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INTRODUCTION

1.1 A bit of History

The first observations of electric and magnetic phenomena by man date back to 6oo B.C., when Thales of
Miletus observed the property of amber to attract light objects, such as fabric, after being rubbed with fur.
In the same period, he also reported the existing attraction between lodestone and iron. Three centuries
later, Euclid threw together the basis of geometrical optics in Optica, describing the laws of reflection and
postulating that light travels in straight lines. From this point, the studies of electromagnetism and light
followed parallel paths, until the XIX™ century. In 1848 and 1850, Hippolyte Fizeau and Léon Foucault
measured the speed of light respectively at 3.14 x 10® and 2.98 x 10% m.s~!. In 1855, Wilhelm Eduard
Weber and Rudolf Kohlrausch found out through an experimentation that the ratio of the electromagnetic
to the electrostatic unit charge was close to 3.107 x 108 m.s~!. Although the values from Fizeau and
Foucault were known at that time, they did not notice the alikeness of the results [Keig8].

It is only in 1861 that James Clerk Maxwell, looking at Weber and Kohlrausch’s results, established the
existing link between light propagation and electromagnetic phenomena. In [Max65], he concludes :
"The agreement of the results seems to show that light and magnetism are affections of the same substance,
and that light is an electromagnetic disturbance propagated through the field according to electromagnetic
laws". At that stage, Maxwell’s theory of electromagnetism is regrouped in a set of twenty unknowns and
equations, that will then be converted into modern notations by a concurrent work of Olivier Heaviside,
Josiah Willard Gibbs and Heinrich Hertz in 1884. It should be noted that the 1861 formulation of Maxwell
still relies on the existence of the luminiferous aether, a postulated medium necessary to the propagation
of light. For more than forty years, the latter will be a source of conflict, his properties being very difficult
to accept in the physical paradigm of that time. In 1905, Einstein’s special theory of relativity finally
provided a framework that did not require the presence of aether anymore.

1.2 Nano-optics

Maxwell’s equations in their modern form have been studied for many decades, resulting in an extremely
wide range of applications. Many of those are now part of our everyday life, such as wireless communica-
tions of all forms, optical fibers, medical imaging, ... In order to control electromagnetic wave propagation,



most of these devices rely on tailored geometries and materials. During the last decades, the evolution
of lithography techniques allowed the creation of geometrical structures at the nanometer scale, thus
unveiling a variety of new phenomena arising from light-matter interactions at such levels. These ef-
fects usually occur when the device is of comparable size or (much) smaller than the wavelength of the
incident field. Periodic mono- or multi-dimensional arrangements of sub-wavelength dielectric patterns,
known as photonic crystals (see figure 1.1), give rise to allowed and forbidden wavelengths regions in cer-
tain directions [JJo7]. These so-called band gaps can be tuned by slight modifications of the periodicity,
allowing physicists to create a full range of light-control devices from photonic crystals. Periodic arrays
of dielectric resonators can also be used to achieve non-cartesian reflection of plane waves, which is a
highly promising step toward on-chip wireless optical communications [ZWS™ 13].

(a) 1D cristal (b) 2D cristal (c) 3D cristal

Figure 1.1 | Photonic crystal structures in one, two and three dimensions. The blue and gray areas represent the alternance
of high and low permittivity materials.

Metallic nanostructures can also demonstrate stunning effects when excited in the optical regime. The
key feature of these effects is the coupling of the electromagnetic field to the electron gas of the metal,
resulting in an oscillation phenomenon called plasmon. One usually differentiates the bulk plasmons, that
take place in the volume, from the surface plasmons (SP), that arise at the interface between the metal
and a dielectric. SPs can be propagative along a metal/dielectric interface, or non-propagative, in which
case they are called localized surface plasmons (LSPs). The proper excitation of LSPs can lead to very
intense resonances (meaning that the field is enhanced). Thanks to metallic tips exploiting this strong
localization, optical microscopy beyond the diffraction limit [NHo7] is possible. The high sensitivity of
resonant metallic nanostructures also allows to create very accurate biosensors [CLS™11]. In the medical
field, attempts have been made to develop cancer therapies based on the localized heating produced with
resonating nano particles [SSD" 14]. As for dielectrics, periodic arrays of metallic patterns can lead to
new devices with non-natural behaviors at larger scales. These structures are usually gathered under the
root word metamaterials, which then designates an effective medium composed of an arrangement of
nanostructures, and displaying uncommon properties. Negative refractive index materials [DWSLo7] or
optical cloaking [CCKSo7] are some of the most common examples.

1.3 Computational electromagnetics in time-domain

The large variety of phenomena displayed by nano-optic systems, their dependance upon a large number
of parameters (geometry, materials, sources, ...), as well as the complexity of most fabrication processes



prevent physicists from relying on experiments only. However, apart from very specific cases involving
simple geometries, and for which electromagnetic fields can be expressed as closed-forms, solutions to
Maxwell’s equations are out of reach of hand calculations. Hence, numerical simulation seems to be the
appropriate complementary tool to physical experiments, and can be exploited in various ways. Indeed,
it can be used to rapidly scan a large number of configurations, in order to identify the most efficient set
of parameters. This scanning can be done "blindly" by hand if a small number of parameters is involved,
or by combining a direct numerical method to an iterative optimization algorithm when the dimension
of the parameters space becomes large [Pav13]. Numerical tools also allow a deeper understanding of the
physical phenomena observed in real devices, since they allow the experimentalist to obtain information
about any quantity out of the simulation, which is not possible in most physical experiments. Addition-
ally, various physical models can be easily assessed and their effects compared, in order to verify their
applicability in given configurations. Various techniques are available to solve nano-optics problems:
some are specialized algorithms, that were developed for the fast-solving of specific configurations at
low computational cost (for example the Discrete Dipole Approximation (DDA) [DF94] or the Rigorous
Coupled-Wave Analysis (RCWA) [MG81]). However, these can hardly or not at all handle other applic-
ations. On the other hand, more general methods exist that are well suited to solve a very large set of
problems. In the remaining of this section, we focus on the major time-domain techniques.

The Finite-Difference Time-Domain (FDTD) method is certainly the most spread of all. As early as 1928,
Courant, Friedrichs and Lewy published an article presenting a finite-difference scheme for the second
order wave equation in 1D and 2D, as well as the well-known CFL stability condition involved for explicit
time-domain schemes [RFH28]. In 1966, Yee introduced a staggered grid in space (see figure 1.2) to solve
the curl formulation of Maxwell’s equations [Yee66]. The method relies on a combination of Taylor
expansions to express the spatial derivatives, and on a centered Leap-Frog (LF) scheme in time. As of
today, FD represent a particularly simple method to solve electromagnetics problems, combining simple
implementation and high computational efficiency. They were applied successfully to numerous nano-
optics configurations [SCG1o].
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Figure 1.2 | Staggered unknowns discretization in a Yee cell. The H field components are on the center of the faces, while
the E ones are on the center of the edges.

However, FD algorithms suffer from serious drawbacks. First, a smooth discretization of curved geomet-
ries is impossible due to the fixed cartesian grid imposed by the Yee algorithm. This approximation leads
to the well-known staircasing effect, which is an important source of inaccuracy [DDHo1]. To overcome



this pitfall, the user can either use an extreme refinement of the grid, which leads to a serious rise in
computational cost, or exploit one of the numerous possible modifications of the FD method that have
been proposed for tackling the staircasing effect [HR98]. However, all the latter available modifications
represent a tradeoff between the simplicity of the classical algorithm and the accuracy of the boundary
description. The second main source of inaccuracy in the FDTD method arises in the case of heterogen-
eous problems. In this case, the Taylor approximation used is no longer valid, since the electromagnetic
fields are not smooth across the interface. The consequence is that higher-order FD schemes in space are
usually reduced to second-order. Advanced FDTD methods were developed to tackle this problem [THos],
at the price of an increased complexity of the algorithm. Moreover, there is no theoretical convergence
proof for FDTD algorithms outside the uniform grid case.

Finite Elements (FE) were introduced in 1969 by Silvester to solve waveguide problems [Sil69]. This
method does not rely on a grid, but on a tessellation of the geometry of the problem. Starting from the
continuous equations, a discrete variational form is obtained by approximating the unknowns in a finite
dimensional space. Then, its discretization leads to a sparse matrix-vector system that has to be solved
at each timestep. In the specific case of electromagnetism, the use of nodal basis functions, e.g. such as
their value is unity at a given vertex and zero on every other, is subject to caution. Indeed, it was proved
that they can lead to spurious oscillations, due to an ill representation of the curl kernel [SMYCogs]. To
overcome this issue, Nédélec introduced a new family of vector finite elements in 1986 [N8o], named
Nédélec finite elements, or edge finite elements. These elements display several interesting properties:
(i) their divergence is zero, and (ii) each basis function associated to an edge has a constant tangential
component on the latter, and a zero tangential component on the others. Hence, the tangential continuity
of the electric field across the edge is naturally enforced.

In order to adjust the accuracy of the simulation, FE methods can use either (i) a local refinement or
coarsening of the mesh, (ii) a local or global increase of the order of the basis functions, or (iii) a com-
bination of both. However, these improvements lead to larger linear systems to solve at each timestep,
which can make the FE method impractical in time-domain simulations for very large systems. For this
reason, in nano-optics, FE methods are more often used in frequency-domain. However, a few references
can be found exploiting time-domain FE for nanophotonics applications [HLY13].

1.4 The Discontinuous Galerkin Time-Domain method

Discontinuous Galerkin (DG) methods were originally introduced in 1973 by Reed and Hill [RH73], and
have been widely used since in the computational fluid dynamics field. However, their application to
the time-domain Maxwell equations is more recent [RF98]. DG methods can be seen as classical finite
element methods for which the global continuity of the approximation is lifted. In the same fashion as
FE methods, the unknowns are approximated on a finite set of basis functions. However, for DG, the
support of basis functions are restrained to a single discretization cell. Hence, the solution produced by
a DG method is discontinuous (similarly to finite volumes), and multiple different field values are stored
for each element/element interface degree of freedom (see figure 1.3). The three main consequences
are that (i) DG methods naturally handle material and field discontinuities, (ii) the weak formulation is
local to an element, implying no large mass matrix inversion in the solving process, and (iii) the order
of polynomial approximation in space can be made arbitrarily high by adding more degrees of freedom
inside the elements. However, this also means that DG methods have higher memory requirements than
standard FE methods. Afterward, connexion between the cells is restored by the use of a numerical flux,
in the fashion of finite volume methods. The choice of the numerical flux has a great influence on the
mathematical properties of the DG discretization, as energy preservation, for example.
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Figure 1.3 | Concept comparison between FE, FV and DG. The triangles represent the cells of the mesh, while the orange
dots represent the degrees of freedom. For FE, the whole problem is considered at once, and the obtained numerical solution is
continuous across cell interfaces. For FV, a local problem is considered in each cell, leading to a discontinuous, constant-per-cell
solution. For DG, the method is analog to FV, but the solution is not restrained to a constant per cell. In this case, a first-order
polynomial approximation is used for the DG discretization.

The discontinuity of the approximation makes room for numerous methodological improvements, such
as efficient parallelization ([Die12], [BFLPo6]) or the use of non-conforming [FL1o] and hybrid meshes
[LVD"14]. Recent studies in the DG framework include local timestepping [Pipos] as well as locally
implicit formulations [Moy12]. Also, a wide choice of time-integration schemes can be used for the
discretization of time derivatives, including Leap-Frog (LF) and Runge-Kutta (RK).

The DGTD method for solving the time domain Maxwell equations is increasingly adopted by several
physics communities. Concerning nanophotonics, unstructured mesh based DGTD methods have been
developed and have demonstrated their potentialities for being considered as viable alternatives to the
FDTD method. The most remarkable achievements in the nanophotonics domain since 2009 are due to
Busch et al. Busch [NKSBog]-[SKNBog]-[BKN11] has been at the origin of seminal works on the devel-
opment and application of the DGTD method in this domain. These works not only deal with the ex-
tension of the DGTD method with regards to the complex material models and source settings required
by applications relevant to nanophotonics and plasmonics [KBN10]-[MNHB11]-[WROB13], but also to
core contributions aiming at improving the accuracy and the efficiency of the proposed DGTD solvers
[NKP™ 10]-[NDB12]-[DNBH15].

1.5 Outline

The remaining of this manuscript is structured in the following way:

¢ Chapter 2 presents the usual concepts of electromagnetics, as well as some standard textbook prob-
lems and their analytical solutions. An extensive presentation and analysis of dispersive models
for metals follows, along with a comparison of our custom generalized dispersive model with other
classical dispersion models.

¢ The first section of chapter 3 runs, step by step, through the spatial discretization of Maxwell’s
equations by the discontinuous Galerkin method. Then, two classical time integration methods are
proposed and briefly studied to complete the discretization. The algorithm is then validated for
classical and dispersive materials. Finally, a few theoretical results are given on the method.



Chapter 4 regroups practical techniques that are pre-requisites for the resolution of realistic prob-
lems, such as perfectly-matched layers, sources, total-field scattered-field technique, as well as
physical post-treatments.

In chapter 5, the DG method is extended to the use of quadratic tetrahedra, which allow both a
better geometrical description of the problems, and lifts the numerical accuracy limit from 2"¢ to
4™ order in the case of curved geometries. Several nano-optics relevant test-cases are considered
that confort the interest of this development.

Chapter 6 is dedicated to a locally-adaptive DG formulation, where polynomial interpolation order
can be defined independently in each cell of the mesh. An efficient repartition algorithm is supplied,
which provides interesting speedups over homogeneous polynomial repartition in several realistic
test-cases.

The sequential and parallel performances of our Fortran discontinuous Galerkin time-domain (DGTD)
implementation are assessed in chapter 7. First, a renumbering algorithm is proposed that enhances
the sequential performances by reducing adressing time. Then, the speedup and parallel balance of
the MPI implementation are tested on a standard cavity case.

The last chapter is dedicated to realistic nanophotonics computations processed with our DGTD
code: (i) the electron energy loss spectrum (EELS) of an aluminium nanosphere, (ii) the gap-plasmon
resonances obtained under chemically-produced nanocubes with realistic shapes, and (iii) 1D and
2D dielectric reflectarrays, with study of the lithography defects on their performances.



CLASSICAL
ELECTROMAGNETICS

Before focusing on nanophotonics, it seems necessary to recall the classical principles of electromagnetics.
First, Maxwell’s equations are presented in vacuum and dielectric media (section 2.1), and a few exact
solutions are exhibited. To remain concise, the covered concepts are restricted to the minimum necessary
for the present study (however, a very complete presentation of classical electrodynamics can be found
in [Jacg8] or [RCo1]). Then, the modeling of dispersive media (such as metals in the visible spectrum)
is introduced (section 2.2). A generalized model is presented, and its accuracy is compared to standard
ones. An extension to non-local models is also briefly outlined.

2.1  Maxwell’s equations

In a somehow tautological way, the electric charge is usually defined as the fundamental property of
matter that causes it to undergo the electromagnetic interaction. More precisely, a particle of charge ¢
and speed v is subject to the Lorentz force:

F=q(E+vxB), (2.1)

where E and B are respectively the electric field and the magnetic induction vectors in R3. In most physics
textbooks, E and B are considered to be the "fundamental fields". However, it is customary to introduce
additional fields, namely the electric displacement D and the magnetic field H. One shall see in the next
section how these are related to E and B. For a given medium, we also introduce the density of free electric
charges p, and the free electric current density J. All these quantities depend on position x = (z, ¥, 2)
and time ¢. One can now write Maxwell’s equations in their modern version, in SI units:



,—[ Maxwell’s equationsW \

J
B
VxE=- (22
oD
H= — .
V-D=p, (2.4)
V-B=0. (2.5)
along with the continuity equation':
Continuity equation}
dp
a7 -J=0. .6
En +V-] (2.6)

The two curl equations are often called "fundamental” equations, while the two divergence ones are
referred to as "auxiliary” equations. Indeed, one can see that (2.4) and (2.5) are not evolutionary, in the
sense that they do not contain any time derivative, but only bring constraints on the solutions of (2.2)
and (2.3). Taking the divergence of (2.2) and (2.3), and combining with (2.6), one obtains:

9 (2.7)

= (V-B) =0,

Hence, if the divergence conditions are verified for the initial state, they should also be verified for any
future state. One shall therefore drop the divergence conditions in the remaining of this thesis by con-
sidering that they are verified for all the considered initial states. Additional considerations on this topic
can be found in [RCo1].

By examining system (2.2 — 2.3), one may notice that it contains 12 scalar unknowns for only 6 scalar
equations. Hence, the system is not closed, and therefore not fit for solving. This is the purpose of next
section.

2.1.1 Constitutive relations

To close system (2.2 — 2.3), relations between (E,B) and (D, H) are required. In the most general case,
the constitutive relations are:

Il
Q]

D
B (2.8)

E,
H,

Il
=i

where € and i are tensors depending on x, ¢, E and B. To simplify this presentation, a few assumptions
are made, at least temporarily:

'At this point, it is important to notice that although (2.6) can be derived from (2.3) and (2.4), it can also be derived inde-
pendently from physical considerations (see [RCo1] for more details).



Table 2.1 | Units and numerical values of electromagnetic constants.

o 1o Zo co q
Unit Fm™* Hm™! Q ms ! C
Type of value Approx. Exact Approx. Exact Approx.
Value 8.854 x 107" 4m x 107" 119.9x7m 299792458 x 10°  1.602 x 10~

¢ The considered materials are linear, thus £ and [i are independent of E and B;

¢ Materials are isotropic, which means ¢ = ell3 and 1 = plls;

¢ Materials are homogeneous, i.e. € and ju are constant within a given material;

¢ Although dispersive materials will be a central point in this work, it is assumed temporarily that ¢

and y are independent of time.

Hence, in such a material with constant permittivity € and permeability i, (2.8) becomes:

D =¢E,
B = uH.

It is customary to introduce £ and (o the vacuum permittivity and permeability, as well as €, and p, the
relative permittivity and permeability of the considered material. Obviously, in vacuum, €, = 1 and p,, =
1. Hence, the constitutive relations are written as follows:

D =¢p¢e,E,
(2.9)
B = piop-H.
It is then straightforward to obtain Maxwell’s equations for linear, homogeneous, isotropic, non-dispersive
materials:

OH
VXE:_MO,‘LTE’
(2.10)
VxH= ¢gp¢ a—E—i—J
0ocr ot .

System (2.10), completed with adequate boundary and initial conditions, is now fit to solving. However,
it is preferable to eliminate ¢ and yio from the equations for the numerical treatment. This is the purpose
of next section.

2.1.2 Adimensionning

New variables are introduced to normalize system (2.10). For a physical variable X, the new variable is
noted X. The adequate substitutions are:

H=ZH, E=E, t=cyt, and J= Z],

1
VEOHO

to remind the values and units of these constants, which is done in table 2.1. Then, the normalized system
is:

where Zp = ,/ Z—g is the vacuum impedance and ¢y = the speed of light in vacuum. It seems useful



Table 2.2 | Units of the original and the normalized Maxwell systems.

H E J t

Original unit Am™' Vm™' Am? s

Normalizedunit Vm™! Vm™! Vm™? m

,uocoﬁ_lj = —iV X E,
Zy Ot My
OE 1 o
EoCoZ()—A, = — (V x H —J) s
ot Er

The units of the original and normalized systems are given in table 2.2. Given the definitions of ¢y and
Zy, one sees that £ %(C)O = gpcpZp = 1. Hence, dropping the tilde notation, one obtains the normalized
Maxwell system, which will be exploited from now on:

,—( Maxwell normalized system] \
H 1
%:_EVXE’ (2.11)
E 1
(Z_t: ;(VXH—]). (2.12)

2.1.3 Material interfaces

Ampere’s, Faraday’s and Gauss’ laws

Ampere’s, Faraday’s and Gauss’ laws are obtained by applying the Stokes and Ostrogradsky formulae to
(2.2 - 2.5), leading to four integral forms that will help derive the interface conditions.
For a closed contour I' delimitating a surface S, one obtains Ampere’s law by applying the Stokes formula

to (2.3):
éH-dlz//S<J+%—]t)>-ngdS, (2.13)

where ng is the unit normal to surface S. In a similar fashion, applying Stokes formula to (2.2) yields

Faraday’s law:
B
§£E~dlz—//8—-n5d8. (2.14)
r s Ot

For a closed surface ¥ delimitating a volume V), the Ostrogradsky formula applied to (2.4) and (2.5) re-
spectively gives Gauss’ laws for electric and magnetic fields:

#Zn-nz dEz///VpdV, (2.15)

# B ny dX = o, (2.16)
by
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ng_,1

Figure 2.1 | Integration domains for jump relations. The blue plane represents the interface between the two materials. I"
is a closed curve on which the Ampere theorem is applied, while ¥ is a closed surface used for the Gauss theorem. The interface
hosts free surface currents J and charges ps.

where ny; is the unit normal to surface X.

Interface conditions

In the presence of a material interface, i.e. a jump of €, or p, across a surface, the smoothness of the
electromagnetic field is not preserved. To obtain a solution to Maxwell’s equations, one must inspect the
behavior of E and H across the discontinuity. To do so, consider the situation presented on figure 2.1.
Suppose an interface between two materials of parameters (£1, 11 ) and (€2, p12). The adequate integration
domains I" and ¥ are defined to apply Ampere’s, Faraday’s and Gauss’ laws across the material interface.
The interface is supposed to hold free surface currents J, and charges ps. Applying Ampere’s law (2.13)
to the closed contour I', and taking the cross-product with n;_,9 yields, after a few manipulations:
ny_1 X Hy +n10 X Hy = J,.

Here, the sign J, obviously depends on the orientation of the surface. Taking into account that nj_,s =
—ny_,1, these normals are indifferently replaced by n and —n. Then, one obtains the following condition
for the tangential magnetic field at the interface:

n X (Hl — Hg) ZJS.

On the other hand, Gauss’ law for magnetic fields (2.16) yields:

pan - Hy = pon - Ha.

In the same manner, Gauss’s law for electric fields (2.15) gives:

n- (€1E1 - €2E2) = Ps-

Finally, Faraday’s law (2.14) yields the continuity of the tangential electric field:

n x E; = n x Es.

11



Hence, for a general material interface between two media, only the tangential component of E is con-

tinuous:
r—( Interface conditions} <
n x (Hy — Hp) =],
n x (E; —Eg) = o, (2.17)
n- (mHp — poHy) =0,
n- (1E1 — e2E2) = ps.

Conditions on a perfect electric conductor

Following what was established above, it is easy to deduce the boundary conditions on a perfect electric
conductor (PEC). Considering that all fields must be equal to zero inside the conductor, one obtains:

r—[ PEC conditions} .
nxH=],,
n X E = o,
n-H=0, (2.18)
n-E= &.
€

2.1.4 Some analytical solutions to Maxwell’s equations

The handful of electromagnetic propagation problems that admit an analytical solution are essential in
validating numerical implementations of electromagnetic solvers. In this section, the solutions to six
elementary propagation problems are presented. They will be used as reference solutions later in this
manuscript.

Plane wave in a homogeneous medium

In this section, Maxwell’s equations are considered in a homogeneous medium of constant relative ma-
terial parameters (&, i1,-). Additionally, it is considered to be source-free, i.e. J and p are equal to zero. By
combining the curl of (2.11) and the time derivative of (2.12), one obtains after some manipulations:

1 6°E (2.19)
=== 2.1
c2 ot?’ ?
where ¢, = \/;% is the relative speed of light. Taking the Fourier transform (see section 4.3) of (2.19)
yields:

2

AE = W—QE, (2.20)
CT

where E designates the frequency-dependent field associated to the time-dependent field E, and w the
angular frequency. Propagating solutions of (2.20) in R? are given by:

12



Figure 2.2 | Spatial representation of a linearly polarized plane wave. E, H and k are orthogonal two by two.

~
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with k the wave vector, related to the angular frequency w by:

w? = [k|*c2.

The expression for H can be obtained by exploiting the Fourier transform of (2.11):

It is now straightforward to deduce time-domain solutions for E and H:

k-x
E(x,t) =Ey |t — Ko )
T

e k o
1 [K|

Hence, for plane waves, both E and H are constant at every point in the plane perpendicular to the
propagation direction, while E, H and k are orthogonal two by two. Illustrated on figure (2.2) is the case

of a rectilinear polarization (i.e. there is no initial phase delay between the different components of the
electromagnetic fields).

(2.21)

H(x,t) = E.

Dielectric film in normal incidence

The considered set-up, shown in figure 2.3, consists in a thin slab made of medium (2), sandwiched
between two media (D) and (3), and infinite in the x— and z+ directions (see figure 2.3). The geometry
is periodic in both y and z directions. A plane wave traveling in (2) in the x+ direction is considered,
impinging in normal incidence on the slab. At the interface between (1) and (2), the incident field Ejy is
partially reflected to (2), and partially transmitted to (2), in the following fashion:

Ei1 = 712Einc and Ejp = t12Ein.
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Figure 2.3 | Dielectric slab illuminated with a plane wave. The system is periodic in both x and y directions, while the
incident plane wave propagates in the z+ direction. At the bottom of the picture, a few reflected and transmitted waves are
represented.

14



Here, E; represents the wave that was reflected in (2) at the interface with 2), and E» the wave that was
transmitted from (1) to (2). 712 is the amplitude reflection coefficient of (1) on (2), and t12 is the amplitude
transmission coefficient from (3) to (2). From the interface relations (2.17), it is possible to deduce the
values of these parameters:

ny—n 2n

rp= ———2 and tjg = ———

ny + neo ny + ng
where n; = /g;1; is the refractive index of the it medium. While E; propagates indefinitely toward
z—, the same scenario is repeated when E12 reaches the interface between (2) and @:

Ei22 = r21E12 and Ej23 = ta3E12.

Eventually, an infinite number of reflections and transmissions occur at the two interfaces, yielding a
solution in the form of an infinite summation of waves, all proportional to E; via a composition of r and
t coefficients. In the stead of exploiting a truncated solution in time domain, it is possible to calculate the
power reflection and transmission coefficients, given by:

—2ikl
R= T2 ¥ 723€ — (2.22)
1 + ry91g3 e~ 2iM
1+ 712)(1 + ro3) etk
SpC sty ) L (229

1+ 119723 e 2iM

with %k the modulus of the wavevector (k = |k|) and [ the thickness of the dielectric slab.

Perfect electric conductor cavities

Vacuum-filled cubic cavity Closed cavities surrounded by perfect electric conductor (PEC) walls in
simple geometries also allow the full calculation of time-domain solutions. First, a parallelepipedic cavity
of side lengths (ay, ay, a.) filled with vacuum is considered. On all its external faces, PEC conditions are
applied (see (2.18)). This cavity supports an infinite number of modes, whose expressions are of the form:
E, o cos(kyx) sin(kyy) sin(k.z)

E(z,y,2,t) = y o sin(k,x) cos(kyy) sin(k.z) | cos(wt),
E. o sin(k,x) sin(kyy) cos(k. 2)
Hy osin(kyz) cos(kyy) cos(k,2)
H(z,y,z,t) = y,0 €os(kyx) sin(kyy) cos(k.z) | sin(wt).
i HZ70 cos(kgx) cos(kyy) sin(k, 2)

"a’:r for any integers n; # 0. Following (2.11), the amplitude vectors of

In the previous expressions, k; =
E and H are related as:

k x Eg
HO = ’
w
where:
Ea: 0 Hcc,()
Eo=| Eyp and Hop= | Hyp
Ez 0 Hz,O
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Additionally, the following equality must be verified to fulfill the divergence condition:

kmEiE,O + kyEy’o + k'zEz,O = 0.

Finally, the frequency of the (n,, ny,n.) mode is given by:

2 p2 2
w=m|E T
ag ay; az

For the needs of this work, a (n, = n, = n, = 1) mode is considered in a unit cavity (a; = a, = a, = 1).
Hence, with (k, =k, =k, =k =7)andw = V37

— cos(kz) sin(ky) sin(kz)
E(z,y,2,t) = 0 cos(wt),
sin(kz) sin(ky) cos(kz) (2.24)
—sin(kx) cos(ky) cos(kz) -| 2
H(z,y,z,t) = | 2cos(kz)sin(ky) cos(kz) » sin(wt).
| — cos(kz) cos(ky) sin(kz) J

Vacuum-filled spherical cavity In the case of a spherical cavity of unit radius, a similar, however more
tedious derivation is possible. For the needs of this work, the following (0, 1, 1) mode will be considered:

H(z,y,2,t) =

E(m7y7 Z7 t) =

. . —y
sull{:g;t) (smk(fr) o (kr)) .

0
zcos (wt) [ . e (1 3 3 i v
—zi <s1n( T) ( r— H) + 3 cos ( r)) z (2.25)
cos (wt) 0

kr?

(sin(kr) (kr—%>+cos(kr)> 0 .

where r = |x|. The mode frequency is solution of a transcendental equation, and the approximate value

w ~ 0.130912 GHz is retained.

Cubic cavity filled with an anisotropic material The solution of the cubic cavity filled with an an-
isotropic material is also available. In the most general case, the permittivity tensor is real and symmetric,
and can therefore be diagonalized. Hence, we here restrain ourselves to the case of diagonal permittivity
tensors £, = diag |4, £y, €. Unlike the isotropic case, for a given £, the dispersion relation is a fourth-
order equation in w, which allows two real modes in the cavity. For the sake of brevity, the full derivation
is not detailed here, and we settle for providing an explicit solution of the problem. As in the isotropic

case, modes are of the form:
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[ E, j0cos(kyx)sin(kyy) sin(k,z)
Ej(z,y,2,t) = | Eyjosin(kyz)cos(kyy)sin(k,z) | cos(wjt),
i Ezjosm( x) sin(kyy) cos(k.z)

Hy, josin(kyx) cos(kyy) cos(k.z)
Hj(z,y,2,t) = | Hyjocos(kyx)sin(kyy)cos(k,z) | sin(w;t),
H. jocos(kyx) cos(kyy)sin(k.z)

where j € {1,2}. Once again, we choose the (n, = n, = n, = 1) modes in a unit cavity (a; = a, =
a, = 1), which gives (k, = k, = k, = k = 7). The anisotropic material is chosen as £, = diag |1, 3, 5],
which yields two possibles modes, w; ~ 0.837624 GHz and wo ~ 1.42078 GHz, both solutions of the
dispersive relation. Finally, the divergence condition is taken into account to choose the amplitude vectors
E; o and Hj . A possible choice is:

Eyjo = (er2—&r3) k2,

2 2
Ey,j,O = 57‘,157',3(")‘7' - (267'73 + Er,l) k )

1
E.jo=——(er1Ezjo+er2Ey o),
5r,3
k x Ej’o
Hjo=—"—.
Wi

Solutions based on the Mie theory

The Mie theory [vdH81] was derived in 1908 by Gustav Mie, and brings an analytical solution to the scat-
tering of spherical particles in the form of infinite series of Hankel functions and Legendre polynomials.
Starting from the Helmholtz equation, the fields are split in separate variables. After a few calculations,
the radial part is solution of a Bessel equation, the polar part, of a Legendre equation, while the azimuthal
part verifies a simple oscillatory problem. The aforementioned reference contains the detailed derivation,
which is thus not reported here. Among others, it allows for the computation of the near and far field, as
well as the cross-sections (see section 4.4) of spherical scatterers. In this manuscript, it will be exploited
as a reference solution in section 5.3 to compare the computed cross-section of a metallic sphere.

2.2 Dispersive models

2.2.1 Underlying physics

Dispersion is a common phenomenon to all kinds of waves traveling through a medium: it results from the
way the latter reacts to the presence of the wave, therefore affecting its propagation. For a polychromatic
wave, it often happens that all the frequencies do not travel at the same speed through the medium: this
phenomenon is called dispersion. Among the numerous phenomena encountered in electromagnetics,
many rely on the dispersive properties of materials. Indeed, in specific ranges of wavelengths, biological
tissues [GGCog6], noble [JC72] and transition metals [JC74], but also glass [Fle78] and certain polymers
[CC41] exhibit non-negligible dispersive behaviors. In the mathematical framework, this phenomenon
is modeled by a frequency-dependent permittivity” function £(w), often derived from physical consid-
erations. Regarding nanophotonics applications, an accurate modeling of the permittivity function for

*We remind the reader that this work is restrained to non-magnetic materials
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metals in the visible spectrum is crucial. Indeed, the free electrons of metals are the key ingredient in the
propagation of surface plasmons [NHo7] (see section 2.2.5 for more details).

In the presence of an exterior electric field, the electrons of a metal are subject to a Coulomb force which
brings them, in a given characteristic time 7., to an equilibrium position. This leads to a general electric
polarization of the metal, which is usually expressed in the frequency domain with the polarization vector
P. The latter constitutes an additional term to the electric displacement: D = £E+P. Moreover, P can be
related to E in homogeneous isotropic media through its susceptibility x(w) such that P= X(w )E If one
is to consider a variable electric field of given angular frequency w, the frequency dependence of P can
be intuitively understood: for sufficiently low frequencies, the electrons relaxation time 7 is negligible
compared to % Therefore, the electrons dispose of a sufficient amount of time to adapt to the variations of
the electric field. However, at higher frequencies, the field varies significantly during the time 7 required
by the electrons to reach a stable state. Then, the higher the frequency, the shorter the distance traveled
by the electrons from their steady state equilibrium, and the lower the polarization. This explains the
observed transparency of the metals for very high frequencies electromagnetic waves. One should now
grasp the importance of taking the dispersion effects into account when P cannot be neglected, since it
has a significant influence on the permittivity €(w) of the considered medium, and hence on its refractive
index.

2.2.2 Drude and Drude-Lorentz models

The Drude model is based on the kinetic theory of gases [Druoo]. In this approximation, the metal is
considered as a static lattice of positive ions immersed in a free electrons gas. The interactions of these
electrons with the ion lattice are condensed in a collision frequency parameter 4, while electron-electron
interactions are totally neglected. For the electron gas, this leads to the following classical equation of
motion:

82x+ Bx_ eE(t)
a2 T ey T T\

where m, represents the electron mass, and e the electronic charge. It is worth noticing that v, matches
the definition of the inverse of the mean free path 7. Then, considering a harmonic time-dependence of

the form e~™! one obtains:
~ e 1 =~
X=———
me w? + iwyg
Given the definition of the polarization P = —n.ex, with n. the electronic density, the latter equality can

be rewritten as:

2
P _ Nee€ 1 ~

€0 .
Meo W2 + iwyy

Then, the electric displacement becomes:

_ W\«
D=¢|(l-———]E
w* + wyg

where wg = 4/ :)‘;e is called the plasma frequency of the electrons. It is common to include an additional
parameter, X3, describing the contribution of the bound electrons at infinite frequency [Maio7]:
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Figure 2.4 | Real and imaginary parts of the silver relative permittivity predicted by the Drude model compared to
experimental data from Johnson & Christy. The parameter values are eoc = 3.7362, wg = 1.3871 X 107 GHz and 4 =
4.5154 x 10" GHz.

Then, the definition of the relative permittivity function is directly obtained by matching the previous
expression with D = ¢¢e, (w)E:

2
Wy

__Yd 26
w? + iwyg (2.26)

erd(Ww) = €00 —
where e, = 1 + Xp is the permittivity at infinite frequency. The real and imaginary parts of the Drude
permittivity function for silver are plotted in figure 2.4, along with experimental curves from Johnson
and Christy [JC72]. One notices that, if the real part fits the Drude prediction, the experimental imagin-
ary part shows features that are not predicted by the model. For certain metals (especially noble ones),
electronic transitions between valence and conduction band occur around the visible frequency range.
These contributions correspond to electrons that are bound to their ion cores. Hence, in the same classical
fashion as before, a spring term is added to the equation of motion:

0’x . ox oy e E(t)
— — 4+ wjx=——E(t).
a2 T Mg T .y

Following the same development as for the Drude model, one easily obtains the expression of a Lorentz
pole:

Aew?

eri(w) = ———Fg——.
(@) w? — w? + fwy

The total permittivity of the Drude-Lorentz model is the simple addition of the Drude and Lorentz terms:

2 2

W Acwj

2 2,
—wj + W

Erdl(W) = oo — (2.27)

w2 tiwyg w
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Figure 2.5 | Real and imaginary parts of the silver relative permittivity predicted by the Drude-Lorentz model com-
pared to experimental data from Johnson & Christy. The parameter values are e = 2.7311, wg = 1.4084 x 107 GHz, Yd =
6.6786 x 10° GHz, Ae = 1.6336, w; = 8.1286 x 10° GHz and y; = 3.6448 x 10° GHz.

Here, the Ac parameter represents the amplitude of the associated Lorentz pole. As can be seen for silver
in figure 2.5, the high-frequency range of the imaginary part is in better adequation with experimental
data than it was for the Drude model. However, there is still room for improvement: for some metals such
as gold or silver, the addition of multiple Lorentz terms brings a much better fit between experimental
and theoretical values, at the cost of an increased complexity of the model. Based on this remark, the Lg
model of [HNo7] combines four Lorentz poles with a conductivity term.

2.2.3 Generalized model

Given an experimental set of points describing a permittivity function of a material, a Padé type ap-
proximation is a convenient analytical coefficient-based function to approach experimental data. The
fundamental theorem of algebra allows to expand this approximation as a sum of a constant, one zero-
order pole (ZOP), a set of first-order generalized poles (FOGP), and a set of second-order generalized poles
(SOGP), as:

Generalized dispersive model}

o aj ¢ — iwd;
crgl) =em = 2= Y U Y A (2.28)

- 2 . b
w — we —e w
lely l€Ls Lt fl

where e, 0, (a1)icr, (0)ier,s (¢)ierLy, (d1)ier,, (€1)ierL,, (f1)iceL, are real constants, and L, Ly are non-
overlapping sets of indices. The constant £, represents the permittivity at infinite frequency, and o the
conductivity.

This general writing allows an important flexibility for several reasons. First, it unifies most of the com-
mon dispersion models in a single formulation. Indeed, Debye (biological tissues in the MHz regime),
Drude and Drude-Lorentz (noble metals in the THz regime), retarded Drude and Drude-Lorentz (trans-
ition metals in the TH<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>