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Contexte
Le système de transport maritime, défini comme l’union des ports, canaux et cours d’eau, est le
pilier du commerce au niveau mondial. En 2005, 90% (par volume) du commerce international
a été effectué par voie maritime [1]. Plus récemment, la sécurité portuaire et maritime a émergé
comme une partie significative de la sécurité mondiale [2]. Le système de transport maritime
a été conçu pour être efficace et rapide, ainsi toute perturbation amenée à ce système peut
conduire à des pertes économiques importantes et/ou des pertes en vies humaines. En [2] un
exemple à ce titre à été donné : la fermeture des ports sur la coté ouest des États Unis, pendant
5 jours consécutifs, entrâınera des pertes de plus de 1 milliard US$. La plupart des analyses de
sécurité montre les vulnérabilités des zones portuaires aux potentielles attaques qui pourront
bloquer le port et causer des pertes économiques et en vies humaines. Comme souligné en [2],
cela pourrait être obtenu par le naufrage de grands navires, tels que des porte-conteneurs, des
navires de transport de gaz liquéfié ou même des ferries. Par conséquent, une attention très
importante doit être apportée à l’inspection et l’imagerie des zones sous-marines dans les ports
ainsi que dans les voies navigables.

Les systèmes sonar et des autres capteurs sous-marins sont de plus en plus employés pour
la sûreté portuaire et la détection des intrusions [3–5], avec une prévalence pour les systèmes
de sonar latéral acquérant des images sous-marines de haute qualité et à un prix abordable.
Tous les sonars d’imagerie sont des systèmes actifs, ce qui signifie qu’ils émettent un signal et
enregistrent le signal rétrodiffusé par l’environnement sous-marin. En effet, les sonars à balayage
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Résumé

latéral fournissent des images, de haute résolution, de l’amplitude du signal rétrodiffusé par fond
marin. Par exemple, 6 cm pour la résolution en distance du sonar EdgeTech 4600 [6]. D’ailleurs
les capacités de résolution des sonars latéraux peuvent être améliorées avec un traitement à
synthèse d’ouverture [7,8]. Des images provenant de systèmes sonar à balayage latéral à haute
résolution sont nécessaires pour la détection des mines et des dispositifs explosifs improvisés
[9]. La reconstruction en trois dimensions (3D) du fond marin, représentée par des cartes de
profondeur (appelée aussi bathymétrie), est plus complexe et s’effectue traditionnellement avec
l’aide des antennes sonars aux capteurs déphasés.

Dans les eaux profondes, la bathymétrie est habituellement réalisée avec des sondeurs mul-
tifaisceaux [10], qui sont constitués de deux réseaux des capteurs déphasés linéaires et orthogo-
naux. Tandis que dans les eaux peu profondes, comme les ports et les canaux, la bathymétrie
est habituellement obtenue avec des sonars bathymétriques à balayage latéral [11, Ch.3.3.1],
avec un unique réseau des capteurs linéaires. Pour un sonar bathymétrique latéral, un cycle
émission réception (appelé ping) est présenté dans la Figure 1.

Largeur du faisceau

Case distance

SONAR

st

θt

1

M

st

[a(θ)]k = exp(−j2π
λ ∆k sin(θt))

Déphasage :

Signal source st

a) b)

Figure 1 : Principe de l’imagerie sous-marine par sonar : a) Géométrie de la fauchée d’émission
et le signal rétrodiffusé. b) Antenne réceptrice du sonar avec DOA du signal rétrodiffusé.

Un tel sonar est conçu pour insonoriser une fauchée fine sur le fond (ouverture à 1o pour
l’antenne EdgeTech 4600) et d’enregistrer le signal rétrodiffusé. L’allure de cette fauchée est
présentée dans la Figure 1 a), où pour chaque instant d’échantillonnage t, la case distance cor-
respondante génère un signal rétrodiffusé st, appelé signal source. L’antenne réceptrice contient
M capteurs déphasés qui enregistrent le signal source st. Le retard et le déphasage du signal
reçu par chaque capteur (par rapport au premier capteur) dépendent de l’angle d’arrivé (DOA)
du signal source θt. On définit la trajectoire DOA de l’écho du fond comme la série temporelle
des DOA θt des signaux sources rétrodiffusés tout au long de la fauchée sonar. La courbe de
cette trajectoire DOA est modulée par le relief du fond contenu dans la fauchée sonar. Ainsi,
la bathymétrie est obtenue par la triangulation (i.e. estimation DOA) de l’écho rétrodiffusé par
des cibles étendues comme le fond marin ou diverses structures [12], [10]. L’interférométrie ainsi
que des autres méthodes de traitement d’antenne sont employées pour estimer la DOA de la
cible visée. La bathymétrie est ensuite obtenue par l’inversion de la relation entre le relief du
fond et la trajectoire DOA, comme détaillé dans la Section II.1.

Il est à noter que aujourd’hui il y a une demande croissante pour des sonars bathymétriques
à balayage latéral qui peuvent effectuer à la fois de l’imagerie 2D de l’amplitude rétrodiffusée
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et de la reconstruction bathymétrique en 3D simultanément, sans la nécessité d’un recalage
ultérieur, ce qui représente un avantage majeur dans les applications de détection de mines.

Les principaux défis
Les travaux menés dans cette thèse sont destinés à améliorer la poursuite des cibles multiples
avec des antennes sonars aux capteurs déphasés pour atteindre une meilleure reconstruction du
relief pour les eaux peu profondes. Les données réelles utilisées dans cette étude sont obtenues
avec le sonar bathymétrique à balayage latéral EdgeTech 4600. Ces données ont été acquises
dans un environnement peu profond, plus précisément dans le port des Everglades à Fort
Lauderdale en Floride, USA. Les défis majeurs abordés dans notre travail seront présentés dans
la suite.

• Les environnements marins peu profonds sont des milieux de propagation encombrés, qui
présentent une propagation à trajets multiples et réverbération, ce qui limite l’efficacité
des méthodes de traitement d’antenne classiques [13–15]. Comme indiqué dans le Cha-
pitre II de cette thèse, la surface de la mer joue un rôle important dans la génération
des multi-trajets. Le signal rétrodiffusé par le fond marin se propage à travers le guide
d’onde formé entre les deux surfaces : le fond marin et la surface d’eau. La propagation
du signal source, par un tel guide d’onde, génère plusieurs répliques : l’écho direct, des
reflets ayant des DOAs distinctes et de la réverbération avec DOA diffuses. Les reflets
et la réverbération représentent des interférences, la composante de réverbération étant
considérée comme du bruit, tandis que les reflets cohérents sont modélisés comme des
signaux sources à DOA distinctes. D’ailleurs, en fonction du phénomène de dispersion, les
reflets et la réverbération montrent divers degrés de dépendance sur le signal de la source
d’origine.

• Une autre difficulté provient de la non-stationnarité des signaux sources. En effet, pour
l’estimation des positions des cibles cinématiques ou des échos bathymétriques, le signal
antenne est un processus stochastique non-stationnaire. Dans la bathymétrie, les signaux
d’intérêt sont les signaux rétrodiffusés par le fond marin ou par un certain objet d’intérêt.
En conséquence, les caractéristiques des signaux sources, notamment leur DOA, évoluent
avec le profil de l’environnement sous-marin. On peut dire que la trajectoire DOA de l’écho
du fond est modulée par le relief du fond marin contenu dans la fauchée sonar. Cela est vrai
même pour les surfaces horizontales et plates, où la trajectoire DOA de l’écho rétrodiffusé
se présente sous forme d’une parabole. Ainsi, les DOAs de signaux source ne sont pas
constantes, et forment des trajectoires spécifiques (des fonctions du temps). Cela implique
que les statistiques de second ordre des signaux sources sont dépendantes du temps. Les
méthodes de traitement d’antennes classiques nécessitent la stationnarité des signaux dans
une fenêtre temporelle. Dans des environnements légèrement non-stationnaires, le traite-
ment utilisant une fenêtre glissante peut encore être considéré. Cependant, les méthodes
de traitement en ligne, i.e. méthodes de filtrage, sont nécessaires pour des situations plus
générales, qui peuvent présenter des signaux fortement non-stationnaires.

• Des spécificités du traitement d’antennes sonar sont la présence des cibles angulairement
distribuées et de signaux sources avec du bruit impulsifs. Les méthodes de traitement
d’antennes considèrent l’estimation DOA des cibles angulairement distribués (ou étendus)
dans le contexte stationnaire avec des cibles à étalement angulaire connu [16–18] ou
inconnu [19]. La pertinence de signaux non-gaussiens et impulsifs dans le traitement
radar/sonar est présenté dans [20]. Pour les signaux sonar présentés dans ces travaux,
dans l’Annexe H, on démontre leur nature non-gaussienne et impulsionnelle. Dans le
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traitement d’antennes, les signaux non-gaussiens et le bruit sont abordés dans [21–23]
pour le cas stationnaire. Cependant, le traitement des cibles à étalement angulaire avec
des signaux non-gaussiens et non-stationnaires n’a pas encore été abordé.

• Les cibles multiples peuvent survenir dans l’estimation des cibles cinématiques ainsi que
dans les applications de bathymétrie. Pour la bathymétrie, des échos multiples peuvent
provenir de la propagation à trajets multiples ou dans la situation où des objets verticaux
de grande taille sont présents sur le fond marin, par exemple épaves, digues, poteaux, etc.
Les trajectoires DOA des différents échos non-stationnaires doivent être estimées pour que
les échos soient identifiés et séparés pour l’étape de reconstruction bathymétrique. Lorsque
des modèles d’états sont utilisés pour représenter les états des cibles/échos, l’estimation de
leurs états devient synonyme de pistage multi-cible. Dans ce travail, comme on s’intéresse
à l’estimation des DOA des échos, les états associés aux différents échos vont contenir
leurs DOA et potentiellement des autres paramètres. Le pistage multi-cible représente un
domaine de recherche actif, avec des méthodes modernes s’appuyant sur des modèles de
processus ponctuels et sur le filtre d’intensité. Dans une telle approche, une collection d’un
nombre aléatoire des cibles/échos ayant des états Markoviens est associée à un processus
ponctuel.
Le filtre d’intensité est un filtre qui propage une approximation au premier ordre - la
fonction d’intensité, au lieu de propager la densité du processus ponctuel [24], opération
qui s’avère être difficile à mettre en place dans la pratique. Le filtre d’intensité, aussi connu
comme le filtre Probability Hypothesis Density (PHD), est bien adapté pour traiter un
nombre inconnu et variable de cibles avec états inconnus. Cependant, les filtres d’intensité
existants ont été dérivés pour les modèles d’observation qui supposent une contribution
déterministe de chaque cible. Dans le traitement d’antennes, il est courant de supposer les
signaux sources, conditionnellement à leurs états, comme aléatoires. Ainsi la contribution
à l’observation antenne d’une telle cible est aléatoire et les filtres d’intensité existants
dans la littérature ne s’appliquent pas. C’est d’autant plus vrai pour la bathymétrie, où
le signal source a une nature très fluctuante et qui est obtenue par la somme des signaux
émis par des rétrodiffuseurs élémentaires contenus dans la cellule de résolution. Dans
ce contexte, la proposition d’un filtre d’intensité pour le traitement des signaux sources
aléatoires, sans faire appel à un état augmenté, n’a pas été proposé.

Dans cette partie, les possibles solutions aux défis précédemment énumérés sont présentées
brièvement.

Objectifs et réalisations
Les modèles d’état pour le traitement d’antennes sont proposés dans un cadre de traitement
général pour les signaux non-stationnaires, qui modélisent l’évolution de l’état d’une cible
comme un processus de Markov caché. Les modèles d’état sont capables d’incorporer différentes
connaissances apriori sur l’évolution des cibles. L’objectif de cette thèse est double, d’une part
de proposer des filtres de poursuite multi-cibles pour les systèmes d’observation où la contribu-
tion d’une cible est aléatoire. Les méthodes proposées ont un caractère général, à savoir qu’ils
ne comptent que sur une description de l’état avec un processus d’état Markovien. D’autre part,
des modèles spécifiques pour la reconstruction bathymétrique sont proposés et les méthodes de
poursuite sont appliquées aux données bathymétriques-sonar.

D’une manière générale, les systèmes de poursuite peuvent être classés en : Track While Scan
(TWS) et Track Before Detect (TBD) [25]. Dans le cadre TWS, la poursuite est effectuée dans
une étape de post-traitement, sur des observations ponctuelles obtenues par un pré-traitement
appliqué au signal brut de l’antenne déphasée. L’étape de pré-traitement consiste généralement
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en un module de détection et d’estimation qui détecte la présence des cibles et donne une es-
timation grossière de leur position. Par conséquent, dans TWS les observations consistent en
un ensemble de points provenant de positions vraies des cibles, mais qui contiennent également
des mesures fausses générées par l’encombrement. Pour les données sonar bathymétrique, l’en-
combrement est constitué par les échos interférents générés par la propagation multi-trajets et
la réverbération volumique. De plus, même en l’absence de l’encombrement, l’ensemble d’ob-
servations est ambiguë parce que nous ne savons pas quel point d’observation appartient à
quelle cible. La non-détection des cibles est également possible. L’ensemble des points d’ob-
servation obtenus par le pré-processeur alimente le filtre de poursuite. Le rôle du module de
poursuite est d’éliminer les mesures erronées (i.e. fausses alarmes), de trouver des associations
observations-cibles et de filtrer la trajectoire de chaque cible avec son observation associée. Les
systèmes TBD ne recourent pas à un module de pré-traitement et considèrent directement le
signal d’antenne comme l’observation du système. L’avantage des systèmes TBD, par oppo-
sition aux TWS, provient de l’absence d’opérations de seuillage présentes dans le module de
pré-traitement et qui entrâıneraient une perte d’information. Effectivement, dans l’approche
TWS, le module de pré-traitement est non-adaptatif et il implique une certaine perte d’infor-
mation. Cet avantage devient important lors du traitement de signaux à rapport signal sur
bruit (SNR) faible. Cependant, cela se fait au prix d’une complexité importante des systèmes
TBD, en raison du modèle d’état fortement non-linéaire qui intègre désormais le signal antenne
comme observation.

Dans la première contribution aux méthodes de reconstruction bathymétriques, nous pro-
posons un système TWS avec l’objectif de poursuivre les trajectoires DOA de différents échos
impactant l’antenne déphasée, afin d’extraire uniquement les trajectoires correspondant au fond
marin. Le pré-processeur donne un ensemble de DOA estimées qui représente une estimation
grossière des DOA des échos présents dans le signal d’antenne. Cet ensemble est obtenu en deux
étapes. D’abord, le pré-processeur utilise des critères d’information, e.g. Akaike information cri-
terion (AIC), Minimum Description Length (MDL), pour estimer le nombre d’échos présents.
Ensuite, les DOA sont obtenus comme les maxima locaux du spectrogramme du signal d’an-
tenne. À noter que le spectrogramme est une densité angulaire de puissance du signal reçue par
l’antenne et qui est obtenue avec un estimateur à fenêtre glissante, e.g. formation de voies, Ca-
pon, méthode haute-résolution. De plus, ces deux étapes qui consistent dans une pré-détection
et une pré-estimation, peuvent être changées sans entrâıner de modifications dans le modèle
de poursuite ultérieur. Cette capacité d’adaptation présente un avantage majeur dans le cadre
TWS, mais aussi un inconvénient car le module de pré-traitement est non-adaptatif. Cepen-
dant, la décomposition TWS dans le pré- et post-traitement est régulièrement utilisé dans les
systèmes applicatifs et commerciaux [26], principalement en raison de sa mise en œuvre simple
et de sa complexité faible. Dans notre approche, la poursuite d’écho est perçue comme une
étape de post-traitement adaptatif par filtrage basée sur modèle. Le filtrage employé fait partie
des filtres d’association données probabilistes et enlève l’ambigüıté de l’ensemble d’observation
en donnant l’association optimale entre les cibles et les observations. L’association optimale
est déterminée selon un critère probabiliste. Le modèle du filtre incorpore des informations
apriori sur l’évolution temporelle des échos afin d’éviter les observations encombrées. Pour ce
faire, nous développons plusieurs modèles géométriques, qui représentent l’information apriori
incorporée dans l’étape de filtrage pour l’extraction de la bathymétrie. Une approche ”modèle
multiple”, qui suppose plusieurs modèles en parallèle, est utilisée pour augmenter la capacité
d’adaptation du filtre proposé sur les zones très irrégulières du fond marin. Une mesure de
la qualité de trajectoire, la probabilité de l’existence de trajectoire, est utilisée pour détecter
les zones d’ombrage acoustique et de terminer la poursuite. Plusieurs tests d’hypothèses sont
employés pour valider la pertinence des modèles proposés, à la fois pour les images sonar réelles
et simulées.
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Des enjeux majeurs, auxquels les filtres d’association donnés ne fournissent pas des solu-
tions rigoureuses, sont l’initialisation et la suppression de trajectoire/piste. Généralement, ce
sont réalisé en utilisant des règles d’initialisation ad-hoc sur la base des observations ponc-
tuelles. Dans le cadre de TBD ces méthodes d’initialisation ne sont pas facilement disponibles.
Cependant, une approche différente qui implique des processus ponctuels et de filtres d’inten-
sité (ou filtre PHD), peut intégrer d’une manière plus rigoureuse les processus de naissance
et de décès. Les filtres d’intensité ont été d’abord proposés pour les systèmes TWS en [27].
Récemment, dans [28] un filtre TBD-PHD a été proposé pour les modèles d’observation super-
posés, où l’observation du système est donnée par la somme des contributions de chaque cible.
Cependant, dans [28] les contributions individuelles de cibles, conditionnellement à leurs états,
sont déterministes. En revanche, l’observation d’une antenne déphasée est la superposition des
contributions aléatoires des différentes cibles.

En temps que deuxième contribution, basée sur le filtre PHD superposée, nous développons
un filtre TBD-PHD qui permet de poursuivre plusieurs cibles à partir directement des obser-
vations d’antenne déphasées. Plus généralement, le filtre proposé peut être employé pour des
systèmes TBD où la contribution d’une cible est aléatoire avec une distribution paramétrée par
l’état de la cible. Dans le cadre de l’application bathymétrique, les contributions représentant
les signaux sources qui, conditionnellement aux états des cibles, sont des variables aléatoires
gaussiennes. D’ailleurs, nous interprétons le processus ponctuel, utilisé pour modéliser l’état
multi-cibles, en conjonction avec les signaux sources comme un processus ponctuel marqué.
Les signaux sources représentant les marques, tandis que la fonction de l’intensité du processus
marqué intervient uniquement dans l’étape de mise à jour du filtre. Plus important encore, on
montre qu’il suffit de propager la fonction d’intensité du processus ponctuel par opposition à
l’intensité marquée qui est définie dans un espace de dimension plus élevée. En effet, la fonction
d’intensité du processus ponctuel est définie dans l’espace d’état des cibles (positions), tandis
que la fonction d’intensité marquée est définie dans l’espace produit - état et marques (l’es-
pace des signaux sources). Nous montrons qu’augmenter les vecteurs d’état avec leurs signaux
source n’est pas nécessaire, et que les marques peuvent être marginalisées dans les formules
de mise à jour du filtre. Cela conduit à des implémentations particulaires plus efficaces par
rapport aux solutions qui recourent aux vecteurs d’état augmenté. Ces dernières méthodes
exigent un échantillonnage des particules à partir d’une distribution de dimensions supérieures.
Le TBD-PHD proposé ne se limite pas uniquement aux applications bathymétriques, mais il
est développé pour des cibles dynamiques génériques observé par une antenne déphasée.

Pour la troisième contribution, nous étendons le modèle du signal source pour les cibles
étendues (i.e. angulairement dispersées) et pour des signaux à nature impulsionnelle (i.e. non-
gaussiennes). Les deux notions sont couramment rencontrées dans le domaine du sonar. Dans la
Figure 1 on peut remarquer que la cible, qui génère le signal source st, est un patch sur le fond
marin et ainsi, une cible implicitement étendue. De plus, en milieux peu profonds, les distances
antenne - cible sont faibles et la cible est vue sous un angle non-négligeable et qui entraine un
étalement du signal source dans le domaine angulaire, implicitement dans le spectrogramme.
Les signaux sonar traités dans cette thèse, ont des distributions à queue plus lourde que la dis-
tribution gaussienne, comme démontré dans l’Annexe H. Ce comportement des signaux sonar
à été souvent rencontré dans la pratique [29–32] et relève leur nature impulsionnelle. En plus,
pour améliorer les performances de poursuite, un filtre PHD Cardinalisé (CPHD) est considéré
dans l’approche TBD pour le traitement d’antenne, menant au filtre TBD-CPHD. Le filtre
TBD-CPHD propage, en plus de la fonction d’intensité, une distribution estimée sur le nombre
de cibles, appelée distribution de cardinalité. La propagation de la distribution de cardinalité
conduit à une inférence directe du nombre de cibles par des différents critères, par exemple
Maximum A Posteriori (MAP) ou Minimum Mean Squared Error (MMSE). Comme indiqué
précédemment, les signaux impulsifs sont fréquemment utilisés dans les applications de sonar
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et radar, avec la famille de distributions Spherically Invariant Random Vector (SIRV) étant
répandue dans la littérature. Par conséquent, un modèle joint-SIRV est utilisé pour des signaux
sources et le bruit de réverbération qui est capable de faire face à une grande variété d’obser-
vations non gaussiennes. Par exemple, le modèle SIRV employé incorpore les distributions de
Cauchy, de Laplace, la loi K mais aussi la lois Gaussienne. À cet égard, le filtre TBD-CPHD
généralise le filtre TBD-PHD précédemment proposé, d’un coté méthodologique mais aussi du
modèle du signal sonar. Du point de vue méthodologique, le filtre CPHD utilise une distribution
de cardinalité générique, et par conséquent est plus flexible que le filtre PHD qui suppose une
distribution de Poisson. De plus, l’estimation et la propagation de la distribution de cardinalité
permet de améliorer l’estimation du nombre des cibles par rapport au filtre PHD. Du coté
modèle, le modèle de cible ponctuelle et signal source gaussien auparavant employé, représente
un cas particulier du modèle de cible étendue avec les signaux SIRV. En plus, nous proposons
une implémentation particulaire complètement auxiliaire du filtre TBD-CPHD, qui utilise l’ob-
servation courante dans les étapes d’échantillonnage des particules persistantes (correspondant
aux cibles déjà existantes) et des particules de naissance (correspondant aux cibles naissantes).
L’implémentation complètement auxiliaire représente une amélioration des implémentations
précédemment proposées dans la littérature, où l’observation courante est employée seulement
pour les particules de naissance.

Plan détaillé de la thèse
Le Chapitre II présente des filtres de poursuite TWS basés sur les méthodes d’association
données. Ces filtres sont employés pour reconstruire une image 3D à haute résolution du fond
marin pour des applications en temps réel. La poursuite assure la formation et la séparation des
trajectoires DOA bathymétriques et celles provenant des échos interférents (réverbération volu-
mique et propagation multiple). Le repliement (layover en anglais) est un phénomène limitant
pour les images 2D d’amplitude, où une partie de l’image n’est pas visible à cause d’un objet
vertical de grande dimension, par exemple un poteau ou une digue. Le phénomène de repliement
est résolu par la poursuite simultanée des échos du fond et de l’objet vertical. Cette approche
TWS suppose un module de pré-traitement qui donne une première estimation grossière des
DOA des échos présents dans le signal antenne. Plus précisément, le module de pré-traitement
consiste en des méthodes de traitement d’antenne classique (e.g. formation de voie, Capon, MU-
SIC) et une méthode de détection du nombre des sources (e.g. AIC, MDL, BIC). La méthode de
traitement d’antenne sert pour construire un spectrogramme du signal antenne, avec les pics de
spectrogramme représentant des DOA estimés grossièrement des échos. L’ensemble ainsi formé
est utilisé comme observation pour le module de poursuite par filtrage d’association donnée
probabiliste (PDAF). Pour gérer l’association des observations multiples aux trajectoires mul-
tiples, une approche ”plus proche voisin” (Nearest Neighbour) est employée. Ainsi le filtre est
capable d’éliminer l’incertitude associée à l’ensemble des observations fourni par le module
de pré-traitement et d’obtenir des trajectoires DOA régularisées et sans fausses détections.
Des modèles géométriques sont utilisés pour caractériser les trajectoires DOA de cibles dans
un contexte bathymétrique. Dans une approché Interacting Multiple Models (IMM), plusieurs
modèles sont utilisés en parallèle afin d’augmenter la capacité d’adaptation du filtre proposé. De
plus, ces modèles présentent également une segmentation de l’image 3D en fonction du modèle
prédominant et fournissent des informations utiles pour l’identification des infrastructures. De
plus, une probabilité d’existence de trajectoire est estimée de façon adaptative en parallèle
avec le filtrage. Cette probabilité d’existence de trajectoire est utilisée pour détecter les zones
d’ombrage acoustique et ainsi, la terminaison des trajectoires. Le filtre résultant est nommé
filtre NN-IMM-IPDA-UKF et est implémenté en utilisant plusieurs filtres Kalman sans parfum
(UKF). Des tests d’hypothèse (goodness of fit) sont utilisés pour valider les traitements et
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Résumé

différents modèles proposés. L’implémentation relativement simple de la NN-IMM-IPDA-UKF
donne un algorithme adapté pour les applications temps réel. Cela constitue un avantage ma-
jeur de cette approche dans la poursuite des échos DOA. Cependant l’inconvénient réside dans
le module de pré-traitement qui représente un module non-adaptatif et qui entraine une cer-
taine perte d’information. De plus, le module de pré-traitement a besoin de traiter une fenêtre
d’échantillons du signal antenne pour produire un spectrogramme significatif. En conséquence,
le traitement TWS entraine une perte de résolution de l’image reconstruite.

Dans les chapitres suivants, nous proposons un schéma alternatif de traitement qui ne
dépend pas d’un module de pré-traitement (détection/estimation), mais qui poursuit direc-
tement les échos à partir des observations de l’antenne sonar déphasée. Cette approche TBD
permet de poursuivre les échos de faible SNR mais aussi de donner une estimation DOA filtrée
pour chaque échantillon du signal antenne sonar, réalisant une bathymétrie à super-résolution.
Néanmoins, les algorithmes de suivi TBD résultant, sont plus complexes que les méthodes TWS.

Dans le Chapitre III des filtres d’intensité sont développés pour la poursuite des cibles
multiples directement des observations de l’antenne déphasée, dans un cadre TBD. La fonction
d’intensité (ou la fonction PHD) est le moment de premier ordre de la densité d’un processus
ponctuel (ou équivalente d’un ensemble fini aléatoire) et décrit à la fois le nombre aléatoire
de cibles et leurs vecteurs d’états aléatoires. En conséquence, un filtre d’intensité est considéré
comme un filtre de premier ordre, qui propage une approximation de la vraie distribution a
posteriori. Le chapitre commence par l’introduction de quelques définitions et les résultats liés
à la théorie processus ponctuels. Historiquement, le filtre PHD pour les systèmes TWS a été le
premier filtre d’intensité proposé. Pour les systèmes d’observations superposées, où l’observation
est une superposition des contributions des cibles individuelles, le filtre PHD superposé a été
récemment proposé.

Basé sur le filtre PHD superposé, nous proposons un filtre TBD-PHD pour les antennes
déphasées pour la poursuite de plusieurs cibles. On considère ici un modèle de cible ponc-
tuelle. Les signaux sources, conditionnés par leurs états de cibles, sont des variables aléatoires
gaussiennes, ce qui rend impossible l’application directe du filtre PHD superposé. Une solution
possible est d’augmenter le vecteur d’état de chaque cible avec le signal source. Cependant une
telle solution est inefficace, en particulier pour les implémentations à base de filtre particulaire.
En effet, dans les filtres particulaires à état augmenté, l’échantillonnage des particules s’effectue
à partir d’une densité définie sur l’espace correspondant au vecteur augmenté, ce qui est ineffi-
cace. En revanche, nous considérons un processus ponctuel de Poisson marqué qui est capable
de caractériser le nombre de cibles, leurs vecteurs d’état et les signaux sources. Les marques
représentent les signaux sources, supposés gaussiens conditionnellement aux états des cibles.
Nous montrons que les marques de cibles peuvent être marginalisées analytiquement dans les
équations de mise à jour du filtre TBD-PHD. En conséquence, le filtre doit uniquement propa-
ger la fonction intensité/PHD du processus ponctuel qui décrit les positions des cibles et évite
la propagation d’un état augmenté. Plus généralement le filtre développé est utilisable pour
tout système TBD super-positionnel où la contribution d’une cible, conditionnellement à son
état, est aléatoire avec les paramètres de la distribution donné par l’état de la cible. Grâce aux
formules marginalisées du filtre TBD-PHD proposé, le filtre admet une implémentation parti-
culaire plus efficace que les filtres à état augmenté. Cependant, en raison d’une approximation
gaussienne employée pour la pseudo-vraisemblance [voir Eq. (III.37)], le poids de la fonction
d’intensité estimée devient très fluctuant et ne représente plus un estimateur efficace du nombre
moyen des cibles dans une région spécifique. Par conséquent, une méthodologie de clustering
est employée qui estime à la fois le nombre de clusters et les centres des clusters. Parmi les
méthodes de clustering existantes, la méthode DBSCAN a été choisie. À notre connaissance,
ceci est le premier filtre de poursuite à employer la méthode de classification DBSCAN. La
DBSCAN a quelques avantages par rapport aux méthodes classiques basées sur la méthode
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k-means. Tout d’abord, la DBSCAN ne nécessite pas la connaissance préalable du nombre de
groupements, et fournit une estimation du nombre de cibles et de leurs vecteurs d’état respec-
tifs. Deuxièmement, la DBSCAN considère l’existence de points aberrants (outliers en anglais)
dans l’approximation particulaire de la fonction d’intensité. Les valeurs aberrantes représentant
un problème pour les méthodes type k-means. De plus, la méthode de clustering DBSCAN est
utilisable dans les scénarios à zéro-cible, autrement dit, où seulement des valeurs aberrantes
sont présentes. En effet, l’utilisation de la méthode DBSCAN pour la poursuite multi-cible
constitue une première et elle améliore considérablement les résultats par rapport à la méthode
k-means-silhouettes proposée dans [28].

Le filtre cardinalisé PHD (CPHD) présente une solution à la problématique du poids très
fluctuant de la fonction de PHD estimée. Le filtre TBD-CPHD est proposé pour la poursuite
des cibles multiples à partir des observations d’antennes déphasées non-gaussiennes (modélisées
comme processus SIRV) et générées par des cibles réparties angulairement. En plus de la fonc-
tion d’intensité, le filtre CPHD propage également la distribution de cardinalité, i.e. la distribu-
tion sur le nombre de cibles. Cela permet une estimation plus directe du nombre de cibles. Les
deux quantités - l’intensité et la distribution de cardinalité sont interdépendantes, la distribu-
tion de cardinalité est employée dans l’estimation de la fonction d’intensité et réciproquement.
Ainsi, la distribution de cardinalité améliore non seulement l’étape d’inférence des états de cible
mais également la précision de la fonction d’intensité elle-même. Cela améliore considérablement
les performances du filtre TBD-CPHD par rapport au filtre TBD-PHD. Le filtre TBD-CPHD
et le modèle de signal source sont décrits davantage dans le Chapitre IV. De plus, dans un
effort pour se rapprocher des scénarios réels, le TBD-CPHD est développé pour un modèle de
cible angulairement distribuée (étendue) avec des observations impulsives. Les environnements
acoustiques sous-marins présentent des signaux impulsifs ou même de distributions à queue
lourde. Dans ce travail, nous employons le modèle général de signal SIRV capable de décrire à
la fois les signaux impulsifs et celles à queue lourde, avec la distribution de Laplace multivariée
plus spécifique pour les expériences sur des données réelles. Comme pour le filtre TBD-PHD, les
signaux source sont analytiquement marginalisés dans les équations de mise à jour de l’intensité
et de la distribution de cardinalité, ce qui assure une implémentation efficace du filtre.

Une implémentation particulaire améliorée du filtre TBD-CPHD est proposée en employant
une étape auxiliaire pour les particules persistantes ainsi qu’une distribution IS adaptative pour
les particules naissantes. L’implémentation résultante est nommée Completement Auxilière
(CA-CPHD). Le CA-CPHD utilise l’observation courante dans l’étape d’échantillonnage des
deux ensembles des particules - persistantes et naissantes. Les résultats sur des données si-
mulées montrent une amélioration de la performance du filtre proposé par rapport aux méthodes
récentes. De plus, le filtre proposé est appliqué à des données réelles issues d’un sonar ba-
thymétrique.

Une des limitations majeures de tous les filtres d’intensité, comme indiqué dans la partie
résultats TBD-CPHD sur données réelles, est l’incapacité d’identifier une piste entière (la ou
les trajectoires). L’identification d’une trajectoire consiste à associer une étiquette unique à
tous les états inférés qui appartiennent à la même cible tout au long de l’enregistrement sonar.
Cette problématique est intrinsèque aux processus ponctuels, qui considèrent les cibles comme
des points indissociables. L’identification des trajectoires entières, depuis leurs débuts jusqu’à
leurs fins, est importante pour pourvoir ensuite classifier les trajectoires DOA en trajectoires
pertinentes et non-pertinentes pour une application spécifique. La succession des ensembles
de DOA inférées, offerts par les filtres TBD-PHD et TBD-CPHD, n’est pas suffisante pour
réaliser cette identification et séparation des trajectoires. Les ensembles aléatoires étiquetés
ont été récemment introduits dans [33,34], et proposent d’utiliser un marquage unique pour les
différentes cibles. Les marqueurs des cibles étant uniques, peuvent être utilisés pour reconstruire
la trajectoire entière d’une cible spécifique.
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Résumé

Conclusions
Le sujet central dans cette thèse est la poursuite DOA des cibles multiples à partir des obser-
vations d’antenne déphasées. Plusieurs méthodes sont proposées et classées dans les approches
TWS et TBD. Les solutions proposées sont testées sur des données sonar pour le problème de
reconstruction du relief du fond sous-marin, autrement dit, la bathymétrie.

La première contribution présentée s’appuie sur la châıne de traitement modulaire TWS.
Dans cette approche une méthode de prétraitement est employée pour transformer l’observation
antenne dans un ensemble d’observations ponctuelles et qui est ensuite filtré par le module de
suivi. L’approche TWS suppose que le traitement adaptatif, i.e. le filtrage de suivi, se fait
en post-traitement. Les systèmes TWS de poursuite sont les plus rependus et ont l’avantage
d’avoir une complexité relativement faible et une implémentation simple. Le module de pré-
traitement utilise des méthodes classiques de traitement d’antennes pour obtenir un ensemble
des estimées DOA. Cet ensemble sert d’observation pour le module de suivi. La poursuite est
perçue comme un filtre basé sur un modèle et assure la formation des trajectoires. Ainsi on assure
la séparation des échos bathymétriques des échos interférents, et ensuite une reconstruction 3D
du fond marin. Des filtres Kalman sans parfum sont utilisés pour l’implémentation du module
de suivi. Des modèles géométriques sont utilisés pour caractériser les trajectoires DOA d’échos
dans un contexte bathymétrique. Plusieurs modèles sont utilisés en parallèle afin d’augmenter la
robustesse du filtrage en conditions réelles. De plus, les modèles multiples permettent également
une segmentation efficace de l’image 3D dès l’étape de formation d’image. Ainsi, les modèles
géométriques fournissent des informations utiles à des fins d’identification de l’infrastructure.
Des interruptions de trajectoire, dues à des ombres acoustiques, sont détectées par une mesure
de la probabilité d’existence de la trajectoire.

Une deuxième contribution est représentée par un filtre TBD-PHD avec observations issues
d’une antenne déphasée. Dans le cadre du filtre TBD, où aucun pré-traitement n’est effectué, de
meilleures performances peuvent être atteintes mais au détriment d’une complexité plus élevée
du filtre. Par opposition à l’approche TWS, le TBD rend également difficile la proposition de
méthodes empiriques pour l’initialisation et de la terminaison des trajectoires. Par conséquent,
nous optons pour un formalisme processus ponctuel et aux filtres d’intensité, permettant de
contourner ce problème en tenant compte de l’état multi-cibles comme une collection non or-
donnée de points (i.e. ensemble aléatoire). La fonction d’intensité (ou la fonction PHD) est la
densité du moment de premier ordre d’un processus ponctuel, qui décrit à la fois le nombre
aléatoire de cibles et leurs vecteurs d’état aléatoires. En conséquent, un filtre d’intensité est
considéré comme un filtre de premier ordre, propageant une approximation de la distribution a
posteriori. Basé sur le filtre PHD superposé, le filtre TBD-PHD est proposé, qui est capable de
poursuivre plusieurs cibles directement des observations d’antennes déphasées. Le filtre proposé
emploie la notion de marquage et les processus ponctuels marqués, où le signal source généré
par une cible représente sa marque. Les marques sont marginalisées dans l’étape de mise à jour
du filtre, ainsi évitant de propager un état augmenté. Cela conduit à une implémentation parti-
culaire efficace et qui ne nécessite pas un échantillonnage à partir des distributions augmentées.
De plus, le filtre proposé utilise un mécanisme de clustering amélioré où le nombre des clusters
ainsi que leurs centres sont estimés en présence des outliers. Le filtre TBD-PHD proposé est
utilisable pour toute sorte de cible qui admet une modélisation markovienne pour son état, sans
aucune autre hypothèse sur sa cinématique. Ainsi, le filtre TBD-PHD est général et peut être
employé pour des cibles cinématiques classiques ainsi que pour les échos bathymétriques. Le
filtre TBD-PHD assume cependant des signaux de sources gaussiennes générées par des cibles
ponctuelles, i.e. sans étalement angulaire. Ces hypothèses, bien que suffisantes dans diverses
applications, sont trop restrictives pour les applications sonar.

Une troisième contribution est représentée par le filtre TBD-CPHD, qui améliore l’estima-
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tion du nombre des cibles (i.e. la cardinalité) par rapport au filtre TBD-PHD précédemment
proposé. Dans ce but, le filtre TBD-CPHD propage une estimation de la fonction d’intensité
mais aussi une distribution de cardinalité estimée. Ici encore, le filtrage est obtenu sans aug-
mentation du vecteur d’état de signaux sources, i.e. les marques. De plus, le filtre TBD-CPHD
est développé pour des signaux sources impulsifs issues des cibles réparties angulairement. Des
distributions SIRV sont employées pour modéliser les signaux sources et le bruit, dans un
modèle joint-SIRV. La famille de distributions SIRV est très générale et englobe la plupart
des distributions employées pour modéliser les signaux et l’encombrement dans les applica-
tions sonar/radar. Par exemple, dans les expériences sur des données réelles, nous employons
la loi de Laplace multivariée comme la vraisemblance de l’observation antenne. Une meilleure
implémentation particulaire est proposée pour le filtre, qui emploie une étape auxiliaire pour les
particules persistantes et une distribution de naissance adaptative. Les performances du filtre
TBD-CPHD sont évaluées par rapport à des méthodes classiques de traitement d’antennes et
des filtres PHD de poursuite.

Perspectives
Les potentielles pistes de recherche peuvent être classées en deux axes interconnectés : l’enri-
chissement du modèle sonar et l’amélioration des méthodes de poursuite.

Comme il a été démontré dans l’Annexe H, les signaux sonar ont un degré d’impulsivité
qui varie en fonction de l’angle d’incidence et/ou de la distance entre l’émetteur et l’antenne.
En revanche, l’obtention d’avantage des données sonar est nécessaire pour la proposition d’une
distribution adaptative, autrement dit une distribution qui prend en compte les dépendances
avec l’angle d’incidence et la distance. Ces relevés des donnes doivent être menés dans en
environnent contrôlé, fond et conditions de propagation homogènes. Par exemple, la loi K peut
être employé avec un paramètre de forme dépendant de l’angle d’incidence et implicitement de
la DOA du signal source. Une telle distribution peut conduire à une fonction vraisemblance
plus “concentrée” et qui améliore le DOA estimé. L’emploi d’une distribution du signal source
paramétré ne nécessiterait pas le changement des équations des filtres d’intensités proposés. Une
autre voie d’amélioration, consiste à utiliser des distributions différentes pour le signal source
et le bruit. Actuellement, un modèle joint-SIRV est employé, où la texture est prise identique
pour tous les signaux sources et le bruit. Cette hypothèse est principalement motivée par la
nécessite d’assurer une observation de type SIRV.

Des échantillons de signaux sources et du bruit ne sont pas disponibles indépendamment,
en conséquence la caractérisation individuelle de chaque signal est difficile. En plus, la super-
position des signaux non gaussiens et indépendants, n’admet pas en règle générale une forme
analytique de la distribution résultante. Cependant, il existe quelques exceptions. Le cas où les
signaux sont des variables aléatoires indépendantes de la famille CES (Complexes, Elliptiques
et Symétriques) ayant la même matrice de dispersion, conduit après sommation à une nouvelle
variable CES [35]. Malheureusement, ce modèle n’a pas d’intérêt en traitement d’antennes, car
différentes sources ont forcement des matrices de dispersion distinctes (en raison de leurs DOA
distinctes) tandis que le bruit blanc a une matrice de dispersion proportionnelle à la matrice
identité. Une alternative plus prometteuse vient de la famille de distributions α-stable [36]. La
propriété de stabilité des distributions α-stable exige que les signaux de sources et le bruit soient
des variables aléatoires α-stable indépendantes avec le même paramètre α pour que leur somme
soit α-stable. La contrainte, selon laquelle les signaux sources et le bruit ont le même paramètre
α, est une condition moins stricte que de supposer une texture commune. En effet, le terme
de texture du modèle joint-SIRV implique que les différents signaux sources et le bruit soient
mutuellement décorrélés mais dépendants, tandis que les distributions α-stable supposent leur
indépendance. Cependant, le passage aux distributions α-stable exige également des change-
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Résumé

ments dans les équations de filtrage. De plus, les distributions α-stable ne disposent pas des
formes analytiques de leur densité pour tout valeur α, ce qui implique une augmentation de la
complexité du traitement.

Le deuxième axe de recherche concerne l’amélioration de la méthode de filtrage. Comme
remarqué pour les résultats TBD-CPHD sur données sonar réelles, les filtres d’intensité sont
incapables d’identifier les pistes (ou les trajectoires). En général, les processus ponctuelles utilisé
conduisent à des mesures du nombre moyen des cibles dans un région de l’espace mais qui ne
permet pas de reconstruire l’historique des cibles. L’historique d’une cible permet de identifier
sa trajectoire depuis sa naissance jusqu’à sa disparition. Cette séparation de trajectoire est la
première étape dans un algorithm d’identification de la trajectoire. Afin de réaliser la séparation
entre les échos bathymétrique pertinents et non pertinents, nous avons besoin d’une séparation
claire et de l’identification des trajectoires. La nouvelle proposition des filtres basées sur un
modèle de ensemble aléatoire (RFS) étiquetés [33,34] utilisent un étiquetage unique pour chaque
cible. Les étiquettes sont uniques et peuvent être employées pour reconstruire la trajectoire
entière d’une cible. Au contraire des filtres d’intensités, les filtres RFS étiquetés propagent une
version tronquée de la densité a posteriori multi-cible. Par conséquent, les filtres RFS étiquetés
sont en général plus exigeantes en termes du temps de calcul.
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Introduction
In God we trust; all others must bring data.

W. Edwards Deming

Background

The maritime transportation system, defined as port, waterways and canals, is the backbone
of the world trade. In 2005, 90% of the international trade (by volume), was conducted by the
maritime transportation system [1]. In recent years, port and maritime security have emerged as
a significant part of the global security effort [2]. Maritime transportation systems are designed
for speed and efficiency, and any perturbation can lead to great economic and/or human loss.
An example for this instance is given in [2], were the cost of closing the US West Cost ports for
5 consecutive days is estimated at approximately 1 billion US$. Most of the security analyses
are aimed at highlighting the vulnerabilities of port areas to various attacks that would block
the port and/or lead to the loss of human life. As pointed out in [2], this could result from
sinking large ships such as container ships, liquid natural gas transport ships or even ferries,
in a port. Therefore, an increased attention is shown toward the imaging and the inspection of
underwater areas in ports and waterways.

Sonar systems and other underwater sensors have been increasingly employed for port secu-
rity and intrusion detection [3–5], with the prevalence of side-scan sonar systems for high-quality
and affordable underwater imaging [37]. All imaging sonars are active sensing systems, that is,
they emit a signal and record the signal backscattered by the underwater environment. Indeed,
side-scan sonars provide 2D amplitude images of the sea-floor backscatter at high-resolutions,
e.g. 6cm range resolution for the EdgeTech 4600 sonar [6]. Furthermore, the resolution ca-
pabilities of side-scan sonars can be improved by a synthetic-aperture processing [7, 8]. High-
resolution side-scan images are necessary for mine and improvised explosive device detection [9].
3D reconstructions of the sea-floor, that is depth maps or bathymetry, are more involved and
are traditionally conducted using phased-array sonars. In deep waters, bathymetry is usually
achieved with multibeam echosounders [10], that consist of two orthogonal linear phased-arrays.
While in shallow waters, such as ports and canals, bathymetry is usually obtained with bathy-
metric side-scan sonars [11, Ch.3.3.1], with a single linear phased array. In all sonar systems
bethymetry is achieved by triangulating the echo backscattered by distributed targets such as
the sea-floor or various structures [12], [10]. Interferometry and other array-processing meth-
ods are employed in estimating the Direction Of Arrival (DOA) of the desired target. Given
the imaging geometry, DOA estimates can be converted to depth measures as described in
Sec. II.1. Today, there is a growing demand for bathymetric side-scan sonars that can perform
both 2D imaging and 3D bathymetry reconstruction simultaneously, and without the need for
subsequent registration, which represents a major advantage in mine-detection applications.
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Chapter I. Introduction

Major challenges
The work conducted in this PhD thesis is aimed at improving multi-target tracking with phased-
array sonar systems, to achieve improved bathymetry reconstruction in shallow waters. For
real-data experiments, we employ data obtained with the EdgeTech 4600 bathymetric side-
scan sonar, that have been acquired in shallow-water environment, more specifically in port
Everglades, Fort Lauderdale, Florida USA. The major challenges addressed in our work are
presented next.

• Shallow waters are encumbered propagation media, that exhibit multi-path propaga-
tion and reverberation, limiting the effectiveness of array-processing methods [13–15].
As shown in Chapter II, the sea-surface plays an important role in generating multi-path
propagation. A source signal, propagating through a shallow-water wave guide, often gen-
erates several replicas: direct line-of-sight signal, reflections that have distinct DOAs, and
reverberation with diffuse DOAs. Reflections and reverberation represent interferences,
with the spatially-white reverberation component being regarded as noise, while coher-
ent reflections being modeled as distinct source signals. Furthermore, depending on the
scattering phenomena, reflections and reverberation show various degrees of dependency
on the original source signal.

• An additional challenge arises from the non-stationarity of source signals. Indeed, whether
estimating positions of kinematic targets or of bathymetric echos, the phased-array sig-
nal is non-stationary. In bathymetry, signals of interest are the signals backscattered by
the sea-floor or some object of interest. Therefore, the characteristics of sources signals,
notably their DOA, evolve with the profile of the underwater environment. This is true
even for horizontal and flat surfaces, where the backscattered echo will exhibit an arched-
shaped curve as DOA trajectory. Thus, the DOAs of source signals are not constant, and
form specific trajectories (i.e. functions of time). This causes the second-order statistics
of source signals to become time dependent. Classical array-processing methods require
the stationary of signals in a window of time snapshots. In mildly non-stationary en-
vironments, sliding-window processing can still be considered. However, on-line signal
processing, that is filtering methods are required for more general situations, which can
exhibit highly non-stationary signals.

• Specific to sonar phased-array processing are the presence of angularly-distributed targets
and impulsive source signals. Array-processing methods have considered DOA estimation
of angularly-distributed (or extended) targets in the stationary context with known target
extent [16–18] or unknown target extent [19]. The relevance of non-Gaussian and impul-
sive signals in radar/sonar processing is showcased in [20]. While for the sonar signals
presented in this work, in Appendix H we demonstrate their non-Gaussian and impulsive
character. In array processing, non-Gaussian signals and noise are addressed in [21–23]
for the stationary case. However, processing extended targets with non-Gaussian and
non-stationary signals has yet to be addressed.

• Multiple-targets can arise in kinematic-target estimation as well as in bathymetry appli-
cations. For bathymetry, multiple echoes can result from multi-path propagation or when-
ever tall objects are present on the sea-floor, e.g. pilings, poles etc. The DOA trajectories
of the different non-stationary echoes need to be estimated in order for the echoes to be
identified and separated for the bathymetric reconstruction stage. Estimating the DOAs
of multiple non-stationary echoes, when conducted using state-space representations [38],
becomes synonymous with multi-target tracking. Multi-target tracking represents an ac-
tive area of research, with modern methods relying on point processes as the multi-target
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process and the intensity filter as a first-order approximation [24]. Intensity filters, also
known as Probability Hypothesis Density (PHD) filters, are well suited to handle varying
number of targets. However, existing intensity filters have been derived for observation
models not involving random source signals. In array processing, it is common to suppose
source signals, conditioned on target states, as random. In this context, the proposal of a
PHD filter not resorting to an augmented state (that would be overcomplex) has yet to
be proposed.

In this work, possible solutions to the above-listed challenges are briefly presented next.

Objectives and achievements
State-space models for phased-arrays are proposed as a general processing framework for non-
stationary signals, that models the evolution of the target state as a hidden Markov process.
State-space models are capable of incorporating various apriori knowledge about the evolution
of targets. The goal of this thesis is twofold, firstly to propose multi-target tracking filters for
phased-array observation systems. The proposed methods are general, i.e. they only rely on a
state-space description with a Markov state process. Secondly, specific models for bathymetry
reconstruction are proposed and the tracking methods are applied to bathymetric-sonar data.

In general, tracking systems can be classified into Track While Scan (TWS) and Track
Before Detect (TBD) [25]. In the TWS framework, tracking is conducted in a post-processing
step, on point observations obtained by pre-processing the raw antenna observation signal.
The pre-processing step usually consists in a detector and estimator module that detects the
presence of targets and gives a rough estimate of targets positions. Therefore, in TWS the
observations consist in a set of points originating from true-target positions but that also
contains false measurements generated by clutter. Additionally, even in the absence of clutter,
the observation set is ambiguous because we do not know which observation point belongs to
which target trajectory. The set of observation points obtained by the pre-processor is fed to
the tracking algorithm. The role of the tracking module is to eliminate false measurements, to
find observation-to-target associations and to filter each target trajectory with its associated
observation. TBD systems do not resort to a pre-processing module and directly consider the
antenna signal as system observation. The advantage of TBD systems, as opposed to TWS,
stems from the absence of thresholding at an early step of signal processing, that would result in
information loss. This advantage becomes important when processing low Signal to Noise Ratio
(SNR) signals, also called dim echoes. However, this comes at the cost of increased complexity
for TBD systems, mainly due to the highly non-linear state-space model that now incorporates
the phased-array signal.

As a first contribution to bathymetry reconstruction methods, we propose a TWS system
with the objective of tracking the DOA trajectories of different echoes impinging the array
in order to extract only the trajectories corresponding to sea-bottom and infrastructure. The
pre-processor uses information-theoretic criteria to select a number of local maxima from the
array (pseudo-)spectrogram as the point-set observation. Note that the array signal (pseudo-
)spectrogram is obtained with a locally sliding window estimator and that it can be changed
without incurring any modifications for the subsequent tracking model. This adaptability repre-
sents a major advantage of the TWS framework, but also a disadvantage since the evolutionary
state-model is usually not employed in the pre-processing step. Nonetheless, the TWS de-
composition in pre- and post-processing is regularly employed in practice and in commercial
systems [26], mainly due to its straightforward and low-complexity implementation. In our ap-
proach, echo tracking is perceived as a model-based post-processing stage, incorporating prior
information on the temporal evolution of echoes in order to avoid cluttered observations. We
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Chapter I. Introduction

develop several geometrical models, that represent the prior information incorporated into the
filtering step for bathymetry extraction. A parallel-model framework is employed to increase
the adaptability of the proposed filter over highly irregular sea-bottom areas. A measure of
trajectory quality, the trajectory probability of existence, is employed to detect shadow areas
and track extinction. Several goodness of fit tests are employed, that validate the adequacy of
the proposed models both for simulated and real sonar images.

A major issue, to which TWS systems do not provide a rigorous solution, is trajectory/track
initialization and deletion. Usually, this is achieved by employing ad-hoc initialization rules
based on the point observations. In the TBD framework such initialization schemes are not
readily available. However, a different approach that involves point processes and intensity
(or PHD) filters, can integrate more rigorously birth and death processes. Intensity filters
have been firstly proposed for TWS systems [27]. Recently, in [28] a TBD-PHD filter was
proposed for superpositional observation models, i.e. the system observation is given by a noisy
sum of individual target contributions. However, in [28] the individual target contributions are
considered deterministic when conditioned on the target state, which is often not the case in
array processing.

As a second contribution, based on the superpositional PHD filter, we develop a TBD-PHD
filter that tracks multiple targets directly from phased array observations. The target contri-
butions represent the source signals that, conditioned on target states, are assumed Gaussian
random variables. Furthermore, we interpret the point process, used to model the multi-target
state, in conjunction with the source signals as a marked point process. The source signals repre-
sent the marks, while the intensity function of the marked process intervenes in the update step
of the filter. Most importantly, we show that it is sufficient to propagate the intensity function
of the point process as opposed to the marked intensity which is defined in a higher dimensional
space. Indeed, the intensity function of the ground point-process is defined on the space of tar-
get states (i.e. positions), while the marked intensity function is defined on the product space of
target state-space and mark space (i.e. the space of source signals). We show that augmenting
the state vectors with their source signals is not necessary, and that marks can be integrated-
out of the filter update formulas. This leads to more efficient particle-filter implementations
than augmented state-vector solutions that would require sampling from higher-dimensional
posteriors. The proposed TBD-PHD is not restricted only to bathymetric applications, and
is developed for generic target-dynamics and phased-array observations generated under the
point-target model with Gaussian signals and noise.

As a third contribution, we extend the phased-array model to incorporate impulsive sig-
nals and noise, and angularly-distributed (extended) targets. Additionally, to improve tracking
performance, a Cardinalized PHD (CPHD) filter is considered, leading to the TBD-CPHD fil-
ter. The TBD-CPHD filter propagates, additionally to the intensity function, the distribution
of the number of targets, i.e. the cardinality distribution. Propagating the cardinality distri-
bution leads to a direct inference of the number of targets from the cardinality distribution,
e.g. via MAP or MMSE estimation. As noted earlier, impulsive signals are frequently encoun-
tered in both sonar and radar applications, with the family of Spherically Invariant Random
Vector (SIRV) distributions being prevalent in the literature. Therefore, a joint-SIRV model is
employed for source signals and reverberation noise that is able to cope with a wide variety
of non-Gaussian observations, from the heavy-tailed Cauchy to the ubiquitous Gaussian. In
this regard, the developed filter generalizes our previously proposed filter both methodologi-
cally and model-wise. Methodologically, the CPHD framework allows for an arbitrary cardi-
nality distribution, and hence is more flexible than the PHD framework that is constrained
to Poisson-distributed number of targets. Model-wise, the Gaussian point-target model previ-
ously employed represents a special case of the angularly-distributed (extended) target model
with SIRV signals and noise. Additionally, we propose an improved particle-filter implementa-
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tion of the TBD-CPHD filter, that employs the current observation in the sampling stages of
both persistent particles, corresponding to previous targets, and birth particles, corresponding
to newly-birthed targets. In previous particle implementations of superpositional filters, the
current observation was only employed for birth particles.

Thesis organization
Chapter II presents the first contribution of our work, and addresses the development of a TWS
system for adaptive DOA estimation of multiple echoes. It offers a post-processing module
that extracts tracks from observations supplied by standard array-processors. The major issues
encountered in shallow-water array-processing are detailed and exemplified over real sonar
data. The modular TWS framework is given and specific models are proposed for bathymetry
reconstruction. A parallel-model approach is considered and a measure of track quality is given
in the form of the track probability of existence. The detailed derivation of the track probability
of existence is given in Appendix A. Results on both simulated and real-sonar data are presented
and validated via goodness-of-fit tests. A short presentation of goodness-of-fit tests is given in
Appendices C and D.

Chapter III starts with a short introduction to point-process theory and provides, in partic-
ular, a physical interpretation of the intensity function which is extensively employed in PHD
filtering. Several examples of point processes are given next and the TWS-PHD filter is briefly
presented. The TBD-PHD filter for phased-array observations is derived for point-targets with
Gaussian source signals and noise. The derivation of the TBD-PHD filter involves the notion
of marked point processes, which is also briefly presented.

Chapter IV presents the TBD-CPHD filter for phased-array observations. The chapter
presents the SIRV model and subsequently the joint-SIRV array model, which is validated
by statistical tests conducted on real-sonar data. The test results are presented in Appendix
H. The extended, or angularly-distributed, target model is presented next. The derivation of
the CPHD filtering equations follow, and again involve marked point processes. The deriva-
tion of the importance distributions together with a detailed description of the particle filter
implementation are given. Results on simulated phased-array data showcase the performance
increase of the proposed filter as compared to state-of-the-art PHD and CPHD filters for array
processing. Comparisons with classical array-processing methods are given in stationary and
mildly non-stationary scenarios, as well as comparisons of tracking performance for rapidly
evolving targets (highly non-stationary scenarios). Conclusions and perspectives are given in
Chapter V.
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II.1 Introduction: Objectives and challenges

In this chapter, we present a post-processing technique for reconstructing sea-bottom topog-
raphy (i.e. the bathymetry) in a multi-path and highly-reverberant underwater environment.
Bathymetry is defined as a 3-D reconstruction of the underwater sea-bottom, i.e. an estimated
depth map. For sidelooking sonar arrays, bathymetry is achieved by estimating the Direction
Of Arrival (DOA) of the echo backscattered by extended-targets such as the sea-floor or var-
ious structures [12], [10]. Interferometry [39] and other array-processing methods [40, 41] are
employed to estimate the DOA of the sea-floor backscattered wave for each time sample t. As
seen in Fig. II.1, from the estimated DOA θ̂t the local bathymetric height is recovered from the
following equation

ĥt = H − dt cos (Ψc + θ̂t), (II.1)

where Ψ = π
2 − Ψc represents the tilt of the antenna array and H the sonar altitude. All

variables presented in Fig. II.1 are taken to be positive. Notice the direct mapping between the
time samples t and the slant-range bins dt = c t

2 , given the acoustic-wave celerity c.
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Shallow-water environments present several issues, such as multi-path propagation [8] and
reverberation, the latter representing a complex mixture of unpredictable reflections and acoustic-
wave diffraction. The DOA of secondary echoes is not linked to the bathymetric height by
means of Eq. (II.1), the latter being valid only for direct Line-Of-Sight (LOS) echoes. Indeed,
the knowledge of the full echo trajectory, including sea-surface state and number of reflections is
necessary for such an equation. Since such information is unavailable, only LOS echoes are con-
sidered informative. Other echoes are considered as interferences and are collectively referred
by clutter. In sonar-imaging applications, the negative impact of multi-path propagation on
side-scan images and bathymetric reconstructions has been noted in [13–15]. More specifically,
secondary echoes lead to spurious (false) elevation points in the reconstructed surface, caused
by the locally stronger intensity of the interfering echoes. Usually, such spurious points are
eliminated by a bathymetry clean-up step [42]. Such procedures eliminate spurious elevation
points from the estimated depth map. However, this leads to missing depth estimates that are
interpolated from the neighboring points, leading to a loss in resolution. In [13] sonar-array
design strategies are proposed that minimize the effect of sea-surface originated echoes. Other
array-design methodologies are given in [43]. In [14], the authors investigate adaptive beam-
forming performance in multi-path shallow waters. A low-complexity multi-source beamforming
and multi-target tracking algorithm is provided in [44]. The algorithm tracks a fixed number
of targets starting from initial estimates of target locations.

In some cases [45–48], whenever environment parameters are known (or learned) beforehand,
reverberation and multi-path are directly modeled and taken into account. However, such pa-
rameters are often unknown and possibly involve the desired bathymetry. For aerial acoustics,
in [49], a single-speaker tracking algorithm is proposed for reverberant and multi-path indoor
environments. In [50] a multiple speaker tracking and separation algorithm is proposed for
reverberant environments.

We propose an adaptive signal post-processing filter for real-time high-resolution bathymetry.
The filter is capable of extracting several echoes in clutter and hence resolve layover. The basic
idea of our approach is to use the neighborhood information to determine the bottom, in a way
that preserves resolution, instead of posteriorly removing incoherent bathymetry estimates. By

Figure II.1: Underwater scenario.
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II.1. Introduction: Objectives and challenges

exploiting the spatial diversity of the receiving array, pre-processing methods achieve angular
separation of the impinging echoes and yield a number of echo DOA estimates. Some of the
pre-estimated DOA estimates represent the bathymetrically informative DOAs (i.e. DOAs be-
longing to the sea-floor or infrastructure echoes), while others represent false estimates caused
by clutter. It is said that the measured DOAs present origin uncertainty, i.e. the DOA origin is
unknown. The uncertainty is resolved by Probability Data Association (PDA) methods such as
the Nearest-Neighbor PDA Filter (NN-PDAF). Hence, there is no resolution loss due to point
interpolation, as long as the pre-processing module offers DOA estimates of bathymetric echoes
and not just clutter. The NN-PDAF employs a predictive model for the evolution of echo DOA
trajectories to effectively track bathymetric echoes. The proposed model takes into account the
Signal to Noise Ratio (SNR) of sonar received signals, the existence of multiple DOA trajectories
and the clutter generated by multi-path and volume reverberation. Also whenever persistent
clutter is present [25], such as detections generated by secondary echoes, they should be consid-
ered as a secondary track alongside with the main sea-bottom track. Intuitively, whenever the
secondary source is not taken into account, its power will contribute to the background noise
and degrade the overall SNR ratio. To overcome this drawback, secondary sources are often
modeled as separate tracks.

In practice, echo trajectories switch between several identifiable trends in accordance with
the backscattering surface geometry: smooth horizontal or vertical, or highly irregular. In ac-
cordance, a parallel-model method for DOA tracking is needed, where each model is tuned for a
specific trend. Thus, we derive novel geometrical models to cope with nearly flat and horizontal
sea-bottoms and nearly vertical objects. Random walk (RW) models have been proposed for
DOA tracking (see for instance [51]) and represent a robust prior with no preferred direction
of evolution. An Interacting Multiple Model (IMM) fusion method is employed within the NN-
PDAF, resulting in the NN-IMM-PDAF algorithm. IMM detects model switching and identifies
the predominant model, thus offering supplementary information about the reconstructed sur-
face, i.e. a geometrical segmentation of the surface. This geometrical segmentation could be
employed as an aid for shape/object recognition algorithms.

A measure of trajectory quality, the trajectory existence probability, is employed to detect
trajectory extinction over shadow areas, as discussed below, leading to the Integrated NN-IMM-
PDAF (NN-IMM-IPDAF). Sonar data acquired in a shallow-water canal is processed with the
proposed models and results are validated by goodness-of-fit tests. Goodness-of-fit test have
the advantage of being conducted without the need of ground-truth data and thus provide an
on-line evaluation of the models used for bathymetry reconstruction. In particular, the random-
walk model, when employed solely, is shown to be inadequate and systematically rejected by
goodness-of-fit tests.

To summarize, the novelty of our approach is threefold:

• Firstly, we propose real-time adaptive processing based on a state-space description. In
other words, tracking the DOA trajectories of echoes impinging the sonar array to obtain
a filtered (reduced-variance) 3D reconstruction and avoid multi-path and clutter problems
(preserving resolution).

• Secondly, we derive several innovative geometrical models for the underlying DOA tra-
jectories. The derived models are employed in a parallel framework to increase the adapt-
ability of our processing.

• Thirdly, an Integrated NN-IMM-PDA filter is proposed to filter multiple targets (echoes)
with the proposed multiple models and provide trajectory existence probabilities.

The proposed post-processing algorithm is based on the Unscented Kalman Filter (UKF),
which has real-time implementations. Furthermore, since DOA estimates are often available at
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the output of commercial echo-sounding systems, the proposed post-processing approach can
be easily incorporated into the existing processing chain. The algorithm can be readily utilized
in conjunction with already field-equipped SONAR systems, without the need of hardware or
software modifications. This is possible, since the proposed method represents an additional
processing module after raw-data array processing, which commercial sonar systems already
use for real-time visualization purposes. Secondary echoes carry information linked to the sea
surface that our proposed algorithm aims to retrieve.

The chapter is organized as follows. Sec. II.2 presents the challenges of shallow-water en-
vironments and the pre-processing module. In Sec. II.3 we develop the post-processing, i.e.
tracking, module that consists in prediction (Sec. II.3.1), update (Sec. II.3.2), and the track ex-
istence probability (Sec. II.3.3). The geometrical models employed to track bathymetric echoes
are introduced in Sec. II.4. Section II.5 showcases the results of the proposed filtering chain on
simulated sonar data (Sec. II.5.1) and on real sonar data (II.5.2). We conclude in Sec. II.6.

II.2 Underwater environment and pre-processing mod-
ule

Side-scan sonar systems have been an invaluable tool for providing high-resolution images of
large swaths (e.g. 100 meters) of the sea-floor. Side-scan systems work by emitting a pulse -
called ping. The array beam is is designed to be wide in the elevation plane but narrow in the
azimuth plane, so as to insonify a fine strip of the sea floor at each emission. However, the beam
being wide in the elevation plane, also interacts with the sea-surface, generating interference
echoes (surface reverberation). Given the state of the sea-surface, interference echoes vary from
specular reflections to diffuse scattering. The acoustic-wave propagation is nearly spherical,
both forwards and backwards, and points located at the same distance are received at the
same moment with different DOA. On the other hand, the acoustic wave does not insonify
some parts of the bottom (e.g. in presence of tall objects), thus creating “acoustic shadows”.
Recently, constructors started fitting several receiving elements on side-scan systems, providing
not only amplitude images of the sea-floor backscatter but also bathymetric estimates. Such
systems are usually called interferometric or bathymetric side-scan sonars [11, Ch.3.3.1]. The
sonar employed in this work is the EdgeTech 4600, which disposes of N = 8 half-wavelength,
linearly spaced receivers. The sonar operates by emitting a linear frequency modulated pulse,
where the pulse bandwidth was set to 10kHz with the carrier frequency being 540kHz. Other
sonar specifications are given in [6] and Appendix G.

Array processing algorithms are employed to estimate the DOA parameters θit with i =
1, · · · , nt, of nt sources of acoustic waves, directly from the phased-array signal:

yt =
nt∑
i=1

a(θit)sit + nt, (II.2)

where yt ∈ CN×1 represents the signal received at time t by the N−element array. sit represents
the i−th source signal and nt ∈ CN×1 the added noise. The array manifold vector a(θit), for a
far-field and narrow-band source1, is defined as:

a(θit) ,
[
1 e−2π ∆

λ
sin(θit) · · · e−2π (N−1) ∆

λ
sin(θit)

]T
, (II.3)

where {·}T represents the transpose operator. Throughout this work, we assume a Uniform
Linear Array (ULA) with N receivers and inter-receiver spacing of ∆. λ represents the acoustic
wavelength.

1Verified for the EdgeTech 4600 sonar, see Appendix G.
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Array processing algorithms, e.g. conventional beamforming, Capon beamforming or MUSIC
[41], are used in conjunction with model-order selection tools to detect the number of sources
(i.e. echoes) present in the array signal yt. Traditionally in the array-processing literature, the
estimation of nt is conducted by means of information theoretic criteria, e.g. Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), Minimum Description Length (MDL).
Given the estimate n̂t of the number of sources, the DOA estimates are obtained as the n̂t
highest “peaks” (i.e. local maxima) of some spectrogram S(θ, t):

Zt , argmaxθ1,··· ,θn̂tS(θ, t), (II.4)

where the estimated DOAs are considered to form the set Zt, called observation set. Note
that other elements can be appended to the estimated DOAs, such as the values taken by the
spectrogram at the local maxima. For simplicity however, such elements are not considered
here. The spectrogram S(θ, t), obtained from the phased-array signal yt, represents the time
(or slant range) evolution of the angular distribution of power. S(θ, t) is specific for each array-
processing method, see [41] for the different constructions. argmaxθ1,··· ,θn̂t

has to be read “the
arguments θ of the n̂t highest peaks in S(θ, t)”.

The proposed pre-processing module is composed by an information-theoretic criterion (ei-
ther AIC, BIC or MDL) used in conjunction with MUSIC or the Capon beamformer in order to
obtain an estimated DOA set Zt in Eq. (II.4). As shown in Fig. II.2, which is analyzed in detail
in the following paragraphs, the set contains spurious DOA estimates alongside the sea-floor
echo DOA. If the DOAs of set Zt are transformed to depth estimates, we obtain a spurious
bathymetry map. Indeed, the role of the post-processor of section II.3 is to alleviate these
problems without resolution loss. First shown in [52], the AIC and MDL involve the eigenvalue
decomposition of the covariance matrix of the array signal. This operation is also required by
the MUSIC algorithm [53] and the Capon beamformer [54]. They are preferred to conventional
beamforming that offers poor angular resolution capabilities. Interchangeably, the Capon and
MUSIC DOA estimators are used as the pre-processing module throughout Sec. II.5.2 to show-
case the flexibility of the proposed post-processor. Also note that in [49] and [50], the authors
propose a two stage processing algorithm. For [49], the first stage consists in Time Difference Of
Arrival (TDOA) estimation. The authors also note the presence of clutter, or false TDOA esti-
mates resulting from the presence of reverberation and multi-path. Subsequently, the estimated
TDOA are filtered by an extended Kalman particle filter in the second stage. While in [50] the
first stage comprises independent-component analysis to demix the the speaker signals, and
a state coherence transform to obtain DOA estimates for the signals. Again, the noisy DOA
estimates are uncertain, and contain clutter due to reverberation. Tracking is conducted by the
probability hypothesis density filter in order to cope with a varying number of speakers.

In Fig. II.2 a) we can observe the angular spectrum (i.e. angular distribution of power)
obtained with the Capon beamformer [54], of one ping of the array received signal, with the
same configuration as in Fig. II.1. We can notice several highly-energetic echoes labeled from
A to D. The main sea-floor echo is labeled A, and has an arch-like shape typical of a flat and
horizontal sea floor. The echo labeled B represents the DOA of a wave resulting from a path
involving scattering on the sea floor and a reflection over the sea surface, depicted in Fig. II.1.
Such a path is slightly longer than the LOS path of the main sea-floor echo, amounting for the
slight delay between the beginning of echoes A and B. Furthermore, echo B has an arch-like
shaped DOA curve but in the opposite direction as compared to echo A, this is explained by
the origin of echo B - the sea surface which generates an echo of opposite DOA variation as
the bottom echo. A very weak echo C is seen in the water column zone (i.e. before the echo A
reaches the array antenna) and exhibits the same reversed arch-like shape. The wide opening
(of about 100o) in the elevation plane of the emission beam, coupled with the pole-mounted
configuration (i.e. close to the sea surface) of the sonar, leads to the scattering of the emitted
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Figure II.2: Angular spectrum showing multiple echoes impinging the sonar array.

pulse from the sea surface, with the resulting echo C arriving before A. Echo D is a double
sea-floor echo, that travels twice the round trip time of echo A.

In Fig. II.2 b) we observe DOA estimates overlaid on the same spectrum as before. The DOA
estimates were obtained simply by selecting the maximum value for each slant range beam. Such
a detection strategy is equivalent to that encountered in the frequency-estimation problem of
time-series [55,56]. We observe the high number of spurious DOA estimates mainly caused by the
persistent clutter which forms echo B. The full DOA trajectory of echo A cannot be retrieved
only with the spectrum amplitude information, as we have seen the intensity of interfering
echos is locally more stronger than the bathymetrical informative echo A. Additional a priori
information is needed upon the evolution of the sea-floor backscattered wave in order to separate
it from clutter echoes. Regularity conditions, such as limiting the allowed variation of the DOA
estimates for echo A, effectively involve processing each DOA estimate in relationship to its
preceding/following estimates by means of filtering/smoothing techniques. Such algorithms
track only the desired DOA curve by employing a space-state description, thus avoiding clutter
induced estimates. Space-state representations offer a Bayesian framework which easily takes
into account prior models upon the evolution of the targets of interest (i.e. echoes) within the
state-space equations. The set Zt (see Eq. (II.4)) contains estimated DOAs, which represent
observations in our state-space description. Thus, we refer to Zt as a measurement or observation
set. The observation set elements are said to suffer from origin uncertainty, since the exact
origin (echo A or clutter), of each of the estimated DOA contained in Zt is unknown. Bayesian
state-space processors offer a framework that easily takes into account prior models upon the
evolution of the targets of interest, i.e. the echoes of interest. The post-processor, derived in
the next sections, relies on the observation sets provided by the pre-processor. This enables
post-processing of spectrograms issued from the sonar data.
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II.3 Post-processing module: the NNIPDA-UKF filter
This section presents the post-processing module, that is responsible with filtering multiple
echoes (i.e targets) from the set of observations obtained by the pre-processor. We consider a
number nt of independent targets with system states denoted as {xit}nti=1. Since the trajectories
of individual targets are considered independent, echo tracking can be conducted separately on
each individual target state. For the i−th echo, the state system is given by the state-transition
equation (II.5a) and the observation equation (II.5b)

xit = ft(xit−1) + vit, (II.5a)
zit = Htxit + wi

t, i = 1, · · · , nt, (II.5b)

where the state vector xit ∈ X takes values in the state space X. For the sake of generality, we
consider xit as a vector of dimension dx and X ⊆ Rdx . However, in sections II.4 and II.5, we
will consider more specific models (e.g. x = θ). The state transition function ft(·) represents
an added prior, i.e. a model on the DOA trajectory. The covariance Qi

t of the model noise vit
controls the confidence in the model. The notation xit is kept for the sake of coherence with
the tracking and dynamical-systems literature. zit is the system noisy observation supplied by
the pre-processing module, as discussed in the previous section. Ht is the observation matrix.
Whenever, the observation zit only consists in maxima locations of the spectrogram (as depicted
in Eq. II.4), the observation reduces to a scalar and Ht = 1. The observation noise wi

t with
variance Ri

t depends on the acquisition parameters and the pre-processing module. The noise
sequences vit and wi

t are independent, white random processes characterized by their first two
moments. Trajectory initialization is usually done by the “two out of three” heuristic rule, in
other words, two observations falling inside a given gate within three consecutive range bins
are assumed to represent a target. However, automatic trajectory initialization is beyond the
scope of this chapter.

The pre-processing module detects the presence of a target (i.e. an echo) having state xit, with
non-unitary probability of detection pD(xit), and estimates the DOA of the target. Conditioned
on the target state, pD(xit) is by definition

pD(xit) , Pr{zit ∈ Zt|xit}. (II.6)

pD(x) conveys the fact that zt may not belong to the m̂t maxima of S(θ, t). In other words, the
backscattering amplitude of the trajectory can be less than the largest m̂t maxima. Further-
more, Zt possibly contains clutter (false) DOA estimates since interfering echoes are present
along the bathymetrically informative observation zt. Performance analysis of model-order es-
timators in array processing, involving AIC or MLD penalties, have been presented in [57,58].
In [59], the dependence of pD on the state x was analyzed and addressed at the expense of
increased algorithmic complexity. For the applications considered in this chapter, employing
pD = pD(x) = 0.9 ∀x ∈ X provides a compromise between performance and computational
complexity.

The objective of model-based filters is to obtain an estimator x̂it|t , E{xit|Z1:t} of the state
{xit}nti=1 given the sequence of current and past observations, denoted by Z1:t. In the tracking
literature, the sequence of filtered state vectors x̂it|t is usually called trajectory or track. All
recursive filtering algorithms consist in two phases: prediction and update. Prediction aims to
obtain an estimate x̂it|t−1 by using the target model. The update step acts like a correction to
the predicted state value x̂t|t−1, by incorporating the current observation Zt to obtain x̂t|t. The
magnitude of the correction takes into account the noise covariances Qt and Rt. In the case
of Gaussian processes wt and vt, and linear ft(·), the Kalman [60] filter offers the Minimum
Mean Squared Error (MMSE) estimator as closed-form equations for both the prediction and
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the update step. Whenever the noises are only characterized by their first two moments, the
Kalman filter supplies the optimal linear MMSE from the family of linear estimators. Further-
more, for non-linear systems, a sub-optimal but computationally attractive solution is given by
the Unscented Kalman Filter (UKF) [61, 62]. The UKF only requires the first two moments
of the noise terms vt and wt. Indeed, the UKF only supposes uni-modal distributions, the
Gaussian hypothesis not being strictly required. The mean-squared estimates supplied by the
UKF amount to an approximate posterior distribution. To validate the model of Eqs. (II.5a)
and (II.5b) and the aforementioned hypotheses, we employ Goodness-of-Fit (GoF) tests on
simulated and real data.

Remote-sensing systems often produce measurements with uncertain origin, that might not
originate from the target of interest. For example, the set Zt [Eq. (II.4)] contains zit with proba-
bility pD(xit). However, there is no information relating a specific element zjt ∈ Zt to xit and thus,
the straightforward application of the Kalman or UKF filters is not feasible. Data association
methods have been developed to deal with the ambiguities of single or multiple targets in clut-
ter. Efficient filtering of single targets in cluttered environments often relies on the Probabilistic
Data Association (PDA) filter [26], and the more recent Integrated PDA (IPDA) filter [63–65].
Both algorithms assume the following hypothesis: in one range bin, one target can produce
at most one detection, spurious observations or clutter can also be detected inside the same
bin. Note, that this hypothesis was also (silently) supposed in the introduction of this chapter.
In [66] the aforementioned hypothesis is replaced by a many-to-one association: one target can
spawn several observations in the same range bin caused by multi-path propagation in over-
the-horizon radar applications. In our case this is deemed not possible, since the different paths
have different lengths and will always create observations in different range bins. Furthermore,
echo B is considered surface-originated rather than bottom-originated.

The aim of the PDAF is twofold. First, to regularize the sequence of DOAs given by the
pre-processing module (see Sec. II.2), with the added prior of the state evolution equations.
The magnitude of the regularization is given by the ratio of the two noise terms vt and wt.
And second, to “eliminate” false observations by means of the PDA module. To achieve this,
the PDAF computes a sub-optimal conditional pdf of the filtered state x̂it|t using an MMSE
approach: all observation-to-track associations are enumerated and assigned a probability. The
overall estimated state is the weighted sum of individual association estimates with their respec-
tive probability. Such an estimation procedure is sometimes called soft association, as opposed
to hard association where only the association with highest probability is employed [67, Ch.1].
Furthermore the state covariance matrix Pi

t|t , E{(xit−x̂it|t)(xit−x̂it|t)T} is increased to incorpo-
rate the origin incertitude of measurements. The optimal MMSE filter requires the propagation
of a Gaussian mixture pdf [26] of the state vector while the PDAF propagates only a Gaussian
approximation, i.e. mean and covariance approximations. This makes possible for the PDAF to
compute the filter gain in a similar manner to the Kalman or UKF filters. An overview of the
PDAF equations can be found in Appendix A.

In shallow waters, the ambient-noise levels are subject to large variations [68, Ch 7.3]. In
order to increase the adaptability of our proposed filter, an estimator of the observation-noise
covariance Rt is derived from the filtering residuals (see Proposition B of Appendix B). Indeed,
the filtering residuals have a double purpose in our approach. On one hand their covariance is
indicative of the observation noise variance Rt, and on the other hand they are employed to
validate the filters and models employed in our approach. Residual whiteness is indicative of
the adequacy of the model in predicting the echo DOA. Model-validation results are presented
in Sec. II.5. Adaptive estimators for the model noise covariance Qt have also been proposed
in [69] and [70, Ch. 8.4]. However, the adaptive estimator for Qt is significantly more complex
than for Rt, thus we consider Qt as a user defined parameter.

The IPDAF represents an extension of the PDAF, and employs the same PDA logic to
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Figure II.3: Flowchart showcasing the different stages of the proposed algorithm.

alleviate observation uncertainty. The aim of IPDA filter is not only a recursive calculation of
the state mean and covariance in presence of origin uncertainty, but also a recursive calculation
of a track existence probability νit . Such a measure is useful in assessing the quality of the
track and effectuate automatic track deletion whenever the track probability drops below a
given threshold. This is useful for tracking bathymetry echoes over shadow areas, where the
echo exhibits interruptions. The IPDAF computes νit|t, given the set of observations Z0:t, in
a recursive manner. The IPDA prediction and update equations, and a detailed derivation of
the existence probability νit|t, are given in Appendix A. Based on the IPDAF, in the following
section, a specific multiple target filter is derived.

To summarize, the aim of our multi-trajectory filtering approach is threefold:

• Firstly, to regularize DOA trajectories and reduce the state variance by employing con-
venient priors in the state-evolution Eq. (II.5a). This is achieved in the prediction step of
Section II.3.1.

• Secondly, to resolve observation incertitude by observation-to-trajectory association and
extracting only informative trajectories. Observation-to-trajectory association is carried
out in the update step of Section II.3.2.

• Thirdly, to compute a trajectory quality measure νit|t, in order to detect interruptions
caused by acoustic shadows. This is achieved by a trajectory existence probability, pre-
sented in Section II.3.3.

A schematic representation of the proposed algorithm is given in Fig. II.3.

II.3.1 Prediction
Considering the non-linear state-transition function ft(·), we employ the unscented transform to
obtain approximate values for the predicted mean and covariance. The principle of the unscented
transform is to use a small number of deterministic samples, called sigma points, to characterize
the posterior at time t− 1. The sigma points capture exactly at least the first two moments of
the posterior, and are propagated through the non-linear system to obtain approximate values
of the posterior moments at time t. The pair:

(
xi,kt−1|t−1, w

i,k
t−1|t−1

)
are referred to as a sigma point
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and corresponding sigma weight. The set of sigma points and weights capture the first moments
of the posterior pdf at time t−1 of the i-th target. Starting from the posterior estimates, mean
x̂it−1|t−1 and covaraince Pi

t−1|t−1, the unscented transform [71, Ch.6.2] leads to the sigma points

xi,kt−1|t−1 =


x̂it−1|t−1 if k = 0,
x̂it−1|t−1 +

(√
(1 +K)Pi

t−1|t−1

)
k

if k = 1, · · · , dx,
x̂it−1|t−1 −

(√
(1 +K)Pi

t−1|t−1

)
k−dx

if k = dx + 1, · · · , 2dx,
(II.7)

where K is a scaling constant and
(√

M
)
k

represents the k-th column of the matrix squared-root
of M. dx represents the dimension of the state xt. Note that for a scalar state, i.e. xt = θt, only
3 sigma points are necessary resulting in very low complexity filters as compared to particle
filter methods. The associated weights of the sigma points of Eq. (II.7) are given by:

wi,kt−1|t−1 =
{ K

2(1+K) if k = 0,
1

2(1+K) if k = 1, · · · , 2dx.
(II.8)

The predicted values for target i are obtained by averaging the propagated sigma points:

x̂it|t−1 =
2dx∑
k=0

wi,kft(xi,kt−1|t−1), (II.9a)

Pi
t|t−1 =

2dx∑
k=0

wi,k
(
ft(xi,kt−1|t−1)− x̂it|t−1

)2
+ Qi

t, (II.9b)

Sit|t−1 = HtPi
t|t−1HT

t + Ri
t, (II.9c)

where x̂it|t−1 is the predicted state; Pi
t|t−1 is the predicted state covariance; Sit|t−1 represents

the covariance of the predicted measurement, or equivalently, the covariance of the innovation
term. For the specific system of Eqs. (II.5a) and (II.5b), the Kalman filter gain is given by

Ki
t = Pi

t|t−1HT (Sit|t−1)−1. (II.10)

To further reduce computation time and provide real-time bathymetry estimates, gating is
performed on the observation set. Only validated observations, i.e. observations falling inside
some predefined volume centered on the predicted values xit|t−1, are considered for trajectory
update.2 Formulas for validation-gate volumes Vt, and the probability of an observation falling
inside the validation gate, called gate probability pW , are given in [25, Ch. 6.3]. pW is defined
by the following equation

pW =
∫
Vt
p(z|Z1:t−1)dz, (II.11)

where p(z|Z1:t−1) represents the apriori pdf of the predicted observation at time step t. p(z|Z1:t−1)
has first moment Htx̂it|t−1 [from Eq. (II.9a)] and second moment Sit|t−1 [from Eq. (II.9c)]. In
practice, we suppose a Gaussian pdf for p(z|Z1:t−1) with the aforementioned moments. Now let
the set Z̃t of size m̃t denote the set of validated (also called gated) observations at time-step t
and defined as

Z̃t = {z̃t|z̃t ∈ Zt and p(z̃t|Z1:t−1) > T }, (II.12)

where T is a threshold corresponding to the gate volume Vt. Thus, the set of gate-validated
observations is a subset of the observation set, i.e. Z̃t ⊆ Zt.

2Invalidated observations can be considered for creating new trajectories.

28
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II.3.2 Update
Since in general there are several possible observations to update one trajectory, update is car-
ried out using Probabilistic Data Association Filters (PDAF) proposed in [26] or the more re-
cent Integrated PDAF (IPDAF) [63,65]. In the case of multiple trajectories, Joint PDA (JPDA)
schemes have been developed. The JPDA association scheme employs a weighted average of
observations to update each trajectory. As noted in [67, Ch.1], such updating procedures tend
to cause closely spaced targets to coalesce, thus introducing bias. To counteract such situations,
Nearest Neighbor PDA (NN-PDA) schemes were proposed in [67, Ch.1].

In order to associate an observation with a trajectory we propose a Nearest Neighbor Inte-
grated PDA-UKF (NN-IPDA-UKF) that avoids trajectory coalescence problems. As proposed
in [67, Ch.1], the probability Aij of associating the gate-validated observation j to trajectory
i, is approximated by

Aij = Gij

ati + aoj −Gij

, (II.13)

where Gij represents the Gaussian likelihood of the observation innovation:

Gij = 1√
2πdet(Sit|t−1)

exp
(
− 1

2(εi,jt )T (Sit|t−1)−1εi,jt

)
, (II.14)

where εi,jt = z̃jt − Htx̂it|t−1 represents the innovation added by observation z̃jt to trajectory i;
and Sit|t−1 is the UKF innovation variance given in Eq. (II.9c). Once the Gij’s are computed
for all nt trajectories against all m̃t observations, the values of ati and aoj in Eq. (II.13) are
computed by

ati =
m̃t∑
j=1

Gij and aoj =
nt∑
i=1

Gij. (II.15)

Aij in Eq. (II.13) decreases whenever trajectory i correlates with observations other than j, or
observation j correlates with trajectories other than i. In other words, whenever Gik is high
for observations k 6= j or Gkj is high for trajectories k 6= i. ati and aoj in Eq. (II.15) take into
account these cross-correlations between trajectories.

We propose to update tracks with the most probable observations in the sense of Aij.
Denoting by D = {1, · · · , nt} the set of all trajectory indices existing at time t and observations
by C = {1, · · · , m̃t}, the optimal measurement-to-trajectory association is given by the injective
function J : D −→ C that maximizes the functional:

max
nt∑
i=1

Ai J(i) (II.16)

The injective property for J(·) is necessary to prevent allocation of the same observation
to multiple trajectories. Whenever nt > m̃t this property cannot hold, thus additional null-
observations are introduced, i.e. the empty-set ∅ association.

Such linear assignment problems are generally resolved with the Hungarian algorithm [72,
Ch. 11]. The Hungarian algorithm finds the best one-to-one allocations given a set of allocation
costs. Assignment is thus achieved with complexity O(max(m̃t, nt)3). In our case searching for
the most probable allocations with the adaptation of the Hungarian algorithm is trivial. For
any trajectory i, the best observation allocation is given by z̃J(i)

t ∈ Z̃t, or the empty set ∅. In
the latter case no update is performed, while in the former case, update is carried out for each
trajectory i:

x̂it|t = x̂it|t−1 + Ki
t ρ ε

i,J(i)
t , (II.17a)

ε
i,J(i)
t = z̃J(i)

t −Htx̂it|t−1, (II.17b)
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with ε
i,J(i)
t representing the filter residual for trajectory i. This residual is also employed for

goodness-of-fit tests, seen in Sec. II.4. The coefficient ρ is given in Eq. (II.18) and takes into
account the non-ideal detection process [26]:

ρ =
pD
Vt
m̃t

GiJ(i)

1− pD pW + pD
Vt
m̃t

∑m̃t
j=1 Gij

, (II.18)

where Vt is the validation gate volume [25, Ch 6.3.2]. Observe that for an ideal detector, without
gating and no clutter, i.e. pD = pW = 1 and m̃t = 1, we have ρ = 1. ρ quantifies the likelihood of
observation z̃J(i)

t originating from trajectory i. Whenever this likelihood decreases, ρ decreases
the Kalman gain Ki

t and the impact of the innovation term ε
i,J(i)
t on the updated estimate.

Equations for the “soft” update of the state vector and covariance are given in Appendix A.
The “soft” update equations suppose a weighted average of all validated/gated observations,
whereas in the aforementioned NN scheme, only the most probable observation is employed.

II.3.3 Trajectory quality measure
As stated in the introduction, an object on the sea bottom creates an acoustic shadow, where the
corresponding trajectory estimates must not be considered for bathymetry reconstruction. In
order to decide whether a trajectory is valid, we introduce an existence process. For trajectory i
at time t, the trajectory existence process ζ it is supposed to evolve according to a Hidden Markov
Chain (HMC) with two internal states: trajectory exists, denoted ζ it = 1 and trajectory
does not exist, denoted ζ it = 0. The estimated trajectory existence probability is defined
as νit|t = Pr{ζ i = 1|Z1:t} and represents a measure of quality associated with trajectory i. By
thresholding νit|t we are able to extinguish trajectory estimates over shadow areas and terminate
trajectories. The transitions between the Markov states are given by the transition matrix with
elements [Π]kl = πkl , Pr{ζ it = l|ζ it−1 = k} with k, l ∈ {0, 1}. Note that, for simplicity,
we suppose a homogeneous HMC. However, IPDA filters can also cope with time-dependent
transition probabilities. Typical values for these transition probabilities, also used throughout
this chapter, are π00 = π11 = 0.98 [73]. In other words, transitions occur infrequently. Π is
identical for all trajectories i.

A detailed derivation of the predicted and updated trajectory existence probability is given
in Appendix A, while here we only recall the main results. The updated track existence prob-
ability νit|t is given by:

νit|t =


1− pD pW

1− pD pW νit|t−1
νit|t−1 if m̃t = 0,

1− δit
1− δit νit|t−1

νit|t−1 if m̃t > 0,
(II.19)

where the predicted trajectory existence probability νit|t−1 is given by:

νit|t−1 = π11ν
i
t−1|t−1 + π01(1− νit−1|t−1), (II.20)

and δit = pD pW (1 − Vt
m̃t

∑m̃t
j=1 Gij). Note that the system-state estimate x̂it|t and trajectory

existence probability νit|t are estimated separately from the observation sequence Z1:t. Hence,
the performance of the filter, in terms of x̂it|t efficiency, is not affected by the computation of
νit|t. The PDA module coupled with the trajectory quality measure, thus derived, is employed
to track multiple echoes in cluttered environments and resolve shadow areas.
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Figure II.4: Imaging geometry.

II.4 Geometrical models
In the previous section it was supposed that the target of interest, i.e. echo A, behaves according
to the model described in the state Eq. (II.5a). In this section we propose to derive such
informative models, i.e. a model for ft(xt−1), to describe the bathymetry, and propose a parallel-
model framework to increase the adaptability of our system. The proposed models characterize
the DOA trajectories of the bathymetry echoes. Furthermore, we consider the state of the
system to represent the DOA trajectory, i.e. xt = θt. In this case, the state noise vt is a scalar
random process. Furthermore, the observation set Zt of Eq. (II.4) is comprised only of the local
maxima of the spectrogram, hence the elements of Zt and the observation noise wt are scalars.

From Fig. II.2 we observe a clear trend in the evolution of the bottom DOA curve: an arch-
shaped trend typical of flat-bottom returns. In such, an analytic relationship can be computed
for this trend by considering the triangle of Fig. II.4

tan(γ) = a

b
= dt−1 cos(θ̃t−1)− dt cos(θ̃t)
dt sin(θ̃t)− dt−1 sin(θ̃t−1)

, (II.21)

where γ represents the bottom slope. Note the relationship θ̃t = θt + Ψc between the DOA
angle considered in this paragraph and the general DOA defined in Fig. II.1. The notation θ̃
is employed to ease the interpretation of the angles in Fig. II.4. An equivalent writing of Eq.
(II.21) is given by

dt cos(θ̃t − γ) = dt−1 cos(θ̃t−1 − γ). (II.22)

The non-linear Eq. II.22 describes the transition function θt = ft(θt−1) from the system Eq.
(II.5a). In Fig. II.5 a) we observe the angular spectrum of a ping line with DOA estimates
represented as black points and the red curve was generated using the perfectly flat and hor-
izontal hypothesis for the bottom. Such a perfectly FHB is equivalent with using Eq. (II.22)
as state-transition equation, with no model noise (i.e. vt = 0), for all t. The DOA estimates
represent local maxima of the beamforming spectrum, the number of local maxima considered
at one instant was given by the AIC criterion. Observe the large number of detections gener-
ated by the AIC in a reverberant environment. Indeed, in such environments, any small volume
backscattering is detected by the AIC as a source of signal. Volume backscattering is usually
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caused by a sharp change in the refraction index, e.g. generated by bio-mass in suspension,
salinity and temperature gradients. Volume reverberation causes volume clutter, which forms
the majority of the spurious DOA estimates. The surface clutter generated by the secondary
echo B, often causes spurious bathymetry estimates (see Fig. II.2) since its intensity is stronger
than that of the volume reverberation and occasionally stronger than the bottom backscatter.
In Fig. II.5 b) we observe only the DOA estimates in black and the DOA curve generated by
a perfectly FHB return in red. This model seems to offer a seemingly good fit for the DOA
curve of echo A. Slight differences are noted at the beginning and end of the DOA curve. In-
tuitively, these could be dealt with by incorporating a non-zero model noise vt 6= 0 forming the
FHB-DOA model state equation:

θ̃t = γ + arccos{dt−1

dt
cos(θ̃t−1 − γ)}+ vt. (II.23)

The model given in Eq. (II.23) incorporates a trend, capable of describing flat and inclined
bottom returns. It also accounts for small deviations from constant slope. Indeed, depending
on the noise magnitude Qt , E{v2

t }, small deviations from the trend are allowed by the model
noise. Note that the model noise vt represents an angular noise and that an equivalent small-
amplitude noise could be defined in Cartesian coordinates. In port and canal environments,
nearly horizontal and nearly vertical slopes are often encountered. We propose to employ a
nearly Flat and Horizontal Bottom (FHB) or a nearly Vertical Object (VO) model, corre-
sponding to γ = 0deg and γ = 90deg in Eq. (II.23). Intuitively, both the nearly FHB and VO
models are highly-informative priors for the evolution of the echo trajectories. Both FHB and
VO are non-linear state-transition functions and require a UKF implementation of the IPDAF,
presented in Sec. II.3.

FHB and VO models represent strong priors on the evolution of the echo DOA, and for
moderate noise values, do not allow for strong deviations from a flat surface. In order to cope
with such situations, a weak prior is proposed and employed in parallel with the aforementioned
models. A random walk (RW) is employed as a weak prior on the evolution of DOA trajectories

Figure II.5: a) Capon spectrogram with DOA observations (♦) and the perfect FHB trajectory
(red curve). b) Only the DOA observations (♦) and the perfect FHB trajectory (red curve).
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imposed by irregular sea-floor surfaces. The RW prediction equation is given by Eq. (II.24).

θRW
t = θRW

t−1 + vRW
t . (II.24)

The aforementioned RW-DOA model has been successfully used in the case of seismic echoes
in [51]. Intuitively, the RW accepts with equal likelihood all values of θt equally distant from θt−1.
In other words, the RW accepts any dynamical behavior that leads to a θt close to θt−1 without
any preferred direction. Except that it prohibits large magnitude jumps between consecutive θt
values. Indeed, the RW model, being less informative than the FHB or VO model, represents
a robust prior for the DOA evolution. However, RW models fail to precisely describe arch-like
tendencies, clearly visible at the beginning of the sea-bottom echo in Fig. II.2 a). To ensure
tracking of echoes over irregularities and capture the arch-like tendency, we propose to use a
RW model alongside the two previously defined geometrical FHB and VO models.

Physical processes often evolve according to several identifiable trends, identified with dif-
ferent models. For example when tracking kinematic targets, such as aircraft or submarines, the
usual models are constant speed, Wiener acceleration process or coordinated turn [25, Ch.4].
The generally accepted solution is to use all models working in parallel and processing the
same sequence of observations. With each new observation, a measure of model adequacy, i.e.
a probability is computed. Based on model probabilities, the instant of model switching can be
estimated and also various schemes of model fusion can be defined. For example, in a MMSE
approach the estimated state is a weighted combination of individual model-conditioned state
estimates.

Several parallel-model processors have been proposed in the literature [74, Ch.11]. By far
the most popular sub-optimal algorithm is the Interacting Multiple-Model (IMM) [73,75]. IMM
supposes a bank of filters, each tuned to a specific model, processing the same observation time-
series. The evolution of the DOA trajectory is supposed to evolve according to a HMC, where
the internal states are the different models. In order to fuse individual model estimates, IMM
computes model probabilities µit|t , Pr{Observation zt generated by model i|Z1:t} for each
model i of the model set. The model-fused output of the IMM is a weighted mean of individual
filters with the weights given by µit|t. For a full algorithmic description we direct the reader
to [74, Ch.11.6.6]. Useful information about the nature of the reconstructed bathymetry, i.e.
flat-floor horizontal, vertical or irregular is obtained via the segmentation information conveyed
by the model probabilities µit|t (see Fig. II.14 b)). In the presence of clutter PDA-type filters
should be used to cope with clutter observation and non-unitary detection probability, giving
birth to the IMM-PDA filter [76]. Also a track probability measure can be computed for the
IMM-PDAF, in a similar fashion to the IPDAF, creating the IMM-IPDAF [64, 65]. Various
multiple-target and multiple-model IPDA filters exist, we employ the NN-IPDAF (derived in
Sec. II.3) with the IMM module to process real sonar data.

To validate the adequacy of our proposed model sets (FHB and RW for bottom, VO and
RW for vertical objects), we employ Goodness-of-Fit (GoF) tests [77]. A review of major
goodness-of-fit tests is presented in Appendix C. GoF tests the whiteness of the filtering residual
sequence. The residual sequence is obtained as a filtering result (see Eq. II.17b), and is available
for both simulated data and real data processing. Thus, GoF tests are usable for validating
models in real data processing without the need for ground-truth data. Whenever the geometric
model of Eq. (II.23) or the RW model of Eq. (II.24) proves inadequate at predicting the echo
DOA trajectory, the residuals of Eq. (II.17b) increase and incorporate a trend: the difference
between the hypothesized and observed trajectory. Such a trend introduces correlation between
the residual samples. The whiteness of these residuals signifies that the model processor was
successful in extracting the information contained in the observation time-series. The Box-
Pierce [78] and the Ljung-Box [79] tests are considered. Both tests work by comparing the two
hypothesis: H0 white sequence and H1 correlated sequence. In other words, H0 conveys the fact
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that there is no evidence against the models, while H1 signals sufficient evidence against the
employed models and perhaps a change is required. We also employ a simpler Out-of-Bound
(OfB) test, first proposed in [80], and used extensively in [70, 71]. The OfB decides H0 or H1
whenever the number of times the residual-autocorrelation terms fall outside a given interval is
less than, or grater than 5% of the total number of terms. Filtering results and GoF test results
are presented in the following sections.

II.5 Results of NNIPDA-UKF

II.5.1 Simulated data results
Simulations are conducted to showcase clutter rejection, variance reduction of filtered DOA
sequences, and more importantly model-validation results for the model-based processor. In
the first scenario, a nearly flat and horizontal sea-floor is simulated. The signal yt received by
the antenna array, with DOA trajectory corresponding to the FHB model with Q = 0.01 deg2,
is generated. In this way, the DOA trajectory resembles the arch-like curves observed in Fig.
II.2. The SNR decreases from 20dB to 3dB from the beginning to the end of the echo, with the
power variation taking into account geometrical spreading due to propagation and Lambertian
scattering on the sea-bottom [81, Ch. 12.3.7]. Also the sonar array altitude is set to H =
15m, and other parameters are matched with those of EdgeTech 4600 sonar used for the real
data experiment. The MUSIC algorithm is employed to estimate the DOA, leading to the
noisy observations zt, see Eq. (II.4). Clutter is added to form the observation set Zt so as
to induce origin uncertainty. The clutter location is uniformly distributed in the observation
space [−90, 90] deg, with the number of cluttered observations being a Poisson process with
parameter λ = 1.5. The model based filter is conducted with the NN-IPDA-UKF algorithm
with only one trajectory. The overall simulation, comprised of generating the signal yt, DOA
estimation with MUSIC and DOA trajectory filtering, is performed 1000 times. Two cases of

Table II.1: Type I error of different tests, evaluated from 1000 trials.

Test α (False positive rate)
0.5 0.4 0.3 0.2 0.1 0.05

Box-Pierce 0.506 0.394 0.306 0.217 0.119 0.058
Ljung-Box 0.531 0.439 0.342 0.246 0.148 0.082

Out of Bound 0.065

interest are considered. In the first one, the model used for simulation is employed to filter the
noisy observations. Goodness-of-fit tests, such as the Box-Pierce [78], Ljung-Box [79] and the
Out-of-Bound [80] tests are applied on the residuals of the filters to assess their whiteness. The
tests are conducted with different α, also known as Type I error or the false positive rate. In the
first scenario, α represents the proportion of tests that reject the whiteness hypothesis, although
the sequences are white. Indeed, since the filter employs the exact same model used to create the
DOA trajectories, the residual sequences are necessarily white. Table II.1 presents the averaged
results for the estimated false positive rate given a specified α. Observe the relative good match
between the number of rejected sequences and the corresponding α. The out-of-bound test does
not offer user parameter, with the false positive rate being fixed to 5%.

In the second case, a noisy FHB echo trajectory is generated but intentionally processed
with a flat and inclined bottom of slope γ = 5 deg. The model noise is increased to Q = 1 deg2 to
avoid the divergence of filters. In this case, all innovation sequences are necessarily correlated,
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Figure II.6: a) Receiver operating curves for Box-Pierce and Ljung-Box tests. b) Noisy trajectory
generated with FHB model. MSE of raw observation sequence(before filtering). MSE after
filtering with the correct FHB model and an incorrect slopped model.

thus revealing the inadequacy of the filtering model. GoF tests results are presented in Fig.
II.6 a), as Receiver Operating Characteristic (ROC) curves. The ROC curves are obtained
by plotting the test power in function of the logarithm of α. The test power, also known as
sensitivity, is obtained as 1 − β, where β is called Type II error or the false negative rate
and represents the proportion of tests that fail to reject the whiteness hypothesis. For values
of α ∈ [0.05, 0.1] both tests offer high-rejection rates of the residual whiteness whenever the
models are inadequate. We observe that the Ljung-Box test is slightly more powerful than the
Box-Pierce test, as also noted in [79]. The out-of-bound test fails severely, only rejecting 0.54%
the whiteness hypothesis, from the 1000 trials. Hence, only the Box-Pierce and Ljung-Box will
be considered for tests on real-sonar data with the choice of α = 0.05 offering a powerful test.

Curves showing Mean-Squared Error (MSE) between the simulated and filtered DOA esti-
mates are given in Fig. II.6 b). They show the MSE before filtering (i.e. the MSE of observations
zt), MSE of filtered DOA trajectory with the correct FHB model, and MSE of filtered estimates
with the (intentionally incorrect) inclined model. We observe the coincidence of the minimum
MSE with the model validated by GoF tests. Indeed, a small mismatch, such as a 5 deg slope,
might not generate a noticeable error in the filtered bathymetry; however GoF tests immedi-
ately detect this model inadequacy and systematically reject the whiteness of incorrectly filtered
residuals. Also notice the improvement, i.e. reduced MSE, of post-filtering DOA sequences, im-
plying an increased accuracy of bathymetry reconstructed by Eq. (II.1). For high range dt
values, the imaging geometry causes the received signal to be less sensitive to the sea-floor
slope, in other words, if dt−1/dt ≈ 1 the slope γ of Eq. (II.23) cancels out. This explains why
even the MSE of the filter with the incorrect model is improving for increased range values, as
compared with the raw observation MSE.
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Figure II.7: NN-IMM-PDA-UKF echo separation: a) θ̂t|t overlay-ed on the Capon spectrogram.
b) Bottom FHB and RW model probabilities µt|t. c)/d) Bottom/sea-surface trajectory existence
probability νt|t Eq. (A.17).

II.5.2 Real data results
In this section we present filtering results of real-sonar data. Sonar data were acquired with an
EdgeTech 4600 sonar (see [6] and Appendix G), in a shallow-water canal near Fort Lauderdale,
Florida. Depth varies between 10m and 20m. The extent of the imaged area is given by a
maximum slant range of 60m. The state of the sea was calm, resulting in important sea-surface
reflections. Sec. II.5.2.a showcases the ability of the proposed filter to eliminate clutter and
separate the bottom echo from the sea-surface echo. In Sec. II.5.2.b we present the batymetry
reconstruction of a man-made object - a mooring pole (also referred to as a piling or pile), and
in Sec. II.5.2.c a full-survey bathymetric reconstruction is achieved with the proposed filter.
Capon and MUSIC are used interchangeably as the pre-processing module.

II.5.2.a Multi-path echoes separation

In Fig. II.7 a) we observe NN-IMM-IPDA results for bottom and sea-surface echoes overlaid
onto the Capon spectrogram of the corresponding ping line. Pre-processing was done with the
Capon beamformer and the AIC [52] method for number of sources estimation. Observe the
echo separation achieved by the multiple-trajectory filter with the nearest neighbor association
scheme. The separation of the bottom and the sea-surface echoes ensures spurious-free bathy-
metric reconstruction. Bottom-echo tracking is conducted using the set of models: FHB (II.23)
with model noise variance QFHB = 0.01 deg2, and RW model (II.24) with QRW = 0.1 deg2. The
IMM [74, Ch.11.6.6] framework that merges the two model estimates, employs sequentially-
estimated model probabilities µt|t showcased in Fig. II.7 b). Model probabilities µFHB

t|t and µRW
t|t

indicate the model likelihood given current and past observations, thus providing a geometrical
segmentation of the underlying bottom profile. Since the bottom echo has an arch-shaped curve
typical of flat and horizontal bottoms, the FHB model is, for most of the times, more likely than
the RW model. The bottom trajectory existence probability νt|t, given by Eq. ((A.17)) and pre-
sented in Fig. II.7 c) is also computed sequentially and indicates trajectory quality. Whenever
νt|t decreases below the threshold value, set to 0.5, the trajectory estimates are extinguished (for
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Figure II.8: Side-scan (amplitude) image of 200 adjacent ping lines. b) Trajectory existence
probabilities for the 200 ping lines.

slant range values between 35−40 m). The filtering residuals given by Eq. (II.17b) are employed
for GoF tests yielding the acceptance of the whiteness hypothesis with p−values of 0.318 and
0.283 for the Box-Pierce and Ljung-Box tests, respectively. Since the sea-surface echo exhibits
high variations, with a less evident trend, a single RW model was employed with QRW = 1 deg2

for DOA trajectory estimation. Sea-surface echo trajectory existence probability is given in Fig.
II.7 d). GoF tests for the surface echo yield the acceptance of the whiteness hypothesis with
p−values of 0.439 and 0.346 for the Bow-Pierce and Ljung-Box tests, respectively. In order to
better visualize the trajectory existence probabilities νt|t we present the results for 200 adja-
cent ping lines forming Fig. II.8. In Fig. II.8 a) we observe the lateral (or side-scan) amplitude
image, while in Fig. II.8 b) we observe the corresponding instantaneous trajectory quality, νt|t.
Notice the correspondence between the two figures, notably concerning the two acoustic shad-
ows where the trajectory existence probability is low. The ping line processed in Fig. II.7 is
obtained from the set of ping lines presented in Fig. II.8 at the along track marker of 10m. No-
tice the echo interruption from Fig. II.7 a) caused by an acoustic-shadow patch. Thresholding
νt|t ensures acoustic-shadow detection, where tracking is stopped and bathymetric points are
not reconstructed (lack of bottom-backscattered signal).

II.5.2.b Man-made object reconstruction

Another interesting case of double target tracking is showcased in Fig. II.9 a), where the primary
trajectory is the sea-bottom DOA echo and the secondary trajectory corresponds to the echo
backscattered from a vertical mooring pole (also called piles or pilings). Note, that the two
echoes are received simultaneously, since the two echoes are situated at the same distance
(slant range) from the sonar array. This leads to the layover phenomenon in side-scan images,
effectively obstructing the area in front of the pole. Pre-processing is done by MUSIC coupled
with AIC and require a computation time of 0.9s. The post-filtering has a computation time of
1.3s on a 3.6GHz processor in MATLAB. Compiling the code would enable real-time survey-
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Figure II.9: Man-made object scenario: a) NN-IMM-IPDA-UKF estimates overlayed on the MU-
SIC pseudo-spectrogram. b) Pole VO and RW model probabilities. c) Pole trajectory existence
probability νt|t, Eq. (A.17).

ready processing. The models employed to track the pole echo are the VO model with QVO =
0.1(o)2, and a RW model with QRW = 1(o)2. The sea-bottom echo was tracked with the same
parameters as in the previous figures. In Fig. II.9 b) we observe the evolution of the µVO

t|t and µRW
t|t

model probabilities. Observe the pertinence of the RW model for the start of the pole trajectory
and the later switch to the VO model. Tracking the pole trajectory is stopped when its existence
probability νt|t, given by Eq. (A.17) and presented in II.9 c), drops below the threshold value of
0.5. GoF tests were conducted for the sea-bottom echo yielding the acceptance of the whiteness

Figure II.10: Trajectory loss: a) Tracking with only the RW model. b) Pole trajectory existence
probability.
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Figure II.11: Man-made object reconstruction comparison: a) Interferometry b) MUSIC c) NN-
IMM-IPDA-UKF. Figure d) shows an image of the foam-filled fender, which is mounted on top
of the pole (courtesy of EdgeTech). Notice the partial submersion of the fender, which makes
it visible in the reconstructed sonar bathymetry of figure c).

hypothesis with p−values of 0.34 and 0.18 for the Box-Pierce and the Ljung-Box tests. GoF
tests for the pole echo also accept the whiteness hypothesis, with p−values of 0.76 and 0.59 for
the Box-Pierce and the Ljung-Box tests.

For comparison reasons, the RW model alone is also employed to track the pole echo. How-
ever, since the RW has no preferred dynamical evolution situations occur were any clutter
induced DOA estimate close to the pole DOA trajectory can cause the trajectory to be irre-
trievably lost, as seen in Fig. II.10 a). Again the trajectory existence probability, Fig. II.10 b)
is employed to stop the tracking process.

Bathymetry reconstruction is achieved by employing Eq. (II.1) with the various DOA es-
timates of each ping line. Thus transforming several adjacent ping lines we obtain the full
reconstructed bathymetry. The bathymetry corresponding to the pole area is reconstructed in
Fig. II.11 a) using interferometry DOA estimates, in Fig. II.11 b) using the raw MUSIC DOA
estimates and in Fig. II.11 c) the reconstruction is carried out using the proposed filter. Observe
the regularized reconstruction obtained with the proposed filtering algorithm as opposed to the
MUSIC reconstruction which is buried in clutter. Since in our experiment 8 receivers are avail-
able, the interferometry estimate is given by the means of the phase differences taken between
the 7 pairs of adjacent receivers. Interferometry only offers one DOA angle estimation at each
instant t, so it appears less cluttered but also it is not capable to reconstruct the pole and
the area just in front of it. Indeed, for the bottom and pole backscattered echoes that impinge
on the sonar array at the same instant, interferometry only offers one DOA estimate which is
biased toward the more powerful pole echo. The MUSIC algorithm is used with the AIC [52]
criterion to select the number of echoes. Hence the number of DOA estimates (also bathymetry
points) at each range bin in Fig. II.11 b) is given by AIC. Notice an image of the foam-filled
fender in Fig. II.11 d), which is mounted on top of the pole/piling. An aerial view of the survey
area and the pole is given in Fig. II.12, which represents the turning notch of Port Everglades in
Fort Lauderdale, Florida. Large container ships traveling down the river/canal are turned 180o
in this turning notch. The piling serves as a turning piling (also called turning dolphin), while
the fender protects ship hulls from getting damaged in the turning process. Since the fender is
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Figure II.12: Turning notch of Port Everglades, Fort Lauderdale, FL (GPS coordinates
26.074920, −80.115201). Courtesy of Google Maps, date 14.11.2013. The canal is called Strana-
han River. Note the encircled survey area and the turning piling. Large container ships are
turned inside this turning notch, with the help of the turning piling.

partially submerged, part of it is visible in the reconstructed bathymetry. Note that the fender
is free to rise/descend with the incoming/outgoing tide. A cylinder is fitted to the points
representing the main body of the mooring pole in Fig. II.11 c), using the Pratt method [82].
The inferred pole diameter is 2.23m with a 95% confidence interval of [2.14, 2.3]m. The inferred
value corresponds well with the typical 7.5 foot (2.28m) diameter of the mooring pole. In Fig.
II.13, the points corresponding to the main body of the pole are projected onto the plane of the
along-track and ground-range axes. Additionally, on the same plane a projection of the fitted

Figure II.13: Pole/pilling diameter inference. The bathymetry points comprising the main body
of the pole are projected onto the plane of the along-track and ground-range axis. Note the
fitted circle, corresponding to the inferred diameter and center, and the projected points.

40



II.5. Results of NNIPDA-UKF

Figure II.14: a) Bathymetry reconstruction with the proposed filtering algorithm. b) Predomi-
nant models (geometrical segmentation). c) Side-scan image (signal amplitude).

cylinder is represented as a red circle. Note the presence of bathymetric points only on the left
semicircle, the right semicircle corresponding to the acoustic shadow generated by the pole.

II.5.2.c Bathymetric survey

A fully reconstructed bathymetry with the NN-IMM-IPDA-UKF is presented in Fig. II.14 a)
where the point color code represents depth. 600 adjacent ping lines are processed and employed
for the bathymetry reconstruction. Bathymetry estimates are extinguished based on the various
trajectory probabilities. Observe the pole in the middle of the reconstructed bathymetry image
with the resolved layover. Next to the pole, observe the canal bank. Bathymetry was recon-
structed with the RW and FHB models for the sea-bottom echo and the VO and RW models for
the pole echo. In both cases, the RW model is employed to provide tracking in highly irregular
areas, complementary to the geometrically informative models FHB and VO. Thus, multiple-
model processing, carried out by the IMM module of the proposed NN-IMM-IPDA-UKF, offers
better adaptability of the filtering algorithm and avoids filter divergence. Furthermore, multiple
model processing offers image-segmentation information as early as the image reconstruction
stage. By image-segmentation information we refer to the model probabilities µt|t adaptively
computed by the IMM. A simple thresholding mechanism of model probabilities is presented
in Fig. II.7 a), where we affect the class FHB or RW to a filtered DOA estimate (implicitly to
the bathymetry-point estimate) whenever the corresponding model probability µt|t is predom-
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Figure II.15: GoF p−value histogram of ping lines composing the bathymetry in fig. II.14: a)
Box-Pierce test b) Ljung-Box test

inant. Proceeding in such a manner for the entire reconstructed scene, we obtain Fig. II.14 b),
where the bathymetry is effectively segmented according to the geometrical models employed
for each of the processed echoes: bottom and pole. Observe the occurrence of the RW model for
the bottom echo, describing mainly the sloped canal bank, not captured by the FHB model.
The RW model is active in describing the upper section of the pole, not covered by the VO
model. This corresponds to the foam-filled fender discussed above. Indeed, the VO model is
active only for describing the pole body, which constitutes a vertical object. This represents
a rough segmentation based on the simple selection mechanism of the most probable model.
Improved segmentation mechanisms could be envisaged by incorporating inter-ping processing.
The different predominant models visible in Fig. II.14 b) illustrate the need for a multiple model
approach, where strong priors such as FHB and VO are coupled with the less restrictive RW
model. Multiple model filtering increases the flexibility of the proposed method in real scenario
bathymetry processing. In Fig. II.14 c) we present the side-scan image of the same area, i.e. the
intensity of the backscattered signal. Observe the mooring pole with the layover phenomenon,
obstructing the area in front of the pole. In Fig. II.12 an aerial view of the surveyed area is
provided. Note the good match between the bathymetry reconstruction (Fig. II.14 a)), the
side-scan image (Fig. II.14 c)) and the aerial view of the surveyed area (Fig. II.12). GoF tests
are conducted for the ping lines composing fig. II.14 a), and are synthesized in Figs. II.15 a)
and b). The p−values obtained by the Box-Pierce and Ljung-Box tests for each ping line are
arranged in the normalized histograms. Given a level of significance of α = 0.05, the percentage
of rejected ping lines are represented by the red bin in the aforementioned figures. With the

Figure II.16: GoF p−value histogram for RW model only: a) Box-Pierce test b) Ljung-Box test
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Box-Pierce test 6% of ping lines are rejected, while for the Ljung-Box 9% are rejected. This
shows that acceptable model validation rates are achieved with the proposed multiple-model
framework. p−values are expected to be uniformly distributed under the H0 hypothesis (see
Appendix D and [83]), which seems to be the case more for the Bow-Pierce histogram (fig.
II.15 a)) than for the Ljung-Box p-values histogram (fig. II.15 b)). In fact, the tested ping
lines do not rigorously constitute independent realizations of the same stochastic process, thus
inducing that the percentage of rejected ping lines are not expected to be equal to α. However,
from a practical point of view, a small number of rejected ping lines is relevant to validate the
proposed geometrical models whenever ground-truth data is lacking. Furthermore, GoF tests
used actively during survey operations offer the possibility to detect when the reconstruction
method fails (failed GoF tests) and switch the system to a supervised reconstruction involving
operator input.

For the sake of comparison, bathymetry reconstruction was also conducted solely with the
RW model. Unfortunately, in the pole case presented in Fig. II.10 a) showcases the inadequacy
of the RW model for the reconstruction of the pole body. Filtering only the sea-bottom with the
RW model is achieved without divergence. However, the GoF test results presented in Fig. II.16,
reject the majority of processed ping lines at about 90%. We conclude with the inadequacy of
the RW model, when used solely, for bathymetry extraction.

The proposed post filtering method is employable for multibeam sonar and synthetic-
aperture systems. However, the pre-processing module needs to be modified in function of the
sonar system under consideration. Multibeam systems dispose of roughly 10 times the number
of receiver elements as conventional interferometric side-scan sonars, hence conventional beam-
forming is preferred to the MUSIC algorithm. The latter requires a temporal window larger
than the number of receivers for the estimation of the sample covariance matrix. Simple thresh-
olding of the beamforming spectrum offers the DOA observation set Zt. For synthetic aperture
sonars, once the synthetic-aperture formation is carried out for each of the N receivers, DOA
estimates forming the observed set Zt can be inferred from the N synthetic aperture images.
Then, the observation set of DOAs can be post-filtered with the proposed method in order to
obtain clutter-free bathymetry reconstructions of the sea-floor.

II.6 Chapter conclusions

In this chapter, model-based adaptive filters are employed to achieve high-resolution 3D imag-
ing of the sea-bottom for real-time applications. Tracking ensures trajectory formation and
separation of echoes from clutter and interfering multi-path for image reconstruction. Also lay-
over, a limiting phenomenon of side-scan images, is resolved by simultaneously tracking the
multiple echoes. The proposed NN-IMM-IPDA-UKF forms echo DOA-trajectories from DOA
estimates obtained with classical array processing methods such as MUSIC. Geometric models
are employed to characterize the DOA trajectories of echoes in a bathymetric context. Multiple
models are employed in parallel in order to increase the adaptability of the proposed filter. Fur-
thermore, such models are also shown to effectively segment the 3D image and provide useful
information for infrastructure identification purposes. Goodness of fit tests are provided as a
means to validate the proposed model processors on simulated and real data.

The relatively simple implementation of the NN-IPDA-UKF yields an algorithm suited for
real-time applications. This constitutes one major advantage of such an approach to tracking
DOA echoes. However, the disadvantage lays in the pre-processing module that needs to pro-
cess a window of signal samples to produce a meaningful spectrogram and subsequently DOA
estimates. In the following chapters, we will propose an alternative processing scheme that does
not rely on a pre-processing (detection/estimation) module, but tracks echoes directly from the
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phased-array measurements. This provides a depth estimate for each array sample, thus achiev-
ing super-resolution bathymetry. Such tracking algorithms, referred to as Track Before Detect
(TBD), are more complex than Track Wile Scan (TWS) methods such as the PDAF. Further-
more, TBD algorithms are capable of tracking low SNR echoes. This is achievable by delaying
the detection thresholding process as long as possible in order to integrate (and subsequently
track) dim echo intensity over time/slant range.
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III.1 Point-process formalism for target tracking

In this chapter we investigate algorithms aimed at adaptively estimating both the number of
echoes impinging the sonar array and their associated DOAs. In a similar way to the previ-
ous chapter, a state-space formalism is employed, in which the system state, or multi-state,
represents the collection of individual target states. Targets represent acoustic echoes and are
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characterized by a state vector that contains target-position parameters (e.g. DOA, Cartesian
coordinates) and possibly other parameters (e.g. echo strength, angular dispersion).

In the previous chapter, a varying number of targets was not explicitly accounted for.
Instead, tracks were considered already formed and data association is employed to find the
most probable observation-to-track allocations. With this approach, track update is carried out
once the pairs between observations and tracks are optimally determined. Methods are employed
to explicitly add new tracks by considering each unassociated observation to form a tentative
track. Since false, i.e. clutter, observations are present, a confirmation logic is required for the
newly-formed tentative tracks. A typical confirmation rule requires that at least M detected
observations fall within a pre-specified vicinity of one another in N successive samples [25, Ch.
1.3.2]. An often used rule is the 2 out of 3 rule. Explicit track deletion can be carried out
whenever a specific track has not been updated for several time samples, or based on a track-
score function such as the probability of existence in the IPDAF. By employing a track-score
function for each track, the Joint IPDAF [84] is employed to achieve multi-target filtering with a
varying number of targets. Note that in IPDA-based filters, the number of targets is not modeled
as a random variable. In Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) algorithms,
a variable number of targets is accounted for by introducing birth and death moves that increase
the statistical diversity of particles. Such an RJ-MCMC method has been developed in [38] for
DOA tracking directly from phased-array observations, that is, no pre-processing is required in
order to form a set of detections. Alternatively, the proposed RJ-MCMC can be interpreted as
an algorithm that estimates the model order and other parameters of the observation process.

A different approach consists in considering the multi-state as an unordered collection of
objects or points representing individual targets, where the number of points and their locations
are random. The individual point states take values in a specific space, referred to as the
single-target space. Compared to the previously mentioned filters, the major difference of this
approach consists in modeling the number of targets as a random variable. This allows for prior
densities to be defined on both target number and target locations, and the rigorous derivation
of Bayesian filters. Bayesian multi-target filters, that estimate both the number of targets
and their state vectors, have received an increasing interest in recent years. The mathematical
concepts dealing with a random number of points as well as random point locations are modeled
by the theory of point processes [85]. In general, targets are assumed to have no specific ordering.
Point processes offer a natural representation of multi-target states as unordered collections of
individual states. Because of the ordered nature of elements in a vector, augmented vectors
as multi-target states are not a natural representation. This problem clearly arises when using
the ordinary euclidean distance for computing errors between an estimated and a ground-truth
multi-target state vector: a different ordering of elements, in the estimated multi-target state
as opposed to the ground-truth vector, yields an unjustified increase in error. Thus, at least
from the point of view of mathematical formalism, a correct representation of a multi-target
state is an unordered collection, or a set whenever duplicate elements are not present.

In most applications, we only consider finite and simple point processes, i.e. with realizations
having a finite number of distinct points, both properties holding almost surely. In the tracking
literature, such processes are also known as Random Finite Sets (RFS) [27]. A finite and simple
Point Processes (PP) description of the multi-state allows for an implicit account of target birth
and death in the recursive propagation of the PP posterior distribution. A practical multi-target
tracking filter, propagating the intensity function or Probability Hypothesis Density (PHD)
(i.e. first-order moment density of the PP), has been proposed in [27], and is referred to as the
PHD filter. The intensity or PHD function is defined on the single-target space and has two
interesting properties that make it attractive for multi-target tracking. Firstly, integrating the
PHD over any region of the single-target space leads to the average number of points/targets
in that region. Secondly, target positions or states can be inferred from the local maxima of
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the intensity function. Hence the PHD filter recursively estimates the intensity function of the
corresponding multi-target PP given past and current observations. Intensity based filters such
as the PHD filter have several advantages as compared to classical PDA-based filters:

• Firstly, data association is carried out implicitly during the update stage of the intensity
function, and no explicit enumeration of observation-to-track associations is needed. The
latter being computationally intensive.

• Secondly, target births are accounted for simply by algebraically adding a birth intensity
to the existing intensity1.

• Thirdly, target survivals (or equivalently target deaths) are accounted for by multiplying
the intensity function with the probability of target survival2.

• Fourthly, an estimate of the number of targets is obtained by integrating the intensity
function, while target states can be inferred from the local maxima of the intensity func-
tion.

The aforementioned advantages apply to both TWS and TBD filtering strategies. Since in
TBD there are no ad-hoc target-initialization procedures, such as the “M out of N” rule from
TWS, the aforementioned advantages of intensity filters become more interesting. Furthermore,
in [28,86,87] intensity filters based on point-process theory are shown to outperform RJ-MCMC
algorithms for multi-target tracking with sensor arrays. Therefore, in this work, we focus on
developing intensity based filters for phased-array sensors.

Historically, the TWS-PHD filter was the first PP-based filter developed for multi-target
tracking in TWS systems. TBD-PHD filters have only recently been proposed in [86], for sensor
arrays in which the observation model is completely specified by the target states, that is, the
observation equation is a deterministic function of the target states. For phased-arrays on the
other hand, the target states only specify the parameters of a stochastic observation model and
the PHD filters of [86] are not directly applicable. More specifically, the observation is a sum
of target-generated source signals and noise, with source signals being modeled as stochastic
processes with parameters given by the target states. To cope with the phased-array model, we
introduce a novel marked point-process model, that integrates the multi-target point-process
with the stochastic source signals. In the proposed model, source signals represent the marks
generated by the individual points. Moreover, we show that marks can be marginalized-out
in the update process of the TBD-PHD, leading to an efficient filter that only propagates the
intensity function relative to target states. Thus, we avoid augmented-state solutions (such as
the RJ-MCMC [38]), that lead to less efficient particle-filter implementations. The proposed
TBD-PHD filter is capable of tracking multiple Gaussian point-targets directly from phased-
array observations, that is, with no pre-processing. Observation extraction in TWS systems
implies thresholding operations, potentially missing low-SNR echoes. To validate our TBD
approach, the proposed TBD-PHD filter is shown to outperform stat-of-the-art TWS-PHD
filters for phased-array processing [87]. Moreover, the TWS-PHD filter of [87] was shown to
outperform the RJ-MCMC method of [38], and with a reduced computational cost. Indeed,
RJ-MCMC methods exhibit a burn-in period required by the Markov process to reach stability,
which occurs at each time sample in on-line estimators. The phased-array TBD-PHD filter was
the subject of publications [88, 89].

This chapter is organized as follows. In Sec. III.2, we present several definitions related to
PP theory and introduce the PHD filter notations. Next, in Sec. III.3, several PP examples are
given that serve as priors for multi-target filters developed in subsequent sections. In Sec. III.4,

1Whenever the birth points are independent from existing points.
2Whenever the survival of one point is independent from other points.
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the error metric employed to quantify the estimation error of multi-target states is given. We
give a short presentation of the TWS-PHD filtering equations in Sec. III.5, which will prove
useful for the development of TBD filters. The proposed TBD-PHD filter is developed in Sec.
III.6. We conclude in Sec. III.7.

As a side-note, in [90,91] we proposed single-target TBD filters for phased arrays. Addition-
ally, in [92] we proposed a TBD filter that models the array observation process as a process
switching between an order 1 and an order 2 model, the resulting filter being capable of tracking
at most 2 simultaneous targets. In such, these filters constitute special cases of the methods
presented in the following, the latter being capable of tracking (at least theoretically) a generic
number of targets.

III.2 Point-process theory
In this section we state the main definitions and develop the notations employed throughout
the following sections. The main elements presented here involve basic point-process theory,
required in multi-target tracking methods. Good texts on general point-process theory are
[85,93], on spatial point processes and simulation methods [94,95] and on applications of point
processes [96].

A Point Process (PP) is defined as a collection of indistinguishable points distributed ran-
domly in a locally compact Hausdorff space whose topology has a countable basis, e.g. Rd.
Typically, we are interested in finite point processes, defined as point processes for which the
total number of points is finite with probability 1. Furthermore, in target tracking, points rep-
resent target states and it is reasonable to suppose that there are no two points with the same
state vector. In such, we define simple point processes as point processes that have distinct
points with probability 1. Since the ordering of points has no meaning, an equivalent Random
Finite Set (RFS) terminology is possible for simple, finite point processes [24]. For equivalences
between PP and RFS, we direct the reader to [27, Sec. II.D] and [97, Sec. II]. Some parallels
between the two concepts will be drawn in this document, which help to interpret different no-
tions (e.g. the probability hypothesis density function). Indeed, we consider the point-process
construction of densities and factorial moment measures to be rewarding in terms of inter-
pretability. Nonetheless, the more compact notations introduced by RFS, specifically the set
integral and PHD, will be employed in the majority of this work.

The following sections are organized as follows: in Sec. III.2.1 we present several preliminary
definitions, in Sec. III.2.2 we define a probability measure for PP, in Sec. III.2.3 we introduce
the random finite set and the set integral terminology, and in Sec. III.2.4 we introduce moment
measures and moment densities for PP.

III.2.1 Preliminary definitions
For a finite point process X the following conditions hold:

• The points are located in a complete separable metric space X, e.g. X = Rd, referred to
as the single-target space.

• A distribution {pn} with n ∈ N+ with ∑∞n=0 pn = 1 exists and determines the distribution
of the total number of points.

• For each n ≥ 1, a probability distribution Πn(·) exists on the Borel sets B(Xn) of Xn =
X×· · ·×X, and it determines the joint distribution of process points, conditioned on the
total number of points being n.
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The previous conditions offer an insightful and constructive definition of finite PP. That is,
in order to generate a realization of the finite PP X, one needs to first choose the number of
points n with probability pn and then sample the collection (x1, · · · ,xn) from the distribution
Πn(·). Furthermore, since we assume that we deal with unordered points, the distribution Πn(·)
needs to assign the same probability mass to all n! permutations of coordinates x1, · · · ,xn. In
other words, Πn(·) should be symmetric. Whenever this is not the case, a symmetrical measure
is obtainable by imposing on any partition (A1 × A2 × · · · × An) of X:

Πsym
n (A1 × · · · × An) = 1

n!
∑

σ∈Perm(n)
Πn(Aσ(1) × · · · × Aσ(n))

where Perm(n) denotes the set of the n! permutations of the first n positive integers. Hence,∑
σ∈Perm(n) is taken over all n! permutations (σ(1), · · · , σ(n)) of integers (1, · · · , n). Observe

that the new symmetrical distribution has total mass unity.
Janossy measures are defined as [85, Eq. 5.3.2]:

Jn(A1 × · · · × An) = pn
∑

σ∈Perm(n)
Πn(Aσ(1) × · · · × Aσ(n))

= n! pn Πsym
n (Ai1 × · · · × Ain).

Janossy measures capture both the target number distribution as well as their spatial dis-
tribution on X, and therefore provide a concise characterization of a PP. Observe that the
probability of a realization of the PP X having n points is given by:

pn = 1
n!Jn(X(n)), (III.1)

since Πn((Xn)) = 1. Also note that:
∞∑
n=0

1
n!Jn(Xn) = 1.

An application of Janossy measures is to construct probability distributions of the number
N(Ai) of points falling inside the subset Ai ∈ X. Considering (A1, A2, · · · , Ar) as a finite
partition of X, the probability of finding exactly ni points in each Ai, with i = 1, · · · , r and
n = ∑r

i=1 ni, is given by:

Pr{N(Ai) = ni, i = 1, · · · , r} , Pr(A1, A2, · · · , Ar;n1, n2, · · · , nr)

= 1
n1!n2! · · ·nr!

Jn(An1
1 × · · · × Anrr )

= pn

(
n

n1 · · · nr

)
1
n!
∑
perm

Πn(An1
1 × · · · × Anrr ),

where
(

n
n1 · · · nr

)
,

n!
n1!n2! · · ·nr!

is the multinomial coefficient that represents the number of

ways of grouping n points in r distinct sets with ni points in Ai, for i = 1, . . . , r.
A simple interpretation of Janossy measures is possible whenever derivatives exist. In such a

case, let jn(x1, · · · ,xn) represent the density (Radon-Nikodym derivative) of Jn(·) with respect
to the Lebesgue measure on Xn, whenever X = Rd and xi 6= xj for i 6= j. In such, the Janossy
density jn(x1, · · · ,xn) is interpreted as:

Pr


exactly n points, each located in
the distinct intervals (xi,xi + dxi)

and none elsewhere.

 = Jn(dx1 × · · · × dxn)

= jn(x1, · · · ,xn)dx1 · · · dxn (III.2)
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Finite point processes become simple, whenever X = Rd and for all n the Janossy measures
admit densities jn(·) with respect to the n ·d Lebesgue measure [85, Prop. 5.4.V]. Hence, finite-
simple PP are commonly encountered in tracking applications where at least one dimension of
X is R.

III.2.2 A probability measure for PP
Characterizing a PP can be achieved by specifying the family of Janossy measures Jn(·) with
n ≥ 0, from which we can obtain the distribution of the number of points pn (see Eq. III.1)
and a set of symmetric probability distributions {Πsym

n (·)} defined on B(Xn), and conversely.
From [85, Prop. 5.3.II], either specification is equivalent to a probability measure on the Borel
sets of the countable union

X∪ =
∞⋃
n=0

Xn, (III.3)

where X0 = ∅ denotes the empty set configuration. Clearly, X∪ represents the space of outcomes
of X.

The construction of a measurable space from X∪ requires the introduction of several notions.
Thus, let us introduce the measure space (X,A, λ), λ an atomless finite measure, and λn be
the n−fold product measure on Xn for n ≥ 1 and λ0(X0) = 1, by convention. In what follows,
we assume that X = Rd, A is the Borel σ algebra of Rd and λ is the Lebesgue measure over X.
We denote with B(X∪) the σ algebra in X∪ inherited from A. In particular, for each set S of
B(X∪), we verify S ∩ Xn ∈ An, for any n. With the above defined notions, in [95, Ch. 3.5], for
any S ∈ B(X∪) the dominating measure was proposed3

µ(S) =
∞∑
n=0

λn(S ∩ Xn)
n!

=
∞∑
n=0

1
n!

∫
X(n)

1S({x1, · · · ,xn})dx1 · · · dxn, (III.4)

The probability of X can be connected to Janossy measures, and their densities (when they
exist), as follows

Pr{X ∈ S} =
∞∑
n=0

pn Pr{X = (x1, · · · ,xn) ∈ S}

=
∞∑
n=0

1
n!

∫
Xn
1S({x1, · · · ,xn})Jn(dx1 × · · · × dxn)

=
∞∑
n=0

1
n!

∫
S∩Xn

jn(x1, · · · ,xn)dx1, · · · , dxn

,
∫
S
p(x)µ(dx) (III.5)

where 1S(U) denotes the indicator function (1S(U) = 1 if U ∈ S and 0 otherwise).
Equation (III.5) defines the mixed probability distribution for the finite PP X. Indeed,

the family of Janossy densities represent the probability density of the PP X with respect to
the measure µ(·) defined in Eq. (III.4). Observe that µ(X∪) = 1, hence (X∪,B(X∪), µ) is a
probability space. In this work, probability densities for finite PP are defined with respect to
the dominating measure µ(·) given by Eq. (III.4).

3In [95, Ch. 3.5], the measure µ(·) is introduced as the unnormalized distribution of a Poisson point process
with intensity λ(·), however this requires a more involved presentation, which is avoided here.
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III.2.3 RFS and set integral
In the literature devoted to tracking, finite and simple point processes X are often referred to
as Random Finite Sets (RFS). Since realizations of X can be seen as finite subsets4 of X, the
probability of X can be reformulated in terms of the probability that elements of X belong to
sets A ∈ A, which writes [27]

Pr{X ⊆ A} =
∞∑
n=0

1
n!

∫
An
jn(x1, · · · ,xn)dx1, · · · , dxn, (III.6)

for A ∈ A. In the literature this the following set integral notation [24, Ch. 11.3.3.1] was
introduced ∫

X
f(X)δX ,

∞∑
n=0

1
n!

∫
Xn
f({x1, · · · ,xn})dx1 · · · dxn, (III.7)

for any set function f(·), defined on the set of all finite subsets of X, denoted F(X). From Eqs.
(III.6) and (III.7) we have

Pr{X ⊆ A} =
∫
A
p(X)δX, (III.8)

for a non-negative function p(·) defined on F(X) as

p({x1, · · · ,xn}) , jn(x1, · · · ,xn). (III.9)

Observe that Pr{X ⊆ A} actually repackages the probability measure Pr{X ∈ S} introduced
in Eq. (III.5), where S = ∪∞n=0A

n. Moreover,
∫
p(X)δX = 1. A detailed presentation of the link

between PP and RFS is presented in [97, Sec. II]. In the following sections, we shall employ the
common term of multi-target process for both finite-simple PP or RFS.

III.2.4 Moment measures of point processes
Let us now consider that the total population of the finite PP has finite k-th moment E{(N(X))k},
for k ∈ N+. Where N(A) denotes the random number of points of the PP falling in A. Then,
for any Borel set A ∈ A we can define [85, Ch. 5.4, Eq. (5.4.1)] the expectation

Mk(Ak) = E{(N(A))k}.

Similarly, k-th factorial-moment measures M[k](·) can be defined on arbitrary rectangle sets of
the form A

[k1]
1 × · · · × A[kr]

r with {k1, · · · , kr} representing a partition of k (i.e. ∑r
i=1 ki = k):

M[k](A[k1]
1 × · · · × A[kr]

r ) = E{(N(A1))[k1] · · · (N(Ar))[kr]}.

Whenever M[k](·) exists, the densities m[k](·) and jn(·) are related by the equation

m[k](x1, · · · ,xk) =
∞∑
n=0

1
n!

∫
Xn
jk+n(x1, · · · ,xk,y1, · · · ,yn)dy1 · · · dyn. (III.10)

In multi-target tracking the first-order moment density is also referred to as the intensity
function or the Probability Hypothesis Density (PHD) function [27]. The term of PHD is
preferred, since the term of intensity has a multitude of meanings in the signal processing
literature. Note, that in Mahler’s set-integral notation of Eq. (III.7), the PHD is denoted as
D(x) and is equivalently defined as [24, Ch. 16.2.3]:

D(x) =
∫
p({x} ∪X)δX, (III.11)

4We are considering a simple PP, that is all elements of the outcomes of X are district a.s.
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where p(·) is the probability density of the RFS X, Eq. (III.9).
In multi-target tracking and medical applications, the first-order moment density m1(·) =

m[1](·) is of practical importance. Several arguments are presented in the following paragraphs.
Firstly, for Poisson PP, the first-order moment density completely characterizes the process,
thus estimates of m1(·) represent sufficient statistics for the process. Secondly, the propagation
of the first-order moment density is practically achievable either by Gaussian mixture approxi-
mations [98] or Sequential Monte Carlo (SMC) methods [97]. Currently, there are no practical
implementations of higher-order filters in the tracking literature. Similarly to the Janossy den-
sity (III.2), the kth fractional-moment density has the following physical interpretation:

Pr

{
one point located in each of the
k distinct intervals (xi,xi + dxi)

}
= m[k](x1, · · · ,xk)dx1 · · · dxk. (III.12)

Note the differences between the interpretation of the kth fractional moment density of Eq.
(III.12) and the kth Janossy density of Eq. (III.2). From this interpretation, an important
property of the PHD is easily derived for any Borel set A ∈ A:

M1(A) = E{N(A)} =
∫
A
m1(x)dx. (III.13)

This property makes the PHD extremely interesting for target tracking, since the expected
number of targets/points in any given region of space is obtained simply by integrating the
PHD over that region. Note that the value of M1(A) does not affect the expected number of
targets for any other element of A.

As noted in [85, p.137], from a practical point of view the fractional-order densities are
more interesting than Janossy densities. That is, fractional-order densities of Eq. (III.11) can
be estimated from the results of k observations at specific places, whereas the Janossy densities
require indefinitely many observations to determine the exact and total number of occurrences.

III.3 Examples of finite point processes

In this section we present several examples of finite PP, or equivalently RFS, defined on X = Rd.
The processes represent the basis for most tracking filters and algorithms and incorporate
different priors on the number of targets, referred to as the cardinality distribution, and their
distributions. Specialized processes, such as marked or labeled processes, are constructed from
these examples and will be introduced in the sections dealing with their application. Since both
terminologies of PP or RFS can be employed interchangeably in this chapter, from hereon, we
will collectively refer to them as multi-target processes.

III.3.1 Independent and identically distributed cluster (iidc)
In the case of iid clusters [85, Ex. 5.3(a), p. 125], the points are considered as independent and
identically distributed according to a probability distribution V (A) =

∫
A v(x)dx for A ∈ A.

Consider the number of points, i.e. cardinality, as a random variable with distribution pn. In
such, the Janossy density of an iid cluster is

p(X = {x1, · · · ,xn}) , jn(x1, · · · ,xn) = pn n!πn(x1, · · · ,xn) = pn n!v(x1) · · · v(xn), (III.14)

where πn(· · · ) represents the symmetric joint probability density of n points at x1, · · · ,xn. The
factorial n!, gives the number of ways we can associate the n points to x1, · · · ,xn. jn(· · · ) gives
the probability density of finding n points at x1, · · · ,xn, and none elsewhere.
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An exponential RFS notation, equivalent to Eq. (III.14), is

p(X) = pn n! [v(·)]X

= pn n!
∏

x∈X
v(x), (III.15)

where the RFS exponential [f(·)]X , ∏
x∈X f(x) will be employed throughout the following

sections.
Observe that the first-order moment density of Eq. (III.10) for an iid cluster, denoted hereon

D(x), is given by:

D(x) , m1(x) =
∞∑
n=0

1
n!

∫
X(n)

pn+1 (n+ 1)! v(x)
n∏
i=1

v(yn)dy1 · · · dyn

= v(x)
∞∑
n=0

(n+ 1)pn+1

= v(x)N̄ , (III.16)

where N̄ = ∑∞
n=0 npn represents the mean number of points in X. Hence, the knowledge of the

individual point probability density v(·) on the space X coupled with the cardinality distribution
pn is sufficient and completely characterize the iid cluster. The iidc multi-target process has
been employed to derive the Cardinalized PHD (CPHD) filter in [99].

III.3.2 Poisson process
Poisson point processes represent a very important class of multi-target processes, mainly due
to the multitude of properties they possess. The Poisson process is a special case of the iid
cluster, where the number of points contained in any subset Ai ∈ A is Poisson distributed
with mean N(Ai) =

∫
Ai
v(x)dx. Furthermore, the Poisson random variables {N(Ai)}ki=1 are

independent whenever the sets are disjoint: ∩ki=1Ai = ∅. As for the iidc process, the Poisson
process has iid targets with pdf given by v(·), and probability density given by

p(X) = e−N̄
[
N̄v(·)

]X
, (III.17)

where we employed the exponential RFS notation of Eq. (III.15). By analogy to the iidc case, the
intensity or PHD function is given by: D(x) = N̄v(x). Note that the PHD function completely
characterizes the Poisson multi-target process, that is, it captures both the parameters of the
cardinality distribution and the individual target distribution. Given the PHD function, one
estimates the mean number of targets n̂ in X by integrating the PHD over X, while target states
are inferred from the first n̂ local maxima of the PHD function. Based on the Poisson process,
the first RFS multi-target filter was proposed in [27].

III.4 Error metrics for multi-target tracking
Performance evaluation of algorithms estimating multi-target states is more difficult than in the
single-target case. The main difficulty is caused by the need to evaluate the number of points
as well as point locations within the space X. Consider a ground truth multi-target process
consisting in the set of points X = {x1, · · · ,xn} and an estimate X̂ = {x̂1, · · · , x̂n̂}. Note
that even when the cardinals of the two sets are equal, i.e. |X| = |X̂|, a direct application of
a Mean Squared Error (MSE) metric is not possible since X and X̂ are unordered. Instead,
the MSE should be evaluated for all pairwise associations between the elements of both sets,
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with the minimum MSE representing the MSE of the estimated set. However, when cardinals
are different, a penalty term should also be incorporated in the final MSE. A metric taking
into account the aforementioned issues, called the Optimum SubPattern Analysis (OSPA) was
proposed in [100]. The OSPA is a standard tool in evaluating the performance of multi-target
tracking filters [28, 101]. The OSPA metric requires two parameters, denoted 1 ≤ p < ∞ and
0 < c. Let us note dc(x, x̂) = min(c, ‖x− x̂‖), with ‖·‖ representing the euclidean distance
and Perm(n) the set of all permutations of integers 1, . . . , n. Then, the OSPA distance [100]
between X and X̂ is

dcp(X, X̂) ,
[

1
n̂

(
min

σ∈Perm(n)

n∑
i=0

(dc(xi, x̂σ(i)))p + cp(n̂− n)
)] 1

p

, (III.18)

whenever n ≤ n̂, and dcp(X, X̂) = dcp(X̂,X) otherwise. The first term of the sum of Eq. (III.18)
gives the error in point location while the second term captures the cardinality miss-match
between the two sets of points. The p parameter controls the impact of location errors on the
OSPA metric, more specifically, increasing p increases the impact of large location errors. The
cut-off parameter c weights cardinality errors and also acts as a threshold on the euclidean
distance between two points ‖x− x̂‖. That is, the two points are paired together whenever
the distance between them is smaller than the cut-off parameter, otherwise they are consid-
ered as unrelated. The OSPA metric will be employed throughout the chapter to evaluate the
performance of multi-target tracking filters.

III.5 The PHD filter for TWS systems
In this section, the PHD filter for TWS systems is presented. TWS is common in radar and
sonar systems and hence tracking methods were first developed in this context. As in all TWS
systems, a pre-processor detects the presence of targets and estimates their associated locations,
with the resulting observation set containing noisy target locations and possibly false alarms
(called clutter). PDA filters, presented in Chapter II, were historically the first to be proposed
for TWS systems. The first practical filter based on RFS (or simple-finite PP), dubbed the
PHD filter, was proposed by Mahler in [27]. In this work, we shall refer to Mahler’s PHD
filter as the TWS-PHD, in order to distinguish it from the later TBD-PHD filters. The TWS-
PHD filter propagates only the PHD function associated with the Poisson multi-target process
conditioned on the set of current and past observations. The multi-target Poisson process was
chosen to model the multi-target state due to the properties that these specific processes verify
and that facilitate the derivation of the filtering equations. Furthermore, the PHD function
completely characterizes the Poisson multi-target process (see Sec. III.3.2), and thus is sufficient
for target inference. Whenever, the Poisson prior is not verified, the TWS-PHD filter represents
an approximating filter, only propagating the first-order moment density (the PHD) of that
multi-target process. In such cases, the estimated PHD of the TWS-PHD is an approximation
to the true multi-target posterior, and in this sense, the TWS-PHD filter is similar to steady-
state filters, such as the α − β and the α − β − γ filters [74, Ch. 6.5]. Generally, tracking
algorithms consider the different targets as being independent, that is, no interaction among
targets is present. This is also the case for the TWS-PHD filter since the Poisson multi-target
process considers iid targets.

We consider nt independent targets in a space X = Rdx , where the index t denotes the
discrete time samples. For each target i, with state vector xit ∈ X at time t, we employ the
following state-space model

xit = ft(xit−1) + vit, (III.19a)
zit = ht(xit) + wi

t, (III.19b)
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where we observe the vector zit ∈ Rdz . The possibly non-linear functions, ft(·) and ht(·), are
referred to as the state-transition and observation functions. Noise vectors vit and wi

t are the
state-model and observation noise, taken to be centered random processes with covariance
matrices Qt and Rt. The observation set Zt is formed by the detected observations zt, where
the probability of detection is pD(x), to which false observations (clutter) is added (see Eq.
III.22).

As in all filtering methods, we are interested in estimating the posterior density pt|t(X) of
the multi-target process Xt|t, that is, Xt given all the observations Z0:t up to and including time
t. Propagation of such densities on F(X) is not achievable, except in some specific cases [102],
where restrictions are imposed on the variation of the number of points. As stated, for the
specific case of the Poisson prior on the multi-target process, the intensity or PHD function
is sufficient and of practical interest. The TWS-PHD filter aims for the recursive computation
of the PHD function Dt|t(·) corresponding to the posterior distribution of the Poisson process
Xt|Z0:t, referred to as posterior distribution, with expression [Eq. (III.17)]:

pt|t(X) , p(Xt|Z0:t) = e−
∫
XDt|t(x)dx ∏

x∈X
Dt|t(x). (III.20)

Note that pt(X) represents a probability density with relationship to the measure µ(·) of Eq.
(III.4). Similarly to the Kalman filter, the recursive estimation of Dt|t(·) is achieved through two
stages: prediction and update. In the prediction stage, presented in Sec. III.5.1, the kinematic
model of Eq. (III.19a) is applied to the multi-target process alongside with processes accounting
for the death and birth of targets. While in Sec. III.5.2, the update of the predicted PHD is
obtained by incorporating the new observation set Zt+1.

III.5.1 TWS-PHD prediction
In the PHD prediction stage, we aim at obtaining the PHDDt|t−1(·) corresponding to the process
Xt|t−1 , Xt|Zt−1, which incorporates target deaths, kinematics and births. Target spawning,
that is, a target “giving birth” to a secondary target, is not considered in this work since such
situations are not of interest in bathymetrical applications.

Target death is achieved by a process called independent (Bernoulli) thinning ( [94, Prop.
3.7] and [96, Ch. 2.8]), where the points of Xt−1|t−1 are retained independently with probability
pS,t−1(x). A point not retained represents a target death. The process of retaining for one specific
point is independent from the process of retaining other points. As shown in [96, Ch. 2.8], the
thinned process is also Poisson with intensity (and PHD) of pS,t−1(x)Dt−1|t−1(x). Each point of
the thinned process undergoes a kinematic transformation as dictated by the transition density
ft|t−1(x|ξ) = N (x; ft(ξ),Qt) of the kinematic model in Eq. (III.19a). The resulting process is
again a Poisson multi-target process [96, Ch. 2.11.1]. Furthermore, to account for target births,
an independent Poisson process with intensity γt(·) is superposed to the transformed process.
In virtue of the superposition theorem [93, Ch. 2.2], the predicted intensity (and PHD) of Xt|t−1
is given by

Dt|t−1(x) = γt(x) +
∫
X
ft|t−1(x|ξ) pS,t−1(ξ)Dt−1|t−1(ξ)dξ. (III.21)

The predicted PHD model captures target death, birth and kinematics. Since the measurement
does not intervene in the prediction stage, the predicted process and PHD are independent of
the observation model. Hence, the same prediction equations apply for TBD-PHD filters.

III.5.2 TWS-PHD update
The pre-processing module detects the presence of targets and constitutes the set of detected
observations ZD

t . The detection process involves a non-unity probability of detection pD(x),
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possibly depending on the position of the target, as defined in the previous chapter in Sec. II.2.
Furthermore, the detection process of one target is supposed independent from the other targets.
Hence, the detected or “thinned” target observations belong to the set ZD

t with probability
pD(x), just as defined in Eq. (II.6). Furthermore, clutter is present and modeled as a Poisson
multi-target process Kt with intensity κt(·). Therefore, the complete observation set at time
t+ 1, denoted Zt, is given by:

Zt , ZD
t ∪Kt. (III.22)

The observation set Zt is said to be uncertain, that is, the origin of an observation zit ∈ Zt
(clutter or a specific target) is unknown. In the PHD update stage, we aim at estimating
the PHD Dt|t(·) corresponding to the posterior pt|t(X) of the process Xt|t, conditioned on all
observations up-to and including time t.

Several PHD derivations are presented in the literature. In [27], Mahler was the first to derive
the PHD filter explicitly aimed for multi-target tracking applications. The author employed the
RFS formalism to derive Dt|t(·), indirectly, via the probability generating functional (p.g.fl.) of
the updated process Xt|t. This is a rather technically-involved derivation, but provides a general
result. In [103], the authors use the point process formalism and employ the specific properties
of Poisson PP to derive the distribution of the process Xt|t, with the PHD obtained by the first-
order moment density formula (III.10). Furthermore, the authors in [103] also give an equivalent
probability generating functional derivation of the PHD filter, similar to [27], however within
the PP framework. Also using the Poisson PP formalism, in [104] and subsequently [96, Appx.
D], Streit employs Bayes’s theorem to derive the posterior density of Xt|t incorporating the
new observation set Zt. The PHD (or intensity), of this posterior is obtained by the mean field
approximation [105, pp. 35-36]. In [106], Streit provides an alternative derivation to the PHD
filter, by employing marked Poisson PP.

In all of the preceding works, their respective authors arrive at the same update formulas
for the PHD, which we provide here without proof:

Dt|t(x) =
1− pD(x) +

|Zt|∑
i=1

pD(x)pt(zit|x)
Zt,i

Dt|t−1(x), (III.23)

where |Zt| is the cardinal of the current observation set, that is, the number of current obser-
vations. zit is the i-th element of the observation set and pt(zit|·) is the observation likelihood.
The normalization constants are given by

Zt,i = κt(zit) +
∫
X
pD(x)pt(zit|x)dx.

Note that the updated posterior pt|t(X) does not factorize to the form of Eq. (III.20), hence
Xt|t is not a Poisson multi-target process. However, the PHD Dt|t(·) does represent the first-
order moment density of the updated multi-target process, and it was shown in [27], that it
represents the best approximation, in the Kullback-Leibler divergence sense, to the updated
posterior. Hence, Dt|t(·) is employed as the intensity function of a Poisson approximation to
Xt|t that serves as the prior for the next iteration of the filter. This first-order approximation
strengthens the comparison of the TWS-PHD filter and steady-state filters mentioned at the
beginning of Sec. III.5. Indeed, the α − β and α − β − γ are steady-state filters [74, Ch.
6.5], i.e. constant Kalman gain, and only propagate the mean of the posterior distribution. In
comparison, the TWS-PHD recursion propagates the first-order moment density of the multi-
target posterior distribution.

The interpretation of D(x)dx as the probability of having a target at x [see Eq. (III.12)],
gives another interesting interpretation of the PHD filter. The propagation of a function defined
on X that respects the aforementioned property, is equivalent to a filter that propagates all
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points of X (by prediction and update stages) and evaluates for each points a probability of
existence, in a similar manner to the IPDAF (see Appendix A). The function relating the
point state x to the target probability of existence at that state location, represents the PHD
function. Hence the name of probability density function over X for the PHD function. Such
an interpretation of the PHD filter, gives a “practical feel” of the PHD function and justifies
the process of inferring target states from the maxima of the PHD function. Integrating the
probability of existence function (PHD) over X does not yield 1. Instead the mean number of
targets on X is “encoded” in the normalizing constant of the PHD function. Additional parallels
between the IPDAF and RFS-based filters are drawn in [107].

III.6 TBD-PHD filter for phased arrays: a Gaussian
point-target case

In this section we propose a Track Before Detect (TBD) filter aimed at tracking the Direction Of
Arrival (DOA) of multiple targets from phased-array observations. In the TBD framework, the
array signal is fed directly to the tracking module, without the need of pre-processors that detect
targets and form observation sets. Indeed, detection and estimation of targets is conducted
entirely by the TBD filter. This leads to more complex tracking filters that circumvent the loss
of information incurred by the observation-set formation, i.e. thresholding, of the array-signal
spectrograms (see Sec. II.2). The phased-array model poses a new problem since each target
emits a signal, called source or target signal. Bathymetric sonars are active systems, hence the
source signals are actually signals backscattered by resolution cells on the sea-bottom. However,
the method we propose can be employed for passive sonars or more generally, for targets that
emit signals, either target-backscattered or target-generated signals. Additionally, the targets
considered in this section are modeled as point targets with Gaussian source/target signals.
Existing methods consider the source signal as part of an augmented system state. This is
inefficient, especially for particle approximations of posteriors, where samples are drawn from
the higher-dimension posterior of the augmented state. To address these problems, we propose
a novel Marked Poisson multi-target model and derive the Probability Hypothesis Density
(PHD) filter that adaptively estimates target DOA directly from phased-array observations.
The proposed model accounts for variations of both the number and the location of points
representing targets. The mark of a point represents the source/target signal, without the need
of an augmented state. Recursive formulas for the marked process PHD filter are derived with
simulations showcasing improved performance over state-of-the-art methods.

III.6.1 Introduction
Modern radar and sonar systems employ antenna or hydrophone arrays in order to detect, lo-
calize and track various targets. Target localization is achieved by estimating the Direction Of
Arrival (DOA) of the source signal. DOA tracking is traditionally achieved through a two-stage
process referred to as Track While Scan (TWS). Firstly, targets are detected and a set of DOA
estimates is formed [see Eq. (II.4)]. The resulting DOA estimates suffer from origin uncertainty,
that is, the origin of observations (clutter or target) is unknown. Secondly, filtering the DOA
estimates with the kinematic model and resolving the origin uncertainty problem is dealt with
probabilistic data association filters, as described in Ch. II of this manuscript. In [108,109] we
proposed a TWS system for a sonar image-reconstruction application. The advantage of such
TWS systems for image reconstruction applications is the relative low-complexity implementa-
tions. The downside of TWS is the reliance on the pre-processing module aimed at forming the
observation set Z. The bias and variance introduced by the pre-processor should be reduced
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by the TWS filtering post-processor. Furthermore, the set of observations Z is usually formed
form on a small time-sample window of array snapshots. Hence, the TWS filter has a reduced
resolution effect, that is, only offers one filtered DOA estimate corresponding to the window of
array snapshots. Unlike PDAF-based methods, the PHD filter offers a rigorous framework for
target birth and death processes. The PHD filter in the TWS configuration (TWS-PHD) [see
Sec. III.5] has found numerous applications in diverse fields [110–113]. In [50] DOA tracking
of multiple speakers is achieved by a two-stage processing chain. In the pre-processor, a set of
DOA measurements is extracted form a short time-block of microphone array data by means
of the independent component analysis and the state-coherence transform. Based on the de-
tected DOAs, a Gaussian Mixture PHD (GM-PHD) filter is employed to perform tracking of
the time-varying number of speakers. In [102], a Bayesian RFS filter that tracks the speaker
locations and number of speakers is performed.

Track Before Detect (TBD) filters, are aimed at tracking targets directly from the antenna
signal, i.e. without performing any pre-detection or estimation procedures. Furthermore, the
proposed marked multi-target process is capable of taking into account target birth and death,
i.e. a variable number of targets. The TWS-PHD filter of Sec. III.5, with implementations
given in [97], is derived for TWS systems and is not directly applicable for TBD. A first TBD-
Multi-Bernoulli filter was proposed in [114], for a specific case of separable likelihood: multiple
non-overlapping objects in image sequences. In contrast, the phased-array observation likelihood
is not separable. A TBD-PHD filter for amplitude sensors was derived in [28], and since the
sensor observation is the algebraic sum of individual target contributions, the resulting filter
was named the superpositional PHD. However in array processing, the DOA information is
contained in the phase differences between the signals received by the phased array, and in
general, we are not directly interested in signal amplitudes. Furthermore, array observations
result from the superposition of individual source contributions that, unlike in [28], are unknown
and modeled as randomly fluctuating complex signals. Thus, [28] cannot be directly used for
the standard DOA tracking problem, and further refinements of the superpositional PHD filter
must be conducted in order to tackle this problem. A possible work-around solution would be
to augment the state of each target with its source signal. Such a solution is undertaken in [38],
coupled with a reversible-jump MCMC algorithm to handle fluctuations in target number.
Furthermore, for augmented-state particle filters, sampling from higher-dimensional posteriors
is inefficient. In [115] the authors propose a multi-Bernoulli filter coupled with the MUSIC [56,
Ch. 4.5] pseudo-spectrum in order to track several targets from array observations.

The novelty of our approach is the proposal of a marked multi-target model and the deriva-
tion of the first-order moment density filter (PHD or intensity) for DOA tracking. The marked
formalism naturally describes targets that generate a mark, here a stochastic signal represent-
ing the individual source/target contribution. Thus, we extend in the case of marked processes
(formally introduced in Sec. III.6.2) the aforementioned superpositional TBD-PHD filter. A
Poisson multi-target process, referred to as the ground process, describes target number and
target location in the single-target space X. The PHD or intensity function of a Poisson process
is sufficient to describe the process, see section III.3.2 of this chapter. Hence, the filter that
adaptively estimates target DOA, given the current and previous observations, only needs to
propagate the PHD corresponding to the posterior distribution. Furthermore, in section III.6.3
we show that the propagation of the ground-process PHD (defined on the single-target space)
is sufficient. Thus, we avoid the propagation of the a density function in the single-target and
mark spaces, leading to a more efficient particle-filter implementation of the filter. In the update
step of all superpositional filters a Gaussian approximation is employed for the distribution of
the superpositional observation. A similar approximation is employed here, while in the Ap-
pendix F we justify this Gaussian approximation. To our knowledge, such a justification has
yet to be made available for the supperpositional observation model [28,86,116].
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We argue that the marked model introduces a distinction between points and marks that
has physical meaning, that is, a point generates the mark. The marked-process model captures
this point-mark relationship, which would be otherwise lost in an augmented state formalism.
We emphasis the ability of the proposed filter to deliver target DOA estimates for each array
observation. This is required in array-processing algorithms for high-resolution image-formation
algorithms, e.g. sonar bathymetry reconstruction [109]. In contrast, the method of [115] and
most TWS methods (including the one presented in Ch. II) process several array observations to
produce one DOA estimate. Thus, generally resulting in a reduced resolution effect in imaging
applications.

In the following, we present the phased-array observation model alongside the marked multi-
target process in Sec. III.6.2. In Sec. III.6.2 the phased-array observation model is developed
for point targets with Gaussian source signals and Gaussian additive noise. In section III.6.3 we
derive the approximate PHD/intensity filtering equations for the phased-array TBD-PHD filter.
In section III.6.4 we showcase the phased-array TBD-PHD filtering results and we conclude in
section III.7.

III.6.2 Array signal and marked multi-target process
We assume a Poisson multi-target process Xt at time t that describes both the number of
targets and their locations. Consider {x1

t , · · · ,xntt } the realization of Xt, with nt a realization
of a Poisson random variable of mean

∫
XDt(x)dx, see Sec. III.3.2. Conditional to the number

of points, individual elements of {x1
t , · · · ,xntt } are independent and identically distributed in

the single-target space X ⊂ Rdx . The probability distribution (referenced to the measure µ(·)
of (III.4)) of Xt can be specified by the distribution of the number Nt of targets and the joint
distribution of the target positions, conditional on the total number of targets Nt = nt. Thus,
using the RFS notation of Sec. III.2.3, Xt has an associated probability density (III.17) of:

pt(X) = e−
∫
XDt(x)dx ∏

x∈Xt
Dt(x), (III.24)

where Dt(·) represents the PHD/intensity function defined on the single-target space X. Targets
are presented as peaks of Dt(·), and thus target locations can be inferred from Dt(·). Next, we
consider that each point xt generates a mark st in a mark space K ⊆ C. The point process
{(xit, sit)} on X × K is Poisson and represents a Marked Poisson PP or marked multi-target
process, which we denote X̃t. With Xt usually called ground process [85, Ch. 6.4]. In this work,
marks represent the source signals generated by the targets, and conditioned on the target
states, the marks are taken to be centered and circular Gaussian random variables with power
P ((xt)): st|xt ∼ CN (0, P (xt)). Note that the source-signal power P (·), is a function of the target
state vector. The marked process X̃t is Poisson with points x̃ = (x̃, s) and intensity function
D̃t(x̃) = Dt(x)CN (s; 0, P (x)), as given by the Marking Theorem [94, Prop. 3.9] and [93, p. 55].

We assume a point-target model with an array signal yt ∈ CM×1 by an M−element array
as the random sum

yt =
∑

x̃∈X̃t

g(x̃) + nt, (III.25)

where g(x̃t) = a(xt)st. a is the array-manifold vector, having the form given in Eq. (III.27),
typical of point targets. The additive noise nt ∈ CM×1 is nt ∼ CN (0, σ2

t IM). The Signal to
Noise Ratio (SNR) is given by SNR = P

σ2
t
.

Generally, target tracking is conducted in the Cartesian coordinate system, with several
kinematic models such as the nearly constant velocity or the Wiener acceleration model [74,
Ch. 6.3]. For distant targets, tracking in polar coordinates becomes adequate since pseudo-
acceleration is small [117, Ch. 1.5]. In this chapter, we consider a first-order kinematic model,
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i.e. a nearly constant angular-velocity model:

xt = Ftxt−1 + vt, (III.26)

where xt = [θt, θ̇t]T ∈ X presents the single-target state vector. vt ∼ N (vt; 0,Q) represents
the white model noise. Ft is a transition matrix specific for a constant-velocity model [74, Ch.
6.3.1].

Assuming a ULA with far-field, narrow-band point targets, the array manifold vector a(xt)
is defined as:

a(xt) ,
[
1 e−j k∆ sin(θt) · · · e−j k(M−1)∆ sin(θt)

]T
, (III.27)

where {·}T represents the transpose operator. k = 2π
λ

represents the wave number, λ the
wavelength and ∆ the inter-receiver spacing.

In order to infer target positions from the marked process X̃t, the knowledge of Dt(x) is
sufficient. The number of targets in any region A ⊆ X is given by

∫
ADt(x)dx. Target DOAs

can be obtained from the locations of the main peaks of Dt(·). The aim of the proposed filter
is to adaptively detect targets and estimate target states xt from the marked process posterior
pt|t(X̃) , p(X̃t|y0:t), given the sequence y0:t of past and current array observations. In order
to achieve this goal, propagation of the corresponding PPP PHD Dt|t(x) is sufficient, while
the marked process occurs naturally in the observation likelihood. In such, the propagation of
Dt|t(x) is conducted in the state-space X, avoiding the propagation in the augmented space
X×K [38]. Approximate propagation formulas for Dt|t(x) are derived in the following section.

III.6.3 Approximate PHD filter for marked multi-target process
In this section, we derive the filtering equations for the array-processing problem. Given the
intensity Dt−1|t−1(x) at time t − 1, we aim at deriving the PHD Dt|t(x) corresponding to the
posterior distribution of the ground multi-target process, given the phased-array observations
up to and including time t. The resulting filter will be referred to as the TBD-PHD filter in this
manuscript. The TBD-PHD filter comprises two stages: prediction (Sec. III.6.3.a) and update
(sec. III.6.3.b). Since the observation is not involved in the prediction process, the predicted
PHD Dt|t−1(x) for TBD-PHD is identical to the one of the TWS-PHD filter of Sec. III.5.1.
The predicted PHD takes into account target kinematics, as dictated by the law of motion of
Eq. (III.26), and target death and birth. The update stage intends to correct the predicted
intensity with the current observation yt. Closed-form expressions are not available for the
updated intensity, and an approximation similar to [28] is proposed.

III.6.3.a Phased-array TBD-PHD Prediction

Consider at time t−1 the intensity or PHD function Dt−1|t−1(·), corresponding to the posterior
density pt−1|t−1(X) of the ground process,[see Eq. (III.24)]. The ground process describes target
locations at time t− 1 and undergoes a stochastic transformation induced by target death and
movement of the surviving targets. Both the process at time t−1 and the prediction process are
Poisson processes. In other words, the prediction operation is exact and Dt|t−1(·) is a sufficient
statistic for the prediction process. In this section, all arguments for the specific form of the
predicted intensity of the TWS-PHD filter apply. In the following, we will only recall the
prediction parameters and their impact in the predicted intensity. For a detailed construction
of the predicted intensity function see Sec. III.5.1.

Target death is modeled by a process of independent thinning. That is, targets present at
time t− 1 are retained with probability ps(x). Inclusion (or equivalently retention) of targets is
independent of each other. Each point of the thinned process undergoes a kinematic transfor-
mation as dictated by the transition density ft|t−1(x|ξ) = N (x; Ftξ,Qt) of the kinematic model
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in Eq. (III.26). Target birth is accounted for by an independent multi-target Poisson process
with intensity γt(·). From Sec. III.5.1, the form of the predicted intensity is given by

Dt|t−1(x) = γt(x) +
∫
X
ft|t−1(x|ξ) ps(ξ)Dt−1|t−1(ξ)dξ. (III.28)

The predicted PHD model captures target death, birth and kinematics. Marking the process
Xt|t−1 supposes appending to each element x of a realization of Xt|t−1 the mark s, in order to
obtain the pair x̃ , (x, s). The marked process, denoted X̃t|t−1, has the same number of points
as the Xt|t−1. Conditionally on the target state x, the mark s is sampled from CN (0, P (x)), as
explained in Sec. III.6.2. Hence, the marked process X̃t|t−1 has the same Poisson distribution
as Xt|t−1 but with intensity (or PHD) function given by

D̃t|t−1(x̃) = Dt|t−1(x)CN (s; 0, P (x)). (III.29)

As shown in the following section, the propagation of Dt|t(x) is sufficient, with the marked
PHD intervening in the array likelihood model. This leads to an efficient implementation, that
propagates only a particle approximation of Dt|t(x).

III.6.3.b Phased-array TBD-PHD Update

By the definition of (III.10), Dt|t(·) is given by

Dt|t(x) =
∞∑
n=0

1
n!

∫
· · ·

∫
pt|t({x,w1, · · · ,wn})dw1 · · · dwn.

Or more compactly, by using the set integral [Eq. (III.11)] representation

Dt|t(x) =
∫
pt|t({x} ∪W )δW (III.30)

where W = {w1, · · · ,wn} is a multi-target process with density pt|t(·). Applying the Bayes rule
for the posterior pt|t(W ) we obtain

Dt|t(x) =
∫
pt(yt|{x} ∪W )pt|t−1({x} ∪W )δW

pt(yt|y0:t−1)

=

∞∑
n=0

1
n!

∫
Xn
pt(yt|{x,w1, . . . ,wn})e(−

∫
Dt|t−1(z)dz)Dt|t−1(x)

n∏
i=1

Dt|t−1(wi)dw1 . . . dwn∫
pt(yt|W )pt|t−1(W )δW

where, in the last equality, we have employed the Poisson expression of Eq. (III.17) for pt|t−1(W ).
By separating the intensity Dt|t−1(x) from the ratio, we obtain

Dt|t(x) = Dt|t−1(x) Lyt(x). (III.31)

The ratio Lyt(x), referred to as pseudo-likelihood, is given by

Lyt(x) =
∫
pt(yt|{x} ∪W )pt|t−1(W )δW∫

pt(yt|W )pt|t−1(W )δW . (III.32)

The array likelihood involves target positions and associated marks (source signals), and can
be further written as

pt(yt|{w1, . . . ,wn}) =
∫
Xn
pt(yt|{(w1, s1), . . . (wn, sn)})

n∏
i=1
CN (si; 0, P (wi))ds1 · · · dsn.

(III.33)
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The construction of the marked set now becomes evident. Let {(w1, s1), . . . (wn, sn)} be a
realization of the multi-target process W̃ , referred to as marked multi-target process. Note that
the marked multi-target process W̃ is obtained by marking of the ground process W . Both the
ground and marked processes are Poisson and have the same cardinality, denoted by |W | and
|W̃ |, respectively.

The denominator of the pseudo-likelihood of Eq. (III.32) can be written in terms of the
marked process W̃ as∫

pt(yt|W )pt|t−1(W )δW =
∞∑
n=0

1
n!

∫
(X×K)n

pt (yt|{(wi, si)}ni=1)

× e(−
∫
XDt|t−1(x)dx)

n∏
i=1

[
Dt|t−1(wi)CN (si; 0, P (wi))

]
dw1ds1 · · · dwndsn

=
∫
pt(yt|W̃ )pt|t−1(W̃ )δW̃ ,

where the set integral of marked multi-target processes is defined as∫
f(W̃ )δW̃ =

∞∑
n=0

1
n!

∫
(X×K)n

f ({(w1, s1) · · · , (wn, sn)}) dw1ds1 · · · dwndsn.

Proceeding in a similar manner for the numerator of Eq. (III.33) we obtain:

Lyt(x) =
∫∫
pt(yt − a(x)s|W̃ , x̃)CN (s; 0, P (x))pt|t−1(W̃ )δW̃ds∫

pt(yt|W̃ )pt|t−1(W̃ )δW̃
,

where the integration order was interchanged. This operation does not pose any issues since
the integrated functions are all non-negative.

By employing the change of variables formula proposed in [118, Prop 4., p.180], that is,
denoting z , ∑w̃∈W̃ g(w̃) we obtain

Lyt(x) =
∫∫
CN (yt − a(x)s; z, σ2

t IM)p(z)dz CN (s; 0, P (x))ds∫
CN (yt; z, σ2

t IM)p(z)dz . (III.34)

Observe that in Eq. (III.34) the set integrals are now reduced to ordinary integrals, where p(z)
is the distribution induced by the change of variables. As proposed in [28], if we approximate
p(z) ≈ CN (z, µ̃, Σ̃) with a Gaussian distribution, then we are able to obtain an analytic formula
for the updated PHD. In Appendix F, we justify the Gaussian approximation for superpositional
observations by employing Campbell’s theorem [93, Ch. 3.2]. To our knowledge, such a justifi-
cation has yet to be made available for the supperpositional observation model [28,86,116]. The
first and second order moments of p(z) are obtainable from the marked predicted distribution
pt|t−1(X̃) by means of the Marking Theorem [93, Ch. 5.3]:

µ̃ =
∫
X×K

g(x̃) D̃t|t−1(x̃)dx̃

=
∫
X

a(x)
(∫

K
s CN (s; 0, P (x))ds

)
Dt|t−1(x)dx = 0 (III.35a)

Σ̃ =
∫
X×K

g(x̃)gH(x̃) D̃t|t−1(x̃)dx̃

=
∫
X

a(x)P (x)aH(x)Dt|t−1(x)dx, (III.35b)

where D̃t|t−1(x̃) is the predicted marked PHD given by Eq. (III.29), and {·}H represents the
transpose conjugate operator. The formula for combination of quadratic terms, given in Ap-
pendix E, is employed to solve the denominator and inner integral of the numerator in the ratio
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of Eq. (III.34). Thus yielding

Lyt(x) ≈
∫
CN (yt; a(x)s, σ2

t IM + Σ̃)CN (s; 0, P (x))ds
CN (yt; 0, σ2

t IM + Σ̃)
. (III.36)

Solving again the numerator of Eq. (III.36) becomes

Lyt(x) ≈ CN (yt; 0, a(x)P (x) aH(x) + σ2
t IM + Σ̃)

CN (yt; 0, σ2
t IM + Σ̃)

. (III.37)

The final form of the pseudo-likelihood, given in the above equation, used in conjunction with
Eq. (III.31) yield the updated intensity function Dt|t(x).

III.6.4 Results on simulated phased-array data

The final form of the pseudo-likelihood is given in Eq. (III.37), were Σ̃ is given by Eq. (III.35b).
This analytic relationship facilitates the update of the predictive PHD with Eq. (III.31). Since
we employ a Gaussian approximation of p(z), the integral of the PHD is no longer a reliable
estimate for the number of targets. Hence, target-state inference requires clustering methodol-
ogy that extracts the number of targets and their state estimates from the estimated intensity
function. In [28], this is achieved by iterating the k−means clustering algorithm for different
numbers of clusters and evaluating the cluster separation with the silhouette method [119].
However, the silhouettes exist only when there are two or more clusters, hence there is no state
inference when there are less than two clusters. In fact, the authors of [28] notice the increased
error of this method whenever there is only one target present. Here, we propose to use the
DBSCAN clustering algorithm [120], which does not require apriori knowledge of the number of
clusters and considers the existence of particles not belonging to any cluster, i.e. outliers. This
is necessary since a number of particles, corresponding to the birth process γt(·), are expected
to be dispersed whenever there are no birthed targets. Note that the k−means aims to minimize
the within-cluster sum of squares and hence behaves poorly in presence of such outliers.

A test scenario involving crossing targets was envisaged. Similarly to [28], the proposed
TBD-PHD filter is implemented using a particle filter, that employs an auxiliary step to re-
sample birth particles. The particles corresponding to the surviving targets (also called per-
sistent particles), are propagated through a bootstrap particle filter, that is employing the

Figure III.1: Logarithm of estimated intensity function, for the proposed TBD-PHD filter.
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Figure III.2: DBSCAN clustering results: a) for the proposed TBD-PHD filter b) for the refer-
ence phased-array TWS-PHD.

state-transition Eq. (III.26) as importance distribution. A number of 1000 particles per tar-
get was considered. The kinematic model in Eq. (III.26) is employed with vt ∼ N (0,Qt) and
covariance Qt = hq2

thT with qt = 0.5o/s2 representing an acceleration noise [74, Ch. 6.3.1].
Accordingly, h = [T 2

s /2, Ts]
T and Ts = 1s represents the sampling period. PHD prediction is

performed with Eq. (III.28) where the probability of target survival is a constant ps = 0.9.
The intensity γt(·) for birth location is chosen uniform over [−π, π], while for speed we use
N (0, 3). The whole birth intensity integrates to 0.2, amounting to the mean number of targets
born in X at one time sample. The array consists of M = 30 receivers and targets are gener-
ated with the same source signal power, so that SNR = 5dB. Here, for simplicity, we consider
the source-signal power as a known constant. However, the marked point-process framework
allows a generic state-dependent power function, i.e. P (x). For example, we could employ the
Capon spectrogram to represent the signal power P (x), thus allowing different power levels
for targets. TBD-PHD update is performed using Eq. (III.31) and the pseudo-likelihood of Eq.
(III.37). The resulting point-mass approximation of the PHD is seen in Fig. III.1, where the
logarithm of particle weights are shown for better visualization. Observe the relatively good fit
of the particle clouds with the three target trajectories. From the particle approximation of the

Table III.1: Average OSPA error over 1000 Monte Carlo runs.

OSPA error for SNR 5dB OSPA error for SNR 0dB
Algorithm c = 1.5 c = 2.5 c = 5 c = 1.5 c = 2.5 c = 5

Proposed TBD-PHD 0.46 0.54 0.67 0.58 0.69 0.87
Method in [87] 1.07 1.43 2.19 1.53 2.44 4.67

intensity function, target number and state estimation is performed via DBSCAN clustering.
DBSCAN requires two parameters: the minimum number of particles needed to form a clus-
ter (set here to 50), and the neighborhood distance (set here to 1). In Fig. III.2-a) clustering
of the intensity function of Fig. III.1 is depicted. In Fig. III.2-b), results of the method pro-
posed in [87] for the same simulated scenario and parameters are depicted. Observe a better
adequacy of the proposed TBD-PHD filter, while the method of [87] struggles with crossing
targets and short tracks. The phased-array PHD filter of [87] employs the TWS-PHD of Sec.
III.5 to track the peaks of the array-signal spectrogram. Thus, whenever targets cross only one
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peak is present in the spectrogram (one observation) leading to track loss. Furthermore, the
approximations conducted in [87], in order to arrive to a separable-likelihood function, are not
valid for closely-spaced targets.

A Monte Carlo analysis is carried out by simulating 1000 times the same scenario described
above at SNR values of 5dB and 0dB. The latter representing a very low SNR scenario in order
to test the proposed TBD filter. The optimal subpattern assignment (OSPA) error metric of
Sec. III.4 is employed to quantify the differences between the estimated target set and ground-
truth set. The results are synthesized in Table III.1, again showcasing the superiority of the
proposed TBD-PHD filter, even in very-low SNR conditions.

III.7 Chapter conclusions

In this chapter, intensity based filters are developed for tracking multiple targets directly from
phased-array observations, i.e. in a track-before-detect framework. The intensity function (or
PHD function) is the first-order moment density of a point process (or equivalently of a random
finite set) and describes both the random number of targets and their random-state vectors.
Therefore, an intensity filter is viewed as a first-order filter, that propagates an approximation
to the true posterior distribution. The chapter starts with the introduction of a few definitions
and results related to point-process theory. Historically, the PHD filter for TWS systems was
the first intensity filter to be proposed. For superpositional-observation systems, where the
observation is a superposition of individual target contributions, the superpositional PHD filter
was only recently proposed.

Based on the supperpositional PHD filter, we propose a phased-array TBD-PHD filter for
tracking multiple point targets in a Gaussian context. The target or source signals, conditioned
on their target states, are Gaussian processes, rendering infeasible the direct application of the
superpositinal PHD filter. A possible solution is to augment the target-state vector with the
source signal. However this is inefficient, in particular for particle-based implementations of the
filter. Indeed, in augmented-state particle filters, due to the higher-dimensional distribution of
the augmented vector. Alternatively, we consider a marked Poisson point-process that is capable
of characterizing the number of targets, their state vectors and the source signals. The marks
represent the source/target signals, that conditionally to the target states are Gaussian random
variables. We show that target marks can be analytically integrated-out in the proposed TBD-
PHD filter update equations. Therefore, the filter only needs to propagate the intensity/PHD
function of the ground process that describes target positions on the single-target space X, and
avoids the propagation of an augmented state. Therefore, the proposed filter has an efficient
particle-filter implementation. However, due to a Gaussian approximation employed for the
pseudo-likelihood [see Eq. (III.37)], the updated-intensity function no longer integrates to the
average number of targets in a specific region. Integrating the updated intensity function leads
to a highly-fluctuant estimator for the number of targets. Hence, a clustering methodology that
estimates both number of clusters and cluster centers is proposed in the form of the DBSCAN
method. To our knowledge, this is the first tracking filter to employ the DBSCAN clustering
method. The DBSCAN has some advantages over classical k-means based methods. Firstly,
DBSCAN does not require prior knowledge of the number of clusters, and actually provides
an estimate of the number of targets and of their respective state vectors. Secondly, DBSCAN
considers the existence of outlier points in the particle approximation of the intensity function.
Outliers are a nuisance especially for k-means methods. Furthermore, the DBSCAN cluster-
ing methodology is employable in zero-target scenarios, i.e. where only outliers are present.
This vastly improves clustering performance as compared to the k-means-silhouettes method
proposed in [28].
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A Cardinalized PHD filter (CPHD) represents a different solution to the problem of the
highly-fluctuant integral of the PHD function. Along with the intensity function, the CPHD
filter also propagates the cardinality distribution, i.e. the distribution of the number of targets.
This allows a more direct estimation of the number of targets, for example by employing a MAP
estimator. The CPHD filter also improves the estimation of Σ̃, by renormalizing the highly-
fluctuant intensity estimate with the mean-estimated number of targets. In turn, an improved
estimate of Σ̃ provides a better pseudo-likelihood Lyt(·), and eventually an improved intensity
estimate. Further details as well as the derivation of the TBD-CPHD filter will be given in the
following chapter.
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In this chapter we propose a novel phased-array Track Before Detect (TBD) filter for track-
ing multiple distributed (extended) targets from impulsive observations. Since the targets are
angularly spread, we track the centroid Direction Of Arrival (DOA) of the target-generated
(or backscattered) signal. The main challenge stems from the random target signals that, con-
ditional to their respective states, constitute non-deterministic contributions to the system
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observation. The novelty of our approach is twofold. Firstly, we develop a Cardinalized Prob-
ability Hypothesis Density (CPHD) filter for tracking multiple targets with non-deterministic
contributions, more specifically, Spherically Invariant Random Vector (SIRV) processes. This
is achieved by analytically integrating the SIRV and angularly distributed target signals in
the update step. Thus, ensuring a more efficient implementation than existing solutions, that
generally consider augmenting the target state with the target signal. Secondly, we provide
an improved auxiliary particle CPHD filter and clustering methodology. The auxiliary step is
carried out for persistent particles, while for newly birthed particles an adaptive importance
distribution is given. This is in contrast with existing solutions that only consider the auxiliary
step for birthed particles. Simulated data results showcase the improved performance of the
proposed filter. Results on real sonar phased-array data are presented for underwater 3D image
reconstruction applications.

IV.1 Introduction

TBD filters track targets directly from the phased array signal, without the need for pre-
processing (detection and estimation) procedures. In order to achieve multi-target filtering we
resort to the PHD filter and to the Cardinalized PHD (CPHD) filter [122], which also propagates
the distribution of the number of targets. For superpositional amplitude sensors a TBD-CPHD
filter was proposed in [28]. For radar/sonar applications, signal amplitudes are modeled as
Spherically Invariant Random Vector (SIRV) processes, for which the method in [28] is not
directly applicable. As mentioned in Sec. III.6.1, an inneficient solution is to augment the state
of each target with the source signal.

On the other hand, signals in radar/sonar applications are rarely Gaussian. Experimental
clutter measurements, conducted in [123], showcased the non-Gaussian nature of radar clutter.
For example, the K -distribution is often employed to model the envelope (magnitude of matched
filter output) of radar clutter [124–126], while heavy-tail behavior is also reported in [127]. In
aerial acoustics, the heavy-tail behavior of reverberation was noted in [128], with the proposal
of an α−stable distribution for the target signals.

Moreover, in the underwater acoustic literature [129,130], high-resolution sonar systems are
noted to have impulsive signals, with the K−distribution shown to provide a good fit for the
magnitude of the signal backscattered by the sea-floor. Furthermore, a multivariate complex
Laplace distribution is shown to provide a good fit for the complex (in phase and quadrature)
signals involved in underwater target detection in sonar imagery [131]. In the appendix of [92],
goodness-of-fit tests were conducted on high-resolution sonar signals that highlighted the im-
pulsive nature of the complex phased-array signal, with a multivariate complex Laplace distri-
bution proving to be a better fit than the Gaussian. The Spherically Invariant Random Vector
(SIRV) [132] provides a general, elegant model for impulsive signals and encompasses a large
number of non-Gaussian and heavy-tail distributions. In view of the aforementioned reasons,
the SIRV model is nowadays employed in remote sensing signal processing [133]. Furthermore,
SIRV processes have found applications in other areas, such as speech processing [134], array
processing [135] or financial engineering models [136].

The novelty of our approach is twofold. On one hand, we derive the CPHD filter for super-
positional systems where the target contributions are non-deterministic functions of their state
vectors. In other words, the target state only specifies the parameters for the distribution of its
contribution to the overall observation. In array processing, target/source signals are highly-
fluctuant and are modeled as random vectors with probability distribution determined by the
state of the target. For localization purposes, we show that source signals can be marginalized-
out from the filtering equations of the proposed filter. Thus, we achieve a more efficient particle
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filter implementation as opposed to implementations that consider an augmented state, partic-
ularly since there is no predictive model for source signals conditional to their corresponding
target states. On the other hand we adapted the aforementioned CPHD filter for DOA tracking
of extended targets from observations modeled as an impulsive (non-Gaussian) SIRV process.
Furthermore, we provide an improved auxiliary particle implementation of the filter. The auxil-
iary step is carried out for persistent particles by selecting only the previous particles that fit the
current observation. In addition, we propose an adaptive-birth importance distribution based
on the current observation. This is in contrast with [28], where an auxiliary step is only carried
out for birthed particles, while persistent targets are propagated through a bootstrap filter.
An improved clustering method is also provided. Results are supplied for simulated and real
sonar data. The TBD-CPHD filter developed in this chapter is the subject of the article [137].
Furthermore, the TBD-CPHD filter extends the TBD-PHD filter developed in Chapter III and
presented in [88,89].

The subsequent sections are organized as follows: Sec. IV.2 presents the general SIRV model
for impulsive signals and the specific joint-SIRV model for phased-arrays; Sec. IV.3 presents
the impulsive and extended-target signal model. In Sec. IV.4 we derive the approximate CPHD
filtering equations for phased-array observations. In sections IV.5 and IV.6, we showcase the
results of our proposed filter on simulated and real sonar data, followed by our conclusions in
section IV.7.

IV.2 Impulsive Sonar-signal distributions

Usually in applications considering the localization of targets with phased arrays, the source
signals are of no direct interest. In passive-sensing systems, the nature of source signals is
unknown and signals are modeled as random processes for localization purposes. Given the
estimated DOA of a specific source signal, an adapted filter can be developed for the array signal
that provides an estimate of the source signal, and subsequently of the source message. The
filter used to recover the source signal should be designed to attenuate all directions (specifically
other target DOAs) except the DOA of the target under study. In active-sensing systems the
source signal represents the signal backscattered by the target surface. Although the precise
form of the backscattered signal is not known, the shape of the emitted signal is exploited in
the matched filter of the receiver. However, due to the random nature of the scattering process,
the matched-filter output signal is modeled as a stochastic process. Therefore, for the sake of
generality, the source signals will be modeled as random processes in this work. Considering
several targets simultaneously present, the phased-array signal is obtained by the superposition
(i.e. addition) of the individual target/source signals. In addition, noise of various origins is
also received.

For bathymetric sonars, the targets of interest represent patches (i.e. projected resolution
cells) on the sea-floor or some object of interest. Hence, source signals represent surface backscat-
tering (see [68, Ch. 5.8] and [138, Ch. 1]). In this context, noise is a generic term for all undesired
signals received alongside the signals of interest, i.e. the source signals. Sources of noise are the
electronic receiver noise and ambient acoustic noise. The acoustic noise [139, Ch. 10] can be fur-
ther decomposed in volume backscattering, sea-surface backscattering, multi-path propagation,
ship noise (both self and other ships), etc. Shallow-water environments are echoic environments
that involve multi-path propagation and hence, generate an important reverberation-noise com-
ponent. Therefore, the array observation signal is written as

yt =
n∑
i=1

gi,t + wr,t + wn,t, (IV.1)
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where {gi,t}ni=1 represent source signals generated by n targets; wr,t represents the reverberation-
noise component due to multi-path propagation and the noise wn,t. The noise wn,t term contains
truly ambient noise, such as ship noise, and receiver electronic noise. Reverberation wr,t is sig-
nal related, that is wr,t is only present whenever source signals are present. Indeed, without
targets emitting source signals there wouldn’t be any multi-path propagation and sea-surface
reflections. This leads to the justification of wr,t as signal-dependent, whereas wn,t is non-signal
dependent. This specific factorization of noise terms, justifies the joint-SIRV model presented
in Sec. IV.2.2. Spherically Invariant Random Vector (SIRV) signals, are formally introduced in
Sec. IV.2.1, and characterize a family of random vectors with a wide range of probability den-
sity functions. These density functions range from the ubiquitous Gaussian to more impulsive
distributions such as inverse-Gaussian distributions [140]. The impulsive character of the sonar
signals processed in this work, is highlighted in Appendix H. The Laplace and K -distributions
are shown to provide a better fit to sonar signals than the Gaussian distribution.

IV.2.1 The SIRV model
An important class of distributions is that of Spherically Invariant Random Vectors (SIRV).
They have been widely considered in the engineering literature e.g., for modeling radar [123–
126,133,133] and sonar [129,130] clutter. Radar and sonar applications have mainly employed
the K -distribution, which represents a particular case of SIRV distribution. Other domains,
such as speech processing [134], array processing [135] or financial engineering models [136]
have also found applications for SIRV distributions. SIRV processes, also known as compound-
Gaussian distributions, are part of a more general family of complex elliptically symmetric
distributions [20, Sec. III.E]. In the statistics literature, SIRV processes are known as scale
mixtures of normal distributions.

A SIRV random vector y ∈ Cm can be written as

y d= µ +
√
un, (IV.2)

where d= means equality in distribution; µ represents a location parameter; u is called texture
and is a positive random variable and n is a circular Gaussian random vector called speckle,
i.e. n ∼ CN (0,Σ). Most importantly, u and n are independent.

We denote by Fu(·) the cumulative distribution of the texture u and assume that rank(Σ) =
m. As n is Gaussian, the distribution of z is given by

py(y) = π−mdet(Σ)−1hm
(
(y− µ)HΣ−1(y− µ)

)
, (IV.3)

where the nonlinear function hm(·), called density generator, is defined as

hm(v) =
∫ ∞

0
u−m exp

(
−v
u

)
dFu(u). (IV.4)

Note that the circular complex Gaussian distribution is obtained for the degenerate case of
u = 1. The texture u, plays the role of a variance term, while Σ characterizes the specific
correlation structure between the elements of y. Indeed, Cov(y) = E(u)Σ. Note that replacing
the pair (u,Σ) with (ua2,Σ/a) for any a > 0 does not change the distribution of z. Hence,
for uniqueness, we will consider a unit variance for the texture, i.e. Var(u) = 1, the covariance
matrix of y being Σ. The major interest of employing a random texture is the ability to obtain
distributions with heavier tails than that of the Gaussian. Processes exhibiting distribution
tails heavier than the Gaussian are referred to as impulsive [20]. These are not to be confused
with heavy-tailed distributions, for which the tails cannot be bounded by any exponentially
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decreasing function [141, Ch. 1], or stated otherwise, who exhibit tails heavier than the expo-
nential distribution. More specifically, the family of impulsive distributions includes the class
of heavy-tailed distributions.

It is clear, from the definition in Eq. (IV.3), that any (possibly multivarite) marginal dis-
tribution of a SIRV belongs to the SIRV distributions family. This property is called consis-
tency [142]. as a result, the study of univariate components of a multivariate SIRV are useful
in the study of the distribution tails. In [143] and [127], fitting SIRV models to real data is ad-
dressed: the authors show that either one of the marginal envelopes ri = |zi| =

√
yiy∗i (i ∈ 1,m)

or the scalar quadratic form α = yHΣ−1y can be employed as a sufficient statistic for iden-
tifying the multivariate SIRV distribution. The marginal envelope r and the quadratic α are
univariate random variables and hence, require fewer independent samples than fitting the en-
tire m−variate vector y. Moreover, the approach of fitting the marginal envelope is preferred
the method of fitting α, since the latter requires the covariance matrix Σ. Supposing that yi is
centered and has variance var(yi) = σ2

i , we can write the density of the marginal envelope as

pRi(r) = 2 r
σ2
i

h1

(
r2

σ2
i

)
, (IV.5)

In [143] it is shown that, by identifying h1(·) we can construct higher-order versions hm(·) by
successive derivations. Examples of impulsive SIRV processes are given next.

• The complex multivariate Laplace distribution has numerous applications in fi-
nance, engineering, astronomy and biology (see [144, Ch. 7-10] and references herein).
In [131] the complex multivariate Laplace distribution is employed to model sonar sig-
nals. It is demonstrated in [145] that the distribution of speech samples, during voice
activity periods, is well described by a Laplacian distribution. Furthermore, the coef-
ficients of speech signals, using the discrete cosine transform or the Karhunen-Loeve
transform, are shown to obey a multivariate Laplace distribution. In [146], the authors
employ Laplace-Gaussian mixtures for speech denoising. In [147], the wavelet-transform
coefficients of images are found to have sparse distributions (i.e. Laplacian distributions),
a property that has been extensively exploited in coding and denoising. The complex
multivariate Laplace distribution is obtained by considering an exponential distribution
for the texture u ∼ Exp(1). In order to ensure a unitary second-order moment for the
texture, the parameter of the exponential distribution is fixed to 1. From distributions
p(ut) and p(yt|ut), we obtain (see [131] and [144, Ch. 5.2.2]) the complex multivariate
Laplace distribution

py(y) = 2
πMdet(Σ)

Km−1
(
2
√

(y− µ)HΣ−1(y− µ)
)

[(y− µ)HΣ−1(y− µ)](m−1)/2 (IV.6)

where Kν(·) is the modified Bessel function of the second kind and of order ν [148, Ch.
9.6] [144, Eq. A.0.4, p. 315] and [149, p. 183], defined as

Kν(x) = 1
2

(
x

2

)ν ∫ ∞
0

t−ν−1 exp
(
−t− x2

4t

)
, (IV.7)

with ν ∈ R and Re{x2} > 0. With the above definition, it is easy to show that Kν(x) =
K−ν(x) for x ∈ R+, i.e. the modified Bessel function of the second kind is even in the
order. From hereon we shall denote such a complex multivariate Laplace distribution with
L(·; µ,Σ) where µ and Σ represent the location and covariance as given in Eq. (IV.6).
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• The complex multivariate K-distribution is obtained with a Gamma-distributed
texture, i.e. u ∼ Gam(ν, 1/ν). Hence, the texture is Gamma distributed with shape pa-
rameter ν > 0 and scale parameter θ = 1/ν. Hence, insuring that E{u2} = νθ = 1 or in
other words, a unitary-variance texture. The probability density function of u is

pu(u; ν) =
{

νν

Γ(ν)u
ν−1e−νu if u ≥ 0

0 if u < 0, (IV.8)

where Γ(·) is the Gamma function. by employing Eq. (IV.3) and Eq. (IV.4), one can write
the probability density of a K -distributed random vector z as

pz(z) = 2νm+ν
2

πMdet(Σ)Γ(ν)
Kν−m

(
2
√
ν(z− µ)HΣ−1(z− µ)

)
[(z− µ)HΣ−1(z− µ)](m−ν)/2 , (IV.9)

where Kν(·) denotes the modified Bessel function of the second kind, as defined in Eq.
(IV.7). From hereon, we shall denote such a complex multivariate K -distribution with
Kν(·; µ,Σ) where ν, µ and Σ represent the order, location and covariance as given in Eq.
(IV.9). The aforementioned multivariate Laplace distribution, is only a special case of the
K -distribution. Indeed, we observe that a K -distribution with ν = 1 yields the Laplace
distribution of Eq. (IV.6). Note that the Gamma-distributed texture for shape ν = 1
and scale θ = 1 yields the exponentially distributed texture used to generate the Laplace
SIRV. Considering the centered marginal yi, Eq. (IV.5) gives the probability density of
the marginal envelope Ri as

pRi(r) = 4
√
ν

Γ(ν)(
√
νr)νKν−1(2

√
νr), (IV.10)

which represents the univariate K -distribution for unit-variance envelopes, i.e. E{R2
i } = 1.

The univariate K -distribution of Eq. (IV.10) is the usual K -distribution employed to
model clutter in radar and sonar applications; for radar see [20, Sec. IV.B] and references
herein, while for sonar see [129,130]. Note that for a K-distributed envelope Ri, a different
factorization [150] is possible: Ri = √u zi. Where u ∼ Gam(ν, 1/ν) and zi ∼ Exp(1)
are independent. This result is immediate, since envelopes of complex-circular Gaussian
random variables (n of Eq. (IV.2)) are Rayleigh distributed, while the squared envelope
is exponentially distributed.

IV.2.2 The joint-SIRV model
We now introduce joint-SIRV models in order to provide an impulsive characterization to both
source signals and additive noise. Note that various specific cases of a joint-SIRV model have
been proposed in the array-processing literature. Considering the superpositional model of the
phased-array observation given in Eq. (IV.1), the authors of [151] and [128] introduce the
following model {

gi,t = √utsi,t ∀i = 1, . . . , n
wr,t = √utnt,

(IV.11)

where si,t ∼ CN (0,Σi,t) for i = 1, . . . , n and nt ∼ CN (0,Σn,t) are independent. In [151]
and [128], the texture ut is supposed to obey a Lévy distribution in order to ensure a Cauchy
multivariate distribution for yt. The shared texture ut ensures the desired SIRV distribution
for the phased-array observation yt, i.e. the likelihood. The case of different and independent
textures involves computing n−1 multivariate convolutions of SIRV densities, which in general,
has no analytic expression. An exception is the Gaussian probability density (i.e. ut = 1), which
is of little interest in impulsive-signal modeling.
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The main argument of the joint model of Eq. (IV.11), also invoked in [151] and [128],
stems from the characteristics of an echoic environment, i.e. a multi-path and reverberant
environment. As we have seen in Sec. IV.2, in echoic environments the additive noise can be de-
composed into two categories: signal-dependent and non-signal dependent. Considering echoic
environments, where the signal-dependent reverberation is more important than electronic and
ship noise, we neglect wn,t [see Eq. (IV.1)] in the following paragraphs. Source signals gi,t are
generated by scattering from target surfaces while wr,t is generated by volume reverberation
or diffuse scattering from the sea-surface. Furthermore, the same scattering phenomenon lies
at the generation of the source signals gi,t and of the reverberation wr,t. Hence, the source sig-
nals and signal-dependent reverberation share the same distribution family. The source signals
and the reverberation noise propagate simultaneously through the same rapidly-changing and
echoic environment, with the resulting signals being dependent. Existing studies, conducted
in [129–131], demonstrate the impulsive nature of underwater acoustic signals, with impulsive
and dependent signals and reverberation . Even in the case of a single signal gt propagating
through the echoic environment and undergoing k− 1 reflections, this leads to the reception of
k dependent signals (direct and reflections) from different directions of arrival.

The joint-SIRV model can also be justified as a robust model for the observation yt. Indeed,
in bathymetric sonar applications, we only have access to snapshots of the signal yt, containing
source signals, reverberation and noise. There are no recordings of the source signals or the
reverberation individually. This stems from the generation process of Sec. IV.2, where rever-
beration and signal only exist together. Furthermore, the impulsive nature of the phased-array
signal comprising of the sum of signals and noise is showcased in Sec. H. Therefore, fitting a
SIRV model to the phased-array signal can be interpreted as a robust localization method. This
approach is presented in [20, Sec. VII] and [22], where yt is supposed to be a centered SIRV
process with covariance matrix cov(yt) = ∑n

i=1 cov(st) + cov(nt). However, this leads to the
following parametrization of the observation signal

yt
d= √ut

(
n∑
i=1

si,t + nt
)
, (IV.12)

where ut is a texture that ensures the desired SIRV for yt. si,t and nt are independent complex
circular Gaussian processes that ensure the desired covariance structure for yt. However, this
parametrization of yt is equivalent in distribution to the model presented in Eq. (IV.11). Thus,
the authors of [20] and [22] implicitly employ a joint-SIRV model for the phased-array obser-
vation. Given the SIRV model of Eq. (IV.12), they provide an optimal covariance estimator,
which is further eigen-decomposed in order to construct the MUSIC pseudo-spectrum function
or to construct the Capon MVDR beamforming filter. The model of Eq. (IV.12) is also em-
ployed in [152] and referred to as the unconditional model. Therefore, both models presented in
Eq. (IV.11) of [128,151] and Eq. (IV.12) of [20,22,152] are identical and suppose a joint-SIRV
model, albeit sometimes not-explicitly.

IV.3 Phased-array signal and multi-target formalism
Throughout this work, a multi-target process (RFS or an equivalent PP) is employed to model
a random number of targets with random state (location) vectors. We denote by Xt the random
multi-target process with realizations of the form {x1,t, . . . ,xnt,t}, where both the number nt
of targets and target-state vectors xk,t are random. Target-state vectors take values in the
single-target space: x ∈ X, usually some subspace of Rdx .

As described in Sec. IV.2, array observations consist in a noisy sum of individual target
contributions, called target or source signals, which are also modeled as random processes. The
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statistics of the target contributions and array observation are detailed in Sec. IV.3.1. The
marked point process that describes the number of targets, their location and contributions is
presented in section IV.3.2.

IV.3.1 Extended and impulsive target model
Section III.6.2 introduced the phased-array model for point targets with Gaussian source signals.
In this section we generalize the aforementioned model in two different directions. First, we
consider extended targets, that is, targets that have a certain angular extent and that generate
a source/target signal with a corresponding angular distribution. Such targets are typically
encountered in sonar applications that either exhibit low resolution-cells (i.e. large footprint)
or small target-to-sonar distances. For shallow water bathymetry, the latter in encountered. The
point-target model is only a special case of the extended-target model. Secondly, an impulsive
source/target signal is considered that also generalizes the Gaussian model employed in Sec.
III.6.2. The SIRV-signal model that we employ is capable of characterizing a wide range of
impulsive signal distributions that are often encountered in sonar and radars.

Let xi,t denote the state of the i-th extended target. Each extended target emits (or backscat-
ters) a signal si,t which, in point-process terminology, represents a mark. Given the nature of
extended targets, the mark [17] is given by

si,t , s(xi,t) =
∫ π

−π
a(φ)S(φ; xi,t)dφ, (IV.13)

which explicitly models the extended target signal as the superposition of elementary backscat-
tered signals S(φ; xi,t) ∈ C with DOA φ. Each elementary backscattered signal is a narrow-band
plane wave with DOA φ and array manifold vector a(φ). For plane waves (narrowband condition
verified verified in Appendix G) impinging a ULA, we have

a(φ) ,
[
1 e−j φ · · · e−j (M−1)φ

]T
,

where M is the number of array receivers and {·}T represents the transpose operator. The
DOA φ is linked to the physical angle θ by: φ = 2π

λ
∆ sin(θ), with λ representing the wavelength

and ∆ the receiver spacing. For linear arrays, the physical angle spans θ ∈ [−π/2, π/2], while
φ ∈ [−π, π] (if ∆ = λ/2). The terminology of speckle [153, Ch. 14.8] is employable for si,t and is
motivated by the fact that si,t is the sum of complex random contributions, in Eq. (IV.13). The
individual scatterers exhibit a uniformly distributed phase, hence their sum yields a highly-
fluctuant signal. The power of si,t is given by the power of the incident signal, the surface area
of the reflector and the incidence angle. The speckle pattern is given by the covariance matrix
of si,t and represents the parameter of interest in localizing the respective target, leading to the
perception of speckle as a multiplicative model.

Whenever scattering from rough surfaces is involved [17, 154], S(·) is considered to be a
white process, that is

E{S(φ; xi,t)S∗(φ′; xi,t)} = P ρ(φ; xi,t)δ(φ− φ′)

where δ(·) is the Dirac impulse. P is the mean power of the target and ρ(φ; xi,t) is the power
density function of the target signal. Examples of ρ(·) are given in [155], and include uniform,
Gaussian or polynomial. In this work we consider a Gaussian shape for ρ(·), as in [155, Sec.
2.2]:

ρ(φ; xi,t) = 1√
2πσ2

φ

exp
(
−(φ− φc)2

2σ2
φ

)
, (IV.14)
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where σφ � π controls the angular spread of ρ(·). The target-centroid DOA φc, signal power
P and angular spread σφ are the main parameters of the extended target. Note that P and σφ
are appended to θc (or equivalently φc , 2π

λ
∆ sin(θc)) alongside kinematic terms to form the

state vector xi,t, as described later in Section IV.3.2.
Similarly to [156], by considering the elementary backscattered signal conditioned on xi,t

as circular symmetric Gaussian (i.e. S(φ; xi,t)|xi,t ∼ CN (0, P ρ(φ; xi,t))), from Eq. (IV.13) we
have

si,t|xi,t ∼ CN (0,R(xi,t)), (IV.15a)

[R(xi,t)]m,n = P e−
(n−m)2σ2

φ
2 ej (n−m)φc . (IV.15b)

As previously stated, the array observation signal yt ∈ CM is

yt =
nt∑
i=1

gi,t + wt, (IV.16)

where both the contribution of the i-th extended target gi,t and the additive observation noise
wt ∈ CM are SIRV processes.

A joint-SIRV model is employed for the array observation, as described in Eq. (IV.11). The
target signals and observation noise become:

gi,t = √ut si,t (IV.17a)
wt = √ut nt (IV.17b)
nt ∼ CN (0, σ2

t IM), (IV.17c)

where ut, nt and {si,t|i = 1, . . . , nt} are independent. si,t is the target signal, or target mark,
given in Eq. (IV.13) and with distribution (IV.15a). σ2

t is the additive noise variance. IM is
the identity matrix of size M . The texture is considered to have unitary second-order moment
E{u2

t} = 1, hence the Signal-to-Noise Ratio (SNR) of the i-th target is given by SNR = P
σ2
t
.

As described in Sec. IV.2.1, the distribution of the non-negative texture controls the impulsive
character of the target signal. A detailed analysis of the joint-DIRV model is given in Sec.
IV.2.2. Here, we briefly note that the texture ut is identical for all targets and noise, leading
to a SIRV observation vector yt. Under such a model, the physical property of uncorrelated
target marks gi,t and additive noise is kept. However, the target marks and noise are no longer
independent. Independence only being achieved for the special case of Gaussian signals, i.e.
non-random texture with ut = 1.

In this chapter, we will particularly consider the complex multivariate Laplace distribution
for yt, which was shown in [92, 131] and Appendix H via goodness-of-fit tests to match com-
plex phased-array sonar signals. The complex multivariate Laplace distribution is obtained by
considering an exponential texture ut ∼ Exp(1), see Eq. (IV.6). However, the filter derivation
is valid for all SIRV observation processes, by employing a generic distribution for ut. The con-
ditional distribution p(yt|ut, Xt) is complex circular Gaussian with zero mean and covariance
Γt = ∑nt

i=1 R(xi,t) + σ2
t IM . This follows from the independence of individual target marks, when

conditioned on ut, and their Gaussian distributions, given in Eq. (IV.15a). By employing the
exponential texture, we obtain the multivariate Laplace distribution for the array observation
p(yt|Xt) = L(yt; 0,Γt) given in Eq. (IV.6).

IV.3.2 Marked process for extended and impulsive target signals
In a similar fashion to Sec. III.6.2, we introduce a marked process to model the multiple
targets and their associated source signals. The multi-target process Xt is an independent
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and identically distributed cluster (iidc) process (see Sec. III.3.1), with the distribution of the
number of targets denoted as pt(n) and iid target state vectors with pdf vt(x). A compact
representation for the iidc processes is achieved via the multi-target density. Using the set
notations of Sec. III.2.3, and from Eq. (III.15), we have

pXt(X) , pt(X) = pt(n)n!
∏

x∈Xt
vt(x). (IV.18)

Furthermore, the intensity (or PHD) of Xt [see Eq. III.16] is given by:
Dt(x) = n̄tvt(x), (IV.19)

where n̄t = ∑∞
n=0 npt(n) is the mean of the number of targets present at time t. We assume

that targets evolve according to the linear state equation
xt = Ft xt−1 + vt, (IV.20)

where Ft is the state transition matrix and vt is the model noise. We assume vt to be a
zero mean, white Gaussian process with covariance matrix Qt, i.e. vt ∼ N (0,Qt). Since SMC
(Sequential Monte Carlo) techniques are employed to implement the proposed filter, the sub-
sequent derivations would apply similarly for any non-linear state equation. In this work, we
consider a nearly constant velocity model [74, Ch. 6.3.1] in the angular domain θ. Further-
more, we consider the logarithm of the target-signal power and of the target spread as part
of the target-state vector, with a random walk evolution model. Thus, the target state is
xt = [θt, θ̇t, log(Pt), log(σφ,t)]T . Note that the in Eq. (IV.15b) the target angular spread and
signal power were explicitly made dependent on the target state. The logarithm of the target
spread and signal power are necessary to ensure their positivity. A similar scheme has been
employed for the noise variance in time-varying auto-regressive models in [157, Ch. 7]. More
involved models that relate the signal power to the target spread can be envisaged, however,
they do not represent the scope of this work. Different methods that cope with unknown pa-
rameters, such as signal power or target spread, have been proposed in [157, Ch. 10]. However,
for simplicity, they will not be considered in this work.

Knowledge of the cardinality distribution pt(n) and the individual target distribution vt(x)
is sufficient to infer the number of targets and their locations. More specifically, the number of
targets is estimated from pt(n), and afterwards the target locations are given by the peaks of
vt(x). Next we consider the process formed by X̃t = {(x, s)|x ∈ Xt and s|x ∼ CN (0,R(x))},
referred to as the marked multi-target process, or marked point process in point process termi-
nology. Xt is usually referred to as the ground multi-target process. Note that the cardinality
of the marked process is equal to that of the ground process, i.e. |X̃t| = |Xt|. The mark s
depends only on the target state as given by Eq. (IV.13), or in other words, the target signal
is dependent on the parameters of the target that generated (or backscattered) that signal.
Conditionally to the target states, the marks are independent and the marked-process PHD
is given by the marking theorem: D̃(x̃) = D(x)CN (s; 0,R(x)) [94, Prop. 3.9] and [93, p. 55],
where x̃ denotes the pair (x, s(x)) and R(x) is given by Eq. (IV.15b). Since the ground process
is iidc and the marks are independent, the marked process is iidc with density:

pt(X̃) = pt(n)n!
∏

{(x,s)}∈X̃t

vt(x)CN (s; 0,R(x)). (IV.21)

We choose to interpret X̃t as a marked process for two reasons. Firstly, it has an intuitive in-
terpretation: a target generates a mark, here the backscattered signal. Secondly, in the update
step (Sec. IV.4.2 and IV.4.3) of the CPHD filter, we show that target signals can be analytically
integrated-out, without requiring a posterior defined on an extended space. This is especially
important for particle filter implementations, where sampling from higher-dimensional posteri-
ors is always less efficient. The PHD of the marked process intervenes in the array likelihood
function.
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IV.4 Phased-array TBD-CPHD filter
In this section, we derive the filtering equations for tracking extended targets via phased-array
observations. We aim to derive the PHD Dt|t(x) and cardinality distribution pt|t(n) of the
posterior ground process Xt|y0:t, given the past and current array observations denoted as y0:t.
The filter comprises two stages: prediction (Section IV.4.1) and update. The latter supposes
the update of the intensity/PHD function (Section IV.4.2) and the cardinality distribution
(Section IV.4.3). In the prediction stage, starting from Dt−1|t−1(x) and pt−1|t−1(n) we give the
exact formulas for the predicted intensity Dt|t−1(x) and pt|t−1(n). We take into account target
kinematics as dictated by the law of motion of Eq. (IV.20), as well as target death and birth. The
update stage intends to correct the predicted PHD and cardinality with the current observation
yt. Closed-form formulas are not available for the updated intensity and cardinality, and an
approximation similar to that in [28] is proposed.

IV.4.1 Phased-array TBD-CPHD prediction
The array model of Section IV.3.1 only impacts the update step, as prediction is carried out
with the classical formulas of [122], which are recalled here. A target with state xt−1 at time
t − 1, will survive at time t with probability ps(xt−1). Each target survival is independent of
other target survivals. Surviving targets undergo a kinematic transformation dictated by the
transition density kernel f(xt|xt−1) = N (xt; Ftxt−1,Qt) resulting from the kinematic model in
Eq. (IV.20). Furthermore, to account for target birth, a process with intensity γt(·) is superposed
to the transformed process. In virtue of the superposition theorem [93, Ch. 2.2], the predicted
intensity is given by

Dt|t−1(xt) = γt(xt) +
∫
f(xt|xt−1)ps(xt−1), Dt−1|t−1(xt−1)dxt−1. (IV.22)

The predicted intensity model captures target death, birth and kinematics. Furthermore, the
probability density of targets is obtained by normalizing the intensity function:

vt|t−1(x) = Dt|t−1(x)∫
Dt|t−1(x)dx . (IV.23)

The marked process X̃t|t−1 is obtained by marking each element of Xt|t−1 with the corresponding
source/target signal, i.e. mark s ∈ K, with K ⊆ CM . Conditionally on the target state x, its
mark is s ∼ CN (0,R(x)) as described in Sec. IV.3.2. Hence, the pdf of the marked target
x̃ , (x, s) is

ṽt|t−1(x̃) = vt|t−1(x)CN (s; 0,R(x)). (IV.24)

Whereas the intensity function of the marked process is

D̃t|t−1(x̃) = Dt|t−1(x)CN (s; 0,R(x)). (IV.25)

As shown in the following section, the propagation of Dt|t(x) is sufficient, with the marked
intensity intervening in the array likelihood model. This leads to an efficient implementation
propagating only a particle approximation of Dt|t(x).

The predicted cardinality pt|t−1(n), identical for both Xt|t−1 and X̃t|t−1, is from [122]:

pt|t−1(n) =
n∑
j=0

pb(n− j)
 ∞∑
l=j

(
l

j

)
〈ps, Dt|t−1〉j〈1− ps, Dt|t−1〉l−j

〈1, Dt|t−1〉l
pt−1|t−1(l)

 , (IV.26)
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where pb(j) is the probability of having j newly birthed targets and

〈a, b〉 =
∫
X
a(x)b(x)dx

is the inner product on X.
In the case of a constant probability of survival, i.e. ps(x) , ps ∀x ∈ X, the predicted

cardinality pt|t−1(n) (identical for both Xt|t−1 and X̃t|t−1) is from [122]

pt|t−1(n) =
n∑
j=0

pb(n− j)
 ∞∑
l=j

(
l

j

)
pjs(1− ps)l−jpt−1|t−1(l)

 . (IV.27)

This above prediction equations will be employed in the TBD-CPHD filter, while update equa-
tions are derived in the following sections for both the intensity function and cardinality dis-
tribution.

IV.4.2 Phased-array TBD-CPHD intensity update

The updated PHD Dt|t(·) can be obtained from the set integral (see Eq. III.10)

Dt|t(x) =
∫
pt|t({x} ∪W )δW, (IV.28)

where pt|t(W ) is a the posterior distribution of the multi-target process Xt|y0:t.
In a similar fashion to Sec. III.6.3.b, by applying the Bayes rule for the posterior pt|t(W ),

we obtain:

Dt|t(x) =
∫
pt(yt|{x} ∪W )pt|t−1({x} ∪W )δW∫

pt(yt|W )pt|t−1(W )δW . (IV.29)

To make the above integrals tractable, we employ the specific factorization of SIRV random
vectors [Eq. (IV.17a)]. The array likelihood is written as

pt(yt|W ) =
∫ ∞

0
pt(yt|W,ut)p(ut)dut.

In particular, for Laplace signals, ut is an exponentially distributed scalar. Further accounting
for the target marks s of Eq. (IV.15a), the array likelihood becomes

pt(yt|W,ut) =
∫
X|W |

pt(yt|W̃ , ut)
∏

{(w,s)}∈W̃

[CN (s; 0,R(w))ds] ,

where W̃ = {w̃ , (w, s)|w ∈ W and s|w ∼ CN (0,R(w))} is the marked process obtained by
appending the target signals to each target state of the predicted process at time t. Both the
ground and marked processes have the same cardinality, denoted by |W | and |W̃ | respectively.
Considering this specific form of the likelihood, and employing the iidc distribution of Eq.
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(III.15), the nominator of Eq. (IV.29) is factored as∫
pt(yt|{x} ∪W )pt|t−1({x} ∪W )δW =

=
∞∑
n=0

1
n!

∫ ∞
0

p(ut)
∫
K
CN (s; 0,R(x))

∫
(X×K)n

pt(yt|ut, (x, s), {(wi, si)|i = 1, . . . , n})

× (n+ 1)! pt|t−1(n+ 1)v(x)
n∏
i=1

[
vt|t−1(wi)CN (si; 0,R(wi))dwidsi

]
dsdut

= v(x)
∞∑
n=0

1
n!

∫ ∞
0

p(ut)
∫
K
CN (s; 0,R(x))

∫
(X×K)n

pt(yt|ut, x̃, {w̃i|i = 1, . . . , n})

× (n+ 1)! pt|t−1(n+ 1)
n∏
i=1

[
ṽt|t−1(w̃i)dw̃i

]
dsdut

= Dt|t−1(x)
∫ ∞

0
p(ut)

∫
K
CN (s; 0,R(x))

∫
pt(yt|ut, W̃ ∪ x̃)pt|t−1,x̃(W̃ )δW̃dsdut,

where, in the last equality, we introduced for a fixed x̃ ∈ X×K the multi-target process with
distribution pt|t−1,x̃(W̃ ) as

pt|t−1,x̃(W̃ ) = pt|t−1({x̃} ∪ W̃ )
D̃t|t−1(x̃)

where D̃t|t−1(·) is the marked intensity function of Eq. (IV.25). Note that pt|t−1,x̃(W̃ ) is a true
multi-target probability distribution since

∫
pt|t−1,x̃(W̃ )δW̃ = 1. This is easily seen by using

the definition of the intensity function of Eq. (III.11). Note that in [116], a similar process is
defined for the non-marked case.

Proceeding in a similar manner for the denominator of Eq. (IV.29), the updated intensity
function becomes:

Dt|t(x) = Dt|t−1(x)
∫∞

0 p(ut)
∫
CN (s; 0,R(x))

∫
pt(yt|W̃ , x̃, ut)pt|t−1,x̃(W̃ )δW̃dsdut∫∞

0 p(ut)
∫
pt(yt|W̃ , ut)pt|t−1(W̃ )δW̃dut

. (IV.30)

By employing the change of variables formula proposed in [118, Prop 4., p.180], that is,
denoting z , ∑{(w,s)}∈W̃ s(w), the inner integral of the denominator of Eq. (IV.30) becomes:∫

pt(yt|W̃ , ut)pt|t−1(W̃ )δW̃ =
∫
CN (yt;

√
utz, utσ2

t IM)p(z)dz.

The set integrals are now reduced to ordinary integrals, where p(z) is the distribution
induced by the change of variables. As proposed in [28], under the approximation: p(z) ≈
CN (z; µ,Σ), we obtain an analytic formula for the updated intensity. The first and second order
moments of p(z) are obtainable from the marked predicted iidc process X̃, with distribution
pt|t−1(X̃) [Eq. (IV.21)]. In [116, Eq. (43) and (44)], the authors derived such moments for the
non-marked iidc case. The extension to the marked process is obtained by replacing the iidc
intensity with the marked intensity of Eq. (IV.25), the result is: µ = n̄µ̃ and Σ = n̄Σ̃, where
n̄ = ∑∞

n=1 n pt|t−1(n) is the mean of the predicted cardinality distribution pt|t−1(n) [given in
either Eq. (IV.26) or Eq. (IV.27)] and

µ̃ =
∫
X×K

s ṽt|t−1(x̃)dx̃

=
∫
K

∫
X

s vt|t−1(x) CN (s; 0,R(x))dxds = 0 (IV.31a)

Σ̃ =
∫
X×K

ssH ṽt|t−1(x̃)dx̃

=
∫
X

R(x) vt|t−1(x)dx, (IV.31b)
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where ṽ(x̃) is the marked target pdf and is defined in Eq. (IV.24). {·}H represents the transpose-
conjugate operator. Employing the aforementioned change of variables and under the approxi-
mation p(z) ≈ CN (z; 0,Σ), the denominator of Eq. (IV.30) becomes∫ ∞

0
p(ut)

∫
CN (yt;

√
utz, utσ2

t IM)p(z)dzdut ≈
∫ ∞

0
p(ut)CN (yt; 0, ut(σ2

t IM + n̄Σ̃))dut. (IV.32)

Similarly for the numerator of Eq. (IV.30) we get:∫
p(yt|W̃ , x̃, ut)pt|t−1,x̃(W̃ )δW̃ =

∫
CN (yt −

√
uts;√utz, utσ2

t IM)px̃(z)dz,

where px̃(z) is the probability distribution induced by the change of variables. Again, we assume
px̃(z) ≈ CN (z,µx̃,Σx̃). The first and second-order moments for non-marked multi-target distri-
butions have been computed in [116, Eq. (69) and (70)]. Here, similar results can be obtained, by
replacing the multi-target intensity with the marked intensity µx̃ = 0 and Σx̃ = n̄−1G(2)(1)Σ̃,
where n̄ is the mean and G(2)(1) = ∑∞

n=2 n(n−1) pt|t−1(n) is the second-order factorial moment
of the predicted cardinality distribution pt|t−1(n).

By employing the above Gaussian approximation for px̃(z), the updated intensity/PHD is

Dt|t(x) = Dt|t−1(x)Lyt(x), (IV.33)

where the pseudo-likelihood Lyt(x) is approximately given by:

Lyt(x) ≈
∫∞

0 p(ut)CN (yt; 0, ut(R(x) + σ2
t IM + Σx̃)dut∫∞

0 p(ut)CN (yt; 0, ut(σ2
t IM + n̄Σ̃))dut

.

Employing an exponential texture ut ∼ Exp(1), we obtain:

Lyt(x) ≈ L(yt; 0,R(x) + σ2
t IM + n̄−1G(2)(1)Σ̃)

L(yt; 0, σ2
t IM + n̄Σ̃)

, (IV.34)

where L(·; 0,Σ) denotes a centered and complex multivariate Laplace density of Eq. (IV.6) and
covariance Σ.

IV.4.3 Phased-array TBD-CPHD cardinality update
The updated cardinality distribution pt|t(n) is by definition [24, Eq. 11.109]:

pt|t(n) =
∫
|X|=n

pt|t(X)δX

=
∫
|X|=n p(yt|X)pt|t−1(X)δX∫
p(yt|X)pt|t−1(X)δX . (IV.35)

Note that the denominator of Eq. (IV.35) was solved in the preceding section and is equal
to the denominator of Eq. (IV.34). By employing the marginalized likelihood and the marked
predicted iidc X̃, the numerator of Eq. (IV.35) is equivalent to:∫
|X|=n

p(yt|W )pt|t−1(W )δW =
∫ ∞

0
p(ut)

∫
|X|=n

p(yt|W̃ , ut)pt|t−1(W̃ )δW̃dut

= pt|t−1(n)
∫ ∞

0
p(ut)

∫
p(yt|W̃ , ut)pt|t−1,n(W̃ )δW̃dut,

(IV.36)

where we introduced for fixed cardinality n the marked multi-target process with distribution

pt|t−1,n(W̃ ) = pt|t−1(n)−1 δ|W̃ |,n pt|t−1(W̃ ),
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with δ·,· representing the Kronecker symbol.
By introducing the change in variables∫

p(yt|W̃ , ut)pt|t−1,n(W̃ )δW̃ =
∫
CN

(
yt;
√
utz, ut(σ2IM)

)
pn(z)dz

≈ CN (yt;
√
utµn, ut(σ2

t IM + Σn)),
(IV.37)

where we introduce the approximation pn(z) ≈ CN (z; µn,Σn). The first-order moment densities
of non-marked distributions of the type pt|t−1,n(W ) have been computed in [116, Eq. (54) and
(55)]. The extension to the marked process is obtained simply by replacing the respective
intensity with the marked intensity of Eq. (III.29). Thus, µn = 0 and Σn = nΣ̃. Gathering the
results of Eqs. (IV.35)-(IV.37), the updated cardinality becomes:

pt|t(n) ∝ pt|t−1(n)lyt(n), (IV.38)

where the pseudo-likelihood lyt(n) is given by:

lyt(n) ≈
∫∞
0 p(ut)CN (yt; 0, ut(σ2

t IM + nΣ̃)dut∫∞
0 p(ut)CN (yt; 0, ut(σ2

t IM + n̄Σ̃))dut
.

For the particular case of an exponential texture ut, the pseudo-likelihood becomes:

lyt(n) ≈ L(yt; 0, σ2
t IM + nΣ̃)

L(yt; 0, σ2
t IM + n̄Σ̃)

, (IV.39)

where L(·; 0,Σ) denotes a centered and complex multivariate Laplace density of Eq. (IV.6)
and covariance Σ. Note that the normalization factor of Eq. (IV.38) requires the convergence
of the sum ∑∞

n=0 pt|t−1(n)lyt(n). As shown in [116, Eqs. (97-99)], this is verified as long as
there exists an n0 for which pt|t−1(n) < 1/n ∀n > n0. This condition posses no real limitation,
since in practice we will always employ a maximum number of allowed targets Nmax, for which
pt|t−1(n) = 0 ∀n > Nmax.

IV.4.4 TBD-CPHD Monte Carlo Implementation
In the context of sonar signals with impulsive distributions, e.g. Laplace, analytic solutions
to the PHD and cardinality update equations are unfeasible. This is also the case even with
Gaussian-mixture intensity/PHD functions. The alternative is to employ Sequential Monte
Carlo (SMC) methods, i.e. particle approximations, to the PHD function. For TWS frameworks,
the standard SMC-PHD filter was first proposed in [97], with subsequent improvements in [158],
[159], [160] and [161]. The TWS framework offers the advantage of point observations, around
which adaptive birth and/or nearly optimal Importance Sampling (IS) distributions can be
constructed. In [158], the authors construct an adaptive birth intensity, by placing samples
around the observation points. In [159] a similar adaptive-birth intensity is defined, and the
update step is achieved by applying the unscented transform to a set of gated observations
(i.e. observations falling in a gate around the predicted value). For high-density clutter, in [160]
an efficient SMC-PHD implementation is achieved by employing only the gated observations
around the predicted PHD particles. A rigorous auxiliary SMC-PHD is given in [161], where
both the predictive IS and the birth IS are constructed by incorporating the new observation.
In [162], the author divides the set of persistent particles of the PHD based on the current
point observations, in order to construct efficient IS proposals for each particle partition.

For TBD-PHD filters, adaptive-birth intensities and IS distributions are less obvious, since
the observation is a continuous process rather than a set of points. In [28], the authors use an
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auxiliary step for birth particles in order to concentrate them around newly-birthed targets.
However, for the previous time-step, i.e. persistent PHD particles, the authors resort to the
bootstrap PHD filter. Here, we propose a complete auxiliary SMC-PHD filter for the array
processing problem, which employs the current observation in the construction of the IS dis-
tributions for both persistent and newly birthed particles. For persistent particles, the fully
adapted auxiliary SMC implementation (in the terminology of Pitt and Shepard [163]) is un-
obtainable. Additionally, for the birth particles we devise an adaptive-birth IS distribution by
using the angular-power spectrum of the current array observation.

IV.4.4.a Optimal IS proposals

The auxiliary step of the SMC-PHD filter aims to select from the previous and birth particles,
only those particles that best “explain” the current observation and then perform the prediction
and update step. In order to introduce the IS distributions, we consider the evaluation of the
following integral

ϕ̄ =
∫
ϕ(xt)Dt|t(xt)dxt, (IV.40)

where ϕ(·) is any test function defined on X, for which ϕ̄ is defined. By employing the prediction
(III.21) and update (IV.33) equations, as well as importance sampling, ϕ̄ rewrites

ϕ̄ =
∫∫

ϕ(xt)
Lyt(xt−1)ps(xt−1)f(xt|xt−1)Dt−1|t−1(xt−1)

qt,p(xt,xt−1|yt)
qt,p(xt,xt−1|yt)dxt−1dxt

+
∫
ϕ(xt)

Lyt(xt)γ(xt)
qt,b(xt|yt)

qt,b(xt|yt)dxt, (IV.41)

where qt,p(·, ·|yt) and qt,b(·|yt) are the persistent and birth IS distributions that take into account
the current observation yt. Note that the support of functions qt,p(·) and qt,b(·) is supposed
to include the support of their respective target distributions, in order for Eq. (IV.41) to
be valid. Hence, evaluating ϕ̄ is achieved by providing a sample-based approximation to the
aforementioned IS distributions. In a similar way to [161], we employ the following proposal for
the IS persistent distribution:

qt,p(xt,xt−1|yt) = qt,p(xt|xt−1,yt)
Vyt(xt−1)Dt−1|t−1(xt−1)∫

Vyt(xt−1)Dt−1|t−1(xt−1)dxt−1
. (IV.42)

The potential function Vyt : X → R+ represents the “first stage” weights of the auxiliary
particle filter [163]. Vyt weights each of the previous PHD particles by taking into account the
current observation yt. As showcased in Sec. IV.5, this step improves the performance of our
proposed auxiliary SMC-PHD as opposed to [28].

Having defined both IS proposals, we can draw iid samples {x(i)
t,p,x

(i)
t−1,p}

Nt,p
i=1 from qt,p(·, ·|yt)

and {x(i)
t,b}

Nt,b
i=1 from qt,b(·|yt), and ϕ̄ can be approximated as

ϕ̄ ≈
Nt,p∑
i=1

ϕ(x(i)
t,p)w

(i)
t,p +

Nt,b∑
i=1

ϕ(x(i)
t,b)w

(i)
t,b , (IV.43)

where the IS persistent weights are given by

w
(i)
t,p = 1

Nt,p

Lyt(x
(i)
t,p)ps(x

(i)
t−1,p)f(x(i)

t,p|x
(i)
t−1,p)Dt−1|t−1(x(i)

t−1,p)
qt,p(x(i)

t,p,x
(i)
t−1,p|yt)

= 1
Nt,p

Lyt(x
(i)
t,p)ps(x

(i)
t−1,p)f(x(i)

t,p|x
(i)
t−1,p)

qt,p(x(i)
t,p|x

(i)
t−1,p,yt)

∑Nt,p
j=1 Vyt(x

(i)
t−1)Dt−1|t−1(x(i)

t−1)
Vyt(x

(i)
t−1)

, (IV.44)
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while IS birth weights are given by

w
(i)
t,b = 1

Nt,b

Lyt(x
(i)
t,b)γ(x(i)

t,b)
qt,b(x(i)

t,b |yt)
. (IV.45)

Constructing IS proposals that minimize the variance of the IS weights in Eqs. (IV.44) and
(IV.45), leads to the optimal IS proposals. The optimal choice for the persistent IS proposal is
given by

qopt
t,p (xt|xt−1,yt) = Lyt(xt)ps(xt−1)f(xt|xt−1)∫

Lyt(xt)ps(xt−1)f(xt|xt−1)dxt
(IV.46)

V opt
yt (xt−1) =

∫
Lyt(xt)ps(xt−1)f(xt|xt−1)dxt, (IV.47)

while the optimal birth IS proposal is

qopt
t,b (xt|yt) = Lyt(xt)γ(xt). (IV.48)

The aforementioned optimal IS distributions lead to IS weights that do not depend on xt, xt−1
and yt and hence, are of zero variance.

IV.4.4.b Practical IS proposals

Optimal IS distributions are unfeasible in the context of the highly non-linear observation
equation (II.2) and with multiplicative and non-Gaussian noise (i.e. the target signals). Hence,
we resort to the state transition kernel

qt,p(xt|xt−1,yt) = f(xt|xt−1), (IV.49)

while for the potential function we employ the following approximation (first proposed in [163])

Vyt(xt−1) = Lyt(x̄t−1), (IV.50)

x̄t−1 =
∫
f(xt|xt−1)dxt.

Tampering is employed, as described in [161], in order to avoid Vyt(·) becoming too concentrated
as opposed to V opt

yt (·).
Concerning the birth IS proposal, since constructing a distribution based on the exact

shape of Lyt(·) is impractical, we opt for a construction based on the observation spectrogram.
By constructing a spectrogram St(φ) of the array observation, we obtain an angular-power
distribution of yt. Basically the peaks of St(φ) represent possible targets, and this information
can be used to construct an adaptive IS proposal. We construct qt,b(·) as a Gaussian mixture
so as to drive birth samples around the peaks of the spectrogram St(φ):

qspect
t,b (φt|yt) =

Nspect∑
i=1

wspect
t,i N (φt; φ̂spect

t,i , P spect
t,i ), (IV.51)

where the Gaussian mixture parameters are estimated from the observation spectrogram. In
this work, we opted for instantaneous beamforming: St(φ) = | 1

M
a(φ)Hyt|2. However, other

spectrogram options are possible, such as Capon [56, Ch. 5.4] or MUSIC [56, Ch. 4.5], which
are computed over a window of array observations. In Eq. (IV.51) N spect is a fixed parameter,
equal to an imposed maximum number of targets for the filter. The means φ̂spect

t,i are obtained as
the locations of the N spect peaks of the spectrogram. Furthermore, only the peaks not interfering
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with the persistent intensity are retained. Component weights can be adaptively constructed
as wspect

t,i ∝ St(φ̂spect
t,i ), and then normalized. The component variances P spect

t,i are taken to be
identical. For simplicity, other state parameters are directly sampled from the birth intensity.
The aforementioned construction of the birth IS distribution is reminiscent of the pre-processor
in TWS systems (see Sec. II.2). In TWS systems, the tracking system processes the positions of
spectrogram maxima. In contrast, the TBD-CPHD filter processes the phased-array observation
yt, while the spectrogram maxima are employed only for the construction of the birth IS
distribution.

IV.4.4.c The estimation of Σ̃

Throughout the previous section, the pseudo-likelihood function Lyt(x) was assumed to be
known. However, as seen from the PHD (IV.34) and the cardinality (IV.39) pseudo-likelihoods,
the covariace matrix Σ̃ needs to be estimated from the predicted PHD function (IV.31b). Since
the non-linear form of the integrand in Eq. (IV.31b) prohibits an exact computation of Σ̃, we
resort to a MC approximation, based on the particles of the predicted and normalized PHD
function vt|t−1(·). We compute an approximation to Σ̃ by employing the samples from the IS
posteriors qt,p(·, ·|yt) and qt,b(·|yt):

Σ̃ = 1
KD

 ∫∫ R(xt)
ps(xt−1)f(xt|xt−1)Dt−1|t−1(xt−1)

qt,p(xt,xt−1|yt)
qt,p(xt,xt−1|yt)dxt−1dxt

+
∫

R(xt)
γ(xt)

qt,b(xt|yt)
qt,b(xt|yt)dxt

,
where the normalization constant, KD =

∫
XDt|t−1(x)dx, is required because Σ̃ is computed

from the normalized intensity (i.e. target pdf) vt|t−1(·) [see Eq. (IV.31b)].
Employing the previously sampled particles {x(i)

t,p,x
(i)
t−1,p}

Nt,p
i=1 and {x(i)

t,b}
Nt,b
i=1 from the propos-

als qt,p(·, ·|yt) and qt,b(·|yt), we obtain the approximation

Σ̃ ≈ 1
KD

Nt,p∑
i=1

R(x(i)
t,p)w̃

(i)
t,p +

Nt,b∑
i=1

R(x(i)
t,b)w̃

(i)
t,b

, (IV.52)

where KD = ∑Nt,p
i=1 w̃

(i)
t,p +∑Nt,b

i=1 w̃
(i)
t,b , and the IS weights are given by

w̃
(i)
t,p = 1

Nt,p

ps(x(i)
t−1,p)f(x(i)

t,p|x
(i)
t−1,p)Dt−1|t−1(x(i)

t−1,p)
qt,p(x(i)

t,p,x
(i)
t−1,p|yt)

w̃
(i)
t,b = 1

Nt,b

γ(x(i)
t,b)

qt,b(x(i)
t,b |yt)

, (IV.53)

where we employ the practical IS proposals of Eqs. (IV.49) and (IV.50).

IV.4.4.d Algorithm description

A pseudo-algorithm is given in Table IV.1 for one iteration of the proposed auxiliary CPHD
filter. The auxiliary step for persistent particles is presented at lines 6 to 10 of Fig. IV.1. Observe
the tampering of weights with parameter 0 < ε < 1, as proposed in [161]. A first approximation
of Σ̃ is given at line 5, where we employed the normalized spectrogram St(φ) to approximate the
current intensity. Furthermore, P̂ and σ̂φ are the means of the initial distribution of the target
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1: Dt−1|t−1(xt−1) ≈ ∑Nt−1
i=1 wit−1δxit−1

(dxt−1)
2: Nt,p = Nt−1
3: Cardinality prediction: pt|t−1(n) by Eq. (IV.27)
4: First stage for persistent and birth PHD

5: [Σ̃]m,n ≈ P̂ exp
(
− (n−m)2σ̂2

φ

2

)∫
ej (n−m)φSt(φ)dφ∫

St(φ)dφ
6: for i = 0 do to Nt,p

7: Vyt(x
(i)
t−1) = Lyt(x̄

(i)
t−1)) . First stage weights

8: end for
9: Resample previous particles:

10: {x(i)
t−1, [Vyt(x

(i)
t−1)w(i)

t−1]ε}Nt,pi=1 → {x′
(i)
t−1,p, w

′(i)
t−1}

Nt,p
i=1

11: for i = 0 do to Nt,b

12: x(i)
t,b ∼ qspect

t,b (xt|yt)

13: w̃
(i)
t,b = γ(x(i)

t,b
)

Nt,b q
spect
t,b

(x(i)
t,b
|yt)

14: end for
15: Second stage persistent PHD
16: for i = 0 do to Nt,p . Second stage sampling
17: x(i)

t,p ∼ f(xt|x′(i)t−1)

18: w̃
(i)
t,p = ps(x′(i)t−1)

∑Nt,p
j=1 Vyt (x′

(j)
t−1)w′(j)t−1

Nt,p Vyt (x′
(i)
t−1)

19: end for
20: Estimate Σ̃ by Eq. (IV.52)
21: Final weights for persistent and birth PHD
22: for i = 1 to Nt,p do . Persistent weights
23: w

(i)
t,p = w̃

(i)
t,p Lyt(x

(i)
t,p)

24: end for
25: for i = 1 to Nt,b do . Birth weights
26: w

(i)
t,b = w̃

(i)
t,b Lyt(x

(i)
t,b)

27: end for
28: Update cardinality pt|t(n) ∝ pt|t−1(n) lyt(n)
29: MAP cardinality estimate:
30: n̂MAP

t|t = argmax
n

pt|t(n)
31: Resample Nt = n̂MAP

t|t Nppt particles:
32: {x(i)

t,p, w
(i)
t,p} ∪ {x

(i)
t,b , w

(i)
t,b} → {x

(i)
t , w

(i)
t }Nti=1

33: Clustering:
34: {x̂(i)

t|t}
n̂t|t
i=1 ← Clustering

(
{x(i)

t }Nti=1, n̂
MAP
t|t

)
35: Dt|t(xt) ≈

∑Nt
i=1w

i
tδxit(dxt) . New PHD

Figure IV.1: Pseudo-algorithm for one iteration for the proposed auxiliary SMC-CPHD filter
for array processing.
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1: function Clustering({x(i)
t }Nti=1, n̂MAP

t|t )
2:

(
{x(i)

DBSCAN}n̂DBSCAN
i=1 , {x(i)

outlier}Noutlier
i=1

)
= DBSCAN

(
{x(i)

t+1}
Nt+1
i=1 , Nmin, ε

)
3: {x(i)

t }Nti=1 \ {x
(i)
outlier}Noutlier

i=1 = {x(i)
outlier}

Noutlier
i=1

4: {x̂(i)
KMEANS}n̂KMEANS

i=1 = k-means
(
{x(i)

outlier}
Noutlier
i=1 , n̂MAP

t|t

)
5: {x̂(i)

OUT}n̂OUT
i=1 = {x̂(i)

KMEANS}n̂KMEANS
i=1

6: if (n̂DBSCAN > 1) ∧ (n̂KMEANS > 1) then
7: sDBSCAN = Silhouette

(
{x̂(i)

DBSCAN}n̂DBSCAN
i=1

)
8: sKMEANS = Silhouette

(
{x̂(i)

KMEANS}n̂KMEANS
i=1

)
9: if sDBSCAN > sKMEANS then

10: {x̂(i)
OUT}n̂OUT

i=1 = {x̂(i)
DBSCAN}n̂DBSCAN

i=1
11: end if
12: end if
13: return {x̂(i)

OUT}n̂OUT
i=1

14: end function

Figure IV.2: Pseudo-algorithm of the proposed clustering method.

signal power and angular spread. Thus, we obtain a computationally inexpensive approximation
of Σ̃ at time t.

Birth samples are drawn from the adaptive IS distribution in lines 11 to 14. Prediction for
persistent particles is achieved next in lines 16 to 19 and the estimated covariance matrix Σ̃ is
recomputed at line 20. The matrix Σ̃ is required in the computation of the pseudo-likelihoods
Lyt(·) and lyt(·) employed for the final weighting stage of persistent and birth particles (lines
22 to 28). Resampling and clustering are conducted next.

Recent results, presented in [88,89], of density-based clustering algorithms (e.g. DBSCAN)
showcase their ability to reject outlier particles and the capability of non-linear cluster separa-
tion. DBSCAN [120] estimates both the number of clusters and their centers. Outlier particles,
i.e. particles not belonging to any cluster, are present due to the uniform birth intensity γt(·).
The k-means clustering method minimizes the within-cluster sum of squares and hence behaves
poorly in the presence of such outliers. Our proposed clustering method, presented in Fig. IV.2,
considers the application of DBSCAN in order to identify outlier particles and eliminate them
from subsequent clustering. Note that on line 3 of Fig. IV.2, outliers are eliminated from the
current set of particles (\ symbolizing set difference). Next, the k-means is applied with the
number of clusters specified by the cardinality MAP estimator. At this stage, two sets of clus-
ters are available, by DBSCAN and k-means. In order to evaluate the two clustering results, we
compute their silhouettes [119], and pick the clustering method with the largest mean silhou-
ette value. Note that these silhouettes are computed only when both methods detect at least
two clusters. Whenever this is not verified, we choose the k-means method by default. This
methodology eliminates outliers, and is shown to confer better results than using the k-means
algorithm solely. The DBSCAN algorithm (line 2) requires two parameters: the minimum num-
ber of points that form a cluster Nmin and the neighborhood distance ε. The outlier particles
detected by DBSCAN are then eliminated from the available particle set (line 4) before apply-
ing the k-means clustering method. The two mean-silhouettes values are given by: sDBSCAN and
sKMEANS.
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Figure IV.3: Different PHD filter intensities and clustering results.

IV.5 Simulation Results
In this section, we provide filtering results with the proposed method for simulated phased-
array signals. In the first scenario, presented in IV.5.1, we simulate multiple targets with a
wide range of target speeds and exhibiting crossing targets. Secondly, in Sec. IV.5.2 we assess
the angular-resolution capabilities of our proposed filter.

IV.5.1 Tracking results
In this section, a ULA ofM = 30 receivers and half-wavelength spacing is considered. Tracking is
conducted with a nearly constant angular velocity model, obeying Eq. (IV.20). Target-generated
signals and observation noise are mutually Laplace random vectors, obeying the SIRV model
of Eq. (IV.17a) and Eq. (IV.17b). Conducting tracking in the angular domain, as opposed to
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the Cartesian, is possible whenever pseudo-accelerations are small [117, Ch. 1.5]. Furthermore,
this allows a simpler definition and interpretation of the birth intensity. The state vectors also
contain the logarithms of the target-signal power and angular spread, as described in section
IV.3.2. Thus the state-transition matrix is defined as: Ft =

[
Fkt 02
02 I2

]
where Fk

t =
[

1 Ts
0 1

]
represents

the kinematic-transition matrix, 0n is the zero matrix of size n and Ts = 1s is the sampling
period. The kinematic-covariance matrix is given by the nearly-constant velocity model [74, Ch.
6.3.2].

A first tracking example is presented in Fig. IV.3, where we employ an angular acceleration
deviation of 0.1o/s for the kinematic model. All targets generate signals with equal power,
assuring an SNR of 5dB and angular spread of σφ = 0.1rad. Tracking is conducted with our
proposed method, which we shall refer to as the Complete Auxiliary CPHD (CA-CPHD),
as opposed to the Birth Auxiliary PHD and CPHD (BA-PHD and BA-CPHD) proposed in
[28]. For all algorithms, we employ a number of Nppt = 1000 particles per target, a constant
target survival probability of ps = 0.9 and a uniform birth intensity for the centroid DOA in
the physical angle coordinates: γt(θ) ∝ 1[−π/2,π/2](θ), while for the speed we employ γt(θ̇) ∝
1[−7,7](θ̇). The birth intensity is constructed in order to ensure

∫
γt(x)dx = 0.3, a commonly

used value. Thus, we assume that births may occur anywhere in the state space, with a wide
variety of speeds. For the CPHD algorithms, the cardinality of the birth process is fixed at
pb(0) = 0.7, pb(1) = 0.3 and pb(n) = 0 ∀n > 1. The birth IS distribution is obtained by
employing the peaks of the signal spetrogram, as detailed in Sec. IV.4.4.b, with a number of
components N spect = 5 and

√
P spect = (1)o. Fig. IV.3 presents the particular approximation

of the intensities of the three filtering methods: BA-PHD, BA-CPHD and CA-CPHD, and the
respective clustering results. Note that we employ the DBSCAN clustering method for the BA-
PHD method with the following parameters: the minimum number of points to form a cluster
(set to 50) and the neighborhood distance (set to 2). The k-means was employed for the BA-
CPHD, with outlier rejection as described in Sec. IV.4.4.d, and the proposed clustering for the
CA-CPHD filter. Observe the improved results of the CA-CPHD filter.

Figure IV.4: Box and whiskers plot of the OSPA error (order 2 and cut-off 10), as a function of
time. On each box, the central mark is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points not considered outliers, and
outliers are plotted individually.
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A Monte Carlo analysis is carried out by simulating 400 runs of the above scenario. The
OSPA metric of Sec. III.4, which takes into account both position and cardinality errors, is
used to quantify the statistical error. We employ the OSPA metric with order p = 2 (i.e. the
Euclidean distance) for positioning errors and various cut-off parameter values. The cut-off
c controls cardinality errors and acts as a threshold for the Euclidean distance between two
points. If the distance between two points is greater than the cut-off, then they are considered
unrelated and the error is fixed at the cut-off value. Hence, cardinality errors become more
visible at higher values of c. In Fig. IV.4, box and whisker plots conducted for the OSPA error
over the 400 runs are presented for the different tracking methods. Note the reduced median
values for the CA-CPHD with k-means clustering, and furthermore for the CA-CPHD with
the proposed clustering. A more compact error representation is given by the mean OSPA
error (averaged over the duration of the simulation) presented in Table IV.1. Furthermore, we
compute the OSPA errors for several cut-off and SNR values. Observe that the CA-CPHD
outperforms the BA-PHD and BA-CPHD even at very-low SNR values. The CA-CPHD is
further improved by employing the proposed clustering method as opposed to the k-means.
For increasing cut-off values the OSPA error increases, highlighting cardinality errors for both
BA-PHD and BA-CPHD.

Table IV.1: Average OSPA error of various filters computed over 400 runs.

Mean OSPA error values

SNR cut-off
BA

PHD
BA

CPHD

CA
CPHD

k-means

CA
CPHD

(prop. clust.)

0dB
c = 1 0.91 0.86 0.82 0.78
c = 2.5 2.03 1.89 1.64 1.45
c = 5 3.82 3.48 2.80 2.24

5dB
c = 1 0.87 0.824 0.747 0.70
c = 2.5 1.89 1.75 1.45 1.22
c = 5 3.46 3.2 2.45 1.80

10dB
c = 1 0.84 0.78 0.72 0.68
c = 2.5 1.81 1.67 1.34 1.14
c = 5 3.27 2.95 2.22 1.71

20dB
c = 1 0.82 0.758 0.70 0.65
c = 2.5 1.73 1.59 1.33 1.09
c = 5 3.1 2.88 2.17 1.60

Cardinality errors are more easily visualized by cardinality histograms, where for the 400
runs, the cardinality of the estimated set is recorded in a histogram. In Fig. IV.5, we observe the
cardinality histograms for the scenario presented in Fig. IV.3, at an SNR of 5dB. Cardinality
histograms showcase the improved cardinal estimation of the CA-CPHD while the proposed
clustering further improves the cardinality of the estimated target set. Essentially, the proposed
clustering performs a fusion of k-means and DBSCAN. DBSCAN is density-based, hence if the
estimated PHD function has the same number of modes as the true multi-target intensity, then
DBSCAN offers the correct cardinality estimate. Note that the CPHD offers not only the car-
dinality distribution, but also an improved estimate of the intensity function. This is especially
true in the case of superpositional models, where the approximations made to the PHD-update
equation lead to a highly fluctuant intensity mass, and hence an inaccurate Σ̃. However, the
CPHD normalizes the mass of the intensity with the average number of targets obtained from
the cardinality distribution. This greatly decreases the fluctuations of the intensity mass, and
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Figure IV.5: Cardinal histograms for different filtering methods at SNR 5dB. Ground truth
cardinality is represented by the red line.

thus provides better approximations for the covariance estimate n̄t+1|tΣ. Whenever the MAP
cardinality estimate is slightly off the true cardinality value but the intensity function exhibits
the correct number of modes, the proposed clustering offers the correct cardinality estimate.

The computation time of the different algorithms is given in Table IV.2, where we observe
the mean duration of one iteration for the various filters. Computational times are reported for
400 runs of the aforementioned scenario at 5dB. All filters are implemented in MATLAB on
a 3.6GHz CPU. The increased computational time of the BA-PHD filter is explained by the
fact that the number of particles per target is controlled by the mass of the estimated intensity
function, which is often higher than the true mean cardinality. The cardinalized PHD filters
eliminate this issue by employing the estimated cardinality distribution in order to determine
the number of particles to be resampled. As proposed in [28], for the BA algorithms an auxiliary
step for birth particles is achieved by resampling from a Gaussian mixture, with the mixture
components given by all first-stage birth particles. This is time-consuming, as opposed to direct
sampling from an N spect = 3 component Gaussian mixture in the CA-CPHD filter. Indeed, the
mean computation time of one algorithm iteration is greater for the both BA-PHD and BA-
CPHD than the CA-CPHD, even with the proposed clustering scheme.

Table IV.2: Average time duration of one iteration of various filters.

Algorithm Mean duration Std. duration
BA-PHD 3.12s 0.07s

BA-CPHD 2.29s 0.06s
CA-CPHD

(prop. clust.) 1.67s 0.112s
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IV.5.2 Angular resolution analysis

In this section, we compare the resolution capabilities of our proposed algorithm with array pro-
cessing methods. For extended (or angularly distributed) targets, two widely-employed methods
are the generalized Capon [164] and the DSPE [16]. The generalized Capon is a beamformer
for distributed targets while DSPE generalizes the MUSIC algorithm for extended targets. The
two algorithms employ a parametric description of the array signal and resort to eigen-analysis
of the array signal covariance. The array covariance is estimated on a sliding window of ar-
ray observations of 34 samples. Furthermore, both array processing methods assume the exact
number of targets, while the CA-CPHD intensity is initialized on a uniform interval of angles.
There are two scenarios of interest: a stationary case with targets having constant DOAs and
parameters, and a slightly non-stationary case where the target DOAs evolves slowly. Results of
the first scenario, with two targets placed at ±5o, are presented in the top row of Fig. IV.6. All
three methods resolve the targets and correctly estimate both DOA trajectories. In the second
row of Fig. IV.6, results on the second scenario are presented. The generalized Capon and DSPE
have difficulties resolving the two targets when the angle between them is less than 8o, while the
CA-CPHD still achieves target separation and correctly estimates the target tracks. Note that
an analysis with crossing targets is not possible, since neither the Capon nor the DSPE method
resolves such closely spaced targets, and additional target characteristics, such as target-speed,
are necessary. Mean OSPA error (see Sec. III.4) results, conducted by simulating 400 runs for
both scenarios, are presented in Table IV.3. Note that, for scenario # 1, with a stationary
process yt and a known number of targets, DSPE slightly outperforms CA-CPHD. However,
for scenario # 2, CA-CPHD outperforms both DSPE and the generalized Capon beamformer.

Figure IV.6: Angular resolution analysis with closely spaced targets scenario: stationary case
→ upper row, non-stationary case → bottom row.

91



Chapter IV. Sonar echo tracking: the case of extended and impulsive targets

Table IV.3: Average OSPA error computed over 400 runs.

Mean OSPA error values

SNR cut-off
Generalized

Capon DSPE
CA-CPHD

(prop. clust.)

Scenario #1
c = 1 0.53 0.46 0.39
c = 2.5 0.63 0.47 0.5
c = 5 0.67 0.48 0.65

Scenario #2
c = 1 0.739 0.734 0.5
c = 2.5 1.19 1.3 0.73
c = 5 1.54 1.86 0.97

IV.6 Real sonar data results

In this section, the CA-CPHD is applied to bathymetric sonar data, with the aim of separating
the different echoes backscattered by the sea-bottom and various objects. Although in such
applications the targets of interest are no longer kinematic in nature, the relevance of adaptively
filtering the multiple echoes impinging the sonar array was showcased in Chapter II.

The phased-array data was obtained with an EdgeTech 4600 side-scan (i.e. side looking)
sonar in a shallow-water canal (average depth of 15m). In Appendix H, the impulsive character
of the EdgeTech 4600 sonar signals is demonstrated, whit the complex multivariate Laplace [see
Eq. (IV.6)] providing a good fit. Therefore, in this section, the Laplace density is employed as
the phased-array likelihood function. For more details on the sonar array, we direct the reader
to Sec. II.2 and Appendix G. Two real-data scenarios are presented. First, for one data ping,
we compare the DOA estimates of the Capon beamforming method [Fig. IV.7 a)] to our CA-
CPHD filter [Fig. IV.7 b)]. In both figures, we employ the Capon beamforming spectrogram as
background, to showcase the angular distribution of the phased-array signal power. Notice the
arch-shaped curve representing the line-of-site echo from a flat sea-bottom and the interfering
echoes, involving sea-surface reflections and causing spurious DOA estimates. In Fig. IV.7
a) the DOA estimates (represented as +) are obtained as the instantaneous maxima of the
Capon spectrogram. In Fig. IV.7 b) the DOA centroids of the CA-CPHD filter are overlaid

Figure IV.7: DOA estimates as the instantaneous maxima (a) of the Capon spectrogram an the
CA-CPHD filter results (b), overlaid on the CAPON spectrogram.
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Figure IV.8: CA-CPHD filter centroid DOA estimates for a multiple echo scenario.

on the Capon spectrogram. Notice the spurious-free filtered DOA estimates supplied by the
CA-CPHD filter.

The second scenario involves the vertical piling (a man-made object) of Sec. II.5.2.b. Fig.
IV.8 presents the results of the CA-CPHD filter on a single ping of the piling data-set, where
the “informative” echoes are generated by the sea-bottom and the vertical piling, i.e. a large
cylinder. The sea-bottom echo has the same arch-shaped curve, indicating a relatively flat sea-
bottom. The sonar insonifies a narrow strip along the length of the piling, leading to the piling
to be perceived as a locally flat vertical surface. Therefore, the piling echo has a similar curve
as the bottom echo but arched in the opposite direction. Notice the filtered DOA estimates of
the proposed method and also some residual echoes being received after the piling echo. Echoes
received after the piling echo are not line-of-sight and involve higher-order paths, e.g. reflections
from the sea-surface, and should be eliminated for bathymetry. Note that the estimated centroid
DOAs do not constitute echo trajectories. The recently introduced labeled sets [33, 34], where
each element (or target) has a unique label throughout time, can be employed to identify and
separate echo tracks/trajectories. Additionally, labeled approaches can facilitate the rejection
of residual echoes that involve higher-order propagation paths.
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IV.7 Chapter conclusions
A track-before-detect intensity filter is proposed for non-Gaussian phased-array observations,
modeled as SIRV processes, and generated by angularly distributed (extended) targets. The tar-
get (or source) signals are analytically integrated-out from the filter update equation, ensuring
an efficient implementation of the intensity filter. As an improvement to the TBD-PHD filter,
we developed the TBD-CPHD filter that, additionally to the intensity function, also propagates
the distribution of the number of targets, referred to as cardinality distribution. The cardinal-
ity distribution not only improves the state-inference stage from the intensity function, but
also the accuracy of the intensity function itself. This vastly improves performances over the
TBD-PHD filter. Furthermore, in an effort to approach real-data scenarios, the TBD-CPHD
is developed for a distributed (extended) target model within an impulsive-noise context. Un-
derwater acoustic environments have been shown to exhibit impulsive (i.e. heavier tails than
the Gaussian) or even heavy-tailed distribution signals. In this work, we employ the general
SIRV-signal model capable of describing both impulsive and heavy-tailed signals, with the more
specific multivariate Laplace distribution for the real-data experiments. An improved particle-
filter implementation is proposed that employs an auxiliary step for persistent particles and
an adaptive-birth IS distribution, which accounts for the current observation. Results on simu-
lated data demonstrate the improved performance of the proposed filter as compared to recent
methods. Furthermore, the proposed filter is applied to real bathymetric sonar data.

One of the major limitations of all intensity filters, as pointed out for TBD-CPHD real-sonar
data results, is the inability to identify track (or trajectories). This is intrinsic to the intensity
function, where only target states are represented and no target history, i.e. trajectory, is kept.
The importance of such trajectory identifications are prevalent in the echo-tracking example of
Fig. IV.8, where the TBD-CPHD filter correctly infers the DOAs of several echoes, even dough
several echos have no bathymetric relevance. In order to achieve the separation of bathymet-
rically relevant echoes from irrelevant ones, we need a clear separation and identification of
trajectories and not just of filtered DOAs. The newly proposed labeled RFS [33, 34], appear
to resolve this issue by labeling the different targets. The target labels being unique, can be
employed to reconstruct the entire trajectory of a specific target.
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Conclusions
In this work, the problem of DOA tracking of multiple targets with phased arrays is addressed.
Several possible solutions are presented and classified into the TWS and TBD frameworks. The
proposed solutions are tested on the problem of bathymetry recovery in underwater sonar-array
processing.

The first contribution presented, relies on the TWS modular processing chain, with pre-
processing methods forming point-observation sets that are subsequently filtered by the tracking
module. This is by far the most common tracking implementation and has the advantage
of a relatively low-complexity and straightforward implementation. Tracking is perceived as
a model-based filter and ensures trajectory formation and separation of echoes from clutter
and interfering multi-path for 3D image reconstruction. The proposed filter processes DOA
estimates, obtained with classical array-processing methods, as observations and is implemented
on the basis of the unscented Kalman filter. Geometric models are employed to characterize the
DOA trajectories of echoes in a bathymetric context. Multiple models are employed in parallel
in order to increase the adaptability of the proposed filter. Furthermore, the models are also
shown to effectively segment the 3D image and provide useful information for infrastructure
identification purposes. Trajectory interruptions, due to acoustical shadows, are detected via a
measure of trajectory existence probability. Goodness-of-fit tests validate the proposed model
processors on simulated and real data.

A second contribution represents a TBD-PHD filter for phased-arrays. For the TBD frame-
work, where no pre-processing is done, better performances can be achieved but at the cost
of a higher-complexity filter implementation. As opposed to TWS, TBD also renders difficult
the proposal of ad-hoc methods for target initialization and death. Therefore, we opt for the
point-process formalism and intensity filters, that circumvent this problem by considering the
multi-target state as an unordered collection of points, i.e. a set. The intensity function (or
PHD function) is the first-order moment density of a point process, which describes both the
random number of targets and their random-state vectors. Thus, an intensity filter is viewed
as a first-order filter, propagating an approximation to the true posterior distribution. Based
on the superpositional PHD filter, the TBD-PHD filter is proposed, that is capable of tracking
multiple-targets directly from phased-array observations. The proposed filter employs marked
point processes and avoids an augmented state by analytically integrating-out the target signals
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in the update stage of the filter. This leads to an efficient particle-filter implementation, that
does not require sampling from the higher-dimensional posterior of the augmented state. Fur-
thermore, in the proposed filter an improved clustering mechanism is employed, that estimates
both the number of clusters and their centers in the presence of outliers. The proposed TBD-
PHD filter is general, in the sense that it does not suppose any assumptions on the type of target
kinematics. The TBD-PHD filter does, however assume Gaussian source signals generated by
the point-target model and Gaussian additive noise. These hypotheses, although sufficient in
various applications, are too restrictive for sonar applications.

The TBD-PHD filter is further generalized to angularly-distributed (extended) targets and
impulsive non-Gaussian signals. Additionally, to improve the filtering performance a cardi-
nalized version of the PHD filter is considered. The resulting TBD-CPHD filter propagates
both the intensity function and the cardinality distribution. Here again, filtering is achieved
without augmenting the state vector with source signals, i.e. the marks. SIRV distributions
are employed to model source signals and noise, in a joint-SIRV model. The SIRV distribu-
tion family is very general and encompasses most distributions employed to model signals and
clutter in sonar/radar applications. For example, in the real-data experiments, we employ the
complex multivariate Laplace SIRV as the array observation likelihood. An improved particle
filter implementation is proposed that employs an auxiliary step for persistent particles and an
adaptive birth IS distribution, which accounts for the current observation. The performance of
the TBD-CPHD filter is evaluated in relationship to classical array-processing methods and to
state-of-the-art PHD tracking filters.

Perspectives
Potential axes of research can be classified in two distinct, nevertheless interconnected, direc-
tions: model and filter improvements.

As pointed out in Appendix H, the impulsive nature of the sonar signals is shown to vary,
possibly with the incidence angle and/or distance between source and receiver. However, the
lack of sufficient data hampers the proposal of an adaptive distribution, that is, a distribution
that depends on the incidence angle. This could be achieved by acquiring more data in a con-
trolled environment, e.g. homogeneous sea-floor and propagation conditions. Without changing
the current filtering equations, the K-distribution could be employed with a shape parameter
dependent on the incidence angle, and hence on the DOA of the source signal. This could lead
to a “sharper” likelihood function and improve the precision of the DOA estimate. Such meth-
ods are reminiscent of shape-from shading, where a model of the amplitude of the reverberated
signal as a function of the incident angle is employed. Both models for shape parameter and
echo intensity can be employed in the proposed filter without requiring additional changes.
Another model improvement could be achieved by considering different distributions for the
source signals and noise. In the current joint-SIRV model, the texture is considered identical
for the different sources and the noise. This arises mainly from the need to fit a distribution
to the overall array observation and not having access to samples from individual source sig-
nals or noise. However, for independent non-Gaussian distributed source signals and noise, a
general analytic formula for the resulting distribution is not known. The case where all signals
are independent Complex Elliptically Symmetric (CES) variables and have the same dispersion
matrix, leads after summation to a new CES distributed variable [35]. Unfortunately, for ar-
ray processing, this is of no interest because distinct sources have distinct dispersion matrices
while the spatially-white noise has a dispersion matrix proportional to the identity matrix. A
more promising alternative comes from the family of α-stable distributions [36]. The stability
property of α-stable distributions, requires that the source signals and noise are independent
α-stable random variables with the same α parameter, in order for their sum to be α-stable.
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The constraint of source signals and noise having the same α parameter amends to having the
same “degree of impulsiveness”, which is a less stringent condition than supposing a common
texture. Indeed, the common texture of the joint-SIRV model implies that the different source
signals and noise are mutually uncorrelated but dependent, while α-stable distributions suppose
their independence. However, changing to α-stable distributions also requires changes in the
filtering equations.

The second axis of research involves improving the filtering method itself. As pointed out
for TBD-CPHD real-sonar data results, intensity filters are incapable of identifying tracks (or
trajectories). Even the notion of trajectory is not defined in intensity filters. In general, the
point-processes framework poses this problem since we only have measures that yield the mean
number of targets in any region of space. The importance of such trajectory identifications
are prevalent in the echo-tracking example of Fig. IV.8, where the TBD-CPHD filter correctly
infers the DOAs of several echoes, even though several have no bathymetric relevance. In order
to achieve the separation between bathymetrically relevant echoes and irrelevant ones, we need
a clear separation and identification of trajectories and not just of filtered DOAs. Furthermore,
with identified target trajectories, clustering would no longer be required, the latter representing
a source of error in PHD filters. The newly proposed labeled RFS [33, 34] filters, seem to
resolve this issue by labeling the different targets. The target labels are unique and can be
employed to reconstruct the entire trajectory of a specific target. However, labeled RFS filters
are not intensity filters, that is, filters propagating a first-order approximation, but resort to
the propagation of a truncated version of the multi-target posterior density. Therefore, labeled
RFS filters are in general more computationally demanding. Moreover, for bathymetric echo
tracking, the labeled version of the standard multi-target processes (or RFS) seems promising.
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Integrated PDAF (IPDAF)
In this appendix, we derive of the trajectory (or track) existence probability of the IPDA [63]
filter. The propagation equations: prediction and update for the track-existence probability are
derived and presented in detail. As an interesting sidenote, it has been noted in [24, 27] that
the PDAF coupled with the probability of track existence is reminiscent of the Probability
Hypothesis Density filter (PHD) proposed by Mahler. In the PHD filter, the intensity function
plays a double role: its peaks denote the presence of a target while the peak location represents
a target position estimate. Thus, thresholding the intensity function in order to detect targets
is reminiscent of thresholding the track-existence probability.

In the following, since we will only consider the trajectory existence probability of one target,
we drop the index i, that was employed to denote the i-th target in Chapter II. Throughout this
appendix, various probabilities are conditioned on the set of observations, denoted with Z0:t (or
Z0:t−1). However, to update the filter estimates we only employ the set of validated observations
Z̃t , {z̃1

t , . . . , z̃
m̃t
t }. Note that Z̃ ⊆ Z, while the observation validation process is described in

Chapter II. We consider at time t−1 the following state-mean and covarince estimates: x̂t−1|t−1

and Pt−1|t−1; and of the probability of track existence νt−1|t−1 , Pr{ζt−1 = 1|Z1:t−1}.
The apriori probability of track existence at time-step t is given by:

νt|t−1 , Pr{νt = 1|Z1:t−1} = π11νt−1|t−1 + π01(1− νt−1|t−1),
1− νt|t−1 , Pr{νt = 0|Z1:t−1} = π10νt−1|t−1 + π00(1− νt−1|t−1). (A.1)

The hidden Markov chain ζt models the existence of the target of interest, thus the event
ζt = 0 implies that the target is not present, while the event ζt = 1 implies the contrary.
Since the pre-processor detects targets with a non-unity probability pD, the presence of the
target doesn’t necessarily imply a detection. In such, a different process, denoted ξt, needs to
be introduced. ξt = 0 denotes that no target-originated observation is present in the validated
set (although clutter might be present). ξt = i denotes that the i-th observation of the m̃t

validated observations was generated by the target. Events ζt = 0 and ξt = 0 are distinct,
since a target observation is obtained with probability pDpW , corresponding to the processes of
detection and validation (supposed independent). The event ζt = 0 necessarily implies ξt = 0
(i.e. when the target is not present, there are no target-originated measurements), while the
contrary is not necessarily true. Supposing the processes of target detection and observation
validation as independent, we can write

Pr{ξt = 0, ζt = 1|Z1:t−1} = Pr{ξt = 0|Z1:t−1, ζt = 1}Pr{ζt = 1|Z1:t−1},
= Pr{ξt = 0|ζt = 1}Pr{ζt = 1|Z1:t−1},
=
(
(1− pD) + pD(1− pW )

)
νt|t−1,

= (1− pD pW ) νt|t−1. (A.2)

Whenever the validated-observation set is non-empty, i.e. Zt 6= ∅, and considering that all
observations are equally likely of originating from the target of interest, we can write the apriori
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probability that the i-th observation originates from the target

Pr{ξt = i|ζt = 1, m̃t, Z1:t−1} = pD pW
m̃t

∀i = 1, · · · , m̃t. (A.3)

Marginalizing in relationship with the ζt = 1 process, we can write

Pr{ξt = 0|Z1:t−1} =
track exists but no measurement from track︷ ︸︸ ︷

Pr{ξt = 0, ζt = 1|Z1:t−1} +
track does not exist︷ ︸︸ ︷

Pr{ζt = 0|Z1:t−1},
= (1− pD pW )Pr{ζt = 1|Z1:t−1) + 1− Pr{ζt = 1|Z1:t−1},
= 1− pD pWνt|t−1. (A.4)

Taking into account the current validated set of measurements Zt, we can express the updated
probability of track existence:

Pr{ζt = 1|Z1:t} =
track exists but no measurement from track︷ ︸︸ ︷

Pr{ξt = 0, ζt = 1|Z1:t} +
m̃t∑
i=1

track exists and measurement i is target originated︷ ︸︸ ︷
Pr{ζt = 1, ξt = i|Z1:t} ,

= Pr{ξt = 0|Z1:t} − Pr{ζt = 0|Z1:t}+
m̃t∑
i=1

Pr{ξt = i|Z1:t}. (A.5)

From Eq. (A.5), but also according to the formula of total probability, we can write

Pr{ξt = 0|Z1:t}+
m̃t∑
i=1

Pr{ξt = i|Z1:t} = Pr{ζt = 1|Z1:t}+ Pr{ζt = 0|Z1:t} = 1. (A.6)

The computation of Pr{ξt = 0|Z1:t} reads:

Pr{ξt = 0|Z1:t} = Pr{ξt = 0|Zt, m̃t, Z1,t−1},

= p({z̃1
t , . . . , z̃

m̃t
t }|ξt = 0, m̃t, Z1,t−1)Pr{m̃t|ξt = 0, Z1,t−1}Pr{ξt = 0|Z1,t−1}

Pr{Z̃t, m̃t|Z1,t−1}
.

(A.7)

Although the above probability is conditioned on Z0:t, we only consider the gated/validated
observations Z̃t , {z̃1

t , . . . , z̃
m̃t
t } for update. False observations, generated by clutter, are con-

sidered uniformly distributed in the validation gate area, hence:

p({z̃1
t , . . . , z̃m̃tt }|ξt = 0, m̃t, Z1,t−1) =

m̃t∏
i=1

1
Vt
. (A.8)

Furthermore, the number of false measurements K is distributed according to a Poisson density
of parameter λ:

pK(k) = e−λVt
(−λVt)k

k! . (A.9)

When λ is known apriori, the filter is referred to as a parametric filter and respectively non-
parametric when λ is estimated. Several estimation schemes exist for λ, the simplest of which
is λ̂ = m̃t/Vt. In [63], the alternative (but still heuristic) estimator is proposed:

λ̂ = m̂t

Vt
where m̂t =

{
0 if m̃t = 0
m̃t − pD pWνt|t−1 if m̃t > 0. (A.10)

A recursive estimator for λ was proposed in [166], that is λ̂t|t = p(λt|Z1:t) is predicted and
updated with each newly-available set of validated measurements Z̃t. The number of false
observations inside the validation gate is m̃k in the case of ξt = 0 and m̃t − 1 when ξt = 1.
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If we denote c−1
t = Pr{Z̃t, m̃t|Z1,t−1}, and gathering the results of Eqs. (A.8), (A.9) and

(A.4) in Eq. (A.7), then we obtain

Pr{ξt = 0|Z1:t} = c−1
t

m̃t∏
i=1
V−1
t e−m̂t

(m̂t)m̃t
m̃t!

(1− pD pWνt|t−1),

= C−1
t V−1

t m̂t(1− pD pWνt|t−1), (A.11)

where C−1
t = c−1

t Vm̃t−1
t e−m̂t

(m̂t)m̃t−1

m̃t!
.

In a similar fashion, we can derive:

Pr{ζt = 1, ξt = 0|Z1:t} = C−1
t V−1

t m̂t(1− pD pW )νt|t−1. (A.12)

The derivation of Pr{ζt = 1, ξt = i|Z1:t} follows:

Pr{ζt = 1, ξt = i|Z1:t} = Pr{ζt = 1, ξt = i|Z̃t, m̃t, Z1,t−1)
= p(Z̃t|ζt = 1, ξt = i, m̃t, Z1,t−1)Pr{m̃t|ζt = 1, ξt = i, Z1,t−1}

× Pr{ξt = i|ζt = 1, Z1,t−1}Pr{ζt = 1|Z1:t−1} [Pr{Zt, m̃t|Z1,t−1}]−1

= c−1
t p(z̃it|ξt = i, Z1:t−1)

m̃t∏
j=1
j 6=i

V−1
t e−m̂t

(m̂t)m̃t−1

(m̃t − 1)!
pD pW
m̃t

νt|t−1

= C−1
t p(z̃it|ξt = i, Z1:t−1)pD pWνt|t−1. (A.13)

Replacing Eqs. (A.11) and (A.13) in Eq. (A.6), we obtain an expression for C−1
t :

Ct = V−1
t m̂t(1− pD pWνt|t−1) + pD pW

m̃t∑
i=1

p(z̃it|ξt = i, Z1:t−1)νt|t−1, (A.14)

where p(z̃it|ξt = i, Z1:t−1) has first and second order moments Htx̂t|t−1 and Pt|t−1. In practice,
we suppose a Gaussian pdf p(z̃it|ξt = i, Z1:t−1) = N (z̃; Htx̂t|t−1,Pt|t−1).

The final form of the filtering equations and the track existence probability will be given
considering two distinct cases:

• m̃t = 0
The updated track existence probability is given by:

νt|t = Pr{ζt = 1|Z1:t} = Pr{ζt = 1|
∅︷︸︸︷
Z̃t , Z1:t−1}

= Pr{ζt = 1|ξt = 0, Z1:t−1}

= Pr{ζt = 1, ξt = 0|Z1:t−1}
Pr{ξt = 0|Z1:t−1}

= 1− pD pW
1− pD pWνt|t−1

νt|t−1. (A.15)

In the last line of Eq. (A.15), we used Eqs. (A.2) and (A.4), also observe that Pr{ζt =
1|Z1:t} does not depend on Z̃t = ∅. In the following, we compare the updated νt|t against
νt|t−1:

νt|t < νt|t−1 ⇐⇒
(1− pD pW )νt|t−1

1− pD pWνt|t−1
< νt|t−1

⇐⇒ νt|t−1 < 1, (A.16)
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Appendix A. Integrated PDAF (IPDAF)

which is verified, since νt|t−1 is a probability. This verifies that when m̃t = 0, the track
existence probability decreases. Regarding the state-mean and covariance estimates, we
opt to perform only prediction in this case, until the track is deleted or a new observation
appears.

x̂t|t = x̂t|t−1

Pt|t = Pt|t−1.

• m̃t > 0
Concerning the updated track existence probability, replacing Eq. (A.12) and Eq. (A.13)
in Eq. (A.5), we can write:

νt|t = Pr{ζt = 1, ξt = 0|Z1:t}+
m̃t∑
i=1

Pr{ζt = 1, ξt = i|Z1:t}

= C−1
t V−1

t m̂t(1− pD pW )νt|t−1 +
m̃t∑
i=1

C−1
t p(z̃it|ξt = i, Z1:t−1)pD pWνt|t−1

=
1− pD pW + Vt

m̂t

∑m̃t
i=1 pD pWp(z̃it|ξt = i, Z1:t−1)

1−
[
pD pW − Vt

m̂t

∑m̃t
i=1 pD pWp(z̃it|ξt = i, Z1:t−1)

]
νt|t−1

νt|t−1

= 1− δt
1− δtνt|t−1

νt|t−1, (A.17)

where δt , pD pW − Vt
m̂t

∑m̃t
i=1 pD pWp(z̃it|ξt = i, Z1:t−1) and the individual observation

likelihood is supposed Gaussian p(z̃it|ξt = i, Z1:t−1) = N (z̃; Htx̂t|t−1,Pt|t−1).

The individual association probabilities are given by the classical PDA filter [26], and using
the δt notation we have:

βit =


pD pW

Vt
m̂t
p(z̃it|ξt = i, Z1:t−1)

1− δt
if i = 1, · · · , m̃t

1− pD pW
1− δt

if i = 0.
(A.18)

The state-mean update follows:

x̂t|t = x̂t|t−1 + Kt εt. (A.19)

where εt ,
m̃t∑
i=1

βitε
i
t.

εit , z̃it −Htx̂t|t−1, (A.20)
εt represents the total innovation of the filter while εit represents the individual association
innovation, and Kt is the Kalman filter gain of Eq. (II.10).

The covariance is updated as follows:

Pt|t = Pt|t−1 − (1− β0
t )KtSt|t−1KT

t + P̌t, (A.21)

where P̌t , Kt

[
m̃t∑
i=1

βitε
i
t(εit)T − εtε

T
t

]
KT
t .

The term P̌t represents the spread of means in the approximation of a Gaussian mixture
with a single Gaussian pdf [74, Ch.1]. Observe the differences between Eq. (A.21) and the
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classical Kalman filter covariance update equation. The no-observation association probability
β0
t weights the update term in Pt|t. If observations are not present inside the validation gate,

then β0
t is close to unitary and Pt|t is not decreased (via the update step). However, when

measurements are present, β0
t will decrease, which brings about the decrease of Pt|t, indicating

an increased confidence in the filtered state. Whenever measurements are present, P̌t quantifies
the origin uncertainty of measurements. Situations with a large number of observations that
fall “far” from their predicted values, lead to an increase of uncertainty, that is, an increase of
P̌t, and eventually of Pt|t. Indeed, the presence of observations alone is not enough to guarantee
a decrease in the uncertainty of the system, and the positioning of observations in relationship
to the model predictions also dictates the increase/decrease of uncertainty.
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Observation noise covariance
estimation

In [69] and the references herein, robust Kalman filters are proposed that estimate the covariance
matrices of the observation and model-noise terms. Here, we propose the estimation of the
observation-noise covariance in the case of the NN-IPDA-UKF. For clarity, the superscripts i
are dropped in this appendix. Consider the observation-noise covariance Rt to evolve slowly.
In such, Rt is considered nearly constant for a duration T , in order to have Rt = Rt−τ ,
with τ ∈ {1, · · · , T}. We compute R̂t using a “batch” limited-memory estimator given by the
following theorem.

Proposition. Given the innovation term εt, formed after the PDA phase in eq. (A.19), a batch
estimator for Rt using the method of moments is

R̂t = 1
T − 1

t∑
τ=t−T+1

{(ετ − ε̄t)(ετ − ε̄t)T −
T − 1
T

HτPτ |τ−1HT
τ }, (B.1)

where ε̄t = 1
T

∑t
τ=t−T+1 ετ is the unbiased sample-mean estimator.

Proof. The prof of the aforementioned proposition requests that the series εt forms a zero mean
white time-series. Indeed, whenever the observation series zt is generated by the system of Eqs.
(II.5a) and (II.5b), the residual series εt is white and zero mean. In other words, the proposed
model for the system matches the real model used to generate zt. Note that the validation of
the aforementioned assertion forms the topic of appendix C.

Given the series ετ with τ ∈ {t− T + 1, · · · , t}, the unbiased sample covariance estimator,
denoted C̄, is given by

C̄t = 1
T − 1

t∑
τ=t−T+1

(ετ − ε̄t)(ετ − ε̄t)T . (B.2)

Considering the model for the observation in Eq. (II.5b), the expectation of C̄t gives:

E{C̄t} = 1
T − 1E


t∑

τ=t−T+1
ετε

T
τ − T ε̄tε̄

T
t


= 1
T − 1E

T − 1
T

t∑
τ=t−T+1

ετε
T
τ −

1
T

t∑
τ=t−T+1

t∑
τ ′=t−T+1
τ ′ 6=τ

ετε
T
τ ′


= 1
T

t∑
τ=t−T+1

(
HτE{(xτ − x̂τ |τ−1)(xτ − x̂τ |τ−1)T}HT

τ + E{wτ wT
τ }
)

= 1
T

t∑
τ=t−T+1

HτPτ |τ−1HT
τ + Rt, (B.3)
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Appendix B. Observation noise covariance estimation

where we employed the definition of εt = zt −Htx̂t|t−1 of Eq. (A.19) and Pt|t−1 represents the
predicted covariance of the state. From Eq. (B.3) we obtain the estimated noise covariance R̂t

of Eq. (B.1). Note that whenever the observation noise wt is not zero mean, Eq. (B.1) still
applies, with ε̄t providing an estimate for the mean of wt.

�

Observe that R̂t of Eq. (B.1) is not guaranteed to be positive definite. Such situations arise
for a small amplitude wt and due to the fluctuation of sample estimators. A simple solution is
to use a small fixed value for R̂t whenever such situations arise.
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Model validation
For model-based processors, model validation amounts to assessing the adequacy of the model
for the respective physical phenomenon [167]. Model validation is also known as Goodness
of Fit (GoF), and benefits from an extensive literature [77, 168, 169]. As noted in [170], GoF
tests are useful when deciding which models are not adequate for a specific time series rather
then searching for the most adequate model. In other words, model inadequacy is signaled
by a failed GoF test, but a validated GoF does not rule out the existence of an even better
model (i.e. that provides an even better fit to the time series). Generally, the whiteness of
the fitting residuals (or filtering residuals, e.g. Kalman filter), is indicative of the capacity
of the model to fit the respective time series. Intuitively, residual whiteness indicates that
all the information contained in the time series is well described by the model, and only a
white-noise term remains within the residuals. Several whiteness test have been proposed,
almost all of which suppose the computation of the autocorrelation function of residuals. GoF
tests are hypothesis tests, meaning that they test the null hypothesis H0 of the whiteness
of residuals against the alternative hypothesis H1, that supposes the residuals sequence as
correlated. Several statistical tests were derived for univariate residual sequences, namely in
[78,79].

Denoting the univariate (scalar) residual time series by εt, its estimated auto-correlation
function ρk is usually computed with the biased sample auto-correlation estimator:

ρk = 1
T

T−|k|∑
t=1

εtεt+|k| with k ∈ {0,±1,±2, · · · ,±(T − 1)}, (C.1)

where T represents the length of the residual time series. For large T and under H0, the random
variable ρk is asymptotically Gaussian distributed in virtue of the central-limit theorem [171].

One of the first model-validation tests, called the Box-Pierce Portmanteau test [78], has
benefited from an extensive study [78, 167, 172]. Box and Pierce proposed the following test
statistic

QBP
T,K = T

K∑
k=1

(
ρk
ρ0

)2

. (C.2)

A subsequent test statistic was later proposed by Ljung and Box in [79] as

QLB
T,K = T (T + 2)

K∑
k=1

1
K − k

(
ρk
ρ0

)2

, (C.3)

and is usually referred to as the Ljung-Box Portemanteau test.
From hereon, since the hypothesis-testing procedure is identical for both tests, the two

statistics QBP
T,K and QLB

T,K will be denoted generically with QT,K . Since ρk is asymptotically
Gaussian distributed, the random variable QT,K obeys asymptotically a χ2

K−p distribution with
K−p degrees of freedom, where p is the model order. The value of K should not be grater than
T/4, in order to avoid autocorrelation terms computed with relatively few elements. Henceforth,
testing for whiteness is reduced to a χ2 test [77, Ch.2] of the test statisticQT,K . This is conducted
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Appendix C. Model validation

by performing a one-tailed significance test on QT,K , “to see with what degree of certitude we
can say that QT,K was sampled from χ2

K−p”. The level of significance of the test α and the
associated critical threshold c are defined as

α , Pr{QT,K > c|H0} or equivalently c = F−1
χ2 (1− α), (C.4)

where Fχ2(·) represents the distribution of QT,K , i.e. of a χ2 distributed random variable with
K − p degrees of freedom. α is also called Type I error or the false-positive rate. In a test, the
value of α is imposed and is usually taken to be 0.1 or 0.05. With the given α and the residual
series, we are able to compute c from Eq. (C.4) and take the decision:

• If QN,K > c then it is said that there is evidence within the time series εt to reject H0. In
other words the series is correlated.

• If QN,K ≤ c then it is said that there is not (enough) evidence within the time series εt
to reject H0. In other words, there is no reason not to accept H0.

An equivalent decision scheme is defined using the p-value, defined as

p-value , Pr{Q > QT,K} where q ∼ χ2
K−p, (C.5)

where QT,K is the value obtained with Eqs. (C.2) or (C.3) and Q is a χ2 distributed random
variable with K−p degrees of freedom. The p-value is the probability of obtaining a test statistic
at least as extreme as the one that was actually observed, assuming that the null hypothesis is
true. The p-value does not correspond to the probability that H0 is true, given the data actually
observed. The test now becomes:

• If p-value < α then it is said that there is evidence within the time series εt to reject H0.
In other words the series is correlated.

• If p-value ≥ α then it is said that there is no evidence within the time series εt to reject
H0. In other words, there is no reason to reject H0.

Ljung and Box argue that, even though the statistic QLB
T,K has a larger variance, its lack of

bias ensures that QLB
T,K is better approximated by a χ2

K−p distribution than QBP
T,K . Fundamentally

the two statistics differ only by the weighting applied to the autocorrelation lags, with the
Ljung and Box statistic favoring higher-lag terms. This also explains the increased variance of
the Ljung and Box statistic QLB

T,K . The Ljung-Box statistic is recommended whenever testing
for higher-order correlation terms of the residual samples. However, in most practical cases the
difference between the two is negligible.

A different whiteness test, first proposed in [80] and used extensively for model testing
in [70,71], supposes that under H0:

|ρk| ≤ 1.96 ρ0√
T

for k ∈ {±1,±2, · · · ,±(T − 1)}, (C.6)

with about a risk of 5%. Thus, a simple and fast testing strategy is to compute the biased
sample autocorrelation sequence from the residues and to count, excepting ρ0, the number of
autocorrelation terms that fall outside the bound imposed by Eq. (C.6). If this number of
relative out-of-bound terms is grater than 5%, then the series is deemed correlated.

In [173] a whiteness test is proposed that circumvents the computation of the autocorrelation
sequence ρk, by assessing the “flatness” of the residual spectrum. This implies the computation
of the residual periodogram by means of the Fast-Fourier transform.
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Proof of p-value |H0 ∼ U(0, 1)
Proposition. p-values are uniformly distributed under the null hypothesis H0.

Proof. Considering the definition of p-values given in Eq. (C.5) we have:

p-value , Pr{Q > QT,K} = 1− Fχ2(QT,K), (D.1)

where Q is a random variable with a χ2 distribution, Fχ2(·) being its distribution function.
Under the null hypothesis H0, the residual series is white, also implying that QT,K is χ2

distributed. Hence considering the monotonic transformation Fχ2(·) we have:

Pr{Fχ2(QT,K) ≤ u|H0} = Pr{QT,K ≤ F−1
χ2 (u)|H0} = Fχ2

(
F−1
χ2 (u)

)
= u, (D.2)

where u ∈ [0, 1]. From Eq. (D.2) we observe that Fχ2(QT,K)|H0 ∼ U(0, 1). Thus, under H0 the
p-value is distributed as: p-value = 1− Fχ2(QT,K)|H0 ∼ U(0, 1).

Note that Eq. (D.2) also represents the proof of the uniform transformation theorem [71, Ch.
3.3.1]. The result of this theorem is employed to generate samples with an arbitrary distribution
F·(·), starting from a uniform random generator. This method is usually referred to as the
percentile transformation method [171, Eq. 7-154].

�
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Quadratic and Gaussian equalities
In this appendix, some general identities are given without proof, regarding the combination
of quadratic terms and subsequently Gaussian densities. For symmetric and positive definite
matrices Q and R, the following equality holds

(z−Hx− d)TR−1(z−Hx− d) + (x− f)TQ−1(x− f) =
(x− a)TΣ−1(x− a) + (z− b)TS−1(z− b), (E.1)

where

Σ−1 = HTR−1H + Q−1,

S = HQHT + R,
a = f + ΣHTR−1(z−Hf − d),
b = Hf + d.

For a proof of Eq. (E.1), see [174, Ch 3.8]. Next, considering the Gaussian probability
distribution function N (x; µ,Σ) of argument x, mean µ and covariance Σ, we can write

N (z; Hx + d,R)N (x; f ,Q) = N (x; a,Σ)N (z; b,S), (E.2)∫
N (z; Hx + d,R)N (x; f ,Q)dx = N (z; b,S). (E.3)

The aforementioned identities are often employed in the derivation of the Kalman-filtering
equations and for direct calculations of integrals involving Gaussian distributions.
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On the distribution of random sums
In this appendix we introduce the Gaussian approximation employed for the distribution of
random sums, such as encountered in the superpositional observation model. The following
developments are valid for the classical superpositional models presented in [28], e.g. amplitude
sensors or radio-tomography, as well as for the phased-array observation model. Here, we present
the more general case of marked Poisson multi-target process, introduced in Sec. III.6.2 and
Sec. IV.3.2, specific for the phased-array observation model.

Suppose the following Poisson multi-target process X and associated marked process X̃,
where the mark s ∈ K of a target x ∈ X is distributed according to s|x ∼ CN (0, P (x)).
Note that indices will be dropped in this section for better understanding. The phased-array
observation model involves the superposing of individual target contributions as in the following
random sum

z =
∑
x̃∈X̃

g(x̃).

Note that a white noise term has to be added in order to obtain the phased-array observation y
of Sec. III.6.2. The random sum z, where both the number of summation terms and their values
are random, is approximated in Sec. III.6.3.b with a Gaussian distribution. In the following we
are concerned with the probability distribution of the vector z.

By Campbell’s theorem ( [93, Ch. 3.2] or [96, Ch. 2.6]) we have the moment-generating
function of the random-sum vector z

E{eωHz} = exp
{∫

X×K

(
eωHg(x̃) − 1

)
D̃(x̃)dx̃

}
, (F.1)

where D̃(x̃) is the intensity function of X̃. Campbell’s theorem holds for any complex ω ∈ C
whenever the right-hand side of Eq. (F.1) converges, and in particular whenever ω is imaginary.
By using the relationship between the intensities of the marked and non-marked intensities,
given in Eq. (III.29), we can write

E{eωHz} = exp
{∫

X

∫
K

(
eωHa(x̃)s − 1

)
CN (s; 0, P (x))D̃(x)ds dx

}
= exp

{∫
X

[∫
K

eωHa(x̃)sCN (s; 0, P (x))ds− 1
]
D(x)dx

}
= exp

{∫
X

[
e 1

2ω
Ha(x̃)P (x)aH(x̃)ω − 1

]
D(x)dx

}
,

where we have employed the moment-generating function of the Gaussian distribution of marks
s. Next, by linearizing the inner exponential we obtain

E{eωHz} ≈ exp
{1

2ω
H
[∫

X
a(x̃)P (x)aH(x̃)D(x)dx

]
ω
}
. (F.2)

Observe that the right-hand side of Eq. (F.2) is the moment-generating function of a multivari-
ate Gaussian distribution that is centered and has covariance matrix

∫
X a(x̃)P (x)aH(x̃)D(x)dx.

Therefore:
z appr.∼ CN

(
0,
∫
X

a(x̃)P (x)aH(x̃)D(x)dx
)
. (F.3)
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Appendix F. On the distribution of random sums

In this appendix, the above Gaussian approximation is identified in terms of a first-order Taylor
expansion of an exponential term in the characteristic function of z. Although the results seems
trivial, it appears that we are the first to express the approximation in such a manner. In light
of this knowledge, higher-order approximations are theoretically possible. However, these are
of little practical interest since they involve tensors.
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Array narrow-band condition
In this appendix, the EdgeTech 4600 side-scan sonar array is presented and analyzed. The
EdgeTech 4600 consists of an uniform linear array of M = 8 with a half of wavelength spacing.
Since the phased array is relatively short, the pressure waves received at the M receives can be
considered as plane waves. This can be seen from the Fraunhofer distance

dF = 2D2

λ
≈ 0.068m, (G.1)

where λ is the wavelength and D = 3.5λ is the phased-array length. Given the central frequency
of the emitted pulse, the Fraunhofer distance is approximately of 7cm. For all practical purposes,
the targets of interest are placed in the far-field domain of the antenna, that is, placed farther
than 7cm from the phased array. In the available data sets, the objects of interest are placed at
distances of at least 10m from the array. Therefore, in this work, we will suppose a plane-wave
model for the phased-array signal. The signal or pulse emitted by the single emitter of the

Figure G.1: The narrow-band condition as a function of the DOA θ. The array axis coincides
with the abscissa axis. The color represents the condition number D sin(θ)

c
B, which has to be

much smaller than 1 for the narrow-band condition to hold.

EdgeTech 4600 sonar is a linear frequency modulated signal. In general target localization is
achieved by the difference in arrival times of the target echo on the different array receives.
Whenever the narrow-band condition is verified, the time difference of arrival of a source-
signal is equivalent to a phase-difference between receiver signals. The narrow-band condition
relates the bandwidth of the received signal to the array length, and is not to be mistaken
with similarly-named conditions in communication theory where the ratio between bandwidth
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Appendix G. Array narrow-band condition

and central frequency is employed. For a plane wave impinging the array with DOA θ, the
narrow-band condition reads

D

c
sin(θ)� 1

B
, (G.2)

where c is the acoustic-wave celerity (typically 1500m/s in water). Stated differently, the narrow-
band condition is met if the time needed by the acoustical wave to traverse the array is less than
the inverse of the bandwidth of the basebanded signal. The above condition can be visualized
in Fig. G.1, where we plotted the term D sin(θ)

c
B for each angle θ and the specific parameters

of the EdgeTech 4600. The narrow-band condition is verified whenever D sin(θ)
c

B � 1, which in
our case is verified for all values of θ. Usually, only the limiting case of θ = 90o is verified, since
this corresponds to the longest possible distance traveled by the wave.
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Statistical analysis of sonar signals
In this appendix we provide a statistical analysis of data samples acquired with the EdgeTech
4600 side-scan sonar. The analysis is carried out using graphical tools such as the Quantile-
Quantile(QQ) plot [175], and with classical acceptance-rejection GoF tests [77,169] such as the
Kolmogorov-Smirnov (KS) and the Anderson-Darling (AD) tests. Tests are conducted on sonar
signals acquired with the EdgeTech 4600 side-scan sonar in a shallow-water canal (depth varies
between 15m and 20m), that exhibits multi-path propagation and reverberation - specifically
reflections from the sea-surface. The sonar data is squired in a relatively flat and homogeneous
sea-bottom. The phased-array signal is examined in two cases of interest: near and far range.
The impulsive character of the signals is shown to change in relationship to the range, that is, the
distance between the sonar and source of the signal. This dependence can also be reformulated
in terms of the incidence angle between the incident wavefront and the normal to the target-
surface. Incidence-angle dependencies of sonar-envelope distributions are explicitly modeled
in [30–32] by using the K-distribution and a model for the shape parameter ν (see Eq. (IV.8)) as
a function of the incidence angle. In [29], a K-distribution is fitted to sonar signals backscattered
from a shipwreck, where an inverse relationship between the shape parameter ν and the signal
SNR is observed. Despite the fact that in our work such dependencies are observed, we do not
possess enough data to properly infer a model for the shape parameter ν. Therefore, in this
work, we limit ourselves to showcasing the impulsive behavior of the phased-array data and to
the fitting of a SIRV distribution. Incorporating an angular-dependent distribution is left as a
perspective that can be easily integrated into the proposed processing chains.

The Quantile-Quantile (QQ) plot [175] provides a graphical goodness-of-fit assessment for
the distribution of a test sequence, representing the phased-array observation yt. In other words,
under hypothesis H0 the test sequence obeys a hypothetical (theoretical) distribution, referred
here as the H0 distribution. The alternative hypothesis H1, is chosen when there is sufficient
evidence against H0, that is, whenever the test sequence obeys a different distribution than
the H0 distribution. The QQ plot compares the (empirical) distribution of the test sequence
with the H0 distribution, by plotting their quantiles against each other in a Cartesian plot.
Quantiles are values taken at regular intervals from the inverse function of the cumulative
distribution function (CDF) of a random variable. For a given data set, in practice, quantiles
are obtained by dividing the ordered-data set into q equally-sized subsets; with the quantiles
being given by the data values marking the boundaries between the different subsets. While for
the theoretical distribution, the quantiles are obtained by dividing the interval of [0, 1] into q
equally-sized subintervals and taking the values of the quantile function at the frontiers of these
subintervals. If the two distributions being compared are similar, then the points of the QQ plot
will approximately lie on the line y = x, i.e. the fist-quadrant bisector. Furthermore, whenever
the two distributions are linearly related, the points in the QQ plot will form a straight line,
but not necessarily the first bisector. Hence, the QQ plot can also be employed to estimate
parameters in the location-scale family of distributions. The QQ plot is especially useful in
assessing the matching of tails between the two distributions and in detecting the presence of
outliers.

Observe the two QQ plots in Figs. H.1 a) and b) for the far-range case. The QQ plot
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Figure H.1: QQ plot for far range: a) H0 hypotheses are the Gaussian (blue) and the Laplace
(red) distributions, b) H0 hypotheses are the Gaussian (blue) and K-distributions (red).

of Fig. H.1 a) plots the quantiles of the test sequence against the quantiles of the Gaussian
(in blue) and the Laplacian (in red) distributions. The test sequence is a data set containing
univariate samples, e.g. the real part of the signal from one receiver of the sonar phased-array.
Furthermore, the samples that form the test sequence are selected in order to insure the same
environmental conditions, that is, the same range (receiver-source distance), the same sea-floor
type, the same DOA. Note that all three distributions are standardized, that is, centered and
scaled to have unitary variance. Additionally, the first-quadrant bisector is plotted for reference.
A distribution provides a good fit to the test sequence, whenever the QQ plot points align with
the first bisector. In the case of the Gaussian distribution, we notice the QQ-plot points forming
an “S” shaped curve, highlighting the impulsive nature of the test sequence and the inadequacy
of the Gaussian distribution. Having heavier tails than the H0 distribution, the test sequence
exhibits larger variations than the H0 distribution, leading to an “S” shaped curve in the QQ
plot. Also note from Fig. H.1 a) that the Laplace distribution seems to provide a better fit
for the tails of the test-sequence distribution than the Gaussian. While in Fig. H.1 b) we can
observe the same QQ plot with Gaussian distribution compared with the QQ plot with a K-
distribution. Notice a better fit of the K-distribution than the Gaussian for the tails of the test
sequence. The value of the K-distribution shape parameter ν = 0.57 was estimated from the
test-sequence by means of the method of moments as decried in [176].

Figs. H.2 a) and b) present QQ plots for the near-range case. Again the Laplace, showcased
in Fig. H.2 a), and the K-distribution with ν = 0.67 in Fig. H.2 b), present better candidates for
the test-sequence distribution than the Gaussian distribution. Therefore, the Laplace and the K-
distribution provide a good fit for the sonar data, both at near and at far range values. Regarding
the choice of the K-distribution over the Laplace, some minor improvements are noticed in the
tail sections of the distribution. However, note that a reliable estimation of ν requires at least
1000 data samples (for the univariate case), which limits the use of K-distributions in online
algorithms without a physical model for the evolution of ν. This leads to a different issue, the
lack of sufficient data to infer and validate such a model for ν. Various models for ν have been
proposed in [30–32]. Ideally, a model of ν with the following parameters: the incidence angle
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Figure H.2: QQ plot for near range: a) H0 hypotheses are the Gaussian (blue) and the Laplace
(red) distributions, b) H0 hypotheses are the Gaussian (blue) and K-distributions (red).

(implicitly the DOA), the signal-to-noise ratio and type of sea-floor could be used to improve
the efficiency of the online DOA estimators developed in this work. Such algorithms would
effectively combine array-processing methods with shape-from-shading techniques [177–179],
the latter being currently employed in radar/sonar to reconstruct 3D images from 2D amplitude
images. Given that fluctuations of the estimated ν parameter around the value of ν = 1 are
observed, in this work we mainly employ the Laplace distribution as the array-data likelihood.
The development of a model for ν is left as a perspective.

A quantitative goodness-of-fit analysis, for the Gaussian, Laplace and of the K-distribution,
is performed with the Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests. The AD
test is a modified variant of the KS test that places greater weight on the observations in the
tails of the distribution, thus making the test more sensitive to outliers and better at detecting
departures from normality in the tails of the distribution [180]. Both AD and KS tests are
conducted with three different H0 distributions: Gaussian, Laplace and K-distribution. The
tests are conducted on 2400 test sequences, each containing 400 (univariate) sonar data samples
that were selected in the same manner as for the QQ plots. The data samples are selected in
a mid-range area. Tests results are summarized in Table H.1, as the percentage of tests that
accepted the H0 distribution at a significance level of α = 0.05.

From Table H.1 we observe that the Laplace and K-distribution hypotheses are accepted,

Table H.1: Statistical test results: percentage of tests that accept the H0 distribution.
``````````````̀Test

H0 Distribution Gaussian Laplace K-dist.

Anderson-Darling [%] 1.04 84.63 86.75
Kolmogorov-Smirnov [%] 17.79 81.88 90.67
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Figure H.3: p−value histograms for different tests.

that is, with p−values greater than the level of significance α = 0.05. Considering the guidelines
given in [170], rejection of the Gaussian hypothesis implies the definite inadequacy of the Gaus-
sian distribution to fit the observation. However, the high-acceptance rates of the Laplace and
K-distribution do not rule out the possibility of even better-adapted distributions. Distributions
such as from the α-stable family are left as a perspective. The p−values obtained for each test
and for the 6 combinations test-H0 distribution from Table H.1, are summarized in p−value
histograms presented in Fig. H.3. p−values are expected to be uniformly distributed under the
H0 hypothesis (see Appendix D and [83]). From Fig. H.3 we observe that the p−value his-
tograms for the Laplace and K-distributions are relatively uniform, signaling their acceptance.
However, the p−value histograms for the Gaussian hypothesis are highly non-uniform, again
signaling the non-adequacy of the Gaussian distribution for the sonar data. Notice the red bin
in all histograms representing the proportion of tests failing to accept the H0 hypothesis, values
which are also obtainable from Table H.1. Outliers account for having slightly taller red bins
in the Laplace and K-distribution tests.

In conclusion, the impulsive character of sonar signal has been showcased and appropriate
distributions have been proposed in the form of the multivariate Laplace and K-distributions,
both part of the SIRV family of distributions. Accordingly, a joint-SIRV (Laplace or K-dist.)
model has been proposed for the sonar phased-array likelihood function. Proper justifications
of the joint-SIRV model are given for multi-path and echoic (i.e. reverberant) environments in
Sec. IV.2.2.
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