Tarik

Said, Safaa, Lyes Reda Tarek

Recent advance in cloud computing has transformed the way information is managed and consumed, since this new paradigm provides cost efficient solutions that allow the transmission, storage, and intensive computing of information. Therefore, Cloud service providers are increasingly required to take responsibility for the storage as well as the efficient and reliable sharing of information, thus carrying out a "data outsourcing" architecture. Despite that outsourcing information on Cloud service providers may cut down data owners' responsibility of managing data while increasing data availability, data owners hesitate to fully trust Cloud service providers to protect their outsourced data. Recent data breaches on Cloud storage providers have exacerbated these security concerns. In response, security designers defined approaches that provide high level security assurance, such as encrypting data before outsourcing them to Cloud servers. Such traditional approaches bring however the disadvantage of prohibiting useful information release (e.g., efficient querying of outsourced data). This raises then the need to come up with new models and approaches for defining and enforcing security and utility policies on outsourced data. This thesis aims to address this trade-off, while considering two kind of security policies.

In the first hand, we focus on confidentiality policies specification and enforcement, which requires enforcing the secrecy of outsourced data stored by an untrusted Cloud service provider, while providing an efficient use (e.g., searching and computing) of the outsourced data by different authorized users. To this end, first, we proposed an approach ensuring the confidentiality of sensitive information in outsourced multirelational databases by combining data fragmentation and encryption techniques. We then defined a secure and effective querying method for data hosted on several service providers. Afterwards, we improved the security of the querying technique we defined in order to protect data confidentiality under a collaborative Cloud storage service providers model. Second, We defined a policy-based configuration framework for sensitive outsourced data allowing the data owner to specify the confidentiality re-iv ABSTRACT quirements (e.g., the set of sensitive information) and utility requirements (e.g., SQL queries that should be executed over the encrypted data) over the data to be outsourced. We then proposed an efficient technique to find a combination of encryption schemes that satisfies a near optimal trade-off between confidentiality requirements and utility requirements.

On the other hand, we address the problem of heterogeneous security policies (e.g., confidentiality requirements, privacy requirements, ownership requirements, etc) specification and deployment. First, we defined an expressive formal language allowing to specify as finely as possible heterogeneous security and utility requirements over the data structure to be outsourced, as well as existing security mechanisms that can be used to enforce them. Second, we defined a reasoning method for our formal model allowing outsourced data owners to automatically get the combination of security mechanisms providing a near optimal trade-off between the security and the utility of the data to be outsourced and the complexity of its application over the used system. Finally, we used a data tainting method to extend our previously defined reasoning method. That is, in cases in which no combination of security mechanisms could fully satisfy the chosen heterogeneous policy, our improved reasoning method figure out a combination of security mechanisms ensuring the best compromise between security requirements to be enforced and the set of utility requirements to satisfy over the outsourced data.

Résumé

Les avancées récentes dans les domaines de l'informatique en nuage sont en train de transformer la manière dont les informations sont gérées et consommées. Ceci est dû au fait que ce nouveau paradigme offre des solutions rentables permettant, la transmission, le stockage, et le calcul intensif des informations. Par conséquent, les fournisseurs de services de l'informatique en nuage sont de plus en plus tenus d'assumer leur responsabilité par rapport au stockage, ainsi que du partage efficace et fiable des données externalisées. En effet, bien qu'ils soient convaincus que l'externalisation des données puisse contribuer à réduire leurs responsabilités relativement à la gestion des données et à augmenter la disponibilité de leurs données, les propriétaires des données hésitent à accorder une confiance aveugle aux fournisseurs de services Cloud quant à la protection de leurs données externalisées. Ce manque de confiance est dû au fait que, pour les récentes fuites de données externalisées, des vulnérabilités au sein des services Cloud ont été exploitées. En réponse à ces préoccupations, plusieurs approches ont été définies afin d'assurer un niveau élevé de sécurité, telles que le chiffrement des données avant leur externalisation. De telles approches traditionnelles apportent toutefois l'inconvénient d'empêcher une utilisation efficace des données externalisées (par exemple, interroger une base de données externalisées). Cela soulève alors la nécessité d'inventer de nouveaux modèles et de nouvelles approches permettant la définition et la mise en application des politiques de sécurité et de fonctionnalité sur les données externalisées.

Cette dissertation vise à surmonter ce dilemme, tout en tenant compte de deux types de politiques de sécurité.

En premier lieu, nous nous concentrons sur la spécification et le déploiement des politiques de confidentialité, qui nécessite : (1) la protection des données sensibles externalisées stockées dans des serveurs Cloud considérés comme étant non fiables, et (2) l'utilisation efficace des données externalisées par les utilisateurs autorisés. Pour répondre à cette préoccupation, nous avons, d'une part, proposé une approche combinant la fragmentation et le chiffrement des données afin d'assurer la confidentialité des vi RÉSUMÉ informations sensibles stockées dans des bases de données multi-relationnelles. Nous avons ensuite défini une méthode sûre et efficace permettant l'interrogation des données hébergées sur des fragments distribués dans différents fournisseurs de services Cloud. Finalement, nous avons amélioré notre approche avec l'utilisation d'une technique d'interrogation de données basée sur le retrait d'informations privé (PIR) afin d'assurer la confidentialité des données dans le cas de collaboration entre les fournisseurs de services. D'autre part, nous avons défini une solution permettant aux propriétaires des données de spécifier leurs besoins de confidentialité (par exemple, les données sensibles à protéger) ainsi que leurs besoins de fonctionnalité (par exemple, les requêtes SQL qui doivent être exécutées) sur les données externalisées. Notre solution implémente une technique efficace pour trouver la combinaison de mécanismes de chiffrement permettant de satisfaire le meilleur compromis entre la sécurité et l'utilité des données externalisées.

En deuxième lieu, nous abordons la problématique de la spécification et le déploiement des politiques de sécurité hétérogènes (par exemple, les politiques de confidentialité, de protection de la vie privée, d'intégrité, etc.) sur les données externalisées. À cet effet, nous avons, tout d'abord, défini un langage formel suffisamment expressif permettant de spécifier le plus finement possible les besoins hétérogènes de sécurité et de fonctionnalité sur les données externalisées, ainsi que les mécanismes de sécurité existants pouvant être utilisés pour satisfaire et déployer ces besoins. Ensuite, nous définissons une méthode de raisonnement pour notre modèle formel permettant de choisir automatiquement la combinaison de mécanismes de sécurité assurant un compromis optimal entre la sécurité, la fonctionnalité des données externalisées, et la complexité de son déploiement sur le système utilisé. Enfin, nous utilisons une méthode basée sur le teintage de données afin d'améliorer notre méthode de raisonnement précédemment définie.

I would like to sincerely thank all people how have contributed in one way or another to the accomplishment of this work. Some of them come circumstantially to encourage us or just to listen to us when we need someone to talk with, or when we fail to find answers to our multiple questions.

First of all, I would like to thank from very deep inside my advisors, Frédŕic Cuppens, Nora Cuppens-Boulahia, and David Gross-Amblard, for their support, their dedication, their trust and their advices throughout the three years of my thesis. It has been an honor for me to be one of their Ph.D. students. I would like to express my gratitude to Nora for her precious advices, for her answers to all my questions (even to meaningless ones), and for her optimism that helped me in reaching this important goal.

I would also like to thank Règine Laleau and Michaël Rusinowitch who had the hard task of reporting my thesis and giving their advice to improve its content. Thanks a lot to , Refik Molva, Pascal Lafourcade, and Louis Rilling for being part of the jury of my thesis.

I would like to thank my family. All the pages of this thesis would not be enough to express my gratitude to them: their encouragement, their teaching, and their love have been, and will always be, a principal reference point for me. I am deeply indebted to my parents for their endless love, support and encouragement. All my thankfulness is for: my two sisters and my brother, who never left my side and are very special to me. My parents, sister and brothers in law, their support and affection encourage me to attend my objective.

Most importantly, I would like to thank, my truly God's gift, lovely, and sweet wife, who has been my inspiration. I could never have accomplished this thesis without her love, support, and understanding. She makes my life a joy.

CHAPTER 1 Introduction

The ever-increasing of technological advancements is breaking down the classical way of electronic data storage and retrieval. Principally for economical benefits, these days, both individuals and companies are increasingly using remote storage services (e.g., Google Drive [GoogleDrive], Dropbox [Dropbox] and CloudMe [CloudMe]). These storage services enable data sharing and ensure availability of data from anywhere at any time. However, this new paradigm brings several cloud-specific security issues, particularly when the storage servers offering such services are untrusted.

Data Outsourcing Basics

In the last decade, the popularity of cloud storage services has increased dramatically because of the explosive growth of digital contents. According to the US International Data Corporation, the digital universe will increase by a factor of 300 to reach around 40 trillion gigabytes of outsourced data by 2020 [J. Gantz 2012]. This rapid growth of digital universe is raising the need for new storage space. For these reasons, private organizations and companies need to make large investments into their IT infrastructure. Additional hardware and software are required, as well as staff for its operation and maintenance. However, these expenses are contradictory with the perpetual need to reduce costs in order to stay competitive. As a consequence, Cloud storage-based services are being more and more attractive since they are providing user-friendly, easily accessible and cost-saving ways of storing arbitrary data in a pay per use business model. Business organizations and government agencies does no longer need to spend large amounts of money on buying and managing complex software and hardware systems that will be used to store collected data. In several ways, Cloud storage is collapsing our models of what is accepted as being possible and even reasonable to do with computers.

CHAPTER 1. INTRODUCTION

Cloud storage is further distinguished between public, private, community and hybrid Clouds. A private cloud is hosted internally and operated by the end user and is used inside its intranet only or by using VPN access from outside. In contrast to a private cloud, a public Cloud is located externally to its end users and is open and accessible for every one since it can be used by both business users and private users. Community Clouds allow several independent entities to profit the cost benefits of a shared nonpublic cloud. Community Clouds have huge potential for companies and entities having to comply with identical regulatory, or legal restrictions. Finally, hybrid Clouds are just as the name indicates, are a combination of two or more distinct cloud infrastructures (e.g. public and private Clouds).

According to their deployment models as public, private or hybrid clouds, cloud systems are classified to support three cloud service models [START_REF] Mell | [END_REF]. Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS).

• Software as a Service (SaaS): A SaaS cloud implementation provides generally software or, in more general way, an application to its end users. There is no need for end users to be concerned with the backend infrastructure used by the application. The backend infrastructure of the provided application are hidden and offered as-a-service behind the scene of that application. The increasing number of applications that are provided, such as Google's GMAIL [GMail], Yahoo Mail [YahooMail] or Microsoft Share Point [Microsoft], illustrates the prosperity of SaaS.

• Platform as a Service (PaaS): A PaaS cloud provides a package of software and infrastructure as a programmable environment (called a container). With PaaS, the provided service is represented by the entire application environment including the computing platform as well as the development and solution stack. This cloud service model is mostly used by new startups and small companies since it allows them to develop and deploy their solutions and services without the need to acquire in-house servers and working teams to manage them. Salesforce.com's Force.com platform [Salesforce] and Google Google App Engine [Google] are excellent examples of a PaaS architecture.

• Infrastructure as a Service (IaaS): Generally speaking, an IaaS cloud provides virtualized resources, such as virtual machines that are fully controlled by costumers, including choosing operating system and the amount of needed storage space that best meet their requirements. However, IaaS cloud users cannot manage or control the underlying cloud infrastructure. Amazon's Web Services [Amazon]

Data Outsourcing Security Challenges

Data outsourcing consists in deporting on remote servers storage and management of information traditionally stored and managed by in-house facilities, which basically signifies entrusting data to a third party with which no prior trust relationship has been established. In the first hand, individuals who may use Cloud storage services to store their personal information want to be sure that only specific persons can access it, and of course this should also exclude storage service providers, since there is no tangible reasons for them to access the outsourced data. In the other hand, the data collected and managed by companies contain often highly sensitive information which poses a serious threat to a company's business when they are disclosed to unauthorized parties.

Many incidents (e.g., [START_REF] Mulazzani | [END_REF]], [Newton 2011] and [Lewis 2014]), in which Cloud storage services' vulnerabilities have been exploited, prove that doubts about their usage are well justified. According to a recent study led by Verizon [Verizon 2015], around 80,000 security incidents have been detected in 2014 and that around 2200 of these security incidents have caused a leakage of information.

In fact, data outsourcing paradigm gave birth to several security issues particularly when the data is stored and managed by a honest-but-curious server, These security issues are related mainly to four problems as briefly outlined in the following.

• Data Confidentiality. The data collected and managed by companies and organizations contain often highly sensitive information that should not be disclosed to unauthorized entities including cloud storage service providers. The US National Institute of Standards and Technology (NIST) [NIST 1985] specifies that the Cloud users' confidential data is disclosed to an unauthorized entity if it has the privilege to access the outsourced data, to collect the users' confidential data, and to understand the meaning of the collected confidential data. Indeed, sensitive outsourced data confidentiality remains one of the greatest security issues with regards to cloud computing, as the data will be controlled and managed by potentially untrustworthy cloud service storage providers, since according to [datalossdb 2015], around 40% of data breach incidents are caused by cloud services' insiders. It is then challenging to define new solutions that grant data CHAPTER 1. INTRODUCTION confidentiality while allowing an efficient manipulation (e.g., search, modification, and computation) of the outsourced data.

• Data Privacy. The data stored and processed may be a subject to regulatory and compliance requirements. Recent European regulation [UE2 2014] explicitly specifies that specific categories of identifier information should be either encrypted or kept separated in order to grant privacy. Therefore, it is interesting for data owners or data collectors to implement additional security controls that meet regulatory or legal requirements even when an underlying Cloud storage service provider that does not fully meet those same requirements is used to outsource the data.

• Data Integrity. Integrity is yet another critical concern with regards to cloud environments. It concerns both data storage and data process integrity. Data storage integrity means that data have to be stored honestly by Cloud service providers and any integrity violation (e.g., unauthorized modification or loss) should be detected by the Cloud user who has outsourced the data. Querying and computation integrity means verifying whether or not queries and computations are faithfully performed by the Cloud storage service provider over the outsourced data. Hence, storage and process integrity need to be taken in consideration when designing a system for ensuring security of data stored and managed by a honest-but-curious Cloud storage service provider.

• Data Ownership. Further outsourced data concern emerges with the ownership of information assets. Data ownership and being responsible as a data custodian are fundamentally different. There is potential for erosion of information asset ownership when moving valuable data to any external Cloud storage service provider. For illustration purpose, if we suppose that a valuable outsourced data has been used by an untrustworthy Cloud storage service provider or by an external adversary to make economical profits, it is then interesting for the data owner to be able to accuse the entity having illegally used the outsourced data.

Objectives and Contributions

Data outsourcing rises many challenging security issues, mainly due to the loss of physical control. These challenges influence significantly on the security of the outsourced data.

On one side, enforcing data confidentiality in Cloud storage environments becomes more challenging when the data is stored and managed by untrusted third party. One

OBJECTIVES AND CONTRIBUTIONS

possible solution consists of encrypting the data to be outsourced on the client machine (which is supposed to be trusted) before uploading it to the Cloud storage server. Encrypting the outsourced data is considered as the last effective line of defense allowing to protect the outsourced data from both external hackers and malicious Cloud storage server administrators, since obviously, if the encryption keys are not compromised by a hacker or a malicious administrator that manages the server, the confidentiality of the outsourced data remains ensured. This solution is useless when dealing with big inproduction databases since it raises significantly the cost of data querying, as in order to process queries, we need to read back the encrypted data from the server to the client, decrypting the data, and executing the queries on the client machine. The first objective of this thesis is to define new solutions allowing to ensure the best compromise between outsourced data confidentiality and utility. To meet this objective, we propose the following contributions:

• Contribution 1.
We propose an approach [Bkakria et al. 2013a, Bkakria et al. 2013b] allowing the protection of confidentiality of sensitive information in outsourced multi-relational databases by improving existing approaches [Ciriani et al. 2007, Ciriani et al. 2009] based on a combination of data fragmentation and encryption. These approaches have a major limitation as they assume that data to be outsourced is represented within a single relation schema (or table) which is too strong and seldom satisfied in real environments. Then we define a secure and effective technique for querying data hosted on several service providers. Finally, we improve the security of the querying technique in order to protect data confidentiality under a collaborative Cloud storage service providers model.

• Contribution 2.

We define a policy-based configuration framework [Bkakria et al. 2014b] for encrypted data allowing the data owner to specify the policy to be applied over the outsourced data. Then, we provide an efficient method allowing to detect conflicts between confidentiality requirements (e.g., the set of sensitive information) and utility requirements (e.g., SQL queries that should be executed over the encrypted data) specified by the data owner. Finally, we propose an heuristic polynomial-time algorithm for finding a combination of encryption schemes that satisfies a near optimal trade-off between confidentiality requirements and utility requirements.

On the other side, by analyzing some real-life scenarios of applications that need mechanisms to securely outsource data, we realize that the security and utility requirements specified by data owner are different in each scenario. In addition, they are CHAPTER 1. INTRODUCTION in some cases heterogeneous (e.g., confidentiality requirements, privacy requirements, ownership requirements, etc.). Security mechanisms allowing to enforce those security requirements have recently been the focus of huge interest, especially cryptographic and information hiding techniques. These techniques greatly help in tackling security issues: copyright protection (cryptography, watermaking, fingerprinting), content/data confidentiality (cryptography through encryption, fragmentation, access control), content/data integrity (cryptography through digital signature or message authentication codes, watermaking), authentication of entities (cryptography), anonymity (anonymous networks or granting), and privacy (cryptography, k-anonymity and its extensions, and the more recent differential privacy). These mechanisms are known to be efficient when used independently. However, in many situations they have to be combined in an appropriate way to provide the security functionalities without one harming the other. The second objective of this thesis is then to design support tools that allows data owners to easily specify their security requirements and automatically choose the best set of security mechanisms, and the best way to combine them (e.g. the best order in which they are applied) to get the best tradeoff between complexity, security and utility in the final choices. To meet this objective, we propose the following contributions:

• Contribution 3. Using an Epistemic Linear Temporal Logic (Epistemic LTL), we defined an expressive language [Bkakria et al. 2014a] allowing to: (1) formally model a system composed of involved entities (e.g., data owner, Cloud Storage server administrator, external adversary, etc.) and the data structure on which the security policy should be enforced. (2) formally express as finely as possible the security policy defined by the data owner. Then, we define a reasoning method for our formal model allowing to identify the relevant combination of mechanisms to efficiently enforce the defined security policy.

• Contribution 4. In [Bkakria et al. 2014a], we suppose that the security mechanisms that can satisfy a policy are applied parallelly over the target system. However, we have seen that in some cases, some security mechanisms should be applied over the same part of the data to be outsourced to satisfy the required security properties. Obviously, in those cases, we should take into consideration conflicts that may occur between security mechanisms which makes finding a combination of security mechanisms that satisfy many security requirements much harder to fulfill. We define an approach that extends [Bkakria et al. 2014a] and uses a planning graph based method to find the combination of security mechanisms providing the near optimal trade-off between the security and the utility of the data to be outsourced and the complexity of its application over the used system.

ORGANIZATION OF THE DISSERTATION

• Contribution 5. Using our reasoning method proposed in the previous contribution, defined policies over outsourced data are either wholly satisfied or violated. This contribution strive to overcome this limitation by designing an approach allowing outsourced data owner, in the case in which no combination of security mechanisms could fully satisfy the chosen policy, to come up with the best compromise between security constraints to be enforced and the set of goals to satisfy over the outsourced data. To this end, we extend the planning graph based approach presented in [START_REF] Kautz | [END_REF] by using a data tainting based method allowing to (1) mark the set of fact nodes that violate safety constraints and (2) effectively propagate those taints to fact nodes representing the goals that need to be satisfied. Later on, based on the propagated taints, we define a reasoning method allowing to get the near optimal compromise between the goals to satisfy and the security constraints to ensure.

Organization of the dissertation

This dissertation is divided into 2 parts described below.

Part I -Preserving Outsourced Data Confidentiality -this part focuses on data confidentiality preservation which becomes more challenging when the data is outsourced to an untrusted Cloud storage provider.

Chapter 2 -Outsourced Data Confidentiality: State of the Art -we discuss research investigations and technologies aiming to overcome cloud data confidentiality issue. It depicts the main results published in the data outsourcing scenario, focusing on data confidentiality and mechanisms for outsourced data querying and processing.

Chapter 3 -Preserving Multi-relational Outsourced Databases Confidentiality using Fragmentation and Encryption -proposes to combine data fragmentation and encryption to ensure the confidentiality of multi-relational Databases stored at a honest-but-curious cloud server and provides an efficient and secure technique for querying outsourced data.

Chapter 4 -Combining Encryption-based Mechanisms to ensure Outsourced Data Confidentiality -proposes a policy-based configuration framework that combines encryption-based security mechanisms over outsourced data to ensure the best trade-off between the confidentiality and the utility of the outsourced information.

Part II -Heterogeneous Security and Utility Requirements Specification and Enforcement over Outsourced Data -this part focuses on defining approaches allowing to specify and enforce heterogeneous security and utility requirements (e.g., confidentiality, privacy, ownership, computation, etc) over outsourced data.

Chapter 5 -A new Epistemic Temporal Logic based language for Specifying Security Policy and Security Mechanisms -proposes a formal model allowing the specification of heterogeneous security and utility requirements over a data structure to be outsourced, as well as the specification of existing security mechanisms that can be used to enforce them.

Chapter 6 -Formal Reasoning Method to enforce Security Policies over Outsourced Data -defines a reasoning method for our formal model allowing outsourced data owners to automatically get the combination of security mechanisms providing a near optimal trade-off between the security and the utility of the data to be outsourced and also the complexity of its application over the used system.

Chapter 7 -Best effort based approach for security mechanisms planning to enforce security policies over outsourced data -extends the reasoning method proposed in Chapter 6 and proposes an approach that gets the mechanisms execution plan that provides the best compromise between security constraints to enforce and the set of goals to satisfy over the outsourced data.

Chapter 8 -Conclusions and Perspectives -this Chapter concludes the dissertation by summarizing the contributions and presenting the perspectives for future work.

Part I Preserving Outsourced Data Confidentiality

Confidentiality: State of the Art

Introduction

Cloud storage is an emerging paradigm, outsourcing the computation and storage capabilities to external service providers. Mainly because of this loss of control on outsourced data, data owners hesitate using Cloud storage services. During the last few years, outsourced data confidentiality concerns was becoming more and more legitimate regarding the latest data breach and capture mediated events. In November 2013, the Washington Post reveals more indiscriminate data capture, by the US National Security Agency (NSA). This collection of data is done by intercepting private communications that links Google and Yahoo data centers around the world and decrypting the traffic that should be protected in transit 1 [NSA 2013b]. As a result, in December 2013, a survey conducted by PriceWaterhouseCoopers points that around 50 percents of companies in Germany consider storing data in the Cloud risky after hearing about NSA data spying [NSA 2013a]. To cope with this confidentiality problem, several approaches have been proposed.

In order to protect the confidentiality of outsourced data in an honest but curious server storage model, outsourced sensitive information are encrypted preventing the access of outside unauthorized entities (attackers) as well as insider entities (malicious administrators) from the Cloud server itself [START_REF][END_REF]. This solution introduces an interesting research challenge consisting of the problem of efficient outsourced encrypted data querying. When dealing with encrypted data, confidentiality requires that data decryption operations should be only performed at the data owner site. Therefore, enabling external entities to directly execute queries on encrypted outsourced data became a key challenge. In addition to encryption-based approaches, secret sharing based approaches indicates a promising prospect to solve the challenges of preserving outsourced data confidentiality. Moreover, in specific domains, outsourced data confidentiality can be ensured using other approaches, such as data fragmentation. These methods suppose that the associations between different data objects to be outsourced are more sensitive than their values.

In this chapter, we survey the main existing approaches addressing the confidentiality issues arising from the loss of control on outsourced data. The remainder of the chapter is organized as follows. Section 2.2 gives an overview of the main existing encryption-based approaches and their proposed methods for querying encrypted data. Section 2.3 presents and discusses existing fragmentation-based approaches to ensure outsourced data confidentiality. Finally, we conclude this chapter in Section 2.4.

Outsourced data Confidentiality by Encryption

Despite that traditional encryption mechanisms (e.g., Data Encryption Standard (DES) [START_REF] Nist | Data encryption standard (des)[END_REF]] and Advanced Encryption Standard (AES) [START_REF] Fips | Announcing the advanced encryption standard (aes)[END_REF]) ensures strong confidentiality guarantees. They are suffering from two main limitations that reduce the effectiveness of these traditional schemes, especially because of the large amount of outsourced data.

First, when outsourcing the data to an untrusted (honest by curious) service provider, data owners generally encrypt the data before its outsourcing to the remote storage server. However, the employment of traditional encryption schemes is inconvenient for huge amount of data as it reduces significantly the computation capacity both at the client and the server sides.

Second, these traditional encryption approaches are deterministic, they are not adaptable and do not allow performing operations over encrypted data (e.g., search, computation, etc.).

Search over encrypted data is very useful to overcome the traditional all-or-nothing retrieval policy of encrypted data. When designing an approach for searching over encrypted data, the computation on the client-side, as well as the communication overhead, plays critical roles for deciding its efficiency. More the computation on the client-side is minimized and the communication overhead is reduced, more the searching over encrypted data approach is efficient.

Several approaches have emerged to allow efficient search over encrypted outsourced data. They can be classified into several classes: Bucketing-based approaches [START_REF] Hacigümüs | [END_REF], Hore et al. 2004], techniques that are based on some specialized data structures [Damiani et al. 2003b, Damiani et al. 2003a, Shi et al. 2007, Park 2011, Wang et al. 2014], order preserving encryption based approaches [START_REF] Agrawal | [END_REF], Boldyreva et al. 2009, Boldyreva et al. 2011, Boldyreva et al. 2012], Searchable Encryption based approaches [START_REF] Song | [END_REF], Goh 2003a, Golle et al. 2004, Curtmola et al. 2006, Amanatidis et al. 2007, Chase and Kamara 2011, Kamara et al. 2012, Kamara and Papamanthou 2013], and Homomorphic Encryption based approaches [Boneh et al. 2005, Paillier 1999, Gentry 2009].

Bucketing Based Approaches

Hakan Hacigümüs et al. [START_REF] Hacigümüs | [END_REF]] have introduced a model for ensuring the confidentiality of outsourced databases based on a bucketization-based technique. This technique consists of segmenting the domain of attributes, which their assumed values are considered sensitive, into a number of non-intersecting subsets of values called buckets and having the same size. Then, a unique random identifier ID is associated to the set of unencrypted values in each Bucket. Finally, the encrypted tuples together with buckets IDs are outsourced to a cloud storage server. Let us suppose that a database D composed of a finite set of relational tables {T 1 , • • • , T n } has to be outsourced. For each tuple

t i = {v i 1 , • • • , v i m i } in the relational table T i of D, t s i = {etuple, ID v i 1 , • • • , ID v i m i
} will be outsourced to the cloud server, where etuple represents the encryption of the tuple

(v i 1 , • • • , v i m i
) and ID i j represents the identifier of the bucket containing each v i j , 1 ≤ j ≤ m i . The bucketization method (segmentation function) used to generate the corresponding bucket IDs for the values of each attribute are stored privately by the data owner.

For illustrative purpose, let us consider that the relational table Patient (Figure 2.1 (a)) will be outsourced. In order to query the outsourced relation, an authorized user replaces the values used to search over each attribute by their corresponding buckets IDs calculated using the adopted bucketization method. For example, if an authorized user wants to execute the query q : π P atient.SSN (σ P atient.Dob=1965 (P atient)) over the outsourced relation, he or she needs to rewrite the query q by replacing the value 1965 by it corresponding bucket ID 9.

Hacigümüs's bucketization technique suffers from three main disadvantages. First, despite this method allows to perform exact search over outsourced relational databases as equal values are indexed with equal bucket IDs, it does not support order search since the bucketization method used to generate bucket IDs does not necessarily preserve the plaintext domain ordering (e.g., the bucketization method used in Figure 2.1 (b)). Second, it is clear that the final results provided by this encrypted data querying method contain false positives and needs to be filtered to remove out any tuples that do not satisfy the original query conditions. Third, this technique may give rise to a possible privacy violations at server side. Enhancing Hacigümüs's technique, Hore et al. [START_REF] Hore | [END_REF]] investigated firstly the problem of performing order search over encrypted relational databases while minimizing the number of false positives in the queries results. In a second time, they studied the leakage of information due to the bucketization-based technique. A two levels analysis is provided. In the first level, the leakage of information due to the publication of the bucket IDs of only one attribute is considered. In the second level, they consider the leakage of information due to the publication of the bucket IDs of all at-tributes. They propose two metrics for privacy measures relevant to data bucketization: a measure based on the distribution of the values within each bucket and a measure based on the distribution entropy of the values within a bucket. To ensure the best level of privacy, the data owner has to maximize the distribution entropy of the values within each bucket. Finally, they prove that finding the best trade-off between data privacy and querying efficiency when using bucketization techniques is NP-complete. To overcome this problem, they propose an heuristic-based method fixing a maximum permitted degradation threshold of querying performance.

Another problem related to this bucketization techniques is that, to achieve the best level of data protection, the buckets should all have the same size (the number of tuples in each bucket is the same). Despite this property can be ensured in the case of data at rest databases2 , it is too hard to maintain it for data in motion databases3 .

Specialized Data Structures Based Techniques

Damiani et al. [Damiani et al. 2003a, Damiani et al. 2003b] introduced an approach allowing to perform exact and order searches over encrypted data using a B + -tree based indexing method. The proposed technique is used for each attribute to efficiently allows order and exact searches over it. That is, a B + -tree is created over the unencrypted values of the attributes to be used to search the data. Then, for each node in the created trees, a couple (id, enode) is created and outsourced to the cloud server, where id is a node identifier and enode = l id , E(value), r id represents the encrypted form of the cleartext node using a deterministic encryption E, l id and r id represent respectively the left and the right nodes identifiers.

To perform an order search (i,e,. range query) over an attribute attr, as a first step, the client (or data owner) selects the root node of the outsourced B + -tree created over the values of attr. In the second step, the client decrypts E(value) and compares value with the search condition to figure out with branch (left or right) is to be taken. This procedure repeats until the leaf level of the B + -tree is reached. Finally, the client navigates through the leaves to select the corresponding values. Although the final querying results produced using this method are accurate (no false positive), to perform a single search operation, we still need to perform many interactions (the height of B + -tree) between the client and the cloud server. [START_REF] Shi | [END_REF] proposed MRQED -a confidentiality-preserving searchable scheme supporting multi-dimensional order search over encrypted data. In this approach, a discrete integer values 1 throught D is used to encode each attribute, where D represents the number of possible values that might be assumed by each attribute. Therefore, a binary interval tree BIT (D) is created over integers 1 from D. Despite this approach ensures provably strong security, it is useless in practice since a server needs to fully scan the whole encrypted relation to perform single order search request.

Based on the work proposed by Dan Boneh et al. in [Boneh and Waters 2007], a public key based approach called Hiden Vector Encryption (HVE) is introduced in [Park 2011] supporting equality and order searches over encrypted data. Nonetheless, the complexity of range search per data item is linear in the range size, which can be too much expensive in terms of execution time when the range size is large. Moreover, the proposed technique does not use any form of indexing to reduce access complexity that might be extremely expensive when dealing with large datasets.

Recently, Wang et al. [Wang et al. 2014] enhance the efficiency of the approach proposed in [START_REF] Shi | [END_REF]] by introducing Maple -a scalable multidimensional range search over encrypted outsourced data with MRQED tree-based index. They formally define the leakage function and security game associated to a tree-based public-key MDRSE. Then, by combining R-Trees [Guttman 1984] and HVE [Boneh and Waters 2007], they improve search efficiency while the protection of singledimensional range queries' privacy is ensured.

Order-Preserving Encryption Based Approaches

An order-preserving encryption (or OPE) scheme is a deterministic symmetric encryption scheme based on an encryption algorithm that produces ciphertexts preserving the order of the plaintexts. Formally speaking, let D and D e be finite ordered sets (for the sake of simplicity, we can consider them to be subsets of natural numbers). OPE is an order-preserving encryption with plaintext space D, ciphertext space D e , and key space K if and only if for any key k ∈ K and any plaintext values

v 1 , v 2 ∈ D, v 1 < v 2 then OP E(v 1 , k) < OP E(v 2 , k).
OPE has been introduced to the database community by [START_REF] Agrawal | [END_REF]] as an approach to efficiently perform order search over encrypted databases. The OPE algorithm is constructed in three steps: (1) model the input and target distributions, (2) flatten the plaintext data into a flat database, and (3) transform the flat database into the cipher database. It allows a remote untrusted database server to index the data it receives in encrypted form, in a data structure that permits time logarithmic range queries (in the size of the database). However, this approach can only deal with numerical data and gives rise to serious security risks associated with revealing data order.

Through a formal cryptographic study of OPE, Boldyreva et al [Boldyreva et al. 2009] prove that order-preserving technique proposed by [START_REF] Agrawal | [END_REF] does not fulfill all the standard notions of security since the used encryption algorithm is required to be deterministic, which discloses the frequency of each distinct value in the database. OPE security is measured by comparing it with an ideal object satisfying the order-preservation and information hiding properties. This object is defined by Boldyreva et al. to be a random order-preserving function (ROPF) which is randomly chosen from the set of all order-preserving functions that map D to D e . Although the well-understood notion of random function, ROPF is a less intuitive object since it is unclear what information ROPF leaks about the encrypted data. Boldyreva et al. characterize the security offered by the ideal ROPF function and warn that the provided characterization is a weak.

One-wayness is a cryptographic property requiring that given a function, evaluated using a random value, an adversary is enable to invert it. It is one of the most basic (and weakest) cryptographic properties and was not ensured for ROPF proposed in [Boldyreva et al. 2009]. The one-wayness property is shown to hold in a subsequent papers [START_REF] Boldyreva | [END_REF], Boldyreva et al. 2012]. These papers introduce what they call a necessary adjustments to the typical definition of one-wayness. In the new definition, an adversary cannot forward-evaluate ROPF, since otherwise the knowledge of the secret key is required. Nonetheless, this is a relatively hard requirement, which is seldom satisfied in practice. Moreover, their new definition uses what they call the uniformity assumption requiring the pre-image to be uniformly random distributed.

The authors notify in advance that the provided security analysis of ROPF may not hold in cases where the uniformity assumption is not ensured. In addition, they indicate (and we fully agree) that in practice, the uniformity assumption is extremely difficult to ensure.

Boldyreva's OPE is proved to be one-way in the previously described restricted sense. Nonetheless, [START_REF] Kolesnikov | [END_REF] prove that standard stronger security notions do not provably hold for ROPF (and Boldyreva's OPE). Finally, it was concluded in [Xiao and Yen 2012] that order-preserving encryption leaks at least half of the plaintext bits. As a conclusion, we said that despite OPE based approaches are not proved to ensure standard stronger security notions, they are better than no encryption at all. We believe that this kind of encryption should only be used in the cases where the leakage of some information about the data to be outsourced will not cause grave damage to the data owner.

Searchable Symmetric Encryption Based Approaches

The first practical scheme for searching over encrypted data (SWP) was proposed by [START_REF] Song | [END_REF]] based on the use of a special two-layered encryption construct allowing searching the encrypted data with a sequential scan. The idea consists of encrypting each word separately and then a hash value having a special format is embedded inside the ciphertext. This encryption method gives the server the search ability by extracting this hash value and checking if the value is of a given special form (which indicates a match). The main disadvantage of (SWP) is that their specific two-layer encryption method has to be used, which makes it useless, for example, when dealing with compressed data. From the security point of view, SWP leaks the potential positions of the queried keywords in a document. As a consequence, by performing several queries, it is possible for an adversary to use statistical analysis to figure out the words inside the documents.

In [Goh 2003a], Goh attempts to overcome some of the limitations of the SWP scheme (e.g, special document encryption and fixed-size words) using a Bloom filter (BF) [Bloom 1970] as a per-document index. That is, a new index is embedded for each encrypted file. This index is independent of the underlying encryption algorithm. In one hand, the use of a BF per document reduces the search time to linear in the number of documents. In the other hand, Bloom filters introduce two serious problems: (1) an accuracy problem; That is, the possibility of false positives which can be reduced to an acceptable level by using appropriate parameter settings. (2) a security problem; That is, in each BF related to a document, the number of 1s is a function of the number of BF entries which represents in reality the number of distinct keywords per document. As a result, Goh' scheme leaks the number of keywords in each document. [START_REF] Golle | [END_REF] propose the first conjunctive keyword search scheme based on the idea assuming that special keyword fields are associated with each document. For instance, in the case of emails, the keyword fields might be From, To, and Subject. Conjunctive keyword search means that a user is able to find documents containing all of several keywords in a single search query. However, with the proposed scheme and in order to search over the encrypted documents, the user is required to know in which keyword field the search should be performed. Unfortunately, this scheme does not scale for large databases since the costs of communication and storage linearly depend on the number of stored documents in the outsourced database. The security of Golle et al.'s scheme relies on the Decisional Diffie-Hellman (DDH) assumption [Boneh 1998]. [START_REF] Curtmola | [END_REF] proposed two new schemes based on the idea of adding an inverted index. Instead of an index per document, an inverted index create an index per distinct word in the database, which reduces the search time to sub-linearity to the number of documents containing the keyword. This is not only sub-linear but also optimal. Both proposed schemes are based on the use of FKS dictionary [Fredman et al. 1984] as a look-up table which compacts more the used index and decreases the look-up time to O (1). Unfortunately, updating encrypted data is expensive because of the way in which the data is stored in the server. In consequence, the proposed schemes are more suitable for data in rest than dynamic data.

Amanatidis et al. [START_REF] Amanatidis | [END_REF] proposed two new constructions based on the use of deterministic message authentication codes (MACs) to perform search over encrypted data. The first proposed scheme (Curt-I) relies on appending a deterministic MAC to a secure encryption of a keyword indistinguishable against chosen plaintext attacks (IND-CPA). Informally speaking, an encryption scheme is IND-CPA secure if an adversary A cannot distinguish the encryption values of two arbitrary messages chosen by A, even if A can adaptively query an encryption oracle. In the second proposed construction (Curt-II), the MAC of the plaintext is used as the randomness inside of the encryption. Curt-I allows a client to search by simply generates the MAC of a keyword and stores it together with the encrypted keyword on the server. Then, the server will use the indexed MACs to find the correct answer. With Curt-II, the user calculates and embeds the MAC inside the ciphertext of the keyword allowing the server to search for the queried ciphertexts. Curt-I is proved to be secure if and only if the encryption scheme is IND-CPA secure and the MAC is unforgeable against chosen message attacks. Curt-II is proved to be secure under the assumptions that the encryption scheme is IND-CPA secure and the MAC is a pseudo-random function.

Based on the schemes proposed in [START_REF] Curtmola | [END_REF]], Chase and Kamara [START_REF] Chase | [END_REF] proposed an adaptively secure construction relying on the generation of an inverted index to create a padded and permuted dictionary. An optimal search time can be provided through a hash tables based implementation of the dictionary. Conceptually, the proposed scheme is IND2-CKA [Goh 2003b] secure hiding the data structure. However, the proposed construction still disclose the access and search pattern.

Kamara et al.

[Kamara et al. 2012] extend the constructions proposed in [START_REF] Curtmola | [END_REF]] to allow efficient updates (add, delete, and modify documents) over the encrypted data. The proposed extension is based on adding special arrays called "deletion arrays" to keep track of the search array positions that need to be modified in case of an update query. Moreover, in order to modify the pointers without decrypting them, the proposed scheme uses homomorphically encrypted array pointers. From the security point of view, update operations in the defined scheme leak the trapdoors of the keywords contained in an updated document.

Thanks to the advances in multicore architectures, Kamara and Papamanthou [Kamara and Papamanthou 2013] proposed a highly parallelizable new scheme that provides a new way to achieve sublinear search time. It is based on the use of data structure called keyword red-black (KRB) trees which are similar to binary trees having pointers to a file as leaves. Each node in a KRB tree stores information when at least one of its following nodes is a path to a file identifier containing the keyword. Conceptually, the security definition of the proposed scheme is a generalization of IND2-CKA. The authors proved the security of their construction under the random oracle (RO) model.

Homomorphic Encryption Based Approaches

Homomorphic encryption are based on cryptographic schemes whose encryption function is a homomorphism. That is, they preserve group operations performed on encrypted data. Homomorphic encryption algorithms give the ability to a third party to perform computations over encrypted data which ensures privacy preservation. Rivest et al. [Rivest et al. 1978] introduced the idea of performing soft computations on encrypted data. Their motivation was the ability to use an untrusted third party to store an encrypted database and allows the owner to perform simple updates and queries while ensuring that nothing about the database contents is revealed.

Homomorphic cryptosystems are mainly defined over algebraic groups or rings [Cohn 2000]. In the first hand, algebraic groups based homomorphic cryptosystems allow a single operation to be performed over encrypted data, usually denoted by multiplication or addition.

Definition 1. (Algebraic group-based homomorphic encryption.

)An encryption scheme S = (Enc, Dec, K) is homomorphic if for all k ∈ K, it is possible to define groups M and C so that:

• ∀m ∈ M : c = Enc(m), it holds that c ∈ C. • ∀m 1 , m 2 ∈ M, ∀c 1 , c 2 ∈ C with m 1 = Dec(c 1) and m 2 = Dec(c 2), it holds that: Dec(c 1 c 2) = m 1 m 2 2.2. OUTSOURCED DATA CONFIDENTIALITY BY ENCRYPTION

21

where are the respective group operations in C and M.

In the literature, algebraic group based homomorphic cryptosystems are considered as partially homomorphic encryption (PHE). Several PHE cryptographic systems were proposed to allow simple computations over encrypted data. El Gamal [ElGamal 1985] proposes a cryptosystem that computes multiplication over encrypted data. [START_REF] Goldwasser | [END_REF] propose a cryptosystem that computes XOR of encrypted bits. Paillier [Paillier 1999] proposed a cryptosystem that is able to computes addition over outsourced data. Later on, Boneh et al. [Boneh et al. 2005] introduce the BGN cryptosystem allowing to perform an arbitrary number of additions, one multiplication, followed by an arbitrary number of additions. PHE provides semantic security [Goldreich 2004] which represents a strong security guarantees. Informally speaking, semantic security means that any adversary knowing only the public key and an encrypted value cannot learn any information about the underlying unencrypted value, other than its length. Due to their specialized nature, PHEs are quite efficient and can be used in practice.

In the other hand, ring-based homomorphic cryptosystems naturally support two operations: addition and multiplication. Definition 1 can be extended to a ring based homomorphic cryptosystems as follows.

Definition 2. (Ring-based homomorphic encryption.)An encryption scheme S = (Enc, Dec, K) is said to be ring homomorphic if for all k ∈ K, it is possible to define groups M and C so that:

• ∀m ∈ M : c = Enc(m), it holds that c ∈ C. • ∀m 1 , m 2 ∈ M, ∀c 1 , c 2 ∈ C with m 1 = Dec(c 1) and m 2 = Dec(c 2), it holds that: Dec(c 1 × c 2) = Dec(Enc(m 1 , k) × Enc(m 2 , k)) = m 1 × m 2 Dec(c 1 + c 2) = Dec(Enc(m 1 , k) + Enc(m 2 , k)) = m 1 + m 2
where × and + are the respective ring operations in C and M.

Based on the rings, Gentry [Gentry 2009] introduces the first Fully Homomorphic Encryption (FHE) allowing to perform any number of additions and multiplications.

Later on, there have been a lot of FHE schemes proposed [START_REF] Van | Fully homomorphic encryption over the integers[END_REF], Stehlé and Steinfeld 2010, Brakerski and Vaikuntanathan 2011b, Brakerski and Vaikuntanathan 2011a, Vaikuntanathan 2011, Brakerski et al. 2012, Gentry et al. 2013] which improved the performance of the original FHE scheme scrupulously. However, up to now, FHE continues to be extremely slow for performing arbitrary functions or for implementing the complex systems used today. This was illustrated through an evaluation of the AES circuit reporting that 40 minutes are needed to perform a single AES block on a machine with very large memory [START_REF] Gentry | [END_REF]]. In fact, two main factors make FHE inefficient: the cryptographic overhead and the used security definition. The cryptographic overhead represents the needed time to perform operations for each gate of the circuit implementing the program to evaluate. The security guarantees provided by FHE are to much strong in a way that makes some needed optimizations unenforceable.

Outsourced Data Confidentiality by Dissociation

Traditional solutions used to ensure the confidentiality of outsourced data are based on encryption. Unfortunately, the use of encryption makes performing search operations as well as other functionalities (e.g., computation) over the outsourced data costly. Nonetheless, if we look carefully to analyze the sensibility of the outsourced data, we realize that in most cases, mainly when dealing with outsourced relational databases, the associations between the information to be outsourced are more sensitive than the information themselves. As a consequence, many solutions based on data dissociation have been proposed. In the first part of this section, we will present and discuss proposed approaches based on data fragmentation to ensure the confidentiality of outsourced data. In the second part of this section, we will focus on approaches combining encryption and fragmentation to ensure outsourced data confidentiality.

Confidentiality by Fragmentation

Traditionally, data fragmentation techniques are aimed to enhance the data manipulation process, reducing the time needed to data processing by distributing data processing, optimizing data storage, etc [Randell 1969]. Nonetheless, data fragmentation based techniques are not designed with confidentiality preserving in mind. [START_REF] Hudic | [END_REF] proposed an approach based on data fragmentation to protect outsourced relational databases confidentiality. The proposed solution is based on the use of a distribution model composed of two domains: a trusted local domain from where the data originates and a honest but curious public domain to where the data are distributed. The proposed fragmentation model relies on the classification of the relational tables composing the relational database to be outsourced into different levels of confidentiality which are depending on the information that the respective relational tables store. Three different confidentiality levels are used: High Confidentiality tables, Medium Confidentiality Tables and, Low Confidentiality Tables. High Confidentiality tables store highly sensitive data, such as credit card numbers, personal identification numbers, which need to be protected appropriately. In order to minimize the use of encryption, High Confidentiality tables have to be stored in the trusted local domain without encryption. Medium Confidentiality Tables and Low Confidentiality Tables will be outsourced to different Cloud storage service providers.

Sai Krishna et al. [Krishna et al. 2012] propose a solution based on hybrid fragmentation, i.e., a combination of horizontal and vertical fragmentation to minimize the amount of data to be stored at the owner site. They have employed graph-coloring algorithms to determine which parts of a relational database can be outsourced and which parts need to be kept at the owner.

Clearly, [START_REF] Hudic | [END_REF]] and [Krishna et al. 2012] are not good approaches since the data owner must always manage and protect the relational tables containing highly sensitive information.

Confidentiality by Combining Fragmentation and Encryption

The use of data fragmentation to enforce outsourced data confidentiality has been first proposed, in conjunction with encryption, by [START_REF] Aggarwal | [END_REF]].

The main idea consists of allowing the data owner to fragment its data across two or many Cloud storage service providers that cannot communicate with each other. The data fragmentation is performed in such a way as to be sure that the disclosure of the contents of any one fragment does not lead to violate the confidentiality contraints. Then, to perform queries over the fragmented and distributed database, a client sends appropriate sub-queries to each Cloud storage service provider that stores a fragment of the original database, and then piecing together sub-queries results at the client side.

The main drawback of this approach is that it is extremely hard in the real word to ensure that the Cloud storage service providers to which the data is distributed cannot communicate with each other.

Following the same idea proposed in [START_REF] Aggarwal | [END_REF]], Ciriani et al. [Ciriani et al. 2007, Ciriani et al. 2009] define an approach considering that associations between a relational table attributes as well as the values assumed by some of them can be sensitive. They define two kinds of constraints to allow the data owner to specify his/her confidentiality requirements: Singleton constraints and Association constraints. A singleton constraint is used to specify that the values assumed by an attribute are sensitive. An association constraint is used to specify that the associations between two or more attributes are sensitive and must be protected. The fragmentation mechanism used is as following. Consider a set of confidentiality constraints and a set of attributes A that should be fragmented (all attributes belonging to the database to be outsourced, except those concerned by singleton constraints). The result of the fragmentation is represented by a set of fragments F = {F 1 , • • • , F n } where each fragment should verify three properties: (1) Ensure that only the attributes in A are concerned by the fragmentation, (2) ensure that each attribute in A appears at least one time in plaintext in a fragment, and (3) guarantee the unlinkability between the fragments in F (no plaintext attribute in common between the fragments in F). The authors show that the satisfaction of confidentiality constraints while respecting the three previously mentioned properties makes the fragmentation problem so far from being trivial. Moreover, they prove that satisfy the confidentiality constraints while minimizing the number of fragments (in order to avoid the unnecessary fragmentation of attributes) makes the fragmentation problem NP-complete [di Vimercati et al. 2010]. To overcome this problem, [START_REF] Ciriani | [END_REF] proposed a new modeling of the fragmentation problem that exploits the compact representation of confidentiality constraints as Boolean formulas, which makes finding a solution to the fragmentation problem relies on the efficiency of representation and manipulation of those Boolean formulas. To meet this requirements, the authors have used Ordered Binary Decision Diagram (OBDDs) allowing an efficient manipulation of Boolean formulas.

Unfortunately, the approaches proposed in [Ciriani et al. 2007, Ciriani et al. 2009] suffer from a major limitation since they suppose that the data to be outsourced are stored in only one relational table. Clearly, this hypothesis is seldom in the real production environments.

Conclusion

Outsourced data confidentiality is becoming an emerging paradigm that introduces many research challenges. In this chapter, we presented and discussed existing solutions related to ensuring outsourced data confidentiality. Two simple lessons can be taken from the above discussions: (1) There are several ways to protect the confidentiality of outsourced data providing different tradeoffs in the space of security, functionality, and efficiency. (2) When solutions providing strong security guarantees (e.g., homomorphic schemes) cannot provide a practical solution, we should take advantage of controlled leakage solutions. That is, choosing the information to be revealed to the Cloud storage service provider in a way that enables search optimizations, while ensuring a meaningful confidentiality guarantee.

In the next chapter, we propose an approach allowing the protection of confidentiality of sensitive information in outsourced multi-relational databases by improving existing approaches [Ciriani et al. 2007, Ciriani et al. 2009] based on combining data fragmentation together with encryption.

CHAPTER 3 Preserving

Multi-relational Outsourced Databases Confidentiality using Fragmentation and Encryption

Introduction

Database as a service models give rise to two significant challenges. The first challenge is how service providers protect outsourced databases from not authorized users. A straightforward solution to protect outsourced databases consists in encrypting data before their outsourcing. Unfortunately, it has been previously mentioned in Chapter 2 that querying data becomes in this case expensive (heavy computational overheads) and can be impossible for several kind of queries. The second challenge is more complex as it concerns the protection of outsourced databases from the storage service providers, as in this case, they are not considered to be fully trusted. Therefore, our main focus in this chapter is to define an approach that preserves outsourced data confidentiality while providing a secure and efficient querying technique.

Motivating Scenario

In our working scenario, we strive to protect the confidentiality of an outsourced relational hospital database D composed of two relations (primary keys are underlined The relationship between the tables Patient and Doctor is defined between the foreign key of the table P atient (Id_Doctor) and the primary key of the table Doctor (Id_D). We assume that the database will be outsourced to a third party. Therefore, sensitive information stored in D should be protected. One classic solution is to encrypt all information before outsourcing the database, a costly operation. However, if we look carefully, the list of patients and their attributes (Id_P, N ame, Zip) can be considered as insensitive, and also that the list of illnesses could be made public. Nevertheless, data sensitivity arises from the relationship between these two lists (list of patients and list of illnesses). Therefore if we can find a way (e.g. vertical fragmentation [Navathe et al. 1984]) to break relationships between patients and their respective illnesses, there is no need to encrypt all records of the P atient relation. On the other hand, the list of doctors and the list of patients are not sensitive. However, the relationship between a patient and his doctor should be protected. The good way to protect the relationship between the two relations P atient and Doctor consists in encrypting the foreign key Id_Doctor or the primary key Id_D. The encryption of the foreign key appears to be more beneficial as a foreign key references only one relation (only the relationship between the two relations is protected) while a primary key can be referenced by many relations. Therefore, if we encrypt the primary key, we will protect all relationships between the relation containing the primary key and other relations referencing the encrypted primary key. Thus, when the security requirement specifies that only the a relationship between data is sensitive, our apporach is more appropriate than the one based on full encryption.

Contributions

In this chapter, we propose an approach to protect the confidentiality of sensitive outsourced databases by combining the best features of fragmentation and encryption. Furthermore, we present an approach which is able to deal efficiently with multi-relation normalized databases with which we strive to overcome the previously mentioned limitations of [Ciriani et al. 2007, Ciriani et al. 2009]. The problems encountered in onerelation 1 databases take on additional complexity when working with multi-relation normalized databases in a distributed environment, as it gives rise to new problems 1 Databases composed from a single relation schema.

TECHNICAL PRELIMINARIES

29

such as protecting the relationships between relational schemas (relationships between tuples in distinct tables) and defining a secure and efficient technique allowing authorized users to query these sensitive relationships. We will present our approach which uses a practical Private Information Retrieval (PIR) technique [Chor et al. 1998] allowing to protect data unlinkability of different fragments of the original database by protecting user query privacy. Unlinkability of two items of interest (e.g., records stored into different fragments) means that within the system, from an adversary point of view, these items of interest are no more and no less related. In our approach, a relation containing sensitive information will be fragmented vertically into two or more fragments. Unlinkability of fragments means that despite the fact that an adversary has knowledge about the fragments of a relation, he/she remains unable to link records from different fragments. Furthermore, we evaluate our proposed protocol by presenting some experiments using our developed prototype. Afterwards, we use hash table data structures to store the information of each fragments instead of using B+ trees which allows us to improve the effectiveness of the proposed PIR keyword-based technique.

Chapter Outline

We proceed by describing in Section 3.2 our model architecture, the threat model, security model and assumptions. After that, we describe in Section 3.3 our approach to enforce confidentiality of outsourced data. Section 3.4 presents the query optimization and execution model. In Section 3.5, we present a PIR-based technique to achieve query privacy and enforce data confidentiality under a collaborative Cloud storage service providers model. In Section 3.6, we present the prototype developement and experimentations we conducted. Finally, Section 3.7 concludes this chapter.

Technical Preliminaries

Architecture

We consider our architecture of storage and query over distributed fragments illustrated in Figure 3.1. It is composed of three main components:

• Users: They are actually database clients who have permission to query outsourced data. All operations which will be used in our approach (e.g., fragmentation and encryption) in order to protect sensitive data confidentiality are trans-CHAPTER 3. COMBINING FRAGMENTATION AND ENCRYPTION parent to the Users. That is, they believe interacting the original database and forming their queries against it.

• Client: It is a trusted party which transform U sers queries by splitting them to create an optimized distributed Query Execution Plan QEP; QEP is a set of subqueries and other operations (e.g., decryption, join...). Based on the M etadata containing information (e.g., relations, clear attributes, encrypted attributes and selectivity2 of attributes) about data distribution in different fragments, the Query Transformation module construct a QEP which will be executed.

• Server: It represents different Cloud Storage Providers in which data fragments are distributed.

Trust and Attack Model

Cloud servers are considered to be the best options for small companies with limited IT budget allowing to reduce the cost of maintaining computing infrastructure and data-rich applications. However, most of related works (e.g., [START_REF] Hacigümüs | [END_REF], Biskup et al. 2011]) on the confidentiality of outsourced data considered that Cloud service providers are "honest-but-curious". The semi-honest model is the right fit for our approach, as in this model, the Cloud servers act in an "honest" manner by correctly responding user queries and following the designated protocol specification. In this contribution, we consider that Cloud services providers have two levels of curiosity:

(1) In the first part of this chapter, we will assume that service providers are "curious" in a way that they will try to infer and analyze outsourced data, and will also actively monitor all received user queries and try to derive as much information as possible from these queries. (2) In the second part of this chapter, we will further assume that service providers can collude and cooperate together to link outsourced data. The client part of this architecture is assumed to be trustworthy and all interactions between the user and the client are secured using existing protocols e.g., SSL.

Confidentiality Using Fragmentation and Encryption

Our approach extends in several ways the vertical fragmentation-based approach described in [Ciriani et al. 2007, Ciriani et al. 2009]. This approach considers that all data is stored in a single relation, while in our approach data can be stored in several relations, which is the rule for any typical environments. In our approach, we consider that databases to be externalized are normalized so that two relations can be only associated together through a primary key/foreign key relationship. For this purpose, we introduce a new type of confidentiality constraint for fragmentation, the inter-table fragmentation constraint. The aim of this new fragmentation constraint is to protect the relationship between relations.

This section first presents the different kinds of confidentiality constraints used to achieve our goals of protecting confidentiality by encryption and fragmentation, and second formalizes the concept of fragmentation in our approach which extends ideas presented in [Ciriani et al. 2007, Ciriani et al. 2009].

Definition 3. (Confidentiality Constraint).

Consider that data to be secured are represented with a relational database D, which is composed of a list of relational schemas R = (R 1 , . . . , R n), with each of these relational schemas R i containing a list of attributes A R i = (a 1,i , a 2,i , . . .). A confidentiality constraint over D can be one of the following:

• Singleton Constraint (SC). It is represented as a singleton set SC R i = {a j,i } over the relation R i . This kind of confidentiality constraint means that the attribute a j,i of the relational schema R i is sensitive and must be protected, typically by applying encryption.

• Association Constraint (AC). This kind of confidentiality constraint is represented as a subset of attributes AC R i = {a Note that protecting the relationship between two tables relies on protecting the primary key/foreign key relationship and storing involved relations on distinct servers of distinct providers. The association constraint can also be addressed through encryption (encrypt at least one of attributes involved in the constraint), but clearly this will increase the number of encrypted attributes and make database interrogation more complicated. A more adapted way to resolve this kind of confidentiality constraint was proposed in [Ciriani et al. 2007], which is based on splitting involved attributes in a manner that their relationships cannot be reconstructed.

In the case of an inter-table confidentiality constraint, protecting the foreign key using encryption is the simplest way to secure the relationship between the two relational schemas. However encrypting only the foreign key is not enough to keep the relationship between relational schemas secure, as service provider may be able to link records in two relational schemas by observing and analyzing user queries over these relational schemas. To overcome this problem, the two relational schemas involved in that case should be split into different fragments, and each of these fragments should be distributed to a different Cloud storage provider. An interesting approach for modeling constraints and resolving the data fragmentation problem was proposed in [START_REF] Ciriani | [END_REF], that efficiently computes data fragments satisfying the confidentiality constraints. It is based on Boolean formulas and Ordered Binary Decision Diagrams (OBDD) and uses only attribute-based confidentiality constraint (Singleton Constraints and Association Constraints). However, it cannot deal as-is with Intertable Constraints. In order to use this approach, we define a way to reformulate Inter-table Constraint as a set of Singleton Constraints and Association Constraints. We explain this transformation in the definitions and theorems below.

Definition 4. (Inter-table Constraint transformation).

Consider a relational database with two relations R 1 (a 1 , . . . , a n) and R 2 (b 1 , . . . , b m *). Let us assume that R 1 and R 2 are related through a foreign key/primary key relationship in which the foreign key b m of the relation R 2 references the primary key a 1 of relation R 1 . We assume that R 1 and R 2 contain respectively p and q records, with p > 1 and q > 1. An Inter-table

CONFIDENTIALITY USING FRAGMENTATION AND ENCRYPTION

33

Constraint c = {R 1 , R 2 } over relations R 1 and R 2 states that the relationship between these two relations must be protected by encrypting the foreign key b m and by storing R 1 and R 2 in two different fragments. Therefore, the constraint c can be written as follows:

1. A singleton constraint SC = {b m } to state that the value of b m should be protected.

A list of

(m × n) association constraints AC = {(a i , b j)|i ∈ [1, n], j ∈ [1, m]}.
We propose the notion of a correct transformation of Inter-table Constraints b m does not appear in clear in any fragment of F .

∀ AC

i,j = {a i , b j } ∈ C, i ∈ [1, n], j ∈ [1, m], if a i ∈ F k and b j ∈ F l then k = l.
Proof. According to Item 2 of Definition 4, the Inter-table Constraint will be replaced by all possible associations constraint composed from an attribute of relation R 1 and another from relation R 2 . Due to the fact that an association constraint between two attributes means that the relationship between these attributes will be protected using fragmentation (each attribute will be stored in different fragments), Item 2 guarantees that relations R 1 and R 2 will be stored in different fragments which hold condition (2). Item 1 of Definition 4 creates a singleton constraint over the foreign key b m of the relation R 2 . Thus b m will be considered as a sensitive attribute and will be protected using encryption, which means that the foreign key b m will not appear in clear in any fragment. As a result, if an adversary succeeds in having access to the fragments in which R 1 and R 2 have been stored, she is unable to link data stored in these relations.

CHAPTER 3. COMBINING FRAGMENTATION AND ENCRYPTION

The main advantage of the Inter-table Constraint is that it allows treatment of multi-table relational databases. In addition, it gives a simple way to formulate confidentiality constraints between relations. As we have seen in Item 1 of Definition 4, the attribute b m (foreign key of the relation R 2) should be encrypted. However, to be able to query data and construct relationship between relations, the chosen encryption algorithm must be deterministic [START_REF] Bellare | [END_REF]] in order to preserve uniqueness and allow the construction of relationship between relations (e.g. through JOIN queries). As is known, in normalized multi-relation databases, three types of relationship between relations exist: (i) one-to-one, (ii) one-to-many and (iii) manyto-many relationships. Inter-table Constraints over relations associated using (i) or (ii) can be simply transformed as shown in Definition 4, while others associated using (iii) need a pre-transformation step before applying the transformation of Definition list of all attributes contained in these relations. Given A f the list of attributes to be fragmented, the result of the fragmentation is a list of fragments F = {F 1 , . . . , F m } where each of these fragments satisfies:

1. ∀F i ∈ F, i ∈ [1..m], F i ⊆ A f . 2. ∀a ∈ A f , ∃F i ∈ F : a ∈ F i . 3. ∀F i , F j ∈ F, i = j : F i ∩ F j = ∅.
Note that the list of attributes to be fragmented A f contains all attributes in A, except those concerned with Singleton Constraints (attributes to be encrypted). Condition 1 guarantees that only attributes in A f are concerned by the fragmentation, condition 2 ensures that any attribute in A f appears in clear at least in one fragment and condition 3 guarantees unlinkability between different fragments.

Logically, to be able to get information about the original database, we should be able to reconstruct original database from fragments. So after defining the fragmentation process, we shall define a mechanism to combine fragmentation and encryption. More precisely, we need a mechanism to integrate attributes involved in the Singleton Constraints (attributes to be encrypted) in the suitable fragment. These encrypted attributes allow only authorized users (users who know the encryption key) to construct the sensitive relationships. Based on the definition of P hysicalf ragment proposed in [Ciriani et al. 2007], we define our mechanism called Securef ragment to combine fragmentation and encryption. Definition 6. (Secure Fragment). Let D be a relational database with a list of relations R = {R 1 (a 1,1 , . . . , a j,1), . . . , R n (a 1,n , . . . , a k,n)}, F = {F 1 , . . . , F m } a fragmentation of D and A f be the list of fragmented attributes. Each fragment F i ∈ F is a new relation whose attributes are a subset A i ⊆ A f . Each A i is composed of a subset of attributes of one or more relations R j ∈ R. We denote by R F i the list of relations in R such that a subset of their attributes belongs to the fragment F i ∈ F . The secure fragment of F i is represented by a set of relations schema R e F i in which each relation is represented as R e j (salt, enc, a 1 , . . . , a k) where {a 1 , . . . , a k } ⊂ A i ∩ R j and enc is the encryption of all attributes of R j that do not belong to {a 1 , . . . , a k } (all attributes of R j involved in a singleton constraint except those concerned by a singleton constraint over the foreign key), combined before encryption in a binary XOR with the salt. All foreign key attributes which are involved in singleton constraints are encrypted using a deterministic encryption algorithm (e.g., AES) to ensure their distinguishability.

Algorithm 1 shows the construction of secure fragments.The main reason for reporting all original attributes (except foreign keys involved in the Singleton constraints) in an encrypted form for each relation in a fragment, is to guarantee that a query Q over the original relation R j can be executed by querying a single fragment (which contains R e j) while preserving confidentiality of sensitive relationships, so we do not need to reconstruct the original relation R j to perform the query Q. Furthermore, encrypting foreign keys ensure the protection of sensitive relationships between relations involved into Inter-table Constraints. However, using deterministic encryption algorithm has two issues. First, a major advantage is to enforce indistinguishability of records which allows only authorized users who know the encryption key to execute queries associat-

CHAPTER 3. COMBINING FRAGMENTATION AND ENCRYPTION input : D = {R 1 , R 2 , • • • , R n } /* Normalized relational database */ C = {C 1 , C 2 , • • • , C m } /* Confidentiality constraints */ output: F s = {F s 1 , F s 2 , • • • , F s p } /*The set of secure fragments*/ C f = {C i ∈ C : |C i | > 1} /* The list of association constraints */ A f key = {a ∈ C i , C i ∈ C : |C i | = 1 and isForeignKey(a) = T rue} /* A f key :
The set of foreign keys to be encrypted*/ /* Fragmentation */

F := Fragment(D, C f) foreach F i = {a i 1 , a i 2 , • • • , a in } in F do R f = classifyAttributes(F i) /* Classify the attributes according to their original relation.*/ foreach R f i in R f do foreach r in R f i do /* r : record */ r s [salt] := GenerateSalt(R f i , r) r s [enc] := E k (t[a j 1 , • • • , a jq] ⊕ r s [salt]) /* a j 1 , • • • , a jq = R i -R f i */ foreach a in R f i do /* a : attribute */ r s [a] := r[a] endfch foreach a in A f key do if a ∈ R i then /* a : the foreign key of the relation R i */ r s [a] := E k (r[a]) end endfch InsertRecord(r s , R s) endfch AddRelationToFragment(R s , F s) endfch endfch
Algorithm 1: Secure fragmentation ing these relations. Second, a minor drawback is that it allows an adversary to infer information about repeatedly occurring values of the encrypted foreign keys, but this information does not allow the adversary to break the unlinkability between relations.

The attribute salt which is used as a primary key of different relations in the secure fragments protects encrypted data against frequential attacks. In addition, there is no need to secure the salt attribute because knowledge of the value of this attribute will not give any advantage when attacking encrypted data. In fact, the algorithm we used (AES(k, m ⊕ salt)) can be seen as an AES-CBC with an IV = salt, or AES-CBC are proved to be semantically secure [Bellare et al. 1997] even when the used IV is known.

Example 2. Assume that we have a relational database D of a medical insurance company that contains two relations P atient and Doctor represented respectively in Table 5.1 andTable 5.2 As shown before, the first step in the fragmentation process consists in transforming Inter-table Constraint (C 3). Relations P atient and Doctor are linked through the foreign key Id_doc in the relation P atient, therefore C 3 will be replaced by C 4 = {Id_doc} and all possible Association constraints composed of an attribute of the relation Doctor and an attribute of the relation P atient (guarantee that the relation P atient will not be in the same fragment as the relation Doctor). In our example, attributes SSN and Id_doc of the relation P atient are involved in singleton constraints C 1 and C 4 respectively. So they will not be concerned by the fragmentation. As a result C 3 will be replaced by : CHAPTER 3. COMBINING FRAGMENTATION AND ENCRYPTION

. The insurance company has defined a set of confidentiality constraints CC

= {C 1 = {SSN }, C 2 = {N ame_pat, Illness}, C 3 = {P atient, Doctor}}.
• C 4 = {Id_doc} • C 8 = {Dob, N ame_doc} • C 5 = {N ame_pat, Id_doctor} • C 9 = {Illness, Id_doctor} • C 6 = {N ame_pat, N ame_doc} • C 10 = {Illness, N ame_doc} • C 7 = {Dob, Id_doctor} A possible fragmentation of D that satisfies all confidentiality constraints is the set of fragments {F 1 , F 2 , F 3 } with: F 1 = {P atient(N ame_pat, Dob)}, F 2 =
{P atient(Illness)} and F 3 = {Doctor(Id_doctor, N ame_doc)}. Next step is the Secure fragmentation transformation (Definition 6). We assume that encryption of the protected attributes uses the deterministic encryption algorithm E with the encryption key K. The result of applying the SecureF ragmentation over different fragments is represented as follows.

• F 1 : P atient(salt, enc, N ame_pat, Dob, E k (Id_doc)) with:

enc = E K (SSN, Illness salt) • F 2 : P atient(salt, enc, Illness, E k (Id_doc)) with: enc = E K (SSN, N ame_pat, Dob salt) • F 3 : Doctor(Id_doctor, N ame_doc) Figure 3.2 -Secure Fragmentation Results
Note that F 3 has not been changed because there is no singleton constraints over the Doctor attributes. Lastly data fragments F 1 , F 2 and F 3 are distributed to different Cloud storage providers.

Query Transformation and Optimization

In our querying model, query transformation is performed by the Query Transformation (QT) module on the client side. When receiving a user query, the query is analyzed syntactically and semantically so that incorrect queries are rejected as earlier as possible. Next, based on the M etadata stored on the client side, the QT will attempt to find a fragment on which the user query can be executed, i.e. a fragment in which QT can find all attributes and relations involved in the user query. If such a fragment does not exist, QT will decompose the user query into queries expressed in relational algebra, find out which fragments are involved in the query, and finally transform the user query into a set of fragments queries. Using this set of fragment queries and other operations such as encryption, decryption, join and aggregation, the QT creates a QEP and sends it to the Query Executor. Algorithm 2 shows the query validation, transformation and optimization process.

Example 3. (One-fragment query).

Assume that we have a relational database D that contains two relations P atient and Doctor represented respectively in Table 3.1 andTable 3.2 Q1 can be executed over either F 1 or F 2 fragments as all attributes required by Q1 can be found (in clear or encrypted form) in both fragments.

• QEP 1 for Q1 over F 1 : '1986-09-14'; As we can see through the previous example, a query can have more that one QEP. Logically, each QEP may have a different execution cost. Thus, the QT should have the capability to pick out the best QEP in terms of execution cost. This capability is explained later in the Query Optimization section.

Q1 1 : SELECT Name_pat, salt, enc FROM patient WHERE Dob='1986-09-14'; Dec : Decrypt(Result(Q1 1), Key) = R d (Q1 1) Q1 2 : SELECT Name_pat, SSN FROM R d (Q1 1) WHERE Illness = 'Illness1'; • QEP 2 for Q1 over F 2 : Q1 1 : SELECT salt, enc FROM patient WHERE Illness = 'Illness1'; Dec : Decrypt(Result(Q1 1), Key) = R d (Q1 1) Q1 2 : SELECT Name_pat, SSN FROM R d (Q1 1) WHERE Dob=
For multi-fragment query3 , QT will use local join operations as it should combine results of execution of subqueries over fragments. There are two different ways to perform local join operation : (1) Execute all sub-queries in a parallel manner, then join the result on the client side. (2) Execute sub-queries in a sequential manner to have the ability to perform semi-joins using the result of previous sub-queries. While (1) can be cheaper than (2) in terms of sub-query execution, it is much more costly in the join operation because in (1), sub-queries results might contain a lot of records that might not be part of the final results.

Example 4. (Multi-fragment query).

Assume that we will use the same database D and fragments used in Example 3. Consider the query : FROM patient, doctor WHERE Dob='1986-09-14' A possible QEP for Q2 can be :

Q2 : SELECT Name_pat, Name_doc
Q2 1 (F 1) : SELECT Name_pat, E k (Id_doc) FROM patient WHERE Dob = '1986-09-14'; Dec : Decrypt(E k (Id_doc), Key) = δ Q2 2 (F 3) : SELECT N ame_doc FROM doctor WHERE Id_doctor IN δ; Join : Result(Q2 1) Result(Q2 2)
Since the relationship between the two relations P atient and Doctor is protected, these relations are stored in different fragments. Therefore, the query Q2 is decomposed into two sub-queries Q2 1 and Q2 2 executed respectively over fragments F 1 and F 3 .

In addition to traditional query optimization methods such as selecting conditions as earlier as possible, the QT attempts to minimize the execution cost of the created QEP by applying the selection condition with the most selective attribute, i.e the selection condition which is satisfied by the smallest number of tuples. To give this ability to the QT , we assign a selectivity and an average attribute-value size (AVS) to each attribute contained in the original database to the M etadata stored in the Client. The selectivity of an attribute is the ratio of the number of distinct values to the total number of rows.

Selectivity =

DistinctV alues T otalN umberRows (3.1) In distributed databases, they may exist several strategies for each query due to the fact that data are stored in different sites. One way to choose the best strategy is based on calculating the expected cost which should include corresponding evaluation and communication cost. The formula of a point query execution costs can be estimated roughly as follows:

Query execution cost = C E × N bExRow + C T × N bEstRow (3.2)
C E represents the evaluation cost of a record, C T is the transmission cost of a record, N bExRow is the number of rows examined and N bEstRow is for the estimated number of returned rows which is calculated as follows :

N bEstRow = 1 Selectivity (3.3)
Using the average attribute-value size (AVS) of encrypted attribute enc, we can estimate the execution costs of the decryption operation as follows : 2), (3) and (4) the QT will compute the approximative execution cost for each QEP as shown below :

Decryption cost = C D × AV S × N umber of rows (3.
QEP 1 execution cost = C E × 10 5 + C T × 7 + C D × 252 × 7 + C E × 7 QEP 2 execution cost = C E × 10 5 + C T × 1250 + C D × 152 × 1250 + C E × 1250
After computing the approximative execution cost of each QEP, the QT will select the best one in terms of execution cost. In our example, QEP 1 has the lowest execution cost.

Preserving Data Unlinkability

Ensuring data confidentiality is achieved by preserving unlinkability between different data fragments and by encrypting all sensitive information that cannot be protected using only fragmentation. However, we have seen in the previous section that evaluation of some queries may use semi join in order to join data from different fragments. This will not be a concern in the case of non-colluding Cloud providers, but it becomes a serious security and privacy problem when Cloud Service Providers (CSP) can collude.

In this section, we present our solution to overcome this privacy concern when we assume that CSP can collude to link data stored in different fragments. Operation Result

Q2 1 execution over F 1 : N.Baines, E k (doc_2) Decryption : δ = {Decryption(E k (doc_2))} Q2 2 execution over F 3 : D.Annli
Assume that F 1 and F 3 are distributed respectively in CSP 1 and CSP 3 which will try together to link tuples stored in the two fragments by correlating the history of user queries, their execution time and their respective responses. In our example, CSP 1 will disclose that a client has executed Q2 1 to retrieve the tuple N.Baines, E k (doc_2) at the time t, while CSP 3 will disclose that the same client has executed Q2 2 to retrieve D.Annli at the time t + n. Using this information, CSP 1 might be able to infer that E k (doc_2) is the encrypted value of 'doc_2'. Therefore CSP 1 can associate all patients having Id_doc ='E k (doc_2)' to the doctor whose name is 'N.Baines'.

To overcome this problem, the Client should have the ability to execute semi join queries and retrieve data from a fragment without the CSP (which stores the fragment) learning any information about the semi join condition values. To meet this requirement, we use a Private Information Retrieval keyword-based technique. PIR keyword-based was presented in [Chor et al. 1998] to retrieve data with PIR using keywords search over many data structures such as binary trees and perfect hashing. In the next section of this chapter, we will explain how we can use PIR keyword-based technique to ensure our semi join queries privacy requirement.

PIR System design

In the Client of our architecture, we give to Query Executor the ability to communicate with different Cloud providers through the PIR keyword-based protocol. In the Server, we add on each CSP a P IR Server as a front-end entity to answer Query Executor's PIR queries. An adversary (a Cloud provider administrator) who can observe Query Executor's PIR-encoded queries is unable to find out the clear content of the queries. Enforcing integrity on the P IR server side is straightforward since we assume that PIR servers will not attempt to wrongly answer Query Executor's PIR queries.

The main purpose for using PIR keyword-based is to ensure the privacy of semi join queries. In our approach, this kind of queries is mainly executed over primary or foreign key attributes. In all existing PIR schemes, a common assumption is that the client should know the address of the block or the item to be retrieved. To satisfy this assumption in our approach, the P IR server will create an indexed structure over each indexed attributes in the database (e.g., attributes representing primary or foreign keys of the database relations). Therefore, we implement over these attributes two types of indices: B+ trees [START_REF] Aho | [END_REF]] and hash tables [Amble and Knuth 1974]. In the following subsections, we present then discuss the PIR keyword-based protocol using both index structures.

PIR based on B+ Trees

Private Block Retrieval (PBR) is a practical extension of PIR in which a user retrieves an n-bit block instead of retrieving only a single bit. Therefore, to be able to use B+ tree structure with the PBR, we consider each node or leaf in the B+ trees as a data block. However, in most cases, B+ tree nodes and leaves do not have the same size, so they cannot be used directly as all PBR approaches require that data blocks are of equal size. Thus, a required stage consists in adding padding data to nodes and leaves in order to have the same size for all B+ tree elements.

Using the PIR keyword-based query requires a setup phase in which the Query Executor and the P IR server exchange information. This setup phase is divided into two steps:

1. The Query Executor sends to the corresponding P IR server the Relation schema name and the attribute name over which the semi join query has to be performed.

2. When receiving the Relation schema name and the attribute name, the P IR server selects the corresponding B+ tree and sends its root node to the Query Executor.

After receiving the root node sent by the P IR server, the Query Executor will compare the list of keys contained in the root node with values used in the condition of the Semi join query in order to find out the indexes of the next nodes to be retrieved.

The Query Executor will subsequently perform PIR queries over chosen indexes to retrieve corresponding nodes. Once all items have been retrieved, the Query Executor combines them to build the result of the original Semi join query. Refer to Algorithm 3 and Algorithm 4 for a description of the PIR keyword-based protocol algorithms used in the Server and the Client parts. We illustrate the execution of a semi-Join query using the PIR keyword-based in the example below.

input : 1. The Query Executor sends (Doctor, Id_doctor) to the P IR server.

BP T = {B 1 , . . . , B n } /* B-
2. The P IR server sends the root node of the B+ tree corresponding to the received (Doctor, Id_doctor). Suppose that this root node is as presented in the table below. 3. The Query Executor compares the elements of δ with the received nodes keys.

i 1 doc_11 i 2 doc_5 i 3 • • • Note that i 1 , i 2 , i
(a) The Query Executor wants to retrieve the node containing the key doc_3, due to the fact that doc_11 < doc_3 < doc_5 (string comparison) and based on the received root node, the Query Executor will retrieve the node indexed by i 2 .

(b) The Query Executor needs also to retrieve the node containing the key doc_19, seeing that doc_5 < doc_69 (string comparison) and based on the received root node, the Query Executor will retrieve the node indexed by i 3 .

For each index to be retrieved i i , the Query Executor sends an encoded PIR query P IR(i i) to the P IR server. This process will be executed until the leaves of the B+ tree are reached. From the retrieved leaves, the Query Executor gathers tuples in which their keys are element of {doc_3, doc_69}.

Theorem 2. Let D be a multi-relation normalized database, F = {F 1 , F 2 } be a fragmentation of D, and Q be a multi-fragment query that joins records from both fragments F 1 and F 2 . Consider that CSPs in which the fragments F 1 and F 2 are stored can collude to link data partitioned in these fragments, and that Q is evaluated using semi join operations. Sensitive relationships between F 1 records and F 2 records remain protected if and only if the privacy of the semi join sub-queries is guaranteed.

Proof. To prove the Theorem 2, we use the following two sketches. The fist sketch proves that without ensuring semi join sub-queries privacy, collaborative CSPs can, in some cases, break data unlinkability, while the second sketch proves that, under a collaborative Cloud storage service providers model, protecting data unlinkability can only be guaranteed with the protection of the privacy of the semi join sub-queries.

SKETCH without using the PIR keyword-based protocol: Suppose that the Cient wants to execute a query which joins records from two fragments F 1 and F 2 . Let us consider that the sub-query Q 1 executed over the fragment F 1 has returned n tuples. And the semi-join query Q 2 executed over F 2 has returned m tuples. Therefore, if CSPs that store F 1 and F 2 collude together to link tuples from Q 1 and Q 2 results, the probability to guess correctly the relationship between tuples (denoted using) is:

P r[Result(Q 1) Result(Q 2)] = 1 m × n
Clearly, if m and n are small, CSPs will have a great chance to break data unlinkability.

SKETCH using the PIR keyword-based protocol:

Let us consider that the Client attempts to perform a query which joins records from two fragments F 1 and F 2 . According to our defined PIR keyword-based protocol, the Client will execute Q 1 over the fragment F 1 without using the keyword-based protocol. Next, the Client will send the table name T and the attribute name a on which the semi-join will be performed, the Server replies with the root node of the corresponding B+ tree. It is clear from the previous step that the CSP which stores F 2 can only know the attribute name and the table name on which the semi-join will be performed. After receiving the root node, the Client will use the PIR protocol to retrieve internal corresponding nodes until the leaves of the B+ tree are reached. The PIR protocol will ensure that the server will not know which nodes were retrieved by the Client. Moreover, all tuples are stored in the leaf level of the B+ tree. Therefore, in order to retrieve each record, the Client shall execute the same number of PIR queries. Rightfully, the only revealed information when using the PIR keyword-based protocol is the table name and the attribute name on which the semi-join has been performed. Therefore, if CSPs storing F 1 and F 2 collude together to break data unlinkability, they will be able only to infer that the relation T 1 in F 1 over which Q 1 has been executed is linked to the relation T through the attribute a. Due to the fact that the foreign key in T 1 referencing the attribute a in T is encrypted, linking records is not possible.

The particularity of B+ tree structures is that data appears only in the leaves while internal nodes is mainly used to guide the search. B+ tree's leaves are linked together to simplify sequential data access which gives the ability to perform in an efficient manner cardinality queries and range queries. However, the use of B+ tree data structure presents two disadvantages : first, as we have shown in the previous example, the Query Executor will use PIR queries to run down the tree and privately retrieve blocks (leaves) which contain records that match the semi-join condition. In each layer of the B+ tree, Query Executor should send a PIR query to the P IR server to get the addresses of the next layer nodes to be retrieved. Thus, for a k-layers B+ tree, Query Executor needs at least k PIR queries to reach the leaf layer, which is expensive in terms of communication and execution time. Second, several records which will not be part of the final result of the semi join query will be retrieved as a B+ tree leaf may contain several records having different index values.

PIR based on Hash Table

Hash table is a data structure that implements a mapping form keys to values. It is represented by an array in which data is accessed through a special index. The idea behind using hash tables is to map the indexed attribute (Primary key or foreign key) values to the set of corresponding records. These indexed attribute values will be the keywords which are used to search corresponding records stored in the hash tables. Hash tables are composed of set of sequential hash buckets. We will consider each set of records having the same keyword (indexed attribute value) as an hash buckets. The index of each bucket in the hash table is calculated using a minimal perfect hash function [Botelho et al. 2007] that maps n keywords to n consecutive integers.

We describe the use of hash table with the protocol PIR to perform semi join queries with the following four steps :

• Setup step -The P IR server create an hash table over each indexed attributes of the database. This stage is carried out only once as created hash tables will be used for subsequent semi join queries.

•

Step 1 -The Query Executor sends to the P IR server the name of the table and the name of the attribute on which the semi join is performed.

• Step 2 -P IR server picks up the hash tree corresponding to the received couple (table, attribute) on which the semi join is performed and sends back to the Query Executor a set of metadata allowing the construction of the minimal perfect hash function used for building the corresponding hash table.

• Step 3 -Using the received metadata, the Query Executor derives the minimal perfect hash function and calculates for each constant value in the semi join condition, the corresponding bucket index in which records corresponding to that constant value are stored. These calculated indexes are also the blocks numbers in the hash table index on the server. Next, the Query Executor will use PIR query to retrieve data blocks having the calculated indexes.

The advantage behind using hash tables lies in the fact that only one PIR query is needed to retrieve a data bloc instead of n PIR query when using a B+ tree (n represents the height of the B+ tree). Moreover, using hash tables, retrieved blocks will contain only records that match the original query of the user.

Example 8. Consider the query Q2 2 used in Example 4. We suppose that δ = {doc_3, doc_69}. the execution of Q2 2 using PIR keyword-based protocol over Hash tables data structures is as follows:

1. The Query Executor sends (Doctor, Id_doctor) to the P IR server.

2. The P IR server sends to the Query Executor a set of metadata allowing the construction of the minimal perfect hash function f used for building the corresponding hash table . 3. Using received minimal perfect hash function f , the Query Executor computes for each element in δ, the corresponding block index in which records corresponding to that element are stored. Suppose that f (doc_3) = i 1 and f (doc_69) = i 2 , the Query Executor sends to the P IR server P IR(Doctor, i 1) and P IR(Doctor, i 2) to privately retrieve blocks having indexes i 1 and i 2 .

Implementation and Evaluation

We have developed a prototype for our approach, it is composed of two main components: (1) A Client entity developed in C++. Using regular expression offered by the boost library [START_REF] Maddock | [END_REF]], we give the ability to the client Entity to transform received queries into a QEP. Further, the Client uses the Crypto++ library [Dai 1995] to perform different cryptographic operations. (2) The server entity that uses STX B+ Tree [Bingmann 2008] and CMPH (C Minimal Perfect Hash) [Botelho and[START_REF] Botelho | [END_REF][START_REF] Botelho | Cmph : C minimal perfect hashing library[END_REF] libraries to build and manipulate B+ tree and hash tables structures used by the PIR protocol. To give PIR functionality to the Server entity, we have used Percy++ [Goldberg 2007a, Goldberg 2007b].

Finally, for relational database server we used MySQL [Oracle].

Experimental Design

For our benchmarking, we used the relational database schema D composed of three relations as follows:

Patient(Id_patient,
(Id_doc) * , E k (Id_pat *)) F 3 : Patient(salt, enc, Illness)
As we have previously seen, our approach is based on vertical fragmentation, the fragments of the table patient which are stored in F 1 and F 3 will be also composed of 10 6 records. Each fragment F 1 , F 2 and F 3 of the database D should be stored in a different Service Provider. In our experiments, we used three virtual machines, with each representing a Service Provider and running MySQL 5.5.31. All experimentations have been performed on an eight cores server (Intel(R) Xeon(R) CPU x5355, 2.66 GHz) with 12 GB of RAM and running Ubuntu Linux 10.04.

Evaluation

As we have seen in the section 3.4, two kinds of queries can be used in order to query distributed fragments: (1) Queries that can be executed over only one fragment.

(2) Queries which require the interrogation of several fragments to be evaluated. To evaluate the efficiency of our approach, we tested for each kind of query, and according to the number of retrieved records, the time required to execute the query. To evaluate the query of the type (1), we used the following query Exp_Q1 :

Exp_Q1 : SELECT Name, SSN, Dob FROM patient WHERE Gender = 'Male'
According to the used Fragments schemes, Exp_Q1 is executed over the fragment F 1 . To be able to control the number of returned records, we used the clause SQL LIMIT (LIMIT 0, number_of_record). The Figure 3.3 shows the execution costs per number of retrieved records. Note that in all experiments the cost of data transfer between the Server and the Client is negligible because both parties are installed in the same experimentation server. For queries of the type (2), our approach will use semi_join with the PIR keywordbased protocol in order to join fragmented data while preserving the protection of sensitive associations. In this case, two kinds of data structure can be used : B+ tree and hash table.

For a better comparaison of the use of B+ trees and Hash tables with the keyword-based PIR, we executed the query Exp_Q2 using the keyword-based PIR over both data structures. We make the following observations. First, as expected, the use of hash tables as the data structures used by the PIR keyword-based in order to perform semi join queries is much more efficient compared to the use of B+ trees with the PIR keyword-based. This can be explained by the fact that in the case of B+ tree, the Client must run down the tree using a PIR query in each level of the tree to retrieve data blocks stored in the leaf level of the B+ tree. While, in the case of hash tables, the Client needs to perform only one PIR query to get the data block containing requested records. For instance, the height of the corresponding B+ tree of the table P atient is 5, then the Client must perform 5 PIR queries to be able to retrieve corresponding records. Second, another reason to the inefficiency of the use of B+ trees compared to the use of hash tables with the PIR keyword-based is due to the fact that the size of constructed B+ trees are much more bigger than constructed hash tables which will introduce an execution overhead when performing PIR queries.

CONCLUSION AND CONTRIBUTIONS

53

Conclusion and Contributions

In this chapter, we have presented an approach based on fragmentation, encryption and query privacy techniques enabling privacy-preserving of outsourced multi-relation databases. We presented different techniques that we have used to decompose multirelational databases in the aim to protect sensitive associations, then we demonstrate how our decomposition techniques help in achieving data confidentiality. We presented a querying technique that optimizes and executes queries in this distributed system and how we can improve the security of the querying technique in order to protect data confidentiality under a collaborative Cloud storage service providers model. Despite that our querying approach allows us to effectively and securely construct sensitive relations broken by the use of vertical fragmentation, it cannot efficiently execute queries over the attributes storing sensitive information, since the values assumed by those attributes are encrypted in such a way that makes performing operations (e.g., SUM, AVG, etc.) over them impractical. We strive to overcome this limitation in the next chapter by presenting an algorithm and tool set that determines an optimal balance between confidentiality and functionality of the sensitive outsourced data. That is, to use the functionalities (i.e. SUM, AVG, etc.) required by the queries to be executed over the outsourced database, we aim to get the different encryption schemes that can provide them when ensuring the best level of confidentiality.

Encryption-based Mechanisms to ensure Outsourced Data Confidentiality 4.1 Introduction

Encryption schemes have been proposed recently that allow to execute particular query operators over encrypted data and recent work by [Popa et al. 2011] shows that the general direct processing of encrypted data is an achievable goal, something recently confirmed in a larger industrial perspective [START_REF] Grofig | [END_REF]. Following the idea of encrypting cleartext in so called "onions" allows to balance and match data processing functionality, i.e. each layer of an onion supports some SQL operations, with security, i.e. an onion structure introduces a total order with respect to the security properties of the chosen schemes. Yet, it is not practical to encrypt all columns in a table with the same onion structure. For example, columns may not require any encryption as they do not contain any sensitive material. Other columns may, for company specific compliance regulations, require to always be encrypted using a specific scheme when outsourced.

We believe that in order to further promote the wider industrial adoption of directly processing encrypted data, a more flexible configuration management is required before outsourcing the data from on-premise to a database-as-a-service cloud. In this chapter, we first present a policy-based configuration framework for encrypted data allowing the security administrator to specify the security policy to be applied over the outsourced data. Second, we propose an algorithm allowing to detect conflicts between security and utility requirements. Third, we prove that selecting the optimal combination of encryption schemes that fit the defined policies with respect to the data owner's functional requirements (e.g. SQL that should be executed over the encrypted data) is NP-hard. Fourth, we therefore propose a heuristic, polynomial-time algorithm for finding a combination of encryption schemes that satisfies a policy P and provides the best security level.

The rest of this chapter is organized as follows, Section 4.2 describes the problem treated in this chapter. Section 4.3 presents the modeling of the used system and the modeling of the policy to be applied over the outsourced database. We show, for a given policy, how to detect the conflict between security and utility requirements involved in the policy and how to choose the combination of encryption schemes that enforces it. Section 4.4 presents a use case showing the application and the benefits of our approach in practice. Section 4.5 reports the implementation and evaluation of our approach. Finally, Section 4.6 reports our conclusions.

Problem Description

Adjustable Database Encryption

Encrypted databases can execute SQL queries over encrypted data. In this case, data is never decrypted inside the database server, but always remains encrypted. The key to the encryption and decryption functions solely resides at the client.

The main idea to processing queries in this way is property-preserving encryption. In property-preserving encryption a function f (E(x), E(y)) on ciphertexts E(x), E(y) returns the same result as f (x, y). Hacigümüs et al. have described this concept for deterministic encryption and equality as a function [START_REF] Hacigümüs | [END_REF]. They realized that many database operators, particularly selection and join, often use equality. Each data value is separately deterministically encrypted. Those database operators can then be used unmodified on encrypted data.

A limitation of the approach proposed in [START_REF] Hacigümüs | [END_REF] was that inequality comparisons (range queries) were insufficiently supported. Agrawal et al. introduced order-preserving encryption [START_REF] Agrawal | [END_REF]]. Order-preserving encryption is property-preserving encryption for greater-than-or-equal comparisons. Using orderpreserving encryption one can implement a large subset of SQL queries.

PROBLEM DESCRIPTION

57

We have seen in Sections 2.2.1 and 2.2.3 that the security of order-preserving encryption and even deterministic encryption is still much debated. It is therefore better to choose the most secure encryption for a set of queries. If this set is unknown, then all data needs to be encrypted order-preservingly. Popa et al. presented a solution to this: adjustable (onion) encryption. Each data value is encrypted order-preservingly. This ciphertext is encrypted deterministically and the result is finally encrypted using standard randomized encryption secure against chosen plaintext attacks. Before a query is executed it is analyzed for the required encryption levels and the data values are adjusted (decrypted) to these levels. Hence, the most secure encryption can be chosen automatically.

Functional Requirements

As already mentioned the set of queries executed on the database pose a set of functional requirements. These requirements are captured as the functions executed on the ciphertext by the database operators.

In many cases a large subset of the queries to be executed is known. For example, when an application uses the database, one can analyse this application and extract the queries (maybe except for parameters). In many cases one can simply resort to the prepared SQL statements. If this subset of queries is known in advance, then it would be unwise to adjust the encryption during run-time. Although the adjustment process is performed only once, it can be quite costly. Each data value of an entire column needs to be decrypted which can sum to several MByte or even GByte of data.

Instead, the database can be encrypted to a "prepared" state and the adjustment process avoided. This leads to a significant shortening of the phase from a cold to a hot database. Real systems can go faster into production. Our approach is the first to support this analysis. We choose the appropriate encryption levels depending on the functional requirements of a set of queries.

Security Levels

The encryption levels of adjustable encryption correspond to different security levels. We claim that randomized encryption is at least as secure as deterministic encryption which is at least as secure as order-preserving encryption. We argue as follows.

Randomized encryption (RND) is semantically secure, i.e., it is secure against chosen plaintext attacks. We use AES in CBC for this encryption level. Clearly, then chosen plaintexts attacks are prevented.

Deterministic encryption (DET) allows chosen plaintext attacks, if the key is known or there is an encryption oracle. We only need symmetric encryption in encrypted database, such that it may be difficult to obtain the key or construct such an oracle. If a plaintext is encrypted and stored more than once, deterministic encryption also allows frequency attacks as in [START_REF] Islam | [END_REF]. While not necessary, this may often -if not almost always -be the case in real databases. We therefore claim that deterministic encryption is less secure than randomized encryption. We use Pohlig-Hellman encryption, a symmetric key RSA variant, for this encryption level, in order to support proxy re-encryption [Kerschbaum et al. 2013b].

Order-preserving encryption (OPE) is also deterministic, such that all attacks on deterministic encryption also work for order-preserving encryption. In addition, it preserves the order, which may enable many more attacks. It was concluded that order-preserving encryption leaks at least half of the plaintext bits [Xiao and Yen 2012]. Clearly, order-preserving encryption is the least secure choice. We use the scheme by Boldyreva et al. [Boldyreva et al. 2009, Boldyreva et al. 2011] for this encryption level, which has been proven to be the optimally secure, immutable, order-preserving encryption scheme.

Next to these encryption levels we use homomorphic encryption (HE) for aggregation. Specifically, we use Paillier encryption [Paillier 1999]. Homomorphic encryption is secure against chosen plaintext attacks as is randomized encryption. Since for processing queries both ciphertexts need to be offered in parallel, they can be safely assumed to provide the same security level. Furthermore, similar to onion encryption, homomorphic encryption can be downgraded to deterministic encryption. As in the approach by Bellare et al. [Bellare et al. 2007], we can choose a deterministic randomization parameter. For downgrading we can simply select one ciphertext among the set of identical plaintexts. This has the added benefit that dictionary compression is as effective as on plaintext data [Kerschbaum et al. 2013a].

Security Requirements and The Need for Policy Configuration

Considering the security levels from Section 4.2.3 The data owner may realize that certain queries may put his data at risk. These queries may adapt the encryption level to an unsafe state, e.g. order-preserving encryption, for a certain set of data. Even certain security standards, such as PCI-DSS [PCIDSS], may require certain encryption levels. Therefore the data owner may want to set certain policies on which encryption levels are allowed. He may want to prevent specific data from ever reaching a specific encryption state. For this, he needs the approach we propose in this chapter.

Policy Enforcement

The specified policies need to be enforced in the encrypted database. There is a crucial insight that enables prevention of certain encryption levels. If an encryption level is not present, it cannot be decrypted to. And vice versa, if an encryption should not be decrypted to, it does not need to be present. We therefore omit the encryption levels prevented by our policy. If one should not be able to decrypt to order-preserving encryption, the data value will not be encrypted order-preservingly. This has the positive side effect that ciphertexts may get smaller and encryption is more efficient.

The question remains what to do with queries that functionally require an encryption level that is prohibited by the security policy. In this case one ships the ciphertexts to the client, decrypts and executes the query on the client. The client query analysis algorithm of Kerschbaum et al. based on relational algebra, allows splitting a query into a local and a remote part [Kerschbaum et al. 2013c]. This way only the minimally necessary part of the query according to the security policy will be executed on the client.

Policy Configuration

In this section, we firstly present the modeling of the system and the specification of the policy. Afterwards, we present an algorithm allowing to detect conflicts between the constraints of the policy. We then propose an efficient algorithm allowing to enforce the policy while resolving the detected conflicts.

System Modeling

In our approach, data to be outsourced is stored in a relational database D, which is composed of a collection of relational tables T = {T 1 , • • • , T n }, with each of these relational tables T i containing a collection of attributes

A T i = {a 1,i , a 2,i , • • • }. The system contains a toolbox E composed of a set of m encryption schemes {E 1 , • • • , E m }
that can be used to protect outsourced data. Each encryption scheme E i ∈ E is characterized by a security level l i that provides and a set of functionalities F i ⊆ F that satisfies. Let F be the set of functional requirements that can be required over the data to be outsourced and L be the set of security levels provided by E.

Policy Modeling

We model, in a quite simple and powerful way, the requirements defined by the data owner. Those requirements are expressed through security and utility constraints. Security constraints are composed of confidentiality constraints and security threshold constraints.

Definition 7. (Confidentiality constraint). Given a relational table T i ∈ T containing a list of attributes

A T i , a confidentiality constraint defined over T i is a singleton set CC = {a}, where a ∈ A T i .
Semantically speaking, a confidentiality constraint CC states that the values assumed by the attribute in CC are considered sensitive and therefore must be protected.

Definition 8. (Security threshold constraint) Given a relational table T i ∈ T

and an attribute a ∈ A T i , a security threshold constraint T C a over the attribute a is a security level l in L. A security threshold constraint defined over the attribute a is well defined iff there exists a confidentiality constraint CC such that a ∈ CC.

Security threshold constraints allow the data owner to specify a security level threshold for each sensitive attribute. The semantics of a security threshold constraint T C is that the security level of the sensitive attribute a must be at least as much secure as the security level l of T C.

Definition 9. (Utility constraint) Given a relational table T i ∈ T and an attribute

a ∈ A T i , an utility constraint U C a over the attribute a is a set of functionality F a = {f 1 , • • • , f n }, where F a ⊆ F.
Confidentiality protection is provided at the expense of data utility. A utility constraint offers the data owner the ability to require that some functionalities on his data must be provided, otherwise the data is useless.

Policy Conflict Detection

Policy conflicts occur when the objectives of two or more constraints cannot be simultaneously satisfied. Conflict detection aims at checking whether a set of constraints contains conflicts. In our case, conflicts may occur between security constraints and utility constraints, more precisely, between security threshold constraints and utility constraints. To detect the conflicts, there are two steps. First, we must get for each security level l ∈ L, the set of functionalities F l which are satisfied by encryption schemes providing security levels that are at least as much secure as l. Then, for each sensitive attribute having T C a = l a as a security threshold constraint and U C a = F a as an utility constraint, we check if the set of functionalities F la we got from the previous step for the level l a is a superset of F a , and if not, we deduce that there is a conflict between T C a and U C a . The set of conflicts in a defined policy are detected as described in Algorithm 5.

Example 9. Let L = {RN D, DET, OP E} be the set of security level that can be provided from the set of encryption schemes

E = {E 1 , E 2 , E 3 }. Suppose that the E 1 , E 2 and

Policy Satisfaction

The policy to be enforced over the outsourced database is composed of security and utility constraints. Those constraints can be satisfied through the application of encryption schemes. Our main challenge is to find for each sensitive attribute a in the outsourced database, the best combination of encryption schemes that can satisfy the set of security and utility constraints defined over a.

Definition 10. (combination of encryption schemes) Let E be the set of available encryption schemes in the system, a combination of encryption schemes is a subset

C ⊆ E. Definition 11. Let C = {E 1 , • • • , E m }
be a combination of encryption schemes applied over the attribute a and l i be the security level provided by the encryption scheme E i ,

1 ≤ i ≤ m.
The security level of the attribute a provided by the application of C is l, iff the following conditions hold:

• l ∈ {l 1 , • • • , l m } • ∀l j ∈ {l 1 , • • • , l m }, l j is at least as secure as l. 62 CHAPTER 4. COMBINING ENCRYPTION BASED MECHANSISMS input : A s = {a 1 , • • • , a n } /*sensitive attributes*/ C t = {T C a 1 , • • • , T C an } /*security threshold constraints*/ C u = {U C a 1 , • • • , U C an } /*utility constraints*/ E = {E 1 , • • • , E m } /*encryption schemes*/ L = {l 1 , • • • , l p } /*security levels*/ output: I /*set of conflicts*/ 1 Main 2 I = ∅ 3 /* First step */ 4 foreach l i in L do 5 F l i = ∅ 6 foreach E j in E do 7 if (l j is more secure or equal l i) then 8 F l i = F l i ∪ F j 9 end 10 endfch 11 endfch 12 /* Second step */ 13 foreach a k in A s do 14 if (U C a k F T Ca k) then 15 I = I ∪ {(a k , U C a k , T C a k)} 16 end 17 endfch
Algorithm 5: Conflict detection Note that the previous definition requires the security level provided by the combination of schemes in C to be the lowest security level provided by the application of each encryption schemes in C. A strategy to find the combination of encryption schemes that satisfy the chosen policy consists of finding the best combination of encryption schemes, that is, it provides the highest level of protection for sensitive data, while minimizing the number of involved encryption schemes. We formalize this problem as follows:

Problem 1. (best combination of encryption schemes) Let P be a policy, C = {C 1 , • • • , C n } be a set of combinations of encryption schemes that satisfy the policy P , and l i be the security level provided by the application of the combination C i , with 1 ≤ i ≤ n. C k is the best combination of encryption schemes in C that satisfy P iff the following conditions are satisfied:

• ∀C j ∈ C, l k is at least as secure as l j . • ∀C j ∈ C, |C k | ≤ |C j |.
The problem of finding the best combination of encryption schemes is NP-hard. This is formally stated by the following theorem.

Theorem 3. The problem of finding the best combination of encryption schemes is NP-hard.

Proof. We prove the previous theorem by a reduction from the NP-hard problem of minimum hypergraph coloring [START_REF] Garey | [END_REF], which is formulated as follows: given a hypergraph G(V, E), determine a minimum coloring of G, that is, assign to each vertex in V a color such that adjacent vertices have different colors, and the number of colors is minimized.

We define the correspondence between finding the best combination of encryption schemes problem and the minimum hypergraph coloring problem as follows. Let a be a sensitive attribute, T C a = l be a security threshold constraint defined over a, U C a = {f a 1 , • • • , f an } be a utility constraint defined over a, and

E l = {E 1 , • • • , E m }
the set of encryption schemes that provide a security level which is at least as secure as l. Any vertex v i ∈ V corresponds to a functionality f i ∈ F. We denote e a the edge in

G which connects v a 1 , • • • , v an , corresponds to the constraint U C a . The combination of encryption schemes C = {E i 1 , • • • , E ip }, where C ⊆ E and each E i j ∈ C satisfies the set of functionalities F j = {f j,1 , • • • , f j,k j }, satisfies the constraint U C a correspond
to a solution S for the corresponding hypergraph coloring problem. More precisely, S uses p colors. Vertices {v 1,1 , • • • , v 1,k 1 } corresponding to the functionality satisfied by E i 1 are colored using the first color, vertices {v q,1 , • • • , v q,kq } corresponding to the functionality satisfied by E iq are colored using the q-th color, and vertices {v p,1 , • • • , v p,kp } corresponding to the functionality satisfied by E ip are colored using the p-th color. Therefore, any algorithm finding the combination of encryption schemes that involved the minimal number of encryption mechanism while satisfying the constraint U C a can be used to solve the minimum hypergraph coloring problem.

Since the problem of finding the best combination of encryption schemes that satisfy a policy P is NP-hard, we cannot expect to be able to solve an instance of arbitrary size of this problem to optimality. Thus, heuristic resolution strategies are widely exploited to solve such a problem with a reasonable computational effort.

Heuristic Search

We propose a near-optimal heuristic for finding a combination of encryption schemes that satisfy a policy P . Our heuristic is based on a constructive method consisting of building a solution to the problem step by step from scratch. The used constructive method is based on choosing for each iteration, the best satisfier of the chosen policy.

Definition 12. (best satisfier)

Let P be a policy composed of two constraints: a security threshold constraint T C a = l and an utility constraint

U C a = {f a 1 , • • • , f an }.
Both constraints are defined over the sensitive attribute a. • The security level l E i is at least as secure as l.

Let E = {E 1 , • • • , E m }
• ∀E j ∈ E, l E j is at least as secure as l and

|F E i ∩ U C a | ≥ |F E j ∩ U C a |, where F E
are the set of functionalities satisfied by E.

The second condition in the previous definition states that E i is the best satisfier if it satisfies the highest number of functionalities in U C a compared to other encryption schemes in E that satisfy T C a . Algorithm 6 shows our heuristic algorithm for computing for each sensitive attribute, a combination of encryption schemes that satisfy the constraints defined over it.

The algorithm takes as input the set of attributes A in the database to be outsourced, the policy P to be enforced over the set of attributes A, the set of available encryption schemes E that can be used to enforce the policy P, the set of security levels L, and returns as output the set of combinations of mechanisms S that efficiently enforce the policy P.

For conflicting constraints, the algorithm returns a set of propositions CP to aid in resolving the conflicts. The algorithm first initializes S, CP, A s to the empty set and execute the procedure get_conf licting_constraints which takes as parameters P, E, L, and return the set of conflicts in the policy. The get_conf licting_constraints procedure is represented by the Algorithm 5. Based on the confidentiality constraints in P, the algorithm performs the first foreach loop to get all sensitive attributes A s . Then, for each sensitive attribute a i having an unconflicting constraint it tries to get the best combination of schemes in terms of the provided security level. In order to meet the previous goal, we use the while loop to run down the set of security levels in L which are at least as secure as (≥ s) T C i starting from the highest one. For each security level sec_lev, we get from E the set E sec_lev of encryption schemes that provide security For each attribute a i having a conflicting constraint, using the third outermost foreach loop, the algorithm gives additional proposition allowing to avoid the conflict. To meet this goal, we use the first while loop in the third outermost foreach loop to run down the set of security levels in L starting from T C i . We perform the same operation as in the previous outermost foreach loop, except, for each sec_lev, we will add to the set of propositions CP the entry (a i , P rop, sat_f unc, sec_lev) stating that in the security level sec_lev, the combination of schemes P rop is able to satisfy the set of functionalities sat_f unc required for the attribute a i . These propositions may help the security administrator (data owner) to choose, from his point of view, the best trade off between security and utility.

input : A = {a 1 , • • • , a n } /*database attributes*/ P = {CC 1 , • • • , CC l , T C 1 , • • • , T C l , U C 1 , • • • , U C l } E = {E 1 , • • • , E m } /*encryption schemes*/ L = {l 1 , • • • , l p } /*
A s = A s ∪ CC endfch foreach a i in A s do if (not (a i , T C i , U C i) in Conf licts) then sec_lev = get_the_highest_sec_lev(L); Sol = ∅ while sec_lev ≥ s T C i do Sol = ∅, E sec_lev = ∅ foreach E in E do if (l E ≥ s sec_lev and F E ∩ U C i = ∅) then E sec_lev = E sec_lev ∪ E end endfch U C temp = U C i while (U C temp = ∅ and E sec_lev = ∅) do E bs = get_f irst_elem(E sec_lev) foreach E in E sec_lev do if (|F E ∩ U C i | ≥ |F E bs ∩ U C i |) then E bs = E end endfch Sol = Sol ∪ E bs ; E sec_lev = E sec_lev \ {E bs } U C temp = U C temp \ (F E bs ∩ U C temp) end if (U C temp = ∅) then break end if (E sec_lev = ∅) then sec_lev = get_next_best_level(sec_lev, L) end end S = S ∪ {(a i , Sol, sec_lev)} end endfch CHAPTER 4. COMBINING ENCRYPTION BASED MECHANSISMS foreach (a i , T C i , U C i) in Conf licts do P rop = ∅ sec_lev = T C i while sec_lev = N U LL do P rop = ∅ E sec_lev = ∅ foreach E in E do if (l E ≥ s sec_lev and F E ∩ U C i = ∅) then E sec_lev = E sec_lev ∪ E end endfch U C temp = U C i while (U C temp = ∅ and E sec_lev = ∅) do E bs = get_f irst_elem(E sec_lev) foreach E in E sec_lev do if (|F E ∩ U C i | ≥ |F E bs ∩ U C i |) then E bs = E end endfch P rop = P rop ∪ E bs E sec_lev = E sec_lev \ {E bs } U C temp = U C temp \ (F E bs ∩ U C temp) end sat_f unc = U C i \U C temp CP = CP ∪ {(

Theorem 4. (Complexity).

Given a set of p attributes A, a policy P composed of n confidentiality constraints, n security threshold constraints, n utility constraints, a set of m encryption schemes E, and a set of r security levels, the complexity of the policy satisfaction algorithm (Algorithm 6)

is O(m 2 • n • r + r • m + 2n).
Proof. (sketch). We suppose that we have p attributes having unconflicting constraints and q attributes having conflicting constraints, with p + q = n. According to Algorithm 5, the execution of the function get_conf licting_constraints costs O(r • m + n). In Algorithm 6, the first foreach loop costs O(n), the second foreach loop costs in the worst case O(p • r • m 2), and the third foreach loop costs in the worst case O(q • r • m 2). Finally, the overall time complexity of the Algorithm 6 is

O(m 2 • n • r + r • m + 2n).

Use Case

In this section, we present the use case. For our case study, we use a scenario based on the TPC-H [Doe] benchmark database. We first give an overview of the TPC-H benchmark database structure. Afterwards, we present the set of encryption schemes that can be used in our scenario, a set of functionalities required for processing the data, and policies to be applied over the TPC-H database. Finally, we illustrate the use of our previously presented policy satisfaction algorithm to enforce the chosen policy over the TPC-H database.

TPC-H Database

The TPC-H database is composed of 8 tables. Each attribute in TPC-H tables represents data for industrial resource management. TPC-H provides 22 queries consisting of different kind of SQL operations such as select, join, order by, etc.

System Design

As described in Section 4.3.1, the used system is composed of a relational database D, a set of security layers L, a set of functional requirements F, and a toolbox E. In our case study, D represents the TPC-H benchmark database, L will be composed of three security layers as explained Section in 4.2.3: RN D (random layer), DET (deterministic layer) and OP E (order preserving layer). As we work with relational databases, the set of utility requirements are composed of some SQL operators that can be used to query the database. In addition, we define the functionalities computation representing 4.4. USE CASE 69 the numeric computation over the attributes (e.g., SET ATTR = ATTR + 30), and order search represeting the SQL operators (>, ≥, <, ≤, between, min/max, order by).

Thus F = {equality, join, group by, average, sum, computation, like, order search}.

The toolbox E is composed of the following encryption schemes. For each encryption scheme, we extract and specify the provided security level and the set of satisfied functionalities as presented in Section 4.3.1.

AES-CBC.

When used in CBC chaining mode, AES provides a probabilistic encryption which is semantically secure. Thus, it provides the security level RND. Despite that this encryption scheme does not leak any information about the plaintext values, it does not allow any efficient computation over encrypted data. Therefore, l AES = RND and F AES = ∅.

The Policy

In our scenario a security administrator (data owner) of the TPC-H benchmark database requires that the following security rules must be enforced:

• Rule 1. The given discount for any Order should always remain top secret.

• Rule 2. The account balance for a customer as well as our suppliers should always remain top secret.

• Rule 3. The Name and Address of our suppliers should be confidential.

• Rule 4. The supply cost of individual suppliers must be confidential.

• Rule 5. Any pricing information must remain secret.

• Rule 6. All other information in the database should be unclassified.

The security administrator used four levels to classify the data. The top secret classification levels means that any leaked information about the data will cause grave damage. The secret level means that some information about the data values can be leaked if they do not lead to reveal its values. The confidential level means that additional information about the data values can be leaked if they do not lead to reveal the values itselves. A Unclassified level implies that the data are not sensitive.

According to the properties of the security levels in L described in Section 4.2.3, we associate the top secret classification levels to the RND security level, the secret classification level to the DET security level, and the confidential classification level to the OPE security level. The previous rules are specified as follows: Rule 1. It involves the attribute L_DISCOUNT of the table LINEITEM. This rule is specified using the folowing confidentiality and security threshold constraints:

• CC 1 = {L_DISCOU N T }, T C 1 = RN D.
Rule 2. This rule involves the attributes C_ACCTBAL and S_ACCTBAL from the tables CUSTOMER and SUPPLIER. It is specified using the following constraints:

• CC 2 = {C_ACCT BAL}, T C 2 = RN D. • CC 3 = {S_ACCT BAL}, T C 3 = RN D.
Rule 3. It involves the attributes S_NAME, S_ADDRESS, and S_NATIONKEY from the table SUPPLIER. It is specified using the following constraints:

• CC 4 = {S_N AM E}, T C 4 = OP E. 4.4. USE CASE 71 • CC 5 = {S_ADDRESS}, T C 5 = OP E. • CC 6 = {S_N AT ION KEY }, T C 6 = OP E.
Rule 4. It involves the attribute PS_SUPPLYCOST from the table SUPPLYCOST. This rule is specified using the following constraints:

• CC 7 = {P S_SU P P LY COST }, T C 7 = OP E.

Rule 5. This rule involves the attributes P_RETAILPRICE, L_EXTENDEDPRICE and O_TOTALPRICE from tables PART, LINEITEM and ORDERS. It is specified using the following constraints:

• CC 8 = {P _RET AILP RICE}, T C 8 = DET • CC 9 = {L_EXT EN DEDP RICE}, T C 9 = DET • CC 10 = {O_T OT ALP RICE}, T C 10 = DET
There is no need to specify Rule 6 as the data assumed by the attributes concerned by this rule are not sensitive. That is, this data can be stored in plaintext.

The security administrator gives examples of queries which should be executed efficiently over the TPC-H database. From these set of queries, we extract only the queries involving sensitive attributes described in the policy, which are illustrated in Figure 4.2. These queries enable us to extract the set of functionalities required for each sensitive attribute in the TPC-H database. Table 4.1 shows, for each sensitive attribute, the queries on which the attribute is involved and the set of required functionalities. These functional requirements are specified using the following utility constraints:

• U C 1 = {computation, sum, order search} • U C 2 = {group by, sum} • U C 3 = {order search} • U C 4 = {order search, group by} • U C 5 = {like} • U C 6 = {join} • U C 7 = {equality} • U C 8 = ∅ • U C 9 = {sum, computation} • U C 10 =

Policy Enforcement Results

Using the Algorithm 6, we get from the toolbox, for each sensitive attribute, the encryption scheme or the combination of encryption schemes that satisfies the policy. The results of the application of Algorithm 6 over our use case are the followings: • [AES -CBC] (RND), satisfied utility requirements: ∅.

• [Boldyreva] (OPE), satisfied utility requirements: {order search} (Q2).

P_RETAILPRICE: [AES -CBC] (RND).

10. O_TOTALPRICE: conflict detected (T C 10 and U C 10) Conflicts resolution propositions:

• [P ohlig -Hellman] (DET), satisfied utility requirements: {group by}.

• [Boldyreva] (OPE), satisfied utility requirements: {group by, order search} (Q6).

Result 1 shows the satisfaction of the constraints defined over the attribute C_ACCTBAL. A conflict between the constraints T C 2 and U C 2 has been detected. Thus, our algorithm gives the data owner two propositions in order to resolve the conflict. The first proposition states that the data owner can preserve the RN D security level through the application of the P aillier encryption scheme, however only the sum functionality will be provided and therefore the query Q5 cannot be executed efficiently over the encrypted data. The second proposition gives the data owner the ability to decrease the required threshold security level to DET in order to allows the application of the combination [P aillier, P ohlig -Hellman] which satisfies the required utility constraints. Result 2 states that the encryption scheme P aillier can be applied to enforce the set of security and utility requirements defined over the attribute L_EXTENDEDPRICE. Result 3, shows that security and utility constraints defined over the attribute PS_SUPPLYCOST can be enforced through the application of P ohlig -Hellman encryption scheme. Result 4 shows that there is a conflict between the constraints T C 1 and U C 1 and proposes two solution to reconcile the conflict. Result 5 states that the encryption scheme SSE can be applied to enforce the set of security and utility requirements defined over the attribute S_ADDRESS. Result 6 shows that the set of security and utility constraints defined over the attribute S_NAME can be enforced via the application of Boldyreva encryption scheme. Result 7 states that the encryption scheme P ohlig-Hellman, when applied, can enforce the of security and utility requirements defined over the attribute S_NATIONKEY. For this result, we remark that our algorithm has chosen the best encryption scheme in terms of provided security level, as the Boldyreva encryption scheme can also be used to enforce security and utility requirements defined over the attribute S_NATIONKEY. Result 8 shows the conflict detected between T C 3 and U C3 and proposes two solutions two overcome the conflict. Result 9 confirms that the application of AES -CBC can enforce the constraints defined over the attribute P_RETAILPRICE. Finally, result 10 shows that there is a conflict between T C 1 0 and U C 1 0 and proposes two solution allowing to reconcile the conflict.

It is important to note that sequentially applying a combination of encryption schemes (e.g. [Paillier and Pohlig-Hellman] in one "onion") over an attribute may not provide the functionalities provided by each encryption scheme. This problem can be resolved by duplicating the values of the attribute over which the two mechanisms are to be applied and apply each mechanism separately.

Implementation and Evaluation

In this section, we evaluate the efficiency of our approach by using a web application as well as a large trace of SQL queries (For extracting the functional requirements for the used applications). Our prototype consists of a Java library composed of an SQL query parser, a database schema reader module (DRM), a policy specification module, and policy satisfaction module. The query parser is used to extract the utility requirements (or functionalities) that should be provided over each attribute in the target database.

We use the open source JSqlParser [JSqlParser] as an SQL query parser. The DRM is used to connect and retrieve the schema of the target database to allow the user of our library specifying the policy to be applied. Our DRM implementation supports both Postgres 9.0 and MySQL 5.1 databases.

Experimental Design

We ran the all experiments on a server with Intel core i7 2.50 GHz, 16 GB of RAM, and running Ubuntu 14.04. We evaluate the effectiveness of our policy satisfaction algorithm using the web application phpBB. Table 4.2 reports the number of attributes in the relational database used by the phpBB web application as well as the number of queries we have used to extract the functionalities that should be provided for the attributes in the used relational database.

Application Total Attr. Total Num. of queries phpBB 563 11992

Table 4.2 -The web application used to evaluate our policy satisfaction approach

The encryption toolbox we used to enforce policies over the outsourced database is composed of 5 encryption mechanisms.

Evaluation

In order to show the performances of our approach, we examine the computation duration cost of our policy satisfaction approach over the relational database used by phpBB in function of the number of sensitive attributes, the number of threshold constraints, and the number of utility constraints. Figure 4.3 shows that the time needed to satisfy a policy increases, dependently from the number of sensitive attributes as well as the numbers of defined threshold constraints, and utility constraints. The measure confirms that a linear complexity in terms of the number of sensitive attributes and the numbers of defined threshold constraints and utility constraints is achieved, which is conform with the result proved in Theorem 4.

Conclusion and Contributions

Searchable, yet encrypted databases appear to be one promising building block of a secure cloud offering. In order to help companies migrate data from on-premise to the cloud, tools are needed to help decide about the best acceptable trade-off between functionality and security requirements. In this chapter, we presented a set of algorithms which help to analyze functionality and security requirements when configuring an encrypted database following an onion-based approach. We reasoned about their formal characteristics as well as discussed their application in an enterprise use case on basis of the TPC-H benchmark. The assumption that data may be labelled as we proposed may appear oversimplified, but industrial experience shows that even in complex applications this is sufficient to cover the evaluation results of a typical 3x3 risk matrix.

The approach proposed in this chapter complements our contribution presented in the chapter 3 since it allows to overcome its limitation by allowing a data owner to get, for the attribute storing sensitive data, the combination of encryption schemes that provides the best trade-off between the security and utility of the outsourced sensitive information.

The contribution presented in this chapter is the result of a collaboration with SAP AG (Karlsruhe, Germany). Our developed tool is integrated in the SAP's recent security research project SEEED [SAP].

Part II Heterogeneous Security and Utility

Requirements Specification and Enforcement over Outsourced Data Logic based language for Specifying Security Policy and Security Mechanisms

Introduction

In recent years, the concept of data outsourcing has become quite popular since it offers many features, including reduced costs from saving in storage, increasing availability as well as minimizing management effort. Many security-related research issues associated with data outsourcing have been studied focusing on data confidentiality [START_REF] Hacigümüs | [END_REF], Bkakria et al. 2013b], data authentication and integrity [START_REF] Mykletun | Authentication and integrity in outsourced databases[END_REF][START_REF] Narasimha | [END_REF], Copyright protection [Sion 2008, Gross-Amblard 2011], privacy and anonymity [Sweeney 2002, Machanavajjhala et al. 2006, Li et al. 2007], because outsourced data often contains highly sensitive information which will be stored and managed by third parties. To tackle those traditional security issues, data protection mechanisms have recently been the focus of huge interest, especially cryptographic and information hiding techniques such as encryption, anonymization, watermarking, fragmentation, etc. These mechanisms are known to be efficient when used independently. However, in many situations they have to be combined to ensure security requirements.

In Cloud storage model, the goal of policies is to achieve a set of security and utility properties over the outsourced data. However, the relation between these properties and the existing security mechanisms defined to protect outsourced data is not always obvious and a question naturally emerges: how to bridge the gap in such a case? CHAPTER 5.

The complexity of Cloud storage security policies is increasing due to the interplay of several heterogeneous security and efficiency requirements that should be harmonized and specified into consistent policies. An important related issue is the trade-off between the level of provided security and the target system usability, especially when it is open to the Internet (e.g., Cloud service Storage).

Logic-based languages are specifically appealing for security policy specification. One main benefit resides in their clean and straightforward semantics, suitable for specification and validation. In addition, logic-based languages can be designed to be expressive enough to specify all security properties that might be required over a target system. Their declarative nature provides a good compromise between simplicity and expressiveness.

Stemmed from the absence of relevant work in the area of formal policy specification and deployment for outsourced data, in this chapter, we present our third contribution [Bkakria et al. 2014a]. That is, we strive to design an expressive formal language allowing us to formally specify the data structure storing the information to be outsourced, formally specify, as finely as possible, the policy to be applied over the data to be outsourced, and formally specify the existing security mechanisms that can be used to protect the data to be outsourced.

The rest of this chapter is organized as follows. Section 5.2 introduces the formal language that will be used in our approach. Section 5.3 shows the data model formal specification. Section 5.4 formalizes the main objectives that data owners attempt to reach when using a Cloud storage model . Section 5.5 shows the modeling of the policy to be applied over the outsourced information. Section 5.6 presents the specification of the existing security mechanisms that can be used to satisfy a defined policy. Section 5.7 concludes the chapter.

An Epistemic Temporal Logic based language

In this section, we introduce the first-order temporal epistemic logic language L that we will use to formalize: (1) the data structure storing the information to be outsourced, (2) the policy to be applied over it, and (3) the security mechanisms that might be used to enforce the policy.

The first-order temporal epistemic logic language L can be seen as a composition of a first order logic (predicate logic), epistemic logic [Hintikka 1986], and temporal logic [Davis and McKim 1976]. The aims behind combining these tree formal systems are the following:

• Data structures traditionally used to store information are often complex structures composed of a set of associated data objects. First, order logic allows us to formally specify the data objects and their associations through the use of predicate symbols. Moreover, it provides expressive power through the availability of quantifiers and variables which allows us to state facts about data objects of the structure without enumerating the particular objects.

• The security requirements in the policy to be enforced are often defined over one or many particular moments of the life cycle of the outsourcing process (as we will later see in Section 5.5). Temporal logic provides a set of temporal operators allowing us to explain those security requirements over the life cycle of the outsourcing process.

• When dealing with security issues in the Cloud storage model, the ability to describe the knowledge of the involved entities (e.g., Cloud provider, external adversaries, authorized users, etc.) becomes particularly important. Epistemic logic provides operators allowing to specify informational aspects related to knowledge.

These three formal systems have the advantages of a well-defined semantics, an existing body of theoretical work related to, axiomatisations and complexity, see for example [START_REF] Halpern | [END_REF], and sound and complete proof methods for example [Dixon and Fisher 2000].

Syntax

The first-order temporal epistemic logic language L is based on KL (n) [Dixon and Fisher 2000], which represents the fusion of first order linear-time temporal logic with multi-modal S5 [START_REF] Lewis | [END_REF]. The temporal modality is interpreted over a discrete linear model of time with infinite future and finite past, such a logic has been studied in detail [START_REF] Halpern | [END_REF]] and is the most commonly used temporal logic of knowledge. L is made up of a set of predicates P, propositional connectives ∨, ∧, ¬, → and ↔, the quantifiers ∀, ∃. We take the usual set of future connectives ♦ (Sometime, or eventually) and (always) [Gabbay et al. 1980]. For knowledge we assume a set of agents A g = {1, • • • , m} and use a set of unary modal connectives K j , for j ∈ A g , in which a formula K j ψ is to be read as "agent j knows ψ". CHAPTER 5. Definition 13. Let P i be a predicate of arity n in P. The set of well-formed formulas of L is defined as follows:

φ ::= P i (t 1 , • • • , t n) | K i φ | ¬φ | φ ∨ φ | φ ∧ φ | ♦φ | φ |φ → φ | φ ↔ φ | ∃xφ | ∀xφ | φ ref ine ---→ φ where t 1 , • • • , t n are

terms (variables or constants).

The language L is extremely expressive. It can be used to specify complex systems, the temporal evolution of those systems, and the temporal evolution of agents' knowledge, as we will see later on in this chapter.

Semantics

The semantics we used for L are inspired by the ones proposed in [Dixon and Fisher 2000]. • I is an interpretation;

• Φ is a transition function which defines transitions between states due to the application of mechanisms (actions). Φ(s, m k) = s if the mechanism m k transits a model from a state s to state s .

The semantics of our language L are described through the definition of satisfaction relation |=.

Definition 18. Given a model M for L, a state s, the satisfaction relation |= for a formula ψ of L is defined as follows:

• (M, s) |= P (t 1 , • • • , t n) ⇐⇒ I s (P)(v(t 1), • • • , v(t n)) = T rue, where v is a valua- tion function that assigns, for each t i ∈ {t 1 , • • • , t n } an element in D s . • (M, s) |= ¬ψ ⇐⇒ (M, s) |= ψ • (M, s) |= ψ → ϕ ⇐⇒ (M, s) |= ψ or (M, s) |= ϕ • (M, s) |= ψ ↔ ϕ ⇐⇒ (M, s) |= (ψ → ϕ) ∧ (ϕ → ψ) • (M, s) |= ∀xψ ⇐⇒ (M, s) |= ψ[x/c] for all c ∈ Ds • (M, s) |= ∀xψ ⇐⇒ (M, s) |= ψ[x/c] for some c ∈ Ds • (M, s) |= ψ ∧ ϕ ⇐⇒ (M, s) |= ψ and (M, s) |= ϕ • (M, s) |= ψ ∨ ϕ ⇐⇒ (M, s) |= ψ or (M, s) |= ϕ • (M, s) |= ♦ψ ⇐⇒ (M, s) |= ψ for some k ≥ i, where s = (t, i) and s = (t, k) • (M, s) |= ψ ⇐⇒ (M, s) |= ψ for all k ≥ i, where s = (t, i) and s = (t, k) • (M, s) |= K i ψ ⇐⇒ ∀s = (t , n), t ∈ T Ls and n ∈ N : (s, s) ∈ R i → (M, s) |= ψ • (M, s) |= ϕ ref ine ---→ ψ ⇐⇒ (M, s) |= ϕ ↔ (M, s) |= ψ
The truth condition for ⊥ are defined from those above. In particular, ϕ ref ine

---→ ψ can be expressed in term of ϕ ↔ ψ. For sake of clarity, ϕ ref ine ---→ ψ is used to distinguish between the axioms of our model and the refinement rules to be used to refine security policies.

For any formula Ψ of L, if there is a model M and a timeline t such that s = (t, 0) and (M, s) |= Ψ, then Ψ is said to be satisfiable. If for any formula Ψ of L and for any model M , there exists a timeline s such that s = (t, 0) and (M, s) |= Ψ, then Ψ is said to be valid. Note that when using a temporal logic, satisfiability and validity are evaluated at the beginning of time (initial state of the target system) [Emerson 1995].

Axiomatizations

In this section, we provide a sound axiomatization of our language L. First, we introduce a system S L that extends, to the first-order case, the multi-modal epistemic logic S5 combined with the linear temporal logic LTL. CHAPTER 5.

Definition 19.

The system S L contains the following schemes of axioms and rules, where φ and ψ are formulas in L, ⇒ is the inference relation, and is a placeholder for any primitive modality in L (♦ and , and K i):

• First order logic -Taut: classical propositional tautologies;

-MP: φ → ψ, φ ⇒ ψ; -Ex: ∀xφ → φ[x/t] -Gen: φ → ψ[x/t] ⇒ φ → ∀xψ,
where x is not free in φ;

• General Rules and Axioms

-Dist: (φ → ψ) → (φ → ψ) -4: ψ → ψ -Nec: φ ⇒ φ • Temporal Logic -¬φ ↔ ¬♦φ • Epistemic logic -T: K i φ → φ -5: ¬K i φ → K i ¬K i φ
The operators ♦ and are axiomatized as linear-time modalities [START_REF] Fagin | [END_REF], while K i operator is an S5 modality. To this, we added the classical postulates Ex and Gen for quantification.

In our formal model, the standard definitions of proof and theorem are considered.

φ means that φ ∈ L is a theorem in S L . A formula φ ∈ L is derivable in S L from a set of formulas Σ, or Σ φ, if and only if ψ 1 ∧ ψ 2 ∧ • • • ∧ ψ n → φ for some ψ 1 , ψ 2 , • • • , ψ n ∈ Σ.
It can be easily checked that the axioms and rules of S L are valid on every model of L and that the inference rules presented in Definition 19 preserve validity. Subsequently, we have the following soundness result. Theorem 5. The system S L is sound with respect to L.

DATA MODEL SPECIFICATION 87

Proof. Proof follows from soundness of S5 and soundness of the axiom system for first order temporal logic of time isomorphic to the set of natural numbers proved in [Szalas 1987].

For the rest of Chapters 5 and 6, we use D and V to denote respectively the set of objects in the data to be outsourced and the set of values assumed by those objects.

For the sake of simplicity, we will use the two places predicate knows(i, o) to denote that the agent i knows the value of the data object o. The relation between the knows predicate and the epistemic predicate K is described using the following axiom:

∀o ∈ D, ∀e : knows(e, o) ↔ ∃v ∈ V : K e value(o, v) (5.1)
where value(o, v) is used to denote that the value assumed by the object o is v.

Data Model Specification

Information is traditionally stored using different kind of data structure such as, relational databases, file systems, graphs, XML files, etc. One of our main objectives is to give the ability to the data owner to specify as finely as possible the security policy to be enforced over the data to be outsourced. To meet this goal, and relying on the fact that each data structure can be represented as a set of abstraction levels, we defined a general model that can specify the different abstraction levels and their corresponding involved objects for all existing data structures.

Tree-based Modelization of Data Structures

The intuition behind this idea is that the most of existing data structures can be expressed as a set of abstraction levels. In fact, through a simple analysis of the data structures traditionally used to store data, we realize that we can represent each data structure as a tree. For each data structure, each layer of the corresponding tree will represent an abstraction level involving the corresponding set of objects that belongs to it. For example, in a relational database, we have mainly four abstraction levels:

(1) the database-level which represents all the information stored in the database, (2) table-level representing the set of relational tables in the database and the associations between them (the associations between relational tables can be considered as sensitive [Bkakria et al. 2013b]), (3) the attribute-level which contains the set of attributes of each relational table and the associations between them, and (4) the value-level containing the set of values stored in the database.

CHAPTER 5.

The tree-based modelization of data structures offers our approach two main advantages. First, it allows data owner to specify as finely as possible his\her security requirements over the data structure representing the data to be outsourced. The second advantage is that the relations between different abstraction layers in the tree can be used to propagate the policy to be enforced. Tree structures are composed of a set of nodes and a set of edges (Hierarchical relation between nodes). To be able to use the tree-based modelization in our approach, we define a two places predicate subelement_of (o, o) allowing to formally specify the branches of the tree. subelement_of (o, o) means that the object o is a sub-object of o. Note that the predicate subelement_of is transitive, since obviously, if o 1 is a sub-object of o and that o 2 is a sub-object of o 1 , then o 2 is a sub-object of o.

Example 10. Assume that we have a relational database D of a medical insurance company which contains two relational tables P atient and Doctor represented respectively in Table 5.1 andTable 5.2 In the formal specification of the data structure, each node in the corresponding tree will be represented by an object (e.g., object(D), object(P atient), etc), and each edge linking two nodes will be formalized using the predicate subelement_of (e.g., subelement_of (P atient, N ame_pat), etc).

The transitivity of the the predicate subelement_of will allow us to define the rules (Definitions 20 and 21) make it possible to propagate the properties (e.g., sensitivity, knowledge, etc) of each object within the data to be oustourced to its sub-objects.

Definition 20. (refinement transitivity).

Given a predicate P in L describing a property (e.g., sensitivity, knowledge, etc) of a data object o, P is a refinement transitive predicate if and only if the following condition holds:

∀x 1 , • • • , x n , y 1 , • • • , y m , ∀o, o ∈ D : P (x 1 , • • • , x n , o, y 1 , • • • , y m) ∧ subelement_of (o, o) → P (x 1 , • • • , x n , o , y 1 , • • • , y m)
∀x 1 , • • • , x n , y 1 , • • • , y m , ∀o, o ∈ D : P (x 1 , • • • , x n , o , y 1 , • • • , y m) ∧ subelement_of (o, o) → P (x 1 , • • • , x n , o, y 1 , • • • , y m)
Actually, as far as we will go further in depth and details of our formal model, we will see how much The refinement transitivity and abstraction transitivity relations are useful. In fact, they will allow us in a first time to propagate the properties of the data objects to more detailed or concrete levels' data objects, and in a second time to refine the goals to satisfy and the policy to apply to more detailed or concrete levels. The purpose behind refining goals and policies is that it is likely to happen that the policy to be enforced and the goals to be satisfied are specified in different levels of abstraction. Therefore, an efficient reasoning method over our formal model requires the ability to refine goals and policies to the same level of abstraction. CHAPTER 5.

Definition 22. (Refinement Rule). Given two well formed formulas ϕ and ψ in L.

A refinement rule is a formula having the following form:

ϕ ref ine ---→ ψ

Goal Specification

From a data owner point of view, two main objectives can be targeted when using a Cloud storage model: data outsourcing and data sharing.

• Data outsourcing: The data owner aims to outsource its data D to a Cloud storage provider (csp) server s. This objective can be specified as following:

∀o ∈ D, ∃s : ♦ (csp(s) ∧ outsource(o, s)) (5.
2)

The previous formula specifies that, eventually, any object o in D should be outsourced to a csp server s. Note that the two places predicate outsource is a refinement transitive predicate, Since if a data object o is outsourced, obviously all sub-objects of o are also outsourced, which allows data outsourcing goals to be refined to a more concrete level using the following rule:

(∀o ∈ D : ♦ outsource(o, csp)) ref ine ---→ (∀o ∈ D : subelement_of (o, o) → ♦ outsource(o , csp)) (5.
3)

The relation between the knowledge of the information stored by a data object and the fact that it is outsourced to a csp is described through the following formula. val(o, v) is satisfied if the value of the data object o is v.

∀o ∈ D, ∀s : (csp(s) ∧ outsource(o, s) → knows(s, o)) (5.4)

• Data sharing : The data owner wants to share all or a part of the outsourced data D with a set of entities E (users, servers, etc.). This kind of goal is specified using the following formula:

∀e ∈ E, ∀D ⊆ D, ∀o ∈ D : ♦ knows(e, o).

(5.5)

Policy Specification

The policy to be enforced over the target data model D is specified through a set of security and utility constraints.

Security Constraints

Using security constraints, the data owner specifies the security requirements that should be enforced over the data model to be outsourced. We define five types of security constraints.

Confidentiality constraint: It requires the protection of the confidentiality of an object in the target data model.

[∀o ∈ D, ∀e : sensitive(o) ∧ untrusted(e) → ¬knows(e, o)].

(5.7) Formula 5.7 specifies that in any state of the target system, an untrusted entity e should not know the information stored by any sensitive object o. The one place predicate sensitive is a refinement transitive predicate as we consider that if the data owner specifies that the information stored by an object o are sensitive, therefore the information stored by any sub-object o of o will be also sensitive. This property allows us to refine a confidentiality constraint as described in the following formula: (5.8) CHAPTER 5.

Privacy constraint:

The data owner can use privacy constraints to require the prevention of identity disclosure.

[∀o ∈ D, ∀e : identif ier(o) ∧ untrusted(e) → ¬knows(e, o)].

(5.9) Formula 5.9 specifies that an object o that can be exploited to identify an identity should not be known by any untrusted entity e in any state of the target system.

In our formal model, we consider that the one place predicate identif ier is not a refinement transitive predicate, since we consider that only all the information stored by an identifier object o allow to identify a person (or entity) to which they belong. In other words, the disclosure of only some sub-objects of an identifier object might not lead to disclose the identity of the person to which the identifier object belongs. As a consequence, a privacy constraint cannot be refined.

Traceability constraint (Traitor detection):

In the applications where databases contents are publicly available over a network, the contents owner would like to discourage unauthorized duplication and distribution of his valuable contents. To meet this goal, the owner wants to give to a set of entities E the ability to check whether or not his valuable contents have been released to unauthorized users. (5.10) Formula 5.10 means that in any state of the system, if an untrusted entity knows a sensitive object o, the set of entities E should be able to know the set of entities E r responsible of the disclosure of the sensitive object o. The two places predicate responsible(e r , o) means that the entity e r is responsible of the disclosure of the sensitive object o to the untrusted entity e. It is a refinement transitive predicate as we consider that if an entity e r is responsible of the disclosure of the sensitive object o, then it is responsible of the disclosure of any sub-object of o. As a result, a traceability constraint can be refined to a more concrete level using the following formula: (5.12) Formula 5.12 specifies that in any state of the target system, if there are two objects o 1 and o 2 such that o 2 is a copy of o 1 and a set of entities E which know that the owner of o 1 is e, therefore E should be able to know that o 2 belongs to e. The two places predicate owner is also a refinement transitive predicate as if an entity e is the owner of an object o, then it is the owner of any sub-object of o. Formula 5.13 allows to refine an ownership constraint to a more concrete level.

∀o 1 , o 2 ∈ D : copy_of (o 1 , o 2) er∈E K er owner(e, o 1) → er∈E K er owner(e, o 2) ref ine ---→ ∀o 1 , o 2 ∈ D : subelement_of (o 1 , o 1) ∧ subelement_of (o 2 , o 2) ∧ copy_of (o 1 , o 2) er∈E K er owner(e, o 1) → er∈E K er owner(e, o 2) (5.13)
Integrity assessment constraint: This kind of constraint allows the data owner requiring the insurance of the accuracy and consistency of an object o over its entire life-cycle. This means that data cannot be modified in an undetected manner. In the target system, we should be able to check if o has been modified or not. A data owner may want to give a set of entities E the ability to check the integrity of an object o.

object(o) → e 1 ∈E K e 1 (is_modif ied(o) ∨ is_unmodif ied(o)) .
(5.14)

In the first hand, the one place predicate is_modif ied is an abstraction transitive predicate, as if we consider that the information stored by an object o are modified, then the information stored by any over-object o of o (subelement_of (o , o)) will be also modified. In the other hand, the one place predicate is_unmodif ied is a refinement transitive predicate, since if we consider that the information stored by an object o are not modified, then we are sure that the information stored by any sub-object o of o are CHAPTER 5.

not modified. Formula 5.15 can be used to refine an integrity assessment constraint:

object(o) → e 1 ∈E K e 1 (is_modif ied(o) ∨ is_unmodif ied(o)) ref ine ---→ ∀o ∈ D : subelement_of (o, o) → e 1 ∈E K e 1 (is_modif ied(o)∨ is_unmodif ied(o))
(5.15)

Utility Constraint

Generally, outsourced data protection is offered at the expense of data utility. In our model, we define a set of utility constraints giving the ability to a data owner to require that particular utility properties on the target data model must be respected. The violation of these properties makes the data useless. As we are working in the Cloud data model, utility requirements are properties allowing the data owner to efficiently use the outsourced data. These utility requirements can be classified into four classes.

Computational requirements.

With this kind of requirements, a data owner wants to have the ability to perform computation efficiently over outsourced data. For example, in the case of relational outsourced databases, computational requirements means the ability to execute queries with SUM, AVG, etc.

Keyword search requirements.

Using keyword search requirements, a data owner wants to have the ability to perform keyword based search over the outsourced data. For instance, in the case of an outsourced file-based data (e.g., Dropbox), Keyword search requirements means the ability to pickup files containing certain words.

Equality check requirements.

With this kind of requirements, a data owner wants to be able to perform equality checks. For example, in the case of relational databases, equality check requirements means that the data owner wants to be able to perform data selections with equality predicates, equality joins, etc.

Order check requirements. A data owner can use this kind of requirement in order to perform order check, which means that he or she wants to have the ability to perform order searches over the data to be outsourced.

To be able to express these different kinds of utility requirements, we define the one place predicate utility_requirement(). Then, an utility constraint defined over a data object o can be expressed by the axiom 5.16, which is to be read: "the ability to perform the utility requirement req over the object o". utility_requirement(req) ∧ provides (req, o) (5.16)

The one place predicate provides is a refinement transitive predicate, since we consider that if an utility requirement is provided for an object o, then it is also provided for any sub-object o of o.

Mechanisms Specification

One of our main objective when designing our formal model is the ability to integrate the largest number of security mechanisms that has been defined to protect outsourced data. In fact, when studying those security mechanisms, we realize that they can be specified using two groups of formulas: preconditions formulas and effects formulas.

Preconditions. For each mechanism, preconditions are represented by a set of formulas which are necessary conditions required for the application of the security mechanism. We define the two-places predicated is_applicable. The formula is_applicable(m, o) is to be read "the mechanism m can be applied over the object o". Preconditions of a security mechanism m are specified using a formula of the following form:

(is_applicable(m, o) → ∆ m) (5.17)
Where ∆ m represents necessary conditions for the applicability of the mechanism m. A formula of the form 5.17 is to be read "At any state of the target system, m can be applied if the preconditions ∆ m hold".

Effects. They are modifications resulting from the application of a mechanism m that transits the system from a state s to a state s . We use the two-places predicate apply (m, o) to specify that the mechanism m is applied over the object o. For a mechanism m, effects are represented by a set of formulas Σ m such that:

Φ(s, apply(m, o)) = s → (s |= Σ m)
(5.18) CHAPTER 5.

Axiom 5.18 states that if the application of the mechanism m over the object o transits the system from a state w i to a state w j , therefore the set of effects Σ m of the application of the mechanism m is satisfied in the state w j .

Many security mechanisms have been proposed to ensure outsourced data protection. In the present work, we are going to focus mainly on four classes of security mechanisms. Each class ensures specific security and utility properties. In each of these classes, we studied some security mechanisms to figure out (1) the data structure(s), the data type(s), and the level of granularity over which they can be applied, (2) the set of provided security and utility properties. A quick overview of the characteristics of the studied security mechanisms is given in Table 5.3.

Encryption Based Security Mechanisms

In our model, we consider that encryption-based security mechanisms can be applied over a data object o if and only if the following three conditions hold: (1) the information stored by o are considered sensitive (e.g., confidential or private information), (2) the information stored by o are typed t, and (3) the information stored by o should be structured as ds. This can be specified as follows:

enc_mechanism(m) ∧ is_applicable(m, o) → object(o) ∧ sensitive(o) ∧ data_type(o, t) ∧ data_structure(o, ds) (5.19)
For instance, for the searchable encryption based security mechanism [START_REF] Moataz | Boolean symmetric searchable encryption[END_REF], it is applicable over an object o if its stored information are considered sensitive and having a textual data type (data_type(o, textual)), and this, no matter how the information stored in o are structured.

The effects of the application of encryption-based mechanisms are specified using the following formula: (5.20) where P m represents the set of utility properties provided by the security mechanism m. For instance, the set of utility properties provided by the order preserving encryption [Boldyreva et al. 2009] is P ope = {ES, OS} (according to Table 5.3). The three places predicate encrypted is a refinement transitive predicate as we consider that if the data stored by an object o are encrypted using an encryption key k, therefore the information stored by any sub-object o of o will be also encrypted using k. Relational Database Categorical data Table level [START_REF] Machanavajjhala | [END_REF]] [Li et al. 2007] Watermarking [Guo et al. 2006] Any Numeric Bits-level [START_REF] Zhang | [END_REF] Database [Pournaghshband 2008] Database table

∀m, o, k : enc_mechanism(m) ∧ apply(m, o) ∧ enc_key(k) → ∃o e : encrypted(o, k, o e) p∈Pm provides(p, o e)

Approaches

Any

Attribute-level [Bhattacharya and Cortesi 2009] Tuple-based structure Tuple-level [START_REF] Charpentier | [END_REF] Video Binary Bits-level Fragmentation [Ciriani et al. 2007] One-relation Database Any Attribute-level [Bkakria et al. 2013b] Multi-relation Database Co: Confidentiality preserving of outsourced data.

Pr: Privacy preserving of outsourced sensitive data.

In: Integrity preserving of outsourced data.

Tr: Traceability insurance of outsourced data.

Ow: Ownership insurance of outsourced data.

ES:

The ability to perform equality search over the outsourced data (*).

OS:

The ability to perform order search over the outsourced data (*).

KS:

The ability to perform keyword-search over the outsourced data (*).

Cp:

The ability to perform computation over the outsourced data (*).

SO:

The ability to perform statistical operations over the outsourced data (*). *: Without the need to download all the outsourced data. The relation between the knowledge of the information stored by data objects and the property encrypted produced by the application of an encryption based security mechanism is depicted through the following hypothesis. The previous Hypothesis states that an entity e knows the unencrypted information stored in a data object o if and only if it knows the encrypted information o e of o and the encryption key k.

Anonymization Based Security Mechanisms

Anonymization based security mechanisms are traditionally used to prevent identity disclosure when publishing data sets. As a consequence, in our formal model, we formally specify (Formula 5.22) that an anonymization based security mechanism can be applied over a data object o if and only if: (1) the information stored by o are considered to be exploited to identify an entity's identity, (2) By considering that a data object o is identifier, we are sure that if the information stored by o are known by an entity e, then e knows the set of identities id o related to o. However if the information stored in o are anonymized and stored in o a , then any entity, which does not know the information stored in o, cannot know the set of identities id o related to o even if he or she has knowledge of the anonymized information stored in o a . This can be formalized in our model through the following hypothesis.

Watermarking Based Security Mechanisms

Digital watermarking of outsource data emerged as a candidate solution for providing ownership protection, integrity maintaining, and traitor tracing. Many watermarking techniques have been proposed in the literature to address these purposes.

In our formal model, the conditions under which a watermarking-based security mechanism can be used are specified using Formula 5.25.

watermark_mechanism(m) ∧ is_applicable(m, o) → object(o)

∧ data_type(o, t) ∧ data_structure(o, ds) (5.25) The data type t and the data structure ds are the properties that the object o should have to allow the application of the watermarking-based security mechanism m. For CHAPTER 5.

example, the watermarking-based security mechanism presented in [START_REF] Zhang | [END_REF]] can be applied over a data object o if o is typed numeric (t = numeric) and the information stored in o are represented as a database (ds = database).

The effects of the application of watermarking-based security mechanisms are specified using the following formula:

∀m, o, k : watermark_mechanism(m) ∧ apply(m, o) ∧ watermark_key(k) → ∃w, o w : watermark(w) ∧ watermarked(o, w, k, o w) p∈Pm provides(p, o w) (5.26)
Watermarking-based security mechanisms can be classified along two main dimensions regarding the Verifiability/Detectability used method. Watermark extraction is blind if and only if any entity needs only some private parameters (e.g. secret key) to be able to extract the watermark. Watermark extraction is non blind if and only if the knowledge of the original unwatermarked database is required. These two properties are specified respectively by Formula 5.27 and 5.28 in Hypothesis3. We use the one place predicate blind(m) to specify that the watermarking-based security mechanism m supports the blind Verifiability/Detectability method. Actually, the watermarks embedded in data objects can be classified regarding the security properties they provide in three classes:

• Ownership watermark: Information allowing to prove the identity of the owner of the data object are embedded in the watermark. We use the one place predicate ownership_watermark(w) to specify that w is an ownership watermark and the two places predicate contain(w, id) to specify that the information contained in w are related to the identity id.

• Integrity watermark: Information allowing to verify the integrity of a data object are embedded in the watermark. We use the one place predicate integrity_watermark(w) to denote that w is an integrity watermark.

• Traceability watermark: Information allowing to prove the identity of the person or entity to whom a data object has been distributed are embedded in the watermark.

The one place predicate traceability_watermark(w) is used to specify that w is a traceability watermark. We use the previously defined predicate contain(w, id) to denote that the information contained in w are related to the identity id.

Fragmentation Based Security Mechanisms

In many data structures (e.g., relational database), associations between values of various data objects are most sensitive than the values themselves. The idea then is to use fragmentation to break the sensitive relationships between those values.

In our formal model, the conditions under which a fragmentation-based security mechanism can be used are specified using Formula 5.32.

f ragmentation_mechanism(m) ∧ is_applicable(m, o) → ∃o 1 , o 2 , o 3 : (o ∈{o 1 ,o 2 ,o 3 } subelement_of (o, o)) ∧ association(o 1 , o 2 , o 3) ∧ sensitive(o 3)
∧ data_structure(o, ds) (5.32) The predicate association(o 1 , o 2 , o 3) specifies that o 3 represents the association between o 1 and o 2 . Formally speaking, Formula 5.32 states that a fragmentation-based security mechanism is applicable over a data object o if (1) there exists three data objects sub-objects of o, where one of them represents a sensitive association between the two others, and (2) the information stored in o are structured as ds. For instance, for the fragmentation-based security mechanism presented in [Bkakria et al. 2013b], ds will be a multi-relational database, and o 1 , o 2 , and o 3 will be either relational tables or attributes.

The effects of the application of fragmentation-based security mechanisms are specified using the following formula:

∀m, o : f ragmentation_mechanism(m) ∧ apply(m, o) → ∀o 1 , o 2 , o 3 : (o ∈{o 1 ,o 2 ,o 3 } subelement_of (o, o)) ∧ association(o 1 , o 2 , o 3) ∧ sensitive(o 3) → ∃f 1 , f 2 : (f 1 = f 2) ∧ (o 1 ∈ f 1) ∧ (o 2 ∈ f 2) ∧ (o 3 ∈ f 1) ∧ (o 3 ∈ f 2) ∧ ∀o , ∃k : subelement_of (o, o) ∧ sensitive(o) → encrypted(o , k, o e) ∀o : subelement_of (o, o) ∧ ¬sensitive(o) → p∈Pm provides(p, o)
(5.33) Formula 5.33 formally states that if a fragmentation-based security mechanism m is applied over a data object o, then (1) each two sub-objects of o associated through a sensitive association will be stored in two different data fragments to break the sensitive association. (2) All sensitive sub-objects of o will be encrypted to allow only authorized entities (to whom the encryption key will distributed) to access them. (3) the utility properties provided by m are ensured only for all insensitive sub-objects of o since o's sensitive sub-objects will be encrypted.

Conclusion and Contributions

In this chapter, we define a formal model using a well-founded formal language based on liner temporal epistemic logic allowing us, in a first time, to formally specify the data structure storing the information to be outsourced relying on the use of a treebased modelization of data structures, as a second time, to specify as finely as possible the policy to be applied over the data to be outsourced, and in a third time, formally specify a set of candidate security mechanisms that can be used to enforce the specified policy, by formally describing for each security mechanism, the conditions under which they can be applied, the effects representing the system's changes due to the application of the mechanism, and the provided security and utility properties.

In the next chapter, we present a reasoning method for our formal model allowing to formally identify the relevant combination of mechanisms to efficiently enforce the defined security policy.

CHAPTER 6 Formal Reasoning

Method to enforce Security Policies over Outsourced Data

With outsourced data protection in mind, many security mechanisms that allow us to ensure particular security requirements (e.g., confidentiality, integrity, etc.) have been defined. In this context, several important questions need to be investigated: (1) how to choose the right security mechanisms that should be used to enforce security policies defined by the owners of the data to be outsourced, (2) over which parts of the outsourced data the chosen security mechanisms should be applied, and (3) how to verify then, whether or not, the chosen security mechanisms actually enforce the defined security policies.

In this chapter, we strive to design a reasoning method for our formal model presented in Chapter 5. That is, relying on the target system formalization (i.e., the data structure to be outsourced and the entities involved in the Cloud storage model), the security policy formalization, and the security mechanisms properties formalization, we strive to provide a reasoning method that formally identifies the relevant combination of mechanisms to efficiently enforce the defined security policy.

The reminder of this chapter is as follows. Section 6.1 discusses the related work. Section 6.2 defines a four steps reasoning method that permits to choose, from existing security mechanisms, the ones that can satisfy the policy defined over the target system. Section 6.3 describes a GraphPlan-based method that uses the set of security mechanisms given by our four steps reasoning method to produce a near-optimal security mechanisms execution plan that enforces the security and utility requirements while offering the best trade-off between security, utility and complexity. Section 6.4 reports the implementation and evaluation of our approach. Finally, Section 6.5 concludes this Chapter.

Related Work

Our reasoning method aims to find a combination of security mechanisms that enforces a set of security and utility constraints while reaching a chosen goal (i.e., data outsourcing or publishing).

Few research efforts have investigated how to combine security mechanisms to enforce security policies over outsourced data. One of the firsts attempt is proposed in [Ciriani et al. 2007], it consists of combining data fragmentation together with encryption to protect outsourced data confidentiality and can only be applied over one-relation databases 1 . In Chapter 3, we improved the approach presented in [Ciriani et al. 2007] in such a way that it can deal with multi-relation databases. We also proposed a secure and effective technique for querying data distributed in several service providers and improve the security of our querying technique in order to protect data confidentiality under a collaborative Cloud storage service providers model. Popa et al. in [Popa et al. 2011] and we in Chapter 4 have proposed approaches based on adjustable encryption. That is, different encryption schemes are combined to get the best tradeoff between data confidentiality and data utility for outsourced relational databases. Cancellaro et al [Cancellaro et al. 2011] and Boho et al. [Boho et al. 2013] have proposed interesting approaches combining watermarking and encryption to protect both the confidentiality and traceability of outsourced multimedia files. All previously cited approaches have three main limitations: First, they are defined in such a way that only two pre-selected security mechanisms can be combined together. Second, they cannot deal with all security properties that can be required by data owners as each approach can provide at most two security properties. Finally, they cannot deal with all data structures that can be used to store outsourced data.

To the best of our knowledge, a single formal model was proposed to combine security mechanisms to address how data is used after it is released. Pretschner et al. [START_REF] Pretschner | [END_REF]] present a formal model of usage control mechanisms combination that formalizes the access control problem domain at a realistic level of complexity.

In the proposed model, mechanisms are specified as trace transformers that map attempted events into actual usage controlled events. The model allows the specification of a wide range of usage control mechanisms.

The problem of security mechanisms planning to enforce security policies while attempting to satisfy a set of goals was not widely investigated. The first attempt was proposed by Irwin et al [Irwin et al. 2008]. They investigate how a planning system, that uses security policies to ensure that planned actions will be able to occur, could leak sensitive information. They formally define information leakage within the used context and present two planning techniques which can be used to mitigate or eliminate this information leakage and prove their security. Afterwards, Bartoletti et al. [Bartoletti et al. 2009] proposed a static approach to study the composition of services while respecting a given security requirements. To this end, they extend the λ-calculus [Rosser 1984] with primitives for selecting and invoking services that enforce the given security requirements.

Planning graph analysis idea has been used with security purpose in mind. Armando et al. [Armando and Compagna 2002] proposed a fully automatic model that translates security protocol specifications into propositional logic to permit to effectively find attacks to protocols. The proposed model is a combination of (1) a reduction of protocol insecurity problems to planning problems and (2) well-known SAT-reduction techniques which have been used for planning. Subsequently, in [Armando et al. 2003] authors improved the approach proposed in [Armando and Compagna 2002] by exploring the application of a sophisticated SAT-reduction technique, Graphplan-based encoding, which has been used with success in AI planning. Later on, Armando et al. [Armando et al. 2014] proposed a model checker based on SAT solver for securitycritical systems. The model checker relies on a successful combination of encoding techniques originally developed for planning with techniques developed for the analysis of reactive systems. The proposed approach can be applied in a variety of application domains (e.g., security protocols verification and security-sensitive business processes). Unfortunately, the previously mentioned approaches are developed to support the verification of security-critical systems and cannot be used to deal with the problem we aim to tackle in this chapter.

Choosing the Right Security Mechanisms

The right mechanism or combination of mechanisms is the one that fits in the best way the sets of security and utility constraints. As we have seen in the section 5.6, each security mechanism offers different level of protection and different kind of utility properties. The main challenge then is to choose the best mechanisms that satisfy chosen goals while enforcing defined security polices. Actually, in the general case of data outsourcing, security issues come when data is outsourced to an untrusted storage service provider. Before sending the data to a Cloud storage server, security constraints are normally satisfied, as we can consider that, since the data is not outsourced, there is no security issues to worry about. Based on this, we define several steps allowing to choose the combination mechanisms that can be used to enforce the requirements of outsourced data owners.

First Step: Satisfying the Chosen Goals

In this first step of our reasoning method, the purpose is to find the set of mechanisms that allow data owners to reach their goals.

Definition 23. (Goal Satisfier).

Given a set of formulas Σ G representing a goal G to achieve, a set of formulas Σ representing the specification of a target system S, and a mechanism m represented by (∆ m , Σ m). m satisfies G in S iff the following two conditions hold:

1. Σ |= ∆ m 2. Σ ∪ Σ m Σ G
Formally speaking, condition (1) ensures that Σ is a model of ∆ m (which represents the preconditions of m). That is, in the current state of the system S, the mechanism m is applicable. Condition (2) states that from the specification of the used system Σ and the set of formulas Σ m representing the effects of the mechanism m, we should be able to formally deduce the set of formulas Σ G representing the goal G.

Example 11. Consider a data owner o who wants to outsource an object ob to a cloud server storage s. Let us suppose that the mechanisms toolbox that can be used by the data owner contains the http_post mechanism which is represented by the following two formulas:

∆ http_post = ∃s : csp(s) ∧ connected(o, s, 80) ∧ stores(o, ob) (6.1)
Σ http_post = ∃s : csp(s) ∧ outsourced(ob, s) (6.2) Formula 6.1 specifies that the http_post mechanism is applicable over an object ob by the data owner o if it stores ob, and there exists a cloud storage server (csp) s with which the data owner is connected. Formula 6.2 states that if the http_post mechanism is applied over an object ob, then ob will be outsourced to a server s. In fact, since o is the data owner of ob, we can say that o stores ob. Then, if we suppose that o is 6.2. CHOOSING THE RIGHT SECURITY MECHANISMS 109 already connected through the HTTP protocol with a cloud server s, we can deduce the following:

Σ |= ∃s : csp(s) ∧ connected(o, s, 80) ∧ stores(o, ob) (6.3)
Then, based on formulas 6.1 and 6.3 we deduce that:

Σ |= ∆ http_post (6.4)
The goal G of the data owner consists in outsourcing the object ob to a csp. This goal is specified in our model using the formula 5.2. Then, based on formulas 5.2 and 6.2 we deduce that:

Σ ∪ Σ http_post Σ G (6.5)
Finally, relying on formulas 6.4 and 6.5 as well as Definition 23 we deduce that the mechanism http_post can satisfy the desired goal G of the data owner.

Second Step: Violated Security Constraints

After getting the set of mechanisms M that can be applied to satisfy the chosen goal, we start looking for each mechanism m ∈ M the set of violated security and utility constraints.

Definition 24. Given a set of formulas Σ representing the specification of a target system S, a mechanism m ∈ M represented by (∆ m , Σ m), and a security constraint C formalized using the set of formulas Σ C . The constraint C is violated while the chosen goal G is satisfied iff the following condition holds:

Σ ∪ Σ m ∪ Σ C ⊥ (6.6)
Example 12. Consider that we have the same scenario proposed in Example 11,except in this example, the data owner considers that: (1) the object ob to be outsourced consists of sensitive information, and (2) all csps are untrusted entities. As a consequence, no matter which csp will be used to outsource ob, it should not know any information about ob. The previous security requirement is in fact an instance of a confidentiality constraint C which can be specified, according to Formula 5.7, using Σ 1 C as following:

Σ 1 C = { [∀s : sensitive(ob) ∧ untrusted(s) → ¬knows(s, ob)]}. (6.7)
Based on (1) and (2) we deduce that:

Σ |= ∀s : csp(s) ∧ untrusted(s) ∧ sensitive(ob) (6.8) CHAPTER 6. A REASONING METHOD FOR OUR FORMAL MODEL
We have seen in Example 11 that the http_post mechanism can be used to satisfy the desired goal G of the data owner. Then, relying on Formulas 5.2 and 5.4, we can deduce the following:

♦ ∃s : csp(s) ∧ knows(s, ob) (6.9)

Finally, based on Formulas 6.7,6.8,and 6.9, we deduce that:

Σ ∪ Σ http_post ∪ Σ 1 C ⊥ (6.10)
Obviously, the toolbox to be used may contain several mechanisms that can satisfy the chosen goal of the data owner. In that case, our reasoning method should be able to choose the best one.

Definition 25. (Best Goal Satisfier). Given the set of mechanisms

M = {m 1 , • • • , m n }
that can be used to satisfy the defined goal G. Let C i be the set of violated constraints while applying the mechanism m i and Ins i be the set of violated instances of the constraints C i (1 ≤ i ≤ n). The best goal satisfier m bgs is defined as following:

m bgs =        m j if ∀i ∈ {1, • • • , n} : |C j | < |C i | m j if ∃p 1 , • • • , p k ∈ {1, • • • , n} : |C p 1 | = |C p 2 | = • • • = |C p k | and ∀i ∈ {p 1 , • • • , p k } : |Ins j | ≤ |Ins i |       
where |C| is used to denote the cardinality of C.

Example 13. Consider that we have the same scenario proposed in Example 12,except in this example, we consider that the mechanisms toolbox that can be used by the data owner contains both http_post and https_post mechanisms. The http_post mechanism is specified using the two formulas 6.1 and 6.2. The https_post mechanims is specified using the following two groups of formulas:

∆ https_post = ∃s : csp(s) ∧ connected(o, s, 443) ∧ stores(o, ob) (6.11) Σ https_post = ∃s, k : csp(s) ∧ enc_key(k) ∧ encrypted(ob, k, ob e) ∧ knows(s, k) ∧ knows(o, k) ∧ outsourced(ob e , s) (6.12)
We consider also that there is an untrusted adversary "adv" how is able to intercept the communication exchanged between the data owner and a csp. As a consequence, the data owner wants to prevent "adv" from getting the information stored in the object ob. The security requirements of the data owner can be specified as a confidentiality constraint (Formula 5.7) which will be denoted in this example by C. Actually, we formally proved in Example 11 that the http_post allows to reach the desired goal of the data owner. The same approach can be used to formally prove that the https_post also allows to reach the same goal. In a first hand, in Example 12 we formally proved that, when the http_post is used to send the object ob to a csp, an instance (Formula 6.7) of the constraint C will be violated. In fact as we have supposed that 'adv' is able to intercept the communication exchanged between the data owner and a csp, we deduce the following:

♦ knows(adv, ob) (6.13)

Then relying on Formula 6.13 and using the same approach as in Example 12, we deduce that a second instance (Formula 6.14) of C will be also violated when using the http_post mechanism.

Σ 2 C = { [sensitive(ob) ∧ untrusted(adv) → ¬knows(adv, ob)]}. (6.14)
In the other hand, when we consider that the https_post mechanism is to be used to outsource ob, we can rely on Formulas 5.2,5.4,6.12, and Hypothesis 1 to deduce 6.9. Then based on Formulas 6.7,6.8,and 6.9, we deduce that the instance of C represented using Σ 1 C is violated when using the https_post mechanism:

Σ ∪ Σ https_post ∪ Σ 1 C ⊥ (6.15)
Since its considered that an external adversary cannot know the key used in an https communication. Then, it cannot know any information about ob just by intercepting the communication exchanged between the data owner and a csp.

As a conclusion, we deduce that, either using http_post or https_post mechanisms, the confidentiality constraint C will be violated. However we have seen also that the use of the http_post mechanism will violate two instances of C (both csp and adv will know the sensitive information stored in ob) whereas the use of the https_post mechanism will violate a single instance of C (only the csp will know the sensitive information stored in ob). Then according to Definition 25, the https_post mechanism is best goal satisfier in the used scenario.

Third

Step: Satisfying the Violated Constraints.

Once we get the best goal satisfier m bgs for a defined goal G and the corresponding set of violated security and utility constraints C, the challenge then is to, for each violated security constraint, looking for the properties (e.g., encryption, anonymization, watermarking, computation, etc) that can satisfy that constraint.

Definition 26. Given a set of properties P = {P 1 , • • • , P l } specified respectively in our formal model using the sets of formulas Σ P 1 , • • • , Σ P l , a set of formulas Σ representing the specification of the target system, a set of formulas Σ m bgs representing the effects of m bgs , and a violated constraint C represented in our model using the set of formula Σ C . The set of properties P satisfies C iff the following condition holds:

P ∈P Σ P ∪ Σ ∪ Σ m bgs Σ C (6.16)
Informally speaking, Formula 6.16 means that if the set of properties P is already provided, the application of the m bgs will not lead to the violation of the security constraint C.

Example 14. We consider that we will use the same scenario as in Example 13 in which we formally proved that the https_post mechanism is the best goal satisfier, despite the fact that it violates the instance Σ 1 C (Formula 6.15) of the confidentiality constraint C. Let us suppose that the property encrypted (represented using Σ enc) is provided over the object ob which allows us to deduce that:

Σ ∪ Σ enc |= ∃k , ob e : enc_key(k) ∧ encrypted(ob, k , ob e) (6.17)
Then, using the https_post mechanism, the data owner will outsource ob e to the csp. In fact, regarding that the encryption key k is kept secret by the data owner, then the csp will not know any information about the key k . This fact can be specified as follows:

(¬knows(s, k)) (6.18)
Then, from Formula 6.18 and Hypothesis 1 (Section 5.6.1), we deduce the following:

(¬knows(s, ob)) (6.19)
Finally, based on Formulas 6.8,6.17,and 6.19 we deduce that:

Σ enc ∪ Σ ∪ Σ m bgs Σ 1 C (6.20)

Fourth step: Choosing the Right Security Mechanisms.

The previous steps permit to select the best goal satisfier m bgs that can satisfy the goal G, the corresponding set of violated constraints C, and for each constraint C i ∈ C, the set of properties P i that can satisfy C i when applying m bgs . At this level, based on those properties, the main goal is to select from the security mechanisms toolbox, the combinations that can usefully satisfy each violated constraint in C.

Definition 27. (Useful satisfaction).

Given a violated security constraint C defined over an object ob, a set of security properties P that satisfy C, a set of utility constraint U Ob defined over the object ob, and a set of formulas Σ representing the specification of a target system. A combination of mechanisms M C usefully satisfies the constraint C if the following condition holds:

Σ ∪ m∈M C
apply(m, ob) |=

P ∈P P u∈U ob provides(u, ob) (6.21)
Example 15. We consider that we will use the same scenario as in Example 14, except in this example we consider that the data owner requires to be able to perform computation (CP) and order search (OS) over the information stored in the object to be outsourced ob, and (2) the mechanisms toolbox that can be used contains the security mechanisms described in Table 5.3. We have seen in Example 14 that the encryption property allows to enforce the confidentiality constraint C while the m bgs (https_post) is applied. According to Formula 5.20, the encryption property can be provided by all encryption-based security mechanisms. However, not all of them can provide the required utility requirements (CP and OS). According to Table 5. 3 Boldyreva [Boldyreva et al. 2009] security mechanism can provide the utility requirement OS, and Paillier [Paillier 1999] mechanism can provide the utility requirement CP . This can be formalized as follows:

apply (Boldyreva, ob) ∧ apply(P aillier, ob) → ∃k, ob e : enc_key(k) ∧ encrypted(ob, k, ob e) ∧ provides(CP, ob) ∧ provides(OS, ob)

(6.22)
Then, by considering that M C = {P aillier, Boldyreva}, P = encrypted, and U ob = {CP, OS}, we can formally deduce Formula 6.21 from Formula 6.22. Therefore, According to Definition 27, a combination of Boldyreva and Paillier encryption based mechanisms is a useful satisfier of the constraint C.

In this section, we have defined a four steps reasoning method for our formal model yield to pick up the set of security mechanisms that can enforce each security property required by the data owner. However, the reasoning method we proposed does not take into consideration conflicts that may occur between security mechanisms which makes enforcing a combination of security mechanisms that satisfies many security requirements hard to fulfill. We strive to overcome this limitation in the next section by extending and using a Graphplan-based approach to build a planning graph representing all possible transformations of the target system resulting from the application of the set of security mechanisms we got previously using our four steps reasoning method. Finally, we define a method to search the best security mechanisms execution plan to transform the used system from its initial state to a state in which the security requirements are enforced.

Security Mechanisms Planning to Enforce Security Policies

We strive to plan a sequence of mechanisms allowing to transform the system from its initial state to a state in which the goals are reached while respecting a set of defined constraints. Planning efficiency can be improved by allowing parallel application of mechanisms, which leads to minimize the number of parallel plan steps. In order to be able to apply mechanisms parallelly, we should figure out which mechanisms are compatible by finding different kind of conflicts between them.

Definition 28. Conflicting mechanisms. Two mechanisms m 1 and m 2 represented respectively by (∆ m 1 , Σ m 1) and (∆ m 2 , Σ m 2), where ∆ m i and Σ m i represent respectively the specifications of preconditions and the effects of m i , are effectively incompatible if and only if one of the following deductions hold:

1. Σ m 1 ∪ Σ m 2 ⊥ . 2. Σ m i ∪ ∆ m j ⊥ with 1 ≤ i, j ≤ 2 and i = j. 3. ∆ m 1 ∪ ∆ m 2 ⊥.
Item 1 means that the effects of m 1 and m 2 are inconsistent. Figure 6.1 illustrates this case by showing that in the case of k -anonymity and aes -cbc, if an object ob is k -anonymized, we will lose the precision of the information stored in ob, as those information will be generalized, which is not the case when the aes -cbc encryption mechanism is used. Obviously, we can see that we have a logical contradiction between the two mechanisms effects. Item 2 of Definition 28 means that the effects of the application of m i dissatisfy the preconditions of m j . Figure 6.2 illustrates this case by taking the same mechanisms as 6.3. SECURITY MECHANISMS PLANNING TO ENFORCE SECURITY POLICIES 115 in Figure 6.1, except that we consider that an object can be k -anonymized only if it is not encrypted (according to Formula 5.22). We can easily figure out the logical contradiction between the preconditions of k -anonymity and the effects of aes -cbc. Item 3 of Definition 28 states that m 1 and m 2 have a competing preconditions such that they cannot be true in the same state of the target system.

∆ k-anonymity k -anonymity(ob) ∆ aes-cbc aes -cbc(ob, k) • • • loss_precesion(ob) • • • ¬loss_precesion(ob) ⊥
∆ k-anonymity |= (k, ob : encrypted(ob , k, ob)) k -anonymity(ob) ∆ aes-cbc aes -cbc(ob , k) • • • loss_precesion(ob) • • • encrypted(ob , k, ob) ⊥

Definition 29. (Parallel plan). Consider a set of available mechanisms M. A parallel plan is a finite sequence of sets of mechanisms

P = {p 1 , • • • , p n } such that: ∀p i ∈ P : p i ⊆ M.
Definition 30. (Correctness). Given a system S, its current state w 1 , a finite set of mechanisms M. A parallel plan P = {p 1 , • • • , p n } is correct regarding S and w 1 if and only if the following conditions hold:

1. ∃w 2 , • • • , w n such that : ∀m ∈ p i , w i |= ∆ m , 1 ≤ i ≤ n.
2. ∀p i ∈ P, ∀m 1 , m 2 ∈ p i : m 1 and m 2 are not conflicting (Definition 28).

Problem 2. (Parallel Planning Problem

). Consider a system S, its current state w 1 , a set of mechanisms M that can be applied over S, a set of goals G that should be achieved, and a set of constraints C that should be respected. The Parallel Planning Problem consists on finding a sequence of sets of mechanisms P = {p 1 , • • • , p n } such that the following conditions holds:

1. P is correct regarding S and w 1 .

∀w

i = Φ(w i-1 , p i-1), ∀c ∈ C : w i |= c, 2 ≤ i ≤ n. 3. ∀G ∈ G : w n+1 |= G.
Informally speaking, item 2 in the previous problem states that, in any state w i of S obtained by the application of the sets of mechanisms p 1 , • • • , p i (2 ≤ i ≤ n), the set of security constraints C is satisfied. Item 3 ensures that the set of goals G is satisfied in the last state of S obtained by the application of P.

In next part, we briefly introduce the Graphplan's basic operations as defined in [Blum andFurst 1995, Blum and[START_REF] Blum | [END_REF]. Graphplan uses action schemata in the STRIPS format in witch each action is represented as preconditions and effects. This representation of action as preconditions and effects is suitable with the representation of our mechanisms parallel planning problem.

Graphplan Description

Graphplan is a directed, leveled graph composed of two kinds of nodes and tree kinds of edges. Graphplan levels alternate between fact levels containing fact nodes (each node is labeled with an instance of a predicate belonging to our formal language), and action levels composed of action nodes (each labeled with an instance of a security mechanism belonging to the mechanisms toolbox used in our model). Relations between actions and predicates in a Graphplan are explicitly represented through edges. Preconditionsedges are used to connect action nodes of an action level i to their preconditions in the fact level i. Effects-edges connect action nodes belonging to the action level i to their effects in the fact level i + 1. Mutual-exclusion edges are relations connecting action nodes belonging to the same Graphplan level. They represent conflicts between action nodes that can be identified according to Definition 28. Two action nodes belonging to the same action level and representing two instances of security mechanisms are in conflict according to Definition 28 means that no correct plan (Definition 30) could possibly contain both. Therefore, the use of mutual-exclusion edges is very useful to reduce the search space for a sub-graph of a Graphplan that might correspond to a correct plan.

Graphplan is based on two main phases: The first is called Graphplan construction phase consisting of growing a planning graph. The second phase allows to extract possible solutions (plans) from the planning graph by performing a backward searching phase starting with the goals. In the graph construction phase, we start with a planning graph having only a single fact level which contains the initial specification of the target system. GraphPlan construction method runs in stages, in each stage i, it extends the planning graph resulting from the stage i -1 by adding one time step which contains the next action level and the following fact level. After each stage, Graphplan check if all predicates representing the goals are presented in the last fact level in the planning 6.3. SECURITY MECHANISMS PLANNING TO ENFORCE SECURITY POLICIES 117 graph, if it is the case, search a valid plan that transforms the system from its initial state to a state in which all the goals are achieved.

Graphplan Modelling of the Planning Problem

The STRIPS system [START_REF] Fikes | [END_REF] used by Graphplan is represented by four lists, a finite set C s of ground atomic formulas called conditions, a finite set of operators O s where each operator is composed of two formulas (satisfiable conjunction of conditions) representing its preconditions and effects, a finite set of instances of predicates I s that denotes the initial state, and a finite set of instances of predicates G s that denotes goal state. As we have seen in the previous section, our planning problem is composed of a system S, a set of security mechanisms M, a set of constraints C, and a set of goals G. Obviously, S, M, and G can be easily modeled as a STRIPS planning problem by expressing S as C s and I s , M as O s , and G as G s . According to the security policy specification in section 5.5, C will be composed of security and utility constraints. Utility constraints specify the functionalities that should be provided for S (e.g. the ability to compare the equality of objects). A plan P satisfies a set of utility constraints C u if at its end none of the utility constraints in C u is violated. In other words, if one of the utility constraints is violated at some state of the plan, it must become true again by its end. Consequently, utility constraints will be expressed as goals in the STRIPS planning problem.

Security constraints specify the requirements that should be respected during the transformation of S, they can be considered as safety constraint meaning that those requirements are to be satisfied in all states of S. However, the STRIPS language as it is defined in [START_REF] Fikes | [END_REF] cannot express this kind of constraints. To overcome this limitation, we extend the STRIPS system language by adding the operator Constraint allowing to express the set of security constraints. For instance, a confidentiality constraint (rule 5.7) is to be expressed as follows:

Constraint (confidentiality_constraint 1 (ob, e) :
Formula: sensitive(ob) ∧ untrusted(e) ∧ knows(e, ob))

In the previous expression, confidentiality_constraint 1 (o,e) is used to denote the name of the constraint and the variables (bounded variables of the rule 5.7) to be instantiated. The Formula field represents the conjunction of predicates indicating the condition under which the constraint is violated (the negation of CNF representation of the constraint). For instance, according to the previous expression, confidentiality_constraint 1 (ob, e) is violated if there exists a sensitive object ob that is known by an untrusted entity e.

Extending Planning Graph: Planning Under Security Constraints Graph Construction Phase Extension

We extend Graphplan's construction method of the planning graph in two ways. The first extension allows to build a planning graph of a planning problem which contains Domain Axioms (axioms that formally specify relations between different objects of the system). Second, we improve the Graphplan's construction method of the planning graph to avoid the violation of security constraints while building the planning graph.

The need of axioms. In Graphplan approach, the lack of axioms disrupts the ability to represent real-word domains, which contains normally quite complex conditions and rules. Without the use of axioms, mechanisms preconditions and effects can become quickly too complex and unreadable. In our approach, we believe that the use of axiom will provide a natural way of deriving supervenient properties, which represents logical consequences of the effects of applied mechanisms.

Example 16. Suppose that we have two mechanisms in the mechanism toolbox to be used: aes -cbc and http_post. The effects of http_post are represented by Formula 6.2 (Example 11) and the effects of aes -cbc are described as following:

Σ aes-cbc = {∃k, ob e : enc_key(k) ∧ encrypted(ob, k, ob e)} (6.23)

Let us suppose that the parallel plan P = {aes -cbc(obj, k), {http_post(obj e , u), http_post(k, u)}} is performed over S and transforms it to the state w such that: w |= encrypted(obj, k, obj e) ∧ knows(u, obj e) ∧ knows (u, k). According to Hypothesis 1 (Section 5.6.1), we know that if an entity e knows obj e and the used encryption key k, then it can know obj. Unfortunately, Hypothesis 1 is difficult to be expressed using only the two mechanisms encrypt and send. This lack of expressiveness can be overcame by using Hypothesis 1 as an axiom in the target system.

It is clear that the use of axioms can add an important expressive power to the planning problem specification. However, the Graphplan construction method should be improved to be able to use axioms to infer new facts about the target system.

Updating Knowledge Using an Inference Graph

In this part, we present how we define axioms in our approach and the way they will be used in the planning process. Axioms have been defined by [Ghallab et al.] as "log-6.3. SECURITY MECHANISMS PLANNING TO ENFORCE SECURITY POLICIES 119 ical formulas that assert relationships among propositions that hold within situation".

According to this definition, we define an axiom as an expression in the following form:

n i=1 p i → m j=1
q j (6.24)

Where p i and q j are instances of some predicates of our defined language.

According to a state w of the target system, we want to be able to infer all possible new facts based on a set of axioms that represents relationships between different predicates in our language. To meet this goal, we utilize the same construction method used in Graphplan in order to build an inference graph. In this construction method, we consider each axiom in our system as an action, then the left part of the representation of the axiom (6.24) will be considered as the preconditions of the action and the right part is its effects. The idea consists on applying in each layer of the inference graph the set of applicable actions (axioms) until we infer all possible new facts (we find the same set of facts in the last two Graphplan's fact-layers). Algorithm 7 describes how the inference graph is constructed.

Once the inference graph is built, it allows to extract the set of facts that are derived using the set of defined axioms. In fact, the set of inferred facts is IG l \IG 0 were IG 0 and IG l represent respectively the set of predicate-nodes in the first fact level and the set of predicate-nodes in the last fact level of the inference graph. Theorem 6. Given the set of formulas Σ w representing the system S in the state w, and a set of n consistent axioms A = {ax 1 , • • • , ax n }, the height of the graph representing the inference graph of S using A will be at most n.

Proof. Since axioms are used to deduce new relations between objects and cannot create new objects in S, and that S is composed of a finite set of objects, we can deduce that the inference graph will be built in finite time. Furthermore, as we will use Graphplan construction method to build the inference graph, we will be able to parallelly use axioms to infer new facts and then to reduce the height of the inference graph. The worst case will be when all axioms cannot be applied on the system parallelly (the applicability of ax i depends on the facts derived by ax i-1), which clearly requires an n-level inference graph to deduce all new facts from A.

Theorem 7. Consider a system S composed of n objects and represented by p predicates in a state w i , and m axioms each having a constant number of bounded variables. Let q be the largest number of predicates in the right-side of each axiom (formula 6.24) and v be the largest number of bounded variables in any axiom. Then, the size complexity of a k-level inference graph created using Graphplan construction method and the time complexity of building the graph, are polynomial n, m, q, p and k. Proof. Since axioms cannot create new objects, the maximum number of predicates that may be created during the instantiation of an axiom is qn v . Therefore, in any fact level of the inference graph, the maximum number of nodes is p + mqn v . The maximum number of nodes in any axiom-level (action level) of the inference graph is mn v since any axiom can be instantiated in at most n v distinct ways in worst case. Therefore, the size complexity of a k-level inference graph created using Graphplan 6.3. SECURITY MECHANISMS PLANNING TO ENFORCE SECURITY POLICIES 121 construction method is O(k(p + mqn v + mn v)). As a result, for a fixed v (in our formal model v = 6), the size complexity of a k-level inference graph is polynomial n, m, q, p and k. In the other side, the complexity time of creating new inference graph level (axiom level and fact level) is O(mn v). Therefore, the complexity time of creating a k-level inference graph is O(kmn v). As a result, for a fixed v, the time complexity of creating a k-level inference graph is polynomial n, m, and k.

Building Planning Graph Under Security Constraints

The specification of security constraints requires that some properties should be respected during all the states of the target system. Since each fact level of the planning graph is built using the construction method of Graphplan, it can be considered as a possible state of the system, our idea consists of verifying the satisfiability of security constraints on each new created fact level of the planning graph during its construction. Graphplan uses directed edges to connect each action instance node belonging to the ith action level of the graph to the set of fact nodes belonging to the ith fact level representing its preconditions, and to the set of fact nodes belonging to the (i + 1)th fact level representing its effects. Thanks to this property, we are able to find the combinations of actions belonging to the ith action level of the graph and leading to security constraints violation in the (i + 1)th fact level.

Algorithm 8 describes the used method to get the combinations of actions leading to violate a security constraint. The correctness and the complexity of the Algorithm 8 are proved by the following theorems. 1. Algorithm 8 contains the recursive procedure "all combination" having the termination case in which the set of fact nodes nodes is empty (line 7). Since the number of fact nodes that cause the violation of C is supposed to be finite (the cardinality of cause_nodes is finite), the set of actions that provides each fact node in cause_nodes is finite, and that the recursive procedure removes an ele- Proof. Since, each call of the procedure "all combination" will select a fact node n i ∈ CN and will create l i recursive calls, the total number of recursive calls will be n i=1 l i . Therefore, the complexity of the algorithm 8 is O(n i=1 l i) in time.

Once we know the combination of actions C c that leads to the violation of the security constraint C. The trivial way to solve this violation problem would be to remove C c and its corresponding effects from the planning graph. Unfortunately, this solution can be useless in many cases as it can prevent some actions in C c (a subset of C c) that do not violate C to be used.

Avoiding security constraints violation. In Graphplan, mutual exclusions are basically used to specify that no valid plan could possibly contain conflictual actions in the same plan step. Since, a security constraint C is violated if all actions in a combination C c that violates C are applied in the same action level of the planning graph, our solution to prevent this violation is to use mutual exclusion relations as following: Example 17. Consider a system S composed of three entities, a data owner, a user u and a server s. The data owner wants to outsource a sensitive object o to a server s in order to share its content with the user u. The data owner considers that s cannot be fully trusted, therefore the confidentiality of o must be protected. The specification of the system S is as follows:

1. If |C c | ≥ 2: ∀ node a ∈ C c ,
• Goal: outsource(o, s).

• Constraint: ¬knows(s, o)

• Axioms:

-Ax 1 : Formula 5.21 (Section 5.

Searching the Best Security Mechanisms Plan

Given a planning graph G constructed using our previously explained extension of GraphPlan, our goal is to find the best mechanisms execution plan (parallel plan) that enforces the chosen security and utility requirements. For this end, and to be able to compare different mechanisms execution plans, as a first step, we assign a weight for each action-node in G representing a security mechanism using the metric described in Definition 32. As a second step, we define a second metric to measure a score for each mechanisms execution plan that can satisfy the defined policy as described in Definition 33. The intuitions behind the use of the robustness level τ (1), the satisfiability level ν (2), the deployment efficiency level ε (3), and the security, utility and deployment efficiency factors (4) to measure the weight of an action-node is that:

1. Some security mechanisms are not as robust as they should be to fully ensure their provided security properties under well known attacks. For example, encryptionbased mechanisms are supposed to ensure the confidentiality of the objects over which they are applied. However an Order-preserving encryption based mechanisms such as Boldyreva [Boldyreva et al. 2009] preserves the order of the plaintexts, which may enable many attacks. It was concluded that order-preserving encryption leaks at least half of the plaintexts bits [Xiao and Yen 2012]. Hence, the confidentiality robustness level τ conf identiality will be less than 0.5 for Boldyreva.

2. Some security mechanisms cannot fully provide some utility requirements. In these cases, the satisfiability level factor ν is used to specify the level of providability of an utility requirement. For illustrative purpose, let us take the example of homomorphic-based encryption mechanisms which are supposed to provide computation (addition + multiplication) over encrypted objects. However, Paillier cryptosystem [Paillier 1999] is an homomorphic-based encryption mechanism allowing to perform only addition over encrypted data. Therefore, satisfiability level factor of computation for Paillier cryptosystem will be ν computation = 0.5.

3. Some security mechanisms are expensive in terms of deployment time compared to other security mechanisms, we take this fact into consideration by using the deployment efficiency level ε m , as much as the mechanism m can be efficiently deployed, ε m will be closer to 1.

4. The weight of an m representing the application of m over ob should also take into account the security, utility and deployment efficiency factors represented

∀i ∈ 1 • • • n, Sc ≥ Sc i
Obliviously, finding the best parallel plan in a planning graph G that enforces a security policy SP requires finding all parallel plans in G that satisfy SP. Unfortunately, the computation of all parallel plans in G that satisfy SP is NP-hard, as we will prove in the following.

Theorem 10. Computing all parallel plans in a planning graph that enforce a security policy SP is NP-hard.

Proof. We prove the previous result by showing that finding all constrained paths that connect two nodes in a graph is NP-hard. If it is not, one could determine whether a graph has a Hamilton path or not by checking whether a path exists with length k -1 (k is the number of nodes in the graph). This problem, however, is known to be NP-complete [Bertossi 1981]. Therefore, computing all parallel plans in a planning graph that enforce a security policy is NP-hard.

Since the problem of computing all parallel plans in a planning graph that enforce a security policy is NP-hard, we cannot expect to be able to resolve an arbitrary size instance of the problem of finding the best parallel plan that enforce a policy to optimality. Thus, heuristic resolution strategies are widely exploited to solve such a problem with a reasonable computational effort.

Heuristic search based planning

Our goal is to find the parallel plan having both the maximum score regarding our metric (defined in Definition 32, 33, and 34), and the minimum number of steps. To this end, we use the cost-optimal planner CO-PLAN [START_REF][END_REF]] which proceeds in four stages:

• Planning graph conversion to CNF wff:

Convert the planning graph into a CNF notation by constructing proposition formula as described in [START_REF] Kautz | [END_REF].

• Wff solving:

CO-PLAN uses a modified version of RSAT [START_REF] Pipatsrisawat | Rsat 2.0: Sat solver description[END_REF] called CORSAT to process the CNF formulae which allows to figure out: (1) If a solution exists for the given decision problem, and (2) if a solution exists, it is identified with minimal plan costs.

• Bounded forward-search: CO-PLAN uses the speed and efficiency of SAT-based planners allowing to obtain a good admissible initial bound on the cost of an optimal plan. In the second phase, CO-PLAN performs then a bounded forwardsearch in the problem state space.

• Plan extraction: If a model of the wff is found, then the model is converted to the corresponding plan; otherwise, the length of planing graph is incremented and the process repeats.

In fact, CO-PLAN identify the solution having the minimal parallel plan costs. To be able to use it, we transform our parallel plan score maximization problem to a minimization plan cost problem by considering that Cost P = -Sc P , where Cost P and Sc P represent respectively the cost of the parallel plan P and the score of P measured according to Definition 33.

6.4. IMPLEMENTATION AND EVALUATIONS 129

Implementation and Evaluations

In the experimental part of this work, we measure the computational performance of our approach.

Implementation

We develop a prototype implementing our approach to find a near-optimal security mechanisms plan allowing to enforce security policies for outsourced data using available open source C++ libraries. For GraphPlan construction, we used the SAT-PLAN'06 library [START_REF] Kautz | [END_REF]] allowing to create a planning graph up to some length k. We extend SATPLAN'06 library (as described in section 6.3.3) to support:

(1) the use of domain axioms allowing to deduce new facts about objects of the system to be used, and (2) we improve the Graphplan's construction method of the planning graph to avoid the violation of security constraints while building the planning graph. For analyzing the planning graph and searching the best mechanisms plan, we used CO-PLAN library [START_REF][END_REF]].

Experimental Setup

As we are interested on planning security mechanisms to protect outsourced data, the domain that we have used in evaluating our prototype is composed of:

• A data owner;

• A finite set of users:

-Trusted users: which can access and use the outsourced data -Untrusted users: which are not supposed to be able to violate the policy. In all experiments, we suppose that we have two untrusted users, a cloud storage server and an external adversary.

• A finite set of objects that represents the data to be outsourced, we consider that the data owner wants to outsource a file system. So the objects are the set of files and directories in the file system to be outsourced.

• A finite set of security and utility requirements representing the policy to be enforced. We suppose that the data owner will specify some security constraints and utility goals over some objects belonging to the file system to be outsourced. Only the objects over which the data owner has specified the policy will be considered in the planning problem.

• A finite set of security mechanisms that can be used to enforce the security policy.

In our prototype, we specified 20 security mechanisms, including 8 encryptionbased mechanisms, 4 anonymization-based mechanisms, 6 watermarking-based mechanisms, and 2 information transfer protocols HTTPS and SSH that can be used to send the objects to be outsourced to the cloud server.

Appendix B describe the STRIPS specification of the target system we have used to evaluate our prototype. We ran the all experiments on a server with Intel core i7 2.50 GHz, 16 GB of RAM, and running Debian 7.

Experimental Results

We conducted a set of experiments to evaluate the performance of our prototype. Table 6.1 shows the parameters used in each experiment, the number of nodes in the planning graph built to resolve the problem, and the time needed to find a near-optimal solution using the method we presented in Section 6.3.4. Table 6.1 -Our prototype performance with respect to: the number of objects that will be outsourced (objects), the number of constraints defined over the object to be outsourced (constraints), the number of users involved in the used system (users), the number of security mechanisms that can be used to enforce the policy (mechanisms).

Parameters

Column "number of nodes" indicates the number of nodes in the created planning graph.

Conclusion and Contribution

One of the greatest challenge in this thesis was to define an efficient formal reasoning method allowing to use the formal model presented in Chapter 5 (i.e., the specification 6.5. CONCLUSION AND CONTRIBUTION 131 of the target system, the policy to be applied over it, and existing security mechanisms) to figure out the combination of security mechanisms that can enforce the chosen policy over the target system. To meet this goal, as a first time, we have defined a four steps reasoning method for our formal model to pick up the set of security mechanisms that can enforce each security property required by the data owner. Then, as a second step, we extend and use a Graphplan-based approach to build a planning graph representing all possible transformations of the system resulting from the application of the set of security mechanisms we got previously using our four steps reasoning method. Finally, we define a method to search the near-optimal security mechanisms execution plan to transform the target system from its initial state to a state in which the security and utility requirements are enforced while offering the best trade-off between security, utility and complexity.

In our formal model, policies to be applied over the data to be outsourced are composed of a set of imperative goals (i.e., goals and utility requirements) and planning constraints (i.e., security constraints). Unfortunately, those policies are either wholly satisfied or violated, which allows our reasoning method only to be efficient when dealing with limited-scale policy enforcement over outsourced data problems. In the next chapter, we strive to overcome this limitation by designing a method allowing, in the case in which no mechanisms execution plan could fully satisfy the chosen policy, to choose the best compromise between the defined security constraints and the set of goals that should be satisfied.

Approach for Security Mechanisms Planning to Enforce Security Policies Over Outsourced Data

Humans make mistakes. When dynamic systems are controlled and managed by humans, the rate and consequences of those mistakes increase. Whether it occurs while controlling industrial machinery, managing sensitive data, or deploying security policies, human mistakes can lead to costly consequences. Automatic policy satisfaction and deployment need often to plan complex set of mechanisms to reach a set of fixed goals while ensuring a set of security constraints.

Actually, we have seen that in many real word planning scenarios (e.g., automatic security policy deployment), no mechanisms execution plan could satisfy the defined goals without violating some specified security constraints. In this chapter, we strive to design an approach allowing outsourced data owner to choose the best compromise between security constraints to be enforced and the set of goals to satisfy over the outsourced data. To this end, we extend the planning graph based approach presented in [START_REF] Kautz | [END_REF] by using a data tainting based method allowing to (1) mark the set of fact nodes that violate security constraints and (2) effectively propagate those taints to the fact nodes representing the goals that need to be satisfied. Later on, based on the propagated taints, we define a reasoning method allowing to get the near optimal compromise between the goals to satisfy and the security constraints to ensure.

The reminder of this chapter is organized as following. Section 7.1 discusses related work. Section 7.2 introduces preliminary concepts of the parallel planning under security constraints problem. Section 7.3 depicts our planning graph tainting approach as well as its efficient taint propagation methods. Section 7.4 presents our solution to find the security mechanisms execution plan that provides the best compromise between satisfying specified goals and ensuring security requirements. Section 7.5 reports the conclusion of this chapter. Finally, please refer to Appendix C for detailed proofs of the lemmas and theorems used in this chapter.

Related Work

The problem of security mechanisms planning to enforce security policies while attempting to satisfy a set of goals can be seen as the problem of actions planning to satisfy a set of goals while ensuring a set of safety constraints. This last problem have been investigated by the AI community. Frazzoli et al. [Frazzoli et al. 2000] proposed an algorithm that enables a system (i.e., a robot) to move from its original state to a new state (e.g., to accomplish an assigned task such as performing an observation or delivering a payload), while avoiding to violate a set of constraints (e.g., collisions with fixed or moving obstacles). They introduced the notion of τ -safety which indicates that a plan is safe (does not violate any safety constraint) for at least τ plan steps. Kindel et al. [Kindel et al. 2000] proposed a randomized motion planner for kinodynamic asteroid avoidance problem. In this problem a robot should avoid to collude with moving obstacles under kinematic, dynamic constraints while attempting to reach a specified goal state. The authors introduced the notion of an "escape trajectory" as a contingency plan which is to be taken in case the planner fails to find a path that satisfy the intended goals. Yoo et al. [START_REF] Yoo | [END_REF] propose algorithms for model checking and policy synthesis that provide, for a given safety policy, a probabilistic quantitative measure of safety and completion time, and synthesize policies that minimize completion time with respect to a given safety threshold. Despite that the work in [START_REF] Yoo | [END_REF]] is interesting, it suffers form a major limitation as it based on the temporal logic called PCTL (Probabilistic Computation Tree Logic) which can only provide a plan solution that maximize the probability to reach a set of goals. Data tainting is not a new concept. It is a mechanism to monitor and track how a specific information is propagated in a system. The main idea of this mechanism is to assign a set of tags to some of the data object in the target system and then spread those tags to other related objects to this data according to the evolution of the used system. It is used mainly for vulnerability detection, protection of sensitive data, and more recently, for analysis of binary malware.

To detect vulnerabilities on PHP applications, Huang et al. [START_REF] Huang | [END_REF]] provided an algorithm relying on a lattice-based analysis derived from type systems and typestate, then compared it to a technique based on bounded model checking. Xie and Aiken [START_REF] Xie | [END_REF] proposed an approach for detecting SQL injection vulnerabilities in PHP scripts. Jovanovic et al. [Jovanovic et al. 2010] tackle the problem of vulnerable web applications by means of static source code analysis. The propose a solution relying on the use of flow-sensitive, interprocedural and contextsensitive data flow analysis to discover vulnerable points in a program. Later on, Choi et al. [Choi et al. 2015] adopt taint analysis to provide binary analyzer that can find vulnerabilities and self-modifying code.

With private data protection in mind, data tainting analysis was used by Chan el al. [Chan et al. 2012] proposed DroidChecker that uses inter-procedural Control-Flow Graph (CFG) analysis and data taint checking to detect exploitable data paths in an Android application. Other approaches use dynamic data tainting to find privacy leaks. For instance, TaintDroid [START_REF] Enck | [END_REF]] provides an Android's virtualized execution environment to monitor Android applications during runtime and track how application leaks private information.

To analyze binary malware, recently, Wang and Shieh [START_REF] Wang | [END_REF] define DROIT, a taint tracker that is able to dynamically alternate between object-level and instruction-level, which allows authors to successfully come up with a malware behavior profiling tool.

Preliminaries

In this section, we formally define the parallel planning under security constraint problem.

Definition 35. An n-layered graph is a graph

G = (L = {l 1 , • • • , l n }, E = {e 1 , • • • , e n-1 })
where the l i 's are sets of vertices, and the l i vertices are connected only to the l i+1 vertices through the edges e i . Definition 36. (Planning Graph). Given a system S, a set of ground literals w representing the initial state of S, and a finite set of mechanisms M. The planning graph

PG = (F L, AL, E, M E) of length n constructed for S using M is a (2n-1)-layered graph G = (L = {l 1 , • • • , l 2n-1 }, E = {e 1 , • • • , e 2n-2 })
where the following conditions hold:

1. F L = {f l 1 , • • • , f l n } where f l i = l 2i-1 ; 2. AL = {al 1 , • • • , al n-1 } where al i = l 2i ;
3. Each ground literal in w is represented with a vertex in f l 1 ; 4. ∀l ∈ AL, ∀an ∈ l : an is an instance of an m ∈ M; 5. ∀l j ∈ AL, ∀an ∈ l j : ∆ an ⊆ l j-1 and Σ an ⊆ l j+1 ; 6. ∀l j ∈ AL, ∀an ∈ l j , ∀f n ∈ ∆ an : ∃e ∈ e j-1 that links f n to an; 7. ∀l j ∈ AL, ∀an ∈ l j , ∀f n ∈ Σ an : ∃e ∈ e j that links an to f n; 1. ∀p i ∈ P : p i ⊆ al i .

8. M E = {me 1 , • • • , me n-1 } where me i = {me|me = (an j , an k), j = k, an j ∈ f l i , an k ∈ f l i , f l i ∈ AL,
2. ∀p i ∈ P, ∀an j ∈ p i , ∀an k ∈ p i : an j and an k are not conflicting mechanisms instances (Definition 28) .

∀i ∈

[2, m -1], ∀an ∈ p i : ∆ an ⊆ an k ∈p i-1 Σ an k . 4. ∀i ∈ [2, m -1], ∀an ∈ p i , p i-1 ⊂ p i-1 : ∆ an ⊆ an ∈p i-1 Σ an . 5. N ⊆ an k ∈p m-1 Σ an k . 6. p m-1 ⊂ p m-1 : N ⊆ an∈p m-1 Σ an . 7.2. PRELIMINARIES 137
Condition (1) states that each p i should be composed of action nodes belonging to the action level al i of PG. Condition (3) imposes that each action node in each p i requires the effects of one or many action nodes in p i-1 . Using (4), we state that all action nodes belonging to p i-1 are needed to allow the application of the action nodes in p i . Condition [START_REF]1 A tree-based representation of the relational database D[END_REF] states that the set of nodes N should belong to the effects of the action nodes in p m-1 . Finally, using (6) we state that all the action nodes in p m-1 are needed to provide N .

Lemma 1. Given a planning graph PG of lenght n, a set of fact nodes

N = {f n 1 , • • • , f n r } belonging to the fact level f l m where m ≤ n. Consider PL N = {P N 1 = {p 1,N 1 , • • • , p 1,N m-1 }, • • • , P N q = {p q,N 1 , • • • , p q,N m-1
}} being the set of parallel plans that correctly provide N , and

PL i = {P i 1 = {p 1,i 1 , • • • , p 1,i m-1 }, • • • , P i q i = {p q i ,i 1 , • • • , p q i ,i m-1 }} being the set of parallel plans that correctly provide f n i (1 ≤ i ≤ r). The following conditions hold: 1. ∀l ∈ [1, r], ∀i l ∈ [1, q l], ∀j ∈ [1, m -1], ∃k ∈ [1, q] : (r l=1 p i l ,l j) = p k,N j 2. ∀k ∈ [1, q], ∀j ∈ [1, m -1], ∀l ∈ [1, r], ∃i l ∈ [1, q l] : p k,N j = (r l=1 p i l ,l j)
The previous lemma proves the relations between the sets of parallel plans that can correctly provide the set of fact nodes N and the set of parallel plans that can correctly provide each fact node in N . Please refer to Section C.1 (Appendix C) for a proof of the previous lemma.

Definition 38. (Dominance relation).

A fact node f n 1 belonging to the fact level f l 1 dominates a fact node f n 2 (denoted dominates(fn_1,fn_2)) belonging to the fact level f l 2 iff for all P i in the set of parallel plans P 1 , • • • , P n that correctly provides f n 2 :

∃p ∈ P i , ∃an ∈ p : f n 1 ∈ ∆ an .
Informally speaking, the previous definition states that a fact node f n 1 dominates another fact node f n 2 if and only if all parallel plans that provide f n 2 need to use f n 1 to be considered as correct plans (Definition 37). In other words, if we remove the node f n 1 from the used planning graph, no parallel plan could correctly provide f n 2 .

Lemma 2. The dominance relation is transitive, i.e., if f n 1 dominates f n 2 and f n 2 dominates f n 3 , then f n 1 dominates f n 3 .

We proved the previous lemma in Section C.2 (Appendix C).

Definition 39. (Security constraint). A security constraint is a formula

C = ¬ n i=1 f i ,
where f i are finite sets of ground literals.

Planning Graph Tainting

Tainting is traditionally used in marking pieces of information to monitor how they are disseminated in a program or a system. They have been widely used to analyze how applications access sensitive data and how they process it. In our approach, tainting will be used in tracking security constraints violations in the planning graph. To meet this goal, each node in planning graph will be tainted using one or many taints. During the construction of the planning graph, each node (fact node/action node) in the planning graph can have one of the following form:

• Untainted: The node is created but not yet tainted;

• Tainted: the node is tainted using a set of taints (according to Definitions 42 and 44). ∃N ⊂ f l :

Definition 40. (Ground taint).A ground taint t is an atomic taint

such that t 1 , t 2 : (t 1 ∧ t 2 = t) ∨ (t 1 ∨ t 2 = t).

Definition 41. (Safe node).Given a set of constraints

C = {C 1 , • • • , C n },
f n = {t f n 1 , • • • , t f n l } where ∀i ∈ [1, l] : t f n i = ∅. Definition 43. (Unsafe node)Given a set of constraints C = {C 1 , • • • , C n },
f n i ∈N f n i ∧ f n → ¬C Definition
{f n i 1 , • • • , f n i m i } that violates a security constraint C i ∈ C (m i j=1 f n i j → ¬C i). Each node
f n in N will be tainted with the set of taints T = {t f n 1 , • • • , t f n l } where the following conditions hold:

1. ∀t i ∈ T, if f n ∈ N i then t i = ∅, 2. ∀t i ∈ T, if f n ∈ N i then t i where:
(a) t i is a ground taint, (b) t i is unique, e.g., no unsafe fact node in the planning graph could have the same ground taint.

(c)

t i = ∅, (d)
f n∈N i t f n i ↔ t ¬C i , where t ¬C i is a unique taint denoting the violation of C i (denoted vio_taint(t ¬C i , C i)), (e) ∀N i ∈ N , N i ⊂ N i : f n∈N i t f n i |= ¬C.

Taint Propagation Rules

One of the key factors in defining our best-effort planning approach is the definition of a propagation policy for the taint marks. Our taint propagation policy treats the taint marks of a planning graph nodes associated with security constraints violation. We describe how the policy works in the two following rules.

Rule 1:

Given a planning graph PG and an action node an belonging to an action level in PG.

Suppose that an is linked to n fact nodes f n 1 , • • • , f n n representing the precondition of an, ech f n i is tainted with the set of taints

T i = {t i 1 , • • • , t i l }.
Then the set of taints of an is:

T an = { n i=1 t i 1 , • • • , n i=1 t i l }
where is defined as follows:

t j t k =        t j if t k = ∅ t k if t j = ∅ t j ∧ t k otherwise       
The previous rule describes how taints are propagated from a fact-level to an actionlevel in the planning graph. More precisely, between the fact nodes representing the preconditions of an instance of a mechanism and the action node representing the instance of the mechanism. Now we are ready to present our main theorem which prove that by checking the taints of a set of fact nodes N representing the set of goals to attend, we will be able to decide without analyzing the planning graph if there exists a parallel plan that correctly provides N without violating the security constraint.

Theorem 12. Given a planning graph G, a set of security constraints

C = {C 1 , • • • , C l }, a set fact nodes N = {f n 1 , • • • , f n n } belonging to the fact level f l m of G and tainted respectively with T 1 , • • • , T n ,

and a set of all parallel plans PL

N = {P N 1 , • • • , P N r } that correctly provide N .
The following conditions hold:

1. If ∀i ∈ [1, l], ∃t : (n j=1 t f n j i) |= t ∧ vio_taint(t, C i), then no parallel plan in PL could correctly provide f n 1 , • • • , f n n without violating C i ; 2. If ∀i ∈ [1, l], t : (n j=1 t f n j i) |= t ∧ vio_taint(t, C i), then there exists at least one parallel plan in PL that correctly provides f n 1 , • • • , f n n without violating C i .
In the previous theorem, condition (1) states that if there exists a taint t which: (i) is formally satisfied by the conjunction of the taints of the set of fact nodes N, and (ii) indicates a violation of a security constraint C i , we can be sure that no parallel plan in PL could correctly provide f n 1 , • • • , f n n without violating C i . Condition (2) states that if there is no taint t which: (i) is formally satisfied by the conjunction of the taints of the set of fact nodes N, and (ii) indicates a violation of a security constraint C i , then there exists at least one parallel plan in PL that correctly provides f n 1 , • • • , f n n without violating C i . Please refer to Section C.4 (Appendix C) for the proof of the previous theorem.

Finding the Best Compromise

In the previous section, we proved that the application of our tainting approach over a planning graph allows us to decide whether a set of fact nodes representing a set of goals can be provided by a parallel plan without violating security constraints, and this without analyzing all the planning graph. We use this result to find the best trade-off between satisfying specified goals and ensuring security requirements. When we have to decide between maintaining security constraints or satisfying goals. It can be useful to assign some priority to them. For the sake of simplicity, we will use a simple quantitative approach by associated to each security constraint a numeric weight representing the cost of its violation and to each goal a numeric weight representing the benefit of its satisfaction.

Definition 45. (Best compromise). Given a set goals

G = {G 1 , • • • , G n } that should be satisfied, a set of security constraints C = {C 1 , • • • , C m } that should enforced, and a set of sets of fact nodes N 1 , • • • , N n that respectively satisfy G 1 , • • • , G n . Suppose that a weight w + i is assigned to each goal G i and that a weight w - j is assigned to each constraint C j (1 ≤ i ≤ n, 1 ≤ j ≤ m, w + i ≥ 0, w - j ≥ 0)
. The best compromise between satisfying G and ensuring C is to find a plan that satisfy G and ensure C where the following conditions hold:

1. G ⊆ G and C ⊆ C; 2. Score(G , C) = G i ∈G w + i - C i ∈C\C w - i , where ∀C i ∈ C\C , ∃t : (G i ∈G f n∈N i t f n i) |= t ∧ vio_taint(t, C i); 3. G , C : G ⊆ G ∧ C ⊆ C ∧ Score(G , C) > Score(G , C).
Condition (1) states that G is a subset of G and C is a subset of C. Condition (2) states the function we use to compute the score of the satisfaction compromise represented by (G , C). It is the difference between the sum of the weight of each goal in G (G is the set of satisfied goals) and the sum of the weight of each violated security constraint (C\C represents the set of violated constraints). Condition (3) makes sure that no other compromise (G , C) can provide a score greater than the one provided by (G , C).

The problem of finding the best compromise between satisfying specified goals and ensuring security constraints is NP-hard. This is formally stated by the following theorem.

Theorem 13. The problem of finding the best compromise between satisfying a set of goals and ensuring a set security constraints is NP-hard.

The previous theorem is proved in Section C.5 (Appendix C).

Since the problem of finding the best compromise between satisfying a set of goals and ensuring a set security constraints is NP-hard, we use an heuristic resolution strategy to solve such a problem with a reasonable computational effort.

Heuristic Search

We use an heuristic in order to find a near-optimal compromise between satisfying a set of goals and ensuring a set of security constraints. It is based on a constructive method consisting of building a solution to the problem step by step from scratch. The constructive method to be used is based on choosing for each iteration, the best goal to satisfy. input :

G = {G 1 , • • • , G n } /* A set of goals */ C = {C 1 , • • • , C m } /* A set of security constraints*/ output: (G b , C b) /* A near-optimal compromise */ 1 Main 2 G b = ∅ ; C b = ∅ 3 while true do 4 G b = N U LL; C G b = ∅ 5 foreach G in G do 6 C temp = get_enforced_Constraint(G b ∪ G) 7 if G b = N U LL then 8 if Score(G b ∪ G, C temp) > Score(G b , C b) then 9 G b = G 10 C b = C temp

(i-th best goal). Given a set goals

G = {G 1 , • • • , G n } that should be satisfied, a set of security constraints C = {C 1 , • • • , C m } that should enforced. G i b ∈ G is the i-th best goal to satisfy iff the following conditions hold: 1. G i b ∈ G b , where G b = {G j b | 1 ≤ j ≤ i -1}; 2. Score(G b ∪ G i b , C i) ≥ Score(G b , C i-1)
, where C i represents the set of ensured constraints in the i-th iteration ;

3. G j ∈ G : G j = G i b ∧ G j ∈ G b ∧ Score(G b ∪ G j , C j) ≥ Score(G b ∪ G i b , C i)
The previous definition describes the best goal to satisfy in each iteration of our constructive method by the one satisfying two conditions. Condition (1) states that the best goal to satisfy in the i -th iteration should not belong to the set of goals chosen in the previous i -1 iterations. Condition (2) states that the score representing the compromise between satisfying the set of goals in (G b ∪ G i b) and ensuring the set of security constraints C i should be greater of equal than the score representing the best compromise chosen in the (i -1)th iteration. Condition (3) makes sure that no other goal in G\G b , when satisfied, can provide a better compromise between satisfying goals in G and ensuring security constraints in C, than the compromise provided by satisfying G i b .

Algorithm 10 illustrates how to use our heuristic constructive method to get the best set of goals G b to satisfy and the best set of security constraints C b to satisfy.

Once we get this result, the idea is to remove from the planning graph all the factnodes nodes that violates a constraint in C b , then we can use mechanisms planning approach presented in Chapter 6 to search the plan of mechanisms that satisfies the best compromise we got using our heuristic constructive method.

Conclusion

In this chapter, we present an approach combining graph-based planning techniques with a data tainting-based technique to find a best-effort solution for security mechanisms planning under security policy. We proved that our tainting technique can be used to track security requirements violation over a planning graph allowing us to get the best tradeoff between maintaining security requirements and satisfying intended goals, and this by analyzing only the propagated taints in the planning graph. Our future work will include the implementation of our approach.

Perspectives

In conclusion, we give an overview on how the different research objectives presented in the introduction have been followed as well as the different contributions which have resulted. Afterwards, we reflect on how our contributions can be improved and provide new research directions.

Our main objective in this thesis was to propose new approaches ensuring data security in cloud environments. We build upon the fact that outsourced data owners do not fully trust cloud service providers.

The first objective of this thesis consists of defining new methods to improve data confidentiality in cloud environments, while allowing an efficient processing of the outsourced data. To meet this objective, we proposed two different approaches.

In Chapter 3, we introduce our first contribution [Bkakria et al. 2013a]. In [Bkakria et al. 2013a], we propose an approach combining data fragmentation and encryption to protect the confidentiality of outsourced multi-relational databases. It improves existing approaches [Ciriani et al. 2007, Ciriani et al. 2009] assuming a strong and seldom satisfied in real environments assumption, saying that the data to be outsourced is represented within a single relation schema. The same contribution also permits outsourced data owners to process fragmented databases through the definition of a secure and effective technique for querying the data distributed on several service providers. Finally, in [Bkakria et al. 2013b] we improve the security of the querying technique in order to protect data confidentiality under a collaborative Cloud service providers model.

Second, we present in Chapter 4 a policy-based configuration framework [Bkakria et al. 2014b] that allows a data owner to specify the set of security and utility requirements over the data to be outsourced. We then provide an efficient method permitting to detect conflicts between confidentiality requirements (e.g., the set of sen-CHAPTER 8. CONCLUSIONS AND PERSPECTIVES sitive information) and utility requirements (e.g., SQL queries that should be executed over the encrypted data) specified in the policy to be applied over the outsourced data. We define the best combination of encryption schemes that can satisfy a specified policy and proved that the problem of finding such a combination is NP-hard. Finally, we propose an heuristic polynomial-time algorithm for finding a combination of encryption schemes that satisfies a near optimal trade-off between confidentiality requirements and utility requirements.

The second objective of this thesis is built upon two main reasons: First, security and utility requirements that might be specified by data owners are in most of cases heterogeneous (e.g., confidentiality requirements, privacy requirements, ownership requirements, etc.). Second, Many security mechanisms allowing to enforce those requirements have been defined. The challenge then is to figure out the combination of security mechanisms that should be used. The objective consists in designing support tools that allow data owners to easily specify their security and utility requirements and automatically choose the best set of security mechanisms, and the best way to combine them (e.g. the best order in which they are applied) to get the best trade-off between complexity, security and utility in the final choices. To this end, we proposed three contributions.

We define a formal model relying on an expressive language allowing to: (1) formally specify a system composed of involved entities (e.g., data owner, Cloud server administrator, external adversary, etc.) and the data structure on which the policy should be enforced; (2) formally express as finely as possible the policy defined by the data owner; And (3), formally express existing security mechanisms that can be used to fulfill the requirements that might be requested by data owners.

As a second step, in Chapter 6 we define a reasoning method for the formal model we previously design allowing outsourced data owner to automatically figure out the combination of security mechanisms providing the near optimal trade-off between the security and the utility of the data to be outsourced and the complexity of the application of the chosen combination over the used system. Then, we implemented a proof of concept of our reasoning method to demonstrate the feasibility of our proposal and gave support to our given theoretical complexity measurements.

Out last contribution was presented in Chapter 7. It extends the reasoning method proposed in Chapter 6 by overcoming the all or nothing satisfaction property 1 of our reasoning method. It proposes an approach that associates data tainting method with graph planning analysis to get the mechanisms execution plan that provides the best compromise between security constraints to enforce and the set of goals to satisfy over the outsourced data.

Perspectives

The research described in this thesis can be extended along several directions.

• In our proposed formal model (Chapter 5), we focused on five kinds of security requirements: Confidentiality, privacy, integrity, traceability, and ownership. In fact, some other interesting security requirements, such as authentication of both data and entities, data freshness, and proof of possession, might be requested by outsourced data owners. One possible perspective is to extend our formal model to allow outsourced data owners to deal with those security requirements.

• The specification of the policy to be applied over the outsourced data, as well as its defined refinement method, relies on relations between the objects composing the data to be outsourced. One of the most prominent challenge is then to adopt our formal model to be able to deal with outsourced unstructured big data.

• Implementation and performance evaluation of our approach that associates data tainting method with graph planning analysis to get the mechanisms execution plan that provides the best compromise between security constraints to enforce and the set of goals to satisfy over the outsourced data (Chapter 7). It would be interesting to evaluate its performances regarding the number of data objects to be outsourced, the number of security mechanisms that can be used, the number of entities involved in the outsourcing scenario.

To conclude, I would like to say that this research has been a great opportunity to investigate a wide variety of concepts, models and technologies in the information security domains. We provided novel approaches in response to the outsourced data security challenges, and we have shown that our proposed work is encouraging research field.

Finally, we believe that outsourced data security is still plenty of challenges and of paramount importance, and several research problems stay to be figured out and investigated.

• Une première approche [Bkakria et al. 2013a, Bkakria et al. 2013b] permettant la protection de la confidentialité des informations sensibles stockées dans des bases de données multirelationnelles. Notre approche améliore une approche existante [Ciriani et al. 2007, Ciriani et al. 2009] basée sur la combinaison des techniques de fragmentation des données et des techniques de chiffrement des données.

• Une deuxième approche [Bkakria et al. 2014b] permettant dans un premier temps à un propriétaire de données de spécifier la politique de sécurité à appliquer sur ses données qui seront externalisées. Dans un second temps, l'approche proposée choisit automatiquement l'ensemble des mécanismes de chiffrement qui assure le meilleur compromis entre la confidentialité et l'utilité des données externalisées.

Par la suite, en analysant quelques scénarios d'externalisation des données. Nous nous rendons compte que les exigences de sécurité et d'utilité spécifiées par les propriétaires de données sont différentes dans chaque scénario. En outre, ces exigences de sécurité sont dans certains cas hétérogènes (p. ex., des exigences de confidentialité, des exigences en matière de vie privée, des exigences relatives au droit d'auteur, etc.).

Le deuxième objectif de cette thèse consiste à concevoir une solution permettant aux propriétaires de données de définir des exigences de sécurité hétérogènes et choisir automatiquement le meilleur ensemble de mécanismes de sécurité, et la meilleure façon de les combiner (p. ex. le meilleur ordre dans lequel ils sont appliqués) pour obtenir le meilleur compromis entre la complexité, la sécurité et l'utilité des données dans le choix final. Pour atteindre cet objectif, nous proposons les contributions suivantes :

• Dans un premier temps, en utilisant la logique temporelle épistémique de premier ordre (LTL épistémique), nous définissons un modèle formel [Bkakria et al. 2014a] permettant de : (1) modéliser le système composé des entités impliquées dans le processus d'externalisation de données (p. ex., le propriétaire de données, le fournisseur de stockage Cloud, adversaire externe, etc.) et de la structure des données sur laquelle la politique de sécurité doit être appliquée. (2) Exprimer aussi finement que possible les exigences de sécurité et d'utilité définies par le propriétaire de données. Ensuite, nous définissons une méthode de raisonnement pour notre modèle formel permettant de déterminer la combinaison de mécanismes de sécurité qui déploie efficacement la politique de sécurité et d'utilité définie.

• Dans second temps, Nous définissons une approche qui améliore [Bkakria et al. 2014a] en prenant en considération les conflits qui peuvent survenir entre les mécanismes de sécurité. Cette approche utilise une méthode basée sur les graphes de planification afin de trouver la combinaison de mécan-ismes de sécurité offrant un compromis optimal entre la sécurité et l'utilité des données externalisées et la complexité de son application sur le système utilisé.

• En utilisant notre méthode raisonnement proposée dans les précédentes contributions, les politiques de sécurité définies sur les données externalisées sont soit totalement satisfaites ou violées. Notre dernière contribution surmonte cette limitation par l'utilisation d'une méthode reposant sur le marquage des données afin d'obtenir le compromis optimal entre les buts à satisfaire (p. ex. externaliser les données) et les contraintes de sécurité à assurer. Dans notre approche, différemment à ce qui a été considéré dans [Ciriani et al. 2007, Ciriani et al. 2009], on considère un scénario dans lequel les données sont enregistrées dans plusieurs tables relationnelles. La politique de confidentialité à déployer sur ces données est spécifiée en utilisant trois types de contraintes de confidentialité.

Contrainte de type Singleton :

Elle est représentée par un ensemble contenant un seul attribut, ce type de contrainte de confidentialité signifie que les valeurs de l'attribut en question sont sensibles et doivent être protégés.

Contrainte d'association :

Ce type de contrainte de confidentialité est représenté par un sous-ensemble d'attributs. Sémantiquement, cette contrainte signifie que l'association des valeurs de ces attributs est sensible et doit être protégée.

Contrainte Inter-tables : Elle est représentée par un couple de relations appartenant à la base de données à externaliser. L'utilisation de ce type de contrainte assure la protection de l'association reliant les deux relations concernées par la contrainte.

Ces différents types de contraintes de confidentialité sont satisfaites via l'utilisation de la fragmentation et du chiffrement des données. • La fragmentation est aussi appliquée au niveau des attributs. Elle consiste à diviser un ensemble d'attributs pour garantir que ces attributs ne seront pas visibles ensemble dans le même fragment.

Pour permettre l'utilisation des données externalisées, nous avons défini une méthode sécurisée d'interrogation des données distribuées dans plusieurs serveurs Cloud. Afin d'exécuter une requête, l'utilisateur l'envoie au transformateur des requêtes. En se basant sur les métas-données qui contiennent la structure de la base de données initiale et les structures des fragments, le transformateur de requêtes analyse syntaxiquement la requête, puis construit un plan d'interrogation de données optimisées. Le moteur d'interrogation exécute le plan sur les différents fragments et envoie le résultat à l'utilisateur. Finalement, nous avons proposé une technique permettant d'associer, de façon efficace et sécurisée, les données des différents fragments. Elle repose sur l'utilisation d'un protocole de retrait d'informations privée par mot clé.

A.3 La combinaison des mécanismes de chiffrement pour assurer la confidentialité des données externalisées

Cette contribution définit une approche permettant au propriétaire de données, dans un premier temps, de spécifier les exigences de confidentialité et les fonctionnalités à assurer sur les données externalisées, puis dans un second temps, de sélectionner l'ensemble de mécanismes de chiffrements qui assure un compromis optimal entre la sécurité et l'utilité des données externalisées.

A.3.1 Spécification de la politique à déployer

Pour permettre au propriétaire de données de spécifier la politique à déployer sur les données externalisées, nous avons défini trois types de contraintes :

• Des contraintes de confidentialité permettant de spécifier les attributs sensibles à protéger;

• Des contraintes de niveau de confidentialité permettant de spécifier pour chaque attribut sensible un seuil minimum de confidentialité à assurer. Trois niveaux de confidentialité peuvent être utilisés pour classifier les données.

-Le niveau "top secret" signifiant que toute fuite d'information au sujet des données va causer de graves dommages, on associe ce niveau au niveau RND qui représente le niveau de confidentialité assurée par un chiffrement probabiliste qui offre la sécurité sémantique des données.

-Le niveau "secret" signifiant que certaines informations sur les valeurs de données peuvent être divulguées si elles ne conduisent pas à révéler les valeurs elles-mêmes, ce niveau est associé au niveau "DET" représentant le niveau de sécurité assurée par un chiffrement déterministe. Un chiffrement déterministe ne permet pas de protéger les données contre les attaques à clairs connues ainsi que les attaques fréquentielles. Par conséquent, nous supposons, dans notre approche, que le niveau de sécurité "DET" est moins sûr que le niveau "RND".

-Le niveau "confidentiel" est associé au niveau de confidentialité "OPE" représentant le niveau assuré par un chiffrement qui préserve l'ordre. Il a été conclu que les chiffrements qui préservent l'ordre permettent au moins la fuite de la moitié des bits du texte clair. Pour ces raisons, nous supposons dans notre approche que le niveau de sécurité "OPE" est moins sûr que le niveau "DET".

• Des contraintes d'utilité permettant des spécifier les fonctionnalités à assurer sur les données externalisées. Dans la plupart des cas, les bases de données externalisées sont utilisées par des applications. Ces applications peuvent être analysées pour extraire l'ensemble des requêtes qui seront exécutées sur les données externalisées, or, à partir de ces requêtes, on peut facilement récupérer l'ensemble de fonctionnalité à assurer sur les données (p. ex., la recherche avec égalité "=", la recherche par préservation d'ordre "≤, ≥", le calcul "AVG, SUM, +, ×", etc.).

A.3.2 Déploiement de la politique

Afin de déployer une politique spécifiée, nous avons défini, dans un premier temps, une méthode permettant d'étudier la consistance de la politique. Il s'agit de chercher des conflits dans la politique à appliquer. Ces conflits surviennent lorsque les objectifs de deux ou plusieurs contraintes ne peuvent pas être satisfaits simultanément. Nous avons prouvé par la suite que trouver la combinaison de mécanismes de chiffrement qui assure le meilleur compromis entre la confidentialité et l'utilité des données externalisée est NP-difficile. Par conséquent, nous ne pouvons pas nous attendre à être en mesure de résoudre de façon optimale des instances de taille arbitraire du problème. Afin de pallier cette limitation, nous avons proposé une méthode heuristique basée sur la construction de la solution étape par étape à partir de zéro. Pour chaque attribut sensible dans la base de données externalisée, notre méthode choisit le meilleur schéma de chiffrement qui satisfait les contraintes définies sur l'attribut en question. Ce meilleur schéma de chiffrement à deux caractéristique. Premièrement, il satisfait le seuil minimal de sécurité défini sur l'attribut sensible. Deuxièmement, il fournit le plus grand nombre de fonctionnalités comparé aux autres schémas de chiffrement. La complexité de l'algorithme implémentant notre méthode constructive est polynomiale.

A.4 Spécification et déploiement des politiques de sécurité hétérogènes sur les données externalisées

Le deuxième objectif de cette thèse est fondé sur deux raisons principales : d'abord, les exigences de sécurité et l'utilité qui peuvent être spécifiées par les propriétaires des données sont dans la plupart des cas hétérogènes (p. ex., des exigences de confidentialité, des exigences en matière de vie privée, des exigences de protection des droits d'auteurs, etc.). Deuxièmement, de nombreux mécanismes de sécurité permettant de faire respecter ces exigences ont été définis. Le défi consiste alors à déterminer la combinaison de mécanismes de sécurité qui doit être utilisée. Notre objectif dans cette partie consiste à concevoir une solution permettant aux propriétaires de données de définir aisément leurs exigences des sécurités et de fonctionnalité et choisir automatiquement le meilleur ensemble de mécanismes de sécurité, et la meilleure façon de les combiner (p. ex. le meilleur ordre dans lequel ils sont appliqués) pour obtenir le meilleur compromis entre la sécurité et l'utilité des données externalisées et la complexité de déploiement de la solution trouvée. La solution que nous avons proposée est illustrée par la Figure A.2.

Dans un premier temps, nous avons défini un modèle formel basé sur la logique temporelle épistémique de premier ordre. En effet cette logique est la composition de la logique de premier ordre, la logique temporelle, et la logique épistémique. Les raisons pour lesquelles on a combiné ces trois systèmes formels sont : premièrement, le besoin de la puissance d'Äôexpression de la logique de premier ordre pour pouvoir formellement spécifier le modèle d'Äôexternalisation des données qui comporte, la structure de données ou le système d'Äôinformation à externaliser. Deuxièmement, le besoin des opérateurs temporels fournis par la logique temporelle afin de pouvoir spécifier des contraintes de sécurité sur un ou plusieurs moments du processus d'Äôexternalisation de données. Finalement, lorsqu'on traite des problèmes de sécurité, la capacité à définir, istrateur de serveur Cloud, adversaire externe, etc.) et de la structure de données sur lequel la politique devrait être appliquée.

• Formellement, exprimer aussi finement que possible la politique définie par le propriétaire de données sur ses données externalisées.

• Formellement, exprimer les mécanismes de sécurité existants qui peuvent être utilisés pour satisfaire les exigences de sécurité et d'utilité qui pourraient être demandées par les propriétaires de données.

L'un des plus grands défis à relever dans cette deuxième partie de la thèse consiste à définir une méthode de raisonnement efficace pour le modèle formel que nous avons défini. Cette méthode a pour but de déterminer la combinaison de mécanismes de sécurité qui déploie la politique choisie sur les données qui seront externalisées. Pour atteindre cet objectif, dans un premier temps, nous avons défini une méthode de raisonnement composée de quatre étapes afin de récupérer l'ensemble des mécanismes de sécurité permettant d'assurer les exigences spécifiées du propriétaire de données. Puis, dans une deuxième étape, nous avons étendu une approche basée sur les graphes de planification pour construire un graphe représentant toutes les transformations possibles du système résultant de l'application de l'ensemble des mécanismes de sécurité obtenu antérieurement par notre méthode de raisonnement. Dans une troisième étape, nous avons défini une méthode permettant de chercher le plan d'exécution de mécanismes de sécurité quasi optimale permettant de transformer le système cible de son état initial (état dans lequel les données sont toujours stockées par leur propriétaire), à un état dans lequel les données sont externalisées et la politique définie par le propriétaire de données est déployée. Finalement, nous avons amélioré notre méthode de raisonnement déjà présenté en combinant l'utilisation des graphes de planification avec des techniques de marquage de données. L'intuition derrière le marquage des noeuds des graphes de planification est de pouvoir tracer les violations des contraintes de sécurité dans ces graphes. L'analyse des marques des noeuds des graphes de planification nous a permis de trouver le meilleur compromis entre satisfaire les objectifs de propriétaire de données (externaliser les données et assurer les fonctionnalités demandées sur les données) et assurer les exigences de sécurités spécifiées.

A.5 Conclusion

Notre principal objectif dans cette thèse est de proposer de nouvelles approches pour assurer la sécurité des données externalisées en se basant sur le fait que les propriétaires taints T f n = {t f n 1 , •, t f n m }. For any t f n i ∈ T , if t f n i is a ground taint, then one of the following conditions hold:

1. f n is an unsafe node regarding C i ; 2. There exists an unsafe node regarding C i f n d such that f n d dominates f n.

Proof. The proof is by contradiction: Let as assume that: (i) ∀t f n i ∈ T f n : t f n i is a ground taint, (ii) f n is a safe node regarding C i , and (iii) ¬(∃f n d ∈ PG t : unsaf e_node(f n d , C i) ∧ dominates(f n d , f n)). From (ii), we can deduce that the taint t f n i is a propagated taint as the node f n is a safe node regarding C i .

Step A: based on (i) and the propagation rule (2), we can deduce that:

∃!an n-1 ∈ al n-1 : f n ∈ Σ an n-1 (C.7) (C.7) states that there exists only one action node an n-1 in the action level al n-1 that is providing f n. Since if there are many action nodes in the action level al n-1 that are providing f n, then the taint t f n i cannot be in any case a ground taint. Then from (C.7) and the propagation rule (2) we can deduce that:

t an n-1 i = t f n i (C.8)
Step B: Based on the propagation rule (1) and (C.7), we can deduce that:

∃!f n n-1 ∈ f l n-1 : f n n-1 ∈ ∆ an n-1 ∧ t f n n-1 i = t f n i (C.9)
From (C.7), (C.9) and Definition 38, we can deduce that:

dominates(f n n-1 , f n) (C.10)
From (C.9) and (i) we deduce that: t

f n n-1 i
is a ground taint (iv). Now, let us denote by Ω f n n-1 the set of action nodes that are providing f n n-1 . Then, based on taint propagation rule (2) we deduce that:

t f n n-1 i = t f n n-1 i ∧ (an∈Ω f n n-1) (C.11)
Then based on (iv) and C.11, either (a) f n n-1 is an unsafe node or (b) the t f n n-1 i has been propagated. In the case of (a) and based on (C.10) we can deduce a contradiction with (iii). In the case of (b), we will use the fact that: ∀f n ∈ f l 1 , an : an ∈ Ω f n to deduce that:

∃f n k , k ∈ [0, n -1[: t f n k i = t f n i ∧ unsaf e_node(f n k , C i) (C.12)
At this stage, by applying the steps A and B l times (l = n -1 -k), we can deduce the following formulas: ∀j ∈ [1, l], ∃!an n-1-j ∈ al n-1-j : an n-1-j ∈ Ω f n n-j (C.13) ∀j ∈ [1, l], ∃!f n n-1-j ∈ f l n-1-j : f n n-1-j ∈ ∆ an n-1-j ∧ t Case 1: (m=1). In this fist case, by assumption we have f n ∈ f l 1 . Or by definition, the fact nodes in the fist fact level f l 1 represent the initial state of the target system and they are not produced by any action nodes in the planning graph. Then we deduce that:

an : an ∈ PG ∧ f n ∈ Σ an (C. [START_REF] Fredman | Storing a sparse table with 0(1) worst case access time[END_REF] Then based on the propagation rule (2), we deduce that t f n i |= t, and based on the fact that t is a ground taint, we deduce that t f n i = t which is contradictory with (C.17).

Case 1: (m ≥ 1).

Step A (begin): In this part of the proof, for the sake of clarity, let us denote Ω f n the set of action nodes that provide f n (Ω f n = {an|f n ∈ Σan}). By applying the taint propagation rule 2, we have:

t f n i = (
∃f n m-1 : f n m-1 ∈ f l m-1 ∧ (t f n m-1 i |= t) ∧ dominates(f n m-1 , f n) (C.23)
Step A (end).

∃k ∈ [1, m -1], ∃f n k ∈ f l k : dominates(f n k , f n) ∧ t f n k i = t (C.26)
which is contradictory with (C.18).

Lemma 5. Given a planning graph PG composed of n fact levels f l 1 , • • • , f l n and two fact nodes f n 1 and f n 2 belonging to PG and tainted respectively using

T f n 1 = {t f n 1 1 , • • • , t f n 1 l } and T f n 2 = {t f n 2 1 , • • • , t f n 2 l }.
The following condition holds:

∀k ∈ [1, l], ∀l, m ∈ [1, n] : l < m ∧ f n 1 ∈ f l l ∧ f n 2 ∈ f l m ∧ dominates(f n 1 , f n 2) → t f n 2 k |= t f n 1 k .
∃t : t ∧ vio_taint(t, C i) → ∃f l, ∃!t f n 1 i , • • • , ∃!t f n q i : f l ∈ PG ∧ q j=1 (f n j ∈ f l) ∧ (q j=1 f n j) → ¬C i ∧ (q j=1 t f n j i) → ¬t ∧ q j=1 ground_taint(t f n j i) (C.30)
Then from (1) and (C.30) we can deduce:

(. By definition, t f n k i is a unique ground taint. Then, we deduce that f n j = f n k . Then based on (C.30) we continue to get: ∀i ∈ [1, n] :

n j=1 t f n j i) |= q k=1 (t f n q i ∧ ground_taint(t f n q i)) (C.
q k=1 (f n k ∈ f l m) ∧ q k=1 (t f n k i) → t (C.
PL i = {P i 1 = {p 1,i 1 , • • • , p 1,i m-1 }, • • • , P i r i = {p r i ,i 1 , • • • , p r i ,i m-1 }}
, where PL i is the set of all parallel plans that correctly provides f n i ∈ N . We continue using Theorem 1 to get the following: Which is contradictory with the assumption (1).

Figure 2 .

 2 1 (b) represents the bucketization method used for the values of the attribute Yob and Figure 2.1 (c) represents the encrypted form of the relation Patient that will be outsourced. The values of the attribute I C in Figure 2.1 (c) are indexes obtained by the application of the bucketization method in Figure 2.1 (b) for the attribute Y ob.

Figure 2 . 1 -

 21 Figure 2.1 -(a) Patient relation, (b) partition function used for attribute Dob, and (c) the encrypted relation P atient s stored in the cloud server.

CHAPTER 3 .

 3 COMBINING FRAGMENTATION AND ENCRYPTION and foreign keys indicated by *) : Patient(Id_P, Name,ZIP, Illness, Id_Doctor *) Doctor(Id_D, Name, Specialty)

Figure 3 . 1 -

 31 Figure 3.1 -Architecture of the Proposed Model

 attributes, conditions) = decomposeQuery(Q) syntacticChecking(Q) /* Verify that keywords, object names, operators are placed correctly in the query*/ /* Semantic Checking */ if tables ⊆ M or attributes ⊆ M then rejectQeury(Q) end foreach (attribute, operator, value) in conditions do if !isT heSameT ype(attribute, value) or !match(operator, value) then rejectQeury(Q) end endfch /* Checking if there is a fragment on which the query can be directly executed */ F = getF ragmentSchema(M) foreach f rag in F do T f rag = getT ables(frag) A f rag = getAttributes(frag) Ac = getAttributesF romConditions(Conditions) if tables ⊆ T f rag or attributes ⊆ A f rag or Ac ⊆ A f rag then continue end /* Checking if all conditions attributes are not encrypted in the fragment frag*/ if areEncrpted(Ac, f rag) then continue end /*The query Q can be executed on the fragment f rag */ addOperation(QEP, (Q,frag)) foreach attr in A f rag do if isEncrpted(attr, f rag) then addOperation(QEP, (Decryption,attr)) Fragment Query*/ /* Get the fragments in which conditions attributes are not encrypted */ Ac = getAttributesF romConditions(Conditions) A s c = sortAttributeBySelectivity(M, Ac) /* Sort attributes according to their selectivity*/ foreach attr in A s c do Fattr = containsInClear(M, attr) /* Set of fragments on which attr appears in clear text*/ f rag = getBestF ragment(Fattr) /* Get the best fragment which contains the less number of encrypted attributes */ A = listOf RetrievedAttributes(f rag, attributes) /* The list of attributes that can be retrieved by querying the fragment f rag */ SQ = f ormulateT heSubQuery(A, attr, Q) addOperation(QEP, (Q, f rag)) foreach a in A do if isEncrpted(a, f rag) then addOperation(QEP, (Decryption, a)) end endfch endfch /*Add the join operation that combines results returned from subqueries*/ addOperation(QEP, join) CHAPTER 3. COMBINING FRAGMENTATION AND ENCRYPTION

 , The fragmentation of D is the list of fragments represented in Figure 3.2. Consider the following user query:Q1 : SELECT Name_pat, SSN FROM patientWHERE Dob='1986-09-14' And Illness = 'Illness1';

4)CExample 5 .

 45 D represents an estimation of the per-byte decryption costs of the used encryption schemes. Assume that we use the same database D and fragments of Example 3. Let us suppose that the relation patient contains 10 5 tuples and the selectivity estimation of the attribute Dob is 0.14 and for Illness it is 8 × 10 -4 . We suppose also that AV S 1 = 252 and AV S 2 = 152 are respectively the average attribute-value sizes of encrypted attribute enc of the table patient stored in the fragments F 1 and F 2 . Consider the query Q1 used in the Example 5.1. As shown before, there are two possible QEP for this query. Using (

Figure 3 . 3 -

 33 Figure 3.3 -Execution costs per number of retrieved records for the query Exp_Q1

Figure 3 . 4 -

 34 Figure 3.4 -Execution costs per number of retrieved records for the query Exp_Q1 over B+ Tree and Hash Tabledata structures

E 3

 3 provide respectively RN D, DET and OP E, and satisfy respectively the functionalities ∅, {Equality, Join} and {M in, M ax}. Suppose that we want to enforce a policy composed of two constraints T C a = DET and U C a = {Join, M in}. By performing the first step of Algorithm 5, we deduce that F RN D = ∅, F DET = {Equality, Join} and F OP E = {Equality, Join, M in, M ax}. The second step of Algorithm 5 gives that U C a F DET , which allows to deduce that T C a and U C a are conflicting constraints.

 Figure 4.1 represents the conceptual model of the TPC-H database which includes foreign key relationships.

Figure 4

 4 Figure 4.1 -TPCH database

Figure 4 . 2 -

 42 Figure 4.2 -Queries involving sensitive attributes

Figure 4 . 3 -

 43 Figure 4.3 -Policy satisfaction evaluation in function of the number of sensitive attributes, the number of threshold constraints, and the number of utility constraints

Definition 14 .

 14 Let States be the set of all possible states of the world. Definition 15. (Timeline.) A timeline t is an infinite linear discrete sequence of states, indexed by natural numbers. Let Timelines be set of all timelines. Definition 16. (Interpretation.) An interpretation I of the language L is the couple I = (States, S), where S represents a set of classical first-order structures. Each I s ∈ S with a non-empty domain D s assigns to a state s ∈ States, a predicate I s (P) : D n s → {T rue, F alse} for each n-places predicate P ∈ P. Definition 17. (Model.) An model M for L is a structure T Ls, R = {R 1 , • • • , R n }, I, Φ , where: • T Ls is a set of timelines; • ∀i ∈ A g , R i ⊆ States × States represents the accessibility relation of an agent over States;

 . The tree-based modelization of the database D are represented in Figure 5.1.

Figure 5 . 1 -

 51 Figure 5.1 -A tree-based representation of the relational database D

 Semantically speaking, according to Definition 18, a refinement rule ϕ ref ine ---→ ψ stating that ψ is a concrete level representation of ϕ means that if ψ (resp. ϕ) is satisfied in a state w of the target system ((w, W) |= ψ, resp. (w, W) |= ϕ) then ϕ (resp. ψ) is also satisfied in w ((w, W) |= ϕ, resp. (w, W) |= ψ).

 ∀o ∈ D, ∀e : (sensitive(o) ∧ untrusted(e) → ¬knows(e, o)) ref ine ---→ (∀o ∈ D : subelement_of (o, o) ∧ sensitive(o) ∧ untrusted(e) → ¬knows(e, o)) .

[

 ∀o ∈ D, ∀e : sensitive(o) ∧ untrusted(e) ∧ knows(e, o) → e 1 ∈E K e 1 (∃E r . er∈Er (trusted(e r) ∧ responsible(e r , o)))].

1 ∈EK e 1 (

 11 ∀o, ∀e : [object(o) ∧ sensitive(o) ∧ untrusted(e) ∧ knows(e, o) → e ∃E r . er∈Er (trusted(e r) ∧ responsible(e r , o)))] ref ine ---→ [∀o ∈ D : subelement_of (o, o) ∧ sensitive(o) ∧ untrusted(e) ∧ konws(e, o) → e 1 ∈E K e 1 (∃E r . er∈Er (trusted(e r) ∧ responsible(e r , o)))] .

 The data owner wants to give a set of entities E the ability to verify the ownership of an object in the target data model. [∀o 1 .o 2 , e ∈ D : copy_of (o 1 , o 2) er∈E K er owner(e, o 1) → er∈E K er owner(e, o 2)].

Hypothesis 1 .

 1 Given a data object o and an encryption key k. If we suppose that the information stored by o are encrypted using k and stored into the data object o e then, the following formula is an axiom in our model: ∀o, ∀o e , ∀k, ∀e : enc_key(k) ∧ encrypted(o, k, o e) → knows(e, o) ↔ knows(e, o e) ∧ knows(e, k) (5.21)

Hypothesis 2 .

 2 Given a data object o, if we suppose that the information stored by o are anonymized and stored in o a , then the following formula is an axiom in our model: ∀o, o a , e, id : ¬knows(e, o) ∧ knows(e, o a) ∧ anonymized(o, o a) → ¬(knows(e, id) ∧ id_related(o, id)) (5.24)

Hypothesis 3 .

 3 Given a watermarking-based security mechanism m, a data object o, and a watermark key k. The two following formulas are axioms in our model: ∀m, o, k, w, o w , e : watermark_mechanism(m) ∧ watermark_key(k) ∧ blind(m) ∧ watermark(w) ∧ watermarked(o, w, k, o w) → knows(e, o w) ∧ knows(e, k) ↔ knows(e, w) ∧ K e watermarked(o, w, k, o w) (5.27) ∀m, o, k, w, o w , e : watermark_mechanism(m) ∧ watermark_key(k) ∧ ¬blind(m) ∧ watermark(w) ∧ watermarked(o, w, k, o w) → knows(e, o w) ∧ knows(e, k) ∧ knows(e, o) ↔ knows(e, w) ∧ K e watermarked(o, w, k, o w) (5.28)

Figure 6 . 1 -

 61 Figure 6.1 -Two conflicting mechanisms: The effects of k -anonymity and aes -cbc are inconsistent.

Figure 6 . 2 -

 62 Figure 6.2 -Two conflicting mechanisms: The preconditions of k -anonymity and the effects of aes -cbc are inconsistent.

1 16 if

 116 input : G /* planning graph (Graphplan) */ last_f l G = {f 1 , • • • , f n } /* set of facts in the last fact level of G */ A x = {Ax 1 , • • • , Ax m } /* the set of domain-axioms */ output: inf erred_f acts /* the set of derived new facts */ Main 2 IG = ∅ /* inference graph initialization */ 3 add_f act_level(IG, last_f l) /* add the last fact level of G to the inference graph IG */ 4 for i = 0 to m do 5 new_f act_level = ∅ /* new empty fact level */ 6 new_f act_level = last_level(IG) /* copy the facts in the last fact level of IG to new_f act_level */ 7 foreach axiom in A x do 8 instances = instantiate(axiom) /* get all instances of the axiom */ 9 foreach inst in instances do 10 /* axioms can be divided into left and right parts (rule 6.24) */ 11 if (last_level(IG) |= lef t_part(inst)) then 12 new_f act_level = new_f act_level ∪ right_part(inst) (new_f act_level == last_level(IG)) then 17 inf erred_f acts = new_f act_level \ last_f l G Building inference graph and getting new derived facts

Theorem 8 .

 8 (Correctness). Given a violated security constraint C and a set of fact nodes cause_nodes that causes the violation of C, the Algorithm 8 terminates and computes all the combinations of actions that lead to violate C. input : C /* the violated security constraint */ cause_nodes /* the set of fact_nodes that causes the violation of C */ output: action_combinations /* the set of combinations of actions that violates the constraint C */ Main combination = ∅ all_combinations(causes_nodes, action_combination) End Main Recursive Procedure all_combination(nodes, combination) if (Card(nodes) == 0) then add(combination, action_combination) /* add combination to action_combination */ end f irst_node = nodes.f irst /* get the first node in the set nodes */ remove(nodes, f irst_nodes) /* remove the f irst_node from the set nodes */ foreach action_node in f irst_nodes.in_edges do /* f irst_nodes.in_edges represents the set of edges connecting the node f irst_nodes to the actions that provide it. */ copy_combination = combination if (action_node / ∈ copy_combination) then add(action_node, copy_combination) end all_combinations(causes_nodes, copy_combination) endfch Algorithm 8: Getting all combinations of actions that lead to violate a constraint Proof. To prove the correctness of the algorithm 8, we have to show that (1) it terminates; (2) it computes all the combinations of actions that lead to the violation of C.

 an j and an k are in conflict}.F L represents the set fact levels, AL represents the set action levels, E represents the set of edges, and M E is the set of mutual exclusions depicting the conflicts between the action nodes that instantiate mechanisms in M. In the reminder if this chapter, we use the terms action nodes to denote vertices belonging to action levels and fact nodes to denote vertices belonging to fact levels. Definition 37. (Correct Parallel Plan). Given a planning graph PG of length n, a set of fact nodes N belonging to the fact level f l m where m ≤ n. A parallel plan P = {p 1 , • • • , p m-1 } correctly provides the set of fact nodes N if and only if the following conditions hold:

 and a fact node f n belonging to the fact level f l of a planning graph. f n is an unsafe fact node regarding a constraint C ∈ C (denoted unsafe_node(fn,C)) iff:

44 .

 44 (Unsafe node tainting) Consider a set of security constraint C = {C 1 , • • • , C l }, and a set of sets of fact nodes N = {N 1 , • • • , N n } belonging to a fact layer in a planning graph. Each N i ∈ N is composed of a finite set of fact nodes

 input : G /* A planning graph (Graphplan) */ SC /* A set of security constraints*/ output: G t /* A tainted planning graph */ Main foreach f l in G do if (f l = first_fact_level(G)) then foreach f n in f l do for i = 1 to |SC| do t temp = ∅ foreach an in in_edges(fn) do t temp = t temp ⊗ t an i l = last_fact_level(G)) then foreach f n in f l do foreach an in outer_edges(fn) do if (T an = untainted) then T an = T f n , Taint propagation in the planning graph The previous theorem is proved in Section C.3 (Appendix C).

 b ∪ G, C temp) > Score(G b ∪ G b , C G b)

A. 2

 2 Préserver la confidentialité des bases de données multirelationnelles en combinant la fragmentation et le chiffrement des données Notre approche de combinaison de la fragmentation et du chiffrement pour protéger la confidentialité des bases de données composées de plusieurs relations est illustrée par la Figure A.1.

Figure A. 1 -

 1 Figure A.1 -Architecture de fragmentation et d'interrogation de données

 Now, based on the fact that ∀f n ∈ f l 1 : Ω f n = ∅, by repeating the "Step A" m -1 times, we deduce that:∃k ∈ [1, m -1], ∃f n m-k , ∃f n m-k+1 , • • • , ∃f n m-1 : n j-1 , f n j) ∧ t f n m-k n j-1 , f n j)) ∧ dominates(f n m-1 , f n) Lemma2 -----→ dominates(f n m-k , f n) (C.25)Finally, from (C.24) and (C.25), we get:

 34)We can then deduce that {f n1 , • • • , f n q} ⊆ {f n 1 , • • • , f n n }.Finally, based on the fact that (q k=1f n k) → ¬C i), then we can deduce that there is no parallel plan that could provide the set of nodesf n 1 , • • • , f n n without violating the constraint C i , which is contradictory with (2). Case 2: ∀k ∈ [1, q], ∃j ∈ [1, n] : ∃f n , ∃p : p < m ∧ f n ∈ f l p ∧ t f n i = t f n k i ∧ dominates(f n , f n j) (C.35)

)

 ∀j ∈[1, n], ∀v j ∈ [1, r j], ∀s ∈[1, m -1], ∃k ∈[1, q] : (C.39) and (C.40), we get:∃s ∈ [1, m -1], ∀v 1 ∈ [1, r 1], • • • , ∀v n ∈ [1, r n], ∃f n 1 , • • • , ∃f n q : on C.41 we continue to get: ∀k ∈ [1, q], ∃s ∈ [1, m -1], ∃j ∈ [1, n], ∀v j ∈ [1, r j] : f n k ∈ an∈p v j ,j s ∆ an (C.42)Then, using Definition 38 we can deduce that:∀k ∈ [1, q], ∃s ∈ [1, m -1], ∃j ∈ [1, n] : dominates(f n k , f n j) (C.43)By supposing that each f n k is tainted using the taintT f n k = {t f n k 1 , • • • , t f n k l }.Then, based on Lemma 5 we get:∀k ∈ [1, q], ∀i ∈ [1, l], ∃s ∈ [1, m -1], ∃j ∈[1, n] : t on Definition 44 we get:∀f n 1 , • • • , ∀f n q : (q k=1 f n k) → ¬C i→ ∃t : (((C.41), (C.44) and (C.45) we deduce that: ∃j 1 , • • • , j q ∈ [1, n], ∃t : (|= t ∧ vio_taint(t, C i).(C.47)

Theorem 1. (Transformation correctness). Given

 . A transformation of an Inter-table Constraint c to a set of confidentiality constraints C is correct if enforcement of C implies protection of the unlinkability between records of the two relations involved in c. The following Theorem formalizes this concept. a relational database D made up of two relational schemas R 1 (a 1 , . . . , a n) and R 2 (b 1 , . . . , b m *) related through relationship between the foreign key b m of R 2 and the primary keya 1 of R 1 . Let c = {R 1 , R 2 } be an Inter-tableConstraint, the set of constraints C be the result of the transformation of c, and F = {F 1 , . . . F q } be a fragmentation of D that satisfies C.

	The Inter-table Constraint c is correctly transformed into a set of constraints C if all
	the following conditions hold :
	1.

atient and Doctor (IC = {P atient, Doctor}) must be defined. In this case applying directly transformation as shown in Definition 4 is not possible since relations P atient and Doctor are connected through Examination. So, the pre-transformation step consists in writing the Inter-table Constraint IC using the linking relation Examination

 4, as they are normally linked through a third relation known as a linking table. The pre-transformation steps is described in the example below. . Thus, IC will be replaced by IC 1 = {P atient, Examination} and IC 2 = {Doctor, Examination}. Next, both IC 1 and IC 2 will be transformed into a set of Singleton Constraints and Association Constraints according toDefinition 4.

	Example 1. Consider that we have a hospital relational database D with relations :
	Patient(Id_patient, N ame, ZIP)
	Doctor(Id_doctor, N ame, Specialty)
	Examination(Id_examination, date, medical_report, Id_doctor * , Id_patient *)
	Assume that database owner claims that relationships between a patient and his/their
	doctor(s) are sensitive and must be secured. Therefore an Inter-table Constraint over
	relation P

Definition 5. Fragmentation. Let us

 consider a relational database D with relations R 1 , . . . , R n and A the

Table 3 .

 3

		1 -Patient relation
	SSN	Name_pat Dob	Illness Id_doc
	865746129 A. Barrett 20-08-1976 Illness 1 doc_3
	591674603 C. Beat	18-01-1981 Illness 2 doc_3
	880951264 N. Baines	14-09-1986 Illness 1 doc_2
	357951648 S. Brandt 18-01-1981 Illness 3 doc_1

Table 3 .

 3

		2 -Doctor relation
	Id_doctor Name_doc
	doc_1	C. Amalia
	doc_2	D. Annli
	doc_3	P. Amadeus

Example 6 .

 6 Consider the database, fragments, queries and QEP used in the Example 4. The QEP is executed in a sequential manner by the QueryExecutor. The next table shows the execution of the QEP.

 Plus Tree over indexed attributes*/

1 while True do 2 Request ← handle_client_request() 3 if Request is PQR then 4 /* PQR : Pre-Query Request */ 5 (T abN ame, AttriN ame) ← Request 6 B ← GetAssociatedBP T (T abN ame, AttriN ame) 7 Root B ← GetRootN ode(B) 8 ReplyT oClient(Root B) 9 end 10 if Request is PIRQ then 11 /* PIRQ : PIR Query */ 12 result ← compute(Request) 13 ReplyT oClient(result) 14 end 15 end Algorithm 3: SemiJoin PIR keyword-based query (server) Example 7. Consider the query Q2 2 used in Example 4. We suppose that δ = {doc_3, doc_69}. The execution of Q2 2 using PIR keyword-based protocol over B+ trees data structures is as follows:

 be the set of available encryption schemes. E i ∈ E is a best satisfier if the following conditions are satisfied:

 Policy satisfaction levels which are at least as secure as sec_lev and which can satisfy functionalities in U C i . Next, we copy the set of required functionalities U C i to U C temp , and at each iteration of the next while loop, we get the best satisfier E bs from E sec_lev according to the Definition 12. E bs will be next added to the combination Sol, removed from E sec_lev , and the required functionalities satisfied by E bs will be removed from U C temp . This while loop is terminated if: (1) all required functionalities in U C temp are satisfied, in this case the set Sol represents the combination allowing to satisfy the constraints defined over the attribute a i ; or (2) E sec_lev is empty, which means that there is no combination that satisfies U C i in the security level sec_lev.

a i , P rop, sat_f unc, sec_lev)} if (U C temp = ∅) then break end if (E sec_lev = ∅) then sec_lev = get_next_best_level(sec_lev, L) end end endfch Algorithm 6:

[Boldyreva et al. 2009, Boldyreva et al. 2011].

 This is a deterministic encryption scheme allowing logarithmic time equality checks over ciphertexts. Pohlig-Hellman encryption cannot achieve the classical notions of security of probabilistic encryption because it leaks which encrypted values correspond to the same plaintext value. It provides the security level DET and allows to perform equality, join, and group by over the encrypted data. Thus, l P H = DET and F P H = {equality, join, group by}. Boldyreva propose an order-preserving, deterministic encryption which allows performing order operations over encrypted data. As mentioned in Section 4.2.3, in addition to the information leaked by having the deterministic property, it reveals the order between encrypted values. The encryption scheme provides the security level OPE and allows to perform equality, join, group by, and order search operations. Thus, l

	Boldyreva

Paillier [Paillier 1999]. It is based on secure probabilistic encryption which enables to perform computation over encrypted data. A Paillier cryptosystem provides indistinguishability under an adaptive chosen-plaintext attack (IND-CPA). It provides the security level RND and allows to perform sum, avg operations over the encrypted data. Thus, l P lr = RN D and F plr = {sum, avg, computation}. SSE [Song et al. 2000]. SSE is a symmetric searchable encryption which is semantically secure (as long as there is no search token). It allows to perform search over encrypted data which gives the ability to perform MySQL's like operator. Based on these properties, the SSE can be specified by l SSE = RN D and F SSE = {like}. Pohlig-Hellman. Bdv = OP E and F Bdv = {equality, join, group by, order search}.

 {group by, order search}

	Q1:				Q5:
	SELECT L_RETURNFLAG, L_LINESTATUS,	SELECT TOP 20 C_NAME, C_ACCTBAL,
	SUM(L_QUANTITY) AS SUM_QTY,		N_NAME, C_ADDRESS, C_PHONE, C_COMMENT
	SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE,	FROM CUSTOMER, ORDERS, LINEITEM, NATION
	SUM(1-L_DISCOUNT) AS SUM_DISC_PRICE,	WHERE C_CUSTKEY = O_CUSTKEY AND
	AVG(L_QUANTITY) AS AVG_QTY,		L_ORDERKEY = O_ORDERKEY AND
	FROM LINEITEM			L_RETURNFLAG = 'R'
	WHERE				GROUP BY C_CUSTKEY, C_NAME, C_ACCTBAL,
	L_SHIPDATE <= '2010-01-15'		C_PHONE
	GROUP BY L_RETURNFLAG, L_LINESTATUS	ORDER BY C_NAME.
	ORDER BY L_RETURNFLAG,L_LINESTATUS	Q6:
	Q2:				SELECT C_NAME, O_ORDERDATE,
	SELECT	S_ACCTBAL,	S_NAME,	N_NAME,	O_TOTALPRICE, SUM(L_QUANTITY)
	P_PARTKEY, P_MFGR, S_ADDRESS, S_PHONE,	FROM CUSTOMER, ORDERS, LINEITEM
	S_COMMENT			WHERE C_CUSTKEY = O_CUSTKEY AND
	FROM PART, SUPPLIER, PARTSUPP, NATION, RE-	O_ORDERKEY = L_ORDERKEY
	GION WHERE			GROUP BY C_NAME, C_CUSTKEY, O_TOTALPRICE
	P_PARTKEY = PS_PARTKEY AND		ORDER BY O_TOTALPRICE DESC.
	S_NATIONKEY = N_NATIONKEY PS_SUPPLYCOST = 1000 ORDER BY S_ACCTBAL DESC, N_NAME, S_NAME	Q7: SELECT TOP 100 S_NAME, COUNT(*) AS NUMWAIT FROM SUPPLIER, LINEITEM L1, ORDERS, NA-
	Q3:				TION
	SELECT SUM(L_DISCOUNT) AS REVENUE	WHERE S_SUPPKEY = L1.L_SUPPKEY AND
	FROM LINEITEM			O_ORDERKEY = L1.L_ORDERKEY AND
	WHERE L_SHIPDATE >= '2010-01-01' AND	L1.L_RECEIPTDATE> L1.L_COMMITDATE
	L_SHIPDATE < '2010-01-01'			GROUP BY S_NAME
	AND L_DISCOUNT BETWEEN .06 -0.01 AND .06	ORDER BY NUMWAIT DESC, S_NAME.
	+ 0.01 AND L_QUANTITY < 24		Q8:
	Q4:				SELECT CNTRYCODE, COUNT(*) AS NUMCUST,
	SELECT N_NAME AS NATION,		SUM(C_ACCTBAL) AS TOTACCTBAL
	L_EXTENDEDPRICE*(1-L_DISCOUNT) AS	FROM
	AMOUNT				(SELECT SUBSTRING(C_PHONE,1,2) AS
	FROM PART, SUPPLIER, LINEITEM, NATION	CNTRYCODE, C_ACCTBAL
	WHERE				FROM CUSTOMER
	S_SUPPKEY = L_SUPPKEY		WHERE
	AND S_NATIONKEY = N_NATIONKEY		SUBSTRING(C_PHONE,1,2) IN ('13', '31', '23',
	AND S_ADDRESS LIKE '%%RENNES%%'	'29'))
	Group By N_NAME.			GROUP BY CNTRYCODE

Table 4 .

 4

	4.4. USE CASE

1 -Required functionalities for sensitive attributes 1. C_ACCTBAL: conflict detected (T C 2 and U C 2) Conflicts resolution propositions: • [P aillier] (RND), satisfied utility requirements: {sum} (Q8) • [P aillier, P ohlig -Hellman] (DET), satisfied utility requirements: {group by, sum} (Q8, Q5) 2. L_EXTENDEDPRICE: [P aillier] (RND), satisfied utility requirements: {sum, computation} (Q1,Q3,Q4). 3. PS_SUPPLYCOST: [P ohlig -Hellman] (DET), satisfied utility requirements: {equality} (Q2).

Table 4 .

 4 3 illustrates the functionalities as well as the security level provided by each of the used encryption mechanisms and their corresponding supported data types.

	Encryption Scheme Data Type Security Level	Provided Functionalities ES OS CP KS
	AES-CBC	All	RND
	Paillier	Numeric	RND
	SSE	Textual	RND
	Pohlig-Hellman	All	DET
	Boldyreva	Numeric	OPE

Table 4 . 3

 43

-Encryption mechanisms used in evaluating our approach with their corresponding supported data types, ensured security levels, and provided functionalities over encrypted data. 'ES' represents the equality search functionality, 'OS' represents the order search functionality, 'CP' represents the computation requirements, and 'KS' is for keyword search functionality.

Table 5 .

 5

		1 -Patient relation	Table 5.2 -Doctor relation
	Name_pat Illness Id_doc	Id_doctor Name_doc
	A. Barrett Illness 1 doc_1	doc_1	C. Amalia
	C. Beat	Illness 2 doc_2	doc_2	D. Annli

 that in a future state of the target system, any entity in E should know the value of any object in D . The knowledge predicate knows is a refinement transitive predicate as if we consider that an entity e knows the information stored in an object o, therefore it knows the information stored by any sub-object o of o (subelement_of (o, o)). The propagation of the knowledge predicate knows allows us to refine a data sharing goal to a more concrete level using the following formula:

	5.5. POLICY SPECIFICATION		91
	Formula 5.5 specifies ∀e ∈ E, ∀D ⊆ D, ∀o ∈ D : (♦ knows(e, o))	ref ine ---→	(5.6)
	(∀o ∈ D : subelement_of (o, o) → ♦ knows(e, o))	

Table 5 .

 5

	3 -A quick overview of the characteristics of the studied security mechanisms

 For illustration purpose, let us take the case of k-anonymity ([Sweeney 2002]), it can be applied over a data object o if the information stored by o are categorical data (data_type(o, categorical)) and structured as a relational table (data_structure(o, relational_table)). represents the set of utility properties provided by m. We consider that the two places predicate anonymized is a refinement transitive predicate since if the data stored by an object o are anonymized, then any identifier sub-object of o is also anonymized. To illustrate, let us consider that the object o is represented by a relational database. if we suppose that o is anonymized, then obviously, any relational table in o is anonymized.

	The effects of the application of anonymization-based security mechanisms are spec-
	ified by the following formula:		
	∀m, o : anonym_mechanism(m) ∧ apply(m, o) →	
	∃o a : anonymized(o, o a)	provides(p, o a)	(5.23)
	p∈Pm		
	where P m		

the information stored by o are typed t, (3) the information stored by o should be structured as an existing data structure ds, and (4) the information stored by o are not encrypted

1

.

k, o : anonym_mechanism(m) ∧ is_applicable(m, o) → object(o) ∧ identif ier(o) ∧ encrypted

(o , k, o)

∧ data_type(o, t) ∧ data_structure(o, ds)

(5.22)

Hypothesis 4 .

 4 The following formula are axioms in our formal model. is owned by the person or the entity having the identity related to w. Axiom 5.30 specifies the integrity assessment property provided by the use of a watermarkingbased security mechanism. Formally speaking, if an entity e knows that an integrity watermark w is embedded into a data object o, then e can know whether or not the object o has been modified. Finally, axiom 5.31 formally describes the traceability property ensured through the application of a watermarking-based security mechanism. Formally speaking, if an entity e knows that a traceability watermark is embedded in a data object o and that the watermarked object o w is known by an untrusted entity, then e is able to figure out the identity of the person or entity responsible of the disclosure of o w .

	102	CHAPTER 5.

∀o, k, w, o w , e, id : watermark_key(k) ∧ ownership_watermark(w) ∧ K e watermarked(o, w, k, o w) ∧ knows(e, w) ∧ contain(w, id) → K e owner(id, o) (5.29) ∀o, k, w, o w , e, id : watermark_key

(k) ∧ integrity_watermark(w) ∧ K e watermarked(o, w, k, o w) ∧ knows(e, w) → K e (is_modif ied(o) ∨ is_unmodif ied(o))

(5.30) ∀o, k, w, o w , e, id, e : watermark_key(k) ∧ traceability_watermark(w) ∧ K e watermarked(o, w, k, o w) ∧ knows(e, w) ∧ knows(e , o w) ∧ untrusted(e) ∧ contain(w, id) → K e responsible(id, o) (5.31) Axiom 5.29 specifies how the ownership property is ensured using a watermarkingbased security mechanism. Formally speaking, if an entity e knows that an ownership watermark w is embedded into a data object o, then e knows that the object o

Definition 31. (Violated security constraint).

 Consider a planning graph G composed of n fact levels f l 1 , • • • , f l n , each fact level f l i is composed of a set of facts w i .A security constraint C specified in our formal language using the set of formulas Σ C and specified in the STRIPS system language by Σ C (the negation of CNF representation of Σ C) is violated in a fact level f l i if and only if w i |= Σ C .

 When the procedure "all combination" is called for the first time (line 3), the set of fact nodes causing the violation of the constraint C and an empty combination of actions are passed as parameters. The first node in cause_nodes is selected and removed from the list. Then, for each action node action_node allowing to provide the selected node (each parent node in the graph), we make a new copy copy_combination of combination, insert action_node into copy_combination, and call recursively the procedure using the cause_nodes and copy_combination. When a recursive call reaches the termination case (line 7), we are sure to have for each fact node in cause_nodes, an action node in combination that provides it. Moreover, since we have a recursive call for each action node providing a fact node in cause_nodes, obviously we will get all possible combinations of actions leading to violate the constraint C. Given a violated security constraint C, a set of cause nodes CN = {n 1 , • • • , n n } representing the set of fact nodes that causes the violation of C, the complexity of the algorithm 8 is O(n i=1 l i) in time, where l i is the number of different actions providing the fact node n i .

	6.3. SECURITY MECHANISMS PLANNING TO ENFORCE SECURITY	
	POLICIES	123
	ment from cause_nodes (line 11) during each new recursive call, we can deduce
	that algorithm 8 terminates .	
	2. Theorem 9. (Complexity).	

 create a mutual-exclusion between node a and C c \ {node a } . 2. If |C c | = 1, remove the action-node in C c and its corresponding effects from the planning graph . where |C c | represents the number of action-nodes in C c . Condition 1 ensures that if the number of action-nodes in C c is more that one, therefore we will create a mutualexclusion between each action-node node a in C c and the set of other action-nodes in C c . This allows in one side to ensure that no correct plan could possibly contain node a and C c \ {node a } together which allows to avoid the violation of the security constraint C, and on the other side to allow the largest subsets of action-nodes (C c \{node a }) in C c that do not violate C to be used together in the same plan. Condition 2 states that if C c is composed of only one action-node, therefore, the unique solution to avoid the violation of C is to remove the action-node in C c as well as its corresponding effects from the planning graph.

 Axiom Ax 1 specifies that if an entity e knows o enc (o enc represents the encrypted form of o using the key k) and the encryption key k, then e knows o. Axiom Ax 2 specifies that if a cloud storage server s knows an object o enc representing the encrypted form of o (o enc is sent to s) therefore we can consider that o is outsourced. Figure 6.3 presents a subgraph of the planning graph constructed for S. The no_op action is used to include the facts of the fact level i into the fact level i + 1. As we can see in the subgraph, the application of the two instances http_post(k 1 , s) and Figure 6.4 -The inference graph used to infer new facts from the level i + 1 of the planning graph in Figure 6.3http_post(o enc , s) of the action http_post will include two new facts knows(s, k 1) and knows(s, o enc) into the fact level i + 1. Now, based on the inference graph (Figure6.4), and using the instance Ax 1 (o, o enc , k 1 , s) of the axiom Ax 1 we deduce knows(s, o) which violates the confidentiality constraint. A bottom up analysis of the two subgraphs starting from knows(s, o) allows to conclude that the combination of actions that violates the constraint is composed of http_post(k 1 , s) and http_post(o enc , s) (we exclude the no_op action as it should be always applied). A mutual exclusion will be specified between http_post(k 1 , s) and http_post(o enc , s) to exclude all plans in which the two actions are simultaneously applied in the ith plan step.

	6.3. SECURITY MECHANISMS PLANNING TO ENFORCE SECURITY
	POLICIES										125
	fact level i			untrusted(s)		encrypted(o, k1, oenc)		trusted(u)	
							Mutual exclusion	
	action level i				no_op	http_post(k1, s)		http_post(oenc, s)	http_post(k1, u)	http_post(oenc, u)
	fact level i+1		untrusted(s)	encrypted(o, k1, oenc)	trusted(u)		knows(s, k1)		knows(s, oenc)	knows(u, o)	knows(u, oenc)
	Figure 6.3 -Subgraph of the planning graph constructed for Example 17
		untrusted(s)	trusted(u)	csp(s)	knows(s, k1)	knows(s, oenc)		encrypted(o, k1, oenc)	knows(u, o)	knows(u, oenc)
				no_op		Ax2(o, oenc, k1, s)	Ax1(o, oenc, k1, s)	Ax1(o, oenc, k1, u)
	untrusted(s)	encrypted(o, k1, oenc)	trusted(u)	knows(s, k1)	knows(s, oenc)	knows(u, o)	knows(u, oenc)	outsource(o, s)	knows(s, o)	knows(u, o)
							6.1)			
	-Ax 2 : ∀o, o enc , k, s. csp(s) ∧ encrypted(o, k, o enc) ∧ knows(s, o enc)
						→ outsource(o, s)	

 Definition 32. Consider an action-node an m in G representing the application of an instance of the security mechanism m over the object ob. Suppose that m provides CHAPTER 6. A REASONING METHOD FOR OUR FORMAL MODEL n security properties sp 1 , • • • , sp n and p utility properties up 1 , • • • , up p . The weight ω which will be assigned to an m is measured as following: where τ i ∈ [0, 1] represents the robustness level of the provided security property sp i , ν i ∈ [0, 1] represents the satisfiability level of the provided utility property up i , ε m ∈ [0, 1] is the deployment efficiency level of the mechanism m, and α ob ∈ [0, 1], β ob ∈ [0, 1], and δ ob ∈ [0, 1] represents respectively the security, utility, and deployment efficiency factors of ob such that α ob , β ob , and δ ob are complementary.

	n	p	
	ω = α ob	τ i + β ob	ν i -δ ob ε m
	i=1	i=1	

 6.3. SECURITY MECHANISMS PLANNING TO ENFORCE SECURITY POLICIES 127respectively by ob , ρ ob , and δ ob , which are specified by the data owner for the data object ob. For illustrative purpose, let us take a file f 1 storing information about the payment parameters used by the costumers of a company. The company attributes the value 0.8 to f 1 , 0.1 to ρ f 1 , and 0.1 to δ ob as it considers that the utility of f 1 as well as deployment efficiency of the policy over f 1 are not important compared to its security. As a result, the action-node in G representing a security mechanism applied over f 1 which ensures the highest level of robustness for security properties will have the highest weight compared to others having high providability of utility requirements, high deployment efficiency and weakly robustness for security properties. Consider a parallel planP = {p 1 , • • • , p n }. Suppose that each p i ∈ P is composed of l i action-nodes an i 1 , • • • , an i l i . Thescore Sc of P is: Consider a security policy SP and a set of parallel plans P 1 , • • • , P n in G each satisfying SP and all having respectively the scores Sc 1 , • • • , Sc n . A parallel plan P having the score Sc is the best parallel plan in {P 1 , • • • , P n } if the following condition holds:

	Definition 33. Sc =	n	l i	ω i j
		i=1	j=1	
	where ω i j is the weight of the action-node an i j measured according to the Definition 32.
	Definition 34.			

 From (C.12) and (C.14), we deduce that:f n n-1-j = f n k ∧ unsaf e_node(f n n-1-j , C i) (v).Then, from (C.10) and (C.15) we can deduce that:dominates(f n n-1-j , f n) (vi).Finally, from (iii), (v) and (vi) we can deduce a contradiction. Given a planning graph PG and a fact node f n belonging to the fact level f l m ∈ PG. The following condition holds:∀t : ground_taint(t) ∧ (t f n i |= t) → (t f n i = t) ∨ (∃f n , ∃j : j < m ∧ f n ∈ f l j ∧ t f n i = t ∧ dominates(f n , f n))Proof. Proof is by contradiction. Suppose that ∀t:

	f n n-1-j i	= t f n i	(C.14)
	∀j ∈ [1, l] : dominates(f n n-1-j , f n n-j)		(C.15)
	Lemma 4. ground_taint(t) ∧ t f n i |= t	(C.16)
	t f n i = t	(C.17)

¬(∃f n , ∃j : j < m ∧ f n ∈ f l j ∧ t f n i = t ∧ dominates(f n , f n)) (C.

[START_REF] Bloom | Space/time trade-offs in hash coding with allowable errors[END_REF]

 Then based on (C.16) and (C.[START_REF] Rivest | On data banks and privacy homomorphisms[END_REF] we deduce that t f n i = t or (Case 1.1: t f n i = t. we deduce a contradiction with (C.17). Case 1.2: (|= t. By definition, Ω f n represents the set of action nodes that provide f n. Then if we suppose thatPL = {P 1 = {p 1 1 , • • • , p 1 m-1 }, • • • , P n = {p n 1 , • • • , p n m-1}} is the set of all parallel plans that correctly provide f n, then we have the following: ∀P l ∈ PG : (Using the taint propagation rule (1) together with (C.21), we continue to get: ∀P l ∈ PG : Then, based on the Definition 38 and (C.22), we can deduce that:

					an∈Ω f n	t an i) |= t.
	an∈Ω f n	t an i) an∈p l m-1	t an i) |= t.	(C.21)
			(t f n m-1 i) |= t.	(C.22)
		an∈p l m-1	f n m-1 ∈∆an
			t an i)	(C.20)
			an∈Ω f n	

t f n i ∧ (

 |= t ∧ vio_taint(t, C i) 2. ∃P N i ∈ PL N that correctly provides f n 1 , • • • , f n n without violating C iBased on Definition 44, we get:

	1. (n	t f n j
	j=1	

i)

Data in transit is data being accessed over the network, and therefore could be intercepted by someone else on the network or with access to the physical media the network uses

inactive data which is stored in relational database

active data which is stored in relational database

Attribute selectivity is is an estimated number that determines the effectiveness of queries that performs a search over this attribute.

i.e. a query that cannot be executed over only one fragment.

Anonymization-based mechanisms are based on data generalization consisting on replacing each value in the object to be anonymized with a broader category, however this is will not be feasible if those values are encrypted.

In our reasoning method, security and utility requirements are either wholly satisfied or wholly violated, which allows our reasoning method only to deal with limited-scale policies

Acknowledgement

CHAPTER 6. BEST EFFORT SECURITY MECHANISMS PLANNING

Rule 2:

Given a planning graph PG and a fact node f n belonging to a fact level f l m in PG and having the set of taints T f n = {t f n 1 , • • • , t f n l } (produced by a safe/unsafe node tainting). Suppose that f n is linked to n action nodes an 1 , • • • , an n (∀i ∈ [1, n] : f n ∈ Σ an i) belonging to the action level al m-1 , and that each action node an i is tainted with

} where is defined as following:

The Rule 2 specifies the propagation of taints from an action level to a fact level in the planning graph. More exactly, it states how the taints are propagated from an action node representing an instance of a mechanism to a set of fact nodes representing its effects.

Algorithm 9 describes how taints are propagated in the different fact levels and action levels of the planning graph. For each fact level f l in the planning graph G, we start by checking if it is the first in G (line 3). If not, obviously, there exists an action level al which contains actions producing the fact nodes in f l. The foreach loop (lines 4 to 12) describes the taint propagation from the action nodes in al to the fact nodes in f l using the propagation rule 2. The function in_edges returns the set of action nodes having fact_node as effect.

The foreach loop (lines 14 to [START_REF] Fredman | Storing a sparse table with 0(1) worst case access time[END_REF] describes the security constraints violation checking and the tainting of the fact nodes that cause the violation of a security constraint (according to the Definition 44). In the line 20, we use the function taint_safe to taint all untainted fact nodes in f l with "∅" taints as we are sure that these fact nodes don't lead to violate any security constraint in SC. In the last part of the Algorithm 9 (lines 21 to 32), we first check if f l is the last fact level in G. If not, we can be sure that there exists an action level al containing action nodes that need a subset (or all) the fact nodes in f l to be performed. We use then the propagation rule 1 to propagate the taints from the fact nodes in f l to the action nodes in al.

Theorem 11. (Taint propagation complexity) Given a planning graph

A Expression et déploiement de politiques de sécurité intégrées pour données externalisées

A.1 Introduction

L'externalisation des données donne lieu à de nombreux problèmes de sécurité, principalement, en raison de la perte du contrôle physique sur les données externalisées. D'un côté, faire respecter la confidentialité des données dans les environnements de stockage Cloud devient plus difficile lorsque les données sont stockées et gérées par des tiers non fiables. Une solution possible consiste à chiffrer les données qui seront externalisées sur la machine du propriétaire de données (qui est censé être fiable) avant de télécharger ces données sur le serveur de stockage Cloud. Le chiffrement des données externalisées est considéré comme étant la dernière ligne de défense efficace pour protéger la confidentialité des données à la fois des utilisateurs externes non autorisés et les administrateurs malveillants des serveurs de stockage Cloud. De toute évidence, si les clés de chiffrement ne sont pas compromises par un pirate ou un administrateur malveillant qui gère le serveur Cloud, la confidentialité des données externalisées reste assurée. Cette solution est inutile lorsqu'il s'agit d'externaliser de grandes bases de données de production.

Le premier objectif de cette thèse est de définir de nouvelles solutions permettant d'assurer le meilleur compromis entre la confidentialité et l'utilité des données externalisées. Pour atteindre cet objectif, nous proposons les contributions suivantes : qui connaît quoi, devient particulièrement importante. La logique épistémique est donc utilisée pour spécifier les connaissances des entités impliquées dans le processus d'Äôexternalisation de données. Le modèle formel défini nous a permit de: de données hésitent à faire confiance aux fournisseurs de services pour la sécurisation de leurs données sensibles externalisées. Les recherches menées dans cette thèse peuvent être étendues dans plusieurs directions:

• Ètendre notre modèle formel pour permettre de spécifier et déployer d'Äôautres exigences de sécurité (p. ex., L'authentification de données et d'entités, l'actualisation des données, la preuve de possession, etc.),

• Adapter notre solution pour pouvoir l'appliquer sur des données non structurées (p. ex., BigData),

• Adapter notre modèle pour pouvoir l'utiliser dans la génération automatique des protocoles de sécurité.

B The Specification of the System Used to Evaluate our Approach Proposed in Chapter 6

The system we used to evaluate our security mechanisms planning approach (Chapter 6) is specified using STRIPS-like planning domains [START_REF] Fikes | [END_REF] in two files: a domain file and a problem file.

The domain file describes the language to be used to specify a target system by defining the different predicates that are to be used in the specification. It includes also the specification of: a set of mechanisms that can be used to enforce a security policy, a set of axioms that will be used to infer new facts and knowledge about the used domain, and a set of security constraints that should be enforce over the target system. Listing B.1 shows the content of the used domain file.

The problem file contains three main parts: A first part describing the (typed) objects that compose the target system. A second part describing the initial state of the target system. And the last part describes the set of goals that should be reached. Listing B.2 shows the content of the used problem file.

Listing B.1 -The domain file used in the evaluation of our security mechanisms planning approach (Chapter 6)

(d e f i n e (domain p o s e i d o n)

(: r e q u i r e m e n t s : s t r i p s : e q u a l i t y : t y p i n g) (: t y p e s OBJ USER COBJ PROP WATERMARK)

m-1 represent respectively all the combinations of action nodes that provide f n i . Then obviously, the set of all combinations of action nodes that provides N is {

}. Then we deduce that (i) is true for j = m -1. Now let us assume that (i) is true for j=2. Then we have:

Suppose that each p i l ,l 2 is composed of the set of nodes

, and that each

all the combinations of each action nodes that provides N i l ,l t . Then we can deduce that:

We can deduce from (C.1) that the set of action nodes

an i l ,l t which allows as to deduce that:

APPENDIX C. PROOFS OF THEOREMS AND LEMMAS OF CHAPTER 7

Finally, using (C.3) and (C.4) we deduce that p k,N 1 = r l=1 p i l ,l 1 . (ii) can also be proved by recursion using the same method used to prove (i).

C.2 Proof of Lemma 2

Since f n 2 dominates f n 3 , suppose that P 1 , • • • , P n are the set of parallel plans that correctly provide f n 3 we can deduce that:

Also, since f n 1 dominates f n 2 , we can deduce that:

Then from (C.6) we can deduce that f n 1 dominates f n 3 .

C.3 Proof of Theorem 11

The application of the rule 2 represented in Algorithm 9 by the foreach loop (lines 4 to 12) has, in the worst case, computational complexity O(m×p i ×q i-1) as we can suppose that each fact node in the fact level f l i is an effect of each action node of the action level an i-1 . The tainting of the nodes causing the violation of security constraints is performed in Algorithm 9 through the foreach loop (lines 14 to 19) and has, in the worst case, computational complexity O(m × p i) since we suppose that all fact nodes in the fact level f l i can be used to violate all security constraints in SC. The complexity of the application of the rule 2 represented in Algorithm 9 by the foreach loop (lines 21 to 32) is in the worst case O(m × p i × q i) since we can suppose that each fact node in the fact level f l i is a precondition of each action node of the action level an i . The computational complexity of the Algorithm 9 is therefore

C.4 Proof of Theorem 12

To prove the Theorem 12, we will use the following Three Lemmas. Where

Lemma 3. Given a set of constraints

is the set of parallel plans that correctly provide f n 2 . Then, using the propagation rule 1 we deduce that:

Now let us demonstrate by recurrence that:

Based on the propagation rule 2, we get:

We continue using Definition 30 ((iii) and (iv)) to get:

Let us suppose that : ∀k ∈ [1, k], ∃an m-2 : an m-2 ∈ p w m-2 ∧ t an m-2 k |= t, and based on the propagation rule 2 we deduce that:

Then by using Definition 30 ((iii) and (iv)) to get:

which prove the correctness of (C.29). Finally, by using Definition 30 ((v) and (vi)), we deduce that:

Now we can prove Theorem 12 as following.

Proof.

(1) Proof is by contradiction. Let us assume that:

C.4. PROOF OF THEOREM 12

Let us suppose that

m-1 }} is the set of r j correct plans that provide each f n j ∈ N . Then by considering that t f n i and t f n k i are unique and based on (C.35), we get the following:

Based on (C.30) we have:

Then we are able to deduce that

}} represents the set of all parallel plans that correctly provide N . Then by using the Theorem 1, we get the following:

From (C.36) and (C.37) we get:

Finally, from (C.30) and (C.38), we can deduce that there is no parallel plan that could provide the set of nodes f n 1 , • • • , f n n without violating the constraint C i , which is contradictory with (2).

(2) Proof is by contradiction. Let us assume that:

Based on the fact that each ground literal used to specify the target system is represented by a fact node in PG. Then, based on Definition 39 and the assumption (2) we get:

Based on the fact that each ground literal used to represent the target system is represented by a fact node in PG, we can use Definition 39 to deduce that:

. Now let us suppose that:

C.5 Proof of Theorem 13

We prove the previous theorem by a reduction from the NP-hard problem of cuttingstock problem [START_REF] Garey | [END_REF], which is formulated as follows: Cutting standard-sized pieces of stock material into a set pieces of specified sizes while minimizing material wasted. We define the correspondence between the problem of finding the best compromise between satisfying a set of goals and ensuring a set security constraints and cutting-stock problem as follows. Let us suppose that an autonomous system aims to satisfy a set of goals G = {G

List of Publications International Journals

• A. Bkakria, F. Cuppens, N. Cuppens-Boulahia, J. M. Fernandez, and D. Gross-Amblard. Preserving multi-relational outsourced databases confidentiality using fragmentation and encryption. JoWUA, 4(2):39-62, 2013.

International Conferences