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Chapter 1

Summary

1.1 Introduction

Though not obvious at first sight, this habilitation theséald with the interplay bet-
weenanalysison andgeometryof smooth manifolds. More precisely, we address the
following questions:

1. What geometric properties can be extracted from pastidifferential operators
on a given manifold?

2. How to use analysis to find “good” metrics on a given maxifol

3. How to “encode” manifolds carrying solutions of geomepartial differential
equations in a physically pertinent way?

Analysis of partial differential equations and geometryra@inifolds have each enjoyed
a long and rich evolution for the last hundred and fifty yebi®wever, it is only about
fifty years ago that both disciplins started to interact itystematic and efficient way.
One of the oldest and most famous successes of this collidioia probably the
Yamabe problemconcerned with the priori purely geometric question of finding
metrics with constant scalar curvature in any conforma<laf Riemannian metrics
on compact manifolds. Along with minimal surface theorg ¥amabe problem gave
birth to a new field of research nowadays callgthmetric analysisvhich has proven
extremely fruitful over the years with the resolution of t@alabi and the Poincaré
conjectures, just to name a few.

A mathematical domain where the meeting of both analysisgeuinetry becomes
particularly interesting ispectral geometryOriginally developed to study the spec-
trum of the scalar Laplace operator on Riemannian manifdldes exhibited many
fine and unsuspected features in Riemannian geometry. @Qméhkand, the geometry
of the manifold influences its spectrum: for instance, a cachRiemannian manifold
(M",g) with Ricci curvature satisfying Rie- (n— 1)k - g for a positivek € R has a
gap of width at leashk between 0 and the first positive Laplace eigenvélué [43]. On
the other hand, the spectrum tells a lot on the geometry ofittterlying manifold:

for instance, if the above gagincideswith nk (for k > 0), then actuallyM",g) is a
round sphere [43, 52].
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More recently, another differential operator has attddtee attention ofa priori
unrelated communities: thgirac operator. Introduced in the thirties by physicist Paul
Dirac and long ignored by the mathematicians (with the retalsception of André
Lichnerowicz, see e.gl_[44]), this first order operator madspectacular appearance
on different stages of mathematics and physics from the étiteaseventies on, with
(among others) Gromov and Lawson’s index-theoreticalrabsbns to metrics with
positive scalar curvature or Edward Witten’s proof of thesifge mass theorem. In
parallel, the spectral theory of the Dirac operator undetveedrastic evolution with
e.g. the first sharp lower bound for the Dirac eigenvalueabdished by Thomas
Friedrich [23] in terms of scalar curvature (see Sedtionllb&low). One of the major
gains from the spectral theory of the Dirac operator whenpamed to the scalar
Laplacian is that many more geometries can be charactesigedirac eigenvalues
than with Laplace ones: the equality case in Thomas Friedrastimate is equivalent
to the existence of so-calledal Killing spinors which are in turn characterised purely
in terms ofholonomy[59,[7]. Incidentally, real Killing spinors in dimension érh out

to be an essential ingredient in string theory.

Roughly ten years ago, spectral theory of the Dirac operat®ived a new powerful
input with the investigation of geometry eubmanifoldsFor there is surprisingly
a lot to read off the Dirac spectrum of submanifolds. As anngple, the study of
the limiting-case of a certain lower bound for Dirac eigdoea of manifolds with
boundary leads to a straightforward praofl[37] of tag(iori unrelated) Alexandroff’s
theorem, which states that the only embedded compact hygfeces with constant
mean curvature in Euclidean space are the round spheresiotheas context, new
index-theoretical obstructions to the existence of Lagiam embeddings have been
discovered[36].

It is along this line that we answer the first question at thgirieng. More precisely,
we investigate finer interactions between the spectrummdws Dirac-type operators
and the geometry of the underlying manifold. This is the obé Section§ 112 arild 1.3
below, where we consider manifolds immersed in real or cemgpaceforms. Section
[I.4, which deals with a purely geometric issue, focusses qaréal differential
equation arising in Dirac eigenvalue estimates on Kahkemnifolds.

The framework for our second question deals with the seanchbiautiful” metrics
on pseudo-Riemannian manifolds. In Lorentzian signattivere has been a lot of
effort in understanding vacuufinstein’s equationswvhich ask for the existence of a
Ricci-flatmetric on spacetime built out of initial data along a spaeeliypersurface.
In Sectior LB, we weaken the Einstein condition and askdastant scalar curvature
in an arbitrary conformal class: this is the afore-mentébamabe problem, but for
Lorentzian metrics. We start by investigating the exisgesicsuch metrics on standard
static spacetimes with the use of elementary analyticahats. We emphasize that
there is still a lot to do to fully understand the general casé that probably more
geometry is needed to go further on.

Our third and last question deals with different physica¢ipretations of solutions
to geometric partial differential equations. It is not ditg related to the first two
ones, even if it is based on the existence and uniquenes®®é #olutions, which
both deeply combine analysis and geometry. The fundameatedept developed in
Sectior LB is that of (locally covariarguantum field theorywhich is also a quickly
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developing topic.

The presentation is organized as follows. The differentgsenf work are summarised
in the sections below, whereas their original (and possfhlplished) version is
contained in the next chapters.

Before turning to the core of the thesis, we introduce a bitathtions and concepts
used throughout this chapter. The first central conceptasdahDirac-type operator.
Loosely speaking, a Dirac-type operator on a pseudo-Riaraamanifold is a first or-
der linear differential operator acting on the sectionsoofis vector bundle and whose
principal symbol satisfies the so-call€tifford relations

X-Y-4Y X = —29(X,Y),

for all tangent (co)vectorX,Y and whergy is the metric on the underlying manifold.
In the particular case where the manifolggsn, which is an orientability condition of
second order, one can define the conceptwigted Dirac operator in a more precise
way as follows. Given a spin structure dh which is a non-trivial two-fold covering
of the oriented frame bundle of the manifold, there is a Héamicomplex vector bun-
dle 2M — M, called thespinor bundle on which the tangent bundle of the manifold
acts byClifford multiplication, meaning that there exists a vector bundle homomor-
phismT*M ®3M — M, X’ ® ¢ — X ¢, with X- (Y- @)+ Y- (X-¢) = —2g9(X,Y)¢.
This vector bundle carries a natural metric connectionerofalled the spinorial Levi-
Civita connection — preserving Clifford multiplicationiv@n any Riemannian or Her-
mitian vector bundle with metric connectiéh— M, the tensor produd@M ® E — M
can be formed which carries a natural Hermitian metric anttimeonnection denoted
by 0*M=E, The Dirac operatoDt; of M twisted byE (in short twisted Dirac operator)
is then defined as the composition of Clifford multiplicatiand connection: given any
sectiong of XM ® E, we have

n
DE¢ =i Z gjej - @Id) gV 9,

where(gj)1<j<n iS a local orthonormal basis dfM andq is the index of the metrig.
The operatoD; is a formally self-adjoint linear differential operator fafst order on
the Hermitian vector bundlaM ® E — M. In the particular case wheke — M is a
trivial line bundle and the connection is the standard fla, @me obtains the so-called
spin(also called fundamental) Dirac operaly;, acting on sections GtM.

In the setting of Lorentzian manifolds, we use the follow{standard) notations for
the following notions. Given a Lorentzian metgon a manifoldV, we call a tangent
(co)vectorX timelikeif g(X,X) < 0, lightlike if g(X,X) = 0 andX # 0, andspace-
like otherwise. Acausalvector is a vector which is either time- or lightlike. All the
concepts carry out to curves and vector fieldgime orientationon M — if it exists —

is fixed by a (smooth) timelike vector field on M: at each poink of M, the causal
future (resp. past) in the tangent spaghl is the set of causal vectors lying in the same
(resp. opposite) connected component of the set of causirgeasXy. Time-oriented
Lorentzian manifolds are often referred togmcetimesOn a spacetime, the causal
(resp. chronological) future of a subget. M can be defined as the sub3¥{(A) (resp.

Q" (A)) of all points inM that can be joined by a future-directed causal (resp. tiagli
curve from (some point inA. Correspondingly, there is the notion of causal (resp.
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chronological) pasi™(A) (resp.IM(A)) of Ain M. One should pay attention that those
subsets not only depend @rbut also orM.

1.2 Dirac operators on homogeneous spaces

The results presented in this section are based on thesd&H], see Chaptél 2 below.

1.2.1 Motivation

This work deals withsharpextrinsic Dirac eigenvalue estimates for hypersurfaces in

real spaceforms. Namely, Ist" <4 M"*1(k) be an isometric immersion of an oriented
closed Riemannian manifold", g) into the simply-connected spacefoltit1 (k) of
constant sectional curvatukec R. Then the existence of a global smooth unit normal
v onM" compatible with orientations dfi” andM"*1(k) makes it possible to restrict
the (canonical) spin structure Bf"t1(k) to a spin structure oRI™. If H := — ﬁtr(ﬁv)
is the mean curvature of the immersiomw.r.t. v on M", then the smallest eigenvalue
A1(D3,) of the squared Dirac operatdg, of (M",g) (for the restricted spin structure)
is known to satisfy
o Jw(H2+K)dvg  if k>0 [9, Thm. 4.1]
M(DRy) <
“742 <max(H2) +K> if K <O [25, Thm. 2.2]&[26, Thm. 1].
M

In other words, the smallest eigenvalue of the intrinsjcaléfined Dirac operator
can bea priori controlled by a relatively weak extrinsic geometric ineaut, namely
the mean curvature of the immersion. Those estimates relg olever application
of the min-max principle. Surprisingly enough, determ@ifor which immersed
hypersurface the inequality above is an equality — this &slitniting-caseof the
inequality — turns out to be a difficult question. It is elertsg to show that, if
the equality holds, then the mean curvatlifemust be constant oM. A direct
computation shows that round hyperspheres fulfil the etyuathateverx is. For
k = 0, it was shown only recently using a variational formula Birac eigenvalues
that, apart from round hyperspheres, no hypersurface disfysthe limiting-case
[38, Thm. 1]. In case = 1, there is a one-parameter-family of so-called generdlize
Clifford tori in the sphere also enjoying this property [2But besides those two
families, no other example was known. This led to the follogwjuestion:

Question I How large is the family of (constant mean curvature) hypdaggesM" in
the round spher@™+1 for whichA1(D3,) = ”742 (H241) holds?

It is reasonable to start looking Rbmogeneoulypersurfaces, whose Dirac spectrum
can be hoped to be computed using representation thedrtetids In [29], we con-
sidered the spac®® ;= SUZ/Qs, which is the simplest homogeneous hypersurface
in the sphere which is neither a hypersphere nor a genedaC4iéford torus, see
e.g. [A€] for the classification of homogeneous hypers@$ain spaceforms. Here
Qg := {#1,+i,+]j,4+k} denotes the finite group of quaternions. The spliead-
mits a three-parameter-family of homogeneous Riemanngtnies, a one-parameter-
subfamily of which arises as induced from (a one-paranfaraity of) embeddings
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into S*. Here one should pay attention to the fact thigtcarries no less than four dif-
ferent spin structures — each corresponding to a group hargnism @ — {+1} —
but that only one of those is induced from the above embedditigS?*, see[[29, Sec.
1 & 2] for details.

1.2.2 Main results

Considering any of the homogeneous metrics and spin stegctuentioned above,
Frobenius reciprocity allows to split (under tBeaction) the Hilbert space &f-spinor
fields onM? into a Hilbert direct sum of finite-dimensional subspacesheof which
is preserved by the Dirac operator, see €.9. [6, Thm. 2 & PtppFurthermore, a
formula involving solely representation-theoreticalalafives the explicit form the
endomorphism induced by the Dirac operator on each of thalsspsices. Therefore
the determination of the Dirac spectrum reduces to thateétbenvalues ahatrices

The finite-dimensional Dirac operators for arbitrary homiogous metrics and spin
structures are computed in_[29, Thm. 0.1] and we shall nabdpe this result here
since the general form of the matrices we obtain is partituiiavolved. Let us mention
however that, even if we can choose adequate bases such lasito uwpper triangu-
lar matrices, we cannot compute their spectrum explicitigéneral. Still there is a
two-parameter-subfamily of metrics — precisely those aetlby the so-calleBerger
metricson S8 = SU,, up to scaling by a positive constant — where the eigenvaiaes
be explicitly expressed. This is the first main result we pnésiere:

Theorem 1.2.1 ([29, Cor. 0.2])The compacB-dimensional manifold M= SUz/q,
carries a two-parameter family of homogeneous Riemanniatries (indexed by
a1, a2 € R*) such that its Dirac spectrum can be computed for any of its &pin
structures (indexed bg;, j =0,...,3). More precisely, the spectrum of the operator

2 A2
Dm + Zagfz Id for the metric induced by;aa; and the spin structure given lgy con-

sists of the following family of eigenvalues:

0. for j=0,

U {aus V/(n—2k— 1)%2 + 4(n— K)(k + 1)a3
ngi](\z)
n-5
ke {0,...,7} evena; + (n+ 1)a2}

U U {a=+ V/(n—2k— 1)%2 + 4(n—K)(k + 1)a3
n263](\]4)

-5
|k e {1,...,”7}oddalf(nJrl)az,—nal},

each eigenvalue having multiplicitynl for the corresponding n.
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1 forj=1,

U {at \/(n—2k— 1)%2 + 4(n—K)(k+ 1)a3

neN
n=1(4)

-5
|k e {0,...,nT}evena1—(n+1)a2}

U U {ali\/(n—2k—1)2a%+4(n—k)(k+1)a§
n2§?4)

n-5
ke {1,...., =} odday+ (n+L)az, —nay |

each eigenvalue having multiplicitynl for the corresponding n.
2. forj=2and j=3,
U {at \/(n—2k—1)%2 + 4(n—K)(k+ 1)a3

neN
n=1(4)

-3
|k€{1,...,nT}0dd,fna1}

U U {a \/(n—2k—1)%2 + 4(n—K)(k+ 1)a3
nggl(\lzl)

|ke{0,...,L23} even},

each eigenvalue having multiplicitynl for the corresponding n.

Each upper bound (e.d2) for the possible values df in Theorem1.Z]1 must
be understood as follows: if for a givem it is negative then the corresponding

eigenvalues do not appear. For exampl®lifcarries thesy-spin structure and = 1
2 A2
thenDy, + Zaé;azld has only one eigenvalue, namely + 2a, (with multiplicity 2).

Similarly, if j = 2,3 andn = 1, then only—a; appears with multiplicity 2.

In the particular case abund metrics onM3, which corresponds ta; = a,, our
results coincide with those already proven by Christian[BAThm. 2] using another
method.

Coming back to Question 1, it turns out that the family of Rermetrics orM2 does
not coincide with that of metrics induced fra#ft but is transverse to it. Both families
intersect in exactly six points which correspond tomhieimalembeddings among the
family. For those embeddings, the spad satisfies the limiting-case from Question
1

Theorem 1.2.2 ([29, Cor. 0.3])Let M® = SUz/qy, carry a homogeneous Riemannian

metric induced by a minimal embedding ifih Then, for the induced spin structure

(which is thegg-one), we hava, (D)) = 3.
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1.2.3 Perspectives

Theoren_1.Z]2 tends to indicate that the family of constagdmncurvature hypersur-
faces irS™*1 for whichA, (D)) = ”742 (H2+1) holds could contain all homogeneous hy-
persurfaces. This would show an interesting analogy wighsttalar Laplace operator,
whose first non-zero eigenvalue coincides with the dimenfgiominimally embedded
homogeneous hypersurfaces in the round spheré [41, 43hdfwalong this line, one
could even expeat; (D) = ”Tf(HZJr 1) to hold forisoparametrichypersurfaces, i.e.,
with constant principal curvatures, §f+1, the analogous result holding true for the
scalar Laplace operator in the minimal setting [48,56, 57].

1.3 Dirac operators on Kahler submanifolds

The results presented in this section are based on theedBd, see Chaptét 3 below.

1.3.1 Motivation

This project also deals with sharp eigenvalue estimatesntive very different context
of submanifolds of Kahler manifolds. It takes its roots ire tfollowing very gene-
ral question: how sensitive is the Dirac spectrum to the ggres of supplementary
geometric structures on the underlying manifold? It haswde®wwn for a long time
(see e.g.[[35]) that the existence of a non-zero — and neialtri parallel form on a
given closed Riemannian spin manifold forbides that of mers so-calledeal Killing
spinors which characterise the limiting-case of Thomas Friedsiagtequality [23]

A1(Dfy) >

=1

for the first eigenvalue of the squared Dirac operddgy in terms of the scalar
curvatureS of the manifold (M",g). In fact, the Dirac eigenvalues of manifolds
with parallel forms lie well above Friedrich’s lower boursge [1, Thm. 1.1] for the
simplest situation where the form is of degree 1.

In the case of Kahler (spin) manifolds, which admit a pafa?-form, the existence

of a sharp lower bound for the Dirac spectrum has been proyeKlaus-Dieter
Kirchberg in [39]. Interestingly enough, the case whereihégjuality is an equality
can also be characterised via spinor fields on the manifbiat &re calledreal
Kahlerian Killing spinorsin case the complex dimension is odd, see Sed¢fion]1.4.1
below for a formal definition. Those complete Kahler spinnifiads with non-zero
real Kahlerian Killing spinors have been classified by Agidiloroianu [45, Thm. A],
building on earlier partial achievements by (among oth&lgus-Dieter Kirchberg
and Oussama Hijazi, sek [45] for references. They can alldseribed as twistor
spaces of quaternionic-Kahler manifolds with positivalac curvature. The complex
projective spac€P" of odd complex dimension is such an example (and is the only
example in complex dimension= 1 (4)).

How does th&&hler structure of a given spin manifold now influence the spectofim
geometric operators on issibmanifold8 This question echoes those of Seclion 1.2.1,
with the notable difference that up to now little has beenedomthe Kahler setting.
Prior to [30], geometric bounds for the spectrum of Lagrangiubmanifolds had been
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determined in[[28]. For Kahler (i.e., complex) submard&lGeorges Habib and | got
interested into the following:

Question 2 How can the spectrum of Dirac operators of Kahler subméasfof CP"
be controlled in terms of intrinsic or extrinsic geometréatal?

There is a subtle point about the concept of Dirac operatthrigncontext, since for a
given submanifold of codimension at least 2 the Dirac-typerator which lies closest
to the extrinsic data provided by the immersion lives on #etiens of awistedspinor
bundle. More precisely, the spinor bundle of the submadiifouist be twisted by the
spinor bundle of itmormal bundleln particular, the twisted Dirac operator does not in
general — unless that normal bundle is trivial and flat — ddmwith the intrinsic Dirac
operator of the submanifold.

1.3.2 Main results

We focus on closed Kahler submanifol€d of complex projective spaceSP" of
odd complex dimension — which are exactly those that are, sgia e.g.[[42, Ex.
[1.2.4]. We must assume thM itself is spin since there is no naturally induced spin
structure orM — as a matter of fact, a complex submanifold must not be spink'bf
e.g.CP¥ — CP" with d even). Fixing the standard complex structure and Fubinihst
metric of constant holomorphic sectional curvature 4@, we denote byg andJ
the induced Riemannian and complex structur&borespectively. In view of Question
2, we ask for lower and upper bounds for the smallest eigaewafithe Dirac operator
DN of M twisted with the spinor bundle of the normal bunté/ = T-M — M
of the immersion. To see that this operator is well-definetlus mention that the
normal bundle carries a spin structure induced by thodd ahd CP" and hence has
an associated spinor bundle.

Upper bounds priori for the smallest eigenvalues BN can be derived in terms
of extrinsic data, i.e., those built out of the second funeatal form of the immer-
sion. As it turns out, they only depend on tbenensionof the submanifold: there

are 2 & eigenvalued of (Df,,'\‘)2 satisfying [25, Thm. 4.2] (reproduced in |30,

Thm. 2 2]2)
m. 2.
(d+1)2 ifdisodd
A< (1.1)
d(d+2) ifdiseven.

The proof of [1.1) relies on the use of real Kahlerian Kijispinors as test spinors
in the min-max principle. The application of that princiglethermore provides a

technical necessary condition far (fL.1) to be an equalitytlie smallest eigenvalue
of (D)2, however that condition is not sufficient to deduce cleatuies about the

geometry oM and its immersion, seé [B0, Thm. 2.2] and discussion below.

To get a better control of the eigenvaluegdfN)?, one can compare the upper bound
of (L.2) witha priori lower bounds in terms of curvature quantities, conside(Dyg')?
as an arbitrary twisted Dirac operator on a compact Kahbamifald:

Theorem 1.3.1 ([30, Cor. 3.2])Let (M?,g,J) be a closed Khler spin manifold and
E — M be a Hermitian vector bundle with metric connection. Denby Lf; :
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I(M,ZM ® E) O the associated twisted Dirac operator. Then for any eigkre/a
of (D§)?,

A>

{ 4l (miny(S)+ k1) ifdis odd

ﬁ(minm (S +ky) ifdiseven
where S is the scalar curvature of the manifatd,denotes the smallest eigenvalue of
the (pointwise) self-adjoint operatap — 25 (e -€j-1d® Rg!ej )@ and FE is the
curvature operator of the connection on-& M.

Those estimates generalise those proveri_in [39] since wev afbitrary twisting
bundles. Moreover, it can also be seen as the Kahleriamgnalto the corresponding
Riemannian estimate, see elg./[31, Prop. 4.1].

Unfortunately, the combination df (1.1) and Theofem 1.32é&snot provide any cha-
racterisation of the limiting-case ifi{1.1): even in the giest case whert = CP¢
(with d odd) is standardly embedded inf#", the presence of normal curvature does
not allow to conclude that; ((DiV)?) = (d+1)2. And in fact an explicit computation
of the spectrum of the twisted Dirac opera@g on CP? (first carried out in[[15]
and independently in[22]) shows that, according to theeslofd andn, equality in
(I1) may or may not hold. For instancegdif= 1, thenA;((DiN)?) = (d + 1)2 = 4 for
n=3,5,7, howeven;((DiN)?) < 4 for all oddn > 9, seel[30, Prop. 4.8].

1.3.3 Perspectives

There is still a lot to be done to understand which kind of gewio information is
contained in the equality case bf(3.7) and, more generaligt geometry is contained
in the restriction of particular spinor fields from Kahleanifolds onto their submani-
folds. Let us mention that, after [30] was published, an apph within the framework
of so-called spifistructures, which are better fitted to the setting of Kagesmetry,
has been tackled in [33].

1.4 Imaginary Kahlerian Killing spinors

The results presented in this section are based on theedBHk], see Chaptét 4 below.

1.4.1 Motivation

This project deals with a first-order linear partial diffetial equation originating in a
Dirac eigenvalue estimate on Kahler manifolds. As memtbim Sectio 1.3]1 above,
there exists a sharp lower bound for the eigenvalues of theciperator on compact
Kahler spin manifolds in terms of their scalar curvature do Klaus-Dieter Kirch-
berg [39]. In case the complex dimension of the manifold id,dtle equality case
of that estimate is characterised by the existence of nomstecalledeal Kahlerian
Killing spinors Let us briefly give the precise definition. Léf" be a Kahler manifold
with metricg and compatible complex structudelf M is spin, then its spinor bundle
>M — M carries a Clifford multiplicatior(X,¢) — X - ¢ from the tangent bundle as
well as a compatible metric connectiGhwhich can be seen as its Levi-Civita spino-
rial connection. Given a constaote C*, an a-Kahlerian Killing spinoron M is a
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pair (¢, ) of sections o&M — M satisfying the following coupled system of linear
equations for alX € TM:

(1.2)

For o real (resp. purely imaginary) the p&ig, ¢) is called real (resp. imaginary)
Kéhlerian Killing spinor.

It is important to note that the systen (|1.2) is actuallgrdeterminerthe existence of
non-zeroa-Kahlerian Killing spinors imposes strong restrictionsthe geometry of
the underlying manifold. Among others, they have to be Einstith scalar curvature
4n(n+ 1)a? and must have odd complex dimensionin casea € R*, Andrei
Moroianu completely classified_[45] those complete Kahdein manifolds with
non-zero real Kahlerian Killing spinors. They are all caopand can be described as
twistor spaces of quaternionic-Kahler manifolds with ifies scalar curvature. This
includes all complex projective spaces, which are furtleethe only such manifolds
in complex dimensiom = 1 (4).

In casea € iR*, complex hyperbolic spaces are known to carry non-zero iimaag
Kéhlerian Killing spinors, see e.d. [40]. In complex dinsem 3, there is no further
example of complete Kahler spin manifold with non-zerogmary Kahlerian Killing
spinors since the sectional holomorphic curvature can be&shto be constant negative
[40, Thm. 16]. Nevertheless, the classification in highenptex dimensions remained
open. This made Uwe Semmelmann and me address the following:

Question 3 Can Kahler spin manifolds with non-zero imaginary KatderKilling
spinors be classified?

The angle of attack we took consists in picking a non-zeraimary Kahlerian Killing
spinor(y, @) and looking at théevel setf the (positive) smooth functioy|? 4 | @|?
on M. The reason for this is that, because[of](1.2), this fundSoexpected to have
“few” critical values, fact which should allow a “simple” deription of the underlying
M. In the Riemannian setting (concerned wiithaginary Killing spinors that we are
not going to describe in detail here), this approach showedessful and led Helga
Baum to a full classificatiori_[14].

1.4.2 Main results

We focus on the systeri(1.2) withe iR* on an arbitrary Kahler spin manifold?"

of odd complex dimension. Up to scaling the metric and changiaginto —a, we
may assume = i. Fixing a non-zera-Kahlerian Killing spinor(y, @), a computation

of the second derivatives of the functidn= ||?> + |¢|* already sheds light on the
structure oM: the functionf has at most one critical value, which is then a minimum
and in that case the set of minima is a connected totally ggo#@hler submanifold
of M [32, Prop. 2.3].

In case all values of are regular, the manifol¥ can be split into the product of
a level hypersurface of with the real line, at least when the metric is complete. To
see what kind of metric and complex structure we could facewmh a product, we



1.4. IMAGINARY KAHLERIAN KILLING SPINORS 17

considered the family of so-calletbubly warped productsvhich are the Kahler ana-
logues of Riemannian warped products. First introducedsrdiploma thesis [3] by
Patrick Baier to compute the Dirac spectrum of the complepehiyolic space, they
can be described as follows. L@112"1,§, &) be a so-calleGasaki manifoldSasaki
manifolds can be characterised as those Riemannian madmifdiose metric cone is
Kahler. Sasaki manifolds carryteansverse khler structureon the distribution which
is the pointwise orthogonal complement to the Reeb vectldt feLet| C R be an
open interval angb, o : | — R be smooth positive functions dn Then thedoubly
warped producbf M by | with warping functiongp, o) is the manifold

(M?,g) := (M x I, p(t)*(a(t)?F; ® §z.) @ dt?),

Wheregvg and g:;L denote the restrictions of the metigconto the subbundleR E

and&L of TM respectively. Note that12" is in general not Kahler. However,%/ is
constant orl, then(M?", g) can be endowed with a Kahler structure that more or less
extends the transverse Kahler structuréMf™ 1 §, &), see[[32, Lemma 3.4].

The equationd(112) can be completely translated ontorarpispin doubly warped
products[[32, Lemma 3.8]. As could be expected, the existeha non-zero solution
to (1.2) restricts strongly the possibilities for the fupatp and the Sasaki structure on

(M2-1,§,&):

Theorem 1.4.1 ([32, Thm. 3.9])Let (M?",g) := (M x L,p(t)2(p'(t)%F; © Gz ) ©dt?)

be the K&hler doubly warped product of a Sasaki manif(MZ”*l,Q, 5) with an open
interval and warping functionép, p’) (the relationp’ = ¢ is fulfilled because K is
Kahler). Assume I carries a non-zero i-Ehlerian Killing spinor. Then we have the
following:

i) Up to standard normalisations, the functignis one of the functionsxp cosh
or sinhand (l\7|2”*1, d,&) must admitransversally parallel spinars

ii) Conversely, any non-zero transversally parallel sgihong in some particular
eigenspace of the Clifford action of the transversghker form on(l\7|2“*l,<j, )
induces a non-zero i-&hlerian Killing spinor on the doubly warped product of
M by R with warping functionp = o = €.

Even if there is presently no classification of Sasaki madasfovith transversally
parallel spinors (though there may be some hope from thetigappeared paper [34]
where foliations with particular transverse holonomies eassified), Theorein 1.4.1
allows the construction of infinitely many examples of Kéhspin manifolds with
imaginary Kéahlerian Killing spinors and with non-condtdrolomorphic sectional
curvature. For every simply-connected Hodge hyperkamianifold of complex di-
mension 4 carries al;-bundle whose total spadé is Sasaki and has a transversally
parallel spinor lying in the right eigenspace[32, Lemmal.fnoreover, the holomor-
phic sectional curvature of the doubly warped prodiix R, ea(eagg @ ggﬂ) @ dt?)

is not constant since hyperkahler manifolds are not flat[32, Lemma 3.12]. We also
reobtain the complex hyperbolic space as a doubly warpediugtan three different
ways, see[[32, Rem. 3.10] and [32, Thm. 3.18].
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The question remained open whether all Kahler spin matsfalith Kahlerian Killing
spinors are doubly warped products or not. Under a suppleametechnical assump-
tion, we could show that the doubly warped product structarebe recovered:

Theorem 1.4.2 ([32, Thm. 4.1])Let(M?", g,J) be any complete &hler spin manifold

with a non-zero i-Khlerian Killing spinor(y, @). Assumey| = || as well as the ex-
istence of a (real) smooth vector field W and of a non-idefijie@anishing continuous
complex-valued functiop such that W ¢y = pg@ on M.

Then(M?",g,J) is holomorphically isometric to a doubly warped product ddasaki

spin manifoldM by R, with warping functionp = o = €, and(y, @) comes from a
transversally parallel spinor oM.

1.4.3 Perspectives

There is still work to be done to fully understand the stroef Kahler spin manifolds
with imaginary Kahlerian Killing spinors. Alongside, itauld be interesting to be able
to characterise large families of Kahler manifolida Obatg i.e., with the help of
functions satisfying some kind of partial differential egjon involving their Hessian.
Partial results have been obtained for complex spacefarij8j and [54].

1.5 The Lorentzian Yamabe problem

The results presented in this section have not been publligeeand are based on
Chaptefb below.

1.5.1 Motivation

This project is motivated by the search for “best” pseudenRinnian metrics on
manifolds. This could be understood in many different wayd we choose here the
curvature point of view: we look for those pseudo-Riemannigetrics with “most
constant” curvature. The latter still admits various iptetations and we make this
a bit more precise by focussing on the weakest curvaturegianta namelyscalar
curvature It is now well-known that constant scalar curvature metegist in any
Riemannian conformal classn any closed manifold: this is the celebratéaimabe
problem first formulated (and thought to be solved) by Hidehiko Yama 1960[[60]
and finally solved in the eighties by Richard Schden [55]raftsential contributions
by — among others — Neil Trudinger [58] and Thierry Aubih [2].

By comparison, very little has been done in the pseudo-Rieimaa setting. For
instance, which function on a given manifold can be the socalavature of some
pseudo-Riemannian (hon-Riemannian) metric? The studyadéscurvature functions
for pseudo-Riemannian metrics really started with Marcdwaann’s PhD thesis [50],
with the focus oncompactmanifolds, where a clever use of auxiliary Riemannian
metric allows to reformulate the problem as d@liptic equation, for which standard
techniques can be applied.

In the Lorentzian setting, there is a category of manifoldiéciv are better-fitted than
compact ones for both physical and analytical purposesy ®ne calledglobally
hyperbolic They can be roughly thought of as the prodittof some arbitrary
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Riemannian manifol& by an interval (standing for the “time-axis”) and with a kind
of warped-product metric. The essential feature is bhatust be a so-calleGauchy
hypersurfaceén M, meaning that every “event” is caught once and only once by an
observer along; in mathematical terms, every inextendible timelike cumethe
Lorentzian manifold must crosg exactly once. In particular, globally hyperbolic
Lorentzian manifolds have no closed timelike or even catisales. Many reasonable
physical models for our 4-dimensional universe are glgbalperbolic. On the
other hand, globally hyperbolic Lorentzian manifolds aestbsuited fothyperbolic
equations, for which a Cauchy-problem-ansatz with inditia along the hypersurface

> allows to discusgllobal existence and uniqueness of solutions. This is by the way
the origin of the termglobally hyperboli¢c which has nothing to do with Riemannian
hyperbolicity.

The main question we address in this project is the following

Question 4 Does there exist a metric with constant scalar curvatureyncanformal
class of globally hyperbolic metrics?

We mainly look at globally hyperbolic manifolds wittlosedCauchy hypersurface,
which are for analytical investigations the simplest offé® equation we have to solve
(see[(B.11) and (Bl 2)) is a semilinear wave equation, for wsiandard techniques from
the analysis of so-called symmetric hyperbolic systemsvsthe local existence of
smooth solutions. Thus the only issue is abglobal existence as well as uniqueness
of solutions.

1.5.2 Main results

In dimension 2, the existence of global smooth solutiongar wave equations on
globally hyperbolic manifolds already shows that globdljyperbolic surfaces are al-
waysconformally flat see Theoreiin 5.1.4 below. What goes unnoticed in this cake an
leads to the main concern in higher dimensions is the fattitieesign of the solution

of (5.7) need not be cared about in dimension 2. In dimensiar8, the equation to be
solved is the following on the globally hyperbolic manifgi", g):

n—2 n—2 042
Ot g T g

where §; is the scalar curvature af and § <€ R is the constant scalar curvature

associated to the conformal mettic= ¢n%2 -g we look for. Solving that equation
means finding amooth positivéunctiong onM satisfying it. Fixing a smooth Cauchy
hypersurface that is spacelike (i.e., on whidrestricts as a Riemannian metric) in
M, we must show that the solution of the Cauchy problem astgutia that equation
and with initial data alon@ extends for all time — or at least find some conditions for
which it does.

As mentioned just above, the main difficulty consists in colfihg the sign of the
solution, because no maximum principle works outside thygtiel or parabolic world.
To understand what can happen, we start by considering pradtentzian manifolds,
i.e., products x X of an intervall with a Riemannian manifold, carrying the corres-
ponding Lorentzian product metric. Those Lorentzian nad# are calledstandard
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staticin the literature. In that case, the existence of a soluteonte simply tackled by
separating variables (see Theofem5.2.6 below):

Theorem 1.5.1Let an > 3)-dimensional Lorentzian manifolM",g) be confor-
mally equivalent to the produgt x X, —dt® & gs), where IC R is an open interval
and (="1,gs) is a closed Riemannian manifold. Lgt € R be the smallest eigen-
value of the linear operatord, :=As + ‘Kr‘n;fl)sgz, whereAs and §, denote the scalar
Laplace operator and the scalar curvature(@" 1, gs) respectively.

Then there exists in the conformal class of g a metric withstaomt scalar curvature

H1 on M",

The proof of Theorerh 1.5.1 relies on the fact that the eqoatan be reduced to a
subcritical non-linear Yamabe-type equation on the compact Riemanmianifold
>, in particular it does not involve any study of sign-changes the solutions we
obtain do not depend on time. Still one has to pay attentidhedact that the constant
conformal scalar curvature we obtain depends on the sigmeogigenvalug!;, which
itself depends on the geometry @™, gs). To test the limits of the study, one could
ask for the strongeprescriptionof the conformal scalar curvaturgiven any § € R,
does there always a conformal metric with that scalar cure&tlt turns out that the
answer depends on the signgaf. If e.g. 1 < 0, then there always exists a conformal
metric with vanishing scalar curvature on a standard stgacetime; by contrast, if
U1 > 0, then such a metric only exists for short times, i.e., ifittiervall is sufficiently
short. In the latter case, we even obtain the optimal lengthfor global existence,
see Theorerin 5.2.9 below. As an application, the de Sittaretipae has a conformal
metric with vanishing scalar curvature if and only if its dinsion is 23 or 4, see

Corollary[5.2.1D below.

Unlike the Riemannian setting, where conformal metrichwitnstant negative scalar
curvature are unique up to homothety on closed manifoldgjuemess of solutions
seems never to hold. In some sense, smooth positive salutiothe Lorentzian Ya-
mabe equation look stable: one may perturb, along a givesi@aypersurface, the
initial conditions of a solution a bit and still obtain a sntlepositive solution. Although
we cannot make for now any general statement, there are éasufiop all three cases
S € {—1,0,1} of globally hyperbolic spacetimes with infinitely many nbomothetic
metrics with constant scalar curvatuge We refer to Section 5.2.2 for the discussion
of uniqueness in the standard static situation.

1.5.3 Perspectives

The general setting of arbitrary globally hyperbolic sganes with closed Cauchy
hypersurface remains open. As we mention in Se¢tioh 5.3ahéke issue is not so
much about existence of (weak) solutions to the Lorentziamabe equation, which
should follow from “standard” techniques for semi-lineaawe equations, taking into
account that the exponela%j‘—2 is subcritical for some Sobolev embedding on the
Cauchy hypersurface; it is about how to control gign of solutions. It is for the
moment unclear which kind of criterion, either analyticajeometric in nature, could
help in this respect.

Apart from stronger curvature quantities such as secticunafature (see e.d.|[4]), a na-
tural concept to be discussed around this project is thdiedt‘metric”. For on globally
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hyperbolic spacetimes the properties of tinge functioninducing the smooth splitting
by Cauchy hypersurfaces is crucial in many respects. Fanpka the existence of a
time function with “large” gradient on any globally hypetlmspacetime makes it iso-
metrically embeddable in some Minkowski space of suffidiehigh dimension[[477].
One may also try to control the second fundamental form o€uechy hypersurfaces,
see e.g.[146]. Other important issues deal with the existamall of codimension one
foliations [51] and with foliations by constant scalar oranecurvature Cauchy hyper-
surfaces, a topic which is still in progress, see €.d.[[24, 5]

1.6 Quantization on Lorentzian manifolds

The results presented in this section are based on theedtitj, with a shorter version
published in[[12], see Chapigr 6 below.

1.6.1 Motivation

In physics,quantizationcan be thought of as a bridge between “classical” general
relativity and “non-classical” quantum mechanics, whickald with physics at
very small scales. There are several approaches to quéiZaee the excellent
introduction [17] or the recently published book [21]) anmtkeocof the most intuitive
and mathematically easiest to formulate is probablyltieally covariantone: given

a fixed background spacetind and a (linear)differential operator Pon M, one
associates to any region df some kind ofalgebrabuilt out of the solutions to the
equationPu= 0 — calledfields— on that region. This algebra should be interpreted as
the algebra obbservabledn that region. Stated like this, there is of course still tzolo
(mathematical) freedom, however physical consideratiead to a certain family of
axiomsthat must be satisfied: for instance, two “independent’aegif the spacetime
must give rise to two “commuting” or “anti-commuting” algas, in a sense that
must be made precise; if a region is contained in anothen the corresponding
algebra must be “contained” in the other. The latter refl¢loés fact that algebras
have to be associated incavariantmanner. Based on pioneering work such[as [19]
and first described in a general and consistent frameworkdme® Brunetti, Klaus
Fredenhagen and Rainer Verchl[18], this approach is chltsdly covariant quantum
field theory

For linearwave operators on arbitrarglobally hyperbolicspacetimes (see Section
[L.5.1 above for a brief definition),lzosonidocally covariant quantum field theory can
be successfully carried out by means so-called Ggiesentationswhere “CCR”
stands for “Canonical Commutation Relations”. The ide@spnted in[[13, Ch. 4],
consists in associating to each open subset of a given fj)dbalerbolic spacetime a
symplectic vector space built directly out of the solutidmshe wave equation; there
is a natural and covariant way of doing this. Then standgpdesentation theory of
symplectic vector spaces allows to associate — also in arieowavay —C* algebras
to symplectic vector spaces by means of C@presentationssee e.g.[16]. What we
formally obtain at the end is functor from a “classical” category whose objects are
spacetimes together with wave operators to a “non-cldésiagegory whose objects
are particulaC*-algebras called CCRIgebras Although we shall not introduce CCR
algebras in detall, let us mention that they show the folfmpessential and relatively
intuitive feature calledjuantum causalitysee Theorein 1.6.1 below): any two causally
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independent domains in a spacetime give riseaimmutingCCR (sub)algebras; or, in
more concrete terms, independent events give rise to imdiep observables.

Still plenty of differential operators are not of wave tygdthough numerous papers
have been dedicated to covariant quantization for pagtianperators (see references
in [11]]), there had been no attempt to develop a “generall figlantization, that could
be applied to the most general differential operators. Ted<Christian Bar and me to
address the following:

Question 5 How large is the family of differential operators for whichchlly
covariant quantization can be carried out?

Here one has to pay attention to the fact that, even for a gipenator, possibly diffe-
rent types of algebras may come out and be physically metaniddherefore the kind
of algebra we aim at obtaining must be made precise.

1.6.2 Main results

We first focussed on bosonic locally covariant quantizatiamich is in terms of CCR
algebras. An essential step in the construction of symiplegctor spaces out of
solutions to a linear wave equation consists in extractirggftndamental solutions
for the wave operator under consideration — which are knawexist, see e.gl [13,
Ch. 3]. Actually, the existence of such fundamental sohgjoor equivalently, of
Green's operatorssufficesfor that, because the symplectic structure only depends
on those (and the formal self-adjointness of the wave op#erathis remark led us
to define the very general category @feen-hyperbolioperators, which are linear
differential operators, acting on sections of a (real or pl@x) vector bundle over a
spacetime, and admittinGreen’s operatoron any globally hyperbolic open subset
of the spacetime. Recall that an advanced (resp. retardezhnG operator for a
differential operatoP : I'(M, S) ¢ on a vector bundl&— M can be defined as a linear
map G, : [¢(M,S) = '(M,S) (resp.G_ : [¢(M,S) — I'(M,S)) with Po G, = Id,
G.oP=Id onl¢(M,S) and with the support condition su@. (¢)) c ¥ (supd¢))

for all ¢ € I'c(M,S). There are whole families of Green-hyperbolic operatarsiu-
ding all wave or Dirac-type operators as well as physicadlgvant operators such
as the Proca or the Rarita-Schwinger operator,|s€e [11,2S2€..6]. Let us mention
however that the family of Green-hyperbolic operators igty larger than that of
hyperbolic ones since for instance the direct sum of two G#egerbolic operators is
again Green-hyperbolic[11, Lemma 2.29], neverthelesfiypérbolic in general.

To formalize quantization in a mathematically rigorous mem propercategories
have first to be defined. The “source” category, denote@lbgHypGreen, has triples
(M, S P) as objects, consisting of a globally hyperbolic spacefihe (real) pseudo-
Riemannian vector bund®— M and a formally self-adjoinGreen-hyperboliope-
rator P acting on sections db. Its morphisms are pairsf,F) consisting of a time-
orientation preserving embeddirfigsatisfying some causality condition together with
a vector bundle (pointwise) isometFy preserving the operators, seel[11, Def. 3.1].
The “target” category, denoted 16y Alg, hasC*-algebras with unit as objects and unit-
preserving injectiv€*-homomorphisms as morphisms. Our first main result shows the
existence of dunctor from the former category to the latter, which enjoys impotta
physical properties:
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Theorem 1.6.1 ([11, Thm. 3.10])With the above notations, there is a covariant func-
tor Apos: GlobHypGreen — C*Alg which is a bosonic locally covariant quantum field
theory, i.e., the following axioms are fulfilled:

i) (Quantum causality)Let (M;,Sj,P;) be objects in GlobHypGreen, j =
1,2,3, and (fj,Fj) morphisms from(M;,S;,P;) to (M3, S3,Ps), j = 1,2,
such that f(M;) and %(M,) are causally disjoint in M. Then the sub-
algebras Apos( f1,F1) (Apos(M1,S1,P1)) and Apos( f2, F2) (~Apos(M2, S, P2)) of
Apos(M3, Sz, P3) commute.

ii) (Time slice axiom) et (M;,S;,P;j) be objects inGlobHypGreen, j = 1,2, and
(f,F) a morphism from(M1,S;,P1) to (M2, S, P,) such that there is a Cauchy
hypersurfac& C M; for which f(Z) is a Cauchy hypersurface ofiMThen

leOS( f7 F) : leOS(Ml7 S_I.) Pl) — leOS(M27 827 PZ)
is an isomorphism.

The time slice axiomroughly states that, if all events in two different domairis o
spacetime can be caught from a common region of space, tbevbservables from
the two domains must coincide.

Another locally covariant quantum field theory has been iges which is better fit-
ted for Dirac-type operators, namdgrmionicquantum field theory. First discussed by
Jonathan Dimock[20] for the classical Dirac operator ordfldimensional Minkowski
spacetime, itis carried out in terms of CAR algebras, whekR Gtands for “Canonical
Anticommutation Relations”. This timekdilbert spaces associated to the solutions of
the equation under consideration; again, standard repteggmn theory provides CAR
algebras from Hilbert spaces, seel[16]. There is no diffijdaliadapting Jonathan Di-
mock’s construction to arbitrary twisted Dirac operatonsapbitrary spacetimes. Our
main improvement of Jonathan Dimock’s work [20] consisteiarging the catego-
ry of operators for which this can be performed by noticingttthe Hilbert space
structure only depends on timeincipal symbolof the operator — provided the order
of the operator is one. Namely, given any formally self-adjdirst order differen-
tial operatorP acting on the sections of a vector bun@ever a globally hyperbolic
spacetimeM, one may fix a smooth spacelike Cauchy hypersurfageM with unit
normalv. Denote byop the principal symbol oP. Then an elementary integration by
parts combined with Gaul3’ divergence theorem provides ¢fagn any two solutions
¥, @ to Pu= 0 with spacelike compact support, the integfalop(V’)y, p)do does
not depend orE. In particular, the magy, @) — [5(iop(V’)y, @)do defines a non-
degenerate inner product on spacelike compact solutioRs to 0 and gives rise to a
Hilbert-space-structure as soon as pésitive definiteThis led us to define the general
categoryGlobHypDef. Its objects are triple&M, S P) consisting of a spacetinid to-
gether with a complex vector bundigcarrying a non-degenerate (but non-necessarily
positive definite) Hermitian inner produg¢t, -), and a formally self-adjoint first order
Green-hyperbolidinear differential operatoP acting on the sections @& such that
the pointwise inner produdiy, @) — (iop(V’)W, @) is (positive or negativejlefinite
for any future-directed timelike vector; its morphisms are the same as those of the
categoryGlobHypGreen above. For example, all twisted Dirac (but not all Diracdyp
operators fall in this category. It was shown very receriil] [that actually any for-
mally self-adjoint first-order linear differential opesatgiving rise to a definite point-
wise Hermitian inner product as above is automatically G+iegperbolic, since it is
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symmetric hyperbolic up to a multiplicative constant. Aytet category, we consider
CAR-algebras, which are st{lt* algebras but which also have a natdalgraduation.

In particular, one may talk abostiper-commutingubalgebras, meaning that the odd
parts of the algebras anti-commute while the even parts agmmith everyone. The
CAR quantization procedure applies GlobHypDef and we obtain the following:

Theorem 1.6.2 ([11, Thm. 3.20])With the above notations, there is a covariant func-
tor 2serm : GlobHypDef — C*Alg which is a fermionic locally covariant quantum field
theory, i.e., the following axioms are fulfilled:

i) (Quantum causality) et (M;,S;,P;) be objects inGlobHypDef, j = 1,2,3,
and (fj,Fj) morphisms from(M;,Sj,P;) to (M3, S3,P3), j = 1,2, such
that fi(M1) and £(M;) are causally disjoint in M. Then the subalge-
bras Aserm(f1,F1)(Aterm(M1,S1,P1)) and Aerm(f2,F2) (Aterm(M2, S, P,))  of
Aserm(M3, Sz, P3) super-commute.

i)y (Time slice axiom)Let (M;,S;,P;) be objects inGlobHypDef, j = 1,2, and
(f,F) a morphism fromM1, S, P1) to (M2, S, ) such that there is a Cauchy
hypersurfac& C M; for which f() is a Cauchy hypersurface ofMThen

Qlferm(fa F) : Q[ferm(MlaSla Pl) — Q[ferm(MZaSL PZ)

is an isomorphism.

Although both Theorenis 1.6.1 ahd 116.2 show how to obtaiemhsles, they do not
give any “concrete”, i.e., numerical interpretation. Tisiglone by introducingtates
which are positive, normejllinear forms on the target* algebras. In the last part
of [11], we show how states which are “sufficiently regular”a certain sense give
rise to so-calledjuantum fieldswhich are operator-algebra-valued distributions on the
underlying spacetime and which solve the equation undesideration. We refer to
[11], Sec. 4] for the details of this very technical constiutt

1.6.3 Perspectives

Despite our very general ansatz to construct CCR algebiaissafrvables out of classi-
cal fields, there are still whole families of physically redat operators — among which
all non-linear ones — where it does not apply. Another irgting issue deals with par-
ticular conditions on the states involved in the contruttidthe quantum field such as
theHadamardcondition. This condition lacks investigation in a unifiedrhework.
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Chapter 2

The spectrum of the Dirac
operator on SU,/Qsg

This chapter coincides (up to minor changes such as enuoretpages, sections,
theorems, references etc.) with the published article [29]

Nicolas Ginoux

Abstract. We compute the fundamental Dirac operator for the threaspater-family of
homogeneous Riemannian metrics and the four differentstpictures on S Qg, where
Qg denotes the group of quaternions. We deduce its spectruthdédBerger metrics and
show the sharpness of Christian Bar's upper bound for tredlest Dirac eigenvalue in the
particular case where SQg is a homogeneous minimal hypersurfaceshf

Mathematics Subject Classificatios3C27, 53C30, 58C40

Keywords Spin geometry, homogeneous manifolds, spectral theory

2.1 Introduction

Throughout this paper and unless explicitly mentioned wetkebyM the quotient of
SU, by the right-action of the group of quaterniong, @e., the group with 8 elements

defined by {5, +As, +Ay, A3} with Ay := ( N 0 ) Ay = ( ? ! ) and

0 i 0
0 1
Az = 1 0
homogeneous space and at the same time the simplest examptamogeneous
hypersurface in the round sphere with 3 different principaivatures, see e.d. [A6]
and end of Sectidn 2.3.
Using classical techniques (see €.g.][A2]) we first comphreDirac operator of for
any homogeneous metric and any spin structure:

). The manifoldM is a 3-dimensional compact connected spin

29
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Theorem 2.1.1

i) The manifold M carries 8-parameter family of homogeneous Riemannian met-
rics which are given by the orthonormal basg$; := ajA1, Xo := @A, X3 1=
azAs} of su(2), where a,a,,a3 € R*. Conversely, every homogeneous metric on
M is of that form.

i) The isotropy representatioa of M is given in the basiéXy, Xz, X3) of su(2) by
C{(:Hz): I3 a(iAl):diagXl,fl,fl)
a(£Ay) =diag—1,1,—1) a(+Ag) =diag—1,-1,1).
In particular the manifold M is orientable.

iii) The manifold M is spin and carries exactllyspin structures each one corre-

sponding to one of the following group homomorph@gs—> {-11}: =1
andKer(gj) = {l, £A;} for j € {1,2,3}.

iv) The finite dimensional Dirac operatordxorresponding to the irreducible rep-
resentation oSU, on the space Yof homogeneous polynomials of degree n in
two variables is non-trivial only if n is odd. In that situati

a2a3 + aZa3 + a2aj d

D, =D —
neon 2a1283

where [, is described by é.‘g—l X %1 tridiagonal matrix. More precisely, there
exists a basigvy, . .. ,v%l) in which O, can be expressed as

0) in case M carries the spin structure given &y

D) = (=) au(n— 2K+ (k+1)(a2+ (—1) ag)vis1
n—1
+(n—k+1)(az— (- ag)vi.1, 0<k< —
n+1 n+3
D’n(v%_l) = (al + > (a2+ ag))v%_l + > (ag— a3)v%g,
ifn=1(4) and
Dh) = —(=1) au(n—2K)vic+ (k+ 1) (@2 — (~1)*ag)Vi1
n—-1
+(n—k+1)(az+ (—D*ag)v.1, O0<k< ——
n+1 n+3
D’n(v%_l) = (al— T(a2+a3)) n1+ o (ap—ag)v n3
ifn=3(4).
1) in case M carries the spin structure given &y
Dh(vi) = (—1)*as(n— 2K+ (k+1)(az+ (—1)¥ag)Vi 1
n—1
+(n—k+1)(az— (- ag)v.1, 0<k< —
n+1 n+3
Dh(Va1) = (al — (@t as)) nt + (82— 83)Vnzs
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ifn=1(4) and
Dhvi) = —(~D*as(n—2Kvict (k+ 1) (a2 — (—1) @) Vi1
+(n—k+1)(ag+ (—Dkaz)w_1, O0<k< ”%1
Dg(vn%l) = (al + %(az + ag))vn%l + iz?’(az - a3)vn%3
ifn=3(4).
2) in case M carries the spin structure given &y
Di(k) = —(—D*ag(n—2k)v+ (k+1)(az— (—1) ag)Vvi11
+(n—k+1)(ag+ (—D)kaz)w_1, O0<k< n%l
D;(v%_l) = (—a1+ %(az— ag))vﬂ}l + %)’(azjtag)v%g,
ifn=1(4) and
Dh(v) = (=1*ag(n—2k)vk+ (k+1)(az+ (—1) ag)vis1
+(n—k+1)(ap— (—D*az)w_1, O0<k< ”%1
Dh(Va1) = (*a1* %1(&2* as))Vn;zl + %))(aﬁas)vn;zs
ifn=3(4).
3) in case M carries the spin structure given &y
Dhvi) = —(~Das(n—2Kvict (k+ 1) (a2 — (—1) @) Vi1
+(n—k+1)(az+ (- ag)v.1, 0<k< n%l
Dg(vn%l) = (— a;— %(az - a.3))Vn_£1 + 123(a2+ a3)vn;23
ifn=1(4) and
Dhw) = (=1 aa(n—2K)vic+ (K+ 1) (a2 + (—1)*a3)Vic1
+(h—k+1)(az— (—Dkaz)w_1, O0<k< ”%1
Dg(vn%l) = (— a+ %(az - a.3))Vn_£1 + 123(a2+ a3)vn;23
ifn=3(4)

We deduce the spectrum of the Dirac oper&af M for the so-called Berger metrics,
which form a 2-parameter subfamily of homogeneous metrics:

Corollary 2.1.2 With the notations oTheoren{2.T]1assume furthermore thapa=

2 A2
az. Then the spectrum of the operator+D2a§%Id on M for the metric induced by
a1, ay and the spin structure given sy (j € {0,1,2,3}) consists of the following family
of eigenvalues:
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0. for j =0,

U {at \/(n—2k—1)%2 + 4(n—K)(k+ 1)a3

neN
n=1(4)

|k e {O,...,n;zs} evenas + (n+ 1)a2}
U U {as V/(n—2k— 1)%2 + 4(n—K)(k+ 1)a3

neN
n=3(4)

-5
|k e {1,...,”7}odd,alf(nJrl)az,—nal},

each eigenvalue having multiplicitynl for the corresponding n.

1 forj=1,

U {au= V/(n—2k— 1)%2 + 4(n—K)(k + 1)a3

neN
n=1(4)

|k e {O,...,n;zs} evena; — (nN+ 1)a2}
U U {as V/(n— 2k~ 1)%2 + 4(n—K)(k+ 1)a3

neN
n=3(4)

n-5
ke {1,...,7}odd,a1+(n+1)a2,fna1},

each eigenvalue having multiplicitynl for the corresponding n.

2. forj=2and j=3,

U {au= \/(n—2k— 1)%2 + 4(n— K)(k + 1)a3

neN
n=1(4)

ke {1,...,L23} odd,—nal}
U U {ali \/(n—2k— 1)2a2 + 4(n—k)(k+1)a3

neN
n=3(4)

|k€{0,...,n;23}even},

each eigenvalue having multiplicitynl for the corresponding n.

In the case whera; = a, = agz, i.e., M is a space-form with positive curvature, we
reobtain the Dirac spectrum computed by Christian B&r i8, [Fhm. 2], see Corollary

2.4.2.

On the other hand, considerifg as embedded homogeneous hypersurface in the 4-
dimensional round sphe®& one could ask if the following inequality due to Christian
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Bar [A5, Cor. 4.3] is an equality:
M(D?) < Q2 1), (2.1)

whereA;(D?) is the smallest eigenvalue of the Dirac LaplaciarMifor the induced
metric and spin structure) ang¥ is the mean curvature dfl in S* This question
takes its origin in the study of the equality case in Christ#r's estimate [A5, Cor.
4.3] for the smallest eigenvalug (D?) of the Dirac Laplacian. If this inequality is an
equality, then the mean curvature of the hypersurface hbe tmnstant, nevertheless
the reverse statement has up to now neither been proved eardoamtradicted. We
give a partial answer to that question fdr

Corollary 2.1.3 With the notations offheorem2.1]1assume furthermore that M
carries a homogeneous metric coming from a minimal embeddirs* and the spin
structure described bgp. Then(Z.1)is an equality.

The paper is organized as follows. In the first section wedles the metrics and spin
structures oM and thus prove Theorem 2.1li.)1-iii ). In the second one we compute
the Dirac operator oM (Theorem[Z.1]liv)) and the eigenvalue db; (Corollary
[2.3.9), which in the case wheM is a hypersurface o&* turns out to coincide with
the upper bound in(2.1), see Corollary 2.3.11. In the thérctisn we prove Corollary
2.1.2 and derive the Dirac spectrum Mf in case its metric either is of constant
sectional curvature or comes from a minimal embeddin§‘insee Corollary 2.4]2.
We deduce in Corollaiy 2.4.3 the existence of non-zero rdklhg spinors in the first
case and Corollafy 2.7.3 in the other one.

Acknowledgement This work provides a partial answer to a question set bystiani
Bar, whom the author would like to thank for his interest augbport. It's also a
pleasure to thank Christian Bar and Bernd Ammann for thegirarks.

2.2 Metrics and spin structures onM

The Lie-algebra ofg being trivial the adjoint representati@nof the homogeneous
spaceM is nothing but the restriction of the adjoint map S4Y— Aut(su(2)) to Qs,
wheresu(2) denotes the Lie-algebra of $UWe define the scalar produét,-) on
su(2) by declaring the following basis to be orthonormal:

X1 = aAr
Xo = aAr
X3 = aghg,

whereas, ap, a3 € R* are fixed parameters. The megs given in the basiéXy, Xp, X3)
of su(2) by

a(tly) = I3

a(£A;)) = diagl,—-1,-1)
a(£Ay) = diag—-1,1,-1)
a(+A3) = diag-1,—-1,1),
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therefore it obviously preservés,-) which hence induces a homogeneous metric on
M. Using the form ofa in the basig Az, Az, As) computed above it is easy to prove
that every homogeneous metric bhcomes from such a scalar productar2), i.e.,

it admits {a1A1,8,A2,a3A3} as orthonormal basis for suitabée, ay, as € R*. Note
also thata preserves the orientation efi(2), so that if we choos¢Xi, Xz, X3) as
positively-oriented orthonormal basis @f(2) thena is expressed in that basis by a

map Q 2, S0,

We now examine the spin structures bhconsidering the metric and the orienta-
tion given by (X3, X2, X3). From [A2, Lemma 3] the manifoli is spin if and only
if its isotropy representatioa lifts to Spin; through the non-trivial two-fold covering

Sping i> SQ0;s, and in that case spin structuresirare in one-to-one correspondence
with those lifts, each one of those being uniquely deterchiog a group homomor-
phism LN {—1,1}. Here @ already lies in SY = Spin; so thatM is obviously
spin. Denoting bya the inclusion @ C SU,, every spin structure ol is uniquely de-
scribed by a map : Qs — SU, of the forma (h) = e(h)a (h) for everyh € Qg, where
€:Qs — {—1,1} is a group homomorphism. But there are exactly 4 such homomor
phisms: the trivial ongp = 1 and theg;’s, j = 1,2, 3, with Ker(gj) = {+£l2,+A;}. This
proves Theorein 2.71i} —iii ).

In the following we shall call the spin structure correspioigdto ¢; - 0 the €j-spin
structure orM.

2.3 The Dirac operator onM

Let us denote by Sp,i,ni> Aut(Z,) the spinor representation in dimensionWe
recall the following theorem allowing the representatibaeretical computation of
the fundamental Dirac operator on a homogeneous spacegs¢&2; Thm. 2 & Prop.
1]

Theorem 2.3.1Let M := G/H be an n-dimensional Riemannian homogeneous spin
manifold with G compact and simply-connected.jLbe a supplementary subspace of
hin g. Fix a p.o.n.b(Xy,...,X,) of p and leta : H — SO, be the isotropy represen-
tation of M expressed in the bagiX;, ..., Xn). Leta : H — Spin, be the lift ofa to
Spin, induced by the given spin structure of M abgM — M be the spinor bundle

of M associated witlir. LetG be the set of equivalence classes of irreducible unitary
representations of G (in the following we shall always idfgrean element ofs with

one of its representants).

i) The space £(M,3zM) splits under the unitary left action of G into a direct
Hilbert sum

BV, ® Homy (Vy, 2n) (2.2)
yeG

where \ is the space of the representatigii.e.,y : G — U(Vy)) and
Homy (Vy, 2n) == {f € Hom(V,,2,) s.t.

vheH, foy(h) = (8,0a) (h)o f}.
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i) The Dirac operator D of M preserves each summandZ8), more precisely,
if (e1,...,en) denotes the canonical basis &", then for everyy € é, the
restriction of D to \ ® Homy (Vy, Z,) is given byld ® Dy, where, for every
A e Homy (Vy, Zn),

D)(A) =~ Y & AcTor(X) + (;Bia 3 anee a)-A (23
and

B = (X, %], Xj)

IM>

J

Qi = 7 (XX, X+ {[X5, X, X) + ([ X, Xilp, X))

= NI

(here and henceforth Xwill denote the image of X g under the projection
g — p with kernelp).

The following statement will be useful for taking the symnies of M into account,
see Examplds2.3.4 below.

Lemma 2.3.2 Under the hypotheses @heoreni 2.31let (-,-)’ be a further homoge-
neous metric on M and :fG — G be a Lie-group-homomorphism such thétf c H
and f. := [Tef] is an orientation-preserving isomet(¥gM, (-,-)) — (TgM, (-,-)").
Then the pull-back spin structure $ping (T M) is described by

H — Spin,

h — flaof(h).f

wheref ¢ Spin, satisfies (f) = f..

Proof. The proof relies on the identity, o Ad(g) = Ad(f(g)) o f. for everyg € G,
which implies in particular

for everyh € H. O

Notes 2.3.3

1. Of course the homomorphism describing the pull-back spircture in Lemma
[2.3.2 is well-defined sincé is uniquely determined up to a sign.

2. One should pay attention that Lemma 2.3.2 can only be eghjplihce p.o.n.b.
(X1,...,%n) and (Xq,...,X}) of p w.rt. (-,-) and(-,-)’ respectively have been
chosen. Then all the objects above should be expressedsa Hases, see Ex-
ample$2.3)4 below.
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Examples 2.3.4Consider agaiM := SU,/Qs, fix a1,az,az € R* and as above set
X .= aAc fork € {1,2,3}. We write(M, (-, -)a; ay,a3, € ) for M endowed with the met-
ric and the orientation given biXi, Xy, X3) and thegj-spin structure € {0,1,2,3}).

1. SetX] :=Xg, X5 := —Xp andX§ := —X3. Let f(A1) :=Aq, f(A2) := —Ar and
f(Az) ;== —Ag. Settingf(l2) := 1, and extendindg linearly one obtains a Lie-
group-homomorphism S{J)— SU, inducing an orientation-preserving isome-
try (M, (-, )a,ap,a3) — (M, (-, -)a;,—ap,—a3). The matrix off, = f in the bases
(X1, X2, X3) and(X1, X5, X3) respectively is the identity so th&t= 1 can be cho-
sen. Applying Lemm&2.3.2 the pull-back of tegspin structure byf is then
described by

Qs — SUy, h+— ¢gj(h)f(h)

(remember that-I; € Ker(gj)), i.e., the pull-back of thep- (resp.£2-) spin struc-
ture is theg;- (resp.€3-) one. In other words, changing the sign of bagtandag
changes neither the metric nor the orientation, howeverinpites thep- (resp.
&2-) spin structure with the; - (resp.e3-) one. In particular the Dirac operator on
e.0.(M, (-, )a,.a.a3, £0) coincides with that ofM, (-, -)a, —a, —as, £1)-

2. Leto be a permutation 0f0,1,2,3} with g(0) = 0 and set; := agoAx for
ke {1,2,3}. Let f(A1) := Aya1q), T(A2) i=Ag1pp and f(Ag) 1= €(0)A5 15,
wheree(o) € {—1,1} is the signature off. Setting in the same way as just above
f(I2) ;=12 and extendingf linearly one obtains a Lie-group-homomorphism
SU, — SU, inducing an orientation-preserving isometM, (-, -)a; ay.a3) —
(M, (-, )ay1) 202 20(5) )- THiS time the matrix off, = f in the base$Xy, X2, X3)
and (X{,X3,X3) respectively is not the identity, however it coincides witte
matrix of f in the basigAs, Az, Az) so that, per definition of the universal 2-fold
covering map, R R

fl.f(h)-f=h

for any lift f of f to SU, and evenh € Qg. The pull-back through of the ¢;-
spin structure is therefore tie; o f)-one, that is, th&,(j)-one. In other words,
permuting the coefficientas, ap,az induces an orientation-preserving isometry
permuting the spin structure in the reverse way, gh@ne staying unchanged
under that transformation. In particular the Dirac oparato(M, (-, -)a; a» a3, €j)
coincides with that of

(M, (-, '>a0(1)=aa(2)ﬂa0(3) ) 80*1(]))'

3. Itis well-known that, for any fixed metric and spin struie onM, the Dirac op-
erators for the two different orientations are just opgoiidm one another (this
is always the case in odd dimensions). For example, if omesayrinto —a; and
lets a; andag unchanged, then the Dirac operator on €M, (- ,-)—a; ayas: €0)
coincides with minus that ofM, (-,-)a;,—a, a3, o), i.€., With minus that of
(Mv < ) .>alaa27a3’ 81)'

Note that Examplds 2.3.4 essentially exhausts all posisibieetric transformations of
M since the only Lie-group-automorphisrh®f SU, preserving @ are characterized
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by f(Ax) = £(K)Ag(k) for some permutation of {1,2,3} ande(k) € {-1,1}.

We come now to the computation of the Dirac operatobr- SU,/Qg. We begin
with the part of the Dirac operator that does not depend oreiesentatiog of SU,.
Note also that this part only depends on the metric choseM @md not on its spin
structure.

Proposition 2.3.5 For the metric on M given byaap, a3 we haveB; = 0 for every

2.2 2222 2252
. ajast+asaztasa: .
j€{1,2,3} andayzz= %23;13 In particular

3 2.2 | 2222 | 2.2
ajas + asas + aja:
19 T dpdg T dhdg
B-e- -+0123€1 - €+ €3- — Id.
Jzzl 1™ 2ajapaz

Proof: We compute the Lie-bracke{X;,X,] for all 1 < j < k < 3. SinceAiA; =
—AA; = Az we have

X1, Xo] = a1as[Aq,A]

= 2a1a2A3

2aqa0
= X3,
ag

and analogousliXy, X3] = 2?1a3 X1, [Xa, X1] = 2‘2—1;3X2. We straightforward deduce that
B1 = B2 = B3 = 0. Furthermore,
1
arzz = 5 (([X1,Xe, Xg) + ([X2, Xa], Xa) + ([Xs, Xa], Xo) )

1 /2aa 2a0a; 2a;a:
_< 18 | 28083 13>
as a1 az

4
2,2 2,2 2,2
ajas + asaz +ajas
2&1&2&3

It remains to notice that, by convention, the complex voldoren i[%_l]el ‘6.3 =

—e1 - & - €3 acts by the identity olxz. This concludes the proof. O

We next determine the space of equivariant homomorphisnesfchy € SU, and each
€j-spin structure oM. First recall that the irreducible unitary representatioh SU
are given by its natural action on tinet 1-dimensional vector spaces of algraded
homogeneous complex polynomials in two variables: setafirn € N (we include
n=0)

Vh:={PeClz,2], P=0orPhomogeneousardfP =n}.
Then SUY acts onv, through

m:SUp —  Aut(Vh)
A — (m(A):P—PoRy),

whereP o Ra(2) := P(zA) for everyz = (z; z) € C2. From now on we shall always
work with the following basis o¥/,:

(Al(z1,2) := 2%, 0<k<n).
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Identifying Spin to SU, the spinor representation S@in@ Aut(Z3) is equivalent
to the standard representation SU- Aut(C?). For every lift gj - 0 of the isotropy
representatiorr of M the space of equivariant homomorphisms farand for the
gj-spin structure - that we shall denote by Hgyg (Vn,C?) - is then given by

Homgg ¢, (Vn, C?) = { f € Hom(Vy,,C?) s.t. f o mi(h) = gj(h)ho f Vhe Qg}.

We fix the following basis(Fy, .. Fn,Go,...,Gn) of Hom(Vy,C?) (which is that of
[A2] p.73]): set, for everk € {0,..

(1 0) ifl =kandkeven
(0 1) if | =kandkodd
otherwise,

and

if | =k andk odd

(01) ifl =kandkeven
(10
0 otherwise.

W.r.t. the base$P,...,Py) and((1 0),(0 1)) of Vi, andC? respectively the elements
F« andGy are descrlbed by matrices of the form:

0 .. 010..0 0 .. 00O0..0
I:‘<<o...ooo...o>’ Gk<o...01o...o>
if kis even and

0 .. 00O0..0O0 0..010..0
I:‘<<o...01o...o>’ Gk<o...ooo...o>

if kis odd, where the “1” always stands in tfie+ 1)St column.

Lemma 2.3.6 Let M carry thegj-spin structure for je {0,1,2,3}. Then
Homgg ¢, (Va,C 2y = {0} if n is even. Moreover

0. for j = 0we have
n-1 .
Hosz,go(Vn,(CZ) = B
B 2oC(Gk—Gnx) ifn=3(4).

1. for j = 1we have

EB:_;T; C(Rk—Fnk) ifn=1(4)
Honb&el(vna(cz) =

n—1
B 2,C(Gk+Gn k) ifn=3(4).

2. for j =2 we have

n-1
@kio C(Gk+Gnryk) ifn=1(4)
Homg, ¢, (Vn, C?) =

Do C(R—Fo)  ifn=3(4).
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3. for j = 3we have

69::5; C(Gx—Gnk) ifn=1(4)
HOszass(an(Cz) = -
B2 C(R+Fok)  ifn=3(4).

Proof. Since —I, € Ker(gj) any elementf € Homg, ¢ (Vn,C?) must satisfy f o
Th(—12) = —f, with R (—12) = (—1)"Idy,,, so that the condition reads

(_1)nf = _fa

which requiresf = 0 as soon as is even.
From now on, we assume thais odd. We compute,(A;) for j = 1,2 (remember that
A1 andA, generate @: for everyk € {0,...,n} andz € C?,

(e (3 9)

R(—iz1,izp)
(—izg)"K(izp)¥

G

i.e., {m(A1)}(R) = (—1)"ki"R. Analogously,

{m(A1)} (R (2)

rrn®@ = A(@z-( ] 4 ))
= &(iZz,iZl)
= (iz2)" X(izp)¥,

i.e., {Th(A2) }(R) = i"Ph_k. The conditionsf o Th(A)) = €j(A)A o f for | = 1,2 then
read

f(R) = (-1 " ig (A1) (Avo F)(R) 2.4)
f(Phk) = (-1) Zigj(A2)(Az0 F)(R)

for everyk € {0,1,...,n}. From now on we denote b( Il‘; ) = f(R) € C% We
2

examine each case separately.
e Case j= 0: In that case the conditior{s (2.4) are equivalent to

f(R) =D Zi(Aoh)(RY
f(Pk) = (=1)"Zi(Az0 f)(Ry),

that is,
fie = (=LK fy
fa = (—1)K"T fy
fink = (—1)"Z fx
fonk = (—1)"Z fu.
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If n=1(4) then those identities become

fie = (=1)*fy
fax = —(=1)kfx
fink = fax

fonk = fik,

hencefy, = 0 if kis odd (respfx = 0 if kis even) and fin_k, fan_k) = (f2k, f1k) for
every 0< k < 251, We deduce that

2

f = fio(Fo+Fn) + faa(Fi+Fn1) + o 4 Fnoa (Fos +Fout)

and the result in that case.
If n= 3 (4) then those identities become

fre  =—(—1)*fx
fac = (=1)*fx
fink =—fx

fonk = —fu,

hencefix = 0 if kis even (respfy = 0 if kis odd) and f1_k, fon—k) = (— fox, — f1k)
for every 0< k < 251, We deduce that
f= fzo(Gof Gn) + fll(Gl — anl) +...+ fl%l (G%l — G%l)
and the result in that case.
e Case j= 1: In that case the conditiorls (P.4) are equivalent to

that is,
fie = (D" fy
fa = (D"
fink = (—1)"% fa
fank = (—1)"% fac
If n=1 (4) then those identities become
fie = (=1)Kfy
fac = — (=1
fink = —fx
fonk = —fu,

hencefix = 0 if kis odd (respfx = 0 if kis even) and f1_k, fan—k) = (— fox, — f1k)
forevery 0< k < ”%1 We deduce that

f = fio(Fo—Fn) + far(Fa = Fo-a) + ...+ Fnca (Fooa —Fogs)

NE

and the result in that case.
If n= 3 (4) then those identities become

fie = —(=1)Kfy
fa = (—1) fx
fink = T

fonk = i,
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hencefyx = 0 if kis even (respfy = 0 if kis odd) and f1,_k, fon_k) = (fak, f1k) for
every 0< k < 1. We deduce that

f = f20(Go+Gn) + f12(G1+ Gn-1) + . + f101 (Gos + Gy )

and the result in that case.
e Case j=2: In that case the conditiors (2.4) are equivalent to

f(R) = (-1 "Fi(Ao)(RY

f(Phk) = (—1)"Zi(Az0 f)(RY),

that is,
fe = (-Dk"Tf
fa = (—Dk"T
fink = (—1)"F fx
fonk = (—1)"F fye.
If n=1 (4) then those identities become
fie = —(—1*fx
fac = (—1)*fx
fink = fx
fonk = i,

hencefy, = 0if k is even (respfy = 0 if kis odd) and( fin_k, fon_k) = (T2, fik) for
every 0< k < 21, We deduce that

1+Gn

=

T

f = f20(Go+Gn) + f121(G1+Gn_1) +... + f2n 1(Gn 1)

N

and the result in that case.
If n= 3 (4) then those identities become

fie = (—1)"f
fa = —(=1)Kfx
fink = —Tfx

fonk = —fu,

hencefyx = 0 if kis odd (respfx = 0 if kis even) and fin_k, fon—k) = (—fok, — f1k)
for every 0< k < "1, We deduce that

(FO Fn) + fZI(Flf Fn 1) +...+ fzn 1(Fn 1— F +1)

2
and the result in that case.
e Case j= 3: In that case the conditior{s (2.4) are equivalent to
f(R) = (-1 Zi(Ae ) (R
fPk) = (1) i(A0 F)(RY),

that is,
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If n=1(4) then those identities become

fre = —(—1)Ffy
fac = (=1)*fx
fink =—fx

fonk = —fu,

hencefy, = 0 if kis even (respfy = 0 if kis odd) and( fin_k, fan—k) = (— fak, — f1k)
forevery 0< k < ”%1 We deduce that

va 2

f= fzo(GofGn)ﬁL fll(Glfanl)Jr...ﬁL fz%l(Gn 1 *Gn+1)

and the result in that case.
If n= 3 (4) then those identities become

fie = (—1)F
fa = —(=1)kfx
fink = fx

fonk = fik,

hencefy, = 0 if kis odd (respfx = 0 if kis even) and fin_k, fan_k) = (f2k, f1k) for
every 0< k < "1, We deduce that

)

and the result in that case. This concludes the proof. O

f = fio(Fo+Fn) + f2r(Fi+Fno1) +... 4 fona (F%l +F

n+l
v e

It remains to compute the map, 1, for every (oddn.
Lemma 2.3.7 The endomorphisms;,Th(X;), 1 < j < 3, are given in the basis
(Po,...,Pn) of iy by:

{T,m(X1)}(R) = —iag(n—2K)F
{M,m(%2) } (R iaz ((N— k)P +KRc1)
{T,m(%)}(R) = as(—(n—K)Rq1+kR 1)

for every ke {0,...,n}, with the convention B = P,;1 =0.

Proof. For everyX € suy, P € Vj; andz e C2, we have

(A0 PY@D = T o (PoRegg) (2
= %h:o(PoRexp(tX)(z))

o (PLzexp(x)
= dP(zX)

- Z @@+ D@0,
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?(i)ncezA}\l = (—izy iz), M = (izz izy) andzA3 = (—2z z1) we have, for everk €
yees
{T,m(X)}(R) = aa{Ti,m(A)}(R)
= & (izlg—z‘(z)ﬂzzg—?;(z))
C (i Kag ke )
= —iay (( k)Z K& —kZ~ kzk)
= —iay(n—2K)Pk.
For X, we have
{Tm(X2)}(R) = ax{T,m(A2)} (R
= @& (|22‘;Pk( 2)+iz ll;:k( ))
_ |a2( koLl kel )
= iaz((n*k)%ﬁr kR-1),
and forXz we obtain
{T,m(Xa)}(R) = as{Ti,m(As)}(R)
= as( Zzgpk( 2)+z 1‘;?(( ))
= ag(—(n—K)P1+kR-1).

Note that the above expressions fF, T (X2) }(R) and {Ti,m(X3)} (R) are also
valid for k = 0 ork = n with the conventiof?_; = B,; 1 = 0. The result follows. O

We now compute the componem, of the Dirac operator ofM acting on
Homgg ; (Vn,C?), see [[ZB). We adopt henceforth the following conventign:=
Gx:=0assoonak¢ {0,...,n}.

The fix part of Dn has already been computed in Proposifion 2.3.5, so thattbely
endomorphisnDj, of Homgg ¢, (Va,C?) given by

3
DIA=— Y & -AoTi,7h(X;)
=1

for everyA € Homg, ¢ (Vn,C?), remains to be made explicit.
First note that the Clifford product bg; can be identified with the matrix multiplica-
tion by A; for j € {1,2,3}.
Furthermore, it is straightforward to show using Lemma 2 Bat, for everyk
{0,1,...,n},

Fko-ﬁzﬂh(xl) = —ia1(n—2k)FK

RoTi,h(Xe) = iaa((n—k+1)G 1+ (K+1)Gyr1)

FeoT,m(Xs) = ag(—(n—k+1)Ge_1+ (k+1)Gys1)-
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Those identities still hold fok = 0 or n using our convention above on thg's and
Gy's. To obtain the corresponding identities on thgs one just has to exchange the
roles of R andG, for everyl:

Gko-ﬁzﬂh(xl) = 7ia;|_(n72k)Gk
GeoT,m(X2) = iaz((N—k+1)Rc 1+ (K+1)Re1)
CkoT,Mh(Xs) = az(—(n—k+1)Rc 1+ (k+1)FReu1).

We deduce the following set of identities:

(FcEFk) o Ti,m(X1) = —iag(n— 2K) (FcF Fn_k)
(Rt Foi) o T Th(Xe) = iaz( (ke 1)(Gisa Gk 1)

+(n—k+1)(Ge 14 Gy ks1))
(AcEFa) o T h(Xs) = as((k+ 1)(Gy+1F Gnk-1)
— (N—k+1)(G1F Gn,kﬂ))

(Gi£ G i) o TyyTh(Xe) = —iag(n— 2K)(Gy ¥ o) 25)
(Gt G ) o Ty h(Xe) = iaz( (k1) (R Fo 1)
+ (n—k+1)(Fe1%Fnki1))
(GktGnk)oT,M(X3) =a3 ((k+ 1) (F1 F k1)
—(n—k+ (R 1F Foken)).
On the other hand, it is also a short calculation to show
Ar-(RtFog) = () H(RF Fak)
Az (Fe£Fyk) i(Gk £ Gn—k)
Ag- (At Fni) = (—1) (G T Gnok) (2.6)
Ar-(GkxGnhy) = (_1)ki(Gk$ Gn—k) .
Az (Ck£Gnk) =i(FkEFn)
Az (GktGnk) = (—D)X(FRFFni)-
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Bringing (2.5) and[(Z]6) together we deduce that

3
Dh(FctFook) = = 3 @1+ (R P 0 Tor(X)

3
=3 A (Rt o) o Ty Th(X;)
=1

23 a0 20A1 (R Fi)
—iaxAz - ((k+ 1)(Gk+1+Gnk-1) + (N—k+1)(Gy_1£ Gn7k+l))
—agAz- ((k+ D(Gki1FGn k1) — (N—k+1)(G1F Gn—k+1>)
28 (—=1)kag (n— 2K) (Fc = Fn_)
o ( (ke 1)(Fee 4 Fo k1) + (0= K+ D) (R 1% For 1))
+(—1)ka3((k+ 1)(Fg1EFhk-1) — (n—k+1) (Rt Fn7k+l))
= (=1)Xas(n— 2K)(Fc%Fny)
+(k+1) (a2 + (—1)*ag) (Fer1 = Fook-1)
+(n—k+1)(az— (—1)%az) (F_1 % Frkp1)-
Similarly,
3
D/ (Gk+Gp k) = — Aj - (Gk£Gpk) o Ti, (X))
=1
23 a0 - 2081 (G ¥ Gn 1)
—iaghy - ((k+1)(Fra % Foic 1) + (1= K+ D)(Fe 1 Fo k1))
~agAg- ((k+1)(Fesa F Fok-1) — (N— k1) (Fe-1F Fo-ki1))
2.9

=" —(—=D*au(n—2k)(Gk £ Gn«)
+2((K+1)(Grs1 % Gk 1) + (1= K+ 1)(Gi 1 G ki)
1 kas( (k+1)(Gks1+Gn k1) — (N—k+1)(Gx1+ Gn—k+l))

—(=1)

(—1)*as(n— 2K) (G £ Gn)

+(k+1)(a2— (—1)*ag) (Gyr1 £ Gpk-1)
+(n k+1)(a2+( )8.3 (Gk 16— k+1)
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Note that, fork = ”%1 Fer1E Fnok-1 = £ (F« = F_x) and the same holds for ti&’s,
so that

n+1 n—

+%(a2+(71)T1a3)(Fn+1 )
n+3 n—

+0 2 o~ (1) 2 g) (Frs £ Figa)

n-1 n+1 n-1
= ()7 at S+ (-1 &) ) (Fap £ Fa)

n+3 n—

+L( D — (—1)7133)(an3 +Fni3)

Denoting by(VO,...,Vn%l) the basis of Homg, ¢, (Vn, C?) computed in Lemma2.3.6
we conclude the proof of Theordm 2Jiv).

Note 2.3.8 From Theorerh 2.7li/) the matrix representing the operalyin the basis
(vo,. .- ,vn%l) is not symmetric. Beware however that this basis does netAaldy, Az

into account the same way and turns out not to be orthonormal.

We now make the eigenvalue Bf explicit:

Corollary 2.3.9 Fix j € {0,1,2,3} and lete, &,&3 € {—1,1} be defined by :=
—(=1)%0+% for | € {1,2,3}. Then under the assumptionsKieoren{Z.T]the fol-
lowing number is an eigenvalue of the Dirac operator of M fog pin structure given
by &; and the metric induced by aay, as:

— (280 — 383282 + 2apa3( &2 + £383) a1 — 383
2a;aa3 ’

If in particular e;e3a2a3 > 0 then there exists;ac R* such that for the corresponding
metric the Dirac operator of M has a hon-zero kernel.
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Proof. Forn= 1 the operatoD;, can be expressed from Theorem2.1.1 as
D] = (&1a1 + &2, + £333)1d

for theg’s defined above (beware that they depend pmherefore the corresponding
Dirac operatoDy, is given by

2,2 2,2 2,2
aras + asas + asa’
D; = (elal+£2a2+£3a3— 1217273 71 3)Id
2&1&2&3
- (£2a2 — £3a3)2a§ + 282&3(82&2 + £3a3)a1 — a%a% d
- )

2ajaa3

from which the first statement follows.
An elementary computation shows that.jfesazaz > 0, then the numerator of the
eigenvalue vanishes for

3
g, — 3283(E282 + £333) + 2(£2838283)
! (e0ap — £383)?

in the case,ay # €3a3 and

&23a3

a = T
if epap = €za3. Note that none of those numbers can vanish becauagagt~ 0. This
concludes the proof. O

Notes 2.3.10

1. It follows from Corollary{2.3.B that, for any given spimstture onM, there
exists a 2-parameter-family of Riemannian metrics for WHit admits non-
zero harmonic spinors. This is not a surprise since theengst of such metrics
already follows from a purely theoretical result by ChastBar [A4]. However
we can make some of those metrics explicit here.

2. There may exist non-zero harmonic spinors for other wethM and possibly
without needing the conditiogpezaraz > 0 from CorollanfZ.3.B, since we have
up to now only studied the eigenvalue corresponding to on&cpéar represen-
tation.

3. In the same way the eigenvalue computed in Corollary [As3rbt necessari-
ly the smallest one in absolute value. Choose for examplegHspin structure,

da18p—a3 8 2 .
a =ag < 0 anday €] — %,—%[. Then™222-2 and— 222" are eigenvalues

of the Dirac operator oM, the first one corresponding to= 1 (i.e., to the

one computed in Corollafy 2.3.9) and the second one 403, see Corollary

. 8 2
[2.1.2. However one has from the assumptionggmy, az that| — %:aﬂ <

|4a1a27a§ |

2a1
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We end this section with an important remark which actuatipgtitutes the main
motivation for this work. The manifoldM can be seen as hypersurface of the 4-
dimensional round sphe®@ (with sectional curvature 1): consider the manif¢ilc
M3z, 3(R), 'A= A, tr(A) = 0 and t(A?) = 2} = S* with metric (A,B) — (A B) :=
1tr(AB). LetB:=diagA,—A — u, i) € S*whered, i € R satisfyA +2u #0,A # H,
U422 #0andA24 (A + )%+ u? = 2. Set

N:={n(P)-B-n(P)"1, Pec SU,} c S,

where SY - SO is the universal 2-fold covering map. Then it is an elemagntar
exercise to show thall is a hypersurface o8* which is diffeomorphic to SkJ/Qg,
that the homogeneous metric induced by the inclusion Nap S* is given by

a; = A = 5,83 '= 55~ and that choosingg = \i@diag(Zu +

B M’ 2(u—-A)’ 2(u+224)

A A —u,—2A — ) € TgS* as unit normal vector field the induced spin structuré\on
is the g-one. Here beware that the metrics obtained form a one-pearstrict sub-
family of that of all homogeneous metrics th

Furthermore, the Weingarten endomorphism-fieldNofv.r.t. vg - seen as endomor-

phism ofsu(2) - is given in the basi§Xy, Xo, X3) of su(2) by

A p+A
2U+ATU—AT 2A+u

In particular, the mean curvatuge’ = %tr(;z%) of Nin S*w.rt. vgis

3vV3-AU(A + )
S @uEA)(p=A) (A )

Mat(.<7) = v/3- diag( ).

Corollary 2.3.11 Under the hypotheses dheorem2.1]lassume furthermore that

M sits in &, i.e., that g = —Z(Aizm,az = Z(H{A),ag = Z(TlZ/\) for someA,u € R

satisfyingA +2u # 0, A # pu, u+2A # 0 and A2+ (A 4+ u)?> + pu? = 2. Then
%(%ZJr 1) is an eigenvalue of the Dirac Laplacian of M for the inducegh)spin
structure.

Proof. The result follows straightforward from Corolldry 2.8®the casg = 0 and
from an elementary computation giving
°
4

9
(A +20)2(H=A)>(H+224)?
—(ap — ag)?a3 + 2apag(ay + ag)ay — a3a3 ?
2ajara3 '

(A2 +1)

O

Corollary[2.3.1L confirms what had been already noticedesi@hristian Bar's work
[A5] on extrinsic upper eigenvalue bounds for the lower pdirthe Dirac spectrum:
for any compact orientable hypersurfaﬁé“ with constant mean curvaturg”’ (and

carrying the induced metric and spin structure) in {he+ 1)-dimensional round

sphere the numbéﬁ (#°? + 1) is an eigenvalue of its Dirac Laplacian. However the
guestion still remains open whether this eigenvalue shelithe smallest one or not.
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2.4 Computation of the spectrum of the Dirac operator
on M for particular metrics

Although the matrices representing the Dirac operBtaf M have a “simple” shape
(they are tridiagonal, see Theorém 211.1), their spectrustili hard to compute ex-
plicitly since there does not exist any general formulargivihe eigenvalues of such
matrices. It is however possible to compute them for pddrcualues of the param-
etersap, ap,az € R*, i.e., for particular metrics oM. In Corollary[Z.I.2 we do it for
the so-called Berger metrics &m (compare with[[A2, p.71] where the author chooses
a=1=—aganda = —1 with T > 0).

Namely, if we assume thab = as then the identities fob/,(F« + F,_«) andDj,(Gx +
Gn_k) become

Dh(FctFok) = (—1)*au(n—2K) (Rt Foi)
+(k+1)(1+ (—1)"az(Fe1 £ Fook-1)
H(n—k+ 1)1~ (~1a2(Fe 1% Froir1)

and

Dh(Gk+Gnk) = —(—1)*au(n—2k)(Gk+Gn k)
+(k+1)(1— (-1)9a2(Gkp1+ G k1)
+(n—k+1)(1+ (~1)"a2(Gk-1% Gn k1)

for everyk € {0,..., 5511, In particular, ifk is even, then
2

Da(Fki Frok) = ai(n—2k)(FcxFqk)
+2(k+ 1)32(Fk+1 + ankfl)

and
D;](Gk + ank) = fal(n — Zk) (Gk:t ank)
+2(n—k+1)ay(Gk_1+ Gn_kt1)-
If kis odd then

Dh(Fc£Fnk) = —au(n—2K)(FctFoi)
+2(n—k+1)ax(R 1+ Fakt1)

and

Da(Gkﬂ:Gn,k) = al(n—Zk)(ij:Gn,k)
+2(k—|— Day(Gxi1 £+ Gnok-1)-

We now consider each case separately. Remember that frooréfhg. 3.1l the Dirac
operatorD restricted tovh © Homg, ¢, (Vn,C?) is given by ld® D, whereDy, = D/, —

(%ﬂ)ld In particular the multiplicity of each eigenvalue Bf, should be

counted2'1 + 1 times for the spectrum @.
e Case |=0
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* If n=1(4): It follows from the identities just above and from Lemma.d.that
the matrix ofD], consists of“%1 blocks on the diagonal of the form

< (n—2k)ay 2(n—Kk)az )
2k+1a; —(n—2k+1))ay

wherek € {0,...,2>5} is even and of the isolated eigenvalag+ (n+ 1)ay

(corresponding te = ”;21). The eigenvalues of each suck 2-matrix are simple
and given by

a /(0 —2K(n— 2(k-+ 1)) + DaZ + 4(n— k) (k-+ 1)23
with (n—2k)(n—2(k+1))+1) = (n— 2k—1)%

* If n=23(4): It follows from the identities just above and from Lemma.g.that
the matrix ofD], consists of‘%3 blocks on the diagonal of the form

( (n—2k)ay 2(n—Kk)az )
2(k+1ay —(n—2(k+1))ay

wherek € {1,..., ”%5} is odd and of the isolated eigenvaluesa; (correspond-
ing tok = 0) anda; — (n+ 1)ay (corresponding té = ”;21).

This shows 0

e Case j=1:

* If n=1(4): It follows from the identities just above and from Lemma.g.that
the matrix ofD], consists of‘%l blocks on the diagonal of the form

( (n—2k)ay 2(n—Kk)az )
2(k+1ay —(n—2(k+1))ay

wherek € {O,...,”%S} is even and of the isolated eigenvalag— (n+ 1)ay

(corresponding tk = ”;21). The eigenvalues of each suchx2-matrix have
already been computed in the cgse 0 above.

* If n=3(4): It follows from the identities just above and from Lemma.g.that
the matrix ofD], consists of%3 blocks on the diagonal of the form

( (n—2k)ag 2(n—K)ap )
2(k+1ay —(n—2(k+1))ay

wherek € {1,..., ”%5} is odd and of the isolated eigenvaluesa; (correspond-
ing tok = 0) anday + (n+ 1)ay (corresponding té = ”;21).

This shows 1
e Case j=2or j = 3: Sinceay = ag the Dirac spectra for the- andes- spin structures
coincide, see Examplgés Z.B.4.2 wigh= (2 3).

* If n=1(4): It follows from the identities just above and from Lemma.d.that
the matrix ofD}, consists 01“%1 blocks on the diagonal of the form

( (n—2k)ay 2(n—K)ap )
2(k+1ay —(n—2(k+1))ay

wherek € {1,. ..,“%3} is odd and of the isolated eigenvalu@a; (correspon-
ding tok=0).
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* If n=3(4): It follows from the identities just above and from Lemma.B.that
the matrix ofD/, consists 01‘%l blocks on the diagonal of the form

( (n—2k)ay 2(n—K)ap )
2(k+1a; —(n—2(k+1))as

wherek € {0,..., 52} is even.

This shows 2and concludes the proof of Corolldry 2.11.2.

Note 2.4.1 Of course one should understand each upper boundf@égfor the pos-
sible values ok in Corollary[2Z.1.2 as follows: if for a given it is negative then the
corresponding eigenvalues do not appear. For exampledérries thesy-spin struc-

2 2
ture andn = 1 thenDp + 2'51§‘,j1+1'alzld has only one eigenvalue, namely + 2a, (with
multiplicity 2). Similarly, if j = 2,3 andn = 1, then only—a; appears with multiplicity

2.

One could in a similar way compute the spectrum of the Dirseraijor fora, = —ag,
in which case the spectra would coincide for tye and theg;-spin structure oM
(use Examples 2.3.4).

We end this section with deriving from Corollafy 2.11.2 theesppum of the Dirac
operator onM for any of the 4 spin structures and the following metrics: doe of
the metrics with constant sectional curvature and for ont@®6 metrics induced by
minimal isometric embeddings in® (i.e., for (A =0,u = +1), (A =+1,u =0) or
(A,u) = £(1,-1), see end of Sectidn 2.3). In the first case the spectrum head
been computed by Christian Bar [n [A3, Thm. 2] and it can b&lgahecked that his
results coincide with ours.

Corollary 2.4.2 Under the hypotheses dheoreni 2. 1]lassume furthermore that

i) a1 =ap=ag=1. Then the spectrum of the Dirac operator of M w.r.t. fgespin
structure consists of the family

3+ ak with multiplicity 2(k+ 1)(2k + 1)
St 4k+2  with multiplicity 4k(k+ 1)
—3 _4k—1 with multiplicity 2k(2k+ 1)

NIlw

—4k—3 with multiplicity 4(k+ 1)(k+2)
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where k runs oveN and w.r.t. any of the other spin structurgsof the family

3 +ak with multiplicity 2k(2k+ 1)
$14k+2  with multiplicity 4(k+ 1)

—3 _4k—1 with multiplicity 2(k+1)(2k+ 1)

—3_4k—3 with multiplicity 4(k-+ 1)2
where k runs oveN.

i) a1 = —3%,a = ag = 3. Then the spectrum of the Dirac operator of M

* w.r.t. the g-spin structure is given by

U {%i}\/(n—2k—1)2+16(n—k)(k+1)

neN 4
n=1(4)

-5
|ke{0,...,nT}eveng+1}

U {%i%\/(n—2k—1)2+16(n—k)(k+1)

neN
n=3(4)

-5 n ﬁ:}

n
|ke{1,...,T}odd,—§, )

each eigenvalue having multiplicity4nl for the corresponding n.

* w.r.t. the g;-spin structure is given by

U {%j: %\/(n—Zk— 1%+ 16(n— K)(k+ 1)

neN
n=1(4)

n-5 n
|k€{0,...,7}evenf§}

U U {—i—\/(n72k71)2+16(n7k)(k+1)

n+3}7

n-5 n
|k€{1,...,T}0dd§+1,T

each eigenvalue having multiplicitynl for the corresponding n.
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* W.r.t. the &- or g3-spin structure is given by

U {%i%\/(n—Zk—l)2+16(n—k)(k+1)
ng?:LI(\IA)

n—3 n+3

|ke{1,...,T}odd,T}

U U{%i%\/(n—2k—1)2+16(n—k)(k+1)
n263](\]4)

|ke{0,...,n—23}even},

each eigenvalue having multiplicity4nl for the corresponding n.

Proof. In casea; = a, = az = 1 one has on the one hand
(n—2k—1)%a% + 4(n— k) (k+ 1)a3 = (n+1)?
2 2
for every possibld and on the other han%af‘%‘,:—a2 = % The result in) straightforward

follows using Corollary2.1]2 and Examplst]SA.
Assuming nowey = —3 anda, = ag = 3, one has

a+/(n— 2k~ 1)%82 + 4(n— k) (k + 1)3

1, VvV (n—2k—1)2+16(n—k)(k+ 1)
4 4

2 2
2al +a;

and S = f%. This concludes the proof. O

One can deduce from Corollary 2.1.2 and Examples 2.3.4 teetrspn of the Dirac
operator ofM for any spin structure and any metric induced (@&f,a;,a;) with
a; € R* or any metric induced by a minimal embedding ir§& in the first case
rescale byay, in the second one exchange the roleaby, az and possibly multiply
all of them by—1.

For the next corollary recall that, for a givghe C, a B-Killing spinor on a spin
manifoldN is a smooth sectiogy of the spinor bundle oN such thatdxy = BX- @
for everyX € TN.

Corollary 2.4.3 Under the hypotheses dheoreni 2.1]the following holds:

i) Ifa; =ay =az = 1then thegy-spin structure is the only one for which M admits a
non-zero space of Killing spinors, which is theqlimensional and associated to
the constanf = f%. In particular% is in absolute value the smallest eigenvalue
of the Dirac operator of M for thep-spin structure.

ii) Ifa; = —2,8 =ag = 3 and M carries theg-spin structure thes is in absolute
value the smallest eigenvalue of the Dirac operator of M. drtipular inequality
(2.J) is an equality on M for the induced metric and spin structure.
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Proof. If 3y = a» = az = 1 then on the one hand the metric inducedwhas constant
sectional curvature 1; on the other hand Corollary 2i4.inplies that the smallest
eigenvalue in absolute value of the Dirac operatolois % with multiplicity 2 w.r.t.
the g-spin structure andrg with multiplicity 2 w.r.t. any of the other spin structures
(both obtained fon = 1, i.e., they are the eigenvalues computed in Corollarydp..3.
Now M carries a non-trivial Killing spinor if and only if the sma#t eigenvalue of
its Dirac Laplacian coincides with T. Friedrich’s lower I:mhﬁ infu(Scal) in
terms of the scalar curvature bf, seel[A7]. HereﬁScaM = % so thatM carries a
2-dimensional space of non-zero Killing spinors only fog 83-spin structure; in that
case the corresponding constgnghould obviously b&%. This shows).

If a1 = —%,ag =az3= % andM carries thegp-spin structure then from Corollafy 2.4.2
ii ) the eigenvalues correspondingte- 1 andn = 3 are3 and—3, 3 with multiplicities

2, 4 and 4 respectively. Next we show that all eigenvaluesesponding tor > 5 are
greater tharg in absolute value. Since this is obviously the caseferl, — 3 and%3
we just have to deal with the eigenvalubs 1,/(n—2k—1)2+ 16(n— k) (k+ 1), of
which absolute value is greater th§n'|f and only if

(n—2k—1)?416(n—k)(k+1) —64>0 (.7)

for every k e {O,...,”%5}. The Lh.s. of [2I7) is a trinomial ik with negative
dominant coefficient and of which roots are given bgl +4/ &35'”5) Ifn>5
- —3)(n+5 - - —3)(n+5 : :
then 151 — /(030048 g o 01 o Ly J(3)049) Fhich shows thal(217) is
satisfied. Henc§ is in absolute value the smallest eigenvalue of the Diracaipe
Apply Corollary(2.3.111 to the case= 0 andu = 1 to conclude. O

ThatM admits a 2-dimensional space of Killing spinors w.r.t.ggsspin structure and
any normal metric is also not a surprise, seel[Al, Cor. 520 (Moreover, following
the symmetry arguments already used above (see Exampldy @@ ollary{2.4.8i)
actually holds for any of the metrics induced by a minimal edding intoS*. This
proves Corollary 2.713.

Corollary[2.1.B provides a further example (after geodepiceres[[Ab] and gene-
ralized Clifford tori [A8]) of homogeneous hypersurface thie round sphere for
which Christian Bar’s inequality [A5, Cor. 4.3] is an eqityalfor the smallest Dirac
eigenvalue. Here it should furthermore be noticed thdt,stder the assumptions of
Corollany2.1.3B, the multiplicity of the smallest eigenvalof the Dirac Laplacian o

is greater than the corresponding one on the 3-dimensionabrsphere. This shows
an analogy with the generalized Clifford tori tested(in [A8h which the multiplicity
of the smallest eigenvalue of the Dirac Laplacian is als@fgrethan or equal to the
corresponding one on the round sphere of same dimension.

We conjecture that the inequality in [A5, Cor. 4.3] for theadlast Dirac eigenvalue is
an equality for every homogeneous hypersurface in the rephdre. We refer to [A9]
for further work in this direction.
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Chapter 3

The spectrum of the twisted
Dirac operator on Kahler
submanifolds of the complex
projective space

This chapter coincides (up to minor changes such as enuoretpages, sections,
theorems, references etc.) with the published article [30]

Nicolas Ginoux and Georges Habib

Abstract. We establish an upper estimate for the small eigenvaluekeofwisted Dirac
operator on Kahler submanifolds in Kahler manifolds giang Kéhlerian Killing spinors.
We then compute the spectrum of the twisted Dirac operatthedtanonical embedding
CPY — CP"in order to test the sharpness of the upper bounds.

3.1 Introduction

One of the basic tools to get upper bounds for the eigenvaliube twisted Dirac op-
erator on spin submanifolds is the min-max principle. Theaidonsists in computing
in terms of geometric quantities the so-called Rayleigbtigumt applied to some test
section coming from the ambient manifold. [n[B1], C. Bataddished with the help of
the min-max principle upper eigenvalue estimates for sufiiolas in R"*, S" and
H"1, estimate which is sharp in the first two cases. In the sani, gpe first-named
author studied in his PhD thesis [B6] different situatiorteene the ambient manifold
admits natural test-spinors carrying geometric inforovati

In this paper, we consider a closed spin Kahler submanitbldf a Kahler spin
manifold M and derive upper bounds for the small eigenvalues of theespanding
twisted Dirac operator in caskl carries so-called Kahlerian Killing spinors (see
(3.3) for a definition). Interestingly enough, the upper mouurns out to depend
only on the complex dimension d¥l (Theorem3.212). Whether this estimate is
sharp is a much more involved question. A first approach stsén finding lower

57
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bounds for the spectrum and to compare them with the uppes. dneSectiori 313,
we prove a Kirchberg-type lower bound for the eigenvaluesmf twisted Dirac
operator on a closed Kahler manifold (Corollary 33.2) rédéhe curvature of the
twisting bundle has to be involved. Even for the canonicabeduingCPY — CP",
the presence of that normal curvature does not allow to Htatequality between the
lower bound and the upper one, see Proposition3.3.3. Theap@xoach consists in
computing explicitly the spectrum of the twisted Dirac agter, at least for particular
embeddings. In Sectidn 3.4, we determine the eigenvaluiéis (multiplicities) of the
twisted Dirac operator of the canonical embedditff — CP", using earlier results
by M. Ben Halima[[B3]. We first remark that the spinor bundleled normal bundle
splits into a direct sum of powers of the tautological bun@@erollary[3.4.4). We
deduce the spectrum of the twisted Dirac operator in The@eh®, where we also
include the multiplicities with the help of Weyl's charact®rmula. We conclude
that, ford < %1 the twisted Dirac operator admits O as a lowest eigenvahae a
(n+1)(2d+1—n) for d > %! (see Proposition3.4.9). This implies that, tbr= 1,
the upper estimate is optimal for= 3,5,7, however it is no more optimal for> 9.

This work is partially based on and extends the first-nameloasis PhD thesis [B6,
Ch. 4].

3.2 Upper bounds for the submanifold Dirac operator
of a Kahler submanifold

In this section, we prova priori upper bounds for the smallest eigenvalues of some
twisted Dirac operator on complex submanifolds in Kahleanifolds admitting
so-called Kahlerian Killing spinors.

Let M2 be an immersed almost-complex submanifold in a Kahler fnhh@l\ﬁzn, 0,J)
(“almost-complex” means tha{T M) = T M). Then for the induced metric and almost-
complex structure the manifol@M?d,g,J) is Kahler, in particular its immersion is
minimal in (M2",g,J). We denote byQ, Q andQy the Kahler form of(M2",g,J),
(M2 g,J) and of the normal bundi®M —; M of the immersion respectively (in our
conventionQ(X,Y) = g(J(X),Y) for all X,Y).

Assuming both(M?4,g,J) and (M?",g,J) to be spin, the bundI&IM carries an in-
duced spin structure such that the restricted (complexjosgiundlezM,, of M can
be identified withzM ® =N, whereXM andXN are the spinor bundles & andNM
respectively. Denote by'\};”, “ N” and “"the Clifford multiplications ofM, NM andM

respectively. By a suitable choice of invariant Hermitianer product., -) (with asso-
ciated norm - |) on M the identification above can be made unitary. Moreover it ca
be assumed to respect the following rules: givendry TM andv € NM, one has

X-¢ :{XM®(IdZ+N_IdZ*N)}¢
v-¢ :(Id®VN)¢’ (3.2)

forall ¢ € ZMV‘M =3M®3N. Here3N = 3*N @ X~N stands for the orthogonal and
parallel splitting induced by the complex volume form, seg {86, Sec. 1.2.1] or
[BY, Sec. 2.1]. The following Gauss-type formula holds foe spinorial Levi-Civita
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connectionsﬁ~ and[ := *M®2N on 3M andZM ® 2N respectively: for alX € TM
and¢ €I (M),

_ 1 2

Dx¢=|:|x¢+§;lej-||(X,ej)-¢, (3.2)

where(ej)1<j<2d is any local orthonormal basis &M andll the second fundamental
form of the immersion.

Recall that, for a complex constamt ana-Kahlerian Killing spinor on a Kahler spin
manifold (M?",g,J) is a pair(, @) of spinors satisfying, for akk € TM,

Oxy =-ap_(X)

@ 3.3
Oxe =—-ap.(X)-y, (33)

wherep (X) := %(X FiJ(X)). The existence of a non-zegoKahlerian Killing spinor
on (M2",g,J) imposes the metric to be Einstein with scalar curvaBiiedn(n+ 1)a?

(in particulara must be either real or purely imaginary), the complex dingmns of

M to be odd and the spinots, ¢ to lie in particular eigenspaces of the Clifford action
of Q, namely

Q.4 =iy (3.4)
Q- =io. '

Actually a Kahler spin manifold carries a non-zereKahlerian Killing spinor with

a € R* if and only if it is the twistor-space of a quaternionic-K&hmanifold with
positive scalar curvature (in particular it must®e” if n=1(4)), seel[B13]. For purely
imaginarya only partial results are known, the prominent examplesdtia complex
hyperbolic space [B11, Thm. 13] as well as doubly-warpedpots associated to some
circle bundles over hyperkahler manifolds [B10].

We need the following lemma[B6, Lemme 4.4]:

Lemma 3.2.1 Let (M2 g,J) be a Kahler spin submanifold of a &hler spin mani-
fold (M2 g,J) and assume the existence of @fahlerian Killing spinor (y, @) on
(M2".g,J). Then

DWW+ ) = (d+1)%a(Y+¢) + a’Qn-Qn- (Y +9). (3.5)

Proof. Fix a local orthonormal basie;)1<j<on Of TI\W‘M with e € TM for all 1 <
j <2d andej € NM for all 2d 41 < j < 2n. Introduce the auxiliary Dirac-type oper-

atorD := zjzilej . ﬁej : F(ZM‘M) — F(ZM‘M). As a consequence of the Gauss-type
formula [3.2), the operatot?)2 and(D%,l'\‘)2 are related by [B6, Lemme 4.1]

2d

= 2

D% = (Di')"¢ —d?H?$ —d 5 e -O5H- 9,
=1

whereH = 2—1dtr(ll) is the mean curvature vector field of the immersion. In palic
D2 and(DN)? coincide as soon as the mean curvature vector field of the isiare
vanishes, condition which is fulfilled here. Usilﬁil P4 (gj)-p-(g) =iQ —nand
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21221 p—(€j) - p+(ej) = —iQ —n, we compute:
=1
B3 2

—aye-p(e)-o
J; j j

2d
—a ) p(e)-p-(&) @
=

—a(iQ-—d)p
—a(iQ-—d)p+iaQy- @

B

d+1ag+iaQn-@.

Similarly,

O
AS]
|

2d _
Z € Dej ()
=1

2d

—a'y e-pi(e) Y
=1

%

2d

—ay p-(e)-p(e) W
=1

—a(—iQ-—d)y

a(iQ-+dyy—iaQy -y

(d+Day—iaQn- Y,

&3

so that R

D(+9)=(d+Da(y+9) +iaQn-(9— ).
To computeD?(y + @) we need the commutator & with D. For anyg € F(ZM‘M ),
one has

D(Qn-9) D € -Ue(Qn-9)
=

2d - -
=1

2d - .
=1
N 2d _
= On-Do+ ) € UeQn- 9,
=1
with, for all X,Y € TM andv € NM,
(ﬁxQN)(Y,V) —QN(ﬁxY,V)
= —g(J(OxY),v)
_g(‘](” (X,Y)),V),
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so that
2d

J;ejﬁejQN.(p - gll gfﬂ (1En80ha)6 66 ¢

- ; ej-ecJ(ll(e,a)) ¢
=1

2d
S (e, €))-
=1
= 07
since the immersion is minimal. HenfiQN -9)=Qn- I3¢ and we deduce that

D’(y+¢) = (d+1)aD(y+¢) +iaD(Qn-(¢— )
(d+1)%a%(W+ @) +i(d+1)a’Qn- (@— ) +iaQy-D(@— )
= (d+1)%a*(Y+@)+i(d+1)a’Qn- (@— )
+HaQn-((d+1)a(Y—@)—iaQn- (Y + @)
= (d+1)%a?(Y+@)+a’Qn-Qn- (Y + @),

which concludes the proof. O

Next we formulate the main theorem of this section. Its preofuires some further
notations. Given any rankkZHermitian spin bundl& — M with metric connection
preserving the complex structure, the Clifford action & Kéhler formQg of E splits
the spinor bundIZE of E into the orthogonal and parallel sum

k
SE=EP3E, (3.6)
r=0

whereX,E := Ker(Qg - —i(2r — k)Id) is a subbundle of complex rar(< Ir( ) More-
over, given any € E, one hap. (V) % E C Z44E.

Theorem 3.2.2 (se€ [B6, Thm. 4.2]Let (M4, g,J) be a closed Khler spin subman-
ifold of a Kahler spin manifoldmzn,g,J) and consider the induced spin structure on
the normal bundle. Assume the existence of a compldimensional space of non-
zero a-Kahlerian Killing spinor on(M2,g,J) for somea € R*. Then there arqu
eigenvalues of (DIN)? satisfying

(d+1)%a? ifdis odd
A<

3.7)
d(d+2)a? ifdiseven.

If moreover(@.14) is an equality for the smallest eigenvaldeand some odd d, then

s e (X, e) y=3% e 11(X,g) ¢=0.

Proof. Let (¢, @) be a non- zeralr -Kahlerian Killing spinor onfM2", g, J). We evaluate

2(Y+0), P+ 0)vg
w+<p Y+o)vg

the Rayleigh- quotler“[“" v ( and apply the min-max principle. It can
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be deduced from Lemnia 3.2.1 that

(D2 (W+o),p+9) = (d+12%a?(Y+¢?+a%(Qn-On- (P + ), P+ @)
= (d+1)2a?|Y+¢P?-a?Qn- (+ @)%

Using [3:6) forE = NM we observe thaQn - (¢ + @)| > |+ ¢| if n—dis odd (i.e.,

if d is even) and is nonnegative otherwise. The inequality fedlo

If d is odd and[(317) is an equality for the smallest eigenvahan (DIN)2(y + @) =
(d+1)2a?(y + @) and Qn - (¢ + @) = 0. SinceQ = Q@ Qy one hasz, M), =

DL oZsM @ XM (where each component vanishes as soon as the index exceeds
its allowed bounds), so thap € F(ZLElM ® z";z" N) and ¢ € F(ZL?M ® Z% N).
Coming back to the Gauss-type equation](3.2), one obtains

Oxp =—ap-(X)-p—35%1-11(X, &) -y
Oxe = —Up+(x)'¢’—%2jzilej A1(X, €)@

for all X € TM. Looking more precisely at the components of each side ddetho
identities, one notices that, pointwisElxy € Zd%lM ® Z%N and, using [(3]1),

that p_(X) - @ € Z41M ® ZngN. But pointwisey 22, ej - 11 (X,g)) - ¢ € (ZasM®
Znd2N) @ (Za.sM ® Zp-g:2N) ® (ZgtM @ Zpg2N) @ (Xg1M ® Zpa:2N), in
-2 v -2 e -2 v -2

particular this term must vanish. Analogously one E%%lej 11(X,e))-@=0. This
concludes the proof.

To test the sharpness of the estimaiel(3.7), we would likersb dompare it to am
priori lower bound. This is the object of the next section.

3.3 Kirchberg-type lower bounds

In this section, we aim at giving Kirchberg type estimatasfoy twisted Dirac operator
on closed Kahler spin manifolds. First consider a Kahpén snanifoldM of complex
dimensiord and letE be any rank R-vector bundle ovelM endowed with a metric con-
nection. We define a connection on the vector buidie XM ® E by 0 := 0*M®E The
Dirac operator oM twisted withE is defined byDf; : ' (2) — I'(Z), D =52, &g,
where{e }1<i<2q is any local orthonormal basis M and “” stands for the Clifford
multiplication tensorized with the identity &. The square of the Dirac-type opera-
tor DE; is related to the rough Laplacian via the following Schriigir-Lichnerowicz
formula [B12, Thm. 11.8.17]

1
(DE)? =00+ 7 (Scak + RE),

where Sca) denotes the scalar curvature If and RE is the endomorphism tensor
field given by

RE:s — =
2d E
Y — 2lzl(a~ej-ld®Rayej)l,U.
i,]=
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Recall that for any eigenvaluk of the Dirac operator, there exists an eigenspifior
associated witkh such thatp = ¢, + ¢,.1, whereg, is a section i, .= MR E.
HereZ;M is the subundle K¢ - —i(2r —d)ld) of M. Such an eigenspingris called
of type(r,r +1). In order to estimate the eigenvalues of the twisted Dirarafor we
define, as in the classical way, on each subbubdthetwisted twistor operatofor all

X el (TM), gr € 3 by [B]

P == Ox W +arp—(X) - D¢ + by py (X) - D,

wherea, = 2(ril)’ by = m andD.yr = Y24, pi(@) - Og Y.

We state the following lemma:

Lemma 3.3.1 For any eigenspino® of type(r,r + 1), we have the following inequal-
ities
1 E
T llﬂry: (Scal +Rg, ),

A2 > (3.8)
1 H E
4(1-bry) MIETA (Scak,. + R¢r+1)’

where K := Re(RE(9), #) is defined on the set yl= {x € M| @(x) # 0} for all
spinorg € Z.

Proof. Using the identityzizgla -Ps Yr =0, one can easily prove by a straightforward
computation that for any spingy, € >,

Py 2 = |0ty | — & D 4[> — br [D_yr|2. (3.9)

Applying Equation[(3.9) tap, and ¢, 1 respectively and integrating ovst, we get
with the use of the Schrodinger-Lichnerowicz formula that

0< [ A3(1-a)— 7(Scaki + R, )¢

/ \ISO t aty
= . r 4 r+1 ’

from which the proof of the lemma follows. O

One can get rid of the dependence of the eigenspifioasd¢, . ; in the r.h.s. of[(38):

Corollary 3.3.2 Letk; be the smallest eigenvalue of the (pointwise) self-adjuet-
ator RE. Then

dil(Scab+k;)  ifdisodd
A2 >
ﬁ (Scab+«k1) ifdiseven

whereScal, denotes the infimum of the scalar curvature.
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Proof. Let us choose the lowest integere {0,1,---,d} such that¢ is of type
(r,r +1). The existence of anti-linear parallel maps &M commuting with the
Clifford multiplication (see e.g[[B7, Lemma 1]) allows tmpose that < d—gl if dis
odd andr < d—gz if d is even. This concludes the proof. d

In the following, we formulate the estimatés (3.8) for thiation whereM is a com-
plex submanifold of the projective spa€®" andE is the spinor bundle of the normal
bundleNM of the immersion. To do this, we will estimaﬁ% for all spinor fieldp €

in terms of the second fundamental form of the immersion.

Proposition 3.3.3 Let(M?9,g,J) be a Kahler spin submanifold of the projective space
CP". For all spinor fieldg € Z, the curvature is equal to

2d
RE = —49%e(Q-QN-(p,%)—_ DI CICRUCK Rl (ej,ep)«p,#)ﬂn 2

| | |,17p:1
(3.10)
whereQ is the Kahler form of M

Proof. First, recall that for allX,Y € I'(TM) andU,V sections inNM, the normal
curvature is related to the one @P" via the formulal[B4, Thm. 1.1.72]

RMU,V) = (REFU.V)— (BxU,ByV)+ (ByU,BxV)
2d
= 29(X,3(Y))gIU),V) = > gl (X,ep),U)g(ll (Y,ep),V)
p=1

2d
+ z g(” (Yvep)au)g(” (Xvep)vv)a (311)
p=1

whereBx : NM — T M is the tensor field defined by(BxU,Y) = —g(ll (X,Y),U) and
{€p}1<p<2d is alocal orthonormal basis M. Here we used the fact that the curvature
of CP" is given for allX,Y,Z € TCP" by

RYY'Z = (XAY +IXAJY +29(X,JY)J)Z

with (XAY)Z =g(Y,Z)X —g(X,2)Y. Hence by[(3.11), the normal spinorial curvature
associated with any spinor fietgis then equal to

1
E _ NM
Ree® = Zk; 9(Rg 686 & - @

= 2y gede)acdaco

=1
2d
3 5 1 (eep)- 1 (&5, ep) - (1 (&)1 (&1, €9))]
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Thus, we deduce

2d 2d

RE(p) = 2 Z J(ej) € -Qn-@— Z g-e-ll(a,ep)-ll(ej,ep) @

i=1 ijp=1
—6 - € g(” (aaep)vll (ejaep))(P
2d
= —4Q-Qn-9— 5 a-e-ll(a,ep)-1(ej. ) o+l Pp.
i,j,p=1

Finally, the scalar product of the last equality W% finishes the proof. O

As we said in the proof of Corollaty 3.3.2, the integean be chosen such that d—gl

if dis odd andr < d—g?- if d is even. However, we note thatpriorino such choice
can be made fos oncer has been fixed. In particular, one cannot conclude that the
smallest twisted Dirac eigenvalue of a totally geodésim M is (d+1)? evenin the
“simplest” case wherM = CP¥ (thed-dimensional complex projective space). To test
the sharpness of the estimdie {3.7), we compute in the fislpsection the spectrum

of DIN for M = CPY canonically embedded i@GiP".

3.4 The spectrum of the twisted Dirac operatorDy;" on
the complex projective space

In this section, we compute the spectrum of the Dirac opewft@P twisted with
the spinor bundle of its normal bundle when considered aerdeally embedded in
CP". The eigenvalues will be deduced from M. Ben Halima’s corapabs [B3, Thm.
1]. We also need to compute the multiplicities in order to pane the upper bound in
(3.4) with an eigenvalue which may be greater than the sstatiee. The results are
gathered in Theorenis 3.4.7 dnd 31 4.8 below.

3.4.1 The complex projective space as a symmetric space

Consider thed-dimensional complex projective spad&® as the right quotient
SUd+1/5(Uq x U, ) Where $Ug x Us) := {( (E; ge(B)*l ) |B € Ug}. In this sec-

tion we want to describe its tangent bundle and its normaldleumhen canoni-
cally embedded int€P" as homogeneous bundles, that is, as bundles associated to
the SUg x Uy)-principal bundle Sy,; — CP® via some linear representation of
S(Uq x U1). The one corresponding to the tangent bundle is calledstiteopy repre-
sentationof the homogeneous spa@éJdﬂ/s(Ud x Uq)- To compute it explicitly we

consider the following AS(Uq4 x Uj))-invariant complementary subspace
0 0 V43
mi= 5 Do 2,...,24) € C9 (3.12)
{ o ... 0 g I ) }
-z ... =g O
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to the Lie-Algebrah of S(Uy x U;) in the Lie-algebraug,; = {X € C(d+1)|X* =
—Xand t(X) = 0} and fix the (real) basi€A;,J(A1),...,Ad,J(Aq)) of m, where:

o (A)jk=1if (j,k)=(I,d+1), =1if (j,k) = (d+1,I) and O otherwise;

o (J(A))jk=1if (j,k)=(I,d+1)or(j,k) = (d+1,1) and 0 otherwise.

It is easy to check that defines a complex structure an which then makes into
a d-dimensional complex vector space, and thatm] C b. In particularCP? is a
symmetric space.

Lemma 3.4.1 The isotropy representation of the symmetric sp%b'eﬂ/s(ud % Uy)
is given in the complex bas{sy, ..., Aq) of m by:

(JZS(Ud X Ul) — Uy

(g de(g)l> — detB)-B.

Proof. Fork € {1,...,d} andB € Uy we compute

Ad(( g de(g)—l ))(Ak) = ( 5 de(%)fl )Ak( Bo* de(zB) )

0 0 0
: : 0
B 0
= (0 de(B)l)' 9 9 de(B)
: : 0
B, ... -Byy 0O
0 de(B)Blk
0 0 de(B)Bdk
—detB) 1B}, ... —detB) !Bj, 0

SRe(det(B)Bjk)Aj + Jm(det(B)Bjk)J(Aj)

[

I
Mo IMa ————~
o

detB)BjkA|,
1

which gives the result. O

Recall that the tautological bundle 67 is the complex line bundlgy — CP9 de-

fined by
va:={(7,v)|[4 € CPYandv e 4}

It carries a canonical Hermitian metric defined{tlz,v), ([4,V)) := (v,V).

Lemma 3.4.2 The normal bundle TCP? of the canonical embeddingP® — CP",

2] — [2,0n_4], is unitarily isomorphic taj; ® C"~9, whereyy — CPY is the tautolog-
ical bundle ofCP? andC" 9 carries its canonical Hermitian inner product. In particu-
lar, the homogeneous bundle TP* — CPY is associated to th&(Ug x U;)-principal
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bundleSUy, 1 — CP? via the representation

p:S(UgxUi) — Upyg

('8 de(g)l) s de(B)ln_q.

Proof. Consider the map

cPAxcd % peTicH
([4v) — (14,2 ©d.m1(0g41,V),

where r: C™1 — CP" is the canonical projection. It can be easily checked that
¢ is well-defined (the identityt(Az) = m(z) implies d,71= Ad,,m) and is a unitary
vector-bundle-isomorphism. This shows the first statemiegit(es,...,e4,1) denote

the canonical basis @%+1. The map

SUj1xC — p
(AA) — ([Aeys1],AA&s41)

induces a complex vector-bundle-isomorphisﬂﬂdﬂXC/S(Ud x U1) — w,
where the right action of @4 x U;) onto SU,1 x C is given by

(AA) - (g de(g)l) — (A ( o de(%),l ),del(B)A). Thus v is

isomorphic to the homogeneous bundle ov@P® which is associated to the
S(Uq x Uj)-principal bundle Sy, 1 — CP via the representation8g x Up) — Uy,

( g de(g)fl > + detB)~1. This concludes the proof. 0

Note in particular thal *CP is not trivial (and hence not flat because®fCP?) = 0).

3.4.2 Spin structures onT CPY and T-CP¢

From now on we assume that bathandn are odd integers. Then botCP and
TCP" are spin, in particulaf -CP? is spin. SinceCP? is simply-connected, there is a
unique spin structure oRCPY and onT-CP. In this section we describe those spin
structures as homogeneous spin structures. For that pugmeslooks for Lie-group-

homomorphisms @y x Uz) % Spin,g and §Ug x U;) LA Spiny,_g) lifting o andp
through the non-trivial two-fold-covering map Sgini> SOx.

First we recall the existence for any positive integerf a Lie-group homomorphism
U —— Spirg, with £%0 j = 1, where Spif, := SPiny X Ul/Z2 is the spifi group,
&C: Spirg, — SOx x Uy, [u,Z — (&(u),Z) is the canonical two-fold-covering map
andi : Uy — SOx x U1, A— (Ag,detA)). The Lie-group homomorphismcan be
explicitly described on elements ofWf diagonal form as:

j(diages, .., o) = et () Ry o B)- Ry ey ()

whereJ is the canonical complex structure @k and, for any orthonormal system
{v,w} in R* andA € R, the elemenR,y(A) € Spiny, is defined by

Ruw(A) := cogA) +sin(A)v-w.
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To keep the notations simple we denote jofpoth such Lie-group-homomorphisms
Ug — Spirg and Uy_q —> Spir§<n7d).

Lemma 3.4.3 Let d < n be odd integers.

1. The spin structure on@P? is associated to th&(Uq4 x U1)-principal bundle
SUy.1 — CP9 via the Lie-group-homomorphism

0:5(UgxU;) — Spinyg
B 0 _dl . B 0
<o de(B)1> > detB) > 'JO“(< 0 detB)* )>'

2. The spin structure onTCP! is associated to th&(Uy x Uy)-principal bundle
SUy.1 — CP9 via the Lie-group-homomorphism

ﬁ . S(Ud X Uj_) — Sp|nz(n7d)

(3 ) 003 o)

Proof. It suffices to prove the results for elements ¢iUg x U1) of diagonal form.
Indeed any element of(84 x U;) is conjugated in Skl ; to such a diagonal matrix.
Since SUY.; is simply-connected the map gl — SOy x U1, P— (PAFfl,del(A))

(where A € Uy is arbitrary), admits a lift through Spﬁpé—> SOy x Ug which is
uniquely determined by the image of one single point. Theeethe lifts under consid-
eration are uniquely determined on diagonal elements.

For6y,...,0q € RletMg, g, :=diage?,... ,eigd,e’ic?:lej)) € S(Uq x Uy). Then

~ 61+ zd:1 6 ~ 64 + zd:1 6
Uy = oy ) (D) Ry (22

lies in Spiny, only depends ony,...,64] € Rd/gnzd (if some 6 is replaced by

joa(Mg, . g) = Rel,.](el)(f)'---' Je)( >

id+l) <d o
_ Yi-19i . A
= e 2 4= J~C{(|\/|gl ----- g

which proves 1
The other case is much the same: setting

) N L N i-16)
P(Me;....6,) = Rey (e ( J21 )Ry gt J21 )

one obtains a well-defined Lie-group-homomorphisfd$x U;) P, Spirp(n_qy With
& o p = p (the integen—d is even) and

d d
| sndsd g = =10 ~ Yi-19i
02 21 Ry ey (15— ) Ry e o) (T )

= det(diag(eiel,...,eied))n;Zdﬁ(Mel,...,ed),

—
o)
©
—~
<
&
&L
~—
\

. d n d p
I T NS 50 SN Lo v ST

)
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which shows 2 and concludes the proof. O

In particular, we obtain the following

Corollary 3.4.4 Let d < n be odd integers and consider the canonical embedding
CPY — CP" as above. Then there exists a unitary and parallel isomarphi

aTicw)~%§< ”;d>.ﬁ%i

s=0
whereX(T+CPY) denotes the (complex) spinor bundle of@P? and, for each s
{0,...,n—d}, the factor( n;d ) stands for the multiplicity with which the line

n—d
bundley, * ® appears in the splitting.

Proof. By Lemmd3.4.B and Lemnia3.%#.2, one has, for BrayUyq:

~ B 0 _nd . B 0
5(( 5 qermyt ) = ® T ion(( § g )
— de(B)~"2" - j(del(B)In_q).
Now it is elementary to prove that, for any positive integgerany z € U1 and any

se {0,...,k},

52koj(z'|k) :ZS~|dz(s),
2k

&
WhereZ(Zi) is the eigenspace of the Clifford action of the Kahler foorthe eigen-
valuei(2s— k) in the spinor spac&y. In particularz(zi) splits into the direct sum of

dimc(zéi)) copies of some one-dimensional representation,wit@ﬁﬁii)) = ( K )

s
SinceXy = EB';OZ(Z‘T‘(), we obtain the following splitting:

n—d
~ _(hd_
62(n7d) [e) p = gde() ( 2 S) ® |dz(2)

S
(n-a)

)

n—d
n—d n—d S
= @det(.)%T*S) ®1p
s=0

where det) : S(Ug x Ug) — Uq, ( (B) de(cE)z)*l ) — det(B), the trivial represen-
tation onC is denoted byl: and “1!(:” means that this representation appears with
multiplicity 1. O

3.4.3 The twisted Dirac operator onCP4

As a consequence of Corolldry 34.4, the tensor proB(ECPY) @ Z(T-CP9) splits
into subbundles of the for&(TCP) ® yy' for some integem. Since this splitting is
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orthogonal and parallel, it is also preserved by the comedmg twisted Dirac op-
erator. Hence it suffices to describe the Dirac operator eftifisted spinor bundle

I(TCP ® vy overCP? as an infinite sum of matrices, whemee Z is an arbitrary
(non-necessarily positive) integer. The Dirac eigenvabfe (TCPY) © yi" have been
computed by M. Ben Halima in [B3, Thm. 1]. Indeed, we have

Theorem 3.4.5 For an odd integer d leEP? be endowed with its Fubini-Study metric
of constant holomorphic sectional curvatude For an arbitrary me Z let the nf’
poweryy' of the tautological bundle ofP? be endowed with its canonical metric and
connection. Then the eigenvalues (without multiplicjtiesthe square of the Dirac
operator ofCP? twisted byy;" are given by the following families:

1 2(r+1)-(d+14+2( —-m—¢)), wherere {1,...,d— 1}, e € {0,1} and |e N
with | > max(e, 3L —r +-m).

2. 21(21 +d—1-2m), where l€ N, | > max0,m+ 951).
2(d+1)(d+1+2(1—m)), where l€ N, | > max0,m— 4/1).
The first family of eigenvalues corresponds to an irredecibpresentation of S|J;
with highest weight given by [B3, Prop. 2]

d-1 d-1 d—1 d+1 d+1 d+1
(42— == Mo = o =M Tl = s M = S —me T+ = — = —mr4 = — = —m

r-1 d-r—1
Similarly, the second family of eigenvalues correspondbéchighest weight

d+1 d+1 d+1
- M

The last family of eigenvalues corresponds to

1 1 1
(2|+d%— |+d%—m,...,|+di—

In the following, we will determine the multiplicities of ¢heigenvalues in Theorem
[B.4.5. Indeed, we have

Lemma 3.4.6 Let d> 1 be an odd integer and m Z.

1. The multiplicities of the first family of the eigenvalues equal to
d(&+r—m+2—¢) (d+|—£).( d-1 ).(%+r_m+| )
r+D(& —m+1—g) d d-r—e¢ d '

2. For the second family, we have
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3. For the last family of eigenvalues, the multiplicitieg aqual to
d | 2l + d+1 m d | + d+1 m
A+ —) A+ —2—) [NQ+——2—).
' k—1 d - d—j+1
In our convention, a product taken on an empty index-setuskq 1.

Proof. The required multiplicity can be computed with the helph# Wey!'s character

formula [BZ]
A a)
IO )

whereA is a highest weight of an irreducible U -representation anil; is the set
of positive roots, i.e.

d
A ={6—6,1<j<k<d 6+ 6 1<j<d}
k=1

andd, = Zﬁzl(d —k+1)6 is the half-sum of the positive roots of gU, seel[B3, p.
442]. Here the scalar produgt -) is the Riemannian metric on the dual of a maximal
torus of SY, 1, which is defined by the following product of matricgs A’) = A.B.tA’
wheref is the matrix given bydi—1 (—1+(d+ 1)6jk)l§j’kgd. To compute the quotient
in the Weyl's character formula, we treat the three casearaggly:

1. Considen of the forma = 6; — 6 for some 1< j < k < d. Note that this form foor
can only exist ifd > 1. We computg8 - a = 2(0; — 6¢). Therefore{d, ,a) = 2(k— j).
For the highest weight corresponding to the first family of eigenvalues, we find that

| gk ] .
%ij ~case j=1lke{2..,r}
% case j=1k=r+1
% case j=1ke{r+2,...,d}

14 (Aa) |1 _ case j,ke{2,...,r}

(04, 0) 1’%;"1 case je{2...,rh,k=r+1

1?2511 case je{2,....r},ke{r+2,...,d}
gl case j=r+1ke{r+2,...,d}
1 case j,ke{r+2,...,d}.

Similarly fora = 6; +59_, 6 with j € {1,...,d}, we get that

u_+14+l—e+d—j+1

ldaHll case j=1
u_+1+d-=j+ ;
14 (A, a) _ W case je{2,...,r}
(6,a) A case j=r+1
u-+d—j+1 ;
a1 case je{r+2,...,d},

whereu_ =r — d—szl —m-1. In order to compute the product we separate both cases
e =0ande =1.
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e Casee = 0: Then

Aayy S l4+k-1 M
ag+(1+<6+,a>) = ] ﬂ
u_+l+d+1 u +d—j+2 d u +d—j+1
d (: d—j+1 ).(j:r+1 d—j+1 )

I+1) (I +r=1)-(I+r+1)-...-(I+d)

1.2 (d—1) '

S(r+2—j)(d+1-j) u_+I4+d+1
(JEL (r+1—j)-...-(d=})) ) d

(uu+d)-...-(uu+d=r+2) (u_+d=r)-...-(u_+1)
d—1)-...-(d—r+1) (d—r)-...-2-1

B i.(Ier)!.(r d+1—j).u,+l+d+1.(u,+d)!
N JI:LI'+1*J. u-+d-r+1 d-u.!

(1+d ) (d=1)-....(d+1-r) u_+l+d+1 u_+d
| +r d r-1)-...-2-1 u_+d—r+1 d

B du-+I+d+1) /l+d) (d-1) (u +d
() (u+d—r+1) d r—1 d ’
which gives for the multiplicity in this case (replace by r — —m+1):
d(92 +r—m+-2l _ d1
u(1+</\,0’>) (5 J;il m-+ ).(d+l).(d 1)( St m+|>-
aely <6+7a> ( +|)( m+|) d d—r d

e Casee = 1: Then

‘Q_“r
L
=

+

ol+k—1 kel
(:|_| - )(J]lk:uz K= )
r+lu +d—J+2 d u +d—j+1
I_L d—j+1 (J:r+2 d—j+1
(41 —1)- (I+r+1) ol +d—1)
1.2 (d—1) '
T +3—j)..(d+1-j) u+l4+d
(JEL fi2-).@-) ) d
(uu+d)-...-(uu+d-=r+1) (uu4+d-r—1)-...-(u_+1)
(d—1)-...-(d—r) T d-r—1)-...-2-1
_ o d (+4d-1) d+1-j u +1+d (u+d)!
T l4r di-(1—1)! (ELr+2—j)'u,+d—r' u_!-d!
du_+1+d)  (I+d-1)!  (d—1)!  (u_+d)
I+ Uu_+d—r) di-(I—1)! rl-(d—r—1)! u_!-.d!

B (I—f(rl;(u+|—i—+dd—)r)'< I+(cji_1 >< d:l >< uj(;—d >’

(A a>) k-

I (5a) - 01

)
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which, replacingi_ by r —

73

—m+1, gives

A, d(92 +r—m+2) B - el
IR o (s () (o)
This shows 1.

2. Considewr of the forma = 6

— G for some 1< j < k< d. We have already shown
in the first part thatd,, a) = 2(k—

i)- For the highest weight corresponding to the

second family of eigenvalues, we have

o) =|

Similarly for a = 6 + &, 6 with j € {1,...

2(d— j+1)and
<)‘aa>:

2(v+1)
2v

2l
0

case j=1
case j> 1

,d}, we already know thatd,,a) =

case j=1
case j>1

wherev denotes one of thé — 1 last components of the weight Hence the product

is given by

ag (1+

(A.a) d

Goay) [0

I v+l @ v
—)-(1+—) - [11+——).
k—1 d JI:L d—j+1

Of course only the central factor appears in case 1. Replacings by its respective

O

value gives 2. and 3. and concludes the proof.

As a consequence of Lemma3]4.5 and Lerhmal3.4.6, we obtain the

Theorem 3.4.7 Let d be a positive odd integer and@? be arbitrary. Denote by

the tautological bundle o PY. Then the spectrum of the square of the Dirac operator

of CP¥ twisted withyf" is given by the following family of eigenvalues:

1 2(r+1)-(d+1+2(1 —m—¢g)), where re {1,...

,d—1},e€{0,1} andle N

with | > max(e, dT*l —r+m). The multiplicity of the eigenvalue corresponding

to the choice of a triplér, €,1) as above is given by

(T )Gt

2. 21(21+d—1—2m), where le N, | > max0,m+ d—erl), with multiplicity

d(d+l 4r—
( +|)(d+1

m+2l —¢)
m+1—¢)

d-1
—r—&

d+1l—¢
d

d

d—1
T+r7m+l

).

d+1

d | 2l

l!:L(lJrk—l) 1+

2(d+1)(d+142(1 —m)), where le N, |

d

2| Jr d+l

_lp 4o

dil

N1 = e

> max(0,m— %51), with multiplicity

m d |+d+1

-

m

d—j+1 T
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Note that, sinceCPY is a symmetric space, the spectrum of every Dirac operator
twisted with a homogeneous bundle ov@& is symmetric about the origin. Hence
the spectrum of the Dirac operator@P twisted withy" can be easily deduced from
that of its square.

We point out that the computations done by M. Ben Halimé. in, [B@m. 1] contain a
minor mistake (hisn should be replaced bym). It can be also checked that, up to a
factor 4d + 1) (his convention for the Fubini-Study metric is differerarfin ours), our
values coincide with his (hisis ourl and hisl is ourd —r).

We can now formulate the

Theorem 3.4.8Let d < n be positive odd integers. Then the spectrum of the square of
the Dirac operator ofCP? twisted with the spinor bundle of the normal bundle of the
canonical embeddingP® — CP" is given by the following family of eigenvalues:

1.2(r+1)-(2d+1-n+2(s+1—¢)), where re {1,...,d—1}, s€ {0,...,n—
d}, € € {0,1} and | € N with | > maxe, %5t —r —s). The multiplicity of the
eigenvalue corresponding to the choice of-tuple (r,s,¢,1) as above is given
by

_%§+r+s+2—a.<n—d).<d+|—e).< d—1 ).<d_;;+¢+s+|>
r+0)d—-"5t+s+1—¢) s d d-r—¢ d '

2. 4(1 +s+d— 2, where sc {0,...,n—d}, | € N, | > max0, ;% —s), with
multiplicity

n-d\ Ao | 20-Mlys d | _Dlgg
( s )-ﬂ(1+k1)-(1+ 5 )'JEL(Hidel)'

3. 2(d+1)(2d —n+1+2(I +s)), where & {0,...,n—d}, 1 € N, | > max0, 5% —
d —s), with multiplicity

n_d> d | 2A+d-t4s d | +d-"514s
T+ ) @+ =———F ) [+ ——Z).

Proof. Recall that, by Corollary3.4].4, there exists a unitary pathllel isomorphism

"9/ n-d nd g
Z(T@Pd)e@zmcpd)fv@( s )-Z(T(CPd)®Vd2 ;

s=0

n—d

whereyy is the tautological bundle P and( ) stands for the multiplicity

n—d__
with which the subbundI&(TCPY) ® 2 ® appears in the splitting. Therefore, the
eigenvalues of the twisted Dirac operator actingsgii CPY) @ Z(T-CP") are those

nd_
of Z(TCPY @ Yy? ® wheres runs from 0 ton — d. Moreover, the multiplicity of the

eigenvalue corresponding to som&s ( n;d ) times the multiplicity computed in
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Lemmd3.4.B. Replacing by “;2" — s, Theoreni 3417 gives the result. O

Note that(d + 1)? is always an eigenvalue for the squared operéigf')?: if d = 1,

takes = ”%1 andl = 1 in the second family of eigenvalues;df> 1, taker = d—szl,

s= "4 ande = 0=1 in the first family.

Using Theoreni 3.418, we are now able to compute the smaligehwalue of the
twisted Dirac operator (see [B8, Proposition 4.9] for a oo

Proposition 3.4.9 The lowest eigenvalue for the square of the Dirac operatdEt
twisted with the spinor bundle of the normal bundle of thexracal embeddin@ P! —
CP"is equal to0 for d < "% and to(n+ 1)(2d+1—n) for d > 25

Proof. Let us consider the first family of eigenvalues witk- 0 (the same computation
remains true foe = 1). Forr s> %1, which impliesd — ”%1 <r, the minimum is
attained fot = 0 and we find the eigenvalues(2d 4+ 1—n+ 2s), which are increasing
functions with respect tewith s> %l —r. Here two cases occur:

1. Case wher&s! —r >0, the eigenvalues becomg(d+1—r) and we distinguish
the two subcases:

() Ford < %1 then the lowest eigenvalue is equal th 4
(b) For%l < d, the lowest eigenvalue (:1+ 1)(2d+1—n).
2. Case Wheré‘;—1 —r < 0 which impliesﬁz1 < d. Hence, the lowest eigenvalue is
equalto(n+1)(2d+1—n).

Now forr 4+s< %l we take = hzl —r —s. Thus the eigenvalues are equéh2 1 —

2s)(d+1—r) which are decreasing functionssgmith 0 < s < ”%l —r. We have:

1. Case wher&5! —r <n—d. We then get the eigenvalue&l4+r)(d+1—r) with
d— 25 <y < 251 Here two cases occur:

(a) Ford < %1 the lowest eigenvalue is equal td.8

(b) Ford > ™1, the lowest eigenvalue is equal(®o+ 3)(2d + 1—n).

2. Case wher&5! —r > n—d, we get the eigenvalue$2i —n-+1)(d+1—r) with
1<r <d- "2 Inthis case, we have thdt> “5! and the lowest eigenvalue is
equal to(n+5)(2d—n+1).

For the second family of eigenvalues, we distinguish thegas

1. Case wheré;! —s < 0 which implies thatl < "5, we takel = 0. The lowest
eigenvalue is then equal to 0.

2. Case wheré;r—l —s> 0. The eigenvalues becomd(@+ 1 — 2s) with 0 <s<
-1 Two cases occur

(a) Ford < %1 the lowest eigenvalue igi4

(b) Ford > %l the lowest eigenvalue i9922d + 1 — n)
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For the last family of eigenvalues, we consider the two cases

1. Case wherést —d—s> 0, which implies thatl < 5%, we takd = %51 —d —s.
We find the lowest eigenvalue O after substituting.

2. Case wherég—1 —d—s<0. In this casé = 0 and we get@(2d — n+ 1+ 2s).
Here two cases occur:

(a) Ford > "5, the lowest eigenvalue isi?22d — n+ 1).
(b) Ford < ”%1 the lowest eigenvalue is 0.

O

Note that the absence of 0 in the Dirac spectrumdior &21 agrees with Kodaira’s
vanishing theorem, which implies that, rifi is an integer withim| < d—erl, then the

d+1
cohomology groupsi? (CPd,yd2 M) vanish for allg, in particular the kernel of the

twisted Dirac operator is trivial in that case.

Next we show that the estimatfe (B.7) is not always sharp. \Weider the simplest case
whered = 1 and compare the multiplicities of the eigenvalues 0 andd M nﬂl ) ,

2
which is thea priori number of eigenvalues bounded by 4[in 13.7). The multiplioft
the eigenvalue 0 is equal to

n-3
A n1> n—1 "/ n-1 n—1
(5 -9+ (5= =5
S;) < s 2 s;zn_gl s 2
. . ns/ n-1
which is equal to ¥ 2, S
(n—1) — s the second sum is equal to the first one. A short computativesgi

3/ n-1 n-1 n-1 oo
p S (N—=1-2s)="%=-( 1 |. Onthe other hand, the multiplicity
2

(n—1-2s) since by replacings by

. . n s

of the eigenvalue 4 is equal to{4 ,,_; |. Hence the sum of these two multiplicities
2

et n-1 . n

is (5= +4)- n_1 |. That number is always greater than 2,,; |. However,

= =

if the multiplicity of the eigenvalue 0 is smaller than Zhnl for n= 35,7,

it is greater forn > 9. Thus, the equality in[(3.7) is optimzal for= 3,5,7 but is
neveroptimal as soon as > 9. In particular, the twisted Dirac operator on Kahler
submanifolds behaves very differently from that on subriodaé immersed in real
spaceforms, where analogous upper bounds are sharp inraepsion.
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Chapter 4

Imaginary K ahlerian Killing
spinors |

This chapter coincides (up to minor changes such as enuoredtpages, sections,
theorems, references etc.) with the published article [32]

Nicolas Ginoux and Uwe Semmelmann

Abstract. We describe and to some extent characterize a new familyabfdfspin manifolds
admitting non-trivial imaginary Kahlerian Killing spims.

Keywords: Kahler manifolds, Sasakian manifolds, spin geometry

MSC classification:53C25, 53C27, 53C55

4.1 Introduction

Let (M2 g,J) a Kahler manifold of real dimensiom2nd with Kahler-forn defined
by Q(X,Y) :=g(J(X),Y) for all vectorsX,Y € TM. We denote by, : TM — T1OM,
X $(X—iJ(X)) andp_ : TM — TOIM, X — (X +iJ(X)) the projection maps.
In caseM?" is spin, we denote its complex spinor bundlesiy.

Definition 4.1.1 Let (M2, g,J) a spin Kahler manifold andx € C. A pair (, @) of
sections oM is called ana-Kahlerian Killing spinorif and only if it satisfies, for
every Xe [(TM),

Oxy =—-ap-(X)-@

Oxe =-—-aps(X)-y.
An a-Kahlerian Killing spinor is said to beeal(resp.imaginary) if and only ifa € R
(resp.a € iR¥).

If a =0, then ana-Ké&hlerian Killing spinor is nothing but a pair of parallgpinors.
The classification of Kahler spin manifolds (resp. spinnifads) admitting real
non-parallel Kahlerian Killing (resp. parallel) spinomas been established by A.
Moroianu in [C12] (resp. by McK. Wang in [C14]).

79
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In this paper, we describe and partially classify thosel&@&spin manifolds carrying
non-trivial imaginary Kahlerian Killing spinors. Note dirthat there is no restriction
in assuminga = i: obviously, changing ¢, ¢) into (,—¢) changesa into —a;
moreover(y, g) is ana-Kahlerian Killing spinor onfM2", g, J) if and only if it is an
$-Kahlerian Killing spinor on(M2", A2g, J) for any constani > 0.

K.-D. Kirchberg, who introduced this equation (seel[C9] fleferences), showed that,
if a non-zeroi-Kahlerian Killing spinor(y, @) exists on(MZ”,g, ), then necessarily
the complex dimension of M is odd, the manifoldM?",g) is Einstein with scalar
curvature—4n(n+ 1), the pair(y, @) vanishes nowhere and satisfi@s @ = —iy

as well asQ - ¢ = i@, see [C9] and Propositidn 4.2.1 below for further propsrtie
Moreover, he proved in the case= 3 that the holomorphic sectional curvature must
be constant[[C9, Thm. 16], in particular only the complex énylic spaceCH?
occurs as simply-connected compléd®, g,J) with non-trivial i-Kahlerian Killing
spinors.

We extend Kirchberg’s results in several ways. First, walgtin detail the critical
points of the length functiofiy| of . We show that, if the underlying Riemannian
manifold (M2", g) is connected and complete, thigp| has at most one critical value,
which then has to be a (global) minimum and that the corredipgnset of critical
points is a Kahler totally geodesic submanifold (Propos.2.3).

As a next step, we describe a whole family of examples of &amianifolds admitting
non-trivial i-Kahlerian Killing spinors (Theoreni_4.3.9), includingethcomplex
hyperbolic space and some Kahler manifolds with non-@mdgtolomorphic sectional
curvature (Corollanf4.3.13). All arise as so-called dgulvhrped products over
Sasakian manifolds. A more detailed study of the inducedaspéquation on that
Sasakian manifold allows the complex hyperbolic space tthlagacterized within the
family (Theoreni4.3.18).

In the last section, we show that doubly-warped productster®nly possible Kahler
manifolds with non-triviai-Kahlerian Killing spinors as soon as both components of
(¢, @) have the same length and are exchanged through the Cliffoltipfication by a
(real) vector field (Theore 4.4.1). This shows an intengséinalogy with H. Baum’s
classification[[CB, C4] of complete Riemannian spin madgakith imaginary Killing
spinors.

4.2 General integrability conditions

In this section we look for further necessary conditionsther existence of imaginary
Kéhlerian Killing spinors. Consider the vector fieldon M defined by

9V, X) = Im((p+(X) - ¢, 9)) (4.1)
for every vectoiX on M. We recall the following

Proposition 4.2.1 (see [CO])Let (¢, ) be an i-Kahlerian Kiling spinor on
(M2,g,J) which does not vanish identically. Then the following prtips hold:

i) grad|y[?) = grad|g®) = 2V
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ii) For all vectors X,Y € TM,

9(0xV,Y) = Re ((p-(X)- @,p-(Y)- @) + (P4 (X) - @, p+(Y) - ).
In particular,

Hesg|y[2)(X,Y) = Hesg|9[2) (X, Y) = 2Re ((p_(X) - @, p_(Y) - @) + (p+(X) - ¢, p(Y) - ).
i) A(W[2) = A(19[2) = —2(n+1)(| @+ |92, whereA := —trg(Hess.

iv) The vector field V is holomorphic, i.e., it satisfieﬁj<x)v = J(ﬁxv) for every
X € TM. In particular, the vector field V) is Killing on M.

v) grad|V|2) = 20yV.

Note that, from Propositidn4.2.1, the identtyjy|? + |92) = —4(n+1)(|¢|*+|¢|?)
holds onM, thereforeM cannot be compact.

Next we are interested in the critical points|gf| (or of |@|?, they are the same by
Propositioi 4.2]1)). We need a technical lemma:

Lemma 4.2.2 Under the hypotheses Bfopositioi 4.2]1lone has

Ox OV =05V +{20(V, X)Y +9(V,Y)X = g(V,3(Y))I(X) +g(X,Y)V +9(I(X),Y)I(V)}

for all vector fields XY onM. Therefore,

Hesg|V|?)(X,Y) = 29(0xV, OvV) 42 (3g(X,V)g(Y,V) + IV P9(X,Y) — g(X,3(V))g(Y, I(V)))

Proof. Using Proposmomll, we compute in a local orthonoraasis{e; } 1< j<on Of
TM™:

OxEvV = Zme( (OxY) - @,p-(e))- @) + (p+(OxY) - W, py (&) - @)
+(P=(Y) - Ox@, - (&) - @) + (p-(Y) - @, p—(&)) - Oxp)
+(P4(Y) - D, P (8)) - 4 + (1 (Y) - 0, P () - Oxh) ) ¢
- Zme( (OxY) - @.p-(&)) - ¢) + (P (OxY) - . P (€)) - )
—a(p-(Y)- p:(X): W, p-(&))- @) +a(p-(Y) - 9.p-(€))- P+(X)- )

—a(p+(Y)-p-(X)- @, p+ (&) - ) + a({p(Y)- ¢, ps (&) - p-(X) - 90>)ej

= DEXYV

2n
+ lem(<p,(v) P(X) W, p-(€)) @)+ (P (Y) - P-(X) - 9. P (&) 4) )¢
=

2n

=3 Im({P-(¥)- 9.p-(&)) P+(X) - )+ (P-(¥) - ¥, P+ (e)) - P-(X) - 9) ).

=1
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We compute the second line of the right-hand side of the piiegeequation (the treat-

ment of the third one is analogous). Usitm. (X) - ¢, @) = 2ig(V, p+ (X)), we obtain

(P+(Y)-p-(X)- @, pr(e)-¢) = (@, p-(X)-ps(Y)-p-(&)- @) +4ig(Y, p-(e)))g(V, p-(X))
+4ig(Y, p-(X))g(V, p-(€j))-

We deduce that, for everye {1,...,2n},

(P—(Y) - p+(X) - W, p—(€&)) - @) + (p+(Y) - p-(X) - @, p+(&)) - @) =2Re({Y,p-(X)-p+(Y) - p-(€))- @)
+4ig(Y, p-(ej))g(V, p- (X))
+4ig(Y, p-(X))g(V, p-(ej)).

The imaginary part of the right-hand side of the last equaditthen given for every

j€{1,...,2n} by

4%e (9(Y, p-(€))a(V, p- (X)) +9(Y, p-(X))a(V, p-(€)))) = 9(V,X)g(Y,€)) +a(V,I(X))g(J(Y),&)

+9(X,Y)g(V. ) +9(3(X),Y)g(I(V), &).

This shows that

2n

S Im((p-(Y)- P+ (X) - 4, p-(e))- ) + (P+(Y) - P-(X)- @, Pi(€)- ) )& = GV X)Y

=1
+9(V,I(X))JI(Y)
+g(X,Y)V

Similarly, one shows that

2n

> Im((p-(Y)- @ p-(&)) - P+ (X)- )+ (P+(Y) - ¢, Ps()) - P-(X)- 9) )& = —g(V,Y)X
=1

+9(V,J(Y))I(X)

_g(VaX)Y

+9(V, I(X))I(Y).
Combining the computations above, we obtain

OxOwW = 5V

+(9(V,X)Y +9g(V, I(X))I(Y) +9(X, YV +9(I(X),Y)I(V))

— (=9(V,Y)X+g(V,J(¥))I(X) = g(V, X)Y +9(V,I(X))I(Y))

= Op .V

+(29(V, X)Y +9(V,Y)X = g(V,J(Y))I(X) +9(X, Y)V +g(I(X),Y)I(V)),
which shows the first identity. We deduce for the Hessiaivdf that, for all vector
fieldsX,Y onM,
Hesg[V2)(X.Y) = 2g(0xCwV,Y)

= 2g(05 ,V.Y) + 2(2g(V,X)g(V,Y) +VI2g(X,Y) — 0+g(X,V)g(V,Y)

+9((X),V)g(V).Y))
= 29(TxV, EVV) +2 (390X V)g(Y.V) + [V PG(X,Y) ~ g(X,IV)g(Y. I(V))
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which is the second identity. This concludes the proof of eaff.Z.2. O

We can now describe more precisely the set of critical vaiuebpoints of |2 and
VI2.

Proposition 4.2.3 Under the hypotheses éfroposition[4.2]1 assume furthermore
(M2 g) to be connected and complete. Then the following holds:

i) The se{V = 0} of zeros of V coincides wit{ﬁvv = 0}. As a consequence, the
zeros of V are the only critical points of the functipf? on M?",

i) The subsef{V = 0} is a (possibly empty) connected totally geodesitlr
submanifold of complex dimension<kn in (M?",g,J). Furthermore, for all
x,y € {V = 0}, every geodesic segment between x and y li¢¥ ia- 0}.

iiiy The function|y|? has at most one critical value di?", which is then a global
minimum of|@|2. Furthermore, the set of critical points o|? is a connected
totally geodesic Khler submanifold ifM?", g, J).

Proof. The proof relies on simple computations and arguments.

i) Proposition[Z.2]1) already implies thafOyV = 0} coincides with the set of
critical points of [V|?. Every zero ofV is obviously a zero of\V, i.e., a criti-
cal point of|[V|2. Conversely, lek € {ﬁvv = 0}. Then 0= gx(ﬁVV,V) = |p_(Wx) -
@2+ |p+ (W) - @)?, so thatp_(Vx) - @ = 0 andp, (Vx) - ¢ = 0, which, in turn, implies
0=0m({p+ (W) ¢, ) = 9(Vx, W), thatis,Vx = 0. This shows).

i) The subsefV = 0} - if non-empty - is the fixed-point-set iM?" of the flow

of the holomorphic Killing fieldJ(V), therefore it is a totally geodesic Kahler sub-
manifold of M2" (see e.g.[[CI0, Sec. I1.5]); moreover, it cannot contain epgn
subset 0fMI?" since otherwis&/ would identically vanish as a holomorphic vector
field. To show the connectedness{sf = 0}, it suffices to prove the second part of
the statement. Pick any two poimtg,x; in {V = 0} (or, equivalently, any critical
points of [V|2) and any geodesic in (M2",g) with ¢(0) = Xy andc(1) = x;. Con-
sider the real-valued functiofi(t) := |V|§(t) defined onR. Then, for anyt € R one has

f'(t) = g(grad |V *).¢ 1)) = 29(0e(V.V) and
£(t) = Hesg|V|?)(¢'(t),c(t)).
LemmdZ.2.2 provides the Hessiangf2: for everyX € TM,
Hesg|V %) (X, X) = 2/0xV[*+2(3g(V,X)?+ |V PIX [ = g(X,I(V))?) .

By Cauchy-Schwarz inequality/|?|X|?> —g(X,J(V))? > 0, so that Heg$V |?) (X, X) >

0 for all X, in particularf is convex. This in turn implies that, i (0) = /(1) = 0,
then necessarily vanishes o0, 1]. This provesi).

iii) Set, for anyt € R, h(t) := |¢,u|§(t) wherec is an arbitrary geodesic ofM?",g).

We show again thal is convex. As beforé’(t) = Hessg|w|?)(c/(t),c/(t)) > O for
everyt € R, where Hesgy|?)(X,X) = 2(|p_(X) - @/ + |p+ (X) - ¢|?) > 0 for every

X € TM (Propositio 4.2]1). We already know thatMf= %grac(|w|2) vanishes at
two different points ofc, then it vanishes on any geodesic segment joining the two
points, thereforeéy|? is constant on it. This proves thap|? has at most one critical



84 CHAPTER 4. IMAGINARY KAHLERIAN KILLING SPINORS |

value. Sinceh is convex this critical value is necessarily a minimum. Tast Ipart
of the statement is a straightforward consequenci)ogince grad|y|?) = 2V by
Propositiod 4.2]1. This shoviis) and concludes the proof.

4.3 Doubly warped products with imaginary Kahlerian
Killing spinors

In this section, we describe the so-called doubly-warpedpects carrying non-zero
imaginary Kahlerian Killing spinors. Doubly warped prads were introduced in
the spinorial context by Patrick Baier in his master the€i€][to compute the Dirac
spectrum of the complex hyperbolic space, using its reptatien as a doubly-warped
product over an odd-dimensional sphere.

First we recall general formulas on warped products.

Lemma 4.3.1 Let (M =Mx1,g:=¢q @Bdtz) be a warped product, whered R

is an open interval, gis a smoothl-parameter family of Riemannian metrics on M
andf € C*(M x |,RY). Denote byMm "L, M the first projection. Then, for all X €
F(mgTM),

g = igf“;gﬁ >+%%X>a
OxY — Dg‘("Yzlﬁi%(X,Y)%,

Where%( = [%,X] andOM (resp.0) is the Levi-Civita covariant derivative oM, o)

(resp. of(M, g)).

Proof. straightforward consequence of the Koszul identity. O

From now on we restrict ourselves to the following particelase: the manifol will
be equipped with &iemannian flow

Definition 4.3.2

i) A Riemannian flows a triple (M, g, E), where M is a smooth manifold arfdis
a smooth unit vector field whose flow is isometric on the omimaddistribution,

e, GONE, Z) = —g(z, 0 &) forall 2,7’ € &+, whereCM denotes the Levi-
Civita covariant derivative ofM, ).

ii) A Riemannian flowM., g, ) is calledminimalif and only ifﬁ%"? — 0, that s, if

E is actually a Killing vector field on M.
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Let (M, g, E) be a minimal Riemannian flow. Létdenote the endomorphism-field of
&L defined byhA(Z) = OM¢& for everyZ € &+ Let [ be the covariant derivative dn*

7218 ifx=2 _
E%’j]z)@ ': ); N :; . Alternatively,[d can
X i

~

defined for allZ € [ (E1) by OxZ := {

be described by the following formulas: for ZZ' € T (&+),

o~
~

ﬁg"z =0;z+hz) and OY7 =0,7 -§(h(2),2)E.

It is important to notice that, ifM, g, 2) is a (minimal) Riemannian flow ang :=
rz(szﬁg@ﬁgl) for some constantss > 0, then(M,g,& := 1¢) is a (minimal) Rie-
mannian flow with corresponding objects given by

h— ?ﬂ and DO=0. (4.2)

In this language, &asakiammanifold is a minimal Riemannian floM, g, E) such
that h is a transversal Kahler structure, that g, = —IdgL and Oh = 0. Further
on in the text we shall need for normalization purposes d$leadtaz-homothetic
deformationsof a Sasakian structure: &-homothetic deformation ofM,§, &)

is (M,/\Z(AZQ(?@Q@)U\_%) for someA € RY. The identities [(4]2) imply that

(M,A2(A 2@3@3@), /\%2) is Sasakian as soon @4, §, € ) is Sasakian.

We can now make the concept of doubly-warped product precise

Definition 4.3.3 A doubly-warped produds a warped product of the form
(M,g) == (M x |,p(t)2(a(t)2gg@ Gz.) @ dt?),

; ; ATy HY i i . X
where | is an open interva(M,g, ) is a minimal Riemannian floyg,o : | — R}

are smooth functions arrj%L = @RE%RE, (jgL = g‘EiuﬁEi'

As for warped products, it can be easily proved that a dowayped produc(tl\ﬁ,@) is
complete as soon ds= R and(M,§) is complete.

It is easy to check that, setting := p(t)z(a(t)zggeetj@), one has% = Z%Qt +
27‘7/91(71@,-) and the unit vector field providing the Riemannian flow @, g;) is
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&= p%g In particular, the formulas in Lemnia 4.8.1 simplify:

~ 0
D%E =0
D%E =0
~ oz p
02 = Gt ,?
=~ d _ (po)
Dfdt - po ¢
~: _  (po)y o
He& = po ot
0:Z = 0:Z+h(2)
~ 0 B p’
g = 57
0,6 = h(2)
! !/ !/ p, /a
0zZ' = 0zZ'—a(h(Z2),Z) _th(zvz)av

where we have denoted the corresponding objectdbu;, &) without the hat *”.

Next we look at a possible construction of Kahler structuwsa doubly-warped prod-
ucts.

Lemma 4.3.4 Let (M, @) := (M x| ,p(1)?(0(t)°G; Gz, ) ®dt?) be a doubly-warped

product. Assume the existence of a transversdil&r structure J or{M, g, 3) and de-

fine the almost complex structufeonM by J(¢) := &, J(%) = —& andJ(Z) :=J(2)
forall Z € {&, 21+, Then(M?",g,J) is Kahler if and only ifh = —£23on{¢, 23+ (in
particular % must be constant).

Proof. Using the identities above we write down the conditiéh= 0. Denote byh and

O the objects corresponding gpon M. Note first that, by definition and (4.2), one has

0J=0on{¢, %}i andJ‘{E o= J, which does not depend dnHence we obtain,
"3t
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forall Z,2' € F(§1):

87

~ 0 =~ 0
15 0GN -0 5) = o
0, (3(€) - 30,8) = 0
~ _0((2) 9z, 00(2) .0Z
Ua(A2)-d0e2) = —5—-I5)=—5—I5)=0
~ ~0 0
Oe((50) —I0e5) = O
0¢(3(8) - J(Te&) = 0
0:(3(2) - 3(0eZ2) = hod(2)—Joh(2)
~ 0 == 0. P
T2(G) 3025 = —h2) =292
T23(8) - 3(026) = Ez-30nz)
~ o~ / 0 0
020@) - 3022) = ~a(h(@),9Z)E - L a(z.92) 5 +ah@).2) 5 -
Therefore,0J = 0 impliesh = f%\] on & which, in turn, implieshoJ = Joh.
Moreover, [4.R) implies that = %ﬁ, which yieldsh = —%J. The reverse implication
is obvious. O
Notes 4.3.5

1. With the assumptions of Lemina4.J3.4, the funcpémanishes either identically
or nowhere on the interval In the former case the vanishingtofs equivalent to
M being locally the Riemannian product of an interval witha#er manifold; in

the latter one, we may assume, up to changirigto |%|0 (andginto (

a

2.
)% ®

Gg.), thath = —eJ andp’ = eo with & € {+1}.

. Given a Kahler doubly warped produ@ﬁ

,8,J) as in Lemmd 43l4 and a

real constan€, the map(x,t) — (x,£t +C) provides a holomorphic isometry

(Mvvgaj) — (Mlvqa 7)' Where(mla

§):= (Mx (C+1),gst,c®dt?) andT is

the corresponding complex structure (again as in Lemmd)y 8 furthermore
M is spin, then this isometry preserves the correspondingstpictures. Thus,
in the case wherg’ # 0, we may assume that=1, i.e., thah=—-Jandp’ = 0.

Now we examine the correspondence of spinors. Let the widgrimanifoldM of
some minimal Riemannian floyM, g, &) be spin and, in cask! is the total space of
a Riemannian submersion wifit-fibres over a spin manifoltl, let M carry the spin
structure induced by that di. Let XM denote the spinor bundle ¢#M,g) and M

its Clifford multiplication. Let the doubly warped produbt carry the product spin
structure (with Clifford multiplication denoted by”). Then the transversal covariant
derivative J induces a covariant derivative - also denotedlby on M, which is

P’ )
P a(z,2)E.
pgt(, )€
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related to the spinorial Levi-Civita covariant derivati#' on M via (see e.g[[07,
eq. (2.4.7)] or[[CB, Sec. 4])

12n72 1
Ofo=0gp+3 J;ej Ghe) ¢ and 079 =0z6+58  h2) . ¢

for everyg € I'(XM), where{e;j }1<j<on—2 is a local orthonormal basis gf- c TM.

Lemma 4.3.6 Let a minimal Riemannian floyM, g, E) carry a transversal Khler
structure J such that the doubly-warped prodl(lm g,J) is Kahler, whereJ is the
almost-complex structure induced by J as. Bmma 4.3 ¥ Assume furthermore M to
be spin. Leii/lv carry the induced spin structure. Then the following idtéeg hold for
all ¢ €T(ZM) and Ze€ {&, &}

~ 99
Heo = 5¢

~ / a
b = Oep-Lae-Ze 2
o = Dz¢—§—p<a-J<z>+z-%>-¢,

whereQ denotes the &hler form of(M, g, J).

Proof. Let(ey,...,en-2,€n-1:=&,€n:= i) be a local positively-oriented orthonor-
mal basis off M and(Yq)q the correspondlng spinorial frame. It can be assumed that

ej = p~ 16 with §(6j,&) = Ok and = 0 (extend som@-orthonormal basis inde-
pendently of time). Splip = 3, Cq t,ua, then

a

S8
hs)
I
Nl
M
o
Q

0eJ -

where we have used 2 m =0 2 ¢ =0and ff)l ej by the above choice dj.

On the other hand, the Wemgarten endomorphism fieldMbfg: ) in M is given by
AE):=-0g g = f—E andA(Z) == -0z 5% = ff,/Zfor allZ e {&,2}L, so that
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the Gauss-Weingarten formula implies

Tep = Y9+ SAE) 29
12n72 (pO')' 0
= Uep+- > e -h(g) - ¢——-—& —-¢
¢ 41; VRS 2p0 " ot
/2n2 l 0
- Df‘p*_ze‘ ¢(2p; a?

(po)’

= D050 050 200

E N )

whereQ is the 2-form associated tbon {€, 2}, i.e.,Q(Z,Z') = ¢(J(2),Z’) for all
2,7 € {&, 51" SinceQ = Q + & A &, we deduce that

o _(po) . @
¢—59 ¢+<5—2p0>£-—-¢

¢—— 6-Ze 2

Oe ¢

ForanyZ € {&, 2}, one has

Oz¢ = DZ¢+1A( VAR gt
,

= Dz¢+§EMh() ¢*—Z it

/

_ Dz(p_g_pg.\](z).(p_5 =

which shows the last identity and concludes the proof. O

Later on we shall need to split spinors into different comgrs. Recall that, on any
Kahler spin manifold M?",g,J), the spinor bundl&M of (M?",§) splits under the
Clifford action of the Kahler fornQ into

n
M =@M,
r=0

where2; M := Ker(Q- —i(2r —n)ld). Now if (M?,,J) is a doubly-warped product as
above, then ang € ;M (withr € {0,1,...,n}) can be further split into eigenvectors
for the Clifford action ofQ = g(J-,-). Namely, sincéé A at, Q] =0, the automorphism

& - 2 of IM leaves3, M invariant; from (& - at) = —1 one deduces the orthogonal
decompositiorirm Ker(¢ - atJrild)EBKer(E 5 —ild). Since both Clifford actions
of & and . arelJ-parallel, so is the latter splitting. But, for agye 5:M, one has

¢eKer(E-%iild) = Q-¢=i2r—n)pLi¢
= Q-¢=i2r—n=xl)¢,
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that is, %, M NKer( - & +ild) = =M and=,MnKer(¢ - & —ild) = %,_;M, where by
definition%, M := Ker(Q - —i(2r — (n—1)Id)) forr € {0,1,...,n— 1} and{0} other-
wise. Out of dimensional reasons one actually has

SM=5Ma%_ 1M (4.3)

for everyr € {0,1,...,n}. Beware here that, if is even, therErM is a subspace of
*tM hencleM‘M is canonlcally identified with a subspacer*fM‘M =2M, whereas

if r is odd then it is a subspace Bf M and is also identified as a subspac&Bf, but
this time with opposite Clifford multiplication.

Lemma 4.3.7 Under the hypotheses bemmalZ.3Blet ¢ < I'(5,M) for some re
{0,1...,n} and consider its decompositign= ¢, + ¢;_1 w.r.t. (£.3). Then the identi-
ties 0fLemmalEBead:

Og 00 = %%
ﬁ%¢F1 _ 5%;1.

Y |I|5<I>r+I_((n—Zr)%/4-%l)(1;r
Oedr—1 = Ogr 1+2((n 2r)%/%/)¢rl

forall Z € {&, &}, where, as usual, (Z) = 3(ZFiJ(2)).

Proof: The first two identities follow from] (E A 0t) 0 and% = 0. For the third
and fourth ones, note thﬁtz (&N z?t) =0,s0 that

b+ et 10 (2 (Bt 9r1) (91 b0)

ﬁfd’r +ﬁ{¢r—1 20

/ / / /

= Oebet 5205+ Dot Oedeat (-2 - o

which is the result. As for the last identity, one does nolehiy(é A %) =0, however

17} 17} 0
(EID) 42 2) 9 = (D) 5-& 247 5). ¢
0

—iJ(Z)-E'((Pr 1— ¢r)+z (¢r+¢r 1)

= 2|0+(Z)-%-qbr71+2p,(2)ﬁ-¢r

forall Z € {&€, 2}, This concludes the proof. O
x

We now have all we need to rewrite the imaginary Kahler Kdlispinor equation on
doubly warped products.
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Lemma 4.3.8 Let a spin minimal Riemannian flo@12"~ 1,g El carry a transversal
Kahler structure J such that the doubly-warped prod(,Mt,g J) is Kahler, whereJ’

is the almost-complex structure induced by J asémmaZ.34LetM carry the in-
duced spin structure and assume 18 to be odd. Then a paify, @) is an i-Kahlerian
Killing spinor on (MZ”,'g, ) if and only if the following identities are satisfied by the
componentg = Pog1 + Pna andy = l,UnTl + L,UnT3 w.r.t. (4.3).

7- =0
i )
3t |0—t'l,Un—1
oYn_1 5
=i
dw%3
at :Q y )
| ag
Oy = 3(5 — 5P
_icP ! 9
O = é(;f%)/ h1 = gt Yna (4.4)
O s *%(%+%)w%l+%'(pn;zl
_ie_d
Dflp”£3 2(p ?)"Un;f
Oznss = p+(2) (%% Pnos —iny)
Ozns = %/pf(Z) G Poa — P (2) - s
Ozns = 5p.(2)- /a% “Wns —iP-(2)- s
Oz¢pns = p-(2) (%%'W%l—ifp%l)

for every Ze {&, 21+

Proof. Sincep (&) ¢ =3(Z+i&) =312 (1+i&- S y= %-L[Jn%l and similarly

p (ﬁ%) =73 i Pos, thei-Kahlerian Killing spinor equation is satisfied by, @) for

= m if and only |f

a(PnH d(On—l d
2 wa _ I e
OPna OYns o, 9
ot + ot - 7Ip (a_) (4 IE'qon 1,

which gives the first four identities (u$@, ﬁ] =0).

Fromp,(§) - = —ip. (&) W=~ Yo andp_(§) @=ip-(§) - ¢=1% 0n1
we deduce that theKahlerian Killing spinor equation is satisfied by, ¢) for X = &
if and only if

Dg(pn+1+l—2( %Jr%)(l’hl =0

i p a 0
D§¢n—1*§(%+3)¢n;l = 5 Yo

i p a 0
Dgl.l.ln—l"f‘é(;—f'g)w%l = E Pn_1

i p a B
Detngs +5(5 s = 0
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which implies the next four equations.
LetZ e {&, %}i, then tha-Kahlerian Killing spinor equation is satisfied by, ¢) for
X =Zifand only if

!/
—ip+(2) Yn1 = &%%—%m@y%w%
@) e = Dros—Zp @)L g
Tz P ot Tz
P20 = Oobes—Zpi(@) 2 gy
i TP ot Tz
!/
P2y = Oeben—2p @ 5o,
which concludes the proof. O

Next we want to describe all doubly warped products with mers imaginary
Kahlerian Killing spinors.

Theorem 4.3.9 For n > 3 odd let(M2",§,J) be a Kahler spin doubly warped product
as in Lemmal4.3.BIf there exists a non-zero idhlerian Killing spinor (¢, @) on
(M?.g,J), then

e the minimal Riemannian flogM2"-1,g, E) is Sasakian,

e up to changingt inte-t, applying aZ-homothety and translating the interval |
by a constant, one has eithpr= € or p = sinhor p = cosh

o the componentg, and@ of (¥, p) w.r.t. (£.3) satisfy:
i) Incasep =€:Theno =¢€ and, setting,TJn;zg = il% Yoz and¢n;21 = et((pn;zl +
P2 Yo_1), one has

FPa =0
G0z =0
foop =
Jgbnsn =0
Dgns =0
O¢n: =
Botny = (-1 (20
azm%—g = (-1)" p_ (Z) ¢os

If furthermoreqbn%l =0, then for(ﬁn;zl =gt ¢n_1 ONE hasl% (Apn;zl =0and

Oy =0
Dmn—3 :0
Tofns = (-1 (0 (2) Gnys + P (2) T 0).
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In particular, the manifold(M?"-1,g, E) admits a non-zero transversally par-
allel spinor. Conversely, every non-zero transversallyafial spinor SIS
F(Zn;le) provides a non-zero i-&hlerian Killing spinor by settingphzl =
o A0 o ia = ;
w%_g ;=0 and (0n_£1 = etqon%l, L[Jn%l = —et|ﬁ . (p%_l. Moreover, for any i-

Kahlerian Killing spinor (g, @) on that doubly warped produ¢M?”,g,J), the
componentpn%l is transversally parallel oiiM, @, &) if and only if i% P=—0.

ii) In casep = sinh One haso = coshon | = R and there is a one-to-one cor-
respondence between the space ofahkerian Killing spinors on(MvZ”,g,\T)
and that of section§¢n.1,¢n1,0n1,0ns3) of MBI IMBI 1M

oz e 2 e 2 z 2
Z%3M — M satisfying

~ (=) _qf =~ (=)

B = SRo-:ie,

~ (v) (1) ~ (%)

Uz 01 = (n=2r)é- ¢

Ag (N)r 1 2 (N'\gl r-1 (4.5)
Uz ¢r = (71)rp+(Z);/l~\ ¢ r—1

~ () (=)

Uz ¢ -1 = (71>rp7(Z)M ¢r

on (M21-1 G, &), for every Ze &* (this means that¢%_l,¢n 1) must satisfy

a
@5)forr = 04t and(¢n_1,@n_3) must satishd.5)for r = .

iii) In case p = cosh One haso = sinhon | = R} and there is a one-to-one cor-
respondence between the space ofahkerian Killing spinors on(MvZ”,g,\T)

and that of section§¢n.1,¢n1,Pn1,Pnsz) of MBI IMEZ AM O
T2 e 2 = 2 e 2
Z%_3M — M satisfying

ﬁg(i)r = —%(n—Zr)EM?(%
%y = Fo-mE o
59 = (%@ |
090 = (Dp @79,

on (M21-1 G, &), for every Ze &* (this means tha(¢%_1,¢%_1) must satisfy

@8)forr = 031 and(ﬁ%l,fﬁ%_g) must satisfy&8) for r = 251).

Proof. We first showp” = p onI. In order to express all equations &f (4.4) in an
intrinsic way, we have to compare all objects(dh, g;, ) with the corresponding ones

on (M,g,€). Recall thaty, = p(t)z(a(t)2§g®§@) andé = p%g As for (4.2), itis
elementary to check the following relations:

0=0, &=8& §.=& Z=pZ, Z.=pZ:,
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forall Z € &*. Applying £ onto

DOzgnss = pa(Z7(0 & - Ps —iPWns)
Dzwn 3 =P-(Z) (PG o1 —ipPns)

‘7(Pn+1 oYn_3
and using—% = —2 = 0, one obtains

0 9 9Pns On 1

_ N7 //_. /_. 2 _in i 2
0 = p:(Z)i(p It ¢n7—4+P gt ot IpL/J%_l ip ot )

0 0 0 0
= (o = . A T —ip’ —ip(—i—.
= PP Gy Pt Py (i W) 1P s — P (i 9n1)

0
_ n_ i
= ("= P)P+(Z) 57 Pnn

and analogouslyp” —p)p_ (Z)fﬁit . Lpn;zl =0forallZe g?i. Fix a localg-orthonormal
basis(€j)1<j<2n—2 Of Ei. PuttingZ = e;, Clifford-multiplying by e; and summing over
j gives(p” — p)(pn 1= (p”fp)(,un;l = 0. On the other hand, both equations involving
9¢n_1 oPn_
5 and— provide the existence of smooth sectmi‘;e,l of Zn 1M (indepen-
dent oft) such thatp, , = =dAl +e*tAn s andiy = —eﬁat h1 +e4|gt AL
2 2

We deduce thatp” —p)AJnf;1 = (p" —p)A* L= 0 If both AT na andA; , vanished
2

identically onM, then so Wouldp%_l andw%_l and the |dent|t|es mvolvm@z(pn_a_l and

ﬁz w%l would provide (after contracting with the Clifford multipation just as above)
Poss = l‘Un%s =0, so that(y), ) = 0, which is a contradiction. Therefopd —p =0
onl.
It follows in particular thato’ = 0 on| cannot hold, so we may assume that —J
(hence(M?"1.§,&) is Sasakian) and’ = o (see RemarKs4.3.5). Furthermore, in the
case where the const p? does not vanish, up to replacimgby ——2—

am')” - D 10 TERaCRDY a2
(which is equivalent to performing @-homothetic deformation of the Sasakian struc-
ture), we may assume thgh’?) — p2 = 1 or —1 onl. Next we rewrite the equations
from Lemmd4.318 considering the new sectim?s_l,rp%_l , 6%1,45%_3 defined by

R
Pos = P'(gn%l +ipZ- Yns
— !/
Pos =P Gos+p Uns
Pos = Uns.
Note that the linear transformation (qon“ o1 1,l,un 1, Pn 3) —

(¢n+1 ¢n 1, ?ﬁn 1 (ﬁTg) is invertible if and only if (p ) p? # O From 4%
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we have, foralz ¢ &1

G = O

s = 0

s = 0

sibw = 0

Bt~ CU (- gy
ety = U 2 (0 P00
e = CU 02" )0 02
Ogfn = —(‘12)%1<n—2<”gl>><<p’>2—p2>EMfan_zs
Oy = (1) pi(2) 00z

Oz6ns = (-1)'F (0= PIP-(2) by

Tzfus = (=17 (1)~ PI)P+(2) Fns

Tzfos = (-1)7 p-(2):fns

If (p')?2—p?+# 0 onl, then the required equations directly follow from the above
ones. Moreover, since in that case the correspondépge, Pn_1, WYn_1, Pn3) —
2 2 2 2

(¢%1,¢n%1 , (ﬁn%l,iﬁn%g) is bijective, the “If” in the assumptions is actually an “ii@
only if”. If now (p')? — p? =0, thenp’ = +£p on|; since we have assumgd > 0
(up to changing into —t), we only have to considgy’ = p, hencep = Cé€ for some
positive constarnt. Since translatingprovides a holomorphicisometry (again see Re—
markd4.3.5), one may assume t8at 1, i.e.,0 = €. In that case, one h@pn 1=
on M, hence¢n 1 vanishes either identically or nowhere bh(and onM since it is
constant int). If ¢n 1 # 0, then all right members in the equations listed just above
vanish except

ﬁzqo%l =(-1) 'z

9o,
26y = (-1)"p 7<Z>;$

|—' |—'

which together Wlth’ﬁn 1= 'at ¢n 1 gives the result. prn 1 = 0 onM, then coming
back to the equations from Lemrtﬂ]B 8, one thafm = l,U _3 =0 and qon 1

2
satisfies the required equations. D
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Note 4.3.101In Theoreni4.319) not everyi-Kahlerian Killing spinor orM must come
from a transversally parallel spinor dn. For instance, consider the complex hyper-
bolic spaceCH" (for n odd) endowed with its Fubini-Study metric of constant hadom
phic sectional curvature4 and its canonical spin structure. TheR" (possibly with

a suitable submanifold removed) can be viewed as a doublgeslaproduct in sev-
eral ways. For exampl&;H" is a doubly-warped product over the Heisenberg group

. . n—1 . . .
M, which admits a< nei >-d|menS|onaI space of transversally parallel spinors ly-

2
ing pointwise inZ,_1 M (see below). HoweveGCH" carriesad .1 )-d|menS|onaI
> nti1

2
space ofi-Kahlerian Killing spinors[[CB, Sec. 3]. Therefore therdsts at least one
non-zero Kahlerian Killing spinor of®H" which does not come from any transver-
sally parallel spinor oM.

As an example for Theorem 4.8.9 any Heisenberg manifold of dimensiok 4 1
(with k > 1) has a spin structure for which the corresponding spinadlauis trivial-
ized by transversally parallel spinors. This follows framnee facts: every Heisenberg
manifold is arS*-bundle with totally geodesic fibres over a flat torus; ev&@rpundle
over a manifold carrying parallel spinors carries transally parallel spinors for the
induced spin structure, see e.g. [C6, Prop. 3.6]; the whaileos bundle of any flat
torus endowed with its so-called trivial spin structurerigialized by parallel spinors.
Note that, as a consequence of Lenima413.12 below, the devaloped product arising
from a(2n— 1)-dimensional Heisenberg manifdidl choosingo = o = € has constant
holomorphic sectional curvatured, therefore it is holomorphically isometric @H"
as soon as it is simply-connected and complete.

Examples for Theorefm 4.3i9with non-constant holomorphic sectional curvature can
be constructed out of the following lemma:

Lemma 4.3.11 For each integer r= 1 (4), let (N>"~2, gy, J) be any simply-connected
closed Hodge hypetler manifold. Then there exists 8h-bundle M over N carrying

an St-invariant metricg for which(M2"-1 g, E) is Sasakian and for which there exists
a parallel spinor lying pointwise irin%lM.

Proof. Recall first that every hyperkahler manifold is spin (tfiidlows from the
structure group Slp‘g—l) being simply-connected). McK. Wang's classification [C14]
of manifolds with parallel spinors provides the existentexactly ”%l + 1 linearly
independent parallel spinors dh one of which lies pointwise iﬁn;zl N if and only if
21 is even[[C14, (i) p.61]. Now, for any Hodge Kahler manifgM,g,J) (‘Hodge”
meaning that its Kahler class is proportional to an integfass), there exists an
Sl-bundleM - N carrying anSl-invariant metricg for which (M2-1.g,&) is
Sasakian witth = —J, see [C13, Prop. 2] (as usu%ldenotes the fundamental vector
field of theSt-action). By [C6, Prop. 3.6], the lift of the non-zero paehpinor in
Zn;le to M gives a non-zero transversal parallel spinofbif" 1, g, E) provided the

spin structure oM is induced by the one or*(TN) and the trivial covering of?;
because ofi = —J, this spinor lies pointwise iﬁ%_l M. O

Kodaira’s embedding theorem states that a closed Kahlaifadé is Hodge if and
only if it is projective, i.e., if and only if it can be holomphically embedded in some
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complex projective space. Therefore projective hypede@manifolds of complex
dimension & (with k > 1) provide examples foN in Lemma[4.3.111. For instance,
simply connected hyperkahler manifolds can be constduatethe Hilbert scheme
of a K3-surface (cf.[[C5]). Indeed, let be a K3-surface, then the Hilbert scheme
HiIbZk(X), which is the blow-up along the diagonal of thieth symmetric product of
X, is a compact, simply-connected hyperkahler manifoldoshplex dimension K If

X is projective, e.g. a quartic, then Hilt§X) is projective too and thus has an integer
Kahler class.

In order to decide whether the doubly warped product we coatsts the complex

hyperbolic space or not, the transversal holomorphic ¢ureaof (M,g,¢) and the
holomorphic sectional curvature @¥12", g, J) have to be compared:

Lemma 4.3.12 Let (M2",g,J) be a Kahler doubly warped product as lemmaZ4.3.4
with p” = p, 0 = p’ andh = —J. Then the holomorphic sectional curvatiig,(Z) of

(M,d,J) and the transversal holomorphic sectional curvatg(Z) of (M., &) are
related by

Knol(Z) = p—lp_ (lzhm(z) - 4(P')2)7

forall Z € {E,%}L \ {0}. In particular, the doubly warped produ¢M?,g,J) has
constant holomorphic sectional curvaturd if and only if the transversal holomorphic
sectional curvature ofM, g, & ) is constant equal td((p’)? — p?).

Proof: Recall thaRho|(Z) andRho|(Z) are defined by

d(R(2,32)2,32)
49(z,2)?

6(R(Z,32)2,32)

Khol(Z) = §2.27

and  Kpo(Z):=

whereRy y := ﬁ[x,v] — [Ox, Oy] andRy 7 1= ﬁ[z’z/] — [0z, 0] are the curvature ten-

sors associated © andC onTM andg?l respectively. The following identities can be
deduced from the formulas in LemmaZl3.1, taking into actple- 0 andp” = p:

e 7] _ (pa)”’ o
4(R(2,92)2,J2) = §<ﬁ<z,JZ>z,JZ)4<%>2§<z,2>2,

for everyZ ¢ {E, ﬁ%}i \ {0}. Usingg(Z,-) = p%g(Z,-), we obtain

§(RZ,32)2,92) , o'

4 _ Y T YA
wil®) = gz %)
_ 1§(RZ,32)2,92) 4Py
p>  9(Z,2)? p’’
which gives the first statement. Since by the computatiorwabﬁm(f) = -4
(independently o), the second follows from the first (note that)? — p? is constant
by the assumptiop” = p). O

As a consequence of Theorem 418, 9. emmd4.3. 71 and Lemrha 4.3 12, we obtain:
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Corollary 4.3.13 For an integer n= 1 (4), let (N>"~2 gy, J) be any simply-connected
closed Hodge hypeshler manifold. Let(M?"1 g, 3) be constructed from N as in
LemmaZ.3and (M2",g,J) be the Khler spin doubly warped product constructed
from M as inLemmalZ.3Bwith p = g = €. Then(M?",§,J) carries a non-zero i-
Kéhlerian Killing spinor but has non-constant holomorphéctonal curvature.

Proof. The existence of a non-zeieKahlerian Killing spinor follows from Theo-
rem43.9) and Lemmd 4.311. In cage= 0 = €, Lemma4.3.12 implies that the
holomorphic sectional curvature of the doubly warped pad@M?2", g, J) is —4 if and
only if the transversal holomorphic sectional curvaturéMfg, &) vanishes, that is, if
and only if its transversal curvature vanishes (seele.dl[€fop. 7.1 p.166]). Now for
anyS'-bundle as in Lemmia4.3111, the transversal (holomorpleiciienal curvature
of M and the (holomorphic) sectional curvaturd\b€oincide. Since simply-connected
closed hyperkahler manifolds cannot be flat, the Kahlenifoll (M“zn,g,i) cannot
have constant holomorphic sectional curvature. O

Corollary[4.3.1B provides the first family of examples ofttér spin manifolds of
non-constant holomorphic sectional curvature carrying-nero imaginary Kahlerian
Killing spinors.

The two other subcasép’)? — p2 = 1 and(p’)?> — p? = —1 are geometrically more
simple to describe. We do it in separate lemmas.

Lemma 4.3.14Let (M?"~1,g,&) be a Sasakian spin manifold with=h —J and fix
r € {0,1,...,n}. Then a sectiofiy, Y1) of ZM & Z,_1M satisfieg4.5) if and only
if Y=y +Y_1is a%-Killing spinor on (M, g).

Proof. Let Q be the 2-form associated foon &+, i.e.,Q(Z,Z') = g(J(Z),Z') for all
Z,Z' 1 &.UsingQ 0 G = (=D)™2r—n+1)¢ y Yy (for all r) we have on the one

hand

Osy = Dg"w+%gmw
= oy we Tl pila sy
= Dg”w—(*Zl)rEMw+(;;yémw—(;;y(2r—n+1)smw,
P a1 -nrve ws
= Dgﬂw*(;zlnyl.U+(7—21>r(n72r)EMl.Ur+(721)r(2(r71)7n+2)5'\-ﬂwr,1,

which implies

Oewr =¥y —55¢ - )+ SEn-20¢ . wr
4.7)

Ostr1 = (Dyl.U* (721)r5 V Y)-1— %(nfzf)f y Yr_1.
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On the other hand, for eve& < &+ one has,

T = DMw-3E N W
= oy- Tz Ty g ey
- 2 w2 020 vt vy
T 21) z g 21) (Z+13(Z ))-wr+(_Zl)r(Z—iJ(Z»-wrfl,
which implies
Oz = (¥~ 552 W)+ (-1 Pe(D)- s

P M 4.8
Ozgry = (- 552 - )1+ (-1 p-(2)- 4. @8

Therefore the pailyr, Yr_1) satisfies[(45) if and only ifp := L,Ur + ) _1 satisfies
My = % . L,U for all X € TM, that s, if and only ify is al ) -Killing spinor

on (M, g) O

The casgp’)? — p? = —1 is analogous to the ca$p’)?> — p? = 1 up to a Lorentzian
detour. We call[{4]9) the following system of equations:

Oy =—SE(-20)¢ - wr
et = SH-208 s (4.9)
Ozgr = (-1)epe(@) |, Yra

Ozh—1 =—(-1)"ep-(2) o ¥
forallz,Z' € &+, wheree € {41}.

Lemma 4.3.15Let (M?"-1, g, &) be a Sasakian spin manifold with-h—J and fix re
{0,1,...,n} aswell asc € {+1}. Then a sectior@t,ur, Y1) of 5 M @ %, _1M satisfies

@) if and only if ¢ := Yy +iey;_1 is a U ) L_Killing spinor on the Lorentzian
manifold(M, —gs © gz 1 ).

Proof. First, there exists the analog of Riemannian flow in the ht#ian context. A
Lorent2|an flow is given by a tripléM, g, E) where(M g) isa Lorentzian mamfold and

E a smooth tangentvectorfleld dhwith g(E E) =-1 andg(DME VAES fg(D E 2)
forallz,Z' € El Note that(M g) is necessarlly time-oriented because of the existence

&2 ~ X = i for all Z € I'(EL) andh:= OM&, one
(OMZ)8" ifX L&
obtains a metric connectiofi and a skew-symmetric endomorphism-figlan &+
such that

of E. SettinngZ =

~

‘ Wz =8,z+h@2) +§(ﬁg"«?,2)f
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forall Z,Z' F(Ei). Moreover, in cas®/ is spin, the corresponding Gauss-type for-
mula for spinors reads

b =M¢—107¢ +LETOMES
964) 9{ ¢ 29MA¢+ 28, g P
Uz¢ = D%"¢+%EM7h(Z)&¢

for all ¢ € [(IM) andZ € &*, whereQ(Z,Z') := G(h(2),Z)). In case(M,§,¢) is
Lorentzian Sasakian, i.e., if furtherde@!'E 0, W = —Id andTih = 0, then we still

have the_-parallel decompositioEiM = @rZOZrM with M := Ker(Q& —i(2r—(n—
1)Id)). This time one haém;r = (1) *1¢, for all ¢, € =M.

Assume now(M, g, g?) to be Lorentzian Sasakian and pick a sectjos ¢ + ()1 of
> M@ Z; 1M, then the formulas above imply

By = a%ﬂw_}fpw
T e e R (MUY IASHC R LRy
= ﬁg”wf(*l—fli«?;wﬂ’l—g“i«?@w
*%ri(k<”*1>>?;wrJ’—?”(Z(rfl%(nfl))?fwr,l
= a0y gy - S gy,
that is,

L ~

)r—i—%ﬂ(n—Zr)Eer
1 ~

)rfli( l)2+ '(n—Zr)EML‘Ur,l

This is still valid forr =0 orr = n (settingy/_1 := Y, := 0). Similarly, for allZ € Ei,

oy = By ER@)
= Ay ey ey Y Ry C Rz
_ oM YT L ~ i (7)°
= DYy Sz (1) P (@) + (-1 P (2) g,
that is,
ey = (Do S57Z0g), + (-1 Hip () s
Oogr 1 = (Oy— 1;'“'2 W),y + (-1 P (2) .

If one changes the Lorentzian metgiinto g := —gg@g@, then one obtains a smooth
Riemannian metrig on M and the triplegM, g, & := g?) is a Riemannian flow with
Mg _ _7FMz
e = -0
h =-h
0 =[.



4.3. DOUBLY WARPED PRODUCTS 101

Moreover, the Clifford multiplications are related by

'3 :lf,\'ﬂ
Z =27,
M

forallZe &+ = Ei Therefore the equations above becoméng, &)

Dewr = (- E0y), -G-8, w

Oethr1 = (a%/'lll* (71);“ E&‘I’)r,ﬁr S (n- 2r)E Y1

Db = (-2 (i)

Ozg1 = (e S57Z0y), o+ (-9 ip-(2) - .
Therefore,y — iey;_; satisfies[(419) if and only ify is al ) Kllllng spinor on
(M.G.&). 0

Round spheres provide examples of spin Sasakian maniféldeef4.5) is fulfilled for
the rightr.

Lemma 4.3.16 For any odd n> 3, the (2n — 1)-dimensional round sphere M with
its canonical Sasakian and spin structures admifs(a nﬂl -dimensional space of
sections OE%_J_ M@ Z%_l M@ Z%_l M@ Zn%:s M satisfying(4.3).

Proof. Consider the standard embeddi§§ ! c C", with unit normalv, = x and
hence Weingarten-endomorphism figdd= —ldyty. Seté := —iv. It is well-known
that (SZ”*l,g,E) is a Sasakian spin manifold with= —J on &+ C TM, wherel is

the standard complex structure induced fréfh Let ¢ € Z,C" withr € {0,1...,n}

(i.e., Q- Y=i2r—n)yY whereQ is the standard Kahler form d@"). If r is even then
Y € TTC". In that case the spinorial Gauss formula reads

Wo =050 ZAX) ¢

M

so that the restriction af onS>"~* satisfies Iy ¢ = 1X o Wie.is a}-Killing spinor.
If r is odd, theny € X_C". The spinorial Gauss formula for a secti¢re Z*Cr;ml,
which can be identified witfzS?*~1 provided we change the sign of the Clifford mul-
tiplication, reads then

Wo =050+ AX) ¢

M
for everyX € TM. We deduce thabl ¢ = f%X y Y for everyX € TM, that is, the
restriction ofyy to S? lisa—3 5-Killing spinor. To sum up, the restriction of a constant
sectiony € Z,C"to M := SZ” lisa u-Kllllng spinor on M. Decompose such a

Y into Y = Y + Yr_1, seel([dB). From Lemnia4.3114 and-(k;C") = < : ) we

r
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conclude. 0

The analog of2"1 in the Lorentzian context is the Anti-deSitter spacetifi@ 1,
that can be defined by

n-1
B = (26 € -+ 3 [ =1}
=

Lemma 4.3.17 For any odd n> 3, the (2n— 1)-dimensional Antl deSitter spacetlme
M := H?"-1 with its induced Lorentzian Sasaklan structure (With= ix andh = J)

and induced spin structure admits n" ; -dimensional space o%-Kllllng

spinors lying pointwise irt;M & Z;_1M. In particular, if one considers the (Rieman-
nian) Sasakian metric given bytjgée Q@, whereg is the canonical Lorentzian metric

. . n . .
of sectional curvature-1, thenH?"~! admits a2 [ .1 )—dlmensmnal space of sec-
2
tions of2a M © Tn 1M G T s 1M @ 3o oM satisfying@8)

Proof: First recall thaM is a Lorentzian Sasakian manifold and simultaneousi§’an
bundle with totally geodesic fibres ov8H"~1. Just as for the sphere, one can restrict
spinors fromC" ontoM so that the following Gauss-Weingarten-formula holds tbr a
Y eC?(C",Zy) and allX € TM:

|:|>'\Z|LIJ — _M.V.w

2
- PR W i) € Iy X

B i) Ty,
whereA(X) := Oxv is the Weingarten endormorphism B in C". Moreover, there
still exists alJ-parallel splittingZon = @)y Zon, WhereXa,, := Ker(Q- —i(2r —n)ld)

(with dimension( rr1 >) andQ is the Kahler form associated to the standard complex

structureJ onM. Choosingvy := —x as unit normal oM, one haA = fIdTM, so that
the restriction of any constant section@f x >,, ontoM provides a=l i ) L_Killing

spinor. Since aganirM‘M =2 M® % _1M, the first statement follows. The second
statement is a consequence of the first one together with laéBlb. O

The doubly warped product of Theorém 418 9corresponding tM = S>1 is the
complement of a point in the complex hyperbolic sp&e#' with its canonical Fubini-
Study metric of constant holomorphic sectional curvatude(compare with[[Cl1, Satz
5.1]). Therefore we obtain a new description of the imagit&hlerian Killing spinors
on CH" after the explicit one by K.-D. Kirchber@ [C9, Sec. 3]. AcliyaCH" is essen-
tially the only example occurring in Theorém 4139
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Theorem 4.3.18For n > 3 odd let(M2", g, J) be a Kahler doubly warped product as in
Lemma4.3Bvith (M2"-1 g, E) complete, Sasakian, simply-connected, spia, R,
p =sinhando = cosh LetM carry the induced spin structure and assu(ﬁi?”, g,f)
admits a non-zero i-&hlerian Killing spinor(y, @).

Then(M?",g,J) is holomorphically isometric t&H"\ {x} for some xc CH".

Proof. It suffices to show thatM2~1,G, &) is S2"-1 with its standard Sasakian struc-
ntl

ture. By assumption and Lemria 4.3.14, the seoﬁ@ + ¢QE_1 is a—<’1)2T -Killing

spinor on(l\/lj”*l,@, &) lying pointwise inz%_l M®©Z 1M andthe sectioﬁ%_l + Zﬁn%s

is a —%—Killing spinor on (M2~ g, 3) lying pointwise in ZQE_lM @ Z%_gM.

At least one of them does not vanish. Now C. Bar’s classificafsee in particular

[C2, Thm. 3]) implies that eitheM = S?~1 or M is a compact Einstein-Sasakian

manifold with exactly one non-zer%} and one non-zere%-KiIIing spinor. Moreover,

each Killing spinor induces a parallel spinor on the RieniamrconeM over M

[C2]. But coming back to McK. Wang’s classification of simglgnnected complete

Riemannian spin manifolds with parallel spinors, it turng that, in the latter case,

the reduced holonomy &fl is SU, (wheren is its complex dimension) and the parallel

spinors lie inZoM and Z,M (see [C14, (i) p.61]), in particular not iﬁ%_lm. Thus

only "1 occurs. O

In caseM = H2"1 is equipped with its associated Riemannian Sasakian stejct
the corresponding doubly warped product wjgth= cosh ando = sinh has again
constant holomorphic sectional curvaturét by Lemmal4.3.72. It is actually the
complement ifCH" of some submanifold. We conjecture that, up to coverkig; *

is the only Lorentzian Sasakian manifold having non-zeragmary Killing spinors
lying pointwise in the “middle” eigenspacesM (with r € {“;23,...,%1}) of the
Clifford action of the transversal Kahler form. If this hzgns, then only the complex
hyperbolic space can occur as (simply-connected compggahple of doubly warped
product in Theoreh 4.3.@).

4.4 Classification in a particular case

In this section, we show that the structure of a doubly wagreduct can be recovered
from the length function of a non-zero imaginary Kahlerkating spinor satisfying
certain supplementary assumption on the Kahler mankbl@he following result can
be seen as analogous to H. Baum'’s dnel [C3] about imaginalindpinors of so-
calledtype I Recall for the next theorem thdtwas defined by[(4]11).

Theorem 4.4.1 Let (IW”, g,J) be a connected completé&Hler spin manifold carrying
a non-zero i-Khlerian Killing spinor(y, @). Assumey| = |¢| and the existence of a
real vector field W oM together with a non-identically vanishing continuousdtion

H M — C such that W ¢y = ug@. Then the vector field V has no zero, thihtier
manifold (M?",g,J) is a doubly warped product as ifiheoren{4.319) and (i, @)

comes from a transversally parallel spinor Od, g, §).
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Proof. We construct a holomorphic isometry betwe(ebﬁzn,g,J) and some doubly
warped product. This isometry is provided by the flow of soreeter field associated
to the Kahlerian Killing spinor (compare with the case ofgmary Killing spinors

[C3]).

First note that, if(y| = |¢|, then bothy and ¢ have no zero orM. Because of
W|-|@| = |W-@|=|u|-|¢@| this already impliefN| = |it| onM. Fix a neighbourhood
U of a pointx with p(x) # 0 for all x € U. It follows from the definition ol that

= 2i% (4.10)

onU, in particularW(x) # 0 andV (x) # 0 for all x € U. Now Cauchy-Schwarz in-
equality withX =V in (4.1) gives)V| < || - |¢| on M. With (4.10) we deduce that

2 V[? Vo2 IV) 2
= M gw, 22 4 gw, =)
[ r CUA I U vl
MRS
<
I
< WP

on U, which together with|u| = |W/| provides|V| = |¢|?. By the equality case in
Cauchy-Schwarz inequality, we obta¥h- ¢ = i|V|@ andV - ¢ = i[V|y onU. This
identity holds onM because of the analyticity of all objects involved (by defimi, g

is anti-holomorphic ang is holomorphic). This in turn implie$/| = |p|2 on M, in
particular{V = 0} = @ and‘\\j—‘ “P=ipaswell as‘\\j—‘ -@=iYonM.

Next we look at the level hypersurfadds:= {xc M, |@(x)| =r} (with r € R>) which,

if non-empty, are smooth because{(bf= 0} = @ and Proposition 4.2.1. A unit normal
to M, is given byv := ‘\\j—‘ and the associated Weingarten endomorphism field is

AX) = —Oxv

1 /~ ~ V V
= - DVgDV,——>
|V|< AU
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for everyX € vt. Setting€ := —J(v) (note that the vector field is pointwise tangent
to M), usingv - = i and Proposition 4.2lil), we compute, for alX,Y € v+,

= g Re((p-00 - @.p-(Y) 0+ (P (X) 4. p1(Y) - 4)

=~ Re((p-(X)- v, p-(Y)-v- )+ (p+(X) - &, ps(Y) - §))

= (= P00 vy p(v) - 4) 290 P Y P- (X) V- W)
+ (P4 (X) 4, p4(Y) - )

= —ﬁ%e(w-pf(x)-w,wpf(Y)-w>+29(v,p7(X))<w,V-pf(Y)-w>

—2g(v,p-(V))(P-(X) V-, ) + (P (X) - &, P4 (Y) - )

= lvllme(o«w,v-w>+ig<v,J<X>><w,v~p(Y>-w>+ig<v,a<v>><p<><>-v-w,w>)

—ﬁ(Wg(XW+9<V7J<X>>%e<<<p, P (Y) )~ 9(v. J(Y))Be({p-(X)- 0.4)))
0

_ lvll(|w|zg(x,v>+g<v,J<Y>>g<J<><>,V>)

—(9(X,Y) +9(&,X)g(&,Y)),

that is,A= —IdTtm, — @& In particular, the Gaul3-Weingarten formula for the in-
clusionM, C M readsixY = VY — (g(X,Y) +g(&,X)g(&,Y))v for all vector fields
X,Y tangent taM; .

We begin with the reconstruction of the doubly warped prodiicicture of Theo-
reml4.3.8). FromA(¢) = —2¢&, we deduce thaA(J(V)) = —2J(V), hencelyy v =
2J(V). Propositiof 4£.211i) gives

JM(WW Vﬂme«p(vw, p_(IV))-@) + (p+ (V) -, p-(IV)) - ) =O.

ThereforeﬁJ(V)V =2V|J(V), that is,OyV = 2V|V usingﬁJ(x)V = J(ﬁxv) for all X.
This implies for the commutator & andv (which we need later for the identification
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of the metric and of the Sasakian structure)

[E,V] = —[J(V),V]
v v
VT V]
R SV SV 1)
= vV mirY

0
1 1 1
- mv~(m)J(V)—W[J(V),V]
_ _9Bwv) v, 1
= vE W vy

——
0

— 2% (4.11)

We show now that each (non-emptWir, g, .¢),, ) is Sasakian. For every € TM;,
one has
Oxé = —Ox(3(v))
= —J(Oxv)
= J(A(X))
_‘](X) - g(EaX)Vv

o) thatﬁff = —2v, from which D?’E = 0 follows and, for everyZ < {&,v}+, the
identity [z = —J(Z) implies D?’E = —J(2). In particular,§,, defines a minimal
Riemannian flow or{M,g,,, ) andh = —J is an almost Hermitian structure dt C

T M. It remains to show that - or, equivalently,J - is transversally parallel o&=.
Recall that, from the definition of the transversal covaraerivative(] one has, for all
sectionsZ,Z’ of &1,

D¢Z = OY'Z-h(2)
= 0eZ-9g(A&),Z)v+I(2)
= 0:2+3(2)
and
0,2 = 07 +g(h(2),2)&
= 02 -9(A2),Z)v -9(3(Z),Z))¢
= 02 +9(Z,Z)v-9((2),2)E,
from which one deduces that
(0:3)(2) = 0:(2) —I0g2)

0:(3(2)) —Z2—-3(0:2) + Z
0
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and
(029)(Z) = 0z(3(Z)) - 3(0zZ')
= 0z203(Z)+9(Z,3(Z)Vv —9(3(Z),3(Z))&
~J(02Z) +9(2.2')E +9(3(2),Z)v
= 0,

i.e.,[0J = 0, which proves thatM. g,,, , ¢, ) is Sasakian.

We come to the holomorphic isometry. Dendle= My, §:= g, andg =&y Up
to rescaling(y, @) by a positive constant (this does not influence both conition
(Y, 9)), we may assume thd # &. Let " be the flow ofv onM. The vector fields
is complete since is bounded andM, g) is complete. Consider the map

F:MxR — M
(xt) — RY(X).

We first show thaf is a diffeomorphism. IfRY(x) = R/ (X') for somet,t’ € R and
x,X' € M, thenx andx’ lie on the same integral curve of Let nowc be any integral
curve ofv on M with ¢(0) € M and setf (t) := IV]¢t) (note thatf a prioridepends
on the curve and in particular on the chosen starting poirtgn f is smooth with

first derivative given byf’(t) = g(i‘&‘\g’w (c(t)) = 2|V|gp) = 2f(t) for allt, so thatf =

f(0)e? = €. This has several consequences. On the one Haisdnjective, so that
¢ meetsM at most once, hence= x' andt =t’, which proves the injectivity of.
On the other handf doesa posteriorihot depend on the chosen starting pointvdn
in particularR¥ preserves the foliation by the level hypersurfalgkf |¢| and hence
the orthogonal splitting M, & Rv. Together with the surjectivity of : R — R, we
obtain that ofF and the pointwise invertibility of the differential &f. Therefore- is
a diffeomorphism.

Next we determine the metrie*g. The mapF sends% onto v, so that obviously
F*g(Z,2) = 1. The preceding considerations also yiElty( %, X) = 0 for allt € R
andX € TM. Since

7] 7
2 (RO = (R (.8, = (RO(E v S 2y

we have

(RV).& =X& (4.12)

for everyt € R. Moreover, the Lie derivative of in direction ofv is given for all
X,Y € vt by

(Z9)(X,Y) = g(Oxv,Y)+g(Oyv,X)
= —29(A(X),Y)
2(9(X,Y)+9(&,X)g(¢,Y)),
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that is, (£v9)| | = 2(g+ &’ ®&’). The identity % (FY)*g,_, = (R¥)*£vg provides,
foranyX,Y e TM andt € R

ROy = (o (R GL)Y)
= (R g (X.Y)
= Z9(R"):X,(R").Y)oR

= 2(9((RM)X (RY).Y) + 9(E, (RY):X)9(E, (R)-Y) ) o

= 2((R)XY)+ (RY)Q(FY).EX)(RY) 9((FY).E.Y))

B2 (R e V) +e R UEXR)UEY)). @13)

Since(RY)"9(£. ) = 0((RY).&. (R").&)oF 22 (efg(z, £)) o = %, we deduce

from (4.13) that, foiX = &,

0

a_s((Fsv)*g(EvY))\ﬁt = 4(Ftv)*g(EaY)a

from which (RY)*g(€,Y) = e*g(&,Y) follows. In particular(R")*g(&,Y) = 0 for ev-
eryY € {&,v}+. ForX,Y € {&,v}+, the identity [£1B) becomes

2 (R 900Y)), = 2(RY) 0XY),

which implies(R¥)*g(X,Y) = €®g(X,Y). To sum up, the pull-back metric dvl x R
is given by
Frg=¢(e"g; © ;. ) o dt?,

where G; = & ®& =g§E, )®§E,) and, as in the beginning of this sec-

tion, (jgL denotes the restriction df onto the subsp«’aceﬁf,%}L C TM. Hence
the mapF provides an isometry with the doubly warped product of Theor
[4.39i). This isometry pulls the spin structure of back onto the product spin
structure of M x R, where M carries the spin structure induced by its embed-
ding in M. It remains to show thaf identifies the complex structures. This
follows from the definition of the complex structure on theuAdty warped prod-
uct M x R (see Lemmd_4.34), frontR").v = v, (F).(e72&) = & and from
B(2),V] = Oyzyv — 0I(2) = ~AQ(Z)) - H(DhZ) = I(2) - I(0uZ) = I([Z,V]) for
every sectiorZ of {&,v}+ (use the computation & above).

Last but not the leasthe identityv - ¢y = i@ implies thatg (or, equivalently,y) is
transversally parallel oM, §, &) by Theoreni4.319). This concludes the proof of
Theorent 4.4]1. O

It is important to note that only the conditid¥ - ¢y = @ for some real vector fieldv
is restrictive, since by [G9, Thm. 11] the identjty| = |¢| can always be assumed.
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We conjecture that the examples of Secfion 4.3 describe @illé¢ spin manifolds
admitting non-trivial imaginary Kahlerian Killing spims. This will be the object of a
forthcoming paper.
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Chapter 5

The Yamabe problem on
Lorentzian manifolds

5.1 Introduction and first results

We first state the problem and discuss it locally as well asriredsion 2.

Let (M",g) be am-dimensional Lorentzian manifold, where the signaturdiefrhetric
iS(— + ... +). LetO = dod = —trg(O o d) denote the scalar d’Alembert operator
on (M",g). If § stands for the scalar curvature @1",g), then the transformation
formulas for scalar curvature under conformal changes dficread

Sy =S +20u (5.1)
for n= 2 andg := e?g (hereu € C*(M,R)) and
n—2 nt2 n—2
rnil)sg:p 2 = D¢+74(n71>3;¢ (5.2)

forn> 3 andg = ¢ﬁg (hereg € C*(M,RY)). As in the Riemannian context (see
H. Yamabe([D31]), thé&ramabe problernan be formulated as follows:

Yamabe problem: Given a Lorentzian metric g on M, find a metgaconformal to g
with constant scalar curvature on M.

From both identities above this is equivalent to solvindl(%n dimensiom = 2 and
(5.2) in dimensiom > 3 respectively: given a constaBj € R, look foru € C*(M,R)

(resp.¢ € C*(M,RR})) satisfying [5.1L) (resp[ (5 2)).

Both (5.1) and[(5]2) are semilinear (and nonlinear in c&ge 0) wave equations.
Since such an equation can be locally put into the form of ansgtric (or symmetriz-

able) hyperbolic system and such systems always have locadth solutions (see e.g.
[D30, Ch. 16]), both[{5]1) and(3.2) are locally solvable oy apacetime.

To prove global existence (and possibly uniqueness) oftisols, it is convenient to
restrict the geometric category of Lorentzian manifoldssti-we assumév to ad-

113
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mit a time-orientation (such Lorentzian manifolds will kedled spacetimes We shall
mainly focus on so-calleglobally hyperbolicspacetimes:

Definition 5.1.1 A spacetimgéM", g) is calledglobally hyperbolidaf and only if there
exists a Cauchy hypersurface in M, that is, a sutasef M which is met exactly once
by every inextendible timelike cubiia M.

By [D7, Thm. 3.2], a spacetime is globally hyperbolic if analyif it has no closed
(future- or past-directed) causal curve and all subseim)fklrm\]i"(p) NIM(q), p,qe
M, are compact. IE is asmooth spacelik€auchy hypersurface &, then actually it
is met exactly once by any inextendildausalcurve inM. We also recall the following
smooth splitting theorem for globally hyperbolic spacetfin

Theorem 5.1.2 (A. Bernal & M. Sanchez [D5/D6]) Let (M", g) be a spacetime.

i) If (M",g) is globally hyperbolic, then it is isometric tR x =, —Bdt*> © @),
where eacht} x X corresponds to @amooth spacelik€auchy hypersurface of
M, B € C*(R x Z,R}) and(g); is a smoothl-parameter family of Riemannian
metrics on>.

i) If £ C M isany givensmooth spacelike Cauchy hypersurface in the (globally hy-
perbolic) spacetiméM", g), then for any§ € R there is an isometryM" g) =
(R x Z, —Bdt? @ g) as above and whetE identifies with{tp} x .

For instance, the warped produdd, g) = (I x Z, —dt?> @ b(t)?gs) of an open interval

| € R with a Riemannian manifold>,gs) (whereb € C*(I,R}) is arbitrary) is
globally hyperbolic if and only ifZ,gs) is complete, see e.d. [D4, Thm. 3.66] lor [D3,
Lemma A.5.14]. This class contains for instance all Roloer@/alker spacetimes, in
particular the Minkowski and the de Sitter spacetimes.

It is however important to note that, in general, Theorem.2.@nly implies
the existence of a smooth splitting in the forfR x X, —Bdt®> © g), and
that the induced Riemannian metrig on X need not be complete. Namely,
not every product of the form(l x X,—Bdt? ® g) — even with complete
o — is globally hyperbolic. For instance, every hypersurfage the form

{t} x STt = {t} x {x: (X1,...,%) € R"| Z?:lsz =1 andx, > O} in the (uni-

versal cover of the) anti de Sitter spacetifiiex S 2, Xiz(—dtz@ (-,-)) is complete

W.L.t. Xiz<~,~> (it is isometric to the hyperbolic space), neverthelessathi de Sitter
n

spacetime is not globally hyperbolic, in particular fig x Si’l can be a Cauchy
hypersurface. Moreover, there may exist incomplete spac€lauchy hypersurfaces
in globally hyperbolic spacetimes, as noticed in €.9./[Dd¢.2.5]: take for example
the flat 2-dimensional Minkowski spad#?,g) = (R?,((-,-))) in null coordinates,
i.e., with metric((-,-)) = dx ® dxp + dx ® dxg, then the graph of any monotonously
increasing diffeomorphisnf : R — R with [3°+/f/(s)ds < » is an incomplete
spacelike Cauchy hypersurface @f1%,g). Let us also mention that any product of
the form(I x Z, —Bdt? @ @) with closedz is globally hyperbolic and contains every
{t} x Zas a Cauchy hypersurfa¢e [D26, Cor. 3.3].

Imeaning that every timelike curve which is inextendibtea curvemeets> exactly once.
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Since the causal type for vectors does not change whenirgspalintwise the metric,

it is easy to see thgM",g) is globally hyperbolic if and only ifM",g) is globally
hyperbolic, for any metrig conformal tog. By conformal invariance of the Yamabe
problem, we can therefore — and will in most cases — assumgthal, that is, that
g= —dt?@ g onl x 3. Before studying the above equations in particular cases, w
give the following useful formulas:

Lemma 5.1.3 Let a spacetim¢M",g) be of the form(l x =, —Bdt? ® g;) wheref €
C*(I x Z,RY) and (g): is a smootHl-parameter family of Riemannian metrics Bn
Then the following identities hold.

1. Forevery fe C*(M,R),

10%f 1 oo, 10B\of
3ow tap (o) " 5ar) &

—%g(graq,[(ﬁa,->>,graq;[<f<t,->>>+Agf<t,->, (5.3)

of =

wherelg, = &% od = —trg (Hesg, () : C*(£,R) — C*(Z,R).
2. IncasefB =1, we have

0> 1. 0g. 0
D—WaLEtrg[(ﬁ)E +Ag[. (54)

3. In caseB = 1 and g = b(t)?gs for some be C*(I,R) and some Riemannian
metric g onZ, one has

92 o 1
OtanS = 5 +N-1po+ 506

+ 20 (S +2n— 1+ (- H(n-2)(B)?), (55)

where @ = 4(’:1;721) and where gand §; are the scalar curvatures ¢M, g) and

(Z,05) respectively.
4. In casef = 1and g = gs for some Riemannian metri¢ @n 2, one has
92
O+anSg= W-ﬁ-ng, (5.6)
where lg; 1= Ag; +anSy;.

We first deal with the casa = 2. The following theorem is the exact analogue of
Theoreni 5.2]9 below in dimension 2.

Theorem 5.1.4 Let (M?,g) be a connecte@-dimensional globally hyperbolic space-
time.

1) Then(M?,g) is conformally equivalent to the produdt x X, —dt? @ d) of an
open interval | C R with eitherZ = S* (circle of arbitrary radius) or> = R. In
particular, (M?,g) is conformally flat, i.e.(5.J) with & = O always has a global
smooth solution on M.
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2) If Sg€ R*, then there is no solution &.T)on (R x S, —dt? @ ds?).

Proof. Theoreni5.112 yields a smooth splittiii?, g) = (I x =, —Bdt?> © g;), where
| C Ris an open interval} € C*(M,R}), each{t} x X is a smooth spacelike Cauchy
hypersurface itM and(g;)ie| is @ smooth one-parameter family of Riemannian metrics
onZ. By conformal invariance of the Yamabe problem, we may ag{8im 1. Because
% is 1-dimensional, one hag = b(t)?ds’, whereds’ is a fixed metric orE andb €
C>(1,RY). Itis easy to see thdt x £, —dt?® b(t)2ds’) is conformally equivalent to
(I’ x Z,—dt? @ ds?), wherel’ is determined by (see Sectioh 512 below). Since global
hyperbolicity is a conformal invarianf)’ x Z, —dt?> @ ds’) is globally hyperbolic; in
turn, this forcess = S! or = = R. This shows 1 Note that, as an alternative proof
of 1), we may solve directly the Cauchy problem associated t9:(xdng a (smooth
spacelike) Cauchy hypersurfageof M with future unit normal as well asug,u; €
C”(Z,R), the Cauchy problem with smooth (but not necessarily comthpaapported)
datagu = f%, U, = Uo, dyUj; = Uy islinear (inhomogeneous), hence always solvable
on any globally hyperbolic spacetime, see €.g.[D12, Cor. 5]
LetSy € R* be arbitrary. Assume the existencaiaf C* (R x S1,R) solving (5.1), i.e.,
ou= %ezu onR x St. Settingy : R — R, t = [s1u(t,x)dx, the functiony is smooth
with
: 9%u
Yo = [ Satxdx

/S (Ou)(t,x)dx since/Sl g—j;(t,x)dx: 0
S;

sl dx
compare with the proof of Theordm 5.2.9 below. Assufge- 0. Denoting byl > 0
the length of?, Jensen’s inequality yields

y' > St exp< / 2u(t,x) dx) = %ezty

onR. But no function satisfying that differential inequalitsrc exist oriR, see also the
proof of Theoreni 5.2]9 below. Namely, up to replacinigy t — y(at) for a suitable

a € R, we assume thatsatisfiesy” > %efy. Since in particulay is strictly convex,

we may assume up to changinigito +t + to for a constanty € R thaty’ > 0 on|0, |.

Multiplying with y' yieldsy"y' > %e?, so that(y)2(t) — (y)2(0) > 5 (e —?)

for everyt > 0, which in turn gives

for everyt > 0. Because nyofo < oo, the existence interval gfis bounded

) [ 22 2y<0>
el —e L

above, or in other wordg(t) — o in finite time. In particulary is not defined orR.
The case wher& < 0 is analogous (this timg is concave and goes te in finite
time). This shows Rand concludes the proof. O

Notes 5.1.5
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1. Since the Cauchy data f@r (b.1) along a given Cauchy hypface may be pre-
scribed arbitrarily, there are actually infinitely many éammal flat metrics which
are non homothetic to each other on a given globally hyperetlimensional
spacetime. Alternatively — and as is well-known — all sa@o§ totou = 0 on
(M2,9) = (I x Z,—dt? & ds?) are of the formu(t,s) = v(t 4+ s) +w(t —s), with
arbitrary (and periodic i = S') smooth functions;,w on R, see also Note
5.2.7.2 below.

2. ForS € R*, Theoreni5.1]4 states that there is no solutiori td (5.1M8n=
| x St when the time interval is long enough. But solutions exist for shoyt
as we know anyway from the local theory mentioned above. kamgle, the 2-
dimensional de Sitter spacetime, which can be describdueasarped product
(R x S, —dt? @ cosht)?ds?), is conformally equivalent to the flat cylindgr—
2, xSt —dt? & ds?), see Corollary5.2.10 below. In particular, there exists a

conformal metric with scalar curvature 2 gn- 3, J[xS*, —dt? @ d<?).

In the non globally hyperbolic setting, conformal flatnessynor may not hold. For
instance, the 2-dimensional anti de Sitter spacefiidex St %(—dt2 ©ds)) (where
(x1,X2) are the cartesian coordinates for the second f&dtos= {(x1,x2) € S| %, > 0})

is obviously conformally flat. OrM = R? or the 2-torusT?, Miguel Sanchez has
shown that an arbitrary metrigis conformally flat if and only if it admits a non-zero
conformal Killing vector field which is everywhere timelike everywhere spacelike
[D25, Thm. 2.3]. Moreover, he constructed whole familiesradtrics onT? (andR?)
without any such conformal Killing vector field and which leerare not conformally
flat [D25, Sec. 3]. Note that none of those metricgkrcan be globally hyperbolic by
Theoreni 5.1J4.

Let us mention that there is still a lot of freedom left wheagarribing scalar curvature
functions in 2 dimensions: generalizing previous work byndurns [D9, Thm.
2.2], Marc Nardmann proved that any function which is eitlgentically vanishing
or sign-changing on a closed Lorentzian surfdtés the scalar curvature of some
Lorentzian metric oM [D22, Thm. 1.3.13].

From now on, we assume > 3. In that case we know local solutions exist by the
remarks above. One can do a bit better: as for the existenbéspn for solutions to the
Einstein equations§ [D10, Thm. 3], there is a maximal doméex@tence for solutions
to the Yamabe problem:

Theorem 5.1.6Let (M",g) be an r{> 3)-dimensional globally hyperbolic spacetime
with smooth spacelike closed Cauchy hypersurtaceM and § € R be an arbitrary
constant. Denote by € I'(T+%) the future-directed (timelike) unit normal alorky
Then for anygg, ¢1 € C*(Z,R) with ¢o > O, there exists a unique maximal globally
hyperbolic open subs@; of M in whichZ is a Cauchy hypersurface and on which
the Cauchy problen.2) with ¢, = ¢o andd, ¢ = ¢1 has a unique smooth positive
solution.

Proof. The proof mainly relies on local existence and (globalfueiness for solutions
to the Cauchy problem

] = ¢o (5.7)
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which both follow from the theory of symmetric hyperbolicstgms. Namely for any
$o, 91 € C*(Z,R) with ¢p > 0 consider the set

M g0 = {Dz C M, Ds openZ Cauchy hypersurface @y,
J¢ € C*(Ds,RY) solving (5.17) on Dz}.

Note that, by uniqueness of solutions to symmetric hypébeystems, for each
Ds € .#5 4,4, there is aunique positive smooth solutionp to (5.2) onDs with
Cauchy dat#@y, ¢1. Local existence for the Cauchy problem along the compaat®a
hypersurface already ensures#s ¢, ¢, # @: if (M",9) = (R x I, —Bdt? @ q) is
split as in Theorem 5.11.2, where say~ {0} x Z, then there is a nonempty open
interval J C R about 0 for which a smooth positive solution to the Cauchybfem
(5.1) exists on the open subskk Z of M; but with the induced metric and time
orientation,J x X is clearly globally hyperbolic withi> as a Cauchy hypersurface,
thereforel x Z € .5 ¢ ¢, -
Next defineﬁz = U Dy C M, which is open inM and contain&. We claim
DZE<///Z‘¢0‘¢1

thatDs € .45 4,.4,- First, we show thak is a Cauchy hypersurface B (henceDs
is globally hyperbolic). The proof of this is based on thddaing two claims.
Claim 1: LetQ C M be any nonempty open subset whicle#isally compatiblér M
(for anyp € Q, M (p)NQ = I (p)). ThenQ itself — with the induced metric and time
orientation — is globally hyperbolic if and onlyJﬁ" (p)NIM(q) c Q forall p,q € Q.
Proof of Claim 1 There exists no closed causal curveQnsince there is already
none inM. If Q is globally hyperbolic, then for al,q € Q the subsed$(p) NJI%(q)
is compact; but by causal compatibility &, J%(p) N J%(q) = M (p) NIM(q) NQ;
now JM(p) N IM(q) is by construction (path-)connected, so that the inteimect
M(p)NIM(g) N Q, being open and closed i (p) N IM(q), is either empty or
the whole subse"(p) N JIM(q); in the first case, necessariB} (p) NIM(q) = o
(otherwiseq € IM(p) N IM(q) N Q) and hencel?(p) N JI%(q) = M (p) N IM(q);
in the second case, we also obtdff(p ﬂJQ(q) = M (p)nIM(qg). In both cases
Jg(p) ﬁ%’l"(q) C'\? Con'\\A/erser, |fJ':'A( p) N M( q) C Q for all p,g € Q, then
J2(p)nJZ(q) = (p)NI¥(q)NnQ = I (p)NJI¥(q) is compact for allp,q € Q and
thusQ is globally hyperbolic. Vv
Claim 2: If Z is a Cauchy hypersurface of an open subset M, thenQ is automati-
cally causally compatible iM.
Proof of Claim 2 Let pe Q andqg € JM(p) N Q be arbitrary. Pick a future-directed
causal curve : [0,1] — M with ¢(0) = p andc(1) = g in M and extend it to an inex-
tendible future-directed causal cu@eR — M. We consider the following cases. First,
letpe Jf(z). SinceX is a spacelike Cauchy hypersurfaceMbfthere exists a unique
to € R with €(tp) € Z; note thatty < 0 because op € J¢(Z) ¢ IM(Z) N Q. Define
tmin := inf{t < 1]€(s) € QVse [t,1]} and tmax := supft > 1|C(s) € QVse [1,t]}.
Note thattmin € [—,1] andtmax €]1, 0] are well-defined and th&(Jtmin, tmax]) C Q.
The curveq]tmin_tmax[ Jtmin, tmax[— Q is future-directed causal and inextendible as a
curve inQ by construction ofqi, andtmay, therefore it meets the Cauchy hypersurface
> of Q in exactly one point. But sincg is the uniquet € R with €(t) € Z, one
necessarily hatnin < to, in particulartmiy < 0, from which¢(s) = ¢(s) € Q for all

€ [0,1] Cltmin,tmax| follows. This impliesq € J¢(p). The case wherg € J¢(3)
is analogous (just “reverse” time). The last case wheendq are on two different
sides of (i.e., p € I1%(Z) andq € 19(2)) is also similar: one may assume%) ex
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and then one shows as above that both restricld:p[onis] and c‘[l . run entirely inQ.
3 1.

Thereforeq € J¢(p) in all three cases. Obviouslf?(p) ¢ IM(p) NQ always holds
true, thus we have showi?(p) = IM(p) N Q for all p € Q. Reversing time we also
showJ?(p) = IM(p)NQ for all p € Q and hence® is causally compatible. v
To show that> is a Cauchy hypersurface ok, letc: R — Ds be any inextendible
future-directed timelike curve. Then its intersectionhnéachDs — that we denote by
cNDs —is again a curve (and remains inextendible, timelike amaréidirected): for
anys <t € R with c(s),c(t) € D5, one hag(u) € M(c(s)) NIM(c(t)) for all u € [st]
and, becausBs is causally compatible by Claim 2, we ha¥8(c(s)) NIJM(c(t)) C Ds
by Claim 1 and hence(u) € Ds. Thereforecn Ds meetsZ in (exactly) one point,
from which follows thatc meetsZ in one point, which must be unique sinZecan
anyway be met only once by causal curves. Therefoiea Cauchy hypersurface of
Ds.

It remains to show the existence opae C“(ISZ,Ri) solving [5.7) orDs. For this, we
first show that# 4, ¢, is stable under finite intersection. For ady,DZ € .45 ¢, ¢,
consider any inextendible timelike cureein D ND2. Then one can extend to
inextendible causal curves in Diz, i = 1,2 (of course it may happen that one — or
both — extension already coincides withtself), each of which meetZ in exactly
one point. Gluinge! with ¢ alongc one obtains a future-directed causal cuévie
Diu D% — this is a (piecewise smooth) curve since no two extensianscome out
of the same end of unlessc is already extendible — which is also inextendible in
DI uUD2. By the above argument (applicable to any union of elemeht#g, ¢, ).

3 is a Cauchy hypersurface @i UDZ, thereforeC meetss in exactly one point,
which by uniqueness must lie in bo¢ andDZ; in turn this implies that meets

in exactly one point. ThereforE is a Cauchy hypersurface B¢ N D%. It remains to
notice that the solutiong® and¢? to (5.7) onDi andD% respectively have to coincide
on D% N D% by unigueness of solutions o (5.7) on the globally hypedspacetime
DiNDZ. ThereforeDiND2 € 45 4, ¢,

Coming back to the Cauchy problem @y, define¢¢ on Ds via o(p) = o' (p)

for p € DY, where¢' € C*(D§,R}) solves [(5.F7) orDy; sinceDy N D} € .#5 4,4,
for any DY, D{ € .#5 4,9,, We haveg'| . = ¢l ., so that the functiorp is

‘DiszJz DD
well-defined, positive, smooth and solvES15.7)n This showDs € .#5 4,4, By
constructionDs is maximal and is unique since it contains any elementfy, ¢, -
This concludes the proof of Theorém 5]1.6. O

Of course, the maximal domais of Theoreni5.1J6 depends &pon the metriay,

on § and on the Cauchy datpy, ¢;. The same statement as in Theoflem 5.1.6 also
holds true in dimension 2 for the Cauchy problem correspantb [5.1). In the next
sections, we discuss wh&s = M for M in a particular subcategory of spacetimes.

5.2 Conformally standard static spacetimes

In this section, we start with the particular case whdf&, g) is conformally equivalent
to the product| x X, —dt? @ gs) of an open interval C R with a closed Riemannian
manifold(="~1, gs). Note that such a product is automatically globally hypédoBol-
lowing the literature, products are a particular case ofatedstandard staticspace-
times:
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Definition 5.2.1 A spacetimg¢M", g) is called

i) staticif and only if it admits a timelike Killing vector field whosetltogonal
distribution is integrable.

i) standard statiéf and only if it is isometric to a productl x 3, —Bdt?> @ gs)
for some open interval ¢ R, some Riemannian manifol@*,gs) and some
B € C*(Z,RY).

Any standard static spacetime is static (take g.ga.s timelike Killing vector field with
integrable orthogonal distribution) and any static sgawets locally standard static.
A simply connected static spacetiniel",g) is standard static if and only if at least
one of its static vector fields (Killing, timelike, with ingeable orthogonal distribution)
is complete[[D27, Thm. 2.2]. Note that a standard staticesiae (I x X, —3dt? ® gs)

is globally hyperbolic if and only if the metri%gz is complete, in particular any
standard static spacetime with closei globally hyperbolic. We refer to the excellent
survey [D27] for further geometric and causal aspects ofdsted static spacetimes.

Thus, we shall consider in this section spacetimes that@méomally equivalent to
standard static ones. Since we may first want a conformakcteisation of such
spacetimes, we give the following

Proposition 5.2.2 A spacetiméM", g) is conformally equivalent to a standard static
spacetime if and only if there exists a smooth functioMt— R such thatgragj(t)
is everywhere past-directed timelike and for the inducdiitieg (M",g) = (I x

_ 2 . grady(t)
>, —Bdt®qg) via the flow of‘graqj(t)%,
depend on't.

the Riemannian metri%gt on X does not

A smooth functiort : M — R whose gradient is everywhere past-directed timelike
is calledtempora) see e.g.[[D18, Def. 3.48]; a temporal function is in paticwa
time function, i.e., it is monotonously increasing on any futdieected causal curve

. n . _ . rag(t)
in (M",g). Note that the vector field — and hence the induced flo Vg0’ the

conditiong be a temporal function anﬂ (%gt) = 0 all only depend on the conformal
class ofg.

Clearly, a spacetim@M", g) that is conformally equivalent to a standard static one has
a (future-directed) timelike conformal Killing vector figlthe converse being wrong

in general (though globally hyperbolicspacetime with complete timelike conformal
Killing vector field is conformally equivalent to a so-callestandard stationary
spacetimel[D27, Prop. 3.3]). In particular, globally hymaic spacetimes with trivial

or even discrete conformal group cannot be conformallywedieit to a standard static
one.

For instance, anwarped producspacetimgM",g) = (I x X, —dt? @ b(t)?gs), where
b e C*(1,R), admits such a temporal function (fs € | and set(s,x) := _;%)
and hence is conformally equivalent to a standard staticetjpae. More concretely, if
(M",g) = (Ja_, a4 [xZ, —dt? @ b(t)?gs) for someb € C*(Ja_, a4 [,R%), then fixing
to €]a_, a4, the map

®Pla_,04[xEX — Ja_,ai[xZ
(tx) — (Y(t),),
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wherea. := 7+ {5 andy(t) ;= [ &5, is @ smooth diffeomorphism with* (—dt? @
gs) =—b" 2dt2€9gz b~?g.

5.2.1 Existence of solutions to the Yamabe problem

The first and most natural ansatz to solve the Yamabe prollenproduct spacetime
consists in separating variables.

Proposition 5.2.3 Let (M",g) = (I x 2, —dt? @& gs), where IC R is an open interval,
(£"-1,95) is a closed Riemannian manifold andr8. Let § € R, y € C*(I,R) and
u e C”(%,R}) be arbitrary. Then the functiop € C*(M,R%), ¢(t,x) := y(t) - u(x),
solves(.2)if and only if

i) either y or u is constant |n casejsé 0; if y is constant, then u solveglu =
anSyP~ 2uP-1where p:= n =05 if u is constant, then is constant and y solves

Y+ anSy,y = anSguP-3yP L.

ii) the functionsy and u satisfy' y- 11 (Lg; )y = 0and Lg;u= p1(Lg, )u respectively
in case §= 0, wherep;(Lg; ) € R is the smallest eigenvalue ofL.

Proof. By (5.8), the Yamabe equatidn (5.2) reéﬁ% +Lgs ¢ = anSg@P 2. For¢ of the
form ¢ (t,x) := y(t) - u(x), this becomey” - u+y-Lg; U= a,S(y- u)P~L. Dividing out
by y-u, this identity is equivalent to

" Lgeu
y7+ —i= = anSly wh

N/
In case § # 0, the first t-derivative of that identity gives(%) = (p—

2)anSguP~2yP3y’, whose I.h.s. hence does not dependans, so that eithey’ = 0
onl oruis constant orx. If y is constant on, thenu solvesy- Ly u = anS(y- u)P-1,
that is,Lg;u= ansjypfzupfl. If uis constant orx, then by the identity just abowgy,
must be constant andsolves the ODB/ + a,Sy, Y = anSguP~2yP~L. This proves).

In case§; = 0, we obtain after differentiating w.r.t. the existence of a constant
A € R with £ = A and hence aIseLg’uLu = —A. In particular,—A is an eigenvalue
with associated eigenfunction for the elliptic self-adjoint linear operatok g,
on Z; but since we require > 0, the eigenvalue-A can only be the smallest one
H1(Lgs ) by Courant’s nodal domain theorem. This shawand concludes the prodil

We concentrate on the equatidg u = AuP~ on %, for which existence results are
well-known, see e.g. [D17, Sec. 4] 6r[D2, Sec. 2.3]:

Theorem 5.2.4 (H. Yamabe[[D31])For n > 3 let (2", gs) be any closed Rieman-
nian manifold. As above, Ietgl_ C*(Z,R) — C%(Z,R) be defined by 4, ¢ =
Dgs @ +anSy; ¢, where @ = (” 2 and S, is the scalar curvature of2,gs). Fo

p € [2,] consider the functional

Js fLgs fdo

H2(5)\ {0} S5 R,  E(f):= e
11Ees)

where d is the Riemannian density associated g >. Then we have the following:
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i) An f e HY2(5)\ {0} is a critical point of E if and only if it satisfiesgd,.f =

E()_ gp-1
118035,
i)y If p €[2,p*[, where p := 2?:;) €]2, 0], then there exists a minimizer of E on
H2(2)\ {0}.
In particular, there exists g € C(Z,R%) with (w.l.o.g.)[|¢|[Lez) = 1 satisfying
Lgs® = Ap(Z,05)-¢P L onZ, whereAp(2,g5) ;= inf  (E)€R.

HL2(2)\{0}

The sign ofAp(Z,g5) turns out to be that of the smallest eigenvalue of the etlipti
self-adjoint operatolg, :

Lemma 5.2.5With the notations offheorem[5.2}4and p € [2, p*[, the constant
Ap(Z,05) and the smallest eigenvalyg of Ly, have the same sign: the one is pos-
itive (resp.0, negative) if and only if the other is positive (reSpnegative).

Proof. The negative case is clear: by definition of the consfgtE,gs), it is nega-
tive if and only if there exists afi € H?() \ {0} with [; fLg, fdo < O, which, by
the min-max principle, is equivalent f@; < 0. Now the conditionp > 2 provides a
trivial inequality betweerd p(Z, g5 ) andpy: sinceX is closed, we have, using Holder’s
inequality,|| - || < C-|| - || p for some constar@ = C(Z,gs), hence

s ngz;dG >C'- fz ngzzfdG >C'Ap(Z,05)
113 Il

for some constan€’ = C'(Z,gs) and for everyf € HY2(Z)\ {0}; the min-max
principle yieldsp; > C'- Ap(Z,05). So, if Ap(Z,95) = 0, then this inequality implies
H1 > 0; on the other hand, Theorém 5]2.4 provides the existenar b C*(Z,R})
with Lg; f = 0, in particular 0 is an eigenvalue bf; and hencqu; <0, sop; = 0.
Conversely, ifu; = 0, then the above inequality provid@g(%,gs) < O; on the other
hand, [5 fLg, fdo > 0 holds by the min-max principle, so thap(Z,gs) > 0 and
thereforeAp(Z,gs) = 0. This concludes the proof. O

For instance, ifS;; = 0, then it is clear thaty = Ap(Z,05) = O (take ¢ to be con-
stant onX). If S;; > 0 onZ, thenAp(X,95) > 0, as one can deduce from the bounded

Sobolev embeddingl}?(Z) < LP(Z) (recall thatp < 2<n”j3l>): there exists a constant
C =C(Z,gsz) > 0 such that, for every € H2(2)\ {0},

/ flg: fdo > min(1,a,min(Sy,)) / A2+ 12d0 > C- min(1, aumin(Sy,)) - |13
Jz JZ
—_
11235,

from which we deduceAp(Z,05) > C - min(1,a,mins(S;,)). In particular,
Ap(Z,05) > 0 as soon as mifiS;;) > 0. More generally, ifS;; > 0 and does not
identically vanish ork, then [s u;(Lg;u1)do > 0 for any (non-zero) eigenfunctian
associated to the smallest eigenvglyein particularp; > 0 and hencép(Z,gs) > 0.

Note that, ifi; < O - or, equivalentlyAp(Z,gs) < 0 - implies miny:(S;) < 0, however

the other implication is wrong (use e.g. a continuity argatmperturb appropriately

the standard metric d3' so as to make the scalar curvature negative somewhere while
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keepingA positive). Beware also thaiy(>,gs) is nota conformal invariant - it is in
particular not the infimum of the standard Yamabe functional

The first global existence result of that section is the feiig

Theorem 5.2.6 Let a spacetiméM", g) be conformally equivalent to the Lorentzian
product(l x 2, —dt?@gs) of an open interval = R with a closed Riemannian manifold

"1 where n> 3. LetAp(Z,05) ;= inf  (E) € R (seeTheoreni5.2}and p:=
HL2(2)\{0}

20 Then for §:= @ there exists & € C*(M,R%) solving(5.2).

Proof. By conformal invariance of the Yamabe problem, we may assuhat
(M".g) = (I x 2, —dt? @ gs). In that case [(5]2) becoméi% +Lgs§ = anS¢pP 1 by
Lemmd5.1B. Since € [2, 2%”:31) [, Theoreni’5.2]4 provides the existence of a smooth

positive solutiong on = of Lg;¢ = Ap(Z,05) - $P~1. This ¢ does not depend on
hence solve$(5.2). O

As a consequence, every warped product spacetime admégsatdne solution to the
Yamabe problem.

Notes 5.2.7

1. The proof of Theorem 5.2.6 actually shows that the santerstnt as in The-
orem[5.2.b holds true for any (necessarily non globally hiypkc) spacetime
conformally equivalent t@S* x 3", —dt? @ gs) with closedz, whereS? is a
circle of arbitrary length: the solution we construct doesaepend on time and
is therefore periodic.

2. One need not have uniqueness (up to scaling by a positinstartt) of a
conformal metric with constant scalar curvature. Take éM,q) := (R x
T"-1, —dt?@ car), whereT"* = R /zn-1 s then — 1-dimensional torus ob-
tained by modding ouR"* by the canonically embedded lattiZ8 1 ¢ R"1
and can is the induced flat metric @i~1. Taking any two 1-periodic functions
v,w € C*(R,RY), the functionp € C*(R x R"1 R¥) defined by

P (t,x) = v(t+x1) +w(t —xq),

forallt € Randx= (Xg,...,X,_1) € R"1, satisfies1¢ = 0 and induces a smooth
function (also denoted by) on R x T"~! satisfying the same equation. There-
fore, one obtains a whole family of non-trivial conformaltmes with vanishing
scalar curvature ol". This also shows a big difference with the Riemannian set-
ting, where every conformal metric with vanishing scalaweture orR x T"—1
must be a constant positive multiple of the metité & can by Liouville’s the-
orem (implying that every positive harmonic function BA must be constant).
Uniqueness of the solutions is further discussed in Seii2@ below.

Theoren[5.216 shows the existence of at least one conforreaiarwith constant
scalar curvature on any conformally standard static spaeetHowever, we notice
that the sign of that conformal scalar curvature is givenhat of the conformal in-
variantAp(Z,gs) defined in Theorerh 5.2.4. Therefore, we are led to asking venet
any constant scalar curvature may be prescribedrig conformal class, and if not,
how “large” the maximal domain of existence for solutionsHer this, the following
lemma is useful.
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Lemma 5.2.8 (Gionwall) Let a,B : | — R be continuous functions ang € | be
arbitrary.

<0 ift>ty

_qt d
1) Ify' +a(t)y < 0, then yt) — y(to)e o ®® s{ >0 ift<ty

2) fy"+a(t)y + B(t)y <0, then yt) < y(to)yo + Y (to) 2o for every te |, where
Yo, Zo solve the differential equation”w o (t)w + B(t)w = 0 on | with initial
conditions ¥%(tp) = 1 = 7,(tp) and ¥(tp) = 0 = zy(to). In other words, y must
be lower than or equal to the solution of the correspondirffedéntial equation
with thesame initial conditionat to.

We come to the main existence result of this section.

Theorem 5.2.9 Let a spacetiméM",g) be conformally equivalent to the Lorentzian
product(l x =, —dt?@gs) of an open interval R with a closed Riemannian manifold
(Z"-1 gs), where n> 3. Let (g (Lg;) € R be the smallest eigenvalue of;Land let
S € R be an arbitrary constant.

1) If py1(Lgs) <O, then

la) either § < 0and then(.2)has a globally defined smooth positive solution
on M",

1b) or § > 0 and then(5.2) has no globally defined smooth positive solution
onM"=1|xZifl =R.

2) If p1(Lgs) =0, then

2a) either § < 0 and then(5.2) has no globally defined smooth positive solu-
tiononM'=1xZif| =R.

2b) or §= 0 and then(5.2) has a globally defined smooth positive solution on
Y/

2c) or S > 0 and then(5.2) has no globally defined smooth positive solution
onM"=1|xZifl =R.

3) If u1(Lgs) >0, then

3a) either g < 0and then(5.2) has a globally defined smooth positive solution

onM"=1xZonlyif |[l| < ——ZL—,
I»ll(l—gz)

3b) or §§=0and then(5.2) has a globally defined smooth positive solution on

M" =1 x X if and only if |l | < ——Z—,
I»ll(l—gz)

3c) or § > 0and then(s.2) has a globally defined smooth positive solution on

M".

Proof of Theoreni 5.2]9: Note that the statemerds fbr the subcas&; < 0, 2b) and
3c) are already contained in Theorém5l2.6 via Lerhmab.2.5 aad@dssibly rescal-
ing the solution so as to adjust the constant on the r.h.s.

We show how to obtain in all cases a necessary condition éextistence of a global
solution to [5.R). Given any consta$§ € R, assumep € C*(M,R}) is a solution to
(5.2). Again, we may assume th@,g) = (I x Z, —dt?> @ gs). Let u be any positive
(necessarily smooth) eigenfunction associated to thelsstaigenvalugu(Lg;) of
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Lgs. Multiplying (5.2) with u and integrating w.r.t. the Riemannian meastigeasso-
ciated togs on %, we obtain, using the formal self-adjointnesd gf:

ans§/z¢p*1(t,X)U(X)dO'(X) &2 /ZD¢+anSg¢)(t,x)u(x)do-(X)
2
ae /{%tf (t,x)u ()+(ng¢)(t,X)U(X)}do‘(x)

dt2 (/ o (t, udo) /¢ -)Lgsudo
- = </¢ uda)+[.11 Lg,) /¢ Judo,

where p = n <. As a consequence, the smooth positive funcgarl — R, t —
Js ¢(t,-)udo, satisfies

'+ L)y =Sy | 9P~ (t.-)udo 58)

onl. Animmediate consequence of this is thaggf= 0, then the existence of a smooth
positive solution to[(5]2) is actuallguivalento that of a smooth positive solution to
(5.9): it is necessary by the above argument and, conveitalgmey € C*(l,R})
solves[(5.B), then Proposition 5.P.3 implies that, for aogitive (smooth) eigenfunc-
tion u associated to the smallest eigenvajugly;) of Ly, the functiong(t,x) ==
y(t) - u(x) > 0 solvesd¢ + anSy¢ = 0 onM. Since obviously a positive smooth solu-
tion to the ODE[(5.B) witl§y = 0 exists foru (Lg; ) < 0, we obtain &) for the subcase
S =0 (as well as B)). For p1(Lg,) > 0, any solution to[(5]8) witlg; = 0 is of the
formt— Acodq/H1(Lgs )t +C), A,c € R, so that the existence of (at least) a positive
solution [5.8) is equivalent to the Iengthldﬁeing no greater than the half of the period

of t — cog\/H1(Lgs)t), i.e., to]l] < m This proves B).

Assume nowsy < 0 anduy(Lg; ) > 0. If ¢ € C*(M,RY) solves[(5.R), then by (5.8) the
functiony defined as above from satisfiesy” + ui(Lg; )y < 0 onl. If p1(Lg;) =0,
theny” < 0 onl, so thaty is strictly concave and hence has to change sign=fR.
This shows ). If pi(Lg,) > 0, then fix anytg € |. By Lemmal5.2.B the functiop
must satisfyy < z, wherez e C*(1,R) solvesz’ + p1(Lgs )z= 0 onl with z(tg) = y(to)
as well asZ(tp) = Y (o). Sincez — and hence alsg — can remain positive only on
an interval of length at most— (see just above), the lengh of | must satisfy

VH (ng
< s

This shows 3).

In the remaining case whefg > 0 andp1(Lg, ) <0, the identity [5.B) implies that, if
¢ €C*(M,RY) soIves[ZB]Z) then for any smooth positive Ker(Lg; — p1(Lgs)), the
smooth positive functiog(t) := [5 ¢ (t,-)udo satisfies

i
Y' >y +pa(lg )y = anSg/ ur-1)Pldo

on|l. But sinceu is continuous and positive on the compact spadhere is a positive

constantC (depending orp = % andu) such thatuﬁ > Cu, so that, by Holder
inequality,

p—1
V' > 2S00 o > G d s
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onl. This leads to an explosion gfin finite time and hence to a contradiction in case
I =R. Namely we may first assume, up to changyrigtot — y(at) for somea > 0,
that

y'> Dypt (5.9)

onR. Since thery is strictly convex, only two (non disjoint) situations caccar: there
is an interval of the fornjtp, e[ on whichy > 0 or there is an interval of the form
] — ®,to] on whichy’ < 0. In the latter case, up to changininto —t — which does not
modify (5.9) — we can again assume tifat 0 on some interval of the forijiy, o[. Up
to translating byty, we can also assume that= 0. Sincey’ > 0 on |0, «[, the identity
(59) yields 3"y > py*~ly on [0, e[, hence(y))2(t) — (y/)%(0) > yP(t) — yP(0) for any

t > 0, in particulary’ > /yP —yP(0) on [0, «[. The latter inequality gives

/Y(t) dz ot
y0) /2P —yP(0)

for anyt > 0. Now sincep > 2 the integralfsfz’o) ﬁ converges, that is, the

domain wherey(t) is defined is bounded above, or, equivalently) — o ast — T
for someT < . This shows Ib) and Z) and concludes the proof of Theorem 512Z.B.

Note that, in the casesb}, 2a), 2c) and 3), local existence of solutions td_(5.2)
implies anyway the existence of a smooth positive solutjoto (5.2) onl x X for
sufficiently shortl|. Even if it looks like it, global existence of solutions hasming to
do with timelike geodesic completeness of the product métvhich is anyway not a
conformal invariant), see de Sitter spacetime below. Fah&r ODE-like obstructions
to the existence of particular metrics in (pseudo-)Rienmmoonformal classes, we
refer to [D20].

A first application of Theoreiln 5.2.9 is the following surjmig example, where we see
there exist spacetimes wiphositivescalar curvature admitting conformal metrics with
vanishingscalar curvature — and this only in low dimensions.

Corollary 5.2.10 Let a spacetiméM",g) be conformally equivalent to the warped
product (R x "% —dt? @ cosht)?gs) of R with a closed Riemannian manifold
("1 gs) of constant scalar curvaturén — 1)(n—2) and with warping function
b = cosh Then there exists a conformal metric with vanishing scalamvature on
(M" g) ifand only if n< 4.

Proof: Note that, by[(55), the scalar curvature(®",g) is §; = n(n—1) > 0. We
have already constructed an explicit isometry betw@éh, b—2g) (which is confor-
mally equivalent toM",g)) and (Ja_,a, [xZ""1, —dt? © gs), whereb(t) := cosht)

anda. = fo " g5 Setd(t,x) i= ((t),x) with Y(t) == Jo 5. It is elementary

to compute(t) = 23 1{:955 = J — 2arctate!), so thata, = +Z. Now since

Sy; = (N—1)(n—2) is constantp (Lg; ) = anSy; = (”’42)2, so that, by Theorein5.2.9,
there exists a positive solution {0 (5.2) wig =0 if and only ifa, —a_ < \/LT that

is, if and only if T < % that is, if and only ifn < 4. O

For instance, ifM",g) := (R x S"1, —dt? @ cosht)?can) is the de Sitter spacetime
of constant sectional curvature 1, whéB8~1 can is the round sphere (of constant
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sectional curvature 1 if > 3), then Corollary"5.2.30 shows that the existence of a
conformal metric with vanishing scalar curvature is eqigmaton < 4.

Note 5.2.11There is something deeply unsatisfying about Thedrem5&#t8ough
the results we obtain are by nature conformally invarigdms, assumptions we work
with are not. For recall that we have first chosen a foliatipispacelike hypersurfaces
— or, equivalently, a temporal function on the spacetimerEmore disturbing is the
fact that the sign of the first eigenvalue of the Laplace-typeratorLy; on each leaf
> can change when fixing the foliation but changing the metoiefarmally on the
spacetime. This remark is crucial when wanting to generalie existence results to
arbitrary globally hyperbolic spacetimes.

5.2.2 Uniqueness of solutions to the Yamabe problem

Next we turn to the uniqueness issue for the Yamabe problamvédalready noticed,
given a globally hyperbolic spacetinM” with closed spacelike Cauchy hypersurface
> having future unit normab, the local well-posedness of the Cauchy problem
0¢ +anso = anqub%% onM, ¢, = ¢o anddy ¢ = ¢1 on Z, ensures - at least in a
neighbourhood ok - the existence of infinitely many “independent” local saus to
the Yamabe problem. Therefore the only interesting quedtichis respect deals with
the global aspects of uniqueness.

We start with looking at the ODE’ + anSy,Y = anSyyP~* from Propositiori 5.213 on

I C R and under the assumption that the scalar curvafyreof (Z,gs) is constant.

It is easy to see what happens f§y= 0: if §;; < 0, then there always exists a 2-
parameter-family of positive solutions §6 + a S,y = 0 onl; if S3; = 0, then only
constant solutiong > 0 toy” = 0 can remain positive oR; in caseS;; > 0, there is
no positive solution to/’ + anS;;y = 0 onR (but obviously there is one and even a
2-parameter-family of solutions on a sufficiently smalkirval). In the cas&; # 0, we
may assume, up to multiplyingby a positive constant, thaySy = eg with € € {£1}.

Lemma 5.2.12Given s€ R, p €]2,[ and € € {£1}, consider the ODE "y=
e(8yP~1 —sy) on some open intervald R.

1) If € = 1, then the only positive solution to that ODE &nis the constant one
y= (&),
p

2) If e = —1, then there are infinitely many non-constant positive sohstto that
ODE on |. More precisely, for any E]—2E—, |, there exists a T-periodic

V(p-2)s

positive solution to§/= —SyP~1 4 sy onR.

Proof. If y solvesy” = g(8yP~1 —sy), then multiplying withy’ and integrating one

obtains
(Y)?=eF(y)—A

for someA € R, whereF : R, — R, F(y) := yP —sy?. Therefore, we just have to inves-
tigate the qualitative behaviour of solutions to the firster ODE(y')2 = F (y) — A
according to the value oA. This equation can be solved in the fotm= t(y) =
ij’y% according to the sign of on the interval under consideration. More-

VEF(2)

over, any solution t@y')? = €F (y) — A which is not a critical point oF is a solution



128 CHAPTER 5. THE YAMABE PROBLEM ON LORENTZIAN MANIFOLDS

to the original equatioy”’ = e(%yp*1 — sy). Hence we first have to determine the reg-
ular and critical values of. A short computation gives the two critical values 0 and

p;2(2‘)5)j for F, with corresponding critical points 0 ariéf) > 72 respectively. We
start with the case = 1:

e Any A € R’ is a regular value oF andF~1({A}) = {x,} with x, E]sﬁ,oo[.
o o dy i ;
Because > 2 we have_[XA Y < o0, SO that any solutiog corresponding
to A > 0 explodes in finite time and therefore cannot exisiRon

e For A =0, apart from the trivial solutioy = 0 (we exclude anyway), the only
solution shows exactly the same behaviour as before.

e ForA €] — 2(Zps) p-2 0], the preimag& ~1([A, »[) consists of two intervals of
the form[0,x; ] and|[x; , [ respectively, with 0< x; < ( )P 2 <X < s2,
SinceA is a regular value oF, the behaviour of the solutlon taklng its values

in [x;, [ is the same as before (explosion in finite time); fiarx; ] the solu-

X
A
tion vanishes in finite time because fjF

dy :
< o0, In both casesy is not

fnfe A SR Ry ¥
everywhere positive or is not defined Bn

e ForA = ppz(zps)p 2, apart from the constant squtlc(% pj we have two

kinds of behaviour foy according to one valug(tp) of y lying in |0 ,(2—5‘) -2
or in |( p)P 2 oof. If y(tp) €]( p)p 2 o[, theny explodes in finite time on
one side and attalns the critical pm(n%§ P%Z in infinite time on the other. If

y(to) €]0, (Zps) 2], theny vanishes in finite time on the one side and attains the

critical point(f) = in infinite time on the other. Again, no non-constant posi-
tive solution is defined ofR.

e ForA €] — ooﬁp—gz(z—;‘) P-2[ the functiony’ cannot change sign; the solutign
must vanish in finite time on the one side and explode in fifite bn the other.

This shows ]. The casee = —1 can also be divided in different subcases, compare
[D28, pp. 132-135]:

e Fori €] )_p_2 o[, there is of course no solution tg')2 = —F(y) — A.

p=2(2s
5 (p)P
e ForA = pT(%)LZ the only solution tdy')2 = —F(y) — A is the constant one
L
=(5)P 2
e ForA e]O,p;pz(z—Ff‘)ﬁgz[, the preimage—F)1([A,[) = [x;,X/], where 0<
1 1
Xy < (Z—DS)PT2 < xj( < sP-2, This time,y is periodic (in particular defined dR)
and oscillates between the valugsandx; . Its periodT, (depending o) is

ol

.
given byT), = 2_[;:} #, which can be easily seen to depend continuously
2n

on A (sincex, do) with Ty — « as well asT) —
A—0t _p_ (p—2)s

—2 25\ p—2 —
A—PE(3) P2

>0,

1
p

which is the period for the linearized equatigh= —(p — 2)syat (2—p5) B
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e For A =0, apart from the trivial solutioly = 0, we obtain the solutions—
1 —
sp-2 cosk(ﬁf\/g(t +c))*n72, ¢ € R, which are positive solutions defined @
1
symmetric about their maximum= —c, with sP-2 as maximum value, and
which tend to 0 at infinity.

e ForA ¢ R*, we obtain as above a solution which explodes on both sidiaste
time.

This shows 2 and concludes the proof. O

Corollary 5.2.13 Let a spacetiméM", g) be conformally equivalent to the product
(I x Z, —dt?@ gs) of an open interval £ R with a closed Riemannian manifa(a, gs )

of constant negative scalar curvature. Then there existitefy many non-homothetic
conformal metrics with constant negative scalar curvawmgéM", g).

Proof: Immediate consequence of Proposifion 3.2.3 and Lemmaz.2. O

We turn to the subcritical equatidry,u = AuP~1 on X. First notice that, ifu,v €
C”(Z,R}) solveLgu= AuP~landLgv= pvP~1 onZ respectively, for soma, 1 € R,
thenA andu have the same sigi {1 > 0 and vanishes if and only ¥ = u = 0): by
formal self-adjointness dfg,,

)\/up’lvda:/(ngu)vda:/u(ngv)da:u/uvp’lda.
s > > s

In particular, we only need consider uniqueness of solstionig, u = AuP~1 with
constaniA of the same sign gs; (Lg; ).

Theorem 5.2.14Let (3",gs) be a closed connected Riemannian manifold, where
n> 3. Letu(Lg,) € R be the smallest eigenvalue qf;land p:= 2%

1) If pa(Lgy) < 0, then for any §€ R* the equation b, ¢ = anSy¢ P! admits a
unigue smooth positive solution an

2) If p1(Lgs) = 0, then the equation d,¢ = 0 admits a unique smooth positive
solution up to scale oR.

3) For anyA € R the set
Shi={UEC?(Z,Ry)|Lgu=AuP~ L |A| <A, [|ullpz) <A}
is compact in €(Z,R).

Proof. By Courant’s nodal domain theorem, Kkg; — 11(Lg, )) is a real line generated
by a positive smooth function an This already implies 2 Statement LLrelies on the
method of sub- and super-solutions developedin [D15] DadJfarther in [D24, D23].
We briefly recall the concepts and statements we need forttud. Siven aC* function
f: xR — R, a strongsub-(resp.supen) solutionfor the equatiodu = f(x,u) is a
C2-functionv on  with Av < f(x,v) (resp.Av > f(x,v)) on . A weak sub-(resp.
supen) solutionfor the equatiomdu = f(x,u) is av € H2(Z) NC%(Z,R) satisfying
Js (g=(dvdg) — f(x,v)¢$)do < 0 (resp.fs (9z(dv d) — f(x,v)¢) da > 0) for all ¢ €
C*(Z,R;). Of course, every strong sub- or super-solution is a weak Dine steps in
the proof of statement)lare the following:
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a) Ifvy,v, e CZ(Z,R) are strong super-solutionsdw = f(x, u), then mirfvy,v,) €
H12(2)NCO(Z,R) is a weak super-solution to the same equafion [D23, Prop. 1].

b) Letvy,vo € C3(Z,R) (resp.v_ € C?(%,R)) be strong super-solutions (resp. a
strong sub-solution) téu = f(x,u) with v_ < min(vy,v»). Then there exists a
strong solutiorv € C?(Z,R) to the same equation with. < v < min(vy, Vs),
compare e.g[[D13, Thm. 7.4.1] ar [D15, Lemma 2.6] and refees therein.

Now letus,up € C*(Z,RY) both solvel g uj = A uf”l for someA € R*. Up to mul-
tiplying u; andu, by a positive constant, we may assume that —1. We construct
suitable sub- and super-solutions fof,w = —wP~1 in order to be able to assume
u1 < Up, compare[[D28, Lemma 1]. First, if € Ker(Lg; — p1(Lg,)) is positive, then
there is a strong sub-solutionitg,w = —wP~1 of the formu_ := au with appropriate
a € R%: namelyLg,u_ < —uP tif and only if o (Lg; )u < —aP-1uP~1, i.e., if and
only if a < ﬁ(u)(*ﬂl(ng))ﬁ (recall thatp(Lgs) < 0), whose r.h.s. is positive

sinceX is compact. Therefore_ = au is a strong sub-solution tiog, w = —wP-1 for

a > 0 sufficiently small. Again, by compactnessoénd continuity ouy, uy, one may
choosaxr > 0 small enough such that <u;,i =1,2. So we are in the situation where
u_ is a strong sub-solution and,u, are strong (super-)solutions kg, w = —wP~1
with u_ < min(ug,uz). By b) just above, there exists a strong soluticnC?(Z,R) to
Lg;W= —wPlwithu_ <v< min(uy, uz), in particularv > 0 onX. Actually, classical
elliptic regularity yieldsv € C*(Z,R). As a consequence, for baitk= 1,2,

f/uip’lvda:/(ngui)vdG:/ui(ngv)dG: f/uivpflda,

s s s s

so that; uiv(u’? — vP~2)do = 0. Because op—2 > 0, we haveu’ > —vP-2> 0
and thereforefuip’2 — VP2 =0, that is,u; = v for i = 1,2, in particularu; = uy. This
proves statement)1

The compactness of the s8f relies mainly on the following so-callecegularity
theorem(actually needed for the proof of Theorem 512.4), see e.@Z[0hm. 4.1] or
[D2, Satz 2.3.3]:

Let ("1, gs) be a closed Riemannian manifold withen3, p € [2,00[, h€ C*(Z,R)
and L:= A+h. Then for anyA;,A; > 0 and r €] (p — 2),], there exists a
constant C= C(Z,0s, |[N[|ie(z),A1,A2,r) > 0 and a = a(r) €]0, 1 such that for all
almost everywhere nonnegatigec H2(Z) NL"(Z) solving (weakly) ip = A¢P~1
with [A] < Aq and [|¢]|Lr5) < A2, we have:p € C*(Z,R), either¢ >0o0r ¢ =0
everywhere oiX and|((¢ [|czq () < C.

Fixingr=p= n%”z and noticing thap > n%l(p— 2), the regularity theorem provides,
for any A\ €]0, [, the existence of ao €]0,1] and of a constan® = C(Z,gs,A) >0
with [|¢]|c2a(s) < C for all ¢ € Sy. With other words Sy is included in the closed
C-ball around the origin irC%%(Z,R). But by Arzela-Ascoli theorem, the inclusion
C29%(%,R) — C2(Z,R) is compactso thatSy is relatively compact it€?(Z, R). Thus

it remains to show tha, is closed inC?(Z,R). Consider the map

®:C*(Z,Ry) x [-A A = COUZ,R),  (UA)—Lgu—AuPL

We show that® is continuous w.r.t. the standard topologies on both sides.
(uk, Akken be a sequence of?(Z,R.) x [-A,A] converging to somegu,A) €
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C2(Z,Ry) x [-AA], ie., ug —u in C2(Z) and A — A in R. ThenAug —Au in

C%(2) and, because dfSy||co(s) < %, we havelg; U — LgU in C°(%). Moreover,

sinceu, — uin C°(Z), we can fix a smak > 0 and use sup  (p—1L)xP2< oo
ke x€[0,/lullgo 5, +€]

to deduce thaffuP ' — UPYlcorz) < ¢ ||k — Ullcors) for some constant > O (inde-

pendent ok) and all sufficiently largk € N, in particular||u§”1 - up*1|\co(z) — 0.

Therefore Lg, U — AkuP ™t — Lg;u— AUl e, d(ug, Ay) — ®(u,A) in CO(%).
—»00 —

Hence® is continuous and thu$~1({0}) is closed inC?(Z,R.) x [-A,A]. But
[-A,A] being compact, the first projectionp®—1({0})) of ®-1({0}) is also closed
in C?(,R4). By restriction, Sy = pry(®~1({0})) N {¢ € CA(Z,R)|[|§]lLpz) < A}
is closed in C*Z,Ry) N {¢ €C3(Z,R)||d|pz) <A}. Now the set
CAZRy) N {¢ eCHZR)|||llez) <A} is closed in C*(Z,R): the subset
C?(Z,R, ) is obviously closed irfC?(Z,R) and, if uy —uin C?(Z,R), then also in

C°%Z,R) and hence inLP(£), in particular| - || pz) : C*(Z,R) — R, is continuous.
On the whole Sy is closed inC2(Z,R) and therefore compact by the above argument.
This shows statemen) &nd concludes the proof of Theorem 5.2.14. O

As for the Riemannian Yamabe problem, uniqueness need tbirheasey; (Lg; ) > 0,
as the following example shows, compére [D28, pp. 132-135].

Example 5.2.15Let 3" := 512 x S}(L) be endowed with the product metgg =

g1 @ dt?, Where(ZE’z, 01) is a closed Riemannian manifold of constant positive scalar
curvatureS;, andS*(L) is the circle of lengtt. > 0. The subcritical equatiolny, ¢ =
anSg9 P~ with S5 € R can be rewritten in the form

2
— oz 009 +anS, ¢ =anSd"

wherelg, : C*(Z1,R) — C*(Z1,RR) is the scalar Laplace operator(@,g:). Looking
for solutions of the formp =y € C*(S1,R%), we have to find%-periodic solutions
to the ODE—Y’ + a,Sy,Y = anSgyP* on R, for anyk € N\ {0}. Up to multiplying

y with a positive constant, we may assume thgy = g, so that the ODE becomes
y’ = sy— DyP~1, wheres:= a,S;, € R%. Now Lemmd5.2.12 states that, for afiy
]L o[, there exists & -periodic (non-constant) positive solution yt = sy—

V(p-2)s’
gypfl. Hence, ifL €] —2Z— [, then there exists a non-constamperiodic positive

V(p-2)s o)

; ; i ; 2k +1)n
solution to that equation. More preciselyl.iE] To-oe \/<P*—2)S[ for somek € N\ {0},
then there are positive solutions with pericld%, e ,% respectively to that equation.
In particular, the subcritical equation dﬁfz x St(L) has more than one solution for
L > 0 sufficiently large. Combined with Propositibn 5]2.3, tfaist in turn implies the
existence of non-homothetic conformal metrics with comispesitive scalar curvature
on any spacetime conformally equivalen{to< X, —dt? @ gs) for = as above.

However, if the Ricci curvature ofZ,gs) is large enough, then uniqueness for the
subcritical equation is satisfied.

Theorem 5.2.16 (M.-F. Bidaut-\eron & L. V éron [D8]) Let (2"1,g5) be a closed
Riemannian manifold with i 4. Assume there exidte R’ and qe]2, [ such that
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i) ricg; > =2(q—2)A-gs and
2(n=1)
3

with strict inequality in j or ii) if (Z"1,gs) is conformally equivalent t6S"1, can).
1
Then the only solution i+ 0 to Au+ Au= u%1is the constant one & A -2,

Examples 5.2.17

1. Let(="1 gs) be anyn — 1(> 3)-dimensional closed Riemannian manifold with
constant positive scalar curvatiig and rig, > 1=% 2 SJZ -gs. For instance, any
Einstein metric — or, more generally, any suff|C|entIy snﬁ&Hperturbatlon of an
Einstein metric (think e.g. of small perturbations of themd metric onS?"*1
into Berger metrics) — with constant positive scalar cmmlsatisfies this condi-

. . 2(n

tion. Then 'I-'heorelrm% wmp =anSy; andg = p= 2 €)2, (n = | applies
and yields in particular the uniqueness of solutions to titecsgtical equation
Lg;u=uP~tonz.

2. Let(Z"1,g5) := (21 x 22,01 © g2) with ny +ny = n— 1> 4 be the Riemannian
product of two closed Einstein manifolds with constant esiscalar curvature
Sy, andS, respectively. FOR = anSy; = (”n;fl)(sgl +S,) €RY andq=p=
2, €2, An 3)[ we havel=2(q—2)A = ”*2 2 (Sy, + Syp)- Because of rig; =

ricg, ®ricg, = Sigl@ ?fz g2, ashort computatlon shows thatgg<> (SJl

S,) 05 is equwalent to

na(ny+np—1)
ng 4 NNz + Ny

N+ NNz + n2

SH S ny(ng+ny—1)

Syr-

In that case, Theorem 5.2]16 applies and yields the unigsenfesolutions to
the subcritical equatiohg,u = uP~1 on%. Note that the inequality just above is

in particular fulfilled if the Einstein conditmal— ng is.

5.3 General case and outlook

In this section we come back to arbitrary globally hyperbapacetimegM", g)
with closed Cauchy hypersurface. We face several kinds ablpms when looking
for a smooth positive global solution o (5.2). First, we sisow the existence of a
solution — at least in the weak sense. We have seen thatafutastd static spacetimes,
we could always reduce the equation to a subcritical eigaavproblem for the
Laplace operator on a spacelike slice, whose solvabilityai-known, at least in the
compact setting. In general, it is possible to fix a spacaliziachy hypersurface "
and to try to solve the Cauchy problem associated id (5.2) initial data along the
hypersurface. For the case whéfle= R* = R x R3 with standard Minkowski metric,
Konrad Jorgens could shoiv [D14] (see also [D29, Thm. 6t&l),tgiven anyp € [2,6]
and any compactly supported smooth initial dataRh~ {0} x R3, there always
exists a smooth solution to the Cauchy problem associatﬂfdate slightly different —
equatior¢ = —¢|¢|P~2. This works in particular fop = =4,
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Not much is known for arbitrary globally hyperbolic spaostis, even with closed
2n

Cauchy hypersurface. The subcriticality of the expongst == for the embedding
of the H12-Sobolev space of the hypersurface is likely to provide astleveak
solutions (in the distributional sense) {o_(5.2). The erise of those solutions is
tightly connected to the choice of sign for the conformalaceaurvature: which kind
of invariant could determine it? It is pointless to try to iiniize the energy functional
whose critical points are the solutions to the Yamabe prabfer that infimum can
be shown to be minus infinity. The regularity of solutions lisoaan issue in itself,
but the really delicate point — also related to the choiceasffarmal scalar curvature
— consists in controlling theisign For we have no maximum principle available to
show that a given solution must be positive. In the particaése of standard static
spacetimes, the integration of a given solution (possiblgirst a particular positive
function) along the leaves of the standard foliation by ®gubypersurfaces leads
to an ordinary differential equation or inequation, thatightforwardly provides
obstructions for the existence of positive solutions: & lafwise integral of a function
is negative, then the function itself is negative somewhere

In general, we cannot expect such an elementary obstrutdiche existence of
positive solutions, already because no separation ofagdas possible. In fact, we
first of all have to split the spacetime appropriately, oriegjently, choose a “good”
temporal function. There is no canonical choice of tempdéuaktion on a given

globally hyperbolic spacetime, though some choices argetbatapted than other
according to the question under consideration, seele.dl,[D29]. Besides fixing a
temporal function, we also have to choose a backgroundariettie given conformal

class. Both choices are intimately connected.

When focussing on the Yamabe equatiénl(5.2), one could stdnt an arbitrary
splitting (M",g) = (R x X, —Bdt? ® @) as in Theorer 5.1.2 and, up to changing the
metricg conformally, assume th@ = 1. The first and superficial reason for this is that
it makes the expression of the d’Alembert operatorelatively simple, see Lemma
[E.1.3. But this is not necessarily the best choice, as we alagady seen: for warped
product spacetimefl x X, —dt?> @ b(t)?gs), the choiceb(t)~2g of conformal metric
leads to the even simpler setting of standard static spaestiwhere the Yamabe prob-
lem can be completely solved. Still fixing the splittitd",g) = (R x Z, —Bdt? @ g),

it is elementary to find a metric conformal tpsuch that all hypersurfacd$} x
are maximal, i.e., g(%—%‘) =0-1in particular%(dagt) = 0, which is the case for

Lorentzian products; and a conformal metric such thgt(%%) = %%,
makes the first-ordeg—t-term in Og vanish. Each of those choices presents technical
advantages as well as drawbacks and we have for the momehtenabout which one

could be “best” adapted to the Yamabe equation.

which

Note that one could also construct for edcl metric with constant scalar curvature
in the conformal class af; on the Cauchy hypersurfage— which is possible by the
existence of a solution to the Riemannian Yamabe problen tlidsi does not help
much in our setting: even assuming the existenceshaotf f : 1 x £ — R% such
that f (t,-)?g: = §o does not depend drand has constant scalar curvature, a metric of

2The smooth dependence bint ¢ | is already a very delicate question, at least in the case sifiy®
Yamabe invariants oB, see e.g/[D1/1].
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the form —f2dt? @ g is in general not conformally equivalent to a (standardficta
one — unlesd is constant.

On the whole, the Lorentzian Yamabe problem remains widpgno



Bibliography

[D1] T. Barbot,Globally hyperbolic flat space-timgd. Geom. Phy$3(2005), no. 2,
123-165.

[D2] C. Bar, Geometrische Analysis lecture notes, 2011, available at
http://geometrie.math.uni-potsdam.de/.

[D3] C. Bar, N. Ginoux and F. Pfaffla)Vave equations on Lorentzian manifolds and
guantization ESI Lectures in Mathematics and Physics, EMS Publishingddp
2007.

[D4] J.K. Beem, P.E. Ehrlich and K.L. Easle@lobal Lorentzian geometrysecond
edition, Monographs and Textbooks in Pure and Applied Matkt&ecs202, Mar-
cel Dekker, 1996.

[D5] A.N. Bernal and M. Sanchegmoothness of time functions and the metric split-
ting of globally hyperbolic spacetimeSomm. Math. Phy257(2005), 43-50.

[D6] A.N. Bernal and M. Sanche&urther results on the smoothability of Cauchy
hypersurfaces and Cauchy time functiphett. Math. Phys77 (2006), no. 2,
183-197.

[D7] A.N. Bernal and M. Sancheglobally hyperbolic spacetimes can be defined as
“causal” instead of “strongly causal; Classical Quantum Gravi4 (2007), no.
3, 745-749.

[D8] M.-F. Bidaut-Véron and L. VéronNonlinear elliptic equations on compact
Riemannian manifolds and asymptotics of Emden equatlament. Math.106
(1991), no. 3, 489-539.

[D9] J.T. Burns,Curvature functions on Lorent2-manifolds Pacific J. Math.70
(1977), 325-335.

[D10] Y. Choquet-Bruhat and R. GerocBJlobal aspects of the Cauchy problem in
general relativity Comm. Math. Physl4 (1969), 329—-335.

[D11] O. Druet,La notion de stabil& pour de€quations aux @rivées partielles el-
liptiques Ensaios Matematicdk9, Soc. Bras. Mat., 2010.

[D12] N. Ginoux,Linear wave equationsn: C. Bar et K. Fredenhagen (eds.): “Quan-
tum field theory on curved spacetimes”, Lecture Notes indris/786 (2009),
59-84, Springer.

135



136 BIBLIOGRAPHY

[D13] E. Hebey,Introductiona I'analyse non liaire sur les vaétes Fondations,
Diderot, 1997.

[D14] K. JorgensDas Anfangswertproblem im Grol3éir eine Klasse nichtlinearer
WellengleichungerMath. Z.77(1961), 295-308.

[D15] J.L. Kazdan and F.W. WarneBcalar curvature and conformal deformation of
Riemannian structurel. Diff. Geom.10(1975), 113-134.

[D16] J.L. Kazdan and F.W. WarndExistence and conformal deformation of metrics
with prescribed Gaussian and scalar curvatyr@sin. of Math. (2)101(1975),
317-331.

[D17] J.M. Lee and T.H. Parkefhe Yamabe problemBull. Amer. Math. Soc. (N.S.)
17(1987), no. 1, 37-91.

[D18] E. Minguzziand M. SancheZhe causal hierarchy of spacetimé&ecent devel-
opments in pseudo-Riemannian geometry, 299-358, ESI teexiiuMathematics
and Physics, EMS Publishing House, 208B%Xiv:gr-qc/0609119.

[D19] O. Muller, Special temporal functions on globally hyperbolic mamflLett.
Math. Phys103(2013), no. 3, 285-297.

[D20] O. Miller and M. NardmannQDE-type obstructions to extending prescribed
scalar curvature metrics in given conformal classespreparation.

[D21] O. Milller and M. Sanche,orentzian manifolds isometrically embeddable in
LN, Trans. Amer. Math. So&63(2011), no. 10, 5367-5379.

[D22] M. NardmannPseudo-Riemannian metrics with prescribed scalar cumeatu
PhD thesis, Universitat LeipzigrXiv:math/0409435.

[D23] T. Ouyang©On the positive solutions of semilinear equatids A u+huP =0
on compact manifolds. lindiana Univ. Math. J40(1991), no. 3, 1083-1141.

[D24] T. Ouyang©On the positive solutions of semilinear equatidis- Au—huP =0
on the compact manifold$rans. Amer. Math. So&31(1992), no. 2, 503-527.

[D25] M. SanchezStructure of Lorentzian tori with a Killing vector figldrans.
Amer. Math. Soc349(1997), no. 3, 1063-1080.

[D26] M. Sanchez,Some remarks on causality theory and variational meth-
ods in Lorenzian manifoldsConf. Semin. Mat. Univ. Bari no265 (1997);
arXiv:0712.0600.

[D27] M. SanchezOn the Geometry of Static Spacetimi®nlinear Anal., Theory
Methods Appl 63 (2005), no. 5-7, A, e455-e4631Xiv:math/0406332.

[D28] R.M. SchoenVariational theory for the total scalar curvature functiainfor
Riemannian metrics and related topid®pics in calculus of variations (Monte-
catini Terme, 1987), 120-154, Lecture Notes in Ma®65 Springer, 1989.

[D29] J. Shatah and M. Struw&eometric wave equation€ourant Lecture Notes in
Mathematic®, Amer. Math. Soc., 1998.



BIBLIOGRAPHY 137
[D30] M.E. Taylor, Partial differential equations. Ill. Nonlinear equation8pplied
Mathematical Sciencekl?, Springer, 1997.

[D31] H. YamabeOn a deformation of Riemannian structures on compact miaisifo
Osaka Math. J12(1960), 21-37.



138 BIBLIOGRAPHY



Chapter 6

Classical and quantum fields on
Lorentzian manifolds

This chapter coincides (up to minor changes such as enuoretpages, sections,
theorems, references etc.) with the published article [11]

Christian Bar and Nicolas Ginoux

Abstract. We construct bosonic and fermionic locally covariant quantfield theories on
curved backgrounds for large classes of fields. We investittee quantum field and-point
functions induced by suitable states.

MSC classification:58J45,35Lxx,81T20

Keywords: Wave operator, Dirac-type operator, globally hyperbolgacetime,
Green's operator, CCR-algebra, CAR-algebra, state, septation, locally covariant
guantum field theory, quantum fieldipoint function

6.1 Introduction

Classical fields on spacetime are mathematically modelestbijons of a vector bun-
dle over a Lorentzian manifold. The field equations are ugpalrtial differential equa-
tions. We introduce a class of differential operatorsathibreen-hyperbolic operators,
which have good analytical solubility properties. Thissslincludes wave operators as
well as Dirac type operators.

In order to quantize such a classical field theory on a cunakdround, we need
local algebras of observables. They come in two flavors, liosamligebras encoding
the canonical commutation relations and fermionic algelerecoding the canonical
anti-commutation relations. We show how such algebras eaassociated to man-
ifolds equipped with suitable Green-hyperbolic operatdve prove that we obtain
locally covariant quantum field theories in the sense of |EThere is a large litera-
ture where such constructions are carried out for parti@damples of fields, see e.g.
[E14,([E17[ E1B, E20, E25, EB8]. In all these papers the wadledness of the Cauchy
problem plays an important role. We avoid using the Cauclyplpm altogether and
only make use of Green'’s operators. In this respect, ouoggpris similar to the one in
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[E39]. This allows us to deal with larger classes of fields, Sectio 6.2]7, and to treat
them systematically. Much of the earlier work on constngtbservable algebras for
particular examples can be subsumed under this generadagpr

It turns out that bosonic algebras can be obtained in mucle gemeral situations than
fermionic algebras. For instance, for the classical Diratdfboth constructions are
possible. Hence, on the level of observable algebras, itheespin-statistics theorem.
In order to obtain results like Theorem 5.1 in [EE41] one namdsge structure, namely
representations of the observable algebras with good piepe

In order to produce numbers out of our quantum field theory ¢ha be compared
to experiments, we need states, in addition to observaleshow how states with
suitable regularity properties give rise to quantum fieldd a-point functions. We
check that they have the properties expected from traditigmantum field theories on
a Minkowski background.

Acknowledgmentdt is a pleasure to thank Alexander Strohmaier and Rainech/er
for very valuable discussion. The authors would also likthamk SPP 1154 “Globale
Differentialgeometrie” and SFB 647 “Raum-Zeit-Materibgth funded by Deutsche
Forschungsgemeinschaft, for financial support.

6.2 Field equations on Lorentzian manifolds

6.2.1 Globally hyperbolic manifolds

We begin by fixing notation and recalling general facts alarentzian manifolds,
see e.g.[[E30] or [E4] for more details. Unless mentioneeotise, the paifM,g)
will stand for a smootim-dimensional manifold/ equipped with a smooth Lorentzian
metricg, where our convention for Lorentzian signaturé-is+ - - - +). The associated
volume element will be denoted by dV. We shall also assumé orentzian manifold
(M, g) to be time-orientable, i.e., that there exists a smoothlii@evector field on
M. Time-oriented Lorentzian manifolds will be also refertedasspacetimesNote
that in contrast to conventions found elsewhere, we do retras that a spacetime is
connected nor do we assume that its dimensiombe4.

For every subseh of a spacetim®! we denote the causal future and pastaf M by
J:(A) andJ_(A), respectively. If we want to emphasize the ambient sphag which
the causal future or past éfis considered, we writd) (A) instead ofl. (A). Causal
curves will always be implicitly assumed (future or pasigoted.

Definition 6.2.1 A Cauchy hypersurfade a spacetimégM, g) is a subset of M which
is met exactly once by every inextensible timelike curve.

Cauchy hypersurfaces are always topological hyperswusfaaeneed not be smooth.
All Cauchy hypersurfaces of a spacetime are homeomorphic.

Definition 6.2.2 A spacetiméM, g) is calledglobally hyperbolidaf and only if it con-
tains a Cauchy hypersurface.

A classical result of R. Geroch [ER1] says that a globallydmpplic spacetime can be
foliated by Cauchy hypersurfaces. It is a rather recent amg important result that
this also holds in the smooth category:

Theorem 6.2.3 A. Bernal and M. Sanchez [E6, Thm. 1.10et (M,g) be a globally
hyperbolic spacetime.
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Then there exists a smooth manifalda smooth one-parameter-family of Riemannian
metrics(gt )t on £ and a smooth positive functighon R x Z such that(M, g) is iso-
metric to(R x X, —Bdt? ® g). Each{t} x Z corresponds to a smooth spacelike Cauchy
hypersurface ifM, g).

For our purposes, we shall need a slightly stronger verdidheoreni 6.2.13 where one
of the Cauchy hypersurfacégs} x X can be prescribed:

Theorem 6.2.4 A. Bernal and M. Sanchez [E7, Thm. 1.2]et (M,g) be a globally
hyperbolic spacetime antl a smooth spacelike Cauchy hypersurfacéNh g). Then
there exists a smooth splittin®yl, g) = (R x X, —Bdt? @ ¢;) as in Theorer 6.21.3 such
that¥ corresponds tq0} x X.

We shall also need the following result which tells us tha¢ ean extend any com-
pact acausal spacelike submanifold to a smooth spacelikeh@dnypersurface. Here
a subset of a spacetime is callechusalif no causal curve meets it more than once.

Theorem 6.2.5 A. Bernal and M. Sanchez [E7, Thm. 1.10kt (M,g) be a globally
hyperbolic spacetime and let & M be a compact acausal smooth spacelike subman-
ifold with boundary. Then there exists a smooth spacelikecBga hypersurfac& in
(M,g) with K C Z.

Definition 6.2.6 A closed subset & M is calledspacelike compadf there exists a
compact subset K M such that Ac IM(K) := IM(K) uI¥(K).

Note that a spacelike compact subset is in general not canipadts intersection with
any Cauchy hypersurface is compact, see e.g. [E4, Cor.]A.5.4

Definition 6.2.7 A subsef) of a spacetime M is callecausally compatiblé and only
if 32 (x) = IM(x) N Q for every x Q.

This means that every causal curve joining two pointQimust be contained entirely
in Q.

6.2.2 Differential operators and Green'’s functions

A differential operatorof order (at mostk on a vector bundl& — M overK = R
or K =C is a linear magP : C*(M,S) — C*(M,S) which in local coordinateg =
(x},...,x™ of M and with respect to a local trivialization looks like

00

P= z Aa(x)ﬁ.

laj<k

HereC”(M,S) denotes the space of smooth sectionS§ef M, a = (a1,...,0m) €

Np x --- x Ng runs over multi-indicesa| = a1+ ...+ 0m and%7 = M%.
Theprincipal symbolop of P associates to each covecfoe T,”M a linear mapp (&) :

S« — S« Locally, it is given by
(&)= Y Aa(x)§”

laj=k
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whereé? = 1"1 ~-égmandé =y Ejdxj. If P andQ are two differential operators of
orderk and/ respectively, the®@ o P is a differential operator of orddr+ ¢ and

0Qop(§) = 0q(&)oop(€).

For any linear differential operatér: C*(M,S) — C*(M, S) there is a unique formally
dual operatoP* : C*(M,S*) — C*(M, S*) of the same order characterized by

[ @Pwyav= [ Po.p)av

forall g € C*(M,S) andg € C*(M, S*) with supd @) Nsupdy) compact. Heré-,-) :
S'® S— K denotes the canonical pairing, i.e., the evaluation ofesalifiorm inS; on
an element o8, wherex € M. We havedp: (&) = (—1)Xop(&)* wherek is the order
of P.

Definition 6.2.8 Let a vector bundle S» M be endowed with a non-degenerate inner
product(-,-). Alinear differential operator P on S is callddrmally self-adjointf and
only if

[ Pe.wav= [ (oPu)av

holds for all g, ¢y € C*(M, S) with supf¢) Nsupd ) compact.
Similarly, we call Pformally skew-adjointf instead

| Powyav=— [ (pPy)av.

We recall the definition of advanced and retarded Green’'satpies for a linear differ-
ential operator.

Definition 6.2.9 Let P be a linear differential operator acting on the sectaof a
vector bundle S over a Lorentzian manifold M. @&dvanced Green'’s operator P on
M is a linear map

G;:CZ(M,5) = C*(M,9)

satisfying:
(Gl) PO GJF = idch(M'S) ;
(GZ) G+ © P‘CE"(M.S) = Ing(MS)’

(G}) supG, @) c M (suprg)) foranyp € CZ(M,S).

A retarded Green'’s operatéwr P on M is a linear map G : CZ’(M,S) — C*(M, )
satisfying (@), (Gy), and

(G3) suppG_9g) C IM(supf@)) for anyp € C2(M,S).
Here we denote bz (M, S) the space of compactly supported smooth sectioi®s of

Definition 6.2.10 Let P: C*(M,S) — C*(M, S) be a linear differential operator. We
call P Green-hyperbolid the restriction of P to any globally hyperbolic subregioh
M has advanced and retarded Green’s operators.

Note 6.2.11If the Green’s operators of the restriction Bfto a globally hyperbolic
subregion exist, then they are necessarily unique, see IRERT.
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6.2.3 Wave operators

The most prominent class of Green-hyperbolic operatorsvaree operators, some-
times also called normally hyperbolic operators.

Definition 6.2.12 A linear differential operator of second order PFC*(M,S) —
C®(M,S) is called awave operatoif its principal symbol is given by the Lorentzian
metric, i.e., for allé € T*M we have

0p(€) = —(£.€) -id.

In other words, if we choose local coordinais. .., x™ onM and a local trivialization
of S, then
0? o 7}

m
- _ iy 97 .
i i,zzlg o Oxigxi + JZlAJ (x) o +B(x)

whereA; andB are matrix-valued coefficients depending smoothlyxaand (g1) is
the inverse matrix ofg;;) with gij = (2, -%;). If P is a wave operator, then so is its

dual operatoP*. In [E4, Cor. 3.4.3] it has been shown that wave operator&agen-
hyperbolic.

Example 6.2.13 (d’Alembert operator) Let S be the trivial line bundle so that sec-
tions ofSare just functions. The d’Alembert operal®+= 0 = —divograd is a formally
self-adjoint wave operator, see elg.[E4, p. 26].

Example 6.2.14 (connection-d’Alembert operator)More generally, leEbe a vector
bundle and let] be a connection o8. This connection and the Levi-Civita connection
onT*M induce a connection oh*M ® S, again denotedl. We define the connection-
d’Alembert operatori™ to be the composition of the following three maps

C*(M,9) 2 C°M, T"M©9) S C*M, T"MaT*M©9) —12%, c*(M,9)

where tr ;T*M ® T*M — R denotes the metric trace(§r® n) = (&,n). We compute
the principal symbol,

00 (&)@ =—(tr@ids) o op(§) o on(&)(p) = —(reids)(§ @ E® @) = —(&,$) @.
Henceo" is a wave operator.

Example 6.2.15 (Hodge-d’Alembert operator) Let S= AKT*M be the bundle ok-
forms. Exterior differentiatior : C*(M,AKT*M) — C*(M,A¥*1T*M) increases the
degree by one while the codifferentidl= d* : C*(M,AKT*M) — C®(M,AK"1T*M)
decreases the degree by one. Whiilss independent of the metric, the codifferential
0 does depend on the Lorentzian metric. The opemter —dd — dd is a formally
self-adjoint wave operator.

6.2.4 The Proca equation

The Proca operator is an example of a Green-hyperbolic tperesecond order which
is not a wave operator. First we need the following obseowati
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Lemma 6.2.16 Let M be globally hyperbolic, let S+ M be a vector bundle and let P
and Q be differential operators acting on sections of S. 8spg® has advanced and
retarded Green'’s operators Gand G_.

If Q commutes with P, then it also commutes with @d with G_.

Proof. Assume[P,Q] = 0. We consider
Gi =Gy +[G4,Q]: CT(M,s) —» CHM,S).
We compute oI (M, S):
GiP=G.P+G:QP-QG:P=id+G.PQ-Q=id+Q-Q=id

and similarlyPG. = id. HenceG.. are also advanced and retarded Green’s operators,
respectively. By Remark 6.2111, Green’s operators areugnibences. = G+ and
thereforg G, Q] = 0. O

Example 6.2.17 (Proca operator)The discussion of this example follows [E39,
p. 116f], see alsd [E20] where is the discussion is based@R#uchy problem. The
Proca equation describes massive vector bosons. W&take'M and letmg > 0. The
Proca equationis

Pp:=ddp+mp=0 (6.1)
wherep € C*(M,S). Applying & to (6.1) we obtain, using? = 0 andmg # 0,
dp=0 (6.2)
and hence
(dd + 5d)p+mip = 0. (6.3)

Conversely,[(6]2) and (8.3) clearly imply (B.1). N
SinceP :=dd + dd + m% iS minus a wave operator, it has Green’s operafars We
define

G.:CZ(M,S) = C&UM,S), Gy = (my%dd+id)oGy =Gy o(my%dd +id).

The last equality holds becaudeandd commute withP. For ¢ € C2(M, S) we com-
pute 3 .
G.Pp=G. (my2d5+id)(3d+mg)p = G.Pp= g

and similarlyPG. @ = ¢. Since the differential operatmazdé +id does not increase
supports, the third axiom in the definition of advanced anarded Green’s operators
holds as well.

This shows thaG, andG_ are advanced and retarded Green’s operatoiB, fiaspec-
tively. ThusP is not a wave operator but Green-hyperbolic.

6.2.5 Dirac type operators

The most important Green-hyperbolic operators of first bede the so-called Dirac
type operators.

Definition 6.2.18 A linear differential operator DC* (M, S) — C*(M, S) of first order
is calledof Dirac type if —D? is a wave operator.
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Note 6.2.191f D is of Dirac type, themtimes its principal symbol satisfies the Clifford
relations

(i00(8))? = —0p2(&) = —(&,&)-id,

hence by polarization

(iop(&))(iop (1)) + (iop(n))(i0p(&)) = —2(&, 1) -id.

The bundleS thus becomes a module over the bundle of Clifford algebr&¥ @)
associated witfTM, (-, -)). Seel[E5, Sec. 1.1] of [ER7, Ch. I] for the definition and
properties of the Clifford algebra Gf) associated with a vector spadewith inner
product.

Note 6.2.201If D is of Dirac type, then so is its dual operaf@t. On a globally hyper-
bolic region letG,. be the advanced Green’s operatorB8rwhich exists since-D? is

a wave operator. Then it is not hard to check thatG, is an advanced Green'’s op-
erator forD, see e.g. the proof of Theorem 2.3(in [E14]lor [E29, Thm. 32k same
discussion applies to the retarded Green’s operator. Hemg®irac type operator is
Green-hyperbolic.

Example 6.2.21 (Classical Dirac operator)lf the spacetimeM carries a spin struc-
ture, then one can define the spinor burfsie >M and the classical Dirac operator

m
D:C*(M,ZM) - C*(M,ZM), Dg:=i Z &€ - Ue; .
=1

Here(ej)1<j<m is a local orthonormal basis of the tangent bundjes (ej,ej) = £1
and “” denotes the Clifford multiplication, see e.g. |E5] br [Esc. 2]. The principal
symbol ofD is given by

op (&)W =i&" - .

Here&! denotes the tangent vector dual to the 1-fdrwia the Lorentzian metric, i.e.,
(E1.Y) = &(Y) for all tangent vector¥ over the same point of the manifold. Hence

Op2(&)Y = 0p(&)op(§)Y = —& - & - = (£,&) Y.

ThusP = —D? is a wave operator. MoreoveD, is formally self-adjoint, see e.d. [E3,
p. 552].

Example 6.2.22 (Twisted Dirac operators)More generally, leE — M be a complex
vector bundle equipped with a non-degenerate Hermitiaaripnoduct and a metric
connectionJF over a spin spacetimié. In the notation of Example 6.221, one may
define the Dirac operator & twisted withE by

m
DE =i > eie- OgM“F :C*(M,sM ® E) — C”(M,EM © E),
=1

where1*M®E s the tensor product connection @M ® E. Again, DE is a formally
self-adjoint Dirac type operator.

Example 6.2.23 (Euler operator)In Example[6.2.15, replacindkT*M by S:=
AT*M ® C = @_oA*T*M ® C, the Euler operatob = i(d — &) defines a formally
self-adjoint Dirac type operator. In cabkis spin, the Euler operator coincides with
the Dirac operator of twisted withZM if mis even and witteM & M if mis odd.
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Example 6.2.24 (Buchdahl operators)On a 4-dimensional spin spacetiriv con-
sider the standard orthogonal and parallel splittiMy= 2. M & >_M of the complex
spinor bundle oM into spinors of positive and negative chirality. The finiiendn-
sional irreducible representations of the simply-coneédtie group Spifi(3,1) are
given byzf/z) ®3"/? wherek, ¢ € N. Herezf/z) = 37X is thek-th symmetric tensor
product of the positive half-spinor representationand similarly forz“/?). Let the
associated vector bundIE&k/Z)M carry the induced inner product and connection.
Forse N, s> 1, consider the twisted Dirac operaf® acting on sections aftM @
5(&"D/2\. In the induced splitting

MeZEVIM =3, MesF " Mes Mez& Y2V

o DY
p¥ o

because Clifford multiplication by vectors exchanges theatities. The Clebsch-
(55

1
Gordan formulas [E10, Prop. 11.5.5] tell us that the repnésion>, @ 3. ) splits
as

the operatob® is of the form

s—1 s S_
5, 0502 =3P g3l
Hence we have the corresponding parallel orthogonal piojec

s-1
2

. (&h (3) . ( 5-1)
% ZM®Z,2’M=Z*M and I M®I,

M= 52 M.

s—1
On the other hand, the representatton® 237_) is irreducible. NowBuchdahl oper-
atorsare the operators of the form

B ._<u1~rrs+u2~ng D(S)>

H1,H2, M3 = D(f) s id

where i1, 12, i3 € C are constants. By definitio{; ,,, ., is of the formD(® + b,

whereb is of order zero. In particuIaBEfl),uZ% is a Dirac-type operator, hence it is
Green-hyperbolic.

If M were Riemannian, theB® would be formally self-adjoint. Hence the operator
Bifl)y“z,u3 would be formally self-adjoint if and only if the constants, U, 3 are real.

In Lorentzian signature;, .M andZ_M are isotropic for the natural inner product on
>M, so that the bundles on which the Buchdahl operators aaty carnatural non-
degenerate inner product.

For a definition of Buchdahl operators using indices we refdE12,[E13] E44] and
to [E28, Def. 8.1.4, p. 104].

6.2.6 The Rarita-Schwinger operator

For the Rarita-Schwinger operator on Riemannian manifeldsefer tol[E4B, Sec. 2],
see also[[E8, Sec. 2]. In this section let the spacefilnbe spin and consider the
Clifford-multiplicationy: T*M® M — =M, 8 ® ¢ — 6° -, wherezM is the complex
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spinor bundle oM. Then there is the representation theoretic splittind t¥l @ M
into the orthogonal and parallel sum

T*M®3IM = (M) B 5%2M,

wherez%2M := ker(y) andi(y) == —5 3] 1€ ©e - Y. Here again(ej)i<j<m is a
local orthonormal basis of the tangent bundle. Eete the twisted Dirac operator
onT*M ® ZM, that is,Z =i - (id ® y) o O, whered denotes the induced covariant

derivative onT*M @ M.

Definition 6.2.25 The Rarita-Schwinger operatan the spin spacetime M is defined
by 2:= (id—10y)o 2 :C°(M,2%2M) — C*(M,23/2M).

By definition, the Rarita-Schwinger operator is pointwisgained as the orthogonal
projection onta%/2M of the twisted Dirac operatd? restricted to a section a/2M.
Using the above formula for, the Rarita-Schwinger operator can be written down
explicitly:

m m
. . 2
2 =i- z € z €a(ea'Dea(Pﬁ*_eB'Dea(pa)
=17 d=1 m
forall y =37 e5@yp € C*(M, 2%/2M), where heré is the standard connection

on ZM. It can be checked tha? is a formally self-adjoint linear differential operator
of first order, with principal symbol

00&) wi{(de g2 3 goes (€).

=1

forall y =37 e5® yp € ¥3/2M. Here X_ denotes the insertion of the tangent
vectorX in the first factor, that isX .y := zg‘zl €5 (X) .

Lemma 6.2.26 Let M be a spin spacetime of dimensior>n3. Then the character-
istic variety of the Rarita-Schwinger operator of M coinesiwith the set of lightlike
covectors.

Proof. By definition, the characteristic variety & is the set of nonzero covectofs
for which o»(&) is not invertible. Fix an arbitrary poinde M. Let& € T M\ {0} be
non-lightlike. Without loss of generality we may assume th# normalized and that
the Lorentz orthonormal basis is chosen so iat e;. Henceg; = 1 if & is spacelike
andg; = —1if & is timelike. Takey = Zg’zleg ® Yp € ker(ay(€)). Then

m 2 m
0 = > goerdpg—— 5 ey
p=1 p=1
m 2
= leez;@(el-il-’g—aeg'%),

which impliese; - g = %eﬁ -y forall B € {1,...,m}. Choosing = 1, we obtain
e - Y1 = 0 becausen > 3. Hencey; = 0, from which ¢z = 0 follows for all B €
{1,...,m}. Hencey = 0 andoy(¢) is invertible.
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If & e TM\ {0} is lightlike, then we may assume that = e; + e, whereg =
—1 andg; = 1. Choosey; € M \ {0} with (e; + &) - 1 = 0. Such ayn exists
because Clifford multiplication by a lightlike vector islpotent. Sety, := —; and
@ =& @ Yy +65® Y. Theny € 57/°M )\ {0} and
2
. i 2 .
io2(E)W) = 3 e et &) v ee(¢at vy =0
5 5

This showsyp € ker(g»(&)) and hencerg (&) is not invertible. O

The same proof shows that in the Riemannian case the RatitaiSger operator is
elliptic.

Note 6.2.27 Since the characteristic variety of the Rarita-Schwingerator is exactly
that of the Dirac operator, Lemrha 6.2.26 together with [ERHms. 23.2.4 & 23.2.7]
imply that the Cauchy problem fo2 is well-posed in cas®l is globally hyperbolic.
This implies they2 has advanced and retarded Green’s operators. H&nisenot of

Dirac type but it is Green-hyperbolic.

Note 6.2.28 The equations originally considered by Rarita and SchwinggE33]
correspond to the twisted Dirac operaf@mestricted taz2M but not projected back
to 3/2M. In other words, they considered the operator

D|comszamy - C* (M, Z¥2M) = C*(M, T*"M @ IM).

These equations are over-determined. Therefore it is net@ise that non-trivial so-
lutions restrict the geometry of the underlying manifoldaserved by Gibbon5s[E22]
and that this operator has no Green’s operators.

6.2.7 Combining given operators into a new one

Given two Green-hyperbolic operators we can form the diseot and obtain a new
operator in a trivial fashion. It turns out that this operdasagain Green-hyperbolic.
Note that the two operators need not have the same order.

Lemma 6.2.29Let §,S — M be two vector bundles over the globally hyperbolic
manifold M. Let P and B be two Green-hyperbolic operators acting on sections,of S
and S respectively. Then

PPy <F§ §2>:C°°<M,sl@sz)%°°(m,sl@sz)

is Green-hyperbolic.
Proof. If G; andG; are advanced Green’s operators Rprand P, respectively, then
clearly <Gl 0 ) is an advanced Green'’s operator Byrp P,. The retarded case is

0 &
analogous. O

It is interesting to note tha®, and P, need not have the same order. Hence Green-
hyperbolic operators need not be hyperbolic in the usuadeseoreover, it is not
obvious that Green-hyperbolic operators have a well-p&mchy problem. For in-
stance, ifP, is a wave operator ang, a Dirac-type operator, then along a Cauchy
hypersurface one would have to prescribe the normal demvidr theS;-component
but not for theS,-component.
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6.3 Algebras of observables

Our next aim is to quantize the classical fields governed eeGihyperbolic differen-
tial operators. We construct local algebras of observadiesve prove that we obtain
locally covariant quantum field theories in the sensé of JE11

6.3.1 Bosonic quantization

In this section we show how a quantization process basedramazal commutation re-
lations (CCR) can be carried out for formally self-adjoire@&n-hyperbolic operators.
This is a functorial procedure. We define the first categorglired in the quantization
process.

Definition 6.3.1 The categoryGlobHypGreen consists of the following objects and
morphisms:

e An object inGlobHypGreen is a triple (M, S,P), where

» M is a globally hyperbolic spacetime,
» S is a real vector bundle over M endowed with a non-degenénaier
product(-,-) and

» P is a formally self-adjoint Green-hyperbolic operator iagct on sections
of S.

e A morphism between two objecid;, S, P1) and (M, S, P») of GlobHypGreen
is a pair (f,F), where

» f is a time-orientation preserving isometric embedding M M2 with
f(M1) causally compatible and open inv

» F is a fiberwise isometric vector bundle isomorphism over chghat the
following diagram commutes:

C* (M, ) — 2 C*(Mp, S) (6.4)

P,
C® (M1, 1) — C*(My, S),
wherereq @) := F 1o @o f for everyp € C*(M,, ).

Note that morphisms exist only if the manifolds have equalatision and the vector
bundles have the same rank. Note furthermore, that the proeuct(-,-) on Sis not
required to be positive or negative definite.

The causal compatibility condition, which is not automaliig satisfied (see e.d. [E4,
Fig. 33]), ensures the commutation of the extension andictsh maps with the
Green'’s operators:
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Lemma 6.3.2Let (f,F) be a morphism between two objectd;,S;,P1) and
(M2,$,P,) in the categoryGlobHypGreen and let(G;). and (G). be the respec-
tive Green’s operators forjPand B. Denote byext(¢) € CT(M2,S,) the extension by
Oof Fogo f~1: f(My) = S to My, for everyp € C2(My,S;). Then

reso (Gyz)+ oext=(Gy)4.
Proof: Set(al)i :=reso (Gy)+ oext and fixgp € CT(M1,S;). First observe that the
causal compatibility condition of implies that
SUpH(G1)=(¢)) L(SUPH((Gz)+ 0 ex(®)))
1(3Y2 (suprext(@))))
L2 (f (supH))))
" (supp()).

In particular,(/le)i(qJ) has spacelike compact support\h and(évl)i satisfies Ax-
iom (G3). Moreover, it follows from[(6.14) tha®, o ext= exto P, onCZ (M3, S; ), which
directly implies tha{G; ). satisfies Axiomg§G1) and(G;) as well. The uniqueness of
the advanced and retarded Green’s operatoMpyieIds((?l)i = (G1)x+. O

f-
c f-
= f-

J

Next we show how the Green’s operators for a formally sejéiatl Green-hyperbolic
operator provide a symplectic vector space in a canonicyl Riest we see how the
Green'’s operators of an operator and of its formally duatajoe are related.

Lemma 6.3.3 Let M be a globally hyperbolic spacetime and &_ the advanced
and retarded Green'’s operators for a Green-hyperbolic @per P acting on sections
of S— M. Then the advanced and retarded Green’s operatdre@d G for P* satisfy

/( iw,l#)dV:/ (@,Gxy)dV
JM JM
for all ¢ € CT(M,S*) andy € CZ(M,S).

Proof. Axiom (G ) for the Green’s operators implies that
[(Ciowav = [ (GioPG W)V
| (P"(GL9).Gzu)av

- [ (@G:y)av
M

where the integration by parts is justified since S@pp) N supgGxyY) C
IM(sup(@)) NIM (supy)) is compact. O

Proposition 6.3.4 Let (M, S,P) be an object in the categoyiobHypGreen. Set G:=

G, — G_, where G ,G_ are the advanced and retarded Green'’s operator for P, re-
spectively.

Then the pailSYMPL(M, S P), w) is a symplectic vector space, where

SYMPL(M,S.P) := C*(M,S)/ker(G) and w([go],[w]):Z/M<Ggo,w>dv.

Here the square brackefg denote residue classes modikr(G).
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Proof. The bilinear form(g, y) — [, (G, Y)dV on CT(M,S) is skew-symmetric
as a consequence of Lemia 613.3 because formally self-adjoint. Its null-space
is exactly kefG). Therefore the induced bilinear form on the quotient space
SYMPL(M, S,P) is non-degenerate and hence a symplectic form. O

PutCa(M,S) :={peC”(M,S)|supf @) is spacelike compaktThe nextresult will in
particular show that we can consider SYMRAL S, P) as the space of smooth solutions
of the equatiorPg = 0 which have spacelike compact support.

Theorem 6.3.5Let M be a Lorentzian manifold, let-S M be a vector bundle, and
let P be a Green-hyperbolic operator acting on sections afesG. be advanced and
retarded Green’s operators for P, respectively. Put

G:=G;—G_:CI(M,5) = CZ(M,S).
Then the following linear maps form a complex:
{0y >ceMm,9) B v, Scam,s) B oz, ). (6.5)

This complex is always exact at the firgt@®, S). If M is globally hyperbolic, then the
complex is exact everywhere.

Proof. The proof follows the lines of [E4, Thm. 3.4.7] where theulésvas shown for
wave operators. First note that, byﬁﬁn the definition of Green’s operators, we have
thatG, : CP(M,S) — C(M,S). Itis clear from (@) and (&) thatPG= GP =0 on
CZ(M,S), hencel(65) is a complex.

If @ € CT(M,S) satisfiesP@ = 0, then by (G) we havep = G P@ = 0 which shows
thatﬂcg,w‘s) is injective. Thus the complex is exact at the fiE§(M, S).

From now on letM be globally hyperbolic. Letp € CT(M,S) with G =0, i.e.,
Gip=G_p. We puty := G =G_@ c C°(M,S) and we see that supp) =
Sup G @) NsuppG_@) C I (sup@)) NJI_(sup@)). Since(M,q) is globally hy-
perbolic J; (supd¢)) N J_(supd@)) is compact, hencg € CZ¥(M,S). From Py =
PG, = @pwe see thap € P(CT (M, S)). This shows exactness at the secGffdM, S).
It remains to show that any € Cg(M, S) with P = 0 is of the formg = Gy with ¢ €
CZ(M,S). Using a cut-off function decomposggas ¢ = @, — @_ where suppp..) C
J. (K) whereK is a suitable compact subset M. Theny := P@, = P@_ satisfies
supg @) C I+ (K)NJ_(K). Thusy € CZ(M,S). We check thaGy = ¢@,. Namely,
forall x € CZ(M,S) we have by Lemm@a6.3.3

/M<X,G+P<p+>dv= /M<G’ix,P¢4>dV=/M<P*G’ix,¢4>dv= /M<X,%>dV-
The integration by parts in the second equality is justifiececause

supg @) NsupgG* x) € J+(K)NJ_(supdx)) is compact. Similarly, one shows
G_yY=¢ .NowGY =G, —G_y = ¢ — @ = @ which concludes the proof.[]

In particular, given an objedM, S P) in GlobHypGreen, the mapG induces an iso-
morphism from

SYMPL(M,S,P) =CZ(M,S)/ker(G) = ker(P) NCZ(M, ).
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Note 6.3.6 Exactness at the firs&? (M, S) in sequencel(6]5) says that there are no
non-trivial smooth solutions d?¢ = 0 with compact support. Indeed,M is globally
hyperbolic, more is true.

If @ € C*(M,S) solves B = 0 andsupg ) is future or past-compact, them= 0.

Here a subseA C M is called future-compact kN J; (x) is compact for anyk € M.
Past-compactness is defined similarly.

Proof. Let ¢ € C*(M,S) solveP¢ = 0 such that supg) is future-compact. For any
X € CZ(M,S") we have

[ xoav= [ PGix.edv= [ (G x.Pgav=0.
This showsp = 0. The integration by parts is justified because $@igx ) NsSupg @) C
J; (supfx)) Nsupd ) is compact, seé [E4, Lemma A.5.3]. O

Note 6.3.7Let M be a globally hyperbolic spacetime arit, S P) an object in
GlobHypGreen. Then the Green's operators,Gand G_ are unique.Namely, if G
andG. are advanced Green'’s operators Rytthen for anyp ¢ CZ(M,S) the section
Y = G, — G, has past-compact support and satisfes= 0. By the previous
remark, we havey = 0 which showss, = G,.

Now, let(f,F) be a morphism between two obje¢h;,S;,P1) and(M», S, P) in the
categoryGlobHypGreen. For @ € CZ(M1,S;) consider the extension by zero &gy €
CZ(M2,$) as in Lemma6.312.

Lemma 6.3.8 Given a morphism(f,F) between two object§M;,S,P;) and
(M2,$,P,) in the categonGlobHypGreen, extension by zero induces a symplectic lin-
ear mapSYMPL(f,F) : SYMPL(My,S;,P1) = SYMPL(M2, S, P,).
Moreover,

SYMPL(idwm,ids) = idgympL(m,sP) (6.6)

and for any further morphisrgf’,F’) : (M2, $,P,) — (M3, S, P3) one has
SYMPL((f',F")o (f,F)) = SYMPL(f',F’) o SYMPL(f,F). (6.7)

Proof If @ = Py € ker(Gy) = P(CT(M1,S)), then extp) = Px(ext(y)) €
P(CZ(M2,S)) = ker(Gy). Hence ext induces a linear map

SYMPL(f,F) :C2(My,S1)/ker(Gy) — C(Ma, S)/ ker(Gy).

Furthermore, applying Lemnla6.8.2, we have, for gny € C2*(M1,S)

[ (Gelext@).extw)av= [ (ressGroext@).y)aV = [ (Gig.p)dV.
JM, JM; JMy

hence SYMPLf,F) is symplectic. Equatior[(6.6) is trivial and extending orme
twice by 0 amounts to the same, 5o {6.7) holds as well. O

Note 6.3.9 Under the isomorphism SYMRM, S P) — ker(P) NCg(M, S) induced by
G, the extension by zero corresponds to an extension as a lsreolotion of P =
0 with spacelike compact support. This follows directlynfreemma6.3R. In other
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words, for any morphisnif,F) from (M1,S;,P;) to (M2, S, P,) in GlobHypGreen we
have the following commutative diagram:

SYMPL(f,F)
SYMPL(My,S;,Py) SYMPL(Mz, S, P,)

~l l~

ker(Py) NCZ(My, Sp) —Xensionas._ yar(p,) NCE(Ma, ).

asolution

Let Sympl denote the category of real symplectic vector spaces witipsgctic linear
maps as morphisms. Lemina 613.8 says that we have constaucte@riant functor

SYMPL : GlobHypGreen — Sympl.

In order to obtain an algebra-valued functor, we compose BYMith the functor
CCR which associates to any symplectic vector space its Alggbra. Here “CCR”
stands for “canonical commutation relations”. This is agyahalgebraic construction
which is independent of the context of Green-hyperbolicdagmes and which is carried
out in Sectiol 6.512. As a result, we obtain the functor

Apos:= CCRo SYMPL : GlobHypGreen — C*Alg,

whereC*Alg is the category whose objects are the unitalalgyebras and whose mor-
phisms are the injective unit-preserving-@orphisms.

In the remainder of this section we show that the functor GGRMPL is a bosonic
locally covariant quantum field theory. We call two subregitv; andM, of a space-
time M causally disjointf and only if JM(M;) "M, = 0. In other words, there are no
causal curves joininiyl; andMs.

Theorem 6.3.10The functoRlpes: GlobHypGreen — C*Alg is a bosonic locally co-
variant quantum field theory, i.e., the following axiomschol

(i) (Quantum causality) Let(M;,S;j,P;) be objects irGlobHypGreen, j=1,2,3, and
(fj,Fj) morphisms froniM;, S;, P;) to (M3, S5, Ps), j = 1,2, such that (M) and
fo(My) are causally disjoint regions in M
Then the subalgebras  pos( f1, F1) (™Abos(M1,S1,P1)) and
Q[bOS( f27 Fz)(Q[bOS(M27827 PZ)) Of Q[bOS(M\?n%? P3) CommUte

(i) (Time dlice axiom) Let (Mj,S;,P;) be objects inGlobHypGreen, j = 1,2, and
(f,F) a morphism fromM1,S;,P1) to (M2, S, P,) such that there is a Cauchy
hypersurfac& C M; for which f(Z) is a Cauchy hypersurface ofMThen

Q[bos(fa F): leos(Mla S, Pl) — leos(MZa S, PZ)
is an isomorphism.
Proof. We first showl[{i). For notational simplicity we assume withéoss of general-

ity that fj andF; are inclusionsj = 1,2. Let ¢ € CZ(M;,S;). SinceM; andM are
causally disjoint, the sectiordg, and¢ have disjoint support, thus

(@) [92) = [ (G @)av =0
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Now relation [i¥) in Definitior 6.5.111 tells us

w([@]) - w(le]) = w({en] + [@]) = w({g]) - w([@1]).

Sincepos( f1, F1) (Apbos(M1,S1, P1)) is generated by elements of the fomf¢1]) and
Apos( f2, F2) (*Apos(M2, S, P,)) by elements of the formy([¢]), the assertion follows.

In order to provel(ji) we show that SYMRI, F ) is an isomorphism of symplectic vec-
tor spaces providetl maps a Cauchy hypersurfaceMf onto a Cauchy hypersurface
of Mz. Since symplectic linear maps are always injective, we aelyd to show surjec-
tivity of SYMPL(f,F). This is most easily seen by replacing SYMR,S;,P;j) by
ker(P;) NC(Mj,S;) as in Remark 6.3]9. Again we assume without loss of gengralit
that f andF are inclusions.

Let ¢ € C3(M2,S;) be a solution oy = 0. Letg be the restriction ofy to M;. Then

¢ solvesP g = 0 and has spacelike compact supporin by Lemmd6.3.711 below.
We will show that there is only one solution M, with spacelike compact support
extendingg. It will then follow that ¢ is the image ofgp under the extension map
corresponding to SYMP({, F) and surjectivity will be shown.

To prove uniqueness of the extension, we may, by linearstsyme thatp = 0. Then
Y defined by

w(x), if xed(z),
0, otherwise,

P (x) = {

is smooth sincep vanishes in an open neighborhoodofNow ;. solvesP ;. =0
and has past-compact support. By Renjark 6.8,6= 0, i.e., ) vanishes o ?(X).
One shows similarly thap vanishes orjEAZ(Z), hencey = 0. O

Lemma 6.3.11 Let M be a globally hyperbolic spacetime and I€tdvIM be a causally
compatible open subset which contains a Cauchy hypersidgadl. Let AC M be
spacelike compact in M.

Then A0M’ is spacelike compactin M

Proof. Fix a common Cauchy hypersurfagef M’ andM. By assumption, there exists
a compact subsé€ c M with A ¢ IM(K). ThenK’ := JM(K) N X is compact/[E4,
Cor. A.5.4] and contained inl’.

MoreoverA ¢ JM(K’): let p € A and lety be a causal curve (iM) from p to some
k € K. Theny can be extended to an inextensible causal curviljrwhich hence
meets> at some poing. Because off € =N JIM(k) ¢ K’ one hasp € IM(K').
ThereforeAn M’ ¢ JM(K') N M’ = I (K’) because of the causal compatibilitydf

in M. The lemma is proved. O

The quantization process described in this subsectionespipl particular to formally
self-adjoint wave and Dirac-type operators.

6.3.2 Fermionic quantization

Next we construct a fermionic quantization. For this we naédhctorial construction
of Hilbert spaces rather than symplectic vector spaces. dshall see this seems to
be possible only under much more restrictive assumptioms.uhderlying Lorentzian
manifold M is assumed to be a globally hyperbolic spacetime as befdre véctor
bundleSis assumed to be complex with Hermitian inner produgct which may be
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indefinite. The formally self-adjoint Green-hyperbolicesptorP is assumed to be of
first order.

Definition 6.3.12 A formally self-adjoint Green-hyperbolic operator P of ficgder
acting on sections of a complex vector bundle S over a spaeéil is ofdefinite type
if and only if for any xe M and any future-directed timelike tangent vecioe TyM,

the bilinear map

SxS—C,  (@,¢) = (iop(n’)- 0,),
yields a positive definite Hermitian scalar product gn S

Example 6.3.13The classical Dirac operat®xfrom Examplé 6.2.21 is, when defined
with the correct sign, of definite type, see e.g.l[E5, Sec5ldr [E3, Sec. 2].

Example 6.3.141f E — M is a semi-Riemannian or -Hermitian vector bundle endowed
with a metric connection over a spin spacetikhgthen the twisted Dirac operator from
Exampldé6.2.22 is of definite type if and only if the metriclbis positive definite. This
can be seen by evaluating the tensorized inner product omealis of the forno ® v,
wherev € Ey is null.

Example 6.3.15The operatoP =i(d — d) onS=AT*M ® C is of Dirac type but not
of definite type. This follows from Example 6.3114 appliedtxampld 6.2.23, since the
natural inner product oBM is not positive definite. An alternative elementary proofis
the following: for any timelike tangent vectaron M and the corresponding covector

n’, one has

(iop(")n’,10") = — (W AW’ —nn’,0’) = (n,n)(L,n’) = 0.

Example 6.3.16 The Rarita-Schwinger operator defined in Sedtion 6.2.6 i®hdef-
inite type if the dimension of the manifoldsfis> 3. This can be seen as follows. Fix
a pointx € M and a pointwise orthonormal basis )1<j<m of TxM with e; timelike.
The Lorentzian metric induces inner products¥v and onz%2M which we denote
by (-,-). Choose€ =€, € TiM andy € 532\, Sinceay (&) is pointwise obtained

as the orthogonal projection of; (&) ontoZ3/2M, one has

(g2 (S)y, ) (do &%)y, ) -

Z eﬁ®eﬁ ’1U17 >

BII\J

=0

I
M3

=1

Choose, as in the proof of Lemr@] 26) & 53/2M with Y=0foral3<k<m.

For such ay the conditiony € ZX m becomes; - Y = & - Y. As in the proof of
Lemmd6.2.266 we obtain

(—102(&)Y, ) = —(e1- Yo, P2) + (€1- Y, ) =0,

which shows that the Rarita-Schwinger operator cannot liefifite type.
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We define the categor§ilobHypDef, whose objects are the tripléM,S,P), where

M is a globally hyperbolic spacetim&,is a complex vector bundle equipped with a
complex inner producg, -), andP is a formally self-adjoint Green-hyperbolic operator
of definite type acting on sections 8f The morphisms are the same as in the category
GlobHypGreen.

We construct a covariant functor froGlobHypDef to HILB, whereHILB denotes the
category whose objects are complex pre-Hilbert spaces &ndevmorphisms are iso-
metric linear embeddings. As in Section 613.1, the undeglyiector space is the space
of classical solutions to the equatiBp = 0 with spacelike compact support. We put

SOL(M,S,P) := ker(P)NCZ(M, S).

Here “SOL” stands for classical solutions of the equafgn= 0 with spacelike com-
pact support.

Lemma 6.3.17 Let (M,S,P) be an object inGlobHypDef. Let > C M be a smooth
spacelike Cauchy hypersurface with its future-orienteitl mormal vector fieldh and
its induced volume elemedf. Then

((P, l,U) = ./z.<i0'p(‘l‘ly) Qs w\z) dA, (68)

yields a positive definite Hermitian scalar product 8®@L(M, S, P) which does not
depend on the choice af

Proof. First note that supp) NX is compact since supp) is spacelike compact, so
that the integral is well-defined. We have to show that it doeglepend on the choice

of Cauchy hypersurface. L& be any other smooth spacelike Cauchy hypersurface.
Assume first thak and’ are disjoint and lef2 be the domain enclosed lRyand’

in M. Its boundary is9Q = U Y. Without loss of generality, one may assume that
3’ ¢ IM(%). By the Green’s formulg [E40, p. 160, Prop. 9.1] we have foraly €
C2(M,S),

L (Po.w)—(0.Py)) av = [ (0n(")p ) dA~ [ (op(w)p.0)dA.  (6.9)

For @,y € SOL(M, S,P) we haveP@ = Py = 0 and thus

0= [(e(w)g. ) dA~ [ (ga(t"). ) dA

This shows the result in the ca&e1 2’ = 0.

If £NZ’ # 0 consider the subs¢¥ (£) NIM(Z') of M where, as usual}'(Z) and
IM(Z) denote the chronological future and past of the subsit M, respectively.
This subset is nonempty, open, and globally hyperbolic.sThilows e.g. from
[E4, Lemma A.5.8]. Hence it admits a smooth spacelike Caugpersurface”
by Theoren6.2]3. By constructiod meets neithe& nor ' and it can be eas-
ily checked thatz” is also a Cauchy hypersurface bf. The result follows from
the argument above being applied first to the paj&") and then to the paiz”,%’). O

Note 6.3.18If one drops the assumption thBtbe of definite type, then the above
sesquilinear forn{-,-) on kefP) NCZ&(M,S) still does not depend on the choice of
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>, however it need no longer be positive definite and can evedelgenerate. Pick
for instance the spin Dirac operatdy associated to the underlying Lorentzian metric
g on a spin spacetim®l (see Examplé 6.2.21) and, keeping the spinor buigh
associated tg, change the metric ol so that the new metrig’ has larger future and
past cones at each point. Note that this implies that anyadjiphyperbolic subregion
of (M,d) is also globally hyperboliciiM, g). Then, denoting b, the formal adjoint

of Dg with respect to the metrig/, the operato g* %9 on>gM @ ZgM remains
Green-hyperbolic but it fails to be of definite tyge, sincerthexist timelike vectors
for g which are lightlike forg. Hence the principal symbol of the operator becomes
non-invertible and the bilinear form if_(6.8) becomes degate for thesg'-timelike
covectors.

For any objectM, S P) in GlobHypDef we will from now on equip SOWM, S, P) with
the Hermitian scalar product i (6.8) and thus turn $LS P) into a pre-Hilbert
space.

Given a morphism(f,F) from (M1,5,P1) to (M2,$,P,) in GlobHypDef, then
this is also a morphism inGlobHypGreen and hence induces a homomor-
phism SYMPL f,F) : SYMPL(M1,S;,P1) — SYMPL(M,$,P,). As explained in
Remark[6.3D9, there is a corresponding extension homorismnpisOL(f,F) :
SOL(M1,S1,P1) — SOL(M3, S, P,). In other words, SOU ,F) is defined such that
the diagram

SYMPL(f,F)
SYMPL(My,Sy,Py)

~l

SOL(M1,5;,P1)

SYMPL(M2,S,P2) (6.10)

f, l
SoutH) SOL(M2,$,P,)

commutes. The vertical arrows are the vector space isoringhinduced be the
Green'’s propagatoKs; andGy, respectively.

Lemma 6.3.19 The vector space homomorphisBOL(f,F) : SOL(M1,S,P) —
SOL(M,, S, P,) preserves the scalar products, i.e., it is an isometricdinembedding
of pre-Hilbert spaces.

Proof. Without loss of generality we assume tifaandF are inclusions. Lek; be a
spacelike Cauchy hypersurfaceMi. Let ¢, yn € Cgx(M1,S;). Denote the extension
of @ by @ := SOL(f,F)(¢) and similarly fory;.

Let Ky ¢ My be a compact subset such that sigp ¢ JM2(K;) and suppy,) C
JMZ(Kl). We choose a compact submanifila: 2; with boundary such tha]f"'l(Kl) N

3; C K. SinceZ; is a Cauchy hypersurface My, JM1(K;) ¢ M (IM1(K;)NZy)
IML(K).

By Theoren{6.2]5 there is a spacelike Cauchy hypersuface M, containingK.
Sincez; is a Cauchy hypersurface bf (wherei = 1,2), itis met by every inextensible
causal curve [E30, Lemma 14.29]. Moreover, by definition Gfaaichy hypersurface,
Z; is achronal inVi;. Since it is also spacelikg; is even acausal [EB0, Lemma 14.42].
In particular, it is meexactly oncéoy every inextensible causal curveM;.

This impliesIM2(K;) c JM2(K) (see Figure below): namely, pigke JM2(K;) and a
causal curvey in M, from p to somek; € K;. Extendy to an inextensible causal curve
yYin M,. Theny meetsX, at some point,, becaus&; is a Cauchy hypersurface ii,.



158 CHAPTER 6. CLASSICAL AND QUANTUM FIELDS ON LORENTZIAN...

But ynM; is also an inextensible causal curveMi, hence it intersects; at a point
g1, which must lie inK by definition ofK. Because oK C 2, and the uniqueness of
the intersection point, one has = gs. In particular,p € IM2(K).

IM2(Ky) € IM2(K)

We conclude sujg) ¢ JM2(K). SinceK C 5, we have supp) N2, € M2 (K)N3,
andJM2(K)NZ, = K using the acausality &,. This shows sup@) NZ, = supg )N
>, and similarly for,. Now we get

(®242) = [ (10(0")-02.0) A= [ (iR (¥)- 1. ) dA= (00, 4n)
and the lemma is proved. O

The functoriality of SYMPL and diagrani (6.10) show that SGLai functor from
GlobHypDef to HILB, the category of complex pre-Hilbert spaces with isomditnic

ear embeddings. Composing with the functor CAR (see Selgiied), we obtain the
covariant functor

Aterm := CARo SOL : GlobHypDef — C*Alg.

The fermionic algebraSiem(M, S P) are actuallyZ,-graded algebras, see Proposi-

tion[6.5.5 [(iil).

Theorem 6.3.20The functorlserm, : GlobHypDef — C*Alg is a fermionic locally
covariant quantum field theory, i.e., the following axiordh

(i) (Quantum causality) Let (M;,S;,Pj) be objects inGlobHypDef, j = 1,2,3, and
(fj,Fj) morphisms from(M;,S;,Pj) to (M3, S3,Ps), j = 1,2, such that {(My)
and £ (My) are causally disjoint regions in y
Then the subalgebras  Qterm(f1, F1) (Rterm(M1,S1,P1)) and
Aterm( T2, F2) (Aterm(M2, S, P2)) of Aserm(Mz, Sz, P3) super-commu

1This means that the odd parts of the algebras anti-commuite thie even parts commute with every-
thing.




6.3. ALGEBRAS OF OBSERVABLES 159

(i) (Timediceaxiom)Let(M;,S;,P;) be objects irGlobHypDef, j=1,2, and(f,F)
a morphism from My, S, P1) to (M2, S, P,) such that there is a Cauchy hyper-
surfaceX C M; for which f(Z) is a Cauchy hypersurface of MThen

Aterm( T, F) : Qlferm(M17517 Pl) — Qlferm(MLSL PZ)
is an isomorphism.

Proof. To show [j), we assume without loss of generality thaandF; are inclusions.
Let @ € SOL(My,S;,P1) andy € SOL(M», S, P,). Denote the extensions M3 by
@ :=SOL(f1,F1) (@) andy, := SOL(f,, ) (7). Choose a compact submanifddg
(with boundary) in a spacelike Cauchy hypersurfacef M1 such that supfa ) N2 C

K1 and similarlyKs for (1. SinceM; andM are causally disjoint; UK> is acausal.
Hence, by Theorefn 6.2.5, there exists a Cauchy hypersuxfaeeMs containingKy
andKj. As in the proof of LemmB6.3.19 one sees that $gpp1 23 = supg @) N1
and similarly fory,. Thus, when restricted tB3, @ and g5, have disjoint support.
Hence(@, ) = 0. This shows that the subspaces $8LF;)(SOL(M1,S;,P1)) and
SOL(f,F)(SOL(M2, S, P)) of SOL(M3, S3,P3) are perpendicular. Definitidn 6.5.1
shows that the corresponding CAR-algebras must super-coeam

To seel(ii) we recall thatf, F) is also a morphism iGlobHypGreen and that we know
from Theoren{6.3.10 that SYMPRLE,F) is an isomorphism. From diagrarm (6110)
we see that SOlf, F) is an isomorphism. Hen®&em( f, F) is also an isomorphisml

Note 6.3.21Since causally disjoint regions should lead to commutirgpotables also
in the fermionic case, one usually considers only the eveh°(M,S P) (or a
subalgebra thereof) as the observable algebra while thal§ebraltem(M, S, P) is
called thefield algebra

There is a slightly different description of the functf.,n. Let HILBg denote the
category whose objects are the real pre-Hilbert spaces andevmorphisms are the
isometric linear embeddings. We have the functor REAILLB — HILBg which asso-
ciates to each complex pre-Hilbert spa¥e(-, -)) its underlying real pre-Hilbert space
(V,Re(-,-)). By Remark6.5.70,

Q[ferm == CARSdO REALO SOL.

Since the self-dual CAR-algebra of a real pre-Hilbert sgadbe Clifford algebra of
its complexification and since for any complex pre-Hilb@adseV we have

REAL(V)®r C =V @V,

Arerm(M,S,P) is also the Clifford algebra of SQM,SP) @ SOLM,SP)* =
SOL(M,Sa S*,P@ P*). This is the way this functor is often described in the physic
literature, see e.d. [EB9, p. 115f].

Self-dual CAR-representations are more natural for reldid.etM be globally hy-
perbolic and letS— M be areal vector bundle equipped with a real inner product
(-,-). Aformally skew-adjoirﬁ differential operatoP acting on sections dis called

of definite typef and only if for anyx € M and any future-directed timelike tangent
vectorn € TxM, the bilinear map

S(XS(%Rv ((07‘#)’_) <GF’(‘17)'(07‘-/-’>7

Zinstead of self-adjoint!
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yields a positive definite Euclidean scalar productSinAn example is given by the
real Dirac operator

m
D= gej-
=

acting on sections of the real spinor bungfev.

Given a smooth spacelike Cauchy hypersurface M with future-directed timelike
unit normal fieldn, we define a scalar product on SQI, S, P) = ker(P) NCge(M, S, P)
by

(@.4) = (00l 9. 4;,) dA.

With essentially the same proofs as before, one sees thatsttalar product
does not depend on the choice of Cauchy hypersurka@nd that a morphism
(f,F): (M1,5,P1) — (M2, S, P2) gives rise to an extension operator S®LF) :
SOL(M1,S;,P1) — SOL(M2,S,,P2) preserving the scalar product. We have con-
structed a functor

SOL : GlobHypSkewDef — HILBg

whereGlobHypSkewDef denotes the category whose objects are trifiésS P) with
M globally hyperbolic,S— M a real vector bundle with real inner product aRa
formally skew-adjoint, Green-hyperbolic differential@ptor of definite type acting
on sections o8. The morphisms are the same as before.

Now the functor

A4 := CARgg0 SOL : GlobHypSkewDef — C*Alg

is a locally covariant quantum field theory in the sense theofeni 6.3.20 holds with
term replaced by2(d

ferm*

6.4 States and quantum fields

In order to produce numbers out of our quantum field theoryy¢ha be compared to
experiments, we need states, in addition to observabledri&y recall the relation
between states and representations via the GNS-constiu¢tien we show how the
choice of a state gives rise to quantum fields aspbint functions.

6.4.1 States and representations

Recall that sstateon a unital C-algebraA is a linear functionat : A — C such that
(i) Tis positive,i.e.T(a*a) > 0forallacA;
(i) tisnormed,i.e.7(1)=1.

One checks that for any state the sesquilinear fBrmA — C, (a,b) — 1(b*a), is a
positive semi-definite Hermitian product afida)| < ||a|| for all a € A. In particular,
T is continuous.
Any state induces a representationrfoNamely, the sesquilinear form{b*a) induces
a scalar producto-- on A/{a € A| 1(a*a) = 0}. The Hilbert space completion of
A/{ae A| 1(a*a) = 0} is denoted bys#. The action ofA on .7 is induced by the
multiplication inA,

1 (a)[b] := [ablr,
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where[a]; denotes the residue class@f A in A/{a € A| t(a*a) = 0}. This rep-
resentation is known as th@NS-representatioiinduced byt. The residue class
Q: :=[1]; € 4 is called thevacuum vectarBy construction, it is a cyclic vector,
i.e., the orbitg (A) - Qr = A/{ac A| 1(a*a) = 0} is dense ins#.
The GNS-representation together with the vacuum vectawalto reconstruct the state
since

T(a) = 1(1*al) = soTg (a)Q:Q;. (6.11)

If we look at the vector staté : £ (#7) — C, T(8) = s08Q;Q, on the C-algebra
Z(74) of bounded linear operators o7, then [6.111) says that the diagram

T ()
(C/

commutes. One checks thity || < 1, seel[ER, p. 20]. In particularg : A — £ (7)

is continuous.

See e.g.[[E2, Sec. 1.4] ar [E9, Sec. 2.3] for details on statelsrepresentations of
C*-algebras.

A

6.4.2 Bosonic quantum field

Now let (M, S P) be an object inGlobHypGreen and 1 a state on the corresponding
bosonic algebr&l,os(M, S, P). Intuitively, the quantum field should be an operator-
valued distributiort on M such that

&®0 = w([f])

for all test sectionsf € CZ(M,S). Here [f] denotes the residue class in
SYMPL(M,S P) = CZ(M,S)/kerG andw : SYMPL(M, S P) — 2pes(M,S,P) is as
in Definition[€.5.11. This suggests the definition

. d
P(f) = T t:Ow(t[f]).
The problem is thatv is highly discontinuous so that this derivative does not enak
sense. This is where states and representations come atolai We call a state
T on Apog(M,S,P) regular if for each f € C(M,S) and eachh € . the map
t — 1 (w(t[f]))h is continuous. Theh — 75 (w(t[f])) is a strongly continuous one-
parameter unitary group for arfye CZ° (M, S) because

e (W((t+ 9)[])) = i (€S0 2wt [ F)w(s[f])) = 7w (wi(t[f])) 75 (w(s[f]).

Here we used Definitioh 6.5 {iv) and the fact thais skew-symmetric so that
w(t[f],9[f]) = 0. By Stone’s theoreni [E34, Thm. VII1.8] this one-paramejesup
has a unique infinitesimal generator, i.e., a self-adjgeherally unbounded operator
@ (f) on s such that

e — g (w(t[f])).

For allhin the domain ofb;(f) we have

@ (f)h=—i % . e (W(t[f])h.
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We call the operator-valued mdp— @ (f) thequantum fielc&corresponding ta.

Definition 6.4.1 A regular stater on2pos(M, S P) is calledstrongly regulaif

(i) there is a dense subspaéa C 77 contained in the domain ab(f) for any
feC(M,S);

(i) ®(f)(Zr) C Z; forany fe CZ(M,S);
(iii) the map @ (M,S) — %, f — ®(f)h, is continuous for every fixedch 2.

For a strongly regular statewe have for allf,g € CZ(M,S), a,B € R andh € 2;:

@c(af+Bgh=—i &| mwtlat+Bg)h
t=0
- i G - {eerreia 2 (w(ar 1)) e (w(ptlg] )
- % . m (w(at[f]))h—i % . e (w(Bt[g])h
= a®q(f)h+ fdr(g)h.

Henced;(f) depends linearly ori. The quantum fieldp; is therefore a distribution
on M with values in self-adjoint operators oi;.
Then-point functionsare defined by

Tn(froe. s fn) 1= 50Dr (f1) - Dp () Qe Qs
T(®(f1) - Pe(fn))

(04

an

I
~

d m(w(tn[fn]))))
th=0

- ”r(W(tl[fl]))> <—i at

= (7i)n m ety T (nT(W(tl[fl])) T nT(W(tn[fn])))
iy ﬁ Pl )
=i L Elf]-wl )

For a strongly regular statethe n-point functions are continuous separately in each
factor. By the Schwartz kernel theorem [EE23, Thm. 5.2.1]rtypwint functiont, ex-
tends uniquely to a distribution dd x --- x M (n times) in the following sense: Let
S'X-.-K S be the bundle oveM x --- x M whose fiber overxy,...,xn) is given

by §, ®---®$S,. Then there is a unique distribution & x --- x M in the bundle
S'X---X S, again denoted,, such that for alff; € CZ(M,S),

Tn(fl,...,fn) = Tn(fj_®® fn)
where(f1® -+ ® fn) (X1, ..., Xn) = f1(X1) ® - - @ fr(Xn)-

Theorem 6.4.2 Let (M, S P) be an object inGlobHypGreen and 1 a strongly regular
state on the corresponding bosonic algeBiigsM, S, P). Then
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(i) P®; =0and Pry(fq,..., fj_1,-, fj+1,..., fn) = O hold in the distributional sense
where f € CZ(M,S), k# |, are fixed;

(ii) the quantum field satisfies the canonical commutatidetiens, i.e.,
(@c().@(@lh=i [ (Gl.gav-h
forall f,ge CZ(M,S) and he Zr;
(i) the n-point functions satisfy the canonical commigatrelations, i.e.,

Tn+2(fl; RN fjfl7 fJ7 fj+l7 [EES) fn+2)
- Tn+2(f17 ceey fj*l; fj+17 va fj+27 LR fn+2)

=i [ (G )V Tl o fraze fore)
forall fy,..., for2 € CZ(M,S).

Proof. SinceP is formally self-adjointan@P f = 0 for any f € CZ°(M, S), we have for
anyh e 2;:

it P)h=—i 3| h=o.
t=0 ~~ dtfi_o

(POL)(f)h=®: (PO =i &

This showsP®d; = 0. The result for the-point functions follows and](i) is proved.
To show [[l) we observe that by Definitign 6.51 7] (iv) we havetioe one hand

w([f +g]) = U8 2w ([ f])w([g])
and on the other hand

w([f +g]) = 28 2w([g)w([]),

e w({F)wtlg) = 5w g ).
Thus
Sr(@r(an = | el wsh)h
— e, (e g )
- el e mgusgpwetn)

=iw([f],[g))h+ P (g)P:(f)h
=i/M<Gf,g)dv-h+¢r(9)¢r(f)h.

This showsl[{li). Assertiori{jii) follows frond{ii). d
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Note 6.4.3 As a consequence of the canonical commutation relationsetve g
[®(F), ()] =0

if the supports off andg are causally disjoint, i.e., if there is no causal curve from
supp f) to supgg). The reason is that in this case the supports bandg are disjoint.
A similar remark holds for the-point functions.

Note 6.4.4In the physics literature one also finds the statendg(ft) = ®(f)*. This
simply expresses the fact that we are dealing with a theoey the reals. We have
encoded this by considering real vector bundiesee Definitiod 6.3]1, and the fact
thatd, (f) is always self-adjoint.

6.4.3 Fermionic quantum fields

Let (M,S,P) be an object irGlobHypDef and lett be a state on the fermionic algebra
Aterm(M, S,P). For f € CZ(M, S) we put

o (f) = —m(aGf)),
i (f) = m(aGr)),

wherea is as in Definitio 6.5]1 (compare[E18, Sec. IlI.B, p. 148jncert, a, andG
are sequentially continuous (f@rsee [E4, Prop. 3.4.8]), so afie andd; . In contrast
to the bosonic case, no regularity assumptiorrds needed. Henc®; and®; are
distributions orM with values in the space of bounded operators#in Note thatd,
is linear whiled; is anti-linear.

Theorem 6.4.5Let (M, S P) be an object inGlobHypDef and T a state on the corre-
sponding fermionic algebrése;m(M, S, P). Then

(i) P®; =Pd; = 0holds in the distributional sense;

(i) the quantum fields satisfy the canonical anti-commiatatelations, i.e.,
{@c(f),@c(9)} = {®7(f),Pr(9)} =0,
(@(1).07 @} = i( [ ©Gl.gav)-idy

forall f,ge CZ(M,S).

Proof: SinceGP = 0 onC? (M, S), we haveP®(f) = ®;(Pf) = - (a(GPf)*) =0
and similarly for®; . This proves assertiof (i).
Using Definitior 6.5.11[{li) we compute

{®:(f), @2 (9)} = {rx(a(Gf)"), m(a(GY)") }
= m({a(Gf)",a(Gg)"})
= m({a(Gg),a(Gf)}")
=0.
Similarly one see$®; (f),®; (g)} = 0. Definition[6.5.1L[(iii) also yields

{@c(1),®7(9)} = —m({a(GT)",a(Gg)}) = —(Gf,Gg) -id .



6.4. STATES AND QUANTUM FIELDS 165

To prove assertior{ii) we have to verify

(Gf,Gg) = —i / (Gf,g)dV (6.12)
IM
Let 2 ¢ M be a smooth spacelike Cauchy hypersurface. Since(8um) is past-
compact, we can find a Cauchy hypersurfate M in the past o which does not
intersect sup{G. g) C JY(supgg)). Denote the region betweghand’ by Q. The
Green'’s formula[(619) yields

(61.6.9) = [ (ioa(n) - G1,G.g)dA

= /;/<i0P(nb)'Gf7G+9>dA+i/Q/(<PGf,G+g)—(Gf,PG+g>)dV
:—i/Q/<Gf,g>dV

becausePG.g =g andPGf = 0. SinceZ’ can be chosen arbitrarily to the past, this
shows

(Gf,G+g):—i/ (Gf,g)dV. (6.13)
1(3)
A similar computation yields
(Gf,G_g) =i / (Gf,g)dV. (6.14)
JI1(3)

Subtracting[(6.74) froni{6.13) yields(6]112) and conclutiesproof of assertiof {ii}]

Note 6.4.6 Similarly to the bosonic case, we find
{®:(f),®7(9)} =0
if the supports off andg are causally disjoint.

Note 6.4.7 Using the anti-commutation relations in Theorem 8.415 (iig computa-
tion of n-point functions can be reduced to those of the form

Tnw(fe, .o o010, 00) = (Qr, ®r(fr) - Pr(fa)PF(91) - PF () Q1)1

As in the bosonic case, threpoint functions satisfy the field equation in the distribu-
tional sense in each argument and extend to distributiog gn-- x M.

If one uses the self-dual fermionic alget§d (M, S P) instead of2lerm(M, S, P),
then one gets the quantum field

Wi (f) := 1 (b(Gf))
whereb is as in Definitio 6.5]6. Then the analogue to Thedrem bs#4.5 i

Theorem 6.4.8 Let (M,S,P) be an object inGlobHypSkewDef and 7 a state on the
corresponding self-dual fermionic algeb?gd (M, S,P). Then

(i) P¥Y; =0holds in the distributional sense;
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(i) the quantum field takes values in self-adjoint operat8t; (f) = W (f)* for all
feCM,S);

(i) the quantum fields satisfy the canonical anti-comntiotarelations, i.e.,

{Wi(1),Wr(@)} = [ (GT.g)aV-idx,
forall f,ge CZ(M,S).

Note 6.4.91t is interesting to compare the concept of locally covariguantum field
theories as proposed in_[E11] to the axiomatic approach emigun field theory
on Minkowski space based on the Garding-Wightman axiomexa®sed in[[E35,
Sec. 1X.8]. Property 1 (relativistic invariance of statasid Property 6 (Poincaré in-
variance of the field) in([ES5] are replaced by functorialitpvariance). Property 4
(invariant domain for fields) and Property 5 (regularity loé field) have been encoded
in strong regularity of the state used to define the quantulah ifiilethe bosonic case
and are automatic in the fermionic case. Property 7 (locairoatativity or micro-
scopic causality) is contained in Theoredms 8.4.2[andI6R¥&perty 3 (existence and
uniqueness of the vacuum) has no analogue and is replacdt bidiceof a state.
Property 8 (cyclicity of the vacuum) is then automatic by ¢femeral properties of the
GNS-construction.

There remains one axiom, Property 2 (spectral conditiohicwe have not discussed
at all. It gets replaced by the Hadamard condition on the sabsen. It was observed
by Radzikowski[[E3PR] that earlier formulations of this ca@h are equivalent to a
condition on the wave front set of the 2-point function. Mwebrk has been put into
constructing and investigating Hadamard states for varexamples of fields, see e.g.
[E15,[E16] E18, E25, E3B, ER7, E38, E42] and the referenessith

6.5 Algebras of canonical (anti-) commutation relations

We collect the necessary algebraic facts about CAR and Qgébiaas.

6.5.1 CAR algebras

The symbol “CAR” stands for “canonical anti-commutatiotateons”. These algebras
are related to pre-Hilbert spaces. We always assume theitisrimner product-,-)
to be linear in the first argument and anti-linear in the sdcon

Definition 6.5.1 A CAR-representationf a complex pre-Hilbert spac@/,(-,-)) is
a pair (a,A), where A is a unital Galgebra anda:V — A is an anti-linear map
satisfying:

(i) A=C*(aVv)),
(i) {a(v1),a(v2)} =0and
(i) {a(vi)*,a(v2)} = (vi,v2) 1,

forallvi,v, e V.
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We want to discuss CAR-representations in terms of0fford algebras, whose def-
inition we recall. Given a complex pre-Hilbert vector spdve(-,-)), we denote by
Ve :=V ®g C the complexification oV considered as a real vector space andiby
the complex-bilinear extension ofe(-,-) to Vc. Let Clyg(Vc,qc) be the algebraic
Clifford algebra of(V¢, qc). Itis an associative complex algebra with unit and contains
Vc as a vector subspace. Its multiplication is called Cliffordltiplication and denoted
by “-”. It satisfies the Clifford relations

V-W+W-v=—2qc(v,w)1 (6.15)

for all vyw € V. Define thex-operator on Glg(Vc,qc) to be the unique anti-
multiplicative and anti-linear extension of the anti-lamemapVe — V¢, vi +ive —
—(vi1+1ivp) = —(v1 —ivp) for all vy, v» € V. In other words,

*( Z ai]_ ..... |kZ|12.k):(71)k Z mz'—kz'_l

i1<...<ik i1<...<ik
forallke N andz,...,z, € Vc. Let| - ||~ be defined by

alle = sup (|[m(a)]])
neRepV)
for everya € Clag(Vc,qc), where RepV) denotes the set of all (isomorphism classes
of) x-homomorphisms from G(Vc,qc) to C*-algebras. Thef} - || can be shown to
be a well-defined Gnorm on Chiy(Vc,0c), see e.gl[E31, Sec. 1.2].

Definition 6.5.2 The C-Clifford algebra of a pre-Hilbert spacéV,(-,-)) is the C-
completion ofClyg(Ve,dc) with respect to the Gnorm || - || and the star operator
defined above.

Theorem 6.5.3 For every complex pre-Hilbert spa¢¥, (-, -)), the C-Clifford algebra
Cl(Vc,qc) provides aCAR-representation ofV, (-, -)) viaa(v) = 1(v+iJv), where J
is the complex structure of V. R
Moreover,CAR-representations have the following universal propertgt A be any
unital C*-algebra anda: vV — A be any anti-linear map satisfying Axiorfi and (i)
of Definition[6.5.1.. Then there exists a uniquer@orphisma : Cl(V¢,qc) — A such
that

V——=A

7
a

Cl(Ve,qc)
commutes. Furthermore, is injective.

Proof. Defineps : V — Cl(Vc,dc) by p-(v) := %(v+i\]v) andp4(v) := %(vf iJv).

Sincep_(Jv) = —ip_(v), the mapa = p_ is anti-linear. Because af(v) —a(v)* =
p—(v) + p+(v) = v, the C-subalgebra of QV¢,qc) generated by the image afcon-
tainsV. Hencea(V) generates QV/¢, qc) as a C-algebra. Axiom({i) in Definition 6.5]1
is proved.
Letvy,vp €V, then

{a(vi),a(vz)} = p-(va)-p-(v2)+ p-(v2)-p-(V1)

= —2qc(p-(v1),p-(v2))-1

= O,
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which is Axiom [ii) in Definition[6.5.1. Furthermore,

{a(vi)%a(v2)} = —ps(va) - p-(v2) — p—(v2) - p+(va)
= 20c(ps(va),p-(v2))-1
= Re(vy,V2) - 1+iRe(vy,Iwn) -1
= (V]_,Vz) ' 17

which shows Axiom [(fii) in Definition[6.5]1. Thereforg, Cl(Vc,qc)) is a CAR-
representation ofV, (-,-)).

The second part of the theorem follows from(\&l,qc) being simple, i.e., from
the non-existence of non-trivial closed two-sideeinvariant ideals, seel [E31,
Thm. 1.2.2]. Leta:V — A be any other anti-linear map satisfyirlg (i) andl (iii) in
Definition [6.5.1. Sincea and a are injective (which is clear by Axionijii)) one
may seta(a(v)) :=a(v) for all v.e V. Axioms (ii) and [iii) allow us to extendx

to a C-morphismd : C*(a(V)) = Cl(V¢,qc) — A. The injectivity ofa implies the
non-triviality of a which, together with the simplicity of QV¢,qc), provides the
injectivity of a. Therefore we found an injective*@norphisma : Cl(V¢,qc) — A
with @ ca=a. It is unigue since it is determined layanda on a subset of generators.
This concludes the proof of Theorém 615.3. O

For an alternative description of the CAR-representaticieims of creation and anni-
hilation operators on the fermionic Fock space we refer & frop. 5.2.2].

Corollary 6.5.4 For every complex pre-Hilbert spaq¥, (-,-)) there exists e&CAR-
representation ofV, (-,-)), unique up to C-isomorphism.

Proof The existence has already been proved in Thedreml 6.5.3(3.&} be any

CAR-representation ofV,(-,-)). Theorem[6.5]3 states the existence of a unique
injective C'-morphisma : Cl(V¢,qc) — A such thata oa=a. Now a has to be

-~

surjective since Axioni{i) holds fai@, A). O

From now on, given a complex pre-Hilbert spatg(-,-)), we denote the Galgebra
Cl(Vg,qc) associated with the CAR-representatiCl(Vc,qc)) of (V,(-,-)) by
CAR(V,(-,-)). We list the properties of CAR-representations which atevent for
guantization, see alsp [E9, Vol. Il, Thm. 5.2.5, p. 15].

Proposition 6.5.5 Let(V, (-,-)) be a complex pre-Hilbert space at@ CAR(V, (-,-)))
its CAR-representation.

(i) For every veV one hadla(v)|| = |v| = (v,v)%, where|| - || denotes the Gnorm
onCAR(V,(-,-)).

(i) The C-algebraCAR(V,(-,-)) is simple, i.e., it has no closed two-sideddeals
other than{0} and the algebra itself.

(iii) The algebraCAR(V,(-,)) is Z,-graded,
CAR(V, (-,-)) = CAR®®V, (-, .)) & CARY(V, (-,.)),

anda(V) c CAR(V, (., .)).
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(iv) Let f:V — V' be an isometric linear embedding, whel', (-,-)’) is another
complex pre-Hilbert space. Then there exists a unique tingdC-morphism
CAR(f) : CAR(V,(+,-)) = CAR(V’,(-,-)’) such that

f

\% A
CARWY, (-, ) — 2D CARVY, (-,-))
commutes.
Proof. We show assertiofl (i) . On the one hand, tHep@operty of the nornjj - || implies
laW)|* = flav)am)*|?
= [Iawaw) ).
On the other hand,

(aWjav))? = av{av)".av)}awv)’

vI*a(va(v)’,
where we used(v)? = 0 which follows from the second axiom. We deduce that
I* = V- Jlajav)|
= M law)*

la(v)

Sincea s injective, we obtain the result.

Assertion [(ii) follows from C{V¢,qc) being simple, seé [EB1, Thm. 1.2.2]. Alterna-
tively, it can be deduced from the universal property forated in Theorem 6.5.3.

To see((ill) we recall that the Clifford algebra (@}, qc) has aZ,-grading where the
even part is generated by products of an even number of geictd and, similarly,
the odd part is the vector space span of products of an odd enofitvectors inve,
see[[E3L, p. 27]. This is compatible with the Clifford retats [6.15). Clearlya(V) C
CARCY (- ).

It remains to show[{iv). It is straightforward to check tlab f satisfies AxiomsL[{li)
and [ii) in Definition[6.5.1.. The result follows from Theonds.5.3. O

One easily sees that CAR) = id and that CARf’ o f) = CAR(f’) o CAR(f) for all

. - o f ! .
isometric linear embeddings— V' — V". Therefore we have constructed a covariant
functor

CAR :HILB — C*Alg,

whereHILB denotes the category whose objects are the complex preft#paces
and whose morphisms are the isometric linear embeddings.
Forreal pre-Hilbert spaces there is the concepself-dualCAR-representations.

Definition 6.5.6 A self-dual CAR-representatiaf a real pre-Hilbert spacéV, (-,-))
is a pair (b,A), where A is a unital Galgebra andb : V — A is anR-linear map
satisfying:

(i) A=C*(b(V)),
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(i) b(v) =b(v)* and
(III) {b(Vl),b(Vz)} = (Vj_,Vz) . 1,

forallv,vi,vo € V.

Given a self-dual CAR-representation, one can extenad a C-linear map from the
complexificationVc to A. This extensiorb : Vo — A then satisfieb(v) = b(v)* and
{b(v1),b(v2)} = (v1,V2) - 1 for all v,v1,v» € V. These are the axioms of a self-dual
CAR-representation as in [E1, p. 386].

Theorem 6.5.7 For every real pre-Hilbert spacgV,(-,-)), the C-Clifford algebra

Cl(Vc,qc) provides a self-duaCAR-representation ofV, (-,-)) viab(v) = ﬁv.

Moreover, self-duaCAR-representations have the following universal properigt A
be any unital C-algebra andb : V — A be anyR-linear map satisfying Axion(@) and

(i) of Definition[6.5.6. Then there exists a unlquér@orphlsm[? Cl(Ve,qc) — A
such that

~

V———A

. 7

Cl(Vc,qc)

commutes. Furthermoré, is injective.

Corollary 6.5.8 For every real pre-Hilbert spacdV,(-,-)) there exists aCAR-
representation ofV, (-,-)), unique up to C-isomorphism.

From now on, given a real pre-Hilbert spafé (-,-)), we denote the Galgebra
Cl(Vc,qc) associated with the self-dual CAR-representatidnCl(Vc,qc)) of
(V7 ( ) )) by CARSd(Va ( ’ ))

Proposition 6.5.9 Let (V, (-,-)) be a real pre-Hilbert space anth, CARs4(V, (-,-)))
its self-dualCAR-representation.

(i) For every ve V one has|b(v)| = %2|v|, where|| - || denotes the Gnorm on
CARg4(V, (+,-)).

(i) The C*-algebraCARsy(V, (-,-)) is simple.
(iii) The algebraCARgy(V, (-, -)) is Zp-graded,
CARgq(V, (-,-)) = CARZRENV, (-,-)) & CARYV, (-, ),
andb(V) c CAR{4(V, (- ,-)).

(iv) Let f:V —V’be anisometric linear embedding, whe¢¥&, (-,-)’) is another real
pre-Hilbert space. Then there exists a unique injectiver@rphismCARsq(f) :
CARsy(V, (+,-)) = CARgy(V/, (+,-)") such that

f

V/

lb I
CARSd( )

CARsq(V, (+,-)) ——————— CARsq(V/, (-,-)")

commutes.
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The proofs are similar to the ones for CAR-representatidnsomplex pre-Hilbert
spaces. We have constructed a functor

CARgq: HILBg —> C*Alg,

whereHILBg denotes the category whose objects are the real pre-Hipades and
whose morphisms are the isometric linear embeddings.

Note 6.5.10Let (V,(-,-)) be a complex pre-Hilbert space. If we consitfeas a real
vector space, then we have the real pre-Hilbert sféc®e(-,-)). For the correspond-
ing CAR-representations we have

CAR(V, (-,-)) = CARsq(V, %e(-,-)) = Cl(Ve:, dc)

and

b(v) = —=(alv) —a(v)").

V2
6.5.2 CCR algebras

In this section, we recall the construction of the represtion of any (real) symplectic
vector space by the so-called canonical commutation osist{CCR). Proofs can be
foundin [E4, Sec. 4.2].

Definition 6.5.11 A CCR-representatioof a symplectic vector spac¥, w) is a pair
(w,A), where A is a unital G-algebra and w is a map V-~ A satisfying:

() A=C (W(V)),
(i) w(0)=1,

(i) w(—¢@) =w(@)",

(V) W(@+y) =¥ 2w(g) W(y),
forall g, €V.

The mapw is in general neither linear, nor any kind of group homoméwh nor
continuous([E4, Prop. 4.2.3].

Example 6.5.12Given any symplectic vector spafé w), consider the Hilbert space
H :=L?(V,C), whereV is endowed with the counting measure. Define the mépm
V into the spaceZ’(H) of bounded endomorphisms kfby

(W(Q)F) (i) == &®OV/2E (g + ),

for all o, €V andF € H. It is well-known that.#(H) is a C-algebra with the
operator norm as ‘Cnorm, and that the map satisfies the Axiomg{ii)E(iv) from Def-
inition [6.5.11, see e.gl [E4, Ex. 4.2.2]. Hence settig= C*(w(V)), the pair(w,A)
provides a CCR-representation(®f, w).

This is essentially the only example of CCR-representation
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Theorem 6.5.13Let (V, w) be a symplectic vector space afil ﬂ) be a pair satisfy-
ing the Axiomg(ii)-(iv) of Definition[6.5.11. Then there exists a uniguer@orphism
@ : A— A such thaid o w = W, where(w,A) is the CCR-representation from Exam-
ple[6.5.12. Moreovesp is injective.

In particular, (V, w) has aCCR-representation, unique up ta*@somorphism.

We denote the Galgebra associated to the CCR-representatidiv.ab) from Exam-
ple[6.5.12 by CCRV, w). As a consequence of Theorém 6.5.13, we obtain the follow-
ing important corollary.

Corollary 6.5.14 Let (V,w) be a symplectic vector space aifd, CCRV,w)) its
CCR-representation.

(i) The C-algebraCCR(V,w) is simple, i.e., it has no closed two-sideddeals
other than{0} and the algebra itself.

(i) Let(V’,«') be another symplectic vector space and/f— V' a symplectic linear
map. Then there exists a unique injectiver@orphismCCR(f) : CCR(V, w) —
CCR(V', ') such that

\% \A

| o
CCRV, w) —=0__ cerRV/, o)

commutes.

Obviously CCRid) = id and CCRf’o f) = CCR(f’) o CCR(f) for all symplectic

. f ! .
linear mapd/ — V' — V", so that we have constructed a covariant functor

CCR :Sympl — C*Alg.
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