
HAL Id: tel-01266701
https://hal.science/tel-01266701

Submitted on 3 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting service consumption : advanced discovery
and recommendation techniques

Walid Gaaloul

To cite this version:
Walid Gaaloul. Supporting service consumption : advanced discovery and recommendation techniques.
Software Engineering [cs.SE]. Télécom Ecole de Management, 2014. �tel-01266701�

https://hal.science/tel-01266701
https://hal.archives-ouvertes.fr

Université Pierre et Marie Curie

Supporting Service Consumption:
Advanced Discovery and

Recommendation Techniques

submitted by
Walid Gaaloul

in fulfillment of the requirements for the degree of
Habilitation à Diriger des Rechecrhes

defended on the 19th of September 2014 in front of the panel composed of

Reviewers

Fabio Casati Professor University of Torento, Italy
Marlon Dumas Professor University of Tartu, Estonia
Lionel Seinturier Professor University of Lille 1, France

Examiners

Bernd Amann Professor Pierre and Marie Curie University, France
Claude Godart Professor University of Lorraine, France
Mohand-Said Hacid Professor Claude Bernard University, France

ii

Abstract

Abstract
The tremendous growth in the amount of available (Web) services impulses many re-

searchers on proposing discovery, recommendation and management tools and techniques
to help users retrieve services efficiently. Services can be consumed in different contexts:
published in distributed registries; invoked as individual services which provide inter-
faces to receive inputs and return outputs; or composed and integrated into service-based
processes as new value added composite services. In our work, we aim at facilitating ser-
vice discovery and management in these three consumption contexts. First, we propose
a functionality-driven approach by clustering and organizing registries according to the
functionalities of the service they advertise. Second, to recommend services for individ-
ual use, we propose a usage-driven approach that takes into account the user usage data
which reflect the user interest. Third, to recommend services for process use, we propose
a composition-driven recommendation approach that takes into account the relations be-
tween services in service-based processes. We develop applications, as a proof of concept,
to validate our techniques. We also perform experiments on the data collected by our
applications and on large public datasets. Experimental results show that our techniques
are feasible, accurate and have good performance in real use-cases.

Keywords: Service Recommendation, Service Discovery, Implicit Knowledge, Service-
based Process Modeling, Process Model Reuse, Configurable Process Models, Process
Mining.

Contents

1 Introduction 1
1.1 Preamble . 1
1.2 Context . 1
1.3 Contributions . 4

1.3.1 Functionality-driven registry discovery and management 4
1.3.2 Usage-driven service recommendation 4
1.3.3 Composition-driven service recommendation 5

1.4 Manuscript’s organization . 6

2 Functionality-driven registry management 7
2.1 Introduction . 7
2.2 Description of service registries . 8

2.2.1 Extracting the annotating concepts 9
2.2.2 Computing groups of potential concepts 10
2.2.3 Reducing the concepts . 11

2.3 Building of communities . 12
2.3.1 Modeling of communities . 12
2.3.2 Organizing a registry network as communities 14

2.4 Management of communities . 16
2.4.1 Registry life-cycle . 16
2.4.2 Community life-cycle . 17

2.5 Validation . 17
2.6 Related Work . 20

2.6.1 Services organization . 20
2.6.2 Registries organization . 21
2.6.3 Communities management . 22

2.7 Conclusion . 23

3 Usage-driven Recommendation 25
3.1 Introduction . 25
3.2 Memory-based recommendation . 26

3.2.1 Service-based algorithm . 26
3.2.2 User-based algorithm . 27
3.2.3 Service-user combination algorithm 28

3.3 Model-based recommendation . 28
3.4 Validation . 30
3.5 Related Work . 33
3.6 Conclusion . 34

vi Contents

4 Composition-driven recommendation 35
4.1 Introduction . 35
4.2 Process-based service recommendation . 36

4.2.1 Preliminaries . 36
4.2.2 Composition context matching . 41
4.2.3 Recommendation . 44

4.3 Log-based service recommendation . 44
4.3.1 Preliminaries . 44
4.3.2 Matching and recommendation . 47

4.4 Validation . 49
4.5 Related work . 51
4.6 Conclusion . 53

5 Research Perspective 55
5.1 Supporting variability in configurable processes 55
5.2 Semantically-enabled management of processes in the cloud 57

Bibliography 59

Chapter 1

Introduction

1.1 Preamble

My research interests mainly focus on supporting process (re)modeling and service
consumption using techniques and methods such us: mining, verification, discovery,
recommendation, collaborative filtering, mediation, and configuration. This report focuses
mainly on the latter topic (i.e. service consumption), summarizes parts of the results of
my research over the past six years (2008 - 2014), and presents some ideas for future work
that I consider interesting to explore in collaboration with my colleagues and students.
My research activities were a natural consequence of my PhD thesis which I defended
at the University of Lorraine in November 2006 [56]. Through this thesis I proposed
to analyze process logs to discover workflow transactional behavior and to subsequently
improve and correct related recovery mechanisms. Thereafter I was interested in the
semantically-enabled management of service-based business processes [22]. This latter
work was conducted between 2006 and 2008 while I was a postdoctoral researcher at
DERI-NUIG (Galway, Ireland).

In October 2008, I joined TELECOM SudParis as an associate professor. I continued
to work with my colleagues in Galway on developing mediators for supporting service
interactions [178, 177]. Then I started a research topic around the management and dis-
covery of data providing services [179, 137]. Between 2008 and 2012, I supervised two PhD
students that worked on the development of techniques to support service consumption in
different contexts: distributed registries, individual service, service-based process. While
continuing to work on facilitating service consumption, the last two years I have started
a research activity around (semantic) service-based process configuration [172, 6].

I would like to note that I have had the chance to work in a research team leaded
by Samir Tata, and a department that was directed by Bruno Defude until 2013 then by
Djamel Belaid who have always have confidence on me and give me great autonomy not
only at supervising students but also the management and proposal of research projects.
In fact, I conducted my research in conjunction with real application requirements, which
are often concretized by research projects (Orange S3P (2012-1014), emundus GreenIT
(2012-2014), ANR PAIRSE 2010-2012, and FUI CompatibleOne (2010-2012)).

1.2 Context

The last few years have seen a democratization in the use of Internet technologies,
mainly Web services, for electronic B2B transactions. The evolution of communication
networks and technologies have led to the explosion of services over the Internet. The
importance of this market triggered an increase in the use of e-services to ensure electronic

2 Chapter 1. Introduction

B2B transactions. In this context, more and more companies are using Web services to
achieve transactions with their partners and/or offer on-line services. For instance, in a
Mckinsey Quarterly survey conducted on more than 2800 companies worldwide, 80% are
using or planning to use Web services. Among these companies, 78% says that the Web
service technology is among the three most important technologies to their business [152].

Service providers always compete to rapidly provide the best services to service re-
questers. This circumstance requires the development of service oriented technologies.
Web services appeared as an attractive paradigm for publishing and consuming services.
They have been developed as a standard technology to deliver services over the Internet.
The Web service technology has been proven as an efficient mean to delivering services to
users. The goal of Web service development is to assist service providers to flexibly create
new services and dynamically exchanging data with their partners for collaborative busi-
ness. Web services are developed as loosely-coupled applications that can be run alone to
provide a simple function or composed to create new value-added service based processes.
For instance, individual Web services can be services for city codes, local temperatures,
up-to-date news; and composite services (i.e. service-based processes) can be flight book-
ing processes that compose other services such as customer authentication, online check-in,
car rental, and payment to accomplish a flight booking transaction.

Service discovery is at the heart of SOA, enabling visibility between service providers
and service consumers. The role of service discovery is to provide a mechanism that al-
lows a service requester to locate a service offering an expected functionality. On the
one hand, many service portals (such as XMethods, BindingPoint, WebServiceX.NET,
WebServiceList, StrikeIron, RemoteMethods, Woogle, and eSynaps) and service crawlers
(such as Seekda and EmbracereRegistry) have been developed as specific tools to assist
requesters to search and invoke individual services. On the other hand, some business pro-
cess search mechanisms (such as label matching, structural matching, behavioral match-
ing) and querying languages (such as BPQL, BP-QL, BP-Mon and BPMN-Q) have been
developed to assist process analysts to facilitate the process design phase. However, ser-
vice requesters (1) can easily get confused by the number of services returned by search
engines and special crawlers and (2) do not know about the advantage of a service (i.e.
decide which is the best) in comparison with others.

Currently, companies can make their services available for consultation through their
own service registries. As a result, the number of service registries that are made available
for use can be as many as the large number of companies. This raises an old, search
engine, problem in a new form: discovery mechanisms of services are not efficient both in
response times and quality of results [144]. Basically, a company interested in a service
has to screen several registries to discover the service that best suits its needs. This task
can be very cumbersome since the number of available registries, and also the services
they advertise can be very large [18]. In this context, if appropriate solutions are not
considered, "traditional" services discovery mechanisms that consist of scanning all the
registries would for instance slow down the democratization of services.

Moreover, services are developed as loosely-coupled applications that not only can be
run alone to provide single-use functions but also can be composed with other services
offered by other companies to create new value-added services. A business process can be
implemented as a service composition that execute a set of services to achieve a business
goal. The process design is the initial and key phase [48] of business process development
as it helps to design the business process model, plan resources, identify new opportu-
nities and foresee risks. However, designing a business process from scratch is always a
labor-intensive and time-consuming task. Process analysts need tools and mechanisms to

1.2. Context 3

Figure 1.1: Flower-shaped overview

����������	 ��
�������

�
��

�
�
�
��
�
�

��
	
���	
�
����
��

�
�
�
�
�
��
���
�
	

��
�
�

�
�������	
��

����	����	�����	
��

��������	

�
������
�

����
�
��	�����

�����������	

�������
�

�������	����� �������

������	
�

�
��
��
��
��
��
	

��
�
�
�
��
	�
���
�

��
	�
���
��
�	

��
��

��
�	
���
��

�
��
��
���

	
��
�
��
���
�

�
�
�
�
�
�
��
�

�
�
��	
��
�

�
���������
�

�
��
�
�����

�
������

���

�
�
��
�
�

��
��
�
��
�

��������

��������

�
�
��
�
�

��
��
�
��
�

�����������
������

������

�������	
����� ���

!�"�����
�������

facilitate the discovery of services composing their processes [147, 162].

Summarizing up, services can be published in a distributed registry environment.
They can be consumed in two different ways as: (i) individual services which provide
interfaces to receive inputs and return outputs; (ii) components to be integrated into busi-
ness processes. We call the first consumption case individual use and the second case
(business) process use. In such environment, one can consider service discovery as two
successive steps: (1) registry selection and (2) service selection. Therefore, the require-
ment for specific tools to assist consumers in these different consumption contexts involves
many researches in both academics and industry [67, 98]. Figure 1.1 gives an overview of
the research activities described in this manuscript. Basically, I have developed with my
students and colleagues a set of techniques and models to discover and recommend the
most appropriate registry and service for different consumption contexts: distributed reg-
istries, individual use and process use. We propose respectively three different approaches:
functionality-driven, usage-driven, and composition-driven. Our purpose is threefold: (i)
providing a functionality-driven approach to manage and discover services in a distributed
registry environment, (ii) recommending to users services that are close to their interest,
(ii) recommending to process designers services that are relevant to a given composition
context. All the proposed techniques share the following principle exploiting implicit
knowledge : (i) our approach extract and utilize implicit knowledge hidden in usage
data, service descriptions, process models, and process logs; (ii) our approach does not
bother service consumers by asking them additional or complementary information. The
proposed techniques make also a compromise between the computational complexity and
the quality of results.

4 Chapter 1. Introduction

1.3 Contributions

1.3.1 Functionality-driven registry discovery and management

As the number of registries can be very large, registry discovery acts as an initial
filter to detect the adequate registries to a requester query and thus reduce his/her search
space. To deal with this problem and to address the large number of service registries and
their poorly organized network, we propose to organize service registries into communities
according to the functionalities of the services they advertise.

We use communities as a means for a functionality-driven organization of a distributed
service registry environment. In the Web services research field, [17] define a Web service
community as "a collection of Web services with a common functionality although differ-
ent non-functional properties". [92] consider a community as "a means for providing a
common description of a desired functionality without explicitly referring to any concrete
Web service that will implement this functionality at run-time". In our approach, a ser-
vice registry community is defined as a set of registries offering services providing similar
functionalities.

To build communities of registries, we propose to associate to each registry a signature,
that we call Web Service Registry Description (WSRD) [135], reflecting its functionalities.
These descriptions are the basis for building the communities of registry. To build a
network of communities of service registries, we propose to use a clustering technique
rather than a classification approach. We also provide the management operations needed
to guarantee the consistency of communities during their life-cycles. Below, we detail
our motivations by answering these two questions: Why do we use a functionality driven
organization? and Why do we need to manage communities after their creation?

Functionality-driven organization: In a service discovery process, a service re-
quester is usually interested by a functionality that a service can offer. Therefore, it is
more obvious and appropriate to organize service registries based on their offered func-
tionalities 1. Based on a user query, representing the required functionality, we can filter
and reduce the search space to the community of registries advertising services offering
the specified functionalities.

Need of management: Communities and service registries operate within a dy-
namic environment where changes are frequent. In fact, a new service description can
be published in a registry and others can be unpublished at any time. In the same way,
a registry can join a community or leave it according to its convenience. However, we
cannot re-run our community clustering approach when changes occur mainly for cost
reasons. We should only use our communities building approach as a "cold starter" for a
registry network organization and so we have to define management operations to handle
the dynamic aspects of communities.

1.3.2 Usage-driven service recommendation

To find a service for individual use, users often spend much time to find, compare and
decide the services that are best fitted to their needs. They may easily get confused by the
number of services returned by search engines or service crawlers. Moreover, they may
not be aware about the functionality and quality of the returned services.

Intuitively, users need support to understand their interests and suggest them appropri-
ate services. In this case, recommender systems (RS) [114, 167] can be a good solution as

1. Functionalities of a service registry and functionalities of the services it advertise are interchangeably
used.

1.3. Contributions 5

they are developed to recommend users the most suitable items to their needs. Currently,
many approaches apply RS techniques to assist users to discover services. Most of them
take into account data from provider side (such as service descriptions, QoS, semantic
annotations, etc.). Few of them consider data from consumer side (profile, rating, com-
ments, etc). Basically, very few take into account user’s behavior which is an important
parameter for finding services that are close to a given user interest. They mostly exploit
explicit knowledge which is either represented by user ratings, semantic descriptions or
service’s QoS.

We aim at recommending services that are close to user interest. We propose a
solution from the consumer side. We target to exploit implicit knowledge hidden in
(service) usage data. We do not ask users any effort such as rating or comments. To
do so, we firstly identify user interests based on past usage data. Then, we integrate these
interests in CF algorithms to calculate similarities between users and services. Based on
the computed similarities, we select appropriate services for recommendations.

The recommendation in our algorithms is generated based on the similarities among
WS operations and users. We store the usage data in terms of “user ID”, “WS operation
ID” and “number of used times”. The historical data can be represented by an operation-
user matrix Am×n, where m is the number of WS operations and n is the number of users
in the system. Each entry A[i, j] in this matrix presents the number of times that the
user Uj used the WS operation Oi. It presents also the interest degree of Uj on Oi, which
is very important data for our recommendation strategy. Our operation-user matrix is
equivalent to the term-document matrix used to compute the similarities among users
(and WS operations). Based on these similarities, we proposed algorithms to extract the
suitable WS operations for each user.

1.3.3 Composition-driven service recommendation

From a process use perspective, process designers need specific tools that can under-
stand the business context in order to rapidly find the most relevant services to integrate
into the ongoing designed process. It would be inefficient if every time a company engages
in modeling or re-designing its process, it did so “from scratch” without consideration
of previous design experiences, best practices or how other companies perform similar
processes. In recent years, there have been many efforts on helping business analysts
to create new business process models faster and more accurately by using available ref-
erence models [148, 35, 119], or finding existing similar models to inspire the process
design [170, 1, 83, 40, 47].

However, business analysts merely take reference models as a source of inspiration,
but ultimately, they design their own models on the basis of the reference models. The
design with reference models is still labor-intensive, which is absolutely error-prone and
time-consuming [158]. Indeed, recommending entire process models costs much compu-
tation time and it can make business analysts confused, especially when the number of
components services is large, e.g. hundreds of services and transition flows.

Process analysts may need recommendations for some selected positions instead of en-
tire processes. For example, a process analyst is designing a service-based process as shown
in Figure 1.2. The process designer is looking for services that are suitable to the missing
position (i.e. share the same composition context described through the interactions with
its service neighbors) in the ongoing designed process. In this case, recommending an
entire business process is not helpful. Instead, service recommendation is more suitable
and straightforward. Service recommendation may also help to find other alternatives for

6 Chapter 1. Introduction

a selected service. These alternatives can be useful in either designing process variants or
replacing a service in case of failure.

s1

?

s2

s3

Figure 1.2: Composition context example

Our objective is to facilitate the business process design. We aim at recommending
services that are relevant to selected positions of an ongoing design process. Inspired
by the maxim “Judge a man not by the words of his mother, but from the comments of
his neighbors”, we propose to recommend services that have similar composition context
with the selected one. This context is defined as a business process fragment around the
service and represents the composition context 2 of the component service. For a selected
component service, we match its composition context with the composition contexts of
other services from existing designed processes. The matching between two composition
contexts is scored by a similarity value. Then, based on the similarity values, we recom-
mend to the process analyst services that have the highest similarity values. We target to
exploit implicit knowledge hidden in business process models or logs. We use existing
data (process models and logs) to make service recommendations. We do not ask users
any effort to provide additional information. We take only into account relations between
services in business processes.

1.4 Manuscript’s organization
This thesis includes 5 chapters: In chapter 2, we present our model for formally rep-

resenting a Web service registry, a community and a community network promoting a
complete, independent and dynamic approach for service registries organization. In chap-
ter 3, we present our solution to recommend services based on past usage data. In chapter
4, we elaborate our approach to recommend services to a chosen position in a business
process based on their composition context matching. Finally, in chapter 5, we give an
outlook to my research perspectives.

2. Neighborhood context and composition context are interchangeably used.

Chapter 2

Functionality-driven registry
management

2.1 Introduction

More and more companies are using Web services for achieving transactions with their
partners and/or offering on-line services. The widely used solution is to publish them using
Web service registries available to Web service consumers. As a consequence, the number
of Web service registries that are made available for use can be as many as the large
number of companies. Basically, a company that requests a service has to screen registries
of several companies to discover the needed service that best suits its request. This task
can be very cumbersome since the number of available registries, and also the services
they advertise can be very large [160, 18, 77]. In this context, if appropriate solutions are
not considered, "traditional" Web service discovery mechanisms that consist of scanning
all the registries would slow down service discovery and consequently the usability of Web
services. The aim of the work we propose here is to tackle this issue by providing a new
approach for Web service discovery in a distributed registry environment [141, 143].

To enhance response time and precision of Web service discovery, several approaches
dealing with distributed registries [142, 145, 168] have already been proposed to structure
their registry networks into several groups. As the number of registries can be very large,
this organization can be used as an initial filter to target adequate registries or group of
registries for a given query and thus to reduce the search space. Our work is inline with
these approaches. It consists in (1) describing Web service registries using the functional-
ities of the Web services they advertise; (2) grouping Web service registries according to
their descriptions and (3) using Web service registry groups to route queries to a limited
number of adequate and interesting registries.

Broadly speaking, the description of Web service registries, that we call Web Ser-
vice Registry Description (WSRD for short) is only based on the WSDL descriptions of
their advertised Web services. Our WSRD computing is automatic and doesn’t ask
for any additional knowledge from registry providers. WSRD descriptions are then used
for functionality-driven organization of Web service registries into registry groups that
we call communities. Doing so allows grouping Web service registries into communities
according to the functionalities of the Web services they advertise.

Since it is difficult to properly define in advance classes categorizing Web service reg-
istries in a distributed environment, we propose to organize Web service registries into
communities using a clustering technique (where the different classes are deduced from
the registry descriptions) rather than a classification technique (where the different classes

8 Chapter 2. Functionality-driven registry management

have to be defined in advance). In addition, the clustering we use is fuzzy (i.e. a registry
can belong to more than one class) rather than hard clustering (where a registry is as-
sociated with only one class). Given a query for service discovery, our registry selection
process is based on the matching of the query with the description of representatives of
the different communities. This matching will results in the selection of a community of
web service registries (the selection of more than one community is possible). Then the
query will be matched against the Web services of the registries that belong to the selected
community.

The main steps of our approach are summarized as follows:
1. Step 1: We characterize each Web service registry with a semantic WSRD descrip-

tion. This description is based on the descriptions of the Web services belonging to
the considered registry and "semantically aggregate" its Web service functionalities.
The registry description computing process is automatic and doesn’t ask for any
additional knowledge from a registry provider. A registry description is implicitly
created using as only input Web service descriptions of that registry.

2. Step 2: We use WSRD registry descriptions to build communities of registries. In-
deed, using the WSRD descriptions allows us to group into communities different
Web service registries according to their offered functionalities.

3. Step 3: To handle the dynamic nature of communities and their members (i.e. Web
service registries), we define the management mechanisms to monitor changes and
reconcile potential conflicts. We identify the different operations of a registry (joining
a community, updating functionalities,. . .) and a community (creation, dismantling,
merging,. . .) life-cycle and we specify the associated management operations.

The rest of the chapter is structured as follows: Section 2.2 presents our registry
description model (WSRD) and its computing process (Step 1). In Section 2.3, we show
how we use the WSRD descriptions to organize a registry network as communities (Step
2). In Section 2.4 we introduce the management algorithms and operations for the registry
and community life cycles (Step 3). The implementation, experimentation and usability of
our approach are shown in Section 2.5. Section 2.6 discusses related work and Section 2.7
concludes the chapter.

2.2 Description of service registries

Our idea to describe a Web service registry consists in aggregating the WSDL descrip-
tions of the Web services it advertises into one description called Web Service Registry
Description (WSRD for short) [135]. Hence a WSRD of a registry can give an overview of
the functional properties of its Web services.

In Figure 2.1, we introduce a graph representation of a WSRD description. Since a
WSRD registry description is based on Web service descriptions published in that registry,
the different nodes composing this graph are inspired by the WSDL format. As we provide
a description of a registry (not of a service), we are only interested in the abstract section of
the Web services description. To provide the semantic WSRDmodel, semantic descriptions
of Web services are the only input that we use. In this work, we choose to use semantic
Web service descriptions written in SAWSDL [79]. Other semantic languages, such as
OWL-S [95], WSMO [5] or YASA [29] can be adopted.

WSRD defines a registry using the following WSDL elements: interface, operation,
Input and Output. These elements give an abstract description of the mean functional-
ities offered by the Web services of a registry. We associate each WSRD element with a

2.2. Description of service registries 9

Figure 2.1: The WSRD model

concept taken from a semantic model (domain ontology (DO)) using the SAWSDL mod-
elReference extension attribute. In our work, we suppose that service requesters share
the same semantic stack. This is done through common ontologies or ontology mediation
mechanisms if different ones are used. And since we are dealing with private registries
belonging to a specific company, we assume that all the services advertised by a registry
are homogenous in term of their business domain and semantics. In addition, since those
services have the same provider, we suppose that they use the same semantic description
language. Computing a registry’s WSRD description goes through three steps:

– Step 1.1 : We first extract the annotating concepts and the number of times they
occur from the Web service descriptions published in the registry (Section 2.2.1).

– Step 1.2 : We compute the groups of potential concepts, taken from the DO, to
annotate the WSRD description (Section 2.2.2). To each concept we associate a
value indicating its similarity degree to the whole set of extracted concepts.

– Step 1.3 : Finally, we reduce the computed concepts’ groups to only keep the con-
cept(s) that will be used to annotate a registry’s WSRD description (Section 2.2.3).

2.2.1 Extracting the annotating concepts

The first step in a WSRD computing process is to extract the DO concepts annotating
the different SAWSDL descriptions elements (i.e. <interface>, <Operation>, <Input>
and <Output>) in the Web service registry (see Figure2.2). These concepts, as well as
their number of occurrence constitute the ”initial” WSRD description (Definition 2.2.1).

Definition 2.2.1 (”initial” WSRD). We define an ”initial” WSRD as a quadruple (I, O,
In, Out) of hash maps 1. We call I (resp. O, In and Out) the hash map containing the
extracted concepts of <interface> (resp. <operation>, <input> and <output>). These
hash maps associate a value nbi to a concept Ci where:

– Ci is the extracted annotating concept of an element (i.e. <interface>, <Operation>,
<Input> or <Output>) of a SAWSDL Web service description.

– nbi is the number of times the concept Ci was found in the corresponding description
element of the Web service descriptions of the registry.

1. A hash map is a data structure mapping some identifiers or keys to some associated values.
2. A hash map is a data structure mapping some identifiers or keys to some associated values.

10 Chapter 2. Functionality-driven registry management

Figure 2.2: Concept Extraction

2.2.2 Computing groups of potential concepts

In this second step, we create a group of weighted concepts for each element of a
WSRD description (i.e. <interface>, <Operation>, <Input> and <Output>). These
groups contain all the semantic concepts of the used DO that we consider as candidate
concepts for annotating a WSRD element. Each of these concepts is associated to a value
s reflecting its similarity to the concepts extracted in step 1.1.

A value sj , associated to a concept Cj in a group of weighted concepts, is computed
using the couples (Ci,nbi), stored in the "initial" WSRD, and the similarity degrees between
the different semantic concepts (see formula 2.1). The formula, we propose, computes the
average of the similarity factors (Similarity[Cj , Ci]) of Cj to the set of semantic concepts
Ci extracted in step 1.1 weighted by nbi (i.e. the number of times the concept Ci was
identified). We use nbi to weight the similarity factors since a concept identified many
times is semantically more significant than a concept identified few times. A non identified
concept is weighted by zero. Based on these data, we create the ”intermediate” WSRD
(Definition 2.2.2).

Definition 2.2.2 (”intermediate” WSRD). An ”intermediate” WSRD is a quadruple
(HI , HO, HIn, HOut). We call HI (resp. HO,HIn and HOut) the hash map used to store the
set of potential Cmean for the <interface> (resp. <operation>, <input> and <output>)
element. These hash maps will contain the different concepts Cj of the used ontology
mapped to a value sj representing the sum of the similarity factors between Cj and the
different concepts associated to an element of the ”initial” WSRD. HI (resp. HO, HIn

and HOut) is computed using the following formula:

HI [Cj] = sj =
∑t

i=1(I[Ci]× Similarity[Cj , Ci])∑t
i=1 I[Ci]

, For j = 1 · · · t (2.1)

2.2. Description of service registries 11

Where:
– t: is the number of concepts in the used ontology.
– Cj, j = 1 · · · t: are the concepts of that used ontology.
– I (resp. O, In and Out): a hash map representing the extracted concepts of the

<Interface> (resp. <operation>, <input> and <output>) element in step 1.1.
– Similarity: a matrix containing the similarity factors between all the concepts of the
used ontology.

In order to compute the similarity matrix, we are using the enhanced edge counting
similarity measure proposed by [115] as it is simple and widely used. This measure com-
putes the similarity between two concepts based on the number of edges found on the
path between them. We are aware of the impact of the choice of the similarity comput-
ing method on our approach and we are studying this issue by testing other similarity
methods [73, 84].

2.2.3 Reducing the concepts

In the third step, we aim at selecting the median concept(s) Cmean (from the group
of weighted concepts of step 1.2) which are the most similar to the ones identified in
step 1.1 (stored in the "initial" WSRD). The selected Cmean will be used to annotate the
corresponding WSRD element. To each selected Cmean we associate a weight indicating
its relevance in the annotated WSRD element vis-à-vis the other Cmean. The resulting
WSRD is called the "final" WSRD and is defined in Definition 2.2.3.

Definition 2.2.3 (”final” WSRD). The ”final” WSRD is a quadruple (CMHI
, CMHO

,
CMHIn

, CMHOut
). CMHI

(resp. CMHO
, CMHIn

, CMHOut
) is a hash map containing the

Cmean annotating the WSRD <interface> (resp. <operation>, <input> and <output>)
element associated with the value(s) s = HI [Cmean] (resp. HO[Cmean], HIn[Cmean] and
HOut[Cmean]) indicating its representativeness.

This reduction step can be achieved in two different ways : strong or weak.
– Strong reduction: This method consists in choosing a unique Cmean to annotate
the associated WSRD element. A simple way of realizing strong reduction is to
choose from its representative hash map He ={< Ci, si >} the concept Ci having
the highest value si. The chosen concept corresponds to the mean concept of the
WSRD element.

– Weak reduction: By employing weak reduction aWSRD element will be annotated
using more than one Cmean. The issues here are to define which and how many
concepts to choose. In our work, we choose the Cmean using Algorithm 1. Following
this algorithm, we first select from the groups of potential Cmean (He) the concept
having the highest value s=sstart as a Cmean (line 1-4). Then, we compute the
absolute deviation σ between the values s of He (line 5). Then we choose another
concept Ccurrent as Cmean such that its weight scurrent is less or equal than s (the
weight of the previous chosen Cmean (line 6)) minus σ (line 10). This condition (the
gap between the values of the chosen concepts is largest than the absolute deviation
between them) allows us to avoid choosing two semantically similar concepts as
Cmean. We then assign to s the value of the chosen concept and repeat the previous
steps (line 7-12) until s−σ ≤ 0. Algorithm 1 allows us to efficiently choose the WSRD
annotating Cmean by eliminating the less representative concepts while ensuring that
no lost of knowledge happened.

12 Chapter 2. Functionality-driven registry management

Algorithm 1 WeakReduction(He)
Require: He {The group of potential Cmean of a WSRD element e (i.e. e=interface, operation, input or

output).}
Ensure: CM {Hash map of the weighted selected Cmean}

1: He = Order(He) {Order: a function sorting in descending order the element Ci of He according to
si}

2: Cstart = He.getElement()
3: sstart=He[Cstart];
4: CM .add((Cstart, sstart));{Select the concept having the highest value as Cmean}
5: σ =deviation(si) ;
6: s = sstart;{s is the weight associated to the last chosen Cmean}
7: while (s− σ ≥ 0) do {Find in He the concept having the highest value and distanced from s by σ}
8: Ccurrent = He.getElement()
9: scurrent = He[Ccurrent]

10: if (scurrent ≤ s− σ) then
11: CM .add((Ccurrent, scurrent));
12: s = scurrent;
13: end if
14: end while
15: return CM

Strong reduction is a simple technique for concepts reduction. However, weak reduction
better reflects the functionalities offered by the Web services of a registry. We recommend
using weak reduction as the computation load is almost the same for both techniques [135].

2.3 Building of communities

In this section, we present the second step of our approach: based on WSRD descrip-
tions computed in the first step, we organize a registry network into communities. We
start by describing our model for representing a Web service registry, a community and
a community network in Section 2.3.1. Then, we introduce our communities building
approach in Section 2.3.2.

2.3.1 Modeling of communities

We define our distributed registry network based on the notations and concepts offered
by graph theory. Indeed, graphs are highly flexible models for analyzing a wide range of
practical problems, especially networks, through a collection of nodes and connections
between them. A network is then formalized with a graph G, defined as a pair of sets G =
(V,E). V is the set of vertices (or nodes) and E is the edge set representing the network
connections. Also, a graph can be weighted by a weight function w : E −→ R assigning a
weight on each edge. A weighted graph is then denoted G = (V,E,w). Throughout the
rest of the chapter, we use these notations.

Modeling a Web Service Registry. In this work, we refer to each WSRD descrip-
tion of a Web service registry by f . A registry can belong to different communities at
the same time. Thus, we assign to a registry a set of membership degrees that we call
MEM . This set contains its membership degrees to each community in the network of
communities (see Definition 2.3.1).

Definition 2.3.1 (Web service Registry). A registry is defined as a triple r = (id, f,MEM)
where:

– id is the registry identifier,

2.3. Building of communities 13

– f is a vector representing the average functionality offered by the advertised Web
services within the registry,

– MEM represents the registry membership degrees to the different communities in
the network. It is represented by a binary relation defined as follows. MEM =
{(c, d)|c ∈ C, d ∈ [0, 1]} where:
– C is the community set,
– d is the membership degree of the registry r to the community c.

We define the domain and range of MEM ⊆ C × [0, 1] as:
– dom(MEM) = {c|(c, d) ∈MEM for some d ∈ [0, 1]}
– ran(MEM) = {d|(c, d) ∈MEM for some c ∈ C}

We also define the function Uj that computes the degrees of membership of a registry ri to
a community cj as follows:

– Uj(ri) = d⇒ (d, cj) ∈ ri.MEM

Modeling a Community. A community is mainly characterized by its mean func-
tionality f which represents the aggregation of the community registries functionalities.
We distinguish two kinds of registries (leader and follower) based on their role inside a
community. Therefore, the set of community members (nodes) can be divided into a sin-
gleton L = {l} representing the leader and a set Fl = {fli|i : 1..n} where n is the number
of the community followers. Thus, the community nodes are modeled as a star graph G
where nodes are registries and each edge represents the functional similarity between the
leader and a follower fl, fl ∈ Fl. The similarity between the functionalities offered by
the leader and a follower can be computed using the cosine function (see Section 2.3.2,
formula (2.2)). A definition of a community of registries is given in Definition 2.3.2.

Definition 2.3.2 (Community of Registries). A community is a triple c = (id, f,G)
where:

– id is the community identifier,
– f is a vector representing the mean functionality of the community c,
– G = (L ∪ Fl, E,w) is an undirected weighted star graph where:
– L is the community leader (the registry having the highest membership degree
inside the community c),

– Fl is the set of community followers such as L ∩ Fl = {},
– E ⊆ L× Fl is the set of edges,
– w : E −→ [0, 1] is a weighting function, each weight represents the functional
similarity between nodes.

Modeling the Community Network. So far, our distributed registry environment
which is a set of communities is modeled by a set of star graphs. As the number of
registries (nodes) can be very large and a single registry can belong to many communities,
the community management is a cumbersome task. To deal with this problem and to
have a global view of the network, we define another graph CG, called Community Graph,
in which nodes represent communities and edges are the relationships between them. If
two communities have at least one registry in common, then there is an edge joining
them. In this case, we compute the distance between the vectors f of these communities.
This distance represent the weight of the edge relating these two communities and can
be computed using formula 2.3. We present the model of our community network in
Definition 2.3.3.

Definition 2.3.3 (Community network). The community network is represented by an
undirected weighted graph CG = (C,E,w)

14 Chapter 2. Functionality-driven registry management

– C is a finite set of nodes. Each single node represents a community of registries,
– E ⊆ C ×C is the set of edges (representing the relationships between communities),
– w : E −→ [0, 1] is a weighting function representing the distance between two given
nodes.

2.3.2 Organizing a registry network as communities

A community of Web service registries will bring together registries offering similar
functionalities. Since a Web service registry generally offer services proposing different
functionalities, it is difficult to properly define in advance classes categorizing the func-
tionalities of the different registries. To organize Web service registries into communities,
we use a clustering technique (where the different communities will be deduced from the
registry descriptions) rather than a classification technique (where the different commu-
nities have to be defined in advance). When using a dynamic clustering technique, the
different clusters (i.e. the communities of Web service registries) will be identified from
the given input data (i.e. the WSRD descriptions) and each data point (i.e. Web service
registry) will be assigned to one community.

Since a registry can belong to different communities at the same time, the use of an
exclusive clustering is inadequate for building communities of registries. In exclusive clus-
tering, data are grouped exclusively. Thus, if a certain datum belongs to one cluster then
it is automatically excluded from the others. Therefore we propose to use an overlap-
ping clustering method, also known as fuzzy clustering [173], to organize our distributed
registries into communities. In the following, we present our fuzzy clustering approach
to organize our distributed registries into communities which was inspired from the fuzzy
C-means method [49, 21]. The fuzzy C-means is a method of unsupervised clustering often
used in the fields of data analysis and pattern recognition. In several works [74, 130], this
method is employed for document clustering. A document contains terms and is repre-
sented by a vector which dimensions are the document’s terms. By using fuzzy C-means
to cluster a set of documents, each document belongs to two or more clusters. Concretely,
we proceed in three steps to build communities of registries:

1. Step 2.1: WSRD descriptions are processed to map to the term-document structure.
2. Step 2.2: we propose a method to measure the distance between two registry vectors

as needed by the fuzzy C-means Algorithm.
3. Step 2.3: using the results of the two previous steps we apply a fuzzy clustering

technique to build communities of registries.

Step 2.1: Defining the registry vector space

In order to apply the fuzzy C-means method to our context, we consider each registry
as a document and the set of its ontology annotating concepts as terms in the document.
The data points are Web service registries ri represented by their WSRD descriptions. We
use the vector space model [128] to represent these descriptions as vectors. Each WSRD
description will be represented by a vector ri.f = [w1, w2, . . . , wt] where t is the number
of concepts in the ontology. The weights of the different wi are computed as follows:

1. For the <interface> (resp. <Operation>, <Input> and <Output>) element we
extract the associated weight (see Section 2.2) with each Cmean and we store these
values in a vector vI = [e1, e2, . . . , et] (resp. vO, vIn and vOutput). These vectors have
the same size t as the vector ri.f . If a concept from the common ontology does not
occur in the WSRD description, its value in the vectors is zero.

2.3. Building of communities 15

2. Since vI , vO, vIn and vOut have different meanings, they should be associated with
weights. We define four weights: α for vI , β for vO, δ for vIn and λ for vOut such
that α+ β + δ + λ = 1.

3. Finally, a registry WSRD vector ri.f is computed as follows: ri.f = α × vI + β ×
vO + δ × vIn + λ× vOut

The coefficients α, β, δ and λ depend on the weights that the service consumer or
provider want to give to the interface, the operation, the input or the output of a service.
Bigger the coefficient is, more important the related element is considered for the WSRD
computation. Normally, different value setting for α, β, δ and λ should impact the clus-
tering result to some extent. Therefore service consumer and provider should agree on
these coefficients based on the given environment. Indeed, if we have a capability centric
service [175] then a greater weight should be given to the interface. Else, a greater weight
should be given to the input/output if we have a data-centric service [180].

Step 2.2: Computing registry distance

A distance measure is used to establish the degrees of membership of each data point
to the different clusters. In our work, the set of data points to cluster (the Web service
registries) are represented by vectors computed from the WSRD descriptions. To compute
the distance between two vectors, we use the cosine similarity measure [126] to establish
the similarity between two vectors since it is adequate for high dimensional data [111].
The cosine function ranges between 0 (no similarity between vectors) and 1 (identical
vectors). Given two vectors r1.f and r2.f that represent the functionalities of two Web
service registries, the cosine similarity is computed using formula (2.2):

cosine(r1.f, r2.f) = r1.f × r2.f

‖r1.f‖ × ‖r2.f‖
(2.2)

Since the cosine function leads to the similarity between two vectors, and not to a
distance as needed for the fuzzy C-means algorithm, we use Formula (2.3) to deduce the
distance from the cosine similarity function:

distance(r1.f, r2.f) = 1− cosine(r1.f, r2.f) (2.3)

Step 2.3: Building communities

To build communities of Web service registries, we use a clustering technique. We pro-
ceed in two repetitive phases: (i) computing the communities’ centers also called centroids
(represented by f the mean functionality of the community) and (ii) assigning the different
registries to these centers. Each registry is assigned to a community with a various degree
of membership. The total sum of the membership’s values for a registry should be equal
to 1.

The Web service registry clustering is based on the minimization of the following
objective function (2.4):

J =
C∑

j=1

N∑
i=1

[Uj(ri)]mdistance(ri.f, cj .f)2 (2.4)

16 Chapter 2. Functionality-driven registry management

where C is the number of communities, N the number of registries to organize, Uj the
membership function of the community j, ri is the ith registry of our registries set, m (the
fuzziness coefficient) is any real number greater than 1 and distance is our defined distance
measure giving the similarity between a registry ri and a community cj . The clustering
is carried out through an iterative optimization of the function J until it tends to be
stabilized. The update of the membership Uj(ri) vectors and the community centroids
cj .f is done by respectively using Formulas (2.5) and (2.6).

Uj(ri) = 1∑C
k=1(distance(ri.f,cj .f)

distance(ri.f,ck.f))
2

m−1
(2.5)

cj .f =
∑N

i=1 Uj(ri)m · ri∑N
i=1 Uj(ri)m

(2.6)

After this step, we get C communities represented by their centroids. These cen-
troids represent the mean functionality f of these communities in accordance with Def-
inition 2.3.2. In addition, to each community cj are associated N membership vectors
Uj(ri), i = 1 . . . N indicating the degrees of membership of the N registries to the commu-
nity. These data allow us to infer the membership degrees MEM (see Definition 2.3.1) of
the N registries to organize them into communities.

However, using this technique, the membership degrees of some registries to some
communities may be very low. We thus define a threshold th for the membership degrees.
If the membership degree of a registry to a community is below this threshold, it will not
be considered as a member. This threshold is necessary to preserve the "reputation" of
a community and to ensure that the functionalities of its members are not too different
than those announced by the community.

2.4 Management of communities

Communities and Web service registries operate within a dynamic environment where
changes are mainly initiated by service and registry providers. A service provider can
publish or delete a Web service. Similarly, a registry provider can register its Web service
registry or dismantle it at any moment. To keep the consistency of our communities’
network against these events, management operations are needed (step 3 of our approach)
to handle Web service registries (Section 2.4.1) and communities of Web service registries
(Section 2.4.2) during their life-cycles. Due to space limitation, we refer to [26] for more
details about the different algorithms we proposed to implement theses management op-
erations related to the the registry and community life-cycle.

2.4.1 Registry life-cycle

Figure 2.3 illustrates the communities and registries management process. This process
does not include communities building as it is a "cold starter" step and executed once in
our approach. A registry life-cycle can start when a registry provider decides to register
its Web service registry in the community network (operation (1) in Figure 2.3).

2.5. Validation 17

Registry provider Service provider Registry Community

Register registry Join network

Publish WS

Delete WS

Join community

Update functionalities

Leave community

Leave network

Community creation

Community dismantling

Merging communities

Splitting community

Dismantle registry

[C1][C3]

[C2]

Figure 2.3: Communities and registries management process

In addition, service providers can publish (operation (4)) or delete (operation (5)) Web
services within their registries thus leading to an update in the registry’s mean functionality
(operation (6)). In such scenario, the membership degrees of the updated registry to the
existing communities can change and a suitability check of the registry memberships should
be done. Finally, a registry can leave the whole network (operation (8)) if its provider
decides to dismantle it (operation (9)).

2.4.2 Community life-cycle

The main steps describing a community life-cycle revolve around community creation,
dismantling, merging and splitting. A community will be dismantled (operation (13)) if
it becomes empty. Throughout a registry life-cycle, we check the similarity inside and
between communities to ensure the principle goal of clustering: minimizing the similarity
between clusters while maximizing it within each cluster. To guarantee this goal, a com-
munity can be merged (operation (11)) to another one or split (operation (12)) into two
communities.

2.5 Validation
Our communities construction and management approach has been adopted in the

French ANR funded research project PAIRSE 2 [179]. The PAIRSE project deals with
issues (heterogeneities, query processing ...) related to data sharing in P2P environments
by using data providing (DP) services. A DP service is particular type of Web services
that only allows data access.

DP services clustering and categorization is important for locating an appropriate
service, when a user needs to (i) discover a service that can fulfill her requirements, or
(ii) to replace a service involving a given interaction when this service disappears or is
unavailable. For this purpose, we adapted our communities construction and management
approach to organize DP services described by RDF views [180]. Concretely, DP services
were represented in terms of vectors while considering the composite relation between
input, output, and semantic relations between them. Thereafter, DP service vectors are

2. https://picoforge.int-evry.fr/cgi-bin/twiki/view/Pairse/Web/

https://picoforge.int-evry.fr/cgi-bin/twiki/view/Pairse/Web/

18 Chapter 2. Functionality-driven registry management

clustered using a refined fuzzy C-means algorithm. In addition, we have adopted some
community/registry management operations for managing service clusters and the cluster
network when handling the following situations: new service emergence, and existing
service disappearance or unavailability.

In the following, we present the experimentation efforts made to validate the different
steps of our approach. Our experimentation work was achieved in two stages: prepar-
ing the test-bed, and experimenting the efficiency of our approach by selecting the right
communities for Web services queries.

Creating the Test collection. We start by creating a test collection of semantic Web
service descriptions written in SAWSDL. We adapted a semantic Web services description
generator introduced in [29] and adopted it to create a collection of SAWSDL service
descriptions. A Web services description generator introduced in [105] has characterized
realistic Web services. We have followed this work to generate a corpus of services with a
similar distribution of occurrences of signatures. These service descriptions are annotated
using concepts from an ontology described in OWL. For our experimentation, we generated
a collection of 1400 SAWSDL descriptions. The generated test collection also includes
seven queries Qi, i = 1 . . . 7 and the relevance sets (queries responses) associated to these
queries. Each relevance set contains 100 SAWSDL descriptions. We split up the generated
SAWSDL descriptions into 7 Web service registries Rj , j = 1 . . . 7. Each registry Rm

contains the 100 descriptions of the relevance set of the query Qm in addition to 100
randomly generated descriptions.

Computing the WSRD descriptions. We compute for each registry the associ-
ated WSRD descriptions using the WSRDGen tool 3 that we implemented. WSRDGen
performs the three steps (see Section 2.2) of our WSRD computing approach and exper-
iments show that our approach is usable in realistic situations. For example, processing
the WSRD description of a registry advertising 1400 Web services is done in 0.65 s (see
Figure 2.4).

Figure 2.4: Execution time for WSRD description computing

Building the communities. After that, we applied our clustering approach to build
the communities of registries. We implemented a Community Builder using the Fuzzy
Clustering and Data Analysis Toolbox 4. We used the 7 WSRD descriptions and trans-
formed them into 5-dimensional vectors according to our vector space (Section 2.3.2).
After that, we partitioned them into 4 communities.

We pushed further our experiments by testing our community building approach on a
greater test collection. We used a set of 100 generated WSRD descriptions and transformed
them into 6-dimensional vectors. We partitioned our data set into 5 communities and we
present the clustering results in Figure 2.5. Since we can only graphically visualize our

3. http://www-inf.it-sudparis.eu/SIMBAD/tools/WSRDGen/
4. http://www.abonyilab.com/clustering

http://www-inf.it-sudparis.eu/SIMBAD/tools/WSRDGen/
http://www.abonyilab.com/clustering

2.5. Validation 19

results in 3 or 2 dimensional graphs, the N (6 in our case) dimensions were devised in two
3-dimensions graphs (Figure 2.5) 5.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Concept 1
Concept 2

C
o

n
ce

p
t

3
Regsitry
Centroid

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Concept 4
Concept 5

C
o

n
ce

p
t

6

Registry
Centroid

Figure 2.5: Fuzzy clustering of 100 WSRD registry descriptions into 5 clusters: Axis XYZ
represent respectively the weights of (w1,w2, w3) and (w4,w5, w6) in a registry’s vector

While creating the vector representation of a WSRD description, we considered all the
semantic concepts of the used DO to provide an accurate representation. This choice can
theoretically lead to "relatively" 6 high dimensional vectors (number of dimensions equal
to the size of the DO). However, these vectors are sparse and do not lead to scalability
issues since the WSRD’s information that we represent are not related to all the semantic
concepts. To test the scalability of our clustering approach while dealing with high dimen-
sional data, we applied our clustering approach on the 100 generated WSRD descriptions
and considered the execution time. In this experiment, the size of the WSRD vectors was
increased from 10 to 100. Figure 2.6 shows that the clustering time is linear with respect
to the vectors’ size.

Figure 2.6: Relation between size of WSRD vectors and clustering time

It is worth mentioning that in a real world scenario, the size of WSRD vectors (i.e.
equal to the size of the used DO) can be hundreds, but should not be thousands normally.
In addition, in our work, we use the clustering technique only once as "cold starter" to
build the communities and we use management operations to guarantee the evolution of
the organization. Consequently, the performance of our clustering approach is satisfactory
in real situations.

5. Further details on our clustering results can be found at http://www-inf.it-sudparis.eu/SIMBAD/
tools/FCM_results/

6. Very high dimensional vectors can be observed while clustering text documents where, if a word
frequency vector is used, the number of dimensions is equal to the size of a dictionary.

http://www-inf.it-sudparis.eu/SIMBAD/tools/FCM_results/
http://www-inf.it-sudparis.eu/SIMBAD/tools/FCM_results/

20 Chapter 2. Functionality-driven registry management

2.6 Related Work

In this section, we divide our literature review into the following parts: services organi-
zation (Section 2.6.1), registries organization (Section 2.6.2) and communities management
(Section 2.6.3).

2.6.1 Services organization

Some Web services discovery approaches have used Web services WSDL descriptions to
group Web services in order to enhance the discovery process. In [89], homogenous Web
service communities are built where, a community contains a set of services providing
either similar operations or potentially composable operations, with respect to a given
request. Concretely, concepts are clustered from terms appeared in inputs and outputs.
The similarity of service operations is computed as the combined similarity of (i) the text
description and (ii) the parameters of inputs and outputs. Service Aggregation Graph
(SAG) is constructed where: (i) each vertex represents an operation, and (ii) each edge
reflects an output and input link between operations. To summarize, this approach aims
to apply SAG to represent potential links between operations of Web services. So service
discovery can be conducted by searching SAG and returning either a single operation or
the shortest path of operations. Whereas in our work we group Web service registries into
communities, where a Web service registry may represent several Web service operations.
We aim to group similar registries into a same community, rather than to explore the links
between Web services.

Another Web services organization approach is proposed in [46]. In this work, Web
services parameter names defined in service operations are grouped into semantically mean-
ingful concepts. Then, these concepts are used to measure the similarity of service opera-
tions by applying TF/IDF (i.e., term frequency/inverse document frequency) on the bag
of words. This approach considers mostly parameter names, and does not deal with the
composition problem. Generally, this approach aims to discover services based on their
parameter names.

To summarize, compared to these techniques, we share the same methodology through
using the Web services functional descriptions as an organization criterion. However, the
main differences are:

– We are not organizing single services but rather atomic sets of Web services (i.e.
Web service registries). These registries can advertise many functionally different
Web services. So, in order to ensure this organization, we proposed a semantic model
(WSRD) reflecting the mean functionality of a set of Web services and used it as
a criterion unlike the work in [89, 46] where the organization is based on WSDL
descriptions.

– We consider semantically annotated descriptions and uses the semantic concepts an-
notating the Web service descriptions to compute the similarity between registries.
In [89, 46] the similarity measures are based on syntactic terms from WSDL descrip-
tions specified by different Web services providers and can thereby be ambiguous.

– We consider the combined relation between service elements, and provide methods
for handling the cases of new service/registry emergence or existing service/registry
disappearance.

2.6. Related Work 21

2.6.2 Registries organization

Several Web services discovery systems rely on a distributed registry environment to
overcome the problems related to single centralized registry based discovery (bottlenecks,
single point of failure . . .). Our literature review yielded a good number of research
projects that used distributed registries such as [160, 141, 11, 108, 169], but as far as
we know, none of them have promoted the idea of using a functionality based semantic
description model to organize Web service registries.

[160] propose a distributed Web service registry infrastructure for Web services discov-
ery. In this work, the registry network is structured into federations using a specialized
ontology called the Registries Ontology. This ontology allows grouping different Web ser-
vice registries based on their business domain as the authors map each registry to one or
several nodes in the Registries Ontology. Associating with each registry a specific domain
or a group of domains from the Registries Ontology enhances Web services discovery. A
Web service requester query will not be spread across all the registries since the query
can be directly routed to the more adequate registry according to the requester’s domains
of interest. In [108], the authors also propose a distributed registry infrastructure called
PYRAMID-S, where Web service registries are categorized by concepts token from a spe-
cialized ontology. This categorization allows selecting the adequate registry for a service
requester query.

In previous work [141], we introduced the concept of requester characterization: a
data structure containing a service requester’s areas of interests, invocation history and
non-functional requirements. A global registry characterization, which is the fusion of
past requester characterizations who successfully discovered a service in that registry, is
associated with a Web service registry. Using recommendation techniques, one or several
registries can be advised to the service requester according to his characterization. A
global registry characterization describes a Web service registry based on the consumers
who used services it advertise but do not give an idea to the real functionalities it offers.

Authors in [11] present a super peer Web service discovery architecture. This archi-
tecture is based on a semantically clustered P2P network of registry peers (repository of
Web service descriptions). Each registry peers cluster is indexed by a super peer called the
index peer that stores the index information of the registry peers in a tree-based search
data structure. In addition, the index peers are connected to each other with the CAN
[112] routing protocol. In this architecture, a received search query will be routed by the
index peers to the adequate registry peer. Using the CAN routing protocol avoids useless
messages flooding the P2P network.

In [169], the authors use the match history to route a requester’s query to an adequate
registry. A service routing table is introduced into each registry node to store the history
of matches. A services requester’s query will be routed to a registry according to past
requests and their matches, stored in a registry’s routing table.

To sum up, our literature review yielded a good number of research projects that used
distributed registries, but as far as we know, none of them have promoted the idea of
using a functionality-based semantic description model to organize Web service registries.
Compared to the above literature review, our contributions can be summarized in three
main points:

1. Our registry description and organization is based only on implicit knowledge using
existing advertised service descriptions. Thus, our approach is self-contained within
the web service discovery process, independent from any explicit or human centric
or error prone knowledge. Whereas other classification approaches [108, 160] ask for

22 Chapter 2. Functionality-driven registry management

additional explicit knowledge such as user’s classification or service reputation and
rating which can be hard to be captured.

2. Our approach proposes a functionally-based organization of Web service registries
into communities. Such an organization enhances the Web services discovery process
since the registries will be grouped according to the functionalities proposed by
their advertised services, and thus a service requester’s query can be guided to the
adequate registry cluster for his needs. Such a query routing mechanism is radically
different from those used in the previous approaches. Indeed, their query routing
is based on registry users characterizations [141], the registry’s business domains
[160, 108], Web services business domains [11] or previous discovery results [169].

3. Due to the inherent autonomy, continuous and unforeseeable evolution of Web ser-
vices description, Web service registries operate within a dynamic environment. By
fuzzy clustering Web service registries according to their service descriptions, our
approach has intrinsically the means for a dynamic, flexible and automatic manage-
ment of Web service evolutions. Indeed, WSRD can be updated whenever the service
provider can publish, delete or modify a web service description in order to be in line
with the services they advertise. Whereas existing distributed registry environments
[108, 141, 160] are not suitable for the management mechanisms. Indeed most of
them are characterized by a rigid and a priori registry classification and organization
which hamper dynamic management mechanisms.

2.6.3 Communities management

Several Web service discovery approaches in distributed registry environments (see
Section 2.6.2) organize their networks as groups but did not provide the management
mechanisms for these groups [16]. In this section, we overview some related efforts in the
field of managing e-catalogs communities [107] and Web services communities [96, 92] that
helped us tailor our approach.

[107] present the WS-catalogNet framework allowing to group e-catalogs into commu-
nities, build relationships between them and manage them constantly. An e-catalog is
defined as a set of products organized based on a categorization. An e-catalog community
is a set of e-catalogs having similar domain. The system offer monitoring functionalities
and managing operations to restructure a community network according to the user inter-
action. Therefore, authors model the community network and then specify preconditions
and effects for each operation based on the model they have defined [106]. However, the
specified management operations, in particular merging and splitting communities, are
not applicable in our context. Indeed, the members of a community (catalogs, Web ser-
vices) have exclusive memberships while in our work a registry can belong to one or more
communities.

[96] propose an approach to organize Web services into communities depending on
their domain of interest. A community is an instance of an ontology meta-data called
community ontology and is described by a set of generic operations. In this context,
community providers can add, delete or modify some generic operations. Service providers,
in turn, can delete a WS from a community or make its operations temporarily unavailable.
Thus, authors propose a P2P approach to manage these changes.

[92] discuss the dynamic nature of Web service community and focus on potential
conflicts. They propose an approach to engineer Web services communities in order to
reconcile these potential conflicts. This approach is based on two protocols. The first one
is called Community development protocol (WSCDProtocol) and is interested in managing

2.7. Conclusion 23

communities in term of attracting and retaining Web services, creating and dismantling
communities.

The aforementioned research works employ a classification technique to organize com-
munities, while we use a dynamic clustering technique. Furthermore, only [92] use the
functionality criterion to structure communities. The other works use rather the business
domain. While studying these research works, we noticed that the community manage-
ment is generally established after a change initiated by end-users or service or community
providers. To address conflicts that may result due to these changes, all these works pro-
pose managing operations. To facilitate the specification of these operations, [107] model
their community network based on graph theory. The other works didn’t propose a model
and their descriptions are rather informal.

2.7 Conclusion
In this chapter, we presented an approach for building and managing communities of

Web service registries. These communities are implicitly and automatically created using
the registries WSRD descriptions. Compared to existing distributed registries organiza-
tion approach, our approach uses a functionality-driven clustering technique and organizes
registries according to the functionalities of the service they advertise. This functionality-
driven organization of a registry network enhances Web service discovery. In fact, the
search space can be reduced to the community of registries advertising Web services of-
fering the required functionalities. We defined the required communities and community
member management operations to maintain the consistency of the communities. We also
experimented the efficiency of our approach in selecting the right communities for a Web
service query, simulated a network of registry communities to test our management ap-
proach and provided a use case to show the feasibility of our communities’ construction
and management approach.

This work was conducted during the PhD thesis of Mohamed Sellami [134]. The
community management has been extended and refined in the context of the Master
thesis of Olfa Bouchaala [25]. This work was mainly published in the following conference
proceedings and journals [136, 179, 138, 137, 140, 139, 141].

Chapter 3

Usage-driven Recommendation

3.1 Introduction

Web service discovery in a distributed registry environment have been most often
tackled as two distinctive steps: (1) registry discovery and (2) Web service selection. In
Chapter 2, I described our work for functionality-driven discovery and management of
distributed service registry. In this chapter, I detail our work for recommending services
based on consumer usage. The tremendous growth in the amount of available web ser-
vices impulses many researchers on proposing recommender systems to help users discover
services. However, most of the proposed solutions analyze query strings and web service
descriptions to generate recommendations. They take into account data from provider side
such as Web service descriptions, QoS and semantic concepts of services. However, these
text-based recommendation approaches depend mainly on languages and notations which
may decrease recommendation’s efficiency. They require explicit knowledge presented by
service descriptions or QoS. They make recommendations without considering data that
reflect user interest, such as usage data. In addition, they can meet text-based synonym
and polysemy problems. Some of them are time consuming and some others require efforts
from users such as rating Web services.

This chapter presents our contribution to improve service consumption for individual
use. It presents algorithms and strategies to process past usage data for service recom-
mendation. Only user past usage data is used as input to our approach. We do not ask
users any further data such as their profiles, comments or ratings. As usage data present
user interest on certain categories of services, our approach can recommend services that
are close to user interest.

We apply collaborative filtering techniques on past usage data to generate recommen-
dations. The term “collaborative filtering” (CF) was firstly coined by the developers of
the Tapestry recommender system [58]. The fundamental assumption of CF is that if
users X and Y rate n items similarly, or have similar behaviors (e.g., buying, watching,
listening), then they will rate or act on other items similarly [59]. CF includes a set of
techniques (mathematical, statistical, etc.) applied on user rating data to find the correl-
ative relations between users or items in order to make predictions or recommendations.
Basically, CF techniques can be classified into three basic categories: memory-based CF,
model-based CF and hybrid CF [150].

Memory-based CF algorithms compute the similarity between users or items based on
a user-item matrix. This matrix presents the usage data of users in a system. Each row of
the matrix presents the items that a user used and each column presents a set of users who
used a corresponding item. The value of each element in the matrix can be the rating of

26 Chapter 3. Usage-driven Recommendation

a user to an item or the number of times that a user used (or viewed, purchased, listened,
etc.) an item.

As CF techniques have been developed as efficient tools to make predictions and rec-
ommendations, we apply these techniques in our approach. We present usage data as a
matrix. Each row of this matrix presents the usage of a service, each column presents the
usage of a user and the value of each element in the matrix presents the number of times
that the corresponding user used the corresponding service. We propose two algorithms
to make service recommendations based on the user-based top-N and item-based top-N
CF methods. We choose Vector Space Model (VSM) as it is one of the most popular
memory-based CF technique and especially widely used in Information Retrieval [127].
Detail of our algorithms is presented in section 3.2.1 and section 3.2.2. We propose also
an algorithm based on hybrid CF technique that combines the two previous memory-based
CF methods: user-based top-N and item-based top-N (see section 3.2.3).

The memory-based CF techniques are easy to implemented and highly effective. How-
ever, as they rely on the commonly rated items, their performance decreases when data are
sparse or common items are few. Consequently, model-based CF techniques were inves-
tigated to overcome the memory-based CF problem. They alleviate the sparsity problem
by discovering hidden correlations between users or items. In our approach, we propose
an algorithm based on model-based CF technique to overcome the sparsity problem of
our memory-based algorithm. We choose Latent Semantic Indexing (LSI) [70, 37] as it is
one of the common used model-based CF technique and it implements the Singular Value
Decomposition (SVD) which is a mathematical model that greatly reduce the sparsity of
the usage data (see section 3.3).

3.2 Memory-based recommendation

3.2.1 Service-based algorithm

In this algorithm, we aim at finding services relevant to the service that a user is
currently using. We apply the item-based top-N CF algorithm on the service-user matrix.
The key step of the algorithm is finding the similarity between a service si and another
service sx. To compute this similarity, we apply the vector space model (VSM). VSM is
firstly introduced by Gerard Salton et al. [128]. It is developed to compute the similarity
between two individual documents. It presents documents in a k dimensional space, where
k is the number of different terms. Each document is presented as a vector with k elements.
Each element of a document vector corresponds to a term appearing in the document. The
value of a vector element is the weight of the corresponding term. This weight is computed
by term frequency (TF) and inverse document frequency (IDF). Similarity between two
documents is computed by the cosine value of the angle created by the two corresponding
vectors.

In our approach, we consider analogically each row (service) in the usage matrix as
a document and each column (user) as a term. The value of each element in the usage
matrix is considered as the number of times that the corresponding term appears in the
corresponding documents. Similarity between two services is inferred from the similarity
between two row vectors. We also apply the term-frequency (TF) and inverse document
frequency (IDF) on the usage matrix to compute the weight of each user (term).

The weight of a user uj w.r.t a service si, denoted by wi,j , i = 1..m, j = 1..n, computed

3.2. Memory-based recommendation 27

by TF-IDF is given by Equation 3.1.

wi,j = tfi,j × idfj,S

= ai,j
n∑

k=1
ai,k

× log m

|st ∈ S : at,j > 0| (3.1)

where ai,j is the number of times that the service si was used by the user uj ;
n∑

k=1
ai,k is

the number of times that si was used by users; S is set of all services; m is the number of
services; and |st ∈ S : at,j > 0| is the number of different services that were used by the
user uj .

Each row in the weight matrix presents a service vector. Similarity between two
services is computed by the cosine value of the angle created by the two corresponding
vectors (Equation 3.2).

sim(sa, sb) =
−→
wu

a ×
−→
wu

b

|−→wu
a | × |

−→
wu

b |
(3.2)

where −→wu
a ,
−→
wu

b are the weight vectors of services sa and sb respectively,
−→
wu

a = { wa1, wa2,. . . ,
wan }, −→wu

b = { wb1, wb2,. . . , wbn }, wak, wbk ∈W u
[m×n], k = 1..n, and n is the total number

of users.
To generate recommendation for a a given WS operation, we apply (3.2) to find its

most similar WS operations. Then, we sort the similarities in descending order and select
the l WS operations which have the highest similarities values for the recommendation.
The complexity of the item-based CF algorithm is O(mn) where m is the number of terms
and n is the number of documents. In our approach, to shorten the response time, we
process data offline and store them on temporary tables. We also update the similarities
between services periodically offline.

3.2.2 User-based algorithm

Inspired by the fact that users who have similar interest will tend to select similar
items, we aim in this algorithm at finding users who have similar interest, i.e. they used
similar services. We select then the most frequently used services that were used by the
most relevant users and were not used by the active user to make recommendations.

Contrary to the service-based algorithm, we consider in this algorithm each user as
a document and each service as a term. We apply the VSM to compute the similarity
between users. We also use TF-IDF to weight vector elements. Concretely, the weight of
a service si which was used by a user uj is computed by Equation 3.3.

wi,j = tfi,j × idfi,U

= ai,j
m∑

k=1
ak,j

× log n

|ut ∈ U : ai,t > 0| (3.3)

where ai,j is the number of times that the service si was used by the user uj ;
m∑

k=1
ak,j is

the number of times that uj used services; U is the set of all users; n is the number of
users; and |ut ∈ U : ai,t > 0| is the number of users who used si.

28 Chapter 3. Usage-driven Recommendation

By applying Equation 3.3 on the usage matrix, we get a weight matrix W s
[m×n] that

contains the weight of all services. Based on this matrix, we compute the similarity
between users using VSM. Concretely, the similarity between two users ux and uy is given
by Equation 3.4.

sim(ux, uy) =
−→
ws

x ×
−→
ws

y

|−→ws
x| × |

−→
ws

y|
(3.4)

where −→ws
x,
−→
ws

y are weight vectors of users ux and uy respectively, −→ws
x = { w1x, w2x,. . . , wmx

}, −→ws
y = { w1y, w2y,. . . , wmy }, wkx, wky ∈ W s

[m×n], k = 1..m, and m is the total number
of services.

We generate recommendations in three steps algorithm. Firstly, we compute the sim-
ilarity between the active user and others based on their usage data. Secondly, we sort
other users in descending order of similarity and select the top-k users in the list. Finally,
for each selected user, we select the t-most-frequently-used services that were not used by
the active user to make recommendations.

In the last step of our algorithm, we select the t-mostly used services from the k-top
similar users to provide the recommendation list. Suppose that ux, uy and uz are the most
similar users. Our algorithm always automatically suggest the top-t services of ux, uy and
uz, even if the (t + i)th (i > 0) service of ux is much more used than tth service of uy or
uz. On the other hand, if a similar user used less than t services, the (t + i)th service of
the other users would not be selected to fulfill the recommendation list.

3.2.3 Service-user combination algorithm

In this section, we present a combination of the service-based and user-based algo-
rithms. We also make recommendations based on the usage data of relevant users. How-
ever, instead of selecting the mostly used services of relevant users, we compute the sim-
ilarity between services used by these users. By combining these algorithms, we aim at
improving the recommendation performance and avoiding the potential missing problem
of the user-based algorithm.

Concretely, the service-user combination algorithm generates recommendations in three
steps. Suppose that a user ux currently uses a service sy. First, we find the k-most similar
users to ux using the user-based algorithm. Second, we eliminate the unselected users’
data from the original usage matrix to get a smaller matrix A′[m×k], m is the number of
services and k is the number of selected users. Third, we recompute the weight of each
user in the new matrix A

′

[m×k] and use the service-based algorithm to find the l most
relevant services to sy for recommendation.

3.3 Model-based recommendation

The memory-based CF techniques, e.g. the service-based and user-based algorithms
in our approach, compute the similarity based on the explicit relations between users and
items, i.e. the usage matrix. They match directly user vectors or item vectors to infer
their similarity. They do not take in to account the correlation between two vectors and
a third-party vector.

To detect the similarity between users or services via a third-party item, we present
in this section the application of a model-based CF technique, which is Latent Seman-
tic Indexing (LSI). LSI is a mathematical and statistical technique for extracting hidden

3.3. Model-based recommendation 29

correlations between documents and terms [38, 37]. It applies the Singular Value Decom-
position (SVD), which is a factorization algorithm to decompose a rectangle matrix into
three matrices. They transform the original user-matrix to a new approximate matrix by
removing unrepresentative or insignificant users or items. The original matrix is equal
to the multiplication of these matrices. The mathematical fundamental of SVD and its
computation are explained in [37, 19, 20, 60].

Basically, a matrix A[m×n] can be decomposed into three matrices U[m×n], Σ[n×n] and
V T

[n×n] using SVD. This decomposition is given by Equation 3.5.

A[m×n] = U[m×n]Σ[n×n]V
T

[n×n] (3.5)

where U[m×n] and V[n×n] are orthogonal matrices, which present the left and right singular
vectors of A. Σ[n×n] is an n-by-n diagonal matrix holding the singular values.

In Σ[n×n], only the elements on the diagonal have values greater than or equal to 0
and they are sorted in descending order. Other elements are equal to 0. So, if we present
the values of the elements on the diagonal of Σ[n×n] as a vector −→σ , we will have −→σ = (σ1,
σ2, . . . , σn), σi > 0 for 1 ≤ i ≤ r ≤ n and σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = . . .=σn = 0.
r > 0 is called rank of A.

As σr+1 = . . .=σn = 0, the rows and columns (r + 1)th, . . . , nth in Σ[n×n] are zero
vectors, i.e. vectors whose all element values are equal to 0. So, the multiplication by
these vectors has value 0. Therefore, if we reduce the Σ[n×n] to Σ[r×r] by removing the
zero vectors, and remove the corresponding columns in U[m×n] and rows in V T

[n×n], the
multiplication of these matrices also yields to the original matrix (Equation 3.6).

A[m×n] = U[m×r]Σ[r×r]V
T

[r×n] (3.6)

On the other hand, as elements on the diagonal of Σ[n×n] are sorted in descending order
of their values (σ1 ≥ σ2 ≥ · · · ≥ σr > 0), the last r− k elements have the smallest positive
values. So, if we consider these r − k smallest values equal to 0, and thereafter remove
zero vectors and corresponding columns in U[m×r] and rows in V T

[r×n], the multiplication
of U[m×k], Σ[k×k] and V T

[k×n] will yield a matrix Ak
[m×n] that is approximated to A[m×n]

(Figure 3.1, Equation 3.7).

k

k

r n

k

n

nn
Ak ≈ A U V

T

m

nk

m x n m x k k x k k x n

=
r

Σ

Figure 3.1: Decomposition in k dimensions [20]

A[m×n] ≈ Ak
[m×n] = U[m×k]Σ[k×k]V

T
[k×n] (3.7)

Assume that A[m×n] is a service-user usage matrix. The derived Ak
[m×n] matrix does

not reconstruct the original matrix A[m×n] exactly. However, the truncated SVD not only
captures most of the important underlying structure in the association of services and

30 Chapter 3. Usage-driven Recommendation

users but also removes the noise or variability in service usage. Services that are used by
similar users, for example, will be near each other in the k-dimensional space even if they
never be co-consumed by the same user.

A query is a set of services. It can be considered as a user. So, to retrieve the relevant
services (or users) to a query, this query must be represented in the same k-dimensional
space. The values of a query vector −→q [m] in the k-dimensional space is represented by
Equation 3.8 [20].

−→q [k] = −→q T
[m]×U[m×k]×Σ−1

[k×k] (3.8)

As the query is presented in the same k-dimensional space with services (or users), it can
be compared to the services (or users) based on the similarity between two vectors.

In our approach, we apply LSI on the service usage data to make recommendations.
Following the principles of LSI, we firstly decompose the service-user matrix A[m×n] into
three matrices U , Σ and V (by Equation 3.5). As decomposed by SVD technique, these
matrices hold the values that reflect the correlations between services. Second, we reduce
the service space to a k-dimensional space (Figure 3.1). The original matrix A[m×n] is
approximated to a matrix Ak

[m×n] (by Equation 3.7). In other words, we represent the
existing services as vectors in a k-dimensional space. Third, we compute the vector of the
service that a user is using in order to present it in the same k-dimensional space with
other services (by Equation 3.8). Finally, we compute the similarity between the current
used services with others using VSM, sort the services in descending order of similarity,
and select top-l services for recommendation.

It is noticed that the mathematical computation of SVD is elaborated in [19] and SVD
has been implemented in different languages such as C, C++ or Java 1. Therefore, we do
not present the SVD computation. Instead, we present how and when SVD is applied in
LSI technique as aforementioned.

Suppose that a user uj is using a service si. To make recommendations for uj , we
consider si as a query vector −→q [m], in which only the element qi has value ai,j , other
elements are equal to 0. m is the number of services (Equation 3.9).

qt =
{
ai,j if t = i, t ∈ [1..m]
0 if t 6= i, t ∈ [1..m] (3.9)

Next, we compute the similarity between the query with other services whose coordi-
nates are presented by the matrix Uk. Suppose that we need to recommend 3 services for
a selected service. We apply the VSM for the similarity computation. Then, we select the
top-3 services that have the highest similarity values for recommendation.

3.4 Validation

In this section, we present the implementation efforts we have done to validate our
approach. We developed a web application 2 which allows users to register, create their
profiles and use the WS operations and providers to upload their web service description
files. The application also provides a simple search engine for finding WS operations. The
recommendation is presented in four lists respective to the proposed algorithms and it is
created whenever a user click on a WS operation provided by the search engine or the
recommendation components.

1. http://web.eecs.utk.edu/research/lsi/soft.html
2. Our tool can be found at http://www-inf.it-sudparis.eu/SIMBAD/tools/WSRS/.

http://web.eecs.utk.edu/research/lsi/soft.html
http://www-inf.it-sudparis.eu/SIMBAD/tools/WSRS/

3.4. Validation 31

We also performed experiments on a dataset collected by our application. Our objective
is to show that our algorithms can be used to widen the view of users and they can
produce high quality recommendations in the case that users have stable behavior. We
used Precision and Recall metrics to measure the accuracy of our algorithms. Precision and
Recall (and often associated F-measure) are two popular metrics to evaluate the accuracy
of an information retrieval system [116]. They are computed based on the matching
between data retrieved by the system and relevant (or ground-truth) data. Precision is
equal to 1 if all retrieved data belong to the relevant set.

In our approach, we identify two relevant sets, which are used as ground-truth data,
to compute Precision and Recall:

– The first set is the most-used services returned by our search engine, which is a tradi-
tional query-string search engine. Whenever a user searches for a service, we capture
the most-used services in the search result. Whenever she selects a service, she gets
recommendations from our application. We match the recommended services with
the services that we captured from her last search to compute the Precision and
Recall. By using this set, we target to compare the services recommended by our
algorithms with the services returned by our search engine. We do not target to
replace a search engine by our tool. Instead, we aim at evaluating how far (or how
close) our recommendations and search results are.

– The second set is the user’s last used services. Whenever a user selects a service,
we match the services recommended by our algorithms with the user’s last used
services. By using this set, we target to detect the relation between user’s behavior
and recommendation quality. We measure the recommendation quality in two cases:
(1) a user whose behavior changes frequently and (2) a user who has stable behavior.

During two weeks, our application collected 271 iterations. Most of them are performed
by invited PhD students and researchers. The relevant data were set as the 10 most-used
services returned by the search engine and the 10 last-used services of each user. We
compute the average Precision and Recall values of each algorithm. Table 3.1 shows the
results based on the two relevant sets.

Search based Last-used based
Precision Recall Precision Recall

Service-based 0.107 0.521 0.351 0.704
User-based 0.206 0.623 0.27 0.382
Service-user combination 0.093 0.346 0.296 0.577
LSI-based 0.118 0.54 0.333 0.689

Table 3.1: Experiments with the two relevant sets

Experiments on first relevant data set show that recommendations made by our algo-
rithms are not “too close” (low Precision values) and not “too far” (high Recall values)
from the results returned by a query string search engine. On the one hand, it means that
our algorithms and the query-string based solution are not identical and our approach
could be a good solution along with the query-string based search approach to widen the
user’s view and give him interesting web services that the classical query-based approach
could not give. On the other hand, the services returned by our recommendation algo-
rithms should not be too far from the query-based results to avoid incoherent services and
to be quite close to the search context to replace the query-based approach in the case
that it fails.

32 Chapter 3. Usage-driven Recommendation

They also show that the user-based algorithm has the highest Precision and Recall
values. Indeed, the usage data is collected from the usage of PhD students who have
somehow similar behavior. Hence, the user-based algorithm can return good results and
becomes the most suitable algorithm for this context.

Experiments with the last-used relevant data show that the algorithms which take into
account the relations of all services (service-based and LSI-based) achieved the best results.
The user-based algorithm and service-user combination algorithm make recommendations
based on the usage data of selected users, hence, they can easily miss the potential services
which can make the evaluation more accurate.

Figure 3.2 shows the synthesized Precision and Recall values computed by the second
evaluation method for particular users. If a user (for instance User ID=21 in Figure 3.2a)
changes his behavior frequently, the recommendations generated by our algorithms may
not fit to his interest. This causes the low and unstable Precision and Recall values when
we run the second evaluation method, which is based on the user’s usage data. In contrary,
if a user (for instance User ID=24 in Figure 3.2b) keeps or slightly changes his interest,
our recommendations are of higher quality.

(a) UID=21 (b) UID=24

Figure 3.2: Synthesized results of particular users

Summarizing up, our experiments showed that the recommendations made by our al-
gorithms can help to widen the user’s view and give him interesting web services that the
classical query-based approach could not give. They also showed that the user-based algo-
rithm achieved the best results in the case that users have similar behaviors. Experiments
on the last-used data showed that the algorithms that take into account the relations of all
services (service-based and LSI-based) achieved the best results. They also showed that
our recommendations were accurate in the case that users had stable behavior.

We also used AudioScrobbler 3, which is a large public dataset, for another set of
experimentations. This dataset records the musical usage. We analyzed that the behavior
of users in this dataset is similar to the behavior of users in using a web service because
in both cases, users interact with items in which they are interested. In addition, this
dataset contains records that correspond to user’s IDs, service’s IDs and the number of
times that a user uses a web service. Therefore, it is suitable to evaluate our algorithms.
As the provided dataset does not include the search results or user’s last-user items, we
can not process the evaluation with Precision and Recall metrics like we did with the data
collected by our application. We decided to use Root Mean Square Error (RMSE) [66]
metric, which is a metric to evaluate the performance of prediction system.

Experiments on the large dataset showed that our algorithms were of good-performance
in a large scale system with quite small RMSE values. They also showed that the LSI-based

3. http://www.audioscrobbler.net/development/

http://www.audioscrobbler.net/development/

3.5. Related Work 33

algorithm achieved better results than the service-user combination algorithm because
the LSI-based algorithm overcomes the sparsity problem of the service-user combination
algorithm (see section 3.2.3 for details), especially when the number of users and services
are very large. More details about this experimentation can be foun in [33].

3.5 Related Work

There were various researches on how to lead users to the short and accurate list of web
services. Vector space model and cosine coefficient were applied to find the similarities
between user’s query strings, the services descriptions [109] to return the most closed
services to users. They were also applied together with a splitting/merging technique
to cluster the services into categories [46]. Birukou, Blanzieri et.al [23] used VSM and
TF-IDF to implement a recommender system for web services. But they applied them on
terms of the query string to find the similarity between requests, not similarity between
terms in requests and terms in the database. They designed a System for Implicit Culture
Support (SICS) and used WordNet to supplement the synonyms of words in query strings.
Also using the SICS, the authors in [76] recorded user’s behaviors by the way that: if a
user sends the request X, he will invoke the WS operation Y. Then, they stored the user’s
requests and compare the similarity between users based on the used requests and WS
operations. In this research, user’s requests were considered as a parameter in generating
a recommended list, therefore, the performance of algorithm still depended on user’s query
strings. These approaches encountered the synonym and polysemy problems. In fact, each
user has his own language and it is possible that a user either types incorrect words or
uses different notations and short written words in his query strings with the expectation
that the recommender system is intelligent enough to provide him the accurate services.

Manikrao and Prabhakar [93] proposed a dynamic web service selection framework
and an architecture of a semantic matcher. They also proposed a matching algorithm
used for web service recommendations based on user’s ratings. However, their solution
is based on explicit knowledge as input which can be hard to be captured. In another
context, Blake and Nowlan [24] focused on underlying searching and ranking algorithms
that enable recommendations. They applied Levenshtein distance and Letter Pairing
algorithms to propose a new algorithm for calculating similarity of customer’s files and
WS operations. However, they just evaluated some WS operations of five typical web
services and stopped at comparing results of matching methods. It was also really hard
to determine appropriate recommendations for a specific case.

The previous approaches can be classified in the following categories: clustering [46],
rating based [93], words analysis [24] and vector space model [109, 23, 76]. They mainly
analyzed the query strings and web service descriptions. Other solutions applied Latent
Semantic Analysis on service descriptions to find the implicit relationships between terms
and documents describing the services [166, 90]. The LSA solution could avoid the problem
of lexical analysis. It, however, captures the relationships of elements in the text documents
which could not present user’s interests.

Different from them, our approach is inspired by the ideas of making recommendations
based on user’s WS operations [76] and the application of collaborative filtering (CF). The
CF has been applied efficiently by Amazon in finding the most related products to the one
selected by current user [88, 87]. This popular technique is used in building recommender
system, especially for video, music or books recommendation [151]. In our approach, we
apply this technique on a new domain to support web service discovery.

By applying the CF technique on user’s behaviors, our solution can avoid the problems

34 Chapter 3. Usage-driven Recommendation

of string-based algorithms. Moreover, our proposed algorithms generate recommendations
based only on the user’s usage data within the discovery process. Thus, our approach is
self-contained within the web service discovery process, independent from any explicit or
human centric or error prone knowledge. Whereas other information such as user’s rating
or service reputation can be hard to be captured, our approach is a good solution as it
does not use such kind of explicit knowledge as inputs to propose recommendations.

3.6 Conclusion
In this chapter, We developed four algorithms to make individual service recommen-

dations based on past usage, three of them are based on the memory-based CF technique
and one algorithm is based on the model-based CF technique. There are few approaches
that take into account past usage data for service recommendation. Previous work uses
these data as references for a rule-based and text-based solution. They do not take into
account usage data in their computation. In our approach, we use past usage data to
exploit hidden users’ interests. We do not ask users any effort to provide additional in-
formation such as profiles, ratings and comments. Our recommendations are made based
on the correlation between users and services. This knowledge is implicitly presented in
usage data. The computation time in our approach is polynomial.

This work was conducted during the Master and PhD thesis of Nguyen N. Chan [80,
103], and was mainly published in the following conference proceedings and journals [33,
32, 31].

Chapter 4

Composition-driven
recommendation

4.1 Introduction

Process model design is the initial and key phase of service-based (business) pro-
cess lifecycle where component services are chosen[97]. Prior research has emphasized
the advantages of recommendations during process model design [71, 117]. Meanwhile,
recommending entire process models costs much computation time, especially when the
number of services is large. Large models are also not handy for a designer who needs
to pick a specific piece of functionality from them. In this context, it is desirable to rec-
ommend only a small but well-selected set of services in order to help the designer. In
contrast to recommending entire process models, recommending services during the design
allows process designers to flexibly adjust and improve their designed process. It helps
to interactively extend an existing process or create more process variants. Concretely,
when a process designer is looking for suitable services to complete a designed process,
to extend an existing process, or to replace a service, they need service recommendations
for some selected positions. In these cases, a short list of recommended services will make
recommendations clearer, more focused and helpful.

In this chapter, we propose an approach that recommends suitable services based on
explicit process models for a selected position in a service-based process model (see section
4.2). To do so, we define the neighborhood (or composition) context of a service which
captures its relations with its neighbors in a given process model. We match composition
contexts to infer similarity between services. We make recommendations based on the
matching results.

We realize that business processes do not often reflect the reality of service execution.
Furthermore, in some cases, business processes are not explicitly presented [154], even
when process logs are available. Moreover, process models do not explicitly show the
importance of services or connection flows, which can be a valuable parameter to com-
pute more precisely the similarity between two services. Meanwhile, this information is
recorded in process event logs in the form of traces and their frequency. Process event
logs contain some information that cannot be reflected by business process models. We
propose therefore another solution that takes as unique input process event logs for service
recommendation (see section 4.3).

36 Chapter 4. Composition-driven recommendation

4.2 Process-based service recommendation

We start the chapter by presenting some preliminaries that help to formally define
business processes and service composition contexts (section 4.2.1). Next, we present our
approach to compute the similarity between services based on their composition context
matching (section 4.2.2). Then, we show how to make recommendations for a selected
position using its composition context matching (section 4.2.3).

4.2.1 Preliminaries

service-based process graph

There are a number of graph-based business process modeling languages, e.g. BPMN,
EPC, YAWL, and UML service diagram. Despite their variances in expressiveness and
modeling notations, they all share the common concepts of tasks, events, gateways, arti-
facts and resources, as well as relations between them, such as transition flows [125]. We
use BPMN to present service-based processes as it is one of the most popular business
process modeling language.

We consider termination events (such as start or end events) as termination services.
We define a connection element as either a connecting object (e.g. sequence flow and
message flow), or a gateway (e.g. AND-split, OR-split, etc.), or an intermediate event
(e.g. error message, message-catching, etc.). For example, in Figure 4.1, s1, a1, a2,
e1 are services; and ‘flow-transition’, ‘event-based-gateway’ and ‘message-catching’ are
connection elements.

Relations between services in a service-based process are presented by the execution
orders between them. We take into account both causal relations (e.g. “Search flights” and
“Present alternatives” in Figure 4.1) and parallel flow relations (e.g. “Request customer
detailed Info.” and “Request credit card Info.”) between services. In the following, we
present definitions that are used to present service relations, service-based processes and
the original concept of composition context.

s1

a1 a2

e1

a5

e2

a4a3

Request
credit

card Info.

Receive
reservation
request

Search
ights

Present
alternatives

Make
reservation

Cancel
request

Request
customer

detailed Info.

Request
credit

card Info.

Process
payment

Send
conrmation

s2

a6 a2

e3

a3

e4

a5a4

a7

Figure 4.1: Train & flight reservation processes

Let AP be the set of services and CP be the set of connection elements in a service-
based process P .

4.2. Process-based service recommendation 37

Definition 4.2.1 (next relation). Let ei, ej ∈ AP∪CP . A next relation ei to ej, denoted
by ei →P ej, indicates that ej is situated right after ei in P .

Definition 4.2.2 (connected relation). Let ei, ej ∈ AP∪CP . ei is connected to ej in P ,
denoted by ei ↔P ej, iff ei →P ej or ej →P ei.

Definition 4.2.3 (connection flow). A connection flow from ai to aj, ai, aj ∈ AP , denoted
by aj

ai fP , is a sequence of connection elements c1, c2, . . . , cn ∈ CP satisfying: ai ↔P c1,
c1 ↔P c2, . . . , cn−1 ↔P cn, cn ↔P aj

1. aj
ai fP ∈ C∗P , C∗P is set of sequences of connection

elements in P .

Definition 4.2.4 (connected relation label). The label of a connected relation ei ↔P ej,
ei, ej ∈ AP∪CP , denoted by l(ei ↔P ej), is defined as following:

l(ei ↔P ej) =
{
eiej , if ei →P ej

ejei, if ej →P ei

Definition 4.2.5 (connection flow label). The label of a connection flow aj
ai fP , denoted by

l(aj
ai fP), is defined as following:

l(aj
ai fP) = l(ai ↔P c1).l(c1 ↔P c2) . . . l(cn−1 ↔P cn).l(cn ↔P aj)

where c1, c2, . . . , cn ∈ CP :aj
ai fP = c1c2. . .cn.

For example, label of the connection flow from “Search flights” to “Present alter-
natives” in Figure 4.1 is: a6‘sequence’.‘sequence’a2; from “Present alternatives” to “Re-
quest customer detailed Info.” is: a2‘event-based-gateway’.‘event-based-gateway’‘message-
catching’.‘message-catching’‘parallel-split’.‘parallel-split’a7.

We notice that:
– A connection flow is labeled by a sequence of connected relation labels. A connected
relation label is an ordered pair of services and connection elements. This order is
not changed when we label the connection flow in both directions. In both cases, we
can represent the unique connection flow based on constituted connected relations
labels. So, we can label an edge connecting two services ai, aj ∈ AP by either l(aj

ai fP)
or l(ai

aj
fP). For example, the edge connecting a6 to a2 in Figure 4.1 can be label by

l(a2
a6fP)=a6‘sequence’.‘sequence’a2 or l(a6

a2fP)= ‘sequence’a2.a6‘sequence’.
– There can be more than one connection flow between two services. For instance, in
the case that two services are connected by an AND-split and an AND-join (parallel
relation). In this case, we number these connection flows to distinguish them. For
example, there are two connection flows from a7 to a3 in Figure 4.2 and we number
them as follows: l(a3

a7f
1
P)=‘parallel-split’a7.‘parallel-split’a3 and l(a3

a7f
2
P)=a7‘synchronizat-

ion’.a3‘syn-chronization’.
We consider each service as a node, each connection flow as an edge. We define service-

based process as a multigraph, in which, the set of edges is a multiset (Definition 4.2.6).

Definition 4.2.6 (Service-based process graph). A service-based process graph of P is an
undirected labeled multigraph GP = (VP , EP , LP , l) in which VP is a set of nodes, EP is a
multiset of edges, LP is a set of edge labels, and l is a mapping function that maps edges
to labels, where:

– VP = AP ,

1. The connection flow from aj to ai is the inverse of the connection flow from ai to aj

38 Chapter 4. Composition-driven recommendation

– EP ⊆ 〈AP ×AP , g〉, g : AP ×AP −→ N
g((ai, aj)) is the multiplicity of (ai, aj). If g((ai, aj)) > 1, the edges connecting ai to
aj are numbered by (ai, aj)t, t = 1..k, k > 1.

– LP = l(EP), where:
l : EP −→ LP

(ai, aj) 7→ l(aj
ai fP) , if g((ai, aj)) = 1

(ai, aj)t 7→ l(aj
ai f

t
P) , if g((ai, aj)) = k > 1, t = 1..k

For example, the service-based process graphs of the ‘train-reservation’ process and
the ‘flight-reservation’ process (Figure 4.1) are presented in Figure 4.2.

a 2 a 5a 4a 3a 1

s 1

e 1

e 2
l1 l2

l3

l4 l5

l6 l7 l8

a 6 a 2

a 7

a 5a 4

a 3

l9 l10

l11

l12

l13

l14

l15

l16

l18

l17
l21l20

l19

s2

e3

e4

Edge labels:
Annotation:
 S: ‘sequence’
 E: ‘event-based-gateway’
 M: ‘message-catching’
 P: ‘parallel-split’
 Y: ‘synchronization’

l16=‘‘Pa7.Pa3’’
l17=‘‘a7Y.a3Y’’
l18=‘‘a7Y.Ya4’’
l19=‘‘a3Y.Ya4’’
l20=‘‘a4S.Sa5’’
l21=‘‘a5S.Se4’’

l8=‘‘a5S.Se4’’
l9=‘‘s2S.Sa6’’
l10=‘‘a6S.Sa2’’
l11=‘‘a2E.EM.MP.Pa7’’
l12=‘‘a2E.EM.MP.Pa3’’
l13=‘‘a2E.EM.Me3’’
l14=‘‘Me3.EM.EM.MP.Pa7’’
l15=‘‘Me3.EM.EM.MP.Pa3’’

l1=‘‘s1S.Sa1’’
l2=‘‘a1S.Sa2’’
l3=‘‘a2E.EM.Ma3’’
l4=‘‘a2E.EM.Me1’’
l5=‘‘Me1.EM.EM.Ma3’’
l6=‘‘a3S.Sa4’’
l7=‘‘a4S.Sa5’’

G :P1

Edges: <(s1,a1),1>, <(a1,a2),1>, <(a2,a3),1>,
<(a2,e1),1>, <(e1,a3),1>, <(a3,a4),1>,
<(a4,a5),1>, <(a5,e2),1>

Nodes: s1, e1, e2, a1, a2, a3, a4, a5

G :P2

<(s2,a6),1>, <(a6,a2),1>, <(a2,a7),1>,
<(a2,a3),1>, <(a2,e3),1>, <(e3,a7),1>,
<(e3,a3),1>, <(a7,a3),2>, <(a7,a4),1>,
<(a3,a4),1>, <(a4,a5),1>, <(a5,e4),1>

s2, e3, e4, a2, a3, a4, a5, a6, a7

Edges:

Nodes:

Figure 4.2: Service-based process graphs of ‘train-reservation’ and ‘flight-reservation’ pro-
cesses (Figure 4.1)

Composition context graph

We define the composition context of a service as a process fragment that includes
the associated service and the closest relations to its neighbors. A composition context is
presented as a graph in which the associated service is located at the center. Its neighbors
are located in layers according to their shortest path lengths to the associated service. The
neighbor context presents the behavior of the associated service within the process. We
present in the following some definitions that are used to formally define the composition
context.

4.2. Process-based service recommendation 39

Definition 4.2.7 (connection path). A connection path from ai to aj in a service-based
process graph GP , denoted by aj

aiPP , is a sequence of services a1, a2, . . . , ak where a1 = ai,
ak = aj and ∃(at+1

at fP ∈ C∗P ∨ at
at+1fP ∈ C∗P) ∀1 ≤ t ≤ k − 1.

According to Definition 4.2.7, a connection path in a service-based process graph is
undirected. It means that the edges in a connection path can be oriented in different
directions. For example, in Figure 4.1, a connection path from ‘Search flights’ (a6) to
‘Request customer detailed Info.’ (a7) can be either (‘Search flights’, ‘Present alternatives’,
‘Request customer detailed Info.’) or (‘Search flights’, ‘Present alternatives’, ‘Request
credit card Info.’, ‘Process payment’, ‘Request customer detailed Info.’).

Definition 4.2.8 (connection path length). The length of a connection path aj
aiPP , denoted

by L(aj
aiPP) is the number of connection flows in the path.

Definition 4.2.9 (shortest connection path). The shortest connection path between ai and
aj, denoted by aj

aiSP , is the connection path between them that has the minimum connection
path length.

For example, in Figure 4.1, the shortest path from ‘Search flights’ to ‘Request customer
detailed Info.’ is (‘Search flights’, ‘Present alternatives’, ‘Request customer detailed Info.’)
and its length is 2.

Definition 4.2.10 (kth-layer neighbor). aj is a kth-layer neighbor of ai in a service-based
process P iff ∃aj

aiPP : L(aj
aiPP) = k. The set of kth-layer neighbors of a service ai is denoted

by Nk
P (ai). N0

P (ai) = {ai}.

For example in Figure 4.1, ‘Receive reservation request’ and ‘Present alternatives’ are
the 1st-layer neighbors of ‘Search flights’; ‘Search flight’, ‘end-event’, ‘Request customer
detail Info.’ and ‘Request credit card Info.’ are the 1st-layer neighbors of ‘Present alterna-
tives’; ‘Request credit card Info.’ is one of the 2nt-layer neighbors of ‘Search flights’ and
so on.

As the distance from a service ai to its kth-layer neighbors is k, we can imagine that
the kth-layer neighbors of a service ai are located on a circle whose center is ai and k is the
radius. The circle is latent since it is not explicitly represented in the service-based process
graph. We call this latent circle a connection layer and the area limited by two adjacent
latent circles a connection zone. Connection layers and connection zones of a service are
numbered. A connection flow connecting two (k−1)th-layer neighbors, or a (k−1)th-layer
neighbor to a kth-layer neighbor is called a kth-zone flow (Definition 4.2.11).

Definition 4.2.11 (kth-zone flow). av
au
fP is a kth-zone flow of ai iff ∃av

au
fP : (au, av ∈

Nk−1
P (ai)) ∨ (au ∈ Nk−1

P (ai) ∧ av ∈ Nk
P (ai)) ∨ (av ∈ Nk−1

P (ai) ∧ au ∈ Nk
P (ai)). The set of

all kth-zone flows of a service ai ∈ P is denoted by Zk
P (ai). Z0

P (ai) = ∅ and |Zk
P (ai)| is

the number of connection flows in the kth connection zone of ai.

For example in Figure 4.1, the connection from ‘Present alternatives’ to ‘Request cus-
tomer detailed Info.’ is the 2nd-zone flow of ‘Search flights’ while the connection from ‘Re-
quest customer detailed Info.’ to ‘Process payment’ is its 3rd-zone flow. |Z2

P2
(‘Search flights’)| =

3 as in the 2nd-zone of ‘Search flight’, there are three connection flows, which are from
‘Present alternatives’ to ‘Request customer detailed Info.’, ‘Request credit card Info.’ and
end event.

Intuitively, the connection paths between two services present their relation in term
of closeness. The longer the connection path is, the weaker their relation is and the

40 Chapter 4. Composition-driven recommendation

shortest connection path between two services presents their best relation. To illustrate
the best relations of a service to others services in a service-based process, we define the
composition context graph (formally defined in Definition 4.2.12) which presents all the
shortest paths from a service to others. Each service in a service-based process has a
composition context graph. Each vertex in the composition context graph is associated to
a number which indicates the shortest path length of the connection path to the associated
service. The vertexes that have the same shortest path length value are considered to
have the same distance to the associated service and are located on the same layer around
the associated service. We name the number associated to each service in a composition
context graph the layer number. The area limited between two adjacent layers is called
zone. The edge connecting two vertexes in a composition context graph belongs to a zone.
We assign to each edge in the composition context graph a number, so-called zone number,
which determines the zone that the edge belongs to.

The edge connecting two services ai, aj in the composition context graph of a service
ax is associated to a zone number such that: if ai and aj are located on two adjacent
layers, the edge (ai, aj) will belongs to the zone limited by the two adjacent layers; and if
ai and aj are located on the same layer, the edge connecting them belongs to the outer
zone of the layer they are located on.

Basically, assume that eij is the edge connecting two vertexes ai and aj in the composi-
tion context graph of a service ax. The lengths of the shortest connection paths connecting
ai and aj to ax are l1 = L(ax

ai
SP) and l2 = L(ax

aj
SP) respectively. Let d = |l1 − l2|, d has

only two possible values, which are 0 and 1. In the case that d = 0 (l1 = l2), i.e. ai and aj

are both lth1 -layer neighbors of ax, we assign to eij l1 + 1 as zone value. In the case that
d = 1, i.e. ai and aj belong to two adjacent layers, eij is a kth-zone flow connecting ai

and aj and we assign to eij the zone value k, i.e. min(l1, l2) + 1. Consequently, we assign
to the connection flow connecting ai and aj in the composition context graph of ax the
value Min(L(ax

ai
SP),L(ax

aj
SP))+1. The maximum zone value of all connection flows in the

context graph of ax will be Max(L(ax
at
SP)) + 1 ∀at ∈ P .

In any service-based process graph, including graphs that contain loops, we can always
calculate the shortest path length between two services. Therefore, in the composition
context graph of a service, we can always identify the layers on which services are located.
Consequently, we can always assign layer number to a service and thus, zone number to a
connection flow in a composition context graph.

Definition 4.2.12 (Composition context graph). The composition context graph of a
service ax ∈ P , denoted by Gax

P = (V ax
P , Eax

P , LP , l), is an undirected labeled multigraph
created from GP = (VP , EP , LP , l). V ax

P is a set of vertexes associated to their layer
numbers and Eax

P is a set of edges associated to their zone numbers. V ax
P and Eax

P are
defined as following:

- V ax
P = {(ai,L(ax

ai
SP)) : ai ∈ VP }

- Eax
P = {(< (ai, aj), g((ai, aj)) >,

aj
ai z

ax
P) :< (ai, aj), g((ai, aj)) >∈ EP ,

aj
ai z

ax
P = Min(L(ax

ai
SP),L(ax

aj
SP)) + 1}

For example, an excerpt of ‘Search trains’ composition context graph created from
“train-reservation” process and an excerpt of the “Search flights” composition context
graph created from “flight-reservation” process (Figure 4.1) are presented in Figure 4.3.
In these graphs, all causal and parallel flow relations are presented.

4.2. Process-based service recommendation 41

a 2

a 4a 3a 1

1st layer
2nd layer 3rd layer

1st zone

2nd zone
3rd zone

s 1

e 1

l1

l2

l3

l4

l6

l5

a 2 a 4

a 7

a 6

1st layer
2nd layer 3rd layer

1st zone

2nd zone
3rd zone

a 3

s 2

e 3

l9

l10

l11

l13

l12

l14

l18

l19

l15

l16

l17

... ...

Edge labels:
Annotation:
 S: ‘sequence’
 E: ‘event-based-gateway’
 M: ‘message-catching’
 P: ‘parallel-split’
 Y: ‘synchronization’

l16=‘‘Pa7.Pa3’’
l17=‘‘a7Y.a3Y’’
l18=‘‘a7Y.Ya4’’
l19=‘‘a3Y.Ya4’’
l20=‘‘a4S.Sa5’’
l21=‘‘a5S.Se4’’

l8=‘‘a5S.Se4’’
l9=‘‘s2S.Sa6’’
l10=‘‘a6S.Sa2’’
l11=‘‘a2E.EM.MP.Pa7’’
l12=‘‘a2E.EM.MP.Pa3’’
l13=‘‘a2E.EM.Me3’’
l14=‘‘Me3.EM.EM.MP.Pa7’’
l15=‘‘Me3.EM.EM.MP.Pa3’’

l1=‘‘s1S.Sa1’’
l2=‘‘a1S.Sa2’’
l3=‘‘a2E.EM.Ma3’’
l4=‘‘a2E.EM.Me1’’
l5=‘‘Me1.EM.EM.Ma3’’
l6=‘‘a3S.Sa4’’
l7=‘‘a4S.Sa5’’

Figure 4.3: An excerpt of the composition context graphs of a1 and a6 (in Figure 4.1)

4.2.2 Composition context matching

The kth-zone neighbors of a service and their connection flows create a process fragment
around the associated service. This fragment contains the business context that reflects
the behavior of the associated service. In this section, we present our methodology to
compute the matching between two composition contexts. This matching is used for
service recommendation. To compute the composition context matching, we propose to
match all connection flows that belong to the same connection zone and have the same
ending services.

To illustrate the computation process, we demonstrate the matching between the com-
position context of the ‘Search trains’ service in the ‘train-reservation’ process (a1 in Fig-
ure 4.1) and the ‘Search flights’ service in the ‘flight-reservation’ process (a6 in Figure 4.1).
The composition context graphs of these services are shown in Figure 4.3.

Connection flow matching

To compute the matching between two connection flows, we propose to use the Leven-
shtein distance (LD for short) [82]. We consider each connection element in a connection
flow as a character and label connection flows as a sequence of characters. Then, the
similarity between two connection flows can be computed based on the similarity of their
labels using LD. However, as an edge connecting au and av in P1 can be labeled by ei-
ther av

au
fP1 or au

av
fP1 and there can be multiple connection flows between two services, we

compute the matching between av
au
fP1 and an

am
fP2 as following.

Let st1 = l(av
au
fP1), st2 = l(an

am
fP2). LetDiff be a function that computes the difference

between two connection flows. We have:

M(av
au
fP1 ,

an
am
fP2) = 1− Diff(st1, st2)

Max(length(st1), length(st2)) (4.1)

42 Chapter 4. Composition-driven recommendation

where:
– Diff(st1, st2) = LD(l(av

au
fP1), l(an

am
fP2)), if (au = am) ∧ (av = an)

– Diff(st1, st2) = LD(l(av
au
fP1), l(am

an
fP2)), if (au = an) ∧ (av = am)

– Diff(st1, st2) = Max(length(st1), length(st2)), i.e. M(av
au
fP1 ,

an
am
fP2) = 0 in other

cases.
For example in Figure 4.3, we haveMp(a3

a2fP1 ,
a3
a2 fP2) = M(“a2E.EM.Ma3”, “a2E.EM.MP.Pa3”)

= 1− 2
8 = 0.75.

We prove that LD of two strings is equal to LD of their inverse strings 2. So, whatever
the edges (au, av) and (am, an) are labeled by l(av

au
fP1) or l(au

av
fP1) and l(an

am
fP2) or l(am

an
fP2),

Equation 4.1 gives a unique value.
In the case that there is more than one connection flow between two services, we

compute all possible matching between them and we select the best matching value.

Composition context graph matching

To compute the composition context matching between two services, we propose to
sum up the matching of the connection flows in the two contexts. There are two cases to
consider: the first zone and the other zones. In the first zone, we match the connection
flows that connect the two associated services and same services in the first layer. In the
other zones, we match the connection flows that connect the same services. We sum all
matching values then divide them by the number of connection flows in the considered
zones of the first service.

We apply Equation 4.1 to compute the composition context matching in either the first
and other zones. However, Equation 4.1 considers only connection flows that connecting
the same services in two service-based processes. So, to adapt it in the first zone, we
assume that the two associated services have the same name, so-called a0. Then, we
match connection flows connecting a0 to the same services in the first layer.

Formally, let ai, aj are two associated services. We change ai, aj to a0. Then, ∀ac ∈
N1

P1
(ai) ∩N1

P2
(aj), we compute the similarity between ac

ai
fP1 and ac

aj
fP2 based on the simi-

larity between ac
a0fP1 and ac

a0fP2 . Concretely, let st1 = l(ac
a0fP1), st2 = l(ac

a0fP2), then:

Diff(st1, st2) = LD(l(ac
a0fP1), l(ac

a0fP2)) (4.2)

and we apply Equation 4.1 to compute this matching.
For example, in Figure 4.3, we have M(a2

a1fP1 ,
a2
a6 fP2) = M(“a0S.Sa2”, “a0S.Sa2”) = 1,

and so on.
Basically, the composition context matching between ai ∈ P1 and aj ∈ P2 within k

zones, denoted by MCk(Gai
P1
, G

aj

P2
), is computed by Equation 4.3.

MCk(Gai
P1
, G

aj

P2
) =

k∑
t=1

∑
av
au fP1∈Zt

P1
,an
am fP2∈Zt

P2

MFt(av
au
fP1 ,

an
am
fP2)

k∑
t=1
|Zt

P1(ai)|
(4.3)

where k is the number of considered zones, |Zt
P1

(ai)| is the number of connection flows in
the tth zone of Gai

P1
, and MFt(av

au
fP1 ,

an
am
fP2) is the matching value of av

au
fP1 and an

am
fP2 in

2. http://www-inf.it-sudparis.eu/SIMBAD/tools/BPAR/ld-inverse-strings.pdf

http://www-inf.it-sudparis.eu/SIMBAD/tools/BPAR/ld-inverse-strings.pdf

4.2. Process-based service recommendation 43

zone t:

MFt(av
au
fP1 ,

an
am
fP2) =

M(av

au
fP1 ,

an
am
fP2) if

t = 1, (au = am) ∨ (av = an)

∨(au = av ∧ am = an)
t 6= 1, (au = am ∧ av = an)

0 other cases

For example, the composition context matching between a1 and a6 (Figure 4.3) within
3 zones computed by Equation 4.3 is:

MC3(Gax
P1
, Ga6

P2
) =

M(a1
s1fP1 ,

a6
s2 fP2) +M(a2

a1fP1 ,
a2
a6 fP2) +M(a3

a2fP1 ,
a3
a2 fP2)

+M(e1
a2fP1 ,

e3
a2 fP2) +M(a3

e1fP1 ,
a3
e3 fP2) +M(a4

a3fP1 ,
a4
a3 fP2)

2 + 2 + 2

=
1 + 1 + 3

4 + 1 + 9
10 + 1

2
6 = 0.86

Zone weight consideration

The behavior of a service is strongly reflected by the connection flows to its closet
neighbors while the interactions with other neighbors in the further layers do not heavily
reflect its behavior. Therefore, we propose to assign a weight (wt) for each tth connection
zone, so called zone-weight and integrate this weight into the similarity computation. Since
the zone-weight has to have greater values in smaller tth connection zone, we propose a
zone-weight value computed by a polynomial function which is wt = k + 1− t

k
, where t is

the zone number (1 ≤ t ≤ k) and k is the number of considered zones around the service.
All connection flows connecting either to or from the associated service have the greatest
weight (w1 = 1) and the connection flows connecting to/from services in the furthest zone
have the smallest weight (wk = 1

k).
Then, the composition contexts matching between Gai

P1
and G

aj

P2
within k zones and

with zone weight consideration, denoted by MWk(Gai
P1
, G

aj

P2
), is given by Equation 4.4.

MWk(Gai
P1
, G

aj

P2
) = 2

k + 1 ×
k∑

t=1

k + 1− t
k

×

∑
av
au fP1∈Zt

P1
an
am fP2∈Zt

P2

MFt(av
au
fP1 ,

an
am
fP2)

|Zt
P1

(ai)|
(4.4)

For example, the composition context matching between a1 and a6 (Figure 4.3) com-
puted by Equation 4.4 is:

MW3(Gax
P1
, Ga6

P2
) = 2

3 + 1 × (3
3 ×

M(a1
s1fP1 ,

a6
s2 fP2) +M(a2

a1fP1 ,
a2
a6 fP2)

2 +

2
3 ×

M(a3
a2fP1 ,

a3
a2 fP2) +M(e1

a2fP1 ,
e3
a2 fP2)

3 +

1
3 ×

Mp(a3
e1fP1 ,

a3
e3 fP2) +Mp(a4

a3fP1 ,
a4
a3 fP2)

2)

= 2
4 × (1 + 1

2 + 2
3 ×

3
4 + 1

2 + 1
3 ×

9
10 + 1

2
2) = 0.91

44 Chapter 4. Composition-driven recommendation

4.2.3 Recommendation

We make recommendations based on the composition context matching. For a selected
service, we compute its composition context graph matching with other services in other
service-based processes. Then, we sort the computed matching values in descending order
and pick up top-N services that have the highest matching values for recommendation.

As the composition context graph presents the interactions between the associated ser-
vice and its neighbors, it infers the associated service’s behavior. Therefore, the matching
between service context graphs exposes the similarity between associated services in terms
of their behaviors. In our approach, the higher the service context matching value is, the
more similar the services are.

There are two typical cases where a process analyst needs service recommendation:
discovering services or improving the ongoing designed service-based process.

In the first case, the process analyst wants to discover services that are suitable to
a position in a service-based process, have the same composition contexts, and therefore
can be easily plugged into a position in the ongoing designed service-based process. She
marks this position as an ‘unknown’ service (a round rectangle with a ‘?’ symbol). Our
approach will capture the composition context of the ‘unknown’ service. Then, it matches
the captured context with others and retrieves relevant services to the selected position.

In the second case, when the process analyst wants to extend (or improve) the ongoing
designed process, she may need recommendations provided by our approach. For example,
if she wants to find alternatives for a specific position in the process, she will select the
service at this position. Our approach will recommend her relevant services. With these
recommendations, the process analyst can create different process variants from the current
designed process.

In addition, our approach can be associated to a functionality-filtering approach, which
can filter services that have the same function, to find services that have the same function
and behavior with a given service. This can help to find services that can replace a given
service in case of unavailability.

4.3 Log-based service recommendation

In this section, we propose an approach that builds upon process event logs for mak-
ing service recommendations. We examine the relation between services based on their
execution order and frequency as recorded in logs. We define the notion of a log-based
composition context of a service as a fragment of the log-based model that contains the
considered service and relations to its neighbors. Relations between services and their oc-
currence frequency provide the basis for the computation of the similarity between services.
In the following, we firstly present some definitions related to process logs (section 4.3.1).
Then, we present definitions of the log-based process (section 4.3.1) and the service compo-
sition context (section 4.3.1). Finally, we detail our approach with log-based composition
context matching and activity recommendation (section 4.3.1).

4.3.1 Preliminaries

According to [154] and [132], a process log is defined as follows.

Definition 4.3.1 (Log trace, process log, L). Let A be a set of services. A∗ denotes the
set of finite sequences over A and σ = a1a2 . . . an ∈ A∗ is a log trace. L ∈ P(A∗) is a

4.3. Log-based service recommendation 45

process log 3.

As explained in [154, 132], a process log does not consider the repetition of a trace.
For example, in Table 4.1, which contains the Event logs of a liability claim process, L
includes only traces 1, 2, 3, 6 and 7. Traces 4 and 5 are excluded by L as they repeat
traces 2 and 1. In our approach, we extend Definition 4.3.1 to define the full process log
(see Definition 4.3.2) that includes all log traces.

Traces Log traces Repeat
1 ACDGEH
2 ABDFH
3 ABDEGH
4 ABDFH trace 2
5 ACDGEH trace 1
6 ABDGEH
7 ACDFH

Table 4.1: Event logs of a liability
claim process ([123])

Traces Log traces Repeat
1 KBJFH
2 KBJGH
3 KBJFH trace 1
4 KBJFH trace 1
5 KBJGH trace 2

Table 4.2: Event logs of a customer
subscription process

Definition 4.3.2 (Full process log, L∗). A full process log is the process log that includes
all executed traces. The full log is denoted by L∗, L∗ ∈ P∗(A∗). L ⊆ L∗.

For example, in Table 4.1, L∗ includes all traces from 1 to 7. In Table 4.2, L∗ includes
all traces from 1 to 5, while L includes only trace 1 and 2.

Definition 4.3.3 (Log-based ordering relation, >L). Let L be a process log over A, i.e.,
L ∈ P(A∗). Let a, b ∈ A. a >L b iff ∃σ = a1a2 . . . an, i ∈ {1, 2, . . . , n − 1}: σ ∈ L ∧ ai =
a ∧ ai+1 = b.

For example, from the logs given in Table 4.1, we have A >L B, A >L C, C >L D,
B >L D, and so on.

Log-based process

The sequence of services in a log trace σ = a1a2 . . . an ∈ A∗ presents their ordering
relations. A relation between a service ai and its followed service ai+1 in the trace σ,
1 ≤ i ≤ n − 1 can be presented as a directed edge from ai to ai+1. The service relations
in a process log L can be presented as a weighted directed graph where the edge’s weight
presents the number of times that the edge was repeated in the log L. This graph is called
log-based process graph (Definition 4.3.4).

Definition 4.3.4 (Log-based process graph). A log-based process graph is a weighted
directed graph GL = (VL, EL, w) built from a process log L∗ ∈ P∗(A∗) where:

– VL = A = {a1, a2, . . . , an},
– EL = {(ai, aj) ∈ A×A : ai >L aj} ⊆ A×A,
– w is a weight function from EL to N :

w : EL −→ N
(ai, aj) 7→ |ai >L aj |

3. P(A∗) is the power set of A∗, i.e., L ⊆ A∗

46 Chapter 4. Composition-driven recommendation

A

B

C

ED

G

F

H

3

4 4

3
3

3

1

3

1
31

3

(a) the liability claim process

K B J

G

F

H
5 5

3

2

3

2

(b) the customer subscription process

Figure 4.4: Log-based process graphs

|ai >L aj | is number of times that ai >L aj comes about in the log L∗
w(ai, aj) = 0 if @σ = a1a2 . . . an, k ∈ {1, 2, . . . , n− 1} : ak = ai ∧ ak+1 = aj

For example, the log-based process graphs of the event logs given in Table 4.1 and
Table 4.2 are depicted in Figure 4.4. The weight of each flow is the number of times that
the flow is executed. It is emphasized by the arrow’s thickness.

The log-based graph presents the execution of a business process in reality, regardless
its conceptual model. The weights of edges present their execution frequency which indi-
cates the strength of relations between services. In the following, we present our approach
to build the composition context of a service based on these relations.

Log-based composition context

We define the log-based composition context as a directed labeled graph that presents
the shortest path from a service to its neighbors. Intuitively, the closeness between services
is presented by the paths connecting them. The shortest path between services presents
their closest relation. The log-based composition context of a service presents the best
relations between the service and its neighbors.

In a log-based composition context graph, each vertex is associated to a number that
indicates the shortest path length from it to the associated service. Vertexes that have
the same shortest path length are considered to be located on the same layer around the
associated service. Similarly to section 4.2, we name the number associated to each service
in a log-based composition context graph layer number. The layer number of a service a
is denoted by l(a). The area limited between two adjacent layers is called zone. The edge
connecting two vertexes in a log-based composition context graph belongs to a zone as
the vertexes are on the same or adjacent layers. We assign to each edge a number, so-call
zone number, which determines the zone that the edge belongs to.

Definition 4.3.5 (Log-based composition context graph). The log-based composition con-
text graph of a service ai, denoted by GC(ai), is an extension of the log-based graph GL =
(VL, EL, w) with vertex layer numbers and edge zone numbers. The layer number of an ver-
tex aj, denoted by l(aj)GC(ai), is the shortest path length from aj to ai and the zone number
of an edge (aj , ak), denoted by z(aj , ak)GC(ai), has value min(l(aj)GC(ai), l(ak)GC(ai)) + 1:

1. l(aj)GC(ai) = ShortestPathLength(aj , ai),
2. z(aj , ak)GC(ai) = min(l(aj)GC(ai), l(ak)GC(ai)) + 1, aj >L ak ∨ ak >L aj.

For example, the composition context graphs of service D and J in Figure 4.4 are
depicted in Figure 4.5.

Definition 4.3.6 (kth-neighbor). a is the kth-neighbor of b, iff l(a)GC(b) = k. Set of kth-
neighbors (k ≥ 1) of a service ai is denoted by Nk(ai). Nk(ai) = {aj : l(aj)GC(ai) = k}.

4.3. Log-based service recommendation 47

A

B

C

ED

G

F

H

1st layer

2nd layer

1st zone

2nd zone

3

4

3

4

3

1

3 1 3

3

3

1

(a) the liability claim process

K B J

G

F

H

1st zone

2nd zone

1st layer

2nd layer

5

3

2

5

3

2

(b) the customer subscription process

Figure 4.5: Composition context graphs of the given event logs

For example, in Figure 4.4a, N1(A) = {B,C}, N2(A) = {D}, N3(A) = {F,E,G},
N1(D) = {C,B, F,E,G}, N2(D) = {A,H}, N3(D) = ∅, and so on.

4.3.2 Matching and recommendation

To compute the matching between two log-based composition contexts, we (1) compute
the matching of their edges in each zone, (2) multiply this matching with a zone-weight
value and (3) sum up the matching in all zones.

We apply the vector space model (VSM) to compute the matching of edges in each zone
of two composition context graphs. We present each zone as a vector of which elements are
edges and values are their corresponding weights. Then, we align elements that connect
the same services in the same layers. Next, we present these vectors in the same space by
filling 0 values in corresponding positions of the unaligned elements. Finally, we compute
the cosine value of these two zone-vectors.

Particularly, in the first zone, we match the edges that connect the two associated
services to the same services in the first layer. To do so, we define the two associated
services as root services and name them r0.

Concretely, assume that Pp and Pq are two log-based processes constructed from event
logs Lp and Lq. Let Ap, Aq be sets of services of Pp and Pq respectively. We compute the
similarity between services a ∈ Ap and b ∈ Aq by applying VSM as following.

Let Ek
Pp

(a) and Ek
Pq

(b) be sets of edges in kth-zone of a ∈ Pp and b ∈ Pq respectively.
Let
−−→
e(a),

−−→
e(b) be corresponding zone vectors.

Ek
Pp

(a) = {(x, y) : z(x, y) = k, x, y ∈ Ap}
= {(x1, y1), (x2, y2), . . . , (xm, ym)}

−−→
e(a) = (w(x1, y1), w(x2, y2), . . . , w(xm, ym))

Ek
Pq

(b) = {(e, f) : z(e, f) = k, e, f ∈ Aq}
= {(e1, f1), (e2, f2), . . . , (en, fn)}

−−→
e(b) = (w(e1, f1), w(e2, f2), . . . , w(en, fn))

Let Nk−1
c (a, b) and Nk

c (a, b) be the sets of common neighbors of a and b on layers k−1
and k, k > 0. We have:

Nk−1
c (a, b) = Nk−1

Pp
(a) ∩Nk−1

Pq
(b)

Nk
c (a, b) = Nk

Pp
(a) ∩Nk

Pq
(b)

48 Chapter 4. Composition-driven recommendation

As we define the two associated services as root services and name them r, we have:
N0

Pp
(a) = a = r0, N0

Pq
(b) = b = r0 and N0

c (a, b) = r0.
Let Ek

c be the set of common edges of a and b in kth-zone.

Ek
c = {(r, t) : (r ∈ Nk−1

c (a, b), t ∈ Nk
c (a, b)|r >Lp t ∧ r >Lq t)

∪(r ∈ Nk
c (a, b), t ∈ Nk−1

c (a, b)|r >Lp t ∧ r >Lq t)}
= {(r1, t1), (r2, t2), . . . , (rm, tm)}

Let
−−−→
ec(a),

−−→
ec(b) be vectors of weights of these common edges.

−−−→
ec(a) = (w(r1, t1), w(r2, t2), . . . , w(rz, tz)), (ri, ti) ∈ EL(Ap), 1 ≤ i ≤ z
−−→
ec(b) = (w(r1, t1), w(r2, t2), . . . , w(rz, tz)), (ri, ti) ∈ EL(Aq), 1 ≤ i ≤ z

By applying VSM, the similarity between a and b in the kth zone is given by Equation.
4.5.

Mk(a, b) =
−−−→
ec(a) ·

−−→
ec(b)

|
−−→
e(a)| × |

−−→
e(b)|

(4.5)

For example, we have: the common neighbors ofD and J in the 1st-layer areN1
c (D,J) =

{F,G,B}. So,
−−−→
ec(D) = (w(D,F), w(D,G), w(B,D)) = (3, 3, 4),

−−−→
ec(J) = (w(J, F), w(J,G), w(B, J)) =

(3, 2, 5) and their matching in the 1st-zone is:

M1(D,J) = 3× 3 + 3× 2 + 4× 5√
32 + 12 + 32 + 32 + 42 ×

√
32 + 22 + 52

= 0.86

In the 2nd-zone, we have the common edges of these two context graphs are: (F,G)
and (G,H). So, their matching in this zone is:

M2(D,J) = 3× 3 + 1× 2√
32 + 42 + 32 + 32 + 12 + 12 + 32 ×

√
52 + 32 + 22

= 0.24

The behavior of a service is strongly reflected by the connections to its closet neighbors.
Therefore, we propose to consider a zone weight in our matching computation. Concretely,
as the zone-weight has to have greater values in smaller kth connection zone, we propose
to assign the zone-weight a value computed by the polynomial function wz

j = k + 1− j
k

given in section Similarly to section 4.2. The final matching formula integrating the zone
weight consideration is given in Equation 4.6.

M∗(a, b) = 2
k + 1 ×

k∑
i=1

k + 1− i
k

×M i(a, b) (4.6)

For example, the matching between the composition contexts of D and J (in 2 zones) with
zone weights is:

M∗(D,J) = 2
3 × (M1(D,J) + 1

2 ×M
2(D,J)) = 2

3 × (0.86 + 1
2 × 0.24) = 0.65

Basically, the steps to make recommendations based on log-based composition context
matching are: (i) We represent the execution logs in a log-based graph. (ii) For each
service in the log-based graph, we build its composition context graph. (iii) We compute

4.4. Validation 49

the matching between composition context graphs using vector space model. (iv) Finally,
for a selected service, we sort other services in descending order of similarity and pick up
top-n services for recommendation.

In our approach, only the connection flows connecting common neighbors in two ad-
jacent layers are taken into account for the matching computation. So, by using queues
(data structure) to store the common neighbors and track them from the nearest layers
to the furthest layers, we avoid the redundant checking of unrelated neighbors. On the
other hand, the number of services as well as the number of common neighbors in a log-
based process are not great 4, our algorithm can run fast in computing the composition
context matching of two services. The worst case of this algorithm’s computation time is
O(nA×nP ×n×k), where nA is the number of services, nP is the number of service-based
processes, n is the maximum number of common services located on a layer and k is the
number of considered layers. The worst case only happens when all the service-based pro-
cesses in the system are entirely matched. In addition, the performance of the algorithm
can be improved by processing the composition context matching periodically off-line.

4.4 Validation

As a proof of concept, we implemented two applications that provide recommendations
to process designers during the design phase based respectively on process models or logs.
The first application 5 was developed based on Signavio 6, which is a platform for business
process design. The second application was implemented as plug-in and integrated into
ProM. This plug-in 7 uses log files to recommend services for selected positions in an
ongoing designed process.

We also performed experiments on a large public collection of business processes. Our
goal is three fold: (i) to evaluate the feasibility of our approach; (ii) to measure its efficiency
and to (iii) evaluate the performance of our algorithm. The dataset used in our approach
is shared by the Business Integration Technologies (BIT) research group 8 at the IBM
Zurich Research Laboratory. It was presented in [54]. It contains business process models
designed for financial services, telecommunications, and other domains. It is presented in
XML format following BPMN 2.0 standard.

We performed experiments to show that our approach is feasible, accurate and of good
performance. We evaluate the feasibility of our approach by measuring the number of
services whose matching values with others are greater than a given threshold. We also
observe the impact of the number of selected zones (kth-zone number) and zone weight on
the number of recommended services. We evaluate the accuracy of our algorithms based
on Precision and Recall values and we measure the performance of our algorithms based
on computation time.

In the first experiment, we set kth-zone = 1 (i.e. we take into account only the first
zone) and match the service composition context graphs of all services in the repository.
We obtain that 2938 (77.7%) services match at least one service with a matching value
greater than 0. This result shows that our approach can provide recommendations for
a majority services as we can retrieve similar composition contexts for more than 3/4

4. We found in a public process dataset that in average there are 11.36 services in a service-based
process (see section 4.4)

5. Our tool is published at http://www-inf.it-sudparis.eu/SIMBAD/tools/WebRec/.
6. http://www.signavio.com/
7. This plug-in is published at http://www-inf.it-sudparis.eu/SIMBAD/tools/LogRec/.
8. http://www.zurich.ibm.com/csc/bit/

http://www-inf.it-sudparis.eu/SIMBAD/tools/WebRec/
http://www.signavio.com/
http://www-inf.it-sudparis.eu/SIMBAD/tools/LogRec/
http://www.zurich.ibm.com/csc/bit/

50 Chapter 4. Composition-driven recommendation

number of services. It means that our approach is feasible.
In the second experiment, we examine the impact of kth-zone values and zone weight.

We run our algorithms with k from 3 to 1. Figure 4.6 shows the number of services
that have matching values greater than or equal to 0.5. It shows that when k decreases,
the number of recommended services increases. Indeed, when k decreases, the number of
unmatched services in further layers decreases, consequently, the matching values between
composition contexts increase, thereafter the number of services increases. Figure 4.6 also
shows that zone weight increases the number of recommended services (k = 2 and k = 3).

0

50

100

150

200

250

300

350

400

450

500

k=3 k=2 k=1

N
u

m
b

e
r

o
f

ac
ti

vi
ti

e
s

kth‐zone number

Without zone weight

With zone weight

Figure 4.6: Number of services with different kth-zone values

In the third experiment, we evaluate the efficiency of our approach based on Precision
values. We also compare our approach to randomly generated recommendations. Con-
cretely, consider a selected service a in a business process P . Assume that a appears in
n business processes. The recommendations for this selected position consist of l services,
in which t(t ≤ l) services are a.

In this experiment, we tune the number of recommended services for each position from
5 to 1. We take into account the matching in only the first zone (k = 1). To ignore the
noise of the irrelevant processes, we compute Precision for only the services that appear
in at least 10 business processes. Consequently, 29 services and 267 business processes are
considered for our experiment.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 4 3 2 1

P
re

ci
si

o
n

 v
al

u
e

s

Number of recommended activities

Without zone weight

With zone weight

Random approach

Figure 4.7: Precision values computed by taking into account the first zone

Figure 4.7 shows the average Precision values obtained in this experiment. It shows
that our recommendations achieved good Precision values. These values are much more
higher than a random approach. Our approach is more precise if we take into account
zone weight in our computation.

Figure 4.7 also shows that the Precision values increase when the number of recom-

4.5. Related work 51

mended services decreases. This means that the relevant services mostly appear at the
top of the recommendation list. In other words, when we shorten the recommendation
list, the recommendations generated by our approach are more focused and precise. It
also show that our approach is much more efficient than a random approach (at least 10
times better).

In the forth experiment, we measure the performance of our algorithm based on com-
putation time. We run our algorithm on a computer running Ubuntu 11.10 with the
configuration: Pentium 4 CPU 2.8GHz, cache 512KB, RAM 512MB, HDD 80GB. We
match each service in a business process with all services in other business processes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k=1 k=2 k=3

A
ve

ra
ge

 c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s)

kth zone number

Without zone weight

With zone weight

Figure 4.8: Average computation time with k = 3

Figure 4.8 shows the average computation time with different kth-zone values. With
k = 1, our algorithms take about 2 milliseconds to compute the matching between a
service and the other 6362 services. This computation time increases when k increases.
In average, it is about 1 seconds with k = 2 and 1.7 seconds with k = 3. This means
that our algorithms have good performance as they can make recommendations in a very
short time by considering a large number of services. To shorten the response time for
recommendations, the matching computation in our approach can be done offline.

In summary, the statistics on the number of recommended services showed that our
approach is feasible. The Precision values showed that our approach was accurate. Finally,
experiments on the computation time showed that our approached had good performance.
So, our approach can be applied in real use-cases to facilitate process design.

We performed also experiments for our log-based service recommendation approach
(section 4.3). A big challenge of our approach is the availability of real process logs. We
attempted to search and contact other research groups for both public and private logs.
However, process event logs are not published or they are not under a disclosure agreement.
There are very few logs that are shared for the competition of the BPI challenge 9. But
they are not usable in our approach as they are just logs of one business process while we
need logs of several different processes. We performed experiments on logs generated from
the previously presented dataset shared by the IBM Business Integration Technologies
(BIT) team. Due to space limitation, more details about these experimentation can be
found in [34].

4.5 Related work
Some existing approaches [170, 1, 42, 57] target to fasten the design phase by retrieving

similar process to the current designed process from repositories [121]. They proposed
9. http://www.win.tue.nl/bpi/

http://www.win.tue.nl/bpi/

52 Chapter 4. Composition-driven recommendation

either to rank existing business process models for similarity search [170, 40, 161], or
to measure the similarity between them [1, 83, 50, 65] for creating new process models.
Business processes in reality consist of large number of services and flow connections,
therefore, recommending the designer a list of business processes can make him confused
because it is hard to detect how the business processes are similar and which parts should
be considered from the recommended processes to use for his current design. In addition,
computation on the whole process leads the existing approaches to the graph-matching
problem which is NP-complexity [3] and they have to deal with the trade-off among the
complexity, accuracy (efficiency) and system performance [170, 40]. In our approach, we
focus partially on the business process and take into account only the service composition
context for recommendations. Consequently, we recommend services without facing the
computational complexity problem.

Similarity metrics, including label matching similarity, structural similarity and behav-
ioral similarity, have been synthesized by R. Dijkman et. al. [41]. They used Levenshtein
distance to compare the service labels; graph edit distance and vector space model to
determine the similarity between business process structures. They also proposed the
ICoP framework [163] and a semantic matching method [81] to identify the match be-
tween parts of process models using these metrics. Different from them, we focused on
service composition contexts with layers and zones. We compute the similarity between
composition contexts based on the matching of connection flows in zones with zone weight
consideration instead of matching service labels or matching virtual documents.

Recommendation-based approaches were proposed by M. Lincoln et. al. [86] and T.
Hornung et. al. [71]. In [86], the authors aimed at suggesting a generic method for design-
ing new business process models encoded by the Process Descriptor Catalog notations.
Meanwhile, in [71], the authors interpreted process descriptions in tags and retrieved re-
lated processes by using the open source Java search engine Lucene. Although they can
recommend parts of business process, the process parts are defined by themselves. In our
work, we recommend the relevant services based on the connections between the associated
services and their neighbors.

S. Sakr et. al. [125] proposed a query language that takes into account the process
models to manage business process variants. They, however, retrieved parts of processes
based on strictly mapping to a structured input without considering the service similarity.
Beheshti et. al. [15] proposed a query language to analyze Business processes execution
from various user perspectives. A search framework that aims at retrieving process seg-
ments was proposed by M. Lincoln et. al. [85]. In their work, they defined the object
grouping model (OGM) which includes the relationship between a primary object and
others in a process segment. The weight of each edge is the number of its repetition in
the related process model segments and term frequency-inverse document frequency (TF-
IDF) is applied for the OGM-segment matching. In our approach, we take into account
the sequence of connection flow elements instead of the repetition of edges. And we match
connection flows in zones to infer the similarity instead of using TF-IDF. In their work,
they dynamically created business process segments based on the search phrase. They
also transformed the search phrase into a process descriptor with object, action, object
qualifier and action qualifier. For the object and action in the search phrase, they con-
struct the action scope model, object grouping model and action influence model based on
the existence of these items in the repositories. Then they matched the created segments
with the constructed models to find the relevant segments.

Thomas Gschwind et. al. [64] applied workflow patterns for business process design.
They aimed at helping business users understand the context and apply patterns during

4.6. Conclusion 53

the editing process. In our work, we help designers better design a business process by
automatically recommending services that have similar contexts instead of patterns.

Different techniques have been defined for automatically discovering whole models from
logs, e.g. [154, 94, 113, 51]. The automatic matching between event logs and process models
is discussed in [13] showing that logs on the execution level are often much more detailed
than models. The challenge of process mining is the observation that process models of-
ten turn out to be overwhelmingly complex, so-called spaghetti models [157]. Behavioral
abstractions such as trace adjacency [12, 176] and weak order relations [52, 164] provide
a means to compare process behavior [40, 78, 44]. These notions are applied, e.g., for
identifying connections between actions [146] comparable to our notion of service compo-
sition. Our approach builds on this observation to make recommendations for executable
processes. The approach reported in this chapter helps to present correlations between
services in a context-specific way, which allows us to hide the complexity of the behavior.
Hidden knowledge in process event logs are discovered for assisting process design [102, 99]
or supporting the dynamic evolution of service protocols [124]. In this way, we complement
log-based recommendation approaches to support process designers at runtime [14] or at
configuration time [101, 100, 133].

4.6 Conclusion

In this chapter, we addressed the challenge of supporting process designer during the
act of modeling, even in cases where no comparable process models exist. We present
an approach that effectively utilizes knowledge extracted from process models or logs
for recommending services. This approach is based on a notion of service composition
and a corresponding calculation of similarity. Our approach helps process designers to
flexibly adjust and interactively improve a designed process. Indeed, there are rationale
and benefits behind introducing the concept of service composition context as it informs
us about service behavior and thereafter can unveil its business context. By using this
context, our objective is two-fold: (i) taking into account the process fragment surrounding
a service as an input which would help to focus on specific parts of the business process
and can avoid the computational complexity problem of the business process structure
matching and (ii) benefiting from the existing process models and logs by extracting the
implicit knowledge which is process fragments.

It is worthy to notice that our approach does not aim at finding services that have
similar functions or capabilities with a selected one. Instead, we aim at retrieving services
that have similar composition contexts. By recommending services, our approach not
only helps to find suitable services for a missing position but also helps to find other
alternatives for a selected service. These alternatives can be useful in either expanding
a designed process to provide new functionality, replacing existing services or creating
process variants. Moreover, we have also integrated our composition matching technique
with a specific query language to help to retrieve services that have similar contexts based
on a requested service context [30].

Due to the general limitation of public business process datasets, which provide only
and service identifiers without any further information, the validation of our approach so
far was done with only the perfect match of service identifiers. However, our approach
can be easily improved to deal with other comparison metrics and the validation can be
extended for the imperfect matching. In future work, we aim to extend the similarity
calculation with other service properties such capability, QoS, consumed resources, etc..

This work was conducted during the PhD thesis of Nguyen Ngoc Chan [174]. The

54 Chapter 4. Composition-driven recommendation

service composition context mining approach has been proposed in the context of the
Master thesis of Nattawat Nonsung [104]. Whereas the composition query language has
been refined in the context of the Master thesis of Karn Yongsiriwit [171]. This work was
mainly published in the following conference proceedings and journals [34, 33, 32, 32].

Chapter 5

Research Perspective

Today’s fast changing environment imposes new challenges for effective management
of business processes [68]. In such a highly dynamic environment, the business process
design becomes time-consuming, error-prone, and costly [2]. Therefore, seeking reuse [55]
and adaptability [131] is a strong requirement for a successful business process design. As
mentioned in the preamble, a key element of my research activities is supporting business
process modeling. My future and current work share the same general objectives as my
previous activities namely: (i) supporting variability in configurable process models and
(ii) semantically-enabled management of multi-tenants processes in the cloud.

5.1 Supporting variability in configurable processes
Configurable reference models introduced in [122, 63] were a step toward enabling

process design by reuse while providing flexiblility. A configurable process model is a
generic model that integrates multiple process variants of one business process in a given
domain through variation points. These variation points are referred to as configurable
elements and allow for multiple design variants. A process variant is an adjustment of
a business process to flexibly adapt the business model to a specific context [45]. Enter-
prises or organizations usually need to support many variants of the same process due to
constraints from regulations, geography, religion, etc. For example, car rental companies,
such as Hertz, Avis or Sixt, need to customize their reservation process to follows laws in
a country or culture of a region. Suncorp, one of the largest Australian insurance group,
has developed more than 30 different variants of the process of handling an insurance
claim [155].

In recent years, there have been many efforts on facilitating the development of busi-
ness process variants such as using available reference models to be individualized to
fit the requirements [148, 35], or finding existing similar models to inspire process de-
sign [170, 1, 40]. To build configurable process models, some approaches propose to merge
existing process variants [118, 39, 62], others try to mine one configurable process model
from execution logs [28, 61, 27]. To derive individual variants, some works propose to use
questionnaires [120] or ontologies [72] in order to get business requirements and guide the
configuration process. Others propose to use non functional requirements to assess con-
figuration decisions on the process performance [129]. Despite the considerable advances
achieved by exiting works on business process configuration, I identify three serious chal-
lenges:

1. First, configurable process models provided for reuse face two main issues. On
one hand, merging or mining entire configurable process models can encounter the

56 Chapter 5. Research Perspective

problem of managing the complexity of the merged model when input variants are
large and manifold [43]. In addition, building and recommending entire configurable
processes cost much computation time, especially when a large number of process
variants needs to be merged or mined. On the other hand, configurable process
models provide only the possibility to configure and (re)use the entire process model;
while in some circumstances, business designers may be interested in only some parts.
For instance, a business designer may look for process fragments that are suitable to
a missing part or that can replace some parts causing efficiency degradation.

2. Second, existing decision supports for the configuration of the process model rely
heavily on the domain expert. The main difficulty in a configuration approach is
to find the interrelationship between configuration decisions. That is, a decision
support system must be able to predict next suitable configurations given a selected
one. Existing approaches manually link business decisions to variation points by
questioning a domain expert. Relying only on the knowledge of a domain expert,
which may be helpful, is nevertheless error-prone and time-consuming.

3. Third, existing configuration approaches fail to derive optimal configurations ac-
cording to individual user requirements. An optimal configuration results in an
individualized process model that maximizes some performance metrics as for ex-
ample, the most frequently used configuration, the configuration with a minimal
execution time, minimal cost, or a combination of these three metrics, etc. This
issue, identified in [53] as a serious limitation, has not been addressed before.

In light of the identified shortcomings, my main objectives are: (i) assist business
designers to complete their processes or to create new variants; (ii) assist business analysts
to develop a better understanding and reasoning on the variability in their configurable
process models; (iii) automate the derivation of optimal configurations.

In order to realize the first objective I propose to use the notion of composition context
graph defined in the chapter 4 as our process fragment model. Therefore, for a selected
activity in an ongoing designed process, I propose to merge the neighborhood context
graphs of the same activity in different business processes to create a merged fragment.
Process mining techniques can be also considered in order to mine a configurable process
fragment from multiple process event logs. Eventually, I can also propose a frequency-
based approach that guides the configuration of the mined fragment. Concretely, I can
explore the (in)frequent executions in the event logs in order to derive ranked configuration
guidelines. Early results related to this objective have been already published [7, 8, 10].

The second objective can be achieved by introducing a frequency-based approach for
extracting configuration rules that describe the interrelationships between the frequently
selected configurations. In fact, I can take advantage of machine learning techniques [165],
in particular association rule mining, and use the Apriori algorithm [4], one of the earliest
and relevant proposed algorithms, in order to extract the interdependencies among the
variation points. Early results related to this objective have been already published [9].

For the third contribution, I propose to use existing works in process mining for per-
formance analysis [159, 110, 36] in order to mine performance metrics for the variation
points. Basically, I can leverage the business configuration to a Constraint Satisfaction
Problem (CSP) [153] in order to derive a configuration that satisfies a user defined perfor-
mance constraints. We use a CSP solver along with a user specified objective function to
find all the optimal configurations.

This ongoing and future work is being conducted as part of the PhD thesis of Nour
Assy [6].

5.2. Semantically-enabled management of processes in the cloud 57

5.2 Semantically-enabled management of processes in the
cloud

Cloud Computing allows companies to optimize their processes by providing dynami-
cally scalable and often virtualized resources on demand. It is changing the way in which
business processes are managed and supported [156]. Basically, cloud computing can pro-
vide a framework where different companies essentially perform the same process, while
sharing best practices, knowledge, or a common infrastructure as a set of services de-
ployed in a shared cloud [155]. Multi-tenant processes are organization-specific variants of
the same process running in a cloud infrastructure. Since many organizations may work
on similar processes with some variations, configurable processes have been proposed as
a key technique for a flexible process design in cloud environment. Indeed, as tenants
may have different needs and preferences, and cloud providers may present different of-
fers, using configurable process models to support variability is straightforward in cloud
environment. By configuring a configurable process model in the cloud, one can expect to
obtain a concrete process variant and a concrete resource allocation. Consequently, the
configurable model needs to be able to support meaningful variations of the same process
according to the available cloud offers. However, a systematic approach to support and
analyze multi-tenant processes and related cloud offers is missing [156].

Current configurable models focus mainly on the control flow and ignore other aspects
(resources, data). Particularly, resource perspective and allocation policies are currently
missing in (configurable) process models. The resource perspective remained poorly de-
scribed [69]. Many works have been realized for providing support and enhancement to
the resource management in business processes development. Nevertheless, they have ba-
sically focused on human resources [91, 149] and have neglected other types of resources
particularly cloud resources [75]. As cloud environments are heterogeneous, the need for
a common vocabulary in order to share knowledge is a crucial issue. Therefore, seeking
for defining resource perspective, in a semantic way, is an important issue for a successful
business process management in the cloud.

The general idea is to link (configurable) process models to cloud resources and allo-
cation policies to express such integrated specification in a format understandable by the
domain experts and at the same time processable by the machine. Concretely, I aim at
extending configurable process with the semantic capability descriptions of their tasks and
consumed cloud resources. In order to augment the synergy between cloud providers and
process owners, I aim at building a semantic knowledge base as a first step towards the
optimization of multi-tenant process and cloud resource management.

The first objective of my future work under this research dimension is specifying a
semantically-enabled configurable process model which subsumes the behaviour of all vari-
ants models and most importantly captures the variation points that represent differences
between different multi-tenants processes. I aim at developing an ontology enabling to
abstract from configurable processes languages. I propose to specify also a frame-based
semantic meta-model for describing the capabilities of the cloud resources by capturing
their functional and non-functional aspects. A resource refers to what a cloud service
achieves. We enhance configurable processes with the descriptions of the capabilities
of their resources defined according to our semantic meta-model. Our model explicitly
features resource properties which configurations are conducted based on. This allows
for comparing processes within different organizations and resources from different cloud
providers. Consequently, multiple organizations can share information about their similar
processes. Once the semantic model is defined, it becomes relatively easy to compare

58 Chapter 5. Research Perspective

different variants of the same configurable model running in the cloud, share and optimize
their consumed resources. The goal is to let organizations learn from each other and estab-
lish proven best practices. Of course privacy issues may again complicate such analysis,
however, it may be sufficient to compare things at an aggregate level or to anonymize
the results. This is of course only possible in a non-competitive environment [156], e.g.,
different branches of some multinational organization, franchises, municipalities, courts,
etc..

The second objective of my future work under this research dimension is develop-
ing algorithms to automatically generate optimal process variants from a cloud resource
consumption perspective. Using a set of rules performed over the previously specified
knowledge base, I aim to proactively/provisionally allocate resources based on business
constraints, service level agreement (SLA), QoS parameters such as performance, security
and privacy. I also intend to specify monitoring technique to manage the dynamic change
of cloud resources to match new business requirements. We need also to ensure the cor-
rectness of a process family and all of its configurations according to privacy, security and
optimization perspectives.

This ongoing and future work is being conducted as part of the PhD thesis of Karn
Yongsiriwit [172].

Bibliography

[1] W. Aalst, A. Medeiros, and A. Weijters. Process equivalence: Comparing two process
models based on observed behavior. In BPM, pages 129–144, 2006.

[2] W. M. P. v. d. Aalst. Workflow verification: Finding control-flow errors using petri-
net-based techniques. In Business Process Management, Models, Techniques, and
Empirical Studies, pages 161–183, London, UK, UK, 2000. Springer-Verlag.

[3] M. A. Abdulrahim. Parallel algorithms for labeled graph matching. PhD thesis,
Golden, CO, USA, 1998. AAI0599838.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In VLDB, pages 487–499, 1994.

[5] S. Arroyo, E. Cimpian, J. Domingue, C. Feier, D. Fensel, B. König-Ries, H. Lausen,
A. Polleres, and M. Stollberg. Web Service Modelling Ontology Primer. World Wide
Web Consortium Member Submission, 2005.

[6] N. Assy. Supporting variability in configurable business process. PhD thesis, Telecom
SudParis, Evry, France, expected 2015.

[7] N. Assy, N. N. Chan, and W. Gaaloul. Assisting business process design with con-
figurable process fragments. In IEEE SCC, pages 535–542, 2013.

[8] N. Assy, N. N. Chan, W. Gaaloul, and B. Defude. Deriving configurable fragments
for process design. International Journal of Business Process Integration and Man-
agement, 7(1):2–21, 2014.

[9] N. Assy and W. Gaaloul. Configuration rule mining for variability analysis in con-
figurable process models. In International conference on service oriented computing
ICSOC. To appear, 2014.

[10] N. Assy, W. Gaaloul, and B. Defude. Mining configurable process fragments for
business process design. In Advancing the Impact of Design Science: Moving from
Theory to Practice - 9th International Conference, DESRIST 2014, Miami, FL,
USA, May 22-24, 2014. Proceedings, volume 8463, pages 209–224, 2014.

[11] E. Ayorak and A. B. Bener. Super peer web service discovery architecture. In
International Conference on Data Engineering, 2007, Istanbul, Turkey, 2007.

[12] J. Bae, L. Liu, J. Caverlee, L.-J. Zhang, and H. Bae. Development of distance
measures for process mining, discovery and integration. Int. J. Web Service Res.,
4(4):1–17, 2007.

[13] T. Baier and J. Mendling. Bridging abstraction layers in process mining by auto-
mated matching of events and activities. In BPM. 2013.

[14] I. Barba, B. Weber, C. D. Valle, and A. J. Ramirez. User recommendations for the
optimized execution of business processes. Data Knowl. Eng., 86:61–84, 2013.

[15] S.-M.-R. Beheshti, B. Benatallah, H. R. M. Nezhad, and S. Sakr. A query language
for analyzing business processes execution. In BPM, pages 281–297, 2011.

60 Bibliography

[16] B. Benatallah, M.-S. Hacid, H.-Y. Paik, C. Rey, and F. Toumani. Peering and
querying e-catalog communities. In ICDE, page 846, 2004.

[17] B. Benatallah, Q. Z. Sheng, and M. Dumas. The self-serv environment for web
services composition. IEEE Internet Computing, 7:40–48, 2003.

[18] J. Bentahar, Z. Maamar, D. Benslimane, and P. Thiran. An argumentation frame-
work for communities of web services. IEEE Intelligent Systems, 22(6):75–83, 2007.

[19] M. W. Berry. Large scale sparse singular value computations. International Journal
of Supercomputer Applications, pages 13–49, 1992.

[20] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear algebra for intelligent
information retrieval. SIAM Rev., 37(4):573–595, 1995.

[21] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer
Academic Publishers, 1981.

[22] S. Bhiri, W. Gaaloul, M. Rouached, and M. Hauswirth. Semantic web services for
satisfying soa requirements. In Advances in Web Semantics I, pages 374–395. 2009.

[23] A. Birukou, E. Blanzieri, V. D’Andrea, P. Giorgini, and N. Kokash. Improving web
service discovery with usage data. Software, IEEE, 24(6):47–54, Nov.-Dec. 2007.

[24] M. B. Blake and M. F. Nowlan. A web service recommender system using enhanced
syntactical matching. In ICWS, pages 575–582, 2007.

[25] O. Bouchaala. managing communities of web services registries. Master’s thesis,
Telecom SudParis, Evry, France, 2011.

[26] O. Bouchaala, M. Sellami, W. Gaaloul, S. Tata, and M. Jmaiel. Modeling and
managing communities of web service registries. In Web Information Systems and
Technologies, volume 101 of Lecture Notes in Business Information Processing, pages
88–102. Springer Berlin Heidelberg, 2012.

[27] J. C. A. M. Buijs and H. A. Reijers. Comparing business process variants using
models and event logs. In BMMDS/EMMSAD, pages 154–168, 2014.

[28] J. C. A. M. Buijs, B. F. van Dongen, andW. M. P. van der Aalst. Mining configurable
process models from collections of event logs. In BPM ’13.

[29] Y. Chabeb, S. Tata, and A. Ozanne. YASA-M: A semantic web service matchmaker.
In AINA 2010, April 20-23, Perth, Australia, 2010.

[30] N. N. Chan and W. Gaaloul. Querying services based on composition context. In
WETICE, 2014.

[31] N. N. Chan, W. Gaaloul, and S. Tata. Collaborative filtering technique for web
service recommendation based on user-operation combination. In OTM Conferences
(1), pages 222–239, 2010.

[32] N. N. Chan, W. Gaaloul, and S. Tata. Composition context matching for web service
recommendation. In IEEE SCC, pages 624–631, 2011.

[33] N. N. Chan, W. Gaaloul, and S. Tata. A recommender system based on historical
usage data for web service discovery. Service Oriented Computing and Applications,
6(1):51–63, 2012.

[34] N. N. Chan, K. Yongsiriwit, W. Gaaloul, and J. Mendling. Mining event logs to
assist the development of executable process variants. In CAiSE, pages 548–563,
2014.

[35] T. Curran, G. Keller, and A. Ladd. SAP R/3 business blueprint: understanding the
business process reference model. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1998.

Bibliography 61

[36] G. C.W. Process Mining in Flexible Environments. PhD thesis, Eindhoven University
of Technology, Eindhoven, 2008.

[37] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. In-
dexing by latent semantic analysis. Journal of the American Society for Informatioin
Science, 41(6):391–407, 1990.

[38] S. C. Deerwester, S. T. Dumais, G. W. Furnas, R. A. Harshman, T. K. Landauer,
K. E. Lochbaum, and L. A. Streeter. Computer information retrieval using latent
semantic structure. US Patent No. 4839853, June 1989.

[39] W. Derguech and S. Bhiri. An automation support for creating configurable process
models. In A. Bouguettaya, M. Hauswirth, and L. Liu, editors, WISE, volume 6997
of Lecture Notes in Computer Science, pages 199–212. Springer, 2011.

[40] R. Dijkman, M. Dumas, and L. Garcia-Banuelos. Graph matching algorithms for
business process model similarity search. In Proceedings of the 7th International
Conference on Business Process Management, BPM ’09, pages 48–63, Berlin, Hei-
delberg, 2009. Springer-Verlag.

[41] R. Dijkman, M. Dumas, B. van Dongen, R. Käärik, and J. Mendling. Similarity
of business process models: Metrics and evaluation. Inf. Syst., 36(2):498–516, Apr.
2011.

[42] R. M. Dijkman, M. L. Rosa, and H. A. Reijers. Managing large collections of
business process models - current techniques and challenges. Computers in Industry,
63(2):91–97, 2012.

[43] R. M. Dijkman, M. L. Rosa, and H. A. Reijers. Managing large collections of business
process models - current techniques and challenges. Computers in Industry, 2012.

[44] R. M. Dijkman, B. F. van Dongen, M. Dumas, L. García-Bañuelos, M. Kunze,
H. Leopold, J. Mendling, R. Uba, M. Weidlich, M. Weske, and Z. Yan. A short
survey on process model similarity. In Seminal Contributions to Information Systems
Engineering. Springer, 2013.

[45] M. Döhring, H. A. Reijers, and S. Smirnov. Configuration vs. adaptation for business
process variant maintenance: An empirical study. Inf. Syst., 39:108–133, 2014.

[46] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity search for
web services. In Proceedings of the Thirtieth international conference on Very large
data bases - Volume 30, VLDB ’04, pages 372–383, 2004.

[47] M. Dumas, L. García-Bañuelos, M. L. Rosa, and R. Uba. Fast detection of exact
clones in business process model repositories. Inf. Syst., 38(4):619–633, 2013.

[48] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers. Fundamentals of Business
Process Management. Springer, 2013.

[49] J. Dunn. A fuzzy relative of the isodata process and its use in detecting compact
well-separated clusters. Journal of Cybernetics, 3:32–57, 1973.

[50] M. Ehrig, A. Koschmider, and A. Oberweis. Measuring similarity between seman-
tic business process models. In Proceedings of the fourth Asia-Pacific conference
on Comceptual modelling - Volume 67, APCCM ’07, pages 71–80, Darlinghurst,
Australia, Australia, 2007. Australian Computer Society, Inc.

[51] C. C. Ekanayake, M. Dumas, L. García-Bañuelos, and M. L. Rosa. Slice, mine and
dice: Complexity-aware automated discovery of business process models. In BPM,
pages 49–64, 2013.

62 Bibliography

[52] R. Eshuis and P. W. P. J. Grefen. Structural matching of bpel processes. In ECOWS
2007, pages 171–180. IEEE Computer Society, 2007.

[53] G. F. Configurable process models. PhD thesis, Technical University of Eindhoven,
Eindhoven, The Netherlands, 2009.

[54] D. Fahland, C. Favre, B. Jobstmann, J. Koehler, N. Lohmann, H. Völzer, and
K. Wolf. Instantaneous soundness checking of industrial business process models. In
7th BPM, pages 278–293, 2009.

[55] P. Fettke and P. Loos. Classification of reference models: a methodology and its
application. Information Systems and eBusiness Management, 2003.

[56] W. Gaaloul. Transactional workflow mining for reliable executions. PhD thesis,
University of Lorraine, Nancy, France, 2006.

[57] L. García-Bañuelos, M. Dumas, M. L. Rosa, J. D. Weerdt, and C. C. Ekanayake.
Controlled automated discovery of collections of business process models. Inf. Syst.,
46:85–101, 2014.

[58] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to
weave an information tapestry. Commun. ACM, 35(12):61–70, Dec. 1992.

[59] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time
collaborative filtering algorithm. Inf. Retr., 4(2):133–151, July 2001.

[60] G. H. Golub and C. F. Van Loan. Matrix computations (3rd ed.). Johns Hopkins
University Press, Baltimore, MD, USA, 1996.

[61] F. Gottschalk, W. Aalst, and M. Jansen-Vullers. Mining Reference Process Models
and their Configurations. In EI2N08, OTM 2008 Workshops.

[62] F. Gottschalk, W. M. Aalst, and M. H. Jansen-Vullers. Merging event-driven process
chains. In OTM ’08.

[63] F. Gottschalk and et al. Configurable workflow models. Int. J. Cooperative Inf.
Syst., 2008.

[64] T. Gschwind, J. Koehler, and J. Wong. Applying patterns during business process
modeling. In Proceedings of the 6th International Conference on Business Process
Management, BPM ’08, pages 4–19, Berlin, Heidelberg, 2008. Springer-Verlag.

[65] M. Guentert, M. Kunze, and M. Weske. Evaluation measures for similarity search
results in process model repositories. In P. Atzeni, D. Cheung, and S. Ram, editors,
ER ’12, volume 7532, pages 214–227. Springer Berlin Heidelberg, 2012.

[66] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collab-
orative filtering recommender systems. ACM Trans. Inf. Syst., 22:5–53, January
2004.

[67] G. Hermosillo, L. Seinturier, and L. Duchien. Creating context-adaptive business
processes. In ICSOC, pages 228–242, 2010.

[68] G. Hermosillo, L. Seinturier, and L. Duchien. Using complex event processing for
dynamic business process adaptation. In IEEE SCC, pages 466–473, 2010.

[69] P. Hoenisch and et al. Workflow scheduling and resource allocation for cloud-based
execution of elastic processes. In IEEE 6th International Conference on Service-
Oriented Computing and Applications, Koloa, USA, December 2013, pages 1–8.

[70] T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf.
Syst., 22(1):89–115, Jan. 2004.

Bibliography 63

[71] T. Hornung, A. Koschmider, and G. Lausen. Recommendation based process mod-
eling support: Method and user experience. In Proceedings of the 27th International
Conference on Conceptual Modeling, ER ’08, pages 265–278, Berlin, Heidelberg,
2008. Springer-Verlag.

[72] Y. Huang, Z. Feng, K. He, and Y. Huang. Ontology-based configuration for service-
based business process model. In IEEE SCC, pages 296–303, 2013.

[73] J. J. Jiang and D. W. Conrath. Semantic similarity based on corpus statistics and
lexical taxonomy. The Computing Research Repository, CoRR, cmp-lg/9709008,
1997.

[74] M. Jursic and N. Lavrac. Fuzzy clustering of documents. In Conference on Data
Mining and Data Warehouses, SiKDD 2008, Ljubljana, Slovenia, 2008.

[75] S. Kächele and et al. Beyond iaas and paas: An extended cloud taxonomy for compu-
tation, storage and networking. In Proceedings of the 6th IEEE/ACM International
Conference Utility and Cloud Computing UCC, USA, 12 2013. IEEE.

[76] N. Kokash, A. Birukou, and V. D’Andrea. Web service discovery based on past user
experience. In Proceedings of the 10th international conference on Business infor-
mation systems, BIS’07, pages 95–107, Berlin, Heidelberg, 2007. Springer-Verlag.

[77] P. Küngas, M. Dumas, S. Mokarizadeh, and M. Matskin. Analyzing web services
networks: Theory and practice. In Advanced Web Services, pages 381–406. 2014.

[78] M. Kunze and M. Weske. Metric trees for efficient similarity search in large pro-
cess model repositories. In M. zur Muehlen and J. Su, editors, BPM Workshops,
volume 66 of Lecture Notes in Business Information Processing. Springer, 2010.

[79] H. Lausen and J. Farrell. Semantic annotations for WSDL and XML schema. W3C
recommendation, W3C, Aug. 2007. http://www.w3.org/TR/2007/REC-sawsdl-
20070828/.

[80] S. L. Leng. Recommender system for enhancing web services discovery. Master’s
thesis, Telecom SudParis, Evry, France, 2009.

[81] H. Leopold, M. Niepert, M. Weidlich, J. Mendling, R. Dijkman, and H. Stucken-
schmidt. Probabilistic optimization of semantic process model matching. In BPM,
2012.

[82] V. Levenshtein. Binary codes capable of correcting deletions, insertions and rever-
sals. Soviet Physics Doklady, 10:707, 1966.

[83] C. Li, M. Reichert, and A. Wombacher. On measuring process model similarity based
on high-level change operations. In Proceedings of the 27th International Conference
on Conceptual Modeling, ER ’08, pages 248–264, Berlin, Heidelberg, 2008. Springer-
Verlag.

[84] D. Lin. An information-theoretic definition of similarity. In The Fifteenth Interna-
tional Conference on Machine Learning (ICML 1998), Madison, Wisconson, USA,
July 24-27, 1998, pages 296–304, 1998.

[85] M. Lincoln and A. Gal. Searching business process repositories using operational
similarity. In Proceedings of the 2011th Confederated international conference on
On the move to meaningful internet systems - Volume Part I, OTM’11, pages 2–19,
Berlin, Heidelberg, 2011. Springer-Verlag.

[86] M. Lincoln, M. Golani, and A. Gal. Machine-assisted design of business process mod-
els using descriptor space analysis. In Proceedings of the 8th international conference
on Business process management, BPM’10, pages 128–144, Berlin, Heidelberg, 2010.
Springer-Verlag.

64 Bibliography

[87] G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item
collaborative filtering. Internet Computing, IEEE, 7(1):76–80, Jan/Feb 2003.

[88] G. D. Linden, J. A. Jacobi, and E. A. Benson. Collaborative recommendations using
item-to-item similarity mappings, July 2001.

[89] X. Liu, G. Huang, and H. Mei. Discovering homogeneous web service community
in the user-centric web environment. IEEE T. Services Computing, 2(2):167–181,
2009.

[90] J. Ma, Y. Zhang, and J. He. Web services discovery based on latent semantic
approach. In ICWS ’08: Proceedings of the 2008 IEEE International Conference on
Web Services, pages 740–747, Washington, DC, USA, 2008. IEEE Computer Society.

[91] Z. Maamar and et al. Towards a user-centric social approach to web services compo-
sition, execution, and monitoring. In Web Information Systems Engineering,WISE,
13th International Conference, Paphos, Cyprus, November 2012. Proceedings, pages
72–86.

[92] Z. Maamar, S. Sattanathan, P. Thiran, D. Benslimane, and J. Bentahar. An ap-
proach to engineer communities of web services - concepts, architecture, operation,
and deployment. International Journal of E-Business Research (IJEBR), 9(4), Dec.
2009.

[93] U. S. Manikrao and T. V. Prabhakar. Dynamic selection of web services with rec-
ommendation system. In NWESP ’05: Proceedings of the International Conference
on Next Generation Web Services Practices, page 117, Washington, DC, USA, 2005.
IEEE Computer Society.

[94] R. Mans, H. A. Reijers, H. Berends, W. Bandara, and R. Prince. Business process
mining success. In ECIS, page 89, 2013.

[95] D. Martin et al. Owl-s: Semantic markup for web services. Technical report, 2004.
[96] B. Medjahed and A. Bouguettaya. A dynamic foundational architecture for semantic

web services. Distributed and Parallel Databases, 17(2):179–206, 2005.
[97] A. Mesmoudi, M. Mrissa, and M.-S. Hacid. Combining configuration and query

rewriting for web service composition. In ICWS, pages 113–120, 2011.
[98] S. Mosser, G. Hermosillo, A.-F. L. Meur, L. Seinturier, and L. Duchien. Undoing

event-driven adaptation of business processes. In IEEE SCC, pages 234–241, 2011.
[99] K. Musaraj, T. Yoshida, F. Daniel, M.-S. Hacid, F. Casati, and B. Benatallah.

Message correlation and web service protocol mining from inaccurate logs. In ICWS,
pages 259–266, 2010.

[100] H. R. M. Nezhad, B. Benatallah, F. Casati, R. Saint-Paul, P. Andritsos, and
A. Guabtni. Exploration of discovered process views in process spaceship. In ICSOC,
pages 724–725, 2008.

[101] H. R. M. Nezhad, B. Benatallah, R. Saint-Paul, F. Casati, and P. Andritsos. Process
spaceship: discovering and exploring process views from event logs in data spaces.
PVLDB, 1(2):1412–1415, 2008.

[102] H. R. M. Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah. Event correlation for
process discovery from web service interaction logs. VLDB J., 20(3):417–444, 2011.

[103] C. N. Nguyen. Service Recommendation for Individual and Process Use. PhD thesis,
Telecom SudParis, Evry, France, 2012.

[104] N. Nonsung. Retrieving similar activities in business process. Master’s thesis, Tele-
com SudParis, Evry, France, 2012.

Bibliography 65

[105] S.-C. Oh, H. Kil, D. Lee, and S. R. T. Kumara. WSBen: A Web Services Discovery
and Composition Benchmark. In ICWS, Chicago, Illinois, USA, 2006.

[106] H.-Y. Paik, B. Benatallah, and R. Hamadi. Dynamic restructuring of e-catalog
communities based on user interaction patterns. World Wide Web, 5(4):325–366,
2002.

[107] H.-Y. Paik, B. Benatallah, and F. Toumani. Toward self-organizing service communi-
ties. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 35(3):408–419,
2005.

[108] T. Pilioura and A. Tsalgatidou. Unified publication and discovery of semantic web
services. ACM Transactions on the Web (TWEB), 3(3), 2009.

[109] C. Platzer and S. Dustdar. A vector space search engine for web services. Web
Services, 2005. ECOWS 2005. Third IEEE European Conference on, pages 9 pp.–,
Nov. 2005.

[110] H. P.T.G. Performance analysis of business processes through process mining, 2007.
[111] G. Qian, S. Sural, Y. Gu, and S. Pramanik. Similarity between euclidean and

cosine angle distance for nearest neighbor queries. In ACM symposium on Applied
computing, 2004.

[112] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A scalable
content-addressable network. In Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, San Diego, CA, USA, 2001.

[113] H. Reguieg, F. Toumani, H. R. M. Nezhad, and B. Benatallah. Using mapreduce
to scale events correlation discovery for business processes mining. In BPM, pages
279–284, 2012.

[114] P. Resnick and H. R. Varian. Recommender systems. Commun. ACM, 40(3):56–58,
Mar. 1997.

[115] P. Resnik. Using information content to evaluate semantic similarity in a taxon-
omy. In The 1995 International Joint Conference on AI, IJCAI-95, 20-25 August
1995,Montreal/Quebec, Canada, pages 448–453, 1995.

[116] C. J. V. Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton, MA,
USA, 2nd edition, 1979.

[117] C. Rodríguez, S. R. Chowdhury, F. Daniel, H. R. M. Nezhad, and F. Casati. Assisted
mashup development: On the discovery and recommendation of mashup composition
knowledge. In Web Services Foundations, pages 683–708. 2014.

[118] L. Rosa and et al. Business process model merging: An approach to business process
consolidation. ACM Trans. Softw. Eng. Methodol. ’13.

[119] M. L. Rosa, M. Dumas, R. Uba, and R. M. Dijkman. Business process model
merging: An approach to business process consolidation. ACM Trans. Softw. Eng.
Methodol., 22(2):11, 2013.

[120] M. L. Rosa and et al. Questionnaire-based variability modeling for system configu-
ration. Software and System Modeling, 8(2):251–274, 2009.

[121] M. L. Rosa, H. A. Reijers, W. M. P. van der Aalst, R. M. Dijkman, J. Mendling,
M. Dumas, and L. García-Bañuelos. Apromore: An advanced process model repos-
itory. Expert Syst. Appl., 38(6):7029–7040, 2011.

[122] M. Rosemann and W. M. P. van der Aalst. A configurable reference modelling
language. Inf. Syst., 2007.

66 Bibliography

[123] A. Rozinat, R. S. Mans, M. Song, and W. M. P. van der Aalst. Discovering colored
petri nets from event logs. Int. J. Softw. Tools Technol. Transf., 10(1):57–74, Dec.
2007.

[124] S. H. Ryu, F. Casati, H. Skogsrud, B. Benatallah, and R. Saint-Paul. Supporting the
dynamic evolution of web service protocols in service-oriented architectures. TWEB,
2(2), 2008.

[125] S. Sakr, E. Pascalau, A. Awad, and M. Weske. Partial process models to manage
business process variants. International Journal of Business Process Integration and
Management (IJBPIM), 6(2):20, September 2011.

[126] G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.
Technical report, 1987.

[127] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., New York, NY, USA, 1986.

[128] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Commun. ACM, 18(11), 1975.

[129] E. Santos and et al. Configuring the variability of business process models using
non-functional requirements. In BMMDS/EMMSAD, pages 274–286, 2010.

[130] R. Saraçoğlu, K. Tütüncü, and N. Allahverdi. A fuzzy clustering approach for finding
similar documents using a novel similarity measure. Expert Syst. Appl., 33(3), 2007.

[131] H. Schonenberg and et al. Towards a taxonomy of process flexibility. In CAiSE
Forum, pages 81–84, 2008.

[132] H. Schonenberg, B. Weber, B. Dongen, and W. Aalst. Supporting flexible processes
through recommendations based on history. In Proceedings of the 6th International
Conference on Business Process Management, BPM ’08, pages 51–66, Berlin, Hei-
delberg, 2008. Springer-Verlag.

[133] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and J.-B. Stefani. A
component-based middleware platform for reconfigurable service-oriented architec-
tures. Softw., Pract. Exper., 42(5):559–583, 2012.

[134] M. Sellami. Web services registries discovery in a distributed environment. PhD
thesis, Telecom SudParis, Evry, France, 2010.

[135] M. Sellami, O. Bouchaala, W. Gaaloul, and S. Tata. WSRD: A Web Services Reg-
istry Description. In International conference on New Technologies of Distributed
Systems, 2010, Tozeur, Tunisia, 2010.

[136] M. Sellami, O. Bouchaala, W. Gaaloul, and S. Tata. Communities of web ser-
vice registries: Construction and management. Journal of Systems and Software,
86(3):835–853, 2013.

[137] M. Sellami, W. Gaaloul, and B. Defude. Data mapping web services for composite
daas mediation. In WETICE, pages 36–41, 2012.

[138] M. Sellami, W. Gaaloul, B. Defude, and S. Tata. Towards a unified marketplace for
functionality-based cloud service discovery. In CLOSER, pages 252–257, 2012.

[139] M. Sellami, W. Gaaloul, and S. Tata. Functionality-driven clustering of web service
registries. In IEEE SCC, pages 631–634, 2010.

[140] M. Sellami, W. Gaaloul, and S. Tata. Implementation of communities of web service
registries. In ICWS, pages 690–691, 2011.

Bibliography 67

[141] M. Sellami, W. Gaaloul, S. Tata, and M. Jmaiel. Using recommendation to limit
search space in web services discovery. In 24th IEEE International Conference on
Advanced Information Networking and Applications, Perth, Australia, 2010.

[142] M. Sellami, S. Tata, and B. Defude. Service discovery in ubiquitous environments:
Approaches and requirements for context-awareness. In Proceedings of the Busi-
ness Process Management Workshops, Milano, Italy, pages 516–522. Springer Verlag,
2008.

[143] M. Sellami, S. Tata, Z. Maamar, and B. Defude. A recommender system for web
services discovery in a distributed registry environment. In International Conference
on Internet and Web Applications and Services, 2009, May, Venice, Italy, 2009.

[144] S. Sioutas, E. Sakkopoulos, C. Makris, B. Vassiliadis, A. Tsakalidis, and P. Tri-
antafillou. Dynamic web service discovery architecture based on a novel peer based
overlay network. Journal of Systems and Software, 82(5):809 – 824, 2009.

[145] K. Sivashanmugam, K. Verma, and A. P. Sheth. Discovery of web services in a
federated registry environment. In Proceedings of the IEEE International Conference
on Web Services, San Diego, California, USA, 2004.

[146] S. Smirnov, M. Weidlich, J. Mendling, and M. Weske. Action patterns in business
process model repositories. Computers in Industry, 2012.

[147] S. Soi, F. Daniel, and F. Casati. Conceptual design of sound, custom composition
languages. In Web Services Foundations, pages 53–79. 2014.

[148] S. Stephens. Supply chain operations reference model version 5.0: A new tool to
improve supply chain efficiency and achieve best practice. Information Systems
Frontiers, 3:471–476, December 2001.

[149] L. J. R. Stroppi and et al. Extending the ws-humantask architecture to support the
resource perspective of bpel processes. CLEI Electron. J., 2013.

[150] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Adv.
in Artif. Intell., 2009:4:2–4:2, January 2009.

[151] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Adv.
in Artif. Intell., 2009:4:2–4:2, January 2009.

[152] The Mckinsey Quarterly. How businesses are using web 2.0: A mckinsey global
survey, 2007.

[153] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1995.
[154] W. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discovering

process models from event logs. IEEE Trans. on Knowl. and Data Eng., 16(9):1128–
1142, Sept. 2004.

[155] W. M. P. Van Der Aalst. Configurable services in the cloud: supporting variabil-
ity while enabling cross-organizational process mining. In Proceedings of the 2010
international conference on On the move to meaningful internet systems - Volume
Part I, OTM’10, pages 8–25, Berlin, Heidelberg, 2010. Springer-Verlag.

[156] W. M. P. van der Aalst. Business process configuration in the cloud: How to support
and analyze multi-tenant processes? In ECOWS, pages 3–10, 2011.

[157] W. M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhancement
of Business Processes. Springer, 2011.

[158] W. M. P. van der Aalst, M. Dumas, F. Gottschalk, A. H. M. ter Hofstede, M. L. Rosa,
and J. Mendling. Preserving correctness during business process model configuration.
Formal Asp. Comput., 22(3-4):459–482, 2010.

68 Bibliography

[159] W. M. P. van der Aalst and B. F. van Dongen. Discovering workflow performance
models from timed logs. In Engineering and Deployment of Cooperative Information
Systems, First International Conference, EDCIS 2002, Beijing, China, September
17-20, 2002, Proceedings, pages 45–63, 2002.

[160] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller.
Meteor-s wsdi: A scalable p2p infrastructure of registries for semantic publication
and discovery of web services. Inf. Technol. and Management, 6(1):17–39, 2005.

[161] B. Weber, M. Reichert, J. Mendling, and H. A. Reijers. Refactoring large process
model repositories. Computers in Industry, 62(5):467–486, 2011.

[162] I. Weber, H.-Y. Paik, and B. Benatallah. Form-based web service composition for
domain experts. TWEB, 8(1):2, 2013.

[163] M. Weidlich, R. Dijkman, and J. Mendling. The icop framework: identification of
correspondences between process models. In Proceedings of the 22nd international
conference on Advanced information systems engineering, CAiSE’10, pages 483–498,
Berlin, Heidelberg, 2010. Springer-Verlag.

[164] M. Weidlich, J. Mendling, and M. Weske. Efficient consistency measurement based
on behavioral profiles of process models. IEEE Trans. Soft. Eng., 37:410–429, 2011.

[165] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition (Morgan Kaufmann Series in Data Management Sys-
tems). Morgan Kaufmann Publishers Inc., 2005.

[166] C. Wu, V. Potdar, and E. Chang. Advances in Web Semantics I: Ontologies, Web
Services and Applied Semantic Web, chapter Latent Semantic Analysis — The Dy-
namics of Semantics Web Services Discovery, pages 346–373. Springer-Verlag, Berlin,
Heidelberg, 2009.

[167] C.-T. Wu and H.-F. Wang. Recent development of recommender systems. Industrial
Engineering and Engineering Management, 2007 IEEE International Conference on,
pages 228–232, Dec. 2007.

[168] B. Xu and D. Chen. Semantic web services discovery in p2p environment. In In-
ternational Conference on Parallel Processing Workshops. IEEE Computer Society,
2007.

[169] Y. Xu, S. Tang, Y. Xu, R. Xiao, and L. Fang. Discovering web services based on
match history. In Advances in Intelligent Web Mastering, Proceedings of the 5th
Atlantic Web Intelligence Conference, Fontainbleau, France, 2007.

[170] Z. Yan, R. Dijkman, and P. Grefen. Fast business process similarity search with
feature-based similarity estimation. In Proceedings of the 2010 international con-
ference on On the move to meaningful internet systems - Volume Part I, OTM’10,
pages 60–77, Berlin, Heidelberg, 2010. Springer-Verlag.

[171] K. Yongsiriwit. Process fragment querying. Master’s thesis, Telecom SudParis, Evry,
France, 2013.

[172] K. Yongsiriwit. Modelling and mining process variants in Cloud environments. PhD
thesis, Telecom SudParis, Evry, France, expected 2016.

[173] L. Zadeh. Fuzzy sets. Information Control, 8:338–353, 1965.
[174] M. Zaremba. Semantically-enabled Service Discovery and Late Binding. PhD the-

sis, Digital Enterprise Research Institute, National University of Ireland, Galway,
Ireland, 2010.

Bibliography 69

[175] M. Zaremba, T. Vitvar, S. Bhiri, and M. Hauswirth. Preference-based discovery
of dynamically generated service offers. In International Conference on Services
Computing, SCC 2011, Washington, DC, USA, 4-9 July, pages 338–345, 2011.

[176] H. Zha, J. Wang, L. Wen, C. Wang, and J. Sun. A workflow net similarity measure
based on transition adjacency relations. Computers in Industry, 61(5):463–471, 2010.

[177] Z. Zhou, S. Bhiri, H. Zhuge, and W. Gaaloul. Assessment of service protocol adapt-
ability based on novel walk computation. IEEE Transactions on Systems, Man, and
Cybernetics, Part A, 42(5):1109–1140, 2012.

[178] Z. Zhou, W. Gaaloul, L. Shu, S. Tata, and S. Bhiri. Assessing the replaceability of
service protocols in mediated service interactions. Future Generation Comp. Syst.,
29(1):287–299, 2013.

[179] Z. Zhou, M. Sellami, W. Gaaloul, M. Barhamgi, and B. Defude. Data providing ser-
vices clustering and management for facilitating service discovery and replacement.
IEEE T. Automation Science and Engineering, 10(4):1131–1146, 2013.

[180] Z. Zhou, M. Sellami, W. Gaaloul, and B. Defude. Clustering and managing data
providing services using machine learning technique. In International Conference on
Semantics Knowledge and Grid (SKG 2011), Beijing, China, October 24-26, pages
225–232, 2011.

	Page de garde
	Résumé
	Table des matières
	Introduction
	Preamble
	Context
	Contributions
	Functionality-driven registry discovery and management
	Usage-driven service recommendation
	Composition-driven service recommendation

	Manuscript's organization

	Functionality-driven registry management
	Introduction
	Description of service registries
	Extracting the annotating concepts
	Computing groups of potential concepts
	Reducing the concepts

	Building of communities
	Modeling of communities
	Organizing a registry network as communities

	Management of communities
	Registry life-cycle
	Community life-cycle

	Validation
	Related Work
	Services organization
	Registries organization
	Communities management

	Conclusion

	Usage-driven Recommendation
	Introduction
	Memory-based recommendation
	Service-based algorithm
	User-based algorithm
	Service-user combination algorithm

	Model-based recommendation
	Validation
	Related Work
	Conclusion

	Composition-driven recommendation
	Introduction
	Process-based service recommendation
	Preliminaries
	Composition context matching
	Recommendation

	Log-based service recommendation
	Preliminaries
	Matching and recommendation

	Validation
	Related work
	Conclusion

	Research Perspective
	Supporting variability in configurable processes
	Semantically-enabled management of processes in the cloud

	Bibliography

