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Chapter 1

Summary

1.1 Introduction

Though not obvious at first sight, this habilitation thesis deals with the interplay bet-
weenanalysison andgeometryof smooth manifolds. More precisely, we address the
following questions:

1. What geometric properties can be extracted from particular differential operators
on a given manifold?

2. How to use analysis to find “good” metrics on a given manifold?

3. How to “encode” manifolds carrying solutions of geometric partial differential
equations in a physically pertinent way?

Analysis of partial differential equations and geometry ofmanifolds have each enjoyed
a long and rich evolution for the last hundred and fifty years.However, it is only about
fifty years ago that both disciplins started to interact in a systematic and efficient way.
One of the oldest and most famous successes of this collaboration is probably the
Yamabe problem, concerned with thea priori purely geometric question of finding
metrics with constant scalar curvature in any conformal class of Riemannian metrics
on compact manifolds. Along with minimal surface theory, the Yamabe problem gave
birth to a new field of research nowadays calledgeometric analysis, which has proven
extremely fruitful over the years with the resolution of theCalabi and the Poincaré
conjectures, just to name a few.

A mathematical domain where the meeting of both analysis andgeometry becomes
particularly interesting isspectral geometry. Originally developed to study the spec-
trum of the scalar Laplace operator on Riemannian manifolds, it has exhibited many
fine and unsuspected features in Riemannian geometry. On theone hand, the geometry
of the manifold influences its spectrum: for instance, a compact Riemannian manifold
(Mn,g) with Ricci curvature satisfying Ric≥ (n− 1)k · g for a positivek ∈ R has a
gap of width at leastnk between 0 and the first positive Laplace eigenvalue [43]. On
the other hand, the spectrum tells a lot on the geometry of theunderlying manifold:
for instance, if the above gapcoincideswith nk (for k > 0), then actually(Mn,g) is a
round sphere [43, 52].

7



8 CHAPTER 1. SUMMARY

More recently, another differential operator has attracted the attention ofa priori
unrelated communities: theDirac operator. Introduced in the thirties by physicist Paul
Dirac and long ignored by the mathematicians (with the notable exception of André
Lichnerowicz, see e.g. [44]), this first order operator madea spectacular appearance
on different stages of mathematics and physics from the end of the seventies on, with
(among others) Gromov and Lawson’s index-theoretical obstructions to metrics with
positive scalar curvature or Edward Witten’s proof of the positive mass theorem. In
parallel, the spectral theory of the Dirac operator underwent a drastic evolution with
e.g. the first sharp lower bound for the Dirac eigenvalues established by Thomas
Friedrich [23] in terms of scalar curvature (see Section 1.3.1 below). One of the major
gains from the spectral theory of the Dirac operator when compared to the scalar
Laplacian is that many more geometries can be characterisedwith Dirac eigenvalues
than with Laplace ones: the equality case in Thomas Friedrich’s estimate is equivalent
to the existence of so-calledreal Killing spinors, which are in turn characterised purely
in terms ofholonomy[59, 7]. Incidentally, real Killing spinors in dimension 6 turn out
to be an essential ingredient in string theory.

Roughly ten years ago, spectral theory of the Dirac operatorreceived a new powerful
input with the investigation of geometry ofsubmanifolds. For there is surprisingly
a lot to read off the Dirac spectrum of submanifolds. As an example, the study of
the limiting-case of a certain lower bound for Dirac eigenvalues of manifolds with
boundary leads to a straightforward proof [37] of the (a priori unrelated) Alexandroff’s
theorem, which states that the only embedded compact hypersurfaces with constant
mean curvature in Euclidean space are the round spheres. In another context, new
index-theoretical obstructions to the existence of Lagrangian embeddings have been
discovered [36].

It is along this line that we answer the first question at the beginning. More precisely,
we investigate finer interactions between the spectrum of various Dirac-type operators
and the geometry of the underlying manifold. This is the object of Sections 1.2 and 1.3
below, where we consider manifolds immersed in real or complex spaceforms. Section
1.4, which deals with a purely geometric issue, focusses on apartial differential
equation arising in Dirac eigenvalue estimates on Kähler manifolds.

The framework for our second question deals with the search for “beautiful” metrics
on pseudo-Riemannian manifolds. In Lorentzian signature,there has been a lot of
effort in understanding vacuumEinstein’s equations, which ask for the existence of a
Ricci-flatmetric on spacetime built out of initial data along a spacelike hypersurface.
In Section 1.5, we weaken the Einstein condition and ask for constant scalar curvature
in an arbitrary conformal class: this is the afore-mentioned Yamabe problem, but for
Lorentzian metrics. We start by investigating the existence of such metrics on standard
static spacetimes with the use of elementary analytical methods. We emphasize that
there is still a lot to do to fully understand the general caseand that probably more
geometry is needed to go further on.

Our third and last question deals with different physical interpretations of solutions
to geometric partial differential equations. It is not directly related to the first two
ones, even if it is based on the existence and uniqueness of those solutions, which
both deeply combine analysis and geometry. The fundamentalconcept developed in
Section 1.6 is that of (locally covariant)quantum field theory, which is also a quickly
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developing topic.

The presentation is organized as follows. The different pieces of work are summarised
in the sections below, whereas their original (and possiblypublished) version is
contained in the next chapters.

Before turning to the core of the thesis, we introduce a bit ofnotations and concepts
used throughout this chapter. The first central concept is that of Dirac-type operator.
Loosely speaking, a Dirac-type operator on a pseudo-Riemannian manifold is a first or-
der linear differential operator acting on the sections of some vector bundle and whose
principal symbol satisfies the so-calledClifford relations:

X ·Y ·+Y ·X·=−2g(X,Y),

for all tangent (co)vectorsX,Y and whereg is the metric on the underlying manifold.
In the particular case where the manifold isspin, which is an orientability condition of
second order, one can define the concept oftwistedDirac operator in a more precise
way as follows. Given a spin structure onM, which is a non-trivial two-fold covering
of the oriented frame bundle of the manifold, there is a Hermitian complex vector bun-
dle ΣM → M, called thespinor bundle, on which the tangent bundle of the manifold
acts byClifford multiplication, meaning that there exists a vector bundle homomor-
phismT∗M⊗ΣM → ΣM, X♭⊗ϕ → X ·ϕ , with X · (Y ·ϕ)+Y · (X ·ϕ) =−2g(X,Y)ϕ .
This vector bundle carries a natural metric connection – often called the spinorial Levi-
Civita connection – preserving Clifford multiplication. Given any Riemannian or Her-
mitian vector bundle with metric connectionE → M, the tensor productΣM⊗E → M
can be formed which carries a natural Hermitian metric and metric connection denoted
by ∇ΣM⊗E. The Dirac operatorDE

M of M twisted byE (in short twisted Dirac operator)
is then defined as the composition of Clifford multiplication and connection: given any
sectionϕ of ΣM⊗E, we have

DE
Mϕ := iq

n

∑
j=1

(ε jej ·⊗Id)∇ΣM⊗E
ej

ϕ ,

where(ej)1≤ j≤n is a local orthonormal basis ofTM andq is the index of the metricg.
The operatorDE

M is a formally self-adjoint linear differential operator offirst order on
the Hermitian vector bundleΣM ⊗E → M. In the particular case whereE → M is a
trivial line bundle and the connection is the standard flat one, one obtains the so-called
spin(also called fundamental) Dirac operatorDM, acting on sections ofΣM.

In the setting of Lorentzian manifolds, we use the following(standard) notations for
the following notions. Given a Lorentzian metricg on a manifoldM, we call a tangent
(co)vectorX timelike if g(X,X) < 0, lightlike if g(X,X) = 0 andX 6= 0, andspace-
like otherwise. Acausalvector is a vector which is either time- or lightlike. All those
concepts carry out to curves and vector fields. Atime orientationon M – if it exists –
is fixed by a (smooth) timelike vector fieldX on M: at each pointx of M, the causal
future (resp. past) in the tangent spaceTxM is the set of causal vectors lying in the same
(resp. opposite) connected component of the set of causal vectors asXx. Time-oriented
Lorentzian manifolds are often referred to asspacetimes. On a spacetime, the causal
(resp. chronological) future of a subsetA⊂M can be defined as the subsetJM

+ (A) (resp.
IM
+ (A)) of all points inM that can be joined by a future-directed causal (resp. timelike)

curve from (some point in)A. Correspondingly, there is the notion of causal (resp.
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chronological) pastJM
− (A) (resp.IM

− (A)) of A in M. One should pay attention that those
subsets not only depend onA but also onM.

1.2 Dirac operators on homogeneous spaces

The results presented in this section are based on the article [29], see Chapter 2 below.

1.2.1 Motivation

This work deals withsharpextrinsic Dirac eigenvalue estimates for hypersurfaces in

real spaceforms. Namely, letMn ι→֒ M̃n+1(κ) be an isometric immersion of an oriented
closed Riemannian manifold(Mn,g) into the simply-connected spaceform̃Mn+1(κ) of
constant sectional curvatureκ ∈R. Then the existence of a global smooth unit normal
ν onMn compatible with orientations ofMn andM̃n+1(κ) makes it possible to restrict
the (canonical) spin structure of̃Mn+1(κ) to a spin structure onMn. If H :=− 1

ntr(∇̃ν)
is the mean curvature of the immersionι w.r.t. ν on Mn, then the smallest eigenvalue
λ1(D2

M) of the squared Dirac operatorD2
M of (Mn,g) (for the restricted spin structure)

is known to satisfy

λ1(D
2
M)≤





n2

4Vol(M,g)

∫
M(H2+κ)dvg if κ ≥ 0 [9, Thm. 4.1]

n2

4

(
max

M
(H2)+κ

)
if κ < 0 [25, Thm. 2.2] & [26, Thm. 1].

In other words, the smallest eigenvalue of the intrinsically defined Dirac operator
can bea priori controlled by a relatively weak extrinsic geometric invariant, namely
the mean curvature of the immersion. Those estimates rely ona clever application
of the min-max principle. Surprisingly enough, determining for which immersed
hypersurface the inequality above is an equality – this is the limiting-caseof the
inequality – turns out to be a difficult question. It is elementary to show that, if
the equality holds, then the mean curvatureH must be constant onM. A direct
computation shows that round hyperspheres fulfil the equality whateverκ is. For
κ = 0, it was shown only recently using a variational formula forDirac eigenvalues
that, apart from round hyperspheres, no hypersurface can satisfy the limiting-case
[38, Thm. 1]. In caseκ = 1, there is a one-parameter-family of so-called generalized
Clifford tori in the sphere also enjoying this property [27]. But besides those two
families, no other example was known. This led to the following question:

Question 1: How large is the family of (constant mean curvature) hypersurfacesMn in
the round sphereSn+1 for whichλ1(D2

M) = n2

4 (H
2+1) holds?

It is reasonable to start looking athomogeneoushypersurfaces, whose Dirac spectrum
can be hoped to be computed using representation theoretical tools. In [29], we con-
sidered the spaceM3 := SU2/Q8, which is the simplest homogeneous hypersurface
in the sphere which is neither a hypersphere nor a generalized Clifford torus, see
e.g. [A6] for the classification of homogeneous hypersurfaces in spaceforms. Here
Q8 := {±1,±i,± j,±k} denotes the finite group of quaternions. The spaceM3 ad-
mits a three-parameter-family of homogeneous Riemannian metrics, a one-parameter-
subfamily of which arises as induced from (a one-parameter-family of) embeddings
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into S4. Here one should pay attention to the fact thatM3 carries no less than four dif-
ferent spin structures – each corresponding to a group homomorphism Q8 → {±1} –
but that only one of those is induced from the above embeddings intoS4, see [29, Sec.
1 & 2] for details.

1.2.2 Main results

Considering any of the homogeneous metrics and spin structures mentioned above,
Frobenius reciprocity allows to split (under theG-action) the Hilbert space ofL2-spinor
fields onM3 into a Hilbert direct sum of finite-dimensional subspaces, each of which
is preserved by the Dirac operator, see e.g. [6, Thm. 2 & Prop.1]. Furthermore, a
formula involving solely representation-theoretical data gives the explicit form the
endomorphism induced by the Dirac operator on each of those subspaces. Therefore
the determination of the Dirac spectrum reduces to that of the eigenvalues ofmatrices.

The finite-dimensional Dirac operators for arbitrary homogeneous metrics and spin
structures are computed in [29, Thm. 0.1] and we shall not reproduce this result here
since the general form of the matrices we obtain is particularly involved. Let us mention
however that, even if we can choose adequate bases such as to obtain upper triangu-
lar matrices, we cannot compute their spectrum explicitly in general. Still there is a
two-parameter-subfamily of metrics – precisely those induced by the so-calledBerger
metricsonS3 ∼= SU2, up to scaling by a positive constant – where the eigenvaluescan
be explicitly expressed. This is the first main result we present here:

Theorem 1.2.1 ([29, Cor. 0.2])The compact3-dimensional manifold M3 = SU2/Q8
carries a two-parameter family of homogeneous Riemannian metrics (indexed by
a1,a2 ∈ R×) such that its Dirac spectrum can be computed for any of its four spin
structures (indexed byε j , j = 0, . . . ,3). More precisely, the spectrum of the operator

DM +
2a2

1+a2
2

2a1
Id for the metric induced by a1,a2 and the spin structure given byε j con-

sists of the following family of eigenvalues:

0. for j = 0,

⋃

n∈N
n≡1(4)

{
a1±

√
(n−2k−1)2a2

1+4(n− k)(k+1)a2
2

|k∈ {0, . . . ,
n−5

2
} even,a1+(n+1)a2

}

⋃ ⋃

n∈N
n≡3(4)

{
a1±

√
(n−2k−1)2a2

1+4(n− k)(k+1)a2
2

|k∈ {1, . . . ,
n−5

2
} odd,a1− (n+1)a2,−na1

}
,

each eigenvalue having multiplicity n+1 for the corresponding n.
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1. for j = 1,

⋃

n∈N
n≡1(4)

{
a1±

√
(n−2k−1)2a2

1+4(n− k)(k+1)a2
2

|k∈ {0, . . . ,
n−5

2
} even,a1− (n+1)a2

}

⋃ ⋃

n∈N
n≡3(4)

{
a1±

√
(n−2k−1)2a2

1+4(n− k)(k+1)a2
2

|k∈ {1, . . . ,
n−5

2
} odd,a1+(n+1)a2,−na1

}
,

each eigenvalue having multiplicity n+1 for the corresponding n.

2. for j = 2 and j= 3,

⋃

n∈N
n≡1(4)

{
a1±

√
(n−2k−1)2a2

1+4(n− k)(k+1)a2
2

|k∈ {1, . . . ,
n−3

2
} odd,−na1

}

⋃ ⋃

n∈N
n≡3(4)

{
a1±

√
(n−2k−1)2a2

1+4(n− k)(k+1)a2
2

|k∈ {0, . . . ,
n−3

2
} even

}
,

each eigenvalue having multiplicity n+1 for the corresponding n.

Each upper bound (e.g.n−5
2 ) for the possible values ofk in Theorem 1.2.1 must

be understood as follows: if for a givenn it is negative then the corresponding
eigenvalues do not appear. For example ifM carries theε0-spin structure andn = 1

thenDn +
2a2

1+a2
2

2a1
Id has only one eigenvalue, namelya1 + 2a2 (with multiplicity 2).

Similarly, if j = 2,3 andn= 1, then only−a1 appears with multiplicity 2.

In the particular case ofround metrics onM3, which corresponds toa1 = a2, our
results coincide with those already proven by Christian Bär [8, Thm. 2] using another
method.

Coming back to Question 1, it turns out that the family of Berger metrics onM3 does
not coincide with that of metrics induced fromS4 but is transverse to it. Both families
intersect in exactly six points which correspond to theminimalembeddings among the
family. For those embeddings, the spaceM3 satisfies the limiting-case from Question
1:

Theorem 1.2.2 ([29, Cor. 0.3])Let M3 = SU2/Q8 carry a homogeneous Riemannian
metric induced by a minimal embedding intoS4. Then, for the induced spin structure
(which is theε0-one), we haveλ1(D2

M) = 9
4.
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1.2.3 Perspectives

Theorem 1.2.2 tends to indicate that the family of constant mean curvature hypersur-
faces inSn+1 for whichλ1(D2

M) = n2

4 (H
2+1) holds could contain all homogeneous hy-

persurfaces. This would show an interesting analogy with the scalar Laplace operator,
whose first non-zero eigenvalue coincides with the dimension for minimally embedded
homogeneous hypersurfaces in the round sphere [41, 49]. Further along this line, one
could even expectλ1(D2

M) = n2

4 (H
2+1) to hold for isoparametrichypersurfaces, i.e.,

with constant principal curvatures, inSn+1, the analogous result holding true for the
scalar Laplace operator in the minimal setting [48, 56, 57].

1.3 Dirac operators on Kähler submanifolds

The results presented in this section are based on the article [30], see Chapter 3 below.

1.3.1 Motivation

This project also deals with sharp eigenvalue estimates, but in the very different context
of submanifolds of Kähler manifolds. It takes its roots in the following very gene-
ral question: how sensitive is the Dirac spectrum to the presence of supplementary
geometric structures on the underlying manifold? It has been known for a long time
(see e.g. [35]) that the existence of a non-zero – and non-trivial – parallel form on a
given closed Riemannian spin manifold forbides that of non-zero so-calledreal Killing
spinors, which characterise the limiting-case of Thomas Friedrich’s inequality [23]

λ1(D
2
M)≥ n

4(n−1)
min

M
(S)

for the first eigenvalue of the squared Dirac operatorD2
M in terms of the scalar

curvatureS of the manifold (Mn,g). In fact, the Dirac eigenvalues of manifolds
with parallel forms lie well above Friedrich’s lower bound,see [1, Thm. 1.1] for the
simplest situation where the form is of degree 1.

In the case of Kähler (spin) manifolds, which admit a parallel 2-form, the existence
of a sharp lower bound for the Dirac spectrum has been proven by Klaus-Dieter
Kirchberg in [39]. Interestingly enough, the case where hisinequality is an equality
can also be characterised via spinor fields on the manifold, that are calledreal
Kählerian Killing spinorsin case the complex dimension is odd, see Section 1.4.1
below for a formal definition. Those complete Kähler spin manifolds with non-zero
real Kählerian Killing spinors have been classified by Andrei Moroianu [45, Thm. A],
building on earlier partial achievements by (among others)Klaus-Dieter Kirchberg
and Oussama Hijazi, see [45] for references. They can all be described as twistor
spaces of quaternionic-Kähler manifolds with positive scalar curvature. The complex
projective spaceCPn of odd complex dimension is such an example (and is the only
example in complex dimensionn≡ 1 (4)).

How does theKähler structure of a given spin manifold now influence the spectrumof
geometric operators on itssubmanifolds? This question echoes those of Section 1.2.1,
with the notable difference that up to now little has been done in the Kähler setting.
Prior to [30], geometric bounds for the spectrum of Lagrangian submanifolds had been
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determined in [28]. For Kähler (i.e., complex) submanifolds, Georges Habib and I got
interested into the following:

Question 2: How can the spectrum of Dirac operators of Kähler submanifolds ofCPn

be controlled in terms of intrinsic or extrinsic geometric data?

There is a subtle point about the concept of Dirac operator inthis context, since for a
given submanifold of codimension at least 2 the Dirac-type operator which lies closest
to the extrinsic data provided by the immersion lives on the sections of atwistedspinor
bundle. More precisely, the spinor bundle of the submanifold must be twisted by the
spinor bundle of itsnormal bundle. In particular, the twisted Dirac operator does not in
general – unless that normal bundle is trivial and flat – coincide with the intrinsic Dirac
operator of the submanifold.

1.3.2 Main results

We focus on closed Kähler submanifoldsM2d of complex projective spacesCPn of
odd complex dimension – which are exactly those that are spin, see e.g. [42, Ex.
II.2.4]. We must assume thatM itself is spin since there is no naturally induced spin
structure onM – as a matter of fact, a complex submanifold must not be spin (think of
e.g.CPd →֒CPn with d even). Fixing the standard complex structure and Fubini-Study
metric of constant holomorphic sectional curvature 4 onCPn, we denote byg andJ
the induced Riemannian and complex structure onM respectively. In view of Question
2, we ask for lower and upper bounds for the smallest eigenvalue of the Dirac operator
DΣN

M of M twisted with the spinor bundle of the normal bundleNM = T⊥M → M
of the immersion. To see that this operator is well-defined, let us mention that the
normal bundle carries a spin structure induced by those ofM andCPn and hence has
an associated spinor bundle.

Upper boundsa priori for the smallest eigenvalues ofDΣN
M can be derived in terms

of extrinsic data, i.e., those built out of the second fundamental form of the immer-
sion. As it turns out, they only depend on thedimensionof the submanifold: there

are 2

(
n

n+1
2

)
eigenvaluesλ of (DΣN

M )2 satisfying [25, Thm. 4.2] (reproduced in [30,

Thm. 2.2])

λ ≤





(d+1)2 if d is odd

d(d+2) if d is even.
(1.1)

The proof of (1.1) relies on the use of real Kählerian Killing spinors as test spinors
in the min-max principle. The application of that principlefurthermore provides a
technical necessary condition for (1.1) to be an equality for the smallest eigenvalue
of (DΣN

M )2, however that condition is not sufficient to deduce clear features about the
geometry ofM and its immersion, see [30, Thm. 2.2] and discussion below.

To get a better control of the eigenvalues of(DΣN
M )2, one can compare the upper bound

of (1.1) witha priori lower bounds in terms of curvature quantities, considering(DΣN
M )2

as an arbitrary twisted Dirac operator on a compact Kähler manifold:

Theorem 1.3.1 ([30, Cor. 3.2])Let (M2d,g,J) be a closed K̈ahler spin manifold and
E → M be a Hermitian vector bundle with metric connection. Denote by DE

M :
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Γ(M,ΣM ⊗E) 	 the associated twisted Dirac operator. Then for any eigenvalue λ
of (DE

M)2,

λ ≥





d+1
4d (minM(S)+κ1) if d is odd

d
4(d−1)(minM(S)+κ1) if d is even,

where S is the scalar curvature of the manifold,κ1 denotes the smallest eigenvalue of
the (pointwise) self-adjoint operatorψ 7→ 2∑2d

i, j=1(ei · ej · Id⊗RE
ei ,ej

)ψ and RE is the
curvature operator of the connection on E→ M.

Those estimates generalise those proven in [39] since we allow arbitrary twisting
bundles. Moreover, it can also be seen as the Kählerian analogue to the corresponding
Riemannian estimate, see e.g. [31, Prop. 4.1].

Unfortunately, the combination of (1.1) and Theorem 1.3.1 does not provide any cha-
racterisation of the limiting-case in (1.1): even in the simplest case whereM = CPd

(with d odd) is standardly embedded intoCPn, the presence of normal curvature does
not allow to conclude thatλ1((DΣN

M )2) = (d+1)2. And in fact an explicit computation
of the spectrum of the twisted Dirac operatorDΣN

M on CPd (first carried out in [15]
and independently in [22]) shows that, according to the values ofd andn, equality in
(1.1) may or may not hold. For instance, ifd = 1, thenλ1((DΣN

M )2) = (d+1)2 = 4 for
n= 3,5,7, howeverλ1((DΣN

M )2)< 4 for all oddn≥ 9, see [30, Prop. 4.8].

1.3.3 Perspectives

There is still a lot to be done to understand which kind of geometric information is
contained in the equality case of (3.7) and, more generally,what geometry is contained
in the restriction of particular spinor fields from Kähler manifolds onto their submani-
folds. Let us mention that, after [30] was published, an approach within the framework
of so-called spinc structures, which are better fitted to the setting of Kählergeometry,
has been tackled in [33].

1.4 Imaginary Kählerian Killing spinors

The results presented in this section are based on the article [32], see Chapter 4 below.

1.4.1 Motivation

This project deals with a first-order linear partial differential equation originating in a
Dirac eigenvalue estimate on Kähler manifolds. As mentioned in Section 1.3.1 above,
there exists a sharp lower bound for the eigenvalues of the Dirac operator on compact
Kähler spin manifolds in terms of their scalar curvature due to Klaus-Dieter Kirch-
berg [39]. In case the complex dimension of the manifold is odd, the equality case
of that estimate is characterised by the existence of non-zero so-calledreal Kählerian
Killing spinors. Let us briefly give the precise definition. LetM2n be a Kähler manifold
with metricg and compatible complex structureJ. If M is spin, then its spinor bundle
ΣM → M carries a Clifford multiplication(X,ϕ) 7→ X ·ϕ from the tangent bundle as
well as a compatible metric connection∇ which can be seen as its Levi-Civita spino-
rial connection. Given a constantα ∈ C×, an α-Kählerian Killing spinoron M is a
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pair (ψ ,φ) of sections ofΣM → M satisfying the following coupled system of linear
equations for allX ∈ TM:

{
∇Xψ =−α

2 (X+ iJ(X)) ·φ
∇Xφ =−α

2 (X− iJ(X)) ·ψ .
(1.2)

For α real (resp. purely imaginary) the pair(ψ ,φ) is called real (resp. imaginary)
Kählerian Killing spinor.

It is important to note that the system (1.2) is actuallyoverdetermined: the existence of
non-zeroα-Kählerian Killing spinors imposes strong restrictions on the geometry of
the underlying manifold. Among others, they have to be Einstein with scalar curvature
4n(n+ 1)α2 and must have odd complex dimensionn. In caseα ∈ R×, Andrei
Moroianu completely classified [45] those complete Kählerspin manifolds with
non-zero real Kählerian Killing spinors. They are all compact and can be described as
twistor spaces of quaternionic-Kähler manifolds with positive scalar curvature. This
includes all complex projective spaces, which are furthermore the only such manifolds
in complex dimensionn≡ 1 (4).

In caseα ∈ iR×, complex hyperbolic spaces are known to carry non-zero imaginary
Kählerian Killing spinors, see e.g. [40]. In complex dimension 3, there is no further
example of complete Kähler spin manifold with non-zero imaginary Kählerian Killing
spinors since the sectional holomorphic curvature can be shown to be constant negative
[40, Thm. 16]. Nevertheless, the classification in higher complex dimensions remained
open. This made Uwe Semmelmann and me address the following:

Question 3: Can Kähler spin manifolds with non-zero imaginary Kählerian Killing
spinors be classified?

The angle of attack we took consists in picking a non-zero imaginary Kählerian Killing
spinor(ψ ,φ) and looking at thelevel setsof the (positive) smooth function|ψ |2+ |φ |2
on M. The reason for this is that, because of (1.2), this functionis expected to have
“few” critical values, fact which should allow a “simple” description of the underlying
M. In the Riemannian setting (concerned withimaginary Killing spinors, that we are
not going to describe in detail here), this approach showed successful and led Helga
Baum to a full classification [14].

1.4.2 Main results

We focus on the system (1.2) withα ∈ iR× on an arbitrary Kähler spin manifoldM2n

of odd complex dimensionn. Up to scaling the metric and changingα into −α, we
may assumeα = i. Fixing a non-zeroi-Kählerian Killing spinor(ψ ,φ), a computation
of the second derivatives of the functionf := |ψ |2 + |φ |2 already sheds light on the
structure ofM: the functionf has at most one critical value, which is then a minimum
and in that case the set of minima is a connected totally geodesic Kähler submanifold
of M [32, Prop. 2.3].

In case all values off are regular, the manifoldM can be split into the product of
a level hypersurface off with the real line, at least when the metric is complete. To
see what kind of metric and complex structure we could face onsuch a product, we
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considered the family of so-calleddoubly warped products, which are the Kähler ana-
logues of Riemannian warped products. First introduced in his diploma thesis [3] by
Patrick Baier to compute the Dirac spectrum of the complex hyperbolic space, they
can be described as follows. Let(M̌2n−1, ǧ, ξ̌ ) be a so-calledSasaki manifold; Sasaki
manifolds can be characterised as those Riemannian manifolds whose metric cone is
Kähler. Sasaki manifolds carry atransverse K̈ahler structureon the distribution which
is the pointwise orthogonal complement to the Reeb vector field ξ̌ . Let I ⊂ R be an
open interval andρ ,σ : I → R

×
+ be smooth positive functions onI . Then thedoubly

warped productof M by I with warping functions(ρ ,σ) is the manifold

(M2n,g) := (M̌× I ,ρ(t)2(σ(t)2ǧξ̌ ⊕ ǧξ̌⊥)⊕dt2),

whereǧξ̌ and ǧξ̌⊥ denote the restrictions of the metric ˇg onto the subbundlesR · ξ̌

andξ̌⊥ of TM̌ respectively. Note thatM2n is in general not Kähler. However, ifρ
′

σ is
constant onI , then(M2n,g) can be endowed with a Kähler structure that more or less
extends the transverse Kähler structure of(M̌2n−1, ǧ, ξ̌ ), see [32, Lemma 3.4].

The equations (1.2) can be completely translated onto arbitrary spin doubly warped
products [32, Lemma 3.8]. As could be expected, the existence of a non-zero solution
to (1.2) restricts strongly the possibilities for the function ρ and the Sasaki structure on
(M̌2n−1, ǧ, ξ̌ ):

Theorem 1.4.1 ([32, Thm. 3.9])Let (M2n,g) := (M̌× I ,ρ(t)2(ρ ′(t)2ǧξ̌ ⊕ ǧξ̌⊥)⊕dt2)

be the K̈ahler doubly warped product of a Sasaki manifold(M̌2n−1, ǧ, ξ̌ ) with an open
interval and warping functions(ρ ,ρ ′) (the relationρ ′ = σ is fulfilled because M2n is
Kähler). Assume M2n carries a non-zero i-K̈ahlerian Killing spinor. Then we have the
following:

i) Up to standard normalisations, the functionρ is one of the functionsexp,cosh
or sinhand(M̌2n−1, ǧ, ξ̌ ) must admittransversally parallel spinors.

ii) Conversely, any non-zero transversally parallel spinor lying in some particular
eigenspace of the Clifford action of the transverse Kähler form on(M̌2n−1, ǧ, ξ̌ )
induces a non-zero i-K̈ahlerian Killing spinor on the doubly warped product of
M̌ byR with warping functionsρ = σ = et .

Even if there is presently no classification of Sasaki manifolds with transversally
parallel spinors (though there may be some hope from the recently appeared paper [34]
where foliations with particular transverse holonomies are classified), Theorem 1.4.1
allows the construction of infinitely many examples of Kähler spin manifolds with
imaginary Kählerian Killing spinors and with non-constant holomorphic sectional
curvature. For every simply-connected Hodge hyperkählermanifold of complex di-
mension 4k carries aU1-bundle whose total spacěM is Sasaki and has a transversally
parallel spinor lying in the right eigenspace [32, Lemma 3.11]; moreover, the holomor-
phic sectional curvature of the doubly warped product(M̌×R,e2t(e2t ǧξ̌ ⊕ ǧξ̌⊥)⊕dt2)
is not constant since hyperkähler manifolds are not flat, see [32, Lemma 3.12]. We also
reobtain the complex hyperbolic space as a doubly warped product in three different
ways, see [32, Rem. 3.10] and [32, Thm. 3.18].
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The question remained open whether all Kähler spin manifolds with Kählerian Killing
spinors are doubly warped products or not. Under a supplementary technical assump-
tion, we could show that the doubly warped product structurecan be recovered:

Theorem 1.4.2 ([32, Thm. 4.1])Let(M2n,g,J) be any complete K̈ahler spin manifold
with a non-zero i-K̈ahlerian Killing spinor(ψ ,φ). Assume|ψ |= |φ | as well as the ex-
istence of a (real) smooth vector field W and of a non-identically vanishing continuous
complex-valued functionµ such that W·ψ = µφ on M.
Then(M2n,g,J) is holomorphically isometric to a doubly warped product of aSasaki
spin manifoldM̌ byR, with warping functionsρ = σ = et , and(ψ ,φ) comes from a
transversally parallel spinor oňM.

1.4.3 Perspectives

There is still work to be done to fully understand the structure of Kähler spin manifolds
with imaginary Kählerian Killing spinors. Alongside, it would be interesting to be able
to characterise large families of Kähler manifoldsà la Obata, i.e., with the help of
functions satisfying some kind of partial differential equation involving their Hessian.
Partial results have been obtained for complex spaceforms in [53] and [54].

1.5 The Lorentzian Yamabe problem

The results presented in this section have not been published yet and are based on
Chapter 5 below.

1.5.1 Motivation

This project is motivated by the search for “best” pseudo-Riemannian metrics on
manifolds. This could be understood in many different ways and we choose here the
curvature point of view: we look for those pseudo-Riemannian metrics with “most
constant” curvature. The latter still admits various interpretations and we make this
a bit more precise by focussing on the weakest curvature invariant, namelyscalar
curvature. It is now well-known that constant scalar curvature metrics exist in any
Riemannian conformal classon any closed manifold: this is the celebratedYamabe
problem, first formulated (and thought to be solved) by Hidehiko Yamabe in 1960 [60]
and finally solved in the eighties by Richard Schoen [55] after essential contributions
by – among others – Neil Trudinger [58] and Thierry Aubin [2].

By comparison, very little has been done in the pseudo-Riemannian setting. For
instance, which function on a given manifold can be the scalar curvature of some
pseudo-Riemannian (non-Riemannian) metric? The study of scalar curvature functions
for pseudo-Riemannian metrics really started with Marc Nardmann’s PhD thesis [50],
with the focus oncompactmanifolds, where a clever use of auxiliary Riemannian
metric allows to reformulate the problem as anelliptic equation, for which standard
techniques can be applied.

In the Lorentzian setting, there is a category of manifolds which are better-fitted than
compact ones for both physical and analytical purposes. They are calledglobally
hyperbolic. They can be roughly thought of as the productM of some arbitrary



1.5. THE LORENTZIAN YAMABE PROBLEM 19

Riemannian manifoldΣ by an interval (standing for the “time-axis”) and with a kind
of warped-product metric. The essential feature is thatΣ must be a so-calledCauchy
hypersurfacein M, meaning that every “event” is caught once and only once by an
observer alongΣ; in mathematical terms, every inextendible timelike curvein the
Lorentzian manifold must crossΣ exactly once. In particular, globally hyperbolic
Lorentzian manifolds have no closed timelike or even causalcurves. Many reasonable
physical models for our 4-dimensional universe are globally hyperbolic. On the
other hand, globally hyperbolic Lorentzian manifolds are best suited forhyperbolic
equations, for which a Cauchy-problem-ansatz with initialdata along the hypersurface
Σ allows to discussglobal existence and uniqueness of solutions. This is by the way
the origin of the termglobally hyperbolic, which has nothing to do with Riemannian
hyperbolicity.

The main question we address in this project is the following:

Question 4: Does there exist a metric with constant scalar curvature in any conformal
class of globally hyperbolic metrics?

We mainly look at globally hyperbolic manifolds withclosedCauchy hypersurface,
which are for analytical investigations the simplest ones.The equation we have to solve
(see (5.1) and (5.2)) is a semilinear wave equation, for which standard techniques from
the analysis of so-called symmetric hyperbolic systems show the local existence of
smooth solutions. Thus the only issue is aboutglobal existence as well as uniqueness
of solutions.

1.5.2 Main results

In dimension 2, the existence of global smooth solutions tolinear wave equations on
globally hyperbolic manifolds already shows that globallyhyperbolic surfaces are al-
waysconformally flat, see Theorem 5.1.4 below. What goes unnoticed in this case and
leads to the main concern in higher dimensions is the fact that thesignof the solution
of (5.1) need not be cared about in dimension 2. In dimensionn≥ 3, the equation to be
solved is the following on the globally hyperbolic manifold(Mn,g):

2ϕ +
n−2

4(n−1)
Sgϕ =

n−2
4(n−1)

Sgϕ
n+2
n−2 ,

where Sg is the scalar curvature ofg and Sg ∈ R is the constant scalar curvature

associated to the conformal metricg := ϕ
4

n−2 · g we look for. Solving that equation
means finding asmooth positivefunctionϕ onM satisfying it. Fixing a smooth Cauchy
hypersurfaceΣ that is spacelike (i.e., on whichg restricts as a Riemannian metric) in
M, we must show that the solution of the Cauchy problem associated to that equation
and with initial data alongΣ extends for all time – or at least find some conditions for
which it does.

As mentioned just above, the main difficulty consists in controlling the sign of the
solution, because no maximum principle works outside the elliptic or parabolic world.
To understand what can happen, we start by considering product Lorentzian manifolds,
i.e., productsI ×Σ of an intervalI with a Riemannian manifoldΣ, carrying the corres-
ponding Lorentzian product metric. Those Lorentzian manifolds are calledstandard
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staticin the literature. In that case, the existence of a solution can be simply tackled by
separating variables (see Theorem 5.2.6 below):

Theorem 1.5.1Let an n(≥ 3)-dimensional Lorentzian manifold(Mn,g) be confor-
mally equivalent to the product(I ×Σ,−dt2 ⊕ gΣ), where I⊂ R is an open interval
and (Σn−1,gΣ) is a closed Riemannian manifold. Letµ1 ∈ R be the smallest eigen-
value of the linear operator LgΣ := ∆Σ+

n−2
4(n−1)SgΣ , where∆Σ and SgΣ denote the scalar

Laplace operator and the scalar curvature of(Σn−1,gΣ) respectively.
Then there exists in the conformal class of g a metric with constant scalar curvature
µ1 on Mn.

The proof of Theorem 1.5.1 relies on the fact that the equation can be reduced to a
subcritical non-linear Yamabe-type equation on the compact Riemannianmanifold
Σ, in particular it does not involve any study of sign-change since the solutions we
obtain do not depend on time. Still one has to pay attention tothe fact that the constant
conformal scalar curvature we obtain depends on the sign of the eigenvalueµ1, which
itself depends on the geometry of(Σn−1,gΣ). To test the limits of the study, one could
ask for the strongerprescriptionof the conformal scalar curvature:given any Sg ∈ R,
does there always a conformal metric with that scalar curvature? It turns out that the
answer depends on the sign ofµ1. If e.g. µ1 ≤ 0, then there always exists a conformal
metric with vanishing scalar curvature on a standard staticspacetime; by contrast, if
µ1 > 0, then such a metric only exists for short times, i.e., if theintervalI is sufficiently
short. In the latter case, we even obtain the optimal length of I for global existence,
see Theorem 5.2.9 below. As an application, the de Sitter spacetime has a conformal
metric with vanishing scalar curvature if and only if its dimension is 2,3 or 4, see
Corollary 5.2.10 below.

Unlike the Riemannian setting, where conformal metrics with constant negative scalar
curvature are unique up to homothety on closed manifolds, uniqueness of solutions
seems never to hold. In some sense, smooth positive solutions to the Lorentzian Ya-
mabe equation look stable: one may perturb, along a given Cauchy hypersurface, the
initial conditions of a solution a bit and still obtain a smooth positive solution. Although
we cannot make for now any general statement, there are examples for all three cases
Sg ∈ {−1,0,1} of globally hyperbolic spacetimes with infinitely many non-homothetic
metrics with constant scalar curvatureSg. We refer to Section 5.2.2 for the discussion
of uniqueness in the standard static situation.

1.5.3 Perspectives

The general setting of arbitrary globally hyperbolic spacetimes with closed Cauchy
hypersurface remains open. As we mention in Section 5.3 below, the issue is not so
much about existence of (weak) solutions to the Lorentzian Yamabe equation, which
should follow from “standard” techniques for semi-linear wave equations, taking into
account that the exponent2n

n−2 is subcritical for some Sobolev embedding on the
Cauchy hypersurface; it is about how to control thesign of solutions. It is for the
moment unclear which kind of criterion, either analytical or geometric in nature, could
help in this respect.

Apart from stronger curvature quantities such as sectionalcurvature (see e.g. [4]), a na-
tural concept to be discussed around this project is that of “best metric”. For on globally
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hyperbolic spacetimes the properties of thetime functioninducing the smooth splitting
by Cauchy hypersurfaces is crucial in many respects. For example, the existence of a
time function with “large” gradient on any globally hyperbolic spacetime makes it iso-
metrically embeddable in some Minkowski space of sufficiently high dimension [47].
One may also try to control the second fundamental form of theCauchy hypersurfaces,
see e.g. [46]. Other important issues deal with the existence at all of codimension one
foliations [51] and with foliations by constant scalar or mean curvature Cauchy hyper-
surfaces, a topic which is still in progress, see e.g. [24, 5].

1.6 Quantization on Lorentzian manifolds

The results presented in this section are based on the article [11], with a shorter version
published in [12], see Chapter 6 below.

1.6.1 Motivation

In physics,quantizationcan be thought of as a bridge between “classical” general
relativity and “non-classical” quantum mechanics, which deals with physics at
very small scales. There are several approaches to quantization (see the excellent
introduction [17] or the recently published book [21]) and one of the most intuitive
and mathematically easiest to formulate is probably thelocally covariantone: given
a fixed background spacetimeM and a (linear)differential operator Pon M, one
associates to any region ofM some kind ofalgebrabuilt out of the solutions to the
equationPu= 0 – calledfields– on that region. This algebra should be interpreted as
the algebra ofobservablesin that region. Stated like this, there is of course still a lot of
(mathematical) freedom, however physical considerationslead to a certain family of
axiomsthat must be satisfied: for instance, two “independent” regions of the spacetime
must give rise to two “commuting” or “anti-commuting” algebras, in a sense that
must be made precise; if a region is contained in another, then the corresponding
algebra must be “contained” in the other. The latter reflectsthe fact that algebras
have to be associated in acovariantmanner. Based on pioneering work such as [19]
and first described in a general and consistent framework by Romeo Brunetti, Klaus
Fredenhagen and Rainer Verch [18], this approach is calledlocally covariant quantum
field theory.

For linearwaveoperators on arbitraryglobally hyperbolicspacetimes (see Section
1.5.1 above for a brief definition), abosoniclocally covariant quantum field theory can
be successfully carried out by means so-called CCRrepresentations, where “CCR”
stands for “Canonical Commutation Relations”. The idea, presented in [13, Ch. 4],
consists in associating to each open subset of a given globally hyperbolic spacetime a
symplectic vector space built directly out of the solutionsto the wave equation; there
is a natural and covariant way of doing this. Then standard representation theory of
symplectic vector spaces allows to associate – also in a covariant way –C∗ algebras
to symplectic vector spaces by means of CCRrepresentations, see e.g. [16]. What we
formally obtain at the end is afunctor from a “classical” category whose objects are
spacetimes together with wave operators to a “non-classical” category whose objects
are particularC∗-algebras called CCRalgebras. Although we shall not introduce CCR
algebras in detail, let us mention that they show the following essential and relatively
intuitive feature calledquantum causality(see Theorem 1.6.1 below): any two causally
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independent domains in a spacetime give rise tocommutingCCR (sub)algebras; or, in
more concrete terms, independent events give rise to independent observables.

Still plenty of differential operators are not of wave type.Although numerous papers
have been dedicated to covariant quantization for particular operators (see references
in [11]), there had been no attempt to develop a “general” field quantization, that could
be applied to the most general differential operators. Thisled Christian Bär and me to
address the following:

Question 5: How large is the family of differential operators for which locally
covariant quantization can be carried out?

Here one has to pay attention to the fact that, even for a givenoperator, possibly diffe-
rent types of algebras may come out and be physically meaningful. Therefore the kind
of algebra we aim at obtaining must be made precise.

1.6.2 Main results

We first focussed on bosonic locally covariant quantization, which is in terms of CCR
algebras. An essential step in the construction of symplectic vector spaces out of
solutions to a linear wave equation consists in extracting the fundamental solutions
for the wave operator under consideration – which are known to exist, see e.g. [13,
Ch. 3]. Actually, the existence of such fundamental solutions, or equivalently, of
Green’s operators,sufficesfor that, because the symplectic structure only depends
on those (and the formal self-adjointness of the wave operator). This remark led us
to define the very general category ofGreen-hyperbolicoperators, which are linear
differential operators, acting on sections of a (real or complex) vector bundle over a
spacetime, and admittingGreen’s operatorson any globally hyperbolic open subset
of the spacetime. Recall that an advanced (resp. retarded) Green’s operator for a
differential operatorP : Γ(M,S)	 on a vector bundleS→ M can be defined as a linear
map G+ : Γc(M,S) → Γ(M,S) (resp.G− : Γc(M,S) → Γ(M,S)) with P◦ G± = Id,
G± ◦P= Id onΓc(M,S) and with the support condition supp(G±(ϕ))⊂ JM

± (supp(ϕ))
for all ϕ ∈ Γc(M,S). There are whole families of Green-hyperbolic operators, inclu-
ding all wave or Dirac-type operators as well as physically relevant operators such
as the Proca or the Rarita-Schwinger operator, see [11, Sec.2.3-2.6]. Let us mention
however that the family of Green-hyperbolic operators is strictly larger than that of
hyperbolic ones since for instance the direct sum of two Green-hyperbolic operators is
again Green-hyperbolic [11, Lemma 2.29], nevertheless nothyperbolic in general.

To formalize quantization in a mathematically rigorous manner, propercategories
have first to be defined. The “source” category, denoted byGlobHypGreen, has triples
(M,S,P) as objects, consisting of a globally hyperbolic spacetimeM, a (real) pseudo-
Riemannian vector bundleS→ M and a formally self-adjointGreen-hyperbolicope-
rator P acting on sections ofS. Its morphisms are pairs( f ,F) consisting of a time-
orientation preserving embeddingf satisfying some causality condition together with
a vector bundle (pointwise) isometryF preserving the operators, see [11, Def. 3.1].
The “target” category, denoted byC∗Alg, hasC∗-algebras with unit as objects and unit-
preserving injectiveC∗-homomorphisms as morphisms. Our first main result shows the
existence of afunctor from the former category to the latter, which enjoys important
physical properties:



1.6. QUANTIZATION ON LORENTZIAN MANIFOLDS 23

Theorem 1.6.1 ([11, Thm. 3.10])With the above notations, there is a covariant func-
tor Abos: GlobHypGreen−→ C∗Alg which is a bosonic locally covariant quantum field
theory, i.e., the following axioms are fulfilled:

i) (Quantum causality)Let (M j ,Sj ,Pj) be objects in GlobHypGreen, j =
1,2,3, and ( f j ,Fj) morphisms from(M j ,Sj ,Pj) to (M3,S3,P3), j = 1,2,
such that f1(M1) and f2(M2) are causally disjoint in M3. Then the sub-
algebras Abos( f1,F1)(Abos(M1,S1,P1)) and Abos( f2,F2)(Abos(M2,S2,P2)) of
Abos(M3,S3,P3) commute.

ii) (Time slice axiom)Let (M j ,Sj ,Pj) be objects inGlobHypGreen, j = 1,2, and
( f ,F) a morphism from(M1,S1,P1) to (M2,S2,P2) such that there is a Cauchy
hypersurfaceΣ ⊂ M1 for which f(Σ) is a Cauchy hypersurface of M2. Then

Abos( f ,F) : Abos(M1,S1,P1)→ Abos(M2,S2,P2)

is an isomorphism.

The time slice axiomroughly states that, if all events in two different domains of
spacetime can be caught from a common region of space, then the observables from
the two domains must coincide.

Another locally covariant quantum field theory has been developed which is better fit-
ted for Dirac-type operators, namelyfermionicquantum field theory. First discussed by
Jonathan Dimock [20] for the classical Dirac operator on flat4-dimensional Minkowski
spacetime, it is carried out in terms of CAR algebras, where CAR stands for “Canonical
Anticommutation Relations”. This time aHilbert spaceis associated to the solutions of
the equation under consideration; again, standard representation theory provides CAR
algebras from Hilbert spaces, see [16]. There is no difficulty in adapting Jonathan Di-
mock’s construction to arbitrary twisted Dirac operators on arbitrary spacetimes. Our
main improvement of Jonathan Dimock’s work [20] consists inenlarging the catego-
ry of operators for which this can be performed by noticing that the Hilbert space
structure only depends on theprincipal symbolof the operator – provided the order
of the operator is one. Namely, given any formally self-adjoint first order differen-
tial operatorP acting on the sections of a vector bundleS over a globally hyperbolic
spacetimeM, one may fix a smooth spacelike Cauchy hypersurfaceΣ in M with unit
normalν. Denote byσP the principal symbol ofP. Then an elementary integration by
parts combined with Gauß’ divergence theorem provides that, given any two solutions
ψ ,φ to Pu= 0 with spacelike compact support, the integral

∫
Σ〈σP(ν♭)ψ ,φ〉dσ does

not depend onΣ. In particular, the map(ψ ,φ) 7→ ∫
Σ〈iσP(ν♭)ψ ,φ〉dσ defines a non-

degenerate inner product on spacelike compact solutions toPu= 0 and gives rise to a
Hilbert-space-structure as soon as it ispositive definite. This led us to define the general
categoryGlobHypDef. Its objects are triples(M,S,P) consisting of a spacetimeM to-
gether with a complex vector bundleS, carrying a non-degenerate (but non-necessarily
positive definite) Hermitian inner product〈· , ·〉, and a formally self-adjoint first order
Green-hyperboliclinear differential operatorP acting on the sections ofS such that
the pointwise inner product(ψ ,φ) 7→ 〈iσP(ν♭)ψ ,φ〉 is (positive or negative)definite
for any future-directed timelike vectorν; its morphisms are the same as those of the
categoryGlobHypGreen above. For example, all twisted Dirac (but not all Dirac-type)
operators fall in this category. It was shown very recently [10] that actually any for-
mally self-adjoint first-order linear differential operator giving rise to a definite point-
wise Hermitian inner product as above is automatically Green-hyperbolic, since it is
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symmetric hyperbolic up to a multiplicative constant. As target category, we consider
CAR-algebras, which are stillC∗ algebras but which also have a naturalZ2-graduation.
In particular, one may talk aboutsuper-commutingsubalgebras, meaning that the odd
parts of the algebras anti-commute while the even parts commute with everyone. The
CAR quantization procedure applies onGlobHypDef and we obtain the following:

Theorem 1.6.2 ([11, Thm. 3.20])With the above notations, there is a covariant func-
torAferm :GlobHypDef −→C∗Alg which is a fermionic locally covariant quantum field
theory, i.e., the following axioms are fulfilled:

i) (Quantum causality)Let (M j ,Sj ,Pj) be objects inGlobHypDef, j = 1,2,3,
and ( f j ,Fj) morphisms from(M j ,Sj ,Pj) to (M3,S3,P3), j = 1,2, such
that f1(M1) and f2(M2) are causally disjoint in M3. Then the subalge-
bras Aferm( f1,F1)(Aferm(M1,S1,P1)) and Aferm( f2,F2)(Aferm(M2,S2,P2)) of
Aferm(M3,S3,P3) super-commute.

ii) (Time slice axiom)Let (M j ,Sj ,Pj) be objects inGlobHypDef, j = 1,2, and
( f ,F) a morphism from(M1,S1,P1) to (M2,S2,P2) such that there is a Cauchy
hypersurfaceΣ ⊂ M1 for which f(Σ) is a Cauchy hypersurface of M2. Then

Aferm( f ,F) : Aferm(M1,S1,P1)→ Aferm(M2,S2,P2)

is an isomorphism.

Although both Theorems 1.6.1 and 1.6.2 show how to obtain observables, they do not
give any “concrete”, i.e., numerical interpretation. Thisis done by introducingstates,
which are (positive, normed) linear forms on the targetC∗ algebras. In the last part
of [11], we show how states which are “sufficiently regular” in a certain sense give
rise to so-calledquantum fields, which are operator-algebra-valued distributions on the
underlying spacetime and which solve the equation under consideration. We refer to
[11, Sec. 4] for the details of this very technical construction.

1.6.3 Perspectives

Despite our very general ansatz to construct CCR algebras ofobservables out of classi-
cal fields, there are still whole families of physically relevant operators – among which
all non-linear ones – where it does not apply. Another interesting issue deals with par-
ticular conditions on the states involved in the contruction of the quantum field such as
theHadamardcondition. This condition lacks investigation in a unified framework.
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[43] A. Lichnerowicz, Géoḿetrie des groupes de transformations, Travaux et
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Chapter 2

The spectrum of the Dirac
operator on SU2/Q8

This chapter coincides (up to minor changes such as enumeration of pages, sections,
theorems, references etc.) with the published article [29].

Nicolas Ginoux

Abstract. We compute the fundamental Dirac operator for the three-parameter-family of
homogeneous Riemannian metrics and the four different spinstructures on SU2/Q8, where
Q8 denotes the group of quaternions. We deduce its spectrum forthe Berger metrics and
show the sharpness of Christian Bär’s upper bound for the smallest Dirac eigenvalue in the
particular case where SU2/Q8 is a homogeneous minimal hypersurface ofS4.

Mathematics Subject Classification: 53C27, 53C30, 58C40

Keywords: Spin geometry, homogeneous manifolds, spectral theory

2.1 Introduction

Throughout this paper and unless explicitly mentioned we denote byM the quotient of
SU2 by the right-action of the group of quaternions Q8, i.e., the group with 8 elements

defined by{±I2,±A1,±A2,±A3} with A1 :=

(
−i 0
0 i

)
, A2 :=

(
0 i
i 0

)
and

A3 :=

(
0 1
−1 0

)
. The manifoldM is a 3-dimensional compact connected spin

homogeneous space and at the same time the simplest example of homogeneous
hypersurface in the round sphere with 3 different principalcurvatures, see e.g. [A6]
and end of Section 2.3.
Using classical techniques (see e.g. [A2]) we first computethe Dirac operator ofM for
any homogeneous metric and any spin structure:

29
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Theorem 2.1.1

i) The manifold M carries a3-parameter family of homogeneous Riemannian met-
rics which are given by the orthonormal bases{X1 := a1A1,X2 := a2A2,X3 :=
a3A3} of su(2), where a1,a2,a3 ∈R∗. Conversely, every homogeneous metric on
M is of that form.

ii) The isotropy representationα of M is given in the basis(X1,X2,X3) of su(2) by

α(±I2) = I3 α(±A1) = diag(1,−1,−1)
α(±A2) = diag(−1,1,−1) α(±A3) = diag(−1,−1,1).

In particular the manifold M is orientable.

iii) The manifold M is spin and carries exactly4 spin structures, each one corre-

sponding to one of the following group homomorphismsQ8
ε j−→{−1,1}: ε0 ≡ 1

andKer(ε j ) = {±I2,±A j} for j ∈ {1,2,3}.

iv) The finite dimensional Dirac operator Dn corresponding to the irreducible rep-
resentation ofSU2 on the space Vn of homogeneous polynomials of degree n in
two variables is non-trivial only if n is odd. In that situation

Dn = D′
n−

a2
1a2

2+a2
2a2

3+a2
1a2

3

2a1a2a3
Id

where D′n is described by an+1
2 × n+1

2 tridiagonal matrix. More precisely, there
exists a basis(v0, . . . ,vn−1

2
) in which D′

n can be expressed as

0) in case M carries the spin structure given byε0,

D′
n(vk) = (−1)ka1(n−2k)vk+(k+1)(a2+(−1)ka3)vk+1

+(n− k+1)(a2− (−1)ka3)vk−1, 0≤ k<
n−1

2

D′
n(vn−1

2
) =

(
a1+

n+1
2

(a2+a3)
)

vn−1
2
+

n+3
2

(a2−a3)vn−3
2

if n ≡ 1 (4) and

D′
n(vk) = −(−1)ka1(n−2k)vk+(k+1)(a2− (−1)ka3)vk+1

+(n− k+1)(a2+(−1)ka3)vk−1, 0≤ k<
n−1

2

D′
n(vn−1

2
) =

(
a1−

n+1
2

(a2+a3)
)

vn−1
2
+

n+3
2

(a2−a3)vn−3
2

if n ≡ 3 (4).

1) in case M carries the spin structure given byε1,

D′
n(vk) = (−1)ka1(n−2k)vk+(k+1)(a2+(−1)ka3)vk+1

+(n− k+1)(a2− (−1)ka3)vk−1, 0≤ k<
n−1

2

D′
n(vn−1

2
) =

(
a1−

n+1
2

(a2+a3)
)

vn−1
2
+

n+3
2

(a2−a3)vn−3
2
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if n ≡ 1 (4) and

D′
n(vk) = −(−1)ka1(n−2k)vk+(k+1)(a2− (−1)ka3)vk+1

+(n− k+1)(a2+(−1)ka3)vk−1, 0≤ k<
n−1

2

D′
n(vn−1

2
) =

(
a1+

n+1
2

(a2+a3)
)

vn−1
2
+

n+3
2

(a2−a3)vn−3
2

if n ≡ 3 (4).

2) in case M carries the spin structure given byε2,

D′
n(vk) = −(−1)ka1(n−2k)vk+(k+1)(a2− (−1)ka3)vk+1

+(n− k+1)(a2+(−1)ka3)vk−1, 0≤ k<
n−1

2

D′
n(vn−1

2
) =

(
−a1+

n+1
2

(a2−a3)
)

vn−1
2
+

n+3
2

(a2+a3)vn−3
2

if n ≡ 1 (4) and

D′
n(vk) = (−1)ka1(n−2k)vk+(k+1)(a2+(−1)ka3)vk+1

+(n− k+1)(a2− (−1)ka3)vk−1, 0≤ k<
n−1

2

D′
n(vn−1

2
) =

(
−a1−

n+1
2

(a2−a3)
)

vn−1
2
+

n+3
2

(a2+a3)vn−3
2

if n ≡ 3 (4).

3) in case M carries the spin structure given byε3,

D′
n(vk) = −(−1)ka1(n−2k)vk+(k+1)(a2− (−1)ka3)vk+1

+(n− k+1)(a2+(−1)ka3)vk−1, 0≤ k<
n−1

2

D′
n(vn−1

2
) =

(
−a1−

n+1
2

(a2−a3)
)

vn−1
2
+

n+3
2

(a2+a3)vn−3
2

if n ≡ 1 (4) and

D′
n(vk) = (−1)ka1(n−2k)vk+(k+1)(a2+(−1)ka3)vk+1

+(n− k+1)(a2− (−1)ka3)vk−1, 0≤ k<
n−1

2

D′
n(vn−1

2
) =

(
−a1+

n+1
2

(a2−a3)
)

vn−1
2
+

n+3
2

(a2+a3)vn−3
2

if n ≡ 3 (4).

We deduce the spectrum of the Dirac operatorD of M for the so-called Berger metrics,
which form a 2-parameter subfamily of homogeneous metrics:

Corollary 2.1.2 With the notations ofTheorem 2.1.1, assume furthermore that a2 =

a3. Then the spectrum of the operator D+
2a2

1+a2
2

2a1
Id on M for the metric induced by

a1,a2 and the spin structure given byε j ( j ∈ {0,1,2,3}) consists of the following family
of eigenvalues:
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0. for j = 0,

⋃

n∈N
n≡1(4)

{
a1±

√
(n−2k−1)2a2

1+4(n− k)(k+1)a2
2

|k∈ {0, . . . ,
n−5

2
} even,a1+(n+1)a2

}

⋃ ⋃

n∈N
n≡3(4)

{
a1±

√
(n−2k−1)2a2

1+4(n− k)(k+1)a2
2

|k∈ {1, . . . ,
n−5

2
} odd,a1− (n+1)a2,−na1

}
,

each eigenvalue having multiplicity n+1 for the corresponding n.

1. for j = 1,

⋃

n∈N
n≡1(4)

{
a1±

√
(n−2k−1)2a2

1+4(n− k)(k+1)a2
2

|k∈ {0, . . . ,
n−5

2
} even,a1− (n+1)a2

}

⋃ ⋃

n∈N
n≡3(4)

{
a1±

√
(n−2k−1)2a2

1+4(n− k)(k+1)a2
2

|k∈ {1, . . . ,
n−5

2
} odd,a1+(n+1)a2,−na1

}
,

each eigenvalue having multiplicity n+1 for the corresponding n.

2. for j = 2 and j= 3,

⋃

n∈N
n≡1(4)

{
a1±

√
(n−2k−1)2a2

1+4(n− k)(k+1)a2
2

|k∈ {1, . . . ,
n−3

2
} odd,−na1

}

⋃ ⋃

n∈N
n≡3(4)

{
a1±

√
(n−2k−1)2a2

1+4(n− k)(k+1)a2
2

|k∈ {0, . . . ,
n−3

2
} even

}
,

each eigenvalue having multiplicity n+1 for the corresponding n.

In the case wherea1 = a2 = a3, i.e., M is a space-form with positive curvature, we
reobtain the Dirac spectrum computed by Christian Bär in [A3, Thm. 2], see Corollary
2.4.2.

On the other hand, consideringM as embedded homogeneous hypersurface in the 4-
dimensional round sphereS4 one could ask if the following inequality due to Christian
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Bär [A5, Cor. 4.3] is an equality:

λ1(D
2)≤ 9

4
(H 2+1), (2.1)

whereλ1(D2) is the smallest eigenvalue of the Dirac Laplacian onM (for the induced
metric and spin structure) andH is the mean curvature ofM in S4. This question
takes its origin in the study of the equality case in Christian Bär’s estimate [A5, Cor.
4.3] for the smallest eigenvalueλ1(D2) of the Dirac Laplacian. If this inequality is an
equality, then the mean curvature of the hypersurface has tobe constant, nevertheless
the reverse statement has up to now neither been proved nor been contradicted. We
give a partial answer to that question forM:

Corollary 2.1.3 With the notations ofTheorem 2.1.1, assume furthermore that M
carries a homogeneous metric coming from a minimal embedding in S4 and the spin
structure described byε0. Then(2.1) is an equality.

The paper is organized as follows. In the first section we describe the metrics and spin
structures onM and thus prove Theorem 2.1.1i)− iii ). In the second one we compute
the Dirac operator ofM (Theorem 2.1.1iv)) and the eigenvalue ofD1 (Corollary
2.3.9), which in the case whereM is a hypersurface ofS4 turns out to coincide with
the upper bound in (2.1), see Corollary 2.3.11. In the third section we prove Corollary
2.1.2 and derive the Dirac spectrum ofM in case its metric either is of constant
sectional curvature or comes from a minimal embedding inS4, see Corollary 2.4.2.
We deduce in Corollary 2.4.3 the existence of non-zero real Killing spinors in the first
case and Corollary 2.1.3 in the other one.

Acknowledgement. This work provides a partial answer to a question set by Christian
Bär, whom the author would like to thank for his interest andsupport. It’s also a
pleasure to thank Christian Bär and Bernd Ammann for their remarks.

2.2 Metrics and spin structures onM

The Lie-algebra ofQ8 being trivial the adjoint representationα of the homogeneous
spaceM is nothing but the restriction of the adjoint map SU2 −→ Aut(su(2)) to Q8,
wheresu(2) denotes the Lie-algebra of SU2. We define the scalar product〈· , ·〉 on
su(2) by declaring the following basis to be orthonormal:

X1 := a1A1

X2 := a2A2

X3 := a3A3,

wherea1,a2,a3 ∈R∗ are fixed parameters. The mapα is given in the basis(X1,X2,X3)
of su(2) by

α(±I2) = I3

α(±A1) = diag(1,−1,−1)

α(±A2) = diag(−1,1,−1)

α(±A3) = diag(−1,−1,1),
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therefore it obviously preserves〈· , ·〉 which hence induces a homogeneous metric on
M. Using the form ofα in the basis(A1,A2,A3) computed above it is easy to prove
that every homogeneous metric onM comes from such a scalar product onsu(2), i.e.,
it admits{a1A1,a2A2,a3A3} as orthonormal basis for suitablea1,a2,a3 ∈ R∗. Note
also thatα preserves the orientation ofsu(2), so that if we choose(X1,X2,X3) as
positively-oriented orthonormal basis ofsu(2) thenα is expressed in that basis by a
map Q8

α−→ SO3.

We now examine the spin structures onM considering the metric and the orienta-
tion given by(X1,X2,X3). From [A2, Lemma 3] the manifoldM is spin if and only
if its isotropy representationα lifts to Spin3 through the non-trivial two-fold covering

Spin3
ξ−→ SO3, and in that case spin structures onM are in one-to-one correspondence

with those lifts, each one of those being uniquely determined by a group homomor-
phism Q8

ε−→ {−1,1}. Here Q8 already lies in SU2 ∼= Spin3 so thatM is obviously
spin. Denoting bŷα the inclusion Q8 ⊂ SU2, every spin structure onM is uniquely de-
scribed by a map̃α : Q8 −→SU2 of the formα̃(h) = ε(h)α̂(h) for everyh∈Q8, where
ε : Q8 −→ {−1,1} is a group homomorphism. But there are exactly 4 such homomor-
phisms: the trivial oneε0 ≡ 1 and theε j ’s, j = 1,2,3, with Ker(ε j) = {±I2,±A j}. This
proves Theorem 2.1.1i)− iii ).
In the following we shall call the spin structure corresponding to ε j · α̂ the ε j -spin
structure onM.

2.3 The Dirac operator onM

Let us denote by Spinn
δn−→ Aut(Σn) the spinor representation in dimensionn. We

recall the following theorem allowing the representation-theoretical computation of
the fundamental Dirac operator on a homogeneous space, see e.g. [A2, Thm. 2 & Prop.
1]:

Theorem 2.3.1Let M := G/H be an n-dimensional Riemannian homogeneous spin
manifold with G compact and simply-connected. Letp be a supplementary subspace of
h in g. Fix a p.o.n.b(X1, . . . ,Xn) of p and letα : H −→ SOn be the isotropy represen-
tation of M expressed in the basis(X1, . . . ,Xn). Let α̃ : H −→ Spinn be the lift ofα to
Spinn induced by the given spin structure of M andΣα̃M −→ M be the spinor bundle
of M associated with̃α. Let Ĝ be the set of equivalence classes of irreducible unitary
representations of G (in the following we shall always identify an element of̂G with
one of its representants).

i) The space L2(M,Σα̃ M) splits under the unitary left action of G into a direct
Hilbert sum ⊕

γ∈Ĝ

Vγ ⊗HomH(Vγ ,Σn) (2.2)

where Vγ is the space of the representationγ (i.e.,γ : G−→ U(Vγ)) and

HomH(Vγ ,Σn) :=
{

f ∈ Hom(Vγ ,Σn) s.t.

∀h∈ H, f ◦ γ(h) = (δn ◦ α̃) (h)◦ f
}
.
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ii) The Dirac operator D of M preserves each summand of(2.2); more precisely,
if (e1, . . . ,en) denotes the canonical basis ofRn, then for everyγ ∈ Ĝ, the
restriction of D to Vγ ⊗ HomH(Vγ ,Σn) is given byId ⊗ Dγ , where, for every
A∈ HomH(Vγ ,Σn),

Dγ (A) :=−
n

∑
k=1

ek ·A◦Teγ(Xk)+
( n

∑
i=1

βiei + ∑
i< j<k

αi jkei ·ej ·ek

)
·A, (2.3)

and

βi :=
1
2

n

∑
j=1

〈[Xj ,Xi ]p,Xj〉

αi jk :=
1
4
(〈[Xi ,Xj ]p,Xk〉+ 〈[Xj ,Xk]p,Xi〉+ 〈[Xk,Xi ]p,Xj〉)

(here and henceforth Xp will denote the image of X∈ g under the projection
g−→ p with kernelh).

The following statement will be useful for taking the symmetries of M into account,
see Examples 2.3.4 below.

Lemma 2.3.2 Under the hypotheses ofTheorem 2.3.1let 〈· , ·〉′ be a further homoge-
neous metric on M and f: G−→G be a Lie-group-homomorphism such that f(H)⊂H
and f∗ := [Te f ] is an orientation-preserving isometry(T[e]M,〈· , ·〉) −→ (T[e]M,〈· , ·〉′).
Then the pull-back spin structure f∗Spiñα(TM) is described by

H −→ Spinn

h 7−→ f̂−1 · α̃ ◦ f (h) · f̂

where f̂ ∈ Spinn satisfiesξ ( f̂ ) = f∗.

Proof: The proof relies on the identityf∗ ◦Ad(g) = Ad( f (g)) ◦ f∗ for everyg ∈ G,
which implies in particular

α(h) = f−1
∗ ◦α( f (h))◦ f∗

for everyh∈ H. �

Notes 2.3.3

1. Of course the homomorphism describing the pull-back spinstructure in Lemma
2.3.2 is well-defined sincêf is uniquely determined up to a sign.

2. One should pay attention that Lemma 2.3.2 can only be applied once p.o.n.b.
(X1, . . . ,Xn) and (X′

1, . . . ,X
′
n) of p w.r.t. 〈· , ·〉 and 〈· , ·〉′ respectively have been

chosen. Then all the objects above should be expressed in those bases, see Ex-
amples 2.3.4 below.
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Examples 2.3.4Consider againM := SU2/Q8, fix a1,a2,a3 ∈ R∗ and as above set
Xk := akAk for k∈ {1,2,3}. We write(M,〈· , ·〉a1,a2,a3,ε j ) for M endowed with the met-
ric and the orientation given by(X1,X2,X3) and theε j -spin structure (j ∈ {0,1,2,3}).

1. SetX′
1 := X1, X′

2 := −X2 andX′
3 := −X3. Let f (A1) := A1, f (A2) := −A2 and

f (A3) := −A3. Setting f (I2) := I2 and extendingf linearly one obtains a Lie-
group-homomorphism SU2 → SU2 inducing an orientation-preserving isome-
try (M,〈· , ·〉a1,a2,a3) −→ (M,〈· , ·〉a1,−a2,−a3). The matrix of f∗ = f in the bases
(X1,X2,X3) and(X′

1,X
′
2,X

′
3) respectively is the identity so that̂f = 1 can be cho-

sen. Applying Lemma 2.3.2 the pull-back of theε j -spin structure byf is then
described by

Q8 −→ SU2, h 7−→ ε j (h) f (h)

(remember that−I2 ∈Ker(ε j )), i.e., the pull-back of theε0- (resp.ε2-) spin struc-
ture is theε1- (resp.ε3-) one. In other words, changing the sign of botha2 anda3

changes neither the metric nor the orientation, however it permutes theε0- (resp.
ε2-) spin structure with theε1- (resp.ε3-) one. In particular the Dirac operator on
e.g.(M,〈· , ·〉a1,a2,a3,ε0) coincides with that of(M,〈· , ·〉a1,−a2,−a3,ε1).

2. Let σ be a permutation of{0,1,2,3} with σ(0) = 0 and setX′
k := aσ(k)Ak for

k ∈ {1,2,3}. Let f (A1) := Aσ−1(1), f (A2) := Aσ−1(2) and f (A3) := ε(σ)Aσ−1(3)

whereε(σ)∈ {−1,1} is the signature ofσ . Setting in the same way as just above
f (I2) := I2 and extendingf linearly one obtains a Lie-group-homomorphism
SU2 → SU2 inducing an orientation-preserving isometry(M,〈· , ·〉a1,a2,a3) −→
(M,〈· , ·〉aσ(1) ,aσ(2),aσ(3)

). This time the matrix off∗ = f in the bases(X1,X2,X3)

and (X′
1,X

′
2,X

′
3) respectively is not the identity, however it coincides withthe

matrix of f in the basis(A1,A2,A3) so that, per definition of the universal 2-fold
covering map,

f̂−1 · f (h) · f̂ = h

for any lift f̂ of f to SU2 and everyh∈ Q8. The pull-back throughf of theε j -
spin structure is therefore the(ε j ◦ f )-one, that is, theεσ( j)-one. In other words,
permuting the coefficientsa1,a2,a3 induces an orientation-preserving isometry
permuting the spin structure in the reverse way, theε0-one staying unchanged
under that transformation. In particular the Dirac operator on(M,〈· , ·〉a1,a2,a3,ε j )
coincides with that of
(M,〈· , ·〉aσ(1) ,aσ(2),aσ(3)

,εσ−1( j)).

3. It is well-known that, for any fixed metric and spin structure onM, the Dirac op-
erators for the two different orientations are just opposite from one another (this
is always the case in odd dimensions). For example, if one turnsa1 into−a1 and
lets a2 anda3 unchanged, then the Dirac operator on e.g.(M,〈· , ·〉−a1,a2,a3,ε0)
coincides with minus that of(M,〈· , ·〉a1,−a2,−a3,ε0), i.e., with minus that of
(M,〈· , ·〉a1,a2,a3,ε1).

Note that Examples 2.3.4 essentially exhausts all possibleisometric transformations of
M since the only Lie-group-automorphismsf of SU2 preserving Q8 are characterized
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by f (Ak) = ε(k)Aσ(k) for some permutationσ of {1,2,3} andε(k) ∈ {−1,1}.

We come now to the computation of the Dirac operator onM = SU2/Q8. We begin
with the part of the Dirac operator that does not depend on therepresentationγ of SU2.
Note also that this part only depends on the metric chosen onM and not on its spin
structure.

Proposition 2.3.5 For the metric on M given by a1,a2,a3 we haveβ j = 0 for every

j ∈ {1,2,3} andα123=
a2

1a2
2+a2

2a2
3+a2

1a2
3

2a1a2a3
. In particular

3

∑
j=1

β jej ·+α123e1 ·e2 ·e3·=−a2
1a2

2+a2
2a

2
3+a2

1a2
3

2a1a2a3
Id.

Proof: We compute the Lie-brackets[Xj ,Xk] for all 1 ≤ j < k ≤ 3. SinceA1A2 =
−A2A1 = A3 we have

[X1,X2] = a1a2[A1,A2]

= 2a1a2A3

=
2a1a2

a3
X3,

and analogously[X2,X3] =
2a2a3

a1
X1, [X3,X1] =

2a1a3
a2

X2. We straightforward deduce that
β1 = β2 = β3 = 0. Furthermore,

α123 =
1
4
(〈[X1,X2],X3〉+ 〈[X2,X3],X1〉+ 〈[X3,X1],X2〉)

=
1
4

(
2a1a2

a3
+

2a2a3

a1
+

2a1a3

a2

)

=
a2

1a2
2+a2

2a
2
3+a2

1a
2
3

2a1a2a3
.

It remains to notice that, by convention, the complex volumeform i[
3+1

2 ]e1 · e2 · e3 =
−e1 ·e2 ·e3 acts by the identity onΣ3. This concludes the proof. �

We next determine the space of equivariant homomorphisms for eachγ ∈ ŜU2 and each
ε j -spin structure onM. First recall that the irreducible unitary representations of SU2

are given by its natural action on then+1-dimensional vector spaces of alln-graded
homogeneous complex polynomials in two variables: set, forany n ∈ N (we include
n= 0)

Vn := {P∈ C[z1,z2], P= 0 orP homogeneous andd◦P= n}.

Then SU2 acts onVn through

πn : SU2 −→ Aut(Vn)

A 7−→ (πn(A) : P 7→ P◦RA),

whereP◦RA(z) := P(zA) for everyz= (z1 z2) ∈ C2. From now on we shall always
work with the following basis ofVn:

(Pk(z1,z2) := zn−k
1 zk

2, 0≤ k≤ n).
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Identifying Spin3 to SU2 the spinor representation Spin3
δ3−→ Aut(Σ3) is equivalent

to the standard representation SU2 −→ Aut(C2). For every lift ε j · α̂ of the isotropy
representationα of M the space of equivariant homomorphisms forπn and for the
ε j -spin structure - that we shall denote by HomQ8,ε j (Vn,C

2) - is then given by

HomQ8,ε j (Vn,C
2) =

{
f ∈ Hom(Vn,C

2) s.t. f ◦πn(h) = ε j (h)h◦ f ∀h∈ Q8
}
.

We fix the following basis(F0, . . . ,Fn,G0, . . . ,Gn) of Hom(Vn,C
2) (which is that of

[A2, p.73]): set, for everyk∈ {0, . . . ,n},

Fk(Pl ) :=





(1 0) if l = k andk even
(0 1) if l = k andk odd
0 otherwise,

and

Gk(Pl ) :=





(0 1) if l = k andk even
(1 0) if l = k andk odd
0 otherwise.

W.r.t. the bases(P0, . . . ,Pn) and((1 0),(0 1)) of Vn andC2 respectively the elements
Fk andGk are described by matrices of the form:

Fk =

(
0 . . . 0 1 0 . . . 0
0 . . . 0 0 0 . . . 0

)
, Gk =

(
0 . . . 0 0 0 . . . 0
0 . . . 0 1 0 . . . 0

)

if k is even and

Fk =

(
0 . . . 0 0 0 . . . 0
0 . . . 0 1 0 . . . 0

)
, Gk =

(
0 . . . 0 1 0 . . . 0
0 . . . 0 0 0 . . . 0

)

if k is odd, where the “1” always stands in the(k+1)st column.

Lemma 2.3.6 Let M carry theε j -spin structure for j∈ {0,1,2,3}. Then
HomQ8,ε j (Vn,C

2) = {0} if n is even. Moreover

0. for j = 0 we have

HomQ8,ε0(Vn,C
2) =





⊕ n−1
2

k=0C(Fk+Fn−k) if n ≡ 1 (4)

⊕ n−1
2

k=0C(Gk−Gn−k) if n ≡ 3 (4).

1. for j = 1 we have

HomQ8,ε1(Vn,C
2) =





⊕ n−1
2

k=0C(Fk−Fn−k) if n ≡ 1 (4)

⊕ n−1
2

k=0C(Gk+Gn−k) if n ≡ 3 (4).

2. for j = 2 we have

HomQ8,ε2(Vn,C
2) =





⊕ n−1
2

k=0C(Gk+Gn−k) if n ≡ 1 (4)

⊕ n−1
2

k=0C(Fk−Fn−k) if n ≡ 3 (4).
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3. for j = 3 we have

HomQ8,ε3(Vn,C
2) =





⊕ n−1
2

k=0C(Gk−Gn−k) if n ≡ 1 (4)

⊕ n−1
2

k=0C(Fk+Fn−k) if n ≡ 3 (4).

Proof: Since −I2 ∈ Ker(ε j ) any element f ∈ HomQ8,ε j (Vn,C
2) must satisfy f ◦

πn(−I2) =− f , with πn(−I2) = (−1)nIdVn, so that the condition reads

(−1)n f =− f ,

which requiresf = 0 as soon asn is even.
From now on, we assume thatn is odd. We computeπn(A j) for j = 1,2 (remember that
A1 andA2 generate Q8): for everyk∈ {0, . . . ,n} andz∈ C2,

{πn(A1)}(Pk)(z) = Pk

(
(z1 z2) ·

(
−i 0
0 i

))

= Pk(−iz1, iz2)

= (−iz1)
n−k(iz2)

k

= (−1)n−kinzn−k
1 zk

2,

i.e.,{πn(A1)}(Pk) = (−1)n−kinPk. Analogously,

{πn(A2)}(Pk)(z) = Pk

(
(z1 z2) ·

(
0 i
i 0

))

= Pk(iz2, iz1)

= (iz2)
n−k(iz1)

k,

i.e.,{πn(A2)}(Pk) = inPn−k. The conditionsf ◦πn(Al ) = ε j (Al )Al ◦ f for l = 1,2 then
read ∣∣∣∣∣

f (Pk) = (−1)k+ n−1
2 iε j(A1)(A1 ◦ f )(Pk)

f (Pn−k) = (−1)
n+1

2 iε j(A2)(A2 ◦ f )(Pk)
(2.4)

for everyk ∈ {0,1, . . . ,n}. From now on we denote by

(
f1k

f2k

)
:= f (Pk) ∈ C2. We

examine each case separately.
• Case j= 0: In that case the conditions (2.4) are equivalent to

∣∣∣∣∣
f (Pk) = (−1)k+ n−1

2 i(A1 ◦ f )(Pk)

f (Pn−k) = (−1)
n+1

2 i(A2 ◦ f )(Pk),

that is, ∣∣∣∣∣∣∣∣∣

f1k = (−1)k+ n−1
2 f1k

f2k = (−1)k+ n+1
2 f2k

f1n−k = (−1)
n−1

2 f2k

f2n−k = (−1)
n−1

2 f1k.
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If n≡ 1 (4) then those identities become
∣∣∣∣∣∣∣∣

f1k = (−1)k f1k

f2k =−(−1)k f2k

f1n−k = f2k

f2n−k = f1k,

hencef1k = 0 if k is odd (resp.f2k = 0 if k is even) and( f1n−k, f2n−k) = ( f2k, f1k) for
every 0≤ k≤ n−1

2 . We deduce that

f = f10(F0+Fn)+ f21(F1+Fn−1)+ . . .+ f1n−1
2
(Fn−1

2
+Fn+1

2
)

and the result in that case.
If n≡ 3 (4) then those identities become

∣∣∣∣∣∣∣∣

f1k =−(−1)k f1k

f2k = (−1)k f2k

f1n−k =− f2k

f2n−k =− f1k,

hencef1k = 0 if k is even (resp.f2k = 0 if k is odd) and( f1n−k, f2n−k) = (− f2k,− f1k)
for every 0≤ k≤ n−1

2 . We deduce that

f = f20(G0−Gn)+ f11(G1−Gn−1)+ . . .+ f1n−1
2
(Gn−1

2
−Gn+1

2
)

and the result in that case.
• Case j= 1: In that case the conditions (2.4) are equivalent to

∣∣∣∣∣
f (Pk) = (−1)k+ n−1

2 i(A1◦ f )(Pk)

f (Pn−k) = (−1)
n−1

2 i(A2◦ f )(Pk),

that is, ∣∣∣∣∣∣∣∣∣

f1k = (−1)k+ n−1
2 f1k

f2k = (−1)k+ n+1
2 f2k

f1n−k = (−1)
n+1

2 f2k

f2n−k = (−1)
n+1

2 f1k.

If n≡ 1 (4) then those identities become
∣∣∣∣∣∣∣∣

f1k = (−1)k f1k

f2k =−(−1)k f2k

f1n−k =− f2k

f2n−k =− f1k,

hencef1k = 0 if k is odd (resp.f2k = 0 if k is even) and( f1n−k, f2n−k) = (− f2k,− f1k)
for every 0≤ k≤ n−1

2 . We deduce that

f = f10(F0−Fn)+ f21(F1−Fn−1)+ . . .+ f1n−1
2
(Fn−1

2
−Fn+1

2
)

and the result in that case.
If n≡ 3 (4) then those identities become

∣∣∣∣∣∣∣∣

f1k =−(−1)k f1k

f2k = (−1)k f2k

f1n−k = f2k

f2n−k = f1k,
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hencef1k = 0 if k is even (resp.f2k = 0 if k is odd) and( f1n−k, f2n−k) = ( f2k, f1k) for
every 0≤ k≤ n−1

2 . We deduce that

f = f20(G0+Gn)+ f11(G1+Gn−1)+ . . .+ f1n−1
2
(Gn−1

2
+Gn+1

2
)

and the result in that case.
• Case j= 2: In that case the conditions (2.4) are equivalent to

∣∣∣∣∣
f (Pk) = (−1)k+ n+1

2 i(A1 ◦ f )(Pk)

f (Pn−k) = (−1)
n+1

2 i(A2 ◦ f )(Pk),

that is, ∣∣∣∣∣∣∣∣∣

f1k = (−1)k+ n+1
2 f1k

f2k = (−1)k+ n−1
2 f2k

f1n−k = (−1)
n−1

2 f2k

f2n−k = (−1)
n−1

2 f1k.

If n≡ 1 (4) then those identities become
∣∣∣∣∣∣∣∣

f1k =−(−1)k f1k

f2k = (−1)k f2k

f1n−k = f2k

f2n−k = f1k,

hencef1k = 0 if k is even (resp.f2k = 0 if k is odd) and( f1n−k, f2n−k) = ( f2k, f1k) for
every 0≤ k≤ n−1

2 . We deduce that

f = f20(G0+Gn)+ f11(G1+Gn−1)+ . . .+ f2n−1
2
(Gn−1

2
+Gn+1

2
)

and the result in that case.
If n≡ 3 (4) then those identities become

∣∣∣∣∣∣∣∣

f1k = (−1)k f1k

f2k =−(−1)k f2k

f1n−k =− f2k

f2n−k =− f1k,

hencef1k = 0 if k is odd (resp.f2k = 0 if k is even) and( f1n−k, f2n−k) = (− f2k,− f1k)
for every 0≤ k≤ n−1

2 . We deduce that

f = f10(F0−Fn)+ f21(F1−Fn−1)+ . . .+ f2n−1
2
(Fn−1

2
−Fn+1

2
)

and the result in that case.
• Case j= 3: In that case the conditions (2.4) are equivalent to

∣∣∣∣∣
f (Pk) = (−1)k+ n+1

2 i(A1 ◦ f )(Pk)

f (Pn−k) = (−1)
n−1

2 i(A2 ◦ f )(Pk),

that is, ∣∣∣∣∣∣∣∣∣

f1k = (−1)k+ n+1
2 f1k

f2k = (−1)k+ n−1
2 f2k

f1n−k = (−1)
n+1

2 f2k

f2n−k = (−1)
n+1

2 f1k.
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If n≡ 1 (4) then those identities become
∣∣∣∣∣∣∣∣

f1k =−(−1)k f1k

f2k = (−1)k f2k

f1n−k =− f2k

f2n−k =− f1k,

hencef1k = 0 if k is even (resp.f2k = 0 if k is odd) and( f1n−k, f2n−k) = (− f2k,− f1k)
for every 0≤ k≤ n−1

2 . We deduce that

f = f20(G0−Gn)+ f11(G1−Gn−1)+ . . .+ f2n−1
2
(Gn−1

2
−Gn+1

2
)

and the result in that case.
If n≡ 3 (4) then those identities become

∣∣∣∣∣∣∣∣

f1k = (−1)k f1k

f2k =−(−1)k f2k

f1n−k = f2k

f2n−k = f1k,

hencef1k = 0 if k is odd (resp.f2k = 0 if k is even) and( f1n−k, f2n−k) = ( f2k, f1k) for
every 0≤ k≤ n−1

2 . We deduce that

f = f10(F0+Fn)+ f21(F1+Fn−1)+ . . .+ f2n−1
2
(Fn−1

2
+Fn+1

2
)

and the result in that case. This concludes the proof. �

It remains to compute the mapTI2πn for every (odd)n.

Lemma 2.3.7 The endomorphisms TI2πn(Xj), 1 ≤ j ≤ 3, are given in the basis
(P0, . . . ,Pn) of Vn by:

{TI2πn(X1)}(Pk) = −ia1(n−2k)Pk

{TI2πn(X2)}(Pk) = ia2 ((n− k)Pk+1+ kPk−1)

{TI2πn(X3)}(Pk) = a3 (−(n− k)Pk+1+ kPk−1)

for every k∈ {0, . . . ,n}, with the convention P−1 = Pn+1 = 0.

Proof: For everyX ∈ su2, P∈Vn andz∈ C2, we have

({TI2πn(X)}(P))(z) =
d
dt
|t=0

(
P◦Rexp(tX)

)
(z)

=
d
dt
|t=0

(
P◦Rexp(tX)(z)

)

=
d
dt
|t=0 (P(zexp(tX)))

= dzP(zX)

=
∂P
∂z1

(z)(zX)1+
∂P
∂z2

(z)(zX)2 .
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SincezA1 = (−iz1 iz2), zA2 = (iz2 iz1) andzA3 = (−z2 z1) we have, for everyk ∈
{0, . . . ,n}

{TI2πn(X1)}(Pk) = a1{TI2πn(A1)}(Pk)

= a1

(
−iz1

∂Pk

∂z1
(z)+ iz2

∂Pk

∂z2
(z)

)

= −ia1

(
(n− k)z1zn−k−1

1 zk
2− kz2zn−k

1 zk−1
2

)

= −ia1

(
(n− k)zn−k

1 zk
2− kzn−k

1 zk
2

)

= −ia1(n−2k)Pk.

ForX2 we have

{TI2πn(X2)}(Pk) = a2{TI2πn(A2)}(Pk)

= a2

(
iz2

∂Pk

∂z1
(z)+ iz1

∂Pk

∂z2
(z)

)

= ia2

(
(n− k)zn−k−1

1 zk+1
2 + kzn−k+1

1 zk−1
2

)

= ia2((n− k)Pk+1+ kPk−1) ,

and forX3 we obtain

{TI2πn(X3)}(Pk) = a3{TI2πn(A3)}(Pk)

= a3

(
−z2

∂Pk

∂z1
(z)+ z1

∂Pk

∂z2
(z)

)

= a3

(
−(n− k)zn−k−1

1 zk+1
2 + kzn−k+1

1 zk−1
2

)

= a3 (−(n− k)Pk+1+ kPk−1) .

Note that the above expressions for{TI2πn(X2)}(Pk) and {TI2πn(X3)}(Pk) are also
valid for k= 0 ork= n with the conventionP−1 = Pn+1 = 0. The result follows. �

We now compute the componentDn of the Dirac operator ofM acting on
HomQ8,ε j (Vn,C

2), see (2.3). We adopt henceforth the following convention:Fk :=
Gk := 0 as soon ask /∈ {0, . . . ,n}.
The fix part ofDn has already been computed in Proposition 2.3.5, so that onlythe
endomorphismD′

n of HomQ8,ε j (Vn,C
2) given by

D′
nA=−

3

∑
j=1

ej ·A◦TI2πn(Xj)

for everyA∈ HomQ8,ε j (Vn,C
2), remains to be made explicit.

First note that the Clifford product byej can be identified with the matrix multiplica-
tion byA j for j ∈ {1,2,3}.
Furthermore, it is straightforward to show using Lemma 2.3.7 that, for everyk ∈
{0,1, . . . ,n},

Fk ◦TI2πn(X1) = −ia1(n−2k)Fk

Fk ◦TI2πn(X2) = ia2 ((n− k+1)Gk−1+(k+1)Gk+1)

Fk ◦TI2πn(X3) = a3 (−(n− k+1)Gk−1+(k+1)Gk+1) .
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Those identities still hold fork = 0 or n using our convention above on theFk’s and
Gk’s. To obtain the corresponding identities on theGk’s one just has to exchange the
roles ofFl andGl for everyl :

Gk ◦TI2πn(X1) = −ia1(n−2k)Gk

Gk ◦TI2πn(X2) = ia2 ((n− k+1)Fk−1+(k+1)Fk+1)

Gk ◦TI2πn(X3) = a3 (−(n− k+1)Fk−1+(k+1)Fk+1) .

We deduce the following set of identities:

(Fk±Fn−k)◦TI2πn(X1) =−ia1(n−2k)(Fk∓Fn−k)

(Fk±Fn−k)◦TI2πn(X2) = ia2

(
(k+1)(Gk+1±Gn−k−1)

+ (n− k+1)(Gk−1±Gn−k+1)
)

(Fk±Fn−k)◦TI2πn(X3) = a3

(
(k+1)(Gk+1∓Gn−k−1)

− (n− k+1)(Gk−1∓Gn−k+1)
)

(Gk±Gn−k)◦TI2πn(X1) =−ia1(n−2k)(Gk∓Gn−k)

(Gk±Gn−k)◦TI2πn(X2) = ia2

(
(k+1)(Fk+1±Fn−k−1)

+ (n− k+1)(Fk−1±Fn−k+1)
)

(Gk±Gn−k)◦TI2πn(X3) = a3

(
(k+1)(Fk+1∓Fn−k−1)

− (n− k+1)(Fk−1∓Fn−k+1)
)
.

(2.5)

On the other hand, it is also a short calculation to show

A1 · (Fk±Fn−k) = (−1)k+1i(Fk∓Fn−k)
A2 · (Fk±Fn−k) = i(Gk±Gn−k)
A3 · (Fk±Fn−k) = (−1)k+1(Gk∓Gn−k)
A1 · (Gk±Gn−k) = (−1)ki(Gk∓Gn−k)
A2 · (Gk±Gn−k) = i(Fk±Fn−k)
A3 · (Gk±Gn−k) = (−1)k(Fk∓Fn−k).

(2.6)
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Bringing (2.5) and (2.6) together we deduce that

D′
n(Fk±Fn−k) =−

3

∑
j=1

ej · (Fk±Fn−k)◦TI2πn(Xj)

= −
3

∑
j=1

A j · (Fk±Fn−k)◦TI2πn(Xj)

(2.5)
= ia1(n−2k)A1 · (Fk∓Fn−k)

−ia2A2 ·
(
(k+1)(Gk+1±Gn−k−1)+ (n− k+1)(Gk−1±Gn−k+1)

)

−a3A3 ·
(
(k+1)(Gk+1∓Gn−k−1)− (n− k+1)(Gk−1∓Gn−k+1)

)

(2.6)
= (−1)ka1(n−2k)(Fk±Fn−k)

+a2

(
(k+1)(Fk+1±Fn−k−1)+ (n− k+1)(Fk−1±Fn−k+1)

)

+(−1)ka3

(
(k+1)(Fk+1±Fn−k−1)− (n− k+1)(Fk−1±Fn−k+1)

)

= (−1)ka1(n−2k)(Fk±Fn−k)

+(k+1)(a2+(−1)ka3)(Fk+1±Fn−k−1)

+(n− k+1)(a2− (−1)ka3)(Fk−1±Fn−k+1).

Similarly,

D′
n(Gk±Gn−k) =−

3

∑
j=1

A j · (Gk±Gn−k)◦TI2πn(Xj)

(2.5)
= ia1(n−2k)A1 · (Gk∓Gn−k)

−ia2A2 ·
(
(k+1)(Fk+1±Fn−k−1)+ (n− k+1)(Fk−1±Fn−k+1)

)

−a3A3 ·
(
(k+1)(Fk+1∓Fn−k−1)− (n− k+1)(Fk−1∓Fn−k+1)

)

(2.6)
= −(−1)ka1(n−2k)(Gk±Gn−k)

+a2

(
(k+1)(Gk+1±Gn−k−1)+ (n− k+1)(Gk−1±Gn−k+1)

)

−(−1)ka3

(
(k+1)(Gk+1±Gn−k−1)− (n− k+1)(Gk−1±Gn−k+1)

)

= −(−1)ka1(n−2k)(Gk±Gn−k)

+(k+1)(a2− (−1)ka3)(Gk+1±Gn−k−1)

+(n− k+1)(a2+(−1)ka3)(Gk−1±Gn−k+1).
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Note that, fork= n−1
2 , Fk+1±Fn−k−1 =±(Fk±Fn−k) and the same holds for theGk’s,

so that

D′
n(Fn−1

2
±Fn+1

2
)

= (−1)
n−1

2 a1(Fn−1
2
±Fn+1

2
)

+
n+1

2
(a2+(−1)

n−1
2 a3)(Fn+1

2
±Fn−1

2
)

+
n+3

2
(a2− (−1)

n−1
2 a3)(Fn−3

2
±Fn+3

2
)

=
(
(−1)

n−1
2 a1±

n+1
2

(a2+(−1)
n−1

2 a3)
)
(Fn−1

2
±Fn+1

2
)

+
n+3

2
(a2− (−1)

n−1
2 a3)(Fn−3

2
±Fn+3

2
)

and in the same way

D′
n(Gn−1

2
±Gn+1

2
)

= −(−1)
n−1

2 a1(Gn−1
2
±Gn+1

2
)

+
n+1

2
(a2− (−1)

n−1
2 a3)(Gn+1

2
±Gn−1

2
)

+
n+3

2
(a2+(−1)

n−1
2 a3)(Gn−3

2
±Gn+3

2
)

=
(
− (−1)

n−1
2 a1±

n+1
2

(a2− (−1)
n−1

2 a3)
)
(Gn−1

2
±Gn+1

2
)

+
n+3

2
(a2+(−1)

n−1
2 a3)(Gn−3

2
±Gn+3

2
).

Denoting by(v0, . . . ,vn−1
2
) the basis of HomQ8,ε j (Vn,C

2) computed in Lemma 2.3.6

we conclude the proof of Theorem 2.1.1iv).

Note 2.3.8From Theorem 2.1.1iv) the matrix representing the operatorDn in the basis
(v0, . . . ,vn−1

2
) is not symmetric. Beware however that this basis does not takeA1,A2,A3

into account the same way and turns out not to be orthonormal.

We now make the eigenvalue ofD1 explicit:

Corollary 2.3.9 Fix j ∈ {0,1,2,3} and let ε1,ε2,ε3 ∈ {−1,1} be defined byεl :=
−(−1)δ j0+δ jl for l ∈ {1,2,3}. Then under the assumptions ofTheorem 2.1.1the fol-
lowing number is an eigenvalue of the Dirac operator of M for the spin structure given
byε j and the metric induced by a1,a2,a3:

−(ε2a2− ε3a3)
2a2

1+2a2a3(ε2a2+ ε3a3)a1−a2
2a2

3

2a1a2a3
.

If in particular ε2ε3a2a3 > 0 then there exists a1 ∈ R∗ such that for the corresponding
metric the Dirac operator of M has a non-zero kernel.
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Proof: Forn= 1 the operatorD′
n can be expressed from Theorem 2.1.1 as

D′
1 = (ε1a1+ ε2a2+ ε3a3)Id

for theεl ’s defined above (beware that they depend onj). Therefore the corresponding
Dirac operatorDn is given by

D1 =
(

ε1a1+ ε2a2+ ε3a3−
a2

1a2
2+a2

2a2
3+a2

1a
2
3

2a1a2a3

)
Id

=
−(ε2a2− ε3a3)

2a2
1+2a2a3(ε2a2+ ε3a3)a1−a2

2a
2
3

2a1a2a3
Id,

from which the first statement follows.
An elementary computation shows that, ifε2ε3a2a3 > 0, then the numerator of the
eigenvalue vanishes for

a1 =
a2a3(ε2a2+ ε3a3)±2(ε2ε3a2a3)

3
2

(ε2a2− ε3a3)2

in the caseε2a2 6= ε3a3 and

a1 =
ε2a3

4

if ε2a2 = ε3a3. Note that none of those numbers can vanish because ofa2a3 6= 0. This
concludes the proof. �

Notes 2.3.10

1. It follows from Corollary 2.3.9 that, for any given spin structure onM, there
exists a 2-parameter-family of Riemannian metrics for which M admits non-
zero harmonic spinors. This is not a surprise since the existence of such metrics
already follows from a purely theoretical result by Christian Bär [A4]. However
we can make some of those metrics explicit here.

2. There may exist non-zero harmonic spinors for other metrics onM and possibly
without needing the conditionε2ε3a2a3 > 0 from Corollary 2.3.9, since we have
up to now only studied the eigenvalue corresponding to one particular represen-
tation.

3. In the same way the eigenvalue computed in Corollary 2.3.9is not necessari-
ly the smallest one in absolute value. Choose for example theε0-spin structure,

a2 = a3 < 0 anda1 ∈]− a2
8 ,−

a2
2 [. Then

4a1a2−a2
2

2a1
and− 8a1a2+a2

2
2a1

are eigenvalues
of the Dirac operator ofM, the first one corresponding ton = 1 (i.e., to the
one computed in Corollary 2.3.9) and the second one ton = 3, see Corollary

2.1.2. However one has from the assumptions ona1,a2,a3 that | − 8a1a2+a2
2

2a1
| <

|4a1a2−a2
2

2a1
|.
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We end this section with an important remark which actually constitutes the main
motivation for this work. The manifoldM can be seen as hypersurface of the 4-
dimensional round sphereS4 (with sectional curvature 1): consider the manifold{A∈
M3×3(R),

tA = A, tr(A) = 0 and tr(A2) = 2} ∼= S4 with metric (A,B) 7−→ 〈A,B〉 :=
1
2tr(AB). Let B := diag(λ ,−λ −µ ,µ) ∈ S4 whereλ ,µ ∈R satisfyλ +2µ 6= 0, λ 6= µ ,
µ +2λ 6= 0 andλ 2+(λ + µ)2+ µ2 = 2. Set

N := {π(P) ·B ·π(P)−1, P∈ SU2} ⊂ S4,

where SU2
π−→ SO3 is the universal 2-fold covering map. Then it is an elementary

exercise to show thatN is a hypersurface ofS4 which is diffeomorphic to SU2/Q8,
that the homogeneous metric induced by the inclusion mapN ⊂ S4 is given by
a1 := − 1

2(λ+2µ) ,a2 := 1
2(µ−λ ) ,a3 := 1

2(µ+2λ ) and that choosingνB := 1√
3
diag(2µ +

λ ,λ −µ ,−2λ −µ) ∈ TBS4 as unit normal vector field the induced spin structure onN
is theε0-one. Here beware that the metrics obtained form a one-parameter strict sub-
family of that of all homogeneous metrics onM.
Furthermore, the Weingarten endomorphism-field ofN w.r.t. νB - seen as endomor-
phism ofsu(2) - is given in the basis(X1,X2,X3) of su(2) by

Mat(A ) =
√

3·diag(
λ

2µ +λ
,

µ +λ
µ −λ

,− µ
2λ + µ

).

In particular, the mean curvatureH := 1
3tr(A ) of N in S4 w.r.t. νB is

H =
3
√

3·λ µ(λ + µ)
(2µ +λ )(µ −λ )(2λ + µ)

.

Corollary 2.3.11 Under the hypotheses ofTheorem 2.1.1assume furthermore that
M sits in S4, i.e., that a1 = − 1

2(λ+2µ) ,a2 = 1
2(µ−λ ) ,a3 = 1

2(µ+2λ ) for someλ ,µ ∈ R

satisfying λ + 2µ 6= 0, λ 6= µ , µ + 2λ 6= 0 and λ 2 + (λ + µ)2 + µ2 = 2. Then
9
4(H

2 + 1) is an eigenvalue of the Dirac Laplacian of M for the induced (ε0-)spin
structure.

Proof: The result follows straightforward from Corollary 2.3.9 in the casej = 0 and
from an elementary computation giving

9
4
(H 2+1) =

9
(λ +2µ)2(µ −λ )2(µ +2λ )2

=

(−(a2−a3)
2a2

1+2a2a3(a2+a3)a1−a2
2a2

3

2a1a2a3

)2

.

�

Corollary 2.3.11 confirms what had been already noticed since Christian Bär’s work
[A5] on extrinsic upper eigenvalue bounds for the lower partof the Dirac spectrum:
for any compact orientable hypersurfaceM

m
with constant mean curvatureH (and

carrying the induced metric and spin structure) in the(m+ 1)-dimensional round

sphere the numberm
2

4 (H 2+1) is an eigenvalue of its Dirac Laplacian. However the
question still remains open whether this eigenvalue shouldbe the smallest one or not.
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2.4 Computation of the spectrum of the Dirac operator
on M for particular metrics

Although the matrices representing the Dirac operatorD of M have a “simple” shape
(they are tridiagonal, see Theorem 2.1.1), their spectrum is still hard to compute ex-
plicitly since there does not exist any general formula giving the eigenvalues of such
matrices. It is however possible to compute them for particular values of the param-
etersa1,a2,a3 ∈ R∗, i.e., for particular metrics onM. In Corollary 2.1.2 we do it for
the so-called Berger metrics onM (compare with [A2, p.71] where the author chooses
a2 = 1=−a3 anda1 =− 1

T with T > 0).
Namely, if we assume thata2 = a3 then the identities forD′

n(Fk±Fn−k) andD′
n(Gk±

Gn−k) become

D′
n(Fk±Fn−k) = (−1)ka1(n−2k)(Fk±Fn−k)

+(k+1)(1+(−1)k)a2(Fk+1±Fn−k−1)

+(n− k+1)(1− (−1)k)a2(Fk−1±Fn−k+1)

and

D′
n(Gk±Gn−k) = −(−1)ka1(n−2k)(Gk±Gn−k)

+(k+1)(1− (−1)k)a2(Gk+1±Gn−k−1)

+(n− k+1)(1+(−1)k)a2(Gk−1±Gn−k+1)

for everyk∈ {0, . . . , n−1
2 }. In particular, ifk is even, then

D′
n(Fk±Fn−k) = a1(n−2k)(Fk±Fn−k)

+2(k+1)a2(Fk+1±Fn−k−1)

and

D′
n(Gk±Gn−k) = −a1(n−2k)(Gk±Gn−k)

+2(n− k+1)a2(Gk−1±Gn−k+1).

If k is odd then

D′
n(Fk±Fn−k) = −a1(n−2k)(Fk±Fn−k)

+2(n− k+1)a2(Fk−1±Fn−k+1)

and

D′
n(Gk±Gn−k) = a1(n−2k)(Gk±Gn−k)

+2(k+1)a2(Gk+1±Gn−k−1).

We now consider each case separately. Remember that from Theorem 2.3.1 the Dirac
operatorD restricted toVn⊗HomQ8,ε j (Vn,C

2) is given by Id⊗Dn whereDn = D′
n−

(
a2

1a2
2+a2

1a2
3+a2

2a2
3

2a1a2a3
)Id. In particular the multiplicity of each eigenvalue ofDn should be

countedn+1 times for the spectrum ofD.
• Case j= 0:
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* If n≡ 1 (4): It follows from the identities just above and from Lemma 2.3.6 that
the matrix ofD′

n consists ofn−1
4 blocks on the diagonal of the form

(
(n−2k)a1 2(n− k)a2

2(k+1)a2 −(n−2(k+1))a1

)

wherek ∈ {0, . . . , n−5
2 } is even and of the isolated eigenvaluea1 + (n+ 1)a2

(corresponding tok= n−1
2 ). The eigenvalues of each such 2×2-matrix are simple

and given by

a1±
√
((n−2k)(n−2(k+1))+1)a2

1+4(n− k)(k+1)a2
2

with ((n−2k)(n−2(k+1))+1)= (n−2k−1)2.

* If n≡ 3 (4): It follows from the identities just above and from Lemma 2.3.6 that
the matrix ofD′

n consists ofn−3
4 blocks on the diagonal of the form

(
(n−2k)a1 2(n− k)a2

2(k+1)a2 −(n−2(k+1))a1

)

wherek∈ {1, . . . , n−5
2 } is odd and of the isolated eigenvalues−na1 (correspond-

ing to k= 0) anda1− (n+1)a2 (corresponding tok= n−1
2 ).

This shows 0.
• Case j= 1:

* If n≡ 1 (4): It follows from the identities just above and from Lemma 2.3.6 that
the matrix ofD′

n consists ofn−1
4 blocks on the diagonal of the form

(
(n−2k)a1 2(n− k)a2

2(k+1)a2 −(n−2(k+1))a1

)

wherek ∈ {0, . . . , n−5
2 } is even and of the isolated eigenvaluea1 − (n+ 1)a2

(corresponding tok = n−1
2 ). The eigenvalues of each such 2× 2-matrix have

already been computed in the casej = 0 above.

* If n≡ 3 (4): It follows from the identities just above and from Lemma 2.3.6 that
the matrix ofD′

n consists ofn−3
4 blocks on the diagonal of the form

(
(n−2k)a1 2(n− k)a2

2(k+1)a2 −(n−2(k+1))a1

)

wherek∈ {1, . . . , n−5
2 } is odd and of the isolated eigenvalues−na1 (correspond-

ing to k= 0) anda1+(n+1)a2 (corresponding tok= n−1
2 ).

This shows 1.
• Case j= 2 or j = 3: Sincea2 = a3 the Dirac spectra for theε2- andε3- spin structures
coincide, see Examples 2.3.4.2 withσ = (2 3).

* If n≡ 1 (4): It follows from the identities just above and from Lemma 2.3.6 that
the matrix ofD′

n consists ofn−1
4 blocks on the diagonal of the form

(
(n−2k)a1 2(n− k)a2

2(k+1)a2 −(n−2(k+1))a1

)

wherek ∈ {1, . . . , n−3
2 } is odd and of the isolated eigenvalue−na1 (correspon-

ding tok= 0).
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* If n≡ 3 (4): It follows from the identities just above and from Lemma 2.3.6 that
the matrix ofD′

n consists ofn+1
4 blocks on the diagonal of the form

(
(n−2k)a1 2(n− k)a2

2(k+1)a2 −(n−2(k+1))a1

)

wherek∈ {0, . . . , n−3
2 } is even.

This shows 2. and concludes the proof of Corollary 2.1.2.

Note 2.4.1 Of course one should understand each upper bound (e.g.n−5
2 ) for the pos-

sible values ofk in Corollary 2.1.2 as follows: if for a givenn it is negative then the
corresponding eigenvalues do not appear. For example ifM carries theε0-spin struc-

ture andn = 1 thenDn +
2a2

1+a2
2

2a1
Id has only one eigenvalue, namelya1 + 2a2 (with

multiplicity 2). Similarly, if j = 2,3 andn= 1, then only−a1 appears with multiplicity
2.

One could in a similar way compute the spectrum of the Dirac operator fora2 = −a3,
in which case the spectra would coincide for theε0- and theε1-spin structure onM
(use Examples 2.3.4).

We end this section with deriving from Corollary 2.1.2 the spectrum of the Dirac
operator onM for any of the 4 spin structures and the following metrics: for one of
the metrics with constant sectional curvature and for one ofthe 6 metrics induced by
minimal isometric embeddings intoS4 (i.e., for (λ = 0,µ = ±1), (λ = ±1,µ = 0) or
(λ ,µ) = ±(1,−1), see end of Section 2.3). In the first case the spectrum has already
been computed by Christian Bär in [A3, Thm. 2] and it can be easily checked that his
results coincide with ours.

Corollary 2.4.2 Under the hypotheses ofTheorem 2.1.1, assume furthermore that

i) a1 = a2 = a3 = 1. Then the spectrum of the Dirac operator of M w.r.t. theε0-spin
structure consists of the family

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3
2 +4k with multiplicity 2(k+1)(2k+1)

3
2 +4k+2 with multiplicity 4k(k+1)

− 3
2 −4k−1 with multiplicity 2k(2k+1)

− 3
2 −4k−3 with multiplicity 4(k+1)(k+2)
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where k runs overN and w.r.t. any of the other spin structuresε j of the family

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3
2 +4k with multiplicity 2k(2k+1)

3
2 +4k+2 with multiplicity 4(k+1)2

− 3
2 −4k−1 with multiplicity 2(k+1)(2k+1)

− 3
2 −4k−3 with multiplicity 4(k+1)2

where k runs overN.

ii) a1 =− 1
4,a2 = a3 =

1
2. Then the spectrum of the Dirac operator of M

* w.r.t. theε0-spin structure is given by

⋃

n∈N
n≡1(4)

{1
2
± 1

4

√
(n−2k−1)2+16(n− k)(k+1)

|k∈ {0, . . . ,
n−5

2
} even,

n
2
+1
}

⋃ ⋃

n∈N
n≡3(4)

{1
2
± 1

4

√
(n−2k−1)2+16(n− k)(k+1)

|k∈ {1, . . . ,
n−5

2
} odd,−n

2
,
n+3

4

}
,

each eigenvalue having multiplicity n+1 for the corresponding n.

* w.r.t. theε1-spin structure is given by

⋃

n∈N
n≡1(4)

{1
2
± 1

4

√
(n−2k−1)2+16(n− k)(k+1)

|k∈ {0, . . . ,
n−5

2
} even,−n

2

}

⋃ ⋃

n∈N
n≡3(4)

{1
2
± 1

4

√
(n−2k−1)2+16(n− k)(k+1)

|k∈ {1, . . . ,
n−5

2
} odd,

n
2
+1,

n+3
4

}
,

each eigenvalue having multiplicity n+1 for the corresponding n.
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* w.r.t. theε2- or ε3-spin structure is given by

⋃

n∈N
n≡1(4)

{1
2
± 1

4

√
(n−2k−1)2+16(n− k)(k+1)

|k∈ {1, . . . ,
n−3

2
} odd,

n+3
4

}

⋃ ⋃

n∈N
n≡3(4)

{1
2
± 1

4

√
(n−2k−1)2+16(n− k)(k+1)

|k∈ {0, . . . ,
n−3

2
} even

}
,

each eigenvalue having multiplicity n+1 for the corresponding n.

Proof: In casea1 = a2 = a3 = 1 one has on the one hand

(n−2k−1)2a2
1+4(n− k)(k+1)a2

2 = (n+1)2

for every possiblek and on the other hand2a2
1+a2

2
2a1

= 3
2. The result ini) straightforward

follows using Corollary 2.1.2 and Examples 2.3.4.
Assuming nowa1 =− 1

4 anda2 = a3 =
1
2, one has

a1±
√
(n−2k−1)2a2

1+4(n− k)(k+1)a2
2

=−1
4
±
√
(n−2k−1)2+16(n− k)(k+1)

4

and
2a2

1+a2
2

2a1
=− 3

4. This concludes the proof. �

One can deduce from Corollary 2.4.2 and Examples 2.3.4 the spectrum of the Dirac
operator ofM for any spin structure and any metric induced by(a1,a1,a1) with
a1 ∈ R∗ or any metric induced by a minimal embedding intoS4: in the first case
rescale bya1, in the second one exchange the roles ofa1,a2,a3 and possibly multiply
all of them by−1.
For the next corollary recall that, for a givenβ ∈ C, a β -Killing spinor on a spin
manifoldN is a smooth sectionψ of the spinor bundle ofN such that∇Xψ = βX ·ψ
for everyX ∈ TN.

Corollary 2.4.3 Under the hypotheses ofTheorem 2.1.1the following holds:

i) If a1 = a2= a3 = 1 then theε0-spin structure is the only one for which M admits a
non-zero space of Killing spinors, which is then2-dimensional and associated to
the constantβ =− 1

2. In particular 3
2 is in absolute value the smallest eigenvalue

of the Dirac operator of M for theε0-spin structure.

ii) If a1 =− 1
4,a2 = a3 =

1
2 and M carries theε0-spin structure then32 is in absolute

value the smallest eigenvalue of the Dirac operator of M. In particular inequality
(2.1) is an equality on M for the induced metric and spin structure.
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Proof: If a1 = a2 = a3 = 1 then on the one hand the metric induced onM has constant
sectional curvature 1; on the other hand Corollary 2.4.2i) implies that the smallest
eigenvalue in absolute value of the Dirac operator ofM is 3

2 with multiplicity 2 w.r.t.
theε0-spin structure and− 5

2 with multiplicity 2 w.r.t. any of the other spin structures
(both obtained forn = 1, i.e., they are the eigenvalues computed in Corollary 2.3.9).
Now M carries a non-trivial Killing spinor if and only if the smallest eigenvalue of
its Dirac Laplacian coincides with T. Friedrich’s lower bound 3

4(3−1) infM(ScalM) in

terms of the scalar curvature ofM, see [A7]. Here 3
4(3−1)ScalM = 9

4 so thatM carries a
2-dimensional space of non-zero Killing spinors only for the ε0-spin structure; in that
case the corresponding constantβ should obviously be− 1

2. This showsi).
If a1 =− 1

4,a2 = a3 =
1
2 andM carries theε0-spin structure then from Corollary 2.4.2

ii) the eigenvalues corresponding ton= 1 andn= 3 are3
2 and− 3

2,
3
2 with multiplicities

2, 4 and 4 respectively. Next we show that all eigenvalues corresponding ton≥ 5 are
greater than32 in absolute value. Since this is obviously the case forn

2 +1,− n
2 andn+3

4

we just have to deal with the eigenvalues1
2 ± 1

4

√
(n−2k−1)2+16(n− k)(k+1), of

which absolute value is greater than3
2 if and only if

(n−2k−1)2+16(n− k)(k+1)−64> 0 (2.7)

for every k ∈ {0, . . . , n−5
2 }. The l.h.s. of (2.7) is a trinomial ink with negative

dominant coefficient and of which roots are given byn−1
2 ±

√
(n−3)(n+5)

3 . If n ≥ 5

then n−1
2 −

√
(n−3)(n+5)

3 < 0 < n−1
2 < n−1

2 +

√
(n−3)(n+5)

3 , which shows that (2.7) is

satisfied. Hence32 is in absolute value the smallest eigenvalue of the Dirac operator.
Apply Corollary 2.3.11 to the caseλ = 0 andµ = 1 to conclude. �

ThatM admits a 2-dimensional space of Killing spinors w.r.t. itsε0-spin structure and
any normal metric is also not a surprise, see [A1, Cor. 5.2.5 (1b)]. Moreover, following
the symmetry arguments already used above (see Examples 2.3.4) Corollary 2.4.3ii)
actually holds for any of the metrics induced by a minimal embedding intoS4. This
proves Corollary 2.1.3.

Corollary 2.1.3 provides a further example (after geodesicspheres [A5] and gene-
ralized Clifford tori [A8]) of homogeneous hypersurface ofthe round sphere for
which Christian Bär’s inequality [A5, Cor. 4.3] is an equality for the smallest Dirac
eigenvalue. Here it should furthermore be noticed that, still under the assumptions of
Corollary 2.1.3, the multiplicity of the smallest eigenvalue of the Dirac Laplacian onM
is greater than the corresponding one on the 3-dimensional round sphere. This shows
an analogy with the generalized Clifford tori tested in [A8], on which the multiplicity
of the smallest eigenvalue of the Dirac Laplacian is also greater than or equal to the
corresponding one on the round sphere of same dimension.

We conjecture that the inequality in [A5, Cor. 4.3] for the smallest Dirac eigenvalue is
an equality for every homogeneous hypersurface in the roundsphere. We refer to [A9]
for further work in this direction.
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Chapter 3

The spectrum of the twisted
Dirac operator on Kähler
submanifolds of the complex
projective space

This chapter coincides (up to minor changes such as enumeration of pages, sections,
theorems, references etc.) with the published article [30].

Nicolas Ginoux and Georges Habib

Abstract. We establish an upper estimate for the small eigenvalues of the twisted Dirac
operator on Kähler submanifolds in Kähler manifolds carrying Kählerian Killing spinors.
We then compute the spectrum of the twisted Dirac operator ofthe canonical embedding
CPd → CPn in order to test the sharpness of the upper bounds.

3.1 Introduction

One of the basic tools to get upper bounds for the eigenvaluesof the twisted Dirac op-
erator on spin submanifolds is the min-max principle. The idea consists in computing
in terms of geometric quantities the so-called Rayleigh-quotient applied to some test
section coming from the ambient manifold. In [B1], C. Bär established with the help of
the min-max principle upper eigenvalue estimates for submanifolds inRn+1, Sn+1 and
Hn+1, estimate which is sharp in the first two cases. In the same spirit, the first-named
author studied in his PhD thesis [B6] different situations where the ambient manifold
admits natural test-spinors carrying geometric information.

In this paper, we consider a closed spin Kähler submanifoldM of a Kähler spin
manifold M̃ and derive upper bounds for the small eigenvalues of the corresponding
twisted Dirac operator in casẽM carries so-called Kählerian Killing spinors (see
(3.3) for a definition). Interestingly enough, the upper bound turns out to depend
only on the complex dimension ofM (Theorem 3.2.2). Whether this estimate is
sharp is a much more involved question. A first approach consists in finding lower

57
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bounds for the spectrum and to compare them with the upper ones. In Section 3.3,
we prove a Kirchberg-type lower bound for the eigenvalues ofany twisted Dirac
operator on a closed Kähler manifold (Corollary 3.3.2). Here the curvature of the
twisting bundle has to be involved. Even for the canonical embeddingCPd → CPn,
the presence of that normal curvature does not allow to statethe equality between the
lower bound and the upper one, see Proposition 3.3.3. The next approach consists in
computing explicitly the spectrum of the twisted Dirac operator, at least for particular
embeddings. In Section 3.4, we determine the eigenvalues (with multiplicities) of the
twisted Dirac operator of the canonical embeddingCPd → CPn, using earlier results
by M. Ben Halima [B3]. We first remark that the spinor bundle ofthe normal bundle
splits into a direct sum of powers of the tautological bundle(Corollary 3.4.4). We
deduce the spectrum of the twisted Dirac operator in Theorem3.4.8, where we also
include the multiplicities with the help of Weyl’s character formula. We conclude
that, for d < n+1

2 , the twisted Dirac operator admits 0 as a lowest eigenvalue and
(n+1)(2d+1−n) for d ≥ n+1

2 (see Proposition 3.4.9). This implies that, ford = 1,
the upper estimate is optimal forn= 3,5,7, however it is no more optimal forn≥ 9.

This work is partially based on and extends the first-named author’s PhD thesis [B6,
Ch. 4].

3.2 Upper bounds for the submanifold Dirac operator
of a Kähler submanifold

In this section, we provea priori upper bounds for the smallest eigenvalues of some
twisted Dirac operator on complex submanifolds in Kähler manifolds admitting
so-called Kählerian Killing spinors.

Let M2d be an immersed almost-complex submanifold in a Kähler manifold (M̃2n,g,J)
(“almost-complex” means thatJ(TM) = TM). Then for the induced metric and almost-
complex structure the manifold(M2d,g,J) is Kähler, in particular its immersion is
minimal in (M̃2n,g,J). We denote bỹΩ, Ω and ΩN the Kähler form of(M̃2n,g,J),
(M2d,g,J) and of the normal bundleNM −→ M of the immersion respectively (in our
convention,Ω(X,Y) = g(J(X),Y) for all X,Y).
Assuming both(M2d,g,J) and (M̃2n,g,J) to be spin, the bundleNM carries an in-
duced spin structure such that the restricted (complex) spinor bundleΣM̃|M of M̃ can
be identified withΣM⊗ΣN, whereΣM andΣN are the spinor bundles ofM andNM
respectively. Denote by “·

M
”, “ ·

N
” and “·”the Clifford multiplications ofM, NM andM̃

respectively. By a suitable choice of invariant Hermitian inner product〈· , ·〉 (with asso-
ciated norm| · |) on ΣM̃ the identification above can be made unitary. Moreover, it can
be assumed to respect the following rules: given anyX ∈ TM andν ∈ NM, one has

∣∣∣∣∣
X ·ϕ = {X ·

M
⊗(IdΣ+N − IdΣ−N)}ϕ

ν ·ϕ = (Id⊗ν ·
N
)ϕ , (3.1)

for all ϕ ∈ ΣM̃|M = ΣM ⊗ΣN. HereΣN = Σ+N⊕Σ−N stands for the orthogonal and
parallel splitting induced by the complex volume form, see e.g. [B6, Sec. 1.2.1] or
[B9, Sec. 2.1]. The following Gauss-type formula holds for the spinorial Levi-Civita
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connections̃∇ and∇ := ∇ΣM⊗ΣN on ΣM̃ andΣM ⊗ΣN respectively: for allX ∈ TM
andϕ ∈ Γ(ΣM̃|M ),

∇̃Xϕ = ∇Xϕ +
1
2

2d

∑
j=1

ej · II (X,ej) ·ϕ , (3.2)

where(ej)1≤ j≤2d is any local orthonormal basis ofTM andII the second fundamental
form of the immersion.

Recall that, for a complex constantα, anα-Kählerian Killing spinor on a Kähler spin
manifold(M̃2n,g,J) is a pair(ψ ,φ) of spinors satisfying, for allX ∈ TM̃,

∣∣∣∣∣
∇̃Xψ =−α p−(X) ·φ
∇̃Xφ =−α p+(X) ·ψ ,

(3.3)

wherep±(X) := 1
2(X∓ iJ(X)). The existence of a non-zeroα-Kählerian Killing spinor

on (M̃2n,g,J) imposes the metric to be Einstein with scalar curvatureS̃= 4n(n+1)α2

(in particularα must be either real or purely imaginary), the complex dimension n of
M̃ to be odd and the spinorsψ ,φ to lie in particular eigenspaces of the Clifford action
of Ω̃, namely ∣∣∣∣∣

Ω̃ ·ψ =−iψ
Ω̃ ·φ = iφ .

(3.4)

Actually a Kähler spin manifold carries a non-zeroα-Kählerian Killing spinor with
α ∈ R× if and only if it is the twistor-space of a quaternionic-Kähler manifold with
positive scalar curvature (in particular it must beCPn if n≡1(4)), see [B13]. For purely
imaginaryα only partial results are known, the prominent examples being the complex
hyperbolic space [B11, Thm. 13] as well as doubly-warped products associated to some
circle bundles over hyperkähler manifolds [B10].
We need the following lemma [B6, Lemme 4.4]:

Lemma 3.2.1 Let (M2d,g,J) be a K̈ahler spin submanifold of a K̈ahler spin mani-
fold (M̃2n,g,J) and assume the existence of anα-Kählerian Killing spinor(ψ ,φ) on
(M̃2n,g,J). Then

(DΣN
M )2(ψ +φ) = (d+1)2α2(ψ +φ)+α2ΩN ·ΩN · (ψ +φ). (3.5)

Proof: Fix a local orthonormal basis(ej)1≤ j≤2n of TM̃|M with ej ∈ TM for all 1 ≤
j ≤ 2d andej ∈ NM for all 2d+1≤ j ≤ 2n. Introduce the auxiliary Dirac-type oper-

ator D̂ := ∑2d
j=1ej · ∇̃ej : Γ(ΣM̃|M ) −→ Γ(ΣM̃|M ). As a consequence of the Gauss-type

formula (3.2), the operatorŝD2 and(DΣN
M )2 are related by [B6, Lemme 4.1]

D̂2ϕ =
(
DΣN

M

)2 ϕ −d2|H|2ϕ −d
2d

∑
j=1

ej ·∇N
ej

H ·ϕ ,

whereH := 1
2d tr(II ) is the mean curvature vector field of the immersion. In particular

D̂2 and(DΣN
M )2 coincide as soon as the mean curvature vector field of the immersion

vanishes, condition which is fulfilled here. Using∑2n
j=1 p+(ej) · p−(ej) = iΩ̃−n and
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∑2n
j=1 p−(ej) · p+(ej) =−iΩ̃−n, we compute:

D̂ψ =
2d

∑
j=1

ej · ∇̃ej ψ

(3.3)
= −α

2d

∑
j=1

ej · p−(ej) ·φ

= −α
2d

∑
j=1

p+(ej) · p−(ej) ·φ

= −α(iΩ ·−d)φ
= −α(iΩ̃ ·−d)φ + iαΩN ·φ

(3.4)
= (d+1)αφ + iαΩN ·φ .

Similarly,

D̂φ =
2d

∑
j=1

ej · ∇̃ej φ

(3.3)
= −α

2d

∑
j=1

ej · p+(ej) ·ψ

= −α
2d

∑
j=1

p−(ej) · p+(ej) ·ψ

= −α(−iΩ ·−d)ψ
= α(iΩ̃ ·+d)ψ − iαΩN ·ψ

(3.4)
= (d+1)αψ − iαΩN ·ψ ,

so that
D̂(ψ +φ) = (d+1)α(ψ +φ)+ iαΩN · (φ −ψ).

To computêD2(ψ +φ) we need the commutator ofΩN· with D̂. For anyϕ ∈ Γ(ΣM̃|M ),
one has

D̂(ΩN ·ϕ) =
2d

∑
j=1

ej · ∇̃ej (ΩN ·ϕ)

=
2d

∑
j=1

ej · ∇̃ej ΩN ·ϕ +ej ·ΩN · ∇̃ej ϕ

=
2d

∑
j=1

ΩN ·ej · ∇̃ej ϕ +ej · ∇̃ej ΩN ·ϕ

= ΩN · D̂ϕ +
2d

∑
j=1

ej · ∇̃ej ΩN ·ϕ ,

with, for all X,Y ∈ TM andν ∈ NM,

(∇̃XΩN)(Y,ν) = −ΩN(∇̃XY,ν)
= −g(J(∇̃XY),ν)
= −g(J(II (X,Y)),ν),
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so that

2d

∑
j=1

ej · ∇̃ej ΩN ·ϕ = −
2d

∑
j ,k=1

2n

∑
l=2d+1

g(J(II (ej ,ek)),el )ej ·ek ·el ·ϕ

= −
2d

∑
j ,k=1

ej ·ek ·J(II (ej ,ek)) ·ϕ

=
2d

∑
j=1

J(II (ej ,ej)) ·ϕ

= 0,

since the immersion is minimal. HencêD(ΩN ·ϕ) = ΩN · D̂ϕ and we deduce that

D̂2(ψ +φ) = (d+1)αD̂(ψ +φ)+ iαD̂(ΩN · (φ −ψ))

= (d+1)2α2(ψ +φ)+ i(d+1)α2ΩN · (φ −ψ)+ iαΩN · D̂(φ −ψ)

= (d+1)2α2(ψ +φ)+ i(d+1)α2ΩN · (φ −ψ)

+iαΩN · ((d+1)α(ψ −φ)− iαΩN · (ψ +φ))
= (d+1)2α2(ψ +φ)+α2ΩN ·ΩN · (ψ +φ),

which concludes the proof. �

Next we formulate the main theorem of this section. Its proofrequires some further
notations. Given any rank-2k-Hermitian spin bundleE −→ M with metric connection
preserving the complex structure, the Clifford action of the Kähler formΩE of E splits
the spinor bundleΣE of E into the orthogonal and parallel sum

ΣE =
k⊕

r=0

ΣrE, (3.6)

whereΣrE := Ker(ΩE ·−i(2r − k)Id) is a subbundle of complex rank

(
k
r

)
. More-

over, given anyV ∈ E, one hasp±(V) ·ΣrE ⊂ Σr±1E.

Theorem 3.2.2 (see [B6, Thm. 4.2])Let (M2d,g,J) be a closed K̈ahler spin subman-
ifold of a Kähler spin manifold(M̃2n,g,J) and consider the induced spin structure on
the normal bundle. Assume the existence of a complexµ-dimensional space of non-
zero α-Kählerian Killing spinor on(M̃2n,g,J) for someα ∈ R×. Then there areµ
eigenvaluesλ of (DΣN

M )2 satisfying

λ ≤





(d+1)2α2 if d is odd

d(d+2)α2 if d is even.
(3.7)

If moreover(3.7) is an equality for the smallest eigenvalueλ and some odd d, then
∑2d

j=1ej · II (X,ej) ·ψ = ∑2d
j=1ej · II (X,ej) ·φ = 0.

Proof: Let (ψ ,φ) be a non-zeroα-Kählerian Killing spinor on(M̃2n,g,J). We evaluate

the Rayleigh-quotient
∫
M〈(DΣN

M )2(ψ+φ),ψ+φ〉vg∫
M〈ψ+φ ,ψ+φ〉vg

and apply the min-max principle. It can
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be deduced from Lemma 3.2.1 that

〈(DΣN
M )2(ψ +φ),ψ +φ〉 = (d+1)2α2|ψ +φ |2+α2〈ΩN ·ΩN · (ψ +φ),ψ +φ〉

= (d+1)2α2|ψ +φ |2−α2|ΩN · (ψ +φ)|2.

Using (3.6) forE = NM we observe that|ΩN · (ψ +φ)| ≥ |ψ +φ | if n−d is odd (i.e.,
if d is even) and is nonnegative otherwise. The inequality follows.
If d is odd and (3.7) is an equality for the smallest eigenvalue, then(DΣN

M )2(ψ +φ) =
(d + 1)2α2(ψ + φ) and ΩN · (ψ + φ) = 0. SinceΩ̃ = Ω ⊕ ΩN one hasΣrM̃|M =⊕r

s=0 ΣsM ⊗ Σr−sM (where each component vanishes as soon as the index exceeds
its allowed bounds), so thatψ ∈ Γ(Σ d−1

2
M ⊗ Σ n−d

2
N) and φ ∈ Γ(Σ d+1

2
M ⊗ Σ n−d

2
N).

Coming back to the Gauss-type equation (3.2), one obtains

∣∣∣∣
∇Xψ =−α p−(X) ·φ − 1

2 ∑2d
j=1ej · II (X,ej) ·ψ

∇Xφ =−α p+(X) ·ψ − 1
2 ∑2d

j=1ej · II (X,ej) ·φ

for all X ∈ TM. Looking more precisely at the components of each side of those
identities, one notices that, pointwise,∇Xψ ∈ Σ d−1

2
M ⊗ Σ n−d

2
N and, using (3.1),

that p−(X) · φ ∈ Σ d−1
2

M ⊗ Σ n−d
2

N. But pointwise∑2d
j=1ej · II (X,ej) ·ψ ∈ (Σ d−3

2
M ⊗

Σ n−d−2
2

N) ⊕ (Σ d−3
2

M ⊗ Σ n−d+2
2

N) ⊕ (Σ d+1
2

M ⊗ Σ n−d−2
2

N) ⊕ (Σ d+1
2

M ⊗ Σ n−d+2
2

N), in

particular this term must vanish. Analogously one has∑2d
j=1ej · II (X,ej) · φ = 0. This

concludes the proof. �

To test the sharpness of the estimate (3.7), we would like to first compare it to ana
priori lower bound. This is the object of the next section.

3.3 Kirchberg-type lower bounds

In this section, we aim at giving Kirchberg type estimates for any twisted Dirac operator
on closed Kähler spin manifolds. First consider a Kähler spin manifoldM of complex
dimensiond and letE be any rank 2k-vector bundle overM endowed with a metric con-
nection. We define a connection on the vector bundleΣ :=ΣM⊗E by∇ :=∇ΣM⊗E. The
Dirac operator ofM twisted withE is defined byDE

M : Γ(Σ)→Γ(Σ), DE
M :=∑2d

i=1ei ·∇ei ,
where{ei}1≤i≤2d is any local orthonormal basis ofTM and “·” stands for the Clifford
multiplication tensorized with the identity ofE. The square of the Dirac-type opera-
tor DE

M is related to the rough Laplacian via the following Schrödinger-Lichnerowicz
formula [B12, Thm. II.8.17]

(DE
M)2 = ∇∗∇+

1
4
(ScalM +RE),

where ScalM denotes the scalar curvature ofM andRE is the endomorphism tensor
field given by

RE : Σ −→ Σ

ψ 7−→ 2
2d

∑
i, j=1

(ei ·ej · Id⊗RE
ei ,ej

)ψ .
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Recall that for any eigenvalueλ of the Dirac operator, there exists an eigenspinorϕ
associated withλ such thatϕ = ϕr +ϕr+1, whereϕr is a section inΣr := ΣrM ⊗E.
HereΣrM is the subundle Ker(Ω ·−i(2r−d)Id) of ΣM. Such an eigenspinorϕ is called
of type(r, r +1). In order to estimate the eigenvalues of the twisted Dirac operator we
define, as in the classical way, on each subbundleΣr thetwisted twistor operatorfor all
X ∈ Γ(TM), ψr ∈ Σr by [B5]

PXψr := ∇Xψr +ar p−(X) ·D+ψr +br p+(X) ·D−ψr ,

wherear =
1

2(r+1) , br =
1

2(m−r+1) andD±ψr = ∑2d
i=1 p±(ei) ·∇ei ψr .

We state the following lemma:

Lemma 3.3.1 For any eigenspinorϕ of type(r, r +1), we have the following inequal-
ities

λ 2 ≥





1
4(1−ar)

inf
Mϕr

(ScalM +RE
ϕr
),

1
4(1−br+1)

inf
Mϕr+1

(ScalM +RE
ϕr+1

),
(3.8)

where RE
φ := Re(RE(φ), φ

|φ |2 ) is defined on the set Mφ = {x ∈ M| φ(x) 6= 0} for all

spinorφ ∈ Σ.

Proof: Using the identity∑2d
i=1ei ·Pei ψr = 0, one can easily prove by a straightforward

computation that for any spinorψr ∈ Σr

|Pψr |2 = |∇ψr |2−ar |D+ψr |2−br |D−ψr |2. (3.9)

Applying Equation (3.9) toϕr andϕr+1 respectively and integrating overM, we get
with the use of the Schrödinger-Lichnerowicz formula that

0≤
∫

M
[λ 2(1−ar)−

1
4
(ScalM +RE

ϕr
)]|ϕr |2.

Also that,

0≤
∫

M
[λ 2(1−br+1)−

1
4
(ScalM +RE

ϕr+1
)]|ϕr+1|2,

from which the proof of the lemma follows. �

One can get rid of the dependence of the eigenspinorsϕr andϕr+1 in the r.h.s. of (3.8):

Corollary 3.3.2 Letκ1 be the smallest eigenvalue of the (pointwise) self-adjointoper-
ator RE. Then

λ 2 ≥





d+1
4d (Scal0+κ1) if d is odd

d
4(d−1)(Scal0+κ1) if d is even,

whereScal0 denotes the infimum of the scalar curvature.
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Proof: Let us choose the lowest integerr ∈ {0,1, · · · ,d} such thatϕ is of type
(r, r + 1). The existence of anti-linear parallel maps onΣM commuting with the
Clifford multiplication (see e.g. [B7, Lemma 1]) allows to impose thatr ≤ d−1

2 if d is
odd andr ≤ d−2

2 if d is even. This concludes the proof. �

In the following, we formulate the estimates (3.8) for the situation whereM is a com-
plex submanifold of the projective spaceCPn andE is the spinor bundle of the normal
bundleNM of the immersion. To do this, we will estimateRE

φ for all spinor fieldφ ∈ Σ
in terms of the second fundamental form of the immersion.

Proposition 3.3.3 Let(M2d,g,J) be a K̈ahler spin submanifold of the projective space
CPn. For all spinor fieldφ ∈ Σ, the curvature is equal to

RE
φ =−4Re(Ω ·ΩN ·φ , φ

|φ |2 )−
2d

∑
i, j ,p=1

Re(ei ·ej · II (ei ,ep) · II (ej ,ep) ·φ ,
φ
|φ |2 )+ |II |2.

(3.10)
whereΩ is the K̈ahler form of M.

Proof: First, recall that for allX,Y ∈ Γ(TM) andU,V sections inNM, the normal
curvature is related to the one ofCPn via the formula [B4, Thm. 1.1.72]

(RNM
X,YU,V) = (RCP

n

X,Y U,V)− (BXU,BYV)+ (BYU,BXV)

= 2g(X,J(Y))g(J(U),V)−
2d

∑
p=1

g(II (X,ep),U)g(II (Y,ep),V)

+
2d

∑
p=1

g(II (Y,ep),U)g(II (X,ep),V), (3.11)

whereBX : NM → TM is the tensor field defined byg(BXU,Y) =−g(II (X,Y),U) and
{ep}1≤p≤2d is a local orthonormal basis ofTM. Here we used the fact that the curvature
of CPn is given for allX,Y,Z ∈ TCPn by

RCP
n

X,Y Z = (X∧Y+ JX∧JY+2g(X,JY)J)Z

with (X∧Y)Z = g(Y,Z)X−g(X,Z)Y. Hence by (3.11), the normal spinorial curvature
associated with any spinor fieldφ is then equal to

RE
ei ,ej

φ =
1
4

2(n−d)

∑
k,l=1

g(RNM
ei ,ej

ek,el )ek ·el ·φ

=
1
2

2(n−d)

∑
k=1

g(ei ,J(ej))ek ·Jek ·φ

−1
2

2d

∑
p=1

[II (ei ,ep) · II (ej ,ep) ·+g(II (ei,ep), II (ej ,ep))]φ .
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Thus, we deduce

RE(φ) = 2
2d

∑
i, j=1

J(ej) ·ej ·ΩN ·φ −
2d

∑
i, j ,p=1

ei ·ej · II (ei ,ep) · II (ej ,ep) ·φ

−ei ·ej ·g(II (ei,ep), II (ej ,ep))φ

= −4Ω ·ΩN ·φ −
2d

∑
i, j ,p=1

ei ·ej · II (ei,ep) · II (ej ,ep) ·φ + |II |2φ .

Finally, the scalar product of the last equality withφ|φ |2 finishes the proof. �

As we said in the proof of Corollary 3.3.2, the integerr can be chosen such thatr ≤ d−1
2

if d is odd andr ≤ d−2
2 if d is even. However, we note thata priori no such choice

can be made fors oncer has been fixed. In particular, one cannot conclude that the
smallest twisted Dirac eigenvalue of a totally geodesicM in M̃ is (d+1)2, even in the
“simplest” case whereM =CPd (thed-dimensional complex projective space). To test
the sharpness of the estimate (3.7), we compute in the following section the spectrum
of DΣN

M for M = CPd canonically embedded inCPn.

3.4 The spectrum of the twisted Dirac operatorDΣN
M on

the complex projective space

In this section, we compute the spectrum of the Dirac operator of CPd twisted with
the spinor bundle of its normal bundle when considered as canonically embedded in
CPn. The eigenvalues will be deduced from M. Ben Halima’s computations [B3, Thm.
1]. We also need to compute the multiplicities in order to compare the upper bound in
(3.7) with an eigenvalue which may be greater than the smallest one. The results are
gathered in Theorems 3.4.7 and 3.4.8 below.

3.4.1 The complex projective space as a symmetric space

Consider thed-dimensional complex projective spaceCPd as the right quotient

SUd+1/S(Ud ×U1), where S(Ud ×U1) := {
(

B 0
0 det(B)−1

)
|B∈ Ud}. In this sec-

tion we want to describe its tangent bundle and its normal bundle when canoni-
cally embedded intoCPn as homogeneous bundles, that is, as bundles associated to
the S(Ud ×U1)-principal bundle SUd+1 −→ CPd via some linear representation of
S(Ud ×U1). The one corresponding to the tangent bundle is called theisotropy repre-
sentationof the homogeneous spaceSUd+1/S(Ud ×U1). To compute it explicitly we
consider the following Ad(S(Ud ×U1))-invariant complementary subspace

m :=
{



0 . . . 0 z1
...

...
...

0 . . . 0 zd

−z̄1 . . . −z̄d 0


 |(z1, . . . ,zd) ∈ C

d
}

(3.12)
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to the Lie-Algebrah of S(Ud ×U1) in the Lie-algebrasud+1 = {X ∈ C(d+1) |X∗ =
−X and tr(X) = 0} and fix the (real) basis(A1,J(A1), . . . ,Ad,J(Ad)) of m, where:

• (Al ) jk = 1 if ( j,k) = (l ,d+1), −1 if ( j,k) = (d+1, l) and 0 otherwise;

• (J(Al )) jk = i if ( j,k) = (l ,d+1) or ( j,k) = (d+1, l) and 0 otherwise.

It is easy to check thatJ defines a complex structure onm, which then makesm into
a d-dimensional complex vector space, and that[m,m] ⊂ h. In particularCPd is a
symmetric space.

Lemma 3.4.1 The isotropy representation of the symmetric spaceSUd+1/S(Ud ×U1)
is given in the complex basis(A1, . . . ,Ad) ofm by:

α : S(Ud ×U1) −→ Ud(
B 0
0 det(B)−1

)
7−→ det(B) ·B.

Proof: Fork∈ {1, . . . ,d} andB∈ Ud we compute

Ad(

(
B 0
0 det(B)−1

)
)(Ak) =

(
B 0
0 det(B)−1

)
·Ak ·

(
B∗ 0
0 det(B)

)

=

(
B 0
0 det(B)−1

)
·




0 . . . 0 0
...

... 0
0 . . . 0 det(B)
...

... 0
−B∗

k1 . . . −B∗
kd 0




=




0 . . . 0 det(B)B1k
...

...
...

0 . . . 0 det(B)Bdk

−det(B)−1B∗
k1 . . . −det(B)−1B∗

kd 0




=
d

∑
j=1

Re(det(B)B jk)A j +Im(det(B)B jk)J(A j)

=
d

∑
j=1

det(B)B jkA j ,

which gives the result. �

Recall that the tautological bundle ofCPd is the complex line bundleγd −→ CPd de-
fined by

γd := {([z],v) | [z] ∈ CPd andv∈ [z]}.
It carries a canonical Hermitian metric defined by〈([z],v),([z],v′)〉 := 〈v,v′〉.

Lemma 3.4.2 The normal bundle T⊥CPd of the canonical embeddingCPd → CPn,
[z] 7→ [z,0n−d], is unitarily isomorphic toγ∗d ⊗Cn−d, whereγd −→CPd is the tautolog-
ical bundle ofCPd andCn−d carries its canonical Hermitian inner product. In particu-
lar, the homogeneous bundle T⊥CPd →CPd is associated to theS(Ud×U1)-principal
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bundleSUd+1 −→ CPd via the representation

ρ : S(Ud ×U1) −→ Un−d(
B 0
0 det(B)−1

)
7−→ det(B)In−d.

Proof: Consider the map

CPd ×C
n−d φ−→ γd ⊗T⊥

CPd

([z],v) 7−→ ([z],z)⊗dzπ(0d+1,v),

whereπ : Cn+1 −→ CPn is the canonical projection. It can be easily checked that
φ is well-defined (the identityπ(λz) = π(z) implies dzπ = λdλ zπ) and is a unitary
vector-bundle-isomorphism. This shows the first statement. Let (e1, . . . ,ed+1) denote
the canonical basis ofCd+1. The map

SUd+1×C −→ γd

(A,λ ) 7−→ ([Aed+1],λAed+1)

induces a complex vector-bundle-isomorphismSUd+1×C/S(Ud × U1) −→ γd,
where the right action of S(Ud × U1) onto SUd+1 × C is given by

(A,λ ) ·
(

B 0
0 det(B)−1

)
:= (A ·

(
B 0
0 det(B)−1

)
,det(B)λ ). Thus γd is

isomorphic to the homogeneous bundle overCPd which is associated to the
S(Ud×U1)-principal bundle SUd+1 −→CPd via the representation S(Ud×U1)→U1,(

B 0
0 det(B)−1

)
7→ det(B)−1. This concludes the proof. �

Note in particular thatT⊥CPd is not trivial (and hence not flat because ofπ1(CPd) = 0).

3.4.2 Spin structures onTCPd and T⊥CPd

From now on we assume that bothd andn are odd integers. Then bothTCPd and
TCPn are spin, in particularT⊥CPd is spin. SinceCPd is simply-connected, there is a
unique spin structure onTCPd and onT⊥CPd. In this section we describe those spin
structures as homogeneous spin structures. For that purpose one looks for Lie-group-

homomorphisms S(Ud ×U1)
α̃→ Spin2d and S(Ud ×U1)

ρ̃→ Spin2(n−d) lifting α andρ

through the non-trivial two-fold-covering map Spin2k
ξ−→ SO2k.

First we recall the existence for any positive integerk of a Lie-group homomorphism

Uk
j−→ Spinc

2k with ξ c ◦ j = ι, where Spinc2k := Spin2k×U1/Z2 is the spinc group,
ξ c : Spinc

2k −→ SO2k×U1, [u,z] 7→ (ξ (u),z2) is the canonical two-fold-covering map
andι : Uk −→ SO2k×U1, A 7→ (AR,det(A)). The Lie-group homomorphismj can be
explicitly described on elements of Uk of diagonal form as:

j(diag(eiλ1, . . . ,eiλk)) = e
i
2

(
∑k

j=1 λ j

)
· R̃e1,J(e1)(

λ1

2
) · . . . · R̃ek,J(ek)

(
λk

2
),

whereJ is the canonical complex structure onCk and, for any orthonormal system
{v,w} in R2k andλ ∈R, the element̃Rv,w(λ ) ∈ Spin2k is defined by

R̃v,w(λ ) := cos(λ )+ sin(λ )v ·w.
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To keep the notations simple we denote byj both such Lie-group-homomorphisms
Ud −→ Spinc

2d and Un−d −→ Spinc
2(n−d).

Lemma 3.4.3 Let d< n be odd integers.

1. The spin structure on TCPd is associated to theS(Ud ×U1)-principal bundle
SUd+1 −→ CPd via the Lie-group-homomorphism

α̃ : S(Ud ×U1) −→ Spin2d(
B 0
0 det(B)−1

)
7−→ det(B)−

d+1
2 · j ◦α(

(
B 0
0 det(B)−1

)
).

2. The spin structure on T⊥CPd is associated to theS(Ud ×U1)-principal bundle
SUd+1 −→ CPd via the Lie-group-homomorphism

ρ̃ : S(Ud ×U1) −→ Spin2(n−d)(
B 0
0 det(B)−1

)
7−→ det(B)−

n−d
2 · j ◦ρ(

(
B 0
0 det(B)−1

)
).

Proof: It suffices to prove the results for elements of S(Ud ×U1) of diagonal form.
Indeed any element of S(Ud ×U1) is conjugated in SUd+1 to such a diagonal matrix.
Since SUd+1 is simply-connected the map SUd+1 → SO2k×U1, P 7→ (PAP−1,det(A))

(whereA ∈ Uk is arbitrary), admits a lift through Spinc
2k

ξ c

−→ SO2k × U1 which is
uniquely determined by the image of one single point. Therefore the lifts under consid-
eration are uniquely determined on diagonal elements.

For θ1, . . . ,θd ∈R let Mθ1,...,θd := diag(eiθ1, . . . ,eiθd ,e−i(∑d
j=1 θ j )) ∈ S(Ud ×U1). Then

uθ1,...,θd := R̃e1,J(e1)(
θ1+∑d

j=1 θ j

2
) · . . . · R̃ed,J(ed)(

θd +∑d
j=1 θ j

2
)

lies in Spin2d, only depends on[θ1, . . . ,θd] ∈ Rd
/2πZd (if some θk is replaced by

θk + 2mπ , thenuθ1,...,θd is replaced by(−1)m(d−1)uθ1,...,θd , andd− 1 is even) with
ξ (uθ1,...,θd) = α(Mθ1,...,θd). Thereforeα̃(Mθ1,...,θd) = uθ1,...,θd . Moreover,

j ◦α(Mθ1,...,θd) = e
i
2

(
∑d

j=1 θ j+∑d
k=1θk

)
· R̃e1,J(e1)(

θ1+∑d
j=1θ j

2
) · . . . · R̃ed,J(ed)

(
θd +∑d

j=1 θ j

2
)

= e
i(d+1)

2 ∑d
j=1 θ j · α̃(Mθ1,...,θd)

= det(diag(eiθ1, . . . ,eiθd))
d+1

2 · α̃(Mθ1,...,θd),

which proves 1.
The other case is much the same: setting

ρ̃(Mθ1,...,θd) := R̃e1,J(e1)(
∑d

j=1θ j

2
) · . . . · R̃en−d,J(en−d)(

∑d
j=1 θ j

2
),

one obtains a well-defined Lie-group-homomorphism S(Ud ×U1)
ρ̃→ Spin2(n−d) with

ξ ◦ ρ̃ = ρ (the integern−d is even) and

j ◦ρ(Mθ1,...,θd) = e
i
2 ∑n−d

j=1 ∑d
k=1 θk · R̃e1,J(e1)(

∑d
j=1θ j

2
) · . . . · R̃en−d,J(en−d)

(
∑d

j=1θ j

2
)

= det(diag(eiθ1, . . . ,eiθd))
n−d

2 ρ̃(Mθ1,...,θd),
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which shows 2 and concludes the proof. �

In particular, we obtain the following

Corollary 3.4.4 Let d < n be odd integers and consider the canonical embedding
CPd → CPn as above. Then there exists a unitary and parallel isomorphism

Σ(T⊥
CPd)∼=

n−d⊕

s=0

(
n−d

s

)
· γ

n−d
2 −s

d ,

whereΣ(T⊥CPd) denotes the (complex) spinor bundle of T⊥CPd and, for each s∈
{0, . . . ,n− d}, the factor

(
n−d

s

)
stands for the multiplicity with which the line

bundleγ
n−d

2 −s
d appears in the splitting.

Proof: By Lemma 3.4.3 and Lemma 3.4.2, one has, for anyB∈ Ud:

ρ̃(
(

B 0
0 det(B)−1

)
) = det(B)−

n−d
2 · j ◦ρ(

(
B 0
0 det(B)−1

)
)

= det(B)−
n−d

2 · j(det(B)In−d).

Now it is elementary to prove that, for any positive integerk, any z∈ U1 and any
s∈ {0, . . . ,k},

δ2k ◦ j(z· Ik)|
Σ(s)2k

= zs · Id
Σ(s)

2k
,

whereΣ(s)
2k is the eigenspace of the Clifford action of the Kähler form to the eigen-

value i(2s− k) in the spinor spaceΣ2k. In particularΣ(s)
2k splits into the direct sum of

dimC(Σ
(s)
2k ) copies of some one-dimensional representation, with dimC(Σ

(s)
2k ) =

(
k
s

)
.

SinceΣ2k =⊕k
s=0Σ(s)

2k , we obtain the following splitting:

δ2(n−d) ◦ ρ̃ =
n−d⊕

s=0

det(·)−( n−d
2 −s)⊗ Id

Σ(s)
2(n−d)

=
n−d⊕

s=0

det(·)−( n−d
2 −s)⊗1

(
n−d

s

)

C
,

where det(·) : S(Ud ×U1) → U1,

(
B 0
0 det(B)−1

)
7→ det(B), the trivial represen-

tation onC is denoted by1C and “1l
C

” means that this representation appears with
multiplicity l . �

3.4.3 The twisted Dirac operator onCPd

As a consequence of Corollary 3.4.4, the tensor productΣ(TCPd)⊗Σ(T⊥CPd) splits
into subbundles of the formΣ(TCPd)⊗ γm

d for some integerm. Since this splitting is



70 CHAPTER 3. THE SPECTRUM OF THE TWISTED DIRAC OPERATOR...

orthogonal and parallel, it is also preserved by the corresponding twisted Dirac op-
erator. Hence it suffices to describe the Dirac operator of the twisted spinor bundle
Σ(TCPd)⊗ γm

d overCPd as an infinite sum of matrices, wherem∈ Z is an arbitrary
(non-necessarily positive) integer. The Dirac eigenvalues of Σ(TCPd)⊗ γm

d have been
computed by M. Ben Halima in [B3, Thm. 1]. Indeed, we have

Theorem 3.4.5For an odd integer d letCPd be endowed with its Fubini-Study metric
of constant holomorphic sectional curvature4. For an arbitrary m∈ Z let the mth

powerγm
d of the tautological bundle ofCPd be endowed with its canonical metric and

connection. Then the eigenvalues (without multiplicities) of the square of the Dirac
operator ofCPd twisted byγm

d are given by the following families:

1. 2(r + l) · (d+1+2(l −m− ε)), where r∈ {1, . . . ,d−1}, ε ∈ {0,1} and l∈ N

with l ≥ max(ε, d+1
2 − r +m).

2. 2l(2l +d−1−2m), where l∈ N, l ≥ max(0,m+ d+1
2 ).

3. 2(d+ l)(d+1+2(l −m)), where l∈N, l ≥ max(0,m− d+1
2 ).

The first family of eigenvalues corresponds to an irreducible representation of SUd+1

with highest weight given by [B3, Prop. 2]

(r+2l− d−1
2

−m−ε, r + l − d−1
2

−m, . . . , r + l − d−1
2

−m
︸ ︷︷ ︸

r−1

, r+ l− d+1
2

−m+ε, r + l − d+1
2

−m, . . . , r + l − d+1
2

−m
︸ ︷︷ ︸

d−r−1

).

Similarly, the second family of eigenvalues corresponds tothe highest weight

(2l − d+1
2

−m, l − d+1
2

−m, . . . , l − d+1
2

−m
︸ ︷︷ ︸

d−1

).

The last family of eigenvalues corresponds to

(2l +
d+1

2
−m, l +

d+1
2

−m, . . . , l +
d+1

2
−m

︸ ︷︷ ︸
d−1

).

In the following, we will determine the multiplicities of the eigenvalues in Theorem
3.4.5. Indeed, we have

Lemma 3.4.6 Let d≥ 1 be an odd integer and m∈ Z.

1. The multiplicities of the first family of the eigenvalues are equal to

d(d+1
2 + r −m+2l − ε)

(r + l)(d+1
2 −m+ l − ε)

·
(

d+ l − ε
d

)
·
(

d−1
d− r − ε

)
·
(

d−1
2 + r −m+ l

d

)
.

2. For the second family, we have

d

∏
k=2

(1+
l

k−1
) · (1+ 2l − d+1

2 −m

d
) ·

d

∏
j=2

(1+
l − d+1

2 −m

d− j +1
).
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3. For the last family of eigenvalues, the multiplicities are equal to

d

∏
k=2

(1+
l

k−1
) · (1+ 2l + d+1

2 −m

d
) ·

d

∏
j=2

(1+
l + d+1

2 −m

d− j +1
).

In our convention, a product taken on an empty index-set is equal to 1.

Proof: The required multiplicity can be computed with the help of the Weyl’s character
formula [B2]

∏
α∈∆+

(
1+

〈λ ,α〉
〈δ+,α〉

)
,

whereλ is a highest weight of an irreducible SUd+1-representation and∆+ is the set
of positive roots, i.e.

∆+ = {θ j −θk, 1≤ j < k≤ d, θ j +
d

∑
k=1

θk, 1≤ j ≤ d}

andδ+ = ∑d
k=1(d−k+1)θk is the half-sum of the positive roots of SUd+1, see [B3, p.

442]. Here the scalar product〈· , ·〉 is the Riemannian metric on the dual of a maximal
torus of SUd+1, which is defined by the following product of matrices〈λ ,λ ′〉=λ .β .tλ ′

whereβ is the matrix given by 2
d+1

(
−1+(d+1)δ jk

)
1≤ j ,k≤d. To compute the quotient

in the Weyl’s character formula, we treat the three cases separately:
1. Considerα of the formα = θ j −θk for some 1≤ j < k≤ d. Note that this form forα
can only exist ifd > 1. We computeβ ·α = 2(θ j −θk). Therefore,〈δ+,α〉= 2(k− j).
For the highest weightλ corresponding to the first family of eigenvalues, we find that

1+
〈λ ,α〉
〈δ+,α〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l−ε+k− j
k− j case j = 1, k∈ {2, . . . , r}

l+1−2ε+k− j
k− j case j = 1, k= r +1

l+1−ε+k− j
k− j case j = 1, k∈ {r +2, . . . ,d}

1 case j,k ∈ {2, . . . , r}
1−ε+k− j

k− j case j ∈ {2, . . . , r}, k= r +1
1+k− j

k− j case j ∈ {2, . . . , r}, k∈ {r +2, . . . ,d}
ε+k− j

k− j case j = r +1, k∈ {r +2, . . . ,d}
1 case j,k ∈ {r +2, . . . ,d}.

Similarly for α = θ j +∑d
k=1 θk with j ∈ {1, . . . ,d}, we get that

1+
〈λ ,α〉
〈δ+,α〉 =

∣∣∣∣∣∣∣∣∣∣

u−+1+l−ε+d− j+1
d− j+1 case j = 1

u−+1+d− j+1
d− j+1 case j ∈ {2, . . . , r}

u−+ε+d− j+1
d− j+1 case j = r +1

u−+d− j+1
d− j+1 case j ∈ {r +2, . . . ,d},

whereu− = r − d+1
2 −m+ l . In order to compute the product we separate both cases

ε = 0 andε = 1.
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• Caseε = 0: Then

∏
α∈∆+

(
1+

〈λ ,α〉
〈δ+,α〉

)
= (

r

∏
k=2

l + k−1
k−1

) · (
d

∏
k=r+1

l + k
k−1

) · (
r

∏
j=2

d

∏
k=r+1

k+1− j
k− j

) ·

u−+ l +d+1
d

· (
r

∏
j=2

u−+d− j +2
d− j +1

) · (
d

∏
j=r+1

u−+d− j +1
d− j +1

)

=
(l +1) · . . . · (l + r −1) · (l + r +1) · . . . · (l +d)

1 ·2 · . . . · (d−1)
·

(
r

∏
j=2

(r +2− j) · . . . · (d+1− j)
(r +1− j) · . . . · (d− j)

) · u−+ l +d+1
d

·

(u−+d) · . . . · (u−+d− r +2)
(d−1) · . . . · (d− r +1)

· (u−+d− r) · . . . · (u−+1)
(d− r) · . . . ·2 ·1

=
d

l + r
· (l +d)!

d! · l ! · (
r

∏
j=2

d+1− j
r +1− j

) · u−+ l +d+1
u−+d− r +1

· (u−+d)!
d! ·u−!

=
d

l + r
·
(

l +d
d

)
· (d−1) · . . . · (d+1− r)

(r −1) · . . . ·2 ·1 · u−+ l +d+1
u−+d− r +1

·
(

u−+d
d

)

=
d(u−+ l +d+1)

(l + r)(u−+d− r +1)
·
(

l +d
d

)
·
(

d−1
r −1

)
·
(

u−+d
d

)
,

which gives for the multiplicity in this case (replaceu− by r − d+1
2 −m+ l ):

∏
α∈∆+

(
1+

〈λ ,α〉
〈δ+,α〉

)
=

d(d+1
2 + r −m+2l)

(r + l)(d+1
2 −m+ l)

·
(

d+ l
d

)
·
(

d−1
d− r

)
·
(

d−1
2 + r −m+ l

d

)
.

• Caseε = 1: Then

∏
α∈∆+

(
1+

〈λ ,α〉
〈δ+,α〉

)
= (

r+1

∏
k=2

l + k−2
k−1

) · (
d

∏
k=r+2

l + k−1
k−1

) · (
r+1

∏
j=2

d

∏
k=r+2

k+1− j
k− j

) ·

u−+ l +d
d

· (
r+1

∏
j=2

u−+d− j +2
d− j +1

) · (
d

∏
j=r+2

u−+d− j +1
d− j +1

)

=
l · . . . · (l + r −1) · (l + r +1) · . . . · (l +d−1)

1 ·2 · . . . · (d−1)
·

(
r+1

∏
j=2

(r +3− j) · . . . · (d+1− j)
(r +2− j) · . . . · (d− j)

) · u−+ l +d
d

·

(u−+d) · . . . · (u−+d− r +1)
(d−1) · . . . · (d− r)

· (u−+d− r −1) · . . . · (u−+1)
(d− r −1) · . . . ·2 ·1

=
d

l + r
· (l +d−1)!

d! · (l −1)!
· (

r+1

∏
j=2

d+1− j
r +2− j

) · u−+ l +d
u−+d− r

· (u−+d)!
u−! ·d!

=
d(u−+ l +d)

(l + r)(u−+d− r)
· (l +d−1)!

d! · (l −1)!
· (d−1)!
r! · (d− r −1)!

· (u−+d)!
u−! ·d!

=
d(u−+ l +d)

(l + r)(u−+d− r)
·
(

l +d−1
d

)
·
(

d−1
r

)
·
(

u−+d
d

)
,
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which, replacingu− by r − d+1
2 −m+ l , gives

∏
α∈∆+

(
1+

〈λ ,α〉
〈δ+,α〉

)
=

d(d−1
2 + r −m+2l)

(r + l)(d−1
2 −m+ l)

·
(

d+ l −1
d

)
·
(

d−1
d− r −1

)
·
(

d−1
2 + r −m+ l

d

)
.

This shows 1.
2. Considerα of the formα = θ j −θk for some 1≤ j < k≤ d. We have already shown
in the first part that〈δ+,α〉 = 2(k− j). For the highest weightλ corresponding to the
second family of eigenvalues, we have

〈λ ,α〉=
∣∣∣∣

2l case j = 1
0 case j > 1.

Similarly for α = θ j +∑d
k=1 θk with j ∈ {1, . . . ,d}, we already know that〈δ+,α〉 =

2(d− j +1) and

〈λ ,α〉=
∣∣∣∣

2(v+ l) case j = 1
2v case j > 1

wherev denotes one of thed−1 last components of the weightλ . Hence the product
is given by

∏
α∈∆+

(
1+

〈λ ,α〉
〈δ+,α〉

)
=

d

∏
k=2

(1+
l

k−1
) · (1+ v+ l

d
) ·

d

∏
j=2

(1+
v

d− j +1
).

Of course only the central factor appears in cased = 1. Replacingv by its respective
value gives 2. and 3. and concludes the proof. �

As a consequence of Lemma 3.4.5 and Lemma 3.4.6, we obtain the

Theorem 3.4.7Let d be a positive odd integer and m∈ Z be arbitrary. Denote byγd

the tautological bundle ofCPd. Then the spectrum of the square of the Dirac operator
of CPd twisted withγm

d is given by the following family of eigenvalues:

1. 2(r + l) · (d+1+2(l −m− ε)), where r∈ {1, . . . ,d−1}, ε ∈ {0,1} and l∈ N

with l ≥ max(ε, d+1
2 − r +m). The multiplicity of the eigenvalue corresponding

to the choice of a triple(r,ε, l) as above is given by

d(d+1
2 + r −m+2l − ε)

(r + l)(d+1
2 −m+ l − ε)

·
(

d+ l − ε
d

)
·
(

d−1
d− r − ε

)
·
(

d−1
2 + r −m+ l

d

)
.

2. 2l(2l +d−1−2m), where l∈ N, l ≥ max(0,m+ d+1
2 ), with multiplicity

d

∏
k=2

(1+
l

k−1
) · (1+ 2l − d+1

2 −m

d
) ·

d

∏
j=2

(1+
l − d+1

2 −m

d− j +1
).

3. 2(d+ l)(d+1+2(l −m)), where l∈ N, l ≥ max(0,m− d+1
2 ), with multiplicity

d

∏
k=2

(1+
l

k−1
) · (1+ 2l + d+1

2 −m

d
) ·

d

∏
j=2

(1+
l + d+1

2 −m

d− j +1
).
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Note that, sinceCPd is a symmetric space, the spectrum of every Dirac operator
twisted with a homogeneous bundle overCPd is symmetric about the origin. Hence
the spectrum of the Dirac operator ofCPd twisted withγm

d can be easily deduced from
that of its square.

We point out that the computations done by M. Ben Halima in [B3, Thm. 1] contain a
minor mistake (hism should be replaced by−m). It can be also checked that, up to a
factor 4(d+1) (his convention for the Fubini-Study metric is different from ours), our
values coincide with his (hisk is our l and hisl is ourd− r).

We can now formulate the

Theorem 3.4.8Let d< n be positive odd integers. Then the spectrum of the square of
the Dirac operator ofCPd twisted with the spinor bundle of the normal bundle of the
canonical embeddingCPd →CPn is given by the following family of eigenvalues:

1. 2(r + l) · (2d+ 1− n+ 2(s+ l − ε)), where r∈ {1, . . . ,d− 1}, s∈ {0, . . . ,n−
d}, ε ∈ {0,1} and l ∈ N with l ≥ max(ε, n+1

2 − r − s). The multiplicity of the
eigenvalue corresponding to the choice of a4-tuple(r,s,ε, l) as above is given
by

d(d− n−1
2 + r + s+2l − ε)

(r + l)(d− n−1
2 + s+ l − ε)

·
(

n−d
s

)
·
(

d+ l − ε
d

)
·
(

d−1
d− r − ε

)
·
(

d− n+1
2 + r + s+ l

d

)
.

2. 4l(l + s+ d− n+1
2 ), where s∈ {0, . . . ,n− d}, l ∈ N, l ≥ max(0, n+1

2 − s), with
multiplicity

(
n−d

s

)
·

d

∏
k=2

(1+
l

k−1
) · (1+ 2l − n+1

2 + s

d
) ·

d

∏
j=2

(1+
l − n+1

2 + s

d− j +1
).

3. 2(d+ l)(2d−n+1+2(l +s)), where s∈ {0, . . . ,n−d}, l ∈N, l ≥max(0, n−1
2 −

d− s), with multiplicity

(
n−d

s

)
·

d

∏
k=2

(1+
l

k−1
) · (1+ 2l +d− n−1

2 + s

d
) ·

d

∏
j=2

(1+
l +d− n−1

2 + s

d− j +1
).

Proof: Recall that, by Corollary 3.4.4, there exists a unitary andparallel isomorphism

Σ(TCPd)⊗Σ(T⊥
CPd)∼=

n−d⊕

s=0

(
n−d

s

)
·Σ(TCPd)⊗ γ

n−d
2 −s

d ,

whereγd is the tautological bundle ofCPd and

(
n−d

s

)
stands for the multiplicity

with which the subbundleΣ(TCPd)⊗ γ
n−d

2 −s
d appears in the splitting. Therefore, the

eigenvalues of the twisted Dirac operator acting onΣ(TCPd)⊗Σ(T⊥
CPd) are those

of Σ(TCPd)⊗ γ
n−d

2 −s
d , wheres runs from 0 ton−d. Moreover, the multiplicity of the

eigenvalue corresponding to somes is

(
n−d

s

)
times the multiplicity computed in
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Lemma 3.4.6. Replacingm by n−d
2 − s, Theorem 3.4.7 gives the result. �

Note that(d+1)2 is always an eigenvalue for the squared operator(DΣN
M )2: if d = 1,

takes= n−1
2 and l = 1 in the second family of eigenvalues; ifd > 1, taker = d+1

2 ,
s= n−d

2 andε = 0= l in the first family.

Using Theorem 3.4.8, we are now able to compute the smallest eigenvalue of the
twisted Dirac operator (see [B8, Proposition 4.9] for a proof):

Proposition 3.4.9 The lowest eigenvalue for the square of the Dirac operator ofCPd

twisted with the spinor bundle of the normal bundle of the canonical embeddingCPd →
CPn is equal to0 for d < n+1

2 and to(n+1)(2d+1−n) for d ≥ n+1
2 .

Proof: Let us consider the first family of eigenvalues withε = 0 (the same computation
remains true forε = 1). Forr + s≥ n+1

2 , which impliesd− n−1
2 ≤ r, the minimum is

attained forl = 0 and we find the eigenvalues 2r(2d+1−n+2s),which are increasing
functions with respect toswith s≥ n+1

2 − r. Here two cases occur:

1. Case wheren+1
2 −r ≥ 0, the eigenvalues become 4r(d+1−r) and we distinguish

the two subcases:

(a) Ford ≤ n+1
2 , then the lowest eigenvalue is equal to 4d.

(b) For n+1
2 < d, the lowest eigenvalue is(n+1)(2d+1−n).

2. Case wheren+1
2 − r < 0 which impliesn+1

2 < d. Hence, the lowest eigenvalue is
equal to(n+1)(2d+1−n).

Now for r +s< n+1
2 , we takel = n+1

2 − r −s. Thus the eigenvalues are equal 2(n+1−
2s)(d+1− r) which are decreasing functions inswith 0≤ s≤ n−1

2 − r. We have:

1. Case wheren−1
2 − r ≤ n−d. We then get the eigenvalues 4(1+ r)(d+1− r)with

d− n+1
2 ≤ r ≤ n−1

2 . Here two cases occur:

(a) Ford ≤ n+1
2 , the lowest eigenvalue is equal to 8d.

(b) Ford > n+1
2 , the lowest eigenvalue is equal to(n+3)(2d+1−n).

2. Case wheren−1
2 − r > n−d, we get the eigenvalues 2(2d−n+1)(d+1− r)with

1≤ r ≤ d− n+3
2 . In this case, we have thatd > n+1

2 and the lowest eigenvalue is
equal to(n+5)(2d−n+1).

For the second family of eigenvalues, we distinguish the cases:

1. Case wheren+1
2 − s≤ 0 which implies thatd ≤ n−1

2 , we takel = 0. The lowest
eigenvalue is then equal to 0.

2. Case wheren+1
2 − s> 0. The eigenvalues become 2d(n+1−2s) with 0≤ s≤

n−1
2 . Two cases occur

(a) Ford ≤ n+1
2 , the lowest eigenvalue is 4d.

(b) Ford > n+1
2 , the lowest eigenvalue is 2d(2d+1−n)
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For the last family of eigenvalues, we consider the two cases:

1. Case wheren−1
2 −d−s> 0, which implies thatd< n−1

2 , we takel = n−1
2 −d−s.

We find the lowest eigenvalue 0 after substituting.

2. Case wheren−1
2 −d− s≤ 0. In this casel = 0 and we get 2d(2d−n+1+2s).

Here two cases occur:

(a) Ford > n−1
2 , the lowest eigenvalue is 2d(2d−n+1).

(b) Ford ≤ n−1
2 , the lowest eigenvalue is 0.

�

Note that the absence of 0 in the Dirac spectrum ford ≥ n+1
2 agrees with Kodaira’s

vanishing theorem, which implies that, ifm is an integer with|m| < d+1
2 , then the

cohomology groupsHq

(
CPd,γ

d+1
2 +m

d

)
vanish for allq, in particular the kernel of the

twisted Dirac operator is trivial in that case.

Next we show that the estimate (3.7) is not always sharp. We consider the simplest case

whered= 1 and compare the multiplicities of the eigenvalues 0 and 4 with 2

(
n

n+1
2

)
,

which is thea priori number of eigenvalues bounded by 4 in (3.7). The multiplicity of
the eigenvalue 0 is equal to

n−3
2

∑
s=0

(
n−1

s

)
(
n−1

2
− s)+

n−1

∑
s= n+1

2

(
n−1

s

)
(s− n−1

2
),

which is equal to ∑
n−3

2
s=0

(
n−1

s

)
(n − 1 − 2s) since by replacing s by

(n− 1)− s the second sum is equal to the first one. A short computation gives

∑
n−3

2
s=0

(
n−1

s

)
(n−1− 2s) = n−1

2 ·
(

n−1
n−1

2

)
. On the other hand, the multiplicity

of the eigenvalue 4 is equal to 4

(
n

n−1
2

)
. Hence the sum of these two multiplicities

is (n−1
2 + 4) ·

(
n−1
n−1

2

)
. That number is always greater than 2

(
n

n+1
2

)
. However,

if the multiplicity of the eigenvalue 0 is smaller than 2

(
n

n+1
2

)
for n = 3,5,7,

it is greater forn ≥ 9. Thus, the equality in (3.7) is optimal forn = 3,5,7 but is
neveroptimal as soon asn ≥ 9. In particular, the twisted Dirac operator on Kähler
submanifolds behaves very differently from that on submanifolds immersed in real
spaceforms, where analogous upper bounds are sharp in any dimension.
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kähleriennes compactes, Commun. Math. Phys.169(1995), 373–384 .

77



78 BIBLIOGRAPHY



Chapter 4

Imaginary K ählerian Killing
spinors I

This chapter coincides (up to minor changes such as enumeration of pages, sections,
theorems, references etc.) with the published article [32].

Nicolas Ginoux and Uwe Semmelmann

Abstract. We describe and to some extent characterize a new family of K¨ahler spin manifolds
admitting non-trivial imaginary Kählerian Killing spinors.

Keywords: Kähler manifolds, Sasakian manifolds, spin geometry

MSC classification:53C25, 53C27, 53C55

4.1 Introduction

Let (M̃2n,g,J) a Kähler manifold of real dimension 2n and with Kähler-form̃Ω defined
by Ω̃(X,Y) := g(J(X),Y) for all vectorsX,Y∈TM̃. We denote byp+ : TM−→T1,0M,
X 7→ 1

2(X − iJ(X)) and p− : TM −→ T0,1M, X 7→ 1
2(X + iJ(X)) the projection maps.

In caseM̃2n is spin, we denote its complex spinor bundle byΣM̃.

Definition 4.1.1 Let (M̃2n,g,J) a spin K̈ahler manifold andα ∈ C. A pair (ψ ,φ) of
sections ofΣM̃ is called anα-Kählerian Killing spinorif and only if it satisfies, for
every X∈ Γ(TM̃), ∣∣∣∣∣

∇̃Xψ =−α p−(X) ·φ
∇̃Xφ =−α p+(X) ·ψ .

An α-Kählerian Killing spinor is said to bereal(resp.imaginary) if and only ifα ∈ R

(resp.α ∈ iR∗).

If α = 0, then anα-Kählerian Killing spinor is nothing but a pair of parallelspinors.
The classification of Kähler spin manifolds (resp. spin manifolds) admitting real
non-parallel Kählerian Killing (resp. parallel) spinorshas been established by A.
Moroianu in [C12] (resp. by McK. Wang in [C14]).
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In this paper, we describe and partially classify those Kähler spin manifolds carrying
non-trivial imaginary Kählerian Killing spinors. Note first that there is no restriction
in assumingα = i: obviously, changing(ψ ,φ) into (ψ ,−φ) changesα into −α;
moreover,(ψ ,φ) is anα-Kählerian Killing spinor on(M̃2n,g,J) if and only if it is an
α
λ -Kählerian Killing spinor on(M̃2n,λ 2g,J) for any constantλ > 0.

K.-D. Kirchberg, who introduced this equation (see [C9] forreferences), showed that,
if a non-zeroi-Kählerian Killing spinor(ψ ,φ) exists on(M̃2n,g,J), then necessarily
the complex dimensionn of M̃ is odd, the manifold(M̃2n,g) is Einstein with scalar
curvature−4n(n+ 1), the pair(ψ ,φ) vanishes nowhere and satisfiesΩ̃ · ψ = −iψ
as well asΩ̃ · φ = iφ , see [C9] and Proposition 4.2.1 below for further properties.
Moreover, he proved in the casen= 3 that the holomorphic sectional curvature must
be constant [C9, Thm. 16], in particular only the complex hyperbolic spaceCH3

occurs as simply-connected complete(M̃6,g,J) with non-trivial i-Kählerian Killing
spinors.

We extend Kirchberg’s results in several ways. First, we study in detail the critical
points of the length function|ψ | of ψ . We show that, if the underlying Riemannian
manifold(M̃2n,g) is connected and complete, then|ψ | has at most one critical value,
which then has to be a (global) minimum and that the corresponding set of critical
points is a Kähler totally geodesic submanifold (Proposition 4.2.3).
As a next step, we describe a whole family of examples of Kähler manifolds admitting
non-trivial i-Kählerian Killing spinors (Theorem 4.3.9), including the complex
hyperbolic space and some Kähler manifolds with non-constant holomorphic sectional
curvature (Corollary 4.3.13). All arise as so-called doubly-warped products over
Sasakian manifolds. A more detailed study of the induced spinor equation on that
Sasakian manifold allows the complex hyperbolic space to becharacterized within the
family (Theorem 4.3.18).

In the last section, we show that doubly-warped products arethe only possible Kähler
manifolds with non-triviali-Kählerian Killing spinors as soon as both components of
(ψ ,φ) have the same length and are exchanged through the Clifford multiplication by a
(real) vector field (Theorem 4.4.1). This shows an interesting analogy with H. Baum’s
classification [C3, C4] of complete Riemannian spin manifolds with imaginary Killing
spinors.

4.2 General integrability conditions

In this section we look for further necessary conditions forthe existence of imaginary
Kählerian Killing spinors. Consider the vector fieldV on M̃ defined by

g(V,X) := Im(〈p+(X) ·ψ ,φ〉) (4.1)

for every vectorX onM̃. We recall the following

Proposition 4.2.1 (see [C9])Let (ψ ,φ) be an i-K̈ahlerian Killing spinor on
(M̃2n,g,J) which does not vanish identically. Then the following properties hold:

i) grad(|ψ |2) = grad(|φ |2) = 2V.
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ii) For all vectors X,Y ∈ TM̃,

g(∇̃XV,Y) =Re(〈p−(X) ·φ , p−(Y) ·φ〉+ 〈p+(X) ·ψ , p+(Y) ·ψ〉) .
In particular,

Hess(|ψ |2)(X,Y)=Hess(|φ |2)(X,Y)= 2Re(〈p−(X) ·φ , p−(Y) ·φ〉+ 〈p+(X) ·ψ , p+(Y) ·ψ〉) .

iii) ∆(|ψ |2) = ∆(|φ |2) =−2(n+1)(|ψ |2+ |φ |2), where∆ :=−trg(Hess).

iv) The vector field V is holomorphic, i.e., it satisfies:∇̃J(X)V = J(∇̃XV) for every

X ∈ TM̃. In particular, the vector field J(V) is Killing on M̃.

v) grad(|V|2) = 2∇̃VV.

Note that, from Proposition 4.2.1, the identity∆(|ψ |2+ |φ |2) =−4(n+1)(|ψ |2+ |φ |2)
holds onM̃, thereforeM̃ cannot be compact.

Next we are interested in the critical points of|ψ |2 (or of |φ |2, they are the same by
Proposition 4.2.1.i)). We need a technical lemma:

Lemma 4.2.2 Under the hypotheses ofProposition 4.2.1, one has

∇̃X∇̃YV = ∇̃∇̃XY
V+{2g(V,X)Y+g(V,Y)X−g(V,J(Y))J(X)+g(X,Y)V+g(J(X),Y)J(V)}

for all vector fields X,Y onM̃. Therefore,

Hess(|V|2)(X,Y)= 2g(∇̃XV, ∇̃YV)+2
(
3g(X,V)g(Y,V)+ |V|2g(X,Y)−g(X,J(V))g(Y,J(V))

)
.

Proof: Using Proposition 4.2.1, we compute in a local orthonormalbasis{ej}1≤ j≤2n of
TM̃:

∇̃X∇̃YV =
2n

∑
j=1

Re
(
〈p−(∇̃XY) ·φ , p−(ej) ·φ〉+ 〈p+(∇̃XY) ·ψ , p+(ej) ·ψ〉

+ 〈p−(Y) · ∇̃Xφ , p−(ej) ·φ〉+ 〈p−(Y) ·φ , p−(ej) · ∇̃Xφ〉

+ 〈p+(Y) · ∇̃Xψ , p+(ej) ·ψ〉+ 〈p+(Y) ·ψ , p+(ej) · ∇̃Xψ〉
)

ej

=
2n

∑
j=1

Re
(
〈p−(∇̃XY) ·φ , p−(ej) ·φ〉+ 〈p+(∇̃XY) ·ψ , p+(ej) ·ψ〉

−α〈p−(Y) · p+(X) ·ψ , p−(ej) ·φ〉+α〈p−(Y) ·φ , p−(ej) · p+(X) ·ψ〉

−α〈p+(Y) · p−(X) ·φ , p+(ej) ·ψ〉+α〈p+(Y) ·ψ , p+(ej) · p−(X) ·φ〉
)

ej

= ∇̃∇̃XYV

+
2n

∑
j=1

Im
(
〈p−(Y) · p+(X) ·ψ , p−(ej) ·φ〉+ 〈p+(Y) · p−(X) ·φ , p+(ej) ·ψ〉

)
ej

−
2n

∑
j=1

Im
(
〈p−(Y) ·φ , p−(ej) · p+(X) ·ψ〉+ 〈p+(Y) ·ψ , p+(ej) · p−(X) ·φ〉

)
ej .



82 CHAPTER 4. IMAGINARY KÄHLERIAN KILLING SPINORS I

We compute the second line of the right-hand side of the preceding equation (the treat-
ment of the third one is analogous). Using〈p+(X) ·ψ ,φ〉= 2ig(V, p+(X)), we obtain

〈p+(Y) · p−(X) ·φ , p+(ej) ·ψ〉 = 〈ψ , p−(X) · p+(Y) · p−(ej) ·φ〉+4ig(Y, p−(ej))g(V, p−(X))

+4ig(Y, p−(X))g(V, p−(ej)).

We deduce that, for everyj ∈ {1, . . . ,2n},

〈p−(Y) · p+(X) ·ψ , p−(ej) ·φ〉+ 〈p+(Y) · p−(X) ·φ , p+(ej) ·ψ〉 =2Re(〈ψ , p−(X) · p+(Y) · p−(ej) ·φ〉)
+4ig(Y, p−(ej))g(V, p−(X))

+4ig(Y, p−(X))g(V, p−(ej)).

The imaginary part of the right-hand side of the last equality is then given for every
j ∈ {1, . . . ,2n} by

4Re(g(Y, p−(ej))g(V, p−(X))+g(Y, p−(X))g(V, p−(ej))) = g(V,X)g(Y,ej)+g(V,J(X))g(J(Y),ej )

+g(X,Y)g(V,ej)+g(J(X),Y)g(J(V),ej).

This shows that
2n

∑
j=1

Im
(
〈p−(Y) · p+(X) ·ψ , p−(ej) ·φ〉+ 〈p+(Y) · p−(X) ·φ , p+(ej) ·ψ〉

)
ej = g(V,X)Y

+g(V,J(X))J(Y)

+g(X,Y)V

+g(J(X),Y)J(V).

Similarly, one shows that

2n

∑
j=1

Im
(
〈p−(Y) ·φ , p−(ej) · p+(X) ·ψ〉+ 〈p+(Y) ·ψ , p+(ej) · p−(X) ·φ〉

)
ej = −g(V,Y)X

+g(V,J(Y))J(X)

−g(V,X)Y

+g(V,J(X))J(Y).

Combining the computations above, we obtain

∇̃X∇̃YV = ∇̃∇̃XYV

+(g(V,X)Y+g(V,J(X))J(Y)+g(X,Y)V +g(J(X),Y)J(V))

−(−g(V,Y)X+g(V,J(Y))J(X)−g(V,X)Y+g(V,J(X))J(Y))

= ∇̃∇̃XY
V

+(2g(V,X)Y+g(V,Y)X−g(V,J(Y))J(X)+g(X,Y)V +g(J(X),Y)J(V)) ,

which shows the first identity. We deduce for the Hessian of|V|2 that, for all vector
fieldsX,Y on M̃,

Hess(|V|2)(X,Y) = 2g(∇̃X∇̃VV,Y)

= 2g(∇̃∇̃XV
V,Y)+2

(
2g(V,X)g(V,Y)+ |V|2g(X,Y)−0+g(X,V)g(V,Y)

+g(J(X),V)g(J(V),Y)
)

= 2g(∇̃XV, ∇̃YV)+2
(
3g(X,V)g(Y,V)+ |V|2g(X,Y)−g(X,J(V))g(Y,J(V))

)
,
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which is the second identity. This concludes the proof of Lemma 4.2.2. �

We can now describe more precisely the set of critical valuesand points of|ψ |2 and
|V|2.

Proposition 4.2.3 Under the hypotheses ofProposition 4.2.1, assume furthermore
(M̃2n,g) to be connected and complete. Then the following holds:

i) The set{V = 0} of zeros of V coincides with{∇̃VV = 0}. As a consequence, the
zeros of V are the only critical points of the function|V|2 onM̃2n.

ii) The subset{V = 0} is a (possibly empty) connected totally geodesic Kähler
submanifold of complex dimension k< n in (M̃2n,g,J). Furthermore, for all
x,y∈ {V = 0}, every geodesic segment between x and y lies in{V = 0}.

iii) The function|ψ |2 has at most one critical value oñM2n, which is then a global
minimum of|ψ |2. Furthermore, the set of critical points of|ψ |2 is a connected
totally geodesic K̈ahler submanifold in(M̃2n,g,J).

Proof: The proof relies on simple computations and arguments.
i) Proposition 4.2.1.v) already implies that{∇̃VV = 0} coincides with the set of
critical points of |V|2. Every zero ofV is obviously a zero of̃∇VV, i.e., a criti-
cal point of |V|2. Conversely, letx ∈ {∇̃VV = 0}. Then 0= gx(∇̃VV,V) = |p−(Vx) ·
φ |2+ |p+(Vx) ·ψ |2, so thatp−(Vx) ·φ = 0 andp+(Vx) ·ψ = 0, which, in turn, implies
0= Im(〈p+(Vx) ·ψ ,φ〉) = g(Vx,Vx), that is,Vx = 0. This showsi).
ii) The subset{V = 0} - if non-empty - is the fixed-point-set iñM2n of the flow
of the holomorphic Killing fieldJ(V), therefore it is a totally geodesic Kähler sub-
manifold of M̃2n (see e.g. [C10, Sec. II.5]); moreover, it cannot contain anyopen
subset ofM̃2n since otherwiseV would identically vanish as a holomorphic vector
field. To show the connectedness of{V = 0}, it suffices to prove the second part of
the statement. Pick any two pointsx0,x1 in {V = 0} (or, equivalently, any critical
points of |V|2) and any geodesicc in (M̃2n,g) with c(0) = x0 and c(1) = x1. Con-
sider the real-valued functionf (t) := |V|2c(t) defined onR. Then, for anyt ∈R one has

f ′(t) = g(grad(|V|2),c′(t)) = 2g(∇̃c′(t)V,V) and

f ′′(t) = Hess(|V|2)(c′(t),c′(t)).

Lemma 4.2.2 provides the Hessian of|V|2: for everyX ∈ TM̃,

Hess(|V|2)(X,X) = 2|∇̃XV|2+2
(
3g(V,X)2+ |V|2|X|2−g(X,J(V))2) .

By Cauchy-Schwarz inequality,|V|2|X|2−g(X,J(V))2 ≥ 0, so that Hess(|V|2)(X,X)≥
0 for all X, in particular f is convex. This in turn implies that, iff ′(0) = f ′(1) = 0,
then necessarilyf vanishes on[0,1]. This provesii).
iii ) Set, for anyt ∈ R, h(t) := |ψ |2c(t) wherec is an arbitrary geodesic on(M̃2n,g).

We show again thath is convex. As beforeh′′(t) = Hess(|ψ |2)(c′(t),c′(t)) ≥ 0 for
everyt ∈ R, where Hess(|ψ |2)(X,X) = 2(|p−(X) · φ |2+ |p+(X) ·ψ |2) ≥ 0 for every
X ∈ TM̃ (Proposition 4.2.1). We already know that, ifV = 1

2grad(|ψ |2) vanishes at
two different points ofc, then it vanishes on any geodesic segment joining the two
points, therefore|ψ |2 is constant on it. This proves that|ψ |2 has at most one critical
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value. Sinceh is convex this critical value is necessarily a minimum. The last part
of the statement is a straightforward consequence ofii) since grad(|ψ |2) = 2V by
Proposition 4.2.1. This showsiii ) and concludes the proof. �

4.3 Doubly warped products with imaginary Kählerian
Killing spinors

In this section, we describe the so-called doubly-warped products carrying non-zero
imaginary Kählerian Killing spinors. Doubly warped products were introduced in
the spinorial context by Patrick Baier in his master thesis [C1] to compute the Dirac
spectrum of the complex hyperbolic space, using its representation as a doubly-warped
product over an odd-dimensional sphere.

First we recall general formulas on warped products.

Lemma 4.3.1 Let (M̃ := M × I , g̃ := gt ⊕ βdt2) be a warped product, where I⊂ R

is an open interval, gt is a smooth1-parameter family of Riemannian metrics on M

andβ ∈C∞(M× I ,R×
+). Denote byM̃

π1−→ M the first projection. Then, for all X,Y ∈
Γ(π∗

1TM),

∇̃ ∂
∂ t

∂
∂ t

= −1
2

gradgt
(β (t, ·))+ 1

2β
∂β
∂ t

∂
∂ t

∇̃ ∂
∂ t

X =
∂X
∂ t

+
1
2

g−1
t

∂gt

∂ t
(X, ·)+ 1

2β
∂β
∂x

(X)
∂
∂ t

∇̃X
∂
∂ t

=
1
2

g−1
t

∂gt

∂ t
(X, ·)+ 1

2β
∂β
∂x

(X)
∂
∂ t

∇̃XY = ∇M
X Y− 1

2β
∂gt

∂ t
(X,Y)

∂
∂ t

,

where∂X
∂ t = [ ∂

∂ t ,X] and∇M (resp.∇̃) is the Levi-Civita covariant derivative of(M,gt)

(resp. of(M̃, g̃)).

Proof: straightforward consequence of the Koszul identity. �

From now on we restrict ourselves to the following particular case: the manifoldM will
be equipped with aRiemannian flow.

Definition 4.3.2

i) A Riemannian flowis a triple (M, ĝ, ξ̂ ), where M is a smooth manifold and̂ξ is
a smooth unit vector field whose flow is isometric on the orthogonal distribution,
i.e., ĝ(∇̂M

Z ξ̂ ,Z′) = −ĝ(Z, ∇̂M
Z′ ξ̂ ) for all Z,Z′ ∈ ξ̂⊥, where∇̂M denotes the Levi-

Civita covariant derivative of(M, ĝ).

ii) A Riemannian flow(M, ĝ, ξ̂ ) is calledminimal if and only if∇̂M
ξ̂

ξ̂ = 0, that is, if

ξ̂ is actually a Killing vector field on M.
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Let (M, ĝ, ξ̂ ) be a minimal Riemannian flow. Let̂h denote the endomorphism-field of

ξ̂⊥ defined bŷh(Z) := ∇̂M
Z ξ̂ for everyZ ∈ ξ̂⊥. Let ∇̂ be the covariant derivative on̂ξ⊥

defined for allZ ∈ Γ(ξ̂⊥) by ∇̂XZ :=

{
[ξ̂ ,Z]ξ̂⊥

if X = ξ̂
(∇̂M

X Z)ξ̂⊥
if X ⊥ ξ̂

. Alternatively,∇̂ can

be described by the following formulas: for allZ,Z′ ∈ Γ(ξ̂⊥),

∇̂M
ξ̂

Z = ∇̂ξ̂ Z+ ĥ(Z) and ∇̂M
Z Z′ = ∇̂ZZ′− ĝ(ĥ(Z),Z′)ξ̂ .

It is important to notice that, if(M, ĝ, ξ̂ ) is a (minimal) Riemannian flow andg :=

r2(s2ĝξ̂ ⊕ ĝξ̂⊥) for some constantsr,s> 0, then(M,g,ξ := 1
rsξ̂ ) is a (minimal) Rie-

mannian flow with corresponding objects given by

h=
s
r
ĥ and ∇ = ∇̂. (4.2)

In this language, aSasakianmanifold is a minimal Riemannian flow(M, ĝ, ξ̂ ) such
that ĥ is a transversal Kähler structure, that is,ĥ2 = −Idξ̂⊥ and ∇̂ĥ = 0. Further

on in the text we shall need for normalization purposes so-called D-homothetic
deformationsof a Sasakian structure: aD-homothetic deformation of(M, ĝ, ξ̂ )
is (M,λ 2(λ 2ĝξ̂ ⊕ ĝξ̂⊥),

1
λ 2 ξ̂ ) for some λ ∈ R

×
+. The identities (4.2) imply that

(M,λ 2(λ 2ĝξ̂ ⊕ ĝξ̂⊥),
1

λ 2 ξ̂ ) is Sasakian as soon as(M, ĝ, ξ̂ ) is Sasakian.

We can now make the concept of doubly-warped product precise:

Definition 4.3.3 A doubly-warped productis a warped product of the form

(M̃, g̃) := (M× I ,ρ(t)2(σ(t)2ĝξ̂ ⊕ ĝξ̂⊥)⊕dt2),

where I is an open interval,(M, ĝ, ξ̂ ) is a minimal Riemannian flow,ρ ,σ : I −→ R
×
+

are smooth functions and̂gξ̂ := ĝ|
Rξ̂⊕Rξ̂

, ĝξ̂⊥ := ĝ|ξ̂⊥⊕ξ̂⊥
.

As for warped products, it can be easily proved that a doubly-warped product(M̃, g̃) is
complete as soon asI = R and(M, ĝ) is complete.

It is easy to check that, settinggt := ρ(t)2(σ(t)2ĝξ̂ ⊕ ĝξ̂⊥), one has∂gt
∂ t = 2ρ ′

ρ gt +

2σ ′
σ gt(πξ̂⊥ , ·) and the unit vector field providing the Riemannian flow on(M,gt ) is
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ξ = 1
ρσ ξ̂ . In particular, the formulas in Lemma 4.3.1 simplify:

∇̃ ∂
∂ t

∂
∂ t

= 0

∇̃ ∂
∂ t

ξ = 0

∇̃ ∂
∂ t

Z =
∂Z
∂ t

+
ρ ′

ρ
Z

∇̃ξ
∂
∂ t

=
(ρσ)′

ρσ
ξ

∇̃ξ ξ = − (ρσ)′

ρσ
∂
∂ t

∇̃ξ Z = ∇ξ Z+h(Z)

∇̃Z
∂
∂ t

=
ρ ′

ρ
Z

∇̃Zξ = h(Z)

∇̃ZZ′ = ∇ZZ′−gt(h(Z),Z
′)ξ − ρ ′

ρ
gt(Z,Z

′)
∂
∂ t

,

where we have denoted the corresponding objects on(M,gt ,ξ ) without the hat “̂· ”.

Next we look at a possible construction of Kähler structures on doubly-warped prod-
ucts.

Lemma 4.3.4 Let (M̃, g̃) := (M× I ,ρ(t)2(σ(t)2ĝξ̂ ⊕ ĝξ̂⊥)⊕dt2) be a doubly-warped

product. Assume the existence of a transversal Kähler structure J on(M, ĝ, ξ̂ ) and de-
fine the almost complex structurẽJ onM̃ byJ̃(ξ ) := ∂

∂ t , J̃( ∂
∂ t ) :=−ξ andJ̃(Z) := J(Z)

for all Z ∈ {ξ , ∂
∂ t }⊥. Then(M̃2n, g̃, J̃) is Kähler if and only if̂h=− ρ ′

σ J on{ξ , ∂
∂ t }⊥ (in

particular ρ ′
σ must be constant).

Proof: Using the identities above we write down the condition∇̃J̃= 0. Denote byh and
∇ the objects corresponding togt onM. Note first that, by definition and (4.2), one has
∇J = 0 on{ξ , ∂

∂ t }⊥ andJ̃|{ξ , ∂
∂ t

}⊥
= J, which does not depend ont. Hence we obtain,
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for all Z,Z′ ∈ Γ(ξ̂⊥):

∇̃ ∂
∂ t
(J̃(

∂
∂ t

))− J̃(∇̃ ∂
∂ t

∂
∂ t

) = 0

∇̃ ∂
∂ t
(J̃(ξ ))− J̃(∇̃ ∂

∂ t
ξ ) = 0

∇̃ ∂
∂ t
(J̃(Z))− J̃(∇̃ ∂

∂ t
Z) =

∂ (J̃(Z))
∂ t

− J̃(
∂Z
∂ t

) =
∂ (J(Z))

∂ t
− J(

∂Z
∂ t

) = 0

∇̃ξ (J̃(
∂
∂ t

))− J̃(∇̃ξ
∂
∂ t

) = 0

∇̃ξ (J̃(ξ ))− J̃(∇̃ξ ξ ) = 0

∇̃ξ (J̃(Z))− J̃(∇̃ξ Z) = h◦ J(Z)− J◦h(Z)

∇̃Z(J̃(
∂
∂ t

))− J̃(∇̃Z
∂
∂ t

) = −h(Z)− ρ ′

ρ
J(Z)

∇̃Z(J̃(ξ ))− J̃(∇̃Zξ ) =
ρ ′

ρ
Z− J◦h(Z)

∇̃Z(J̃(Z
′))− J̃(∇̃ZZ′) = −gt(h(Z),J(Z

′))ξ − ρ ′

ρ
gt(Z,J(Z

′))
∂
∂ t

+gt(h(Z),Z
′)

∂
∂ t

− ρ ′

ρ
gt(Z,Z

′)ξ .

Therefore,∇̃J̃ = 0 implies h = − ρ ′
ρ J on ξ⊥ which, in turn, impliesh◦ J = J ◦ h.

Moreover, (4.2) implies thath= σ
ρ ĥ, which yieldsĥ= − ρ ′

σ J. The reverse implication
is obvious. �

Notes 4.3.5

1. With the assumptions of Lemma 4.3.4, the functionρ ′ vanishes either identically
or nowhere on the intervalI . In the former case the vanishing ofĥ is equivalent to
M being locally the Riemannian product of an interval with a K¨ahler manifold; in

the latter one, we may assume, up to changingσ into |ρ ′
σ |σ (andĝ into ( σ

ρ ′ )2ĝξ̂ ⊕
ĝξ̂⊥), thatĥ=−εJ andρ ′ = εσ with ε ∈ {±1}.

2. Given a Kähler doubly warped product(M̃, g̃, J̃) as in Lemma 4.3.4 and a
real constantC, the map(x, t) 7→ (x,±t +C) provides a holomorphic isometry
(M̃, g̃, J̃) −→ (M̃′, g̃′, J̃′), where(M̃′, g̃′) := (M× (C± I),g±t+C⊕dt2) andJ̃′ is
the corresponding complex structure (again as in Lemma 4.3.4). If furthermore
M is spin, then this isometry preserves the corresponding spin structures. Thus,
in the case whereρ ′ 6= 0, we may assume thatε = 1, i.e., that̂h=−J andρ ′ = σ .

Now we examine the correspondence of spinors. Let the underlying manifoldM of
some minimal Riemannian flow(M,g,ξ ) be spin and, in caseM is the total space of
a Riemannian submersion withS1-fibres over a spin manifoldN, let M carry the spin
structure induced by that ofN. Let ΣM denote the spinor bundle of(M,g) and “·

M
”

its Clifford multiplication. Let the doubly warped product̃M carry the product spin
structure (with Clifford multiplication denoted by “·”). Then the transversal covariant
derivative∇ induces a covariant derivative - also denoted by∇ - on ΣM, which is
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related to the spinorial Levi-Civita covariant derivative∇M on ΣM via (see e.g. [C7,
eq. (2.4.7)] or [C8, Sec. 4])

∇M
ξ ϕ = ∇ξ ϕ +

1
4

2n−2

∑
j=1

ej ·
M

h(ej) ·
M

ϕ and ∇M
Z ϕ = ∇Zϕ +

1
2

ξ ·
M

h(Z) ·
M

ϕ

for everyϕ ∈ Γ(ΣM), where{ej}1≤ j≤2n−2 is a local orthonormal basis ofξ⊥ ⊂ TM.

Lemma 4.3.6 Let a minimal Riemannian flow(M, ĝ, ξ̂ ) carry a transversal K̈ahler
structure J such that the doubly-warped product(M̃, g̃, J̃) is Kähler, whereJ̃ is the
almost-complex structure induced by J as inLemma 4.3.4. Assume furthermore M to
be spin. LetM̃ carry the induced spin structure. Then the following identities hold for
all ϕ ∈ Γ(ΣM̃) and Z∈ {ξ , ∂

∂ t }⊥:

∇̃ ∂
∂ t

ϕ =
∂ϕ
∂ t

∇̃ξ ϕ = ∇ξ ϕ − ρ ′

2ρ
Ω̃ ·ϕ − σ ′

2σ
ξ · ∂

∂ t
·ϕ

∇̃Zϕ = ∇Zϕ − ρ ′

2ρ
(ξ ·J(Z)+Z · ∂

∂ t
) ·ϕ ,

whereΩ̃ denotes the K̈ahler form of(M̃, g̃, J̃).

Proof: Let (e1, . . . ,e2n−2,e2n−1 := ξ ,e2n := ∂
∂ t ) be a local positively-oriented orthonor-

mal basis ofTM̃ and(ψα )α the corresponding spinorial frame. It can be assumed that

ej = ρ−1êj with ĝ(êj , êk) = δ jk and
∂ êj
∂ t = 0 (extend somêg-orthonormal basis inde-

pendently of time). Splitϕ = ∑α cα ψα , then

∇̃ ∂
∂ t

ϕ =
1
4 ∑

α
cα

2n

∑
j ,k=1

g̃(∇̃ ∂
∂ t

ej ,ek)ej ·ek ·ψα +∑
α

∂cα
∂ t

ψα

︸ ︷︷ ︸
=: ∂ ϕ

∂ t

=
∂ϕ
∂ t

+
1
4 ∑

α
cα

2n−2

∑
j ,k=1

g̃(∇̃ ∂
∂ t

ej ,ek)ej ·ek ·ψα

=
∂ϕ
∂ t

+
1
4 ∑

α
cα

2n−2

∑
j ,k=1

{gt(
∂ej

∂ t
,ek)+

ρ ′

ρ
δ jk}ej ·ek ·ψα

=
∂ϕ
∂ t

,

where we have used̃∇ ∂
∂ t

∂
∂ t = ∇̃ ∂

∂ t
ξ = 0 and

∂ej
∂ t = − ρ ′

ρ ej by the above choice ofej .

On the other hand, the Weingarten endomorphism field of(M,gt) in M̃ is given by

A(ξ ) :=−∇̃ξ
∂
∂ t = − (ρσ)′

ρσ ξ andA(Z) := −∇̃Z
∂
∂ t = − ρ ′

ρ Z for all Z ∈ {ξ , ∂
∂ t }⊥, so that
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the Gauss-Weingarten formula implies

∇̃ξ ϕ = ∇M
ξ ϕ +

1
2

A(ξ ) · ∂
∂ t

·ϕ

= ∇ξ ϕ +
1
4

2n−2

∑
j=1

ej ·
M

h(ej) ·
M

ϕ − (ρσ)′

2ρσ
ξ · ∂

∂ t
·ϕ

= ∇ξ ϕ − ρ ′

4ρ

2n−2

∑
j=1

ej ·J(ej) ·ϕ − (ρσ)′

2ρσ
ξ · ∂

∂ t
·ϕ

= ∇ξ ϕ − ρ ′

2ρ
Ω ·ϕ − (ρσ)′

2ρσ
ξ · ∂

∂ t
·ϕ ,

whereΩ is the 2-form associated toJ on{ξ , ∂
∂ t }⊥, i.e.,Ω(Z,Z′) = gt(J(Z),Z′) for all

Z,Z′ ∈ {ξ , ∂
∂ t }⊥. SinceΩ̃ = Ω+ ξ ∧ ∂

∂ t , we deduce that

∇̃ξ ϕ = ∇ξ ϕ − ρ ′

2ρ
Ω̃ ·ϕ +(

ρ ′

2ρ
− (ρσ)′

2ρσ
)ξ · ∂

∂ t
·ϕ

= ∇ξ ϕ − ρ ′

2ρ
Ω̃ ·ϕ − σ ′

2σ
ξ · ∂

∂ t
·ϕ .

For anyZ ∈ {ξ , ∂
∂ t }⊥, one has

∇̃Zϕ = ∇M
Z ϕ +

1
2

A(Z) · ∂
∂ t

·ϕ

= ∇Zϕ +
1
2

ξ ·
M

h(Z) ·
M

ϕ − ρ ′

2ρ
Z · ∂

∂ t
·ϕ

= ∇Zϕ − ρ ′

2ρ
ξ ·J(Z) ·ϕ − ρ ′

2ρ
Z · ∂

∂ t
·ϕ ,

which shows the last identity and concludes the proof. �

Later on we shall need to split spinors into different components. Recall that, on any
Kähler spin manifold(M̃2n, g̃, J̃), the spinor bundleΣM̃ of (M̃2n, g̃) splits under the
Clifford action of the Kähler form̃Ω into

ΣM̃ =
n⊕

r=0

ΣrM̃,

whereΣrM̃ := Ker(Ω̃ ·−i(2r −n)Id). Now if (M̃2n, g̃, J̃) is a doubly-warped product as
above, then anyϕ ∈ ΣrM̃ (with r ∈ {0,1, . . . ,n}) can be further split into eigenvectors
for the Clifford action ofΩ = g(J·, ·). Namely, since[ξ ∧ ∂

∂ t ,Ω] = 0, the automorphism

ξ · ∂
∂ t of ΣM̃ leavesΣrM̃ invariant; from(ξ · ∂

∂ t )
2 = −1 one deduces the orthogonal

decompositionΣrM̃ = Ker(ξ · ∂
∂ t + iId)⊕Ker(ξ · ∂

∂ t − iId). Since both Clifford actions

of ξ and ∂
∂ t are∇-parallel, so is the latter splitting. But, for anyϕ ∈ ΣrM̃, one has

ϕ ∈ Ker(ξ · ∂
∂ t

± iId) ⇐⇒ Ω ·ϕ = i(2r −n)ϕ ± iϕ

⇐⇒ Ω ·ϕ = i(2r −n±1)ϕ ,
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that is,ΣrM̃∩Ker(ξ · ∂
∂ t + iId) = ΣrM andΣrM̃∩Ker(ξ · ∂

∂ t − iId) = Σr−1M, where by
definitionΣrM := Ker(Ω ·−i(2r − (n−1)Id)) for r ∈ {0,1, . . . ,n−1} and{0} other-
wise. Out of dimensional reasons one actually has

ΣrM̃ = ΣrM⊕Σr−1M (4.3)

for everyr ∈ {0,1, . . . ,n}. Beware here that, ifr is even, thenΣrM̃ is a subspace of
Σ+M̃ henceΣrM̃|M is canonically identified with a subspace ofΣ+M̃|M = ΣM, whereas

if r is odd then it is a subspace ofΣ−M̃ and is also identified as a subspace ofΣM, but
this time with opposite Clifford multiplication.

Lemma 4.3.7 Under the hypotheses ofLemma 4.3.6, let ϕ ∈ Γ(ΣrM̃) for some r∈
{0,1. . . ,n} and consider its decompositionϕ = ϕr +ϕr−1 w.r.t. (4.3). Then the identi-
ties ofLemma 4.3.6read:

∇̃ ∂
∂ t

ϕr =
∂ϕr

∂ t

∇̃ ∂
∂ t

ϕr−1 =
∂ϕr−1

∂ t

∇̃ξ ϕr = ∇ξ ϕr +
i
2
((n−2r)

ρ ′

ρ
+

σ ′

σ
)ϕr

∇̃ξ ϕr−1 = ∇ξ ϕr−1+
i
2
((n−2r)

ρ ′

ρ
− σ ′

σ
)ϕr−1

∇̃Zϕ = ∇Zϕr −
ρ ′

ρ
p+(Z) ·

∂
∂ t

·ϕr−1+∇Zϕr−1−
ρ ′

ρ
p−(Z) ·

∂
∂ t

·ϕr

for all Z ∈ {ξ , ∂
∂ t }⊥, where, as usual, p±(Z) = 1

2(Z∓ iJ(Z)).

Proof: The first two identities follow from̃∇ ∂
∂ t
(ξ ∧ ∂

∂ t ) = 0 and ∂J
∂ t = 0. For the third

and fourth ones, note that̃∇ξ (ξ ∧ ∂
∂ t ) = 0, so that

∇̃ξ ϕr + ∇̃ξ ϕr−1 = ∇ξ ϕr +∇ξ ϕr−1−
iρ ′

2ρ
(2r −n)(ϕr +ϕr−1)−

iσ ′

2σ
(ϕr−1−ϕr)

= ∇ξ ϕr +
i
2
((n−2r)

ρ ′

ρ
+

σ ′

σ
)ϕr +∇ξ ϕr−1+

i
2
((n−2r)

ρ ′

ρ
− σ ′

σ
)ϕr−1,

which is the result. As for the last identity, one does not have ∇̃Z(ξ ∧ ∂
∂ t ) = 0, however

(ξ ·J(Z)+Z · ∂
∂ t

) ·ϕ = (−J(Z) · ∂
∂ t

·ξ · ∂
∂ t

+Z · ∂
∂ t

) ·ϕ

= −iJ(Z) · ∂
∂ t

· (ϕr−1−ϕr)+Z · ∂
∂ t

· (ϕr +ϕr−1)

= 2p+(Z) ·
∂
∂ t

·ϕr−1+2p−(Z) ·
∂
∂ t

·ϕr

for all Z ∈ {ξ , ∂
∂ t }⊥. This concludes the proof. �

We now have all we need to rewrite the imaginary Kähler Killing spinor equation on
doubly warped products.
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Lemma 4.3.8 Let a spin minimal Riemannian flow(M2n−1, ĝ, ξ̂ ) carry a transversal
Kähler structure J such that the doubly-warped product(M̃, g̃, J̃) is Kähler, whereJ̃
is the almost-complex structure induced by J as inLemma 4.3.4. Let M̃ carry the in-
duced spin structure and assume n≥ 3 to be odd. Then a pair(ψ ,φ) is an i-Kählerian
Killing spinor on (M̃2n, g̃, J̃) if and only if the following identities are satisfied by the
componentsφ = φ n+1

2
+φ n−1

2
andψ = ψ n−1

2
+ψ n−3

2
w.r.t. (4.3):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂φ n+1
2

∂ t = 0
∂φ n−1

2
∂ t =−i ∂

∂ t ·ψ n−1
2

∂ψ n−1
2

∂ t =−i ∂
∂ t ·φ n−1

2
∂ψ n−3

2
∂ t = 0

∇ξ φ n+1
2

= i
2(

ρ ′
ρ − σ ′

σ )φ n+1
2

∇ξ φ n−1
2

= i
2(

ρ ′
ρ + σ ′

σ )φ n−1
2
− ∂

∂ t ·ψ n−1
2

∇ξ ψ n−1
2

=− i
2(

ρ ′
ρ + σ ′

σ )ψ n−1
2
+ ∂

∂ t ·φ n−1
2

∇ξ ψ n−3
2

=− i
2(

ρ ′
ρ − σ ′

σ )ψ n−3
2

∇Zφ n+1
2

= p+(Z) · (ρ ′
ρ

∂
∂ t ·φ n−1

2
− iψ n−1

2
)

∇Zφ n−1
2

= ρ ′
ρ p−(Z) · ∂

∂ t ·φ n+1
2
− ip+(Z) ·ψ n−3

2

∇Zψ n−1
2

= ρ ′
ρ p+(Z) · ∂

∂ t ·ψ n−3
2
− ip−(Z) ·φ n+1

2

∇Zψ n−3
2

= p−(Z) · (ρ ′
ρ

∂
∂ t ·ψ n−1

2
− iφ n−1

2
)

(4.4)

for every Z∈ {ξ , ∂
∂ t }⊥.

Proof: Sincep+( ∂
∂ t ) ·ψ = 1

2(
∂
∂ t + iξ ) ·ψ = 1

2
∂
∂ t ·(1+ iξ · ∂

∂ t ·)ψ = ∂
∂ t ·ψ n−1

2
and similarly

p−( ∂
∂ t ) ·φ = ∂

∂ t ·φ n−1
2

, thei-Kählerian Killing spinor equation is satisfied by(ψ ,φ) for

X = ∂
∂ t if and only if

∂φ n+1
2

∂ t
+

∂φ n−1
2

∂ t
= −ip+(

∂
∂ t

) ·ψ =−i
∂
∂ t

·ψ n−1
2

∂ψ n−1
2

∂ t
+

∂ψ n−3
2

∂ t
= −ip−(

∂
∂ t

) ·φ =−i
∂
∂ t

·φ n−1
2
,

which gives the first four identities (use[Ω, ∂
∂ t ] = 0).

From p+(ξ ) ·ψ =−ip+(
∂
∂ t ) ·ψ =−i ∂

∂ t ·ψ n−1
2

andp−(ξ ) ·φ = ip−( ∂
∂ t ) ·φ = i ∂

∂ t ·φ n−1
2

we deduce that thei-Kählerian Killing spinor equation is satisfied by(ψ ,φ) for X = ξ
if and only if

∇ξ φ n+1
2
+

i
2
(−ρ ′

ρ
+

σ ′

σ
)φ n+1

2
= 0

∇ξ φ n−1
2
− i

2
(

ρ ′

ρ
+

σ ′

σ
)φ n−1

2
= − ∂

∂ t
·ψ n−1

2

∇ξ ψ n−1
2
+

i
2
(

ρ ′

ρ
+

σ ′

σ
)ψ n−1

2
=

∂
∂ t

·φ n−1
2

∇ξ ψ n−3
2
+

i
2
(

ρ ′

ρ
− σ ′

σ
)ψ n−3

2
= 0,
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which implies the next four equations.
Let Z ∈ {ξ , ∂

∂ t }⊥, then thei-Kählerian Killing spinor equation is satisfied by(ψ ,φ) for
X = Z if and only if

−ip+(Z) ·ψ n−1
2

= ∇Zφ n+1
2
− ρ ′

ρ
p+(Z) ·

∂
∂ t

·φ n−1
2

−ip+(Z) ·ψ n−3
2

= ∇Zφ n−1
2
− ρ ′

ρ
p−(Z) ·

∂
∂ t

·φ n+1
2

−ip−(Z) ·φ n+1
2

= ∇Zψ n−1
2
− ρ ′

ρ
p+(Z) ·

∂
∂ t

·ψ n−3
2

−ip−(Z) ·φ n−1
2

= ∇Zψ n−3
2
− ρ ′

ρ
p−(Z) ·

∂
∂ t

·φ n−1
2
,

which concludes the proof. �

Next we want to describe all doubly warped products with non-zero imaginary
Kählerian Killing spinors.

Theorem 4.3.9For n≥ 3 odd let(M̃2n, g̃, J̃) be a K̈ahler spin doubly warped product
as in Lemma 4.3.8. If there exists a non-zero i-K̈ahlerian Killing spinor (ψ ,φ) on
(M̃2n, g̃, J̃), then

• the minimal Riemannian flow(M2n−1, ĝ, ξ̂ ) is Sasakian,

• up to changing t into−t, applying aD-homothety and translating the interval I
by a constant, one has eitherρ = et or ρ = sinhor ρ = cosh,

• the componentsψr andφr of (ψ ,φ) w.r.t. (4.3)satisfy:

i) In caseρ =et : Thenσ = et and, setting̃ψ n−3
2

:= i ∂
∂ t ·ψ n−3

2
andϕ n−1

2
:= et(φ n−1

2
+

i ∂
∂ t ·ψ n−1

2
), one has

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂
∂ t φ n+1

2
= 0

∂
∂ t ψ̃ n−3

2
= 0

∂
∂ t ϕ n−1

2
= 0

∇̂ξ̂ φ n+1
2

= 0

∇̂ξ̂ ψ̃ n−3
2

= 0

∇̂ϕ n−1
2

= 0

∇̂Zφ n+1
2

= (−1)
n+1

2 p+(Z) ·̂
M

ϕ n−1
2

∇̂Zψ̃ n−3
2

= (−1)
n+1

2 p−(Z) ·̂
M

ϕ n−1
2
.

If furthermoreϕ n−1
2

= 0, then forφ̂ n−1
2

:= e−tφ n−1
2

one has∂
∂ t φ̂ n−1

2
= 0 and

∣∣∣∣∣∣∣∣∣∣∣

∇̂φ n+1
2

= 0

∇̂ψ̃ n−3
2

= 0

∇̂ξ̂ φ̂ n−1
2

= 0

∇̂Zφ̂ n−1
2

= (−1)
n+1

2 (p−(Z) ·̂
M

φ n+1
2
+ p+(Z) ·̂

M
ψ̃ n−3

2
).
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In particular, the manifold(M2n−1, ĝ, ξ̂ ) admits a non-zero transversally par-
allel spinor. Conversely, every non-zero transversally parallel spinor φ̂ n−1

2
∈

Γ(Σ n−1
2

M) provides a non-zero i-K̈ahlerian Killing spinor by settingφ n+1
2

:=

ψ n−3
2

:= 0 and φ n−1
2

:= et φ̂ n−1
2

, ψ n−1
2

:= −et i ∂
∂ t · φ̂ n−1

2
. Moreover, for any i-

Kählerian Killing spinor(ψ ,φ) on that doubly warped product(M̃2n, g̃, J̃), the

componentφ n−1
2

is transversally parallel on(M, ĝ, ξ̂ ) if and only if i ∂
∂ t ·ψ =−φ .

ii) In caseρ = sinh: One hasσ = coshon I = R
×
+ and there is a one-to-one cor-

respondence between the space of i-Kählerian Killing spinors on(M̃2n, g̃, J̃)
and that of sections(ϕ n+1

2
,ϕ n−1

2
, ϕ̃ n−1

2
, ϕ̃ n−3

2
) of Σ n+1

2
M ⊕ Σ n−1

2
M ⊕ Σ n−1

2
M ⊕

Σ n−3
2

M −→ M satisfying

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇̂ξ̂

(∼)
ϕ r = (−1)r

2 (n−2r)ξ̂ ·̂
M

(∼)
ϕ r

∇̂ξ̂

(∼)
ϕ r−1 = −(−1)r

2 (n−2r)ξ̂ ·̂
M

(∼)
ϕ r−1

∇̂Z
(∼)
ϕ r = (−1)r p+(Z) ·̂

M

(∼)
ϕ r−1

∇̂Z
(∼)
ϕ r−1 = (−1)r p−(Z) ·̂

M

(∼)
ϕ r

(4.5)

on (M2n−1, ĝ, ξ̂ ), for every Z∈ ξ̂⊥ (this means that(ϕ n+1
2
,ϕ n−1

2
) must satisfy

(4.5) for r = n+1
2 and(ϕ̃ n−1

2
, ϕ̃ n−3

2
) must satisfy(4.5) for r = n−1

2 ).

iii) In case ρ = cosh: One hasσ = sinh on I = R
×
+ and there is a one-to-one cor-

respondence between the space of i-Kählerian Killing spinors on(M̃2n, g̃, J̃)
and that of sections(ϕ n+1

2
,ϕ n−1

2
, ϕ̃ n−1

2
, ϕ̃ n−3

2
) of Σ n+1

2
M ⊕ Σ n−1

2
M ⊕ Σ n−1

2
M ⊕

Σ n−3
2

M −→ M satisfying

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇̂ξ̂

(∼)
ϕ r = − (−1)r

2 (n−2r)ξ̂ ·̂
M

(∼)
ϕ r

∇̂ξ̂

(∼)
ϕ r−1 = (−1)r

2 (n−2r)ξ̂ ·̂
M

(∼)
ϕ r−1

∇̂Z
(∼)
ϕ r = (−1)

n+1
2 p+(Z) ·̂

M

(∼)
ϕ r−1

∇̂Z
(∼)
ϕ r−1 = (−1)

n−1
2 p−(Z) ·̂

M

(∼)
ϕ r

(4.6)

on (M2n−1, ĝ, ξ̂ ), for every Z∈ ξ̂⊥ (this means that(ϕ n+1
2
,ϕ n−1

2
) must satisfy

(4.6) for r = n+1
2 and(ϕ̃ n−1

2
, ϕ̃ n−3

2
) must satisfy(4.6) for r = n−1

2 ).

Proof: We first showρ ′′ = ρ on I . In order to express all equations of (4.4) in an
intrinsic way, we have to compare all objects on(M,gt ,ξ ) with the corresponding ones

on (M, ĝ, ξ̂ ). Recall thatgt = ρ(t)2(σ(t)2ĝξ̂ ⊕ ĝξ̂⊥) andξ = 1
ρσ ξ̂ . As for (4.2), it is

elementary to check the following relations:

∇̂ = ∇, ξ ·= ξ̂ ·̂, ξ ·
M
= ξ̂ ·̂

M
, Z·= ρẐ·, Z ·

M
= ρZ ·̂

M
,
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for all Z ∈ ξ⊥. Applying ∂
∂ t onto

∣∣∣∣∣
∇̂Zφ n+1

2
= p+(Z)̂·(ρ ′ ∂

∂ t ·φ n−1
2
− iρψ n−1

2
)

∇̂Zψ n−3
2

= p−(Z)̂·(ρ ′ ∂
∂ t ·ψ n−1

2
− iρφ n−1

2
)

and using
∂φ n+1

2
∂ t =

∂ψ n−3
2

∂ t = 0, one obtains

0 = p+(Z)̂·(ρ ′′ ∂
∂ t

·φ n−1
2
+ρ ′ ∂

∂ t
·

∂φ n−1
2

∂ t
− iρ ′ψ n−1

2
− iρ

∂ψ n−1
2

∂ t
)

= p+(Z)̂·(ρ ′′ ∂
∂ t

·φ n−1
2
+ρ ′ ∂

∂ t
· (−i

∂
∂ t

·ψ n−1
2
)− iρ ′ψ n−1

2
− iρ(−i

∂
∂ t

·φ n−1
2
))

= (ρ ′′−ρ)p+(Z)̂·
∂
∂ t

·φ n−1
2

and analogously(ρ ′′−ρ)p−(Z)̂· ∂
∂ t ·ψ n−1

2
= 0 for all Z∈ ξ̂⊥. Fix a localĝ-orthonormal

basis(ej)1≤ j≤2n−2 of ξ̂⊥. PuttingZ= ej , Clifford-multiplying byej and summing over
j gives(ρ ′′−ρ)φ n−1

2
= (ρ ′′−ρ)ψ n−1

2
= 0. On the other hand, both equations involving

∂φ n−1
2

∂ t and
∂ψ n−1

2
∂ t provide the existence of smooth sectionsA±

n−1
2

of Σ n−1
2

M (indepen-

dent oft) such thatφ n−1
2

= etA+
n−1

2
+e−tA−

n−1
2

andψ n−1
2

=−et i ∂
∂ t ·A

+
n−1

2
+e−t i ∂

∂ t ·A
−
n−1

2
.

We deduce that(ρ ′′− ρ)A+
n−1

2
= (ρ ′′− ρ)A−

n−1
2

= 0. If both A+
n−1

2
andA−

n−1
2

vanished

identically onM, then so wouldφ n−1
2

andψ n−1
2

and the identities involvinĝ∇Zφ n−1
2

and

∇̂Zψ n−1
2

would provide (after contracting with the Clifford multiplication just as above)

φ n+1
2

= ψ n−3
2

= 0, so that(ψ ,φ) = 0, which is a contradiction. Thereforeρ ′′−ρ = 0
on I .
It follows in particular thatρ ′ = 0 on I cannot hold, so we may assume thatĥ = −J

(hence(M2n−1, ĝ, ξ̂ ) is Sasakian) andρ ′ = σ (see Remarks 4.3.5). Furthermore, in the
case where the constant(ρ ′)2−ρ2 does not vanish, up to replacingρ by ρ√

|(ρ ′2)−ρ2|
(which is equivalent to performing aD-homothetic deformation of the Sasakian struc-
ture), we may assume that(ρ ′2)−ρ2 = 1 or−1 on I . Next we rewrite the equations
from Lemma 4.3.8 considering the new sectionsϕ n+1

2
,ϕ n−1

2
, ϕ̃ n−1

2
, ϕ̃ n−3

2
defined by

∣∣∣∣∣∣∣∣∣∣

ϕ n+1
2

:= φ n+1
2

ϕ n−1
2

:= ρ ′φ n−1
2
+ iρ ∂

∂ t ·ψ n−1
2

ϕ̃ n−1
2

:= iρ ∂
∂ t ·φ n−1

2
+ρ ′ψ n−1

2
ϕ̃ n−3

2
:= ψ n−3

2
.

Note that the linear transformation (φ n+1
2
,φ n−1

2
,ψ n−1

2
,ψ n−3

2
) 7→

(ϕ n+1
2
,ϕ n−1

2
, ϕ̃ n−1

2
, ϕ̃ n−3

2
) is invertible if and only if (ρ ′)2 − ρ2 6= 0. From (4.4)
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we have, for allZ ∈ ξ̂⊥:

∂
∂ t

ϕ n+1
2

= 0

∂
∂ t

ϕ n−1
2

= 0

∂
∂ t

ϕ̃ n−1
2

= 0

∂
∂ t

ϕ̃ n−3
2

= 0

∇̂ξ̂ ϕ n+1
2

=
(−1)

n+1
2

2
(n−2(

n+1
2

))((ρ ′)2−ρ2)ξ̂ ·̂
M

ϕ n+1
2

∇̂ξ̂ ϕ n−1
2

= − (−1)
n+1

2

2
(n−2(

n+1
2

))((ρ ′)2−ρ2)ξ̂ ·̂
M

ϕ n−1
2

∇̂ξ̂ ϕ̃ n−1
2

=
(−1)

n−1
2

2
(n−2(

n−1
2

))((ρ ′)2−ρ2)ξ̂ ·̂
M

ϕ̃ n−1
2

∇̂ξ̂ ϕ̃ n−3
2

= − (−1)
n−1

2

2
(n−2(

n−1
2

))((ρ ′)2−ρ2)ξ̂ ·̂
M

ϕ̃ n−3
2

∇̂Zϕ n+1
2

= (−1)
n+1

2 p+(Z) ·̂
M

ϕ n−1
2

∇̂Zϕ n−1
2

= (−1)
n+1

2 ((ρ ′)2−ρ2)p−(Z) ·̂
M

ϕ n+1
2

∇̂Zϕ̃ n−1
2

= (−1)
n−1

2 ((ρ ′)2−ρ2)p+(Z) ·̂
M

ϕ̃ n−3
2

∇̂Zϕ̃ n−3
2

= (−1)
n−1

2 p−(Z) ·̂
M

ϕ̃ n−1
2
.

If (ρ ′)2 − ρ2 6= 0 on I , then the required equations directly follow from the above
ones. Moreover, since in that case the correspondence(φ n+1

2
,φ n−1

2
,ψ n−1

2
,ψ n−3

2
) 7→

(ϕ n+1
2
,ϕ n−1

2
, ϕ̃ n−1

2
, ϕ̃ n−3

2
) is bijective, the “If” in the assumptions is actually an “if and

only if”. If now (ρ ′)2 − ρ2 = 0, thenρ ′ = ±ρ on I ; since we have assumedρ ′ > 0
(up to changingt into −t), we only have to considerρ ′ = ρ , henceρ =Cet for some
positive constantC. Since translatingt provides a holomorphic isometry (again see Re-
marks 4.3.5), one may assume thatC= 1, i.e.,ρ = et . In that case, one haŝ∇ϕ n−1

2
= 0

on M, henceϕ n−1
2

vanishes either identically or nowhere onM (and onM̃ since it is

constant int). If ϕ n−1
2

6= 0, then all right members in the equations listed just above

vanish except ∣∣∣∣∣∣

∇̂Zφ n+1
2

= (−1)
n+1

2 p+(Z) ·̂
M

ϕ n−1
2

∇̂Zϕ̃ n−3
2

= (−1)
n−1

2 p−(Z) ·̂
M

ϕ̃ n−1
2
,

which together with̃ϕ n−1
2

= i ∂
∂ t ·ϕ n−1

2
gives the result. Ifϕ n−1

2
= 0 onM, then coming

back to the equations from Lemma 4.3.8, one has∇̂φ n+1
2

= ∇̂ψ n−3
2

= 0 and φ̂ n−1
2

satisfies the required equations. �
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Note 4.3.10In Theorem 4.3.9.i) not everyi-Kählerian Killing spinor onM̃ must come
from a transversally parallel spinor onM. For instance, consider the complex hyper-
bolic spaceCHn (for n odd) endowed with its Fubini-Study metric of constant holomor-
phic sectional curvature−4 and its canonical spin structure. ThenCHn (possibly with
a suitable submanifold removed) can be viewed as a doubly warped product in sev-
eral ways. For example,CHn is a doubly-warped product over the Heisenberg group

M, which admits a

(
n−1
n−1

2

)
-dimensional space of transversally parallel spinors ly-

ing pointwise inΣ n−1
2

M (see below). However,CHn carries a 2

(
n

n+1
2

)
-dimensional

space ofi-Kählerian Killing spinors [C9, Sec. 3]. Therefore there exists at least one
non-zero Kählerian Killing spinor onCHn which does not come from any transver-
sally parallel spinor onM.

As an example for Theorem 4.3.9.i), any Heisenberg manifold of dimension 4k+ 1
(with k ≥ 1) has a spin structure for which the corresponding spinor bundle is trivial-
ized by transversally parallel spinors. This follows from three facts: every Heisenberg
manifold is anS1-bundle with totally geodesic fibres over a flat torus; everyS1-bundle
over a manifold carrying parallel spinors carries transversally parallel spinors for the
induced spin structure, see e.g. [C6, Prop. 3.6]; the whole spinor bundle of any flat
torus endowed with its so-called trivial spin structure is trivialized by parallel spinors.
Note that, as a consequence of Lemma 4.3.12 below, the doublywarped product arising
from a(2n−1)-dimensional Heisenberg manifoldM choosingρ = σ = et has constant
holomorphic sectional curvature−4, therefore it is holomorphically isometric toCHn

as soon as it is simply-connected and complete.
Examples for Theorem 4.3.9.i) with non-constant holomorphic sectional curvature can
be constructed out of the following lemma:

Lemma 4.3.11For each integer n≡ 1 (4), let (N2n−2,gN,J) be any simply-connected
closed Hodge hyperkähler manifold. Then there exists anS1-bundle M over N carrying
anS1-invariant metricĝ for which(M2n−1, ĝ, ξ̂ ) is Sasakian and for which there exists
a parallel spinor lying pointwise inΣ n−1

2
M.

Proof: Recall first that every hyperkähler manifold is spin (thisfollows from the
structure group Sp(n−1

2 ) being simply-connected). McK. Wang’s classification [C14]
of manifolds with parallel spinors provides the existence of exactly n−1

2 + 1 linearly
independent parallel spinors onN, one of which lies pointwise inΣ n−1

2
N if and only if

n−1
2 is even [C14, (ii) p.61]. Now, for any Hodge Kähler manifold(N,g,J) (“Hodge”

meaning that its Kähler class is proportional to an integral class), there exists an
S1-bundle M

π−→ N carrying anS1-invariant metric ĝ for which (M2n−1, ĝ, ξ̂ ) is

Sasakian witĥh= −J, see [C13, Prop. 2] (as usualξ̂ denotes the fundamental vector
field of theS1-action). By [C6, Prop. 3.6], the lift of the non-zero parallel spinor in
Σ n−1

2
N to M gives a non-zero transversal parallel spinor on(M2n−1, ĝ, ξ̂ ) provided the

spin structure onM is induced by the one onπ∗(TN) and the trivial covering ofS1;
because of̂h=−J, this spinor lies pointwise inΣ n−1

2
M. �

Kodaira’s embedding theorem states that a closed Kähler manifold is Hodge if and
only if it is projective, i.e., if and only if it can be holomorphically embedded in some
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complex projective space. Therefore projective hyperkähler manifolds of complex
dimension 4k (with k ≥ 1) provide examples forN in Lemma 4.3.11. For instance,
simply connected hyperkähler manifolds can be constructed as the Hilbert scheme
of a K3-surface (cf. [C5]). Indeed, letX be a K3-surface, then the Hilbert scheme
Hilb2k(X), which is the blow-up along the diagonal of the 2k-th symmetric product of
X, is a compact, simply-connected hyperkähler manifold of complex dimension 4k. If
X is projective, e.g. a quartic, then Hilb2k(X) is projective too and thus has an integer
Kähler class.

In order to decide whether the doubly warped product we construct is the complex
hyperbolic space or not, the transversal holomorphic curvature of (M, ĝ, ξ̂ ) and the
holomorphic sectional curvature of(M̃2n, g̃, J̃) have to be compared:

Lemma 4.3.12Let (M̃2n, g̃, J̃) be a K̈ahler doubly warped product as inLemma 4.3.4
with ρ ′′ = ρ , σ = ρ ′ andĥ=−J. Then the holomorphic sectional curvatureK̃hol(Z) of

(M̃, g̃,J) and the transversal holomorphic sectional curvatureK̂hol(Z) of (M, ĝ, ξ̂ ) are
related by

K̃hol(Z) =
1

ρ2

(
K̂hol(Z)−4(ρ ′)2

)
,

for all Z ∈ {ξ̂ , ∂
∂ t }⊥ \ {0}. In particular, the doubly warped product(M̃2n, g̃, J̃) has

constant holomorphic sectional curvature−4 if and only if the transversal holomorphic
sectional curvature of(M, ĝ, ξ̂ ) is constant equal to4((ρ ′)2−ρ2).

Proof: Recall thatK̃hol(Z) andK̂hol(Z) are defined by

K̃hol(Z) :=
g̃(R̃(Z,JZ)Z,JZ)

g̃(Z,Z)2 and K̂hol(Z) :=
ĝ(R̂(Z,JZ)Z,JZ)

ĝ(Z,Z)2 ,

whereR̃X,Y := ∇̃[X,Y]− [∇̃X , ∇̃Y] andR̂Z,Z′ := ∇̂[Z,Z′]− [∇̂Z, ∇̂Z′ ] are the curvature ten-

sors associated tõ∇ and∇̂ onTM̃ andξ̂⊥ respectively. The following identities can be
deduced from the formulas in Lemma 4.3.1, taking into account ρ ′ = σ andρ ′′ = ρ :

g̃(R̃ξ , ∂
∂ t

ξ ,
∂
∂ t

) = − (ρσ)′′

ρσ
=−4

g̃(R̃(Z,JZ)Z,JZ) = g̃(R̂(Z,JZ)Z,JZ)−4(
ρ ′

ρ
)2g̃(Z,Z)2,

for everyZ ∈ {ξ̂ , ∂
∂ t }⊥ \ {0}. Usingg̃(Z, ·) = ρ2ĝ(Z, ·), we obtain

K̃hol(Z) =
g̃(R̂(Z,JZ)Z,JZ)

g̃(Z,Z)2 −4(
ρ ′

ρ
)2

=
1

ρ2

ĝ(R̂(Z,JZ)Z,JZ)
ĝ(Z,Z)2 −4(

ρ ′

ρ
)2,

which gives the first statement. Since by the computation above K̃hol(ξ ) = −4
(independently of̂g), the second follows from the first (note that(ρ ′)2−ρ2 is constant
by the assumptionρ ′′ = ρ). �

As a consequence of Theorem 4.3.9.i), Lemma 4.3.11 and Lemma 4.3.12, we obtain:
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Corollary 4.3.13 For an integer n≡ 1 (4), let (N2n−2,gN,J) be any simply-connected

closed Hodge hyperkähler manifold. Let(M2n−1, ĝ, ξ̂ ) be constructed from N as in
Lemma 4.3.11and(M̃2n, g̃, J̃) be the K̈ahler spin doubly warped product constructed
from M as inLemma 4.3.6with ρ = σ = et . Then(M̃2n, g̃, J̃) carries a non-zero i-
Kählerian Killing spinor but has non-constant holomorphic sectional curvature.

Proof: The existence of a non-zeroi-Kählerian Killing spinor follows from Theo-
rem 4.3.9.i) and Lemma 4.3.11. In caseρ = σ = et , Lemma 4.3.12 implies that the
holomorphic sectional curvature of the doubly warped product (M̃2n, g̃,J) is−4 if and

only if the transversal holomorphic sectional curvature of(M, ĝ, ξ̂ ) vanishes, that is, if
and only if its transversal curvature vanishes (see e.g. [C11, Prop. 7.1 p.166]). Now for
anyS1-bundle as in Lemma 4.3.11, the transversal (holomorphic) sectional curvature
of M and the (holomorphic) sectional curvature ofN coincide. Since simply-connected
closed hyperkähler manifolds cannot be flat, the Kähler manifold (M̃2n, g̃, J̃) cannot
have constant holomorphic sectional curvature. �

Corollary 4.3.13 provides the first family of examples of Kähler spin manifolds of
non-constant holomorphic sectional curvature carrying non-zero imaginary Kählerian
Killing spinors.

The two other subcases(ρ ′)2 − ρ2 = 1 and(ρ ′)2 − ρ2 = −1 are geometrically more
simple to describe. We do it in separate lemmas.

Lemma 4.3.14Let (M2n−1,g,ξ ) be a Sasakian spin manifold with h= −J and fix
r ∈ {0,1, . . . ,n}. Then a section(ψr ,ψr−1) of ΣrM⊕Σr−1M satisfies(4.5) if and only

if ψ := ψr +ψr−1 is a (−1)r

2 -Killing spinor on(M,g).

Proof: Let Ω be the 2-form associated toJ on ξ⊥, i.e., Ω(Z,Z′) = g(J(Z),Z′) for all
Z,Z′ ⊥ ξ . UsingΩ ·

M
ψr = (−1)r+1(2r −n+1)ξ ·

M
ψr (for all r) we have on the one

hand

∇ξ ψ = ∇M
ξ ψ +

1
2

Ω ·
M

ψ

= ∇M
ξ ψ − (−1)r

2
ξ ·

M
ψ +

(−1)r

2
ξ ·

M
ψ +

1
2

Ω ·
M

ψ

= ∇M
ξ ψ − (−1)r

2
ξ ·

M
ψ +

(−1)r

2
ξ ·

M
ψ − (−1)r

2
(2r −n+1)ξ ·

M
ψr

+
(−1)r

2
(2(r −1)−n+1)ξ ·

M
ψr−1

= ∇M
ξ ψ − (−1)r

2
ξ ·

M
ψ +

(−1)r

2
(n−2r)ξ ·

M
ψr +

(−1)r

2
(2(r −1)−n+2)ξ ·

M
ψr−1,

which implies

∣∣∣∣∣∣∣∣

∇ξ ψr = (∇M
ξ ψ − (−1)r

2 ξ ·
M

ψ)r +
(−1)r

2 (n−2r)ξ ·
M

ψr

∇ξ ψr−1 = (∇M
ξ ψ − (−1)r

2 ξ ·
M

ψ)r−1− (−1)r

2 (n−2r)ξ ·
M

ψr−1.

(4.7)
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On the other hand, for everyZ ∈ ξ⊥ one has,

∇Zψ = ∇M
Z ψ − 1

2
ξ ·

M
h(Z) ·

M
ψ

= ∇M
Z ψ − (−1)r

2
Z ·

M
ψ +

(−1)r

2
Z ·

M
ψ − 1

2
J(Z) ·

M
ξ ·

M
ψ

= ∇M
Z ψ − (−1)r

2
Z ·

M
ψ +

(−1)r

2
Z ·

M
ψ − 1

2
J(Z) ·

M
{(−1)r+1iψr +(−1)r iψr−1}

= ∇M
Z ψ − (−1)r

2
Z ·

M
ψ +

(−1)r

2
(Z+ iJ(Z)) ·ψr +

(−1)r

2
(Z− iJ(Z)) ·ψr−1,

which implies
∣∣∣∣∣∣

∇Zψr = (∇M
Z ψ − (−1)r

2 Z ·
M

ψ)r +(−1)r p+(Z) ·ψr−1

∇Zψr−1 = (∇M
Z ψ − (−1)r

2 Z ·
M

ψ)r−1+(−1)r p−(Z) ·ψr .
(4.8)

Therefore the pair(ψr ,ψr−1) satisfies (4.5) if and only ifψ := ψr + ψr−1 satisfies

∇M
X ψ = (−1)r

2 X ·
M

ψ for all X ∈ TM, that is, if and only ifψ is a (−1)r

2 -Killing spinor

on (M,g). �

The case(ρ ′)2−ρ2 = −1 is analogous to the case(ρ ′)2−ρ2 = 1 up to a Lorentzian
detour. We call (4.9) the following system of equations:

∣∣∣∣∣∣∣∣∣∣∣

∇ξ ψr =− (−1)r

2 (n−2r)ξ ·
M

ψr

∇ξ ψr−1 = (−1)r

2 (n−2r)ξ ·
M

ψr−1

∇Zψr = (−1)rε p+(Z) ·
M

ψr−1

∇Zψr−1 =−(−1)rε p−(Z) ·
M

ψr

(4.9)

for all Z,Z′ ∈ ξ⊥, whereε ∈ {±1}.

Lemma 4.3.15Let (M2n−1,g,ξ ) be a Sasakian spin manifold with h=−J and fix r∈
{0,1, . . . ,n} as well asε ∈ {±1}. Then a section(ψr ,ψr−1) of ΣrM⊕Σr−1M satisfies

(4.9) if and only if ψ := ψr + iεψr−1 is a (−1)r+1i
2 -Killing spinor on the Lorentzian

manifold(M,−gξ ⊕gξ⊥).

Proof: First, there exists the analog of Riemannian flow in the Lorentzian context. A
Lorentzian flow is given by a triple(M, ĝ, ξ̂ ), where(M, ĝ) is a Lorentzian manifold and

ξ̂ a smooth tangent vector field onM with ĝ(ξ̂ , ξ̂ )=−1 andĝ(∇̂M
Z ξ̂ ,Z′)=−ĝ(∇̂M

Z′ ξ̂ ,Z)
for all Z,Z′ ∈ ξ̂⊥. Note that(M, ĝ) is necessarily time-oriented because of the existence

of ξ̂ . Setting∇̂XZ :=

∣∣∣∣∣
[ξ̂ ,Z]ξ̂⊥

if X = ξ̂
(∇̂M

X Z)ξ̂⊥
if X ⊥ ξ̂

for all Z ∈ Γ(ξ̂⊥) andĥ := ∇̂M ξ̂ , one

obtains a metric connection̂∇ and a skew-symmetric endomorphism-fieldĥ on ξ̂⊥

such that ∣∣∣∣∣
∇̂M

ξ̂
Z = ∇̂ξ̂ Z+ ĥ(Z)+ ĝ(∇̂M

ξ̂
ξ̂ ,Z)ξ̂

∇̂M
Z Z′ = ∇̂ZZ′+ ĝ(ĥ(Z),Z′)ξ̂
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for all Z,Z′ ∈ Γ(ξ̂⊥). Moreover, in caseM is spin, the corresponding Gauss-type for-
mula for spinors reads

∣∣∣∣∣∣

∇̂ξ̂ ϕ = ∇̂M
ξ̂

ϕ − 1
2Ω̂ ·̂

M
ϕ + 1

2ξ̂ ·̂
M

∇̂M
ξ̂

ξ̂ ·̂
M

ϕ

∇̂Zϕ = ∇̂M
Z ϕ + 1

2 ξ̂ ·̂
M

ĥ(Z) ·̂
M

ϕ

for all ϕ ∈ Γ(ΣM) and Z ∈ ξ̂⊥, whereΩ̂(Z,Z′) := ĝ(ĥ(Z),Z′). In case(M, ĝ, ξ̂ ) is

Lorentzian Sasakian, i.e., if furthermore∇̂M
ξ̂

ξ̂ = 0, ĥ2 =−Id and∇̂ĥ= 0, then we still

have thê∇-parallel decompositionΣM =⊕n−1
r=0ΣrM with ΣrM :=Ker(Ω̂ ·̂

M
− i(2r−(n−

1)Id)). This time one haŝξ ·̂
M

ϕr = (−1)r+1ϕr for all ϕr ∈ ΣrM.

Assume now(M, ĝ, ξ̂ ) to be Lorentzian Sasakian and pick a sectionψ = ψr +ψr−1 of
ΣrM⊕Σr−1M, then the formulas above imply

∇̂ξ̂ ψ = ∇̂M
ξ̂

ψ − 1
2

Ω̂ ·̂
M

ψ

= ∇̂M
ξ̂

ψ − (−1)r+1i
2

ξ̂ ·̂
M

ψ +
(−1)r+1i

2
ξ̂ ·̂

M
ψ − i

2

(
(2r − (n−1))ψr +(2(r −1)− (n−1))ψr−1

)

= ∇̂M
ξ̂

ψ − (−1)r+1i
2

ξ̂ ·̂
M

ψ +
(−1)r+1i

2
ξ̂ ·̂

M
ψ

+
(−1)r i

2
(2r − (n−1))ξ̂ ·̂

M
ψr −

(−1)r i
2

(2(r −1)− (n−1))ξ̂ ·̂
M

ψr−1

= ∇̂M
ξ̂

ψ − (−1)r+1i
2

ξ̂ ·̂
M

ψ +
(−1)r+1i

2
(n−2r)ξ̂ ·̂

M
ψr −

(−1)r+1i
2

(n−2r)ξ̂ ·̂
M

ψr−1,

that is,
∣∣∣∣∣∣

∇̂ξ̂ ψr =
(
∇̂M

ξ̂
ψ − (−1)r+1i

2 ξ̂ ·̂
M

ψ
)

r +
(−1)r+1i

2 (n−2r)ξ̂ ·̂
M

ψr

∇̂ξ̂ ψr−1 =
(
∇̂M

ξ̂
ψ − (−1)r+1i

2 ξ̂ ·̂
M

ψ
)

r−1−
(−1)r+1i

2 (n−2r)ξ̂ ·̂
M

ψr−1.

This is still valid forr = 0 or r = n (settingψ−1 := ψn := 0). Similarly, for allZ ∈ ξ̂⊥,

∇̂Zψ = ∇̂M
Z ψ +

1
2

ξ̂ ·̂
M

ĥ(Z) ·̂
M

ψ

= ∇̂M
Z ψ − (−1)r+1i

2
Z ·̂

M
ψ +

(−1)r+1i
2

Z ·̂
M

ψ − (−1)r+1

2
ĥ(Z) ·̂

M
ψr +

(−1)r+1

2
ĥ(Z) ·̂

M
ψr−1

= ∇̂M
Z ψ − (−1)r+1i

2
Z ·̂

M
ψ +(−1)r+1ip−(Z) ·̂

M
ψr +(−1)r+1ip+(Z) ·̂

M
ψr−1,

that is,
∣∣∣∣∣∣

∇̂Zψr =
(
∇̂M

Z ψ − (−1)r+1i
2 Z ·̂

M
ψ
)

r +(−1)r+1ip+(Z) ·̂
M

ψr−1

∇̂Zψr−1 =
(
∇̂M

Z ψ − (−1)r+1i
2 Z ·̂

M
ψ
)

r−1+(−1)r+1ip−(Z) ·̂
M

ψr .

If one changes the Lorentzian metricĝ into g :=−ĝξ̂ ⊕ ĝξ̂⊥ , then one obtains a smooth

Riemannian metricg onM and the triple(M,g,ξ := ξ̂ ) is a Riemannian flow with
∣∣∣∣∣∣∣

∇M
ξ ξ =−∇̂M

ξ̂
ξ̂

h =−ĥ
∇ = ∇̂.
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Moreover, the Clifford multiplications are related by
∣∣∣∣∣∣

ξ ·
M

= iξ̂ ·̂
M

Z ·
M

= Z ·̂
M
,

for all Z ∈ ξ⊥ = ξ̂⊥. Therefore the equations above become on(M,g,ξ )
∣∣∣∣∣∣∣∣∣∣∣∣

∇ξ ψr =
(
∇̂M

ξ̂
ψ − (−1)r+1i

2 ξ̂ ·̂
M

ψ
)

r −
(−1)r

2 (n−2r)ξ ·
M

ψr

∇ξ ψr−1 =
(
∇̂M

ξ̂
ψ − (−1)r+1i

2 ξ̂ ·̂
M

ψ
)

r−1+
(−1)r

2 (n−2r)ξ ·
M

ψr−1

∇Zψr =
(
∇̂M

Z ψ − (−1)r+1i
2 Z ·̂

M
ψ
)

r +(−1)r+1ip+(Z) ·
M

ψr−1

∇Zψr−1 =
(
∇̂M

Z ψ − (−1)r+1i
2 Z ·̂

M
ψ
)

r−1+(−1)r+1ip−(Z) ·
M

ψr .

Therefore,ψr − iεψr−1 satisfies (4.9) if and only ifψ is a (−1)r+1i
2 -Killing spinor on

(M, ĝ, ξ̂ ). �

Round spheres provide examples of spin Sasakian manifolds where (4.5) is fulfilled for
the rightr.

Lemma 4.3.16For any odd n≥ 3, the (2n− 1)-dimensional round sphere M with

its canonical Sasakian and spin structures admits a2

(
n

n+1
2

)
-dimensional space of

sections ofΣ n+1
2

M⊕Σ n−1
2

M⊕Σ n−1
2

M⊕Σ n−3
2

M satisfying(4.5).

Proof: Consider the standard embeddingS2n−1 ⊂ Cn, with unit normalνx = x and
hence Weingarten-endomorphism fieldA = −IdTM. Setξ := −iν. It is well-known
that (S2n−1,g,ξ ) is a Sasakian spin manifold withh = −J on ξ⊥ ⊂ TM, whereJ is
the standard complex structure induced fromCn. Let ψ ∈ ΣrC

n with r ∈ {0,1. . . ,n}
(i.e., Ω̃ ·ψ = i(2r −n)ψ whereΩ̃ is the standard Kähler form ofCn). If r is even then
ψ ∈ Σ+Cn. In that case the spinorial Gauss formula reads

∇M
X ϕ = ∇Cn

X ϕ − 1
2

A(X) ·
M

ϕ

so that the restriction ofψ onS2n−1 satisfies∇M
X ψ = 1

2X ·
M

ψ , i.e., is a1
2-Killing spinor.

If r is odd, thenψ ∈ Σ−Cn. The spinorial Gauss formula for a sectionϕ ∈ Σ−
C

n
|
S2n−1

,

which can be identified withΣS2n−1 provided we change the sign of the Clifford mul-
tiplication, reads then

∇M
X ϕ = ∇Cn

X ϕ +
1
2

A(X) ·
M

ϕ

for everyX ∈ TM. We deduce that∇M
X ψ = − 1

2X ·
M

ψ for everyX ∈ TM, that is, the

restriction ofψ to S2n−1 is a− 1
2-Killing spinor. To sum up, the restriction of a constant

sectionψ ∈ ΣrC
n to M := S2n−1 is a (−1)r

2 -Killing spinor on M. Decompose such a

ψ into ψ = ψr +ψr−1, see (4.3). From Lemma 4.3.14 and rkC(ΣrC
n) =

(
n
r

)
we
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conclude. �

The analog ofS2n−1 in the Lorentzian context is the Anti-deSitter spacetimeH2n−1,
that can be defined by

H
2n−1 := {z∈ C

n | − |z0|2+
n−1

∑
j=1

|zj |2 =−1}.

Lemma 4.3.17For any odd n≥ 3, the(2n−1)-dimensional Anti-deSitter spacetime

M := H2n−1 with its induced Lorentzian Sasakian structure (withξ̂x = ix and ĥ = J)

and induced spin structure admits an

(
n
r

)
-dimensional space of(−1)r+1i

2 -Killing

spinors lying pointwise inΣrM⊕Σr−1M. In particular, if one considers the (Rieman-
nian) Sasakian metric given by−ĝξ̂ ⊕ ĝξ̂⊥ , whereĝ is the canonical Lorentzian metric

of sectional curvature−1, thenH2n−1 admits a2

(
n

n+1
2

)
-dimensional space of sec-

tions ofΣ n+1
2

M⊕Σ n−1
2

M⊕Σ n−1
2

M⊕Σ n−3
2

M satisfying(4.6).

Proof: First recall thatM is a Lorentzian Sasakian manifold and simultaneously anS1-
bundle with totally geodesic fibres overCHn−1. Just as for the sphere, one can restrict
spinors fromCn ontoM so that the following Gauss-Weingarten-formula holds for all
ψ ∈C∞(Cn,Σ2n) and allX ∈ TM:

∇M
X ψ = −A(X)

2
·ν ·ψ

=

∣∣∣∣∣∣

iA(X)
2 ·

M
ψ if ψ(x) ∈ Σ+

2n ∀x

− iA(X)
2 ·

M
ψ if ψ(x) ∈ Σ−

2n ∀x,

whereA(X) := ∇̃Xν is the Weingarten endormorphism ofM in Cn. Moreover, there
still exists a∇̃-parallel splittingΣ2n =⊕n

r=0Σ2n,r whereΣ2n,r := Ker(Ω̃ ·−i(2r −n)Id)

(with dimension

(
n
r

)
) andΩ̃ is the Kähler form associated to the standard complex

structureJ onM̃. Choosingνx :=−x as unit normal onM, one hasA=−IdTM, so that

the restriction of any constant section ofCn×Σ2n,r ontoM provides a(−1)r+1i
2 -Killing

spinor. Since againΣrM̃|M = ΣrM ⊕ Σr−1M, the first statement follows. The second
statement is a consequence of the first one together with Lemma 4.3.15. �

The doubly warped product of Theorem 4.3.9.ii) corresponding toM = S2n−1 is the
complement of a point in the complex hyperbolic spaceCHn with its canonical Fubini-
Study metric of constant holomorphic sectional curvature−4 (compare with [C1, Satz
5.1]). Therefore we obtain a new description of the imaginary Kählerian Killing spinors
onCHn after the explicit one by K.-D. Kirchberg [C9, Sec. 3]. Actually CHn is essen-
tially the only example occurring in Theorem 4.3.9.ii):
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Theorem 4.3.18For n≥ 3 odd let(M̃2n, g̃, J̃) be a K̈ahler doubly warped product as in

Lemma 4.3.6with (M2n−1, ĝ, ξ̂ ) complete, Sasakian, simply-connected, spin, I= R
×
+,

ρ = sinhandσ = cosh. LetM̃ carry the induced spin structure and assume(M̃2n, g̃, J̃)
admits a non-zero i-K̈ahlerian Killing spinor(ψ ,φ).
Then(M̃2n, g̃, J̃) is holomorphically isometric toCHn\ {x} for some x∈ CHn.

Proof: It suffices to show that(M2n−1, ĝ, ξ̂ ) is S2n−1 with its standard Sasakian struc-

ture. By assumption and Lemma 4.3.14, the sectionϕ n+1
2

+ϕ n−1
2

is a (−1)
n+1

2

2 -Killing

spinor on(M2n−1, ĝ, ξ̂ ) lying pointwise inΣ n+1
2

M⊕Σ n−1
2

M and the sectioñϕ n−1
2
+ ϕ̃ n−3

2

is a − (−1)
n+1

2

2 -Killing spinor on (M2n−1, ĝ, ξ̂ ) lying pointwise in Σ n−1
2

M ⊕ Σ n−3
2

M.
At least one of them does not vanish. Now C. Bär’s classification (see in particular
[C2, Thm. 3]) implies that eitherM = S2n−1 or M is a compact Einstein-Sasakian
manifold with exactly one non-zero12- and one non-zero− 1

2-Killing spinor. Moreover,
each Killing spinor induces a parallel spinor on the Riemannian coneM over M
[C2]. But coming back to McK. Wang’s classification of simply-connected complete
Riemannian spin manifolds with parallel spinors, it turns out that, in the latter case,
the reduced holonomy ofM is SUn (wheren is its complex dimension) and the parallel
spinors lie inΣ0M andΣnM (see [C14, (i) p.61]), in particular not inΣ n±1

2
M. Thus

only S2n−1 occurs. �

In caseM = H2n−1 is equipped with its associated Riemannian Sasakian structure,
the corresponding doubly warped product withρ = cosh andσ = sinh has again
constant holomorphic sectional curvature−4 by Lemma 4.3.12. It is actually the
complement inCHn of some submanifold. We conjecture that, up to covering,H2n−1

is the only Lorentzian Sasakian manifold having non-zero imaginary Killing spinors
lying pointwise in the “middle” eigenspacesΣrM (with r ∈ { n−3

2 , . . . , n+1
2 }) of the

Clifford action of the transversal Kähler form. If this happens, then only the complex
hyperbolic space can occur as (simply-connected complete)example of doubly warped
product in Theorem 4.3.9.iii ).

4.4 Classification in a particular case

In this section, we show that the structure of a doubly warpedproduct can be recovered
from the length function of a non-zero imaginary KählerianKilling spinor satisfying
certain supplementary assumption on the Kähler manifoldM̃. The following result can
be seen as analogous to H. Baum’s one [C3] about imaginary Killing spinors of so-
calledtype I. Recall for the next theorem thatV was defined by (4.1).

Theorem 4.4.1Let(M̃2n,g,J) be a connected complete Kähler spin manifold carrying
a non-zero i-K̈ahlerian Killing spinor(ψ ,φ). Assume|ψ |= |φ | and the existence of a
real vector field W oñM together with a non-identically vanishing continuous function
µ : M̃ −→ C such that W·ψ = µφ . Then the vector field V has no zero, the Kähler
manifold (M̃2n,g,J) is a doubly warped product as inTheorem 4.3.9.i) and (ψ ,φ)
comes from a transversally parallel spinor on(M, ĝ, ξ̂ ).
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Proof: We construct a holomorphic isometry between(M̃2n,g,J) and some doubly
warped product. This isometry is provided by the flow of some vector field associated
to the Kählerian Killing spinor (compare with the case of imaginary Killing spinors
[C3]).
First note that, if|ψ | = |φ |, then bothψ and φ have no zero onM̃. Because of
|W| · |ψ |= |W ·ψ |= |µ | · |φ |, this already implies|W|= |µ | onM̃. Fix a neighbourhood
U of a pointx with µ(x) 6= 0 for all x∈U . It follows from the definition ofV that

µ = 2i
g(p+(W),V)

|φ |2 (4.10)

on U , in particularW(x) 6= 0 andV(x) 6= 0 for all x ∈ U . Now Cauchy-Schwarz in-
equality withX =V in (4.1) gives|V| ≤ |ψ | · |φ | on M̃. With (4.10) we deduce that

|µ |2 =
|V|2
|φ |4

(
g(W,

V
|V| )

2+g(W,
J(V)

|V| )2
)

≤ |V|2|W|2
|φ |4

≤ |W|2

on U , which together with|µ | = |W| provides|V| = |φ |2. By the equality case in
Cauchy-Schwarz inequality, we obtainV ·ψ = i|V|φ andV · φ = i|V|ψ on U . This
identity holds onM̃ because of the analyticity of all objects involved (by definition, ψ
is anti-holomorphic andφ is holomorphic). This in turn implies|V| = |φ |2 on M̃, in
particular{V = 0}=∅ and V

|V| ·ψ = iφ as well asV
|V| ·φ = iψ onM̃.

Next we look at the level hypersurfacesMr := {x∈ M̃, |φ(x)|= r} (with r ∈R
×
+) which,

if non-empty, are smooth because of{V = 0}=∅ and Proposition 4.2.1. A unit normal
to Mr is given byν := V

|V| and the associated Weingarten endomorphism field is

A(X) := −∇̃Xν

= − 1
|V|

(
∇̃XV −g(∇̃XV,

V
|V| )

V
|V|

)
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for everyX ∈ ν⊥. Settingξ :=−J(ν) (note that the vector fieldξ is pointwise tangent
to Mr ), usingν ·ψ = iφ and Proposition 4.2.1.ii), we compute, for allX,Y ∈ ν⊥,

g(A(X),Y) = − 1
|V|g(∇̃XV,Y)

= − 1
|V|Re(〈p−(X) ·φ , p−(Y) ·φ〉+ 〈p+(X) ·ψ , p+(Y) ·ψ〉)

= − 1
|V|Re(〈p−(X) ·ν ·ψ , p−(Y) ·ν ·ψ〉+ 〈p+(X) ·ψ , p+(Y) ·ψ〉)

= − 1
|V|Re

(
−〈p−(X) ·ν ·ψ ,ν · p−(Y) ·ψ〉−2g(ν, p−(Y))〈p−(X) ·ν ·ψ ,ψ〉

+ 〈p+(X) ·ψ , p+(Y) ·ψ〉
)

= − 1
|V|Re

(
〈ν · p−(X) ·ψ ,ν · p−(Y) ·ψ〉+2g(ν, p−(X))〈ψ ,ν · p−(Y) ·ψ〉

−2g(ν, p−(Y))〈p−(X) ·ν ·ψ ,ψ〉+ 〈p+(X) ·ψ , p+(Y) ·ψ〉
)

= − 1
|V|Re

(
〈X ·ψ ,Y ·ψ〉+ ig(ν,J(X))〈ψ ,ν · p−(Y) ·ψ〉+ ig(ν,J(Y))〈p−(X) ·ν ·ψ ,ψ〉

)

= − 1
|V|
(
|ψ |2g(X,Y)+g(ν,J(X))Re(〈φ , p−(Y) ·ψ〉︸ ︷︷ ︸

0

)−g(ν,J(Y))Re(〈p−(X) ·φ ,ψ〉)
)

= − 1
|V|
(
|ψ |2g(X,Y)+g(ν,J(Y))g(J(X),V)

)

= −(g(X,Y)+g(ξ ,X)g(ξ ,Y)),

that is,A = −IdTMr − ξ ♭⊗ ξ . In particular, the Gauß-Weingarten formula for the in-
clusionMr ⊂ M̃ reads̃∇XY = ∇Mr

X Y− (g(X,Y)+g(ξ ,X)g(ξ ,Y))ν for all vector fields
X,Y tangent toMr .
We begin with the reconstruction of the doubly warped product structure of Theo-
rem 4.3.9.i). FromA(ξ ) = −2ξ , we deduce thatA(J(V)) = −2J(V), hence∇̃J(V)ν =
2J(V). Proposition 4.2.1.ii) gives

J(V)(|V|)= g(∇̃VV,J(V))

|V| =
1
|V|Re(〈p−(V) ·φ , p−(J(V)) ·φ〉+ 〈p+(V) ·ψ , p+(J(V)) ·ψ〉)= 0.

Thereforẽ∇J(V)V = 2|V|J(V), that is,∇̃VV = 2|V|V using∇̃J(X)V = J(∇̃XV) for all X.
This implies for the commutator ofξ andν (which we need later for the identification
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of the metric and of the Sasakian structure)

[ξ ,ν] = −[J(ν),ν]

= −[
J(V)

|V| ,
V
|V| ]

= − 1
|V| J(V)(

1
|V| )︸ ︷︷ ︸

0

V − 1
|V| [

J(V)

|V| ,V]

=
1
|V|V(

1
|V|)J(V)− 1

|V|2 [J(V),V]

= −g(∇̃VV,V)

|V|3 J(
V
|V| )−

1
|V|2J([V,V]︸ ︷︷ ︸

0

)

= 2ξ . (4.11)

We show now that each (non-empty)(Mr ,g|Mr
,ξ|Mr

) is Sasakian. For everyX ∈ TMr ,
one has

∇̃Xξ = −∇̃X(J(ν))

= −J(∇̃Xν)
= J(A(X))

= −J(X)−g(ξ ,X)ν,

so that∇̃ξ ξ = −2ν, from which ∇Mr
ξ ξ = 0 follows and, for everyZ ∈ {ξ ,ν}⊥, the

identity ∇̃Zξ = −J(Z) implies ∇Mr
Z ξ = −J(Z). In particular,ξ|Mr

defines a minimal

Riemannian flow on(Mr ,g|Mr
) andh= −J is an almost Hermitian structure onξ⊥ ⊂

TMr . It remains to show thath - or, equivalently,J - is transversally parallel onξ⊥.
Recall that, from the definition of the transversal covariant derivative∇ one has, for all
sectionsZ,Z′ of ξ⊥,

∇ξ Z = ∇Mr
ξ Z−h(Z)

= ∇̃ξ Z−g(A(ξ ),Z)ν + J(Z)

= ∇̃ξ Z+ J(Z)

and

∇ZZ′ = ∇Mr
Z Z′+g(h(Z),Z′)ξ

= ∇̃ZZ′−g(A(Z),Z′)ν −g(J(Z),Z′)ξ

= ∇̃ZZ′+g(Z,Z′)ν −g(J(Z),Z′)ξ ,

from which one deduces that

(∇ξ J)(Z) = ∇ξ (J(Z))− J(∇ξ Z)

= ∇̃ξ (J(Z))−Z− J(∇̃ξ Z)+Z

= 0
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and

(∇ZJ)(Z′) = ∇Z(J(Z
′))− J(∇ZZ′)

= ∇̃Z(J(Z
′))+g(Z,J(Z′))ν −g(J(Z),J(Z′))ξ

−J(∇̃ZZ′)+g(Z,Z′)ξ +g(J(Z),Z′)ν
= 0,

i.e.,∇J = 0, which proves that(Mr ,g|Mr
,ξ|Mr

) is Sasakian.

We come to the holomorphic isometry. DenoteM := M1, ĝ := g|M and ξ̂ := ξ|M . Up
to rescaling(ψ ,φ) by a positive constant (this does not influence both conditions on
(ψ ,φ)), we may assume thatM 6=∅. Let Fν

t be the flow ofν on M̃. The vector fieldν
is complete sinceν is bounded and(M̃,g) is complete. Consider the map

F : M×R −→ M̃

(x, t) 7−→ Fν
t (x).

We first show thatF is a diffeomorphism. IfFν
t (x) = Fν

t′ (x
′) for somet, t ′ ∈ R and

x,x′ ∈ M, thenx andx′ lie on the same integral curve ofν. Let nowc be any integral
curve ofν on M̃ with c(0) ∈ M and setf (t) := |V|c(t) (note thatf a priori depends
on the curve and in particular on the chosen starting point).Then f is smooth with

first derivative given byf ′(t) = g(∇̃VV,V)

|V|2 (c(t)) = 2|V|c(t) = 2 f (t) for all t, so thatf =

f (0)e2t = e2t . This has several consequences. On the one hand,f is injective, so that
c meetsM at most once, hencex = x′ and t = t ′, which proves the injectivity ofF .
On the other hand,f doesa posteriorinot depend on the chosen starting point onM,
in particularFν

t preserves the foliation by the level hypersurfacesMr of |φ | and hence
the orthogonal splittingTMr ⊕Rν. Together with the surjectivity off : R → R

×
+, we

obtain that ofF and the pointwise invertibility of the differential ofF . ThereforeF is
a diffeomorphism.
Next we determine the metricF∗g. The mapF sends ∂

∂ t onto ν, so that obviously

F∗g( ∂
∂ t ,

∂
∂ t ) = 1. The preceding considerations also yieldF∗g( ∂

∂ t ,X) = 0 for all t ∈ R

andX ∈ TM. Since

∂
∂s

(Fν
s )∗ξ|s=t = (Fν

t )∗
∂
∂s

(Fν
s )∗ξ|s=0

= (Fν
t )∗[ξ ,ν]

(4.11)
= 2(Fν

t )∗ξ ,

we have

(Fν
t )∗ξ = e2tξ (4.12)

for every t ∈ R. Moreover, the Lie derivative ofg in direction ofν is given for all
X,Y ∈ ν⊥ by

(Lνg)(X,Y) = g(∇̃Xν,Y)+g(∇̃Yν,X)

= −2g(A(X),Y)

= 2(g(X,Y)+g(ξ ,X)g(ξ ,Y)),
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that is,(Lνg)|ν⊥ = 2(g+ ξ ♭⊗ ξ ♭). The identity ∂
∂s(F

ν
s )

∗g|s=t = (Fν
t )∗Lνg provides,

for anyX,Y ∈ TM andt ∈ R

∂
∂s

((Fν
s )∗g(X,Y))|s=t = (

∂
∂s

(Fν
s )

∗g|s=t )(X,Y)

= {(Fν
t )∗Lνg}(X,Y)

= Lνg((Fν
t )∗X,(Fν

t )∗Y)◦Fν
t

= 2
(

g((Fν
t )∗X,(Fν

t )∗Y)+g(ξ ,(Fν
t )∗X)g(ξ ,(Fν

t )∗Y)
)
◦Fν

t

= 2
(
(Fν

t )∗g(X,Y)+ (Fν
t )∗g((Fν

−t)∗ξ ,X)(Fν
t )∗g((Fν

−t)∗ξ ,Y)
)

(4.12)
= 2

(
(Fν

t )∗g(X,Y)+e−4t(Fν
t )∗g(ξ ,X)(Fν

t )∗g(ξ ,Y)
)
. (4.13)

Since(Fν
t )∗g(ξ ,ξ )= g((Fν

t )∗ξ ,(Fν
t )∗ξ )◦Fν

t
(4.12)
= (e4tg(ξ ,ξ ))◦Fν

t =e4t , we deduce
from (4.13) that, forX = ξ ,

∂
∂s

((Fν
s )∗g(ξ ,Y))|s=t = 4(Fν

t )∗g(ξ ,Y),

from which(Fν
t )∗g(ξ ,Y) = e4tg(ξ ,Y) follows. In particular,(Fν

t )∗g(ξ ,Y) = 0 for ev-
eryY ∈ {ξ ,ν}⊥. ForX,Y ∈ {ξ ,ν}⊥, the identity (4.13) becomes

∂
∂s

((Fν
s )∗g(X,Y))|s=t = 2(Fν

t )∗g(X,Y),

which implies(Fν
t )∗g(X,Y) = e2tg(X,Y). To sum up, the pull-back metric onM×R

is given by
F∗g= e2t(e2t ĝξ̂ ⊕ ĝξ̂⊥)⊕dt2,

where ĝξ̂ = ξ̂ ♭ ⊗ ξ̂ ♭ = ĝ(ξ̂ , ·) ⊗ ĝ(ξ̂ , ·) and, as in the beginning of this sec-

tion, ĝξ̂⊥ denotes the restriction of̂g onto the subspace{ξ̂ , ∂
∂ t }⊥ ⊂ TM. Hence

the map F provides an isometry with the doubly warped product of Theorem
4.3.9.i). This isometry pulls the spin structure of̃M back onto the product spin
structure of M × R, where M carries the spin structure induced by its embed-
ding in M̃. It remains to show thatF identifies the complex structures. This
follows from the definition of the complex structure on the doubly warped prod-
uct M × R (see Lemma 4.3.4), from(Fν

t )∗ν = ν, (Fν
t )∗(e−2t ξ̂ ) = ξ and from

[J(Z),ν] = ∇̃J(Z)ν − ∇̃νJ(Z) = −A(J(Z))− J(∇̃νZ) = J(Z)− J(∇̃νZ) = J([Z,ν]) for
every sectionZ of {ξ ,ν}⊥ (use the computation ofA above).
Last but not the least, the identityν ·ψ = iφ implies thatφ (or, equivalently,ψ) is
transversally parallel on(M, ĝ, ξ̂ ) by Theorem 4.3.9.i). This concludes the proof of
Theorem 4.4.1. �

It is important to note that only the conditionW ·ψ = µφ for some real vector fieldW
is restrictive, since by [C9, Thm. 11] the identity|ψ |= |φ | can always be assumed.
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We conjecture that the examples of Section 4.3 describe all Kähler spin manifolds
admitting non-trivial imaginary Kählerian Killing spinors. This will be the object of a
forthcoming paper.
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Chapter 5

The Yamabe problem on
Lorentzian manifolds

5.1 Introduction and first results

We first state the problem and discuss it locally as well as in dimension 2.

Let (Mn,g) be ann-dimensional Lorentzian manifold, where the signature of the metric
is (− + . . . +). Let 2 := δg ◦d = −trg(∇ ◦d) denote the scalar d’Alembert operator
on (Mn,g). If Sg stands for the scalar curvature of(Mn,g), then the transformation
formulas for scalar curvature under conformal changes of metric read

e2uSg = Sg+22u (5.1)

for n= 2 andg := e2ug (hereu∈C∞(M,R)) and

n−2
4(n−1)

Sgϕ
n+2
n−2 = 2ϕ +

n−2
4(n−1)

Sgϕ (5.2)

for n ≥ 3 andg := ϕ
4

n−2 g (hereϕ ∈ C∞(M,R×
+)). As in the Riemannian context (see

H. Yamabe [D31]), theYamabe problemcan be formulated as follows:

Yamabe problem: Given a Lorentzian metric g on M, find a metricg conformal to g
with constant scalar curvature on M.

From both identities above this is equivalent to solving (5.1) in dimensionn= 2 and
(5.2) in dimensionn≥ 3 respectively: given a constantSg ∈ R, look for u∈C∞(M,R)
(resp.ϕ ∈C∞(M,R×

+)) satisfying (5.1) (resp. (5.2)).

Both (5.1) and (5.2) are semilinear (and nonlinear in caseSg 6= 0) wave equations.
Since such an equation can be locally put into the form of a symmetric (or symmetriz-
able) hyperbolic system and such systems always have local smooth solutions (see e.g.
[D30, Ch. 16]), both (5.1) and (5.2) are locally solvable on any spacetime.

To prove global existence (and possibly uniqueness) of solutions, it is convenient to
restrict the geometric category of Lorentzian manifolds. First, we assumeM to ad-

113
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mit a time-orientation (such Lorentzian manifolds will be calledspacetimes). We shall
mainly focus on so-calledglobally hyperbolicspacetimes:

Definition 5.1.1 A spacetime(Mn,g) is calledglobally hyperbolicif and only if there
exists a Cauchy hypersurface in M, that is, a subsetΣ of M which is met exactly once
by every inextendible timelike curve1 in M.

By [D7, Thm. 3.2], a spacetime is globally hyperbolic if and only if it has no closed
(future- or past-directed) causal curve and all subsets of the formJM

+ (p)∩JM
− (q), p,q∈

M, are compact. IfΣ is asmooth spacelikeCauchy hypersurface ofM, then actually it
is met exactly once by any inextendiblecausalcurve inM. We also recall the following
smooth splitting theorem for globally hyperbolic spacetimes:

Theorem 5.1.2 (A. Bernal & M. Sánchez [D5, D6]) Let (Mn,g) be a spacetime.

i) If (Mn,g) is globally hyperbolic, then it is isometric to(R× Σ,−βdt2 ⊕ gt),
where each{t}×Σ corresponds to asmooth spacelikeCauchy hypersurface of
M, β ∈C∞(R×Σ,R×

+) and(gt)t is a smooth1-parameter family of Riemannian
metrics onΣ.

ii) If Σ ⊂ M is any givensmooth spacelike Cauchy hypersurface in the (globally hy-
perbolic) spacetime(Mn,g), then for any t0 ∈ R there is an isometry(Mn,g) ∼=
(R×Σ,−βdt2⊕gt) as above and whereΣ identifies with{t0}×Σ.

For instance, the warped product(M,g) = (I ×Σ,−dt2⊕b(t)2gΣ) of an open interval
I ⊂ R with a Riemannian manifold(Σ,gΣ) (where b ∈ C∞(I ,R×

+) is arbitrary) is
globally hyperbolic if and only if(Σ,gΣ) is complete, see e.g. [D4, Thm. 3.66] or [D3,
Lemma A.5.14]. This class contains for instance all Robertson-Walker spacetimes, in
particular the Minkowski and the de Sitter spacetimes.

It is however important to note that, in general, Theorem 5.1.2 only implies
the existence of a smooth splitting in the form(R × Σ,−βdt2 ⊕ gt), and
that the induced Riemannian metricgt on Σ need not be complete. Namely,
not every product of the form(I × Σ,−βdt2 ⊕ gt) – even with complete
gt – is globally hyperbolic. For instance, every hypersurfaceof the form

{t} × S
n−1
+ = {t} ×

{
x= (x1, . . . ,xn) ∈ Rn | ∑n

j=1x2
j = 1 andxn > 0

}
in the (uni-

versal cover of the) anti de Sitter spacetime(R× S
n−1
+ , 1

x2
n
(−dt2⊕〈· , ·〉) is complete

w.r.t. 1
x2
n
〈· , ·〉 (it is isometric to the hyperbolic space), nevertheless theanti de Sitter

spacetime is not globally hyperbolic, in particular no{t}× S
n−1
+ can be a Cauchy

hypersurface. Moreover, there may exist incomplete spacelike Cauchy hypersurfaces
in globally hyperbolic spacetimes, as noticed in e.g. [D1, Sec. 2.5]: take for example
the flat 2-dimensional Minkowski space(M2,g) = (R2,〈〈· , ·〉〉) in null coordinates,
i.e., with metric〈〈· , ·〉〉 = dx1⊗dx2+dx2⊗dx1, then the graph of any monotonously
increasing diffeomorphismf : R → R with

∫ ∞
0

√
f ′(s)ds < ∞ is an incomplete

spacelike Cauchy hypersurface of(M2,g). Let us also mention that any product of
the form(I ×Σ,−βdt2⊕gt) with closedΣ is globally hyperbolic and contains every
{t}×Σ as a Cauchy hypersurface [D26, Cor. 3.3].

1meaning that every timelike curve which is inextendibleas a curvemeetsΣ exactly once.
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Since the causal type for vectors does not change when rescaling pointwise the metric,
it is easy to see that(Mn,g) is globally hyperbolic if and only if(Mn,g) is globally
hyperbolic, for any metricg conformal tog. By conformal invariance of the Yamabe
problem, we can therefore – and will in most cases – assume that β = 1, that is, that
g = −dt2⊕gt on I ×Σ. Before studying the above equations in particular cases, we
give the following useful formulas:

Lemma 5.1.3 Let a spacetime(Mn,g) be of the form(I ×Σ,−βdt2⊕gt) whereβ ∈
C∞(I ×Σ,R×

+) and(gt)t is a smooth1-parameter family of Riemannian metrics onΣ.
Then the following identities hold.

1. For every f∈C∞(M,R),

2 f =
1
β

∂ 2 f
∂ t2 +

1
2β

(
trgt (

∂gt

∂ t
)− 1

β
∂β
∂ t

)∂ f
∂ t

− 1
2β

gt(gradgt
(β (t, ·)),gradgt

( f (t, ·)))+∆gt f (t, ·), (5.3)

where∆gt := δ Σ
gt
◦d =−trgt (HessΣgt

()) : C∞(Σ,R)→C∞(Σ,R).

2. In caseβ = 1, we have

2 =
∂ 2

∂ t2 +
1
2

trgt (
∂gt

∂ t
)

∂
∂ t

+∆gt . (5.4)

3. In caseβ = 1 and gt = b(t)2gΣ for some b∈ C∞(I ,R×
+) and some Riemannian

metric gΣ onΣ, one has

2+anSg =
∂ 2

∂ t2 +(n−1)
b′

b
∂
∂ t

+
1
b2 ∆gΣ

+
an

b2

(
SgΣ +2(n−1)bb′′+(n−1)(n−2)(b′)2

)
, (5.5)

where an := n−2
4(n−1) and where Sg and SgΣ are the scalar curvatures of(M,g) and

(Σ,gΣ) respectively.

4. In caseβ = 1 and gt = gΣ for some Riemannian metric gΣ on Σ, one has

2+anSg =
∂ 2

∂ t2 +LgΣ, (5.6)

where LgΣ := ∆gΣ +anSgΣ .

We first deal with the casen = 2. The following theorem is the exact analogue of
Theorem 5.2.9 below in dimension 2.

Theorem 5.1.4Let (M2,g) be a connected2-dimensional globally hyperbolic space-
time.

1) Then(M2,g) is conformally equivalent to the product(I ′×Σ,−dt2⊕ds2) of an
open interval I′ ⊂ R with eitherΣ = S1 (circle of arbitrary radius) orΣ = R. In
particular, (M2,g) is conformally flat, i.e.,(5.1)with Sg = 0 always has a global
smooth solution on M.
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2) If Sg ∈R×, then there is no solution to(5.1)on (R×S1,−dt2⊕ds2).

Proof: Theorem 5.1.2 yields a smooth splitting(M2,g) = (I ×Σ,−βdt2⊕gt), where
I ⊂ R is an open interval,β ∈C∞(M,R×

+), each{t}×Σ is a smooth spacelike Cauchy
hypersurface inM and(gt)t∈I is a smooth one-parameter family of Riemannian metrics
onΣ. By conformal invariance of the Yamabe problem, we may assumeβ = 1. Because
Σ is 1-dimensional, one hasgt = b(t)2ds2, whereds2 is a fixed metric onΣ andb ∈
C∞(I ,R×

+). It is easy to see that(I ×Σ,−dt2⊕b(t)2ds2) is conformally equivalent to
(I ′×Σ,−dt2⊕ds2), whereI ′ is determined byb (see Section 5.2 below). Since global
hyperbolicity is a conformal invariant,(I ′ ×Σ,−dt2⊕ ds2) is globally hyperbolic; in
turn, this forcesΣ = S1 or Σ = R. This shows 1). Note that, as an alternative proof
of 1), we may solve directly the Cauchy problem associated to (5.1): fixing a (smooth
spacelike) Cauchy hypersurfaceΣ of M with future unit normalν as well asu0,u1 ∈
C∞(Σ,R), the Cauchy problem with smooth (but not necessarily compactly-supported)
data2u=−Sg

2 , u|Σ = u0, ∂ν u|Σ = u1 is linear (inhomogeneous), hence always solvable
on any globally hyperbolic spacetime, see e.g. [D12, Cor. 5].
Let Sg ∈R× be arbitrary. Assume the existence ofu∈C∞(R×S1,R) solving (5.1), i.e.,

2u=
Sg
2 e2u onR×S1. Settingy : R→ R, t 7→

∫
S1 u(t,x)dx, the functiony is smooth

with

y′′(t) =
∫

S1

∂ 2u
∂ t2 (t,x)dx

=
∫

S1
(2u)(t,x)dx since

∫

S1

∂ 2u
∂x2 (t,x)dx= 0

=
Sg

2

∫

S1
e2u(t,x)dx,

compare with the proof of Theorem 5.2.9 below. AssumeSg > 0. Denoting byL > 0
the length ofS1, Jensen’s inequality yields

y′′ ≥ SgL
2

exp

(
1
L

∫

S1
2u(t,x)dx

)
=

SgL
2

e
2y
L

onR. But no function satisfying that differential inequality can exist onR, see also the
proof of Theorem 5.2.9 below. Namely, up to replacingy by t 7→ y(αt) for a suitable

α ∈ R
×
+, we assume thaty satisfiesy′′ ≥ 1

2e
2y
L . Since in particulary is strictly convex,

we may assume up to changingt into±t+ t0 for a constantt0 ∈R thaty′ ≥ 0 on[0,∞[.

Multiplying with y′ yieldsy′′y′ ≥ y′
2 e

2y
L , so that(y′)2(t)− (y′)2(0) ≥ L

2(e
2y(t)

L −e
2y(0)

L )
for everyt ≥ 0, which in turn gives

∫ y(t)

y(0)

dz√
e

2z
L −e

2y(0)
L

≥ L
2

t

for everyt ≥ 0. Because of
∫ ∞

y(0)
dz√

e
2z
L −e

2y(0)
L

< ∞, the existence interval ofy is bounded

above, or in other wordsy(t) → ∞ in finite time. In particular,y is not defined onR.
The case whereSg < 0 is analogous (this timey is concave and goes to−∞ in finite
time). This shows 2) and concludes the proof. �

Notes 5.1.5
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1. Since the Cauchy data for (5.1) along a given Cauchy hypersurface may be pre-
scribed arbitrarily, there are actually infinitely many conformal flat metrics which
are non homothetic to each other on a given globally hyperbolic 2-dimensional
spacetime. Alternatively – and as is well-known – all solutions to2u = 0 on
(M2,g) = (I ×Σ,−dt2⊕ds2) are of the formu(t,s) = v(t + s)+w(t − s), with
arbitrary (and periodic ifΣ = S1) smooth functionsv,w on R, see also Note
5.2.7.2 below.

2. For Sg ∈ R×, Theorem 5.1.4 states that there is no solution to (5.1) onM2 =
I ×S1 when the time intervalI is long enough. But solutions exist for shortI ,
as we know anyway from the local theory mentioned above. For example, the 2-
dimensional de Sitter spacetime, which can be described as the warped product
(R×S1,−dt2⊕ cosh(t)2ds2), is conformally equivalent to the flat cylinder(]−
π
2 ,

π
2 [×S1,−dt2⊕ds2), see Corollary 5.2.10 below. In particular, there exists a

conformal metric with scalar curvature 2 on(]− π
2 ,

π
2 [×S1,−dt2⊕ds2).

In the non globally hyperbolic setting, conformal flatness may or may not hold. For
instance, the 2-dimensional anti de Sitter spacetime(S1×S1

+,
1
x2
2
(−dt2⊕ds2)) (where

(x1,x2) are the cartesian coordinates for the second factorS1
+ := {(x1,x2)∈S1 |x2 > 0})

is obviously conformally flat. OnM = R2 or the 2-torusT2, Miguel Sánchez has
shown that an arbitrary metricg is conformally flat if and only if it admits a non-zero
conformal Killing vector field which is everywhere timelikeor everywhere spacelike
[D25, Thm. 2.3]. Moreover, he constructed whole families ofmetrics onT2 (andR2)
without any such conformal Killing vector field and which hence are not conformally
flat [D25, Sec. 3]. Note that none of those metrics onR2 can be globally hyperbolic by
Theorem 5.1.4.

Let us mention that there is still a lot of freedom left when prescribing scalar curvature
functions in 2 dimensions: generalizing previous work by John Burns [D9, Thm.
2.2], Marc Nardmann proved that any function which is eitheridentically vanishing
or sign-changing on a closed Lorentzian surfaceM is the scalar curvature of some
Lorentzian metric onM [D22, Thm. 1.3.13].

From now on, we assumen ≥ 3. In that case we know local solutions exist by the
remarks above. One can do a bit better: as for the existence problem for solutions to the
Einstein equations [D10, Thm. 3], there is a maximal domain of existence for solutions
to the Yamabe problem:

Theorem 5.1.6Let (Mn,g) be an n(≥ 3)-dimensional globally hyperbolic spacetime
with smooth spacelike closed Cauchy hypersurfaceΣ ⊂ M and Sg ∈ R be an arbitrary
constant. Denote byν ∈ Γ(T⊥Σ) the future-directed (timelike) unit normal alongΣ.
Then for anyϕ0,ϕ1 ∈ C∞(Σ,R) with ϕ0 > 0, there exists a unique maximal globally
hyperbolic open subset̂DΣ of M in whichΣ is a Cauchy hypersurface and on which
the Cauchy problem(5.2) with ϕ|Σ = ϕ0 and∂νϕ = ϕ1 has a unique smooth positive
solution.

Proof: The proof mainly relies on local existence and (global) uniqueness for solutions
to the Cauchy problem





2ϕ +anSgϕ = anSgϕ
n+2
n−2

ϕ|Σ = ϕ0

∂νϕ = ϕ1,

(5.7)
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which both follow from the theory of symmetric hyperbolic systems. Namely for any
ϕ0,ϕ1 ∈C∞(Σ,R) with ϕ0 > 0 consider the set

MΣ,ϕ0,ϕ1 :=
{

DΣ ⊂ M, DΣ open,Σ Cauchy hypersurface ofDΣ,

∃ϕ ∈C∞(DΣ,R
×
+) solving(5.7) onDΣ

}
.

Note that, by uniqueness of solutions to symmetric hyperbolic systems, for each
DΣ ∈ MΣ,ϕ0,ϕ1, there is auniquepositive smooth solutionϕ to (5.2) onDΣ with
Cauchy dataϕ0,ϕ1. Local existence for the Cauchy problem along the compact Cauchy
hypersurfaceΣ already ensuresMΣ,ϕ0,ϕ1 6= ∅: if (Mn,g) = (R× Σ,−βdt2 ⊕ gt) is
split as in Theorem 5.1.2, where sayΣ ≃ {0}× Σ, then there is a nonempty open
interval J ⊂ R about 0 for which a smooth positive solution to the Cauchy problem
(5.7) exists on the open subsetJ × Σ of M; but with the induced metric and time
orientation,J × Σ is clearly globally hyperbolic withΣ as a Cauchy hypersurface,
thereforeJ×Σ ∈ MΣ,ϕ0,ϕ1.
Next defineD̂Σ :=

⋃
DΣ∈MΣ,ϕ0,ϕ1

DΣ ⊂ M, which is open inM and containsΣ. We claim

that D̂Σ ∈ MΣ,ϕ0,ϕ1. First, we show thatΣ is a Cauchy hypersurface of̂DΣ (henceD̂Σ
is globally hyperbolic). The proof of this is based on the following two claims.
Claim 1: Let Ω ⊂ M be any nonempty open subset which iscausally compatiblein M
(for anyp∈ Ω, JM

± (p)∩Ω = JΩ
±(p)). ThenΩ itself – with the induced metric and time

orientation – is globally hyperbolic if and only ifJM
+ (p)∩JM

− (q)⊂ Ω for all p,q∈ Ω.
Proof of Claim 1: There exists no closed causal curve inΩ since there is already
none inM. If Ω is globally hyperbolic, then for allp,q∈ Ω the subsetJΩ

+(p)∩ JΩ
−(q)

is compact; but by causal compatibility ofΩ, JΩ
+(p)∩ JΩ

−(q) = JM
+ (p)∩ JM

− (q)∩Ω;
now JM

+ (p) ∩ JM
− (q) is by construction (path-)connected, so that the intersection

JM
+ (p) ∩ JM

− (q) ∩ Ω, being open and closed inJM
+ (p) ∩ JM

− (q), is either empty or
the whole subsetJM

+ (p) ∩ JM
− (q); in the first case, necessarilyJM

+ (p) ∩ JM
− (q) = ∅

(otherwiseq ∈ JM
+ (p) ∩ JM

− (q) ∩ Ω) and henceJΩ
+(p) ∩ JΩ

−(q) = JM
+ (p) ∩ JM

− (q);
in the second case, we also obtainJΩ

+(p) ∩ JΩ
−(q) = JM

+ (p)∩ JM
− (q). In both cases

JM
+ (p) ∩ JM

− (q) ⊂ Ω. Conversely, if JM
+ (p) ∩ JM

− (q) ⊂ Ω for all p,q ∈ Ω, then
JΩ
+(p)∩JΩ

−(q) = JM
+ (p)∩JM

− (q)∩Ω = JM
+ (p)∩JM

− (q) is compact for allp,q∈ Ω and
thusΩ is globally hyperbolic.

√

Claim 2: If Σ is a Cauchy hypersurface of an open subsetΩ ⊂ M, thenΩ is automati-
cally causally compatible inM.
Proof of Claim 2: Let p ∈ Ω andq ∈ JM

+ (p)∩Ω be arbitrary. Pick a future-directed
causal curvec : [0,1]→ M with c(0) = p andc(1) = q in M and extend it to an inex-
tendible future-directed causal curvec̃ :R→M. We consider the following cases. First,
let p∈ JΩ

+(Σ). SinceΣ is a spacelike Cauchy hypersurface ofM, there exists a unique
t0 ∈ R with c̃(t0) ∈ Σ; note thatt0 ≤ 0 because ofp ∈ JΩ

+(Σ) ⊂ JM
+ (Σ)∩ Ω. Define

tmin := inf {t < 1| c̃(s) ∈ Ω ∀s∈ [t,1]} and tmax := sup{t > 1| c̃(s) ∈ Ω ∀s∈ [1, t]}.
Note thattmin ∈ [−∞,1[ andtmax ∈]1,∞] are well-defined and that̃c(]tmin, tmax[) ⊂ Ω.
The curvec̃|]tmin,tmax[

:]tmin, tmax[→ Ω is future-directed causal and inextendible as a
curve inΩ by construction oftmin andtmax, therefore it meets the Cauchy hypersurface
Σ of Ω in exactly one point. But sincet0 is the uniquet ∈ R with c̃(t) ∈ Σ, one
necessarily hastmin < t0, in particulartmin < 0, from which c̃(s) = c(s) ∈ Ω for all
s ∈ [0,1] ⊂]tmin, tmax[ follows. This impliesq ∈ JΩ

+(p). The case whereq ∈ JΩ
− (Σ)

is analogous (just “reverse” time). The last case wherep andq are on two different
sides ofΣ (i.e., p ∈ IΩ

−(Σ) andq ∈ IΩ
+ (Σ)) is also similar: one may assumec(1

2) ∈ Σ
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and then one shows as above that both restrictionsc|
[0, 12 ]

andc|
[ 1
2 ,1]

run entirely inΩ.

Thereforeq ∈ JΩ
+(p) in all three cases. ObviouslyJΩ

+(p) ⊂ JM
+ (p)∩Ω always holds

true, thus we have shownJΩ
+(p) = JM

+ (p)∩Ω for all p ∈ Ω. Reversing time we also
showJΩ

−(p) = JM
− (p)∩Ω for all p∈ Ω and henceΩ is causally compatible.

√

To show thatΣ is a Cauchy hypersurface of̂DΣ, let c : R → D̂Σ be any inextendible
future-directed timelike curve. Then its intersection with eachDΣ – that we denote by
c∩DΣ – is again a curve (and remains inextendible, timelike and future-directed): for
anys≤ t ∈ R with c(s),c(t) ∈ DΣ, one hasc(u) ∈ JM

+ (c(s))∩JM
− (c(t)) for all u∈ [s, t]

and, becauseDΣ is causally compatible by Claim 2, we haveJM
+ (c(s))∩JM

− (c(t))⊂ DΣ
by Claim 1 and hencec(u) ∈ DΣ. Thereforec∩DΣ meetsΣ in (exactly) one point,
from which follows thatc meetsΣ in one point, which must be unique sinceΣ can
anyway be met only once by causal curves. ThereforeΣ is a Cauchy hypersurface of
D̂Σ.
It remains to show the existence of aϕ ∈C∞(D̂Σ,R

×
+) solving (5.7) onD̂Σ. For this, we

first show thatMΣ,ϕ0,ϕ1 is stable under finite intersection. For anyD1
Σ,D

2
Σ ∈ MΣ,ϕ0,ϕ1,

consider any inextendible timelike curvec in D1
Σ ∩ D2

Σ. Then one can extendc to
inextendible causal curves̃ci in Di

Σ, i = 1,2 (of course it may happen that one – or
both – extension already coincides withc itself), each of which meetsΣ in exactly
one point. Gluing̃c1 with c̃2 alongc one obtains a future-directed causal curvec̃ in
D1

Σ ∪D2
Σ – this is a (piecewise smooth) curve since no two extensions can come out

of the same end ofc unlessc is already extendible – which is also inextendible in
D1

Σ ∪D2
Σ. By the above argument (applicable to any union of elements of MΣ,ϕ0,ϕ1),

Σ is a Cauchy hypersurface ofD1
Σ ∪D2

Σ, thereforec̃ meetsΣ in exactly one point,
which by uniqueness must lie in bothD1

Σ andD2
Σ; in turn this implies thatc meetsΣ

in exactly one point. ThereforeΣ is a Cauchy hypersurface inD1
Σ ∩D2

Σ. It remains to
notice that the solutionsϕ1 andϕ2 to (5.7) onD1

Σ andD2
Σ respectively have to coincide

on D1
Σ ∩D2

Σ by uniqueness of solutions to (5.7) on the globally hyperbolic spacetime
D1

Σ ∩D2
Σ. ThereforeD1

Σ ∩D2
Σ ∈ MΣ,ϕ0,ϕ1.

Coming back to the Cauchy problem on̂DΣ, define ϕ on D̂Σ via ϕ(p) := ϕ i(p)
for p ∈ Di

Σ, whereϕ i ∈ C∞(Di
Σ,R

×
+) solves (5.7) onDi

Σ; sinceDi
Σ ∩D j

Σ ∈ MΣ,ϕ0,ϕ1

for any Di
Σ,D

j
Σ ∈ MΣ,ϕ0,ϕ1, we haveϕ i

|
Di

Σ∩D
j
Σ
= ϕ j

|
Di

Σ∩D
j
Σ
, so that the functionϕ is

well-defined, positive, smooth and solves (5.7) onD̂Σ. This showsD̂Σ ∈ MΣ,ϕ0,ϕ1. By
construction,̂DΣ is maximal and is unique since it contains any element ofMΣ,ϕ0,ϕ1.
This concludes the proof of Theorem 5.1.6. �

Of course, the maximal domain̂DΣ of Theorem 5.1.6 depends onΣ, on the metricg,
on Sg and on the Cauchy dataϕ0,ϕ1. The same statement as in Theorem 5.1.6 also
holds true in dimension 2 for the Cauchy problem corresponding to (5.1). In the next
sections, we discuss when̂DΣ = M for M in a particular subcategory of spacetimes.

5.2 Conformally standard static spacetimes

In this section, we start with the particular case where(Mn,g) is conformally equivalent
to the product(I ×Σ,−dt2⊕gΣ) of an open intervalI ⊂ R with a closed Riemannian
manifold(Σn−1,gΣ). Note that such a product is automatically globally hyperbolic. Fol-
lowing the literature, products are a particular case of so-calledstandard staticspace-
times:
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Definition 5.2.1 A spacetime(Mn,g) is called

i) static if and only if it admits a timelike Killing vector field whose orthogonal
distribution is integrable.

ii) standard staticif and only if it is isometric to a product(I × Σ,−βdt2 ⊕ gΣ)
for some open interval I⊂ R, some Riemannian manifold(Σn−1,gΣ) and some
β ∈C∞(Σ,R×

+).

Any standard static spacetime is static (take e.g.∂
∂ t as timelike Killing vector field with

integrable orthogonal distribution) and any static spacetime is locally standard static.
A simply connected static spacetime(Mn,g) is standard static if and only if at least
one of its static vector fields (Killing, timelike, with integrable orthogonal distribution)
is complete [D27, Thm. 2.2]. Note that a standard static spacetime(I ×Σ,−βdt2⊕gΣ)
is globally hyperbolic if and only if the metric1β gΣ is complete, in particular any
standard static spacetime with closedΣ is globally hyperbolic. We refer to the excellent
survey [D27] for further geometric and causal aspects of standard static spacetimes.

Thus, we shall consider in this section spacetimes that are conformally equivalent to
standard static ones. Since we may first want a conformal characterisation of such
spacetimes, we give the following

Proposition 5.2.2 A spacetime(Mn,g) is conformally equivalent to a standard static
spacetime if and only if there exists a smooth function t: M −→ R such thatgradg(t)
is everywhere past-directed timelike and for the induced splitting (Mn,g) = (I ×
Σ,−βdt2 ⊕ gt) via the flow of

gradg(t)

|gradg(t)|2g
, the Riemannian metric1β gt on Σ does not

depend on t.

A smooth functiont : M −→ R whose gradient is everywhere past-directed timelike
is called temporal, see e.g. [D18, Def. 3.48]; a temporal function is in particular a
time function, i.e., it is monotonously increasing on any future-directed causal curve

in (Mn,g). Note that the vector field – and hence the induced flow –
gradg(t)

|gradg(t)|2g
, the

conditionst be a temporal function and∂∂ t

(
1
β gt

)
= 0 all only depend on the conformal

class ofg.

Clearly, a spacetime(Mn,g) that is conformally equivalent to a standard static one has
a (future-directed) timelike conformal Killing vector field, the converse being wrong
in general (though aglobally hyperbolicspacetime with complete timelike conformal
Killing vector field is conformally equivalent to a so-called standard stationary
spacetime [D27, Prop. 3.3]). In particular, globally hyperbolic spacetimes with trivial
or even discrete conformal group cannot be conformally equivalent to a standard static
one.

For instance, anywarped productspacetime(Mn,g) = (I ×Σ,−dt2⊕b(t)2gΣ), where
b ∈ C∞(I ,R×

+), admits such a temporal function (fixs0 ∈ I and sett(s,x) :=
∫ s

s0
dτ

b(τ) )
and hence is conformally equivalent to a standard static spacetime. More concretely, if
(Mn,g) = (]α−,α+[×Σ,−dt2⊕ b(t)2gΣ) for someb ∈ C∞(]α−,α+[,R

×
+), then fixing

t0 ∈]α−,α+[, the map

Φ :]α−,α+[×Σ −→ ]a−,a+[×Σ
(t,x) 7−→ (ψ(t),x),
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wherea± :=
∫ α±
t0

ds
b(s) andψ(t) :=

∫ t
t0

ds
b(s) , is a smooth diffeomorphism withΦ∗(−dt2⊕

gΣ) =−b−2dt2⊕gΣ = b−2g.

5.2.1 Existence of solutions to the Yamabe problem

The first and most natural ansatz to solve the Yamabe problem in a product spacetime
consists in separating variables.

Proposition 5.2.3 Let (Mn,g) = (I ×Σ,−dt2⊕gΣ), where I⊂ R is an open interval,
(Σn−1,gΣ) is a closed Riemannian manifold and n≥ 3. Let Sg ∈ R, y∈C∞(I ,R×

+) and
u ∈ C∞(Σ,R×

+) be arbitrary. Then the functionϕ ∈ C∞(M,R×
+), ϕ(t,x) := y(t) ·u(x),

solves(5.2) if and only if

i) either y or u is constant in case Sg 6= 0; if y is constant, then u solves LgΣu =
anSgyp−2up−1 where p:= 2n

n−2; if u is constant, then SgΣ is constant and y solves
y′′+anSgΣy= anSgup−2yp−1.

ii) the functions y and u satisfy y′′+µ1(LgΣ)y= 0 and LgΣu= µ1(LgΣ)u respectively
in case Sg = 0, whereµ1(LgΣ) ∈ R is the smallest eigenvalue of LgΣ .

Proof: By (5.6), the Yamabe equation (5.2) reads∂ 2ϕ
∂ t2

+LgΣϕ = anSgϕ p−1. Forϕ of the

form ϕ(t,x) := y(t) ·u(x), this becomesy′′ ·u+ y ·LgΣu= anSg(y ·u)p−1. Dividing out
by y ·u, this identity is equivalent to

y′′

y
+

LgΣu
u

= anSg(y ·u)p−2.

In case Sg 6= 0, the first t-derivative of that identity gives
(

y′′
y

)′
= (p −

2)anSgup−2yp−3y′, whose l.h.s. hence does not depend onx ∈ Σ, so that eithery′ = 0
on I or u is constant onΣ. If y is constant onI , thenu solvesy ·LgΣu= anSg(y ·u)p−1,
that is,LgΣu= anSgyp−2up−1. If u is constant onΣ, then by the identity just aboveSgΣ
must be constant andy solves the ODEy′′+anSgΣy= anSgup−2yp−1. This provesi).
In caseSg = 0, we obtain after differentiating w.r.t.t the existence of a constant

λ ∈ R with y′′
y = λ and hence also

LgΣ u
u = −λ . In particular,−λ is an eigenvalue

with associated eigenfunctionu for the elliptic self-adjoint linear operatorLgΣ
on Σ; but since we requireu > 0, the eigenvalue−λ can only be the smallest one
µ1(LgΣ) by Courant’s nodal domain theorem. This showsii) and concludes the proof.�

We concentrate on the equationLgΣu = λup−1 on Σ, for which existence results are
well-known, see e.g. [D17, Sec. 4] or [D2, Sec. 2.3]:

Theorem 5.2.4 (H. Yamabe [D31])For n ≥ 3 let (Σn−1,gΣ) be any closed Rieman-
nian manifold. As above, let LgΣ : C∞(Σ,R) −→ C∞(Σ,R) be defined by LgΣϕ :=
∆gΣ ϕ + anSgΣϕ , where an := n−2

4(n−1) and SgΣ is the scalar curvature of(Σ,gΣ). For

p∈ [2,∞[ consider the functional

H1,2(Σ)\ {0} E−→R, E( f ) :=

∫
Σ f LgΣ f dσ
‖ f‖2

Lp(Σ)
,

where dσ is the Riemannian density associated to gΣ onΣ. Then we have the following:



122 CHAPTER 5. THE YAMABE PROBLEM ON LORENTZIAN MANIFOLDS

i) An f ∈ H1,2(Σ) \ {0} is a critical point of E if and only if it satisfies LgΣ f =
E( f )

‖ f‖p−2
Lp(Σ)

· f p−1.

ii) If p ∈ [2, p∗[, where p∗ := 2(n−1)
n−3 ∈]2,∞], then there exists a minimizer of E on

H1,2(Σ)\ {0}.

In particular, there exists aϕ ∈ C∞(Σ,R×
+) with (w.l.o.g.)‖ϕ‖Lp(Σ) = 1 satisfying

LgΣ ϕ = λp(Σ,gΣ) ·ϕ p−1 on Σ, whereλp(Σ,gΣ) := inf
H1,2(Σ)\{0}

(E) ∈ R.

The sign ofλp(Σ,gΣ) turns out to be that of the smallest eigenvalue of the elliptic
self-adjoint operatorLgΣ :

Lemma 5.2.5 With the notations ofTheorem 5.2.4and p∈ [2, p∗[, the constant
λp(Σ,gΣ) and the smallest eigenvalueµ1 of LgΣ have the same sign: the one is pos-
itive (resp.0, negative) if and only if the other is positive (resp.0, negative).

Proof: The negative case is clear: by definition of the constantλp(Σ,gΣ), it is nega-
tive if and only if there exists anf ∈ H1,2(Σ) \ {0} with

∫
Σ f LgΣ f dσ < 0, which, by

the min-max principle, is equivalent toµ1 < 0. Now the conditionp ≥ 2 provides a
trivial inequality betweenλp(Σ,gΣ) andµ1: sinceΣ is closed, we have, using Hölder’s
inequality,‖ · ‖2 ≤C · ‖ · ‖p for some constantC=C(Σ,gΣ), hence

∫
Σ f LgΣ f dσ
‖ f‖2

2

≥C′ ·
∫

Σ f LgΣ f dσ
‖ f‖2

p
≥C′ ·λp(Σ,gΣ)

for some constantC′ = C′(Σ,gΣ) and for every f ∈ H1,2(Σ) \ {0}; the min-max
principle yieldsµ1 ≥ C′ · λp(Σ,gΣ). So, if λp(Σ,gΣ) = 0, then this inequality implies
µ1 ≥ 0; on the other hand, Theorem 5.2.4 provides the existence ofan f ∈C∞(Σ,R×

+)
with LgΣ f = 0, in particular 0 is an eigenvalue ofLgΣ and henceµ1 ≤ 0, soµ1 = 0.
Conversely, ifµ1 = 0, then the above inequality providesλp(Σ,gΣ) ≤ 0; on the other
hand,

∫
Σ f LgΣ f dσ ≥ 0 holds by the min-max principle, so thatλp(Σ,gΣ) ≥ 0 and

thereforeλp(Σ,gΣ) = 0. This concludes the proof. �

For instance, ifSgΣ = 0, then it is clear thatµ1 = λp(Σ,gΣ) = 0 (takeϕ to be con-
stant onΣ). If SgΣ > 0 onΣ, thenλp(Σ,gΣ) > 0, as one can deduce from the bounded

Sobolev embeddingH1,2(Σ) →֒ Lp(Σ) (recall thatp≤ 2(n−1)
n−3 ): there exists a constant

C=C(Σ,gΣ)> 0 such that, for everyf ∈ H1,2(Σ)\ {0},
∫

Σ
f LgΣ f dσ ≥ min(1,anmin

Σ
(SgΣ)) ·

∫

Σ
|d f |2+ f 2dσ

︸ ︷︷ ︸
‖ f‖2

H1,2(Σ)

≥C ·min(1,anmin
Σ
(SgΣ)) · ‖ f‖2

p,

from which we deduceλp(Σ,gΣ) ≥ C · min(1,anminΣ(SgΣ)). In particular,
λp(Σ,gΣ) > 0 as soon as minΣ(SgΣ) > 0. More generally, ifSgΣ ≥ 0 and does not
identically vanish onΣ, then

∫
Σ u1(LgΣu1)dσ > 0 for any (non-zero) eigenfunctionu1

associated to the smallest eigenvalueµ1, in particularµ1 > 0 and henceλp(Σ,gΣ)> 0.
Note that, ifµ1 < 0 - or, equivalently,λp(Σ,gΣ)< 0 - implies minΣ(SgΣ)< 0, however
the other implication is wrong (use e.g. a continuity argument: perturb appropriately
the standard metric onSn so as to make the scalar curvature negative somewhere while
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keepingλp positive). Beware also thatλp(Σ,gΣ) is not a conformal invariant - it is in
particular not the infimum of the standard Yamabe functional.

The first global existence result of that section is the following

Theorem 5.2.6Let a spacetime(Mn,g) be conformally equivalent to the Lorentzian
product(I×Σ,−dt2⊕gΣ) of an open interval I⊂Rwith a closed Riemannian manifold
Σn−1, where n≥ 3. Let λp(Σ,gΣ) := inf

H1,2(Σ)\{0}
(E) ∈ R (seeTheorem 5.2.4) and p:=

2n
n−2. Then for Sg := λp(Σ,gΣ)

an
there exists aϕ ∈C∞(M,R×

+) solving(5.2).

Proof: By conformal invariance of the Yamabe problem, we may assume that

(Mn,g) = (I ×Σ,−dt2⊕gΣ). In that case, (5.2) becomes∂ 2ϕ
∂ t2

+LgΣϕ = anSgϕ p−1 by

Lemma 5.1.3. Sincep∈ [2, 2(n−1)
n−3 [, Theorem 5.2.4 provides the existence of a smooth

positive solutionϕ on Σ of LgΣ ϕ = λp(Σ,gΣ) ·ϕ p−1. This ϕ does not depend ont,
hence solves (5.2). �

As a consequence, every warped product spacetime admits at least one solution to the
Yamabe problem.

Notes 5.2.7

1. The proof of Theorem 5.2.6 actually shows that the same statement as in The-
orem 5.2.6 holds true for any (necessarily non globally hyperbolic) spacetime
conformally equivalent to(S1×Σn−1,−dt2⊕ gΣ) with closedΣ, whereS1 is a
circle of arbitrary length: the solution we construct does not depend on time and
is therefore periodic.

2. One need not have uniqueness (up to scaling by a positive constant) of a
conformal metric with constant scalar curvature. Take e.g.(Mn,g) := (R×
Tn−1,−dt2⊕ can), whereTn−1 = Rn−1

/Zn−1 is then−1-dimensional torus ob-
tained by modding outRn−1 by the canonically embedded latticeZn−1 ⊂ Rn−1

and can is the induced flat metric onTn−1. Taking any two 1-periodic functions
v,w∈C∞(R,R×

+), the functionϕ ∈C∞(R×Rn−1,R×
+) defined by

ϕ(t,x) := v(t + x1)+w(t− x1),

for all t ∈R andx=(x1, . . . ,xn−1)∈Rn−1, satisfies2ϕ = 0 and induces a smooth
function (also denoted byϕ) onR×Tn−1 satisfying the same equation. There-
fore, one obtains a whole family of non-trivial conformal metrics with vanishing
scalar curvature onMn. This also shows a big difference with the Riemannian set-
ting, where every conformal metric with vanishing scalar curvature onR×Tn−1

must be a constant positive multiple of the metricdt2⊕ can by Liouville’s the-
orem (implying that every positive harmonic function onRn must be constant).
Uniqueness of the solutions is further discussed in Section5.2.2 below.

Theorem 5.2.6 shows the existence of at least one conformal metric with constant
scalar curvature on any conformally standard static spacetime. However, we notice
that the sign of that conformal scalar curvature is given by that of the conformal in-
variantλp(Σ,gΣ) defined in Theorem 5.2.4. Therefore, we are led to asking whether
any constant scalar curvature may be prescribed inany conformal class, and if not,
how “large” the maximal domain of existence for solutions is. For this, the following
lemma is useful.
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Lemma 5.2.8 (Gr̈onwall) Let α,β : I −→ R be continuous functions and t0 ∈ I be
arbitrary.

1) If y′+α(t)y≤ 0, then y(t)− y(t0)e
−∫ t

t0
α(s)ds

{
≤ 0 if t ≥ t0
≥ 0 if t ≤ t0

.

2) If y′′+α(t)y′ + β (t)y≤ 0, then y(t) ≤ y(t0)y0 + y′(t0)z0 for every t∈ I, where
y0,z0 solve the differential equation w′′ +α(t)w′ + β (t)w = 0 on I with initial
conditions y0(t0) = 1 = z′0(t0) and y′0(t0) = 0 = z0(t0). In other words, y must
be lower than or equal to the solution of the corresponding differential equation
with thesame initial conditionsat t0.

We come to the main existence result of this section.

Theorem 5.2.9Let a spacetime(Mn,g) be conformally equivalent to the Lorentzian
product(I×Σ,−dt2⊕gΣ) of an open interval I⊂Rwith a closed Riemannian manifold
(Σn−1,gΣ), where n≥ 3. Let µ1(LgΣ) ∈ R be the smallest eigenvalue of LgΣ and let
Sg ∈R be an arbitrary constant.

1) If µ1(LgΣ)< 0, then

1a) either Sg ≤ 0 and then(5.2)has a globally defined smooth positive solution
on Mn,

1b) or Sg > 0 and then(5.2) has no globally defined smooth positive solution
on Mn = I ×Σ if I = R.

2) If µ1(LgΣ) = 0, then

2a) either Sg < 0 and then(5.2) has no globally defined smooth positive solu-
tion on Mn = I ×Σ if I = R.

2b) or Sg = 0 and then(5.2)has a globally defined smooth positive solution on
Mn,

2c) or Sg > 0 and then(5.2) has no globally defined smooth positive solution
on Mn = I ×Σ if I = R.

3) If µ1(LgΣ)> 0, then

3a) either Sg < 0 and then(5.2)has a globally defined smooth positive solution
on Mn = I ×Σ only if |I | ≤ π√

µ1(LgΣ )
,

3b) or Sg = 0 and then(5.2)has a globally defined smooth positive solution on
Mn = I ×Σ if and only if|I | ≤ π√

µ1(LgΣ )
,

3c) or Sg > 0 and then(5.2)has a globally defined smooth positive solution on
Mn.

Proof ofTheorem 5.2.9: Note that the statements 1a) for the subcaseSg < 0, 2b) and
3c) are already contained in Theorem 5.2.6 via Lemma 5.2.5 and after possibly rescal-
ing the solution so as to adjust the constant on the r.h.s.
We show how to obtain in all cases a necessary condition for the existence of a global
solution to (5.2). Given any constantSg ∈ R, assumeϕ ∈ C∞(M,R×

+) is a solution to
(5.2). Again, we may assume that(M,g) = (I ×Σ,−dt2⊕ gΣ). Let u be any positive
(necessarily smooth) eigenfunction associated to the smallest eigenvalueµ1(LgΣ) of
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LgΣ . Multiplying (5.2) with u and integrating w.r.t. the Riemannian measuredσ asso-
ciated togΣ onΣ, we obtain, using the formal self-adjointness ofLgΣ :

anSg

∫

Σ
ϕ p−1(t,x)u(x)dσ(x)

(5.2)
=

∫

Σ
(2ϕ +anSgϕ)(t,x)u(x)dσ(x)

(5.6)
=

∫

Σ

{
∂ 2ϕ
∂ t2 (t,x)u(x)+ (LgΣϕ)(t,x)u(x)

}
dσ(x)

=
d2

dt2

(∫

Σ
ϕ(t, ·)udσ

)
+

∫

Σ
ϕ(t, ·)LgΣudσ

=
d2

dt2

(∫

Σ
ϕ(t, ·)udσ

)
+ µ1(LgΣ)

∫

Σ
ϕ(t, ·)udσ ,

where p = 2n
n−2. As a consequence, the smooth positive functiony : I → R

×
+, t 7→∫

Σ ϕ(t, ·)udσ , satisfies

y′′+ µ1(LgΣ)y= anSg

∫

Σ
ϕ p−1(t, ·)udσ (5.8)

on I . An immediate consequence of this is that, ifSg = 0, then the existence of a smooth
positive solution to (5.2) is actuallyequivalentto that of a smooth positive solution to
(5.8): it is necessary by the above argument and, conversely, if somey ∈ C∞(I ,R×

+)
solves (5.8), then Proposition 5.2.3 implies that, for any positive (smooth) eigenfunc-
tion u associated to the smallest eigenvalueµ1(LgΣ) of LgΣ , the functionϕ(t,x) :=
y(t) ·u(x)> 0 solves2ϕ +anSgϕ = 0 onM. Since obviously a positive smooth solu-
tion to the ODE (5.8) withSg = 0 exists forµ1(LgΣ)≤ 0, we obtain 1a) for the subcase
Sg = 0 (as well as 2b)). For µ1(LgΣ) > 0, any solution to (5.8) withSg = 0 is of the
form t 7→ Acos(

√
µ1(LgΣ)t + c), A,c∈ R, so that the existence of (at least) a positive

solution (5.8) is equivalent to the length ofI being no greater than the half of the period
of t 7→ cos(

√
µ1(LgΣ)t), i.e., to|I | ≤ π√

µ1(LgΣ )
. This proves 3b).

Assume nowSg < 0 andµ1(LgΣ)≥ 0. If ϕ ∈C∞(M,R×
+) solves (5.2), then by (5.8) the

functiony defined as above fromϕ satisfiesy′′+ µ1(LgΣ)y < 0 on I . If µ1(LgΣ) = 0,
theny′′ < 0 on I , so thaty is strictly concave and hence has to change sign ifI = R.
This shows 2a). If µ1(LgΣ) > 0, then fix anyt0 ∈ I . By Lemma 5.2.8 the functiony
must satisfyy≤ z, wherez∈C∞(I ,R) solvesz′′+µ1(LgΣ)z= 0 onI with z(t0) = y(t0)
as well asz′(t0) = y′(t0). Sincez – and hence alsoy – can remain positive only on
an interval of length at most π√

µ1(LgΣ )
(see just above), the length|I | of I must satisfy

|I | ≤ π√
µ1(LgΣ )

. This shows 3a).

In the remaining case whereSg > 0 andµ1(LgΣ) ≤ 0, the identity (5.8) implies that, if
ϕ ∈C∞(M,R×

+) solves (5.2), then for any smooth positiveu∈ Ker(LgΣ −µ1(LgΣ)), the
smooth positive functiony(t) :=

∫
Σ ϕ(t, ·)udσ satisfies

y′′ ≥ y′′+ µ1(LgΣ)y= anSg

∫

Σ
(ϕ(t, ·)u

1
p−1 )p−1dσ

on I . But sinceu is continuous and positive on the compact spaceΣ, there is a positive

constantC (depending onp = 2n
n−2 and u) such thatu

1
p−1 ≥ Cu, so that, by Hölder

inequality,

y′′ ≥ anSgC
p−1

∫

Σ
(ϕ(t, ·)u)p−1dσ ≥ anSgCp−1

Vol(Σ,gΣ)p−2yp−1
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on I . This leads to an explosion ofy in finite time and hence to a contradiction in case
I = R. Namely we may first assume, up to changingy into t 7→ y(αt) for someα > 0,
that

y′′ ≥ p
2

yp−1 (5.9)

onR. Since theny is strictly convex, only two (non disjoint) situations can occur: there
is an interval of the form[t0,∞[ on whichy′ ≥ 0 or there is an interval of the form
]−∞, t0] on whichy′ ≤ 0. In the latter case, up to changingt into −t – which does not
modify (5.9) – we can again assume thaty′ ≥ 0 on some interval of the form[t0,∞[. Up
to translating byt0, we can also assume thatt0 = 0. Sincey′ ≥ 0 on [0,∞[, the identity
(5.9) yields 2y′′y′ ≥ pyp−1y′ on [0,∞[, hence(y′)2(t)− (y′)2(0)≥ yp(t)−yp(0) for any
t ≥ 0, in particulary′ ≥

√
yp− yp(0) on [0,∞[. The latter inequality gives

∫ y(t)

y(0)

dz√
zp− yp(0)

≥ t

for any t ≥ 0. Now sincep > 2 the integral
∫ ∞

y(0)
dz√

zp−yp(0)
converges, that is, the

domain wherey(t) is defined is bounded above, or, equivalently,y(t) → ∞ ast → T
for someT < ∞. This shows 1b) and 2c) and concludes the proof of Theorem 5.2.9.�

Note that, in the cases 1b), 2a), 2c) and 3a), local existence of solutions to (5.2)
implies anyway the existence of a smooth positive solutionϕ to (5.2) onI × Σ for
sufficiently short|I |. Even if it looks like it, global existence of solutions has nothing to
do with timelike geodesic completeness of the product metric (which is anyway not a
conformal invariant), see de Sitter spacetime below. For further ODE-like obstructions
to the existence of particular metrics in (pseudo-)Riemannian conformal classes, we
refer to [D20].

A first application of Theorem 5.2.9 is the following surprising example, where we see
there exist spacetimes withpositivescalar curvature admitting conformal metrics with
vanishingscalar curvature – and this only in low dimensions.

Corollary 5.2.10 Let a spacetime(Mn,g) be conformally equivalent to the warped
product (R × Σn−1,−dt2 ⊕ cosh(t)2gΣ) of R with a closed Riemannian manifold
(Σn−1,gΣ) of constant scalar curvature(n− 1)(n− 2) and with warping function
b = cosh. Then there exists a conformal metric with vanishing scalarcurvature on
(Mn,g) if and only if n≤ 4.

Proof: Note that, by (5.5), the scalar curvature of(Mn,g) is Sg = n(n− 1) > 0. We
have already constructed an explicit isometry between(Mn,b−2g) (which is confor-
mally equivalent to(Mn,g)) and (]a−,a+[×Σn−1,−dt2⊕ gΣ), whereb(t) := cosh(t)
and a± :=

∫ ±∞
0

ds
b(s) : set Φ(t,x) := (ψ(t),x) with ψ(t) :=

∫ t
0

ds
b(s) . It is elementary

to computeψ(t) = 2
∫ t
0

e−sds
1+e−2s = π

2 − 2arctan(e−t), so thata± = ± π
2 . Now since

SgΣ = (n−1)(n−2) is constant,µ1(LgΣ) = anSgΣ = (n−2)2

4 , so that, by Theorem 5.2.9,
there exists a positive solution to (5.2) withSg = 0 if and only if a+−a− ≤ π√µ1

, that

is, if and only ifπ ≤ 2π
n−2, that is, if and only ifn≤ 4. �

For instance, if(Mn,g) := (R×Sn−1,−dt2⊕ cosh(t)2can) is the de Sitter spacetime
of constant sectional curvature 1, where(Sn−1,can) is the round sphere (of constant
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sectional curvature 1 ifn ≥ 3), then Corollary 5.2.10 shows that the existence of a
conformal metric with vanishing scalar curvature is equivalent ton≤ 4.

Note 5.2.11There is something deeply unsatisfying about Theorem 5.2.9: although
the results we obtain are by nature conformally invariant, the assumptions we work
with are not. For recall that we have first chosen a foliation by spacelike hypersurfaces
– or, equivalently, a temporal function on the spacetime. Even more disturbing is the
fact that the sign of the first eigenvalue of the Laplace-typeoperatorLgΣ on each leaf
Σ can change when fixing the foliation but changing the metric conformally on the
spacetime. This remark is crucial when wanting to generalise the existence results to
arbitrary globally hyperbolic spacetimes.

5.2.2 Uniqueness of solutions to the Yamabe problem

Next we turn to the uniqueness issue for the Yamabe problem. As we already noticed,
given a globally hyperbolic spacetimeMn with closed spacelike Cauchy hypersurface
Σ having future unit normalν, the local well-posedness of the Cauchy problem

2ϕ + anSgϕ = anSgϕ
n+2
n−2 on M, ϕ|Σ = ϕ0 and∂ν ϕ = ϕ1 on Σ, ensures - at least in a

neighbourhood ofΣ - the existence of infinitely many “independent” local solutions to
the Yamabe problem. Therefore the only interesting question in this respect deals with
the global aspects of uniqueness.

We start with looking at the ODEy′′+anSgΣy = anSgyp−1 from Proposition 5.2.3 on
I ⊂ R and under the assumption that the scalar curvatureSgΣ of (Σ,gΣ) is constant.
It is easy to see what happens forSg = 0: if SgΣ < 0, then there always exists a 2-
parameter-family of positive solutions toy′′+ anSgΣy = 0 on I ; if SgΣ = 0, then only
constant solutionsy> 0 to y′′ = 0 can remain positive onR; in caseSgΣ > 0, there is
no positive solution toy′′ + anSgΣy = 0 onR (but obviously there is one and even a
2-parameter-family of solutions on a sufficiently small interval). In the caseSg 6= 0, we
may assume, up to multiplyingy by a positive constant, thatanSg = ε p

2 with ε ∈ {±1}.

Lemma 5.2.12Given s∈ R
×
+, p ∈]2,∞[ and ε ∈ {±1}, consider the ODE y′′ =

ε( p
2yp−1− sy) on some open interval I⊂ R.

1) If ε = 1, then the only positive solution to that ODE onR is the constant one

y= (2s
p )

1
p−2 .

2) If ε = −1, then there are infinitely many non-constant positive solutions to that
ODE on I. More precisely, for any T∈] 2π√

(p−2)s
,∞[, there exists a T-periodic

positive solution to y′′ =− p
2yp−1+ sy onR.

Proof: If y solvesy′′ = ε( p
2yp−1 − sy), then multiplying withy′ and integrating one

obtains
(y′)2 = εF(y)−λ

for someλ ∈R, whereF :R+ →R, F(y) := yp−sy2. Therefore, we just have to inves-
tigate the qualitative behaviour of solutions to the first-order ODE(y′)2 = εF(y)−λ
according to the value ofλ . This equation can be solved in the formt = t(y) =
±∫ y dz√

εF(z)−λ
according to the sign ofy′ on the interval under consideration. More-

over, any solution to(y′)2 = εF(y)−λ which is not a critical point ofF is a solution
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to the original equationy′′ = ε( p
2yp−1− sy). Hence we first have to determine the reg-

ular and critical values ofF. A short computation gives the two critical values 0 and

− p−2
p (2s

p )
p

p−2 for F , with corresponding critical points 0 and(2s
p )

1
p−2 respectively. We

start with the caseε = 1:

• Any λ ∈ R
×
+ is a regular value ofF andF−1({λ}) = {xλ} with xλ ∈]s

1
p−2 ,∞[.

Becausep> 2 we have
∫ ∞

xλ+1
dy√

F(y)−λ
<∞, so that any solutiony corresponding

to λ > 0 explodes in finite time and therefore cannot exist onR.

• For λ = 0, apart from the trivial solutiony = 0 (we exclude anyway), the only
solution shows exactly the same behaviour as before.

• For λ ∈]− p−2
p (2s

p )
p

p−2 ,0[, the preimageF−1([λ ,∞[) consists of two intervals of

the form [0,x−λ ] and [x+λ ,∞[ respectively, with 0< x−λ < (2s
p )

1
p−2 < x+λ < s

1
p−2 .

Sinceλ is a regular value ofF , the behaviour of the solution taking its values
in [x+λ ,∞[ is the same as before (explosion in finite time); for[0,x−λ ] the solu-

tion vanishes in finite time because of
∫ x−λ

2
0

dy√
F(y)−λ

< ∞. In both cases,y is not

everywhere positive or is not defined onR.

• For λ = − p−2
p (2s

p )
p

p−2 , apart from the constant solution(2s
p )

1
p−2 , we have two

kinds of behaviour fory according to one valuey(t0) of y lying in ]0,(2s
p )

1
p−2 [

or in ](2s
p )

1
p−2 ,∞[. If y(t0) ∈](2s

p )
1

p−2 ,∞[, then y explodes in finite time on

one side and attains the critical point(2s
p )

1
p−2 in infinite time on the other. If

y(t0) ∈]0,(2s
p )

1
p−2 [, theny vanishes in finite time on the one side and attains the

critical point(2s
p )

1
p−2 in infinite time on the other. Again, no non-constant posi-

tive solution is defined onR.

• For λ ∈]−∞,− p−2
p (2s

p )
p

p−2 [ the functiony′ cannot change sign; the solutiony
must vanish in finite time on the one side and explode in finite time on the other.

This shows 1). The caseε = −1 can also be divided in different subcases, compare
[D28, pp. 132-135]:

• For λ ∈] p−2
p (2s

p )
p

p−2 ,∞[, there is of course no solution to(y′)2 =−F(y)−λ .

• For λ = p−2
p (2s

p )
p

p−2 , the only solution to(y′)2 =−F(y)−λ is the constant one

y= (2s
p )

1
p−2 .

• For λ ∈]0, p−2
p (2s

p )
p

p−2 [, the preimage(−F)−1([λ ,∞[) = [x−λ ,x
+
λ ], where 0<

x−λ < (2s
p )

1
p−2 < x+λ < s

1
p−2 . This time,y is periodic (in particular defined onR)

and oscillates between the valuesx−λ andx+λ . Its periodTλ (depending onλ ) is

given byTλ = 2
∫ x+λ

x−λ

dy√
−F(y)−λ

, which can be easily seen to depend continuously

on λ (sincex±λ do) with Tλ −→
λ→0+

∞ as well asTλ −→
λ→ p−2

p ( 2s
p )

p
p−2 −

2π√
(p−2)s

> 0,

which is the period for the linearized equationy′′ =−(p−2)syat (2s
p )

1
p−2 .
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• For λ = 0, apart from the trivial solutiony = 0, we obtain the solutionst 7→
s

1
p−2 cosh( 2

√
s

n−2(t + c))−
n−2

2 , c ∈ R, which are positive solutions defined onR,

symmetric about their maximumt = −c, with s
1

p−2 as maximum value, and
which tend to 0 at infinity.

• Forλ ∈R
×
−, we obtain as above a solution which explodes on both sides infinite

time.

This shows 2) and concludes the proof. �

Corollary 5.2.13 Let a spacetime(Mn,g) be conformally equivalent to the product
(I ×Σ,−dt2⊕gΣ) of an open interval I⊂R with a closed Riemannian manifold(Σ,gΣ)
of constant negative scalar curvature. Then there exist infinitely many non-homothetic
conformal metrics with constant negative scalar curvatureon (Mn,g).

Proof: Immediate consequence of Proposition 5.2.3 and Lemma 5.2.12. �

We turn to the subcritical equationLgΣu = λup−1 on Σ. First notice that, ifu,v ∈
C∞(Σ,R×

+) solveLgΣu= λup−1 andLgΣv= µvp−1 onΣ respectively, for someλ ,µ ∈R,
thenλ andµ have the same sign (λ µ ≥ 0 and vanishes if and only ifλ = µ = 0): by
formal self-adjointness ofLgΣ ,

λ
∫

Σ
up−1vdσ =

∫

Σ
(LgΣu)vdσ =

∫

Σ
u(LgΣv)dσ = µ

∫

Σ
uvp−1dσ .

In particular, we only need consider uniqueness of solutions to LgΣu = λup−1 with
constantλ of the same sign asµ1(LgΣ).

Theorem 5.2.14Let (Σn−1,gΣ) be a closed connected Riemannian manifold, where
n≥ 3. Let µ1(LgΣ) ∈R be the smallest eigenvalue of LgΣ and p:= 2n

n−2.

1) If µ1(LgΣ) < 0, then for any Sg ∈ R
×
− the equation LgΣ ϕ = anSgϕ p−1 admits a

unique smooth positive solution onΣ.

2) If µ1(LgΣ) = 0, then the equation LgΣ ϕ = 0 admits a unique smooth positive
solution up to scale onΣ.

3) For anyΛ ∈R
×
+ the set

SΛ :=
{

u∈C∞(Σ,R+) |LgΣ u= λup−1, |λ | ≤ Λ, ‖u‖Lp(Σ) ≤ Λ
}

is compact in C2(Σ,R).

Proof: By Courant’s nodal domain theorem, Ker(LgΣ −µ1(LgΣ)) is a real line generated
by a positive smooth function onΣ. This already implies 2). Statement 1) relies on the
method of sub- and super-solutions developed in [D15, D16] and further in [D24, D23].
We briefly recall the concepts and statements we need for the proof. Given aC1 function
f : Σ×R→ R, a strongsub-(resp.super-) solutionfor the equation∆u= f (x,u) is a
C2-function v on Σ with ∆v ≤ f (x,v) (resp.∆v ≥ f (x,v)) on Σ. A weak sub- (resp.
super-) solution for the equation∆u = f (x,u) is a v ∈ H1,2(Σ)∩C0(Σ,R) satisfying∫

Σ (gΣ(dv,dϕ)− f (x,v)ϕ)dσ ≤ 0 (resp.
∫

Σ (gΣ(dv,dϕ)− f (x,v)ϕ)dσ ≥ 0) for all ϕ ∈
C∞(Σ,R+). Of course, every strong sub- or super-solution is a weak one. The steps in
the proof of statement 1) are the following:
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a) If v1,v2 ∈C2(Σ,R) are strong super-solutions to∆u= f (x,u), then min(v1,v2) ∈
H1,2(Σ)∩C0(Σ,R) is a weak super-solution to the same equation [D23, Prop. 1].

b) Let v1,v2 ∈ C2(Σ,R) (resp.v− ∈ C2(Σ,R)) be strong super-solutions (resp. a
strong sub-solution) to∆u = f (x,u) with v− ≤ min(v1,v2). Then there exists a
strong solutionv ∈ C2(Σ,R) to the same equation withv− ≤ v ≤ min(v1,v2),
compare e.g. [D13, Thm. 7.4.1] or [D15, Lemma 2.6] and references therein.

Now let u1,u2 ∈ C∞(Σ,R×
+) both solveLgΣui = λup−1

i for someλ ∈ R
×
−. Up to mul-

tiplying u1 andu2 by a positive constant, we may assume thatλ = −1. We construct
suitable sub- and super-solutions forLgΣw = −wp−1 in order to be able to assume
u1 ≤ u2, compare [D23, Lemma 1]. First, ifu ∈ Ker(LgΣ − µ1(LgΣ)) is positive, then
there is a strong sub-solution toLgΣw=−wp−1 of the formu− := αu with appropriate

α ∈ R
×
+: namelyLgΣu− ≤ −up−1

− if and only if αµ1(LgΣ)u≤ −α p−1up−1, i.e., if and

only if α ≤ 1
maxΣ(u)

(−µ1(LgΣ))
1

p−2 (recall thatµ1(LgΣ) < 0), whose r.h.s. is positive

sinceΣ is compact. Thereforeu− = αu is a strong sub-solution toLgΣw= −wp−1 for
α > 0 sufficiently small. Again, by compactness ofΣ and continuity ofu1,u2, one may
chooseα > 0 small enough such thatu− ≤ ui , i = 1,2. So we are in the situation where
u− is a strong sub-solution andu1,u2 are strong (super-)solutions toLgΣw = −wp−1

with u− ≤ min(u1,u2). By b) just above, there exists a strong solutionv∈C2(Σ,R) to
LgΣw=−wp−1 with u− ≤ v≤ min(u1,u2), in particularv> 0 onΣ. Actually, classical
elliptic regularity yieldsv∈C∞(Σ,R×

+). As a consequence, for bothi = 1,2,

−
∫

Σ
up−1

i vdσ =

∫

Σ
(LgΣui)vdσ =

∫

Σ
ui(LgΣv)dσ =−

∫

Σ
uiv

p−1dσ ,

so that
∫

Σ uiv(u
p−2
i − vp−2)dσ = 0. Because ofp− 2 > 0, we haveup−2

i − vp−2 ≥ 0

and thereforeup−2
i − vp−2 = 0, that is,ui = v for i = 1,2, in particularu1 = u2. This

proves statement 1).
The compactness of the setSΛ relies mainly on the following so-calledregularity
theorem(actually needed for the proof of Theorem 5.2.4), see e.g. [D17, Thm. 4.1] or
[D2, Satz 2.3.3]:

Let (Σn−1,gΣ) be a closed Riemannian manifold with n≥ 3, p∈ [2,∞[, h∈ C∞(Σ,R)
and L := ∆ + h. Then for anyΛ1,Λ2 ≥ 0 and r ∈]n−1

2 (p− 2),∞[, there exists a
constant C= C(Σ,gΣ,‖h‖L∞(Σ),Λ1,Λ2, r) ≥ 0 and α = α(r) ∈]0,1[ such that for all
almost everywhere nonnegativeϕ ∈ H1,2(Σ)∩ Lr(Σ) solving (weakly) Lϕ = λ ϕ p−1

with |λ | ≤ Λ1 and ‖ϕ‖Lr (Σ) ≤ Λ2, we have:ϕ ∈ C∞(Σ,R), either ϕ > 0 or ϕ = 0
everywhere onΣ and‖ϕ‖C2,α (Σ) ≤C.

Fixing r = p= 2n
n−2 and noticing thatp> n−1

2 (p−2), the regularity theorem provides,
for anyΛ ∈]0,∞[, the existence of anα ∈]0,1[ and of a constantC = C(Σ,gΣ,Λ) > 0
with ‖ϕ‖C2,α(Σ) ≤ C for all ϕ ∈ SΛ. With other words,SΛ is included in the closed

C-ball around the origin inC2,α(Σ,R). But by Arzelà-Ascoli theorem, the inclusion
C2,α(Σ,R) →֒C2(Σ,R) is compact, so thatSΛ is relatively compact inC2(Σ,R). Thus
it remains to show thatSΛ is closed inC2(Σ,R). Consider the map

Φ : C2(Σ,R+)× [−Λ,Λ]→C0(Σ,R), (u,λ ) 7→ LgΣu−λup−1.

We show thatΦ is continuous w.r.t. the standard topologies on both sides.Let
(uk,λk)k∈N be a sequence ofC2(Σ,R+) × [−Λ,Λ] converging to some(u,λ ) ∈
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C2(Σ,R+)× [−Λ,Λ], i.e.,uk −→
k→∞

u in C2(Σ) andλk −→
k→∞

λ in R. Then∆uk −→
k→∞

∆u in

C0(Σ) and, because of‖SgΣ‖C0(Σ) < ∞, we haveLgΣuk −→
k→∞

LgΣu in C0(Σ). Moreover,

sinceuk −→
k→∞

u in C0(Σ), we can fix a smallε >0 and use sup
x∈[0,‖u‖C0(Σ)+ε]

(p−1)xp−2<∞

to deduce that‖up−1
k − up−1‖C0(Σ) ≤ c · ‖uk− u‖C0(Σ) for some constantc > 0 (inde-

pendent ofk) and all sufficiently largek ∈ N, in particular‖up−1
k −up−1‖C0(Σ) −→

k→∞
0.

Therefore,LgΣuk − λku
p−1
k −→

k→∞
LgΣu− λup−1, i.e., Φ(uk,λk) −→

k→∞
Φ(u,λ ) in C0(Σ).

HenceΦ is continuous and thusΦ−1({0}) is closed inC2(Σ,R+)× [−Λ,Λ]. But
[−Λ,Λ] being compact, the first projection pr1(Φ−1({0})) of Φ−1({0}) is also closed
in C2(Σ,R+). By restriction,SΛ = pr1(Φ−1({0}))∩

{
ϕ ∈C2(Σ,R) |‖ϕ‖Lp(Σ) ≤ Λ

}

is closed in C2(Σ,R+) ∩
{

ϕ ∈C2(Σ,R) |‖ϕ‖Lp(Σ) ≤ Λ
}

. Now the set
C2(Σ,R+) ∩

{
ϕ ∈C2(Σ,R) |‖ϕ‖Lp(Σ) ≤ Λ

}
is closed in C2(Σ,R): the subset

C2(Σ,R+) is obviously closed inC2(Σ,R) and, if uk −→
k→∞

u in C2(Σ,R), then also in

C0(Σ,R) and hence inLp(Σ), in particular‖ · ‖Lp(Σ) : C2(Σ,R) → R+ is continuous.
On the whole,SΛ is closed inC2(Σ,R) and therefore compact by the above argument.
This shows statement 3) and concludes the proof of Theorem 5.2.14. �

As for the Riemannian Yamabe problem, uniqueness need not hold in caseµ1(LgΣ)> 0,
as the following example shows, compare [D28, pp. 132-135].

Example 5.2.15Let Σn−1 := Σn−2
1 ×S1(L) be endowed with the product metricgΣ =

g1⊕dt2, where(Σn−2
1 ,g1) is a closed Riemannian manifold of constant positive scalar

curvatureSg1 andS1(L) is the circle of lengthL > 0. The subcritical equationLgΣ ϕ =
anSgϕ p−1 with Sg ∈ R

×
+ can be rewritten in the form

−∂ 2ϕ
∂ t2 +∆g1ϕ +anSg1ϕ = anSgϕ p−1,

where∆g1 : C∞(Σ1,R)→C∞(Σ1,R) is the scalar Laplace operator of(Σ1,g1). Looking
for solutions of the formϕ = y ∈ C∞(S1,R×

+), we have to findL
k -periodic solutions

to the ODE−y′′ + anSg1y = anSgyp−1 on R, for anyk ∈ N \ {0}. Up to multiplying
y with a positive constant, we may assume thatanSg =

p
2 , so that the ODE becomes

y′′ = sy− p
2yp−1, wheres := anSg1 ∈ R

×
+. Now Lemma 5.2.12 states that, for anyT ∈

] 2π√
(p−2)s

,∞[, there exists aT-periodic (non-constant) positive solution toy′′ = sy−
p
2yp−1. Hence, ifL ∈] 2π√

(p−2)s
,∞[, then there exists a non-constantL-periodic positive

solution to that equation. More precisely, ifL∈] 2kπ√
(p−2)s

, 2(k+1)π√
(p−2)s

[ for somek∈N\{0},

then there are positive solutions with periodsL, L
2 , . . . ,

L
k respectively to that equation.

In particular, the subcritical equation onΣn−2
1 ×S1(L) has more than one solution for

L > 0 sufficiently large. Combined with Proposition 5.2.3, thisfact in turn implies the
existence of non-homothetic conformal metrics with constant positive scalar curvature
on any spacetime conformally equivalent to(I ×Σ,−dt2⊕gΣ) for Σ as above.

However, if the Ricci curvature of(Σ,gΣ) is large enough, then uniqueness for the
subcritical equation is satisfied.

Theorem 5.2.16 (M.-F. Bidaut-V́eron & L. V éron [D8]) Let (Σn−1,gΣ) be a closed
Riemannian manifold with n≥ 4. Assume there existλ ∈ R

×
+ and q∈]2,∞[ such that
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i) ricgΣ ≥ n−2
n−1(q−2)λ ·gΣ and

ii) q ≤ 2(n−1)
n−3

with strict inequality in i) or ii) if (Σn−1,gΣ) is conformally equivalent to(Sn−1,can).

Then the only solution u> 0 to ∆u+λu= uq−1 is the constant one u= λ
1

q−2 .

Examples 5.2.17

1. Let(Σn−1,gΣ) be anyn−1(≥ 3)-dimensional closed Riemannian manifold with

constant positive scalar curvatureSgΣ and ricgΣ ≥ n−2
n−1 ·

SgΣ
n−1 ·gΣ. For instance, any

Einstein metric – or, more generally, any sufficiently smallC2-perturbation of an
Einstein metric (think e.g. of small perturbations of the round metric onS2n+1

into Berger metrics) – with constant positive scalar curvature satisfies this condi-
tion. Then Theorem 5.2.16 withλ = anSgΣ andq= p= 2n

n−2 ∈]2, 2(n−1)
n−3 [ applies

and yields in particular the uniqueness of solutions to the subcritical equation
LgΣu= up−1 on Σ.

2. Let(Σn−1,gΣ) := (Σ1×Σ2,g1⊕g2) with n1+n2 = n−1≥ 4 be the Riemannian
product of two closed Einstein manifolds with constant positive scalar curvature
Sg1 andSg2 respectively. Forλ = anSgΣ = n−2

4(n−1)(Sg1 +Sg2) ∈ R
×
+ andq= p=

2n
n−2 ∈]2, 2(n−1)

n−3 [, we haven−2
n−1(q−2)λ = n−2

(n−1)2
(Sg1 +Sg2). Because of ricgΣ =

ricg1⊕ricg2 =
Sg1
n1

g1⊕
Sg2
n2

g2, a short computation shows that ricgΣ ≥ n−2
(n−1)2

(Sg1+

Sg2) ·gΣ is equivalent to

n2(n1+n2−1)

n2
1+n1n2+n2

Sg1 ≤ Sg2 ≤
n1+n1n2+n2

2

n1(n1+n2−1)
Sg1.

In that case, Theorem 5.2.16 applies and yields the uniqueness of solutions to
the subcritical equationLgΣu= up−1 on Σ. Note that the inequality just above is

in particular fulfilled if the Einstein condition
Sg1
n1

=
Sg2
n2

is.

5.3 General case and outlook

In this section we come back to arbitrary globally hyperbolic spacetimes(Mn,g)
with closed Cauchy hypersurface. We face several kinds of problems when looking
for a smooth positive global solution to (5.2). First, we must show the existence of a
solution – at least in the weak sense. We have seen that, for standard static spacetimes,
we could always reduce the equation to a subcritical eigenvalue problem for the
Laplace operator on a spacelike slice, whose solvability iswell-known, at least in the
compact setting. In general, it is possible to fix a spacelikeCauchy hypersurface inMn

and to try to solve the Cauchy problem associated to (5.2) with initial data along the
hypersurface. For the case whereM = R4 = R×R3 with standard Minkowski metric,
Konrad Jörgens could show [D14] (see also [D29, Thm. 6.5]) that, given anyp∈ [2,6[
and any compactly supported smooth initial data onR3 ≃ {0}×R3, there always
exists a smooth solution to the Cauchy problem associated tothe – slightly different –
equation2ϕ =−ϕ |ϕ |p−2. This works in particular forp= 2n

n−2 = 4.
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Not much is known for arbitrary globally hyperbolic spacetimes, even with closed
Cauchy hypersurface. The subcriticality of the exponentp = 2n

n−2 for the embedding
of the H1,2-Sobolev space of the hypersurface is likely to provide at least weak
solutions (in the distributional sense) to (5.2). The existence of those solutions is
tightly connected to the choice of sign for the conformal scalar curvature: which kind
of invariant could determine it? It is pointless to try to minimize the energy functional
whose critical points are the solutions to the Yamabe problem, for that infimum can
be shown to be minus infinity. The regularity of solutions is also an issue in itself,
but the really delicate point – also related to the choice of conformal scalar curvature
– consists in controlling theirsign. For we have no maximum principle available to
show that a given solution must be positive. In the particular case of standard static
spacetimes, the integration of a given solution (possibly against a particular positive
function) along the leaves of the standard foliation by Cauchy hypersurfaces leads
to an ordinary differential equation or inequation, that straightforwardly provides
obstructions for the existence of positive solutions: if the leafwise integral of a function
is negative, then the function itself is negative somewhere.

In general, we cannot expect such an elementary obstructionto the existence of
positive solutions, already because no separation of variables is possible. In fact, we
first of all have to split the spacetime appropriately, or equivalently, choose a “good”
temporal function. There is no canonical choice of temporalfunction on a given
globally hyperbolic spacetime, though some choices are better adapted than other
according to the question under consideration, see e.g. [D21, D19]. Besides fixing a
temporal function, we also have to choose a background metric in the given conformal
class. Both choices are intimately connected.

When focussing on the Yamabe equation (5.2), one could startwith an arbitrary
splitting (Mn,g) = (R×Σ,−βdt2⊕ gt) as in Theorem 5.1.2 and, up to changing the
metricg conformally, assume thatβ = 1. The first and superficial reason for this is that
it makes the expression of the d’Alembert operator2 relatively simple, see Lemma
5.1.3. But this is not necessarily the best choice, as we havealready seen: for warped
product spacetimes(I ×Σ,−dt2 ⊕ b(t)2gΣ), the choiceb(t)−2g of conformal metric
leads to the even simpler setting of standard static spacetimes, where the Yamabe prob-
lem can be completely solved. Still fixing the splitting(Mn,g) = (R×Σ,−βdt2⊕gt),
it is elementary to find a metric conformal tog such that all hypersurfaces{t}× Σ
are maximal, i.e., trgt (

∂gt
∂ t ) = 0 – in particular ∂

∂ t (dσgt ) = 0, which is the case for

Lorentzian products; and a conformal metric such that trgt (
∂gt
∂ t ) = 1

β
∂β
∂ t , which

makes the first-order-∂∂ t -term in 2g vanish. Each of those choices presents technical
advantages as well as drawbacks and we have for the moment no clue about which one
could be “best” adapted to the Yamabe equation.

Note that one could also construct for eacht a metric with constant scalar curvature
in the conformal class ofgt on the Cauchy hypersurfaceΣ – which is possible by the
existence of a solution to the Riemannian Yamabe problem. But this does not help
much in our setting: even assuming the existence of asmooth2 f : I ×Σ −→ R

×
+ such

that f (t, ·)2gt = ǧ0 does not depend ont and has constant scalar curvature, a metric of

2The smooth dependence off in t ∈ I is already a very delicate question, at least in the case of positive
Yamabe invariants onΣ, see e.g. [D11].
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the form− f 2dt2 ⊕ ǧ0 is in general not conformally equivalent to a (standard) static
one – unlessf is constant.

On the whole, the Lorentzian Yamabe problem remains widely open.
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[D3] C. Bär, N. Ginoux and F. Pfäffle,Wave equations on Lorentzian manifolds and
quantization, ESI Lectures in Mathematics and Physics, EMS Publishing House,
2007.

[D4] J.K. Beem, P.E. Ehrlich and K.L. Easley,Global Lorentzian geometry, Second
edition, Monographs and Textbooks in Pure and Applied Mathematics202, Mar-
cel Dekker, 1996.

[D5] A.N. Bernal and M. Sánchez,Smoothness of time functions and the metric split-
ting of globally hyperbolic spacetimes, Comm. Math. Phys.257(2005), 43–50.

[D6] A.N. Bernal and M. Sánchez,Further results on the smoothability of Cauchy
hypersurfaces and Cauchy time functions, Lett. Math. Phys.77 (2006), no. 2,
183–197.

[D7] A.N. Bernal and M. Sánchez,Globally hyperbolic spacetimes can be defined as
“causal” instead of “strongly causal”, Classical Quantum Gravity24 (2007), no.
3, 745–749.
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Chapter 6

Classical and quantum fields on
Lorentzian manifolds

This chapter coincides (up to minor changes such as enumeration of pages, sections,
theorems, references etc.) with the published article [11].

Christian Bär and Nicolas Ginoux

Abstract. We construct bosonic and fermionic locally covariant quantum field theories on
curved backgrounds for large classes of fields. We investigate the quantum field andn-point
functions induced by suitable states.

MSC classification:58J45,35Lxx,81T20

Keywords: Wave operator, Dirac-type operator, globally hyperbolic spacetime,
Green’s operator, CCR-algebra, CAR-algebra, state, representation, locally covariant
quantum field theory, quantum field,n-point function

6.1 Introduction

Classical fields on spacetime are mathematically modeled bysections of a vector bun-
dle over a Lorentzian manifold. The field equations are usually partial differential equa-
tions. We introduce a class of differential operators, called Green-hyperbolic operators,
which have good analytical solubility properties. This class includes wave operators as
well as Dirac type operators.
In order to quantize such a classical field theory on a curved background, we need
local algebras of observables. They come in two flavors, bosonic algebras encoding
the canonical commutation relations and fermionic algebras encoding the canonical
anti-commutation relations. We show how such algebras can be associated to man-
ifolds equipped with suitable Green-hyperbolic operators. We prove that we obtain
locally covariant quantum field theories in the sense of [E11]. There is a large litera-
ture where such constructions are carried out for particular examples of fields, see e.g.
[E14, E17, E18, E20, E26, E38]. In all these papers the well-posedness of the Cauchy
problem plays an important role. We avoid using the Cauchy problem altogether and
only make use of Green’s operators. In this respect, our approach is similar to the one in
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[E39]. This allows us to deal with larger classes of fields, see Section 6.2.7, and to treat
them systematically. Much of the earlier work on constructing observable algebras for
particular examples can be subsumed under this general approach.
It turns out that bosonic algebras can be obtained in much more general situations than
fermionic algebras. For instance, for the classical Dirac field both constructions are
possible. Hence, on the level of observable algebras, thereis no spin-statistics theorem.
In order to obtain results like Theorem 5.1 in [E41] one needsmore structure, namely
representations of the observable algebras with good properties.
In order to produce numbers out of our quantum field theory that can be compared
to experiments, we need states, in addition to observables.We show how states with
suitable regularity properties give rise to quantum fields and n-point functions. We
check that they have the properties expected from traditional quantum field theories on
a Minkowski background.
Acknowledgments.It is a pleasure to thank Alexander Strohmaier and Rainer Verch
for very valuable discussion. The authors would also like tothank SPP 1154 “Globale
Differentialgeometrie” and SFB 647 “Raum-Zeit-Materie”,both funded by Deutsche
Forschungsgemeinschaft, for financial support.

6.2 Field equations on Lorentzian manifolds

6.2.1 Globally hyperbolic manifolds

We begin by fixing notation and recalling general facts aboutLorentzian manifolds,
see e.g. [E30] or [E4] for more details. Unless mentioned otherwise, the pair(M,g)
will stand for a smoothm-dimensional manifoldM equipped with a smooth Lorentzian
metricg, where our convention for Lorentzian signature is(−+ · · ·+). The associated
volume element will be denoted by dV. We shall also assume ourLorentzian manifold
(M,g) to be time-orientable, i.e., that there exists a smooth timelike vector field on
M. Time-oriented Lorentzian manifolds will be also referredto asspacetimes. Note
that in contrast to conventions found elsewhere, we do not assume that a spacetime is
connected nor do we assume that its dimension bem= 4.
For every subsetA of a spacetimeM we denote the causal future and past ofA in M by
J+(A) andJ−(A), respectively. If we want to emphasize the ambient spaceM in which
the causal future or past ofA is considered, we writeJM

± (A) instead ofJ±(A). Causal
curves will always be implicitly assumed (future or past) oriented.

Definition 6.2.1 A Cauchy hypersurfacein a spacetime(M,g) is a subset of M which
is met exactly once by every inextensible timelike curve.

Cauchy hypersurfaces are always topological hypersurfaces but need not be smooth.
All Cauchy hypersurfaces of a spacetime are homeomorphic.

Definition 6.2.2 A spacetime(M,g) is calledglobally hyperbolicif and only if it con-
tains a Cauchy hypersurface.

A classical result of R. Geroch [E21] says that a globally hyperbolic spacetime can be
foliated by Cauchy hypersurfaces. It is a rather recent and very important result that
this also holds in the smooth category:

Theorem 6.2.3 (A. Bernal and M. Sánchez [E6, Thm. 1.1])Let (M,g) be a globally
hyperbolic spacetime.
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Then there exists a smooth manifoldΣ, a smooth one-parameter-family of Riemannian
metrics(gt)t on Σ and a smooth positive functionβ onR×Σ such that(M,g) is iso-
metric to(R×Σ,−βdt2⊕gt). Each{t}×Σ corresponds to a smooth spacelike Cauchy
hypersurface in(M,g).

For our purposes, we shall need a slightly stronger version of Theorem 6.2.3 where one
of the Cauchy hypersurfaces{t}×Σ can be prescribed:

Theorem 6.2.4 (A. Bernal and M. Sánchez [E7, Thm. 1.2])Let (M,g) be a globally
hyperbolic spacetime and̃Σ a smooth spacelike Cauchy hypersurface in(M,g). Then
there exists a smooth splitting(M,g) ∼= (R×Σ,−βdt2⊕gt) as in Theorem 6.2.3 such
that Σ̃ corresponds to{0}×Σ.

We shall also need the following result which tells us that one can extend any com-
pact acausal spacelike submanifold to a smooth spacelike Cauchy hypersurface. Here
a subset of a spacetime is calledacausalif no causal curve meets it more than once.

Theorem 6.2.5 (A. Bernal and M. Sánchez [E7, Thm. 1.1])Let (M,g) be a globally
hyperbolic spacetime and let K⊂ M be a compact acausal smooth spacelike subman-
ifold with boundary. Then there exists a smooth spacelike Cauchy hypersurfaceΣ in
(M,g) with K ⊂ Σ.

Definition 6.2.6 A closed subset A⊂ M is calledspacelike compactif there exists a
compact subset K⊂ M such that A⊂ JM(K) := JM

− (K)∪JM
+ (K).

Note that a spacelike compact subset is in general not compact, but its intersection with
any Cauchy hypersurface is compact, see e.g. [E4, Cor. A.5.4].

Definition 6.2.7 A subsetΩ of a spacetime M is calledcausally compatibleif and only
if JΩ

±(x) = JM
± (x)∩Ω for every x∈ Ω.

This means that every causal curve joining two points inΩ must be contained entirely
in Ω.

6.2.2 Differential operators and Green’s functions

A differential operatorof order (at most)k on a vector bundleS→ M overK = R

or K = C is a linear mapP : C∞(M,S) → C∞(M,S) which in local coordinatesx =
(x1, . . . ,xm) of M and with respect to a local trivialization looks like

P= ∑
|α |≤k

Aα(x)
∂ α

∂xα .

HereC∞(M,S) denotes the space of smooth sections ofS→ M, α = (α1, . . . ,αm) ∈
N0×·· ·×N0 runs over multi-indices,|α|= α1+ . . .+αm and ∂ α

∂xα = ∂ |α|
∂ (x1)α1 ···∂ (xm)αm .

Theprincipal symbolσP of P associates to each covectorξ ∈ T∗
x M a linear mapσP(ξ ) :

Sx → Sx. Locally, it is given by

σP(ξ ) = ∑
|α |=k

Aα(x)ξ α
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whereξ α = ξ α1
1 · · ·ξ αm

m andξ = ∑ j ξ jdxj . If P andQ are two differential operators of
orderk andℓ respectively, thenQ◦P is a differential operator of orderk+ ℓ and

σQ◦P(ξ ) = σQ(ξ )◦σP(ξ ).

For any linear differential operatorP : C∞(M,S)→C∞(M,S) there is a unique formally
dual operatorP∗ : C∞(M,S∗)→C∞(M,S∗) of the same order characterized by

∫

M
〈φ ,Pψ〉dV =

∫

M
〈P∗φ ,ψ〉dV

for all ψ ∈C∞(M,S) andφ ∈C∞(M,S∗) with supp(φ)∩supp(ψ) compact. Here〈·, ·〉 :
S∗⊗S→K denotes the canonical pairing, i.e., the evaluation of a linear form inS∗x on
an element ofSx, wherex∈ M. We haveσP∗(ξ ) = (−1)kσP(ξ )∗ wherek is the order
of P.

Definition 6.2.8 Let a vector bundle S→ M be endowed with a non-degenerate inner
product〈· , ·〉. A linear differential operator P on S is calledformally self-adjointif and
only if ∫

M
〈Pφ ,ψ〉dV =

∫

M
〈φ ,Pψ〉dV

holds for allφ ,ψ ∈C∞(M,S) with supp(φ)∩supp(ψ) compact.
Similarly, we call Pformally skew-adjointif instead

∫

M
〈Pφ ,ψ〉dV =−

∫

M
〈φ ,Pψ〉dV .

We recall the definition of advanced and retarded Green’s operators for a linear differ-
ential operator.

Definition 6.2.9 Let P be a linear differential operator acting on the sections of a
vector bundle S over a Lorentzian manifold M. Anadvanced Green’s operatorfor P on
M is a linear map

G+ : C∞
c (M,S)→C∞(M,S)

satisfying:

(G1) P◦G+ = id
C∞

c (M,S)
;

(G2) G+ ◦P|C∞
c (M,S)

= id
C∞

c (M,S)
;

(G+
3 ) supp(G+φ) ⊂ JM

+ (supp(φ)) for anyφ ∈C∞
c (M,S).

A retarded Green’s operatorfor P on M is a linear map G− : C∞
c (M,S) → C∞(M,S)

satisfying (G1), (G2), and

(G−
3 ) supp(G−φ) ⊂ JM

− (supp(φ)) for anyφ ∈C∞
c (M,S).

Here we denote byC∞
c (M,S) the space of compactly supported smooth sections ofS.

Definition 6.2.10 Let P : C∞(M,S) → C∞(M,S) be a linear differential operator. We
call P Green-hyperbolicif the restriction of P to any globally hyperbolic subregionof
M has advanced and retarded Green’s operators.

Note 6.2.11If the Green’s operators of the restriction ofP to a globally hyperbolic
subregion exist, then they are necessarily unique, see Remark 6.3.7.
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6.2.3 Wave operators

The most prominent class of Green-hyperbolic operators arewave operators, some-
times also called normally hyperbolic operators.

Definition 6.2.12 A linear differential operator of second order P: C∞(M,S) →
C∞(M,S) is called awave operatorif its principal symbol is given by the Lorentzian
metric, i.e., for allξ ∈ T∗M we have

σP(ξ ) =−〈ξ ,ξ 〉 · id.

In other words, if we choose local coordinatesx1, . . . ,xm onM and a local trivialization
of S, then

P=−
m

∑
i, j=1

gi j (x)
∂ 2

∂xi∂x j +
m

∑
j=1

A j(x)
∂

∂x j +B(x)

whereA j andB are matrix-valued coefficients depending smoothly onx and(gi j ) is
the inverse matrix of(gi j ) with gi j = 〈 ∂

∂xi ,
∂

∂xj 〉. If P is a wave operator, then so is its
dual operatorP∗. In [E4, Cor. 3.4.3] it has been shown that wave operators areGreen-
hyperbolic.

Example 6.2.13 (d’Alembert operator) Let S be the trivial line bundle so that sec-
tions ofSare just functions. The d’Alembert operatorP=2=−div◦grad is a formally
self-adjoint wave operator, see e.g. [E4, p. 26].

Example 6.2.14 (connection-d’Alembert operator)More generally, letSbe a vector
bundle and let∇ be a connection onS. This connection and the Levi-Civita connection
onT∗M induce a connection onT∗M⊗S, again denoted∇. We define the connection-
d’Alembert operator2∇ to be the composition of the following three maps

C∞(M,S)
∇−→C∞(M,T∗M⊗S)

∇−→C∞(M,T∗M⊗T∗M⊗S)
−tr⊗idS−−−−→C∞(M,S)

where tr :T∗M⊗T∗M →R denotes the metric trace, tr(ξ ⊗η) = 〈ξ ,η〉. We compute
the principal symbol,

σ
2

∇(ξ )φ =−(tr⊗ idS)◦σ∇(ξ )◦σ∇(ξ )(φ) =−(tr⊗ idS)(ξ ⊗ ξ ⊗φ) =−〈ξ ,ξ 〉φ .

Hence2∇ is a wave operator.

Example 6.2.15 (Hodge-d’Alembert operator)Let S= ΛkT∗M be the bundle ofk-
forms. Exterior differentiationd : C∞(M,ΛkT∗M) → C∞(M,Λk+1T∗M) increases the
degree by one while the codifferentialδ = d∗ : C∞(M,ΛkT∗M) → C∞(M,Λk−1T∗M)
decreases the degree by one. Whiled is independent of the metric, the codifferential
δ does depend on the Lorentzian metric. The operatorP = −dδ − δd is a formally
self-adjoint wave operator.

6.2.4 The Proca equation

The Proca operator is an example of a Green-hyperbolic operator of second order which
is not a wave operator. First we need the following observation:
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Lemma 6.2.16Let M be globally hyperbolic, let S→ M be a vector bundle and let P
and Q be differential operators acting on sections of S. Suppose P has advanced and
retarded Green’s operators G+ and G−.
If Q commutes with P, then it also commutes with G+ and with G−.

Proof: Assume[P,Q] = 0. We consider

G̃± := G±+[G±,Q] : C∞
c (M,s)→C∞

sc(M,S).

We compute onC∞
c (M,S):

G̃±P= G±P+G±QP−QG±P= id+G±PQ−Q= id+Q−Q= id

and similarlyPG̃± = id. HenceG̃± are also advanced and retarded Green’s operators,
respectively. By Remark 6.2.11, Green’s operators are unique, henceG̃± = G± and
therefore[G±,Q] = 0. �

Example 6.2.17 (Proca operator)The discussion of this example follows [E39,
p. 116f], see also [E20] where is the discussion is based on the Cauchy problem. The
Proca equation describes massive vector bosons. We takeS= T∗M and letm0 > 0. The
Proca equation is

Pφ := δdφ +m2
0φ = 0 (6.1)

whereφ ∈C∞(M,S). Applying δ to (6.1) we obtain, usingδ 2 = 0 andm0 6= 0,

δφ = 0 (6.2)

and hence
(dδ + δd)φ +m2

0φ = 0. (6.3)

Conversely, (6.2) and (6.3) clearly imply (6.1).
SinceP̃ := dδ + δd+m2

0 is minus a wave operator, it has Green’s operatorsG̃±. We
define

G± : C∞
c (M,S)→C∞

sc(M,S), G± := (m−2
0 dδ + id)◦ G̃± = G̃± ◦ (m−2

0 dδ + id) .

The last equality holds becaused andδ commute withP̃. Forφ ∈C∞
c (M,S) we com-

pute
G±Pφ = G̃±(m−2

0 dδ + id)(δd+m2
0)φ = G̃±P̃φ = φ

and similarlyPG±φ = φ . Since the differential operatorm−2
0 dδ + id does not increase

supports, the third axiom in the definition of advanced and retarded Green’s operators
holds as well.
This shows thatG+ andG− are advanced and retarded Green’s operators forP, respec-
tively. ThusP is not a wave operator but Green-hyperbolic.

6.2.5 Dirac type operators

The most important Green-hyperbolic operators of first order are the so-called Dirac
type operators.

Definition 6.2.18 A linear differential operator D:C∞(M,S)→C∞(M,S) of first order
is calledof Dirac type, if −D2 is a wave operator.
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Note 6.2.19If D is of Dirac type, theni times its principal symbol satisfies the Clifford
relations

(iσD(ξ ))2 =−σD2(ξ ) =−〈ξ ,ξ 〉 · id,
hence by polarization

(iσD(ξ ))(iσD(η))+ (iσD(η))(iσD(ξ )) =−2〈ξ ,η〉 · id.

The bundleS thus becomes a module over the bundle of Clifford algebras Cl(TM)
associated with(TM,〈· , ·〉). See [E5, Sec. 1.1] or [E27, Ch. I] for the definition and
properties of the Clifford algebra Cl(V) associated with a vector spaceV with inner
product.

Note 6.2.20If D is of Dirac type, then so is its dual operatorD∗. On a globally hyper-
bolic region letG+ be the advanced Green’s operator forD2 which exists since−D2 is
a wave operator. Then it is not hard to check thatD ◦G+ is an advanced Green’s op-
erator forD, see e.g. the proof of Theorem 2.3 in [E14] or [E29, Thm. 3.2].The same
discussion applies to the retarded Green’s operator. Henceany Dirac type operator is
Green-hyperbolic.

Example 6.2.21 (Classical Dirac operator)If the spacetimeM carries a spin struc-
ture, then one can define the spinor bundleS= ΣM and the classical Dirac operator

D : C∞(M,ΣM)→C∞(M,ΣM), Dφ := i
m

∑
j=1

ε j ej ·∇ej φ .

Here(ej)1≤ j≤m is a local orthonormal basis of the tangent bundle,ε j = 〈ej ,ej〉 = ±1
and “·” denotes the Clifford multiplication, see e.g. [E5] or [E3,Sec. 2]. The principal
symbol ofD is given by

σD(ξ )ψ = iξ ♯ ·ψ .

Hereξ ♯ denotes the tangent vector dual to the 1-formξ via the Lorentzian metric, i.e.,
〈ξ ♯,Y〉= ξ (Y) for all tangent vectorsY over the same point of the manifold. Hence

σD2(ξ )ψ = σD(ξ )σD(ξ )ψ =−ξ ♯ ·ξ ♯ ·ψ = 〈ξ ,ξ 〉ψ .

ThusP= −D2 is a wave operator. Moreover,D is formally self-adjoint, see e.g. [E3,
p. 552].

Example 6.2.22 (Twisted Dirac operators)More generally, letE → M be a complex
vector bundle equipped with a non-degenerate Hermitian inner product and a metric
connection∇E over a spin spacetimeM. In the notation of Example 6.2.21, one may
define the Dirac operator ofM twisted withE by

DE := i
m

∑
j=1

ε jej ·∇ΣM⊗E
ej

: C∞(M,ΣM ⊗E)→C∞(M,ΣM ⊗E),

where∇ΣM⊗E is the tensor product connection onΣM ⊗E. Again, DE is a formally
self-adjoint Dirac type operator.

Example 6.2.23 (Euler operator) In Example 6.2.15, replacingΛkT∗M by S :=
ΛT∗M ⊗C = ⊕n

k=0ΛkT∗M ⊗C, the Euler operatorD = i(d− δ ) defines a formally
self-adjoint Dirac type operator. In caseM is spin, the Euler operator coincides with
the Dirac operator ofM twisted withΣM if m is even and withΣM⊕ΣM if m is odd.
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Example 6.2.24 (Buchdahl operators)On a 4-dimensional spin spacetimeM, con-
sider the standard orthogonal and parallel splittingΣM = Σ+M⊕Σ−M of the complex
spinor bundle ofM into spinors of positive and negative chirality. The finite dimen-
sional irreducible representations of the simply-connected Lie group Spin0(3,1) are

given byΣ(k/2)
+ ⊗Σ(ℓ/2)

− wherek, ℓ ∈ N. HereΣ(k/2)
+ = Σ⊙k

+ is thek-th symmetric tensor

product of the positive half-spinor representationΣ+ and similarly forΣ(ℓ/2)
− . Let the

associated vector bundlesΣ(k/2)
± M carry the induced inner product and connection.

For s∈ N, s≥ 1, consider the twisted Dirac operatorD(s) acting on sections ofΣM⊗
Σ((s−1)/2)
+ M. In the induced splitting

ΣM⊗Σ((s−1)/2)
+ M = Σ+M⊗Σ(s−1/2)

+ M⊕Σ−M⊗Σ((s−1)/2)
+ M

the operatorD(s) is of the form
(

0 D(s)
−

D(s)
+ 0

)

because Clifford multiplication by vectors exchanges the chiralities. The Clebsch-

Gordan formulas [E10, Prop. II.5.5] tell us that the representationΣ+ ⊗Σ( s−1
2 )

+ splits
as

Σ+⊗Σ( s−1
2 )

+ = Σ( s
2)

+ ⊕Σ( s
2−1)

+ .

Hence we have the corresponding parallel orthogonal projections

πs : Σ+M⊗Σ( s−1
2 )

+ M → Σ( s
2 )

+ M and π ′
s : Σ+M⊗Σ( s−1

2 )
+ M → Σ( s

2−1)
+ M.

On the other hand, the representationΣ−⊗Σ( s−1
2 )

+ is irreducible. NowBuchdahl oper-
atorsare the operators of the form

B(s)
µ1,µ2,µ3 :=

(
µ1 ·πs+ µ2 ·π ′

s D(s)
−

D(s)
+ µ3 · id

)

whereµ1,µ2,µ3 ∈ C are constants. By definition,B(s)
µ1,µ2,µ3 is of the formD(s) + b,

whereb is of order zero. In particular,B(s)
µ1,µ2,µ3 is a Dirac-type operator, hence it is

Green-hyperbolic.
If M were Riemannian, thenD(s) would be formally self-adjoint. Hence the operator

B(s)
µ1,µ2,µ3 would be formally self-adjoint if and only if the constantsµ1,µ2,µ3 are real.

In Lorentzian signature,Σ+M andΣ−M are isotropic for the natural inner product on
ΣM, so that the bundles on which the Buchdahl operators act, carry no natural non-
degenerate inner product.
For a definition of Buchdahl operators using indices we referto [E12, E13, E44] and
to [E28, Def. 8.1.4, p. 104].

6.2.6 The Rarita-Schwinger operator

For the Rarita-Schwinger operator on Riemannian manifolds, we refer to [E43, Sec. 2],
see also [E8, Sec. 2]. In this section let the spacetimeM be spin and consider the
Clifford-multiplicationγ : T∗M⊗ΣM →ΣM, θ ⊗ψ 7→ θ ♯ ·ψ , whereΣM is the complex
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spinor bundle ofM. Then there is the representation theoretic splitting ofT∗M ⊗ΣM
into the orthogonal and parallel sum

T∗M⊗ΣM = ι(ΣM)⊕Σ3/2M,

whereΣ3/2M := ker(γ) and ι(ψ) := − 1
m ∑m

j=1e∗j ⊗ ej ·ψ . Here again(ej)1≤ j≤m is a
local orthonormal basis of the tangent bundle. LetD be the twisted Dirac operator
on T∗M ⊗ΣM, that is,D := i · (id⊗ γ) ◦∇, where∇ denotes the induced covariant
derivative onT∗M⊗ΣM.

Definition 6.2.25 TheRarita-Schwinger operatoron the spin spacetime M is defined
byQ := (id− ι ◦ γ)◦D : C∞(M,Σ3/2M)→C∞(M,Σ3/2M).

By definition, the Rarita-Schwinger operator is pointwise obtained as the orthogonal
projection ontoΣ3/2M of the twisted Dirac operatorD restricted to a section ofΣ3/2M.
Using the above formula forι, the Rarita-Schwinger operator can be written down
explicitly:

Qψ = i ·
m

∑
β=1

e∗β ⊗
m

∑
α=1

εα(eα ·∇eα φβ − 2
m

eβ ·∇eα φα)

for all ψ = ∑m
β=1e∗β ⊗ψβ ∈ C∞(M,Σ3/2M), where here∇ is the standard connection

on ΣM. It can be checked thatQ is a formally self-adjoint linear differential operator
of first order, with principal symbol

σQ(ξ ) : ψ 7→ i
{
(id⊗ ξ ♯·)ψ − 2

m

m

∑
β=1

e∗β ⊗eβ · (ξ ♯
yψ)

}
,

for all ψ = ∑m
β=1e∗β ⊗ψβ ∈ Σ3/2M. HereXyψ denotes the insertion of the tangent

vectorX in the first factor, that is,Xyψ := ∑m
β=1e∗β (X)ψβ .

Lemma 6.2.26Let M be a spin spacetime of dimension m≥ 3. Then the character-
istic variety of the Rarita-Schwinger operator of M coincides with the set of lightlike
covectors.

Proof: By definition, the characteristic variety ofQ is the set of nonzero covectorsξ
for which σQ(ξ ) is not invertible. Fix an arbitrary pointx∈ M. Let ξ ∈ T∗

x M \ {0} be
non-lightlike. Without loss of generality we may assume that ξ is normalized and that
the Lorentz orthonormal basis is chosen so thatξ ♯ = e1. Henceε1 = 1 if ξ is spacelike
andε1 =−1 if ξ is timelike. Takeψ = ∑m

β=1e∗β ⊗ψβ ∈ ker(σQ(ξ )). Then

0 =
m

∑
β=1

e∗β ⊗e1 ·ψβ − 2
m

m

∑
β=1

e∗β ⊗eβ ·ψ1

=
m

∑
β=1

e∗β ⊗ (e1 ·ψβ − 2
m

eβ ·ψ1),

which impliese1 ·ψβ = 2
meβ ·ψ1 for all β ∈ {1, . . . ,m}. Choosingβ = 1, we obtain

e1 ·ψ1 = 0 becausem≥ 3. Henceψ1 = 0, from whichψβ = 0 follows for all β ∈
{1, . . . ,m}. Henceψ = 0 andσQ(ξ ) is invertible.
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If ξ ∈ T∗
x M \ {0} is lightlike, then we may assume thatξ ♯ = e1 + e2, whereε1 =

−1 andε2 = 1. Chooseψ1 ∈ ΣxM \ {0} with (e1 + e2) · ψ1 = 0. Such aψ1 exists
because Clifford multiplication by a lightlike vector is nilpotent. Setψ2 := −ψ1 and

ψ := e∗1⊗ψ1+e∗2⊗ψ2. Thenψ ∈ Σ3/2
x M \ {0} and

−iσQ(ξ )(ψ) =
2

∑
j=1

e∗j ⊗ (e1+e2) ·ψ j︸ ︷︷ ︸
=0

− 2
m

e∗j ⊗ej · (ψ1+ψ2︸ ︷︷ ︸
=0

) = 0.

This showsψ ∈ ker(σQ(ξ )) and henceσQ(ξ ) is not invertible. �

The same proof shows that in the Riemannian case the Rarita-Schwinger operator is
elliptic.

Note 6.2.27Since the characteristic variety of the Rarita-Schwinger operator is exactly
that of the Dirac operator, Lemma 6.2.26 together with [E24,Thms. 23.2.4 & 23.2.7]
imply that the Cauchy problem forQ is well-posed in caseM is globally hyperbolic.
This implies theyQ has advanced and retarded Green’s operators. HenceQ is not of
Dirac type but it is Green-hyperbolic.

Note 6.2.28The equations originally considered by Rarita and Schwinger in [E33]
correspond to the twisted Dirac operatorD restricted toΣ3/2M but not projected back
to Σ3/2M. In other words, they considered the operator

D |C∞(M,Σ3/2M) : C∞(M,Σ3/2M)→C∞(M,T∗M⊗ΣM).

These equations are over-determined. Therefore it is not a surprise that non-trivial so-
lutions restrict the geometry of the underlying manifold asobserved by Gibbons [E22]
and that this operator has no Green’s operators.

6.2.7 Combining given operators into a new one

Given two Green-hyperbolic operators we can form the directsum and obtain a new
operator in a trivial fashion. It turns out that this operator is again Green-hyperbolic.
Note that the two operators need not have the same order.

Lemma 6.2.29Let S1,S2 → M be two vector bundles over the globally hyperbolic
manifold M. Let P1 and P2 be two Green-hyperbolic operators acting on sections of S1

and S2 respectively. Then

P1⊕P2 :=

(
P1 0
0 P2

)
: C∞(M,S1⊕S2)→C∞(M,S1⊕S2)

is Green-hyperbolic.

Proof: If G1 andG2 are advanced Green’s operators forP1 andP2 respectively, then

clearly

(
G1 0
0 G2

)
is an advanced Green’s operator forP1⊕P2. The retarded case is

analogous. �

It is interesting to note thatP1 andP2 need not have the same order. Hence Green-
hyperbolic operators need not be hyperbolic in the usual sense. Moreover, it is not
obvious that Green-hyperbolic operators have a well-posedCauchy problem. For in-
stance, ifP1 is a wave operator andP2 a Dirac-type operator, then along a Cauchy
hypersurface one would have to prescribe the normal derivative for theS1-component
but not for theS2-component.
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6.3 Algebras of observables

Our next aim is to quantize the classical fields governed by Green-hyperbolic differen-
tial operators. We construct local algebras of observablesand we prove that we obtain
locally covariant quantum field theories in the sense of [E11].

6.3.1 Bosonic quantization

In this section we show how a quantization process based on canonical commutation re-
lations (CCR) can be carried out for formally self-adjoint Green-hyperbolic operators.
This is a functorial procedure. We define the first category involved in the quantization
process.

Definition 6.3.1 The categoryGlobHypGreen consists of the following objects and
morphisms:

• An object inGlobHypGreen is a triple (M,S,P), where

� M is a globally hyperbolic spacetime,

� S is a real vector bundle over M endowed with a non-degenerateinner
product〈· , ·〉 and

� P is a formally self-adjoint Green-hyperbolic operator acting on sections
of S.

• A morphism between two objects(M1,S1,P1) and(M2,S2,P2) of GlobHypGreen
is a pair ( f ,F), where

� f is a time-orientation preserving isometric embedding M1 → M2 with
f (M1) causally compatible and open in M2,

� F is a fiberwise isometric vector bundle isomorphism over f such that the
following diagram commutes:

C∞(M2,S2)
P2 //

res

��

C∞(M2,S2)

res

��
C∞(M1,S1)

P1 // C∞(M1,S1),

(6.4)

whereres(φ) := F−1◦φ ◦ f for everyφ ∈C∞(M2,S2).

Note that morphisms exist only if the manifolds have equal dimension and the vector
bundles have the same rank. Note furthermore, that the innerproduct〈· , ·〉 on S is not
required to be positive or negative definite.
The causal compatibility condition, which is not automatically satisfied (see e.g. [E4,
Fig. 33]), ensures the commutation of the extension and restriction maps with the
Green’s operators:
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Lemma 6.3.2 Let ( f ,F) be a morphism between two objects(M1,S1,P1) and
(M2,S2,P2) in the categoryGlobHypGreen and let (G1)± and (G2)± be the respec-
tive Green’s operators for P1 and P2. Denote byext(φ) ∈C∞

c (M2,S2) the extension by
0 of F ◦φ ◦ f−1 : f (M1)→ S2 to M2, for everyφ ∈C∞

c (M1,S1). Then

res◦ (G2)± ◦ext= (G1)±.

Proof: Set (G̃1)± := res◦ (G2)± ◦ ext and fixφ ∈ C∞
c (M1,S1). First observe that the

causal compatibility condition onf implies that

supp((G̃1)±(φ)) = f−1(supp((G2)± ◦ext(φ)))
⊂ f−1(JM2

± (supp(ext(φ))))

= f−1(JM2
± ( f (supp(φ))))

= JM1
± (supp(φ)).

In particular,(G̃1)±(φ) has spacelike compact support inM1 and(G̃1)± satisfies Ax-
iom (G3). Moreover, it follows from (6.4) thatP2◦ext= ext◦P1 onC∞

c (M1,S1), which
directly implies that(G̃1)± satisfies Axioms(G1) and(G2) as well. The uniqueness of
the advanced and retarded Green’s operators onM1 yields(G̃1)± = (G1)±. �

Next we show how the Green’s operators for a formally self-adjoint Green-hyperbolic
operator provide a symplectic vector space in a canonical way. First we see how the
Green’s operators of an operator and of its formally dual operator are related.

Lemma 6.3.3 Let M be a globally hyperbolic spacetime and G+,G− the advanced
and retarded Green’s operators for a Green-hyperbolic operator P acting on sections
of S→M. Then the advanced and retarded Green’s operators G∗

+ and G∗
− for P∗ satisfy

∫

M
〈G∗

±φ ,ψ〉dV =

∫

M
〈φ ,G∓ψ〉dV

for all φ ∈C∞
c (M,S∗) andψ ∈C∞

c (M,S).

Proof: Axiom (G1) for the Green’s operators implies that
∫

M
〈G∗

±φ ,ψ〉dV =

∫

M
〈G∗

±φ ,P(G∓ψ)〉dV

=

∫

M
〈P∗(G∗

±φ),G∓ψ〉dV

=

∫

M
〈φ ,G∓ψ〉dV,

where the integration by parts is justified since supp(G∗
±φ) ∩ supp(G∓ψ) ⊂

JM
± (supp(φ))∩JM

∓ (supp(ψ)) is compact. �

Proposition 6.3.4 Let (M,S,P) be an object in the categoryGlobHypGreen. Set G:=
G+ −G−, where G+,G− are the advanced and retarded Green’s operator for P, re-
spectively.
Then the pair(SYMPL(M,S,P),ω) is a symplectic vector space, where

SYMPL(M,S,P) :=C∞
c (M,S)/ker(G) and ω([φ ], [ψ ]) :=

∫

M
〈Gφ ,ψ〉dV.

Here the square brackets[·] denote residue classes moduloker(G).
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Proof: The bilinear form(φ ,ψ) 7→ ∫
M〈Gφ ,ψ〉dV on C∞

c (M,S) is skew-symmetric
as a consequence of Lemma 6.3.3 becauseP is formally self-adjoint. Its null-space
is exactly ker(G). Therefore the induced bilinear formω on the quotient space
SYMPL(M,S,P) is non-degenerate and hence a symplectic form. �

PutC∞
sc(M,S) := {φ ∈C∞(M,S) |supp(φ) is spacelike compact}. The next result will in

particular show that we can consider SYMPL(M,S,P) as the space of smooth solutions
of the equationPφ = 0 which have spacelike compact support.

Theorem 6.3.5Let M be a Lorentzian manifold, let S→ M be a vector bundle, and
let P be a Green-hyperbolic operator acting on sections of S.Let G± be advanced and
retarded Green’s operators for P, respectively. Put

G := G+−G− : C∞
c (M,S)→C∞

sc(M,S).

Then the following linear maps form a complex:

{0}→C∞
c (M,S)

P−→C∞
c (M,S)

G−→C∞
sc(M,S)

P−→C∞
sc(M,S). (6.5)

This complex is always exact at the first C∞
c (M,S). If M is globally hyperbolic, then the

complex is exact everywhere.

Proof: The proof follows the lines of [E4, Thm. 3.4.7] where the result was shown for
wave operators. First note that, by (G±

3 ) in the definition of Green’s operators, we have
thatG± : C∞

c (M,S) →C∞
sc(M,S). It is clear from (G1) and (G2) thatPG= GP= 0 on

C∞
c (M,S), hence (6.5) is a complex.

If φ ∈ C∞
c (M,S) satisfiesPφ = 0, then by (G2) we haveφ = G+Pφ = 0 which shows

thatP|C∞
c (M,S)

is injective. Thus the complex is exact at the firstC∞
c (M,S).

From now on letM be globally hyperbolic. Letφ ∈ C∞
c (M,S) with Gφ = 0, i.e.,

G+φ = G−φ . We put ψ := G+φ = G−φ ∈ C∞(M,S) and we see that supp(ψ) =
supp(G+φ)∩ supp(G−φ) ⊂ J+(supp(φ))∩ J−(supp(φ)). Since(M,g) is globally hy-
perbolicJ+(supp(φ))∩ J−(supp(φ)) is compact, henceψ ∈ C∞

c (M,S). From Pψ =
PG+φ = φ we see thatφ ∈P(C∞

c (M,S)). This shows exactness at the secondC∞
c (M,S).

It remains to show that anyφ ∈C∞
sc(M,S) with Pφ = 0 is of the formφ = Gψ with ψ ∈

C∞
c (M,S). Using a cut-off function decomposeφ asφ = φ+− φ− where supp(φ±) ⊂

J±(K) whereK is a suitable compact subset ofM. Thenψ := Pφ+ = Pφ− satisfies
supp(ψ) ⊂ J+(K)∩ J−(K). Thusψ ∈ C∞

c (M,S). We check thatG+ψ = φ+. Namely,
for all χ ∈C∞

c (M,S∗) we have by Lemma 6.3.3

∫

M
〈χ ,G+Pφ+〉dV =

∫

M
〈G∗

−χ ,Pφ+〉dV =

∫

M
〈P∗G∗

−χ ,φ+〉dV =

∫

M
〈χ ,φ+〉dV.

The integration by parts in the second equality is justified because
supp(φ+) ∩ supp(G∗

−χ) ⊂ J+(K) ∩ J−(supp(χ)) is compact. Similarly, one shows
G−ψ = φ−. Now Gψ = G+ψ −G−ψ = φ+−φ− = φ which concludes the proof.�

In particular, given an object(M,S,P) in GlobHypGreen, the mapG induces an iso-
morphism from

SYMPL(M,S,P) =C∞
c (M,S)/ker(G)

∼=−→ ker(P)∩C∞
sc(M,S).
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Note 6.3.6Exactness at the firstC∞
c (M,S) in sequence (6.5) says that there are no

non-trivial smooth solutions ofPφ = 0 with compact support. Indeed, ifM is globally
hyperbolic, more is true.
If φ ∈C∞(M,S) solves Pφ = 0 andsupp(φ) is future or past-compact, thenφ = 0.
Here a subsetA ⊂ M is called future-compact ifA∩ J+(x) is compact for anyx ∈ M.
Past-compactness is defined similarly.
Proof: Let φ ∈ C∞(M,S) solvePφ = 0 such that supp(φ) is future-compact. For any
χ ∈C∞

c (M,S∗) we have
∫

M
〈χ ,φ〉dV =

∫

M
〈P∗G∗

+χ ,φ〉dV =

∫

M
〈G∗

+χ ,Pφ〉dV = 0.

This showsφ = 0. The integration by parts is justified because supp(G∗
+χ)∩supp(φ)⊂

J+(supp(χ))∩supp(φ) is compact, see [E4, Lemma A.5.3]. �

Note 6.3.7Let M be a globally hyperbolic spacetime and(M,S,P) an object in
GlobHypGreen. Then the Green’s operators G+ and G− are unique.Namely, if G+

andG̃+ are advanced Green’s operators forP, then for anyφ ∈ C∞
c (M,S) the section

ψ := G+φ − G̃+φ has past-compact support and satisfiesPψ = 0. By the previous
remark, we haveψ = 0 which showsG+ = G̃+.

Now, let( f ,F) be a morphism between two objects(M1,S1,P1) and(M2,S2,P2) in the
categoryGlobHypGreen. Forφ ∈C∞

c (M1,S1) consider the extension by zero ext(φ) ∈
C∞

c (M2,S2) as in Lemma 6.3.2.

Lemma 6.3.8 Given a morphism( f ,F) between two objects(M1,S1,P1) and
(M2,S2,P2) in the categoryGlobHypGreen, extension by zero induces a symplectic lin-
ear mapSYMPL( f ,F) : SYMPL(M1,S1,P1)→ SYMPL(M2,S2,P2).
Moreover,

SYMPL(idM, idS) = idSYMPL(M,S,P) (6.6)

and for any further morphism( f ′,F ′) : (M2,S2,P2)→ (M3,S3,P3) one has

SYMPL(( f ′,F ′)◦ ( f ,F)) = SYMPL( f ′,F ′)◦SYMPL( f ,F). (6.7)

Proof: If φ = P1ψ ∈ ker(G1) = P1(C∞
c (M1,S1)), then ext(φ) = P2(ext(ψ)) ∈

P2(C∞
c (M2,S2)) = ker(G2). Hence ext induces a linear map

SYMPL( f ,F) : C∞
c (M1,S1)/ker(G1)→C∞

c (M2,S2)/ker(G2).

Furthermore, applying Lemma 6.3.2, we have, for anyφ ,ψ ∈C∞
c (M1,S1)

∫

M2

〈G2(ext(φ)),ext(ψ)〉dV =

∫

M1

〈res◦G2◦ext(φ),ψ〉dV =

∫

M1

〈G1φ ,ψ〉dV,

hence SYMPL( f ,F) is symplectic. Equation (6.6) is trivial and extending onceor
twice by 0 amounts to the same, so (6.7) holds as well. �

Note 6.3.9Under the isomorphism SYMPL(M,S,P)→ ker(P)∩C∞
sc(M,S) induced by

G, the extension by zero corresponds to an extension as a smooth solution ofPφ =
0 with spacelike compact support. This follows directly from Lemma 6.3.2. In other
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words, for any morphism( f ,F) from (M1,S1,P1) to (M2,S2,P2) in GlobHypGreen we
have the following commutative diagram:

SYMPL(M1,S1,P1)
SYMPL( f ,F)

//

∼=
��

SYMPL(M2,S2,P2)

∼=
��

ker(P1)∩C∞
sc(M1,S1)

extensionas

asolution
// ker(P2)∩C∞

sc(M2,S2).

Let Sympl denote the category of real symplectic vector spaces with symplectic linear
maps as morphisms. Lemma 6.3.8 says that we have constructeda covariant functor

SYMPL :GlobHypGreen−→ Sympl.

In order to obtain an algebra-valued functor, we compose SYMPL with the functor
CCR which associates to any symplectic vector space its Weylalgebra. Here “CCR”
stands for “canonical commutation relations”. This is a general algebraic construction
which is independent of the context of Green-hyperbolic operators and which is carried
out in Section 6.5.2. As a result, we obtain the functor

Abos := CCR◦SYMPL :GlobHypGreen−→ C∗Alg,

whereC∗Alg is the category whose objects are the unital C∗-algebras and whose mor-
phisms are the injective unit-preserving C∗-morphisms.
In the remainder of this section we show that the functor CCR◦SYMPL is a bosonic
locally covariant quantum field theory. We call two subregionsM1 andM2 of a space-
time M causally disjointif and only if JM(M1)∩M2 = /0. In other words, there are no
causal curves joiningM1 andM2.

Theorem 6.3.10The functorAbos : GlobHypGreen−→ C∗Alg is a bosonic locally co-
variant quantum field theory, i.e., the following axioms hold:

(i) (Quantum causality) Let(M j ,Sj ,Pj) be objects inGlobHypGreen, j = 1,2,3, and
( f j ,Fj) morphisms from(M j ,Sj ,Pj) to (M3,S3,P3), j = 1,2, such that f1(M1) and
f2(M2) are causally disjoint regions in M3.

Then the subalgebras Abos( f1,F1)(Abos(M1,S1,P1)) and
Abos( f2,F2)(Abos(M2,S2,P2)) of Abos(M3,S3,P3) commute.

(ii) (Time slice axiom) Let (M j ,Sj ,Pj) be objects inGlobHypGreen, j = 1,2, and
( f ,F) a morphism from(M1,S1,P1) to (M2,S2,P2) such that there is a Cauchy
hypersurfaceΣ ⊂ M1 for which f(Σ) is a Cauchy hypersurface of M2. Then

Abos( f ,F) : Abos(M1,S1,P1)→ Abos(M2,S2,P2)

is an isomorphism.

Proof: We first show (i). For notational simplicity we assume without loss of general-
ity that f j andFj are inclusions,j = 1,2. Let φ j ∈ C∞

c (M j ,Sj). SinceM1 andM2 are
causally disjoint, the sectionsGφ1 andφ2 have disjoint support, thus

ω([φ1], [φ2]) =

∫

M
〈Gφ1,φ2〉dV = 0.
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Now relation (iv) in Definition 6.5.11 tells us

w([φ1]) ·w([φ2]) = w([φ1]+ [φ2]) = w([φ2]) ·w([φ1]).

SinceAbos( f1,F1)(Abos(M1,S1,P1)) is generated by elements of the formw([φ1]) and
Abos( f2,F2)(Abos(M2,S2,P2)) by elements of the formw([φ2]), the assertion follows.
In order to prove (ii) we show that SYMPL( f ,F) is an isomorphism of symplectic vec-
tor spaces providedf maps a Cauchy hypersurface ofM1 onto a Cauchy hypersurface
of M2. Since symplectic linear maps are always injective, we onlyneed to show surjec-
tivity of SYMPL( f ,F). This is most easily seen by replacing SYMPL(M j ,Sj ,Pj) by
ker(Pj)∩C∞

sc(M j ,Sj) as in Remark 6.3.9. Again we assume without loss of generality
that f andF are inclusions.
Let ψ ∈C∞

sc(M2,S2) be a solution ofP2ψ = 0. Letφ be the restriction ofψ to M1. Then
φ solvesP1φ = 0 and has spacelike compact support inM1 by Lemma 6.3.11 below.
We will show that there is only one solution inM2 with spacelike compact support
extendingφ . It will then follow that ψ is the image ofφ under the extension map
corresponding to SYMPL( f ,F) and surjectivity will be shown.
To prove uniqueness of the extension, we may, by linearity, assume thatφ = 0. Then
ψ+ defined by

ψ+(x) :=

{
ψ(x), if x∈ JM2

+ (Σ),
0, otherwise,

is smooth sinceψ vanishes in an open neighborhood ofΣ. Now ψ+ solvesP2ψ+ = 0
and has past-compact support. By Remark 6.3.6,ψ+ ≡ 0, i.e.,ψ vanishes onJM2

+ (Σ).
One shows similarly thatψ vanishes onJM2

− (Σ), henceψ = 0. �

Lemma 6.3.11Let M be a globally hyperbolic spacetime and let M′ ⊂M be a causally
compatible open subset which contains a Cauchy hypersurface of M. Let A⊂ M be
spacelike compact in M.
Then A∩M′ is spacelike compact in M′.

Proof: Fix a common Cauchy hypersurfaceΣ of M′ andM. By assumption, there exists
a compact subsetK ⊂ M with A ⊂ JM(K). ThenK′ := JM(K)∩Σ is compact [E4,
Cor. A.5.4] and contained inM′.
MoreoverA ⊂ JM(K′): let p ∈ A and letγ be a causal curve (inM) from p to some
k ∈ K. Thenγ can be extended to an inextensible causal curve inM, which hence
meetsΣ at some pointq. Because ofq∈ Σ∩JM(k) ⊂ K′ one hasp∈ JM(K′).
ThereforeA∩M′ ⊂ JM(K′)∩M′ = JM′

(K′) because of the causal compatibility ofM′

in M. The lemma is proved. �

The quantization process described in this subsection applies in particular to formally
self-adjoint wave and Dirac-type operators.

6.3.2 Fermionic quantization

Next we construct a fermionic quantization. For this we needa functorial construction
of Hilbert spaces rather than symplectic vector spaces. As we shall see this seems to
be possible only under much more restrictive assumptions. The underlying Lorentzian
manifold M is assumed to be a globally hyperbolic spacetime as before. The vector
bundleS is assumed to be complex with Hermitian inner product〈· , ·〉 which may be
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indefinite. The formally self-adjoint Green-hyperbolic operatorP is assumed to be of
first order.

Definition 6.3.12 A formally self-adjoint Green-hyperbolic operator P of first order
acting on sections of a complex vector bundle S over a spacetime M is ofdefinite type
if and only if for any x∈ M and any future-directed timelike tangent vectorn ∈ TxM,
the bilinear map

Sx×Sx →C, (φ ,ψ) 7→ 〈iσP(n
♭) ·φ ,ψ〉,

yields a positive definite Hermitian scalar product on Sx.

Example 6.3.13The classical Dirac operatorP from Example 6.2.21 is, when defined
with the correct sign, of definite type, see e.g. [E5, Sec. 1.1.5] or [E3, Sec. 2].

Example 6.3.14If E→M is a semi-Riemannian or -Hermitian vector bundle endowed
with a metric connection over a spin spacetimeM, then the twisted Dirac operator from
Example 6.2.22 is of definite type if and only if the metric onE is positive definite. This
can be seen by evaluating the tensorized inner product on elements of the formσ ⊗ v,
wherev∈ Ex is null.

Example 6.3.15The operatorP= i(d−δ ) onS= ΛT∗M⊗C is of Dirac type but not
of definite type. This follows from Example 6.3.14 applied toExample 6.2.23, since the
natural inner product onΣM is not positive definite. An alternative elementary proof is
the following: for any timelike tangent vectorn on M and the corresponding covector
n♭, one has

〈iσP(n
♭)n♭,n♭〉=−〈n♭∧n♭−nyn♭,n♭〉= 〈n,n〉〈1,n♭〉= 0.

Example 6.3.16The Rarita-Schwinger operator defined in Section 6.2.6 is not of def-
inite type if the dimension of the manifolds ism≥ 3. This can be seen as follows. Fix
a pointx ∈ M and a pointwise orthonormal basis(ej)1≤ j≤m of TxM with e1 timelike.
The Lorentzian metric induces inner products onΣM and onΣ3/2M which we denote

by 〈· , ·〉. Chooseξ := e♭1 ∈ T∗
x M andψ ∈ Σ3/2

x M. SinceσQ(ξ ) is pointwise obtained

as the orthogonal projection ofσD (ξ ) ontoΣ3/2
x M, one has

〈−iσQ(ξ )ψ ,ψ〉 = 〈(id⊗ ξ ♯·)ψ ,ψ〉− 2
m

m

∑
β=1

〈e∗β ⊗eβ ·ψ1,ψ〉
︸ ︷︷ ︸

=0

=
m

∑
β=1

εβ 〈e1 ·ψβ ,ψβ 〉.

Choose, as in the proof of Lemma 6.2.26, aψ ∈ Σ3/2
x M with ψk = 0 for all 3≤ k≤ m.

For such aψ the conditionψ ∈ Σ3/2
x M becomese1 ·ψ1 = e2 ·ψ2. As in the proof of

Lemma 6.2.26 we obtain

〈−iσQ(ξ )ψ ,ψ〉=−〈e1 ·ψ2,ψ2〉+ 〈e1 ·ψ2,ψ2〉= 0,

which shows that the Rarita-Schwinger operator cannot be ofdefinite type.
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We define the categoryGlobHypDef, whose objects are the triples(M,S,P), where
M is a globally hyperbolic spacetime,S is a complex vector bundle equipped with a
complex inner product〈· , ·〉, andP is a formally self-adjoint Green-hyperbolic operator
of definite type acting on sections ofS. The morphisms are the same as in the category
GlobHypGreen.
We construct a covariant functor fromGlobHypDef to HILB, whereHILB denotes the
category whose objects are complex pre-Hilbert spaces and whose morphisms are iso-
metric linear embeddings. As in Section 6.3.1, the underlying vector space is the space
of classical solutions to the equationPφ = 0 with spacelike compact support. We put

SOL(M,S,P) := ker(P)∩C∞
sc(M,S).

Here “SOL” stands for classical solutions of the equationPφ = 0 with spacelike com-
pact support.

Lemma 6.3.17Let (M,S,P) be an object inGlobHypDef. Let Σ ⊂ M be a smooth
spacelike Cauchy hypersurface with its future-oriented unit normal vector fieldn and
its induced volume elementdA. Then

(φ ,ψ) :=
∫

Σ
〈iσP(n

♭) ·φ|Σ ,ψ|Σ〉dA, (6.8)

yields a positive definite Hermitian scalar product onSOL(M,S,P) which does not
depend on the choice ofΣ.

Proof: First note that supp(φ)∩Σ is compact since supp(φ) is spacelike compact, so
that the integral is well-defined. We have to show that it doesnot depend on the choice
of Cauchy hypersurface. LetΣ′ be any other smooth spacelike Cauchy hypersurface.
Assume first thatΣ andΣ′ are disjoint and letΩ be the domain enclosed byΣ andΣ′

in M. Its boundary is∂Ω = Σ∪Σ′. Without loss of generality, one may assume that
Σ′ ⊂ JM

+ (Σ). By the Green’s formula [E40, p. 160, Prop. 9.1] we have for all φ ,ψ ∈
C∞

sc(M,S),
∫

Ω
(〈Pφ ,ψ〉− 〈φ ,Pψ〉) dV =

∫

Σ′
〈σP(n

♭)φ ,ψ〉dA−
∫

Σ
〈σP(n

♭)φ ,ψ〉dA. (6.9)

For φ ,ψ ∈ SOL(M,S,P) we havePφ = Pψ = 0 and thus

0=

∫

Σ
〈σP(n

♭)φ ,ψ〉dA−
∫

Σ′
〈σP(n

♭)φ ,ψ〉dA.

This shows the result in the caseΣ∩Σ′ = /0.
If Σ ∩ Σ′ 6= /0 consider the subsetIM

− (Σ) ∩ IM
− (Σ′) of M where, as usual,IM

+ (Σ) and
IM
− (Σ) denote the chronological future and past of the subsetΣ in M, respectively.

This subset is nonempty, open, and globally hyperbolic. This follows e.g. from
[E4, Lemma A.5.8]. Hence it admits a smooth spacelike CauchyhypersurfaceΣ′′

by Theorem 6.2.3. By construction,Σ′′ meets neitherΣ nor Σ′ and it can be eas-
ily checked thatΣ′′ is also a Cauchy hypersurface ofM. The result follows from
the argument above being applied first to the pair(Σ,Σ′′) and then to the pair(Σ′′,Σ′).�

Note 6.3.18If one drops the assumption thatP be of definite type, then the above
sesquilinear form(· , ·) on ker(P)∩C∞

sc(M,S) still does not depend on the choice of
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Σ, however it need no longer be positive definite and can even bedegenerate. Pick
for instance the spin Dirac operatorDg associated to the underlying Lorentzian metric
g on a spin spacetimeM (see Example 6.2.21) and, keeping the spinor bundleΣgM
associated tog, change the metric onM so that the new metricg′ has larger future and
past cones at each point. Note that this implies that any globally hyperbolic subregion
of (M,g′) is also globally hyperbolic in(M,g). Then, denoting byD∗

g the formal adjoint

of Dg with respect to the metricg′, the operator

(
0 Dg

D∗
g 0

)
onΣgM⊕ΣgM remains

Green-hyperbolic but it fails to be of definite type, since there exist timelike vectors
for g′ which are lightlike forg. Hence the principal symbol of the operator becomes
non-invertible and the bilinear form in (6.8) becomes degenerate for theseg′-timelike
covectors.

For any object(M,S,P) in GlobHypDef we will from now on equip SOL(M,S,P) with
the Hermitian scalar product in (6.8) and thus turn SOL(M,S,P) into a pre-Hilbert
space.
Given a morphism( f ,F) from (M1,S1,P1) to (M2,S2,P2) in GlobHypDef, then
this is also a morphism inGlobHypGreen and hence induces a homomor-
phism SYMPL( f ,F) : SYMPL(M1,S1,P1) → SYMPL(M2,S2,P2). As explained in
Remark 6.3.9, there is a corresponding extension homomorphism SOL( f ,F) :
SOL(M1,S1,P1) → SOL(M2,S2,P2). In other words, SOL( f ,F) is defined such that
the diagram

SYMPL(M1,S1,P1)
SYMPL( f ,F)

//

∼=
��

SYMPL(M2,S2,P2)

∼=
��

SOL(M1,S1,P1)
SOL( f ,F)

// SOL(M2,S2,P2)

(6.10)

commutes. The vertical arrows are the vector space isomorphisms induced be the
Green’s propagatorsG1 andG2, respectively.

Lemma 6.3.19The vector space homomorphismSOL( f ,F) : SOL(M1,S1,P1) →
SOL(M2,S2,P2) preserves the scalar products, i.e., it is an isometric linear embedding
of pre-Hilbert spaces.

Proof: Without loss of generality we assume thatf andF are inclusions. LetΣ1 be a
spacelike Cauchy hypersurface ofM1. Let φ1,ψ1 ∈C∞

sc(M1,S1). Denote the extension
of φ1 by φ2 := SOL( f ,F)(φ1) and similarly forψ1.
Let K1 ⊂ M1 be a compact subset such that supp(φ2) ⊂ JM2(K1) and supp(ψ2) ⊂
JM2(K1). We choose a compact submanifoldK ⊂Σ1 with boundary such thatJM1(K1)∩
Σ1 ⊂ K. SinceΣ1 is a Cauchy hypersurface inM1, JM1(K1) ⊂ JM1(JM1(K1)∩Σ1) ⊂
JM1(K).
By Theorem 6.2.5 there is a spacelike Cauchy hypersurfaceΣ2 ⊂ M2 containingK.
SinceΣi is a Cauchy hypersurface ofMi (wherei = 1,2), it is met by every inextensible
causal curve [E30, Lemma 14.29]. Moreover, by definition of aCauchy hypersurface,
Σi is achronal inMi . Since it is also spacelike,Σi is even acausal [E30, Lemma 14.42].
In particular, it is metexactly onceby every inextensible causal curve inMi .
This impliesJM2(K1) ⊂ JM2(K) (see Figure below): namely, pickp ∈ JM2(K1) and a
causal curveγ in M2 from p to somek1 ∈ K1. Extendγ to an inextensible causal curve
γ in M2. Thenγ meetsΣ2 at some pointq2, becauseΣ2 is a Cauchy hypersurface inM2.
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But γ ∩M1 is also an inextensible causal curve inM1, hence it intersectsΣ1 at a point
q1, which must lie inK by definition ofK. Because ofK ⊂ Σ2 and the uniqueness of
the intersection point, one hasq1 = q2. In particular,p∈ JM2(K).

M2

K1
M1

JM2(K1)

Σ2

Σ1
K

,
JM2(K1)⊂ JM2(K)

We conclude supp(φ2)⊂ JM2(K). SinceK ⊂ Σ2, we have supp(φ2)∩Σ2 ⊂ JM2(K)∩Σ2

andJM2(K)∩Σ2 =K using the acausality ofΣ2. This shows supp(φ2)∩Σ2 = supp(φ1)∩
Σ1 and similarly forψ2. Now we get

(φ2,ψ2) =

∫

Σ2

〈iσP2(n
♭) ·φ2,ψ2〉dA =

∫

Σ1

〈iσP1(n
♭) ·φ1,ψ1〉dA = (φ1,ψ1)

and the lemma is proved. �

The functoriality of SYMPL and diagram (6.10) show that SOL is a functor from
GlobHypDef to HILB, the category of complex pre-Hilbert spaces with isometriclin-
ear embeddings. Composing with the functor CAR (see Section6.5.1), we obtain the
covariant functor

Aferm := CAR◦SOL :GlobHypDef −→ C∗Alg.

The fermionic algebrasAferm(M,S,P) are actuallyZ2-graded algebras, see Proposi-
tion 6.5.5 (iii).

Theorem 6.3.20The functorAferm : GlobHypDef −→ C∗Alg is a fermionic locally
covariant quantum field theory, i.e., the following axioms hold:

(i) (Quantum causality) Let (M j ,Sj ,Pj) be objects inGlobHypDef, j = 1,2,3, and
( f j ,Fj) morphisms from(M j ,Sj ,Pj) to (M3,S3,P3), j = 1,2, such that f1(M1)
and f2(M2) are causally disjoint regions in M3.
Then the subalgebras Aferm( f1,F1)(Aferm(M1,S1,P1)) and
Aferm( f2,F2)(Aferm(M2,S2,P2)) ofAferm(M3,S3,P3) super-commute1.

1This means that the odd parts of the algebras anti-commute while the even parts commute with every-
thing.
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(ii) (Time slice axiom) Let(M j ,Sj ,Pj) be objects inGlobHypDef, j = 1,2, and( f ,F)
a morphism from(M1,S1,P1) to (M2,S2,P2) such that there is a Cauchy hyper-
surfaceΣ ⊂ M1 for which f(Σ) is a Cauchy hypersurface of M2. Then

Aferm( f ,F) : Aferm(M1,S1,P1)→ Aferm(M2,S2,P2)

is an isomorphism.

Proof: To show (i), we assume without loss of generality thatf j andFj are inclusions.
Let φ1 ∈ SOL(M1,S1,P1) andψ1 ∈ SOL(M2,S2,P2). Denote the extensions toM3 by
φ2 := SOL( f1,F1)(φ1) andψ2 := SOL( f2,F2)(ψ1). Choose a compact submanifoldK1

(with boundary) in a spacelike Cauchy hypersurfaceΣ1 of M1 such that supp(φ1)∩Σ1 ⊂
K1 and similarlyK2 for ψ1. SinceM1 andM2 are causally disjoint,K1∪K2 is acausal.
Hence, by Theorem 6.2.5, there exists a Cauchy hypersurfaceΣ3 of M3 containingK1

andK2. As in the proof of Lemma 6.3.19 one sees that supp(φ2)∩Σ3 = supp(φ1)∩Σ1

and similarly forψ2. Thus, when restricted toΣ3, φ2 andψ2 have disjoint support.
Hence(φ2,ψ2) = 0. This shows that the subspaces SOL( f1,F1)(SOL(M1,S1,P1)) and
SOL( f2,F2)(SOL(M2,S2,P2)) of SOL(M3,S3,P3) are perpendicular. Definition 6.5.1
shows that the corresponding CAR-algebras must super-commute.
To see (ii) we recall that( f ,F) is also a morphism inGlobHypGreen and that we know
from Theorem 6.3.10 that SYMPL( f ,F) is an isomorphism. From diagram (6.10)
we see that SOL( f ,F) is an isomorphism. HenceAferm( f ,F) is also an isomorphism.�

Note 6.3.21Since causally disjoint regions should lead to commuting observables also
in the fermionic case, one usually considers only the even part Aeven

ferm(M,S,P) (or a
subalgebra thereof) as the observable algebra while the full algebraAferm(M,S,P) is
called thefield algebra.

There is a slightly different description of the functorAferm. Let HILBR denote the
category whose objects are the real pre-Hilbert spaces and whose morphisms are the
isometric linear embeddings. We have the functor REAL :HILB→HILBR which asso-
ciates to each complex pre-Hilbert space(V,(· , ·)) its underlying real pre-Hilbert space
(V,Re(· , ·)). By Remark 6.5.10,

Aferm = CARsd◦REAL◦SOL.

Since the self-dual CAR-algebra of a real pre-Hilbert spaceis the Clifford algebra of
its complexification and since for any complex pre-Hilbert spaceV we have

REAL(V)⊗RC=V ⊕V∗,

Aferm(M,S,P) is also the Clifford algebra of SOL(M,S,P) ⊕ SOL(M,S,P)∗ =
SOL(M,S⊕S∗,P⊕P∗). This is the way this functor is often described in the physics
literature, see e.g. [E39, p. 115f].
Self-dual CAR-representations are more natural for real fields. LetM be globally hy-
perbolic and letS→ M be areal vector bundle equipped with a real inner product
〈· , ·〉. A formally skew-adjoint2 differential operatorP acting on sections ofS is called
of definite typeif and only if for anyx ∈ M and any future-directed timelike tangent
vectorn ∈ TxM, the bilinear map

Sx×Sx → R, (φ ,ψ) 7→ 〈σP(n
♭) ·φ ,ψ〉,

2instead of self-adjoint!
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yields a positive definite Euclidean scalar product onSx. An example is given by the
real Dirac operator

D :=
m

∑
j=1

ε jej ·∇ej

acting on sections of the real spinor bundleΣRM.
Given a smooth spacelike Cauchy hypersurfaceΣ ⊂ M with future-directed timelike
unit normal fieldn, we define a scalar product on SOL(M,S,P) = ker(P)∩C∞

sc(M,S,P)
by

(φ ,ψ) :=
∫

Σ
〈σP(n

♭) ·φ|Σ ,ψ|Σ〉dA.

With essentially the same proofs as before, one sees that this scalar product
does not depend on the choice of Cauchy hypersurfaceΣ and that a morphism
( f ,F) : (M1,S1,P1) → (M2,S2,P2) gives rise to an extension operator SOL( f ,F) :
SOL(M1,S1,P1) → SOL(M2,S2,P2) preserving the scalar product. We have con-
structed a functor

SOL :GlobHypSkewDef −→ HILBR

whereGlobHypSkewDef denotes the category whose objects are triples(M,S,P) with
M globally hyperbolic,S→ M a real vector bundle with real inner product andP a
formally skew-adjoint, Green-hyperbolic differential operator of definite type acting
on sections ofS. The morphisms are the same as before.
Now the functor

Asd
ferm := CARsd◦SOL :GlobHypSkewDef −→ C∗Alg

is a locally covariant quantum field theory in the sense that Theorem 6.3.20 holds with
Aferm replaced byAsd

ferm.

6.4 States and quantum fields

In order to produce numbers out of our quantum field theory that can be compared to
experiments, we need states, in addition to observables. Webriefly recall the relation
between states and representations via the GNS-construction. Then we show how the
choice of a state gives rise to quantum fields andn-point functions.

6.4.1 States and representations

Recall that astateon a unital C∗-algebraA is a linear functionalτ : A→ C such that

(i) τ is positive, i.e.,τ(a∗a)≥ 0 for all a∈ A;

(ii) τ is normed, i.e.,τ(1) = 1.

One checks that for any state the sesquilinear formA×A → C, (a,b) 7→ τ(b∗a), is a
positive semi-definite Hermitian product and|τ(a)| ≤ ‖a‖ for all a∈ A. In particular,
τ is continuous.
Any state induces a representation ofA. Namely, the sesquilinear formτ(b∗a) induces
a scalar productso·· on A/{a ∈ A | τ(a∗a) = 0}. The Hilbert space completion of
A/{a∈ A | τ(a∗a) = 0} is denoted byHτ . The action ofA on Hτ is induced by the
multiplication inA,

πτ(a)[b]τ := [ab]τ ,
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where[a]τ denotes the residue class ofa ∈ A in A/{a ∈ A | τ(a∗a) = 0}. This rep-
resentation is known as theGNS-representationinduced byτ. The residue class
Ωτ := [1]τ ∈ Hτ is called thevacuum vector. By construction, it is a cyclic vector,
i.e., the orbitπτ(A) ·Ωτ = A/{a∈ A | τ(a∗a) = 0} is dense inHτ .
The GNS-representation together with the vacuum vector allows to reconstruct the state
since

τ(a) = τ(1∗a1) = soπτ(a)Ωτ Ωτ . (6.11)

If we look at the vector statẽτ : L (Hτ ) → C, τ̃(ã) = soãΩτ Ωτ , on the C∗-algebra
L (Hτ ) of bounded linear operators onHτ , then (6.11) says that the diagram

A
πτ //

τ
��>

>>
>>

>>
>

L (Hτ )

τ̃
{{xx

xx
xx

xx
x

C

commutes. One checks that‖πτ‖ ≤ 1, see [E2, p. 20]. In particular,πτ : A→ L (Hτ )
is continuous.
See e.g. [E2, Sec. 1.4] or [E9, Sec. 2.3] for details on statesand representations of
C∗-algebras.

6.4.2 Bosonic quantum field

Now let (M,S,P) be an object inGlobHypGreen andτ a state on the corresponding
bosonic algebraAbos(M,S,P). Intuitively, the quantum field should be an operator-
valued distributionΦ onM such that

eiΦ( f ) = w([ f ])

for all test sections f ∈ C∞
c (M,S). Here [ f ] denotes the residue class in

SYMPL(M,S,P) = C∞
c (M,S)/kerG and w : SYMPL(M,S,P) → Abos(M,S,P) is as

in Definition 6.5.11. This suggests the definition

Φ( f ) :=−i
d
dt

∣∣∣∣
t=0

w(t[ f ]).

The problem is thatw is highly discontinuous so that this derivative does not make
sense. This is where states and representations come into the play. We call a state
τ on Abos(M,S,P) regular if for each f ∈ C∞

c (M,S) and eachh ∈ Hτ the map
t 7→ πτ(w(t[ f ]))h is continuous. Thent 7→ πτ(w(t[ f ])) is a strongly continuous one-
parameter unitary group for anyf ∈C∞

c (M,S) because

πτ(w((t + s)[ f ])) = πτ(e
iω(t[ f ],s[ f ])/2w(t[ f ])w(s[ f ])) = πτ(w(t[ f ]))πτ (w(s[ f ])).

Here we used Definition 6.5.11 (iv) and the fact thatω is skew-symmetric so that
ω(t[ f ],s[ f ]) = 0. By Stone’s theorem [E34, Thm. VIII.8] this one-parametergroup
has a unique infinitesimal generator, i.e., a self-adjoint,generally unbounded operator
Φτ ( f ) onHτ such that

eitΦτ ( f ) = πτ(w(t[ f ])).

For all h in the domain ofΦτ( f ) we have

Φτ( f )h=−i
d
dt

∣∣∣∣
t=0

πτ(w(t[ f ]))h.
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We call the operator-valued mapf 7→ Φτ ( f ) thequantum fieldcorresponding toτ.

Definition 6.4.1 A regular stateτ onAbos(M,S,P) is calledstrongly regularif

(i) there is a dense subspaceDτ ⊂ Hτ contained in the domain ofΦτ( f ) for any
f ∈C∞

c (M,S);

(ii) Φτ( f )(Dτ )⊂ Dτ for any f ∈C∞
c (M,S);

(iii) the map C∞
c (M,S)→ Hτ , f 7→ Φτ( f )h, is continuous for every fixed h∈ Dτ .

For a strongly regular stateτ we have for allf ,g∈C∞
c (M,S), α,β ∈R andh∈ Dτ :

Φτ(α f +βg)h=−i
d
dt

∣∣∣∣
t=0

πτ(w(t[α f +βg]))h

=−i
d
dt

∣∣∣∣
t=0

{
eiαβ t2ω([ f ],[g])/2πτ(w(αt[ f ]))πτ (w(β t[g]))h

}

=−i
d
dt

∣∣∣∣
t=0

πτ(w(αt[ f ]))h− i
d
dt

∣∣∣∣
t=0

πτ(w(β t[g]))h

= αΦτ( f )h+β Φτ(g)h.

HenceΦτ( f ) depends linearly onf . The quantum fieldΦτ is therefore a distribution
onM with values in self-adjoint operators onHτ .
Then-point functionsare defined by

τn( f1, . . . , fn) := soΦτ ( f1) · · ·Φτ ( fn)Ωτ Ωτ

= τ̃ (Φτ ( f1) · · ·Φτ( fn))

= τ̃

((
−i

d
dt1

∣∣∣∣
t1=0

πτ(w(t1[ f1]))

)
· · ·
(
−i

d
dtn

∣∣∣∣
tn=0

πτ(w(tn[ fn]))

))

= (−i)n ∂ n

∂ t1 · · ·∂ tn

∣∣∣∣
t1=···=tn=0

τ̃ (πτ(w(t1[ f1])) · · ·πτ(w(tn[ fn])))

= (−i)n ∂ n

∂ t1 · · ·∂ tn

∣∣∣∣
t1=···=tn=0

τ̃ (πτ(w(t1[ f1]) · · ·w(tn[ fn])))

= (−i)n ∂ n

∂ t1 · · ·∂ tn

∣∣∣∣
t1=···=tn=0

τ (w(t1[ f1]) · · ·w(tn[ fn])) .

For a strongly regular stateτ the n-point functions are continuous separately in each
factor. By the Schwartz kernel theorem [E23, Thm. 5.2.1] then-point functionτn ex-
tends uniquely to a distribution onM × ·· ·×M (n times) in the following sense: Let
S∗ ⊠ · · ·⊠S∗ be the bundle overM × ·· · ×M whose fiber over(x1, . . . ,xn) is given
by S∗x1

⊗ ·· · ⊗S∗xn
. Then there is a unique distribution onM × ·· · ×M in the bundle

S∗⊠ · · ·⊠S∗, again denotedτn, such that for allf j ∈C∞
c (M,S),

τn( f1, . . . , fn) = τn( f1⊗·· ·⊗ fn)

where( f1⊗·· ·⊗ fn)(x1, . . . ,xn) := f1(x1)⊗·· ·⊗ fn(xn).

Theorem 6.4.2Let (M,S,P) be an object inGlobHypGreen andτ a strongly regular
state on the corresponding bosonic algebraAbos(M,S,P). Then
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(i) PΦτ = 0 and Pτn( f1, . . . , f j−1, ·, f j+1, . . . , fn) = 0 hold in the distributional sense
where fk ∈C∞

c (M,S), k 6= j, are fixed;

(ii) the quantum field satisfies the canonical commutation relations, i.e.,

[Φτ ( f ),Φτ (g)]h= i
∫

M
〈G f,g〉dV ·h

for all f ,g∈C∞
c (M,S) and h∈ Dτ ;

(iii) the n-point functions satisfy the canonical commutation relations, i.e.,

τn+2( f1, . . . , f j−1, f j , f j+1, . . . , fn+2)

− τn+2( f1, . . . , f j−1, f j+1, f j , f j+2, . . . , fn+2)

= i
∫

M
〈G f j , f j+1〉dV · τn( f1, . . . , f j−1, f j+2, . . . , fn+2)

for all f1, . . . , fn+2 ∈C∞
c (M,S).

Proof: SinceP is formally self-adjoint andGP f = 0 for any f ∈C∞
c (M,S), we have for

anyh∈ Dτ :

(PΦτ)( f )h= Φτ(P f)h=−i
d
dt

∣∣∣∣
t=0

πτ(w(t [P f ]︸︷︷︸
=0

))h=−i
d
dt

∣∣∣∣
t=0

h= 0.

This showsPΦτ = 0. The result for then-point functions follows and (i) is proved.
To show (ii) we observe that by Definition 6.5.11 (iv) we have on the one hand

w([ f +g]) = eiω([ f ],[g])/2w([ f ])w([g])

and on the other hand

w([ f +g]) = eiω([g],[ f ])/2w([g])w([ f ]),

hence
w([ f ])w([g]) = e−iω([ f ],[g])w([g])w([ f ]).

Thus

Φτ( f )Φτ (g)h=− ∂ 2

∂ t∂s

∣∣∣∣
t=s=0

πτ(w(t[ f ])w(s[g]))h

=− ∂ 2

∂ t∂s

∣∣∣∣
t=s=0

πτ(e
−iω(t[ f ],s[g])w(s[g])w(t[ f ]))h

=− ∂ 2

∂ t∂s

∣∣∣∣
t=s=0

{
e−iω(t[ f ],s[g]) ·πτ(w(s[g])w(t[ f ]))h

}

= iω([ f ], [g])h+Φτ(g)Φτ ( f )h

= i
∫

M
〈G f,g〉dV ·h+Φτ(g)Φτ( f )h.

This shows (ii). Assertion (iii) follows from (ii). �
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Note 6.4.3As a consequence of the canonical commutation relations we get

[Φτ( f ),Φτ (g)] = 0

if the supports off andg are causally disjoint, i.e., if there is no causal curve from
supp( f ) to supp(g). The reason is that in this case the supports ofG f andg are disjoint.
A similar remark holds for then-point functions.

Note 6.4.4 In the physics literature one also finds the statementΦ( f ) = Φ( f )∗. This
simply expresses the fact that we are dealing with a theory over the reals. We have
encoded this by considering real vector bundlesS, see Definition 6.3.1, and the fact
thatΦτ ( f ) is always self-adjoint.

6.4.3 Fermionic quantum fields

Let (M,S,P) be an object inGlobHypDef and letτ be a state on the fermionic algebra
Aferm(M,S,P). For f ∈C∞

c (M,S) we put

Φτ( f ) := −πτ(a(G f)∗),

Φ+
τ ( f ) := πτ(a(G f)),

wherea is as in Definition 6.5.1 (compare [E18, Sec. III.B, p. 141]).Sinceπτ , a, andG
are sequentially continuous (forG see [E4, Prop. 3.4.8]), so areΦτ andΦ+

τ . In contrast
to the bosonic case, no regularity assumption onτ is needed. HenceΦτ andΦ+

τ are
distributions onM with values in the space of bounded operators onHτ . Note thatΦτ
is linear whileΦ+

τ is anti-linear.

Theorem 6.4.5Let (M,S,P) be an object inGlobHypDef andτ a state on the corre-
sponding fermionic algebraAferm(M,S,P). Then

(i) PΦτ = PΦ+
τ = 0 holds in the distributional sense;

(ii) the quantum fields satisfy the canonical anti-commutation relations, i.e.,

{Φτ( f ),Φτ (g)} = {Φ+
τ ( f ),Φ+

τ (g)}= 0,

{Φτ( f ),Φ+
τ (g)} = i

(∫

M
〈G f,g〉dV

)
· idHτ

for all f ,g∈C∞
c (M,S).

Proof: SinceGP= 0 onC∞
c (M,S), we havePΦτ ( f ) = Φτ(P f) = −πτ(a(GP f)∗) = 0

and similarly forΦ+
τ . This proves assertion (i).

Using Definition 6.5.1 (ii) we compute

{Φτ( f ),Φτ (g)}= {πτ(a(G f)∗),πτ(a(Gg)∗)}
= πτ({a(G f)∗,a(Gg)∗})
= πτ({a(Gg),a(G f)}∗)
= 0.

Similarly one sees{Φ+
τ ( f ),Φ+

τ (g)}= 0. Definition 6.5.1 (iii) also yields

{Φτ( f ),Φ+
τ (g)}=−πτ({a(G f)∗,a(Gg)}) =−(G f,Gg) · idHτ .
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To prove assertion (ii) we have to verify

(G f,Gg) =−i
∫

M
〈G f,g〉dV (6.12)

Let Σ ⊂ M be a smooth spacelike Cauchy hypersurface. Since supp(G+g) is past-
compact, we can find a Cauchy hypersurfaceΣ′ ⊂ M in the past ofΣ which does not
intersect supp(G+g) ⊂ JM

+ (supp(g)). Denote the region betweenΣ andΣ′ by Ω′. The
Green’s formula (6.9) yields

(G f,G+g) =
∫

Σ
〈iσP(n

♭) ·G f,G+g〉dA

=

∫

Σ′
〈iσP(n

♭) ·G f,G+g〉dA+ i
∫

Ω′
(〈PG f,G+g〉− 〈G f,PG+g〉)dV

=−i
∫

Ω′
〈G f,g〉dV

becausePG+g = g andPG f = 0. SinceΣ′ can be chosen arbitrarily to the past, this
shows

(G f,G+g) =−i
∫

J−(Σ)
〈G f,g〉dV. (6.13)

A similar computation yields

(G f,G−g) = i
∫

J+(Σ)
〈G f,g〉dV. (6.14)

Subtracting (6.14) from (6.13) yields (6.12) and concludesthe proof of assertion (ii).�

Note 6.4.6 Similarly to the bosonic case, we find

{Φτ( f ),Φ+
τ (g)}= 0

if the supports off andg are causally disjoint.

Note 6.4.7 Using the anti-commutation relations in Theorem 6.4.5 (ii), the computa-
tion of n-point functions can be reduced to those of the form

τn,n′( f1, . . . , fn,g1, . . . ,gn′) = 〈Ωτ ,Φτ ( f1) · · ·Φτ ( fn)Φ+
τ (g1) · · ·Φ+

τ (gn′)Ωτ〉τ .

As in the bosonic case, then-point functions satisfy the field equation in the distribu-
tional sense in each argument and extend to distributions onM×·· ·×M.

If one uses the self-dual fermionic algebraAsd
ferm(M,S,P) instead ofAferm(M,S,P),

then one gets the quantum field

Ψτ( f ) := πτ(b(G f))

whereb is as in Definition 6.5.6. Then the analogue to Theorem 6.4.5 is

Theorem 6.4.8Let (M,S,P) be an object inGlobHypSkewDef and τ a state on the
corresponding self-dual fermionic algebraAsd

ferm(M,S,P). Then

(i) PΨτ = 0 holds in the distributional sense;
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(ii) the quantum field takes values in self-adjoint operators,Ψτ( f ) = Ψτ( f )∗ for all
f ∈C∞

c (M,S);

(iii) the quantum fields satisfy the canonical anti-commutation relations, i.e.,

{Ψτ( f ),Ψτ (g)}=
∫

M
〈G f,g〉dV · idHτ

for all f ,g∈C∞
c (M,S).

Note 6.4.9 It is interesting to compare the concept of locally covariant quantum field
theories as proposed in [E11] to the axiomatic approach to quantum field theory
on Minkowski space based on the Gårding-Wightman axioms asexposed in [E35,
Sec. IX.8]. Property 1 (relativistic invariance of states)and Property 6 (Poincaré in-
variance of the field) in [E35] are replaced by functoriality(covariance). Property 4
(invariant domain for fields) and Property 5 (regularity of the field) have been encoded
in strong regularity of the state used to define the quantum field in the bosonic case
and are automatic in the fermionic case. Property 7 (local commutativity or micro-
scopic causality) is contained in Theorems 6.4.2 and 6.4.5.Property 3 (existence and
uniqueness of the vacuum) has no analogue and is replaced by the choiceof a state.
Property 8 (cyclicity of the vacuum) is then automatic by thegeneral properties of the
GNS-construction.
There remains one axiom, Property 2 (spectral condition), which we have not discussed
at all. It gets replaced by the Hadamard condition on the state chosen. It was observed
by Radzikowski [E32] that earlier formulations of this condition are equivalent to a
condition on the wave front set of the 2-point function. Muchwork has been put into
constructing and investigating Hadamard states for various examples of fields, see e.g.
[E15, E16, E19, E25, E36, E37, E38, E42] and the references therein.

6.5 Algebras of canonical (anti-) commutation relations

We collect the necessary algebraic facts about CAR and CCR-algebras.

6.5.1 CAR algebras

The symbol “CAR” stands for “canonical anti-commutation relations”. These algebras
are related to pre-Hilbert spaces. We always assume the Hermitian inner product(· , ·)
to be linear in the first argument and anti-linear in the second.

Definition 6.5.1 A CAR-representationof a complex pre-Hilbert space(V,(· , ·)) is
a pair (a,A), where A is a unital C∗-algebra anda : V → A is an anti-linear map
satisfying:

(i) A =C∗(a(V)),

(ii) {a(v1),a(v2)}= 0 and

(iii) {a(v1)
∗,a(v2)} = (v1,v2) ·1,

for all v1,v2 ∈V.
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We want to discuss CAR-representations in terms of C∗-Clifford algebras, whose def-
inition we recall. Given a complex pre-Hilbert vector space(V,(· , ·)), we denote by
VC := V ⊗RC the complexification ofV considered as a real vector space and byqC
the complex-bilinear extension ofRe(· , ·) to VC. Let Clalg(VC,qC) be the algebraic
Clifford algebra of(VC,qC). It is an associative complex algebra with unit and contains
VC as a vector subspace. Its multiplication is called Cliffordmultiplication and denoted
by “ · ”. It satisfies the Clifford relations

v ·w+w ·v=−2qC(v,w)1 (6.15)

for all v,w ∈ VC. Define the∗-operator on Clalg(VC,qC) to be the unique anti-
multiplicative and anti-linear extension of the anti-linear mapVC → VC, v1 + iv2 7→
−(v1+ iv2) =−(v1− iv2) for all v1,v2 ∈V. In other words,

∗( ∑
i1<...<ik

αi1,...,ikzi1 · . . . ·zik) = (−1)k ∑
i1<...<ik

αi1,...,ik ·zik · . . . ·zi1

for all k∈N andzi1, . . . ,zik ∈VC. Let ‖ · ‖∞ be defined by

‖a‖∞ := sup
π∈Rep(V)

(‖π(a)‖)

for everya∈ Clalg(VC,qC), where Rep(V) denotes the set of all (isomorphism classes
of) ∗-homomorphisms from Clalg(VC,qC) to C∗-algebras. Then‖ · ‖∞ can be shown to
be a well-defined C∗-norm on Clalg(VC,qC), see e.g. [E31, Sec. 1.2].

Definition 6.5.2 The C∗-Clifford algebra of a pre-Hilbert space(V,(· , ·)) is the C∗-
completion ofClalg(VC,qC) with respect to the C∗-norm‖ · ‖∞ and the star operator
defined above.

Theorem 6.5.3For every complex pre-Hilbert space(V,(· , ·)), the C∗-Clifford algebra
Cl(VC,qC) provides aCAR-representation of(V,(· , ·)) via a(v) = 1

2(v+ iJv), where J
is the complex structure of V .
Moreover,CAR-representations have the following universal property: Let Â be any
unital C∗-algebra and̂a : V → Â be any anti-linear map satisfying Axioms(ii) and(iii)
of Definition 6.5.1. Then there exists a unique C∗-morphismα̃ : Cl(VC,qC)→ Â such
that

V
â //

a
��

Â

Cl(VC,qC)

α̃

;;

commutes. Furthermore,̃α is injective.

Proof: Define p∓ : V → Cl(VC,qC) by p−(v) := 1
2(v+ iJv) and p+(v) := 1

2(v− iJv).
Since p−(Jv) = −ip−(v), the mapa = p− is anti-linear. Because ofa(v)− a(v)∗ =
p−(v)+ p+(v) = v, the C∗-subalgebra of Cl(VC,qC) generated by the image ofa con-
tainsV. Hencea(V) generates Cl(VC,qC) as a C∗-algebra. Axiom (i) in Definition 6.5.1
is proved.
Let v1,v2 ∈V, then

{a(v1),a(v2)} = p−(v1) · p−(v2)+ p−(v2) · p−(v1)

= −2qC(p−(v1), p−(v2)) ·1
= 0,
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which is Axiom (ii) in Definition 6.5.1. Furthermore,

{a(v1)
∗,a(v2)} = −p+(v1) · p−(v2)− p−(v2) · p+(v1)

= 2qC(p+(v1), p−(v2)) ·1
= Re(v1,v2) ·1+ iRe(v1,Jv2) ·1
= (v1,v2) ·1,

which shows Axiom (iii) in Definition 6.5.1. Therefore(a,Cl(VC,qC)) is a CAR-
representation of(V,(· , ·)).
The second part of the theorem follows from Cl(VC,qC) being simple, i.e., from
the non-existence of non-trivial closed two-sided∗-invariant ideals, see [E31,
Thm. 1.2.2]. Letâ : V → Â be any other anti-linear map satisfying (ii) and (iii) in
Definition 6.5.1. Sincea and â are injective (which is clear by Axiom (iii)) one
may setα(a(v)) := â(v) for all v ∈ V. Axioms (ii) and (iii) allow us to extendα
to a C∗-morphismα̃ : C∗(a(V)) = Cl(VC,qC) → Â. The injectivity of â implies the
non-triviality of α̃ which, together with the simplicity of Cl(VC,qC), provides the
injectivity of α̃. Therefore we found an injective C∗-morphismα̃ : Cl(VC,qC) → Â
with α̃ ◦a= â. It is unique since it is determined bya andâ on a subset of generators.
This concludes the proof of Theorem 6.5.3. �

For an alternative description of the CAR-representation in terms of creation and anni-
hilation operators on the fermionic Fock space we refer to [E9, Prop. 5.2.2].

Corollary 6.5.4 For every complex pre-Hilbert space(V,(· , ·)) there exists aCAR-
representation of(V,(· , ·)), unique up to C∗-isomorphism.

Proof: The existence has already been proved in Theorem 6.5.3. Let(â, Â) be any
CAR-representation of(V,(· , ·)). Theorem 6.5.3 states the existence of a unique
injective C∗-morphismα̃ : Cl(VC,qC) → Â such thatα̃ ◦ a = â. Now α̃ has to be
surjective since Axiom (i) holds for(â, Â). �

From now on, given a complex pre-Hilbert space(V,(· , ·)), we denote the C∗-algebra
Cl(VC,qC) associated with the CAR-representation(a,Cl(VC,qC)) of (V,(· , ·)) by
CAR(V,(· , ·)). We list the properties of CAR-representations which are relevant for
quantization, see also [E9, Vol. II, Thm. 5.2.5, p. 15].

Proposition 6.5.5 Let(V,(· , ·)) be a complex pre-Hilbert space and(a,CAR(V,(· , ·)))
its CAR-representation.

(i) For every v∈V one has‖a(v)‖ = |v| = (v,v)
1
2 , where‖ · ‖ denotes the C∗-norm

onCAR(V,(· , ·)).

(ii) The C∗-algebraCAR(V,(· , ·)) is simple, i.e., it has no closed two-sided∗-ideals
other than{0} and the algebra itself.

(iii) The algebraCAR(V,(· , ·)) isZ2-graded,

CAR(V,(· , ·)) = CAReven(V,(· , ·))⊕CARodd(V,(· , ·)),

anda(V)⊂ CARodd(V,(· , ·)).
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(iv) Let f : V → V ′ be an isometric linear embedding, where(V ′,(· , ·)′) is another
complex pre-Hilbert space. Then there exists a unique injective C∗-morphism
CAR( f ) : CAR(V,(· , ·))→ CAR(V ′,(· , ·)′) such that

V
f

//

a
��

V ′

a′
��

CAR(V,(· , ·)) CAR( f )
// CAR(V ′,(· , ·)′)

commutes.

Proof: We show assertion (i) . On the one hand, the C∗-property of the norm‖·‖ implies

‖a(v)‖4 = ‖a(v)a(v)∗‖2

= ‖(a(v)a(v)∗)2‖.

On the other hand,

(a(v)a(v)∗)2 = a(v){a(v)∗,a(v)}a(v)∗

= |v|2a(v)a(v)∗,

where we useda(v)2 = 0 which follows from the second axiom. We deduce that

‖a(v)‖4 = |v|2 · ‖a(v)a(v)∗‖
= |v|2 · ‖a(v)‖2.

Sincea is injective, we obtain the result.
Assertion (ii) follows from Cl(VC,qC) being simple, see [E31, Thm. 1.2.2]. Alterna-
tively, it can be deduced from the universal property formulated in Theorem 6.5.3.
To see (iii) we recall that the Clifford algebra Cl(VC,qC) has aZ2-grading where the
even part is generated by products of an even number of vectors inVC and, similarly,
the odd part is the vector space span of products of an odd number of vectors inVC,
see [E31, p. 27]. This is compatible with the Clifford relations (6.15). Clearly,a(V)⊂
CARodd(V,(· , ·)).
It remains to show (iv). It is straightforward to check thata′ ◦ f satisfies Axioms (ii)
and (iii) in Definition 6.5.1. The result follows from Theorem 6.5.3. �

One easily sees that CAR(id) = id and that CAR( f ′ ◦ f ) = CAR( f ′)◦CAR( f ) for all

isometric linear embeddingsV
f−→V ′ f ′−→V ′′. Therefore we have constructed a covariant

functor
CAR :HILB−→ C∗Alg,

whereHILB denotes the category whose objects are the complex pre-Hilbert spaces
and whose morphisms are the isometric linear embeddings.
For real pre-Hilbert spaces there is the concept ofself-dualCAR-representations.

Definition 6.5.6 A self-dual CAR-representationof a real pre-Hilbert space(V,(· , ·))
is a pair (b,A), where A is a unital C∗-algebra andb : V → A is anR-linear map
satisfying:

(i) A =C∗(b(V)),
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(ii) b(v) = b(v)∗ and

(iii) {b(v1),b(v2)}= (v1,v2) ·1,

for all v,v1,v2 ∈V.

Given a self-dual CAR-representation, one can extendb to aC-linear map from the
complexificationVC to A. This extensionb : VC → A then satisfiesb(v̄) = b(v)∗ and
{b(v1),b(v2)} = (v1, v̄2) · 1 for all v,v1,v2 ∈ VC. These are the axioms of a self-dual
CAR-representation as in [E1, p. 386].

Theorem 6.5.7For every real pre-Hilbert space(V,(· , ·)), the C∗-Clifford algebra
Cl(VC,qC) provides a self-dualCAR-representation of(V,(· , ·)) via b(v) = i√

2
v.

Moreover, self-dualCAR-representations have the following universal property: Let Â
be any unital C∗-algebra and̂b : V → Â be anyR-linear map satisfying Axioms(ii) and
(iii) of Definition 6.5.6. Then there exists a unique C∗-morphismβ̃ : Cl(VC,qC) → Â
such that

V
b̂ //

b
��

Â

Cl(VC,qC)

β̃
;;

commutes. Furthermore,̃β is injective.

Corollary 6.5.8 For every real pre-Hilbert space(V,(· , ·)) there exists aCAR-
representation of(V,(· , ·)), unique up to C∗-isomorphism.

From now on, given a real pre-Hilbert space(V,(· , ·)), we denote the C∗-algebra
Cl(VC,qC) associated with the self-dual CAR-representation(b,Cl(VC,qC)) of
(V,(· , ·)) by CARsd(V,(· , ·)).
Proposition 6.5.9 Let (V,(· , ·)) be a real pre-Hilbert space and(b,CARsd(V,(· , ·)))
its self-dualCAR-representation.

(i) For every v∈ V one has‖b(v)‖ = 1√
2
|v|, where‖ · ‖ denotes the C∗-norm on

CARsd(V,(· , ·)).
(ii) The C∗-algebraCARsd(V,(· , ·)) is simple.

(iii) The algebraCARsd(V,(· , ·)) isZ2-graded,

CARsd(V,(· , ·)) = CAReven
sd (V,(· , ·))⊕CARodd

sd (V,(· , ·)),
andb(V)⊂ CARodd

sd (V,(· , ·)).
(iv) Let f :V →V ′ be an isometric linear embedding, where(V ′,(· , ·)′) is another real

pre-Hilbert space. Then there exists a unique injective C∗-morphismCARsd( f ) :
CARsd(V,(· , ·))→ CARsd(V ′,(· , ·)′) such that

V
f

//

b
��

V ′

b′
��

CARsd(V,(· , ·))
CARsd( f )

// CARsd(V ′,(· , ·)′)
commutes.
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The proofs are similar to the ones for CAR-representations of complex pre-Hilbert
spaces. We have constructed a functor

CARsd : HILBR −→ C∗Alg,

whereHILBR denotes the category whose objects are the real pre-Hilbertspaces and
whose morphisms are the isometric linear embeddings.

Note 6.5.10Let (V,(· , ·)) be a complex pre-Hilbert space. If we considerV as a real
vector space, then we have the real pre-Hilbert space(V,Re(· , ·)). For the correspond-
ing CAR-representations we have

CAR(V,(· , ·)) = CARsd(V,Re(· , ·)) = Cl(VC,qC)

and

b(v) =
i√
2
(a(v)−a(v)∗).

6.5.2 CCR algebras

In this section, we recall the construction of the representation of any (real) symplectic
vector space by the so-called canonical commutation relations (CCR). Proofs can be
found in [E4, Sec. 4.2].

Definition 6.5.11 A CCR-representationof a symplectic vector space(V,ω) is a pair
(w,A), where A is a unital C∗-algebra and w is a map V→ A satisfying:

(i) A =C∗(w(V)),

(ii) w(0) = 1,

(iii) w(−φ) = w(φ)∗,

(iv) w(φ +ψ) = eiω(φ ,ψ)/2w(φ) ·w(ψ),

for all φ ,ψ ∈V.

The mapw is in general neither linear, nor any kind of group homomorphism, nor
continuous [E4, Prop. 4.2.3].

Example 6.5.12Given any symplectic vector space(V,ω), consider the Hilbert space
H := L2(V,C), whereV is endowed with the counting measure. Define the mapw from
V into the spaceL (H) of bounded endomorphisms ofH by

(w(φ)F)(ψ) := eiω(φ ,ψ)/2F(φ +ψ),

for all φ ,ψ ∈ V and F ∈ H. It is well-known thatL (H) is a C∗-algebra with the
operator norm as C∗-norm, and that the mapw satisfies the Axioms (ii)-(iv) from Def-
inition 6.5.11, see e.g. [E4, Ex. 4.2.2]. Hence settingA := C∗(w(V)), the pair(w,A)
provides a CCR-representation of(V,ω).

This is essentially the only example of CCR-representation:
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Theorem 6.5.13Let (V,ω) be a symplectic vector space and(ŵ, Â) be a pair satisfy-
ing the Axioms(ii) -(iv) of Definition 6.5.11. Then there exists a unique C∗-morphism
Φ : A → Â such thatΦ ◦w= ŵ, where(w,A) is theCCR-representation from Exam-
ple 6.5.12. Moreover,Φ is injective.
In particular, (V,ω) has aCCR-representation, unique up to C∗-isomorphism.

We denote the C∗-algebra associated to the CCR-representation of(V,ω) from Exam-
ple 6.5.12 by CCR(V,ω). As a consequence of Theorem 6.5.13, we obtain the follow-
ing important corollary.

Corollary 6.5.14 Let (V,ω) be a symplectic vector space and(w,CCR(V,ω)) its
CCR-representation.

(i) The C∗-algebraCCR(V,ω) is simple, i.e., it has no closed two-sided∗-ideals
other than{0} and the algebra itself.

(ii) Let (V ′,ω ′) be another symplectic vector space and f:V →V ′ a symplectic linear
map. Then there exists a unique injective C∗-morphismCCR( f ) : CCR(V,ω)→
CCR(V ′,ω ′) such that

V
f

//

w
��

V ′

w′
��

CCR(V,ω)
CCR( f )

// CCR(V ′,ω ′)

commutes.

Obviously CCR(id) = id and CCR( f ′ ◦ f ) = CCR( f ′) ◦CCR( f ) for all symplectic

linear mapsV
f→V ′ f ′→V ′′, so that we have constructed a covariant functor

CCR :Sympl−→ C∗Alg.
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