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U

nlike early attacks launched by a single attacker to a single victim, recent attacks (e.g. the Sony hack in 2015, the Stuxnet threat in 2011, etc.) are better coordinated, difficult to discover, and inflict severe damages to networks. Consequently, and with the growth of critical information systems in size and complexity, the research community was driven to propose intelligent and automated response systems. These latter must cope with the steady progress of the attacks' sophistication, coordination and effectiveness. However, existing response systems still handle simultaneous attacks as being individual and independent. D'abord, je remercie Dr. Nora Cuppens-Boulahia et Prof. Frédéric Cuppens qui ont dirigé ma thèse pendant ces trois années. Ce travail ne sera jamais effectué sans leur support et leurs commentaires constructifs. Leurs connaissances à la fois vastes et pointues, combinées avec un raisonnement rationnel, m'ont garanti un support solide tout au long de cette thèse.
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First, most of attack modeling languages are limited to first order logic, which renders them obsolete in modeling the interaction between coordinated attackers. Consequently, through an unprecedented use of second order logic in attack modeling, we are able to quantify coordinated attacks properties, such as: (i) the minimum number of attackers required to succeed an attack, (ii) the synchronization between coordinated attackers, and (iii) knowledge sharing among attackers. Therefore, we introduce a new formal action scheme that handles individual, coordinated, and simultaneous attacks. We then choose a second order logic language, the Situation Calculus (SC), to properly model and implement our action scheme. By combining Graph Theory, Set Theory, and SC planning capabilities, our proposed framework establishes a comprehensive graphical view of all the potential attack scenarios that can endanger a network. Consequently, each of the generated attack graph forecasts a combination of attack scenarios that simultaneous attackers, ongoing in the network, may perform in the future. Thereby, the response system may estimate the overall risk and prepare preventive measures.

Second, real-time risk management models have been recently explored to dynamically assess and treat threats. Referring to the National Institute of Standards and Technology (NIST), Risk is a function of the attack likelihood and the impact of this attack on the system. Risk management methodologies assist the security officer in order to identify the most appropriate and effective security measures to deploy. Ideally, these measures must reduce (or eliminate) the risks, while not exceeding the predefined budget. Evaluating the likelihood is a major step in the risk management. However, today's models have major drawbacks in such evaluation since they cannot model coordinated and simultaneous attacks. Consequently, being able to represent the possibility of detection and reaction of the response system in the decision process of the attacker, Game Theory provides the most adequate framework to assess the attack likelihood. This latter considers the number of collaborating attackers, making our model able to assess not only the likelihood of individual attacks, but also that of coordinated ones. Afterwards, we propose a framework to prioritize the different attack graphs regarding the number of risky attack scenarios they contain. v Third, existing response systems evaluate a response measure against a given attack, but none of them considers the evaluation and selection of parallel response measures in a context of simultaneous attack scenarios. Consequently, the case where a response launched against a given attack scenario promotes another ongoing attack scenario and produces unexpected side effects is not considered. Additionally, the case where parallel response measures launched against simultaneous attacks are conflicting/incompatible is not considered either. Moreover, the majority of automated response systems rely on mapping attack scenarios to pre-defined responses. While this approach allows a system administrator to deal with intrusions faster, it lacks flexibility as "things do not always turn out the way we planned". Consequently, we propose a radically new response scheme against simultaneous threats, as a sequence of non conflicting parallel actions. Our response is dynamically designed based on a new definition of capability-aware logic anticorrelation, and modeled using Situation Calculus. Furthermore, we propose a response co-simulator based on SC planning capabilities. The latter considers each response candidate apart and reasons, based on the current state of the system and the attackers, to assess the achieved risk mitigation on the protected system. Finally, the optimal response candidate selection is processed based on a return on response investment metric.

Finally, the different frameworks presented in this thesis are implemented on a multiservice system handling VoIP and trading, and different experimentations are considered in order to demonstrate their efficiency and accuracy.

Resumé C

ontrairement aux premières attaques lancées par un seul attaquant contre une seule victime, les attaques récentes (ex. l'attaque contre Sony en 2015, la menace Stuxnet en 2011, etc.) sont mieux coordonnées, difficiles à découvrir, et infligent de dégâts énormes aux réseaux informatiques. En conséquence, et avec la croissance des systèmes d'informations critiques en taille et en complexité, la communauté de la recherche a été conduite à proposer des systèmes de réponses intelligents et automatisés. Ceux-ci doivent faire face à l'évolution de la sophistication, de la coordination et de l'efficacité des attaques. Cependant, les systèmes de réponses existants gèrent toujours les attaques simultanées comme étant individuelles et indépendantes. D'abord, la plupart des langages de modélisation d'attaques sont limités à la logique du premier ordre, ce qui les rend obsolètes quand à la modélisation de l'interaction entre les attaquants coordonnés. Par conséquent, grâce à une utilisation sans précédent de la logique du second ordre dans la modélisation d'attaque, nous sommes en mesure de quantifier les propriétés des attaques coordonnées, telles que: (i) le nombre minimal d'attaquants nécessaires pour réussir une attaque, (ii) la synchronisation, et (iii) le partage des connaissances entre les attaquants coordonnés. Nous introduisons, donc, un nouveau schéma d'action pouvant représenter des attaques individuelles, coordonnées et simultanées. Nous choisissons ensuite un langage logique de second ordre, le Calcul de Situations (CS), pour modéliser et implémenter correctement notre schéma d'action. En combinant la théorie des graphes, la théorie des ensembles, et les capacités de planification du CS, notre framework proposé établit une vue graphique complète de tous les scénarios d'attaques potentiels qui peuvent menacer un réseau informatique. Par conséquent, chacun des graphes d'attaques générés prévoie une combinaison de scénarios d'attaques simultanés que les attaquants, detectés dans le réseau, peuvent exécuter dans le futur. Ainsi, le système de réponse peut estimer le risque global, et prévoir des mesures préventives.

Ensuite, les modèles de gestion dynamique de risques ont étés récemment explorés pour évaluer et traiter les menaces en temps réel. En se référant au National Institute of Standards and Technology (NIST), le risque est définit comme une fonction de la probabilité d'attaque et l'impact de cette attaque sur le système. Les méthodologies de gestion de risques aident l'agent de sécurité à identifier les mesures de sécurité les plus appropriées et les plus efficaces. Idéalement, ces mesures doivent réduire (ou éliminer) les risques, tout en ne dépassant pas le budget prédéfini. L'évaluation de la probabilité d'attaque est une étape majeure dans la gestion de risques. Cependant, les modèles d'aujourd'hui présentent des inconvénients majeurs envers cette évaluation, car ils ne peuvent pas considérer les attaques coordonnées et simultanées. Par conséquent, être en mesure de représenter la possibilité de détection et de réaction du système de réponse dans le processus de décision de l'attaquant, la théorie des jeux fournit le framework le plus adéquat pour évaluer vii la probabilité d'attaque. Cette dernière considère le nombre d'attaquants collaborateurs, rendant notre modèle en mesure d'évaluer non seulement la probabilité des attaques individuelles, mais aussi celle des attaques coordonnées. Ensuite, nous proposons un framework d'ordonnement et de prioritization des différents graphes d'attaques selon le nombre de scénarios d'attaques risqués qu'ils contiennent.

En plus, les systèmes de réponses existants évaluent une mesure de réponse contre une attaque donnée, mais aucun d'entre eux considère l'évaluation et la sélection des mesures de réponses parallèles dans un contexte de scénarios d'attaques simultanées. Par conséquent, le cas où une réponse lancée contre une attaque donnée favorise un autre scénario d'attaque en cours, et produit des effets secondaires inattendus n'est pas considéré. En outre, le cas où des mesures de réponses parallèles lancées contre des attaques simultanées se trouvent contradictoires/ incompatibles lors de l'exécution n'est pas considéré non plus. De plus, la majorité des systèmes de réponses automatiques s'appuie sur des correspondance pre-établies entre les scénarios d'attaques potentiels et les réponses prédéfinies. Bien que cette approche permet à un administrateur système de faire face aux attaques plus rapidement, elle manque de souplesse, surtout que "les choses ne se passent pas toujours comme prévues". Par conséquent, nous proposons un nouveau schéma de réponse contre les attaques simultanées, comme une séquence d'actions parallèles non contradictoires. Notre réponse est conçue de manière dynamique basée sur une nouvelle définition d'anticorrélation logique considérant la capabilité d'execution de la réponse, et modélisée avec du calcul de situations. En outre, nous proposons un co-simulateur de réponses basé sur les capacités de planification du CS. Ce co-simulateur évalue pour chaque réponse candidate, l'atténuation du risque réalisée sur le système protégé. Enfin, la sélection de la réponse optimale est traitée sur la base des métriques de retour sur investissement des différents réponses candidates.

Enfin, les différents frameworks présentés dans cette thèse sont implémentés et testés sur un example d'un système multi-services (VoIP et Trading); et les différentes expérimentations sont considérées afin de démontrer l'efficacité et la précision de ces frameworks.
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Context

Modern attack tools are rapidly evolving to become more powerful and sophisticated. Networks and information systems are frequently targeted by coordinated attacks, which can cause deterioration in system's performance and induce great damage to physical assets. Distributed large-scale attacks [START_REF] Vincent Zhou | A survey of coordinated attacks and collaborative intrusion detection[END_REF] are examples of the most dangerous coordinated attacks. Attackers can scan large numbers of hosts simultaneously to search for software vulnerabilities (e.g. stealthy scans); they can use self-replicating computer programs to spread their malicious code to thousands of vulnerable systems within a short period of time (e.g. worms); and they can use thousands of compromised hosts from different network domains to overload a targeted system and disrupt its services (e.g. Distributed Denial of Service (DDOS)).

A scenario of coordinated attacks is a multi-step scenario where a collaboration of several attacking sources is needed to achieve a common goal. In order to achieve their goal, attacking sources, controlled by a master entity, may cooperate by resource sharing, task allocation, synchronization, etc.. As presented in [START_REF] Braynov | On Future Avenues for Distributed Attacks[END_REF], the great danger of coordinated attacks is that they go beyond the power of a single attacking source. Thus, coordinated actions can induce damage in the system that would not be provoked by any of the attacks if performed individually. These attacks can even mislead intrusion detection systems. Moreover, effort sharing between several attackers reduces the time needed to achieve their goal. Consequently, a security officer has a very short time to block such attack before it causes a severe damage.

The following examples are two of the most critical coordinated attack scenarios dis-covered recently. They are a proof that the damage of coordinated attacks knows no limits:

Stuxnet threat [START_REF] Falliere | [END_REF]: 'The Stuxnet worm is a 'groundbreaking' piece of malware so devious in its use of unpatched vulnerabilities, so sophisticated in its multipronged approach, that the security researchers who tore it apart believe it may be the work of state-backed professionals.' said Bruce Schneier1 , a security expert. 'It is a very big project, it is very well planned, it is very well funded... There are a lot of new, unknown techniques being used that we have never seen before. These include tricks to hide itself on PLCs and USB sticks as well as up to six different methods that allowed it to spread.' said Liam O Murchu2 , manager of operations with Symantec's security response team. Stuxnet was first detected in June 2010 by a security firm based in Belarus, but may have been circulating since 2009. Unlike most viruses, the worm targets systems that are traditionally not connected to the internet for security reasons. Instead it infects Windows machines via USB keys -commonly used to move files around -infected with malware. Once it has infected a machine on a firm's internal network, it seeks out a specific configuration of industrial control software. Once hijacked, the code can reprogram so-called PLC (programmable logic control) software to give attached industrial machinery new instructions. PLCs turn on and off motors, monitor temperature, turn on coolers if a gauge goes over a certain temperature, etc.. Thus, Stuxnet worm was designed to induce excessive vibrations or distortions that would destroy the centrifuge. If the virus does not find the specific configuration, it remains relatively benign. Finally, the worm has also raised eyebrows because of the complexity of the code used and the fact that it bundled so many different techniques into one payload.

Home Depot under attack: In September 2014, US DIY store Home Depot 3 has confirmed its payment systems have been hacked in what could turn out to be one of the biggest data breaches ever. Home Depot has 2,200 stores in the US and Canada. The company has revealed that the hack of its systems dated back to April. Security blogger Brian Krebs was the first to reveal the hack, which he said targeted credit and debit cards used on malware-infected cash registers. Mr Krebs said a number of banks had told him about a steep increase in fraudulent ATM withdrawals on customers accounts since the hack was made public. 'Experts say the thieves who are perpetrating the debit card fraud are capitalizing on a glut of card information stolen from Home Depot customers and being sold in cybercrime shops online.' he wrote. Card data from Home Depot customers is available for sale on underground crime shops such as Rescator.cc and includes both the information needed to counterfeit cards and the card-holder's full name and city, state and postcode of the store it was stolen from. The zip code data is important because it allows the bad guys to quickly and more accurately locate the social security number and data or birth of cardholders using criminal services in the underground that sell this information. Armed with this information, thieves can call automated bank systems and change the PIN on cards. The malware, known as BlackPOS, siphoned data from cards when they were swiped at infected cash registers running Windows. Security experts say the US is 1.2. Problem Statement more vulnerable to credit card hacks than many other countries because it still relies on payment terminals that scan the magnetic stripe on the back of cards, giving malware an opportunity to copy the data.

More examples on sophisticated attack scenarios can be found in Table 1.1.

Unfortunately, the situation can become more dangerous, when different critical assets of a system network are threatened at the same time by different attack entities. An attack entity can be either a Group of Coordinated Attackers (GCA), or an individual attacker. In such context of simultaneous attacks, different Individual Attacks (IA) and Coordinated Attacks (CA) are, thus, concurrently executed.

Problem Statement

As shown in Section 1.1, and unlike early attacks launched by a single attacker to a single victim, recent attacks are better coordinated, difficult to discover, and inflict severe damages to networks. Consequently, and with the growth of critical information systems in size and complexity, the research community was driven to propose intelligent and automated response systems. These latter must cope with the steady progress of the attacks' sophistication, coordination and effectiveness. However, existing response systems [START_REF] Irvine | Toward a taxonomy and costing method for security services[END_REF] [JP00] [TK02] [WWL + 06] [SBW07] [KSCB + 13] [KCBCD10a] only handle the case of individual and independent attackers. This limitation is due to the lack of an appropriate model that properly describes coordinated and simultaneous attacks. Consequently, a new formal attack scheme able to model the interaction between simultaneous attackers is first needed.

Second, when a system is threatened by simultaneous attacks, security administrators need to visualize in a same attack graph, individual and coordinated attack scenarios that are simultaneously possible in the network. This allows administrators to better estimate the global damage that these attacks can induce, and to efficiently adapt their responses. Attack graphs represent a collection of possible penetration scenarios in a computer network. Each penetration scenario is a sequence of actions taken by an attacker, or a GCA, typically culminating in a particular goal, such as administrative access on a particular host, access to a database, service disruption, etc. Unfortunately, most of existing graph generation approaches [ + 09] are not adapted to represent scenarios of coordinated attacks. Thus, a new graph generation approach aware of attackers' coordination is needed. Third, risk management methodologies are widely used in order to address the most important threats, during the design phase of complex systems. Referring to the National Institute of Standards and Technology (NIST), Risk [START_REF] Stoneburner | Risk management guide for information technology systems[END_REF] is a function of the attack likelihood and the impact of this attack on the system. Risk management offers a pragmatic view to identify, prioritize and treat the risks induced by threats. Therefore, the system's designer can decide whether security measures must be deployed to address some (or all) the risks. Furthermore, risk management methodologies assist the system's designer in order to identify the most appropriate and efficient security measures to deploy. Ideally, these measures must reduce (or eliminate) the risks, while not exceeding the predefined budget. Recently, real-time risk management models [START_REF] Wael Kanoun | Risk-aware framework for activating and deactivating policybased response[END_REF] [KDP + 12] [GGBDJ14] have been explored. Such models are inspired from the risk management methodologies which demonstrated their efficiency and utility. In consequence, risks which threaten critical systems and infrastructures can be dynamically assessed, and treated. However, these models are not adapted to handle coordinated and simultaneous attacks. Besides, NIST considers the following factors for a proper likelihood assessment: (1) the existence of potential responses against an attack, (2) the nature of the vulnerability and the complexity in exploiting it, and (3) the attacker's motivation. However, none of the existing risk assessment methodologies consider the three of these factors. Consequently, a new risk assessment methodology is needed in order to properly assess the risk of an attack scenario, considering coordination and concurrency aspects between attackers, and fulfilling NIST's factors.

CM02] [BJ03] [SW04] [JNOB05] [ILP06] [XCW

Fourth, existing response systems evaluate a response measure against a given attack, but they do not consider the evaluation and selection of parallel response measures in a context of simultaneous attack scenarios. Consequently, (i) the case where a response launched against a given attack scenario promotes another ongoing attack scenario and produces unexpected side effects; and (ii) the case where parallel response measures launched against simultaneous attacks are conflicting/incompatible, are both not considered. Moreover, the majority of automated response systems rely on mapping attack scenarios to pre-defined responses. While this approach allows a system administrator to deal with intrusions faster, it lacks flexibility as "things do not always turn out the way we planned". Consequently, a new response system able to design non conflicting parallel response measures on the fly, considering the current system's state is needed. This latter must also be able to assess the return on investment [START_REF] Kheir | A service dependency model for cost-sensitive intrusion response[END_REF] [GGBDJ14] of the combination of response measures considering their overall risk mitigation and their total cost. When several combinations of response measures are possible, the return on investment metrics corresponding to the different possibilities need to be compared in order to choose the most efficient one.

Contribution

Throughout this thesis manuscript, we propose a risk-aware decision support system to counter coordinated and simultaneous attack scenarios. Therefore, and in order to overcome the limitations of existing response systems described in 1.2, we contribute on three research fields: Attack modeling and graph generation, risk assessment, and response management.

Coordinated attack modeling: through an unprecedented use of second order logic in attack modeling schemes, we introduce a new formal action scheme able to describe individual, coordinated and concurrent attacks. We then choose, among all attack modeling languages, a second order logic language, the Situation Calculus (SC), to properly model and implement our action scheme. SC affords functional fluents and predicates needed to quantify over the characteristics of coordinated attackers (e.g. synchronization and knowledge sharing) and to describe the interaction between them.

Graph generation for simultaneous attack scenarios: in order to forecast attack scenarios that simultaneous attackers observed in the network may perform in the future, allowing a response system to prepare preventive measures, we propose and implement a Simultaneous Attacks Planner (SAP). Based on SC planning capabilities, SAP is able to generate an exhaustive list of all possible scenarios that attackers can perform individually, coordinately, or concurrently starting from an initial vulnerable system state. By combining Graph theory and Set theory, we present a new attack graph generation approach establishing a comprehensive graphical view of all the potential attack scenarios generated by SAP. We also develop a Simultaneous Attacks Graphs (SAG) generator. This latter generates, a set of attack graphs representing, each, one possibility of future progression for attackers to reach critical assets in the system. Our approach differs from existing attack graph generation approaches by being able to represent, in a same graph, dependency aspects (e.g. coordination and concurrency) between attack scenarios.

Risk assessment of simultaneous attack scenarios: in order to select the most critical graph within the large set of SAGs, we propose a new framework to assess the Attack Likelihood (AL) of simultaneous attack scenarios considering all NIST's factors. Being able to represent the possibility of detection and reaction of the response system, in the decision process of the attacker, Game Theory provides the most adequate framework to extract a proper AL assessment. This latter takes into consideration the number of collaborating attackers, making our model able to assess not only the AL of individual attacks, but also that of coordinated ones. Then, based on NIST's risk approach and a lexicographic sort method, we propose a risk assessment and prioritization framework. This latter prioritizes the different SAGs regarding the number of risky attack scenarios they contain.

Dynamic design and co-simulation of simultaneous response measures: we propose a radically new response scheme against simultaneous threats, as a sequence of non conflicting parallel actions. Our response is dynamically designed based on a new definition of capability-aware logic anticorrelation, and modeled using Situation Calculus. This latter is very efficient to describe conflicts between parallel actions by appealing the notion of resource. Even though a response can prevent or reduce an attack scenario, it may also have side effects on the system and unintentionally ease one of the attack entity to progress on its (or a new) scenario. We address this issue by proposing a response co-simulator based on SC planning capabilities. This latter co-simulates each response possibility apart, considering the system's state and the currently existing simultaneous attack entities. When co-simulating a response, the attack scenarios blocked by this response, or those became less risky, or in the worst case, those appeared after the response simulation, are generated. Based on these different response plans, we propose a new dynamic method that compare the risk mitigation of the different response considering also their costs and collateral damage, in order to select the optimal response plan.

Outline of the dissertation

Finally, the different novel framework we propose in this thesis are implemented and different experimentation are considered in order to demonstrate their efficiency and their accuracy.

Outline of the dissertation

The thesis is organized as follows: Chapter 2 presents the sate of the art related to attack modeling, risk management methodologies and response systems. Chapter 3 proposes our simultaneous attack graphs generator. In this chapter, we shall present our attack scheme, our attack planner based on situation calculus, and our graph generation approach. In Chapter 4, we shall present our risk assessment framework for simultaneous attack scenarios. This framework is based on Game theory for a proper attack likelihood assessment considering potential coordination between attackers. Chapter 5 focuses on our response framework. This framework goes beyond traditional response systems by considering a dynamic design of non conflicting parallel response measures, and a real-time assessment of the return on investment for each response candidate. It also affords a mean to select the most optimal combination of response measures. Chapter 7 first presents the global architecture of the different proposed frameworks and the way they interact together. Then it concludes our work and presents perspectives.

Chapter 2

Preliminaries and State of the Art Contents

Introduction

This chapter provides an insight to the state of the art related to the problem statement. First, Section 2.2 presents the attack modeling languages and shows their limitation in modeling coordinated attacks. And, Section 2.3 presents the different approaches on attack graph generation, and highlights the lack of attack graphs able to represent the coordination between attackers. Then, Section 2.4 introduces the notion of risk, while exhibiting the most recent risk analysis and assessment methodologies. Afterwards, Section 2.5 presents the major taxonomies of modern response systems, with the most relevant criteria of classification. Finally, Section 2.6 provides a survey on existing automated response system, and discusses their inefficiency regarding simultaneous attacks.

Attack Modeling Languages

Attack Modeling has been an active topic, and several languages were proposed such as ADELE [START_REF] Michel | Adele: An attack description language for knowledge-based intrusion detection[END_REF], LAMBDA [START_REF] Cuppens | Lambda: A language to model a database for detection of attacks[END_REF], JIGSAW [START_REF] Templeton | A requires/provides model for computer attacks[END_REF], STRIPS [START_REF] Fikes | Strips: a new approach to the application of theorem proving to problem solving[END_REF], etc.. In this section we present the most relevant ones, and discuss their common limitations.

LAMBDA

Cuppens and Ortalo proposed LAMBDA [START_REF] Cuppens | Lambda: A language to model a database for detection of attacks[END_REF], a declarative language for specifying attacks in terms of pre-and post-conditions. The various steps of the attack process are associated with events, which may be combined using specific algebraic operators, generating by this the sequence of actions that the attacker has to do before reaching its goal. LAMBDA also includes intrusion detection elements. Attack specifications includes information about the steps needed to detect the attack and the steps needed to verify that the attack has already been carried out. The information associated to system states is represented in first order logic using logical predicates. State descriptions correspond to the definition of the pre-condition and post-condition of an attack. A language, denoted L1, is presented as the logic of predicates. These predicates are combined using the usual logical connectives ¬, ∧, ∨, but no quantification over predicates is afforded. The information associated to system transitions is modeled using events. Events are defined in a language, denoted L2, based on the logical operators ¬ and ∧ plus the equality operator =, and a set of attribute names. Then, the events calculus algebra that may be used to combine several events is introduced via a third language, denoted L3. Figure 2.1 represent an action description using LAMBDA.

JIGSAW

JIGSAW language [TL00] describes attack components in terms of capabilities and concepts. It is also based on a Requires/Provides approach model to computer attacks. But, rather than thinking of attacks as a series of events, sees attacks as a set of capabilities that provides support for abstract attack concepts, while providing new capabilities to sup- port other concepts. Capabilities are the information required or the situation that must exist for a particular aspect of an attack to occur. For example, a successful telnet login requires a valid usemame/password and the telnet service to be available on a particular port. It also requires network access to the telnet host, that the host is running, and that the telnet host can authenticate the user. On the other hand, Concepts define abstract situations that form subtasks in a scenario attack. Attacks are described as the composition of abstract attack 'concepts'. Each concept requires certain capabilities that must occur for a particular instance of the concept to be entailed. Each concept may also provide specific capabilities to other concepts. The required relations between the attribute values of the capabilities are also defined for each concept. They include details such as operating system, host/port numbers, and cover any required timing relations. Multiple events can provide equivalent capabilities. This is the key concept of this model. An attacker can use different actions to support the same goal. Many different probes will return equivalent information; many different DoS attacks will have the same effect on the target system. By specifying the required capabilities of an attack, the model captures all possible means of supporting it without specifying explicitly what will provide it. By specifying the provided capabilities of an attack, the model captures how the attack could be used without specifying explicitly what will use it. Concepts are Boolean relations on capabilities and configurations. The language also includes a number of operators (e.g. text comparison operators, set and temporal relations, etc.) defined for the data types common to the model.

Unfortunately, LAMBDA and JIGSAW lack concurrent actions description, which make them inefficient to model the interaction between simultaneous attacks.

Concurrent STRIPS

Concurrent STRIPS [START_REF] Braynov | Representation and analysis of coordinated attacks[END_REF] language formally models coordinated attacks using a modified version of a first-order logic language, STRIPS, to describe concurrent attacks. An action is described by: a subject, preconditions, other actions performed concurrently, and effects. Compatibility between actions is captured by a concurrent action list. It specifies what actions must, or must not, be executed concurrently in order to enable positive synergy. Figure 2.2 represents two concurrent actions corresponding to a symbolic link race condition. In this attack, two insiders, user1 and user2, cooperate in order to gain access to file, which they are not authorized to access. U ser1 creates symbolic link f ile1 pointing to f ile2. We suppose that user1 has access to read and write both f ile1 and f ile2. After establishing the symbolic link, user1 calls open(f ile1, O_RDW R). The system resolves the symbolic link and checks that access to file2 is allowed. Meanwhile, user2 changes the symbolic link f ile1 to point to file. As a result, the system executes open(f ile, O_RDW R), granting user1 access to f ile.

Unfortunately, this language has a limited scalability, and needs a lot of expertise. For each new added attack action, an expert should study its compatibility with all the others. Moreover, every attack should be modeled differently when the number of attackers changes. The effects of an action should be studied depending on other concurrent attackers' actions. Therefore, this language is limited to modeling coordinated attacks where a very small number of attackers can participate. Besides, it is not mandatory for attackers' individual actions to be concurrent to perform a coordinated attack. Attackers may execute their actions sequentially in order avoid detection.

Discussion

The above described languages have all common limitations regarding coordinated attacks modeling. First, they lack functional fluents description (see Chapter 3, Section 3.4.1) required to model the dynamic change of the number of coordinated attackers. Whereas logic predicates described by these languages are static and boolean, functional fluents is a function of the state/situation. Thus, it is possible to model and track the change through time. Besides, a functional fluent can return a non boolean value, e.g. received_f low(Serv, s) = 500, s being the state in which we are checking the fluent's value. Second, these languages are first-order logic languages, missing, thereby, the possibility to model second-order logic terms. In contrary to first-order logic, second-order logic allows to quantify over predicates and actions. Consequently, second-order logic is necessary to model the interaction between coordinated attackers, such as the synchronization and the knowledge sharing among them.

Attack Graphs Generation

Attack graphs give a bird's eye view of every scenario that can lead to a serious security breach, allowing thereby, system administrators to consider a response to prevent this scenario. In this section, we discuss and compare the different attack graph generation approaches existing in the literature, based on the following features:

• Coordination and Concurrency: is the approach able to represent concurrent and coordinated attacks, or is it simply limited to individual attacks? • Non monoticity: can attackers re-execute an attack that they have already executed in their scenario? Non monoticity allows the backtracking feature, which is the ability to consider that an attacker can pass again by an already-compromised machine to increase his/her privilege on that machine. • Logic based vs. topology based attack description: is the method based on a topology based approach or a logic based approach for attack description? • Automatic extraction of input: can the input of the graph generation module be extracted automatically from the system without a human intervention? Inputs may be the network topology (e.g. host configuration and network connections), and/or a database of known vulnerabilities (e.g. CVE1 , OSVDB2 , NIST NVD, Symantec DeepSight3 , etc.), and/or a model of potential attacks able to threaten the system, and/or critical assets that the system tends to protect, etc. • Multiple End Goals for attackers: does the approach allow to generate all the possible scenarios for attackers considering all the critical assets? In other words, does the method need to be executed multiple times, each time corresponding to a different critical asset (which constitutes an end goal for attackers)? Representing multiple end goals in a same graph allows security administrators to reason about the end goals which are more risky than others under the current circumstances, in order to choose appropriate responses to protect these goals in priority. • Scalability: can the method be deployed in large scale systems? We consider that methods with low level polynomial complexity (O(n 2 )/O(n 3 ) are scalable to large systems. n being the number of inputs needed to generate the attack graphs.

A first classification can be made based on the first feature. Consequently the following two sections discusses approaches handling concurrent actions and those restricted to individual attacks. The first approach will turn to be more interesting than the second one, since it allows security administrators a better comprehension of the interaction between attackers.

Attack Graphs handling Concurrent Attacks

Braynov et al.: A coordinated attack graph is defined in [START_REF] Braynov | Representation and analysis of coordinated attacks[END_REF] as a possible sequence of concurrent actions executed by all observed attackers in the network. Graphs were generated based on the Partial Order Multiagent Planning algorithm (POMP) [START_REF] Boutilier | Partial-order planning with concurrent interacting actions[END_REF], which is a variant of Concurrent STRIPS. Figure 2.3 is a graph representing the symbolic link race attack modeled in Concurrent STRIPS in Section 2.2. POMP was the preferred representation of the planning community for several years. However, being a first-order logic language, Concurrent STRIPS language is not as much expressive as concurrent SC. Moreover, the performance of POMP is greatly affected by the ordering of agenda items / actions. Hence, heuristics were proposed through defining subgoals for each goal. However, finding subgoals in network attacks requires a high level of expertise, especially when goals can be reached by several paths.

Petri Nets: In [START_REF] Mcdermott | Attack net penetration testing[END_REF], a new process model for penetration testing based on Petri nets paradigm was proposed. The proposed approach is to organize penetration testing according to an attack net. An attack net is a (disjunctivel) Petri net with a set P = {p0, pl, p2....pn} of places representing interesting (e.g. control or knowledge of) states or modes of the security relevant entities of the system of interest. The attack net also has a set T = {t0, tl, t2, ..., tn} of transitions that represent input events, commands, or data that cause one or more security relevant entities to change state. Places are connected to transitions and transitions are connected to places by directed arcs. The attack net has a set of tokens. Tokens move from place to place along the directed arcs to indicate the progress of the attack. If a token is at a place, then the attacker has gained control of the corresponding entity, in the state represented by the place. If place pi precedes place pj in the attack net, then the attack must achieve the control or knowledge represented by place pi before the control or knowledge represented by place pj is possible. Attack nets support cycles describing recursive, thus non monotonic, attacks. Figure 2.4 models a generic distributed denial of service attack on a single host. The first place, holding the single token, represents the attacker's initial control of the attacking host. The first level of transitions are high-level abstractions of the actions taken to gain control of multiple accomplice hosts. The multiple places in the middle represent the attacker's control of the accomplice hosts. The second level of transitions from these places represent the generation of spurious service requests by the accomplice hosts. The last place represents the condition where the victim host is flooded and cannot respond. The key features of attack nets are:

• Modeling concurrency and attack progress with tokens

• Modeling intermediate and final objectives as places

• Modeling commands or inputs as transitions In [START_REF] Chen | Petri net modeling of cyber-physical attacks on smart grid[END_REF], authors investigate the use of Petri nets for modeling coordinated cyberphysical attacks on the smart grid. Petri nets offer more flexibility and expressiveness than traditional attack trees to represent the actions of simultaneous attackers. Their method aims for a two-step construction of Petri nets by combining smaller Petri nets representing the separate cyber and physical domains. Authors assume that the number of interconnected infrastructures affects the construction method but the number of attackers is not a factor (attackers are simply represented by tokens).

In most work on attack graphs handling concurrent actions, guessing whether attackers are collaborating, or simply independent is not possible. In other words, these graphs lack a representation of a coordinated attack, missing thereby the representation of synchronization, knowledge sharing, and the required number of coordinated attackers. Actually, determining GCAs enables response systems to select exclusive and more effective responses for those groups. For example, in a graph depicting a DDoS attack scenario, if the number of attacking sources able to overflow the victim asset by collaborating can be identified, the response system can prevent the attack by blocking exclusively these sources. Otherwise, if number of these attackers is not sufficient to perform a DDoS, the response system may launch unnecessary responses. This will be, thus, the case of response systems based on attack graphs presented in this section.

Attack Graphs restricted to Individual Attacks

We first distinguish between approaches based on logic languages to model attacks, as CRIM [START_REF] Cuppens | Alert correlation in a cooperative intrusion detection framework[END_REF] which is based on LAMBDA, and approaches restricted to topology attacks description. Among these latter, we distinguish those which adopt non monoticity in their attack scenario elaboration, as Sheyner, et. al [START_REF] Sheyner | Tools for generating and analyzing attack graphs[END_REF] and Kanoun et al. [START_REF] Wael Kanoun | Attack graphs to secure complex ict systems[END_REF], and those which adopts monoticity allowing them to be scalable as CAUL-DRON4 , MulVAL5 , Jajodia et al. We present here, a brief description of each of the attack graph generation work cited here above.

CRIM: In [CM02],

Cuppens and Miege suggested an approach to perform alert correlation based on the analysis of attack description specified in LAMBDA. The work is done within the MIRADOR project to design CRIM, a cooperative module for intrusion detection systems (IDS). This module implements functions to manage, cluster, merge and correlate alerts. The clustering and merging functions recognize alerts that correspond to the same occurrence of an attack and create a new alert that merge data contained in these various alerts. The central idea of the approach is to recognize whether executing a given attack can contribute to execute another attack. This idea is modeled by specifying possible logical links between the post-condition of an attack A and the pre-condition of an attack B. If such a link exists, then it is possible to correlate an occurrence of attack A with an occurrence of attack B. This is based on the assumption that the intruder has performed A as a step that enables him to perform B. In this work, an abstract attack graph is first generated in offline. This latter covers all possible attacks paths leading an attacker to one of the critical assets in the system. It is generated before running the system, and then attacks nodes are instantiated as corresponding alerts are observed online.

MulVAL6 : MULVAL (Multihost, multistage Vulnerability Analysis) is a framework for modeling the interaction of software bugs with system and network configurations. Mul-VAL uses Datalog as its modeling language. The information in the vulnerability database provided by the bug-reporting community, the configuration information of each machine and the network, and other relevant information are all encoded as Datalog facts. The reasoning engine consists of a collection of Datalog rules that captures the operating system behavior and the interaction of various components in the network. Thus integrating information from the bug-reporting community and off-the-shelf scanning tools in the reasoning model is straightforward. Note that the exploit model is automatically extracted from the off-the-shelf vulnerability database and no human intervention is needed. The inputs to MulVAL's analysis are:

• Advisories: What vulnerabilities have been reported and do they exist on machines?

• Host configuration: What software and services are running on hosts, and how are they configured? • Network configuration: How are network routers and firewalls configured?

• Principals: Who are the users of the network?

• Interaction: What is the model of how all these components interact?

• Policy: What accesses do I want to permit? One of the important features of MulVAL is the ability to reason about multistage attacks. After an exploit is successfully applied, the reasoning engine must discover how the attacker can further compromise a system. For example, the following rule says if an attacker P can access machine H with Owner's privilege, then he can have arbitrary access to files owned by Owner: accessFile(P, H, Access, Path) ↔ execCode(P, H, Owner), filePath(H, Owner, Path).

MulVAL adopts a logic-programming approach and uses Datalog in the modeling and analysis of network systems. The difference between Datalog and model-checking is that derivation in Datalog is a process of accumulating true facts. Since the number of facts is polynomial in the size of the network, the process will terminate efficiently. Model checking, on the other hand, checks temporal properties of every possible state-change sequence. The number of all possible states is exponential in the size of the network, thus in the worst case model checking could be exponential. However, in network vulnerability analysis it is normally not necessary to track every possible state change sequence. Thus, MulVAL assumes the monotonicity property. Thus when a fact is derived stating that an attacker can gain a certain privilege, the fact can remain true for the rest of the analysis process.

Jajodia et al. [JNOB05]

: Jajodia et al. present TVA, Topological Vulnerability Analysis. In TVA, network security conditions and attack techniques (exploits) are modeled, and exploit sequences (attack paths) leading to specific attack goals are generated. The tool requires reachability information, and vulnerability information which can be obtained from Nessus scans. Exploits are modeled based on their preconditions and postconditions. Attack paths are computed based on a directed graph of the dependencies (via pre-conditions and postconditions), among exploits and conditions. Nodes represent both conditions and exploits. Therefore, edge labels become unnecessary, with directed edges simply representing generic dependency. The algorithm used in TVA has a base computation that grows as O(n 6 ), for n hosts in the network. The graph provides attack paths leading from the initial network state to a specified goal state. A current bottleneck for TVA is the process of modeling exploits manually. Exploits preconditions and postconditions are entered by hand, in addition to information concerning attacker goals and the network. Firewall rules are not analyzed but determined implicitly using Nessus scans between different subnets. TVA requires low-level attack details that are difficult to model correctly. The first versions of TVA scaled poorly to large networks. A recent version of the tool can generate attack graphs for networks of thousands of hosts, but using aggregation techniques such as protection domains [START_REF] Jajodia | Topological vulnerability analysis[END_REF]. Only initial conditions are relevant to be hardened. Therefore, the administrator can choose the option that has an overall minimum cost, based on the relative costs of the individual hardening techniques. The model adopts the monoticity assumption, and thus, is not able to model attacks with backtracking. However, the resulting exploit-dependency attack graphs grow quadratically rather than exponentially. Note that Jajodia et al.'s work was embedded in a predictive, proactive, strategic tool called CAULDRON7 .

In [START_REF] Ronald | Using model checking to analyze network vulnerabilities[END_REF], Ritchey and Ammann use model checking for vulnerability analysis of networks. They use the (unmodified) model checker8 . They can obtain only one counterexample, i.e., only one attack corresponding to an unsafe state. produce attack graphs, representing all possible attacks. The architecture of their attack graph toolkit is composed of three main pieces: a network model builder, a scenario graph generator, and a graphical user interface (GUI). The network model builder takes as input an XML-based format covering all of the required information for attack scenarios elaboration (e.g. hosts connected to the network, connectivity relation expressing the network topology, trust relation between hosts, a set of individual attack actions, etc.). The XML format lets the user specify each piece of information manually or indicate that the data can be gathered automatically from an external source. It constructs a finite model of the network suitable for automated analysis. The model is augmented with a security specification, which spells out the security requirements against which the attack graph is to be built. The model and the security specification then go to the second piece, the scenario graph generator. The scenario graph generator takes any finite model and correctness specification and produces a graph composed of possible executions of the model that violate the correctness specification. The model builder constructs the input to the graph generator so that the output will be the desired attack graph. The graphical user interface lets the user display and examine the graph. The model builder's running time is linear in the size of the input specification, typically written in the XML format. The algorithm in the scenario graph generator is linear in the size of the output scenario graph. The slowest part of the toolkit is the algorithm that lays out the attack graph on screen. The algorithm uses the network simplex method to find optimal x-coordinates. The simplex method has exponential worst-case performance. The rest of the layout algorithm has cubic complexity. Thus, for large graphs it is sometimes necessary to run analysis algorithms without displaying the full graph on screen. Ammann et. al.: In [AWK02], Ammann et. al. present a scalable attack graph representation. They encode attack graphs as dependencies among exploits and security conditions, under the assumption of monotonicity. The authors treat vulnerabilities, intruder access privileges, and network connectivity as atomic boolean attributes. Actions are treated as atomic transformations that, given a set of preconditions on the attributes, establish a set of postconditions. In this model, monotonicity means that (1) once a postcondition is satisfied, it can never become unsatisfied, and (2) the negation operator cannot be used in expressing action preconditions. The authors show that under the monotonicity assumption it is possible to construct an efficient (low-order polynomial) attack graph representation that scales well. However, the compact attack graph representation is less explicit, and therefore harder for a human to read. The advantage of the approach is that it has a worst-case bound on the size of the graph that is polynomial in the number of atomic attributes in the model, and therefore can scale better than full-fledged model checking to large networks. Ingols et al. present NetSPA, an online tool to generate attack graphs. In order to generate such graphs, NetSPA needs the network topology, the vulnerability information, and the credentials which can be any information used as an access control, a password or a private key. Access levels on a host are root, user, and other. Firewall rule sets are a component of the network topology. An attacker's state is defined depending on its access level to a host. A state may provide the attacker zero or more credentials. In NetSPA, a port has zero or more vulnerability instances, and, each vulnerability has locality, indicating whether it is remotely exploitable. Each vulnerability provides an effect, which is one of the four access levels an attacker can obtain in the model. Besides, reachability between machines defined in the network topology, and credentials serve as prerequisites to exploit a vulnerability instance. In NetSPA, improvements are made regarding reachability matrix (depicting, for each node in the network, the nodes that can be reached by it). Filtering rules are collapsed into Binary Decision Diagrams (BDDs), allowing the reachability system to traverse a set of filtering rules in constant time. Finally, the authors hypothesize a generic attacker by selecting a link on which the attacker will begin and allowing the attacker to use the most advantageous IP source addresses. Ingols et al. introduced Multiple-prerequisite (MP) graph. The maximum number of nodes in an MP graph is linearly related to the source data. There is at most one node for each vulnerability instance, state, reachability group, and credential. The MP graph uses the following three node types:

Sheyner

Ingols et al.: In

[ILP06],
• State: represent an attacker's level of access on a particular host.

• Prerequisite: represent either a reachability group or a credential.

• Vulnerability instance: represent a particular vulnerability on a specific port.

The graph is built using a breadth-first technique. No node is explored more than once, and the node only appears on the graph if the attacker can successfully obtain it. NetSPA provides recommendations after attack graph generation. It computes, for each individual prerequisite in the graph, which vulnerability instances need to be removed in order to prevent the attacker from reaching the prerequisite, and which states the attacker cannot reach with the prerequisite absent. Recommendations are weighted based on the number of hosts that denied the attacker.

Xie et al.:

In [XCW + 09], Xie et al. address the scaling issue in the process of attack graph generation. Therefore, they propose a new approach that constructs a two-tier attack graph framework: (i) a host access graph which describes the attacker's privilege transition among hosts, and (ii) sub-attack graphs which describe concrete attack scenarios from one source host to one target host. The network model consists of attack states, attackers and attack rules. An attack state represents levels of privilege, information regarding the services, connections that the attacker would obtain. An attack rule contains, among others, preconditions that match the rule, and postconditions which is the attack result. First, a breadth-first search algorithm is used in order to generate subgraphs. Afterwards, the host access graph is built using the subgraphs. The upper computational cost of the algorithm is O(n 3 ). The attack graph is generated to reach a final target. Hosts that have similar configuration and that would play the same roles in the network, can be grouped together. Each state transition is given a corresponding weight, which is the overall evaluation of the transition's successful probability, detectable probability, attack cost, attack impact, etc.

Kanoun et al.:

In [START_REF] Wael Kanoun | Attack graphs to secure complex ict systems[END_REF], authors propose a new method for generating non monotonic attack graphs considering backtracking attacks. Thus, an attacker can pass again by an already-compromised machine to increase his/her privilege on that machine, allowing thereby to generate more sophisticated scenarios. Attacks are topology based described, and an attack scenario is thus a succession of vulnerabilities exploits which allows an attacker to progress deep in the network topology going from one machines to another connected one and ending in reaching a critical asset. The algorithm compute for each critical asset and each intruder/attacker all the possible paths that the intruder can follow to reach that asset. Consequently, in order to obtain an overview of all scenarios allowing the intruder to reach all the critical assets, the execution of the algorithm is repeated for each critical asset. The complexity of the algorithm is O(n 4 ). n being the number of machines in the system.

Discussion

We present, in Table 2.1, a comparison of the different existing graph generation approaches. Note that, none of these approaches is able to represent coordinated attacks. Moreover, none of them represents multiple end attack goals in the same graph, which is important to provide to a response system. This latter needs to prioritize over simultaneous attack scenarios, in order to react against the most risky ones. 

Individual Attacks

Risk Management Methodologies

Clearly, a finite and limited budget is allocated in order to secure a system. Therefore, the expert must spend this budget wisely, and address optimally the potential threats of the monitored system.

Risk management has traditionally been a manual analysis process during system design or through periodic reviews. For this purpose, the ISO standard 27005, part of the ISO 27000 series, [iso09], proposes an independent and general guidelines for information security risk management. This standard contains the general requirements for risk management of information systems. However, this standard does not propose a specific methodology to risk management for information systems. Instead, each organization should define (or adopt) a given risk management methodology, which must be compatible with the guidelines as proposed in this standard.

First, we present the definitions of the risk-related terminology, as proposed by the standard ISO 27000:

• information security preservation of confidentiality, integrity and availability of information. • threat: potential cause of an unwanted incident, which may result in harm to a system or organization. • incident: single or a series of unwanted or unexpected information security events that have a significant probability of compromising business operations and threatening information security. For instance, a complex attack scenario is an incident. • risk : combination of the probability of an event and its consequence.

Several risk analysis and assessment methodologies were proposed to help experts who want to see their systems secured as well as possible. We note that the methodologies are specifically used at a national level, because each country proposes its own methodology. Table 2.2 presents a non-exhaustive list of the most often used methodologies currently.

Despite their multitude, all these methodologies share the same global risk management procedure (see Figure 2 As shown in Figure 2.5, the risk management process can be iterative. An iterative approach allows the expert, at each iteration, to conduct the risk management process more deeply and precisely. Consequently, an iterative approach ensures a trade-off between minimizing the needed time and effort to identify the security measures, and the assurance that the high risks are properly assessed. First, the context is established. Second, the risk assessment (i.e. risk analysis and risk evaluation) process is conducted. If the risk assessment leads to the adequate information to determine the appropriate security measures capable of pulling back the risks to acceptable levels, then the risk assessment is ended, and the risk treatment follows. Otherwise, another iteration should be conducted. During the risk treatment, appropriate control and security measures may be implemented to ensure that information security risks are reduced. The effectiveness of risk treatment depends on the results of the risk assessment. Thus, it is possible that the risk treatment do not lead immediately to an acceptable residual risk. In this case, another iteration of risk assessment and risk treatment should be conducted.

Context Establishment

The first step consists of establishing the context of the risk management. The most important actions that must be executed during this phase are: (i) specifying the risk evaluation criteria and risk acceptance criteria; and (ii) defining the perimeter and the limits of the risk management process.

Setting the risk evaluation criteria consists of defining several reference levels. These reference levels will allow the expert to compare and evaluate the magnitude of the risks during the risk evaluation process. Thus, the risk evaluation criteria can be used to specify the risk priorities that must be treated afterwards. On the other hand, the risk acceptance criteria define the risks' levels which the organization is ready to assume and undertake. Therefore, each organization specifies its own threshold scale. Clearly, the acceptance criteria depend mainly on the organization's policy, intentions, objectives and interests.

Once the expert has specified the above criteria, he must define clearly the domain's perimeter for which the risk management is undertaken. A clear domain, with a well defined perimeter, is crucial to guarantee that all the assets are considered, and all the risk that threaten these assets are assessed and managed.

Risk Assessment

The risk is defined as the combination of the consequences incurred, due to an occurrence of an undesirable event, with the occurrence likelihood (or probability) of that event. The objective of risk assessment is to quantify the risks, in order to allow the expert to classify and prioritize these risks with respect to their gravity. During the overall process of the risk assessment, the information assets are first listed, and their values are specified. Second, the threats with the associated potential impacts on the system are identified. Third, the associated risks are calculated, and evaluated with respect to the risk evaluation criteria as specified during the context establishment (see Section 2.4.1). The risk assessment process can be decomposed into: risk identification, risk estimation and risk evaluation.

Risk Identification

The objective of the risk identification process is to determine the events capable of causing a potential impact, and to offer a preview of how, when and where this impact will occur. First, the expert begins by listing all the information assets in the predefined perimeter. An asset is an element that possesses a value for the organization, and therefore needs protection. Obviously, these assets are not necessarily physical (e.g. data, software). Second, the expert identifies all the threats for the system. Each threat is capable potentially to harm the assets of the system. The source of the threats may be natural or human. Third, the expert lists the set of security measures which are already deployed in the system. This allows the expert to avoid the deployment of any useless or redundant security measure in the future. Moreover, the expert can withdraw the ineffective and unjustified security measures. Fourth, the expert identifies the consequences due to the potential confidentiality, integrity and availability losses of the assets. At the end, the expert has a list of security incidents' scenarios, with their consequences on the affected system's assets.

Risk Estimation

The objective of this process is to estimate, for each predefined incident scenario (see Section 2.4.2.1), the associated risk magnitude. Risk estimation can be quantitative or qualitative. In general, the experts proceed first with a qualitative estimation as a first indication of risks in the system, followed by a quantitative estimation for the most important risks. The qualitative approach uses a scale of qualitative attribute to represent the magnitude of the consequences and the likelihood of a given scenario (e.g. low, medium and high). The main advantage of this approach is its simplicity and understandability by all the concerned employees. However, it is obvious that such an approach is subjective and not precise. The quantitative approach uses a scale of numerical values to represent the consequences and the occurrence likelihood of a given scenario. Even though such an approach is more precise and objective, it requires precision and exhaustive data and numerical values (e.g. numerical audits, previous statistics and past incidents). In case of unavailability of such data, the precision and utility of the quantitative approach become just an illusion.

In order to estimate the risk of each predefined scenario, the experts must first estimate (i) the consequences and the (ii) occurrence likelihood of the scenario.

The objective of consequence's estimation is to assess the impact on the organization, due to the security incident scenario which harms and induces a loss of confidentiality, integrity or availability of one or several assets. Therefore, the expert must consider the values of the assets, and the indirect consequences on the organization's activities (e.g. production decrease, legal and regulatory consequences). Afterwards, the expert estimates the occurrence likelihood of each scenario, relying on his experience, previous statistics, the effectiveness of the existing security measures. Finally, the likelihood and the consequence of each scenario are combined to estimate the associated risk. For this purpose, the expert applies one of the existing functions (e.g. product, 2D-matrix).

Risk Evaluation

At this stage, the expert possesses a list of incident scenarios with the associated estimated risks (with the consequences and the likelihood). The risk evaluation process consists in comparing the estimated risk against the risk evaluation criteria that were specified during the context establishment (see Section 2.4.1), in order to determine the significance of the risk. Clearly, the evaluation criteria consider the organization's activities and objectives. Moreover, the expert considers the confidence level of the estimated risks. At the end of this process, the expert establishes a prioritized list of risks that must be treated and sorted with respect to their criticality.

Risk Treatment

Once the expert has established a prioritized list of unacceptable risks, the expert undertakes the risk treatment process. The objective of this process is to select the appropriate security measures in order to address and treat these risks.

In the case where considerable risk reductions can be obtained with little cost, the associated options must be selected. Otherwise, the expert must decide if the risk reductions are worth the cost of the security measures. Ultimately, the expert must reduce the neg- ative consequences of the risks as much as possible, by establishing the most appropriate and efficient treatment plan, while considering the technical and organizational constraints. Afterwards, the residual risks must be calculated. If the residual risks are not satisfactory, another iteration or risk treatment may be needed.

As shown in Figure 2.6, the expert has four options: risk reduction, risk maintenance, risk avoidance and risk transfer.

The risk reduction consists in selecting and deploying security measures which decrease the risks, such that the new residual risks are assessed and considered acceptable. The selection of these security measures must consider the risk acceptance criteria (see Section 2.4.1), and the deployment costs of these measures. Ultimately, these security measures must consider the financial, technical, operational and legal constraints. In general, security measures offer one or several protection types: prevention, impact reduction, dissuasion, recuperation, etc. Therefore, the security measures reduce the likelihood or the impact (or both of them), which leads consequently to an overall risk reduction.

The risk maintenance consists in simply maintaining the risk, without any action. This is the case of risks that already meet the acceptance criteria. Therefore, there is no need to implement associated security measures.

The risk avoidance consists in avoiding the situation which leads to this risk. This option is undertaken for the risks that are considered as too high, while implementing other treatment options is considered too expensive. In this case, it is possible to decide to completely avoid this risk, and thus abandoning one or several activities, or changing the conditions in which these activities are performed. For instance, if the risks of natural incidents are considered too high, it is wiser to move completely to another location where the risk is far lower. Another example is the risk of laptop theft: the expert may decide to avoid this risk by using desktop computers instead.

The last treatment option is the risk transfer. It consists in transferring the risk to a third party who is capable of managing it more effectively. This implies that the risk is shared with external parties, which can be done for example via insurance companies. An insurance company takes in charge the incurred consequences of the risk. Another example is to subcontract to another partner the surveillance (and the response against internal or external attacks) of an information system. It must be noted that even though it is possible to transfer the management responsibility of the information system, it is generally impossible to transfer the legal responsibility of an impact.

Risk Acceptance

The risk acceptance is the last step of the risk management process. At this stage, the risk treatment plan is approved, and the residual risks are officially and formally accepted. In some cases, the residual risks do not meet the acceptance criteria, however the expert decides to accept these risks due to strong justifications (e.g. the benefits associated with the risk are very high). In reality, this means that the acceptance criteria as established in the context establishment phase must be revised. However, the expert accepts these risks, backed with strong justifications, in order to avoid conducting a whole new iteration of the security management process.

Discussion

In this thesis, we follow the same global risk management procedure (see Figure 2.5) shared by the different existing methodologies. However, we propose a new risk assessment method adapted for simultaneous attacks. In other word, the method considers the interaction aspects between attackers such as coordination, and concurrency.

Response Taxonomies

Several taxonomies of response systems were proposed in the recent years. All these taxonomies have similar objectives, that is to provide a comprehensive insight on the existing intrusion response systems (IRSs). These taxonomies classify the IRSs according to the most relevant and exhaustive criterion.

Wang et al.'s Taxonomy

Wang et al. present a taxonomy called 5W2H [WWL + 06], that aims at answering the following questions: when, how serious, where, how to, what, who, and why. In this taxonomy, the first dimension is the time (i.e. when), which categorizes the responses as before the attack, during the attack, and after the attack. The how serious dimension estimates how serious the potential damage might be. The where dimension determines whether the attacker is an insider or an outsider. The how to dimension identifies the type of the attack (e.g. confidentiality, integrity). The fifth dimension (i.e. what) identifies the targeted asset (e.g. router, firewall, server). The who dimension is the type of the attacker. The last dimension identifies the plan and the objective of the attacker. The main objective of the attacker may be vandalism, theft, etc. Figure 2.7 illustrates the 5w2H taxonomy. We note that this taxonomy considers important properties for intelligent and global response systems. Indeed, an appropriate response measure must not be statically associated only with an attack's type (i.e. the why dimension), such as simple intrusion prevention system (e.g. Snort 9 ). This taxonomy is adapted to large systems with different assets, as it considers the targeted asset's type (i.e. the what dimension) in order to identify the most appropriate response measure. Finally, Wang et al.'s taxonomy takes into account the possibility of sophisticated and coordinated attacks, which can be driven by different motivations and objectives (i.e. the who and why dimensions). Such factors are essential for advanced and adaptive decision procedure for intelligent response systems.

5W2H Taxonomy

Low

Stakhanova et al.'s Taxonomy

In [START_REF] Stakhanova | A cost-sensitive model for preemptive intrusion response systems[END_REF], Stakhanova et al. try to establish a unique vocabulary for intrusion response systems, by using the same terms that are already used in the field, while finding new terms for newly described classifications. Afterwards, the authors propose a complete taxonomy, adapted to current and advanced response systems. They classify response systems by degree of automation. Response systems may be: (i) notification systems, (ii) manual response systems, and (iii) automatic response systems. The proposed taxonomy is given in Figure 1. In the reminder of this section we provide details on each of the categories in the given classification. Intrusion response systems can be classified according to the following characteristics:

• Activity of triggered response -Passive: Passive response systems do not attempt to minimize damage already caused by the attack or prevent further attacks. Their main goal is to notify the authority and/or provide attack information.

-Active: As opposed to passive systems, active systems aim to minimize the damage done by the attacker and/or attempt to locate or harm the attacker.

The majority of the existing intrusion detection systems provide passive response. Among 20 IDS 3 Ability to Adjust Response systems may be static or adaptive. The former offers a selection mechanism which remains the same during the attack period; while the latter has a response selection procedure adjusted with the continuously changing environment.

Response Time

The response can be proactive or delayed. Proactive response systems allow to anticipate the incoming intrusion, before the attack has reached (or affected) the resource. On the other hand, response activation can be delayed until the attack has been confirmed. However, such response systems leave more time to the attacker, allowing potentially more damage to occur. We can consider a proactive response system as an incident prevention measure, and a delayed response system as an attack handling measure.

Ability to Cooperate Response systems can be either autonomous or cooperative. Autonomous response systems handle the detected attacks independently, and only at the level they were detected. On the other hand, a cooperative response system is composed of a set of response systems. These response systems (which can be autonomous), combine their action to deploy a response strategy globally in the monitored system. Such cooperative systems require coordination and communication between their components. However, they provide a more effective response, and achieve better performance in terms of response speed and damage area containment.

Response Selection Mechanism

The response systems, in order to select the appropriate countermeasure, can adopt a (i) static mapping, (ii) dynamic mapping, or (iii) cost-sensitive mapping. The response systems with static mapping map each alert to a predefined response. Thus, they are easy to implement and maintain. However, they are very predictable and thus vulnerable. Moreover, these response systems do not consider the state of the monitored system, nor the impact of launched responses on other system's services and components. Therefore, such response systems are not convenient for large systems which experience a large number of threats and continuous changes in the systems' states. These factors turn the building process of such decision tables into a tedious task prone to errors. Response systems with dynamic mapping rely on a predefined set of responses. However, as opposed to static response systems, the exact countermeasure is determined in realtime by considering additional factors related to the attack occurrence (e.g. attack confidence, attack severity, past experience). This approach provides a fine-grained control over the response. Cost-sensitive response systems can be viewed as a particular form of dynamic mapping. In such response systems, the response selection procedure is dynamic, and depends on the attack occurrence. Moreover, the selection procedure considers mainly the impact of the attack on the monitored system, and the cost of candidate countermeasures. For instance the response systems, presented in [START_REF] Toth | Evaluating the impact of automated intrusion response mechanisms[END_REF] and [START_REF] Balepin | Using specification-based intrusion detection for automated response[END_REF], model the dependencies among the assets (i.e. resources) of the system in order to evaluate the impact of candidate countermeasures. Moreover, Lee et al. identify in [LFM + 02] the following three factors: operational cost which includes the cost induced by the detection procedure of the attack, damage cost that could be potentially incurred to the monitored system due to the attack, and response cost which is the operational cost of the response. Indeed, an accurate assessment of cost-related metrics is the main challenge for such approach: the major downside is the need to update cost-related factors and metrics over time.

Kanoun et al.'s Taxonomy

In [KSCB + 13], Kanoun et al. propose to go beyond Stakhanova et al.'s taxonomy and propose risk-aware response models. By adopting a risk-sensitive response, they can meet the most important requirements (i.e. proactive, adaptable and cost-sensitive). If we examine the definition of risk (see Section 2.4), it is always a combination of the likelihood of the threat with its impact. Therefore, a risk assessment approach supposes that the threat has not yet been observed. Consequently, a risk-aware response system is proactive. Moreover, it is also cost-sensitive, because the impact is the second element of the risk. Furthermore, a real-time risk assessment ensures that the response system is adaptable, as the risk evaluation depends mainly on the system state, and the attack progress. Finally, the risk acceptance must guarantee that the residual risks are explicitly accepted by the organization.

On the other hand, Kanoun et al. also consider the deactivation of the response. Response actions are often temporary measures which are activated and deployed to counter a detected threat. Therefore, a response once activated should be at certain time deactivated, if possible. Existing taxonomies and response systems do not take into account the deactivation phase in the response procedure. Thus, response actions (or systems) cannot be classified with respect to their effectiveness, lifetime, defeasibility, etc. which are relevant properties for the deactivation phase. Therefore, Kanoun et al.'s present a temporal taxonomy, which is relevant to the deactivation phase of the response. This taxonomy, presented in Figure 2.9, distinguishes two major classes of responses: one-shot (e.g. closing a connection) and sustainable (e.g. patching software, blocking a machine, suspending an account, etc.). Contrarily to a one-shot response, a sustainable response has a lifetime which sustains for a period of time (which may tend to infinite) and its effectiveness is not limited to a single attack occurrence. Therefore, the activation of a sustainable response can be effective against future attack occurrences, until this response is deactivated. Sustainable responses were then classified into: defeasible and indefeasible responses. Unlike a defeasible response, an indefeasible response cannot be deactivated, or its deactivation requires exceptional effort. Examples of this class include: deleting an account, patching an OS, patching a software, etc.. 

Discussion

As you can notice, all response selection methods of nowadays response taxonomies, are either based on a static mapping, or a dynamic mapping, or a cost-sensitive mapping, or a risk-sensitive mapping. Consequently, a security expert intervention is needed to, first, understand and reason about each threat, and then, specify the set of candidate responses that can mitigate the risk of this threat. Besides, this hard-wire response approach may become predictable by attackers and thus vulnerable. Indeed, an attack entity blocked by a predefined response may take advantage of the knowledge it gains about this response and may elaborate a strategy to bypass the response system when retrying his attack on the system later on.

In the remainder of this thesis, we propose to go beyond the existing taxonomies and propose a response system (in Chapter 5) that designs responses on the fly avoiding thereby the static mapping between responses and threats.

Response Systems

The need of more advanced response systems has driven the research community to propose several response models. As we see below, each of them adopts a different and novel approach to enhance the response selection procedure. However, a clear distinction can be made between response systems whether they are cost-aware or risk-aware. A cost-aware response system considers the cost of the responses and the impact of the attacks in its decision process. Whereas, a risk-aware response system goes beyond the cost and impact metrics to consider the risk. In the remainder of this section, we will provide a survey on the most important models, and discuss their advantages and shortcomings.

Cost-aware Response Systems

Among all cost-aware response systems, such as Lee et al.

[LFM + 02], Toth & Kruegel [TK02], Balepin et al. [BMRL03], Foo et al. [FWM + 05][WFM + 07],
etc., we present here the most recent and challenging ones. [START_REF] Stakhanova | A cost-sensitive model for preemptive intrusion response systems[END_REF]. This model considers and compares the costs of deploying a response to the costs of damage caused by a non-responded attack. Additionally, a methodology for adapting responses in a changing environment, by considering the previously applied countermeasures through a feedback, is proposed. The method proposed in this approach uses two very simple metrics: (i) the response cost RC, and (ii) the damage cost DC. While the former represents the impact of a countermeasure on a system, the latter damage cost generally quantifies the impact incurred by the monitored system due to the attack's occurrence. As in other proposed systems, the authors recognize that assigning suitable values to those metrics is a main challenge, and need a high level of expertise and knowledge. First, a preliminary set of applicable countermeasures is selected. A countermeasure belongs to this set if DC × confidenceLevel > RC, where confidenceLevel is the probability, that the attack is actually taking place. Second, the most appropriate countermeasure of the previous set will be selected. The selection procedure is based on metrics: (i) the Success Factor SF, and (ii) the Risk Factor RF. The former is the percentage of times, that this response succeeded in the past, whereas the latter represents the negative impact, that this response has on the monitored system. Clearly, the countermeasure which provides the maximum benefit at the minimum risk is selected. Thus, the response r s that has the highest expected value EV (r s ) will be selected to counter the attack sequence S, given that: EV (r s ) = (P r succ (S) × SF ) + (P r risk (S) × (-RF )) P r succ (S) is the probability that attack-sequence S occurs, while P r risk (S) = 1-P r succ (S). The Success Factor is adaptive, and updated continually through a feedback: it is increased by one if the response succeeds in terminating the attack, otherwise it is decreased by one.

Stakhanova et al.

Stakhanova et al. propose a cost-sensitive intrusion response system in

The response system proposed by Stakhanova et al. is automated and cost-sensitive. It is also pre-emptive because the response are triggered before the attack completes. Additionally, the response system is adaptive, given that the Success Factor is updated each time a response is triggered, whether successfully or not.

On the other hand, a main challenge is setting accurate measurement of these cost factors. This requires a high level of knowledge and expertise. Moreover, these values must be updated, considering the dynamic nature and continuous evolution of monitored systems. Finally, the authors defined the risk of a response as an impact. This is a misuse (see Section 2.4) of the definition of risk.

Jahnke et al.

In [START_REF] Jahnke | Graph based metrics for intrusion response measures in computer networks[END_REF], Jahnke et al. model the monitored system using directed graphs. Afterward, quantified metrics derived from these graphs, are calculated to evaluate the effects of a response action. Therefore, the most appropriate response can be selected. The paper considers only the availability property of the monitored system, while confidentiality and integrity properties are excluded. Similarly to [START_REF] Toth | Evaluating the impact of automated intrusion response mechanisms[END_REF], the authors consider the users and the services as resources. Every resource has a certain availability, expressed as A(r) ∈ [0, 1]. The availability value of a resource can be both inherent, and a result of the propagation of modified availabilities of other resources on which the currently considered one depends. Therefore, the authors define for each resource r an intrinsic availability A I (r), and a propagated availability A P (r). The availability of a resource r can be computed as:

A(r) = A I (r).A P (r)
We note that, different kinds of dependencies exist between resources. The users depend on services in the monitored system, and services often rely on other services, e.g. a network communication system depends on the availability of a directory service. In order to model the dependencies between the system's resources, the authors define a directed dependency graph. Whenever a resource r depends on the resource s concerning its availability, the edge (r, s) is added to the graph. Each edge of this graph is associated with a subjective weight w(r, s) (between resource s and resource r). The dependency types that are considered by the authors are: mandatory, alternative, combined, m-out-of-n and indirect.

Each time the diagnosis systems indicate a modification in the availability of a resource, the availability of resources which directly or indirectly depend on the modified one, need to update their values immediately. The propagated availability values A P (r) are updated using the dependency graph and an inverse breadth-first-search (BFS) algorithm. The intrinsic values A I (r) remain constant as long as there is no indication of a change. Ultimately, the availability of the entire system A(G) is calculated.

Regarding response, the effectiveness of a candidate countermeasure can be evaluated. More precisely, the system's graph for the system state prior and after the activation needs to be generated. The candidate countermeasure which leads to the highest A(G) is selected.

The limitation of this model is that it focuses only on the availability of the resources. Neither the confidentiality nor the integrity of the resources are considered when selecting the appropriate countermeasure.

Kheir et al.

While previous work considers only the availability of resources in the monitored system (see Section 2.6.1.2), Kheir et al. [KDCB + 09] extend the previous approach, by considering the confidentiality and integrity dimensions in the dependency graphs. The confidentiality and integrity properties of a resource may only be verified, if the resource itself is available. Therefore, the authors consider the effect of the availability level both on confidentiality and integrity levels.

The major challenge is the system's modeling, given that the model has three layers: confidentiality, integrity and availability. In the dependency graph, each edge is associated with a 3 × 3 weight matrix, while in the previous work (see see Section 2.6.1.2) each edge was associated with a single weight value. Consequently, the system modeling procedure requires from the administrator more effort and higher expertise's level.

The paper considers the following types of countermeasures:

• Countermeasures that deactivate (shut down) a given component (e.g. delete file, remove account, kill process, stop service, quarantine host, etc.). A deactivated component does not propagate confidentiality and integrity impacts. However, as it is unavailable for its dependent resources, it propagates availability impacts. • Countermeasures that alter dependencies: dependency alteration makes only the dependency unavailable for a given antecedent resource with responses (e.g. block connection, unmount file system, change process owner). It makes the dependency unavailable only for the concerned resource, but not all the children of a specific resource.

The model proposed in this paper does not consider responses that partially restore a service. Countermeasures that restore resources and partially reduce attack impacts were not considered in this model.

Risk-aware Response Systems

Among all work on risk assessment towards automated response systems such as Gehani et al. propose a risk assessment model based on attack graphs. Attack graphs are first generated based on the topology of the system, and the vulnerabilities existing in this topology. A subset of the attack graph nodes are selected as ultimate attack objectives. Second, the authors present general guidelines to calculate the likelihood of these attack objectives, using the pre-generated attack graphs. Third, they associate static monetary costs to these attack objectives. Additionally, they associate to each security measure a predefined cost value. Afterwards, they present a trade-off between the cost of the security measures, and the risk reduction induced by these measures, to decide whether the security measure is effective or not.

The proposed model has two major limitations: First, the attack graphs are only based on the vulnerabilities specified on the network topology level. This limits inevitably the types of the attacks that can be handled, because some attack steps may be performed without exploiting a topology level vulnerability (e.g. the weakness of a network user's password can lead to an active password cracking attack). The absence of these types of attack steps in the attack graphs can lead to inaccurate values of attacks likelihood. Second, the attack graphs are generated automatically. However, the response measures must be manually specified and associated to one or several nodes in the attack graph. The manual insertion of response measures is error-prone, and requires experts' skills and knowledge.

Kanoun et al.

In [START_REF] Kanoun | Intelligent risk-aware system for activating and deactivating policy-based response[END_REF], Kanoun et al. propose monitoring and response systems capable of managing large information systems or critical infrastructures. These systems are able to cope with the increase in number and sophistication of cyber-attacks. Moreover, they can be either fully automated, or assist the security officer in order to launch the most appropriate response.

First, they proposed a global response framework, with two major intelligent levels: tactical and strategic response. The tactical level offers an efficient response workflow to counter an ongoing attack occurrence. However, it is not adapted to large-scale attacks, and cannot handle normally future attack occurrences. On the other hand, the strategic level is specified using response policies, which are ideal to address large-scale attacks. Moreover, it offers a sustainable response which remains effective against future potential attack occurrences.

Second, they presented a risk-aware framework for tactical response. This framework allows the administrator (or the system), to prioritize ongoing attacks. This framework is based on a real-time risk assessment using attack graphs which are generated by correlation engines. Furthermore, it provides a response selection procedure, in order to identify the most appropriate response, which leads to a lower overall risk. As the success likelihood is a fundamental factor to calculate the risks of detected attacks, Kanoun et al. presented a real-time success likelihood assessment model. This model transforms the generated attack graphs into dynamic Markov Models, and calculates the success likelihood metric of each attack objective using a logarithmic scale. The attack's progress and the system's dynamic state are considered when calculating and updating the success likelihood. They presented also an intelligent response system, based solely on the success likelihood factor. This response system highlights the relevance of the success likelihood metric, and shows how it affects the prioritization of candidate countermeasures: a given countermeasure at the beginning of an attack can turn completely useless when the attack progresses, or the system's state changes.

Third, a risk-aware framework was proposed to manage the strategic response. This framework assists the administrator to decide when strategic responses should be activated and deactivated. Similarly to the tactical level, both the impact and the success likelihood factors are considered, as depicted in Figure 2.10 presenting their response system architecture.

Although the particularity of this work in considering the risk metric for responding to attacks, it does not process a prior assessment of the risk mitigation that a response can guarantee, before activating it. Actually, when different response possibilities are presented to counter an attack, they base their decision solely on the response cost. However, in this case, the selected response is not necessarily the most effective one against the attack. From its original definition [START_REF] Kheir | A service dependency model for cost-sensitive intrusion response[END_REF], the RORI index has been extended by Gonzalez Granadillo et al. to evaluate the Annual Loss Expectancy (ALE) that results from an attack, as well as the Risk Mitigation (RM) level and the costs associated with the im-plementation of a particular security solution (Annual Response Cost (ARC)), taking into account the Annual Value of the Infrastructure (AIV). Equation 2.1 was, thus, proposed to calculate the RORI index:

RORI = (ALE × RM ) -ARC ARC + AIV × 100. (2.1)
The calculation of the parameters presented in Equation 2.1 follows the approaches proposed by Kosutic [Kos11], Locher [START_REF] Locher | Methodologies for evaluating information security investments, what basel ii can change in the financial industry[END_REF] and Lockstep Consulting [START_REF]Aguide for government agencies calculating return on security investment[END_REF]. The following is a brief description of each parameter:

• ALE refers to the impact cost obtained in the absence of security measures. ALE is expressed in currency per year (e.g. $/year) and includes loss of assets, loss of data, loss of reputation, legal procedures, loss of revenues from existing clients or customers, loss of revenue from potential clients, other losses, contracted insurance and the annual rate of occurrence. • AIV corresponds to the costs that the system is expected to have in an annual basis, regardless of the implemented responses. AIV is greater than zero (AIV>0), and it is expressed in currency per year (e.g. $/year). AIV includes the following costs: equipment costs, personnel costs, service costs, other costs and resell value. • RM refers to the risk mitigation associated with a given response. RM is calculated as the response surface coverage (sc) times its effectiveness factor (ef): RM = sc×ef . sc is the percentage of the attack surface that is covered and controlled by a given response. And ef considers the percentage of reduction of the total incident cost that is given from the enforcement of a security measure. RM takes values between zero and one hundred (0≤RM≤100). In the absence of countermeasures, RM equals 0%. Authors considered that sc is a value inherent to the type of attack and the system to which it affects, making it possible to obtain different surface coverage values for the same response applied in different attack scenarios. For instance, blocking a suspected user might cover 85% of the attack surface, while increasing the surveillance to punctually block operations covers only 60% of the attack surface. Authors assumed that these figures can be obtained based on released tools (e.g. Microsoft Attack surface analyzer 1.0 released10 ) that assist security administrators in the identification and analysis of the attack surface. The percentage of assets and threats that are controlled by a given response represents the sc. In order to quantify the effectiveness factor, authors considered the risk of an attack (R) as the product of its vulnerability (V), likelihood or probability (P), and severity or consequence (C), (i.e. R = V × P × C).

A risk can be mitigated by decreasing the vulnerability, probability and/or consequence. Therefore, ef is calculated as the risk reduction percentage that results from the application of a given response. For instance, if the risk of a given attack before response is R1 = 10 × 7 × 7 = 490 and the resulting risk after the application of a particular response is R2 = 7×6×6 = 252, then EF = 100-(R2×100/R1) = 51.43% • ARC refers to the annual cost associated with a particular response. ARC is always greater than or equal to zero (ARC≥0), and it is expressed in currency per year (e.g. $/year). It includes Direct costs, such as, the cost of implementation (Ci), and the cost of maintenance (Cm), and other direct costs (Odc); and indirect costs(Ic). Thus, ARC = Ci + Cm + Odc + Ic, where: Ci refers the cost of deployment, installation and/or implementation of security measures to mitigate a given attack; Cm includes the cost of regular services (e.g. electricity, consulting, analysis, testing, etc.) that are needed for normal operations of the implemented response; Odc refer to all other direct costs (e.g. suppliers and partners) that are needed to put in place the response; Ic include all other costs, such as consequences that may originate the adoption of a particular response to legitimate users. For instance, requesting an additional authentication method to legitimate users may cause these users to unsubscribe from the service and search for another one.

Note that all the parameters composing the RORI are quantified. However, quantification is a task that requires expert knowledge, statistical data, simulation and risk assessment tools. Indeed, the main limitation of the existing RORI-based model is the accuracy in the estimation of the different parameters that compose the formula. More precisely, estimating the risk mitigation (RM) level of a particular response is difficult and requires a considerable effort. An accurate measure of this parameter is rather infeasible since it requires predictions of an event that has not yet occurred. Moreover, the RORI model presented here above does not consider interdependence among parallel responses (i.e. how the application of a system action affects the effectiveness of others). Finally, the model evaluates a solution over a given attack, but it does not consider the evaluation and selection of parallel solutions in a context of multiple attack scenarios. Consequently, (1) the case where a response launched against a given attack scenario promotes another attack scenario, and (2) the case where a single response mitigates the risks of several attack scenarios, are both not considered.

Discussion

We presented and discussed recently existing cost-aware and risk-aware response systems, and highlighted their advantages and their shortcomings. However, all these response systems suffer common limitations when dealing with simultaneous attacks. Actually, all of them handle simultaneous attacks separately, missing thereby the cases where attackers are coordinated or concurrent.

The followings are different problems that can occur owing to the existing response systems' limitations: First, until now, when a security expert predesigns one or several possibilities of response against a threat, the different responses are statically prioritized. The prioritization is either based on the expert knowledge, or on a comparison between RORI indexes [START_REF] Kheir | A service dependency model for cost-sensitive intrusion response[END_REF] [GGBDJ14] corresponding to the different responses. RORI indexes are usually assessed offline before running the system. However, in a reactive phase, when a system is effectively threatened by simultaneous threats, and that one of these threats becomes risky, the predesigned response with the highest priority against this threat may not be the most efficient one in the current situation. Actually, this response may have unexpected effects on the other ongoing threats. Consequently, the different response candidates should be dynamically co-simulated based on the current situation, and the one leveraging the highest risk mitigation, and the highest RORI calculated in real time, should be activated.

Second, when multiple ongoing threats become risky, and the system is designed to automatically launch multiple responses against these threats, some responses may be conflicting (an example of conflicted responses is provided in Chapter 5, Section 5.5.2). In [CCBB + 08], the different types of conflict between responses are described. And solutions to avoid conflicting situations propose to perform a static offline assignment of priority over conflicting responses. However, conflicts between responses can strongly depend on the current system's state and the dynamic allocation of resources. Hence conflicts between actions should be dynamically considered. Additionally, priorities between responses should be dynamically assigned, because they depend on: (1) the dynamic risk of each of the ongoing threats, (2) the risk evolution of a threat regarding the activation of a response corresponding to another threat, and (3) the indefeasibility of one of the conflicting responses, if any. In order to consider these factors, responses against the different threats should be dynamically designed considering the potential conflicts in the current state. Besides, in case of conflicts, the different conflicting responses should be co-simulated apart in real time and the one that returns the highest benefits and the lowest damages should be chosen.

Third, when predesigning responses, an expert may assign similar responses for different threats. However, if these threats appear simultaneously in the system, the same response will be activated and deployed multiple times. As an example, consider an Oracle Java machine (supporting version Java SE 6u75, 7u60, or 8u5). This latter is suffering from at least two vulnerabilities (CVE-2014-420911 and CVE-2014-4268 12 ) allowing remote attackers to affect confidentiality and integrity. Consider that two independent threats aiming at exploiting these vulnerabilities were simultaneously detected in the system. In order to prevent these threats from reaching their goals, two responses are predesigned by an expert. Each of the responses consists in first installing a patch against the corresponding CVE and then restarting the server for the patch to be effective. Consider that the server is running a profit-making service for the system, and its restart induces a temporary, but long, system unavailability causing losses to the organization. When these two responses are launched in parallel, the restart action may be triggered two times, each corresponding to an installed patch. Consequently, the system will incur two times losses related to a restart. Therefore, responses should be intelligently designed to avoid multiple executions of similar actions. In this example, an efficient design would be to first install both patches and then perform a single restart action once the patches installation is accomplished.

Forth, existing response systems do not take into account the timing at which responses should be launched. Once the risk of a given threat exceeds a certain threshold, responses are immediately activated. However, sometimes a single response can be sufficient to block different threats if launched at the right time. In other words, a response can be more beneficial if the system waits for some simultaneous attackers to reach a certain stage in their attacks sequence. A higher number of attackers would then be blocked at the same time (an example of such cases can be found in Chapter 5, Section 5.5). Thus an intelligent system providing an optimal timing of responses activation would enhance the responses efficiency.

In order to overcome these limitations, we propose throughout this thesis a risk-aware response system efficient against simultaneous attacks. Our response system affords a realtime design of candidate responses against simultaneous attacks. And then, it selects from the set of candidate responses, the one that offers an overall risk mitigation (i.e. the one that mitigates at most the risks of all simultaneous attacks), considering its cost and its collateral damage on the system.

Conclusion

Throughout this chapter, we raised different problems related to the state of the art, making security systems inefficient against simultaneous and coordinated attacks. In the remainder of this thesis, we overcome these problems by proposing a decision support system to counter such attacks, based on the different breakthroughs that we make in three major research fields: (1) the attack modeling (2) the risk assessment, and (3) the response management.

Chapter 3

Graphs Generation for Simultaneous Attack Scenarios 

Introduction

Among the numerous action schemes and attack modeling languages that we have presented in Chapter 2, such as LAMBDA [START_REF] Cuppens | Lambda: A language to model a database for detection of attacks[END_REF], JIGSAW [START_REF] Templeton | A requires/provides model for computer attacks[END_REF], Concurrent STRIPS [START_REF] Braynov | Representation and analysis of coordinated attacks[END_REF], and so on; we did not find an action description that corresponds to a Coordinated Attack CA. These languages are not able to model the main properties of coordination: (1) the required number of coordinated attackers, (2) the synchronization, and (3) the knowledge sharing between attackers. Therefore, we propose in this chapter a new generic action scheme fulfilling all coordination properties, and covering both individual and coordinated attacks.

Unfortunately, as we have discussed in Chapter 2, existing attack graph generation approaches (e.g. [START_REF] Cuppens | Alert correlation in a cooperative intrusion detection framework[END_REF], [START_REF] Sheyner | Tools for generating and analyzing attack graphs[END_REF] [JNOB05], [START_REF] Paul Ammann | Scalable, graphbased network vulnerability analysis[END_REF], [START_REF] Ingols | Practical attack graph generation for network defense[END_REF], etc.) are unable to represent coordinated attacks. This chapter constitutes thus an original contribution of our work that extends previous work on attack graphs restricted to individual and independent attacks. We, thus, propose a new method T that benefits from (i) our attack scheme, (ii) Set Theory and (iii) Graph Theory, to model Simultaneous Attacks Graphs (SAG).

Once SAGs are formally modeled, a programming logic language is needed to implement the attacks composing a graph and the graph generation method. The Situation Calculus (SC), a dialect of first-order logic with features to reason on changes due to action execution, is an adequate language for our case. SC provides second-order logic terms, making it able to model coordination properties, and thus, to model CAs. Besides, it affords means to describe concurrent actions, making it appropriate to model simultaneous attacks, whether being concurrent or simply independent. Another major advantage of SC is that actions can easily be correlated using theorem-proving and planning capabilities. Consequently, for a set of critical assets (or services) in a system, we can derive potential sequence(s) of correlated concurrent attacks that aim at deteriorating them. Hence, based on SC planning capabilities, we propose a Simultaneous Attacks planner (SAP) that dynamically takes a snapshot of detected attackers and system's state, to generate all simultaneous attacks scenarios these attackers may potentially execute in the system. These attack scenarios are those which will be transformed into graphs using T. Furthermore, we investigate the complexity and the performance of SAP regarding several factors (e.g. the number of attackers, the number of modeled attacks, and the length of attack scenarios). The experimentation shows that SAP is efficient for a medium size network (hundreds of machines), but less efficient for larger networks (thousands of machines). Hence, we propose an enhanced version of SAP, eSAP. By including a heuristic, we encourage the planner to prioritize CAs over IAs whenever it is possible, thereby reducing the search area. eSAP's performance is also investigated, and the experimentation shows that our heuristic lowers the complexity of the planner, regarding the number of attackers n, from o(n 3 ) for SAP, to o(n 2 ) for eSAP.

We also develop SAGG, Simultaneous Attacks Graph Generator, prototype to implement and experiment our proposal. The efficiency and accuracy of SAGG is investigated in a multi-service system use case.

The chapter is organized as follows. Section 3.2 presents our formal description of attacks. Section 3.3 formally defines SAGs. Section 3.4 presents the basics of SC and shows its efficiency in modeling IA, CA and concurrent attacks. Section 3.5 is organized as follows: first we explain the SC planning task, then we provide a description of SAP and eSAP, and discuss their complexities and performances based on experimentation's results. Section 3.6 presents a high-level architecture of SAGG. Section 3.7 applies SAGG to a multi-service system use case, and discusses the efficiency of our proposal. Section 3.8 highlights our proposal's breakthrough in attack graph generation regarding existing work, and discusses its limitation. Finally, Section 3.9 concludes this chapter.

Coordination-aware Action Scheme for Attacks

In order to formally describe all types of attacks, we model system's state in terms of predicates. And we consider three disjoint sets of predicates:

• The set Γ of system-related predicates: it includes predicates that describe the evolution of system's state. Attributes of a system-related predicate are always system assets, e.g. is_on(Server). • Two disjoint sets A and B of attacker-related predicates: they include predicates that describe the evolution of the attacker's state. The subject of an attacker-related predicate is always an attackerID which is a unique way of identifying an attacker. A is the set of predicates describing the attacker's privilege relatively to the system assets, e.g. is_registered(AttackerID, SIP _Server). B is the set of predicates describing the knowledge gained by an attacker after exploiting a particular characteristic of the system, e.g. knows(AttackerID, is_on(U ser)).

We model attacks by the generic Definition 1 specifying: the subject(s) performing the action, the action's object(s) and six different subsets of A, B and Γ. These attack patterns are interpreted by the action precondition and postcondition. The precondition is a conjunction of one logic condition on the required number of participating subjects, and three logic conditions on the action's predicates (in A X , B X and Γ X ) to be satisfied in order to start executing this action. The postcondition is a conjunction of three logic conditions on the action's predicates (in A X , B X , and Γ X ) that become true after executing it. When several subjects participate in an action, we denote them by coordinated subjects. Besides, we adopt the most pessimistic hypothesis from the defender point of view: We assume that if there is knowledge that should be acquired by all coordinated subjects in the action's precondition, it is sufficient that one of the subjects has this knowledge, to consider that all of the others have it. Actually, we are based on the fact that knowledge can be shared between coordinated subjects. Hence, every predicate in B X needs to be fulfilled by only one of the subjects. Similarly, for the knowledge gained after the action's execution, we consider that each coordinated subject fulfills all the predicates in B X .

Definition 1 Action_X(subject X , objects X ) Attack Patterns:

subjects X = {s 1 , s 2 , ..., s o } ; objects X = {o 1 , o 2 , ..., o n } A X = {α 1 , α 2 , ..., α k } ; B X = {β 1 , β 2 , ..., β l } ; Γ X = {γ 1 , γ 2 , ..., γ m } A X = {α 1 , α 2 , ..., α k } ; B X = {β 1 , β 2 , ..., β l } ; Γ X = {γ 1 , γ 2 , ..., γ m } Precondition: min X < | subject X | ≤ max X ∧ [∀α ∈ A X , ∃ - → o ∈ objects X , ∃ - → s ∈ subjects X | α( - → s , - → o )] ∧ [∀ β ∈ B X , ∃ - → o ∈ objects X , ∃s ∈ subjects X | β(s, - → o )] ∧ [∀ γ ∈ Γ X , ∃ - → o ∈ objects X | γ( - → o )] Postcondition: ∀ α ∈ A X , ∃ - → o ∈ objects X , ∃ - → s ∈ subjects X | α ( - → s , - → o ) ∧ ∀ β ∈ B X , ∃ - → o ∈ objects X | ∀s ∈ subjects X , β (s, - → o ) ∧ ∀ γ ∈ Γ X , ∃ - → o ∈ objects X | γ ( - → o ) 3.2.1 Individual Attacks (IA)
IA is an elementary action executed by a single attacking source. The subject of an IA is an AttackerID. Hence, min IA =0 and max IA =1. For example, the attack patterns of an IA performed by the attacker AttackerID and consisting in cracking the password of a system user U through an authentication server S, can be represented as follows:

IA_passCrack({AttackerID}, {S, U }) A passCrack = {network_access(AttackerID, S)} B passCrack = {knows(AttackerID, is_on(S)), knows(AttackerID, user_access(U, S))} Γ passCrack = {is_on(S), user_access(U, S)} A passCrack = {is_connected_as(AttackerID, U, S)} B passCrack = {knows(AttackerID, password(U, S))} Γ passCrack = {¬user_access(U,S)}

Coordinated Attacks (CA)

A CA is an action made of joint individual actions executed by several collaborating attackers. Hence, the subject is a Group of Coordinating Attackers GCA = {attackerID 1 , ..., attackerID o }.

Here, we need to specify which attacker of the group fulfills which predicate of the CA subsets. Thus, we distinguish three types of CAs depending on the type of collaboration between the attackers: (a) CA with Load Accumulation (CALA), (b) CA with load distribution (CALD), and (c) CA with Role Distribution (CARD). Figure 3.1 clarifies our attacks classification. The attack patterns of each type differ in, (i) the attackers' required number, (ii) the A-related conditions, and (iii) the A -related conditions. Therefore, we will only consider these three distinguishing patterns.

CA with Load Accumulation (CALA)

CALA is a CA that is beyond the capability of a single attacking source, and for which attackers accumulate their capacities offering a distributed and simultaneous execution of this action. Definition 2 describes the distinguishing terms of a CALA_X. Although every attacker of the GCA group executes exactly the same individual action, the overlapping of all the individual effects leads to a compromised state. Consequently, each attacker fulfills all attacker-related predicates in the A CALA_X set. And after a CALA is executed, all attackers gain the same system privileges α . Additionally, CALA_X needs a minimum number min CALA_X of coordinating attackers to be successful. This number is striclty greater than one, and can be estimated based on the characteristics of the attack target (i.e. objects). 

Definition 2 CALA_X(GCA X , objects X ) | GCA X |≥ min CALA_X A X -condition: ∀α ∈ A X , ∃ - → o ∈ objects X | ∀attackerID ∈ GCA X , α(attackerID, - → o ) A X -condition: ∀α ∈ A X , ∃ - → o ∈ objects X | ∀attackerID ∈ GCA X , α (attackerID, - → o )
An internal DDoS attack is an example of a CALA. Consider a group of several dozens compromised machines connected to a company's network with a limited bandwidth in sending requests to a server S. Hence, the flow rates of attacking sources is also limited by the compromised machines bandwidth. However, to disrupt server S, the incoming flooding traffic should exceed a certain threshold. This can be attained if coordinated attacking sources join simultaneously their flooding actions to deliver a global output rate that exceeds the server capacity. If we consider that S becomes overloaded if flooded simultaneously by ten machines, then the system is threatened by a DDoS attack. Here are the signature and the subsets of a CA corresponding to a DDoS attack:

CALA_DDoS(GCA DDoS , S) min DDoS = 10 A DDoS = {network_access(attackerID, S)}; A DDoS = {} B DDoS = {knows(attackerID, is_on(S))}; B DDoS = {knows(attackerID, DDoS(S))} Γ DDoS = {is_on(S)}; Γ DDoS = {DDoS(S)} Sybil attack [LSM06] [YKGF06]
is another example of a CALA. Peer-to-peer and other distributed systems are known to be particularly vulnerable to Sybil attacks. In this attack, a malicious user obtains multiple fake identities and pretends to be multiple, distinct nodes in the system. By controlling a large fraction of nodes, the malicious user is able to 'out vote' the honest users in collaborative tasks. Sybil attack is considered a CALA because it can not succeed if the number of coordinated attackers, which are here represented by the nodes having fake identities, is not sufficient to manipulate the malicious user's reputation.

CA with Load Distribution (CALD)

CALD is a shareable attack accomplished by a group of attackers. By contrast to CALA, CALD is an action which execution can be either done sequentially by a single attacker, or partitioned into several independent parts performed simultaneously by several attackers. Consequently, a CALD_X must have the same predicates in its subsets, as those of the IA of the same attack. Hence, A CALD_X = A IA_X , B CALD_X = B IA_X , etc. Major advantages of distributing the action load are, to allow collaborating attackers to achieve their attack in shorter time, and to avoid detection. Especially considering that nowadays Intrusion Detection Systems fail to correlate actions with different subjects. Definition 3 describes the distinguishing terms of a CALD_X. Here, collaborating attackers race to get a knowledge of the system. Therefore, they execute similar actions, but with different variants. The one who executes the action with the correct variant gets the knowledge first, and acquires a certain privilege, accomplishing by this the goal of the group. Consequently, each attacker of the GCA should fulfill all the attacker-related predicates of A X set. After a CALD is executed, attacker-related predicates of A X set are fulfilled by a single attacker (i.e. the one who tried the correct variant). Additionally, unlike other CA types, only two attackers are sufficient to do a CALD.

Definition 3 CALD_X(GCA X , objects X ) | GCA X |≥ 2 A X -condition: ∀α ∈ A X , ∃ - → o ∈ objects X | ∀attackerID ∈ GCA X , α(attackerID, - → o ) A X -condition: ∀α ∈ A X , ∃ - → o ∈ objects X | ∃!attackerID ∈ GCA X , α (attackerID, - → o )
A coordinated password cracking attack is an example of a CALD. Consider a server S that handles confidential information in a company, and two internal machines compromised by two collaborating attackers. Consider also that one of the attackers discovers the identity of a legitimate user U and communicates it to his partner. In order to guess the victim's password, attackers send REGISTER messages to the authentication server with different passwords using a dictionary. By dividing the dictionary into equal parts that each coordinating attacker uses for its registration attempts, attackers are able to divide the load and time to guess U 's password. The first who finds the password will be connected from U account, accomplishing the goal of the GCA. CALD_passCrack(GCA passCrack , S, U ) is the signature of a coordinated password cracking attack. Attacker related and system related sets corresponding to the pre/postconditions of this action are the same as those of the individual password cracking attack of Section 3.2.1.

The distributed port scan attack [START_REF] Riquet | Large-scale coordinated attacks : Impact on the cloud security[END_REF] is another example of a CALD. This attack consists in splitting the whole set containing targets and ports between multiple scanners. Each scanner has a sub-task to perform, and then it communicates the results to the other scanners.

CA with Role Distribution (CARD)

CARD is a multi-task action, for which attacking sources distribute the roles or the tasks to accomplish their goal and avoid detection. By contrast to other CA types, tasks per-formed by each coordinating attacker are different, and should be simultaneously executed. Note that, some multi-task actions can be done by a single attacker if he/she is able to execute more than one action at the same time. Therefore, similarly to CALD, some CARD can have the same predicates in their subsets, as those of the IA of the same attack. Moreover, as each coordinating attacker is allocated a different task, there are attacker-related predicates in A CARD_X that must be fulfilled by only one attacker. Besides, the number of coordinating attackers who can participate is limited to the number of tasks max CARD_X that should be simultaneously executed. Consequently, any additional attacker to a group of max CARD_X attackers will not bring additional help. Definition 4 describes the distinguishing terms of a CARD_X. Provided that attackers do different tasks, the A X -condition states that they do not necessarily gain same privileges.

Definition 4 CARD_X(GCA X , objects) 2 ≤| GCA X |≤ max CARD_X A X -condition: ∀α ∈ A X , ∃ - → o ∈ objects X | ∃attackerID ∈ GCA X , α(attackerID, - → o ) ∧ ∃α ∈ A X , ∃ - → o ∈ objects X | ∃!attackerID ∈ GCA X , α(attackerID, - → o ) A X -condition: ∀α ∈ A X , ∃ - → o ∈ objects X | ∃attackerID ∈ GCA X , α (attackerID, - → o )
It is possible to consider a coordinated version of the Mitnick attack [START_REF] Northcutt | Network Intrusion Detection: An Analyst's Handbook. Voices that matter[END_REF] as an example of a CARD. Two compromised attacking agents will cooperate in order to hack a machine. First, one of the agents detects a trust relationship between two hosts h 1 and h 2 . Afterwards he determines the TCP sequence number of h 2 . Attackers can now distribute the tasks: the first executes a SYN flooding on host h 1 as a Denial of Service attack. Meanwhile, the second spoofs the IP address of h 1 to send a SYN request to h 2 . Using a correct TCP sequence number, he compromises h 2 . Here are the signature and the subsets corresponding to the coordinated Mitnick attack.

CARD_M itnick(GCA

M itnick , h 1 , h 2 ) max CARD_M itnick = 2 A M itnick = {network_access(attackerID, h 1 ), network_access(attackerID, h 2 ), predicted_seq(AttackerID, h 2 )}; A M itnick = {hacked(attackerID, h 2 )} B M itnick = {knows(attackerID, trust_relation(h 2 , h 1 ))}; B M itnick = {} Γ M itnick = {trust_relation(h 2 , h 1 )}; Γ M itnick = {trust_relation(h 2 , attackerID), DoS(h 1 )}
The Symbolic Link Race attack [START_REF] Garfinkel | Traps and pitfalls: Practical problems in system call interposition based security tools[END_REF] is another example of CARD. In this attack, two compromised insiders in a LAN, U ser 1 and U ser 2 , cooperate in order to gain access to file U F , which they are not authorized to access. Thus, they distribute the roles: U ser 1 , which has access to read and write two files F ile 1 and F ile 2 , creates a symbolic link from F ile 1 pointing to F ile 2 . Then, he executes open(F ile 1 ). The system resolves the symbolic link and checks that access to F ile 2 is allowed. Meanwhile, U ser 2 changes the symbolic link F ile 1 to point to file U F . As a result, the system executes open(U F ), granting U ser 1 access to file U F . In this section, we proposed a new formal description for both IA and CA. The next section makes use of our actions modeling to define simultaneous attacks graphs. Later on in the chapter (Sections 5.3.1, 3.4.3), we show how to use SC language to automatically generate these attack graphs.

Modeling Attack Graphs

In this section, we start by proposing a new formal definition of individual attack graphs in order to define, later on, simultaneous Attacks Graphs.

Individual Attack Graphs (IAG)

In Set theory, a Strictly Totally Ordered Set ST OS is a set with a strict total order over its elements (i.e. any pair of its elements are comparable under <). In Graph theory, a totally ordered graph N, E, < , where N is the set of nodes and E is the set of edges, is a graph with a strict total order over its nodes. In such graph, the parents of a node are the nodes that are joined to it and preceding it in the ordering. In other words, n is a parent of m if (n, m) ∈ E and n < m. Let us define an Individual Scenario Graph (ISG) as a totally ordered graph that fulfills the following property:

∀n ∈ N, ∀m ∈ N, |(n < m) ∧ (¬∃l ∈ N | l > n ∧ l < m) ↔ (n, m) ∈ E An ISG
is then a sequence of nodes where every node, except the first and the last nodes, has a single parent, and is itself a parent of one and only other node.

Let us define a bijective application T which, for every element in a STOS, matches a node in an ISG, preserving over the nodes the same strict total order relation that exists over the set elements. Accordingly, given a STOS, it is possible to conceive only one ISG using T . Consider now a sequence of individual attacks executed by a single attacker. If we associate with each attack the time at which it was executed, then attacks can be compared by their timestamps and the set of these attacks is a STOS. We then define an Individual Attack Graph as the ISG that results from applying T to the set of individual attacks. 

Simultaneous Attacks Graphs (SAG)

In Set theory, a Strictly Partially Ordered Set SPOS is a set with a strict partial order over its elements (i.e. not every pair of its elements are comparable). Consequently, every subset of a SPOS having every pair of its elements comparable is then a STOS. A SPOS can thus correspond to the union of several STOSs.

Consider now an offline generated sequence of individual and coordinated attacks performed by several attackers. If we associate with each attack, the time at which it was executed, and we consider that the comparable attacks are those performed by the same attacker, then the set of these attacks is a SPOS. Applying the bijection T , we can now generate, for every STOS in this SPOS, the IAG corresponding to each attacker. Finally the union of all these IAGs is what we call a Simultaneous Attacks Graph. Note that, if there is a coordinated action (see Section 3.2.2) in the SPOS, it will be included in each STOS corresponding to a collaborating attacker for this action. Here is an example of a system threatened simultaneously by three different attacking sources: AttackerIDa, AttackerIDb and AttackerIDc. Consider that we generated the following possible sequence of attack actions:

SP OS = {A1(AttackerIDa, t1), B1(AttackerIDb, t2), C1(AttackerIDc, t3), AB2 ({AttackerIDa, AttackerIDb}, t4), C2(AttackerIDc, t5), A3(AttackerIDa, t6)}
For each attacker, we extract the corresponding STOS as follows:

ST OS AttackerIDa = {A1(AttackerIDa, t1), AB2({AttackerIDa, AttackerIDb}, t4), A3(AttackerIDa, t6)} ST OS AttackerIDb = {B1(AttackerIDb, t2), AB2({AttackerIDa, AttackerIDb}, t4)} ST OS AttackerIDc = {C1(AttackerIDc, t3), C2(AttackerIDc, t5]} In Section 3.5, we conceive a Situation Calculus (SC) planner for simultaneous attacks to automatically generate such a sequence. In the next section we present SC language and demonstrate its efficiency in modeling attacks as we described them.

Modeling Attacks with Situation Calculus

Situation Calculus (SC)

Situation Calculus [START_REF] Mccarthy | Some philosophical problems from the standpoint of artificial intelligence[END_REF] [Rei01] is a dialect of first order logic, with second order-logic terms for representing dynamic change. It basically consists of:

• Situations: a situation is a first-order term denoting a sequence of actions. It represents the system's state, and the action's history (i.e. sequence) from an initial empty action sequence S0. • Fluents and Predicates: the world is described in terms of static predicates and fluents.

Static predicates do not change, no matter what actions are taken. Whereas fluents are predicates that can vary over time, and thus must take situations as arguments.

For example, Server(Serv) is a static predicate meaning that Serv is a server. While, network_access(AttackerID, Serv, s) is a fluent meaning that AttackerID has a network access to Serv in situation s. Additionally, Fluents can be either relational, or functional. Relational fluents return boolean values, e.g. is_on(Serv, s), while functional fluents return a non boolean value, e.g. received_f low(Serv, s) = 500. • Actions: consist of a function symbol and its arguments. ip_spoof (AttackerID, h) is, for example, the action of spoofing the IP address of host h by AttackerID. In order to reason about the effects of an action, we need to be able to refer to the situation that results from the execution of this action. This is done using the do function. do(a, s) denotes the situation that results from doing action a in situation s.

SC also provides essential axioms to represent dynamic changes:

• Action precondition axioms: for each action a, there is a predicate P oss(a, s) that states if it is possible for action a to be executed in situation s. • Successor state axioms: there is one for each fluent F . It characterizes the conditions under which a fluent F (x, do(a, s)) changes from situation s to situation do(a, s),

providing by this a solution to the frame problem [START_REF] Reiter | Artificial intelligence and mathematical theory of computation. chapter The frame problem in situation the calculus: a simple solution (sometimes) and a completeness result for goal regression[END_REF]. The frame problem is that specifying only which predicates are changed by an action do not allow, in logic, to conclude that all other predicates are not changed. And this may cause improper results. This problem can be solved by adding frame axioms, which explicitly specify that all predicates not affected by actions are not changed while executing that action.

In SC, the frame axiom is presented by the successor state axiom.

Individual Attacks

SC provides semantics for pre/postconditions that are not provided by other languages.

The precondition of action a is represented by P oss(do(a, s)). Whereas the postcondition is represented by the function do(a, s) which denotes the fluents that change after applying action a to situation s. SC provides an expressive framework for encoding actions whose effects are functions of the state in which they are executed. Therefore, SC was adopted in [START_REF] Robert | A stochastic model for intrusions[END_REF] to describe individual cyber attacks whose effects depend crucially on the system's state, and to represent dynamic changes which is the case for network systems exposed to attacks. Knowledge in SC [START_REF] Reiter | Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems[END_REF] is represented by a specific fluent knows(AttackerID, Φ, s). Here is the SC modeling of the password cracking IA, formally described in 3. 

Simultaneous Attacks

In [START_REF] Reiter | Natural actions, concurrency and continuous time in the situation calculus[END_REF] and [START_REF] Pinto | Temporal reasoning in the situation calculus[END_REF], SC ontology was expanded to handle concurrency. A new sort concurrent is added. Every concurrent variable c is a set of concurrent simple actions a.

In our case IA and CA are simple actions. The binary function do(c, s) returns a situation term that results from the application of concurrent actions c in situation s. The item P oss(a, s) is also extended to handle concurrent actions. Consequently, P oss(c, s) means that concurrent actions set c is possible in situation s. Additionally, in a simultaneous actions context, some actions can not be performed concurrently. This is due to incompatibility between actions in terms of resources that each action uses. For instance, if action a 1 needs a resource for its execution, and another action a 2 needs the same resource, then the set of concurrent actions c = {a 1 , a 2 } can not be executed unless this resource can be shared. As a solution, Pinto [START_REF] Pinto | Temporal reasoning in the situation calculus[END_REF] proposed to add a finer level of granularity by appealing to the notion of resource: xres(a, r) means that action a requires the exclusive use of the resource r, and sres(a, r) means that action a requires the use of the resource r for its execution, but r can be shared. Finally, poss(c, s) makes use of a Interaction predicate preInt as a precondition in order to test compatibility between actions: In a simultaneous attacks context, different IA and CA are launched at the same time (i.e. in the same situation). And, it is likely that an attacking source finds itself unable to execute its action because of an incompatibility with another action executed by a non collaborating attacking source. Therefore, concurrent SC is appropriate to model simultaneous attacks actions. For example, consider two attack entities threatening a system: (1) a group of coordinated attackers GCA x , and (2) an individual attacker AttackerID y . Consider also, that we defined in the attack model, the following predicates:

preInt(c) ↔ ∃a 1 , a 2 ∈ c, ∃r | [(xres(a 1 , r) ∧ xres(a 2 ,
xres(DDoS(GCA, Server), Server) sres(passCrack(AttackerID, Server, U ser), Server)

Unlike the case of a password cracking attack, in a DDoS attack, an overflowed server can not participate or interact in any other action. To determine whether it is possible for the two entities to execute simultaneously a DDoS attack, and an individual password cracking attack, we can test: poss({DDoS(GCA x , Serv), passCrack(AttackerID y , Serv, U ser)}, s)

In this example poss returns false, because the following predicate returns false.

preInt(DDoS(GCA x , Serv), passCrack(AttackerID y , Serv, U ser))

Considering this feature, we can eliminate all attack scenarios where concurrent actions are incompatible. Advantageously, response systems can avoid launching unnecessary responses.

In the next section, we will rely on the SC attacks modeling described in this section, and planning characteristics of SC to propose a planner for simultaneous attack scenarios, and enable SAGs generation.

Deriving Simultaneous Attack Scenarios in Situation Calculus

In [START_REF] Reiter | Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems[END_REF], the author presented and implemented the world's simplest breadth-first planner (wspbf ). wspbf is a SC planner for an agent who can perform concurrent or sequential actions. It is supplied with a goal predicate plannerGoal(s), and a domain dependent predicate, badSituation(s). This latter is true if, based on domain specific knowledge, and depending on the goal, s is considered to be a bad situation for the planner. badSituation is also a domain specific search control heuristic added to reduce the theoretical complexity of the planner. Here is the Golog [LRL + 94] program of the wspbf : The planner generates all sequences of concurrent actions c avoiding bad situations. The planner first checks whether the goal is true in the initial situation. If so, it succeeds, else it generates all length one sequences of concurrent actions c fulfilling their preconditions, and avoiding bad situations, succeeding if any such sequence makes the goal true. Otherwise, it generates all length two sequences, etc. It terminates with failure if it does not find a sequence, which length is smaller or equal to n, that fulfills the plannerGoal. Note that, it is important to precise a depth n for the planner, otherwise it will loop infinitely. If the maximum sequence length can not be known, then it is recommended to specify a high value for n in order to get all the possible solutions. n can be specified by an expert depending on the problem and the use case.

proc wspbf (n) plans(0,
In order to construct simultaneous attacks graphs, we need to exhaustively generate all potential sequences of concurrent attacks as an input to our proposed method in Section 3.3.2. Therefore, we propose in the next section, a planner for Simultaneous Attack scenarios.

Simultaneous Attacks Planner (SAP)

We generalize Reiter's work to the case of several attack entities that can perform, concurrently or sequentially, a set of individual and coordinated actions.

First, we describe in SC (as in Sections 5.3.1 and 3.4.3) all attacks and legitimate actions that users/connected machines can execute in the system. Second, we adopt the following hypotheses, allowing SAP to reason in simultaneous attacks contexts:

• In a situation S, an attacker can not be a member of two independent GCAs. This hypothesis can be expressed through the following logic rule:

Hypothesis 1 conf lict(Action X (GCA X ,Objects X ), Action Y (GCA Y ,Objects Y ), S) ↔ ∃attackerID(A) | A ∈ GCA X , A ∈ GCA Y .
• In a situation S, an attacker does not execute the same attack that he/she has already executed successfully in an anterior situation, unless he/she changes the parameters (i.e. objects) of this attack. This hypothesis can be expressed by adding a condition to the poss predicate of each action, as follows:

Hypothesis 2 poss(Action X (Subjects X ,Objects X ),S) ↔ (A X -condition∧B X -condition∧ Γ X -condition) ∧ ¬postconditions(Action X (Subjects X ,Objects X ),S). • Due to some unshareable resources, some attacks can not be executed together. Therefore, we add the preInt predicate described in 3.4.4, to SAP. • The badSituation heuristic used in wspbf lowers the execution time of the decision procedures by avoiding paths that will not converge to the planner's goal. In our case, this heuristic would limit the creativity of attackers in constructing different paths to reach their goals. In other words, by defining bad situations related to a given goal, we may eliminate some sequences that attackers can follow to reach this goal. Therefore, we avoid using such heuristic in SAP.

Third, to define the planner's goal, an expert should first describe undesired states for critical assets. Every detected attacker has an attack goal that matches one of these states. Hence, a solution goal for the planner would be to find a situation (i.e. a sequence of simultaneous attacks) where every attacker has reached an attack goal, either individually, or through coordinating in a GCA. Another possibility of a solution goal is to have an attacker becoming inactive at a certain level of the attack sequence. In this case, the attacker is unable to progress because he/she was accidentally blocked by another independent attacker. Note that, situations where attackers are blocked are interesting for a response system. This latter can save what a response against this attacker would cost if the attacker was not blocked and it was necessary to respond against him. We formally describe SAP's goal as follows:

plannerGoal(S) ↔ ∀attackerID(A), [ attack_goal(A, S) ∨ (∃GCA, attack_goal(GCA, S) ∧ A ∈ GCA) ∨ blocked(A, S) ]. with blocked(A, S) ↔ ¬[( ∃ Action X (A, Objects X ) ∨ (∃ Action X (GCA X , Objects X ) ∧ A ∈ GCA X ) ) ∧ poss(Action X , S) ].
Note that, we consider networks that automatically reject any request coming from a machine (or a user account) that does not belong to the network. Any enterprise intranet can be an example of such networks. Thus, the network is threatened when one of its internal machines is compromised. And, if a machine is detected to be compromised, it is considered as a potential attack entity.

Example: as a simultaneous attacks planning example, we consider a network with a set of servers and users. As possible attacks, we consider a DDoS, a password cracking, and a user registration highjacking that an attacker can execute once he/she finds a user's password. In this network, an undesired state is reached when one of the servers gets overflowed, or when one of the users' accounts is highjacked. Hence, the attack_goal can be described with the following logic rule: attack_goal(Attack_Entity, S) ↔ overf lowed(Attack_Entity, Server, S) ∨ highjacked((Attack_Entity, U ser, S).

Attack_Entity can represent a single attacker or a GCA. Consider the following input about the system's state: ten of the enterprise's machines, {a1, a2, ..., a10}, were compromised, and one of them has already scanned server serv x . Additionally, two other compromised machines, {a11, a12} discovered the presence of user user y which has network access to server serv y . We run SAP to find potential simultaneous attacks scenarios. For scenarios of length 2, the results of SAP are those presented after:

1 : [ DDoS({a1, a2, ..., a10}, serv x ), passCrack({a11, a12}, serv y , U ser y ) ];

[ highjack(a11, user y ) ] 2 : [ DDoS({a1, a2, ..., a10}, serv x ), passCrack({a11, a12}, serv y , U ser y ) ];

[ highjack(a12, user y ) ] 3 : [ DDoS({a1, a2, ..., a10}, serv x ), passCrack(a11, serv y , U ser y ), passCrack(a12, serv y , U ser y ) ]; [ highjack(a11, user y ) ] 4 : [ DDoS({a1, a2, ..., a10}, serv x ), passCrack(a11, serv y , U ser y ), passCrack(a12, serv y , U ser y ) ]; [ highjack(a12, user y ) ] 5 : [ passCrack({a11, a12}, serv y , U ser y ) ];

[ DDoS({a1, a2, ..., a10}, serv x ), highjack(a11, user y ) ] 6 : [ passCrack({a11, a12}, serv y , U ser y ) ];

[ DDoS({a1, a2, ..., a10}, serv x ), highjack(a12, user y ) ] 7 : [ passCrack(a11, serv y , U ser y ), passCrack(a12, serv y , U ser y ) ];

[ DDoS({a1, a2, ..., a10}, serv x ), highjack(a11, user y ) ] 8 : [ passCrack(a11, serv y , U ser y ), passCrack(a12, serv y , U ser y ) ];

[ DDoS({a1, a2, ..., a10}, serv x ), highjack(a12, user y ) ]

We can verify that in the trivial use case of search for scenarios of length 2, SAP exhaustively generates all possibilities of two attacks steps which can be performed by the 12 considered attackers. For instance, in solutions 1 and 2, attackers {a1, a2, ..., a10} coordinate to execute a DDoS attack, while attackers {a11, a12} coordinate to execute a password cracking attack. In the next step one of the second group highjacks user y 's account. Whereas, in solutions 3 and 4, a11 and a12 are two independent attackers who concurrently execute password cracking attacks. In the next step, one of them highjacks user y 's account, blocking by this the other attacker from reaching its goal. Solutions 5 till 8 differ from the first four solutions by having DDoS executed in the next step, concurrently with highjacking attack.

Complexity and Performance of SAP

By postulating the hypotheses presented in section 3.5, we were able to reduce the theoretical complexity of the planner from (N actions ) N attackers ×L ength , for the original wspbf , to (1-ConlictRatio) × ( N actions e ) N attackers ×(L ength -1) , for our SAP. N actions is the number of modeled actions, ConflictRatio is an estimated number of incompatible actions over the total number of actions, L ength is the desired length of attacks sequences, and finally, N attackers is the number of attackers. This latter can reach, in the worst case, the number of machines in the system.

In order to evaluate SAP's performance, we conducted three different experiments associated with N attackers , N actions , and L ength . The measures are collected on a machine with a Core2 Duo processor clocked at 2.26 GHz and 1.94 GB of RAM. We used SWI prolog 1 as a Situation Caluclus interpreter.

In the first experiment, presented in figure 3.4, we generated several random attackers, and measured the time needed by SAP to fulfill the planner's goal. The measure confirms that a o(n 3 ) complexity is achieved, and that SAP is able to generate all solution sequences for 80 attackers in less than 2 seconds. This result is very competitive for an average-size network.

In the second experiment, presented in figure 3.5, we added several random attacks to the model, and measured the time needed by SAP to fulfill the planner's goal. The measure confirms that a o(n 4 ) complexity is achieved, and that SAP is able to generate all solution sequences for 15 different attacks in less than 3 seconds. This result is convenient for networks running a small number of services, where a small number of attacks are modeled. However, for multi-service systems, for which a huge number of attacks have to be modeled, SAP may take greater time to generate solutions.

In the third experiment, presented in figure 3.6, we measured the time needed by SAP to fulfill the planner's goal with respect to the length of solution sequences. We found that SAP's performance drops with an exponential rate o(2 n ). Despite this complexity, SAP is able to generate all sequences of length 5 in less than 2 seconds. As a reference, if we look at most striking attacks performed in the recent days, like the Stuxnet attack2 , we see that they can be accomplished in less than 5 attack steps. Moreover, response systems are more interested to react against attackers that can reach their goals within few steps than those who need a greater number of steps to induce a considerable damage in the system. Note that, without our added hypotheses, the planner's performance drops with exponential rates for the three different experiments. Hence, performance results are coherent to our complexity calculus. In other words, the reduction in complexity we introduced in SAP, using the hypotheses, is experimentally noticeable.

Enhanced SAP (eSAP)

In order to improve the performance of SAP and make it efficient for large size networks, we propose eSAP (Enhanced SAP). eSAP lowers the execution time of the decision by reducing the planner's search area. For each attack possible to be executed individually, or by coordinating, as it is the case for CALD or CARD, eSAP prioritizes the coordinated version of the attack rather than the individual one. Consequently, each attacker privileges to coordinate when it is possible rather than executing its attack in solo. This prioritization stems from the fact that an attack performed by coordinated attackers is, in most cases, more critical than the same attack performed individually (by a single attacker). Actually, by considering the damage of a CA compared to its individual version of attack IA, and the likelihood of success of a CA compared to its IA version, it is in the interest of any system to consider in priority the coordinated version of an attack scenario than the individual version of the same scenario. Note that the likelihood of success of an attack is related to the speed of its execution, and to the possibility of avoiding potential detection. These two characteristics are more favorable in a CA case than an IA's case.

This prioritization can be included in the planner by adding a heuristic that encourages attackers to privileges the coordinated version of an attack whenever it is possible (i.e. whenever a sufficient number of attackers simultaneously exist in the system to perform this coordinated attack). This heuristic can be described in SC as follows: ∀attackerID(A), ∀Action X (A X , Objects X ), poss(Action X (A, Objects X ), S) → ¬( ∃GCA, poss(Action X (GCA, Objects X ), S) ∧ A ∈ GCA ).

Note that, eSAP does not prioritize CAs over IAs in general, this prioritization only concerns attacks that can be performed in both individual and coordinated way.

In order to compare the performance of eSAP with respect to SAP, and investigate its efficiency for a large size network, we conducted an experimentation over a higher number of actions (23 modeled attacks instead of 15). We generated random attackers, and respectively measured the time needed by SAP and eSAP to fulfill the same goal. The results presented in Figure 3.7, confirms that a o(n 2 ) complexity is achieved by eSAP, versus a o(n 3 ) complexity for SAP. eSAP is able to generate all solution sequences for 120 attackers in less than 2 seconds, whereas SAP needs 27 seconds.

Despite the gain in performance that eSAP is able to afford, eSAP does not exhaustively generate all potential sequences of simultaneous attacks. Generated sequences are limited to those involving the largest number of attackers able to coordinate. Consequently, it is possible that attackers choose a combination of simultaneous attack scenarios which is not covered by any of the eSAP's generated sequences. Thus, in order to have an exhaustive set of solutions, a satisfactory solution would be to launch the execution of eSAP and SAP in parallel, depending on available resources: eSAP will generate scenarios where CAs (1) are prioritized over IAs, and ( 2) are involving the highest number of coordinated attackers. Whereas, SAP will guarantee an exhaustive generation of all potential simultaneous attack scenarios. Since eSAP takes a lower execution time than SAP, response systems can start handling eSAP's generated scenarios and preventing the system against them if they are estimated to have high risks on the system.

Simultaneous Attacks Graph Generator (SAGG)

We developed the SAGG (Simultaneous Attacks Graph Generator) prototype to implement and experiment our proposal. In this section, we present the architecture of SAGG, as well as its overall features. Figure 3.8 represents a high-level architecture of SAGG, and depicts how it can be used in cooperation with other modules of a global security management system.

• IA and CA modeling: This module provides a description in situation calculus of the different IAs and CAs that may be executed in the system. It requires a human intervention (i.e. a security officer) in order to describe topological based attacks and logic based attacks. The first set of attacks is related to exploits of vulnerabilities in to the topology. In [START_REF] Thermos | Securing VoIP Networks[END_REF], network vulnerabilities were divided into three categories: Flaws in the design (i.e. Protocol design problems and Network architecture), Flaws in software implementation ( bad-quality software implementation: OS services or functions and other platform service interfaces used for management, administration, provisioning or operations, e.g. SSH, FTP, SNMP, HTTP), and System configuration/misconfiguration (i.e. poor system configuration, including improperly configured network access controls). Logic based attacks are those which are not related to vulnerabilities in the topology. For instance, a DDoS attack over a server is related to the capacity of the server in handling big number of connections. Con-sequently, the security officer should extract from a National Vulnerability Database (e.g. NIST NVD)3 all the vulnerabilities related to the network topology of the system, and describe thereby topology based attacks. Additionally, he should be based on the network architecture to elaborate logic based attacks. • NA state: This module affords a SC description of each asset in the system. The description covers the IP address, the Operating System, the running programs and services, the capacity, etc. Besides, the network connections between machines, and the critical assets that the security system aims to protect are also described in SC. This module is updated whenever a change in the system occurs. For instance, when one of the IDSs in the system raises an alarm describing an uncommon behavior of a specific machine IDx, this latter is tagged as being a potential attacker and the information is translated by this module into SC as attacker(IDx). • SAP/ eSAP: This module implements, considering the requirements of the enterprise, either the Simultaneous Attacks Planner defined in Section 3.5.1 or its enhanced version defined in Section 3.5.3. Hence, this module provides a list of sequences describing each combination of different potential attack scenarios that machines tagged as potential attackers can simultaneously perform in the system in order to reach one or several critical asset(s). SAP/ eSAP is coded with a Situation Caluclus interpreter, as SWI Prolog. • T application: This module implements the T application presented in Section 3.3 to transforms the output of SAP/eSAP into simultaneous attack graphs. This module, coded in Java4 , parses a flat text file with a list of attack sequences (i.e. the output of SAP/ eSAP), and produces, for each sequence, a file containing the corresponding graph using the dot grammar syntax [START_REF] Gansner | Drawing graphs with dot[END_REF]. These dot files are processed for interactive representation and treatments. The module generates an image for each graph, by relying on the Graphviz tool 5 . Note that other tools may also be used to generate the graph image, such as JSON 6 .

SAGG is totally dynamic. Actually, for each new published vulnerability in NVD, the 'IA and CA modeling' module will be updated. Similarly, for each change in the system (e.g. a machine is disconnected, a user account is discarded, a connection is established between two assets, an alarm is raised by an IDS, etc.), the 'NA state' module will be updated with this change. When one of these two modules gets updated, the SAP/eSAP module is triggered in order to generate a new set of attack sequences corresponding to the new circumstances. These sequences are then sent to 'T application' module in order to generate the SAGs corresponding to the different attack sequences.

Note that there is a minimum threshold of updates periodicity beyond which SAGG is not be able to generate accurate and up to date results. In order to specify this threshold, a performance test should be done before deploying the module in the network. As explained in Section 3.5.2, the performance perf can be calculated based on N actions , L ength , and N attackers corresponding to the considered system. N attackers can be equals to p×N machines , where N machines is the total number of machines in the system, and p is a percentage. This percentage can be precised by a security expert depending on the estimated exposure of the system to attacks (e.g. depending on the number of vulnerabilities in the system). A high percentage corresponds to a high estimated exposure, whereas a low percentage corresponds to a low exposure. For instance, p = 10% corresponds to a system that may usually have 10% of it machines compromised. Finally, the updates periodicity can be considered equal to the calculated performance. In other words, if SAGG runs to treat updates at time t, it can not dynamically treat events occurring between t and t + perf . We have to wait until t + perf in order to run SAGG again considering the past events.

Implementation and Experimentation

In this section, we apply our SAGG prototype on a small ICT system (30 machines) handling two services: Voice over IP (VoIP), and Trading. The network architecture of the system can be found in Figure 3.9. The VoIP network consists of 10 clients (cV1, cV2, ..., cV10) subscribed to the VoIP service, a SIP server (sV1), a Radius server, and servers running DNS, DHCP, and TFTP services. A password based authentication using PAP (password authentication protocol) is considered for VoIP clients and handled by the RADIUS server. The Trading network consists of 8 clients (cT1, cT2, ..., cT8) subscribed to the Trading service, a Trading server (sT1), and a Trading database (dbT) holding trade information related to clients. For Trading clients, a strong authentication (e.g. multi-factor authentication, Digest access authentication, etc.) is adopted and handled by a Strong Authentication Server (SAS). The Trading server is the only asset allowed to access dbT, and the access is ensured via 'IP address authentication'. Firewall 2 (fw2) rules are configured as follows:

• Trading clients are prohibited to access to SAS.

• sT1 is allowed to access to SAS.

• VoIP clients are prohibited to access the Trading network. We consider the following vulnerabilities and characteristics of assets:

• fw2 suffers a vulnerability allowing, once exploited, the manipulation of the Access Control Lists (ACLs). This may create a situation where unwanted traffic may be permitted or desirable traffic may be blocked. • PAP is vulnerable to password cracking attacks.

• The 'IP address authentication' service is vulnerable to IP spoofing attacks.

• sT1 is able to handle up to 10 parallel requests coming from machines with low bandwidth, and up to 5 requests sent by machines with high bandwidth. VoIP clients are equipped with high bandwidth machines, whereas Trading clients are equipped with low bandwidth machines. Consequently sT1 is vulnerable to DDoS attacks when the received flow overcome its capacity. In the current system configuration, such a situation can not occur because only 8 Trading machines are able to send requests to sT1.

Based on the above mentioned vulnerabilities and assets characteristics, the following topology based and logic based attacks can be elaborated:

• ddos(GCA,Server): a distributed denial of service against a server

• scanVulnerability(ID,Firewall): blockAccess(ID,Firewall); modifyAccessRules(ID,Firewall,Network1,Network2): attacks related to firewalls vulnerabilities allowing a malicious machine 'ID' to modify access rules or completely block the access to the firewall • spoofIP(ID,Server): spoofing the IP of a server

• grantIllegalAccess(ID,Server): granting illegal access to a server

• botinfect(Attacker,ID): an external attacker infects an internal machine (VoIP or

Trading client) with a bot and controls it with a remote access • scanserver(ID,Server); cscanserver(GCA,Server): an individual and a coordinated server scanning • scanuser(ID,User); cscanuser(GCA,User): an individual and a coordinated user scanning • passCrack(ID,Server,User); cpassCrack(GCA,Server,User) : an individual and a coordinated password cracking of a legitimate user account • highjack(ID,User,Server): a user's account highjacking.

The pre/post conditions of each attack are modeled following our proposed attack scheme (ref. Section 3.2) and modeled with Situation Calculus.

In this use case, the critical assets that the system aims to protect are: the Trading and the VoIP services, the Trading and the VoIP clients, and the critical information about traders saved in the Trading data base. Consequently, the attack goals corresponding to these critical assets are the following:

• HS(Client,Server): meaning that a 'Client', subscribed to the service hold by 'Server', is out of service. • HS(Server): meaning that a 'Server' is out of service.

• Misconfigured(fw2): if firewall2 got misconfigured, trading clients will not be able to access the Trading service. Actually, sT1 needs to authenticate clients via SAS, thus, fw2 should allow the access of sT1 to SAS. If this rule is compromised by an attack, traders will be out of service. • DataLeak(dbT): represents a leak of data in the Trading database.

We run two different experimentations considering for each a different initial state. In experimentation 1, we consider that cV1, cV2, cV3, and cV4 were detected while clicking on a malicious website, and thereby tagged as potential attackers in the system. cT1 was detected doing an uncommon behavior (e.g. scanning machines) in the Trading network, and thereby tagged as a potential attacker in the system.

Considering this given input, we launch SAP program corresponding to this use case in order to get all the possibilities of simultaneous attack scenarios that can be potentially performed by the attackers to reach the critical assets. A screen-shot of SAP's output can be found in Figure 3.10. Among all the generated attack sequences, we highlight and explain the following ones: In Sequence 1, SAP forecasts a coordinated attack scenario for VoIP clients. It considers in a first step, that clients are going to be infected with bots and remotely controlled. Then, in a second step, cV1 performs user scanning to discover the presence of user cV8 and then he shares this knowledge with his collaborators. Having this knowledge the group of coordinated attackers {cV 1, cV 2, cV 3, cV 4} performs, in a third step, a coordinated cracking of cV8's password. Once attackers succeed to get the password, one of them (e.g. cV4) will highjack, in a fourth step, cV8's account, triggering a denial of service of this latter. In parallel, a simultaneous independent attacker cT1 will scan the vulnerability of fw2, in a first step, and blocks the access to SAS in a second step, triggering thereby a denial of service over Trading clients due to fw2 misconfiguration. Figure 3.11 is the SAG corresponding to this sequence and generated by the 'T application' module. In Sequence 2, SAP forecasts five simultaneous attacks scenarios. It considers in a first step, that clients are going to be infected with bots and remotely controlled. Then, in a second step, each of them performs user scanning to discover the presence of user cV8. In a third step, each of them will perform independently a cracking of cV8's password. In a forth step, one of the concurrent attackers (e.g. cV3) will highjack cV8's account, triggering a denial of service of this latter. However, by changing the password of cV8's account, cV3 will block the other attackers from highjacking the account and thus continuing their scenarios. In parallel, a simultaneous independent attacker cT1 will scan the vulnerability of fw2, in a first step. He will perform no operation in step t2, to continue in step t3 with blocking the access to SAS, triggering thereby a denial of service over Trading clients due to fw2 misconfiguration. Figure 3.12 is the SAG corresponding to this sequence and generated by the 'T application' module.
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In experimentation 2, we update the input of SAP by adding cV5 as detected while clicking on a malicious website. Thereby, cV5 is tagged like cV1, cV2, cV3, and cV4 as a potential attacker in the system. We relaunch SAP, considering this update to get all the possibilities of simultaneous attack scenarios that can be potentially performed by the new updated attackers to reach the critical assets. A part of SAP's output was similar to that generated in experimentation 1 with attacker cV5 added in the scenarios. However, a new set of scenarios reaching a critical asset that was not figuring in the output of experimentation 1, appeared in the output of experimentation 2. Sequence 3 is one of these scenarios: In this sequence, SAP forecasts a coordinated attack scenario where all clients tagged as attackers participate in. In a first step, external attackers infect VoIP clients with bots and remotely control them. In parallel cT1 scans the vulnerability of fw2. In a second step, cT1 modifies the access rules in fw2 in order to let VoIP attackers to access the Trading network. In a third step, cV5 scans machines in Trading networks to discover the presence of server sT1, and then, he shares this knowledge with other attackers. In a fourth step, attackers {cV 1, cV 2, cV 3, cV 4, cV 5} performs a DDoS over sT1. Note that here, the number and the capacity of attackers required to overflow sT1 is fulfilled, therefore attackers are able to succeed their attack. Being in a denial of service, the IP address of sT1 can be spoofed by cT1 in step t5. In step t6, cT1 can illegally access dbT using the IP address of sT1. Consequently, by collaborating more than 5 VoIP attackers with a trading attacker, the system risks to suffer from a leak of critical data related to Trading. Figure 3.13 is the The experimentation's results demonstrated the accuracy of our proposal. SAP produced all the possibilities of scenarios where attackers were coordinating, independent, or even blocking each others, covering all reachable attack goals. The first experimentation highlights the knowledge sharing and the synchronization properties related to coordinated attackers. Besides, it highlights the possibility of having simultaneous attackers blocking each others. Experimentation 2, demonstrates that modeling the required number of coordinated attackers is essential in forecasting new attack scenarios, which may probably be the most dangerous ones.

Discussion

In chapter 2, we presented numerous attack modeling languages, such as LAMBDA [START_REF] Cuppens | Lambda: A language to model a database for detection of attacks[END_REF], ADELE [START_REF] Michel | Adele: An attack description language for knowledge-based intrusion detection[END_REF], JIGSAW [TL00], Concurrent STRIPS [START_REF] Braynov | Representation and analysis of coordinated attacks[END_REF]. And, we highlighted common limitations for these languages consisting in the lack of (1) functional fluents description required to model the required number of coordinated attackers, (2) the existential and universal logic quantification over predicates required to model synchronization and knowledge sharing between attackers, and (3) second-order logic terms that allow the quantification over actions as explained in Section 3.5. These limitations make them inappropriate to model an action corresponding to a coordinated attack. In this chapter, we have overcame these limitations by adopting the Situation Calculus language to our newly proposed coordination-aware attack action scheme.

Besides, in chapter 2, we distinguished between attack graph generation approaches based on logic languages to model attacks, as CRIM [START_REF] Cuppens | Alert correlation in a cooperative intrusion detection framework[END_REF] which is based on LAMBDA, and approaches restricted to topology attacks description. Among these latter, we distinguished those which adopt non monoticity in their attack scenario elaboration, as Sheyner, et. al [START_REF] Sheyner | Tools for generating and analyzing attack graphs[END_REF] and Kanoun et al. [START_REF] Wael Kanoun | Attack graphs to secure complex ict systems[END_REF], and those which adopts monoticity allowing them to be scalable as CAULDRON7 , MulVAL8 , Jajodia et al. We have also highlighted the limitations of these attack graphs generation approaches in (1) representing coordinated attacks and (2) representing multiple end attack goals in a same graph. In this chapter, we have overcame these limitations by proposing SAGG. Table 3.2 presents a comparison of the different existing graph generation approaches and reveal the breakthrough of our proposal. In addition to its ability in modeling individual, concurrent, and coordinated attacks whether being logic or topology attacks, SAGG is non monotonic, thereby able to model attacks with backtracking features. However, SAGG requires a human intervention in order to describe the network topology and the existing vulnerabilities in the system. Moreover, due to the non monoticity feature inducing additional computational complexity, and to the completeness and the exhaustiveness of the results, SAGG is more adaptable for small and average size systems than large size ones. However, it is possible to deploy SAGG in a large size system, if this latter's architecture is wisely designed. In other words, if the different network zones or the different services are specified in a way to limit at best the dependencies between them, SAGG can be properly applied on each zone apart, or each service apart. 

Individual

Conclusion

In this chapter, we introduced a new formal action scheme that handles individual, coordinated and simultaneous attacks. We then chose an appropriate language, the Situation Calculus, to model and implement these actions. Additionally, we presented a new method, based on Set Theory and Graph Theory, to model simultaneous attacks graphs. These graphs leverage means to estimate the global risk inferred by simultaneous ongoing attacks, and to reason about appropriate responses. In order to generate those graphs, we proposed and implemented a Simultaneous Attacks Planner (SAP) that generates attack scenarios required for graphs construction. The complexity and performance of this planner is studied, and it turns to be competitive for an average-size system. In order to improve the performance of the planner regarding the machines number, we proposed eSAP, an enhanced version of SAP, which considerably lowers the planner's complexity and leverage competitive results. We finally develop SAGG, a prototype of our proposal and demonstrate its efficiency and accuracy in a multi-service system use case. SAGG generates a set of attack graphs representing, each, one possibility of future progression for attackers to reach critical assets in the system.

In order to efficiently prevent the system from incoming attack scenarios, a response system needs to identify within the set of attack graphs, the one where forecasted scenarios are (1) the most likely to happen, and (2) the most dangerous for the system once performed. Therefore, we present in the next chapter, a risk assessment method adapted for coordinated and simultaneous attacks. Precisely estimating the risk of each attack graph is crucial for response system to react intelligently against the riskiest one.

Introduction

In Chapter 3, we have presented a graph generator for simultaneous attacks, which, given a system's state and a set of suspicious attackers, generates multiple graphs (SAGs) corresponding each, to a combination of scenarios predicted for those attackers. In order to efficiently prevent the system from incoming attack scenarios, and intelligently adapt its responses, a response system needs to identify within these graphs, the one with the highest risk on the system.

Referring to NIST, Risk [START_REF] Stoneburner | Risk management guide for information technology systems[END_REF] is a function of the attack likelihood and the impact of this attack on the system. Furthermore, NIST considers the following factors for a proper likelihood assessment: (1) the existence of potential responses against an attack, (2) the nature of the vulnerability and the complexity in exploiting it, and (3) the attacker's motivation.

Several works have been undertaken to assess the likelihood of an attack [AB03] [WLW05]

[LCM06] [KCBC + 09] [ZTB10], but they all suffer several drawbacks and limitations: (1) they do not handle coordinated nor concurrent attacks, and (2) none of them fulfills all of the three above factors required to properly compute an Attack Likelihood (AL). To fill in those gaps, we propose in this chapter, LICCAS, a new framework to assess the Likelihood of Individual, Coordinated and Concurrent Attack Scenarios.

For each SAG candidate, LICCAS will compute the Scenario Likelihood (SL) of each scenario in this graph, taking into consideration the potential interaction and concurrency aspects between simultaneous attackers. But first, the Attack Likelihood (AL) of each attack composing a scenario, whether being individual or coordinated, must be assessed.

In order to take into account the possibility of being detected and stopped by the response system in the decision process of the attacker, thereby fulfilling NIST's factor (1), our framework computes a probability of attacking strategy p * , based on a game theoretic framework. Game Theory offers the possibility to calculate the probability of playing strategy considering not only the interests of a player, but also those of the opponent. Unfortunately, existing models that analyze the behavior of an attacker and a system as a game, consider that payoffs are common knowledge. However, it is almost impossible for an attacker to have a complete knowledge of the real damage that he/she can cause to the system, and of the real cost of a reaction launched by the system against him/her. And vice versa, the system can not exactly know the reward that an attacker can get when he/she succeeds a certain attack, neither how much this attack will cost the attacker. Hence, to properly compute p * , we propose a coordination-aware estimation of each player's payoffs from the standpoint of its opponent. Moreover, most of existing security game models consider a game either between attackers and the Intrusion Detection System (IDS), or between attackers and the response system. However, the game should consider both response and detection factors, because detecting an attack does not necessarily means activating a response against it. And activating a response is not always triggered due to a detection. Several situations may be presented: (1) When a system is simultaneously threatened by several attack entities, a response system may not have the capacity to respond to all these threats due to insufficient resources for reaction, thus threats are prioritized, and only most dangerous ones are handled in prior. (2) Launching a response may be expensive for the system, because in addition to the cost of the response, this latter may sometimes have collateral damage on the system, considering its current state. (3) The attack may exploit a new vulnerability, for which no effective response is been designed yet (e.g. a zero-day vulnerability is discovered and no patch is proposed for the moment to fix the problem). ( 4) In an forecasted attack scenario, some attacks are undetectable (i.e. stealthy), but can be previewed when the attack directly correlated to it is detected, and thus a response preventing the system from this attack may be launched. Consequently, we consider both detection and reaction factors in our game. Furthermore, if consuming the resources of a system is rewarded for a vandal, it is not the case for a hacker. Thus, we consider the attackers' profiles while constructing our game.

The probability of attacking strategy p * holds in the case where the attacker has a single choice of action and needs to reason whether to play it or not. In our case, attack graphs forecast several possibilities of attack scenarios for the same attacker, and the attacks are not the same in all scenarios. Hence, p * should be weighted by a factor that considers the scenario of which the attack makes part. This factor should also consider the attacker's motivation and the nature of the vulnerability in order to fulfill NIST's factors ( 2) and ( 3). Consequently, we define a Return On Attack Investment (ROAI) index. ROAI represents the effort/cost that an attacker invests to accomplish its attack, compared to the gain earned once the attack is successfully executed. This gain depends crucially on the attack goal that the attacker aims to reach at the end of his/her scenario. Based on, p * and ROAI, we elaborate an AL equation.

LICCAS also includes a new algorithm LSS (Likelihoods of Simultaneous Scenarios), to consider the unintentional interaction between concurrent attackers. Based on (i) an attack graph, and (ii) our AL equation, LSS calculates the Scenario Likelihood (SL) of each attack scenario in the graph, including ones blocked due to concurrency. LICCAS is finally applied to a Voice over IP (VoIP) use case, and experimentation is conducted to demonstrate its relevance.

To sum up, the following are LICCAS breakthroughs in the likelihood assessment and risk management research domain:

• LICCAS considers the profiles of attackers and the attack goals in the likelihood assessment. • Since payoffs are not common knowledge for attackers and response systems. LICCAS propose means to properly estimate each player's payoffs from the standpoint of its opponent. • LICCAS handles the case of coordinated attacks.

• LICCAS considers the interaction between simultaneous attackers, especially concurrent ones blocking each others. • LICCAS does not only consider the possibility of detecting an attack, but also that of responding to it.

Afterwards in this chapter, we propose a simple but comprehensive method to assess the impact of the different attack scenarios within an attack graph. The method is basically based on the attack goal reached at the end of each scenario. Later on, we adopt NIST approach to assess the risk of the different attack scenarios of a graph. Convinced that one can never guarantee precise and accurate risk values, we adopt a qualitative approach for risk assessment allowing to have a margin of error over calculated values. Once the risk of each attack scenario in each attack graph is assessed, we propose a sorting method in order to sort the different SAGs regarding the number of risky attack scenarios they contain. This prioritization is important to select the most critical graph(s) within the large set of previously generated attack graphs. Indeed, this (or these) graph(s) constitute relevant input for response systems, because they contain attack scenarios having high risks on the system. This chapter is organized as follows: section 4.2 proposes a minor modification in our SAG structure for a better risk assessment. In section 4.3, we propose our game model to calculate p * , and then we define ROAI, to finally propose an AL equation. In section 4.4, we propose LSS algorithm. Afterward, in section 4.5, we experiment LICCAS on a VoIP use case and discuss its accuracy. Section 4.6 proposes our impact assessment method. Section 4.7 first proposes our risk assessment method with a direct application on a study case example, and then, discusses our graph sorting method needed to prioritize the most risky graph(s). Section 4.8 discusses our work's breakthrough compared to existing work. Finally, section 4.9 concludes our work.

Risk-aware Simultaneous Attacks Graphs

In order to properly assess the risk of attack scenarios in each SAG, we propose in this section a minor modification in our SAGs model.

In [START_REF] Blackwell | A security ontology for incident analysis[END_REF], authors proposed a new network security incident ontology that considers organizations and their systems in their entirety, rather than software alone. A three-layer security architecture compromising the organizational/social, logical and physical levels is thus created. This ontology stems from the fact that all incidents are initiated by people at the social layer, and become only effective if they meet a social goal such as obtaining money, power, prestige or pleasure. Attack organizational goals are thus classified as: Thrill, political gain, financial gain, and damage.

We were inspired by this ontology to extend our work on SAGs generation. Actually, simultaneous attack scenarios, presented in our SAGs, end with reaching logic attacked states for critical assets (e.g. a server is in a denial of service, a user's credentials are stolen, a secret conversation is sniffed, etc). We thus match each logical attacked state with one or several organizational states. The matching can be done directly, or via a social attack that can be added to correlate a logical attacked state to an organizational one. For an Information and Communications Technology (ICT) system, attacks may damage the principle service (ex. Quality of Voice Service), or a secondary service (ex. text messaging). Attacks may also affect the operator's security, or procure losses to a third party (ex. clients). Thus, we propose the following organizational goals for ICT systems: (1) third-party losses undetectable in short time, (2) third-party losses detectable in short time, (3) affected reputation on secondary services, (4) affected reputation on security, (5) affected reputation on principal services. of Service (DDoS) on one of its SIP servers. For the second group, a scenario that aims at inducing losses for an operator's client is predicted by hijacking its account and performing a toll fraud. For the third group, a scenario that aims at inducing losses for an operator's political client is predicted by recording its conversation and using it for black mailing. These losses are not detectable in short time, a whole follow-up campaign must be established in order to prove that the operator is guilty, and it is due to his vulnerable system that the attack has succeeded. In the SAG of Figure 4.2, attackers a11 and a12 are not coordinated, but concurrent. Here, a11 blocks a12 from progressing, and individually induces losses for an operator's client by hijacking its account and performing a toll fraud.

For the group {a13, a14}, a scenario that aims at harming the reputation of the operator on its security management is predicted by recording a political client's conversation and publishing it on the internet.

Such risk-aware SAGs constitute inputs for our risk assessment framework. For each SAG, LICCAS will compute the SL of each scenario, taking into consideration the potential concurrency aspects between attackers. But first, the AL of each attack composing a scenario, whether being individual or coordinated, must be assessed. 

E A (M System ) React Not React Attack -E A (DR_Cost) -E A (Impact) Not Attack -E A (DR_Cost) 0

Likelihood of an Attack

In order to assess the likelihood of an attack (AL), we first propose a Game Theory model to compute the probability of attacking strategy p * (i.e. the probability with which the attack entity has decided to execute its action) regarding potential system responses. Afterwards, we define a Return On Attack Investment (ROAI) to consider the motivation of the attack entity, and the difficulty of the attack.

Game Theory and the Probability of Attacking

We model each attack with a game between the attack entity and the defending system. The attack entity (resp. the defending system) can choose between attacking (resp. reacting) or not. The most appropriate game model, in our case, is a (1) nonzero-sum, (2) twoplayers and non-cooperative game. First, the attack entity's gain is not always equal to the system's loss. For instance, consider a commercial website 'A', where users have the choice to save their credit cards credentials in the website's database. Consider also, that an attacker has stolen one of the users' credit card number, after cracking the password of his 'A' account. If this attacker uses the stolen credit card number to make online purchases on another independent website 'B', the party that will directly suffer personal losses is the user itself, and not website 'A'. In this case, the gain of the attacker is much higher than the loss of 'A'. Second, concerning coordinated attacks where several attackers may collaborate to perform an attack (e.g. DDoS), it would appear that a multiplayer game model is better suited than a two-players game. However, all coordinated attackers have the same adversary, which is the defending system. Additionally, coordinated attackers do not attack each others. Therefore, we consider a two-players game model for each couple of attack entity on one side and the defending system on the other side. An attack entity can be either a single attacker, or a Group of Coordinated Attackers (GCA). We represent our game with two 2 × 2 matrices: the first (Table 4.1) represents the attacker-centric payoffs, and the second (Table 4.2) represents the defending system-centric payoffs. Contrarily to other existing work, we think that payoffs can not be considered as common knowledge for both players. Hence, each player-centric payoffs should be estimated from its opponent's standpoint. Let E A (x) and E S (x) be the estimations of the term x respectively from an attacker standpoint and a system standpoint.

In E S (M attacker ), if the attack entity chooses Attack and the system chooses React, the attack entity will lose the effort E S (Attack_Cost) that she invests to execute this attack. If the system chooses Not React, then the attack entity will earn a reward next to its effort investment. Now if the attack entity chooses Not Attack, and the system chooses React, then two possibilities of payoffs can be considered. In this case, the payoff should depend on the attacker's profile. If the attacker is a vandal, he would be satisfied if the system consumes its resources in a useless response, earning by this a payoff equal to the investment cost E S (DR_Cost) of the system in its launched detection and response process. Whereas, if the attacker is a hacker, a useless response has no value for him (payoff = 0). In M System , if the system chooses React, then the system's payoff is equal to the investment cost -E A (DR_Cost) of the detection and the response launched process. And this is independent of the choice of the attack entity. Whereas, if the system chooses Not React, then its lost is equal to the damage -E A (Impact) induced by the attack. Finally, in both matrices, if the strategy is (Not Attack, Not React), then payoffs are null for both players.

We investigate the existence of a Nash equilibrium (NE) in pure strategies. At NE, there is no mutual incentive for either one of the players to deviate from their equilibrium strategies.

• If the attack entity plays its pure strategy Attack, then the expected payoff of the response system playing its pure strategy React is -E A (DR_Cost), and its expected payoff of playing its pure strategy Not React is -E A (Impact). Reasonably, when systems design proper responses against attacks, they only hold those having the overall investment cost lower than the impact of the attack for which the response is designed. Otherwise, the response will not have a positive return on investment [START_REF] Gonzalez Granadillo | Rori-based countermeasure selection using the orbac formalism[END_REF]. Thus, -E A (DR_Cost) > -E A (Impact), and the best choice for the system is to play React. However, if the system plays React, Attack will not be the best choice for the attack entity. This latter will move to play Not Attack instead. Actually, for a hacker case, we have 0> -E S (Attack_Cost), and for a vandal case, we have E S (DR_Cost) > -E S (Attack_Cost)). Hence (Attack, React) is not a NE. • If the attack entity plays its pure strategy Not Attack, the system's dominant strategy is to play Not React. However, if the system's plays Not Respond, the best choice for the attack entity is to play Attack, which reduces the previous case. Hence, strategy (Not Attack, Not React) is not a NE.

As demonstrated in [START_REF] Liu | A bayesian game approach for intrusion detection in wireless ad hoc networks[END_REF], there is no pure strategy NE for such a game. Therefore, as in [START_REF] Alpcan | A game theoretic approach to decision and analysis in network intrusion detection[END_REF], we extend the analysis by considering mixed strategies of players defined as probability distributions on the space of their pure strategies. Let p and 1p (resp. q and 1q) be the probabilities for strategies Attack and Not Attack (resp. React and Not React) of the attack entity (resp. the system). The pair (p * ; q * ) is said to constitute a NE solution to our game if the payoffs of both attack entity and the defending system are optimum. Hence, the following payoff functions of both players must be maximized:

E S (Payoff AttackEntity ) = [p (1 -p )] × E S (M attacker ) × [q (1 -q )] T ; E A (Payoff System ) = [p (1 -p )] × E A (M system ) × [q (1 -q )] T ;
The following inequalities can be derived from the payoff functions. Note that, to simplify the inequalities, we replaced estimated terms by their true values (i.e. E p (x) is replaced by x): For a hacker case:

-p (q (Attack_Cost) -(1 -q )(Reward -Attack_Cost)) ≥ -p(q (Attack_Cost) -(1 -q )(Reward -Attack_Cost));
For a vandal case: -p (-(Reward -Attack_Cost) + q (Reward + DR_Cost)) + q × DR_Cost ≥ p(-(Reward -Attack_Cost) + q (Reward + DR_Cost)) + q × DR_Cost;

For both cases:

-p (Impact) -q [DR_Cost -p (DR_Cost -DR_Cost + Impact)] ≥ -p (Impact) -q[DR_Cost -p (DR_Cost -DR_Cost + Impact)];
The solution to the set of inequalities derived from the payoff functions constitutes the unique NE of the game. The following probability of Attack strategy p * can be derived from these inequalities.

p * = E A (DR_Cost) E A (Impact) (4.1)
Contrarily to other work [START_REF] Alpcan | A game theoretic approach to decision and analysis in network intrusion detection[END_REF], [START_REF] Kong | Game strategies in network security[END_REF], [START_REF] Liu | A bayesian game approach for intrusion detection in wireless ad hoc networks[END_REF], and [START_REF] Quanyan Zhu | Network security configurations: A nonzero-sum stochastic game approach[END_REF] adopting Game approach to decide on detection process, we are aiming for assessing the Attack Likelihood. Consequently, we are more interested in p * than q * . Notice that, p * depends on: (1) the investment cost of the system in the detection and response process, and (2) the impact of the attack on the system. This result can be interpreted as follows: it is more likely for an attack entity to choose to attack, if she estimates that the detection and response process cost for the system is very high. Additionally, the lower is the impact on the system, the higher is the probability of attacking, because responding to this attack would not be a priority for a system threatened by simultaneous attacks.

Return on Attack Investment (ROAI)

An attack entity is more likely to perform the attack that brings the highest return on its investment. In other words, the likelihood of executing an attack depends on the effort (Attack_Cost) that an attack entity invest to accomplish it, compared to the Reward earned once the attack succeeds. We, thus, define a Return on Attack Investment ROAI (see Equation 4.2). ROAI is normalized with two maximum values: maxRewad corresponds to the profit that an attacker can obtain when executing the most rewarded attack in the system. And maxAttack_Cost corresponds to the cost of the most costly/difficult attack in the system.

ROAI = E S (Reward) -E S (Attack_Cost) E S (maxReward) + E S (maxAttack_Cost) (4.2)
Finally, we define AL, in equation 4.3, as the product of ROAI and p * .

AL = E S (Reward) -E S (Attack_Cost) E S (maxReward) + E S (maxAttack_Cost) × E A (DR_Cost) E A (Impact) (4.3)

Coordination-aware Estimation of Payoffs

In this section, we propose an estimation for each payoff, taking into account coordinated attacks. We ensure that our estimations are as generic as possible for our our model to be applicable to a large set of use cases. In section 4.5, we show how to specify our estimation in a Voice over IP use case.

First, we remind that each attack a is a part of an attack scenario s. Hence, p * , ROAI, and consequently AL, should not only depend on the attack, but also on the end goal of the attack scenario. Actually, attacks should be rewarded differently, depending on the attacker profile and the scenario's end goal. Thus, when an attack figures in two different scenarios, each in a different graph, it should have a bigger likelihood when figured in the scenario having the most rewarded goal. Hence, we rewrite AL equation according to a and s, as follows:

AL(a, s) = E S (Reward(a, s)) -E S (Attack_Cost(a)) E S (maxRewad) + E S (maxAttack_Cost) × E A (DR_Cost(a)) E A (Impact(a, s)) (4.4) 1. E A (DR_Cost(a)
) is the estimation of the difficulty that the system would have in detecting the attack, and the cost that the response system should invest for detecting and responding to a. Attackers can sometimes perform legitimate actions that are usually undetectable. For instance, an attacker who has already hijacked a user's account belonging to a company, can make calls throughout this account during working hours, without being detected. Actually, making calls by a registered user during working hours is considered legitimate, and thus undetectable. Hence, we consider a Detection_Dif f iculty(a), that is equal to 1 or 0 whether a is legitimate or not. And, when a is not legitimate, we should take the detection and the response costs into account. Thus, we estimate DR_Cost(attack) as shown in Equation 4.5.

From an attacker standpoint, an attacker's first concern is whether its attack is going to be detected or not. Actually, if the attacker estimates that detecting its attack requires a relevant investment for its opponent system, then it has a higher chance to attack without being detected. In this case, the attacker cares less about the response, since, from his point of view, a response system is not supposed to respond to an undetected attack. Consequently, we choose to weight Detection_Cost(a) and Response_Cost(a) respectively by µ and 1-µ with 0.5 < µ ≤ 1. 2. E A (Impact(a, s)) is the impact induced by a on the system, considering scenario s. In order to properly estimate this impact, an attacker should adopt the same reasoning of a system administrator. Thus, he/she will not only consider the impact of a on logical and physical levels LP _Impact(a), but also the impact of its scenario's end goal on the organizational level Organizational_Impact(s). Thus, we propose Equation 4.8 to estimate it. Note that LP _Impact(a) and Organizational_Impact(s) are not of the same magnitude regarding the attacker decision. Attackers pay more attention to Organizational_Impact(s), because this latter is more significant for its opponent response system. Consequently, we choose to weight LP _Impact(a) and Organizational_Impact(s) respectively by 1-λ and λ, with 0.5 < λ ≤ 1. Examples of organizational goals and their impacts can be found in Section 4.5.1.

E A (Impact(a, s)) = (1 -λ) × LP _Impact(a) + λ × Organizational_Impact(s); (4.8) 3. E S (Attack_Cost(a)
) is an estimation of what would cost an attack entity to perform a. It depends on three factors: (1) The difficulty in exploiting a, Exploitability(a).

(2) The number of coordinated attackers | GCA | performing a. We note that the higher is | GCA |, the shortest is the time needed to achieve a, and the less is the effort made by every attacker. And (3) the effort in terms of required Number of Atomic Actions (ANA) to succeed attack a. If a requires a single atomic action to be performed, then ANA is equal to 1. Otherwise, ANA can be calculated by the system depending on the type of the complex attack. In [SCCB + 13], complex attacks were classified into three categories:

• In a Coordinated Attack with Load Distribution (CALD), attackers share the load of a complex attack by distributing its atomic actions between them. In this case, ANA can corresponds to the mean of the maximum number of possible atomic actions. E.g. in a vertical port scanning, ANA can be equal to the half of the number of well known ports in a machine. For 1024 ports, we estimate that in average, with 512 scanned ports, attackers can find opened ports in which they are interested. • In a Coordinated Attack with Load Accumulation (CALA), attackers accumulate they efforts to accomplish an attack. In this case, each attacker execute an atomic action, and the accumulation effect of these simultaneously executed actions is the result that attackers are looking to fulfill. In this case, ANA is equal to the required number of atomic actions to reach the attacked state. E.g. in a distributed denial of service attack against a server, ANA is equal to the minimum number of compromised machines required to overflow the server's buffer.

• In a Coordinated Attack with role distribution (CARD), the attack can be accomplished with a precised number of different atomic actions. In this case, ANA is equal to this precise number. E.g an IP spoofing attack has ANA = 2, because it can be done with two atomic actions. The first is to perform a denial of service on the machine that the attacker wants to spoof the address, and the second is to send a packet with a forged header to appear as a packet sent from the first machine.

Thus, E S (Attack_Cost(a)) (Eq. 4.9) is a function f ct 3 that increases when Exploitability(a) or ANA(a) grows, and decreases when | GCA | grows. 4. E S (Reward(a, s)) is what the system estimates for an attack entity to gain when a succeeds. In a same attack scenario s, difficult attacks are more rewarded than others. Hence, E S (Reward(a, s)) increases with E S (Attack_Cost(a)). Besides, if the attacker is a vandal, then the more damage he/she causes to the system, the more he/she gets rewarded, which is not the case for hackers. Hence, E S (Reward(a, s)) increases with E A (Impact(a, s)) for vandals. Moreover, from a system standpoint, attacks placed at the end of a scenario are more important than those placed at the beginning, because they are very close to the end goal. Thus, they should be more rewarded. Therefore, E S (Reward(a, s)) increases when the remaining attack steps in the scenario Remaining(a, s) decreases. Consequently, for a vandal case, we define E S (Reward(a, s)) as a function f ct 4 that increases with E A (Impact(a, s)), E S (Attack_Cost(a)) and E S (Reward(a, s)). For a hacker case, we define E S (Reward(a, s)) as a function f ct 5 that increases with E S (Attack_Cost(a)) and E S (Reward(a, s)).

• For a vandal case:

E S (Reward(a,s))=f ct 4 (E A (Impact(a, s)), E S (Attack_Cost(a)
), Remaining(a, s)); (4.10) • For a hacker case: E S (Reward(a,s))=f ct 5 (E S (Attack_Cost(a), Remaining(a, s));

(4.11)

5. E S (maxAttack_Cost) is the value corresponding to the maximum cost of an attack in the system: ∀a, E S (maxAttack_Cost) ≥ E S (Attack_Cost(a));

6. E S (maxReward) is the value corresponding to the maximum attack reward: ∀a, s E S (maxReward) ≥ E S (Reward(a, s));

In this section, we proposed a generic estimation of each variable in AL equation, considering coordinated attacks. In the next section we propose an algorithm to compute the likelihood of a whole attack scenario, considering concurrent attacks.

Likelihoods of Simultaneous Attack Scenarios

In order to efficiently assess the likelihood of an attack scenario (SL), we define a number of claims describing SL evolution, considering the interaction with other simultaneously ongoing scenarios. Then, we propose LSS algorithm fulfilling these claims:

Claim 1 If an attack scenario S i blocks another simultaneous one S j from continuing its scenario, then both scenarios should have the same SL.

As explained in [SCCB + 13], simultaneous attackers may be concurrent, and thus, block each others. In such a case, the probability of having scenario S j blocked is equal to that of having S i executed until the end. Consequently, a same SL should be assigned to both scenarios. Claim 2 A scenario containing time breaks (No Operations) should have a lower likelihood than the same one without breaks.

An attack entity can choose between staying in the network for a slot of time without performing attacks, and continue its scenario later on, or proceed with its attacks continuously in time. When attackers are more motivated to achieve their goals, they will not waste time between an attack and a following one. Hence, a continuous scenario is more likely than the one with time breaks. The reader should not confound our claim, with the case where attackers decide to make time breaks between their atomic actions in order to avoid detection. Actually, the latter are included within the complex attack itself, and not between two consecutive attacks in a scenario. Our claim stems from the fact that, if an attack entity has successfully performed an attack without being detected, it has no interest to take a break and waste time before start performing the following attack figuring on its scenario.

In order to represent the difference between a scenario with time breaks and another one without time breaks, the length of scenarios should not be expressed in terms of the number of attacks. Instead, we express the length of a scenario in terms of the number of time slots taken by the attack entity to finish its scenario. In each time slot, an attack entity has either (1) executed an attack, or (2) made a time break (i.e. made No operation). In the first case, the likelihood of the attack can be calculated according to equation 4.3. In the second case, we will consider that the attack entity has performed a virtual action having the same difficulty as another attack executed by another attack entity in the same time slot. Our consideration stems from the fact that the attack entity has taken the same time as the other simultaneous attack entity to finish its virtual action (No operation) before moving to the next time slot. Note that, when there is more than one other simultaneous attack, the likelihood of the virtual action will be equal to that of the most difficult/longest-lasting simultaneous attack (i.e. to the lowest simultaneous AL).

Claim 3

The SL increases when the attack entity gets closer to its goal.

Consider an attacker A who has already executed attack a. If we assume that scenario S = {a, b, c} is potential for A, then, if A performs b in the future, we will be more sure about our assumption. In other words, the probability for our assumption to be wrong decrease, because the number of left attacks that can contradict our assumption decreases. Thus, the likelihood of scenario S being executed by A becomes greater.

To fulfill this claim, we calculate the SL as the product of ALs of the actions (attacks or No Operations) composing the scenario (see Proposition 1) .

Proposition 1 If S K = {a 1 , a 2 , ..., a n } is a scenario of n actions, AL i is the AL of a i , and SL k is the SL of S k , then SL k = AL 1 × AL 2 × ... × AL n .
Suppose that one SAG i predicted the following sequence for an attack entity A: S i K = {a 1 , a 2 , a 3 , a 4 }. Suppose that after a time duration T sufficient for attackers to progress in their scenarios, we regenerate another set of attack graphs, and one of them predicts the following sequence for A: S i+T K = {a 2 , a 3 , a 4 }. This means that during T , A has executed the first attack a 1 of the sequence predicted in

SAG i . If SL i k is the SL of S i K , SL i+T K
is the SL of S i+T K , and AL 1 is the AL of a 1 , then applying Proposition 1, we have

SL i K = AL 1 × SL i+T K .
Referring to equation 4.3, AL is always smaller than one (AL 1 ≤ 1). Thus, S i+T K ≥ S i K . Consequently, Proposition 1 fulfills claim 3.

LSS algorithm: in order to compute SLs taking into account all the above mentioned claims, we propose LSS algorithm (see Algorithm 1). LSS takes a SAG_Cell (ex. Table 4.3) in input, to generate an output table (ex. Table 4.4) containing SLs for all input scenarios. Note that we represent a SAG by a SAG_Cell where every row corresponds to a scenario in the SAG. The first column corresponds to the attackers participating in each attack scenario. The second column represents the length of each scenario. The third line represents whether there are scenarios blocked by the scenario of the current row. And the rest of the columns represents attacks (or no operations) composing each scenario. LSS proceeds as following:

• First, it starts by calculating the AL for each attack, applying equation 4.3.

• Then, it computes likelihoods for No operations, fulfilling by this claim 2.

• Finally, it applies Proposition 1 to computes the SL of each scenario, taking into consideration blocked scenarios and fulfilling by this claims 1 and 3.

Due to our framework, systems threatened by simultaneous attackers can now prioritize the most likely attack scenarios and properly react against them. 

Input

VoIP use Case

In this section, we apply our framework LICCAS on a VoIP use case. We start by describing attackers profiles and the impact that different attack goals may have in a VoIP systems.

Based on this description, we then provide for each AL variable, a specific estimation related to VoIP case. Finally, we experiment LICCAS on simultaneous VoIP attack scenarios, and discuss its accuracy.

Attackers Profiles and Attack Goals Impact

Being an ICT system, we can specify for a VoIP operator, the organizational goals that we have proposed in section 4.2. Additionally, we propose an attacker standpoint impact classification to each organizational goal. For instance, Attackers will certainly estimate that a deterioration of a company reputation concerning its principal service is of high impact. We thus propose in Table 4.5 a matching between organizational goals and respec- Very high Vandal tive impacts. Moreover, we believe that the organizational goal is sufficient to determine the profile of the attacker(s) in this use case. For instance, consider the organizational attack goals of affecting the reputation on principal and secondary services. Here, attackers aim at creating as most damage as they can in the company in order to deteriorate the service. Thus, attackers, in this case are vandals. Consider now social attack goals of provoking losses to third parties (e.g. users registered to benefit from telephony service).

S 3 0.5 1 1 1 5 ×10 -3 Input: SAG_Cell Output: SAG_L createTable SAG_L [SAG_Cell.rows, SAG_Cell.columns -2]; foreach 4 ≤ j ≤ SAG_Cell.columns do foreach 1 ≤ k ≤ SAG_Cell.rows do if j > (3 + SAG_Cell(k, 2)) then SAG_L(k,j-3)= 1; else if SAG_Cell(k,j) == 'no op' ∨ SAG_Cell(k,j) == 'blocked' then SAG_L(k,j-3)= 'X'; else SAG_L(k,j-3)= AL(SAG_Cell(k,j)); //refer to Equation 4.4 end end end createArray T emporary_array [SAG_L.rows]; foreach 1 ≤ k ≤ SAG_L.rows do if (SAG_L(k,j-3)== 'X') then T emporary_array(k) = 1; else T emporary_array(k) = SAG_L(k,j-3); end end min AL = min( T emporary_array); foreach 1 ≤ k ≤ SAG_L.rows do if SAG_L(k,j-3)== 'X' then SAG_L(k,j-3)= min AL ; //
Here, attackers are Hackers because they will try to perform their attacks with the less possible damage, in order to avoid detection. Consider now the social attack goal of affecting reputation on security. To do so, attackers should exploit a vulnerability in the system, and then publish it to harm the company's reputation on security. Even though, attackers, here, seek to bring damage to the system, they should be very careful during their exploits to not damage the system, so it will not respond and stop them. Hence, in this case, attackers are also considered hackers.

Note that, this matching between organizational attack goals and attackers profiles corresponds to the use case we are considering. It is possible to have a different matching for a different use case. To do so, a security expert intervention may be needed.

Payoffs Estimation

In section 4.3.3, we described each AL variable with a generic estimation function. In this section, we specifically estimate these functions for VoIP use cases.

1. E A (Impact(a, s)): The National Vulnerability Database (NVD) supports the Common Vulnerability Scoring System (CVSS) which provides an open framework for communicating characteristics and impacts of IT vulnerabilities. CVSS proposes an equation 1 to estimate the impact of an attack vulnerability on a considered system. The CVSS impact value CV SS_Impact concerns logical and physical levels. In order to also consider the impact on organizational level, an attacker can use one of the impact levels already estimated in table 4.5. When it is difficult to estimate the different variances between the different impact levels, we consider an equally distributed set of impact values {0.2, 0.4, 0.6, 0.8, 1}. where 0.2 is the organizational impact value (Org_value) corresponding to the level Very Low, etc. The following equation fulfills the properties described in Equation 4.8, considering λ=2/3.

E A (Impact(a, s)) = 1 3 × CV SS_Impact(a) 10 + 2 3 × Org_value;
2. E S (Attack_Cost(a)): Here again, we will be based on CVSS to estimate the exploitability of a , CV SS_exploitability(a), on a considered system. We propose the following function fulfilling the properties of Equation 4.9:

E S (Attack_Cost(a)) = 1 CV SS_Exploitability(a) × AN A(a) |GCA(a)| ;
3. Detection_Cost(a): Considering the case of internal attacks in a VoIP network, an attacker is represented by a compromised machine. Thus, the number of attackers can not exceed that of the network machines | M achines |. As explained in 4.6, the detection cost grows with | GCA |, thus, we represent Detection_Cost(a) as shown below. Attackers are able to execute social engineering, and scan its opponent's network for a sufficient time to collect required information to estimate the system investment to detect a. To stay on the safe side, we consider the worst case for our system by assigning an optimistic attacker's point of view. In other words, we will estimate a detection with a high investment cost (D_Invest(a)=1) for all attacks.

Detection_Cost(a) = D_Invest(a) × |GCA(a)| |M achines| = |GCA(a)| |M achines| ;
4. Response_Cost(a): Similarly to D_Cost(a), there is no organism that diffuse public information describing the approximate response investment cost for known network attacks. Hence, to stay on the safe side, we consider the worst case for our system by assigning a high investment cost for responses (R_Invest(a)=1). Concerning the collateral damage Damage(a) of the system's response, it is possible for attackers to estimate it based on the knowledge that they can have on the system services and machines. Nowadays, response systems are adopting strategic responses [START_REF] Cuppens | A formal framework to specify and deploy reaction policies[END_REF] when they are threatened by coordinated attacks, rather than tactical responses/countermeasures. Strategic responses consist in deploying security policies that enforce some security devices or mechanisms to guarantee a defensive system behavior. Devices are empowered into roles, and a security rule is applied to a role. Thus all subjects concerned by the security rule will be affected, even if one is not concerned by the attack. E.g. consider a wireless sub-network of ten machines, for which the corporation empowered the role Invited. Consider also that there is a security rule consisting in deactivating the mail service for Invited if the number of detected failed connection attempts within the sub-network exceeds a specific threshold. In this case the whole set of machines will be prohibited from using the mailing service, even if only few machines were infected (i.e. malicious). Unfortunately, attackers can benefit from this vulnerability to preview the undesirable consequences that a response can have on the system. Hence, they can estimate if it is more beneficial for the system to respond against the attack or not. As a result, we adopt the below equation of a parabolic function to represent the damage of a response on a system. If | GCA(a) | is very small comparing to | M achines |, the system is more willing to launch countermeasures to stop each compromised machines apart. If | GCA(a) | is reaching | M achines |, then the system is interested in launching a strategic response. In this case the number of machines that will incur the security rule is not significant. However, if | GCA(a) | is close to the half of | M achines |, the other half of machines that are not attacked will also comply to the security rule. In this case, the collateral damage of the response is significant.

Damage(a) = 1 - |GCA(a)|- |M achines| 2 |M achines| 2 
2

)];

Response_Cost(a) = R_Cost(a)+Damage(a) 2 = 1 -0.5 × |GCA(a)|- |M achines| 2 |M achines| 2 2 ;
5. DR_Cost(a): considering µ=2/3 , we have a precise definition of Equation 4.5.

6. E S (Reward(a, s)): We propose the following definition for Equation 4.10:

For a vandal case:

E S (Reward(a, s))= [E S (Attack_Cost(a))× | GCA(a) | + E A (Impact(a,s)) Length(s) ] × exp( 1 1+Remaining(a,s) );
For a hacker case:

E S (Reward(a, s)) = E S (Attack_Cost(a))× | GCA(a) | ×exp( 1 1+Remaining(a,s) ); 
E A (Impact(a, s)) is divided by the number of attacks in s, Length(s), to represent that each time the attack entity accomplish an attack, she earns a part of her final reward. Moreover, we choose to increase the reward exponentially regarding the remaining attack steps in s, because last attacks are the most important ones. Response systems should respond before that last attack in s get executed, otherwise the damage will be totally perceived.

7. E S (maxAttack_Cost): referring to E S (Attack_Cost(a)), the cost of an attack a is maximum, when it is very difficult to exploit (CV SS_Exploitability(a) = 1), and a single attacker is performing it (| GCA |=1), and when it is composed of the highest number of atomic actions (maxAN A). maxAN A can be estimated by a security specialist. Hence, E S (maxAttack_Cost)=maxAN A.

8. E S (maxReward): the reward of a in s is maximum when

E S (Attack_Cost(a))× | GCA(a) | which is equal to AN A(a) is maximum (maxAN A)
, and length(s) is minimum (length(s)=1), and E A (Impact(a, s)) is maximum (E A (Impact(a, s)) =1). Hence, we have E S (maxReward) = 1 + maxAN A × exp.

Implementation and Experimentation

We experimented LICCAS on SIP attack scenarios of Figure 4.1, to depict the evolution of SL regarding different factors and compare experimental results with the model's expectation. We also reveal the novelty and the breakthroughs of LICCAS in likelihood assessment by comparing it to related work via an experimentation. In a first experimentation, we considered a single attack scenario performed by the groups of attackers {a11, a12} of Figure 4.1, and measure the SL each time the attack entity accomplishes an attack of this scenario. The measures represented in Figure 4.5 confirm that the likelihood of an attack scenario grows exponentially when attackers get closer to the final goal (refer to claim 3 and section 4.5.2).

In the second experimentation, we considered the attack scenario of Figure 4.1 performed by GCA 1 = {a1, .., a10}, and observed the evolution of SL regarding the number of coordinated attackers. Therefore, we conduct multiple measurements varying | GCA 1 | from 1 to 10, considering | M achines |=10. The measures in Figure 4.6 confirm that SL increases when | GCA 1 | increases, to level off at a certain threshold (| GCA 1 | = 7) and fall after. This experimental result matches with our model application on VoIP systems, where we estimated Response_Cost by a parabolic function that falls after |M achines| 2 , because we considered that a response system is more likely to launch a strategic response where only a small number of legitimate machines will be damaged. However the parabola in 4.6 is not centered around 5, but around 7. This stems from the fact that increasing | GCA |, will increase Detection_Dif f iculty, and decrease E S (Attack_Cost), thereby increasing SL and reporting its fall until 7.

In the third experimentation, we considered five different attacks having the same position (Remaining(a, s)=1) in five different attack scenarios. Each scenario has a different social attack goal (e.g. end goals of Figure 4.1). We assigned the same | GCA |, E S (Attack_Cost), E S (DR_Cost), and CV SS_Impact to all attacks. And then, we compared ALs with respect to the organizational impact levels of different scenarios. In accordance with our model, Figure 4.7 shows that, for a same attacker profile, scenarios with organizational goals of great impact on the system are less likely than others. This result is accurate to real world situations, where attackers pay more attention to the potential reaction of the system, when they know that their attack is of great danger; recently deployed servers2 by NSA to consider the possibility of being detected before executing attacks validates our result. Moreover, according to results, the likelihood of exposure to hackers is 54% while that of exposure to vandals is 46%. This distribution is very close to published statistics on real-life attackers motivations, calculated in November 2012 3 . Statistics show that 60% of observed attacks were categorized as hacktivism, and 40% were Cyber crimes (vandalism). Hence, our proposal of profiling attackers and categorizing end goals, leads to accurate results, and thus, is necessary to efficiently assess AL.

In the forth experimentation, we compared our model with another work [KCBC + 09] on likelihood calculus. In [KCBC + 09], authors presented a model to asses the Success Likelihood of an attack scenario, and they experimented it on the SIP attack scenario of Figure 4.3. In order to compare our work with theirs, we followed the same scale, and thus, we transformed our SL to a relative logarithmic value. We also applied our model on the attack scenario of Figure 4.3, and we investigate the evolution of SL regarding the position of attackers in the scenario and the number of collaborating attackers. Graphs in Figure 4.4, reveal the difference between both works. Notice that the Success Likelihood does not depend on | GCA |, which means that an attack scenario has the same Success Likelihood whatever is | GCA |. Contrarily to Success Likelihood, our Scenario Likelihood goes from 1.3 to 1.7, when the number of attackers goes from 1 to 4. Notice that, when attackers are at step number 3, SL corresponds to the AL of the final step 'Account U highjacking' which is not a coordinated attack. Hence, its AL remains the same whatever is | GCA |. 

Impact Assessment of Attack Scenarios

Every organization relies on an ICT system where changes continuously occur and new vulnerabilities are detected. Therefore, continuous cyber security management is required to address potential breaches that may result from those changes. Usually, this operational management is based on technical processes, executed by administrators who are not necessarily aware of the businesses or missions of the organization. This gap between technical and organizational levels is filled in our risk-aware SAGs. These latter allow to visualize the effect of an attack scenario on the organizational level while considering the ICT system's state. Consequently, and contrarily to several works on services dependencies [START_REF] Toth | Evaluating the impact of automated intrusion response mechanisms[END_REF] [JTM07] [KCBCD10b] aiming at calculating the impact propagation of an attack through technical assets in order to estimate the whole impact of an attack scenario, our graphs are designed in a manner to only represent the propagation of impact when it leads to significant losses for the system. In other words, risk-aware SAGs only represents scenarios leading to an organizational attack goal. If an attack's impact propagates to reach a physical or a logical asset without reaching an organizational goal, it means that this impact is priceless for the organization, and we should not take in into consideration while assessing the impact of the attack scenario. Thus, we do not need a service dependency model to assess the impact of an attack scenario, we only have to consider the impact of the organizational attack goal that this scenario is reaching in the risk-aware SAG.

After analyzing the business plan of an organization, the system administrator and the business specialist should assign impact values to each organizational attack goal corresponding to the losses in term of money that this attack goal will cost the organization once fulfilled. For instance, if we consider an attack scenario aiming at overflooding an operating server holding a voice service. Due to this attack scenario, the quality of service may considerably drop forcing a voice client to wait an intolerable time before the server responds to his request. Hence, because of this attack scenario, several clients may unsubscribe from this operator's service and sign with a competitor one. In this case, the business specialist considers the loss of money driven by the different clients contract breach. The total cost corresponds, thus, to the impact of whatever scenario reaching the organizational attack goal: 'affected reputation on principal services'.

The same reasoning should be done for all the organizational attack goals, and the different costs are calculated. Since the different cost values depend extremely on the organization and its business (i.e. enterprises does not all have the same size nor the same turnover), we will rather adopt qualitative values for impacts starting from very low and ending with very high. To do so, we can follow the approach proposed by Lockstep Consulting [START_REF]A guide for government agencies calculating return on security investment[END_REF], and already adopted by [START_REF] Gonzalez Granadillo | Rori-based countermeasure selection using the orbac formalism[END_REF], to use the scale values of severity, which convert quantitative values into qualitative estimations of costs. For instance, a low impact represents a cost of 1,000$, whereas a very high impact represents a cost of 1,000,000$. The approach is based on a survey and a scoring system, which combine expert knowledge and statistical data.

To sum up, we consider that each organizational attack goal in a risk-aware SAG is coupled with a predefined impact qualitative value.

Risk Assessment and Prioritization

Risk Assessment of Attack Scenarios

The state of the art proposes multiple definitions of risk. In particular, existing definitions can be classified into two major categories. The first considers the risk as a measure that can be calculated using a function. One of the notable examples of this category is the NIST definition [oST12], which considers the risk as 'a measure of the extent to which an entity is threatened by a potential circumstance or event, and typically a function of: (i) the adverse impacts that would arise if the circumstance or event occurs; and (ii) the likelihood of occurrence'. On the other hand, the second category starts with modeling the risk as a separate concept. Most prominent example is the ISO27000 [START_REF]information technology -security techniques -informations security management systems -overview and vocabulary[END_REF], which defines the risk as 'effect of uncertainty on objectives [...], it is characterized by reference as potential events and consequences'. Afterwards, [START_REF]information technology -security techniques -informations security management systems -overview and vocabulary[END_REF] expresses risk in terms of a combination of the consequences of an event and the associated likelihood of occurrence in order to measure the risk level. While both categories seek ultimately to measure the risk, they adopt two distinct approaches. The first approach is more appropriate for us in that we have calculated the likelihood and the impact of each attack scenario in order to assess its risk, unlike what is done in [START_REF] Wael Kanoun | Calculating & composing elementary risks: Novel decision support system for cyber defence[END_REF]. In this latter work, authors propose a new definition of composed risk, where risk is assessed for each attack, and then risk values are aggregated in order to get the elementary risk of the whole scenario.

Moreover, risk can be assessed either qualitatively, or through numerical values. We believe that adopting qualitative values for the risk over quantitative ones is more beneficial for an organization. Actually, one can never guarantee the certainty of having calculated precise and accurate risk values. Thus, adopting a qualitative approach for risk assessment allows to have a margin of error over calculated values. Very low 0.44 × 10 -4 ≤ SL < 0.73 × 10 -3 Low 0.73

× 10 -3 ≤ SL < 1.1 × 10 -2 Medium 1.1 × 10 -2 ≤ SL < 1.4 × 10 -1 High 1.4 × 10 -1 ≤ SL ≤ 1
Very high

• The SL of the second scenario led by the a11 is calculated by LICCAS and is equal to 0.45 × 10 -3 . This SL correspond to a Low likelihood level. On the other hand, we suppose that the system considers the organizational goal 'Third-party losses, detectable in short time' with a Medium impact level. Consequently, based on the risk matrix, the risk of this scenario is Low. • The SL of the third scenario led by the a12 is calculated by LICCAS and is equal to 0.45 × 10 -3 . This SL correspond to a Low likelihood level. On the other hand, this scenario does not continue to reach an organizational goal. Thus, a Very Low impact level is assigned to it. Consequently, based on the risk matrix, the risk of this scenario is Very Low. • The SL of the fourth scenario led by the a13 is calculated by LICCAS and is equal to 0.44 × 10 -2 . This SL correspond to a Medium likelihood level. On the other hand, we suppose that the system considers the organizational goal 'Affected reputation on security' with a High impact level. Consequently, based on the risk matrix, the risk of this scenario is Medium.

Consequently, the considered SAG contains one scenario of High risk level, one scenario of Medium risk level, one scenario of Low level, and one scenario of Very Low risk level.

Prioritizing Risky SAGs

Once the risk levels of the different attack scenarios are assessed for each SAG, SAGs should be sorted in a manner to select the graph(s) that should be treated in priority by the response system. We are convinced that such graph(s) should contain the highest number of scenarios having the highest level of risk compared to other graphs.

In order to get this (or these) graph(s), the most proper mean would be to sort SAGs following a lexicographical order. Actually, the lexicographical sorting is totally independent from the scale that risk values are following. It only depends on the total order relation that exists between the risk values (i.e. 'Very High' > 'High' > 'Medium' > 'Low' > 'Very Low'). This allows our SAGs sorting method to be generic enough to apply it even if the risk scale is not exponential as it is in our case. The lexicographical sorting can be processed as follows: first, we select from the set of SAGs, those containing scenarios with Very High risk level, and within this selection we sort graphs with a descending order regarding the number of scenarios of very high risk they contain. If several SAGs contain the same number of such scenarios, the sorting will be done regarding the number of scenarios of High risk level they contain, and so on. Second, we select from the set of remaining graphs, those containing scenarios with High risk level, and within this selection we sort graphs with a descending order regarding the number of scenarios of high risk they contain. If several SAGs contain the same number of such scenarios, the sorting will be done regarding the number of scenarios of Medium risk level, and so on. Third, we select from the set of remaining graphs, those containing scenarios with Medium risk level, and the same sorting method can be followed until the set of remaining graphs is empty.

Consider that 'GraphTable' is a table containing all the SAGs, and 'SortedGraphTable' is the final table containing sorted SAGs. Consider also that R is an integer corresponding to the risk level of an attack scenario, with R=5 corresponds to a very high risk level, R=4 corresponds to a high risk level, and so on. Besides, consider a function N(SAG,R) that returns the number of scenarios within the given SAG having a risk level corresponding to R. Based on these considerations, Algorithm 3 describes our sorting method. At the end of our Algorithm, we get a table filled with the most risky SAGs in the first cells and with less risky ones in the last cells. Consequently, the SAGs in the first cell will be selected for treatment by the response system. However, if several SAGs in the first cells are lexicographically equal (i.e. having, for each risk level, the same number of scenarios), they will be all selected for treatment.

Input: GraphTable

Output: SortedGraphTable createTable SortedGraphTable[ ]; for (R = 5; R > 0; R = R -1)
Note that, in our case, our risk values follow an exponential scale of base 10. This specification/parameter can simplify the sorting method by adding the following arithmetic relations: 'Very High' = 10× 'High'; 'High' = 10× 'Medium'; 'Medium' = 10× 'Low'; and 'Low' = 10× 'Very Low'. Consequently, all values can be expressed in function of a single value (e.g. 'Very High' = 104 × 'Very Low'; 'High' = 10 3 × 'Very Low'; 'Medium' = 10 2 × 'Very Low'; and 'Low' = 10× 'Very Low'). Then, an arithmetic sum S can be applied over the different scenario risk values within the same SAG. And finally, SAGs can be sorted regarding the highest result of the sum S. However, the lexicograpgic sort remains more adaptable when no relation can be inferred between the different risk levels. 

Discussion

The major breakthrough of our work compared to existing work is that we consider the attackers' profiles, and the interaction between attackers while computing the attack likelihood, and thereby, the risk. Thus, our framework is able to handle the case of coordinated attacks and that of concurrent ones. The following is a short description of existing work on attack likelihood assessment.

In [START_REF] Demolombe | Intention recognition in the situation calculus and probability theory frameworks[END_REF], authors presented a method to assign probabilities for an agent intention to perform a set of scenarios. The agent can choose to execute a set of actions described in Situation Calculus (SC) [START_REF] Reiter | Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems[END_REF]. Scenarios are defined by an expert, each as a succession of actions. This method is based on a newly defined property in SC, Doing, which allows the selection of the scenario(s) that matche(s) the observations. In other words, Doing selects scenario(s) that start(s) with the same chronological order as that of observed actions. At each action observation, the probability of every scenario is computed based on Bayes' theorem. The computed probability depends on the history (i.e. past actions) and not just on the current observation. However, this method is based on very strong assumptions. For instance, it is assumed that all actions have the same probability to be observed. This assumption is not relevant, because an attacker can not perform any action at any time, several prerequisite actions need to be already executed. Moreover, the resulting probability only takes into account the number of actions left to perform in order to reach a final goal.

In [KCBC + 09], authors presented a Markov model to assess the success likelihood of attack objectives. Based on a generated set of attack scenarios, the model transforms each scenario to a continuous model. The transition probabilities between actions is computed based on the weight of the correlation link between these actions, and a skill and knowledge value affected to each action. However, an expert is needed to affect a skill and knowledge level appropriate for each attack, without considering the case of coordinated attacks. Moreover, the resulting likelihood only takes into account the complexity of attacks composing the scenario, and does not consider the reaction of the opponent.

In [START_REF] Alpcan | A game theoretic approach to decision and analysis in network intrusion detection[END_REF] and [START_REF] Kong | Game strategies in network security[END_REF], a game theoretic framework was established to model the attacker's intent, and the detection process. However, these works suffer several limitations: first, payoffs were considered common knowledge for both players. Second, authors did not go beyond the probability of attacking which depends exclusively on the cost of the other party's response, and the impact of attacking on the other party. Consequently, the motivation of the attacker, and the cost/complexity of the attack was not taken into consideration. Hence, in their model, a same attack has always the same attacking probability, whatever is the attacker's motivation (profile/end goal) and whatever is its placement in the scenario to which it belongs. Finally, coordinated and simultaneous attacks were not taken into consideration in their model. Moreover, for each attack, authors assigned a single reward value without considering the different scenarios (resp. end goals) in which this attack can be performed. Actually, the rewards of an attack that can make part of two scenarios with different end goals should not be the same. As we explained, rewards strongly depend on end goals.

In [START_REF] Liu | A bayesian game approach for intrusion detection in wireless ad hoc networks[END_REF], authors proposed a game theoretic framework to analyze the interactions between pairs of attacking/defending nodes using a Bayesian formulation. They establish a dynamic Bayesian game allowing the defender to consistently update his belief on his opponent's maliciousness as the game evolves. A Bayesian approach is not appropriate in our case. Actually, we are dealing with Simultaneous Attack Graphs where a set of machines is considered malicious after detecting their suspicious behaviors, and different combinations of individual and /or coordinated attack scenarios are predicted for those machines. Therefore, the challenge is not to divine whether machines are malicious or not but to assess the Scenario Likelihoods in each combination, assuming that one of them is going to happen in the future.

In [START_REF] Quanyan Zhu | Network security configurations: A nonzero-sum stochastic game approach[END_REF], a network subject to simultaneous attacks launched by a number of internal attackers is considered. And, a network security N + M -person nonzero-sum stochastic game is established between malicious and defending machines. Every malicious machine can choose with a certain probability an attack between a set of attacks, and Markovian strategies are defined for attackers. We think that this work is based on a strong assumption, because a threatened machine is not always a defending one (i.e. that which will react against the attack). For instance, a potential defense against a DDoS on a server may be to configure a backup server to share the traffic with it. Therefore, the game should be establish between attackers on one side, and the response system on the other side. Besides, Markovian strategies are not adopted in our case. In each SAG, an attacker has a well defined scenario to follow, so the challenge is not to assess the probability with which he will choose an action rather than another. On the contrary, we are assessing the Likelihood with which the attacker has decided to execute this attack to go through this scenario.

Conclusion

We proposed in this chapter a risk assessment framework for simultaneous attack scenarios appearing in an attack graph.

First, we proposed LICCAS, a new framework to assess the Attack Likelihood (AL) of simultaneous attack scenarios considering NIST approach. Being able to represent the possibility of detection and reaction of the response system, in the decision process of the attacker, Game Theory provides the most adequate framework to compute the attacking strategy p * . In order to express the cost/complexity of the attack, and the reward that attackers gets once the attack is successfully executed, we also defined a Return on Attack Investment metric, ROAI. Combining p * with ROAI, we proposed an equation to assess AL. This equation takes into consideration the number of collaborating attackers, making our model able to assess not only the AL of individual attacks, but also that of coordinated ones. Moreover, to address the problem of scenario likelihood assessment in a context of simultaneous attacks, where attackers may unintentionally be concurrent, LIC-CAS also includes LSS algorithm. LSS computes the likelihood of a whole attack scenario, considering the interaction with other ongoing simultaneous scenarios in the system. Our experimentations on VoIP simultaneous attacks scenarios showed that LICCAS is relevant, by providing accurate results, and revealing benefits compared to existing work.

Second, we proposed a simple but yet comprehensive method to assess the impact of the different attack scenarios within an attack graph. The method is basically based on the attack goal reached at the end of each scenario. Third, we adopt NIST approach to proposed a risk assessment of the different attack scenarios of a graph, and we showed a study case application. Then, we proposed a sorting method in order to prioritize the different SAGs regarding the number of risky attack scenarios they contain. This prioritization is required in order to select the most critical graph(s) within the large set of SAGs. Indeed, this (or these) graph(s) constitute relevant input for response systems, because they contain attack scenarios having high risks on the system. Consequently, response systems can now recognize the most risky attack scenarios and properly react against them.

Introduction

In order to overcome all the limitations of nowadays response systems described in Chapter 2, we propose, in this chapter, a response system that dynamically designs and co-simulates response candidates for simultaneous attack threats. We first introduce a new response scheme. Our response scheme is described as a sequence of non conflicting parallel actions, allowing an execution in parallel or in sequence of different actions handling all the risky threats. Our response scheme is dynamically designed based on a new definition of a capability-aware logic anticorrelation approach [CAB + 06], and modeled through an efficient logic language, the Situation Calculus (SC) [MH69] [Rei01].

When a system is simultaneously threatened by different attack entities, multiple response candidates may be dynamically designed. In order to choose the most efficient response, we also present in this chapter a co-simulator based on the SC planning capabilities. This latter co-simulates each response possibility apart, considering the system's state and the existing simultaneous attack entities. When co-simulating a response, the following attack scenarios are generated: (1) the scenarios blocked by the response, (2) the scenarios which became less risky due to the response, (3) or, in the worst case, the scenarios that appeared after the response simulation. Our co-simulator proposes several response plans able to prevent the simultaneously ongoing attack entities. In order to provide security administrators with an automated decision support regarding the multiple possible response plans, we propose a new dynamic method that compare the overall risk mitigation of the different response plans considering their costs and collateral damage. This is an original contribution of our work that extends previous work on RORI assessment [START_REF] Kheir | A service dependency model for cost-sensitive intrusion response[END_REF] [GGBDJ14], which (i) are restricted to a static assignment of risk mitigation metric for each pre-defined response, and (2) strongly depend on expert knowledge. Afterwards, the most optimal/efficient response is selected to be effectively deployed against the simultaneous attack scenarios. This chapter is organized as follows: Section 5.2 introduces our new response scheme, and explains how to dynamically design a response based on a new definition of anticorrelation. Section 5.3 shows how to model our dynamic response with SC. Section 5.4 introduces our response co-simulator based on SC planning task. In Section 5.5, we experimented our responses co-simulator on an IP network threatened by simultaneous attacks. In Section 5.6, we propose a dynamic risk-aware method to select the most optimal response against simultaneous attacks. Then, Section 5.7 discusses our work, before we conclude on our proposals in Section 5.8.

New scheme for a Complex Response

Let

[[a 1 1 , a 1 2 , ..., a 1 M ]; [a 2 1 , a 2 2 , ..., a 2 M ]; ...; [a N 1 , a N 2 , ..., a N M ]
] be the sequence of simultaneous attacks forecasted in a given SAG, where M different attack entities are presented in the system, with a i j being the action that is going to be executed in the i th place by the attack entity j. Symbol , represents parallelism, and symbol ; represents sequencing. Note that a i j can also be no operation if no action is predicted for the entity. Consider that attack entities 1, 2, ..., K are considered as risky and attack entities K + 1, ..., M are considered as not risky. Note that, in a given SAG, risky attack entities are those for which risky scenarios are forecasted. As defined in Chapter 4, risky scenarios are those that have High, Very High, or Medium levels of risk. Hence, the following is the sequence of Risky Simultaneous Attacks (RiskySAS):

RiskySAS = [[a 1 1 , ..., a 1 K ]; [a 2 1 , ..., a 2 K ]; ...; [a N 1 , ..., a N K ]].
R is considered a response against RiskySAS, if R is able, while maintaining the system in an operational state, to either prevent or delay entities 1, 2, ..., K from reaching their attack objectives. In order to respond to simultaneous threats, the response should not be limited to a single elementary action, we thus consider a response as a complex action, and we define it as a set of partially ordered elementary actions. In other words, a response may consist of non conflicting system's actions activated in parallel and of system's actions activated in sequence. Contrarily to an attack action, a system's action is an action triggered/executed by the system. openSession(Src_ip, Src_port, Dest_ip, Dest_port), restart(Server), installPatch(patchID, machineIP), deployProtocol(StrongAuthentication, Server), are examples of system's actions.

We introduce, in the following, a generic action scheme for a response R described as a sequence of length x of parallel system's actions: R = [[r 1 1 , ..., r 1 l1 ]; [r 2 1 , ..., r 2 l2 ]; ...; [r x 1 , ..., r x lx ]] with r k i being one of the lk system's actions executed in the k th place (i.e. k th time step) , and ∀k/ 1 < k < x , ∀i = j / 1 < i, j < lk , r k i and r k j are not conflicting (i.e. meaning that parallel actions should be compatible together for a parallel execution).

In order to design a response on the fly against a RiskySAS, a dynamic anticorrelation logic approach should be applied. Unfortunately, existing work on anticorrelation [CAB + 06] is limited to an anticorrelation definition unaware of the applicability of actions, and is thereby inefficient for dynamic use. Moreover, the existing definition of anticorrelation is limited to the case where a response consists of a single elementary action. We thus propose in the following sections an applicability-aware anticorrelation definition adapted to our response scheme.

Applicability-aware Anticorrelation for Elementary System Actions

Anticorrelation in logic programming was defined in [CAB + 06] as follows:

Definition 6 Let r and a be respectively logic descriptions of a system's action and an attack action. postr is the set of predicates of post-conditions of r and prea is the set of predicates of pre-condition of a. Each of the post-condition and the pre-condition is a conjunction of predicates. r and a are anti-correlated if the following condition is satisfied: anticorrelated(r, a) ↔ ∃P r, P a/(P r ∈ postr ∧ ¬P a ∈ prea) ∧ (P r, P a are unifiable).

For example, consider passwordCrack(Attacker 1 , U, Serv) a cracking attack of user U 's password through server Serv. A precondition of this attack is to have Attacker 1 having network access to Serv. Let discard(Attacker 1 , Serv) be a system's action consisting in disconnecting Attacker 1 from the network of Serv. Consequently, we have: anticorrelated( discard(Attacker 1 , Serv), passwordCrack(Attacker 1 , U, Serv) ).

Unfortunately, Definition 6 does not consider the relevance and the applicability of the system's action. In other words, the possibility to execute the system's action in the current state of the system is not taken into consideration while reasoning on anticorrelated actions. Actually, if we reconsider the latest example, the discard(Attacker 1 , Serv) action, may not be possible for execution in the current state because the database containing allowed ip addresses for connection to Serv is exclusively opened by another module in the system. Hence, response system should wait until the database is released, to be able to execute its action. Consequently, the applicability of an action in a system's state S should be considered while designing responses based on logic anticorrelation. Therefore, we propose an applicability-aware anticorrelation definition as follows:

Definition 7 Let r and a be respectively logic descriptions of a system's action and an attack action. Let S be the current state/situation of the system, and poss(r, S) a predicate meaning that it is possible to execute r in state S. r and a are anti-correlated in state S if the following condition is satisfied: anticorrelated(r, a, S) ↔ poss(r, S) ∧ anticorrelated(r, a). poss(r, S) ↔ ∀P ∈ prer, P hold in S

Applicability-aware Anticorelation for Complex System Actions

Unfortunately, Definition 7 is limited to the case where a response consists of a single elementary action. However, a system may sometimes need to coordinate multiple elementary actions in order to react against an attack a, especially when a is a coordinated attack [SCCB + 13]. As an example, consider a server Serv able to handle up to K connection requests per second. Consider that 25 users are registered to this server, and each one can send up to K/20 connection requests per second to the server. Thus, the server can handle up to 20 users deploying their entire bandwidth in sending requests. Consider also that 22 users were infected by an external bot, and they are coordinately flooding (i.e. executing a DDoS) against Serv. The set of compromised users is thus considered as a GCA. This latter was able to perform a DDoS because | GCA |> 20. In order to respond to the DDoS attack, the system should discard in parallel at least three of the infected users to reduce the receiving flow below the threshold of Serv. Thus, it is the resulting effect of the three discard actions which is opposite to the precondition of DDoS (| GCA |> 20). The following is a logic expression of the combined effect of the three elementary actions. discarded(U ser 10 ) ∧ discarded(U ser 11 ) ∧ discarded(U ser 12 ) →| GCA |< 20.

In this case, it is the set of parallel actions [discard(U ser 10 ), discard(U ser 11 ), discard(U ser 12 )] which is anticorrelated with DDoS(GCA, Serv).

Therefore, we propose a new definition of applicability-aware anticorrelation between a set of coordinated elementary system's actions and an attack, as follows:

Definition 8 Let rcoordinated = [r 1 , r 2 , ..., r C ] be a set of parallel system's actions, and a an attack action. postrk is the set of predicates of post-conditions of r k and prea is the set of predicates of pre-condition of a. rcoordinated and a are anti-correlated if the following and files on M are backed up in order to reformat the machine and install a security patch in further steps. By this, the bot on M is removed and the vulnerability is patched. In this example, shareLoad(S1, S2), and install(SecurityP atch, M ) are two system's actions anticorrelated respectively with T1 and T2. disconnect(M ), ref ormatHarddrive(M ) and backupF iles(M, BackupServer) are 'capability enabling' actions for install(SecurityP atch, M ). connect(M ) is an 'operability' action. Note that without this latter, the response against T2 will not be effective. Another possibility of response can be the following: R = [ [prioritize(S1, PremiumUsers), deploy(StrongAuthentication, AuthServer)] ].

Here, in order to prevent the denial of service of S1, this latter is configured to prioritize premium users over normal ones. In parallel, a strong authentication is deployed on the authentication server in order to prevent cracking the password of all users including U . In this case R does not include 'capability enabling' actions, nor 'operability' actions.

In order to design our responses based on logic anticorrelation, system's and attacks' actions should be modeled using the same logic language. Additionally, the modeling language should follow a pre/post condition approach for actions description. In [SCCB + 13] different modeling languages were compared: LAMBDA [CO00] [AC06], STRIPS [START_REF] Boutilier | Partial-order planning with concurrent interacting actions[END_REF], JIGSAW [START_REF] Templeton | A requires/provides model for computer attacks[END_REF], and Situation Calculus [MH69] [START_REF] Reiter | Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems[END_REF], and the latter turns to be the most adapted language to describe all types of attacks (individual, coordinated and simultaneous ones). We, thus, investigate in the next section the adaptability of SC in modeling anticorrelation and responses as defined in the previous section.

Modeling Responses with Situation Calculus (SC)

In Chapter 3, we presented the basics of the Situation Calculus logic language. In this section, we show how to model system actions, anticorrelation, and finally our response scheme with SC.

Elementary System Actions

SC answers our need in (1) offering the possibility to dynamically design a response whose requirements and effects depend on the system's state, and (2) modeling system actions following a pre/post condition approach. The following is an SC description of an operational action which consists in forcing a server S1 in sharing the load with another server S2 when overcharged. shareLoad (Server x , Server y ) Poss(shareLoad(Server x , Server y ), S) ↔ overcharged(Server x , S) ∧ is_on(Server y ) ∧ runningService(Server x , S) = runningService(Server y , S). do(shareLoad(Server x , Server y ), S) = S ↔ ¬overcharged(Server x , S ).

Concurrent System Actions

In [START_REF] Reiter | Natural actions, concurrency and continuous time in the situation calculus[END_REF] and [START_REF] Pinto | Temporal reasoning in the situation calculus[END_REF], SC ontology was expanded to handle concurrency. A new sort concurrent is added. Every concurrent variable c is a set of concurrent simple actions a. In our case IA and CA are simple actions. The binary function do(c, s) returns a situation term that results from the application of concurrent actions c in situation s. The item P oss(a, s) is also extended to handle concurrent actions. Consequently, P oss(c, s) means that the set of concurrent actions c is possible in situation s. Additionally, in a simultaneous actions context, some actions can not be performed concurrently. This is due to incompatibility between actions in terms of resources that each action uses. For instance, if action a 1 needs a resource for its execution, and another action a 2 needs the same resource, then the set of concurrent actions c = {a 1 , a 2 } can not be executed unless this resource can be shared. As a solution, Pinto [START_REF] Pinto | Temporal reasoning in the situation calculus[END_REF] proposed to add a finer level of granularity by appealing to the notion of resource: xres(a, r) means that the action a requires the exclusive use of the resource r, and sres(a, r) means that the action a requires the use of the resource r for its execution, but r can be shared. Finally, poss(c, s) makes use of a conflict predicate conf lict as a precondition in order to test compatibility between actions:

conf lict(c) ↔ ∃a 1 , a 2 ∈ c, ∃r | [(xres(a 1 , r) ∧ xres(a 2 , r)) ∨ (xres(a 1 , r) ∧ sres(a 2 , r)) ∨ (sres(a 1 , r) ∧ xres(a 2 , r))] P oss(c, s) ↔ [∀a ∈ c, P oss(a, s)] ∧ ¬conf lict(c)
Concurrent SC is thus efficient for avoiding conflicting actions while dynamically designing a response. In Section 5.5.2, an example of conflicting actions is addressed, and the notion of resource of concurrent SC is appealed to overcome the problem.

Anticorrelation in Situation Calculus

Let r and a be respectively a SC description of a system's action, and an attack action. Anticorrelation between r and a presented in Definition 7 is expressed in SC as follows: anticorrelated(r, a, S) ↔ poss(r, S) ∧ ¬poss(a, do(r, S)).

Note that ¬poss(a, do(r, S) is equivalent to anticorrelated(r, a) in Definition 7. Actually, in SC, when doing action r renders action a not possible for execution, this means that r has rendered one of a's precondition's predicates unfulfilled (i.e. false).

Let C = [r 1 , r 2 , ..., r L ] be a set of parallel system's actions, and a an attack action. Anticorrelation between rconcurrent and a, as presented in Definition 8, can be expressed in concurrent SC as follows: anticorrelated(C, a, S) ↔ poss(C, S) ∧ ¬poss(a, do(C, S)).

As demonstrated in Section 5. Note that, in SC, do(C i , S) returns the situation in which C i is executed, which is equivalent to what is considered in Definition 9: "Let S i+1 be the state of the system after the execution of [r i 1 , ..., r i li ] in state S i ". Consequently, concurrent SC is adapted to model anticorrelation of a complex action against a RiskySAS as defined in Definition 10. And, a response (see Definition 11) can be modeled in SC as follows: response(R, RiskySAS, S) ↔ anticorrelated(R, RiskySAS, S) ∧ ∀Constraint ∈ min_constraints, Constraint(do(R, S)).

Note that, constraints' specification depends on the use case, and they can be modeled in SC, as explained in [START_REF] Essaouini | Specifying and enforcing constraints in dynamic access control policies[END_REF]. In this latter work, authors defined a constraint as a conjunction formula over predicates that should, or not, be fulfilled together in a same situation (i.e. ahistorical constraint), or throughout the situations (historical constraints).

At this stage of the chapter, we have proposed a mean to dynamically design response possibilities against a set of simultaneous attacks scenarios. In order to choose the most efficient response, the Risk Mitigation of each response possibility should be first calculated, and then the different values are compared. To do so, each response possibility should be cosimulated separately, considering the system's state and the currently existing simultaneous attack entities. In the next section, we introduce the SC planning task, and afterwards, we rely on this latter and on our response scheme to propose a dynamic response co-simulator.

Planning in Situation Calculus

In [START_REF] Reiter | Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems[END_REF], the author presented and implemented the world's simplest breadth-first planner (wspbf ). wspbf is a SC planner for an agent who can perform concurrent or sequential actions. It is supplied with a goal predicate plannerGoal(s) to fulfill. In Chapter 3, we presented the Golog [LRL + 94] program of the wspbf . The planner generates all sequences of concurrent actions c fulfilling the goal.

Dynamic Response Co-Simulator

We generalize the wspbf to the case of a multi-agent system, where, on one hand, we have the system which can perform, concurrently or sequentially, a set of system actions, and on the other hand, we have the attack entities present in the SAG, which can perform individual, coordinated and even concurrent attacks.

First, all the attacks that have already been specified and described in SC for SAP are specified and described in the same way for the response co-simulator.

Second, a network expert and a security expert are needed to exhaustively specify, and then describe in SC, all the elementary actions that the system can perform, considering the resource notion.

Third, all the attack goals that have already been specified and described in SC for SAP are specified and described in the same way for the response co-simulator.

For instance, the following are three critical assets that may be considered as attack goals in a system handling voice and trading services: a voice over IP server, a database containing confidential information about traders, and a trading service.

Attack_Goal(Entity, S) → in_denial(Entity, V oIP server, S) ∨ information_thef t(Entity, TradingDataBase, S)∨is_of f (Entity, TradingService, S). //meaning that an attack entity can reach an attack goal in situation S, if in S, it has succeeded a denial of service over the VoIP server or the Trading server; or if it has succeeded to steal information from the trading database.

Forth, we describe more specifically the attack goal that each attack entity has reached in the considered SAG. For example, if entity1 has overflown a VoIP server then: goalreached(entity1, S) ↔ in_denial(entity1, V oIP server, S).

Fifth, we specify in SC, for each attack entity appearing in SAG, if this entity is risky or not (as explained in Section 5.2). This information is given by our graph and risk assessment module (refer to Chapter 4). Besides, we specify for each risky entity, its attack scenario appearing in the SAG. For instance, given M entities, if K of them were specified as being risky then we have: risky(entity1). riskySAS(entity1, scenario1). . . risky(entityK). riskySAS(entityk, scenariok) ¬risky(entityK + 1). . . ¬risky(entityM ).

Finally, we configure the co-simulator goal (i.e. planner goal) in a manner to reach a situation where a response is designed based on described system actions, and every risky entity is either (1) completely prevented from reaching her attack goal, or (2) forced to change her path and choose a more complex one before getting to her objective, thereby, reducing her risk. Concerning non risky entities, since they are not the prior concern of the system in the current situation, then no response will be intentionally designed against them. Note that if a response was able to additionally block or reduce the risk of a non risky entity, then this is also considered a solution for our co-simulator. We model our co-simulator's goal as follows: //meaning that: due to the response R*, the attack entity was completely prevented from performing her attack scenario. Thus, the risk of this entity is totally blocked/disappeared. and riskReduced(Entity, S) → goalReached(Entity, S) ∧ privilegesLoss(Entity, S). privilegesLoss(Entity, do(C, S)) → [∃Predicate, ∃Object/Predicate(Entity,Object,S) ∧¬Predicate(Entity,Object,do(C,S))] ∨ privilegesLoss(Entity, S).

//meaning that: due to some system actions C making part of the response, the attack entity has lost one of its privileges. Consequently, the entity will need to do more effort to progress in its scenario (e.g. the entity may need to re-execute its attack to regain connection to a server; this connection can be needed to make a fraudulent purchase in the future.). Clearly, this effort requires additional time to reach the final goal, thus, the risk induced by this entity decreases.

Our response co-simulator does not generate a single response. Instead, it returns an exhaustive list of all the possibilities of responses that can be designed against the risky threats, co-simulating at the same time, and for each response, the potential behavior of the attackers to face this response, and the side effects that this latter can have on the system. The response co-simulated against risky threats can have side effects on the system, and can contribute in helping a non risky entity to pass through a new attack scenario which may be of high risk.

Note that, each of the generated response possibilities appears within a response plan. A response plan is a sequence of parallel actions. Each action can be either an attack or a system action. Actually, generating systems actions and attacks in a same sequence is important for an administrator. Actions in sequence are ordered in time, thereby, an administrator knows when to execute each system action making part of the response. Note that, within each generated sequence, an administrator can distinguish between an attack and a system action based on the subject of the action (i.e. the first attribute). The subject of an attack is an attack entity, which is not the case for a system action. In the next section, we show examples of response plans as generated by our co-simulator.

Experimentation

We implemented our response co-simulator using a prolog interpreter, SWI prolog1 . Then, we considered two different use cases for experimentation. In the first, we highlight the capability of our framework in (1) generating responses handling sequencing and parallelism, (2) generating a common response against multiple threats, (3) choosing the suitable response timing, and (4) simulating the side effect of a response. In the second experimentation, we highlight the efficiency of our framework in managing the conflict between actions within a response plan.

Use Case 1

In Use case 1, we consider two simultaneous threats led by two attack entities (A1 and A2), as shown in the SAG of Figure 5.1). In the initial system state, A1 has already infected machine M1 and actively scanned user U. In parallel, A2 has already infected machine M2 which belongs with M1 to the same Ethernet network (machines are reachable via Switch12). It is predicted for A1 to crack the password of U's account and highjack it in order to do a toll fraud which induces economic losses to U. Besides, a likely scenario for A2 is predicted starting by discovering M1 and then poisoning it with ARP messages, in order to spoof its address later on and make calls or inject packets as if they were sent by M1.

In a first experimentation, we consider that both threats are risky. Thus, our planner should derive response plans for both of them. The following sequences are some of the response plans proposed by our planner.

As we have already explained, within each response plan, the distinction between an attack and a response action can be made based on the subject of the action. To ease the reading, we highlight in bold the system actions.

Experimentation 1 -Response plan 1: [ t1:

[passCrack(A1, server, u), discovermacaddress(A2, M 2, M 1)]; t2:

[notifychangepassword(u,server), deployAuthentication(Switch12)]; t3:

[passCrack(A1, server, u)]; t4:

[highjack(A1, u, server)]; t5:

[tollF raud(A1, u)] ].

Plan 1, presented in the graph of Figure 5.2, designs a response R2 against both threats as parallel system actions. The first notifies U to change his password, and the second deploys an authentication on Swith12. Due to changing U's password, A1 is no more able to highjack U's account. Thus A1 should re-execute again a password cracking in order to continue its scenario. R2 is considered a response against A1, because it delays A1 from reaching its attack goal, thereby reducing its risk. Due to deploying authentication on The above sequence, presented in the graph of Figure 5.4, designs a response R3 against threat A1. R3 consists in patching the vulnerability of M1, and blocking thereby A1. Note that, R3 is composed of the same actions as for R1. The only difference is that they do not have the same activation time. By launching R3 after that A2 has already discovered the address of M1 (i.e. at time t3), A2 does no more need to execute ARP poisoning to poison M1. Actually, disconnecting M1 has the same effect than poising it. Both provoke a denial of service to M1. Consequently, A2 can directly spoof the address of M1 and fulfill its attack objective. Here, R3 has a side effect on the system since its helps attacker A2 to reach its objective, increasing thereby its risk on the system.

As you may notice, our framework is not only able to leverage the system different possibilities of responses against risky threats, but also able to co-simulate the effects of each response on the system considering its activation time, allowing by this the system to choose the response plan bringing the highest risk mitigation. 

User Active Discovery

Use Case 2

In Use case 2, we consider a system running a VoIP service, and a Trading service as shown in Figure 5.5. Note that, while we consider the same system topology as for the use case in Chapter 3, the initial system state and the vulnerabilities are not the same.

For clients {cV 1, cV 2, ..., cV 10} subscribing to VoIP, a password based authentication using PAP (password authentication protocol) is considered and handled by a RADIUS server. While for clients {cT 1, cT 2, ..., cT 8} subscribed to Trading service, a strong authentication (e.g. multi-factor authentication, Digest access authentication, etc.) is adopted and handled by a Strong Authentication Server (SAS). We also consider that SAS is suffering a Zero day vulnerability such as the Heart bleed vulnerability2 discovered recently in OpenSSL.

We consider an initial system state where clients {cV 1, ..., cV 5} and cT 1 are compromised. The graph of Figure 5.6 forecasts two different risky threats T1 and T2 led respectively by these two attack entities. In T1, a coordinated password cracking attack scenario is predicted over cV 8's account. In T2, cT 1 will try to exploit the vulnerability of SAS and prevent other traders from connecting to the trading service. The following is the attack sequence generated by SAP (refer to Chapter 3) corresponding to the graph: [ t1:

[botinfect(a1,cV1),...,botinfect(a5,cV5),scanVulnerability(cT1,fw2)]; t2:

[cscanuser((cV 1, ..., cV 5), cV 8), modif yAccessRules(cT 1, f w2)]; t3:

[cpassCrack((cV 1, .., cV 5), sV 1, cV 8), scanserver(cT 1, sas)]; t4:

[ highjack(cV1,sV1,cV8), exploitVulnerability(cT1,sas)] ].

The following are some of the system actions we have specified for the co-simulator corresponding to this use case: transf erData(Server A , Server B ). installP atch(Server). disconnect(Server). restart(Server). changeP assword(Server, Client). discard(Client).

Where, Server and Client are abstract variables corresponding respectively to the servers (e.g. sV1, SAS, RADIUS, sT1, etc.) and the clients.

In order to prevent T1, a solution would be to adapt the strong authentication to the VoIP service. To do so, the database containing information (passwords, accounts, etc.) about VoIP clients should be transferred to server SAS, performing strong authentication. Thus, r 1 = transferData(sV1,SAS) which is anticorrelated with cpassCrack((cV1,...,cV5),sV1,cV8) can be chosen. Another solution would be to notify cV 8 to change his password before that cV 1 highjacks his account. Thus, action r 3 = changePassword(sV 1, cV 8) which is anticorrelated with highjack(cV 1, cV 8, sV 1) can be also chosen.

In order to prevent T2, a solution would be to disconnect SAS in order to install security patches or a new software version (e.g. OpenSSL 1.0.1g) to patch the existing vulnerability. Thus, action r 2 = installP atch(sas) which is anticorrelated with exploitV ulnerability(cT 1, sas) can be chosen. Another solution would be to discard or blacklist the malicious trader for a while. Thus, r 4 = discard(cT 1) which is anticorrelated with all actions executed by cT 1.

Note that, if we do not use our response co-simulator, one can think that any combination [r i , r j ], with i an even number and j an odd number, can be a solution to respond to both threats simultaneously. However, r 1 and r 2 are conflicting actions. Actually, installing the security patch requires disconnecting sas from the network, whereas transferring data to sas requires this latter to stay online.

Fortunately, our response co-simulator prevents the dynamic design of these two actions in parallel, by appealing the notion of resource in concurrent SC as follows: xres(r 2 , sas) sres(r 1 , sas) Thus, conf lict([r 1 , r 2 ]) returns true, and P oss([r 1 , r 2 ], S) returns false. Therefore, our planner chooses non conflicting actions to design the different response plans preventing the system from T1 and T2. The following are two of the different response plans generated by our planner. 123 regarding the multiple possible response plans, we propose in the following a new dynamic method that compares the risk mitigation of the different response plans considering their costs and collateral damage, avoiding, thereby, the need to precisely compute the return on investment metric for each response plan.

Risk-aware Selection of Optimal Response

The optimization module is triggered each time a set of response plans is generated. And this latter set is generated each time a new event (i.e. new update in system state) leads to a new risky SAG, in order to prevent the system from the potential attack scenarios predicted by this SAG.

Let us define a Simultaneous Attacks and Response Graph (SARG) as the graph corresponding to co-simulated attack scenarios due to the application of a response plan P . Our method is first based on our risk assessment framework presented in Chapter 4. It begins with sending all SARGs to this framework in order to compute the risk of each attack scenario/attack objective appearing in each SARG. When an attack objective exists in a SARG, it is then, either an attack objective that existed in SAG and for which (1) the risk is reduced, or for which (2) the risk has increased or, (3) it is a new attack objective that has appeared after the application of the response plan P . In the two last cases, the risk of the attack objective represents a collateral damage (i.e. undesired effects) of the response plan on the system.

Let us consider the risk vector for each SARG, as -→ R SARG = [R 1 , R 2 , ..., R n , R ], where R i ∈ {V eryHigh, High, M edium, Low, V eryLow} is the risk level for attack objective i appearing in the SARG and computed by our risk framework. R is the risk of the response plan appearing in SARG.

We define a risk of a response plan R in the same way as the risk of an attack. In other words, R (P ) = (Likelihood(P ); Impact(P )), where: the likelihood of P is set to 'Very High' since we suppose that a response plan will correctly be deployed in the system when activated; and the impact of a response plan is equivalent to its cost. This latter can be estimated following the same reasoning as [START_REF] Gonzalez Granadillo | Rori-based countermeasure selection using the orbac formalism[END_REF] for ARC calculation (refer to Chapter 2). The only difference is that we do not have to consider the annual cost for the response, but its cost per a single application. Note that the risk vector of SAG, -→ R SAG = [R 1 , R 2 , ..., R m ], does not contain a response risk R because no response plan is applied in it.

Let us consider a table G containing the SAG and all of the SARGs generated for this SAG. G =[SAG, SARG 1 , SARG 2 , ..., SARG k ], with for each graph g ∈ G an associated risk vector -→ R g . In order to select the response plan that (1) mitigates at most the overall risk presented in SAG, (2) costs less, and (3) has the least side effects, our method processes a lexicographical sorting over risk vectors of the different graphs in G.

Actually, we apply the same reasoning as that presented in Chapter 4, to sort graph according to their risk vectors. Consequently, this module applies Algorithm 3 presented in Chapter 4 to lexicographically sort graphs. However, whereas for the risk framework we have selected the most risky graph (i.e. containing the highest number of scenarios having the highest level of risk), here, we should select the less risky graph (i.e. the last one in the ordering). Actually, this latter represents the response plan which mitigates at most the overall risk considering its costs and its collateral effects on the system. This response plan can then be deployed against the simultaneously existing attackers, in order to prevent the system from scenarios that can be potentially performed by these attackers in the future.

Note that, in some cases, several risky SAGs having similar risk vectors may be presented to our response system. In this case, for each SAG, we will generate response plans, and apply our risk-aware method to select the most optimal response for this SAG. Then, we apply our method again over the presented SAGs together with the selected SARGs in order to decide a response plan within the selected optimal response plans corresponding to the presented attack graphs. Figure 5.9 presents the architecture of our response system, able to dynamically design, co-simulate and select the optimal response plan for ongoing simultaneous attacks. Note that our response module integrates the risk assessment and prioritization module presented in Chapter 4, in order to assess the risk of the different SARG, and lexicographically sort them.

Example

Let us consider again the example of Use case 5.5.1. By applying our risk assessment framework to SAG of Figure 5.1, we get the following risk vector:

-→ R SAG = [M edium, M edium]. In other words, both attack scenarios led by A1 and A2 have Medium level of Likelihood and Medium level of Impact (i.e. both end up with third party losses detectable in short time).

Let us consider SARG 1 of Figure 5.2. Due to the application of response plan R2, the likelihood (resp. the risk) of A1's scenario varies from Medium to Low. Since, A2's scenario is completely blocked, a Very low risk value is assigned to it. Besides, we consider that the risk of R2 is Low, since notifying a user to change his password and deploying authentication on a switch both have low costs for the system. Hence, the risk vector of

SARG 1 is - → R SARG 1 = [Low, V eryLow, Low].
Consider now SARG 2 of Figure 5.3. Due to the application of response plan R1, A2's scenario was delayed for two time stamps (i.e. t1 and t2), thus, the likelihood (resp. the risk) of A2's scenario varies from Medium to Very Low. Since, A1's scenario is completely blocked, a Very low risk value is assigned to it. Besides, we consider that the risk of R1 is Medium, since installing security patches has considerable costs to the system. Actually, it is related to the price of the patch and the time needed to install the patch (i.e. during this time, the machine is disconnected, thus, non operational). Hence, the risk vector of

SARG 2 is - → R SARG 2 = [V eryLow, V eryLow, M edium].
Finally, consider SARG 3 of Figure 5.4. The application of response plan R3 has side effects on the system, in a way that it helps A2 to progress easily in its scenario. Thus, the likelihood (resp. the risk) of A2's scenario varies from Medium to High. Since, A1's scenario is completely blocked, a Very low risk value is assigned to it. Besides, as it is the case for R1, we consider that the risk of R3 is Medium. Hence, the risk vector of SARG 3 is -→ R SARG 3 = [V eryLow, High, M edium].

By applying our risk-aware method for optimal response selection, the different graphs' risk vectors

- → R SAG , - → R SARG 1 , - → R SARG 2
, and -→ R SARG 3 are lexicographically compared, and the most optimal response plan is that appearing in SARG 1 . This plan is the one mitigating at most the the overall risk, with the least cost and the least side effects on the system.

Discussion

The existing response taxonomies presented in Chapter 2 (e.g. [START_REF] Irvine | Toward a taxonomy and costing method for security services[END_REF], [START_REF] Carver | An intrusion response taxonomy and its role in automatic intrusion response[END_REF], [WWL + 06], [START_REF] Stakhanova | A cost-sensitive model for preemptive intrusion response systems[END_REF], [KSCB + 13], etc.) are based on a hardwire matching between a threat and a predefined response (or a set of responses). Consequently, an expert is needed to, first, understand and reason about each threat, and then, specify the response policy, in advance, for every threat. Therefore, (1) potential conflicts between simultaneous responses, (2) potential side effect of responses on the system, (3) the possibility to activate a common response against simultaneous threats, (4) the perfect timing for launching responses, and (5) the changing in the response selection when the threat reoccur based on the system's state, are all not considered in the existing response taxonomies. Throughout this chapter, we demonstrated the efficiency of our response framework in overcoming all the above mentioned limitations.

While we were interested in response generation against simultaneous attack scenarios, there are still some interesting issues related to complex response monitoring after activation, and response deactivation, that can be investigated. We are convinced that, during the optimal response selection process, considering the response sustainability, and defeasibility, next to the overall risk mitigation, the cost and the side effects of the response, is very important for the deactivation phase.

Actually, in a response selection process based on the risk of the ongoing attacks, the uncertainty factor related to the selected SAG should be considered. In other words, the selection of the attack graph, for which our response system is designing and selecting an optimal response, is mainly based on the overall risk presented in this graph. However, the risk metric depends on the Likelihood metric which is related to attack probability and statistics. Therefore, we may be mistaken in the choice of the most risky graph, thereby, the choice of the most optimal response for this graph. Consider the case where we figure out that attackers did not progress in the same way we have predicted for them in the selected SAG. In this case, we should deactivate the response that we have already activated for SAG. However, if the response was not defeasible, its deactivation will not be possible, and the system will uselessly suffer the cost related to this response. Consequently, for a proper handling of response deactivation, it is important to consider the defeasibility of the actions composing the response during the optimal response selection process.

Conclusion

In this chapter, we proposed a new response scheme against simultaneous threats, as a sequence of non conflicting parallel actions. Our response is dynamically designed based on a new definition of capability-aware logic anticorrelation, and modeled using Situation Calculus logic language. This latter is very efficient to describe conflicts between parallel actions by using the notion of resource.

Moreover, when a system is simultaneously threatened by different attack entities, multiple response candidates may be designed. In order to choose the most efficient response, we also presented in this paper a co-simulator based on the Situation Calculus planning capabilities. This latter co-simulates each response possibility apart, considering the system's state and the existing simultaneous attack entities. When co-simulating a response, the attack scenarios blocked by this response, or those becoming less risky, or in the worst case, those appearing after the response simulation, are generated. Afterwards, we propose a new method that compares the risk mitigation of the different response plans considering their costs and collateral damage, in order to select the optimal response plan. Our automated risk-aware response selection method allows us to avoid the need of precisely computing the return on investment index for each response plan. This latter introduces considerable uncertainty due to the crucial need of experts' intervention.

Our dynamic response designing and co-simulating framework was finally implemented in SWI-prolog, and different experimentations were conducted to reveal the benefits and demonstrate the accuracy of our solution. 

Our proposal

Throughout this thesis, we proposed a risk-aware decision support system to counter simultaneous and coordinated attack scenarios. Figure 6.1 presents the architecture of our proposal.

First, through an unprecedented use of second order logic in attack modeling languages, we were able to quantify coordinated attacks properties, such as: (i) the minimum number of attackers required to succeed an attack, (ii) the synchronization between coordinated attackers, and (iii) knowledge sharing among attackers. Therefore, we introduced a new formal action scheme that handles individual, coordinated and simultaneous attacks. We then chose, a second order logic language, the Situation Calculus (SC), to properly model and implement these actions. In order to forecast attack scenarios that simultaneous attackers observed in the network may perform in the future, we proposed and implemented a Simultaneous Attacks Planner (SAP). Based on SC planning capabilities, SAP is able to generate an exhaustive list of all possible scenarios that attackers can perform individually, coordinately, or concurrently starting from an initial vulnerable system state. The complexity and performance of SAP was studied, and it turns to be limited to smallsize systems. In order to improve the performance of the planner regarding the machines number, we proposed eSAP, an enhanced version of SAP, which considerably lowers the planner's complexity and leverage competitive results. By combining Graph Theory and Set Theory, we presented a new method T establishing a comprehensive graphical view of all the potential attack scenarios generated by SAP/eSAP. We finally develop the pro-totype SAGG, a simultaneous attacks graphs generator (refer to Module M1 in Figure 6.1). SAGG generates, thus, a set of attack graphs representing, each, one possibility of future progression for attackers to reach critical assets in the system. SAGG's efficiency and accuracy was demonstrated in a multi-service system use case.

Second, we proposed LICCAS, a new framework to assess the Attack Likelihood (AL) of simultaneous attack scenarios considering all factors defined by NIST: attacker's motivation, the complexity of the attack, and potential responses against this attack. Being able to represent the possibility of detection and reaction of the response system, in the decision process of the attacker, Game Theory provides the most adequate framework to extract an equation for AL assessment. This equation takes into consideration the number of collaborating attackers, making our model able to assess not only the AL of individual attacks, but also that of coordinated ones. Moreover, to address the problem of scenario likelihood assessment in a context of simultaneous attacks, where attackers may unintentionally be concurrent, LICCAS also includes LSS algorithm. LSS computes the likelihood of a whole attack scenario, considering the interaction with other ongoing simultaneous scenarios in the system. We also proposed a simple but yet comprehensive method to assess the impact of the different attack scenarios within an attack graph. The method is basically based on the attack goal reached at the end of each scenario. Finally, based on NIST's risk approach and a lexicographic sort method, we propose a risk assessment and prioritization framework (see Module M2 in Figure 6.1). This latter receives the set of SAGs generated by SAGG, and assesses for each SAG, the risk levels corresponding to the different scenarios composing it. Then, it prioritizes the different SAGs regarding the number of risky attack scenarios they contain. This prioritization is required in order to select the most critical graph(s) within the large set of SAGs. Indeed, this (or these) graph(s) constitute relevant input to the response system. Our experimentations on VoIP simultaneous attacks scenarios showed that our risk module is relevant, by providing accurate results, and revealing benefits compared to existing work. Third, we proposed a new response scheme against simultaneous threats, as a sequence of non conflicting parallel actions. Our response is dynamically designed based on a new definition of capability-aware logic anticorrelation, and modeled using Situation Calculus logic language. This latter is very efficient to describe conflicts between parallel actions by appealing the notion of resource. Moreover, when a system is simultaneously threatened by different attack entities, multiple response candidates may be designed. In order to choose the most efficient response, we also presented in this paper a co-simulator based on the Situation Calculus planning capabilities. This latter co-simulates each response possibility apart, considering the system's state and the currently existing simultaneous attack entities. When co-simulating a response, the attack scenarios blocked by this response, or those became less risky, or in the worst case, those appeared after the response simulation, are generated. Based on these different response plans, we proposed a new dynamic method that compare the risk mitigation of the different response considering also their costs and collateral damage, in order to select the optimal response plan. Our automated risk-aware response selection method allows us to avoid the need of precisely computing the return on investment index for each response plan. This latter introduces considerable uncertainty due to the crucial need of experts' intervention. Our dynamic optimal response plan generator (see Module M3 in Figure 6.1) was implemented, and different experimentation were conducted to reveal the benefits and demonstrate the accuracy of our solution.

Finally, we discussed the ability of our response module to integrate or deal with a response deactivation module (see Module M4 in Figure 6.1), considering the defeasibility criteria of system actions composing a response. Note that the architecture of Figure 6.1 proposes a first solution step towards response plan deactivation. Actually our system is dynamic, meaning that for each change in the system state (e.g. connecting a new machine, detecting a new attacker, etc.), M1 will generate a new set of SAGs. Then, M2 will select the most risky graph SAG i within the set of SAGs. If the risk level of at least one attack scenario in SAG i is higher than the risk threshold (e.g. Medium) set by the security administrator, then SAG i is sent to module M3 in order to generate a proper response plan SAG o . However, if, within SAG i , none of the attack scenarios exceeds the risk threshold, then there is no need to generate a response plan for SAG i . Moreover, the risk of attackers has satisfactorily dropped that there is no need to keep the response plan activated in the network. In this case, M4 will be notified in order to reason whereas a deactivation process for the already launched response plan is possible or not. And when it is possible, M4 shall generate an efficient deactivation plan considering for example its total cost/impact on the system. 

Discussion and Perspectives

At the end of this thesis, we believe that several issues deserve to be addressed. Indeed, we identified several issues, among the different research topics, that may improve our proposal.

Graph Generation

Several research and development challenges related to our work on graph generation can be considered and investigated, such as:

• Investigating the XSB1 Prolog environment. This latter, supports tabled execution of Prolog programs. Tabling is a form of dynamic programming that avoids recomputation of previously calculated facts. Consequently, we can compare XSB to SWI Prolog, the interpreter that we used in SAGG, in order to implement the one that leverage the highest performance. • Considering more heuristics related to the attackers' behavior while implementing SAP/eSAP. For instance, if two attackers collaborate in a coordinated attack in the beginning of their scenarios, they can not block each others for the rest of their scenarios. Actually, it is not reasonable to have opponent parties collaborating. • Considering multitask capability for each attacker. In our work, we consider that each attacker can make a single action per time step. It is thus worth to consider that each attacker is able to perform several actions simultaneously to see whether new scenarios can appear after launching SAP/eSAP. • Addressing automatic extraction of topology elements. SAGG requires a human intervention in order to describe the network topology and the existing vulnerabilities in the system. Thus, a topology and vulnerability scanning tool can be addressed in order to ensure a dynamic and automatic extraction of inputs needed for graph generation. Besides, a module is needed to translate the extracted inputs into a suitable format to SAGG. In our case, inputs should be translated into situation calculus predicates. • Verifying and revising our forecast. As it is the case for LAMBDA [START_REF] Cuppens | Lambda: A language to model a database for detection of attacks[END_REF], a field can be added in our action description in order to dynamically verify whether the next attack predicted for an attack entity corresponds to the current entity's action. Concerning CAs, the behavior of the assumed coordinated attackers should be observed in order to make sure that our assumption about their collaboration was right.

In artificial intelligence, this verification is called 'belief revision'. In our case, belief revision process can take advantage of the expressiveness of SC in saving the history of actions.

Risk Assessment

The followings are research and development challenges that we identified related to our work on risk assessment:

• An expert intervention may be required to calculate some variables/metrics (e.g. ANA) while applying our framework on specific use cases. Therefore, the automated evaluation of such variables can be an interesting subject to tackle in the future, in order to attain minimum reliance on security experts. • An interesting improvement would be to include in the profile of the attacker his skill and knowledge level. This latter can be estimated, as proposed in [KCBC + 09], based on the difficulty (e.g. CVSS exploitability) of the attacks that this attacker has performed before reaching the current state. By considering the skill and knowledge level of each attacker profile, the likelihood of an attacker's scenario can be assessed more accurately. Intuitively, when an attacker has performed attacks with low difficulty in the past, it is more likely for him to follow a scenario of attacks with low difficulty also.

Response Generation

The followings are research and development challenges that we identified related to our work on response generation:

• Even though we presented some propositions related to response deactivation, there are still some problems related to deactivating parts of an activated response plan. Actually, a response plan contains a set of system actions able to counter a set of simultaneous attack scenarios. However, it is not easy to deduce the exact subset of actions which is responsible to counter a given attack scenario. Thus, if the risk of an attack scenario drops below the threshold, and it is no more necessary to keep the response activated against it, there is no other mean to proceed than deactivating the whole response plan. Consequently, it would be interesting to consider the problem of deactivating a part of an activated response plan. Furthermore, it is interesting to investigate the possibility of deactivation in general. The deactivation process depends on several factors, as the defeasibility of actions, and the cost/impact that a deactivation of a response may have on the system. • Our response co-simulator is based on Situation Calculus logic planning capabilities. Consequently, as it is the case for SAP/eSAP, our response co-simulator suffers complexity and performance issues regarding large size systems. Hence, it would be interesting to reason about intelligent heuristics in order to lower its complexity. A possible heuristic may be to regroup system actions by sub-network, or service, in order to reduce the search space related to system actions. For instance, if a system is running VoIP and trading services, and an attack appears in the VoIP network, with no attacks observed in the trading network, then it is may be useless to search for a system action related to trading in order to counter this attack.

Overall Proposal Application

As you can notice, most of the use cases considered in this thesis, are related to ICT systems with traditional physical network architectures. However, we believe that, by considering some adaptability measures and making some changes, our proposal can also be applied to other types of architectures, or even other domains. The following are examples of such applications:

• Software Defined Networking (SDN) and Network Function Virtualization (NFV), while being the future of network technology, can be leveraged to support coordinated large scale attacks (e.g. BotClouds, DDoS, etc.) and Advanced Persistent Threats (APT). Therefore, applying our proposal in a Virtual Network Architecture (VNA) can be very beneficial. However, in this case, the definition of an attacker should be reviewed. Actually in a VNA, a same physical machine can run several virtual machines. Thus the different virtual machines need to be described in Situation Calculus, as same as the different relations existing between them, and the different services they are simultaneously running. Finally, we note that the large-scale, multi-service and multi-tenancy virtual environments induce performance challenges. Hence, the complexity of our proposal should be first addressed before applying it to virtual environments. • In [START_REF] Chen | Petri net modeling of cyber-physical attacks on smart grid[END_REF], authors revealed the possibility of having coordinated cyber-physical attacks on smart grid architectures. Hence, applying our proposal over a smart grid architecture can be very beneficial. However, an extra work should be done in order to identify physical attacks. Unlike ICT domain where public vulnerabilities databases, such as NVD, exist to describe cyber attacks, there is no existing public databases that describe physical attacks. Actually, these latter depend strongly on the use case. Moreover, an extra work should be done in order to identify coordinated attacks where physical attack entities and cyber attack entities can collaborate. Furthermore, in such critical infrastructures, the safety factor should also be considered next to security. In addition to this, the problems of inter-dependencies and conflict [START_REF] Sadvandi | Safety and security interdependencies in complex systems and sos: Challenges and perspectives[END_REF] between security and safety measures should also be addressed when designing response plans.
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 A DR_Cost(a)) = Detection_Difficulty(a) + (1 -Detection_Difficulty(a))× [µ × Detection_Cost(a) + (1µ) × Response_Cost(a)]; (4.5) Properly correlating information coming from different probes to discover that they are parts of the same attack, has always been a challenge for intrusion detection systems. Nowadays, attackers coordinate not only to reduce the time and the complexity of their attack, but also to avoid detection. Consequently, the greater is the number of coordinated attackers |GCA(a)|, the higher is the cost of detecting them. Consequently, we represent Detection_Dif f iculty(a) as a function f ct 1 that increases when |GCA(a)| or D_Invest(a) grows. D_Invest(a) is the estimation of the investment cost adopted by the system to detect a when performed by a single attacker. Detection_Cost(a) = f ct 1 (D_Invest(a), | GCA(a) |); (4.6) Concerning Response_Cost(a), an attacker should reason like the cost manager of its opponent. Usually [GGBDJ14], the cost of a response is calculated based on: (1) the cost of all the enforcement points (ex. IDS, firewalls, etc.) used to execute this response in the system R_Invest(a), and (2) the potential collateral damage that this response may provoke in the system once executed. It is possible for attackers to estimate this damage based on their number |GCA(a)| regarding the size of the system (i.e. the number of machines | machines | ). In Section 4.5.2, we show how this damage can be estimated in a real life example. Consequently the damage of a response depends on |GCA(a)| and | machines |. Finally, Response_Cost(a) is a function f ct 2 that increases with R_Invest(a) and the damage. Response_Cost(a) = f ct 2 (R_Invest(a), | GCA(a) |, | machines |); (4.7)

E

  S (Attack_Cost(a)) = f ct 3 (Exploitability(a), AN A(a), | GCA(a) |); (4.9)
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  3.2, P oss(c, s) is defined in SC as follows: P oss(c, s) ↔ [∀a ∈ c, P oss(a, s)] ∧ ¬conf lict(c) Note that, this definition of P oss(c, s) is equivalent to the one presented in Definition 8:poss([r 1 , r 2 , ..., r C ], S) ↔ ∀1 < i < C, poss(r i , S) ∧ ∀j = i/1 < j < C, ¬conflict(r i , r j )Now, let R * = [C 1 ; C 2 ; ...; C k ] be a complex action with C i = [r i 1 , ..., r i li ], and a an attack action. Anticorrelation between R * and a, as presented in Definition 9, can be expressed in concurrent SC as follows: anticorrelated(R * , a, S) ↔ poss(R * , S) ∧ ¬poss(a, do(R * , S)). with poss(R * , S) ↔ poss(C 1 , S) ∧ poss(C 2 , do(C 1 , S)) ∧ ... ∧ poss(C k , do(C k-1 , (....(do(C 1 , S)...)).

  plannerGoal(S) → ∀ risky(EntityA), [ riskBlocked(EntityA, S) ∨ riskReduced(EntityA, S)]∧ ∀¬risky(EntityB), [ riskBlocked(EntityB, S) ∨ riskReduced(EntityB, S) ∨ Attack_Goal(EntityB, S)]. with riskBlocked(Entity, do(R * , S)) → ∃Scenario/ riskySAS(Entity, Scenario) ∧ response(R * , Scenario, S) ∨ riskBlocked(Entity, S).
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		Each attacker	Each attacker	Exist in	Required number	Atomic actions
		fulfills all α	fulfills all α	IA format	of attackers	are similar
	CALA CALD	Yes Yes	Yes No	No Yes	min CALA ≤| GCA | 2 ≤| GCA |	Yes Yes (with different
						variants)
	CARD	No	No	Yes	max CARD 2 ≤| GCA |≤	No
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 3 1: Major differences between CA types.

  By contrast to languages of first-order logic, SC provides second order terms through functional fluents. These fluents return situation-related values, which are essential to model CA as described in Section 3.2.2. For instance, the number of attackers participating in a CA, Cardinal(GCA x , s) should be modeled with a functional fluent. Besides, SC affords all logical operators and quantifiers needed for CA modeling. As an example, we give a SC model of the coordinated password cracking attack. passCrack (GCA x , Server y , U ser z ) Poss(passCrack(GCA x , Server y , User z ), s) ↔ Cardinal(GCA x , s) ≥ 2 ∧ ∀AttackerID i ∈ GCA x , network_access(AttackerID i , Server y , s) ∧ ∃AttackerID k ∈ GCA x , Knows(AttackerID k , is_on(Server y ), s)] ∧ ∃AttackerID

2.1.

passCrack (AttackerID x , Server y , U ser z ) Poss(passCrack(AttackerID x , Server y , U ser z ), s) ↔ network_access(AttackerID x , Server y , s) ∧ Knows(AttackerID x , is_on(Server y ), s) ∧ knows(AttackerID x , user_access(U ser z , Server y ), s) ∧ is_on(Server y , s) ∧ user_access(U ser z , Server y , s) do(passCrack(AttackerID x , Server y , U ser z ), s) = s → knows(AttackerID x , password(U ser z ), s ) ∧ is_connected_as(AttackerID x , U ser z , Server y , s ) 3.4.3 Coordinated Attacks j ∈ GCA x , knows(AttackerID j , user_access(U ser z , Server y ), s)] ∧ is_on(Server y , s) ∧ user_access(U ser z , Server y , s) do(passCrack(GCA x , Server y , U ser z ), s) = s → ∀AttackerID a ∈ GCA x , knows(AttackerID a , password(U ser z ), s ) ∧ ∃AttackerID b ∈ GCA x , is_connected_as(AttackerID b , U ser z , Server y , s )
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 4 

		.1:	
	E S (M attacker )	Table	4.2:
		React	Not React
	Attack -E S (Attack_Cost)	E S (Reward) -E S (Attack_Cost)
	Not		
		Hacker: 0	
	Attack	Vandal:	0
		E S (DR_Cost)	

Table 4 .

 4 

			3: SAG_Cell example		
	GCA	Length	Blocks	Time slot 1	Time slot 2	Time slot 3	Time slot 4
		of S i	S j /j =				
	S 1 {ID1, ID2, ID3} S 2 {ID4, ID5} S 3 {ID6}	3 4 1	3	attack 1,1 attack 2,1 attack 3,1	no op. attack 2,2 blocked	attack 1,2 attack 2,3 blocked	attack 2,4 blocked
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 45 Matching attack goals with impact levels and attackers' profiles.

	fulfilling claim 2
	end
	end
	end
	Algorithm 2: Computing Attack Likelihoods
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Chapter 4

Conformably to the NIST definition of risk, we calculate the risk of an attack scenario via the calculation of two metrics: the attack scenario likelihood, and its organizational impact.

We thus express a risk of an attack scenario s in Definition 5 as a 2-tuple metric.

Definition 5 Risk(s) = (SL(s), E S (Impact(s)).

In order to have a qualitative risk assessment, the organizational Impact and the likelihood of an attack scenario should be expressed with qualitative values. While we have presented a qualitative impact assessment mean in Section 4.6, the scenario likelihood assessment method presented in Section 4.4 delivers quantitative values. Therefore, we propose, in Table 4.6, a matching between SL quantitative values with associated levels following the same scale as for the impact: Very high, high, medium, low, very low. Note that a scale of three levels is probably too vague for most use cases. On the other hand a percentage scale from 1 to 100 is probably too detailed. Hence, we prefer adopting a moderate scale of five levels. Our matching is based on the following assumptions: We consider that a Very high Scenario Likelihood level is equivalent to a scenario having a single remaining attack with at least an average Attack Likelihood value. And a High SL level is equivalent to a scenario having two remaining attacks both with at least average ALs. A Medium SL level is equivalent to a scenario having three remaining attacks, each with at least average AL; and so on. Note that equivalence, here, does not mean restriction. In other words, a scenario having two remaining attacks with high ALs both, can have a Very high SL level. In order to establish an appropriate matching, we calculate the SL of a scenario composed of a single attack with average AL, and the SL of a scenario composed of two attacks with average ALs, and so on. The characteristics of an attack a with average ALs are the following: having an average exploitability (i.e. CV SS_Exploitability(a) = 5); having an average impact on the system (i.e. CV SS_Imapct(a) = 5, and Org_value = 0.5); the ratio between AN A(a) and | GCA(a) | is equal to 2 (i.e.

AN A(a)

meaning that the number of elementary actions composing a is two times the number of attackers collaborating to perform a. Applying Equation 4.3, the resulting average AL value is thus calculated, and it is equal to 1.4 × 10 -1 . Consequently, by applying Proposition 1 the SL value corresponding to a scenario having a single remaining attack with an average AL is equal to 1.4 × 10 -1 . In the same way, SL values corresponding to scenarios composed of multiple attacks with average difficulties are calculated, and shown in Table 4.6.

In order to properly assess risk values, we should first verify that the scales for Impact and Likelihood qualitative values are coherent. In Table 4.6, you can notice that likelihood values are following an exponential trend of base 10 (e.g. a very low likelihood is of the order of 10 -4 ; a low likelihood is of the order of 10 -3 ; etc.). Consequently, experts should follow an exponential trend of base 10 for impact values. An example of a proper scale for impact would be: 100$ for a very low impact; 1000$ for a low impact; 10,000$ for a medium impact; 100,000$ for a high impact; and 1000,000$ for very high impact. the risk matrix of Figure 4.8 in order to qualitatively assess the risk. Notice that when an attack scenario is very likely (i.e. SL is very high), its risk on the system is equivalent to its impact. In other word, when we are sure that a scenario will happen, the system risks to suffer the full impact of this attack. Whereas, when a scenario has a low likelihood, its risk on the system will be equivalent to its impact mitigated by its likelihood.

Example

Lets us consider the SAG of Figure 4.2, composed of four simultaneous attack scenarios.

The risk assessment for the different scenarios is triggered as follows:

• The SL of the first scenario led by the GCA = {a1, a2, ...., a10} is calculated by LICCAS and is equal to 2.2×10 -2 . This SL correspond to a High likelihood level. On the other hand, we suppose that the system considers the organizational goal 'Affected reputation on principle services' with a Very High impact level. Consequently, based on the risk matrix, the risk of this scenario is High.

Append(SortedGraphTable,TempS2 ); else Algorithm_4(TempS2, R-1,SortedGraphTable); end max=max-1; end end Algorithm 4: Sorting SAGs for a given Risk Level (R) ¬conflict(r i , r j ) means that r i and r j are not conflicting (i.e. they can be executed simultaneously). The semantic definition of conflict will be given in Section 3.4.4. Furthermore, in some cases, a system's action r or a set of parallel system's actions rcoordinated may be logically anticorrelated with a given attack action, but it is not applicable in the current state S. Consequently, the system may need to sequentially execute a set of 'applicability enabling' actions in order to make r or rcoordinated applicable. For instance, consider that an external attacker has gained remote access to a machine M in a system, and that he/she has installed a bot on M in order to have total control of it making him/her able to disrupt other connected machines or services in the system. In order to prevent the attacker from inducing damage in the system, a security patch, able to prevent the attacker from gaining a remote access from the beginning, must be installed. However, in general, security patches can not be installed on infected machines before reformatting these machines to eliminate potential existing bots. Besides, reformatting a machine requires, first, a backup for important files on it. Consequently, in this case, installing the security patch corresponds to r because it is logically anticorrelated with the remote access attack. And, 'applicability enabling' actions are reformatHarddrive(M ) and backupFiles(M, BackupServer). The sequence of actions required to block the attacker is, thus, the following:

Risk Assessment and Prioritization

Therefore, we propose a new definition of applicability-aware anticorrelation between a complex action (i.e. a sequence of parallel system's actions) and an attack action, as follows:

l2 ]; ...; [r c 1 , ..., r c lc ]] be a complex action, and a an attack action. Let S i+1 be the state of the system after the execution of [r i 1 , ..., r i li ] in state S i . R * and a are anticorrelated in state S 0 if the following condition is satisfied: anticorrelated

Based on Definition 9, we now propose a definition of applicability-aware anticorrelation between a complex action R, and a RiskySAS as follows: ]], with a i j being an attack performed by attack entity j. R and RiskySAS are anti-correlated if the following condition is satisfied: anticorrelated(R, RiskySAS, S) ↔ ∀entity(j), ∃R * ∈ R , ∃a ∈ [a 1 j ; a 2 j ; ...; a N j ]/ anticorrelated(R * , a, S).

Thus, R is anticorrelated with RiskySAS if for each attack sequence corresponding to an attack entity, we can find a complex action R * within R which is anticorrelated and applicable with at least one of the attacks that the entity will execute throughout its sequence.

Complex Response

A complex action R is considered a dynamic response against RiskySAS in a state S, if R is applicable in S and anticorrelated with RiskySAS, and no nominal constraint is violated at the end of R's execution. Nominal constraints are those related to critical system assets that should not be violated, in order to guarantee a minimum operating state (i.e. service continuity) in the system. Consequently, R should include 'operability' actions, responsible for maintaining the service, whenever nominal constraints risk to be violated by the system's actions composing R. We, thus, define a response R against a RiskySAS as follows:

l2 ]; ...; [r x 1 , ..., r x lx ]] be a complex action, and RiskySAS a set of risky simultaneous attack scenarios. Let S x be the state of the system after the execution of R. In other words, S x is the state of the system when [r x 1 , ..., r x lx ] is executed. And, let min_constraints be the set of nominal constraints. R is a response against RiskySAS in state S if the following condition is satisfied: response(R, RiskySAS, S) ↔ anticorrelated(R,RiskySAS,S) ∧ ∀Constraint ∈ min_constraints, Constraint(S x ) = T rue.

For example, consider a system threatened simultaneously by two risky threats T1 and T2. T1 aims at over-flooding server S1, and T2 aims at hijacking a legitimate user's account U throughout a machine M infected with a bot. The following sequence of parallel actions corresponds, thus, to a response against T1 and T2. In a first step, sharing load is settled between S1 and another server S2 in order to prevent S1 from being overcharged by T1. In parallel, M is disconnected from the network,