiality of sensitive
outsourced databases by combining the best features of fragmentation and encryption.
Furthermore, we present an approach which is able to deal efficiently with multi-relation
normalized databases with which we strive to overcome the previously mentioned lim-
itations of [Ciriani et al. 2007, Ciriani et al. 2009]. The problems encountered in one-
relation1 databases take on additional complexity when working with multi-relation
normalized databases in a distributed environment, as it gives rise to new problems

1Databases composed from a single relation schema.
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such as protecting the relationships between relational schemas (relationships between
tuples in distinct tables) and defining a secure and efficient technique allowing autho-
rized users to query these sensitive relationships. We will present our approach which
uses a practical Private Information Retrieval (PIR) technique [Chor et al. 1998] al-
lowing to protect data unlinkability of different fragments of the original database
by protecting user query privacy. Unlinkability of two items of interest (e.g., records
stored into different fragments) means that within the system, from an adversary point
of view, these items of interest are no more and no less related. In our approach, a
relation containing sensitive information will be fragmented vertically into two or more
fragments. Unlinkability of fragments means that despite the fact that an adversary
has knowledge about the fragments of a relation, he/she remains unable to link records
from different fragments. Furthermore, we evaluate our proposed protocol by pre-
senting some experiments using our developed prototype. Afterwards, we use hash
table data structures to store the information of each fragments instead of using B+
trees which allows us to improve the effectiveness of the proposed PIR keyword-based
technique.

3.1.3 Chapter Outline

We proceed by describing in Section 3.2 our model architecture, the threat model,
security model and assumptions. After that, we describe in Section 3.3 our approach to
enforce confidentiality of outsourced data. Section 3.4 presents the query optimization
and execution model. In Section 3.5, we present a PIR-based technique to achieve
query privacy and enforce data confidentiality under a collaborative Cloud storage
service providers model. In Section 3.6, we present the prototype developement and
experimentations we conducted. Finally, Section 3.7 concludes this chapter.

3.2 Technical Preliminaries

3.2.1 Architecture

We consider our architecture of storage and query over distributed fragments illustrated
in Figure 3.1. It is composed of three main components:

• Users: They are actually database clients who have permission to query out-
sourced data. All operations which will be used in our approach (e.g., fragmen-
tation and encryption) in order to protect sensitive data confidentiality are trans-
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parent to the Users. That is, they believe interacting the original database and
forming their queries against it.

• Client: It is a trusted party which transform Users queries by splitting them to
create an optimized distributed Query Execution Plan QEP; QEP is a set of sub-
queries and other operations (e.g., decryption, join...). Based on the Metadata

containing information (e.g., relations, clear attributes, encrypted attributes and
selectivity 2 of attributes) about data distribution in different fragments, the Query
Transformation module construct a QEP which will be executed.

• Server: It represents different Cloud Storage Providers in which data fragments
are distributed.

Figure 3.1 – Architecture of the Proposed Model

3.2.2 Trust and Attack Model

Cloud servers are considered to be the best options for small companies with limited
IT budget allowing to reduce the cost of maintaining computing infrastructure and
data-rich applications. However, most of related works (e.g.,[Hacigümüs et al. 2002,
Biskup et al. 2011]) on the confidentiality of outsourced data considered that Cloud
service providers are “honest-but-curious”. The semi-honest model is the right fit
for our approach, as in this model, the Cloud servers act in an “honest” manner by
correctly responding user queries and following the designated protocol specification. In
this contribution, we consider that Cloud services providers have two levels of curiosity:
(1) In the first part of this chapter, we will assume that service providers are “curious”

2Attribute selectivity is is an estimated number that determines the effectiveness of queries that
performs a search over this attribute.
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in a way that they will try to infer and analyze outsourced data, and will also actively
monitor all received user queries and try to derive as much information as possible from
these queries. (2) In the second part of this chapter, we will further assume that service
providers can collude and cooperate together to link outsourced data. The client part
of this architecture is assumed to be trustworthy and all interactions between the user
and the client are secured using existing protocols e.g., SSL.

3.3 Confidentiality Using Fragmentation and En-
cryption

Our approach extends in several ways the vertical fragmentation-based approach de-
scribed in [Ciriani et al. 2007, Ciriani et al. 2009]. This approach considers that all
data is stored in a single relation, while in our approach data can be stored in several
relations, which is the rule for any typical environments. In our approach, we consider
that databases to be externalized are normalized so that two relations can be only
associated together through a primary key/foreign key relationship. For this purpose,
we introduce a new type of confidentiality constraint for fragmentation, the inter-table
fragmentation constraint. The aim of this new fragmentation constraint is to protect
the relationship between relations.

This section first presents the different kinds of confidentiality constraints used to
achieve our goals of protecting confidentiality by encryption and fragmentation, and
second formalizes the concept of fragmentation in our approach which extends ideas
presented in [Ciriani et al. 2007, Ciriani et al. 2009].

Definition 3. (Confidentiality Constraint). Consider that data to be secured
are represented with a relational database D, which is composed of a list of relational
schemas R = (R1, . . . , Rn), with each of these relational schemas Ri containing a list
of attributes ARi

= (a1,i, a2,i, . . .). A confidentiality constraint over D can be one of the
following:

• Singleton Constraint (SC). It is represented as a singleton set SCRi
= {aj,i}

over the relation Ri. This kind of confidentiality constraint means that the attribute
aj,i of the relational schema Ri is sensitive and must be protected, typically by
applying encryption.

• Association Constraint (AC). This kind of confidentiality constraint is repre-
sented as a subset of attributes ACRi

= {a1,i, . . . , aj,i} over the relational schema



32 CHAPTER 3. COMBINING FRAGMENTATION AND ENCRYPTION

Ri. Semantically, it means that the relationship between attributes of the subset
ACRi

is sensitive and must be protected.

• Inter-table Constraint (IC). It is represented as a couple of relational schemas
IC = {Ri, Rj} of the relational database D. Relations Ri and Rj must be associ-
ated through a primary key/foreign key relationship. The use of this kind of confi-
dentiality constraint ensures protection of the primary key/foreign key relationship
between the two relational schemas concerned with the inter-table constraint IC.

Note that protecting the relationship between two tables relies on protecting the
primary key/foreign key relationship and storing involved relations on distinct servers of
distinct providers. The association constraint can also be addressed through encryption
(encrypt at least one of attributes involved in the constraint), but clearly this will
increase the number of encrypted attributes and make database interrogation more
complicated. A more adapted way to resolve this kind of confidentiality constraint was
proposed in [Ciriani et al. 2007], which is based on splitting involved attributes in a
manner that their relationships cannot be reconstructed.

In the case of an inter-table confidentiality constraint, protecting the foreign key
using encryption is the simplest way to secure the relationship between the two rela-
tional schemas. However encrypting only the foreign key is not enough to keep the
relationship between relational schemas secure, as service provider may be able to
link records in two relational schemas by observing and analyzing user queries over
these relational schemas. To overcome this problem, the two relational schemas in-
volved in that case should be split into different fragments, and each of these fragments
should be distributed to a different Cloud storage provider. An interesting approach
for modeling constraints and resolving the data fragmentation problem was proposed
in [Ciriani et al. 2012], that efficiently computes data fragments satisfying the confi-
dentiality constraints. It is based on Boolean formulas and Ordered Binary Decision
Diagrams (OBDD) and uses only attribute-based confidentiality constraint (Singleton
Constraints and Association Constraints). However, it cannot deal as-is with Inter-
table Constraints. In order to use this approach, we define a way to reformulate
Inter-table Constraint as a set of Singleton Constraints and Association Constraints.
We explain this transformation in the definitions and theorems below.

Definition 4. (Inter-table Constraint transformation). Consider a relational
database with two relations R1(a1, . . . , an) and R2(b1, . . . , bm∗). Let us assume that R1

and R2 are related through a foreign key/primary key relationship in which the foreign
key bm of the relation R2 references the primary key a1 of relation R1. We assume that
R1 and R2 contain respectively p and q records, with p > 1 and q > 1. An Inter-table
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Constraint c = {R1, R2} over relations R1 and R2 states that the relationship between
these two relations must be protected by encrypting the foreign key bm and by storing
R1 and R2 in two different fragments. Therefore, the constraint c can be written as
follows:

1. A singleton constraint SC = {bm} to state that the value of bm should be protected.

2. A list of (m× n) association constraints AC = {(ai, bj)|i ∈ [1, n], j ∈ [1,m]}.

We propose the notion of a correct transformation of Inter-table Constraints. A
transformation of an Inter-table Constraint c to a set of confidentiality constraints C
is correct if enforcement of C implies protection of the unlinkability between records
of the two relations involved in c. The following Theorem formalizes this concept.

Theorem 1. (Transformation correctness). Given a relational database D made
up of two relational schemas R1(a1, . . . , an) and R2(b1, . . . , bm∗) related through re-
lationship between the foreign key bm of R2 and the primary key a1 of R1. Let
c = {R1, R2} be an Inter-table Constraint, the set of constraints C be the result of
the transformation of c, and F = {F1, . . . Fq} be a fragmentation of D that satisfies C.
The Inter-table Constraint c is correctly transformed into a set of constraints C if all
the following conditions hold :

1. bm does not appear in clear in any fragment of F .

2. ∀ ACi,j = {ai, bj} ∈ C, i ∈ [1, n], j ∈ [1,m], if ai ∈ Fk and bj ∈ Fl then k 6=
l.

Proof. According to Item 2 of Definition 4, the Inter-table Constraint will be replaced
by all possible associations constraint composed from an attribute of relation R1 and
another from relation R2. Due to the fact that an association constraint between two
attributes means that the relationship between these attributes will be protected using
fragmentation (each attribute will be stored in different fragments), Item 2 guarantees
that relations R1 and R2 will be stored in different fragments which hold condition (2).

Item 1 of Definition 4 creates a singleton constraint over the foreign key bm of the
relation R2. Thus bm will be considered as a sensitive attribute and will be protected
using encryption, which means that the foreign key bm will not appear in clear in any
fragment. As a result, if an adversary succeeds in having access to the fragments in
which R1 and R2 have been stored, she is unable to link data stored in these relations.
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The main advantage of the Inter-table Constraint is that it allows treatment of
multi-table relational databases. In addition, it gives a simple way to formulate con-
fidentiality constraints between relations. As we have seen in Item 1 of Definition
4, the attribute bm (foreign key of the relation R2) should be encrypted. However,
to be able to query data and construct relationship between relations, the chosen
encryption algorithm must be deterministic [Bellare et al. 2008] in order to preserve
uniqueness and allow the construction of relationship between relations (e.g. through
JOIN queries). As is known, in normalized multi-relation databases, three types of
relationship between relations exist: (i) one-to-one, (ii) one-to-many and (iii) many-
to-many relationships. Inter-table Constraints over relations associated using (i) or
(ii) can be simply transformed as shown in Definition 4, while others associated using
(iii) need a pre-transformation step before applying the transformation of Definition
4, as they are normally linked through a third relation known as a linking table. The
pre-transformation steps is described in the example below.

Example 1. Consider that we have a hospital relational database D with relations :

Patient(Id_patient,Name, ZIP )
Doctor(Id_doctor,Name, Specialty)
Examination(Id_examination, date,medical_report, Id_doctor∗, Id_patient∗)

Assume that database owner claims that relationships between a patient and his/their
doctor(s) are sensitive and must be secured. Therefore an Inter-table Constraint over
relation Patient and Doctor (IC = {Patient,Doctor}) must be defined. In this case
applying directly transformation as shown in Definition 4 is not possible since relations
Patient and Doctor are connected through Examination. So, the pre-transformation
step consists in writing the Inter-table Constraint IC using the linking relation
Examination. Thus, IC will be replaced by IC1 = {Patient, Examination} and
IC2 = {Doctor, Examination}. Next, both IC1 and IC2 will be transformed into a set
of Singleton Constraints and Association Constraints according to Definition 4.

Definition 5. Fragmentation. Let us consider a relational database D with relations
R1, . . . , Rn and A the list of all attributes contained in these relations. Given Af the
list of attributes to be fragmented, the result of the fragmentation is a list of fragments
F = {F1, . . . , Fm} where each of these fragments satisfies:

1. ∀Fi ∈ F, i ∈ [1..m], Fi ⊆ Af .

2. ∀a ∈ Af , ∃Fi ∈ F : a ∈ Fi.

3. ∀Fi, Fj ∈ F, i 6= j : Fi ∩ Fj = ∅.
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Note that the list of attributes to be fragmented Af contains all attributes in A,
except those concerned with Singleton Constraints (attributes to be encrypted). Con-
dition 1 guarantees that only attributes in Af are concerned by the fragmentation,
condition 2 ensures that any attribute in Af appears in clear at least in one fragment
and condition 3 guarantees unlinkability between different fragments.

Logically, to be able to get information about the original database, we should be
able to reconstruct original database from fragments. So after defining the fragmenta-
tion process, we shall define a mechanism to combine fragmentation and encryption.
More precisely, we need a mechanism to integrate attributes involved in the Singleton
Constraints (attributes to be encrypted) in the suitable fragment. These encrypted at-
tributes allow only authorized users (users who know the encryption key) to construct
the sensitive relationships. Based on the definition of Physicalfragment proposed
in [Ciriani et al. 2007], we define our mechanism called Securefragment to combine
fragmentation and encryption.

Definition 6. (Secure Fragment). Let D be a relational database with a list of
relations R = {R1(a1,1, . . . , aj,1), . . . , Rn(a1,n, . . . , ak,n)}, F = {F1, . . . , Fm} a fragmen-
tation of D and Af be the list of fragmented attributes. Each fragment Fi ∈ F is a
new relation whose attributes are a subset Ai ⊆ Af . Each Ai is composed of a subset
of attributes of one or more relations Rj ∈ R. We denote by RFi

the list of relations
in R such that a subset of their attributes belongs to the fragment Fi ∈ F . The secure
fragment of Fi is represented by a set of relations schema Re

Fi
in which each relation

is represented as Re
j(salt, enc, a1, . . . , ak) where {a1, . . . , ak} ⊂ Ai ∩ Rj and enc is the

encryption of all attributes of Rj that do not belong to {a1, . . . , ak} (all attributes of
Rj involved in a singleton constraint except those concerned by a singleton constraint
over the foreign key), combined before encryption in a binary XOR with the salt. All
foreign key attributes which are involved in singleton constraints are encrypted using a
deterministic encryption algorithm (e.g., AES) to ensure their distinguishability.

Algorithm 1 shows the construction of secure fragments.The main reason for report-
ing all original attributes (except foreign keys involved in the Singleton constraints) in
an encrypted form for each relation in a fragment, is to guarantee that a query Q over
the original relation Rj can be executed by querying a single fragment (which contains
Re

j) while preserving confidentiality of sensitive relationships, so we do not need to
reconstruct the original relation Rj to perform the query Q. Furthermore, encrypting
foreign keys ensure the protection of sensitive relationships between relations involved
into Inter-table Constraints. However, using deterministic encryption algorithm has
two issues. First, a major advantage is to enforce indistinguishability of records which
allows only authorized users who know the encryption key to execute queries associat-
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input : D = {R1, R2, · · · , Rn} /* Normalized relational database */
C = {C1, C2, · · · , Cm} /* Confidentiality constraints */

output: F s = {F s
1 , F

s
2 , · · · , F s

p} /*The set of secure fragments*/
1

2 Cf = {Ci ∈ C : |Ci| > 1} /* The list of association constraints */
3 Afkey = {a ∈ Ci, Ci ∈ C : |Ci| = 1 and isForeignKey(a) = True}
4 /* Afkey : The set of foreign keys to be encrypted*/
5

6 /* Fragmentation */
7 F := Fragment(D, Cf )
8 foreach Fi = {ai1 , ai2 , · · · , ain} in F do
9 Rf = classifyAttributes(Fi) /* Classify the attributes according to their

original relation.*/
10 foreach Rfi

in Rf do
11 foreach r in Rfi

do
12 /* r : record */
13 rs[salt] := GenerateSalt(Rfi

, r)
14 rs[enc] := Ek(t[aj1 , · · · , ajq ]⊕ rs[salt])
15 /* aj1 , · · · , ajq = Ri −Rfi

*/
16 foreach a in Rfi

do
17 /* a : attribute */
18 rs[a] := r[a]
19 endfch
20 foreach a in Afkey do
21 if a ∈ Ri then
22 /* a : the foreign key of the relation Ri */
23 rs[a] := Ek(r[a])
24 end
25 endfch
26 InsertRecord(rs, Rs)
27 endfch
28 AddRelationToFragment(Rs, F s)
29 endfch
30 endfch

Algorithm 1: Secure fragmentation

ing these relations. Second, a minor drawback is that it allows an adversary to infer
information about repeatedly occurring values of the encrypted foreign keys, but this
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information does not allow the adversary to break the unlinkability between relations.
The attribute salt which is used as a primary key of different relations in the secure
fragments protects encrypted data against frequential attacks. In addition, there is no
need to secure the salt attribute because knowledge of the value of this attribute will
not give any advantage when attacking encrypted data. In fact, the algorithm we used
(AES(k,m⊕ salt)) can be seen as an AES-CBC with an IV = salt, or AES-CBC are
proved to be semantically secure [Bellare et al. 1997] even when the used IV is known.

Example 2. Assume that we have a relational database D of a medical insurance
company that contains two relations Patient and Doctor represented respectively in
Table 5.1 and Table 5.2. The insurance company has defined a set of confidentiality
constraints CC = {C1 = {SSN}, C2 = {Name_pat, Illness},
C3 = {Patient,Doctor}}.

Table 3.1 – Patient relation

SSN Name_pat Dob Illness Id_doc
865746129 A. Barrett 20-08-1976 Illness1 doc_3
591674603 C. Beat 18-01-1981 Illness2 doc_3
880951264 N. Baines 14-09-1986 Illness1 doc_2
357951648 S. Brandt 18-01-1981 Illness3 doc_1

Table 3.2 – Doctor relation

Id_doctor Name_doc
doc_1 C. Amalia
doc_2 D. Annli
doc_3 P. Amadeus

As shown before, the first step in the fragmentation process consists in transforming
Inter-table Constraint (C3). Relations Patient and Doctor are linked through the for-
eign key Id_doc in the relation Patient, therefore C3 will be replaced by C4 = {Id_doc}
and all possible Association constraints composed of an attribute of the relation Doctor
and an attribute of the relation Patient (guarantee that the relation Patient will not
be in the same fragment as the relation Doctor). In our example, attributes SSN
and Id_doc of the relation Patient are involved in singleton constraints C1 and C4

respectively. So they will not be concerned by the fragmentation. As a result C3 will be
replaced by :
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• C4 = {Id_doc} • C8 = {Dob,Name_doc}
• C5 = {Name_pat, Id_doctor} • C9 = {Illness, Id_doctor}
• C6 = {Name_pat,Name_doc} • C10 = {Illness,Name_doc}
• C7 = {Dob, Id_doctor}

A possible fragmentation of D that satisfies all confidentiality constraints is
the set of fragments {F1, F2, F3} with: F1 = {Patient(Name_pat,Dob)}, F2 =
{Patient(Illness)} and F3 = {Doctor(Id_doctor,Name_doc)}. Next step is the Se-
cure fragmentation transformation (Definition 6). We assume that encryption of the
protected attributes uses the deterministic encryption algorithm E with the encryption
key K. The result of applying the SecureFragmentation over different fragments is
represented as follows.

• F1 : Patient(salt, enc,Name_pat,Dob, Ek(Id_doc)) with:
enc = EK(〈SSN, Illness〉⊕ salt)

• F2 : Patient(salt, enc, Illness, Ek(Id_doc)) with:
enc = EK(〈SSN,Name_pat,Dob〉⊕ salt)

• F3 : Doctor(Id_doctor,Name_doc)

Figure 3.2 – Secure Fragmentation Results

Note that F3 has not been changed because there is no singleton constraints over
the Doctor attributes. Lastly data fragments F1, F2 and F3 are distributed to different
Cloud storage providers.

3.4 Query Transformation and Optimization

In our querying model, query transformation is performed by the Query Transforma-
tion (QT ) module on the client side. When receiving a user query, the query is analyzed
syntactically and semantically so that incorrect queries are rejected as earlier as pos-
sible. Next, based on the Metadata stored on the client side, the QT will attempt to
find a fragment on which the user query can be executed, i.e. a fragment in which
QT can find all attributes and relations involved in the user query. If such a fragment
does not exist, QT will decompose the user query into queries expressed in relational
algebra, find out which fragments are involved in the query, and finally transform the
user query into a set of fragments queries. Using this set of fragment queries and
other operations such as encryption, decryption, join and aggregation, the QT creates
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input : Q /* User Query */
M /* Metadata */

output: QEP /*Query execution plan*/
1

2 (tables, attributes, conditions) = decomposeQuery(Q)
3 syntacticChecking(Q) /* Verify that keywords, object names, operators are placed correctly in the query*/
4 /* Semantic Checking */
5 if tables 6⊆M or attributes 6⊆M then
6 rejectQeury(Q)
7 end
8 foreach (attribute, operator, value) in conditions do
9 if !isT heSameT ype(attribute, value) or !match(operator, value) then

10 rejectQeury(Q)
11 end
12 endfch
13 /* Checking if there is a fragment on which the query can be directly executed */
14 F = getF ragmentSchema(M)
15 foreach frag in F do
16 Tfrag = getT ables(frag)
17 Afrag = getAttributes(frag)
18 Ac = getAttributesF romConditions(Conditions)
19 if tables 6⊆ Tfrag or attributes 6⊆ Afrag or Ac 6⊆ Afrag then
20 continue
21 end
22 /* Checking if all conditions attributes are not encrypted in the fragment frag*/
23 if areEncrpted(Ac, frag) then
24 continue
25 end
26 /*The query Q can be executed on the fragment frag */
27 addOperation(QEP, (Q,frag))
28 foreach attr in Afrag do
29 if isEncrpted(attr, frag) then
30 addOperation(QEP, (Decryption,attr))
31 end
32 endfch
33 return QEP
34 endfch
35

36 /* Multi Fragment Query*/
37 /* Get the fragments in which conditions attributes are not encrypted */
38 Ac = getAttributesF romConditions(Conditions)
39 As

c = sortAttributeBySelectivity(M, Ac) /* Sort attributes according to their selectivity*/
40 foreach attr in As

c do
41 Fattr = containsInClear(M, attr) /* Set of fragments on which attr appears in clear text*/
42 frag = getBestF ragment(Fattr) /* Get the best fragment which contains the less number of encrypted

attributes */
43 A = listOfRetrievedAttributes(frag, attributes) /* The list of attributes that can be retrieved by

querying the fragment frag */
44 SQ = formulateT heSubQuery(A, attr, Q)
45 addOperation(QEP, (Q, frag))
46 foreach a in A do
47 if isEncrpted(a, frag) then
48 addOperation(QEP, (Decryption, a))
49 end
50 endfch
51 endfch
52 /*Add the join operation that combines results returned from subqueries*/
53 addOperation(QEP, join)

Algorithm 2: Query validation and transformation process
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a QEP and sends it to the Query Executor. Algorithm 2 shows the query validation,
transformation and optimization process.

Example 3. (One-fragment query). Assume that we have a relational database D
that contains two relations Patient and Doctor represented respectively in Table 3.1
and Table 3.2, The fragmentation of D is the list of fragments represented in Fig-
ure 3.2. Consider the following user query:

Q1 : SELECT Name_pat, SSN
FROM patient
WHERE Dob=’1986-09-14’
And Illness = ’Illness1’;

Q1 can be executed over either F1 or F2 fragments as all attributes required by
Q1 can be found (in clear or encrypted form) in both fragments.
• QEP1 for Q1 over F1 :

Q11 : SELECT Name_pat, salt, enc
FROM patient
WHERE Dob=’1986-09-14’;

Dec : Decrypt(Result(Q11), Key) = Rd(Q11)
Q12 : SELECT Name_pat, SSN

FROM Rd(Q11)
WHERE Illness = ’Illness1’;

• QEP2 for Q1 over F2 :

Q11 : SELECT salt, enc
FROM patient
WHERE Illness = ’Illness1’;

Dec : Decrypt(Result(Q11), Key) = Rd(Q11)
Q12 : SELECT Name_pat, SSN

FROM Rd(Q11)
WHERE Dob=’1986-09-14’;

As we can see through the previous example, a query can have more that one QEP.
Logically, each QEP may have a different execution cost. Thus, the QT should have
the capability to pick out the best QEP in terms of execution cost. This capability is
explained later in the Query Optimization section.
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For multi-fragment query3, QT will use local join operations as it should combine
results of execution of subqueries over fragments. There are two different ways to
perform local join operation : (1) Execute all sub-queries in a parallel manner, then
join the result on the client side. (2) Execute sub-queries in a sequential manner to
have the ability to perform semi-joins using the result of previous sub-queries. While
(1) can be cheaper than (2) in terms of sub-query execution, it is much more costly
in the join operation because in (1), sub-queries results might contain a lot of records
that might not be part of the final results.

Example 4. (Multi-fragment query). Assume that we will use the same database
D and fragments used in Example 3. Consider the query :

Q2 : SELECT Name_pat, Name_doc
FROM patient, doctor
WHERE Dob=’1986-09-14’

A possible QEP for Q2 can be :

Q21(F1) : SELECT Name_pat, Ek(Id_doc)
FROM patient
WHERE Dob = ’1986-09-14’;

Dec : Decrypt(Ek(Id_doc), Key) = δ

Q22(F3) : SELECT Name_doc
FROM doctor
WHERE Id_doctor IN δ;

Join : Result(Q21) ./ Result(Q22)

Since the relationship between the two relations Patient and Doctor is protected,
these relations are stored in different fragments. Therefore, the queryQ2 is decomposed
into two sub-queries Q21 and Q22 executed respectively over fragments F1 and F3.

In addition to traditional query optimization methods such as selecting conditions
as earlier as possible, the QT attempts to minimize the execution cost of the created
QEP by applying the selection condition with the most selective attribute, i.e the
selection condition which is satisfied by the smallest number of tuples. To give this
ability to the QT , we assign a selectivity and an average attribute-value size (AVS) to
each attribute contained in the original database to theMetadata stored in the Client.
The selectivity of an attribute is the ratio of the number of distinct values to the total
number of rows.

Selectivity = DistinctV alues

TotalNumberRows
(3.1)

3i.e. a query that cannot be executed over only one fragment.
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In distributed databases, they may exist several strategies for each query due to the
fact that data are stored in different sites. One way to choose the best strategy is based
on calculating the expected cost which should include corresponding evaluation and
communication cost. The formula of a point query execution costs can be estimated
roughly as follows:

Query execution cost = CE ×NbExRow + CT ×NbEstRow (3.2)

CE represents the evaluation cost of a record, CT is the transmission cost of a record,
NbExRow is the number of rows examined and NbEstRow is for the estimated number
of returned rows which is calculated as follows :

NbEstRow = 1
Selectivity

(3.3)

Using the average attribute-value size (AVS) of encrypted attribute enc, we can esti-
mate the execution costs of the decryption operation as follows :

Decryption cost = CD × AV S ×Number of rows (3.4)

CD represents an estimation of the per-byte decryption costs of the used encryption
schemes.

Example 5. Assume that we use the same database D and fragments of Example 3. Let
us suppose that the relation patient contains 105 tuples and the selectivity estimation
of the attribute Dob is 0.14 and for Illness it is 8 × 10−4. We suppose also that
AV S1 = 252 and AV S2 = 152 are respectively the average attribute-value sizes of
encrypted attribute enc of the table patient stored in the fragments F1 and F2. Consider
the query Q1 used in the Example 5.1. As shown before, there are two possible QEP
for this query. Using (2), (3) and (4) the QT will compute the approximative execution
cost for each QEP as shown below :

QEP1 execution cost = CE × 105 + CT × 7 + CD × 252× 7 + CE × 7
QEP2 execution cost = CE × 105 + CT × 1250 + CD × 152× 1250 + CE × 1250

After computing the approximative execution cost of each QEP, the QT will select the
best one in terms of execution cost. In our example, QEP1 has the lowest execution
cost.

3.5 Preserving Data Unlinkability

Ensuring data confidentiality is achieved by preserving unlinkability between different
data fragments and by encrypting all sensitive information that cannot be protected
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using only fragmentation. However, we have seen in the previous section that evaluation
of some queries may use semi join in order to join data from different fragments. This
will not be a concern in the case of non-colluding Cloud providers, but it becomes a
serious security and privacy problem when Cloud Service Providers (CSP) can collude.
In this section, we present our solution to overcome this privacy concern when we
assume that CSP can collude to link data stored in different fragments.

Example 6. Consider the database, fragments, queries and QEP used in the Example
4. The QEP is executed in a sequential manner by the QueryExecutor. The next table
shows the execution of the QEP.

Operation Result
Q21 execution over F1 : 〈N.Baines, Ek(doc_2)〉
Decryption : δ = {Decryption(Ek(doc_2))}
Q22 execution over F3 : 〈D.Annli〉

Assume that F1 and F3 are distributed respectively in CSP1 and CSP3 which will try
together to link tuples stored in the two fragments by correlating the history of user
queries, their execution time and their respective responses. In our example, CSP1 will
disclose that a client has executed Q21 to retrieve the tuple 〈N.Baines, Ek(doc_2)〉 at
the time t, while CSP3 will disclose that the same client has executed Q22 to retrieve
〈D.Annli〉 at the time t+ n. Using this information, CSP1 might be able to infer that
Ek(doc_2) is the encrypted value of ’doc_2’. Therefore CSP1 can associate all patients
having Id_doc =’Ek(doc_2)’ to the doctor whose name is ’N.Baines’.

To overcome this problem, the Client should have the ability to execute semi join
queries and retrieve data from a fragment without the CSP (which stores the frag-
ment) learning any information about the semi join condition values. To meet this
requirement, we use a Private Information Retrieval keyword-based technique. PIR
keyword-based was presented in [Chor et al. 1998] to retrieve data with PIR using
keywords search over many data structures such as binary trees and perfect hashing.
In the next section of this chapter, we will explain how we can use PIR keyword-based
technique to ensure our semi join queries privacy requirement.

3.5.1 PIR System design

In the Client of our architecture, we give to Query Executor the ability to com-
municate with different Cloud providers through the PIR keyword-based protocol.
In the Server, we add on each CSP a PIR Server as a front-end entity to answer
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Query Executor’s PIR queries. An adversary (a Cloud provider administrator) who
can observe Query Executor’s PIR-encoded queries is unable to find out the clear con-
tent of the queries. Enforcing integrity on the PIR server side is straightforward since
we assume that PIR servers will not attempt to wrongly answer Query Executor’s
PIR queries.

The main purpose for using PIR keyword-based is to ensure the privacy of semi join
queries. In our approach, this kind of queries is mainly executed over primary or
foreign key attributes. In all existing PIR schemes, a common assumption is that the
client should know the address of the block or the item to be retrieved. To satisfy this
assumption in our approach, the PIR server will create an indexed structure over each
indexed attributes in the database (e.g., attributes representing primary or foreign keys
of the database relations). Therefore, we implement over these attributes two types of
indices: B+ trees [Aho et al. 1983] and hash tables [Amble and Knuth 1974]. In the
following subsections, we present then discuss the PIR keyword-based protocol using
both index structures.

PIR based on B+ Trees

Private Block Retrieval (PBR) is a practical extension of PIR in which a user retrieves
an n-bit block instead of retrieving only a single bit. Therefore, to be able to use B+
tree structure with the PBR, we consider each node or leaf in the B+ trees as a data
block. However, in most cases, B+ tree nodes and leaves do not have the same size,
so they cannot be used directly as all PBR approaches require that data blocks are of
equal size. Thus, a required stage consists in adding padding data to nodes and leaves
in order to have the same size for all B+ tree elements.

Using the PIR keyword-based query requires a setup phase in which the
Query Executor and the PIR server exchange information. This setup phase is
divided into two steps:

1. The Query Executor sends to the corresponding PIR server the Relation schema
name and the attribute name over which the semi join query has to be performed.

2. When receiving the Relation schema name and the attribute name, the PIR server

selects the corresponding B+ tree and sends its root node to the Query Executor.

After receiving the root node sent by the PIR server, the Query Executor will com-
pare the list of keys contained in the root node with values used in the condition of
the Semi join query in order to find out the indexes of the next nodes to be retrieved.
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The Query Executor will subsequently perform PIR queries over chosen indexes to
retrieve corresponding nodes. Once all items have been retrieved, the Query Executor
combines them to build the result of the original Semi join query. Refer to Algorithm
3 and Algorithm 4 for a description of the PIR keyword-based protocol algorithms
used in the Server and the Client parts. We illustrate the execution of a semi-Join
query using the PIR keyword-based in the example below.

input :
BPT = {B1, . . . , Bn} /* B-Plus Tree over indexed attributes*/

1 while True do
2 Request← handle_client_request()
3 if Request is PQR then
4 /* PQR : Pre-Query Request */
5 (TabName, AttriName)← Request

6 B ← GetAssociatedBPT (TabName, AttriName)
7 RootB ← GetRootNode(B)
8 ReplyToClient(RootB)
9 end

10 if Request is PIRQ then
11 /* PIRQ : PIR Query */
12 result← compute(Request)
13 ReplyToClient(result)
14 end
15 end

Algorithm 3: SemiJoin PIR keyword-based query (server)

Example 7. Consider the query Q22 used in Example 4. We suppose that δ =
{doc_3, doc_69}. The execution of Q22 using PIR keyword-based protocol over B+
trees data structures is as follows:

1. The Query Executor sends (Doctor, Id_doctor) to the PIR server.

2. The PIR server sends the root node of the B+ tree corresponding to the received
(Doctor, Id_doctor). Suppose that this root node is as presented in the table below.

i1 doc_11 i2 doc_5 i3

• • •

Note that i1, i2, i3 are the indexes to the next level nodes. doc_11 and doc_5 are
the root node keys.
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input :
tabName, attrName /* Table and Attribute where the semi-join will be

performed */
value /* Semi-join condition value */

1 Node← send_PQR_request(tabName, attrName)
2 while Node is not leaf_node do
3 foreach elem in Node do
4 findLink ← False
5 if Key(elem) < value then
6 Node← PIR_Query(IndexOfLeftChild(elem))
7 findLink ← True
8 break
9 end

10 endfch
11 if findLink = False then
12 Node← PIR_Query(IndexOfRightChild(elem))
13 end
14 end
15 foreach elem in Node do
16 if Key(elem) = value then
17 return Data(elem)
18 end
19 endfch

Algorithm 4: SemiJoin PIR keyword-based query (client)

3. The Query Executor compares the elements of δ with the received nodes keys.

(a) The Query Executor wants to retrieve the node containing the key doc_3,
due to the fact that doc_11 < doc_3 < doc_5 (string comparison) and based
on the received root node, the Query Executor will retrieve the node indexed
by i2.

(b) The Query Executor needs also to retrieve the node containing the key
doc_19, seeing that doc_5 < doc_69 (string comparison) and based on the
received root node, the Query Executor will retrieve the node indexed by i3.

For each index to be retrieved ii, the Query Executor sends an encoded PIR query
PIR(ii) to the PIR server. This process will be executed until the leaves of the
B+ tree are reached. From the retrieved leaves, the Query Executor gathers tuples
in which their keys are element of {doc_3, doc_69}.
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Theorem 2. Let D be a multi-relation normalized database, F = {F1, F2} be a frag-
mentation of D, and Q be a multi-fragment query that joins records from both fragments
F1 and F2. Consider that CSPs in which the fragments F1 and F2 are stored can collude
to link data partitioned in these fragments, and that Q is evaluated using semi join
operations. Sensitive relationships between F1 records and F2 records remain protected
if and only if the privacy of the semi join sub-queries is guaranteed.

Proof. To prove the Theorem 2, we use the following two sketches. The fist sketch
proves that without ensuring semi join sub-queries privacy, collaborative CSPs can,
in some cases, break data unlinkability, while the second sketch proves that, under a
collaborative Cloud storage service providers model, protecting data unlinkability can
only be guaranteed with the protection of the privacy of the semi join sub-queries.

SKETCH without using the PIR keyword-based protocol: Suppose that
the Cient wants to execute a query which joins records from two fragments F1 and F2.
Let us consider that the sub-query Q1 executed over the fragment F1 has returned n
tuples. And the semi-join query Q2 executed over F2 has returned m tuples. Therefore,
if CSPs that store F1 and F2 collude together to link tuples from Q1 and Q2 results,
the probability to guess correctly the relationship between tuples (denoted using!)
is:

Pr[Result(Q1)! Result(Q2)] = 1
m× n

Clearly, ifm and n are small, CSPs will have a great chance to break data unlinkability.

SKETCH using the PIR keyword-based protocol: Let us consider that the
Client attempts to perform a query which joins records from two fragments F1 and
F2. According to our defined PIR keyword-based protocol, the Client will execute
Q1 over the fragment F1 without using the keyword-based protocol. Next, the Client
will send the table name T and the attribute name a on which the semi-join will be
performed, the Server replies with the root node of the corresponding B+ tree. It is
clear from the previous step that the CSP which stores F2 can only know the attribute
name and the table name on which the semi-join will be performed. After receiving
the root node, the Client will use the PIR protocol to retrieve internal corresponding
nodes until the leaves of the B+ tree are reached. The PIR protocol will ensure that
the server will not know which nodes were retrieved by the Client. Moreover, all tuples
are stored in the leaf level of the B+ tree. Therefore, in order to retrieve each record,
the Client shall execute the same number of PIR queries. Rightfully, the only revealed
information when using the PIR keyword-based protocol is the table name and the
attribute name on which the semi-join has been performed. Therefore, if CSPs storing
F1 and F2 collude together to break data unlinkability, they will be able only to infer
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that the relation T1 in F1 over which Q1 has been executed is linked to the relation
T through the attribute a. Due to the fact that the foreign key in T1 referencing the
attribute a in T is encrypted, linking records is not possible.

The particularity of B+ tree structures is that data appears only in the leaves
while internal nodes is mainly used to guide the search. B+ tree’s leaves are linked
together to simplify sequential data access which gives the ability to perform in an
efficient manner cardinality queries and range queries. However, the use of B+ tree
data structure presents two disadvantages : first, as we have shown in the previous
example, the Query Executor will use PIR queries to run down the tree and privately
retrieve blocks (leaves) which contain records that match the semi-join condition. In
each layer of the B+ tree, Query Executor should send a PIR query to the PIR server

to get the addresses of the next layer nodes to be retrieved. Thus, for a k-layers B+ tree,
Query Executor needs at least k PIR queries to reach the leaf layer, which is expensive
in terms of communication and execution time. Second, several records which will not
be part of the final result of the semi join query will be retrieved as a B+ tree leaf
may contain several records having different index values.

PIR based on Hash Table

Hash table is a data structure that implements a mapping form keys to values. It is
represented by an array in which data is accessed through a special index. The idea
behind using hash tables is to map the indexed attribute (Primary key or foreign key)
values to the set of corresponding records. These indexed attribute values will be the
keywords which are used to search corresponding records stored in the hash tables.
Hash tables are composed of set of sequential hash buckets. We will consider each
set of records having the same keyword (indexed attribute value) as an hash buckets.
The index of each bucket in the hash table is calculated using a minimal perfect hash
function [Botelho et al. 2007] that maps n keywords to n consecutive integers.

We describe the use of hash table with the protocol PIR to perform semi join

queries with the following four steps :

• Setup step – The PIR server create an hash table over each indexed attributes
of the database. This stage is carried out only once as created hash tables will be
used for subsequent semi join queries.

• Step 1 – The Query Executor sends to the PIR server the name of the table
and the name of the attribute on which the semi join is performed.
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• Step 2 – PIR server picks up the hash tree corresponding to the received couple
(table, attribute) on which the semi join is performed and sends back to the
Query Executor a set of metadata allowing the construction of the minimal perfect
hash function used for building the corresponding hash table.

• Step 3 – Using the received metadata, the Query Executor derives the minimal
perfect hash function and calculates for each constant value in the semi join
condition, the corresponding bucket index in which records corresponding to that
constant value are stored. These calculated indexes are also the blocks numbers
in the hash table index on the server. Next, the Query Executor will use PIR
query to retrieve data blocks having the calculated indexes.

The advantage behind using hash tables lies in the fact that only one PIR query
is needed to retrieve a data bloc instead of n PIR query when using a B+ tree (n
represents the height of the B+ tree). Moreover, using hash tables, retrieved blocks
will contain only records that match the original query of the user.

Example 8. Consider the query Q22 used in Example 4. We suppose that δ =
{doc_3, doc_69}. the execution of Q22 using PIR keyword-based protocol over Hash
tables data structures is as follows:

1. The Query Executor sends (Doctor, Id_doctor) to the PIR server.

2. The PIR server sends to the Query Executor a set of metadata allowing the con-
struction of the minimal perfect hash function f used for building the corresponding
hash table.

3. Using received minimal perfect hash function f , the Query Executor computes for
each element in δ, the corresponding block index in which records corresponding
to that element are stored. Suppose that f(doc_3) = i1 and f(doc_69) = i2, the
Query Executor sends to the PIR server PIR(Doctor, i1) and PIR(Doctor, i2)
to privately retrieve blocks having indexes i1 and i2.

3.6 Implementation and Evaluation

We have developed a prototype for our approach, it is composed of two main com-
ponents: (1) A Client entity developed in C++. Using regular expression offered
by the boost library [Maddock 2001], we give the ability to the client Entity to
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transform received queries into a QEP. Further, the Client uses the Crypto++ li-
brary [Dai 1995] to perform different cryptographic operations. (2) The server en-
tity that uses STX B+ Tree [Bingmann 2008] and CMPH (C Minimal Perfect Hash)
[Botelho and Ziviani 2007, Botelho and Zivian 2007] libraries to build and manipulate
B+ tree and hash tables structures used by the PIR protocol. To give PIR function-
ality to the Server entity, we have used Percy++ [Goldberg 2007a, Goldberg 2007b].
Finally, for relational database server we used MySQL [Oracle ].

3.6.1 Experimental Design

For our benchmarking, we used the relational database schema D composed of three
relations as follows:

Patient(Id_patient,Name, SSN,Dob,Gender, ZIP, Illness)
Doctor(Id_doctor,Name, Specialty)
Examination(Id_examination, date,medical_report, Id_doc∗, Id_pat∗)

Note that the attributes Id_doc∗ and Id_pat∗ are two foreign keys that reference re-
spectively the primary key of the table Patient (Id_patient) and the primary key of the
table Examination (Id_examination). In tables Patient, Doctor and Examination,
we inserted respectively 106, 103 and 105 records. Fragments schemes obtained from
the application of our secure fragmentation algorithm are represented below:

F1 : Patient(salt, enc, Id_patient,Name,Dob,Gender, ZIP )
Doctor(Id_doctor,Name, Specialty)

F2 : Examination(Id_examination, date,medical_report, Ek(Id_doc)∗,
Ek(Id_pat∗))

F3 : Patient(salt, enc, Illness)

As we have previously seen, our approach is based on vertical fragmentation, the
fragments of the table patient which are stored in F1 and F3 will be also composed of
106 records. Each fragment F1, F2 and F3 of the database D should be stored in a
different Service Provider. In our experiments, we used three virtual machines, with
each representing a Service Provider and running MySQL 5.5.31. All experimentations
have been performed on an eight cores server (Intel(R) Xeon(R) CPU x5355, 2.66 GHz)
with 12 GB of RAM and running Ubuntu Linux 10.04.
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3.6.2 Evaluation

As we have seen in the section 3.4, two kinds of queries can be used in order to
query distributed fragments: (1) Queries that can be executed over only one fragment.
(2) Queries which require the interrogation of several fragments to be evaluated. To
evaluate the efficiency of our approach, we tested for each kind of query, and according
to the number of retrieved records, the time required to execute the query. To evaluate
the query of the type (1), we used the following query Exp_Q1 :

Exp_Q1 : SELECT Name, SSN, Dob
FROM patient
WHERE Gender = ’Male’

According to the used Fragments schemes, Exp_Q1 is executed over the fragment
F1. To be able to control the number of returned records, we used the clause SQL
LIMIT (LIMIT 0, number_of_record). The Figure 3.3 shows the execution costs per
number of retrieved records. Note that in all experiments the cost of data transfer
between the Server and the Client is negligible because both parties are installed in
the same experimentation server.

Figure 3.3 – Execution costs per number of retrieved records for the query Exp_Q1

For queries of the type (2), our approach will use semi_join with the PIR keyword-
based protocol in order to join fragmented data while preserving the protection of
sensitive associations. In this case, two kinds of data structure can be used : B+ tree
and hash table.

For a better comparaison of the use of B+ trees and Hash tables with the
keyword-based PIR, we executed the query Exp_Q2 using the keyword-based PIR over
both data structures.
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Figure 3.4 – Execution costs per number of retrieved records for the query Exp_Q1
over B+ Tree and Hash Table data structures

Exp_Q2 : SELECT Name_pat, SSN
FROM patient, examination e
WHERE e.date= ?x

Figure 3.4 compares the processing costs for the query Exp_Q1 using the keyword-
based PIR over both data structures.

We make the following observations. First, as expected, the use of hash tables as the
data structures used by the PIR keyword-based in order to perform semi join queries
is much more efficient compared to the use of B+ trees with the PIR keyword-based.
This can be explained by the fact that in the case of B+ tree, the Client must run
down the tree using a PIR query in each level of the tree to retrieve data blocks stored
in the leaf level of the B+ tree. While, in the case of hash tables, the Client needs
to perform only one PIR query to get the data block containing requested records.
For instance, the height of the corresponding B+ tree of the table Patient is 5, then
the Client must perform 5 PIR queries to be able to retrieve corresponding records.
Second, another reason to the inefficiency of the use of B+ trees compared to the use of
hash tables with the PIR keyword-based is due to the fact that the size of constructed
B+ trees are much more bigger than constructed hash tables which will introduce an
execution overhead when performing PIR queries.
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3.7 Conclusion and Contributions

In this chapter, we have presented an approach based on fragmentation, encryption
and query privacy techniques enabling privacy-preserving of outsourced multi-relation
databases. We presented different techniques that we have used to decompose multi-
relational databases in the aim to protect sensitive associations, then we demonstrate
how our decomposition techniques help in achieving data confidentiality. We presented
a querying technique that optimizes and executes queries in this distributed system
and how we can improve the security of the querying technique in order to protect
data confidentiality under a collaborative Cloud storage service providers model.

Despite that our querying approach allows us to effectively and securely construct
sensitive relations broken by the use of vertical fragmentation, it cannot efficiently exe-
cute queries over the attributes storing sensitive information, since the values assumed
by those attributes are encrypted in such a way that makes performing operations
(e.g., SUM, AVG, etc.) over them impractical. We strive to overcome this limitation
in the next chapter by presenting an algorithm and tool set that determines an opti-
mal balance between confidentiality and functionality of the sensitive outsourced data.
That is, to use the functionalities (i.e. SUM, AVG, etc.) required by the queries to be
executed over the outsourced database, we aim to get the different encryption schemes
that can provide them when ensuring the best level of confidentiality.





CHAPTER

4 Combining
Encryption-based
Mechanisms to ensure
Outsourced Data
Confidentiality

4.1 Introduction

Encryption schemes have been proposed recently that allow to execute particular query
operators over encrypted data and recent work by [Popa et al. 2011] shows that the
general direct processing of encrypted data is an achievable goal, something recently
confirmed in a larger industrial perspective [Grofig et al. 2014]. Following the idea of
encrypting cleartext in so called "onions" allows to balance and match data processing
functionality, i.e. each layer of an onion supports some SQL operations, with security,
i.e. an onion structure introduces a total order with respect to the security properties
of the chosen schemes. Yet, it is not practical to encrypt all columns in a table with
the same onion structure. For example, columns may not require any encryption as
they do not contain any sensitive material. Other columns may, for company specific
compliance regulations, require to always be encrypted using a specific scheme when
outsourced.

We believe that in order to further promote the wider industrial adoption of directly
processing encrypted data, a more flexible configuration management is required before
outsourcing the data from on-premise to a database-as-a-service cloud. In this chapter,
we first present a policy-based configuration framework for encrypted data allowing the
security administrator to specify the security policy to be applied over the outsourced
data. Second, we propose an algorithm allowing to detect conflicts between security
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and utility requirements. Third, we prove that selecting the optimal combination
of encryption schemes that fit the defined policies with respect to the data owner’s
functional requirements (e.g. SQL that should be executed over the encrypted data)
is NP-hard. Fourth, we therefore propose a heuristic, polynomial-time algorithm for
finding a combination of encryption schemes that satisfies a policy P and provides the
best security level.

The rest of this chapter is organized as follows, Section 4.2 describes the problem
treated in this chapter. Section 4.3 presents the modeling of the used system and
the modeling of the policy to be applied over the outsourced database. We show, for
a given policy, how to detect the conflict between security and utility requirements
involved in the policy and how to choose the combination of encryption schemes that
enforces it. Section 4.4 presents a use case showing the application and the benefits
of our approach in practice. Section 4.5 reports the implementation and evaluation of
our approach. Finally, Section 4.6 reports our conclusions.

4.2 Problem Description

4.2.1 Adjustable Database Encryption

Encrypted databases can execute SQL queries over encrypted data. In this case, data
is never decrypted inside the database server, but always remains encrypted. The key
to the encryption and decryption functions solely resides at the client.

The main idea to processing queries in this way is property-preserving encryption.
In property-preserving encryption a function f(E(x), E(y)) on ciphertexts E(x), E(y)
returns the same result as f(x, y). Hacigümüs et al. have described this concept for
deterministic encryption and equality as a function [Hacigümüs et al. 2002]. They re-
alized that many database operators, particularly selection and join, often use equality.
Each data value is separately deterministically encrypted. Those database operators
can then be used unmodified on encrypted data.

A limitation of the approach proposed in [Hacigümüs et al. 2002] was that inequal-
ity comparisons (range queries) were insufficiently supported. Agrawal et al. intro-
duced order-preserving encryption [Agrawal et al. 2004]. Order-preserving encryption
is property-preserving encryption for greater-than-or-equal comparisons. Using order-
preserving encryption one can implement a large subset of SQL queries.
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We have seen in Sections 2.2.1 and 2.2.3 that the security of order-preserving en-
cryption and even deterministic encryption is still much debated. It is therefore better
to choose the most secure encryption for a set of queries. If this set is unknown, then
all data needs to be encrypted order-preservingly. Popa et al. presented a solution to
this: adjustable (onion) encryption. Each data value is encrypted order-preservingly.
This ciphertext is encrypted deterministically and the result is finally encrypted us-
ing standard randomized encryption secure against chosen plaintext attacks. Before a
query is executed it is analyzed for the required encryption levels and the data values
are adjusted (decrypted) to these levels. Hence, the most secure encryption can be
chosen automatically.

4.2.2 Functional Requirements

As already mentioned the set of queries executed on the database pose a set of func-
tional requirements. These requirements are captured as the functions executed on the
ciphertext by the database operators.

In many cases a large subset of the queries to be executed is known. For example,
when an application uses the database, one can analyse this application and extract
the queries (maybe except for parameters). In many cases one can simply resort to the
prepared SQL statements. If this subset of queries is known in advance, then it would
be unwise to adjust the encryption during run-time. Although the adjustment process
is performed only once, it can be quite costly. Each data value of an entire column
needs to be decrypted which can sum to several MByte or even GByte of data.

Instead, the database can be encrypted to a “prepared” state and the adjustment
process avoided. This leads to a significant shortening of the phase from a cold to a
hot database. Real systems can go faster into production. Our approach is the first to
support this analysis. We choose the appropriate encryption levels depending on the
functional requirements of a set of queries.

4.2.3 Security Levels

The encryption levels of adjustable encryption correspond to different security levels.
We claim that randomized encryption is at least as secure as deterministic encryption
which is at least as secure as order-preserving encryption. We argue as follows.
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Randomized encryption (RND) is semantically secure, i.e., it is secure against cho-
sen plaintext attacks. We use AES in CBC for this encryption level. Clearly, then
chosen plaintexts attacks are prevented.

Deterministic encryption (DET) allows chosen plaintext attacks, if the key is known
or there is an encryption oracle. We only need symmetric encryption in encrypted
database, such that it may be difficult to obtain the key or construct such an oracle.
If a plaintext is encrypted and stored more than once, deterministic encryption also
allows frequency attacks as in [Islam et al. 2012]. While not necessary, this may often
– if not almost always – be the case in real databases. We therefore claim that deter-
ministic encryption is less secure than randomized encryption. We use Pohlig-Hellman
encryption, a symmetric key RSA variant, for this encryption level, in order to support
proxy re-encryption [Kerschbaum et al. 2013b].

Order-preserving encryption (OPE) is also deterministic, such that all attacks on
deterministic encryption also work for order-preserving encryption. In addition, it
preserves the order, which may enable many more attacks. It was concluded that
order-preserving encryption leaks at least half of the plaintext bits [Xiao and Yen 2012].
Clearly, order-preserving encryption is the least secure choice. We use the scheme
by Boldyreva et al. [Boldyreva et al. 2009, Boldyreva et al. 2011] for this encryption
level, which has been proven to be the optimally secure, immutable, order-preserving
encryption scheme.

Next to these encryption levels we use homomorphic encryption (HE) for aggre-
gation. Specifically, we use Paillier encryption [Paillier 1999]. Homomorphic encryp-
tion is secure against chosen plaintext attacks as is randomized encryption. Since for
processing queries both ciphertexts need to be offered in parallel, they can be safely
assumed to provide the same security level. Furthermore, similar to onion encryption,
homomorphic encryption can be downgraded to deterministic encryption. As in the
approach by Bellare et al.[Bellare et al. 2007], we can choose a deterministic random-
ization parameter. For downgrading we can simply select one ciphertext among the
set of identical plaintexts. This has the added benefit that dictionary compression is
as effective as on plaintext data [Kerschbaum et al. 2013a].

4.2.4 Security Requirements and The Need for Policy Config-
uration

Considering the security levels from Section 4.2.3 The data owner may realize that
certain queries may put his data at risk. These queries may adapt the encryption level
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to an unsafe state, e.g. order-preserving encryption, for a certain set of data. Even
certain security standards, such as PCI-DSS [PCIDSS ], may require certain encryption
levels. Therefore the data owner may want to set certain policies on which encryption
levels are allowed. He may want to prevent specific data from ever reaching a specific
encryption state. For this, he needs the approach we propose in this chapter.

4.2.5 Policy Enforcement

The specified policies need to be enforced in the encrypted database. There is a crucial
insight that enables prevention of certain encryption levels. If an encryption level is
not present, it cannot be decrypted to. And vice versa, if an encryption should not
be decrypted to, it does not need to be present. We therefore omit the encryption
levels prevented by our policy. If one should not be able to decrypt to order-preserving
encryption, the data value will not be encrypted order-preservingly. This has the
positive side effect that ciphertexts may get smaller and encryption is more efficient.

The question remains what to do with queries that functionally require an encryp-
tion level that is prohibited by the security policy. In this case one ships the ciphertexts
to the client, decrypts and executes the query on the client. The client query analysis
algorithm of Kerschbaum et al. based on relational algebra, allows splitting a query
into a local and a remote part [Kerschbaum et al. 2013c]. This way only the minimally
necessary part of the query according to the security policy will be executed on the
client.

4.3 Policy Configuration

In this section, we firstly present the modeling of the system and the specification of
the policy. Afterwards, we present an algorithm allowing to detect conflicts between
the constraints of the policy. We then propose an efficient algorithm allowing to enforce
the policy while resolving the detected conflicts.

4.3.1 System Modeling

In our approach, data to be outsourced is stored in a relational database D, which
is composed of a collection of relational tables T = {T1, · · · , Tn}, with each of these
relational tables Ti containing a collection of attributes ATi

= {a1,i, a2,i, · · · }. The
system contains a toolbox E composed of a set of m encryption schemes {E1, · · · , Em}
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that can be used to protect outsourced data. Each encryption scheme Ei ∈ E is
characterized by a security level li that provides and a set of functionalities Fi ⊆ F
that satisfies. Let F be the set of functional requirements that can be required over
the data to be outsourced and L be the set of security levels provided by E .

4.3.2 Policy Modeling

We model, in a quite simple and powerful way, the requirements defined by the data
owner. Those requirements are expressed through security and utility constraints.
Security constraints are composed of confidentiality constraints and security threshold
constraints.

Definition 7. (Confidentiality constraint). Given a relational table Ti ∈ T con-
taining a list of attributes ATi

, a confidentiality constraint defined over Ti is a singleton
set CC = {a}, where a ∈ ATi

.

Semantically speaking, a confidentiality constraint CC states that the values as-
sumed by the attribute in CC are considered sensitive and therefore must be protected.

Definition 8. (Security threshold constraint) Given a relational table Ti ∈ T
and an attribute a ∈ ATi

, a security threshold constraint TCa over the attribute a is a
security level l in L. A security threshold constraint defined over the attribute a is well
defined iff there exists a confidentiality constraint CC such that a ∈ CC.

Security threshold constraints allow the data owner to specify a security level thresh-
old for each sensitive attribute. The semantics of a security threshold constraint TC
is that the security level of the sensitive attribute a must be at least as much secure as
the security level l of TC.

Definition 9. (Utility constraint) Given a relational table Ti ∈ T and an attribute
a ∈ ATi

, an utility constraint UCa over the attribute a is a set of functionality Fa =
{f1, · · · , fn}, where Fa ⊆ F .

Confidentiality protection is provided at the expense of data utility. A utility con-
straint offers the data owner the ability to require that some functionalities on his data
must be provided, otherwise the data is useless.

4.3.3 Policy Conflict Detection

Policy conflicts occur when the objectives of two or more constraints cannot be simul-
taneously satisfied. Conflict detection aims at checking whether a set of constraints
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contains conflicts. In our case, conflicts may occur between security constraints and
utility constraints, more precisely, between security threshold constraints and utility
constraints. To detect the conflicts, there are two steps. First, we must get for each
security level l ∈ L, the set of functionalities Fl which are satisfied by encryption
schemes providing security levels that are at least as much secure as l. Then, for each
sensitive attribute having TCa = la as a security threshold constraint and UCa = Fa as
an utility constraint, we check if the set of functionalities Fla we got from the previous
step for the level la is a superset of Fa, and if not, we deduce that there is a conflict
between TCa and UCa. The set of conflicts in a defined policy are detected as described
in Algorithm 5.

Example 9. Let L = {RND,DET,OPE} be the set of security level that can be pro-
vided from the set of encryption schemes E = {E1, E2, E3}. Suppose that the E1, E2 and
E3 provide respectively RND, DET and OPE, and satisfy respectively the functional-
ities ∅, {Equality, Join} and {Min, Max}. Suppose that we want to enforce a policy
composed of two constraints TCa = DET and UCa = {Join, Min}. By performing
the first step of Algorithm 5, we deduce that FRND = ∅, FDET = {Equality, Join} and
FOP E = {Equality, Join, Min, Max}. The second step of Algorithm 5 gives that
UCa * FDET , which allows to deduce that TCa and UCa are conflicting constraints.

4.3.4 Policy Satisfaction

The policy to be enforced over the outsourced database is composed of security and
utility constraints. Those constraints can be satisfied through the application of en-
cryption schemes. Our main challenge is to find for each sensitive attribute a in the
outsourced database, the best combination of encryption schemes that can satisfy the
set of security and utility constraints defined over a.

Definition 10. (combination of encryption schemes) Let E be the set of avail-
able encryption schemes in the system, a combination of encryption schemes is a subset
C ⊆ E.

Definition 11. Let C = {E1, · · · , Em} be a combination of encryption schemes applied
over the attribute a and li be the security level provided by the encryption scheme Ei,
1 ≤ i ≤ m. The security level of the attribute a provided by the application of C is l,
iff the following conditions hold:

• l ∈ {l1, · · · , lm}

• ∀lj ∈ {l1, · · · , lm}, lj is at least as secure as l.
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input :
As = {a1, · · · , an} /*sensitive attributes*/
Ct = {TCa1 , · · · , TCan} /*security threshold constraints*/
Cu = {UCa1 , · · · , UCan} /*utility constraints*/
E = {E1, · · · , Em} /*encryption schemes*/
L = {l1, · · · , lp} /*security levels*/

output:
I /*set of conflicts*/

1 Main
2 I = ∅
3 /* First step */
4 foreach li in L do
5 Fli = ∅
6 foreach Ej in E do
7 if (lj is more secure or equal li) then
8 Fli = Fli ∪ Fj

9 end
10 endfch
11 endfch
12 /* Second step */
13 foreach ak in As do
14 if ( UCak

* FT Cak
) then

15 I = I ∪ {(ak, UCak
, TCak

)}
16 end
17 endfch

Algorithm 5: Conflict detection

Note that the previous definition requires the security level provided by the combi-
nation of schemes in C to be the lowest security level provided by the application of each
encryption schemes in C. A strategy to find the combination of encryption schemes
that satisfy the chosen policy consists of finding the best combination of encryption
schemes, that is, it provides the highest level of protection for sensitive data, while
minimizing the number of involved encryption schemes. We formalize this problem as
follows:

Problem 1. (best combination of encryption schemes) Let P be a policy, C =
{C1, · · · , Cn} be a set of combinations of encryption schemes that satisfy the policy
P , and li be the security level provided by the application of the combination Ci, with
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1 ≤ i ≤ n. Ck is the best combination of encryption schemes in C that satisfy P iff the
following conditions are satisfied:

• ∀Cj ∈ C, lk is at least as secure as lj.

• ∀Cj ∈ C, |Ck| ≤ |Cj|.

The problem of finding the best combination of encryption schemes is NP-hard.
This is formally stated by the following theorem.

Theorem 3. The problem of finding the best combination of encryption schemes is
NP-hard.

Proof. We prove the previous theorem by a reduction from the NP-hard problem of
minimum hypergraph coloring [Garey and Johnson 1990], which is formulated as fol-
lows: given a hypergraph G(V,E), determine a minimum coloring of G, that is, assign
to each vertex in V a color such that adjacent vertices have different colors, and the
number of colors is minimized.

We define the correspondence between finding the best combination of encryption
schemes problem and the minimum hypergraph coloring problem as follows. Let a
be a sensitive attribute, TCa = l be a security threshold constraint defined over a,
UCa = {fa1 , · · · , fan} be a utility constraint defined over a, and El = {E1, · · · , Em}
the set of encryption schemes that provide a security level which is at least as secure
as l. Any vertex vi ∈ V corresponds to a functionality fi ∈ F . We denote ea the edge
in G which connects va1 , · · · , van , corresponds to the constraint UCa. The combination
of encryption schemes C = {Ei1 , · · · , Eip}, where C ⊆ E and each Eij

∈ C satisfies
the set of functionalities Fj = {fj,1, · · · , fj,kj

}, satisfies the constraint UCa correspond
to a solution S for the corresponding hypergraph coloring problem. More precisely, S
uses p colors. Vertices {v1,1, · · · , v1,k1} corresponding to the functionality satisfied by
Ei1 are colored using the first color, vertices {vq,1, · · · , vq,kq} corresponding to the func-
tionality satisfied by Eiq are colored using the q-th color, and vertices {vp,1, · · · , vp,kp}
corresponding to the functionality satisfied by Eip are colored using the p-th color.
Therefore, any algorithm finding the combination of encryption schemes that involved
the minimal number of encryption mechanism while satisfying the constraint UCa can
be used to solve the minimum hypergraph coloring problem.

Since the problem of finding the best combination of encryption schemes that satisfy
a policy P is NP-hard, we cannot expect to be able to solve an instance of arbitrary size
of this problem to optimality. Thus, heuristic resolution strategies are widely exploited
to solve such a problem with a reasonable computational effort.
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4.3.5 Heuristic Search

We propose a near-optimal heuristic for finding a combination of encryption schemes
that satisfy a policy P . Our heuristic is based on a constructive method consisting of
building a solution to the problem step by step from scratch. The used constructive
method is based on choosing for each iteration, the best satisfier of the chosen policy.

Definition 12. (best satisfier) Let P be a policy composed of two constraints: a
security threshold constraint TCa = l and an utility constraint UCa = {fa1 , · · · , fan}.
Both constraints are defined over the sensitive attribute a. Let E = {E1, · · · , Em} be the
set of available encryption schemes. Ei ∈ E is a best satisfier if the following conditions
are satisfied:

• The security level lEi
is at least as secure as l.

• ∀Ej ∈ E , lEj
is at least as secure as l and |FEi

∩ UCa| ≥ |FEj
∩ UCa|, where FE

are the set of functionalities satisfied by E.

The second condition in the previous definition states that Ei is the best satisfier if
it satisfies the highest number of functionalities in UCa compared to other encryption
schemes in E that satisfy TCa. Algorithm 6 shows our heuristic algorithm for comput-
ing for each sensitive attribute, a combination of encryption schemes that satisfy the
constraints defined over it.

The algorithm takes as input the set of attributes A in the database to be out-
sourced, the policy P to be enforced over the set of attributes A, the set of available
encryption schemes E that can be used to enforce the policy P , the set of security lev-
els L, and returns as output the set of combinations of mechanisms S that efficiently
enforce the policy P .

For conflicting constraints, the algorithm returns a set of propositions CP to aid
in resolving the conflicts. The algorithm first initializes S, CP , As to the empty set
and execute the procedure get_conflicting_constraints which takes as parameters
P , E , L, and return the set of conflicts in the policy. The get_conflicting_constraints
procedure is represented by the Algorithm 5. Based on the confidentiality constraints
in P , the algorithm performs the first foreach loop to get all sensitive attributes As.
Then, for each sensitive attribute ai having an unconflicting constraint it tries to get
the best combination of schemes in terms of the provided security level. In order to
meet the previous goal, we use the while loop to run down the set of security levels in L
which are at least as secure as (≥s) TCi starting from the highest one. For each security
level sec_lev, we get from E the set Esec_lev of encryption schemes that provide security
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input : A = {a1, · · · , an} /*database attributes*/
P = {CC1, · · · , CCl, TC1, · · · , TCl, UC1, · · · , UCl}
E = {E1, · · · , Em} /*encryption schemes*/
L = {l1, · · · , lp} /*security levels*/

output: S /*Solution*/
CP /*Conflict resolution propositions*/

1 Main
2 S = ∅, CP = ∅, As = ∅
3 Conflicts = get_conflicting_constraints(P, E ,L)
4 foreach CC in P do
5 As = As ∪ CC

6 endfch
7 foreach ai in As do
8 if (not (ai, TCi, UCi) in Conflicts) then
9 sec_lev = get_the_highest_sec_lev(L); Sol = ∅

10 while sec_lev ≥s TCi do
11 Sol = ∅, Esec_lev = ∅
12 foreach E in E do
13 if (lE ≥s sec_lev and FE ∩ UCi 6= ∅) then
14 Esec_lev = Esec_lev ∪ E

15 end
16 endfch
17 UCtemp = UCi

18 while (UCtemp 6= ∅ and Esec_lev 6= ∅) do
19 Ebs = get_first_elem(Esec_lev)
20 foreach E in Esec_lev do
21 if (|FE ∩ UCi| ≥ |FEbs

∩ UCi|) then
22 Ebs = E

23 end
24 endfch
25 Sol = Sol ∪ Ebs; Esec_lev = Esec_lev \ {Ebs}
26 UCtemp = UCtemp \ (FEbs

∩ UCtemp)
27 end
28 if (UCtemp = ∅) then
29 break
30 end
31 if (Esec_lev = ∅) then
32 sec_lev = get_next_best_level(sec_lev,L)
33 end
34 end
35 S = S ∪ {(ai, Sol, sec_lev)}
36 end
37 endfch
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1 foreach (ai, TCi, UCi) in Conflicts do
2 Prop = ∅
3 sec_lev = TCi

4 while sec_lev 6= NULL do
5 Prop = ∅
6 Esec_lev = ∅
7 foreach E in E do
8 if (lE ≥s sec_lev and FE ∩ UCi 6= ∅) then
9 Esec_lev = Esec_lev ∪ E

10 end
11 endfch
12 UCtemp = UCi

13 while (UCtemp 6= ∅ and Esec_lev 6= ∅) do
14 Ebs = get_first_elem(Esec_lev)
15 foreach E in Esec_lev do
16 if (|FE ∩ UCi| ≥ |FEbs

∩ UCi|) then
17 Ebs = E

18 end
19 endfch
20 Prop = Prop ∪ Ebs

21 Esec_lev = Esec_lev \ {Ebs}
22 UCtemp = UCtemp \ (FEbs

∩ UCtemp)
23 end
24 sat_func = UCi\UCtemp

25 CP = CP ∪ {(ai, P rop, sat_func, sec_lev)}
26 if (UCtemp = ∅) then
27 break
28 end
29 if (Esec_lev = ∅) then
30 sec_lev = get_next_best_level(sec_lev,L)
31 end
32 end
33 endfch

Algorithm 6: Policy satisfaction

levels which are at least as secure as sec_lev and which can satisfy functionalities in
UCi. Next, we copy the set of required functionalities UCi to UCtemp, and at each
iteration of the next while loop, we get the best satisfier Ebs from Esec_lev according
to the Definition 12. Ebs will be next added to the combination Sol, removed from
Esec_lev, and the required functionalities satisfied by Ebs will be removed from UCtemp.
This while loop is terminated if: (1) all required functionalities in UCtemp are satisfied,
in this case the set Sol represents the combination allowing to satisfy the constraints
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defined over the attribute ai; or (2) Esec_lev is empty, which means that there is no
combination that satisfies UCi in the security level sec_lev.

For each attribute ai having a conflicting constraint, using the third outermost
foreach loop, the algorithm gives additional proposition allowing to avoid the conflict.
To meet this goal, we use the first while loop in the third outermost foreach loop
to run down the set of security levels in L starting from TCi. We perform the same
operation as in the previous outermost foreach loop, except, for each sec_lev, we will
add to the set of propositions CP the entry (ai, P rop, sat_func, sec_lev) stating that
in the security level sec_lev, the combination of schemes Prop is able to satisfy the
set of functionalities sat_func required for the attribute ai. These propositions may
help the security administrator (data owner) to choose, from his point of view, the best
trade off between security and utility.

Theorem 4. (Complexity). Given a set of p attributes A, a policy P composed of n
confidentiality constraints, n security threshold constraints, n utility constraints, a set
of m encryption schemes E, and a set of r security levels, the complexity of the policy
satisfaction algorithm (Algorithm 6) is O(m2 · n · r + r ·m+ 2n).

Proof. (sketch). We suppose that we have p attributes having unconflicting con-
straints and q attributes having conflicting constraints, with p + q = n. Accord-
ing to Algorithm 5, the execution of the function get_conflicting_constraints costs
O(r · m + n). In Algorithm 6, the first foreach loop costs O(n), the second foreach
loop costs in the worst case O(p · r · m2), and the third foreach loop costs in the
worst case O(q · r · m2). Finally, the overall time complexity of the Algorithm 6 is
O(m2 · n · r + r ·m+ 2n).

4.4 Use Case

In this section, we present the use case. For our case study, we use a scenario based
on the TPC-H [Doe ] benchmark database. We first give an overview of the TPC-H
benchmark database structure. Afterwards, we present the set of encryption schemes
that can be used in our scenario, a set of functionalities required for processing the
data, and policies to be applied over the TPC-H database. Finally, we illustrate the use
of our previously presented policy satisfaction algorithm to enforce the chosen policy
over the TPC-H database.
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TPC-H Database

The TPC-H database is composed of 8 tables. Each attribute in TPC-H tables repre-
sents data for industrial resource management. TPC-H provides 22 queries consisting
of different kind of SQL operations such as select, join, order by, etc. Figure 4.1
represents the conceptual model of the TPC-H database which includes foreign key
relationships.

Figure 4.1 – TPCH database

System Design

As described in Section 4.3.1, the used system is composed of a relational database D,
a set of security layers L, a set of functional requirements F , and a toolbox E . In our
case study, D represents the TPC-H benchmark database, L will be composed of three
security layers as explained Section in 4.2.3: RND (random layer), DET (deterministic
layer) and OPE (order preserving layer). As we work with relational databases, the
set of utility requirements are composed of some SQL operators that can be used to
query the database. In addition, we define the functionalities computation representing
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the numeric computation over the attributes (e.g., SET ATTR = ATTR + 30), and
order search represeting the SQL operators (>,≥, <,≤, between,min/max, order by).
Thus F = {equality, join, group by, average, sum, computation, like, order search}.
The toolbox E is composed of the following encryption schemes. For each encryption
scheme, we extract and specify the provided security level and the set of satisfied
functionalities as presented in Section 4.3.1.

AES-CBC. When used in CBC chaining mode, AES provides a probabilistic encryp-
tion which is semantically secure. Thus, it provides the security level RND. Despite
that this encryption scheme does not leak any information about the plaintext val-
ues, it does not allow any efficient computation over encrypted data. Therefore,
lAES = RND and FAES = ∅.

Paillier [Paillier 1999]. It is based on secure probabilistic encryption which enables
to perform computation over encrypted data. A Paillier cryptosystem provides
indistinguishability under an adaptive chosen-plaintext attack (IND-CPA). It pro-
vides the security level RND and allows to perform sum, avg operations over the
encrypted data. Thus, lP lr = RND and Fplr = {sum, avg, computation}.

SSE [Song et al. 2000]. SSE is a symmetric searchable encryption which is seman-
tically secure (as long as there is no search token). It allows to perform search over
encrypted data which gives the ability to perform MySQL’s like operator. Based
on these properties, the SSE can be specified by lSSE = RND and FSSE = {like}.

Pohlig-Hellman. This is a deterministic encryption scheme allowing logarithmic time
equality checks over ciphertexts. Pohlig-Hellman encryption cannot achieve the
classical notions of security of probabilistic encryption because it leaks which en-
crypted values correspond to the same plaintext value. It provides the security
level DET and allows to perform equality, join, and group by over the encrypted
data. Thus, lP H = DET and FP H = {equality, join, group by}.

Boldyreva [Boldyreva et al. 2009, Boldyreva et al. 2011]. Boldyreva propose
an order-preserving, deterministic encryption which allows performing order op-
erations over encrypted data. As mentioned in Section 4.2.3, in addition to the
information leaked by having the deterministic property, it reveals the order be-
tween encrypted values. The encryption scheme provides the security level OPE
and allows to perform equality, join, group by, and order search operations. Thus,
lBdv = OPE and FBdv = {equality, join, group by, order search}.
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The Policy

In our scenario a security administrator (data owner) of the TPC-H benchmark
database requires that the following security rules must be enforced:

• Rule 1. The given discount for any Order should always remain top secret.
• Rule 2. The account balance for a customer as well as our suppliers should always

remain top secret.
• Rule 3. The Name and Address of our suppliers should be confidential.
• Rule 4. The supply cost of individual suppliers must be confidential.
• Rule 5. Any pricing information must remain secret.
• Rule 6. All other information in the database should be unclassified.

The security administrator used four levels to classify the data. The top secret
classification levels means that any leaked information about the data will cause grave
damage. The secret level means that some information about the data values can
be leaked if they do not lead to reveal its values. The confidential level means that
additional information about the data values can be leaked if they do not lead to reveal
the values itselves. A Unclassified level implies that the data are not sensitive.

According to the properties of the security levels in L described in Section 4.2.3,
we associate the top secret classification levels to the RND security level, the secret
classification level to the DET security level, and the confidential classification level to
the OPE security level. The previous rules are specified as follows:
Rule 1. It involves the attribute L_DISCOUNT of the table LINEITEM. This rule
is specified using the folowing confidentiality and security threshold constraints:

• CC1 = {L_DISCOUNT}, TC1 = RND.

Rule 2. This rule involves the attributes C_ACCTBAL and S_ACCTBAL from the
tables CUSTOMER and SUPPLIER. It is specified using the following constraints:

• CC2 = {C_ACCTBAL}, TC2 = RND.
• CC3 = {S_ACCTBAL}, TC3 = RND.

Rule 3. It involves the attributes S_NAME, S_ADDRESS, and S_NATIONKEY
from the table SUPPLIER. It is specified using the following constraints:

• CC4 = {S_NAME}, TC4 = OPE.
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• CC5 = {S_ADDRESS}, TC5 = OPE.
• CC6 = {S_NATIONKEY }, TC6 = OPE.

Rule 4. It involves the attribute PS_SUPPLYCOST from the table SUPPLYCOST.
This rule is specified using the following constraints:

• CC7 = {PS_SUPPLY COST}, TC7 = OPE.

Rule 5. This rule involves the attributes P_RETAILPRICE, L_EXTENDEDPRICE
and O_TOTALPRICE from tables PART, LINEITEM and ORDERS. It is specified
using the following constraints:

• CC8 = {P_RETAILPRICE}, TC8 = DET

• CC9 = {L_EXTENDEDPRICE}, TC9 = DET

• CC10 = {O_TOTALPRICE}, TC10 = DET

There is no need to specify Rule 6 as the data assumed by the attributes concerned by
this rule are not sensitive. That is, this data can be stored in plaintext.

The security administrator gives examples of queries which should be executed
efficiently over the TPC-H database. From these set of queries, we extract only the
queries involving sensitive attributes described in the policy, which are illustrated in
Figure 4.2. These queries enable us to extract the set of functionalities required for each
sensitive attribute in the TPC-H database. Table 4.1 shows, for each sensitive attribute,
the queries on which the attribute is involved and the set of required functionalities.
These functional requirements are specified using the following utility constraints:

• UC1 = {computation, sum, order search}
• UC2 = {group by, sum}
• UC3 = {order search}
• UC4 = {order search, group by}
• UC5 = {like}
• UC6 = {join}
• UC7 = {equality}
• UC8 = ∅
• UC9 = {sum, computation}
• UC10 = {group by, order search}
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Q1:
SELECT L_RETURNFLAG, L_LINESTATUS,

SUM(L_QUANTITY) AS SUM_QTY,
SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE,
SUM(1-L_DISCOUNT) AS SUM_DISC_PRICE,
AVG(L_QUANTITY) AS AVG_QTY,

FROM LINEITEM
WHERE

L_SHIPDATE <= ’2010-01-15’
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG,L_LINESTATUS

Q2:
SELECT S_ACCTBAL, S_NAME, N_NAME,
P_PARTKEY, P_MFGR, S_ADDRESS, S_PHONE,
S_COMMENT
FROM PART, SUPPLIER, PARTSUPP, NATION, RE-
GION WHERE

P_PARTKEY = PS_PARTKEY AND
S_NATIONKEY = N_NATIONKEY
PS_SUPPLYCOST = 1000

ORDER BY S_ACCTBAL DESC, N_NAME,
S_NAME

Q3:
SELECT SUM(L_DISCOUNT) AS REVENUE
FROM LINEITEM
WHERE L_SHIPDATE >= ’2010-01-01’ AND

L_SHIPDATE < ’2010-01-01’
AND L_DISCOUNT BETWEEN .06 - 0.01 AND .06

+ 0.01 AND L_QUANTITY < 24

Q4:
SELECT N_NAME AS NATION,

L_EXTENDEDPRICE*(1-L_DISCOUNT) AS
AMOUNT

FROM PART, SUPPLIER, LINEITEM, NATION
WHERE

S_SUPPKEY = L_SUPPKEY
AND S_NATIONKEY = N_NATIONKEY
AND S_ADDRESS LIKE ’%%RENNES%%’

Group By N_NAME.

Q5:
SELECT TOP 20 C_NAME, C_ACCTBAL,

N_NAME, C_ADDRESS, C_PHONE, C_COMMENT
FROM CUSTOMER, ORDERS, LINEITEM, NATION
WHERE C_CUSTKEY = O_CUSTKEY AND

L_ORDERKEY = O_ORDERKEY AND
L_RETURNFLAG = ’R’

GROUP BY C_CUSTKEY, C_NAME, C_ACCTBAL,
C_PHONE
ORDER BY C_NAME.

Q6:
SELECT C_NAME, O_ORDERDATE,

O_TOTALPRICE, SUM(L_QUANTITY)
FROM CUSTOMER, ORDERS, LINEITEM
WHERE C_CUSTKEY = O_CUSTKEY AND

O_ORDERKEY = L_ORDERKEY
GROUP BY C_NAME, C_CUSTKEY, O_TOTALPRICE
ORDER BY O_TOTALPRICE DESC.

Q7:
SELECT TOP 100 S_NAME, COUNT(*) AS
NUMWAIT
FROM SUPPLIER, LINEITEM L1, ORDERS, NA-
TION
WHERE S_SUPPKEY = L1.L_SUPPKEY AND

O_ORDERKEY = L1.L_ORDERKEY AND
L1.L_RECEIPTDATE> L1.L_COMMITDATE

GROUP BY S_NAME
ORDER BY NUMWAIT DESC, S_NAME.

Q8:
SELECT CNTRYCODE, COUNT(*) AS NUMCUST,

SUM(C_ACCTBAL) AS TOTACCTBAL
FROM

(SELECT SUBSTRING(C_PHONE,1,2) AS
CNTRYCODE, C_ACCTBAL
FROM CUSTOMER
WHERE
SUBSTRING(C_PHONE,1,2) IN (’13’, ’31’, ’23’,

’29’))
GROUP BY CNTRYCODE

Figure 4.2 – Queries involving sensitive attributes

Policy Enforcement Results

Using the Algorithm 6, we get from the toolbox, for each sensitive attribute, the
encryption scheme or the combination of encryption schemes that satisfies the policy.
The results of the application of Algorithm 6 over our use case are the followings:
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Sensitive attributes Functionalities
L_DISCOUNT computation(Q1,Q3,Q4)

sum(Q1,Q3,Q4)
order search(Q3)

C_ACCTBAL group by(Q5)
sum(Q8)

S_ACCTBAL order search(Q2)
S_NAME order search(Q2,Q7)

group by(Q7)
S_ADDRESS like(Q4)
S_NATIONKEY join(Q2,Q4)
PS_SUPPLYCOST equality(Q2)
P_RETAILPRICE
L_EXTENDEDPRICE sum(Q1,Q3)

computation(Q3,Q4)
O_TOTALPRICE group by(Q6)

order search(Q6)

Table 4.1 – Required functionalities for sensitive attributes

1. C_ACCTBAL: conflict detected (TC2 and UC2)
Conflicts resolution propositions:

• [Paillier] (RND), satisfied utility requirements: {sum} (Q8)
• [Paillier, Pohlig − Hellman] (DET), satisfied utility requirements:
{group by, sum} (Q8, Q5)

2. L_EXTENDEDPRICE: [Paillier] (RND), satisfied utility requirements:
{sum, computation} (Q1,Q3,Q4).

3. PS_SUPPLYCOST: [Pohlig − Hellman] (DET), satisfied utility requirements:
{equality} (Q2).

4. L_DISCOUNT: conflict detected (TC1 and UC1)
Conflicts resolution propositions:

• [Paillier] (RND), satisfied utility requirements: {sum, computation}
(Q1,Q4).

• [Paillier, Boldyreva] (OPE), satisfied utility requirements:
{sum, order search, computation}
(Q1,Q3,Q4).
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5. S_ADDRESS: [SSE] (RND), satisfied utility requirements: {like} (Q4).

6. S_NAME: [Boldyreva] (OPE), satisfied utility requirements:
{order search, group by} (Q2,Q7).

7. S_NATIONKEY: [Pohlig − Hellman] (DET), satisfied utility requirements:
{join} (Q2,Q4).

8. S_ACCTBAL: conflict detected (TC3 and UC3)
Conflicts resolution propositions:

• [AES − CBC] (RND), satisfied utility requirements: ∅.
• [Boldyreva] (OPE), satisfied utility requirements: {order search} (Q2).

9. P_RETAILPRICE: [AES − CBC] (RND).

10. O_TOTALPRICE: conflict detected (TC10 and UC10)
Conflicts resolution propositions:

• [Pohlig −Hellman] (DET), satisfied utility requirements: {group by}.
• [Boldyreva] (OPE), satisfied utility requirements: {group by, order search}

(Q6).

Result 1 shows the satisfaction of the constraints defined over the attribute
C_ACCTBAL. A conflict between the constraints TC2 and UC2 has been detected.
Thus, our algorithm gives the data owner two propositions in order to resolve the
conflict. The first proposition states that the data owner can preserve the RND se-
curity level through the application of the Paillier encryption scheme, however only
the sum functionality will be provided and therefore the query Q5 cannot be executed
efficiently over the encrypted data. The second proposition gives the data owner the
ability to decrease the required threshold security level to DET in order to allows
the application of the combination [Paillier, Pohlig − Hellman] which satisfies the
required utility constraints. Result 2 states that the encryption scheme Paillier can
be applied to enforce the set of security and utility requirements defined over the at-
tribute L_EXTENDEDPRICE. Result 3, shows that security and utility constraints
defined over the attribute PS_SUPPLYCOST can be enforced through the applica-
tion of Pohlig −Hellman encryption scheme. Result 4 shows that there is a conflict
between the constraints TC1 and UC1 and proposes two solution to reconcile the con-
flict. Result 5 states that the encryption scheme SSE can be applied to enforce the
set of security and utility requirements defined over the attribute S_ADDRESS. Re-
sult 6 shows that the set of security and utility constraints defined over the attribute
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S_NAME can be enforced via the application of Boldyreva encryption scheme. Result
7 states that the encryption scheme Pohlig−Hellman, when applied, can enforce the of
security and utility requirements defined over the attribute S_NATIONKEY. For this
result, we remark that our algorithm has chosen the best encryption scheme in terms
of provided security level, as the Boldyreva encryption scheme can also be used to
enforce security and utility requirements defined over the attribute S_NATIONKEY.
Result 8 shows the conflict detected between TC3 and UC3 and proposes two solutions
two overcome the conflict. Result 9 confirms that the application of AES −CBC can
enforce the constraints defined over the attribute P_RETAILPRICE. Finally, result
10 shows that there is a conflict between TC10 and UC10 and proposes two solution
allowing to reconcile the conflict.

It is important to note that sequentially applying a combination of encryption
schemes (e.g. [Paillier and Pohlig-Hellman] in one “onion”) over an attribute may not
provide the functionalities provided by each encryption scheme. This problem can be
resolved by duplicating the values of the attribute over which the two mechanisms are
to be applied and apply each mechanism separately.

4.5 Implementation and Evaluation

In this section, we evaluate the efficiency of our approach by using a web application as
well as a large trace of SQL queries (For extracting the functional requirements for the
used applications). Our prototype consists of a Java library composed of an SQL query
parser, a database schema reader module (DRM), a policy specification module, and
policy satisfaction module. The query parser is used to extract the utility requirements
(or functionalities) that should be provided over each attribute in the target database.
We use the open source JSqlParser [JSqlParser ] as an SQL query parser. The DRM is
used to connect and retrieve the schema of the target database to allow the user of our
library specifying the policy to be applied. Our DRM implementation supports both
Postgres 9.0 and MySQL 5.1 databases.

4.5.1 Experimental Design

We ran the all experiments on a server with Intel core i7 2.50 GHz, 16 GB of RAM,
and running Ubuntu 14.04. We evaluate the effectiveness of our policy satisfaction
algorithm using the web application phpBB. Table 4.2 reports the number of attributes
in the relational database used by the phpBB web application as well as the number
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of queries we have used to extract the functionalities that should be provided for the
attributes in the used relational database.

Application Total Attr. Total Num. of queries
phpBB 563 11992

Table 4.2 – The web application used to evaluate our policy satisfaction approach

The encryption toolbox we used to enforce policies over the outsourced database is
composed of 5 encryption mechanisms. Table 4.3 illustrates the functionalities as well
as the security level provided by each of the used encryption mechanisms and their
corresponding supported data types.

Encryption Scheme Data Type Security Level
Provided Functionalities
ES OS CP KS

AES-CBC All RND 7 7 7 7

Paillier Numeric RND 7 7 3 7

SSE Textual RND 7 7 7 3

Pohlig-Hellman All DET 3 7 7 7

Boldyreva Numeric OPE 3 3 7 7

Table 4.3 – Encryption mechanisms used in evaluating our approach with their cor-
responding supported data types, ensured security levels, and provided functionalities
over encrypted data. ’ES’ represents the equality search functionality, ’OS’ represents
the order search functionality, ’CP’ represents the computation requirements, and ’KS’
is for keyword search functionality.

4.5.2 Evaluation

In order to show the performances of our approach, we examine the computation
duration cost of our policy satisfaction approach over the relational database used
by phpBB in function of the number of sensitive attributes, the number of threshold
constraints, and the number of utility constraints. Figure 4.3 shows that the time
needed to satisfy a policy increases, dependently from the number of sensitive attributes
as well as the numbers of defined threshold constraints, and utility constraints. The
measure confirms that a linear complexity in terms of the number of sensitive attributes
and the numbers of defined threshold constraints and utility constraints is achieved,
which is conform with the result proved in Theorem 4.
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Figure 4.3 – Policy satisfaction evaluation in function of the number of sensitive at-
tributes, the number of threshold constraints, and the number of utility constraints

4.6 Conclusion and Contributions

Searchable, yet encrypted databases appear to be one promising building block of a
secure cloud offering. In order to help companies migrate data from on-premise to
the cloud, tools are needed to help decide about the best acceptable trade-off between
functionality and security requirements. In this chapter, we presented a set of algo-
rithms which help to analyze functionality and security requirements when configuring
an encrypted database following an onion-based approach. We reasoned about their
formal characteristics as well as discussed their application in an enterprise use case
on basis of the TPC-H benchmark. The assumption that data may be labelled as
we proposed may appear oversimplified, but industrial experience shows that even in
complex applications this is sufficient to cover the evaluation results of a typical 3x3
risk matrix.

The approach proposed in this chapter complements our contribution presented in
the chapter 3 since it allows to overcome its limitation by allowing a data owner to get,
for the attribute storing sensitive data, the combination of encryption schemes that
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provides the best trade-off between the security and utility of the outsourced sensitive
information.

The contribution presented in this chapter is the result of a collaboration with
SAP AG (Karlsruhe, Germany). Our developed tool is integrated in the SAP’s recent
security research project SEEED [SAP ].
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5 An Epistemic Temporal
Logic based language
for Specifying Security
Policy and Security
Mechanisms

5.1 Introduction

In recent years, the concept of data outsourcing has become quite popular since
it offers many features, including reduced costs from saving in storage, increas-
ing availability as well as minimizing management effort. Many security-related
research issues associated with data outsourcing have been studied focusing on
data confidentiality [Hacigümüs et al. 2002, Bkakria et al. 2013b], data authenti-
cation and integrity [Mykletun et al. 2004, Narasimha and Tsudik 2005], Copyright
protection [Sion 2008, Gross-Amblard 2011], privacy and anonymity [Sweeney 2002,
Machanavajjhala et al. 2006, Li et al. 2007], because outsourced data often contains
highly sensitive information which will be stored and managed by third parties. To
tackle those traditional security issues, data protection mechanisms have recently been
the focus of huge interest, especially cryptographic and information hiding techniques
such as encryption, anonymization, watermarking, fragmentation, etc. These mecha-
nisms are known to be efficient when used independently. However, in many situations
they have to be combined to ensure security requirements.

In Cloud storage model, the goal of policies is to achieve a set of security and utility
properties over the outsourced data. However, the relation between these properties
and the existing security mechanisms defined to protect outsourced data is not always
obvious and a question naturally emerges: how to bridge the gap in such a case?
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The complexity of Cloud storage security policies is increasing due to the interplay
of several heterogeneous security and efficiency requirements that should be harmo-
nized and specified into consistent policies. An important related issue is the trade-off
between the level of provided security and the target system usability, especially when
it is open to the Internet (e.g., Cloud service Storage).

Logic-based languages are specifically appealing for security policy specification.
One main benefit resides in their clean and straightforward semantics, suitable for
specification and validation. In addition, logic-based languages can be designed to be
expressive enough to specify all security properties that might be required over a target
system. Their declarative nature provides a good compromise between simplicity and
expressiveness.

Stemmed from the absence of relevant work in the area of formal policy specification
and deployment for outsourced data, in this chapter, we present our third contribu-
tion [Bkakria et al. 2014a]. That is, we strive to design an expressive formal language
allowing us to formally specify the data structure storing the information to be out-
sourced, formally specify, as finely as possible, the policy to be applied over the data
to be outsourced, and formally specify the existing security mechanisms that can be
used to protect the data to be outsourced.

The rest of this chapter is organized as follows. Section 5.2 introduces the formal
language that will be used in our approach. Section 5.3 shows the data model formal
specification. Section 5.4 formalizes the main objectives that data owners attempt to
reach when using a Cloud storage model . Section 5.5 shows the modeling of the policy
to be applied over the outsourced information. Section 5.6 presents the specification of
the existing security mechanisms that can be used to satisfy a defined policy. Section
5.7 concludes the chapter.

5.2 An Epistemic Temporal Logic based language

In this section, we introduce the first-order temporal epistemic logic language L that we
will use to formalize: (1) the data structure storing the information to be outsourced,
(2) the policy to be applied over it, and (3) the security mechanisms that might be
used to enforce the policy.

The first-order temporal epistemic logic language L can be seen as a composition of
a first order logic (predicate logic), epistemic logic [Hintikka 1986], and temporal logic
[Davis and McKim 1976]. The aims behind combining these tree formal systems are
the following:
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• Data structures traditionally used to store information are often complex struc-
tures composed of a set of associated data objects. First, order logic allows us to
formally specify the data objects and their associations through the use of pred-
icate symbols. Moreover, it provides expressive power through the availability of
quantifiers and variables which allows us to state facts about data objects of the
structure without enumerating the particular objects.

• The security requirements in the policy to be enforced are often defined over one
or many particular moments of the life cycle of the outsourcing process (as we
will later see in Section 5.5). Temporal logic provides a set of temporal opera-
tors allowing us to explain those security requirements over the life cycle of the
outsourcing process.

• When dealing with security issues in the Cloud storage model, the ability to de-
scribe the knowledge of the involved entities (e.g., Cloud provider, external ad-
versaries, authorized users, etc.) becomes particularly important. Epistemic logic
provides operators allowing to specify informational aspects related to knowledge.

These three formal systems have the advantages of a well-defined semantics, an
existing body of theoretical work related to, axiomatisations and complexity, see for
example [Halpern and Vardi 1989], and sound and complete proof methods for example
[Dixon and Fisher 2000].

5.2.1 Syntax

The first-order temporal epistemic logic language L is based on KL(n)

[Dixon and Fisher 2000], which represents the fusion of first order linear-time tem-
poral logic with multi-modal S5 [Lewis and Langford 1932]. The temporal modality is
interpreted over a discrete linear model of time with infinite future and finite past, such
a logic has been studied in detail [Halpern and Vardi 1989] and is the most commonly
used temporal logic of knowledge. L is made up of a set of predicates P , propositional
connectives ∨, ∧, ¬, → and ↔, the quantifiers ∀, ∃. We take the usual set of future
connectives ♦ (Sometime, or eventually) and � (always) [Gabbay et al. 1980]. For
knowledge we assume a set of agents Ag = {1, · · · ,m} and use a set of unary modal
connectives Kj, for j ∈ Ag, in which a formula Kjψ is to be read as “agent j knows ψ”.
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Definition 13. Let Pi be a predicate of arity n in P. The set of well-formed formulas
of L is defined as follows:

φ ::= Pi(t1, · · · , tn) | Kiφ | ¬φ | φ ∨ φ | φ ∧ φ | ♦φ | �φ |φ→ φ | φ↔ φ |

∃xφ | ∀xφ | φ refine−−−→ φ

where t1, · · · , tn are terms (variables or constants).

The language L is extremely expressive. It can be used to specify complex sys-
tems, the temporal evolution of those systems, and the temporal evolution of agents’
knowledge, as we will see later on in this chapter.

5.2.2 Semantics

The semantics we used for L are inspired by the ones proposed in
[Dixon and Fisher 2000].

Definition 14. Let States be the set of all possible states of the world.

Definition 15. (Timeline.) A timeline t is an infinite linear discrete sequence of
states, indexed by natural numbers. Let Timelines be set of all timelines.

Definition 16. (Interpretation.) An interpretation I of the language L is the couple
I = (States,S), where S represents a set of classical first-order structures. Each
Is ∈ S with a non-empty domain Ds assigns to a state s ∈ States, a predicate Is(P ) :
Dn

s → {True, False} for each n-places predicate P ∈ P.

Definition 17. (Model.) An model M for L is a structure 〈TLs,R =
{R1, · · · , Rn}, I,Φ〉, where:

• TLs is a set of timelines;

• ∀i ∈ Ag, Ri ⊆ States × States represents the accessibility relation of an agent
over States;

• I is an interpretation;

• Φ is a transition function which defines transitions between states due to the ap-
plication of mechanisms (actions). Φ(s,mk) = s′ if the mechanism mk transits a
model from a state s to state s′.

The semantics of our language L are described through the definition of satisfaction
relation |=.
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Definition 18. Given a model M for L, a state s, the satisfaction relation |= for a
formula ψ of L is defined as follows:

• (M, s) |= P (t1, · · · , tn) ⇐⇒ Is(P )(v(t1), · · · , v(tn)) = True, where v is a valua-
tion function that assigns, for each ti ∈ {t1, · · · , tn} an element in Ds.

• (M, s) |= ¬ψ ⇐⇒ (M, s) 6|= ψ

• (M, s) |= ψ → ϕ ⇐⇒ (M, s) 6|= ψ or (M, s) |= ϕ

• (M, s) |= ψ ↔ ϕ ⇐⇒ (M, s) |= (ψ → ϕ) ∧ (ϕ→ ψ)

• (M, s) |= ∀xψ ⇐⇒ (M, s) |= ψ[x/c] for all c ∈ Ds

• (M, s) |= ∀xψ ⇐⇒ (M, s) |= ψ[x/c] for some c ∈ Ds

• (M, s) |= ψ ∧ ϕ⇐⇒ (M, s) |= ψ and (M, s) |= ϕ

• (M, s) |= ψ ∨ ϕ⇐⇒ (M, s) |= ψ or (M, s) |= ϕ

• (M, s) |= ♦ψ ⇐⇒ (M, s′) |= ψ for some k ≥ i, where s = (t, i) and s′ = (t, k)

• (M, s) |= �ψ ⇐⇒ (M, s′) |= ψ for all k ≥ i, where s = (t, i) and s′ = (t, k)

• (M, s) |= Kiψ ⇐⇒ ∀s′ = (t′, n′), t′ ∈ TLs and n′ ∈ N : (s, s′) ∈ Ri → (M, s′) |= ψ

• (M, s) |=
(
ϕ

refine−−−→ ψ
)
⇐⇒

(
(M, s) |= ϕ↔ (M, s) |= ψ

)

The truth condition for ⊥ are defined from those above. In particular, ϕ refine−−−→ ψ

can be expressed in term of ϕ↔ ψ. For sake of clarity, ϕ refine−−−→ ψ is used to distinguish
between the axioms of our model and the refinement rules to be used to refine security
policies.

For any formula Ψ of L, if there is a model M and a timeline t such that s = (t, 0)
and (M, s) |= Ψ, then Ψ is said to be satisfiable. If for any formula Ψ of L and for
any model M , there exists a timeline s such that s = (t, 0) and (M, s) |= Ψ, then Ψ is
said to be valid. Note that when using a temporal logic, satisfiability and validity are
evaluated at the beginning of time (initial state of the target system) [Emerson 1995].

5.2.3 Axiomatizations

In this section, we provide a sound axiomatization of our language L. First, we intro-
duce a system SL that extends, to the first-order case, the multi-modal epistemic logic
S5 combined with the linear temporal logic LTL.
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Definition 19. The system SL contains the following schemes of axioms and rules,
where φ and ψ are formulas in L, ⇒ is the inference relation, and > is a placeholder
for any primitive modality in L (♦ and �, and Ki):

• First order logic

– Taut: classical propositional tautologies;

– MP: φ→ ψ, φ⇒ ψ;

– Ex: ∀xφ→ φ[x/t]

– Gen: φ→ ψ[x/t]⇒ φ→ ∀xψ, where x is not free in φ;

• General Rules and Axioms

– Dist: >(φ→ ψ)→ (>φ→ >ψ)

– 4: >ψ → >> ψ

– Nec: φ⇒ >φ

• Temporal Logic

– �¬φ↔ ¬♦φ

• Epistemic logic

– T: Kiφ→ φ

– 5: ¬Kiφ→ Ki¬Kiφ

The operators ♦ and� are axiomatized as linear-time modalities [Fagin et al. 1995],
while Ki operator is an S5 modality. To this, we added the classical postulates Ex and
Gen for quantification.

In our formal model, the standard definitions of proof and theorem are considered.
` φ means that φ ∈ L is a theorem in SL. A formula φ ∈ L is derivable in SL from
a set of formulas Σ, or Σ ` φ, if and only if ` ψ1 ∧ ψ2 ∧ · · · ∧ ψn → φ for some
ψ1, ψ2, · · · , ψn ∈ Σ.

It can be easily checked that the axioms and rules of SL are valid on every model of L
and that the inference rules presented in Definition 19 preserve validity. Subsequently,
we have the following soundness result.

Theorem 5. The system SL is sound with respect to L.
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Proof. Proof follows from soundness of S5 and soundness of the axiom system for
first order temporal logic of time isomorphic to the set of natural numbers proved in
[Szalas 1987].

For the rest of Chapters 5 and 6, we use D and V to denote respectively the set of
objects in the data to be outsourced and the set of values assumed by those objects.

For the sake of simplicity, we will use the two places predicate knows(i, o) to denote
that the agent i knows the value of the data object o. The relation between the knows
predicate and the epistemic predicate K is described using the following axiom:

∀o ∈ D,∀e :
(
knows(e, o)↔ ∃v ∈ V : Kevalue(o, v)

)
(5.1)

where value(o, v) is used to denote that the value assumed by the object o is v.

5.3 Data Model Specification

Information is traditionally stored using different kind of data structure such as, rela-
tional databases, file systems, graphs, XML files, etc. One of our main objectives is to
give the ability to the data owner to specify as finely as possible the security policy to
be enforced over the data to be outsourced. To meet this goal, and relying on the fact
that each data structure can be represented as a set of abstraction levels, we defined a
general model that can specify the different abstraction levels and their corresponding
involved objects for all existing data structures.

Tree-based Modelization of Data Structures

The intuition behind this idea is that the most of existing data structures can be ex-
pressed as a set of abstraction levels. In fact, through a simple analysis of the data
structures traditionally used to store data, we realize that we can represent each data
structure as a tree. For each data structure, each layer of the corresponding tree will
represent an abstraction level involving the corresponding set of objects that belongs
to it. For example, in a relational database, we have mainly four abstraction levels:
(1) the database-level which represents all the information stored in the database, (2)
table-level representing the set of relational tables in the database and the associations
between them (the associations between relational tables can be considered as sensi-
tive [Bkakria et al. 2013b]), (3) the attribute-level which contains the set of attributes
of each relational table and the associations between them, and (4) the value-level
containing the set of values stored in the database.
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The tree-based modelization of data structures offers our approach two main ad-
vantages. First, it allows data owner to specify as finely as possible his\her security
requirements over the data structure representing the data to be outsourced. The
second advantage is that the relations between different abstraction layers in the
tree can be used to propagate the policy to be enforced. Tree structures are com-
posed of a set of nodes and a set of edges (Hierarchical relation between nodes). To
be able to use the tree-based modelization in our approach, we define a two places
predicate subelement_of(o, o′) allowing to formally specify the branches of the tree.
subelement_of(o, o′) means that the object o′ is a sub-object of o. Note that the pred-
icate subelement_of is transitive, since obviously, if o1 is a sub-object of o and that
o2 is a sub-object of o1, then o2 is a sub-object of o.

Example 10. Assume that we have a relational database D of a medical insurance
company which contains two relational tables Patient and Doctor represented respec-
tively in Table 5.1 and Table 5.2. The tree-based modelization of the database D are
represented in Figure 5.1.

Table 5.1 – Patient relation

Name_pat Illness Id_doc
A. Barrett Illness1 doc_1
C. Beat Illness2 doc_2

Table 5.2 – Doctor relation

Id_doctor Name_doc
doc_1 C. Amalia
doc_2 D. Annli

In the formal specification of the data structure, each node in the corresponding
tree will be represented by an object (e.g., object(D), object(Patient), etc), and each
edge linking two nodes will be formalized using the predicate subelement_of (e.g.,
subelement_of(Patient,Name_pat), etc).

The transitivity of the the predicate subelement_of will allow us to define the rules
(Definitions 20 and 21) make it possible to propagate the properties (e.g., sensitivity,
knowledge, etc) of each object within the data to be oustourced to its sub-objects.

Definition 20. (refinement transitivity). Given a predicate P in L describing
a property (e.g., sensitivity, knowledge, etc) of a data object o, P is a refinement
transitive predicate if and only if the following condition holds:

∀x1, · · · , xn, y1, · · · , ym,∀o, o′ ∈ D :
(
P (x1, · · · , xn, o, y1, · · · , ym) ∧

subelement_of(o, o′)
)
→ P (x1, · · · , xn, o

′, y1, · · · , ym)
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D

Patient Doctor R(Patient, Doctor)

Name_pat
A. Barrett

C. Beat

Illness
Illness1

Illness2

Id doc
doc 1

doc 2

R(Name_pat, Illness)

R(A. Barrett, Illness1)

R(C. Beat, Illness2)

· · ·

Id_doctor
doc_1

doc_2

Name_doc
C. Amalia

D. Annli

R(Id_doctor, Name_doc)

R(doc_1, C. Amalia)

R(doc_2, D. Annli)

Figure 5.1 – A tree-based representation of the relational database D

Definition 21. (abstraction transitivity). Given a predicate P in L describing
a property (e.g., sensitivity, knowledge, etc) of a data object o, P is an abstraction
transitive predicate if and only if the following condition holds:

∀x1, · · · , xn, y1, · · · , ym,∀o, o′ ∈ D :
(
P (x1, · · · , xn, o

′, y1, · · · , ym) ∧

subelement_of(o, o′)
)
→ P (x1, · · · , xn, o, y1, · · · , ym)

Actually, as far as we will go further in depth and details of our formal model, we
will see how much The refinement transitivity and abstraction transitivity relations are
useful. In fact, they will allow us in a first time to propagate the properties of the
data objects to more detailed or concrete levels’ data objects, and in a second time to
refine the goals to satisfy and the policy to apply to more detailed or concrete levels.
The purpose behind refining goals and policies is that it is likely to happen that the
policy to be enforced and the goals to be satisfied are specified in different levels of
abstraction. Therefore, an efficient reasoning method over our formal model requires
the ability to refine goals and policies to the same level of abstraction.
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Definition 22. (Refinement Rule). Given two well formed formulas ϕ and ψ in
L. A refinement rule is a formula having the following form:

ϕ
refine−−−→ ψ

Semantically speaking, according to Definition 18, a refinement rule ϕ refine−−−→ ψ

stating that ψ is a concrete level representation of ϕ means that if ψ (resp. ϕ) is
satisfied in a state w of the target system ((w,W) |= ψ, resp. (w,W) |= ϕ) then ϕ

(resp. ψ) is also satisfied in w ((w,W) |= ϕ, resp. (w,W) |= ψ).

5.4 Goal Specification

From a data owner point of view, two main objectives can be targeted when using a
Cloud storage model: data outsourcing and data sharing.

• Data outsourcing: The data owner aims to outsource its data D to a Cloud storage
provider (csp) server s. This objective can be specified as following:

∀o ∈ D,∃s : ♦ (csp(s) ∧ outsource(o, s)) (5.2)

The previous formula specifies that, eventually, any object o in D should be out-
sourced to a csp server s. Note that the two places predicate outsource is a
refinement transitive predicate, Since if a data object o is outsourced, obviously
all sub-objects of o are also outsourced, which allows data outsourcing goals to be
refined to a more concrete level using the following rule:

(∀o ∈ D : ♦ outsource(o, csp)) refine−−−→
(∀o′ ∈ D : subelement_of(o, o′)→ ♦ outsource(o′, csp))

(5.3)

The relation between the knowledge of the information stored by a data object and
the fact that it is outsourced to a csp is described through the following formula.
val(o, v) is satisfied if the value of the data object o is v.

∀o ∈ D,∀s : (csp(s) ∧ outsource(o, s)→ knows(s, o)) (5.4)

• Data sharing : The data owner wants to share all or a part of the outsourced data
D with a set of entities E (users, servers, etc.). This kind of goal is specified using
the following formula:

∀e ∈ E,∀D′ ⊆ D,∀o ∈ D′ : ♦ knows(e, o). (5.5)
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Formula 5.5 specifies that in a future state of the target system, any entity in
E should know the value of any object in D′. The knowledge predicate knows
is a refinement transitive predicate as if we consider that an entity e knows the
information stored in an object o, therefore it knows the information stored by
any sub-object o′ of o (subelement_of(o, o′)). The propagation of the knowledge
predicate knows allows us to refine a data sharing goal to a more concrete level
using the following formula:

∀e ∈ E,∀D′ ⊆ D,∀o ∈ D′ :
(
(♦ knows(e, o)) refine−−−→

(∀o′ ∈ D : subelement_of(o, o′)→ ♦ knows(e, o′))
) (5.6)

5.5 Policy Specification

The policy to be enforced over the target data model D is specified through a set of
security and utility constraints.

5.5.1 Security Constraints

Using security constraints, the data owner specifies the security requirements that
should be enforced over the data model to be outsourced. We define five types of
security constraints.

Confidentiality constraint: It requires the protection of the confidentiality of an
object in the target data model.

� [∀o ∈ D,∀e : sensitive(o) ∧ untrusted(e)→ ¬knows(e, o)]. (5.7)

Formula 5.7 specifies that in any state of the target system, an untrusted entity e

should not know the information stored by any sensitive object o. The one place
predicate sensitive is a refinement transitive predicate as we consider that if the data
owner specifies that the information stored by an object o are sensitive, therefore the
information stored by any sub-object o′ of o will be also sensitive. This property allows
us to refine a confidentiality constraint as described in the following formula:

∀o ∈ D,∀e :
(
� ( sensitive(o) ∧ untrusted(e)→ ¬knows(e, o)) refine−−−→ � (∀o′ ∈ D :

subelement_of(o, o′) ∧ sensitive(o′) ∧ untrusted(e)→ ¬knows(e, o′))
)
.

(5.8)
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Privacy constraint: The data owner can use privacy constraints to require the
prevention of identity disclosure.

� [∀o ∈ D,∀e : identifier(o) ∧ untrusted(e)→ ¬knows(e, o)]. (5.9)

Formula 5.9 specifies that an object o that can be exploited to identify an identity
should not be known by any untrusted entity e in any state of the target system.
In our formal model, we consider that the one place predicate identifier is not a
refinement transitive predicate, since we consider that only all the information stored
by an identifier object o allow to identify a person (or entity) to which they belong. In
other words, the disclosure of only some sub-objects of an identifier object might not
lead to disclose the identity of the person to which the identifier object belongs. As a
consequence, a privacy constraint cannot be refined.

Traceability constraint (Traitor detection): In the applications where databases
contents are publicly available over a network, the contents owner would like to dis-
courage unauthorized duplication and distribution of his valuable contents. To meet
this goal, the owner wants to give to a set of entities E ′ the ability to check whether
or not his valuable contents have been released to unauthorized users.

� [∀o ∈ D,∀e : sensitive(o) ∧ untrusted(e) ∧ knows(e, o)→∧
e1∈E′

Ke1(∃Er.
∧

er∈Er

(trusted(er) ∧ responsible(er, o)))]. (5.10)

Formula 5.10 means that in any state of the system, if an untrusted entity knows a
sensitive object o, the set of entities E ′ should be able to know the set of entities
Er responsible of the disclosure of the sensitive object o. The two places predicate
responsible(er, o) means that the entity er is responsible of the disclosure of the sen-
sitive object o to the untrusted entity e. It is a refinement transitive predicate as we
consider that if an entity er is responsible of the disclosure of the sensitive object o,
then it is responsible of the disclosure of any sub-object of o. As a result, a traceability
constraint can be refined to a more concrete level using the following formula:

∀o,∀e :
(
� [ object(o) ∧ sensitive(o) ∧ untrusted(e) ∧ knows(e, o)→∧

e1∈E′
Ke1(∃Er.

∧
er∈Er

(trusted(er) ∧ responsible(er, o)))]

refine−−−→
� [∀o′ ∈ D : subelement_of(o, o′) ∧ sensitive(o′) ∧ untrusted(e) ∧

konws(e, o′)→
∧

e1∈E′
Ke1(∃Er.

∧
er∈Er

(trusted(er) ∧ responsible(er, o
′)))]

)
.

(5.11)
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Ownership constraint: The data owner wants to give a set of entities E the ability
to verify the ownership of an object in the target data model.

� [∀o1.o2, e ∈ D : copy_of(o1, o2)
∧

er∈E

Kerowner(e, o1)

→
∧

er∈E

Kerowner(e, o2)].
(5.12)

Formula 5.12 specifies that in any state of the target system, if there are two objects o1

and o2 such that o2 is a copy of o1 and a set of entities E which know that the owner
of o1 is e, therefore E should be able to know that o2 belongs to e. The two places
predicate owner is also a refinement transitive predicate as if an entity e is the owner
of an object o, then it is the owner of any sub-object of o. Formula 5.13 allows to refine
an ownership constraint to a more concrete level.

∀o1, o2 ∈ D :
(
�
[
copy_of(o1, o2)

∧
er∈E

Kerowner(e, o1)→

∧
er∈E

Kerowner(e, o2)
]

refine−−−→ �
[
∀o′1, o′2 ∈ D : subelement_of(o1, o

′
1)

∧ subelement_of(o2, o
′
2) ∧ copy_of(o′1, o′2)

∧
er∈E

Kerowner(e, o′1)

→
∧

er∈E

Kerowner(e, o′2)
])

(5.13)

Integrity assessment constraint: This kind of constraint allows the data owner
requiring the insurance of the accuracy and consistency of an object o over its entire
life-cycle. This means that data cannot be modified in an undetected manner. In the
target system, we should be able to check if o has been modified or not. A data owner
may want to give a set of entities E ′ the ability to check the integrity of an object o.

�
[
object(o)→

∧
e1∈E′

Ke1(is_modified(o) ∨ is_unmodified(o))
]
. (5.14)

In the first hand, the one place predicate is_modified is an abstraction transitive
predicate, as if we consider that the information stored by an object o are modified, then
the information stored by any over-object o′ of o (subelement_of(o′, o)) will be also
modified. In the other hand, the one place predicate is_unmodified is a refinement
transitive predicate, since if we consider that the information stored by an object o are
not modified, then we are sure that the information stored by any sub-object o′ of o are
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not modified. Formula 5.15 can be used to refine an integrity assessment constraint:

�
[
object(o)→

∧
e1∈E′

Ke1(is_modified(o) ∨ is_unmodified(o))
]

refine−−−→
�
[
∀o′ ∈ D : subelement_of(o, o′)→

∧
e1∈E′

Ke1(is_modified(o′)∨

is_unmodified(o′))
]

(5.15)

5.5.2 Utility Constraint

Generally, outsourced data protection is offered at the expense of data utility. In our
model, we define a set of utility constraints giving the ability to a data owner to require
that particular utility properties on the target data model must be respected. The
violation of these properties makes the data useless. As we are working in the Cloud
data model, utility requirements are properties allowing the data owner to efficiently
use the outsourced data. These utility requirements can be classified into four classes.

Computational requirements. With this kind of requirements, a data owner wants
to have the ability to perform computation efficiently over outsourced data. For exam-
ple, in the case of relational outsourced databases, computational requirements means
the ability to execute queries with SUM, AVG, etc.

Keyword search requirements. Using keyword search requirements, a data owner
wants to have the ability to perform keyword based search over the outsourced data.
For instance, in the case of an outsourced file-based data (e.g., Dropbox), Keyword
search requirements means the ability to pickup files containing certain words.

Equality check requirements. With this kind of requirements, a data owner wants
to be able to perform equality checks. For example, in the case of relational databases,
equality check requirements means that the data owner wants to be able to perform
data selections with equality predicates, equality joins, etc.

Order check requirements. A data owner can use this kind of requirement in
order to perform order check, which means that he or she wants to have the ability to
perform order searches over the data to be outsourced.
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To be able to express these different kinds of utility requirements, we define the
one place predicate utility_requirement(). Then, an utility constraint defined over a
data object o can be expressed by the axiom 5.16, which is to be read: “the ability to
perform the utility requirement req over the object o”.

utility_requirement(req) ∧ provides(req, o) (5.16)

The one place predicate provides is a refinement transitive predicate, since we
consider that if an utility requirement is provided for an object o, then it is also
provided for any sub-object o′ of o.

5.6 Mechanisms Specification

One of our main objective when designing our formal model is the ability to integrate
the largest number of security mechanisms that has been defined to protect outsourced
data. In fact, when studying those security mechanisms, we realize that they can be
specified using two groups of formulas: preconditions formulas and effects formulas.

Preconditions. For each mechanism, preconditions are represented by a set of
formulas which are necessary conditions required for the application of the secu-
rity mechanism. We define the two-places predicated is_applicable. The formula
is_applicable(m, o) is to be read “the mechanism m can be applied over the object o”.
Preconditions of a security mechanism m are specified using a formula of the following
form:

� (is_applicable(m, o) → ∆m) (5.17)

Where ∆m represents necessary conditions for the applicability of the mechanism
m. A formula of the form 5.17 is to be read “At any state of the target system, m can
be applied if the preconditions ∆m hold”.

Effects. They are modifications resulting from the application of a mechanism m

that transits the system from a state s to a state s′. We use the two-places predicate
apply(m, o) to specify that the mechanism m is applied over the object o. For a
mechanism m, effects are represented by a set of formulas Σm such that:

Φ(s, apply(m, o)) = s′ → (s′ |= Σm) (5.18)
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Axiom 5.18 states that if the application of the mechanism m over the object o
transits the system from a state wi to a state wj, therefore the set of effects Σm of the
application of the mechanism m is satisfied in the state wj.

Many security mechanisms have been proposed to ensure outsourced data pro-
tection. In the present work, we are going to focus mainly on four classes of security
mechanisms. Each class ensures specific security and utility properties. In each of these
classes, we studied some security mechanisms to figure out (1) the data structure(s),
the data type(s), and the level of granularity over which they can be applied, (2) the
set of provided security and utility properties. A quick overview of the characteristics
of the studied security mechanisms is given in Table 5.3.

5.6.1 Encryption Based Security Mechanisms

In our model, we consider that encryption-based security mechanisms can be applied
over a data object o if and only if the following three conditions hold: (1) the informa-
tion stored by o are considered sensitive (e.g., confidential or private information), (2)
the information stored by o are typed t, and (3) the information stored by o should be
structured as ds. This can be specified as follows:

�
[
enc_mechanism(m) ∧ is_applicable(m, o)→ object(o)

∧ sensitive(o) ∧ data_type(o, t) ∧ data_structure(o, ds)
] (5.19)

For instance, for the searchable encryption based security mechanism
[Moataz and Shikfa 2013], it is applicable over an object o if its stored informa-
tion are considered sensitive and having a textual data type (data_type(o, textual)),
and this, no matter how the information stored in o are structured.

The effects of the application of encryption-based mechanisms are specified using
the following formula:

∀m, o, k : enc_mechanism(m) ∧ apply(m, o) ∧ enc_key(k)→
∃oe : encrypted(o, k, oe)

∧
p∈Pm

provides(p, oe) (5.20)

where Pm represents the set of utility properties provided by the security mechanismm.
For instance, the set of utility properties provided by the order preserving encryption
[Boldyreva et al. 2009] is Pope = {ES,OS} (according to Table 5.3). The three places
predicate encrypted is a refinement transitive predicate as we consider that if the data
stored by an object o are encrypted using an encryption key k, therefore the information
stored by any sub-object o′ of o will be also encrypted using k.
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The relation between the knowledge of the information stored by data objects and
the property encrypted produced by the application of an encryption based security
mechanism is depicted through the following hypothesis.

Hypothesis 1. Given a data object o and an encryption key k. If we suppose that the
information stored by o are encrypted using k and stored into the data object oe then,
the following formula is an axiom in our model:

∀o, ∀oe,∀k, ∀e : enc_key(k) ∧ encrypted(o, k, oe)→(
knows(e, o)↔ knows(e, oe) ∧ knows(e, k)

) (5.21)

The previous Hypothesis states that an entity e knows the unencrypted information
stored in a data object o if and only if it knows the encrypted information oe of o and
the encryption key k.

5.6.2 Anonymization Based Security Mechanisms

Anonymization based security mechanisms are traditionally used to prevent identity
disclosure when publishing data sets. As a consequence, in our formal model, we
formally specify (Formula 5.22) that an anonymization based security mechanism can
be applied over a data object o if and only if: (1) the information stored by o are
considered to be exploited to identify an entity’s identity, (2) the information stored
by o are typed t, (3) the information stored by o should be structured as an existing
data structure ds, and (4) the information stored by o are not encrypted 1.

@k, o′ : �
[
anonym_mechanism(m) ∧ is_applicable(m, o)→ object(o)

∧ identifier(o) ∧ encrypted(o′, k, o) ∧ data_type(o, t) ∧ data_structure(o, ds)
]

(5.22)

For illustration purpose, let us take the case of k-anonymity ([Sweeney 2002]),
it can be applied over a data object o if the information stored by o are
categorical data (data_type(o, categorical)) and structured as a relational table
(data_structure(o, relational_table)).

1Anonymization-based mechanisms are based on data generalization consisting on replacing each
value in the object to be anonymized with a broader category, however this is will not be feasible if
those values are encrypted.
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The effects of the application of anonymization-based security mechanisms are spec-
ified by the following formula:

∀m, o : anonym_mechanism(m) ∧ apply(m, o)→
∃oa : anonymized(o, oa)

∧
p∈Pm

provides(p, oa) (5.23)

where Pm represents the set of utility properties provided by m. We consider that
the two places predicate anonymized is a refinement transitive predicate since if the
data stored by an object o are anonymized, then any identifier sub-object of o is also
anonymized. To illustrate, let us consider that the object o is represented by a relational
database. if we suppose that o is anonymized, then obviously, any relational table in o
is anonymized.

By considering that a data object o is identifier, we are sure that if the information
stored by o are known by an entity e, then e knows the set of identities ido related to o.
However if the information stored in o are anonymized and stored in oa, then any entity,
which does not know the information stored in o, cannot know the set of identities ido

related to o even if he or she has knowledge of the anonymized information stored in
oa. This can be formalized in our model through the following hypothesis.

Hypothesis 2. Given a data object o, if we suppose that the information stored by o
are anonymized and stored in oa, then the following formula is an axiom in our model:

∀o, oa, e, id : ¬knows(e, o) ∧ knows(e, oa) ∧ anonymized(o, oa)→
¬(knows(e, id) ∧ id_related(o, id))

(5.24)

5.6.3 Watermarking Based Security Mechanisms

Digital watermarking of outsource data emerged as a candidate solution for providing
ownership protection, integrity maintaining, and traitor tracing. Many watermarking
techniques have been proposed in the literature to address these purposes.

In our formal model, the conditions under which a watermarking-based security
mechanism can be used are specified using Formula 5.25.

�
[
watermark_mechanism(m) ∧ is_applicable(m, o)→ object(o)

∧ data_type(o, t) ∧ data_structure(o, ds)
] (5.25)

The data type t and the data structure ds are the properties that the object o should
have to allow the application of the watermarking-based security mechanism m. For
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example, the watermarking-based security mechanism presented in [Zhang et al. 2006]
can be applied over a data object o if o is typed numeric (t = numeric) and the
information stored in o are represented as a database (ds = database).

The effects of the application of watermarking-based security mechanisms are spec-
ified using the following formula:

∀m, o, k : watermark_mechanism(m) ∧ apply(m, o) ∧ watermark_key(k)
→ ∃w, ow : watermark(w) ∧ watermarked(o, w, k, ow)

∧
p∈Pm

provides(p, ow) (5.26)

Watermarking-based security mechanisms can be classified along two main dimen-
sions regarding the Verifiability/Detectability used method. Watermark extraction is
blind if and only if any entity needs only some private parameters (e.g. secret key) to
be able to extract the watermark. Watermark extraction is non blind if and only if the
knowledge of the original unwatermarked database is required. These two properties
are specified respectively by Formula 5.27 and 5.28 in Hypothesis3. We use the one
place predicate blind(m) to specify that the watermarking-based security mechanism
m supports the blind Verifiability/Detectability method.

Hypothesis 3. Given a watermarking-based security mechanism m, a data object o,
and a watermark key k. The two following formulas are axioms in our model:

∀m, o, k, w, ow, e : watermark_mechanism(m) ∧ watermark_key(k)
∧ blind(m) ∧ watermark(w) ∧ watermarked(o, w, k, ow)→(

knows(e, ow) ∧ knows(e, k)↔ knows(e, w) ∧Ke watermarked(o, w, k, ow)
) (5.27)

∀m, o, k, w, ow, e : watermark_mechanism(m) ∧ watermark_key(k)
∧ ¬blind(m) ∧ watermark(w) ∧ watermarked(o, w, k, ow)→(
knows(e, ow) ∧ knows(e, k) ∧ knows(e, o)↔ knows(e, w) ∧

Ke watermarked(o, w, k, ow)
)

(5.28)

Actually, the watermarks embedded in data objects can be classified regarding the
security properties they provide in three classes:

• Ownership watermark: Information allowing to prove the identity of the owner of
the data object are embedded in the watermark. We use the one place predicate
ownership_watermark(w) to specify that w is an ownership watermark and the
two places predicate contain(w, id) to specify that the information contained in w
are related to the identity id.
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• Integrity watermark: Information allowing to verify the integrity of a data
object are embedded in the watermark. We use the one place predicate
integrity_watermark(w) to denote that w is an integrity watermark.

• Traceability watermark: Information allowing to prove the identity of the person or
entity to whom a data object has been distributed are embedded in the watermark.
The one place predicate traceability_watermark(w) is used to specify that w is
a traceability watermark. We use the previously defined predicate contain(w, id)
to denote that the information contained in w are related to the identity id.

Hypothesis 4. The following formula are axioms in our formal model.

∀o, k, w, ow, e, id : watermark_key(k) ∧ ownership_watermark(w) ∧
Ke watermarked(o, w, k, ow) ∧ knows(e, w) ∧ contain(w, id)→

Ke owner(id, o)
(5.29)

∀o, k, w, ow, e, id : watermark_key(k) ∧ integrity_watermark(w) ∧
Ke watermarked(o, w, k, ow) ∧ knows(e, w)→ Ke (is_modified(o)

∨ is_unmodified(o))
(5.30)

∀o, k, w, ow, e, id, e
′ : watermark_key(k) ∧ traceability_watermark(w) ∧

Ke watermarked(o, w, k, ow) ∧ knows(e, w) ∧ knows(e′, ow) ∧
untrusted(e′) ∧ contain(w, id)→ Ke responsible(id, o)

(5.31)

Axiom 5.29 specifies how the ownership property is ensured using a watermarking-
based security mechanism. Formally speaking, if an entity e knows that an ownership
watermark w is embedded into a data object o, then e knows that the object o is
owned by the person or the entity having the identity related to w. Axiom 5.30
specifies the integrity assessment property provided by the use of a watermarking-
based security mechanism. Formally speaking, if an entity e knows that an integrity
watermark w is embedded into a data object o, then e can know whether or not
the object o has been modified. Finally, axiom 5.31 formally describes the traceability
property ensured through the application of a watermarking-based security mechanism.
Formally speaking, if an entity e knows that a traceability watermark is embedded in a
data object o and that the watermarked object ow is known by an untrusted entity, then
e is able to figure out the identity of the person or entity responsible of the disclosure
of ow.



102 CHAPTER 5.

5.6.4 Fragmentation Based Security Mechanisms

In many data structures (e.g., relational database), associations between values of
various data objects are most sensitive than the values themselves. The idea then is to
use fragmentation to break the sensitive relationships between those values.

In our formal model, the conditions under which a fragmentation-based security
mechanism can be used are specified using Formula 5.32.

�
[
fragmentation_mechanism(m) ∧ is_applicable(m, o)→ ∃o1, o2, o3 :

(
∧

o′∈{o1,o2,o3}
subelement_of(o, o′)) ∧ association(o1, o2, o3) ∧ sensitive(o3)

∧ data_structure(o, ds)
] (5.32)

The predicate association(o1, o2, o3) specifies that o3 represents the association between
o1 and o2. Formally speaking, Formula 5.32 states that a fragmentation-based security
mechanism is applicable over a data object o if (1) there exists three data objects
sub-objects of o, where one of them represents a sensitive association between the two
others, and (2) the information stored in o are structured as ds. For instance, for the
fragmentation-based security mechanism presented in [Bkakria et al. 2013b], ds will
be a multi-relational database, and o1, o2, and o3 will be either relational tables or
attributes.

The effects of the application of fragmentation-based security mechanisms are spec-
ified using the following formula:

∀m, o : fragmentation_mechanism(m) ∧ apply(m, o)→
(
∀o1, o2, o3 :

(
∧

o′∈{o1,o2,o3}
subelement_of(o, o′)) ∧ association(o1, o2, o3) ∧ sensitive(o3)

→ ∃f1, f2 :
(
(f1 6= f2) ∧ (o1 ∈ f1) ∧ (o2 ∈ f2) ∧ (o3 6∈ f1) ∧ (o3 6∈ f2)

)
∧(

∀o′,∃k : subelement_of(o, o′) ∧ sensitive(o′)→ encrypted(o′, k, o′e)
)

(
∀o′′ : subelement_of(o, o′′) ∧ ¬sensitive(o′′)→

∧
p∈Pm

provides(p, o′′)
))

(5.33)

Formula 5.33 formally states that if a fragmentation-based security mechanism m

is applied over a data object o, then (1) each two sub-objects of o associated through a
sensitive association will be stored in two different data fragments to break the sensitive
association. (2) All sensitive sub-objects of o will be encrypted to allow only authorized
entities (to whom the encryption key will distributed) to access them. (3) the utility
properties provided by m are ensured only for all insensitive sub-objects of o since o’s
sensitive sub-objects will be encrypted.
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5.7 Conclusion and Contributions

In this chapter, we define a formal model using a well-founded formal language based
on liner temporal epistemic logic allowing us, in a first time, to formally specify the
data structure storing the information to be outsourced relying on the use of a tree-
based modelization of data structures, as a second time, to specify as finely as possible
the policy to be applied over the data to be outsourced, and in a third time, formally
specify a set of candidate security mechanisms that can be used to enforce the specified
policy, by formally describing for each security mechanism, the conditions under which
they can be applied, the effects representing the system’s changes due to the application
of the mechanism, and the provided security and utility properties.

In the next chapter, we present a reasoning method for our formal model allowing
to formally identify the relevant combination of mechanisms to efficiently enforce the
defined security policy.





CHAPTER

6 Formal Reasoning
Method to enforce
Security Policies over
Outsourced Data

With outsourced data protection in mind, many security mechanisms that allow us
to ensure particular security requirements (e.g., confidentiality, integrity, etc.) have
been defined. In this context, several important questions need to be investigated: (1)
how to choose the right security mechanisms that should be used to enforce security
policies defined by the owners of the data to be outsourced, (2) over which parts of
the outsourced data the chosen security mechanisms should be applied, and (3) how
to verify then, whether or not, the chosen security mechanisms actually enforce the
defined security policies.

In this chapter, we strive to design a reasoning method for our formal model pre-
sented in Chapter 5. That is, relying on the target system formalization (i.e., the data
structure to be outsourced and the entities involved in the Cloud storage model), the
security policy formalization, and the security mechanisms properties formalization, we
strive to provide a reasoning method that formally identifies the relevant combination
of mechanisms to efficiently enforce the defined security policy.

The reminder of this chapter is as follows. Section 6.1 discusses the related work.
Section 6.2 defines a four steps reasoning method that permits to choose, from existing
security mechanisms, the ones that can satisfy the policy defined over the target system.
Section 6.3 describes a GraphPlan-based method that uses the set of security mech-
anisms given by our four steps reasoning method to produce a near-optimal security
mechanisms execution plan that enforces the security and utility requirements while
offering the best trade-off between security, utility and complexity. Section 6.4 reports
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the implementation and evaluation of our approach. Finally, Section 6.5 concludes this
Chapter.

6.1 Related Work

Our reasoning method aims to find a combination of security mechanisms that en-
forces a set of security and utility constraints while reaching a chosen goal (i.e., data
outsourcing or publishing).

Few research efforts have investigated how to combine security mechanisms to en-
force security policies over outsourced data. One of the firsts attempt is proposed in
[Ciriani et al. 2007], it consists of combining data fragmentation together with encryp-
tion to protect outsourced data confidentiality and can only be applied over one-relation
databases 1. In Chapter 3, we improved the approach presented in [Ciriani et al. 2007]
in such a way that it can deal with multi-relation databases. We also proposed a se-
cure and effective technique for querying data distributed in several service providers
and improve the security of our querying technique in order to protect data confiden-
tiality under a collaborative Cloud storage service providers model. Popa et al. in
[Popa et al. 2011] and we in Chapter 4 have proposed approaches based on adjustable
encryption. That is, different encryption schemes are combined to get the best trade-
off between data confidentiality and data utility for outsourced relational databases.
Cancellaro et al [Cancellaro et al. 2011] and Boho et al. [Boho et al. 2013] have pro-
posed interesting approaches combining watermarking and encryption to protect both
the confidentiality and traceability of outsourced multimedia files. All previously cited
approaches have three main limitations: First, they are defined in such a way that only
two pre-selected security mechanisms can be combined together. Second, they cannot
deal with all security properties that can be required by data owners as each approach
can provide at most two security properties. Finally, they cannot deal with all data
structures that can be used to store outsourced data.

To the best of our knowledge, a single formal model was proposed to combine se-
curity mechanisms to address how data is used after it is released. Pretschner et al.
[Pretschner et al. 2008] present a formal model of usage control mechanisms combina-
tion that formalizes the access control problem domain at a realistic level of complexity.
In the proposed model, mechanisms are specified as trace transformers that map at-
tempted events into actual usage controlled events. The model allows the specification
of a wide range of usage control mechanisms.

1Databases composed of only one table



6.2. CHOOSING THE RIGHT SECURITY MECHANISMS 107

The problem of security mechanisms planning to enforce security policies while at-
tempting to satisfy a set of goals was not widely investigated. The first attempt was
proposed by Irwin et al [Irwin et al. 2008]. They investigate how a planning system,
that uses security policies to ensure that planned actions will be able to occur, could
leak sensitive information. They formally define information leakage within the used
context and present two planning techniques which can be used to mitigate or elim-
inate this information leakage and prove their security. Afterwards, Bartoletti et al.
[Bartoletti et al. 2009] proposed a static approach to study the composition of services
while respecting a given security requirements. To this end, they extend the λ-calculus
[Rosser 1984] with primitives for selecting and invoking services that enforce the given
security requirements.

Planning graph analysis idea has been used with security purpose in mind. Armando
et al. [Armando and Compagna 2002] proposed a fully automatic model that trans-
lates security protocol specifications into propositional logic to permit to effectively
find attacks to protocols. The proposed model is a combination of (1) a reduction of
protocol insecurity problems to planning problems and (2) well-known SAT-reduction
techniques which have been used for planning. Subsequently, in [Armando et al. 2003]
authors improved the approach proposed in [Armando and Compagna 2002] by ex-
ploring the application of a sophisticated SAT-reduction technique, Graphplan-based
encoding, which has been used with success in AI planning. Later on, Armando et
al. [Armando et al. 2014] proposed a model checker based on SAT solver for security-
critical systems. The model checker relies on a successful combination of encoding
techniques originally developed for planning with techniques developed for the analysis
of reactive systems. The proposed approach can be applied in a variety of application
domains (e.g., security protocols verification and security-sensitive business processes).
Unfortunately, the previously mentioned approaches are developed to support the ver-
ification of security-critical systems and cannot be used to deal with the problem we
aim to tackle in this chapter.

6.2 Choosing the Right Security Mechanisms

The right mechanism or combination of mechanisms is the one that fits in the best
way the sets of security and utility constraints. As we have seen in the section 5.6,
each security mechanism offers different level of protection and different kind of utility
properties. The main challenge then is to choose the best mechanisms that satisfy
chosen goals while enforcing defined security polices. Actually, in the general case of
data outsourcing, security issues come when data is outsourced to an untrusted storage
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service provider. Before sending the data to a Cloud storage server, security constraints
are normally satisfied, as we can consider that, since the data is not outsourced, there
is no security issues to worry about. Based on this, we define several steps allowing to
choose the combination mechanisms that can be used to enforce the requirements of
outsourced data owners.

First Step: Satisfying the Chosen Goals

In this first step of our reasoning method, the purpose is to find the set of mechanisms
that allow data owners to reach their goals.

Definition 23. (Goal Satisfier). Given a set of formulas ΣG representing a goal
G to achieve, a set of formulas Σ representing the specification of a target system S,
and a mechanism m represented by (∆m,Σm). m satisfies G in S iff the following two
conditions hold:

1. Σ |= ∆m

2. Σ ∪ Σm ` ΣG

Formally speaking, condition (1) ensures that Σ is a model of ∆m (which represents
the preconditions of m). That is, in the current state of the system S, the mechanism
m is applicable. Condition (2) states that from the specification of the used system Σ
and the set of formulas Σm representing the effects of the mechanism m, we should be
able to formally deduce the set of formulas ΣG representing the goal G.

Example 11. Consider a data owner o who wants to outsource an object ob to a cloud
server storage s. Let us suppose that the mechanisms toolbox that can be used by the
data owner contains the http_post mechanism which is represented by the following two
formulas:

∆http_post =
{
∃s :

(
csp(s) ∧ connected(o, s, 80) ∧ stores(o, ob)

)}
(6.1)

Σhttp_post =
{
∃s :

(
csp(s) ∧ outsourced(ob, s)

)}
(6.2)

Formula 6.1 specifies that the http_post mechanism is applicable over an object ob by
the data owner o if it stores ob, and there exists a cloud storage server (csp) s with
which the data owner is connected. Formula 6.2 states that if the http_post mechanism
is applied over an object ob, then ob will be outsourced to a server s. In fact, since o
is the data owner of ob, we can say that o stores ob. Then, if we suppose that o is
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already connected through the HTTP protocol with a cloud server s, we can deduce the
following:

Σ |= ∃s : csp(s) ∧ connected(o, s, 80) ∧ stores(o, ob) (6.3)

Then, based on formulas 6.1 and 6.3 we deduce that:

Σ |= ∆http_post (6.4)

The goal G of the data owner consists in outsourcing the object ob to a csp. This goal
is specified in our model using the formula 5.2. Then, based on formulas 5.2 and 6.2
we deduce that:

Σ ∪ Σhttp_post ` ΣG (6.5)

Finally, relying on formulas 6.4 and 6.5 as well as Definition 23 we deduce that the
mechanism http_post can satisfy the desired goal G of the data owner.

Second Step: Violated Security Constraints

After getting the set of mechanismsM that can be applied to satisfy the chosen goal,
we start looking for each mechanism m ∈ M the set of violated security and utility
constraints.

Definition 24. Given a set of formulas Σ representing the specification of a target
system S, a mechanism m ∈M represented by (∆m,Σm), and a security constraint C
formalized using the set of formulas ΣC. The constraint C is violated while the chosen
goal G is satisfied iff the following condition holds:

Σ ∪ Σm ∪ ΣC ` ⊥ (6.6)

Example 12. Consider that we have the same scenario proposed in Example 11, except
in this example, the data owner considers that: (1) the object ob to be outsourced con-
sists of sensitive information, and (2) all csps are untrusted entities. As a consequence,
no matter which csp will be used to outsource ob, it should not know any information
about ob. The previous security requirement is in fact an instance of a confidentiality
constraint C which can be specified, according to Formula 5.7, using Σ1

C as following:

Σ1
C = {� [∀s : sensitive(ob) ∧ untrusted(s)→ ¬knows(s, ob)]}. (6.7)

Based on (1) and (2) we deduce that:

Σ |=
(
∀s : csp(s) ∧ untrusted(s)

)
∧ sensitive(ob) (6.8)



110 CHAPTER 6. A REASONING METHOD FOR OUR FORMAL MODEL

We have seen in Example 11 that the http_post mechanism can be used to satisfy the
desired goal G of the data owner. Then, relying on Formulas 5.2 and 5.4, we can
deduce the following:

♦
(
∃s : csp(s) ∧ knows(s, ob)

)
(6.9)

Finally, based on Formulas 6.7, 6.8, and 6.9, we deduce that:

Σ ∪ Σhttp_post ∪ Σ1
C ` ⊥ (6.10)

Obviously, the toolbox to be used may contain several mechanisms that can satisfy
the chosen goal of the data owner. In that case, our reasoning method should be able
to choose the best one.

Definition 25. (Best Goal Satisfier). Given the set of mechanisms M =
{m1, · · · ,mn} that can be used to satisfy the defined goal G. Let Ci be the set of
violated constraints while applying the mechanism mi and Insi be the set of violated
instances of the constraints Ci (1 ≤ i ≤ n). The best goal satisfier mbgs is defined as
following:

mbgs =


mj if ∀i ∈ {1, · · · , n} : |Cj| < |Ci|
mj if ∃p1, · · · , pk ∈ {1, · · · , n} : |Cp1| = |Cp2| = · · · = |Cpk

|
and ∀i ∈ {p1, · · · , pk} : |Insj| ≤ |Insi|


where |C| is used to denote the cardinality of C.

Example 13. Consider that we have the same scenario proposed in Example 12, except
in this example, we consider that the mechanisms toolbox that can be used by the data
owner contains both http_post and https_post mechanisms. The http_post mechanism
is specified using the two formulas 6.1 and 6.2. The https_post mechanims is specified
using the following two groups of formulas:

∆https_post =
{
∃s :

(
csp(s) ∧ connected(o, s, 443) ∧ stores(o, ob)

)}
(6.11)

Σhttps_post =
{
∃s, k :

(
csp(s) ∧ enc_key(k) ∧ encrypted(ob, k, obe) ∧

knows(s, k) ∧ knows(o, k) ∧ outsourced(obe, s)
)} (6.12)

We consider also that there is an untrusted adversary "adv" how is able to intercept
the communication exchanged between the data owner and a csp. As a consequence,
the data owner wants to prevent "adv" from getting the information stored in the object
ob. The security requirements of the data owner can be specified as a confidentiality
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constraint (Formula 5.7) which will be denoted in this example by C. Actually, we
formally proved in Example 11 that the http_post allows to reach the desired goal of
the data owner. The same approach can be used to formally prove that the https_post
also allows to reach the same goal. In a first hand, in Example 12 we formally proved
that, when the http_post is used to send the object ob to a csp, an instance (Formula
6.7) of the constraint C will be violated. In fact as we have supposed that ’adv’ is able
to intercept the communication exchanged between the data owner and a csp, we deduce
the following:

♦ knows(adv, ob) (6.13)

Then relying on Formula 6.13 and using the same approach as in Example 12, we
deduce that a second instance (Formula 6.14) of C will be also violated when using the
http_post mechanism.

Σ2
C = {� [sensitive(ob) ∧ untrusted(adv)→ ¬knows(adv, ob)]}. (6.14)

In the other hand, when we consider that the https_post mechanism is to be used to
outsource ob, we can rely on Formulas 5.2, 5.4, 6.12, and Hypothesis 1 to deduce 6.9.
Then based on Formulas 6.7, 6.8, and 6.9, we deduce that the instance of C represented
using Σ1

C is violated when using the https_post mechanism:

Σ ∪ Σhttps_post ∪ Σ1
C ` ⊥ (6.15)

Since its considered that an external adversary cannot know the key used in an https
communication. Then, it cannot know any information about ob just by intercepting
the communication exchanged between the data owner and a csp.

As a conclusion, we deduce that, either using http_post or https_post mechanisms,
the confidentiality constraint C will be violated. However we have seen also that the use
of the http_post mechanism will violate two instances of C (both csp and adv will know
the sensitive information stored in ob) whereas the use of the https_post mechanism
will violate a single instance of C (only the csp will know the sensitive information
stored in ob). Then according to Definition 25, the https_post mechanism is best goal
satisfier in the used scenario.

Third Step: Satisfying the Violated Constraints.

Once we get the best goal satisfier mbgs for a defined goal G and the corresponding
set of violated security and utility constraints C, the challenge then is to, for each
violated security constraint, looking for the properties (e.g., encryption, anonymization,
watermarking, computation, etc) that can satisfy that constraint.
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Definition 26. Given a set of properties P = {P1, · · · , Pl} specified respectively in our
formal model using the sets of formulas ΣP1 , · · · ,ΣPl

, a set of formulas Σ representing
the specification of the target system, a set of formulas Σmbgs

representing the effects
of mbgs, and a violated constraint C represented in our model using the set of formula
ΣC. The set of properties P satisfies C iff the following condition holds:

∧
P∈P

ΣP ∪ Σ ∪ Σmbgs
` ΣC (6.16)

Informally speaking, Formula 6.16 means that if the set of properties P is already
provided, the application of the mbgs will not lead to the violation of the security
constraint C.

Example 14. We consider that we will use the same scenario as in Example 13 in
which we formally proved that the https_post mechanism is the best goal satisfier, de-
spite the fact that it violates the instance Σ1

C (Formula 6.15) of the confidentiality
constraint C. Let us suppose that the property encrypted (represented using Σenc) is
provided over the object ob which allows us to deduce that:

Σ ∪ Σenc |= ∃k′, obe : enc_key(k′) ∧ encrypted(ob, k′, obe) (6.17)

Then, using the https_post mechanism, the data owner will outsource obe to the csp. In
fact, regarding that the encryption key k′ is kept secret by the data owner, then the csp
will not know any information about the key k′. This fact can be specified as follows:

� (¬knows(s, k′)) (6.18)

Then, from Formula 6.18 and Hypothesis 1 (Section 5.6.1), we deduce the following:

�(¬knows(s, ob)) (6.19)

Finally, based on Formulas 6.8, 6.17, and 6.19 we deduce that:

Σenc ∪ Σ ∪ Σmbgs
` Σ1

C (6.20)

6.2.1 Fourth step: Choosing the Right Security Mechanisms.

The previous steps permit to select the best goal satisfier mbgs that can satisfy the goal
G, the corresponding set of violated constraints C, and for each constraint Ci ∈ C, the
set of properties Pi that can satisfy Ci when applying mbgs. At this level, based on
those properties, the main goal is to select from the security mechanisms toolbox, the
combinations that can usefully satisfy each violated constraint in C.
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Definition 27. (Useful satisfaction). Given a violated security constraint C de-
fined over an object ob, a set of security properties P that satisfy C, a set of utility
constraint UOb defined over the object ob, and a set of formulas Σ representing the
specification of a target system. A combination of mechanisms MC usefully satisfies
the constraint C if the following condition holds:

Σ ∪
{ ∧

m∈MC

apply(m, ob)
}
|=
( ∧

P∈P
P

∧
u∈Uob

provides(u, ob)
)

(6.21)

Example 15. We consider that we will use the same scenario as in Example 14,
except in this example we consider that the data owner requires to be able to perform
computation (CP) and order search (OS) over the information stored in the object
to be outsourced ob, and (2) the mechanisms toolbox that can be used contains the
security mechanisms described in Table 5.3. We have seen in Example 14 that the
encryption property allows to enforce the confidentiality constraint C while the mbgs

(https_post) is applied. According to Formula 5.20, the encryption property can be
provided by all encryption-based security mechanisms. However, not all of them can
provide the required utility requirements (CP and OS). According to Table 5.3 Boldyreva
[Boldyreva et al. 2009] security mechanism can provide the utility requirement OS, and
Paillier [Paillier 1999] mechanism can provide the utility requirement CP . This can
be formalized as follows:

apply(Boldyreva, ob) ∧ apply(Paillier, ob)→
(
∃k, obe : enc_key(k) ∧

encrypted(ob, k, obe) ∧ provides(CP, ob) ∧ provides(OS, ob)
) (6.22)

Then, by considering that MC = {Paillier, Boldyreva}, P = encrypted, and Uob =
{CP,OS}, we can formally deduce Formula 6.21 from Formula 6.22. Therefore, Ac-
cording to Definition 27, a combination of Boldyreva and Paillier encryption based
mechanisms is a useful satisfier of the constraint C.

In this section, we have defined a four steps reasoning method for our formal model
yield to pick up the set of security mechanisms that can enforce each security property
required by the data owner. However, the reasoning method we proposed does not
take into consideration conflicts that may occur between security mechanisms which
makes enforcing a combination of security mechanisms that satisfies many security re-
quirements hard to fulfill. We strive to overcome this limitation in the next section
by extending and using a Graphplan-based approach to build a planning graph repre-
senting all possible transformations of the target system resulting from the application
of the set of security mechanisms we got previously using our four steps reasoning
method. Finally, we define a method to search the best security mechanisms execution
plan to transform the used system from its initial state to a state in which the security
requirements are enforced.
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6.3 Security Mechanisms Planning to Enforce Se-
curity Policies

We strive to plan a sequence of mechanisms allowing to transform the system from its
initial state to a state in which the goals are reached while respecting a set of defined
constraints. Planning efficiency can be improved by allowing parallel application of
mechanisms, which leads to minimize the number of parallel plan steps. In order to
be able to apply mechanisms parallelly, we should figure out which mechanisms are
compatible by finding different kind of conflicts between them.

Definition 28. Conflicting mechanisms. Two mechanisms m1 and m2 represented
respectively by (∆m1 ,Σm1) and (∆m2 ,Σm2), where ∆mi

and Σmi
represent respectively

the specifications of preconditions and the effects of mi, are effectively incompatible if
and only if one of the following deductions hold:

1. Σm1 ∪ Σm2 ` ⊥ .

2. Σmi
∪ ∆mj

` ⊥ with 1 ≤ i, j ≤ 2 and i 6= j.

3. ∆m1 ∪ ∆m2 ` ⊥.

Item 1 means that the effects of m1 and m2 are inconsistent. Figure 6.1 illustrates
this case by showing that in the case of k − anonymity and aes− cbc, if an object ob
is k − anonymized, we will lose the precision of the information stored in ob, as those
information will be generalized, which is not the case when the aes − cbc encryption
mechanism is used. Obviously, we can see that we have a logical contradiction between
the two mechanisms effects.

∆k−anonymity

k − anonymity(ob)

∆aes−cbc

aes − cbc(ob, k)

· · · loss_precesion(ob) · · ·¬loss_precesion(ob)
⊥

Figure 6.1 – Two conflicting mechanisms: The effects of k − anonymity and aes− cbc
are inconsistent.

Item 2 of Definition 28 means that the effects of the application of mi dissatisfy the
preconditions of mj. Figure 6.2 illustrates this case by taking the same mechanisms as
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in Figure 6.1, except that we consider that an object can be k − anonymized only if
it is not encrypted (according to Formula 5.22). We can easily figure out the logical
contradiction between the preconditions of k− anonymity and the effects of aes− cbc.

∆k−anonymity |= (@k, ob′ : encrypted(ob′, k, ob))

k − anonymity(ob)

∆aes−cbc

aes − cbc(ob′, k)

· · · loss_precesion(ob) · · ·encrypted(ob′, k, ob)

⊥

Figure 6.2 – Two conflicting mechanisms: The preconditions of k−anonymity and the
effects of aes− cbc are inconsistent.

Item 3 of Definition 28 states that m1 and m2 have a competing preconditions such
that they cannot be true in the same state of the target system.

Definition 29. (Parallel plan). Consider a set of available mechanisms M. A
parallel plan is a finite sequence of sets of mechanisms P = {p1, · · · , pn} such that:

∀pi ∈ P : pi ⊆M.

Definition 30. (Correctness). Given a system S, its current state w1, a finite set
of mechanisms M. A parallel plan P = {p1, · · · , pn} is correct regarding S and w1 if
and only if the following conditions hold:

1. ∃w2, · · · , wn such that : ∀m ∈ pi, wi |= ∆m, 1 ≤ i ≤ n.

2. ∀pi ∈ P ,∀m1,m2 ∈ pi : m1 and m2 are not conflicting (Definition 28).

Problem 2. (Parallel Planning Problem). Consider a system S, its current state
w1, a set of mechanisms M that can be applied over S, a set of goals G that should
be achieved, and a set of constraints C that should be respected. The Parallel Planning
Problem consists on finding a sequence of sets of mechanisms P = {p1, · · · , pn} such
that the following conditions holds:

1. P is correct regarding S and w1.

2. ∀wi = Φ(wi−1, pi−1), ∀c ∈ C : wi |= c, 2 ≤ i ≤ n.

3. ∀G ∈ G : wn+1 |= G.
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Informally speaking, item 2 in the previous problem states that, in any state wi of
S obtained by the application of the sets of mechanisms p1, · · · , pi (2 ≤ i ≤ n), the set
of security constraints C is satisfied. Item 3 ensures that the set of goals G is satisfied
in the last state of S obtained by the application of P .

In next part, we briefly introduce the Graphplan’s basic operations as defined in
[Blum and Furst 1995, Blum and Furst 1997]. Graphplan uses action schemata in the
STRIPS format in witch each action is represented as preconditions and effects. This
representation of action as preconditions and effects is suitable with the representation
of our mechanisms parallel planning problem.

6.3.1 Graphplan Description

Graphplan is a directed, leveled graph composed of two kinds of nodes and tree kinds of
edges. Graphplan levels alternate between fact levels containing fact nodes (each node
is labeled with an instance of a predicate belonging to our formal language), and action
levels composed of action nodes (each labeled with an instance of a security mechanism
belonging to the mechanisms toolbox used in our model). Relations between actions
and predicates in a Graphplan are explicitly represented through edges. Preconditions-
edges are used to connect action nodes of an action level i to their preconditions in the
fact level i. Effects-edges connect action nodes belonging to the action level i to their
effects in the fact level i + 1. Mutual-exclusion edges are relations connecting action
nodes belonging to the same Graphplan level. They represent conflicts between action
nodes that can be identified according to Definition 28. Two action nodes belonging
to the same action level and representing two instances of security mechanisms are in
conflict according to Definition 28 means that no correct plan (Definition 30) could
possibly contain both. Therefore, the use of mutual-exclusion edges is very useful to
reduce the search space for a sub-graph of a Graphplan that might correspond to a
correct plan.

Graphplan is based on two main phases: The first is called Graphplan construction
phase consisting of growing a planning graph. The second phase allows to extract
possible solutions (plans) from the planning graph by performing a backward searching
phase starting with the goals. In the graph construction phase, we start with a planning
graph having only a single fact level which contains the initial specification of the target
system. GraphPlan construction method runs in stages, in each stage i, it extends the
planning graph resulting from the stage i− 1 by adding one time step which contains
the next action level and the following fact level. After each stage, Graphplan check if
all predicates representing the goals are presented in the last fact level in the planning



6.3. SECURITY MECHANISMS PLANNING TO ENFORCE SECURITY
POLICIES 117

graph, if it is the case, search a valid plan that transforms the system from its initial
state to a state in which all the goals are achieved.

6.3.2 Graphplan Modelling of the Planning Problem

The STRIPS system [Fikes and Nilsson 1971] used by Graphplan is represented by
four lists, a finite set Cs of ground atomic formulas called conditions, a finite set of
operators Os where each operator is composed of two formulas (satisfiable conjunction
of conditions) representing its preconditions and effects, a finite set of instances of
predicates Is that denotes the initial state, and a finite set of instances of predicates Gs

that denotes goal state. As we have seen in the previous section, our planning problem
is composed of a system S, a set of security mechanisms M, a set of constraints C,
and a set of goals G. Obviously, S, M, and G can be easily modeled as a STRIPS
planning problem by expressing S as Cs and Is,M as Os, and G as Gs. According to the
security policy specification in section 5.5, C will be composed of security and utility
constraints. Utility constraints specify the functionalities that should be provided for
S (e.g. the ability to compare the equality of objects). A plan P satisfies a set of
utility constraints Cu if at its end none of the utility constraints in Cu is violated. In
other words, if one of the utility constraints is violated at some state of the plan, it
must become true again by its end. Consequently, utility constraints will be expressed
as goals in the STRIPS planning problem.

Security constraints specify the requirements that should be respected during the
transformation of S, they can be considered as safety constraint meaning that those
requirements are to be satisfied in all states of S. However, the STRIPS language
as it is defined in [Fikes and Nilsson 1971] cannot express this kind of constraints.
To overcome this limitation, we extend the STRIPS system language by adding the
operator Constraint allowing to express the set of security constraints. For instance, a
confidentiality constraint (rule 5.7) is to be expressed as follows:

Constraint ( confidentiality_constraint1(ob, e) :
Formula: sensitive(ob) ∧ untrusted(e) ∧ knows(e, ob))

In the previous expression, confidentiality_constraint1 (o,e) is used to denote the name
of the constraint and the variables (bounded variables of the rule 5.7) to be instantiated.
The Formula field represents the conjunction of predicates indicating the condition
under which the constraint is violated (the negation of CNF representation of the con-
straint). For instance, according to the previous expression, confidentiality_constraint1
(ob, e) is violated if there exists a sensitive object ob that is known by an untrusted
entity e.
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6.3.3 Extending Planning Graph: Planning Under Security
Constraints

Graph Construction Phase Extension

We extend Graphplan’s construction method of the planning graph in two ways. The
first extension allows to build a planning graph of a planning problem which contains
Domain Axioms (axioms that formally specify relations between different objects of
the system). Second, we improve the Graphplan’s construction method of the planning
graph to avoid the violation of security constraints while building the planning graph.

The need of axioms. In Graphplan approach, the lack of axioms disrupts the ability
to represent real-word domains, which contains normally quite complex conditions and
rules. Without the use of axioms, mechanisms preconditions and effects can become
quickly too complex and unreadable. In our approach, we believe that the use of axiom
will provide a natural way of deriving supervenient properties, which represents logical
consequences of the effects of applied mechanisms.

Example 16. Suppose that we have two mechanisms in the mechanism toolbox to be
used: aes− cbc and http_post. The effects of http_post are represented by Formula 6.2
(Example 11) and the effects of aes− cbc are described as following:

Σaes−cbc = {∃k, obe : enc_key(k) ∧ encrypted(ob, k, obe)} (6.23)

Let us suppose that the parallel plan P = {aes− cbc(obj, k), {http_post(obje, u),
http_post(k, u)}} is performed over S and transforms it to the state w such that:
w |= encrypted(obj, k, obje) ∧ knows(u, obje) ∧ knows(u, k). According to Hypothesis 1
(Section 5.6.1), we know that if an entity e knows obje and the used encryption key k,
then it can know obj. Unfortunately, Hypothesis 1 is difficult to be expressed using only
the two mechanisms encrypt and send. This lack of expressiveness can be overcame by
using Hypothesis 1 as an axiom in the target system.

It is clear that the use of axioms can add an important expressive power to the
planning problem specification. However, the Graphplan construction method should
be improved to be able to use axioms to infer new facts about the target system.

Updating Knowledge Using an Inference Graph

In this part, we present how we define axioms in our approach and the way they will
be used in the planning process. Axioms have been defined by [Ghallab et al. ] as "log-
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ical formulas that assert relationships among propositions that hold within situation".
According to this definition, we define an axiom as an expression in the following form:

n∧
i=1

pi →
m∧

j=1
qj (6.24)

Where pi and qj are instances of some predicates of our defined language.

According to a state w of the target system, we want to be able to infer all possible
new facts based on a set of axioms that represents relationships between different
predicates in our language. To meet this goal, we utilize the same construction method
used in Graphplan in order to build an inference graph. In this construction method, we
consider each axiom in our system as an action, then the left part of the representation
of the axiom (6.24) will be considered as the preconditions of the action and the right
part is its effects. The idea consists on applying in each layer of the inference graph
the set of applicable actions (axioms) until we infer all possible new facts (we find the
same set of facts in the last two Graphplan’s fact-layers). Algorithm 7 describes how
the inference graph is constructed.

Once the inference graph is built, it allows to extract the set of facts that are derived
using the set of defined axioms. In fact, the set of inferred facts is IGl\IG0 were IG0

and IGl represent respectively the set of predicate-nodes in the first fact level and the
set of predicate-nodes in the last fact level of the inference graph.

Theorem 6. Given the set of formulas Σw representing the system S in the state
w, and a set of n consistent axioms A = {ax1, · · · , axn}, the height of the graph
representing the inference graph of S using A will be at most n.

Proof. Since axioms are used to deduce new relations between objects and cannot create
new objects in S, and that S is composed of a finite set of objects, we can deduce that
the inference graph will be built in finite time. Furthermore, as we will use Graphplan
construction method to build the inference graph, we will be able to parallelly use
axioms to infer new facts and then to reduce the height of the inference graph. The
worst case will be when all axioms cannot be applied on the system parallelly (the
applicability of axi depends on the facts derived by axi−1), which clearly requires an
n-level inference graph to deduce all new facts from A.

Theorem 7. Consider a system S composed of n objects and represented by p predicates
in a state wi, and m axioms each having a constant number of bounded variables. Let
q be the largest number of predicates in the right-side of each axiom (formula 6.24) and
v be the largest number of bounded variables in any axiom. Then, the size complexity
of a k-level inference graph created using Graphplan construction method and the time
complexity of building the graph, are polynomial n, m, q, p and k.
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input :
G /* planning graph (Graphplan) */
last_flG = {f1, · · · , fn} /* set of facts in the last fact level of G */
Ax = {Ax1, · · · , Axm} /* the set of domain-axioms */

output:
inferred_facts /* the set of derived new facts */

1 Main
2 IG = ∅ /* inference graph initialization */
3 add_fact_level(IG, last_fl) /* add the last fact level of G to the inference
graph IG */

4 for i = 0 to m do
5 new_fact_level = ∅ /* new empty fact level */
6 new_fact_level = last_level(IG) /* copy the facts in the last fact level

of IG to new_fact_level */
7 foreach axiom in Ax do
8 instances = instantiate(axiom) /* get all instances of the axiom */
9 foreach inst in instances do

10 /* axioms can be divided into left and right parts (rule 6.24) */
11 if (last_level(IG) |= left_part(inst)) then
12 new_fact_level = new_fact_level ∪ right_part(inst)
13 end
14 endfch
15 endfch
16 if (new_fact_level == last_level(IG)) then
17 inferred_facts = new_fact_level \ last_flG
18 break
19 else
20 add_fact_level(IG, new_fact_level)
21 end
22 end

Algorithm 7: Building inference graph and getting new derived facts

Proof. Since axioms cannot create new objects, the maximum number of predicates
that may be created during the instantiation of an axiom is qnv. Therefore, in any
fact level of the inference graph, the maximum number of nodes is p + mqnv. The
maximum number of nodes in any axiom-level (action level) of the inference graph is
mnv since any axiom can be instantiated in at most nv distinct ways in worst case.
Therefore, the size complexity of a k-level inference graph created using Graphplan
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construction method is O(k(p+mqnv +mnv)). As a result, for a fixed v (in our formal
model v = 6), the size complexity of a k-level inference graph is polynomial n, m, q,
p and k. In the other side, the complexity time of creating new inference graph level
(axiom level and fact level) is O(mnv). Therefore, the complexity time of creating a
k-level inference graph is O(kmnv). As a result, for a fixed v, the time complexity of
creating a k-level inference graph is polynomial n, m, and k.

Building Planning Graph Under Security Constraints

The specification of security constraints requires that some properties should be re-
spected during all the states of the target system. Since each fact level of the planning
graph is built using the construction method of Graphplan, it can be considered as a
possible state of the system, our idea consists of verifying the satisfiability of security
constraints on each new created fact level of the planning graph during its construction.

Definition 31. (Violated security constraint). Consider a planning graph G com-
posed of n fact levels fl1, · · · , f ln, each fact level fli is composed of a set of facts wi. A
security constraint C specified in our formal language using the set of formulas ΣC and
specified in the STRIPS system language by ΣC (the negation of CNF representation
of ΣC) is violated in a fact level fli if and only if wi |= ΣC.

Graphplan uses directed edges to connect each action instance node belonging to
the ith action level of the graph to the set of fact nodes belonging to the ith fact level
representing its preconditions, and to the set of fact nodes belonging to the (i + 1)th
fact level representing its effects. Thanks to this property, we are able to find the
combinations of actions belonging to the ith action level of the graph and leading to
security constraints violation in the (i+ 1)th fact level.

Algorithm 8 describes the used method to get the combinations of actions leading
to violate a security constraint. The correctness and the complexity of the Algorithm
8 are proved by the following theorems.

Theorem 8. (Correctness). Given a violated security constraint C and a set of
fact nodes cause_nodes that causes the violation of C, the Algorithm 8 terminates and
computes all the combinations of actions that lead to violate C.
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input :
C /* the violated security constraint */
cause_nodes /* the set of fact_nodes that causes the violation of C

*/
output:

action_combinations /* the set of combinations of actions that
violates the constraint C */

1 Main
2 combination = ∅
3 all_combinations(causes_nodes, action_combination)
4 End Main
5

6 Recursive Procedure all_combination(nodes, combination)
7 if (Card(nodes) == 0) then
8 add(combination, action_combination) /* add combination to

action_combination */
9 end

10 first_node = nodes.first /* get the first node in the set nodes */
11 remove(nodes, first_nodes) /* remove the first_node from the set nodes */
12 foreach action_node in first_nodes.in_edges do
13 /* first_nodes.in_edges represents the set of edges connecting the node

first_nodes to the actions that provide it. */
14 copy_combination = combination

15 if (action_node /∈ copy_combination) then
16 add(action_node, copy_combination)
17 end
18 all_combinations(causes_nodes, copy_combination)
19 endfch
Algorithm 8: Getting all combinations of actions that lead to violate a constraint

Proof. To prove the correctness of the algorithm 8, we have to show that (1) it ter-
minates; (2) it computes all the combinations of actions that lead to the violation of
C.

1. Algorithm 8 contains the recursive procedure "all combination" having the ter-
mination case in which the set of fact nodes nodes is empty (line 7). Since the
number of fact nodes that cause the violation of C is supposed to be finite (the
cardinality of cause_nodes is finite), the set of actions that provides each fact
node in cause_nodes is finite, and that the recursive procedure removes an ele-
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ment from cause_nodes (line 11) during each new recursive call, we can deduce
that algorithm 8 terminates .

2. When the procedure "all combination" is called for the first time (line 3), the set
of fact nodes causing the violation of the constraint C and an empty combination
of actions are passed as parameters. The first node in cause_nodes is selected
and removed from the list. Then, for each action node action_node allowing to
provide the selected node (each parent node in the graph), we make a new copy
copy_combination of combination, insert action_node into copy_combination,
and call recursively the procedure using the cause_nodes and copy_combination.
When a recursive call reaches the termination case (line 7), we are sure to have
for each fact node in cause_nodes, an action node in combination that provides
it. Moreover, since we have a recursive call for each action node providing a fact
node in cause_nodes, obviously we will get all possible combinations of actions
leading to violate the constraint C.

Theorem 9. (Complexity). Given a violated security constraint C, a set of cause
nodes CN = {n1, · · · , nn} representing the set of fact nodes that causes the violation
of C, the complexity of the algorithm 8 is O(∏n

i=1 li) in time, where li is the number of
different actions providing the fact node ni.

Proof. Since, each call of the procedure "all combination" will select a fact node ni ∈
CN and will create li recursive calls, the total number of recursive calls will be ∏n

i=1 li.
Therefore, the complexity of the algorithm 8 is O(∏n

i=1 li) in time.

Once we know the combination of actions Cc that leads to the violation of the
security constraint C. The trivial way to solve this violation problem would be to
remove Cc and its corresponding effects from the planning graph. Unfortunately, this
solution can be useless in many cases as it can prevent some actions in Cc (a subset of
Cc) that do not violate C to be used.

Avoiding security constraints violation. In Graphplan, mutual exclusions are
basically used to specify that no valid plan could possibly contain conflictual actions
in the same plan step. Since, a security constraint C is violated if all actions in a
combination Cc that violates C are applied in the same action level of the planning
graph, our solution to prevent this violation is to use mutual exclusion relations as
following:
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1. If |Cc| ≥ 2: ∀ nodea ∈ Cc, create a mutual-exclusion between nodea and
Cc \ {nodea} .

2. If |Cc| = 1, remove the action-node in Cc and its corresponding effects from the
planning graph .

where |Cc| represents the number of action-nodes in Cc. Condition 1 ensures that if
the number of action-nodes in Cc is more that one, therefore we will create a mutual-
exclusion between each action-node nodea in Cc and the set of other action-nodes in
Cc. This allows in one side to ensure that no correct plan could possibly contain nodea

and Cc \ {nodea} together which allows to avoid the violation of the security constraint
C, and on the other side to allow the largest subsets of action-nodes (Cc\{nodea}) in
Cc that do not violate C to be used together in the same plan. Condition 2 states that
if Cc is composed of only one action-node, therefore, the unique solution to avoid the
violation of C is to remove the action-node in Cc as well as its corresponding effects
from the planning graph.

Example 17. Consider a system S composed of three entities, a data owner, a user u
and a server s. The data owner wants to outsource a sensitive object o to a server s
in order to share its content with the user u. The data owner considers that s cannot
be fully trusted, therefore the confidentiality of o must be protected. The specification
of the system S is as follows:

• Goal: outsource(o, s).

• Constraint: � ¬knows(s, o)

• Axioms:

– Ax1 : Formula 5.21 (Section 5.6.1)

– Ax2 : ∀o, oenc, k, s. csp(s) ∧ encrypted(o, k, oenc) ∧ knows(s, oenc)
→ outsource(o, s)

Axiom Ax1 specifies that if an entity e knows oenc (oenc represents the encrypted form
of o using the key k) and the encryption key k, then e knows o. Axiom Ax2 specifies
that if a cloud storage server s knows an object oenc representing the encrypted form of
o (oenc is sent to s) therefore we can consider that o is outsourced.

Figure 6.3 presents a subgraph of the planning graph constructed for S. The no_op
action is used to include the facts of the fact level i into the fact level i + 1. As we
can see in the subgraph, the application of the two instances http_post(k1, s) and
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no_op

untrusted(s) encrypted(o, k1, oenc) trusted(u)

untrusted(s) encrypted(o, k1, oenc) trusted(u)

http_post(k1, s) http_post(oenc, s)

Mutual exclusion

http_post(k1, u) http_post(oenc, u)

knows(s, k1) knows(s, oenc) knows(u, o) knows(u, oenc)

fact level i

action level i

fact level i+1

Figure 6.3 – Subgraph of the planning graph constructed for Example 17

no_op Ax2(o, oenc, k1, s) Ax1(o, oenc, k1, s) Ax1(o, oenc, k1, u)

untrusted(s) trusted(u) csp(s) knows(s, k1) knows(s, oenc) encrypted(o, k1, oenc) knows(u, o) knows(u, oenc)

untrusted(s) encrypted(o, k1, oenc) trusted(u) knows(s, k1) knows(s, oenc) knows(u, o) knows(u, oenc) outsource(o, s) knows(s, o) knows(u, o)

Figure 6.4 – The inference graph used to infer new facts from the level i + 1 of the
planning graph in Figure 6.3

http_post(oenc, s) of the action http_post will include two new facts knows(s, k1) and
knows(s, oenc) into the fact level i + 1. Now, based on the inference graph (Figure
6.4), and using the instance Ax1(o, oenc, k1, s) of the axiom Ax1 we deduce knows(s, o)
which violates the confidentiality constraint. A bottom up analysis of the two sub-
graphs starting from knows(s, o) allows to conclude that the combination of actions
that violates the constraint is composed of http_post(k1, s) and http_post(oenc, s) (we
exclude the no_op action as it should be always applied). A mutual exclusion will be
specified between http_post(k1, s) and http_post(oenc, s) to exclude all plans in which
the two actions are simultaneously applied in the ith plan step.

6.3.4 Searching the Best Security Mechanisms Plan

Given a planning graph G constructed using our previously explained extension of
GraphPlan, our goal is to find the best mechanisms execution plan (parallel plan) that
enforces the chosen security and utility requirements. For this end, and to be able to
compare different mechanisms execution plans, as a first step, we assign a weight for
each action-node in G representing a security mechanism using the metric described
in Definition 32. As a second step, we define a second metric to measure a score for
each mechanisms execution plan that can satisfy the defined policy as described in
Definition 33.

Definition 32. Consider an action-node anm in G representing the application of an
instance of the security mechanism m over the object ob. Suppose that m provides
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n security properties sp1, · · · , spn and p utility properties up1, · · · , upp. The weight ω
which will be assigned to anm is measured as following:

ω = αob

n∑
i=1

τi + βob

p∑
i=1

νi − δob εm

where τi ∈ [0, 1] represents the robustness level of the provided security property spi,
νi ∈ [0, 1] represents the satisfiability level of the provided utility property upi, εm ∈ [0, 1]
is the deployment efficiency level of the mechanism m, and αob ∈ [0, 1], βob ∈ [0, 1],
and δob ∈ [0, 1] represents respectively the security, utility, and deployment efficiency
factors of ob such that αob, βob, and δob are complementary.

The intuitions behind the use of the robustness level τ (1), the satisfiability level
ν (2), the deployment efficiency level ε (3), and the security, utility and deployment
efficiency factors (4) to measure the weight of an action-node is that:

1. Some security mechanisms are not as robust as they should be to fully ensure their
provided security properties under well known attacks. For example, encryption-
based mechanisms are supposed to ensure the confidentiality of the objects over
which they are applied. However an Order-preserving encryption based mecha-
nisms such as Boldyreva [Boldyreva et al. 2009] preserves the order of the plain-
texts, which may enable many attacks. It was concluded that order-preserving
encryption leaks at least half of the plaintexts bits [Xiao and Yen 2012]. Hence,
the confidentiality robustness level τconfidentiality will be less than 0.5 for Boldyreva.

2. Some security mechanisms cannot fully provide some utility requirements. In these
cases, the satisfiability level factor ν is used to specify the level of providability
of an utility requirement. For illustrative purpose, let us take the example of
homomorphic-based encryption mechanisms which are supposed to provide com-
putation (addition + multiplication) over encrypted objects. However, Paillier
cryptosystem [Paillier 1999] is an homomorphic-based encryption mechanism al-
lowing to perform only addition over encrypted data. Therefore, satisfiability level
factor of computation for Paillier cryptosystem will be νcomputation = 0.5.

3. Some security mechanisms are expensive in terms of deployment time compared
to other security mechanisms, we take this fact into consideration by using the
deployment efficiency level εm, as much as the mechanism m can be efficiently
deployed, εm will be closer to 1.

4. The weight of anm representing the application of m over ob should also take
into account the security, utility and deployment efficiency factors represented
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respectively by εob, ρob, and δob, which are specified by the data owner for the data
object ob. For illustrative purpose, let us take a file f1 storing information about
the payment parameters used by the costumers of a company. The company
attributes the value 0.8 to εf1 , 0.1 to ρf1 , and 0.1 to δob as it considers that
the utility of f1 as well as deployment efficiency of the policy over f1 are not
important compared to its security. As a result, the action-node in G representing
a security mechanism applied over f1 which ensures the highest level of robustness
for security properties will have the highest weight compared to others having
high providability of utility requirements, high deployment efficiency and weakly
robustness for security properties.

Definition 33. Consider a parallel plan P = {p1, · · · , pn}. Suppose that each pi ∈ P
is composed of li action-nodes ani

1, · · · , ani
li
. The score Sc of P is:

Sc =
n∑

i=1

li∑
j=1

ωi
j

where ωi
j is the weight of the action-node ani

j measured according to the Definition 32.

Definition 34. Consider a security policy SP and a set of parallel plans P1, · · · ,Pn

in G each satisfying SP and all having respectively the scores Sc1, · · · , Scn. A parallel
plan P having the score Sc is the best parallel plan in {P1, · · · ,Pn} if the following
condition holds:

∀i ∈ 1 · · ·n, Sc ≥ Sci

Obliviously, finding the best parallel plan in a planning graph G that enforces a se-
curity policy SP requires finding all parallel plans in G that satisfy SP . Unfortunately,
the computation of all parallel plans in G that satisfy SP is NP-hard, as we will prove
in the following.

Theorem 10. Computing all parallel plans in a planning graph that enforce a security
policy SP is NP-hard.

Proof. We prove the previous result by showing that finding all constrained paths that
connect two nodes in a graph is NP-hard. If it is not, one could determine whether
a graph has a Hamilton path or not by checking whether a path exists with length
k − 1 (k is the number of nodes in the graph). This problem, however, is known to
be NP-complete [Bertossi 1981]. Therefore, computing all parallel plans in a planning
graph that enforce a security policy is NP-hard.
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Since the problem of computing all parallel plans in a planning graph that enforce
a security policy is NP-hard, we cannot expect to be able to resolve an arbitrary
size instance of the problem of finding the best parallel plan that enforce a policy to
optimality. Thus, heuristic resolution strategies are widely exploited to solve such a
problem with a reasonable computational effort.

Heuristic search based planning

Our goal is to find the parallel plan having both the maximum score regarding our
metric (defined in Definition 32, 33, and 34), and the minimum number of steps.
To this end, we use the cost-optimal planner CO-PLAN [Robinson et al. 2008] which
proceeds in four stages:

• Planning graph conversion to CNF wff: Convert the planning graph
into a CNF notation by constructing proposition formula as described in
[Kautz and Selman 1996].

• Wff solving: CO-PLAN uses a modified version of RSAT
[Pipatsrisawat and Darwiche 2007] called CORSAT to process the CNF for-
mulae which allows to figure out: (1) If a solution exists for the given decision
problem, and (2) if a solution exists, it is identified with minimal plan costs.

• Bounded forward-search: CO-PLAN uses the speed and efficiency of SAT-based
planners allowing to obtain a good admissible initial bound on the cost of an
optimal plan. In the second phase, CO-PLAN performs then a bounded forward-
search in the problem state space.

• Plan extraction: If a model of the wff is found, then the model is converted to the
corresponding plan; otherwise, the length of planing graph is incremented and the
process repeats.

In fact, CO-PLAN identify the solution having the minimal parallel plan costs.
To be able to use it, we transform our parallel plan score maximization problem to a
minimization plan cost problem by considering that CostP = −ScP , where CostP and
ScP represent respectively the cost of the parallel plan P and the score of P measured
according to Definition 33.
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6.4 Implementation and Evaluations

In the experimental part of this work, we measure the computational performance of
our approach.

6.4.1 Implementation

We develop a prototype implementing our approach to find a near-optimal security
mechanisms plan allowing to enforce security policies for outsourced data using avail-
able open source C++ libraries. For GraphPlan construction, we used the SAT-
PLAN’06 library [Kautz et al. 2006] allowing to create a planning graph up to some
length k. We extend SATPLAN’06 library (as described in section 6.3.3) to support:
(1) the use of domain axioms allowing to deduce new facts about objects of the system
to be used, and (2) we improve the Graphplan’s construction method of the planning
graph to avoid the violation of security constraints while building the planning graph.
For analyzing the planning graph and searching the best mechanisms plan, we used
CO-PLAN library [Robinson et al. 2008].

6.4.2 Experimental Setup

As we are interested on planning security mechanisms to protect outsourced data, the
domain that we have used in evaluating our prototype is composed of:

• A data owner;

• A finite set of users:

– Trusted users: which can access and use the outsourced data

– Untrusted users: which are not supposed to be able to violate the policy. In
all experiments, we suppose that we have two untrusted users, a cloud storage
server and an external adversary.

• A finite set of objects that represents the data to be outsourced, we consider that
the data owner wants to outsource a file system. So the objects are the set of files
and directories in the file system to be outsourced.

• A finite set of security and utility requirements representing the policy to be en-
forced. We suppose that the data owner will specify some security constraints and
utility goals over some objects belonging to the file system to be outsourced. Only
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the objects over which the data owner has specified the policy will be considered
in the planning problem.

• A finite set of security mechanisms that can be used to enforce the security policy.
In our prototype, we specified 20 security mechanisms, including 8 encryption-
based mechanisms, 4 anonymization-based mechanisms, 6 watermarking-based
mechanisms, and 2 information transfer protocols HTTPS and SSH that can be
used to send the objects to be outsourced to the cloud server.

Appendix B describe the STRIPS specification of the target system we have used to
evaluate our prototype. We ran the all experiments on a server with Intel core i7 2.50
GHz, 16 GB of RAM, and running Debian 7.

6.4.3 Experimental Results

We conducted a set of experiments to evaluate the performance of our prototype. Table
6.1 shows the parameters used in each experiment, the number of nodes in the planning
graph built to resolve the problem, and the time needed to find a near-optimal solution
using the method we presented in Section 6.3.4.

Parameters number of
time(s)

objects constraints users mecanisms nodes
5 5 5 15 75952 1.9
10 10 5 15 121385 9.7
20 15 5 15 721385 97.65
100 50 5 20 1951423 721.5

Table 6.1 – Our prototype performance with respect to: the number of objects that
will be outsourced (objects), the number of constraints defined over the object to be
outsourced (constraints), the number of users involved in the used system (users), the
number of security mechanisms that can be used to enforce the policy (mechanisms).
Column "number of nodes" indicates the number of nodes in the created planning
graph.

6.5 Conclusion and Contribution

One of the greatest challenge in this thesis was to define an efficient formal reasoning
method allowing to use the formal model presented in Chapter 5 (i.e., the specification
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of the target system, the policy to be applied over it, and existing security mechanisms)
to figure out the combination of security mechanisms that can enforce the chosen policy
over the target system. To meet this goal, as a first time, we have defined a four steps
reasoning method for our formal model to pick up the set of security mechanisms that
can enforce each security property required by the data owner. Then, as a second step,
we extend and use a Graphplan-based approach to build a planning graph representing
all possible transformations of the system resulting from the application of the set of
security mechanisms we got previously using our four steps reasoning method. Finally,
we define a method to search the near-optimal security mechanisms execution plan
to transform the target system from its initial state to a state in which the security
and utility requirements are enforced while offering the best trade-off between security,
utility and complexity.

In our formal model, policies to be applied over the data to be outsourced are
composed of a set of imperative goals (i.e., goals and utility requirements) and planning
constraints (i.e., security constraints). Unfortunately, those policies are either wholly
satisfied or violated, which allows our reasoning method only to be efficient when
dealing with limited-scale policy enforcement over outsourced data problems. In the
next chapter, we strive to overcome this limitation by designing a method allowing, in
the case in which no mechanisms execution plan could fully satisfy the chosen policy,
to choose the best compromise between the defined security constraints and the set of
goals that should be satisfied.





CHAPTER

7 Best effort based
Approach for Security
Mechanisms Planning
to Enforce Security
Policies Over
Outsourced Data

Humans make mistakes. When dynamic systems are controlled and managed by hu-
mans, the rate and consequences of those mistakes increase. Whether it occurs while
controlling industrial machinery, managing sensitive data, or deploying security poli-
cies, human mistakes can lead to costly consequences. Automatic policy satisfaction
and deployment need often to plan complex set of mechanisms to reach a set of fixed
goals while ensuring a set of security constraints.

Actually, we have seen that in many real word planning scenarios (e.g., automatic
security policy deployment), no mechanisms execution plan could satisfy the defined
goals without violating some specified security constraints. In this chapter, we strive
to design an approach allowing outsourced data owner to choose the best compromise
between security constraints to be enforced and the set of goals to satisfy over the
outsourced data. To this end, we extend the planning graph based approach presented
in [Kautz and Selman 1999] by using a data tainting based method allowing to (1)
mark the set of fact nodes that violate security constraints and (2) effectively propagate
those taints to the fact nodes representing the goals that need to be satisfied. Later
on, based on the propagated taints, we define a reasoning method allowing to get the
near optimal compromise between the goals to satisfy and the security constraints to
ensure.
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The reminder of this chapter is organized as following. Section 7.1 discusses related
work. Section 7.2 introduces preliminary concepts of the parallel planning under secu-
rity constraints problem. Section 7.3 depicts our planning graph tainting approach as
well as its efficient taint propagation methods. Section 7.4 presents our solution to find
the security mechanisms execution plan that provides the best compromise between
satisfying specified goals and ensuring security requirements. Section 7.5 reports the
conclusion of this chapter. Finally, please refer to Appendix C for detailed proofs of
the lemmas and theorems used in this chapter.

7.1 Related Work

The problem of security mechanisms planning to enforce security policies while at-
tempting to satisfy a set of goals can be seen as the problem of actions planning to
satisfy a set of goals while ensuring a set of safety constraints. This last problem have
been investigated by the AI community. Frazzoli et al. [Frazzoli et al. 2000] proposed
an algorithm that enables a system (i.e., a robot) to move from its original state to a
new state (e.g., to accomplish an assigned task such as performing an observation or
delivering a payload), while avoiding to violate a set of constraints (e.g., collisions with
fixed or moving obstacles). They introduced the notion of τ -safety which indicates
that a plan is safe (does not violate any safety constraint) for at least τ plan steps.
Kindel et al. [Kindel et al. 2000] proposed a randomized motion planner for kinody-
namic asteroid avoidance problem. In this problem a robot should avoid to collude with
moving obstacles under kinematic, dynamic constraints while attempting to reach a
specified goal state. The authors introduced the notion of an “escape trajectory” as
a contingency plan which is to be taken in case the planner fails to find a path that
satisfy the intended goals. Yoo et al. [Yoo et al. 2013] propose algorithms for model
checking and policy synthesis that provide, for a given safety policy, a probabilistic
quantitative measure of safety and completion time, and synthesize policies that min-
imize completion time with respect to a given safety threshold. Despite that the work
in [Yoo et al. 2013] is interesting, it suffers form a major limitation as it based on the
temporal logic called PCTL (Probabilistic Computation Tree Logic) which can only
provide a plan solution that maximize the probability to reach a set of goals.

Data tainting is not a new concept. It is a mechanism to monitor and track how
a specific information is propagated in a system. The main idea of this mechanism is
to assign a set of tags to some of the data object in the target system and then spread
those tags to other related objects to this data according to the evolution of the used



7.2. PRELIMINARIES 135

system. It is used mainly for vulnerability detection, protection of sensitive data, and
more recently, for analysis of binary malware.

To detect vulnerabilities on PHP applications, Huang et al. [Huang et al. 2004]
provided an algorithm relying on a lattice-based analysis derived from type systems
and typestate, then compared it to a technique based on bounded model checking.
Xie and Aiken [Xie and Aiken 2006] proposed an approach for detecting SQL injec-
tion vulnerabilities in PHP scripts. Jovanovic et al. [Jovanovic et al. 2010] tackle the
problem of vulnerable web applications by means of static source code analysis. The
propose a solution relying on the use of flow-sensitive, interprocedural and context-
sensitive data flow analysis to discover vulnerable points in a program. Later on, Choi
et al. [Choi et al. 2015] adopt taint analysis to provide binary analyzer that can find
vulnerabilities and self-modifying code.

With private data protection in mind, data tainting analysis was used by Chan el
al. [Chan et al. 2012] proposed DroidChecker that uses inter-procedural Control-Flow
Graph (CFG) analysis and data taint checking to detect exploitable data paths in
an Android application. Other approaches use dynamic data tainting to find privacy
leaks. For instance, TaintDroid [Enck et al. 2010] provides an Android’s virtualized
execution environment to monitor Android applications during runtime and track how
application leaks private information.

To analyze binary malware, recently, Wang and Shieh [Wang and Shieh 2015] define
DROIT, a taint tracker that is able to dynamically alternate between object-level and
instruction-level, which allows authors to successfully come up with a malware behavior
profiling tool.

7.2 Preliminaries

In this section, we formally define the parallel planning under security constraint prob-
lem.

Definition 35. An n-layered graph is a graph G = (L = {l1, · · · , ln}, E = {e1, · · ·
, en−1}) where the li’s are sets of vertices, and the li vertices are connected only to the
li+1 vertices through the edges ei.

Definition 36. (Planning Graph). Given a system S, a set of ground literals w rep-
resenting the initial state of S, and a finite set of mechanismsM. The planning graph
PG = (FL,AL,E,ME) of length n constructed for S using M is a (2n-1)-layered
graph G = (L = {l1, · · · , l2n−1}, E = {e1, · · · , e2n−2}) where the following conditions
hold:
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1. FL = {fl1, · · · , f ln} where fli = l2i−1;

2. AL = {al1, · · · , aln−1} where ali = l2i;

3. Each ground literal in w is represented with a vertex in fl1;

4. ∀l ∈ AL,∀an ∈ l : an is an instance of an m ∈M;

5. ∀lj ∈ AL,∀an ∈ lj : ∆an ⊆ lj−1 and Σan ⊆ lj+1;

6. ∀lj ∈ AL,∀an ∈ lj,∀fn ∈ ∆an : ∃e ∈ ej−1 that links fn to an;

7. ∀lj ∈ AL,∀an ∈ lj,∀fn ∈ Σan : ∃e ∈ ej that links an to fn;

8. ME = {me1, · · · ,men−1} where mei = {me|me = (anj, ank), j 6= k, anj ∈
fli, ank ∈ fli, f li ∈ AL, anj and ank are in conflict}.

FL represents the set fact levels, AL represents the set action levels, E represents
the set of edges, andME is the set of mutual exclusions depicting the conflicts between
the action nodes that instantiate mechanisms in M. In the reminder if this chapter,
we use the terms action nodes to denote vertices belonging to action levels and fact
nodes to denote vertices belonging to fact levels.

Definition 37. (Correct Parallel Plan). Given a planning graph PG of length
n, a set of fact nodes N belonging to the fact level flm where m ≤ n. A parallel
plan P = {p1, · · · , pm−1} correctly provides the set of fact nodes N if and only if the
following conditions hold:

1. ∀pi ∈ P : pi ⊆ ali .

2. ∀pi ∈ P ,∀anj ∈ pi,∀ank ∈ pi : anj and ank are not conflicting mechanisms
instances (Definition 28) .

3. ∀i ∈ [2,m− 1],∀an ∈ pi : ∆an ⊆
⋃

ank∈pi−1
Σank

.

4. ∀i ∈ [2,m− 1],∀an ∈ pi,@p′i−1 ⊂ pi−1 : ∆an ⊆
⋃

an′∈p′i−1

Σan′ .

5. N ⊆ ⋃
ank∈pm−1

Σank
.

6. @p′m−1 ⊂ pm−1 : N ⊆ ⋃
an∈p′m−1

Σan .
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Condition (1) states that each pi should be composed of action nodes belonging
to the action level ali of PG. Condition (3) imposes that each action node in each pi

requires the effects of one or many action nodes in pi−1. Using (4), we state that all
action nodes belonging to pi−1 are needed to allow the application of the action nodes
in pi. Condition (5) states that the set of nodes N should belong to the effects of the
action nodes in pm−1. Finally, using (6) we state that all the action nodes in pm−1 are
needed to provide N .

Lemma 1. Given a planning graph PG of lenght n, a set of fact nodes N =
{fn1, · · · , fnr} belonging to the fact level flm where m ≤ n. Consider PLN = {PN

1 =
{p1,N

1 , · · · , p1,N
m−1}, · · · ,PN

q = {pq,N
1 , · · · , pq,N

m−1}} being the set of parallel plans that cor-
rectly provide N , and PLi = {P i

1 = {p1,i
1 , · · · , p

1,i
m−1}, · · · ,P i

qi
= {pqi,i

1 , · · · , pqi,i
m−1}}

being the set of parallel plans that correctly provide fni (1 ≤ i ≤ r). The following
conditions hold:

1. ∀l ∈ [1, r], ∀il ∈ [1, ql],∀j ∈ [1,m− 1], ∃k ∈ [1, q] : (
r⋃

l=1
pil,l

j ) = pk,N
j

2. ∀k ∈ [1, q],∀j ∈ [1,m− 1],∀l ∈ [1, r],∃il ∈ [1, ql] : pk,N
j = (

r⋃
l=1

pil,l
j )

The previous lemma proves the relations between the sets of parallel plans that can
correctly provide the set of fact nodes N and the set of parallel plans that can correctly
provide each fact node in N . Please refer to Section C.1 (Appendix C) for a proof of
the previous lemma.

Definition 38. (Dominance relation). A fact node fn1 belonging to the fact level
fl1 dominates a fact node fn2 (denoted dominates(fn_1,fn_2)) belonging to the fact
level fl2 iff for all Pi in the set of parallel plans P1, · · · ,Pn that correctly provides fn2:
∃p ∈ Pi, ∃an ∈ p : fn1 ∈ ∆an.

Informally speaking, the previous definition states that a fact node fn1 dominates
another fact node fn2 if and only if all parallel plans that provide fn2 need to use
fn1 to be considered as correct plans (Definition 37). In other words, if we remove the
node fn1 from the used planning graph, no parallel plan could correctly provide fn2.

Lemma 2. The dominance relation is transitive, i.e., if fn1 dominates fn2 and fn2

dominates fn3, then fn1 dominates fn3.

We proved the previous lemma in Section C.2 (Appendix C).

Definition 39. (Security constraint). A security constraint is a formula C =
¬

n∧
i=1

fi, where fi are finite sets of ground literals.
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7.3 Planning Graph Tainting

Tainting is traditionally used in marking pieces of information to monitor how they are
disseminated in a program or a system. They have been widely used to analyze how
applications access sensitive data and how they process it. In our approach, tainting
will be used in tracking security constraints violations in the planning graph. To
meet this goal, each node in planning graph will be tainted using one or many taints.
During the construction of the planning graph, each node (fact node/action node) in
the planning graph can have one of the following form:

• Untainted: The node is created but not yet tainted;

• Tainted: the node is tainted using a set of taints (according to Definitions 42 and
44).

Definition 40. (Ground taint).A ground taint t is an atomic taint such that @t1, t2 :
(t1 ∧ t2 = t) ∨ (t1 ∨ t2 = t).

Definition 41. (Safe node).Given a set of constraints C = {C1, · · · , Cn}, and a
fact node fn belonging to the fact level fl of a planning graph. fn is a safe fact node
regarding C (denoted safe_node(fn,C)) iff:

∀C ∈ C,@N ⊂ fl :
∧

fni∈N

fni ∧ fn→ ¬C

Definition 42. (Safe node tainting) Consider a set of security constraints C =
{C1, · · · , Cl}, and a planning graph G. Each fact node fn in G that does not violate
any constraint in C and does not belong to any combination of nodes that violates any
constraint C is tainted using Tfn = {tfn

1 , · · · , tfn
l } where ∀i ∈ [1, l] : tfn

i = ∅.

Definition 43. (Unsafe node)Given a set of constraints C = {C1, · · · , Cn}, and a
fact node fn belonging to the fact level fl of a planning graph. fn is an unsafe fact
node regarding a constraint C ∈ C (denoted unsafe_node(fn,C)) iff:

∃N ⊂ fl :
∧

fni∈N

fni ∧ fn→ ¬C

Definition 44. (Unsafe node tainting) Consider a set of security constraint C =
{C1, · · · , Cl}, and a set of sets of fact nodes N = {N1, · · · , Nn} belonging to a fact
layer in a planning graph. Each Ni ∈ N is composed of a finite set of fact nodes
{fni

1, · · · , fni
mi
} that violates a security constraint Ci ∈ C (

mi∧
j=1

fni
j → ¬Ci). Each node

fn in N will be tainted with the set of taints T = {tfn
1 , · · · , tfn

l } where the following
conditions hold:
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1. ∀ti ∈ T, if fn 6∈ Ni then ti = ∅,

2. ∀ti ∈ T, if fn ∈ Ni then ti where:

(a) ti is a ground taint,

(b) ti is unique, e.g., no unsafe fact node in the planning graph could have the
same ground taint.

(c) ti 6= ∅,

(d) ∧
fn∈Ni

tfn
i ↔ t¬Ci

, where t¬Ci
is a unique taint denoting the violation of Ci

(denoted vio_taint(t¬Ci
, Ci)),

(e) ∀Ni ∈ N ,@N ′i ⊂ Ni : ∧
fn∈N ′i

tfn
i |= ¬C.

7.3.1 Taint Propagation Rules

One of the key factors in defining our best-effort planning approach is the definition
of a propagation policy for the taint marks. Our taint propagation policy treats the
taint marks of a planning graph nodes associated with security constraints violation.
We describe how the policy works in the two following rules.

Rule 1:

Given a planning graph PG and an action node an belonging to an action level in PG.
Suppose that an is linked to n fact nodes fn1, · · · , fnn representing the precondition
of an, ech fni is tainted with the set of taints Ti = {ti1, · · · , til}. Then the set of taints
of an is: Tan = {

n⊕
i=1

ti1, · · · ,
n⊕

i=1
til} where

⊕ is defined as follows:

tj
⊕
tk =


tj if tk = ∅
tk if tj = ∅
tj ∧ tk otherwise


The previous rule describes how taints are propagated from a fact-level to an action-

level in the planning graph. More precisely, between the fact nodes representing the
preconditions of an instance of a mechanism and the action node representing the
instance of the mechanism.
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Rule 2:

Given a planning graph PG and a fact node fn belonging to a fact level flm in PG and
having the set of taints Tfn = {tfn

1 , · · · , tfn
l } (produced by a safe/unsafe node tainting).

Suppose that fn is linked to n action nodes an1, · · · , ann (∀i ∈ [1, n] : fn ∈ Σani
)

belonging to the action level alm−1, and that each action node ani is tainted with
Ti = {ti1, · · · , til}. Then Tfn = {tfn

1
⊕(

n⊗
i=1

ti1), · · · , tfn
l

⊕(
n⊗

i=1
til)} where

⊗ is defined as
following:

ti
⊗
tj =

 ∅ if ti = ∅ or tj = ∅
tj ∨ tj otherwise


The Rule 2 specifies the propagation of taints from an action level to a fact level

in the planning graph. More exactly, it states how the taints are propagated from an
action node representing an instance of a mechanism to a set of fact nodes representing
its effects.

Algorithm 9 describes how taints are propagated in the different fact levels and
action levels of the planning graph. For each fact level fl in the planning graph G, we
start by checking if it is the first in G (line 3). If not, obviously, there exists an action
level al which contains actions producing the fact nodes in fl. The foreach loop (lines
4 to 12) describes the taint propagation from the action nodes in al to the fact nodes
in fl using the propagation rule 2. The function in_edges returns the set of action
nodes having fact_node as effect.

The foreach loop (lines 14 to 19) describes the security constraints violation check-
ing and the tainting of the fact nodes that cause the violation of a security constraint
(according to the Definition 44). In the line 20, we use the function taint_safe to
taint all untainted fact nodes in fl with "∅" taints as we are sure that these fact nodes
don’t lead to violate any security constraint in SC. In the last part of the Algorithm
9 (lines 21 to 32), we first check if fl is the last fact level in G. If not, we can be sure
that there exists an action level al containing action nodes that need a subset (or all)
the fact nodes in fl to be performed. We use then the propagation rule 1 to propagate
the taints from the fact nodes in fl to the action nodes in al.

Theorem 11. (Taint propagation complexity) Given a planning graph G com-
posed of n fact levels fl1, . . . , f ln and n − 1 action levels an1, · · · , ann−1, a set of
m security constraints SC that should enforced. Suppose that each fact level fli in
G is composed of pi fact nodes , each action level ani in G is composed of qi action
nodes The computational complexity of the Algorithm 9 is O(n × m × p × q), where
∀i ∈ [1, n], j ∈ [1, n− 1] : pi ≤ p, qi ≤ q, p ∈ {p1, · · · , pn}, and q ∈ {p1, · · · , pn−1}.
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input : G /* A planning graph (Graphplan) */
SC /* A set of security constraints*/

output: Gt /* A tainted planning graph */
1 Main
2 foreach fl in G do
3 if (fl 6= first_fact_level(G)) then
4 foreach fn in fl do
5 for i = 1 to |SC| do
6 ttemp = ∅
7 foreach an in in_edges(fn) do
8 ttemp = ttemp ⊗ tan

i

9 endfch
10 tfn

i = tfn
i ⊕ ttemp

11 end
12 endfch
13 end
14 foreach C in SC do
15 causes_nodes = get_causes_violation_nodes(fl,C)
16 if (causes_nodes 6= ∅) then
17 taint_violation(causes_nodes,C) /* Definition 44 */
18 end
19 endfch
20 taint_safe(fl \ causes_nodes) /* Definition 42 */
21 if (fl 6= last_fact_level(G)) then
22 foreach fn in fl do
23 foreach an in outer_edges(fn) do
24 if (Tan = untainted) then
25 Tan = Tfn, continue
26 end
27 for i = 1 to |SC| do
28 tan

i = tan
i ⊕ tfn

i

29 end
30 endfch
31 endfch
32 end
33 endfch

Algorithm 9: Taint propagation in the planning graph

The previous theorem is proved in Section C.3 (Appendix C).
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Now we are ready to present our main theorem which prove that by checking the
taints of a set of fact nodes N representing the set of goals to attend, we will be able
to decide without analyzing the planning graph if there exists a parallel plan that
correctly provides N without violating the security constraint.

Theorem 12. Given a planning graph G, a set of security constraints C = {C1, · · ·
, Cl}, a set fact nodes N = {fn1, · · · , fnn} belonging to the fact level flm of G
and tainted respectively with T1, · · · , Tn, and a set of all parallel plans PLN =
{PN

1 , · · · ,PN
r } that correctly provide N . The following conditions hold:

1. If ∀i ∈ [1, l],∃t :
(
(

n∧
j=1

t
fnj

i ) |= t
)
∧ vio_taint(t, Ci), then no parallel plan in PL

could correctly provide fn1, · · · , fnn without violating Ci ;

2. If ∀i ∈ [1, l],@t :
(
(

n∧
j=1

t
fnj

i ) |= t
)
∧ vio_taint(t, Ci), then there exists at least one

parallel plan in PL that correctly provides fn1, · · · , fnn without violating Ci.

In the previous theorem, condition (1) states that if there exists a taint t which: (i)
is formally satisfied by the conjunction of the taints of the set of fact nodes N, and (ii)
indicates a violation of a security constraint Ci, we can be sure that no parallel plan
in PL could correctly provide fn1, · · · , fnn without violating Ci. Condition (2) states
that if there is no taint t which: (i) is formally satisfied by the conjunction of the taints
of the set of fact nodes N, and (ii) indicates a violation of a security constraint Ci,
then there exists at least one parallel plan in PL that correctly provides fn1, · · · , fnn

without violating Ci. Please refer to Section C.4 (Appendix C) for the proof of the
previous theorem.

7.4 Finding the Best Compromise

In the previous section, we proved that the application of our tainting approach over
a planning graph allows us to decide whether a set of fact nodes representing a set
of goals can be provided by a parallel plan without violating security constraints, and
this without analyzing all the planning graph. We use this result to find the best
trade-off between satisfying specified goals and ensuring security requirements. When
we have to decide between maintaining security constraints or satisfying goals. It
can be useful to assign some priority to them. For the sake of simplicity, we will use a
simple quantitative approach by associated to each security constraint a numeric weight
representing the cost of its violation and to each goal a numeric weight representing
the benefit of its satisfaction.
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Definition 45. (Best compromise). Given a set goals G = {G1, · · · , Gn} that
should be satisfied, a set of security constraints C = {C1, · · · , Cm} that should enforced,
and a set of sets of fact nodes N1, · · · , Nn that respectively satisfy G1, · · · , Gn. Suppose
that a weight w+

i is assigned to each goal Gi and that a weight w−j is assigned to each
constraint Cj (1 ≤ i ≤ n, 1 ≤ j ≤ m, w+

i ≥ 0, w−j ≥ 0). The best compromise between
satisfying G and ensuring C is to find a plan that satisfy G ′ and ensure C ′ where the
following conditions hold:

1. G ′ ⊆ G and C ′ ⊆ C;

2. Score(G ′, C ′) = ∑
Gi∈G′

w+
i −

∑
Ci∈C\C′

w−i , where ∀Ci ∈ C\C ′,∃t :(
( ∧

Gi∈G′

∧
fn∈Ni

tfn
i ) |= t

)
∧ vio_taint(t, Ci);

3. @G ′′, C ′′ : G ′′ ⊆ G ∧ C ′′ ⊆ C ∧ Score(G ′′, C ′′) > Score(G ′, C ′).

Condition (1) states that G ′ is a subset of G and C ′ is a subset of C. Condition
(2) states the function we use to compute the score of the satisfaction compromise
represented by (G ′, C ′). It is the difference between the sum of the weight of each goal
in G ′ (G ′ is the set of satisfied goals) and the sum of the weight of each violated security
constraint (C\C ′ represents the set of violated constraints). Condition (3) makes sure
that no other compromise (G ′′, C ′′) can provide a score greater than the one provided
by (G ′, C ′).

The problem of finding the best compromise between satisfying specified goals and
ensuring security constraints is NP-hard. This is formally stated by the following
theorem.

Theorem 13. The problem of finding the best compromise between satisfying a set of
goals and ensuring a set security constraints is NP-hard.

The previous theorem is proved in Section C.5 (Appendix C).

Since the problem of finding the best compromise between satisfying a set of goals
and ensuring a set security constraints is NP-hard, we use an heuristic resolution strat-
egy to solve such a problem with a reasonable computational effort.

7.4.1 Heuristic Search

We use an heuristic in order to find a near-optimal compromise between satisfying a
set of goals and ensuring a set of security constraints. It is based on a constructive
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method consisting of building a solution to the problem step by step from scratch. The
constructive method to be used is based on choosing for each iteration, the best goal
to satisfy.

input :
G = {G1, · · · , Gn} /* A set of goals */
C = {C1, · · · , Cm} /* A set of security constraints*/

output:
(Gb, Cb) /* A near-optimal compromise */

1 Main
2 Gb = ∅ ; Cb = ∅
3 while true do
4 Gb = NULL; CGb

= ∅
5 foreach G in G do
6 Ctemp = get_enforced_Constraint(Gb ∪G)
7 if Gb = NULL then
8 if Score(Gb ∪G, Ctemp) > Score(Gb, Cb) then
9 Gb = G

10 Cb = Ctemp

11 end
12 continue
13 end
14 if Score(Gb ∪G, Ctemp) > Score(Gb ∪Gb, CGb

) then
15 Gb = G

16 Cb = Ctemp

17 end
18 endfch
19 if Gb = NULL then
20 break
21 end
22 Gb = Gb ∪Gb

23 Cb = CGb

24 G = G\Gb

25 end
Algorithm 10: Finding the near optimal compromise

Definition 46. (i-th best goal). Given a set goals G = {G1, · · · , Gn} that should be
satisfied, a set of security constraints C = {C1, · · · , Cm} that should enforced. Gi

b ∈ G
is the i-th best goal to satisfy iff the following conditions hold:

1. Gi
b 6∈ Gb, where Gb = {Gj

b | 1 ≤ j ≤ i− 1};
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2. Score(Gb ∪ Gi
b, Ci) ≥ Score(Gb, Ci−1), where Ci represents the set of ensured con-

straints in the i-th iteration ;

3. @Gj ∈ G : Gj 6= Gi
b ∧ Gj 6∈ Gb ∧ Score(Gb ∪Gj, Cj) ≥ Score(Gb ∪Gi

b, Ci)

The previous definition describes the best goal to satisfy in each iteration of our
constructive method by the one satisfying two conditions. Condition (1) states that
the best goal to satisfy in the i − th iteration should not belong to the set of goals
chosen in the previous i−1 iterations. Condition (2) states that the score representing
the compromise between satisfying the set of goals in (Gb ∪ Gi

b) and ensuring the set
of security constraints Ci should be greater of equal than the score representing the
best compromise chosen in the (i − 1)th iteration. Condition (3) makes sure that no
other goal in G\Gb, when satisfied, can provide a better compromise between satisfying
goals in G and ensuring security constraints in C, than the compromise provided by
satisfying Gi

b.

Algorithm 10 illustrates how to use our heuristic constructive method to get the
best set of goals Gb to satisfy and the best set of security constraints Cb to satisfy.

Once we get this result, the idea is to remove from the planning graph all the fact-
nodes nodes that violates a constraint in Cb, then we can use mechanisms planning
approach presented in Chapter 6 to search the plan of mechanisms that satisfies the
best compromise we got using our heuristic constructive method.

7.5 Conclusion

In this chapter, we present an approach combining graph-based planning techniques
with a data tainting-based technique to find a best-effort solution for security mech-
anisms planning under security policy. We proved that our tainting technique can be
used to track security requirements violation over a planning graph allowing us to get
the best tradeoff between maintaining security requirements and satisfying intended
goals, and this by analyzing only the propagated taints in the planning graph. Our
future work will include the implementation of our approach.





CHAPTER

8 Conclusions and
Perspectives

In conclusion, we give an overview on how the different research objectives presented
in the introduction have been followed as well as the different contributions which have
resulted. Afterwards, we reflect on how our contributions can be improved and provide
new research directions.

Our main objective in this thesis was to propose new approaches ensuring data
security in cloud environments. We build upon the fact that outsourced data owners
do not fully trust cloud service providers.

The first objective of this thesis consists of defining new methods to improve data
confidentiality in cloud environments, while allowing an efficient processing of the out-
sourced data. To meet this objective, we proposed two different approaches.

In Chapter 3, we introduce our first contribution [Bkakria et al. 2013a]. In
[Bkakria et al. 2013a], we propose an approach combining data fragmentation and en-
cryption to protect the confidentiality of outsourced multi-relational databases. It im-
proves existing approaches [Ciriani et al. 2007, Ciriani et al. 2009] assuming a strong
and seldom satisfied in real environments assumption, saying that the data to be out-
sourced is represented within a single relation schema. The same contribution also
permits outsourced data owners to process fragmented databases through the defini-
tion of a secure and effective technique for querying the data distributed on several
service providers. Finally, in [Bkakria et al. 2013b] we improve the security of the
querying technique in order to protect data confidentiality under a collaborative Cloud
service providers model.

Second, we present in Chapter 4 a policy-based configuration framework
[Bkakria et al. 2014b] that allows a data owner to specify the set of security and util-
ity requirements over the data to be outsourced. We then provide an efficient method
permitting to detect conflicts between confidentiality requirements (e.g., the set of sen-
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sitive information) and utility requirements (e.g., SQL queries that should be executed
over the encrypted data) specified in the policy to be applied over the outsourced data.
We define the best combination of encryption schemes that can satisfy a specified pol-
icy and proved that the problem of finding such a combination is NP-hard. Finally, we
propose an heuristic polynomial-time algorithm for finding a combination of encryption
schemes that satisfies a near optimal trade-off between confidentiality requirements and
utility requirements.

The second objective of this thesis is built upon two main reasons: First, secu-
rity and utility requirements that might be specified by data owners are in most of
cases heterogeneous (e.g., confidentiality requirements, privacy requirements, owner-
ship requirements, etc.). Second, Many security mechanisms allowing to enforce those
requirements have been defined. The challenge then is to figure out the combination of
security mechanisms that should be used. The objective consists in designing support
tools that allow data owners to easily specify their security and utility requirements
and automatically choose the best set of security mechanisms, and the best way to
combine them (e.g. the best order in which they are applied) to get the best trade-off
between complexity, security and utility in the final choices. To this end, we proposed
three contributions.

We define a formal model relying on an expressive language allowing to: (1) for-
mally specify a system composed of involved entities (e.g., data owner, Cloud server
administrator, external adversary, etc.) and the data structure on which the policy
should be enforced; (2) formally express as finely as possible the policy defined by the
data owner; And (3), formally express existing security mechanisms that can be used
to fulfill the requirements that might be requested by data owners.

As a second step, in Chapter 6 we define a reasoning method for the formal model
we previously design allowing outsourced data owner to automatically figure out the
combination of security mechanisms providing the near optimal trade-off between the
security and the utility of the data to be outsourced and the complexity of the appli-
cation of the chosen combination over the used system. Then, we implemented a proof
of concept of our reasoning method to demonstrate the feasibility of our proposal and
gave support to our given theoretical complexity measurements.

Out last contribution was presented in Chapter 7. It extends the reasoning method
proposed in Chapter 6 by overcoming the all or nothing satisfaction property 1 of our
reasoning method. It proposes an approach that associates data tainting method with
graph planning analysis to get the mechanisms execution plan that provides the best

1In our reasoning method, security and utility requirements are either wholly satisfied or wholly
violated, which allows our reasoning method only to deal with limited-scale policies
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compromise between security constraints to enforce and the set of goals to satisfy over
the outsourced data.

Perspectives

The research described in this thesis can be extended along several directions.

• In our proposed formal model (Chapter 5), we focused on five kinds of security
requirements: Confidentiality, privacy, integrity, traceability, and ownership. In
fact, some other interesting security requirements, such as authentication of both
data and entities, data freshness, and proof of possession, might be requested by
outsourced data owners. One possible perspective is to extend our formal model
to allow outsourced data owners to deal with those security requirements.

• The specification of the policy to be applied over the outsourced data, as well as
its defined refinement method, relies on relations between the objects composing
the data to be outsourced. One of the most prominent challenge is then to adopt
our formal model to be able to deal with outsourced unstructured big data.

• Implementation and performance evaluation of our approach that associates data
tainting method with graph planning analysis to get the mechanisms execution
plan that provides the best compromise between security constraints to enforce
and the set of goals to satisfy over the outsourced data (Chapter 7). It would be
interesting to evaluate its performances regarding the number of data objects to
be outsourced, the number of security mechanisms that can be used, the number
of entities involved in the outsourcing scenario.

To conclude, I would like to say that this research has been a great opportunity
to investigate a wide variety of concepts, models and technologies in the information
security domains. We provided novel approaches in response to the outsourced data
security challenges, and we have shown that our proposed work is encouraging research
field.

Finally, we believe that outsourced data security is still plenty of challenges and
of paramount importance, and several research problems stay to be figured out and
investigated.





APPENDIX

A Expression et
déploiement de
politiques de sécurité
intégrées pour
données externalisées

A.1 Introduction

L’externalisation des données donne lieu à de nombreux problèmes de sécurité, prin-
cipalement, en raison de la perte du contrôle physique sur les données externalisées.
D’un côté, faire respecter la confidentialité des données dans les environnements de
stockage Cloud devient plus difficile lorsque les données sont stockées et gérées par
des tiers non fiables. Une solution possible consiste à chiffrer les données qui seront
externalisées sur la machine du propriétaire de données (qui est censé être fiable) avant
de télécharger ces données sur le serveur de stockage Cloud. Le chiffrement des don-
nées externalisées est considéré comme étant la dernière ligne de défense efficace pour
protéger la confidentialité des données à la fois des utilisateurs externes non autorisés
et les administrateurs malveillants des serveurs de stockage Cloud. De toute évidence,
si les clés de chiffrement ne sont pas compromises par un pirate ou un administrateur
malveillant qui gère le serveur Cloud, la confidentialité des données externalisées reste
assurée. Cette solution est inutile lorsqu’il s’agit d’externaliser de grandes bases de
données de production.

Le premier objectif de cette thèse est de définir de nouvelles solutions permettant
d’assurer le meilleur compromis entre la confidentialité et l’utilité des données exter-
nalisées. Pour atteindre cet objectif, nous proposons les contributions suivantes :
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• Une première approche [Bkakria et al. 2013a, Bkakria et al. 2013b] permettant la
protection de la confidentialité des informations sensibles stockées dans des bases
de données multirelationnelles. Notre approche améliore une approche existante
[Ciriani et al. 2007, Ciriani et al. 2009] basée sur la combinaison des techniques
de fragmentation des données et des techniques de chiffrement des données.

• Une deuxième approche [Bkakria et al. 2014b] permettant dans un premier temps
à un propriétaire de données de spécifier la politique de sécurité à appliquer sur
ses données qui seront externalisées. Dans un second temps, l’approche proposée
choisit automatiquement l’ensemble des mécanismes de chiffrement qui assure le
meilleur compromis entre la confidentialité et l’utilité des données externalisées.

Par la suite, en analysant quelques scénarios d’externalisation des données. Nous
nous rendons compte que les exigences de sécurité et d’utilité spécifiées par les pro-
priétaires de données sont différentes dans chaque scénario. En outre, ces exigences de
sécurité sont dans certains cas hétérogènes (p. ex., des exigences de confidentialité, des
exigences en matière de vie privée, des exigences relatives au droit d’auteur, etc.).

Le deuxième objectif de cette thèse consiste à concevoir une solution permettant
aux propriétaires de données de définir des exigences de sécurité hétérogènes et choisir
automatiquement le meilleur ensemble de mécanismes de sécurité, et la meilleure façon
de les combiner (p. ex. le meilleur ordre dans lequel ils sont appliqués) pour obtenir
le meilleur compromis entre la complexité, la sécurité et l’utilité des données dans le
choix final. Pour atteindre cet objectif, nous proposons les contributions suivantes :

• Dans un premier temps, en utilisant la logique temporelle épistémique de premier
ordre (LTL épistémique), nous définissons un modèle formel [Bkakria et al. 2014a]
permettant de : (1) modéliser le système composé des entités impliquées dans
le processus d’externalisation de données (p. ex., le propriétaire de données, le
fournisseur de stockage Cloud, adversaire externe, etc.) et de la structure des
données sur laquelle la politique de sécurité doit être appliquée. (2) Exprimer
aussi finement que possible les exigences de sécurité et d’utilité définies par le
propriétaire de données. Ensuite, nous définissons une méthode de raisonnement
pour notre modèle formel permettant de déterminer la combinaison de mécanismes
de sécurité qui déploie efficacement la politique de sécurité et d’utilité définie.

• Dans second temps, Nous définissons une approche qui améliore
[Bkakria et al. 2014a] en prenant en considération les conflits qui peuvent
survenir entre les mécanismes de sécurité. Cette approche utilise une méthode
basée sur les graphes de planification afin de trouver la combinaison de mécan-
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ismes de sécurité offrant un compromis optimal entre la sécurité et l’utilité des
données externalisées et la complexité de son application sur le système utilisé.

• En utilisant notre méthode raisonnement proposée dans les précédentes contri-
butions, les politiques de sécurité définies sur les données externalisées sont soit
totalement satisfaites ou violées. Notre dernière contribution surmonte cette lim-
itation par l’utilisation d’une méthode reposant sur le marquage des données afin
d’obtenir le compromis optimal entre les buts à satisfaire (p. ex. externaliser les
données) et les contraintes de sécurité à assurer.

A.2 Préserver la confidentialité des bases de don-
nées multirelationnelles en combinant la frag-
mentation et le chiffrement des données

Notre approche de combinaison de la fragmentation et du chiffrement pour protéger la
confidentialité des bases de données composées de plusieurs relations est illustrée par
la Figure A.1.

Dans notre approche, différemment à ce qui a été considéré dans [Ciriani et al. 2007,
Ciriani et al. 2009], on considère un scénario dans lequel les données sont enregistrées
dans plusieurs tables relationnelles. La politique de confidentialité à déployer sur ces
données est spécifiée en utilisant trois types de contraintes de confidentialité.

Contrainte de type Singleton : Elle est représentée par un ensemble contenant un
seul attribut, ce type de contrainte de confidentialité signifie que les valeurs de
l’attribut en question sont sensibles et doivent être protégés.

Contrainte d’association : Ce type de contrainte de confidentialité est représenté
par un sous-ensemble d’attributs. Sémantiquement, cette contrainte signifie que
l’association des valeurs de ces attributs est sensible et doit être protégée.

Contrainte Inter-tables : Elle est représentée par un couple de relations appar-
tenant à la base de données à externaliser. L’utilisation de ce type de contrainte
assure la protection de l’association reliant les deux relations concernées par la
contrainte.

Ces différents types de contraintes de confidentialité sont satisfaites via l’utilisation
de la fragmentation et du chiffrement des données.
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Figure A.1 – Architecture de fragmentation et d’interrogation de données

• Le chiffrement est appliqué au niveau des attributs. Un attribut est chiffré, signifie
que toutes ses valeurs sont chiffrées.
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• La fragmentation est aussi appliquée au niveau des attributs. Elle consiste à diviser
un ensemble d’attributs pour garantir que ces attributs ne seront pas visibles
ensemble dans le même fragment.

Pour permettre l’utilisation des données externalisées, nous avons défini une méth-
ode sécurisée d’interrogation des données distribuées dans plusieurs serveurs Cloud.
Afin d’exécuter une requête, l’utilisateur l’envoie au transformateur des requêtes. En
se basant sur les métas-données qui contiennent la structure de la base de données
initiale et les structures des fragments, le transformateur de requêtes analyse syntax-
iquement la requête, puis construit un plan d’interrogation de données optimisées. Le
moteur d’interrogation exécute le plan sur les différents fragments et envoie le résultat
à l’utilisateur. Finalement, nous avons proposé une technique permettant d’associer,
de façon efficace et sécurisée, les données des différents fragments. Elle repose sur
l’utilisation d’un protocole de retrait d’informations privée par mot clé.

A.3 La combinaison des mécanismes de chiffrement
pour assurer la confidentialité des données ex-
ternalisées

Cette contribution définit une approche permettant au propriétaire de données, dans
un premier temps, de spécifier les exigences de confidentialité et les fonctionnalités
à assurer sur les données externalisées, puis dans un second temps, de sélectionner
l’ensemble de mécanismes de chiffrements qui assure un compromis optimal entre la
sécurité et l’utilité des données externalisées.

A.3.1 Spécification de la politique à déployer

Pour permettre au propriétaire de données de spécifier la politique à déployer sur les
données externalisées, nous avons défini trois types de contraintes :

• Des contraintes de confidentialité permettant de spécifier les attributs sensibles à
protéger;

• Des contraintes de niveau de confidentialité permettant de spécifier pour chaque
attribut sensible un seuil minimum de confidentialité à assurer. Trois niveaux de
confidentialité peuvent être utilisés pour classifier les données.
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– Le niveau “top secret” signifiant que toute fuite d’information au sujet des
données va causer de graves dommages, on associe ce niveau au niveau RND
qui représente le niveau de confidentialité assurée par un chiffrement proba-
biliste qui offre la sécurité sémantique des données.

– Le niveau “secret” signifiant que certaines informations sur les valeurs de
données peuvent être divulguées si elles ne conduisent pas à révéler les valeurs
elles-mêmes, ce niveau est associé au niveau “DET” représentant le niveau de
sécurité assurée par un chiffrement déterministe. Un chiffrement déterministe
ne permet pas de protéger les données contre les attaques à clairs connues
ainsi que les attaques fréquentielles. Par conséquent, nous supposons, dans
notre approche, que le niveau de sécurité “DET” est moins sûr que le niveau
“RND”.

– Le niveau “confidentiel” est associé au niveau de confidentialité “OPE”
représentant le niveau assuré par un chiffrement qui préserve l’ordre. Il a
été conclu que les chiffrements qui préservent l’ordre permettent au moins la
fuite de la moitié des bits du texte clair. Pour ces raisons, nous supposons
dans notre approche que le niveau de sécurité “OPE” est moins sûr que le
niveau “DET”.

• Des contraintes d’utilité permettant des spécifier les fonctionnalités à assurer sur
les données externalisées. Dans la plupart des cas, les bases de données external-
isées sont utilisées par des applications. Ces applications peuvent être analysées
pour extraire l’ensemble des requêtes qui seront exécutées sur les données exter-
nalisées, or, à partir de ces requêtes, on peut facilement récupérer l’ensemble de
fonctionnalité à assurer sur les données (p. ex., la recherche avec égalité “=”, la
recherche par préservation d’ordre “≤,≥”, le calcul “AVG, SUM, +, ×”, etc.).

A.3.2 Déploiement de la politique

Afin de déployer une politique spécifiée, nous avons défini, dans un premier temps,
une méthode permettant d’étudier la consistance de la politique. Il s’agit de chercher
des conflits dans la politique à appliquer. Ces conflits surviennent lorsque les objectifs
de deux ou plusieurs contraintes ne peuvent pas être satisfaits simultanément. Nous
avons prouvé par la suite que trouver la combinaison de mécanismes de chiffrement
qui assure le meilleur compromis entre la confidentialité et l’utilité des données exter-
nalisée est NP-difficile. Par conséquent, nous ne pouvons pas nous attendre à être en
mesure de résoudre de façon optimale des instances de taille arbitraire du problème.
Afin de pallier cette limitation, nous avons proposé une méthode heuristique basée
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sur la construction de la solution étape par étape à partir de zéro. Pour chaque at-
tribut sensible dans la base de données externalisée, notre méthode choisit le meilleur
schéma de chiffrement qui satisfait les contraintes définies sur l’attribut en question.
Ce meilleur schéma de chiffrement à deux caractéristique. Premièrement, il satisfait
le seuil minimal de sécurité défini sur l’attribut sensible. Deuxièmement, il fournit le
plus grand nombre de fonctionnalités comparé aux autres schémas de chiffrement. La
complexité de l’algorithme implémentant notre méthode constructive est polynomiale.

A.4 Spécification et déploiement des politiques de
sécurité hétérogènes sur les données external-
isées

Le deuxième objectif de cette thèse est fondé sur deux raisons principales : d’abord,
les exigences de sécurité et l’utilité qui peuvent être spécifiées par les propriétaires des
données sont dans la plupart des cas hétérogènes (p. ex., des exigences de confiden-
tialité, des exigences en matière de vie privée, des exigences de protection des droits
d’auteurs, etc.). Deuxièmement, de nombreux mécanismes de sécurité permettant de
faire respecter ces exigences ont été définis. Le défi consiste alors à déterminer la combi-
naison de mécanismes de sécurité qui doit être utilisée. Notre objectif dans cette partie
consiste à concevoir une solution permettant aux propriétaires de données de définir
aisément leurs exigences des sécurités et de fonctionnalité et choisir automatiquement
le meilleur ensemble de mécanismes de sécurité, et la meilleure façon de les combiner (p.
ex. le meilleur ordre dans lequel ils sont appliqués) pour obtenir le meilleur compromis
entre la sécurité et l’utilité des données externalisées et la complexité de déploiement
de la solution trouvée. La solution que nous avons proposée est illustrée par la Figure
A.2.

Dans un premier temps, nous avons défini un modèle formel basé sur la logique
temporelle épistémique de premier ordre. En effet cette logique est la composition de
la logique de premier ordre, la logique temporelle, et la logique épistémique. Les raisons
pour lesquelles on a combiné ces trois systèmes formels sont : premièrement, le besoin
de la puissance d‚Äôexpression de la logique de premier ordre pour pouvoir formelle-
ment spécifier le modèle d‚Äôexternalisation des données qui comporte, la structure de
données ou le système d‚Äôinformation à externaliser. Deuxièmement, le besoin des
opérateurs temporels fournis par la logique temporelle afin de pouvoir spécifier des con-
traintes de sécurité sur un ou plusieurs moments du processus d‚Äôexternalisation de
données. Finalement, lorsqu’on traite des problèmes de sécurité, la capacité à définir,
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qui connaît quoi, devient particulièrement importante. La logique épistémique est
donc utilisée pour spécifier les connaissances des entités impliquées dans le processus
d‚Äôexternalisation de données. Le modèle formel défini nous a permit de:

Figure A.2 – Architecture de fragmentation et d’interrogation de données

• Formellement, spécifier un système composé des différentes entités impliquées dans
le processus d’externalisation de données (p. ex., propriétaire de données, admin-
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istrateur de serveur Cloud, adversaire externe, etc.) et de la structure de données
sur lequel la politique devrait être appliquée.

• Formellement, exprimer aussi finement que possible la politique définie par le
propriétaire de données sur ses données externalisées.

• Formellement, exprimer les mécanismes de sécurité existants qui peuvent être
utilisés pour satisfaire les exigences de sécurité et d’utilité qui pourraient être
demandées par les propriétaires de données.

L’un des plus grands défis à relever dans cette deuxième partie de la thèse con-
siste à définir une méthode de raisonnement efficace pour le modèle formel que nous
avons défini. Cette méthode a pour but de déterminer la combinaison de mécanismes
de sécurité qui déploie la politique choisie sur les données qui seront externalisées.
Pour atteindre cet objectif, dans un premier temps, nous avons défini une méthode de
raisonnement composée de quatre étapes afin de récupérer l’ensemble des mécanismes
de sécurité permettant d’assurer les exigences spécifiées du propriétaire de données.
Puis, dans une deuxième étape, nous avons étendu une approche basée sur les graphes
de planification pour construire un graphe représentant toutes les transformations pos-
sibles du système résultant de l’application de l’ensemble des mécanismes de sécurité
obtenu antérieurement par notre méthode de raisonnement. Dans une troisième étape,
nous avons défini une méthode permettant de chercher le plan d’exécution de mécan-
ismes de sécurité quasi optimale permettant de transformer le système cible de son état
initial (état dans lequel les données sont toujours stockées par leur propriétaire), à un
état dans lequel les données sont externalisées et la politique définie par le propriétaire
de données est déployée. Finalement, nous avons amélioré notre méthode de raison-
nement déjà présenté en combinant l’utilisation des graphes de planification avec des
techniques de marquage de données. L’intuition derrière le marquage des noeuds des
graphes de planification est de pouvoir tracer les violations des contraintes de sécurité
dans ces graphes. L’analyse des marques des noeuds des graphes de planification nous
a permis de trouver le meilleur compromis entre satisfaire les objectifs de propriétaire
de données (externaliser les données et assurer les fonctionnalités demandées sur les
données) et assurer les exigences de sécurités spécifiées.

A.5 Conclusion

Notre principal objectif dans cette thèse est de proposer de nouvelles approches pour
assurer la sécurité des données externalisées en se basant sur le fait que les propriétaires
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de données hésitent à faire confiance aux fournisseurs de services pour la sécurisation de
leurs données sensibles externalisées. Les recherches menées dans cette thèse peuvent
être étendues dans plusieurs directions:

• Ètendre notre modèle formel pour permettre de spécifier et déployer d‚Äôautres
exigences de sécurité (p. ex., L’authentification de données et d’entités,
l’actualisation des données, la preuve de possession, etc.),

• Adapter notre solution pour pouvoir l’appliquer sur des données non structurées
(p. ex., BigData),

• Adapter notre modèle pour pouvoir l’utiliser dans la génération automatique des
protocoles de sécurité.
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B The Specification of
the System Used to
Evaluate our
Approach Proposed in
Chapter 6

The system we used to evaluate our security mechanisms planning approach (Chapter
6) is specified using STRIPS-like planning domains [Fikes and Nilsson 1971] in two
files: a domain file and a problem file.

The domain file describes the language to be used to specify a target system by
defining the different predicates that are to be used in the specification. It includes
also the specification of: a set of mechanisms that can be used to enforce a security
policy, a set of axioms that will be used to infer new facts and knowledge about the
used domain, and a set of security constraints that should be enforce over the target
system. Listing B.1 shows the content of the used domain file.

The problem file contains three main parts: A first part describing the (typed)
objects that compose the target system. A second part describing the initial state of
the target system. And the last part describes the set of goals that should be reached.
Listing B.2 shows the content of the used problem file.

Listing B.1 – The domain file used in the evaluation of our security mechanisms plan-
ning approach (Chapter 6)

1 ( d e f i n e ( domain pose idon )
( : requ i rements : s t r i p s : e q u a l i t y : typing )
( : types OBJ USER COBJ PROP WATERMARK)

4 ( : p r e d i c a t e s ( be longs ?owner − USER ? obj − OBJ)
( hom_encrypted ? obj − OBJ ? key − KEY ? objenc − OBJ)
( det_encrypted ? obj − OBJ ? key − KEY ? objenc − OBJ)
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7 ( ope_encrypted ? obj − OBJ ? key − KEY ? objenc − OBJ)
( knows ? obj − OBJ ?own − USER)
( knows ? obj − COBJ ?own − USER)

10 ( knows ? obj − KEY ?own − USER)
( knows ? obj − WATERMARK ?own − USER)
( outsourced ? obj − OBJ ?own − USER)

13 ( outsourced ? obj − COBJ ?own − USER)
( enc_key ? obj − KEY)
( t r u s t e d ? user − USER)

16 ( prov ide s ?u − USER ? obj − COBJ ?p − PROP)
( prov ide s ?u − USER ? obj − OBJ ?p − PROP)
( watermarked ? obj − OBJ ? key − OBJ ?w − WATERMARK ?wobj − COBJ)

19 ( s ign_of ?u − USER ?w − WATERMARK)
( used ?k − OBJ)
( used ?w − WATERMARK)

22 ( empty ?o − COBJ)
( rel_db ?o − OBJ)
( r e l _ t a b l e ?o − OBJ)

25 ( f i n g e r p r i n t ?o − OBJ ?w − WATERMARK)
( data_d i s to r t i on ?o − OBJ)

)
28

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
31 ; ; L i s t o f mechanisms

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

34
( :ACTION RND_encryption

:PARAMETERS
37 (? o1 − OBJ

?k − KEY
? objenc − COBJ)

40 :PRECONDITION
( and ( enc_key ?k ) ( not ( used ?k ) ) ( empty ? objenc ) )

:EFFECT
43 ( and ( RND_encrypted ?o1 ?k ? objenc ) ( not ( empty ? objenc ) )

( used ?k ) ( not ( data_d i s to r t i on ? objenc ) ) )
)

46
( :ACTION encrypt_Hom

:PARAMETERS
49 (? o1 − OBJ

?k − KEY
? objenc − COBJ)

52 :PRECONDITION
( and ( enc_key ?k ) ( not ( used ?k ) ) ( empty ? objenc ) )

:EFFECT
55 ( and ( hom_encrypted ?o1 ?k ? objenc ) ( not ( empty ? objenc ) )

( used ?k ) ( not ( data_d i s to r t i on ? objenc ) ) )
)

58

( :ACTION encrypt_det
61 :PARAMETERS

(? o1 − OBJ
?k − KEY

64 ? objenc − COBJ)
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:PRECONDITION
( and ( enc_key ?k ) ( not ( used ?k ) ) ( empty ? objenc ) )

67 :EFFECT
( and ( det_encrypted ?o1 ?k ? objenc ) ( not ( empty ? objenc ) ) ( used ?k )
( not ( data_d i s to r t i on ? objenc ) ) )

70 )

( :ACTION encrypt_ope
73 :PARAMETERS

(? o1 − OBJ
?k − KEY

76 ? objenc − COBJ)
:PRECONDITION

( and ( enc_key ?k ) ( not ( used ?k ) ) ( empty ? objenc ) )
79 :EFFECT

( and ( ope_encrypted ?o1 ?k ? objenc ) ( not ( empty ? objenc ) ) ( used ?k )
( not ( data_d i s to r t i on ? objenc ) ) )

82 )

( :ACTION watermark_OW
85 :PARAMETERS

(? o − OBJ
?k − KEY

88 ?u − USER
?w − WATERMARK
? objenc − COBJ)

91 :PRECONDITION
( and ( enc_key ?k ) ( be longs ?u ?o ) ( not ( used ?k ) ) ( empty ? objenc ) )

:EFFECT
94 ( and ( watermarked ?o ?k ?w ? objenc ) ( s i g n ?u ?w) ( not ( empty ? objenc ) )

( not ( data_d i s to r t i on ? objenc ) ) )
)

97 ( :ACTION watermark_OW_TP
:PARAMETERS

(? o − OBJ
100 ?k − KEY

?u − USER
?w − WATERMARK

103 ? objenc − COBJ)
:PRECONDITION

( and ( enc_key ?k ) ( be longs ?u ?o ) ( not ( used ?k ) ) ( empty ? objenc ) )
106 :EFFECT

( and ( watermarked ?o ?k ?w ? objenc ) ( s i g n ?u ?w) ( f i n g e r p r i n t ?o ?w)
( not ( empty ? objenc ) ) ( not ( data_d i s to r t i on ? objenc ) ) )

109 )

( :ACTION anonymization
112 :PARAMETERS

(? o − OBJ
? objanon − COBJ)

115 :PRECONDITION
( and ( r e l _ t a b l e ?o ) ( empty ? objanon ) )

:EFFECT
118 ( and ( anonymized ?o ? objanon ) ( not ( empty ? objanon ) )

( data_d i s to r t i on ? objanon ) )
)

121
( :ACTION s i g n a t u r e
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:PARAMETERS
124 (? o − OBJ

? user − USER
? ob j s − COBJ)

127 :PRECONDITION
( and ( knows ?o ? user ) ( empty ? ob j s ) )

:EFFECT
130 ( and ( s igned ?o ? user ? ob j s ) ( not ( empty ? ob j s ) ) )

)

133 ( :ACTION outsource
:PARAMETERS

(? o )
136 :PRECONDITION

( not ( empty ?o ) )
:EFFECT

139 ( knows ?o c loudServer )
)

142 ( :ACTION send
:PARAMETERS

(? k − KEY
145 ?u − USER)

:PRECONDITION

148 :EFFECT
( knows ?k ?u)

)
151

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; L i s t o f axioms

154 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

( :AXIOM axiom1
157 :PARAMETERS

(? o1− OBJ
?o2 − COBJ

160 ?k − KEY
?u − USER)

:PRECONDITION
163 ( and ( enc_key ?k ) ( hom_encrypted ?o1 ?k ?o2 ) ( knows ?k ?u)

( knows ?o2 ?u) ( not ( data_d i s to r t i on ?o2 ) ) )
:EFFECT

166 ( knows ?o1 ?u)
)

169 ( :AXIOM axiom2
:PARAMETERS

(? o1− OBJ
172 ?o2 − COBJ

?k − KEY
?u − USER)

175 :PRECONDITION
( and ( enc_key ?k ) ( det_encrypted ?o1 ?k ?o2 ) ( knows ?k ?u)
( knows ?o2 ?u) ( not ( data_d i s to r t i on ?o2 ) ) )

178 :EFFECT
( knows ?o1 ?u)

)
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181
( :AXIOM axiom3

:PARAMETERS
184 (? o1− OBJ

?o2 − COBJ
?k − KEY

187 ?u − USER)
:PRECONDITION

( and ( enc_key ?k ) ( ope_encrypted ?o1 ?k ?o2 ) ( knows ?k ?u)
190 ( knows ?o2 ?u) ( not ( data_d i s to r t i on ?o2 ) ) )

:EFFECT
( knows ?o1 ?u)

193 )

( :AXIOM axiom4
196 :PARAMETERS

(? s ?u − USER
?o )

199 :PRECONDITION
( and ( has_access ?u ? s ) ( knows ?o ? s ) )

:EFFECT
202 ( knows ?o ?u)

)

205 ( :AXIOM axiom5
:PARAMETERS

(? o1− OBJ
208 ?o2 − COBJ

?k − KEY
?u − USER)

211 :PRECONDITION
( and ( enc_key ?k ) ( hom_encrypted ?o1 ?k ?o2 ) ( knows ?o2 ?u ) )

:EFFECT
214 ( and ( prov ide s ?u ?o1 avg ) ( prov ide s ?u ?o1 sum)

( prov ide s ?u ?o1 ad d i t i o n ) )
)

217
( :AXIOM axiom6

:PARAMETERS
220 (? o1− OBJ

?o2 − COBJ
?k − KEY

223 ?u − USER)
:PRECONDITION

( and ( enc_key ?k ) ( det_encrypted ?o1 ?k ?o2 ) ( knows ?o2 ?u ) )
226 :EFFECT

( prov ide s ?u ?o1 e q u a l i t y )
)

229
( :AXIOM axiom7

:PARAMETERS
232 (? o1− OBJ

?o2 − COBJ
?k − KEY

235 ?u − USER)
:PRECONDITION

( and ( enc_key ?k ) ( ope_encrypted ?o1 ?k ?o2 ) ( knows ?o2 ?u ) )
238 :EFFECT
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( prov ide s ?u ?o1 order )
)

241 ( :AXIOM axiom8
:PARAMETERS

(? o− OBJ
244 ?u − USER)

:PRECONDITION
( knows ?o ?u)

247 :EFFECT
( and ( prov ide s ?u ?o e q u a l i t y ) ( prov ide s ?u ?o avg )
( prov ide s ?u ?o add i t i on ) ( prov ide s ?u ?o sum ) ( prov ide s ?u ?o order ) )

250 )

( :AXIOM axiom9
253 :PARAMETERS

(? o − OBJ
? objwat − COBJ

256 ?k − KEY
?w − WATERMARK
?u − USER)

259 :PRECONDITION
( and ( enc_key ?k ) ( watermarked ?o ?k ?w ? objwat ) ( knows ?k ?u)
( knows ? objwat ?u) ( not ( data_d i s to r t i on ? objwat ) ) )

262 :EFFECT
( and ( knows ?w ?u) ( knows ?o ?u ) )

)
265

( :AXIOM axiom10
:PARAMETERS

268 (? o − OBJ
? objwat − COBJ
?k − KEY

271 ?w − WATERMARK
?u − USER)

:PRECONDITION
274 ( and ( enc_key ?k ) ( watermarked ?o ?k ?w ? objwat ) ( knows ?k ?u)

( knows ? objwat ?u) ( data_d i s to r t i on ? objwat ) )
:EFFECT

277 ( knows ?w ?u)
)

280 ( :AXIOM axiom11
:PARAMETERS

(? o − OBJ
283 ? objwat − COBJ

?k − KEY
?owner − USER

286 ?w − WATERMARK
?u − USER)

:PRECONDITION
289 ( and ( watermarked ?o ?k ?w ? objwat ) ( knows ?w ?u)

( s i g n ?owner ?w) )
:EFFECT

292 ( prov ide s ?u ?o ownership )
)

295 ( :AXIOM axiom12
:PARAMETERS
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(? o − OBJ
298 ? objwat − COBJ

?k − KEY
?owner − USER

301 ?w − WATERMARK
?u − USER)

:PRECONDITION
304 ( and ( watermarked ?o ?k ?w ? objwat ) ( knows ?w ?u)

( f i n g e r p r i n t ?o ?w) )
:EFFECT

307 ( prov ide s ?u ?o tamper_detection )
)

310 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ; L i s t o f c o n s t r a i n t s
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

313

( :CONSTRAINT c1
316 : formula

( and ( s e n s i t i v e o6 ) ( knows o6 ?u) ( not ( t r u s t e d ?u ) ) )
)

319
( :CONSTRAINT c3

: formula
322 ( and ( s e n s i t i v e o1 ) ( knows o1 ?u) ( not ( t r u s t e d ?u ) ) )

)

325 ( :CONSTRAINT c4
: formula

( and ( s e n s i t i v e o2 ) ( knows o2 ?u) ( not ( t r u s t e d ?u ) ) )
328 )

( :CONSTRAINT c5
331 : formula

( and ( s e n s i t i v e o5 ) ( knows o5 ?u) ( not ( t r u s t e d ?u ) ) )
)

334
. . .

)

Listing B.2 – The problem file used in experimentation
( d e f i n e ( problem poseidonProblem )

( : domain pose idon )
3 ( : o b j e c t s o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 o13 o14 o15 o16 o17 o18 − OBJ

k1 k2 k3 k4− KEY
to1 to2 to3 to4− COBJ

6 w1 w2 w3 − WATERMARK
owner u1 u2 u3 u4 c loudServer − USER
ad d i t i on order e q u a l i t y l i k e avg sum tamper_detection ownership − PROP)

9 ( : i n i t
( enc_key k1 ) ( enc_key k2 ) ( enc_key k3 ) ( enc_key k4 ) ( enc_key k5 )
( not ( used k1 ) ) ( not ( used k2 ) ) ( not ( used k3 ) ) ( not ( used k4 ) ) ( not ( used k5 ) )

12 ( not ( used w1 ) ) ( not ( used w2 ) ) ( not ( used w3 ) ) ( not ( used w4 ) ) ( not ( used w5 ) )
( empty to1 ) ( empty to2 ) ( empty to3 ) ( empty to4 ) ( empty to5 )
( has_access u1 c loudServer ) ( has_access u2 c loudServer )

15 ( not ( empty o1 ) ) ( not ( empty o2 ) ) ( not ( empty o3 ) ) ( not ( empty o4 ) )
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( not ( empty o5 ) ) ( not ( empty o10 ) ) ( not ( empty o6 ) ) ( not ( empty o7 ) )
( not ( empty o8 ) ) ( not ( empty o9 ) )

18 ( be longs owner o1 ) ( be longs owner o4 )
( not ( encrypted o1 ) ) ( not ( encrypted o2 ) )
( not ( knows k1 c loudServer ) ) ( not ( knows k2 c loudServer ) )

21 ( not ( knows k3 c loudServer ) ) ( not ( knows k4 c loudServer ) )
( not ( knows o1 c loudServer ) ) ( not ( knows o2 c loudServer ) )
( not ( t r u s t e d c loudServer ) ) ( t r u s t e d u1 ) ( t r u s t e d u2 )

24 ( s e n s i t i v e o1 ) ( s e n s i t i v e o2 ) ( s e n s i t i v e o3 ) ( s e n s i t i v e o4 )
)
( : goa l ( and

27 ( prov ide s c loudServer o3 order )
( prov ide s c loudServer o2 avg )
( prov ide s c loudServer o1 ad d i t i o n )

30 ( prov ide s c loudServer o5 sum)
( knows o1 u2 )
( knows o5 u3 )

33 ( prov ide s u2 o1 ownership )
( prov ide s c loudServer o8 order )
( prov ide s c loudServer o7 avg )

36 ( prov ide s c loudServer o11 add i t i on )
( prov ide s c loudServer o15 tamper_detection )
( knows o15 u2 )

39 ( knows o11 u3 )
) )

)



APPENDIX

C Proofs of Theorems
and Lemmas of
Chapter 7

C.1 Proof of Lemma 1

(i) Proof is by induction (recurrence). Let us start by j = m − 1. By assumption,
p1,i

m−1, · · · , p
qi,i
m−1 represent respectively all the combinations of action nodes that provide

fni. Then obviously, the set of all combinations of action nodes that provides N is
{

r⋃
l=1

pil,l
m−1 | l ∈ [1, r], il ∈ [1, ql]}. Then we deduce that (i) is true for j = m − 1. Now

let us assume that (i) is true for j=2. Then we have:

∀l ∈ [1, r],∀il ∈ [1, ql],∃k ∈ [1, q] : (
r⋃

l=1
pil,l

2 ) = pk,N
2 (C.1)

Suppose that each pil,l
2 is composed of the set of nodes anil,l

1 , · · · , anil,l
sil
, and that each

∆
an

il,l
t

= N il,l
t (1 ≤ t ≤ sil

). Let us denote pN
il,l
t

1 , · · · , pN
il,l
t

vt all the combinations of each
action nodes that provides N il,l

t . Then we can deduce that:

pil,l
1 = {

sil⋃
t=1

pN
il,l
t

w | w ∈ [1, vt]} (C.2)

Therefore,
r⋃

l=1
pil,l

1 = {
r⋃

l=1

sil⋃
t=1

pN
il,l
t

w | w ∈ [1, vt]} (C.3)

We can deduce from (C.1) that the set of action nodes Ak,N
2 that compose pk,N

2 is equal
to

r⋃
l=1

sil⋃
t=1

anil,l
t which allows as to deduce that:

pk,N
1 = {

r⋃
l=1

sil⋃
t=1

pN
il,l
t

w | w ∈ [1, vt]} (C.4)
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Finally, using (C.3) and (C.4) we deduce that pk,N
1 =

r⋃
l=1

pil,l
1 . (ii) can also be proved

by recursion using the same method used to prove (i).

C.2 Proof of Lemma 2

Since fn2 dominates fn3, suppose that P1, · · · ,Pn are the set of parallel plans that
correctly provide fn3 we can deduce that:

∀P ∈ {P1, · · · ,Pn},∃p ∈ P ,∃an ∈ p : fn2 ∈ ∆an (C.5)

Also, since fn1 dominates fn2, we can deduce that:

∀P ∈ {P1, · · · ,Pn},∃p ∈ P ,∃an ∈ p : fn1 ∈ ∆ans (C.6)

Then from (C.6) we can deduce that fn1 dominates fn3.

C.3 Proof of Theorem 11

The application of the rule 2 represented in Algorithm 9 by the foreach loop (lines 4 to
12) has, in the worst case, computational complexity O(m×pi×qi−1) as we can suppose
that each fact node in the fact level fli is an effect of each action node of the action
level ani−1. The tainting of the nodes causing the violation of security constraints is
performed in Algorithm 9 through the foreach loop (lines 14 to 19) and has, in the
worst case, computational complexity O(m×pi) since we suppose that all fact nodes in
the fact level fli can be used to violate all security constraints in SC. The complexity
of the application of the rule 2 represented in Algorithm 9 by the foreach loop (lines
21 to 32) is in the worst case O(m× pi × qi) since we can suppose that each fact node
in the fact level fli is a precondition of each action node of the action level ani. The
computational complexity of the Algorithm 9 is therefore O(n × m × p × q), where
∀i ∈ [1, n], j ∈ [1, n− 1] : pi ≤ p and qi ≤ q, p ∈ {p1, · · · , pn}, and q ∈ {q1, · · · , qn−1}.

C.4 Proof of Theorem 12

To prove the Theorem 12, we will use the following Three Lemmas.

Lemma 3. Given a set of constraints C = {C1, · · · , Cm}, a tainted planning graph
PGt, and a fact node fn belonging the fact level fln of PG and tainted with a set of
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taints Tfn = {tfn
1 , ·, tfn

m }. For any tfn
i ∈ T , if tfn

i is a ground taint, then one of the
following conditions hold:

1. fn is an unsafe node regarding Ci;

2. There exists an unsafe node regarding Ci fnd such that fnd dominates fn.

Proof. The proof is by contradiction: Let as assume that: (i) ∀tfn
i ∈ Tfn : tfn

i

is a ground taint, (ii) fn is a safe node regarding Ci, and (iii) ¬(∃fnd ∈ PGt :
unsafe_node(fnd, Ci)∧dominates(fnd, fn)). From (ii), we can deduce that the taint
tfn
i is a propagated taint as the node fn is a safe node regarding Ci.
Step A: based on (i) and the propagation rule (2), we can deduce that:

∃!ann−1 ∈ aln−1 : fn ∈ Σann−1 (C.7)

(C.7) states that there exists only one action node ann−1 in the action level aln−1 that
is providing fn. Since if there are many action nodes in the action level aln−1 that
are providing fn, then the taint tfn

i cannot be in any case a ground taint. Then from
(C.7) and the propagation rule (2) we can deduce that:

t
ann−1
i = tfn

i (C.8)

Step B: Based on the propagation rule (1) and (C.7), we can deduce that:

∃!fnn−1 ∈ fln−1 : fnn−1 ∈ ∆ann−1 ∧ t
fnn−1
i = tfn

i (C.9)

From (C.7), (C.9) and Definition 38, we can deduce that:

dominates(fnn−1, fn) (C.10)

From (C.9) and (i) we deduce that: tfnn−1
i is a ground taint (iv). Now, let us denote

by Ωfnn−1 the set of action nodes that are providing fnn−1. Then, based on taint
propagation rule (2) we deduce that:

t
fnn−1
i = t

fnn−1
i ∧ (

∨
an∈Ωfnn−1

) (C.11)

Then based on (iv) and C.11, either (a) fnn−1 is an unsafe node or (b) the tfnn−1
i has

been propagated. In the case of (a) and based on (C.10) we can deduce a contradiction
with (iii). In the case of (b), we will use the fact that: ∀fn ∈ fl1,@an : an ∈ Ωfn to
deduce that:

∃fnk, k ∈ [0, n− 1[ : tfnk
i = tfn

i ∧ unsafe_node(fnk, Ci) (C.12)
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At this stage, by applying the steps A and B l times (l = n − 1 − k), we can deduce
the following formulas:

∀j ∈ [1, l], ∃!ann−1−j ∈ aln−1−j : ann−1−j ∈ Ωfnn−j
(C.13)

∀j ∈ [1, l], ∃!fnn−1−j ∈ fln−1−j : fnn−1−j ∈ ∆ann−1−j
∧ t

fnn−1−j

i = tfn
i (C.14)

∀j ∈ [1, l] : dominates(fnn−1−j, fnn−j) (C.15)

From (C.12) and (C.14), we deduce that: fnn−1−j = fnk ∧ unsafe_node(fnn−1−j, Ci)
(v). Then, from (C.10) and (C.15) we can deduce that: dominates(fnn−1−j, fn) (vi).
Finally, from (iii), (v) and (vi) we can deduce a contradiction.

Lemma 4. Given a planning graph PG and a fact node fn belonging to the fact level
flm ∈ PG. The following condition holds:

∀t :
(
ground_taint(t) ∧ (tfn

i |= t)
)
→
(
(tfn

i = t) ∨

(∃fn′,∃j : j < m ∧ fn′ ∈ flj ∧ tfn′

i = t ∧ dominates(fn′, fn))
)

Proof. Proof is by contradiction. Suppose that ∀t:

ground_taint(t) ∧ tfn
i |= t (C.16)
tfn
i 6= t (C.17)

¬(∃fn′,∃j : j < m ∧ fn′ ∈ flj ∧ tfn′

i = t ∧ dominates(fn′, fn)) (C.18)

Case 1: (m=1). In this fist case, by assumption we have fn ∈ fl1. Or by definition,
the fact nodes in the fist fact level fl1 represent the initial state of the target system
and they are not produced by any action nodes in the planning graph. Then we deduce
that:

@an : an ∈ PG ∧ fn ∈ Σan (C.19)

Then based on the propagation rule (2), we deduce that tfn
i |= t, and based on the fact

that t is a ground taint, we deduce that tfn
i = t which is contradictory with (C.17).

Case 1: (m ≥ 1).
Step A (begin): In this part of the proof, for the sake of clarity, let us denote Ωfn the

set of action nodes that provide fn (Ωfn = {an|fn ∈ Σan}). By applying the taint
propagation rule 2, we have:

tfn
i = (tfn

i ∧ (
∨

an∈Ωfn

tan
i ) (C.20)
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Then based on (C.16) and (C.20) we deduce that tfn
i = t or ( ∨

an∈Ωfn

tan
i ) |= t.

Case 1.1: tfn
i = t. we deduce a contradiction with (C.17).

Case 1.2: ( ∨
an∈Ωfn

tan
i ) |= t. By definition, Ωfn represents the set of action nodes

that provide fn. Then if we suppose that PL = {P1 = {p1
1, · · · , p1

m−1}, · · · ,Pn =
{pn

1 , · · · , pn
m−1}} is the set of all parallel plans that correctly provide fn, then we have

the following:

∀Pl ∈ PG : (
∧

an∈pl
m−1

tan
i ) |= t. (C.21)

Using the taint propagation rule (1) together with (C.21), we continue to get:

∀Pl ∈ PG :
( ∧

an∈pl
m−1

(
∧

fnm−1∈∆an

tfnm−1

i )
)
|= t. (C.22)

Then, based on the Definition 38 and (C.22), we can deduce that:

∃fnm−1 : fnm−1 ∈ flm−1 ∧ (tfnm−1

i |= t) ∧ dominates(fnm−1, fn) (C.23)

Step A (end).
Now, based on the fact that ∀fn ∈ fl1 : Ωfn = ∅, by repeating the “Step A” m − 1
times, we deduce that:

∃k ∈ [1,m− 1],∃fnm−k,∃fnm−k+1, · · · ,∃fnm−1 :
(( m∧

j=m−k

(fnj ∈ flj)
)

∧
(
(

m∧
j=m−k

tfnj

i ) |= t
)
∧
( m∧

j=m−k

dominates(fnj−1, fnj)
)
∧ tfnm−k

i = t
) (C.24)

Then we get:

(
m−1∧

j=m−k

dominates(fnj−1, fnj)) ∧ dominates(fnm−1, fn)

Lemma2−−−−−→ dominates(fnm−k, fn)
(C.25)

Finally, from (C.24) and (C.25), we get:

∃k ∈ [1,m− 1],∃fnk ∈ flk : dominates(fnk, fn) ∧ tfnk

i = t (C.26)

which is contradictory with (C.18).

Lemma 5. Given a planning graph PG composed of n fact levels fl1, · · · , f ln and
two fact nodes fn1 and fn2 belonging to PG and tainted respectively using Tfn1 =
{tfn1

1 , · · · , tfn1
l } and Tfn2 = {tfn2

1 , · · · , tfn2
l }. The following condition holds:

∀k ∈ [1, l],∀l,m ∈ [1, n] : l < m ∧ fn1 ∈ fll ∧ fn2 ∈ flm ∧
dominates(fn1, fn2)→ tfn2

k |= tfn1
k .
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Proof. Proof is by induction. Using Definition 38, fn1 dominates fn2 which allows us
to get:

∀w ∈ [1, q],∃p,∃an : p ∈ Pw ∧ an ∈ p ∧ fn1 ∈ ∆an (C.27)

Where {P1 = {p1
1, · · · , p1

l }, · · · ,Pq = {pq
1, · · · , p

q
l }} is the set of parallel plans that

correctly provide fn2. Then, using the propagation rule 1 we deduce that:

∀k ∈ [1, l], ∀w ∈ [1, q],∃p,∃an : p ∈ Pw ∧ an ∈ p ∧ tan
k |= tfn1

k (C.28)

Now let us demonstrate by recurrence that:

∀k ∈ [1, l],∀w ∈ [1, q], ∀i ∈ [1,m− 1],∀t :
((
∃an : an ∈ pw

i ∧ takn |= t
)

→
(
∃an′ : an′ ∈ pw

m−1 ∧ tan′

k |= t
)) (C.29)

Based on the propagation rule 2, we get:

∀k ∈ [1, l],∀fn,∀an :
(
fn ∈ Σan ∧ (tan

k |= t)
)
→ (tfn

k |= t)

We continue using Definition 30 ((iii) and (iv)) to get:

∀k ∈ [1, l],∀w ∈ [1, q], ∀t :
((
∃an : an ∈ pw

i ∧ takn |= t
)

→
(
∃an′ : an′ ∈ pw

i+1 ∧ tan′

k |= t
))

Let us suppose that : ∀k ∈ [1, k],∃anm−2 : anm−2 ∈ pw
m−2 ∧ tanm−2

k |= t, and based on
the propagation rule 2 we deduce that:

∀k ∈ [1, l], ∀fn : (fn ∈ Σanm−2) ∧ (tanm−2

k |= t)→ (tfn
k |= t)

Then by using Definition 30 ((iii) and (iv)) to get:

∀k ∈ [1, l],∃an′ : (an ∈ pw
m−1) ∧ (tan′

k |= t)

which prove the correctness of (C.29). Finally, by using Definition 30 ((v) and (vi)),
we deduce that:

∀k ∈ [1, l] : tfn2
k |= tfn1

k

Now we can prove Theorem 12 as following.

Proof.
(1) Proof is by contradiction. Let us assume that:
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1. (
n∧

j=1
t
fnj

i ) |= t
)
∧ vio_taint(t, Ci)

2. ∃PN
i ∈ PLN that correctly provides fn1, · · · , fnn without violating Ci

Based on Definition 44, we get:(
∃t : t ∧ vio_taint(t, Ci)

)
→
(
∃fl,∃!tfn′1

i , · · · ,∃!tfn′q
i : fl ∈ PG ∧

( q∧
j=1

(fn′j ∈ fl)
)
∧

(
(

q∧
j=1

fn′j)→ ¬Ci

)
∧

(
(

q∧
j=1

t
fn′j
i )→ ¬t

)

∧
( q∧

j=1
ground_taint(tfn′j

i )
))

(C.30)

Then from (1) and (C.30) we can deduce:

(
n∧

j=1
t
fnj

i ) |=
q∧

k=1
(tfn′q

i ∧ ground_taint(tfn′q
i )) (C.31)

Then from (C.31) we get:

∀k ∈ [1, q], ∃j ∈ [1, n] :
((
t
fnj

i |= t
fn′k
i

)
∧ ground_taint(tfn′k

i )
)

(C.32)

Now, by applying Lemma 4 over (C.32) we get:

∀k ∈ [1, q],∃j ∈ [1, n] :
((
t
fnj

i = t
fn′k
i

)
∨
(
∃fn′′,∃p : p < m ∧

fn′′ ∈ flp ∧ tfn′′

i = t
fn′k
i ∧ dominates(fn′′, fnj)

)) (C.33)

From (C.33), we can see that we have two cases:
Case 1: ∃k ∈ [1, q],∃j ∈ [1, n] : tfnj

i = t
fn′k
i . By definition, tfn′k

i is a unique ground
taint. Then, we deduce that fnj = fn′k. Then based on (C.30) we continue to get:

( q∧
k=1

(fn′k ∈ flm)
)
∧
( q∧

k=1
(tfn′k

i )→ t
)

(C.34)

We can then deduce that {fn′1, · · · , fn′q} ⊆ {fn1, · · · , fnn}. Finally, based on the
fact that (

q∧
k=1

fn′k) → ¬Ci), then we can deduce that there is no parallel plan that
could provide the set of nodes fn1, · · · , fnn without violating the constraint Ci, which
is contradictory with (2).
Case 2:

∀k ∈ [1, q], ∃j ∈ [1, n] :
(
∃fn′′,∃p : p < m ∧ fn′′ ∈ flp ∧ tfn′′

i = t
fn′k
i

∧ dominates(fn′′, fnj)
) (C.35)
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Let us suppose that PLj = {P j
1 = {p1,j

1 , · · · , p1,j
m−1}, · · · , P j

rj
= {prj ,j

1 , · · · , prj ,j
m−1}} is the

set of rj correct plans that provide each fnj ∈ N . Then by considering that tfn′′

i and
t
fn′k
i are unique and based on (C.35), we get the following:

∀k ∈ [1, q],∃j ∈ [1, n],∃sk ∈ [1,m− 1],∀v ∈ [1, rj],∃an : Pj
v ∈ PLj∧

pv,j
sk
∈ Pj

v ∧ an ∈ pv,j
sk
∧ fn′k ∈ ∆an

(C.36)

Based on (C.30) we have:
q∧

k=1
(fn′j ∈ fl). Then we are able to deduce that

s1 = s2 = · · · = sq in (C.36). Now, let us suppose that PLN = {PN
1 =

{p1,N
1 , · · · , p1,N

m−1}, · · · ,PN
r = {pr,N

1 , · · · , pr,N
m−1}} represents the set of all parallel plans

that correctly provide N . Then by using the Theorem 1, we get the following:

∀w ∈ [1, r],∀sk ∈ [1,m− 1], ∀j ∈ [1, n],∃v ∈ [1, rj] : pw,N
sk

= (
n⋃

j=1
pv,j

sk
) (C.37)

From (C.36) and (C.37) we get:

∀w ∈ [1, r],∃sk ∈ [1,m− 1] :
( q∧

k=1

(
∃anj : anj ∈ pw,N

sk
∧ fn′k ∈ ∆an

))
(C.38)

Finally, from (C.30) and (C.38), we can deduce that there is no parallel plan that
could provide the set of nodes fn1, · · · , fnn without violating the constraint Ci, which
is contradictory with (2).

(2) Proof is by contradiction. Let us assume that:

1. ∀i ∈ [1, l],@t :
(
(

n∧
j=1

t
fnj

i ) |= t
)
∧ vio_taint(t, Ci)

2. @PN
s ∈ PLN that correctly provides fn1, · · · , fnn without violating Ci

First let us suppose that PN
w = {pw,N

1 , · · · , pw,N
m−1}, 1 ≤ w ≤ r. Based on the fact that

each ground literal used to specify the target system is represented by a fact node in
PG. Then, based on Definition 39 and the assumption (2) we get:

∀w ∈ [1, r],∃sw ∈ [1,m− 1],∃fnw
1 ,∃fnw

2 , · · · , ∃fnw
q :

(
(
(

q⋃
j=1

fnw
j ) ⊆ (

⋃
an∈pw,N

sw

∆an)
)
∧
(
(

q∧
j=1

fnw
j )→ ¬Ci

)) (C.39)

Based on the fact that each ground literal used to represent the target system
is represented by a fact node in PG, we can use Definition 39 to deduce that:
{fn1

1, · · · , fn1
q} = {fn2

1, · · · , fn2
q} = · · · = {fnr

1, · · · , fnr
q}. Now let us suppose that:
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∀i ∈ [1, n] : PLi = {P i
1 = {p1,i

1 , · · · , p
1,i
m−1}, · · · ,P i

ri
= {pri,i

1 , · · · , pri,i
m−1}}, where PLi

is the set of all parallel plans that correctly provides fni ∈ N . We continue using
Theorem 1 to get the following:

∀j ∈ [1, n],∀vj ∈ [1, rj],∀s ∈ [1,m− 1], ∃k ∈ [1, q] : (
n⋃

j=1
pvj ,j

s ) = pk,N
s (C.40)

Then from (C.39) and (C.40), we get:

∃s ∈ [1,m− 1],∀v1 ∈ [1, r1], · · · , ∀vn ∈ [1, rn], ∃fn′1, · · · , ∃fn′q :(( q⋃
k=1

fn′k
)
⊆
( n⋃

j=1

⋃
an∈p

vj ,j
s

∆an

)
∧
(
(

q∧
k=1

fn′k)→ ¬Ci

)) (C.41)

Then, based on C.41 we continue to get:

∀k ∈ [1, q],∃s ∈ [1,m− 1],∃j ∈ [1, n], ∀vj ∈ [1, rj] : fn′k ∈
⋃

an∈p
vj ,j
s

∆an (C.42)

Then, using Definition 38 we can deduce that:

∀k ∈ [1, q],∃s ∈ [1,m− 1],∃j ∈ [1, n] : dominates(fn′k, fnj) (C.43)

By supposing that each fn′k is tainted using the taint Tfnk
= {tfnk

1 , · · · , tfnk
l }. Then,

based on Lemma 5 we get:

∀k ∈ [1, q],∀i ∈ [1, l],∃s ∈ [1,m− 1],∃j ∈ [1, n] : tfnj

i |= t
fn′k
i (C.44)

Then, based on Definition 44 we get:

∀fn1, · · · ,∀fnq :
(
(

q∧
k=1

fn′k)→ ¬Ci

)
→
(
∃t : ((

q∧
k=1

t
fnq

i )→ t)

∧ vio_taint(t, Ci)
) (C.45)

Then, using (C.41), (C.44) and (C.45) we deduce that:

∃j1, · · · , jq ∈ [1, n],∃t :
(
(

q∧
k=1

tfnk
i ) |= t

)
∧ vio_taint(t, Ci). (C.46)

Finally, from C.46 we deduce that:

∃t :
(
(

n∧
k=1

tfnk
i ) |= t

)
∧ vio_taint(t, Ci). (C.47)

Which is contradictory with the assumption (1).
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C.5 Proof of Theorem 13

We prove the previous theorem by a reduction from the NP-hard problem of cutting-
stock problem [Garey and Johnson 1990], which is formulated as follows: Cutting
standard-sized pieces of stock material into a set pieces of specified sizes while min-
imizing material wasted. We define the correspondence between the problem of finding
the best compromise between satisfying a set of goals and ensuring a set security con-
straints and cutting-stock problem as follows. Let us suppose that an autonomous
system aims to satisfy a set of goals G = {G1, · · · , Gn} while ensuring a set of security
constraints C = {C1, · · · , Cm}. Any piece corresponds to a goal Gi ∈ G and any piece
of wasted material corresponds to a security constraint Cj ∈ C. So, any algorithm
finding the best compromise between satisfying specified goals and ensuring security
constraints (Definition 45) can be used to solve the cutting-stock problem to optimality.
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